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A B S T R A C T   

Humans can tell when they find a task difficult. Subtle uncertainty behaviors like changes in motor speed and 
muscle tension precede and affect these experiences. Theories of animal metacognition likewise stress the 
importance of endogenous signals of uncertainty as cues that motivate metacognitive behaviors. However, while 
researchers have investigated second-order behaviors like information seeking and declining difficult trials in 
nonhuman animals, they have devoted little attention to the behaviors that express the cognitive conflict that 
gives rise to such behaviors in the first place. Here we explored whether three chimpanzees would, like humans, 
show hand wavering more when faced with more difficult choices in a touch screen transitive inference task. 
While accuracy was very high across all conditions, all chimpanzees wavered more frequently in trials that were 
objectively more difficult, demonstrating a signature behavior which accompanies experiences of difficulty in 
humans. This lends plausibility to the idea that feelings of uncertainty, like other emotions, can be studied in 
nonhuman animals. We propose to routinely assess uncertainty behaviors to inform models of procedural 
metacognition in nonhuman animals.   

1. Introduction 

Humans can tell when they find a task difficult. Faced with a tough 
multiple-choice problem, we may catch ourselves as we are about to 
make a mistake, or we may notice that we are going back and forth 
between choices. Humans routinely judge the accuracy of their decision 
making and experience epistemic feelings like uncertainty, familiarity, 
or doubt. Philosophers have often mentioned that when humans report 
such feelings, this is accompanied by characteristic behaviors, e.g. 
wavering between options, hesitating, or frowning (Carruthers, 2017; 
Dokic, 2012; Proust, 2012). 

This is consistent with the finding that explicit metacognitive ap
praisals (e.g. “this is very difficult for me”) are reliably associated with 
observable behavior. Rahnev et al. (2020) documented in an analysis of 
4089 participants from 76 different datasets that when participants 
hesitate longer before giving an answer, they report lower confidence 
(mean r = − 0.24). In recent years, new methods have been developed to 
identify the contributions that self-generated “uncertainty behaviors” 
make to metacognitive judgments. For example, Questienne, Atas, 

Burle, and Gevers (2018) studied the subjective experience of “urge-to- 
err”, an experience closely linked to perceived difficulty, in an arrow 
priming task. As in previous studies, experiencing a feeling of almost 
having made an error was correlated with response time. Crucially, this 
relationship was stronger when the response was preceded by a subtle 
EMG response from the incorrect hand than when it was not, implying 
that the metacognitive appraisal was sensitive to the experience of 
motor response competition. Similarly, Wokke, Achoui, and Cleeremans 
(2020) found that participants in a color discrimination task showed 
higher metacognitive sensitivity if they were asked about their confi
dence just after the presentation of a response cue (e.g. left button 
corresponds to green) than if they were asked before. In other words, the 
experience of a clear response tendency, or of competing response ten
dencies, contributed to how well participants could anticipate how 
likely they were to be correct. In another study, Dotan, Meyniel, and 
Dehaene (2018) presented participants with a touch screen task in 
which participants were asked to slide their finger either to the left or 
right in response to evidence that accumulated throughout the trial. 
Subtle changes in finger speed and acceleration suggested that online 
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confidence monitoring affected the participants' speed. Post-decisional 
confidence ratings, in turn, correlated with the total variability in 
finger acceleration throughout the trial, and both were directly related 
to the objective difficulty of trials. In sum, evidence suggests that 
humans adjust their motor response preparation to their current level of 
confidence, and conversely, exploit their own experience of motor 
response competition in generating confidence and difficulty judgments. 

Animal metacognition has been the topic of intense research for 
more than 20 years because of its conceptual overlap with philosophical 
questions about the subjective experience of agency in nonhumans 
(Metcalfe & Son, 2012), self-directed attention (Carruthers & Ritchie, 
2012), and the evolution of theory of mind and self-other distinction 
(Carruthers, 2009; Musholt, 2015; Proust, 2007). The fact that humans 
appear to exploit self-generated motor responses when making meta
cognitive judgments is reminiscent of some of the earliest “cognitive 
conflict” models of metacognition in nonhuman animals (Smith et al., 
1995). These mostly informal models posit that it is the experience of 
competing perceptual evidence or competing response tendencies 
without a clear “winner” that elicit “second-order” responses aimed at 
terminating this conflict (cf. Kepecs & Mainen, 2012). The majority of 
animal metacognition research focuses on these second-order behaviors 
that come to the rescue when a situation is too uncertain. These studies 
have found that different primate species (a) opt out of choices when 
trials are more difficult (Shields, Smith, & Washburn, 1997; Smith, 
Coutinho, Church, & Beran, 2013), (b) seek for information in a strategic 
and selective manner (Beran, Smith, & Perdue, 2013; Bohn, Allritz, Call, 
& Völter, 2017; Brady & Hampton, 2021; Call, 2010; Call & Carpenter, 
2001; Kornell, Son, & Terrace, 2007; Malassis, Gheusi, & Fagot, 2015; 
Rosati & Santos, 2016), (c) and place larger “bets” on their own re
sponses when they are more likely to be right (Kornell et al., 2007). 
Uncertainty behaviors, which signal a response conflict on the level of 
the primary response, have received much less empirical scrutiny on the 
other hand, even though they have occasionally been described 
(Muenziger, 1938; Smith et al., 1995; Tolman, 1926).1 

Uncertainty behaviors have implications for two overlapping de
bates. The first concerns if and how animals experience epistemic feel
ings. The premise that animals experience “feelings of uncertainty” is 
acceptable to some (e.g. Carruthers & Ritchie, 2012; Proust, 2012), 
while others remain non-committal or skeptical (e.g. Hampton, 2009; 
Smith, Shields, & Washburn, 2003). Rather than relying on philosoph
ical stances, we propose that it may be possible to study epistemic 
emotions with similar methods as they have in recent years been 
developed for studying other emotions in nonhuman animals (Mendl, 
Burman, & Paul, 2010; Panksepp, 2011; Paul, Harding, & Mendl, 2005). 
For example, some have proposed that careful examination of the 
componential structure of responses to specific situations (e.g. motor 
behavior, physiological responses, cognitive biases) may allow us to 
determine to what extent experiencing a specific emotion is distinct 
from other emotional experiences in the same species (Paul et al., 2005). 
Moreover, by comparing multiple components across different situa
tions, we can speculate to what extent the subjective experience of un
certainty is isomorphic between humans and other species (Panksepp, 

2011). Documenting wavering in nonhuman animals in studies that are 
analogous to the ones recently conducted with humans, could thus be a 
first step in assembling what “feeling uncertain” looks like in nonhuman 
animals.2 Triangulating epistemic feelings in this way is more than a 
mere philosophical exercise, because it is these feelings that are pre
sumed by some to give rise to the higher-order, conflict-resolving be
haviors (e.g. seeking information, opting out) that one may regard as 
metacognitive (Dokic, 2012; Proust, 2012). 

Second, irrespective of any assumptions one may have about the 
involvement of subjective feelings, whether animals show uncertainty 
behaviors has direct implications for evaluating models of “procedural 
metacognition” (Beran, Brandl, Perner, & Proust, 2012; Hampton, 
2009). Procedural (or implicit) metacognition refers to the monitoring 
and control of cognitive processes and abilities (Proust, 2019). This al
lows animals to predict and improve the results of their thinking via 
simple heuristics like “if it cannot be remembered easily, then seek more 
information”. The term “procedural metacognition” is typically used to 
differentiate the concept from “declarative” or “metarepresentational” 
forms that, by definition, require that these heuristics must themselves 
be explicitly represented. A demonstration regarded necessary for either 
type of metacognition, procedural and declarative, is that the cues that 
give rise to metacognitive behaviors in the first place are “endogenously- 
generated” or “private” (Beran et al., 2012; Hampton, 2009). Uncer
tainty behaviors like wavering are particularly interesting in this context 
because they involve both proprioception (a purely endogenous cue) 
and movement (what Hampton, 2009, would call a “publicly available 
cue”). How should these behaviors be treated in animal metacognition 
experiments, then? 

On the one hand, the recent studies with humans show that uncer
tainty behaviors without a doubt contribute to reporting of appraisals 
that are conventionally considered metacognitive in humans, like con
fidence or difficulty judgments (Dotan et al., 2018; Questienne et al., 
2018; Wokke et al., 2020). On the other hand, some researchers of an
imal metacognition caution that self-generated cues, if they are publicly 
available like motor behavior, may trigger conditioned responses (e.g. 
choosing an opt-out button) that only look like metacognitive behaviors, 
but may just as well be described as reward-maximizing, learned 
response chains (Hampton, 2003, 2009; Proust, 2012). For the most 
convincing demonstrations, we may thus need to exclude this possibility 
via statistical control (Goupil, Romand-Monnier, & Kouider, 2016) or 
experimental design (Basile, Schroeder, Brown, Templer, & Hampton, 
2015; Kornell et al., 2007). For the most fair comparison, on the other 
hand, one might argue that if animals respond to their self-generated 
behavioral cues with adaptive second-order behaviors, there is no 
good reason not to call this metacognitive as well (cf. Kornell, 2014, for a 
related discussion). Regardless of where one stands on this issue, it 
follows that documenting uncertainty behaviors routinely is critical for 
refining existing theories of animal metacognition. 

In spite of their importance in the debates over epistemic feelings and 
procedural metacognition, wavering and similar subtle, observable signs 

1 Response competition behaviors have been referred to as “hesitation” 
(Muenziger, 1938), “ancillary motor behaviors” (Smith et al., 1995), “vacilla
tion” (Hampton, 2009), “oscillation” (Proust, 2012) or simply “wavering” 
(Sayers et al., 2015; Smith et al., 1995). In the field of rodent navigation, 
looking back and forth between maze alley options, has been termed “vicarious 
trial and error”, and has, based on neuroscientific investigations, been linked to 
deliberative mental simulations of future actions (Redish, 2016). If and when 
other behaviors like hand wavering or gaze alternations also imply serial rep
resentations of hypothetical outcomes has yet to be determined. Here we will 
use the term “uncertainty behaviors” for the general class of behaviors that 
have been described with these different terms, and “wavering” specifically for 
behaviors that involve movement back and forth between multiple physical 
options or hesitating in proximity to one of them. 

2 We recognize this as an indirect argument: if human verbal reports of 
specific subjective experiences (e.g. feeling uncertain) in specific situations (e.g. 
a more difficult decision) are accompanied by specific behaviors (e.g. visibly 
wavering between options), then observing comparable behaviors in compa
rable situations in nonhuman animals lends plausibility to the idea that the 
animal's subjective experience is also comparable. For example, Couchman 
et al. (2012, p.32) explicitly make this argument, speculating about the 
“experience of uncertainty-monitoring” in primates. Similar indirect arguments 
for animal subjective experience are central in other areas of comparative 
psychology, e.g. the study of basic emotions and their feeling components 
(Mendl, Mason, & Paul, 2017; Panksepp, 2010, 2011) or the study of episodic 
memory and its autonoetic components (Dere, Kart-Teke, Huston, & De Souza 
Silva, 2006; Tulving, 2005). Whether such an indirect argument is permissible 
in any domain is one of comparative psychology's eternal debates and will not 
be settled here (see Wemelsfelder, 1997, for a discussion). 

M. Allritz et al.                                                                                                                                                                                                                                  



Cognition 214 (2021) 104766

3

of response competition have been studied only rarely. In the classic 
study by Smith et al. (1995), a bottlenosed dolphin was trained to press 
one paddle in response to high-pitched tones, one paddle in response to 
low-pitched tones, and a third paddle to escape an ongoing trial in ex
change for an easier one. In addition to using this uncertainty response 
more often as a function of pitch ambiguity, Smith et al. reported that in 
some trials the dolphin wavered between the primary options. The 
amount of wavering was distributed like the choice of the escape 
response along the pitch continuum, and wavering often foreshadowed 
an escape. The authors interpreted these behaviors as expressions of 
cognitive conflict at discrimination threshold, which in turn “elicit[s] 
higher modes of cognition”. Sayers, Evans, Menzel, Smith, and Beran 
(2015) described a similar phenomenon in the rhesus monkey Murph, 
who completed a sparse-dense discrimination task and who showed 
more joystick wavering in those trials in which he eventually chose to 
opt out. Two other studies have investigated the relationship between 
“hesitation” and task performance in great apes (Suda & Call, 2006) and 
in captive fur seals (Scheumann & Call, 2004). However, relating these 
findings to studies of wavering and metacognition in humans is 
complicated by the facts that hesitation scores in both studies collapsed 
rather different types of motor behaviors, and that the relationship be
tween hesitation and difficulty was based on subjects' aggregated per
formances on the level of individuals or test conditions, respectively. For 
example, Suda and Call (2006) investigated whether great apes' hesi
tation was related to performance in a Piagetian liquid conservation 
task. Wavering back and forth between options, and the simultaneous 
picking of two options with both hands, were both collapsed in a single 
measure of “hesitation”. While the former behavior is very similar to the 
oscillating motor responses shown in human EMG and touchscreen 
studies (Dotan et al., 2018; Questienne et al., 2018), using both hands 
simultaneously may not necessarily be a manifestation of decisional or 
response conflict. It could, for example, reflect an incomplete under
standing of the task requirements by some subjects (i.e. that only a single 
choice is allowed per trial), or it may have served as an acquired, second 
order behavior, used by subjects to move the experiment along, akin to 
primates using the “opt-out” option in other tasks. 

Second, unlike in human studies, hesitation was not investigated 
with regard to how it changed as a direct consequence of trial-to-trial 
variations in objective difficulty. Rather, subject averages in hesitation 
were correlated with averages in performance. An inverse U-shaped 
relationship best accounted for the data. The authors regarded this as 
evidence that those subjects who showed an intermediate performance 
must have experienced most strongly a conflict between two different 
problem-solving strategies, and consequently showed hesitation most 
often. While this may indeed be the case, correlations of averages alone 
cannot explain what makes subjects hesitate more in some trials than in 
others. In sum, collapsing different types of “hesitation” into one mea
sure, and correlating them with performance averages both complicate 
the comparability with human studies of uncertainty behaviors (Dotan 
et al., 2018; Questienne et al., 2018; Wokke et al., 2020), and thus in
ferences about epistemic feelings and metacognitive appraisals. A task 
for nonhuman primates that can be compared directly with human 
studies of uncertainty behaviors requires an unambiguous, quantitative 
measure of wavering, compared across test conditions of varying de
grees of objective difficulty. 

To fill this gap, we explored uncertainty behaviors in a touchscreen 
task with three chimpanzees at the Wolfgang Koehler Primate Research 
Center (WKPRC) in Leipzig Zoo, Germany. Several studies have 
demonstrated metacognitive behaviors in response to experiencing un
certain situations in chimpanzees. For example, chimpanzees have been 
shown to seek for information selectively when required to locate hid
den food (Call, 2010; Perdue, Evans, & Beran, 2018) or the best tool 
(Bohn et al., 2017), or to identify a hidden food (Beran et al., 2013); and 
they are more likely to move and collect a reward after responding 
correctly, even before receiving performance feedback (Beran et al., 
2015). Less is known, however, about chimpanzees' experience of 

uncertainty itself and whether this experience can be quantified. Here, 
we investigated whether the three chimpanzees would show more hand 
wavering between two pictures on a screen whenever they were pre
sented with more difficult choices. Rather than training our chimpan
zees in one of the established metacognition tasks (e.g. opt-out or betting 
paradigms), we collected wavering data in the context of an already 
ongoing study on serial learning and transitive inference.3 This choice 
allowed greater comparability with human findings on uncertainty be
haviors because for transitive inference tasks, objective, gradual differ
ences in difficulty of individual probe trials are well established based on 
a large body of literature. To further approximate the fine-grained 
measurement of human EMG and touchscreen studies, we recorded 
the amount of wavering not as a binary variable but as a count, allowing 
us to relate gradual differences in trial difficulty to gradual differences in 
overt wavering for each individual directly. 

Transitive inferences are inferences of the type “if A > B and B > C, 
then A > C”. In comparative studies, relationships of this type are 
typically operationalized in terms of sequential order, e.g. “press A 
before you press B", etc. To learn an implied list (e.g. A > B > C > D > E), 
subjects (often pigeons or rhesus macaques) are initially trained to make 
correct selections for all premise pairs (“AB”, “BC”, “CD”, “DE”, for re
views, see Jensen, 2017; Vasconcelos, 2008), though in some cases 
subjects are initially trained on the full list (“ABCDE”, see e.g. Jensen, 
Altschul, Danly, & Terrace, 2013; Templer, Gazes, & Hampton, 2019). 
Training is followed by probe trials in which subjects are presented with 
all possible item pairs (e.g. “BD”). Contemporary studies often focus on 
the cognitive representation of the distance between list items (Gazes, 
Lazareva, Bergene, & Hampton, 2014; Jensen, Muñoz, Alkan, Ferrera, & 
Terrace, 2015; Lazareva, Paxton Gazes, Elkins, & Hampton, 2020; 
Templer et al., 2019). One result that stands out is the so-called symbolic 
distance effect: newly trained subjects find it easier to pick the item that 
comes first when the distance between two items along the implied list is 
large (e.g. picking B over E vs. picking B over C). They respond more 
accurately, more quickly, or both. This effect has been found repeatedly 
in multiple primate species (Jensen, 2017), both after traditional 
premise pair training (e.g. Merritt & Terrace, 2011) and when training 
involved learning the full sequence (e.g. Jensen et al., 2013). A second, 
related effect is the magnitude effect (Terrace, 2012), also sometimes 
called the first item effect: performance is generally better, the closer the 
first of the two subset items is to the beginning of the list (e.g. picking A 
over C vs. picking B over D). This effect has also been demonstrated 
multiple times (e.g. Templer et al., 2019; Terrace, Son, & Brannon, 
2003). 

We used symbolic distance and magnitude as a proxy for task diffi
culty in our study of wavering. To train our three chimpanzees on an 
implied list of five items, we used a serial learning task with an 
increasing number of images present (training A-B-C, then A-B-C-D, and 
finally A-B-C-D-E). After successful training, we introduced probe trials 
that presented subjects with all potential item pairs (AB, AC, …, DE). We 
investigated how wavering was affected by magnitude and symbolic 
distance, because, based on a large body of published research, these 
two dimensions represent objective and highly replicable correlates of 
trial difficulty. Crucially, we expected that wavering between items, if it 

3 In reference to the computer task used in this study, we use a broad defi
nition of the term “transitive inference task” as it is endorsed by e.g. Jensen 
et al. (2013). A stricter definition may only recognize a task as a “pure” test of 
transitive inference when the test is preceded only by training individual 
premise pairs (paired associates training). This is because only the paired as
sociates training method ensures that subjects cannot learn associatively, e.g. 
about the relationship between “B” and “D” from the simultaneous presentation 
of these items (as is possible in serial or simultaneous chaining training). Put 
differently, calling our task a transitive inference task serves to describe the 
commonality in the testing method, without weighing in on the question of 
whether inferential vs. associative accounts better explain performance. 
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occurred, should show comparable patterns, occurring more frequently 
when item pair magnitude was larger, and when symbolic distance was 
smaller. Demonstrating this relationship would achieve two things. 
First, it would constitute a behavioral analogue to human uncertainty 
behaviors that precede verbal reports of experiencing difficulty and low 
confidence (Questienne et al., 2018; Wokke et al., 2020). Though not 
conclusive evidence in and of its own, this would lend plausibility to the 
idea that some animals feel uncertainty in a way similar to humans. 
Second, it would suggest that response conflict can easily be oper
ationalized and quantified non-invasively in tasks that present a simple 
manual choice. Routinely incorporating such measurements in animal 
metacognition studies would allow us to refine and expand current 
models of procedural metacognition (Carruthers & Ritchie, 2012; 
Hampton, 2009; Proust, 2012). In addition to the relationships between 
difficulty and wavering, we expected to replicate the typical magnitude 
and distance effects with regard to response latency or accuracy, or both, 
with the chimpanzees in this study. 

2. Method 

2.1. Subjects 

Three chimpanzees participated in the study: male Alex (13 years at 
the time the wavering data was collected), female Jahaga (22 years), and 
male Kofi (9 years). Training with the serial learning task was also 
attempted with two additional subjects (female Sandra, 21 years, and 
male Lome, 13 years) but was not completed to the last stage because the 
subject either lost interest in the test or because of time constraints. All 
subjects had experience with regular touchscreen tasks for a year or 
more before data collection for this study began, and this included a 
serial learning task, a transitive inference task and a memory task 
involving Arabic numerals for two of the subjects (Alex and Jahaga), and 
a transitive inference task for one of the subjects (male Kofi). 

Chimpanzees were housed at the WKPRC in Leipzig Zoo, Germany 
where they lived in a social setting in an indoor enclosure containing 
climbing structures and foraging boxes for enrichment purposes, with 
seasonal access to an outdoor enclosure. Their diet consisted of vege
tables, fruit, and occasional meat and eggs. Subjects also received 
enrichment food items to encourage foraging behavior. In the morning 
of each testing day, access was made available to a testing room and 
subjects were given the option to enter and participate in cognitive tasks 
and earn food rewards, additional to their regular diet. Participation was 
entirely voluntary and non-invasive, and subjects were never food or 
water deprived. Water was available at all times, both in the enclosures 
and testing rooms. Individuals were separated for testing, other than 
from dependent offspring. All research and husbandry complied with 
the European Association of Zoos and Aquaria (EAZA) and the World 
Association of Zoos and Aquariums (WAZA) regulations. All research 
was also approved by the responsible committee at the WKPRC which at 
the time consisted of the director of WKPRC, the research coordinator, 
the head keeper and assistant head keeper of great ape husbandry, and 
the zoo veterinarian. 

2.2. Apparatus 

The setup is described in detail in Allritz, Call, and Borkenau (2016). 
Chimpanzees were presented with a transparent infrared touch screen 
mounted in front of a 19 in monitor (aspect ratio 5:4, resolution 1280 ×
1024 px). All experimental programs were created with E-Prime version 
2.0.8.90 running on a Windows 7. The touchscreen was in a fixed po
sition, and always in the same location for the same subject. At the 
beginning of the session, the screen was blocked by a plastic panel. Once 
the subject entered the testing room and was in front of the screen, the 
panel was removed, and the screen revealed. For each correct response, 
a piece of apple or grape was handed to the subject by the experimenter. 
If subjects did not respond for approximately 10 min or showed any 

signs of distress, testing was terminated. All sessions were video 
recorded. 

2.3. Training: Trial procedure 

The goal of training was for subjects to learn to clear five items (color 
images) off a touch screen in the correct order. All stimuli were pre
sented on a black background for subjects Alex and Jahaga, and on a 
white background for subject Kofi. Different color backgrounds were 
used for different subjects in preparation of a different, unrelated set of 
experiments that was conducted after this study was completed. The 
items used were 260 × 208 px color bitmap files (see Fig. 1), thus, on the 
touch screen they appeared at a size of ca. 7.7 by 6.1 cm. 

Fig. 1 depicts an example trial. Each trial in the training stages began 
with the presentation of a central initiation symbol. Upon touching this 
symbol, depending on the training stage, the first two, three, four, or all 
five items that were part of the list appeared on the screen. Each item 
appeared in one of 16 locations on a virtual 4 × 4 grid of possible lo
cations on the screen. Within a trial, each correct touch was followed by 
the disappearance of the touched item and a chime (“Windows XP 
Default.wav”), which subjects had already learnt to associate with cor
rect performance in previous touch screen tasks. If subjects touched all 
items in the correct order, they received a food reward (a piece of apple 
or grape), and the initiation symbol for the next trial appeared after 750 
ms. If a subject touched any of the presented items too early, all 
remaining items simultaneously disappeared, followed by a timeout of 
2000 ms and the subject receiving no reward. 

2.4. Training: Session procedure 

Training sessions were conducted opportunistically and subjects 
were able to complete up to 100 training trials per day. If a subject 
stopped participating, testing was terminated and the remainder of the 
100 trials scheduled for that day were completed on the next available 
testing day. Incomplete sessions of this type occurred rarely (3 out of 
361 training sessions across all three subjects). Data from trials that were 
abandoned mid-trial were discarded, and these trials were repeated 
when the session was completed. Subject performance was evaluated 
after each completed session of 100 trials to determine whether the 
subject should be promoted to the next training stage. 

2.5. Training: Schedule 

All subjects completed a stepwise procedure, learning e.g. to com
plete a list of the first three items, then a list of the first four items, and 
finally the list of all five items in the correct order. Each time a subject 
completed two consecutive sessions of a training stage with at least 81% 
of trials correct in each, they were promoted to the next training stage, 
and upon completing the final training stage in this manner, they were 
promoted to the test. One subject was not able to reach this criterion 
within 100 sessions during their four-item and five-item training and 
was instead promoted to the next stage directly after having completed 
100 sessions of the respective training stage (see Table 1). Subjects Alex 
and Jahaga started training with the three-item list, whereas subject Kofi 
started training with a two-item list. This was done because Alex and 
Jahaga already had experience with a different serial learning task. 
Table 1 gives a summary of training conditions and progress. Fig. S1 
provides a full overview of the subjects' training progress over time. 

2.6. Test: Transitive inference 

Each subject completed eight test sessions of 100 trials each. In each 
session, 70 “regular trials” were identical to training trials from the last 
training condition, presenting subjects with all five items. On the 
remaining 30 trials (“subset trials”), the subject was presented with one 
of the ten possible unique two-item subsets from the implied list (subsets 
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1–2, 1–3, 1–4, 1–5, 2–3, 2–4, 2–5, 3–4, 3–5, 4–5). The presentation of 
regular trials and test trials within a test session was completely ran
domized across subjects and sessions. Responding on subset trials was 
non-differentially reinforced to prevent learning about subsets from 
feedback (Vasconcelos, 2008). This means that if a subject touched first 
the latter of the two items in a subset trial, it disappeared and a chime 
was played as if the subject had made a correct choice, leaving the 
earlier item to be cleared second. Each of the ten unique subset trials was 
presented three times per test session. Thus, across the eight sessions, 
each unique pair was presented 24 times, resulting in a total sample of 
240 subset trials per subject. As in all other trials, the positions in which 
the two items in subset trials appeared were selected randomly before 
each trial. Because spatial distance between items may contribute to the 
degree with which wavering could be detected, we tested for relation
ships between spatial distance and our two main predictors, symbolic 
distance and magnitude (for definitions, see below). We calculated 
Pearson correlations between the spatial distance between items 
(measured in pixels from item center to center) and subset trial 
magnitude, across all trials for which wavering data was also available. 
These correlations were very small and not significantly different from 
0 for all three subjects (Alex: r(238) = − 0.04, p = .575; Jahaga: r(208) =

0.08, p = .237; Kofi: r(238) = − 0.02, p = .787). Correlations between 
spatial distance and symbolic distance were similarly small for all sub
jects and significantly different from 0 only in one case (Jahaga: r(208) 
= − 0.14, p = .045; Alex: r(238) = 0.01, p = .897; Kofi: r(238) = 0.04, p 
= .584). A sensitivity test confirmed that including vs. excluding spatial 
distance as an additional predictor made no difference to the statistical 
inference regarding the effect that symbolic distance had on Jahaga's 
wavering. 

2.7. Behavior coding 

All subset trials were coded by one of the authors (EM) for instances 
of overt wavering (see Table 2), that is spontaneous deviations from a 
seemingly set course towards one of the items, either towards the other 
item or to another location on the screen. Specifically, we coded all 
instances during a subset trial in which the subject's hand paused (Rest, 
Table 2) or changed (Turn, Table 2) direction before selecting an item, 
rather than moving directly to and immediately touching it. 

In all analyses that follow, “wavering” refers to the total count of 
turns and rests that occurred before the first item was touched, as coded 
by EM. All behavior coding was carried out with Mangold INTERACT 
software, which allows viewing and time-stamping on the level of in
dividual video frames (videos had a frame rate of 25fps). Critical areas 
and minimum durations were defined in a more detailed version of this 
coding scheme to help coders decide what constituted e.g. a Turn or a 
Rest in borderline cases, and to achieve satisfactory interobserver reli
ability (see Supplementary Materials). For examples of wavering, see 
Supplementary Video SV1. 

Fig. 1. Top: the five image stimuli used as list items. Bottom: example trial with required clearing order. For details, see text.  

Table 1 
Training sessions to criterion in serial learning task.  

Subject Sex Age Training 
Condition 

Sessions to 
Criterion 

Performance in final two 
sessions (correct trials) 

Alex m 13 3 item list 8 86, 86 
4 item list 12 81, 86 
5 item list 33 86, 85 

Jahaga f 22 3 item list 7 83, 82 
4 item list 100* 80, 69 
5 item list 100* 68, 72 

Kofi m 9 2 item list 4 99, 97 
3 item list 16 81, 81 
4 item list 38 86, 88 
5 item list 43 84, 83  

* Subject did not reach criterion of two consecutive sessions with performance 
of at least 81% and was promoted to next stage after 100 completed sessions 
instead. 

Table 2 
Wavering behavior coding scheme.  

Action Definition 

Move to The subject moves their hand from a resting, turning or touching location 
to another resting, turning, or touching location. 

Touch The subject touches the screen at the position of an item (or very close to) 
with tip of their finger, thumb, or knuckle. 

Turn The subject's hand changes direction, either while above or on the way to 
an item, or back towards an item it has just moved away from. 

Rest The subject's hand hovers over a stimulus without touching it.  
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The first observer coded all but one of the 24 sessions that the three 
chimpanzees completed in total. One session could not be coded for 
wavering because no video was recorded due to experimenter error. Of 
the available 23 video sessions, three were chosen from each subject to 
be coded by a second coder, yielding 270 of the total 690 trials (39.13%) 
as the reliability sample. Interrater reliability of the wavering count per 
trial was moderate to good by common conventions (Pearson r(268) =
0.72, ICC(2) = 0.70, see Cicchetti, 1994) and similar to reliability esti
mates for other reported count measures that include subtle animal 
movements, e.g. frequency of gaze alternation in canines (Marshall- 
Pescini, Rao, Virányi, & Range, 2017) or motor action diversity in birds 
(Logan, 2016). 

2.8. Data analysis 

2.8.1. Wavering 
We fitted GLMMs with Poisson error distribution and log-link func

tion (R package lme4, function glmer, see Bates, Mächler, Bolker, & 
Walker, 2014), predicting the count of wavering behaviors per trial as a 
function of either magnitude or distance. Symbolic distance (ranging 
from 1 to 4) was defined as the difference between the list positions of 
the two subset items. Magnitude (also ranging from 1 to 4) corresponded 
to the position of the smaller of the two subset items in the original five- 
item list. Symbolic distance and magnitude entered each statistical 
model as a continuous, rather than nominal or ordinal predictor, 
consistent with multiple studies of transitive inference and serial 
learning in nonhuman primates that have shown that subjects cogni
tively represent items along a linear spatial continuum (Gazes et al., 
2014; Jensen et al., 2013). In addition to each main predictor, “trial” 
(counting trials across all eight sessions from 1 to 24 for each of the 10 
subset pairs) was included as predictor to control for any learning effects 
across subset trials. Statistical significance of the distance or magnitude 
effect was determined via likelihood ratio test, comparing this full model 
with one that was identical except for the critical predictor, using the 
drop1 function of the R package lme4. Each model also included stim
ulus pair as random effect with a random intercept term. Wavering 
models did not include a random slope term (which would estimate the 
variation of trial effects across stimulus pairs). Though including a 
random slopes term resulted in similar or identical fixed effects 
parameter estimates for magnitude and distance for all models, it 
sometimes resulted in singular model fits. Because statistical inference 
via likelihood ratio tests is not recommended for models with singular fit 
(Bates et al., 2020), results are reported for models that only include a 
random intercept term. Assumption checks did not indicate over
dispersion to be an issue with any of the models, dispersion parameters, 
using the formula suggested by Bolker (2021), were 0.96, 0.83 and 0.78 
for the magnitude models for Alex, Jahaga and Kofi, respectively, and 
0.92, 0.86, and 0.73 for the distance models. Consistent with findings in 
humans that have established a relationship between behavioral signs of 
uncertainty and reported task difficulty, we predicted that the amount of 
wavering in chimpanzees would reflect task difficulty as well: trials with 
higher magnitude and smaller symbolic distance should be accompanied 
by more wavering. 

2.8.2. Latency 
To assess whether magnitude and distance effects in our study 

replicated those frequently reported in the literature, we fitted two 
Linear Mixed Models with Gaussian error distribution (R package lme4, 
function lmer). Both models predicted log-transformed latency to touch 
the first item within a given trial as a function of either magnitude or 
distance, and trial number. In addition, “pair” (the specific subset, e.g. 
“1–4”) was entered as a random effect with a random intercept term. 
Similar to the models of wavering, latency models that also included a 
random slope term for the interaction of pair and trial converged on 
nearly identical fixed effects parameter estimates but in some cases 
resulted in singular fits. Thus, only the results of models with a random 

intercept (but without random slopes) are reported. 

2.8.3. Accuracy 
We fitted GLMMs with binomial error distribution and logit-link 

function (R package lme4, function glmer), predicting whether items 
in a trial were cleared in correct order or not as a function of either 
magnitude or distance. Again, “trial” was included in all models as an 
additional predictor to control for learning effects. All but one model 
also included stimulus pair as random effect with a random intercept 
term. Models did not include a random slope term because, when 
included, these models or their respective null models sometimes 
resulted in singular fits (see above). For one subject (Kofi), the random 
intercept model for a magnitude effect on accuracy also resulted in a 
singular fit. For this case, results are reported for a simple logistic 
regression (function glm) that included only fixed effect terms. Inclusion 
or exclusion of random effects terms did not affect statistical inference 
for any of the models (comparing p-values implied by likelihood ratio 
tests with the conventional alpha level of 0.05). An exploratory analysis 
of trial effects on accuracy, latency and wavering can be found in the 
Supplementary Materials. The data collected for this study can be 
accessed at osf.io/g64ms. 

3. Results 

3.1. Wavering 

Wavering occurred at least once in 227 (32.9%) of the 690 coded 
subset trials and ranged between 1 and 4 wavering movements in these 
trials. Between the three chimpanzees, the mean number of wavering 
movements across all subset trials ranged from 0.35 to 0.54 (Alex: N =
240, M = 0.54, SD = 0.80; Jahaga: N = 210, M = 0.35, SD = 0.67; Kofi: 
N = 240, M = 0.45, SD = 0.75). Predictably, the number of wavering 
movements correlated substantially with log-transformed response la
tency (Alex: r(238) = 0.61; Jahaga: r(208) = 0.63; Kofi: r(238) = 0.71; 
all p < .001). A full breakdown of wavering movements per subject per 
item pair can be found in Fig. S2a and S2b (Supplementary Materials). 

Fig. 2a depicts the number of wavering movements as a function of 
magnitude. Fig. 2b depicts the number of wavering movements as a 
function of symbolic distance. Overall, all three chimpanzees wavered 
more with larger subset magnitude and with smaller symbolic distance. 
These differences were statistically significant for all comparisons for 
the three subjects (Magnitude, Alex: β = 0.54, Х2(1) = 11.22, p = .001; 
Jahaga: β = 0.67, Х2(1) = 5.48, p = .019; Kofi: β = 1.02, Х2(1) = 16.56, 
p < .001, Distance, Alex: β = − 0.46, Х2(1) = 5.35, p = .021; Jahaga: β =
− 0.93, Х2(1) = 11.01, p = .001; Kofi: β = − 0.95, Х2(1) = 5.72, p =
.017). A comparison of model predictions and empirical data can be 
found in Fig. S5a and S5b. For examples of wavering movements, see 
supplementary video SV1. 

3.2. Latency 

Median response latencies for clearing the first item across all subset 
trials ranged from 828 ms to 1026.5 ms between subjects (Alex: Mdn =
1026.5, M = 1228.10, SD = 703.82; Jahaga: Mdn = 828.0, M = 961.53, 
SD = 414.17; Kofi: Mdn = 932.50, M = 1106.13, SD = 481.07). Fig. 3a 
depicts response latency as a function of magnitude of the smaller subset 
item. Fig. 3b depicts response latency as a function of symbolic distance 
between the two subset items. A full breakdown of response latency per 
subject per item pair can be found in Fig. S3a and S3b (Supplementary 
Materials). With very few exceptions, the three chimpanzees responded 
more slowly with larger subset magnitude and with smaller symbolic 
distance. These differences were statistically significant for most com
parisons for the three subjects (Magnitude, Alex: β = 0.26, Х2(1) =
22.77, p < .001; Jahaga: β = 0.16, Х2(1) = 12.49, p < .001; Kofi: β =
0.29, Х2(1) = 27.04, p < .001, Distance, Alex: β = − 0.19, Х2(1) = 6.20, 
p = .013; Jahaga: β = − 0.11, Х2(1) = 4.71, p = .030; Kofi: β = − 0.15, 
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Х2(1) = 2.79, p = .095), thus replicating previous findings. 

3.3. Accuracy 

All three subjects were highly accurate in picking the correct item 
first on the 240 subset trials. Fig. 4a depicts proportion of correct trials 
as a function of magnitude, Fig. 4b depicts it as a function of symbolic 
distance. The proportion of correct trials across magnitude categories 
ranged from 0.93 to 1.00 for Alex, from 0.81 to 1.00 for Jahaga, and 
from 0.95 to 1.00 for Kofi; and differences in subset magnitude hardly 
accounted for differences in accuracy (Alex: β = 1.36, Х2(1) = 1.45, p =
.229; Jahaga: β = 0.26, Х2(1) = 0.17, p = .680; Kofi (logistic regression 
without random intercept for pair): β = 0.80, Х2(1) = 2.82, p = .093). 
For different distance categories, the proportion of correct trials ranged 
from 0.92 to 1.00 for Alex, from 0.79 to 1.00 for Jahaga, and from 0.95 
to 1.00 for Kofi. Likelihood ratio tests revealed these subtle differences 
to be statistically significant for two subjects (Alex: β = 2.17, Х2(1) =
3.91, p = .048; Jahaga: β = 1.49, Х2(1) = 5.30, p = .021; Kofi: β = 0.31, 
Х2(1) = 0.47, p = .492), an effect that presumably was carried largely by 
slightly poorer performance in trials where the two subset items had a 
symbolic distance of one. A full breakdown of accuracy per subject per 
item pair can be found in Fig. S4a and S4b (Supplementary Materials). 

4. Discussion 

We presented three chimpanzees with a transitive inference task that 
probed their responses to pairs of images from a learned list. When 
choices were more difficult, the chimpanzees also wavered more often. 

We will discuss, in turn, two conclusions that may be drawn from this. 
The first is theoretical: because for humans, uncertainty behaviors are 
correlated with objective task difficulty and subjective experiences of 
difficulty (Dotan et al., 2018; Questienne et al., 2018; Wokke et al., 
2020), our finding provides indirect support for the hypothesis that 
chimpanzees subjectively experience feelings of uncertainty in similar 
ways. The second conclusion concerns measurement. Subjects were 
highly proficient across subset trials from different magnitude and dif
ference categories, and differences in accuracy, where they existed, were 
very subtle. In spite of these ceiling effects, the distribution of wavering 
across conditions replicated closely the magnitude and symbolic dis
tance effects that have often been documented for accuracy and 
response latency in transitive inference tasks with nonhuman primates 
(Jensen, 2017; Terrace, 2012).4 This suggests that wavering could be 
useful as a highly sensitive, overtly observable measure of response 
competition in those domains where it plays an important role in theory 
building, including metacognition (Hampton, 2009; Proust, 2012) and 
other forms of executive control (Völter, Tinklenberg, Call, & Seed, 
2018). 

In this study, we addressed the question whether the behaviors 
shown in response to different levels of difficulty are similar in humans 

Fig. 2. Effects of (a) magnitude and (b) symbolic distance of subset pairs on 
chimpanzees' number of wavering movements throughout the trial. Error bars 
represent confidence intervals (nonparametric bootstrap). 

Fig. 3. Effects of (a) magnitude and (b) symbolic distance of subset pairs on 
chimpanzees' latency to touch the first of the two list items. Error bars represent 
confidence intervals (nonparametric bootstrap). 

4 It is not unusual in transitive inference and serial learning studies that item 
position effects are manifest primarily in accuracy or latency, but not both 
(Templer et al., 2019). The finding in this study that item position effects were 
found for wavering (and latency), but were absent or very subtle for accuracy, is 
consistent with this. 

M. Allritz et al.                                                                                                                                                                                                                                  



Cognition 214 (2021) 104766

8

and chimpanzees to make the case that the emotional experience of 
uncertainty is similar across species, as has been suggested by some (e.g. 
Couchman, Beran, Coutinho, Boomer, & Smith, 2012). As for any other 
study of animal emotion, we acknowledge that a single study that shows 
a task-behavior correspondence across two closely related species 
cannot solve the question of subjective experience. Rather, studying 
emotions in nonhuman animals requires a componential approach 
(Mendl et al., 2010; Panksepp, 2010; see also Carruthers, 2017). Evi
dence that across species, specific patterns of (neuro-)physiological 
activation (e.g. neural vacillation, Kaufman, Churchland, Ryu, & She
noy, 2015; EEG signatures, Bosc et al., 2017; thermal imaging, Kano, 
Hirata, Deschner, Behringer, & Call, 2016) and cognitive responses (e.g. 
improved memory for trials with pronounced uncertainty behavior) also 
correlate reliably with differences in task difficulty, as well as with 
wavering and other potential indicators of uncertainty like scratching 
(cf. Call, 2012), would further strengthen our case. Beyond anthropo
centric triangulation of what uncertainty might “feel like” for an animal, 
the componential approach helps in discerning which combinations of 
situations and response profiles are reliably distinct from one another. 
This is key to exploring the emotional diversity in a given species (Paul 
et al., 2005). Distinct emotional response profiles are often argued to 
represent adaptations to specific selection pressures, adaptations that 
may support fast motor responses (e.g. Lang, Davis, & Öhman, 2000), 
navigation of social relationships (Waller & Micheletta, 2013) or 
learning from experience (Baumeister, DeWall, Vohs, & Alquist, 2010). 
The same may be true for distinct epistemic emotions that animals may 
experience, e.g. feelings of familiarity vs. feelings of certainty may be 
involved in different adaptive response profiles. 

In humans, uncertainty behaviors correlate not only with reported 
feelings of uncertainty but also with explicit metacognitive judgments 
(Dotan et al., 2018; Questienne et al., 2018). As in the study by Dotan 
et al. (2018), we found that gradual increases in task difficulty corre
sponded to gradual increases in response competition in the form of 
wavering. Speculation about whether our chimpanzees' episodes of 
wavering were also accompanied or followed by metacognitive judg
ments of this sort would be premature, as our task did not create op
portunities for second-order behaviors like information seeking, opting 
out, or wagering. Rather, the chimpanzees' wavering behaviors can be 
regarded as manifestations of the cognitive conflict that is assumed to be 
at the beginning of many metacognitive processes (Beran et al., 2012; 
Smith et al., 1995). 

As humans appear to rely quite often on metacognitive heuristics 
that exploit self-generated motor behavior – be they implicit or explicit5 

– we believe it to be likely that nonhuman primates also use, or at least 
can learn to use, similar heuristics to motivate second-order behaviors 
(see Hampton, 2009). Future studies of animal metacognition may thus 
benefit not only from allowing subjects to express wavering and similar 
behaviors, but from actively encouraging and quantifying these. For 
example, is hesitation with wavering more often followed by seeking 
information or opting out than hesitation without wavering? Is meta
cognitive sensitivity – the correlation between confidence and accuracy 
– higher in tasks that, by design, create opportunities for wavering than 
in tasks that do not? This suggestion is not meant to be taken in oppo
sition to efforts to exclude publicly available cues in order to refute 
associationist explanations (Hampton, 2009; Proust, 2012). Rather, 
studies that allow response conflict to be expressed should be seen as an 
additional avenue. In this case, the demonstration that the meta
cognitive behavior is not a mere result of associative learning, would rest 
on flexible and targeted responding rather than on what may serve as the 
eliciting cue (Beran et al., 2013; Bohn et al., 2017; Call, 2010; Krachun & 
Call, 2009; Marsh, 2019). 

In the developmental and educational literature, it is often suggested 
that for humans, the relationship between first-order, self-generated 
cues to task difficulty (e.g. response fluency or hesitation) and conflict- 
resolving second-order behaviors (e.g. self-testing or using mnemonics) 
are not “instinctive” or “spontaneous”. Rather, many of these intro
spective strategies need to be learned (Dokic, 2012; Heyes, Bang, Shea, 
Frith, & Fleming, 2020; Karpicke, Butler, & III, 2009). This may be true 
for animal metacognition, too, at least in some cases. If animals also use 
strategies that exploit monitoring of self-generated behavior, then future 
studies may benefit from looking separately at three elements: (1) the 
tendency to express cognitive conflict with wavering or other uncer
tainty behaviors, (2) the general ability to exploit behavioral cues by 
responding to them e.g. with information seeking, and (3) the ease with 
which such exploitation strategies can be learned. 

For example, each of these three levels could be considered in the 
study of risk tolerance, which has been suggested as a potential intra- 
and interspecies moderator of metacognitive responding (Beran, Perdue, 
Church, & Smith, 2016; Call, 2010; Carruthers, 2017). It could be illu
minating to this debate to compare whether it is the first-order uncer
tainty behaviors that are already more readily expressed in those 
individuals or species that are considered to be less risk-tolerant than 
others (e.g. rhesus macaques vs. capuchins, see Beran et al., 2016; or 

Fig. 4. Relationship between (a) magnitude and (b) symbolic distance of subset 
pairs and chimpanzees' accuracy (proportion correct across trials). Error bars 
represent confidence intervals (nonparametric bootstrap). 

5 Questienne et al. (2018) use causal language that suggests that exploitation 
occurs (“resulting in”, “determined by”), but remain non-committal as to 
whether it is metarepresentational: “Whether this relationship results from an 
explicit strategy (i.e.’I was slow, therefore I report stronger urge-to-err’) can be 
debated.” (ibid.). This mirrors notes of caution about animal behavior that just 
because animals may exploit cues of decisional conflict (even purely endoge
nous ones), this is not sufficient evidence that the cognitive control process 
explicitly represents this exploitation, a feature that some require to be fulfilled 
to speak of “meta”-cognition (Carruthers, 2014). 
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bonobos vs. chimpanzees, see Heilbronner, Rosati, Stevens, Hare, & 
Hauser, 2008). There is some evidence consistent with this in humans, 
for example, a recent computer mouse-tracking study with human par
ticipants demonstrated a close relationship between tracking metrics 
that were comparable to the operationalization of wavering used in our 
study and subjective risk perception as well as individual risk aversion 
(Stillman, Krajbich, & Ferguson, 2020). Alternatively, risk-averse in
dividuals or species may differ more strongly with regard to how sen
sitive they are in noticing their self-generated cues, or in learning to 
respond to them with second-order behavior. Another domain in which 
studying uncertainty behaviors could be very beneficial is the relation
ship between metacognition and theory of mind that is often at the heart 
of discussions of the evolution of either (Carruthers, 2009). Humans are 
not only good at exploiting their own self-generated motor responses for 
metacognitive judgments, they can also use subtle motor behavior 
expressed by a competitor to predict what they are about to do (Vaziri- 
Pashkam, Cormiea, & Nakayama, 2017). This raises the question, for 
humans and other primate species alike, whether individual tendencies 
to exploit self-generated motor behavior are associated with higher ac
curacy in predicting others' future actions as well. 

There are a number of limitations to this investigation. First, as 
described in the Methods section, serial learning training was not 
completed with all chimpanzees with whom it was attempted, and thus 
some subjects that may have eventually succeeded did not participate in 
the test. Selection bias of this type would introduce problems to the 
interpretation of individual differences across tasks (e.g. regarding the 
relationship between wavering and risk aversion, executive functions or 
theory of mind, as proposed above, see e.g., Morton, Lee, & Buchanan- 
Smith, 2013). Future studies may thus seek to study wavering under 
uncertainty in tasks that are easier to acquire and thus reduce selection 
bias, e.g. simple “sparse vs. dense” discrimination tasks as they have 
long been used in animal metacognition research. Second, as discussed 
in the Methods section, our task did not control systematically for the 
spatial distance between stimuli across different levels of difficulty. 
Though, due to complete randomization of spatial distances, this did not 
turn out to be a confound in this study, future studies may more pro
actively control the effect of spatial distance by keeping it constant, or 
by varying it across conditions in a completely counterbalanced manner 
to ensure that wavering always remains equally detectable. 

Finally, regarding wavering in the specific context of research on 
transitive inference, it may be regarded as a limitation that our test 
design did not cleanly separate the effects of magnitude and distance 
from potential confounds that are often given special consideration in 
research on serial learning and inference. These confounds resulted 
primarily from the fact that testing time constraints only allowed us to 
train our subjects in completing a comparatively short list (five items). 
For example, to maximize the number of distance categories available 
for analysis, we included the largest distance category, which was rep
resented by only a single pair of items (“1–5”). This pair included the 
first and the last item of the learned list, and so “terminal item effects” 
(Jensen, 2017) may have contributed, beyond symbolic distance, to this 
category being less difficult than others. Similarly, different difficulty 
categories were represented in this study by different numbers of item 
pairs (e.g. magnitude category “1” is represented by four pairs while 
magnitude category “4” is represented by only one pair). Future studies 
that seek to relate wavering behaviors to, e.g. the uncertainty of an 
item's position as it is estimated in computational models of list learning 
(Jensen et al., 2015) may take full advantage of the methods of statistical 
control that have been developed in this field (e.g. using longer lists, 
using multiple lists, excluding item pairs from analysis that include the 
first or last list item). 

In conclusion, our results show that subtle behavioral cues of un
certainty can be measured non-invasively in nonhuman primates. In 
close analogy to humans, the extent to which subjects wavered was 
closely related to objective task difficulty and revealed subtle differences 
in proficiency in a task in which subjects were otherwise highly accurate 

across conditions. We suggest that studies in the field of animal meta
cognition routinely incorporate measurements of uncertainty behaviors 
to inform debates of epistemic emotions and procedural metacognition. 
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