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Abstract

The expectation part of a linear model is often presented as a single equation with
unknown parameters, and the reader is supposed to know that this is shorthand for
a whole family of expectation models (for example, is there interaction or not?). It
is helpful to list the whole family of models separately and then represent them on a
Hasse diagram. This shows which models are sub-models of others, which helps the
user to respect marginality when choosing the most parsimonious model to explain the
data.

Each row in an analysis-of-variance table corresponds to an edge in the Hasse dia-
gram. In the scaled version of the Hasse diagram, the length of each edge is proportional
to the appropriate mean square. This gives a visual display of the analysis of variance.
For some people, this is easier to interpret than the standard analysis-of-variance table.
Moreover, the scaled Hasse diagram makes clear the difficulties in model choice that
can occur under non-orthogonality.

The ideas are illustrated using some familiar families of models defined by crossed
and nested factors, possibly including polynomial terms for quantitative factors, as well
as some more recently introduced families of models for experiments in biodiversity.

Keywords Analysis of variance; Hasse diagram; Linear model; Marginality; Mean square;
Scaled Hasse diagram.

1 Introduction

R. A. Fisher is deservedly famous for his wide-ranging pioneering work on designed exper-
iments in the first half of the twentieth century: how to think about the factors, how to



design the experiment, how to randomize the layout, how to conduct the experiment, how
to analyse the data. What is surprising to today’s reader is that Fisher (1925, 1926, 1935)
never wrote down an explicit equation to show his underlying assumptions. Later, Frank
Yates, who was Fisher’s colleague at Rothamsted Experimental Station before succeeding
him as Head of Statistics there, wrote out the assumptions in a far more mathematical form,
apparently with Fisher’s blessing: see Yates (1935, 1964, 1965).

Nowadays, it is absolutely standard to use an equation for the assumed linear model
for the response on an experimental unit in a designed experiment. There are two good
reasons for this. One is to prevent misunderstanding between different people involved
in the experiment or in the exposition of the results. The other is to assist in giving a
single formula whose input into an appropriate statistical computer program gives all the
information needed for the data analysis, without the need to modify the formula and run
the program again. The second aspect was particularly important in the days when you had
to wait overnight to get the output from a single run of the program.

However, there is a downside to having a single equation for this linear model. The single
equation obscures the fact that the experimenter probably has several models in mind, and
would like to choose the simplest one which explains the data adequately. Thus data analysis
has two stages: analysis of variance gives the information to use for hypothesis tests, which
are used to select this model; and then the estimated parameters for this model, together
with their standard errors, are presented. The single equation obscures the process of model
selection, and may make it difficult to give appropriate parameters for the selected model.
John Nelder, who succeeded Frank Yates at Rothamsted, was well aware of this problem,
which he explained in Nelder (1977, 1994, 1998a,b).

Hasse diagrams are often used by algebraists and combinatorialists to display partial
orders. Brien (1989), Bailey (2004, 2008, 2015), Clarke (2008) and Kirwan et al. (2009)
recommended using them to show the family of models being considered for the expectation
of the response. Thirty years ago, such figures were discouraged because of the cost of
including them in printed work, but that objection is no longer valid.

The rest of this paper is organized as follows. In Section 2 we use some common examples
to show difficulties that can arise when a single equation is used for a whole family of
expectation models. Section 3 concentrates on being explicit about the family of models,
and showing them on a Hasse diagram. Section 4 relates the Hasse diagram to the data
analysis. Section 5 proposes using the output from the analysis of variance (anova) to scale
the lengths of the edges of the Hasse diagram. Not only do some people find this display
easier to interpret than numbers in an anova table, but the diagram also makes it harder to
ignore the possiblity of conflicting results from non-orthogonality.

Until this point, the collections of models are all fairly standard. Section 6 shows the
potential for applying the ideas more widely by describing their use in some biodiversity
experiments. Finally, Section 7 discusses potential further work.



2 Equations for linear models

Denote by Y, the response on experimental unit w. In a linear model, Y,, can be expressed as
a sum of several items, some of which are constants and some of which are random variables
with zero mean. Thus the sum of the former gives the expectation E(Y,,) of Y,,. Denote by
€, the sum of the latter.

Let N be the number of experimental units. Denote by Y and € the vectors (Y3, ..., Yy)"
and (g1,...,en)" respectively. Then E(Y) is a vector in RY and the N x N variance-
covariance matrix Cov(Y) is equal to Cov(e). At first we assume that Cov(e) is a scalar
matrix oIy, but we generalize this later. This section focuses on equations for E(Y). Three
examples demonstrate some misunderstandings that can arise, and serve to introduce our
approach.

Example 1 (Polynomial regression) Given a known vector x in R¥, the expectation
part of the linear model for the cubic regression of Y on x is

E(Y,,) = ap + a1, + aox? + asx?, (1)

for unknown constants «ag, a1, as and ag, where x,, denotes the entry in x on experimental
unit w. The constant «y is called the intercept, because it gives E(Y,,) when x, = 0.

When model (1) is fitted to some real data, it may be possible to conclude that the
right-hand side of Equation (1) can be simplified to a quadratic expression in z,. In most
such cases, the best-fitting quadratic model is not obtained by replacing ag, a; and as in
Equation (1) by their estimated values &g, &; and &s and putting aig = 0. Statisticians know
this, but not everyone who uses statistical software to fit models to data does.

In fact, Equation (1) is shorthand for the family of four expectation models shown in
Table 1, each with a corresponding expectation subspace. Under each linear model, the
expectation subspace consists of all potential vectors of fitted values. In particular, Vj is
the one-dimensional subspace of constant vectors. The coefficients in different models in
Table 1 are given in different notation to emphasize the fact that the estimated coefficients
in a smaller model are not necessarily obtained by fitting a larger model and then equating
some coefficients to zero.

Example 2 (One qualitative factor) Suppose that n different levels of a qualitative fac-
tor F' are applied to the experimental units. Denote by F'(w) the level of F' on experimental
unit w. The expectation part of the assumed linear model is often written as

E(Y,) = p+ apw) (2)

for unknown constants u, oy, ..., a,, where u is sometimes called the intercept, by analogy
with Example 1, and sometimes called the overall mean. Why is the parameter p included?
It is to emphasize that Equation (2) is shorthand for the family of two expectation models
shown in Table 2. Here Vi denotes the n-dimensional subspace of RY consisting of vectors



Table 1: Family of expectation models in Example 1

Expectation model Subspace Dimension
E(Y,) = ap + a1y, + aox? + gz Vs 4
E(Y.) = Bo + Bz + Bzl Va 3
E(Y.) = 7 + 2w Vi 2
E(Y,) = do Vo 1

Table 2: Family of expectation models in Example 2

Expectation model Subspace Dimension

E(Y,) = QAR (w) Ve n
E(Y,) = u Vo 1
which are constant on each level of F. It is spanned by the vectors uy, ..., u,, where u; is

the vector whose entry in position w is 1 if F'(w) =4 and is 0 otherwise.

A problem with Equation (2) is that the parameters are not uniquely identifiable. For
example, if we replace u by 4 — 1 and o; by a;; + 1 for i = 1, ..., n then we do not change
E(Y,). Most statistical software needs linear constraints imposed on the parameters in order
to cope with such linear dependence. In this example, the constraint is typically one of the
following, where r; denotes the number of experimental units receiving level ¢ of F.

(C1) 3, a1 = 0.
(C2) S, ri0; = 0.
(C3) ay = 0.
(C4) a, = 0.

Now there are two ways in which a naive user can misinterpret the output from the
data analysis. The first is that the estimated value &; may not be the fitted value on those
experimental units receiving level i of F'. The second is that, unless constraint (C2) is used,
it is not the constant fitted value in the smaller model: in particular, it is not the overall
mean.



Table 3: Family of expectation models in Example 3

Expectation model Subspace Dimension
E(Y,) = vi; if Flw)=17and G(w) =37  Vpac nm
E(Y,)=0,+¢; if Flw)=iand Gw)=35 Ve+Ve n+m-—1
E(Y,) = «; if F(w) =1 Vi n
E0L) =6 G = Vo m
E(Y,) = p Vo 1

Example 3 (Two qualitative factors) Now extend Example 2 by including a second
qualitative factor G with m levels. Denote by F' A G the factor whose levels are all combi-
nations of a level of I’ with a level of G. If all combinations occur then F' A G has nm levels
and so dim(Veag) = nm. This also implies that VF N Vg = V4, and hence that

dim(Vr + Vi) = dim(Vp) 4+ dim(Vyg) — dim(VeNVg) =n+m — 1.

Here Vi + Vi is the usual notation for the smallest subspace which contains both Vp and V.
This consists of all vectors of the form v +w with v in Vi and w in V. It is strictly larger
than the union Vr UV unless one of those subspaces is contained in the other. On the other
hand, Ve N Vg is the largest subspace that is contained in both Vz and V.

The expectation model for this situation is typically written as

E(Y,) = i+ apw) + Bew) + 1rw),cw) (3)

for unknown constants pu, o, 8; and «;;, where : =1, ..., nand j =1, ..., m. Table 3
shows the family of expectation models covertly indicated by Equation (3). The expectation
subspace Vi + Vg corresponds to the largest model in which the effects of F' and G are
additive.

Now there is a third problem, in addition to the two noted in the previous examples: the
parameters in Equation (3) do not all have the same status. If 4,; = 0 for all i and j then
the model can be simplified to the additive model with expectation subspace Vi + V. On
the contrary, if Bj = 0 for all j but the 4;; are not all zero then the model does not simplify
at all. This problem was pointed out by Nelder (1977, 1994, 1998a).

There is also a problem with notation. Some people use the notation F'x G for the factor
F' N G; some use it for the interaction between F' and (G some for the expectation model
Veng; and some for the whole family of models in Table 3. Others use F.G or F: G or F#G
or F' x G for one or more of these.



3 A collection of expectation models

3.1 Expectation subspaces

The problems shown in Examples 1-3 suggest that it would be better to replace the single
equation for E(Y,,) by an explicit collection £ of expectation models. As demonstrated in
Examples 1-3, each expectation model can be shown first as an equation for E(Y,) and
then identified with its expectation subspace V', which contains all potential vectors of fitted
values. Christensen (1987), Saville and Wood (1996) and Bailey (2008) show the utility of
thinking about expectation models in terms of subspaces.

The usual inner product on RY is defined by v e w = v'w. Two vectors are orthogonal
to each other if their inner product is zero. If y is the data vector, then the vector of fitted
values for expectation model V' is the orthogonal projection of y onto V', which is the unique
vector Py in V such that y — Pyy is orthogonal to all vectors in V: in other words y — Pyy
is in the orthogonal complement V* of V. Let us write this vector P,y of fitted values as
Fit(V). The sum of the squares of the fitted values is (Fit(V')) e (Fit(V)): let us write this
as SSF(V).

If V1 and V5 are both in &£, we write Vi < V5 to indicate that V; is a subspace of V5,
possibly with V; = V5, and V; < V5 to indicate that Vi < V5, but Vi # Vo, If Vi < V4
then SSF(V;) < SSF(V4), but if the difference is not very large then V; may be regarded as
explaining the data just as well as V5.

The relation “is a subspace of” is a partial order on £, because it satisfies the following
conditions.

(PO1) V<V forall Viné&.
(PO2) If V] and V, are in €, and V; < V5 and V, < Vi, then Vi = V5,

(PO3) If V3, Vo and V3 arein £, and V; <V, and V, < Vi, then Vi < V.

Thus & is called a partially ordered set, or poset for short. We need to understand this partial
order so that we can understand the process of model selection.

3.2 Showing the subspaces on a Hasse diagram

The Hasse diagram is a well-established method of representing a partial order visually. The
Hasse diagram for a collection & of expectation models has a labelled symbol (such as a dot
or a square) for each model subspace V' in €. Lines are drawn between some of these symbols
in such a way that V; < V5 if and only if the symbol for V; is lower in the diagram than
the symbol for V5 and is joined to it by a line or series of lines that are traversed upwards.
There are no horizontal lines. It is helpful to show dim (V') beside the symbol for V.

Figures 1 and 2 show the Hasse diagrams for the collections of models in Examples 1
and 3.

As with all partial orders, there are two opposite conventions for which way up to draw
the Hasse diagram. Kirwan et al. (2009) use the opposite convention to the one in this paper.
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4 W cubic polynomial Ving

3 M quadratic polynomial n+m—1 Ve + Vo

2 W straight line Vi Va

1 M constant 1 Vo
Figure 1: Hasse diagram of ex- Figure 2: Hasse diagram of ex-
pectation models in Example 1 pectation models in Example 3

3.3 Factorial effects

For factorial designs, a Hasse diagram like that in Figure 2 helps with understanding notions
of main effects and interactions. In Example 3, the interaction between F' and G is the extra
fit for Veag over and above the fit for Vp+ V. This is the difference Fit(Veao) —Fit(Ve+ V),
which can be associated with the edge between Vppg and Vi + Vg in the diagram. This
interpretation of interaction is given by Yates (1937, page 13).

The main effects are slightly more complicated. There are unique vectors vp in Ve N Vit
and vg in Vg N V5t such that

Flt(VF + Vg) = Flt(%) + vy + Vg,

These vectors vp and v are the main effects of F' and G respectively.

Tjur (1984) defined subspaces Vi and V5 to be geometrically orthogonal to each other if
Vi N (V1N Va)t is orthogonal to Vo N (Vi N V). In Example 3, we have Ve N Vg = Vp, and
so Vp is geometrically orthogonal to Vi if and only if VN V' is orthogonal to Vg N Vgh. If
Vr is geometrically orthogonal to Vi then

v = Fit(Vy) — Fit(Vy) = Fit(Vy + V) — Fit(Vg),

and so this main effect can be associated both with the edge joining Vj to Vr and with the
edge joining Vi to Vi + V. Likewise, in this case

ve = Fit(Ve) — Fit(Vy) = Fit(Ve + Vi) — Fit(Vr),
and the main effect of G can be associated with the edge joining Vj to Vi as well as with
the edge joining Vi to Vi + V.
3.4 Conditions on the collection of models

Section 3.3 leads us naturally to consider some conditions that we may expect £ to satisfy.
The following two are often mentioned.



(L1) If V4 and V5 are in &, then Vi NV, is in €.
(L2) If V; and V3 are in &, then V; + V5 is in €.

If Condition (L1) is not satisfied then there can be ambiguity in model fitting. For
example, suppose that V; and V5 are in £ but that V3 N V5 is not. It may happen that
the data vector y is close to V4 N V4 but that the differences Fit(Vy) — Fit(V; N V4) and
Fit(V,) — Fit(V; N V3) are both very small. If we are not allowed to conclude that E(Y) €
Vi NV, then we have no way of deciding whether to report that the fitted model is V; or V5.

It seems to be fairly well agreed that Condition (L1) is necessary.

Bailey (2008, 2015) argues that Condition (L2) is also needed. For example, modify
Example 3 by omitting the two largest models, so that & = {Vj, Ve, Vi }. It can happen that
Fit(Vr) — Fit(Vp) and Fit(Vy) — Fit(Vp) are both large relative to the appropriate residual
mean square: see Section 4. If we are not allowed to conclude that E(Y) € Vg + Vi then we
have to make an arbitrary choice between Vr and V.

Condition (L2) is not so universally accepted. For example, search designs are used in
screening experiments where many factors are tested but it is assumed that only a small
number of them will have non-zero effects: see Dean and Lewis (2006). Such experiments
do not fit easily within the paradigm of this paper.

Condition (L2) has another advantage. It ensures that £ has a single largest model V},.x,
which contains all the others. This gives a unique starting point for most approaches to
anova, as described in Section 4. Moreover, many authors, including Gilmour and Trinca
(2012), argue that no part of Fit(Vyay) should ever be put into a residual sum of squares.

For the rest of this paper, we assume that & satisfies Conditions (L1) and (L2). Con-
dition (L1) ensures that whenever V; and V5 are in £ then there is a largest subspace in €
among those which are contained in both V; and V5. Condition (L2) ensures the dual result:
whenever V; and V5 are in £ then there is a smallest subspace in & among those which
contain both V; and V5. In the language of poset theory, this means that Conditions (L1)
and (L2) ensure that the poset (€, <) is a lattice. Slightly confusingly, Brien (1989) and
Clarke (2008) use the word “lattice” in place of “Hasse diagram”.

Conditions (L1) and (L2) give part of the answer to the question “What expectation
models should we include in £7” Now we name a further condition, already discussed in
Section 3.3, which helps in the analysis of data.

(L3) If V; and V3 are in &, then V; is geometrically orthogonal to V5.

Condition (L3) covers most statisticians’ ideas of orthogonality. As discussed in Section 4,
if it is satisfied then there is no ambiguity in choosing the model to fit to the data. Hence
experiments are often designed in such a way that Condition (L3) is satisfied. We do not
always assume it here. However, when & satisfies all three Conditions (L1), (L2) and (L3)
then various topics covered later in this paper are simplified.



Table 4: Family of expectation models in Example 4

Expectation model  Subspace Dimension
E(Y,) = BBw) T arw)y VB+Vep b+n-—1
E(Y,) = V) Vg b

b+n—1M Vg+Vp

b VB

Figure 3: Hasse diagram of expectation models in Example 4

3.5 Nuisance factors

In designed experiments, there are often inherent nuisance factors such as blocks, rows or
columns. There is usually no interest in estimating their effects, or testing whether these
are non-zero, but their presence is taken notice of in the design of the experiment, in its
conduct, and in the ensuing data analysis. In such cases, if all of the nuisance factors have
fixed effects then it makes sense to include them all in every expectation model in €.

Example 4 (Randomized complete-block design) Suppose that there are b blocks, each
consisting of n plots, and that the levels of factor F' from Example 2 are applied to plots in
a randomized complete-block design. Then the collection of expectation models in Table 2
should be replaced by the collection in Table 4, where B denotes the block factor. Figure 3
gives the corresponding Hasse diagram.

Nuisance factors with random effects are covered in Section 4.2.

3.6 Marginality

Nelder (1977, 1994, 1998a,b) argued that no fitted model should contain an interaction effect
if it did not include all the corresponding main effects. For example, if the fitted model in
Example 3 includes any part of ViengN (Ve +Ve)® then it should include the whole of Vi + V.
He described the two main effects as marginal to their interaction.

Presumably he was thinking of an n x m two-way table of treatment means, with row
means and columns means in its margins. This choice of terminology is slightly unfortunate:
it can be argued that the F-by-G interaction is the part of the fit in Vg g that is outside the



subspace Vi + Vi, so that it is the interaction that is marginal. This wording has certainly
caused some misunderstandings.

More generally, the marginality principle means that the model for E(Y) chosen to
explain the data vector y should be one of those in the specified list £, rather than something
obtained from V., by setting an arbitrary subset of the parameters equal to zero.

More recently, this concept of marginality has been re-invented as strong effect heredity:
see Chipman (1996). A weaker version was introduced by Hamada and Wu (1992). Nelder
(1998b) criticized the weak version. See Wu and Hamada (2000) and Mukerjee and Wu
(2006) for the related concept of effect hierarchy. The term hierarchy principle is used by
Montgomery (2012) to mean exactly the same thing as marginality principle. However, as
Nelder & Lane (1995) and Wu (2015) point out, the concept is essentially present in Yates
(1935, 1937, 1965). It certainly seems to have been core to statistical thinking at Rothamsted
from the 1930s onwards.

Using a single equation, such as Equation (3), to express all the possibilities for E(Y)
encourages users to fit models in which arbitrary subsets of the parameters are zero. Some
software tries to prevent this: for example, when the command aov in R (R Core Team,
2012) is used, all terms involving a single factor or variable are fitted before all other terms,
even if one of those single factors is an all-encompassing one such as Treatment.

In their excellent explanation of the marginality principle for the polynomial model in
Example 1, Grafen and Hails (2002, Chapter 10) point out that some software can give a
test for fitting = after 2 and 23: in other words, it is implicitly allowing the possibility that
E(Y,) = 0y + 0222 + 0323 even though this does not appear in the list in Table 1.

When the collection of expectation subspaces is ordered in a single vertical line, as in
Figures 1 and 3, it is relatively easy to observe the marginality principle. In other cases,
viewing the collection of expectation subspaces on a Hasse diagram really helps the user
both to understand the marginality principle and to observe it.

3.7 Improving the visual effect of the diagram

Figure 2 is all very well for a generic experiment with two treatment factors, but it may
not be appealing to the scientists involved. Perkins et al. (2015) suggested replacing each
labelled black square by a small box containing a brief description of the model in words
and/or symbols. In this case, the dimension can also be shown inside the box, in parentheses.

Define a subspace V' in &£ to be irreducible if there are no smaller subspaces V; and V5
in € such that Vi + V5, = V. If & satisfies conditions (L1) and (L2) then V is irreducible
if either V' is the smallest model V,,;, in € or there is a single edge coming down from V.
The standard way of writing anova tables encourages readers to ignore models that are not
irreducible.

Perkins et al. (2015) suggested using a bold line for the outline of the box for an irreducible
model, and a dashed line for other models.

Example 5 (Chicken Feed) Bailey (2008, Chapter 5) gives a small subset of data taken
from a larger set given by Carpenter and Duckworth (1941). The experiment is about
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Protein * Fishmeal

I Protein + Fishmeal !

| (3) |

L - — - Z R

Protein Fishmeal

(2) (2)

Constant

(1)

Figure 4: Hasse diagram of expectation models in Example 5

comparing diets for newly-hatched chickens. The diets are the combinations of two two-level

factors:
Protein:  groundnut or soya bean;

Fishmeal: added or not.

The list of expectation models is similar to that in Table 3, with Protein, Fishmeal, 2 and
2 in place of F'; G, n and m. Figure 4 shows the Hasse diagram using the conventions of
Perkins et al. (2015), except that we use a normal solid line for an irreducible model and a
dashed line for other models.

3.8 Dummy treatments

As Bailey and Lacka (2015) report, it is not uncommon to include a “do nothing” control
treatment in experiments, especially in factorial experiments where one of the factors is
quantitative. Yates (1937) called this a dummy treatment. Since there may be a substantial
difference between the dummy treatment and the other treatments, it is a good idea to
include a two-level factor which distinguishes the dummy from the rest. The next two
examples include such a factor.

Example 6 (Fungicides) Dagnelie (1997) reports an experiment on growing potatoes to
compare four fungicides both with each other and with a dummy treatment (called a “wit-
ness” in French) consisting of no fungicide. Denote by T' the five-level treatment factor, and
by F' the two-level factor distinguishing actual fungicide from no fungicide. Thus Vp < V7.

11



Table 5: Family of expectation models in Example 6

Expectation model  Subspace Dimension
E(Y,) = BBw) + 11wy Ve+Vr 8
]E(Yw) = QB + 6F(w) Ve + Vi 5
E(Y,) = Apw) Vi 4

S Vg+ Vp
5 Ve + Vi
4 M Vg

Figure 5: Hasse diagram of expectation models in Example 6

The experiment was conducted in four complete blocks, each consisting of five plots.
Denoting the nuisance factor for blocks by B, we obtain the collection of expectation models
in Table 5 and the Hasse diagram in Figure 5.

Example 7 (Factorial plus dummy) An experiment on the control of eelworms is re-
ported in full in the 1935 Rothamsted Experimental Station Annual Report, and used as an
example by Cochran and Cox (1957) and Bailey (2008). There were nine treatments. Eight
of these comprised all combinations of two factors:

Type (T): type of chemical, with four levels;
Dose (D): single or double.

For the ninth treatment, no chemical was applied. Thus we need an extra two-level factor:
Fumigant (F): chemical applied or not.

Both 7" and D need an extra level (“irrelevant” and zero respectively) to cover the ninth
treatment. Then Vr = VN Vp.

The experiment was carried out in four blocks, each of which had four plots with no
chemical and one for each other treatment. The number of eelworm cysts in a 400 gm soil
sample from each plot was recorded before treatments were applied and again after harvest.
Since we would expect the latter number to be proportional to the former, Bailey (2008)

12



Table 6: Family of expectation models in Example 7

Expectation model Subspace Dimension
E(Y,) = BB(w) + YD(w).T(w) Ve + Vpar 12
E(Y,) = aBw) + ¢pw) + Yrw) Va+Vp+ Vo 9
E(Y,) = 0Bw) + 11w Ve + Vrp 8
E(Y,) = 0B(w) + () Ve + Vp 6
E(Y,) = pBw) + Trw) Vg + Vi 5
E(Y,) = Apw) Vi 4

argued that the appropriate response Y, is the difference between the logarithm of the latter
and the logarithm of the former. For definiteness, logarithms were taken to base e. This
gives the collection of expectation models in Table 6, where B denotes the block factor. The
corresponding Hasse diagram is in Figure 6.

3.9 Quantitative factors

As discussed in Example 1, when dealing with a quantitative factor with generic value x it
usually does not make sense to include any power of z in a polynomial expectation model
unless all lower powers are included. If F' and G are quantitative factors with n and m levels
respectively, generically denoted by x and y, this idea generalizes to the following conditions.

(M1) If the term 2% is in the multinomial expression for E(Y,,) and ¢ < a and d < b then
the term zy? is also included.

(M2) If the term x%?” is in the equation for the expectation model then a < n and b < m.
When n = m, condition (M2) is sometimes replaced by the following stronger condition.
(M2') If the term x%® is in the equation for the expectation model then a + b < n.

These generalize to three or more quantitative factors in the obvious way. Families of polyno-
mial expectation models which satisfy condition (M1) are called well-formulated by Peixoto
(1987, 1990) and well-formed by Nelder (2000).

In situations, such as response-surface methodology, where all non-nuisance factors are
quantitative, it is routine to take £ to be the collection of multinomial expectation models
satisfying conditions (M1) and either (M2) or (M2’). If everybody involved is aware of this,
then there is no need to list the models in £ explicitly. However, as noted in Section 3.6, it
is still possible to ask your software to fit models which do not satisfy these conditions.
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12 VB + VD/\T

Ve+ Vp+ Vp

Ve+ Vb Ve +Vr

Ve + Vi

Ve

Figure 6: Hasse diagram of expectation models in Example 7

Example 8 (Two quantitative factors) Suppose that n = m = 3. Then we may take
€ to consist of all multinomials in « and y satisfying conditions (M1) and (M2'), and also
include the full expectation model for F'AG, which has nine parameters. This gives the Hasse
diagram in Figure 7, which is taken from Bailey (2012) but redrawn using the conventions
in Section 3.7.

Example 9 (Mixture factorial) Yates (1937) described an experiment on forage crops
conducted in five complete blocks. Each plot had a mixture of oats and vetch, to which
nitrogen fertilizer was either added or not. The two treatment factors can be summarized
as follows.

Mixture (M): percentage x of vetch (levels 0, 25, 50, 75 and 100);
Fertilizer (F'): added or not (levels 2 and 1 respectively).

Yates (1937) gave the standard anova table for the crop yields in this experiment, using a
collection of expectation models like that in Figure 2 but with Vg added to each expectation
subspace. This analysis suggests that there is no interaction between F' and M. However,
Bailey (2008) noticed that the mean improvement from adding fertilizer declines essentially
linearly as = increases, and that this accords with well-known differences between cereal
crops and legumes. Figure 8 shows this decrease. This figure is consistent with Figure 5.8
of Bailey (2008), which shows all ten treatment means.

This observation suggests including another expectation model, intermediate between
Ve + Ve + Viy and Vg + Veaar, which allows the mean improvement to be a linear function
of z. It is convenient to write this linear term as (—1)7« Az, for some constant \. Define the
vector z by z, = (—1)F@Waz, = (2F(w) — 3)z, and let Z be the one-dimensional subspace
spanned by z. This gives the enhanced collection of expectation models in Table 7. Figure 9
gives the corresponding Hasse diagram.
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Figure 7: Hasse diagram of expectation models in Example 8

3.10 Neighbour effects or carry-over effects

Sometimes the treatment applied to one experimental unit may have a neighbour effect, or
carry-over effect, on other units that are nearby in either space or time. At first sight this
appears to give a factorial model, but it is unlikely that there are neighbour effects in the
absence of direct effects.

Example 10 (Cross-over trial) Consider a cross-over trial using 16 subjects in several
periods to compare four drugs to alleviate symptoms of a long-term health condition. In
each period, four subjects are allocated to each drug. A drug taken in one period may have
a carry-over effect on that subject in the next period. For simplicity here, we assume that
there is a pre-period, so that all periods in the trial have carry-over effects; and that there
are 16 periods, so that each subject can receive each ordered pair of drugs in one pair of
consecutive periods. Let P, S, D and C be the factors for periods, subjects, drugs and
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mean improvement with nitrogen fertilizer, in tons/acre

0 % % % { % vetch
100

Figure 8: The improvement in yield due to added fertilizer in Example 9

Table 7: Family of expectation models in Example 9

Expectation model Subspace Dimension
E(Y,) = apw) + 7F(w),M(w) Ve + Vean 14
E(Y.) = Bpw) + ¢r@w) + Yuew + (D)@ Xz, Ve+Ve+Vy+Z2 11
E(Y,) = 6Bw) + 1rw) + Cur(w) Ve + Ve + Vi 10
E(Y,) = 0Bw) + &rw) Ve +Vr 6
E(Y,) = pBw) + Tm(w) Ve + Vi 9
E(Y.) = XB() VB 5
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Block + Fertilizer x Mixture
(14)

Block + Fertilizer + Mixture + Fertilizer  (linear in vetch)

(11)

TRIArl 4L Fartiligar 4+ NMivt1ir 1

Block + Fertilizer + Mixture
| 10)
L _ _ (, o _ ]
Block + Fertilizer Block + Mixture
(6) (9)
Block

(5)

Figure 9: Hasse diagram of expectation models in Example 9

carry-over effects of drugs. For experimental unit w, denote by w’ the experimental unit
which is the same subject in the previous period. Thus C(w) = D(w').
The most usual single expectation model for this situation is

E(Y,) = apw) + Bsw) + YD) + 0c(w)- (4)

Although the treatments appear to be factorial, it does not make sense to assume that C' has
an effect when D does not. Sometimes researchers allow for the possibility of an interaction
between C' and D.

Since P and S are nuisance factors, we have the collection of expectation models in
Table 8 and the Hasse diagram in Figure 10.

3.11 Recommendation

The overall recommendation of this section is to replace the single equation for the expecta-
tion model, such as Equation (1), (2) or (3), by two things.

The first is the explicit list of equations for all individual expectation models, as in
Tables 1-8. For a knowledgeable readership, only the irreducible models need to be shown,
so long as it is made clear that Condition (L2) is assumed. This list is needed for precision
about details, assumptions and notation.
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Table 8: Family of expectation models in Example 10

Expectation model Subspace Dimension
E(Y,) = 0p@) + ¢sw) + ¥Ypw).cw) Ve + Vs + Vpac 46
E(Y,) = apw) + Bsw) + 7o) + dcw)y Ve +Vs+ Vp + Ve 37
E(Y,) = XpPw) + 1s@w) + (pw) Ve +Vs+Vp 34
E(Y,) = ppw) + Tsw) Vp 4+ Vg 31

Period + Subject + Drug x Carry-over
(46)

Period + Subject + Drug + Carry-over
(37)

Period + Subject + Drug
(34)

Period + Subject
(31)

Figure 10: Hasse diagram of expectation models in Example 10
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The second is the Hasse diagram of expectation models, as in Figures 1-7, 9 and 10.
This is needed to show the relationships between the models. It reinforces the ideas of main
effects, interactions, and extra fit in one model compared to a smaller one.

In my experience, the inclusion of both of these does increase the readers’ understanding,
particularly in cross-disciplinary papers. Some people absorb the necessary information
better from mathematical notation; some from words; and others from diagrams.

4 Data analysis

4.1 Model choice

Given a non-standard collection £ of expectation models, a bare-hands approach to data anal-
ysis begins by fitting each model M in &£ separately, then calculating Fit(M) and SSF(M).
First assume that Cov(Y) = ¢%Iy. Then the single residual sum of squares is y'y —
SSE(Vinax). The corresponding degrees of freedom are N — dim(Viax), and so the residual
mean square RMS is
y'y — SSF(Vinax)
N — dim(Vipax)

As Bailey (2004) and Bowman (2019) point out, the other mean squares that appear in
an anova table are associated not with individual models for E(Y) but with edges between
them in the Hasse diagram. If Vi and V5 are in £, and Vi < V5, and V; is joined to V5
by an edge in the Hasse diagram, let us denote that edge by (V5,V;). The sum of squares
SS(Va, V1), the degrees of freedom df(V;, V7) and the mean square MS(V5, V7) are defined by

SS(Va, Vi) = SSF(V) — SSF(VA),
df(Vo, V1) = dim(V;) — dim(V;) and
S5(V2, V1)
df(Va, V1)

Under normality, if we already know that E(Y) € V, then we can perform an F-test on
the ratio MS(V2, V1)/ RMS to decide whether we can simplify the expectation model to V;.

If (V5,V7) is an edge in the Hasse diagram then there is a unique irreducible expectation
subspace W such that V5, = V) + W. If Vj is itself irreducible then V5, = W. Define the label
A(Va, V1) of the edge (Va, V1) by A(Va, Vi) = W. When Condition (L3) is satisfied, all edges
with the same label have the same mean square. In Example 3, A(Vr, Vo) = AN(Vep+ Vg, Vi) =
VF and MS(VF, ‘/0) = MS(VF + Vg, Vg)

The usual convention in anova tables is to use this label as the name for the mean square
associated with one such edge, if the marginality principle is respected. See Section 4.5.

When E(Y,,) is specified by a single equation with linearly independent parameters, the
set of parameters which occur when E(Y) is in the irreducible expectation subspace W but
do not occur for any smaller expectation subspace is often called the term for W. A term is
not the same thing as an expectation subspace: in Example 3 there are four terms but five
expectation subspaces.

MS(Va, Vi) =
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4.2 Random effects

So far, we have assumed that Cov(Y) = o?Iy. If there are random effects in the model, then
Cov(Y) becomes more complicated. We shall assume that the relationship between the fixed
effects and the random effects is orthogonal in the sense that the following two conditions
are satisfied.

(01) Cov(Y) is an orthogonal block structure in the sense defined by Houtman and Speed
(1983). This means that the eigenspaces of Cov(Y) are determined by the pattern of
the entries in that matrix, and do not depend on the values of those entries; further-
more, there are no linear constraints on the eigenvalues. These eigenspaces are often
called strata, and are known in advance of collecting the data.

(02) Whenever V; and V; are expectation subspaces in € and (V5, V]) is an edge, the sub-
space Vo NV is contained in a single stratum. This is always true if every expectation
subspace in £ is geometrically orthogonal to every stratum.

The original orthogonal block structures introduced by Nelder (1965) satisfy condition
(0O1).

Condition (02) is a generalization of the condition given in Section 10.12.2 of Bailey
(2008) for the case where all expectation subspaces, as well as the form of Cov(Y), are
defined by factors.

4.3 Model choice under random effects

The choice of expectation model is slightly more complicated when Cov(Y) is not a scalar
matrix. However, when conditons (O1) and (O2) hold then V. is a direct sum of orthogonal
spaces, each of which is contained in a single stratum. Suppose that V.2 =W, @ ... ¢ W,,
where W; is the intersection of V.1, with the i-th stratum. The residual mean square RMS (i)
for this stratum is given by

RMS(i) = ~—2 AR

its expectation is the eigenvalue for that stratum.

Condition (0O2) associates a unique stratum with each edge. If (V5,V)) is associated
with stratum 4, we say that RMS(i) is its appropriate residual mean square. In this case
MS(V,, V1)/ RMS(i) gives the test statistic for deciding whether the expectation model can
be simplified from V5 to V;.

It can happen that a stratum is contained in V., and so has no residual mean square.
For example, this occurs in a fractional factorial main-effects-only design for n + 1 mutually
orthogonal treatment factors each with n levels in an experiment with n? experimental units.
It also occurs under pseudo-replication: see Hurlbert (1984). If this happens for the stratum
associated with edge (V5,V7), then there is no statistical test for simplifying E(Y) from V;
to V.
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4.4 An algorithm

Once all the mean squares have been calculated, the Hasse diagram gives a guide to the
following algorithm for selecting the model for E(Y).

1. Start at the top point V., of the Hasse diagram.
2. At point V, assume that E(Y) is in, or close to, V. Then

2.1. Choose a unused downwards edge from point V.
2.2. Suppose that the point at the bottom of the edge is W.

2.3. Perform a test of the hypothesis that Py (E(Y))— Py (E(Y)) = 0, using MS(V, W)
and the residual mean square in the appropriate stratum.

2.4. If the hypothesis is not rejected then

2.4.1. conclude that E(Y) is close enough to W for our purposes;
2.4.2. do not change the residual mean square;
2.4.3. move down to point W, and repeat from Step 2.

2.5. Otherwise, return to Step 2.1, if possible.
2.6. If there are no unused downwards edges from V' then

2.6.1. report that the model cannot be simplified from V;

2.6.2. report the vector of fitted values in V;

2.6.3. if there is more than one edge downwards from V', then the fitted model is
additive in some smaller models, so it is equivalent (and helpful) to report
the vectors of fitted values for the endpoints of all these edges;

2.6.4. use appropriate residual mean squares to report standard errors of differences
between these fitted values;

2.6.5. stop.

When the orthogonality condition (L3) is satisfied, all routes down the diagram lead to
the same conclusion, and so the order of choosing in Step 2.1 is immaterial.

Step 2.4.2 is slightly controversial. Some people like to put SS(V, W) into the residual
sum of squares in this case, and add df(V, W) to the residual degrees of freedom. However,
this has been shown to introduce biases: see Wolde-Tsadik and Afifi (1980), Draper and
Smith (1998), Janky (2000) and Gilmour and Trinca (2012). Changing the residual sum of
squares in this way can also give different results from different orders of choice in Step 2.1,
even when Condition (L3) is satisfied.

4.5 Comparison of different approaches

The methodology described in this section explicitly begins by finding Fit(V') for every
expectation subspace in £.
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If the models in £ are defined by factors, with crossing and/or nesting relationships,
then execution of the command anova in Genstat (VSN International, 2017) finds Fit(V)
for every irreducible model in £. The output includes these as tables of means, together
with their standard errors, which are calculated from the appropriate residual mean squares.
The output also gives the anova table for a single route from top to bottom of the Hasse
diagram. The statistician or scientist can use that table to select the model, then report
the parameters for that model using the appropriate table(s) of means. This is equivalent
to Steps 2.6.3 and 2.6.4.

Most software gives this single-route anova table, and maybe some others as well. How-
ever, rather than the tables of means, most software other than Genstat gives estimates of
all the parameters in the single equation for E(Y). In order to report meaningful parameters
for the selected model, the user has to know precisely which linear constraints were used.
Sometimes a user reports a single parameter for a two-level factor without saying which level
it is attached to nor which linear constraints have been assumed.

Some software allows the creation of anova tables that do not correspond to a route
through the Hasse diagram. FEach sum of squares is associated with a term rather than
with an edge. As explained by Gardiner and Gettinby (1998), Dean and Voss (1999) and
Montgomery (2012), there are several types of sums of squares. Type I corresponds to
adjoining the terms in some given order. Grafen and Hails (2002) call these sequential. If
the order does not respect the marginality principle, then some of the sums of squares do not
correspond to edges in the Hasse diagram. Some of the other types do respect marginality,
and can be the same when condition (L3) is satisfied. For example, Type II gives the sum of
squares for the highest edge labelled by any particular irreducible subspace. Type III is the
sum of squares for including this term after all of the rest, which does not always correspond
to an edge. Grafen and Hails (2002) call this adjusted.

5 Scaling the Hasse diagram

5.1 The main idea

Given an anova table, many applied scientists concentrate on the column displaying P-values.
Maybe this is because they are not really comfortable with the numerical information in the
rest of the table. In particular, they may not absorb the relative sizes of mean squares as
quickly as statisticians do.

Bailey and Reiss (2014) suggested overcoming this problem by presenting a new version
of the Hasse diagram once the anova calculations have been made. Now each edge (V2, V) is
scaled to have length proportional to its mean square MS(V3,V;). For comparison, another
line is shown at the side of the diagram: its length is proportional to the residual mean
square RMS.

The scaled Hasse diagram has many advantages. Most users can see very quickly that the
lengths of some edges are much smaller than the RMS, while some others are much larger.
The diagram forces the reader to respect the marginality principle during model selection.
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It reinforces the message that each mean square is associated with an edge between models,
not with a single model. Unlike a single anova table, the scaled Hasse diagram does not
restrict the user to a single route from top to bottom.

Of course, the scaled Hasse diagram is an addtion to the anova table, not a replacement
for it. When the length of an edge is a similar order of magnitude to RMS, the usual F-test
is needed, and this depends on the degrees of freedom. However, with online publication,
and the addition of supplementary material in many papers, there should be no objection
to including both.

There is a question about what should be considered as the length of the edge (V2,V})
in the diagram. If the subspaces are considered as the points where the edges meet, the
answer is clear. If the symbol for each subspace is a uniform-sized dot or small square, the
length is probably still considered to be the length between their central points. However,
if the subspaces are shown in the format used in Figures 4, 7, 9 and 10, the viewer may
subconsciously interpret “length” as the length of the line between the edges of the boxes.
Making this concept of length proportional to MS(V3, V) is different from making the point-
to-point length proportional to it. Moreover, boxes may have unequal heights or widths.
Suppose that MS(V3,V;) = MS(Vy, V3). A scaled Hasse diagram which shows the point-
to-point lengths of the edges (V5,V;) and (Vy, V3) as equal may, therefore, not show their
box-to-box lengths as equal.

Here we avoid this problem by using uniform symbols and point-to-point lengths, but
sometimes retain the less concise way of naming the model, deliberately using various dif-
ferent conventions for this. In Section 5.2 we show scaled versions of some of the Hasse
diagrams in Section 3, all of which satisfy Condition (L3) and have a single residual mean
square. We discuss some other potential problems, as well as advantages, as we go along.
Section 5.3 shows how to generalize the method to cover multiple residual mean squares.
Section 5.4 shows what happens under non-orthogonality in the sense that Condition (L3)
is violated.

5.2 Examples

In each of these examples, mean squares are rounded versions of those in the cited source
but retain enough precision for the scaled Hasse diagram.

Example 5 continued The anova table given by Bailey (2008, Section 5.5) shows that
MS(VP/\F, Vp + VF) = 128, MS(VP + Vr, VF) = MS(VP, %) = 4705, MS(VP + Vg, Vp) =
MS(VE, Vo) = 3120 and RMS = 132. These give the scaled Hasse diagram in Figure 11.

As this diagram shows, sometimes the length of an edge can be so small that the edge
would be entirely hidden if any symbols were shown for the subspaces at each end. In this
case, the symbols for Vi,p and Vi + Vp are both omitted, but the positioning of the names
of those subspaces should make things clear.

This scaled Hasse diagram shows that, for this example, we have no need to look in tables
of critical values of the F-distribution. The length of (Vpar, Ve + Vi) is almost the same
as RMS. This means that there is no evidence of interaction, and so we can simplify to the
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Protein * Fishmeal
Protein + Fishmeal

Protein

Fishmeal

residual mean square ' Constant

Figure 11: Scaled Hasse diagram in Example 5

additive model Vp + V. The two edges down from this point are both visibly more than ten
times as long as RMS, so that we conclude that neither main effect is zero and we cannot
simplify the model any further.

Example 6 continued The anova of the data in Dagnelie (1997, Section 2.2) give MS(Vp+
Vr, Ve +Vg) =8, MS(Vg + Vi, V) = 387 and RMS = 12. Figure 12 shows the scaled Hasse
diagram. Because the two edges at the point Vz+ Vp are part of a single vertical line through
that point in the Hasse diagram, we cannot completely omit the symbol for that point. The
compromise in Figure 12 is to use a short horizontal line as the symbol.

This scaled Hasse diagram makes it immediately clear that there is no evidence of any
differences between the four genuine fungicides but there is definitely a difference between
applying fungicide and not applying any. Thus the expectation model simplifies to Vg + Vg
but no further.

Example 7 continued The anova of the logcount data given in Bailey (2008, Chapter 4)
gives MS(VB +Vorr, Ve +Vp + VT) =0.15, MS(VB +Vp+Vr, Ve + VT) = MS(VB +Vp, Ve +
Vi) =011, MS(Ve+Vp+Vy, Vp+Vp) = MS(V+ Vi, Ve + Vi) = 1.46, MS(V + Vg, Vi) =
1.33 and RMS = 0.17. This gives the scaled Hasse diagram in Figure 13.

In contrast with Figures 11 and 12, this shows every model subspace as a black square,
with the result that three very short edges are completely obscured. This should not matter
if the reader can see the unscaled Figure 6 at the same time.

It is clear from Figure 13 that the full model can be simplified first to the additive model
Vs 4+ Vp + Vr and then to Vp + Vi but no further. In other words, there is no evidence for
interaction between Dose and Type, or for any difference between single and double doses.
Thus the differences between the five types of chemical, including the dummy, explain all
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Block 4 Treatment
| Block + Fungicide-or-not

residual mean square |

B Block

Figure 12: Scaled Hasse diagram in Example 6

VBlock T VDosenType
VBlock T VDose + vape

VBlock + VType

VBlock + VDose
VBlock + VFumigant

residual mean square

VBlock

Figure 13: Scaled Hasse diagram in Example 7
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Block + Fertilizer * Mixture
Block + Fertilizer + Mixture + F.(linear in vetch)

Block + Fertilizer + Mixture

Block +

Fertilizer Block +

Mixture

residual mean square |

Block

Figure 14: Scaled Hasse diagram in Example 9

the differences between treatments. However, there are more differences among the types
than just that between the dummy and the rest.

Example 9 continued Yates (1937) reported the yields in pounds per (1/80)-th of an
acre. Bailey (2008) converted the data to tons per acre, showing these numbers correctly in
her Figure 5.8. Unfortunately, the treatment totals reported in her Table 5.8 are actually
treatment means, with with the consequence that all sums of squares in her Table 5.9 should
be multiplied by by 25. This gives MS(VB +Verrr, Ve +Ve+ Vi + Z) = (.20, MS(VB +Vr+
Vi + 2, Ve + Vg + Vi) = 6.68, MS(Vg + Vi + Vi, Ve + Vi) = MS(Vg + Vi, V) = 19.23,
MS(Vg + Ve + Vi, Ve 4+ Vi) = MS(Vp + Ve, V) = 33.56 and RMS = 1.01. Hence we obtain
the scaled Hasse diagram in Figure 14. This makes it very clear that the full model

Block + Fertilizer * Mixture

can be simplified to the one in which the effect of F' is linear in the proportion of vetch, but
no further.

5.3 More than one residual mean square

The approach shown in the previous examples can be extended to situations where there is
more than one relevant residual mean square. Show the length of each residual mean square
using a different type of line, such as solid, dashed or dotted. In the Hasse diagram itself,
use the same type of line for each edge as is used for its appropriate residual mean square.
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Example 11 (Falling apples) Bailey (2008, Chapter 8) describes an experiment on cider-
apple trees reported in the 1941 Annual Report for Long Ashton Research Station. The 15
treatments were all combinations of five pruning methods (factor P) with three quantities
of naphthalene spray (factor .S).

It is not practicable to spray individual trees without affecting other trees nearby. Thus
the experiment took place on six blocks of five apple trees each, all of the same variety. Each
pruning method was used on one tree per block, while each quantity of spray was applied to
two whole blocks.

The block effects were regarded as random. Thus the Hasse diagram of expectation
models is like the one in Figure 2.

The aim of the experiment was to find an effective way of stopping apples falling to the
ground before picking time. There was an unusually strong gale in October that year, so
on the following day the experimenters counted how many apples had fallen from each tree,
and recorded y,, as the percentage of apples on tree w that had fallen.

The anova table in Bailey (2008, Section 8.2) gives MS(Vpas, Vp 4+ Vs) = 35, MS(Vp +
VS,Vs) = MS(VP,‘/(]) = 459 and MS(VP + Vs,Vp> = MS(Vs,VO) = 558. The first two of
these must be compared with the residual mean square for trees, which is 74, while the last
must be compared with the residual mean square for blocks, which is 239.

Figure 15 shows the scaled Hasse diagram. Edges whose mean squares should be com-
pared with the mean square for trees are shown as solid lines, while those whose mean square
should be compared with the mean square for blocks are shown as dotted lines.

From the very short edge at the top of the diagram, it is clear that there is no evidence
of interaction and so the full model Vp g can be be simplified to the additive model Vp + V.
The solid edge down from that point is more than five times as long as the residual mean
square for trees, so the main effect of pruning is not zero and the model cannot be simplified
down that edge. The dotted edge down from that point is the first one that we have seen
in examples where we need to consult F-tables. The ratio with the mean square for blocks
is 2.33, while the 90% point of F' on 2 and 3 degrees of freedom is 5.46, so there is not
sufficient evidence to reject a null hypothesis of no difference between sprays. However,
this does not imply that there really is no difference. It often happens with designs like this
(effectively “split-plot” designs) that the degrees of freedom are too small to draw satisfactory
conclusions about the effect of the factor applied to blocks.

As we noted in Section 4.3, sometimes there may be edges in the Hasse diagram for which
there is no appropriate residual mean square. In such cases, a special type of line should
be used in the scaled Hasse diagram to warn the reader that no test of significance can be
performed. See Example 15.

5.4 Non-orthogonality

Because the examples in Sections 5.2-5.3 all satisfy Condition (L3), certain subsets of edges
are forced to have the same mean square, with the consequence that all routes downward
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Figure 15: Scaled Hasse diagram in Example 11.

Table 9: Artificial data in Example 12

F 0 1 1
G 1 0 1
datal 6 6 12

data2 2v3 —-2v3 0

from the top of the Hasse diagram lead to the same conclusion. Here we give a small artificial
example to show what can happen under non-orthogonality.

Example 12 (Non-orthogonal factors) As Gerami and Lewis (1992) point out, the lev-
els of many two-level factors are “absent” (level 0) and “present” (level 1). When all treat-
ment factors are like this, there may be operational or ethical reasons for omitting the
treatment combination in which all factors have level 0.

Suppose that there are just two such factors, F' and G. Then dim(Vpag) = 3 = dim(Vp+
Vi), and so these two model subspaces are the same. The treatment combinations used are
shown in Table 9. Suppose that each such combination has replication r and that there are
no nuisance factors.

The treatment means of artificial data shown as datal in Table 9 give MS(Vr, 1)) =
MS(Vg, Vo) = 6r and MS(Ve + Vg, Vr) = MS(VE + Vi, Vi) = 18r. This gives the scaled
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Ve + Ve Ve + Vs
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Ve Va
Vo Vo

(a) datal (b) data2

Figure 16: Scaled Hasse diagrams in Example 12

Hasse diagram in Figure 16(a). If RMS is approximately equal to 67 then the model for
E(Y) cannot be simplified from Vi 4 Vi even though neither Vi nor Vi seems to explain
the data significantly better than V4.

On the other hand, data2 give MS(Vg, Vi) = MS(Vg, Vo) = 18r and MS(Vp + Vi, Vr) =
MS(Vr + Vi, Vig) = 6r. This gives the scaled Hasse diagram in Figure 16(b) and leads to
the conclusion that the model for E(Y) does not need to include both Vp and Vi but that
either single factor alone will do.

It is common to present results from data analysis in a single anova table even if there
is non-orthogonality among the treatment model subspaces. Including a single scaled Hasse
diagram like one of those in Figure 16 should make it clear to both the writer and the reader
that it may be problematic to choose between models for E(Y), even though real data sets
often produce less extreme results than these.

6 Biodiversity experiments

In experiments in biodiversity, sometimes the question of interest is whether the measured
outcome is better with a more diverse collection of species. The expectation models are not
those commonly encountered in statistically designed experiments, as they involve quantita-
tive factors in the setting of mixture experiments where the total quantity is fixed, together
with qualitative factors, as well as potential interactions between these. This section gives a
few examples to show how Hasse diagrams can illuminate the process.

Example 13 (Compositions of individuals) Reiss et al. (2011) describe an experiment
with six types of invertebrate detrivore, labelled A-F. Experimental units were glass jars,
each containing 12 individual detrivores. In each monoculture, all individuals were of the
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Table 10: Compositions in Example 13

C Composition Rlxi 9 x3 T4 x5 Tg
1 A 12 of type A 1112 0 0 0 0 O
6 F 12 of type F 110 0 0 0 0 12
7 AB 6of A, 6of B 26 6 0 0 0 O
21 EF 6 of £, 6 of I 20 0 0 O 6 6
22 ABC 4of Aj4of B,4ofC |34 4 4 0 0 0
41 DEF 4of D, 4of E,40f F|3|0 0 0 4 4 4

same type; each duoculture had six of each of two types; while each triculture had four of
each of three types. This gave the 41 compositions shown in Table 10. Here x; denotes the
number of individuals of type A, and so on, up to xg denoting the number of individuals of
type F. There should be no confusion in writing C(w) for the composition in jar w, even
though one of the types is labelled C. There is also a factor Richness (R), whose three levels
are the number of different types present.

In the first experiment described by Reiss et al. (2011), each jar was filled with a standard
quantity of leaf litter and submerged in a tank of water before twelve individual detrivores
were introduced. After 28 days, the quantity of leaf material remaining was measured. The
amount eaten was recorded as the response g, on jar w. There was one jar per treatment in
each of four blocks. Block effects were regarded as random.

Table 11 shows the family of expectation models that were considered. The symbol T is
used to denote models that include the quantities z1, ..., xg of each Type of detrivore. The
model Richness says that only the level of R makes any difference. The model Type says
that there are constants [3; such that each individual of type i ate amount ;. In the model
Richness x Type, the different types still do not influence each other, but the parameter ;
can change with each level of R.

The corresponding Hasse diagram is in Figure 17. Versions of Table 11 and Figure 17
are in Reiss et al. (2011) and Bailey and Reiss (2014).

The anova in Reiss et al. (2011) gives the scaled Hasse diagram in Figure 18, which is
taken from Bailey and Reiss (2014). Here the edges (Vi + Vr, V) and (Vp, V) are so much
longer than the others that the whole figure has to be rather large. Moreover, a very small
blob is used as the symbol for each expectation model. A multiple of the residual mean
square is shown so that the reader can see it more clearly.

It is evident from Figure 18 that the model Richness does not explain the data at all. The
model Type explains it well. There is no evidence that any larger model does any better.
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Table 11: Family of expectation models in Example 13

Name Expectation model Subspace Dimension
Composition E(Y,) = Oc(w) Vo 41
Richness * Type E(Y,) = >, Vi r(w)Ti(w) VR 18
Richness + Type E(Y,) = ¢rw) + >_; Yiwi(w) Ve +Vp 8
Richness E(Y,) = ar) Vi 3
Type E(Y,) =), Bizi(w) Vr 6
Constant E(Y,) =p Vo 1

Ve +Vr

Vr Vr

Vo

Figure 17: Hasse diagram of expectation models in Example 13
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Composition

Richness * Type
Richness + Type

Type

Scale:

3 x residual mean square

Richness % Constant

Figure 18: Scaled Hasse diagram in Example 13
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Example 14 (Habitat complexity) Flores et al. (2016) describe some experiments to
investigate how habitat complexity affects biodiversity. In one experiment, the treatments
were all combinations of levels of two factors. This experiment was limited to monocultures,
and so factor M was simply the type of monoculture, with three levels.

Different artificial habitats were added to the jars. Their complexity was measured by
their fractal dimension, which had five levels. The habitats were structures constructed
from plastic rings with various shapes and quantities of plastic fronds. One habitat had
no structure: this gives a factor S with two levels which distinguishes structure from no
structure. Of those with genuine structure, two were made from one ring and two from two
rings. This gives a three-level factor for the number of rings. Using a convention different
from that in Examples 6-7, this factor is denoted by A(S) and the factor for fractal dimension
by F(A(S)). The treatments were all combinations of levels of M and F(A(S)).

The Hasse diagram for the family of expectation models is in Figure 19.

The anova for one of the responses given by Flores et al. (2016) gives the scaled Hasse
diagram in Figure 20. To avoid confusion, two models have not been named. The reader
should be able to work out that the lower one is M + A(S) as it is the lowest one joined to
both Monculture and Amount by downwards edges. Similarly, the upper one is S* M+ A(S).
Alternatively, the reader can compare Figure 20 to Figure 19.

Figure 20 shows very clearly that the model for E(Y) can be simplified to the additive
model Monoculture 4+ Structure but no further.

Example 15 (Composition and Temperature) Perkins et al. (2015) conducted an ex-
periment similar to the one in Example 13, using the 15 compositions in Table 12. Only four
types of individual were used. Richness level 4 was also included: this has three individuals
of each type. The model Richness* Type needs only a single parameter for this composition,
and so the dimension of this model subpace is 4 +4 4+ 4 + 1 = 13, while dim(V) = 15.

After the experiment had been performed, every response measured gave a value for
SSF(Composition) hardly any bigger than SSF(RichnessxType). Given that their dimensions
are also so close, it was decided to omit the model Richness x Type.

This experiment had an extra complication. Each composition was combined with three
levels of Temperature, so there were 45 treatments altogether, each replicated twice. Perkins
et al. (2015) listed only the irreducible models for E(Y,,), which are shown in Table 13. Here
the factor Temperature is shown as P, to avoid confusion with Type. Also, the model names
use X instead of x.

The collection of expection models which is obtained from Table 13 by conforming to
Condition (L2) gives their Hasse diagram, which is reproduced in Figure 21. Because the
model Richness * Type has been excluded, this diagram has the same geometry as the Hasse
diagram for three qualitative treatment factors given by Bailey (2008, Chapter 5). This is
because the underlying partial orders are isomorphic, with Richness, Type and Temperature
playing the role of the three factors, even though the model Type is not defined by a factor.
There is a small error in this diagram: the model second from the top should be labelled
Composition 4+ Richness x Temp + Type x Temp.
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| SsM + A(S) ! M + F(A(S)) !
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SxM } M+ A Eé)i } Fractal(A(S))
© B (5)
M S Amount(S)
@ 3)
Monoculture Id. Structure
(3) (2)
Constant
(1)

Figure 19: Hasse diagram of expectation models in Example 14
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M + F(A(S))

residual M+S

mean
square

Fractal

Structure Amount

Monoculture

Constant

Figure 20: Scaled Hasse diagram in Example 14
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Table 12: Compositions in Example 15

Composition Richness | 1 z2 x3 24

1 A 12 of type A 1 12 0 0 O
2 B 12 of type B 1 0 12 0 0
3 C 12 of type C 1 0 0 12 0
4 D 12 of type D 1 0 0 0 12
5 AB 6 of A, 6 of B 2 6 6 0 0
6 AC 6 of A, 6 of C' 2 6 0 6 0
7 AD 6 of A, 6 of D 2 6 0 0 6
8 BC 6 of B, 6 of C 2 0 6 6 0
9 BD 6 of B, 6 of D 2 0 6 0 6
10 CD 6 of C,6o0f D 2 0 0 6 6
11 ABC 4 of A, 4 of B, 4 of C 3 4 4 4 0
12 ABD 4of A, 40of B,40of D 3 4 4 0 4
13 ACD 4of A,4of C,40f D 3 4 0 4 4
14 BCD 4of B,40of C,40f D 3 0 4 4 4
15 ABCD 3eachof A, B, C'and D 4 3 3 3 3

Table 13: Family of irreducible expectation models in Example 15

Name Expectation model Subspace Dimension
Composition x Temp E(Y,) = 1c(w),p(w) Veosp 45
Composition E(Y,) = Oc(w) Vo 15
Type x Temp E(Y,) = >, vipwxi(w) Vrep 12
Richness x Temp E(Y,) = dr(w),Pw) VRs«p 12
Richness E(Y,) = arw) Vg 4
Type E(Y,) =), Bizi(w) Vr 4
Temperature E(Y,) = (p) Vp 3
Constant E(Y,) = p Vo 1
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Composition x Temp.
(45)

h

Composition + Richness + Temp. + Type x Temp.
(29)

e

Composition + Richness x Temp. Composition + Type x Temp. Richness x Temp.
23 (23) + Type x Temp. (21)
f e g g f
1
Composition + Temp. Richness x Temp. Type x Temp. |}
an + Type (15) e + Richness (15) i
e f
b d g c
Composition Richness x Temp. Rich + Type + Temp. Type x Temp.

(15) (12) &) (12)

€ d c g
Richness + Type L " £\ Richness + Temp. . Type + Temp.
(7) ! (6) ! (6)
b """"""" b
d d
Richness Type Temp.
4 c “) c (3)

d
c Constant b

(1)
a

Figure 21: Hasse diagram of expectation models in Example 15

The Hasse diagram in Figure 21 has another new feature. The labelling system described
at the end of Section 4.1 is shown explicitly on the edges. Letter b corresponds to the
irreducible subspace Vp, using the notation in Table 13. Similarly, letter ¢ corresponds to
Vg; letter d corresponds to Vp; letter e corresponds to Vi; letter f corresponds to Vg.p;
letter g corresponds to Vi, p; and letter h corresponds to Ve, p. Edges labelled with the same
letter must have the same mean square when Condition (L3) is satisfied.

Three temperature-controlled rooms in a laboratory were used for this experiment. Each
room had a single temperature and two of each composition. Even though Room effects
were regarded as random, there was no appropriate residual mean square to compare the
main effect of Temperature with. Thus the edges labelled b in Figure 21 had no appropriate
residual mean square but all other effects could be assessed.

Figure 22 gives the scaled Hasse diagram for one of the responses given by Perkins et al.
(2015): it is the amount of algal consumption, which they called herbivory.

This scaled Hasse diagram has two new features. Unlike all the previous ones, it is not
possible to draw the Hasse diagram in the plane without its edges crossing. Therefore, it is
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Composition x Temperature

Composition + Richness x Temp + Type x Temp
Composition + Type x Temperature , Richness x Temp + Type x Temp

Type x Temperature + Richness
Composition + Richness x Temperatur
Composition 4+ Temperature 2, M Ny Type x Temperature
|

Richness + Type + Temperature

* *

* *

* * \\

* *

Composition & N * 3 Type + Temperature
*

Richness + Ty.pe\l* i

M = Richness x Temp + Type *
Type o

residual
mean
square

no appropriate %

residual *
mean *
square *

» Richness x Temperature

*A Richnegs + Temperature

» Temperature

. *
Richness ¢ *

Constant

Figure 22: Scaled Hasse diagram in Example 15
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essential to use a small symbol to mark each expectation model, in contrast to Figures 11,
15 and 20. Furthermore, all edges labelled b in Figure 21 are shown with a line of stars to
indicate that there is no appropriate residual mean square.

The short edges at the top of the scaled Hasse diagram show that the expectation model
can be simplified to Type x Temperature + Richness. The vertical edge down from this point
has P-value less than 0.01; the sloping edge is slightly longer but has P-value 0.017 because
of smaller numerator degrees of freedom. Depending on the level of significance used, the
fitted model is either Type x Temperature + Richness or Type x Temperature. In neither
case can we simplify to a model adjoining a starred edge, and so the pseudo-replication of
the levels of Temperature does not pose a problem for model choice. However, it does mean
that no standard errors of differences between levels of Temperature can be given.

7 Further work

This is a theory-and-methods paper, but bespoke diagrams will not get the ideas widely used.
Nicolas Ballarini of the Medizinische Universitat Wien is developing a package HasseAQV
for R to enable users to draw both unscaled and scaled versions of the Hasse diagram. A
paper about this is in preparation.

It may be possible to add further visual information to the Hasse diagram. For example,
the edges could be colour-coded to indicate the P-values. The scaled version could be drawn
so that the vertical height of V' is proportional to SSF(V') to give the reader a sense of the
extra sum of squares for one model compared to a smaller one. Is it possible to combine this
with making the edge lengths proportional to the relevant mean squares?

The models in this paper are all linear, with normally distributed random variables. The
Hasse diagrams in Section 3 do not require either of these conditions. They can be used
whenever there is a partial order indicating when one model is a special case of another. It is
desirable that conditions analogous to conditions (L1) and (L2) are satisfied. For example,
these diagrams can be used for families of generalized linear models (GLMs) with linear
predictors. It should also be possible to extend the scaled Hasse diagrams of Section 5 to
show the analysis of deviance for GLMs.

When there is more than one random effect, it may be difficult to extend the methods of
Section 5 to cases where conditions (O1) and (O2) are not satisfied.

Acknowledgements Thanks tosummer student Justin Thong for the information about R
in Section 3.6, and to John Hinde and Martin Posch for some of the suggestions in Section 7.
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