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Abstract13

(1) O’Hara and Kotze (2010; Methods in Ecology and Evolution 1: 118-122) present simulation results that14

appear to show very poor behaviour (as judged by bias and overall accuracy) of linear models (LMs)15

applied to count data, especially in relation to generalised linear model (GLM) analysis.16

(2) We considered O’Hara and Kotze’s (2010) comparisons, and determined that the finding occurred17

primarily because the quantity that they estimated in their simulations of the LM analysis (the mean18

of a transformation of the count data) was not the same quantity that was simulated and to which19

the results were compared (the logarithm of the mean of the count data). We correct this discrepancy,20

re-run O’Hara and Kotze’s simulations, and add additional simple analyses.21

(3) We found that the apparent superiority of the GLMs over LMs in O’Hara and Kotze’s (2010) simulations22

was primarily an artefact of divergence in the meanings of results from the two analyses. After converting23

results from LM analyses of transformed data to estimators of the same quantity as provided by the24

GLM, results from both analyses rarely differed substantially. Furthermore, under the circumstances25

considered by O’Hara and Kotze, we find that an even simpler implementation of LM analysis, inference26

of the mean of the raw data, performs even better, and gives identical results to the GLM.27

(4) While the analysis of count data with generalised linear models can certainly provide many benefits,28

we strongly caution against interpreting O’Hara and Kotze’s (2010) results as evidence that simpler29

approaches are severely flawed.30
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Introduction31

Many variables of interest in statistical analyses of biological data come from non-normal distributions. These32

variables may be most appropriate to analyse with generalised linear models (GLMs; Nelder and Wedderburn33

1972, McCullagh and Nelder 1989). It has become increasingly common in the last two decades for biologists to34

employ GLMs, and in fact strong opinions have developed that earlier approaches to dealing with non-normal35

variable types are likely to be highly inappropriate. A key example is the analysis of count variables, i.e., of36

quantities that take non-negative integer values, such as counts of offspring or counts of behaviours. Models37

with count variables as responses might previously have used linear models (LMs; or methods subsumed38

by linear models) fitted using ordinary least squares (OLS) methods, either of untransformed counts, or39

after transformation using one of several methods. Transforming counts by logging (generally after adding40

a value of one, to avoid taking the log of any zero counts) was very common (Sokal and Rohlf 1995). In41

recent years, it has been more common to use GLMs that model errors in models of count variables using42

the Poisson distribution, or to use use other, even more flexible, models for the error structure, for example,43

GLMs employing the negative binomial distribution. The general expectation of clear superiority of GLMs is44

encapsulated in the title of a much-cited paper by O’Hara and Kotze (2010): “Do not log-transform count45

data”. These authors’ definitive advice is based in very large part on a simulation study comparing the two46

approaches, and appears to reveal catastrophic performance of LM analysis and excellent behaviour of GLM47

analysis.48

O’Hara and Kotze (2010) compared different approaches for estimating the mean of a distribution, on the log49

scale, from count data. Their principal comparison was between (i) the location parameter in a negative50

binomial GLM (which is the log of the mean of the counts), and (ii) the mean of a logged distribution51

(to which a constant has been added to avoid the log(0) problem). O’Hara and Kotze compare these two52

coefficients directly; however, we feel such a comparison is problematic for two reasons.53

First, the analysis of the log(y + 1) data is compared to the log of the mean of count data, y, without the54

added 1 (or any other constant). It seems unlikely that a thoughtful researcher would take an estimate of55

the mean in such an analysis as representative of the (log) mean. One would not expect, in general, the56

mean of a random variable y (transformed or otherwise), and the mean of a random variable y + a (similarly57

transformed), to be equivalent.58

Second, putting the “+1” issue aside, the mean of a transformation of a random variable is not generally59

equal to (i.e., cannot be compared in a simulation study) the transformation applied to the mean. Consider60

the log transformation applied to variable x that follows a log-normal distribution. Such a variable, once log61
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transformed, will have a mean of µ and a standard deviation of σ. These coefficients, µ and σ, are traditionally62

used as the parameters of a log-normal distribution. However, the mean of the original distribution is not eµ.63

Rather, E[y] = eµ+σ2
2 . Thus, log(E[y]) 6= µ. The general statement of this inequality is that for an arbitrary64

non-linear transformation f() of a random variable x, E[f(x)] 6= f(E[x]). Particularly when applied to convex65

functions (in which case f(E[x]) < E[f(x)]), this principle is known as Jensen’s inequality (Jensen 1906).66

In this article, we will be primarily concerned with the bahaviour of random variables under logarithmic67

transformation; since this is concave function, log(E[x]) > E[log(x)].68

The coefficient estimated by O’Hara and Kotze (2010) in the negative binomial log-link GLM analysis is69

the logarithm of the mean of the response, log(E[y]), and their calculations of bias and accuracy (RMSE)70

relate negative binomial GLM-based estimates of log(E[y]) to the true values of log(E[y]); this is a logical71

comparison. However, the analysis in which they fitted an identity-link linear model to log transformed72

data did not estimate log(E[y]). Rather, it estimated E[log(y)]; note that we are setting aside the +1 issue,73

where in fact, the LM analysis estimated E[log(y + 1)]. However, this estimator was nonetheless compared to74

log(E[y]) in calculations of bias and accuracy, and this is clearly not a similarly logical comparison.75

We believe that these issues are avoidable, and that re-evaluating the evidence presented by O’Hara and76

Kotze (2010) in the light of such logical corrections should be illuminating. Accordingly, we performed similar77

analyses to those presented by O’Hara and Kotze (2010), but we transformed outputs of both the negative78

binomial GLM analysis and the linear model applied to logged data such that they are comparable. We79

considered both the log scale and the original data scale. We considered performance through different80

approaches (bias, and overall accuracy or RMSE, as considered by O’Hara and Kotze 2010), of all models81

applied in the original paper, and also of a linear model applied to the untransformed data.82

Simulations83

Our simulation scheme followed O’Hara and Kotze’s (2010) simulations directly in almost all respects. For each84

simulation we generated a random sample y from a negative binomial distribution with a mean we shall denote85

E[y] and with an overdispersion parameter θ. This parameterisation of the negative binomial distribution,86

common in ecology but not necessarily elsewhere, is explained in somewhat more detail in the appendix.87

Briefly, the negative binomial distribution converges on the Poisson distribution with V AR[y] = E[y] for88

large values of θ, with V AR[y] = E[y] + E[y]2

θ . The properties of the negative binomial distribution with this89

parameterisation are elaborated in the supplemental materials. Each sample had n = 100. We investigated90

values of E[y] in [1, 2, 3, ..., 20], and values of the dispersion parameter θ in [0.5, 1, 2, 5, 10]. Each simulation91

4
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scenario was replicated 104 times. Our first set of simulations exactly followed O’Hara and Kotze’s (2010)92

procedure and simulated datasets that contained n = 100 values for each of the twenty values of E[y], for93

a total of ntotal = 2000 samples in each replicate analysis. Each of the 104 replicate simulations for each94

combination of parameters (E[y] and θ) thus generated and estimated an intercept for each of the twenty95

groups with different means, and a common overdispersion parameter or residual variance. We also condicted96

analyses where each of the 20 groups with different means was analysed individually, generating separate97

estimates of the mean and disperters for each group. Finally, we also conducted all simulations with a smaller98

sample size of n=20 for each factor level (i.e., each group with a true mean between 1 and 20 counts) within99

each replicate analysis.100

Models101

We employed three different models that estimate E[y], log(E[y]), or the mean of the transformation102

E[log(y + 1)]. First, we applied a negative binomial GLM with a log link function to estimate log(E[y]),103

yi ∼ NB (eαNB , θ) , (1)

where i indexes observations of the count variable, NB () denotes a negative binomial distribution parame-104

terised via its expectation and a dispersion parameter θ; we note however, that the GLM doesn not assume105

that the data follow a negative binomial distribution (although our simulated data do), but rather that the106

variance of residuals is related to the mean in the same way as it is in the negative binomial distribution107

(McCullagh and Nelder 1989; see the supplementary materials for more on this relationship). We denote108

the key parameter directly estimated by each model as α with a distinguishing subscript. In the negative109

binomial model, αNB directly estimates log(E[y]).110

We fitted the negative binomial GLM (equation 1) using a modification of the glm.nb() function from the111

package MASS (Venables and Ripley 2002). We modified the function to default to fitting a Poisson GLM with112

a log link when the algorithm to determine the value of the θ reached very large values but did not converge113

(such that the negative binomial distribution converges on a Poisson distribution; see further explanation114

in the appendix). Otherwise, the algorithm behaves well, but generates warning messages that must be115

suppressed. The modified algorithm may not necessarily be suitable for analyses beyond the simulations116

conducted here; the modified source is available with all other code used in the present study.117

Next we fitted an (identity link) linear model with log(y + 1) as a response variable,118

5
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log(yi + 1) = αlogLM + ei, (2)

where αlogLM is a direct estimator of E[log(y + 1)], and ei are residuals, with estimated variance σ2
logLM .119

This model assumes that residuals, ei, of the log(y + 1) transformed data, are independent and have constant120

variance.121

We fitted the linear model of the transformed data (equation 2, and of untransformed data, equation 3, see122

below) using the lm() function in the base R package version 3.4.1 (R Core Team 2017).123

Finally, we fitted an (identity link) linear model to the untransformed data,124

yi = αLM + ei, (3)

where ei are residuals on the untransformed scale (and as such are distinct from those in the second model),125

and αLM is an estimator of E[y]. We denote the estimated variance of residual in this model by σ2
LM . This126

model assumes that residuals, ei, of the untransformed cound data, y, are independent and have constant127

variance.128

Obtaining parameters of interest129

There are two principal quantities that could potentially be of interest for a count variable: its mean (E[y]),130

and the log of its mean (log(E[y])); the mean of the transformation (i.e., E[log(y)] or E[log(y + 1)]) is131

potentially also of interest, but as log(E[y]) was the focal estimand in O’Hara and Kotze (2010), we focus on132

it. We devised estimators of each of E[y] and log(E[y]), and associated standard errors, from each of the three133

analytical models (described in equations 1, 2, and 3) that we fitted to the simulated datasets. Expressions134

for these estimators are given in table 1. Explanations of how these estimators are derived are given in the135

supplemental materials, as are expressions that may be useful if standard errors of derived quantities given in136

table 1 are used in practice.137

Evaluation of model performance138

First, we evaluated the performance of the model at estimating the mean of the negative binomial variables139

on the log(y + 1) scale. For this, we calculated the mean of αlogLM across simulations, for each combination140

6
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of µ and θ. We compared this to the true mean of each transformed negative binomial distribution, which we141

calculated according to142

E[log(y + 1)] = Σ∞
y=0log(y + 1)pnegbin(y,E[y], θ),

where pnegbin(y, µ, θ) is the density of a negative binomial distribution with mean µ and dispersion parameter143

θ, evaluated at y. In practice we did the summation over y up to y = 1000. We summed the estimate of144

the mean of the log(y + 1) transformed data across all 1000 replicate simulations, and plotted these against145

the expected value, for all values of E[y] and all values of θ. Deviation from the 1:1 line would indicate that146

there is some inherent bias in linear models as a mechanism for estimating location parameters for this type147

of data.148

Next, we evaluated the performance of each estimator of the log of the mean of the count variable, and of the149

mean of the count variable, according to the two criteria used by O’Hara and Kotze (2010): bias and overall150

accuracy. We also evaluated the performance of the standard errors of each estimator (i.e., square roots of151

estimation variances).152

We estimated the bias of each estimator using the standard formula153

bias = E[φ̂]− φ ,

where φ is the true value of some quantity, i.e., φ is the estimand (in our case, the true simulated values154

of either log(E[y]) of E[y]), and φ̂ is an estimator of φ (i.e., quantities directly estimated from the models155

described in section Models, or derived in section Transformations). We estimate E[φ̂] for each estimate of156

the mean (or logarithm of the mean) of our simulated count variables as the mean of the estimate across the157

104 replicate simulations for each combination of parameters.158

We estimated the overall accuracy of each analysis using the standard metric root mean squared error (RMSE).159

This is defined as160

RMSE =
√
E[(φ̂− φ)2] .

Similarly to our calculations of bias, we estimate E[(φ̂−φ)2] as the average taken over all replicate simulations161

for any given combination of parameters. Our main results consider bias and RMSE, since these are the162

aspects of model performance considered by O’Hara and Koze (2010). However, a range of further analyses163

of these simulation results is clearly of potential interest. In the supplemental materials, we provide results164

about bias and precision on different scales (Figures S.2 through S.5), and for smaller sample sizes (n = 20165

per group; figures S.6 and S.7). We provide a brief investigation of the performance of standard errors in the166

7
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supplemental material (figures S.8 and S.9).167

Results168

OLS estimates of the mean of the log(y+1) transformed data closely matched the true means of the log(y+1)169

transformation for all values true of E[y] and θ (figure 1). This indicates that there is no inherent bias in the170

linear model analysis of the transformed data itself; estimates of the mean of the log(y + 1) are unbiased.171

This follows from least squares theory: regardless of the distribution of the log(y + 1) transformed data172

the OLS estimate of their mean is unbiased (Rao 1973; Judge et al. 1980). Therefore, any problems with173

estimates of quantities such as E[y] or log(E[y]) will reflect deficiencies in the transformations that we apply.174

For all parameter values, the estimates of log(E[y]) obtained with the negative binomial GLM and the linear175

model applied to the raw count data are unbiased (figure 2a-e). Both of these analyses yielded essentially176

identical overall accuracy, as measured by RMSE, which was better than the accuracy of the other approaches177

that we considered. The GLM analysis, which matches the data-generating model exactly, provided valid178

standard errors (figures S.8 and S.9) across all parameter values. Standard errors from the linear model were179

valid when the mean of each group was estimated separately (figures S.8 and S.9, parts f-j), but were generally180

poor, expecially in relative terms (figures S.9a-e) when a single resiudal variance was estimated for across all181

groups with true mean counts from 1 to 20, which spanned very large ranges of true residual variation.182

Measures of the performance of the mean of the log(y + 1) data, treated as an estimator of log(E[y]), as183

investigated by O’Hara and Kotze’s (2010), are presented in figure 2. In our results, these behave identically184

to the results given in O’Hara and Kotze’s (2010). This quantity is, on average, larger than log(E[y]) for185

small true values of E[y], and is smaller than log(E[y]) for large true mean values of the count variable,186

particularly when overdispersion is high (figure 2a-e).187

When we applied the approximate estimators of log(E[y]) from the LM analysis of the log(y + 1) data, the188

performance of these estimators was far better than the impression given if ̂E[log(y + 1)] is taken to be an189

estimator of log(E[y]). The approximate estimators provided reasonably unbiased inferences of log(E[y]) for190

most parameter values, certainly far better than if the mean of the log(y + 1) data is taken as an estimator191

of log(E[y]), except for the highest levels of overdispersion (θ = 0.5; figure 2a-e). These estimators were192

far more accurate for estimation of log(E[y]) than ̂E[log(y + 1)], as judged by RMSE (figure 2f-j). The193

first-order approximations to their standard errors performed reasonably, except for at very high levels of194

overdispersion, and for the lowest means (Figures S.8 and S.9). Some modest differences occur between195

the two approximations of log(E[y]), based on the LM analysis of the E[log(y + 1)], and the associated196

8
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approximations of their standard errors. At the highest levels of overdispersion, the approximation based on197

the 2nd order Taylor series (eq. 9 in table 1) had better RMSE than the log-normal approximation (eq. 7 in198

table 1; figure 2f). The log-normal approximation for standard errors performed better for low means of the199

count variable (figure 2f-j), but the first order approximation for standard errors better reflected the true SD200

of the estimator for larger means. All the results we have considered so far (figure 2) come from scenarios201

where a single model is fitted to analyse the means of the twenty groups with different means. These analyses202

all assume a single residual variance, which is used in the approximations for log(E[y]). If each group mean203

is estimated is a separate model, with a separate residual variance, the performance of the estimators, with204

respect to both bias and RMSE is even better (figure 3).205

For comparability with O’Hara and Kotze’s (2010) results, we present our main results for inference for the206

logarithm of the mean of the count variable y. Equivalent plots to figures 2 and 3 are provided for all results207

on the scale of the observed count variable, both in absolute terms (i.e., where units are counts; figures S.1 &208

S.2), and in relative terms (where bias, RMSE, and standard errors are presented in units of the true mean;209

figures S.3 & S.4). These results agree closely with those for the log scale for all key interpretations given in210

this section.211

Discussion212

Figures 2 and 3 of O’Hara and Kotze (2010) present the results of their analyses. Their conclusion was that213

no matter whether bias or RMSE is considered as a measure of estimation reliability, the GLM method214

often substantially outperformed the log-transformation method, and there were no circumstances where215

the reverse was true. Our figures have a very different interpretation. Specifically, whether considering bias216

or RMSE, (i) most of the discrepancy in the original analyses was due to the fact that the LM analysis of217

transformed data estimates a different quantity than the GLM analysis (figures 2 & 3), (ii) once suitably218

transformed, estimates from the GLM and the linear model applied to transformed data are very similar219

across most of the range of scenarios examined (figures 2 & 3), and (iii) the performance of the GLM and the220

linear model applied directly to the raw count data scale are practically indistinguishable across the range of221

scenarios examined. Importantly, the analyses of transformed data are not nearly as severely biased as O’Hara222

and Kotze’s (2010) results indicated; their very negative results are primarily a consequence of comparing223

two different quantities. The biases in our simulations involving back-transformed parameters should not224

be seen as arising from errors in the OLS estimation applied to the transformed data; these analyses yield225

unbiased estimates of the mean of the distribution of the transformed data (figure 1). Rather, the biases that226

9
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persist after back-transformation (figures 2 and 3) will be a result of the standard types of approximations227

used in the derivations of the back-transformations (specifically, using the delta method, Dorfman 1938, Ver228

Hoef 2012, and approximations based on properties of the log-normal distribution, Aitchison & Brown 1957,229

see the supplemental materials for details). It may be possible to use newer methods to derive even better230

back-transformations (Khuri et al., 2015)231

It is possible to explain why O’Hara and Kotze saw the patterns that they did. When the true mean of the232

response variable is low then the failure to account for the +1 correction is the main source of bias in their233

comparison (but this is absent from our comparison). This is the positive bias for the transformation-methods234

that can be seen in their Figure 2 for low values of the true mean. However for the samples in their (and our)235

simulation study variance increases with increasing mean value, so for high mean values their comparison236

(but not ours) predicts a negative bias for the transformation methods because the mean on the log scale is237

less than the log of the mean on the count data scale. For completeness we note that for both bias and RMSE238

both the “normal residuals” and “second order” approximations perform relatively well except when the data239

are strongly overdispersed (in the present context, have error variance greater than that expected for the240

Poisson distribution). In situations where these two methods perform less well, neither is universally better241

than the other. We note also that all these general trends related to how effectively the models estimate the242

mean also extend to the empirical standard deviation and the estimated standard error associated with the243

estimated mean value.244

Our results provide a comparison between what would be recovered by a negative binomial GLM and a linear245

model using standard ordinary least squares (OLS) formulations. We find that the linear model estimates246

the mean as well as the negative binomial GLM. We should keep in mind that the negative binomial GLM247

had an advantage over all the other models considered in our comparison: the negative binomial model248

that we selected for the GLM was an exact match to the function used to generate the samples. In practice249

we will rarely, if ever, be in a situation where we know with certainty exactly the data structure to select250

for our GLM to provide a perfect match to the underlying system than is being sampled. So the fact that251

this advantage did not lead to substantially better performance than the simple linear model is particularly252

noteworthy. It will also be surprising to many at first, as it is widely believed that the linear model is based253

on the assumption that the residuals are normally distributed, and (especially for small θ), the residuals in254

our simulations will have been far from normal. In fact, OLS mechanics (and thus linear models) do not255

assume normal residuals (Rao 1973). This assumption only comes into play when generating p values (and256

then is probably most important at small sample sizes). However, it should be noted that standard mechanics257

for generating p values in GLMs are asymptotic, and thus approximate for finite sample sizes. Furthermore,258

10
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GLMs themselves rely on specifying particular ling functions and mean-variance relationships. While the259

GLMs that we fitted in this study exactly match the link functions and distributional assumptions of the260

data simulation scheme, in practice, these model features will never perfectly match real biological data. It is261

thus possible for broken assumptions of normal residuals (insofar as such an assumption is actually made) in262

LMs to be less consequential than the various problems that can arise in the applications of GLMs, even for263

generating p values (Ives 2015).264

We do not intend to deny that generalised linear model analysis will often provide great benefits for the265

analysis of biological data, nor that generalised models will often be the most appropriate methods for many266

types of analysis that arise in ecology and evolution. However, our revisions of O’Hara and Kotze’s (2010)267

findings may nonetheless warrant some general changes to available advice on how LM-based analysis of268

data from arbitrary distributions should be perceived. Though one may themselves prefer other methods,269

results by those who opt for simpler methods should not be judged harshly or dismissed, simply because their270

distributional assumptions are not perfectly met – this alone does not necessarily lead to catastrophic failure271

of a statistical model. Similarly, results in the literature based on older methods may still in many instances272

be regarded as reliable. Approximations given here for converting results from linear models of log(y + 1),273

potentially with standard errors, may facilite the use of such older results in new meta-analyses. Furthermore,274

when analyses of a single dataset using LMs and GLMs appear to give different answers, it is quite possible275

that the apparent discrepancy arises from mis-specification or mis-interpretation of the GLM results, as was276

the case for some key aspects of O’Hara and Kotze’s (2010). In our experience, analysts typically attribute277

such discrepancies to the inadequacy of a LM, often invoking assumptions of OLS analysis that do not exist.278

In such cases, we have often found that results from LMs and GLMs are highly congruent, once errors in279

the implementation - or more often interpretation – of GLMs are corrected. The tendency to mis-attribute280

divergence between LM and GLM results to poor performance of linear models is further evidenced by the281

>500 citations that have been made to O’Hara and Kotze’s (2010) paper, apparently without any close look282

at the mechanics of its LM and GLM analyses revealing that the key comparisons therein were not based on283

comparable quantities.284
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Table 1: Estimators of the mean of a count variable, Ê[y], and the log of the mean of a count variable, ̂log(E[y]), obtained from the parameters of
three different statistical models.

model equation with
relevant terms

Ê[y] ̂log(E[y]) supplementary
equation for esti-
mation variance

glm analysis of y eq. 1 (4) Ê[y] = eαNB (5) ̂log(E[y]) = αNB eq. S.1

lm analysis
of log(y + 1),
log-normal trans-
formation

eq. 2 (6) Ê[y] = eαlogLM+
σ2
logLM

2 − 1 (7) ̂log(E[y]) = log(eαlogLM+
σ2
logLM

2 − 1) eqs. S.3 & S.5

lm analysis
of log(y + 1),
2nd-order approxi-
mation

eq. 2 (8) Ê[y] = eαlogLM (1 + σ2
logLM

2 )− 1 (9) ̂log(E[y]) = log(eαlogLM (1 + σ2
logLM

2 )− 1) eqs. S.4 & S.6

lm analysis of y eq. 3 (10) Ê[y] = αLM (11) ̂log(E[y]) = log(αLM ) eq. S.7
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Figure 1: Bias in estimation of the mean of negative binomial variables, transformed according to log(y + 1).
True simulated mean values are plotted on the x-axis, and the means of simulation results are plotted on
the y-axis. As such, points falling on the one-to-one line (grey) indicate simulation scenarios in which the
analysis of log(y + 1) transformed data is unbiased at recovering the mean on the log(y + 1) scale. Plots a-e
(top row) are generated from simulations where a single model estimates means of groups with true values
from 1 to 20, with a common dispersion parameter or residual variance. Plots f-j (bottom row) are generated
from simulations where a separate model estimates the mean and disperson parameter or residual variance
for each group with a different true (simulated) mean value.
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Figure 2: Bias (a-e) and overall accuracy (f-j) of inferences of the logarithm of the mean of a count variable.
Data (n = 100) for a count variable x were simulated from a negative binomial distribution with mean E[y]
and size parameter θ. Expressions for the two transformations of the analysis of log(y + 1) data are given in
equations 7 and 9 of table 1. 10000 replicate simulations of each simulation were conducted and estimators of
log(E[y]) were constructed from a suite of GLM and LM analyses.
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Figure 3: Bias (a-e) and overall accuracy (f-j) of inferences of the logarithm of the mean of a count variable.
Simulations are as for figure 2, except that each simulation involves fitting separate models for each level
of the predictor variable. Data (n = 100) for a count variable x were simulated from a negative binomial
distribution with mean E[y] and size parameter θ. Expressions for the two transformations of the analysis of
log(y + 1) data are given in equations 7 and 9 of table 1. 10000 replicate simulations of each simulation were
conducted and estimators of log(E[y]) were constructed from a suite of GLM and LM analyses.
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