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We investigate an optically trapped exciton-polariton condensate and observe temporal coherence
beyond 1 ns duration. Due to the reduction of the spatial overlap with the thermal reservoir of
excitons, the coherence time of the trapped condensate is more than an order of magnitude longer
than that of an untrapped condensate. This ultralong coherence enables high precision spectroscopy
of the trapped condensate, and we observe periodic beats of the field correlation function due to
a fine energy splitting of two polarization modes of the condensate. Our results are important for
realizing polariton simulators with spinor condensates in lattice potentials.

I. INTRODUCTION

The collectively enhanced accumulation of bosons in
a single quantum state results in a coherent matter-
wave known as a Bose-Einstein condensate (BEC). Co-
herence is a collection of correlations between the macro-
scopic multiparticle wavefunction of the condensate, and
is a fundamental property of BECs. These correlations,
which can be extended up to arbitrary orders1 can pro-
vide insight into the scattering processes in the conden-
sate. First- and second-order correlation functions are
the most studied quantities, quantifying phase and am-
plitude correlations. Phase coherence of atomic BECs
has been studied both in space2 and time3. The advent
of condensation in other bosonic platforms has enabled
studying coherence in driven-dissipative systems such
as semiconductor microcavity exciton-polaritons (polari-
tons)4–15 and photons16–19. For polaritons in particu-
lar, early studies revealed an exponential decay of the
first-order temporal correlation function with a coher-
ence time of up to ∼ 10 ps4,6. The reduction of intensity
noise revealed a Gaussian decay with an improved co-
herence time of ∼ 150 ps in single-spot excitation of po-
lariton condensates8. Recently, the temporal decay in a
polariton laser with shot-noise-limited intensity stability
displayed a transition from exponential to Gaussian with
increasing condensation population, attributed to strong
interactions within the condensate12.

Here, we measure the first order correlation function
g(1)(t) in an optically trapped polariton condensate and
observe temporal coherence beyond 1 ns, which is ∼ 20
times longer than that of an untrapped condensate. Un-
like the previous works in untrapped condensates8,12, the
theoretical fits of our data supports exponentially decay-
ing correlations in the trapped condensate. Furthermore,
we observe periodic oscillations of g(1)(t) due to the beat-
ing of two weakly-coupled polariton modes20. The ex-
traordinary long coherence time of the trapped polari-
ton condensate allows observation of energy splittings as

small as 16 µeV, which is 5 orders of magnitude smaller
than the energy (chemical potential 1.54 eV) of the con-
densate. Our result thus enable a high resolution spec-
troscopy of polariton condensates, which can be applied
to precision tuning of the condensates energies in optical
lattices21,22 and polariton simulators23.

II. EXPERIMENT

The sample is a 5λ/2 GaAs microcavity where polari-
ton condensation under non-resonant optical pumping
was previously observed24,25. We excite polaritons using
a single-mode quasi-continuous wave diode laser system.
The laser is a home-made master oscillator power ampli-
fier composed of an external cavity diode laser seeding
a tapered amplifier26 (see Appendix A for details). It
is blue detuned by 100 meV from the first Bragg mode
of the mirror stop-band. An acousto-optic modulator
(AOM) is used for laser power modulation and genera-
tion of 60 µs long pulses. The pulse duration is much
longer than the rise/fall time of the AOM (40 ns), and is
considerably longer than the condensate formation time
(∼ 100 ps) so that the condensate can be treated as sta-
tionary. Since the excitation duration is much shorter
than typical vibration timescales (≈1 ms), there is no
need for the active stabilization of the interferometer27.
We optically trap polaritons by patterning the laser radi-
ation on the microcavity6 using a spatial light modulator.
To form the trap, the laser beam is shaped into a hexago-
nal pattern of diameter ≈ 7.5 µm, see Fig. 1. Each pump
spot creates an optically inactive reservoir composed of
a hot electron-hole plasma and dark excitons that repel
and diffuse to the middle of the trap. During the diffu-
sion, this ‘inactive’ reservoir relaxes in energy and forms
an optically active reservoir of excitons which couple to
cavity photons and form polaritons in the middle of the
trap. When the polariton density exceeds the condensa-
tion threshold, a macroscopically coherent condensate in
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Figure 1. (a) The interferometer setup, with an adjustable
time delay. BS: beam splitter, M: mirror, RR: retroreflector.
Real space interferograms (b) below (∼ 0.75Pth) and (c) above
threshold (∼ 2.50Pth). Pump spots of diameter 2.5 µm are
marked by dashed circles. (d) Horizontal line profile across
the dotted line of the interference pattern in (c). The gray
line is the theoretical fit.

the ground state of the momentum-space (k-space) forms
in the center of the trap28,29 (see Appendix A). The small
overlap between the condensate and the hot reservoir at
the pump spots results in a narrower linewidth in opti-
cally confined condensates compared to their unconfined
counterparts29. In the untrapped geometry, the pump
consists of only one spot and the condensate forms on
top of the reservoir.

To study temporal coherence, we utilize a Michel-
son interferometer in the mirror-retroreflector configura-
tion [see Fig. 1(a)]. By varying the position of the mov-
ing arm and superimposing the image from each arm,
we form interferograms for various time delays. Below
the condensation threshold, emission is incoherent and
no interference fringes are observed [Fig. 1(b)]. Above
threshold, a macroscopically coherent state appears in
the center of the trap attested by the presence of inter-
ference fringes [Fig. 1(c)]. A line profile in the center
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Figure 2. Temporal evolution of |g(1)| for an untrapped P ≈
1.27Pth (black circles) and a trapped condensate P ≈ 3.9Pth

(orange circles). Solid lines are guides to the eye. Inset: in-
terferograms for four time delays (150, 250, 340 and 435 ps),
denoted as A, B, C and D.

of the interferogram [Fig. 1(d)] can be fit by a Gaussian
function (the condensate mode profile) multiplied by a
cosine to acquire the fringe contrast12. The fringe con-
trast is equal to the magnitude of the first-order corre-
lation function |g(1)(t)|, where t is the time delay. Since
the condensate mode is small, spatial dependence in the
correlation function is negligible. To acquire the tem-
poral dependence of the correlation function, we record
the fringe contrast while changing the time delay. We
average over 5 realizations for each time delay.

The effect of optical confinement on the polariton co-
herence is revealed by comparing the decay of tempo-
ral coherence in the trapped and untrapped condensates
(Fig. 2). The latter is characterized by a rapid decay of
correlation function g(1)(t) (black curve in Fig. 2) with
a decay time (1/e of fringe contrast) τG ≈ 20 ps (see
Fig. 7 of Appendix A). The temporal correlation func-
tion of the trapped polariton condensate (orange curve
in Fig. 2), however, does not exhibit a monotonous decay
as previously reported for untrapped condensates4,6,8,12.
Instead, it exhibits a periodic oscillatory decay with a
period of ∼ 200 ps. The contrast initially decays rapidly
to nearly zero after 150 ps, but then it recovers to 0.35
after ∼ 100 ps. We can observe a total of five peaks of
g(1)(t) for up to t = 1 ns, approaching the exciton life-
time30,31. The coherence time for the trapped conden-
sate τph is more than an order of magnitude longer than
that for the untrapped condensate (see below), which is
due to the significant reduction of the spatial overlap be-
tween the trapped condensate and the thermal reservoir
of excitons. The insets in Fig. 2 illustrate that the in-
terferograms corresponding to the two first minima (A
and C), have much lower fringe contrast than those cor-
responding to the first two maxima (B and D).

The period of oscillations and the temporal decay of
the correlation function depend on the excitation power.
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Figure 3. (a) Temporal decay of fringe contrast for four different pumping powers P = 2.5, 3.2, 3.9, 4.3Pth. Circles represent

experimental points, while solid lines are the correlation function g(1)(t) of Eq. (2) as obtained from the numerical simulations of
the polariton Eqs. (3) and (4) averaged over long integration time. Insets show the power spectrum S(ω) of the polariton field,

as obtained via the Fourier transform of g(1)(t) obtained from the numerical simulations, illustrating the normal mode splitting
by ±J around the central frequency u(n̄1 + n̄2). In the simulations, for each pumping power P we used the phase-coherence
time τph = 1/κ shown in (b), and the oscillation period π/J shown in (c).

Increasing the pump power from 2.5Pth to 4.3Pth de-
creases both the frequency of oscillations ∆ and the de-
phasing rate κ = 1/τph, as shown in Fig. 3.

III. THEORY

In the Michelson interferometry, the contrast of the
real-space interferogram [Fig. 1(d)] is equal to the abso-

lute value of the first-order field correlation function12:

g(1)(t) ≡ 〈E∗(r, t′)E(r, t+ t′)〉√
〈|E(r, t′)|2〉〈|E(r, t+ t′)|2〉

, (1)

where 〈· · ·〉 denotes the average over time t′. The field
E(r, t) is proportional to the exciton-polariton conden-
sate wavefunction. We assume that there are two (nearly)
energy-degenerate modes ψ1 and ψ2 of the polariton con-
densate with orthogonal circular polarizations ε1 and
ε2 (ε1 · ε∗2 = 0). The total field is then E(r, t) ∝
ε1ψ1(t)+ε2ψ2(t). Substituting this into Eq. (1), we have

g(1)(t) =
〈ψ1(t+ t′)ψ∗1(t′) + ψ2(t+ t′)ψ∗2(t′)〉√

〈|ψ1(t′)|2 + |ψ2(t′)|2〉〈|ψ1(t+ t′)|2 + |ψ2(t+ t′)|2〉
. (2)

We use the standard approach32 to describe the two polariton modes via the differential equations

∂tψ1 =
1

2
(R1N1 − γ1)ψ1 − i[ε1(t) + u11|ψ1|2 + u12|ψ2|2]ψ1 + iJψ2, (3a)

∂tψ2 =
1

2
(R2N2 − γ2)ψ2 − i[ε2(t) + u21|ψ1|2 + u22|ψ2|2]ψ2 + iJ∗ψ1, (3b)

where RjNj is the pumping rate of jth polariton from
the reservoir of Nj excitons, γj is the polariton decay

rate, εj are the single-particle energies, uij are the non-
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linear self (i = j) and cross (i 6= j) interactions rates,
and J is the Josephson coupling between the two modes
due to the spin-orbit interaction20. The above equations
are supplemented by the reservoir equations

∂tNj = Pj − ΓjNj −RjNj |ψj |2, (4)

where Pj is the thermal exciton pumping rate, Γj is the
decay (recombination) rate, and Rj is the scattering rate
of the excitons into the BEC of polaritons. In the steady

state, ∂tNj = 0 we have Nj =
Pj

Γj+Rj |ψj |2 . Upon substi-

tution into the polariton equations and demanding that
RjNj − γj ≥ 0 we obtain the threshold pumping rate
Pj ≥ γjΓj/Rj for non-zero polariton intensity |ψj |2 > 0.
Above threshold, neglecting the coupling between the two
polaritons, the average polariton intensity in the steady

state is then n̄j ≡ 〈|ψj |2〉 ' Pj

γj
− Γj

Rj
, while the exciton

number is Nj ' γj
Rj

.

We assume that each polariton mode is subject to
phase fluctuations with the rate κ = 1/τph, which would
correspond to exponential decay of polariton coherence.
We model these phase fluctuations by a Wiener process:
we take εj(t) in Eqs. (3) to be Gaussian stochastic vari-
ables with the mean 〈ε1,2〉 = 0 and variance σ2

ε = 2κ/δt,
where δt is the time increment in the simulations of the
system dynamics. We simulate the polariton Eqs. (3)
numerically, staring with small random seed amplitudes
ψ1,2 6= 0 at some time t0

33. The initial values of the seed
are unimportant, as after a short transient of a few tens
of ps duration the polariton populations attain close to
the steady-state values n̄ ' P

γ −
Γ
R determined by the

exciton pumping rate (provided P ≥ Pth = γΓ/R). The
correlation functions (2) are then obtained upon long-
time averaging over the system dynamics. To fit the ex-
perimental data in Fig. 3, for each pumping rate Pj we
set J ' ∆/2 and choose appropriate dephasing rate κ.
The periodic oscillations of the field correlation function
then corresponds to the beating of the two eigenmodes
split by ±J and broadened by κ. This is illustrated by
the power spectrum of polariton field S(ω) given by the
Fourier transform of g(1)(t) [see the insets in Fig. 3(a)].
The spectrum S(ω) is centered at frequency u(n̄1 + n̄2)
and split by ±J .

The observed energy splitting ∆ ' 2J of the two po-
lariton eigenmodes decreases with increasing the pump-
ing power and thereby the polariton intensity n̄. Our
simulations of the Gross-Pitaevskii equations for the po-
lariton BEC indicate that with increasing the pumping
power the lateral size of the polariton BEC in real-space
is progressively increased, while its in-plane k-space dis-
tribution is correspondingly reduced. This explains the
reduction of the Josephson coupling between the two po-
lariton components due to the spin-orbit interaction be-
tween the two bare polariton modes20. We also note that
according to the arguments in12, the exponential decay
of polariton coherence has a rate κ = 1/τph ∼ γ/2n̄, with
γ being the decay rate of the polariton intensity; hence,
the polariton coherence time is proportional to its inten-

sity, τph ∝ n̄, and thereby the pumping power (stronger
pumping – longer coherence time), consistent with our
numerical simulations.

IV. CONCLUSIONS

To summarize, we have demonstrated that optically
trapping an exciton-polariton condensate increases the
coherence time by more than an order of magnitude com-
pared to that of an untrapped condensate. In the un-
trapped case, the condensate is formed on top of a sea of
hot reservoir excitons that directly interacts with the con-
densate, and causes strong decoherence. In the optically
trapped condensate, however, this hot reservoir is mostly
spatially decoupled from the condensate. This critical
difference permits observations of ultralong coherence
times in the trapped condensate. The highly prolonged
coherence of the trapped polariton condensate allowed us
to observe temporal beating of the first-order correlation
function of the emitted field resulting from the fine struc-
ture in the condensate energy spectrum. This amounts
to demonstration of measuring the energy splitting of
the two interacting polarization modes of the condensate
with unprecedented precision. Our results can thus be
important for the characterization and control of spinor
condensates in lattice potentials for realizing analog and
digital polariton quantum simulators23,34–37.
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Appendix A: Experimental methods

1. Sample

The sample constitutes a high-Q, 5λ/2, GaAs-based
microcavity with a top (bottom) DBR mirror comprising
32 (35) alternating layers of AlAs/Al0.15Ga0.85As. Four
sets of three 10 nm Al0.3Ga0.7As/GaAs quantum wells
are placed at the antinodes of the electromagnetic field
inside the cavity. Measurements with different detun-
ing are possible due to a wedge in the sample thickness
which permits continuous tuning of the cavity mode with
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respect to the exciton mode. Polariton condensation un-
der non-resonant optical pumping in this sample has been
previously observed24,25.

2. Experimental setup

The experimental setup is schematically depicted in
Fig. 4 and consists of 4 main parts:

1. Laser pattern generation. A tapered ampli-
fier laser system emitting at 765 nm provides the
pump laser beam (red) which is then directed into
an acousto-optic modulator (AOM) for amplitude
modulation. The final key-component is a spatial
light modulator (SLM), whose function is generat-
ing the optical trapping potentials.

2. Sample imaging and emission collection. A
telescope formed by a spherical lens (L4) and a mi-
croscope objective is then used for scaling the im-
age down to micrometer sizes and projecting it onto
the microcavity sample mounted inside a cryostat.
Polariton emission is then collected from the objec-
tive in a backscattering geometry and directed to-
wards the interferometer. A removable lens (L5) is
included for k-space (momentum-space) measure-
ments.

3. Phase measurements with an interferome-
ter. Temporal coherence measurements are per-
formed by implementing a Michelson interferome-
ter in the mirror-retroreflector configuration. The
retroreflector is placed on a linear translation stage
equipped with an integrated electron controller,
thus allowing the automated movement of the
retroreflector.

4. Direct and spectral imaging of real and k-
space. The last part of the setup is for imaging
either 2D real-space onto a scientific CMOS (sC-
MOS) camera or k-space onto the CCD camera of
a spectrometer.

3. External cavity diode laser and tapered
amplifier laser system

An integral component of this laser system is the
external-cavity diode laser (ECDL)26,38,39. In this setup,
a laser diode emitting at 760 nm is initially mounted in
a tube equipped with an aspheric collimation lens with
a focal length f = 4.51 mm [denoted as L1 in Fig. 5(a)].
The external cavity is built in a modified Littrow con-
figuration in which the collimated beam is reflected by a
grating with the first diffraction mode retroreflected back
into the diode and the zeroth order used as output40.
Optical feedback with a narrow-linewidth laser output is
thus established between the end facet of the laser diode
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Figure 4. Experimental setup for real- and k-space analy-
sis of polariton condensates. The focal length of each lens
is: fL1 = 50 mm, fL2 = 300 mm, fL3 = 400 mm, fL4 =
200 mm, fL5(k− space) = 300 mm, fL6 = 700 mm, and
fL7 = 200 mm. Distances are not drawn to scale. For the
AOM and SLM, 0th and 1st correspond to the zeroth and
first order transmission and reflection beam, respectively.

and the diffraction grating, which form an external cav-
ity. Moreover, only a narrow range of wavelengths re-
flects back to the diode for amplification, because of the
wavelength-selective reflectivity of the grating. As the
wavelength is tuned, however, the direction of the out-
put beam changes. For this reason, a mirror (M1) is
placed on the same stage as the grating to compensate
for grating adjustments. Besides tunability and narrow-
linewidth, an ECDL constitutes a low-cost and compact
laser device offering high stability41.

The requirement for single-mode operation requires the
transverse dimension of the laser diode to be of the or-
der of the optical wavelength, which limits the output of
the ECDL (∼100 mW). In our case, this restriction was
circumvented by implementing a tapered amplifier (TA)
system for amplifying the low output of the seed ECDL,
while simultaneously preserving its spectral properties
(wavelength, linewidth etc.)26,42. In the TA chip light
from the seed is initially inserted from the narrow aper-
ture into a short, straight, index-guided section [Fig. 5(b)
and (c)]. The narrow transverse dimension of this region
permits the excitation of only the fundamental transverse
mode, thus ensuring high beam quality. The light radi-
ation is then guided into a longer, tapered, gain-guided
region for optical amplification. This region is typically
made of a III-V semiconductor (AlGaAs in our case).
While in operation, carrier population inversion is es-
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Figure 5. (a) The TA laser system. The focal length of the
three aspheric lenses, L1-3, is 4.51 mm. For the cylindrical,
L4, f = 50 mm. The diffraction grating is a reflective holo-
graphic grating with 1800 grooves/mm. (b) Schematic draw-
ing of the TA chip. (c) Schematic drawing of the top-view of
the TA chip where the straight, index-guided section of the
chip of length d1 and width w1, and the tapered, gain-guided
section of length d2 and output width w2 are depicted. Typi-
cal values are: d1 ≈ 0.5 mm, d2 ≈ 1.5−3 mm, w1 ≈ 1−3 µm
and w2 ≈ 200 µm26.

tablished through uniform electrical pumping of the ta-
pered region. Consequently, optical amplification of the
propagating beam is achieved through the mechanism
of stimulated emission from electron-hole recombination,
just as in conventional lasing. One basic requirement is
matching the wavelength of the tapered amplifier to the
emission of the seed laser, hence a TA chip with a center
wavelength of 765 nm is used for amplifying the ECDL.
The laser after the TA has a maximum output of ∼2 W.

The design of the TA chip is such that the propagat-
ing beam is freely diverging in the tapered plane until
it is emitted through the much wider aperture at the
end of the tapered section [Fig. 5(c)]. An aspheric lens
(f = 4.51 mm) is placed on either side of the TA chip,
the first (L2) for focusing the input and the other (L3)
for collimating the vertical component of output beam.
Apart from high divergence, the output beam is highly
astigmatic. Therefore, an additional lens with a cylin-
drical shape (L4) is placed after L3 for collimating the
horizontal component of the beam.

A small portion of the amplified radiation is reflected
back from the front facet of the TA chip, which could
disturb the single-mode operation of the seed laser. A
Faraday isolator is placed between the TA and the ECDL
in order to suppress this back reflected radiation. Fur-
thermore, optical backreflections can potentially cause
permanent damage to TA chips, therefore another Fara-
day isolator (FI2) is placed after the TA chip to prevent
this.

Finally, for stable operation the temperature is regu-
lated. Specifically, maintaining the temperature of the
seed laser diode constant ensures power and frequency
stability. Additionally, the TA chip needs to be actively
cooled since ∼10 W of power is electrically pumped into
the chip (I = 3.8 A, V = 2.9 V) but only ∼2 W of opti-

(b)

LP branch

Condensate
ground state

Condensate
excited state

(a) 1st 2nd 3rd

Figure 6. (a) Power dependence of the cavity PL emission.
The grey lines are used as guide to the eye, illustrating where
the emission intensity grows linearly with the pump, while
the grey-shaded area denotes the non-linear response of the
PL emission associated with the onset of condensation. (b)
Dispersion curve for a pump power ∼Pth illustrating all light-
emitting entities in the microcavity sample.

cal power is extracted. For this purpose, a thermoelectric
cooling device is placed below the mounts for both the
diode and the TA chip.

Our laser system provides several advantages over
other lasers commonly used within the polariton commu-
nity, e.g. Ti:Sapphire25. Most importantly, 1ow intensity
noise operation makes it an ideal laser system for inter-
ferometric measurements. Because random fluctuations
in the laser power are minimized, the dephasing induced
by our apparatus is minimized as well. This in fact has
been demonstrated using a solid-state laser diode pump8.
Moreover, the ECDL+TA laser is a compact device with
both low construction cost (∼£7, 500) and low mainte-
nance. However, its tuning range (∼10 nm) is consider-
ably less to that offered by Ti:Sapphire lasers (∼100 nm).

4. Power dependence and k-space emission

The dependence of photoluminescence on pump power
exhibits three distinct regimes [see Fig. 6(a)]. The low-
power regime corresponds to conventional polariton de-
cay and increases linearly with the excitation power. The
second regime is the onset of condensation at a critical
power threshold, Pth. This is accompanied by a nonlinear
increase of the emission up until ∼2Pth and then is fol-
lowed by a sublinear third regime. An interesting feature
is the sublinear behavior of the third regime, contrary to
what has been observed for untrapped polariton conden-
sates24.

Figure 6(b) shows the E(k‖) dispersion curve for a
pump power near threshold, where k‖ is the in-plane
wavevector. Most of the emission comes from the con-
densed polariton population, which is blueshifted by
∼1.2 meV relative to the bottom of the LP branch due
to polariton self-interactions within the condensate mode
and polariton interactions with the exciton reservoir43.
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Figure 7. Power dependence of coherence time τG for the
untrapped condensate.

Uncondensed higher-k‖ polaritons also contribute to the
emission from the cavity. Near threshold we can observe

the first excited condensate mode at energies ∼0.4 meV
above the principal one, although much weaker. We note
that the energy splitting between the ground state and
excited state is two orders of magnitude larger than the
energy splitting responsible for our coherence oscillations.

5. Untrapped condensate coherence time

Power dependence of coherence time was also measured
for untrapped condensates, see Fig. 7. Specifically, co-
herence time is equal to 12 ps just above threshold and
almost triples for a pumping power ∼2Pth. This coher-
ence time is more than an order of magnitude smaller
than that for trapped condensates at all powers.
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Physical Review Letters 120, 017401 (2018).

16 J. Klaers, J. Schmitt, T. Damm, F. Vewinger, and
M. Weitz, Applied Physics B 105, 17 (2011).

17 J. Marelic, L. F. Zajiczek, H. J. Hesten, K. H. Leung,
E. Y X Ong, F. Mintert, and R. A. Nyman, New Journal
of Physics 18, 103012 (2016).

18 J. Schmitt, T. Damm, D. Dung, C. Wahl, F. Vewinger,
J. Klaers, and M. Weitz, Physical Review Letters 116,
033604 (2016).

19 T. Damm, D. Dung, F. Vewinger, M. Weitz, and
J. Schmitt, Nature Communications 8, 158 (2017).

20 E. Kammann, T. C. H. Liew, H. Ohadi, P. Cilibrizzi,
P. Tsotsis, Z. Hatzopoulos, P. G. Savvidis, A. V. Ka-
vokin, and P. G. Lagoudakis, Phys. Rev. Lett. 109, 036404
(2012).

21 H. Ohadi, A. J. Ramsay, H. Sigurdsson, Y. del Valle-
Inclan Redondo, S. I. Tsintzos, Z. Hatzopoulos, T. C. H.
Liew, I. A. Shelykh, Y. G. Rubo, P. G. Savvidis, and J. J.
Baumberg, Physical Review Letters 119, 067401 ().

22 H. Ohadi, Y. del Valle-Inclan Redondo, A. J. Ramsay,
Z. Hatzopoulos, T. C. H. Liew, P. R. Eastham, P. G. Sav-
vidis, and J. J. Baumberg, Physical Review B 97, 195109
().

23 A. Amo and J. Bloch, Comptes Rendus Physique Polariton
physics / Physique des polaritons, 17, 934 (2016).

24 P. Tsotsis, P. S. Eldridge, T. Gao, S. I. Tsintzos, Z. Hat-
zopoulos, and P. G. Savvidis, New Journal of Physics 14,
023060 (2012).

25 H. Ohadi, A. Dreismann, Y. Rubo, F. Pinsker, Y. del Valle-
Inclan Redondo, S. Tsintzos, Z. Hatzopoulos, P. Savvidis,
and J. Baumberg, Physical Review X 5, 031002 (2015).

26 J. C. B. Kangara, A. J. Hachtel, M. C. Gillette, J. T.
Barkeloo, E. R. Clements, S. Bali, B. E. Unks, N. A. Proite,
D. D. Yavuz, P. J. Martin, J. J. Thorn, and D. A. Steck,
American Journal of Physics 82, 805 (2014).

27 K. G. Lagoudakis, M. Wouters, M. Richard, A. Baas,
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