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Abstract—The firing activity of dorsal raphe neurons is re-
lated to arousal state. However, it is unclear how this firing
activity is precisely related to cortical activity, in particular
oscillations occurring during sleep rhythms. Here we con-
ducted single-cell extracellular recordings and juxtacellular la-
belling while monitoring electrocorticogram (ECoG) activity in
urethane anaesthetised rats, to relate activity in neurochemi-
cally identified groups of neurons to cortical slow-wave activity
(SWA). We observed that electrophysiological heterogeneity in
dorsal raphe neurons revealed different neurochemical groups
of DRN neurons and was mirrored by significant differences in
the phase and strength of coupling to the cortical slow oscilla-
tions. Spike firing relationship of clock-like neurons, identified
as 5-HT (5-hydroxytryptamine) or serotonin neurons, was
higher during the inactive component of the oscillations. In
contrast, half of the identified bursting 5-HT neurons did not
exhibit strong cortical entrainment; those that did fired most
during the inactive component of the SWA. Two groups of
putatively non-5-HT neurons (irregular slow-firing and fast-fir-
ing) exhibited significant coherence and fired most during the
active component of the SWA. These findings indicate that
within the DRN electrophysiologically and neurochemically dis-
crete neuronal groups exhibit distinct relations to cortical
activity.

© 2011 IBRO. Published by Elsevier Ltd. Open access under
CC BY license.
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Serotonin or 5-HT (5-hydroxytryptamine) in the midbrain
dorsal raphe nucleus (DRN) has been implicated in many
aspects of behavioural and cognitive function, including
movement, punishment, cognition, and in particular regu-
lation of the sleep—wake cycle (Bradley, 1958; Jouvet,
1972; Jacobs and Fornal, 1999; Meneses, 1999; Sakai
and Crochet, 2001; Steriade, 2004; Dayan and Huys,
2009; Monti, 2010). Putative DRN 5-HT neurons, across
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species, fire regularly at a relatively high rate during wake-
fulness but decrease in firing during slow-wave sleep and
become silent during paradoxical or rapid-eye movement
sleep (Trulson and Jacobs, 1979; Shima et al., 1986;
Jacobs and Azmitia, 1992; Kocsis and Vertes, 1992; Por-
tas et al., 2000; Urbain et al., 2006). In a similar fashion,
regional brain extracellular 5-HT measured by microdialy-
sis decreases during the switch from wakefulness to slow-
wave and paradoxical sleep (Wright et al., 1990; Portas et
al., 1998).

During slow-wave sleep there are large-scale changes
in neural activity in the cortex, in which the membrane
potential of many groups of cortical neurons fluctuate be-
tween depolarised (up) and hyperpolarised (down) states
in a highly synchronised manner to generate large ampli-
tude, low frequency slow waves (Steriade, 2000). This
slow-wave activity (SWA) is present during natural sleep
and can also be induced by certain anaesthetics like ure-
thane. SWA is expressed as cortical slow oscillation (~1
Hz), as well as 9 (1—-4 Hz) and spindle (7-14 Hz) oscilla-
tions (Steriade, 2000).

Neuronal pathway tracing studies demonstrate that the
cortex, and especially the prefrontal cortex (PFC), has
strong reciprocal neuroanatomical connections with the
DRN (Hajos et al., 1998; Heidbreder and Groenewegen,
2003; Gongalves et al., 2009). Moreover, in vivo electro-
physiological studies demonstrate that these projections
are powerful, with significant numbers of DRN neurons
responding to PFC stimulation (Hajos et al., 1998; Varga et
al., 2001) and significant numbers of PFC neurons re-
sponding to DRN stimulation (Gartside et al., 2000). Re-
cent behavioural, pharmacological, and also electrophysi-
ological evidence suggest a top—down control of the PFC
over 5-HT and other monoamine systems via its descend-
ing projections (see Robbins, 2005), and thus an associ-
ation between cortical SWA and firing of DRN 5-HT neu-
rons is predicted.

In support of this idea, there is considerable diversity in
the firing activity of individual DRN neurons across differ-
ent sleep—wake states (Kocsis and Vertes, 1992; Sakai
and Crochet, 2001; Kocsis et al., 2006; Urbain et al.,
2006). However, interpretation of this diversity is compli-
cated by not only the variety of firing patterns expressed by
DRN neurons but also the many chemically distinct DRN
neuron types. For example, recent findings using juxtacel-
lular labelling methodology have found that many but not
all classic slow-firing clock-like neurons are 5-HT-contain-
ing (Allers and Sharp, 2003; Schweimer and Ungless,
2010). Furthermore, not all chemically identified 5-HT neu-
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rons in the DRN are regular and slow-firing; there is a
subpopulation of bursting 5-HT neurons (Hajés et al.,
2007; Schweimer and Ungless, 2010) as well as subpopu-
lations of fast-firing 5-HT neurons (Allers and Sharp, 2003;
Kocsis et al., 2006).

The present study investigated the relationship be-
tween DRN neuron firing and cortical activity by combin-
ing single-cell recording and juxtacellular labelling in the
DRN whilst monitoring electrocorticogram (ECoG) activ-
ity in anaesthetised rats. This has allowed for the first
time, electrical activity of distinct chemically identified
DRN neurons to be correlated with measurements of
cortical SWA.

EXPERIMENTAL PROCEDURES
Animals

A total of 35 male Sprague—Dawley rats (250—450 g, Charles
River, Margate, Kent, UK) were used. They were housed collec-
tively with ad libitum access to food and water and maintained on
a 12-h light/dark cycle. All experiments were conducted in accor-
dance with the Animals (Scientific Procedures) Act 1986 (UK) and
associated guidelines.

Electrophysiological recordings and juxtacellular
labelling

General anaesthesia was induced with isoflurane (Isoflu, Abbott,
Queenborough, Kent, UK) and maintained with urethane (1.3-1.5
mg/kg, ethyl carbamate, Sigma, Steinheim, Germany), plus sup-
plemental doses of ketamine (30 mg/kg, i.m.; Ketaset, Willow
Francis, Crawley, West Sussex, UK) and xylazine (10 mg/kg, i.m.;
Rompun, Bayer, Newbury, Berkshire, UK) as required. Animals
were placed in a stereotaxic frame (David Kopf Instruments, Tu-
junga, CA, USA), and the skull was prepared for intracerebral
recordings. All wound margins were infiltrated with the local an-
aesthetic lidocaine, and corneal dehydration was prevented by
applications of Hypromellose eye drops. Body temperature was
maintained at 37+0.5 °C using a homeothermic heating blanket
(Harvard Apparatus, Kent, UK).

The ECoG was recorded via a steel screw over the left
frontal cortex (2.7 mm anterior, 2.0 mm lateral in relation to
bregma; Paxinos and Watson, 2007) and referenced against a
second steel screw positioned over the ipsilateral cerebellum.
Raw ECoG was band-pass filtered (0.3—1500 Hz, —3 dB limits)
and amplified (2000X, NL104 preamplifier, Digitimer, Welwyn
Garden City, UK) before acquisition. Craniotomy was performed
above the DRN (7—8 mm posterior to bregma, over the midline
according to Paxinos and Watson, 2007); special care was taken
to avoid damage to the underlying midsagittal sinus. Mineral oil
was applied to the exposed brain surface to prevent dehydration.

Extracellular neuronal activity was monitored with a 15-25
M(Q glass microelectrode filled with 1.5% Neurobiotin (Vectorlabs,
Burlingame, CA, USA) in 0.5 M NaCl (tip diameter 1-1.5 um).
Electrode signals were alternating current (AC)-coupled, amplified
(1000X), and band-pass filtered (0.3-5 kHz) using a Neurolog
system (Digitimer, Welwyn Garden City, Hertfordshire, UK) and
acquired on-line through a Micro1401 interface and Spike2 soft-
ware (Cambridge Electronic Design, Cambridge, Cambridgeshire,
UK). Mains noise at 50 Hz was eliminated (‘Humbug’ filter; Brown
et al., 2002) for single unit and ECoG recordings. Neurons were
subsequently filled with neurobiotin using the juxtacellular la-
belling method (Pinault, 1996; Allers and Sharp, 2003;
Schweimer and Ungless, 2010). Briefly, positive current pulses
were applied through the microelectrode (200 ms; 2.5 Hz; 1-5

nA). The amount of current applied was continuously monitored
and adjusted to obtain modulation of neuronal activity as this
enabled detectable labelling of the soma and dendrites of the
neuron with neurobiotin.

Immunohistochemistry

Following juxtacellular labelling, animals were transcardially per-
fused with phosphate-buffered saline (PBS) followed by 4% para-
formaldehyde. Brains were removed and kept in 4% paraformal-
dehyde overnight, before being transferred to a 30% sucrose
solution for cryoprotection. Coronal sections (20 um) were cut
using a cryostat (CM 1800, Leica Microsystems, Wetzlar, Ger-
many). Sections were then stained using a standard protocol for
free-floating sections. Following several rinses in PBS containing
0.2% Triton X-100 (PBS-X), sections were incubated in blocking
solution (PBS-X with 6% normal donkey serum) for at least 30
min, and then incubated overnight at room temperature in primary
antibody solution (PBS-X containing 2% normal donkey serum
and rabbit anti-5-HT (1:2000, Immunostar 20800, Hudson, WI,
USA), and mouse anti-tyrosine hydroxylase (TH; 1:1000, Sigma
T-2928, Gillingham, Dorset, UK)). Sections were subsequently
washed and incubated in secondary antibody solution [PBS-X
containing 2% normal donkey serum, CY3-conjugated streptavi-
din (1:1000, Jackson ImmunoResearch, Newmarket, Suffolk, UK),
Alexa 488-conjugated donkey anti-rabbit (1:2000, Invitrogen Ltd.,
Paisley, Renfrewshire, UK), Alexa 350- or 405-conjugated goat
anti-mouse (1:250 or 1:1000, Invitrogen Ltd.)] for 90 min at room
temperature. Sections were then rinsed in PBS and mounted on
slides for examination under a confocal microscope (SP1, Leica
Microsystems, Germany) using Leica LCS software.

Antibody specificity was evident in that 5-HT and TH antibody
labelling was restricted to regions previously shown to contain
5-HT and dopaminergic neurons. Moreover, no double labelling
for 5-HT and TH was observed and no immunolabelling was
observed in control experiments in which either primary or sec-
ondary antibodies were omitted.

Images were cropped to illustrate the region of interest, and
brightness and contrast adjusted using Leica LCS or ImageJ64
software (Rasband, W.S., ImageJ, USA. National Institutes of
Health, Bethesda, MD, USA, http://imagej.nih.gov/ij/, 1997-2011).
DRN subdivisions and stereotaxic coordinates are based on those
found in Paxinos and Watson (2007).

Data analysis

The firing rate frequency and the coefficient of variation of the
inter-spike-interval (COV-IS; measure of regularity) were calcu-
lated for each neuron. Action potential waveform duration was
measured from the onset of the action potential (defined as a
change of more than 0.02 mV from baseline) to the negative
trough and the biphasic waveform (i.e. return to zero). Single-unit
activity was recorded during cortical SWA, which accompanies
deep anaesthesia and resembles activity observed during natural
sleep. A typical baseline period of 3 min with SWA and co-
registered single-unit activity was recorded for each neuron. After
physiological characterization, several recorded neurons were
juxtacellularly labelled per animal and subsequently processed for
immunocytochemistry.

ECoG data were visually inspected and only epochs of robust
cortical SWA were selected for analysis (Magill et al., 2000). The
“active component” of the slow wave oscillation is expressed by a
highly synchronous spike discharges in cortical neurons resulting
in a long peak with spindle activity. The trough in the slow oscil-
lations during which high-frequency oscillations are weakest, or
absent, is referred to as the ‘inactive component’. This terminology
is used in preference to ‘up’ and ‘down’ states, as these generally
refer to membrane states of individual neurons as recorded intra-
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cellularly (Mallet et al., 2008; Mena-Segovia et al., 2008). Auto-
correlations of single-unit activity were calculated. Coherence be-
tween the ECoG and single-unit activity was used to assess
correlations in the frequency domain. The coherence was exam-
ined for the frequency domains of the slow oscillations (0.5-1.5
Hz), the spindle activity (7-14 Hz), and gamma oscillations
(30—60 Hz). These calculations were performed using scripts
within the Spike 2 software (CED, version 6, Cambridge, Cam-
bridgeshire, UK).

Activity histograms were calculated to determine the phase
relationship between the DRN single-unit activity and cortical slow
wave oscillations (active vs. inactive components). To improve
‘peak’ (active component) and ‘trough’ (inactive component) de-
tection, ECoG signals were filtered (~1 Hz) to retain slow oscil-
lations and exclude high frequencies. Using custom MATLAB
routines, the peak and troughs of the cortical slow oscillation were
detected automatically based on the time of zero crossing and
taking into account the average time-width of peaks and troughs.
Periods of weaker slow oscillations were filtered out by the
MATLAB routine (for details see Mallet et al., 2008). After
defining active or inactive components of ECoGs, coincident
spikes were automatically assigned to one of 14 bins (7 bins each
for active and inactive components; MATLAB). Spike counts per
bin across all accepted oscillation components were then normal-
ized (by converting to firing rate) to take into account the variable
durations of active and inactive components, and then displayed
in an activity histogram.

Statistical analysis

Baseline firing parameters (firing rate, COV-IS, action potential
width) of the DRN neuron subgroups (regular 5-HT, bursting
5-HT, irregular-, and fast-firing neurons) were compared using
one-way analyses of variance (ANOVA). When the assumption
of the homogeneity of variances was violated, a Brown—Welch
F-test was used with a subsequent Games—Howell post hoc
test. Mean peak coherence values of the main frequency do-
mains (0.5 to 1.5 Hz) of the different neuron subgroups were
compared using a one-way ANOVA followed by a least signif-
icant difference (LSD) post hoc test. Probability values of less
than 5% were considered statistically significant. All statistical
calculations were carried out using IBM SPSS Statistics for Mac
Version 19 (Chicago, IL, USA). Mean=SEM values are shown
throughout.

RESULTS

Electrophysiological and neurochemical properties
of DRN neurons

A total of 71 DRN neurons were recorded during robust
cortical slow oscillations (baseline recording times >3
min), 21 of which were juxtacellularly labelled (Pinault,
1996) and found to be located within the ventral and dorsal
parts of the DRN (between —6.9 mm to —8.2 mm from
bregma). Of these labelled neurons, 14 were immunopo-
sitive for 5-HT only, one for TH only, and four neurons were
immunonegative for both 5-HT and TH. One animal pre-
sented with multiple labelled neurons, and another had
neurons with insufficient staining of 5-HT or TH (in both
cases neurons were classified as unlabelled).

On the basis of their waveform characteristics, firing
frequency and regularity, four electrophysiologically dis-
tinct groups of DRN neurons were identified (see Fig. 1A,
B); (i) ‘clock-like’ neurons with broad spike waveforms fired
in a slow (=4 Hz) and regular (COV-IS of <0.6) firing
pattern (49.3% of total recorded neurons) (Fig. 1A), (ii)
neurons with broad spike waveforms fired in a slow firing
pattern but exhibiting a stereotypical bursting (25.4% of
total), and therefore with a more irregular firing pattern (see
Hajos et al., 2007; Schweimer and Ungless, 2010) (Fig. 1B
and C), (iii) neurons with a high (>4 Hz) firing rate (14.1%
of total) (Fig. 1A), and (iv) neurons with a slow but irregular
firing pattern (COV-IS>0.6) without stereotypical burst-
firing (11.3% of total) (Fig. 1A).

The majority of neurons encountered (n=35/71) were
slow firing ‘clock-like’ neurons, classically assumed to be
5-HT-containing (Figs. 1A and 2D). Attempts to juxtacellu-
larly label 18 neurons in this group were successful for six
neurons, all of which were found to be immunopositive for
5-HT, and immunonegative for TH (Fig. 2A, B).

The second main neuron group (n=18/71) were not
significantly different to clock-like neurons in terms of their
slow firing rate and broad spike waveform (P>0.05; see
Figs. 1B, C and 3) but were less regular (P<0.001; Fig. 1B
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Fig. 1. DRN neuron diversity. DRN neurons have been grouped according to their electrophysiological properties. (A) Neurons were divided into slow
(=4 Hz) and fast firing neurons. The slow neurons were further divided into regular or clock-like (COV-IS<0.6) and irregular neurons. In the slow,
clock-like (regular) category, all neurochemically identified neurons were 5-HT (6/6, black filled circles). Slow, irregular firing neurons were of either
TH (grey filled circle) or non-5-HT (black unfilled circle); fast firing neurons, when identified were also non-5-HT (black unfilled circles). (B) Bursting
neurons were identified by stereotypical bursts comprising with spike doublets or triplets with the second or third-order spikes typically occurring within
<10 ms. Generally they were slow-firing, with diverse regularity, all neurochemically identified neurons in this group (n=8, black filled triangles) were
immunopositive for 5-HT but not TH. (C) Firing rate and COV-IS of bursting neurons when only first-order spikes are analysed was similar to clock-like

neurons.



118 J. V. Schweimer et al. / Neuroscience 196 (2011) 115-123

Neurobiotin

0.5mv

X

ECoG
0.5 mV

3

@
SHT-Unit

1 mV

m
l
[9)

Firing rate [Hz]
Coherence
Average spike per bin

N

0 2

Time [s] Frequency [HZ] active inactive active inactive

Fig. 2. Electrophysiological and neurochemical properties of DRN clock-like neurons. A representative example of a clock-like 5-HT neuron (A),
this neuron was juxtacellularly labelled and immunohistochemically identified as serotonergic (scale bar: 20 um; 5-HT, serotonin; TH, tyrosine
hydroxylase). (B) Coronal sections showing the localisation of all neurochemically identified clock-like 5-HT neurons within the DRN (the unfilled
circle is the illustrated example neuron; adaptations from Paxinos and Watson (2007), Figs. 91, 93, and 96; —6.96 to —7.56 mm posterior to
bregma). Green circles indicate labelled 5-HT clock-like neurons, which predominantly fired during the inactive component of the cortical slow
oscillations. The red circle indicates a clock-like 5-HT neuron, which fired predominantly during the active component. (C) The representative
example neuron exhibited a broad averaged extracellular waveform, (D) a slow regular firing pattern which is time-linked to the cortical slow
oscillations. (E) Autocorrelation of the unit firing during SWA (bin size=10 ms). (F) Significant coherence values between cortical and DRN
signals in the predominant frequencies domains of the cortical slow oscillations (0.5-1.5 Hz); (G) Activity histogram (see Experimental
procedures) of all juxtacellularly labelled regular-firing 5-HT neurons (n=6), showing a higher firing activity during the inactive component of the
cortical slow oscillations (mean=SEM). For interpretation of the references to color in this figure legend, the reader is referred to the Web version

of this article.

and C). Most notably these neurons displayed stereotypi-
cal bursts comprising with spike doublets or triplets with
the second or third-order spikes typically occurring within
less than 10 ms (inter spike interval 7.980.48 ms) following
the first-order spike (% of spikes in doublets 26.23+6.45%;
Fig. 3D, E). When regularity of these neurons was calculated
including only first-order spikes, their COV-IS was not dif-
ferent from ‘clock-like’ neurons (P>0.05; Fig. 1C). At-
tempts to juxtacellular label eight such neurons were all
successful and all neurons were immunopositive for 5-HT,
but immunonegative for TH (Fig. 3A, B). For the subse-
quent analysis data from labelled and unlabelled bursting
neurons were pooled.

The third neuron group (n=8/71) were slow firing at
a rate not significantly different from clock-like (P>0.05,
Figs. 1A and 4) but with a less regular firing pattern
(P<0.001, Figs. 1A and 4D) and a narrower spike wave-
form (P<0.001, Fig. 4C). Juxtacellular labelling was at-
tempted in four neurons, and successful in two cases;
one was immunopositive for TH but not 5-HT (Fig. 4A, B)
while the other was immunonegative for both 5-HT and
TH.

The fourth neuron group (n=10/71) had a consistently
high firing rate (P<0.05) and a narrower spike waveform
compared to the clock-like neurons (P<0.01, Figs. 1A and
5C) but a large variability in regularity (COV-IS range
0.14-1.04, Fig. 1A). Juxtacellular labelling was attempted
in five neurons, with three being successful, and all cases
were immunonegative for both 5-HT and TH (Fig. 5A, B).

Correlation of rhythmic cortical activity with firing of
5-HT DRN neurons

Under deep urethane anaesthesia SWA in the cortex was
expressed in the ECoG traces by large amplitude (>400
uV) slow oscillations (~1 Hz). The firing of most clock-like
DRN neurons examined (n=33/35) demonstrated signifi-
cant coherence (at least two bins over the calculated sig-
nificance level of 0.065) with cortical slow oscillations in the
0.5-1.5 Hz frequency domains, which predominated the
cortical slow oscillations. The vast majority of the clock-like
neurons (n=28/35, 80%) had higher firing during the inac-
tive component of the slow oscillations as indicated by the
activity histograms (Fig. 2B—F). However, a small number
of clock-like neurons (n=5/35, 14.3%) had higher firing
during the active component of the slow oscillations. All six
neurochemically identified 5-HT neurons with clock-like
activity exhibited coherence with the slow oscillations, and
five out of six had higher firing during the inactive compo-
nent (Fig. 2G).

In comparison to the clock-like neurons, around half of
the burst-firing DRN neurons (n=8/18, 44%) also exhibited
significant coherence, with firing being highest during the
inactive component of slow cortical oscillations (see Fig. 3H).
However, half (n=10/18, 56%) of the bursting neurons did not
exhibit significant coherence between their firing and cortical
slow oscillations (see Fig. 3D-G). Of the identified bursting
5-HT neurons, half (four out of eight) showed coherence,
which was linked to the inactive component of the slow os-
cillations. These two groups of burst-firing neurons did not
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Fig. 3. Electrophysiological and neurochemical properties of DRN bursting neurons. A representative example of a bursting 5-HT neuron (A). This
neuron was juxtacellularly labelled and immunohistochemically identified as serotonergic (scale bar: 20 um; 5-HT, serotonin; TH, tyrosine hydroxy-
lase). (B) Coronal sections showing the localisation of all neurochemically identified bursting 5-HT neurons within the DRN (the unfilled circle is the
illustrated example neuron; adaptations from Paxinos and Watson (2007), Figs. 91, 93, and 96-98; —6.96 to —7.80 mm posterior to bregma). Blue
circles indicate labelled 5-HT bursting neurons, whose firing was not coherent to the cortical slow oscillations; the red circles indicate bursting 5-HT
neurons whose firing was linked to the cortical slow oscillations. (C) The representative bursting 5-HT neuron had a broad averaged extracellular
waveform and (D) fired independently of the SWA,; the arrows mark spikes, which fired as doublets indicated by the inlay, (E) Autocorrelation of the
unit firing during SWA (bin size=10 ms); the peak indicates the fast 5-HT bursts. (F) No significant coherence (minimum of two significant bins is
necessary) between the cortical and DRN activity was detected in the 1 Hz frequency domain. (G) Activity histogram (see Experimental procedures)
of all non-coherent bursting neurons (n=10), (H) activity histogram of all coherent bursting neurons (n=8), which fired predominantly during the
inactive component of the cortical slow oscillations. For interpretation of the references to color in this figure legend, the reader is referred to the Web
version of this article.

differ in terms of firing rate (coherence (mean:=SEM): The vast majority of fast-firing DRN neurons (n=9/10,
1.43+0.25 Hz vs. no coherence: 1.98+0.59 Hz; P>0.05), 90%) exhibited significant coherence between their firing
regularity (coherence (mean+SEM): 1.22+0.25 COV-IS vs. activity and slow cortical oscillations (Fig. 5D—G). Similar to
no coherence: 1.62+0.54 COV-IS; P>0.05), or bursting (co- the irregular firing neurons, the activity of the fast-firing
herence (mean=SEM): 24.8+11.6% vs. no coherence: neurons was highest during the active component of the
27.4+7.6%; P>0.05). slow cortical oscillations (Fig. 5G).

A comparison between the mean peak coherence (in
the 0.5-1.5 Hz frequency domain) of the groups revealed
a significantly greater coherence in the clock-like seroto-

Correlation of rhythmic cortical activity with firing of
non-5-HT DRN neurons

All irregular firing DRN neurons examined (n=8/8, 100%) nergic neurons (and unlabelled clock-like neurons) com-
exhibited significant coherence between their firing activity pared to the bursting serotonergic neurons (Fig. 6B;
and slow cortical oscillations, with firing being highest dur- ANOVA, P<0.05). Furthermore the mean peak coherence
ing the active component (Fig. 4D-G). Coherence values of the bursting 5-HT neuron group was significantly lower
for this group of neurons were the highest of the four DRN than all the other three groups (P<0.05). There was no
neuron groups examined, indicating a strong relationship significant difference between the irregular firing and the

with cortical activity (Fig. 6A, B). fast-firing putative GABA neurons (Fig. 6B; P>0.05).
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Fig. 4. Electrophysiological properties of irregular non-serotonergic DRN neurons. A representative example of an irregular-firing DRN neuron (A), this
neuron was juxtacellularly labelled and immunohistochemically identified as immunopositive for TH (scale bar: 20 um; 5-HT, serotonin; TH, tyrosine
hydroxylase). (B) Coronal sections showing the localization of all labelled irregular-firing neurons within the DRN (the unfilled circle is the illustrated
example neuron; adaptations from Paxinos and Watson (2007), Figs. 91 and 93, —6.96 to —7.08 mm posterior to bregma). (C) Extracellular waveform
average. (D) The firing of this neuron is time-linked to the cortical SWA. (E) Autocorrelation of the single unit activity (Bin size: 10 ms). (F) Significant
coherence values between cortical and DRN signals in the predominant frequencies domains of the cortical slow oscillations (0.5—-1.5 Hz). (G) The
activity histogram (see Experimental procedures) of all recorded irregular, non-5-HT neurons (n=8). These neurons fired predominantly during the
active phase of the SWA. For interpretation of the references to color in this figure legend, the reader is referred to the Web version of this article.

DISCUSSION cortical slow oscillation (~1 Hz), as well as 9 (1-4 Hz) and
Under deep urethane anaesthesia, the activity of cortical spindle (7—14 Hz) oscillations (Steriade, 2000). The “active
neurons is synchronised and produces stable oscillations, component’ of the slow wave oscillation is expressed by a
which are qualitatively similar to the activity observed dur- highly synchronous spike discharges in cortical neurons
ing deep stages of slow-wave sleep in mammals (Steriade, resulting in a long peak with spindle activity. The trough in
2006). SWA is expressed by large amplitude (>400 uV) the slow oscillations during which high-frequency oscilla-
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Fig. 5. Electrophysiological properties of fast-firing non-serotonergic DRN neurons. A representative example of a fast-firing DRN neuron (A), this
neuron was juxtacellularly labelled and immunohistochemically identified as non-5-HT/non-TH (scale bar: 20 um; 5-HT, serotonin; TH, tyrosine
hydroxylase). The insert shows a TH immunopositive cell in the same focal plane elsewhere in the section. (B) Coronal sections showing the
localisation of all labelled fast-firing neurons within the DRN (the unfilled circle is the illustrated example neuron; adaptations from Paxinos and Watson
(2007), Figs. 93 and 96, —7.08 to —7.44 mm posterior to bregma). (C) Narrow extracellular waveform average. (D) The firing of this neuron is
time-linked to the cortical SWA. (E) Autocorrelation of the single unit activity (Bin size: 10 ms). (F) Significant coherence values between cortical and
DRN signals in the predominant frequencies domains of the cortical slow oscillations (0.5-1.5 Hz). (G) The activity histogram (see Experimental
procedures) of all fast-firing neurons, which showed significant coherence between the non-5-HT neuron (n=10), these fired predominantly during the
active phase of the SWA. For interpretation of the references to color in this figure legend, the reader is referred to the Web version of this article.
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Fig. 6. Coherence between firing and cortical oscillation in the different DRN neuronal groups. (A) Percentage of neurons exhibiting significant
coherence between the single-unit activity and the cortical slow oscillation in the predominant frequency domains of the cortical slow oscillations
(0.5-1.5 Hz). (B) Mean peak coherence of all recorded DRN neurons indicating that bursting 5-HT neurons have a significantly lower mean peak
coherence ~1 Hz frequency domain than clock-like 5-HT and both non-serotonergic neurons groups (ANOVA, * P<0.05, *** P<0.001, B).

tions are weakest, or absent, will be referred to as the
‘inactive component’. This terminology is used in prefer-
ence to ‘up’ and ‘down’ states as these generally refer to
membrane states of individual neurons as recorded intra-
cellularly (Mallet et al., 2008; Mena-Segovia et al., 2008).

Our findings indicate that DRN neurons show firing
activity that is related to cortical slow oscillations depend-
ing on their electrophysiological and neurochemical char-
acteristics. Not only is the activity of identified 5-HT neu-
rons linked to the inactive phase of the cortical slow oscil-
lations, but also that non-5-HT neurons are linked to the
alternate active phase. This result suggests a divergence
in the anatomical innervation of these subsets of dorsal
raphe neurons.

We identified four different subgroups of neurons
within the DRN and correlated their firing activity with slow
cortical oscillations: neurons with slow, regular firing prop-
erties (clock-like; including identified 5-HT neurons), 5-HT
neurons firing rapid stereotypical bursts (bursting 5-HT
neurons), and two groups of non-serotonergic neurons,
one with irregular firing rates indicated by a high COV-IS
and one with fast-firing neurons (putatively GABAergic).
This is in agreement with previous reports (Allers and
Sharp, 2003; Kocsis et al., 2006; Hajés et al., 2007;
Schweimer and Ungless, 2010).

The diversity of these subgroups was not only ex-
pressed by their distinct firing patterns but also by their
divergent correlation to cortical activity. Our results indi-
cate that the firing of the majority of neurons within the
DRN is related to cortical slow oscillations. Cortical slow
oscillations are generated by synchronous, rhythmic depo-
larising (active component) and hyperpolarising (inactive
component) transitions in the membrane potential of prin-
cipal cortical neurons (Steriade, 2000). This leads to syn-
chronous discharges in corticofugal pathways, which en-
train subcortical structures like the basal ganglia, the pe-
dunculopontine nucleus, the locus coeruleus, and the

thalamus and most likely also the DRN (Magill et al., 2000,
2001; Steriade, 2000; Mena-Segovia et al., 2008; Es-
chenko et al., in press). Cortical slow oscillations under
urethane anaesthesia are similar to those seen during
natural sleep (Steriade, 2006). Nonetheless, an important
future challenge will be to conduct similar experiments in
unanaesthetised animals during different brain states.

Here we show that distinct DRN neuronal groups ex-
hibit distinct firing patterns in relation to the cortical slow
oscillations. The majority of the serotonergic DRN neu-
rons, including identified clock-like and a subset of bursting
5-HT neurons, exhibited significant coherence with the
cortical oscillations, and they generally had a higher dis-
charge rate during the inactive component of the slow
oscillations. Interestingly, half of the bursting 5-HT neurons
did not exhibit significant coherence, which implies that
these neurons might not be innervated by the neocortex
and firing independently of slow oscillation network.

In contrast to the 5-HT neurons, non-5-HT neurons fire
at a higher rate during the active components of the slow
waves. This inversely related spike timing between non-
5-HT and 5-HT neurons could be undertaken by local
connectivity between both populations and thus reinforcing
differences in spike timing. Indeed, there is strong anatom-
ical connection of the prefrontal cortex to the DRN, the
strongest input to the DRN comes from ventral parts of the
medial prefrontal cortex (Hajos et al., 1998; Gongalves et
al., 2009). More specific, glutamatergic prefrontal afferents
influence DRN neuron activity by targeting GABA neurons
within the DRN, which form inhibitory synapses with 5-HT
neurons (Celada et al., 2001; Varga et al., 2001,
Jankowski and Sesack, 2004). In addition, stimulation of
the prefrontal cortex inhibits putative clock-like 5-HT neu-
rons, and excites putative GABAergic neurons (Hajos et
al., 1998; Varga et al., 2001). Taken together, this sug-
gests that the cortical oscillations might influence the spike
timing of DRN neurons via these afferents.
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In regards to other network oscillations, previous stud-
ies have confirmed a relationship between DRN neuron
firing and hippocampal theta rhythm (Kocsis and Vertes,
1992, 1996; Kocsis et al., 2006). Kocsis and Vertes (1996)
reported that under urethane anaesthesia, subsets of mid-
brain raphe fire in synchrony with spontaneous and in-
duced hippocampal theta oscillations, but that these neu-
rons did not display characteristic 5-HT neuron features.
More recently, Kocsis et al. (2006) found that the firing of
classic clock-like 5-HT neurons is not related to hippocam-
pal theta, but that there are subsets of faster firing 5-HT
neurons which exhibit strong theta-rhythmic activity.

Our findings further support the idea that discrete sub-
groups of DRN 5-HT neurons are functionally heteroge-
neous (Sakai and Crochet, 2001; Waterhouse et al., 2004;
Kocsis et al., 2006; Urbain et al., 2006; Nakamura et al.,
2008; Ranade and Mainen, 2009). For example, we pre-
viously found that noxious footshocks typically evoked
rapid excitations in clock-like 5-HT neurons and phasic
inhibitions in bursting 5-HT neurons (Schweimer and Ung-
less, 2010). These divergent responses may also be re-
flected in the lower percentage of bursting 5-HT neurons
firing in synchrony with the cortical slow oscillations.

In conclusion, here we show that DRN neurons exhibit
firing activity that is related to cortical slow wave oscilla-
tions in distinct ways depending on their electrophysiolog-
ical and neurochemical identity. Understanding the com-
plexity of the 5-HT system, neuron diversity in the DRN
and its network functions is important for the comprehen-
sion of the pathophysiology of the 5-HT system, including
mood disorder and schizophrenia.
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