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HAUSDORFF MEASURE AND ASSOUAD DIMENSION OF GENERIC
SELF-CONFORMAL IFS ON THE LINE

BALÁZS BÁRÁNY, ISTVÁN KOLOSSVÁRY, MICHAŁ RAMS, AND KÁROLY SIMON

Abstract. This paper considers self-conformal iterated function systems (IFSs) on the
real line whose first level cylinders overlap. In the space of self-conformal IFSs, we show
that generically (in topological sense) if the attractor of such a system has Hausdorff
dimension less than 1 then it has zero appropriate dimensional Hausdorff measure and
its Assouad dimension is equal to 1. Our main contribution is in showing that if the
cylinders intersect then the IFS generically does not satisfy the weak separation prop-
erty and hence, we may apply a recent result of Angelevska, Käenmäki and Troscheit.
This phenomenon holds for transversal families (in particular for the translation family)
typically, in the self-similar case, in both topological and in measure theoretical sense,
and in the more general self-conformal case in the topological sense.

1. Informal Statement

A self-conformal iterated function system (IFS) on the real line is a finite collection

S := {Si}mi=1 of C1+α contracting conformal maps on a non-degenerate compact interval

X ⊂ R such that each Si extends to an injective, contracting conformal mapping on an

open set that contains X. Let us recall that a map f : R 7→ R is C1+α if f is continuously

differentiable and the derivative f ′ is non-vanishing and Hölder continuous with Hölder

exponent α. It is well-known that there exists a unique, non-empty compact set, the

attractor Λ associated to S, which satisfies

Λ =

m⋃

i=1

Si(Λ).

The set Λ is called a self-conformal set.

Let Σ∗ :=
⋃∞

n=1 {1, . . . , m}n be the collection of all finite length words ı, and we obtain

ı− by dropping the last symbol of ı. For compositions of maps, we always write Sı =

Si1...in := Si1 ◦ · · · ◦ Sin . Numerous different separation conditions exist in the literature

depending on the extent of separation between the cylinder sets Si(Λ). Of these, let us

recall the following. An IFS S with attractor Λ

(i) has an exact overlap if

there exist ı,  ∈ Σ∗, ı 6=  such that Sı|Λ ≡ S|Λ;

(ii) satisfies the Strong Separation Property (SSP) if

Si(Λ) ∩ Sj(Λ) = ∅ for distinct i, j ∈ {1, . . . , m};
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(iii) satisfies the Weak Separation Property (WSP) [12, 20] if

(1.1) sup {#Φ(x, r) : x ∈ Λ and r > 0} < ∞,

where B(x, r) is the ball in Rd centered at x with radius r and where

(1.2) Φ(x, r) :=
{
Sı|Λ : diam(Sı(Λ)) ≤ r < diam(Sı−(Λ)), Sı(Λ) ∩ B(x, r) 6= ∅, ı ∈ Σ∗}.

The WSP is strictly weaker than the SSP, moreover, an IFS with an exact overlap can

satisfy the WSP but never the SSP. We remark that the Open Set Condition, which is

weaker than the SSP but stronger than the WSP, plays an important role in our proofs, but

is not essential in stating our results. Therefore, we postpone its definition to Section 3.2.

If a conformal IFS on R satisfies the SSP, then the Hausdorff and Assouad dimension

of its attractor Λ, denoted dimHΛ and dimA Λ, are both equal to the so-called conformal

dimension, see Section 3.2 for the definition. Furthermore, the dimH Λ-dimensional Haus-

dorff measure HdimH Λ(Λ) ∈ (0,∞). In fact, recently Angelevska, Käenmäki and Troscheit

showed in [1] that this holds true even under the weaker WSP condition, provided that

dimH Λ < 1. Moreover, failure of the WSP implies that HdimH Λ(Λ) = 0 and dimA Λ = 1.

Notice that the SSP is an open condition, i.e. if an IFS satisfies the SSP, then a

small enough perturbation of it will still satisfy the SSP. The main question this paper

addresses is if a conformal IFS on R does not satisfy the SSP, then in some generic sense,

how significant are the overlaps between the cylinder sets?

Informal statement. Our main result is that on a proper space of conformal IFSs on

R, it is a generic property that if an IFS does not satisfy the SSP, then

it does not satisfy the WSP nor does it have exact overlaps.

In particular, combining this with the aforementioned characterization of the WSP in [1],

we get that restricting to conformal IFSs with conformal dimension < 1,

generically, failure of SSP =⇒ HdimH Λ(Λ) = 0 and dimA Λ = 1.

In the next section, we define all the necessary terminology in order to state our results

precisely.

2. Further motivation and main results

A self-similar IFS S on R is a special conformal IFS consisting of strictly contracting

similarity maps:

(2.1) S := {Si(x) = rix+ ti}mi=1 , x ∈ R, ri ∈ (−1, 1) \ {0} , ti ∈ R.

The attractor Λ of S is called a self-similar set.

The Assouad dimension was introduced by P. Assouad [2],[3] in relation with quasi-

conformal mappings and embeddability problems, see [10, 13, 17]. Recently though,

considerable attention has been given to its study in Fractal geometry, see [1, 5, 6, 7, 9,
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11, 14] or the recent book [8] to name a few. The Assouad dimension of a set E ⊂ Rd is

dimAE := inf

{
α : ∃ C > 0, such that ∀ 0 < r < R,

sup
x∈E

Nr (B(x,R) ∩ E) ≤ C

(
R

r

)α
}
,

where Nr (F ) is the smallest number of open balls centered in the set F ⊂ Rd of radius

r with which we can cover F . We denote the Hausdorff dimension of a set E ⊂ Rd by

dimH E and its s-dimensional Hausdorff measure by Hs(E).

In particular, on R, an interesting dichotomy was proved between the separation prop-

erty WSP and the Assouad dimension of self-similar sets by Fraser, Henderson, Olson

and Robinson in [7, Theorem 1.3.] and extended to self-conformal sets by Angelevska,

Käenmäki and Troscheit in [1, Theorem 4.1, Corollary 4.2]. We summarize these results

in the following theorem.

Theorem 2.1 ([1, 7]). Assume that Λ is the attractor of either a self-similar or self-

conformal IFS S on R such that Λ is not a singleton. Then

dimA Λ =

{
dimHΛ, if S satisfies the Weak Separation Property,

1, otherwise.

For a higher dimensional generalization see [9]. For self-similar sets, Farkas and Fraser

[6, Corollary 3.2] pointed out another equivalent characterization of the weak separation

property, relating it to the positivity of the appropriate dimensional Hausdorff measure

of the attractor. This result was also extended by Angelevska, Käenmäki and Troscheit

in [1, Corollary 4.2] for self-conformal sets.

Theorem 2.2 ([1, 6]). Assume that Λ is the attractor of either a self-similar or self-

conformal IFS S on R such that Λ is not a singleton and dimH Λ < 1. Then

0 <HdimH Λ(Λ) < ∞, if S satisfies the Weak Separation Property,

HdimH Λ(Λ) = 0, otherwise.

We are now ready to introduce the space of self-conformal IFSs in Section 2.1, moreover,

parameterized families of self-conformal IFSs satisfying a transversality condition in Sec-

tion 2.2.

2.1. Generic self-conformal IFSs on the line. We begin by defining the space of

self-conformal IFSs on the line that we work with.

Definition 2.3 (Conformal IFSs on the line). Let V ⊂ R be a non-empty open interval.

We say that a C1+α function h : V → R is a conformal mapping if it has non-vanishing

derivative.

Furthermore, S = {S1, . . . , Sm} is a conformal IFS on a compact interval X ⊂ R if

Si : X → X and Si extends to a conformal injective mapping Si : V → V , where V is an

open interval with X ⊂ V and

sup
x∈V

|S ′
i(x)| < 1 for all i ∈ [m] := {1, . . . , m}.
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Definition 2.4 (Space of self-conformal IFSs on the line). Let Θm(X) denote the collec-

tion of conformal IFSs of m mappings on the compact interval X. For 0 < β < ρ < 1,

we define

Θm
β,ρ(X) :=

{
S ∈ Θm(X) : β ≤ |S ′

i(x)| ≤ ρ, ∀x ∈ X, i ∈ [m]
}
.

For a function h ∈ C1+α(X,R) we write

|||h||| := ‖h‖sup + ‖h′‖sup + sup
x,y∈X

|h′(x)− h′(y)|
|x− y|α .

For T = (T1, . . . , Tm),G = (G1, . . . , Gm) ∈ Θm
β,ρ(X) we define

(2.2) dist(T ,G) := max
i∈[m]

|||Ti −Gi|||.

Then Θm
β,ρ(X) endowed with this metric is a complete metric space.

We remind the reader that a subset of a topological space is called a set of first

category or meagre if it is a countable union of nowhere dense closed sets (i.e. the

interior is an empty set). We call a subset of a topological space a Gδ-set (or have the

Gδ property) if it is a countable intersection of open sets. Observe that the complement

of a set of first category is a dense Gδ-set by definition. We can now define a ‘generic’

self-conformal IFS on Θm
β,ρ(X).

Definition 2.5. Let P be a property of self-conformal IFSs on the line. We say that a

generic self-conformal IFS on the line has property P if for all non-empty

compact intervals X ⊂ R, m > 2 and 0 < β < ρ < 1 the set of IFSs from Θm
β,ρ(X) which

do not have property P is a set of first category.

Our main result is the following. Its proof is in Section 4.

Theorem 2.6. For a generic (in the sense of Definition 2.5) self-conformal IFS on the

line either

the SSP holds OR the WSP does not hold and there are no exact overlaps.

Actually, we prove a stronger result on the genericity of the failure of the WSP, see

Section 4 for the precise details.

The conformal dimension, see Section 3.2 for the definition, is a natural upper bound

for dimHΛ. Combining Theorem 2.6 with [1, Theorem 4.1, Corollary 4.2] immediately

gives the following.

Corollary 2.7. Let us restrict to the open set of self-conformal IFSs on the line with

conformal dimension strictly less than 1. Then, a generic IFS either

satisfies the SSP OR HdimH Λ(Λ) = 0 and dimA Λ = 1.

Remark 2.8. Even though the set of IFSs for which the WSP fails and there are no exact

overlaps is topologically large, it is not easy to constract a concrete example of such an

IFS.
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2.2. Transversal families of conformal IFSs on the line. Let d ≥ 1 be an integer

and B ⊂ Rd be a non-degenerate compact ball. For every λ ∈ B we are given an IFS

Sλ :=
{
Sλ
1 , . . . , S

λ
m

}
on R. To show dependence on λ, we denote the attractor of Sλ by

Λλ.

Definition 2.9. We say that
{
Sλ

}
λ∈B is a family of self-conformal IFSs on the

line if the following two conditions hold:

(a): for every λ ∈ B we have Sλ ∈ Θm
β,ρ(X);

(b): for every i ∈ Σ = {1, . . . , m}N the following mapping is C1 :

(2.3) λ 7→ Πλ(i) := lim
n→∞

Sλ
i1...in

(x), λ ∈ B,

where x ∈ X is arbitrary.

In particular, if Sλ is a self-similar IFS for every λ ∈ B, recall (2.1), then we call it a

family of self-similar IFSs on the line.

Example 2.10 (Translation family). Let S ∈ Θm
β,ρ(X) and let B ⊂ Rm be a non-

degenerate compact ball. Then the translation family of S is

Sλ := {Si(x) + λi}mi=1 , λ = {λ1, . . . , λm} ∈ B.

Definition 2.11 (Transversal family of self-conformal IFSs on the line). We say that a

family of self-conformal IFSs {Sλ}λ∈B (in the sense of Definition 2.9) is a transversal

family if the following transversality condition holds:

There exists an ζ > 0 such that for all i, j ∈ Σ with i1 6= j1,

(2.4) |Πλ(i)−Πλ(j)| < ζ =⇒ ‖∇λ (Πλ(i)−Πλ(j))‖ > ζ,

where ∇λ is the gradient in λ.

Let us introduce

SSP := {λ ∈ B : Sλ satisfies the SSP},
WSP := {λ ∈ B : Sλ satisfies the WSP},
EO := {λ ∈ B : Sλ has an exact overlap}.

The compliment of SSP is compact, because it is intersected with the compact set B

and SSP is open. Notice that SSP ∩ EO = ∅. Let Ld(H) denote the d-dimensional

Lebesgue measure of the subset H ⊂ Rd. Our main result concerns the set of parameters(
(B \SSP)∩WSP

)
∪EO, that is those parameters for which either we have exact overlap

or we have overlaps and WSP. We we prove that this set of parameters is a set of first

category in the complete metric space B \ SSP, which is the set of those parameters for

which there are overlaps. Its proof is provided in Section 5.

Theorem 2.12. Let {Sλ}λ∈B be a transversal family of self-conformal IFSs on the line

as in Definition 2.11. Then
(
(B \ SSP) ∩WSP

)
∪ EO is a set of first category, moreover, Ld(EO) = 0.

In addition, if {Sλ}λ∈B is a self-similar family, then also Ld((B \ SSP) ∩WSP) = 0.
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Remark 2.13. The Gδ property does not follow from the more general Theorem 2.6,

because it can be checked that {Sλ : λ ∈ B} as a subset of Θm
β,ρ is nowhere dense.

2.3. Application to translation families. Recall the translation family in Example 2.10.

The following lemma gives a sufficient condition for a translation family to satisfy the

transversality condition (2.4). We are unaware of a reference for it, so we provide the

short proof.

Lemma 2.14. Let {Sλ}λ∈B be a translation family of the self-conformal IFS S ∈ Θm
β,ρ(X),

moreover, denote ρ∗i := supx∈X |S ′
i(x)|. If

(2.5) ρ∗i + ρ∗j < 1 for all i 6= j,

then for every i, j ∈ Σ such that i1 6= j1 there exists p ∈ {i1, j1} for which

∣∣∣ ∂

∂λp

(
Πλ(i)− Πλ(j)

)∣∣∣ ≥ 1− ρ∗i1 − ρ∗j1 > 0,

recall (2.3). Thus, {Sλ}λ∈B is a transversal family and Theorem 2.12 applies.

Proof. Without loss of generality we may assume that i, j ∈ Σ such that i1 = 1 and j1 = 2.

Let σ : Σ → Σ denote the left shift operator, δk,ℓ is the Dirac delta and for fixed i ∈ Σ

and z ∈ {1, . . . , m} we write

Iz(i) := {ℓ > 1 : iℓ = z}.

Using (2.3), the partial derivative ∂
∂λz

Πλ(i) is equal to

δi1,z + S ′
i1
(Πλ(σi))

(
δi2,z + S ′

i2
(Πλ(σ

2i))
(
δi3,z + · · ·

))
= δi1,z +

∑

ℓ∈Iz(i)

ℓ−1∏

k=1

S ′
ik
(Πλ(σ

ki)).

For brevity, let ρi|ℓ−1 :=
∏ℓ−1

k=1 S
′
ik
(Πλ(σ

ki)). Then, we can write

(2.6)
∂

∂λ1

(
Πλ(i)− Πλ(j)

)
= 1 + E1(i, j) and

∂

∂λ2

(
Πλ(i)−Πλ(j)

)
= −1 + E2(i, j),

where

Ez = Ez(i, j) =
∑

ℓ∈Iz(i)
ρi|ℓ−1 −

∑

ℓ∈Iz(j)
ρj|ℓ−1 for z = 1, 2.

We take a convex linear combination of |E1| and |E2|, for which we claim that

(2.7)
(1− ρ∗1)|E1|
2− ρ∗1 − ρ∗2

+
(1− ρ∗2)|E2|
2− ρ∗1 − ρ∗2

< (1− ρ∗1)|E1|+ (1− ρ∗2)|E2| ≤ ρ∗1 + ρ∗2 < 1.
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Indeed, the first and the last inequalities hold due to assumption (2.5). The second

inequality follows from union bounds

(1− ρ∗1)|E1|+ (1− ρ∗2)|E2| ≤
∣∣∣∣∣
∑

ℓ∈I1(i)
(1− ρ∗iℓ)ρi|ℓ−1

∣∣∣∣∣+
∣∣∣∣∣
∑

ℓ∈I1(j)
(1− ρ∗jℓ)ρj|ℓ−1

∣∣∣∣∣

+

∣∣∣∣∣
∑

ℓ∈I2(i)
(1− ρ∗iℓ)ρi|ℓ−1

∣∣∣∣∣ +
∣∣∣∣∣
∑

ℓ∈I2(j)
(1− ρ∗jℓ)ρj|ℓ−1

∣∣∣∣∣

≤
∞∑

ℓ=2

(1− ρ∗iℓ)ρ
∗
i1
. . . ρ∗iℓ−1

+
∞∑

ℓ=2

(1− ρ∗jℓ)ρ
∗
j1
. . . ρ∗jℓ−1

= ρ∗i1 + ρ∗j1 = ρ∗1 + ρ∗2. (telescopic sum)

Choose p ∈ {1, 2} for which |Ep| = min{|E1|, |E2|}. From the convex linear combination

(2.7) it follows that |Ep| ≤ ρ∗1 + ρ∗2 < 1. This and (2.6) implies that for this choice of p

the assertion holds. �

In the self-similar setting, recall (2.1), the translation family of a self-similar IFS S is

of the form

(2.8) Sλ := {rix+ ti + λi}mi=1 , λ ∈ B ⊂ Rm.

The similarity dimension of S is defined as the unique solution of the equation |r1|s0 +
· · ·+ |rm|s0 = 1. The condition in Lemma 2.14 simply becomes

max
i 6=j

{|ri|+ |rj|} < 1.

Combining this with the result of Simon and Solomyak [19, Theorem 2.1.], we get the

following characterization. For simplicity, we refer to a set H ⊂ Rd as a very small

set if it is of first category and Ld(H) = 0.

Corollary 2.15. Let {Sλ}λ∈B be a translation family (2.8) of the self-similar IFS S ∈
Θm

β,ρ(X) with similarity dimension s0. Then apart from a very small set of λ

(1) if s0 > 1, then L(Λλ) > 0. In particular, dimH Λλ = dimAΛλ = 1;

(2) if s0 ≤ 1, then

(a) either λ ∈ SSP, thus dimH Λλ = dimAΛλ = s0 and Hs0(Λλ) > 0;

(b) or HdimH Λλ

(Λλ) = 0 and dimA Λλ = 1.

Proof. If maxi 6=j {|ri|+ |rj |} ≥ 1, then s0 > 1. Moreover, excluding a very small set [19,

Theorem 2.1.(a)] states that Λλ contains an interval.

If maxi 6=j {|ri|+ |rj|} < 1 and s0 > 1, then [19, Theorem 2.1.(c)] states that excluding

a very small set L(Λλ) > 0.

If maxi 6=j {|ri|+ |rj|} < 1 and s0 ≤ 1, then Lemma 2.14 implies that {Sλ}λ∈B is a

transversal family and point (2) follows from Theorem 2.12 and [1]. �

3. Preliminaries

Here we summarize the symbolic notation we use, moreover, we recall the bounded

distortion property and equivalent characterizations of the Open Set Condition.
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3.1. Symbolic notation. An element of the symbolic space Σ = {1, . . . , m}N is an

infinite sequence denoted by i = i1i2 . . .. The left shift operator σ on Σ maps i = i1i2 . . .

to σi = i2i3 . . .. The set of all finite length words is denoted by Σ∗ :=
⋃∞

n=1 {1, . . . , m}n.
Elements of Σ∗ are either written as truncations of infinite length words i|n = i1 . . . in or

as ı = i1 . . . in. For compositions of maps we use the standard notation Sı = Si1 ◦ . . .◦Sin.

For a finite word ı = i1 . . . in ∈ Σ∗, denote ı∞ the infinite sequence for which σnı∞ = ı∞.

Given an IFS S = {Si}mi=1, the natural projection Π : Σ → Λ is defined by

Π(i) := lim
n→∞

Si|n(x),

where x ∈ X is arbitrary. The Strong Separation Property holds if and only if Π is a

one-to-one coding. The function i 7→ Π(i) from Σ to X is continuous. When necessary,

to show dependence of Π on the IFS S, we write ΠS or Πλ : Σ → Λλ when we work with

a parameterized family of IFSs {Sλ}λ∈B.

A self-conformal IFS S satisfies the Bounded Distortion Property: there exists a

uniform constant C0 > 0 such that

(3.1) C−1
0 <

|S ′
ı(x)|

|S ′
ı(y)|

< C0 for every ı ∈ Σ∗ and x, y ∈ X.

3.2. Equivalent characterizations of the Open Set Condition. Recall the separa-

tion conditions we introduced in Section 1. In the proofs, we will use one more condition.

An IFS S satisfies the Open Set Condition (OSC) if there is a non-empty open set

U such that Si(U) ⊆ U and Si(U) ∩ Sj(U) = ∅ for distinct i, j ∈ {1, . . . , m}.
In order to give equivalent characterizations of the OSC, we define the conformal di-

mension of a self-conformal IFS S and its attractor Λ. For s > 0, the pressure function

P (s) is defined by

P (s) = lim
n→∞

1

n
log

∑

ı∈Σn

‖S ′
ı‖s,

where ‖ · ‖ denotes the supremum norm of a function.

The conformal dimension of Λ is the unique solution s0 of the Bowen equation

P (s0) = 0. The bounded distortion property (3.1) and the mean value theorem imply

that there exists a uniform constant C1 > 0 such that for all ı ∈ Σ∗ we have

C−1
1 <

‖S ′
ı‖

diam(Sı(Λ))
< C1.

Hence, s0 is always an upper bound for dimHΛ. Moreover, Hs0(Λ) < ∞. If S is a

self-similar IFS, then the Bowen equation simply becomes

|r1|s0 + · · ·+ |rm|s0 = 1.

In this case, s0 is called the similarity dimension.

Peres, Rams, Simon and Solomyak [15, Theorem 1.1] showed the following equivalences

for self-conformal IFSs:

OSC ⇐⇒ Hs0(Λ) > 0 (in particular, dimH Λ = s0)

⇐⇒ inf

{
supx∈Λ |Sı(x)− S(x)|

min
{
‖S ′

ı(Λ)‖, ‖S ′
(Λ)‖,

} : ı,  ∈ Σ∗, ı 6= 

}
> 0.(3.2)
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These equivalences were proved previously in the self-similar case by Bandt and Graf [4]

and Schief [18]. It is not difficult to see that (3.2) is also equivalent to

(3.3) inf
{
‖S ′

ı(Λ)‖−1 sup
x∈Λ

|Sı(x)− S(x)| : ı,  ∈ Σ∗, ı 6= 
}
> 0.

The relationship between the OSC and the WSP is given by the following observation.

Fact 3.1. A self-conformal IFS S on the line (or more generally in Rd) satisfies the OSC

if and only if S satisfies the WSP and has no exact overlaps.

Proof. For self-conformal IFSs, it was proved in [1, Theorem 3.2] that the WSP is equi-

valent to the identity limit criterion, which holds if

(3.4) inf
{
‖S ′

ı‖−1 sup
x∈Λ

|Sı(x)− S(x)| : ı,  ∈ Σ∗, Sı|Λ 6= S|Λ
}
> 0.

Comparing this with (3.3) proves the assertion. �

4. Generic conformal IFSs, proof of Theorem 2.6

Similarly to parameterized families, let us introduce

SSP
m
β,ρ(X) :=

{
S ∈ Θm

β,ρ(X) : SSP holds for S
}
,

WSP
m
β,ρ(X) :=

{
S ∈ Θm

β,ρ(X) : WSP holds for S
}
,

EO
m
β,ρ(X) :=

{
S ∈ Θm

β,ρ(X) : S has an exact overlap
}
.

Slightly abusing notation, since m, 0 < β < ρ < 1 and the compact interval X are

fixed, we suppress them from the notation and write simply SSP, WSP, EO, moreover,

NOWSP := Θm
β,ρ(X) \WSP and NOSSP := Θm

β,ρ(X) \ SSP.

To prove Theorem 2.6 it is enough to show that SSP ∪ NOWSP is a dense Gδ set in

Θm
β,ρ(X) and that EO is a set of first category.

Theorem 4.1. In the topology on NOSSP defined by (2.2), the set NOWSP is dense Gδ.

First, let us show that

Lemma 4.2. In the topology defined by the distance in (2.2),

NOWSP is a Gδ set in NOSSP

Proof. For an ε > 0, we write

Vε :=
{
S∈Θm

β,ρ(X) :∃ı,  ∈ Σ∗, Sı|Λ 6= S|Λ, ‖S ′
ı‖−1 sup

x∈Λ
|Sı(x)− S(x)|<ε

}
.

By its definition, the set Vε is open in Θm
β,ρ(X). From (3.4), we get that

NOWSP =

∞⋂

n=1

V1/n,

i.e. NOWSP is a Gδ set. �

Lemma 4.3. NOWSP is a dense subset of NOSSP.

Theorem 4.1 clearly follows by the combination of Lemma 4.2 and Lemma 4.3.
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Proof of Lemma 4.3. It is enough to show that for any G /∈ SSP there exists an S̃ ∈
NOWSP arbitrarily close to G in the topology defined by the distance in (2.2). We

achieve this through a succession of steps.

Fact 4.4. Assume G /∈ SSP, i.e. there exist i, j ∈ Σ with i1 6= j1 such that

(4.1) ΠG(i) = ΠG(j).

Then for every ε̃ > 0 there exists an IFS G̃ ∈ Θm
β,ρ(X) satisfying

(4.2) ΠG̃(j)−ΠG̃(i) > 0 and dist(G, G̃) < ε̃.

In the next step, for any α ∈ [0, 1], we take the convex linear combination of G and G̃
from Fact 4.4 defined by

Sα := αG + (1− α)G̃ =
{
Sα
i = αGi + (1− α)G̃i

}m

i=1
.

Fact 4.5. Assume G, G̃ ∈ Θm
β,ρ(X) satisfy (4.1) and (4.2), respectively, from Fact 4.4.

Then Sα ∈ Θm
β,ρ(X) for all α ∈ [0, 1] and there exists an α∗ ∈ [0, 1] such that

Sα∗ ∈ U,

where

(4.3) U :=
{
S ∈ Θm

β,ρ(X) : ∃ x̃ ∈ X, ∃ωωω,τττ ∈ Σ∗,

ω1 6= τ1, ω|ωωω| 6= τ|τττ |, x̃ = Sωωω(x̃) = Sτττ (x̃)
}
.

Fact 4.6. For every ε̃ > 0 and every S ∈ U there exists an IFS S̃ ∈ Θm
β,ρ(X) such that

(4.4) dist
(
S, S̃

)
< ε̃ and S̃ ∈ R,

where

R :=
{
S ∈ Θm

β,ρ(X) : ∃ x̃ ∈ X, ∃ωωω,τττ ∈ Σ∗,

ω1 6= τ1, ω|ωωω| 6= τ|τττ |, x̃ = Sωωω(x̃) = Sτττ (x̃),
log |S ′

ωωω(x̃)|
log |S ′

τττ (x̃)|
6∈ Q

}
.

In particular, this holds for the IFS Sα∗
constructed in Fact 4.5.

To conclude the proof of Lemma 4.3, we show the following.

Fact 4.7. If S ∈ R, then WSP does not hold for S, i.e. R ⊂ NOWSP.

We prove all the facts separately in Subsection 4.1. �

Lemma 4.8. The set EOm
β,ρ(X) is a set of first category, i.e. it is the union of countably

many nowhere dense subsets of Θm
β,ρ(X).

Proof. We can write EO as the countable union

EO =
⋃

ı,∈Σ∗

i1 6=j1

Bı,,

where Bı, =
{
S ∈ Θm

β,ρ(X) : Sı ≡ S, i1 6= j1
}
. Hence, it is enough to show that each Bı,

is nowhere dense.
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Since Sı ≡ S, we have that ΠS(ı
∞) = ΠS(

∞). Then Fact 4.4 implies that for every

ε > 0 there exists an IFS S̃ ∈ Θm
β,ρ(X) satisfying

ΠS̃(
∞)− ΠS̃(ı

∞) > 0 and dist(S, S̃) < ε. In particular, S̃ /∈ Bı,.

Thus, the complement of Bı, is necessarily open and dense, in other words Bı, is a closed

nowhere dense set. �

Proof of Theorem 2.6. It is clear that Θm
β,ρ(X) = SSP

⋃
NOSSP. It is easy to see that

SSP is an open set in Θm
β,ρ(X). Thus, the theorem follows directly from Theorem 4.1 and

Lemma 4.8. �

4.1. Proof of facts in the proof of Lemma 4.3. The following claim is used in the

proof of Fact 4.7.

Claim 4.9. Let S = (S1, . . . , Sm) ∈ Θm
β,ρ(X). Using the notation of Definition 2.4 and

the bounded distortion constants C0 introduced in (3.1) we have

diam(Sı−(X))

diam(Sı(X))
> 1 + C−1

0 · 1− ρ

2ρ
=: τ, ∀ı ∈ Σ∗.

Proof. Let k := ı|ı|. That is Sı = Sı− ◦ Sk. We can choose an interval I ⊂ X such that

int(Sk(X)) ∩ int(I) = ∅ and diam(I) > diam(X) · 1− ρ

2
.

Hence,

diam(Sı−(X))

diam(Sı(X))
≥ diam(Sı−(Sk(X)) + diam(Sı−(I)))

diam(Sı−(Sk(X)))

= 1 +
diam(Sı−(I)))

diam(Sı−(Sk(X)))
≥ 1 +

inf
x∈X

|S ′
ı−
(x)| · diam(I)

‖S ′
ı−
‖ · diam(Sk(X))

> 1 + C−1
0 · diam(X) · 1−ρ

2

ρ · diam(X)
.

�

Proof of Fact 4.4. Let G = {G1, . . . , Gm} ∈ Θm
β,ρ(X) be such that there exist i, j ∈ Σ with

i1 6= j1 for which

(4.5) ΠG(i) = ΠG(j).

The infinite words i and j are fixed from now. Without loss of generality we may assume

that 0 < β < |G′
i(x)| < ρ < 1. Otherwise, if |G′

i(x)| attains β or ρ for some x ∈ X and

i ∈ {1, . . . , m}, then consider the IFS Gε = {(1− ε)Gi(x)± εβ+ρ
2
x}, where ± agrees with

the sign of G′
i(x) and by choosing ε such that dist(Gε,G) < ε̃. Using the function

(4.6) Tδ,y(x) :=

{
ε · (x− (y − δ))4 · (x− (y + δ))4, if x ∈ [y − δ, y + δ]

0, otherwise,

we perturb G to an IFS G̃ = {G̃1, . . . , G̃m} defined by

(4.7) G̃k(x) :=

{
Gi1(x) + Tδ,ΠG(σi)(x), if k = i1;

Gk(x), otherwise.
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Clearly, Tδ,y ∈ C2 and simple calculations give

(4.8) ‖Tδ,y‖∞ = εδ8, ‖T ′
δ,y‖∞ ≤ 8 · εδ7 and ‖T ′′

δ,y‖∞ ≤ 54 · εδ6.
For fixed ε̃ > 0 and δ > 0, the parameter ε in (4.6) is chosen so small that

(4.9) G̃ ∈ Θm
β,ρ(X), i.e. β ≤

∣∣G̃′
k(x)

∣∣ ≤ ρ for every k = 1, . . . , m and x∈X

and

dist(G, G̃) < ε̃

hold simultaneously. The appropriate δ > 0 is specified later in the proof.

For this IFS G̃, we claim that

ΠG̃(i)−ΠG̃(j) > 0.

First observe that (4.5) implies that

ΠG̃(i)−ΠG̃(j) =
(
ΠG̃(i)− ΠG(i)

)
+
(
ΠG(j)−ΠG̃(j)

)
.

Since j1 6= i1, using the definition (4.7) of G̃, we bound
∣∣ΠG(j)− ΠG̃(j)

∣∣ =
∣∣Gj1

(
ΠG(σj)

)
− G̃j1

(
ΠG̃(σj)

)∣∣

=
∣∣Gj1

(
ΠG(σj)

)
−Gj1

(
ΠG̃(σj)

)∣∣ ≤ ρ ·
∣∣ΠG(σj)− ΠG̃(σj)

∣∣.
Similarly,

ΠG(i)− ΠG̃(i) = Tδ,ΠG(σi)(ΠG
(
σi)

)
+ G̃i1

(
ΠG(σi)

)
− G̃i1

(
ΠG̃(σi)

)

≥ εδ8 − ρ
∣∣ΠG(σi)− ΠG̃(σi)

∣∣,
where we used (4.8) and (4.9). Hence,

(4.10) ΠG̃(i)− ΠG̃(j) ≥ εδ8 − ρ ·
(∣∣ΠG(σi)− ΠG̃(σi)

∣∣+
∣∣ΠG(σj)−ΠG̃(σj)

∣∣) .
Also observe that by a simple induction argument, for every ωωω ∈ Σ

(4.11)
∣∣ΠG(ωωω)− ΠG̃(ωωω)

∣∣ ≤ ε · δ8 + ρ ·
∣∣ΠG(σωωω)− ΠG̃(σωωω)

∣∣ ≤ ε · δ8
1− ρ

.

To continue, we distinguish between four different cases.

Case I. Assume that for every ℓ ≥ 2

ΠG(σ
ℓi) 6= ΠG(σi) and ΠG(σ

ℓj) 6= ΠG(σi).

Choose L ≥ 2 to be the smallest integer such that

1− ρ− 2ρL > 0

and let

δ :=
1

2
min

{∣∣ΠG(σ
ℓi)− ΠG(σi)

∣∣,
∣∣ΠG(σ

ℓj)−ΠG(σi)
∣∣ : ℓ = 2, . . . , L

}
> 0.

This choice of δ implies that G̃iℓ(ΠG(σ
ℓi)) = Giℓ(ΠG(σ

ℓi)) and G̃jℓ(ΠG(σ
ℓj)) = Gjℓ(ΠG(σ

ℓj))

for every ℓ = 2, . . . , L. Therefore, induction immediately gives
∣∣ΠG(σi)−ΠG̃(σi)

∣∣ ≤ ρ ·
∣∣ΠG(σ

2i)−ΠG̃(σ
2i)

∣∣ ≤ . . .

≤ ρL−1 ·
∣∣ΠG(σ

Li)−ΠG̃(σ
Li)

∣∣ ≤ ρL−1 ε · δ8
1− ρ

,
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where we used (4.11) in the last step. The same is true for
∣∣ΠG(σj)− ΠG̃(σj)

∣∣. Plugging

this back into (4.10) yields

ΠG̃(i)− ΠG̃(j) ≥ εδ8 − 2ρL
ε · δ8
1− ρ

= (1− ρ− 2ρL)
ε · δ8
1− ρ

> 0

by our choice of L. This concludes the proof in Case I.

Case II. Assume that L ≥ 2 is the smallest integer such that

ΠG(σ
Li) = ΠG(σi),

i.e. ΠG(σi) is a fixed point of Gi2 ◦ · · · ◦ GiL . Thus, without loss of generality we can

redefine i = i1(i2 . . . iL)
∞, where (i2 . . . iL)

∞ ∈ Σ is obtained by concatenating (i2 . . . iL)

after each other infinitely many times. Also assume that for every n ≥ 2

ΠG(σ
nj) 6= ΠG(σi).

Choose N ≥ 2 to be the smallest integer such that

(4.12)
1

1 + ρL−1
− ρN

1− ρ
> 0.

Let

δ :=
1

2
min

2≤ℓ≤L−1
2≤n≤N

{∣∣ΠG(σ
ℓi)− ΠG(σi)

∣∣,
∣∣ΠG(σ

nj)−ΠG(σi)
∣∣} > 0.

This choice of δ implies that G̃jn(ΠG(σ
nj)) = Gjn(ΠG(σ

nj)) for every n = 2, . . . , N .

Therefore, using the same argument as in Case I we bound

∣∣ΠG(j)−ΠG̃(j)
∣∣ ≤ ρN

ε · δ8
1− ρ

.

To bound
∣∣ΠG(i) − ΠG̃(i)

∣∣ from below, first assume that iL 6= i1. Then the choice of δ

and iL 6= i1 implies that G̃iℓ(ΠG(σ
ℓi)) = Giℓ(ΠG(σ

ℓi)) for ℓ = 2, . . . , L. Thus

ΠG(σi)−ΠG̃(σi) = G̃i2 ◦ · · · ◦ G̃iL

(
ΠG(σi)

)
− G̃i2 ◦ · · · ◦ G̃iL

(
ΠG̃(σi)

)
,

where we used that σi = (i2 . . . iL)
∞. Since G̃i2 ◦· · ·◦G̃iL is a monotone strict contraction,

we obtain that ΠG(σi) = ΠG̃(σi). As a result

ΠG̃(i)−ΠG(i) = Tδ,ΠG(σi)(ΠG
(
σi)

)
+Gi1

(
ΠG(σi)

)
−Gi1

(
ΠG̃(σi)

)
= εδ8.

Now assume that iL = i1, i.e. i = (i1 . . . iL−1)
∞. Then

ΠG̃(i)− ΠG(i)

= εδ8 +Gi1◦ · · · ◦GiL−1

(
ΠG(σ

L−1i)
)
−Gi1◦ · · · ◦GiL−1

(
ΠG̃(σ

L−1i)
)

≥ εδ8 − ρL−1
∣∣ΠG̃(i)− ΠG(i)

∣∣.
In summary, we showed that

ΠG̃(i)− ΠG̃(j) ≥
(

1

1 + ρL−1
− ρN

1− ρ

)
· εδ8 > 0

by (4.12). This concludes the proof in Case II.

Case III. Assume that L ≥ 2 is the smallest integer such that

ΠG(σ
Li) = ΠG(σi),
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and there also exists an M such that

ΠG(σ
M j) = ΠG(σi).

We may assume in this case without loss of generality that for any N ≥ 2 satisfying

ΠG(σ
N j) = ΠG(σi), we have that jN 6= i1.

Indeed, if M can be chosen such that jM = i1, then ΠG(σ
M−1j) = ΠG(i) which equals

ΠG(j) by (4.5). Hence, ΠG(j) is a fixed point of Gj1 ◦ · · · ◦ GjM−1
. If M is the smallest

such index then without loss of generality we may redefine j = (j1 . . . jM−1)
∞ and in this

case, for any N ≥ 2 satisfying ΠG(σ
N j) = ΠG(σi), we have that jN 6= i1.

As in Case II, choose N ≥ 2 to be the smallest integer such that

1

1 + ρL−1
− ρN

1− ρ
> 0.

Let

δ :=
1

2
min

{∣∣ΠG(σ
ℓi)−ΠG(σi)

∣∣,
∣∣ΠG(σ

nj)−ΠG(σi)
∣∣ :

2 ≤ ℓ ≤ L− 1, 1 ≤ n ≤ N and ΠG(σ
nj) 6= ΠG(σi)

}
> 0.

The argument to bound
∣∣ΠG(i)−ΠG̃(i)

∣∣ from below is the same as in Case II. It remains

to bound
∣∣ΠG(j)− ΠG̃(j)

∣∣.
The choice of δ and the fact that jn 6= i1 whenever ΠG(σ

nj) = ΠG(σi), implies that

G̃jn(ΠG(σ
nj)) = Gjn(ΠG(σ

nj)) for n = 1, . . . , N . Hence, using (4.11), we obtain that

∣∣ΠG(j)−ΠG̃(j)
∣∣ =

∣∣Gj1...jN

(
ΠG(σ

N j)
)
−Gj1...jN

(
ΠG̃(σ

N j)
)∣∣ ≤ ρN

ε · δ8
1− ρ

.

The conclusion in Case III is the same as in Case II:

ΠG̃(i)−ΠG̃(j) ≥
(

1

1 + ρL−1
− ρN

1− ρ

)
· εδ8 > 0.

Case IV. Finally, assume that for every ℓ ≥ 2

ΠG(σ
ℓi) 6= ΠG(σi)

and there exists an M such that

ΠG(σ
M j) = ΠG(σi).

Again, similarly to Case III, we may assume without loss of generality that for every

N ≥ 2 with ΠG(σ
N j) = ΠG(σi), we have that jN 6= i1. Choose L ≥ 2 to be the smallest

integer such that

1− ρ− 2ρL > 0.

Let

δ :=
1

2
min

{∣∣ΠG(σ
ℓi)− ΠG(σi)

∣∣,
∣∣ΠG(σ

nj)−ΠG(σi)
∣∣ :

2 ≤ ℓ, n ≤ L and ΠG(σ
nj) 6= ΠG(σi)

}
> 0.

Similarly to Case III, we obtain that

∣∣ΠG(j)− ΠG̃(j)
∣∣ =

∣∣Gj1...jN

(
ΠG(σ

N j)
)
−Gj1...jN

(
ΠG̃(σ

N j)
)∣∣ ≤ ρL

ε · δ8
1− ρ

.
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On the other hand, similarly to Case I,

∣∣ΠG(σi)−ΠG̃(σi)
∣∣ ≤ ρL−1 ε · δ8

1− ρ
,

and so

ΠG̃(i)− ΠG̃(j) ≥ εδ8 − ρ ·
∣∣ΠG(σi)− ΠG̃(σi)

∣∣−
∣∣ΠG(j)−ΠG̃(j)

∣∣

≥ (1− ρ− 2ρL)
ε · δ8
1− ρ

> 0.

�

Proof of Fact 4.5. Recall, Sα = αG + (1− α)G̃, where G, G̃ ∈ Θm
β,ρ(X) are as in Fact 4.4.

The definition (4.7) of G̃i implies that G′
i(x)·(G̃i)

′(x) > 0 for all x ∈ X and i ∈ {1, . . . , m}.
Hence, Sα ∈ Θm

β,ρ(X) for every α ∈ [0, 1].

I1
i|k

I1ωωω

I0ωωω

I0
i|k

i(1) i(0)

Πα(ωωω∞)

I1
j|k I0

j|k

I1τττ

I0τττ

j(1) j(0)

Πα(τττ∞)

ΠG(i) = ΠG(j) ΠG̃(i) ΠG̃(j)x̃

i(α∗) = j(α∗)

Figure 1. Finding the common fixed point x̃ at α∗.

We denote the interval spanned by the attractor Λα of Sα by Iα and the natural

projection by Πα. Moreover, for a u ∈ Σ∗ and α ∈ [0, 1] we write

Iαu := Sα
u(I

α).

The left and right endpoint of Iαu is denoted by Iα,−u and Iα,+u , respectively. Without loss

of generality we may assume that ΠG̃(i) < ΠG̃(j). Hence, we can choose k so large that

(4.13) I0,+
i|k < I0,−

j|k ,

see Figure 1. Since ΠG(i) = ΠG(j), we have that I1,−
j|k ≤ I1,+

i|k (otherwise I1j|k ∩ I1i|k = ∅).
First assume that

(4.14) I1,−
j|k < I1,+

i|k .

Then we can choose ωωω,τττ ∈ Σ∗ such that ωωω|k = i|k and τττ |k = j|k satisfying

(4.15) I1,+τττ < I1,−ωωω and ω|ωωω| 6= τ|τττ |.

On the other hand, (4.13) implies that I0,+ωωω < I0,−τττ . Combining this with (4.15) yields

that

(4.16) i(0) < j(0) and i(1) > j(1),
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where i(α) := Πα(ωωω∞) ∈ Iαωωω and j(α) := Πα(τττ∞) ∈ Iατττ denotes the fixed point of Sα
ωωω and

Sα
τττ , respectively.

It follows from the definition of Sα that for every u ∈ Σ the function α 7→ Πα(u) is

continuous. In particular, for ωωω∞ and τττ∞ this and (4.16) implies that there is an α∗ ∈ [0, 1]

such that

x̃ := Πα∗

(ωωω∞) = i(α∗) = j(α∗) = Πα∗

(τττ∞).

Thus, x̃ is a common fixed point of Sα∗

ωωω and Sα∗

τττ . Moreover, with the last part of (4.15),

we showed that Sα∗ ∈ U provided (4.14) holds (recall (4.3)).

If I1,+
i|k = I1,−

j|k , then either there exists ℓ < k such that (4.14) holds with I1,+
i|ℓ < I1,−

j|ℓ or

for every ℓ < k we have I1,+
i|ℓ = I1,−

j|ℓ . In particular, I1,+i1
= I1,−j1

. In this case we choose G̃
from Fact 4.4 so that ΠG̃(i) > ΠG̃(j) and the same argument applies. �

Proof of Fact 4.6. By assumption S ∈ U, i.e. there exist ωωω = (ω1, . . . , ωk) and τττ =

(τ1, . . . , τℓ) ∈ Σ∗ with ω1 6= τ1, ωk 6= τℓ and x̃ ∈ X such that

x̃ = Sωωω(x̃) = Sτττ (x̃).

For p ∈ {2, . . . , k} and q ∈ {2, . . . , ℓ} let

yp := Sωp...ωk
(x̃) and zq := Sτq ...τℓ(x̃).

Using the function

L(x) :=

k∏

p=2

(x− yp)
2 ·

ℓ∏

q=2

(x− zq)
2 ,

we define the IFS S̃ =
{
S̃1, . . . , S̃m

}
to be

S̃i(x) :=

{
Si(x) + ε · L(x) · (x− x̃)2, if i 6= ωk;

Si(x) + ε · L(x) · (x− x̃), if i = ωk.

Then x̃ is still a common fixed point:

(4.17) x̃ = S̃ωωω(x̃) = S̃τττ (x̃).

Since L(yp) = 0 = L(zq) for every p ∈ {2, . . . , k} and q ∈ {2, . . . , ℓ}, a simple induction

shows that

(4.18) S̃ωp...ωk
(x̃) = yp and S̃τq ...τℓ(x̃) = zq.

As for the derivatives

(
S̃i

)′
(x) =

{
S ′
i(x) + εL′(x)(x− x̃)2 + 2εL(x)(x− x̃), if i 6= ωk;

S ′
i(x) + εL′(x)(x− x̃) + εL(x), if i = ωk.

Similarly, L′(yp) = 0 = L′(zq) for all p and q implies that for all i ∈ {1, . . . , m}

(4.19)
(
S̃i

)′
(t) = S ′

i(t) if t ∈ {y2, . . . , yk, z2, . . . , zℓ} ,

furthermore, L(x̃) 6= 0 implies that

(4.20)
(
S̃i

)′
(x̃) =

{
S ′
i(x̃), if i 6= ωk;

S ′
i(x̃) + ε · L(x̃), if i = ωk.
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Hence, it follows from (4.18), (4.19) and (4.20) that
(
S̃ωωω

)′
(x̃) = S ′

ωωω(x̃) + ε · L(x̃) · S ′
ωωω−(yk) and

(
S̃τττ

)′
(x̃) = S ′

τττ (x̃).

Choosing ε small enough, dist
(
S, S̃

)
can be made arbitrarily small (in the metric defined

in (2.2)) and at the same time log |S̃ ′
ωωω(x̃)|/ log |S̃ ′

τττ (x̃)| 6∈ Q. This together with (4.17)

shows that S̃ ∈ R. �

Proof of Fact 4.7. First, let us recall the definition of Φ(x, r) from (1.2). Let us generalise

it as follows: for N ≥ 1, let

ΦN (x, r) :=
{
Sı|Λ : diam(Sı(Λ)) ≤ r < diam(Sı−N (Λ)), Sı(Λ) ∩ B(x, r) 6= ∅, ı ∈ Σ∗},

where ı−N is the prefix of ı by removing the last N symbols. Recall from (1.1) that the

WSP holds if supx∈Λ,r>0Φ(x, r) < ∞, and thus, WSP implies that for every N ≥ 1,

supx∈Λ,r>0ΦN(x, r) < ∞. Indeed, if f |Λ ∈ ΦN (x,R) then for every finite word ı ∈ Σ∗ for

which Sı|Λ = f |Λ, there exists a prefix  of ı such that

diam(Sı(Λ)) ≤ diam(S(Λ)) ≤ r < diam(S−(Λ)) ≤ diam(Sı−N (Λ)).

Moreover, Sı(Λ) ∩ B(x, r) 6= ∅ clearly implies that S(Λ) ∩ B(x, r) 6= ∅. Thus, S|Λ ∈
Φ(x, r). Hence, for every g|Λ ∈ Φ(x, r) there exist at most 1+m+ · · ·+mN−1-many maps

f |Λ ∈ ΦN(x, r) such that f ◦ S~|Λ = g|Λ for some ~ with |~| ≤ K, and so, ΦN (x, r) ≤
(mN − 1)/(m− 1)Φ(x, r) for every x ∈ Λ and r > 0.

Now, let S ∈ R (introduced in (4.4)), i.e. there exist x̃ ∈ X, ωωω,τττ ∈ Σ∗ for which x̃ =

Sωωω(x̃) = Sτττ (x̃) and log |S ′
ωωω(x̃)|/ log |S ′

τττ (x̃)| 6∈ Q. Observe that x̃ ∈ Λ, since x̃ = Π(ωωω∞).

We claim that ΦN (x̃, R) can be made arbitrarily large for an appropriately chosen R,

where N = max{|ωωω|, |τττ |}, implying that S ∈ NOWSP by the discussion above.

For brevity, let us write

g1 := Sωωω and g2 := Sτττ , a := |g′1(x̃)| and b := |g′2(x̃)|.

Since log a/ log b 6∈ Q, Dirichlet’s approximation theorem implies that there are infinitely

many j ∈ N for which we can find i ∈ N such that

0 <

∣∣∣∣
log a

log b
− i

j

∣∣∣∣ <
1

j2
.

After rearranging

(4.21) b1/j <
aj

bi
< b−1/j and aj 6= bi.

Let us fix such an i, j pair. For 0 ≤ r <
√
j we introduce

(4.22) hr := g1 ◦ · · · ◦ g1︸ ︷︷ ︸
j·(⌊√j⌋−r)

◦ g2 ◦ · · · ◦ g2︸ ︷︷ ︸
i·r

.

Since x̃ = g1(x̃) = g2(x̃), we get that |h′
r(x̃)| = aj·(⌊

√
j⌋−r)bi·r. Hence, (4.21) implies that

for every 0 ≤ r1 < r2 <
√
j

|h′
r1
(x̃)|

|h′
r2
(x̃)| =

(
aj

bi

)r2−r1

∈
(
b(r2−r1)/j , b−(r2−r1)/j

)
⊂

(
b1/

√
j , b−1/

√
j
)
.
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By the Bounded Distortion Property there is a constant C > 0 independent on j such

that for all 0 ≤ r1 < r2 <
√
j:

diam(hr1(Λ))

diam(hr2(Λ))
∈
(
C−1b1/

√
j , Cb−1/

√
j
)
⊂

(
1

2C
, 2C

)
, for large j.

Let K :=
⌈

log 4C
log(1/τ)

⌉
. We can construct K open intervals {(wk, zk)}Kk=1 such that

(
1

2C
, 2C

)
⊂

K⋃

k=1

(wk, zk) and zk < τ · wk, k = 1, . . . , K,

where τ was defined in Claim 4.9. Then there exists an ℓ ≤ K such that for

(4.23) I :=
{
(r1, r2) : 0 ≤ r1 < r2 <

√
j,

diam(hr1(Λ))

diam(hr2(Λ))
∈ (wℓ, zℓ)

}
,

we have #I ≥
(⌊√j⌋+1

2

)
/K. That is if j is large enough then

(4.24) #I ≥ j

4K
.

Now we partition the pairs contained in I according to their second components. That

is for every r ∈
{
0, 1, . . . , ⌊√j⌋

}
, we introduce the disjoint sets

Ir := {r1 : (r1, r) ∈ I} .
By definition Ir ⊂

{
0, . . . , ⌊√j⌋

}
. So, by (4.24) we can fix an r∗ ∈

{
1, . . . , ⌊√j⌋

}
such

that

(4.25) #Ir∗ ≥
√
j

4K
.

We choose an r̂ ∈ Ir∗ such that

diam(hr̂(Λ)) = max {diam(hr1(Λ)) : r1 ∈ Ir∗} =: η.

Observe that for every r1 ∈ Ir∗ we have

(4.26)
1

τ
· η ≤ diam(hr1(Λ)) ≤ η = diam(hr̂(Λ)).

Indeed, let r1 ∈ Ir∗ be arbitrary. Then (r1, r∗) ∈ I. By the definition (4.23) of I we have

diam(hr1(Λ))

diam(hr∗(Λ))
∈ (wℓ, zℓ) and also

diam(hr̂(Λ))

diam(hr∗(Λ))
∈ (wℓ, zℓ).

Using this and (4.26) we get

(4.27)
1

τ
≤ wℓ

zℓ
≤ diam(hr1(Λ))

η
≤ 1, ∀r1 ∈ Ir∗ .

We introduce hr− for an r ∈
{
0, . . . , ⌊√j⌋

}
as follows: if r ≥ 1 then

hr− := g1 ◦ · · · ◦ g1︸ ︷︷ ︸
j·(⌊√j⌋−r)

◦ g2 ◦ · · · ◦ g2︸ ︷︷ ︸
i·r−1

.

If r = 0 then hr− := g1 ◦ · · · ◦ g1︸ ︷︷ ︸
j·⌊√j⌋−1

(cf. (4.22)). Then (4.27) and Claim 4.9 imply that

(4.28) diam(hr1(Λ)) ≤ η and diam(hr−
1

(Λ)) > η, ∀r1 ∈ Ir∗ .
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By the definition of the mapping hr, we get that for all 0 ≤ r1 <
√
j

(4.29) x̃ = hr1(x̃) ∈ hr1(Λ).

The combination of (4.28) and (4.29) yields that

(4.30) Ir∗ ⊂ ΦN (x̃, η) .

Since j can be arbitrarily large, (4.25) and (4.30) together imply that the WSP does not

hold. �

5. Transversal families, proof of Theorem 2.12

Let {Sλ : λ ∈ B} be a transversal family of self-conformal IFSs, recall Definition 2.11.

We defined the sets SSP,WSP and EO as those λ ∈ B for which Sλ satisfies the SSP, the

WSP or has an exact overlap. Let us also introduce

OSC :=
{
λ ∈ B : Sλ satisfies the OSC

}
.

We prove the assertions of Theorem 2.12 in separate propositions.

Proposition 5.1. Let B ⊂ Rd be a non-degenerate ball and let {Sλ : λ ∈ B} be a

transversal family of self-conformal IFSs on the line. Then

EO is a set of first category and Ld(EO) = 0.

Proof. We can write EO as the countable union

EO =
⋃

ı,∈Σ∗

i1 6=j1

Bı,,

where Bı, =
{
λ ∈ B : S

λ
ı ≡ S

λ


}
. Hence, it is enough to show that each Bı, is a set of

first category and Ld(Bı,) = 0. We set

i := ı1 and j := 1.

Using that Πλ(i) = S
λ
ı (Πλ(1)) and Πλ(j) = S

λ
 (Πλ(1)) we get that

Bı, ⊂ B̃ı, := {λ ∈ B : Πλ(i)−Πλ(j) = 0} .
We claim that

(5.1) B̃ı, is a set of first category and Ld(B̃ı,) = 0,

which implies the assertion of the proposition.

To show (5.1), we fix a λ′ ∈ B̃ı, ∩ int(B) if Bı, 6= ∅ and denote f : Rd → R

f(λ) := Πλ(i)− Πλ(j).

Since f(λ′) = 0 and {Sλ : λ ∈ B} is a transversal family, the transversality condition

(2.4) implies that one of the coordinates of ∇λf(λ
′) is positive in absolute value. Without

loss of generality we may assume that this is the last coordinate:
∣∣∣∣
∂f

∂λd

(λ′)

∣∣∣∣ > ζ > 0.



HAUSDORFF MEASURE AND ASSOUAD DIMENSION OF GENERIC CONFORMAL IFS 20

By assumption, λ 7→ Πλ(i) is continuously differentiable, recall (2.3), so there is a neigh-

borhood M of λ′ such that

(5.2)

∣∣∣∣
∂f

∂λd
(λ)

∣∣∣∣ > 0 for λ ∈ M.

Let proj be the projection to the first d− 1 coordinates:

proj(λ1, . . . , λd) := (λ1, . . . , λd−1).

We write

B∗ := proj(B), λ∗ := proj(λ), and λ′∗ := proj(λ′).

The Implicit Function Theorem implies that there exists an open neighborhood N ⊂
int(B∗) of λ′∗ and there exists a unique continuously differentiable function g : N → R

such that g(λ′∗) = λ′
d and for all λ∗ ∈ N we have

(λ∗, g(λ∗)) ∈ M and f(λ∗, g(λ∗)) = 0.

Then it follows from (5.2) that

B̃ı, ∩M = {(λ∗, g(λ∗)) : λ∗ ∈ N} .
From the fact that g is continuously differentiable we obtain that the set on the right

hand-side is a set of first category and has zero d-dimensional Lebesgue measure. Then

using a usual compactness argument we obtain the same for B̃ı,. This completes the

proof of (5.1). �

In light of Fact 3.1, to prove the claims in Theorem 2.12 for (B \ SSP) ∩ WSP it is

enough to show the same for (B \ SSP) ∩ OSC.

Proposition 5.2. Let B ⊂ Rd be a non-degenerate closed ball and let {Sλ : λ ∈ B} be a

transversal family of self-conformal IFSs on the line. Then

(B \ SSP) ∩ OSC is a set of first category.

The proof of Proposition 5.2 relies on the following auxiliary lemma.

Lemma 5.3. Let F := {f1, f2, f3} ∈ Θ3
β,ρ([0, 1]). Assume further that

(1) f1(0) = f2(0) = 0,

(2) f ′
1(0) = f ′

2(0) = α, and

(3) f3(1) = 1.

Then F does not satisfy the OSC.

Proof. The proof goes by contraposition. Assume that there exists an open bounded set

U such that for every i 6= j ∈ {1, 2, 3}
fi(U) ⊂ U and fi(U) ∩ fj(U) = ∅.

Let I be an open interval in U and denote J := f3(I) = (a0, b0). Moreover, let {1, 2}∗
denote all finite length words with entries either 1 or 2.

Writing aı := fı(a0) and bı := fı(b0) for ı ∈ {1, 2}∗, we have that

(5.3) C−1
0 αna0 ≤ aı ≤ C0α

na0 and C−1
0 αnb0 ≤ bı ≤ C0α

nb0,
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where |ı| = n and C0 is the constant from the bounded distortion property (3.1). Indeed,

using that fı(0) = 0, the mean value theorem, the bounded distortion property and (2)

implies that

aı = fı(a0) = f ′
ı(ξ)a0 ≤ C0f

′
ı(0)a0 = C0α

na0.

The argument for the other direction and bı is exactly the same.

Hence, (5.3) implies that for every ı ∈ {1, 2}∗

(5.4) 0 < C−2
0

a0
b0

≤ aı
bı

≤ C2
0

a0
b0

< ∞.

Moreover, for every i = 1, 2

(5.5)
fi(aı)

aı
=

fi(fı(a0))− fi(fı(0))

aı
→ f ′

i(0) = α as |ı| → ∞,

since fı(a0) → 0. The same limit holds for fi(bı)/bı.

We also claim that for every ı 6=  ∈ {1, 2}∗

fı(J) ∩ f(J) = ∅.
Indeed, there is a unique ω and τ with ω1 6= τ1 for which ı3 = (ı ∧ )ω and 3 = (ı ∧ )τ ,

moreover, fω1
(U) ∩ fτ1(U) = ∅. Then

fı(J) ∩ f(J) = fı∧
(
fω(I) ∩ fτ (I)

)
⊆ fı∧

(
fω1

(U) ∩ fτ1(U)
)
= ∅.

Therefore, (a1ı, b1ı) ∩ (a2ı, b2ı) = ∅ and we may assume without loss of generality that

b1ı ≤ a2ı for infinitely many ı ∈ {1, 2}∗.
Case I. Of these ı, choose a sequence such that aı/bı → z 6= 1. Then

b2ı − a2ı
b2ı − a1ı

=

f2(bı)
bı

− f2(aı)
aı

· aı
bı

f2(bı)
bı

− f1(aı)
aı

· aı
bı

→ α− αz

α− αz
= 1,

where we used (5.4) and (5.5). Similarly,

b1ı − a1ı
b2ı − a1ı

→ α− αz

α− αz
= 1.

Thus, a2ı < b1ı for |ı| sufficiently large, contradicting that b1ı ≤ a2ı.

Case II. Now assume aı/bı → 1 as |ı| → ∞. Then a combination of the bounded

distortion property, the mean value theorem, and (5.3) yields

C−1
0 αn(b0 − a0) ≤ f ′

ı(ξ)(b0 − a0) = bı − aı = bı

(
1− aı

bı

)
≤ C0α

nb0

(
1− aı

bı

)
.

As a result 1− aı/bı ≥ C−2
0 b−1

0 (b0 − a0) > 0, which contradicts aı/bı → 1. �

Proof of Proposition 5.2. It is enough to prove that the compliment of OSC is a dense Gδ

set. We first argue that it is dense, i.e. for every λ0 /∈ SSP and ε > 0

(5.6) there exits λ∗ ∈ B(λ0, ε) such that λ∗ /∈ OSC.

Choose λ0 /∈ SSP, i.e. there exist i, j ∈ Σ with i1 6= j1 such that Πλ
0
(i) = Πλ

0
(j).

We may assume that λ0 ∈ intB because the boundary of B is a first category set with

zero d-dimensional Lebesgue measure. The transversality condition (2.4) implies that∣∣ ∂
∂λ∗

(Πλ(i) − Πλ(j))|λ=λ
0

∣∣ > 0 for some coordinate λ∗. Along this direction there exists

parameter ω ∈ intB arbitrarily close to λ0 such that Πω(i) 6= Πω(j). An analogous
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argument to the one in the proof of Fact 4.5 implies that for every ε > 0 there exist

x0 ∈ X, λ∗ ∈ B(λ0, ε) and n,m ≥ 1, for which

Sλ∗

i|n(x0) = x0 = Sλ∗

j|m(x0).

Case I. If
log

∣∣(Sλ∗

i|n
)′
(x0)

∣∣

log
∣∣(Sλ∗

j|m
)′
(x0)

∣∣ /∈ Q,

then Fact 4.7 implies that λ∗ /∈ WSP, in particular, λ∗ /∈ OSC.

Case II. If
log

∣∣(Sλ∗

i|n
)′
(x0)

∣∣

log
∣∣(Sλ∗

j|m
)′
(x0)

∣∣ =
p

q
∈ Q,

then consider the IFS

f1 := Sλ∗

(i|n)2q , f2 := Sλ∗

(j|m)2p and f3,

where f3 is any other map with fixpoint other than x0 that is the composition of maps

from Sλ∗
. Then Lemma 5.3 implies that {f1, f2, f3} does not satisfy the OSC, hence,

λ∗ /∈ OSC. This proves (5.6).

Now we show that B \OSC can be expressed as the countable intersection of open sets.

Let s0(λ) denote the conformal dimension of Sλ. Recall the equivalent characterizations

of OSC from (3.2), in particular

B \ OSC =
{
λ ∈ B : Hs0(λ)(Λλ) = 0

}
=

⋂

k>0

{
λ ∈ intB : Hs0(λ)(Λλ) <

1

k

}

︸ ︷︷ ︸
=:Jk

.

Using the definition of Hausdorff measure, Jk is equal to the countable intersection
⋂

n>0

{
λ ∈ intB : ∃

{
Aλ

i

}
such that Λλ ⊂

⋃

i

Aλ
i ,

∣∣Aλ
i

∣∣ < 1

n
,
∑

i

∣∣Aλ
i

∣∣s0(λ) < 1

k

}
.

Since each of the sets in the intersection is open, the assertion follows. �

Proposition 5.4. Let B ⊂ Rd be a non-degenerate closed ball and let {Sλ}λ∈B be a

transversal family of self-similar IFSs on the line, then Ld

(
(B \ SSP) ∩ OSC

)
= 0.

Proof. For d = 1, the statement was proved in [16, Theorem 2.1], for higher dimensions

only an outline of the proof was given, see [16, Theorem 7.1]. For the convenience of the

reader, we include a detailed argument in Appendix A. �

Proof of Theorem 2.12. Follows directly from Propositions 5.1, 5.2 and 5.4. �

Appendix A. Detailed proof of Proposition 5.4

In the self-similar case, we use another equivalent characterization of the OSC due to

Bandt and Graf [4]. It asserts that a self-similar IFS does not satisfy the OSC if and only

if

∀ε > 0, ∃ ı 6=  ∈ Σ∗ : ‖S−1
ı ◦ S − Id‖ < ε.

One can easily get that for an arbitrary x, x0 ∈ R we have

(A.1)
(
S−1
ı ◦ S − Id

)
(x) =

(
r
rı

− 1

)
(x− x0) +

S(x0)− Sı(x0)

rı
.
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Let B ⊂ Rd be a non-degenerate ball and let

Sλ =
{
Sλ
i (x) = ri(λ)x+ ti(λ)

}m

i=1
, where ri(λ) ∈ (−1, 1) \ {0},

be a transversal family of self-similar IFSs on the line as in Definition 2.9. In particular,

0 < β ≤ |ri(λ)| ≤ ρ < 1 for all λ ∈ B and i ∈ [m] := {1, . . . , m}. For an ε > 0, we write

Vε :=
{
λ ∈ B : there exists ı 6=  ∈ Σ∗ such that

rı(λ)

r(λ)
∈ (e−ε, eε) and |Πλ(ı1)− Πλ(1)| < ε · r(λ)

}
,

where 1 := (1, 1, . . . ). Then (A.1) with the choice x0 = Πλ(1) immediately implies that

for every λ ∈ B:

λ 6∈ OSC ⇐⇒ λ ∈
⋂

n>0

V1/n.

Hence, to prove the proposition it is enough to show that for every ε > 0 the set B \
(SSP∪ Vε) has no density point. We already argued in (5.6) that for every λ0 /∈ SSP and

δ > 0 there exits λ1 ∈ B(λ0, δ) such that λ1 /∈ OSC. In particular, Vε is dense in B \ SSP.

However, we need a more quantitative dependence between the parameters, see (A.9).

We start with a technical lemma. For a λ0 ∈ B and a k ≥ 1 we define the corresponding

Moran class:

Mk(λ0) :=
{
ı ∈ Σ∗ : |rı(λ0)| ≤ ρk < |rı−(λ0)|

}
,

where rı−(λ0) := ri1(λ0) · · · ri|ı|−1
(λ0). The proof of the following Lemma is the combina-

tion of the proofs of [16, Lemma 3.2 and Lemma 3.3].

Lemma A.1. For every ε > 0 and λ0 ∈ B we can find an N = N(ε, λ0) such that for

every k ≥ 1 and ı,  ∈ Mk(λ0) there exists u,v ∈ Σ∗ such that

(a): ı is a prefix of u and |u| − |ı| ≤ N

(b):  is a prefix of v and |v| − || ≤ N

satisfying
ru(λ0)

rv(λ0)
∈
(
e−ε/3, eε/3

)
.

Moreover, assume that λ ∈ B satisfies

‖λ− λ0‖ ≤ εβ

3L(k +N)
,

where L := max
i∈[m],λ∈B

‖∇ri(λ)‖. Then we have

(A.2)
ru(λ)

ru(λ0)
∈
(
e−ε/3, eε/3

)
and

ru(λ)

rv(λ)
∈
(
e−ε, eε

)
.

Let us introduce some notation,

T := max
i∈[m],λ∈B

ti(λ), T̃ := max
i∈[m],λ∈B

‖∇ti(λ)‖,

and

fi,j(λ) := Πλ(i)−Πλ(j),
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where in the self-similar case Πλ(i) =
∑∞

n=1 ri1...in−1
tin . Hence, for all i, j ∈ Σ,

(A.3) max
λ∈B

|fi,j(λ)| ≤
2T |ri∧j(λ)|

1− ρ
, max

λ∈B
‖∇λfi,j(λ)‖ ≤ 2T̃

1− ρ
+

2TL

(1− ρ)2
:= C2.

Moreover, there exists a K > 0 such that

(A.4)

∣∣∣∣
∂fi,j
∂λℓ

(λ1)−
∂fi,j
∂λℓ

(λ2)

∣∣∣∣ < K · ‖λ1 − λ2‖, ∀λ1, λ2 ∈ B, ℓ ∈ [m].

Proof of Proposition 5.4. Let λ0 ∈ (B \ SSP) ∩ (intB). Hence, we can choose i, j ∈ Σ

with

i1 6= j1 and fi,j(λ0) = 0.

Let

δ :=
ζ

2K
√
m
,

where K was defined in (A.4). Choose k large enough satisfying

(A.5)
4T

1− ρ
ρk < ζ

min{δ, dist(λ0, ∂B)}
4
√
m

.

Then we choose n and p such that

(A.6) i|n, j|p ∈ Mk.

Now we fix an ε > 0 and apply Lemma A.1 for ı := i|n and  := j|p. Then Lemma A.1

defines us u, v ∈ Σ∗ and a constant N independent of i, j such that

u|n = i|n and v|p = j|p,
|u| ≤ n+N and |v| ≤ p+N,

|ru(λ0)|
|rv(λ0)|

∈ (e−ε/3, eε/3).

For brevity, let f(λ) := fu1,v1(λ). The choice of u and v implies that

|f(λ0)| ≤ |fu1,i(λ0)|+ |fi,j(λ0)|+ |fv1,j(λ0)| ≤
4T

1− ρ
ρk < ζ,

where the last inequality holds by (A.5).Then by the transversality condition (2.4) there

exists an ℓ ∈ [m] such that ∂f
∂λℓ

(λ0) >
ζ√
m

. Using that

∣∣∣∣
∂f

∂λℓ
(λ)

∣∣∣∣ ≥ K‖λ− λ0‖+
∂f

∂λℓ
(λ0),

we obtain that

(A.7) ∃ℓ ∈ [m] such that ‖λ− λ0‖ < δ =⇒
∣∣∣∣
∂f

∂λℓ
(λ)

∣∣∣∣ >
ζ

2
√
m
.

So, if we choose k so large that

(A.8) |f(λ0)| <
4T

1− ρ
ρk <

δζ

4
√
m
,
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then combining (A.7) and (A.8), we get that there is λ1 such that

(A.9) f(λ1) = 0 and ‖λ0 − λ1‖ <
|f(λ0)|

min
‖λ−λ

0
‖<δ

∣∣∣ ∂f
∂λℓ

(λ)
∣∣∣
<

8T
√
m

ζ · (1− ρ)
ρk <

δ

2
.

By the definition of k we also see that λ1 ∈ (intB). We write

ηk :=
8T

√
m

ζ · (1− ρ)
ρk, Fk := B (λ0, 2 · ηk) .

Recall that we defined C2 in (A.3). Let

ξ := ξk,ε :=
βN+1ρkε

2C2

.

We claim that B (λ1, ξk,ε) ⊂ Vε with u 6= v ∈ Σ∗, i.e. for every λ ∈ B (λ1, ξk,ε)

(A.10)
ru(λ)

rv(λ)
∈
(
e−ε, eε

)

and

(A.11) |fu1,v1(λ)| < ε · ru.
First of all, we choose ε small enough such that ξk,ε < ηk for every k. Note that by this

and (A.9) we have B (λ1, ξk,ε) ⊂ Fk. Moreover, if we choose k so large that

(A.12) ηk <
εβ

3L(k +N)
,

then Lemma A.1 implies (A.10) for all λ ∈ Fk ⊃ B (λ1, ξk,ε).

To show (A.11), we fix an arbitrary λ ∈ B (λ1, ξk,ε). First we observe that

(A.13) βN+1ρk ≤ ru(λ0) ≤ 2ru(λ).

Indeed, the left hand-side in (A.13) holds since i|n ∈ Mk and |u| − n < N . The right

hand-side of (A.13) follows from the fact that we choose ε > 0 so small that eε/3 < 2 and

(A.12) implies that ξk,ε < ηk < εβ/(3L(k + N)), so (A.2) holds, which implies the right

hand-side of (A.13). By (A.13), to show (A.11), we only need to prove that

(A.14) |fu1,v1(λ)| <
ε

2
βN+1ρk for λ ∈ B (λ1, ξk,ε) .

To see this, recall the definition of C2 which was given in (A.3). By the mean-value

inequality we get

|fu1,v1(λ)| = |fu1,v1(λ)− fu1,v1(λ1)| ≤ C2‖λ− λ1‖ ≤ ε

2
βN+1ρk.

That is (A.14) holds and so (A.11) holds. Thus, we showed that B (λ1, ξk,ε) ⊂ Vε.

To conclude, observe that

ξk,ε
2ηk

= ε · β
N+1ζ(1− ρ)

16T
√
mC2

.

This and B (λ1, ξk,ε) ⊂ Vε implies that for every k large enough we have:

Ld ((B \ (SSP ∪ Vε))
c ∩B(λ0, ηk))

Ld (B(λ0, ηk))
> const · εm,
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in other words B \ (SSP ∪ Vε) has no Lebesgue density point. This concludes the proof

of Proposition 5.4.
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