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Abstract

The Palaecoproterozoic Kerry Road deposit is one of the oldest examples of
volcanogenic massive sulfide (VMS) mineralization. This small VMS deposit (~500,000 tons
grading at 1.2% Cu, 3.5% Zn) is hosted in amphibolite facies mafic-siliciclastic units of the c.
2.0 Ga Loch Maree Group, Scotland. Sulfide mineralization consists of pyrite and pyrrhotite
with subordinate chalcopyrite and sphalerite, occurring in disseminated, vein and semi-massive

to massive textures.

The deposit was highly deformed and metamorphosed during the c. 1.8-1.7 Ga
Laxfordian Orogeny. Textural relationships of deformed sulfide minerals, related to early
Laxfordian deformation (D1/D2), indicate initial high pressure-low temperature (100 MPa,
150°C) conditions before reaching peak amphibolite facies metamorphism, as evident from
pyrrhotite crossing the brittle/ductile transition prior to chalcopyrite. Late Laxfordian
deformation (D3/D4) is marked by local retrograde greenschist facies at low pressure and
temperature (<1.2MPa, <200°C), recorded by late red sphalerite remobilization. §**S values
from all sulfide minerals have a homogeneous mean of 0.8 = 0.7 %o (n=21), consistent with
interaction of hydrothermal fluids in the host oceanic basalt-island arc setting envisaged for

deposition of the Loch Maree Group.

Microprobe analyses of amphiboles record evidence of the original alteration halo
associated with the Kerry Road deposit, with a systematic Mg- and Si- enrichment from
ferrotschermakite (~150 m) to Mg-hornblende (~90 m) to actinolite (0 m) on approach to the
VMS deposit. Furthermore, whole rock geochemistry records a progressive enrichment in Si,
Cu, Co, and S, and depletion in Al, Ti, V, Cr, Y and Zr with proximity to the VMS system.

These elemental trends, together with amphibole geochemistry, are potentially useful
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exploration vectors to VMS mineralization in the Loch Maree Group, and in similar highly

deformed and metamorphosed terranes elsewhere.

Key words: Kerry Road Deposit, Volcanogenic Massive Sulfide, Lewisian Complex,

Alteration, S isotopes, sulfide deformation.
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Introduction

VMS deposits form within extensional geodynamic regimes such as mid-ocean
ridges, back-arc basins, and intraoceanic arc rifts (e.g., Swinden, 1991; Piercey, 2010, 2011;
Hannington, 2014). Their formation is generally followed by deformation during accretionary
tectonics that results in variable uplift, basin inversion, compressional deformation, and
metamorphism of the sequence(s) hosting the massive sulfide lens(es) (e.g., McClay, 1995;
Nelson, 1997). Deformation of VMS deposits is associated with strong rheological
differences between the massive sulfide lenses and the more competent silicate-rich host
rocks which commonly lead to significant remobilization of the sulfides (Cox, 1987;
Marshall and Gilligan, 1987, 1989, 1993). Mosier et al. (2009) in their VMS deposit
compilation (n=819) observed that only 3% of VMS deposits are hosted in unmetamorphosed
rocks. In contrast, 8.5% are hosted in sub-greenschist facies, 62% are hosted in greenschist
facies, 11% are hosted in amphibolite facies, 0.5% are hosted in granulite facies and 2% are
hosted in blueschist/eclogite facies. In metamorphosed deposits, the primary alteration
mineral assemblage changes to aluminous minerals (garnet, chloritoid, staurolite,
kyanite/andalusite/sillimanite and cordierite), orthorhombic Mg-Fe-Mn amphiboles and
gahnite (zincian spinel) (e.g., Nesbitt and Kelly, 1980; Corriveau and Spry, 2014; Hollis et
al., 2019). The final metamorphic assemblage depends on the peak metamorphic grade and
the original composition of the host rock and alteration zone. To date, most studies on
metamorphosed VMS deposits focused on mineralization hosted in metasedimentary and
felsic volcanic/volcaniclastic rocks (e.g., Nesbitt and Kelly, 1980; Barrett et al., 2005;
Duuring et al., 2016; Mathieu et al., 2016; Hollis et al., 2019). It is expected that VMS
deposits hosted in metamafic rocks would contain a different mineral assemblage due to their

higher abundance of Mg, Fe and Ca. This study investigates the chemical composition of
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amphibole at the metamafic-hosted Kerry Road VMS deposit. The deposit is located in the
Palacoproterozoic (~2.0 Ga) Loch Maree Group (LMG) of the Lewisian Complex near
Gairloch, NW Scotland (Fig. 1). It was discovered by Consolidated Gold Fields Ltd in 1978
on the basis of geological similarities to Archean to Proterozoic VMS-hosting belts in Canada
and Scandinavia (Jones et al., 1987). The company drilled 87 cores in the Gairloch area,
totaling 9189 m, and, although current outlined resources are sub-economic, it has repeatedly

attracted exploration interest in Scotland (Jones et al., 1987; Coates et al., 1997; Colman and

Cooper, 2000).
- | | |
St W 6°W 5°W
. \’!_s)
Northern
82 ~N Region e
Jge A
A "”’ii)ﬁ \ ///,/4 3\/5\‘} ;
S IS N Qs /
%;‘ 6 S - f] // N :("'\&‘ (:-J/
ey / ad ,( Central RN ,}Ei'
>3 = an e Region L N
<A (k- { . b

1] 1
LY s s .
| ¥ T I Post-Lewisian cover
[ N »
%}'\/ SV ;f 77| Lewisian Complex
. ' S ] .
/%G e = K [/ - Proterozoic supracrustal rocks
— 57°N Pt == 7 (S«
Lt F e Do — A
ch-b. SO — Archean supracrustal rocks
il \ / [ A
8. i {
o) N 7 -
70 50km g S :l Archean gneisses
< r | S
o) P/ D . .
g | | L 7/ ,---*" Major fault zone

Figure 1. Simplified geological map of NW Scotland (modified from Coates et al., 1997).
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The LMG has been studied extensively, particularly its structural framework (Peach et
al., 1907; Park, 1964; Bhattacharjee, 1968; Park et al., 1987, 2001; Droop et al., 1999) and
tectonic origin (Park et al., 2001). Far fewer studies have focused on VMS mineralization in
the LMG and their utility in enhancing understanding of the regional geology (Jones et al.,
1987; Colman and Cooper, 2000). Here we document the mineralogy, texture, deformation and
sulfur isotope composition of the Kerry Road VMS deposit and surrounding rocks to evaluate

their potential as exploration proxies within amphibolite facies metamafic volcanic sequences.

Regional Geology

Stratigraphy and Lithologies

The Lewisian Complex of NW Scotland consists mostly of Archean to early
Proterozoic amphibolite to granulite facies metaigneous and subordinate metasedimentary
rocks that experienced polyphase deformation (Davies 1978; Coward, 1990; Park ef al., 2001).
On mainland Scotland, it forms a c. 200-km-long belt that is divided into three regions,
consisting of a Central Region of granulite facies, which is bounded to the north and south by
regions marked by amphibolite facies rocks. The LMG is part of the Southern Region and
consists of metasedimentary and tholeiitic metavolcanic rocks that underwent amphibolite
facies metamorphism related to what is termed the Laxfordian Event of c. 1.8-1.7 Ga (Park,
1964; Johnson et al., 1987; Jones et al., 1987, Whitehouse et al., 1997, Park et al., 2001).
Although the exact tectonic setting remains speculative, the generally accepted model is an
accretionary-subduction complex of oceanic plateau basalts (or primitive arcs) and associated
abyssal sediments sandwiched between two Archean continental blocks (Park et al., 2001;

Wheeler et al., 2010).
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The LMG is divided into the Gairloch Schist Belt (GSB, ~36 km?), which host the Kerry
Road deposit, and the Loch Maree Schist Belt (~60 km?) which are separated by the Loch
Maree Fault (Johnson et al., 1987). Both comprise broadly similar successions of tholeiitic
metavolcanics, metapelites, metapsammites and rare banded-iron formation (of both oxide and
silicate facies), calcitic-dolomitic marble, calc-schist and graphitic mica-schist (Johnson et al.,
1987; Droop et al., 1999). Thin (typically <0.5 m), discontinuous exhalative horizons
dominated by silicate and oxide facies are present locally between metavolcanics and
metasedimentary units (Coates et al. 1997). Geochemical proxies on metasedimentary rocks
(REE, LIL elements, and major and trace elements) indicate mixing between a dominant
continental source (Lewisian gneissic basement) and a subordinate mafic volcanic source

(Floyd et al. 1989).

The GSB is intruded by c. 1.98 Ga metagranitoids, are cross-cut by the c. 1.99 Ga
Scourie dykes, and detrital zircons from metapsammites have yielded c. 2.0 Ga U-Pb ages
(Park, 2001; Whitehouse et al., 1997; Baker et al., 2019). When combined, these provide
narrow brackets on the timing of mineralization. All LMG rocks were metamorphosed to
amphibolite facies during the 1.8-1.7 Ga Laxfordian event in which four phases of deformation
are recognized (Droop ef al. 1999; Park ef al., 2001). D1 and D2 were ductile deformation
events associated with prograde condition that resulted in peak amphibolite-facies P-T
conditions. Thermodynamic analyses for a suite of LMG rocks yield peak P-T conditions of
6.5 = 1.5 kbar and 530 = 20 °C (Droop et al., 1999). Droop et al. (1999) defined D1 as a WNW-
ESE stretching and D2 as deformation associated with top-to-NW thrusting culminating in
intense mylonitization. Park et al. (2001) argues that the early D1 and D2 fabrics are
undistinguishable except where uncommon F2 folds affect S1 foliation. They consider D1 and
D2 to be a composite a fabric related to progressive early Laxfordian deformation. D3 and D4

were associated with post peak metamorphism retrogressive events (Park, 1964; Bhattacharjee,

7
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1968; Park et al., 1987; Shihe and Park, 1993; Droop et al., 1999). D3 is associated with
recumbent folds on steeply dipping F2 folds (Droop et al., 1999). Park et al. (2001) attributed
the timing of D3 as coincident with the emplacement of the Tollie pegmatites at 1.7 Ga, at low
amphibolite- to greenschist-facies conditions. D4 is associated with small-scale (cm — m in
amplitude), open and chevron steeply plunging folds with deforming the S1/S2 and S3 fabrics
(Park, 1964; Bhattacharjee, 1968; Park et al., 1987; Park et al., 2001). D4 occurred in more
localized narrow belts at sub-greenschist facies and is typically associated with narrow belts of

cataclasis (Park et al., 2001).

Geology of the Kerry Road VMS deposit

The first detailed description of the LMG massive sulfide mineralized lenses was by
Jones et al. (1987) who identified two main occurrences. The North Sidmean Mor lens consists
of iron sulfides with subordinate copper sulfides near the top of North Sidhean Mor and is
traceable intermittently over 6 km. The other is the Kerry Road lens (another small satellite
deposit, the Teangadh Bhuidhe Mhor deposit, is located nearby), which averages 4 m in
thickness and extends for 580 m from Loch Bad an Sgalaig to Flowerdale Mains (Fig. 2;
Williams et al., 1985; Coates et al., 1997). The Kerry Road deposit is estimated at 500,000 t at
1% Cu, 0.5% Zn and 1 g/t Au (Colman and Cooper, 2000) with base- and precious-metal
massive sulfide mineralization hosted in quartz-carbonate schist and categorized as a mafic-
siliciclastic or Besshi-type VMS deposit (Jones et al., 1987). The mineralization is fine-
grained, commonly banded on mm-scales and displays massive, stringer and disseminated
textures. Pyrrhotite and pyrite are the dominant sulfide minerals and total sulfides typically
account for 15-20% of the rock. Other sulfides are present in subordinate amounts and include
(in decreasing abundance) chalcopyrite, sphalerite, marcasite and galena. Rare native gold and

magnetite are also present (Jones et al., 1987).
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Figure 2. Simplified geological map of the Gairloch region (modified from Park et al., 1987, 2001). Also
shown is the position of the Kerry Road deposit (star). GSB: Gairloch Schist Belt; LMSB: Loch Maree
Schist Belt.

Methodology

Field and Drill Core Analysis

Detailed mapping at a scale of 1:25,000 was undertaken at the Kerry Road deposit and
surrounding area (Fig. 3). Forty-one field samples were collected based on lithology and
mineralization. Furthermore, a total of ten diamond drill cores were logged in detail at the
British Geological Survey’s Core Store, Keyworth, UK, and 38 core samples were collected.

From these, twelve samples were selected for polished thin-section petrography.
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Figure 3: Geological map for the Kerry Road VMS deposit.

Electron Probe Micro-Analyzer

Four amphibole schist samples were selected from locations proximal and distal to the
Kerry Road VMS deposit to assess amphibole compositional variation with distance to the
deposit. Electron probe micro-analyzer (EPMA) analyses was carried out on a JEOL JXA-8600
Superprobe by the wavelength dispersive X-ray analysis method (WDS) at the University of
St Andrews using conventional carbon coated polished sections (60-100 pm). Operating

conditions were: 15 kv accelerating voltage, 20 nano-amperes (nA) beam current using a ~1 um

10
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beam diameter to gain precise and accurate composition measurements of individual amphibole
crystal cores and rims. Counting times were 20 s on peak, and background measurements were
10 s on each side of the analyzed peak. Background positions were carefully selected to avoid
instances of peak overlap. Elements measured were Na, Mg, Al, Si, K, Ca, Ti, Mn and Fe.
Standards used were Wollastonite (Si, Ca), Rutile (Ti), Corundum (Al), Metal (Fe, Mn),
Periclase (Mg), Albite (Na) and Orthoclase (K). Detection limits varied between 0.05 and 0.2%

depending on the element.

X-ray Fluorescence

Five samples were taken every 20-30 m along a ~150 m transect, following the
regional strike direction of the Kerry Road deposit (Fig. 3), in order to test for alteration
footprint and assess the change in geochemistry associated with the VMS system. Eight
samples were selected from drill core to assess geochemical changes across the deposit and to
identify the protoliths and tectonic origins of the geological units. Fifty grams of weathering-
free sample were crushed to a fine powder using a laboratory disc mill with a tungsten
carbide grinding jar for 90 seconds. Pressed-powder pellets were prepared by mixing 8 g of
sample powder with 12 drops of polyvinyl alcohol, pressing the mixture to a disc at 15 tons
for 30 seconds, and drying overnight at 60 °C. Trace element concentrations for V, Cr, Co,
Ni, Cu, Zn, As, Rb, Sr, Y, Zr, Nb, Mo, Ag, Cd, Sn, Ba, La, Ce, Pb, Th and U and semi-
quantitative major element concentrations for Al, Si, P, S, K, Ca, Ti, Mn, Fe were obtained
by irradiating the sample with high energy X-rays from a controlled X-ray tube using a
SPECTRO® XEPOS HE at the University of St Andrews. The method uses fundamental
calibration parameters using >20 internationally recognised (mainly silicate) certified

reference materials (CRM).

11



186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

Sulfur Isotope Analyses

Sulfides were prepared for conventional isotopic analyses by diamond micro-drilling
techniques on 21 samples and analyzed by standard techniques at the Scottish Universities
Environmental Research Centre (SUERC; Robinson and Kusakabe, 1975) in which SO» gas
was liberated by combusting the sulfides (5-10 mg) with excess CuxO at 1075°C, in vacuo.
Liberated gases were analyzed on a VG Isotech SIRA II mass spectrometer and standard
corrections applied to raw §°°SO, values to produce true 8°*S. The standards employed were
the international standards NBS-123 and IAEA-S-3 , and the SUERC standard CP-1. Repeat
analyses of these standards gave 8°*S values of +17.1%o, -32%o and -4.6%o respectively, with a

standard error of £+ 0.3%o or better. Data are reported in 5**S notation as per mil (%o) variations

from the Vienna Cafion Diablo Troilite (V-CDT) standard.

Results

Stratigraphic Sequence

Detailed mapping of the Kerry Road region reveals that the main lithologies are quartz-
mica schist, amphibolite, garnet schist and massive sulfide (Figs. 4, 5); contacts between these
units are generally sharp. Laxfordian deformation has resulted in a dominant sub-vertical layer-

parallel foliation.

Quartz-mica schist is dark grey to black semipelitic-siliceous unit with a uniform fine-
grained texture (<1 mm; Fig. 4ab). It is composed of quartz, biotite, chlorite and muscovite that
typically define the main foliation. Accessory minerals include pyrite, garnet and plagioclase.

Localized folding can be observed in siliceous horizons. Quartz veins (0.5 mm - 10 cm) are

12
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found parallel to as well as cross-cutting the foliation, suggesting multiple phases of quartz

formation.

Amphibole schist is typically, dark green with amphibole porphyroblasts from 1 mm to
2 cm, coarse- to fine-grained quartz, medium- to fine-grained amphiboles and subordinate fine-
grained chlorite that can become dominant locally (Fig. 4cd). Porphyroblasts of amphibole
commonly displays a garbenschiefer texture in which porphyroblastic crystals of amphibole
form stellate or sheaflike groups on the planes of foliation or schistosity. Outcrops commonly
display at least two phases of foliated amphibole porphyroblasts suggesting several phases of
growth/deformation. Folding is intense proximal to the Kerry Road deposit where crenulation

cleavage is developed.

Garnet-amphibole schist is a 2 m thick unit that can be traced along strike from the
VMS deposit for approximately 1 km. The unit has similar textures and modal abundances to
the amphibole schist but with the addition of garnet (~15%; Fig. 4ef). Garnet is of almandine
composition with weak zonation in some crystals and inclusions of quartz. It overprints
amphibole with no evidence of shearing or pressure shadows, implying static crystallization.
Amphibole crystals display a clear foliation and appear to overprint a matrix of fine chlorite
and quartz with subordinate amphibole. Locally, chlorite overprints amphibole, suggesting a

later greenschist facies overprint.

Sulfide mineralization at the Kerry Road deposit is exposed over a ~30 x ~20 m area.
The mineralization is hosted in amphibolite and is highly weathered and oxidized at the surface
with prominent secondary malachite and iron oxide forming a gossan. The deposit displays
complex folding. Dominant sulfide mineralization exists as pyrite and pyrrhotite, with

subordinate chalcopyrite and sphalerite (Fig. 5ab). Sulfides coexist with silicate and carbonate

13
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Figure 4: Examples of rock types in the Kerry Road field area and the associated petrographic analysis. A)
Quartz-mica-schist sample DD/16/09, with quartz veins running parallel and cross-cutting the dominant foliation.
Modal abundance is quartz (~81%), biotite (~10%), pyrite (~4%) muscovite (~4%), plagioclase (~1%). B) Thin
section of sample DD/16/09, outlining the sheared foliation, and quartz veining cross-cutting quartz, biotite and
chlorite matrix. C) Sample DD/16/04 displaying porphyroblastic amphiboles. D) Thin section of sample DD/16/04
wherein a sub-lineation defines the amphibole crystals. Microprobe analyses of these crystals identified them as
ferrotschermakite. At least two phases of amphibole growth are suggested due to overlapping relationships. E)
Sample DD/16/06 consisting of garnet-amphibole-schist with almandine garnets overprinting foliated amphibole.
Mode for this sample consisted of amphibole (35%), quartz (25%), chlorite (20%), almandine (15%), iron oxide
(5%). F) Thin section of sample DD/16/06 with almandine garnets overprinting sheared deformation fabric and
displaying static growth suggesting their growth was late and thus continuation of amphibolite facies conditions
even at the later stages of Laxfordian deformation. Note, though that almandine crystals show clear signs of
retrogression to chlorite and quartz (greenschist facies assemblage).

14
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Figure 5: Photo of mineralized intervals at the Kerry Road deposit. A) Sample highlighting the common mineralogy
and sulfide remobilization textures observed. Gangue includes quartz, ferroan dolomite and calcite (GBH18; 30m).
(B) VMS sample 70033 from drill core GBH23 at a depth of 29.45-29.7 m. Both samples show a remobilization
sequence wherein pyrrhotite crosses the brittle/ductile boundary first followed by chalcopyrite and sphalerite. Pyrite
has not been remobilized and acted brittlely during deformation. Ccp= chalcopyrite, Py= pyrite, Po= pyrrhotite.

15
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gangue such as quartz, chlorite, ferroan dolomite, calcite and amphibole. No systematic vertical

or lateral zonation in base metal sulfides were observed.

Sulfide Remobilization and Textural Analyses

Textures identified in the Kerry Road deposit include disseminated (35%), vein (10%),
and sub-massive/massive sulfide (55%) (Fig. 6a-d). Disseminated textures occur as discrete
sulfide crystals hosted within a silicate matrix, whereas sulfide veins are typically chalcopyrite-
bearing. Durchbewegung texture is common in sub-massive to massive sulfide regions (Fig.
6e). Durchbewegung texture, as defined by Marshall and Gilligan (1989), consists of a mixture
of secondary tectonic origin composed of angular to rounded clasts of competent materials
(e.g., silicates) within a matrix of predominantly less competent material (e.g., sulfides) where

the competent clasts are generally contorted and disoriented.

Pyrrhotite, sphalerite and chalcopyrite do not display discrete individual grain
boundaries resulting in crystals that cross-cut and fill fractures and interstitial spaces between
gangue and pyrite crystals. Pyrite forms subhedral crystals that exhibit brittle behavior (Fig.
6b). Cross-cutting relationships show that pyrrhotite mobilized first followed by chalcopyrite
and sphalerite (Fig. 5b). Locally, pyrite has been encased by remobilized chalcopyrite,
pyrrhotite and sphalerite, indicating P-T conditions that allowed ductile remobilization into low
pressure areas such as crystal fractures, grain boundaries and within interstitial spaces between
gangue minerals. In some cases, the pyrite crystals have undergone mechanical reworking and
are cataclastically deformed. Annealed pyrite textures were observed, which typically
dominate at medium-high metamorphic grades (McClay and Ellis, 1983); this texture is marked

by equant grains with triple junctions and straight grain boundaries.

16
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Figure 6: Photographs of the different sulfide mineralization texture. A) Disseminated mineralization showing
isolated chalcopyrite aggregates in a matrix of silicates. Drill core GBH15, 20.5-22.5 m. B) Vein-type mineraliza-
tion exploiting an ultramylonite horizon, displaying chalcopyrite veining and pyrite cubes. Veining engulfs euhedral
pyrite and is not influenced by mylonitic shearing suggesting that remobilization continued to occur after peak
mylonitic conditions. Drill core GBH31, 73.16-73.36 m. C) Sub-massive texture displaying both chalcopyrite and
pyrrhotite mineralization. Drill core GBH41, 109.2-112 m. D) Massive texture with dominant chalcopyrite. Drill
core GBH19, 25.3-27.2 m. E) Durchbewegung texture; defined as a mixture of secondary tectonic origin composed
of angular to rounded clasts of one or more competent materials in a matrix of predominantly different incompetent
material (in this case pyrrhotite). Significant clast rotation has occurred through deformation to form this round
clast (Marshall and Gilligan, 1987). Note the calcite exploiting the contact between the VMS mineralization and the
amphibole schist. Drill core GBH19, 33.0-33.4 m.
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Whole Rock Geochemistry

Immobile elements such as Al, Ti, the high field strength elements (HFSE) and the

REE (except Eu) are ideal to provide information on the primary petrochemical attributes of

the host rocks in VMS systems (e.g., Large, 1977; Hannington, 2014; Cloutier et al., 2017).

However, caution must be used as some of these elements may become mobile (especially

the LREE) during intense hydrothermal alteration (MacLean, 1988). At Kerry Road, the

amphibolite samples falls within the basalt/andesite field of Pearce (1996) (Fig. 7a), the

tholeiitic field of Ross and Bedard (2009) (Fig. 7b), the island arc tholeiite of Shervais (1982)

(Fig. 7¢) and within the post-Archean juvenile environment of Piercey (2009) (Fig. 7d).
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Figure 7: Immobile element discrimination diagrams for distal amphibolite surrounding the Kerry Road deposit (A)
Zr/Ti02-Nb/Y diagram (Winchester and Floyd, 1977) with modified field boundaries of Pearce (1996). B) Zr-Y
discriminating magma affinity with fields of Ross and Bedard (2009) (C) V-Ti/1000 diagram with field boundaries
of Shervais (1982) for mafic rocks. (D) Zr-Nb diagram of Piercey (2009) discriminating juvenile environments from
evolved environments. Low Ti-IAT Bon= low titanium-island-arc tholeiites and boninites, IAT=island-arc tholeiites,
MORB/BAB= mid-ocean ridge basalts/back-arc basalts.
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Mineralized samples throughout the deposit (n=9) vary between 14-30% S, 17-39% Fe, 0.3-
3.8% Cu, 0.2-6.4% Zn, 8-594 ppm Pb and 450-1839 ppm Co (Table 1). These values are
significantly higher than average values of 0.44% Cu and 0.42% Zn published by Jones ef al.
(1987). To test enrichment of elements in and near the ore zone, a transect of five samples
across the deposit was designed and shows that the Kerry Road VMS lens is associated with
enrichment in Si (x1.5), S (x33.3), Co (x17.6), and Cu (x7.6), and depletion in Al (x0.02), Ti

(x0.01), V (x0.03), Cr (x0.03), Y (x0.1) and Zr (x0.17) (Fig. 8).

An isocon diagram shows that most element hosted in mineralized area are near the 1:1
line and have been conserved compared to the unmineralized amphibolite (Fig. 9). The diagram
shows that the mineralization is associated with an increase of S, Pb, Co, Cu, Zn and depletion
of Al, Ti. In general, these trends are in agreement with observed trend over the transect (Fig.
8). The main differences relate to the intensity of the changes and can be associated with the
isocon diagram using averages of the samples compared to single samples for the transect.
Elements such as V, Cr, Y and Zr will not incorporate into the sulfides and will be further

diluted when massive sulfide is present (i.e., mass gain).
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Figure 8: Major and trace element A) enrichment and B) depletion associated with whole-rock geochemical
analysis along the Kerry Road deposit transect. Sample 2C is from the Kerry Road VMS deposit; other samples
are all associated with amphibolite host rock.
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Figure 9: Isocon diagram (after Grant, 2005) illustrating the
whole-rock chemical changes between unmineralized and mineral-
ized amphibolite. Major elements are in wt% and trace elements in

Amphibole chemistry

Amphiboles were analysed to test for compositional changes with varying proximity to
the Kerry Road deposit (Fig. 10; Table 2). Samples DD.16.04 (~250 m) and 70060 (~150 m)
are distal and consist of ferrotschermakite (Cai.s(Mgo.03,Fe2.44)Al26S1593022(0OH)2), with
relatively low Mg and Si content compared to the proximal (~100 m) and mineralized sample.
Transect sample A is within ~100 m of the Kerry Road deposit and has a composition between
magnesiohornblende and actinolite, highlighting a transition towards more Si and Mg. Sample
70027 is associated with the mineralization and consist of actinolite with the highest Mg and

Si concentrations (Cai.7(Mg3.9,Fe1.1S17.04022(OH)»).
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Figure 10: Chemistry of amphibole at the Kerry Road area derived from microprobe analyses. Amphi-

bole chemistry changes from ferrotschermakite in distal samples (70060 and DD/16/04) to actinolite in
proximal samples (1A and 70027). This change highlights a progressive enrichment in Si and Mg as the
Kerry Road deposit is approached. Classification of calcic amphiboles fields modified from Leake et al.

Sulfur Isotope Analyses

Sulfur isotope analyses of pyrite, sphalerite and chalcopyrite from the mineralized samples
are remarkably homogeneous and average 5**S%o = 0.8 %o (£0.7 %o) (n=21). Pyrrhotite (n-
=4) range between -0.5 and 1.1%o, pyrite (n=13) range between 0.7 and 2.1%o, and

chalcopyrite range between 0.3 and 1.2%o (Fig. 11; Table 3).
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Figure 11: Sulfur isotope analysis (n=21) from the Kerry Road Deposit. The majority of the samples are near 0
%o and reflect a basaltic source for the sulfur found in the base metal sulfides.

Discussion

Tectonic setting of formation for the Kerry Road deposit

In the last twenty-five years, a classification scheme of VMS deposits has been
developed based on host stratigraphic sequence and interpreted geodynamic setting (Barrie
and Hannington, 1999; Piercey, 2010, 2011). In metamorphic terranes, the primary features
of rocks are often obscured due to mineralogical changes but, in general, their chemical

composition reflects that of their protolith. In such circumstances, trace element geochemistry
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can be used to provide insights into the nature of the protolith and its tectonic setting (Vokes,
2000; Spry et al., 2000; Cook and Marshall, 2004; Corriveau and Spry, 2014). The Kerry
Road deposit is characterized by amphibolite facies metamorphosed tholeiitic basalts and
metapsammite/pelite. This type of VMS deposit forms in tectonic environments associated
with oceanic island-arc or continental rift/back-arcs basins and is dominated by pelitic and
mafic lithologies (e.g., Franklin et al., 2005; Galley et al., 2007). Moreover, trace element
systematics of the metabasalts are compatible with a pre-Laxfordian submerged island arc
tholeiite interpretation (Fig. 7bc). This is supported by the tight distribution of §**S data,
averaging at 0.8 %o, reflecting a homogenous sulfur source dominated by tholetiitic basalts
with §**S around 0%o (Torssander, 1992). The primary signature appears to have been
preserved, on the hand specimen and deposit scale. A similar relationship was recorded in the
Norwegian Caledonide VMS systems, which have undergone similar metamorphism (Skauli
et al, 1992; Cook and Hoefs, 1997), and also preserved characteristics of the magmatic origin
of their host VMS. However, the homogeneity of the signal was likely “tightened” through
the deformation and metamorphism. Nonetheless, an alternative interpretation of the origin of
the S signature, is that this cluster might reflect Paleoproterozoic seawater with §**S between
15 and 25 %o, as partial reduction of oxidized seawater to isotopically lighter H>S results in
sulfides ~17 to 25%o lighter than coexisting seawater sulphate (e.g., Ohmoto and Rye, 1979;
Seal, 2006; Cloutier et al., 2015). However, this is unlikely as Bléttler ez al. (2018)
determined the §°*S of seawater from a 2.0 Ga evaporite sequence to be between 5 and 7%o.
If the S-isotope composition of the LMG sulfides were derived from 2.0 Ga seawater their
534S should be —10 to —20%o. Therefore, we conclude that the sulfides originated from the

tholeiitic basalts.
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Deformation of the Kerry Road deposit

In the Kerry Road field area, Laxfordian D1/D2 defines penetrative sub-vertical
foliation associated with prograde amphibolite facies metamorphism that is typically
attributed to the collision of an oceanic plateau with a continental accretionary prism at ¢. 1.9
Ga (Park et al., 2001). In the Kerry Road area, this phase of deformation is recorded by the
strong, steeply dipping NW-SE (~120°) foliation. This led to significant recrystallization and
mechanical remobilization of pre-existing sulfide mineralization. Through cross-cutting
relationships, pyrrhotite was observed to remobilize first, followed by chalcopyrite and
finally sphalerite (Fig. 5b). Maximum peak metamorphic conditions were not high enough for
pyrite to cross the brittle-ductile boundary as evidenced by its brittle deformation behavior
(Fig. 12). The pyrrhotite-chalcopyrite relationship suggests that pressure crossed the 100 MPa
mark before reaching 150°C (Marshall and Gilligan, 1987; Fig. 12), which is compatible with
subduction tectonics P-T. However, the late remobilization of sphalerite does not fit the
Barrovian-type sulfide remobilization sequence of Marshall and Gilligan (1987) wherein
galena crosses the brittle ductile boundary first followed by sphalerite, pyrrhotite,
chalcopyrite and pyrite (Fig. 12). This suggests that sphalerite was remobilized again under
either D3 or D4 (or both) and that these late Laxfordian events did not reach pressures above
120 MPa (Po remobilization) and temperature above 200°C (Ccp remobilization), which is
consistent with the established D3/D4 brittle retrogressive metamorphic events of Park ef al.

(2001).

Peak Laxfordian metamorphic conditions in the Kerry Road area are highlighted by
the presence of index minerals such as amphibole, garnet and biotite. Two stages of
amphibole growth were observed, correlating with D1/D2 fabrics. Many of the early

amphibole porphyroblasts display a well-developed mineral elongation lineation that may
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correspond with the L1 mineral lineation of Park ef al. (2001). In places, amphiboles display

intergranular shear movement, suggesting shearing post-peak metamorphism. Furthermore,

zoned almandine garnets, cross-cut the main foliation defined by the amphiboles, and do not

display concentric rings or spiral trails inclusions suggesting their growth was late and that
peak metamorphic conditions were stable enough to allow static growth of garnet. Late
retrogression of amphibole to chlorite occurred and also biotite to chlorite, indicating

greenschist-facies conditions associated with D3/D4 Laxfordian deformation events. In

summary, our data agree with the subduction-accretionary prism tectonic model of Park et al.

(2001) and add constraints on early metamorphic conditions through the sulfide deformation

paragenesis where P reached 100 MPa prior to 150°C.
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Figure 12: The brittle-ductile transitions of some common sulfides
(from Marshal and Gilligan, 1987). Pyrrhotite was observed to mobi-
lize first, followed by chalcopyrite and sphalerite. Shaded area outlines
the path and minimum P-T conditions recorded by the sulfides during
D1/D2 and the hashed area outlines maximum temperature and pres-
sure during D3/D4. Ccp= chalcopyrite, Py= pyrite, Po= pyrrhotite, Sp=

Sphalerite.
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Implications for exploration of mafic-hosted VMS deposits in

metamorphosed terranes to amphibolite facies

VMS deposits metamorphosed to the amphibolite facies are uncommon accounting
for only 11 percent of known VMS deposits (Mosier ef al., 2009). In unmetamorposed
environment, the primary alteration below the main massive sulfide consists of a zone of Mg-
or Fe-rich chlorite proximal to the main upflow zone surrounded by a zone of distal white
mica (Franklin et al., 2005; Galley et al., 2007; Piercey, 2009; Hannington, 2014).
Geochemically, these zones are associated with an increase in aluminous minerals relative to
the host rock due to intense hydrothermal leaching of alkalis under acidic high fluid/rock
conditions (e.g., Galley et al., 2007; Dusel-Bacon, 2010). During metamorphism, the primary
alteration mineral assemblage changes to aluminous minerals (garnet, chloritoid, staurolite,
kyanite/andalusite/sillimanite and cordierite), orthorhombic Mg-Fe-Mn amphiboles and
gahnite (zincian spinel) (e.g., Nesbitt and Kelly, 1980; Corriveau and Spry, 2014; Hollis et
al., 2019). The final metamorphic assemblage depends on the peak metamorphic grade and
the original composition of the host rock and alteration zone. At the Kerry Road deposit, no
Al-rich phases, gahnite or orthoamphiboles were observed. Instead, calcic amphibole is the
main alteration mineral. Its chemistry varies from actinolite in the mineralized zone to
ferrotschermakite distal to mineralization (>150m) and defines a Mg-Si-rich halo surrounding
the Kerry Road deposit. In addition to amphibole chemistry, whole-rock geochemistry
records an enrichment in Si, Cu, Co, S, Zn, Fe, and Cd, and depletion in Al, Ti, V, Cr, Y and
Zr, in regions proximal to the Kerry Road deposit (Fig. 8) associated with addition of sulfide
and silica in silicate minerals related to mass gain during the hydrothermal alteration.
Together, these proxies are typical of VMS deposits worldwide (e.g., Galley et al., 2007,

Hannington, 2014, Cloutier ef al., 2017) and can be used to assess the proximity to
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mineralization, not only for the LMG group, but for any metamorphosed VMS belts globally
with similar metamorphic characteristics. In summary, despite the high amphibolite facies
metamorphism recorded at the Kerry Road deposit, it is still possible to decipher the

alteration surrounding the VMS deposit.

Conclusions

This study used a multi-faceted approach to analyze and assess one of Britain’s oldest
examples of VMS mineralization and its context to the regional geology. The Kerry Road
deposit is a c. 2.0 Ga Paleoproterozoic VMS deposit, which formed in a submarine oceanic
island arc setting from hydrothermal activity that sourced sulfur and base metals from sub
seafloor tholeiitic basalt. The deposit was then deformed and metamorphosed during the 1.8-
1.7 Ga Laxfordian orogeny. Sulfide textural relationships suggest a high-P low-T path that
crossed 100 MPa before reaching 150°C during early deformation (D1/D2). Late Laxfordian
deformation (D3/D4) is associated with brittle retrograde greenschist conditions with P-T of
<1.2 MPa and <200°C). Our findings are compatible with the subduction-accretionary tectonic
model of Park et al. (2001). Despite being exposed to amphibolite facies metamorphism, the
original alteration halo associated with the Kerry Road deposit is preserved within amphibole
crystal chemistry, with Mg- and Si-rich actinolites occurring with proximity to the Kerry Road
deposit. In addition, whole rock geochemistry records a gradual Si, Cu, Co, S, Zn, Fe, and Cd
enrichment, and Al, Ti, V, Cr, Y and Zr depletion, as the VMS system is approached. These
proxies could be used for VMS exploration in highly metamorphosed mafic dominated terrane

worldwide to vector toward mineralization.
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Figure 1. Simplified geological map of NW Scotland (modified from Coates et al., 1997).

Figure 2. Simplified geological map of the Gairloch region (modified from Park et al., 1987,
2001). Also shown is the position of the Kerry Road deposit (star). GSB: Gairloch Schist Belt;

LMSB: Loch Maree Schist Belt.

Figure 3: Geological map for the Kerry Road VMS deposit.

Figure 4: Examples of rock types in the Kerry Road field area and the associated petrographic
analysis. A) Quartz-mica-schist sample DD/16/09, with quartz veins running parallel and cross-
cutting the dominant foliation. Modal abundance is quartz (~81%), biotite (~10%), pyrite
(~4%) muscovite (~4%), plagioclase (~1%). B) Thin section of sample DD/16/09, outlining
the sheared foliation, and quartz veining cross-cutting quartz, biotite and chlorite matrix. C)
Sample DD/16/04 displaying porphyroblastic amphiboles. D) Thin section of sample
DD/16/04 wherein a sub-lineation defines the amphibole crystals. Microprobe analyses of these
crystals identified them as ferrotschermakite. At least two phases of amphibole growth are
suggested due to overlapping relationships. E) Sample DD/16/06 consisting of garnet-
amphibole-schist with almandine garnets overprinting foliated amphibole. Mode for this
sample consisted of amphibole (35%), quartz (25%), chlorite (20%), almandine (15%), iron
oxide (5%). F) Thin section of sample DD/16/06 with almandine garnets overprinting sheared
deformation fabric and displaying static growth suggesting their growth was late and thus
continuation of amphibolite facies conditions even at the later stages of Laxfordian
deformation. Note, though that almandine crystals show clear signs of retrogression to chlorite

and quartz (greenschist facies assemblage).
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Figure 5: Photo of mineralized intervals at the Kerry Road deposit. A) Sample highlighting the
common mineralogy and sulfide remobilization textures observed. Gangue includes quartz,
ferroan dolomite and calcite (GBH18; 30m). (B) VMS sample 70033 from drill core GBH23
at a depth of 29.45-29.7 m. Both samples show a remobilization sequence wherein pyrrhotite
crosses the brittle/ductile boundary first followed by chalcopyrite and sphalerite. Pyrite has not
been remobilized and acted brittlely during deformation. Ccp= chalcopyrite, Py= pyrite, Po=

pyrrhotite.

Figure 6: Photographs of the different sulfide mineralization texture. A) Disseminated
mineralization showing isolated chalcopyrite aggregates in a matrix of silicates. Drill core
GBHI15, 20.5-22.5 m. B) Vein-type mineralization exploiting an ultramylonite horizon,
displaying chalcopyrite veining and pyrite cubes. Veining engulfs euhedral pyrite and is not
influenced by mylonitic shearing suggesting that remobilization continued to occur after peak
mylonitic conditions. Drill core GBH31, 73.16-73.36 m. C) Sub-massive texture displaying
both chalcopyrite and pyrrhotite mineralization. Drill core GBH41, 109.2-112 m. D) Massive
texture with dominant chalcopyrite. Drill core GBH19, 25.3-27.2 m. E) Durchbewegung
texture; defined as a mixture of secondary tectonic origin composed of angular to rounded
clasts of one or more competent materials in a matrix of predominantly different incompetent
material (in this case pyrrhotite). Significant clast rotation has occurred through deformation
to form this round clast (Marshall and Gilligan, 1987). Note the calcite exploiting the contact

between the VMS mineralization and the amphibole schist. Drill core GBH19, 33.0-33.4 m.

Figure 7: Immobile element discrimination diagrams for distal amphibolite surrounding the
Kerry Road deposit (A) Zr/TiO>-Nb/Y diagram (Winchester and Floyd, 1977) with modified
field boundaries of Pearce (1996). B) Zr-Y discriminating magma affinity with fields of Ross

and Bedard (2009) (C) V-Ti/1000 diagram with field boundaries of Shervais (1982) for mafic
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rocks. (D) Zr-Nb diagram of Piercey (2009) discriminating juvenile environments from
evolved environments. Low Ti-IAT Bon= low titanium-island-arc tholeiites and boninites,

[AT=island-arc tholeiites, MORB/BAB= mid-ocean ridge basalts/back-arc basalts.

Figure 8: Major and trace element A) enrichment and B) depletion associated with whole-rock
geochemical analysis along the Kerry Road deposit transect. Sample 2C is from the Kerry Road

VMS deposit; other samples are all associated with amphibolite host rock.

Figure 9: Isocon diagram (after Grant, 2005) illustrating the whole-rock chemical changes
between unmineralized and mineralized amphibolite. Major elements are in wt% and trace

elements in ppm.

Figure 10: Chemistry of amphibole at the Kerry Road area derived from microprobe analyses.
Amphibole chemistry changes from ferrotschermakite in distal samples (70060 and DD/16/04)
to actinolite in proximal samples (1A and 70027). This change highlights a progressive
enrichment in Si and Mg as the Kerry Road deposit is approached. Classification of calcic

amphiboles fields modified from Leake et al. (1997).

Figure 11: Sulfur isotope analysis (n=21) from the Kerry Road Deposit. The majority of the
samples are near 0 %o and reflect a basaltic source for the sulfur found in the base metal

sulfides.

Figure 12: The brittle-ductile transitions of some common sulfides (from Marshal and
Gilligan, 1987). Pyrrhotite was observed to mobilize first, followed by chalcopyrite and
sphalerite. Shaded area outlines the path and minimum P-T conditions recorded by the
sulfides during D1/D2 and the hashed area outlines maximum temperature and pressure

during D3/D4. Ccp= chalcopyrite, Py= pyrite, Po= pyrrhotite, Sp= Sphalerite.
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679

Jctural formula of analyzed amphibole phases from the Kerry Road area.

8i0, Ti0, ALO; Fe,0; MnO Mg0 Ca0 Na,0 K,0 Total

ZLone ®) 0 ) () () (R (%) (%) Amphibole Name Mineral formula
6) Intermediate 50.96 044 461 1271 000 1472 1197 054 000 9595  Actinolite Nay 16Cay g9(Mgs Fe 1ALy 34 Tings)(Skr 53AL47)(OH),
6) Intermediate 5247 0.12 326 1396 0.00 15.68 1224 041 0.00 98.15  Actinolite Nag 1oCay o1(Mgs soFer 532l 15 Ti15)(S Al 35) OH),
6) Intermediate 53.27 0.12 351 1267 000 1552 11.80 027 007 9724  Actinolite (Naggg16Ko.1)Cayg3(Mgs 36F e 38Al 33Ty 01 ) (S 734l ) (OH),
6) Intermediate 5342 0.14 272 1287 0.00 1584 1213 030 0.06 9748  Actinolite (Nag K1) Cay g9(Mgs s3Fe 1AL 0 Tig ) Sty 35A L 25) (OH),
6) Intermediate 5370 0.02 390 1215 0.00 1585 1212 051 0.00 9823  Actinolite Nay,4Cay g5(Mgs s5Fer31AL 35)(St oAl 1) (OH),
6) Intermediate 52.47 0.13 485 1159 000 1536 11.89 043 001 9673  Actinolite Nag 3Ca g5(Mgs oFe; 274l 4 Tig 1) (Siy 1ALy 39)(OH),
6) Intermediate 5215 001 288 1246 0.00 15.75 1230 030 0.00 9584  Actinolite Na g5Cay o5(Mgs graFe 35AL 20)(Siz 1ALy 30)(OH),
6) Intermediate 44.79 025 12.15 1439 000 1063 1170 102 005 9498  Mg-homblende (Nag 30K 01)Cay g9(Mgy s0Fer ALy 96 Tio 3)(Si 29l 1) OH),
6) Intermediate 4621 037 1020 15.15 020 1153 1186 1.02 0.13 96.68 Mg-hornblende (Nay 39K 03)Cay go(Mgy 57Fe 71Mng g3 ALy Ty ) (Sig Al ) OH)y
6) Intermediate 52.95 0.01 386 1412 000 1569 1193 027 0.10 9892  Actinolite (NagggKog)Cay g4(Mgs 37Fey 53AL 27) (St Al 39)(OH),
6)  Intermediate 51.24 0.6 519 1321 0.02 14.66 1199 051 0.04 97.02  Actinolite (Nag 15K g91)Ca 155 (Mg 3 19 Fe 454l .0 Ti 0 )(Si 7504l 30 )(OH) 5
6) Intermediate 46.00 021 1035 1530 000 11.66 1141 111 000 96.04 Mghomblende Nay3pCay go(Mgy oFe; 1AL 76Tin o) (Sig oAl 5) (OH),
6) Intermediate 49.87 025 812 14.67 0.00 13.15 1205 0.76 0.00 9887 Mg-homblende Nag 51Cay g7(Mgy saFe; oAl 51 Tig 3)(Siz ALy ) OH),
6) Intermediate SL.I8 0.16 626 1297 000 1416 1175 053 004 9704 Mghomblende (Nag,5Ko.01)Cay g4(Mgs osFer 1ALy 54T ) Sty 47A Ly 53)(OH),
6) Intermediate 5112 0.17 683 13.28 0.00 1401 1176 051 0.1l 97.78  Mg-homblende (Nag 14K 02)Cay g3(Mgs g5Fey 45Aly 55 Tig o) (Sir 1Al 59)(OH)y
6) Intermediate 47.44 021 1143 1648 0.00 1150 11.88 103 0.04 100.00 Mg-homblende (Nag9Ki.01)Ca g4(Mgy sgFe soAly 3T ) Sl Al 22)(OH),
6) Intermediate 53.66 0.07 389 1220 000 1561 1216 038 001 9798  Actinolite Nay,1Cay g7(Mgs gFeg AL 36Tingr)(Sir 71AL 25)(OH),
6) Intermediate 5290 001 279 1438 0.00 1411 1165 037 0.I5 9637  Actinolite (Nag1Kogs)Cay g5(Mgs 1 Fe oAy 31) (St oAl ) OH),
6) Intermediate 43.26 025 1485 1637 000 957 1172 133 0.2 9746  Mghomblende (Nag39K.02)Cat g5(Mg 13Fe Al 19Tio 3)(Sig Al 57) OH),
6) Intermediate 4521 023 1374 1517 056 991 1222 120 0.13 9838  Mg-homblende (Nay 34K 2)Cay g3(Mgy 15 e sMngg7AL 5Ty g3)(Sig s6ALy 34) OH)y
6) Intermediate 45.86 0.27 12.62 1583 0.00 1094 1142 124 0.11 9830 Mg-homblende (Nag 35K 02)Cay go(Mgy sgF e 75ALy 94T 3)(Sig 75AL 25)(OH),

6) Intermediate 48.65 0.18 9.09 14.66 0.06 1246 1180 085 0.07 97.82 Mg-hornblende (Ndg,ng,m)Cd1gj(Mgg‘uFe]»ggMn{)()/Alm]Tllg‘gg)(Slﬁ/;AlaW)(OH)g

m)  Proximal 5419 003 157 1014 276 1779 1144 063 004 9859 Actinolite (Nag,5Ko.01)Cay 75(Mgs goFe ssMng 33ALy3)(Siz ALy 24) (OH),
m)  Proximal 5679 000 084 937 000 1901 1166 047 000 9815  Actinolite Nag 13Ca 76(Mgs s9F e g9Aly 3)(Sty oAy g7)(OH),

m)  Proximal 5604 000 098 899 000 1833 1160 0.54 005 9652  Actinolite (Nag, 5K 1)Cay 75(Mgs 91 FengrAly15)(Sis o1 )(OH)y
) Proximal 5406 000 159 1223 000 1677 1153 071 005 9694  Actinolite (Nay 29K q01)Cay go(Mgs goFey 34Aly 13)( St 6Aly 14)(OH),
m)  Proximal 5368 000 191 1033 0.5 1731 1110 072 0.04 9524  Actinolite (Nag oK) Cay g9(Mgs 75Fe 1sMng Al 19)(SizseAly 1) (OH),

m) Proximal 5495 0.01 138 1021 058 17.84 1147 0.6 0.04 97.09 Actinolite (Ntlg\an‘g/)CC!”-(ngggFel_“Mn0‘071410_15)(&-‘90/4101())(01'[)g

2m) Proximal  55.84 0.00 185 1117 000 1730 11.06 0.65 006 9794  Actinolite (Nag 5Kn01)Cay go(Mgs rFeg 0Ly 25) (S g4Al ) (OH),
2m) Proximal  55.59 0.00 096 965 000 1867 1144 060 005 9696  Actinolite (Nag 7K01)Cay 75(Mgs ggFe Al 11) (St g5Al ) OH)
2m) Proximal 5406 0.02 209 1147 000 1729 1141 097 007 9737  Actinolite (Nag 77K 01)Cay 76(Mgs aFe; 2Ly 15)(Sir oAy 20)(OH)
2m) Proximal 5415 0.00 120 10.I5 000 1738 1176 045 002 9512 Actinolite Nay,3Cay g5(Mgs oFe 1AL 14) (St 3Al 7)(OH),
Ym)  Proximal 5491 001 153 1061 0.00 17.66 1142 067 0.05 9685  Actinolite (Na g 9K g1 )Ca 1 75(Mg 579Fe 115l 13)(Si 7914l o )(OH) 5

Smo Disal 4070 030 1559 2296 038 541 1012 188 036 9770 Femotschermakite  (NaysrKor)Cays(Me sFer Mg sl sTios)SicssAly ) OH),
Smo Disal 4053 032 1579 2199 000 540 1040 160 034 9637 Femotschermakie (Nag6Ko0)C74(Me P 59l T )i sl ) OH ),
Sm Disl 3861 031 1554 2278 000 507 1049 194 035 9509 Femotschermakie (NaggoKo.)Caso(Me FepssAlL TSl o) OH),
Smo Disul 4195 031 1519 2175 059 572 1046 150 035 9782 Femotschemakie  (NasKom)Cai(MgysiFesMaogsAls oo Sis sl s (OH),
Smo Disal 4072 026 1607 2281 073 534 1023 172 043 9830 Ferotschemakie  (NaysKou)Carso(MgiFes Mg oAl Tiog) Sisashl 1) (OH),
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Table 3. Measured 8*Syepr from
sulfides from the Kerry Road area

SAMPLE 534S (%o)
Pyrrhetite:
70023 0
70044 -0.8
70048 -0.5
70049 1.1
Pyrite:
70033 0.8
70039 0.7
70041 1.2
70045 1
70049 1.8
70050 2.1
70051 1.2
70052 0.8
70053 0.7
70057 1.1
70058a 0.7
70058b 1
Field 0.8
Chalcopyrite:
70023 0.7
70038 0.9
70046 0.3
70054 1.2
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