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Abstract 
 

Attempts using geochemical data to classify quarry sources which provided reactive rock 

aggregate, composed of Carboniferous aged pyritic mudrocks and limestones, which has 

caused structural damamge to over 12, 500 homes across Ireland have not yet succeeded. In 

this paper, a possible solution to this problem is found by performing machine learning 

models, such as Logistic regression and Random Forest, upon a geochemical dataset obtained 

through the scanning electron microscope energy-dispersive X-ray spectroscopy (SEM-EDS) 

and Laser ablation-quadrupole-inductively couple plasma mass spectrometry (LA-Q-ICPMS) 

of pyrite and Isotope ratio mass spectrometry (IRMS) of bulk rock aggregate, to predict 

quarry source location. When comparing the classification scores, the LA-Q-ICPMS dataset 

achieved the highest average classification score of 55.38 % for Random Forest and 67.73 % 

for Logistic regression based on 10-fold cross validation testing. As a result, this dataset was 

then used to classify a set of known unknown samples and achieved average classification 

accuracies of 40.30 % for random forest and 66.80 % for logistic regression, based on a 

systematic train-test procedure.  

There is scope to enhance these classification scores to an accuracy of 100 % by combining 

the geochemical datasets together. However, due to the difficulty in linking pyrites analysed 

by SEM-EDS to those analysed by LA-Q-ICPMS, and relating a bulk rock analytical 

technique (IRMS) to mineral geochemistry (SEM-EDS, LA-Q-ICPMS), median values have 

to be used when combining IRMS (Fe, S) and SEM-EDS (TS and δ34S) datasets with LA-Q-

ICPMS data. Therefore, if these combined datasets were used as part of an applied quarry 

classification system, statistically meaningful mean values taken from a near normally 

distributed dataset would have to be used in order to accurately represent the quarry 

composition. 
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1. Introduction 
 

Between 1995 and 2007 Ireland experienced a housing boom as the number of dwellings 

throughout the country increased by over 88 %. (Tuohy, 2012). This unprecedented increase 

in construction activity led to an associated demand for construction materials, such as rock 

aggregate. However, much of the material delivered to these newly built housing 

developments was of unknown origin and not compliant with European and Irish standards, 

partly due to a failure to provide and/or maintain the necessary documentation (Matheson and 

Quigley, 2016). In many cases, a range of quarry sources may have been used as part of a 

single housing development and the associated records documenting the quarry source for fill 

in a particular dwelling was commonly absent or misidentified (Tuohy, 2012). As a result, 

much of the interest surrounding this aggregate material focuses on identifying the likely 

quarry of origin.  

 

Due to the shared compositional and textural characteristics between many of the quarry 

sources, distinguishing samples by hand specimen or thin section mineralogy is both fraught 

with subjectivity, and agreements on quarry identification by this method are often disputed. 

Therefore, a quantitative method for quarry source identification is needed. This paper aims 

to provide such a method by using a combination of pyrite and bulk rock geochemistry and 

machine learning classifiers, such as logistic regression and random forest.  

Pyrite (FeS2) was chosen as the mineral of interest for this study as it is commonly found as a 

minor constituent in all six quarry sources and, although its chemistry is dominated by Fe and 

S, it is known to contain a wide variety of trace elements such as Ag, As, Au, Bi, Cd, Co, Cu, 

Hg, Mo, Ni, Pb, Pd, Ru, Sb, Se, Sn, Te, and Zn (Lehner and Savage, 2008). The mechanism 

by which trace elements are incorporated into the pyrite crystal structure starts with the 

adsorption of trace elements onto the pyrite surface, or surfaces of pyrite precursor minerals, 

from surrounding water column. Once adsorbed, the trace elements are incorporated into the 

pyrite crystal structure through a series of reaction pathways, however, the exact method by 

which these occurs is still up for debate (Gregory et al., 2015). The degree by which trace 

elements are incorporated into the pyrite crystal structure is determined by a number of 

factors including; rate of pyrite crystallisation, nucleation and the presence of trace elements 

in the water column and pore waters (Gallagher, 2016) 

Consequently, trace element concentrations in pyrite can vary from parts per million (ppm), 

to several weight per cent (wt %) for elements such as As, Co and Ni (Lehner and Savage, 

2008). As a result, pyrite can exhibit strong geochemical variation through time (Gregory et 

al., 2015), spatially, at the section scale (Gregory et al., 2017) and between stratigraphic units 

(Sack, Large and Gregory, 2018). Therefore, pyrite provides the ideal candidate for use as 

part of this classification mechanism as all of the investigated quarry sources vary 

geographically, across the eastern Ireland, and geologically, across four different rock units.  

 

2. Materials and methods 
 

2.1 Samples 
 

2.1.1 Sample information 
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A map, stratigraphic section and detailed geological descriptions of the quarry samples used 

in this investigation can be found in Figure 1 and Table 1. These samples are sourced from 

Carboniferous aged rock formations located in the eastern part of Ireland and range in 

composition from organic rich carbonaceous mudrocks to clean limestones. Further 

information regarding pyrite morphology within the sample material can be found in Dornan 

et al, 2019. Additionally, due to ongoing litigation surrounding pyritic rock aggregate in 

Ireland, the exact names and locations of the quarry material investigated in this study have 

been redacted. 

 
Figure 1 (Single column, colour) Map and simplified stratigraphic section of the sampling area. 

  
Formation Lithology description Depositional mode 

Loughshinny 
Fm 

Laminated to thinly-bedded, argillaceous, pyritic, 
locally cherty limestones interbedded with dark-grey 

to black shale. The limestones include argillaceous 

micrites and graded calcarenites (Geological Survey 
Ireland, 2018). 

Tectonically driven collapse and drowning of the Balbriggan 

shelf caused a cessation in platform carbonate sedimentation 

and a deposition of coarse proximal basinal facies 
(Sevastopulo and Wyse Jackson, 2001) 

Lucan Fm 
Dark-grey to black, fine-grained, occasionally cherty, 

micritic limestones (Geological Survey Ireland, 2018). 

Coarse-grained graded limestones with concentrations of 

shelly fauna at their bases are characteristic of proximal upper 

slope environments. The upper units are typical of more distal 

lower slope environments (Strogen, Jones and Somerville, 

1990) 

Tobercolleen 
Fm 

Dark-grey, calcareous, commonly bioturbated 

mudstones and subordinate thin micritic limestones 

(Geological Survey Ireland, 2018) 

The presence of well-laminated packstones and lime-
mudstones in the lowest part of the Tober Colleen Formation 

indicates tranquil sedimentation below wavebase, in a basinal 

environment mostly free of bioturbation (Strogen, Jones and 
Somerville, 1990) 

Waulsortian 

limestone Fm 

Typically comprises pale-grey and very fine-grained 

(calcilutite-grade) carbonates, which display mudstone 

to wackestone depositional textures (Murray and 
Henry, 2018) 

During the early Tournaisian, a major marine transgression 

inundated the landmass of Ireland and was followed by a 

period of carbonate ramp sedimentation (Murray and Henry, 
2018) 

Table 1 Detailed lithological descriptions and depositional modes of the rock formations located in the sampling area. 

 

2.1.1.2 Known unknown samples 

 

14 “known unknown” samples were added which originated from quarry source 6. They are 

described as “known unknowns” as their quarry of origin is known, however, they have not 

been included in the quarry classification process as these samples were acquired after the 

original geochemical analyses took place. These are thus used to test the success rate of the 

machine learning-based quarry classification scheme. As these samples originated from 

quarry source 6, they can be regarded as compositional and stratigraphic equivalents of any 

source 6 samples already included in the classification mechanism. Therefore, any sample 

information provided regarding Source 6 also relates to these 14 samples.  
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1.1.2 Pyrite textural information 

 
Figure 2 (Double column, black and white) BSE (Back scattered electron) images of pyrite textural variation within the 

quarry samples. (A) Carbonate rock fragment containing framboidal and idiomorphic pyrite. (B) A cluster of anhedral 

idiomorphic pyrite. (C)  Collection of framboidal pyrites displaying a range of microcrystal packing structures. 

Reflected light petrography and SEM analysis revealed two main pyrite morphologies within 

the quarry material: idiomorphic pyrite and framboidal pyrite. Each of these crystal 

morphologies are highly variable in shape and size (Figure 2) but are both commonly found 

within all six quarry samples. The idiomorphic pyrite grains vary in shape from anhedral to 

euhedral, while the microcrystals which form the framboidal pyrite grains, are highly variable 

in their packing structure. Individual framboids may appear very loosely packed together 

with clear space between the microcrystals, others are more tightly packed with minimal 

space in between the microcrystals. Additional BSE images of the quarry material, along with 

further information such as size ranges, can be found in Dornan et al, 2019. 

 

2.1.3 Sample preparation 

 

The sample material was first crushed and then subsequently sieved to retain the 250 µm – 4 

mm particle size to provide a representative sample. The sieved material was then mounted in 

epoxy resin pucks. Resin mounted thin sections were then made from slices of these pucks. 

For, SEM – EDS analysis, resin mounted thin sections were exclusively used, while a 

combination of both polished pucks and resin mounted thin sections were used during the 

LA-Q-ICPMS analysis. Multiple replicates of the same samples were analysed throughout the 

analyses. These replicates were easily created by either re-polishing the surface of the resin 

mounted pucks, or creating a fresh resin mounted thin section from slices of the epoxy puck. 

For IRMS analysis, these crushed and sieved rock fragments were finely powdered using a 

TEMA mill and then, subsequently, decarbonated using 3 step acid digestion using 1 M HCl. 

 

2.2 SEM – EDS 
 

In-situ major element analysis of the pyrite crystals was undertaken using a Tescan MIRA 

XMU field emission scanning electron microscope (FE-SEM) equipped with an Oxford X-

max 80mm2 Energy Dispersive Spectrometer at the Centre for Microscopy and Analysis 

(CMA)/iCRAG Lab in Trinity College Dublin. In order to reach a dead time of ~30% we 

choose beam conditions 20 kV and 200 pA, with a working distance of 15-18.5 mm and a 

counting time of 30 seconds using both natural pyrite (Fe, S) and pure metal standards (Co, 

Ni, As, In). Detection limits on the SEM-EDS system are primarily related to the acquisition 

time (total number of counts per spectra) (Newbury and Ritchie, 2015). Routine quantitative 

analysis with the conditions as described in the current work give detection of approximately 

0.1 wt %. All pyrites analysed during the SEM – EDS were confirmed using the pyrite 

structural formula Dornan et al, 2019) 

 

2.3 LA – Q – ICPMS 
 



5 

 

LA-Q-ICPMS analysis were carried out at in the iCRAG Raw Materials Characterisation 

Laboratory in Trinity College Dublin, using a 193 nm Teledyne CETAC Analyte G2 ArF 

excimer laser coupled to a Thermo Fisher Scientific iCAP-Qc. Ablation occurs within a 

HelEx II two-volume ablation cell, using He carrier gas (c. 0.5 l/min) and a small volume of 

high-purity signal-boosting N2 (c. 8 ml/min). Ar nebuliser gas (c. 0.55 l/min) is added to the 

line just before introduction to the mass spectrometer. An in-house adjustable-volume signal 

smoothing device was used to obtain a steady signal. 

Tables 2 and 3 illustrate the laser parameters and analyte list used throughout the LA-Q-

ICPMS analyses. Multiple test runs were carried out in the early stages of the analyses to 

investigate which trace elements were present in the pyrite samples. Elements such as Au, V, 

In and Tl were all included in these early analysis stages, however, Au, V and In were all 

found to be below the detection limits of the instrument, while Tl and Ni were found to have 

interferences with 208Pb and 58Fe respectively. As a result, none of the elements were 

included in later analyses. Regular ablations of the carbonate matrix were also conducted to 

verify that no contamination of the pyrite trace element content was occurring due to 

contribution from carbonate matrix.  

The analytical procedure utilised a sample - standard bracketing procedure with blocks of 

reference materials separated spot analyses of pyrite. The USGS polymetal sulphide standard 

MASS-1 (Wilson et al, 2002) was used as the primary calibration standard and 57Fe as the 

internal standard, with Fe concentrations for each quarry source taken from SEM-EDS 

analyses. MUL-ZnS-1 (Onuk et al., 2017) and BCR-2G were used as secondary quality 

control standards to check the analytical accuracy. The preferred trace element concentrations 

for each of the reference materials are from the GeoReM database (http://georem.mpch-

mainz.gwdg.de/). Mean measured values and accuracy to referenced values for each analyte 

are listed in table 4.  Data reduction and production of trace element concentrations were 

undertaken using Iolite v3 using the trace element data reduction scheme (Paton et al., 2011). 

Analyte Dwell time (s) 

34S 0.01 

43Ca 0.01 

57Fe 0.01 

59Co 0.03 

63Cu 0.01 

67Zn 0.06 

75As 0.04 

77Se 0.1 

95Mo 0.1 

107Ag 0.1 

121Sb 0.1 

208Pb 0.1 

Table 2 Analyte list used during the LA-Q-ICPMS analysis. Also included is the dwell time used per analyte 

Fluence Rep rate Shot count Spot size 

0.75-0.84 J/cm2 5-6 Hz 120-148 15 µm x 15 µm 

http://georem.mpch-mainz.gwdg.de/
http://georem.mpch-mainz.gwdg.de/
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Table 3 Laser parameters used during the LA-Q-ICPMS analysis 

Element 
Measured value (ppm; mean; n=3) Referenced value (ppm) Accuracy (%) 

MUL MASS BCR MUL MASS BCR MUL MASS BCR 

Co 348.67 71.00 36.50 308.00 60.00 38.00 13.20 18.33 -3.95 

Cu 1008.00 166000.00 16.93 994.00 134000.00 21.00 1.41 23.88 -19.40 

Zn 617000.00 219666.67 181.75 585500.00 210000.00 125.00 5.38 4.60 45.40 

Se 66.23 73.80 13.55 66.00 65.00 - 0.35 13.54 - 

As 207.67 46.87 1.18 200.00 51.00 - 3.83 -8.10 - 

Mo 59.60 49.53 207.93 60.00 59.00 270.00 -0.67 -16.05 -22.99 

Ag 620.67 46.10 0.61 607.00 50.00 0.50 2.25 -7.80 22.50 

Sb 820.67 65.70 0.46 819.00 60.00 0.35 0.20 9.50 31.43 

Pb 1197.33 68.77 7.46 1149.00 68.00 11.00 4.21 1.13 -32.18 
Table 4 Mean measured values for reference materials and accuracy of measured values to referenced values. 

 

2.4 IRMS 
 

Isotope analyses were carried out at the University of St. Andrews with an EA Isolink 

coupled to a MAT253 IRMS via a Conflo IV (Thermo Fisher Scientific, Bremen, Germany). 

Decarbonated rock powders were weighed into 8 x 5 mm tin capsules and combusted at 

1020°C under a constant He stream (flow rate 100 ml/min, dropping to 50 ml/min after 20 

seconds) with a 5-second pulse of O2 gas (flow rate of 250 ml/min) to convert all sulphide to 

SO2 gas. Tungstic oxide granules were used as an additional combustion aid in the reactor. 

The tungstic oxide was followed by copper wires to reduce the minor SO3 to SO2. Water 

resulting from the combustion was trapped at room temperature in a separate column packed 

with magnesium perchlorate grains. The remaining SO2 was further purified with a GC 

column at 45°C. The international reference standards IAEA-S2 and IAEA-S3 were included 

at the beginning and end of each run for calibration. Analytical accuracy was monitored with 

IAEA-S1, which agreed with internationally recognized values to within < 0.5‰. Peak areas 

were calibrated for abundance measurements with of a series of sulphanilamide standards. 

The isotopic data are expressed in standard delta notation relative to VCDT. 

 

2.5 Machine learning  

 

Machine learning methods employ computational algorithms that attempt to emulate the 

process of human intelligence and neural networks by learning from data fed into the system. 

These algorithms and models are integral to “big data” analysis (El Naqa and Murphy, 2015). 

Machine learning methods are prevalent in many aspects of geosciences such as hazard 

modelling (Yilmaz, 2009; Wang, Sawada and Moriguchi, 2013) and mineral prospecting 

(Carranza and Laborte, 2015; Xiong and Zuo, 2018), however, they are also becoming 

increasingly applied to large geochemical datasets(e.g. Rodriguez-Galiano et al., 2012; 

Gregory et al., 2019). 

Two main types of machine learning software packages were used: The Aggregate Quarry 

Classification Model (AQCM) and Waikato Environment for Knowledge Analysis software 

(WEKA). The AQCM machine learning software was created for this project and applied to 

the data generated by geochemical analysis of bulk rock aggregate and pyrite described in 

this paper. This software package has been made open source and can be used for the 

classification of any geochemical database. Further information regarding how to operate the 

AQCM and its potential uses can be found using the GitHub link attached to this paper. 
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WEKA is a free to download collection of machine learning algorithms for data mining 

techniques. It contains tools for data preparation, classification, regression, clustering, 

association rules mining, and visualization (Witten et al., 2016). This software package is 

coded in the Java programming language and allows users to harness machine learning 

models without any prior computer programming knowledge 

Both software packages use logistic regression and random forest learning models in order to 

classify and predict the quarry sources of aggregate fill based on their geochemical 

composition. Two different pieces of software were used in order to compare the results of 

the AQCM with that of a freely available piece of software. 

 

2.5.1 Logistic regression model 

 

Logistic regression is a mathematical modelling approach that can be used to characterise the 

relationship between a number of variables (e.g. major and trace element composition, δ34S 

signature) to a multichotomous dependant variable (e.g. quarry sources 1 – 6). Logistic 

Regression is a statistical model, based on the logistic function (Equation 1), which relates 

the probability of a given event to a linear combination of predictors (Equation 2). The 

parameters of the linear equation (α and β1…βn) are then learned from the data such that they 

maximise the model's prediction accuracy (Kleinbaum and Klein, 2002; Yilmaz, 2009). The 

logistic regression model is useful for predicting the outcome of a multivariate analysis based 

on values of a set of predictor variables (Yilmaz, 2009). As a result, it can be used to 

investigate the likelihood of a given pyrite/ bulk rock analysis to be identified as one of the 

quarry sources 1-6.  

 

Equation 1: f(z) = 1 / (1+ e−z) 

Equation 2: z = α + β1X1+ β2X2+…+ βnXn 

 

2.5.2 Random forests 

 

Random forests are a supervised method of data classification constructed from a number of 

decision trees (Breiman, 2001). These decision trees follow a flowchart-like structure, in 

which splits, or nodes, partition the dataset using a random subset of input variables (e.g. < 

500 ppm Co or > 350 ppm Pb). This unbiased selection increases the diversity and robustness 

of the random forest model as each decision tree classifies samples based on a unique series 

of random tests (Rodriguez-Galiano et al., 2012). Partitioning of the dataset starts with the 

“Root node” which integrates the entire data set before it is split into two groupings. Splitting 

occurs until a “leaf node” is reached. “Leaf nodes” represent a discrete class label (e.g. quarry 

1-6) and indicate that the sample has been classified based on the characteristics of a 

predefined grouping. Each decision tree within a random forest contributes a single vote for 

the assignment of the most frequent class to the input data (Breiman, 2001; Rodriguez-

Galiano et al., 2012) . As a result, sample classification by random forests is based on the 

modal classification of several decision trees. 

 

2.6 Statistical analysis 
 

All statistical analyses were carried out using IMDEX ioGAS 7.0 advanced geochemical data 

analysis software. 

 

2.6.1 Principle component analysis (PCA) 
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PCA is an unsupervised statistical method that rotates and shears a data matrix of n-

dimensions along axes (components) of greatest variability (Hammer, 2017). Unsupervised 

statistical transformations are not influenced by categorical data, and the transformation of a 

dataset will always be the same using PCA given the same numeric data matrix. The number 

of components in a dataset is equal to the number of input variables, or one less than the 

number of datapoints, whichever is smaller.  

Components are ranked, such that component 1 is the axis of greatest variance in a dataset, 

component 2 is orthogonal to component 1 and so on. The usefulness of PCA as a data 

interpretation tool stems from the fact that PCA often permits dimension reduction of 

multivariate data by the discarding of the lower ranked components of often low variance, 

thus permitting the interpretation of multidimensional data, previously existing in a 

hyperspace, in a 2- or 3-dimensional space (e.g. on biplot). An advantage of PCA versus two- 

or three-element or element-ratio biplots and triplots is that PCA integrates information from 

n variables,  and thus can potentially act as a much more powerful discrimination or plotting 

tool than biplots and triplots that are limited in the amount of information that they integrate. 

For PCA, if the ppm values of the various trace, minor and major elements are examined in 

isolation, and not in the context of the entire ablated volume, misleading determinations may 

result (Pawlowsky-Glahn, V. and Buccianti, 2011). As a result, the data used in PCA in this 

paper has been transformed using centred log ratio (CLR) transformation, including a 

residual value representing non-analysed elements to sum to unity (i.e. 1 million ppm). CLR 

is calculated as the log of the individual measurement divided by the geometric mean of that 

element across the entire dataset. CLR transformation can be quickly calculated using 

software such as ioGAS, but also by freeware such as CoDaPack or “R”. 

 

3. Results 
 

3.1 Geochemical Results 
 

The results obtained from the SEM-EDS, LA – Q – ICPMS and IRMS analysis of quarry 

samples 1-6 are presented in table 5 and summarised in 2-D plots 3 - 5. For LA -Q – ICPMS 

analysis, where pyrite grains had trace element concentrations below the detection limits for 

the analytes, their concentrations were substituted for half the minimum limit of detection for 

the run in which they were analysed . Nonparametric statistics are used due to the non – 

normal distribution of the dataset. 

No. of 

analyses 
Analyte 

Quarry 

1 

Quarry 

2 

Quarry 

3 

Quarry 

4 

Quarry 

5 

Quarry 

6 

69 
TS (%) 1.87 0.65 0.04 0.64 1.02 1.33 

δ34S (%) -26.95 -7.91 4.98 -1.98 -24.29 -20.72 

274 
Fe (wt%) 43.53 43.60 39.18 43.30 43.08 43.17 

S (wt %) 51.80 51.61 44.28 49.37 50.86 49.64 

491 

Co (ppm) 8.70 62.90 230.00 42.00 187.00 58.00 

Cu (ppm) 45.00 560.00 233.00 73.00 305.00 79.00 

Zn (ppm) 4.31 104.00 59.46 7.92 156.50 7.29 
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As (ppm) 78.00 246.00 773.00 2390.00 417.50 35.20 

Se (ppm) 242.00 77.00 4.69 6.10 44.95 215.00 

Mo (ppm) 12.10 67.40 18.80 14.00 30.50 16.60 

Ag (ppm) 0.08 7.60 2.60 2.10 2.85 0.09 

Sb (ppm) 7.50 22.60 123.00 88.00 28.45 5.60 

Pb (ppm) 10.10 278 340.00 530.00 152.50 14.70 

Table 5 Median concentrations of quarry sources 1 – 6 from the geochemical analysis of pyrite and bulk rock aggregate. 

 
Figure 3 (Double column, colour) Box and whisker plot of IRMS analysis of bulk rock aggregate from quarry sources 1 – 6. 

 

 
Figure 4 (Double column, colour) Box and whisker plot of SEM - EDS analysis of pyrite from quarry sources 1 – 6. 

 

 
Figure 5 (Double column, colour) Box and whisker plot of LA - Q - ICPMS analysis of pyrite from quarry sources 1 – 6. 
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3.2 PCA results 
The results from the geochemical analysis of pyrite and bulk rock aggregate were analysed by 

PCA to enhance the geochemical variance between quarry sources 1 – 6. This enhancement 

in the variance was hoped to improve source classification when using the machine learning 

models 

CLR transformation was applied to the data obtained through the geochemical analysis of 

pyrite and bulk rock aggregate. This CLR transformed data was then analysed by PCA. Table 

6 illustrates the factor loadings for principle components (PCs) 1 – 7 of the SEM – EDS, LA 

– Q – ICPMS and IRMS combined dataset, these PCs account for 90 % of the variance in the 

dataset. This data is also summarised in Figure 6. 

In addition to this combined dataset, CLR transformation and PCA were also performed on 

individual datasets (e.g. Fe, S concentrations from SEM – EDS analysis) along with different 

combinations of datasets (e.g. major and trace element concentrations). All combinations of 

data evaluated by PCA are outlined in Tables 5 and 7. However, results for the PCA analysis 

of these datasets are not presented in this paper but can be found in the supplemental 

material. 

Eigenvectors PC1 PC2 PC3 PC4 PC5 PC6 PC7 

Co 0.02 0.17 0.80 0.25 0.08 0.14 0.33 

Cu 0.15 0.30 -0.07 -0.05 0.70 -0.46 -0.05 

Zn 0.15 0.25 -0.26 0.61 -0.15 0.38 -0.19 

As 0.19 -0.42 0.13 -0.15 0.00 0.03 0.05 

Se -0.19 0.44 -0.22 -0.27 0.04 0.10 0.04 

Mo 0.17 0.28 0.20 -0.43 -0.55 -0.20 -0.37 

Ag 0.25 -0.03 -0.33 0.29 -0.28 -0.44 0.44 

Sb 0.23 -0.27 -0.18 -0.38 0.04 0.30 0.46 

Pb 0.23 -0.31 -0.05 0.01 0.28 0.26 -0.50 

Stoichiometry -0.41 -0.10 -0.05 0.00 -0.01 -0.01 0.01 

TS (%) -0.39 0.03 -0.07 -0.03 0.03 0.15 0.10 

δ34S (%) -0.18 -0.41 0.12 0.24 -0.09 -0.45 -0.21 

Fe (wt%) -0.41 -0.10 -0.05 0.00 -0.01 -0.01 0.00 

S (wt %) -0.41 -0.09 -0.06 0.00 -0.01 -0.01 0.01 

Variance % 40.62 17.97 8.41 7.49 6.24 5.43 4.04 

Cumulative 

variance % 
40.62 58.59 67.00 74.49 80.73 86.16 90.19 

Table 6 Results from the PCA of the entire geochemical dataset (IRMS, SEM – EDS and LA – Q – ICPMS) 
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Figure 6 (Double column, black and white) Factor loadings plot for PCs 1 – 7. Analytes with a factor loading score of ≥ 0.4 

are shaded black, between 0.2 – 0.4 shaded grey and ≤ 0.2 are shaded white. (v) represents the stoichiometry.  

 

3.3 Machine learning classification 
The raw geochemical data obtained from the SEM – EDS, LA – Q – ICPMS and IRMS 

analysis, as well as the PCA transformed data, were classified using random forest and 

logistic regression models. The results obtained from the classification of quarry sources 1 – 

6 by logistic regression and random forest are presented in tables 7 and 8. These results 

represent the accuracy with which the models can classify samples based on SEM – EDS, LA 

– Q – ICPMS and IRMS analyses. The accuracy scores for both models are based on 10-fold 

cross validation. K-fold cross validation is used ahead of the conventional train – test 

approach as it reduces model over fitting, while also producing more reliable and unbiased 

testing compared to the train - test approach. Table 9 illustrate the mean ROC area, F-

measure and Kappa statistic for the machine learning models. These values indicate the 

prediction capability of the classification technique and also illustrate how optimal the 

models are for classifying the geochemical data. Figure 7 is an illustration of the tests carried 

out within a decision tree in order to classify samples in the WEKA random forest model.  

 

Dataset 

AQCM WEKA 

Random forest Random forest 

Raw PCA Raw PCA 

Majors  62.37% 51.26% 61.31% 58.03% 

Traces  55.73% 56.87% 85.35% 78.95% 

S isotopes  62.56% 43.43% 63.49% 47.62% 

Majors; traces  97.06% 69.40% 100% 90.68% 

Majors; S isotopes  100% 98.24% 100% 99.64% 

S isotopes; traces  98.14% 73.40% 100% 95.42% 

Majors; traces; S 

isotopes  98.83% 80.72% 100% 96.79% 
Table 7 Results for the classification of quarry sources 1 – 6 by AQCM and WEKA using random forest classification model 
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Dataset 

AQCM WEKA 

Logistic regression Logistic regression 

Raw PCA Raw PCA 

Majors  31.44% 61.75% 31.75% 24.81% 

Traces  60.85% 63.62% 73.22% 73.22% 

S isotopes  54.52% 29.70% 69.85% 38.09% 

Majors; traces  93.23% 90.80% 99.54% 98.16% 

Majors; S isotopes  90.74% 81.38% 99.64% 100% 

S isotopes; traces  95.88% 93.26% 99.38% 98.39% 

Majors; traces; S 

isotopes  99.56% 97.54% 100% 98.17% 
Table 8 Results for the classification of quarry sources 1 – 6 by AQCM and WEKA using logistic regression classification 

model 

 

Dataset 

Prediction capability 

Logistic regression Random forest 

ROC 

Area 

F-

Measure 
Kappa Statistic 

ROC 

Area 

F-

Measure 
Kappa Statistic 

Majors  0.65 0.28 0.15 0.82 0.60 0.53 

Traces  0.94 0.72 0.66 0.97 0.85 0.82 

S isotopes  0.87 0.68 0.64 0.89 0.63 0.56 

Majors; traces  1.00 1.00 0.99 1.00 1.00 1.00 

Majors; S isotopes  1.00 0.99 0.99 1.00 1.00 1.00 

S isotopes; traces  1.00 0.99 0.99 1.00 1.00 1.00 

Majors; traces; S isotopes  1.00 1.00 1.00 1.00 1.00 1.00 
Table 9: Mean values for ROC, F-Measure and Kappa statistic for both logistic regression and random forest models. 

Receiver operating characteristic (ROC) measurement values illustrate model optimisation. Values approaching 1 indicate 

the model is optimised for data classification, while values approaching 0.5 are comparable to random guessing and a non-

optimal model choice. F-Measure is a combined measure of precision and recall (2 × recall × precision)/(recall+precision). 

Kappa statistic is a chance corrected error (success rate of actual predictor - success rate of random predictor) / (1 - 

success rate of random predictor) (Witten et al., 2016) 
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Figure 7 (Full page, black and white) Example of decision tree used as part of the random forest classification of quarry sources 1 - 6 using WEKA software. 
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3.3.1 Classification of known unknown samples  

As the LA – Q – ICPMS dataset achieved the highest average classification score amongst 

the non-combined datasets (Table 7 and 8), it was selected to classify a set of known 

unknown samples through a train-test classification mechanism. This known unknown 

dataset comprised of 309 spot analyses of pyrite. Ten randomly selected sub samples of 50 

analyses were extracted from this dataset and used as “test” suite to investigate the 

capabilities of the machine learning models to classify unknown samples. The results 

obtained from the classification of these known unknown samples by Random Forest and 

Logistic regression are outlined in table 10. 

Sub sample 
AQCM WEKA 

Logistic regression Random forest Logistic regression Random forest 

1 64 50 78 46 

2 70 62 74 34 

3 64 54 70 36 

4 54 40 64 34 

5 56 28 66 30 

6 60 40 72 38 

7 62 44 74 28 

8 60 44 62 28 

9 68 44 78 46 

10 70 42 70 38 
Table 10 Results for the classification of 10 random sub samples of known unknown LA – Q – ICPMS dataset. Results 

indicate the percentage of the 50 known unknown samples that were classified correctly. 

 

4. Discussion 
 

4.1 Geochemical analyses and quarry source discrimination 
Analysis of pyrite and bulk rock aggregate from quarry sources 1 – 6 reveals compositional 

variability between the different sources. Each of the analytical techniques vary in their 

viability to discriminate each of the quarry sources. These compositional differences are least 

apparent when examining pyrite major element geochemistry (Figure 8). From experimental 

analysis, stoichiometric pyrite contains 53.5 % S and 46.5 % Fe (Anthony et al., 1995), as a 

result, a significant amount of compositional overlap exists between quarries 1, 2, 4, 5 and 6 

surrounding these concentrations. However, quarry 3, which has median concentrations of 

39.18 % Fe and 44.28 % S, is easily distinguishable due to these low Fe and S concentrations. 

As described in Dornan et al (2020), factors affecting these low Fe and S values are the 

partial oxidation of these pyrites within the sample material the presence of trace elements 

which are present below the detection limits of the SEM technique. As the purpose of this 

study is to discriminate sources based upon all/any characteristics and not to analyse only 

unaltered products, the fact that these pyrites are oxidised is not detritmental to their 

characterisation, and in fact provides a very clear discriminatory criterion. However, it must 

also be noted that pyrite does not oxidise at a constant rate. Careful consideration must be 

applied when analysing historical material as misclassification of material may occur if 

“amount of oxidation” is used as a classification criteria. 
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Figure 8 (Single column, colour) Bi plot of Fe and S concentrations of quarry sources 1 – 6. 

By investigating the bulk rock geochemistry using IRMS, it is possible to reduce the number 

of quarry sources which overlap compositionally, due to the greater variation in TS and δ34S 

concentrations. For example, the maximum variation in median Fe and S concentrations is 

4.42 wt % and 7.52 wt % respectively, in contrast, δ34S concentrations deviate by up to 26.91 

%. Consequently, a simple bi plot of TS vs δ34S illustrates a much clearer compositional 

separation of quarries 2, 3 and 4 from the remaining sources. Therefore, bulk rock S isotope 

geochemistry offers an improved method of quarry separation when compared to the major 

element geochemistry of pyrite. 

 
Figure 9 (Single column, colour) Bi plot of TS vs δ34S concentrations for quarry sources 1 – 6. 

With that being said, the analysis of pyrite trace element geochemistry by LA – Q – ICPMS 

provides the most dimensions with which to discriminate quarries. The degree with which 

trace elements are incorporated into pyrite can vary depending on the incorporation 

mechanism, type of pyrite precursor mineral present and local oxidation conditions (Dellwig 

et al., 2002). As a result, median concentrations for elements such as As, Se and Pb can vary 

between the quarry sources by up to 1897 ppm, 302 ppm and 400 ppm respectively. When 

these trace element concentrations are plotted on bi-plots or ternary diagrams, individual 

quarry sources can be visually distinguished (Figures 10 and 11). This variance is enhanced 

through the use of PCA. Figure 12 is a plot of PC1 and PC2 for the trace element dataset, the 

arrow length for each element in this plot indicates how well the element explains the 

variance in the dataset, with a longer arrow length indicating a stronger influence on the 

variance. Consequently, elements such as As, Cu, Pb and Se, all of which have long arrow 

lengths, are identified as elements which strongly influence the variance in the dataset. 
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Figure 10 (Single column, colour) Bi plots of trace element concentrations for quarry sources 1 – 6. 
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Figure 11 (Single column, colour) Ternary plots of trace element concentrations for quarry sources 1 – 6. 
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Despite some compositional separation being offered by each of these analytical techniques, 

the classification provided by clustering and other classifier methods was unsatisfactory. In 

Dornan et al (2020), k-means clustering was used to quantify the compositional separation 

using Fe and S concentrations. This was similarly attempted using the trace element and S 

isotope datasets; however, the results were inadequate due to the constant compositional 

overlap between certain sources. Therefore, classification of the quarry sources based on their 

geochemical composition was not possible using clustering techniques. 

 

4.2 Machine learning and quarry classification 
 

In Dornan et al, (2019) k-means clustering was used a method of quarry source classification. 

However, this method proved unsuccessful in accurately classifying quarry sources 1 - 6, 

therefore, an improved method of quarry classification was needed. This led to the use of 

machine learning models which provided a much more powerful and effective method of 

classification. Two different machine learning models were used as distinctive information 

could be gleaned from the results of both models. For instance, as the logistic regression 

model is designed to describe probability, the results from this model give the likelihood of a 

sample being classified from each of the six quarry sources. This information can be found in 

the output of the logistic regression model when using the AQCM or WEKA. 

Each model was tested using both PCA data and raw compositional data. PCA data was 

included as it enhances the visualisation of variance within a dataset. However, results of 

both models indicated that the inclusion of PCA caused a reduction in performance of both 

models, probably due to the dimension-reduction inherent to PCA. For example, using the 

random forest model, classification accuracy decreased by up to 27 %, while in the logistic 

regression model performance dropped by almost 32 %. As a result, only raw compositional 

data should be used for classification purposes.  

As previously stated, both individual datasets and a combination of datasets were used as part 

of the classification process to investigate which dataset offered the best classification 

accuracy. For the individual datasets, the trace elements provided the greatest classification 

accuracy in the random forest model (77.32 %) and logistic regression models (63.10 % and 

65.70 %). As result, this dataset was selected to classify of a set of known unknown samples. 

These “known unknowns” were part of a separate dataset for Source 6, unused in the original 

Figure 12 PCA plot of PC1 vs PC2 for trace element concentrations of quarry sources 1 – 6.  
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classification database. Ten sub-samples from this dataset were used as test samples to 

investigate the model’s capability to classify unknowns. In this experiment, the logistic 

regression model proved much more powerful at classifying unknowns compared to the 

random forest model. It achieved an average classification score of 66.8 % while the random 

forest model only achieved an average score of 40.3 %. 

A simple way to increase the classification accuracies of machine learning models is to use 

combinations of geochemical datasets. For instance, when the trace element dataset is 

combined with S isotope dataset using the Logistic regression model, model accuracy 

increases by from 63.10 % to 95.49 %. This increase in accuracy is due to the use of median 

concentration values when combining datasets. Median values were chosen as the 

geochemical results of both SEM – EDS and IRMS analyses follow a non – normal 

distribution. When using the major element dataset in combination with the trace element 

dataset, median Fe and S concentrations for each quarry source are used. This is due to the 

extreme difficulty in linking the individual pyrites analysed by SEM – EDS with those 

analysed by LA – Q – ICPMS, as pyrites within these samples often measure ≤ 12 µm. 

Similarly, since a reduced number of samples were analysed by IRMS, median δ34S and TS 

concentrations are applied when the S isotope dataset is used in combination with either 

major element or trace element datasets.  

As a result, if this classification mechanism is used as part of a quarry classification system, 

statistically meaningful mean values would need to be used in in order to represent the 

geochemical composition of a quarry source. This would require a near-normally distributed 

dataset with a statistically meaningful number of samples through the quarry succession. 

However, due to the restricted access to quarry material this may not be a possibility. 

 

5. Conclusions 
 

• Using machine learning models, such as logistic regression and random forest, it is 

possible to generate a classification mechanism for aggregate quarry sources based on 

their bulk rock and pyrite geochemistry. Depending on the dataset used, these models 

can range in accuracy from 31 % to 100 %. However, when classifying known 

unknowns, the logistic regression model out preforms the random forest model by 

achieving an average classification score of 66.80 %. 

• The accuracy of these models is enhanced using median concentration values when 

combining datasets. These median values are applied as the composition of the pyrites 

analysed by SEM – EDS and LA – Q- ICPMS follow a non – normal distribution. 

Additionally, relating pyrite crystals analysed by SEM – EDS to those analysed by 

LA – Q – ICPMS is extremely difficult, as pyrite crystals within these samples often 

measure ≤ 12 µm. Therefore, if this classification mechanism were used as part of an 

applied quarry classification system, statistically meaningful mean values taken from 

a near normally distributed dataset would have to be used in order to accurately 

represent the quarry composition. 

• Although PCA was used as part of this investigation, it proved detrimental to the 

performance of the machine learning models. When using PCA data, the performance 

of the logistic regression and random forest models dropped by 32 % and 27 % 

respectively. This was counter intuitive to our original hypothesis as PCA was used to 

enhance the variance within a dataset. However, this enhancement in variance is 

achieved by rotating and shearing the dataset along orthogonal axes of greatest 

variability. This transformation reduced the dimensionality of the dataset and caused 
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the variables to appear monotonous to the machine learning models leading to a 

reduction in model performance. 
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