Title: Bull, bear, or rat markets: Rat ‘stock market’ task reveals human-like behavioral biases

Word count: ~10,000 words

Figure count: 6 figures, 4 tables

©American Psychological Association, 2020. This paper is not the copy of record and may not exactly replicate the authoritative document published in the APA journal. Please do not copy or cite without author’s permission. The final article is available, upon publication, at: to be determined.
Rat ‘stock market’ task reveals human-like behavioral biases

Abstract

Investors often exhibit behavioral biases (e.g. loss aversion) that are putatively underpinned by mechanisms supporting reinforcement learning in the brain, which are largely evolutionarily conserved across mammalian species. While prior research has demonstrated that rats, like humans, exhibit behavioral economic biases in certain contexts, asset market contingencies have gone largely unexplored. Thus, we developed an experimental ‘stock market’ task in which cohorts of four rats drove asset prices up and down by selecting and subsequently buying, selling, or holding ‘stocks’ to earn sweet liquid reward. Profits and losses were operationalized as reward volumes larger than and smaller than a reference volume of reward, respectively. Following a loss, rats moved more slowly to collect reward and spent less time licking at the reward spigot, indicative of lower motivation to approach and ‘savor’ a loss reward. Rats also tended to respond suboptimally following a loss, which corresponded to an increase in risk-seeking behavior characterized by a bias against the optimal ‘hold’ option in that context. Rats’ choice of the sell option demonstrated a robust tendency towards realizing gains more quickly than losses, which is characteristic of the ‘disposition effect’ in human stock markets. Our results indicate that rats exhibit behavioral biases similar to human investors, emphasizing the suitability of the rat stock market model to future work into the behavioral neuroscience of suboptimal financial decision making.
Rat ‘stock market’ task reveals human-like investment biases

1. Introduction

Financial decisions have a big impact on our lives – especially when those decisions are suboptimal. The neuroeconomic investigation of behavioral biases that lead to suboptimal financial decisions has gained increasing attention in recent decades (Frydman & Camerer, 2016). Financial decision-making biases, such as loss aversion or the disposition effect, are ubiquitous across cultures (Grinblatt & Keloharju, 2001), professional money managers (Shapira & Venezia, 2001), and even non-human primates (Chen et al., 2006; Lakshminaryanan et al., 2008). There is a rich history of studies demonstrating that laboratory rats, too, share our economic biases (Bhatti et al., 2014; Kagel et al., 1986; Marshall & Kirkpatrick, 2015). However, to the authors’ knowledge, no previous study to-date has characterized rat behavior in a task with reinforcement contingencies that approximate those found in a stock market.

Given the inherent unpredictability of future returns of stocks, the stock market represents a particularly interesting context in which to study how reinforcement mechanisms drive presumed ‘myopic’ valuation of uncertain gains and losses (Choi et al., 2009; Frydman et al., 2014; Fuster et al., 2010; Gutiérrez-Roig et al., 2016; Kuhnen & Knutson, 2005; Strahilevitz et al., 2011; Thaler et al., 1997). To the reward system, the stock market contains: 1) reward signals (i.e. current prices) that do not necessarily reflect an investor’s experienced value (i.e. profit/loss), and 2) price stochasticity that undermines the system’s ability to rely on reward prediction errors to improve predictions of future payoffs (Fama, 1965; Schultz et al., 1997; Sutton & Barto, 1998). It has been hypothesized that these reinforcement contingencies inappropriately drive reinforcement learning mechanisms, which in turn interacts with an individual’s ability to choose in a...
Rat ‘stock market’ task reveals human-like behavioral biases

way that maximizes expected returns (Charness & Levin, 2005; Daw et al., 2005; Gutiérrez-Roig et al., 2016).

Kahneman and Tversky’s (1979) Prospect Theory provides a detailed account of behavioral biases that arise in such contexts. Three prominent biases are: 1) loss aversion, where an individual demonstrates greater sensitivity to potential losses than to gains, 2) risk-aversion, or a preference for less uncertainty, and 3) anchoring, where an individual defines gains and losses according to some reference point other than zero. A fourth behavioral bias is referred to as the ‘disposition effect’. Although not originally put forth by Kahneman and Tversky (1979), the disposition effect has been postulated to stem from Prospect Theory preferences (c.f. Kaustia, 2010; Shefrin & Statman, 1985) and is characterized by investors’ reluctance to sell losing stocks while selling winning stocks too quickly.

Standing in contrast to Prospect Theory, the Efficient Markets Hypothesis asserts that the behavioral biases of individual investors are irrelevant to prices because they are quickly corrected by arbitrage forces (Samuelson, 1965; Shleifer & Summers, 1990). However, a number of empirical studies have identified suboptimal patterns of investor behavior that putatively reflect an inability to inhibit simple reinforcement-based strategies (Choi et al., 2009; Erev & Roth, 1998; Kaustia & Knüpfer, 2008; Payzan-LeNestour & Bossaerts, 2015; Strahilevitz et al., 2011). This suggests that an investor’s motivation, subjective reward value, and affective state are each factors that play a larger role than traditionally assumed in normative financial theory (Fama, 1970; Frydman & Camerer, 2016; Hirshleifer, 2001; Shiller, 2003; Strahilevitz et al., 2011).
Rat ‘stock market’ task reveals human-like investment biases

For example, Kaustia and Knüpfer (2008) evaluated five years of individual investor behavior in a Finnish investor public offering (IPO) market, and found that investors displayed a strong tendency to repeat an investment that had previously led to positive returns and avoid an investment that had previously resulted in negative returns. Thorndike (1911) first described such win-stay/lose-shift behavior as the “Law of Effect”; a simple strategy that explains how animals’ responses typically increase after rewarding outcomes and decrease after undesirable outcomes. When many investors respond to a market event (e.g. a highly anticipated IPO) with similarly-biased behavior, the cumulative effect can lead to autocorrelation of prices, potentially escalating into bubble markets (Daniel et al., 1998; Poterba & Summers, 1988; Shiller, 2000). In sum, the sentiment and reward history of individual investors can align on certain market events, driving subtle yet impactul deviations from fundamental value.

Here, we investigated the possibility that rats may also exhibit suboptimal investment behaviors in reward contexts that simulate the outcomes of trading decisions in the stock market. Research in non-human primates provides some evidence that this may be the case. Chen and colleagues (2006) showed that non-human primates exhibit suboptimal behaviors that are similar to humans in an experimental marketplace. In the experiment, capuchins were given ‘tokens’ that could be exchanged for fruit, thus creating a primitive token economy. The experimenters systematically varied either the number of tokens to represent ‘wealth’, or the number of the fruit pieces a monkey earned in exchange for one token, i.e. ‘price’. In a pair of separate experiments, the experimenters either added or subtracted a piece of fruit to the initial exchange offer in
Rat ‘stock market’ task reveals human-like behavioral biases

order to elicit putative effects of ‘reference-point’ and ‘loss aversion’. While capuchin
monkeys responded rationally to changes in wealth and price, they exhibited both
reference-dependence and loss aversion. In the ‘reference point’ experiment, monkeys
preferred gambles with a 50% chance that an experimenter would add a second piece of
fruit to a single fruit offer over a 50% chance that a piece of fruit would be taken away
from a two-piece offer. Monkeys were then given the option between two trades; one of
which was initially two pieces of fruit from which one piece was removed, while the
second trade always started as and delivered just the single piece of fruit. Monkeys
demonstrated a strong preference for the option that did not involve a piece of fruit being
removed, which is indicative of loss aversion. In an extension of the task, capuchins also
exhibited framing effects – becoming risk-seeking when gambles were presented as a loss
and risk-averse when the gamble was presented as a gain (Lakshminaryanan et al., 2008).

Like human and non-human primates, research has also shown that, while rats
respond rationally to changes in wealth and price in certain simulated economic
experiments (Kagel et al., 1981; Kagel et al., 1975; van Wingerden et al., 2015), certain
contexts also reliably give rise to behavioral biases such as loss aversion, risk aversion,
and anchoring (Bhatti et al., 2014; Constantinople, Piet, & Brody, 2019; Kagel et al.,
1986; Kirkpatrick et al., 2015; Koot et al., 2009; Marshall & Kirkpatrick, 2015, 2017;
Rivalan et al., 2009). This has allowed for the investigation of the neuronal mechanisms
underlying such suboptimal behaviors (Ferland et al., 2018; St Onge & Floresco, 2009;
Tremblay et al., 2014; Zalocusky et al., 2016; Zeeb et al., 2009). Yet, to the authors’ best
knowledge, no previous studies have used a simulated ‘stock market’ environment to
explore suboptimal investment behaviors in the rat. Establishing a rat stock market model
Rat ‘stock market’ task reveals human-like investment biases

would provide a valuable opportunity in the future to investigate suboptimal investment behavior at the neural level using techniques not available in human research while also avoiding many of the ‘human’ confounds such as education and numeracy (Kalenscher & van Wingerden, 2011).

In order to explore the use of rats as a model of investor biases, we designed a task that obeyed the key reinforcement contingencies of human stock markets. Our primary goals in paradigm ideation were to simulate: 1) repeated trinary choices between buy, sell and hold options of 3 virtual ‘stocks’, 2) subject-driven ‘demand’ for stocks that resulted in corresponding price fluctuations and potential boom-bust cycles, 3) current reward as a net profit/loss based on ‘price’ changes from previous trials, and 4) opportunity costs associated with both action and inaction in the ‘market.’

By poking into one of five different nosepoke-holes, cohorts of four rats could choose to buy, hold, or sell one of three simulated ‘stocks’ in order to receive liquid reward. The resulting profit or loss on a given trial resulted in delivery of sodium saccharin reward at a volume greater than or less than a reference volume, respectively. Stock prices shifted dynamically according to the buy and sell decisions of all four rats within a trading cohort. Although prices in real asset markets are commonly believed to follow a random walk (Daniel et al., 1998; Fama, 1965; Malkiel, 1973; Samuelson, 1965) and could have been simulated pseudo-randomly a priori, we chose instead to determine stock prices at any given trial based on the current cumulative ‘demand’ from the four
Rat ‘stock market’ task reveals human-like behavioral biases

This mechanism allowed for naturally-occurring “boom and bust” cycles and serial autocorrelation, which have been associated with investor biases in real asset markets (Barberis & Thaler, 2003; Bondt & Thaler, 1985; Hirshleifer, 2001; Shiller, 2003; Xiong, 2013).

2. Materials and Methods

2.1 Subjects

Subjects were 24 adult male Lister hooded rats, 8 of which were bred in house and 16 of which were bred by a commercial supplier (Harlan U.K.), with initial weights between 300g and 475g. Animals were housed in groups of two or three on a 12-hour light: 12-hour dark cycle (7PM lights off). All testing was carried out on weekdays during the light part of the cycle. Rats were habituated to human handling for two weeks and then placed on restricted water access. Rats received water ad libitum from Friday afternoon to Sunday afternoon and for one hour each weekday after testing. Rats’ weights were monitored daily before testing so that no animal was allowed to drop below 85% of its free-drinking body weight. All animals maintained growth during this experiment.

2.2 Apparatus

Testing was carried out in four 34cm × 29cm × 25cm Perspex inner chambers (Med Associates Inc., St Albans, VT). The right wall of the inner testing chamber contained five square nosepoke holes, each accommodating a recessed green LED light (luminosity ~ 4.5 mcd per LED) as well as an infrared sensor to record nosepokes. The right wall
Rat ‘stock market’ task reveals human-like investment biases

contained a recessed custom-built liquid reward magazine with a white LED
(approximately 2072 mcd luminosity) delivering 0.3% weight/volume sodium saccharin
solution at a constant rate of 0.05ml/sec. Capacitive contact lickometers were used to
determine when the rats licked the reward spigot. piezoelectric buzzers signaled reward
availability for ‘gain’ (2900Hz, 85dB) and ‘loss’ (4400Hz, 70db) payoffs during testing.
The reader is referred to Wilson et al. (2006) for details of the operant chambers and
reward delivery system.

Behavioral testing was interfaced by the MED-PC® IV data experimental control system
Behavioral events were time-stamped (2 msec resolution) and recorded for offline data
analysis and session reconstruction using tsch to batch-process data files using a program
in the AWK programming language (Apple Computer Inc., OS X operating system).
Subsequent data analysis was carried out using: Microsoft® Excel for Mac 2011, SPSS®
version 24 for Mac, and R version 3.2.2 for Mac.

2.3 Testing

Six cohorts of four adult male rats (N=24) operated a virtual stock market by nosepoking
in holes to select, and subsequently buy, sell, or hold, virtual assets in order to receive
sweet liquid reward. The reader is referred to the SI for a comprehensive description of
pre-training and shaping procedures prior to behavioral testing. Rats were placed into
individual operant chambers that were networked to dynamically update trading
information across all four chambers in real time. Thus, the buy and sell decisions of one
rat in the cohort affect the share prices faced by all rats on subsequent trials. Rats made
Rat ‘stock market’ task reveals human-like behavioral biases

choices in the task by nosepoking into an illuminated nosepoke hole of a 5-hole array.

Each session comprised two blocks. For each trial, rats performed a sequence of two
nosepokes in order to earn a fixed (block 1) or variable (block 2) volume of reward.

2.3.1 Block 1: Reference Point Establishment

In the initial 15 trials of each testing session (block 1), rats performed two forced-
choice nosepokes into lit (but unblinking) holes, which always resulted in 0.15ml of
reward, consistent with the pre-training reward volume and irrespective of the nosepoke
choices made by the rat. This served as a reference reward volume (hereon, reference
point) from which ‘wins’ and ‘losses’ would later deviate. Once all four rats from a
cohort completed block 1 (mean completion time for block 1 = 279 secs), the group
began trading virtual stocks in block 2 (Fig. 1). In total, rats underwent 8-10 days of
testing, of which the final 7 days were used for analysis.

2.3.2 Block 2: Task Structure

Block 2 lasted 45 minutes, in which a mean of 100 trials were completed. Free
and forced-choice trials for stock selection were pseudorandomly interleaved at a ratio of
3:1, respectively. The trial sequence within block 2 was similar to block 1, with the
exception of the first discriminative stimulus (i.e. nosepoke hole light) and the payoff
structure. Where the available holes were lit but unblinking in block 1, in block 2 the
lights blinked to signify the ‘price’ of each stock (see Fig 1). Each of the three center
nosepoke holes was randomly assigned to one of three stocks (stocks 1, 2, and 3) at the
beginning of each testing session. Stock location remained fixed within a session but
Rat ‘stock market’ task reveals human-like investment biases

varied between sessions, and stock price was signified by the temporal frequency of the flashing LED (blink rate) in the associated nosepoke hole on the first nosepoke response only. The volume of reward rats received upon successful completion of a nosepoke sequence varied (min = 0 ml, max = 0.450 ml, mean = 0.165 ml).

A rat began a free-choice trial by nosepoking into one of the three blinking center holes (holes 2, 3, or 4), where blink rate signified the price of each option. This was analogous to ‘selecting a stock.’ All lights were immediately extinguished for 2 seconds following an initial nosepoke. After the 2-sec pause, the chosen nosepoke hole (e.g. hole 2) and the immediately adjacent nosepoke holes (e.g. holes 1 and 3) were illuminated (but not blinking). The rat was then free to nosepoke a second time into one of the three lit holes, which represented an ‘option selection’ (‘buy’, ‘hold’, or ‘sell’). Following the second nosepoke response, the hole lights were immediately extinguished and one of two tones (either a gain tone or a loss tone) was paired with the conditioned light stimulus at the reward spigot to indicate the reward outcome of their choice sequence. We enforced a minimum trial length of 7 sec. As long as the minimum 7 sec had elapsed, the trial ended once the rat ceased licking at the reward spigot (interlick interval >300 msec). The trial was followed by an intertrial interval with a mean of 2 sec. In order to allow for the natural development of behavioral strategies within the task, rats were given no training on the association between changing blink rate and profit/loss of a buy/sell option.

2.3.3 Stock Price & Blink Rate

A stock’s price depended on its total number of shares held across all four rats, with greater cumulative shares leading to higher prices, and lower cumulative shares
resulting in lower prices. The variability in stock prices based on ‘demand’ was the primary motivation for incorporating 4 rats into each trading cohort. This allowed us to achieve some likeness to the stochastic share price fluctuations observed in human markets.

The price of a given share at any moment was equal to:

\[\text{Share Price} = \left(\text{Initial Price} \times \text{Cumulative \# of Shares} \right) / 400 \]

The initial price of stocks 1, 2, and 3 was fixed across sessions and was arbitrarily set at 80, 140, and 220 arbitrary units respectively. A stock’s price increased with the demand for the share as indicated by the number of shares ‘bought’ by the rats, and conversely decreased with the number of ‘sales’ of that stock. By varying the initial starting price across stocks, we were able to manipulate the ‘step’ in reward volume a rat would receive for choosing the buy/sell option while keeping blink rate constant. Rats held a maximum of 830 shares and a minimum 40 shares.

The blink rate that signaled a stock’s price operated on a 50/50 on/off cycle so that the time between each flash was equal to each flash length. The on/off time period is the reciprocal of blink rate (Hz):

\[\text{On/Off Period} = \left[\frac{2}{(\text{Cumulative \# of Shares} / 100)} \right] \times 1 \text{ second} \]
Rat ‘stock market’ task reveals human-like investment biases

Each rat (4 rats per testing cohort) was initially endowed with 100 shares of each of the three stocks, which meant that at the start of a session, the blink rate was the same for each of the three stocks: \[2/((100 \times 4 \text{ rats})/100) \] \times 1 \text{ sec} = 0.5 \text{ sec on/off} = 2 \text{ Hz}.

2.3.4 The ‘Hold’ Option

By choosing to nosepoke in the same hole as the initial nosepoke (e.g. hole 2), the rat selected an option equivalent to a ‘hold’ in the task. A conditioned light stimulus paired with a gain tone immediately indicated the availability of reward at the reward spigot. Choice of the ‘hold’ option always resulted in the reference point volume of reward (0.15ml) plus a smaller ‘dividend’ reward (mean = 0.015 ml). Choice of the ‘hold’ option neither incremented nor decremented the number of shares held in a rat’s ‘portfolio.’ Thus, this action did not affect the subsequent blink rates representing the price of the chosen stock.

The dividend amount was based on the individual subject’s current share holdings of that stock, and had a 2/3 probability of being low (e.g. 2% of holdings of the given stock) and a 1/3 probability of being high (e.g. 6% of holdings of the given stock).

2.3.5 The ‘Sell’ Option

By choosing to nosepoke in the hole to the right (e.g. hole 3) of the initial nosepoke hole, the rat would be selecting an option equivalent to ‘sell’ in the task. Note that ‘buy’ and ‘sell’ were counterbalanced to the left and right across rats. After a nosepoke, a conditioned light stimulus immediately indicated the availability of reward at the reward spigot, and either a gain or a loss tone indicated whether the reward volume was greater than or less than the reference point of 0.15ml, respectively. The ‘sell’ action decremented the number of shares held in the rat’s virtual ‘portfolio’ by 10, which was...
Rat ‘stock market’ task reveals human-like behavioral biases

also reflected in the total number of shares held cumulatively across all rats. Akin to demand, the price of the chosen stock subsequently fell for all four rats in each of the testing chambers at that time.

The volume of reward a rat received on a given ‘sell’ trial was proportional to the amount gained or lost in the ‘transaction’, added to or subtracted from the reference point (0.15 ml), respectively.

Profit/Loss = Price_t - Price_{t-1}

Reward = 0.15 ml + (profit or loss)*0.01 ml

If the selected stock’s share price had increased (i.e. a greater cumulative number of shares now held by all four rats) from the previously selected trial, t-1, relative to the current trial, t, then the ‘sell’ option resulted in a gain of that magnitude. Conversely, if the share price had decreased since the previous trial, then the rat experienced a loss of that magnitude. This is intended to be akin to an investor that buys a stock at e.g. $100 and subsequently sells it at $110 for a $10 profit. Had the share price fallen to $90 in this example, the sale would have resulted in a $10 loss.

2.3.6 The ‘Buy’ Option

By choosing to nosepoke in the hole to the left (e.g. hole 1) of the initial nosepoke hole, the rat would be selecting an option equivalent to a ‘buy’ in the task. The conditioned light stimulus immediately indicated the availability of reward at the reward spigot, and either the gain or the loss tone indicated whether the reward volume was greater than or less than the reference point of 0.15ml, respectively. This action incremented the number of shares held in the rat’s virtual ‘portfolio’ by 10, which was also reflected in the total number of shares held cumulatively across all rats. Akin to
demand, the price of the chosen stock subsequently rose for all four rats in each of the testing chambers at that time.

The volume of reward a rat received on a given ‘buy’ trial was proportional to the amount gained or lost in the ‘transaction’, added to or subtracted from the reference point (0.15 m), respectively.

\[\text{Profit/Loss} = \text{Price}_{t-1} - \text{Price}_t \]

\[\text{Reward} = 0.15 \text{ ml} + (\text{profit or loss}) \times 0.01 \text{ ml} \]

If the selected stock’s share price had decreased (i.e. fewer cumulative number of shares now held by all four rats) from the previously selected trial, \(t-1 \), relative to the current trial, \(t \), then the ‘buy’ option resulted in a gain of that magnitude. Conversely, if the share price had increased since the previous trial, then then the rat experienced a loss of that magnitude. This is intended to represent the missed opportunity cost experienced by an investor that, for example, fails to invest on day 1 when a stock is $50 a share, only to find that the share price had increased to $60 per share on day 2.

2.4 Data Analysis

Offline data analysis was performed on behavior from the final 7 testing sessions. Summary measures were aggregated per subject across the 7 sessions and analyzed in SPSS. Regressions and hazard models were conducted on non-aggregated data in R. R’s \texttt{nlme} package was used in the generalized linear mixed modeling of MT and PPL with reward (Pinheiro et al., 2017). Relationships of task predictors to choices were evaluated by multinomial (option choice) or binomial (choice optimality) logistic regression using \texttt{mlogit} package in R (Croissant, 2013). In order to facilitate comparison of rat and
human disposition effect behavior, we also conducted a Cox proportional hazard model, a methodology often employed in the behavioral finance literature (Barber & Odean, 2011; Odean, 1998), to evaluate rats’ hazard ratios at different rates of return. Cox proportional hazard models were estimated using the survival package in R (Therneau, 2014). Effect sizes for paired-sample t-tests are reported as Cohen’s d calculated from pooled sample variance.

2.5 Behavioral Measures

Behavioral measures were: stock choice; option (buy/hold/sell) choice; (sub)optimality of option choice; movement time to collect reward (MT); and post-pump licking (PPL), which is defined as the amount of time spent licking at the reward spigot after mechanical cessation of reward delivery. Thus, PPL can be interpreted as a measure of post-consumption behavior, and MT a measure of pre-consumption behavior. MT durations > 15 secs and PPL > 10 secs were omitted from analysis, as they were indicative of the rat taking a break or perseverating at the reward spigot, respectively.

2.6 Proportion of Realized Gains & Losses

An investor who holds a winning stock in her portfolio without selling it holds a ‘paper gain.’ Once sold, the paper gain becomes a ‘realized gain.’ Adapted from Odean (Odean), we calculated the proportion of gains realized (PGR) and the proportion of losses realized (PLR) in order to establish whether rats exhibited the disposition effect (when PGR > PLR) in our stock market task. The disposition effect represents a pattern in which stocks with a winning history are sold and those with a losing history are held,
resulting in suboptimal performance given the temporal autocorrelation in stock price.

Odean (Odean) computed PGR and PLR as:

\[
PGR = \frac{\text{# of realized gains}}{\text{# of realized gains} + \text{# of paper gains}}
\]

\[
PLR = \frac{\text{# of realized losses}}{\text{# of realized losses} + \text{# of paper losses}}
\]

Above, the denominator represents the number of opportunities to realize a gain (loss). In the current experiment this is slightly less straightforward, as interleaving of forced-choice and paired-choice trials precluded the opportunity to realize a gain (loss) on every stock on every trial. Therefore, the PGR (PLR) denominator was calculated on a stock-by-stock basis as any trial on which the rat had the opportunity to select and sell a stock that had gone up (down) in price since the previous purchase.

2.7 Cox Proportional-Hazard Modeling

The Cox proportional-hazard model is a semi-parametric analysis that makes no assumption about the shape (e.g. linear) of the baseline hazard rate. This model has been employed in a number of behavioral finance studies (Barber & Odean, 2011; Feng & Seasholes, 2005; Shumway & Wu, 2005; Strahilevitz et al., 2011) to characterize the likelihood of selling a stock in a time-series conditional on some factor (e.g. return magnitude or valence). The estimated model takes the following form:

\[
h(t, x(t)) = h_0(t)exp (\beta_1x_1 + \cdots + \beta_px_p)
\]

where the hazard rate, \(h(t, x(t))\), on trial \(t\) is conditional on \(p\) predictors. The \(\beta\) coefficients are estimated from the data. The main assumption of the model is that the hazards are
proportionally dispersed at all time-points, but this model can be extended to include
time-varying covariates (e.g. blink-rate). The model can also be stratified to incorporate
repeated-measures designs, as in the current study. From this model, one can predict the
hazard ratio of a subject choosing to sell a given stock at time \(t \) for each covariate \(k \) as:

\[
exp(\beta_k) = \frac{h_0(t)exp(\beta_1x_1 + \cdots + \beta_k(x_k + 1) + \cdots + \beta_p x_p)}{h_0(t)exp(\beta_1x_1 + \cdots + \beta_k x_k + \cdots + \beta_p x_p)}
\]

Here, the hazard ratio, \(exp(\beta_k) \), is the ratio of two stocks with the same \(k \) covariates and
where the numerator stock has an \(x_k \) that is one unit greater than the denominator (Barber & Odean, 2011). To maximize the potential of the model, a continuous variable (such as return on sale) can be transformed into dummy variables that represent 4% wide bins, set to 1 on trials within that range, or 0 otherwise. This allows the model to isolate the marginal hazard contributed by each bin when all other bins are zero. The reader is referred to Cox and Oakes (Cox & Oakes) for further details on the Cox proportional-hazard analysis. The analysis and subsequent Chi-squared tests were carried out using the \texttt{survival} package in R statistical software (Therneau, 2014). For any sale trial \(x \), return on sale was calculated as:

\[
Return(x) = \frac{Price_{sale} - Price_{purchase}}{Price_{purchase}}
\]

where the difference in current sale price and previous purchase price was averaged relative to the previous purchase price. Trials were included in the analysis only if the selected stock had been purchased at least once previously. The model was stratified over subject, stock, and session to account for the effects of the repeated-measures design.

Blink rate, counterfactual reward, sales count and return on sale were included as time-
Rat ‘stock market’ task reveals human-like investment biases

3. Results

3.1 Task Performance

Rats (N=24) completed two blocks of trials over the course of 7 sessions. On average, rats completed 100.0 (SD = 31.76) trials per 45-minute session in Block 2. Fig 2 depicts the resulting price fluctuations of the three stocks in example trading sessions. On free choice trials, rats showed no preference for either of three stocks across all sessions. The average proportion of trials in which subjects chose Stock 1, 2, and 3 were distributed tightly around chance at .33, .35, and .32, respectively. A repeated-measures ANOVA indicated that there was no significant effect of Stock identity per se (within-subjects, 3 levels: Stock 1, Stock 2, Stock 3) on choice ($F_{(2,46)} = 0.47, p = NS$).

Within the task, a rat could incur losses and gains based on its stock and option selection. The profit (loss) of a trade was translated into a liquid equivalent and added to (subtracted from) a 0.15ml reference point. Rats received a mean of 0.165ml (SD = 0.044ml) and median of 0.170 ml (IQR = 0.036 ml) per trial. Therefore, the set reference point (0.15ml) was within about 0.01ml of the experienced measures of central tendency. During trading (i.e. when a buy or sell option was selected), rats received a profit on nearly 2/3 of trials (63.7%) and a loss on 36.4% of trials. Although rats profited on a greater proportion of trials, rats lost a mean of 0.052 (SD = 0.005) ml per trial while profiting only 0.026 (SD = 0.006) ml of reward on average ($M_{Difference} = 0.027ml, SEM = \ldots$)
0.001ml), paired sample t-test: $t(23) = 21.04$, Cohen’s $d = -4.30$, $p < .001$. Rats that lost more reward on average did not also gain more reward on average, Pearson’s $r = .37$, $p = .08$. The average loss trial resulted in 0.10 (SD = 0.03) ml of reward, and only a small number of trials (0.7%) were associated with a very large loss that resulted in a payoff of no reward.

3.2.1 The effect of outcome tone on reward expectation and approach motivation

We hypothesized that rats’ expectations of reward on the current trial would be differently affected by the gain or loss tone, which signaled whether the upcoming reward would be greater than or equal the RP (0.15 ml) or less than the RP, respectively. Given that humans experience losses roughly twice as strongly as equivalent gains (Kahneman & Tversky, 1979), we expected loss tones to elicit a measurable effect on behavior if rats had formed a reference point at 0.15 ml. We evaluated rats’ movement times (MT) to collect reward after the tone onset in order to determine whether the loss tone may have shaped rats’ motivation for reward, whereby slower MT’s would indicate decreased motivation (Rivalan et al., 2013). A generalized linear mixed model was fitted to evaluate the relationship of current reward volume (ml) and outcome (0=Gain, 1=Loss), as well as their interaction, as fixed predictors of MT with random intercepts for subjects and random slopes for session. The GLMM results indicated that reward was not a significant predictor of MT at a loss ($b = -0.78$, $t = -1.05$, $p > .05$) or at a gain ($b = 0.73$, $t = 1.70$, $p > .05$). The interaction between reward and outcome was not significant ($b = -1.51$, $t = -1.76$, $p > .05$). However, we found a robust effect of loss on movement time ($b = 1.68$, $t = 14.95$, $p < .001$). This behavior suggests that rats learned to frame their expectations
about reward in terms of the gain or loss tone.

In order to further quantify the differences in expectations of reward at the reference point vs. a loss or a gain, we evaluated subject-wise variance in mean MT separately with a repeated measures ANOVA (3 levels = RP, Gain, Loss) and post-hoc tests with the Bonferroni correction on aggregated data. This analysis revealed that there was a significant main effect of outcome on MT, $F(1.16, 35.69) = 133.29, \eta_p^2 = .85, p < .001$. Fig 3a depicts the significant jump in mean MT that occurs at the 0.15 ml reference point, whereby rats moved 1.56 ($SEM = 0.13$) secs more quickly to collect a gain reward compared to a loss reward on average ($p < .001$). Rats approached a reference point (RP) reward 1.42 ($SEM = 0.12$) secs more quickly than a loss ($p < .001$), but only 0.14 ($SEM = .04$) secs more slowly than a gain on average ($p < .01$). Despite the continuity of the reward volume between a loss and a gain, rats demonstrate a significant discontinuity in approach behavior based on the outcome tone and volume relative to the RP. Rats were substantially slower to approach the reward at RP and at a loss.

3.2.2 The effects of the gain vs. loss tone on expected and experienced reward

We next sought to determine whether rewards were experienced differently depending on whether the volume was at, above or below the RP. Here, we used post-pump licking (PPL) at the reward spigot after offset of delivery (where reward was delivered at a constant rate, see section 2.2 for details) as a measure of experienced satisfaction and ‘savoring’ of reward (Wilson et al., 2006), as a measure of experienced reward satisfaction. A generalized linear mixed model was fitted to evaluate the effects of
current outcome and reward on PPL. The GLMM revealed a significant interaction effect between reward and current outcome \((b = 2.29, t = 4.64, p < .001) \). As is shown in Fig 3b, PPL increased linearly with gain reward volume \((b = 2.88, t = 13.18, p < .001) \), whereas there was no significant relationship between PPL and loss reward volume \((b = 0.59, t = 1.34, p > .05) \). The linearly increasing trend demonstrates a significant discontinuity at the RP and at very high and very low reward volumes.

In order to quantify the discontinuity in licking behavior at the RP vs. a gain or loss, repeated-measures ANOVA (3 levels = RP, Gain, Loss) and post-hoc tests with Bonferroni correction were carried out on aggregated data. The repeated measures ANOVA revealed a robust main effect of outcome on PPL \((F_{1.28, 29.53} = 21.82, \eta^2_p = .49, p < .001) \). Rats spent on average 0.31 (SEM = .06) secs longer licking at the reward spigot after dispensing ceased on a gain trial compared to a loss trial \((p < .001) \). In contrast to (pre-consumption) MT behavior, (post-consumption) PPL at the RP was not significantly different than loss trials \((M_{DIFF} = 0.13, SEM = .05 \text{ secs, } p > .05) \), yet it was 0.18 (SEM = .02) secs shorter than gain trials \((p < .001) \). Thus, PPL at the RP more closely reflected loss trials than gain trials. Based on the pattern of PPL, rats treated the RP as being similar to a loss.

3.3.1 Stock choice

Although rats did not exhibit a group-level preference for any particular stock across sessions, visual inspection of individual rats’ stock choices did indicate that preferences may have developed within sessions (see SI). In order to determine which
factors may have contributed to the choice of a stock on a given free-choice trial, we
performed a multinomial logistic regression with average previous reward (ml), stock
hole location, perseveration at the previous stock choice (0 = switch, 1 = stay), and blink
rate (Hz) as predictors of the trinary choice. Here, we refer to average previous reward as
the running average of reward volume from the 5 most recent trials on which that stock
was selected. Blink rate is defined as the Hz of the on/off cycle at the selected stock hole
at the time of choice. Neither the outcome (gain or loss) nor the location of response 2
(buy/hold/sell) on the immediately preceding trial were found to be significant predictors
of stock choice and were excluded from the model. Regression coefficients are displayed
in Table 1. In contrast with our analysis of stock choices pooled across rats and sessions
(see section 3.1), the logistic regression indicated that rats demonstrated a slight
preference for stock 3 relative to stock 2 (but not stock 1), \(b = -0.12, t = -2.11, p < .05. \)

3.3.2 The effect of average previous reward volume on stock choice

Average previous reward (of a stock) was added as a predictor to the model in
order to ascertain whether rats returned more often to stock choices that were previously
rewarding and less often to stock choices that were previously less rewarding. The
average reward of the previous 5 trials on which that stock had been selected was the
strongest predictor of stock choice (\(b = 2.98, t = 7.15, p < .001 \)). This pattern suggests
that rats were tracking the average reward earned from each stock option, and were more
likely to repeat those choices that had recently resulted in the highest average reward
volume.
Rat ‘stock market’ task reveals human-like behavioral biases

3.4.1 Option choice

In order to characterize rats’ choice of trading options (buy, hold, sell), we carried out a multinomial logistic regression with average reward, previous loss, and change in blink rate as predictors. Here, the we refer to previous trial as the immediately preceding trial and not necessarily the trial on which the stock had been previously selected. Stock choice was not entered as a significant predictor of option choice.

We also evaluated the experienced risk and profit associated with the buy, sell, and hold options. Using the variability of outcome volume as a measure of an option’s risk, we found that the sell option was the riskiest ($\sigma^2 = .0028m^2$) option, although not significantly more so than the buy option ($\sigma^2 = .0026m^2$, $p>.05$). The hold option ensured a much more certain (or ‘safe’) outcome ($\sigma^2 = .0006m^2$), leading to the average reward more than four times more reliably than either of the trade options.

3.4.2 The effect of change in blink rate on option choice

Change in blink rate, which indicated the change in stock price from the previous trial, appeared to have a clear effect on rats’ choices (see Fig 4). If rats did indeed decode the functional meaning of blink rate, we would expect to find an effect of change in blink rate on option choice within each bin. If rats also learned to discriminate between the direction of blink rate change (or null change) and the optimality of the buy/sell option, we would expect that the null change bin would be predictive of the ‘hold’ option, the negative change bin of the ‘buy’ option, and the positive change bins of the ‘sell’ option. Indeed, we found that given no change in blink rate from the previous trial, rats were
Rat ‘stock market’ task reveals human-like investment biases

79% \((t = 39.00, p < .001)\) less likely to choose the buy option and 81% \((t = 38.56, p < .001)\) less likely to choose the sell option relative to the hold option (see Table 2 for regression coefficients). However, rats were more likely to choose the hold option than either of the trade options until the absolute difference in blink rate from the previous trial was greater than 0.15 Hz (i.e. the equivalent of either 3 buy or 3 sell decisions). Once blink rate had increased by more than 0.15 Hz relative to the previous trial, rats were most likely to choose the sell option \((t = 8.99, p < .001)\). When blink rate had decreased by more than 0.15 Hz relative to the previous trial, rats were most likely to choose the buy option \((t = 6.95, p < .001)\).

3.4.3 The effect of previous reward volume on option choice

It stands to reason that rats chose the option hole based on the rate of reward earned from selecting that option on prior trials within a session. In order to evaluate whether rats based their choices on the previous reward rate of a given option, we included the average previous reward of an option as predictor. Overall, the average of the reward earned from selecting an option (buy, hold, sell) on previous trials was negatively correlated with option choice on the current trial \((b = -2.34, t = -3.46, p < .001)\). Since the hold option was consistently associated with the lowest rate of reward, this suggests that a rat was less likely to repeat a choice of the buy or sell option despite the higher average reward rate.

3.4.4 The effect of previous loss on option choice

The outcome of the immediately preceding trial was a significant predictor of
Rats selected the hold option ~10% less after a previous loss compared to a previous gain. The likelihood of choosing both the ‘buy’ ($t = 3.30, p < .001$) and the ‘sell’ option ($t = 2.68, p < .01$) increased significantly after a loss. In order to determine whether this reflected perseveration, we performed paired sample t-tests of % stay choices of the ‘buy’ and ‘sell’ options after a gain vs. loss (‘hold’ conditions always resulted in a gain). We found no significant difference between perseveration at the ‘buy’ ($M_{\text{Gain}} = 25.6\%, M_{\text{Loss}} = 28.4\%, t(23) = -1.29, p > .05$) or ‘sell’ ($M_{\text{Gain}} = 27.4\%, M_{\text{Loss}} = 26.7\%, t(23) = 0.45, p > .05$) option after a loss vs. after a gain. Thus, this change in behavior reflected a decreased likelihood of choosing of the safer ‘hold’ option after a previous loss, and not perseveration at either the ‘buy’ or ‘sell’ options after a loss.

3.5.1 Optimal responses

In order to characterize the optimality of rats’ responses (0=suboptimal, 1=optimal), we performed a binomial logistic regression (see Table 3 for regression coefficients) with the following predictors: previous outcome (0=gain, 1=loss), current trade option (0=hold, 1=trade), session quartile (1-4), and the absolute value of change in blink rate (0.05-0.30), as well as a previous outcome by current option interaction and previous outcome by change magnitude interaction. The absolute value of the change in blink rate was divided into bins separated by 1 unit change in price (i.e. 1 bin = $\Delta \pm 0.05$ Hz = Price Δ of ±1 share). The two trade options (buy and sell) were collapsed into a bivariate choice measure representing rats’ choice between trading or holding, or ‘current trade option.’ However, the optimality of an option was assessed before collapsing the measure, thereby preserving the correct proportion of optimal choices overall.
3.5.2 The effect of current option on optimal responses

In general, rats were less effective at choosing the trade options optimally relative to the hold option. Rats were 71\% less likely to choose an optimal trade response than an optimal hold response ($b = -1.25, t = -30.66, p < .001$). Further analysis suggests that although rats had learned to trade vs. hold optimally, they frequently chose the wrong trade option at small changes in absolute blink rate. This effect was stronger for the ‘sell’ condition than for the ‘buy’ condition (see Figs 4a-b). This pattern of behavior suggests that rats learned to respond optimally in the task, but had difficulty discriminating small changes in the blink rate.

3.5.3 The effect of absolute change in blink rate change on optimal responses

We were also interested in comparing behavior at small changes in blink rate vs. large changes in blink rate. An absolute value of 0.05 Hz was associated with the lowest proportion of optimal responses (see Fig 4b), which likely reflects greater difficulty in differentiating between a change of ±0.05 Hz vs. no change. The effect of absolute blink change was highly significant at each level relative to a of 0.05 Hz (all p’s < .001, see Table 3). As the magnitude of blink rate change increased from 0.05 Hz, the likelihood of responding optimally rose. At the highest absolute blink rate change, rats chose the optimal trade outcome in ~60\% of trials and were 11.5 times more likely to choose the optimal outcome relative to ±0.05 Hz ($b = 2.45, t = 5.59, p < .001$).

At zero change, rats were 5.7 times more likely to choose the optimal hold outcome relative to an absolute change of 0.05 Hz ($b = 1.74, t = 40.49, p < .001$). An optimal hold response at zero was significantly more likely than an optimal trade
response at magnitudes of 0.05 Hz ($t = -40.49, p < .001$), 0.10 Hz ($t = -12.15, p < .001$), and 0.15 Hz ($t = -5.50, p < .001$), but not more likely than 0.20 Hz ($t = -0.91, p > .05$), 0.25 Hz ($t = 0.76, p > .05$), or 0.30 Hz ($t = 1.62, p > .05$). This pattern of behavior suggests that rats were just as good at responding optimally in the hold condition at zero change in blink rate as they were at the correct trade option at large changes in blink rate.

3.5.4 The effect of session quartile on optimal responses

We also examined whether learning occurred over the course of the sessions. Although session number (1-7) was not entered as a significant predictor into the model, we did find that session quartile was a predictor of optimal responding over the course of a session. In any given session, rats made more (~15%) optimal choices in the last quartile relative to the first ($t = 2.95, p < .01$). There were no differences between the 4th quartile and either the 2nd ($t = -0.26, p > .05$) or 3rd quartile ($t = -0.35, p > .05$).

3.5.5 The effect of previous outcome valence on optimal responses

We next sought to further explore how a loss on the immediately preceding trial affected choice behavior on the current trial. We found a robust effect of previous loss on optimal responses. As illustrated in Fig. 5a, a previous loss reduced the overall likelihood of an optimal response by nearly 10% ($t = -3.90, p < .001$). The interaction term between a previous loss and a trade (vs. hold) option was also significant ($b = 0.84, t = 2.30, p < .001$). Rats were ~15% less likely to choose the hold option optimally after a loss trial (Fig. 5b, $t(23) = -7.56, p < .001$), yet there was no difference in optimal choice of the trade option after a loss trial ($t(23) = 0.79, p > .05$). We also found a significant relationship between the absolute value of blink rate change and the outcome of the
Rat ‘stock market’ task reveals human-like investment biases

previous trial. At an absolute change of 0.10 Hz (i.e. at a price differential of ± 2 shares from the previous trial), rats were 45% less likely to choose optimally after a loss \((b = -0.60, t = -4.08, p < .001) \) relative to a loss at an absolute change of 0.05 Hz. We did not find significant previous outcome by absolute change interactions at any other levels. This pattern was as if rats became more risk seeking after a loss, resulting in a higher likelihood of responding suboptimally.

3.6.1 Win-Stay/Lose-Shift vs. Optimal Strategy

We next investigated whether simple win-stay/lose-shift (WSLS) strategy at a nosepoke hole location interacted with choice of the optimal strategy based on option choice (e.g. choice of the left ‘sell’ option after a blink rate increase). In order to establish whether there was an interaction between the model-free WSLS strategy and the model-based optimal strategy, we compared the percentage of optimal choices on congruent trials where WSLS was also the optimal option strategy vs. incongruent trials where WSLS was not the optimal strategy. On average across rats, the WSLS strategy was also the optimal strategy on 44.5% of all trials. Of those trials, WSLS was the optimal strategy on 38.2% of trials after a gain and 78.0% of trials after a loss.

We carried out a repeated measures ANOVA on rats’ average proportion of optimal choices with strategy congruence (congruent: WSLS = optimal; incongruent: WSLS = suboptimal) and previous outcome (Win-Stay vs. Lose-Shift) as within-subject factors. We found no main effect either congruence \(F(1,23) = 1.14, p = NS \) or previous outcome \(F(1,23) = 0.20, p = NS \) on the proportion of optimal choices. However, one-sample ANOVA’s revealed that the overall proportion of optimal win-stay trials \((M = 40.5\%, SD = 4.3\%) \) was significantly higher than chance \((33.3\%), t(23) = 8.21, p < .001\).
Conversely, the overall proportion of optimal lose-shift trials ($M = 37.3\%, SD = 8.4\%$) was significantly lower than chance (66.6%), $t(23) = -17.14, p < .001$. Thus, rats’ optimal WSLS behavior was better than expected after a gain, but worse than expected after a loss.

We found a significant interaction effect of previous outcome on congruent trials compared to incongruent trials ($F_{(1,23)} = 9.15, \eta^2_p = .29, p < .01$). As illustrated in Figure 5c, rats were more likely to choose the optimal strategy if it aligned with the win-stay strategy compared to trials on which they conflicted, although post-hoc paired t-tests revealed that this difference did not reach significance ($M_{\text{Diff}} = 4.7\%, t(23) = 1.89, p > .05$). Conversely, rats were less likely to choose the optimal lose-shift strategy when the two strategies aligned (35.5%) compared to when they conflicted (44.3%), and this difference was significant: $M_{\text{Diff}} = 8.8\%, t(23) = -2.66, p < .05$. This behavior suggests that a previous loss differentially engaged model-free and model-based strategies in the task.

3.7.1 The effect of returns on choice of the sell option

Over the 7 testing sessions, returns from selling a stock ranged from -57.1% to 26.5% ($SD = 8.5\%$), with an average return of 0.3%. In order to determine whether this was indicative of the disposition effect, we determined the proportion of gains realized (PGR) and the proportion of losses realized (PLR) for each rat across each stock and session (see Methods). PGR and PLR represent the number of trials a rat sold at a gain/loss with respect to the opportunities it had to sell at a gain/loss. Empirical studies of
the disposition effect in humans have found that PGR is consistently above PLR (Odean, 1998), which indicates that investors are selling at a gain on a greater proportion of opportunities than at a loss. We found that rats had a mean PGR of .12 (SEM = .02) and mean PLR of .09 (SEM = .01). The results of a paired-sample t-test revealed that rats realized gains more often than they realized losses, \(t(23) = 2.22 \), Cohen’s \(d = 0.80 \), \(p < .05 \), with no correlation between PGR and PLR (Pearson’s \(r = .33 \), \(p = .12 \)).

Our analysis of the disposition effect proceeded by fitting a Cox Proportional Hazards model (see Methods). Stratifying over subject, stock, and session, we also included two factors as time-varying covariates in the model: counterfactual reward and the number of times the rat had chosen the ‘sell’ option previous to that trial. Counterfactual rewards represented the volume of reward a rat could have earned had it chosen a different option. We found that the addition of counterfactual reward significantly increased the model’s \(R^2 \) from .57 to .65 (\(\chi^2(1) = 635.23 \), \(p < .001 \)). This pattern is as though rats were considering the outcomes of the alternative options when making a response. Fig 6 illustrates the ‘hazard’ of an animal selling a stock on a given trial based on the potential returns (see Table 4 for model coefficients). In line with the PGR-PLR analysis, this revealed that rats were more likely to sell a stock at a gain than at a loss, i.e. rats exhibited the disposition effect.

4. Discussion

We found evidence that rats exhibited a number of investor biases that are well-
established in humans (and to some extent in non-human primates as well, see Santos and Platt (Santos & Platt) for a review), but that remained largely unexplored in rats. Within our task, rats nosepoked into blinking holes in order to choose and subsequently buy, hold or sell a virtual stock. In order to perform optimally, rats were required to integrate previous reinforcement experience with current changes in blink rates. Suboptimal behavior resulted in a ‘loss’, which was equal to the reference point (RP = 0.15 ml) less the liquid equivalent of the trading loss. Although loss rewards were less than the reference point, loss trials still resulted in an average of 0.10 ml reward.

By explicitly signaling trial gains and losses with respect to a reference point of 0.15 ml, we were able to infer how expectations about lower or higher reward volumes affected rats’ motivation to collect reward. After a gain tone, MT to collect reward became substantially quicker (see Fig 3a). Before even experiencing the amount of reward, rats’ languid approach after hearing the loss tone implies that the stimulus reshaped expectations about the desirability of the reward volume. Furthermore, although reward outcomes at the 0.15 ml reference point were signaled as a gain, rats approached the RP of reward significantly more slowly than other gain outcomes. This discontinuity suggests that rats had some prior expectations of the reward volume based on the outcome of their choices that changed approach behavior at the RP. Thus, rats’ behavior is consistent with the idea that the loss tone conceptually reframed e.g. a 0.10 ml reward as a 0.05ml loss from the 0.15 ml reference point, and a 0.15 ml reward as a zero gain.
Rat ‘stock market’ task reveals human-like investment biases

Post-pump licking (PPL) was measured as a behavioral indicator of post-consumption ‘savoring’ or ‘satisfaction’ (Wilson et al., 2006). Rats spent less time licking at the reward spigot (PPL) after a loss outcome compared to a gain outcome (see Fig 3b) but not an RP outcome, which indicates that rats savored losses less so than they did gains, but not less than outcomes at the RP. After a small jump from the RP, PPL increased monotonically with reward volume after a gain. We found no significant linear trend between reward volume and PPL for losses. Although the custom-designed reward-delivery system was built to deliver the liquid reward at a slow, constant rate, it is possible that this effect can be explained purely based on greater reward volumes. However, this is unlikely to explain the discontinuity in PPL at the RP (which was paired with a gain tone). This behavior suggests that, post-consumption, rats experienced gain rewards differently than a reference point reward or a loss reward, whereby RP and loss rewards were less worth savoring than gain rewards.

The reframing of gains as losses based on a reference point (as opposed to objective zero) can be defined as ‘anchoring’ (Kahneman & Tversky, 1979). Both MT and PPL behavior suggest that rats formed an anchor at 0.15 ml of reward rather than at 0 ml. This finding supports and extends recent work exploring reference-dependent behavior in rats (Bhatti et al., 2014; Constantinople, Piet, & Brody, 2019). Bhatti and colleagues (Bhatti et al., 2014) found that rats in a T-maze preferred an arm that both contained and delivered one pellet (gain frame), over an arm that contained four visible pellets but only delivered one (loss frame). The researchers found that rats preferred the 1-pellet arm to the 4-pellet arm, putatively because receiving only one of the four pellets
The task design by Bhatti and colleagues (Bhatti et al., 2014) assumes that rats’ reference point for losses and gains was based on the difference between visible pellets and delivered pellets, rather than on previous experience or expectations. Only one pellet had been consistently delivered across all trials, which implies that a rat’s reference point should never have been anything other than one. Thus, it is unclear whether the observed results reflected a learned avoidance due to the perceived loss of three pellets, or rather more simply to the punishing effect of inaccessible food (Amsel, 1958; Lawson & Marx, 1958). Our own task design differs in that the reference point of reward here was explicitly established in block 1, and closely approximated the mean and median volume of reward delivery in block 2. In other words, the behavioral effects of gains and losses in our task were categorized relative to rats’ average expected reward (or the ‘status quo’) rather than to zero.

We show that rats exhibited both optimal and suboptimal performance within the task, and that rats appeared to be utilizing a mixture of simple reinforcement and more sophisticated model-based strategies. Although classical views of serial pattern learning (e.g. Capaldi et al., 1980; Hulse, 1973) tended to view strategy use as mutually exclusive, recent work supports the perspective that the concurrent mechanisms, such as the combination observed here, are more likely to drive the encoding and reproduction of complex sequential behavior (Muller & Fountain, 2010, 2016). This is exemplified here
Rat ‘stock market’ task reveals human-like investment biases

in that task performance was highly dependent on both the magnitude of the change in blink rate and the outcome of the previous trial. Overall, rats’ optimal response rate was highest when choosing the hold option, although this was not significantly different than optimal responses in each of the trade options at greater absolute changes in blink rate (Fig 4). Suboptimal behavior at lower magnitudes of change (i.e. at differences of ±1-3 shares) could primarily be explained by rats’ perceptual uncertainty in discriminating blink rate changes, and the consequent uncertainty about the optimal response. The weak price change signal led to a greater likelihood of choosing the suboptimal hold option than the optimal trade option at low blink rate changes. This indicates that rats were risk averse under uncertainty about price changes: they preferred to select the hold option for a smaller, safer reward over a riskier trade option for a larger, riskier reward when the optimal outcome was unclear. This is a well-characterized bias, referred to as the ‘equity premium puzzle’ in human stock markets, whereby investors continue to purchase ‘risk-free’ bonds despite their considerable underperformance with respect to stocks (Benartzi & Thaler, 1995). These results are supported by numerous studies demonstrating that rats, like humans, tend to be risk averse under uncertainty, and furthermore that such behavior is modulated by the mesolimbic dopamine system, which is largely conserved across species (Constantinople, Piet, Bibawi, et al., 2019; Kagel et al., 1986; Pais-Vieira et al., 2007; Simon et al., 2009; St Onge & Floresco, 2009).

We observed a robust decrease in optimal performance on trials immediately preceded by a loss (Fig 3a). Behavioral research in humans (Charness & Levin, 2005) has found that performance drops by nearly 50% when reinforcement and utility
maximization rules conflict. Thus, rats may have found it difficult to repeat an option that previously resulted in a loss, but that represents the optimal choice on the current trial. Similarly, a previous loss may have interfered with a rat’s ability to update expectations (based on prior reinforcement) with new information from the current trial. This is supported by the significant interaction effect (Fig 5c), whereby optimal performance increased when the win-stay strategy was also the optimal response, yet decreased on congruent trials with a prior loss. Neurophysiological and behavioral evidence by Steiner and Redish (Steiner & Redish, 2014) support the possibility that rats experience emotions similar to human disappointment and regret after making mistakes in a neuroeconomic decision-making task. A potential source of interference may therefore have been the animal’s emotional reaction to losing the previous trial (Mendl et al., 2009). This is consistent with human research suggesting that one’s immediate emotions can influence a number of decision factors, such as: the perceived likelihood of positive and negative outcomes (Johnson & Tversky, 1983), selective attention to decision attributes (Bower, 1981; Forgas, 1989), and the depth of subsequent information processing, such as whether or not one relies upon heuristics (Bodenhausen et al., 1994; Tiedens & Linton, 2001).

The interaction between a previous loss and current choice of a trade or hold option was a significant predictor of optimal choices. Prospect Theory (Kahneman & Tversky, 1979) predicts that individuals will be more likely to take risks when in a loss frame than in a gain frame. This increase in suboptimal behavior is often interpreted as an attempt to ‘break even,’ and has been demonstrated in both humans and monkeys.
Rat ‘stock market’ task reveals human-like investment biases

(Lakshminarayanan et al., 2011; Tversky & Kahneman, 1981). We found that rats, too, were far more likely to choose the riskier buy/sell options than the safer hold option on trials immediately preceded by a loss. Interestingly, this led to slightly (although not significantly) increased optimal choice of the trade options, yet decreased optimal choice of the hold option (Fig 5b). This suggests that loss aversion may have promoted better trading choices by mitigating the negative impact of risk aversion at small price changes (i.e. high uncertainty regarding the optimal outcome). To adopt the language of Kahneman and Tversky (Kahneman & Tversky, 1979), it is as though a rat that “has not made peace with his losses is likely to accept gambles that would be unacceptable to him otherwise” (p. 287). Taken from an evolutionary perspective, these loss-averse behaviors can be adaptive. For example, when food turns out to be scarcer than predicted, it becomes necessary to take on additional risks in order to ensure one gathers enough resources to survive (Li et al., 2012; Stephens & Krebs, 1986). However, it appears that in the context of the rat stock market, these naturally adaptive strategies become deleterious.

Within the task, rats were given trial-by-trial feedback about the quantity gained or lost on individual trading decisions, but they did not receive any direct feedback regarding long-term profits or losses (i.e. returns) from the sale of a stock relative to its original purchase value. In the current study, rats realized a larger proportion of gains than losses. In other words, rats were generally reluctant to sell at negative returns (see Fig 6), despite not receiving direct feedback about any given return. This is indicative of the disposition effect characterized in humans by traders’ reluctance to sell losing stocks,
while selling winning stock too quickly (Shefrin & Statman, 1985). This is further supported by the results of a Cox proportional hazards model (see Fig 6), which illustrates rats’ general reluctance to sell at negative returns. An interesting deviation from human behavior however, is the observation that rats were far less willing to sell at a loss compared to humans. It is possible that this reflects a species-level difference in the general willingness or ability to incur a smaller immediate loss in order to avoid a larger future loss. However, it may also be the case that the rats in our task simply did not have enough information/experience to reach such a conclusion, and that the disposition effect is a natural byproduct of ‘myopic loss aversion.’

The nature of the conflict one experiences when selling at a short-term loss in order to avoid greater long-term losses resembles that of reverse-reward experiments, in which subjects’ initial choice between a small reward and a large reward (e.g. 3 candies or 6 candies) results in the non-chosen reward amount (i.e. choice of 6 candies results in 3 candies) (Boysen & Berntson, 1995; Carlson et al., 2005; Hershberger, 1986). Reverse-reward tasks require inhibitory control in order to suppress a response that is not useful in attaining a goal (Christ et al., 2001) – an undertaking that is immensely difficult for preschool children (Carlson et al., 2005), chimpanzees (Boysen & Berntson, 1995), and cockerel chicks (Hershberger, 1986). Higher levels of inhibitory control in children are predictive of better test scores (Shoda et al., 1990) and wealth (Moffitt et al., 2011) later on. Similarly, previous studies of the disposition effect have found that the effect is diminished in individuals with higher IQ’s (Grinblatt et al., 2012) and with greater trading experience (Chen et al., 2007), which presumably represents greater inhibitory
Rat ‘stock market’ task reveals human-like investment biases

control in these groups. Taken together, these results suggest that the behavioral biases observed in this task need not arise from mechanisms supporting higher levels of cognition, but may require higher levels of cognitive control to overcome.

It is important to address a number of limitations within the current paradigm. We developed this task to explore the concept that rats exhibit similar suboptimal behavioral patterns to those of humans within a simulated ‘stock market’ environment. Given the complexity of the task, we remained agnostic to the content of rats’ learning and to any assumptions about the specific strategies that rats might develop at the outset. Our intention was to first evaluate the behavioral output of the paradigm, so that future studies might then systematically manipulate individual task components in order to identify specific neural and computational contributions to the established behavior.

However, the complex sequential choices required from the current task should be considered in the light of their complexity from a serial learning perspective (Constantinople, Piet, Bibawi, et al., 2019; Garlick et al., 2017; Muller & Fountain, 2016). While we show that some of the rats’ behavior reflects a structural understanding of the optimal task structure (i.e. go right to ‘sell’ on the second response, after observing a positive change in blink rate at the first response hole), it is also possible that uninvestigated simple reinforcement-based strategies better explain performance. We refrained from training rats to criterion on the optimal strategies prior to testing in order to allow for strategies to develop spontaneously, but this also precludes us from excluding this alternative entirely. Future work could employ computational and behavioral methods to better characterize the content of learning, and how that might
Rat ‘stock market’ task reveals human-like behavioral biases

c contribute to subsequent suboptimal behavior, as rats learn to perform individual
components of the optimal task behavior (e.g. perseverate at nosepoke port at zero blink
change vs. respond at the left port after blink rate increases).

Furthermore, we limited the information available to rats in the task to the current
price of each stock (blink rate) and the outcome of a trade/hold option (tone and reward
volume). It should be noted that while the differences in reward volume between payouts
were at times small (albeit in line with other tasks, see e.g. Constantinople et al., 2019a
and b), the linear trend depicted in Figure 3b demonstrates that rats were capable of
discriminating between outcome volumes of reward. While the task design still afforded
rats the ability to develop a personal ‘trading’ history of reinforcement, such a restrictive
model did not allow rats to directly associate changing blink rates with other rats’ actions
or to ascertain an overview of current portfolio holdings. Thus, rats were forced to trade
incrementally and to measure outcomes based on very small changes in reward. It is
therefore notable that these behavioral biases can arise in a task in which the potential for
both theory of mind (Whiten, 1991) and portfolio optimization (Markowitz, 1959) have
been virtually precluded. The prospect that rats exhibit behavioral biases in this context
implies not only that the behaviors are underpinned by neural processes that both humans
and rats share, but also that they are not artifacts of culture, education, or even notions of
how currency works.

In the current version of the task, price was determined at any given moment
based on the cumulative ‘demand’ from the cohort of four rats. This allows for serial
Rat ‘stock market’ task reveals human-like investment biases

autocorrelation in prices. There exists a long-standing debate about whether or not the average stock’s movement over time carries momentum, meaning it is more likely to continue on its current trajectory than to reverse directions, or whether its movement more closely approximates a random walk. While many argue that asset fluctuations are entirely random (notably, Malkiel, 1973 and Fama, 1965), others provide evidence for serial autocorrelation (Bondt & Thaler, 1985; Campbell, Lo, & MacKinlay, 1997; Shiller, 2003), suggesting that psychological factors such as herding behaviour lead to serial correlation in prices over time. Future versions of the task could help resolve this debate by contrasting rats’ behavior in a condition with demand-based pricing (as employed here) with controlled pseudo-random prices simulated a priori.

The rat model presented here represents a novel means of interrogating potential links between market mechanisms, investor behavior, and investor cognition. One area rife for future study remains the exploration of putative interactions between model-based and model-free strategies in rodents that are free of confounding ‘human’ cognitive factors, such as preconceived notions of how a stock market works or individual differences in culture and education. The development of a rat stock market task opens up the opportunity to establish a computational and neurobiological account of decision-making that has the potential to lend predictive power to current economic and financial models. The finding that the behavioral biases observed here likely arise from a combination of learning strategies provides key insight into the mechanisms that may be governing investor biases in the brain. Areas commonly implicated in reinforcement learning, such as the dopaminergic midbrain (Schultz et al., 1997) and in serial pattern
Rat ‘stock market’ task reveals human-like behavioral biases

recognition, such as NMDR receptor mediated plasticity within the hippocampus (Fountain & Rowan, 2007), represent natural targets for future investigations into stock market traders’ “inner rat.”
Rat ‘stock market’ task reveals human-like investment biases

References

902

903

904
Rat ‘stock market’ task reveals human-like behavioral biases

Tables

Table 1

Summary of multinomial logistic regression coefficients of stock choice

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Coefficient</th>
<th>SE</th>
<th>t</th>
<th>Exp(B)</th>
<th>95% CI</th>
</tr>
</thead>
<tbody>
<tr>
<td>Avg. Previous Reward</td>
<td>2.981***</td>
<td>0.417</td>
<td>7.146</td>
<td>19.711</td>
<td></td>
</tr>
<tr>
<td>Stock</td>
<td>S1</td>
<td>Intercept</td>
<td>-0.080</td>
<td>0.054</td>
<td>-1.478</td>
</tr>
<tr>
<td>Hole Location</td>
<td></td>
<td>3</td>
<td>0.130</td>
<td>0.075</td>
<td>1.736</td>
</tr>
<tr>
<td></td>
<td></td>
<td>4</td>
<td>1.183***</td>
<td>0.196</td>
<td>6.030</td>
</tr>
<tr>
<td>Perseveration</td>
<td>0.127*</td>
<td>0.058</td>
<td>2.182</td>
<td>1.135</td>
<td></td>
</tr>
<tr>
<td>Blink Rate (Hz)</td>
<td>-0.539***</td>
<td>0.095</td>
<td>-5.690</td>
<td>0.583</td>
<td></td>
</tr>
<tr>
<td>Stock</td>
<td>S2</td>
<td>Intercept</td>
<td>-0.115*</td>
<td>0.054</td>
<td>-2.115</td>
</tr>
<tr>
<td>Hole Location</td>
<td></td>
<td>3</td>
<td>0.294***</td>
<td>0.074</td>
<td>3.989</td>
</tr>
<tr>
<td></td>
<td></td>
<td>4</td>
<td>0.357</td>
<td>0.198</td>
<td>1.802</td>
</tr>
<tr>
<td>Perseveration</td>
<td>0.125*</td>
<td>0.058</td>
<td>2.160</td>
<td>1.133</td>
<td></td>
</tr>
<tr>
<td>Blink Rate (Hz)</td>
<td>-0.111</td>
<td>0.093</td>
<td>-1.191</td>
<td>0.895</td>
<td></td>
</tr>
</tbody>
</table>

Note. Stock reference value: Stock 3; Nosepoke hole reference value: Hole 2; Perseveration reverence value: Switch. \(R^2 = 0.01, \) Log likelihood = -8343.00, LR test = 116.78***. **\(p < .01, \)** ***\(p < .001 \)
Rat ‘stock market’ task reveals human-like investment biases

Table 2

Summary of multinomial logistic regression coefficients of option choice

<table>
<thead>
<tr>
<th>Parameter</th>
<th>b (SE)</th>
<th>t</th>
<th>Exp(B)</th>
<th>95% CI</th>
</tr>
</thead>
<tbody>
<tr>
<td>Avg. Previous Reward</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Option</td>
<td>Buy</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Intercept</td>
<td>-1.582*** (0.041)</td>
<td>-</td>
<td>0.206</td>
<td>-1.661 / -1.502</td>
</tr>
<tr>
<td>Previous Loss</td>
<td>0.184*** (0.056)</td>
<td>3.298</td>
<td>1.202</td>
<td>0.075 / 0.294</td>
</tr>
<tr>
<td>Δ Blink Rate (Hz)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td><= -.15</td>
<td>3.670*** (0.528)</td>
<td>6.947</td>
<td>39.253</td>
<td>2.635 / 4.705</td>
</tr>
<tr>
<td>-.15 to -.01</td>
<td>0.985*** (0.055)</td>
<td>18.036</td>
<td>2.679</td>
<td>0.878 / 1.093</td>
</tr>
<tr>
<td>.01 to .15</td>
<td>1.194*** (0.051)</td>
<td>23.434</td>
<td>3.301</td>
<td>1.094 / 1.294</td>
</tr>
<tr>
<td>>= .15</td>
<td>3.385*** (0.407)</td>
<td>8.324</td>
<td>29.510</td>
<td>2.588 / 4.182</td>
</tr>
<tr>
<td>Option</td>
<td>Sell</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Intercept</td>
<td>-1.682*** (0.044)</td>
<td>-</td>
<td>0.186</td>
<td>-1.767 / -1.596</td>
</tr>
<tr>
<td>Previous Loss</td>
<td>0.153** (0.057)</td>
<td>2.676</td>
<td>1.165</td>
<td>0.041 / 0.265</td>
</tr>
<tr>
<td>Δ Blink Rate (Hz)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td><= -.15</td>
<td>3.615*** (0.533)</td>
<td>6.788</td>
<td>37.139</td>
<td>2.571 / 4.658</td>
</tr>
<tr>
<td>-.15 to -.01</td>
<td>1.255*** (0.053)</td>
<td>23.469</td>
<td>3.508</td>
<td>1.150 / 1.360</td>
</tr>
<tr>
<td>.01 to .15</td>
<td>1.069*** (0.054)</td>
<td>19.867</td>
<td>2.913</td>
<td>0.964 / 1.175</td>
</tr>
<tr>
<td>>= .15</td>
<td>3.652*** (0.406)</td>
<td>8.986</td>
<td>38.554</td>
<td>2.855 / 4.449</td>
</tr>
</tbody>
</table>

Note. Option reference value: Hold; Previous Loss reference value: Gain (0); Δ Blink Rate reference value: 0. $R^2 = 0.054$, Log likelihood = -13,488.030, LR test = 1540.443*** (df = 13). **p<.01, ***p<.001.
Table 3

Summary of binomial logistic regression coefficients of optimal response

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Coefficient</th>
<th>SE</th>
<th>t</th>
<th>Exp(B)</th>
<th>95% CI</th>
</tr>
</thead>
<tbody>
<tr>
<td>Optimal</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Intercept</td>
<td>-0.653***</td>
<td>0.045</td>
<td>-14.521</td>
<td>0.521</td>
<td>-0.741/ -0.565</td>
</tr>
<tr>
<td>Previous Outcome</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Loss</td>
<td>-0.337***</td>
<td>0.086</td>
<td>-3.898</td>
<td>0.714</td>
<td>-0.506/ -0.168</td>
</tr>
<tr>
<td>Current Option</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Trade</td>
<td>-1.249***</td>
<td>0.041</td>
<td>-30.658</td>
<td>0.287</td>
<td>-1.329/ -1.169</td>
</tr>
<tr>
<td>Session Quartile</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>0.140**</td>
<td>0.045</td>
<td>3.124</td>
<td>1.150</td>
<td>0.052 / 0.228</td>
</tr>
<tr>
<td>3</td>
<td>0.134**</td>
<td>0.049</td>
<td>2.744</td>
<td>1.143</td>
<td>0.038 / 0.230</td>
</tr>
<tr>
<td>4</td>
<td>0.154**</td>
<td>0.052</td>
<td>2.954</td>
<td>1.166</td>
<td>0.052 / 0.256</td>
</tr>
<tr>
<td>Absolute Blink Change</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>1.736***</td>
<td>0.043</td>
<td>40.491</td>
<td>5.676</td>
<td>1.652 / 1.820</td>
</tr>
<tr>
<td>2</td>
<td>0.909***</td>
<td>0.071</td>
<td>12.780</td>
<td>2.483</td>
<td>0.770 / 1.049</td>
</tr>
<tr>
<td>3</td>
<td>1.113***</td>
<td>0.115</td>
<td>9.660</td>
<td>3.043</td>
<td>0.887 / 1.339</td>
</tr>
<tr>
<td>4</td>
<td>1.555***</td>
<td>0.201</td>
<td>7.719</td>
<td>4.734</td>
<td>1.160 / 1.950</td>
</tr>
<tr>
<td>5</td>
<td>1.959***</td>
<td>0.294</td>
<td>6.669</td>
<td>7.093</td>
<td>1.383 / 2.535</td>
</tr>
<tr>
<td>6</td>
<td>2.445***</td>
<td>0.437</td>
<td>5.594</td>
<td>11.528</td>
<td>1.588 / 3.301</td>
</tr>
<tr>
<td>Previous Outcome × Current Option</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Previous Loss × Trade</td>
<td>0.834***</td>
<td>0.093</td>
<td>8.934</td>
<td>2.302</td>
<td>0.651 / 1.017</td>
</tr>
<tr>
<td>Previous Outcome × Absolute Blink Change</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Previous Loss × 0</td>
<td>-0.145</td>
<td>0.101</td>
<td>-1.431</td>
<td>0.865</td>
<td>-0.344 / 0.054</td>
</tr>
<tr>
<td>Previous Loss × 2</td>
<td>-0.596***</td>
<td>0.146</td>
<td>-4.082</td>
<td>0.551</td>
<td>-0.883 / -0.310</td>
</tr>
<tr>
<td>Previous Loss × 3</td>
<td>-0.195</td>
<td>0.232</td>
<td>-0.842</td>
<td>0.823</td>
<td>-0.649 / 0.259</td>
</tr>
<tr>
<td>Previous Loss × 4</td>
<td>-0.385</td>
<td>0.487</td>
<td>-0.790</td>
<td>0.680</td>
<td>-1.340 / 0.570</td>
</tr>
<tr>
<td>Previous Loss × 5</td>
<td>0.045</td>
<td>0.918</td>
<td>0.049</td>
<td>1.046</td>
<td>-1.754 / 1.844</td>
</tr>
<tr>
<td>Previous Loss × 6</td>
<td>-0.666</td>
<td>0.856</td>
<td>-0.778</td>
<td>0.514</td>
<td>-2.344 / 1.011</td>
</tr>
</tbody>
</table>

Note. Optimal reference value: Suboptimal; Previous Outcome reference value: Gain (0); Session Quartile reference value: 1; Absolute Value of Blink Change reference value: 1.
R2 = 0.165, Log likelihood = -9683.952, LR test = 3824.850*** (df = 19). **p<.01, ***p<.001
Rat ‘stock market’ task reveals human-like investment biases

Table 4

Summary of Hazard Analysis of Return on Sale

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Coefficient</th>
<th>SE</th>
<th>t</th>
<th>HR</th>
<th>95% CI</th>
</tr>
</thead>
<tbody>
<tr>
<td>Return</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>< -22%</td>
<td>-1.155*</td>
<td>0.477</td>
<td>-2.420</td>
<td>0.004</td>
<td>-2.420 / -0.220</td>
</tr>
<tr>
<td>-22% - -18%</td>
<td>1.650</td>
<td>1.011</td>
<td>1.632</td>
<td>0.067</td>
<td>-0.331 / 3.630</td>
</tr>
<tr>
<td>-18% - -14%</td>
<td>2.128*</td>
<td>0.878</td>
<td>2.424</td>
<td>0.108</td>
<td>0.408 / 3.848</td>
</tr>
<tr>
<td>-14% - -10%</td>
<td>3.164***</td>
<td>0.903</td>
<td>3.504</td>
<td>0.304</td>
<td>1.394 / 4.933</td>
</tr>
<tr>
<td>-10% - -6%</td>
<td>3.312***</td>
<td>0.896</td>
<td>3.695</td>
<td>0.353</td>
<td>1.555 / 5.069</td>
</tr>
<tr>
<td>-6% - -2%</td>
<td>3.939***</td>
<td>0.895</td>
<td>4.401</td>
<td>0.660</td>
<td>2.185 / 5.693</td>
</tr>
<tr>
<td>-2% - 2%</td>
<td>4.354***</td>
<td>0.893</td>
<td>4.874</td>
<td>1.000</td>
<td>2.603 / 6.105</td>
</tr>
<tr>
<td>2% - 6%</td>
<td>5.229***</td>
<td>0.897</td>
<td>5.828</td>
<td>2.399</td>
<td>3.471 / 6.988</td>
</tr>
<tr>
<td>6% - 10%</td>
<td>5.692***</td>
<td>0.911</td>
<td>6.250</td>
<td>3.811</td>
<td>3.907 / 7.477</td>
</tr>
<tr>
<td>10% - 14%</td>
<td>5.803***</td>
<td>0.948</td>
<td>6.123</td>
<td>4.257</td>
<td>3.945 / 7.660</td>
</tr>
<tr>
<td>14% - 18%</td>
<td>6.093***</td>
<td>1.016</td>
<td>5.999</td>
<td>5.692</td>
<td>4.103 / 8.084</td>
</tr>
<tr>
<td>≥18%</td>
<td>5.316***</td>
<td>1.225</td>
<td>4.340</td>
<td>2.617</td>
<td>2.916 / 7.717</td>
</tr>
<tr>
<td>Sales Count</td>
<td>-</td>
<td>0.005</td>
<td>-30.044</td>
<td>0.863</td>
<td>-0.157 / -0.138</td>
</tr>
<tr>
<td>Counterfactual Reward</td>
<td>0.147***</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Note. Reference value: -2% – 2%. Based on random subject slopes. Likelihood ratio test(14) = 3352, *p* < .001. *p* < .05, ***p* < .001
Figure Legends

Block 1: Reference point establishment (15 trials)

Response 1: Forced choice

1 2 3 4 5

2 sec

Block 2: Trading
(45 mins, M = 100 trials)

Response 1: Stock selection

Response 2: Option selection

Gain
Loss

≥0.15 ml
<0.15 ml

Block 1: Reference point establishment (15 trials)

Response 1: Forced choice

1 2 3 4 5

2 sec

Block 2: Trading
(45 mins, M = 100 trials)

Response 1: Stock selection

Response 2: Forced choice

1 2 3 4 5

RP

=0.15 ml
Rat ‘stock market’ task reveals human-like investment biases

Fig 1: Task Schematic. 6 cohorts of 4 rats (N=24) completed two blocks of trials in which they made 2 nosepokes into illuminated nosepoke holes within a 5-hole array. At task onset, in block 1 (left panel) each rat was given fifteen trials to habituate to the reference point (RP) of 0.15 ml reward, where rats made a first nosepoke response in one of three illuminated holes for ‘stock’ selection (here, hole 4). All lights immediately extinguished for 2 seconds once the nosepoke response was initiated. After the delay, one of three holes (either the hole selected in the ‘stock selection’ response or one of the adjacent holes to either side of it; here, either hole 3, 4, or 5), was illuminated to indicate the second forced-choice response hole was available. Rats nosepoked into the illuminated hole (here, hole 5) to mimic ‘option’ selection, at which point all hole lights were immediately extinguished and the conditioned tone-light stimuli signalled the availability of sweet sodium saccharine reward at the reward spigot. A volume of 0.15 ml of reward was delivered for every trial in block 1, irrespective of the rats’ choices. Once all four rats had completed all fifteen trials in block 1, the cohort advanced to block 2 (right panel) as a group. In free choice trials (as depicted here) the three center holes blinked simultaneously at variable rates to indicate the ‘prices’ of stocks 1, 2, and 3. Rats nosepoked into a blinking hole to select a stock (here, ‘S1’), then experienced an immediate 2 second delay with all lights extinguished. Then, three holes were illuminated and rats nosepoked into either the ‘buy’ (B), ‘hold’ (H), or ‘sell’ (S) hole to make their option selection. All hole lights were again extinguished and either a gain tone or a loss tone, paired with the light at the reward magazine, indicated whether the reward volume would be greater than or less than the reference point (0.15 ml). Reward was available immediately upon presentation of the tone-light stimuli, and movement time (MT) was measured from tone onset to lick onset at the reward spigot. The volume of reward delivered was greater than the reference point (RP) for trades resulting in a gain and less than the RP for trades resulting in a loss.
Rat ‘stock market’ task reveals human-like behavioral biases

Fig 2: Example Behavior. Blink rate (Hz) fluctuations during a single testing session from one cohort of four rats. Colored lines represent price evolution (in arbitrary units) operationalized by blink rate along the left axis for each of the three stocks during the 45-min session (block 2). Stock prices moved both up and down over time, depending on the cumulative choices made by the four rats. The top panel represents individual choices made on each trial by each of the four rats over the course of the session. ‘Buy’ responses (‘+’) increased the price of that color stock, ‘Sell’ responses (‘−’) decreased the price of that color stock, and ‘Hold’ responses (‘o’) had no effect on stock price. The bottom panel represents reward values (ml) from a response in that colored stock and is measured along the right axis. The dotted line represents the reference point of reward (RP) at 0.15 ml. Readers are referred to the SI for further such graphs of other cohorts as well as the same cohort in other sessions.

Fig 3: Effects of a current loss on behavior pre- and post-reward consumption. (A) Rats’ movement times (MT) to collect reward were measured as an indicator of
motivation for reward. Upon hearing a gain tone, rats’ mean movement time to collect a
gain reward was 4.87 secs, which was significantly more quickly than a loss tone, (M_{LOSS}
= 6.43 sec, p<.001). Despite hearing the same gain tone, rats approached the reference
point (RP, blue) 0.14 secs more slowly than a gain (p<.01). There was no linear
relationship between MT and reward at either a loss (t=-1.05, p>.05) or at a gain (t=1.70,
p>.05). Error bars represent SEs. (B) The time spent post-pump licking (PPL) was
measured as an indicator of ‘savoring’ reward post-consumption. In contrast to MT
behavior, rats’ average PPL at the RP (M= 2.11, SE= 0.10 sec) was significantly different
than the average gain (M_{DIFF}=-0.18, SEM=0.02 secs, p<.001) but not the average loss
(M_{DIFF}=0.13, SE=0.05 secs, p>.05). We found a significant interaction between reward
volume and outcome (t=4.64, p<.001), whereby PPL increased linearly with the volume
of the gain reward (t=13.18, p<.001), but not a loss reward (t=1.34, p>.05). PPL at the RP
is 0.18 secs shorter than at a gain (t=7.31, p<.001) and 0.12 secs longer than a loss (t=-
2.48, p<.05). Error bars represent SEs. (C) There was a significant interaction between
previous outcome (gain or loss) and trial type (congruent: win-stay/lose-shift = optimal;
incongruent: win-stay/lose-shift ≠ optimal) on rats’ choice of the optimal response,
(F_{(1,23)}=9.15, p<.01). Win-stay/lose-shift was evaluated based on location of the nosepoke
hole. On average, rats chose the optimal response ~5% more when the optimal option
was a win-stay, although post-hoc tests showed that this fell short of significance ((t(23) =
1.89, p>.05). Intriguingly, rats chose the optimal option nearly 10% less after a loss on
congruent trials (t(23)=2.66, p<.05). Error bars represent 95% CI’s.

![Fig 4: Option Choice. (A)](image-url)

The optimal option choice on any given trial varied
depending on the change in blink rate. Each 0.05 Hz change in blink rate represented a
price difference of one share (i.e. one buy/sell decision). At zero blink rate change, the
optimal option was to ‘hold’ (blue). Rats chose the optimal hold option at zero blink
change on nearly 70% of trials, which was significantly more likely than either the ‘buy’
(t=39.00, p<.001) or ‘sell’ options (t=38.56, p<.001). Negative changes in blink rate
represented decreasing share prices, which indicated that the buy option (green) was the
optimal choice. Alternatively, positive changes in blink rate represented increasing
prices, which indicated that the sell (red) option was the optimal choice. Despite being
suboptimal, rats continued to choose the safer hold option most frequently at smaller
changes in blink rate until the change became larger than .15 Hz, at which point rats were
more likely to buy at negative changes (t=8.99, p<.001) and sell at positive changes
(t=6.95, p<.001). We did not find a significant difference in choice of the buy option
Rat ‘stock market’ task reveals human-like behavioral biases

Relative to the sell option at negative blink rates across all stocks (see SI for choices within individual stocks), $p=\text{NS}$. However, rats did demonstrate a significantly greater choice of the optimal sell option relative to the buy option at larger positive blink rates ($t=2.11$, $p<.05$). (B) Rats choice of either of the trade options compared to the hold option increased as the absolute change in blink rate increased. This indicates that although rats may not have learned to fully maximize the optimal ‘buy’ and ‘sell’ strategies on all trials as illustrated in Fig 4a, they were able to discriminate between blink rate changes and use this information to guide choice away from the perseverative center ‘hold’ option and toward one of the left or right nosepoke holes.

Fig 5: Effects of a previous loss on optimal choice. (A) Rats were 8.2% less likely to choose the optimal outcome on trials that were immediately preceded by a loss compared to a gain (paired-sample t-test, $t(23)=-5.07$, $p<.001$). (B) We found an interaction between previous outcome and current choice of the hold or trade options ($t=8.93$, $p<.001$). On trials that were immediately preceded by a loss, optimal performance was 13.1% lower when choosing the hold option ($t(23)=-7.56$, $p<.001$). Conversely, a
previous loss led to a marginal non-significant increase (1.2%) in optimal choice of the trade options, \(t(23) = 0.79, p > .05 \). Error bars represent SEs.

Fig 6: Disposition Effect. In this analysis, the hazard rate for each return bin, spanning 4% returns each, was calculated relative to zero return. A bin with a hazard ratio of 1 (dotted line) corresponds to a null effect on rats’ choice of the sell option. Hazard ratios lying significantly above 1 indicate that the likelihood of selling was higher in that bin, while hazard ratios below 1 denote a reduced likelihood of selling in the given bin. Peaking at around 14% return, rats were up to 500% more likely to sell a stock when returns were positive. The opposite was true in the case of negative returns, whereby subjects demonstrated a decreasing disposition to realize losses as returns become more negative. Error bars (solid gray lines) represent 95% CI’s.
Rat ‘stock market’ task reveals human-like behavioral biases

https://doi.org/10.1002/ejsp.240240104

https://doi.org/10.2307/2327804

https://doi.org/10.1037/0097-7403.21.1.82

https://doi.org/10.1111/j.1467-9280.2005.01583.x

https://doi.org/10.2307/4132717

https://doi.org/10.1111/j.1540-6261.2009.01509.x

https://doi.org/10.1207/S15326942DN2003_7

https://doi.org/10.7554/eLife.49744

https://doi.org/10.1016/j.cub.2019.05.013

Croissant, Y. (2013). *mlogit: multinomial logit model*. In (Version R package version 0.2-4)
https://CRAN.R-project.org/package=mlogit

https://doi.org/10.1111/0022-1082.00077

https://doi.org/10.1038/nn1560

Kagel, J. H., MacDonald, D. M., Battalio, R. C., White, S., & Green, L. (1986). Risk aversion in rats (Rattus norvegicus) under varying levels of resource availability. *Journal of Comparative Psychology, 100*(2), 95.

Lakshminarayanan, V., Chen, M. K., & Santos, L. R. (2011). The evolution of decision-making under risk:
Rat ‘stock market’ task reveals human-like behavioral biases

https://books.google.co.uk/books?id=oZWNMQEACAAJ

Rat ‘stock market’ task reveals human-like investment biases

1248 275(5306), 1593-1599. https://doi.org/10.1126/science.275.5306.1593
1251 Shefrin, H., & Statman, M. (1985). The disposition to sell winners too early and ride losers too long:
1253 6261.1985.tb05002.x
1255 Financial Markets, I(1), 49-60. https://doi.org/10.1207/S15327760JPFM0101_05
1257 Perspectives, 17(1), 83-104. https://doi.org/10.3307/jesp.3216841
1260 Shoda, Y., Mischel, W., & Peake, P. K. (1990). Predicting adolescent cognitive and self-regulatory
1261 competencies from preschool delay of gratification: identifying diagnostic conditions. Dev
1262 Psychol, 26(6), 978-986.
1264 Simon, N. W., Gilbert, R. J., Mayse, J. D., Bizon, J. L., & Setlow, B. (2009). Balancing risk and reward: a
1265 rat model of risky decision making. Neuropsychopharmacology: Official Publication Of The
1266 American College Of Neuropsychopharmacology, 34(10), 2208-2217.
1269 Steiner, A. P., & Redish, A. D. (2014). Behavioral and neurophysiological correlates of regret in rat
1270 decision-making on a neuroeconomic task. Nat Neurosci, 17, 995-1002.
1272 Strahilevitz, M. A., Odean, T., & Barber, B. M. (2011). Once burned, twice shy: How naive learning,
1273 counterfactuals, and regret affect the repurchase of stocks previously sold. Journal of Marketing
1274 Research, 48(SPL), S102-S120. https://doi.org/10.1509/jmkr.48.SPL.S102
1278 Aversion on Risk Taking: An Experimental Test. The Quarterly Journal of Economics, 112(2),
1282 specific emotions on information processing. Journal of Personality and Social Psychology, 81(6),
1283 973-988.
1285 Dissociable effects of basolateral amygdala lesions on decision making biases in rats when loss or
1286 gain is emphasized. Cognitive, Affective, & Behavioral Neuroscience, 14(4), 1184-1195.
1287 https://doi.org/10.3758/s13415-014-0271-1
1290 Science(211), 453-458.
1292 between differently priced commodities. Plos One, 10(6), e0129581.
1296 behavioral task measuring reward “wanting” and "liking" in rats. Physiology & Behavior, 87(1),
1300 Handbook on Systemic Risk (pp. 663-713). Cambridge University Press. https://doi.org/DOI:
1301 10.1017/CBO9781139151184.033
Rat ‘stock market’ task reveals human-like behavioral biases

Nucleus accumbens D2R cells signal prior outcomes and control risky decision-making. *Nature*, 531(7596), 642-646. https://doi.org/10.1038/nature17400