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João Araújo∗†, Wolfram Bentz‡, and Peter J. Cameron§

Abstract

Let Ω be a finite set and T (Ω) be the full transformation monoid
on Ω. The rank of a transformation t ∈ T (Ω) is the natural number
|Ωt|. Given A ⊆ T (Ω), denote by 〈A〉 the semigroup generated by A.
Let k be a fixed natural number such that 2 ≤ k ≤ |Ω|. In the first
part of this paper we (almost) classify the permutation groups G on
Ω such that for all rank k transformations t ∈ T (Ω), every element
in St := 〈G, t〉 can be written as a product eg, where e2 = e ∈ St

and g ∈ G. In the second part we prove, among other results, that if
S ≤ T (Ω) and G is the normalizer of S in the symmetric group on Ω,
then the semigroup SG is regular if and only if S is regular. (Recall
that a semigroup S is regular if for all s ∈ S there exists s′ ∈ S such
that s = ss′s.) The paper ends with a list of problems.
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1 Introduction

A semigroup S with set of idempotents E and group of units G is said to
be strongly factorizable if S = EG. Denote by Sn the symmetric group on
a set Ω of cardinality n and denote by Tn the full transformation semigroup
on the same set. It is clear that Sn is the group of units of Tn. Given t ∈ Tn
the rank of t is the cardinality of the set Ωt.

The first goal of this paper is to prove the following sequence of theorems.
We note that, for 1 < k < n − 1, the k-transitive or k-homogeneous groups
are explicitly known.

Theorem 1.1 Let n ≥ 2, and G ≤ Sn be a group. The following are equiv-
alent:

(a) for all rank 2 transformations t ∈ Tn the semigroup 〈G, t〉 is strongly
factorizable;

(b) G is primitive.

Theorem 1.2 Let G ≤ Sn and let k be a fixed natural number such that
6 ≤ k ≤ n. The following are equivalent:

(a) for all rank k transformations t ∈ Tn the semigroup 〈G, t〉 is strongly
factorizable;

(b) G = Sn or G = An (with n 6= k) in their natural action on n points.

Theorem 1.3 Let n ≥ 5 and G ≤ Sn. The following are equivalent:

(a) for all rank 5 transformations t ∈ Tn the semigroup 〈G, t〉 is strongly
factorizable;

(b) G is 5-transitive or G = A6 (n = 6).

Theorem 1.4 Let n ≥ 4 and G ≤ Sn. If G is 4-transitive, or G is one of A5

(n = 5), or M11 (n = 12), then the semigroup 〈G, t〉 is strongly factorizable,
for all rank 4 transformations t ∈ Tn.

Any other group satisfying this property contains PSL(2, 2p) (n = 2p +1),
where 2p − 1 is a (Mersenne) prime.

Theorem 1.5 Let n ≥ 3 and G ≤ Sn. If G satisfies one of the following
properties:
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(a) G is 3-transitive;

(b) PSL(2, q) ≤ G ≤ PΣL(2, q) where q is an odd prime.

(c) G = Sp(2d, 2), d ≥ 3, in either of its 2-transitive representations (n =
22d−1 ± 2d−1);

(d) G = 2d : Sp(d, 2), d ≥ 4 and even (n = 2d);

(e) G is one of A4 (n = 4), PSL(2, 11) (n = 11), 24 : A6 (n = 16),
26 : G2(2) or its subgroup of index 2 (n = 64), Higman–Sims (n = 176),
Co3 (n = 276);

then the semigroup 〈G, t〉 is strongly factorizable, for all rank 3 transforma-
tions t ∈ Tn.

Any other group satisfying the previous property must satisfy AGL(1, 2p) ≤
G ≤ AΓL(1, 2p) with p and 2p − 1 prime.

These results required the repeated use of the classification of finite simple
groups. This completes the part of the paper dealing with semigroups S in
which S = EG.

In the second part we turn to semigroups of the form SG, where S ≤ Tn
and G is the normalizer of S in Sn. The general goal is to decide if some
properties of SG carry to S. The main theorem is the following.

Theorem 1.6 Let S ≤ Tn be a transformation monoid and G be the nor-
malizer of S in the symmetric group Sn. Then SG is regular if and only if
S is regular.

As often happens in semigroup theory, the proof is short but tricky.
Finally we prove the following result that generalizes a well known theo-

rem in groups.

Theorem 1.7 Let S be a finite semigroup, and n a positive integer. Then
every element of S has an n-th root if and only if every element in S belongs
to a subgroup of order coprime to n.

A semigroup S is said to be factorizable if there exist two sets A,B ⊂ S
such that S = AB. Factorizable semigroups were prompted by the study of
extensions (direct products, Zappa–Szép and Catino extensions [11]), but the
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study went far beyond that initial motivation leading to many papers in very
different contexts (structural semigroup theory, topological semigroups, pre-
sentations, automata and languages, combinatorial semigroup theory, Morita
equivalences, etc.). If S = EG, where E is its set of idempotents and G is its
group of units, then S is said to be strongly factorizable. The class of strongly
factorizable semigroups contains the two most studied transformation semi-
groups: the full transformation monoid on a finite set and the monoid of
endomorphisms of a finite-dimensional vector space. As, by an argument
similar to the one used to prove Cayley’s Theorem in groups, every finite
semigroup embeds in some finite Tn, it follows that every finite semigroup is
a subsemigroup of a strongly factorizable semigroup. Recall that a semigroup
S is said to be regular if for all a ∈ S there exists b ∈ S (called an inverse of
a) such that a = aba and b = bab. If every element in a regular semigroup has
only one inverse, then the semigroup is said to be inverse. Not every strongly
factorizable semigroup is inverse (consider a non-commutative semigroup of
idempotents with identity), but they are all regular semigroups. In fact, if
eg ∈ EG then eg = (eg)(g−1e)(eg) and g−1e = (g−1e)(eg)(g−1e).

In [16] the related problem of describing the structure of the subsemigroup
〈E,G〉 has been considered in the context of infinite semigroups, where vari-
ants using left and right units arise as well. Finally we note that in the
context of inverse semigroups (where strongly factorizable semigroups are
simply called factorizable) this topic is an entire body of knowledge on its
own. (For details we suggest the lovely survey paper [12] and the references
therein.) In the context of groups, it is usually assumed that at least one
of A and B is a subgroup; many classifications are known, notably that of
Liebeck, Praeger and Saxl [22, 23], who found all factorizations of almost
simple groups where both factors are subgroups.

Throughout the twentieth century there was a doctrine which stated that
a problem in semigroups was considered solved when reduced to a question
in groups. This dramatically changed in this century when it was realized
that it would be much more productive for both sides to keep an ongoing
conversation. One of the driving forces of this conversation has been the
following general problem, whose study has led to significant research on
permutation groups:

Classify the pairs (G, a), where a is a map on a finite set Ω and G
is a group of permutations of Ω, such that the semigroup 〈G, a〉
generated by a and G has a given property P .
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A very important class of groups that falls under this general scheme is
that of synchronizing groups, groups of permutations on a set that together
with any non-invertible map on the same set generate a constant (see [2, 6,
8, 10, 13, 14, 25]). These groups are very interesting from a group theoretic
point of view and are linked to the Černý conjecture, a longstanding open
problem in automata theory.

Three other sample instances of the general question are the following:

(a) Let A ⊆ Tn; classify the permutation groups G ≤ Sn such that 〈G, a〉
is regular for all a ∈ A. For many different sets A, this problem has
been considered in [3–5,7, 19–21,24], among others.

(b) Classify the permutation groups G ≤ Sn such that for all a ∈ Tn \ Sn

the equality 〈G, a〉 \ G = 〈Sn, a〉 \ Sn holds. This problem was solved
in [1].

(c) Classify the permutation groups G ≤ Sn such that for all a ∈ Tn \ Sn

we have 〈G, a〉 \ Sn = 〈g−1ag | g ∈ G〉. This classification [9] answered
an old problem.

We saw above the importance of strongly factorizable semigroups and the
multitude of contexts in which they appear. The first goal of this paper is
to continue the trend described above and classify the permutation groups
that together with any transformation of a given rank k generate a strongly
factorizable semigroup.

The second part of the paper deals with the following problem proposed
by the third author. Observe that in the founding paper of factorizable
semigroups [26] the goal was to check when some given properties of A and
B carry to the factorizable oversemigroup S := AB. Here we go in the
converse direction: given T = SG, where S ≤ Tn and G is the normalizer
of S in Sn, find semigroup properties that carry from SG to S. This looks
a sensible question since in SG we can take advantage of the group theory
machinery and hence checking a property might be easier in SG than in S.

The main result of this part of the paper says that regularity carries from
SG to S.

We now summarise the contents of the paper. In Section 2 we classify
permutation groups with what we call the ordered k-ut property. This is the
cornerstone of our classification results. Section 3 connects the group theory
results of the previous section with the theorems on factorizable semigroups.
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Section 4 deals with the semigroups SG, where S ≤ Tn andG is its normalizer
in Sn. The paper finishes with a list of open problems.

2 The ordered k-ut property

A permutation group G on Ω is said to have the k-universal transversal
property (or k-ut for short) if, given any k-subset A and k-partition P of
Ω, there exists g ∈ G such that Ag is a transversal to P . These groups
were studied in connection with permutation groups G such that 〈G, a〉 is
regular for all maps a of rank k. The groups satisfying the k-ut property for
3 ≤ k ≤ n/2 were partly classified in [5] (small corrections to the case of 3-ut
where made in [2]).

A permutation group G on Ω is said to have the ordered k-ut property
if, given any ordered k-subset A = (a1, . . . , ak) and ordered k-partition π =
(P1, . . . , Pk) of Ω, there exists g ∈ G such that aig ∈ Pi for i = 1, . . . , k.

Our goal is to classify the groups possessing ordered k-ut. Clearly, ordered
k-ut implies the usual k-ut, so we only need look among permutation groups
with k-ut.

2.1 Permutation group properties

A permutation group is k-primitive if it is k-transitive and the stabiliser of
k − 1 points is primitive on the remaining points.

A permutation group is generously k-transitive if, given any (k + 1)-set
M ⊆ Ω, the group induced on M by its setwise stabiliser is the symmetric
group of degree k + 1. It is straightforward to prove that a generously k-
transitive group is indeed k-transitive.

The next result summarises the relationship between these concepts and
the ordered k-ut property.

Proposition 2.1 (a) A k-transitive group has the ordered k-ut property.

(b) For k ≥ 2, ordered k-ut implies ordered (k − 1)-ut.

(c) A permutation group G which has k-ut and is generously (k − 1)-
transitive has ordered k-ut.

(d) A permutation group G with the ordered k-ut property is (k − 1)-
transitive.
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(e) A permutation group G with the ordered k-ut property is (k − 1)-
primitive.

(f) For k ≥ 2, if G has ordered k-ut, its point stabiliser has ordered (k−1)-
ut.

Proof (a), (b) and (f) are straightforward.
(c) Given a k-set A and a k-partition π, there is an element of G mapping

A to a transversal of π; premultiplying this element by an element in the
setwise stabiliser of A shows that we can map elements of A to parts of π in
any order.

(d) Let (a1, . . . , ak−1) and (b1, . . . , bk−1) be two ordered (k − 1)-tuples of
distinct points of Ω. If x is any point different from a1, . . . , ak−1, then a per-
mutation mapping a1, . . . , ak−1, x to a transversal of the partition {b1}, . . . ,
{bk−1},Ω \ {b1, . . . , bk−1} maps the first (k − 1)-tuple to the second.

(e) Suppose that G is not (k−1)-primitive; let B be a non-trivial block of
imprimitivity for the stabiliser of distinct a1, . . . , ak−2 ∈ Ω. Let A be a subset
consisting of a1, . . . , ak−2 and two points b1, b2 of B, and P the partition into
{a1}, . . . , {ak−2}, B, and the rest of Ω. Any permutation mapping ai to ai
for i = 1, . . . , k− 2, maps b1, b2 either both into B or outside of B. Hence G
does not have the ordered k-ut property. �

Proposition 2.2 A permutation group G has the ordered 2-ut property if
and only if it is primitive.

Proof Ordered 2-ut implies primitivity, by (e) above. Conversely, suppose
G is primitive. Then all orbital digraphs for G are connected, and hence
(since G is transitive) strongly connected. Now let A = {a1, a2} be a 2-set
and π = {P1, P2} a 2-partition. Since the orbital graph with edge set (a1, a2)

G

is strongly connected, there is an edge with initial vertex in P1 and terminal
vertex in P2; the element of G mapping (a1, a2) to this edge witnesses ordered
k-ut. �

The next proposition gives sufficient conditions for generous k-transitivity.

Proposition 2.3 (a) Suppose that G is k-transitive, and every orbital of
the (k − 1)-point stabiliser is self-paired. Then G is generously k-
transitive.
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(b) Suppose that G is k-transitive, and the non-trivial orbits of the stabiliser
of k points all have different sizes. Then G is generously k-transitive.

Proof (a) Take any k + 1 points a1, . . . , ak+1. By assumption, G has an
element fixing a1, . . . , ak−1 and interchanging ak with ak+1. Since the num-
bering of the points is arbitrary, the setwise stabiliser of the set of k+1 points
induces every possible transposition on it. The transpositions generate the
symmetric group.

(b) This follows immediately from (a), since paired orbits have the same
sizes. �

2.2 The classification of the groups with the ordered
k-ut property

Trivially, G ≤ Sn has the ordered n-ut property if and only if G = Sn. Any
permutation group has the ordered 1-ut property and by Proposition 2.2,
ordered 2-ut is equivalent to primitivity.

Ordered k-ut clearly implies k-ut, and hence (by Proposition 2.1(b)), k′-
ut for all 1 ≤ k′ ≤ k. Hence it remains to consider the groups arising in the
classification of groups with k-ut from [2, 5] (given below). If n is not much
larger than k, there are often sporadic cases to consider. Below, we will deal
with these cases by specialized arguments.

Proposition 2.4 Let n ≥ 6, G ≤ Sn, then G has the ordered k-ut property
for some 6 ≤ k ≤ n, if and only if G = Sn or G = An (with n 6= k) in their
natural action on n points.

Proof By [5, Theorem 1.4], for n ≥ 11, the only groups with 6-ut are An

and Sn, hence no other group has ordered 6-ut, and so it does not have
ordered k-ut either. For n ≤ 10, the listed groups are the only ones that are
(k − 1)-transitive.

Conversely, it is easy to check that the listed values of An and Sn have
the ordered k-ut property, for 6 ≤ k ≤ n. �

Proposition 2.5 Let n ≥ 5, G ≤ Sn, then G has the ordered 5-ut property
if and only if it is 5-transitive or A6 (n = 6).

Proof For n ≥ 11, a group with 5-ut is 5-homogeneous or PΓL(2, 32) (with
degree 33) [5, Theorem 1.5]. The 5-homogeneous groups (with n ≥ 10) are
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5-transitive and have ordered 5-ut, while PΓL(2, 32) is not 4-transitive so
does not have ordered 5-ut.

For n ≤ 10, A6 (n = 6), which clearly satisfies ordered 5-ut, is the only
group that is 4-transitive, but not 5-transitive. �

Proposition 2.6 Let n ≥ 4, G ≤ Sn, then G has the ordered 4-ut property
if it is 4-transitive, A5 (n = 5), or M11 (n = 12). If there are any other
groups with ordered 4-ut, they contain PSL(2, 2p) (n = 2p + 1), where 2p − 1
is a (Mersenne) prime.

Proof By [5, Theorems 1.3, 1.6] for n ≥ 8, a group with 4-ut is 4-homo-
geneous or M11 (n = 12), or possibly almost simple with socle PSL(2, q)
where q is prime or q = 2p for some prime p (with n = q + 1). The
4-homogeneous groups with n ≥ 8 are 4-transitive except for PSL(2, 8),
PΓL(2, 8) (n = 9), and PΓL(2, 32) (n = 33).

For 4 ≤ n ≤ 7, the only 3-, but not 4-transitive groups are A5 (n = 5)
and PGL(2, 5) (n = 6).

The 4-transitive groups have ordered 4-ut, and the Mathieu group M11

(n = 12) is generously 3-transitive (the orbit lengths for the 3-point stabiliser
are 3 and 6), and thus also has ordered 4-ut. Except in the case where q− 1
is a Mersenne prime, almost simple groups with socle PSL(2, q) with q ≥ 5
are not 3-primitive, since the largest such group PΓL(2, q) has the property
that the stabiliser of two points has a normal cyclic subgroup of composite
order q − 1, and a subgroup of a non-3-primitive group is non-3-primitive.

Finally, A5 clearly has ordered 4-ut. �

We remark that computation shows that the groups PSL(2, 8), PΓL(2, 8)
(n = 9), and PΓL(2, 32) (n = 33) satisfy ordered 4-ut.

Before we consider the case k = 3, we will give an updated list of the
status of the 3-ut property. The following theorem combines results from [5]
with the corrections from [2].

Proposition 2.7 Let n ≥ 3, G ≤ Sn, then G has the 3-ut property if it
satisfies one of the following properties:

(a) G is 3-homogeneous;

(b) PSL(2, q) ≤ G ≤ PΣL(2, q) where q ≡ 1 mod 4 (n = q + 1);
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(c) G = Sp(2d, 2), d ≥ 3, in either of its 2-transitive representations (n =
22d−1 ± 2d−1);

(d) G = 2d : Sp(d, 2), d ≥ 4 and even (n = 2d);

(e) G is one of C5, D(2 ∗ 5) (n = 5), AGL(1, 7), (n = 7), PSL(2, 11)
(n = 11), 24 : A6 (n = 16), 26 : G2(2) or its subgroup of index 2
(n = 64), Sz(8), Sz(8) : 3 (n = 65), Higman-Sims (n = 176), Co3

(n = 276);

If there are any other groups with 3-ut, they are one of the following:

(f) Suzuki groups Sz(q) with q ≥ 32, potentially extended by field automor-
phisms (n = q2 + 1);

(g) AGL(1, q) ≤ G ≤ AΓL(1, q), where q is either prime with q ≡ 11 mod 12,
or q = 2p with p prime, and for all c ∈ GF(q) \ {0, 1}, |〈−1, c, c− 1〉| =
q − 1 (n = q);

(h) subgroups of index 2 in AGL(1, q), with q ≡ 11 mod 12 and prime,
and for all c ∈ GF(q) \ {0, 1}, |〈−1, c, c− 1〉| = q − 1 (n = q).

With this result, we can prove that the groups with ordered 3-ut are just
those listed in Theorem 1.5.

Proposition 2.8 Let n ≥ 3, G ≤ Sn. If G satisfies one of the following
properties:

(a) G is 3-transitive;

(b) PSL(2, q) ≤ G ≤ PΣL(2, q) where q is an odd prime power.

(c) G = Sp(2d, 2), d ≥ 3, in either of its 2-transitive representations (n =
22d−1 ± 2d−1);

(d) G = 2d : Sp(d, 2), d ≥ 4 and even (n = 2d);

(e) G is one of A4 (n = 4), PSL(2, 11) (n = 11), 24 : A6 (n = 16),
26 : G2(2) or its subgroup of index 2 (n = 64), Higman–Sims (n = 176),
Co3 (n = 276);
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then it satisfies ordered 3-ut.
Any other group satisfying ordered 3-ut must satisfy AGL(1, 2p) ≤ G ≤

AΓL(1, 2p) (n = 2p) with p and 2p − 1 prime.

Proof According to Proposition 2.7, groups with 3-ut are one of the five
types in the proposition, or potentially one of the three additional types
listed.

If G is 3-transitive, then it has the ordered 3-ut property.
Suppose that G is 3-homogeneous but not 3-transitive. These groups

were classified by Kantor [18]. If 3 ≤ n ≤ 5, then G is A4 (n = 4), which
clearly has ordered 3-ut, AGL(1, 5) (n = 5), which we will exclude below, or
not 2-transitive and hence does not have ordered 3-ut.

If n ≥ 6, then G is AGL(1, 8), AΓL(1, 8) (n = 8) or AΓL(1, 32) (n = 32),
or G contains PSL(2, q) for q ≡ 3 (mod 4) (n = q+ 1). The affine groups are
included in our undecided cases, so assume G contains such a PSL(2, q).

Let {a1, a2, a3} be an ordered 3-set and {P1, P2, P3} an ordered 3-partition
of the underlying set Ω. Without loss of generality, we may assume that the
parts P1, P2, P3 are arranged in increasing order of size. (The ordered 3-ut
property is a requirement on all ordered 3-sets and all ordered 3-partitions,
but having chosen the 3-set and 3-partition it suffices that the condition holds
for all orderings of the 3-set.) Using the transitivity of G, we may assume
that a1 can be mapped into P1, and indeed that a1 ∈ P1. Now the set

{(x, y) : (a1, x, y) ∈ (a1, a2, a3)
G}

is the edge set of a Paley tournament on Ω\{a1}. If this tournament includes
an arc from P2 to P3, then we are done; so suppose not. If |P2| = 1, then
|P1| = 1, and all arcs between P2 and P3 point into the point in P2; so
the tournament has out-degree at most 1, a contradiction. So suppose that
|P2| > 1. In the Paley tournament on q points, any two points are dominated
by precisely (q−3)/4 points; but if there are no arcs from P2 to P3, then two
points in P2 are dominated by every point in P3, and by assumption there
are at least q/3 such points. So (q − 3)/4 ≥ q/3, a contradiction.

So PSL(2, q), and any overgroup, has ordered 3-ut for q ≡ 3 (mod 4).
We claim that, with the exceptions of C5, D(2 ∗ 5) (n = 5), AGL(1, 7)

(n = 7), Sz(8) and Sz(8) : 3 (n = 65), types (b)–(e) in Proposition 2.7 are
generously 2-transitive, and so have ordered 3-ut. For types (c),(d), and
most groups of type (e), the 2-point stabilisers have all orbits of different
sizes, these being
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• 22d−2 ± 2d−1 − 2 and 22d−2 for type (c);

• 22d−1 − 2 and 22d−1 for type (d);

• 3, 6 for PSL(2, 11) (n = 11);

• 6, 8 for 24 : A6 (n = 16);

• 6, 24 and 32 for 26 : G2(2) and its subgroup (n = 64);

• 12, 72 and 90 for HS (n = 176);

• 112 and 162 for Co3 (n = 276).

For (b), since the point stabiliser has even order and rank at most 3, all
its non-trivial orbitals are self-paired.

For the groups of type (f), if q − 1 is not prime, then the point stabiliser
of AΓL(1, q) (n = q) has a proper normal subgroup, and so these groups are
not 2-primitive, and hence do not have ordered 3-ut. The same argument
excludes AGL(1, 5) (n = 5) and AGL(1, 7) (n = 7).

Of the remaining groups, we observe that the Suzuki groups do not have
ordered 3-ut since they are not 2-primitive (the point stabiliser has a normal
subgroup of order q); and subgroups of index 2 in AGL(2, q) for odd q fail to
be 2-transitive, as do the 2 sporadic groups with n = 5.

Hence the only open cases remaining are groups containing AGL(1, q)
(n = q) with prime q− 1, which occurs only if q = 2p for p prime (and 2p− 1
is a Mersenne prime). �

Computation shows that AGL(1, 8), AΓL(1, 8) (n = 8), AGL(1, 32) and
AΓL(1, 32) (n = 32) do indeed have ordered 3-ut.

3 Strongly factorizable semigroups and maps

with fixed rank

A monoid S with group of units G and set of idempotents E is said to
be strongly factorizable if S = EG. Let Ω be a finite set. Every finite
semigroup can be embedded in some T (Ω), a strongly factorizable semigroup.
More generally, any semigroup S such that Sym(Ω) ≤ S ≤ T (Ω) is strongly
factorizable.

Let k be a natural number; the goal of this section is to classify the
groups G ≤ Sym(Ω) such that 〈G, t〉 is strongly factorizable for all rank k
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transformation t ∈ T (Ω). The next result links this goal and the results of
the previous sections.

Lemma 3.1 Let Ω be a finite set, G ≤ Sym(Ω) and k ≤ |Ω|. Then the
following are equivalent:

(a) G possesses the ordered k-ut property;

(b) for all rank k transformations t ∈ T (Ω), we have

〈G, t〉 = EG,

where E is the set of idempotents of 〈G, t〉.

Proof First, assume that G has the ordered k-ut property. Let a ∈ 〈G, t〉 be
a map of rank l ≤ k. As G has ordered k-ut, it has ordered l-ut (Proposition
2.1 (b)). Therefore, given a sequence of kernel classes of a, say (A1, . . . , Al),
and the corresponding l-tuple of images (A1a, . . . , Ala), there exists g ∈ G
such that Aiag ⊆ Ai, for all i ∈ {1, . . . , l}; thus ag is an idempotent and
a = (ag)g−1 ∈ EG. This proves the direct implication.

Conversely, let (A1, . . . , Ak) be a k-partition of Ω and let (a1, . . . , ak) be
a k-tuple of different elements of Ω. We claim that there exists g ∈ G such
that aig ∈ Ai, for all i ∈ {1, . . . , k}. In fact, let t ∈ T (Ω) be a map such that
Ait = {ai}. By assumption 〈G, t〉 is strongly factorizable and hence t = eg,
for some g ∈ G and idempotent e ∈ 〈G, t〉, and thus tg−1 = e. Because e and
t have the same kernel classes and every point in the image of e is fixed, we
have that Aie ⊆ Ai for all i. It follows that {aig−1} = Aitg

−1 = Aie ⊆ Ai

(for all i ∈ {1, . . . , k}). The result follows. �

Glueing together the previous result with the classification of the groups
possessing the ordered k-ut in Propositions 2.4, 2.5, 2.6, and 2.8, we get
Theorems 1.1–1.5 which are the main theorems of the first part of this paper.

4 Semigroups and their normalizers

Let S ≤ Tn be a semigroup and let G ≤ Sn be its normalizer in Sn. We are
interested in the relation between S and 〈S,G〉. On one hand the semigroup
〈S,G〉 might be more accessible to study since we can take advantage of
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group theoric results, but on the other hand the properties of S might be
very different from the properties of 〈S,G〉.

For example, we might be unable to verify if a given semigroup S is
regular. If all t ∈ S have rank at most k and if G has the k-ut property,
then the semigroup 〈S,G〉 is easily seen to be regular. Hence, to prove the
regularity of S, we need to prove that regularity of 〈S,G〉 implies regularity
of S. Therefore, the goal of this section is to study semigroup properties that
carry from 〈S,G〉 to S.

We start by proving a general result.

Lemma 4.1 Let S ≤ Tn and let G be its normalizer in Sn. Then

〈S,G〉 = SG.

Proof For s ∈ S and g ∈ G let sg denote g−1sg. Let t ∈ 〈S,G〉. We now
have (for some g1, . . . , gk+1 ∈ G, s1, . . . sk ∈ S),

t = g1s1g2s2 . . . gkskgk+1

= g1s1g
−1
1 (g1g2)s2(g1g2)

−1(g1g2g3) . . . (g1 . . . gk)sk(g1 . . . gk)−1(g1 . . . gkgk+1)
= sg11 s

g1g2
2 . . . sg1...gkk (g1 . . . gk+1)

= sg ∈ SG,

where s = sg11 s
g1g2
2 . . . sg1...gkk ∈ S and g = g1 . . . gk+1 ∈ G. Thus 〈S,G〉 ⊆ SG.

The reverse inclusion is obvious. �

4.1 Regularity

Recall that a semigroup S is regular if for all a ∈ S there exists a′ ∈ S such
that a = aa′a. Two elements a, b ∈ S are said to be R-related if there exist
u, v ∈ S1 such that a = bu and b = av (S1 denotes the monoid obtained by
adjoining an identity to S). Similarly, a, b ∈ S are said to be L-related if
there exist u, v ∈ S1 such that a = ub and b = va. It is well know that a
semigroup is regular if and only if every element is R-related (or L-related)
to an idempotent. In what follows, by a transformation monoid S ≤ Tn we
mean a semigroup of transformations containing the identity transformation.

The key result in this subsection is the following lemma.

Lemma 4.2 Let S ≤ Tn be a transformation monoid and G be the nor-
malizer of S in the symmetric group. If a ∈ S is R-related in SG to an
idempotent of SG, then a is R-related in S to the same idempotent.

14



Proof Let a ∈ S and assume that a is R-related in SG to an idempotent
in SG, that is, there exist b ∈ S, h ∈ G such that (bh)(bh) = bh and for some
b1i1, b2i2 ∈ SG, we have a = (bh)(b1i1) and bh = a(b2i2). The claim is clearly
true if bh is the identity, so assume this is not case.

Now, by a theorem of McAlister, for all s ∈ S, the semigroups 〈s,G〉 \G
and 〈g−1sg | g ∈ G〉\G have the same idempotents ( [24, Lemma 2.2] and [7,
Lemma 2.2]). As S =

⋃
s∈S〈g−1sg | g ∈ G〉 and SG \G =

⋃
s∈S(〈s,G〉 \G),

it follows that S and SG have the same idempotents. Thus bh ∈ S.
It remains to prove that a and bh are R-related in S, that is, there exist

u, v ∈ S such that a = (bh)u and bh = av. Since (bh)(b1i1) = a ∈ S, we can
take u = (bh)(b1i1) so that a = (bh)u = (bh) (bh)(b1i1).

Observe that a(b2i2)(bh) = (bh)(bh) = bh. We claim that i2bh ∈ S and
hence b2i2bh ∈ S, thus proving the theorem.

We start by proving that hbh ∈ S. In fact,

h−1bh, b ∈ S ⇒ h−1bhb ∈ S ⇒ h−2bhbh = h−2bh ∈ S ⇒ h−2bhb ∈ S ⇒
⇒ h−3bhbh = h−3bh ∈ S ⇒ . . .⇒ h−kbh ∈ S.

As G is finite, for some k we have h−k = h. The claim follows.
Now we claim that i−k2 b ∈ S for all natural numbers k. We proceed by

induction. From a, b2 ∈ S we get ab2 ∈ S and hence i−12 ab2i2 ∈ S, thus
i−12 bh ∈ S so that i−12 bhb ∈ S; as bhbh = bh, we have bhb = b which together
with i−12 bhb ∈ S yields i−12 b ∈ S.

Now suppose that i−k2 b ∈ S (for some natural k ≥ 1); we want to prove

that i
−(k+1)
2 b ∈ S. From i

−(k+1)
2 b2i

k+1
2 , i−k2 b ∈ S, we get i

−(k+1)
2 b2i

(k+1)
2 i−k2 b =

i
−(k+1)
2 b2i2b ∈ S. Thus

S 3
(
i
−(k+1)
2 ai

(k+1)
2

)(
i
−(k+1)
2 b2i2b

)
= i

−(k+1)
2 ai

(k+1)
2 i

−(k+1)
2 b2i2b

= i
−(k+1)
2 ab2i2b

= i
−(k+1)
2 bhb

= i
−(k+1)
2 b.

It is proved that i−k2 b ∈ S for all natural k.
As G is finite, for some k we have i2b = i−k2 b ∈ S. Since i2b, hbh ∈ S, it

follows that i2bhbh = i2bh ∈ S. As b2, i2bh ∈ S, we get b2i2bh ∈ S and hence
a(b2i2bh) = (ab2i2)(bh) = (bh)2 = bh. It is proved that a and the idempotent
bh are R-related in S. �
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By symmetry we get the following.

Lemma 4.3 Let S ≤ Tn be a transformation monoid and G be the normal-
izer of S in the symmetric group G. If a ∈ S is L-related in SG to an
idempotent of SG, then a is L-related in S to the same idempotent.

Two elements a, b ∈ S are said to be H-related if they are R-related and
L-related. The two previous results imply the following.

Lemma 4.4 Let S ≤ Tn be a transformation monoid and G be the normal-
izer of S in the symmetric group G. If a ∈ S is H-related in SG to an
idempotent of SG, then a is H-related in S to the same idempotent.

A number of consequences follow from these lemmas.

Corollary 4.5 Let S ≤ Tn be a transformation monoid and G be the nor-
malizer of S in the symmetric group Sn. Then SG is regular if and only if
S is regular.

Proof Let a ∈ S. As SG is regular and S ≤ SG, it follows that a is R-
related in SG to an idempotent of SG. By Lemma 4.2, a is R-related in S to
the same idempotent (which is thus in S). We conclude that every element
in S is R-related to an idempotent.

Regarding the converse, suppose S is regular, say s = ss′s and s′ = s′ss′,
for all s ∈ S. Let sg ∈ SG. Then sg = (sg)(g−1s′)(sg) and g−1s′ =
(g−1s′)(sg)(g−1s′); in addition g−1s′ = (g−1s′g)g−1 ∈ SG. It is proved that
every element in SG has an inverse in SG. The result follows. �

We observe that it is possible for non-idempotents p, q ∈ S to beR-related
in SG, but not in S. For example, pick g, t, q ∈ T7 as follows: g := (567),

t :=

(
1, 2, 3, 4 5 6 7

1 2 3 4

)
and q :=

(
1, 2, 3, 4 5 6 7

1 3 4 2

)
Then S := 〈g, t, q〉 has 7 elements and its normalizer G in S7 is generated

by 〈g, (34)(76), (23)(76)〉. We have t = q(243) and q = t(234), thus t and q
are R-related in SG, but they are not R-related in S.

Recall that a semigroup is completely regular if each element belongs
to a maximal subgroup; equivalently, every H-class contains an idempotent.
Therefore, Lemma 4.4 implies the following.
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Corollary 4.6 Let S ≤ Tn be a transformation monoid and G be the nor-
malizer of S in the symmetric group Sn. Then SG is completely regular if
and only if S is completely regular.

An element a of a semigroup S is said to be abundant if it is R-related
and L-related to an idempotent in some oversemigroup T of S. Therefore,
if an element a ∈ S is abundant in SG, this means that a is also abundant
in S. The abundant world generalizes the regular world, but in this context
adds nothing.

An element a of a semigroup S is said to be right [left] inverse if it is
R-related [L-related] to exactly one idempotent in S; the element is inverse
if it is both left and right inverse. A semigroup is inverse if all of its elements
are inverse. As seen above, if a ∈ S is R-related to exactly one idempotent
in SG, by Lemma 4.2 we know that in S the element a is R-related to the
same idempotent (that belongs to S); thus, if a ∈ S is right inverse in SG,
it is also right inverse in S; as a consequence, if SG is an inverse semigroup,
then so is S. (This last conclusion follows immediately from the fact if SG
is inverse, it is regular and the idempotents commute and hence the same is
true in S.)

A semigroup is said to be Clifford if it is inverse and completely regular.
By the results above it follows that if SG is Clifford, then so is S.

A monoid S is intra-regular if for all a ∈ S there exist b, c ∈ S such that
ba2c = a. We would like to know if SG intra-regular implies S intra-regular,
but we only have the following partial result.

Proposition 4.7 Let G ≤ Sn be a group of exponent 2 and let S ≤ Tn be a
transformation monoid such that G is the normalizer in Sn of S. Then SG
is intra-regular implies that S is intra-regular.

Proof As S is a finite semigroup, for each x ∈ S there exist natural numbers
l and m, m > l, such that xl = xm.

Let a ∈ S be arbitrary, and l and m as above. If l = 1 and m = 2,
then a = a2 and hence a = 1aa1, with 1 ∈ S; if l = 1 and m > 2, then
a = 1a2am−2, so the result holds for all a for which l = 1.

Assume instead that l,m > 1. By intra-regularity in SG, there exist
eg, fh ∈ SG such that a = ega2fh, with e, f ∈ S and g, h ∈ G. It is
clear that f, hfh−1 ∈ S and hence fhfh−1 ∈ S; as h−1 = h it follows that
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fhfh ∈ S. We claim that egaeg ∈ S. In fact ae ∈ S because a, e ∈ S; thus
gaeg−1, e ∈ S and hence egaeg−1 = egaeg ∈ S. The claim follows. Now

(egaeg)a2(fhfh) = ega(ega2fh)fh = ega(a)fh = ega2fh = a.

It is proved that every intraregular element in SG is intraregular in S, when
G satisfies x2 = 1. �

4.2 Semigroups having n-th roots

The aim of this subsection is to carry the foregoing investigation to the case
of SG having n-th roots. Observe that every finite semigroup satisfies an
identity of the form xm = xk, for 0 ≤ k < m. If a, b ∈ S and bn = a we say
that b is an n-th root of a; we denote an arbitrary nth root of x by n

√
x and

the notation n
√
x ∈ A ⊆ S means that x has an n-th root in the set A.

Theorem 4.8 Let S be a finite semigroup in which every element has an
n-th root, for some n ≥ 2. Then for every x ∈ S we have n

√
x ∈ 〈x〉.

Proof Let s : S → S given by s(x) = xn. That S has n-th roots for all of
its elements means that s is surjective, and as S is finite, it is also injective.
But for any x ∈ S, s(〈x〉) ⊆ 〈x〉. Let t be the restriction of s to 〈x〉. Then
t is injective (because s is), and by finiteness, also surjective. Hence x has a
(unique) n-th root in 〈x〉. �

Now back to the leitmotiv of this paper.

Corollary 4.9 Let S ≤ Tn be a transformation monoid and G be the nor-
malizer of S in the symmetric group Sn. If every element in SG has a k-th
root, then so has every element in S.

Proof As SG has k-th roots for all its elements, it follows that for every
x ∈ SG we have k

√
x ∈ 〈x〉 and hence every x ∈ S has a k-th root in S. �

Let n be a positive integer. Then every element of the finite group G has
an n-th root if and only if n is coprime to the order of G. For, if n and |G|
have a common factor p, and g ∈ G has order p, then gn = 1n, so the n-th
power map is not injective; conversely, if gcd(n, |G|) = 1, choose m so that
mn ≡ 1 (mod |G|); then the n-th and m-th power maps are mutually inverse
on G.
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Corollary 4.10 Let n be a positive integer. Then every element of the finite
semigroup S has an n-th root in S if and only if every element of S is
contained in a maximal subgroup of S of order coprime to n.

Proof Let every element of S have an nth root, and take x ∈ S. Then, by
Theorem 4.8, n

√
x ∈ 〈x〉, that is, n

√
x = xk for some natural number k. This

implies that x = xnk, so that xnk−1 is an idempotent which is the identity of
the cyclic group generated by x. This means that the H-class of x is a group.
In this group, every element has an n-th root, so the order of the group is
coprime to n.

Conversely, if S is a union of groups of orders coprime to n, then every
element of S has an n-th root. �

It is well known that, for example, neither the symmetric group nor the
full transformation monoid contain square roots of all their elements, except
in trivial cases. With our main theorem at hand, we can say a bit more. If
S is a finite semigroup and some element a has no n-th root, then it is not
possible to extend S to a finite semigroup T containing an n-th root for all
elements (because an n-th root of a must belong to 〈a〉, and this semigroup
remains the same in any oversemigroup of S).

4.3 A negative result

A semigroup S is said to be R-commutative if for all a, b ∈ S we have
abRba. Let S < T ({1, . . . , 7}) be the semigroup generated by the permuta-
tions (24)(36), (15)(23)(46) and the transformation

t =

(
{1, 5, 7} {2, 3} {4, 6}

7 1 5

)
.

The normalizer G of S in the symmetric group is the group generated by
(15), (24)(36) and (15)(23)(46). GAP shows that the semigroup SG is R-
commutative, but S is not. By symmetry, a corresponding counterexample
exists for L-commutativity.

5 Problems

We now propose a number of problems. The first is essentially in [5] but
(annoyingly) keeps resisting.
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Problem 1 Complete the classification of the groups possessing the 3- and
4-ut property so that Theorem 1.4 and Theorem 1.5 can be completed.

There is a well known correspondence between the behaviour of T (Ω) and
End(V ), when Ω is a finite set and V is a finite dimension vector space. This
prompted the introduction of independence algebras, a class containing both
sets and vector spaces as particular cases. Therefore the next two problems
turn out to be very natural.

Problem 2 Prove linear analogues of the main theorems in this paper.

Problem 3 Find in the context of independence algebras analogues of the
main theorems in this paper.

Let S be a finite semigroup. Two elements a, b ∈ S are said to be J -
related if they generate the same principal ideal, that is, S1aS1 = S1bS1. We
recall ( [17, p.57]) that if S < T is a regular subsemigroup of a semigroup T ,
then RS = RT ∩ (S × S). The same happens for L or H, but fails for J .

Problem 4 Let S ≤ Tn and G ≤ Sn be its normalizer in Sn. Is it true that
JS = JSG ∩ (S × S)?

An existential property of semigroups is a first order language condition
on the elements of the semigroup that uses an existential quantifier. For
example, regularity is an existential property of semigroups.

Problem 5 Let S ≤ Tn be a semigroup and G its normalizer in Sn. Let P
be an existential property of semigroups. Decide if SG satisfies P implies
that S also satisfies P .

The following result was proved for groups satisfying g2 = 1. Can it be
generalized for other classes of groups?

Problem 6 Let G ≤ Sn be a group and let S ≤ Tn be a transformation
monoid such that G is its normalizer in Sn. Is it true that if SG is intra-
regular then S is intra-regular?

We close the list of problems with a general semigroup structure question.

Problem 7 Consider G, one of the groups appearing in Theorems 1.1–1.5.
Describe the structure (Green’s relations, automorphisms, congruences, con-
jugacy classes, the variety generated, etc.) of the semigroups 〈G, a〉, for
a ∈ Tn.
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[4] J. Araújo, W. Bentz and P. J. Cameron, The existential transversal
property: a generalization of homogeneity and its impact on semigroups,
submitted. https://arxiv.org/abs/1808.06085
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fication of normalizing groups. Journal of Algebra 373 (2013), 1: 481 –
490.
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