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 20 
Summary 21 

Recent analyses have reported catastrophic global declines of vertebrate populations1,2. Yet 22 

distilling many trends into a global mean index obscures variation that can inform conservation, 23 

and can be sensitive to analytical decisions. For example, whereas earlier analyses estimated a 24 

mean vertebrate decline of >50% since 1970 (Living Planet Index: LPI2), we find that this 25 

estimate is driven by <3% of populations; excluding these extremely declining populations 26 

switches the global trend to an increase. The sensitivity of global mean trends to outliers 27 

suggests that more informative indices are needed. We propose an alternative approach, 28 

identifying clusters of extreme decline (or increase) that differ statistically from the majority of 29 

population trends. We show that, of LPI’s 57 taxonomic-geographic systems, 16 systems 30 

contain clusters of extreme decline (comprising ~1% of populations, occurring disproportionately 31 

in larger animals) and 7 contain extreme increases (~0.4% of populations). The remaining 32 

98.6% of populations across all systems showed no mean global trend. However, when 33 

analyzed separately, three systems were declining strongly with high certainty (all Indo-Pacific), 34 

and seven were declining strongly but with less certainty (mostly reptile-amphibian groups). 35 

Accounting for extreme clusters fundamentally alters interpretation of global vertebrate trends 36 

and should be used to help prioritize conservation effort. 37 

 38 

  39 
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Main 40 

 41 

Rapid global change is threatening species across the globe1. Quantifying biodiversity trends is 42 

important to assess whether current investment is slowing or reversing declines, and identify 43 

regions and taxa of concern. While distilling disparate population trends into a single global 44 

index can focus attention on biodiversity trends2,3,4, simple metrics can distort the full picture. 45 

 46 

Estimates of global biodiversity trends vary depending on their data and mathematical model. 47 

The most apocalyptic garner extensive press coverage, even when based on controversial data 48 

(e.g., ‘biological annihilation’5 using trend estimates based largely on expert opinion; ‘insect 49 

Armageddon’ based on data disputed by the original collectors6). But even analyses of the best 50 

available data reach conflicting results. Analysis of a global dataset of abundance time-series 51 

estimated that on average vertebrate populations have declined by >50% since 1970 (Living 52 

Planet Index2:LPI), but other global analyses found that mean population size7,8 and species 53 

richness9,10 have remained stable over similar timeframes. Explanations for the discrepancies 54 

have been proposed11,12,8,13, but not resolved. 55 

 56 

One crucial consideration is that summary indices may be easily misinterpreted. Calculating the 57 

geometric mean across populations is the most common and straightforward approach, but is 58 

strongly influenced by extremes. To illustrate, imagine an ecosystem in which one population 59 

declined by 99%. Even if a second population increased 50 fold or 393 populations increased by 60 

1% (i.e. a large net increase) a geometric mean would show a catastrophic 50% decline. Thus, 61 

a geometric mean decline of 50% could arise from significant, widespread loss is occurring 62 

across many populations (we term this the ‘Catastrophic declines’ hypothesis), or from a few 63 

extremely-declining populations (we term this the ‘Clustered declines’ hypothesis). Both 64 

scenarios involve important conservation issues, but suggest vastly different underlying 65 

problems and mitigation strategies14, thus distinguishing between them is of real-world 66 

importance.  67 

 68 

We derive a Bayesian hierarchical mixture (BHM) model to distinguish between the 69 

Catastrophic and Clustered decline hypotheses. The model statistically separates population 70 

trends into extreme declines, typical trends, and extreme increases (Fig 1), while accounting for 71 

time-series size, within population fluctuations, number of populations, and among-population 72 

variance. We test declines in abundance for >14 000 vertebrate populations (LPI21). We chose 73 

LPI data for its impressive scope, because the data and analytical details were publicly 74 

available, and because previous analyses of these data suggested widespread, global 75 

declines2. 76 

We first examined whether the previous mean decline estimate of >50%2 was sensitive to 77 

extreme populations: robust declines would support the Catastrophe hypothesis; high sensitivity 78 

to few populations would support the Cluster hypothesis (Fig 1). We then applied our BHM 79 

model to assess the evidence for Catastrophic vs. Clustered declines globally and by region, 80 

taxonomy. Finally, we explore two additional conservation issues. First, we test whether 81 

declines occur disproportionately in larger animals (big animals tend to have lower reproductive 82 

rates), which might release small animals from predation18. Second, previous analyses often 83 

excluded time-series with few datapoints10,12,19, but small time-series make up most of available 84 

data. We test the effects of their exclusion20.  85 
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Results 86 

Sensitivity of Geometric Mean index to extreme populations  87 

The geometric mean underlying the LPI analysis was highly sensitive to extreme populations. 88 

Excluding only the 2.4% most strongly declining populations (354 of 14700 populations) 89 

reversed the estimate of global vertebrate trends from >50% loss to slightly positive growth (Fig 90 

2). Similarly, excluding 2.4% of the most strongly increasing populations strengthened the mean 91 

decline to 71%. High sensitivity suggests that extreme populations are disproportionately 92 

affecting global trend estimates, such that clusters of extreme population decline should be 93 

considered explicitly. 94 

Evidence for Clustered declines  95 

Among LPI’s 57 domain-realm-taxon systems, 16 systems contained clusters of extreme 96 

decline, and 8 contained clusters of extreme growth (3 systems are repeated, i.e. had both 97 

clusters of extreme decline and growth; Fig 3, SI Table S2). Together, clusters of extreme 98 

decline accounted for only 1% of populations across systems (2% of populations in the 16 99 

systems in which they occurred). The mean population trend for extreme declining clusters 100 

across the 16 systems was 2 = -3.94, or approximately 98% loss per year, and deviated 101 

substantially from the mean trend of the primary cluster in those systems. Clusters of extreme 102 

growth accounted for 0.4% of populations across systems (2.4% in the 8 systems where they 103 

occurred), with 2 = 3.51, ie an explosive 33x growth per year (Fig 3, SI Table S2).  104 

 105 

Extreme clusters showed some taxonomic and geographic patterns. The largest cluster of 106 

extreme declines was in arctic marine mammals, accounting for 7.6% of populations in that 107 

system. However, mammal systems generally had the fewest clusters of extreme decline [19% 108 

of 16 systems], followed by reptile/amphibian systems [21% of 14 systems], whereas bird and 109 

fish systems had more clusters of extreme declines [31% of 16 and 45% of 11 systems, 110 

respectively; Fig 3). Clusters of extreme decline occurred throughout the world with half 111 

occurring in marine realms, whereas extreme increases occurred more in temperate regions or 112 

terrestrial realms (Fig 3). 113 

 114 

Extreme population trends occurred predominantly in small time-series. Excluding time-series 115 

with <10 points removed all but two extreme clusters, but also removed 52% of the data (see SI 116 

Table S3). The higher frequency of extreme trends among small time-series was also apparent 117 

in the raw data (Figure 4). Thus the decision of whether to include small time-series will have 118 

large effects on the resulting estimates of global trends. 119 

 120 

Body size was related to population trends. Larger species had three times more extreme 121 

declines than increases (15 vs 5 clusters of extreme decline vs extreme increase). 122 

Comparatively, smaller species had half as many (8) extreme declining and disproportionately 123 

more (7) extreme increasing clusters (SI Table S4). While size-specific models included fewer 124 

populations, especially for smaller species, the number of clusters was not uniformly lower (as 125 

might be expected given a reduction in power), so the differential occurrence of declining versus 126 

increasing extreme clusters suggests large animals are more vulnerable to extreme declines. 127 
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 128 

Evidence for Catastrophic declines  129 

In contrast to the extreme clusters, the primary clusters accounted for the vast majority (98.6%) 130 

of populations across the 57 LPI systems. The overall growth rate of primary clusters was close 131 

to zero: 1 = -0.00035, corresponding to ~1.7% loss over 50 years, given a constant rate across 132 

populations and time (Fig 5). Also, in contrast to extreme clusters, primary cluster trends were 133 

robust to time-series size, as excluding series with <10 data points yielded a similar overall 134 

global trend (1 = +0.0043) (Extended data Figure E3). 135 

 136 

While the global BHM model reveals considerably more nuance than a geometric mean index, 137 

analyzing across systems still masked important patterns. When systems were analyzed 138 

separately (SI Table S2), primary population clusters were strongly declining (1 < -0.015) with 139 

high certainty (95% credible intervals not overlapping zero) in three systems, all in the Indo-140 

Pacific Realm (freshwater mammals, freshwater birds, terrestrial birds; red distributions, Fig 3). 141 

This suggests this region has the highest risk of system-wide decline and should be a 142 

conservation priority. In contrast, the primary cluster was increasing with high certainty in seven 143 

systems, six of which were in temperate regions. Seven additional systems had strongly 144 

declining primary population clusters but with less certainty (95% credible intervals overlapped 145 

zero), four of which were amphibian/reptile groups. 14 systems showed strong but low-certainty 146 

increases, with no obvious taxonomic nor geographic patterns (Fig 3).  147 

 148 

Each primary cluster also contained variation among populations. In the 10 systems with 149 

significant (red) or non-significant (orange) mean declines (1 < -0.015), 87% of the individual 150 

populations showed strong declines (Fig 5). These 10 systems accounted for ~20% of total 151 

global vertebrate populations, but ~61% of strong declines. The multimodality observed in Fig 5, 152 

was an outcome of aggregating unimodal primary clusters across systems, and suggests 153 

heterogeneous stressor levels among systems (i.e., similar principles as those causing extreme 154 

clusters within systems). The remaining ~11% of strongly declining populations were distributed 155 

across 47 of 57 systems; it is unclear whether they represent a deviation from natural dynamics 156 

expected in any naturally variable system.  157 

 158 

Primary cluster trends were related to body size, but not as predicted. Compared to overall 159 

patterns, for larger animals the same systems showed significant declines and increases, but 160 

two additional temperate systems showed significant increases (Extended data Fig E4; SI Table 161 

S4). Smaller species also appeared to decline more than larger species; there were 27 systems 162 

where smaller species had more negative growth rates than larger species, versus 18 where the 163 

reverse was true. However, analyses of smaller species were based on a substantially fewer 164 

populations and trends were generally not significant (SI Table S4), so patterns remain 165 

tentative. 166 

Discussion 167 

By re-analysing the most comprehensive dataset of global wildlife population trends available, 168 

we show that previously estimated global declines are driven by a few extremely declining 169 

populations. Removing only 2.4% of declining populations reversed the estimated global trends 170 

from >50% mean decline since 1970 to slightly positive growth. Our BHM model revealed that 171 
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clusters of extreme decline are widespread and occur disproportionately in larger species, and 172 

that a few clusters of extreme increase also exist and occur disproportionately in smaller 173 

species. This is consistent with previous arguments of “trophic downgrading”18. 174 

 175 

Clusters of extreme declines were largely due to small time-series. However, neither random 176 

sampling error nor “saw tooth” population dynamics (wherein ultimately stable populations 177 

experience sudden declines followed by gradual increases) can fully explain this association 178 

(see Supplementary information for full discussion). Additional explanations are needed. 179 

Extreme trends could reflect transient populations that naturally leave or enter a survey area22, 180 

which could represent natural dynamics. Alternatively, researchers may stop sampling after 181 

populations become (close to) extirpated, although the converse has also been suggested23. A 182 

third possibility is that some regions experience both lower sampling effort and greater declines, 183 

such that poor data correlates with factors linked to vulnerability, like lower national wealth or 184 

conservation investment. Understanding why small time-series contain so many extreme 185 

declines is particularly important given that studies that did not find widespread declines often 186 

excluded short time-seriese.g., 7,10,12, potentially reconciling divergent findings among studies. 187 

 188 

Once extreme clusters were statistically separated, no global trend remained across typical 189 

populations (i.e. primary clusters; 98.6% of populations). However, aggregating systems into 190 

one global trend hid important variation. Three systems, all in the Indo-Pacific, showed 191 

widespread vertebrate declines across typical populations. Moreover, among typical populations 192 

smaller species may be faring worse than larger ones. While tentative given lower sample sizes 193 

and high uncertainty, this trend is contrary to common conservation assumptions and so merits 194 

additional research. 195 

 196 

Our results emphasize an important point: biodiversity trends within and across regions and 197 

taxa are highly disparate. This likely reflects differences in both susceptibility and exposure to 198 

anthropogenic environmental change24, 25, 26. Unravelling this variation is imperative to 199 

understand where biodiversity is most threatened27 and which conservation actions promote 200 

stability or recovery. A productive global conversation about conservation requires that both 201 

scientists and media pay more attention to variation and resist the temptation of simple 202 

summary indices. 203 

 204 

Shifting the message from ubiquitous catastrophe to foci of concern, also touches on human 205 

psychology. Continual negative and guilt-ridden messaging can cause despair, denial and 206 

inaction28,29. If everything is declining everywhere, despite the expansion of conservation 207 

measures in recent decades, it would be easy to lose hope. Our results identify regions that 208 

need urgent action to ameliorate widespread biodiversity declines, but also many systems that 209 

appear to be generally stable or improving, and thus reason to hope that our actions can make 210 

a difference.  211 
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Figure Legends 277 

Figure 1. Stylized patterns of system-wide growth rates. Similar geometric mean population 278 

growth rates [log(Nt+1/Nt)] can reflect contrasting systems. As a “null” model, systems can be 279 

stable (log growth rates centered at zero, middle panel). Deviations can occur in multiple ways. 280 

System can have most populations substantially declining (“Catastrophic” Hypothesis, top 281 

panel) or can have multiple clusters with the majority of populations showing a distribution of 282 

growth rates centered around zero, but a small cluster of populations experiencing extreme 283 

declines (“Clustered” Hypothesis, top-middle panel). Each has the same metric of mean decline 284 

(vertical red line = 1.5% annual decline, corresponding to a 50% loss over 50 years), even 285 

though most populations in the top-middle panel are stable. The converse can also happen, with 286 

a small cluster of extremely increasing populations, but otherwise a stable distribution (bottom-287 

middle panel), or most populations increasing (bottom panel) (vertical blue line = 1.5% annual 288 

increase, corresponding to a doubling over 50 years). 289 
 290 

Figure 2. Effect of extreme populations on global growth index. Removing a small fraction 291 

of extreme populations strongly influences the geometric growth index, using the LPI dataset. 292 

Each line represents a different number of populations removed, ranging from no removals (red 293 

line: keeping all 14,700 populations, showing a >50% mean decline), to removing 356 294 

populations (yellow line: <2.4% of populations removed switches the global trend from negative 295 

to positive). A geometric growth index of one indicates no change (dashed horizontal black line). 296 
 297 

Figure 3. Population trends by taxonomic groups and realms. Top panel shows the 298 

terrestrial realm, Middle Panel shows the freshwater realm, and bottom Panel shows the marine 299 

realm. Red and blue asterisks denote occurrence of extreme declining clusters (16 systems) 300 

and increasing clusters (8 systems), respectively. Distributions show the primary cluster in each 301 

system (Red = significant declines, Blue = significant increases, Orange = strong non-significant 302 

declines, Green = strong non-significant increases, Yellow = weak changes).  303 
 304 

Figure 4. Effect of time series size. Number of data points in time series versus the mean log 305 

of the geometric mean growth rate. 306 

Figure 5. Populations in the primary clusters across all systems, after removal of extreme 307 

clusters. The primary cluster of each system is unimodal, but because systems are experiencing 308 

decline (or growth) heterogeneously, plotting distributions across systems shows multimodality.  309 
Histograms show significantly declining systems (red), strongly but not significantly declining 310 

systems (orange), and weak changes or increases (yellow). Vertical lines show thresholds for 311 

strongly declining (-0.015) and strongly increasing (+0.015) growth rates, corresponding to 312 

~50% loss or a doubling (over 50 years), respectively. Distributions of primary clusters were 313 

calculated based on the mean and standard deviations from the hierarchical model, and using 314 

the system specific weights to adjust for species richness. 315 

 316 

 317 
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Methods  318 

Dataset 319 

 320 

The publically available LPI data includes 15241 vertebrate populations from 3510 species21. 321 

When a species contained both finer resolution estimates within a country (2593 entries) and a 322 

country-wide aggregate, we excluded the country-wide aggregate (537 entries), yielding 14700 323 

populations. LPI groups species into 57 systems defined by a combination of habitat domain 324 

(terrestrial, freshwater, marine), biogeographic realm (terrestrial/freshwater realms = 325 

Afrotropical, Nearctic, Neotropical, Palearctic, Indo-Pacific; marine = Arctic, Atlantic north 326 

temperate, Atlantic tropical/sub-tropical, Pacific north temperate, Indo-Pacific tropical/sub-327 

tropical, South-temperate/Antarctic), and taxonomic grouping (Fish=Actinopterygii, 328 

Elasmobranchii, Holocephali, Myxini, Chondrichthyes, Sarcopterygii, Cephalaspidomorphi; 329 

Birds=Aves, Mammals=Mammalia, Herps = Amphibia, Reptilia) (Extended data Figure E5-8). 330 

 331 

To analyze the effect of body size, we obtained information on each taxonomic group. Given the 332 

diversity of vertebrate groups in this data set, and the different conventions across groups, we 333 

used different measures of body size for each taxonomic Class based on data availability. For 334 

birds (N = 1397), mammals (N = 534), and reptiles (Squamata, N = 132; Testudines, N = 44; 335 

and Crocodylia, N = 16) we used estimates of species’ mass, in grams, collated in an extensive 336 

comparative data set30. When mass data were missing for a species (N = 14 birds; N = 1 337 

mammal; N = 25 reptiles), we estimated body mass as the geometric mean of available mass 338 

estimates for species in that genus. For fishes (Chondrichthyes, Osteichthyes, Agnatha; N = 339 

1211), estimates of mass were scarce for most species, so we instead used estimates of total 340 

length or standard length, in centimetres, both of which were extracted from FishBase31 using 341 

the rfishbase R package32. These length estimates are an imperfect proxy for size (in terms of 342 

mass) given the variability in body plans across groups, but given the large amount of variation 343 

across these groups it suffices as a way to broadly categorize species into distinct size classes. 344 

For amphibians, we used estimates of snout-vent length (SVL, in mm) as our proxy for body 345 

size, as this is the most widely available metric of size across species. Data on SVL for 346 

amphibian species (N = 175) was extracted from a comprehensive ecological trait dataset: 347 

AmphiBio33. 348 

Sensitivity of the “Geometric” indices to extreme population trends 349 

 350 

The LPI analysis was based on a geometric mean approach, calculated by summing across 351 

logged growth rates34. We recreated the geometric-mean based analyses (see Supplementary 352 

Information 1a for full details and model formulation), and examined the sensitivity of the global 353 

estimate to extreme populations. We ordered populations and sequentially removed the largest 354 

observed decline, determining the effect of each removal on the global estimate of biodiversity 355 

loss. Low sensitivity would indicate that many/most populations are declining, supporting the 356 

Catastrophic decline hypothesis. High sensitivity, i.e. if removal of relatively few populations 357 

switched the strongly negative global trend to neutral or positive, would support the Clustered 358 
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declines hypothesis. For balance, we also examined sensitivity to sequential removal of the 359 

greatest increasing populations. 360 

Catastrophic vs. Clustered declines approach (BHM model) 361 

 362 

We developed an approach to separate extreme population clusters whose growth or decline 363 

statistically deviated from typical population trends, such that a small number of extreme 364 

populations would no longer mask trends of the majority of populations (Fig 1). While some 365 

summarization is needed to understand global trends, heterogeneous growth rates and 366 

potentially multimodal distributions could be expected, given multiple stressors with diverse 367 

effects, and differences in species vulnerabilities. We used a Bayesian Hierarchical Mixture 368 

(BHM) model as our statistical architecture, as it has several desirable properties: 1) can 369 

represent the “null” model and assess deviations from it; 2) allows testing for both negative and 370 

positive extremes (sometimes both existed in the same system); 3) quantifies the magnitude 371 

and proportion of those extremes; 4) provides a coherent way to separate extreme populations 372 

from the majority of populations (the primary cluster), enabling tests of the Clustered and 373 

Catastrophic declines hypotheses; 5) provides a measure of uncertainty as a direct outcome of 374 

analysis (via the posterior distribution); and 6) accounts for population fluctuations and adjusts 375 

for the number of data points in time-series. 376 

 377 

First, we specify the “null” model. Even in a system with no overall trend, we expect stochastic 378 

fluctuations in population size. We also expect some populations to be increasing or decreasing 379 

during any time interval, given complex, real-world ecological dynamics. Thus, the null model 380 

should include among-population heterogeneity, and therefore consists of a distribution of 381 

growth rates (Fig 1 middle panel). Statistical deviations from this null model could be caused by 382 

a shift in the overall distribution, whereby a system-wide mean growth <0 (i.e., decline) could 383 

indicate risk to the entire system, and would support the Catastrophic declines hypothesis (Fig 1 384 

top panel). Alternatively, statistical deviation from the null model could be caused by a few 385 

populations experiencing extreme declines, consistent with the Clustered declines hypothesis 386 

(Fig 1 mid-top panel).  387 

 388 

To specify our model, we begin with a standard Bayesian hierarchical formulation (i.e., it does 389 

not yet contain mixtures of distributions). We define 𝜃, 𝜏 as the system-wide mean and variance, 390 

respectively, of log-growth rates across all populations in the system (i.e., hyperparameters in 391 

Bayesian terminology). ,   determine the distribution of log population trends (i), and define 392 

the properties of the overall system. However, within population dynamics are also occurring, 393 

and the log growth rate for population i at time t are modelled as a population trend (i) and 394 

within population fluctuations () (See Supplementary Information 1b for full details and model 395 

formulation). 396 

 397 

Using a standard Bayesian hierarchical model, we can test the Catastrophe hypothesis by 398 

determining the probability that the system-wide mean  is <0. Testing the Cluster hypothesis 399 

however requires a mixture model to assess the evidence for the occurrence of clusters. Thus, 400 

we define K is the number of clusters in the mixture, fk is the fraction of populations in the kth 401 

cluster, and ,  and f denote the vectors of parameters for the K clusters.  402 
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 403 

To test the Clustered hypothesis we modeled three clusters: a primary cluster, corresponding to 404 

the typical trend; a negative extreme cluster; and a positive extreme cluster (Figure 1). Although 405 

our main interest was in the mechanisms behind apparent global population declines (i.e. 406 

Catastrophic vs. Clustered hypotheses), we also assayed positive extreme clusters so that 407 

analyses were not biased to find only negative population trends. We considered four cluster 408 

combinations: 1) a single distribution; 2) a primary distribution and a negative extreme 409 

distribution; 3) a primary distribution and a positive extreme distribution; or 4) a primary 410 

distribution and both positive and negative extreme distributions (Figure 1). For referencing 411 

purposes, we denote k=1 as the primary cluster, k=2 as the negative extreme cluster, and k=3 412 

as the positive extreme cluster. Note that reality need not be bi(or tri)-modal, but exploring 413 

generalities in trends necessitates some aggregation. Nonetheless, the extreme clusters 414 

identified by the mixture model could contain multiple extreme modes in the data (or even result 415 

from a skewed distribution). With any of these deviations, model selection (see below) would 416 

still choose the mixture model as explaining the data better than a single normal distribution. 417 

(See Supplementary Information 1c for full details and model formulation). 418 

 419 

We used the (lowest) Deviance Information Criteria (DIC) value to select the mixture model with 420 

the strongest statistical evidence35. The Catastrophic declines hypothesis would be supported 421 

by a mean decline of the primary population cluster (1 < 0  and credible intervals did not 422 

overlap zero), and would be particularly severe if the mean 1 was also strongly negative (e.g., 423 

1 = -0.015 would correspond to >50% loss over 50 years). The Clustered declines hypothesis 424 

would be supported if the DIC selected a mixture with a negative extreme cluster (combinations 425 

2 or 4 above). Note that the Catastrophic and Clustered declines hypotheses are not mutually 426 

exclusive, as a system could have both a negative extreme cluster and declining primary 427 

cluster. A large fraction of populations in the negative extreme cluster (f2) could also be 428 

interpreted as widespread Catastrophic declines, but this did not occur in our results. Although 429 

our hypotheses focus on understanding declining trends, our model will also detect increases in 430 

abundances. 431 

 432 

To estimate model parameters we used Bayesian analyses and the Markov Chain Monte Carlo 433 

algorithm, which simultaneously estimated uncertainty. For each Bayesian analysis, we ran 3 434 

chains, each with 10000 iterations (3000 used for warm-up). Convergence was determined 435 

using Rhat ≈ 1. Values for all parameters across all systems ranged from (0.999 < Rhat < 436 

1.005). Bayesian analyses were conducted using the STAN language36, and processed and 437 

analyzed in R37.  438 

 439 

Additionally, we explored the theoretical behavior of each model, including the 440 

the geometric mean model, in the presence of clustered declines (see Supplementary 441 

Information 1d, 2a), and our Catastrophic and Clustered declines approach given our selection 442 

of priors, application of constraints, and other modeling choices; these simulation analyses 443 

showed that our approach yielded appropriate theoretic behavior (see Supplementary 444 

information 1e, 2b, Extended data Figure E1). Finally, we conducted sensitivity analyses and 445 

showed that results were robust to modelling choices (see Supplementary Information 2c, Table 446 

S1, Extended data Figure E2).  447 

 448 
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 449 

Application of the Catastrophe and Clusters approach to LPI data 450 

 451 

We tested for extreme clusters in each of LPI’s 57 domain-realm-taxon systems, by choosing 452 

the mixture model with the lowest DIC value. We also examined the number of populations in 453 

each cluster, as a fraction of the total number of populations, scaled using the LPI system-454 

specific weightings38 (see Supplementary Information 1f for more details). 455 

 456 

Next, we examined evidence for the Catastrophic declines hypothesis in each system by 457 

assaying for negative mean growth rates in the primary cluster (1). We defined “high certainty” 458 

of decline (or increase) as 95% credible intervals not overlapping zero, and “strong” decline as 459 

1 < -0.015, corresponding to a ~50% decline if it persisted for 50 years (1 > 0.015 was used for 460 

a strong positive relations, corresponding to a doubling over 50 years).  461 

 462 

We assessed the effect of small time-series on both extreme clusters and trends in primary 463 

clusters, by omitting all data with fewer than 10 points, as has often been done in other 464 

studiese.g.,12. These small time-series accounted for 52% of the population estimates (7110 465 

populations remained in the analysis). 466 

 467 

Finally, we examined whether trends differed between large versus small-bodied animals. 468 

Within each Class (but with Agnatha lumped with Osteichthyes), we scaled body size as 469 

standard deviations on the natural log-scale – thereby creating an index of relative species size 470 

within a taxonomic group. In two cases, we separated out different groups within a Class that 471 

had relatively distinct body plans that would influence this size scaling. We scaled size within 472 

the Superorder Batoidea (Rajiformes, Myliobatiformes, and Torpediniformes) and separately 473 

scaled size for the rest of the Chondrichthyans (Selachimorpha and Holocephali). For the 474 

amphibians, we separated out the Orders Caudata and Anura and scaled size within each of 475 

these groups. For each taxonomic group we scaled body size and separated species into 476 

larger-than-average (henceforth ‘larger’) versus smaller-than-average (henceforth ‘smaller’) 477 

species. This yielded 9596 populations from 1765 larger species, and 5103 populations from 478 

1745 smaller species. We then reran the BHM model for larger animals and again for smaller 479 

animals. Body sizes were divided unevenly among habitat domains and realms; 12 domain-480 

realm-taxon systems contained ≤1 smaller species so were excluded from the small-animal 481 

model. 482 

 483 
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Extended Data Figure Headings 538 

 539 

Figure E1. p-p plots showing that the posterior distributions for each estimated parameter are 540 

unbiased, and largely follow a 1:1 line for each hyper parameter (, ) as well as the fraction in 541 

each cluster (f1, f2=1-f1). The 1:1 line is the theoretic expectation, indicating that the true 542 

parameter value to fall below the 0.01 quantile 1% of the time, 0.02 quantile 2% of the time, etc. 543 

 544 

Figure E2. The trends of the primary clusters (1), for the main analysis (x-axis) versus the 545 

sensivity analysis (y-axis) for the threshold for extreme clusters (top panel) and the offset when 546 

N=0 was observed (bottom panel). 547 

 548 

Figure E3. Each point represents a trend estimate for the primary cluster of a system, with the 549 

full dataset (x-axis) versus data excluding time series with <10 points (y-axis). The red dot was 550 

Freshwater Indo-Pacific Mammals, which was reduced from 22 populations (full) to 2 551 

populations (only data >=10 points). 552 

 553 

Figure E4. Mean trends of primary clusters across systems calculated using the Bayesian 554 

Hierarchical Mixture Model. Top) all species (14,700 populations). Middle) only large species 555 

(9596 populations). Bottom) only small species (5103 populations). The small species appear to 556 

be declining more than large species, although this needs to be interpreted with caution, as 557 

most primary distributions did not significantly deviate from zero for small species. 558 

 559 

Figure E5. Histograms of observed growth rates and output of the Bayesian Hierarchical 560 

Mixture model for systems 1-16 (blue line – primary cluster, red line – extreme cluster(s) from 561 

model). Grey vertical lines show the range of observed values. In comparing model output to 562 

data: 1) the variation of the BHM primary cluster (blue line) is much lower than the raw data, 563 

because the BHM separates variation in among population trends from variation due to within 564 

population fluctuations. 2) The BHM model identifies evidence for extreme clusters in both (e.g., 565 

Terrestrial Indo-Pacific birds) or only one direction (e.g., Terrestrial Neotropical mammals), but 566 

not other apparent clusters (e.g., Terrestrial Indo-Pacific herps). The BHM integrates the 567 

magnitude of within population fluctuations, time-series sizes, number of populations, among-568 

population variance, and the magnitude and frequency of the extreme populations in 569 

determining whether additional (extreme) clusters are needed to account for the observations.   570 
 571 

Figure E6. Histograms of observed growth rates and output of the Bayesian Hierarchical 572 

Mixture model for each system 17-32 (blue line – primary cluster, red line – extreme cluster(s) 573 

from model). Grey vertical lines show the range of observed values.  574 

Figure E7. Histograms of observed growth rates and output of the Bayesian Hierarchical 575 

Mixture model for each system 33-48 (blue line – primary cluster, red line – extreme cluster(s) 576 

from model). Grey vertical lines show the range of observed values. 577 

 578 

Figure E8. Histograms of observed growth rates and output of the Bayesian Hierarchical 579 

Mixture model for each system 49-57 (blue line – primary cluster, red line – extreme cluster(s) 580 

from model). Grey vertical lines show the range of observed values. 581 

 582 
 583 


