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Abstract. Many of the core disciplines of artificial intelligence have sets
of standard benchmark problems well known and widely used by the com-
munity when developing new algorithms. Constraint programming and
automated planning are examples of these areas, where the behaviour
of a new algorithm is measured by how it performs on these instances.
Typically the efficiency of each solving method varies not only between
problems, but also between instances of the same problem. Therefore,
having a diverse set of instances is crucial to be able to effectively eval-
uate a new solving method. Current methods for automatic generation
of instances for Constraint Programming problems start with a declar-
ative model and search for instances with some desired attributes, such
as hardness or size. We first explore the difficulties of adapting this ap-
proach to generate instances starting from problem specifications writ-
ten in PDDL, the de-facto standard language of the automated planning
community. We then propose a new approach where the whole planning
problem description is modelled using essence, an abstract modelling
language that allows expressing high-level structures without committing
to a particular low level representation in PDDL.

1 Introduction

The planning task consists of selecting a sequence of actions in order to achieve
a specified goal from specified starting conditions. This type of problem arises in
many contexts. Consider, for example, the delivery of a set of packages by vehicle
from a depot to a set of destinations. The allocation of packages and drivers to
vehicles must be planned, as well as the route for each vehicle, while respecting
package delivery deadlines, vehicle capacities and driver shift restrictions.

Given their importance, the automated solution of planning problems is a
central discipline of Artificial Intelligence. The difficulty of solving planning prob-
lems grows rapidly with their size in terms of the number of objects and possible
actions under consideration. Over many years, a great deal of effort by different
research groups has resulted in the development of highly efficient AI planning
systems [27]. Testing algorithms across a wide range of problem instances is
crucial to ensure the validity of any claim about one algorithm being better
than another. However, when it comes to evaluations, typically limited sets of
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problems are used and thus the full picture is rarely seen. Finding and encoding
interesting instances is a time-consuming task, and due to the nature of some
problems, is sometimes out of reach from the researcher perspective.

In the International Planning Competitions (IPC) state of the art planning
systems are empirically evaluated on a set of benchmark problems. The competi-
tions have, amongst others, a track that focuses on planners that can learn from
previous runs. This track uses manually coded problem generators to provide
the planners with a varied set of problems. This variety of problems is crucial to
ensure that planners can learn and generalise well on new and unseen situations.

The problem of automated instance generation is to make the process of
creating benchmark problems more accessible and efficient. Instance generation
has been a focus of the SAT community for several decades [22]. Generating
random SAT instances while considering different parameters such as the length
of clauses, the number of variables, or their connectivity, has helped to illuminate
how algorithms behave and how they perform in different circumstances. Having
automated tools to generate interesting instances allows algorithm developers to
evaluate and compare the algorithms across a wide range of instances, providing
a detailed picture of their comparative strengths and weaknesses.

In this work we explore the adaptation of a successful tool [1] that auto-
matically generates instances with desirable properties from a single problem
specification in essence, a high-level modelling language for Constraint Pro-
gramming (CP) [4]. We discuss two approaches (Section 5 and 6) to make the
instance generation process in [1] work with PDDL [18], the de-facto standard
language in the automated planning community. Both approaches have their
own limitations regarding flexibility, efficiency and automation. We then make
a proposal for a new planning modelling language using essence (Section 7).
Thanks to the rich expressiveness of the language, all discussed limitations of
the PDDL-based instance generation approaches are overcome.

2 Related Work

Fuentetaja et al. [7] approach the generation of satisfiable planning instances
as a planning problem, where users manually write some declarative semantics-
related information to describe the generation of different instances. They have
pointed out the limitation of PDDL as a representation for describing the in-
stance generation problem, as the task of generating valid initial states is complex
and requires information about the meaning of predicates not expressed in the
domain definition. PDDL representation is only effective for representing valid
states and the transition functions between them. Augmenting PDDL to improve
its expressiveness has been proposed several times [14,5,9]. This allows adding
extra information into the domain definition, and could potentially lead to more
general applications of planning [23].

The usefulness of automated generation of benchmark instances has been
demonstrated in various fields, such as combinatorial optimisation [25], SAT [12]
and model fitting [20] especially in the context of instance space analysis [24]. In
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CP, benchmark instances created using problem-specific generators have been
proposed for various problem classes, such as binary Constraint Satisfaction
Problem [11,19] and Random Constraint Networks [29]. In Operations Research,
several instance generators and benchmarks for well-known combinatorial opti-
misation problems, such as the Knapsack problem [13] and the Nurse Rostering
problem [28], have been provided and widely used. All of those approaches are
semi-automated, as the instance generators were manually created.

In discrete optimisation Ullrich [26] developed a tool for the generation of
instances in the TSP, Max-SAT and Load Allocation problems. Even in this case
generating instances for new problem classes requires some user input, however
the formal language they developed simplifies the process of producing instances
for new domains.

Recently, a new approach for fully automated instance generation has been
proposed for CP [1,2]. The approach allows users to declaratively describe a
CP problem and properties of valid instances in a single CP model using the
high-level constraint modelling language essence [4]. An instance generator is
then created by the automated modelling tool Conjure [3]. Finally, instances
with desirable properties are generated through a combination of the automated
algorithm configuration tool irace [17] and the essence constraint modelling
toolchain developed by the CP group at St Andrews 1, which includes Conjure,
Savile Row [21] (a constraint modelling assistant) and minion [8] (a CP solver).
All steps are done in a completely automated fashion. The whole process of the
system is shown in Figure 1.

(1) CP problem specification in Essence
● Problem parameters
● Validity constraints
● Decision variables and 

problem constraints
conjure

(2) Instance generation 
problem in Essence

(3) Valid Instances with 
desirable properties

irace and
Essence CP-toolchain

Fig. 1: The automated instance generation approach for CP problems proposed
in [1,2]

3 Background

A classical planning problem is defined as a tuple Π = 〈V,A, I,G〉 where V is
a set of propositions (or Boolean variables), A is a set of actions, I is the initial
state and G is a formula over V that any goal state must satisfy.

A state is a total assignment to the variables. Actions are formalized as pairs
〈p, e〉, where p is a set of preconditions and e a set of effects. More formally, p is
a set of Boolean expressions over V , while e is a set of assignments. An action
a = 〈p, e〉 is executable in a given state s if s |= p.The state resulting from

1 https://constraintmodelling.org/

https://constraintmodelling.org/
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executing action a on state s is denoted by apply(a, s) = s′. The new state s′ is
defined by assigning new values to the variables according to the active effects,
and retaining the values of the variables that are not assigned values by any of
the active effects. A plan of length n for a planning problem Π is a sequence of
actions a1; a2; . . . ; an such that apply(an, . . . , apply(a2, apply(a1, I)) . . .) |= G.

An example planning problem is the floor-tile problem used in the In-
ternational Planning Competition 2014 (IPC-14) [27]. The problem includes a
set of robots sharing the task of painting a pattern on floor tiles. The robots
move around in four directions (up, down, left and right) and can paint with one
colour at a time. They are also able to change the current colour to any other
one. However, due to their design robots can only paint the tiles that are in front
or behind them. Finally, once a tile has been painted, no robot can stand on it.

Automated planning models are typically expressed in the Planning Domain
Definition Language (PDDL) [18]. The user describes the problem in a domain
file, in terms of predicates and actions with parameters. In turn, these parameters
(or free variables) can be instantiated with a set of defined objects. A concrete
instance is expressed in a problem file, where the initial state, problem objects
and goal are defined. Figure 2 shows how predicates and actions are declared in
a domain file for the floor-tile problem (a problem description model), and
Figure 3 depicts an example problem file (an instance).

( : predicates ; s t a t e va r i a b l e s are def ined in the pred ica tes sec t ion
( robot−at ? r − robot ?x − t i l e ) ; at what t i l e a robot i s
(up ?x − t i l e ?y − t i l e )
(down ?x − t i l e ?y − t i l e )
( r i gh t ?x − t i l e ?y − t i l e )
( l e f t ?x − t i l e ?y − t i l e )
( c l e a r ?x − t i l e )
( painted ?x − t i l e ? c − c o l o r )
( robot−has ? r − robot ? c − c o l o r )
( ava i l ab l e−c o l o r ? c − c o l o r ) )

( : action move up
: parameters (? r − robot ? from − t i l e ? to − t i l e )
: precondition (and ( robot−at ? r ? from ) (up ? to ? from ) ( c l e a r ? to ) )
: ef fect (and ( robot−at ? r ? to ) (not ( robot−at ? r ? from ) )

( c l e a r ? from ) (not ( c l e a r ? to ) ) ) )
. . .

Fig. 2: Snippets of the floor-tile PDDL problem description.

4 Validity Constraints for Planning Instances

A planning model is typically an abstraction of a real-world problem, where the
modeller has some predefined assumptions on how the real-world works. The
correctness of this abstraction derives from a valid initial state, and that the
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( define (problem toy )
( :domain f l o o r−t i l e )
( : objects t i l e 0 −0 t i l e 0 −1

t i l e 1 −0 t i l e 1 −1 − t i l e
robot1 robot2 − robot
white black − c o l o r )

( : in i t
( robot−at robot1 t i l e 0 −1) ( robot−has robot1 white )
( robot−at robot2 t i l e 1 −1) ( robot−has robot2 black )
( ava i l ab l e−c o l o r white ) ( ava i l ab l e−c o l o r black )
( c l e a r t i l e 0 −0) ( c l e a r t i l e 1 −0)
(up t i l e 0 −1 t i l e 1 −1) (up t i l e 0 −0 t i l e 1 −0)
(down t i l e 1 −1 t i l e 0 −1) (down t i l e 1 −0 t i l e 0 −0)
( r i gh t t i l e 0 −1 t i l e 0 −0) ( r i g h t t i l e 1 −1 t i l e 1 −0)
( l e f t t i l e 0 −0 t i l e 0 −1) ( l e f t t i l e 1 −0 t i l e 1 −1)

)
( : goal (and ( painted t i l e 0 −0 white ) ( painted t i l e 1 −0 black ) ) ) )

Fig. 3: An example floor-tile instance.

transitions of the state variables between steps respect the implicit constraints.
When a model and an instance respect all the implicit assumptions by the mod-
eller we say that it is a valid problem. As an example, some implicit assumptions
by the modeller in the floor-tile domain (Figure 2) are that in the initial state
each robot must be at exactly one tile, or that any given cell can only have one
unique cell on top of it. Moreover, in the IPC-14 published instances, the tiles’
structure (represented by up, down, right and left) always forms a square grid.

In the automated planning community, sometimes when a problem is re-
leased, a Python or Java program is included to generate instances automati-
cally. The validity properties of the problem are normally hard-coded in those
programs, and therefore appear implicitly in the generated problem instances.

An alternative approach is to allow modellers to express the validity prop-
erties of a planning problem declaratively. An instance generator with those
validity constraints integrated is then automatically created. Specifying those
properties using a declarative modelling language provides flexibility, as users
can easily add or update the validity specification without having to modify the
generator software’s source code directly. This is the approach of the essence-
based automated instance generation system that we propose to build upon.

There is a large variety of validity properties arising in classical planning
domains. In this section, we discuss six arbitrarily selected IPC-14 problems (in
the Sequential track) and the validity properties of their published benchmark
instances. A brief description of these problems follows. We refer to the com-
petition website2 and the accompanying paper [27] for further details of these
benchmarks.

– city-car: This problem simulates the impact of road building and demolition
on traffic flows. A city is represented as a grid, in which each node is a

2 https://helios.hud.ac.uk/scommv/IPC-14/

https://helios.hud.ac.uk/scommv/IPC-14/
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junction and edges are potential roads. Cars start from different positions
and have to reach their final destinations. A finite number of roads can be
built to connect two junctions and allowing a car to move between them.

– floor-tile: A set of robots use colours to paint patterns in floor tiles. The
robots can move around and paint with one colour at a time and can also
change their colours. Once a tile has been painted, no robot can stand on it.

– hiking: This problem simulates a walking trip that lasts several days, where
each day one walk is done with a partner. The walks are over a long circular
route, without ever walking backwards. Tents and items of luggage can be
carried in a car between the start and end of the walking routes if necessary.

– cave-diving: There are divers with different skills and confidence, and each
can carry tanks of air. These divers must be hired to go into an underwater
cave system and either take photos or prepare the way for other divers by
dropping full tanks of air. The cave is too narrow for more than one diver to
enter at a time. Divers must exit the cave and decompress at the end. They
can therefore only make a single trip into the cave. Divers have hiring costs
inversely proportional to how hard they are to work with.

– child-snack: This involves making and serving sandwiches with various in-
gredients for a group of children in which some are allergic to gluten.

– barman: A robot barman manipulates drink dispensers, glasses, and a shaker.
The goal is to find a plan of the robot’s actions that serves a desired set of
drinks. Robot hands can only grasp one object at a time and glasses need
to be empty and clean to be filled.

The properties in these benchmark instances can be roughly divided into two
groups. The first group involves constraints between the variables emerging from
a single predicate. They typically include three types of constraints: exactly-k,
at-most-k and at-least-k, where k is a parameter of the constraints. For example,
from the floor-tile model an instances illustrated in Figure 2 and 3, we can
infer that each robot begins at exactly one tile. This could be represented by, for
a given robot, an exactly-1 constraint on the variables that result from grounding
the robot-at predicate.

The second group of validity constraints involves structural constraints be-
tween predicates in a planning problem. The published instances of both city-car
and floor-tile have square-grid underlying maps. The maps of floor-tile re-
quire rectangular grids with up, down, left and right connections, while the
maps in city-car instances allow cells to be connected horizontally as well as
diagonally. In cave-diving a cave forms a tree-shaped structure. Sequences are
represented in the hiking and barman domains, while other problems from the
competition use stacks or weighted undirected graphs.

If we want to generate valid instances randomly, it is necessary to take these
validity constraints into account during the modelling stage. This is because
it would be vanishingly unlikely that an instance randomly sampled from the
unconstrained instance space would be valid. For example, consider the floor-tile
domain from Figure 2 and focus on the predicates up and down, which state if
a tile is on top (or bottom) of another. If the up predicate states that a tile
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is on top of another, the down predicate should be coherent and correspond
with the inverse assignment. If we generate instances randomly, only a small
fraction would satisfy this property for any given pair of tiles, and this fraction
shrinks exponentially as the instance size grows. Another example involves the
robot-at predicate, which specifies the tile where a robot is located. It would be
unlikely for randomly generated instances to respect the fact that a robot can
only be in one place at one time. Almost surely we would end up with instances
where a robot is located at various places simultaneously. Combining all the
implied constraints used by a modeller, it is clear that the chance of randomly
generating valid instances is negligibly small. It is possible to make this claim
mathematically precise but we leave this for future work.

5 Augmented PDDL for Generation of Planning
Instances

(1.1) Planning problem specification in PDDL
● Objects and predicates
● Validity constraints via special keywords
● Operators and conditions

conjure

(2) Instance generation 
problem in Essence

(3) Valid Instances with 
desirable properties 

(in Essence)

(1.2) (Partial) problem specification in Essence
● Objects and predicates
● Validity constraintsrantanplan

(4) PDDL instances
irace and
Essence CP-toolchain

rantanplan

Fig. 4: Automated instance generation for planning using Augmented PDDL

The essence language allows expressing validity constraints for a Constraint
Programming (CP) problem as where statements. As shown in Figure 1, the sys-
tem we build upon starts by receiving the problem description in essence with
validity constraints as input (step 1), and Conjure will automatically create
an instance generator in essence (step 2), which will then be tuned by irace
in combination with the CP solver minion to generate instances with desirable
properties (step 3). In order to employ the same automated methodology for
planning problems, we need to be able to create an instance generator automat-
ically from a planning problem description. Ideally we would want to use the
planning modelling language PDDL to express those validity constraints inside
the problem description in step 1 of Figure 1.

Unfortunately, due to the low-level nature of standard PDDL, the task be-
comes extremely tedious and error-prone for a human. Firstly, as classical plan-
ning only deals with Boolean variables, many-valued variables cannot be directly
expressed. This type of variables is essential for modelling common validity con-
straints such as that a robot can only start at exactly one place. Secondly, many
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structural constraints (such as a graph being connected) cannot be expressed
in a purely first-order language like PDDL [16, Corollary 3.19]. Verifying that a
grid specified by adjacency predicates is well-formed, as in our example model,
appears also to be impossible to express in pure PDDL, with even restricted
versions of this problem still under active investigation [15].

In this section, we will therefore discuss a solution approach (Figure 4) where
we augment PDDL with a new declarative section and extra keywords to allow
the modeller to express validity constraints in a PDDL problem description (step
1.1 in Figure 4). The real modelling of those constraints is then generated au-
tomatically by rantanplan [6], a parser specially developed to translate an aug-
mented PDDL model to the high-level language essence (step 1.2 in Figure 4).
essence is more expressive than PDDL and allows modelling of structural va-
lidity constraints directly.

5.1 Augmented PDDL for single-predicate validity constraints

( : ins tance−c on s t r a i n t s
( in i t ( f o ra l l (? r − robot )

(and ( exact ly−k ( robot−at ? r ) 1 True ) ; a robot s t a r t s in a t i l e
( exact ly−k ( robot−has ? r ) 1 True ) ) ) ) ; and has one colour

; nothing s t a r t s painted
( in i t ( f o ra l l (? t − t i l e ) ( exact ly−k ( painted ? t ) 0 True ) ) )

; we are not in t e r e s t ed in the c l ear pred ica tes in the goal s t a t e
( goal ( f o ra l l (? t − t i l e ) (not (appear ( c l e a r ? t ) ) ) ) )

Fig. 5: Snippets of the instance-constraints section from the floor-tile domain.

Validity constraints on the initial and goal states are defined in a new sec-
tion starting with the new keyword instance-constraints. The following new
operands are added for single-predicate validity constraints: init, goal, xor, min,
max, exactly-k, atleast-k, atmost-k and appear. By default, when considering nu-
meric functions, the range of values generated goes from 0 to INT MAX (a default
upper bound for integer variables, which can be specified by users). The modal
operators min and max accept the name of a function and an integer. This further
restricts the range of possible values generated. Figure 5 shows an example of
the instance-constraints section for floor-tile using those new keywords.

init and goal are modal operators that accept a constraint. This constraint
will be then applied to the initial or goal state, respectively. xor implements the
xor logical operation, and has been added for convenience. exactly-k, atleast-k
and atmost-k are a family of terms that accept a schematic fluent, a number
and a value. As their name imply, they restrict the values taken by the subset of
grounded variables generated by that schematic fluent. When specifying these
terms, typically we will be interested in one or two parameters of the constrained
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schematic fluent. For conciseness, the underscore character ( ) can be used to
indentify parameters that we do not care, acting as a placeholder in a pattern
matching style. Finally, the appear predicate is used to describe the goal state.
The initial state is always a total assignment, as per the closed world assumption,
but the goal can be a partial assignment. appear can be combined with the not
operator to force a state variable to not appear in the goal state. It is useful to
avoid considering non-interesting goals to the modeller.

Not all the new operands are translated directly to essence. min and max
determine the size of the integer domains of the related PDDL fluents, while init
and goal control what is constrained. The cardinality constraints follow a pattern
k {<,>,=} sum([toInt(x = value) | fluent ]), where value is what we are
searching for, and the fluent placeholder iterates over the tuples belonging to
the fluent, which is represented as a function. Following the floor-tile domain,
Figure 6 shows how a constraint expressing that a given robot can only be at
one place in the initial state is translated to essence.

; a robot s t a r t s in one t i l e
( : ins tance−c on s t r a i n t s
( in i t ( f o ra l l (? r − robot )

( exact ly−k
( robot−at ? r ) 1 True ) ) ) )

(a) Constraint expressed in PDDL

; a robot starts in one tile
forAll var_r : robot .

1 = sum([toInt(value = true)
| ((p0,_),value) <-

init[robot_at],var_r = p0 ]

(b) Constraint translated to essence

Fig. 6: The translation of exactly-k constraint from PDDL to essence

5.2 Augmented PDDL for structural constraints

As described in Section 4, another group of validity constraints involves implicit
requirements on structures of the underlying map in a planning problem, such as
the connections between tiles in the floor-tile problem. It is possible to express
grids quite simply if the relations used to express the grid structure make use
of the geometry of the plane. However, automated instance generation should
not restrict the choices made in modelling problems. In the IPC-14 benchmark
dataset, all instances of floor-tile have the tiles forming a square-grid structure
and tiles’ connections are represented using adjacency relations left, right, up
and down. Validity constraints to ensure that these adjacency relations express a
square-grid map cannot be efficiently modelled using PDDL due to the limited
expressiveness of first-order logic. Checking that the adjacency relations form a
valid grid requires reconstructing geometric information about placement of tiles
on the plane. Although it is possible to express the property that the adjacency
relations form a grid for special cases, even this requires solving a challenging
tiling problem, and the general case is currently open [15].
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( : ins tance−c on s t r a i n t s
in i t ( isLRUDSquareGrid ( t i l e , up , down , l e f t , r i g h t ) )
. . . ) )

$ ----- Objects and Domains --------
given n_tile: int (1..)
letting tile be domain int(1 .. n_tile)
$ ---- Auxiliaries ------
given tile_size: int (1..)
where n_tile = tile_size * tile_size
$ ----- Initial State --------
given init: record {

up : function (total) (tile ,tile) --> bool ,
down : function (total) (tile ,tile) --> bool ,
right : function (total) (tile ,tile) --> bool ,
left : function (total) (tile ,tile) --> bool }

where
forAll u,v : tile .

init[up]((u,v)) <-> u = v + tile_size /\
init[down ]((u,v)) <-> u = v - tile_size /\
init[left ]((u,v)) <-> (u = v + 1) /\

((u %
init[right ]((u,v)) <-> (u = v - 1) /\

((u %

Fig. 7: Expression for the isLRUDSquareGrid keyword in essence

We introduce new PDDL keywords to express those structural constraints,
and provide automated translation of those keywords to a CP model in essence
through rantanplan. An example on expressing a square grid using {left, right,
up, down} predicates is shown in Figure 7. The newly introduced PDDL key-
word isLRUDquareGrid is used and an auxiliary variable indicating the size of the
square grid (variable tile size in the essence specification) is generated and
will be tuned by irace during the instance generation process. However, there are
two limitations of this automated approach, as we will explain below.

The first limitation is on the flexibility to express structural validity con-
straints. Consider the square-grid structure as an example. There are various
ways to define the local connections of cells in a square grid. The choice is nor-
mally made based on the specification of planning actions for a specific planning
problem. For floor-tile, the locality relations {up, down, left, right} are
used as the moving actions of a robot at each tile can only follow those directions.
However, for the city-car problem, a car can either move horizontally or diag-
onally. The underlying square-grid map in city-car is then represented using
two predicates: same line and diagonal for every ordered pair of horizontally
and diagonally adjacent cells, respectively.

The second limitation is about scalability. As PDDL predicates are basically
boolean functions, the size of validity constraints expressed directly using those
predicates can grow very quickly. For example, the square-grid structure ex-
pressed in Figure 7 needs to use a nested for loop for u,v: tile. For a grid size
of 20× 20, the total number of constraints is 4× 204. On a computer with Intel
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Xeon E5-2640 2.4Ghz CPUs, generating a single instance with such grid size
using the CP solver minion takes about 20 minutes. The time increase also grows
fast, as it takes more than 30 minutes to generate a 22× 22 grid.

6 Expressing the Generation of Planning Problems in
essence

In this section, we discuss an alternative approach to the augmented-PDDL
instance generation proposed in the previous section. This is a hybrid approach
where users model validity constraints directly in essence. A summary of this
approach is shown in Figure 8. Compared to the previous approach in Figure 4,
step 1.2 is now done manually by users. It offers solutions to the two limitations
of the augmented-PDDL approach.

(1.1) Planning problem specification in PDDL
● Objects and predicates
● Operators and conditions

(1.2) Validity constraints in Essence (2) Instance generation 
problem in Essence

(3) Valid Instances with 
desirable properties

irace and
Essence CP-toolchain

conjure

(4) PDDL instances

An instance converter

Fig. 8: Automated instance generation for planning problems using a hybrid ap-
proach, with problem specification in PDDL and validity constraints in essence.

Firstly, the new approach allows users to make full use of the high-level
modelling language essence to freely express any validity constraints using con-
straint modelling, instead of relying on a predefined set of keywords supported
by rantanplan. This overcomes the first limitation on flexibility.

Secondly, by modelling validity constraints directly in essence, users are
no longer tied to the relatively low-level boolean representations of PDDL. It
is well-known that recovering structure from low-level representation is a dif-
ficult and expensive process, as illustrated in the work of Helmert [10] where
many-valued variables were detected from PDDL representations with Boolean
variables. By expressing the constraints directly in essence, knowledge about
implicit structures present in the problem can be easily expressed, which results
in more efficient representations. For example, in the square-grid structure of
floor-tile, each of the up, down, left, right relations can be expressed as
a function mapping from each tile in the grid to at most one other tile. Com-
pared to the low-level representations using boolean functions as in Figure 4,
this new representation significantly reduce the number of validity constraints
(from 4 × n4 to 4 × n2 for any n × n square grid). Figure 9 shows a compar-
ison of the time required by our system to generate square-grid structures for
the floor-tile problem using the augmented-PDDL approach and the new one
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described in this section. The results clearly indicate that the high-level repre-
sentation (the orange line) significantly improve the efficiency of the instance
generation process.

20 40 60 80 100
grid size

0

500

1000

1500

2000

tim
e 

(s
)

pddl
essence

Fig. 9: Time to generate floor-tile square-grid instances using our automated
instance generation system. The blue line is the approach described in Section 5,
and the orange line is the one described in Section 6.

Another advantage of using high-level representations is that some validity
constraints are automatically encoded inside the abstract essence types them-
selves without the need of any explicit constraints to express them. An example
of the full description of all validity constraints for the floor-tile problem is
illustrated in Figure 10. As we can see, the first two validity constraints, which
require that each robot can be in only one tile and has one colour at a time, are
automatically satisfied thanks to their representations as total functions from
robot to tile (robot at) and from robot to color (robot has).

Despite all the advantages explained above, this approach has a major limi-
tation in terms of automation. Instead of writing only one specification for each
planning problem of interest, users now have to provide two extra separated
inputs to the system. The first one is an essence specification expressing the
validity constraints (step 1.2 in Figure 8), with variable names matched with
the predicates in the original PDDL problem description (step 1.1 in Figure 8).
As there are several possible PDDL representations from a high-level abstract
description of a problem, the second input is a manually written program to
convert the instances in essence back to the PDDL representation specified
in Step 1.1 (from step 3 to step 4 in Figure 8). It is extremely difficult to au-
tomate the generation of such converter as the system has to recognise which
PDDL representation is the right match. In the next section, we propose an
elegant approach that can overcome all limitations on flexibility and efficiency
discussed so far without any trade-offs on automation. As we will explain, the
whole instance generation process can be fully automated and various encodings,
including PDDL, could be supported in a completely transparent manner.
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given n_robot : int (1..)
given tile_size: int (1..)
letting n_tile be tile_size*tile_size
given n_color : int (1..)
letting robot be domain int(1 .. n_robot)
letting tile be domain int (1. n_tile)
letting color be domain int (1.. n_color)

$ ----- Initial State --------
given init: record {

robot_at : function (total) robot --> tile ,
robot_has : function (total) robot --> color ,
up : function tile --> tile , down : function tile --> tile ,
left : function tile --> tile , right : function tile --> tile ,
clear : set of tile , available_color : set of color}

where
forAll c: color . c in init[available_color], $ all colors are available
forAll u : tile .

u in init[clear], $ all titles are clear
$ square -grid constraints
u in defined(init[up]) <-> init[up](u) = u - tile_size ,
u in defined(init[down]) <-> init[down](u) = u + tile_size ,
u in defined(init[left]) <-> (init[left](u) = u - 1)

/\ (u %
u in defined(init[right]) <-> init[right](u) = u + 1

/\ (u %
given goal: record {painted : function (minSize 1) tile --> color}

Fig. 10: Validity constraints for the whole floor-tile problem expressed directly
in essence

7 Abstract Specification of Planning Problems

This section discusses abandoning a given PDDL description of a planning do-
main as the starting point for generating instances, and instead extending the
essence language to support the abstract specification of planning problems.

The key feature of the essence language is the provision of high-level type
constructors, such as set, relation and function, which allow a problem to be
specified directly in terms of the combinatorial structure to be found. Specifying
a planning problem in essence would remove the considerable difficulty of trying
to recover this structure from a PDDL description as discussed in the preceding
sections. This would simplify the process of instance generation for a planning
problem. By providing a refinement of a planning problem specification to a
PDDL model, we can also automate much of the work of producing a PDDL
encoding of a problem and ensure that the instances generated are synchronised
with the model chosen. These advantages result in a straightforward adaptation
of the CP automated instance generation system, as presented in Figure 11.

A simple approach to enabling the specification of planning problems in
essence is to introduce a plan type constructor. In much the same way as
PDDL, this would need to support a representation of the objects in the do-
main, initial and goal states, and plan operators. However, we would gain the
far more expressive types available in essence in order to specify each of these
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(1) Planning problem specification in Essence
● Objects and states
● Validity constraints
● Operators and conditions

conjure
(2) Instance generation 

problem in Essence
(3) Valid Instances with 

desirable properties
irace and
Essence CP-toolchain

Fig. 11: Automated instance generation for planning problems in essence.

given n_robot : int (1..)
given n_colour : int (1..)
given tile_size : int (1..)
letting CLEAR be 0
letting GRID be domain matrix indexed by [int (1.. tile_size), int (1.. tile_size)] of

int(CLEAR ..)
letting COLOUR be new type of size n_colour
letting STATE be domain record {

robots : sequence (size n_robot) of record{row : int , column: int ,
colour: COLOUR},

grid : GRID}
given init : STATE
where $ all tiles are clear at the initial state

forAll i, j : int (1.. tile_size) . init[grid][i,j] = CLEAR
given goal : GRID

find p : plan with state STATE
with initialState init
with goalState state[grid] = goal
with actions [goUp , goDown , goLeft , goRight , paintUp , paintDown ,

changeColour]

Fig. 12: A possible essence specification of the floor-tile problem.

elements. PDDL adopts an implicit frame condition in which all parts of the
state not explicitly referenced by an action are assumed to be unchanged, which
it also seems sensible to employ in an essence plan type constructor.

We will illustrate with a hypothetical essence specification of the floor-tile
problem. Figure 12 presents the specification of the abstract plan decision vari-
able p via a new plan type constructor, which expects four arguments. The first
is the state of the planning domain, which is specified using the existing record

type, here capturing the position and colour of each of the robots as well as the
current grid state. The initial state is given as a parameter of the same type. The
goal, which may only concern a part of the problem state, is flexibly expressed
as a set of constraints. For the floor-tile domain, the goal is a particular grid
configuration, expressed as an equality on the grid part of the plan state.

The final argument is the list of available actions. Figure 13 presents a hypo-
thetical action representing movement upwards on the grid. The goUp action is
parameterised on the element of the state that must be selected by the planner,
in this case which of the robots to move. Preconditions and effects are expressed
as constraints on the parts of the state affected, hence benefiting from the ab-
stract types and operators in essence. As in PDDL, there is an implied frame
condition that any parts of the state not mentioned are unchanged.
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letting goUp(r in robots) be domain
action { precondition: grid[r[row]-1, r[column ]] = CLEAR ,

effects: r[row]’ = r[row]-1}

Fig. 13: A hypothetical essence plan action compatible with the plan state
defined in Fig. 12. The parameter r is to be chosen by the planner from among
those robots in the plan state. The operator ’ denotes the state at the subsequent
step in the plan. An action such as this could be further annotated with a cost
value, if required.

An essence specification of a planning problem such as the one described
in this section could be used for both instance generation and automated mod-
elling. The parameters of the plan domain are apparent in the specification of
Figure 12 and, via the types available in essence, their structure is apparent
rather than having to be recovered from a lower level description. Most of the
validity constraints for the floor-tile problem are implicitly implied in the
high-level representations. This simplifies instance generation considerably, and
would allow a similar approach to that used for essence specifications of con-
straint satisfaction/optimisation problems [1].

Automated modelling could also follow the current practice of refining essence
specifications into constraint models using Conjure. With PDDL as the tar-
get language, refinement rules would have to be written to encode the essence
types and operators describing the plan state and actions. As is the case for
constraint models, multiple refinement rules could be written for the same type
to enable alternative PDDL encodings to be generated automatically. A fur-
ther opportunity would be to exploit the existing Conjure infrastructure to
refine the specification to a constraint model of the planning problem, providing
alternative solution options via CP, SAT, or SMT through Savile Row.

8 Conclusion and Future Work

We have discussed various approaches for adapting a CP automated instance
generation system for planning where the problem descriptions are written in
PDDL, the standard modelling language for planning problems. The limitations
of those approaches are explained and a new language for describing planning
problems using essence, a high-level constraint modelling language, is proposed.
Automated instance generation for planning based on essence offers greater
flexibility, efficiency and expressivity compared with its PDDL-based counter-
part. In future work, an implementation of the proposal will be provided and a
thorough evaluation of such an instance generation system will be done.
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