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Abstract

Recently, optical technologies have found several applications in fields including

biophotonics, precision metrology and wavelength scale sensors. However, to gather

statistically relevant information and analysis these methods require large amount

of measurements. Current linear multivariate methods such as principal component

analysis or linear discriminant analysis are not su�cient to analyze these big datasets

with non linear variability. Recently, the application of deep learning based artificial

neural networks have found an upsurge in various areas of science ranging from

quantum physics to evolutionary biology, providing an enhancement in the e�ciency

of various techniques. This thesis focuses on the applications of machine learning

with the goal to enhance di�erent aspects of biophotonics.

Firstly, this thesis explores the application machine learning to enhance the label-

free characterization of cells of the immune system using Raman spectroscopy and

digital holographic microscopy. The combination of deep learning with digital holo-

graphic microscopy provides a route towards a high throughput hemogram device

which would be useful for the classification of clinically important immune cells with

morphological similarities but di�erent functions.

Following this, the applications of deep learning are explored in the regime of

precision optical metrology for the development of a laser speckle wavemeter with a

high dynamic range with an additional application for the development of a binary

speckle based spectrometer.

Finally, the application of machine learning based methods are also explored

to improve the sensitivity of the chirped guided mode biosensor. A comparison

between the linear method of principal component analysis and direct Fano fitting

is drawn which is followed by the application of multi layered perceptron for further

improvement.
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Chapter 1

Introduction

1.1 Preface

Since the invention of light microscope in the 17th century, biophotonics has devel-

oped into a popular field of study. Essentially, biophotonics refers to the interaction

of light with biological samples which may also include any food related items in

order to study the underlying aspects. For the analytic purposes, it can further

be divided with respect to the dimensions of interest. These include single cells,

tissues, organs and the whole body. To understand the underlying phenomenon,

biophotonics has been a rapidly growing field with great potential to become a

part of clinical trials. Following the invention of lasers in the 1960s, several optical

techniques including imaging and spectroscopy have advanced exponentially. These

advancements have found corresponding applications in biophotonics to provide it

with an unparalleled outlook [1, 2].

One such biomedical field in which the light based techniques have shown promise

is immunology. The understanding of human and animal physiological mechanisms

for protecting their body against external environmental factors provides a great

potential for direct clinical applications. After getting infected by any agent, the

type and number of immune cells are altered which makes it medically very relevant

to identify these cells and quantify their numbers. These white blood cells, also

known as leucocytes, can be further divided into granulocytes, monocytes and lym-

phocytes. Each cell type has their own functionality and they act in a coordinated

manner to combat infection [3].
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Current methods of identifying and classifying the immune cells require labelling

the cells using fluorescent tags or magnetic beads. These are expensive, time con-

suming and destructive. To overcome such shortcomings, optical techniques such as

Raman spectroscopy, digital holographic microscopy, optical coherence tomography,

optical di�raction tomography among others have been employed [4–11].

In order to achieve a statistically significant outcome, these techniques require a

large number of measurements leading to exponential growth in the amount of bio-

logical data. This in turn results in the problems of e�cient information storage and

extraction of suitable information. The extraction of suitable information poses the

main challenge requiring the development of modern and more reliable approaches.

Specifically for the classification of samples, the information of non-linear variabil-

ity in the sensitivity and specificity requires the development of tools and methods

which can be capable of transforming data to understand the underlying biological

mechanism. The application of computational approaches to analyse the biological

data have been practiced in several biological domains including Genomics, Evolu-

tion, Systems biology, etc.

The requirement for flexibility and adaptability towards di�erent types of data

has been achieved by employing machine learning based methods. The ability for au-

tomated learning without explicitly defining the rules provided these methods with

an edge against any other techniques. Initial methods for the analysis were applied

by considering multivariate methods such as principal component analysis or linear

discriminant analysis. However, these techniques being linear, present major disad-

vantage when applied for non-linearly categorized datasets - which is a general trend

in biomedical data. Artificial neural networks (ANNs) and deep learning present the

latest advancement in machine learning. For their ease of applicability for di�erent

types of data, ANNs and deep learning have found a plathora of application in, not

only bioinformatics but also other fields of photonics.

The focus of this thesis is to explore the applications of machine learning and

find the solutions which may enhance the working of optical instruments. Beginning

with the application of machine learning in label – free characterization of immune

cells, this thesis explores the applications of machine learning in precision optical

metrology and for sensitivity enhancement in wavelength - scale devices.

2
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1.2 Synopsis

This thesis will describe the research in the field of optics and photonics with the

particular emphasis on the applications of machine learning to enhance and improve

the optical devices.

Chapter 2 describes the fundamentals of machine learning with a brief overview

of its applications in the field of optics. The characterization of machine learning

into sub-types, such as, supervised, un-supervised and reinforcement learning are

discussed. This chapter then introduces and provides a theoretical background to

di�erent linear and non-linear methods. Following this, the fundamentals of deep

learning which includes feed forward networks, convolutional neural networks, re-

current neural networks and generative adversarial networks are discussed with an

overview of a variety of their applications in optics.

Chapter 3 will provide a brief introduction to the fundamentals of Immunology

and label-free optical techniques. Specifically the fundamentals and applications of

Raman spectroscopy and digital holographic microscopy for the characterization of

immune cells. This chapter then explains the research, as two studies, conducted to

enhance the classification abilities of optical techniques using machine learning. The

first study demonstrates the enhancement of optical hemogram for granulocyte cells

using artificial neural networks. The second study explores the classification of CD4+

and CD8+ T cells using digital holographic microscopy. It explores the application of

particle swarm optimization to identify optimal convolutional neural network (CNN)

geometry and the application of cycle generative adversarial networks to enhance

the throughput rate whilst maintaining the resolution.

Chapter 4 will describe the research conducted to develop a laser speckle based

wavemeter. This chapter starts with a discussion of methods to accumulate the data

and optimization of a CNN geometry. Then three research studies are described for

the development of laser speckle wavemeter and spectrometer. First study explores

the development of a speckle wavemeter based upon the understanding of wavelength

modulation of the incident laser beam. Second study is the continuation from the

first study to develop a speckle wavemeter with attometre scale precision and high

dynamic range. Interesting aspect demonstrated in this study is the automated

noise cancellation learned by the CNN after being trained as a wavemeter. The

3



third study describes the development of a speckle spectrometer which is capable of

identifying two simultaneous wavelengths from a single speckle image.

Chapter 5 will demonstrate the application of machine learning methods to im-

prove the sensitivity of a chirped guided mode resonance (GMR) biosensor device.

This chapter is divided into two studies. First study explains the application of prin-

cipal component analysis by considering the variation of resonance response from

the GMR with respect to the incident light wavelength. This resulted in a two

fold improvement compared to the generic Fano fitting method. The second study

shall display the application of multi-layered perceptron to classify the resonance

response of GMR with respect to the incident light beam. As a result, a possible

improvement of 10,000 fold is reported when compared to the Fano fitting method.

The concluding chapter will give a summary of various studies described in the

thesis. This chapter shall also circumscribe a discussion on future directions that

would enhance the applicability of machine learning in various areas of optics and

photonics.
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Chapter 2

Machine learning: An overview

2.1 Introduction

The search for patterns in data is a fundamental problem which has found several

important applications throughout history. Going back to the 16th century, astro-

nomical observations by Tycho Brahe allowed for the discovery of emperical laws

of planetary motion leading to the development of classical mechanics. In the early

twentieth century, the observation of regularities in atomic spectra played a key role

in the development and verification of quantum physics. The automatic identifi-

cation of regularities present in the data proved to be crucial in the discovery of

fundamental aspects of sciences. This requirement of identifying the patterns in

data (especially where the size of data set is very large) demands the automatic

methods of analysis, which is provided by Machine learning (ML). ML is a sub-field

of artificial intelligence which encompasses the study of computational algorithms

that improve automatically without being explicitly programmed [12]. For simple

tasks assigned to computers, it is possible to program algorithms which inform the

machine to execute all steps required to solve the problem at hand without “learn-

ing”. For more advanced tasks, such as email filtering, computer vision or natural

language processing, it becomes very challenging to manually develop the needed

algorithms. In practice, it seems to be more e�ective to employ statistical models

in order to generalize over the patterns present in the data. Computational al-

gorithms based on ML generally build statistical models based on a sample data,

commonly referred as “training data”, to identify their intrinsic trends and features.
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The trained models are then employed to make predictions on a separate data-set

with similar trends (“testing data”).

The discipline of ML employs various approaches which may teach the machines

to achieve tasks where no other algorithm performs well. Coined in 1959 by Arthur

Samuel, the term machine learning has been commonly used in the recent scientific

contributions. ML has found various applications in biomedical engineering, neu-

roimaging, fundamental physics, computational geoscience, and chemistry [13–18].

This chapter will give a brief introduction to the theory of machine learning

and an overview of its applications in optics and photonics. The chapter starts

with an introduction to the types of machine learning, which provides insights into

supervised, unsupervised and reinforcement learning approaches. Then di�erent

methods of machine learning including principal component analysis, linear discrim-

inant analysis, k-means algorithm, support vector machines, t-distributed stochastic

neighbour embedding and artificial neural networks are discussed. Following which

the fundamentals of deep learning are discussed which includes a brief overview

and applications in the context of optics and photonics for feed forward networks,

convolutional neural networks, recurrent neural networks and generative adversarial

networks.

2.2 Types of Machine Learning

This section provides a detailed outlook of the types of machine learning approaches

implemented and types of problems that are solved using them. Machine learning

is generally divided into three main categories, namely, supervised learning, unsu-

pervised learning and reinforcement learning [19].

The supervised learning approach deals with learning a mapping from inputs x

to the outputs y by using a labelled set of input-output pairs Q = {(xi, yi)}N
i=1, here

Q is the training set and N are the total number of training examples. Generally,

xi is a one, two or higher dimensional vector with k points. This vector can take

the form of an image, a sentence, a time series, a sequence of digits, etc. These

may represent the data directly or the features, attributes or covariates representing

the intricate properties of the data. The output variable yi, can in principle be

6
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any real valued continuous variable or a discrete categorical representation of the

input data. When yi takes the form of a categorical vector, the problem is known

as a classification problem whereas when yi is a real-valued continuous scalar, the

problem is known as a regression problem.

The second type of machine learning is descriptive or unsupervised learning

approach. This methodology generally deals with identifying hidden patterns in a

given dataset Q = {xi}N
i=1. Due to the absence of any apparent error metric, this is

not a well-defined problem. Generally, these problems are formalised in the form of

density estimation by utilizing multivariate probability models.

Reinforcement learning (RL) is the third approach of ML which resembles the

closest to the kind of learning that humans and other animals do. It deals with

mapping the situations (states S) to actions A in order to maximize a numerical

reward signal R. This algorithm works on the principle of trade-o� between explo-

ration and exploitation. The approach is to train a learning agent to interact (by

taking actions) with its environment hence changing its state and yielding a reward.

2.2.1 Supervised learning

The majority of practical machine learning problems are solved using supervised

learning approach. As explained before, this approach implements an algorithm

which learns to map a function from input variable x to the output y as y = f(x).

Simply, the goal is to approximate the mapping function such that the input vari-

ables xi can be used to predict the output variables yi for a given data. Knowing

the correct answers, an algorithm iteratively makes prediction on the training data

and is corrected with respect to the error identified after each attempt. The learn-

ing process stops when an acceptable level of performance is reached over the novel

inputs, hence showing the generalization capabilities of the algorithm.

Depending on the type of variable y, a supervised learning problem can either

be considered as a classification problem or a regression problem.

Regression Problem

The class of regression problems deals with the prediction of one or more continuous

variables y by considering the value of a D-dimensional input vector x. Linear

7
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functions of the input variables form the simplest form of linear regression. However,

a linear combination of non-linear functions of input variables can also be considered

to form the basis functions. These models form linear functions of the parameters

with simple analytical properties and non-linear with respect to the input variables.

For a given training data set with N observations xn and targets yn where n =

1, ..., N , the aim for using a regression approach is to predict the value of y for a

new value of x. This problem can be formalised by directly constructing a function

y(x) whose values for new inputs x constitute the predictions for the corresponding

values of y

y(x, w) = w0 + w1x1 + .... + wDxD (2.1)

where x = (x1, ..., xD)T . This type of model is known as linear regression such that

it is a linear function of the parameters w0, ..., wD. In order to remove the limitations

of the model, for being linear with respect to xi, it is extended by considering the

nonlinear functions of xi, of the form

y(x, w) = w0 +
M≠1ÿ

j=1
wj„j(x) (2.2)

here „j(x) are known as basis functions with the total number of parameters being

equal to M . The functions exhibiting the form of Eq. 2.2, are called linear models,

for their linear dependence on w. Depending on the given problem, a number

of possible basis functions can be considered such as polynomial functions where

„j(x) = x
j, spline functions [20], Gaussian basis functions with „j(x) = e

≠
(x≠µj )2

2s2 ;

here µj governs the location of basis functions and s governs their spatial scale.

Another choice is the sigmoidal basis function or the tan hyperbolic function which

have the form:

„j(x) = ‡

3
x ≠ µj

s

4
(2.3a)

tanh(a) = 2‡(a) ≠ 1 (2.3b)

‡(a) = 1
1 + e≠a

(2.3c)

here, ‡(a) is called the logistic sigmoid function. The ‘tanh(x)’ function is consid-

8
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ered as it is related to logistic sigmoid (Eq. 2.3b), which implies that a general

linear combination of logistic functions is equivalent to general linear combination

of ‘tanh(x)’ functions. Fourier basis leading to an expansion in sinusoidal functions

is also a popular choice as basis functions [21–23]. Each basis function represents

a specific frequency with finite spatial extent. Signal processing applications have

found it to be of interest to consider the basis functions that are localized in both

space and frequency, leading to a class of functions known as wavelets [24–26].

Classification Problem

For a classification type of problem, the aim is to assign the input variable x to one

of the K discreet classes Ck where k = 1, ..., K. This problem can be formalised as

a function approximation y = f(x), mapping the inputs x to outputs y, such that

y œ {1, ..., K}, with K being the number of classes. For the common cases where

the classes are mutually exclusive and disjoint, the latent space of input data is di-

vided into decision boundaries. The cases with K = 2 are called binary classification

problems whereas the cases with K > 2 are referred to as multi-class classification

problems. The models implemented to solve classification problems try to predict

output probabilities that lie in the range (0,1). To achieve this, a generalized model

can be considered which transforms a linear function of parameters w using a non-

linear function f , so that

y(x) = f(wT
x + Ê0) (2.4)

here f is known as an activation function. The class boundary/surface correspond

to y(x) = Ÿ, such that w
T
x + Ê0 = Ÿ (Ÿ is a constant) and hence the class surfaces

are linear function of x, even if the function f is nonlinear. For this reason, the class

of models described in Eq. 2.4, are called generalized linear models [27].

There are three distinct approaches to tackle the classification problem, (1) con-

structing a discriminant function to assign each vector x to a specific class, (2)

modelling the conditional probability distribution p(y|x) in the inference stage and

then using this distribution to make optimal decision and (3) modelling the class-

conditional densities p(x|y), together with p(y) and then computing the required

probabilities using Bayes’ theorem [28]

9
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p(y|x) = p(x|y)p(y)
p(x) (2.5)

Next few sections shall discuss about these approaches in the form of well known

methods of machine learning.

2.2.2 Unsupervised learning

The problems of machine learning where only output results are known without any

inputs, are dealt upon by implementing unsupervised learning. In order to identify

the hidden features of the data, this approach works to determine the underlying

distribution of data, known as density estimation or to discover groups of similar

examples within the data, known as clustering, or to project the data from a high-

dimensional space to two or three dimensions for the purpose of visualization, known

as dimensionality reduction.

Density estimation

The density estimation problem is dealt by building an unconditional multivariate

probability model of the form p(x) of a random variable x, given a finite set of

observations x1, ..., xN . Since there is a possibility of infinite probability distributions

for a for a finite data set, the problem of density estimation is fundamentally ill-

posed. The models considered for the density estimation of the underlying data can

be thought of as parametric or non-parametric.

The application of parametric models such as, Gaussian distribution, Dirichlet

distribution and others require a procedure to determine the values for parameters.

For the initialization of the parameters, two types of treatments are considered,

namely, frequentist treatment where specific values for the parameters are chosen by

optimizing some criterion such as the likelihood function and the Bayesian treatment

where a prior distribution is introduced over the parameter and Bayes’ theorem (Eq.

2.5) is used to compute the corresponding posterior distribution. The parametric

models, however, show a limitation of assuming specific form of the initial function

for the distribution which may apply some restrictions for particular applications.

The non-parametric models based on histograms, nearest-neighbours or kernel,

10
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result in the distributions which typically depend upon the size of input data set.

The parameters contained by these types of models control the model complexity

rather than the form of distribution.

Clustering

Generally, the problem of clustering for a data set x œ {x1, ....., xN} is solved by

considering the number of clusters (say K) as a parameter. Then, a probability

distribution is evaluated over the number of clusters, p(K|x) which informs about

the presence of any sub-populations in the underlying data. Selection of a model M

is performed by considering M = arg max
K

p(K|x). A model is selected for further

evaluation if the optimal number of clusters represent the statistical properties of

the data. Model selection is followed by identification of cluster for each point. For

this purpose, a latent variable, say zi œ {1, ...K} is considered and a computation

z
ú
i = arg max

k
p(zi = k|xi) is performed to isolate the cluster containing this point.

The major advantage of this approach is the comparison of multiple models with

respect to the statistical significance of the data, generally considered as a function

of likelihood.

There are a few popular clustering algorithms such as hierarchical clustering

which builds a multilevel hierarchy of clusters by creating a cluster tree [29], k-

Means clustering which partitions data into k distinct clusters based on distance

to the centroid of a cluster [30, 31], and Self-organizing maps which uses neural

networks that learn the topology and distribution of the data [32].

Dimensionality reduction

Analysing the raw high dimensional data (xi œ {x1, ...., xN}) often leads to massive

computational cost. To deal with such data, the dimensionality reduction approach

becomes a requirement. It is, however, important to keep the metric properties of

the data consistent while reducing its dimensionality. For keeping the important

features, for e.g. variance, of data in reduced dimensions, the lower dimensional

data (zi œ {z1, ...zN}) can further be used as an input to other statistical models for

better predictive accuracy. Additionally, these can also be very useful to visualize

the higher dimensional data which is di�cult to visualize in its original form.

11
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A few algorithms have been popularly implemented for the purpose of dimension-

ality reduction. Two of the most popular linear methods are principal component

analysis (PCA) and linear discriminant analysis (LDA). PCA reduces the dimension

of data by maximizing the variance of each dimension [33] whereas LDA identifies

a linear combination of features that characterize the subgroups of a given data

set [34]. Nonlinear methods popularly used for this approach are autoencoders and

t-stochastic neighbourhood embedding (t-SNE). Autoencoders learn non-linear di-

mension reduction function and its inverse by reconstructing the input data [35]

whereas t-SNE models a higher-dimensional datapoint using a two or three di-

mensional point such that the probabilisitic distribution of the input data set is

conserved [36].

2.2.3 Reinforcement learning

Reinforcement learning (RL) [37] approach of ML is based upon identifying given

actions in a given environment to maximize a reward. In contrast to supervised

learning where the models are given training examples of output, RL based agents

are set to discover the outputs by low-level learning of trial and error or by high-

level deliberative planning based learning. At each interaction of RL agent with the

environment there is a change in state associated with a reward. This reward then

encourages the agent to take action in a direction which yields maximum reward.

Whilst RL is a massive topic and requires 100s of pages of discussion, this sub-section

briefly describes the fundamentals of RL which shall be useful in understanding the

applications in future chapters.

Fundamentally, RL based approach comprises of four elements: a policy, a reward

signal, a value function and a model of environment. Policy (fi) can be understood

as a conditional probability from incident state S of environment E to actions A.

Formally, this can be defined as fi(A|S), ’(S, A) œ E . Simply, in psychological

terms, policy can be defined as set of stimulus-response rules. A reward signal R

can be defined as the stochastic function R(S, A) of the environment with respect

to an action A. In biological terms, reward signal can be understood as analogous

to feelings of pleasure or pain. The reward signal forms a basis for variations in

policy; if for a given action, with respect to the policy, the environment results in

12
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a low reward, then the policy is modified such that the next action may result in

higher future reward for similar state to action transitions, hence it provides the

immediate response to the action. The value function is defined by the culmina-

tion of rewards acquired by an RL model for a particular state. This function is

responsible for making long term decisions with the purpose of achieving larger re-

wards. It is desirable by an RL model to seek actions with result in highest value

in contrast to higher rewards. E�ciently estimating the values represents the most

important component for a given RL problem. The final element of an RL based

approach is the model of environment. Model of an environment features its char-

acteristics, functionality and behaviour. Simply, model of an environment provides

the computational playground for the RL agent to explore and exploit.

Finite Markov decision processes

Generally, the RL problems can be set up as optimal control of the incompletely-

known Markov decision process (MDP). A stochastic process where the conditional

property (with respect to present and past states) of the future states only depend

on the present state is called a Markov process. The processes of sequential decision

making are classically formalized as MDPs. Here, the present actions by an agent

influence the subsequent states/situations following an immediate reward signal and

resulting in future or delayed rewards. This results in MDPs involving delayed

rewards and a trade-o� between immediate and delayed rewards.

In an MDP, the agent interacts with the environment at discrete or continuous

time steps. For simplicity, this discussion will be restricted to discreet time steps

which can easily be generalized to continuous case. At each time step t, the agent is

input with a state St œ S of the environment such that it selects an action At œ A(s).

On the next time step, the agent receives a reward, Rt œ R for moving into the

state St+1. This process leads to a sequence of trajectory inside the environment

as, S0, A0, R1, S1, A1, R2, S2, A2, ... also popularly known as SARSA trajectory. For

a finite MDP, the states, actions and rewards have a finite number of elements

hence a discrete conditional probability distribution, which is solely dependent on
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the preceding state and action, can be defined as:

p(sÕ
, r|s, a) .= P{St = s

Õ
, Rt = r|St≠1 = s, At≠1 = a} (2.6)

Here, p is also known as the dynamic deterministic function with four arguments,

p : S ◊ R ◊ S ◊ A æ [0, 1] of an MDP such that,

ÿ

sÕœS

ÿ

rœR
p(sÕ

, r|s, a) = 1, ’s œ S, a œ A(s) (2.7)

Using the dynamic function defined in Eq. 2.6, quantities such as state transition

probabilities (p : S ◊ S ◊ A æ [0, 1], Eq. 2.8a), expected reward for state-action

pair (r : S ◊ A æ IR, Eq. 2.8b) and expected reward for state-action-next state

triples (r : S ◊ A ◊ S æ IR, Eq. 2.8c) can be easily defined.

p(sÕ|s, a) .=
ÿ

rœR
p(sÕ

, r|s, a) (2.8a)

r(s, a) .=
ÿ

rœR

ÿ

sÕœS
p(sÕ

, r|s, a) (2.8b)

r(s, a, s
Õ) .=

ÿ

rœR
r

p(sÕ
, r|s, a)

p(sÕ|s, a) (2.8c)

The above defined MDP framework can be understood as an abstraction of a

goal-oriented learning problem via interactions. This kind of problem can be reduced

to three fundamental signals of the environment E starting from an initial state

signal (S), secondly, the actions (A(s)) taken by the agent and finally the reward

signal R which defines the goal of the problem. However, until now the immediate

rewards are discussed. Generally, the complete RL problem is divided into episodes

such that the agent gains rewards for discreet instances in a episode. The aim of the

agent is to maximize the cumulative rewards from the episodes in the long run. This

cumulative reward can be defined as the sum of rewards for distinct time instances:

R
c
t

.= Rt+1 + Rt+2 + ... + RT (2.9)

where T is the final time step which is a random variable and varies for each episode.

This final step is defined when the interaction between agent and environment leads
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to a break in the episode leading to a terminal state. After the episode is finished,

the environment is reset to its initial state and the process is repeated for the next

episode. For the cases where the episodes do not have a defined action for ending

the episodes, the final time step may not be defined such that T = Œ. To model

the uncertainty of agent towards the terminal state of the environment, the discount

factor “ is considered which generally represents the weightage of future rewards.

An important point to note is that the value of “ is bound to be smaller than one,

i.e, “ < 1 such that the sum of mentioned infinite series could be finitely evaluated.

For these cases, the cumulative reward is calculated as:

R
c
t

.= Rt+1 + “Rt+2 + “
2
Rt+3 + “

3
Rt+4 + ...

= Rt+1 + “(Rt+2 + “Rt+3 + “
2
Rt+4 + ...)

= Rt+1 + “R
c
t+1

(2.10)

After understanding the notion of reward and cumulative reward, it would be

interesting to understand the formal definitions of value and policy functions. As

mentioned earlier, the value function is an estimate based on a given policy on how

well the agent may perform to gain better rewards for a longer period. The policy,

as formalised earlier, is the conditional probability (fi(a|s)) that an action (At = a)

will be taken for a given state (St = s). On the other hand, the value function for a

state s (vfi(s)) under a policy fi is defined to evaluate the expected future rewards:

vfi(s) .= IEfi[Rc
t |St = s]

= IEfi

Ë
Rt+1 + “R

c
t+1|St = s

È

=
ÿ

a

fi(a|s)
ÿ

sÕ

ÿ

r

p(sÕ
, r|s, a)[r + “IEfi[Rc

t+1|St+1 = s
Õ]]’s œ S

(2.11)

here, IEfi[·] denotes the expectation value of the random variable for a given policy fi

at a given time instant t. The equation 2.14, further results in the Bellman equation

for vfi which delivers the relationship between the value of the present state and the

values of the successive states:

vfi(s) =
ÿ

a

fi(a|s)
ÿ

sÕ,r

p(sÕ
, r|s, a)[r + “vfi(sÕ)] (2.12)
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The Bellman equation (Eq. 2.12) provides a means to estimate an optimal value

vopt(s) .= max
fi

vfi(s) (2.13)

for each state by averaging over all the probabilistically weighted possibilities. How-

ever, calculation of an optimal value does not guarantee that the RL agent would

act optimally over each state, hence it is required to identify an optimal policy

(qopt(s, a)) value which is an action value function for policy fi. The action value

function can be defined as:

qfi(s, a) .= IEfi[Rc
t |St = s, At = a]

= IEfi

C Œÿ

k=0
“

k
Rt+k+1|St = s, At = a

D

, ’s œ S, a œ A
(2.14)

This value provides the RL agent an insight to take make best decision (in terms

of actions) with respect to a given state. Using the Eq. 2.13, the optimal value of

action value function qopt(s, a) can be evaluated as:

qopt(s, a) =
ÿ

sÕ,r

p(sÕ
, r|s, a)[r + “ max

aÕ
qopt(sÕ

, a
Õ)], ’ s

Õ œ S1 (2.15)

Here, max
aÕ

qopt(sÕ
, a

Õ) is the value of optimal action a
Õ at the state s

Õ and S1 denotes

the set of states including a terminal state.

Dynamic Programming, Monte Carlo methods and Temporal di�erence

learning

With an assumption of a perfect model, dynamic programming represents the collec-

tion of algorithms which can be used to compute optimal policies of an environment.

Quite simply, it can also be understood as breaking of large problems into incremen-

tal steps to identify the optimal solutions of sub-problems at any given stage with

an imperative requirement of a well posed model.

In non-ideal situations, the fundamentals of RL such as states S, actions A,

dynamic function p(sÕ
, r|s, a), immediate reward R and the discount factor “ are

not all known for the same instant. The evaluation of these parameters can be

achieved by initializing a random policy fi and gaining episodic experiences. These
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experiences can either be gained by following a policy and maintaining an average of

rewards, this results in the estimation of state value function vfi(s), or by averaging

over di�erent actions for each state and then averaging the reward, which results

in action value function qfi(s, a). These kind of estimation methods, fundamentally

based upon hit and trial approach, are called the Monte Carlo (MC) methods.

The essential requirement for an MC based approach is the presence of a terminal

state. In contrast to the Bellman equation, the values for each state are update

solely based the final cumulative reward R
c
t and not on the neighbour states. The

cases where a model is available, state value function is evaluated whereas if the

model is not available, then action value function is estimated. To evaluate the

state value function vfi(s), of a state s with a policy fi, two types of MC models are

considered, first-visit MC method and every-visit MC method. The first-visit MC

method estimates vfi(s) as the average of rewards following the first visits to state s

whereas, the every-visit MC method averages the rewards following all the visits to

state s. The cases where a model is not available, the sole estimation of state values

is not su�cient and an explicit evaluation of action values is required to identify

an optimal policy for the problem. This may also be achieved by implementing

the above mentioned first-visit and every-visit MC methods. Here, both methods

estimate the rewards followed by the visits to state-action pair. However, due to

a large number of possibilities, it is possible to miss visiting quite a few state-

action pairs. Following a deterministic policy fi, there is a possibility to observe

the rewards for only one action from each state which result in a circumstance

with zero improvement. This is a general problem of maintaining exploration. This

problem can be overcome by initializing the state-action pair with a condition of

a non-zero selection probability for each pair. Doing so, it is assumed that for an

infinite number of episodes, all the state-action pairs shall be visited for an infinite

number of times. In conclusion, the MC algorithm helps to estimate strategy for

the problem where the model is unknown. However, this technique comes with a

disadvantage of updating the strategy after the termination of each episode without

complete use of an MDP learning structure.

The central idea to RL, temporal-di�erence (TD) learning, is a combination of

MC method and dynamic programming. TD methods work without a defined model
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of the environment and estimates rewards/returns without waiting for a terminal

state. In contrast to MC methods which wait until the end of an episode to determine

an estimate V of vfi for a non-terminal state St, TD methods wait only until the

next step and are updated as:

V (St) Ω V (St) + –[Rt+1 + “V (St+1) ≠ V (St)] (2.16)

via a transition to St+1 while receiving Rt+1. Here, – is a constant step-size pa-

rameter which may influence the convergence. This type of TD method is called

TD(0) method which is a special case of TD(⁄) method. In the above, the value

Rt+1 + “vfi(St+1) is called TD target value and Rt+1 + “vfi(St+1) ≠ vfi(St) is called

the TD error.

The generalization of TD method takes the form of TD(⁄) also known as n-step

TD methods. These methods generalize to smoothly meet the demands of a par-

ticular task which are not fulfilled by either TD(0) or MC method. MC method

updates value function for each state based on the entire sequence of observed re-

wards from that state until the episode is terminated. On the other hand, TD(0)

method updates the value based on the next reward. The TD(⁄) method on the

other hand lies between the two extremes by considering ⁄-time steps where the

values are updated based on the given problem. Formally, a cumulative reward is

considered for ⁄ steps and the value is updates thereafter which can be generated

as:

R
c(1)
t = Rt+1 + “V (St+1) (2.17a)

R
c(2)
t = Rt + 1 + “Rt+2 + “

2
V (St+2) (2.17b)

R
c(n)
t = Rt + 1 + “Rt+2 + ... + “

n
V (St+n) (2.17c)

R
c(⁄)
t = (1 ≠ ⁄)Rc(1)

t + (1 ≠ ⁄)⁄R
c(2)
t + ... + (1 ≠ ⁄)⁄n≠1

R
c(n)
t (2.17d)

=∆ R
c(⁄)
t = (1 ≠ ⁄)

Œÿ

n=1
⁄

n≠1
R

c(n)
t (2.17e)

Hence the TD(⁄) update rule can be formalised as:

V (St) Ω V (St) + –[Rc(⁄)
t ≠ V (St)] (2.18)
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Depending on the given problem, an optimal value of ⁄ can be chosen with

respect to an objective function or the rewards received while solving the problem.

The policy evaluation using this method can be achieved by considering ⁄-step

SARSA. With respect to the ⁄-step returns,

R
c(⁄)
t

.= Rt+1 + “Rt+2 + ... + “
⁄≠1

Rt+⁄ + “
⁄
Qt+⁄≠1(St,At) (2.19)

The above condition is valid for ⁄ Ø 1 and 0 Æ t < T ≠ ⁄. The policy value Qt+⁄

can be defined as:

Qt+⁄(St, At)
.= Qt+⁄≠1(St, At) + –[Rc(⁄)

t ≠ Qt+⁄≠1(St, At)], 0 Æ t < T (2.20)

TD methods present massive advantages over DP and MC methods. With re-

spect to working with unavailability of a model of environment, these methods

present advantage over DP. On being applied in an incremental and online fashion,

these methods provide advantage over MC methods. With MC methods, it is an

imperative requirement to wait until the termination of an episode, whereas with

the simplest form of TD methods the only requirement is to wait for one time step.

RL has found several applications in physics. It has been shown to e�ciently de-

code uncorrelated quantum errors in toric codes, to e�ciently identify the controls to

improve the precision of quantum parametric estimation, for frame by frame track-

ing of plaque using intravascular optical coherence tomography, to correct piston

misalignment between segments in a segmented mirror telescope, to obtain approx-

imation of eigenvectors of arbitrary Hermitian quantum operator [38–42].

For its outstanding applicability to a plethora of problems, RL has been imple-

mented with deep learning where the agents, value function and policy functions are

approximated using the deep neural networks. This field has found attention in re-

search applications that encompass both supervised and unsupervised learning [43].

2.3 Methods of machine learning

In this section, di�erent methods of machine learning shall be discussed. Starting

from the linear methods of ML which include PCA, LDA, k-means clustering and
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support vector machines; this section will also cover the non-linear methods namely

t-SNE and artificial neural networks.

2.3.1 Principal component analysis

Principal component analysis (PCA) is a highly-celebrated statistical procedure to

identify the presence of patterns in any kind of data set. PCA uses an orthogonal

transformation to convert a set of correlated variables into eigenvalue - eigenvector

problem; whereby the eigenvectors are called principal components. The number of

principal components is generally less than the number of original variables.

PCA is implemented by collecting a data set in n dimensions. To remove the

e�ects of intensity fluctuations, mean is subtracted from the collected data. Follow-

ing which, a covariance matrix is calculated, and the eigenvectors and eigenvalues

are extracted from this matrix.

First principal component describes the maximal variation which is directly as-

sociated with the eigenvector with largest eigenvalue. The first principal component

Pc1 can be calculated as the eigenvector with largest eigenvalue µ of the covariance

matrix Cik:

µPc1(‹i) = CikPc1(‹k) (2.21)

where the covariance matrix is defined as:

Cik =
Nÿ

j=1
(Rj(‹i) ≠ R̂(‹i))(Rj(vk) ≠ R̂(vk)) (2.22)

R̂(vi) and R̂(vk) are the average of the data points for the variable parametric

components ‹i and ‹k respectively.

The calculation of eigenvectors with their corresponding eigenvalues, help in the

dimensionality reduction of the data such that the degree of variance is conserved

in the reduced dimensions. For these remarkable abilities, PCA has found several

applications in biophotonics such as in the analysis of fiber optic gyroscope vibration

error, for the reconstruction of leaf reflectance spectra and retrieval of leaf biochem-

ical contents, for the diagnosis of gastric cancer using hyperspectral imaging, for

modulation format identification scheme in elastic optical networks, and for energy
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reconstruction in position-sensitive semiconductor detectors [44–48].

2.3.2 Linear discriminant analysis

Linear discriminant analysis (LDA), a generalization of Fisher’s linear discriminant,

is a linear method of ML based on finding the linear combination of characteristic

features for the classification of input data set. This algorithms is generally used for

reducing the dimensionality of data and then linearly classifying it.

LDA is closely related to PCA as these both are the linear methods which work

on the principal of linear combination of variables to reduce the dimensionality of

the given data set. The di�erence between the two is that PCA identifies the degree

of variance, representing the di�erences, between the classes whereas LDA models

the similarities of various components in terms of features or patterns. LDA is used

when the prior knowledge of classes in the underlying data is known whereas PCA

can be implemented without any prior knowledge.

Formally, LDA can be understood as a form of Fisher’s linear discriminant with

the assumptions of normally distributed classes or equal class covariances. Consider-

ing a training set of observations xi œ {x1, x2, ....} where xi is a k dimensional vector

with k Ø 1 representing the attributes of a given object with class y œ {1, 2, ..., K}.

LDA based analysis assumes a normal distribution of probability density functions

with mean parameters to be µy and identical covariances C with full rank. With

respect to the Bayesian rule, a discriminant function ”y for each class y can be

constructed

”y(xi) = log fy(xi) + log fiy (2.23)

with prior probabilities fiy to represent the maximum likelihood among all the

classes. A class boundary is defined where discriminant functions of di�erent classes

have the same value. With respect to the assumption of identical covariance matrix

for each class, the discriminant function is modified to give:

”y(xi) = x
T
i C

≠1
µy ≠ 1

2µ
T
y C

≠1
µy + log fiy (2.24)

The class boundaries calculated using Eq. 2.24, present to be the linear functions

of x and hence this method is called linear discriminant analysis.
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As a popular classification method, LDA has found several applications in bio-

photonics. It have been implemented to di�erential between ablation states using

di�usely reflected spectra of tissue samples for for gastric mucosal devitalization

treatments, for three-dimensional discriminant analysis of hyperspectral images, and

for classification of Raman spectra of multiple genitourinary cancers [49–51].

2.3.3 k-means algorithm

k-means algorithm is a linear method of supervised machine learning which is based

upon vector quantization. This method aims to partition the input data set into k

distinct non-overlapping clusters such that each data point belongs to a given cluster

with respect to the cluster’s mean.

This algorithm follows the approach of expectation-maximization, such that the

assignment of data points (xi œ {x1, x2, ...., xn}) is made by keeping the sum of

squared distance to the cluster’s centroid to be at a minimum. It is indeed beneficial

to have a minimum variation within the clusters. An iterative approach is followed

by first specifying the number of clusters k, then centroids for each cluster are

initialized by randomly shu�ing the data and selecting random k datapoints which

may serve as centroids. This process is iterated until no change in the assignment

of centroid is detected. Simply an objective function

J =
nÿ

i=1

Kÿ

k=1
wik|xi ≠ µk|2 (2.25)

is considered. Here, wik œ {0, 1} for the cases that the data point xi belongs to a

cluster k. The objective function J is minimized in two steps, first it is minimized

with respect to wik keeping µk (Eq. 2.26a) fixed and then it is minimized with

respect to µk keeping wik fixed (Eq. 2.26b).

ˆJ

ˆwik
=

nÿ

i=1

Kÿ

k=1
|xi ≠ µk|2 =∆ wik =

Y
___]

___[

1, if k = arg min
j

|xi ≠ µj|2

0, otherwise
(2.26a)

ˆJ

ˆµk
= 2

nÿ

i=1
wik(xi ≠ µk) =∆ µk =

qn
i=1 wikxiqn

i=1 wik
(2.26b)
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With respect to the set of equations 2.26, k-means algorithm utilizes a distance

based measurements to determine the similarity among data points. For this, it

is required to normalize the data set with zero mean and unit standard deviation.

Given the iterative nature of the algorithm, random initialization of centroids may

converge to a local minima. Hence, multiple runs of algorithm need to be considered

and the results with least squared error must be considered.

For its generic applicability k-means algorithm has found many applications. It

has been applied to probabilistic-shaped 64 quadrature amplitude modulation coher-

ent optical communication system to locate the decision points more accurately, for

optic disc segmentation, and as a benchmark for digital staining of optical coherence

tomography images [52–54].

2.3.4 Support vector machine

Support vector machines [55] are the supervised learning models of ML that are pop-

ularly implemented for classification and regression analysis [56–58]. SVM is a non-

probabilistic binary classifier such that for a given training set (xi,yi) ’ y œ {≠1, 1},

this algorithm builds a model which assigns new examples to one of the categories.

This model represents a hyperplane with a classification boundary (learned during

training phase) for the training data points. The novel data points are projected in

the hyperplane such that for an optimal model these data points spread on either

sides of the class boundary.

The SVM algorithm, works by considering the functional margins with respect

to the training examples (xi, yi),

“i = yi(wT
xi + b) (2.27)

here, “i represents the margin function of the parameters w and b. With respect to

the equation 2.27, w represents an orthogonal vector to the class boundary (“i), and

b is a linear parameter representing the shift of this boundary. For a general case,

the class boundary can be evaluated as,

“i = yi

Q

a
A

w

|w|

BT

xi + b

|w|

R

b (2.28)
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The geometric margin with respect to the given training data set with n elements

is given as “ = min
i=1,...,n

“i. For a linearly separable training set, the evaluation of

parameters (w, b) is done by maximizing “ such that each training example may

satisfy the condition of having a class boundary at “. To e�ciently solve this

problem and to evaluate an optimal margin classifier, the value of “ is scaled to 1

since it can also be satisfied by scaling w, b and the problem is then transformed

to minimize |w|2 given that yi(wT
xi + b) Ø 1 with i œ {1, ..., n}. By solving the

Lagrangian dual of this problem a simplified problem of maximizing

f(c1, ..., cn) =
nÿ

i=1
ci ≠ 1

2

nÿ

i=1

nÿ

j=1
yici(xi · xj)yjcj (2.29)

subject to qn
i=1 ciyi = 0 and 0 Æ ci Æ 1

2n⁄ for all i is obtained. Here, ⁄ determines

the trade o� between increasing the margin size and ensuring that xi lies on the

correct side of margin. The variables ci are defined such that w = qn
i=1 ciyixi. The

parameter b can be evaluated by finding an xi on the margin’s boundary and solving

yi.(w · xi ≠ b) = 1 (2.30)

To deal with a training data with non-linear distribution, a transformation is

performed such that the transformed data presents the property of linear separabil-

ity. The transformation function „(x̨i) must satisfy the condition for a given kernel

function k,

k(xi, xj) = „(xi) · „(xj) (2.31)

The kernel function may take the form of a Gaussian function k(xi, xj) = e
≠|xi≠xj |2 ,

a linear function k(xi, xj) = x
T
i xj, a polynomial function k(xi, xj) = (1 + x

T
i xj)’

of order ’, or any other specifically defined valid form with respect to the Mercer

theorem. By invoking the kernels, the problem transforms to maximizing

f(c1, ..., cn) =
nÿ

i=1
ci ≠ 1

2

nÿ

i=1

nÿ

j=1
yici(„(xi) · „(xj))yjcj

=
nÿ

i=1
ci ≠ 1

2

nÿ

i=1

nÿ

j=1
yicik(xi, xj)yjcj

(2.32)

such that, qn
i=1 ciyi = 0 and 0 Æ ci Æ 1

2n⁄ for all i. The parameter b can be evaluated
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by considering the condition that „(x̨i) lies on the class boundary in the transformed

space and solving,

b = w̨ · „(x̨i) ≠ yi

=
S

U
nÿ

j=1
cjyjk(x̨i, x̨j)

T

V ≠ yi

(2.33)

The coe�cients ci can be solved in a straightforward fashion using quadratic pro-

gramming.

To this end, SVMs have found several applications in photonics, for the classi-

fication of hyperspectral data, for infrared target fusion detection, and for remote

sensing image classification [59–62].

2.3.5 T-distributed stochastic neighbor embedding

T-distributed stochastic neighbor embedding (t-SNE) [36] is a recently developed

non-linear method of unsupervised ML. This algorithm is particularly used for visu-

alizing a data set in a low-dimensional latent space by reducing the dimensionality.

The dimensionality reduction is achieved by constructing a probability distribution

over the pairs of higher-dimensional data points which is followed by constructing

a similar probability distribution for the points in lower-dimension and minimizing

the Kulllback-Leibler divergence between the two distributions.

For a high-dimensional data set x1, ..., xn, t-SNE works to first evaluate a prob-

ability distribution pi,j proportional to the similarity of the data points xi and xj,

pj|i = e
(≠|xi≠xj |2/2‡2

i
)

q
k ”=i e(≠|xi≠xk|2/2‡2

i
) , s.t.pi|i = 0 (2.34a)

pi,j = pj|i + pi|j

2n
(2.34b)

here, pi,j = pj,i, pi,i = 0 and q
i,j pi,j = 1. The parameter ‡i is set using the bisec-

tion method such that the perplexity of conditional distribution equals a predefined

perplexity.

To map the similarities of higher-dimensional data into a lower d-dimensional

data y1, ..., yn such that y œ Rd, this algorithm constructs a probability distribution
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qi,j,

qi,j = (1 + |yi ≠ yj|2)≠1
q

k ”=i(1 + |yi ≠ yk|2)≠1 (2.35)

Here, a heavy-tailed student t-distribution is used to measure the similarities be-

tween low dimensional points. The locations of data points yi are determined using

minimizing the non-symmetric form of Kullback-Leibler divergence of the distribu-

tion P from Q,

KL(P ||Q) =
ÿ

i/nej

pij log pi,j

qi,j
(2.36)

The minimization of KL divergence with respect to data points yi is performed using

gradient descent.

For the remarkable ability to reduce the dimensionality of the data while keeping

the metric properties consistent, t-SNE has found various applications in computer

security research, music analysis, in biomedical research and to obtain the latent

space representations learned by artificial neural networks [63–67].

2.3.6 Artificial neural networks

The current technological era presents the onset of massive data sets which demon-

strate the requirement of faster, robust, automated and reliable methods to analyse

the data. The solution to the above is by using the latest computing methodol-

ogy of artificial neural networks (ANNs) which are inspired by the biological neural

networks constituting the animal brains.

The ANNs are based on the collection of fundamental units called artificial neu-

rons. These neurons are capable of both transmitting and receiving signals via

connections (synapses) as is observed in their biological analogues. These connec-

tions form the parameters of the network. The receiving neuron processes the sig-

nal(s) and transmit to the next neuron in the form of real numbers. The synaptic

connections, which are the weights and bias parameters, represent the memory of

ANN. These parameters vary continuously with the learning process. Typically,

the neurons are organized into layers such that di�erent layers perform di�erent

transformations on their input. These signals enter the ANN from the first layer

(generally known as input layer) and travel through with successive processing to

the last layer (known as the output layer). To understand the functionality of the
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Figure 2.1: Schematic of a perceptron. The artificial neuron also known as
perceptron colllects n inputs xi with wi and b parameters and processes the input
using an activation function ‡ to provide an output.

ANNs its important to shine some light on their fundamental components. The

fundamental unit that builds up the neural networks are called neurons, also known

as perceptron: term coined by American psychologist Dr. Frank Rosenblatt [68].

These units have multiple inputs and one output. The output is evaluated using a

transformation function (known as activation function) applied on weighted sum of

all the input signals. This output is then treated as the input on to the next neuron

to form a network. Connections between the neurons (known as weight parameters)

also form the fundamental units of the ANN. Another fundamental component are

the biases which are used for adjusting the output of the neuron. The functionality

of the weights is to provide e�ectiveness to a particular input whereas the biases

act as the intercept added to a linear equation helping to best fit the model. For a

given neuron (depicted in Fig. 2.1), with n inputs xi, weights wi and a bias b, the

output y is computed as

y = ‡(
nÿ

i=1
wixi + b) (2.37)

where ‡ represents the activation function of the given neuron. The activation func-

tions may take any functional form such as tan hyperbolic (tanh), logistic sigmoid
1

1
1+e≠x

2
, rectified linear unit, softsign, arcTan and others.

To form an ANN, the neurons are typically organized in the form of layers such

that the input layer consists of the same number of neurons as of the points present
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in the representation vector of the input data example. The input neurons pass

the values to the intermediate layers (known as hidden layers), which may contain

the variable number of neurons optimized with respect to the training set. Each

neuron with in the hidden layer processes the input as depicted in Eq. 2.37 to pass

the output yi (here i represnts the i
th neuron in the hidden layer) as the input to

the next layer. After complete translation through the network, the output layer,

which contains the number of neurons depending on the given problem, provides a

processed output of the input dataset. For an ANN with one hidden layer, a chain of

functional forms can be considered, y = f(x) = f2(f1(x)). Here, f1 and f2 represent

the activation functions including the computations with weights and biases from

hidden layer and output layer respectively. As the number of layers in the ANN

increases this chain of functions increases which in turn results in a more complex

and non-linear functional form. Provided su�cient number of neurons to be present

in the hidden layer, the ANNs with as few as one hidden layer have been shown to

be universal approximators [69].

To train and optimize an ANN, the input data set is divided into three subsets,

namely training set, validation set and test set. The design of an ANN is optimized

by - changing the number of neurons in the each hidden layer, changing the activation

functions, and changing the number of hidden layers. The ANN geometry which

results in maximum output accuracy with respect to the validation data set is chosen

for further evaluation.

The training of an ANN is conducted by considering a cost function with respect

to the output O(x) and an expected vector E(x). In the past few decades, a few

cost functions have been proposed, for example:

1. Quadratic cost function: CQC = |O(x) ≠ E(x)|2

2. Cross Entropy cost function: CCE = E(x) ln(O(x)) + (1 ≠ E(x)) ln(1 ≠ O(x))

3. Exponential cost function: CEC = ·e
( 1

·
(O(x)≠E(x))2)

4. Hellinger Cost function: CHC = 1Ô
2(

Ò
O(x) ≠

Ò
E(x))2

5. Kullback-Leibler divergence: CKL = E(x) log
1

E(x)
O(x)

2

6. Itakura-Saito distance: CIS = E(c)
O(x) ≠ log

1
E(x)
O(c)

2
≠ 1
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Depending on a given problem, a cost function is selected and the evaluated cost/er-

ror is fed back into the network in order to update the weights and biases by a process

of back-propagation [35]. Popular algorithms namely, stochastic gradient descent,

Newton’s method, conjugate gradient descent, Quasi newton, Levenberg Marquardt

or ADAM can be implemented for the gradient-based optimization of the stochastic

cost function.

As mentioned in section 2.2, the training of an ANN can be achieved by follow-

ing one of the three paradigms of supervised learning, unsupervised learning and

reinforcement learning. For the supervised training, a paired set of inputs and out-

puts are considered and the learning is achieved by obtaining the expected output

for each input. For a regression type problem, generally a quadratic cost function

is considered which minimizes the mean squared error between the output of the

network and the expected output. For the classification problem the cross entropy

cost function is considered. The unsupervised training is conducted by providing

the ANN with a training data x and and a cost function. Depending on the given

problem, this cost function may take di�erent forms. Most commonly used ANN

for the unsupervised learning are the auto-encoders where the aim is to reconstruct

the input data by considering a quadratic cost function for evaluating mean squared

error. For RL based training, a general MDP process is considered and the ANNs

serve as agents, value and state function approximators [70–72].

The structure and working of these ANNs makes them capable for extracting

patterns from multidimensional datasets. For the same reason, these have been

extensively employed for image recognition, speech processing, system control, game

playing and decision making. ANNs have also found applications in geoscience for

hydrology, ocean modelling and coastal engineering, and astronomy. For biological

applications, these networks have been used to diagnose several class of carcinoma

which include some major examples of lung cancer, prostate cancer and colorectal

cancer. The compatibility for classification with these networks have also been

harnessed to classify the blood cells based on both shape and spectroscopic data

which have led to some very exciting studies of classification of di�erent types of

cancer cells and immune cells. [73–80]
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2.4 Deep learning

Deep learning (DL) is a sub-field of machine learning based on artificial neural net-

works. The ANNs with more than one hidden layers may be considered as a part of

deep learning paradigm. In fact, DL is the most recent advancement of ML which al-

lows unbounded number of layers of bounded size which enables theoretical universal

approximation and permits optimized implementation for any dataset. The layers

are generally heterogeneous with di�erent activation functions and connected in a

structures fashion. DL comprises of algorithms that learn to progressively extract

higher level features from the raw data.

For providing a powerful framework towards automated computations, DL has

been popularly applied in all three approaches of machine learning. This section

provides a brief overview of di�erent types of deep neural networks, namely deep

feedforward networks (also known as multi layered perceptrons), convolutional neu-

ral networks, generative adversarial networks, and recurrent neural networks.

2.4.1 Multi-layered perceptrons

The multi-layered perceptrons (MLPs) form the class of most fundamental neural

networks and provide a conceptual mechanism for other neural networks. The aim

of these type of networks is to approximate an arbitrary function f . These networks

are also called feedforward networks because the information flows from the input

layer with x̨ as an input to the output layer with y̨ as an output functional form.

These networks with multiple hidden layers transform the input data at each

layer such that the final output of the network satisfies the approximation of the

desired function. Mathematically, for a given ANN with an input as x, n hidden

layers with ‡i(·) i œ {1, 2, ..., n} as the functions, representing both activation func-

tion and arithmetic of weights and biases, and the output layer with ‡o as similar

functional form, the output y can be evaluated as:

y = ‡o(‡n(‡n≠1(...‡1(x))) (2.38)

The transformation of input vector x (shown in Eq. 2.38) is moderated by the

training process (explained in section 2.3.6) which adjusts the weights and biases
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for satisfying the approximation condition at the output. This training process also

called the learning process is the recurring theme of DL and is followed by all the

di�erent types of neural networks.

Figure 2.2: Schematic of multilayered perceptrons for solving di�erent
problems. The feedforward networks can be applied to solve supervised problems
involving (a) classification and (b) regression. These can also be implemented to
solve (c) unsupervised problems. Here dashed arrow represents the presence of
multiple layers with weighted connections, whereas normal arrow represents the
weighted connections.

Depending on a given problem, the MLPs can be applied in di�erent forms to

solve the supervised, unsupervised or reinforcement learning type of problems. As

shown in Fig. 2.2, for di�erent learning schemes the output layer of the MLP and

the cost function is varied accordingly. For classification problems (Fig. 2.2(a)),

the output layer consists of n outputs with n being the number of classes, the cost

function considered is the cross entropy function. For the regression problems (Fig.

2.2 (b)), generally the output consists of one neuron which represents the functional

form with respect to arbitrary parameters {◊1, ◊2, ..., ◊n} and a mean squared error

cost function is used. To solve an unsupervised learning problem (Fig. 2.2 (c)),

the MLPs are designed in the form of an autoencoder. The autoencoder learns to

encode the dimensionality of input vector x̨ into a lower dimensional vector and

systematically invert this reduced dimensional vector back to the input vector with

the application of mean squared error cost function. The autoencoder can be applied

for reducing the dimensionality of the input vectors or these can be staked and

connected to another MLP for the classification or regression purposes.
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For these capabilities, the feed forward networks have found several applications

in photonics. They have been applied for medical image segmentation, in the imple-

mentation of optical character recognition for license plate recognition, for channel

optimization in mode division multiplexing, for the classification of hyperspectral

imagery, for the equalization of optical nonlinear waveform distortion, for comput-

ing optical properties of photonic crystal fibre, for identifying the similarity between

reflected spectra obtained from skin lesions, for application to fluorescence lifetime

imaging techniques, for particle characterization using digital inline holography, for

the study of energy levels of a one-dimensional quantum particle moving in a disor-

dered external field, and for single shot autofocusing applicable to a wide range of

existing microscopes [81–91].

2.4.2 Convolutional neural networks

Convolutional neural networks (CNNs) [92] are the special form of feedforward net-

works which can be applied for processing any type of data which represents a

grid-like topology. These networks use convolution operations in at least one layer

of the network as opposed to only matrix multiplications. As explained before,

MLPs use matrix multiplication which describes the transformation of each input

unit into each output unit. This results in a major disadvantage for the case where

the inter-input unit variation does not e�ect the output. Moreover, due to the large

size of the parameter matrices, overall computational cost is exponentially large.

Another disadvantage of MLP type networks is that each weight parameter is inde-

pendent of other, and used only once while computing the output of a given layer.

These problems are easily managed using sparse connections with parametric shar-

ing. The layers exhibiting the property of parametric sharing also demonstrate the

property of equivariance to translation. These properties motivate the application

of convolution operation in the neural network geometry.

Formally, the convolution operation (Eq. 2.39) is defined as a mathematical op-

eration between two functions (x(a), w(t≠a)) such that the resultant (y(t)) expresses

the modification in shape of first function with respect to the second.

y(t) =
⁄

x(a)w(t ≠ a)da s.t. w = 0 if (t ≠ a) < 0 (2.39)
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For a CNN, the first argument x is called an input, w is called a kernel and y is called

a feature map. For a given two-dimensional input image I and a two dimensional

kernel K, the convolution operation in discreet notation can be expressed as

F (i, j) = (I ú K)(i, j) =
ÿ

m

ÿ

n

I(m, n)K(i ≠ m, j ≠ n) (2.40)

With respect to the commutative property of convolution, the above can also be

written as

F (i, j) = (K ú I)(i, j) =
ÿ

m

ÿ

n

I(i ≠ m, j ≠ n)K(m, n) (2.41)

The equation 2.41, provides an assurance that increasing values of m increases the

index for input while decreasing the index for kernel. Simply, if the size of an input

image is N ◊ N and the size of kernel is G ◊ G, the the size of output will be

(N ≠ G + 1) ◊ (N ≠ G + 1). The convolution operation can also be considered as

matrix multiplication, however, this kind of matrix multiplication is very sparse in

nature. The kernels are updated during the training process of the CNN.

Another important concept in the context of CNN is of strides and padding.

Strides denote the step size of a kernel by which it shifts while convolving with the

input, whereas padding can be understood as adding zero to the borders of input

matrix in a symmetrical manner. Stride helps to control the degree of downsampling

of the input data whereas padding allows to control the kernel width and the size

of the output independently.

Any CNN consists of three fundamental units, first the convolution unit which

convolves with the input to downsample the input, second a nonlinear activation

function unit which modifies the linear output after the convolution process and

third the pooling unit which modifies the output of layer to pool the most relevant

features. The pooling unit helps to minimize the variance which may be caused

due to small translations in the input data. When pooling is applied to parametric

convolutions, the CNN learns to become invariant to any translated features present

in the training data set, this in turn improves the statistical e�ciency of the network.

Depending on the underlying training dataset, di�erent kinds of pooling can be

implemented [93]. Figure 2.3 represents a schematic of a general CNN geometry
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where the input two dimensional data is systematically downsampled by invoking

the three fundamental units as explained.

Figure 2.3: Schematic of a general convolutional nerual network. The input
two dimensional image is systematically downsampled via the shared parameters
and pooling functions. Finally the downsampled image is fully connected to the
output layer. Similar to feedforward networks, these networks are also fundamentally
implemented for supervised, unsupervised or reinforcement learning. Here the dark
highlighted zones in individual layers represent the parametric filters.

For their excellent capabilities to be applied with supervised, unsupervised and

reinforcement learning, the CNNs have found a plethora of applications in optics and

photonics. They have been applied for Raman microscopy based cytopathology, for

somatic mutation detection, for the identification of major cellular and acellular con-

stituents of tissue using Fourier transform infrared spectroscopy, to classify T cell

activation state using autofluorescence intensity images, for animal pose estimation,

for for particle tracking in cryo-electron micrographs, to reduce speckle noise in dig-

ital holographic imaging, to reduce the speckle noise while protecting the structural

information and preserving the edge features in optical coherence tomography, to

improve the spatial resolution in optical microscopy, for three dimensional virtual

refocusing of fluorescence microscopy images, to track optically trapped particles un-

der noisy conditions, to solve end-to-end inverse problems in computational imaging

for lensless imaging system, to image through scattering media while generalizing

and maintaining high-quality object predictions, to estimate Zernike coe�cients of

aberrated wavefronts from a single intensity image, and for fast phase retrieval of

holographic images using o�-axis digital holographic microscopy [94–108].
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2.4.3 Recurrent neural networks

Recurrent neural networks (RNNs) [35] are the class of ANNs which include the

feedback connections allowing them to exhibit temporal dynamic behaviour. Simply,

these neural networks take the input as a weighted combination of current state and

the previously perceived state. For this property RNNs are generally used to process

sequential data.

Figure 2.4: Schematic of a general recurrent neural network. The time
dependent input xt is processed through the hidden layer and a time dependent
output yt is evaluated. Here the backward red arrow describes the back propagation
in time.

To process the sequence of discrete outputs yt, the forward propagation of an

RNN, with xt as an input vector for a given time step (Fig. 2.4), for time steps from

t = 0 to · can be evaluated as,

at = b + Wht≠1 + Uxt (2.42a)

ht = ‡(at) (2.42b)

ot = c + V ht (2.42c)

yt = softmax(ot) (2.42d)

here, at is the output from hidden unit ht which is initialized at h0, b and c represent

the biases and U, V, W represent the weight matrices. The loss function can be

evaluated as the negative log-likelihood of yt given {x1, ..., xt} and can be evaluated
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as,

L({x1, ..., x· }, {y1, ..., y· }) = ≠
ÿ

t

log p(yt|{x1, ..., xt}) (2.43)

here, p(yt|{x1, ..., xt}) is the reading for the entry yt from the model output vector.

The gradients for this kind of loss function are evaluated using back-propagation

algorithm which is called back-propagation through time (BPTT) for this case.

The BPTT algorithms work to evaluate the gradients for each parameter. The

gradient for each node is computed recursively. Starting from the nodes immediately

preceding the final loss,

ˆL

ˆLt
= 1 (2.44a)

(�ot
L)i = ˆL

ˆoi
t

= yi ≠ 1i=yt
(2.44b)

In the above set of equations, the superscript i denotes the output class. Hence the

gradient for �hT
L can be calculated backward through time t = T ≠ 1 to t = 1

�h·
L = V

T �o·
L (2.45a)

�hT
L = W

T diag(1 ≠ (ht+1)2)(�ht+1L) + V
T (�ot

L) (2.45b)

where, diag(1 ≠ (ht+1)2) indicates the diagonal matrix containing the elements 1 ≠

(hi
t+1)2 for the hidden unit i. With respect to the above, the gradients with respect

to other parameters can be evaluated as,

�cL =
ÿ

t

A
ˆot

ˆc

BT

�ot
L =

ÿ

t

�ot
L (2.46a)

�bL =
ÿ

t

diag(1 ≠ (ht)2)�ht
L (2.46b)

�V L =
ÿ

t

(�ot
L)hT

t (2.46c)

�W L =
ÿ

t

diag(1 ≠ (ht)2)(�ht
L)hT

t≠1 (2.46d)

�UL =
ÿ

t

diag(1 ≠ (ht)2)(�ht
L)xT

t (2.46e)

Truncated BPTT [109], an approximation variant of BPTT, was proposed for

application to long sequences. This variation of BPTT saved massive computation
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cost for the updating each parameter.

The RNNs seek to establish connections between final output and all the previous

events. This makes it very di�cult to identify on which event provides an important

feedback with respect to updating the gradient. Derivatives with respect to each

parameters, especially for deep neural networks, are susceptible to vanishing or

exploding. The exploding gradients problems refers to when the gradient update

for some of the parameters becomes massive or sometimes saturated. Vanishing

gradients problem, on the other hand, refers to the gradients update being very

small to compute. The problem of exploding gradients can easily be solved by

truncating the gradients, however, the problem of vanishing gradients is very di�cult

to determine.

To solve the problem of vanishing gradients a variation of RNNs namely Long

Short-Term Memory (LSTM) [110] units were proposed. LSTMs are the type of

gated RNNs which maintain a constant error allowing the learning process to con-

tinue for more than 1000 steps. These units store information in the form of gated

cells which are implemented on an element wise manner with a multiplication by

sigmoids. These cells learn to allow the flow of data through the iterative back-

propagating error and adjusting weights using gradient descent. A detailed review

about various variants of LSTM can be found in [111].

LSTMs and other gated RNNs [112] provided workable solution to the vanishing

gradient problem, however, they failed to provide very precise information about

early temporal states. To this rescue, recently a Transformer neural network [113]

model was introduced. These networks were based on attention mechanisms which

allow the model to process any temporal state in the sequence. The attention layer,

works by learning the measure of relevancy in terms of parametric weights for a

given temporal state. Adding these attention layers to ANNs led to massive gain in

performance which has lad to several applications [114–117].

For their abilities to learn from the temporal sequences, RNNs have found various

applications in optics and photonics. They have been applied for particle tracking

of virus structures in fluorescence microscopy image sequences, for microscopic cell

segmentation to exploit cell dynamics, to delineate skin strata in stacks of reflectance

confocal microscopy images collected at consecutive depths, for three dimensional
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image segmentation while leveraging three dimensional image anisotropism, to ef-

ficiently characterize anomalous di�usion using a single short trajectory, to extract

spatio-temporal features from an echocardiography video to classify the frames as

cardiac events, and for diagnosing disease using spatio-temporal cellular dynamics

in compact digital holographic microscopy [118–124].

2.4.4 Generative adversarial networks

Generative adversarial networks (GANs) [125] belong to the family of deep genera-

tive models. GANs are based on game theory where a generative neural network is

competed against an adversary network, also known as discriminator network. The

motivation behind the application of GANs is that the learning process does not

require approximate inference or approximation of partition function gradient.

Figure 2.5: Schematic of a generative adversarial network. Generator network
produces an output sample from a prior noise distribution and the discriminator
network outputs a probability to distinguish between the generated and real sample.

A GAN consists of two networks, the generator network which produces a sample

x = g(z) given a prior noise distribution p(z), and the discriminator network which

tries to distinguish between samples drawn from the training data and the generated
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data. The discriminator network outputs a probability value d(x) which indicates

if x belongs to the training data or generated data (Fig. 2.5). The discriminator

network is trained to maximize the probability of assigning the correct label to both

the classes of training data and generated data whereas the generator network is

trained to minimize log(1≠d(g(z))). The training can be thought of as a two-player

min-max game with a cost function C(g, d),

min
g

max
d

C(g, d) = IEx≥pdata(x) log(d(x)) + IEz≥pz(z) log(1 ≠ d(g(z))) (2.47)

In practice, the training of a GAN is implemented in an iterative manner. For

each iteration, first the discriminator network is updated (Eq. 2.48a) and then the

generator network is updated (Eq. 2.48b).

Ud = �wd

1
m

mÿ

i=1
[log(d(xi)) + log(1 ≠ d(g(zi)))] (2.48a)

Ug = �wg

1
m

mÿ

i=1
log(1 ≠ d(g(zi))) (2.48b)

here, wg and wd are the parameters of the generator and discriminator networks

respectively, m denotes the number of training datapoints for a mini-batch training.

The training of GAN can also understood as a zero-sum game with the cost function

being the payo� to both the networks. After the successful training, the generator

data become identical to training data and hence the discriminator network provides

an output probability of 1
2 for all the possibilities. The cases where maxd C(g, d) is

not convex, the training of a GAN may prove to be di�cult and lead to underfitting

of data.

An interesting capability of a GAN is that rather than learning the specific dis-

tribution, the generator network can learn the transformation between a random

noisy distribution to the training data. The extraordinary capabilities of GANs

have made them a popular topic for research in machine learning. M. Mirza et al.

proposed conditional GANs [126] which modified the cost function to have condi-

tional output with respect to an extra auxiliary information (y) from the generator
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and discriminator networks. The cost function was modified as:

min
g

max
d

C(g, d) = IEx≥pdata(x) log(d(x|y)) + IEz≥pz(z) log(1 ≠ d(g(z|y))) (2.49)

In another study, A. Radford et al. proposed deep convolutional generative adver-

sarial network (DCGAN) [127] which allowed for the generation of images directly

from the random noise. X. Chen proposed InfoGAN [128] to learn disentangled rep-

resentations in completely unsupervised manner. H. Zhang et al. proposed Stack-

GAN [129] which generated images based from text descriptions and also proposed

a conditioning augmentation technique to improve and stabilize the training process

of conditional GAN. To improve the stability of learning and reduce the problems

of mode collapse, M. Arjovsky et al. proposed Wasserstein GAN [130] for which

the loss function was modified to include the Wasserstein distance as a metric.

DiscoGAN [131], was proposed by T. Kim et al., which learned to discover rela-

tions between di�erent domains; they showed that after learning these domains the

network could transfer styles from one domain to another while preserving the key

attributes. Another variant, namely cycle GAN [132] was proposed by J. Zhu et

al. They demonstrated that by using adversarial training for learning the inverse

mapping in a cycle consistent manner results in an excellent image mapping.

For their excellent learning capabilities, the GANs have recently been very popu-

lar in the research of optics and photonics. They have found applications, to enhance

resolution in scanning electron microscopy, for cross modality super-resolution in flu-

orescence microscopy, for accelerating the frame rate and reducing independent lo-

calizations for super-resolution microscopy, for segmenting bright field microscopic

images of cells and X-ray computed tomography of metallic nanowire meshes, to

achieve high resolution images similar to confocal scans with 64 fold improvement

in imaging speed, to deconvolve and improve the quality of blurred and noisy deep

depth fluorescence microscopy images, to learn the mapping between a partial image

and a full image for reconstructing full images from their much smaller subareas,

to generate volumetric holographic images of using bright-field microscopy contrast,

to use unpaired images for coherent noise reduction in optical di�raction tomogra-

phy, to generate synthetic ultrasound images with crisp speckle patterns without the

knowledge of underlying physical model, to e�ectively reduce speckle noise in optical
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coherence tomography images and videos while maintaining spatial and temporal

resolutions, and to produce high-e�ciency, topologically complex di�raction free de-

vices with a broad operation range of deflection angles and wavelengths [133–144].

2.5 Conclusion

In conclusion this chapter laid the foundation for this thesis by providing an intro-

duction to the fundamentals of Machine Learning.

Di�erent approaches of ML, including supervised learning, unsupervised learning

and reinforcement learning are discussed in the context of di�erent types of funda-

mental problems. The discussion for supervised learning has been explained with

respect to the fundamental problems of regression and classification. Unsupervised

learning is discussed with respect to the problems concerning density estimation,

clustering and dimensionality reduction. Finally, the fundamental of reinforcement

learning are discussed where a brief overview of finite markov processes, dynamic

programming, Mote Carlo methods and temporal di�erence learning are provided.

The next section provides a mathematical insight into the popular algorithms

of ML. Additionally, the applications of these techniques in the context of optics

and photonics are also discussed. Beginning with an overview of eigen analysis

based principal component analysis, this section spans the fundamentals of linear

discriminant analysis, k-means algorithm, support vector machines, t-distributed

stochastic neighbor embedding and artificial neural networks.

Further, this chapter explains the working and fundamental of Deep Learning,

the most recent advancement of ML. Mathematical description for the working of

various deep learning based neural networks is provided and their recent applica-

tions in the field of optics and photonics are discussed. The feedforward neural net-

works are discussed which encompasses their ability to form chain functional form

and applicability to di�erent approaches of ML. Finally, a few of their applications

are discussed. Following the consideration of feed forward networks, convolutional

neural networks are explained where a heuristic description of the convolution op-

eration, the function of strides, padding and pooling layers is given; this is followed

by a discussion of their applications in various field of optics including microscopy,
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holography, spectroscopy, optical trapping and wavefront shaping. Subsequently, re-

current neural networks are examined with a brief overview of forward propagation

and back-propagation in time is explored; finally their applicability is discussed. The

successive discussion has been dedicated to generative adversarial networks which

includes a brief description of their training process. After this di�erent variants of

GAN are discussed and finally their applicability is discussed in the field of optics.

The information in this chapter is intended to provide a foundation of ML based

approaches implemented throughout the thesis. The specific applicability and rea-

soning with respect to a given study shall be detailed in the respective chapters.
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Chapter 3

Label-free characterization of the

immune cells enhanced by

machine learning

Parts of this chapter are adapted from the article “Label – free optical hemogram

of granulocytes enhanced by artificial neural networks” [145], published in Optics

Express (2019).

3.1 Introduction

Identifying and quantifying the various types of cells of the immune system in the

blood stream is an important process in both the clinical and lab environment. Al-

terations in both number and type can indicate not only infection and inflammation,

but the presence of abnormal cells associated with blood cancers such as leukemia

and lymphoma. Currently, attaching fluorescent-tagged antibodies to the cells for

analysis on a flow cytometer, or simply manual microscopic analysis of a blood smear

on a glass slide are routinely used techniques. Both su�er from either being time

consuming or requiring expensive antibody reagents. The aim is to develop a novel,

and completely label-free method to characterize cells of the immune system which

may lead to rapid, inexpensive, reagent-free laser light based system for use in the

clinic and laboratory from very small blood or cell samples.

This chapter provides a brief introduction to the fundamentals of Immunology
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and label-free optical techniques, namely, Raman spectroscopy and digital holo-

graphic microscopy (DHM). Following which two studies are presented where the

application of machine learning in combination with optical techniques is demon-

strated to enhance the characterization of human immune cells in a label-free man-

ner.

3.1.1 Immunology

Immunology is the subject in biology to study the physiological mechanisms that

humans and other animals use to protect their body from invasion by di�erent

types of microbes, toxins and environmental extremities. The discipline grew out

of the observation that the people who survived the wreckage from the epidemic

diseases were immune to the disease when infected again. Infections are caused by

the presence of large population of microorganisms inside the humans/animals. The

infected body responses to the infection by producing the cells dedicated to defend

themselves, the collection of these defensive cells form the immune system of the

body [146].

The immune system provides protection against pathogens, including bacteria

and viruses for the human body. Without the presence of a functioning immune sys-

tem, even the most minor of the infections can damage the body severely. However,

despite having a fully functioning immune system, humans su�er from infections.

This happens because of the time taken by the immune system to build up the

strongest response to an invading microorganism. During the process of the battle

between the immune system and infection, the number and types of immune cells

change hence providing important information to the modern medicine about the

type and level of attack.

Immunity is defined as the resistance exhibited by the host towards injury caused

by the microbes and their products. To defend the host body from the any foreign

exposures or pathogens, the immune system has three lines of defense that operate at

di�erent timelines with respect to the progress of infection. The first line of defense

is the innate immunity, also known as the invariable or hereditary response, which is

always ready for action and functions from the very beginning of an infection. The

second line of defense is the induced response to the infection, activated when the
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immune system detects the presence of infection and turn on the gene expression

and protein synthesis necessary to make the response. The third line of defense is

the adaptive immunity, the resistance that an organism acquires during the lifetime,

it is capable of recognizing and selectively eliminating the infectious agents.

The first and second line of immune responses are a�liated to the innate immune

system. The first line of defense comprises of the skin and the mucosal epithelia

that lines the digestive, respiratory and urogenital tracts. These tissues provide

e�ective physical and chemical barriers that prevent pathogens from gaining access

to the internal tissues and organs. The low pH and presence of fatty acid makes

the environment inhospitable for pathogens. The mucous membrane form a less

formidable barrier. The host body is protected from the pathogens as they are

trapped into the mucus which is swept away by the cilia of the respiratory mucosa

or the villi in the intestine; particles are swallowed and coughed out by cough reflex.

This flushing e�ect in the body reduces the chances of bacterial growth.

The defense mechanism of the innate immune systems is activated as soon as

the pathogens pass though the epithelial walls. The first weapon that is fired by

the system is a combination of soluble proteins made constitutively by the liver and

present in the blood, lymph, and extracellular fluids. These plasma proteins are

collectively known as the complement system. Any infection triggers the complement

activation which proceeds by a series of highly specific enzyme reactions, in which

each protease cleaves and activates the next protease in the pathway. These enzymes

then attack the pathogens via various pathways to destroy their growth and their

presence from the host body.

When the first line of defense fails due to congenital or acquired defects, then

the deeper tissues are at risk and next line of defense is activated. This phase of the

innate immune system involves soluble and cellular receptors that detect the pres-

ence of infecting organisms and then recruit leukocytes to fight the invasion. These

genetically programmed receptors provide the initial level of defense by recognizing

their structural features of microbes that are not found in the host. The engagement

of these pattern recognizing receptors lead to the activation of host cells and their

secretion of antimicrobial substances. The receptors are expressed by macrophages,

natural killer (NK) cells and other innate immune system cells. These cells of the
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immune system are responsible for the phagocytosis. The macrophages resident in

the infected region are responsible for orchestrating the induced innate response to

the infection, they are responsible for the secretion of inflammatory cytokines and

chemokines that actively recruit neutrophils, monocytes, and NK cells. Neutrophils

are the dedicated phagocytes and the first e�ector cells recruited to the sites of in-

fection, they are recruited by the inflammatory cytokines and are the potent killers

of pathogens. Neutrophils are themselves programmed to die after the process is

complete. NK cells are the main circulating lymphocytes that contribute to the

innate immune response with two of its populations in the blood and tissues. NK

cell cytotoxicity is activated at sites of virus infection.

Adaptive immunity is the type of immune response which a host body acquires

during its lifetime. Once the system is developed for an infection, it is long lasting

and there is no lag or latent time for response. Body responses to the infection

promptly and powerfully. This kind of immune response clears the body of extra-

cellular pathogens and their toxins by means of antibodies, the secreted form of the

B-cell receptor for antigen. These antibodies are produced by the e�ector B lympho-

cytes, or plasma cells, of the immune system in response to infection. They circulate

as a major component of the plasma in blood and lymph and are always present at

the mucosal surfaces. Antibodies are very variable proteins which can recognize all

types of biological macromolecules. They are the best source of protective immunity

and the most successful vaccines protect through stimulating the production of high

quality antibodies.

To understand the working of immune system, it is important to shine some light

on the cells and tissues of the immune system. The complete structure containing

the cells and tissues arranged in an organized manner for an e�ective functionality

is called as the lymphoid system. The cells of the immune system are principally

the white blood cells (WBCs) also known as leukocytes. These cells are continu-

ously generated by the body by the process called hematopoiesis. As is depicted

in Fig. 3.1, the leukocytes derive from a common progenitor called pluripotent

hematopoietic stem cell, which is also the source of red blood cells (RBCs) – known

as erythrocytes, and megakaryocytes – the source of platelets. All the cell types

together are called the hematopoietic cells.
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Figure 3.1: Schematic of origination of blood cells from a common
hematopoietic stem cell. The pluripotent stem cell divides into lymphoid and
myeloid lineages of blood cells. These can then further be divided into B cells, T
cells, NK cells, macrophage cells, dentritic cells and mast cells. Adopted from [3]

The hematopoietic progenitor gives rise to the myeloid and lymphoid precursors

which in turn provide origin to their individual lineages. The myeloid lineage consists

of two groups, one of them being granulocytes and the other being megakaryocyte.

The granulocytes, having the prominent cytoplasmic granules, contain reactive sub-

stances which kill microbes and enhance inflammation. Major cells of this group

are neutrophils which specialize in engulfing, capturing and killing of microbes;

eosinophils which specialize in defending against helminth worms and other intesti-

nal parasites; and basophils which are least abundant but they also respond to the

parasites. The other group of myeloid lineage consists of monocytes, macrophages

and dendritic cells. These cells also get involved in immune response of the body

and are well equipped for phagocytosis. Neutrophils are programmed to be short

lived whereas the macrophages are long lived and provide the warning to other cells

and orchestrate the local response to the infection. The lymphoid lineage gives rise

to two morphologically distinguished lymphocytes being NK/T cells and B cells.

Natural Killer cells are the large granular lymphocytic e�ector cells of the innate

immunity, are very important during the viral infections. B Cells have typically 105
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molecules of membrane bound antibody per cell, which exhibit the same antigenic

specificity and interact directly with antigens. T cells bear CD4+ or CD8+ proteins

which are involved in the recognition of class I and class II MHC molecules. These

small lymphocytes are responsible for recognizing the pathogens and start the pro-

cess of selection, growth, and di�erentiation to induce a powerful adaptive immune

response.

The host body generates di�erent types of blood cells to fight against the pathogens.

The density and level of di�erent types varies as per the degree of infection that the

host is facing. This makes it medically relevant to study, identify and distinguish

the subsets in blood for the implication in both diagnosis and treatment. Currently,

this is achieved using a variety of techniques; Flow cytometry – often referred to as

Fluorescence activated cell sorting (FACS), Immunofluorescence (IF), and chemical-

based hemogram being a part of everyday routine in every hospital to assist medical

diagnosis [147]. FACS is a specialized type of flow cytometry which provides the

method for sorting a heterogeneous mixture of biological cells [148]. It helps to sort

large number of cells with a high rate. IF is a fluorescence microscopy which uses the

specificity of antibodies to their antigens to target specific biomolecule targets within

a cell. It allows visualization of the target molecule through the sample, compared

to FACS, it is a slower sorting technique with about 100 cells per second [149]. The

routine hemogram records number of the di�erent corpuscular components, which

can also give an information on size, morphology, and granularity [147].

3.1.2 Label-free optical techniques for cell identification

The techniques explained above are very useful and quite e�cient to study the num-

ber and type of cells, but they often result in death of the cells or potential alteration

in cellular behavior. For example, many of CD antigens recognized by antibodies

are cell surface proteins involved in cell activation, recognition etc., thus binding

antibodies to these molecules runs the risk of activating the cells, which may alter

their behaviour in subsequent experimental studies. In addition, these tests can

be cumbersome, require significant user intervention and require large number of

cells for di�erentiation. These disadvantages call for an important development of a

technique which can be non-invasive, label-free and passive. Optical spectroscopic
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and microscopic profiling may help to monitor the di�erentiation process while pre-

serving cell integrity and functionality with requirement of fewer cells [150].

Vibrational Spectroscopy in combination with digital holography provide to be

the non-invasive and label-free viable alternative to di�erentiate between the cellular

structures which provide the spectral and morphological signature with high selec-

tivity and specificity. Raman spectroscopy is the type of vibrational spectroscopy

which has been widely employed to study and discriminate various types of immune

system cells. It can provide molecular information by inelastic scattering of light

that is detected as a spectrum which in turn provides a chemical signature of the

sample. It has also been applied in combination with optical tweezers and light

sheet experiments for various applications [151–154].

Raman Spectroscopy

Raman Spectroscopy is a spectroscopic technique used to observe vibrational, ro-

tational and other low-frequency modes in a system [155]. It is based on inelastic

scattering of monochromatic light. When the light from laser beam interacts with a

material, the photons are absorbed and re-emitted with a frequency above or below

the original photon frequency. This e�ect is called the Raman e�ect [156].

The incident light is absorbed by the molecule to get excited to a virtual energy

state and then it relaxes to come back to the ground state with three possibilities:

• The molecule ejects the photon with the same energy as that of the original

photon. This kind of interaction is known as Rayleigh Scattering.

• The molecule returns to its ground state with part of the original photon

energy being transferred to Raman active mode to give o� the photon with a

frequency less than the original frequency. This kind of interaction is known

as Stokes Scattering.

• The third possibility is when the Raman-active molecule, which is already in

the excited state absorbs the photonic energy and then returns to the basic

ground state to give o� the photon with a frequency of more than the original.

This kind of scattering is called Anti-Stokes Scattering.
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An illustration of the above explained scattering phenomenon is depicted in

Figure 3.2, showing the vibrational ground states and virtual energy states of a

given sample.

Figure 3.2: Possibilities of light scattering. (a) Stokes scattering, (b) Fluores-
cence (c) Anti-Stokes scattering

The instrumentation of a typical Raman system consists of two components;

the illumination unit and the collection unit. As shown in Fig. 3.3, the laser light

illuminates the sample with an incident wavelength, then the fluorescence from the

sample is collected by the objective and this beam is passed through various filters to

the spectrometer connected to a CCD camera to finally obtain the Raman spectra.

Figure 3.3: Schematic of a Raman spectrometer. Laser light illuminates the
sample with an incident wavelength then the fluorescence is collected by the objective
and is passed onto the spectrometer. Here, NF means notch filter, M means mirror
and Obj means objective.

Raman shift is calculated by the following equation:
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‹̄ = 1
⁄in

≠ 1
⁄sc

(3.1)

Here ‹̄ is the Raman shift and ⁄in is the incident laser beam wavelength and ⁄sc

is the scattered wavelength detected by the spectrometer.

Wavelength Modulated Raman Spectroscopy

Compared to the intense background fluorescence and stray light, the Raman

signal is very weak and it makes the detection of noise free Raman signal to be

very di�cult. To overcome this problem, various optical notch filters are employed

to cuto� the most prominent stray light present in the spectral range close to the

incident laser beam wavelength. For practical biomedical applications, the fluores-

cence background should be removed to improve the signal to noise ratio, selectivity,

and specificity. Various experimental methods have been employed to improve the

raw data and extract the Raman signal from the spectra. Some of the techniques

are time resolved Raman spectroscopy, polarization modulation technique, use of

annular excitation beam profile, phase sensitive detection scheme, [157–162] and

many others. One of the most innovative and e�cient ways to detect and improve

the signal to noise ratio was Wavelength modulated Raman Spectroscopy (WMRS)

developed by Dholakia group. This technique is based on the principal that the flu-

orescence background does not change whereas the Raman scattering is shifted by

the change in excitation wavelength as can be understood by the Raman equation

stated before. [163]

Figure 3.4 illustrates the improvement in signal to noise ratio of the Raman

spectrum accumulated for 1 µm polystyrene beads. The fluorescence background is

completely removed for Fig. 3.4 (b) for the sample under identical environmental

conditions. The excitation laser beam had a central wavelength of 785 nm with a

power of 120 mW on the sample plane. For WMRS, the wavelength was modulated

between 784.5 nm and 785.5 nm with a variation of 0.1 nm and each spectrum was

accumulated with an exposure time of 1 second.

Since its onset, WMRS has found several applications in the label free identifica-

tion of subsets of the cells of the immune system to identify T lymphocyte subsets,

Natural Killer cells and Dendritic cells [164]. This system has also been to identify

51



Section 3.1 Chapter 3

Figure 3.4: Comparison between Raman spectroscopy and WMRS (a) Ra-
man Signal for a 1 µm polystyrene bead; (b) WMRS signal for the same. The
Raman signal give an intrinsic biochemical information stored in the beads. Raman
spectrum represents the signature as the peaks signify specific vibrational frequency
exhibited by these 1 µm beads.

and detection of pharmaceuticals with the combination of paper microfluidics [165]

and has been optimized for high throughput cell screening [166].

3.1.3 Digital holographic microscopy

Raman spectroscopy displays a huge potential for discriminating the biological sam-

ples, however, this technique lacks the aspect of throughput rate. Hence to improve

on this aspect and generate more accurate and specific ways to discriminate be-

tween di�erent cell types, another dimension of microscopy can be considered. In

addition to the specific chemical information stored in each cell, they also exhibit

morphological di�erences which play an important role in sorting cell types. The

state of the art digital holographic microscopy technique makes it possible to acquire

the morphological information stored in the cellular structures. It would be rather

important to understand the working of a digital holographic microscope and how

the data can be analyzed for the same.

Digital holographic microscopy (DHM) is ultimately digital holography applied

to microscopy. Compared to the conventional microscopy methods in which the

projected image is caught, DHM captures the light wavefront as a digital hologram.

It provides quantitative information on the phase shifts induced by the sample which

can therefore be used to determine the morphological information for identification
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and diagnosis of diseases. [167–169]

The working technique of DHM is based on simple hologram generation. To

create a hologram, the sample must be illuminated by a coherent monochromatic

laser source. As shown in Fig. 3.5, this source is split into two arms, an object arm

and a reference arm. The object beam is collected though the microscopic objective

and is combined with the reference arm to create a holographic interference pattern.

This pattern is produced into a view-able image of the object using widely available

numerical reconstruction algorithms.

Figure 3.5: Schematic of an o�-axis digital holographic microscopy system.
The laser beam is split into object and reference arm by a Beam splitter (BS) and
then the object beam is collected by objective lens (Obj) to combine with reference
beam at the second beam splitter, the combined interference pattern is collected by
a camera. Here M are mirrors.

The combination of spectroscopic and microscopic techniques provides a multi-

modal approach for detecting the molecular and morphological properties of the

biological samples. Major interest has been displayed in the field of biophotonics

to incorporate the multi-modal systems. These systems serve as a very useful tool

to overcome the limitations displayed a single technique and give a more useful and

complete information about the sample. The combination of Raman with OCT,

and Raman with DHM have been studied in the past to characterize the tissues

or cancer cells and to discriminate di�erent cells of the immune system, where the

chemical information was studied using Raman and structural and morphological

information was studied using the OCT and DHM systems [170, 171]. A multi-

modal system (implemented in [171]) combining Raman spectroscopy and DHM

is illustrated in Fig. 3.6. The common sample is illuminated by a bright green
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Spectra Millennia Vs laser source (≥532 nm) for DHM; and a 785 nm Solstis laser

beam with tunable wavelength was illuminated on the sample for taking the Raman

spectra. For the DHM setup, the laser beam was passed through a beam splitter,

out of which one of the arms were the imaging arm passed through a long working

distance 10X objective lens and other was the reference arm for the generating the

interference pattern. The two beams were combined using a cube beam splitter to

achieve an o�-axis hologram on a CMOS detector. For the Raman setup, sample was

illuminated using a 60X objective and the signal was collected by a spectrometer.

The mentioned objective was considered for both Raman and DHM system to achive

an optimal optical resolution (lateral: 0.31 µm; axial: 1.47 µm) for analysing the

immune cells.

Figure 3.6: Multimodal Raman and DHM setup. (referred from [171]) Here
OBi is objective lens, FC are the fiber coupling, L are the Lenses, NFi are the notch
filters, M are the mirrors, BSi are the beam splitters, ND is the neutral density
filter, DETi are the detectors and WLS is the white light source for microscope.

Mathematical description of phase reconstruction

To get a numerical understanding of the phase map reconstruction using DHM

images, it would be useful to understand the mathematical description of this prob-

lem. As shown in Fig. 3.5, the object wave is reconstructed by illuminating the

hologram with the reference beam. The reconstructed image exhibits all the infor-

mation about the variations in morphology and refractive index that may be present

in the sample. The object wave can be described as:
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O(x, y) = o(x, y)ei�O(x,y) (3.2)

Here, O(x, y) is the complex amplitude of the object wave described by the real

amplitude o(x, y) and the complex phase �O(x, y). Similarly, the reference wave can

be described as:

R(x, y) = r(x, y)ei�R(x,y) (3.3)

R(x, y) describes the complex amplitude of the reference wave, described by the

real amplitude r(x, y) and complex phase �R(x, y). After interference, the intensity

detected by the camera is given by:

I(x, y) = |O(x, y) + R(x, y)|2

= O(x, y + R(x, y))(O(x, y) + R(x, y))ú

= R(x, y)Rú(x, y) + O(x, y)Rú(x, y) + O
ú(x, y)R(x, y) + O(x, y)Oú(x, y)

(3.4)

where ú denotes the complex conjugate. Considering the background noise and

exposure time of the camera, final detection amplitude can be written as:

D(x, y) = dback(x, y) + —·I(x, y) (3.5)

Here, dback is the background shot noise generated due to the lack quantum

e�ciency of any general detector, — is the proportionality constant and · is the

exposure time.

For numerical reconstruction, the detection complex amplitude has to be multi-

plied with the complex amplitude of reference wave giving:

R(x, y)D(x, y) = [dback + —·(r2 + o
2)]R(x, y) + —·r

2
O(x, y) + —·R

2(x, y)Oú(x, y)

(3.6)

From equation 3.6 the real part of image can be easily reconstructed by consid-

ering the zero order non-di�racted wave. The imaginary part of the image consists

55



Section 3.2 Chapter 3

information about the changes in optical path due to the deformations in sample.

Computationally, this is achieved by using fast Fourier transformation (FFT)

technique and inverse Fourier transform. As shown in Fig. 3.7, zeroth and first order

of the Fourier space image are selected and are multiplied element-wise to form the

amplitude and wrapped phase images. Finally, the phase is unwrapped using a 2D

phase unwrapping algorithm [172,173]. The calculated phase and amplitude images

can be used for 3D reconstruction of any holographic image.

Figure 3.7: Image reconstruction using DHM. The highlighted region in recon-
structed Fourier image represents the zeroth and first order of the initial interference
pattern, as accumulated by the CCD camera. Here, red Circle denotes zeroth order
or amplitude of the image, whereas yellow circle denoted the first order or complex
phase.

Technique Advantage Disadvantage

Raman Spectroscopy

1. Label-Free
2. Non-invasive
3. Non-destructive
4. Chemical information

1. No morphological information
2. Hampered by long acquisition time

DHM

1. Label-free
2. Non-invasive
3. Non-destructive
4. Rapid acquisition time
5. Morphological information

No chemical information

Table 3.1: Table to summarize the advantages and disadvantages of label-free optical
techniques which are used to discriminate and study the di�erent cells.
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3.2 Classification of neutrophils and eosinophils

3.2.1 Methods

Cell Isolation

In order to perform the cell isolations on whole human blood, an ethical permission

was acquired from the School of Medicine at the University of St. Andrews. After

obtaining the informed written consent from the three healthy donors, the isolations

were performed on the whole blood samples. These samples were collected using

heparinised tubes for the quantities of 20-30 ml per donor. Eosinophils were isolated

by following a two step mechanism. For the first step, whole blood was separated

over Histopaque (Sigma, Poole UK). As the second step, the untouched eosinophils

were isolated using a MACsxpress eosinophil isolation kit (Mitenyi Biotec, UK,

cat:130-092-010) by following manufacturer’s instructions. Neutrophils were iso-

lated directly from the whole blood by using MACSxpress neutrophil isolation kit

(Miltenyi Biotec, UK, cat: 130-104-434) following manufacturer’s instructions. The

isolated neutrophil solution also contained a small amount of erythrocytes. These

small number of erythrocytes were removed using an erythrocyte lysis kit (Milteny

Biotec, UK cat: 130-094-183) following manufacturer’s instructions. The isolated

neutrophils were cultured in the plasma from which they were isolated in the kit

whereas the eosinophils were cultured in RPMI supplemented with 5 % Foetal Bovine

Serum (FBS, both Invitrogen, UK).

To chemically confirm and benchmark the isolation of these cells, flow cytomet-

ric analysis was conducted. Purified populations of both cell types were washed

into Phosphate Bu�er Saline (PBS) with 0.5 % FBS and blocked with 10 % hu-

man plasma for 10 mins on ice prior to labelling with antibodies. Anti-CD3-FITC

(eBioscience, clone OKT3, cat: 11-0037-41) was used as a negative control for both

cell types. Purified neutrophils were stained with anti-CD15-FITC (eBioscience,

clone H198, cat: 11-0159-41), and eosinophils with anti-CD66b-FITC (eBioscience,

clone G10FS, cat: 11-0666-42). Flow cytometry was performed on a Guava 8HT

(Merck-Millipore, UK).

In succession to flow cytometry, the isolated cells were prepared for optical anal-

ysis. First these cells were centrifugated at 1200 rpm for 5 minuntes and then
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resuspended in PBS with 0.5% FBS solution to avoid aggregation. Cell suspension

with a volume of 20 µl was prepared and transferred to the center of a quartz slide

(25.4 mm x 25.4 mm x 1 mm). This slide had a chamber which was formed by

the use of an 80 µm thick vinyl spacer. The whole chamber was covered from top

by another thin quartz slide (25.4 mm x 25.4 mm, 0.11 mm - 0.15 mm thickness).

The whole assembly was inverted and left for ≥30 minutes such that the cells could

settle down and no cell motion would be present during measurement.

Raman data acquisition, processing and classification

Single cell WMR spectra with a resolution of 2.4 cm≠1 were collected by placing

the prepared sample on a confocal Raman system [174, 175] which was pumped by

tuneable Ti:Sapphire laser (M squared Solstis) at a central wavelength of 785 nm.

To reject noisy wavelength variations from the laser beam, the incident path was

guarded by a line filter at 785 nm. After the line filter, the laser line was passed

through a 40X oil immersion objective (Nikon, NA 0.9) such that it hit the sample

plane at a power of 130 mW. The back scattered Raman florescence was collected

by the same objective. An edge filter (Semrock LPD02-785RU) was placed in the

acquisition path to separate the fluorescence from the incident signal and hence

allowing only Raman signal to pass through. The Raman photons were then fed

into a monochromator (Semrock SR-303i, Andor technologies) coupled with a notch

filter (Semrock NF03-785E) with 400 lines/mm grating, blazed at 914 nm and a deep

depletion, back illuminated and thermoelectrically cooled CCD camera (Newton,

Andor Technology). To confirm that the laser was not causing any photo-damage

or denaturation of cells, a 5 second single acquisition for 5 minutes was continuously

accumulated and no variation in the collected Raman spectra confirmed it. The

laser wavelength was modulated over a range of 1 nm with a step size of 0.2 nm

to acquire 5 Raman single cell spectra over a period of 5 seconds each. Raman

spectra in the region of 934 cm≠1 to 1774 cm≠1 were subsequently analysed for the

classification.

After the accumulation of Raman spectra, the data was processed for classifica-

tion using an MLP. As the very first step of processing, single-cell Raman spectra

were normalized with respect to the total spectral intensity which allowed for cancel-
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lation of any noise generated in the signal due to the laser power fluctuations. The

second step was to calibrate the Raman shift which was implemented by linearly

calibrating these shifts with respect to the characteristic 1001.4 cm≠1 Raman peak

of the polystyrene bead.

Figure 3.8: Schematic of the Multi-layered perceptron for the classification
of WMRS. The network takes a WMR spectrum as the input (layer with 351
neurons) and processes it though a hidden layer (90 neurons) and finally connects
to a sigmoid neuron for the binary classification. (a) Representation of mean WMR
spectra for the two cell lines, (b) input Layer with nodes equal to the number of data
points in each spectrum, (c) hidden layer with 90 neurons and tan hyperbolic as the
activation function, (d) representation of classification layer with a single logistic
sigmoid neuron for binary classification, here red neuron represents the Eosinophil
class whereas the green neuron represents the Neutrophil class.

A modulated Raman spectrum was calculated for each cell as the first principal

component using PCA (using the script A.4) on the normalized five Raman spectra

by considering each excitation wavelength step as a parameter.

Each WMR spectra for a given biochemical structure is a signature representative

of its chemical ingredients, hence the classification of the one dimensional WMRS

dataset can be considered as a pattern recognition problem for a machine. To

classify these 1D patterns, an MLP architecture (patternNet, MATLAB 2017b) was

implemented. The MLP comprised of an input layer with 351 neurons, a hidden

layer having 90 neurons with a tan hyperbolic activation function and a final output

layer of one neuron with logistic sigmoid as the activation function. A schematic of
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the MLP is represented in Fig. 3.8. This MLP model was chosen by considering

its classification accuracy over the validation dataset. Before considering the final

geometry, multiple geometries were considered by changing the number of hidden

layers from one to three, and changing the number of neurons in each layer from 50 to

200 over the step of 10 neurons. The final selected MLP model was optimized using

using stochastic gradient descent with momentum and adaptive learning rate [176]

with momentum as 5 ◊ 10≠1 and L2 regularization as 1 ◊ 10≠4. Maximum epochs

were set to 2000 with validation patience of 5 iterations and a mini-batch size of 20

spectra was considered for training the model. An initial learning rate of 1 ◊ 10≠3

was considered which was reduced by a factor of 10 each time the validation loss

plateaued.

The classification results obtained using MLP were compared with a previously

known and applied method of non-parametric nearest neighbor algorithm based

on PCA [164]. The PCA based model was optimized by changing the number

of principal components and observing the e�ect on the classification accuracy of

LOOCV over the training and validation dataset. First 8 principal components

corresponding to 87.1 % of the total variance were considered since increasing the

number of PCs only contributed to the noise in the spectra. After identifying the

correct number of PCs, a classification was performed using LOOCV based on the

nearest neighbour algorithm.

DHM data acquisition, phase image calculation and classification using

CNN

The imaging data was acquired using a Mach-Zehnder interferometer based o�-axis

DHM (green and orange parts of Fig. 3.6). The setup of the mentioned DHM

consisted of an incident laser (at wavelength of 532 nm, Spectra-Physics Millenia

Vs). The light beam coming from the laser was passed through a beam splitter such

that both the signal (power = 25.5 µW) and reference (power = 30.1 µW) arms

were illuminated. The reference arm consisted of a 2X afocal telescopic system of

lenses (f = 2.5 cm and 5.0 cm). The signal arm, on the other hand, consisted of a

long working distance objective lens (Mitutoyo UK, M Plan Apo 10x NA = 0.23)

coupled with a 60X microscopic objective (NA = 0.85, Nikon). The sample stage
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was placed in the signal arm between the two objectives. The signal arm light beam

passing through the sample was interfered with the light from the reference arm at

the surface of the CCD camera which was set at 40 fps with an exposure time of

33.3 ms.

The acquired imaging data consisted of bright field and fringe images of the cells

placed under the microscope. After the acquisition of these images, wide field phase

images were calculated from the fringe images by calculating 2D Fourier transform

followed by a 2D phase unwrapping algorithm [171]. Following the above, single cell

phase images of the neutrophils and eosinophils with a size of 170 px ◊ 170 px were

manually cropped and further downsized to 150 px ◊ 150 px using bi-cubic inter-

polation method [177]. These single cell phase images capture the refractive index

variation across the cytoskeleton of a cell which acts as a morphological fingerprint

for the specific cell type.

Figure 3.9: Demonstration of phase image calculation. (a) A subsection of
the accumulated bright field image using our microscope, (b) fringe image for the
same section, (c) phase image calculated from (b). Scale bar: 10 µm (image)

Following the calculation and augmentation of single cell phase images, a su-

pervised classification of these phase images was performed. The classification was

performed by using a deep learning based CNN (following the script A.1) and to

benchmark the results another approach of calculating the intensity histograms and

applying PCA and LOOCV was also considered.

The phase images can be considered as an input with a binary label k œ {0, 1}

indicating the two classes of cells, hence a supervised mechanism can be easily be

constructed. This classification was performed using a deep learning based 17 layered

CNN as represented in figure 3.10. The CNN processes the input phase images

by passing through three convolution blocks (CBs), each containing a convolution

layer, batch normalization layer [178] and a recitied linear unit layer. The final
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block of the CNN was connected with a max pooling layer whose output was fully

connected to the classification layer containing one neuron with logistic sigmoid as

the activation function. The mentioned CNN geometry was chosen for achieving

maximum classification accuracy over the validation dataset. Before considering the

final CNN geometry, a range of CNNs were developed and tested over the validation

dataset. These CNN were developed by changing the number of CBs from 2 to

10, changing the number of convolution layers from one to three and chaning the

filter sizes in each convolution layer from 2 px ◊ 2 px to 5 px ◊ 5 px. Table

3.2.1 summarizes the complete CNN architecture and the total number of learnable

parameters implemented.

Figure 3.10: Schematic of the optimized CNN for phase image classifica-
tion. The network takes phase images as its input and processes these though four
convolution blocks and finally connects to a sigmoid neuron for the binary classifi-
cation. Here we see the (a) Input phase image, (b) the convolution layer containing
30 5◊5 filters with 1◊1 stride and 1◊1 padding, and (c) the convolution layer con-
taining 30 4◊4 filters with 1◊1 stride and 1◊1 padding, (d) the convolution layer
containing 30 3◊3 filters with 1◊1 stride and 1◊1 padding,(e) the convolution layer
with 30 2◊2 filters with 5◊5 stride and 1◊1 padding. Each convolution layer is
followed by a batch normalization and ReLu Layer. The final convolution block has
a max-pooling layer with 2◊2 filter size and 1◊1 padding and (f) shows the Binary
representation of output classification layer with a single sigmoid neuron.

The training set for the CNN consisted of 235 single cell phase imaged of size 150

px ◊ 150 px for each class. As explained in section 2.3.6, the binary cross entropy

cost function (Eq. 3.7) was considered and optimized for each training example.

L(j, k) =

Y
__]

__[

≠A1 · k · log(p(k|j)), for k = 1

≠A2 · (1 ≠ k) · log(p(k|j)), for k = 0
(3.7)

62



Section 3.2 Chapter 3

In the above equation, p(k|j) is the probability that the network assigns to the

label j with A1 = |N1|/(|N1| + |N2|) and A2 = |N2|/(|N1| + |N2|) with N1 and

N2 being the total number of cases for each class. The weights and biases of the

network were initialized by seeding the random environment. The network was

trained end-to-end using stochastic gradient descent with momentum as 4 ◊ 10≠1

and L2 regularization as 5 ◊ 10≠6. Maximum epochs were set to 100 with validation

patience of 5 iterations and a mini batch size of 40 images was considered for training

the model with a learning rate of 5◊10≠5. Before the training process, a zero center

normalization was implemented on the dataset.

Figure 3.11: Intensity histograms of the cellular phase images. Represen-
tation of intensity histograms, calculated to represent the size of image, maximum
OPD, and total OPD of (a) Neutrophils and (b) Eosinophils.

As a benchmark, the results obtained using the CNN were compared against

PCA (explained in section 2.3.1 and following the script detailed in section A.4)

and LOOCV based intensity histogram approach. As shown in Fig. 3.11, intensity

histograms were calculated to represent the information about the size of image,

maximum optical path di�erence (OPD), and total OPD over the entire cellular

phase image. These histograms were then used as the one dimensional descriptor

vectors for the datasets and PCA was conducted on the new dataset. The number

of principal components were optimized to gain maximum classification accuracy

over the training and validation datasets.

3.2.2 Results

Cell isolation

The isolation of the neutrohils and eosinophils was obtained by removing all the cells

form blood which were now of interest. This was performed by using cell-lineage
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S. No. Layer Name Type Activations Parameters Total Parameters
1 Input Image Input 150◊150◊1 - 0

2 C1 Convolution 148◊148◊30 Weights 5◊5◊1◊30
Bias 1◊1◊30 780

3 B1 Batch Normalization 148◊148◊30 o�set 1◊1◊30
scale 1◊1◊30 60

4 R1 ReLU 148◊148◊30 - 0

5 C2 Convolution 147◊147◊30 weights 4◊4◊30◊30
bias 1◊1◊30 14430

6 B2 Batch Normalization 147◊147◊30 o�set 1◊1◊30
scale 1◊1◊30 60

7 R2 ReLU 147◊147◊30 - 0

8 C3 Convolution 147◊147◊30 weights 3◊3◊30◊30
bias 1◊1◊30 8130

9 B3 Batch Normalization 147◊147◊30 o�set 1◊1◊30
scale 1◊1◊30 60

10 R3 ReLU 147◊147◊30 - 0

11 C4 Convolution 30◊30◊30 weights 2◊2◊30◊30
bias 1◊1◊30 3630

12 B4 Batch Normalization 30◊30◊30 o�set 1◊1◊30
scale 1◊1◊30 60

13 R4 ReLU 30◊30◊30 - 0
14 Maxpool Max Pooling 31◊31◊30 - 0

15 FC Fully Connected 1◊1◊2 weights 2◊28830
bias 2◊1 57662

16 Softmax Softmax 1◊1◊2 - 0
17 Output Classification output - - 0

Total CNN learnable Parameters 84,872

Table 3.2: Table to summarize the optimal CNN architecture and the total number
of learnable parameters.

specific antibodies. To chemically confirm the isolation these cell types, flow cytom-

etry was used to confirmed the isolation of monodisperse cell populations by forward

and side scatter profiles. These profiles were negative for the T lymphocyte marker

CD3, however, they stained 100 % for CD66b for eosinophils and 100% positive for

CD15 for neutrophils(Fig. 3.12). The negative isolation of cells allowed for com-

pletely label-free (antibodies or beads) untouched cells and therefore represented as

far as possible cells in situ.

Digital holographic microscopy

Bright field and holographic fringe images were accumulated at a rate of 40 frames

per second. These images consisted a field of view of 50 µm ◊ 40 µm area (Fig.

3.9) which covered a maximum of nine cells in a single field of view. This enabled

the high-throughput capabilities of the system of more than 100 cells per second.

The phase images were calculated using the fringe images and single cell images

(170 px ◊ 170 px) were cropped manually for the two cell types. Following this, the
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Figure 3.12: Chemical quantification of granulocyte isolation. Flow cytomet-
ric analysis of purified untouched eosinophils (a) and neutrophils (b) demonstrating
forward and side scatter profiles of purified cells and antibody staining with anti-
CD3-FITC (negative control) and anti-CD66b-FITC for eosinophils, and anti-CD3-
FITC (negative control) and anti-CD15-FITC for neutrophils.

single cell images were downsized to 150 px ◊ 150 px for augmentation purposes.

The single cell phase images (Fig. 3.13) acquired for the two cell types signified

morphological similarities with ≥ 10 µm diameter possessing the granularity of cells

as represented by the presence of di�erences across the central cellular structure.

The phase image dataset comprising the images of neutrophils and eosinophils

were accumulated from three di�erent donors. This was done to consider the vari-

ability that may arise due to blood drawn from di�erent donors. The dataset was

divided such that the training set solely consisted of images corresponding to donor

1, validation set consisted of images for donor 2 and test set consisted of images

acquired using the blood from the donor 3.

After splitting the data, CNN geometry (Tab. 3.2.1) was optimized by train-

ing on the training/validation datasets as explained before. This optimal CNN was

then implemented on the test dataset to classify the novel images from the third

donor. The classification of the test set by the CNN resulted in a sensitivity of 100

% and specificity of 82.7 % with an overall classification accuracy of 91.3 %. These
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Figure 3.13: Normalized phase images of the Granulocytes. (a), (b)
Eosinophils; (c),(d) Neutrophils. These images represent the inter-cellular struc-
tural variation in the form of refractive index map which expresses the granularity
of the two cell types. Color bar represents the normalized phase di�erence between
the signal and reference arm.

results are summarised in the form of a confusion matrix in table 3.3. As a compar-

ison, the phase images were also classified using PCA and LOOCV method (results

summarised in Tab. 3.3) described above. This method resulted in a sensitivity of

87.9 % and a specificity of 72.4 %. To understand the weak of performance by this

method, the principal components were plotted as scatter plot (Fig. 3.14). These

plots displayed an absence of variability among the phase images and hence con-

firmed the lack of sensitivity by this method to detect the morphological di�erences

between the two cell types.

Table 3.3: Confusion matrix representing the prediction accuracy of the trained
CNN and PCA/LOOCV for classification of the neutrophils and eosinophils on the
test dataset. Each row of the matrix expresses the total number of phase images of
the cells available for classification, whereas each column represents the predicted
cell lines. Thus, the diagonal elements of the confusion matrix represent the correct
predictions made by the network whereas o�-diagonal terms represent the inaccurate
predictions.

C.M. Pred. E Pred. N Pred. E Pred. N
CNN PCA

Act. E 58 0 51 7
Act. N 10 48 16 42
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Figure 3.14: PCA scatter plot for DHM. (a) PC1-PC2 scatter plot for the two
cell types; (b) PC2-PC3 scatter plot for the two cell types; (c) PC3-PC1 scatter plot
for the two cell types; Eosinophils are represented by the data points in red whereas
the neutrophils are represented by the data points in blue

Raman spectroscopy

Standard and WMR spectra were collected from the neutrophils and eosinophils.

Figure 3.15 (a) and (b) depicts the Raman spectra for the granulocyte cells with

a deviation of 0.1 nm in the incident laser wavelength as explained before and (b)

depicts the pairwise comparison of WMR spectra for the two cell subsets.

The collected WMRS dataset was classified using the multi layered perceptron

(MLP) model explained in the methods section. To consider inter-donor variability,

we trained the MLP on the data considered from the two donors and tested its

performance over the data accumulated from an independent donor, this approach

of splitting the data resulted in low classification ability of the MLP based model

(validation accuracy of 97.1 % and test accuracy of 67.0 % with 120 hidden neu-

rons). The reason for such poor performance can be attributed to the presence of

experimental variations while accumulating the data for individual donors; this in-

turn contributes to the biasing for the training of MLP based model. In addition,

the absence of inter-donor variability can be verified by considering the PCA and

t-SNE (Fig. 3.16) analysis of the WMRS data. Each method gave a clear cluster-

ing of the WMR spectra of the two cell types over all the data collected from all

the three donors. Hence to overcome the e�ects of experimental bias [179] in the
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Figure 3.15: Evaluation of WMRS for the granulocyte. Raman spectra
accumulated with a wavelength deviaiton of 0.1 nm for the (a) Neutrophils (b)
Eosinophils. (c) Wavelength modulated Raman spectra illustrating pairwise com-
parison between eosinophils and neutrophils. Solid lines show the mean spectrum
for each cell subset and shadowed regions represent the standard deviation.

dataset, the complete dataset was randomly divided into a training set (70 % of

the total spectral dataset), a validation set (15 % of the total spectral dataset) and

a test dataset (15 % of the total spectral dataset) [180–182]. The MLP showed a

sensitivity of 96.7 % and a specificity of 100 % on the test dataset as depicted by

the confusion matrix presented in table 3.4.

Figure 3.16: Demonstration of high molecular sensitivity using PCA and
t-SNE. (a) 3D PC scatter plot showing the clustering of the neutrophils and
eosinophils. The red points on the scatter plot correspond to the Eosinophil WMR
spectra whereas the green points on the scatter plot correspond to the neutrophil
WMR spectra. (b) t-SNE scatter plot in 2D showing a clear clustering of the com-
plete dataset. The red points in the scatter plot correspond to Eosinophils WMR
spectra whereas blue points correspond to Neutrophil WMR spectra.

PCA in combination with LOOCV was also performed on the collected Raman

dataset. First eight PCs which accounted for 87.1 % of the total variance, were
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Table 3.4: Confusion matrix representing the prediction accuracy of the trained
MLP and PCA/LOOCV for classification of the neutrophils and eosinophils on the
test dataset. Each row of the matrix expresses the total number of WMRS of
the cells available for classification, whereas each column represents the predicted
cell lines. Thus, the diagonal elements of the confusion matrix represent the correct
predictions made by the network whereas o�-diagonal terms represent the inaccurate
predictions.

C.M. Pred. E Pred. N Pred. E Pred. N
MLP PCA

Act. E 60 2 58 4
Act. N 0 59 1 58

considered. The PC scatter plot, shown in Fig. 3.16 (a), of the analyzed data points

displayed their clustering corresponding to individual classes in the PC space. The

classification accuracy of the analysis was calculated using LOOCV. The PCA based

analysis resulted in a sensitivity of 93.5 % and specificity of 98.3 % as calculated

from the confusion matrix depicted in Table 3.4. Additionally, to further demon-

strate the chemical specificity of the Raman data, t-SNE (detailed in section 2.3.5)

based approach was also implemented; this has been displayed in Fig. 3.16 (b)

demonstrating the formation of two distinct clusters for the two cell types.

The network classified the input images at a rate of 435 frames per second which

was more than 3 times the single-cell image acquisition rate. This indicates that

CNN complements the high-throughput capabilities of the DHM system and can be

used in real time for the classification purpose.

The above represented results confirm that digital holographic microscopy when

combined with deep learning can be used to create a highly-accurate hemogram

device with high-throughput for the label-free classification of the cells of the immune

system. Hence to identify the limits of a DHM based hemogram system, the next

study was conducted where the T-cell subsets namely CD4+ and CD8+ cells were

considered for the classification purposes.
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3.3 Determination of throughput limit of DHM

based hemogram to classify the T-cell subsets

3.3.1 Methods

Cell Isolation

Cell isolations were performed, after ethical review from by the School of Medicine

at the University of St. Andrews, using cells isolated from bu�y coats of six di�erent

healthy donors obtained from NHS UK. For the isolation of CD4+ and CD8+ T cells,

PBMC were isolated from the bu�y coats by centrifugation at 1,200 rpm for 20 mins

at room temperature on Ficoll-Paque at density 1.077 g/ml (Thermofisher, UK).

CD4+ and CD8+ T cell populations were isolated by negative depletion (Dynabeads

CD4 T cells, 11346D and Dynabeads CD8 T cells, 11348D, Thermofisher UK). After

the isolation, the purified cells were cultured in RPMI 1640 supplemented with 5%

Foetal Bovine Serum (both Thermofisher, UK).

To confirm the purity of the cell samples of each were stained with combinations

of the following antibodies (CD3-PE and -FITC, clone HIT3a, eBioscience UK,

CD4-PE and -FITC, clone OKT4, eBioscience UK, CD8-PE and -AF488, clones

SK1, eBioscience UK, and FAB1509G, R&D UK). Cells were analysed on a Guava

8HT cytometer (Merck Millipore, UK).

For the optical analysis, centrifugation was performed to isolate the cells. These

cells were then resuspended in Phosphate Bu�er Saline (PBS) with 0.5% FBS solu-

tion to avoid aggregation. The optical measurements were performed on an assembly

of quartz slides and 20 µl of prepared cell suspension. The cell suspension was trans-

ferred to the center of a clean quartz slide (25.4 mm ◊ 25.4 mm ◊ 1 mm) chamber -

formed by use of an 100 µm thick vinyl spacer. This chamber was covered from the

top using a thin quartz slide (25.4 mm ◊ 25.4 mm, 0.11 mm - 0.15 mm thickness).

This assembly was inverted and left for 20-30 minutes to avoid cellular motion.

Digital holographic microscopy

A Mach-Zehnder interferometer-based o�-axis digital holographic microscope [171]

was modified to capture the holographic images of the cells at various field of views
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(Fig. 3.17). Details of setup are summarised in section 3.2.1. For this study, three

di�erent microscopic objectives were considered, a 20X microscopic objective (NA

= 0.4, Nikon Japan 130314), a 60X microscopic objective (NA = 0.85, Nikon) and

a 100X microscopic objective (NA = 0.9, Nikon Japan 230538). The sample was

placed between the two objectives and the image was interfered with the light from

the reference arm at the surface of the CCD camera (Ximea XiQ MQ013MG-E2).

This camera was set to accumulate 16 bit images with a frame rate of 60 fps.

20 X 60 X 100 X

DET

OBJi

Signal Beam

Reference Beam

10 X

Sample

Figure 3.17: Schematic of optical modifications made to digital holographic
microscope. Schematic of modifications made to the the DHM system [171] im-
plemented for the data acquisition. The microscopic objectives with magnifications
of 20X, 60X and 100X were used as shown.

The data for the two cell types was acquired separately by using the three objec-

tives mentioned earlier. The use of 20X objective resulted in the images with largest

field of view (FOV) but with the worst resolution (lateral: 0.66 µm; axial: 6.65 µm).

The images captured using the 60X objective showed moderate size of FOV with a

reasonable resolution (lateral: 0.31 µm; axial: 1.47 µm) and the images acquired by

replacing the 100X objective had the smallest FOV with highest resolution (lateral:

0.29 µm; axial: 1.31 µm). Using the 20X objective, a total of 901 wide-field images

were captured from three di�erent donors whereas a total of 1447 images from three
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di�erent donors were captured using the 60X objective and 2272 images from four

di�erent donors were captured using the 100X objective.

Haugh transform based detection of cells

As mentioned, the three objectives provide a di�erent FOV which result in a variable

radii of cells for each case. To automate the detection of cells and overcome the

problem of variable radii, a Haugh transform based method was implemented. A

prewritten matlab script [183] was considered whereby the input variables controlling

the search for range of radii, gradient threshold and radius of filter (to be used in the

search for local minima in the accumulation array) were optimized. The code was

run using MATLAB 2019b. After isolating the single cell images, the total images

considered for each optical configuration are presented in table 3.5.

S.No. 20X 60X 100X
CD4 CD8 CD4 CD8 CD4 CD8

Train/Val 2385 2056 1066 971 704 704
Test 344 323 84 77 104 96

Table 3.5: Table summarizing the total number of single cells phase images consid-
ered for di�erent optical configurations.

Optimization of the CNN geometry

The optimization of the CNN geometry poses a di�cult problem invoking a mul-

titude of parameters such as the selection of layers, number of filters specific to

the layers, sizes of those filters, strides, padding, dropout ratio and the number of

neurons in the fully connected layers. The layers have to be selected from the set

of convolution layer, rectified linear unit (reLu) layer, batch normalization layer,

dropout layer, max pooling layer, and fully connected layer. All these parameters

have to be optimized in order to gain maximum classification accuracy over the

validation dataset.

To solve this problem, a particle swarm optimization (PSO) based approach

was implemented (using code detailed in section A.2). PSO is a type of swarm

intelligence method for global optimization where each individual (named particle)

of the population (called swarm) adjust their trajectory towards the previous best
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position attained by any member of their topological neighborhood. This approach

is used to minimize the error output of an objective function.

For the optimization of CNN geometry, an objective function was developed as

a training instance. This training instance consisted of the layers to be identified

for the network geometry. To identify the layers of the CNN, the layers namely

convolution layers with the filter sizes ranging from 1 to 5 with an increment of 1, a

batch normalization layer, a rectified linear unit layer, a max pooling layer with filter

size of 2 and the fully connected layers were considered. The input layer was set at

image input layer and the output layer was set at fully connected layer with 2 neurons

(representing each class) followed by softmax layer and a classification layer. The

training instance gave an output of cost function described as the mean of sensitivity

(Eq. 3.8a) and specificity (Eq. 3.8b) for the validation dataset (calculated as 3.8c)

calculated by testing the trained network’s classification ability over the validation

dataset. The objective function took input as: the selection of layers (layer index),

number of neurons in fully connected layers, number of filters for the convolution

layers, padding to be provided to the layers and the dropout ratio. Each parameter

was restricted and conditionally valued in the objective function. The restrictions

posed over the individual parameters were to restrict the layer index between 2 and 9

and the index value was placed as 0 when crossing either limit. To keep the network

geometry with the bounds of the GPU’s memory, the number of convolution filters

were also restricted to be greater than zero and less than 75. The number of fully

connected neurons and dropout layers were restricted to be more than zero.

Sensitivity = TP

TP + FN
(3.8a)

Specificity = TN

TN + FP
(3.8b)

Cost = 1 ≠ Sensitivity + Specificity
2 (3.8c)

Here, TP is true positive, TN is ture negative, FP is false positive and FN is false

negative. A total of 40 particles were considered for the PSO algorithm. Initializing

the particles’ position and velocity randomly, the algorithm evaluated the cost of

the objective function for each particle. After the cost evaluation, the particle with
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minimum evaluated least cost was considered as the leader (xL) and all the parti-

cles’ trajectory and velocity were relatively updated from the leader and preceding

velocities using the Equations 3.9a and 3.9b.

v̨i = (1 ≠
Ô

k ◊ fi

2 )V p
i + kfi(xL ≠ x

p) (3.9a)

x̨i = xp + “(1 ≠
Ô

k ◊ fi

2 v̨i + (1 ≠ kfi)(xL ≠ x
p)) (3.9b)

Here, k represents the weight of stochastic element, fi represents the random

weight of the stochastic element and “ represents the weight of the position updation.

For the experiments, k was chosen as 2 whereas “ was chosen as 2.5 and fi was

randomly generated for each particle at each iteration. These values were considered

after varying the values between 1 to 5 with the step of 0.5 for getting the minimum

cost with least number of iterations.

Cycle generative adversarial training for image transformation

The images acquired from three optical configurations allow for di�erent through-

put. With decreasing magnification the throughput increases however the details

associated with respect to individual cell types are lost. Hence, it would be beneficial

to identify a numerical method where the images accumulated from a lower mag-

nification system may be transformed into a higher resolution image. To solve this

problem, single image super-resolution methods of machine learning were considered.

Generally, a lower resolution image y can be modelled from a higher resolution image

x as:

y = (x ¢ k) + n (3.10)

Here, x ¢ k is the convolution between a kernel k and unknown higher resolution

image x and n is a stochastic noise term. The convolution between x and k results

in a downsampled image. Problem posed by Eq. 3.10, is ill posed since the inverse

solution may result into multiple higher resolution images. Deep learning has proven

to be a very e�ective solution for this problem [184]. Using deep learning, paired

image super-resolution has been vividly applied in photonics [185–187]. However,
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applying the super-resolution to unpaired image sets is still quite unexplored.

Using the DHM system explained above, it is very challenging to identify the

same cells using two di�erent magnifications. Hence considering this problem, a

cycle GAN type training (using code detailed in section A.3) was considered to

train a deep generative network (schematic represented in Fig. 3.18). Cycle GAN

type training module has been popularly known to be applied for the transformation

of unpaired images [132]. Two deep convolutional networks were developed by such

that the size of input image could be down-sampled and then up-sampled to get

the required size at the output. For the transformation of phase images captured

using 20X optical configuration to 100X optical configuration, a 54 layered CNN

(G20Xæ100X := Ga) was developed such that the network filters were changed in the

step of 8 units with respect to the network performance on the validation dataset.

Similarly, the inverse network (100X to 20X) with 34 layers (G100Xæ20X := Gb) was

also optimized. As a part of the cycle GAN model, two discriminator models with

23 layers (D100X := Da) and 15 layers (D20X := Db) were also developed. To train

the deep models, 300 phase images each of CD4+ and CD8+ T cells accumulated

using both the 20X and 100X optical configurations were randomly selected. Out

of these, 225 images were considered for training and 75 images were considered for

validation.

The cycle-GAN model was trained by using the proposed cycle consistency loss

coupled with the GAN loss. The GAN loss function is computed as:

LGAN(Ga, Da, X, Y ) = IEy≥pdata(y)[log Da(y)]+IEx≥pdata(x)[log(1≠Da(Ga(x)))] (3.11)

The cycle consistency loss Lcyc(Ga, Gb) is computed, to satisfy the condition x æ

Ga(x) æ Gb(Ga(x)) ¥ x, as:

Lcyc(Ga, Gb) = IEx≥pdata(x)[||Gb(Ga(x)) ≠ x||1] + IEy≥pdata(y)[||Ga(Gb(y)) ≠ y||1] (3.12)

Here, the variables x and y represent the phase images obtained using 20X and 100X
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Figure 3.18: Schematic of cycle GAN model applied for super-resolving
the phase images. The generative models G20Xæ100X and G100Xæ20X are trained
with in a cycle consistent manner such that the inverse transformation of the images
is conserved.

optical configuration respectively. The combined GAN loss can be written as:

L(Ga, Gb, Da, Db) = LGAN(Ga, Da, X, Y )

+LGAN(Gb, Db, Y, X)

+⁄Lcyc(Ga, Gb)

(3.13)

Here, ⁄ is a hyperparameter which was chosen as 10 for this application. During the

training, the objective is to minimize the combined loss for the generator networks

while maximizing the loss for the discriminator networks:

Gú
a, Gú

b = arg min
Ga,Gb

max
Da,Db

L(Ga, Gb, Da, Db) (3.14)

To achieve this training, the images were considered in the mini batches of 45

images. An Adam optimizer was considered with a learning rate of 2 ◊ 10≠4,

gradient descent factor of 0.5 and a squared gradient descent factor of 0.99. The

network performance was validated after 25 iterations using 25 randomly selected

images belonging to both CD4+ and CD8+ T cell types. The training was continued
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for a total of 5000 epochs.

k-means segmentation

To identify the degree of granularity exhibited by the phase images of the two

cell types, a method of k-means clustering (detailed in section 2.3.3) based image

segmentation [188] was implemented, using MATLAB 2019b. The phase images

corresponding to each objective were considered individually and the number of

segmentation classes were increased by one step until the algorithm returned a sat-

uration solution of discontinuous boundaries. In this case, a class represents the

distribution of refractive index across the cellular structure representing the varia-

tion of granularity for the distinct FOV’s.

3.3.2 Results

Cell isolation

Untouched human blood CD4+ and CD8+ T cells were obtained by negative de-

pletion, in which other cells not of interest were removed using cell-lineage specific

antibodies. Flow cytometry (Fig. 3.19) confirmed the purity of the cell populations

in line with previous studies [164, 171], with CD4+ cells isolated at an average of

89% (n=3) and CD8+ cells at an average of 86% (n=3).

Automated detection of cells and phase image calculation

Bright field and fringe images were captured using the DHM system by replacing

the objectives as mentioned before. The images captured using di�erent objectives

demonstrate di�erent properties in terms of resolution and overall field of view.

The acquired fringe images were considered to calculate the phase images. After

the calculation of phase images for all the di�erent FOVs, an automated cellular

detection of cells was performed using circular Haugh transform [183] on the bright

field images.

To detect the cells using circular Haugh transform, the mentioned parameters

were optimized for each optical configuration. Table 3.6, summarizes the optimal

parameters used for the detection of cells for each optical configuration. These
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Figure 3.19: Representative flow cytometric plots of CD4+ and CD8+ T
cells purified by negative depletion. Purified cell samples were stained with
anti-CD3, -CD4 or –CD8-FITC or AF488 coupled antibodies and analysed by flow
cytometry for (A) CD4 T cells and (B) CD8 T cells. Average purity of three separate
purifications is reported in the main text.

parameters namely - range of radii, gradient threshold and radius of search filter

were optimized with respect to the size of cells, the mean magnitude of gradient

for the empty space and the radius of cells respectively for the particular optical

configuration.

Optical Configuration Range of radii (px) Gradient threshold Radius of search filter (px)
20X 15 - 20 10 12
60X 25 - 50 8 43
100X 60 - 100 5 51

Table 3.6: Table summarising the optimal parameters identified for the automated
detection of cells using di�erent optical configurations.

The images accumulated using the three optical configuration exhibit varying

FOVs and resolutions. Fig. 3.20 demonstrate the automatic cellular detection for

various FOVs. As summarised in Table 3.7, the FOV achieved by using the 20X

objective was greatest at 100 µm ◊ 130 µm (which may allow imaging a maximum

of 1300 cells in one snapshot permitting the maximum possible throughput of 78,000

cells per second), however, the resolution of the accumulated images was poor. For

imaging using the 60X objective, a smaller FOV of 68 µm ◊ 64 µm was achieved
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(allowing a maximum of 36 cells resulting in the highest possible throughput of 2,160

cells per second) with a reasonable resolution. Imaging using the 100X objective

resulted in a much smaller FOV of 40 µm ◊ 32 µm (enclosing a maximum of 12

cells and allowing a highest possible throughput of 720 cells per second) with the

highest resolution.

Figure 3.20: Automatic detection of cells using Haugh transform Subsection
of Bright field images recovered from (a) 20X Objective (100 µm ◊ 130 µm) (b)
60X objective (68 µm ◊ 64 µm) and (c) 100X objective (40 µm ◊ 32 µm). Blue
highlighted regions represent the automatic detection of cells for three FOV’s using
Haugh transform circular detection.

Optical Configuration Field of View Maximum Throughput
20X 100 ◊ 130 µm 78000 cells/s
60X 68 ◊ 64 µm 2160 cells/s
100X 40 ◊ 32 µm 720 cells/s

Table 3.7: Summary of field of views and maximum allowed throughput for the
three optical configurations

With respect to the numerical aperture of the microscopic objectives, the re-

trieved phase images show the di�erences in resolution. The phase image recovered

using 20X objective with a numerical aperture (NA) of 0.4, displays the least reso-

lution for both the cell lines (Fig. 3.21 (a),(d)). The application of 60X objective

with the NA of 0.8 results in moderately resolved phase images (Fig. 3.21 (b),(e))

and the phase images calculated from the fringe images captured using the 100X

objective (with the NA of 0.9) were highly resolved.

Quantification of granularity

After the extraction of single cell phase images, a quantification of granularity or

resolution probed by di�erent optical configurations was implemented. This was
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Figure 3.21: Normalized phase images of T Cells. Single cell normalized phase
images of the CD4+ cells retrieved using (a) 20X objective (b) 60X objective (c)
100 X Objective; Single cell normalized phase images of CD8+ cells retrieved using
(d) 20X objective (e) 60X objective (f) 100X objective. Colorbar represents the
normalized phase gain of the signal arm with respect to the reference arm.

achieved by using image segmentation based on k-means clustering.

As anticipated, the phase images of the two cell types show a very similar vari-

ation in resolution with respect to the objectives. As shown in Fig. 3.22, the

algorithm when applied over the phase images of the two cells for the 20X objective,

saturated at 8 segments. For the phase images accumulated using 60X objective,

the algorithm saturated at 9 segments for CD4+ cells whereas it saturated at 10

segments for the CD8+ cells. When the algorithm was implemented over the phase

images captured using 100X objective, it saturated at 11 segments for both the cell

types.

Classification of phase images

The next step for the analysis of the single phase images was to classify them with

respect to the cell types. This was achieved by employing the CNNs which were

optimized by implementing PSO algorithm as explained before. For gaining statis-

tical relevance over the dataset, the optimized CNN geometries were tested on the

validation and test sets for five instances.

The three optical configurations, resulted in di�erent sizes of single cell phase

images as 52 ◊ 52 px for 20 X objective, 100 ◊ 100 px for 60 X objective and 200

◊ 200 px for 100X objective. Hence the optimal CNN geometry also displayed a

variation in size. For the 20X optical configuration, the optimal CNN geometry
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Figure 3.22: Quantification of granularity for T-cells. k-means clustering based
image segmentation of the phase images of CD4+ cells into (a) 8 sections for 20X
objective (b) 9 sections for 60X objective and (c) 11 sections for 100X objective. k-
means clustering based image segmentation of the phase images of CD8+ cells into
(a) 8 sections for 20X objective (b) 10 sections for 60X objective and (c) 11 sections
for 100X objective. Scale bars represent 5 µm.

(summarized in Table 3.8) was identified with a total of six layers with 39,998

parameters. Using the validation set, the CNN returned a sensitivity of 63.13 %

± 2.23 % and specificity of 64.93% ± 5.65%, whereas when considered for the test

dataset, the CNN resulted in a sensitivity of 64.07 % ± 2.64 % and a specificity of

56.83 % ± 2.36 %.

S.No. Type Activations Learnable parameters Total learnable parameters
1 Image Input 52x52x1 - -

2 Convolution Layer 48x48x9 Weights 5x5x1x9
Bias 1x1x9 234

3 Max Pooling Layer 47x47x9 - -

4 Fully Connected Layer 1x1x2 Weights 2x19881
Bias 2x1 39764

5 Softmax Layer 1x1x2 - -
6 Classification Layer - - -

Total CNN learnable parameters 39,998

Table 3.8: Table summarizing the optimal CNN geometry for the classification of
phase images of CD4+ and CD8+ T-cell acquired using the microscopic objective
with 20X magnification.

For the 60X optical configuration, the optimal CNN geometry (Table 3.9) was

identified as a slightly longer network. This geometry comprised a total of 16 layers

with 226,707 parameters. On the validation set, the classification e�ciency of the

CNN resulted in 70.94 % ± 2.27 % sensitivity and 65.52 % ± 2.08% specificity,

whereas on the test set the trained CNN resulted in a specificity of 69.92 % ± 3.91%

and a sensitivity of 69.59 % ± 3.10 %. Finally, the optimization routine was also

implemented on the phase images acquired using the 100X optical configuration and
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this resulted in a CNN geometry (Table 3.10) of 24 layers with 1,603,327 parameters.

This geometry when applied over the phase images from validation dataset resulted

in the specificity of 80.28 % ± 1.17 % and a sensitivity of 77.77 % ± 2.72 %. The

specificity and sensitivity calculated using the test data were 82.5 % ± 3.96 % and

73.18 % ± 7.55 % respectively.

S.No. Type Activations Learnable Parameters Total Learnable Parameters
1 Image Input 100 x 100 x 1 - -
2 Dropout 100 x 100 x 1 - -

3 Convolution 99 x 99 x 1 Weights 2 x 2
Bias 1 x 1 5

4 Convolution 98 x 98 x 1 Weights 2 x 2
Bias 1 x 1 5

5 Convolution 97 x 97 x 1 Weights 2 x 2
Bias 1 x 1 5

6 Convolution 96 x 96 x 1 Weight 2 x 2
Bias 1 x 1 5

7 Convolution 112 x 112 x 7 Weights 3 x 3 x 1 x 7
Bias 1 x 1 x 7 70

8 Convolution 112 x 112 x 9 Weights 1 x 1 x 7 x 9
Bias 1 x 1 x 9 72

9 Batch Normalization 112 x 112 x 9 O�set 1 x 1 x 9
Scale 1 x 1 x 9 18

10 Convolution 111 x 111 x 1 Weights 2 x 2 x 9
Bias 1x1 37

11 Convolution 111 x 111 x 9 Weights 1 x 1 x 9
Bias 1 x 1 x 9 18

12 Convolution 111 x 111 x 9 Weights 1 x 1 x 9 x 9
Bias 1 x 1 x 9 90

13 Convolution 127 x 127 x 7 Weights 3 x 3 x 9 x 7
Bias 1 x 1 x 7 574

14 Fully Connected 1 x 1 x 2 Weights 2 x 112903
Bias 2 x 1 225808

15 Softmax 1 x 1 x 2 - -
16 Classification Output - - -

Total Learnables 226,707

Table 3.9: Table summarizing the optimal CNN geometry for the classification of
phase images of CD4+ and CD8+ T-cell acquired using the microscopic objective
with 60X magnification.

The interesting aspect of this comparison is that the trend of increasing classifi-

cation accuracy (Fig. 3.23) is evident. For the 20X configuration, the optimal CNN

geometry resulted in a validation accuracy of 62.28 % ± 2.54 % and 59.43 % ± 1.99

% as the test accuracy, whereas this value increased for 60X optical configuration

with 67.98 % ± 0.27 % validation accuracy and 69.31 % ± 2.04 % test accuracy.

Whie considering the dataset accumulated using the 100X objective, the optimal

CNN geometry resulted in a maximum classification accuracy with 78.91 % ± 1.57

% for validation set and 76.2 % ± 5.27 % for the test set. This shows that: increasing

the magnification in a holographic system escalated its ability to classify the phase
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images. However, with increasing magnification the throughput limit of the system

deteriorates. Hence to keep an increased throughput limit and simultaneously im-

proving the classification ability of the system, another deep learning based model

was trained to transform the phase images acquired from 20X configuration to the

phase images which may represent the acquisition from 100X optical configuration.

Figure 3.23: Evaluation of classification accuracy for the three optical con-
figurations. Variation of classification accuracy evaluated for the three optical
configurations. For the validation set, the values range from 62.28 % ± 2.54 %
for 20X objective, 69.31 % ± 2.04 % for 60X objective and 78.91 % ± 1.57 % for
100X objective. For the test set, a classification accuracy of 59.43 % ± 1.99 % for
20X objective, 69.31 % ± 2.04 % for 60X objective and 76.2 % ± 5.27 % for 100X
objective was obtained. Here the curve in blue represents values for validation set
and curve in red represents the values for test set.

Image transformation and classification

The single image super resolution transformation was implemented on the phase

images acquired using 20X configuration to convert them into the phase images

acquired using 100X configuration. To achieve this the DL models were trained

using the cycle GAN training method as explained before.

The trained generative models resulted in astounding transformations of the

phase images. As shown in Fig. 3.24, the trained deep generative model transformed

the phase images with a high speed of 6.89 milliseconds per transformation which
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is limited by the processing power of the computer and can further be improved.

In the mentioned figure, frame (I) represents all the phase images acquired using

the 20X optical configuration where (a), (b) and (c) represent the phase images for

CD4+ T cells and (d), (e) and (f) represent the phase imaged for CD8+ T cells.

Frame (II) represents all the transformed phase images vis, (a) to (g), (b) to (h), (c)

to (i), (d) to (j), (e) to (k) and (f) to (l). An interesting aspect which is visible on the

transformed images is that the deep generative models automatically learned to draw

an outline around the periphery of the cells. Additionally, it is quite evident from the

images that as a result of transformation, the shape of these cells may also change.

This can be explained by the mathematical inversion of the cycle GAN training

module. The CNN learn to transform the images from one domain to another and

simultaneously learn to inverse transform these images. This in turn results in a

statistically coherent transformation model which works on increasing the size of

images and redeveloping the shape of cells such that the inversion condition is met.

Figure 3.24: Demonstration of image transformation using the trained deep
generative model. Part (I) of the figure represents the phase images acquired from
the microscopic objective with 20X magnification with (a), (b), (c) representing the
CD4+ cells and (d), (e) and (f) representing the CD8+ cells. Part (II) represents
the transformed images of (I) where (g), (h), (i) represents CD4+ cells and (j), (k),
(l) represent CD8+ cells.

After the transformation of the phase images, a classification was performed

using the pre-trained optimal CNN geometry. This resulted in the classification

accuracy of 45.93 % ± 2.46 % for the validation set and 47.91 % ± 2.05 % for the

test set. These values were below the expectation and may be explained due to the

presence of boundaries and overall shape orientation of the cells. Hence, to overcome
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these problems, the previously trained networks were re-trained on the transformed

images. This resulted in satisfactory results with sensitivity of 81.55 % ± 0.81 %

and a specificity of 84.72 % ± 1.16 % for the validation set. For the test set, the

sensitivity and specificity were evaluated as 79.77 % ± 3.32 % and 81.77 % ± 1.51

% respectively.

3.4 Conclusion

This chapter examines the applications of label free techniques of Raman spec-

troscopy and digital holographic microscopy to classify the cells of immune system.

As an analytical method, the applications of artificial neural networks demonstrated

an improvement in the classification accuracy of the two modalities.

This chapter starts with a brief introduction to immunology. Then it explores

the applicability of label-free optical techniques for the classification of immune

cells. Following this, the technique of Raman spectroscopy is discussed and wave-

length modulated Raman spectroscopy (WMRS) is introduced. Subsequently, the

label-free technique of digital holographic microscopy (DHM) is introduced with an

insight into mathematical evaluation of the phase information extracted using this

method. Following the introduction to the two techniques, two studies are explained

demonstrating the applications of the mentioned techniques and their enhancement

using artificial neural networks.

For the first study, the modalities of WMRS and DHM were explored to classify

the morphologically similar granulocytes, namely neutrophils and eosinophils. The

application of artificial neural networks rendered with an average improvement of

6.8% in the classification ability for both WMRS and DHM when compared to PCA.

This approach further indicated that the combination of DHM with CNNs can be

used as a highly e�cient and stand-alone system to classify the cells of immune

system. Additionally, with respect to the throughut rate, the combination of CNNs

with DHM proved to be 2000 times faster than WMRS. Due to the high degree of

di�erences in the biochemical properties of the two cell types, WMRS proved to be

highly e�cient with more than 98% classification accuracy.

The second study was directed to improve the throughput rate of the DHM
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system to classify the T - cells subsets, namely CD4+ and CD8+ cells. To inspect

the variation in classification accuracy of DHM - CNN combination with respect to

the throughput rate, this study was conducted by changing the optical configuration

of the DHM system; the microscopic objectives were changed between 20X, 60X

and 100X magnifications. Owing to the variation in cellular phase image size, this

study further applied particle swarm optimization to optimize the CNN geometry

to classify the images acquired using each configuration. Further investigation was

applied to improve the throughput rate of the DHM system by implementing a cycle

GAN type training module to transform the images acquired using objective with

20X magnification into the images acquired using objective with 100X magnification.

The results successfully demonstrated that by applying deep learning with DHM, it

is possible to increase the classification accuracy and throughput rate of the system

by increasing the resolution of images.

Indeed the application of deep learning with DHM exemplify a highly precise

hemogram device. As per the requirement of deep learning based CNNs, the higher

the number of points in the data, the higher the classification accuracy. This could

have been achieved by acquiring more data for training. Hence, the results could

have been better if the phase image datasets chosen for the training of the networks

would have higher number of instances. Future works may focus on acquiring more

data which may help in further improvement of results.
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S.No. Type Activations Learnable Parameters Total Learnable Parameters
1 Image Input 200 x 200 x 1 - -
2 ReLU 200 x 200 x 1 - -

3 Convolution 204 x 204 x 1 Weights 1 x 1
Bias 1 x 1 2

4 Convolution 205 x 205 x 2 Weights 2 x 2 x 1 x 2
Bias 1 x 1 x 2 10

5 Convolution 204 x 204 x 2 Weights 2 x 2 x 2 x2
Bias 1 x 1 x 2 18

6 Batch Normalization 204 x 204 x 2 O�set 1 x 1 x 2
Scale 1 x 1 x 2 4

7 Convolution 206 x 206 x 1 Weight 1 x 1 x 2
Bias 1 x 1 3

8 Convolution 202 x 202 x 11 Weights 5 x 5 x 1 x 11
Bias 1 x 1 x 11 286

9 Map Pooling 201 x 201 x 11 - -

10 Convolution 203 x 203 x 1 Weights 1 x 1 x 11
Bias 1 x 1 12

11 Dropout 203 x 203 x 1 - -

12 Convolution 205 x 205 x 1 Weights 1 x 1
Bias 1x1 2

13 Convolution 205 x 205 x 1 Weights 1 x 1
Bias 1 x 1 2

14 Convolution 205 x 205 x 1 Weights 1 x 1
Bias 1 x 1 2

15 Convolution 206 x 206 x 2 Weights 2 x 2 x 1 x 2
Bias 1 x 1 x 2 10

16 Convolution 208 x 208 x 1 Weights 1 x 1 x 2
Bias 1 x 1 3

17 Convolution 210 x 210 x 1 Weights 1 x 1
Bias 1 x 1 2

18 Convolution 212 x 212 x 1 Weights 1 x 1
Bias 1 x 1 2

19 Convolution 214 x 214 x 1 Weights 1 x 1
Bias 1 x 1 2

20 Fully Connected 1 x 1 x 35 Weights 35 x 45796
Bias 35 x 1 1,602,895

21 Tan Hyperbolic 1 1 35 - -

22 Fully Connected 1 1 2 Weights 2 35
Bias 2 1 72

23 Softmax 1 1 2 - -
24 Classification Output - - -

Total Learnables 1,603,327

Table 3.10: Table summarizing the optimal CNN geometry for the classification of
phase images of CD4+ and CD8+ T-cell acquired using the microscopic objective
with 100X magnification.
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Chapter 4

Application of deep learning to

study speckle metrology

Parts of this chapter are adapted from the article “Deep learning enabled laser speckle

wavemeter with a high dynamic range” [189], published in Laser Photonics & Re-

views (2020).

4.1 Introduction

Previous chapter has demonstrated that supervised deep learning based approach

using the convolutional neural networks (CNNs) proves to be a very useful tool

for the classification of cell images with identical morphology. To demonstrate a

broader applicability of deep learning, an application for the classification of speckle

patterns as a function of incident laser wavelength was considered. This section will

introduce the origins of speckle and its applicability for the calculation of incident

laser wavelength, which can be improved by the application of deep learning.

The speckle pattern, a random granular intensity distribution pattern which is

formed when a coherent light interacts with a rough surface or a medium with ran-

dom refractive index variations, has been a part of research discussions since the late

nineteenth century when Exner suggested the formation of speckling phenomenon.

Following which it was also suggested by eminent scientists such as Von Laue, de

Haas, Raman, Buchwald, and Ramachandran in the context of their respective re-

search [190]. In late 1962, Langmuir [191] described it as a curious phenomenon of
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presenting the pattern of random dark and light spots. Then in late 1963, Goodman

introduced the laser sparkle patterns [192] and discussed their statistical properties

as a part of a technical report. Nevertheless, the research e�orts in late 1960s and

early 1970s laid the foundations for speckle based optical metrology in the form of

electronic speckle pattern interferometry.

Generally, the statistical properties of these patterns depend on the spatial and

temporal characteristics of incident light and the microscopic properties of the ran-

dom medium. The origin of speckle can be recognised as the “random” roughness

of the scattering medium or the “random” variation of refractive index in a di�usive

medium. For a rough scattering medium, the microscopic features of surface change

the phase of observed field which interferes to form speckle. For a di�usive medium,

the variation in refractive index leads to the variation in optical path length of

various light rays which in turn results in an interference and formation of speckle.

Evidently, speckle phenomenon appears frequently in optics and is generally deemed

as noise for the given system. However, from a physical perspective, they have also

been recognized to be rich in information [193].

Recently, speckle has also been recognized to measure wavelength with high res-

olution or broad operating range [194–201]. This has been possible because they

overcome the limitations of standard di�raction grating based wavemeters by multi-

plexing spatial-to-spectral mapping in a compact system [202]. The critical step for

the measurement of wavelength using speckle relies on the interpretation of variation

in speckle patterns as a function of wavelength. A data-driven approach, where a

statistical model can be trained over the speckle patterns for known wavelengths,

seems to be a reasonable option. Previous techniques based upon the calculation of

transmission matrix or principal component analysis presented limitations with re-

spect to the sensitivity range of the camera or limited range of operation [203–205].

While these results seem to be impressive, a single step algorithm which may result

in the wavelength measurements of high resolution and broadband range would be

desirable.

The speckle patterns generated using a non-varying disordered medium present

rich information about the wavelength/s of the incident light source [206]. These pat-

terns also demonstrate a presence of noise which may be caused due to environmental
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variations or instrumental fluctuations. The presence of these noisy factors invokes

variation in the captured speckle patterns which makes them an ideal candidate for

the training of a deep learning based model for classification type problems [207].

In this chapter, the application of deep learning for the development of speckle

based wavemeter and spectrometer shall be explored. The chapter starts with a

discussion of methods for data acquisition and optimization of a CNN architecture.

Then the study for the development of a wavelength modulated speckle wavemeter

is discussed which is followed by the study resulting in a speckle based wavemeter

with high resolution and broadband range. Consequently, the study demonstrating

the development of a speckle based binary spectrometer is presented.

4.2 Methods

4.2.1 Data Acquisition

The speckle data corresponding to the incident laser wavelength was accumulated

using a 1.5 inch diameter, spectralon integrating sphere. The incident light source

was chosen as an external cavity diode laser (Topica DL-100 / LD-0785-P220) which

was stabilized to the 87Rb D2 line (F = 2 æ F
Õ = 2 ◊ 3 crossover at ≥ 780 nm)

using saturated absorption spectroscopy and top-of-fringe locking. The wavelength

of the incident light, coming from the laser, was controlled using an acousto-optic

modulator (AOM) (Crystal Technologies 3110-120). This was achieved by passing

it through the AOM in a cat-eye double pass configuration. The incident light was

linearly polarised using a polarising beam splitting cube to avoid any variations that

may occur due to polarisation [208]. To annul the e�ects of transverse mode profile

of the beam [209–211],the light was coupled into an angle cleaved single-mode fibre

(SMF) (Thorlabs P5-780M-FC-10). This SMF was then connected to the integrating

sphere input-port via an FC/PC connector without collimation optics to produce

a diverging fundamental Gaussian mode within the integrating sphere. A large

optical path di�erence allowing high resolution for the system was achieved due to

the highly Lambertian di�usive coating and multiple reflections inside the sphere.

Passing through the sphere, the light then propagated for a fixed distance of 20 cm

and hence impinged the CMOS camera (Mikrotron EoSens 4CXP). This distance
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was chosen to prevent sub-Nyquist sampling and associated aliasing e�ect as the

mean grain size of ≥3 pixels was achieved using this configuration.

Figure 4.1: Speckle wavemeter assembly and CNN geometry. (a) The ex-
perimental assembly for a speckle wavemeter. The laser wavelength is set using
an acousto-optic modulator (AOM) and injected into the disordered medium via a
single mode fibre (SMF). The output speckle pattern is captured by the camera.
(b) The convolutional neural network (CNN) used to classify the speckle images
with respect to the incident laser wavelengths. The CNN consists of an input layer,
multiple down-sampling blocks (DSBi) and three fully connected layers (FCi). Here
⁄i denotes the output wavelength class. The white scale bar on the representative
speckle pattern represents 224 µm, while the intensity is normalized as shown in the
adjacent color bar.

4.2.2 Deep learning model geometry, training and calibra-

tion

To extract the wavelength dependence of the accumulated speckle images a su-

pervised deep leaning based convolutional neural network (CNN) (depicted in Fig.

4.1(b)) was implemented. The CNN architecture was optimised for each experiment.

Incidentally, the geometry of the convolution network was found to be optimum, for

all the mentioned experiments in this chapter, with 4 down-sampling blocks (DSB).

Each block consisted of 3 convolution layers with 30 filters. Each convolution layer

was followed by a batch normalization layer and a ReLU activation function layer.

Each DSB was connected with a max-pooling layer with a filter size of 2 px ◊ 2px.

The filter sizes of convolution layers vary as 5 px ◊ 5 px, 4 px ◊ 4 px and 3 px ◊

3px respectively with a stride and padding of 1 px ◊ 1 px. The DSBs were followed
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by two fully connected (FC) layers with leaky ReLU [212] as the activation function.

Each FC layer was followed by a dropout layer [213]. These layers were then fully

connected to the output layer having n neurons with softmax activation function,

here n denotes the number of wavelength classes. In order to attain the maximum

classification accuracy over the validation dataset, the CNN geometry was chosen

after optimizing: the number of DSBs on the range 1 to 10; the number of convolu-

tion layers between 1 and 5; the filter sizes from 1 px ◊ 1 px to 8 px ◊ 8 px; and

the number of neurons in FC layers from 8 to 512 by doubling the neurons at each

step.

The CNN geometry was optimized by considering the training dataset for each

experiment, this set comprised of speckle images corresponding to n di�erent wave-

lengths. The training was implemented in Matlab 2018a over Nvidia Quadro P5000

GPU following a general training script mentioned in section A.1. To remove any

intensity dependent fluctuations, all the speckle images were zero-center normalized.

The CNN was trained to minimize the cross entropy cost function (also discussed

in section 2.3.6):

Cost = ≠1
k

�x[y ◊ log a + (1 ≠ y) ◊ log(1 ≠ a)], (4.1)

for 10 epochs in the mini batches of 128 images using an ADAM optimizer [214],

where �x represents training over all the input images x, k is the total number of

training data points, y is the target output and a is the network output. Here y

and a are the one hot vectors representing the category of the input image. Initial

learning rate was set at 1 ◊ 10≠6 and L2 regularization at 2 ◊ 10≠4. The training

process was validated after every 100 iterations.

Using the common methods described above, the next sections (including a few

modifications in the methods) will discuss about the development of laser speckle

based wavemeters and spectrometer using various techniques of machine learning.

Starting with an initial attempt to develop a wavelength modulated speckle waveme-

ter, the following section will discuss about the successful development of a waveme-

ter with a high dynamic range. Then a discussion about the development of a speckle

spectrometer is presented.
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4.3 Study to develop a wavelength modulated waveme-

ter

4.3.1 Methods

Data acquisition

The principle of using speckle patterns as the wavelength signature of light is very

appealing. To achieve this, the optical system depicted in Figure 4.1 (a) was con-

sidered. As explained in section 4.2.1, the wavelength dependent speckle data was

accumulated using the mentioned laser beam which was shown onto the acousto-

optic modulator (AOM) and passed through a single mode fibre (SMF). The light

coming from the SMF was passed into an integrating sphere which dispersed it to

form a speckle pattern over the camera.

Figure 4.2: Binary speckle wavemeter based on wavelength modulation.
(a) Real-time wavemeter for wavelengths at ⁄1 and ⁄2 with the corresponding mod-
ulations at �⁄1 and �⁄2. (b) Schematic of real-time softmax prediction by the CNN
for the speckle patterns belonging to a given waveform.

With an initial understanding [205], the experiments were designed such that

the speckle patterns were accumulated by modulating the incident laser wavelength.

This resulted in the formation of speckle waveforms having a central wavelength

with a peak to peak modulation. A model depiction of the proposed wavemeter is

displayed in Fig. 4.2. Part (a) of this figure exhibits the working principal of the
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binary wavemeter. Here, the real-time working of the wavemeter is displayed with

central wavelengths at ⁄1 (waveform colored in black) and ⁄2 (waveform colored in

blue) with corresponding modulations of �⁄1 and �⁄2. The dots present over the

timeline represent the prediction of central wavelength made by the trained CNN.

Here, green color represents the correct prediction whereas red color represent the

wrong prediction. Fig. 4.2 (b) indicates the schematic of real-time softmax output

from the trained CNN for a given category which eventually leads to a prediction.

During the data accumulation, a continuous train of 160,000 128 ◊ 128 pixel

speckle images for each waveform at a frame rate of 1 kHz with an exposure of

998 µs were recorded. Variable modulations with a period of 0.2 seconds were

applied on the input light beam.

Optimization of the Deep learning model

A CNN was employed to classify the speckle waveforms of a central wavelength with

modulation. The geometry of CNN was optimized by following the methodology ex-

plained in section 4.2.2. With respect to the performance gained over the validation

dataset, the convolution network with 4 DSBs was found to be optimal whereas 256

neurons were identified as the best combination for the number of neurons in both

FC layers.

4.3.2 Results

A few initial studies were conducted to optimize and train a CNN geometry to

classify the speckle waveforms. The modulation of wavelength in the train of speckle

patterns was identified by applying PCA (following the general script in section

A.4). Figure 4.3, represents the first principal component (PC) calculated using the

train of speckle images. As shown in the figure, the first PC signifies wavelength

modulation for the triangular and sinusoidal waveforms. For this experiment, the

speckle patterns were accumulated using a triangular wave modulation at the central

wavelength of 30 fm with a peak to peak modulation of 20 fm (Fig. 4.3 (a)),

another traingular modulation at a central wavelength of 52 fm with a peak to

peak modulation of 20 fm (Fig. 4.3 (b)) and a sinusoidal modulation at the central

wavelength of 30 fm with a peak to peak modulation of 20 fm (Fig. 4.3 (c)).
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Figure 4.3: First principal component of the wavelength modulated speckle
waveforms (a) First principal component (PC1) of the speckle waveform with tri-
angular modulation of 20 fm with a central wavelength at 30 fm from 87Rb D2 line
reference. (b) PC1 of speckle waveform with central wavelength at 52 fm from refer-
ence with triangular wavelength modulation of 20 fm. (c) PC1 of speckle wavefrom
with sinusoidal wavelength modulation of 20 fm at the central wavelength of 30 fm
from reference.

Act. Wave 1 Act. Wave 2 Act. Wave 3
Pred. Wave1 30174 2487 29586
Pred. Wave2 1450 29118 2370
Pred. Wave3 376 395 44

Table 4.1: Confusion matrix to classify the speckle images corresponding to three
waveforms.

The CNN was trained on the mentioned dataset to classify the images following

the routine mentioned in section 4.2.2. After the training, the trained CNN geometry

was tested over the speckle dataset comprising 32000 images for each waveform.

As the training and test sets consisted of images corresponding to same central

wavelengths (first and third case), to no surprise, the CNN classified all the images

with a low classification accuracy of 61.8%. Interestingly, as can be understood

from the confusion matrix (Tab. 4.1), the trained CNN mixed up the predictions

between the triangular and sinusoidal waveform for the same central wavelength and

evidently classified 92.4% speckle images from the sinusoidal group as the images

from triangular modulation group.

To have a better understanding, outputs from the softmax layer of the trained

CNN were plotted as a histogram plot for three waveforms. Figure 4.4 shows the

predictions made by the CNN when the input data was changed between waveform

one, two and three. As can be appreciated from Fig. 4.4 (a), the CNN confused the

prediction of sinusoidal waveform as the traingular waveform, whereas the second
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Figure 4.4: Histogram of softmax output from the trained CNN. Probability
of predicting the speckle image to be belonging to (a) first (b) second and (c) third
waveform by the trained CNN when the input images were varied for each class in
the intervals of 32,000 images. The red color denotes images corresponding to first
waveform, green color denotes speckle images from second waveform and blue color
denotes speckle images from third waveform.

waveform was correctly predicted (Fig. 4.4 (b)). The sinusoidal waveform was

instead confused (Fig. 4.4 (c)) among the three classes with only 0.13% correct

predictions.

To consider the temporal stability of the CNN enabled wavemeter, previously

trained CNN was further tested over the data accumulated over the first two wave-

forms accumulated after two days. This dataset consisted of a total of 48000 images

for each waveform. The CNN predicted each waveform with a classification accuracy

of 86.4%. As can be inferred from table 4.2, first waveform was correctly predicted

with an accuracy of 99.43% whereas the second waveform was predicted with an

accuracy of 73.3%. The CNN also predicted the two waveforms as the sinusiodal

waveform for 1.05% times of total images.

Act. Wave 1 Act. Wave 2 Act. Wave 3
Pred. Wave1 47727 12062 0
Pred. Wave2 4 35197 0
Pred. Wave3 269 741 0

Table 4.2: Confusion matrix evaluated for the speckle images corresponding to wave-
form one and two for the data accumulated after two days.

The above mentioned results signify that the CNN once trained can be imple-

mented with high accuracy. The CNN, after training over the three waveforms, got

mixed up while predicting between sinusoidal and triangular waveforms for the same

central wavelength and modulation whereby the triangular waveform was favored.

The results strongly depicted that the CNN classified speckle patterns with respect
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Act. Wave 1 Act. Wave 2 Act. Wave 3 Act. Wave 4 Act. Wave 5
Pred. Wave 1 31996 19013 50 0 0
Pred. Wave 2 4 10288 1119 11 0
Pred. Wave3 0 2699 30505 400 0
Pred. Wave 4 0 0 326 30206 25
Pred. Wave 5 0 0 0 1383 31975

Table 4.3: Confusion matrix of test dataset for the speckle images corresponding to
five di�erent waveforms.

to the incident wavelength and generalized the waveform type to the simplest math-

ematical description. Additionally, the CNN proved to be considerably stable while

making predictions on a dataset accumulated after two days.

Limitations

After achieving encouraging results mentioned above, the next set of experiments

were designed to train the optimized CNN geometry with more than two speckle

waveforms – five distinct classes.

The speckle waveforms with a constant peak to peak wavelength modulations

of 8 fm were accumulated at the central wavelengths (�⁄ = ⁄ ≠ ⁄0, here ⁄ is the

modulated wavelength and ⁄0 is the reference 87Rb D2 line) on -20 fm, -10 fm, 0

fm, 10 fm and 20 fm. The CNN was trained and validated over 128,000 images per

class and tested over 32,000 images for each class. After the training process, the

CNN resulted in a very low classification accuracy for the test dataset.

Table 4.3 represents the confusion matrix for the performance of the trained

CNN over the five speckle waveforms. As can be calculated, the total classification

accuracy of 84.54% was obtained. The network classified waveforms two, three and

four as being a part of the neighbouring group for 67.85%, 4.67% and 5.60% times

respectively. The highest number of wrong predictions were made for waveform 2

with the classification accuracy of 32.15%.

To firmly understand low classification e�ciency of the CNN, another analysis

was conducted over the output (FC1) of the trained CNN. The analysis was done by

considering a speckle image from the test dataset and passing it through the CNN.

Parsing the image through the CNN allows systematic down-sampling of images

from the size of 128 ◊ 128 px to 256 spatial features. This output from the FC1

was plotted and Fourier transform was applied on it. As these neurons represent the
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spatial distribution of the speckle patterns, the Fourier transform would represent

the temporal variations.

Figure 4.5: Analysis of the output of CNN when trained over wavelength
modulated data. (a) Noisy output from the FC1 of trained CNN hiding an ap-
proximated waveform. (b) Fourier transform of (a) showing the presence of a single
peak.

Figure 4.5 represents the variations present in the output of FC1 layer and its

Fourier transform. Here, part (a) clearly illustrates a noisy varying output which

hides an approximated waveform. Part (b) of the same figure represents the Fourier

transform of (a) which clearly portrays the presence of a single peak. This peak

directly points in the direction that during the training phase, the CNN learned a

generalized wavelength distribution of the speckle waveforms instead of individual

patterns. It approximated the waveforms with the presence of huge noise. This

resulted in miss-classification of various waveforms discussed above.

The above analysis pointed in the direction that the CNN could be applied to

enable a speckle wavemeter when the speckle patterns were accumulated without

modulating the incident laser wavelength. Considering this hypothesis, a deep learn-

ing enabled speckle wavemeter was constructed with a high dynamic range. This is

explained in the next section.
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4.4 Deep learning enabled speckle wavemeter with

high resolution and broadband range

This section provides the details about the successful study to develop a speckle

based wavemeter using an integrated sphere. The study explored the noise rejection

capabilities of the CNNs and identified the resolution of two attometres as the limit

of the experimental instrument. The generalization capabilities of deep learning

were also explored by testing the wavemeter with speckle patterns generated using

a ground glass.

4.4.1 Methods

Data Acquisition and Deep learning geometry

The principle of approach for measuring wavelength is outlined in Fig. 4.1. As men-

tioned in section 4.2.1, the speckle patterns were produced by scattering laser light

from a disordered medium, and were recorded on a camera (Fig. 4.1 (a)). Unless

stated otherwise, a tunable diode laser, wavelength-locked to a rubidium reference

(≥ 780 nm), was used as the source of laser light, an acousto-optic modulator to

apply controlled wavelength variations, and an integrating sphere to scatter light.

A continuous train of 10,000 128 ◊ 128 pixel speckle images corresponding to

each wavelength were recorded. The frame rate of the recording was set at 1kHz

with an exposure time of 998 µs. The whole data acquisition corresponding to each

wavelength was completed in 10 seconds with a typical time di�erence of 0.5 seconds

between di�erent wavelength classes. The dataset was randomly sampled into 70%

training, 15% validation and 15% testing images corresponding to each wavelength.

A CNN was implemented to extract the wavelength dependence of the speckle

images (depicted in Fig. 4.1 (b)). The optimal geometry of the CNN was identified

using the optimization routine mentioned in section 4.2.2. This resulted in a CNN

geometry with 4 DSB’s and 128 neurons in both the fully connected layers.

Broader range of optical spectrum, using additional lasers, were also considered

to test the wavemeter capabilities. Additional lasers at wavelengths of 488 nm (M-

Squared frequency-doubled SolsTis Ti:Sapphire), 532 nm (Oxxius single-longitudinal

mode diode-pumped solid state laser), 671 nm (Thorlabs HL6756MG Diode Laser)
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and 976 nm (M-Squared SolsTis Ti:Sapphire) were used. Generalization capabilities

of the deep learning enabled wavemeter were tested by replacing the integrating

sphere with a ground glass di�user (Thorlabs ED1-S20).

t-SNE analysis

During the training process, the CNN learns to generalize the wavelength-dependent

variations of the speckle patterns and hence classify them. The CNN geometry can

be understood as a composition of two ANNs – a down-sampling convolution network

(input layer to FC1) and a classification network (FC2 and FC3). The convolution

network basically works to down-sample the input 2D images into a 1D descriptor

vector by filtering the irrelevant / noisy features. Following the down-sampling from

convolution network, the classification network classifies the input 1D descriptor

vectors. Hence, for the case of a CNN trained to classify speckle images (128 ◊ 128

px) with respect to the incident laser wavelength, the convolution network would

produce a 1D descriptor vector (128 px) representing the wavelength of input speckle

image at a given time instant. In principle, the speckle field remains constant for a

given time instant which means that the so produced 1D descriptor vector would be

free from any environmental fluctuations. Hence, the convolution output of a trained

CNN can be directly considered to classify a broader range of optical spectrum.

The segmentation capabilities of the convolution network for multiple datasets

were analysed using t-SNE, which has been explained in section 2.3.5. This method

reduced the 128 dimensional 1D vectors into a 2 dimensional latent space by pre-

serving their metric properties. In this study, a perplexity of 30 was considered to

apply t-SNE (implemented using MATLAB 2018b).

4.4.2 Results

CNN optimization

The first step for the analysis of speckle patterns was to optimize and calibrate

a CNN geometry. This was achieved by considering a dataset in which speckle

patterns were generated by varying the incident laser in 2 fm steps over a range of

60 fm. This dataset consisted of 10,000 images which were randomly divided into

training, validation and test sets in the ratio of 70%, 15% and 15% respectively.
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The training of the CNN is conducted by considering a batch of randomly sam-

pled images from each class of the training set. During the process, an error rep-

resenting the wrong classification by the network is computed for each batch and

is backpropagated. This backpropagation of error through the network trains it to

identify the features with respect to each class. The classification e�ciency of the

trained network is then tested over the validation set which provides a confirmation

that the CNN geometry and training are optimal.

Figure 4.6: Demonstration of high-accuracy discrimination of femtometre-
resolved wavelength changes. (a) Confusion matrix for the output of the
CNN in classifying speckle patterns corresponding to wavelength separations on
the femtometre-scale. The color bar represents the normalised value between 0 and
1. (b) Confusion matrix plotted on log10 scale. The color bar represents the decibel
values.

Following the complete training and optimization of the CNN, it was tested

against the novel test set of images from each class. This set consisted of a total

of 45,000 images across all wavelengths. The optimization routine being precise, it

resulted in a very accurate one-hot classification with 100% classification accuracy.

However, to understand and quantify the classification errors of the CNN, a proba-

bilistic classification error (PCE) was calculated by considering the softmax output

of the FC3 layer for the test dataset. This error was calculated by taking the sum

of all incorrect classification values for each image and then taking the average of

this summed value over all the images. This resulted in a PCE of 2.2 ◊ 10≠6. A

demonstration of accurate classification is presented in the form of a confusion ma-

trix in Fig. 4.6 (a), and to further understand the PCE a log10 of the same matrix

is calculated and present in Fig. 4.6 (b).

Deep learning based CNN when operated on speckle patterns prove to be excel-
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lent candidate for wavelength classification. The inherent variability in the speckle

patterns in turn provide to be the ideal candidate for the training of CNNs. The

combination of speckle with CNNs achieves a remarkable classification accuracy

since speckle patterns represent an ideal candidate for the training of the CNN. If

the disordered medium and the laser wavelength are kept constant then, ideally,

the resulting speckle pattern should not change. However, the environmental fluc-

tuations or fluctuations due to instrumental circuitry cause the speckle patterns to

change with time. Therefore, the next step was to understand this variability in the

input speckle patterns and the processed output of the CNN.

CNN noise rejection capabilities

To understand on how the trained CNN allowed for such a small PCE and 100%

classification accuracy, an analysis was implemented on the raw speckle images and

their processed 1D vectors. In order to identify the presence of variance, PCA was

implemented on both the input and output of the CNN.

Figure 4.7: CNN-enabled noise rejection. The CNN learns, through training, to
reject instrumental noise from the wavelength measurement. For an example dataset
comprising 1000 images sampled over 1 second at a fixed wavelength, (a) shows the
PC1 of the input raw speckle images. (b) Fourier transform of (a) highlighting the
presence of noisy variations; (c) PC1 of the output from the trained CNN for full
train of speckle images, (d) the Fourier transform of (c) highlight the absence of any
variations present in the output of the CNN. Here, PC1 denotes the first principal
component.

As shown in Fig 4.7, a train of speckle patterns accumulated over 1 second was
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considered. To identify the maximal variation, the first principle component of both

the raw images and their 1D vectors (Fig 4.7 (a) and (c)) were further analysed

by estimating the smallest detectable shift in wavelength. This was estimated as

three times the standard deviation (‡) from the mean position. For the raw speckle

images, the 3‡ value was evaluated as 0.014, whereas a value of 0.003 was calculated

for the first principal component of the output 1D vectors of the trained CNN. An

improvement by the factor of 4.66 quantitatively demonstrated the suppression of

noise in the speckle images when processed by the CNN. Further analysis of the first

principal components was implemented by the virtue of Fourier transform (Fig. 4.7

(b) and (d)). As can be identified from the figure, the PC1 of raw speckle images at

a fixed wavelength show several periodic noise components. However, the PC1 of the

output of convolution network (FC1) for these speckle images showed the absence of

any temporal noise. Analogous to a previous study [104], the CNN once trained to

classify the speckle images with respect to wavelengths can filter the input speckle

images of any environmental or instrumental circuitry noise. Hence the output 1D

vector from the CNN can be thought of as representing a single wavelength.

Figure 4.7, further provides with an explanation that the sturcture of CNN and

backpropagation training drives it to learn and filter the input images. This allows

the CNN to filter the input speckle images, with environmental or instrumental

fluctuations, into noise-less output vectors.

Attometre precision

The results presented above in combination with the universal functional approxi-

mator capabilities [69] of the ANNs orient in the direction that the CNNs can be

further trained to recognise the incident laser wavelength with a precision below the

instrumental circuitry noise. Hence as the next step of analysis, the speckle patterns

were accumulated with attometre scale deviations.

Specifically, the speckle patterns were captured with an deviation of two attome-

tres by detuning the acousto-optic modulator across five distinct wavelengths. To

ensure that the wavelength drifts between measurements could be smaller than the

drift within a single measurement period, the the dataset was accumulated in 10

seconds for a single wavelength with a typical time di�erence of 0.5 seconds between
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Figure 4.8: CNN classification and segmentation capabilities of attometre-
resolved speckle data. (a) Visualization of an attometre-resolved wavemeter. (b)
Confusion matrix on the log10 scale depicting the classification abilities of the CNN
for wavelengths separated by 2 am. Here �⁄ = 0 am depicts a detuning of �⁄ =
30.652 fm from the rubidium crossover and the other values are relative to it. The
color bar represents the decibel values. (c) t-SNE visualization for the output of
the FC1 from the CNN trained over femtometre-resolved speckle data, applied to
speckle data separated by two attometres. The speckle images at each wavelength
form a distinct cluster, showing that the CNN can be retrained simply by using a
single speckle image at a known wavelength.

di�erent wavelength classes.

Since the dataset was changed and the accumulated speckle patterns show com-

pletely di�erent variation across the image, the classification abilities of the CNN

were re-tuned. This re-tuning was implemented by the virtue of transfer learn-

ing, whereby the number of neurons in the output layer (FC3) were changed. The

training process was implemented by considering 7000 images per wavelength for

training/validation and 3000 images for testing. Again, as anticipated, the CNN

resulted in a 100% one-hot classification accuracy with a PCE of 3.8 ◊ 10≠5. The

accuracy of classification is emphasised in Fig. 4.8 (b) where the confusion matrix

on log10 scale is presented. These results confirm that the CNN can be trained to

classify the speckle patterns with respect to the wavelength with a precision of as

low as 2 am. This precision of 2 am is not a fundamental limit but is limited by
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the precision of AOM which is used to control the wavelength deviations.

Further, as demonstrated in Fig. 4.7, the output of a trained CNN represents a

single wavelength. Hence to eliminate the process of retraining the CNN the speckle

images were also processed using the CNN trained to classify the fm-resolved data.

To proceed with this, the output 1D vectors of the CNN were analysed using t-SNE

and the segmentation capabilities were visualised. Figure 4.8 (c) demonstrates the

clustering of speckle images with respect to the incident light wavelength. In this

figure, the output of the FC1 layer are downsampled into a two dimensional latent

vector space such that the metric properties are conserved. Using this method,

further training of the CNN is not required to achieve attometre-scale precision and

only a single image (in contrast to 7000 images) can be used for further classification.

The resolving power of a wavemeter is defined as:

R = ⁄0
”⁄

(4.2)

here ⁄0 is the absolute wavelength and ”⁄ is the minimum detected deviation from it.

Using Eq. 4.2, the resolving power for the CNN based wavemeter can be calculated

as > 1011 for a central wavelength at 780 nm with a least deviation of 2 attometre.

This demonstration of high resolving power and attometre scale precision to

classify the speckle patterns with respect to incident wavelength can be directly

attributed to the automated noise rejection capabilities of the CNN.

Broadband operation and high dynamic range capabilities

After detecting the limit of precision for the CNN based wavemeter, the next step

was to identify the range for which this could work. Hence to test the broadband

capabilities of the CNN, the speckle patterns were accumulated over two wavelength

ranges: from 770 nm to 790 nm in 5 nm increments and separately at 488 nm,

532 nm, 785 nm and 976 nm.

This data was analysed using the fm-trained CNN in combination with t-SNE.

As demonstrated in Fig. 4.9 (a) and (b), t-SNE and CNN based analysis resulted

in independent clustering of speckle patterns with respect to individual wavelength.

These results show that without retraining the CNN, it is possible to classify the

speckle patterns by just considering a single known image per cluster.

106



Section 4.4 Chapter 4

Figure 4.9: Segmentation capabilities of the CNN over a broadband range
of data. (a) t-SNE scatter plot of the output of 1D descriptor vector for the
wavelength deviations corresponding to 488 nm, 532 nm, 785 nm and 976 nm. (b)
t-SNE scatter plot of the 1D descriptor vector corresponding to 770 nm, 775 nm,
780 nm, 785 nm and 790 nm. (b) 488 nm, 532 nm, 785 nm and 976 nm. (c) t-SNE
scatter plot for 1D descriptor vectors of speckle patterns at 780 nm, 780 nm + �⁄

(Highlighted in blue), 671 nm and 671 nm + �⁄ (Highlighted in orange). Here
�⁄ = 2 am.

The fractional bandwidth of the wavemeter is:

B = ⁄max ≠ ⁄min
1
2(⁄max + ⁄min) (4.3)

here ⁄max is the maximum detected wavelength and ⁄min is the minimum detected

wavelength in the broadband operation range. Using the Eq. 4.3, fractional band-

width can be evalued to be B = 0.66 for the speckle wavemeter presented here with

⁄min = 488 nm and ⁄max = 976 nm.

Dynamic range of a wavemeter can be defined as the product B ◊R. This results

in the high dynamic range capabilities of the CNN based speckle wavemeter which

can identify the di�erences in speckle patterns with a precision of a few attometres

over a range of 100s of nanometres, resulting in a dynamic range value of 3.25◊1011.

To further enunciate the high dynamic range of the wavemeter, another set of data

was accumulated and analysed using the combination of CNN and t-SNE. The data

was accumulated using diode lasers locked to the D2 lines of 87Rb (≥ 780 nm)

and 7Li (≥ 671 nm). For each laser, the AOM was used to generate two set of

speckle patterns, with a wavelength separation of 2 am between the two sets. This

resulted in a broadband wavelength measurement with a precision of 2 am. As can

be inferred from Fig. 4.9 (c), t-SNE plot shows the presence of four distinct clusters

corresponding to the four mentioned wavelengths.
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These results in combination with interpolative estimation show that once the

CNN is trained, it can be employed for wavelength based classification of speckle

images in the range between 488 nm to 976 nm regardless of the variations in the

incident laser wavelength.

Generalization capabilities of the CNN

After testing the dynamic range capabilities of the CNN, the next step was to test its

generalization capabilities. To investigate this, the trained CNN was tested against

the data accumulated using a ground glass assembly instead of the integrated sphere

assembly. As a known fact that the speckle patterns represent the spatial correlation

Figure 4.10: Generalising wavelength classification to a di�erent scattering
medium. Speckle pattern generated using an (a) ground glass and (b) integrated
sphere assembly. The color bar represents normalised intensity. Segmentation re-
sults using ground glass assembly for (c) femtometre-resolved and (d) attometre-
resolved incident laser wavelength modulations.

function of a given disordered medium and the incident light beam; meaning that

for a di�erent scattering medium the generated speckle patterns would maintain the

wavelength dependent variations [215]. Hence, with respect to the generalization

capability, an artificial neural network trained to decrrelate the speckle patterns

with respect to the wavelength would also be able to segment the speckle images

generated from any random disordered medium. Hence, another speckle dataset

was accumulated using a ground glass di�user (Thorlabs ED1-S20). Fig. 4.10 (a)

and Fig. 4.10 (b), demonstrate the speckle patterns generated from the integrating
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sphere and the ground glass. It is clearly visible that the two patterns display

completely di�erent characteristic features.

To appreciate conservation of dynamic range and generalization capabilities, two

sub-datasets were accumulated. For the first dataset, the speckle images were accu-

mulated by varying the incident wavelength with an increment of 2 fm and for the

second set speckle patterns were imaged with an increment of 20 am in the incident

light wavelength. The segmentation capability of the CNN, trained over femtometre

resolved data, was tested by processing the speckle images generated from each class.

The output from FC1 was analysed using t-SNE and the results are presented in

Fig. 4.10. As shown in Fig. 4.10 (c) and (d), the CNN segments and clusters each of

the speckle images into their individual class. The results confirm that once trained,

the CNN can generalise the wavlength dependent variations in the speckle patterns

and when combined with a clustering algorithm can cluster them with respect tot he

incident light wavelength, even when the images display completely di�erent spatial

variations.

The results presented for the high dynamic range (Fig. 4.9) and generaliza-

tion capabilities (Fig. 4.10) can also be identified as a corollary from the noise

cancellation property demonstrated in Fig. 4.7 combined with universal function

approximator property of the ANNs. These prove that once a CNN model is op-

timized and trained, it can be implemented, to segment the wavelength-dependent

speckle patterns generated from any disordered medium and with any wavelength

deviation.

The speckle patterns exhibit the complete information about the incident light.

Hence, the possibilities of detecting multiple wavelengths were explored. The next

section provides the details of the study conducted to develop a speckle based binary

spectrometer by using the integrating sphere assembly.

4.5 Development of a speckle spectrometer

This section provides the details of the study conducted to develop a speckle based

spectrometer. The data was acquired by using two polarised light sources with

di�erent wavelengths. The fully developed speckle pattern over the camera was
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considered for analysis by employing feedforward neural networks.

4.5.1 Methods

Data Acquisition

The speckle data was acquired in two steps. First step was to accumulate the speckle

patterns with respect to individual wavelengths for 30 wavelength classes each us-

ing a single laser source by following the procedure mentioned in section 4.2.1. The

second step was to accumulate the spectra developed using the two sources as demon-

strated in Fig. 4.12 where the laser source was split into co-polarised components

each with a separate AOM controlling the wavelength deviation. The spectral com-

ponents considered are summarised in table 4.4. The speckle patterns coming out of

the sphere can be linearly decorrelated into the constituting spectral components.

The spectral components being developed as a result of equal incident laser power

may contribute equally to the probabilistic modeling of the binary speckle pattern.

S No Source 1 (�⁄) Source 2 (�⁄)
1 10 fm 30 fm
2 20 fm 30 fm
3 24 fm 30 fm
4 28 fm 30 fm
5 30 fm 40 fm
6 40 fm 50 fm

Table 4.4: Table summarizing the accumulated wavelengths using two laser sources
for forming the binary spectral speckle patterns

A continuous train of 128◊128 pixel speckle images depicting the binary spectra

were captured using the CMOS camera (Mikrotron EoSens 4CXP). The frame rate

for the recording was set at 1000 frames per second with an exposure time of 998

µs.

Artificial neural network optimization

To decorrelate the speckle patterns with respect to the given spectra, a stacking of

MLP models was performed. As an initial step, first MLP was trained to classify

the speckle patterns with respect to individual wavelengths from one laser source.

After this training was concluded the speckle patterns formed as a result of spectral
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Figure 4.11: Ray diagram of the setup used for accumulating the speckle
based binary spectral data. Here, ⁄/2 and ⁄/4 are half and quarter waveplates.
BS is beam splitter, PD is photo diode, M is mirror, AOM is the acousto optic
modulator. Di�. Med. is the di�usive medium.

input, were processed from the trained MLP to produce one dimensional probabilis-

tic vectors. These probabilistic vectors were then supplied to second MLP which

was then trained on a regression mechanism to identify the spectral components.

The training of an MLP requires one-dimensional vectors, hence for the first

phase of training the accumulated speckle images were flattened. However, the size of

the accumulated speckle patterns was 128◊128 px which when flattened would result

in a one dimensional vector with 16,384 units. This size of input vector would result

in huge memory consumption. Since reducing the size of the speckle symmetrically

does not a�ect its dependence on wavelength, the initial speckle speckle image was

cropped symmetrically (depicted in Fig. 4.13 (b)) to achieve a final size of 64◊64 px.

This also helped in the reduction of memory consumption with faster computation.

The training data containing 10,000 cropped and flattened images per class. These

were divided randomly into training, validation and testing with a ratio of 70 %,

15% and 15 % resulting in 8500 images for the training and validation set and

1500 images for test set in each class. The training of MLP was performed by

implementing cross-entropy cost function (Eq. 4.1) for 1000 epochs with scaled

conjugate gradient descent training function [216] with sigma value of 5 ◊ 10≠5 and

lambda value of 5 ◊ 10≠7. An optimal MLP geometry (trained using MATLAB
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Figure 4.12: Comparative schematic between the grating based spectrom-
eter and a speckle spectrometer. (a) A grating based spectrometer which works
on the principal that the incident light is dispersed into constituent colors and these
colors are detected using a detector. (b) A speckle based spectrometer where the
incident polarised laser sources direct their light into a single mode fibre which then
injects the light into integrating sphere. The sphere ejects a spectral speckle pattern
onto the camera.

2020a over Nvidia Quadro P5000 GPU) with 15 hidden neurons for one layer was

identified by changing the hidden neurons from 5 to 200 over a step of 5 neurons and

changing the hidden layer from 1 to 5 over a step of 1 layer. A validation patience

of 6 was considered for a minimum gradient of 1 ◊ 10≠6. The final training stooped

at 1.23 ◊ 10≠6 for reaching best validation performance.

After the first phase of training. The above trained MLP was considered to gen-

erate the probabilistic output vectors of the binary spectral data. A training dataset

was prepared of one dimensional vectors with 30 units using 10,000 symmetrically

cropped and flattened images per classes. This training set was divided randomly

into the ratio of 70 % and 30% for training/validation set and test set respectively.

The training/validation set was considered to optimize a second MLP geometry us-

ing Levenberg-Marquardt back-propagation algorithm using mean squared error for

1000 epochs with initial mu value of 1 ◊ 10≠3, with an increase factor of 10 and de-

crease factor of 0.1. The validation patience was set at 6 until a minimum gradient

performance of 1 ◊ 10≠7 was reached. The optimal MLP geometry was identified

with 20 hidden neurons for one hidden layer by considering the performance over

112



Section 4.5 Chapter 4

Figure 4.13: Application of MLP for he classification of speckle images. (a)
128 ◊ 128 px monochromatic speckle images were cropped from the centre to get
(b) reduced size speckle image of 64 ◊ 64 px. (c) A MLP was tried to classify the
speckle images, which finally resulted in a (d) probabilistic distribution vector for
each training wavelength.

validation dataset. This geometry was identified by changing the hidden neurons

from 5 to 200 over a step of 5 neurons and changing the number of hidden layers from

1 to 5 over a step of 1 layer. Final training was terminated at the gradient value

of 8.65 ◊ 10≠8. The trained regression based MLP resulted in a one dimensional

vectors representing the intensity of individual component of the spectra.

4.5.2 Results

MLP wavemeter optimization

The first phase of training required an optimal MLP geometry which could classify

the femtometre resolved dataset. As explained above, the training set was randomly

split into training/validation and testing datasets in the ratio of 70 %, 15% and

15% respectively. After the training of MLP over the training set, an exceptional

performance with 100 % classification accuracy was achieved for the test dataset.
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Figure 4.14: Stacked MLP geometry for spectral regression. (a) Input binary
spectral symmetrically cropped speckle image. (b) Trained MLP for classification
of wavelengths. (c) 1D probabilistic vector representing the binary spectral speckle
pattern. (d) MLP trained to regress over the binary spectral response. (e) Output
of regression based MLP for the binary spectral speckle pattern.

As demonstrated in Figure 4.15, the testing dataset was considered and the softmax

output was evaluated for each symmetrically cropped flattened speckle image. This

softmax output was then used to evaluate the confusion matrix in log scale. As

shown, the confusion matrix demonstrates the high accuracy of classification. A

mean softmax classification error of 1.27 ◊ 10≠6 was evaluated for the test dataset.

Stacked MLPs for binary spectral detection

After the successful training during the first phase, the trained MLP was consid-

ered with respect to the binary spectral dataset. Each images from the six classes

(as shown in Tab. 4.4) of binary spectral data comprising of a total 10,000 images

per class were processed using the trained MLP. As anticipated, the trained MLP

resulted in very distinct probabilistic vectors for each class. As demonstrated in

Figure 4.16, the bar charts for each class of binary spectra resemble mean value

for each output node with an error bar. This shows that the MLP speckle images

belonging to the binary wavelength dataset were not exactly identical and this dif-

ference was appreciated by the MLP as well. The output vectors were calculated for
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Figure 4.15: High accuracy classification of femtometre resolved speckle
patters using MLP. Confusion matrix evaluated as the output of MLP for the
classification of femtometre-resolved speckle images, plotted on log10 scale. The
color bar represents decibel values.

all the images, and a mean and standard deviation were evaluated. The error bar

in the figure shows the deviation present in the images corresponding to each class.

A maximum deviation was observed for class with �⁄1 = 30 fm and �⁄2 = 40 fm

with a variation of 0.6 units among all the nodes.

Using the one dimensional output vectors (as shown in Fig. 4.16) calculated

from the trained MLP, a dataset was constructed with 10,000 patterns per spectral

class. This dataset was randomly divided as mentioned above which resulted in

42000 one-dimensional training/validation vectors among all the six classes with

18000 one-dimensional testing vectors. Using this second dataset another MLP,

with 20 hidden neurons and one hidden layer, was trained to evaluate the spectral

components of the speckle patterns. The training of MLP based upon the mean

squared cost function resulted in a stable spectrometer. Since the final spectral

components of the speckle patterns can only be calculated by considering both the

MLPs, together they can be called stacked MLP. The stability of the speckle based

binary spectrometer can be appreciated from Figure 4.17, where the output from

the stacked MLP have been presented. Each test vector was processed using the

stacked MLP and a mean and standard deviation was calculated using the final

outputs for each class. In this figure, the bars represent the mean value whereas the

error bars represents the standard deviation for each class. The standard deviation
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Figure 4.16: Probabilistic output vectors for binary spectra of MLP trained
over single wavelength femtrometre resolved speckle patterns. One dimen-
sional softmax output vector for wavelength deviations at (a) �⁄1 = 10 fm and
�⁄2 = 30 fm, (b) �⁄1 = 20 fm and �⁄2 = 30 fm, (c) �⁄1 = 24 fm and �⁄2 = 30
fm, (d) �⁄1 = 28 fm and �⁄2 = 30 fm, (e) �⁄1 = 30 fm and �⁄2 = 40 fm, and (f)
�⁄1 = 40 fm and �⁄2 = 50 fm.

for all the individual class as calculated as ≥ 1◊10≠3 which signifies the presence of

low variance after the speckle patterns with high variance and noise were processed

using the stacked MLP. Hence, indirectly, the stacked MLP reduces the noise from

the input noisy speckle images to finally evaluate the spectral components. This

may be due to the presence of variations in the training data (Fig. 4.16). During

the training process the MLP learns to overcome the variations in the spectral data

and hence on the test set the processing by the MLP results in a much clearer and

noise-less spectra.

4.6 Conclusion

In this chapter the application of Deep learning was explored to develop a speckle

based wavemeter and binary spectrometer. The successful development of a speckle

wavemeter with attometre resolution and a dynamic range in nanometre scale was

demonstrated.

The initial methodology of developing a wavelength modulated speckle based
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Figure 4.17: Demonstration of a stacked MLP based speckle spectrometer
Spectral calculation using the stacked MLP for (a) �⁄1 = 10 fm and �⁄2 = 30 fm,
(b) �⁄1 = 20 fm and �⁄2 = 30 fm, (c) �⁄1 = 24 fm and �⁄2 = 30 fm, (d) �⁄1 = 28
fm and �⁄2 = 30 fm, (e) �⁄1 = 30 fm and �⁄2 = 40 fm, and (f) �⁄1 = 40 fm and
�⁄2 = 50 fm.

wavemeter demonstrated the ability of CNNs to find the simplest mathematical

answer in terms of classification between a sinusoidal or triangular waveform. It was

also demonstrated that the CNNs a very stable solution towards the classification

of waveforms for their capability to correctly identify the waveforms which were

accumulated after a two day interval. The failure of CNNs to classify five waveforms

provided with an insight about their working which helped in the development of a

wavemeter with high dynamic range.

The following study demonstrated an implementation of deep learning to clas-

sify single speckle patterns as a function of incident wavelength. This application

illustrated a method to di�erentiate between laser wavelengths which could be sep-

arated by at least 2 am for a long range of 488 nm. As indicated, this limit was not

identified to be the fundamental limit which could, if permitted by experimental

instrument, be further enhanced. The study demonstrated a wavemeter with an

excellent dynamic range of 3.25 ◊ 1011 in a single step algorithm. It was also shown

that the combination of CNN with speckle can also be generalised and applied to a

completely di�erent scattering medium. The highlighting factor of this study was
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the demonstration of automated noise rejection which may be generated by both

instrumental or environmental factors. These results could be very beneficial for

automated laser stabilization and for noise rejection in multiple telecommunication

applications. The two studies which involved the application of CNNs, for the classi-

fication of speckle waveform or pattern, illustrated that the fundamental convolution

network geometry provided a base for both the applications and further classification

was implemented by varying the number of neurons in the fully connected layers.

Also for an optimal architecture, the CNN classification accuracy does not depend

on the number of training classes, or the step size between them. A comparison

can be made between di�erent methods to develop a speckle based wavemeter: as

shown in Fig. 4.18, the PCA based approach allows for a highly resolved wavemeter,

whereas transmission matrix approach allows for a wavemeter with high bandwidth,

however, the application of CNN based approach allows to construct a wavemeter

with a high resolution and bandwidth, i.e., a wavemeter with a high dynamic range.

Figure 4.18: Schematic comparison for speckle wavemeter performance
with respect to the applications of PCA, transmission matrix and CNN.
Implementing PCA based approach allows for a highly resolved wavemeter, whereas
the application of transmission matrix approach allows for the high bandwidth. The
CNN based approach provides both, i.e., high resolution and bandwidth resulting
in a wavemeter with a high dynamic range.

Finally, the application of feedforward networks was explored to develop a speckle

spectrometer. This study shows that the MLPs can also be used to develop a highly

accurate wavemeter with a resolution of 2 femtometre. The application of MLP

trained only on one laser source was su�cient to develop the spectral 1D probabilistic
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vectors for the binary spectral speckle patterns. These patterns showed the presence

of high variation in terms of their 1D vector representations. However, when the

second MLP was trained over these representations, the resultant binary spectra

showed the absence of any variation. This also pointed towards an automated noise

rejection capability of the MLP. These results show that the stacked MLPs can

be implemented to calculate a binary spectra from the single image of the speckle

patterns. An interesting future study could be to apply these finding to develop a

Raman spectrometer. Detection of two or more Raman lines by directly observing

the spectra using a cheap camera would be very fast and economical.

In contrast to the excellent capabilities demonstrated above, it would be im-

portant to discuss some limitations of the deep learning based ANNs. A major

drawback of applying these networks is that they take very long time for the train-

ing process. This training time increases exponentially as the number of classes are

increased. Another major drawback is that the CNN can only work with data points

which belong to the training class. As an example, in the case of speckle wavelength

measurement, a pre-trained ANN to classify cannot identify the intermediate wave-

lengths. To solve this a regression approach seems to be an appropriate alternate,

but the regression based capabilities of the ANNs are known to be limited at much

lower precision [217]. Hence, deep learning based ANNs do not prove to be ultimate

solution for any problem but prove to be a reasonable analytic tool.
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Chapter 5

Application of machine learning to

improve the limit of detection of a

chirped guided mode resonance

biosensor

5.1 Introduction

Biosensing techniques play a critical role in healthcare, environmental monitoring

and the biomedical industry [218–222]. Optical biosensors o�er great advantages

over conventional analytical techniques due to their fast responding time, direct

measuring, label-free detection, and integration ability [223,224]. The working prin-

ciple of photonic biosensors is based on the interaction of an evanescent field with

biorecognition elements and the detected signal is proportional to the concentra-

tion of the antigen [225]. Therefore, by engineering di�erent optical fields, a huge

number of optical sensors can be utilized, e.g. surface plasmon resonance biosensors

(SPR) [226], Evanescent wave fluorescence biosensor [227], optical interferometric

biosensors [228], disk resonator photonic biosensor [229], surface-enhanced Raman

scattering biosensors (SERS) [230], optical microarray biosensors [231] etc. Among

all these di�erent types of bio-optic sensors, one common goal is to improve the

detection accuracy in order to pursuit a lower limit of detection. By improving the

detection accuracy, the noise hidden in the real biological signal can be reduced [232].
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(a) (b)

Figure 5.1: Working principal of a guided mode biosensor. (a) Demonstra-
tion of resonance response from chirped guided mode resonance (GMR) biosensor
resulting in strong reflection (b) Demonstration of shift in peak position of the res-
onance response from the GMR as an e�ect to the capturing of target molecules on
its surface.

A chirped guided mode resonance sensor is constructed by continuously altering

the period of a one dimensional, sub-wavelength, dielectric grating along the grating

grooves [233]. When it is illuminated by monochromatic light, a spatial resonance

response in form of high reflectance from a horizontal strip can be read out (Fig.

5.1 (a)). The precise position of the resonance can be extracted by first averaging

in the horizontal direction and then fitting a curve to this averaged intensity profile.

As the extracted resonance curve is a result of an interplay between the Fabry-

Perot resonance of the thin film and Brag resonance of the grating, it results in an

asymmetrical Fano line shape which tends toward a Lorentzian line shape [234,235].

The spatial position of this peak depends on the refractive index of the medium

and is used to detect antibody binding. The capturing of target molecules at the

surface of the device results in a variation in the refractive index and in-turn the

peak position also shifts (Fig. 5.1 (b)). After calibrating the peak shift with respect

to the refractive index, this shift helps in the determination of biological samples.

In the previous study a direct Fano fitting has been implemented in combination

with the nonlinear-least-squares method [225]. This method helps in identifying a

peak position of the resonance curve which in turn gives a direct indication towards

the variation in the refractive index at the grating surface. However, this method
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is limited to the shape of the resonance curve. Imperfections, e.g. stitching error

of the grating [236], dust or defects from the sample or any instrumental noises

present in the optical system could highly influence shape of the resonance, thus

significantly reduce the accuracy of the peak position. To overcome these limitations,

the numerical methods of machine learning can be implemented. In this chapter,

the application of machine learning based methods of principal component analysis

(PCA) and multi layered perceptron are explored.

5.2 PCA based improvement in the limit of de-

tection of a chirped GMR

5.2.1 Methods

The working principal of the chirped GMR suggests that the resonance response

is linearly dependent on the incident light wavelength. This means that if the

incident light wavelength is tuned in fixed steps, the resonance response shall also

shift proportionally. Following this understanding, the method of PCA (discussed in

section 2.3.1, script mentioned in section A.4) was implemented since it outputs the

degree of variations in the dataset. For this problem, the incident light wavelength

was modulated linearly such that the maximal variation (first principal component)

could be identified as a function of wavelength.

Principle of application

For the detection of resonance peak position, the two dimensional images were aver-

aged in the horizontal direction. This averaging resulted in a one dimensional curve

representing an intensity profile of the resonance. To remove any higher frequency

noise, the signal was passed through a low pass filter with a band pass frequency of

0.5fi rad/sample. To precisely measure the peak position of the calculated intensity

profile, the methods of direct Fano fitting and di�erential Fano fitting were imple-

mented. The di�erential Fano curve was calculated as the first principal component

after applying PCA.
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Fitting of resonance response

For direct Fano fitting, the intensity curve using a parametric Fano equation (Eq.

5.1) was used.

f(x) = a

A
bc + (x ≠ d)2

c2 + (x ≠ d)2

B

+ e (5.1)

Here a represents the shape factor, b is the parameter for the symmetry of Fano

curve, c is full width half maximum of the curve, d represents the peak position and

e represents the curve o�set.

After calculating a di�erential resonance signal using PCA, the curve was fit

using a parametric di�erential Fano equation (Eq. 5.2).

f(x) =
A

a(2x ≠ 2d + 2bc)
c2 + (d ≠ x)2 + a(2d ≠ 2x)(x ≠ d + bc)2

(c2 + (d ≠ x)2)2

B

e + f (5.2)

Here a represents the shape factor, b represents the symmetry of the di�erential

Fano curve, c represents the skewness of the curve, d represents the zero crossing

of the di�erential Fano curve, e represents the sign intensity of the curve and f

represents the curve o�set.

MATLAB was used to implement the fitting process using a non-linear least

squares method of minimizing the least absolute residuals by following the Levenberg-

Marquardt algorithm. The fitting error was determined as the uncertainty interval

for the parameter d while evaluating the best fit for the experimental data.

Optimization of number of images

The dataset was accumulated by continuously varying the incidence light wavelength

with a constant di�erence in the wavelength of 0.1 nm.

The PCA based fitting was applied over the dataset by considering di�erent

number of images (3, 5, 7, 9, 11, 13 and 15 images). The first principal component

was considered to evaluate the di�erential signal and calculate the zero crossing.

As shown in Fig. 5.2, the incident light beam was varied between 852 nm to 870

nm with a constant modulation of 0.1 nm. A deviation of peak position (PCA

based di�erential fitting) was calculated from the mean peak position. Table 5.1

represents the deviation for the peak position (calculated using PCA based method)

from the mean peak position. After doing this evaluation, it was established that
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Figure 5.2: Application of PCA to improve linear fit. (a) Resonance response
from a chirped GMR for 9 wavelengths modulated by 0.1 nm. (b) First principal
component calculated using the data accumulated in (a). (c) Resonance response
from the chirped GMR for the wavelengths from 852 nm to 870 nm in the step of
0.1 nm. (d) Resonance peak positions calculated using direct Fano fitting and PCA
based di�erential fitting, here red curve denotes PCA based peak position estimation
whereas blue curve denotes the Fano fitting based peak estimation.

the minimum deviation from the average peak position is present by considering 9

images.

For the linear modulation of incident light wavelength, direct Fano fitting method

resulted in an estimated mean error of 3 pixels where as the PCA based di�erential

fitting method resulted in a mean error of 1.26 pixels. This showed an improvement

of PCA based mthod over direct Fano fitting method by a factor of two.

Number of
images

PCA peak
position
(pixels)

Average peak
position
(pixels)

Deviation from
mean position

(pixels)
3 179.8 178.3 1.5
5 180.1 179.2 0.9
7 180.4 180.1 0.3
9 181.09 181.1 0.01
11 181.7 181.9 0.2
13 182.6 182.7 0.1
15 183.4 183.6 0.3

Table 5.1: Summary of characteristic variation of peak position to consider di�erent
number of images
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3 ‡ stability estimation

The noise of a biosensor can be estimated by calculating the 3 times the standard

deviation (‡) which is the smallest detectable shifts in the position for water placed

over the grating. This value was calculated by measuring the standard deviation in

the shift of peak position (P ) and mean fitting error (F ) (Eq. 5.3). The 3‡ sensitivity

of the chirped grating was estimated by keeping the incident laser wavelength at 830

nm with a modulation step of 0.1 nm. The smallest detectable shifts in peak position

for water placed over the grating were observed for ≥20 minutes.

3 ‡ =
Ò

3std(P )2 + F 2 (5.3)

In the above equation, std(P ) symbolizes standard deviation in P . In order to

make the calculations comparable, nine resonance images were fit using direct Fano

fitting and the mean was calculated of the peak positions, in concurrence to one peak

position calculated using PCA based method. Table 5.2 represents the variation of

3 ‡ value estimated for considering di�erent number of images. Incidentally, the

estimated 3 ‡ value for considering 9 images was found to be close to the minimum

value.

Number of Images 3 Sigma (pixels)
3 3.6716
5 2.4789
7 2.2829
9 2.2795
11 2.2717
13 2.2813
15 2.2918

Table 5.2: Summary of 3 ‡ values calculated for di�erent number of images.

Study to compare the performance of PCA based method with direct

Fano fitting using two gratings

In order to analyse the improvement of PCA based method over conventional Fano

fitting method, two types of gratings were considered. One smaller chirped grat-

ing with size of 400 µm by 500 µm, the pattern was within a write-field without

stitching error, and another longer chirped grating of size 400 µm by 4 mm which
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presented a stitching error. The chirped gratings were designed with two di�er-

ent channels, a signal channel and a reference channel. The reference channel was

proposed for the purpose of accounting towards the temperature drift during the

biological measurements.

5.2.2 Results

Improvement in resonance curve fitting

The identification of improvement in resonance curve fitting by using PCA based dif-

ferential fitting was implemented by considering two di�erent gratings with specific

properties as discussed above.

(a) (i) (ii) (b) (c)

(d) (e)

Figure 5.3: Calculation of wavelength modulated resonance response for
500 µm long grating. (a) Snapshot of the 500 µm long grating (i) Signal Channel
highlighted in blue box (ii) Reference Channel highlighted in green box. Resonance
response from the (b) signal channel and and (c) reference channel. Calculated wave-
length modulated resonance response from the (d) Signal channel and (e) Reference
channel. The plots colored in blue and green are the resonance response from the
instrument and the red line is the fitting using Fano fitting for (b) and (c) whereas
di�erential Fano fitting for (d) and (e).

The first grating was considered with the dimensions of 400 µm ◊ 500 µm. A

plane polarised light was incident on the grating from the substrate layer which

induced a resonance response and high reflectance from the grating areas where the

resonance condition is met. This resonance response can be identified from Fig. 5.3

(a) which shows two di�erent microfluidic channels. Fig. 5.3 (a) (i) shows the signal

channel whereas the Fig. 5.3 (a) (ii) shows the reference channel. Fig. 5.3 (b) and

(c) show the mean evaluated Fano resonance response (dotted curve) and Fano curve

fitting (red overlay curve) from the signal and reference channels. The wavelength

modulated resonance response is depicted in Fig. 5.3 (d) and (e) representing the
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di�erential Fano response (dotted curve) calculated using PCA and fitted di�erential

Fano curve (red overlay curve) from the signal and reference channels respectively.

The zero crossing of the di�erential curve signifies the peak position of the resonance

response from the grating.

Characteristically, the second grating (a 400 µm ◊ 4 mm grating) shows the

presence of stitching error. The resonance response from this grating can be identi-

fied from Fig. 5.4 (a) which shows two di�erent channels. Fig. 5.4 (a) (i) shows the

signal channel whereas the Fig. 5.4 (a) (ii) shows the reference channel. Stitching

error can be apprehended from the presence of horizontal lines at the illuminated

region of the grating. Fig. 5.4 (b) and (c) show the mean evaluated Fano resonance

response (dotted curve) and Fano curve fitting (red overlay curve) from the signal

and reference channels. These curves show the presence of stitching error near the

peak position. The wavelength modulated resonance response is depicted in Fig.

5.4 (d) and (e) representing the di�erential Fano response (dotted curve) calculated

using PCA and fitted di�erential Fano curve (red overlay curve) from the signal and

reference channels respectively.

(a) (i) (ii)
(b) (c)

(c) (d)

Figure 5.4: Calculation of wavelength modulated resonance response for 4
mm long grating. (a) Snapshot of the 4 mm long grating resembling the stitching
error (i) Signal Channel highlighted in blue box (ii) Reference Channel highlighted
in green box. Resonance response from the (b) signal channel and and (c) reference
channel. Calculated wavelength modulated resonance response from the (d) Signal
channel and (e) Reference channel. The plots colored in blue and green are the
resonance response from the instrument and the red line is the fitting using Fano
fitting for (b) and (c) whereas di�erential Fano fitting for (d) and (e).

The results suggest that PCA based method helps immensely to remove the

presence of any other peaks which are not associated with the resonance response

of the grating. When compared on the metric of R Squared values, the di�erential
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fitting method shows a better fitting compared to direct Fano fitting method. For

the 500 µm long grating, the R squared value for the signal and reference channel

were 0.99 and 0.97 whereas the PCA based method showed the values as 0.98 and

0.98 respectively as can be observed in Fig. 5.3. For the 4 mm grating with stitching

error, the R squared values for the signal and reference channel with respect to the

Fano fitting came out to be 0.93 and 0.89 whereas PCA enhance the fitting and the

values of 0.97 and 0.98 were calculated respectively which can be observed from Fig.

5.4.

Improvement in peak position determination

The peak position of the resonance response was calculated by implementing the

PCA based di�erential Fano fitting method and direct Fano fitting method. The

data was accumulated by linearly varying the incident laser wavelength from 850

nm to 856 nm with a constant step size of 0.1 nm. As explained before, the Fano

response from the two gratings at each wavelength and di�erential Fano response

by using 9 wavelength position were fit using the specified methods, for both 500

µm and 4mm gratings.

(a)

(c) (d)

(b)

Figure 5.5: Improvement in peak position determination for 500 µ m long
grating. (a) Calculated resonance peak position using Fano fitting, (c) Error calcu-
lated while determining the peak position. (b) Calculated resonance peak position
using PCA based di�erential Fano fitting, (d) Error calculated while determining
the peak position.

For 500 µm long grating, Fig 5.5 (a) and (b) represent the peak position variation

with respect to the variation in the incident laser wavelength using direct Fano fitting

and di�erential Fano fitting methods respectively, whereas Fig. 5.5 (c) and (d)

represent the error evaluated at each data point for the above mentioned methods.
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For PCA based method, the signal mean fitting error was calculated as 1.83 µm and

the reference mean error fitting was calculated as 1.77 µm. This resulted in a total

error of 3.6 µm. For the direct Fano fitting based method, the mean signal fitting

error was calculated as 2.93 µm and the mean reference error was calculated as 2.74

µm. The total error evaluated was 5.67 µm.

(a) (b)

(c) (d)

Figure 5.6: Improvement in peak position determination for 4 mm long
grating. (a) Calculated resonance peak position using Fano fitting, (c) Error calcu-
lated while determining the peak position. (b) Calculated resonance peak position
using PCA based di�erential Fano fitting, (d) Error calculated while determining
the peak position.

For 4mm long grating, Fig 5.6 (a) and (b) represent the peak position variation

with respect to the variation in the incident laser wavelength using direct Fano fitting

and di�erential Fano fitting methods respectively, whereas Fig. 5.6 (c) and (d)

represent the error evaluated at each data point for the above mentioned methods.

For the direct Fano fitting based method, the mean signal fitting error was calculated

as 17.11 µm and the mean reference error was calculated as 24.54 µm. The total

error evaluated was 41.65 µm. For PCA based method, the signal mean fitting error

was calculated as 6.12 µm and the reference mean error fitting was calculated as

0.03 µm. This resulted in a total error of 6.15 µm.

With respect to the results obtained for the two gratings it can be established

that the two methods give very similar results for peak position estimation when the

grating is free from any stitching error and external noises. However, the PCA based

method proved to be highly e�cient when implemented on a grating which presents

an inherent stitching error. Evidently, this method showed an improvement by a

factor of 6.77. Interestingly, it can be observed from the Fig. 5.5 and Fig. 5.6 that
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PCA based analysis shows sharper variations in the peak position when compared

to direct Fano fitting method.

Improvement in the 3 ‡ error

The 3 ‡ error of the two gratings was considered by measuring the variation in the

resonance peak position while keeping the incident laser wavelength constant at 853

nm. To implement PCA based method, the light beam wavelength was modulated

by 0.1 nm for 9 steps. This measurement was continued for ≥ 20 minutes, which is

a reasonable time to observe a resonance shift due to biological binding.

(a) (b)

(c) (d)

Figure 5.7: 3 ‡ error calculation for 500 µm long grating. (a) Resonance
peak position determination using Fano fitting method, (c) Error evaluated using
the same method. (b) Resonance peak position determination using PCA based
di�erential Fano fitting method, (d) Error evaluated using the same method.

Figure 5.7 (a) and (b) represent the variation in resonance peak position for 500

µm long grating using the direct Fano fitting and di�erential Fano fitting methods

respectively. Figure 5.7 (c) and (d) represent the error evaluated while calculating

the peak position using the two methods. Using Fano fitting method, the mean

signal peak fitting error was calculated as 5.53 µm and the mean reference peak

fitting error was calculated as 5.43 µm. The total fitting error was calculated as

10.96 µm. Total 3‡ error was calculated as 15.68 µm. By implementing PCA

based di�erential fitting method, the mean signal peak fitting error was calculated

as 3.29 µm and the mean reference peak fitting error was evaluated as 1.97 µm.

This resulted in the total fitting error of 5.26 µm. This method gave a 3‡ error of

14.04 µm.

As shown in Figure 5.8, parts (a) and (b) represent the variation in resonance
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(a) (b)

(c) (d)

Figure 5.8: 3 ‡ error calculation for 4 mm long grating. (a) Resonance peak
position determination using Fano fitting method, (c) Error evaluated using the same
method. (b) Resonance peak position determination using PCA based di�erential
Fano fitting method, (d) Error evaluated using the same method.

peak position for 4 mm long grating using the direct Fano fitting and di�erential

Fano fitting methods respectively. Figure 5.8 (c) and (d) represent the error evalu-

ated while calculating the peak position using the two methods. Using Fano fitting

method, the mean signal peak fitting error was calculated as 15.87 µm and the mean

reference peak fitting error was calculated as 9.56 µm. The total fitting error was

calculated as 25.43 µm. Total 3‡ error was calculated as 26.95 µm. By implement-

ing PCA based di�erential fitting method, the mean signal peak fitting error was

calculated as 4.90 µm and the mean reference peak fitting error was evaluated as

2.42 µm. This resulted in the total fitting error of 7.32 µm. This method gave a 3‡

error of 13.50 µm.

These results, in agreement with the linear wavelength variation results, suggest

that PCA based method shows an improvement over direct Fano fitting method. As

evaluated above, an improvement by the factor of 2 was observed when PCA based

method was implemented to calculate the 3‡ error for the longer 4 mm grating with

stitching error.

Improvement in the detection of IgG

The detection of IgG binding to Anti-IgG antibody on the sensor was performed

by measuring the variation in the resonance peak position by keeping the incident

wavelength at 853 nm and applying a modulation of 0.1 nm for 9 steps. The mea-

surements were done by varying the solutions in the microfluidic signal channel while
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flowing only PBS in the reference channel.

Figure 5.9 represents the variation in resonance peak position with time, (a) by

implementing direct Fano fitting and (b) by implementing PCA based di�erential

fitting method whereas (c) and (d) represent the respective error calculated from the

signal and reference channels using the mentioned methods. The variation in the

resonance peak position with time represents precisely the variation in the presence

of di�erent biomolecules. After establishing the baseline with PBS, the Anti-IgG

antibody binding curve saturated at 40 min because all the binding sites were

occupied by the antibodies. This was followed by a PBS wash and then 1% casein

was introduced as the blocking bu�er. The chip was then washed again with PBS

for 10 minutes between various concentrations of the IgG antigen being 10 pg/ml,

100 pg/ml and 10 µg/ml. Using the Fano fitting method, a mean signal peak fitting

error came out as 10.37 µm and a mean reference peak fitting error came out as 6.67

µm. The total error came out to be 17.04 µm. Using PCA based method, a mean

signal error came out to be 7.77 µm whereas the mean reference peak fitting error

came out to be 0.03 µm. This resulted in a total error of 7.80 µm.

(a) (b)

(c) (d)
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Figure 5.9: IgG detection using 4 mm long grating. (a) Resonance peak
position determination using Fano fitting based method, (c) Error evaluated using
the same method. (b) Resonance peak position determination using PCA based
di�erential Fano fitting method, (d) Error evaluated using the same method.

While comparing the resonance peak positions evaluated using PCA based dif-

ferential Fano fitting method and direct Fano fitting method, it can be confirmed

that PCA based method shows an improvement over the other method. It is evident

to distinguish each washing step by flushing PBS bu�er and injecting IgG antigen in

the time region between 60 to 150 minutes. When compared to Fig 5.9 (a), Fano fit
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method does not show a clear behaviour since all the bonding and washing curve is

buried in the noise. Additionally, this method shows a crest for PBS wash between

55 and 65 minutes where in principle a trough is expected, this can be explained due

to the presence of stitching error. By using the PCA based method, the variations

in peak position shifts are much more steep and detectable which shows that this

method helps in improving the detection sensitivity of the grating by avoiding any

inherent noise and improving on the overall fitting of the resonance responses. Based

on the above comparisons, it can be summarized that using PCA based approach

proves to be an improvement over direct Fano fitting method.

5.3 Classifying the resonance response of a chirped

GMR using MLP

5.3.1 Methods

When a chirped GMR is shown with a light beam of a characteristic wavelength,

it responds with a characteristic resonance. Hence, a characteristic resonance re-

sponse from the GMR can be considered for classification problem. Inherently, in

an experimental setting, the instrumental response may present noisy components

resulting from the optics, vibrations or other experimental settings. The presence

of these noisy components provides the variability in the dataset and prove to be

fitting for the training of artificial neural networks (detailed in sections 2.3.6 and

2.4).

Data acquisition

To accumulate a dataset for the training of an MLP, a GMR chip was designed

with two gratings with a similar resonance response (Fig. 5.10 (a)). First GMR

chip was considered for training and the second chip was considered for the testing

purposes. This dataset was accumulated by varying the incident light wavelength

between 855.5 nm to 859.5 nm with a step of 0.1 nm. A total of 100 images were

considered for each wavelength contributing to a total of 4100 images.

The two GMR’s considered for this study (Fig. 5.10 (a)) show a linear response
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Figure 5.10: Application of MLP for resonance peak detection. (a) Wide
field image of the resonance response from the training and testing GMR. The red
boxes highlight the GMR’s in consideration. (b) Schematic of the implemented
MLP model with 356 input neurons, 100 hidden neurons and 41 output neurons.
The highlighted equation in the figure is the softmax function as the output of the
MLP.

to the incident wavelength. As shown in Fig. 5.11 (a), by implementing the direct

Fano fitting method, the two GMR’s show a linear variation in the readout peak

position with respect to the incident light wavelength. The mean error in peak

position detection for the training GMR was calculated as 3.09 µm and a mean

error of 2.57 µm was calculated for the testing GMR.

To further emphasize the experimental and analytical fitting error, the resonance

response from both the GMR’s was considered at an incident wavelength of 855.5

nm. These curves were fit using the direct Fano fitting and are shown in Fig. 5.11.

The direct Fano analysis resulted in the peak positions at 211 µm ± 2.38 µm (Fig.

5.11 (b)) and 217.38 µm ± 2.99 µm (Fig. 5.11 (c)).

Principle of application

To classify the resonance response from the chriped GMR, an MLP based model was

considered. The dataset accumulated for training GMR, was considered for training

and the was divided into training (70%), validation (20%) and test set (10%). The

MLP model was optimized by considering an optimization routine [145] to draw

maximum classification accuracy over the validation set. After the training, the

data accumulated from the test GMR was considered for blind testing.

A 3 layered MLP with 356 neurons in the input layer, 100 neurons in the hidden
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Figure 5.11: Error evaluation using direct Fano fitting peak detection from
the designed chip. (a) Linear response from the GMRs in consideration, here
shaded error bar represents the fitting error for each incident wavelength. Analytical
fitting of the resonance response from the (b) training GMR and (c) testing GMR
at the incident wavelength of 855.5 nm

layer and 41 neurons in the output layer was considered (Fig. 5.10 (b)) to classify

the resonance peaks with respect to the incident laser wavelength. The training was

applied using the resonance peaks obtained from training GMR. The MLP model

was trained by considering the cross entropy cost function (also detailed in section

2.3.6) at the output layer as shown in equation 5.4.

Cost = ≠1
k

�x[y ◊ log a + (1 ≠ y) ◊ log(1 ≠ a)], (5.4)

Here �x represents training over all the input images x, k is the total number of

training data points, y is the target output and a is the network output. Here y and

a are the one hot vectors representing the category of the input resonance curves.

During the training, the MLP based classification model yielded a 100% clas-

sification accuracy over the test set from the training GMR. The best validation

performance was identified at 7.56 ◊ 10≠4. After the training process, the network’s

performance was blind tested over testing GMR.

Wavelength calibration and error analysis

With respect to the experimental fabrication process, a wavelength calibration for

each pixel was evaluated as 1 px = 0.031 nm. Using this estimation, a compar-

itive error analysis was performed for the readout wavelength using MLP based

classification model and direct Fano fitting mode.

To estimate the error of peak position detection using the MLP, the softmax

136



Section 5.3 Chapter 5

function (Eq. 5.5) was considered at the output of the MLP. This function inherently

evaluates a probabilistic estimate on how correctly the neural network predicts a

given class. To translate the softmax output of the network into wavelength, the

MLP output for the correct class was subtracted from 1 and multiplied with the

least count of wavelength step size, i.e., 0.1 nm.

Softmax = e
zj

�kezk

(5.5)

Here, zj is the j
th neuron of which the output is being evaluated and zk are all

the neurons of the layer.

In order to evaluate the grating stability for the same wavelength, a 3 ‡ value

was evaluated by considering 100 images for each wavelength. The three sigma value

was evaluated by considering the predicted peak position (P ) and network error (E).

The error was calculated as shown in equation 5.6.

3‡MLP =
Ò

3 ◊ std(P )2 + E2 (5.6)

std(P ) is the standard deviation in the peak position detected using the MLP model.

5.3.2 Results

MLP performance comparison with direct Fano fitting

The network performance was compared with direct Fano fitting for the best and

worst network wavelength predictions.

Figure 5.12: Demonstration of classification abilities of MLP for peak po-
sition detection. (a) Best case prediction from the MLP where the inset figure
represents the probabilistic estimation of the class of the resonance response. (b)
Worst case prediction of the resonance response using the MLP, here the inset figure
shows the probabilistic prediction of the resonance classes.
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Fig. 5.12, represents the best (part (a)) and worst (part (b)) performance of the

MLP model and direct Fano fitting for the same resonance curves. The curve in

red is the resonance curve obtained from training GMR and the green curve is from

testing GMR. The inset figure shows the network’s probabilistic (softmax) output.

For the best case scenario (Fig. 5.12 (a)), the network predicted the curve

to be correct with a softmax classification error of 0.027. With respect to the

error analysis explained before, MLP prediction error was calculated as 0.0027 nm

whereas the direct Fano fitting yielded an error of 0.0765 nm. Comparing the two,

an improvement by a factor of 28 was observed.

For the worst case scenario (Fig. 5.12 (b)), the MLP based error was estimated

to be 0.17 nm whereas direct Fano fitting method resulted in an error of 0.03 nm.

In this case, direct Fano fitting based method proved to be better by a factor of 1.7.

Interestingly, in the worst case scenario, the ANN predicted between the adjacent

classes of the wavelength in question showing a close probabilistic answer. Hence,

considering the results, it can be understood that the MLP based model may perform

well in case the training data shows ample variability.

Attributing to the presence of instrumental noise, once trained, the MLP model

based results do not change with respect to the intensity variations between di�erent

datasets. Hence looking at these results, it may be concluded that the MLP performs

very e�ciently for 86.9% of the total dataset.

Comparison of 3 ‡ evaluation using MLP and direct Fano fitting

A 3 ‡ error was calculated for the best case scenario (Fig. 5.13 (a)). A total of 100

images were considered for the incident wavelength of 855.5 nm. Total 3 ‡ error for

the MLP was calculated to be 4.91 ◊ 10≠6 nm whereas for the direct Fano fitting

this error was evaluated as 6.68◊10≠2 nm. For this case, the neural network showed

an improvement by a factor of 10000 times.

A histogram plot was also calculated to present the improvement of MLP based

analysis when compared to the direct Fano fitting method for the complete dataset

(testing GMR). As shown in Fig. 5.13 (b), the histogram plot shows the distribution

of 3 sigma error for the complete test dataset comprising 4100 images. With respect

to the 3 sigma histogram plot, MLP may predict the correct resonance response
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Figure 5.13: Improvement in resonance peak position detection using MLP
over direct Fano fitting. (a) Representation of 3 ‡ value for a given dataset of
100 images at the incident wavelength of 855.5 nm. (b) Histogram plot distribution
for the 3 ‡ over the complete dataset. (c) Readout curve showing the comparison
between Fano fit and MLP based estimation.

with a zero deviation for 34% of instances. It was found that there was 14% chance

that the MLP may give a 3 sigma error greater than 0.075 nm whereas for the direct

Fano fitting method there is 95% chance that an average 3 ‡ value of 0.075 nm

would be evaluated. A mean 3 ‡ error for the complete dataset of 4100 images was

evaluated for both methods. MLP based method resulted in the mean 3 ‡ value of

0.031 nm whereas direct Fano fitting method resulted in a mean 3 sigma value of

0.077 nm. This resulted in a total improvement by a factor of 2.5 times.

To draw a comparison between Fano fit estimation and MLP estimation (best

cases) for the readout value, a graph between readout value and incident light wave-

length was plotted (Fig. 5.13 (c)). For the MLP based estimation, there was no

deviation from the correct wavelength (class), whereas for the direct Fano fitting

method a deviation of 0.03 px/nm was evaluated.

5.4 Conclusion and future work

This chapter examines the application of machine learning methods of principal

component analysis and multi layered perceptron to improve the limit of detection

of a chirped GMR. The results point in the direction that machine learning methods

do indeed prove to be e�cient in analysing the data by (1) removing the unnecessary
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noisy variation (when PCA based method is applied) and (2) by harnessing the

noisy variations (when MLP based method is applied). Both the methods show an

improvement by at least a factor of two.

The application of principal component analysis based di�erential fitting method

shows an improvement of at least 2 fold over the generic direct Fano fitting method.

In particular, this approach indicates that chirped guided-mode resonance biosensor

grating when combined with PCA, proves be highly stable and sensitive device to

detect the bio-molecules, specifically it has been shown that IgG concentration of

as low as 10 pg/ml can be detected. Moreover, it can be inferred that PCA based

method may show a huge advantage when applied to track resonator resonances

or surface plasmon resonances, essentially owing to its property for excluding any

variations in the system which resemble random noise.

The application of MLP based classification method shows an improvement by

a factor of 2.5 times for the complete dataset whereas an improvement by the factor

of 10,000 is observed for the best case scenario. This study shows that MLP pro-

vides a massive advantage over direct Fano fitting or PCA based di�erential fitting

provided the variations in the training dataset contain information for the inter-

polative estimation. Another aspect which can be recognized from this study is that

the classification based approach is more accurate then regression approach for the

estimation of resonance position.

As a future study, it would be interesting to test the trained MLP model over

the GMR’s which would be present on a completely di�erent chip. Additonally,

owing to the current results, in future, it would be interesting to study the MLP

response over the smaller wavelength shifts which can prove to be very beneficial for

the detection of much lower concentrations of IgG.

Contributions

The experiments were designed by the author, Dr. Kezheng Li, Prof. Kishan Dho-

lakia and Prof. Thomas Krauss. The author developed and designed all machine

learning methods and performed the numerical analysis. The instrument design and

data acquisition was conducted by Dr. Kezheng Li.
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Chapter 6

Conclusion and future outlook

6.1 Summary of the thesis

The work presented in this thesis focuses on the applications of machine learning

in various aspects of optics and photonics. These aspects include the enhancement

of label-free techniques of Raman spectroscopy and digital holographic microscopy,

enhancement of laser speckle wavemeter and spectrometers and for the improvement

in the sensitivity of the wavelength scale devices.

Chapter 2 introduced the foundations of machine learning by providing succinct

introduction to various methods. A discussion of di�erent approaches including,

supervised learning, unsupervised and reinforcement learning is included. These

discussions circumscribe the fundamentals of regression, classification, density esti-

mation, clustering, dimensionality reduction, finite markov processes, dynamic pro-

gramming, Monte Carlo methods and temporal di�erence learning. Following these

discussions, this chapter provides a mathematical insight into the techniques of prin-

cipal component analysis, linear discriminant analysis, k-means algorithm, support

vector machines, t-distributed stochastic neighbour embedding and artificial neural

networks. Subsequently, the fundamentals of deep learning and various applications

in the context of optics and photonics are discussed with a mathematical description

to feed forward networks, convolutional neural networks, recurrent neural networks

and generative adversarial networks.

Chapter 3 explored the applications of label-free techniques of wavelength mod-

ulated Raman spectroscopy (WMRS) and digital holographic microscopy (DHM) to
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classify the cells of immune system with a particular importance given to the ana-

lytic methods by employing deep learning based algorithms. The first study focuses

on the application of artificial neural networks to improve the classification abilities

of WMRS and DHM for the neutrophils and eosinophils. The WMRS spectral and

DHM phase image data was acquired for both the cell types and then a comparison

between the analysis methods of principal component analysis with leave one out

cross validation and artificial neural networks was considered. As a final result it

was identified that the application of deep learning based CNNs with DHM provides

a route towards a robust, stand-alone and high throughput hemogram device.

The second study focuses on improving the throughput rate of DHM for the

classification of T-cell subsets namely CD4+ and CD8+ cells. In this study the opti-

cal system was tweaked by changing the objectives with the magnifications of 20X,

60X and 100X which resulted in the phase images with varied sizes. To ensure an

optimal CNN geometry for each class of phase images, a particle swarm optimiza-

tion methods was considered to optimize the CNN geometries. Further investigation

was considered to improve the throughput rate of the DHM system by employing

cycle GAN type training module to train the CNN geometries for the transforma-

tion of phase images acquired from microscopic objective with 20X magnification to

the phase images acquired from the microscopic objective with 100X magnification.

This provided a way to improve the throughput rate by 100 folds with an additional

improvement in the classification e�ciency for DHM based hemogram system.

Chapter 4 explored the regime of the application of deep learning for the clas-

sification purposes. This chapter examined the possibility of developing the laser

speckle based wavemeters and spectrometers. Initial study to develop a wavemeter

was based on the wavelength modulation. The failure of this method provided an

insight towards the working of a CNN which in-turn helped to develop a wavemeter

with high dynamic range.

Subsequent study explored the application of CNNs to classify the speckle pat-

terns with respect to incident laser wavelength without any explicit modulations.

As a result of successful classification of femtometre resolved speckle images, the

automated rejection of environmental and instrumental noise by the CNN was also

demonstrated. Following the understanding of the working of the CNN, three ap-
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plications namely, for attometre resolution, high dynamic range and generalization

capabilities were explored. By invoking t-SNE based analysis method in combina-

tion with CNN, it was demonstrated that the CNN based speckle wavemeter can

resolve speckle images with a wavelength deviation of as low as 2 am and as high as

486 nm. The generalization capabilities in terms of being applicable to a di�erent

di�usive medium (ground glass) was also demonstrated.

The next study explored the application of multi layered perceptrons (MLP)

for the development of laser speckle spectrometer. This study investigated the ap-

plication of stacking of these networks and training them in two steps. First step

was considered as classification training module for an MLP which resulted in the

development of a wavemeter with 2 femtometre. The second step was considered as

a regression training step where a second MLP was trained over the probabilistic

distribution output of the first MLP for the binary spectral speckle patterns. This

resulted in the development of a spectrometer for binary spectral datasets.

Chapter 5 explored the application of machine learning to improve the sensitiv-

ity of wavelength scale devices, specifically chirped guided mode resonance (GMR)

biosensors. The strong resonant reflections from the GMR results into a fano shaped

intensity output whose peak position is directly proportional to the variation in in-

cident light wavelength and refractive index over the surface of the sensor. To

identify the sensitivity of this sensor, the intensity profile is fitted analytically with

fano curve. First study in this chapter explored a comparison between the applica-

tion of principal component analysis (PCA) based di�erent fano fitting and direct

fano fitting. As an outcome, PCA based method demonstrated an improvement by

a factor of two over direct fano fitting method.

The second study was conducted as an exploration of MLP for the classification

of output intensity reflection from the sensor with respect to the incident light

wavelength. As an outcome, the MLP based method presented with di�erent types of

outcomes. For the best case scenario MLP based method resulted in an improvement

by a factor of 10,000 over the conventional fano fitting method. However, for the

worst case scenario the direct fano fitting method beat MLP by a factor of more

than two. These results provide an insight that if the amount of data is adequate,

MLP based method may prove to be highly beneficial in terms of improving the
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sensitivity of the chirped biosensor device.

6.2 Future outlook

This section will discuss about the possible prospects which can be considered for

future work.

6.2.1 High throughput label-free hemogram for all the cells

of immune system

Chapter 3 of this thesis demonstrated the application WMRS and DHM for the

classification of morphologically similar granulocyte and T immune cells namely,

neutrophils, eosinophils, CD4+ and CD8+ T cells. The two studies paved a way in

the direction that DHM based imaging systems when combined with deep learn-

ing can be implemented for the classification of these cells with high accuracy and

high throughput. This makes the combination of DHM-CNN based hemogram an

attractive option when compared to the generic flow cytometry based cell classifi-

cation. The future work can be directed to train a CNN over the phase images of

multiple cell types such as B cells, natural killer cells, mast cells, dentritic cells or

macrophages. This would in-turn help in the development of a single unit DHM

device which may finally replace the current labelling techniques.

Another application of the high-throughput nature of DHM based system can be

thought of to study the activation of various cells of the immune system. The DHM

based phase images for various stages of activation can be analysed and studies using

the artificial neural networks. These networks can then be further implemented to

detect the next state of the cells. This may find several applications in disease

progression and provide an idea to the physicians on which medicine to be used at

which stage.

From a commercial perspective, a future work can be thought of as development

of a miniaturised handheld version of DHM device which can directly be provided

to the consumers as a replacement of long term pathological tests.
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6.2.2 Optical precision metrology

Chapter 4 explored the application of deep learning for the development of speckle

based wavemeter. The development of a high dynamic range wavemeter with the

capabilities of automated noise rejection opens the possibility of a plethora of appli-

cations in telecommunications. A future work can be incorporated to stabilize the

laser wavelength using a feedback mechanism.

Another study can be directed to develop a universal speckle meter. This meter

may detect a range of dependencies of speckle pattern. These dependencies can be

variation in temperature, mode of incident beam, polarization, etc. This can further

be commercialised to develop a handheld device which may help in the detection of

minute changes in the properties of environment and light mentioned above.

As this chapter also explores the development of a speckle spectrometer, another

future study can be directed towards the development of a spectrometer with broader

range and ability to identify more than two wavelengths. With broad operation

range, the spectrometer can be applied to detect flourescence, or Raman lines. This

may provide a solution which would be highly accurate, cheap and small in size.

6.2.3 Wavelength scale device

Chapter 5 explores the application of MLP for the classification of intensity output

of a chirped GMR with respect to the incident light wavelength. An interesting

future study would be to test a trained MLP model over the GMR’s which would be

present on completely di�erent chip. Additionally, it would be interesting to study

the working of an MLP over smaller wavelength shifts which can prove to be very

beneficial for the detection of much lower concentration of IgG.

From a fundamental perspective, the deep learning based algorithms can be used

as predictive tools to design new types of wavelength scale devices with even higher

e�ciency.

6.3 Conclusion

The applications of machine learning presented in this thesis highlight its potential

in the field of biophotonics and laser metrology. The improvement in classification
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abilities of the label-free modalities using artificial neural networks have paved a way

towards the development of DHM based hemograms. The further improvement in

throughput rate of the DHM using cycle GAN module proved that the combination

of DHM with CNNs is highly competitive with the current labelling methods for cel-

lular classification. The broader applicability of deep learning for the development of

a speckle wavemeter with high dynamic range may aid in telecommunications. The

demonstration for the development of speckle based binary spectrometer paved a way

towards a highly precise, cheap and robust Raman / Fluorescence spectrometers.

Finally, the application of machine learning for the improvement in the sensitivity

of the wavelength scale devices provided another vision where the improvements can

be made beyond the expected levels of current methods.

146



Appendix A

Matlab Codes

A.1 Matlab Code for training CNN

Matlab code to train a CNN geometry with a given data (train, validation and

test) location, layers and training options. “XX” in training options represent the

hyperparameters which may be optimized with respect to a given dataset.

1 c l e a r a l l ; c l o s e a l l ; c l c ; r e s e t ( gpuDevice (1 ) ) ; rng ( ’ d e f a u l t ’

) ;

2 t r a inLoca t i on = ’ TrainLocat ion ’ ;

3 ValLocation = ’ ValLocation ’ ;

4 t e s tLoca t i on = ’ TestLocat ion ’ ;

5

6 tra inValImds = imageDatastore ( t ra inLocat ion , ’

I n c ludeSub fo ld e r s ’ , true , ’ LabelSource ’ , ’ fo ldernames ’ , ’

F i l eExt en s i on s ’ , ’ . png ’ ) ;

7 valImds = imageDatastore ( ValLocation , ’ I n c ludeSub fo ld e r s ’ ,

true , ’ LabelSource ’ , ’ fo ldernames ’ , ’ F i l eExten s i on s ’ , ’ . png ’ )

;

8 test Imds = imageDatastore ( t e s tLocat ion , ’ I n c ludeSub fo ld e r s ’ ,

true , ’ LabelSource ’ , ’ fo ldernames ’ , ’ F i l eExten s i on s ’ , ’ . png ’ )

;

9

10 r e f ImgS i ze = s i z e ( imread ( tra inImds . F i l e s {1}) ) ;
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11 f p r i n t f ( ’ De f in ing l a y e r s and Gradient descent parameters . . . \

n ’ ) ;

12

13 %Def in ing Layers

14 l a y e r s = [ ’ Layers ’ ] ;

15 % Def in ing t r a i n i n g opt ions

16 opt ions = tra in ingOpt ions ( ’ opt imize r ’ , . . .

17 ’MaxEpochs ’ ,XX, . . .

18 ’ I n i t i a lL ea rnRat e ’ ,XX, . . .

19 ’ LearnRateDropFactor ’ ,XX, . . .

20 ’ LearnRateDropPeriod ’ ,XX, . . .

21 ’ L2Regu lar i zat ion ’ ,XX, . . .

22 ’ Val idat ionData ’ , valImds , . . .

23 ’ Val idat ionFrequency ’ ,XX, . . .

24 ’ Va l ida t i onPat i ence ’ ,XX, . . .

25 ’ MiniBatchSize ’ ,XX, . . .

26 ’ S h u f f l e ’ , ’ every≠epoch ’ , . . .

27 ’ P lo t s ’ , ’ none ’ , . . .

28 ’ Verbose ’ , 0 , . . .

29 ’ ExecutionEnvironment ’ , ’ gpu ’ ) ;

30

31 [ net , t r ] = trainNetwork ( trainImds , l aye r s , opt ions ) ;

A.2 Matlab Code for optimizing CNN geometry

using PSO

This section provides the source code for the optimization routine developed to

identify the optimal CNN geometry with respect to a given dataset.
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A.2.1 Main

The following script is the key code which contains “GetLayers” and “trainCNN”

functions. Here the particle swarm optimization algorithm is employed with 40

particles. The particles’ position and velocity are updated using Eq. 3.9 and the

cost is evaluated using Eq. 3.8.

1 c l e a r a l l ; c l o s e a l l ; rng ( ’ d e f a u l t ’ ) ; r e s e t ( gpuDevice (1 ) ) ;

c l c ;

2

3 numInd = 40 ; %number o f p a r t i c l e s in the swarm

4 numVar = 33 ; %number o f v a r i a b l e s

5 maxIter = 500 ;

6 t o l e r a n c e = 1e ≠2;

7

8 % Range f o r i n i t i a l swarm ’ s e lements

9 range max = 10 ;

10

11 i t e r = 1 ; % Number o f i t e r a t i o n

12 k = 1 . 5 ; % weight o f s t o c a s t i c element

13

14 c c o s t = 0 ;

15 gamma = 2 . 5 ;

16

17 f l a g = 1 ;

18 ind1 = randi ( range max , numInd , numVar≠2) ;

19 ind2 = rand (numInd , 2 , 1 ) ;

20 ind = abs ( [ ind1 ind2 ] ) ;

21 v = ( ze ro s (numInd , numVar) ) ;

22

23 i t e r = 1 ;

24 rad iu s = 1000 ;

25

26 whi le i t e r < maxIter && rad iu s > t o l e r a n c e
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27 t i c

28 l l =1;

29 whi le l l <=numInd

30 t ry

31 [ a , ˜ , ˜ , ˜ ] = trainCNN ( ind ( l l , 1 : 2 0 ) , ind ( l l , 2 1 ) , ind

( l l , 2 2 : 2 6 ) , ind ( l l , 2 7 : 3 1 ) , ind ( l l , 3 2 ) , ind ( l l

, 3 3 ) ) ;

32 valF ( l l , 1 )=a ; % Fi tne s s func t i on f o r the swarm

33 l l = l l +1;

34 catch

35 valF ( l l , 1 ) = 1 ;

36 l l = l l + 1 ;

37 end

38 end

39 [ valF ord , index ] = s o r t ( valF ) ; % Sort the o b j e c t i v e

funct ion ’ s va lue s f o r the swarm and i d e n t i f y the

l e ade r

40 l e ad e r = ind ( index (1 ) , : )

41 [ c st , net , ˜ , ˜ ] = trainCNN ( l e ade r ( 1 : 1 5 ) , l e ade r (16) , l e ade r

( 17 : 2 1 ) , l e ade r ( 22 : 2 6 ) , l e ad e r (27) , l e ade r (28) ) ;

42 co s t ( i t e r ) = c s t ;

43 f o r l =1: s i z e ( ind , 1 )

44 % Cal cu l a t e s the new v e l o c i t y and p o s i t i o n s f o r a l l

swarm ’ s e lements

45 f i = rand ( ) ;

46 i f ( valF ( l )==1) | | i snan ( valF ( l ) )

47 ind1 = randi ( range max , 1 , numVar≠2) ;

48 ind2 = rand (1 , 2 , 1 ) ;

49 ind ( l , : ) = abs ( [ ind1 ind2 ] ) ;

50 e l s e

51 % Veloc i ty
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52 v ( l , : ) = (1≠( s q r t ( k� f i ) ) /2) �v ( l , : ) + k� f i �(

l eader ≠ind ( l , : ) ) ;

53 % Pos i t i on

54 f f = ind ( l , : ) + gamma�(1≠( s q r t ( k� f i ) ) /2) �v ( l , : )

+ (1≠k� f i ) �( l eader ≠ind ( l , : ) ) ;

55 % Set t i ng the va lue s to be p o s i t i v e

56 ind ( l , 1 : 2 6 ) = abs ( f l o o r ( f f ( 1 : 2 6 ) ) ) ;

57 ind ( l , 2 7 : 2 8 ) = abs ( f f ( 2 7 : 2 8 ) ) ;

58 end

59 end

60 rad iu s = norm( leader ≠ind ( index ( end ) , : ) ) ; % Ca l cu l a t e s

the new rad iu s

61 f p r i n t f ( ’ I t e r a t i o n Number:%d\ t Radius :% f Cost :% f \n ’ , i t e r

, rad ius , c s t ) ;

62 l ead db ( : , i t e r ) = l e ade r ;

63 i t e r = i t e r + 1 ; % I n c r e a s e s the number o f i t e r a t i o n

64 toc

65

66 end

67

68 % Output v a r i a b l e s

69 p min = ind ( 1 : numVar , : ) ;

70 f min = valF ord ( 1 : numVar , : ) ;

A.2.2 GetLayers Function

1 f unc t i on l a y e r s = GetLayers ( imgSize , ind , fcn , cnn , pd , f l g , dp )

2 % Set t ing th r e sho ld s

3 i f dp<0.1

4 dp = 0 . 1 ;

5 e l s e i f dp>1

6 dp=1;
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7 end

8

9 f o r i = 1 : l ength ( ind )

10 i f ind ( i )<2

11 ind ( i ) = 0 ;

12 e l s e i f ind ( i )>10

13 ind ( i ) = 0 ;

14 end

15 end

16

17 f o r i = 1 : l ength ( cnn )

18 i f cnn ( i )<=0

19 cnn ( i ) = 1 ;

20 e l s e i f cnn ( i )>75

21 cnn ( i ) = 75 ;

22 end

23 end

24

25 f o r i = 1 : l ength (pd)

26 i f pd ( i )<0

27 pd( i ) = 0 ;

28 end

29 end

30

31 i f f l g <=0.5

32 f l g =0;

33 e l s e i f f l g >0.5

34 f l g =1;

35 end

36 % Def in ing Layers

37 l a y e r {1} = [ imageInputLayer ( imgSize ) ] ;

38 l a y e r {2} = [ convolut ion2dLayer (1 , cnn (1 ) , ’ Padding ’ , pd (1 ) , ’
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St r i d e ’ , 1 ) ] ;

39 l a y e r {3} = [ convolut ion2dLayer (2 , cnn (2 ) , ’ Padding ’ , pd (2 ) , ’

S t r i d e ’ , 1 ) ] ;

40 l a y e r {4} = [ convolut ion2dLayer (3 , cnn (3 ) , ’ Padding ’ , pd (3 ) , ’

S t r i d e ’ , 1 ) ] ;

41 l a y e r {5} = [ convolut ion2dLayer (4 , cnn (4 ) , ’ Padding ’ , pd (4 ) , ’

S t r i d e ’ , 1 ) ] ;

42 l a y e r {6} = [ convolut ion2dLayer (5 , cnn (5 ) , ’ Padding ’ , pd (5 ) , ’

S t r i d e ’ , 1 ) ] ;

43 l a y e r {7} = [ batchNormal izat ionLayer ] ;

44 l a y e r {8} = [ dropoutLayer (dp) ] ;

45 l a y e r {9} = [ maxPooling2dLayer (2 , ’ Padding ’ , 1 ) ] ;

46 l a y e r {10} = [ re luLayer ] ;

47 i f f l g

48 l a y e r {11} = [ fu l lyConnectedLayer ( f cn ) tanhLayer

fu l lyConnectedLayer (2 ) softmaxLayer

c l a s s i f i c a t i o n L a y e r ] ;

49 e l s e

50 l a y e r {11} = [ fu l lyConnectedLayer (2 ) softmaxLayer

c l a s s i f i c a t i o n L a y e r ] ;

51 end

52

53 % Loop to combine a l l the s e l e c t e d l a y e r s

54 l a y e r s = [ l a y e r { 1 } ] ;

55 f o r i = 1 : l ength ( ind )

56 i f ind ( i )

57 l a y e r s = [ l a y e r s l a y e r { ind ( i ) } ] ;

58 end

59 end

60 l a y e r s = [ l a y e r s l a y e r {end } ] ;

61 end
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A.2.3 trainCNN Function

1 f unc t i on [ cst , net , tr , l a y e r s ] = trainCNN ( ind , fcn , cnn , pd , f l g ,

dp )

2 %f i x i n g the t r a i n v a l i d a t i o n data f o r c o n s i s t e n t performance

3 load ( ’ trainValData 60X . mat ’ ) ;

4

5 r e f ImgS i ze = s i z e ( imread ( tra inImds . F i l e s {1}) ) ;

6 l a y e r s = GetLayers ( re f ImgSize , ind , fcn , cnn , pd , f l g , dp ) ;

7

8 % Set t i ng t r a i n i n g opt ions

9 opt ions = tra in ingOpt ions ( ’adam ’ , . . .

10 ’MaxEpochs ’ , 1 0 0 , . . .

11 ’ I n i t i a lL ea rnRat e ’ ,1 e ≠ 3 , . . .

12 ’ LearnRateDropFactor ’ , 0 . 1 , . . .

13 ’ LearnRateDropPeriod ’ , 1 , . . .

14 ’ L2Regu lar i zat ion ’ ,5 e ≠ 6 , . . .

15 ’ Val idat ionData ’ , valImds , . . .

16 ’ Val idat ionFrequency ’ , 4 0 , . . .

17 ’ Va l ida t i onPat i ence ’ , 5 , . . .

18 ’ MiniBatchSize ’ , 1 2 8 , . . .

19 ’ S h u f f l e ’ , ’ every≠epoch ’ , . . .

20 ’ Verbose ’ , 0 , . . .

21 ’ P lo t s ’ , ’ none ’ , . . .

22 ’ ExecutionEnvironment ’ , ’ gpu ’ ) ;

23

24 [ net , t r ] = trainNetwork ( trainImds , l aye r s , opt ions ) ;

25

26 % Evaluat ion o f co s t based upon the s e n s i t i v i t y and

s p e c i f i c i t y acqu i red us ing the performance over

v a l i d a t i o n data

27 va lPred i c t edLabe l s = c l a s s i f y ( net , valImds ) ;

28 va lLabe l s = valImds . Labe ls ;
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29 accuracy v = sum( va lPred i c t edLabe l s == va lLabe l s ) /numel (

va lLabe l s ) ;

30 cc = confusionmat ( va lPred i c tedLabe l s , va lLabe l s )

31 sens = cc (1 ) /( cc (1 )+cc (3 ) ) ; spec = cc (4 ) /( cc (2 )+cc (4 ) ) ;

32

33 f p r i n t f ( ’ Va l idat i on Accuracy : %f \ t MCC: %f \n ’ , accuracy v

�100 , ( ( sens+spec ) /2) ) ;

34 c s t = 1≠(( sens+spec ) /2) ;

35 c l e a r tra inImds valImds ;

36 end

A.3 Matlab Code for cycle GAN training

This section provides the scripts written for the training of generative models of CNN

for the transformation of images across domains as explained in section 3.3.1. The

script “modelGradients” uses the GAN loss explained in Eq. 3.13 for the evaluation

of gradients with respect to each model.

A.3.1 Main

1 c l e a r a l l ; c l o s e a l l ; c l c ; rng ( ’ d e f a u l t ’ ) ; r e s e t ( gpuDevice

(1 ) ) ;

2 load ( ’ imgData tr v l . mat ’ ) ;

3

4 Ga = generator1 ; %20X to 100X

5 Gb = generator2 ; %100X to 20X

6 Da = d i s c r im ina to r 1 ;

7 Db = d i s c r im ina to r 2 ;

8

9 numEpochs = 2500 ;

10 miniBatchSize = 43 ;

11 l r = 0 . 0002 ;

12 gdf = 0 . 5 ;
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13 sgd f = 0 . 9 9 9 ;

14 f l a g = 1 ; c t r = 0 ;

15

16 executionEnvironment = ” auto ” ;

17 f l i p F a c t o r = 0 . 3 ;

18 va l idat ionFrequency = 25 ;

19 numValidationImages = 25 ;

20

21 trAvDa = [ ] ; trAvSqDa = [ ] ;

22 trAvDb = [ ] ; trAvSqDb = [ ] ;

23 trAvGa = [ ] ; trAvSqGa = [ ] ;

24 trAvGb = [ ] ; trAvSqGb = [ ] ;

25

26 f = f i g u r e ;

27 f . Po s i t i on (3 ) = 2� f . Po s i t i on (3 ) ;

28 imageAxes = subplot ( 1 , 2 , 1 ) ;

29 imgAxes = subplot ( 1 , 2 , 2 ) ;

30

31

32 i t r = 0 ;

33 s t a r t = t i c ;

34 %%

35 f o r epoch = 1 : numEpochs

36 c t r = 0 ; f l a g = 1 ;

37 %get minibatch o f images

38 whi le f l a g

39 mbatch = randsample (225 , miniBatchSize ) ;

40 IMG mbatch 100 4 = IMG tr 100 4 ( : , : , : , mbatch ) ;

41 IMG mbatch 100 8 = IMG tr 100 8 ( : , : , : , mbatch ) ;

42 IMG mbatch 20 8 = IMG tr 20 8 ( : , : , : , mbatch ) ;

43 IMG mbatch 20 4 = IMG tr 20 4 ( : , : , : , mbatch ) ;

44
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45 mbatch val = randsample (75 , numValidationImages ) ;

46 IMG mbatch val 100 4 = IMG val 100 4 ( : , : , : ,

mbatch val ) ;

47 IMG mbatch val 100 8 = IMG val 100 8 ( : , : , : ,

mbatch val ) ;

48 IMG mbatch val 20 8 = IMG val 20 8 ( : , : , : , mbatch val )

;

49 IMG mbatch val 20 4 = IMG val 20 4 ( : , : , : , mbatch val )

;

50

51 i t r = i t r + 1 ;

52 dl IMG mbatch 100 4 = d la r ray ( IMG mbatch 100 4 , ’

SSCB ’ ) ;

53 dl IMG mbatch 20 4 = d la r ray ( IMG mbatch 20 4 , ’SSCB ’ )

;

54 dl IMG mbatch 100 8 = d la r ray ( IMG mbatch 100 8 , ’

SSCB ’ ) ;

55 dl IMG mbatch 20 8 = d la r ray ( IMG mbatch 20 8 , ’SSCB ’ )

;

56

57 dl IMG mbatch val 100 4 = d la r ray (

IMG mbatch val 100 4 , ’SSCB ’ ) ;

58 dl IMG mbatch val 20 4 = d la r ray ( IMG mbatch val 20 4

, ’SSCB ’ ) ;

59 dl IMG mbatch val 100 8 = d la r ray (

IMG mbatch val 100 8 , ’SSCB ’ ) ;

60 dl IMG mbatch val 20 8 = d la r ray ( IMG mbatch val 20 8

, ’SSCB ’ ) ;

61

62 a r e a l = cat (4 , dl IMG mbatch 100 4 ,

dl IMG mbatch 100 8 ) ; a r e a l = gpuArray ( a r e a l ) ;
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63 b r e a l = cat (4 , dl IMG mbatch 20 4 , dl IMG mbatch 20 8

) ; b r e a l = gpuArray ( b r e a l ) ;

64

65 a r e a l v a l = cat (4 , dl IMG mbatch val 100 4 ,

dl IMG mbatch val 100 8 ) ; a r e a l v a l = gpuArray (

a r e a l v a l ) ;

66 b r e a l v a l = cat (4 , dl IMG mbatch val 20 4 ,

dl IMG mbatch val 20 8 ) ; b r e a l v a l = gpuArray (

b r e a l v a l ) ;

67

68 % eva luate model g r ad i en t s f o r a l l g ene ra to r s and

d i s c r i m i n a t o r s

69 [ gradGa , gradGb , gradDa , gradDb , stateGa , stateGb , G los s ]

= . . .

70 d l f e v a l ( @modelGradients ,Ga,Gb, Da ,Db, a r e a l ,

b r e a l ) ;

71 Ga. State = stateGa ; Gb. State = stateGb ;

72

73 % Update the d i s c r i m i n a t o r network parameters .

74 [ Da , trAvDa , trAvSqDa ] = adamupdate (Da , gradDa , trAvDa ,

trAvSqDa , i t r , l r , gdf , s gd f ) ;

75 [Db, trAvDb , trAvSqDb ] = adamupdate (Db, gradDb , trAvDb ,

trAvSqDb , i t r , l r , gdf , s gd f ) ;

76 % Update the generato r network parameters .

77 [Ga , trAvGa , trAvSqGa ] = adamupdate (Ga, gradGa , trAvGa ,

trAvSqGa , i t r , l r , gdf , sgd f ) ;

78 [Gb, trAvGb , trAvSqGb ] = adamupdate (Gb, gradGb , trAvGb ,

trAvSqGb , i t r , l r , gdf , sgd f ) ;

79

80 % Every va l idat ionFrequency i t e r a t i o n s , d i sp l ay

batch o f generated images us ing the

81 % held≠out gene rato r input
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82 i f mod( i t r , va l idat ionFrequency ) == 0 | | i t r == 1

83 % Generate images us ing the held≠out generato r

input .

84

85 a va l g en = pr ed i c t (Ga, b r e a l v a l ) ;

86

87 b va l gen = pr ed i c t (Gb, a r e a l v a l ) ;

88

89 % Ti l e the images

90 I = i m t i l e ( gather ( ( ex t rac tdata ( a va l g en ) ) ) ) ;

91 I1 = i m t i l e ( gather ( ex t rac tdata ( b va l gen ) ) ) ;

92

93 % Display the images .

94 subplot ( 1 , 2 , 1 ) ;

95 imagesc ( imageAxes , I ) ; ax i s image ;

96 x t i c k l a b e l s ( [ ] ) ;

97 y t i c k l a b e l s ( [ ] ) ;

98 t i t l e (” G a 20X ≠> 100X images ”) ;

99

100 subplot ( 1 , 2 , 2 ) ;

101 imagesc ( imgAxes , I1 ) ; ax i s image ;

102 x t i c k l a b e l s ( [ ] ) ;

103 y t i c k l a b e l s ( [ ] ) ;

104 t i t l e ( [ ’G b 20X≠>100X images I t e r a t i o n s : ’

num2str ( i t r ) ] )

105 drawnow ;

106 saveas ( gcf , [ ’F:\ WideFieldDHM\

CD4 CD8 imgSizeRecal ibration \ Resu l t s \CGAN\

incImprovement 04 ≠09≠20\ I t e r a t i o n ’ num2str (

i t r ) ’ . png ’ ] ) ;

107 end

108 % Update the s c o r e s p l o t
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109 CycleGan loss ( i t r ) = gather ( ex t rac tdata ( G los s ) ) ;

110 D = durat ion (0 , 0 , toc ( s t a r t ) , ’ Format ’ , ’ hh :mm: s s ’ ) ;

111 f p r i n t f ( ’ Epoch : %d \ t I t e r a t i o n : %d \ t C≠Gan Loss :% f

\ t Duration : %s \n ’ , epoch , i t r , Cyc leGan loss ( i t r ) ,

s t r i n g (D) ) ;

112

113 c t r = c t r+miniBatchSize ;

114 i f c t r >= 450

115 f l a g = 0 ;

116 c t r = 0 ;

117 e l s e

118 f l a g = 1 ;

119 end

120 end

121 end

A.3.2 Model Gradients

1 f unc t i on [ gradGa , gradGb , gradDa , gradDb , stateGa , stateGb , g l o s s

] = . . .

2 modelGradients (Ga,Gb, Da ,Db, a r e a l , b r e a l )

3

4 % Calcu la te the p r e d i c t i o n s f o r generated data with the

d i s c r i m i n a t o r network .

5 [ a f ak e ] = forward (Ga, b r e a l ) ;

6 [ b f ake ] = forward (Gb, a r e a l ) ;

7 [ a rec , stateGa ] = forward (Ga, b fake ) ;

8 [ b rec , stateGb ] = forward (Gb, a f ake ) ;

9

10 b r d i s = sigmoid ( forward (Da , b r e a l ) ) ;

11 a r d i s = sigmoid ( forward (Db, a r e a l ) ) ;

12 b f d i s = sigmoid ( forward (Da , b fake ) ) ;

13 a f d i s = sigmoid ( forward (Db, a f ake ) ) ;
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14

15 r l a b e l = ones ( s i z e ( b f d i s ) ) ;

16 f l a b e l = ze ro s ( s i z e ( a f d i s ) ) ;

17 a g e n l o s s = mean ( ( a f d i s ≠ r l a b e l ) . ˆ 2 ) ;

18 b g e n l o s s = mean ( ( b f d i s ≠ r l a b e l ) . ˆ 2 ) ;

19

20 a r e c l o s s = mean(mean(mean( abs ( a r e c ≠ a r e a l ) ) ) ) ;

21 b r e c l o s s = mean(mean(mean( abs ( b r e c ≠ b r e a l ) ) ) ) ;

22 g l o s s = a g e n l o s s + b g e n l o s s + 10�( a r e c l o s s +

b r e c l o s s ) ;

23

24 a d r l o s s = mean ( ( a r d i s ≠ r l a b e l ) . ˆ 2 ) ;

25 a d f l o s s = mean ( ( a f d i s ≠ f l a b e l ) . ˆ 2 ) ;

26 b d r l o s s = mean ( ( b r d i s ≠ r l a b e l ) . ˆ 2 ) ;

27 b d f l o s s = mean ( ( b f d i s ≠ f l a b e l ) . ˆ 2 ) ;

28

29 a d l o s s = a d r l o s s + a d f l o s s ;

30 b d l o s s = b d r l o s s + b d f l o s s ;

31

32 gradGa = d lg r ad i en t ( g l o s s ,Ga . Learnables , ’ RetainData ’ , t rue ) ;

33 gradGb = d lg r ad i en t ( g l o s s ,Gb. Learnables , ’ RetainData ’ , t rue ) ;

34 gradDa = d lg r ad i en t ( a d l o s s ,Da . Learnables ) ;

35 gradDb = d lg r ad i en t ( b d l o s s ,Db. Learnables ) ;

36

37 end

A.3.3 Discriminator1

1 f unc t i on [ d i s c ] = d i s c r im ina t o r 1

2 f i l t e r S i z e = 5 ; numFilters = 64 ; s c a l e = 0 . 8 ;

3 l a y e r s = [

4 imageInputLayer ( [ 5 2 52 1 ] , ’ Normal izat ion ’ , ’ none ’ , ’Name ’ ,

’ in ’ )
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5 dropoutLayer ( 0 . 5 , ’Name ’ , ’ dropout ’ )

6 convolut ion2dLayer ( f i l t e r S i z e , numFilters , ’ S t r i d e ’ , 2 , ’

Padding ’ , ’ same ’ , ’Name ’ , ’ conv1 ’ )

7 leakyReluLayer ( s ca l e , ’Name ’ , ’ l r e l u 1 ’ )

8 convolut ion2dLayer (4 ,2� numFilters , ’ S t r i d e ’ , 2 , ’ Padding ’ , ’

same ’ , ’Name ’ , ’ conv2 ’ )

9 batchNormal izat ionLayer ( ’Name ’ , ’ bn2 ’ )

10 leakyReluLayer ( s ca l e , ’Name ’ , ’ l r e l u 2 ’ )

11 convolut ion2dLayer (3 ,4� numFilters , ’ S t r i d e ’ , 2 , ’ Padding ’ , ’

same ’ , ’Name ’ , ’ conv3 ’ )

12 batchNormal izat ionLayer ( ’Name ’ , ’ bn3 ’ )

13 leakyReluLayer ( s ca l e , ’Name ’ , ’ l r e l u 3 ’ )

14 convolut ion2dLayer (3 ,8� numFilters , ’ S t r i d e ’ , 2 , ’ Padding ’ , ’

same ’ , ’Name ’ , ’ conv4 ’ )

15 batchNormal izat ionLayer ( ’Name ’ , ’ bn4 ’ )

16 leakyReluLayer ( s ca l e , ’Name ’ , ’ l r e l u 4 ’ )

17 convolut ion2dLayer (3 ,16 , ’Name ’ , ’ conv5 ’ )

18 convolut ion2dLayer (2 , 1 , ’Name ’ , ’ conv6 ’ ) ] ;

19

20 l g raphDi s c r im inato r = layerGraph ( l a y e r s ) ;

21 d i s c = dlnetwork ( l g raphDi s c r im inato r ) ;

22 end

A.3.4 Discriminator2

1 f unc t i on [ d i s c ] = d i s c r im ina t o r 2

2 f i l t e r S i z e = 5 ; numFilters = 64 ; s c a l e = 0 . 8 ;

3 l a y e r s = [

4 imageInputLayer ( [ 2 00 200 1 ] , ’ Normal izat ion ’ , ’ none ’ , ’Name

’ , ’ in ’ )

5 dropoutLayer ( 0 . 5 , ’Name ’ , ’ dropout ’ )

6 convolut ion2dLayer ( f i l t e r S i z e , numFilters , ’ S t r i d e ’ , 2 , ’

Padding ’ , ’ same ’ , ’Name ’ , ’ conv1 ’ )
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7 leakyReluLayer ( s ca l e , ’Name ’ , ’ l r e l u 1 ’ )

8 convolut ion2dLayer (5 ,2� numFilters , ’ S t r i d e ’ , 2 , ’ Padding ’ , ’

same ’ , ’Name ’ , ’ conv2 ’ )

9 batchNormal izat ionLayer ( ’Name ’ , ’ bn2 ’ )

10 leakyReluLayer ( s ca l e , ’Name ’ , ’ l r e l u 2 ’ )

11 convolut ion2dLayer (5 ,4� numFilters , ’ S t r i d e ’ , 2 , ’ Padding ’ , ’

same ’ , ’Name ’ , ’ conv3 ’ )

12 batchNormal izat ionLayer ( ’Name ’ , ’ bn3 ’ )

13 leakyReluLayer ( s ca l e , ’Name ’ , ’ l r e l u 3 ’ )

14 convolut ion2dLayer (5 ,8� numFilters , ’ S t r i d e ’ , 2 , ’ Padding ’ , ’

same ’ , ’Name ’ , ’ conv4 ’ )

15 batchNormal izat ionLayer ( ’Name ’ , ’ bn4 ’ )

16 leakyReluLayer ( s ca l e , ’Name ’ , ’ l r e l u 4 ’ )

17 convolut ion2dLayer (5 ,8� numFilters , ’ S t r i d e ’ , 2 , ’ Padding ’ , ’

same ’ , ’Name ’ , ’ conv5 ’ )

18 batchNormal izat ionLayer ( ’Name ’ , ’ bn5 ’ )

19 leakyReluLayer ( s ca l e , ’Name ’ , ’ l r e l u 5 ’ )

20 convolut ion2dLayer (5 ,4� numFilters , ’ S t r i d e ’ , 2 , ’ Padding ’ , ’

same ’ , ’Name ’ , ’ conv6 ’ )

21 batchNormal izat ionLayer ( ’Name ’ , ’ bn6 ’ )

22 leakyReluLayer ( s ca l e , ’Name ’ , ’ l r e l u 6 ’ )

23 convolut ion2dLayer (5 , 1 , ’ S t r i d e ’ , 2 , ’ Padding ’ , ’ same ’ , ’Name

’ , ’ conv7 ’ )

24 batchNormal izat ionLayer ( ’Name ’ , ’ bn7 ’ )

25 leakyReluLayer ( s ca l e , ’Name ’ , ’ l r e l u 7 ’ )

26 convolut ion2dLayer (5 , 1 , ’ S t r i d e ’ , 2 , ’ Padding ’ , ’ same ’ , ’Name

’ , ’ conv8 ’ ) ] ;

27

28 l g raphDi s c r im inato r = layerGraph ( l a y e r s ) ;

29 d i s c = dlnetwork ( l g raphDi s c r im inato r ) ;

30 end
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A.3.5 Generator 1

1 f unc t i on [ gen ] = generator1

2 l a y e r s = [

3 imageInputLayer ( [ 5 2 52 1 ] , ’ Normal izat ion ’ , ’ none ’ , ’Name ’ ,

’ in ’ )

4 convolut ion2dLayer (5 , 8 , ’ S t r i d e ’ , 2 , ’ Padding ’ ,1 , ’Name ’ , ’ c1

’ )

5 re luLayer ( ’Name ’ , ’ r l ’ )

6 convolut ion2dLayer (5 ,16 , ’ S t r i d e ’ , 2 , ’ Padding ’ ,1 , ’Name ’ , ’

c2 ’ )

7 re luLayer ( ’Name ’ , ’ r l 1 ’ )

8 batchNormal izat ionLayer ( ’Name ’ , ’ bn1 ’ )

9 convolut ion2dLayer (4 ,16 , ’ S t r i d e ’ , 2 , ’ Padding ’ ,1 , ’Name ’ , ’

c3 ’ )

10 re luLayer ( ’Name ’ , ’ r l 2 ’ )

11 convolut ion2dLayer (4 ,32 , ’ S t r i d e ’ , 2 , ’ Padding ’ ,1 , ’Name ’ , ’

c4 ’ )

12 re luLayer ( ’Name ’ , ’ r l 3 ’ )

13 batchNormal izat ionLayer ( ’Name ’ , ’ bn2 ’ )

14 convolut ion2dLayer (3 ,32 , ’ S t r i d e ’ , 1 , ’ Padding ’ ,0 , ’Name ’ , ’

c5 ’ )

15 transposedConv2dLayer (10 ,64 , ’Name ’ , ’ tconv1 ’ )

16 batchNormal izat ionLayer ( ’Name ’ , ’ bnorm1 ’ )

17 re luLayer ( ’Name ’ , ’ r e l u1 ’ )

18 transposedConv2dLayer (5 ,64 , ’ S t r i d e ’ , 2 , ’ Cropping ’ , ’ same ’ ,

’Name ’ , ’ tconv2 ’ )

19 batchNormal izat ionLayer ( ’Name ’ , ’ bnorm2 ’ )

20 re luLayer ( ’Name ’ , ’ r e l u2 ’ )

21 transposedConv2dLayer (5 ,64 , ’ S t r i d e ’ , 2 , ’ Cropping ’ , ’ same ’ ,

’Name ’ , ’ tconv3 ’ )

22 batchNormal izat ionLayer ( ’Name ’ , ’ bnorm3 ’ )

23 re luLayer ( ’Name ’ , ’ r e l u3 ’ )
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24 transposedConv2dLayer (5 ,64 , ’ S t r i d e ’ , 2 , ’ Cropping ’ , ’ same ’ ,

’Name ’ , ’ tconv4 ’ )

25 batchNormal izat ionLayer ( ’Name ’ , ’ bnorm4 ’ )

26 re luLayer ( ’Name ’ , ’ r e l u4 ’ )

27 transposedConv2dLayer (4 ,32 , ’ S t r i d e ’ , 2 , ’ Cropping ’ , ’ same ’ ,

’Name ’ , ’ tconv5 ’ )

28 batchNormal izat ionLayer ( ’Name ’ , ’ bnorm5 ’ )

29 re luLayer ( ’Name ’ , ’ r e l u5 ’ )

30 transposedConv2dLayer (5 ,32 , ’Name ’ , ’ tconv6 ’ )

31 batchNormal izat ionLayer ( ’Name ’ , ’ bnorm6 ’ )

32 re luLayer ( ’Name ’ , ’ r e l u6 ’ )

33 transposedConv2dLayer (5 ,16 , ’Name ’ , ’ tconv7 ’ )

34 re luLayer ( ’Name ’ , ’ r e l u7 ’ )

35 transposedConv2dLayer (5 ,16 , ’Name ’ , ’ tconv8 ’ )

36 batchNormal izat ionLayer ( ’Name ’ , ’ bnorm8 ’ )

37 re luLayer ( ’Name ’ , ’ r e l u8 ’ )

38 transposedConv2dLayer (5 , 8 , ’Name ’ , ’ tconv9 ’ )

39 batchNormal izat ionLayer ( ’Name ’ , ’ bnorm9 ’ )

40 re luLayer ( ’Name ’ , ’ r e l u9 ’ )

41 transposedConv2dLayer (5 , 8 , ’Name ’ , ’ tconv10 ’ )

42 batchNormal izat ionLayer ( ’Name ’ , ’ bnorm10 ’ )

43 re luLayer ( ’Name ’ , ’ r e lu10 ’ )

44 transposedConv2dLayer (5 , 4 , ’Name ’ , ’ tconv11 ’ )

45 batchNormal izat ionLayer ( ’Name ’ , ’ bnorm11 ’ )

46 re luLayer ( ’Name ’ , ’ r e lu11 ’ )

47 transposedConv2dLayer (5 , 4 , ’Name ’ , ’ tconv12 ’ )

48 batchNormal izat ionLayer ( ’Name ’ , ’ bnorm12 ’ )

49 re luLayer ( ’Name ’ , ’ r e lu12 ’ )

50 transposedConv2dLayer (5 , 2 , ’Name ’ , ’ tconv13 ’ )

51 batchNormal izat ionLayer ( ’Name ’ , ’ bnorm13 ’ )

52 re luLayer ( ’Name ’ , ’ r e lu13 ’ )

53 transposedConv2dLayer (5 , 2 , ’Name ’ , ’ tconv14 ’ )
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54 batchNormal izat ionLayer ( ’Name ’ , ’ bnorm14 ’ )

55 re luLayer ( ’Name ’ , ’ r e lu14 ’ )

56 transposedConv2dLayer (5 , 1 , ’Name ’ , ’ tconv15 ’ )

57 ] ;

58 lgraphGen = layerGraph ( l a y e r s ) ;

59 gen = dlnetwork ( lgraphGen ) ;

60 end

A.3.6 Generator 2

1 f unc t i on [ gen ] = generator2

2 l a y e r s = [

3 imageInputLayer ( [ 2 00 200 1 ] , ’ Normal izat ion ’ , ’ none ’ , ’Name

’ , ’ in ’ )

4 convolut ion2dLayer (5 ,16 , ’ S t r i d e ’ , 2 , ’ Padding ’ ,1 , ’Name ’ , ’

c1 ’ )

5 re luLayer ( ’Name ’ , ’ r l ’ )

6 convolut ion2dLayer (5 ,16 , ’ S t r i d e ’ , 2 , ’ Padding ’ ,1 , ’Name ’ , ’

c2 ’ )

7 re luLayer ( ’Name ’ , ’ r l 1 ’ )

8 batchNormal izat ionLayer ( ’Name ’ , ’ bn1 ’ )

9 convolut ion2dLayer (4 ,32 , ’ S t r i d e ’ , 2 , ’ Padding ’ ,1 , ’Name ’ , ’

c3 ’ )

10 re luLayer ( ’Name ’ , ’ r l 2 ’ )

11 convolut ion2dLayer (4 ,32 , ’ S t r i d e ’ , 2 , ’ Padding ’ ,1 , ’Name ’ , ’

c4 ’ )

12 re luLayer ( ’Name ’ , ’ r l 3 ’ )

13 batchNormal izat ionLayer ( ’Name ’ , ’ bn2 ’ )

14 convolut ion2dLayer (3 ,64 , ’ S t r i d e ’ , 1 , ’ Padding ’ ,0 , ’Name ’ , ’

c5 ’ )

15 re luLayer ( ’Name ’ , ’ r l 4 ’ )

16 batchNormal izat ionLayer ( ’Name ’ , ’ bn3 ’ )

17 convolut ion2dLayer (3 ,64 , ’ S t r i d e ’ , 2 , ’ Padding ’ ,0 , ’Name ’ , ’
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c6 ’ )

18 re luLayer ( ’Name ’ , ’ r l 5 ’ )

19 batchNormal izat ionLayer ( ’Name ’ , ’ bn4 ’ )

20 convolut ion2dLayer (3 ,128 , ’ S t r i d e ’ , 2 , ’ Padding ’ ,0 , ’Name ’ , ’

c7 ’ )

21 transposedConv2dLayer (10 ,128 , ’Name ’ , ’ tconv1 ’ )

22 batchNormal izat ionLayer ( ’Name ’ , ’ bnorm1 ’ )

23 re luLayer ( ’Name ’ , ’ r e l u1 ’ )

24 transposedConv2dLayer (5 ,64 , ’ S t r i d e ’ , 2 , ’ Cropping ’ , ’ same ’ ,

’Name ’ , ’ tconv2 ’ )

25 batchNormal izat ionLayer ( ’Name ’ , ’ bnorm2 ’ )

26 re luLayer ( ’Name ’ , ’ r e l u2 ’ )

27 transposedConv2dLayer (5 ,64 , ’ S t r i d e ’ , 2 , ’ Cropping ’ , ’ same ’ ,

’Name ’ , ’ tconv3 ’ )

28 batchNormal izat ionLayer ( ’Name ’ , ’ bnorm3 ’ )

29 re luLayer ( ’Name ’ , ’ r e l u3 ’ )

30 transposedConv2dLayer (5 ,32 , ’Name ’ , ’ tconv4 ’ )

31 batchNormal izat ionLayer ( ’Name ’ , ’ bnorm4 ’ )

32 re luLayer ( ’Name ’ , ’ r e l u4 ’ )

33 transposedConv2dLayer (5 ,16 , ’Name ’ , ’ tconv5 ’ )

34 batchNormal izat ionLayer ( ’Name ’ , ’ bnorm5 ’ )

35 re luLayer ( ’Name ’ , ’ r e l u5 ’ )

36 transposedConv2dLayer (5 , 1 , ’Name ’ , ’ tconv6 ’ )

37 ] ;

38 lgraphGen = layerGraph ( l a y e r s ) ;

39 gen = dlnetwork ( lgraphGen ) ;

40 end

A.4 Matlab code: PCA

A general script where the variable “data” can be loaded into the work-space and

then principal components can be calculated.

1 c l e a r a l l ; c l o s e a l l ; c l c ;
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2

3 load ( ’ data . mat ’ ) ;

4

5 % Normal iz ing data to remove i n t e n s i t y f l u c t u a t i o n s

6 data = data ≠ repmat (mean( data , 2 ) ,1 , s i z e ( data , 2 ) ) ;

7 % Evaluat ing the p r i n c i p a l components

8 cMat = cov ( double ( data ) ) ;

9 [ eVec eVal ] = e i g s ( cMat ) ;

10

11 % p c i = eVec ( : , i ) ;
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