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Abstract
In an earlier paper by three of the present authors and Csaba Schneider, it was shown that,
for m ≥ 2, a set of m + 1 partitions of a set �, any m of which are the minimal non-trivial
elements of a Cartesian lattice, either form a Latin square (if m = 2), or generate a join-
semilattice of dimension m associated with a diagonal group over a base group G. In this
paper we investigate what happens if we have m + r partitions with r ≥ 2, any m of which
are minimal elements of a Cartesian lattice. If m = 2, this is just a set of mutually orthogonal
Latin squares. We consider the case where all these squares are isotopic to Cayley tables of
groups, and give an example to show the groups need not be all isomorphic. For m > 2,
things are more restricted. Any m + 1 of the partitions generate a join-semilattice admitting
a diagonal group over a group G. It may be that the groups are all isomorphic, though we
cannot prove this. Under an extra hypothesis, we show that G must be abelian and must have
three fixed-point-free automorphisms whose product is the identity. (We describe explicitly
all abelian groups having such automorphisms.) Under this hypothesis, the structure gives an
orthogonal array, and conversely in some cases. If the group is cyclic of prime order p, then
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the structure corresponds exactly to an arc of cardinality m + r in the (m − 1)-dimensional
projective space over the field with p elements, so all known results about arcs are applicable.
More generally, arcs over a finite field of order q give examples where G is the elementary
abelian group of order q . These examples can be lifted to non-elementary abelian groups
using p-adic techniques.

Keywords Diagonal group · Arc · Orthogonal array · Diagonal semilattice · Frobenius
group

Mathematics Subject Classification 20B25 · 05B15 · 51A45 · 62K15 · 94B25

1 Introduction

The origin of this paper was a realisation that, as sets of mutually orthogonal Latin squares
extend the notion of Latin squares to more objects, and arcs in finite projective spaces extend
to higher dimension, there should be a way to define and study objects realising both of these
extensions. Given the fundamental work of Aart Blokhuis in finite geometry, especially on
arcs [4], we regard this as a fitting tribute to him.

Central to our work is the notion of diagonal groups and the structures they act on.
Diagonal groups D(G, m) are one of the families of primitive permutation groups arising
in the celebrated O’Nan–Scott theorem. In this theorem, the group G is a finite simple
(or characteristically simple) group. In [2], the authors considered diagonal groups with an
arbitrary group G (not necessarily finite), and defined a geometric object having the diagonal
group as its automorphism group. This object was called a diagonal semilattice. We now
outline the details.

We work within the lattice P(�) of partitions of a set�. A Cartesian lattice of dimension
m over an alphabet A is defined as follows: � = Am , and for any subset J of {1, . . . , m}, we
define the partition Q J of � in which two m-tuples (a1, . . . , am) and (b1, . . . , bm) belong to
the same part if and only if a j = b j for all j /∈ J . These partitions form a lattice isomorphic to
the Boolean lattice on {1, . . . , m} (the lattice of all subsets of {1, . . . , m}); the map J �→ Q J

is an isomorphism from the Boolean lattice to the Cartesian lattice.

Definition 1 The diagonal group D(G, m) can be defined as a group of permutations of the
set � = Gm generated by the following permutations:

– right translations by elements of Gm ;
– left translations by elements of the subgroup δ(G) = {(g, g, . . . , g) : g ∈ G} of Gm ;
– automorphisms of G (acting in the same way on all coordinates);
– permutations of the coordinates;
– the map

(g1, g2, . . . , gm) �→ (g−1
1 , g−1

1 g2, . . . , g−1
1 gm).

For i = 1, . . . , m, let Gi be the i th coordinate subgroup of Gm , the set of m-tuples
(g1, . . . , gm) with g j = 1 for j �= i ; and let Gm+1 be the subgroup δ(G). Then let Qi be the
partition of Gm into right cosets of Gi , for i = 1, . . . , m + 1.

The main results of [2] can be stated as follows:

Theorem 1 The join-semilattice � generated by the partitions Q1, . . . , Qm+1 has the prop-
erties
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– any m of {Q1, . . . , Qm+1} generate a Cartesian lattice under join;
– the automorphism group of � is the diagonal group D(G, m).

We call � a diagonal semilattice, and denote it by D(G, m).

Theorem 2 Let Q1, . . . , Qm+1 be partitions of �, where m ≥ 2. Suppose that any m of
these partitions generate an m-dimensional Cartesian lattice, in which they are the minimal
non-trivial elements. Then one of the following holds:

– m = 2 and there is a Latin square L, unique up to paratopism, such that � is the set of
cells of L, and Q1, Q2, Q3 are the partitions of � corresponding to the rows, columns
and letters of L;

– m ≥ 3 and there is a group G, unique up to isomorphism, such that Q1, . . . , Qm+1

generate the diagonal semilattice D(G, m).

A paratopism between two Latin squares is most easily defined here as a bijection between
the set of cells of the first and that of the second which carries the three partitions (letters,
rows and columns) of the first set to the three partitions of the second set in some order. If
rows map to rows, columns to columns and letters to letters, the map is called an isotopism.

In this paper, we consider what happens when we have m + r partitions satisfying the
hypotheses of this theorem with larger values of r . We will show that

– If m = 2, then the partitions form the rows, columns, and letters in r mutually orthogonal
Latin squares. The case where all the Latin squares are isotopic to Cayley tables of groups
is particularly interesting, and we give an example with r = 2 where the four groups fall
into three different isomorphism classes.

– If m ≥ 3 and r ≥ 2, then under an additional assumption (which we call regularity)
the groups G obtained by applying Theorem 2 to any (m + 1)-tuple of partitions are
all isomorphic, are abelian, and this unique abelian group admits three fixed-point-free
automorphisms whose product is the identity.We describe all abelian groups having such
automorphisms, and give examples based on p-adic lifting of arcs in finite projective
spaces. We also describe the relation of our work to orthogonal arrays.

We introduce some notation. Let t(m, n) be the greatest value of r for which such a set of
partitions of a set of cardinality nm exists. (We assume thatm ≥ 2 and n ≥ 2.) Form = 2, this
is the maximum number of mutually orthogonal Latin squares of order n (usually denoted
by N (n) in the literature). Further, when m = 2 we denote by tg(2, n) the maximum in the
case where all the Latin squares obtained by taking the partitions three at a time are Cayley
tables of groups. (We do not need to define this for m ≥ 3, because Theorem 2 shows that,
in this case, any set of m + 1 of the partitions defines a group.) For any given group G,
we also denote by T (m, G) the maximum number r for which there are m + r partitions
satisfying our hypothesis such that any m + 1 of them define a group isomorphic to G. Thus
T (m, G) ≤ t(m, |G|).

Part of our purpose here is to consider these functions and give some upper and lower
bounds. We will see that our problem involves several other parts of combinatorics and finite
geometry, including mutually orthogonal Latin squares, the Hall–Paige conjecture, and arcs
in finite projective spaces.

2 The casem = 2

Suppose that we have a collection of r + 2 partitions of � with the property that any two
of them give � the structure of an n × n grid. Any further partition can be represented by
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a set of letters corresponding to the parts of the partition, and the hypothesis implies that
the letters constitute a Latin square of order n on the square array. Further, any two of the
resulting Latin squares are orthogonal. So we have precisely a set of r mutually orthogonal
Latin squares (MOLS) of order n.

Note that the maximum number of orthogonal Latin squares of order n satisfies t(2, n) ≤
n − 1, with equality if n is a prime power: see [7, p. 158].

A set of r MOLS defines
(r+2

3

)
Latin squares, since any triple of the partitions gives such

a square. We will say that we have a set of mutually orthogonal group squares (MOGS) if
all of these Latin squares are isotopic to Cayley tables of groups.

We note that there is a test, the quadrangle criterion, to determine whether a Latin square
is isotopic to a Cayley table of a group, due to Frolov [15] (see [7, Theorem 1.2.1] and the
following text for discussion); and a theorem of Albert [1, Theorem 2] shows that, if so, then
the group is unique up to isomorphism.

MOLS have been studied since Euler, and we have nothing to add in general. But note
that the classical set of q − 1 MOLS of order q (for prime powers q) associated with the
Desarguesian projective plane of order q does indeed form a set of MOGS, where all the
groups are isomorphic to the additive group of the finite field of order q . So tg(2, n) ≤ n −1,
with equality if n is a prime power; and T (2, G) = q − 1 if q is a prime power and G is
elementary abelian of order q .

More interesting to us is a remarkable example of two MOLS of order 8 where all of the
Latin squares are Cayley tables of groups, but the groups are not all isomorphic:

11 22 33 44 55 66 77 88
42 34 21 13 86 78 65 57
53 61 74 82 17 25 38 46
84 73 62 51 48 37 26 15
35 47 16 28 71 83 52 64
76 85 58 67 32 41 14 23
27 18 45 36 63 54 81 72
68 56 87 75 24 12 43 31

The four groups are as follows. Here Gi denotes the group obtained by omitting the i th of
the four partitions (rows, columns, first letter, second letter); so G4 and G3 denote the groups
whose multiplication tables are given by the first and second letters in the array.

G4: C2 × C2 × C2

G3: D8

G2: C2 × C4

G1: D8

The proof of the Hall–Paige conjecture [16] by Wilcox, Evans and Bray [5,10,26] shows
that theCayley table of a groupG has an orthogonalmate if and only if the Sylow 2-subgroups
of G are trivial or non-cyclic. In particular, no group of order congruent to 2 (mod 4) satisfies
this condition, so in the earlier language we have the second part of the following proposition.

Proposition 1 – If q is a prime power and G is an elementary abelian group of order q,
then T (2, G) = q − 1; in particular, tg(2, q) = q − 1.

– If n ≡ 2 (mod 4), then tg(2, n) = 1.

Problem 1 For r > 1, is there a set of r MOGS such that all
(r+2

3

)
groups are pairwise

non-isomorphic?
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Problem 2 Given a group G, what is the largest r such that there exists a set of r MOGS for
which all

(r+2
3

)
groups are isomorphic to G? That is, what is T (2, G)?

Owens and Preece [20,21] investigated the number of different species of Latin squares
that occur in the seven different affine planes of order 9. (A species is an equivalence class
under paratopism.) Two of the affine planes have just one species of Latin square, which
is the Cayley table of C3 × C3 in both cases. A third affine plane has some choices of
which two partitions define rows and columns for which all the Latin squares are Cayley
tables of C3 × C3. The Cayley table of C9 never occurs. Egan and Wanless [9] repeated this
investigation, and extended it to other sets of MOLS. For a set of three MOLS, there are ten
ways of choosing three of the five partitions to form a single Latin square. For MOLS of
order 9, Egan and Wanless found that the number of different species occuring can be any
integer in {1, . . . , 10}.

Another result bearing on this question can be found in the paper of Francetić, Herke and
Wanless [14]. They define the notion of the parity of a Latin square, and prove (among other
things) that, if n ≡ 2 (mod 4), then there is no complete set of n − 1 Latin squares of order
n in which all

(n+1
3

)
Latin squares are isotopic. Thus, if we extend our notation T (2, G) to

quasigroups, so that T (2, Q) is the maximum number of MOLS in which all definable Latin
squares are paratopic to the Cayley table of the quasigroup Q, then for |Q| ≡ 2 (mod 4) we
have T (2, Q) < |Q| − 1.

3 The casem > 2

As noted in [2], there are several definitions of “Latin cube” in the literature; the one relevant
to the proof of the Main Theorem in that paper is one of these, and not the most popular.
The situation for orthogonal Latin cubes is if anything worse, see [8,18,19,23,25]. To avoid
causingmore confusion, wewill use the name diagonal semilattices for the objects appearing
in [2]. So the objects to be studied here are sets of mutually orthogonal diagonal semilattices,
or MODS for short.

Thus, a set of r MODS of dimension m and order n is a collection of m + r partitions
Q1, . . . , Qm+r of a set� of cardinality nm , with the property that anym of these partitions are
the minimal non-trivial elements in an m-dimensional Cartesian lattice on �. According to
[2], if r = 1 (and m > 2) then there is a group G of order n, unique up to group isomorphism,
such that � can be identified with Gm , and the partitions Qi are the coset partitions of �

with respect to subgroups G1, . . . , Gm+1, where Gi acts by right multiplication on the i th
coordinate of elements of Gm , fixing the entries in all other coordinates, for i = 1, . . . , m,
and Gm+1 acts by left multiplication of all entries by the same group element:

x : (g1, . . . , gm) �→ (x−1g1, . . . , x−1gm).

(The x−1 is to ensure that the requirements for a (right) action are satisfied.)
Let us say that a set of r MODS is regular if all the partitions are right coset partitions of

subgroups of order n in Gm . The main problem, which we have not been able to solve, is:

Problem 3 Does there exist a non-regular set of MODS (with m > 2 and r > 1)?

Proposition 2 In a regular set of MODS, every (m + 1)-tuple of partitions gives rise to a
diagonal semilattice over a group G which is independent of the tuple of partitions chosen.
Moreover, G is an abelian group which admits three fixed-point-free automorphisms whose
product is the identity.
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Proof It suffices to prove this in the case m = 3, r = 2, which we assume from now on.
Each partition Qi is the coset partition corresponding to a subgroup Gi of G3, where we

can assume that G1, G2, G3 are the coordinate subgroups, as defined above. This implies that
G1, G2 and G3 pairwise commute elementwise. Since the choice of these three subgroups
was arbitrary, we see that Gi and G j commute elementwise for any choice of i, j .

Any further partition must be the coset partition of a subgroup intersecting the product of
fewer than m of these subgroups in the identity. Such a subgroup must be a “diagonal” of
the form {(g, gα, gβ) : g ∈ G}, where α and β are automorphisms of G. Moreover we may
take G4 to be the usual diagonal subgroup, defined by the choices α = β = 1.

Now consider G5, and write it in the form

G5 = {(g, gα, gβ) : g ∈ G}

for some automorphisms α and β.
Now G5 must commute with G4 elementwise. But the projection onto the first coordinate

induces an isomorphism on both G4 and G5, with image G in both cases; so G is abelian.
By definition, any three of G1, G2, G3, G4 and G5 generate their direct product G3. Now

consider G3G4G5. Since
G3G4 = {(g, g, h) : g, h ∈ G},

we see that the only solution of gα = g must be g = 1; in other words, α is a fixed-point-free
automorphism. Replacing G3 by G2 and G1 in turn, the same argument shows that β and
α−1β are also fixed-point-free automorphsms. Putting γ −1 = βα, we see that α−1, β and γ

are fixed-point-free automorphisms whose product is the identity, as required. 	


It is possible to describe the abelian groups which have such triples of automorphisms:

Proposition 3 The following are equivalent for finite abelian groups G:

(a) G admits three fixed-point-free automorphisms whose product is the identity;
(b) if G is written as a direct product of cyclic groups of prime power orders, then factors

whose order is a power of 2 or of 3 occur with multiplicity greater than 1.

Proof If the group G has this property, then so do its Sylow subgroups; so we may assume
that G is a p-group.

Suppose that p = 2 or p = 3, and that in the expression for G as a direct product of cyclic
groups, some cyclic group (say C pe ) occurs with multiplicity 1. Taking K = {g|g pe = 1}
and H = K p , we see that |K :H | = p; if α is fixed-point-free, then α induces a fixed-point-
free automorphism on K/H . But it is easy to see that cyclic groups of orders 2 and 3 do not
have triples of automorphisms as required.

In the other direction, cyclic groups of p-power order with p ≥ 5, and groups (C pe )d , for
p > 3 and d > 1, do admit such triples. 	


In particular, for any n not congruent to 2 mod 4 or to ±3 mod 9, there is an abelian group
of order n with this property. One example is the direct product of elementary abelian groups,
whose exponent is square-free; the condition on n ensures that, for p = 2 and p = 3, the
Sylow p-subgroup is either trivial or non-cyclic.

The examples to be described in the following sections are all regular in the sense defined
in this section.
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4 Orthogonal arrays

If G is an abelian group then its dual group G∗ consists of the irreducible complex characters
ofG, and is isomorphic toG. These are frequently used by statisticians in factorial design. For
example, if G = C4

p for some prime p, then typically G is written as 〈a〉 × 〈b〉 × 〈c〉 × 〈d〉
and G∗ as 〈A〉 × 〈B〉 × 〈C〉 × 〈D〉, where A simply picks out the power of a and raises
exp(2π i/p) to that power.

The elements of G∗ can be thought of as partitions of G. (Strictly speaking, the character
A defines the partition of G whose parts are the inverse images of each complex number in
the image of A.) If G is the direct product of m abelian groups of order n, then a set of m + r
such partitions of G is called an orthogonal array of strength m and index 1 if any m of them
form the maximal elements in a Cartesian lattice on G.

More generally, an orthogonal array with k factors having strength m and index λ over
an alphabet A of size n is a set of k-tuples of elements of A with the property that, given
any m distinct coordinates i1, . . . , im and any m arbitrary elements a1, . . . , am of A, there
are exactly λ tuples having a j in position i j for j = 1, . . . , m. The numbers n and k are
sometimes called the number of levels and number of factors respectively. Such an array is
denoted by O A(N , m + r , n, m), where N is the number of k-tuples; see [17].

We are only concerned with index 1. In this case, each coordinate defines a partition of the
set � of k-tuples according to the letter in that coordinate, and this set of k partitions has the
property that any m of them are the maximal elements in a Cartesian lattice of dimension m.

For example, if G = C4
p with p ≥ 5 then {A, B, C, D, ABC D, AB2C3D4} is an orthog-

onal array of strength 4. This is an O A(p4,6, p, 4).
In fact, the complete set of MOLS of order 9 given by Fisher and Yates in [13] was

constructed in this way, using C4
3 as the underlying set. The rows are labelled by pairs of

values of A and B, while the columns are labelled by pairs of values of C and D. The letters
in the first square are identified by pairs of values of AC and B D; and so on. It is thus no
surprise that all eight Latin squares are Cayley tables of C3 × C3. What was surprising to its
authors was that this set of MOLS is not isomorphic to the one given in [11]. They originally
thought that it was, but Fisher apologised for the mistake in [12]. In fact, these are the first
two affine planes discussed at the end of Sect. 2.

Let us return to orthogonal arrays. The concept of orthogonal array is the dual notion (in
the sense of reversing the partial order of refinement of partitions) of the property stated in
the first part of Theorem 1. If the orthogonal array is defined by an abelian group, then taking
the dual group also reverses the order of refinement. Hence the dual of each such orthogonal
array gives a set of MODS.

In the running example, the dual of the orthogonal array is the set of subgroups 〈a〉,
〈b〉, 〈c〉, 〈d〉, 〈abcd〉, 〈ab2c3d4〉. These have the property that every subset of four of them
generate their direct product: in other words, their coset partitions form the minimal non-
trivial partitions in a join semi-lattice.

If we write this in more standard notation over the field GF(p), then we have six vectors
(1, 0, 0, 0), (0, 1, 0, 0), (0, 0, 1, 0), (0, 0, 0, 1), (1, 1, 1, 1) and (1, 2, 3, 4) with the property
that every four are linearly independent.Multiplying any of these vectors by a non-zero scalar
does not affect this, so we are effectively in projective geometry, and we have six points, any
four of which are in general position.

We conclude this section by showing that a regular set of MODS with r > 1 and m > 2
does indeed give rise to an orthogonal array.

123



R. A. Bailey et al.

Proposition 4 Given a regular set of MODS of dimension m and order n with m+r partitions,
for r ≥ 2, we can construct from it an orthogonal array of strength m and index 1 with m +r
factors, each with n levels.

Proof According to Proposition 2, a regular set of m + r MODS of order n and dimension
n, with m > 2 and r > 1, is realised by the coset partitions of Gm by m + r subgroups
isomorphic to G, where G is an abelian group of order n (and has three fixed-point-free
automorphisms whose product is the identity).

Now the dual group (Gm)∗ defines an orthogonal array of strength m and index 1 over
the alphabet A = G∗ by the following rule. First identify each subgroup Gi with G by a
fixed isomorphism ψi . Then take φ ∈ (Gm)∗; map φ to the n-tuple a(φ), where a(φ)i is the
restriction of φ to Gi . For i = 1, …, m, use the isomorphism ψi to identify a(φ)i with an
element of G∗.

Given any set i1, . . . , im of m distinct indices, G is the direct sum of the groups
Gi1 , . . . , Gim , and so an element of G∗ is uniquely defined by its restriction to these sub-
groups; conversely, any choice of elements of G∗

i j
for j = 1, . . . , m defines a unique

homomorphism of G. So we have an orthogonal array, as claimed. 	


5 Frobenius groups

A Frobenius group is a finite group G with a non-trivial proper subgroup H (called the
Frobenius complement) such that H ∩ H g = 1 for all g ∈ G \ H , where H g is the conjugate
g−1Hg. The theorem of Frobenius shows that the identity together with elements lying in
no conjugate of H form a normal subgroup N , the Frobenius kernel. The celebrated theorem
of Thompson asserts that the Frobenius kernel is nilpotent.

Alternatively, a Frobenius group is a transitive permutation groupG inwhich the one-point
stabilisers are non-trivial but all two-point stabilisers are trivial. The one-point stabilisers are
the Frobenius complements, and the Frobenius kernel is a regular normal subgroup.

We refer to Passman [22] for an account of this material.

Theorem 3 Let G be a Frobenius group whose Frobenius kernel N is abelian, with Frobenius
complement H. Then there is a set of |H | MOGS of order |N | = n such that each of the(|H |+2

3

)
Latin squares is isotopic to the Cayley table of N .

Proof Each square has rows and columns indexed by N ; the squares are indexed by H .
The square Lh has (x, y) entry Lh(x, y) = xyh . (This is analogous to the usual finite field
construction of MOLS.) Now Lh is isotopic to the Cayley table of N , since if we relabel the
column previously labelled yh as y then we recover the Cayley table of N (which indeed is
L1).

To show orthogonality, take distinct h, k ∈ H and a, b ∈ N ; we need to show that the
equations xyh = a and xyk = b have a unique solution (x, y) ∈ N × N . But these equations
imply y−1kh−1y = kb−1ah−1, so y conjugates kh−1 to kb−1ah−1. But the centraliser in H
of a non-identity element of N is trivial. So if y1 and y2 were two such elements, then y1y−1

2
would commute with kh−1, so y1 = y2. Thus y, and hence also x , is uniquely determined.
(We have proved that there cannot be more than one solution: now counting shows there is
exactly one.)

Now we have to show that, of the |H | + 2 partitions corresponding to rows, columns, and
the |H | squares, if we choose any two to be new rows and columns, it is still true that all the
squares are isotopic to the Cayley table of N . Recall that two squares are isotopic if there
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are permutations of the rows, columns and letters which transform one to the other. So we
need to show that, in each case, there are bijections φ, χ,ψ of N such that the entry in row
u and column v of the second square is given by ψ(φ(u)χ(v)), where inside the brackets
we have the group operation in N . Different squares will of course require different choices
of φ, χ,ψ . We saw an example in the first paragraph of this proof, where φ and ψ are the
identity and χ(v) = vh .

We begin with a couple of observations.
Note 1: For any k ∈ H , there is a symmetry which maps Lh to Lkh and conjugates the

column labels by k; and there is a symmetry which swaps rows and columns, and replaces
Lh by Lh−1 with its letters conjugated by h for each h ∈ H .

For the first, Lkh(x, y) = xykh = x(yk)h . For the second, (yxh−1
)h = yh x = xyh .

Note 2: For h ∈ H , h �= 1, the map ζh : N → N given by ζh(x) = x−1xh is a bijection;
since N is abelian, it is an automorphism. Thus we may define ηh : N → N to be the inverse
of ζh .

For suppose that x−1xh = y−1yh . Then yx−1 = (yx−1)h . Since conjugation by h is a
fixed-point-free automorphism of N , this gives yx−1 = 1, so x = y.

Since N is abelian,

ζh(xy) = y−1x−1xh yh,

ζh(x)ζh(y) = x−1xh y−1yh,

and the right-hand sides are equal.
Nowwe have to deal with the caseswhere the two partitions defining the rows and columns

of the square are no longer the original ones. We have seen in Note 1 that swapping rows and
columns gives a symmetry. Therefore, if we use one of rows and columns, we can assume
that it is rows. Note 1 also shows that if we use the partition corresponding to an element
h ∈ H , we can assume that h = 1. So there are two cases.

Case 1: We use the row partition as rows and the partition corresponding to h = 1 as
columns. Thus, the row and column labels are x and xy = z.

Consider the square corresponding to the former columns, with (x, z) entry y. Since
y = x−1z, this square is isotopic to the Cayley table of N .

Now consider the square Lh , with (x, z) entry xyh . Now

xyh = xx−h zh = (x−1)−1(x−1)h zh = ζh(x−1)zh .

Since inversion, ζh , and conjugation by h are bijections, this is an isotope of the Cayley table
of N . (Take φ(x) = ζh(x−1), χ(z) = zh and ψ the identity map.)

Case 2: We use the partition corresponding to the identity as rows, the partition cor-
responding to h as columns, and the partition corresponding to k as letters. Thus, if the
corresponding square has (u, v) entry w, then u = xy, v = xyh , and w = xyk .

Solving the first two equations for x and y gives

u−1v = y−1yh = ζh(y), so y = ηh(u−1v),

vh−1
u−1 = xh−1

x−1 = ζh−1(x), so x = ηh−1(vh−1
u−1).

Thus
w = xyk = ηh−1(vh−1

u−1)(ηh(u−1v))k .

Since G is abelian and ηh , ηh−1 , inversion and conjugation are isomorphisms, we can write
this in the form w = φ(u)χ(v), where

φ(u) = ηh−1(u−1)(ηh(u−1))k, χ(v) = ηh−1(vh−1
)(ηh(v))k .
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Taking these functions φ and χ and the identity for ψ gives the required isotopism. 	


6 Higher-dimensional examples

Let q be a prime power, and let G be the additive group of the finite field GF(q) of order
q . An arc in the projective space PG(m − 1, q) is a set of points, any m of which span the
space. It is called a k-arc if its cardinality is k.

In vector space terms, it is a set of 1-dimensional subspaces of the m-dimensional vector
space over GF(q), such that spanning vectors of any m of the spaces form a basis for the
vector space.

Now it is clear that the coset partitions of any m of these 1-dimensional subspaces are the
minimal elements of a Cartesian lattice. Thus we have:

Proposition 5 If there exists an (m + r)-arc in PG(m − 1, q), then T (m, G) ≥ r .

The maximum cardinality of arcs in finite projective space was first studied by Segre in
the 1950s. In [24], he raised some fundamental questions which have directed research since.
A milestone in their study was the paper of Blokhuis, Bruen and Thas [4]. We refer to the
recent survey by Ball and Lavrouw [3] for further information.

The simplest example is the normal rational curve. Let a1, a2, . . . , aq be the elements of
GF(q). For m ≤ q +1, consider the vectors (1, ai , a2

i , . . . , am−1
i ) for i = 1, . . . , q) together

with (0, 0, . . . , 1). Any m of these vectors form a basis for GF(q)m . For if the last vector is
not included, then the vectors are the rows of a Vandermonde matrix, whose determinant is
non-zero; the argument is similar if the last vector is included.

We nowpresent examples in other abelian groups, specifically homocyclic p-groups. Such
a group G is a direct power of a cyclic group of prime power order, say G = (C pe )d . Arcs
in projective spaces give examples with e = 1, as we have seen. The construction involves
lifting to a p-adic number field and taking quotients; all necessary information can be found
in Henri Cohen’s book [6].

Let q = pd . The splitting field of the polynomial Xq − X over the field Qp of p-adic
numbers is an extension F ofQp of degree d . Its integers form a local ring R, with maximal
ideal M satisfying R/M ∼= Fq .

Let S be the set of roots of Xq − X . The non-zero elements of S form a cyclic group of
order q − 1.

For a positive integer m ≤ q + 1, the set

{(1, u, u2, . . . , um−1) : u ∈ S} ∪ {(0, 0, . . . , 0, 1)}
of vectors in Fm has the property that anym of its elements form a basis for Fm . The argument
is the same as in the finite field case.

Reducing this set of vectors modulo the ideal M gives a set of q +1 vectors in (Fq)m , any
m forming a basis for this space. The 1-dimensional subspaces they span form the standard
representation of the normal rational curve in PG(m − 1, q).

Now fix an integer e ≥ 2. If we reduce modulo Me, we obtain q + 1 elements in the
group Gm , where G is the homocyclic abelian group of order qe which is the direct sum of
d cyclic groups of order pe (so that its Frattini quotient is the additive group of the field of
order q). We take the R-modules generated by these vectors; each is (additively) a subgroup
isomorphic to G. Thus, we have a set of q + 1 subgroups, any m of which generate their
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direct sum, and so an example of a regular set of MODS where all the groups are isomorphic
to (C pe )d .
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