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Abstract

This thesis is about methods for improving estimates of abundance and trends from dis-

tance sampling surveys. My particular focus is on point transect surveys of endemic

Hawaiian songbirds. When critical assumptions are met, design-based distance sampling

provides unbiased abundance estimates; however, for rare endangered Hawaiian forest

birds, the estimates can have high variance, hindering their use in assessing conservation

efforts.

One approach to improve precision is to use spatial models instead of design-based

methods. I fitted density surface models (DSMs), accounting for spatial and temporal

correlation, using a two-stage approach that separated modelling of detection probabil-

ity from modelling spatio-temporal patterns in density using generalized additive models

(GAMs). Precision was improved and maps depicted spatio-temporal patterns in densities.

I compared the model that I fitted for a single year to two alternative approaches:

spatial point-process model based on a log-Gaussian Cox process with a Matérn covari-

ance (LGCP) and a soap-film smoother. The GAM-based DSMs and LGCP approaches

produced better precision than the design-based method but varied in how they captured

pattern in the data. I also implemented a GAM that used a smoother which took into

account the study area boundary (a soap-film smoother) and found this produced better

extrapolations into parts of the study area not surveyed.

Including biological realism is another approach to improve modelling of population

change over time is to link design-based abundance estimates to an underlying population

dynamics model, using a state-space modelling framework. This constrains population

changes to be biologically realistic, as I demonstrate with a set of models that make

different assumptions about the demographic parameters driving population changes.

Overall, I demonstrate that spatial, spatio-temporal and population dynamics mod-

elling procedures reduced the variance in density estimates in single- and multi-year abun-

dance data compared to design-based methods, thus better informing management and

conservation decisions.
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The groundwork for this thesis was laid before I became a PhD student at the University

of St Andrews, while working full-time at the United States Geological Survey (USGS); in

addition, some parts of the thesis work have been undertaken collaboratively. The purpose

of this section, therefore, is to clarify my PhD research contributions.

Before coming to St Andrews, I developed the Hawaiian forest bird monitoring database,
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Abbreviations and Notations

Abbreviations
Name Description

1D one dimension
2D two dimension
AIC Akaike’s information criterion
asl above sea level
CAR conditionally autoregressive model
CI confidence interval
CIWDB confidence interval width design-based estimate
CIWDM confidence interval width delta method
CIWVP confidence interval width variance propagation method
CrI credible interval
DSM density surface model
EAS effective area searched
EDF effective degrees of freedom
GAM generalized additive model
GCV generalized cross validation score
GLM generalized linear model
HFBS Hawaii forest bird survey
Mya Million years ago
PDM population dynamic model
PTDS point-transect distance sampling
QQ quantile-quantile
REML restricted maximum likelihood
SE standard error
TPRS thin plate regression spline
UTM Universal Transverse Mercator
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Notations
Name Description

a hazard rate scale parameter
b hazard rate shape parameter
β0 intercept
β1 slope
δ hazard rate covariate for year
ε error term
η linear predictor
f () smoothing function
g the link function in GLMs and GAMs
k sampling points
λ Chapters 2 – 4: mean of Poisson distribution;

smoothing penalty term or penalty parameter;
Chapter 5: recruitment rate

µ mean
n numbers of birds counted or detected; sample size
N true population size

N̂ estimated population size
ν effective area searched
p detection probability
π priors and hyperpriors pdf
φ Chapters 2 – 4: dispersion parameter of the negative binomial

distribution
Chapter 5: survival rate

q dispersion parameter of the Tweedie distribution
r Chapters 1 – 4: radius from point centre to detected bird;

Chapter 5: growth rate
R number of recruits
S number of adults surviving
s() 1D isotropic TPRS smooth function
s2 estimate of variance σ2

σ2 variance
ti() 2D or higher interaction TPRS smooth function
w truncation width or truncation distance
x predictor variable
y response variable
z hazard rate covariate
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bution fitted to the 'ākepa count data. Residuals versus fitted values (top

left panel), residuals versus easting (top right panel), residuals versus nor-

thing (middle left panel), residuals versus year (middle right panel), and

histogram of residuals (bottom left panel). . . . . . . . . . . . . . . . . . . . 45

2.6 Diagnostic plots for spatio-temporal GAM with a Tweedie distribution fit-
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panel) distributions to the 2002 'ākepa count data from the TPRS model. . 161

D.2 Diagnostic plots of individual parameters for spatial GAM with a negative

binomial distribution fitted with the TPRS model formulation to the 'ākepa
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Chapter 1

Introduction

The research in my thesis is motivated by the need to have precisely estimated bird densi-

ties. Species management, particularly the conservation of rare species, is costly, requiring

funding, personnel and time that are increasingly limited. Conservation planning focuses

on the proposed benefits returned from management actions, the costs of implementing

actions, and the likely outcome of actions (Walls 2018). Evaluating trends of Hawaiian for-

est birds however is hampered by imprecise estimates yielding inconclusive results (Camp

et al. 2009).

The remainder of Chapter 1 of my thesis is organized as follows: I describe Hawaiian

avifauna and monitoring in Section 1.1. In Section 1.2 I describe the study area from

which the data are collected and provide a description of the species used in the analyses.

The sampling methods and data collected are detailed in Section 1.3. Distance sampling

methods are presented in Section 1.4, including the theory and general principles, model

assumptions and likelihoods. In this section I apply distance sampling methods to esti-

mate bird densities and estimator uncertainty; these estimates serve as a baseline and are

compared against analyses conducted in the subsequent chapters. In Section 1.5 I provide

a road map outlining and describing the analyses in the remaining chapters of my thesis.

1.1 Background

Situated near the middle of the Pacific Ocean, the Hawaiian Islands are the most re-

mote archipelago in the world. Being more than 4,000 km distant from North and South

America, eastern Asia and islands in the South Pacific, the Hawaiian Islands are well

beyond the distance non-migratory land birds are expected to traverse. Unique among

the 23 or more founder land bird species to reach and establish on the Hawaiian Islands

was a cardueline finch (Fringillidae; Pratt 2009). Arriving some 5–6 Mya, the colonizing

species found a new environment with tropical forests and shrublands, and was released

from limiting factors such as competitors, predators, and diseases and their vectors. In

the absence of many limiting factors and given sufficient time, evolutionary divergence

of the founder species led to the largest adaptive radiation of oceanic archipelago birds

worldwide resulting in new trophic morphologies and life histories. The derived Hawaiian

Honeycreepers (Drepanidinae) differentiated into 21 genera and more than 50 species gen-
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erally grouped according to feeding niches with many species and subspecies being island

endemics. While variation in bill morphology and feeding behaviours were advantageous,

honeycreepers, like most insular bird species, also evolved a variety of traits that may

be deleterious should the environment change. These traits include greater longevity, de-

layed maturation, decreased clutch size, reduced dispersal abilities, and loss or reduction

of defences against predators and diseases (Woodworth and Pratt 2009).

The loss of defensive adaptations made the honeycreepers particularly vulnerable to

humans and the changes they brought. When Polynesian peoples arrived 700-800 years ago

(Wilmshurst et al. 2011) they profoundly transformed the Hawaiian environment making

it more suitable for human habitation, and brought competitors and predators. Western

contact further exacerbated these effects including introducing diseases and their vectors,

and ungulates that destroy and degrade forest habitats. As a result, more than half of the

honeycreeper species are now extinct, with 17 lost since Western contact a mere 240 years

ago (Banko and Banko 2009). The remaining 23 species persist in restricted fragments of

their original ranges, usually in sub-optimal habitat, and in small numbers. Most of these

remnant populations are in serious trouble: 21 species have been categorized as critically

endangered, endangered or vulnerable under the IUCN Red List of Threatened Species,

while only two species are categorized as least concern (IUCN 2018).

Over the last half century the limiting factors and vulnerabilities of Hawaiian forest

birds have been identified. Government and non-government organizations have used this

information to recover and protect native forest birds and their habitat at community-

and species-level scales. In many cases, because of the restricted distribution of species,

the population- and species-level scales are synonymous. Hereafter I use the more gen-

eral species-level scale when referring to either population- or species-level management

and conservation. Restricted to high-elevation, native-dominated vegetation most for-

est birds are concentrated into geographically limited areas. These areas are geographic

hotspots of biodiversity where five or more native forest bird ranges overlap (see Gorre-

sen et al. 2009). Community-level conservation focuses on ecosystem management. At

these locations, conservation partners are recovering habitat through understory planting,

conducting ungulate and predator control through removal and fencing, and chemical and

mechanical weed control. In addition, restoration and reforestation of upland pastures

are being conducted on Hawai'i and Maui islands through out-planting of native tree

species. Monitoring population responses to management actions are needed to evaluate

management effectiveness.

Species-level programs include the ecosystem management, as well as species-specific

strategic actions. Species-level programs include demographic studies to estimate vital

rates of survival and fecundity. Demographic studies may be used to identify class- or

group-specific threats such as depredation of nesting females, and determine management

actions needed to alleviate threats. Management actions typically include fencing to ex-

clude ungulates and ungulate removal, predator control and habitat restoration. When

combined with ecological studies, such as investigating competition, food-web disruption

and habitat fragmentation, species-level research provides insight into interactions among
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agents of decline and population trajectories. Monitoring is required at both community-

and species-level programs to track populations, evaluate management actions and assess

conservation priorities.

Much of our understanding of how forest birds are responding to management and re-

covery actions has been gained through abundance monitoring. Between 1976 and 1983 the

U.S. Fish and Wildlife Service conducted surveys to determine forest bird distribution and

status, and assess the state of forest bird habitat (Scott et al. 1986). Termed the Hawai'i
Forest Bird Survey (HFBS), these surveys have been used for recovery plans, to identify

geographic hotspots of biodiversity and serve as a baseline to evaluate population trends,

among other conservation priorities (Camp et al. 2009). The HFBS employed point-

transect distance sampling (PTDS) methods, a form of distance sampling (Buckland et al.

2015), to survey birds at points along transects that traversed native-dominated forests.

Over the subsequent four decades PTDS has became the standard for surveying Hawaiian

forest birds, and more than 700 forest bird surveys have been conducted, transcribed and

included in the Hawai'i Forest Bird Monitoring Database (Camp and Genz 2017). Both

species-specific and multi-species PTDS surveys are included in the database on all main

Hawaiian Islands and have been used to estimate bird status and evaluate trends (e.g.,

Gorresen et al. 2009; Camp et al. 2016; Paxton et al. 2016). A detailed description of

PTDS methods is provided below.

Recovery programs require tracking populations as they respond to conservation and

management actions. Density, or population size, is a fundamental metric of recovery

programs. Surveys conducted over time are useful for evaluating trends. I define trend

as the long-term, overall directional change in densities over time. With this definition

assessing trends requires evaluating the pattern of a density time series. There are many

methods for analysing time series (Thomas 1996), but generally they rely on either linear

or non-linear regression methods. For either method, however, variances of bird density

estimates are generally quite large (Gibbs 2000). I assume that the bird density estima-

tor is unbiased; therefore, I consider the primary objective of the HFBS is to produce

unbiased density estimates that are precise. A lack of estimator precision is problematic

because change can occur without detection and management actions cannot be evaluated.

Imprecise estimates further hamper species conservation and recovery planning.

1.2 Study areas & study species

1.2.1 Study areas

Established in 1985 on the island of Hawai'i, Hakalau Forest National Wildlife Refuge

(hereafter Hakalau; 19◦ 51'N, 155◦ 18'W) is actively managed to preserve native forest

birds, rainforest plants and their habitats. The 15,390-ha montane forest is dominated by

native 'ōhi'a (Metrosideros polymorpha) and koa (Acacia koa) with a mixture of native

and non-native understory plants. Temperature averages 15◦ C with annual variation <5◦

C, and annual precipitation averages 2,500 mm with a maximum of 6,100 mm (Juvik and

Juvik 1998).
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Following the creation of Hakalau, in 1987 refuge staff initiated an annual abundance

monitoring program by establishing 350 point samplers (hereafter, points) on 14 transect

lines following a systematic random design spanning the upper elevations of Hakalau. The

distance among points is approximately 150-m with transects being either 500 or 1,000

m apart (Fig. 1.1). Research in Chapters 2 and 5 focus on the 3,061 ha open-forest

stratum at an elevation between 1,400 and 1,920 m (Fig. 1.1). Previously heavily grazed,

regeneration in the open-forest stratum is proceeding naturally since the removal of cattle

in 1988 (Maxfield 1998). My research in Chapters 3 and 4 includes the reforested pasture

and closed-forest strata. The pasture stratum extends from the western edge of the open-

forest stratum out to the Hakalau boundary, elevation between 1,650 and 2,000 m and an

area of 1,271 ha (Fig. 1.1). The pasture was intensely grazed through the mid-1980s and

is being gradually reforested through outplanting koa. The closed-forest stratum extends

down slope from the eastern edge of the open-canopy stratum between 1,400 and 1,700 m.

The closed-forest stratum was least modified by grazing and surveys commenced in 1999

covering an area of 1,541 ha. I modified the strata polygons from Camp et al. (2010) to

exclude the southern, unsampled portion of their study area. Scott et al. (1986) provides

a more detailed description of the region and Camp et al. (2010) describes Hakalau and

the study area in more detail.

Chapter 5 of my thesis explores the use of population dynamics modelling as a way to

estimate population trends of Hawai'i 'ākepa (Loxops coccineus; nomenclature according to

Chesser et al. 2018 and Gill and Donsker 2019; hereafter 'ākepa). This requires information

about 'ākepa demography. In the 1970s and 1980s, 'ākepa demography was studied in four

areas on the eastern, windward, side of Hawai'i Island: Kau Forest Reserve (19◦ 13'N,

155◦ 39'W, 1,750 m), Kilauea Forest (19◦ 31'N, 155◦ 19'W, 1,600 m), Keauhou Ranch

(19◦ 30'N, 155◦ 20'W, 1,800 m) and Hamakua (19◦ 47'N, 155◦ 20'W, 1,770 m) (Ralph and

Fancy 1994) (Fig. 1.1). The Kau Forest Reserve and Kilauea Forest study sites occurred

in ungrazed, closed canopy 'ōhi'a forests, with koa also in Kilauea. Cattle grazing and

logging occurred at the Keauhou Ranch study site resulting in a discontinuous, open 'ōhi'a
and naio (Myoporum sandwicense) forest. In the 1990s and 2000s, demographic data were

collected at three study sites within Hakalau. From south to north they are Pua 'Ākala,

Nāuhi, and Maulua and range in elevation between 1,500 m and 1,640 m (Fig. 1.1). See

Woodworth et al. (2001) for detailed description of the demographic research study sites.

The Pua 'Ākala site at which Hart (2001) sampled is slightly up-slope at 1,850 m from

the Woodworth et al. (2001) site of the same name, and coincides with the Hamakua

study area sampled by Ralph and Fancy (1994). The Pedro site sampled by Hart (2001)

is further north and down-slope from Nāuhi. These appear to be the same sites sampled

by Lepson and Freed (1995), Freed et al. (2008) and references therein, although detailed

location information is lacking. Data from the Maulua site are not used in my thesis

because 'ākepa were not captured at this site.
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Figure 1.1: Left panel: study areas showing survey points (black dots) in the open- and
closed-forest stratum (heavy black polygon), and reforested pasture stratum (orange dots
in orange polygon). Forest strata demarcated as open-forest (light black polygon) and
closed-forest (green polygon) stratum. The open-forest stratum is separated into north
and south strata (black polygons). Blue polygon represents the expanded forest study
area. Demographic research areas are Pua 'Ākala (filled downward triangle), Nāuhi (filled
upward triangle), and Maulua (open upward triangle). Right panels: the location (red
dot) of Hakalau Forest National Wildlife Refuge (Hakalau) is shown on the Hawaiian
Islands (top panel), and on Hawai'i Island (bottom panel). Demographic study areas on
the Hawai'i Island are Kau Forest Reserve (blue dot), Kilauea Forest (green dot), Keauhou
Ranch (orange dot) and Hamakua (brown dot). Base map from World Geodetic System
1984 (WGS84) zone 5; coastline from U.S. Geological Survey’s National Elevation Dataset
(USGS, U.S. Geological Survey 2014).
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Figure 1.2: Photo of Hawai'i 'ākepa. Photo credit: Jack Jeffrey.

1.2.2 Study species

The focal species for my thesis is the 'ākepa. The 'ākepa (Fig. 1.2) is an internationally

and federally endangered Hawaiian honeycreeper (Drepanidinae; USFWS, U.S. Fish and

Wildlife Service 1970, BirdLife International 2016) endemic to Hawai'i Island, USA. The

'ākepa is a diet specialist honeycreeper that forages for spiders, insects and psyllids by

probing terminal leaf clusters, but it also consumes nectar. The species declined dramat-

ically during the 20th century due to mosquito-transmitted avian diseases (Pratt 1994,

Atkinson et al. 1995), habitat modification (Scott et al. 1986, Pratt 1994), introduced

predators (Lepson and Freed 1997), and food resource competitors (Lepson and Freed

1997). 'Ākepa are now restricted to five spatially distinct populations, with a global abun-

dance of 16,248 (95%CI 10,074–25,198) birds (Judge et al. 2018). The largest population,

estimated in 2012 at more than 11,000 birds (Camp et al. 2016), occurs in Hakalau (Judge

et al. 2018).

Refuge-wide distance sampling monitoring reveals that 'ākepa are stable to increas-

ing (Camp et al. 2016, Rozek et al. 2017), and that the population is expanding into

the adjacent reforested pasture (Paxton et al. 2018). 'Ākepa densities, however, vary

geographically (Reding et al. 2010) and localized populations may be declining despite

widespread increases (Freed and Cann 2010). Modelling the spatio-temporal distribution

in the 'ākepa population can help reveal patterns in its distribution and abundance, as

well as estimate densities for any defined sub-area within the study area and increased
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precision by modelling spatio-temporal covariance.

1.3 Sampling methods & data collected

In order to avoid redundancy by repeating a description of the sampling methods in each

chapter, I present here a detailed description of the methods employed in Hawaiian abun-

dance monitoring and demography sampling. I start by describing the methods used to

monitor forest bird abundance. The density estimates are then used in the analyses in

Chapters 2–5 where they are compared with spatio-temporal, point process, soap-film

smoother and population dynamics modelling. The spatio-temporal and point process

modelling relies entirely on the distance sampling survey data; however, additional infor-

mation is required for the population dynamics analyses. Below I describe the sampling

methods used to collect 'ākepa biological traits and demographic vital rates. This infor-

mation is mostly gathered from study sites in Hakalau, but also includes data collected

in the Kau Forest Reserve, Hawai'i Island, in which the second largest 'ākepa population

inhabits.

1.3.1 Abundance monitoring

Abundance monitoring via the HFBS is the focus of Chapters 2–5. Since 1987, 'ākepa,

along with other forest bird species, are monitored at Hakalau. Annual surveys have been

conducted, usually in April, through 2017 (except in 2009) employing PTDS methods

to produce abundance estimates (see Camp et al. (2010, 2016) for details). Following a

standard protocol, trained and calibrated observers recorded the horizontal distance from

the centre-point to birds detected during an 8-min count. Birds are detected as individuals

and their locations estimated and recorded as exact distances rounded to the nearest meter.

The sampling conditions cloud cover, rain, wind strength, gust strength, and time of day

each point is surveyed are also recorded. Sampling commenced at dawn and continued until

11:00 (Best 1981), and occurred only during favourable conditions (halting when conditions

exceeded light rain and wind level 3 on the Beaufort scale). The Hawai'i 'ākepa data from

1987–2017 are available from USGS: https://doi.org/10.5066/P98IO297 (Camp 2019)1 and

the expanded 2002 data are available from USGS: https://doi.org/10.5066/P9Q9UXMZ

(Camp 2020)2.

1.3.2 Demography sampling

'Ākepa demography data is combined with population monitoring data in Chapter 5. I

conducted a literature search for estimates of 'ākepa vital rates instead of analysing raw

banding and resight data. Newman et al. (2014) states that it can be better to use es-

timates from summarized data as estimates are easier to model and give similar results

to modelling the raw data. Density and vital rate parameters are often estimated from

sophisticated software that is specialized for the analysis of relevant data (e.g., distance

1Data release as part of my thesis research.
2Data release as part of my thesis research.
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sampling and mark-recapture data). Detailed descriptions of the mist netting, banding, re-

sighting and nest searching methods are provided in Ralph and Fancy (1994), Lepson and

Freed (1995), Hart (2001), and Woodworth et al. (2001). A fair amount of demographic

information is available on 'ākepa, which is summarized in Lepson and Freed (1997) and

Woodworth and Pratt (2009). Since 2008, there have been few studies providing additional

information of 'ākepa traits and vital rates. Recent papers provide additional insights on

juvenile survival by time period (1987-2000 vs 2001-2006; Freed and Cann 2009); juvenile

survival based on fledging mass (Medeiros and Freed 2009); nest success and productivity

(Cummins et al. 2014); and adult survival, recruitment and population growth rate (Guil-

laumet et al. 2016). There is also an on-going demographic research study at Hakalau

being coordinated by Eben Paxton, U.S. Geological Survey, but vital rate information is

not yet published. In Chapter 5 I summarize the demographic information following the

format by Woodworth and Pratt (2009), paying particular attention to the traits relevant

to 'ākepa population dynamics modelling. This information is gathered from the study

areas described above.

1.4 Analyses and statistics

Many bird survey programs track counts as an index, where all birds are assumed detected

out to a distance w (Hutto 2016). In most, if not all, cases simple counts of birds are un-

reliable measures of actual bird numbers as the index does not track the true abundance,

nor do index-based counts provide measures of uncertainty (Anderson 2001, Diefenbach

et al. 2003, Norvell et al. 2003, Marques et al. 2017, Williamson et al. 2018). Therefore, I

employ only methods that provide the necessary information to compute a detection prob-

ability such as distance sampling (Buckland et al. 2015). Moreover, while all bird species

are recorded during Hawaiian PTDS surveys, the distance sampling analyses conducted

here are restricted to 'ākepa.

1.4.1 Point-transect distance sampling

An intuitive description of PTDS entails observers traversing through a study area and

stopping at predetermined locations, points, to conduct bird counts for a prescribed length

of time. These points along transects constitute PTDS. An important piece of information

the counter (also called an observer) collects is that for each detection they estimate the

horizontal distance from the bird to the centre of the point. A detection probability is

estimated by fitting a detection function to the distance measurements, which is then

used to compute absolute density of birds (see Section 1.4.2 below for details). Distance

sampling is based on well developed theory with several books (Buckland et al. 2001,

2004, 2015) to help with the design, analysis and interpretation. To facilitate design and

analysis free software has been developed and is available as stand-alone software Distance

for Windows (Thomas et al. 2010; distancesampling.org) or as the R (R Core Team 2017)

package Distance (Miller 2017, Miller et al. 2019) and other packages. There are several

advantages to conducting PTDS relative to line transect distance sampling. PTDS is useful
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in rough terrain where it is difficult to traverse while concentrating on detecting birds and

maintaining the location of a transect centreline. In the tall stature, tropical forests

of Hawai'i PTDS method allows observers to stop, stage and more thoroughly observe

birds that are close to the point and high overhead in tree canopy. As with all sampling

techniques, there are disadvantages in that there can be substantial non-sampling time

when traversing between points (Buckland 2006), and the estimator can be strongly biased

if birds move in response to observers, or display independent, non-responsive movement

(Marques 2007, Buckland et al. 2015, Glennie et al. 2020) or if there are errors in the

distance measures (Marques 2007, Buckland et al. 2015).

Based on theory and simulations, PTDS provides unbiased estimates of population

size when critical assumptions are met (Buckland et al. 2001, 2015). A critical assumption

about bird distribution is that it is random with respect to point locations, which is ensured

by randomly locating points. Critical assumptions about the survey method are that (1)

all birds are detected with certainty at the station centre point (this is commonly referred

to as the g(0) = 1 assumption) and the probability of detecting a bird decreases with

distance from the centre point, (2) birds are detected prior to any responsive and non-

responsive movement, and (3) distances are measured without error. It is likely that there

are moderate violations to these assumptions. Observers participate in calibration and

training prior to each survey. This not only standardizes differences among observers, but

it helps ensure that distances are estimated accurately. To these ends, observers continue

calibration until deviations from the true distance are less than 10%, and all birds near

the centre point are measured to the meter without error (Camp 2007). Furthermore,

observers are advised that if they cannot accurately estimate the distance to a bird they

should not record the detection, as long as all birds in proximity to the sample point

are detected, accurately measured and recorded. During mock counts an emphasis is

placed on detecting all birds near the sample point, thus ensuring that the g(0) = 1

assumption is met. Detections from observers are compared which helps identify birds

that may have been missed. Meeting the g(0) = 1 assumption is facilitated by most

Hawaiian birds being very vocal so that birds high above in the canopy are readily detected.

Finally, anecdotal observations indicate that 'ākepa are not known to respond to observers,

minimizing the influence of responsive movement prior to birds being detected. Equally

important, particularly for PTDS, is a lack of non-responsive movement, independent of

the counter (Marques 2007, Glennie et al. 2020). Ideally counts should be instantaneous

to minimize animal movement (Buckland 2006). The 8-min counts are relatively long thus

bird movement may be an issue. Inspection of the probability density plots from previous

analyses does not show any evidence of evasive movement, but this may be difficult to

detect (Glennie et al. 2020).

Fitting the detection function assumes that observations are independent; however,

the methods are robust to failures of this assumption but variance may be underestimated

(Buckland et al. 2015). There are two additional requirements for reliable estimation. For

PTDS analyses the derivative of the probability density function (pdf ) of the detection

function is evaluated at the distance r = 0, thus it is important that there is a shoulder
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on the detection function (Buckland et al. 2015). I assume the detection function has

a fairly broad shoulder for the 'ākepa data, as evidenced from previous analyses (Camp

et al. 2010, 2016). There also needs to be sufficient numbers of detections to reliably model

the detection function. Buckland et al. (2015) recommends 75–100 detections for PTDS.

Annual 'ākepa detections ranged from 41 to 188 with 23 of the 30 surveys having >75

detections (see Section 1.4.5). The assumptions and additional requirements are typically

met in the 'ākepa data.

1.4.2 Conventional distance sampling

Distance sampling combines model- and design-based methods (Buckland et al. 2016). In

the first stage model-based methods are used to estimate a detection probability. In the

second stage the estimated detection probability is combined with counts using a design-

based method to estimate densities (Buckland et al. 2015, 2016). Density D̂ is the number

of birds n detected within distance w of all points in the study area A divided by the total

area surveyed a = Kπw2 where K is the number of points (i.e., point-transect survey

points; these are commonly referred to as samplers in the statistical literature or stations

in the sampling literature). Thus density is

D̂ =
n

Kπw2
(1.1)

assuming all birds within distance w are detected. The ability to detect birds decreases

with increasing distance; thus, detection probability may be <1 within the surveyed area a.

Conventional distance sampling (CDS) methods are commonly used to estimate absolute

abundance by accounting for birds that are present but missed, i.e., incomplete detection

(Buckland et al. 2001, 2015). The expected proportion of birds counted pa is 0 ≤ pa ≤ 1.

pa can be estimated from recorded distances to produce p̂a and the estimate of density

correcting for incomplete detection is

D̂ =
n

Kπw2p̂a
. (1.2)

Estimating p̂a can be accomplished by fitting a pdf, f(r), to the observed distances

to detections where f(r) is dependent only on distance r from the point (0 ≤ r ≤ w).

The form of the pdf can then be modelled with a specified detection function, g(r), which

represents the probability of detecting a bird given that it is at distance r. The distribution

of all birds with distance from the point, whether detected or not, is denoted π (r). For

PTDS, given random placement of sample points, π(r) has a triangular shape, meaning

that the number of birds increases linearly with increasing distance, taking the form π(r) =
2r
w2 for 0 ≤ r ≤ w. This accounts for the increasing area of a thin annulus (circular strip

or donut) of fixed width as distance increases. The first derivative of f(r) with respect to

r evaluated at r = 0 is a diagonal, tangent line with slope h(0) (Fig. 1.3, top left panel).

The function f(r) increases following the slope of h(0) and continues to increase after

first separating from the line of perfect detection before reaching a maximum and decreas-

ing toward distance w (Fig. 1.3, top right panel). Thus f(r) is proportional to π(r)g(r)
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Figure 1.3: The relationship between bird detection with increasing radial distance from
the centre point r and the probability density function of observed distances f(r). If all
birds are detected then the relationship has a triangular shape with a slope h(0) computed
as the first derivative of f(r) evaluated at r = 0 (top left panel). Bird detection decreases
with distance and the detection function f(r) increases along h(0) before decreasing to
distance w (top right panel). The top right panel shows the detection function fitted to
the 'ākepa histogram data. ρ is the radius where the numbers of birds missed A is equal
to the numbers of birds detected B (bottom panel). The detection probability can then

be calculated as p̂ = ρ̂2

w2 .
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as

f(r) =
π(r)g(r)∫ w

0 π(r)g(r)dr
=

rg(r)∫ w
0 rg(r)dr

. (1.3)

It can be seen in the top right panel of Fig. 1.3 that birds in the area between the slope

h(0) and f(r) are missed. The radius ρ in Fig. 1.3, bottom panel, is the distance at which

the number of birds missed between 0 ≤ r ≤ ρ (area labelled A) is equal to the number of

birds detected between ρ < r ≤ w (area labelled B). In the distance sampling literature ρ

is termed the “effective radius.” It is convenient to define the effective area surveyed per

point as ν = 2π
∫ w
0 rg(r)dr = πw2pa such that f(r) can be written as

f(r) =
2πrg(r)

ν
. (1.4)

The area of a circle with radius ρ is πρ2, from which the detection probability can be

calculated as p̂ = ρ̂2

w2 . Understanding how ρ relates to the pdf of detected distances is

useful. That is, the detection probability is

p̂ =

∫ w

0
ĝ(r)

2r

w2
dr =

ν̂

πw2
=
ρ̂2

w2
(1.5)

where the quantity ρ relates to ν such that ν = πρ2 where ν is the “effective area surveyed

per point,” and the total effective area surveyed is then νK. With this information the

likelihood can be formulated. Distances from the points of the n detected birds can be

denoted by r1, r2, . . . , rn, where the likelihood (conditional on n) using the model for f (r)

from Eqn. 1.4 is

Lr =
n∏
i=1

f(ri) =

[
2π

ν

]n n∏
i=1

rig(ri). (1.6)

Buckland et al. (2001) recommends the key function g (ri) for PTDS is either the half-

normal model

g (ri) = exp

[
−r2i
2σ2

]
, (1.7)

or the hazard-rate model

g (ri) = 1− exp

[(
−ri
σ

)−b]
(1.8)

where σ is the scale parameter and b is a shape parameter, and for r(0 ≤ r ≤ w).

The fit of key functions can be improved by including adjustment terms where the half-

normal can be paired with cosine and Hermite polynomial adjustment series, and hazard-

rate can be paired with cosine and simple polynomial series (Buckland et al. 2001, pgs.

361 & 365). To limit over-fitting, the number of adjustment terms are added using a

forward selection algorithm that is stopped when no additional terms produce a decrease

in Akaike’s information criterion (AIC).
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1.4.3 PTDS variance

There is a well-established adage “An estimator is only useful if it possesses a measure of

uncertainty.” Expanding upon this adage, an estimator is only useful if its uncertainty is

sufficiently small as to evaluate its biological relevance, as well as its relevance to assessing

management and conservation effectiveness. In PTDS the delta method is used to estimate

variance (Buckland et al. 2001). The basic formula for estimating density variance is

v̂ar(D̂) = D̂2

 v̂ar(n)

n2
+

v̂ar
[
ĥ(0)

]
[
ĥ(0)

]2
 (1.9)

Eqn. 1.9 might also include terms for uncertain detection at the centre point and group

size variance, if these are present.

The first variance component in Eqn. 1.9, v̂ar(n), is computed from variability in n

between points. For PTDS the empirical estimate of var(n) is computed as the observed

variation among points. It is convenient to quantify the encounter rate variance, var
(
n
K

)
,

instead of the variation in n (Buckland et al. 2015, pg 106). The encounter rate variance

typically dominates the component percentages of v̂ar(D̂) when estimating Hawaiian for-

est bird densities from PTDS data (Camp et al. 2009). Thus, I focus on reducing the

substantial encounter rate variance through density surface modelling (Chapter 2), point

process modelling (Chapter 3) and soap-film smoother modelling (Chapter 4).

The variance of ĥ(0) in Eqn. 1.9 is a measure of the uncertainty in the estimate of

the detection probability. Distance sampling employs maximum likelihood methods thus

the variance of ĥ(0) is estimated from the Hessian of the likelihood with respect to the

parameters (Buckland et al. 2015). From this, the standard error of ν̂ and the standard

error of the detection probability p̂a are estimated using cv[f̂(0)] = cv(ν̂) = cv(p̂a).

1.4.4 Multiple-covariate distance sampling

Distance sampling methods are commonly used to estimate absolute abundance by ac-

counting for birds that were present but missed, i.e., incomplete detection (Buckland

et al. 2001, 2015). Previous analyses of Hawaiian forest birds (Camp et al. 2009) showed

that the probability of detection was affected not only by distance but also by covari-

ates such as observer, sampling conditions, habitat, etc. The likelihood from CDS can

be extended to multiple-covariate distance sampling (MCDS) where detectability is con-

ditional on n and covariates (Marques and Buckland 2004, Buckland et al. 2015). The

key detection functions half-normal and hazard-rate each have a scale parameter σ. In

MCDS, the scale parameter is modelled as a function of the vector of covariates such that

σ (zi) = exp
(
α+

∑Q
q=1 βqziq

)
for zi = (zi1, zi2, . . . , ziQ)′. For each detection there is an

associated vector of covariate values, and the coefficients α and βq are estimated. (This

assumes numerical covariates; factor covariates are coded in the usual way through a series

of dummy variables assigned a value of 1 or 0 with one level of the factor being assigned
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to the intercept.) The key function g (ri, zi) is either the half-normal model

g (ri, zi) = exp

[
−r2i

2σ2 (zi)

]
, (1.10)

or the hazard-rate model

g (ri, zi) = 1− exp

[(
−ri
σ (zi)

)−b]
, (1.11)

and assuming that the distribution of covariates is independent of the distribution of

distances, then the effective area is

ν(zi) = 2π

∫ w

0
g(r, zi)dr. (1.12)

From the fitted model for f(ri|zi) the estimates ν̂(zi) and ĥ(0|zi) conditional on zi are

obtained from the maximum likelihood estimates of the detection function parameters,

and pa(zi) is estimated as

p̂a(zi) =
ν̂(zi)

πw2
=

2

w2ĥ(0|zi)
. (1.13)

To avoid the need to specify a distribution on the covariates, a conditional likelihood

approach is used (Marques and Buckland 2004):

Lr|z =

n∏
i=1

fr|z(ri|zi) =

n∏
i=1

g(ri, zi)

ν(zi)
. (1.14)

Thus, it is assumed that the distribution of distance r for detected and not detected

birds is independent of the covariates z, which is achieved by random placement of the

points. The Horvitz-Thompson-like abundance estimator is then

N̂ =
A

a

n∑
i=1

1

p̂a(zi)
, (1.15)

for birds detected in groups of size 1 and measures of exact distances to individuals, where

a is the total area of the K points of radius w, and A is the size of the study area.

Incorporating covariates into conventional distance sampling affects the detection prob-

ability variance, var
[
ĥ(0)

]
, but not the variance in the counts, var(n) (Marques and

Buckland 2004). Accounting for heterogeneity in the detection probability is beneficial

to producing precise density estimates, particularly when stratum-specific densities are

needed and sufficient numbers of birds are not detected to reliably model the detection

function separately for each stratum, or as I have done here when stratification is required

to address differences in sampling effort, see below. However, for Hawaiian forest birds a

majority of the component percentages of v̂ar(D̂) is due to variance in the counts, which

is the focus of subsequent chapters of my thesis.
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1.4.5 'Ākepa PTDS analysis and results

I present here detailed methods and results of estimating 'ākepa densities using distance

sampling methods. These estimates are used in the subsequent chapters and set a baseline

against which subsequent precision estimates are compared. Fewster et al. (2009) noted

that stratification procedures should be employed to allow for differences in the encounter

rate over the study area. This procedure helps reduce the encounter rate variance. In

Hawai'i, bird density generally increases with increasing elevation thus transects are ori-

ented perpendicular to elevation contours. There is however a stronger north-south density

gradient than elevational gradient at Hakalau with low densities in the northern portion

of the study area and substantially larger densities in the southern portion. This issue

is further confounded with the intensity of sampling that coincides with the north-south

gradient. In the northern portion of the refuge the transects are about 1 km apart while

in the southern portion the transects are roughly 500 m apart. Because of the unequal

sampling coverage, standard analyses ignoring the higher sampling intensity where densi-

ties are higher, would result in overestimated density estimates. Stratification procedures

may also be used to reduce variance. Fewster et al. (2009) showed that the default vari-

ance estimate approach implemented in Distance for Windows over-estimates variance for

populations with a strong density gradient that are sampled using a systematic survey de-

sign. However, a systematic survey design provides better spatial coverage and increases

estimator certainty (Buckland et al. 2001, Fewster et al. 2009).

To control for varying sampling intensities I partitioned the open-forest stratum study

area into two strata that coincide with the distance between transects (i.e., a stratum with

roughly 500m separation of lines, and one with 1,000m separation; Fig. 1.1). I delineated

the open-forest stratum into internal regions coinciding with the north (2,143 ha) and

south (918 ha) strata.

I estimated the 'ākepa detection probability from the PTDS data using Distance for

Windows, version 7.1, release 1 (Thomas et al. 2010). Candidate models were restricted

to the half-normal and hazard-rate detection functions with up to two adjustment terms

(Buckland et al. 2001). Using the MCDS engine covariates related to the sampling condi-

tions (e.g., cloud cover), observer and survey year were evaluated. Here I consider only

plot-level covariates, eliminating the individual-level covariate detection type from the

candidate pool of covariates (Buckland et al. 2016). Individual-level covariates were not

collected as it is not possible to distinguish between bird age, sex, maturity (breeders,

nonbreeders and failed breeders) or other life history states during Hawaiian PTDS sur-

veys. I used a forward selection algorithm to add covariates, at each step adding the

covariate that produced the greatest reduction in AIC and stopped when no additional

covariate produced a decrease in AIC. I considered only single-covariate models as there

were too few detections to reliably model combinations of covariates (75-100 detections

per factor combination; Buckland et al. (2015), pg 23). Covariates were screened for pair-

wise correlation and qualitatively evaluated for confounding (i.e., factor covariates where

only limited combinations were observed together); covariates with strong correlations or

confounding were not fitted together. Data were truncated at a distance w where the
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estimated detection probability (using a preliminary detection function model) was about

0.1 to facilitate detection function modelling and to avoid over-fitting to distant detec-

tions. Visual inspection of diagnostic plots was conducted and model fit evaluated with a

Cramér-von Mises test (Buckland et al. 2015).

Using post-stratification procedures Distance for Windows outputs annual regional

densities and standard errors. Annual mean densities within the study area and variance

estimates are computed from area-weighted estimates (Thomas et al. 2010). For each

year, the mean annual density (averaging over the two regions) is computed as D̂ =(
D̂NoANo + D̂SoASo

)
/ATo where the density estimate in the northern region is D̂No and

in the southern region is D̂So while the total study-wide area is the sum of the northern

and southern regional areas ATo = ANo +ASo.

From Distance for Windows the annual p̂ and var(p̂), and annual, stratum-specific

encounter rate n
k and encounter rate variance var(nk ) values are output. The encounter rate

variance was calculated using the empirical between-sample variation method (Thomas

et al. 2010, Distance for Windows User’s Guide). Because the survey design involved laying

out a set of points along transect lines, points within transect lines are not independent

from a design perspective. Hence, in calculating encounter rate variance, points within

transect lines were combined, making the transect line the sampling unit.

To compute variance in density, v̂ar(D̂), I used the delta method (Seber 1973) assuming

independence:

v̂ar(D̂) = D̂2

var(p̂)

p̂2
+

(
ANo
ATo

)2
var
(
nNo
kNo

)
+
(
ASo
ATo

)2
var
(
nSo
kSo

)
(
ANo
ATo

nNo
kNo

+ ASo
ATo

nSo
kSo

)2
 . (1.16)

Note that the above formula assumes that the estimated annual detection probability is

the same across both regions; this is the case here because year was the only selected

covariate (see Results, below). Had region- or transect-level covariates been selected then

an alternative formulation for variance would have been required. To calculate confidence

intervals, I assume that D̂ are log-normally distributed with independent detection func-

tion parameters to compute first order zα approximate confidence intervals with nominal-

level 100(1 − 2α)% following the method by Burnham et al. (1987; as cited in Buckland

et al. 2001, pgs 88-89). The log-normally distributed confidence interval is computed as

(D̂/C, D̂C) where C = exp

[
zα

√
v̂ar(ln{D̂})

]
. zα is the upper α% from the normal(0, 1)

distribution, and v̂ar(ln{D̂}) = ln
[
1 + v̂ar(D̂)

D̂2

]
.

An alternative approach, which has been shown to have better properties is to use

the Satterthwaite method (1946; see Buckland et al. 2001, pg 78), which is based on the

t–distribution. However, because of the stratification I employed to account for vary-

ing sampling intensity to compute densities, it is not apparent what values to use when

computing degrees of freedom for the t–distribution (see Buckland et al. 2001, pgs 89-90).

In addition to computing density and variance using analytic methods described above,

I used nonparametric bootstrap procedures, resampling at transects with replacement

within strata and year, to estimate strata-specific density and variance estimates (year by
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north/south stratum) in Distance for Windows (Buckland et al. 2001, pg 84). For PTDS

Buckland et al. (2015) recommend that there are 10–20 replicate transects or points to

reliably estimate variance. As noted above, sampling points at Hakalau are correlated

and cannot be considered independent. In this situation the 14 transects are considered

the sampling unit (six transects in the north stratum and eight transects in the south

stratum; see Fig. 1.1). Estimates are produced as the median value within stratum and

the nominal-level 100(1−2α)% confidence intervals as the 0.025 and 0.975 quantiles using

the algorithm that is approximately median-unbiased regardless of the density distribution.

Annual study-area wide density and variance estimates are computed from area-weighted,

iteration-wise estimates.

Results

The selected detection function was a hazard-rate model without series expansion (Figs.

1.4 and 1.5). Detection function with adjustment terms were evaluated but not selected

using AIC. The covariate Year improved model fit by >112 AIC units (Table 1.1; Ap-

pendix A Fig. A.1). Correlation and confounding effects were evaluated for combinations

of covariates against year. Point coordinates, elevation, and habitat type covariates were

confounded with year and their combinations were not evaluated in modelling a detec-

tion function. Observer participation varied from 1 to 26 times over the 31-year time

series; thus, observer was confounded with year and the combined covariate model was

not evaluated. Correlation was large between gust and wind with year and their combina-

tions were excluded (Table 1.2). Inference was made from the hazard-rate key detection

function with year-only covariate. The Cramér-von Mises test was not significant at the

α = 0.05 level (test statistic = 0.15, p = 0.38) indicating that the distribution of observed

distances did not statistically differ from that predicted under the model. Inspection of

the detections revealed that the detection probability was about 0.1 at 58m, which was

therefore set as the truncation distance and yielded 2,842 observations from 5,255 points

(Table 1.3). The shoulder extends out to 25 m before decaying rapidly. Annual detection

probabilities varied from year to year but were relatively precise (CV <12%; Fig. 1.6; Ap-

pendix A Table A.1). Encounter rates also varied annually with much higher uncertainty

(CV 27.71–69.45%; Appendix A Table A.2).

Differences in the widths of CIs (CIW) between the analytic and bootstrap methods

were calculated as the percentage change in CIW as(
CIWanalytic,i

CIWbootstrap,i
− 1

)
× 100%

for each year i. The bootstrap method gives on average a CI width that was 7.8% shorter

than the CI width of the analytic method (SD=31.5%; Appendix A Fig. A.2). Two issues

should be noted with variance estimation. First, although both analytic and bootstrap

approaches account for the non-independence of points within lines, both treat the lines

as independent between years and hence uncertainty may be underestimated. Second

neither approach accounts for the systematic line spacing, and hence uncertainty may be
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Figure 1.4: Detection function plots for the model selected to estimate 'ākepa detection
probability. Plots represent the average detection probability (left panel) and probability
density (right panel) for the hazard-rate model without series expansion and with Year as
a covariate.
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Figure 1.5: Quantile-quantile plot for the detection function model selected to estimate
'ākepa detection probability. The fitted cumulative distribution function (cdf) is plotted
against the empirical cdf. The points seem to fall about the straight line, which provides
evidence the function fits the data.

Figure 1.6: Annual detection probability with 95%CI estimates (diamond and whisker
bar) from the hazard-rate model without series expansion and with the covariate Year

produced using Distance for Windows. Surveys were not conducted in 2009 (vertical bar).
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Table 1.1: Detection function models used to compute density estimates of Hawai'i 'ākepa
from point-transect distance sampling surveys on Hakalau Forest National Wildlife Refuge,
Hawai'i, between 1987 and 2017. Base models (Fun) include half-normal (HN) and hazard-
rate (HR) key detection functions with cosine (Cos), hermite polynomial (Hpoly) and
simple polynomial (Spoly) adjustment terms (AdjTerm). Covariates were incorporated
with the highest AIC-ranked base model included rain, wind strength, gust strength,
elevation (Elev), habitat type, minutes since survey start (MinSS), observer and year of
survey (Yr). All covariates were treated as categorical variables, except minutes since
survey start was treated as a continuous variable. Also presented are the number of
estimated parameters (Par), negative log-likelihood (-LogLike), AIC values, change in
AIC (∆AIC), and AIC weights (AICw). † Base model selected.

Fun AdjTerm Covariate Par -LogLike AIC ∆AIC AICw

HR None Yr 31 15467.90 30997.80 0 1
HR None Obs 13 15525.51 31077.03 79.23 6.243E-18
HR None Wind 5 15557.88 31125.76 127.96 1.636E-28
HR None Elev 3 15565.44 31136.88 139.08 6.297E-31
HR None Hab 3 15566.12 31138.24 140.44 3.190E-31
HR None Rain 4 15570.26 31148.52 150.72 1.868E-33
HR None Gust 5 15569.90 31149.79 151.99 9.903E-34
HR None 2 15573.40 31150.81 153.01 5.947E-34
HR None MinSS 3 15572.70 31151.40 153.60 4.427E-34
HN None 1 15609.92 31221.84 224.04 2.240E-49
HN Cos†

HN Hpoly†

HR Cos†

HR Spoly†

Table 1.2: Correlation between detection function covariates with Year for the point-
transect distance sampling surveys on Hakalau Forest National Wildlife Refuge, Hawai'i,
between 1987 and 2017. Covariates included rain, wind strength, gust strength and min-
utes since survey start (MinSS). Spearman correlation was used for all covariates, except
the continuous covariate minutes since survey start (MinSS), for which a Kendall rank
correlation was used.

Covariate Correlation

MinSS 0.04
Rain -0.08
Wind -0.31
Gust 0.50
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Table 1.3: Number of points sampled, 'ākepa detected and 'ākepa detected within the 58m
truncation distance by year from point-transect distance sampling surveys on Hakalau
Forest National Wildlife Refuge, Hawai'i, between 1987 and 2017. Survey not conducted
indicated with a —.

Year Points Detections Detections ≤ 58m

1987 194 124 93
1988 194 125 108
1989 198 86 82
1990 197 81 71
1991 197 80 65
1992 197 108 106
1993 194 149 133
1994 194 110 92
1995 195 110 100
1996 198 188 182
1997 193 130 129
1998 197 112 110
1999 195 95 92
2000 198 123 123
2001 196 130 127
2002 195 159 152
2003 199 91 88
2004 198 141 137
2005 166 49 45
2006 162 41 41
2007 147 118 116
2008 145 126 120
2009 — — —
2010 136 79 78
2011 139 58 57
2012 139 76 76
2013 139 80 79
2014 136 68 64
2015 139 53 50
2016 139 70 67
2017 139 61 59
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overestimated. I therefore take a more conservative approach and use analytic methods

to compute density uncertainty.

Densities of Hawai'i 'ākepa have relatively wide confidence intervals and vary tempo-

rally across the time series (95%CIs produced using analytic methods; mean of annual CVs

= 0.27, SD of annual CVs = 0.10, range of annual CVs 0.16—0.62; Fig. 1.7; Appendix

A Table A.3). In the northern portion of the refuge 'ākepa densities remained low but

appear to have increased across the time series and were very poorly estimated (mean

of annual CVs = 0.93, SD of annual CVs = 0.43, range of annual CVs 0.43—2.24; Fig.

1.7; Appendix A Table A.4). Although 'ākepa were known to occur in the north region

throughout the time series, no 'ākepa were detected during 1994, 2000 and 2005 surveys

resulting in densities of zero. Densities in the south region were substantially larger than

those in the north region, appeared to be driving the overall density patterns observed in

the study area, and were better estimated (mean of annual CVs = 0.25, SD of annual CVs

= 0.07, range of annual CVs 0.16—0.47; Fig. 1.7; Appendix A Table A.5). In the sub-

sequent chapters I demonstrate that spatio-temporal smoother, point process, soap-film

smoother and population dynamics modelling procedures produce more precise density

estimates than those generated using standard distance sampling methods.
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1.5 Subsequent chapters

Understanding how the density, or status, of a population changes through space and time

is critical for management and conservation. By approaching the data as a 3D projec-

tion, a density surface map of bird distribution and density can be modelled as spatial

and temporal processes with peaks of high densities, valleys with low densities and areas

absent of bird populations. Underpinning bird distribution and density are geographic,

environmental and demographic drivers that influence population change through both

space and time. These processes can be formulated through population dynamics mod-

els. Modelling a population distribution and density as a 3D projection reduces estimator

uncertainty by minimizing the difference between the numbers of bird detected and those

expected based on the model. In the following chapters I work through several analytic

methods to improve inference in abundance surveys.

In Chapter 2 I apply smoother modelling methods that include covariates of spatial

and temporal variables to produce density estimates, thus accounting for both spatial

and temporal correlation. Population trends are rarely linear as densities fluctuate in

response to biotic and environmental drivers. This can be modelled using smoothing

techniques by including smooth functions that introduce “flexibility” into modelling the

response variable. I use annual detection probability as an offset to model the spatial

and temporal patterns of bird densities using basis-penalty smoothers in a generalized

additive model (GAM). In addition to predicting annual spatio-temporal density surfaces

from the GAM, I propagate the detection probability uncertainty using the delta method

assuming independence (Seber 1973) and using a posterior simulation approach where the

detection probability variance is propagated as a random effect (Bravington et al. 2018).

I compare the width of confidence intervals to discern model performance. Introduced by

Hastie and Tibshirani (1986), GAM theory is well developed and GAMs have been used

to evaluate time series of densities; therefore, a formal simulation test is not conducted.

My comparison shows the amount of understanding that can be gained from modelling

spatio-temporal correlation in an actual dataset.

An alternative approach to modelling a density surface is to employ point process

models. PTDS fundamentally involves spatial sampling where points are established sys-

tematically throughout a study area and birds detected based on their proximity to the

points. In Chapter 3 I apply point-process, spatial-analysis methods to model the spatial

correlation of 'ākepa densities. A comparison of the estimates is presented visually where

the alignment of densities and their SE indicates similarity. Dissimilarities and their likely

causes are identified. I discuss the smoothing effects, underlying assumptions, and condi-

tions for choosing between the two modelling approaches. Again, this is not a simulation

test so I evaluate model performance by comparing similarities and dissimilarities.

In Chapter 4 I apply a soap-film smoother to control the boundary behaviour in the

basis-penalty smoother to avoid predicting densities into non-suitable habitat, a modelling

artefact commonly termed 'leakage'. The soap-film smoother achieves this through two

separate but linked bases; one for the boundary and one for the film itself. I evaluate

smoother performance by comparing similarities and dissimilarities between a spatial thin
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plate regression spline, a modification of the GAM developed in Chapter 2, and the soap-

film smooth. While I am not able to assess bias in either the spatial thin plate regression

spline or soap-film estimates, I compare these model estimates to those produced using the

design-based distance sampling approach assuming that the latter approach is unbiased.

Understanding the patterns of status change through space and time however does not

address why densities are changing. Chapter 5 explores potential factors driving popula-

tion using a state-space model (SSM) framework. SSMs are comprised of a state model

and a measurement model. The state model describes the change of the state parameter,

population size in this case, and reflects the stochastic sub-processes driving population

change. Given the relative lack of information about Hawaiian forest bird population

structure I use a single state variable, total population size; however, the state model can

be expanded to be age or sex specific. The measurement model (also called an observation

model) describes the relationship between the observations, counts corrected for detection

probability in this case, and the state parameter. I apply SSMs to abundance time-series

data to make inferences about the underlying growth rates. SSMs can be expanded to in-

corporate demographic data, or derived demographic quantities, to make inferences about

states and vital sign parameters. This allows for the formulation of population dynamics

models (PDM). I compiled the vital rates as derived quantities from the literature rather

than raw data, thus avoiding modelling complex distributional structures. I use Bayesian

methods that allow for propagating uncertainty from the various data, estimate missing

values and share information among population processes. I compare the width of con-

fidence/credible intervals among abundances generated using Distance for Windows and

PDMs to discern increases in precision.

I conclude in Chapter 6 with an overview of the questions I address and highlight

how the analyses improve estimator precision. I describe how my research is useful for

Hawaiian forest bird management and conservation, and identify how the analyses can

be applied to other taxa to aid in global efforts to arrest declines in populations and

biodiversity. All research raises more questions than it answers; therefore, I conclude my

thesis by identifying some key areas that I anticipate will be the focus of future research.
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Chapter 2

Spatio-temporal abundance

estimation using smoother models

2.1 Overview

Here I apply smoother-based modelling methods that include spatially- and temporally-

referenced covariates to produce abundance estimates, thus accounting for both spatial

and temporal correlation to produce more precise density estimates than are available

from standard design-based methods. Linear models can be used to describe the overall,

long-term trend in the population status; however, two key assumptions of linear models

are that the effects are linear and the response is Gaussian. Generalized linear models

(GLM) are an extension to linear models to account for non-normal response distributions.

Population trends are rarely linear; instead abundances fluctuate in response to biotic and

environmental drivers. This results in a non-linear relationship that can be modelled using

smoothing techniques which introduce flexibility into modelling the expected response. I

use a generalized additive model (GAM), with the annual effective area surveyed per point

as an offset, to model the spatial and temporal patterns of bird densities. This approach

is sometimes referred to as a density surface model (DSM), particularly in the context of

modelling distance sampling survey data. In addition to predicting annual spatio-temporal

density surfaces from the GAM, I incorporated detection probability uncertainty using two

methods, one that assumes independence of the model components and one that does not

assume independence. I compared the uncertainty derived from spatio-temporal models

to that from conventional design-based methods. Results from this analysis have been

published in Camp et al. (2020)1

This chapter is laid out as follows. In Section 2.2 I introduce regression models in the

context of trend evaluation, and describe how smoother-based models are extensions of

linear and generalized linear models. In Section 2.3 I describe the multi-stage modelling

approach to model the detection probability, estimate the density surface and propagate

variance that I apply to the 'ākepa data. The results of the smoother and variance prop-

agation are presented in Section 2.4 and compared to estimates generated using program

1Paper authored by me as part of my thesis research.
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Distance for Windows or Distance in R from Chapter 1. Section 2.5 gives a discussion of

the statistical, biological and management implications of applying smoothers to estimate

population status and trend.

2.2 Introduction

In this chapter I apply flexible regression methods to account for non-linear relation-

ships between bird densities with spatially- and temporally-referenced covariates. Spatio-

temporal models attempt to capture the distribution of bird density as a function of space

and time, and estimate abundance. Spatial modelling can be used to predict spatially

restricted regional or local trends and can be more informative than what can be observed

at the stratum-wide level. 'Ākepa are strongly philopatric, have relatively small home

ranges and there is scant evidence of movement among populations (Ralph and Fancy

1994, Lepson and Freed 1997). There are also good geographical arguments supporting

using the spatial predictor variables Easting and Northing. Traversing from west to east

across Hakalau, the habitat progresses from pasture to the pasture-forest edge and into

more suitable forest habitat. The substrate underlying Hakalau transitions from relatively

fertile, old lava flows (11,000–64,000 years old) in the south to nutrient-limited, new lava

flows (5,000–11,000 years old) in the north (Vitousek et al. 2009, USFWS, U.S. Fish and

Wildlife Service 2010). Additionally, vegetation in the north-eastern portion of Hakalau

has a more complex and denser structure in the canopy, understory and ground cover

than in the south-western portion. Differences in the 'ākepa population are undoubt-

edly a product of the habitat and its interactions with the substrait, nutrients and other

environmental factors.

Previous analyses demonstrated that 'ākepa densities and abundances across Hakalau

are stable to increasing over time (Camp et al. 2010, 2016). It is likely that these overall

trends miss smaller-scale variation in the population, which can be captured by including

a smooth of year. This variability may be observed in spatio-temporal maps that depict

local trends in bird densities. I summarise trends in densities at two spatial scales: (1)

broad-scale trends across Hakalau, and (2) regional-scale trends coinciding with the north

and south strata of Hakalau (see Chapter 1 for details).

I use a 2-stage model to estimate spatio-temporal patterns in 'ākepa densities across

a 31-year time series. In the first stage, I use point-transect distance sampling (PTDS)

to compute the detection probability. In the second stage, I incorporate the detection

probability as an offset to model the spatial and temporal patterns in bird densities using

a GAM. I combine variance component estimates (detection probability and GAM) using

two methods: (1) calculate the combined uncertainty using the delta method that assumes

independence between components (Seber 1973), and (2) propagate the uncertainty asso-

ciated with estimating detection probability into uncertainty in the spatio-temporal model

using methods developed in Williams et al. (2011) and described more fully in Bravington

et al. (2018) to propagate variances between model stages. This second method does not

assume independence between model stages. I compare the uncertainty derived from the

spatio-temporal models to conventional design-based distance sampling methods where
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change in uncertainty was calculated as the ratio in confidence interval widths.

The design-based detection probability and uncertainty, and associated abundances,

are estimated using a frequentist approach (Buckland et al. 2016), while model-based

estimates using smoothers use an empirical Bayesian approach (Wood 2017 Sects. 5.8, 6.2.6

& 6.10.3). A common expression of uncertainty is a confidence interval, which is a range of

values that includes the true population value with a given level of confidence (e.g., 95%).

In frequentist approaches confidence intervals (CIs) can be obtained using asymptotic

theory. The design-based CIs are estimated following the method by Burnham et al.

(1987; as cited in Buckland et al. 2001, pgs 88-89). In Bayesian approaches uncertainty

can be expressed as credible intervals (CrIs) which can be obtained by sampling from

the posterior distribution where parameter values were drawn from a prior probability

distribution (Gelman et al. 2013). Interval lengths from point process and state-space

models in this thesis (which use Bayesian approaches) are credible intervals (Gelman et al.

2013). Interval lengths from spatio-temporal smoothers (which use empirical Bayesian

methods) are confidence intervals (Carlin and Gelfand 1990), and thus, interval lengths

computed from the spatio-temporal smoothers and detection function models using the

delta method assuming independence and the variance propagation method are confidence

intervals.

2.2.1 Linear Regression

Precise measures of population abundance and trend are needed for species conservation.

Precise measures are most difficult to obtain for rare and rapidly changing populations

(Gibbs 2000). It is common for coefficients of variation to exceed 50% and for some species

even 100% (Gibbs 2000, Camp et al. 2009). These imprecise estimates preclude drawing

conclusions needed for management and conservation actions. There are a large number of

methods to assess population trends (Thomas 1996). Generally, most methods typically

apply some form of linear regression. These approaches define trend as the long-term,

overall directional change in densities over time. Urquhart and Kincaid (1999) suggest

this approach to capture the overall increase or decrease in a population. However, the

authors note that if the population estimates at the beginning and end of the time series

are approximately equal while there is a strong upward or downward cycle in the data or

if the time-series is made up of fluctuating shorter trajectories a linear trend model will

have high levels of residual deviance resulting in non-statistically significant results and

important biological patterns in response to changing environmental conditions may be

missed. Model assumptions (see below) should also be met for reliable trend assessment.

The model for linear regression with only one covariate may be written as

y = β0 + β1x+ ε ε ∼ normal
(
0, σ2

)
(2.1)

where y is the response variable, x is the covariate, model parameters are the intercept β0

and slope β1, and ε is the random error, assumed normally distributed with mean zero and

variance σ2. This is termed simple linear regression, as there is only a single covariate.
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Multiple linear regression would include additional covariates and slope parameters. The

relationship between y and x is assumed to be linear. The primary interest in linear

regression in the context of population trend modelling is in estimating the slope, β1, as

it represents the population trend across the time series. Producing reliable estimates of

β1 depends on meeting several model assumptions. A key assumption of linear regression

is that the response is normally distributed with constant variance. In the case of 'ākepa,

Camp et al. (2010, 2014) show that the application of log-linear regression transformed the

skewed distribution of abundances to be approximately normally distributed. While this

procedure allowed for analysing the data assuming constant variance on the transformed

scale, visual inspection of the time series shows a fluctuating, non-linear trend in the

log abundances. Before introducing non-linear models I provide a brief review of linear

regression models, focusing on computing variance. This allows me to introduce a number

of the main features of regression in a simple context that I then build upon in later

sections through the development of GLMs and finally GAMs.

It is useful to rewrite the linear equation (Eqn. 2.1) in matrix-vector notation

y = Xβ + ε (2.2)

where

y =


y1

y2
...

yn

 , X =


1 x1

1 x2
...

1 xn

 , β =

[
β0

β1

]
, and ε =


ε1

ε2
...

εn

 .
Given that observations are normally distributed with constant variance then the maxi-

mum likelihood estimate of β is

β̂ =
(
XTX

)−1
XTy (2.3)

with standard error

se
(
β̂
)

=

√
σ2 (XTX)

−1
. (2.4)

The usual estimator of the variance σ2 is s2 =
(y−Xβ̂)

T
(y−Xβ̂)

(n−M) where M is the number of β

parameters estimated, M = 2 in this formulation (β0 and β1). If additional covariates are

used, the design matrix is expanded by adding a column for each predictor variable and a

corresponding coefficient is estimated as above. Linear regression estimates the intercept

and slope such that the sum of squares of the residuals is minimized. The degrees of

freedom for linear regression equals the number of parameters to be estimated and is

calculated as the trace of the hat matrix

df = tr (H) = tr
(
X
(
X′X

)−1
X′
)
. (2.5)
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2.2.2 Generalized Linear Models

Generalized linear models are an extension of linear regression where the response variable

is not necessarily normally distributed. The distribution of the response variable belongs

to the exponential family, with relevant distributions for count data. Poisson and negative

binomial are two potential options (see below). A link function is included in the model

equation that links the relationship between the linear predictor and the expectation of

the observation. The expectation of the random response Y in a GLM is

E (Y ) = µ = g−1 (Xβ) (2.6)

where Xβ is the linear predictor and g the link function. Within this framework the model

is linear on the linear predictor scale but not on the response scale. The coefficients are

estimated with maximum likelihood.

The Poisson distribution models the probability of observing n events for any non-

negative integer of n, in my case the numbers of birds counted during an 8-min period at

a sampling point. The expected value of a Poisson distribution is also its variance.

When the variance is larger than the mean the data are over-dispersed relative to

Poisson and this is common for counts (Wood 2017, pg 115). The negative binomial

distribution can be used as an alternative to the Poisson distribution for discrete data

where the variance exceeds the mean. The negative binomial is a compound probability

distribution of a gamma-Poisson mixture distribution. The negative binomial distribution

includes an extra scalar parameter φ, a dispersion parameter. The negative binomial

distribution variance is var(µ) = E[µ] + φE[µ2].

An additional distribution that is useful for count data that is over-dispersed relative

to the Poisson is the Tweedie distribution. Like the negative binomial distribution, the

Tweedie distribution has a dispersion parameter φ along with a power parameter p to

account for over-dispersion. The negative binomial and Tweedie distributions are useful

for modelling distributions that have a large number of zero observations. The Tweedie

distribution is a compound Poisson-gamma distribution with mass at zero but otherwise

positive and continuous real numbers (Shono 2008, Foster and Bravington 2012). The

Tweedie distribution variance is var(µ) = φµp for 1 < p < 2 where the dispersion param-

eter φ and the power parameter p are positive constants. During the fitting procedure

in standard statistical software such as mgcv (Wood 2016) the φ and p parameters are

estimated (Wood 2017).

Another distribution that has been used to model count data is the quasi-Poisson. I

did not investigate this distribution as its reliability is questionable with low expected

counts and a full likelihood is desired (see citations in Wood 2017, pg 355).

2.2.3 Flexible Regression

It is common to model non-linear population trends (Fewster et al. 2000). Non-linear

trends can reveal medium-term fluctuation in populations and are useful for monitoring

programs with long time spans where the assumption of a constant linear trend is unlikely
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to be met (Knape 2016). GAMs are an extension of the GLM framework that allow for

flexible, smooth modelling of the covariates, beyond the strict linear relationships dictated

by the GLM structure. This is achieved through the use of semi-parametric functions in

modelling the response variable (Hastie and Tibshiani 1990).

My interest lies in the geo-referenced relationship of bird data collected across a given

area where observations are taken at specific locations that have geographical coordinates.

The location of Hawaiian bird data are recorded as Easting and Northing in the Universal

Transverse Mercator (UTM) coordinate system. Like linear and generalized linear models,

GAMs can allow for modelling multiple spatially and temporally referenced variables. As

such, I assume that bird densities vary smoothly across space and over time.

Spatial distance sampling models based on point process models were first proposed

by Stoyan (1982) and Högmander (1991). Hedley (2000) and Hedley and Buckland (2004)

developed models based on aggregating detections within small segments of transects and

using GAMs to model the number of detected objects or groups in each segment, offer-

ing a simpler analysis method, leading to what is now termed density surface modelling.

Miller et al. (2013) provided software for fitting density surface models, using the two-

stage approach proposed by Hedley and Buckland (2004), in which the detection function

is modelled in the first stage, and the counts modelled in the second, with an estimated

offset to account for detectability. Buckland et al. (2016) provided a more general frame-

work for model-based distance sampling, and reviewed the above approaches. I adopt the

density surface modelling approach here. I estimated detection probabilities using stan-

dard multiple-covariate distance sampling methods (see Chapter 1 Section 1.4.4; Buckland

et al. 2015).

I model spatial and temporal pattern using penalized spline-based smoothing within

a generalized additive modelling framework. There is a rich variety of possible smooth

functions such as spatio-temporal variations of principal component analysis, canonical

correlation analysis, conditionally autoregressive (CAR) models, kriging, kernel density

estimation, and hierarchical dynamical spatio-temporal models (see Cressie and Wikle

2015). Wood (2017) recommends using regression splines to fit a smooth curve to model

the relationship between the predictor, x, and response variables, y, where the amount

of smoothing is controlled by a penalty term (frequentist approach) or prior of the space

of functions (Bayesian approach). My preference is to use semi-parametric model fit-

ting procedures such as penalized spline-based smooths. There are several reasons I use

GAMs. First, densities of 'ākepa vary relatively smoothly throughout Hakalau. Second,

the amount of smoothing is controlled within the GAM framework that prevents over-

fitting the predictor function. Finally, the well developed software package mgcv (Wood

2016) facilitates modelling smoothers including model selection and model checking.

Within this framework a simple form of an additive model is a GAM with identity link

given by

yi = f(xi) + εi, (2.7)

for samples i = 1, . . . , n where the response variable yi and its relationship to the predictor

variable xi is described by a smooth function f plus independent errors εi. The error term
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of this simple additive model is assumed to be normally distributed with mean zero and

variance σ2. As for the GLM described above, the response distribution can be replaced

with an exponential family distribution such as Poisson, negative binomial or Tweedie

distributions (the Tweedie distribution is only exponential family for fixed values of the

power parameter), and thus an additive model becomes a generalized additive model

incorporating the link function and linear predictor.

Eqn. 2.7 can be expanded simply by including an additive component for multiple

smooths in the model. Each smooth is represented as a function with a penalized basis

expansion such that Eqn. 2.7 remains an additive model

yi = exp

β0 +
∑
j

fj (xij)

+ εi

and in matrix notation

yi = Xβ + εi

(2.8)

where the exponent is the inverse of the link function, fj(xi) is the smooth function of the

xi variables, and X and β as defined above. Then for a single, given smooth f we have

the following basis expansion

f(xi) =
M∑
m=1

βmbm(xi). (2.9)

Where the βm are estimated and the bm are fixed (Wood 2017, pg 162). M is the number

of basis functions used for this term and I refer to this as the basis complexity. I further

restrict my selection of spline-based smooths to penalized regression splines that can be

applied to two-dimensions or higher and are isotropic. For spatial covariates of geographic

coordinates isotropy (i.e., rotationally invariance) is important as it is the property where

smoothing in the x1 direction can produce similar wiggliness in the x2 direction (Wood

2017, Sects. 5.5 & 5.7). That is, the smooth has the same smoothness in the Easting

direction as in the Northing direction, which is further supported as the point locations

use UTM coordinates that are spatially isotropic. Based on these conditions the following

basis functions are eligible: thin plate regression splines (TPRS) and soap-film smoother

bases (Wood 2017). I chose the TPRS because it is isotropic and, unlike the soap-film

smoother, does not constrain the smoothing at the boundary. For univariate terms the

TPRS is used for the spatial and temporal variables. A tensor product is used to produce

interaction terms for the two and three-way spatial and temporal variable interactions

because space and time measurements are on different scales. The advantage of this

approach is that in the computational process the TPRS smooth automatically selects a

representative set of knots within the extent of the data. This eliminates subjectivity in

knot selection and placement reducing the size of the basis function (Wood 2003).

In smoothing the goal is to fit a function that neither follows the data too closely nor is

overly smooth. If the function is very flexible it simply interpolates the data. Thus a very

flexible function jumps from datum to datum, which does not provide additional insight

32



about the spatial distribution than merely inspecting the data. Conversely, a completely

smoothed function fails to pick up nuanced patterns in the data and provides no further

information than linear regression. For simplicity a univariate case is considered. Parsi-

mony in the function is achieved by adding a penalty to the fitting criterion, commonly

called a roughness penalty, to minimise

n∑
i=1

(yi − f(xi))
2 + λ

∫ b

a

[
f ′′(x)

]2
dx (2.10)

for a data set (xi, yi) with a ≤ xi ≤ b. The summation term is the fit to the data and is

the residual sum of squares. f ′′(x) is the second derivative of the smooth function of x. A

balance between the fitting and roughness is achieved with the λ parameter. A λ of zero

leads to a fully saturated model (one parameter per data point) where the data points are

interpolated, whereas a λ of infinity leads to a reduced model that produces a strongly

smoothed curve (i.e., a line). The penalization process shrinks the fully saturated model

toward the smooth model if not differently supported by the data.

The smoothing parameter λ controls the trade-off between the model goodness of fit

and model smoothness. That is, how closely the curve follows the data versus the curve

being linear. There are well developed methods for estimating λ, and I use restricted

maximum likelihood (REML) methods for estimating smoothing parameters because they

(1) are a maximisation method opposed to generalized cross validation (GCV) score; (2)

performs well with over-dispersed, low-mean count data (Wood 2017, pg 150); and (3)

tends to be more resistant to over-fitting (see Wood 2017, Sect. 6.2.8).

Wood (2017, Sects. 5.8, 6.2.6 & 6.10.3) describes how models fitted using mgcv can

be interpreted as empirical Bayesian models. Priors for the βs are multivariate normal

distributions for which the precision matrices are the penalties. Smoothing parameters

are estimated from the data by optimisation that is equivalent to using a uniform prior

(Wood 2011). Parameter estimation is via REML methods in all GAMs in my thesis.

In a GAM the degrees of freedom are affected by the amount of smoothing and are

called effective degrees of freedom (EDF). The EDF is the trace of the hat matrix similar to

Eqn. 2.5 that maps coefficients to predictions but includes the wiggliness penalty coefficient

matrix and smoothing parameter (Wood 2017, pg. 211). The number of EDF will decrease

the degree of smoothing as the number of smoothing parameters increases. If the penalty

goes to zero the model is a GLM with a trace equivalent to Eqn. 2.5.

I refer the interested reader to Hastie and Tibshiani (1990) and Wood (2017) for

the technical descriptions and formal proofs. The most common way to fit smoothers

is conducted in R (R Core Team 2017) through the mgcv package (Wood 2016). This

package allows for the selection of penalised splines and automatically tunes the smoothing

parameter (Wood 2016).
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2.3 Smoothing Using GAMs

Since I expect density to vary non-linearly over the study area in space and time, it

is reasonable to start modelling with a GAM instead of linear models. I applied spatio-

temporal GAMs to a 31-year time series of the endangered Hawai'i 'ākepa in the open-forest

stratum (Chapter 1 Fig. 1.1).

2.3.1 Detection probability estimation

In Chapter 1, I detailed the procedures to estimate the 'ākepa detection probability from

point-transect data using Distance for Windows (Thomas et al. 2010). The data used

in this first-stage analysis were the 31-year, open-forest stratum time series of 'ākepa. A

hazard-rate key detection function only with year as a factor-covariate model was selected.

The truncation distance w and estimated annual detection probabilities p̂i were used to

compute the effective area searched (EAS) as ν̂i = πw2p̂i (Buckland et al. 2015). Formally

the EAS is computed following Buckland et al. (2015) Eqn. 5.47:

νi = 2π

∫ w

0
rg (r|zi) dr, (2.11)

where the hazard-rate detection function is

g (r|zi) = 1− exp

[(
− r

σ(zi)

)−b]
(2.12)

for distance r, 0 ≤ r ≤ w, where b is the hazard-rate shape parameter, and

σ (zi) = exp [α+ δi] (2.13)

where α is an intercept parameter and δzi is the parameter for year zi. To ensure identi-

fiability, the value of δ in the first year of the time series, δ1987, is set to 0.

The EAS was incorporated as an offset in the second-stage model-based density es-

timation. This allowed the effective search area to vary depending on the year of the

survey.

2.3.2 Model specification

I fitted a GAM with smooths of location variables Easting and Northing, temporal

variable Year, their interactions, and offset ν̂i on the scale of the link. This model has the

form

log{E(nik)} =f1(Eastingk) + f2(Northingk) + f3(Yeari)

+ f4(Eastingk, Northingk) + f5(Eastingk, Yeari)

+ f6(Northingk, Yeari)

+ f7(Eastingk, Northingk, Yeari) + log(ν̂i)

(2.14)
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where nik is the bird count in the i -th year at the k -th point. Smooths (f1−7) were

modelled as thin plate regression splines (TPRS; Wood (2003)). The advantage of the

TPRS approach is that knot positions were selected automatically from the data, elimi-

nating knot placement subjectivity. The space-time interactions in f5−7 were anisotropic

as space and time measurements were on different scales, so interactions with time were

generated via tensor products (Wood et al. 2013). For each term, the maximum basis

complexity was set and the penalty controlling the degree of smoothing was selected using

REML (Wood 2017, pg 185). The model was built in R (R Core Team 2017) using the

mgcv package (Wood 2016).

An advantage of using REML in the mgcv package was that the dispersion parameter (φ

and p) can be automatically selected for the negative binomial and Tweedie distributions,

respectively (Wood 2017, pg 356). Moreover, they reduce the tendency to under-smooth

which is a concern when using prediction error criteria with selection penalties. In lieu

of in-out-style model selection, I used the approach where an extra penalty is added to

each term through the linear terms in the model (Marra and Wood 2011). By using the

extra penalty method each smooth term is retained in the model permitting parameter

uncertainty to be incorporated in total estimates of density uncertainty. This approach is

a variable selection process where coefficients for terms that have no effect on the model

mean are shrunk to zero.

2.3.3 Model checking

Since the response variable is a discrete, non-negative count, I modelled counts with three

response distributions: Poisson, negative binomial and Tweedie distributions, all with a log

link function. For the Tweedie distribution I restricted the power parameter to p = (1.1, 2)

following recommendations provided in the mgcv package help pages. I conducted a linear

search to bracket the power parameter between (1.1, 2) and used a method of bisection to

approximately identify the maximum. Sensitivity to the choice of response distribution

and model assumptions were checked through inspection of the deviance residuals following

approaches suggested by Zuur (2012) and Wood (2017). Akaike’s information criterion

(AIC) was used to select among distributions. I refitted the selected model, with intercept,

to the residuals to determine if any residual variance remained following methods by Marra

et al. (2012) and Wood (2017). The desired refitted model EDF should be approximately

zero with basis complexity (k-index) near one for each term.

2.3.4 Spatial model including habitat

Judge et al. (2018) showed that 'ākepa density varies by habitat type. Spatial models are

particularly useful for exploring how densities relate to habitat types, and other variables

such as climate and elevation. I identified point-specific habitat type based on the terres-

trial ecosystems data from the LANDFIRE classification (USGS, U.S. Geological Survey

2013). Habitat was classified at the formation level describing plant communities of the

U.S. National Vegetation Classification (Jennings et al. 2009, and http://usnvc.org),

and defined by broad combinations of growth forms (e.g., forest trees) with moisture (e.g.,
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wet or mesic) and temperature (e.g., montane) conditions.

Exploratory analysis indicated that within the study area there were two habitat types:

(1) montane mesic forest; and (2) montane wet forest. Thus, habitat was categorical with

2 levels. Generally there was greater coverage in montane wet forest than montane mesic

forest (148 points in wet forest and 52 points in mesic forest; Fig. 2.1). I included the

categorical variable Habitat in the spatio-temporal smoother model of the form

log{E(nik)} =f1(Eastingk) + f2(Northingk) + f3(Yeari)

+ f4(Eastingk, Northingk) + f5(Eastingk, Yeari)

+ f6(Northingk, Yeari)

+ f7(Eastingk, Northingk, Yeari) + Habitatk + log(ν̂i))

(2.15)

where Habitat was a two level variable taking values “wet” or “mesic”, and the other

variables were as above. AIC was used to select between the smoother-only and the

smoother-with-habitat models.

2.3.5 Propagating variance

The modelling approach described here potentially achieves propagating variance, rel-

ative to the design-based methods of the previous chapter, by attempting to account

for spatial and temporal pattern in the data. The two-stage modelling approach first

involves estimating the detection probability then modelling the spatio-temporal correla-

tion. Naive approaches fail to incorporate uncertainty from all model terms, specifically

detection probability uncertainty. Variance estimation procedures in standard modelling

using GAMs account for the spatial and temporal dependence in the data. Without ad-

ditional analyses, GAMs will not account for detection probability variance. Procedures

to account for both sources of variance are: (1) ignore; (2) calculate the total variance

using delta method assuming independence between the two variance components; (3)

apply bootstrap procedures; and (4) apply methods developed in Williams et al. (2011)

and described more fully in Bravington et al. (2018) to propagate variances between model

stages using posterior simulation.

Ignore

Many analyses ignore the uncertainty of the offset parameter and treat it as known instead

of estimated. Uncertainty in detection probability affects the offset of the GAM in the

portion of the model that rescales the linear predictor (Bravington et al. 2018). If this

source of variance is ignored it can give false confidence, leading to mis-estimated variances

and incorrect inference.

Delta method assuming independence

Ignoring additional sources of variability is inadvisable and fortunately there is a sim-

ple way to combine various sources of error via the delta method. The delta method

assumes that the estimates of variance are independent thus approximate precision and

36



Figure 2.1: Location of points within each habitat type montane wet and montane mesic
forest.
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confidence intervals of density estimates can be obtained using asymptotic theory (Seber

1973). Using the delta method, the Distance for Windows derived detection probability

variance is combined with the GAM density estimate variance to produce total uncer-

tainty in the GAM derived density estimates. Specifically, the annual standard error

estimate for year i, SEtot,i, is calculated as CVtot,i x d̂i where the CVtot,i is computed

as CVtot,i =
√

CV2
tot,i =

√
CV2

p̂,i + CV2
GAM,i and d̂i is the ith-year density estimate.

My concern with using the delta method is that within a year the estimated detection

probability and the density estimate for that year from the GAM are not independent,

which violates the assumption of independence for combining variance component esti-

mates (Seber 1973). The delta method is computationally cheap and despite violations of

the independence assumption is commonly used to combine variances across models even

though variances are overestimated. For illustrative purposes, I computed uncertainty

using the delta method and compared the differences in the widths of CIs generated using

the design-based log-normal confidence intervals computed with parameter estimates from

Distance for Windows (DB; (CIWDB,i)) and from the delta method (DM; (CIWDM,i)).

The change in uncertainty was calculated as the percentage change in CIW expressed as(
CIWDM,i

CIWDB,i
− 1
)
× 100% for each year i.

Bootstrap methods

With many complex models, such as GAMs and spatio-temporal models, independence

assumptions are not realistic. Bootstrap methods can in theory combine p̂, spatial and

temporal error components to produce unbiased estimates of uncertainty in density. An

intuitive explanation of the bootstrap method it that by resampling from the data, it

attempts to recreate the underlying relationship between the population and the sample.

The advantage of this procedure is that while the population is unknown, the sample and

resamples are either known or have known distributions allowing for statistical inference

(Lahiri 2003). For the cases where the sample and resample distributions are known

a parametric bootstrap method is used, otherwise a non-parametric bootstrap method

is applied. There are limitations, however, when applying bootstrap methods. Lahiri

(2003) showed that bootstrap methods miss-specify first and second moments when the

distribution of the count data possesses large numbers of zero counts and the data are

highly skewed. These datasets are similar to the endangered 'ākepa surveys that possess

many points with zero counts.

A further limitation specific to spatio-temporal modelling is the need to retain the un-

derlying serial correlation during the resampling procedure. The block bootstrap method

was developed to address this issue (Lahiri 2003). By block I refer to grouping spatially

and/or temporally adjacent samples. Selection of the block shape and size remains an issue

specific to my data. Standard block shapes include circles, squares and hexagons, while

sizes vary from relatively small to large depending on the correlation distances. There is a

mismatch with the sampling unit in the distance sampling portion of the data. For PTDS

surveys where points are placed along lines and the distances between points and lines

differ, the points are correlated and cannot be considered independent. To estimate the
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detection probability and its variance an appropriate form of resampling is to block and

resample the lines (Buckland et al. 2001, 2015).

In the case of the 'ākepa analysis there are multiple underlying processes. As noted

in Chapter 1, the transect line was the sampling unit and to correctly estimate densi-

ties the study area was stratified into north and south regions. This procedure resulted

in fewer than 10 transect lines in each strata, which is a small sample size issue when

applying bootstrap methods. In addition, the data are pooled across surveys to fit the

detection function, and post-stratification procedures are used to estimate geographically

survey-specific detection probabilities. To account for temporal differences in the detec-

tion probability the covariate survey year is included in the detection function model.

The counts require blocking on spatially-explicit grids to account for spatial correlation.

Therefore, bootstrap methods, whether out-of-the box or manually-coded, are not the best

approach to incorporate the detection probability variance nor capture the underlying se-

rial correlation to estimate first and second moments.

Variance propagation

Sampling unevenly spaced (spatial, temporal or other) data can be problematic. Therefore,

I propagated detection probability uncertainty through to the spatio-temporal model using

the variance propagation method of Williams et al. (2011) and Bravington et al. (2018).

This approach allowed me to capture uncertainty from both the detection and spatio-

temporal models without assuming independence between model components.

The dsm package (Miller et al. 2018) is a wrapper in R (R Core Team 2017) used to

model a detection function to estimate the detection probability and its variance. In the

ds function of Distance for R (Miller et al. 2019) I refitted the best detection function

model from Distance for Windows (Thomas et al. 2010; see Chapter 1 Table 1.1). The

detection probability was then passed to the GAM along with an additional random effect

which accounts for the variance in detectability. The additional random effect is assumed

a normal distribution with mean zero and variance derived from the detection function.

The GAM allows for calculating the posterior covariance Vβ matrix of the intercept and

smoother terms. This matrix has the structure

Vβ =

[
VGAM cov

cov VDS

]
(2.16)

where VGAM are the spatio-temporal variances, VDS the detection probability variances,

and the off-diagonal blocks are the covariances between the spatio-temporal and detection

probability parameters.

The GAM uncertainty is estimated as a multivariate normal posterior distribution

of the smoother model for the vector of βs conditional on the data, y, and smoothing

parameter, λ, as β | y,λ ∼ MVN
(
β̂,Vβ̂

)
. This is presented in Marra et al. (2012)

and detailed in (Wood 2017, Sect. 6.10). Simulating replicate coefficient vectors, β̂, a

large number of times from the posterior of the parameters then allows for variance to

be estimated, and using quantiles, the confidence intervals can be calculated. Thus, the
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Figure 2.2: Histograms of 1000 replicate parameter sets from the posterior distribution
using a covariance matrix conditional (vcov(m, unconditional=FALSE); left panel) and
unconditional (vcov(m, unconditional=TRUE); right panel) on the smoothing parame-
ters.

prediction matrix maps the model parameters to the linear predictor, η̂p, as η̂p = Xpβ̂.

The smoothing parameter uncertainty is incorporated in the posterior simulations in

the covariance matrix (see pg 302 in Wood 2017). Such simulations are conditional on

the estimated smoothing parameters by simulating from the posterior. I compared the

conditional distribution to simulations drawn from the desired unconditional distribution

for the annual mean densities. In mgcv the covariance matrix is computed via vcov(m,

unconditional=TRUE) when the model is estimated using REML smoothing parameter

estimation. I found there to be minor computational costs in computing the unconditional

covariance matrix which yielded a slightly wider correction factor (Fig. 2.2). My goal

is to account for sources of uncertainty; therefore, I simulated from the unconditional

distribution.

The detection probability uncertainty can be estimated by fitting

log [E (ni)] = log (Ai) + log (p̂i) + β0 +
∂loge{p̂i}

∂θ

∣∣∣∣
θ=θ̂

(
θ̂ − θ0

)
+

s (Eastingk, Northingk, Yeari) .

(2.17)

The extra term in Eqn. 2.17 is the Taylor expansion of the detection probability on the log

scale.
(
θ̂ − θ0

)
is a random effect in the refitted GAM with

(
θ̂ − θ0

)
∼ MVN (0,VDS)

distribution. Bravington et al. (2018) provides a detailed description of this process.

Uncertainty in the detection probability is then a component in the variance-covariance

matrix Vβ along with the βs.

Refitting the spatio-temporal model with a correction to include detection function

uncertainty was performed using the dsm varprop function in the R package dsm (Miller

et al. 2018) (R code provided in Appendix B). I then used posterior simulation (Wood 2017,
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Sect. 7.2.7) to generate possible predictions from the model, taking appropriate summaries

to give uncertainty estimated. Differences in the widths of the variance propagation CIs

(VP; (CIWVP,i)) were calculated and the change in uncertainty was calculated as the

percentage change in CIW expressed as
(
CIWVP,i

CIWDB,i
− 1
)
× 100% for each year i.

2.4 Results

2.4.1 Distribution selection

I evaluated the performance of Poisson, negative binomial and Tweedie distributions when

applied to the full spatio-temporal model. I used default basis complexity after checking

basis size had sufficient flexibility for the smooth terms in the model. Inspection of the

diagnostic plots revealed that the Poisson distribution did a moderately acceptable job of

handling residual errors (Fig. 2.3). The residuals to fitted values in the first plot possessed

bands and there was a decline from positive to negative valued residuals with increasing

fitted densities (Fig. 2.3 top left panel). This pattern occurs in data sets with lots of

zeros, as seen here in the 'ākepa data set, where the fitted value is zero, than the observed

values have to be zero or greater, so the residuals at the left-hand end of this plot cannot

be negative. There appeared to be no other un-modelled residual structure. The number

of data points obscured heteroscedasticity patterns in the residuals fitted to the Easting

variable (Fig. 2.3 top right panel), apart from influences in the sampling design of the

transects and points (Chapter 1 Fig. 1.1): the geographic layout of points influenced

coverage in the west versus east half of the study area with sampling in the west half more

than twice that in the east, although there was good spread in the residuals within each

half. Observed densities of zero influenced the negative residual values, particularly in the

eastern half (Fig. 2.3 top right panel).

Similar patterns of heteroscedasticity occurred for residuals fitted to the Northing

variable (Fig. 2.3 middle left panel). In the south half of Hakalau the transects run west

to east at roughly 500 m apart parallel to the Northing coordinate (see Chapter 1 Fig.

1.1), yielding the banding pattern in the residuals (Fig. 2.3 middle left panel). In the

north half the transects run diagonal to the Northing coordinate providing more complete

coverage. The spread in the residuals was good within each half, although densities of

zero influenced negative residual values more so in the north than south half. Mean

residuals by Year appeared to decrease and uncertainty increased across the time series,

although there was no apparent pattern in the residual outliers (Fig. 2.3 middle right

panel). The numbers of points sampled in the south half of the study area halved starting

in 2005 with roughly every other transect dropped (Appendix B Fig. B.1). This likely

influenced the mean residuals decrease in the latter part of the time series and resulted in

the increased uncertainty in these residuals (Fig. 2.3 middle right panel). The histogram

of residuals revealed a spike in the number of slightly negative to zero residuals (again

the influence of the many zero counts where the fitted values are just slightly above zero

with slightly negative residuals), and there was a long right-tail in the numbers of positive

residual values (Fig. 2.3 bottom panel). The quantile-quantile (QQ) plot showed that the
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Figure 2.3: Diagnostic plots for spatio-temporal GAM with a Poisson distribution fitted
to the 'ākepa count data. Residuals versus fitted values (top left panel), residuals versus
easting (top right panel), residuals versus northing (middle left panel), residuals versus
year (middle right panel), and histogram of residuals (bottom panel).
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Table 2.1: Model selection statistics for the Poisson, negative binomial and Tweedie distri-
butions. Presented are the smoother log-likelihood (logLik), effective degrees of freedom
(EDF), Akaike’s information criterion (AIC) and ∆ AIC.

Model logLik EDF AIC ∆ AIC

negative binomial -3782.087 50.226 7664.627 0
Poisson -3861.313 74.503 7871.632 207.005
Tweedie -4301.308 50.214 8703.046 1038.419

predicted values fell outside the simulation along the entire quantile plot (Fig. 2.4).

For the negative binomial distribution the diagnostic plots were examined and revealed

similar patterns as the Poisson distribution (Fig. 2.5). However, from the QQ-plot (Fig.

2.4) it was apparent that the negative binomial distribution, better modelled the residuals

as there was less deviation from the straight line and the points stayed within the grey

lines. The dispersion parameter for the negative binomial was 1.94 indicating the count

data were over-dispersed relative to the Poisson.

Inspection of the diagnostic plots were examined and revealed that the residuals of

the Tweedie distribution looked similar to those of the Poisson distribution, but that the

Tweedie distribution did not perform as well as the negative binomial distribution. Again,

this was particularly apparent in the QQ-plot (Figs. 2.4 and 2.6). The Tweedie dispersion

parameter φ was 1.483 and the power parameter p was 1.1 for the full model.

In addition to model selection using residuals diagnostics, I also computed AIC with

an additional penalty term to account for smoothing parameter issues (Wood 2017). The

negative binomial had the lowest AIC value (Table 2.1). Given the residuals diagnostics

and AIC statistics I chose the negative binomial distribution for the GAM.

The residual plots for the negative binomial distribution appeared reasonable with ac-

ceptable behaviour for the deviance residuals and error distribution for the spatio-temporal

GAM (Figs. 2.4 and 2.5). In addition to the residuals diagnostics and summary statistics,

violin plots allow for comparing the probability density of the residuals and identifying

systematic departures from the distribution. Easting and Northing categories used in the

violin plots can be compared to intervals in Chapter 1 Fig. 1.1. For the Easting variable

the residuals were highly concentrated around the median with many outliers (Fig. 2.7).

The distribution of the Northing residuals was mixed. In the southern portion of the

study area the residuals were more evenly distributed than in the northern portion where

the residuals were more concentrated around the median. Again, there were many outliers

(Fig. 2.8). There was a concentration of the residuals around the median in the Year term

and there were a large number of outliers (Fig. 2.9). The medians of the residuals were

consistently below the zero line indicating the predicted values tended to be too high.

As described in the Methods, a model with maximum flexibility was fit to the residu-

als from the selected model to help uncover any remaining pattern. From this model, the

EDF values were approximately zero and the basis complexity values were near 1.0 (Table

2.2) suggesting that there was little un-modelled residual auto-correlation. Unaccounted

for residual pattern may be the result of not starting with sufficiently complex basis. As

a final check I doubled the basis complexity of the full spatio-temporal model with a neg-
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Figure 2.4: Sorted deviance residuals (black dots) for the spatio-temporal GAM versus
simulated theoretical quantiles (grey lines; 1,000 replicates) fitted to the 'ākepa count data
for the distributions Poisson, negative binomial and Tweedie.
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Figure 2.5: Diagnostic plots for spatio-temporal GAM with a negative binomial distri-
bution fitted to the 'ākepa count data. Residuals versus fitted values (top left panel),
residuals versus easting (top right panel), residuals versus northing (middle left panel),
residuals versus year (middle right panel), and histogram of residuals (bottom left panel).
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Figure 2.6: Diagnostic plots for spatio-temporal GAM with a Tweedie distribution fitted
to the 'ākepa count data. Residuals versus fitted values (top left panel), residuals versus
easting (top right panel), residuals versus northing (middle left panel), residuals versus
year (middle right panel), and histogram of residuals (bottom left panel).
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Figure 2.7: Violin plot of deviance residuals for the Easting term of the spatio-temporal
GAM fitted to the 'ākepa count data. A violin plot is a combination of a box plot and
density plot that shows the distribution shape of the data. The red dot is the median
and the black bar the mean. The interquartile range is indicated by the box and the
whiskers the upper and lower adjacent values. Black dots indicate outliers. The density
plot portion reveals the distribution of the data showing probability, relative amplitude, of
observations. Sample size is included for each category. The distribution of the Easting

residuals were highly concentrated around the median with many outliers.
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Figure 2.8: Violin plot of deviance residuals for the Northing term of the spatio-temporal
GAM fitted to the 'ākepa count data. Sample size is included for each category. The
distribution of the Northing residuals was mixed. In the southern portion of the study
area the residuals were more evenly distributed than in the northern portion where the
residuals were more concentrated around the median. Again, there are many outliers.

48



Figure 2.9: Violin plot of deviance residuals for the Year term of the detection probability
and spatio-temporal GAM fitted to the 'ākepa count data. There was a concentration
of the residuals around the median in the Year term and there were a large number of
outliers. The medians of the residuals were consistently below the zero line indicating the
predicted values tended to be too high.
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Table 2.2: Effective degrees of freedom (EDF), reference degrees of freedom (rf) and basis
complexity (k-index) for each term in the model fitted to the residuals.

Term EDF rf k-index

s(Easting) 0.0004 9 0.98
s(Northing) 0.0004 9 0.99
s(Year) 0.0003 9 0.96
ti(Easting, Northing) 0.0009 16 0.97
ti(Easting, Year) 0.0006 16 1.02
ti(Northing, Year) 0.0005 16 0.84
ti(Easting, Northing, Year) 0.0002 88 0.86

ative binomial distribution. Residual plots were not much improved relative to the model

with default basis factors and this procedure provides evidence against misspecification

problems (plots not shown).

2.4.2 Fitted model

For the model fit to the data the estimated negative binomial dispersion parameter was

1.944 and the deviance explained was 52.7%. The estimated smooth function for the

interaction of Easting and Year had shrunk to nearly zero, thus the influence of this

term on the response was negligible (Table 2.3). The smooth functions were wiggly for

the variables Easting, Northing and Year (Fig. 2.10). There was a clear pattern of lower

densities in the east versus west side of Hakalau, as well there were lower densities in

the north than in the south part of Hakalau, and there was a small general increase in

densities over time. In addition, the interactions of Easting and Northing, Northing

and Year (Fig. 2.10), and the three way interaction Easting, Northing and Year were

nonlinear (Fig. 2.11). Densities in the Easting and Northing interaction ranged from 3 in

the south-west corner to -3 at the west central lobe and north-east corner. The magnitude

of densities for the Easting and Year interaction were very small ranging from -0.0014 in

the upper left and right corners to 0.001 in the lower left and right corners and between

the upper corners (Fig. 2.10, lower left panel). The magnitude change in densities was

greater for the Northing and Year interaction ranging from -1.5 in the upper left and lower

right corners to 1.5 in the opposite corners (Fig. 2.10, bottom right panel). The three way

interaction Easting, Northing and Year prediction plots showed densities varied spatially

and temporally (Fig. 2.11). At the beginning of the time series densities varied from -0.6 to

0.6 with highest contours in the north-east lobe and lowest contours in the central portion

of Hakalau along the the west boundary (Fig. 2.11, bottom row). During the middle of the

time series densities were more uniform across Hakalau with contours ranging from -0.2

to 0.2 or less (Fig. 2.11, middle row). By the end of the time series densities had again

increased with contours ranging from -1.0 to 1.0, but between the beginning and end of

the time series the location of the low and high contours had swapped sides of Hakalau

(top row compared to bottom row; Fig. 2.11).
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Figure 2.10: Estimated model terms for the spatio-temporal GAM fitted to the 'ākepa
count data. The distribution of the data is visualized in the rug plot along the x-axis for
the 1D Easting, Northing and Year plots, while the EDFs are presented on the y-axis
labels. For the main effects the grey ribbon illustrates the error bounds of plus or minus
one standard error from the estimates. The locations of the points are plotted as black
dots on the 2D contour plots and the EDF is provided in the plot panel title. Contours
in each 2D plot represent 1.0, 0.002 and 0.5 unit change (respectively) and are shown as
blue lines. Estimates provided on the scale of the linear predictor.
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Figure 2.11: Estimated model terms for the 3-way smooths of the spatio-temporal GAM
fitted to the 'ākepa count data. Maps shown for every three or four years between 1987
and 2017. Variability is minimal during the middle of the time series (middle row) and
more variable early and late in the time series (bottom and top rows, respectively). The
EDF is provided on the y-axis label and contours represent 0.2 unit change are shown as
black lines.

Table 2.3: Effective degrees of freedom (EDF), reference degrees of freedom (rf) and basis
complexity (k-index) for each term in the fitted spatio-temporal model.

Term EDF rf k-index

s(Easting) 5.204 9 0.90
s(Northing) 7.145 9 0.89
s(Year) 6.755 9 0.91
ti(Easting, Northing) 7.084 16 0.89
ti(Easting, Year) 0.012 16 0.95
ti(Northing, Year) 7.653 16 0.76
ti(Easting, Northing, Year) 8.737 88 0.84
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Table 2.4: Effective degrees of freedom (EDF) and basis complexity (k-index) for each
smoother term in the fitted spatio-temporal model with Habitat.

Term EDF rf k-index

s(East) 5.056 9 0.91
s(North) 7.101 9 0.91
s(Year) 6.680 9 0.89
ti(East, North) 6.507 16 0.89
ti(East, Year) 1.716 16 0.94
ti(North, Year) 3.513 16 0.75
ti(East, North, Year) 21.475 88 0.80

2.4.3 Spatial model including habitat

Results indicated that including Habitat minimally improved the spatio-temporal model.

Residual plots (Fig. 2.12) appeared reasonable. The EDFs for the smoother terms were

similar to those from the smoother-only model (compare Table 2.4 to Table 2.3). The

deviance explained was 53%, providing only a small increase in modelling residual variance.

Compared to the smoother-only model the AIC value for the smoother with habitat model

was larger by >16 units. Adding the Habitat variable should change the AIC value by

no more than 2 AIC units; however, the standard AIC formulation in mgcv is modified

to account for the smoother EDF in the model. Adding another covariate changes the

number of EDF parameters yielding an AIC value that can change by more than two AIC

units (Hastie and Tibshiani 1990 pgs 157-158 and Wood 2017 pgs 301-302). Therefore,

habitat was dropped and spatio-temporal inference was based on the smoother-only model.

2.4.4 Spatio-temporal patterns

Densities of Hawai'i 'ākepa vary both spatially and temporally (Fig. 2.13). Across the

time series densities remained low in the northern portion of the refuge, but densities were

much more dynamic in the central and southern parts of the refuge. Starting in 1987 an

area of high density occurred in the south-west that diminished over several years before

increasing and persisting into the mid-1990s. This high density area then appeared to

diffuse into the central portion of the refuge through the early 2000s before a high density

area reformed to the north-east of its original location, and by the late 2000s had reached

densities of 6 birds ha-1. The high density area subsequently diffused again to moderate

numbers of birds by the end of the time series, 2-3 birds ha-1.

Overshadowed by the dynamics in the southern half of Hakalau, subtle changes oc-

curred throughout the north. Early in the time series the northern portion was roughly

split between an area devoid of 'ākepa and an area with <0.25 birds ha-1. This pattern

persisted into the mid-1990s before 'ākepa started increasing and expanding so that by

2017 the area devoid of 'ākepa was restricted to a small patch in the north-west portion

of Hakalau (Fig. 2.13).

Uncertainty in densities are shown in maps of coefficient of variation (Fig. 2.14). The

per cell uncertainty in densities was large with CVs ranging from 0.09 to 2.02 per cell and

varied spatially. Densities were most precise in the southern portion and most variable in
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Figure 2.12: Diagnostic plots for spatio-temporal model that included categorical Habitat
term fitted to the 'ākepa count data. Box plot of residuals versus habitat type (1 = wet
and 2 = mesic; top left panel; the black bar is the mean while the interquartile range
is indicated by the box, the whiskers are the upper and lower adjacent values and the
black dots indicate outliers), residuals versus fitted values (top middle panel), residuals
versus year (top right panel), residuals versus easting (bottom left panel), residuals versus
northing (bottom middle panel), and histogram of residuals (bottom right panel).
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the northwest portion of the study area which was consistent with the amount of effort

that was put into those areas. These patterns persisted across the entire time series.

2.4.5 Temporal patterns

Initially estimated at 0.54 birds ha-1 the 'ākepa population increased between 1987 and the

late 2000s to a maximum of 0.89 birds ha-1, and subsequently declined to 0.84 birds ha-1 in

2017; note that these changes occurred within the confidence band (Fig. 2.15, top panel;

Table 2.5). Trends in the two regions of the study area were substantially different. Trends

in the north stratum were generally upward throughout the time series while trends in the

south stratum oscillated (Fig. 2.15, bottom panels left and right, respectively). Average

densities also differed between the two strata. Densities in the north stratum were more

than an order of magnitude smaller than the densities observed in the south stratum

(means of 0.16 birds ha−1 compared to 2.16 birds ha−1, respectively; Tables 2.6 and 2.7).

These patterns were reflected in the spatio-temporal maps (Fig. 2.13).

2.4.6 Uncertainty comparison between methods

I observed improvements in annual estimator precision for the model-based approaches,

relative to the design-based approach of Chapter 1 (Fig. 2.15, Table 2.5). Although the

pooled detection probability was very precise (pooled p̂ = 0.489, SE=0.006, %CV=1.20),

the year-specific probabilities of detection were variable (see Chapter 1 Table A.1). The

model-based estimate with delta method to combine variances gives on average a CI width

that was 52.5% shorter than the CI width of the design-based method (SD=19.4%; Table

2.5). This pattern was more prominent in the north stratum where design-based CI widths

were wider than in the south stratum. There was an average 90.5% reduction in the length

of the CI widths (SD=6.4%; Table 2.6) in the north stratum, while the average CI width

was 58.5% shorter in the south stratum (SD=16.0%; Table 2.7). The delta method violates

the assumption that the detection probability is an independent parameter between the

first- and second-stage models and the procedure produces confidence intervals that were

too precise.

Using the approach of Bravington et al. (2018) avoids this assumption while simulta-

neously accounting for spatial and temporal correlation. I fitted a hazard-rate detection

function with a covariate for each survey year to the distances in both Distance for Win-

dows (Thomas et al. 2010) and the ds function of Distance for R (Miller et al. 2019). The

two software packages use slightly different algorithms thus there were minor differences in

the detection probabilities and variances (Fig. 2.16, Table 2.8). Although differences in the

estimates exist, the advantage of using the ds generated parameters is that it integrates

easily with dsm. The average CI width using the variance propagation method was 37.2%

shorter than the design-based CI width (SD = 26.6%; Fig. 2.15, top panel; Table 2.5).

This was a substantial improvement over estimates from design-based methods and was

not reliant on the assumption of parameter independence. In the north stratum there was

an average 83.3% reduction in the length of the CI widths (SD = 11.5%; Fig. 2.15, bottom

left panel; Table 2.6). While in the south stratum the variance propagation method CI
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Figure 2.13: Predicted spatio-temporal surfaces of 'ākepa densities in Hakalau between
1987 and 2017. Densities range from 0 (violet) to 6 birds ha−1 (yellow) within the study
area.
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Figure 2.14: Predicted spatio-temporal maps of density (birds ha−1) coefficient of varia-
tion.
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Figure 2.16: Annual detection probability and 95%CI estimates from the hazard-rate
model without series expansion and with the covariate Year produced using Distance for
Windows (black diamonds and whisker bars) and ds (blue diamonds and whisker bars).
Surveys were not conducted in 2009 (vertical bar).

width was on average 43.8% shorter than the design-based method CI width (SD = 29.3%;

Fig. 2.15, bottom right panel; Table 2.7). During all but three years the variance prop-

agated methods produced narrower CI intervals (Fig. 2.17). All variance propagated CIs

were narrower in the north stratum while all but two were narrower in the south stratum.

62



Table 2.8: Annual detection probability with SE estimates from the hazard-rate model
without series expansion and with the covariate Year produced using ds. Estimates not
produced indicated with a —.

Year Estimate SE

1987 0.381 0.036
1988 0.762 0.057
1989 0.422 0.045
1990 0.483 0.050
1991 0.581 0.061
1992 0.428 0.039
1993 0.780 0.057
1994 0.747 0.071
1995 0.703 0.063
1996 0.567 0.036
1997 0.449 0.038
1998 0.571 0.048
1999 0.440 0.046
2000 0.392 0.033
2001 0.545 0.043
2002 0.586 0.044
2003 0.589 0.057
2004 0.573 0.045
2005 0.804 0.092
2006 0.499 0.075
2007 0.541 0.046
2008 0.380 0.034
2009 — —
2010 0.390 0.039
2011 0.404 0.052
2012 0.378 0.044
2013 0.390 0.041
2014 0.582 0.064
2015 0.589 0.074
2016 0.590 0.063
2017 0.415 0.052
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Figure 2.17: Comparison of uncertainty between confidence intervals (CIs) produced using
model-based (density surface model) with variance propagation and design-based methods.
The 1:1 lines are shown; points below the lines indicate uncertainty was improved with
narrower intervals produced from the variance propagated method.
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2.5 Discussion

2.5.1 Statistical methods

My analysis shows that precision in animal abundance estimates can be improved through

the application of spatio-temporal modelling using GAMs and underscores the need to ac-

count for estimator uncertainty through variance propagation. I observed large variation

in counts among different points, as well as between years, which is typical of Hawaiian

forest bird monitoring (Camp et al. 2009), and counts elsewhere (Link and Sauer 1998).

Accounting for the various sources of variation is critical to assess management and conser-

vation goals. Established approaches to compute total variance include: (1) delta method

assuming independence (Seber 1973); (2) bootstrap methods (Hedley and Buckland 2004);

(3) fully Bayesian approaches (Niemi and Fernández 2010, Sigourney et al. 2018); and the

approach here (4) using variance propagation methods (Bravington et al. 2018). The delta

method assumption of independence is not appropriate here as the detection probabilities

are not independent parameters between the first- and second-stage models. Under the

sampling design in this study, bootstrap resampling would be of lines instead of points

(Buckland et al. 2015). It is then unclear exactly how the different units (lines for the

detection probability domain and blocks for the spatio-temporal domains) are resampled

(Lahiri 2003). Bayesian methods such as Johnson et al. (2010), Niemi and Fernández

(2010) and Sigourney et al. (2018) require writing custom code and checking priors and

convergence, incurring a high computational cost. The variance propagation approach

avoids the concerns of the above methods by accounting for possible interactions between

detection and density models, non-independence between years and spatial correlation

among points while still being computationally efficient.

Standard distance sampling, including the multiple covariate extension, is a hybrid

of design- and model-based methods where inference comes from the design portion and

detection probability from the model-based portion. Design-based methods are most ap-

propriate if the primary goal of the surveys is to estimate population size (Buckland et al.

2015). The random placement of points in a study area allows for extrapolating densities

at the points to the wider study area, providing inference about total abundance. When

the goal of the survey is to map species distribution or compare whether densities on sub-

regions differ model-based methods can be more appropriate. A model-based approach

is particularly useful to assess the effectiveness of management actions under a control-

treatment design, or to account for spatio-temporal pattern in the counts as I have done.

The model-based methods produced finer-grained and more precise abundance estimates.

Switching from design- to model-based methods requires a substitution of assumptions

from a survey design, where it is assumed that sample locations are chosen using a ran-

dom sampling scheme, to assumptions about the animal distribution, where it is assumed

animal locations are a realisation of the spatial model. I assume that the design assump-

tion is met, however I have no control of animal distribution. Thus, switching between the

methods requires careful consideration of the survey goals, method-specific advantages and

disadvantages, and available data. As long as the surveys are conducted following design-

65



based methods the data can be analysed using either design- or model-based methods as

appropriate (Buckland et al. 2015).

Sampling at Hakalau is based on a stratified, systematic random sampling design.

Therefore, the design-based analysis required that I stratify the study area by sampling

intensity to produce unbiased density estimates using the design-based method. Standard

distance sampling methods, even incorporating model-based analysis procedures, do not

fully account for the spatial structure of the sampling design (Buckland et al. 2015).

Spatial distance sampling models that integrate detection function modelling exploit the

data more efficiently by avoiding the need to stratify the study area and can incorporate

plot-level covariates that influence both bird detection probability and densities (Miller

et al. 2013).

The covariate habitat I used classifies plant communities at the formation level of

the U.S. National Vegetation Classification (Jennings et al. 2009, and http://usnvc.org).

The formation level is defined by broad combinations of growth forms with moisture

and temperature conditions, and is a classification level that is unlikely to change from

management actions designed to enhance forest habitat. It is unlikely that 'ākepa and

other Hawaiian forest birds are responding to habitat at the coarse formation level, which

was reflected in my analyses where there was no strong evidence that habitat influenced

'ākepa densities. More likely, forest birds are responding to changes in crown cover and

canopy height, floristic community composition, and understory components (Scott et al.

1986). Scott et al. (1986) found only limited response of native passerines to understory

components; however, after the removal of ungulates from portions of the refuge (Maxfield

1998, Hess 2016) it appears that the forest birds may have positively responded to the

recovering understory as the forest canopy has changed very little since the 1970s (Jacobi

2018, Hart et al. 2020). Point-level description of the understory vegetation is available

only for surveys conducted in 2016 and 2017, which will be useful for future studies that

wish to incorporate understory variables to describe its relationship with bird density and

potentially increase the amount of variation explained by the model.

2.5.2 Biological findings

Estimating densities using smoothing methods eliminated biologically impossible changes

in densities. While it is possible that a population can decrease by half or more from

one year to the next, it is not possible for 'ākepa to double as they produce only one or

two eggs per year yielding a 1.47 birth rate with hatch year survival ranging from 0.23 to

0.43 (Woodworth and Pratt 2009). The biologically realistic growth rate is thus between

0.97 and 1.12 indicating that the population could increase only slightly from year to year

(λ = 0.80 + 0.5βφ, where λ is the growth rate, mean adult survival is 0.80 (see Chapter

5), β is the birth rate and φ is juvenile survival probability; Newman et al. (2014)). Esti-

mates produced through standard distance sampling analyses changed substantially (and

unrealistically) between years, while annual density estimates from the spatio-temporal

model are more biologically plausible (see Fig. 2.15) (though there is no constraint on

survival or growth rate explicitly in the smoother model). More advanced demographic
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modelling could be achieved by including the previous year estimate as an offset following

Conn et al. (2015) and Swallow (2015), and/or through population dynamics modelling

that combines bird abundance with priors on annual changes, which can be informed by

demographic vital rates (Newman et al. 2014).

No survey was performed in 2009 and it is of interest to estimate density in that year.

In the state-space modelling framework employed by Camp et al. (2016) estimated bird

densities for the missing survey in 2009 using two draws from a random slope distribu-

tion. An uninformative prior was used within a Bayesian framework, which allowed for

maximum change in the population and inflated the variance to allow for both substantial

increasing and decreasing trajectories between the 2008 and 2010 density estimates. An

alternative approach is to use posterior simulation from the DSM to estimate the 2009

'ākepa density. This approach would allow for both mapping the distribution of 'ākepa

densities across the study area and predicting the annual density and variance estimates.

The predicted uncertainty would be greater than estimates from adjacent years, but should

be smaller than the estimate in Camp et al. (2016). This estimate would not include the

detection probability uncertainty, so I did not generate a 2009 estimate via two-stage

spatio-temporal modelling.

I used a simple spatial smoother that assumes the bird population is continuous across

the refuge including proximate areas outside the study area. This assumption may be

realistic to the north, east and south of the study area that juxtaposes contiguous 'ōhi'a
dominated forest. The 'ākepa population, however, does not extend west into the pas-

ture, especially early in the time series when grass dominated that habitat and prior to

afforestation management. Not detected until 2011, 'ākepa moved into the afforested pas-

ture once the trees had sufficient time to provide suitable habitat (Paxton et al. 2018).

Understanding the spatial and temporal changes in the population is achieved by limiting

inference of the spatio-temporal maps to the sampled area. From the initial Hawai'i Forest

Bird Survey (HFBS), Scott et al. (1986) noted that 'ākepa are absent from about a fifth

of the northern Hamakua study area. Juxtaposed is a relatively large area with very low

densities of 1-10 birds/km2, in which the northern portion of Hakalau occurs. At the start

of the time series densities in the north region are comparable to HFBS densities. By the

last survey, densities are nearly three times greater and the end-point credible intervals

do not bracket the HFBS point estimate, despite relatively large CVs. Regardless of the

increases, densities in the north region are still low at only 40 birds/km2. Historically,

'ākepa could have been more numerous at the turn of the 19th century (Perkins 1903) and

possibly remained abundant for several decades (Munro 1944). There is little evidence,

however, that either naturalist surveyed in the northern portion of the study area, and

instead they may have described the locally more abundant southern population where

the density estimates are comparable to Scott et al. (1986) at 200+ birds/km2.

2.5.3 Management implications

A main goal of spatio-temporal modelling was to unveil geographical and temporal pat-

terns that can be used to identify population responses to management actions. Thus,
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my modelling attempted to elucidate medium-term responses in population abundances

to long-term management effects. My analyses show where the 'ākepa population has re-

sponded to management actions and changes in environmental conditions. Accounting for

both spatial shifts and temporal changes in population abundance and distribution ben-

efits conservation planning through improved management efficiency and reduced costs.

Management actions can then be applied to priority areas where a species is most likely to

respond or require further intervention. Since 1985, management in the open-forest stra-

tum at Hakalau has consisted of fencing, removing and controlling non-native ungulates,

and controlling invasive non-native plants (USFWS, U.S. Fish and Wildlife Service 2010).

Removal of feral cattle (Bos taurus) was achieved promptly (Maxfield 1998) but control

of pigs (Sus scrofa) has been more difficult (Hess et al. 2010, Hess 2016). After the release

from grazing and trampling, vegetation in the study area has responded with evidence of

early seral regeneration (Hess et al. 2010).

Controlling pigs has been more challenging due to their prolific reproductive rates,

difficulties of locating and removing the last individuals, and egress into the study area

from the surrounding reservoir populations (Hess 2016). Feral pigs were removed from

management units in the south stratum by 2002 (Hess et al. 2006). Over this period 'ākepa

increased by nearly one bird−ha. Since 2008 though 'ākepa have decreased to densities

that are similar to those at the start of the time series. These fluctuations occurred within

the 95% credible interval of the posterior distribution, indicating that the south stratum

'ākepa population has fluctuated but that it has not increased or declined overall. The

medium-term declining trajectory since 2008 coincided with a pig reinvasion that has yet

to be eradicated. Continued abundance monitoring, focusing on 'ākepa densities along

the eastern edge of the south stratum, will provide information of 'ākepa trends and track

the trajectory to inform management and conservation planning. These data indicate

that a response in 'ākepa densities lags pig eradication and habitat recovery by several

years. Additional biological data, such as species’ demographic data, may further improve

decision making through prioritising management actions specific to improving species’

productivity and mitigating threats. Detecting a response in demographic parameters,

or derived demographic quantities of survival and reproduction, may be observed more

quickly than detecting changes in just the abundance time series (Guillaumet et al. 2016).

It has been more difficult to remove pigs from the northern portion of the refuge. My

results show that 'ākepa remained at low densities in this region for an extended period

before increasing relatively rapidly. This increase occurred some time after numbers of pigs

had been suppressed and there had been increases in native ferns and woody vegetation

(Hess et al. 2010). By 2017, 'ākepa densities remained near zero in only the north-west

portion of the north stratum. This area coincides with an infestation of banana poka vine

(Passiflora tarminiana), a draping liana that can engulf the forest canopy layer. Loh and

Tunison (1999) showed banana poka decreased by half after the removal of pigs in similarly

managed rainforest habitat in Hawai'i Volcanoes National Park, Hawai'i Island. Refuge

management includes controlling the vine and other invasive non-native plants. Eradicat-

ing this invasive vine on the refuge will benefit from removing it from adjacent reservoir
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populations. Given increases in 'ākepa elsewhere in the north stratum it is reasonable

to expect that 'ākepa will continue to increase with the removal of non-native ungulates

and plants. This approach to identify and target priority areas assumes that there are

positive responses between the level of management effort, spatial extent of the area man-

aged and target species benefit, i.e., an immediate, proximate impact; assumptions I make

influencing the changes observed in 'ākepa distribution and densities. Prioritised and ef-

ficient management will become more important as traditional approaches to conserving

and managing species inadequately account for rapidly changing, uncertain environments

and novel ecosystems (Hobbs et al. 2009).

My approach provides a framework for understanding changes in bird populations, it

can also provide insight into anticipating management actions that may facilitate conser-

vation. A limitation of Camp et al. (2016) analysis of 'ākepa abundance and trend is that

they treated the entire study area as homogeneous, whereas I have shown that the dis-

tribution and density of 'ākepa are heterogeneous, varying over space and time. That is,

my results provide unprecedented insights into the distribution of 'ākepa densities where

my density surface maps illustrate the dynamics of the species throughout the study area,

presumably in response to management. Extending the management that has improved

habitat in the central portion of the open-forest stratum could benefit the adjacent popula-

tion in the north region and where it extends east into lower elevations of the refuge (Camp

et al. 2016). In addition, 'ākepa occur in five spatially disjunct sub-populations with the

Hakalau sub-population being the largest (Judge et al. 2018). These sub-populations occur

in comparable habitat, face similar threats, and hence the management at Hakalau may

be beneficial. Management of these other sub-populations may benefit by coinciding with

frequent monitoring and including spatio-temporal modelling similar to mine to maximize

benefits from the management actions.

Adequate monitoring is required to meet regulatory requirements and determinations

(USFWS, U.S. Fish and Wildlife Service 2006). My research emphasizes the importance

of long-term monitoring data without which this analysis would not have been possible.

Managers and policy makers have a wide range of often conflicting conservation objectives

and priorities, and support for monitoring programs is regularly assigned low importance.

The continued collection of ongoing, systematic data is essential to understanding popu-

lation changes, particularly in the face of rapidly changing environments (Atkinson et al.

2014) and collapsing populations (Paxton et al. 2016). Without systematic data, evaluat-

ing population trends may not be possible and detection of end-point population change

is difficult (Judge et al. 2019). Moreover, without systematic data it is not possible to un-

derstand the underlying processes, such as growth rates (Camp et al. 2016) or population

dynamics (Guillaumet et al. 2016), that are driving population changes. Hawaiian forest

bird monitoring programs would greatly benefit from ensured long-term support, including

financial assistance; established institutional capacity; recruitment, training and retention

of surveyors; and formalized cooperation between universities, NGOs and governments

(Paxton et al. 2018).
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Chapter 3

Point-process models to estimate

abundance

3.1 Overview

An alternative approach to modelling a density surface with a GAM is to employ point

process models. Andrew Seaton, fellow PGR student, University of St Andrews, School of

Mathematics and Statistics, developed a one-stage model-based approach to model point-

transect distance sampling (PTDS) data using point process (hereafter, point process

approach). To demonstrate the point process approach, Seaton modelled the spatial dis-

tribution of 'ākepa to map and estimate their densities for a single survey from the 'ākepa

time series. Bayesian inference was used to simultaneously estimate detection probability

and spatial distribution, which naturally incorporates detection probability uncertainty

into final variance estimates. A description of the methods and results to analyse PTDS

using the point process approach have been assembled into a manuscript for peer-review

and are referenced herein as Seaton et al. (In preparation)1. For comparative purposes

I conducted a two-stage model-based analysis using TPRS to model the spatial distribu-

tion of birds accounting for spatial correlation (hereafter, DSM approach). I computed

the combined detection probability and GAM uncertainties using the delta method as-

suming independence. In Section 3.2 I describe the principles of spatial point process

modelling, present the point process approach framework, summarise the DSM approach,

and describe how I compare estimates between the two approaches. I describe the data in

Section 3.3 and the methods used for modelling each approach in Section 3.4. The results

are presented in Section 3.5. I provide a discussion, specifically addressing model checking

and the underlying smoothness of the data, in Section 3.6. Finally in Section 3.7 I present

considerations when choosing between the two approaches.

1Paper co-authored by me as part of my thesis research.
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3.2 Spatial modelling

In Chapter 2 I modelled the spatio-temporal densities of 'ākepa across a 31-year time series

using two-stage model-based smoothing. Many studies, however, are a single snapshot of

bird status or a series of snapshots infrequently collected that lack the temporal correlation

of the 'ākepa time series. Standard distance sampling analyses can be applied to these data

to estimate the detection function independently for each year, or have a common detection

function across years, potentially with time-varying covariates, to estimate survey-specific

densities. In these situations, and given adequate coverage of the study area, it is still useful

to conduct analyses to account for spatial correlation to reduce the uncertainty in density

estimates and produce density surface maps. Here I explore how two analytic approaches,

point process and penalized spline-based smoothing handle uncertainty differently. It is

important to note that I do not purport that one method is better than the other, instead

the emphasis of this research focuses on why the uncertainties between the two models

differ. I illustrate the similarities and differences between the two approaches as applied

to the 2002 'ākepa PTDS data collected at Hakalau.

3.2.1 Point process approach

An alternative approach to modelling spatially referenced densities and spatial correla-

tion with smoothers is to employ point process methods (Illian et al. 2008, Diggle 2014,

Blangiardo and Cameletti 2015, Cressie and Wikle 2015). Based on point-referenced data

an intensity function and extent of spatial correlation is estimated to estimate bird den-

sity. A classic point process modelling approach is to model the spatial correlation of bird

detections where each bird seen is mapped and treated as a thinned point process where

the detection process does the thinning (this is also referred to as a filtered point process;

Cressie and Wikle (2015)). Within this framework, it is assumed that the true density is a

point process and the observations a thinned version. Yuan et al. (2017) developed a full

likelihood point process model for line-transect distance sampling data. Yuan et al. (2017)

used Bayesian inference with integrated nested Laplace approximation (INLA), as opposed

to Markov chain Monte Carlo, to simultaneously estimate the detection probability and

spatial correlation to map an animal’s spatial distribution and density.

In point process modelling the locations of all objects are known and mapped. When

collecting Hawaiian forest bird PTDS data the location of the sampling point is recorded

along with the horizontal distance to detected birds. The exact location of the birds there-

fore cannot be mapped. A thinning function is incorporated to overcome this limitation.

Careful formulation of the thinning function allows for combining distance sampling meth-

ods with spatially explicit point process models. This can be achieved by selecting the

half-normal function, or another member of the parametric family of functions common

to distance sampling approaches where the numbers of detections decay with increasing

distances. The thinning probability function then fulfils the requirements to model the

detection and intensity functions for incomplete data, which Yuan et al. (2017) accom-

plished using a stochastic partial differential equation (SPDE; Lindgren et al. 2011). The
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SPDE approach also avoids the need to aggregate detections at the point level.

Seaton et al. (In preparation) expanded on the approach Yuan et al. (2017) developed

to model PTDS data. Similar to Yuan et al. (2017), Seaton et al. used the SPDE approach

(Lindgren et al. 2011) that fits a Matérn-like model for spatial correlation. Based on

simulations of the posterior predictive distribution, relevant parameter statistics can be

estimated. I use the results from Seaton’s modelling for comparative purposes with the

DSM approach applied to the same dataset.

3.2.2 DSM approach

I provided a detailed description of the DSM approach using a two-stage model-based

smoother method in Chapter 2. In the first stage I estimated the year-specific detection

probability following conventional distance sampling procedures. In the second stage I

modelled the spatial correlation of the counts of detections using penalized spline-basis

smoothing with a GAM. I used the estimated detection probability as an offset in the

second stage to model imperfect detection of counts, the response variable, to estimate

densities. The detection function did not include covariates; therefore, I combine variance

component estimates (detection probability and smooth terms) to calculate the sum of

the variances using the delta method assuming independence.

3.2.3 Comparison between the two approaches

In order to compare the mean and variance between the point process and DSM ap-

proaches, I made the two modelling approaches as similar as possible by analysing a single

survey and matching the model functionality of the two approaches. For each approach,

the mean, median and uncertainty of the density were estimated using posterior simula-

tion procedures of estimates fitted to a regular grid over the study area. I compared the

overlap in 95% credible intervals (CrIs) of the point process approach with that of the

95% confidence interval (CIs) from the DSM. The posterior uncertainties were compared

on a per cell basis.

3.3 Methods

3.3.1 Study species and survey

The analyses in this chapter are conducted on the Hawai'i 'ākepadata collected at Hakalau,

described in Chapter 1. For purposes of this analysis, I selected a single survey from the

'ākepa time series based on broad sampling of the study area and sufficient numbers of

detections. In 2002, 289 points were sampled using PTDS methods within the open- and

closed-forest habitat (i.e., forest stratum; Chapter 1 Fig. 1.1). On 121 points, 276 'ākepa

were detected (Fig. 3.1). The number of detections at points ranged from zero to 6 (Fig.

3.2). These data are used for both the point process and DSM approaches.
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Figure 3.1: Sampling points and 'ākepa detections from the 2002 survey in Hakalau Forest
National Wildlife Refuge, Hawai'i Island. Black circles are points without detections and
green dots are points with detections (scaled by numbers of detections). The forest stratum
includes open- and closed-forest strata points (light blue shaded polygon).
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Figure 3.2: Counts of 'ākepa by point during the 2002 survey within the 58m truncation
distance.

3.4 Modelling the 2002 'ākepa dataset

Here I describe the methods used to estimate and map densities of the 2002 'ākepa dataset

using point process and DSM approaches.

3.4.1 Point process approach

The 2002 'ākepa counts were modelled with a one-stage Bayesian model to simultaneously

estimate the detection probability and spatial distribution fitted using INLA to predict

densities in inlabru (Bachl et al. 2019), an R package (R Core Team 2017). The forest

stratum study area was defined as the domain with the PTDS points a random collection of

points. Bird detections were taken from non-overlapping circles with centres at the PTDS

points. The distribution of points was modelled using a thinned log-Gaussian Cox process

where the detection function thins the process. The log-intensity of points was modelled

using the SPDE approach of Lindgren et al. (2011) where the spatial correlation was

defined by a Matérn covariance function. Details of the point process approach methods,

including defining the model likelihood and priors, are provided in Yuan et al. (2017) and

Seaton et al. (In preparation).

3.4.2 DSM approach

Stage one: Detection probability modelling

I estimated the 2002 'ākepa detection probability using conventional distance sampling

procedures in the distance sampling package Distance, version 0.9.7 (Miller 2017), in

program R. The half-normal detection function without series adjustments is the only

model currently supported in inlabru to estimate point-transect detection probabilities.

I estimated the detection probability for the 2002-specific dataset using the half-normal
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Figure 3.3: Detection function plots for the half normal detection function model selected
to estimate the 2002 'ākepa detection probability. Plots represent the detection probability
(top left panel), probability density (top right panel), and QQ plot (bottom panel). The
points generally follow the the identity line, which provides evidence that the function
adequately fits the data.

detection function with truncation at 58 m (the distance where the estimated detection

probability was about 0.1). A total of 262 detections was modelled while 14 detections

beyond 58 m were excluded. The unweighted Cramer-von Mises test was non-significant

at the 5% level (test statistic = 0.428, p = 0.061) indicating that the detection function

adequately fit the distance data (Fig. 3.3). The estimated detection probability was 0.443

(SE = 0.040) and the effective area surveyed per point was 4,681.8 m2 or a searched area

of 0.468 ha about each point. The effective area searched was estimated as ν̂ = πw2p̂ and

was used as the offset in the second stage smoother model.

Stage two: Model-based density estimation

For the smoother modelling I dropped the temporal variable from the full time series

analysis applied in Chapter 2 and fitted a smooth to just the spatial location variables

Easting and Northing. The spatial, penalized spline-based smoother (TPRS) model has
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Table 3.1: Model selection statistics for the Poisson, negative binomial and Tweedie dis-
tributions. Presented are the smoother log-likelihood (logLik), degrees of freedom (df),
Akaike’s information criterion (AIC) and ∆ AIC.

Model logLik df AIC ∆ AIC

Poisson -277.735 13.938 583.346 0
negative binomial -277.610 15.429 586.078 2.732
Tweedie -293.081 16.406 618.974 35.628

the form

log{E(nk)} =f1(Eastingk) + f2(Northingk)

+ f3(Eastingk, Northingk) + log(ν̂)
(3.1)

where nk is the bird count at the k -th point, f1 and f2 are one-dimensional isotropic TPRS

smooth functions [s()], f3 is a two-dimensional interaction smooth function [ti()], ν̂ is the

effective area searched and the offset is the log of ν̂. The model was built in R using the

mgcv package (Wood 2016). REML was used to estimate model parameters and maximum

basis size was set to allow flexible effects (Wood 2017). Coefficients were estimated using

penalized likelihood maximisation. I evaluated the Poisson, negative binomial and Tweedie

response distributions, each fit with a log-link function. For the Tweedie distribution I

restricted the power parameter to p = (1.1, 2) following recommendations provided in the

mgcv package help pages. I conducted a linear search to bracket the power parameter

between (1.1, 2) and used a method of bisection to approximately identify the maximum.

Based on inspection of the residuals plots there were no clear distinctions or obvious

problems with one or the other distributions (diagnostic figures are presented in Appendix

C). The Tweedie distribution AIC was > 35 units larger than that of the Poisson distri-

bution (Table 3.1). The Poisson and negative binomial distributions were within 2.8 AIC

units. Besides visual inspection and evaluation of the standard residual and QQ plots,

I assessed the residual errors for each of the individual parameters. Inspection of the

diagnostic plots revealed that all three distributions handled residual errors adequately

(Appendix C). Based on residuals diagnostics and AIC values I chose the Poisson distri-

bution for making comparisons with the point process approach method.

The Poisson with log-link distribution had small effective degrees of freedom (EDF)

relative to the reference degrees of freedom and with basis complexity (k-index) near

one for each term (Table 3.2). Following model checking methods detailed in Chapter

2 the deviance residuals were fitted with a Gaussian distribution with an identity link.

The effective area searched and offset, log(ν), was removed for model checking. All other

components of the model were retained. The model fitted to the deviance residuals revealed

that no un-modelled structure in the residuals remained (Table 3.3), and that residual

variance was removed in the model fitted at convergence (Table 3.4). This suggested that

there were minimal un-modelled residual autocorrelation from the Poisson distribution

model, and the deviance explained was 53.5%. The smooth function was convex for the

Easting variable progressing from a density of 0.1 birds ha-1 at the west boundary to
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Table 3.2: Effective degrees of freedom (EDF), reference degrees of freedom (rf) and basis
complexity (k -index) for each term in the fitted Poisson distribution spatial model.

Term EDF rf k -index

s(Easting) 3.227 9 0.89
s(Northing) 5.273 9 1.04
ti(Easting,Northing) 2.484 16 1.08

Table 3.3: Effective degrees of freedom (EDF), reference degrees of freedom (rf) and basis
complexity (k -index) for each term in the model fitted to the deviance residuals.

Term EDF rf k -index

s(Easting) 4.056e-05 2 0.93
s(Northing) 3.884e-04 2 1.09
ti(Easting,Northing) 5.672e-04 16 1.09

1.0 midway between the boundaries and declining to 0.6 at the east boundary (contour

values of -2.0, 0 and -0.5, respectively; Fig. 3.4, top left panel). The Northing variable was

moderately wiggly progressing from a density of 4.5 at the southern boundary to 0.002 at

the northern boundary (contour values 1.5 to -6.5, respectively; Fig. 3.4, top right panel).

The interaction was smooth with densities ranging from 0.05 to 20.1 (contour values -3 to

3, respectively; Fig. 3.4, bottom panel). For comparative purposes I also analysed these

data with increased flexibility in the smoothing parameters. It is expected that increasing

the flexibility in the smoothing parameters could make the estimates more similar to those

of the point process approach that can produce a higher degree of spatial variation (i.e.,

a more wiggly surface). Methods and results are provided in Appendix C.

3.4.3 Density and abundance estimates

Following the procedures detailed in Chapter 2, I defined a spatial 200 x 200 m grid that co-

incided with the study area to which densities and standard errors were predicted from the

fitted models. I drew 1,000 realisations from the posterior distribution. Mean, and 0.025,

0.5 and 0.975 quantiles were computed per cell from the model-specific prediction matrix

realisations and summed to produce the total forest-stratum densities. The parameters of

the posterior simulation maximum likelihood estimates are theoretically multivariate nor-

mally distributed (an approach also referred to as a parametric bootstrap), and are thus

independent. As such, for each replicate the uncertainty from the detection probability

was included with the spatial uncertainty using the delta method assuming independence.

Approach-specific abundance was calculated as the sum of the per realisation density

Table 3.4: Effective degrees of freedom (EDF), reference degrees of freedom (rf) and basis
complexity (k -index) for each term in the model fitted at convergence.

Term EDF rf k -index

s(Easting) 2.036e-05 2 0.93
s(Northing) 1.376e-05 2 1.08
ti(Easting,Northing) 1.376e-05 16 1.15
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Figure 3.4: Estimated model terms for the spatial GAM fitted to the 2002 'ākepa count
data. The distribution of the data is visualized in the rug plot along the x-axis for the
1D Easting and Northing plots, while the EDFs are presented on the y-axis labels. The
ribbon illustrates the error bounds of plus or minus one standard error from the estimates.
The locations of the points are plotted as black dots on the 2D contour plot and the EDF
is provided in the plot panel title. Contours representing 0.5 unit change are shown as
blue lines. Estimates provided on the scale of the linear predictor.
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estimates times the area of the stratum times 4 ha per grid cell. The size of the for-

est stratum (4,602.7 ha) was computed using the sp (Pebesma et al. 2018) package in

R. Variance of abundance was estimated analytically and 95%CIs were computed using

quantile methods from the 1,000 realisations of the posterior simulation. For compar-

ative purposes and following methods described in Chapter 1 Section 1.4.2 I combined

the detection probability with counts using a design-based method to estimate densities

(birds ha-1). Abundance was estimated as density times the size of the forest stratum,

and variance and 95%CI were calculated using analytic methods.

3.5 Results

Here, I present the results obtained from the point process and DSM approaches applied to

the 2002 'ākepa dataset. Maps of predicted median, SE and 95% interval width estimates

allow for visual comparison of both approaches. I also mapped per cell differences of the

median and 95% interval widths to identify where the two approaches produce similar

and different estimates. I interpreted these maps based on the extent to which the two

approaches smooth the densities. I then compared the approach-specific 'ākepa abundance,

SE and 95% interval width estimates for the forest stratum.

3.5.1 Mapping fitted estimates

Both the point process and DSM approaches produced visually near identical patterns

for the 2002 'ākepa dataset (Figs. 3.5 and 3.6), while the DSM approach produced larger

mean and median density estimates than the point process approach (Table 3.5). The

density surface maps show a density hotspot in the southern portion of the study area

that extended north-east to a second hotspot in the central portion. The entirety of the

northern portion of the domain was a coldspot (Figs. 3.5 and 3.6) and reflected patterns

in the count data (Fig. 3.1). The notable difference between the density surface maps

was that the point process approach produced a higher degree of spatial variation (i.e., a

more wiggly surface) than the DSM approach that was generally more smooth. Visually

comparing the interval width maps (Figs. 3.5 and 3.6) revealed that locations of hot and

cold spots were also similar.

There was good agreement in the spatial patterns of high and low uncertainties (SE;

Fig. 3.7, left and middle panels), and the SE values generally overlapped between the two

approaches (Fig. 3.7, right panel). For both approaches, uncertainty was small where den-

sity was low (in the northern portion of Hakalau). There was, however, more uncertainty

at the hotspots reflecting that variance of the count increases with count. The wiggly

versus smooth differences between the two approaches was also obvious in the SE plots

(Fig. 3.7, left and middle panels).

3.5.2 Per cell differences

The difference in the per cell median densities were useful for identifying where the two

approaches predicted similar and different densities. The per cell differences between the
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Table 3.5: Detection probability p̂, forest stratum density d̂, abundance N̂ , SE, 95%
interval limits (LCL = lower 95% interval limit and UCL = upper 95% interval limit),
and coefficient of variance (CV%) estimates by modelling approach. Subscript indicates
statistic.

Parameter Point process DSM

p̂mean 0.520 0.443
SE(p̂) 0.044 0.040

d̂mean 1.309 1.521

d̂median 0.832 0.984

SE(d̂) 0.147 0.185

LCL d̂ 1.040 1.181

UCL d̂ 1.311 1.903

N̂mean 6,034 7,010

N̂median 5,973 6,997

SE(N̂) 677 853

LCL N̂ 4,789 5,434

UCL N̂ 7,485 8,758
CV% 11.2 12.2

Figure 3.5: Median and 95%CrI density estimates from the point process approach.
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Figure 3.6: Median and 95%CI density estimates from the DSM approach.

Figure 3.7: SE estimates from the (left panel) point process and (middle panel) DSM
approaches. Scatterplot of the per cell SE estimates along the Northing axis (blue point
process and red DSM approaches; right panel). Scales between the two approaches were
not standardized.
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Figure 3.8: Difference in density median and 2.5% and 97.5% quantile estimates between
the point process and DSM approaches. Per cell differences were calculated as the DSM
estimate minus the point process estimate.

two approaches (DSM estimate - point process estimate) was small throughout most of

the northern third of the study area, greatest along the east boundary in the middle of the

study area and variable in the southern half of the study area (Fig. 3.8). Differences were

relatively small where the average difference between the median estimates was 0.229 (SE

= 0.358).

3.5.3 Abundance estimates

There was an almost 1,000 bird difference in abundance estimates between the two ap-

proaches (Table 3.5; Fig. 3.9). Mean abundances for both approaches were slightly larger

than median abundances, indicating a small degree of skewness with heavier upper tails.

The interval lengths of both approaches were relatively narrow, and the interval lengths

bracketed the mean and median abundance estimates of each approach. The point pro-

cess approach was slightly more precise with a CV of 11.2% than the DSM approach with

a 12.2% CV. The design-based abundance point estimate was 8,920 birds (SE = 1,111;

95%CI 6,990–11,381). The 95%CI estimates from the design-based method bracketed the

DSM point estimate but not the point estimate of the point process approach, and the

interval lengths of all three approaches overlapped.
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Figure 3.9: Histograms of the point process (blue) and DSM (red) approach posterior
distribution of abundances. Overlap between the two distributions is indicated in pur-
ple. Vertical lines are the mean abundance for point process (dashed) and DSM (solid)
distributions.

3.6 Discussion

I have presented results from estimating densities and abundances using point process

and DSM approaches. Both approaches were applied to the 2002 'ākepa survey data

from Hakalau. Seaton et al. (in preparation) fit a point process model with a thinned

log-Gaussian Cox process where thinning was achieved by the detection function. The

log-intensity of points was modelled using an SPDE with spatial correlation defined by

the Matérn class in a Bayesian model fitted using INLA. I fit the DSM approach with

a two-stage model-based analysis using TPRS in a GAM. The detection function was

modelled in the first stage and the point counts were modelled in the second stage with an

estimated offset to allow for imperfect detection. In general, both approaches produced

similar density surfaces with coinciding hot and cold spots, densities and uncertainty. The

point process approach produced a higher degree of spatial variation (i.e., a more wiggly

surface) than the DSM approach that was generally more smooth.

No 'ākepa were detected in the northern third of the study area in 2002 and both

modelling approaches predicted densities at or very near zero throughout the northern

region. The main differences were that the point process approach estimated densities

of approximately zero at the north-west boundary and low densities elsewhere, while the

DSM approach estimated densities of approximately zero along the north-east corner and

the peninsula on the western boundary. The point process approach produced marginally

larger per cell estimates across the northern region. Within this region these patterns were

also seen in the differences of the SEs where estimates were most different along the eastern
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boundary and in the peninsula but otherwise were fairly consistent across the coldspot.

In general, there was a tendency by the point process approach to produce slightly larger

densities in areas without detections.

This tendency was reversed for the two hotspots where the DSM approach estimated

larger densities. The hotspot at the east boundary in the middle of the study area radiated

outward from the boundary in concentric contours between transects nine and 10 (see Fig.

3.1; Appendix C Figs. C.11 and C.12). Variability in the point process approach densities

was greatest at the east boundary where survey effort was minimal, a similar pattern was

seen in the point process approach (Fig. 3.7).

Both approaches had good spatial alignment of the hotspot in the southern part of

the study area. Density contours roughly followed radiating ellipses along a south-west

to north-east axis. The contours were generally less well defined for the point process

approach relative to the DSM approach that predicted larger densities. In this area the

greatest difference between the two approaches was in the SE estimates. The point process

approach produced a patchwork of varying SEs whereas the SEs from the DSM approach

were uniformly small across the entirety of the hotspot and with less cell-to-cell variability

extending to the boundaries. Thus the point process approach produced a more wiggly

surface, following the underlying assumption imposed by the Matérn field, while the DSM

approach was generally more smooth that was induced by the underlying assumption of

the TPRS.

3.6.1 Model checking

Sampling design

Spatial models assume that the relationship between the birds and spatial covariates is the

same at sampled and un-sampled locations. This assumption allows for predictions based

on this relationship using the observed data. As detailed in Chapter 1, the HFBS uses

a spatially explicit randomized sampling design where survey points were established on

transect lines following a systematic random design, thus helping to ensure this assumption

is met.

Detection function

Both modelling approaches inherit the detection function modelling assumptions of dis-

tance sampling. This includes the assumption that the parametric function decays with

increasing distance, in addition to the critical assumptions and additional requirements

covered in Chapter 1 Section 1.4.1. As I noted in Chapter 1, it is likely that there are

moderate violations to these assumptions. However, care is taken to ensure observers are

aware of and sample so as to minimize the effects of model assumption violations (see

details in Chapter 1 Section 1.4.1).
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Point process approach

For the point process approach the sampling points are assumed to be non-overlapping

discs with radius w, in this case the truncation distance. The counts from each point are

then independent and Poisson distributed. The spatial arrangement of points and random

component of the sampling design helps ensure this assumption is met. This assumption

of non-overlapping points could be relaxed by including extra information such as the time

of each sample; however, this is not required for this analysis.

Following from the spatial assumptions above, it is assumed that the location of birds

are a point pattern that follows a log Gaussian Cox process with intensity process. That is,

the observations are assumed to be conditionally independent, given the intensity function

that describes the underlying dependence structure of the data. A measure of spatial

dependence, called a K -function, was assessed to determine if the point process modelled

captured the heterogeneity (Cressie and Wikle 2015). Estimation of the K -function is

achieved by averaging pairs of events that are at distance h-apart or less from each other.

Distances were selected to span the length of Hakalau and pairwise distance comparisons

were generated from the fitted model using 100 thinned point patterns. The K -function

indicated the model performed well, only showing potential clustering of counts between

1,000 and 2,500 m (Fig. 3.10; recreated from Seaton et al. (In preparation)). This results in

over-predicting the strength of the clustering at these distances. The strength of clustering

at these relatively large distances could be biased by an “edge effect” (Cressie and Wikle

2015, pg 212). All points in the study area are within 2,500 m of the boundary edge, and

a majority are within 1,000 m of the boundary (Fig. 3.1). An additional source of this

bias could come from the transect lines in the northern portion of Hakalau being about

1,000 m apart. Without control of this bias the point process approach may be applying

long-distance smoothing of the counts which could yield biased estimates. Given the cell

to cell heterogeneity in density and SE estimates this is not likely the case (see Figs. 3.5

and 3.7, and Appendix C Fig. C.11).

The specified point process approach assumes that the response variable is Poisson

distributed. Bayesian analysis with INLA has a limited set of predictive measures of fit

tests such as out-of-sample estimates that are appropriate for certain sub-cases of point

processes (Rue et al. 2017); however, their application to inhomogeneous and thinned

models used here is limited. The sensitivity to the response distribution choice assess-

ment I conducted for the DSM approach supports that the response variable counts is

approximately Poisson distributed.

DSM approach

The DSM approach allows for fitting residual errors through the GAM machinery following

approaches suggested by Wood (2017) and detailed in Chapter 2. Response distribution

selection was based on AIC, inspection of residual plots and sensitivity checking. There

was little un-modelled residual autocorrelation from the Poisson distribution model, and

the deviance explained was 53.5%. The percent of deviance explained is an effect size

measure, and as such is context dependent. Marra et al. (2012) concluded that their
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Figure 3.10: Boxplots of pairwise distances from 100 posterior samples. Bin widths in-
dicated by tick marks. Observed pairwise distances between observations noted by red
circles. Figure recreated from Seaton et al. (In preparation).

model, which explained 57% of the deviance, was adequate for spatial inference. Based

on these model diagnostics, I chose the Poisson distribution with log-link for modelling

the spatial patterns. This matched the distribution used in the point process approach,

eliminating deriving conclusions from models with different distributions and allowing for

more direct comparison of the underlying smoothness.

Underlying smoothness

An important assumption of spatial-analysis is that the response variable is a smooth

function of the spatial parameters. That is, the underlying smoothness of the surface is

such that neighbouring cells generally have similar values. The two approaches applied

here enforce similarity among neighbours through penalties on the priors for the point

process approach (Blangiardo and Cameletti 2015) and on coefficients for the DSM ap-

proach (Wood 2017). Assumptions on the prior variance of the coefficients also affects

the smoothness of the point process approach. The two approaches thus vary in their

ability to capture pattern in the data. The point process approach used a Matérn field

that allows for short range dependence in the scale correlation that can account for greater

heterogeneity in the underlying spatial patterns; i.e., the point process approach can fit a

wiggly or smooth surface. Whereas the DSM approach assumes the data vary smoothly

and the tension in the splines deforms to the data to fit a smooth surface.

Critical to understanding how the different approaches behave smoothly with this data

is to understand the data itself, i.e., to understand the underlying smoothness/wiggleness

of bird counts. Blangiardo and Cameletti (2015) recommend mapping the posterior means

and associated uncertainty to provide useful information on how well the different ap-

proaches captured the non-smoothness of the data. The mapped posterior distributions
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(Figs. 3.5 and 3.6, and Appendix C Figs. C.11 and C.12) and the per cell differences (Fig.

3.8) yielded significant insights into the data heterogeneity, particularly the hotspot in

the southern portion of Hakala. In this hotspot the DSM approach provided a smoothed

surface. In contrast, the point process approach was less smooth with adjacent cells vary-

ing considerably, reflecting the discontinuity of the counts. The end result was that the

point process approach had lower uncertainty than the DSM approach, a feature of the

point process approach to model the short-range dependency among counts to capture the

non-smooth behaviour in the data.

3.7 Choosing between the two approaches

In this chapter I have focused on how the point process and DSM approaches are similar

and different, and have avoided purporting that one approach is better than the other.

I believe this is a more useful approach that will allow researchers to select one or the

other analytic approach to model spatial processes based on the variability and underlying

smoothness in the data. My overall objective is to produce a precise abundance estimate

accounting for spatial variability in the 'ākepa data. As seen in Fig. 3.1 the 'ākepa counts

vary in space with highest counts recorded in the southern portion of Hakalau while

no birds were detected in the northern portion. Both modelling approaches produced

visually similar hot and cold spots reflecting the count distribution (Figs. 3.5–3.7). In

the southern hotspot, SEs from the point process approach were generally larger and

much more variable than those estimated using the DSM approach. While in the central

part of Hakalau the DSM approach SEs were larger than the point process approach

estimates. The scatter of detections along transects nine and 10 was similar with one

to three detections at a point or two interspersed between points with no detections.

However, the distance between the transects increases to the east and predictions are

made from increasingly distant survey points. On the western end of the transects the

point process and DSM approach specific predictions were very similar but increasingly

differed progressing eastward. With low numbers of detections and sparse survey effort

the DSM approach appears to have suffered an “edge effect” (Miller et al. 2013) resulting

in overestimated 'ākepa densities and large uncertainty estimates. As with all spatial

models, smoother methods can produce questionable estimates if there are gaps over the

range of covariate values or where predictions are made further away from the survey

points (Miller et al. 2013). The large gap between transects nine and 10 adversely affected

the DSM approach estimates with the greatest densities occurring at the eastern boundary.

In contrast, the point process approach had the greatest densities well within the eastern

boundary (between transects nine and 10, but slightly east of half the distance between

the east-west boundaries).

A final consideration when choosing between the two approaches is the amount of sta-

tistical and computational skill necessary to apply the models. The point process approach

requires an advanced level of statistical modelling and a thorough understanding of the

procedures to ensure the models are reliable and results appropriately interpreted. For

example, the point process approach requires the modeller to manually code the detection
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function whether assuming the detection probability depends only on the horizontal dis-

tance or includes covariates which affect the detection probability. The theory underlying

point process modelling is provided in Illian et al. (2008), Diggle (2014), Blangiardo and

Cameletti (2015) and Cressie and Wikle (2015). Point process modelling using the soft-

ware inlabru provides a statistical package for analyses (Bachl et al. 2019). The DSM

approach provides more flexibility for non-statistically trained modellers to apply sophis-

ticated and specialized software to model the detection function and evaluate if point- and

individual-level covariates should be included. Well-established and documented software

to model the detection probability is available in Distance for Windows and Distance for

R with theory and examples provided in Buckland et al. (2015), and spatial modelling is

available in the mgcv package with theory and examples provided in Wood (2017). Similar

to inlabru, the dsm wrapper helps facilitate much of the detection probability and spatial

modelling simplifying the analysis. This, however, does not minimize the need to under-

stand flexible regression theory and its application. A limitation to the DSM approach is

that more advanced modelling is required to incorporate the various sources of parameter

uncertainty between model stages to estimate total uncertainty. The variance propaga-

tion methods I described in Chapter 2, including the delta method assuming independence

used in this chapter, are applicable for propagating the detection probability uncertainty

from the first-stage through to the second-stage.
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Chapter 4

Controlling boundary behaviour

4.1 Overview

Here I apply a spatially-referenced soap-film smoother-based model to produce abundance

estimates accounting for boundary effects. The thin plate regression spline (TPRS) basis-

penalty smoother I applied in Chapters 2 and 3 can result in biased estimates and be

biologically unrealistic because it is not constrained by the study area boundary (Wood

2006, pgs 223 & 368-370). In contrast, a soap-film smoother controls the boundary be-

haviour by using two separate but linked bases; one for the boundary and one for the

domain film. In Section 4.2 I describe some conditions for which TPRS models may be

biased and introduce soap-film smoother models that account for those conditions. Section

4.3 describes the data and boundary, methods to model abundance using Distance in R,

spatial soap-film and TPRS smoother-based models, and methods to compare among the

estimates. In Section 4.4 I present estimates derived from the three different modelling

approaches and compare their estimates. Section 4.5 gives a discussion of the statistical

methods, biological findings and management implications of applying soap-film smoothers

to estimate population status.

4.2 Introduction

In Chapter 2 I modelled the spatio-temporal densities of 'ākepa across a 31-year time series

using a two-stage model-based smoothing method. This method captured spatial and

temporal correlation in bird densities, thus reducing estimates of uncertainty. In Chapter

3 I compared the uncertainty estimates accounting for spatial correlation between point

process and DSM approaches for a single survey. In both of these chapters the penalized

spline-based smoother predicted non-zero densities across the forest boundary into non-

suitable habitat, a modelling artefact commonly termed “leakage.” Leakage occurs when

the smoother links data across a gap between separate parts of the study area and can

result in over- or under-estimated densities. The leakage observed here was a result of the

topological structure and contours extending across the relatively simple boundary (i.e.,

the pasture-forest boundary was not complicated or convoluted; Fig. 4.1).

Leakage is a concern in these analyses because no 'ākepa were detected in the pasture
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Figure 4.1: Density (birds ha-1) estimates from the fitted GAM basis-penalty to the predic-
tion surface that contains the forest stratum (red polygon). The predicted densities in the
pasture stratum outside the forest stratum boundary were modelling artefacts, commonly
termed “leakage.”
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stratum in 2002 (see Chapter 1 Fig. 1.1), and the afforestation in the pasture had not

progressed to produce suitable 'ākepa habitat. While densities in the pasture stratum

could easily be excluded by integrating over the forest strata (see the Bristol channel

sole data example in Section 7.7.1 of Wood (2017)), the leakage draws into question the

applicability of the model, impeding interpretation from the spatial analysis. That is,

do 'ākepa occur at relatively high densities right to the pasture-forest boundary or do

densities taper prior to declining rapidly to zero at the strata edge? This question can

be addressed by modelling the surface of the boundary interior as well as estimating the

boundary densities by applying a soap-film smooth (henceforth soap) to the data (Miller

et al. 2013, Wood 2017). I modelled the 2002 'ākepa forest stratum data, re-selecting

the detection function, soap smoother and residuals distribution models. I compare the

soap smoother estimates to those of a TPRS smooth and conventional distance sampling

analysis.

4.3 Methods

4.3.1 Study species and selected survey

The analyses in this chapter are conducted on the Hawai'i 'ākepa data collected at Hakalau,

see Chapter 1 for detailed description. For this analysis I selected a single survey from

the 'ākepa time series based on broad sampling of the study area and sufficient numbers

of detections. In 2002, 289 points were sampled using PTDS methods within the forest

stratum where 276 'ākepa were detected at 121 points (see Chapter 3 Fig. 3.1).

4.3.2 Study area

Managers and policy makers require population estimates applied to representative polit-

ical or management boundaries. Here, I expanded the forest stratum study area used in

Chapter 3 to include the surveyed portions of the open- and closed-forest strata as well

as extending the extrapolation area to coincide with plausible management units. The

western edge of the boundary was set to the coordinates of the pasture-forest boundary,

while the north, east and south boundaries were squared off (hereafter, referred to as the

“soap boundary”) using the function locator (Becker et al. 1988) (Fig. 4.2). In addi-

tion to defining the soap boundary, soap-film smoothing also required a piori defining the

number and location of knots to be spread throughout the bounded domain. I defined a

set of knots on a regular grid with locations every 730m east and 670m north across the

study area; this ensured that all knots occurred either inside or outside the soap boundary

to choose those within the soap boundary domain (Fig. 4.2).

4.3.3 Design-based density estimation

For comparative purposes I estimated the 'ākepa abundance using conventional distance

sampling methods (Buckland et al. 2015). Using the R package Distance (hereafter,

DistR) (Miller 2017) I evaluated if a half-normal or hazard-rate key detection function
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Figure 4.2: Plot of forest stratum study area (red polygon) with points and knots located
within the soap boundary (blue polygon). The open circles are sampling points. Knots
within the boundary are orange circles.
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without adjustment terms or covariates better fit the 2002 forest stratum data. Data were

truncated at a distance w where the estimated detection probability (using a preliminary

detection function model) was about 0.1. Model selection for the best approximating

detection function followed AIC methods (Burnham and Anderson 2002) and model fit

was evaluated with a Cramér-von Mises test (Buckland et al. 2015). I then combined the

estimated detection probability with counts using a design-based method to estimate den-

sities following the methods described in Chapter 1 Section 1.4.2. Density was estimated

as birds ha-1 and abundance was estimated as density times the area of the soap boundary

(5,671.8 ha). Variance and 95%CI were calculated using analytic methods.

4.3.4 Model-based density estimation

Soap-film smoother model

Previous analysis revealed that leakage occurred with the TPRS model (Fig. 4.1). To

control leakage Miller et al. (2013) suggest using a soap-film smooth (Wood et al. 2008)

to fit the surface instead of a TPRS smoother (Wood et al. 2008, Marra et al. 2012,

Wood 2017). The soap smoother consists of two component smooths, one delineated by

a domain Ω and one modelling the values on the polygon bounding the domain (i.e., the

soap boundary). The former basis function smooths within the surface of the domain while

the latter smoother conforms to the boundary conditions. Densities in Ω are derived from

a smooth of the data. Density values on the boundary can either be fixed or estimated.

When birds occur in proximity to the boundary and the boundary density is fixed to be

zero, the domain smooth will distort as it is forced to decrease to meet the boundary

condition. When birds occur at the boundary, the boundary smooth can be used to

estimate densities. A cyclic spline smoother is employed along the boundary. The cyclic

spline smooth matches the spline “end points,” ensuring that the value of the first and last

knots are equal. Thus, in the cases where boundary densities are estimated the boundary

condition is enforced while allowing smooth departures into the interior of the domain:

the interior smooth is dependent on the data (Wood 2017, pg 223-227).

To meet soap smoother model requirements, I modified the spatial smoother model

from Chapter 3. The model was built in R (R Core Team 2017) using the mgcv package

(Wood 2016). I specified the basis in two parts to ensure adequate complexity for both

the boundary and interior smoother components. The soap model has the form

log{E(nk)} =f1(Eastingk, Northingk)

+ f2(Eastingk, Northingk) + log(ν̂)
(4.1)

where nk is the bird count at the k -th point, f1 is the boundary smooth bs="sf" that

was estimated and defined with a maximum basis size of 20. Although the maximum

number of basis dimension is arbitrary, it is sufficiently large to permit enough degrees

of freedom to represent the underlying smooth reasonable well (see Chapter 2). f2 is the

interior smooth that was fit with bs="sw" and with up to 108 basis dimensions which is

equal to the number of knots within the boundary. ν̂ is the effective area searched and the
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offset is the log of ν̂. Covariates were not included when modelling the detection function;

therefore, the effective area searched was constant across all points. The soap model was

fitted with a negative binomial response distribution with a log link (see Appendix D for

response distribution modelling, evaluation and selection). REML method was used to

estimate smoothing parameters and density estimates were predicted from the fitted model

to generate a density surface model of densities and standard errors. Model assumptions

were checked using methods detailed in Chapter 2.

TPRS smooth model

I fitted a spatial, penalized spline-based smoother following the same spatial TPRS smoother

modelling procedures used in Chapter 3. The model was built in R using the mgcv package.

The TPRS model has the form

log{E(nk)} =f1(Eastingk) + f2(Northingk)

+ f3(Eastingk, Northingk) + log(ν̂)
(4.2)

where nk is the bird count at the k -th point, f1 and f2 are one-dimensional isotropic

TPRS smooth functions, f3 is a two-dimensional interaction smooth function generated

via tensor products, ν̂ is the effective area searched and the offset is the log of ν̂. The

basis was set to match the maximum complexity of the soap smoother (above), with 14

basis dimensions each for the one-dimensional basis terms and a combined set of 11 by 11

bases for the interaction term, that when smoothed yielded a total of 126 knots (1 degree

of freedom per term is allotted for the identifiability constraints, 4 in total; Wood (2016)

help pages). REML methods were used for estimating smoothing parameters. A negative

binomial response distribution with a log link was used to model the response distribution

(see Appendix D for response distribution modelling, evaluation and selection). Density

surface model and corresponding standard errors were generated from the fitted model.

4.3.5 Comparison among estimates

Estimated coefficients cannot be directly compared between most spline models. To assess

how the TPRS and soap smoothers predicted density and uncertainty estimates I mapped

the distribution of 'ākepa densities across the soap boundary on a grid with cells 200 x

200 m. I also evaluated the model predictions at even distances along the boundary.

Following methods detailed in Chapter 2, estimates of abundance and 95% confidence

intervals (CI) were independently computed from the posterior distribution of the TPRS

and soap fitted models (Wood 2017). A total of 10,000 replicate parameter value sets

were drawn from the posterior distribution of the model coefficients, β̂, based on a ran-

dom multivariate normal distribution with a vector of covariates conditional on the data

and the posterior variance-covariance matrix for β̂. I refitted the linear predictor matrix

to the replicate sets and estimated abundance as the mean of the replicate sets, SE as

the standard deviation of the replicates and 95%CIs were computed from the 2.5th and

97.5th quantiles. The detection function uncertainty was not propagated with the uncer-
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tainty from either model-based approach as the detection probability does not contain any

spatial variability (modelled without covariates since there were no detection covariates).

For plotting purposes I used the boxplot function to identify outliers as estimates that

exceeded the boxplot extreme upper whisker value (the third quartile plus 1.5 times the

interquartile range). There were 685 outliers in the posterior distribution of the TPRS

(range = 11,308 to 430,771) and 224 outliers in the soap smoothers (range = 5,547 to

14,369) that were removed for plotting purposes. Outliers were included when computing

summary statistics. Similar to the comparisons of CI widths between models in Chapter

2, I computed the change in uncertainty as the percentage change in CI widths (CIW)

between soap and TPRS, and soap and DistR abundance estimates.

4.4 Results

4.4.1 Design-based density estimation

Using a preliminary detection function model, truncation was set at 58m. The AIC for

the hazard-rate detection function model was 11 units smaller than that of the half-

normal model (Table 4.1). The Cramér-von Mises test was non-significant at the α = 0.05

level indicating that the detection function did not statistically differ from the distance

histogram. Inspection of diagnostic plots indicated that the model adequately fit the data

(Appendix D Fig. D.6). The shoulder of the detection probability extends out to 30 m

before decaying rapidly. The estimated detection probability of a bird that was within

58m of a point was 0.631 (SE = 0.035) and the effective area surveyed per point was

6,668.6 m2.

4.4.2 Soap-film smoother

The soap smoother with 3.0 of 18 boundary degrees of freedom and 14.4 of 108 interior

degrees of freedom (Table 4.2) explained 54.6% of the variance in the data. The negative

binomial dispersion parameter was 10.55 indicating that the counts were over-dispersed.

As expected, the contours of the interior smooth paralleled the soap boundary particularly

along the pasture-forest boundary where densities were 1.0 (coefficient zero; Fig. 4.3, left

panel).

The main advantage of using the soap smooth is that there was no leakage across

the pasture-forest boundary (Fig. 4.4, top left panel). 'Ākepa densities occurred at rela-

tively high densities of about 1.25 birds ha-1 right to the pasture-forest boundary in the

Table 4.1: Detection function model selection statistics and parameter estimates. Key
function without adjustment terms ranked by AIC. Presented are the model unweighted
Cramér-von Mises (C-vM) statistic and p-value, and the estimated detection probability
with SE.

Key function ∆ AIC C-vM p-value P̂a se(P̂a)

Hazard-rate 0 0.042 0.920 0.631 0.035
Half-normal 11.094 0.428 0.061 0.443 0.040
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Figure 4.3: Comparison of smoothing using a soap-film (interior smooth; left panel) and
thin plate regression spline (right panel) based GAMs. The soap boundary is outlined by
the polygon (bold line) while the contours (thin lines) show the estimates of the smooth on
the linear predictor scale. The dots in the right panel are the sampling points. Predictions
were made over a larger area with the too.far argument to illustrate that the TPRS model
suffers from leakage along the west boundary.

Table 4.2: Effective degrees of freedom (EDF), reference degrees of freedom (rf), and basis
complexity (k -index) for each term in the soap-film smooth spatial model.

Term EDF rf k -index

ti(Easting, Northing) 2.978 18 1.01
ti(Easting, Northing) 14.448 108 1.01
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Figure 4.4: Predicted density surface map of 'ākepa densities (birds ha-1; left column) and
SE (right column) for the 2002 dataset using a soap-film (top row) and TPRS (bottom
row) based smooths. Fitted values projected to the soap-film boundary (red polygon).

south-west, but decreased to near zero along the north-west boundary (Fig. 4.5). Density

estimates along the north, east and south boundaries varied. The density surface maps

showed an 'ākepa density hotspot in the southern portion of the domain that extended

north-east to a second hotspot in the central portion of the domain (Fig. 4.4, top left

panel). Densities throughout the north portion of the domain were zero or near zero. The

uncertainty estimates portrayed the same pattern with large SEs predicted in the southern

portion that extended north-east to the central portion of the domain (Fig. 4.4, top right

panel). SEs in the north portion of the domain were near zero while SEs were moderate

adjacent to the south boundary and throughout a swath along the south-east boundary.
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Figure 4.5: Predicted 'ākepa densities along the boundary (left panel) for the 2002 dataset
using the soap-film (red) and TPRS (blue) smoother. Location of “distance” around the
soap-film boundary (point 0 and 1000 are at the same location; right panel).

Table 4.3: Effective degrees of freedom (EDF), reference degrees of freedom (rf), and basis
complexity (k -index) for each term in the TPRS smooth spatial model.

Term EDF rf k -index

s(Easting) 3.655e-05 13 0.86
s(Northing) 5.870 13 1.01
ti(Easting, Northing) 8.097 100 1.02

4.4.3 TPRS smoother

The TPRS smoother had an estimated negative binomial dispersion parameter of 12.217

and explained 54.5% of the deviance. The EDF on Easting was approximately zero, non-

significant and the smooth function was linear (Table 4.3; Appendix D Fig. D.5, top left

panel). The EDF on Northing was greater than zero, significant and the function was

wiggly (Table 4.3; Appendix D Fig. D.5, top right panel). There was a clear pattern of

lower densities in the north than in the south part of Hakalau. The interactions of Easting

and Northing were also greater than zero, significant and the function was nonlinear (Table

4.3; Appendix D Fig. D.5, bottom panel).

There were two density hotspots and three SE hotspots in the density surface maps

predicted from the TPRS model (Fig. 4.4, bottom left and right panels respectively). The

hotspot in the south portion had a maximum contour of 2.7 with slightly larger estimates

at the south boundary (Fig. 4.3, right panel). In this area the contour coefficients decreased

to 0.4 along both the west and east boundaries. The opposite pattern was fitted in the

north half of the study area. Minimum values were centrally located between the maximum

values of greater than 7.4 at both the west and east boundaries. The contours of the TPRS
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Figure 4.6: Scatterplot of the pointwise soap-film and TPRS smoother predicted density
(birds ha-1; left panel) estimates, and SE estimates (right panel). Dots are the grid
pointwise estimates. The identity line (blue) passing through the origin with unit slope is
added as a visual aid.

model continued beyond the soap boundary, which resulted in very convoluted densities

along the boundary (Fig. 4.5).

Comparison of smooths predictions

Both smoothers had visually similar cold and hotspots in the domain with similar predicted

densities and SEs (Fig. 4.4). Both smoothers predicted zero or near zero densities in

the northern part of the domain. The extent of the coldspot was much larger for the

soap smooth than for the TPRS smooth extending from the central hotspot to the north

boundary, while the TPRS smooth predicted approximately zero densities to about half

the area of that predicted by the soap smooth. The large hotspot in the southern part

of the study area was similar in shape and extent between the two smoothers. The local

hotspot in the central part of the study area was more symmetrical for the soap smooth

than for the TPRS smooth which was more triangularly-shaped. For the TPRS, both

hotspots extended to the boundary. In contrast, both soap smooth hotspots occurred

interior to the boundary, even though the parametrization allowed for fitted values to

persist right to and including the boundary. There was very little scatter in the predicted-

predicted density plot for cells with higher densities while the scatter was greater for cells

with low densities (Fig. 4.6, left panel). The plotted densities followed the identity line

indicating the soap densities were similar to those predicted by the TPRS smooth.

Greater differences between the two smoothers were observed in the fitted SE than the

fitted density estimates (Fig. 4.4). The TPRS had three SE hotspots while the soap had

two hotspots. These differences may be due to lack of coverage by the data or differences in

knot number and placement (although this latter point is not likely as the EDF were small

compared to the maximum degrees of freedom). For the TPRS, the SE global maximum

occurred in the central part of the domain adjacent to the boundary. The equivalent soap
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SE hotspot was more centrally located between the east and west boundaries and the SE

estimates were smaller. The soap smooth global maximum was in the southern part of

the domain and the hotspot portrayed a patchwork of varying SEs while the TPRS SEs

were relatively uniform across the entirety of the hotspot with less cell-to-cell variability.

There was greater scatter between the predicted soap and TPRS smooth SE estimates

than in their predicted densities estimates (Fig. 4.6, right panel). There was little scatter

for higher predicted SE estimates while the scatter was large for low to moderate SE

estimates. The plotted SE estimates followed but lie below the identity line indicating

that soap SE were slightly larger than the TPRS estimates.

The soap-film basis argument controlling the boundary smooth eliminated the extreme

rough densities of the TPRS smooth (Fig. 4.5). On the boundary the largest densities

predicted by the soap smooth occurred in the south-west corner of Hakalau (labelled zero

in Fig. 4.5). Densities declined smoothly to near zero by and along the northern boundary

(occurring between 300 and 600 in Fig. 4.5) and then increased progressively along the

eastern boundary until again reaching maximum densities of nearly 1.25 birds ha-1 at the

south-west corner. Predicted densities from the TPRS smooth were more rough with peaks

at points 80, near 700 and at 950 along the boundary (Fig. 4.5). There were minor peaks

at about points 200, 300 and 800. Each of these peaks occurred where contours intersected

the boundary (compare Figs. 4.3, right panel, and 4.5). In between each peak the TPRS

smooth predicted small to very small densities before increasing rapidly to the next peak.

Similar to the soap smooth, the TPRS smooth predicted near zero densities along the

northern boundary, between points 400 and 600. The peak at 300 suggests leakage by the

TPRS smooth where the nearest birds were detected more than 2 km distant (see Chapter

3 Fig. 3.1).

Abundance estimates

Sampling from the posterior distribution showed that both the TPRS and soap smooths

produced many very large abundance estimates (greater than 12,000 birds; Appendix D

Figs. D.7 and D.8). These outliers strongly skewed the abundance estimates of the TPRS

smoother and resulted in very large SE estimates (Table 4.4; Fig. 4.7). The median

abundances of the two approaches differed by more than 500 birds, and the confidence

interval widths differed by nearly 6,500 birds. Estimates of the 2002 'ākepa abundance

using conventional distance sampling analyses were more similar to estimates produced by

the soap smooth (Table 4.4). The 95%CIs of each approach bracketed the mean abundance

estimates of the other approaches. The soap CIW was 208.3% shorter than the TPRS

CIW, but was 0.8% longer than the DistR CIW.
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Table 4.4: Abundance, standard error, coefficient of variation, and 95% confidence limits
(LCL = lower 95%CI limit and UCL = upper 95%CI limit) estimates for the TPRS and
soap smooth models, and conventional distance sampling methods fitted to the 2002 'ākepa
for the soap boundary. Outliers in the TPRS and soap smooth posterior distributions were
included in these estimates.

Estimator Abundance SE CV LCL UCL

TPRS 8,274 10,919.60 1.162 6,796 16,392
soap 7,734 794.10 0.102 6,518 9,630
DistR 7,713 782.55 0.101 6,323 9,410

Figure 4.7: Histograms of the soap-film (red) and TPRS (blue) smoother posterior distri-
butions. Overlap between the two distributions is substantial (purple). Vertical lines are
the median abundance for soap-film (solid) and TPRS (dashed) distributions. Outliers
have been removed for plotting.

4.5 Discussion

4.5.1 Statistical methods

I used a soap-film smoother for modelling spatial densities of 'ākepa from PTDS count

data. The two dimensional soap-film smoother is comprised of two separate but linked

bases; one for the boundary and one for the film itself. In this case the soap basis arguments

provide a good approach for estimating the boundary and interior surface splines. If the

value of the response at the boundary is known everywhere then the boundary can be fixed

at that value without needing a spline to model the boundary values. Alternatively the

boundary effect can be estimated using the boundary spline if the response at the boundary

is unknown or if the suitability of the habitat varies along the boundary. This can result

in varying densities along the boundary. As seen in the 'ākepa densities, estimating the
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boundary is more realistic since it is not certain that the boundary value will be zero.

This latter approach of estimating densities along the boundary allowed me to answer

the question posed in the Introduction to this chapter: do 'ākepa occur at relatively high

densities right to the pasture-forest boundary? Densities at the boundary varied along

the pasture-forest boundary as well as across the domain (see Figs. 4.4 and 4.5). As seen

in Fig. 4.5, the predicted values on the boundary were smallest in the north-west corner

and increased along the western boundary toward the south-west corner. Thus, in the

southern portion of Hakalau 'ākepa occur at relatively high densities right to the edge

of the pasture-forest boundary while in the northern portion 'ākepa densities were near

zero inside the domain and on the boundary, as well as outside the domain in the pasture

stratum.

The soap smooth model estimating the boundary reflects that 'ākepa densities may

extend beyond the soap boundary. This is a “soft” boundary that poses no real physical

barrier in the 'ākepa distribution. Along the eastern and southern boundaries the coeffi-

cient indicates that the population extends beyond the boundary into the adjacent forest

habitat.

Fixing the boundary to zero instead of estimating it would force the smooth of the

interior surface to decrease to zero at the boundary. This “hard” boundary approach may

be appropriate for island populations where birds are restricted to suitable habitat that

is located within an inhospitable matrix. Examples of this include bird populations on

Pacific islands such as Aguiguan in the Mariana Islands (Amidon et al. 2014), Tau in

American Samoa (Judge et al. 2013) and Nihoa in the Hawaiian Islands (Gorresen et al.

2016) where suitable forest bird habitat occurs across these islands and extends right to

the coastal non-forest habitat or high-tide water line.

Ideally, the 'ākepa population at Hakalau requires a blend of fixing a portion of the

boundary while estimating the boundary density elsewhere would be optimal. In this

scenario the boundary would be fixed at zero on the north-west end of the study area

along the pasture-forest boundary, while being estimated on the north, east, south and

south-west boundaries. Densities in the north-west end of the domain were zero along the

boundary and for some distance into the interior (Fig. 4.4). Thus fixing the boundary basis

argument in this area to zero would not require contortions of the interior basis argument

to meet boundary requirements. This could free up knots to be used in modelling the

interior and could better estimate uncertainty by ascribing zero where densities are known.

Conceptually this is possible, but to my knowledge it has not been implemented in mgcv

or other software.

I specified the boundary and interior basis arguments for the soap-film smooth sepa-

rately. An alternative formulation is to use the bs="so" argument. This construct is a

wrapper for the boundary and interior smooths. While the bs="so" construct is easier to

use, it does not allow for checking that sufficiently large k-basis factors have been selected

for each components to account for residual errors.

Alternative methods that respect complex boundaries include finite element L-splines

(Ramsay 2002), geodesic low rank thin plate spline methods (Wang and Ranalli 2007),
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and complex region spatial smoother (CReSS; Scott-Hayward et al. 2014). Each method

has several advantages and disadvantages, and comparisons conducted by Scott-Hayward

et al. (2014) indicate that the CReSS and soap-film methods perform better than the other

methods. They suggested that the main limitation of the soap-film smoother is that it

can be difficult to construct in software.

4.5.2 Biological findings

The hotspot in the southern part of the domain coincides with the locally abundant density

estimates identified by Scott et al. (1986) at 200+ birds/km2. Similarly to the Scott et al.

(1986) predictions, my results indicate that 'ākepa densities decrease outside the hotspot.

'Ākepa extend outside the domain on three sides of the soap boundary but are restricted

to forest habitats above 1,500m elevation. On the north and east sides of the domain

this is within several hundred meters of the boundaries. The 'ākepa distribution to the

south of Hakalau continues along the 1,500m elevation contour before terminating several

kilometres south of the study area (Judge et al. 2018). Although the extent of the survey

is limited, the soap smoother based density estimates appear to be a good approximation

of the 'ākepa distribution and abundance in the region (Scott et al. 1986, Lepson and

Freed 1997).

Abundances of between 6,300 to 9,700 'ākepa in the extended forest stratum boundary

seems realistic for the 2002 survey in this high density 'ākepa population (Gorresen et al.

2009, Camp et al. 2010, 2016). Simulation studies of design-based distance sampling have

shown that method to be unbiased when the critical assumptions are met or possess low

bias when assumptions fail (Buckland et al. 2001, 2015). This is not necessarily the case

with model-based approaches and model mis-specification can lead to bias. The standard

procedure in this case is to check the residual structure of the selected model. The residual

plots were qualitatively similar and the desired refitted model EDF was approximately zero

for each term with basis complexity (k-index) near one for the selected model. While I am

not able to assess bias in either the TPRS or soap estimates, it is insightful to compare

these model estimates to those produced using the design-based approach assuming that

the latter approach is unbiased. In this case it appears that the soap smoother is also

unbiased while the TPRS smooth may be positively biased. The 95%CIs among the three

estimators overlapped the mean abundances, where the DistR and soap CIs just include

the TPRS point estimate (by 17 and 237 birds, respectively; Table 4.4). The CV of

abundance was very small at about 10% for the DistR and soap models while the CV of

abundance was 116.2% for the TPRS model. This is not surprising as the TPRS smooth

does not constrain the boundary condition resulting in a much larger CV and much wider

CI than that of the DistR and soap models.

Along the southern portion of the pasture-forest boundary 'ākepa occur in relatively

large densities (see Fig. 4.5). The combination of suitable habitat and high densities

provides the potential for 'ākepa to colonize the pasture-stratum naturally. It was not

until 2011 that 'ākepa had been detected in the afforested pasture (Paxton et al. 2018).

Surveys subsequent to 2012 indicate that 'ākepa continue to use the kao in the pasture
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stratum (Steve Kendall, U.S. Fish and Wildlife Service, Big Island Complex Wildlife

Biologist, personal communication, 21 January 2020). As afforestation of the pasture

stratum progresses 'ākepa appear poised to colonize this restored forest.

4.5.3 Management implications

Extending the extrapolation area to coincide with plausible management units, i.e. making

predictions outside the range of the data, should be made with caution. This appears

to pertain more to the TPRS than the soap smooth. Relative to the DistR and soap

abundances, the TPRS abundance may be positively biased with large SEs. In Chapter 3

I showed that with low numbers of detections and sparse survey effort the TPRS smooth

appeared to have suffered from edge effect (Miller et al. 2013). The TPRS smooth applied

in this chapter also suffered edge effect in the central part of the domain adjacent to the

boundary. Thus adding to the overestimated abundances and large uncertainty estimates.

These limitations did not appear to have as large an affect in the spatio-temporal smooth of

Chapter 2, likely due to borrowing information through space and time. These limitations

were also not seen in the soap smooth estimates applied here; however, further investigation

could confirm that the soap-film smooth is unbiased, precise and widely applicable with

forest bird survey data.
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Chapter 5

Population dynamics modelling

5.1 Overview

Understanding the patterns of population status change through space and time does

not address why densities are changing. In this chapter I explore what may be driving

population dynamics. I employ state-space models (SSMs), a class of models that are

comprised of a state model and a measurement model. The state model describes the

change of the state parameter, the true population size, from the previous time, Nt−1, to

the current time, Nt, and reflects the stochastic sub-processes driving population change.

The measurement model describes the relationship between the observations, i.e., annual

abundance estimate corrected for detection probability N̂t, and the state parameter Nt.

I apply SSMs to abundance time-series data to make inferences about the underlying

rates of change. SSMs can be expanded to incorporate demographic data, or derived

demographic quantities, to make inferences about states and vital rate parameters. This

allows for the formulation of integrated population dynamic models (PDMs; Zipkin et al.

2019). 'Ākepa demographic quantities of survival and reproduction were incorporated as

within-year sub-processes to produce multi-stage SSMs to describe population dynamics

and trends (Newman et al. 2014). I used PDMs in a Bayesian framework, which allows

for including information on the vital rates in the form of prior distributions derived from

the literature, propagating uncertainty, estimating missing values and sharing information

among population processes (Plard et al. 2019). This approach ensures that the predicted

abundances more closely follow population trajectories that are biologically realistic. I

compared the percentage change in abundance confidence interval widths from Distance

for Windows (from Chapter 1) with the credible interval widths from the SSMs to discern

improvements in estimator precision.

In Section 5.2 I introduce SSMs and how they can be expanded on to explicitly in-

corporate demographic parameters in PDMs. I describe the 'ākepa abundance survey,

provide an overview of Hawaiian forest bird demography and detail the 'ākepa-specific de-

mographic data and the formulation of the SSM and PDMs in Section 5.3. The results are

presented in Section 5.4. I discuss in Section 5.5 the statistical methods, biological findings

and management implications of applying PDMs to estimate population dynamics, status

and trends.
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Figure 5.1: Diagram of a state space model. The true abundance is a hidden or latent
process called the state process. The measurements, abundance estimates generated using
distance sampling methods, are independent given the state. A conditional probability
density function is used to model the change in the state over time.

5.2 Introduction

Up to this point in my thesis I have applied generalized additive models (GAMs) and

results from a point process model to estimate 'ākepa densities. These are empirical

modelling approaches that do not incorporate biological processes that govern population

changes (Besbeas et al. 2002, Buckland et al. 2004, Schaub and Abadi 2011, Newman

et al. 2014, Zipkin et al. 2019). Long-term abundance monitoring provides information

on population change as abundances fluctuate in response to changes in underlying demo-

graphics of survival and recruitment. Incorporating population dynamics in abundance

time series can be achieved with SSMs. SSMs differentiate between state process vari-

ation and measurement error. Process variation is the naturally occurring variation in

abundances due to changing demographic and environmental conditions. Measurement

error results from changing sampling conditions, availability of birds to be sampled and

stochastic measurement error. By partitioning the error into its component parts of pro-

cess variation and measurement error more precise abundance estimates can be produced.

In their simplest form, SSMs are a joint distribution of states and measurements, two

discrete time processes, that are run in parallel. The unobserved states are modelled in

a state model, while the measurements of the state, along with measurement errors, are

modelled in a measurement model. The measurement model describes the relationship

between the unobserved states, i.e., true annual abundances, and the observed data, i.e.,

estimated annual abundances. The state model is also called a process model and the

measurement model is synonymous with an observation model. Figure 5.1 shows this

relationship graphically.

In this framework a SSM has a measurement model for N̂ = (N̂1, N̂2, . . . , N̂T ) es-

timated abundances for the years t = (1, . . . , T ) in a time series of length T , usually

collected on a regular time interval. The estimated abundance N̂t is conditional on the

current state Nt. The state model of the true abundances N = (N0, N1, . . . , NT ), with N0

the abundance of the initial state, is modelled such that Nt is conditional on the previous

state Nt−1. The state model is thus treated as an autocorrelated process. In this frame-

work the SSM is a first-order Markov process modelling the temporal autocorrelation of

abundances. An SSM that assumes stochastic exponential growth or decline in time has
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Figure 5.2: Flow chart of the states and parameters used in the SSMs and PDMs. The
data and Models M1-M5 are shown on the right column.

the form

state eqn Nt = pNt−1 + ηt ηt ∼ normal(0, σ2η), (5.1a)

measurement eqn N̂t = Nt + εt εt ∼ normal(0, σ2ε ) (5.1b)

where t ≥ 1, the population rate of change is 0 ≤ p ≤ ∞, the state variance is ση ≥ 0 and

the measurement variance is σε ≥ 0. Distributions other than normal may be substituted

for the errors. The state model is initiated with the abundance N0 at the initial time point.

The true number of birds is a discrete non-negative value that I assume is a continuous

random variable. These models are often reparameterized and conveniently approximated

with a log-normal distribution.

SSMs are modular in that parameters describing different demographic processes can

be layered onto the state equation (Fig. 5.2). In the simple SSM, population rates of change

describing changes in 'ākepa abundance can be estimated. Rates of change are indices of

the population mean fitness, where abundances change in response to the demographic

mechanisms of survival, recruitment and movement (Koons et al. 2016, Ross et al. 2018).

Building upon the simple SSM, demographic parameters can be included to construct a

multi-stage, sequentially-fitted PDM (Newman et al. 2014) of the abundance time series

and population dynamics (Fig. 5.2).

Bayesian inference has been used in ecology for many decades (e.g., Casella 1985,

Ver Hoef 1996) with early applications of PDMs predominantly applied in fisheries (e.g.,

Meyer and Millar 1999). Within terrestrial ecosystems Borchers et al. (2002) proposed

using SSMs to estimate state processes for open populations. Buckland et al. (2004, 2015,

2016) and Thomas et al. (2005) expanded on that framework to provide a general approach
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for modelling demographic processes with survey data to estimate population dynamics

and abundance trends. PDMs provide a unified and flexible modelling framework to com-

bine multiple data types including conflicting or spatially and temporally piecemeal data

on abundance and demographic parameters to simultaneously estimate population trajec-

tories and demographic processes driving population change (Besbeas et al. 2002, Buckland

et al. 2004, Schaub and Abadi 2011, Abadi et al. 2010, Newman et al. 2014, Plard et al.

2019, Saunders et al. 2019). Although the SSM framework has been developed relatively

recently, it has been applied widely (see, e.g., Nadeem et al. 2016, Rushing et al. 2016,

2017, Ahrestani et al. 2017, Chandler et al. 2018, Ross et al. 2018, Hostetter et al. 2019,

Roy et al. 2019, Margalida et al. 2020, Saracco and Rubenstein 2020). Newman et al.

(2014) details the theory, presents well developed examples and covers the background of

SSMs. Moreover, a Bayesian approach allows for incorporating annual variation in demo-

graphic rates characterized by the variation in the state model, and parameter estimates

with their uncertainty quantified from the posterior distribution (Buckland et al. 2004,

2015, Riecke et al. 2019, Zipkin et al. 2019).

SSMs can have parameter estimability issues (see Auger-Méthé et al. 2016, and refer-

ences therein). One approach to overcome this is to incorporate additional information

in the SSM, such as estimates of measurement error, survival, reproduction or other de-

mographic traits (Besbeas et al. 2003). Knape et al. (2013) showed there was little infor-

mation lost in fitting SSMs using derived MLE-based estimates for parameters with their

variances instead of modelling the raw data. This substantially simplifies the SSM and

specialized, sophisticated software can be used for the analysis of distance sampling and

mark-recapture data (Besbeas et al. 2002). Uncertainty in the annual 'ākepa abundances

is measurement error and can be estimated using distance sampling methods (Buckland

et al. 2016; described in Chapter 1). An advantage of this approach is that abundances are

estimated accounting for the detection probability and the detection probability variance

is included in the total abundance estimate variance, which is σ2ε in Eqn. 5.1. Including

estimates of measurement error then eliminates the strong correlation between it and the

process error when simultaneously solving the measurement and state equations.

In the SSM framework the combination of the state and measurement models can be

mathematically described as

Prior pdf : π(θ)

Initial state pdf : g0(N0|σ2N0
)

State at time t pdf : gt(Nt|Nt−1,θ)

Measurement at time t pdf : ft(N̂t|Nt, z, σ̂
2
ε ),

(5.2)

corresponding to the time series with t = 1, . . . , T . The point estimate N̂t is estimated

using conditional likelihood methods of distance sampling with measurement error (σ̂2ε ;

Chapter 1 Sections 1.4.2 and 1.4.4). Specific to distance sampling methods, the vector of

covariates corresponding with the measurement model are the covariates z from Chapter

1 Section 1.4.4. The state process is modelled as a conditional pdf gt that describes
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the change from time Nt−1 to Nt. The vector of parameters corresponding to the state

model are θ, and includes the stochastic sub-processes driving population change. The

initial conditions on the state N0 needs to be specified or estimated to inform N1, and is

included as a conditional pdf g0 in the SSM. The building block approach allows for adding

a conditional pdf π layer that explicitly models variability θ in survival and recruitment.

SSMs are flexible and the parameter pdf π can be written to be conditional on previous

states (e.g., explicitly modelling density dependence in the demographic parameters).

In Bayesian inference the parameters θ are considered random variables that are spec-

ified with a prior distribution, π(θ). Bayesian inference is based on the likelihood and

parameter prior distributions, thus the posterior distribution is a conditional probability

distribution. In this form the likelihood for the SSM can be written as

L (θ|N̂1:T ) ≡
T∏
t=1

f1:T (N̂1:T |θ)

=

∫
g0(N0|θ)

T∏
t=1

gt(Nt|Nt−1,θ)ft(N̂t|Nt)dN0:T ,

(5.3)

integrating out the states in the joint distribution of states and measurements.

For additional flexibility and realism, state parameters can be allowed to vary over

time, for which I use the notation θt. This can be modelled using a hierarchical Bayes

framework, where the priors on the θts depend on random variables Γ, which in turn have

a hyperprior π(Γ). This hierarchical form of the SSM is then formulated as

Hyperprior pdf : π(Γ)

Prior pdf : h(θt|Γ)

Initial state pdf : g0(N0|σ2N0
)

State at time t pdf : gt(Nt|Nt−1,θt)

Measurement at time t pdf : ft(N̂t|Nt, z, σ̂
2
ε ).

(5.4)

For example, I may wish to specify that survival φ varies by year with prior distribution

h(φt|Γ) where Γ contains parameters for the mean and variance of annual survival, and

these are given prior distributions specified by π(Γ).

In this chapter, I fit a series of models of increasing biological complexity. I start by

analysing the 31-year 'ākepa abundance time series with Model M1 a model where true

population size follows a random walk on the log scale. Vague priors are given on pro-

cess variance and I incorporate the abundance variance estimates from distance sampling

as the measurement error variance. This first model is presented as a simple case for

expository reasons and I identify limitations of parameter estimability or identifiability.

Bayesian inference allows for incorporating external information or beliefs in the form of

informative parameters. This allows for quantifying our beliefs about the values of pa-

rameters. I develop PDM Models M2-M5 by adding stochastic demographic sub-processes

of survival and reproduction driving population change. Modelling the underlying demo-

graphic dynamics provides information on the vital rates that drive population change
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and improve abundance estimator certainty. These models incorporate biological realism

to evaluate trends as abundances change in response to the demographic mechanisms of

survival and recruitment, and how they may vary temporally. The complexity of the

models increases progressively by incorporating additional information collected to better

understand drivers of the 'ākepa population at Hakalau. I evaluate model performance

by comparing the percentage change in abundance CI width from Distance for Windows

(Chapter 1) with the credible interval widths from the SSMs.

5.3 Methods

5.3.1 Study species and survey

The analyses in this chapter are conducted on the 31-year Hawai'i 'ākepa point-transect

distance sampling (PTDS) time series data collected at Hakalau in the open-forest stratum

(Chapter 1 Fig. 1.1). In Chapter 1 I described the design-based methods I used to fit a

detection function, evaluate covariates and estimate 'ākepa densities and their variances

for each of the 1987 to 2017 surveys. Abundances and their SE were then calculated as

density and SE estimates multiplied by the size of the 3,061 ha study area (Chapter 1 Fig.

1.7).

5.3.2 Demographic data

Here I summarize the life history traits, particularly those of 'ākepa, relevant to making

decisions about the SSM structure and parameter priors. Priors can be set either as vague

(also called diffuse) if no knowledge of the system exists, or can incorporate relevant bio-

logical knowledge from previous studies or expert opinion to partially inform the priors.

Models formulated with biologically informed priors give increased biological realism that

is lacking in models using uninformed or arbitrarily specified priors (Newman et al. 2014,

pg 86; Schaub and Fletcher 2015). Woodworth and Pratt (2009) provide a thorough re-

view of Hawaiian forest bird demography. Life history traits of tropical birds are thought

to be adaptations that result from life history trade-offs in response to tropical environ-

mental conditions relative to temperate conditions. Tropical birds typically exhibit slow

life histories (Roff 2002) where individuals are long-lived producing small clutches of 1-2

eggs with extended incubation, nestling, and post-fledging dependent periods. Adult birds

have relatively high annual survival rates, while there are high rates of nest loss resulting

in low reproduction as well as low juvenile survival.

Hawaiian honeycreepers are, in general, sedentary and highly site philopatric. During

the breeding season honeycreepers defend only the immediate nest site, not the all-purpose

breeding and foraging territories typical of temperate species. Females build the nest and

incubate alone while the male feeds the nesting female, defends the nest site, and both

sexes care for young. Honeycreepers are socially monogamous for a breeding season. After

the breeding season, 'ākepa join in mixed-species flocks. It is during this time that I expect

mixing of the population and any movement within the study area to occur. The PTDS

surveys are conducted during the breeding season when birds are most detectable and
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before nestlings have fledged; therefore, population size is an estimate of the adult bird

class that presumably is breeding and after winter mortality has occurred.

I compiled vital rates from the 'ākepa literature instead of estimating demographic

parameters from raw data (summarized in Table 5.1). The demographic data are derived

from a handful of studies conducted over a 40 year time period. Data were collected

roughly during three time periods: (1) the 1970s and 1980s; (2) 1990s; and (3) 2010s.

Between 1976 and 1982 Ralph and Fancy (1994) mist netted 'ākepa at a site in Keauhou

Ranch, about 30 km south of Hakalau (Fig. 1.1). The Keauhou Ranch site is similar to

that in Pua 'Ākala but had a discontinuous canopy and a relatively more dense understory,

although it also had a long history of cattle grazing. Annual survival rate was calculated

for adults only, pooling across sexes. Freed (1988) mist netted on Mauna Loa, about

60 km southwest of Hakalau, in 1985 and 1987, and computed a minimum annual adult

survival rate assuming constant survival over the two-year period. Habitat in this area

is similar to that in Pua 'Ākala. The more recent studies are all from Hakalau. Lepson

and Freed (1995) surveyed 'ākepa in the Pua 'Ākala study site between 1987 and 1993,

and estimated adult survival for both males and females. Between 1994 and 1999 USGS

mist netted for birds in the Nauhi study site. There were relatively low numbers of 'ākepa

captures but sufficient to make estimates for data pooled across sexes (Guillaumet et al.

2016). In addition to estimating adult survival, Guillaumet et al. (2016) used integrated

population models to estimate recruitment and population change from a model that

assumes constant survival and recruitment over the 5-yr study.

Following the Bird Banding Laboratory, U.S. Geological Survey, age classes are a0 for

a juvenile bird banded after the breeding season and before 1 January, a1 for a juvenile

bird known to have hatched the calendar year before banding and includes birds that have

graduated from a0 on 1 January, and a1+ for an adult bird, presumed sexually mature,

known to have graduated from a1 on 1 January. It is difficult to distinguish between a0

and a1 age classes and the breeding period occurs over a large time span (Lepson and

Freed 1997); therefore, I model just two age classes with a combined juvenile a0 and a1

class and a separate adult class a1+. The age at first breeding is generally age 2, although

some females breed successfully at age 1. Some males are not sexually mature their first

year after hatching and delay breeding until their second year after hatching; at which

time they have full breeding plumage. I assume that all adult aged birds breed, which

may overestimate reproduction yet should not affect survival estimates. I assume that any

juvenile birds that survive to the next breeding season have transitioned to the breeding

adult age class a1+. Little is known of the non-breeding adult age class (Lepson and Freed

1997, Woodworth and Pratt 2009), and is not included in these analyses.

Survival is the expected number of birds that survive the year given the number alive

during the last breeding season. Adult survival ranges from 0.70 to 0.83, while juve-

nile survival is much lower at 0.42 (range 0.31 to 0.80; Table 5.1). Lepson and Freed

(1995) showed that male survival was slightly higher than that of females, but not signifi-

cantly different. Therefore, I assumed that adult survival is the same by sex and constant

over time. Juvenile survival includes surviving hatching, nestling and fledging stages
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with age incrementation occurring with the next breeding season. Medeiros and Freed

(2009) found that fledging mass strongly affects juvenile survival with larger fledglings

having approximately equal survival as adult birds while smaller fledglings have lower sur-

vival. They provided estimates with standard errors for the high-mass juvenile and adult

birds, but not the low-mass and average-mass juveniles. I extracted the survival rate es-

timates for the low-mass and average-mass juveniles using the on-line graph reading tool

(http://www.graphreader.com/). Uncertainty estimates for these rates are not available.

Most juvenile survival rates reported in Lepson and Freed (1997) and Woodworth and

Pratt (2009) had survival rates similar to the low and average mass fledglings.

Recruitment represents the offspring that transition to the adult age class. Determining

direct measures of 'ākepa recruitment into the population is difficult requiring finding

'ākepa cavity nests, and follow the numbers of eggs that hatch and survival of nestling

birds through to fledgling. Even when breeding 'ākepa are located, most cavity nests are

located high in the tall stature trees which limits the ability to see inside most nests.

Clutch size is 1-2 eggs per year per female with the maximum number of young fledged

per year per female is 2. Annual reproductive success varies widely. Based on data from

Nauhi collected during the 1990s, Guillaumet et al. (2016) estimated recruitment to be

0.35 (SE = 0.19) while Lepson and Freed (1995) followed 53 nests in Pua 'Ākala between

1987 and 1993 and computed a 0.79 annual nest success rate. Cummins et al. (2014)

conducted nest searches in Pua 'Ākala and Pedro study sites at Hakalau in 2013 and 2014

and found five 'ākepa nests. One of two survived in 2013 and one of three in 2014, giving

an overall success rate of 0.40 (Table 5.1).

Population dynamics models commonly use only the number of females in a population

and track the numbers of daughters born from one female annually or throughout her life.

Lepson and Freed (1995) computed the sex ratio in Pua 'Ākala between 1987 and 1993

at 1.14:1 male to female ratio, while Hart (2001) estimated the ratio in both Pua 'Ākala

and Pedro study sites between 1994 and 1996 at a 1.14:1 and 1.21:1 male to female ratio,

respectively (these ratios are based on the numbers presented in Figure 6 of Hart (2001)

and differ from what he presented in his text; Table 5.1). In many of the demographic

studies cited herein, however, a distinction between males and females was not made. It

is not possible to consistently identify between sexes during the PTDS surveys. I assume

that the sex ratio is sufficiently close to parity to use a PDM that does not distinguish

between sexes and offspring can be either male or female.

Inference from demographic research is typically limited to mist-netting locations, i.e.,

site-restricted. Spatially limited inference was observed in the analyses of Chapter 2;

PDMs offer a means for evaluating the landscape-scale demography-density relationship

synoptically, rather than site by site. To make the local-scaled demographic studies rele-

vant to the larger-scaled abundance surveys I used the individual study estimates, where

more one was available, as the basis of a meta-analysis (i.e., coupling the microscale in the

macroscale). The lower bounds for each parameter were set to non-negative values while

the upper bounds were limited by rational biological arguments.

For convenience, I set the modelling annual cycle to coincide with the start of the
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breeding season and match the schedule for monitoring Hawaiian forest bird abundances.

Annual changes in 'ākepa abundances thus reflect an annual process that runs from one

breeding season to the next and all biological sub-processes, such as survival, transition

from juvenile age class to adult age class, birth and movement, occur within the annual

cycle. Over the course of a year the sub-processes are assumed to be temporally sequential;

i.e., adult mortality takes place followed by maturation and age-class transition, and then

births occur restarting the cycle. The 'ākepa breeding season is relatively long lasting from

March through June with the bulk occurring in April and May, and young care extends

from April to September (Lepson and Freed 1997). Thus treating the sub-processes as

discrete with sequentially non-overlapping time intervals results in the parameters being

approximations. I do not address bird movement here but in Chapter 6 I identify how

immigration and emigration movement could be included in SSMs.

Table 5.1: Demographic estimates of Hawai'i 'ākepa from published literature. Estimates
(Est.), standard errors (SE) and sample sizes (no.) are provided. Parameters are juvenile
φ1 survival, adult φ1+ survival, population rate of change r, recruitment λ, sex ratio ‘c’,
and apparent nest success ns. Subscripts for estimates specifically calculated for female
‘f ’ and male ‘m’ birds, and juveniles of low-mass ‘l ’, average-mass ‘a’, and high-mass ‘h’.
Years in which data were collected is provided in the text.

Area/Year Par Est. SE no. Source

Keauhou Ranch φ1+ 0.70 0.27 61 Ralph and Fancy (1994)

Kau FR φ1+ 0.77 – 5 Freed (1988)

Pua 'Ākala φ1 0.42 0.10 57 Lepson and Freed (1995)
φ1+,f 0.80 0.04 46
φ1+,m 0.83 0.04 36

Pua 'Ākala φ1,l 0.36 – 18 Medeiros and Freed (2009)
φ1,a 0.31 – 29
φ1,h 0.80 0.10 19
φ1+ 0.78 0.04 –

Nauhi φ1+ 0.817 0.112 19 Guillaumet et al. (2016)
r 1.172 0.167 19
λ 0.354 0.190 19

Pua 'Ākala ns 0.79 – 53 Lepson and Freed (1995)

2013 ns 0.50 – 2 Cummins et al. (2014)
2014 ns 0.33 – 3

Total ns 0.40 – 5

Pua 'Ākala c 1.14:1 – – Lepson and Freed (1995)

Pua 'Ākala c 1.14:1 – 107 Hart (2001)
Pedro c 1.21:1 – 42

5.3.3 State space models

I fit a SSM of 'ākepa abundances with the measurement and state models of Eqn. 5.2

with measurement error from the Distance for Windows; Model M1. I then incorporated

vital rate sub-processes to form PDMs (Models M2-M5). The connected likelihood ap-

proach described here, see also Eqn. 5.3, assumes that the distribution of the data can
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be appropriately modelled, suitable priors can be specified and that the SSM partitions

variation between state and measurement processes correctly. The structure of the data,

parameters and models are shown in Fig. 5.2.

Model M1: Time-varying rate of population change

Model M1 is a state space model where the trend in abundance follows a linear function

of the log of abundance. In this model, annual growth rate is the parameter describing

population change on the log scale, where growth rate is the proportional change in pop-

ulation size from one time period to the next and reflects change in annual recruitment

and annual adult survival. The state process of the model that transitions from one year

to the next is formulated as

log (Nt+1) = log (Nt) + rt,

where Nt is the population size in year t, and exp (rt) is the annual growth rate. Log

annual growth rate is a random variable with a normally distributed prior with mean r̄

and state process error σ2η, i.e.,

rt ∼ normal
(
r̄, σ2η

)
,

while the trend model assumes that the measurement process abundance estimates log
(
N̂t

)
follow a normal distribution with measurement error σ2εt ,

log
(
N̂t

)
∼ normal

(
log (Nt) , σ

2
εt

)
.

Knape et al. (2013) showed that inference from simple linear SSMs can be limited when

simultaneously estimating process and measurement variances as they are confounded. I

overcame this confounding problem (also called an identifiability issue) by setting the mea-

surement variance to be the variance of the logged density estimates from Chapter 1 where

σ2εt = v̂ar
(

log
(
N̂t

))
. The log transformed variance is calculated as log

(
1 +

v̂ar(N̂t)
N̂2

t

)
(Buckland et al. 2001). This assumes the estimates are temporally independent. In-

spection of the correlation and partial correlation plots indicated that none of the lags

exceeded the significance bounds (average correlation between pairs of successive years =

0.004; maximum correlation = |0.256|). The Ljung-Box test statistic was 9.35 with 14

degrees of freedom and the p-value was 0.81 indicating there is little evidence of non-zero

autocorrelation in the abundances, supporting the independence assumption. This corre-

lation may be underestimated because bootstrap estimates sampled lines within years but

not across years (see Chapter 2), and would benefit from further investigation.

The mean growth rate prior for the annual growth rate was specified as r̄ ∼ normal(0, 10).

This is equivalent to a stable population with reasonably high variation that extends

broadly over the plausible range of population change. The prior for the variance of the

state process is ση ∼ uniform(0, 10). This SSM requires that the initial value be estimated

or defined. I used the 1977 Hawaii Forest Bird Survey (HFBS) abundance point estimate to
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define N0. Camp et al. (2010) estimated the 1977 density at 0.445, times 3,061 ha yields an

abundance of 1,362 'ākepa. This estimate is for a slightly larger open forest stratum, but for

modelling purposes is a reasonable approximation of the initial population size. To be con-

sistent with the other models I set the normal prior on N0 with low precision (σ2N0
= 1000).

The initial population size is formulated as log (N0) ∼ normal
(

log
(
N̂0

)
, 1000

)
.

Model M2: Constant recruitment and survival

Research at Hakalau has simultaneously provided separate information about popula-

tion abundances and individual-level demographic processes. SSMs can be expanded into

PDMs that incorporate these different sources of information (Newman et al. 2014). Build-

ing on Model M1 I incorporated a Poisson process for recruitment λ and a binomial process

for adult survival φ. This model has the expectation

E (Nt+1) = (λt + φt)Nt. (5.5)

Guillaumet et al. (2016) is the only demographic study to have estimated recruitment (λ

= 0.354, SE = 0.190), which was used for setting the prior. There were five adult 'ākepa

survival estimates (Table 5.1) that have point and variance estimates. Following methods

described in Lee et al. (2016), I used a meta-analysis approach to synthesize the survival

estimates using an inverse-variance-weighted average method to produce weighted mean

adult survival estimate 0.803 with SE 0.022. Using conjugate priors for both parameters,

prior distributions suggested from these literature-based parameters are mean recruitment

λ̄ ∼ gamma(3.471, 9.806) and weighted adult mean survival φ̄ ∼ beta(261.335, 51.439)

(calculations for computing priors from the parameters for each distribution are presented

in Appendix E).

Setting biologically realistic priors is critical for this model to have reasonable results.

The priors on recruitment and adult survival seemed realistic, except that the 'ākepa

clutch size is 1-2 eggs per year per female with a maximum number of young fledged

per year per female of 2. The prior for the annual recruitment, right truncated at twice

the annual population size, is a Poisson distribution with rate λ̄Nt and truncated at

2N̂t, designated as RTPoisson
(
λ̄Nt, 2N̂t

)
. Truncating recruitment in this way ensures

that annual reproduction cannot more than double the population size and satisfies the

maximum number of eggs laid and young fledged per female.

I adapted Model M1 replacing random effect of growth rate with random effects of

recruitment and adult survival. Then the number of birds recruited each year t is Rt and

115



the number of adults surviving each year t is St. Model M2 with priors is

λ̄ ∼ gamma(3.471, 9.806)

φ̄ ∼ beta(261.335, 51.439)

log (N0) ∼ normal
(

log
(
N̂0

)
, 1000

)
Rt ∼ RTPoisson

(
λ̄Nt, 2N̂t

)
St ∼ binomial

(
Nt, φ̄

)
log (Nt+1) = Rt + St

log
(
N̂t

)
∼ normal

(
log (Nt) , v̂ar

(
log
(
N̂t

)))
.

Model M3: Time-varying recruitment, constant survival

Model M2 allows for only demographic stochasticity; i.e., random variation in realized re-

cruitment and survival given constant underlying annual values. Because of the relatively

large population size the amount of demographic stochasticity was small and Model M2

produced near constant rates of population change (see Results). Model M2 misses biologi-

cal details as the constant average recruitment and survival model does not fit the observed

time series very well. That is, Model M2 misses runs of positive and negative trajectories

in the abundances. In general, there are three options to incorporate additional variation

in the parameters to better capture fluctuations in the abundances: random variation in

the recruitment and/or survival parameters. Studies over three decades conducted within

and outside Hakalau consistently show that adult survival is relatively constant and high

(Table 5.1), which is typical for tropical passerines (Woodworth and Pratt 2009). Mod-

elling random variation in adult survival, therefore, may not be biologically realistic or

especially useful to capture population dynamics. Medeiros and Freed (2009) observed

that the survival rates for low- and average-mass juvenile 'ākepa were <0.4, which Cox

et al. (2014) identified as a minimum threshold level that results in population declines

even for populations with high adult survival. Overall, 'ākepa hatch-year survival that

includes nestling and fledglings of both sexes surviving their first year was 0.42 (Lepson

and Freed 1997), or just above Cox et al.’s minimum threshold level. Thus, it is likely

that even minor amounts of environmental stochasticity will affect juvenile survival, and

thus recruitment, more than adult survival will influence population change (Newton 1998,

Sæther and Bakke 2000, Boyce et al. 2006).

I adapted Model M2 by replacing λ̄ in the state process with an annually varying

116



recruitment, λt. Model M3 with priors is

λt ∼ gamma(3.471, 9.806)

φ̄ ∼ beta(261.335, 51.439)

log (N0) ∼ normal
(

log
(
N̂0

)
, 1000

)
Rt ∼ RTPoisson

(
λtNt, 2N̂t

)
St ∼ binomial

(
Nt, φ̄

)
log (Nt+1) = Rt + St

log
(
N̂t

)
∼ normal

(
log (Nt) , v̂ar

(
log
(
N̂t

)))
.

Model M4: Time-varying recruitment via random effect, constant survival

Model M4 allows for substantial variability in recruitment over time, by specifying recruit-

ment as a random effect. This allows for plausible biological or environmental influences

that vary in an uncorrelated way over time. Recruitment is modelled as being normally

distributed, with mean set to the mean recruitment λ̄ and a variance assumed known.

Preliminary analyses of variances equal to 0.0025, 0.01, 0.04 and 0.25 were evaluated (not

shown) and the value 0.01 was chosen as it produced a flexible curve that generally followed

changes in abundances. Model M4 with priors is

λ̄ ∼ gamma(3.471, 9.806)

λt ∼ normal(λ̄, 0.01)

φ̄ ∼ beta(261.335, 51.439)

log (N0) ∼ normal
(

log
(
N̂0

)
, 1000

)
Rt ∼ RTPoisson

(
λtNt, 2N̂t

)
St ∼ binomial

(
Nt, φ̄

)
log (Nt+1) = Rt + St

log
(
N̂t

)
∼ normal

(
log (Nt) , v̂ar

(
log
(
N̂t

)))
.

Model M5: Time-varying recruitment with random walk, constant survival

It is possible that recruitment varies more smoothly over time in response to periods of

good years where large numbers of birds are recruited into the population followed by pe-

riods of poor years with little recruitment. This is conveniently represented by modelling

recruitment as a temporal random walk. A random walk model is appropriate when the

environmental conditions that are driving recruitment change or vary slowly over time.

Relevant examples at Hakalau include removal of ungulates leading to habitat restora-

tion that has subsequently declined due to feral pig (Sus scrofa) incursion (see Chapter

2 Section 2.5) and climate variability due to the Pacific decadal oscillation particularly

as it affects rainfall (Chu and Chen 2005). The random walk is formulated by making

recruitment on year t a normal distribution with mean equal to recruitment in the pre-
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vious year t − 1 and the same between-year variance as Model M4 (variance 0.01). The

parameterization is such that annual recruitment is centred around a mean value λ̄, as

with Model M4. Model M5 with priors is

λ̄ ∼ gamma(3.471, 9.806)

φ̄ ∼ beta(261.335, 51.439)

Ht ∼ normal(λ̄, 0.01)

Dt = Jt − J̄

Jt = Jt−1 +Ht, t > 1; J0 = 0

λt = λ̄+Dt

log (N0) ∼ normal
(

log
(
N̂0

)
, 1000

)
Rt ∼ RTPoisson

(
λtNt, 2N̂t

)
St ∼ binomial

(
Nt, φ̄

)
log (Nt+1) = Rt + St

log
(
N̂t

)
∼ normal

(
log (Nt) , v̂ar

(
log
(
N̂t

)))
,

where J̄ = 1/T
∑T

i=1 Ji.

5.3.4 Parameter estimation

Monte Carlo sampling procedures with Markov chain Monte Carlo (MCMC) were used

to generate posterior distributions. MCMC modelling was implemented in JAGS software

(Plummer 2017) using the jagsUI wrapper (Kellner 2019) for the rjags package (Plum-

mer 2018) in R (R Core Team 2017). The jagsUI package allows for parallel processing

making use of multiple CPU cores and substantially reduced computation time. To en-

sure chains converge to the posterior distribution I used a burn-in of 10,000 samples, a

further 1,000,000 samples were used for inference from six parallel chains. Each chain

was down-sampled to 10,000 using a thinning interval of 100. Initial values for each chain

were randomly selected from distributions based on the literature, which approximately

samples from different regions of the parameter spaces (Hogg and Foreman-Mackey 2018).

I computed summary statistics of abundance, growth rate, adult survival and recruitment

parameters from the posterior distributions. Each parameter was calculated as the mean

of the 60,000 posterior samples while 95% credible intervals (95 %CrIs) were calculated

as the 0.025 and 0.975 quantiles of the posterior distribution of each model.

MCMC checking

MCMC checking was assessed using visual inspection of trace plots, computing Gelman-

Rubin convergence diagnostics (R̂), computing the degree to which the prior informs the

posterior distribution (prior posterior overlap; PPO), and computing mean and minimum

Monte Carlo effective sample size (ESS) for all model parameters (Gelman et al. 2013).

For each model parameter an R̂ < 1.1 indicates model convergence. Following guidance
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from Gimenez et al. (2009) a small degree of PPO is desired, < 35%, indicating that the

parameters are identifiable and the data influenced the results. The desired mean ESS

values are several thousand to tens of thousands and minimum ESS values are several

hundred, which are large enough to report values that are accurate to three significant

figures. For each model an assessment of the trace plots, R̂, PPO, and ESS are presented

in Appendix E.

5.4 Results

5.4.1 Model M1: Time-varying rate of population change

Model M1 closely followed the year-to-year fluctuations observed in the Distance for Win-

dows abundances and generally had narrow 95%CrIs (Fig. 5.3). The estimated annual

rates of change r fluctuated around 0 with a mean growth rate r̄ = 0.002 over the time

series (SE = 0.063; Fig. 5.4). Credible interval widths were on average 20.6% narrower

than the length of the design-based confidence interval widths (SE = 13.7%).

5.4.2 Model M2: Constant recruitment and survival

Model M2 showed a strong posterior correlation between the φ and λ parameters (corre-

lation = -0.965; Fig. 5.5). A limitation of the parameterization of Model M2 is that the

year-to-year realized levels of survival and recruitment can only vary by the constraints of

the binomial and Poisson distributions, not very much in practice. As a result, Model M2

produced an almost constant growth rate over time (mean growth rate 1.016; Fig. 5.6).

Model M2 analyses were not further considered because of identifiability issues and the

estimates did not capture the trajectories in the time series.

5.4.3 Model M3: Time-varying recruitment, constant survival

Model M3 produced a relatively flexible curve of 'ākepa abundances that captures three

prominent trajectories: relatively flat from 1987 to 1994, and declining from 1997 to 2005

and 2009 to 2017 (Fig. 5.7). Large increases in the population occurred in 1995 and

1996 and again in 2006, 2007 and 2008. Mean recruitment λ̄ was 0.264 (SE=0.110) and

annual λt estimates varied widely (Fig. 5.8). The largest increase occurred in 2007, which

was the only year that the recruitment point estimate λt was near 1 and the 95%CrI

did not bracket the mean. Although this value is relatively large, it retained biological

realism given the species maximum population change (less than doubling). Recruitment

point estimates λt exceeded 0.4 in 1995, 2006 and 2007. Mean adult survival φ̄ over the

31-year time series was 0.764 (SE=0.018). There was little correlation between the φ

and λ parameters (correlation=0.004; Appendix E Fig. E.4). Uncertainty in the Model

M3 abundance estimates was substantially smaller than that estimated using design-based

methods with an average 43.5% reduction in the length of the interval widths (SD=14.7%).
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Figure 5.3: 'Ākepa abundance estimates (blue line) from Model M1 with measurement
variation assumed known (from the Distance for Windows analysis) and vague priors on
process variation for the 31-year time series (95%CrI; grey ribbon). Abundance estimate
with 95%CI from Distance for Windows (diamond and whisker bar).

Figure 5.4: Growth rate r estimates generated from Model M1 with measurement varia-
tion assumed known (from the Distance for Windows analysis) and vague priors on process
variance. Dots represent the point estimates and whisker bars are 95%CrIs. Black hori-
zontal line is the mean growth rate r̄ over the time series (0.002).

120



Figure 5.5: Correlation of survival φ and recruitment λ are confounded from Model M2
(correlation = -0.965). The blue line is the fitted linear regression.

Figure 5.6: 'Ākepa abundance estimates (blue line; 95%CrI grey ribbon) from Model M2
with constant mean annual adult survival and recruitment (beta and Poisson variation,
respectively). Abundance estimate with 95%CI from Distance for Windows (diamond and
whisker bar).
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Figure 5.7: Predicted abundances (blue line) and 95%CrI (grey ribbon) estimates from
Model M3 with time-varying recruitment λt and adult survival φ. Abundance estimate
with 95%CI from Distance for Windows (diamond and whisker bar).

Figure 5.8: Recruitment λ estimates generated from Model M3. Dots represent the point
estimates and whisker bars are 95%CrIs. Black horizontal line is the mean recruitment λ̄t
over the time series.
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Figure 5.9: Predicted abundances (blue line) and 95%CrI (grey ribbon) estimates from
Model M4 with independent time-varying recruitment and adult survival. Abundance
estimate with 95%CI from Distance for Windows (diamond and whisker bar).

5.4.4 Model M4: Random effect on recruitment, constant survival

Model M4 produced a considerably smoother curve to the 'ākepa abundances that gener-

ally captured the same trajectories described in Model M3 above (Fig. 5.9). Increases in

the population occurred in 1996 and between 2005 and 2010. Mean recruitment λ̄t was

0.197 (SE=0.027), and all annual recruitment 95%CrIs bracketed the mean (Fig. 5.10).

Mean adult survival φ̄t over the 31-year time series was 0.822 (SE=0.020). φ and λ were

moderately correlated (-0.687; Appendix E Fig. E.6). Uncertainty in the Model M4 abun-

dance estimates was substantially smaller than that estimated using design-based methods

with an average 51.2% reduction in the length of the interval widths (SD=13.9%).

5.4.5 Model M5: Random walk on recruitment, constant survival

Model M5 produced smooth increases between 1990 to 1997 and from 2005 to 2010 with

declines between 1998 to 2004 and since 2010 (Fig. 5.11). Mean recruitment λ̄t was 0.192

(SE=0.021), and all annual recruitment 95%CrIs bracketed the mean except in 2007 and

2008 (Fig. 5.12). Mean adult survival φ̄t over the 31-year time series was 0.821 (SE=0.020).

Correlation of φ and λ were high (correlation = -0.908; Appendix E Fig. E.8). Uncertainty

in the Model M5 abundance estimates was substantially smaller than that estimated using

design-based methods with an average 48.4% reduction in the length of the interval widths

(SD=14.2%).
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Figure 5.10: Recruitment λ estimates generated from Model M4. Dots represent the point
estimates and whisker bars are 95%CrIs. Black horizontal line is the mean recruitment λ̄t
over the time series.

Figure 5.11: Predicted abundances (blue line) and 95%CrI (grey ribbon) estimates from
Model M5 with time-varying recruitment with random walk and adult survival. Abun-
dance estimate with 95%CI from Distance for Windows (diamond and whisker bar).
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Figure 5.12: Recruitment λ estimates generated from Model M5. Dots represent the point
estimates and whisker bars are 95%CrIs. Black horizontal line is the mean recruitment λ̄t
over the time series.

5.5 Discussion

Statistical methods

In this chapter, I used multi-stage fitting procedures to fit PDMs as SSMs that combine

population- and individual-level information. SSMs provide a unifying framework to de-

velop PDMs with Bayesian inference which coherently combines sources of uncertainty

from data collected at different spatial and temporal scales. The data, abundances from

monitoring surveys and vital rates from demographic studies, were analyzed separately

using specialized distance sampling and mark-recapture software, respectively. I initiated

the models as a SSM of the time series abundance estimates that included estimates of

observation error and progressively added model complexity to include demographic sub-

processes, thus, incorporating biological processes governing population changes. Changes

in abundances are a result of losses from and gains to the population. PDMs reduce the

magnitude change between abundance estimates by only allowing biologically realistic

rates of change.

Biological relevance modelled as latent variables or random effects in SSMs provides

greater understanding of population processes. This is an advantage over the smoother-

based modelling and DSM methods from Chapter 2 that did not explicitly constrain

demographic vital rates. Modelled as a net effect of demographic processes, these SSMs

provide insight into mean and annual rates of change (Model M1; Camp et al. 2016). The

overall long-term population trends (Urquhart and Kincaid 1999) can be assessed with

consistent recruitment and survival models (Model M2). These models, however, can miss

important trajectories and may not be biologically realistic over long time series (Thomas
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et al. 2004). PDMs model the biological processes governing how the population changes

over time (Newman et al. 2014). Incorporating demographic sub-processes of recruitment

and survival specifically controls the magnitude of the rates of change. The general sub-

processes recruitment and survival are analytically intractable; i.e., λ and φ are strongly

correlated. Allowing λ to vary temporally (λt ∼ gamma (3.741, 9.806); Model M3) or

vary as a stochastic distribution (λt ∼ normal
(
λ̄, σ2λ

)
where the prior on λ̄ is a gamma

distribution; Model M4) decouples the parameters reducing their correlation. In these two

models, all parameters were estimatable and the data were sufficiently influential to move

the posteriors away from the priors. In Model M5, λ and φ are again strongly correlated;

however, this was purposeful through the temporal regressive random walk formulation.

Modelling limitations

As a special case of SSMs with Bayesian inference, PDMs have many advantages including

a unifying framework, combining data from multiple sources, accounting for correlations

and coherently combining variances (Newman et al. 2014). PDMs are also useful when the

raw data for the sub-processes are not available. My approach of using derived quantities

through informed priors in a multi-stage fitting procedure avoids the computationally

intensive costs of integrated population models (King et al. 2009). A key assumption of

the state process is that the abundance and demographic data are independent of each

other. This assumption was likely violated as some individuals in the demographic studies

may also have been included in the abundance survey data. Abadi et al. (2010) showed

that these violations negligibly effect parameter estimate accuracy, while simulations by

Besbeas et al. (2009) revealed that estimator precision may be reduced when the data are

not completely independent. The data independence assumption is convenient, seems to

work well in many contexts, and this violation is minor as only a few individuals occurred

in both datasets. There is a mismatch in paradigms when using the abundance estimates

as input to a Bayesian model, although this mismatch does not necessarily invalidate

inference (Abadi et al. 2010, Newman et al. 2014, Schaub and Fletcher 2015, Plard et al.

2019).

There is only one recruitment estimate (Guillaumet et al. 2016), which was estimated

as a latent variable of an IPM. Although this recruitment estimate is biologically realistic

for a rapidly increasing population, a sustained 17% or more per year increase is unrealistic

for an established population. Therefore, the estimate is likely limited to the mist netting

location at Nauhi and not applicable to the greater open-forest stratum. This limited

inference is further supported by the small to moderate overlap of the marginal prior to

posterior distributions which indicates that the data were sufficient to move the posterior

away from the prior and the results are based on the data, not the prior (Appendix E

Figs. E.2, E.3, E.5 and E.7).

I used the inverse variance-weighted average method as a meta-analysis of the five φ

estimates (see Table 5.1) to set the survival prior. This method assumes that all studies

in the meta-analysis share the same true parameter mean with variance equal to the error

in the observations (Lee et al. 2016). Estimates from studies with lower precision are
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given less weight than more precise estimates. This is a reasonable assumption given our

understanding of 'ākepa survival from multiple sub-populations over several decades.

A normal distributed prior was assigned for annual recruitment λt in Model M4. In the-

ory this distribution can produce inadmissible negative values for recruitment, a positive

bounded parameter. An alternative would be a lognormal, for example, but I found the

normal distribution worked well in practice because the left-tail was entirely non-negative,

given the small variance used. It gave a symmetrical distribution of positive values around

the mean on the natural scale (Appendix E Fig. E.7).

Cummins et al. (2014) showed that high precipitation and cooler temperatures affected

nest success. Long-term climatic data are not available at Hakalau so I did not directly

include covariates to demonstrate relationships between environmental stressors, such as

extreme weather conditions, and demographic parameters influence on population changes.

Conclusions associated with climatic events are therefore correlative.

Biological findings

The 'ākepa population at Hakalau has experienced three prominent trajectories over the

31-year time series. These trajectories reveal a pattern of recovery followed by a slow de-

cline to about one-half the peak abundance. The recoveries coincided with large increases

in recruitment but not adult survival, discussed below. Although abundances have fluc-

tuated markedly, the population has increased by more than 900 birds between the time

series end point estimates (95%CrI limits overlapped; Model M4). This positive trend was

captured in all of the models, particularly Model M2 which was formulated to describe

the long-term, overall directional trend (Urquhart and Kincaid 1999), and corroborates

earlier analyses by Camp et al. (2010, 2014, 2016) that the 'ākepa population is stable to

slightly increasing in the open forest stratum at Hakalau.

In general, my annual open-forest stratum abundance estimates from 1987 to 2012

were 1,000 to 2,000 birds fewer than those estimated by Camp et al. (2016). To avoid

extrapolating too far from the points, I used a smaller study area than that used in Camp

et al. (2016); therefore, the abundances estimated are necessarily smaller. Besides the 300

ha smaller study area, I estimated lower densities throughout the overlapping time period

(Appendix A Table A.3; Fig. 1.7 compared to Figure 3 in Camp et al. 2016). Despite

the smaller densities, the population at Hakalau remains the most abundant 'ākepa sub-

population on Hawai'i Island (Judge et al. 2018) and of utmost conservation concern.

A common benefit of SSMs is that partitioning estimator uncertainty into its compo-

nent parts of state and measurement errors produces more precise abundance estimates

(Schaub and Abadi 2011, Newman et al. 2014, Plard et al. 2019). The model formulated

in Camp et al. (2016) failed to improve estimator certainty due to identifiability issues.

These issues were overcome by incorporating demographic vital rates as random effects,

which resulted in about a 50% reduction in average abundance credible interval widths

compared to confidence interval widths from standard Distance for Windows (Chapter

1). The more precise estimates facilitates detecting impacts of management actions and

making conservation and regulatory decisions.
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The 'ākepa abundance time series data contains additional information about relative

temporal changes in population size – rates of change. Population change estimates can be

directly estimated as a latent variable in the SSM (i.e., r̄ and rt in Model M1), also called

the per capita rate of growth δt of a population by Sibly and Hone (2002). A growth

rate of zero indicates a static population (commonly referred to as a stable population

in ecological literature). The mean 'ākepa growth rate was 0.002 (estimated from Model

M1) indicating a roughly stable population over the time series that fluctuated around

zero (Fig. 5.4). The geometric mean growth rate can be computed as 1 +
∏

(rt)
1/T−1.

The geometric mean growth rate for a stable population will be very near one and was

computed at 1.02 from Model M4. Camp et al. (2016) computed an equivalent estimate

of 1.01 for the 'ākepa population in the open-forest stratum for the period 1987 to 2012.

Rates of change can be biased by spatial heterogeneity in densities, spatio-temporal

correlation and study area scale (Sibly and Hone 2002). Bias from the first two sources

is reduced when logging the abundance quotients as is done when computing rt (Steen

and Haydon 2000). Spatial and temporal scales can strongly influence growth rate bias.

Small study areas, e.g., typical in demographic studies, are affected by location-specific

rates of change. This affect can be amplified if the data are collected during a rapidly

changing trend. The estimated growth rate of Guillaumet et al. (2016) is 1.172 and is likely

positively biased as 'ākepa were increasing rapidly in the middle of Hakalau during the

1990s (see Fig. 2.13). Similarly, the study area size and sampling time period could also

influence population rates of change estimated in the Pua 'Ākala and Pedro study sites.

Similarly, drawing conclusions of average vital rates from across the open forest stratum

can obscure important details such as the regional increase in densities in the northern

portion of the refuge and the dynamic density pattern in the southern portion. Besides

site-restricted inference, another explanation could be a violation of the assumption that

there was no immigration or emigration during their study. Guillaumet et al. (2016)

showed that there was transience in 'ākepa in the Nauhi study area. It is likely that the

demographic studies of Lepson and Freed (1995) and Medeiros and Freed (2009) were also

from an open population leading to the incorrect generalization Freed and Cann (2010)

reached.

Population dynamics are driven by recruitment and survival, assuming a closed system.

I assumed that recruitment has greater influence on population changes than survival.

This contradicts Sæther and Bakke (2000) who concluded that adult survival rate is the

predominant driver of change in growth in long-lived avian species. However, 'ākepa

adult survival rates are similar over decades and among the three large sub-populations in

Keauhou Ranch (Ralph and Fancy 1994), Kau FR (Freed 1988), and in Hakalau (Lepson

and Freed 1995, Medeiros and Freed 2009, Guillaumet et al. 2016). A slow life history

pattern sacrifices current reproduction in favour of future reproduction, which necessitates

species be long-lived with high adult survival (Dobson 2012). This lifestyle approach is

typical of Hawaiian forest birds, and specific to 'ākepa (Woodworth and Pratt 2009)

I observed varying, declining recruitment with periodic recovery, which resulted in

high amplitude fluctuations in population size. In most years recruitment was very low
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(≤ 0.35), with a large number of birds recruited in occasional good years. Cummins

et al. (2014) found that rainy weather, particularly high amounts of precipitation and

cooler temperatures associated with storm system events, lead to dramatic differences in

nest success and productivity. Rainfall can affect reproduction directly (e.g. onset of egg

laying and thermoregulation) or indirectly (e.g. reduced foraging opportunities and prey

availability). Climate data for Hakalau are only available from October 2009 through

the end of the time series (Ostertag et al. 2015), after the large recruitment events that

occurred in 1995, 1996 and 2006 through 2008 resulted in population increases and the

trajectories switching direction (declining switching to increasing; Figs. 5.9 and 5.10). For

this to occur, it is likely that there were no or few storm events during the breeding and

post-breeding seasons prior to the recovery pulses.

Given the periodic pulses to the 'ākepa population highlights the need for long-term

monitoring. Studies spanning shorter intervals of three, five, or even 10 (e.g., the period

from 1996 through 2005) years could easily miss critical pulses that recover the 'ākepa

population. Similarly, studies that sample less frequently, such as every other or every fifth

year, are likely to miss dynamic patterns observed in this study and for other Hawaiian

forest bird populations such as the palila (Loxioides bailleui ; Johnson et al. 2006, Genz

et al. 2018) and additional species monitored at Hakalau (Camp et al. 2009, 2016). Shorter

term studies could, therefore, yield uninformative or misleading results, while longer time

series are needed to estimate abundance trajectories and vital rates that occur over short

time intervals.

Management implications

Abundance monitoring is a cornerstone of conservation and management where population

states are used for policy, regulation and action assessment. Long-term abundance mon-

itoring is useful for evaluating trends (this study; Knape et al. 2013, Camp et al. 2016),

estimating latent vital rate parameters (this study; Guillaumet et al. 2016, Schmidt and

Robison 2020), reducing parameter variances (this study; Besbeas et al. 2002, Schaub and

Abadi 2011), making predictions about future patterns such as identifying indicators of

impending population collapse (Rozek et al. 2017, Plard et al. 2019), and are essential

for evidence-based management (Lindenmayer and Likens 2010, Lindenmayer et al. 2012).

To provide population level inference, these analyses require large-scale annual monitoring

collected frequently and over long periods to discern biologically meaningful patterns and

evaluate the effectiveness of management actions.

Over the 31-year time series the 'ākepa population has fluctuated slightly and it ap-

pears that abundances are stable to slightly increasing (Chapter 2; Model M4; Camp et al.

2016, Rozek et al. 2017). However, I identified data deficiencies in our understanding of

'ākepa demography – nest success and juvenile survival. Inference into population changes

could be improved by getting reliable estimates of nest success and juvenile survival includ-

ing survival of hatchlings, nestlings and fledglings. Of particular interest is the interaction

between weather events such as heavy rainfall, high wind and cold temperatures with low

nest success and low juvenile survival. Combining those sub-processes with climate data in
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PDMs could lead to improved understanding of demographic and environmental drivers

of population changes. Obtaining sufficient demographic trait information to establish

informed priors for those sub-processes may require substantial increases in current costs.

At Hakalau, 'ākepa nests are located high in the canopy, typically in cavities and inac-

cessible for banding nestlings. It is difficult to identifying distinct and consistent juvenile

classes (e.g. hatch year, second-year) and juvenile capture rates are very low (Wood-

worth and Pratt 2009). Until such data are available it may be possible to parameterize

and set priors assuming fairly heterogeneous survival rates and possibly an index of age

based on capture dates if banding is continuous throughout the year. Moreover, limited

conservation resources may be better allocated to support continued abundance monitor-

ing, demographic studies and habitat restoration at Hakalau while bolstering monitoring

and research to better understand trends and drivers in the other 'ākepa sub-populations.

Integrating sub-population information in an overall species conservation program with

analyses using PDMs could lead to improved study design and inference without substan-

tial increases in costs.
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Chapter 6

Conclusions

6.1 Summary

I conclude with a summary of my thesis and identify possible future research. Much of

species management and conservation starts with and requires estimating abundances that

are sufficiently precise for evaluating population trends. The main aims of my thesis were

to precisely estimate population sizes by (1) accounting for correlation in spatial (single

annual survey) and spatio-temporal (time series of surveys) dependencies in counts, and (2)

by combining abundance and demographic data on population vital rates. I demonstrated

that penalized spline-based smoothing, point process, soap-film smoothing and population

dynamics modelling procedures reduced the variance in density estimates in both single

year and time series data compared to conventional distance sampling estimators. The

density surface model (DSM) and point process approaches also provided maps of how

'ākepa densities were distributed and have changed over time in Hakalau. 'Ākepa are not

uniformly distributed and the density surface maps are an effective tool to identify priority

areas where the species is most likely to respond or require further intervention, thus

benefiting conservation planning through improved management efficiency and reduced

costs.

The long-term trend for 'ākepa is stable to slightly increasing. Population dynamics

models (PDMs) can be used to identify biological processes governing population changes.

Understanding which demographic traits may be driving population change further ben-

efits species conservation and management. Short-term trajectories reveal a pattern of

recovery followed by a slow decline before recovering again. These recoveries coincided

with large increases in recruitment, which appears to be a limiting trait restricting the

'ākepa population growth.

The combined DSM and PDM analyses provides critical information for identifying

population responses to environmental conditions and management actions. This infor-

mation provides managers and regulators with the metrics needed to justify costly efforts

to restore habitats, increase population abundances and curtail species declines.
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6.2 Potential future research

Here I identify some key issues that I anticipate may be the focus of future research.

6.2.1 Sampling design & data collection

Long-term monitoring with consistent and frequent surveys is an essential component of

evidence-based management. A review of Hawaiian forest bird survey protocols would

ensure that operating procedures including consistency and frequency of surveys, data

collected, and analyses are adequate to address monitoring objectives. Consistent and

frequent surveys over the long-term time series facilitated DSM and PDM analyses herein.

Applying standard generalized additive models (GAMs) allows for predicting the missing

2009 survey abundances; however, predicting missing estimates is not possible using the

DSM approach without making a strong assumption that an average detection probability

represents annual detectability. Annual detection probabilities varied widely (Appendix A

Table A.1); evidence of a plausible assumption violation. State space models (SSMs) over-

come this limitation and the 2009 abundance was predicted relatively precisely (Chapter

5, Model M4: 11 %CV). Uncertainty will increase if additional surveys are missed, even-

tually resulting in low power to detect population change (Brinck et al. 2012). This effect

will be greater in monitoring programs that sample less frequently than annually, such

as the National Park Service Pacific Island Landbird Monitoring Program of the Pacific

Island Network Inventory and Monitoring Program and the State of Hawaii Division of

Forestry and Wildlife (Camp et al. 2009, 2011). A review of Hawaiian forest bird monitor-

ing protocols could include evaluating that the data and analyses provide the information

needed to address monitoring and conservation objectives, priorities and questions.

Inference may be biased and imprecise when predictions are made from increasingly

distant survey points; i.e. sparse survey effort (see Chapters 3 and 4; Miller et al. 2013).

The spatio-temporal modelling in Chapter 2 was unlikely affected by sparse survey effort

because of the restricted sampling frame. Annual surveys are conducted at Hakalau from

a systematic sampling design, while elsewhere in Hawai'i forest bird surveys are conducted

less frequently from sampling designs that are generally sparse and less systematic (Camp

et al. 2009). Establishing additional points could mitigate issues resulting from sparse

survey effort. This could be particularly important for range restricted species such as the

critically endangered palila (Loxioides bailleui), kiwikiu (Maui parrotbill; Pseudonestor

xanthophrys), 'akiapōlā'au (Hemignathus munroi) and 'ākohekohe (Palmeria dolei). One

possible direction to selecting the intensity and location of points, retaining and building on

the current Hawaiian randomised survey design, is to apply optimal experimental design

procedures applicable for GAMs (Ryan et al. 2016). Another option is the balanced

acceptance sampling ideas of Foster et al. (2017) and van Dam-Bates et al. (2018). An

alternative direction is to switch to a model-based design incorporating spatial location

and other covariates, such as habitat and environmental factors, following guidance by Peel

et al. (2013). Switching from random- to model-based designs requires assumptions about

the species distribution and spatial covariates that are a realisation of spatial models.
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Therefore, switching to a model-based design requires careful consideration of the survey

goals, method-specific advantages and disadvantages, and how the data will be analysed.

6.2.2 Habitat and environmental covariates

Analysis incorporating the general, coarse-level wet and mesic montane forest vegetation

was uninformative when modelling 'ākepa spatio-temporal patterns in Chapter 2. Since

2016, a more detailed fine-scaled habitat description of forest structure and composition

has been collected at Hakalau that includes tree crown cover, tree height, tree species

composition, understory type and ground cover. It could be informative to remodel a

concurrent subset of the time series to determine if this more detailed habitat description

is an explanatory variable of 'ākepa densities. Jacobi (2018) produced a Hakalau vegeta-

tion map with the fine-scaled habitat descriptions that could allow for extrapolating and

mapping bird densities to the entirety of Hakalau. If fine-scaled habitat is informative,

then predicting 'ākepa densities more broadly to un-sampled areas across the species range

and along elevation gradient is possible, although caution is required given the thin plate

regression spline (TPRS) results in Chapter 4.

The periodic pulses to the 'ākepa population may be in response to a lack of normal

annual storm system events such as heavy rainfall, high wind and cold temperatures that

typically result in low nest success (Cummins et al. 2014) and presumably low juvenile

survival. Acquiring and including climate data in the PDMs could shed light on interaction

between weather events and recovery pulses. Climate change is expected to increase the

intensity and frequency of extreme storm system events on Hawai'i Island (Chen and

Chu 2014), although there is uncertainty about the magnitude of change in these factors.

Forecasts about climate-driven events could shed light on 'ākepa persistence (Møller et al.

2010) and its ability to adapt to climate change (Fortini et al. 2015).

6.2.3 Underlying smoothness assumption

Point process and DSM approaches were applied to predict and map 'ākepa densities in

Chapter 3. Both approaches make assumptions about the underlying smoothness of the

data. My analysis showed that the approaches produced different smoothing resulting

with a more heterogeneous surface from the point process and a more uniformly smooth

surface from the DSM. This pattern was most noticeable in the hotspot in the southern

portion of Hakalau (see Figs. 3.5 and 3.6). In this area differences in detections among

points were relatively substantial with counts at adjacent points ranging from 0 to 6 birds

(see Fig. 3.1) and is common of Hawaiian forest bird counts (Camp et al. 2016, Genz et al.

2018). The underlying model smoothness assumption should be carefully considered to

ensure that insights into a species’ spatial ecology approximates the reality of how the

birds use space.
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6.2.4 Controlling boundary behaviour

In Chapter 4 I modelled the survey data using a soap-film smoother with a formulation

interpolating the boundary density instead of a fixed boundary density. How the data

behaves at the boundary is based on the study design and species biology. Ignoring study

design issues, the hardness or permeability of the boundary depends on the suitability

of the habitat on each side of the boundary. For 'ākepa at Hakalau the boundary is

permeable on the north, east and south boundaries. In 2002, no 'ākepa occupied the

pasture stratum and the western, pasture-forest boundary was semi-permeable. Since

2002 a few individuals have been detected in the pasture stratum, within a few hundred

meters of the forest edge (Paxton et al. 2018). Thus, the more prudent modelling approach

is to use the two linked smooths to estimate the boundary density as it can always estimate

an effect that is zero or near zero.

Applying the soap-film smooth analyses elsewhere in Oceania could be modelled with

a fixed boundary value formulated using the single element basis smooth (a priori specifi-

cation of the boundary density, e.g., zero). Suitable forest bird habitat intersects with the

coastline and unsuitable beach or ocean habitat. On these islands coastlines are narrow

with cliffs plunging to the ocean and most beaches are only a few meters wide. In this

situation a single element basis may be more appropriate with the boundary density de-

fined at zero. This approach is applicable to other island populations such as the critically

endangered Nihoa millerbird (Acrocephalus familiaris kingi) and Nihoa finch (Telespiza

ultima) on Nihoa in the Hawaiian archipelago.

6.2.5 Modelling additional sub-processes in the PDM

In Chapter 5 I incorporated the sub-processes adult survival and recruitment with abun-

dances to determine population trends. There are additional sub-processes driving popu-

lation change that could be modelled similarly. Birth rates and juvenile survival are not

separated in the current model; however, they could be individually parameterized. There

is limited information on the birth sub-process as only a handful of 'ākepa nests have been

followed through nestlings fledging (Cummins et al. 2014); however, this may be sufficient

to inform priors and avoid non-identifiability issues. As additional information is gath-

ered, it may be possible to parameterize birth rate probabilities based on female age with

possible age-based classes of one-year-old and older females giving birth. Heterogeneity

on when individuals first breed, whether their first or second year after fledging, could be

captured with a first-year breeder class and an experienced breeder class instead of the

age-based classes.

Juvenile survival includes surviving hatching, nestling and fledging stages, as well as

surviving post-fledging through the next year, with age incrementation occurring with

the next breeding season. Medeiros and Freed (2009) showed body size influences juvenile

survival. It is likely that juvenile size is affected by both the population abundance through

density dependence as well as winter rainfall and possibly temperatures and storm events.

Climate and weather data at Hakalau are available but incomplete for the entire time

series. Both juvenile survival and climate data could be incorporated in a model following
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the formulation of the independent time-varying recruitment (Model M4) and time-varying

recruitment with random walk (Model M5) models.

For my modelling I assumed the sex ratio was at parity despite that Hart (2001) found

sex ratios at Pua 'Ākala and Pedro sites at a 1.14:1 and 1.21:1 male to female ratio,

respectively, and Lepson and Freed (1995) estimated a 1.14:1 male to female ratio at

the Pua 'Ākala site. Adult male-biased sex ratios is common in birds, is more severe in

threatened species and the extinction risk is greatest in heavily skewed populations (adult

sex ratio > 1.66:1; Donald 2007). Sex-specific adult survival could be added to the PDMs

as a prior based on the observed proportions. Sex-specific survival may be an important

early warning factor to track as an indication of increased extinction risk (Rozek et al.

2017). Assigning sex to fledglings based on the observed proportion of females could also

be included as a prior in the PDMs if fledgling survival differs by sex as well as weight

(Medeiros and Freed 2009).

At what age 'ākepa recruit into the breeding population is poorly understood. I as-

sumed that all adult aged birds breed and that any juvenile birds that survive to the

next breeding season have transitioned to the breeding adult age class. Some males are

not sexually mature their first year after hatching and delay breeding until they have full

breeding plumage their second year after hatching (Lepson and Freed 1997, Woodworth

and Pratt 2009). Parameterizing a breeding age sub-process could capture this dynamic,

and may help explain why the species persists despite the observed skewed sex ratio.

A final sub-process not considered here is the potential for immigration and emigration;

the movement or dispersal of birds among areas. Movement in 'ākepa is limited (Reding

et al. 2010), but what movement there is likely occurs outside the breeding season and

differs between age and sex classes. Almost two-thirds of juvenile 'ākepa either left the

Keauhou Ranch study area or died after being captured (Ralph and Fancy 1994). The

authors note that 'ākepa show strong philopatry, particularly adult males. In an example

provided by Ralph and Fancy (1994), a male bird remained in the study area for one year

after the female disappeared and probably longer but the study ended. In addition, the

authors observed one or more unpaired males remained within paired birds’ home ranges

instead of dispersing. A fully parametrised movement model would include age and sex

classes. However, data for 'ākepa is relatively sparse so an initial model could consider a

class undifferentiated movement model.

Guillaumet et al. (2016) showed that there was temporary migration in the 'ākepa

population in Hakalau at Nauhi (see Fig. 1.1). 'Ākepa numbers in the south portion of

Hakalau were increasing in the late 1980s through the 1990s (Fig. 2.15), which may have

influenced abundance trends at Nauhi. This could be indicative of a within-recovery-unit

sub-process partially driving population trends (Allison and McLuckie 2018) or possibly

a source-sink scenario (Plard et al. 2019). Newman et al. (2014) provides a parameteriza-

tion for a PDM movement sub-process model with movement among colonies. In the case

of 'ākepa at Hakalau, populations in the north and south parts of the study area could

be treated equivalent to colonies. In a metapopulation framework, this model could be

expanded to model movement among the five 'ākepa sub-populations on Hawai'i Island.
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In this model region density, site fidelity and distance between sub-populations could af-

fect the probability of movement and be parameterized accordingly (Millon et al. 2019).

Information from ongoing demographic and radio telemetry studies at Hakalau could shed

light on movement sub-processes, which could be made spatially explicit following formu-

lation by Nadeem et al. (2016) to determine if within-recovery-unit or source-sink status

are population drivers.

6.3 Concluding remarks

The analytic methods applied herein are useful broadly for Hawaiian forest bird manage-

ment and conservation, and these analyses can be applied to other taxa to aid in global

efforts to arrest declines in populations and the loss of biodiversity. The DSM analyses

could be used to improve estimator certainty and provide insights into density patterns

for endangered forest bird species on Layson, Nihoa, Kaua'i, Maui and Hawai'i, as well as

the common species throughout Hawai'i, while PDMs could identify drivers of population

change. These analyses however will not be useful for species that persist in numbers too

low to reliably model including species that are presumed extinct (Gorresen et al. 2009)

and presumably the 'akikiki (Oreomystis bairdi) that has recently declined dramatically

to very low numbers (Paxton et al. 2016). These analytic methods can be applied to bird

species in American Samoa, Guam, the Commonwealth of the Northern Mariana Islands,

other island populations in Oceania and more broadly to continental populations. The

DSM and PDM methods can be applied to other taxa that are routinely monitored where

information to estimate species detection probabilities, counts and demographic vital rates

are collected.
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Appendix A

Appendix for Chapter 1

This appendix includes the hazard-rate detection function plot with individual Year co-

variates (Appendix A Fig. A.1), tables of the annual detection probabilities (Appendix A

Table A.1), encounter rates (Appendix A Table A.2), 95% confidence intervals produced

using analytic and bootstrap methods (Appendix A Fig. A.2), and density estimates for

both, south and north regions from point-transect distance sampling surveys on Hakalau

Forest National Wildlife Refuge, Hawai'i, between 1987 and 2017 (Appendix A Tables

A.3–A.5).
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Appendix A Figure A.1: Average detection probability (dark solid line) for the hazard-
rate model without series expansion and with Year as a covariate plotted on the data
histogram. Each Year covariate is shown by a grey dashed line. There was a clear pattern
in the decay phase where several detection probabilities were cluster below, slightly above
and well above the average detection probability.
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Appendix A Table A.1: Annual detection probability with SE estimates from the hazard-
rate model without series expansion and with the covariate Year produced using Distance
for Windows. Survey not sampled indicated with a —.

Year Detection Probability SE

1987 0.365 0.030
1988 0.721 0.037
1989 0.418 0.036
1990 0.478 0.041
1991 0.574 0.047
1992 0.425 0.032
1993 0.780 0.032
1994 0.746 0.040
1995 0.702 0.039
1996 0.551 0.028
1997 0.447 0.029
1998 0.557 0.036
1999 0.439 0.035
2000 0.386 0.027
2001 0.533 0.033
2002 0.583 0.031
2003 0.586 0.041
2004 0.571 0.032
2005 0.790 0.056
2006 0.496 0.056
2007 0.537 0.034
2008 0.378 0.027
2009 — —
2010 0.375 0.034
2011 0.400 0.042
2012 0.375 0.034
2013 0.382 0.034
2014 0.567 0.047
2015 0.583 0.054
2016 0.585 0.047
2017 0.411 0.042
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Appendix A Table A.2: Annual encounter rate with SE estimates from the hazard-rate
model without series expansion and with the covariate Year produced using Distance for
Windows. Survey not sampled indicated with a —.

Year Encounter Rate SE

1987 0.472 0.202
1988 0.371 0.149
1989 0.414 0.202
1990 0.330 0.171
1991 0.330 0.229
1992 0.538 0.215
1993 0.686 0.257
1994 0.474 0.220
1995 0.513 0.303
1996 0.919 0.377
1997 0.668 0.235
1998 0.558 0.207
1999 0.472 0.168
2000 0.621 0.242
2001 0.648 0.217
2002 0.779 0.276
2003 0.442 0.187
2004 0.692 0.271
2005 0.271 0.142
2006 0.253 0.109
2007 0.789 0.295
2008 0.795 0.272
2009 — —
2010 0.574 0.220
2011 0.410 0.211
2012 0.503 0.239
2013 0.568 0.199
2014 0.400 0.190
2015 0.345 0.138
2016 0.482 0.134
2017 0.424 0.155
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Appendix A Figure A.2: Annual density and 95%CI estimates from the hazard-rate model
without series expansion and with the covariate Year produced using Distance for Windows
using analytic (black diamonds and whisker bars) and bootstrap (blue diamonds and
whisker bars) methods. Surveys were not conducted in 2009 (vertical bar).
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Appendix A Table A.3: Density estimates for both regions from point-transect distance
sampling surveys on Hakalau Forest National Wildlife Refuge, Hawai'i, between 1987 and
2017. The design-based estimates include density (Est DB), standard error (SE DB), coef-
ficient of variation (CV DB), lower 95% confidence limit (LCL DB), upper 95% confidence
limit (UCL DB), and width of the confidence interval (CIW DB). Estimates not produced
indicated with a —.

Year Est DB SE DB CV DB LCL DB UCL DB CIW DB

1987 0.959 0.234 0.244 0.599 1.536 0.937
1988 0.283 0.110 0.388 0.136 0.589 0.453
1989 0.696 0.200 0.287 0.401 1.207 0.807
1990 0.446 0.153 0.344 0.232 0.859 0.627
1991 0.396 0.183 0.461 0.168 0.937 0.769
1992 0.891 0.183 0.205 0.598 1.326 0.729
1993 0.622 0.115 0.184 0.435 0.890 0.455
1994 0.438 0.111 0.253 0.269 0.713 0.444
1995 0.509 0.187 0.368 0.253 1.023 0.769
1996 1.147 0.228 0.199 0.779 1.687 0.908
1997 1.061 0.171 0.161 0.775 1.451 0.676
1998 0.727 0.194 0.267 0.435 1.215 0.780
1999 0.770 0.146 0.190 0.533 1.113 0.580
2000 1.089 0.204 0.188 0.757 1.569 0.812
2001 0.874 0.161 0.184 0.612 1.249 0.638
2002 0.948 0.220 0.232 0.606 1.485 0.879
2003 0.534 0.142 0.267 0.319 0.892 0.572
2004 0.863 0.191 0.222 0.562 1.326 0.764
2005 0.305 0.073 0.238 0.193 0.484 0.291
2006 0.460 0.104 0.226 0.297 0.712 0.415
2007 1.072 0.176 0.164 0.779 1.475 0.697
2008 1.509 0.322 0.213 0.998 2.280 1.282
2009 — — — — — —
2010 1.200 0.209 0.174 0.855 1.685 0.830
2011 0.806 0.322 0.400 0.379 1.714 1.335
2012 1.123 0.179 0.159 0.824 1.531 0.707
2013 1.225 0.228 0.186 0.853 1.759 0.905
2014 0.613 0.237 0.386 0.295 1.273 0.978
2015 0.476 0.294 0.617 0.156 1.449 1.293
2016 0.710 0.249 0.350 0.365 1.384 1.019
2017 0.878 0.224 0.255 0.536 1.436 0.900
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Appendix A Table A.4: Density estimates for the north region from point-transect dis-
tance sampling surveys on Hakalau Forest National Wildlife Refuge, Hawai'i, between 1987
and 2017. The design-based estimates include density (Est DB), standard error (SE DB),
coefficient of variation (CV DB), lower 95% confidence limit (LCL DB), upper 95% con-
fidence limit (UCL DB), and width of the confidence interval (CIW DB). Estimate not
produced indicated with a —.

Year Est DB SE DB CV DB LCL DB UCL DB CIW DB

1987 0.131 0.140 1.069 0.015 1.103 1.087
1988 0.079 0.097 1.225 0.007 0.892 0.885
1989 0.058 0.055 0.938 0.009 0.377 0.368
1990 0.034 0.039 1.157 0.004 0.302 0.298
1991 0.014 0.014 0.991 0.001 0.149 0.148
1992 0.058 0.074 1.286 0.005 0.632 0.627
1993 0.086 0.066 0.763 0.016 0.467 0.452
1994 0.000 — — — — —
1995 0.012 0.015 1.320 0.001 0.137 0.136
1996 0.060 0.040 0.677 0.014 0.248 0.233
1997 0.131 0.092 0.700 0.029 0.584 0.555
1998 0.179 0.196 1.096 0.019 1.683 1.664
1999 0.153 0.097 0.636 0.039 0.602 0.564
2000 0.000 — — — — —
2001 0.204 0.116 0.570 0.057 0.736 0.680
2002 0.188 0.208 1.102 0.020 1.800 1.780
2003 0.070 0.087 1.250 0.006 0.782 0.775
2004 0.114 0.097 0.845 0.019 0.698 0.679
2005 0.000 — — — — —
2006 0.139 0.065 0.471 0.050 0.381 0.331
2007 0.182 0.087 0.478 0.061 0.543 0.482
2008 0.543 0.242 0.446 0.190 1.553 1.363
2009 — — — — — —
2010 0.300 0.164 0.548 0.087 1.038 0.951
2011 0.136 0.305 2.242 0.004 5.240 5.236
2012 0.127 0.090 0.710 0.028 0.589 0.562
2013 0.484 0.209 0.433 0.176 1.328 1.151
2014 0.238 0.268 1.123 0.020 2.799 2.779
2015 0.224 0.408 1.821 0.008 6.246 6.238
2016 0.452 0.334 0.740 0.075 2.704 2.629
2017 0.476 0.210 0.442 0.168 1.349 1.181
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Appendix A Table A.5: Density estimates for the south region from point-transect dis-
tance sampling surveys on Hakalau Forest National Wildlife Refuge, Hawai'i, between 1987
and 2017. The design-based estimates include density (Est DB), standard error (SE DB),
coefficient of variation (CV DB), lower 95% confidence limit (LCL DB), upper 95% con-
fidence limit (UCL DB), and width of the confidence interval (CIW DB). Estimate not
produced indicated with a —.

Year Est DB SE DB CV DB LCL DB UCL DB CIW DB

1987 2.891 0.709 0.245 1.675 4.989 3.313
1988 0.757 0.288 0.380 0.319 1.794 1.475
1989 2.181 0.653 0.299 1.115 4.266 3.151
1990 1.408 0.503 0.357 0.632 3.136 2.504
1991 1.286 0.608 0.472 0.451 3.669 3.218
1992 2.832 0.585 0.206 1.788 4.485 2.697
1993 1.873 0.350 0.187 1.219 2.877 1.658
1994 1.459 0.368 0.252 0.819 2.600 1.781
1995 1.668 0.622 0.373 0.716 3.887 3.171
1996 3.680 0.754 0.205 2.304 5.878 3.574
1997 3.227 0.528 0.164 2.248 4.633 2.385
1998 2.005 0.457 0.228 1.198 3.355 2.157
1999 2.210 0.432 0.196 1.438 3.396 1.958
2000 3.629 0.681 0.188 2.391 5.507 3.116
2001 2.436 0.462 0.190 1.591 3.731 2.140
2002 2.719 0.550 0.202 1.716 4.308 2.591
2003 1.615 0.428 0.265 0.887 2.942 2.055
2004 2.608 0.597 0.229 1.549 4.390 2.841
2005 1.016 0.242 0.238 0.572 1.806 1.234
2006 1.210 0.310 0.257 0.665 2.202 1.537
2007 3.144 0.551 0.175 2.080 4.753 2.673
2008 3.759 0.916 0.244 2.100 6.729 4.628
2009 — — — — — —
2010 3.298 0.584 0.177 2.199 4.947 2.748
2011 2.367 0.804 0.340 1.011 5.543 4.532
2012 3.444 0.557 0.162 2.397 4.948 2.551
2013 2.953 0.584 0.198 1.864 4.677 2.813
2014 1.487 0.482 0.324 0.652 3.389 2.737
2015 1.063 0.236 0.222 0.630 1.794 1.164
2016 1.313 0.284 0.216 0.785 2.196 1.411
2017 1.814 0.565 0.311 0.849 3.875 3.026
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Appendix B

Appendix for Chapter 2

R code to compute variance estimates through posterior simulation.

# Define grid over the study area for each year in the time

# series with grid size adjusted offset (4, 1-ha plots per

# 200x200m grid)

pred.SpTm <- expand.grid(Year=unique(PointDataHI$Year),

East=seq(from=255400, to=261200,

by=200),

North=seq(from=2189000, to=2200800,

by=200),

off.set=4)

# Restrict predictions to within study area defined by polys.map

pred.SpTmInfer <- pred.SpTm[with(pred.SpTm, inSide(polys.map,

East, North)),]

# Predict density estimates to grid

pred.SpTmInfer[, "fit"] <- predict(dsmPredModel,

pred.SpTmInfer,

type="response")

# coerce the structure of Year in newdata to match to

# structure of the data used in fitted model

pred.SpTmInfer$Year <- as.integer(pred.SpTmInfer$Year)

# Propagate the detection probability uncertainty

dsm.SpTm.varprop <- dsm.var.prop(dsmPredModel,

pred.data=pred.SpTmInfer,

off.set=1,

seglen.varname="Effort",

type.pred="response")
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# Predict the propagated non-linear and detection probability

# uncertainty

ts.year <- unique(PointDataHI$Year) # years in time series

n.rep <- 999 # number of replicate draws

pred.SpTmInfer.b <- pred.SpTmInfer[,c(1:4)] # added post run

# add extra column for additional parameters in the refitted model

pred.SpTmInfer.b[["XX"]] <- matrix(0, nrow(pred.SpTmInfer.b),

length(dsm.SpTm$ddf$par))

pred.SpTmInfer.b$Year <- as.integer(pred.SpTmInfer.b$Year)

pred.SpTmInfer.b[, "fit"] <- predict(dsm.SpTm.varprop$model,

pred.SpTmInfer.b,

type="response")

# form the matrix X_p above

Lp.b <- predict(dsm.SpTm.varprop$model,

newdata=pred.SpTmInfer.b, type="lpmatrix")}

# create storage for the results

PredVar.b <- matrix(NA, nrow=30, ncol=n.rep)

# loop over the number of replicates

for (i in 1:n.rep){

# generate new betas

br.b.u <- rmvn(n=1, coef(dsm.SpTm.varprop$model),

vcov(dsm.SpTm.varprop$model,

unconditional=TRUE))

# calculate the predicted values

ex <- 40000*exp(Lp.b %*% matrix(br.b.u, ncol=1))

# calculate the estimates per year

for (j in 1:30){

PredVar.b[j,i] <- sum(ex[pred.SpTmInfer$Year ==

ts.year[j],])/3061

}

}

146



# Extract quantiles and variances

PredVar.b.out <- apply(PredVar.b, 1, quantile,

probs = c(0.025, 0.5, 0.975))

# print variance for each year

for (i in 1:nrow(PredVar.b)){

print(var(as.vector(as.matrix(PredVar.b[i,]))))

}
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Spatial position of points sampled per year. Roughly every other transect was dropped

starting in 2005 in the southern half of the study area (Appendix B Fig. B.1).
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Appendix B Figure B.1: Spatial position of each point sampled by year.
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Appendix C

Appendix for Chapter 3

Diagnostic plots of Poisson, Tweedie and negative binomial distributions fitted to the 2002

'ākepa data. Inspection of residual diagnostic plots revealed that there were no obvious

residual problems with one or the other distributions (Appendix C Figs. C.1–C.9).

Appendix C Figure C.1: Diagnostic plots for spatial GAM with a Poisson distribution
fitted to the 'ākepa count data for the 2002 survey. Deviance residuals versus theoretical
quantiles (top left panel), residuals versus fitted values (top right panel), histogram of
residuals (bottom left panel), and response versus fitted values (bottom right panel). The
plots show acceptable behaviour for the deviance residuals and error distribution.
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Appendix C Figure C.2: Sorted deviance residuals (black dots) for the spatial GAM versus
simulated theoretical quantiles (grey lines; 1,000 replicates) fitted to the 2002 'ākepa count
data for the Poisson distribution. The points seem to fall about the straight line, which
provide evidence the numbers came from the theoretical distribution.

The degree of flexibility in the smoother of the DSM is controlled by the smoothing

penalty. Removing the penalty would increase the model flexibility and could make the

DSM estimates more similar to those of the point process approach that can produce a

higher degree of spatial variation (i.e., a more wiggly surface). There are two arguments

in mgcv that allow for the manual manipulation of the influence of the penalty: sp and fx.

I formulated two models that separately used arguments setting the smoothing parameter

sp to zero or fixing the degrees of freedom in the regression spline fx to true. The models

are

log{E(nk)} =s(Eastingk, Northingk, k = 20, bs = ”tp”)

+ log(ν̂).

For the 2002 dataset, both arguments require a term setting the basis complexity and a

term defining the basis which was set to ”tp” for an isotropic, penalized thin plate regres-

sion spline smooth. with the argument sp=0 added to the gam() function, while fx=TRUE

was added to the smooth term. A maximum basis complexity of 20 was selected by de-

creasing from 30 till the models converged. Both models produced the same smooth as

evidenced by matching coefficient, EDF and fitted predicted values (not presented). Both

models predicted biologically realistic densities with similar spatial locations of hot/cold

spots, but variances were large resulting in biologically unrealistic abundance estimates.
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Appendix C Figure C.3: Diagnostic plots of individual parameters for spatial GAM with a
Poisson distribution fitted to the 'ākepa count data for the 2002 survey. Residuals versus
fitted values (top left panel), residuals versus easting (top right panel), residuals versus
northing (bottom left panel), and histogram of residuals (bottom right panel). The plots
show acceptable behaviour for the deviance residuals and error distribution.

Abundances were estimated using posterior simulation procedures (1,000 repetitions) of

estimates fitted to a regular grid over the study area as described in Chapters 2 and 3.

A density plot for abundances < 10,000 revealed a peak at slightly greater than 2,000

birds (Appendix C Fig. C.10). However, skew in the abundance estimates was 31.5 with

a maximum abundance estimate of 1.268212e+75 birds which is biologically unrealistic.

Forcing mgcv to fit maximally flexible smooths is contradictory to the penalized smoothing

framework, and, as seen here, can yield biologically unrealistic estimates.
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Appendix C Figure C.4: Diagnostic plots for spatial GAM with a negative binomial dis-
tribution fitted to the 'ākepa count data for the 2002 survey. Deviance residuals versus
theoretical quantiles (top left panel), residuals versus fitted values (top right panel), his-
togram of residuals (bottom left panel), and response versus fitted values (bottom right
panel). The plots show acceptable behaviour for the deviance residuals and error distri-
bution.

Density surface maps of fitted means and SEs for both the one- and two-stage ap-

proaches for the 2002 'ākepa dataset (Appendix C Figs. C.11 and C.12).
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Appendix C Figure C.5: Sorted deviance residuals (black dots) for the spatial GAM versus
simulated theoretical quantiles (grey lines; 1,000 replicates) fitted to the 2002 'ākepa count
data for the negative binomial distribution. The points seem to fall about the straight
line, which provide evidence the numbers came from the theoretical distribution.
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Appendix C Figure C.6: Diagnostic plots of individual parameters for spatial GAM with a
negative binomial distribution fitted to the 'ākepa count data for the 2002 survey. Residu-
als versus fitted values (top left panel), residuals versus easting (top right panel), residuals
versus northing (bottom left panel), and histogram of residuals (bottom right panel). The
plots show acceptable behaviour for the deviance residuals and error distribution.
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Appendix C Figure C.7: Diagnostic plots for spatial GAM with a Tweedie distribution
fitted to the 'ākepa count data for the 2002 survey. Deviance residuals versus theoretical
quantiles (top left panel), residuals versus fitted values (top right panel), histogram of
residuals (bottom left panel), and response versus fitted values (bottom right panel). The
plots show acceptable behaviour for the deviance residuals and error distribution.
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Appendix C Figure C.8: Sorted deviance residuals (black dots) for the spatial GAM versus
simulated theoretical quantiles (grey lines; 1,000 replicates) fitted to the 2002 'ākepa count
data for the Tweedie distribution. The points seem to fall about the straight line, which
provide evidence the numbers came from the theoretical distribution.
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Appendix C Figure C.9: Diagnostic plots of individual parameters for spatial GAM with a
Tweedie distribution fitted to the 'ākepa count data for the 2002 survey. Residuals versus
fitted values (top left panel), residuals versus easting (top right panel), residuals versus
northing (bottom left panel), and histogram of residuals (bottom right panel). The plots
show acceptable behaviour for the deviance residuals and error distribution.

Appendix C Figure C.10: Density plot of estimated abundances < 10,000 individuals from
smooth model formulated with a Poisson distribution and maximum flexibility fitted to
the 'ākepa count data for the 2002 survey.
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Appendix C Figure C.11: Mean and SE estimates from the point process approach.

Appendix C Figure C.12: Mean and SE estimates from the DSM approach.
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Appendix D

Appendix for Chapter 4

In a preliminary analysis I selected among Poisson, negative binomial and Tweedie distri-

butions to model the response distribution using methods detailed in Chapter 2. These

analyses were performed on the TPRS smooth and the selected distribution applied to

both the soap and TPRS smooths. I again restricted the Tweedie distribution power

parameter to p = (1.1, 2) following recommendations provided in the mgcv package help

pages and used a method of bisection to approximately identify the likelihood maximum.

Sensitivity to the response distribution choice and model assumptions were checked using

methods detailed in Chapter 2.

I chose the negative binomial distribution with log-link for modelling the 2002 'ākepa

spatial patterns. This model provided a reasonably good fit to the residuals (Appendix D

Figs. D.1 and D.2). The AIC value for the negative-binomial distributed, TPRS model was

about 2 AIC units larger than the Poisson distributed model (Appendix D Table D.1).

Thus, AIC alone could not be used to select between these two models (Burnham and

Anderson 2002). AIC statistics clearly eliminated the Tweedie distribution (Appendix

D Table D.1). QQ-plots showed the negative binomial distribution did a better job of

following the identity line from the smallest through middle values than the other two

models (Appendix D Fig. D.1). All three models deviated at the largest values. Therefore,

I based my model selection on the QQ-plots.

Diagnostic plots for the negative binomial distribution fitted with the TPRS model

formulation to the 2002 'ākepa data (Appendix D Figs. D.1 and D.2). The QQ-plot is very

close to the straight line suggesting that the distribution is reasonable (Appendix D Fig.

D.2, top left panel), the residuals versus linear predictor values appears to be reasonable,

although strong banding patterns are obvious (Appendix D Fig. D.2, top right panel), the

Appendix D Table D.1: Model selection statistics for the Poisson, negative binomial and
Tweedie distributions. Presented are the smoother log-likelihood (logLik), effective degrees
of freedom (EDF), Akaike’s information criterion (AIC), and ∆ AIC.

Model logLik EDF AIC ∆ AIC

Poisson -275.961 20.754 593.432 0
negative binomial -276.677 21.107 595.569 2.137
Tweedie -293.101 20.920 628.043 34.611
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Appendix D Figure D.1: QQ plots of sorted deviance residuals (black dots) for the spatial
GAM against theoretical quantiles (grey lines; 1,000 replicates) fitted with the Poisson
(left panel), negative binomial (middle panel) and Tweedie (right panel) distributions to
the 2002 'ākepa count data from the TPRS model.

histogram of residuals approximates normality with a spike at zero (Appendix D Fig. D.2,

bottom left panel), and the diagonal pattern in the response versus fitted values reveals

that the assumption of constant variance is questionable, again with a strong banding

pattern (Appendix D Fig. D.2, bottom right panel). Points from the sorted deviance

residuals seem to fall about the straight line and well within the simulated theoretical

quantiles band of grey lines, which provides evidence the numbers came for the theoretical

distribution (Appendix D Fig. D.1).
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Appendix D Figure D.2: Diagnostic plots of individual parameters for spatial GAM with
a negative binomial distribution fitted with the TPRS model formulation to the 'ākepa
count data for the 2002 survey. Diagnostic are QQ-plot (top left panel), residuals versus
linear predictor (top right panel), histogram of residuals (bottom left panel), and response
versus fitted values (bottom right panel).

The EDF values were approximately zero for the TPRS model fit to the residuals

(Appendix D Table D.2) and suggests that there was little un-modelled residual auto-

correlation.

Diagnostic plots for the negative binomial distribution fitted with soap-film model

formulation to the 2002 'ākepa data. Inspection of residual diagnostic plots appeared

reasonable with acceptable behaviour for the deviance residuals and error distribution

(Appendix D Figs. D.3 and D.4). The diagnostics of the soap-film residuals are very

similar to those of the TPRS model where the QQ-plot is very close to the straight line

suggesting that the distribution is reasonable (Appendix D Fig. D.3, top left panel), the

residuals versus linear predictor values appears to be reasonable with a strong banding

pattern (Appendix D Fig. D.3, top right panel), the histogram of residuals approximates

normality with a spike at zero (Appendix D Fig. D.3, bottom left panel), and the diagonal

pattern in the response versus fitted values draws into question the assumption of constant
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Appendix D Table D.2: Effective degrees of freedom (EDF) and basis complexity (k-index)
for each term in the model fitted to the residuals.

Term EDF k-index

s(Easting) 2.61e-05 0.92
s(Northing) 1.48e-05 1.07
ti(Easting, Northing) 4.01e-04 1.16

variance (Appendix D Fig. D.3, bottom right panel). Points from the sorted deviance

residuals seem to fall about the straight line and well within the simulated theoretical

quantiles band of grey lines, which provides evidence the numbers came for the theoretical

distribution (Appendix D Fig. D.4). Effect plots for the TPRS model terms are shown in

Appendix D Fig. D.5, while a description of the effects is presented in the text.
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Appendix D Figure D.3: Diagnostic plots of individual parameters for spatial GAM with
a negative binomial distribution fitted with soap-film model formulation to the 'ākepa
count data for the 2002 survey. Diagnostic are QQ-plot (top left panel), residuals versus
linear predictor (top right panel), histogram of residuals (bottom left panel), and response
versus fitted values (bottom right panel).
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Appendix D Figure D.4: Sorted deviance residuals (black line) for the spatial GAM against
theoretical quantiles (grey lines; 1,000 replicates) fitted to the 2002 'ākepa count data for
the negative binomial distribution with the soap-film model formulation.
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Appendix D Figure D.5: Estimated model terms for the spatial TPRS fitted to the 'ākepa
count data. The distribution of the data is visualized in the rug plot along the x-axis for
the 1D Easting and Northing plots, while the EDFs are presented on the y-axis labels.
The grey ribbon illustrates the error bounds of plus or minus one standard error from the
estimates. The locations of the points are plotted as black dots on the 2D contour plots
and the EDF is provided in the plot panel title. Contours represent 0.5 unit change and
are shown as blue lines. Estimates provided on the scale of the link function.
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Hazard-rate detection function diagnostic plots indicated that the model adequately

fit the data (Appendix D Fig. D.6).

Appendix D Figure D.6: Detection function plots for the hazard-rate model without series
expansion or covariates fitted to the 2002 'ākepa detections in the forest stratum. Plots
represent the average detection probability (left top panel), probability density (right top
panel) and QQ-plot (bottom panel). There is moderate deviation in the histogram in the
probability plots and the points seem to fall about the straight line of the QQ-plot, which
provides evidence the function adequately fits the data.
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Histograms and boxplots of posterior distributions of 'ākepa abundances from the two

smoothers (Appendix D Figs. D.7 and D.8).

Appendix D Figure D.7: Histogram of log-abundances from the TPRS (left panel)
and soap-film (right panel) posterior distributions. Maximum log-abundance from the
TPRS smoother was 12.97, while the maximum log-abundance was 9.57 for the soap-film
smoother.
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Appendix D Figure D.8: Boxplots of TPRS (top row) and soap-film (bottom row) pos-
terior distributions of 'ākepa abundances. The TPRS distribution is highly skewed while
the soap-film distribution was moderately skewed (left column); therefore, outliers were
removed using the boxplot function (right column).
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Appendix E

Appendix for Chapter 5

Computing prior values from literature-based parameters

The gamma(α, β) prior is the conjugate of the Poisson distribution parameter and the

beta(α, β) distribution is the conjugate prior for binomial sampling. The prior of the

survival model comes from literature with a distribution of φ1+ ∼ Beta(α, β). The Beta

distribution parameters α and β can be algebraically calculated from the mean and vari-

ance estimates where µ = α
α+β and σ2 = αβ

(α+β)2(α+β+1)
. Then starting with the mean and

solving for β

µ =
α

α+ β

µ(α+ β) = α

µα+ µβ = α

β =
α− µα
µ

=
α(1− µ)

µ
.
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Substituting β into the variance equation and solving for α is

σ2 =
αβ

(α+ β)2(α+ β + 1)

σ2 =
αα(1−µ)µ(

α+ α(1−µ)
µ

)2 (
α+ α(1−µ)

µ + 1
)

σ2 =

α(1−µ)
µ(

α+ 2α(1−µ)µ + 1−µ
µ

α(1−µ)
µ

)(
α+ α(1−µ)

µ + 1
)

σ2 =

1−µ
µ(

1 + 2(1−µµ ) + (1−µµ )2
)(

α+ α(1−µ)
µ + 1

)
σ2

1

µ2

(
α+

α(1− µ)

µ
+ 1

)
=

1− µ
µ

σ2
1

µ

(
α+

α(1− µ)

µ
+ 1

)
= 1− µ

σ2
1

µ

α

µ
+ σ2

1

µ
= 1− µ

α

µ
=

1− µ− σ 1
µ

σ2 1
µ

α = µ

(
µ(1− µ)

σ2
− 1

)
, and

β = (1− µ)

(
µ(1− µ)

σ2
− 1

)
.

Using the adult survival estimates from Table 5.1 that have point estimates and variances

produces inverse-variance-weighted mean = 0.803 and SE = 0.022, from which I compute

α = 261.335 and β = 51.439 for the beta distribution.

Similarly, the gamma distribution shape, α, and rate, β, parameters can be calculated

algebraically from the mean and variance estimates where µ = α
β and σ2 = α

β2 . Solving β

in terms of µ and substituting into the variance gives

β =
α

µ

σ2 =
α(
α
µ

)2
=
αµ2

α2

=
µ2

α

α =
µ2

σ2
, and

β =
µ

σ2

Using the recruitment mean and variance estimates shown in Table 5.1 from Guillaumet

et al. (2016) I compute α = 3.471 and β = 9.806.
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Appendix E Figure E.1: Model M1 posterior distributions for process variation ση and
mean rates of change r̄. Black curve is the posterior density and black vertical line the
posterior mean. Priors were process variation ση ∼ uniform(0, 10) and mean growth rate
r̄ ∼ normal(0, 10), respectively (not plotted).

MCMC checking and model diagnostics

For each model trace plots indicated good mixing after burn-in, convergence was achieved

with R̂ < 1.1, ESS values were relatively large, and the percent overlap of prior and

posterior distributions varied.

Model M1

Inspection of the trace plots indicated good mixing after burn-in and convergence was

achieved (R̂ < 1.001). The data were sufficient to move the posterior from the prior

for both the process variation ση and mean growth rate r̄ (Appendix E Fig. E.1). The

posterior overlap of the process error prior was 2.9%, while the the posterior overlap of

the mean growth rate prior was 5.1%. The average ESS was 51,110 with a minimum ESS

of 25,674.

Model M2

Inspection of the trace plots indicated good mixing after burn-in and convergence was

achieved (R̂ < 1.002). However, the data were insufficient to move the posterior from the

prior for mean adult survival φ̄ (overlap 95.6%) and moderately sufficient to move the

posterior for mean recruitment λ̄ (overlap 18.0%; Appendix E Fig. E.2). Mean ESS was

9,888 with a minimum ESS of 2,588.

Model M3

Visual inspection of of the trace plots from Model M3 indicated that there was good mixing

after burn-in and convergence was achieved (R̂ < 1.002). The data were sufficient to move

the posterior from the prior for mean adult survival φ̄ (overlap 4.7%) and moderately
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Appendix E Figure E.2: Model M2 posterior distributions for mean adult survival φ̄ and
recruitment λ̄. Black curve is the posterior density and black vertical line the posterior
mean. Red dashed curve is the prior density and the vertical red line the prior mean.

sufficient to move the posterior for mean recruitment λ̄ (overlap 53.3%; Appendix E Fig.

E.3). Mean ESS was 12,087 with a minimum ESS of 2,929. Correlation between between

the φ and λ parameters is shown in Appendix E Fig. E.4.

Model M4

Inspection of the trace plots indicated good mixing after burn-in and convergence was

achieved (R̂ < 1.002). The data were moderately sufficient to move the posterior from the

prior for mean adult survival φ̄ (overlap 56.7%) and sufficient to move the posterior from

the mean recruitment prior λ̄ (overlap 22.5%; Appendix E Fig. E.5). Mean ESS was 15,107

with a minimum ESS of 3,213. Correlation between between the φ and λ parameters is

shown in Appendix E Fig. E.6.

Model M5

Inspection of the trace plots indicated good mixing after burn-in and convergence was

achieved (R̂ < 1.006). The data were moderately sufficient to move the posterior from

the prior for mean adult survival φ̄ (overlap 56.6%) and from the mean recruitment λ̄

(overlap 19.0%; Appendix E Fig. E.7). Mean ESS was 5,129 with a minimum ESS of 720.

Correlation between between the φ and λ parameters is shown in Appendix E Fig. E.8.
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Appendix E Figure E.3: Model M3 posterior distributions for mean adult survival φ̄ and
recruitment λ̄. Black curve is the posterior density and black vertical line the posterior
mean. Red dashed curve is the prior density and the vertical red line the prior mean.

Appendix E Figure E.4: Correlation of survival φ̄ and recruitment λ̄ are not confounded
in Model M3 (correlation = 0.004). The blue line is the fitted linear regression.

174



Appendix E Figure E.5: Model M4 posterior distributions for mean adult survival φ̄ and
recruitment λ̄. Black curve is the posterior density and black vertical line the posterior
mean. Red dashed curve is the prior density and the vertical red line the prior mean.

Appendix E Figure E.6: Correlation of survival φ̄ and recruitment λ̄ are moderately
confounded in Model M4 (correlation = -0.687). The blue line is the fitted linear regression.
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Appendix E Figure E.7: Model M5 posterior distributions for mean adult survival φ̄ and
recruitment λ̄. Black curve is the posterior density and black vertical line the posterior
mean. Red dashed curve is the prior density and the vertical red line the prior mean.

Appendix E Figure E.8: Correlation of survival φ̄ and recruitment λ̄ is high in Model M5
(correlation = -0.908). The blue line is the fitted linear regression.
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