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Abstract 14 

Propensity scores are often used to adjust for between-group variation in covariates, when 15 

individuals cannot be randomised to groups. There is great flexibility in how these scores can 16 

be appropriately used. This flexibility might encourage p-value hacking – where several 17 

alternative uses of propensity scores are explored and the one yielding the lowest p-value is 18 

selectively reported. Such unreported multiple testing must inevitably inflate type I error rates 19 

– our focus is on exploring how strong this inflation effect might be. Across three different 20 

scenarios, we compared the performance of four different methods. Each taken individually 21 

gave type I error rates near the nominal (5%) value, but taking the minimum value of four 22 

tests led to actual error rates between 150% and 200% of the nominal value. Hence, we 23 

strongly recommend pre-selection of the details of the statistical treatment of propensity 24 

scores to avoid risk of very serious over-inflation of type I error rates.  25 

  26 
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Introduction 27 

In non-interventional and other observational studies, treatments cannot be randomly 28 

assigned. As a consequence, groups usually differ in some baseline covariates. In order to 29 

adjust for between-group differences in observational studies, statistical methods based on the 30 

propensity score have become increasingly popular; see for instance a study about abdominal 31 

aortic aneurysm repair [1]. The propensity score is the conditional probability to receive a 32 

particular treatment given the observed baseline covariates, see e.g. D’Agostino [2] or 33 

Benedetto et al. [3] for more details.  34 

Common techniques using the propensity score are matching, stratification, regression 35 

adjustment and inverse probability weighting [2, 3]. According to a review [4], based on 36 

studies published in 2011 and 2012, matching was the most commonly applied method: used 37 

in 68.9% of studies. Regression adjustment (20.9%), stratification (13.6%) and inverse 38 

probability weighting (7.1%) were less often carried out. As the four percentages show, 39 

sometimes more than one method is applied in one study. Moreover, even for a single method 40 

several different options are available (and used in applications). For instance, when a 41 

stratification is applied different numbers of strata might be used [5]. For inverse probability 42 

weighting trimming large weights might be useful, but, ”without guidance on the optimal 43 

level of trimming, there exists the dangerous potential for trimming being used to artificially 44 

achieve a desired result” [6].  45 

For clinical trials the study protocol, including the description of the planned statistical 46 

methods, has to be submitted to ethics committees, institutional review boards and/or 47 

regulatory authorities before the start of the study. In addition, details of the study, again 48 

including some description of the planned statistical methods, are recorded in advance in 49 

clinical trial registries. Thus, the statistical analysis is pre-planned and cannot be changed 50 

after data are available. For observational studies this is usually not the case. Thus, in the 51 
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majority of analyses applying propensity scores details are not fixed in advance and it cannot 52 

be excluded that some p-hacking happens in some applications.  53 

By “p-hacking” we mean the performance of several alternative statistical tests and the 54 

selective reporting of the one yielding the smallest p-value. Of course, such a practice is not 55 

acceptable from a statistical point of view and consequently not scientifically sound. Without 56 

any adjustment for multiple testing, the error probabilities are not controllable. The aim of this 57 

note is to investigate how much the type I error rate is inflated when p-hacking is applied with 58 

different propensity score methods. That is, it is clear that p-hacking must inflate type I error 59 

rates, our interest is in exploring how strong this effect can be.  60 

Although p-hacking, also known as inflation bias, is difficult to detect [7], quantifying p-61 

hacking is important. Head et al. [7] present empirical evidence that p-hacking is widespread 62 

throughout science. However, while p-hacking is probably common, the study of Head et al. 63 

[7] suggests that its effect is weak relative to the real effect sizes. 64 

 65 

Material and Methods 66 

As mentioned above, there are four common techniques using the propensity score: matching, 67 

stratification, regression adjustment and inverse probability weighting. In a simulation study 68 

performed with R (version 3.4.0) we applied one variant of each of the four common 69 

techniques. We selected variants that individually have type-I error rates near the nominal 70 

level (see Tab. 1). To be precise, we used the following variants:  71 

• Stratification based on propensity scores with ten strata (values of both groups 72 

combined were used to define approximately equally-sized strata). 73 

• Nearest neighbour 1:1 matching with replacement 74 

• Regression adjustment 75 
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• Inverse probability of treatment weighting (IPTW) with stabilized weights and 76 

truncation of the largest 1% of weights [6] 77 

In addition to these four methods, the minimum of the p-values of the four methods was used 78 

to imitate p-hacking. 79 

Our first simulation was carried out as described by Austin [8], however, with nine covariates 80 

X1 to X9 in total. The simulated covariates have a multinomial normal distribution with 81 

correlation ρ which ranges from 0 to 1 by 0.2.  The first six covariates were used to compute 82 

the propensity score as follows: 83 

𝑝𝑡𝑟𝑒𝑎𝑡 =
exp⁡(0.1𝑋1+0.2𝑋2+0.3𝑋3+0.4𝑋4+0.5𝑋5+0.6𝑋6)

1+exp⁡(0.1𝑋1+0.2𝑋2+0.3𝑋3+0.4𝑋4+0.5𝑋5+0.6𝑋6)
  . 84 

The treatment group was simulated according to a Bernoulli distribution with probability 85 

ptreat. Three of the six first covariates plus three additional covariates were used to simulate a 86 

binary outcome. To be precise the probability pout was computed as   87 

𝑝𝑜𝑢𝑡 =
exp⁡(0.4𝑋1+0.1𝑋2+0.5𝑋3+0.3𝑋7+0.2𝑋8+0.6𝑋9)

1+exp⁡(0.4𝑋1+0.1𝑋2+0.5𝑋3+0.3𝑋7+0.2𝑋8+0.6𝑋9)
  . 88 

Then, the binary outcome was simulated according to a Bernoulli distribution with probability 89 

pout. Note that the treatment group does not influence pout because we consider the null 90 

hypothesis that there is no difference between the two treatment groups. To analyse the 91 

outcome, logistic regression was used with a nominal significance level of α = 5%. For the 92 

stratification, a conditional logistic regression model was applied. 93 

For the second simulation the scenario used by Craycroft [9] was utilized. Here, there are 94 

three standard normally distributed covariates X1 to X3 and two binary covariates X4 and X5, 95 

both with a success probability of 0.5. Three covariates were used to compute the propensity 96 

score: 97 
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𝑝𝑡𝑟𝑒𝑎𝑡 =
exp⁡(0.5+𝑋1+𝑋3+𝑋5)

1+exp⁡(0.5+𝑋1+𝑋3+𝑋5)
  . 98 

The probability pout was computed as   99 

𝑝𝑜𝑢𝑡 =
exp⁡(−1+𝑋2+𝑋3+𝑋4+𝑋5)

1+exp⁡(−1+𝑋2+𝑋3+𝑋4+𝑋5)
  . 100 

Thus, one covariate (X1) influences the treatment allocation only, two covariates (X2, X4) 101 

influence the binary outcome only, and two further covariates (X3, X5) influence both 102 

treatment allocation and outcome. 103 

A third simulation is identical to the first simulation with the exception that the simulated 104 

outcome was normally distributed. To be precise, the outcome was simulated as 5 N(pout +1, 105 

pout/2). Instead of the logistic regression a linear regression was applied. For the stratification 106 

the factor stratum was included in a resulting analysis of covariance model. 107 

For all simulations the correlation between the covariates ranges from 0 to 1 by 0.2. For each 108 

scenario, 10000 simulation runs were used to estimate the actual type I error rate. The sample 109 

size was 1000 per study for all three simulation models. The R code used for our simulation is 110 

available at www.hs-koblenz.de/profilepages/neuhaeuser/programme. When actually 111 

performing the propensity score analysis, the covariates and estimated propensity scores could 112 

be used. In the R code provided by Schuler [10] the observed covariates are included in the 113 

model for matching and IPTW. Here, to harmonize models and to reduce the number of 114 

variables in the model the propensity scores are included in the model as opposed to the 115 

observed covariates (for matching, IPTW, and, of course, regression adjustment). 116 

In addition to the simulation we consider, as an application, a study investigating patients with 117 

diabetes mellitus and triple-vessel disease undergoing coronary artery bypass surgery [11]. In 118 

one group (n1 = 621) the bypass surgery was the primary revascularization procedure, in the 119 

other group (n2 = 128) patients were treated with a previous percutaneous coronary 120 

http://www.hs-koblenz.de/profilepages/neuhaeuser/programme/
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intervention (PCI) before the bypass surgery. Hence, the aim was to determine whether 121 

previous PCI has a prognostic impact. The two binary outcome variables are death and 122 

occurrence of major adverse cardiac events (MACE), both determined in hospital during 123 

index hospitalization. The propensity score was computed using a logistic regression based on 124 

12 covariates [11]. Differences between these covariates disappear when testing in a stratified 125 

analysis with ten strata based on the propensity score [see also 5]. 126 

 127 

Results 128 

Table 1 presents the simulation results. The single methods each have acceptable type I error 129 

rates close to the desired nominal significance level α = 5%. In contrast, the simulated p-130 

hacking strategy to select the minimum p-value from the four different methods has 131 

unacceptably high actual type I error levels of 7 to 10%. Even in cases where single methods 132 

are conservative the minimum p-value strategy has an inflated actual level of approx. 7%. 133 

In order to evaluate the extent of type I error rate inflation, Bradley’s [12] liberal criterion is 134 

used. Based on this criterion, an actual type I error rate between 0.5 and 1.5 is considered 135 

as acceptable. Bradley’s liberal criterion has been applied in recent investigations [see e.g. 13, 136 

14]. According to this criterion all four single methods are acceptable, but the minimum p-137 

value’s actual type I error rate is, in the majority of situations, outside the limits set by 138 

Bradley’s liberal criterion (Tab. 1). 139 

When analysing the example study [11], the p-values displayed in Table 2 occurred. Although 140 

all p-values are smaller than 0.05, there is a substantial variability in the p-values. For the 141 

outcome variable death the largest p-value is 2.3 times larger than the smallest. For MACE 142 

this factor is 3.0. 143 

  144 
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Discussion 145 

In our small simulation study we investigated four common methods using the propensity 146 

score. These methods were applied among others by Wendt et al. [15, stratification with ten 147 

strata], Lee et al. [16, nearest neighbour 1:1 matching], Doll et al. [17, regression adjustment], 148 

and Rosenbloom et al. [18, IPTW with stabilized weights]. 149 

Although we performed only four different methods, we could show that the actual type I 150 

error rate of the strategy to select the minimum p-value is inflated and unacceptably high, 151 

even according to Bradley’s liberal criterion. In reality there is much more flexibility 152 

available to the data analyst than our study explored. On the one hand, there is much more 153 

variety of methods, for each method a suite of modifications are possible. For instance, the 154 

number of strata can vary when a stratification is applied, or for the regression adjustment 155 

several different regression adjustment models are available. Further, in a real study there is 156 

some flexibility and arbitrariness in selection of the covariables used to compute the 157 

propensity score. The review of Sanni Ali et al. [4] showed that the execution and reporting of 158 

covariate selection is far from optimal.  159 

In the majority of applications balance diagnostics for examining whether the propensity 160 

score model has been adequately specified, is applied after fitting a propensity score [4, 19]. 161 

This covariate balance was checked and reported in 59.8% of studies included in the review 162 

[4] mentioned above. If the desired level of balance is not achieved then the propensity score 163 

estimation model is adjusted. As long as the outcomes are not incorporated prior to revising 164 

the propensity score model, this will not inflate the type I error rate. 165 

Nevertheless, if the effect on the outcome of interest is considered in covariate selection, the 166 

effect of inflated actual type I error rates might be larger in real applications than observed in 167 

our simulation study. However, even our approach using just four single methods could 168 
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demonstrate that the actual type I error rate of the minimum p-value is unacceptably high 169 

(according to Bradley’s liberal criterion). 170 

Due to the enlarged actual type I error rates the strategy of p-hacking leads to false-positive 171 

results and, therefore, can contribute to the reproducibility crisis where scientific studies are 172 

impossible to reproduce or replicate. What can be done? On the one hand, the statistical 173 

analysis should be planned and documented in advance (including the fine detail of how 174 

propensity scores will be calculated and how they will used, including how covariate balance 175 

is checked and how the model is adjusted subsequently).  Further, data sharing can facilitate 176 

exploration of how robust results are to variation in the choices made in the statistical 177 

analysis.  178 
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Tab. 1: Simulated actual type I error rates for the three different simulation models and different 239 

correlation coefficients ρ for the nominal significance level α = 0.05 240 

 ρ = 0 ρ = 0.2 ρ = 0.4 ρ = 0.6 ρ = 0.8 ρ = 1 

Simulation 1 
 
Stratification 
Nearest neighbour matching 
Regression adjustment 
IPTW 
Minimum p-value 

 
 

0.050 
0.048 
0.049 
0.048 
0.077 

 
 

0.050 
0.050 
0.051 
0.050 
0.079 

 
 

0.051 
0.051 
0.051 
0.050 
0.082 

 
 

0.048 
0.052 
0.048 
0.048 
0.080 

 
 

0.050 
0.055 
0.050 
0.050 
0.083 

 
 

0.050 
0.052 
0.052 
0.052 
0.082 

 
Simulation 2 
 
Stratification 
Nearest neighbour matching 
Regression adjustment 
IPTW 
Minimum p-value 

 
 
 

0.054 
0.049 
0.054 
0.054 
0.079 

 
 
 

0.054 
0.048 
0.055 
0.055 
0.083 

 
 
 

0.051 
0.039 
0.049 
0.049 
0.074 

 
 
 

0.049 
0.037 
0.048 
0.048 
0.071 

 
 
 

0.052 
0.039 
0.049 
0.049 
0.072 

 
 
 

0.051 
0.033 
0.047 
0.047 
0.072 

 
Simulation 3 
 
Stratification 
Nearest neighbour matching 
Regression adjustment 
IPTW 
Minimum p-value 

 
 
 

0.051 
0.050 
0.051 
0.050 
0.078 

 
 
 

0.050 
0.055 
0.050 
0.049 
0.082 

 
 
 

0.051 
0.053 
0.049 
0.048 
0.081 

 
 
 

0.049 
0.054 
0.051 
0.050 
0.082 

 
 
 

0.055 
0.064 
0.060 
0.059 
0.094 

 
 
 

0.054 
0.064 
0.058 
0.057 
0.095 

 241 

 242 

Tab. 2: p-values of the different propensity score methods based on the data of Thielmann et al. [11] 243 

Method Outcome death Outcome MACE 

Stratification 
Nearest neighbour matching 
Regression adjustment 
IPTW 

0.0204 
0.0471 
0.0277 
0.0278 

0.0157 
0.0475 
0.0260 
0.0273 

 244 


