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ABSTRACT

This thesis investigates the localisation,

separation, and separability of quantum systems.

Motivated by the physical limitations of

measurement, we define the concept of a local

observable for both one and two particle systems, give

a precise prescription for the localisation of bounded

observables and demonstrate the suitability of a

certain family of local observables in describing the

measurement of a quantum mechanical system using

apparatus of finite size. The localisation of certain

unbounded observables (eg momentum) is examined.

Localisation in the spectrum is also introduced.

One of the consequences of this approach is that

we can provide a sort of short-lived resolution to the

EPR paradox for finite times when the particles have

separated. Recognising the limitations of this

resolution we proceed to formulate a quantum mechanical

theory for a two particle system with the property that

every state in which the two particles separate into

disjoint regions for large times is asymptotically

separable. Using this theory, some controversial

hidden variable questions are reexamined. The

relationship of these results to the experimental

evidence for nonlocality in quantum mechanics is

discussed.
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CHAPTER 1

INTRODUCTION
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There is an enchanting story, related by

Heisenberg [1958], in which Max Planck is supposed to

have been out walking with his young son, on a winter's

day late in 1900, shortly before he presented his

historic paper [1900] on the quantisation of

radiation. According to the legend, he told his son,

excitedly, how he felt that he had found something

which was either one of the greatest discoveries since

Newton, or else completely wrong. Whatever the truth

behind this captivating image, and whether or not

Planck realised immediately the profound effects his

proposals were to have on the course of physics, by the

late 1920's and early 1930's it was slowly becoming

evident that the new quantum theory proposed a view of

the world which was substantially different from the

previously accepted classical view: the quantisation of

radiation [Planck 1900], the wave nature of matter [de

Broglie 1930], the uncertainty principle [Heisenberg

1925]: all of these underlined the essential novelty of

the quantum theory. Perhaps most particularly it was

the essentially statistical nature of quantum mechanics

which first aroused controversy. The arch proponent of

the view that quantum mechanics was wrong, at least in

this respect, was Einstein, whose famous remark that

"God does not play dice" emerged as the catch-phrase of

the opposition to quantum mechanics during the
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prolonged Bohr-Einstein debate of the 1930's. Einstein

argued that quantum mechanics provided at best an

incomplete description of the real world while Bohr and

the Copenhagen school replied that the quantum

mechanical description was the only possible one: no

more complete picture could be obtained. At the centre

of Bohr's argument was his "complementarity principle"

of which the theorem (2.5.6) is in one sense a

manifestation. As a consequence of some of the work in

this thesis, we shall have occasion to question the

validity of (2.5.6) as anything stronger than an

operator relation. In the light of this, it is an

interesting question whether or not, and to what

extent, complementarity may be maintained in its full

philosophical entirety. That is however beyond the

scope of our aims in this thesis. Here we are

concerned to elucidate the issue of locality arising

from the philosophical discussion.

Einstein's argument rested on a famous paper with

Podolski and Rosen [1935], in which they proposed a

thought experiment designed to show that quantum

mechanics was incomplete [cf(2.7)3. One of the

principles on which the argument is based is that of

(Einstein) locality and it is commonly supposed

nowadays that the EPR paradox embodies the underlying

non-locality inherent in the quantum mechanical

formalism [cf Bell 1964, Clauser and Shimony 1978,
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Seller! and Tarozzi 1981]. This view seems to be

confirmed by the extensive investigations carried out

into the logical foundations of quantum mechanics [of

Hooker 1975,1979, Beltrametti and van Fraasen 1981],

and the identification of the "paradoxical" features of

quantum mechanics with elements of the underlying

logical structure.

In view of the primary importance of locality in

the EPR example, it is rather surprising that, almost

without exception, discussion of the paradox is

concerned only with the spin state of the Bohm version

[1951 and 1957] of the EPR experiment. Beltrametti and

Cas3inelli, for example, claim [1981] that since they

"have in mind to consider only physical quantities

relative to spin, we only need specify the spin part of

the compound system." This limitation in the

description of the paradox is even more surprising when

we consider remarks of the type made by Pauli as long

ago as 1933 concerning the importance to interference

effects of the overlap of wavefunctions:

"From a superficial consideration of the

exclusion principle, it might be thought that

a sort of action at a distance is being

postulated, as a result of which even two

widely separated particles are aware of one

another.. However,this is not so, because the
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exclusion principle is only valid as long as

the wave packets of the two particles

overlap." [cf Enz (ed) 1 973 p 1 6 8 . ]

What Pauli suggests (this view is also discussed

by Furry [1936(b)] and Hiley [1980], eg) is that

nonlocal aspects of the quantum theory arise from the

physical interference of wavefunctions. In other words

it is being postulated that when the wavefunctions

themselves separate, separability is achieved and in

this sense locality is preserved. One reason that

these comforting words have been largely ignored is

because of the well-known phenomenon of the spreading

of the wavepacket [cf (7.1)J, so that the chances of

finding wavefunctions which are not overlapping seem at

first sight rather slim. Nevertheless it seems worth

investigating, to what extent we might be able to

provide a theory which satisfies the Pauli hypothesis

by paying closer attention to the localisation of the

quantum mechnical systems in question.

We proceed throughout by paying close attention to

the physical limitations of measurement. This leads us

to formulate [Chapters 3,1,5] local observables

appropriate to the measurement of physical systems

using apparatus of finite size. In Chapter 7, we

investigate a time development for such systems and

also outline the ideas of the asymptotic localisation
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and separation of particles [Wan and McLean 1983 and

1984] which will be a basis for our investigation of an

asymptotically separable quantum mechanics. The

correlation of the subsystems in a two particle system

is the subject of Chapter 8 and in the following

chapter we use these results and an extension of the

concept of local observables to two particle systems

with spin to provide a resolution of the EPR paradox in

a limited sense for finite time. Acknowledging the

limitations of this solution we attempt in Chapter 10

an asymptotic resolution of the paradox in the limit of

large times, based again on the separation of the

particles, this time into disjoint regions at

infinity. Chapter 11 investigates some consequences of

this asymptotic analysis for the hidden variables

questions that have haunted quantum theory from those

early days. It turns out that we can provide

asymptotically a hidden variable theory that will

describe a system of two spin-half particles. Chapter

6 is a little out of the mainstream and entails a neat

formulation for providing bounded observables in a

slightly different sense to the usual lattice theoretic

approach. It is of interest to us partly as an example

in which the limitations of measurement lead to

significant changes in the formulation, and partly as

the basis of a quite general programme of localisation

of observables. Before we proceed with any of this it

will be convenient to provide some mathematical



background
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CHAPTER 2

MATHEMATICAL BACKGROUND
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2.1 Quantum Mechanics in Hilbert Space.

In the conventional Hilbert space formulation of

quantum mechanics a quantum mechanical system is

associated with a Hilbert space 44 . For a single

n n
particle moving in configuration space IK this Hilbert

space is L* ((R" ) . The inner product in the space is

denoted by <. I. >. A linear operator T on 44 is said to

be symmetric if the domain X)(T) of T is dense in 44

and for every in D(T), T satisfies

< I T 4) > = <Tcp | y >.

The adjoint operator T* of T is a linear operator

defined by

<<p IT%>> = <Tq> |^> for all y*0(T*)
D ( = {(V 6 4-\ : cp —»• <Tcf 1> is continuous on tD ( T ) }

An operator is called selfadjoint if T=T*. A symmetric

operator T is called essentially selfadjoint if T, the

closure of T, is selfadjoint. T*= T is the unique

selfadjoint extension of T.

The states of the quantum mechanical system are

described by a certain class of operators known as the

density operators {^}. These operators are bounded,

positive, selfadjoint linear operators on 44 satisfying



-10-

Tr(p)=1 [cf Prugovecki 1971 p383]. The pure states of
the system are those operators p which satisfy = p and
comprise the set of projections P on 13 . For each

vector <p in fl there exists a projection P^ mapping H
onto the subspace generated by (p. When fsP^ we write

to denote the vector state corresponding to <p. Each

such vector state is evidently a pure state. We shall

sometimes use the Dirac notation for projections [Dirac

1 930] , namely: P^ = lcpX<f I . States p which are not pure

are called mixed and consist of convex linear sums

Z Pj of pure states P. , 5. X- = 1 .i *■ i

Physical observables of the system are represented

by selfadjoint linear operators defined on dense

domains in 43. The expected value or expectation value

<T;p> of a physical observable T (by an abuse of

language we refer to both the physical quantity and the

operator representing it with the same symbol) for a

system in the state p is defined formally to be:

(2.1.1)

<T;p> = Tr(pT).

The time evolution of a free quantum system is

described by the time evolution operator

(2.1.2)

Ut<p = exp [-iH„ t/h ] <p

for all <p e H , where H0 is the free Hamiltonian
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operator. Using the Fourier representation

(2.1.3)
r

£p(x) = (2TTh)
where

<p (p) = ( 2TTh)

'V

(p(p)exp[ip.x/h]dp

cp(x)exp[-ip.x/h]dx

the time evolution of the vector may be given the

integral representation

(2.1.4)

( x , t) = ( 2TTh )"^
r

v

(p(p)exp[-ip1t/2mft]exp[ip.x/h]dp,
*

This is the Schrodinger picture for the time evolution

of a system [cf Schiff 1 955 p16 9 eg]. In the

Heisenberg picture [op cit p170] the time dependence is

thrown onto the observables so that = U~'AUfc , while
the states are regarded as time independent, (p (x) is

called the coordinate representation of the vector (p

while dj> (p) is the momentum representation of the same

vector, the two representations being linked by

(2.1.3). We can also write in the Dirac notation

<x I > = cp(x) and < p » tp > = <^(p), where |x> and |p> are
the generalised eigenfunctions of position and momentum

respectively [cf Bohm A 1979].

Problems with domains for unbounded operators and

the inconvenience of infinite expectation values have

led to the formulation of a Hilbert space quantum

mechanics based solely on bounded operators. This
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approach is based on the use of projection operators to

describe experimental propositions about the system

[von Neumann 1955, Mackey 1968, Jauch 1968, Piron

1 976]. Let £> ( ) denote the set of all bounded

operators on "H . Selfadjoint elements of (B ( 44 ) now

correspond to the physical observables. This is of

course a smaller set of observables than before. A

number of notable observables, including the position

operator, the momentum operator and the Hamiltonian

operator, have been excluded. However all the

projection operators on 44 are in £> (44 )• The

projection operators form a lattice of projections

JL (44 ) on H and Jauch, Mackey and Piron (et al) base

their quantum mechanics on this lattice of

projections. The link with the conventional theory is

made through the spectral theorem.

(2.1.5) The Spectral Theorem

For every selfadjoint operator T in 44 there exists

exactly one spectral family E(T;t) for which

T = JtdE(T;t) .
Proof: Wiedmann 1981 p191,eg.

The spectral projections E(T; A ) of the spectral

measure form the basis for the theoretical

interpretation in this lattice theoretical approach.

The projection E(T; A ) corresponds to a physical

measurement to test whether the observable T takes a
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value which lies in the set A. The eigenvalues of

E(T; A ) are 1 and 0. The value 1 corresponds to the

answer yes to the question; does the value of T lie in

A ? The value 0 corresponds to the answer no to the

same question. In section (2.6), we expand upon this

interpretation in terms of probabilities. Using the

spectral projections enables us to dispense with

unbounded observables and consider only the projections

associated with them via Theorem (2.1.5). The support

of the integral in (2.1.5) is the spectrum c(T) of T.

We shall use the following definition for the

spe ct rum.

(2.1 .6) Definition

The spectrum cr(T) of a selfadjoint operator T is

defined as the set of all points t in R such that for

every open interval I in iH containing t we have E(T;I)

> 0 [Prugovecki p253].

For an observable T with discrete spectrum the

theorem (2.1.5) reduces to

T= 2 t.EL

where E.=E(T;{t^}) is the projection onto the subspace

generated by the eigenv ector (s) associated with

eigenvalue t-L . Eigenvectors associated with different

eigenvalues are orthogonal and each eigenvector is

normalised to one so that we have <<p.lCp- > = S;-, . Fort J J

continuous spectra there is an analogous orthogonality
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relation in terms of generalised eigenfunctions and

^-function normalisation [Bohm A 1979 p49,eg].

The zero operator has spectral measure given by:

(2.1.7)

n / r* A \ f ' 'f 0 6E(0;A)s \ \I 0 Oj A
[of Weidmann 1 980 p 1 95] .

2.2 The Algebraic Formulation of Quantum Mechanics.

The algebraic approach to quantum theory is a

generalisation from the von Neumann theory in which the

algebraic structure of (Bt^l), namely as a C*-algebra,
is retained as the fundamental building block. One

associates to each physical system a C*-algebra ^ .That

is, an algebra closed under addition, multiplication

and an adjoint operation, possessing a norm II • II with

respect to which the algebra is complete and such that

if A is a member of the algebra the following property

is satisfied:

(2.2.1)

IIA* AII = IIAII1

[Arveson 1976, Bratteli and Robinson 1979, Dixmier

1 977 , Emch 1 972]. The C*-property (2.2.1) ensures that

the norm on the C*algebra is unique [Rickart 1950].
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Physical observables of the system are represented by

the selfadjoint elements of the algebra. States of the

system are represented by normalised,positive linear

functionals (NPLF's) w on the algebra: ie w is a

map: xA~* (£ such that w is linear, w(A*A) » 0 for all A,

and w(1) = 1 if possesses the identity or otherwise

lim w(E*) = 1 for every approximate identity Ew . A
«-»«

state w is mixed if it can be written as a convex

linear combination of two (or more) other states: w =

Xw, + ( 1 - X) wz ,w, f wz , 0 < X < 1 . A state which is not

mixed is called pure.

#
The C -algebras in which we shall be interested

are the so-called "concrete" algebras of operators on a

Hilbert space. A subalgebra of ) is a

C algebra if it is a subalgebra of (5 ( 4A ) » ie it is

closed under addition, multiplication and the adjoint

operation, and it is also closed in the norm. The

C*-algebraic approach to quantum mechanics is

well-established in the theory of infinite systems and

in quantum field theory [Bogolubov et al 1975, Bratteli

and Robinson 1979,Emch 1972,Haag and Kastler 1964,

Streater 1971]. It is also applicable to finite

quantum systems however [Segal 1947]. Indeed the

simplest case is to consider as C -algebra the von

Neumann algebra & ("H ) of all bounded operators on a

Hilbert space 4^ . In this case we recover immediately

the usual Hilbert space quantum mechanics if we
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restrict the physical states to the normal NPLF's on

2) (), ie [Bratteli and Robinson p76] states wf for
which there exists a density operator ^ such that

wf ( A ) = Tr (f A )
for all A«®(4-l). We shall indulge quite shamelessly in an

abuse of notation when considering the conventional

theory and refer to both the normal NPLF's and their

corresponding density operators (and even the vectors

associated with pure states) as states of the system.

No confusion is engendered by this so long as we are in

the conventional formalism.

One of the advantages of the algebraic approach

with its emphasis on observables rather than states is

the ability to delimit the set of observables relevant

to a particular system. In section (2.4) we shall

consider a particular example of this.

We mention some results concerning tensor products

and direct sums of C*-algebras. Firstly, if and

are C*-algebras one can define an algebra

A = A,® , the tensor product of A, and [Bratteli

and Robinson pl42]. This algebra is again a C*"-algebra

and its norm is given by the so-called crossnorm

[ Vowden, 1 97 4] in which the norm 1IA®B\\ of an element A3B

in A is given by l|AII.||BI|. In the conventional theory,

the algebra A is the algebra (B> ( 4^,) <S> ®> () = S(^i®^i)
of bounded operators on the tensor product Hilbert
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space 4l,® . [For details of the tensor product of

Hilbert spaces see (eg) Weidmann 1980 p18, Prugovecki

I 97 1 p 1.]

In addition to the tensor product of Hiibert

spaces and of operator algebras we shall also have

occasion to consider the direct sum of C -algebras and

their representation spaces. For any family ; it I }
0-

of C -algebras where I is some index set, possibly
« 0

uncountable, we can define the direct sum algebra S\ =

0 A as the set of all functions i£l-*A-e,A- whichi V v

ie 1

satisfy the condition that lim 11A ^ U —»0 in the sense that
i,-* *3

for every £>0 there is a finite subset F£l such that
©

II A'l| < £ for all i^ F. We can make A into a C*"-algebra
by giving the pointwise operations {A-} + {Bt } =

{A; +B; } , {Al}.{B;} = {A- } and norm U {A L } U =supllA;|\ .

The simplest case is evidently the direct sum of two

operator algebras /A®Operators in this algebra may

be given the convenient matrix notation:

in anticipation of their representation as operators on

a direct sum of Hilbert spaces. For direct sums of

C*-algebras see Arveson p21; for details of the direct

sum of Hilbert spaces see Weidmann p32.
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2.3 Two particle Systems and Systems with Spin

Consider two one-particle systems I and II

described by Hilbert spaces 4-|, and 4^ respectively. The

two-particle system which we shall denote by I + II is

conventionally described by the tensor product space

= We shall always use the subscript c to denote

the composition of systems. Observables of the

two-particle system are the selfadjoint elements of the

algebra £> (44t). States of the system are given by the

density operators f on . Note that we cannot in

general write £ = where are density operators

on 41, , Mx respectively. In chapter 8 we shall see how

this fact leads to some peculiarly nonclassical

features of two-particle quantum systems. The time

development that we shall consider in this thesis for

two-particle systems will be non-interactive in the

sense that we shall use the tensor product = Ult® U*

of the time evolution operators for the separate

particles.

When we wish to introduce discussion of spin

observables in a system we shall again be concerned

with the tensor product. Conventionally one takes the

Hilbert space for a single particle with spin to be the

tensor product of the Hilbert space corresponding to

the configuration space of the particle, eg L** ([R. ) for
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a particle in one dimension, with a 2j+1-dimensional

complex space H-,say,where j is the spin of the

particle. Observables of the spin system are then

bounded operators on Ll (iR. )®H; and a C*-algebra of such

operators is given by (iR. ))®<5- where S= ) is
J J J

an algebra which has representation in coordinate bases

as the algebra of all (2j+1)x(2j+1) matrices. We have

used the symbol ® to denote the fact that the tensor

product is between a space entity and a spin entity

rather than system I and system I • This will prove

to lend clarity to the discussion of two particle

systems with spin although it should be emphasised that

the two tensor products are identical in their formal

power. In the work presented in the latter part of the

thesis we shall restrict our attention to systems of

two particles each having spin 1/2 and hence we shall

only consider algebras S of 2*2 matrices and suppress

reference to the particular value 1/2. The appropriate

Hilbert space for the spin states of a spin-1/2 system

is (C1. In deference to the fact that the relevant

algebra of operators for such systems is generated by

the Pauli matrices:

together with the identity matrix, we shall denote spin
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quantities using the superscript cr . Thus M will

denote the product space where 4i is the Hilbert

space for the spatial aspect of the system. Similarly

will denote a product algebra of the form A® S

where S is an algebra of spin observables. For

details of the tensor product representation of spin

systems see, in particular, Mackey 1963 & 1968.

When we come to discuss two-particle systems with

spin we shall use tensor products in both the ® sense

and the ® sense. In the conventional formulation we

would therefore be concerned with a Hilbert space 44*

given by:

44' • K®K = (H®HJ ® U1® 1

For system of two particles each moving in

configuration space IR ,we have 44' = Lx ( iR^ ) ® <L ^ . The

algebra of observables would be:

18 (<) -- Lz(l?k") ® (T1*) = ft(L'(«.to))®(S*S)

where S is the algebra of 2x2 matrices generated by

{ cr , 1 } . For the spin operators in the algebra £c =

£ S> £ an explicit formulation of the tensor product is

given by the Kronecker product, or direct product, of

matrices [Marcus and Ming 1964, Wedderburn 1934]. Let

S = ( r s ) anCl ^' = (r' s'} arbitrary elements of
£ . The direct product matrix S®S' is given by:
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(2.3.2)
5 ^ b

r S' s 5 /

??' PV n' >
r' r' V' r'
rp' rV SP/ n' I

/

rr r s' sr" ss' /

If we choose a vector basis in <L such that oc, , the

spin-up eigenvector for spin in the z-direction,say, is

represented by and p,( , the spin-down vector, by (°^
and likewise for system H. , then the isotropic

spin-zero vector for example ( 1 / J~2) ( «,® (Jj, - p,® <*-%.) which
as we shall see below (2.7) is of paramount importance

in discussing the Einstein Podolski and Rosen

gedankenexperiment, is represented by the vector:

1°

in (f

2.4 The Wan and Mclean Theory

In a recent series of papers Wan and Mclean

[ 1 983(a)&(b ) , 1 984(a),(b)&(c)] have proposed a quantum

mechanical theory (WM) which is asymptotically

separable in a certain sense and for which the EPR
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paradox in the momentum formulation receives an

asymptotic resolution.

The algebraic theory for a system of one quantum

mechanical particle is obtained by considering the

algebra of observables:

OO

where L (p) is the von Neumann algebra of essentially

bounded functions of the momentum operator p and is

a C*-subalgebra of $>(Lx(iiO)) given by:

(2.4.2) A] = (A e IMPORT) ) :s*-lim A. = 0},
<X> C

JL. -

where s -lim denotes the limit in the strong -topology

on operator algebras as time t tends to infinity [for

details of the strong -topology see Guenin 1966, Wan

and McLean 1984(a)] and A^ denotes the time evolution

Ut'AUt of A. States of the system are given in WM by

the normal NPLF's on *AWM and also by 'normal states at

infinity' generated from the normal states w in the

following way:

(2.4.3)

w°°( A) = lim w(Afc) for all keAw^ .

For an arbitrary operator A tA „ we can write:

(2.4.4)
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A = X + Y XeMS0 , Yfe L°°(p) .

In the WM-theory a two particle system is represented

b^: = <Asec + l"(P. ,px),
where L°° ( p, , Pj ) is the von Neumann algebra of

all essentially bounded functions of p, and p2 and

JCBC= {A efc (L1 (ft**) ) : s*-lim U"'AUt = 0}

2 .5 Uncertainty and Complementarity

It follows from the Hilbert space formulation of

quantum mechanics that for any two observables and

T •

(2.5.1)

<T, ><Tt ;cp> » 1 / 4 I < [T, , Tt ] ; <p >|x
for each <P«D ( [ Tj , T,, ] )A D ( T* ) A D ( T* )

[Prugovecki Ch.4 Lemma 6.1]. If we now set

Ta =Q-<Q ;cp>, Tz =P-<P ;(f> for some observables Q,P we

obtain from (2.5.1):

(2.5.2)

<(Q-<Q;<p>)*fX(P-<P;cf >)l;cp> » 1 / 4 I < t Q, P ]; cp > I*"
for all in the appropriate domain 0.
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The quantities on the left of the inequality
I X

(2.5.1) are commonly denoted by (A^Q) and (A^P)
respectively and A^Q, A^p are called the variances of
the observables Q and P. It can be shown [Lahti 1980]

that the variance of an observable is zero if and only

if either the observable is constant or the vector

state is an eigenvector of the operator, so that the

quantity A^ Q gives a measure of the dispersion of
values for Q in the state . As a particular case we

take Q to be the position operator x defined in (2.1.2)

and P to be the momentum operator p defined in

(2.1.3). It is well-known [Prugovecki 1971, eg] that

the position and momentum operators satisfy the

commutation relations

(2.5.3)

[x,p]c ifti

and it follows that (2.5.2) yields:

(2.5.4)

x . p >/- fi/ 2 for all (feT) .

This is a mathematical derivation of the relations

known as the Heisenberg uncertainty relations which

received a lot of attention and several attempts at

heuristic justification in the early history of the

theory. We should point out though that such heuristic

justifications for the alleged impossibility of



- 25 -

measuring position and momentum to arbitrary accuracy

are strictly independent of the operator relations

(2.5.4). The relations (2.5.3) are called the

canonical commutation relations. A stronger form of

these is given by the Weyl relations:

(2.5.5)

exp[iQt]exp[iPs ] = exp[-its]exp[iPs ] exp[iQt ]

[For a proof that (2.5.5) implies (2.5.3) but not the

converse see Prugovecki Chapter 4 Theorem 6.3.] It is

clear that any pair of operators satisfying (2.5.5)

also satisfies (2.5.4). The restriction in the domain

in (2.5.4) is rather important for it is easy enough to

find examples for which the inequality is violated if

op is not in D .(Consider "position" and "momentum"

operators in a box [-L/2,L/2] and take op as any

eigenfunction of the "momentum" operator.)

The difficulty with domains for unbounded

operators has led to the use of bounded operators

exclusively [cf(2.2)]. It is of interest to note that

in such a theory the uncertainty relations cannot be

formulated. For in such a system there are no pairs of

observables A and B which satisfy A^A.A^B c > 0 for
all Cp in D. To see this we note that t) = M and

a.
for any bounded A, (A^A) is bounded by 2llAI| . Hence

we can choose to be an eigenf unction of B and obtain

A^A.a^b = 0. This is not in conflict with (2.5.2) but



- 26 -

we observe that if A and B are bounded [A,B] cannot be

any constant observable apart from zero [Lahti 1980],

In chapter 6 we shall have occasion to see how this

provides a clear indication that heuristic uncertainty

and the operator relations (2.5.4) are independent

issues.

There is another rather important result which is

too often ignored in heuristic discussions of

experimental situations. This is the so called

complementarity theorem.

(2.5.6) Theorem

Let Q and P be any irreducible, canonically conjugate

pair of observables, ie Q and P satisfy the Weyl

relations (2.5.5). Then their spectral measures E(Q;A)

and E(P;A) satisfy:

E(Q;A)nE(P;A)=0
rt

for any finite Borel subsets A and A of IK, where a is

the intersection in the lattice of projections.

Proof: cf Lahti 1980.

The physical consequences of this fact play a large

part in the motivation for our consideration of local

observables (Chapters 3 and 4).
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2.6 Probability and Measurement

In a classical probability space (D. ,"$■ ,/u) events

are represented by the elements a of the Boolean

^-algebra of subsets ^ on the probability space i*L .

We define the probability of a particular event a by

the measure of the subset representing the event. That

is, the probability, <a;;/*>, of the event a with

respect to the measure /a is given by

(2.6.1)

<a; ;/a> = /((a) = J^d/*
where is the characteristic function of the set a

and (by abuse of language) we identify events with

their representative sets. One also defines the

expectation value <A;/0 for a random variable A on

measurable with respect to/a by [Moy 1954,eg]:

(2.6.2)

< A ;/*> = I A ( x ) d/A ( x )•J
where A(x) is the value of A at x and d/\{x) =

^( (x, x+dx) ) . Clearly <. ; ;/i > is a map from the field of

subsets of fl into the interval [0,1] and <A;/m> is a map

from the set ^ of random variables on IX into ifL.

However, there is a certain subset of these random

variables which is in one-one correspondence with ^ ,

namely the set of characteristic functions. The
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correspondence is obvious; aNow the

restriction of <. ;^> to the set 2"v yields the

probabilities by:

(2.6.3)

<^;/M> = <a; 5/M>

Furthermore, using (2.6.1) we can write dyH(x) =

<(x,x+dx) ; ;yH> and we have:

(2.6.1)

<A;^> = J A ( x ) < ( x , x+dx ) ; ]f\>
Thus expectations may be regarded as weighted averages

of the possible values of A, the weights corresponding

to the probabilities assigned by the measure to (an

infinitesimal set including) the point at which A takes

these values. This becomes clearer in the discrete

case. Here A can be characterised by its effect on

certain "atomic" events x^e^-, and if Xi=%x5' Ai =

A(x^), we have A = 2. A^ . It follows that
i

(2.6.5)

<A;/*> = J^A,Xl = 2 V1 } = f Ai <xl ' V*°

and the expectation value is a sum of the values A

taken on each discrete event x^ weighted by the

probability <x^ ;/4> of that event. The concepts of

expectation and probability are interderivable then,

and the duality between them is expressed by (2.6.3) in

classical probability theory.



- 29 -

In quantum mechanics one may introduce,

axiomatically, a probability measure <.;;£> on the

lattice X (4-i ) [we use the same notation ( 44 ) as for

the lattice of projections since the two lattices are

isomorphic] of subspaces of 4-1 given by:

(2.6.6)

<M;;e>=Tr(eEM)

where ^ is a density operator (and hence defines a

normal state on (8 (44 )),M£<£(4-\ ) and is the

projection onto the subspace M. Expectations are of

course defined by:

(2.6.7)

<A;^> = Tr(^A) for each At S (44 ).

Clearly the duality expressed by (2.6.3) is mimicked in

the quantum mechanical theory:

(2.6.8)

<M;; e > = <E„ ; e >

so that if the map <.;( >: (44 )-» (f is restricted to

the set of idempotent operators, ie the projections,

then the expectation values and the probabilities

coincide. Moreover we can derive expectation values

from probabilities in the sense that:

(2.6.9)

<A;£ > = Tr(£ A)
= Tr(e f tdE(A ; t) )
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= Jtd(Tr(?E(A;t)))
= j td<E (A ; t) 44 ;; £ > .

Now, E(A;t)44 is the subspace of 44 on which A

takes a value in (- ,t) so that we have an analogous

interpretation to the classical case, namely that

expectation values are weighted averages, with the

weights being given by the probability measure. The

correspondence between subspaces and projections, and

between projections and observables (via the spectral

theorem (2.1.5)) allows us to interpret these

probability measures on 44 in the following way [Mackey

1963, von Neumann 1952, Jauch 1968]: we say that the

probability <A;A ;£> of the observable A taking a value

in the set A when the system is in state £ is given by

the probability measure <E(A;A )44 ; 5 £> of the subspace

E(A; A )44 and we have therefore:

(2.6.10)

<A ; A ;£> = Tr(^E(A;A))for each observable A.

The difference between the classical case and the

quantum case arises from the rather less

straightforward representation of events in the latter

case. This in its turn is a consequence of the fact

that an observable A in quantum mechanics does not act

as a random observable on H in the same way as for

classical observables with values given by A(x), but as

an operator whose values are <r( A).
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Having made the association (2.6.10) it can be

shown [von Neumann 1955] that the probability postulate

is derivable from the expectation value postulate and

we have already seen that the converse is the case.

The duality is expressed by (2.6.8) or equivalently by:

(2.6.11)

<A ; A ; £ > = <E(A ; A );£>

The probability postulate plays a significant role

in the interpretation of quantum mechanics as a

physical theory with predictive statements to make

about the results of real physical measurements on

quantum systems. Another postulate with an important

part to play in enabling quantum mechanics to give an

account of the physical world is the controversial von

Neumann projection postulate. In answer to the

question, what is the state of a system after a

measurement of an observable T yields a value in the

set A , von Neumann postulated that the state must

satisfy

(2.6.12)

E(T; A )q>' = <p'.

Suppose that an observable T has a discrete,

nondegenerate spectrum <r(T) and that a system undergoes

a measurement in which it is ascertained that the value

of T is t , say. Then according to (2.6.12) the state
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of the system after the measurement is given by

where (fy. is the eigenvector associated with the
eigenvalue t. We shall call a measurement for which

the von Neumann projection postulate is assumed to be

valid a "measurement of the first kind" [cf Jauch 1968,

Piron 1976],

For a degenerate magnitude, no unique eigenvector

is selected on measurement. Von Neumann suggests that

the state after measurement should be given by

P^ /Tr(P^ ) where P^ is the projection onto the
subspace spanned by the eigenvectors associated with

t . It is pointed out by Bub [1979],eg, that this

cannot in general be correct. His reasoning follows an

earlier objection by Luders [1951] who postulates a

different generalisation of the von Neumann projection

postulate. The Luders rule is generally taken to be:

(2.6.13)

£ -* E/Tr E )

where E is the projection corresponding to the

measurement. Now the projection postulate is

problematical in various ways and has been the subject

of continued and extensive discussion [Bub 1979, Furry

1936 & 1966, Jauch 1968, Luders 1951, Srinivas

1 980,eg]. A careful reading of Liiders' paper, (the

original was in German, which may explain why it has

been misquoted) reveals that he only treats the case of



- 33 -

degenerate discrete spectra and does not in fact make

an explicit formulation of (2.6.13) as a general rule.

However Luders, and many others have, implicitly at

least espoused such a rule, and here we shall adopt

(2.6.13) as the Luders rule and we shall suppose that

at least for a certain class of systems we may regard

this rule as appropriate for the change of state

through measurement. We shall call a measurement for

which the Luders rule holds an "ideal measurement of

the first kind" [following Jauch eg].

2 .7 The Einstein,Podolski and Rosen Experiment

In 1935, Einstein, Podolski and Rosen published a

now famous paper in which they proposed a thought

experiment designed to prove the incompleteness of

quantum mechanics. Their argument was based on the

fundamental assumption that if it is possible to

measure the value of a certain quantity on a system

"without in any way disturbing the system", then that

quantity constitutes "an element of the physical

reality". They then attempted to show that quantum

mechanics was incomplete by demonstrating the existence

of such an "element of reality" not completely

described by quantum mechanics. The essence of their

argument was to consider a two-particle system in which
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some physical quantity (momentum in the original

example) is conserved. By supposing that this quantity

is still conserved when the two particles in the system

have separated to an arbitrarily large distance EPR

maintain that the value of the quantity in question for

one of the systems may be measured without disturbing

that system by measuring the same quantity for the

other system and then using the conservation law. It

follows, according to the EPR argument, that this

quantity is an element of the physical reality, and as

such must have had the measured value before the

measurement occurred. This is in sharp contrast to the

quantum mechanical analysis in which no definite value

for such a quantity exists before measurement. EPR

claim that this exhibits the incompleteness of the

quantum theory.

The EPR experiment has been formulated by Bohm

[1951 & 1957] in terms of the spin of a system of two

spin-1/2 particles for which the total spin is

conserved as zero. The spin vector for this system

which is isotropic (ie invariant under a change of spin

axes) is given by:

(2.7.1) %0 = ( 1//2) ( - &©«*)

where ^-and [3^ are as given in (2.3). The "paradox" that
arises from the EPR analysis is that the quantum
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mechanical state for which the value of the spin is

definite (but unknown) before the measurement occurred

(as EPR suggest) is in fact the mixture:

(2.7.2) (1/2>W ('/2,W

in contrast to the state (2.7.1) which is a pure state.

Now there are two points of interest here. Firstly

there is the question: how does the pure state (2.7.1)

evolve to a mixed state or if this does not happen

which of the two states is the correct description ?

Secondly,if the correct state is a mixture, that is a

state corresponding to an incomplete knowledge of the

system, then is it possible to provide further

parameters not as yet belonging to the quantum

mechanical description which together with the quantum

state determine completely the values for the system?

The Copenhagen answer is to deny the validity of the

EPR reasoning by attacking the clause "without in any

way disturbing the system". A measurement on one

subsystem, they claim, necessarily disturbs the other

subsystem and hence invalidates the EPR argument. In

answer to the hidden variables question they maintain

that no further parameters can exist which add anything

to the quantum mechanical information about the

system. Now we regard this view as extreme for it

entails a very high degree of nonlocality for quantum

systems, a nonlocality which is not confined to small
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spatial regions but extends over the whole

configuration space ift, . Although there is quite

plainly evidence of quantum mechanical correlation

between systems within the confines of a particular

laboratory apparatus, for example, this does not seem

to us to necessitate the complete denial of locality on

a macroscopic level. In this thesis we shall attempt

to mitigate the extremity of the Copenhagen position by

providing an indication of how and where correlations

between subsystems occur and showing that it is

possible to provide a quantum mechanics which is

separable when the two subsystems are appropriately

separated. Having achieved this, we shall then

re-examine the controversial hidden variables

question.
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CHAPTER 3

LOCALISATION OF BOUNDED OBSERVABLES
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3 . 1 Introduction and Motivation

The theory of quantum mechanics is disturbingly

nonlocal. This much, as we have already mentioned, was

realised rather early on in the history of the

subject. Nevertheless there is, generally speaking,

something undeniably local about the act of physical

measurement using real physical apparatus. An

experiment designed to carry out a measurement on an

arbitrary quantum mechanical system is performed in a

definite physical locality. The apparatus, being

essentially classical, is localised in some spatial

region and can scan at most a finite region A in the

finite time taken to perform the measurement. We shall

call this region A the size of the apparatus. Given

these physical limitations of the measurement

apparatus, it seems reasonable to make the following

assumption concerning such measurement situations.

(3.1.1) Measurement Postulate

A measuring apparatus or device of finite size A cannot

detect a particle lying outside A*

Now let us consider a quantum system moving in
(\

configuration space iR. with Hilbert space given by M =

LZ ((R ) . fE> () will denote, as above, the algebra of

all bounded operators on H . Let 3 OR." ) denote the set
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of all Borel subsets on (R and let Bc( (R° ) denote the

set of all such Borel sets of compact closure in iR .

Given A in we shall denote by A the complement

of A in fRn, and by 4*1 (A ) the subspace L*"(A) of L1" ( lRn) .

Note that the orthogonal complement 44(A)"1" of f-|(A) in

H equals 44 (AX).

We wish to construct a quantum mechanical theory

for describing measurements using physical apparatus of

finite size A, so we must ask ourselves the following

question: which observables - selfadjoint linear

operators - are the appropriate ones for the

description of such a situation? Now, bearing in mind

that the physically meaningful values in the quantum

mechanical description of the world are the expectation

values (and probabilities), the requirement (3-1 - 1)

suggests that we should impose the following limitation

on the set of observables measurable using finite

apparatus:

(3-1.2) All observables measurable using apparatus of

finite size A must satisfy:

<iyiAiy> = 0 for all e 4A (A"1")

In this chapter we shall construct a certain class

of observables which for obvious reasons we shall call

local observables. It will turn out that these

observables always satisfy (3.1.2). For the case of
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bounded observables we can show additionally (Theorem

(3-2.2)) that the local observables exhaust the set of

observables which satisfy (3.1.2). By introducing a

concept of global relatedness between observables we

establish a correspondence between an arbitrary

observable in ®>(^A) and a suitable family of globally

related local observables. This enables us to consider

using only local observables and hence satisfying the

measurement postulate (3.1.1). We investigate the

convergence properties of such a family of observables

in the limit of large apparatus size and discuss an

appropriate measurement scheme from a probabilistic

viewpoint.

3.2

(3.2.1) Definition

An operator T on M is called a local operator if it

satisfies:

(L„)

T = E(x;A)TE(x;A) for some AeBjflC*)

A bounded operator A 6 (M ) satisfying (L^) is called a

bounded local operator or LA-operator for short. The

corresponding terms for selfadjoint operators are local

observable and bounded local observable
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(LA-observable),respectively.

(3.2.2) Theorem

Every selfadjoint A t (£> ( H ) satisfying (3.1.2) is an

LA-observable. Conversely, every LA-observable

satisfies (3.1.2).

Proof:

Firstly, (3.1.2) implies that A(p = 0, ^«4A(AA" ) . hence for

any cp in H we have AE (x;AJ")<p =0 and therefore

E(x;A)AE(x;Ai")=E(x;/Ai)AE(x;A-L) = 0.

Since A is selfadjoint it follows that:

0 = (E(x;A)AE(x;AJ")) =E (x ; ) AE (x ;A )

Now the result follows easily since:

A=(E(x ;A )+E(x ; A"")) A(E(x ;A) + E(x; A1*))

=E(x;A)AE(x;A)+E(x;A)AE(x;Ax)

+ E( x ; Ax) AE(x ; A)+ E( x ; A"*) AE(x ; A1-)

=E(x;A)AE(x;A).

The converse is trivial.

3.3

We have ascertained that L^-observables are unique

in satisfying the physical requirements imposed by the

finite size of the measurement apparatus. In quantum

mechanics,however, observables (even bounded ones) do

not generally satisfy (LA). If we wish to modify the
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conventional theory to allow for a local analysis we

must try to provide observables which do satisfy () .

For bounded observables this turns out to be relatively

straightforward.

(3.3-1) Definition

Let A c- ( 4*1 ) . The localisation A A of A in A is defined

by :

A^=E(x;A)AE(X;A), A68cdKa).

It is evident that the localisation in A of a bounded

operator A is an LA-operator by virtue of the

idempotency of E(x;A). Moreover,if A is a selfadjoint

operator, then Aa is also selfadjoint and hence the
localisation in A of each selfadjoint A in ) is an

LA-observ able.

(3-3.2) Definition

We shall call an observable global if it is not local.

The term global is not merely a contrast to the concept

of the local observable. As we have already mentioned,

quantum mechanical observables are not generally local

in the sense of (LA) and this is due to the fact that

they are influenced by the global characteristics of

the configuration space in which the particle moves

[Wan and McFarlane 1980,Wan and Viazminsky 1977].
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3.4 Globally-Related Families of Local Operators.

Having shown that for each bounded operator on "H

we can construct an operator A which is local in A in

the sense of (LA), we now attempt to carry through our

programme of replacing the usual observables with local

observables by associating each A e ($ (44 ) with a certain

sort of family A of local observables.

(3.^.1) Definition

Denote by the set:

Aa= (A ) : A is an La-operator}.
A map :

A '• UAv by
C A

A -A(A)'=f,A^A

is called a bounded globally-related family of local

operators if A satisfies:

(i) the boundedness condition: there exists a number

M e such that:

|| Aa H<M for all A 6g>c(lRn) ,

(ii) the isotony condition (global-relatedness

property): AA'is the localisation of Aa" whenever A'feA", or

equivalently for any A', A" in Sc,(^ ) :

E ( x ; A )A -E ( x ;A ) = E( x ;A )A/,E ( x ;A )- A - — A -

for all A € A".
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The boundedness condition (i) of definition

(3.4.1) is a technical point to ground the discussion

firmly in the realms of bounded observables. The

physical content of the definition is embodied in the

condition (ii). Essentially the global-relatedness

property will enable us to regard each member of such a

family as corresponding to the same physical quantity

measured using a measuring device of a certain size.

In terms of such a description, the condition ensures

that whenever the spatial domains of the two operators

overlap the corresponding globally-related observables

agree on the common part of the domains. The result

linking such families to the usual global observables

is :

(3.4.2) Theorem

A map : A--Sc(«o
is a bounded globally-related family of local operators

if and only if there is a unique A 6 ^ ) such that Aa
is the localisation Aa of A in A.
Proof

Firstly, any A in ) obviously defines a unique

bounded globally-rel ated family of local operators by

Aa = Aa. To prove the converse let be a

monotonically increasing sequence of subsets in £)t((P\a)
converging to (R . Given a bounded gl obal ly-related

family of local operators write A- = Aa- anci e ; =
«J J 4
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e(x:a-). For each pair ®,ip in c"(frrt) there exists jBJ

(depending on such that, for all j>j„ we have

Aj 5 supp cp and Aj 3 supp (j) . Now consider the sequence

<A,cpilp>; we have,for k > j 7 j6 :

<AJcf|i})> - <AkqMij)> = < Ej Ak Ej(p I tj) > - < l^>
= <AkEj(p|EJ^> - <A„<pi^> = 0.

This remains true for j^k7j0 obviously. We have used

(ii) in definition (3.4.1) and the fact that e-cf = (p

and e = 4) in the above proof. It follows that for

each pair <p,4> in the dense subset C^(|R,A) of fl the

sequence is a Cauchy sequence. We deduce,by

Theorem 4.26 in Weidmann [1980],that A; is a weak

Cauchy sequence and hence converges weakly to some

operator A in (4A ).Let us now show that Aa = Aa for

all AC- Sc(lRA ) . We have, for any in M 1

\< <pkaa-Aa)4>> i = I < cp|e(x ;A) (a-Aa)e(jc ;A )lp> I
= |<e(x;A)(p|(a-Aa)e(x;A)lp> |
= l<E(x;A)(?l (A- AA|<)E(x;A)y>l

for all A^-A*
We have used the global-relatedness property of A in

the last step. Hence:

( 1) < q>\ ( Aa - aa)l^> = 0 and Aa = Aa ,

since Ax converges weakly to A.

Finally for uniqueness we observe firstly that

each weak Cauchy sequence {A^kJ admits a unique limit.
Furthermore, suppose a different weak Cauchy sequence

A. with its weak limit A' is chosen, then A = a'
I

since :
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<cp|(a; - aa )^> = <cpI(/a-Aa)^> = 0

for al1 A by ( 1) .

We can now associate with each bounded operator a

unique bounded globally-related family of local

operators.

(3-4.3) Theorem

There is a one to one correspondence between the set

(44 ) of bounded operators A and the set (X } of all

bounded globally-rela ted families of local operators on

44 given by:

Ak = Aa ; A = s-1 im Aa-
j-»» J

where {A:} is a monotonically-increasing sequence of
J

members of St(^n) converging to l"Rrt as j tends to

infinity. [From now on {A-} will always mean such a
J

sequence.

Proof

By the properties of the spectral measure we have

E(x ; A• ) converges strongly to the identity operator 1
J

in 44 as A- converges mo notonical ly to [cf
0

(2.1. )]. As in the proof of Theorem (3.4.2), let

ke a weak Cauchy sequence with weak limit A.
J

Then XA - aa implies that
II (A- Aa. )<pll = H(A-Aa. )Cpll

J J

4 l|( A — E(x ; A - ) A )<P + (E( x ; A- )A-Aa. )<pII
J J J

« ||( I- E ( x ; A- )) ACf l| + HA(I-E(x;A: ))<$W .- J J

Using the boundedness of A and the result above
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concerning E(x;Aj) we obtain:
l|( A- Aa. )(f l\-*0 as for all <peM,j J

or in other words { Aa. } converges strongly to A.
j

Finally it is trivial to show that each A in

(£> (4A ) defines a { Aa ) by Aa = and that any sequence

(Aa-I corresponding to a monotonically increasing

sequence {A;} converging to (R has A as its strongj

limit.

Evidently, Theorems (3.1.2) and (3.1.3) apply in

particular to selfadjoint operators. In view of the

physical importance of selfadjoint operators as

observables of the system, we shall restate the results

explicitly in the form of the following theorem.

(3.1.1) Theorem

A map A :S(lRA)^UA is a bounded globally-rel a ted*" A A'

family of local observables if and only if there is a

unique observable A 6 (?) (44 ) such that Aa ts the

localisation Aa of A in A. Further, there is a one to

one correspondence between the set of all bounded

globally-related families of local observables and the

set (&(A\ ) of all bounded observables on , given

by :

Aa= Aa ; A = s-lim Aa.
j -»» j

Proof

Firstly we observe that the strong limit of a sequence

of selfadjoint operators is selfadjoint [Prugovecki
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1971 p 2 5 6 ] . Also if Ael8> ( 4A ) is selfadjoint, so is

= Aa and the result then follows from Theorems (3-4 .2)
and (3 .1 • 3) •

3.5

What we have demonstrated is a sort of canonical

correspondence between the bounded observables

conventionally used to describe a quantum mechanical

system and these globally-related families of local

observables. In principle we would want to proceed by

replacing an arbitrary bounded observable by the

relevant local observable for a given situation. By

the relevant observable we mean the member of the

canonically associated globally- related family which

corresponds to the size A of the measurement

apparatus. In practice of course, we must be able to

obtain results which are at least a good approximation

to those predicted (usually successfully) by the

conventional theory. We demonstrate the following

convergence results in the limit of large apparatus

size.

(3.5.1) Corollary

Given any (Q e , A fc ) we can choose a A^St(iPv )
which renders the difference <CJ>|Acf> — <cp| AA<p > arbitrarily
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small. [In other words:expectation values Converge.]

Proof

This is a corollary to Theorems (3 • 1 • 2) and (3.4.3) for

by Theorem (3.4.2) we can construct a bounded globally

related family of local operators A such that = Aa .By

Theorem (3.4.3) we know that Aa converges strongly to A

and hence [Prugovecki 1971 p230] Aa converges weakly to

A and it follows that <<P I Acp >-I A*<p > can be made

arbitrarily small.

(3.5.2) Theorem

(i) For each value X in the spectrum of A and for any

monotone sequence {A } converging to (iO there exists a
J

sequence { } of members of the spectra cr(AA. ) of Aa
J J *

converging to X, ie there exist X-f-ff(AA. ) such thatd v)

as j -* oo .
0

(ii) For every value X not in the discrete part of the

spectrum c(A) of A, we have:

s-lim E(Aa. ; X)=E(A;X) .
d

Proof

(i) It can be seen from Weidmann 1980 p282 that the

sequences {Aa } satisfy the conditions specified there
J

for "strong resolvent convergence". The result then

follows from Theorem 1.14 p431 in Kato 1 966 .

(ii) This follows from Theorem 1.15 p432 in Kato's

book.

(3.5.4) Theorem
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If Aa. admits an eigenfunction Cp-c-H with eigenvalue
J J

X- for each j and if the sequence {X:} of eigenvalues
J J

converges to some (real) value X and the sequence {cp • }
J

of eigenf unctions converges uniformly to then is

an eigenfunction of A with eigenvalue X.

Proof

I\AaC(). -A<pil = IIA CP- -Aa (p +Aa<$ - ACp 11
J u J ^ 0

\|AAj. (cpd -cp)l\ +l|AAjCp - Acp II
s< Mliop.-Cf||+ l|AA.Cp -A(pl|-K) as j -» » .J J

Hence: s-lim AA.cp. = Art),
j -¥ 00 0 <J

Now UAa.CP; - \(p l| = IU;<P; - \<pll
J J J J

= ii \jCpj - xcpj+ x^.-xcpu
IK X; ~X)Cp• H + lX|llcf-cpi[-*0 as j-*0®.■J J o

Therefore: s-lim AA.(p. = X(p and hence A(p = X(P .

j-boo j J '

We observe that actually the convergence

requirement on Xj is not crucial in this theorem si nee
the X- are bounded and therefore there always exists aJ

convergent subsequence.

The results of the preceding theorems and the

corollary indicate how a bounded (global) observable A

can be approximated by its localisations in the sense

that the spectrum and the expectation values can be

approximated by those of its localisations.
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3 .6 Local Observables and Measurement.

At the beginning of this chapter we postulated

(3.1.1) that measuring devices of finite size cannot

detect particles lying outside the spatial domain of

the apparatus. A mathematical formulation of this

requirement enabled us to deduce the necessity of local

observables for describing this finite measurement

situation.

Another aspect of the measurement situation is of

interest when considering the finite size of the

measurement device and here again we shall find that

local observables play a crucial role. Suppose that an

experimenter wishes to study the properties of a

quantum mechanical system or prepare a quantum

mechanical system in a particular state, perhaps an

eigenstate of some bounded observable A, for future

study or interaction. He is physically limited in his

design by the fact that he has at his disposal only

measuring apparatus of some finite size A >say.

Nevertheless he wants to do the following rather

natural kind of things: firstly, he wishes to make a

measurement (we restrict our attention here to

"measurements of the first kind" [cf (2.6)]) of the

observable A which will, according to the von Neumann

projection postulate, enable him to say that after the
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measurement the system is in a certain eigenstate

(px,say, corresponding to the measured value \ of the

observable; and secondly, he will often want to be able

to say that after the above operation the system

remains inside the apparatus; for if it does not his

projected future study or interaction will be

fruitless, whereas if it does so remain the

experimenter can proceed to enact further processes on

the prepared system.

Now the question is: does such an observable A

exist in quantum mechanics, on which the process

outlined above may be fulfilled ? Well firstly we can

show that except for certain special cases measurements

of local observables do admit this possibility.

(3.6.1) Lemma

Let Aa=A(A)©0 be a local observable in A,where A(/\) is

an observable on 4^ (A). Let b 5 <r(Aj, b 6 ^ ((l\ ) a nd

suppose that b does not contain zero. Then after

measurement of the proposition E(AA;b) the system is in
A.

Proof

The spectral projector E(AA;b) can be written as:

E ( A A ; b ) = E(A(A);b) ®E(0A±;b)

where 0aj. signifies the zero operator on (A"*" ) . Since

b£0, E ( 0aj. ; b ) = 0 (2.1.7) and so E ( Aa ; b) = E(A(A);b).

According to von Neumann the state (p' after measurement
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satisfies = E(AA;b)(p = E(A(A);b)<p and now it is clear

that <p = E(x;A)(^ since A(A) is an operator on (A ) .

In the event that b contains zero however,E(0,:b) takes

the value unity in (AX) and hence there may be a

nonzero part of the wavefunction which lies in

4-1 (A"1") • In terms of eigenf unctions we may say that

this is because of the existence of trivial

eigenfunctions 0®l^, of E(AA;b). To proceed

further with our investigation let us assume for

definiteness that the Liiders rule holds [cf (2.6.13)].

Then we have:

(3.6.2) Lemma

A system which is initially in A and which is subject

to a measurement of any local observable Aa remains in

A after the measurement.

Proof

It suffices to note that E(x;A) commutes with E(AA;b).

In fact of course for any operator A^ which
commutes with E(x;AJ the above result holds.

(3.6.3) Lemma

A system which is initially in A and which is subject

to any measurement of an observable Aa = A(A)®A(Ai")
remains in A after the measurement.
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We can also prove the following with regard to

observables of the direct sum form A(A )©A (A'1" ) .

(3.6.4) Lemma

An observable A is of the form A(A)©A(A"L) if and only

if for every initial vector state (p localised in A and

for every b £ S (iR, ) measurement corresponding to the set

b leaves the system in A•

Proof

Let A = A(A)©A(A"1"); then the necessity follows from

(3.6.3) which follows in turn from the preceding

discussion.

For the sufficiency we notice that for each <pe<H(A) and

for every b 6 J) ((R,) we have by the Luders rule:

Cp' = E(A;b)<p/IIE(A;b)q>\\

Then Cp = E(x;A)flp implies that

E (A ; b ) E ( x ; A )<p = E (x ;A ) E ( A ; b )<p
for all (peV\(A),bG&((R,).
Therefore for each & M it follows that:

E(A;b)E(x;A)l)»=E(x;A)E(A;b)E(x;A)lp for all b fcg (lK ) .

By taking adjoints we see that:

[E(A;b),E(x ;A)] = 0 for all b.

Hence A commutes with E(x;A) and we have A =

A (A )©A( Ax ) .
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The relevance of these last results to the

discussion on local observables is not purely

academic. It is of interest that the general form

A(A)©A(Ai") arises as a less stringent alternative to

local observables. For example, we could have allowed

local observables to be quite generally of the form

A(A)®\1 in our formulation without seriously offending

the physical requirement (3-1.1). The constant term X

merely reflects in this case the meter setting or zero

reading for a particular apparatus, so that the

expectation value is given by X+<A(A);<^>.

Now despite the previous lemmas we have still not

succeeded in fulfilling quite generally the

experimenter's requirement that the system remain in A

after measurement. Even restricting our discussion

purely to local observables we see from the remarks

following Lemma (3.6.1) that certain measurements of

local observables appear to offend the requirement in

question. As a solution to this problem we propose the

following definition and postulate.

(3.6.5) Definition

An LA-measurement or local measurement in A of a local

observable Aa (or more generally an observable

A(A)©A(Aa)) is a measurement which entails the

following sequence of events: first an ideal
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measurement of the first kind is carried out in which

it is ascertained that the particle is in A and then a

measurement of the LA-observable is made.

We see that an LA-measurement is a measurement

which involves first "catching" the particle in A and

then performing the measurement. According to the

Luders rule (2.6.13) this is equivalent to performing

the measurement on the state E (x ;A )cf/HE (x ;A )<pl\ when the

initial state is .

We now boldly cut the Gordian knot and make the

following assumption concerning finite measurement

situa tions.

(3.6.6) Postulate

A measuring apparatus of finite size A makes

La-measurements on LA-observables.

It follows from this postulate and Lemma (3.6.1) that

the requirement expressed at the beginning of this

section has now been fulfilled.

One way of regarding the concept of LA-measurement

is to see it in terms of keeping track of the

statistics when a quantum system becomes confined in a

finite spatial region. In the next section we examine

those statistics in more detail.
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3.7 ^-Probabilities and L^-Expectation Values.

The concept of LA-measurement induces concepts of

LA-probabilities and LA-expectation values which differ

from the usual probabilities and expectation values.

We define the LA-probabi1ity of obtaining an answer yes

for a particular question as the probability of

obtaining the answer yes to that question on

LA-measurement and we denote by <AA;b;^>A the

LA-probability of obtaining a value for Aa in the set b

when the state is ^ . Consideration of the definition
(3-6.5) and the remarks following it leads us to

formulate LA-probability by:

where ^ = E(x ;A)^E(x;A)/Tr(E(x ;A )^ ) . If we denote
LA-expectation values by <Aa >A and derive them from

the probabilities in an analogous fashion to the

derivation (2.6.4) we obtain:

(3.7.1) <Aa ;b;e>A = <Aa ;b;

<aa ; CA>

<Aa >/Tr(E(x;A)( )
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It is to be noted that the Ls-expectation values

are not the same as the expectation values in the usual

formulation for AA . This rather highlights the

physical effect arising from the spatial limitations of

the measuring device. Using the results of (3.4) and

(3.5) however,we observe that L^-expectation values

converge to the usual ones in the limit of large

apparatus size as we would hope. Notice also that p

is precisely the state predicted by the Luders rule for

catching the particle in A so that these formulations

agree with definition (3.6.5) and the remarks which

follow it. i

In the probabilistic interpretation of quantum

mechanics probabilities and expectations are defined as

maps from the lattice of subspaces of a Hilbert space

into [0,1] and from the observables on the Hilbert

space into the reals, respectively. A duality exists

between probability and expectations which is given by

(2.6.8). Now the first thing to notice about

L^-probability is that it may (most generally) be

defined for observables A which commute with E(x;A);

that is, observables of the form A(A)©A(A-U); and

therefore it does not define a probability measure on

the whole lattice of subspaces X ("H ). LA-probability

does however define a map on the lattice

( AA (A )®44 (A"1-) ) of all subspaces MA© Maj- , MA£ ^ (A ) ,
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M^.1. £ > corresponding to the lattice of projections
of observables Aa with [Aa,E(x;A)] = 0. Notice that if

we try to restrict the formalism for the special case

of local observables by restricting the lattice of

projections to ^(4^(A)) we run into trouble because

the projections of a local observable contain the term

E(0Aj.;b) [cf(3.6.1)] which lies in ( AL) ) . The more

general description seems to be formally the more

appropriate and we have:

(3.7.3)

(A)«.4A(AX ))-*[o,i]

<M; ;{ >A =Tr(M(A) , M c / ( (A )€> 4H A-*" ) )
and

<• ;(>a : &(44 (A)©4-\(AX ))^ C

<kK ; ^ >A =Tr(AAfA), A* g ((A ) © <H (A1") )

with the duality of (2.6.8) echoed here by:

(3.7.4)

<m; ;f>a =<em ; f \ .

The point is that the duality (3.7.4) cannot be

maintained unless the domains of the formal maps are as

given in (3.7.3).

In order to get a slightly different perspective

on the LA-probability measure and L^-expectation map,

let us consider the classical probability theory

again. The conditional expectation value <A ;/M>\^ of A
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with respect to a particular event a, say, is given by

[cf Kolmogorov 1950, Moy 1951, Bub 1979]

(3.7.5)

<A;/m>|(L = J Ad/x/ J" d/i,

An alternative expression for (3.7.5) is:

(3.7.6)

<A ;^>L = \kX^/
or again:

<A^>U = JAd/<x
where ^(f) = d/* = /4( f^ a)//<( a ) for all ft^J-.

Clearly the measure corresponds to the

conditional probability measure in the conventional

sense [Kolmogorov 1950] and again we may derive

conditional probabilities from conditional expectations

(analogously to (2.6.8)) by:

(3.7.7)

<f 5 i/*>\K » f se¬

cond! tional expectation with respect to the event J1

(or with respect to the field generated by the

partition {i~X,^}) is the usual expectation. From

(3.7.6) we observe that:

(3.7.8)

<A = <A;/v>

and hence we see that conditionalisation induces a map
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from the set {^} of probability measures into itself

given by: /•-»/«».• Correspondingly we have:

(3.7.9)

<M; ;/0|A =< ; ;^>.

There have been various attempts to extend the

concepts of conditional expectation to the quantum case

[Bub 1979, Davies and Lewis 1970, Nakamura and Umegaki

1961, Umegaki 1951 & 1956]. The whole thing is

complicated by the noncommutativity of the algebra of

quantum mechanical magnitudes: not all magnitudes

(observables) will commute with the particular event

(proposition) with respect to which conditionalisation

occurs and the straightforward procedure of the

classical case does not in general work. For the case

of local observables however, or more generally the

observables of the form A(A)©A(AX), we see that it is

possible to conditionalise with respect to the

proposition E(x;A) since all these observables commute

with that proposition and the difficulties outlined

above are circumvented. We proceed then by defining

the conditional probability with respect to E(x;A) on

the lattice ^L( (A )© ^\( ) ) by:

(3.7.10)

<M;;e>i6U A) = <e(x5a)ha m; ;^>/<e(x;a)4-I;; ?>

in analogy with (3-7.6). It is then straightforward,

given M = E ( A^ ; b )f| say , to show that
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<Avb;?>|eu.A) =(by def inition)<E(^; b)^;;f>|£tt.A)
= <AA;b; ^ >

where ^ is as given by (3-7.1). Now we see immediately
that the conditional probabilities deduced by analogy

to their classical counterparts are none other than the

-probabilities defined above. Similarly we can

deduce that the conditional expectation values are

given by

(3.7.11)

and these are exactly the same as the LA-expectation

values (3.7.2). Hence we see that L^-probability and

-expectations may be regarded as conditionalisations

with respect to the event that the particle lies in A-

3.8

We have defined a concept of local observables

appropriate to the physical limitations of the

measurement apparatus and a localisation for bounded

observables, demonstrated a correspondence between

certain families of such observables and the usual

bounded observables and shown some important

convergence properties of the local observables.

Further physical considerations suggest the concepts of
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-probability and LA-expectation values which turn out

to correspond to a conditionalisation with respect to

the particle being inside the apparatus. Some

algebraic properties of local observables may be found

in McLean 1984. Some of the results of this chapter

have been published in Wan and Jackson [1984]. In a

recent paper de Muynck [1984] has proposed a scheme for

local observables which appears on the surface to

differ from the one proposed here. Happily it turns

out (de Muynck - private communication) that his

definition and ours coincide for the case of a single

particle as considered here.
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CHAPTER 4

LOCALISATION OF MOMENTUM OBSERVABLES
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4 . 1 Introduction

It is a well known consequence of Fourier

transform theory [Carrier,Krook and Pearson 1966,eg]

that, if A and A are both bounded Borel sets in

$(fiC)»then the spectral projections E(x;A) and E(p;A )

for the quantum mechanical position and momentum

(respectively) admit no nontrivial solution to the

simultaneous equations:

(4.1.1)

E ( x ; A )<P = Cf J E(p;A ) 4> = <p.

This is just an expression of the complementarity

theorem (2.5.6). An immediate physical consequence of

this fact is that we cannot simultaneously confine the

position and momentum of a particle. Let us consider

an ideal measurement of the first kind [cf(2.6)] where

the change of state obeys the Luders rule (2.6.13), and

let us suppose that an experimenter wishing to measure

the momentum has at his disposal an apparatus of finite

size A . The state of the system after a measurement

yielding a value in the bounded set A is given by the

Luders rule as:

(4.1.2)

= E(p; A )<p/ II E ( p ; A )<p II ,

where (p is the initial vector state. Evidently the
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state <§' satisfies <p = E(p; A )(p' in agreement with the
von Neumann projection postulate (2.6.12) and, by

virtue of (4.1.1), the state after measurement <p can

never satisfy <p' = E(x;A)<p". That is, even when the
initial wavefunction lies in the spatial domain of

the apparatus A, the wavefunction ^ after the

measurement will no longer be contained in A. Indeed

£p'(x) is non-zero almost everywhere [Carrier, Krook and
Pearson 1966, Lahti 1980]. In other words the

wavefunction after measurement is spread over the whole

of lK . By the act of measuring the momentum, the

experimenter no longer necessarily retains the system

he is measuring within the apparatus. Here then is a

specific example underlining the motivation of the

previous chapter for the introduction of "local

observables". There we were able to overcome the

problem of an infinitely spreading wavefunction in the

measurement situation by introducing a localisation

procedure for each bounded observable A given by:

(4.1.3)

Aa = E(x;A)AE(x;A)•

This procedure makes sense for bounded observables

since A^, so-defined, is selfadjoint and unique. If A
is an unbounded observable however we cannot in general

proceed in the same fashion because the operator A

defined by (4.1.3) would be symmetric but not in

general selfadjoint. One may try to define the
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localisation of A by looking for selfadjoint extensions

of A^. But again, in general this does not work since

A^ may admit no selfadjoint extensions, or if it does
there may be many such extensions, depending on

boundary conditions [Bratteli and Robinson 1979 p187,

McFarlane and Wan 1981]. In chapter 5 we shall discuss

more generally the problem of localising unbounded

observables. In this chapter we confine our attention

to the momentum observable for which a localisation has

already been proposed [McFarlane and Wan 1981, McKenna

1982] which is selfadjoint-preserving. We shall

briefly describe this procedure and a similar one for

the radial momentum observable and then show how the

physical situation may be interpreted in terms of these

local observables. We obtain an explicit convergence

calculation and illustrate with a diagram how the

experimenters requirements are satisfied and the

results still agree with the usual quantum mechanical

ones within a certain domain.

4.2 Local Momentum Observables

We shall confine our attention here to the linear

momentum p for a particle moving in the one-dimensional

configuration space IR, . Let j(x) be a C*°- function

which vanishes outside the interval A= (a,b) and which
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equals one on a closed interval /\0 = Ca0 , b0 ] inside

(a,b). Notice that such a function $(x) exists even if

[a0,b0 ] is arbitrarily close to (a,b) [Matsushima 197 2

p69»93]. The classical observable |(x)p generates the

Hamiltonian .vector field X = f(d/t>x) [Abraham and

Marsden pl87]. The obvious fact that the support of

the vector field X is compact implies that X is a

complete vector field [op.cit p70]. Hence §(x)p is

quantisable in a straightforward manner to give a

unique selfadjoint operator [Mackey 1963» Wan and

McFarlane 1980, Wan and Viazminsky 1977]:

(4.2.1)

5p = -ift(Sd/dx +J£d$/dx)

with domain:

{i^e Lz OR, ) :i»>e AC (X, IR. ) , ( jp)l|l6 Lz ( iRj }

where AC(X,|R,) is the set of functions on IR,

differentiable with respect to X almost everywhere

[McFarlane and Wan 1983]. Note that jp is the unique

selfadjoint extension of the essentially selfadjoint

operator:

(3p)0 = -ift(Sd/dx + >1 dt/dx)

on the domain C^UR, ) .
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Now we can introduce the following definition.

(4.2.2) Definition

The observable jp is called a local momentum observable

in A with centre of localisation A0 and boundaries of

localisation A -A0 (the two disjoint regions in A-\0

comprise the boundaries of localisation).

We now demonstrate formally how the local momentum

observables satisfy the definition (3.2.1) to be local

observables.

(4.2.3) Lemma

Let jp denote the operator defined by

|p<p = -i-hS^d/dx) ($'*<p)
on the domain £) (jp) . jp is a well-defined selfadjoint

operator and indeed

Sp = Sp.

Proof

Using the differential expression -inj^d/dxj^ we have

for each (f in C^(h\,)
(Sp)0<? = -ihS^d/d x(^(j>)

= -ifiS^(q>d(fc^)/dx + £^d<p/dx)
= -ih(5d/dx +^-di/dx)(p
= <?pVP •

Hence (ip)0 = (£p)0 . But (% p )„ is an essentially

selfadjoint operator on C^OK,) with a unique
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selfadjoint extension given by (4.2.1). It follows

that (Sp)0 has the same unique extension and hence $p =
✓S. 5^
3P is the unique selfadjoint extension of (£p)0 .

(4.2.4) Theorem

Jp is a local observable in A as defined in (3.2.1).

Proof

ip is formally equivalent to Sp by lemma (4.2.3) and

since l*E(x;A) = E(x;A)i^ = we have :

E(x;A)ipE(x;A) = E(x;A)&pE(x;A)

= E(x;A)(-ih^(d/dx)£^)E(x;A)
= ip = fp.

Given A and A0 there are infinitely many

different local momentum observables £p in A with

centre A0. But these local observables differ only in

the boundaries A-A0 , which can be made as small as we

please. Although our localisation of momentum is not,

strictly speaking, unique therefore, this procedure

does produce local momentum observables which possess

the essential physical characteristics of local

observables.
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4.3 Local Padlal Mamentvun. Qbservabl e^.

As a further promotion of the idea of local

observables, we will show now by means of an explicit

example that classical momentum observables hitherto

regarded as unquantisable (globally) and consequently

discarded [Mackey 1963, Abraham and Marsden 1978 p434]

can be quantised locally to obtain meaningful quantum

local observables. The best-known classical observable

of this kind is perhaps the radial angular momentum pr

[Mackey 1963, Messiah 1961 p346, Dicke and Wittke 1963

pl43]. The reason pr is not quantisable is that its

associated vector field d/dr is not complete. While it

may be reasonable for a quantum radial momentum not to

exist in a small region containing the origin since pf

is not defined at the origin,it is difficult to 3ee why

we should not have a quantum radial momentum in a

region far removed from the origin. To be definite,

let us consider a two-dimensional configuration space

Let A be an open rectangular region in fiC defined

by :

A = { (x, y) : xe ( a , b ) c ( o ,°°) , y fc(-c , c ) , c >0} .

When x is sufficiently larger than ly|, the radial

momentum pr and the linear momentum along the x-axis,

p^, are indistinguishable classically. To reflect this
classical situation, one would like to introduce a
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quantum radial momentum observable pr^ localised in A
such that for wave functions lying entirely within A

the observables pr/^ and px approximate each other. To
this end let us consider a closed rectangular region A„

within A and let 3(x,y) be a C^-function on fiC which

equals unity on A0 and vanishes outside A. Then the

classical observable ^pf generates the vector field

$b/dr which is complete. Consequently we can quantise

£pr to obtain an essentially selfadjoint operator:

(4.3.1)

(ipr )0 = -ih(i^/c)r + ( 1/2r)d(r$ )/dr)

on the domain C^°(fi\,). In the centre of localisation A0 ,

where i= 1, we have:

(4.3.2)

(Jpr )0 = -ifi(d/dr + 1/2r)
X- ~ ^ A iA

(xi + i"

We can now regard §pr = (|pr) as a (quantum) local

radial momentum observable in A with centre of

localisation A0. For a region A such that a is much

bigger than c, we see from expression (4.3.2) that in
/N

the centre of localisation jpr can be approximated by

px in that for a C50- wave function with support in A„
we have <cpI l^Pr > — <Cp|px<y>.
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In the three dimensional case the expression for

(i pr )0 is given by :

(4.3.3)

(3pr)0 = -iM2d/3r + ^fl si<vgt)(i r*~ sin0) /d r)
= -ih(^c)/br + (1/2rz)MSrx)/<)r

In the localisation centre, therefore, we have:

(4.3.4)

(iPr )0 = -ifi(d/c>r + 1/r)
X ^ ft Z. ft A= Px + (xl+al '3 * (x^'+zV^ Pl " (xl+^4Zl

The approximation by the linear momentum pt is a

straightforward extension of the two dimensional case.

4.4 The Physics of Local Momentum Observables

For simplicity let us confine our attention to

one-dimensional systems and consider a local momentum
A

observable $p in an open interval A = (a,b) with centre

of localisation A0 = [ae,b0]. Intuitively we can see
/N

A

that ^P should behave like p in A„. Such an intuition

can be given a precise meaning. To begin with, we can

verify without undue difficulty that the following

hold:
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(i) Given (fC-4-\ in the domain of p, we have ip(p(x)
= p<p( x ) , xc-A0 .

(ii) The generalised eigenfunction of

corresponding to the generalised eigenvalue X is

t McFarlane 1 9 80]:

(4.4.1 )

■( 2TTM)*exp[iX/fi)j $(x')dx'], xeA»
F ( X , x ) =

0 , x ^ A ,

where x0<=A. These functions F(\,x) are not normalisable

since they diverge as x tends to a and to b. They

satisfy the usual & -function normalisation for

generalised eigenfunctions tcf(2.1)]:

(4.4.2)
b

I F* ( X, x ) F ( X' , x ) dx = <S(\-V).
Ja,

Choosing x0 to lie in A0, we observe that:

-i
F (X » x) = (2TIh) exp {i X ( x-x0 )/ft} , xeA0 .

In other words the function F(X,x) is a plane wave in

A0 and hence corresponds in this region to a

generalised eigenfunction of (global) momentum p.

(iii) The spectral function E(£p;X) of £p is given

by [McFarlane 1980]:

A ^
(4.4.3) (E(ip;X)<p)(x) = d\F(X,x)

<c

F*(\,x' )Cp( x * )dx" .
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Using these results we can prove the following

theorem.

(4.4.4) Theorem

Let be a member of M such that <p(x) = 0, x<^/\0, and
let A = ( X, > \ ) be an interval in IR, . Then:

(i) (E({p;A )cp)(x) = ( E ( p ; A )<p)(x)
= (E(x;A0)E(p;A )E(x;A0)(p)(x)

for all x <f Ae.

(ii) l\E(fp; A )cpll = II E ( p ; A )<pH.
Proof

Let L1 (lR,),<p(x) = 0, x4A0 and let f(x), F(x) be any

two vectors in L2 (iR, ) differing by at most a phase

factor, say

f(x) = exp[-i«.]F(x), x«A0.

It follows that

(1) <ft(f> = exp [-i« ] <FI(p>, |<fl<p>|*= |<F Icp >|l.
Now for each unbounded selfadjoint operator T, say, in

L2 ()R, ) with generalised eigenf unctions g(X>x)

satisfying the usual 6-function normalisation we have,

for each Borel set A of :

(E(T; A )<p)(x) = j g (X , x) <gl <p >dX ,
(2)

II E (T ; A XJHI*' = Jl<gltp>ll d\ .

We can apply (1) and (2) to the comparison between
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momentum and local momentum. Let f(A,x) =

-U

( 2TTh ) x exp [ i Ax/h ] be the generalised momentum

eigenfunctions [Byron and Fuller 1969 p286]. It

follows that f(X,x) and F(X,x) (as given in (4-4.1))

differ on A„ only be the phase factor exp [ i X x0 /ti ] :

f(A,x) = exp[iAx0/fi]F(X,x) , xc-A0-

We deduce from (1) and (2) that:

(i) (E(fp; A )<p)(x) = I F ( X, x) <F I (p >dX

= I f(X ,x)<flcj>>dX, xeA0 ,
JA

= ( E (p ; A )<p) ( x) , xe .

The equality:

(E(3p;A )c^>) ( x ) = ( E ( x ; Ae) E ( p ; A )E(x ; A, )<f)(x) ,xe A0 ,

follows trivially.

(ii) l|E(5p; A Jcplt2- |<F 1 cp >|i dX

il<fKp >r dx

= l| E ( p ; A )cp U2-

The physical significance of this theorem becomes

obvious when we recall that measurements (of the first

kind) of the observables Sp and p can be reduced to
A z\

measurements of propositions associated with ip and p,
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and that these propositions correspond to the
/N.

A

projectors E(3p; A ) and E(p;A ).

We can carry out some further analysis. Let us see

what would happen to the physical system in an initial

vector state given by a normalised wave packet which

vanishes outside Ae if a measurement is carried out to

obtain a value \ in the range A for the global or

local momentum.

Firstly, the normalised state functions after

measurement of ip and p are, according to the Liiders

rule (2.6.13):

E(|p; A )cp/||E(lp; A )q>ll and E (p ; A )<$>/HE ( p ; A )<p!\ ,

respectively. According to Theorem (4.4.4) these two

functions coincide in the centre of localisation A0 .

Secondly, it follows from this that the
A

probability w(3p,A ><P»A0) that the particle is in the

centre of localisation A„ after a local measurement is

equal to the corresponding probability w(p,A ,<P»A0)

after a global measurement. For in the local case the

probability is:

w( Jp, A ,<f, A0 ) = I ( E ( £p ; A ^MxM^dx/ II E ( Sp ; A ) cp l|Z
A0
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and in the global case it is:

w ( p , A , , A0 ) = I ( E ( p ; A )tp)(x)|i" d xj || E ( p ; A )(p||*".

We have used the w notation for the probabilities

denoted here for ease of handling although of course we

could have used the conditional probability notation of

(3.7). The probability w($p,A ,<p,A0), it is to be

noted, is independent of the particular behaviour of

the function $ in the boundaries of localisation A-A0

and, moreover, w(£p,A ,<$>, A0) can be as close to unity

as we require by enlarging A and A0accordingly, since

w(|p, A ,(f, A„ ) = w( p, A ,<y, A„ )

and w(p,A ,<P»A0) tends to unity as A„ tends to .

Thus, by taking the measuring device large enough,

we can always ensure that there is a probability as

close to unity as we please that the particle is in the

interior of the apparatus (ie the centre of

localisation) after a measurement of the local momentum

3p. In other words the probability of finding the

particle in the boundary region A-A0 (where global and

local momentum eigenfunctions differ) can be made as

small as we please despite the fact that generalised
A

eigenfunctions of £p diverge in A - A0 .
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Now it is evident that one may localise an

unbounded observable in a certain sense by localising

its spectral projectors according to the procedure

(3.2.1) for the localisation of bounded observables.

The localisation procedure described here is not

unrelated to the previous idea as may be seen from

Theorem (4.4.4) above. Acting on wave functions

localised in A0 , the spectral projector E(£p;A ) of the
A .

local momentum ip agrees on A0 with the localisation:

( E ( p ; A ) ) = E(x;A0)E(p;A)E(x;A0)

of the spectral projector E(p; A ) of the global
a A

momentum p. The convergence of w(lp,A , <y, A0 ) to unity

is, therefore, hardly surprising since this result is

equivalent to the convergence of (E(p;A )). to E(p;A )Ao

in the strong operator topology as A0 converges to iRi .

The results discussed above are illustrated in the

figure.



(4.1.5) Figure: Comparative effects of local and

global momentum measurements on an initial state <p

which vanishes outside A0 . Notice that the curve

| ( E ( fp ; A )<p)(x)|*' (- - -) for local momentum and the

curve 1 (E (p ; A XpHx)!*" (...) for global momentum

overlap in A0 and that the shaded area (corresponding

to 1-w(Tp,A , , A„) ) and the dotted area (corresponding

to 1-w(p,A ,Cp,A0)) are equal. is the overlap

region.
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4.5 Maximisation of Probabilities w ( 3 p , A , f f Ao)

Let us carry our analysis a little further to see

what kind of magnitude of A„ is required to render
/"N

w(£p, A ,<P, A0) close to unity. We can achieve this by

considering w( p , A , cp, A„) and examining its relationship

to A0 and A . Specifically for a given "accuracy" A

in momentum p and given A0, we wish to know the maximum

possible value w for the probability w and the kind

of wave function (P^ which gives rise to this maximum

value. The mathematics involved here is well-known in

signals analysis [Landau and Pollak 1961 & 1962,

Papoulis 1962, Slepian 1964, Slepian and Pollak 1961]

in which one is concerned to find the energy of a

band-limited signal (momentum-limited here) lying

within a certain time (position,here) range.

Let us for convenience choose our position

coordinate so that A0 = T>0, and we shall

suppose that our momentum range A is of the form

(-Q. +fl0, £U + SI ) , fl> 0 . Our problem is to find the

maximum value w^jsay, of:

w =

UA

I ( E ( p ; A )q>) ( x) I*" dx/llE ( p ; A )<pl|2".

This maximum value is given (Appendix A.1) by the

largest eigenvalue /A0 of the integral equation:
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/tfcl*) =
<i/\[fl.(x-x )/t\]

-TT(x-x/)

The solutions to this equation are a set { $0, of
wave functions complete in the subspace of

associated with the projector E(p;A ) with

corresponding eigenvalues (in descending order of

magnitude) which are all positive.

These solutions are known as the prolate

spheroidal wave functions and it is of particular

interest to note that the maximum eigenvalue f\0 and its

corresponding eigenfunction $0 are dependent on the

product XLT/fi. Indeed, as we would expect, /i0 =/40 (ilT/fi)
is an increasing function of that product. For some

idea of the behaviour of /M0 against ILT/h we refer the

reader to the works cited above. Here we observe only

that, for ILT/ft = 4, say, w^ =yqQ is as large as 0 .996 .

In order to achieve this maximum value, our initial

wave function must satisfy, apart from a

multiplicative constant (see Appendix A.1):

qpMwt(x) = E(x ; Ae )exp[iD.ox/fi]$0.

Now suppose that we have a measuring device of

size A which contains and is slightly bigger than the

centre of localisation A0 =C-T,T]. Let us consider a

particle of mass m approximately equal to that of an
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electron m = 10 gm,say, with a typical velocity v of

about 109cm s" . Then Av/v = -0-/mv represents the

(fractional) accuracy in velocity or momentum

measurement and we can relate this accuracy to the size

of the measuring apparatus when DLT/ft = 4 as follows (take

ft h 1 0'" erg s"1) :

(4.5.1)

T(cms) :: 40 1 1 o" 1 0"v 1 o"6

il( g cm s"1 ) := 10-« 4 . 1 0"27 4 .1 0'" 4 . 1 0"13 4 . 1 0"21

Av( cm s" ) := 10" 4 40 4 .1 04" 4 .1 06

Av/ V :: 10'^ 4 .1 0" 9 4.10-7 4. 1 O"^ 4 .1 0_1.

4 .6 Summary and Comments

Local momentum observables have been shown to

possess rather pleasing similarities with the global

momentum observables within the centre of

localisation. For states initially localised in the

centre of localisation, measurement of local momentum

yields probability densities which are identical in

to those given by measurement of the global momentum

and the probability that the particle remains in the

centre of localisation can be as close to unity as we

please by taking the the apparatus large enough.

Explicit calculation gives a numerical idea of how

large the apparatus needs to be for this to occur. The
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results are expressed in table (4.5.1). Two points

here are worth commenting on. Firstly, we have solved

the experimenter's dilemma concerning simultaneously

confining position and momentum, since the simultaneous

eq uations:

E(x ;A)<p = <p , E(fp; A )<p = <p
have many nontrivial solutions. Secondly, we see from

the table of values (4.5.1) that with a localisation in

a region as small as 10"' cm we can still achieve a very

high accuracy in velocity, namely Av/v is of the order

1 o"7 .

The results of this chapter have been published in

Wan, Jackson and McKenna [1984].
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CHAPTER 5

FURTHER LOCALISATION PROCEDURES
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5.1 Introduction

In the two preceding chapters we have discussed

the localisation of bounded operators and a

localisation for momentum operators. As mentioned in

chapter 4, the problem of localising an arbitrary

quantum mechanical operator is complicated by the

failure of unbounded operators generally to admit a

selfadjoint localisation. Explicitly, the localisation

Ta = E(x;A)TE(x;A) is not always permissible without

restricting the domain because <P f D ( T ) does not

necessarily imply that E(x;A)<p belongs to D(T). If we

restrict the domain to those vectors <p for which

E(x;A)<p does belong to 5) (T) then there is no guarantee

that the restricted operator is selfadjoint.

We mention here that when the operator in question

is "reduced" by the subspace M (A) in the sense that

[Akhiezer and Glasmann 1961, Naimark 1968, Riesz and

Nagy 1956]

(5.1.1)

^ (A ) is an invariant subspace of T,ie

<?e£KT)„ 4-1 (A)* T<f>6f|(A)
and

E(xiA)0(T) = 0(T),

then there does exist a local operator in A given by
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the restriction of T to

selfadjoint (op.cit) and

definition (3-2.1).

f-| (A) . This operator is

obviously satisfies the

In general however, and this includes the cases of

many important unbounded operators,the reduction

(5.1.1) does not hold and we must look at other methods

of localising unbounded operators. We shall not

attempt here anything so extensive as a complete,

coherent scheme for such localisation. Rather we shall

content ourselves with discussion of one or two areas

of the problem suggested by the previous analyses.

Particularly, we shall consider a localisation scheme

for some quantum mechanical operators in differential

form (including Hamiltonian operators) suggested by the

localisation 3p of momentum and we shall examine in

more detail the localisation of spectral measures and

the convergence of the localised probability measures.

5 .2 Localisation Of Sope Differential Operatprs

We recall that the local momentum operator ip may

be written in the form $p = i^p i [Lemma (4.2.3)]. Now

is just another C48- function which takes the value

unity on the same spatial domain Ae as does and

vanishes smoothly outside the same interval f\ .
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Therefore we could equally have considered as momentum

observable the operator given by jpi which differs from

|p only in the boundaries A-A0 of localisation and

obviously corresponds to the operator S p. This

suggests that we adopt a localisation scheme of the

form Ta = jT$ for an arbitrary observable T. To make

this rigorous we have to show the existence of

selfadjoint operators TA when appropriate account is

taken of domain constraints. Let us first consider

operators given by the formal differential expression

(5.2.1)

Tm = (-i)ffldm/dxm

and the localisation defined by

(5.2.2)

(^m)0<P = iTm(icp) ; £)((^Tm)0) = C"((R.).

Then we can show the following result.

(5.2.3) Lemma

The operator (ST,,,),, defined by (5.2.2) is symmetric in

LZ (|R. ) .

Proof

Firstly we observe that the domain Cco( fft, ) of ( iTm)0 is

dense in L"2, ( Ift. ) and that for each <p in the domain, Scf is

in C~(fR,) since S is a C*"0- function of compact support,

•j is real-valued so we have for each in )

<<pl($T„)eiy > = <i<?lT„($4>)>
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and symmetry follows from the symmetry of on the

domain C* OR. ) [Weidmann 1 980 p 1 6 1 ] .

We now want to demonstrate the existence of

selfadjoint extensions of (i Tm )0 . We start by proving

this for even powers of m.

(5.2.4) Theorem

/S

There exist selfadjoint operators ^^corresponding to
the formal differential operator STi(n$ .

Proof

We have already demonstrated symmetry for the general

case. We show that (S )„ is non-negative. Let

q>«C"((R. ) , then J<p C- cfOR, ) and <<? I ( > = <S<p I Ti(n*<?> » 0

since is a non-negative differential form on C"(tK )

[Weidmann Theorem 6.32]. It follows from a general

result on semi-bounded operators [Weidmann Theorem

5.38] that there exists a positive selfadjoint

extension of (ST^)0 .

For the general case we proceed as follows.

(5.2.5) Definitions [Weidmann 1100 g^]
(a) An operator K: is called a conjugation if for

ev ery cp, Ip e M

(i) K(a<? + bip) = a*K(cp)+b* K(l^) , a,bet

(ii) K*" = I

( iii ) <K (<p ) I K(lp)> = <q l^>.
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(b) An operator T is said to be K-real if

(i) K D(T) c 5) (T)

(ii) TKCp = KT<p, qXr^MT) .

(5.2.6) Lemma

Let T be a symmetric operator in L2 (M) , M SIR., and

suppose that T is K-real for some conjugation K on

L2(M). Then T possesses selfadjoint extensions.

Proof

Weidmann Theorem 8.9 p235.

Hence we prove the result we need.

(5.2.7) Theorem

The operators (ST^)0 of (5.2.2) all possess selfadjoint

extensions.

Proof

We have already demonstrated the symmetry of the

operators (i Tm )„ . In order to show that they possess

selfadjoint extensions we shall proceed by finding

conjugations Km with respect to which the (5Tm)e are

Km-real . Let us write Tmo = (3Tm )„ . Consider the

operation

K*<?(x) = Cp((-1)"1x)* , <pe44.
It is a simple matter to show that Km is a

conjugation. Moreover the domain constraint

( 5 . 2 . 5 ) ( b ) ( i ) is satisfied trivially on C°°(l^, ). We now

demonstrate that for each c(> in C°° (|R_)
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T K_ = K„Tmno w

First notice that by choosing our origin so that S(x) =

$((-1) x) we immediately deduce:

(d5/dx)(x) = (-1) (d$/dx) ( ( - 1 J1" x )

/dxl) (x) = (dlJ /dxl)((-1)"x)

and indeed, since i is real,

( 1)

(drJ /dx) (x) = ((-1)m )r (dri /dxr)((-irx)

= ((-1)"/" K„(dri /dxr)(x)

or in an abbreviated notation:

^r,(x) = ((-1)m)ri(r,((-irx) = ( ( -1 )M )r Kw i,r\ x ) .

Now using (5 . 2 • 5)(a)(i) we have

(2)

l*Knf = Km(-iAp
We shall also use the result

(3)

((-1) ) = (-I)"* , m an integer 2- 0,

which is easily verifiable by considering even and odd

cases separately. Now for each in C°°(lR. ) we have

TmoKMcp(x ) = Two«p( (-1)* x)*
= i(-if(d"7dx*)(j (x)q)((-i)Mx)^)
= 5(-i f [ x)

+ . . + (m!/(m-r) ! r ! ) ( ( — 1 )m f ( x ) <p' \ ( - 1 )rt x ) + . .

*n( ( - 1 )* rrU)^"\ ( -1 )"x)*+( ( - 1 )m f i ( x )^X ( - 1 f
= $(-irt((-1)rt)fl{ Jw((-1)ftx)(p((-1)wx) +...

+ Cm ! / On - r ) ! r ! )f" "( ( -1 J1" x ) <$(° ( ( - 1 )" x ) + . .

. . . +1 ( ( - 1 )m x ) <^m,( ( -1 J"1 x) } (using (1) above)

= i i"1 [ i*(p ( x ) +m^"cp'( x ) + . . . .
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+ (m!/(m-r)!r!) r><jT'( x ) + . .

. . . + ''(x ) + i$m\ x ) ]

(using (3) and the definition of K )

= i irtKMd*[iq>]/dxm
= K„,i (-i r d"1 [iq> ]/dx

(using (2) and the reality of §)

= KmTmo(|)
The result now follows from Lemma (5.2.6).

The analysis of the preceding theorem is much

simplified when we consider that in fact only two

conjugations need be considered: for even powers we can

employ the conjugation x) = cp*(x) and for odd

powers we have K d> (x) = <p*(-x). Also, we only need to
lm-l '

bother about the origin relative to i in the latter

case. The simplest such case is:

(5.2.8) Example

Tl0 K,(f(x) = i(-id/dx)i <p*(-x)
= i(-i) t- (-x) - if(-x)]*
= iiK, (d/dx) (S<p)
= K, T10f .

(iT, )„ is K-real therefore and hence may be extended to

a selfadjoint operator.
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For the even ease we again show explicitly that

(iTx )0 is K-real.

(5.2.9) Example

Txo K^U) = Tioq)*(x)
= i ( -d*- /dx* ) ( s q>*")
= i (-dVdx1) (i<? )*"
= 3[(-dz/dx*)(i<?)]*
=

, since % is real.

Evidently the operator (£TZ )„ is one of the most

important of these operators in physical terms for it

corresponds to a localisation of the free Hamiltonian

operator (with an appropriate choice of units to make

fi*"/2m = 1). It turns out that we can extend our

existence theorems to some other Hamiltonian

operators.

(5.2.10) Theorem

Let H+ be the Hamiltonian differential operator given

by

H* = -d* /dx1 + V( x)

where V is a real, positive function of x. Then the

operator (5H + )0 defined by

($H*-)0<p = JH + (3<p) for all $6 0 ( ( fti* )e) = C~( |R. )
has at least one positive selfadjoint extension.

Proof
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The domain of (iHMe is dense in 44 and the symmetry

then follows easily from the symmetry of -dt/dx'' on

C*( liR ) and the reality of V. Positivity of (iH + )e

follows from the positivity of H* and we use Weidmann

Theorem 5.38 again.

(5.2.11) Theorem

Let H be the Hamiltonian differential operator

H = -di/dxi + V( x)

where V is real and continuous and let (SH)0 be the

operator defined by

(SH).f = *H(S<p) for all ^>( (SH )0 ) = C"(iR).
Then there exists at least one selfadjoint extension of

({«). .

Proof

We follow again the method of Theorem (5.2.7). Symmetry
^

CO

of (SH)# on C (1R, ) follows from the symmetry of H on

C~(.R, ) and the fact that Ce°((l\,) is dense in 44. We

show that (SH)o is K-real with respect to the

conjugation K = *:

j( -dJ,/dxl + V)($K<p) = i(-di/dx1 + V) (Sep*-)
= i (-d*Vdx\ + V) (Sep)*"
= S(-dx/dx*-(S*<p*) )+($V5q>)*

(since V, are real)

= K[S (-di/dxt + V)$ ] .
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These results go some way to establishing a method

of localising various rather important unbounded

operators. Of course there is a problem in that there

may be many selfadjoint extensions and we shall not

know which one to choose. This problem is not however

always as severe as it seems at first sight. In

certain cases it is possible to show that all these

extensions have the same spectrum. For example if an

operator has a selfadjoint extension with a purely

continuous spectrum then all such extensions have the

same spectrum [Weidmann 1980 Theorem 8.18].

We mention here that it is also sometimes possible

to form selfadjoint local operators by considering

differential expressions on certain finite intervals.

As an example of this, the momentum operator -id/dx has

selfadjoint extensions on closed intervals [a,b].

However,there are an infinity of different such

extensions and they each have a different spectrum

which renders this method rather unsatisfactory. We

refer the reader to Weidmann 1980, Naimark 1968, or

Akhiezer and Glasmann 1961 for further details of

selfadjoint differential operators of this nature.
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5.3 Localisation and Spectral Measures

The spectral measure of any operator T yields

spectral projections E(T;b) which are bounded operators

for each b f 5 (fR,) a nd hence localisable according to

(3.3.1) by (E(T;b))A = E(x;A)E(T;b)E(x;A).

Now consider a bounded operator with a discrete,

simple spectrum

(5.3.1)

B = IV Pi
I

where = E(B;{AL}) = and are eigenfunctions

of B corresponding to eigenvalues X-. We can express

the localisations PlA of the individual projectors in

terms of truncated eigenf unctions <PLA = E(x;A)(^. Then
we have PiA = E(x;A)Pi E(x;A) = I > < <PtA I. If we sum

these localised projectors over i we can construct an

operator (B,A) = X A;P;,a and not surprisingly it is easy

to show that in fact (B,A) = BA, the localisation of B

in A .To generalise this to the continuous case we

consider the continuous analogue of (5.3.1)»

(5.3.2)

B = AdEx

where Ex is the spectral function E(B;(-«>,\)) of B. Ex

is a projector for each X and we can localise these
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projections by (Ex)A = E(x;A)E^E(x;A). Notice that,

just as (E(T;b))A is not necessarily a projector,
neither is (E^)A and so it does not (necessarily)
define the spectral family of any operator.

Nevertheless we can once again define an operator (B,A)

by :

(5.3.3) <<pl(B,A)4>> = Jx d<<? |(Ex)Alp>
= j X d«pA\ Exl*)A>
= < CPAIB lpA >

= <cf|BA4>>.

So we have (B,/\) = BA quite generally so long as B is a

bounded operator. If B is not bounded then the

interchange of integrals in (5.3.3) is not generally

valid so that we cannot construct the desired

selfadjoint operator. Hence this method yields no

great insight into the localisation of unbounded

operators but i3 of interest only in the construction

of bounded local operators from their localised

spectral measures.

Of course, in the spirit of the algebraic approach

to quantum mechanics we need in theory never consider

unbounded observables at all. We might, for instance,

postulate that the algebra of observables relevant to

the measurement of a system using an apparatus of

finite size l\ is the C*"-algebra generated by the set
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= {AA 6 6(w );Aa= E(x;a)aaE(x ;\)} [For the algebraic
properties of local observables see Mclean 1984. We
shall have further recourse to these properties below

(chapters 9 and 10)]

In practice however, we require some

reinterpretation of the formalism if we are to make

sense of localising unbounded observables in this way.

To understand this let us recall that a projection

E(T;b) corresponds in the conventional interpretation

to the measurement of the observable T. The

probability that a measurement of T yields a value in

the set b is given by ||E(T ; b )<$if the state of the

system is Now, of course the localised projections

(E(T;b))^ are in but these entities, which are not
projections themselves unless T is local, have as yet

no physical meaning: E (x ; A) E ( T ; b ) E ( x ; N ) does not

correspond to a measurement of a localised operator in

the usual way but to the localisation of something

corresponding to the measurement of an unlocalised

operator!

It is beyond the scope of this thesis to propose a

coherent formal theory based on localised projections.

There are several remarks however that may be

considered pertinent to the discussion. For a start we

point out that the localised projections have

previously appeared in our discussion in the
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formulation of the concept of LA-probability. The

projections localised there were projections of

operators Aa which commuted with E(x;A) and this

enabled us to regard the LA-probabilities as

conditional probabilities in a roughly classical

sense. The difficulties of generalising the

conditional probability concept to quantum mechanics as

a whole have already been mentioned. One possibility

might be to formulate quite brazenly a theory in which

LA-probability does all the work and one allows

arbitrary observables, or at least localised

projections of arbitrary observables to represent

physical magnitudes in finite measurement situations.

The entities E(x ; A)E(T;b)E(x ;A) would then always be

associated with such a measurement. In fact the

localised projections (E(T;b))A can be shown to be

positive operator-valued measures in the sense of

Davies [1976 p16] who has proposed a quantum mechanical

theory of measurement in which these measures play the

dominant role. It would be of interest to investigate

to what extent it is possible to apply Davies' work to

the suggestions made here.

In addition to their appearance in the

LA-probabilities, the localised projections have also

been seen in another aspect of the preceding analysis.

Recall from Theorem (4.4.1) and Figure (4.4.5) that the

localisation (E(p; A )). of the spectral projections of
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momentum give an indication of the agreement between

the local momentum observables and the global momentum

observables in the measurement situation. In addition

(E(p;A))A provides a measure of the simultaneous

confinement of position and momentum in the sense of

section (4.5). We can generalise this latter aspect of

the localised projections to an arbitrary observable.

In (4.5) we examined the convergence of the

fraction w(p,A ,<?,A#) given by:

that is the probability that an initially localised

wavefunction remains in A^, after a momentum

measurement. We can write:

For an arbitrary operator T, let be a complete set

of (possibly generalised) eigenvectors. Then

w(p,A,<?,A») = H(E(p; A ))AoC? liy||E(p; A Jcpil1".

E(T;b)<? = KPxX^lq) >dX

and

(E(T;b))4> = f .

We have:

(5.3.5)
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w(T,bf<p,A.) = l|(E(T;b) )A#?II/l| E (T ; b )q> It

I
Ka#( XfX')?(X )?V)dXd\7 19 (X

[cf Proof of Theorem (4.4.4)] where cp (X ) = < \ cp > and
K. ( X ,X ) =

''0

yields:

dx. If T has discrete spectrum (5.3.5)
\c

(5.3.6) w ( T, b , dp, Ao ) = IZKA(i,j)y:/Z I ?• I
X;6b X/b A° Tl- J /\.*L c 'X; tb

where ^ = <j? (X;,) and KAj(i,j) = KAe( , Xj ) .

For the particular case in which b comprises a

single discrete eigenvalue {X},say, we have:

(5.3.7) w(T,X,<p,A0 ) = K . ( X , X ) = l<Pxl dx,

which is independent of the initial wavefunction Cp, as

we would expect. Let us consider an illustration.

5.4 Example;localisation of the harmonic oscillator

Specifically we shall

HeSC is the Hamiltonian for

given by

(5.4.1)

seek w ( Hett , En , £p , A0) where

the harmonic oscillator
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Hose = ( -ft*" / 2m) dx/dx1 + mwl xx .

The solutions to the eigenvalue equation are given by

tSchiff 1955 pp69-71,eg]:

(5.1.2) E„ = (n+fc)ftw

= ( mw/ftTV )^( 2n n ! ) *Hfl( ( mw/ft )^x ) exp [-mwx1/ft ]
where H„ are the Hermite polynomials given by

Hn ( y) = ( - 1 )" exp t y1 ] (d7 dyn ) exp [-y1 ]

or by the generating function

CO

S(y,s) = exp [ -s1 + 2sy ] = X Hn(y)srt/n!.

We wish to find

(5.1.3)

|cpnidx. First notice that

J10.11 dx = ( mw/ftTr )"*■ ( 2rt n ! )
Ao

where y=(mw/h)'*x
,ATt)

|Hrt(y)exp[-yJ~] \ dx
-T

= TT*( 2rt n! )" I H„(y)expt-y1] I dy

where we choose A =[-T,T].O '

Now consider the following integral:

(5.1.1)

S(y,s)S(y,t)exp[-y*-]dy = XZ 7-7 f Hrt ( y) H,*( y) exp [-y*" ] dy
*i© A J I IJA" " JAe'

where A0 = (mw/fi )^A0 - The left hand side of (5.1.1)

yields:
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r
® fc* f -jHluS -tSlut -v.1-ZZ — ( y) H*\( y) e dy = I e 3 e 3 e 3 dy

AiO r*zo A \ m 1 J
./ A0
An

r - [y (.*+&)) x itSj
e J e dy

A«

(T)W.
= exp[2ts] exp t-yz]dy.

-(«s,)ST.t-s

By choosing t and s very small we can ensure that this

last expression is as close as we please to the

integral:

exp[2t s] expt-y ]dy
JA'fl

which in its turn can be expressed in terms of the

error function erf [Dwight 1961 p136,eg] as

(5.1.5)
CD

Ti^erf {( mw/ft )"*- T } exp [ 2ts ] = "TTierf { ( mw/fiA T }Z t" s* 2*/n ! .

By equating equal powers of t and s between (5.1.1) and

(5.1.5) we deduce that

(5.1.6)

H^(y)exp[-y*"]dy "N1 erf {(mw/ti A T } n ! 2* ,

A0
and it follows that

(5.1.7)
/

I (p„|ldx erf {(rnw/fi } .
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Notice a rather peculiar feature of the example we

have chosen, namely that every eigenfunction has the

same concentration in \0. Now, for example erf x is

0.995, ie very close to unity when x is 2. Hence

w ( , Ert , <p , At) = 0 .995 when (raw/tO^T = 2, so for each

eigenvalue, so long as the size of the localisation 2T

is greater than 4(li/mw)^ we have a very high

probability of retaining the particle in A0. If m is

around the mass of the electron, say 10 l7gm and tl is

1017 erg s we require the size of the box to be greater

than (4/wl)cms where w is the classical angular

frequency of the harmonic oscillator. For high

frequency oscillators in particular therefore a high

degree of localisation is achieved.

5.5 Further Remarks

Evidently not every operator will allow the sort

of localisation analysis provided by the particular

example of the harmonic oscillator. In general the

analysis will be complicated by such features as

degeneracy of eigenvalues, continuity of the spectrum

and substantially less straightforward convergences

involving the original wavefunction as well as the

(generalised) eigenvectors. However in each case it is
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in principle possible to examine the extent of

localisation of the measured system by means of the

general analysis proposed above and for this analysis

the localised projections (E(T;b))A are a measure of
the localisation of quantum mechanical systems.

Furthermore, let us recall that a particularly
A,

desirable feature of the local momentum observable $p

is that within the centre of localisation A0 the local

and global measurements provide the same probability

distribution. In particular of course we have

(E(p; A ) )Ae = (E(Sp; A ) )A and here the localised

projections play the part of demonstrating the

suitability of local observables in measurement

analysis. The analyses of the type pursued in (5.4)

then enable us to say how large an apparatus needs to

be in order for the boundary region A-A0 to be

negligible in the measurement results and hence for the

local observables to differ negligibly from the global

ones. The same role may be fulfilled for any other

local observable ST,say provided that the spectral

measure of IT satisfies (E(T;b))A = (E(!T;b))A#. A
sufficient condition for this to hold is that the

(generalised) eigenfunctions of ST and T coincide on

A„. This is not a straightforward issue

however,because there is in general no guarantee that

any one-one correspondence exists between global

eigenfunctions and local ones.
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Finally, we remark in passing, that localisation

with respect to an arbitrary spectral measure is a

mathematical possibility for bounded observables

[McLean 1984]. In the next chapter we shall see how it

is possible to localise an operator with respect to its

own spectrum and this localisation also has some

interesting physical consequences.
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CHAPTER 6

SPECTRUM-LIMITED OBSERVABLES
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6.1

In chapter 3 we demonstrated how to construct

bounded local observables A^ satisfying Aa =
_ A

E(x ;A )Aa E(x ;A) , At and showed that in a certain

sense, a family of such observables may be taken to

correspond to a single global observable. The physical

consequences of such a construction enable us to talk

more realistically about the process of measurement

using apparatus of finite size. While it is clear that

this procedure has a straightforward generalisation to

localisation with respect to the spectral measure of an

arbitrary observable (eg, we can construct observables

A6 satisfying A4 = E(p; A )A4 E(p; A) where p is the

usual momentum observable), perhaps a more immediate

physical necessity is engendered in the following

discussion.

Consider the process of measurement of an

arbitrary observable using real physical apparatus.

Almost invariably (one might be tempted to say always)

such apparatus is limited not only in sensitivity, but

also in the range of possible values of measurement

attainable using the apparatus. One way in which this

can occur is illustrated by the following.
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(6.1.1) Example: measurement of momentum by deflection

in a magnetic field [Messiah 1961 p146, eg]:

A beam of electrons with momentum in the

y-direction lying in some (possibly unbounded) range

Ap,say, enters the magnetic field. The particles are

deflected according to [Clemmow 1973 p253,eg]

r = p/eB, p e A P.

where e is the electronic charge, B is the magnitude of

the magnetic field and r is the radius of the resultant

deflection.(We neglect here uncertainty introduced by

the effect of diffraction due to a finite width of

slit. This is of course important but we need not

introduce such a complication for the purposes of this

discussion. The units are rationalised mks units [cf

CI emmow p 1 ] )
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Now if p lies in Ap where Ap = (p, ,P*.),say, then

the radius of curvature r lies in (r, , rz ) where

r, =p, /eB and r2 =pz/eB. However it is obvious from the

figure that the deflected particle will only be

detected if r lies in the interval (r. , r+.) where 2r_ is

the distance from the slit to the nearest point of the

detection screen and 2r^_ is the distance from the slit
to the furthest point of the screen. This means that

the range of momentum values which may be detected by

this apparatus is (p_ , p+ ) where p_=eBr , p + = eBr .

Values of the momentum in Ap^(p_ ,p + ) remain undetected

whatever the range Ap of the initial wavefunction. In

particular we see, since p.,p+ are necessarily bounded,

that the range of possible measurement results

Ap„ ( P_ , p+ ) is also bounded.

Another restriction that we might expect to arise

is in the preparation of an initial state for an

experiment. In the case of the beam of electrons, the

range of possible momentum values is limited by the

available energy in the source. In fact,since we are

considering nonrelativistic conditions we must have

max{ Ip, I , Ipz I } mc and relativistic considerations

impose an upper bound mc on the possible momentum

magnitude .
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These considerations, together with the problems

associated with unbounded observables (infinite

expectation values,domain constraints,difficulties in

localisation) should be sufficient to motivate the

search for observables that will be at once more

physically realistic and mathematically better

behaved. Similar motivations prompted the algebraic

formulation of quantum mechanics to its use of spectral

projectors in place of their corresponding operators.

The approach we propose here has the advantage of

retaining operators corresponding to physical

magnitudes such as momentum,energy,etc as well as the

spectral projections of these operators, and hence of

preserving a useful concept of expectation values. In

section (6.2) we construct these operators. In the

following section we present a correspondence,

analogous to that of (3.1), between the familiar

observables and certain families of bounded

observables. The physical aspects of this

correspondence will be examined in (6.1) and in (6.5)

we consider the particular case of the momentum

operator.
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6.2 Constructing Spectrum-Limited Observables

We start by defining what we mean by a

spectrum-limited observable.

(6.2.1) Definition

An observable A on 4-I is said to be a spectrum-limited

observable in A ( A-limited observable for short) if

there exists a A t Bc-(f^) such that A =

E ( A ; A ) A E ( A ; A ) .

Suppose that T is an arbitrary selfadjoint

operator with domain D(t). We are going to construct

our spectrum-limited observables by first formulating

them in the spectral representation [Jauch and Misra

1965 p30]. This involves constructing a measure space

L (fR,£T) on which the observable takes the form of a

multiplication operator. By exploiting the unitary

correspondence between this space and the Hilbert space

corresponding to the configuration space of the

particle, many results which are easy to formulate in

the diagonal representation can be translated in terms

of the original operator.
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We shall assume here for convenience that T has a

simple spectrum [cf Guenin 1966, Jauch and Misra

1965]. Then there is a unitary correspondence

U : 4-| -» Lz ( lA, ,fT) with the property that each e ^ is

represented uniquely by an essentially bounded function

u(X ) e L*" ( iR ,{r) a nd T is represented by \u(X ) . The

spectral function E(T;t) of T is now given by:

(6.2.2) UE(T;t)lf' = V (X)

where ^ is a characteristic function in the usual
notation. The domain of T is given by:

(6.2.3) £)(T) = { cf eM : JVdll E ( T ; t )c? II1 < }

A

If we denote by X the operator of multiplication by X

on LZ( ifl. ,fT) , we have

(6.2.4) X u (X ) = UTU"'u = Xu (X ) ue D (X )

where £> ( X ) = { u e L* ( ,f) : jx2iu|1d^T< «>} = U £) ( T ) .

We now formulate the spectrum-limited observables in
A

the spectral representation. Define the operator XA on

,(r) by :

(6.2.5) XAu(X) = X^A(X)u(X), ue-D(\A)
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where £) (XA ) = {u f L1 (iR, ,f) : f Xl|u11d?T <•<«}.

A

Concerning the operator X4 we now prove the following

result.

(6.2.6) Theorem

A

Let A e Sc( iR, ) and suppose that X4 is defined according

to (6.2.4). Then:
A

(i) XA is bounded

(ii) D(Xa) = Lz (|R, ,f)

(iii) XA is selfadjoint.

Proof

(i) II XAu (X ) II = HA^uUJH
N< | sup {A }l II u(X )\\

XtA

< «> , since 8t(iK ) .

(ii) follows from (i).

(iii) <ul|xAul> = J u^X^Uj. d^T

= [ (u,\)uj.dfT, since A is real,J A

= [(u,Xx/utdfJA

A

= < \u,| ur > .

A

Hence XA is a symmetric operator on the entire space

and is therefore selfadjoint.
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We now use the unitary correspondence U: f| -» Ll ( |R, , £) to
define an operator T on 4-\ by:

(6.2.7) TA<p = U"'xjJ<? = UlXUU"'^AU(p = TE(T; A )f

£>(ta) = u"0(xA) = u"' l1 (iR, f () = fi .

Using the properties of unitary transformations and the

Theorem (6.2.6) the following result is obvious:

(6.2.8) Theorem

Let TA = E(T; A )TE(T; A ) , A 6 8t(fi\,)f f>( T& ) = fl . Then

T is a bounded selfadjoint linear operator on fl .

Proof

It suffices to remark that E(T; A )TE(T;A ) = TE(T;A )

and the result follows immediately from the previous

analysis.

(6.2.9) Definition

The observable TA defined by (6.2.7) is called the

A -limitation (or spectrum limitation in A ) of T.

Obviously we should like to be able to show that

the A-limitation TA of T is a A-limited observable.

To do this we need to know the spectral funotion

E(TA ;t) of TA .

(6.2.10) Lemma
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The spectral measure E(T&;M) of TA , M k $ ( iR,) is given

by :

E(Ta;M) = E ( T ; A „ M) + E ( T ; ) E ( 0 ; M) .

Proof

We construct the spectral measure first in the

representation space where it has the form of a

characteristic function Now we have

Xm( xx*(X)) = (x«° V(X)

f 1 if X^4( X ) e M
I 0 if A^( X ) j M

But M if and only if either XeA and Xe M (ie,

XeAaM) or else X4A and OtM, and A^(A)^M if and only
if either A^ A and O^M or else Ae-A and M. So we

have

X«(xX»(x,)

r
. .r r either XeA and Xe M

'M or X^A and OeM

q r either A^A and 0 ^ M
*• r\ r» £ A oriH J M

It is straightforward to verify that this function is
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represented by :

*.<»> = X'a%(X) * x«(o)x«'<X)

and using the unitary transformation we have

immediately the result.

(6.2.11) Corol1ary

The spectral function E(TA ;t) of T4 is given by:

E(TA;t) = E(T;t)E(T;A) + E(T; A1") E ( 0; t) .

Proof

Follows immediately from the lemma.

Now it is straightforward to prove the result we

wanted.

(6.2.12) Theorem

The A-limitation T4 of an arbitrary observable T is

A-limited.

Proof

(Ta)4 = T&E(TaJi)
= TE(T;A){E(T;A)E(T;A) + E(T;AJ")E(0;A)}

= TE(T;A )
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It is clear that if A is a bounded observable with

spectrum a( A) then A is A-limited for each A3 er (A)

since [Prugovecki p253] E(A;A) = 1 for all such A.

Conversely, what can we say about the spectrum of a

A-limited operator? The answer to this question is the

subject of the following two theorems and corollary.

(6.2.13) Theorem

Let Ac- Bt (fR, ) . An observable A is A-limited for each

A'3A, i'egJR), if and only if <r(A) ? A u {0} .

Proof

Suppose that A is A-limited. Then A = Aft and it follows

that

E(A;M) = E(Aa;M) for each M e £> ((Ft). Hence

E ( A ; M) = E ( A ; M „ A ) + E( A ; A-"-) E ( 0 ; M) , Me S ( fH ) •

Take M = A u {0} and we have

E ( A ; A u { 0} ) = E( A ; A) + EUjA^) = 1,

and it follows that d"(A) £ A 0 {0}.

Conversely, suppose that cr(A) c A y{0}. If 0 e A , then

we have ff(A) £ A , and E(A;A) = E(A;A) = 1 for all

A^A and so Aa is A -limited for all A' 3A . Next

suppose that 0<^ A . Then Art{0} = <f> and we can write

1 = E(A; Ay {0}) = E ( A ; A ) + E ( A ; { 0} )

and hence

A = AE(A ; A) + AE(A;{0}.

The last term in this expression is zero however since

E(A;{0}) is the projector onto the subspace on which A
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= 0 so we have AE(A; {0} )cp = 0 for every in . It

follows that A = AE(A;A)

As an immediate consequence of this theorem we

observe the following corollary.

(6.2.14) Corollary

Let T be an arbitrary selfadjoint operator and let

As £c ('K ) • Then the spectrum <r(TA) of TA satisfies:

<r (Ta ) & A 0 {0} .

Proof

According to Theorem (6.2.12) Ta is A-limited and the

result follows from Theorem (6.2.13).

Actually we are able to prove a stronger result. Namely

(6.2.15) Theorem

Let T be an arbitrary selfadjoint operator on with

spectrum <r( T ) . The spectrum <r( TA ) of TA , A & ) , is

given by

<r(TA) = f (0-(T)„ A ) „ {0} , if A £ (T)
• <r(T) , if A 2 <r( T) .

Proof

Notice first that <r(T)nA and (<r(T)rt A)u{0} are both

closed sets since cr( T) is closed and As Bc(lt\/). Now

if A? ff(T) we have immediately E(T;A) = E(T;cr(T) ) =

1. Suppose that ^(T)^ A . Then it follows that
EtTjA1') is strictly greater than zero, and hence that
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for each open interval J containing zero

E(Ta;J) = E ( T ; A ) E (T : J ) + E ( T ; A1) > E(T;Ax)> 0.

and from the definition of the spectrum it follows that

0 t <r ( TA ) . Also for each t * <*(T)A A it follows that

t eA and for each open interval I containing t,

E(T;I) > 0. Let I be such an interval. Since I is an

open interval and by hypothesis t eA , there exists

another open interval I', say, containing t such that

I'S InA , and E(T;I') > 0. Therefore we have for every

open I

E(Ta;I) = E ( T ; I „ A ) + E (T ; A*-) E ( 0 ; I)

} E(T;IAA )

>' E ( T ; I' ) > 0 .

Hence t e <r(TA). We have therefore that (<r (T )„ A ) u { 0} £

<r(TA). To prove the opposite inclusion we note first

that

(<r(T)„A ) u { 0 } = (<r(T)„{0})fl ( {0}) .

We have already shown in corollary (6.2.13) that a*(TA)

c A o {0} and it remains only to demonstrate that cr(TA)

£ ((T) w {0} ) . Let t fr <r ( TA ) . Suppose that t ^
<r(T)o{0}; ie t£0 and t^ff(T). Then there exists an open

interval I„ , say, such that t £ I„ , 0 ^ I0 and E(T;I0) =

O. So we have

E(Ta;I„) = E(T;^aA ) + E ( T ; A* ) E ( 0 ; I, )

= E ( T;Ia „ A ), since 0 </ I, ,

4 E( T ; I0 ) = 0.

This implies that t^ a (TA) and the result follows by

contradiction.
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6.3

We shall now proceed to demonstrate a

correspondence of a unique and canonical nature between

certain families of spectrum limited observables and

selfadjoint operators T with (not necessarily limited)

spectrum cr ( T ) . This correspondence is analogous to

that elucidated in Chapter 3 between bounded

selfadjoint operators and bounded families of globally

related observables. The correspondence provides the

mathematical justification to replace arbitrary

observables by their corresponding families. We start

with a definition.

(6.3.1) Definition

A map Y : Bt( & (4-1 ) is called a family of

spectrum-limited observables if °Y satisfies

Y(A) = (Y (A))a ,

ie, if Y (A) is A-limited.

The particular families in which we shall be interested

are the following.

(6.3.2) Definition

A family Y of spectrum-limited observables is called a

spectrally-related family of spectrum-limited

observables (or just a related family of limited
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observables,for short) if, for each A,A'e St( ) such

that A'^A we have

(*) *T(A) = ( Y ( A'))a ,

ie, T (A) is the A-limitation of Y ( A' ) .

The following lemma provides the explanation for the

terminology of these definitions.

(6.3.3) Lemma

If t is a related family of limited observables, then

for each A,A'6 ®>t((R,) such that A'aA we have

<r(Y (A)) = iff (T (A')) a A ) u {0} S cr(Y (A')) .

Proof

Obvious from Theorem (6.2.13) and the definitions.

Now for convenience we introduce the shorthand

notation EA(t) = ECV(A);t) and EA(M) = E(Y(A);M) for

the spectral function and the spectral measures

associated with a related family T . If Y is such a

family it follows from (6.2.11) that

EA(t) = E4/(t)EA«(A) + Ev(Aa )E(0;t)

for each A,A' £ ®C0R, ) with A 3 A , and for all t 6 (R, .

Through the following series of lemmas we establish a

correspondence between related families of limited

observables and a certain observable which appears in

the strong limit for increasing A .
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(6.3.4) Lemma

Let { At} be an increasing sequence of subsets of |R, ,

A- ) such that as i-+ »° . Then for each t

(r (R, and i ^ j, and for each € M we have:

<9IE4.(t) - EA.(t)|(p> = <<P IEA (A^)(E(0;t) - E4(t))l<p>
Proof

The left hand side of the equation yields

<<?|EA.(t) - EAj(t)|Cp>
= <<P|E4.(t)EA.( A;) + Ea.( Aii)E(0;t) - EA.(t)l<p>J J J J

= <cp | Ea.( t) (Ea.(A- ) - 1) + EA.( Af)E(0;t)|(p >
J J J

= <^IEa ( At) ( E ( 0 ; t) - EA.(t))l<p>.
J J

(6.3.5) Lemma

(i) For each t<0, (EAXt)} is a nonincreasing sequence

of projections.

(ii) For each t >. 0, (E.(t)} is a nondecreasing sequence
L

of projections.

Proof

Using the definition tcf(2.1.7)] of E(0;t) and the

lemma (6.3.4) we have

(i) if i << j and t<0

<4MEA.(t) - E^( t )i<p > = -<tp|EA.( Aj-)EAXt)l(f > 0,
for all <3j> e fl , since EA. is positive and

J

(ii) if i^j and t > 0

<cp|EA.(t) - E6j(t)l<p> = <f| EA.(AkX) ( 1-EA.(t) )l<f > >/ 0,
for all , since EA^ is less than 1 and positive.
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(6.3.6) Theorem

A spectral family is defined on 4-1 by

E(t) = s-lim EA (t) , for each t <z •

I.-+ oO L

Proof

Firstly, E(t) is a well-defined projector on for

each t by virtue of Theorem 3.10 on p209 of

Prugovecki's book. Next, let s ^ t,s,telR, . Then for

each i and for all <p£-4A we have

l|EA.(s)4>l| * II EA.(t)<?ll

from which it follows that

lim HE (s)cplU lim II EA.(t)<pll .
i-PeO k L-?to 1

and hence

H E ( s )<p U 4 UE(t)(fl|, for all cp 6 M
or

E(s ) ^ E (t).

Now let £ be a small positive number. We have

||E(t + £)<? -E(t)cpll

= ll(E(t + 6 )-EA.(t+£)+EA.(t)-E(t)+EA.(t + 0-EA.(t) )cfll ,

for all i,

l|E(t+i)cp - E&.(t + £)<P1I + II ea. (t) Cp - E (t ) II
+ II E4.( t+£. )<p - EA.(t)<?l|,

for all i.

Now the first two terms on the right hand side of the

inequality can be made arbitrarily small by taking i

large enough and hence there is an i0,say, such that

HE(t + £)q> - E(t)<?l| < II EA.(t + £)<p - EA.(t )<p VI + £ , for all
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Oi(t )
O

which tends to zero as £ tends to zero since Ea. is a

spectral function.

Finally, let trt be any sequence of real numbers

converging monotonical ly to -co. Then E(t^) is a

nondecreasing sequence of projections bounded below by

zero and hence converges to a projection E(-«) say.

Thus lim lim HEA.(tft)tyll exists for each <p£M. Moreover
A ¥cO c

lim lim llEA.(tA )cf|| exists for each (p and equals zero.
I » A -» DO 1

Equality of these two limits ensures that E(t) -* 0 as

t Similarly it may be shown that E(T) -* 1 as

t -*> t oo.

Now E(t) defines a unique spectral measure

E( M) , M £ S ( fPv ) and of course by the spectral theorem

[(2.1.5)] it also defines a unique selfadjoint operator

T on given by

(6.3.7) T = |tdE(t)
S> (T ) = { q eM : | t1 dliE(t)<plli< 00 }

Consider the A-limitation of this operator T. Let EA

denote the spectral measure E(Tft ;.) of T&. That is,
E A (t) = E(t)E(A) + E(A-l )E(0; t) .

The fundamental theorem for our desired correspondence

may now be proved.

(6.3.8) Theorem
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Let T be a related family of limited observables. Then

there exists a unique observable T on ^ with the

property that for each AfrSc(lR,):
(A)

Y(M = TA

where TA is the A-limitation of T. Conversely, let T be

any observable on W then there exists a unique related

family of limited observables T satisfying (A).

Proof

We prove the converse first which is easy. Let T be an

arbitrary observable. For each Ae$t(lR. ) define a map

Y : 2>t(iR. ) -* IB ( H ) by (A ) . Let A^A , A ,A' 6 ( iR ) . Then

(Ta0a = TE(T;A')E(Ta, ;A)
= TE ( T ;A ) ( E ( T ; AAA') + E ( T ; A/J") E ( 0 ; A ) )

= TE ( T ; A ) = Ta

and hence °r is a related family of limited

observables. Uniqueness is self-evident.

Conversely, let ^ be a related family of limited

observables. Define T by (6.3.7). T is selfadjoint.

Moreover for each in ^ we have

I <<f IE* (t) - E A (t )| 4> >

= |<cflE(t)E(A ) + E ( Aa )E(0;t) - Ea(t)ll^>|
= |<<?|E(t)E(A)+E( AJ-)E(0;t)-EA/(t)E4, (A)-Ey( Ax)E(0;t)l4) >| ,

|<<f|E(t)E(A)-EA/(t)E4/(A)lV >l + l<q>|E(0;t)(E(Ax)-EA/(Ai )\l^>\
for each AYA.

Now the right hand side of this inequality may be made

arbitrarily small because the strong convergence of E4/
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to e implies the weak convergence of ( A"1") to ECA1")

and also of EA/(t)E4/(A) to E(t)E(A). It follows that E4
= EA and by the uniqueness clause in the spectral

theorem we have Y ( A ) = T6 . To complete the proof,

suppose that T' is another operator such that

T; = Y ( A ) for each A 6 ) • Let E'A be the

spectral measure of T' and we have E,A = EA for each

Ae$fc(.K) exactly as before. In particular if

e/al = Ea. for all i. But EA. = e'1, and so e'Ai = EA; for

all i and it follows that s-lim e'Ai = s-limE4% or E' =
c <c i

E. Hence T' = T.

As a corollary to this result we have another theorem.

(6.3.9) Theorem

The unique observable T associated with the related

family of limited observables T is given by:

T = s-lim Y( A-J ,
i, -p oo

in the sense that

II T - Y ( A-„ )<p II -* 0 for each <J>tD(T)

where {A;.} is any sequence of sets in St (^) converging

to lR/.

Proof

Notice first that if c|> e D(T) then T<$ = Ip is a

well-defined vector in ^ . Furthermore, from the

properties of the spectral measure we have

l!E(A;)iy - lj)ll -* 0, for all

In particular,therefore,
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l|E(A:)T<p - TCp It -+ 0 , for all <P*S(T).

But for each in t) (T) we have

TA<p = TE(A)cp = E(A)T<?
and so TA^^T<qp as L -+ «> .

As a physical consequence of this theorem we observe

the following result concerning expectation values.

(6.3.10) Corollary

Let Cjp be any vector in the domain of T. Then for each

£y 0 there exists a AfrBt((R. ) such that

I <T4, ;<p> - <T;fl?>K £ ,

for ev e ry A' 2 A .

Proof

Strong convergence of to T entails the convergence

of the expectation values <<plTA(J>>.

A further result characterising related families

will proof useful in the sequel.

(6.3.11) Theorem

Let T be any family of limited observables. is a

related family if and only if for every pair

A , A' e Bt () with AaAy / 0

( Y (A))a, = (Y (A'))a .

Proof

Evidently the condition (*) of Definition (6.3.2) is a

special case of the condition of the theorem.
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Conversely suppose that 'Y is a related family of

limited observables. It therefore satisfies Y(A) =

(T (A))a for every AY A. Suppose that A, and A t

satisfy i $ , then A.^jA, and A,nA1s Av Hence

Y(A,AAA) = CY(A,))VAI
= Y(A,)E(Y (A,); A,aAJ

= T(A,)E(Y (A,) J A.) E ( Y(A,) ;AJ

= T(A,)E(T (A,) ;Ai)

= (^(A,))4t.
Similarly Y(A,aA^) = ( T (A^) )A| and hence

(Y(A,))4i = (Y(A2))Ai, for all A,a A2 * 0.

This characterisation enables us to introduce a new

definition concerning pairs of operators.

(6.3.12) Definition

Suppose that T4 is a A-limited observable and TA< is a
A, A'* 0.

A'-limited observable, ^ TA and T^ are said to be
spectrally related (or just related) if there exists a

related family T such that T& = Y (A) and - Y (A') .

Then we have another result which follows immediately

from the definition and the preceding theorem.

(6.3.13) Theorem

Ta and Ta/ are two related observables if and only

(Ta V = (Ty)A .
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6.4 The Physical Limitations of Measurement

Physical observables in quantum mechanics are

generally regarded as selfadjoint operators on the

Hilbert space associated with the system. If the

selfadjoint operator corresponding to a particular

physical magnitude is unbounded then the set {< T; cp >} of

expectation values is also unbounded. This means that

for a particular physical apparatus the average values

given by the apparatus for the observable in question

have no upper bound. This is clearly in contradiction

to the general physical tenet advanced in (6.1) namely

that in general physical measurements using real

apparatus do not yield unbounded sets of measurement

results. Let us suppose in fact that a particular

physical apparatus is capable of yielding measurement

results in the set A u {0}, where Ae$t(fiO« (It makes

sense to include the value zero for it is always

possible that no measured value is perceived.) This

means that the expectation values for the operator T

describing the observable to be measured must satisfy

(6.4.1)

t, « < T; cp > 4 tx, peO(T) ,

where t, = inf{Au {0}}, tA = sup{Ao{0}}. Then we can

prove the following.



- 131 -

(6.4.2) Theorem

Suppose that A is simply connected, A t $)c( ^ ) • Then

t, n< <T;<p>v< tx , for all, <pet)(T)
if and only if T is A-limited.

Proof

We can write

<T;<?> = j td1|E(T;t)4>l|l

If T is A-limited, then according to

ct( T ) £ A y {0} and so

<T;<f> = [ tdllE(T;t)q>\ll.J A <a!

(6.2.17)

Now inf{ Ay {0}} dME(T;t)cplii ,<"

4u<o5

tdllE(T;t)<$>l\l
&jt°h

4 sup{A 0 {0}} d || E ( T ; t)U1

and since d IIE ( T ; t )<f II1
Ajfo!

dll E (T ; t )<pllx = Hep u2" = 1
o(t)

we have t,£ <T;flp> ^ tz .

Conversely suppose that T is not A-limited. Then there

exists a t 6 <j"(T) such that t 4 A ^ {0} . Since A u { 0 }

is closed there exists an open interval I,say, such

that I contains t and In(A ^{0}) = 0 and for such I we

hav e

E(T ; I) i 0.

A is simply connected so we can choose a t£ <r (T) such

that either t> sup Ao {0} or t < inf A ^ {0} . Let be a

vector in 4-I satisfying E(T;I)(p = cp and suppose there
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is a t in the spectrum of T which is greater than

sup A u { 0 } . That is there is an open interval I

containing t which is disjoint from Ao|0) and

inf t > sup t. Hence
I <i>j

<T ; <p > = f tdHE(T;t)<pl|l > inf I |d IIE ( T ; t > sup A 0 { 0} .

The result follows by contradiction.

We see therefore that observables measurable in

such limited physical situations correspond to the

A-limited observables of (6.2) and (6.3). Actually, we

need to clarify our concepts a little here. The abuse

of notation which we have been accustomed to employ

which allows us to identify a physical magnitude and

the selfadjoint operator representing it under the same

term "observable" is no longer valid. For instance, it

is no longer immediately obvious how a physical

quantity (observable) is to be related to the

(A-limited) selfadjoint operator (observable)

representing it. The theorem above tells us however

that a measurement of a physical observable using

apparatus sensitive only within a certain range A must

be represented by a A-limited selfadjoint operator.
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Generally, then, we have a scheme in which each

physical quantity is not represented by an individual

selfadjoint operator but by a family of such

operators. Now let us suppose that we have a family

{MA} of measurement devices such that MA has range

AutO}, A fe ((Pv, ) ( we assume that each device has the

same zero reading). Obviously if each MA purports to

measure values of the same physical quantity, the

following consistency condition must be satisfied.

(6.4.3) Assumption

The family of measuring devices {MA} measure the same

physical quantity if and only if for every pair of

apparatus MA and MA/, A > A' £ ) ancl f°r every

l£ A,-, A' (ie, for every interval in the range of both

the apparatus) the probability for obtaining a value in

I is independent of which apparatus is used.

Mathematically this assumption requires that for such

MA and Ma'

(6.4.4) E (T4 ; I) = E(T4';I), for all I in A„ A/ ,

A A'
where T and T are the limited observables

corresponding to measurement of the physical quantity

in question using the respective devices.
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(6.4.5) Lemma

A A'
Suppose that two limited observables T and T satisfy

(6.4.4). Then we have

E(TA ;A') = E(Ta';A)
Proof

By assumption both A and A' contain zero so that

<r(TA)£A and <t(Ta)sA' • Therefore E(T4;il) = E (TA ; ) - o

and we have E(Ta;A) = E(Ta;AaA) and E(Ta;A) =

E(Ta';Aaa'). From (6.4.4) it follows that E(Ta';A)
E(Ta ;A') .

(6.4.6) Theorem

suppose that TA and TA satisfy (6.4.4). Then

(T% = (Ta\ .

Proof

We prove equality of the spectral projections.

Firstly :E( (T4 )y ;I) = E ( T A ; A'* I) +E( TA ; A"1") E ( 0 ; I) ,

for all I « S ( ill ) ,

= E(TA; AaA^ I)+E(TA ; A'i")E(0;I) ,

for all I 6 3 ( )R/ ) . Similarly:

E ( ( TA )A ; I) = E(TA'; A.A'rt I) + E(TA'; Ai)E(0;I) ,

for all I 6 S ((R, ) .

Using (6.4.4) to cancel the first terms on the right

hand sides we have for every I t £> (fR, ) :

E( (Ta)a, ;I)-E( (Ta\ ;I) = E( 0 ; I) ( E ( TA ; a,j-)-E( TA'; ax) )
= E ( 0 ; I) (E(Ta';A)-E(Ta ;A') )

= 0, by virtue of (6.4.5).

Therefore (Ta)a, = (TA )A as desired.
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The theorem (6.3.11) now reveals that the set {TA}

of limited observables measured by the apparatus {MA }

is in fact a related family of limited observables. We

therefore postulate as follows concerning the physical

measurement process.

(6.4.7) Postulate

To each physical quantity in quantum mechanics is

associated a related family of limited observables T.

The observable T( A ) is the appropriate observable to

describe the measurement of that physical quantity when

the range of the apparatus is A .

In conclusion then, we have argued two main points

in the preceding two sections. Firstly we have shown

that there is a mathematical correspondence between the

selfadjoint operators and the set of related families

of limited observables. Secondly we have argued that

the description of real measurement situations demands

the use of related families of limited operators. It

is evident that the first result provides the link

between the second result and the conventional

formulation and in general terms the discussion is

thereby completed. In the next section we shall

examine a particular example, namely that of the

momentum observable.



- 136 -

6.5

In the conventional formulation momentum is

represented by the (unbounded) operator defined in

(2.1.3). In chapter 4 we discussed the possibility of

representing the momentum observable by alternative

"local" observables dependent on the size of the

measurement apparatus. Here we use slightly different

physical constraints to suggest that the momentum

observable be represented by a related family of

limited observables {p.} whereA

Alternative integral forms for pk are also possible.

(6.5.2) Theor em

(6.5.1) p4<p = ( 2TT h) * pexp [ipx/h]q>dp, A&2^.( & ) .

-J" 1

PA<? = ( 2iTh) ^A(p)p(p(p)exp[ipx/ii]dp (i)

(Ka * p^)(x) (ii)

P(KA * qp ) ( x ) ( iii)

where K4(x) denotes
A

convolution [cf Appendix (A.1)].

exp[ipx/Ti]dp and * denotes

Proof
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(i) follows immediately from (6.5.1).
^

T

(ii) Let = $A(p)* The inverse Fourier transform of

p qp is pop and hence, by the convolution theorem

[Papoulis 1962], the inverse Fourier transform of $4(p)
is given by

$A(x) = (KA * pf)(x).
Examination of the integral in (i) reveals that it is

-v

precisely the inverse Fourier transform of $&(p) and
hence (ii) holds.

(iii) Let = <PA(p). The inverse Fourier transform

CfA(x) is given by the convolution theorem as

<f4(x) = (KA * <p )(x)
and the inverse transform of p<pA is p<PA so the integral

in (i) yields:

PA<P = P<PA(x) = p(KA *<p)(x).

These integrals may be expressed more explicitly.

(6.5.3) Corollary

( i / ft) pA cp = K4 (x-x,)(dcp/dx,)dx'
ft

(d/dx) (Ka (x-x • ) ) (p (x ' ) d x '
ft

Proof

Evaluate (6.5.2) as convolution integrals.

According to (6.2.15),the spectral function of p4 is

given by
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(6.5.4) E ( p& ; I) = E(p;4AI) + E( p ; A1") E ( 0 ; I) ,

This yields, for each vector (p in H :

where ^ is the characteristic function of the set I.
The spectrum <y(p) of p is the entire real line (ft, , from

which we deduce that for each A^S((R, )

(6.5.6) <r(pA ) = A „ {0}

using theorem (6.2.17).

The preceding results serve only to give a

mathematical form to pA. It is of interest to consider

in which ways the limited observables pA yield

conceptual differences from the usual momentum

observable in physical analyses. In particular we

shall Investigate the uncertainty principle in relation

to such limited operators. We start by proving some

elementary mathematical results.

(6.5.7) Lemma

Suppose that A = [p, ,Pj.]> ancl be any vector in

D ( tx, pA ] ) . Then

[x,pA]cf> = ( 2TTh) i{p1exp[ip1x/h]^(p ) - p, exp [ ip, x/ti ]q> (p,

Proof

[x,pA]4> = xpE ( p ; A )cp - pE(p;A)xCp

+ ^( 0)J exptipx/ft]Cp(p)dp}
INA



- 139 -

= ( 2TTh)f{ f xpexp [ipx/ti(p )dp
-•a

AJ

pexp[ipx/fi](xf)(p)dp}Ji
Now ( x(p ) ( p ) = ili( dcp/dp) ( p ) , so that

pexp[ipx/ft](xf)(p)dp
^a

= ihpexp [ ipx/fi ] (d<p/dp) (p)dp
A

= ( ihpexp tipx/h]Cp(p ) )|A + If(p)pxexp[ipx/h]dp
Ja

Substituting in the above we obtain

tx,pA](p = ( 2Tfh)^ (pexptipx/fi^Cp) )
= ( 2TTh) 1 {Pl exp t iPtX/hj^Cp^ )-p, exptip, x/fi]q>(p, )}

(6.5.8) Corollary

Let A,f be as in (6.5.7). Then

<[x. P6 ] ;<P> = -ilMpJf (pt )|l - p, If (p, Jl2" }
Proof

<tx,pi];f> = -ih( 2TTh)^p1f (pt )J<p*( x ) exp [ ipj^ x/h]dx

<V C if
+ P,f(p, ) (p(x)exp [ip, x/1i]dx}

= -i-htpj. If (Pi. )lz - p, I f ( P, )|l ) .

We now use the general uncertainty analysis (2.5) to

deduce "uncertainty relations" for the operators x and
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A

P4 •

(6.5.9) Theorem

Let A, f be as in (6.5.7). Then

A^x.A^p* » (ft/ 2) I {Pl I ^ ( Pi )ll - P, t?,(p, )|VJ| •

Proof

(2.5.1) and Corollary (6.5.8).

What is significant about this result is that the

uncertainty product x . pA has no state independent

minimum. For certain states therefore the minimum

uncertainty can be as small as zero, which allows for

the possibility that the product itself may be equal to

zero,or at least arbitrarily small. This is a rather

surprising consequence of the spectrum-limited

approach. It demonstrates in particular the

independence of operator relations of the form (6.5.9)

and heuristic uncertainty in the sense of some of the

early analyses [cf (2.5)], since momentum is no longer

represented by an operator which yields a minimum

uncertainty product strictly greater than zero.



It is immediately obvious from the results of

(6.2) that an operator T is A-limited for some A if and

only if it is bounded. This obviously has a happy

consequence for the programme of localisation of

observables. It will be remembered that a satisfactory

and mathematically straightforward theory of local

observables exists only for bounded observables.

Hitherto this has presented difficulties in

generalising the theory to many observables of common

interest to physics: eg,momentum,energy, which are

commonly regarded as unbounded observables. Using the

present A-limitation of operators it is now possible to

set about providing a consistent localisation for such

physically essential observables. For example we may

localise the momentum by considering the localisation

(3.2.1) of the limited momentum operator p4 = pE(p;A).
The localisation is straightforward. We define an

operator (pA )A by

(6.6.1) (£A)A

£K(pA)A )

= E (x ; A ) p6 E ( x ; )

= E(x;A)pE(p;A)E(x;A)

= .
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Calculation of the uncertainty product for this

operator is straightforward if we use the fact that

[x,(pA)A] = E(x;A)[x,p4 ] E (x ; A) = [xA,pA]

where xA is the A-limited position observable. Then it

is a matter of straightforward calculation to show that

the uncertainty product is exactly as for pA but with

replaced by <PA where (J>A = E(x;A)<p. Again we see that

it is possible for this minimum product to vanish for a

particular wavefunction. Another point arises from

this. Comparison of the pair x,(pA)A and the pair

xA,pA provides an interesting insight into the

processes of localisation and limiting spectra:

limiting the spectrum of the position observable

corresponds to localising the limited momentum

observable here.

Finally we observe that it is also possible to

localise simultaneously in position and momentum by

considering the spectrum limitation (sl>)A of the local

momentum operator of chapter 4 given by

(6.6.2)

(lp)A = E( |p ; A ) SpE( {p ; A )

S)((fp)A> = M.

It is an interesting question to consider what physical

and mathematical differences exist between these two

formulations. In particular for certain wavefunctions
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the two operators (pA and (fp)A (and their

projections) may be expected to differ only in the

boundary regions of the apparatus so that the question

of which localisation to consider first is resolved.
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CHAPTER 7

TIME-DEVELOPMENT OF LOCALISED SYSTEMS
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7 . 1

A well-known result on free nonrelativistic

wavepackets is the fact that any wavepacket localised

in some bounded region of configuration space at time

t = 0, spreads instantaneously over all space in

subsequent time [Amrein 1981 eg], A similar quite

general result is proved even for relativistic quantum

systems by Hegerfeldt and Ruijsenaar [1980]. The

nonrelativistic result is easily demonstrated.

Suppose <p0 (x) is the wavefunction at time t=0 for

a free quantum mechanical particle moving in the

one-dimensional configuration space IR, . Suppose

further that (pe satisfies

(7.1.1) cp0 (x) = E( x ; A ) (p0 (x ) .

The time development of such a wavefunction can be

given the integral representation [cf (2.1.4)]

(7.1 .2)

<Pt(x) = (2TTtl)'1 dp dx ' <p„( x ') exp [ip (x-x ') / ft ]exp [ - ip2" t / 2mfi]
Ik

Completing the square in the argument for the

exponential and performing the p-integration one

obtains [Feynmann and Hibbs 1965 pp96-8]

(7.1.3)
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cpfc(x) =

(m/2'n'iht)^ exp[imx2/2ht) exp [-imxx '/fit + imx ' **/ 2Rt ] cf>0( x ' ) d x '
(K

Put lp> t (x ) = exp [ imx V 2ftt ] (p0 (x ) and it follows from

(7.1.1) that E(x;A)4>t(x) = lpk(x), while from (7.1.3) we

deduce that

(7.1.4) cp^(x) = ( m/ i t y- exp [ imx1 / 2ft t ] lp^.( xm/ t) ,

'V

where denotes the Fourier transform of U>k. It is

standard result in Fourier analysis [cf (4.1)] that the

transform of a function with bounded support is

non-vanishing almost everywhere and hence for each

t > 0, cp^.(x) is nonvanishing almost everywhere in x.

Now suppose that xa and xt represent the time dependent

position operators at times 0 and t respectively in the

Heisenberg picture [cf (2.1)]. The following theorem

expresses the instantaneous spreading of wave packets

rather neatly.

(7.1.5) Theorem

For each A, A in St( (R- ) we have

E(x0 ;A)rt E(xfc ;A) = 0 .

Proof

Suppose the theorem does not hold. Then there exists a

nonzero vector in L1 ( ift, ) such that the simultaneous

equations

( i) E(xe ;A )
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(ii) E(xt ;A)V =lp
are satisfied. The second of these equations implies

that

u"t'E(xe ;A) UtU> = ip

which in turn implies that

E(x, ;A) l|)t = lVt .

But it follows from the above reasoning

[(7 . 1 . 2)-(7 • 1 .4)] that this equation cannot be

simultaneously satisfied with (i) and the result

follows by contradiction.

This result is a neat analogy to (and indeed

arises from) the complementarity theorem (2.5.6).

Another analogy can be drawn between time development

and the canonically conjugate pair. Namely, there

exists a sort of uncertainty relation linking the

position at time 0 and the position at time t.

(7.1.6) Theorem

Let be a member of the appropriate domain [cf

(2.5)].Then

A,,, xe.Alfxt ht/2m.

We start by evaluating formally the commutator bracket

[x0 , ] •

[x„,Ut] = x„ exp [-ip1 t/2mti] - exp [-ipz1 / 2mfi ] xe

= Z (-it^mf!)* [x. ,pz"]/n!
A(0

= Z (-it/2mh)n 2nihp2*~'/n ! [Prugovecki 197 1 p 3 3 3 ]
f\tO

- Z. (-it/2m lif (t/m)pI'< V ( n — 1 ) !
A = l
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= (pt/m)2l (-i t / 2mh )* p2"/n !
t

= ( pt/m) exp t-ip1 t/2mft ]

= ( pt/m) Ut .

Now we evaluate the commutator bracket [xe,x^] using
the above result.

[x# , xt ] = [x0 , Uk x0 Ut ]
= x0 Ufc'x,, Uk - Uj' x0Utxe
= x0 + x0U"'[x0,Uk] - xe - U*'[x0 , Ut ]x„
= (t/m)[xe, p]

= ifit/m

The result now follows by substituting this commutation

bracket in the usual mathematical analysis:

AfX8-A,xt » \ <[x9 , xt] ;<p> 1 , [cf ( 2.5 .4) ] .

It may be noted that this inequality embodies the

phenomenon known as the spreading of the wavepacket in

the sense that as t tends to infinity, A^ x0 . A^x^ tends
to infinity. No matter how small the original

uncertainty, for large times the uncertainty in

position becomes increasingly greater. A similar

result associated with the spreading of wavepackets is

the following theorem.

(7.1 .7) Theorem

Let 6 L1 (lK ) , Vj. an evolution group such that

Vt e L*" ( p) . Then for every bounded \ t 2> Ok ) we have
lim H E(x ;A)Vtop U = 0 .
t -* no

In particular of course the result holds for Vt = =



-149-

exp[-ip t/2mh] .

Proof

Amrein 1981 p132

The physical interpretation of this result is that

the probability of finding a quantum mechanical

particle in any finite region A at time t later

approaches zero as t tends to infinity (or negative

infinity) .

All of this does not bode well for our programme

of localising quantum systems. The measurement

situations we have been at pains to respect seem doomed

by instantaneous spreading of systems as soon as we

allow time to pass. In this chapter we shall

investigate possible solutions to this dilemma. We

propose, for instance, a time evolution "in a box"

based on the time evolution operator =

A 1

exp[-i$p t/2mtt]. This time evolution will at least

allow for systems to remain localised within an

apparatus. Comparison of this operator with the usual

time evolution is made for initially localised

systems. We also describe some results of the

WH-theory [Wan and McLean 1983] which indicate how a

localisation of sorts is possible asymptotically. This

localisation is within unbounded regions and we discuss

whether it is possible to localise in bounded regions

at infinity. Finally we shall discuss the separation
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of particles in two-particle systems,

7.2 Time Evolution in a Box

We consider the time evolution operator given

by

(7.2.1)

UJt = exp [-i Sp2 t/2m!i ]

where 1 is a Cw-function of compact support in l\ =

(a,b) which takes the value 1 on A0= [a0,be] £ (a,b).

$P is therefore a local momentum observable as defined

in I 4 .2 .1):

fp<? = -ih($(d<p/dx) + ( l/2)q>(di/dx) )

D(fp) = Lz (iR) : (p t AC(X,(Pv, ) , t L1 ( rtO }

with localised eigenfunctions t ( 4 . 4 . 1 ) ]

r *
F ( X, x) = ( 2TTih)J-exp[ ( iX/h) J J(x')dx)] xe , x e (a,b),

and spectral measure

E(lp;A)<p =
A

F ( X, x) { f F*(X,x')q>(x')dx'}dX
J \

The completeness of the eigenfunctions in (a,b)

[MacFarlane 1980] ensures that any wavefunction ^(x)

with support in (a,b) can be expressed in local
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momentum representation space by

<F|(f> = F( \ (x)dx

In this space (7.2.1) becomes

UJt = exp [-i t/2mh ]

and hence we can express Ujk<p(x) as follows

(7.2.2) Ojfc<p(x) = F ( X, x) <FI<p >exp [ - i X1 t/2mft]d\.
IR,

Now for all x in Ae we have [(4.4.4)]

F(X,x) = exp [-iX x0/ft ] f ( X , x) ,

where f(X,x) are the generalised momentum

eigenfunctions. Furthermore if we impose the

restriction that cf> vanishes outside the centre of

localisation As then it can be demonstrated [cf(4.4.4)]

that

<F I cp > = exp[iXx„ / Fi ] < f I >

where <f I <p> is the representation of $ in the momentum

space given by [(2.1.3)]

<fl<p> = (2Tth)i j"<p( x ) exp [-iXx/h ] .
From all this it is straightforward to deduce the

following result.

(7.2.3) Theorem

Let cpg & Ll ( (R, ) , Q0{ x ) = 0, x i K0 , then
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USt (x ) = Ut<pe(x)f for all x c- \0 .

In other words the time development in the centre

of localisation of a wavefunction Q0 initially lying

entirely within the centre of localisation may be

described equally by the usual time evolution operator

Ut or by the local time evolution operator U$t for all

subsequent time. Physically speaking, as far as the

interior of the apparatus is concerned the local

operator is exactly the same as the global one in

describing the time evolution of the system. The

difference between the two is that, in contrast to

Theorem (7.1.5) above there are many solutions to the

simultaneous equations

it is possible to retain a localised system within the

apparatus for subsequent time. Equally it is obvious

that

(7.2.4) E (x ; A,) <p# = q>„

E ( x ; A ) UJt <p0 = Ujk<p0 5

(7.2.5) lim II E(x ;A )UJtipe|| = 1,
CO

which is in sharp contrast to Theorem (7.1.6)
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Now suppose that we denote by xfc the time
development of the position operator using the local

evolution operator. In other words is given by

(7.2.6) xfc = exp[i$plt/2mh]x0exp[-iipzt/2mll].

It is worthwhile to consider whether we may draw some

kind of analogy with the "uncertainty" theorem (7.1.6)

by considering the uncertainty product x„ -A^xt for
the local time evolution. In fact we can prove the

following,remarkably similar result for the local

ca se .

(7.2.7) Theorem

Let L1 ( iR. ) satisfy E(x. ; A0 )<P0 = <&. Then for all t> 0

A^x,, .A^ >/ ht/2m.
Proof

We start by computing the commutation relations for x,

and ip . Proceeding formally, and using the equivalent

representation £p = i'ipi'f we obtain first

tx, , ip2"] = j'^txpS . . . Sp - pi . . . ipx#]

Using the operator relation [f,p] = -p(f) (cf [x,p] =

ifi), and assuming a compatible domain, the commutator

relation becomes (after some computation)

[x„,*pM] = ift 2npi . . . pi+• . . .
2a • r

..+ (-1) ( 2n ! / ( 2n-r) ! r ! )pi . . . p 5*P i> • • % p(i) +■ . .

. . + (-1 pi. ..p%}i'^
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Zn-r r

r-\

This rather complicated looking expression is

substantially simplified when we remember that for r >/ 2

the summands contain the term d5/dx which vanishes on

Ae . It follows that

r ;^2a i „ ■ *. ifl-iLx„ , ip ] = 2nift Sp

Hence the commutator bracket is exactly the same as for

the global momentum case [cf proof of (7.1.6)] but with

p replaced by $p. The analysis of (7.1.6) goes through

exactly as before then and we obtain

£xe > ^ = ^ ipt/m) Ust
and

[xofxt]<p = (t/m) [x„ , fp] <p

= -(iftt/m)(x$p<p - ip(x<p))
= -(iftt/m)(x{p<p - x fp<J> - fp(x) )

= ( iM t/m)q? .

Since vanishes outside A» we deduce that

<[x0,xfc]; > = nt/m, t > 0,

and the result follows from the usual mathematical

relation concerning the product of the variances [cf

(2.5.1)].
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7.3 Asymptotic Localisation and Separation

The result of theorem (7.1.6) indicates that as

time tends to infinity a quantum mechanical system

governed by the conventional time evolution cannot be

localised in any finite region in space. There is

however a sense in which we may consider a system to be

asymptotically localised for large times even when the

global time evolution is used.

There is a much discussed experimental procedure

in quantum mechanics known as the "time of flight"

measurement of momentum [de Broglie 1930 p156, Feynmann

and Hibbs 1965 pp96-8, Gottfried 1966 p12, Jayaram

1966, Kemble 1937 p58 et seq, Park and Margenau 1968,

Raith 1976]. The idea of this experiment is to

determine the momentum of a quantum mechanical particle

by measuring the time taken for the particle to travel

from one specified point in the configuration space to

another. In classical mechanics this is a

straightforward enough thing to do. Suppose that

initially the (classical) particle is at position x

and after time t it arrives at x^. Assuming that the
particle travels freely, ie no external forces act on

the particle, then the velocity of the particle between

the specified points is (xfc-xe)/t and hence the

momentum is given by m(xk-x0)/t. In quantum mechanics,
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as we know, no such straightforward description is

possible due to the probabilistic nature of the theory,

the spreading of the wavepacket, the incompatibility of

position and momentum measurements etc. It can be

shown instead [Schiff 1955 p29, cf also Farina 1984]

that the average (or expectation) values for the

quantum mechanical position and momentum measurements

satisfy <x;cp> = <p;<p>t/m.

There is another way of looking at the problem.

Consider a classical ensemble of particles all of whose

momenta lie in some finite range tp,p'] in (R . Suppose

that at time t=0 all the particles are located at x=0.

After time t we can say that the ensemble may be found

within the region [pt/m,p't/m] in the configuration

space. A quantum mechanical counterpart to this result

is proved by Park and Margenau (eg) in their analysis

of the time of flight experiment for a restricted class

of wavefunctions. A more general result has been

proved by Wan and McLean.

(7-3.1) Theorem [Wan and McLean 1983(a) Theorem 1]

Let $ e L*((Ra),and suppose that [ y, v * ] is any proper

closed interval in In . Then

lim II E( x ; [vt, v ' t ] ) Ut<f II = II E(p ; [my, mv ' ] ) <? I\ •
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Physically speaking, this result mimics

asymptotically the property of the classical ensemble.

Notice that (7.3.1) does not conflict with (7.1.6)

since the "localisation" takes place only in an

unbounded interval. Now we provide a formal definition

for this "localisation".

(7.3.2) Definition [Wan and McLean 1983(a)]

A quantum mechanical particle described by the state

vector cp e L1 ((R? ) is said to be asymptotically

localisable if there exists a proper closed interval

[v,y'] in 8 OK") such that tlE(x;[Ytfv't])Ut<pil = 1. We

shall also say that the particle is asymptotically

localised in [vt,v*t].

We have immediately the following result.

(7.3.3) Corollary [op.cit]

A quantum mechanical particle described by the state

vector Op is asymptotically localisable if and only if

there exists a proper,closed interval tp,p'] such that

UE(p ; [ p , P * ] )<PII = 1 .

Proof

Evidently we have only to take [p,p'] = [mY>my'] where

m is the mass of the particle and the result follows

from theorem (7.3.1).
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We introduce a further definition.

(7.3.1) Definition [op.cit]

Two states of a one particle system are said to be

asymptotically separating if there exist disjoint

proper closed intervals [u,u*] and [y>v'] in IK* such

that is asymptotically localised in [ut,u't] and V is

asymptotically localised in [ytfY't]*

The effect of the definition is that the

asymptotically separating states are those which are in

disjoint spatial regions for large times.

(7.3.5) Corollary [op.cit]

Two vector states <p and are asymptotically separating

if and only if there exist disjoint proper closed

intervals [p,p'] and [rfr'] such that

1|E(P ; [p, p ' ] )q>ll = 1 = l|E(p ; [r, r' ] )ipi\ .

7.1 Asymptotic Separation for Two Particle Systems

Now let us consider the case of a two-particle

system. Obviously we can extend the notion of

asymptotic localisation of the states. We state first

the two-particle equivalent of theorem (7.3.1).
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(7.4.1) Theorem [Wan and McLean 1984(c) Theorem 2]

Let $ (r Ll ( (R.2n ) . Let m, be the mass of particle 1 and

mx be the mass of particle 2. Then for every proper

closed interval [v,v'] in l\C we have

lim II ( E (x, ;[vt,v't])® 1)Ut||| = ll(E(p, ; [ m, y, m, y ' ] ) <S> 1)$i|
and

lim ||(1®E(xi;tyt,y,t]))Utf|| = IK 1 & E (p,. ; [ n^v, m^ v ' ] ) ) $ H .
t-» CO

One can introduce definitions of the asymptotic

localisation and separation of states quite analogously to

the one-particle case [op.cit Definition 2]. We remark here

that in the present analysis we confine ourselves to the

term asymptotically separating to describe such states. In

the previous WM analysis, such states are sometimes called

asymptotically separable. However it does not in general

hold that states which are separating are separable as we

shall see later on [Chapter 9). For the purposes of the

theory to be presented in this thesis a more useful concept

for two-particle systems is the notion of asymptotically

separating particles.

(7.4.2) Definition [McLean 1984]

The two particles in the vector state $ e L1" ( fRirt ) are said
/

to be asymptotically separating if thoro exist disjoint

proper closed intervals [v, , y,' ] and [yx,y^] in IR such that
1 = lim |\ (E(x, ;[v, t.y,'t])® 1)Ukf ||

= lim IK 1 ® E(xt ; [y^ t, t] ) ) l|
[ -» oo
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For a simple tensor state ^ the effect of this

is easy to visualise physically. The two particles are

separating if their wavefunctions end up in disjoint spatial

regions "at infinity". There is an obvious extension of

Corollary (7.3.5) .

(7.4.3) Corollary [McLean 1984]

The two particles in the state $ are asymptotically

separating if and only if there exist disjoint intervals

[ p, » P,' ] and [p^ , p^ 3 such that
I|(E(P, 5 [p, » P,' ] )® 1 )$ II = 1 = IK 1 ® E(p1 ; [pt , p'x] ) )$ || .

When we come to consider two particle systems with spin

a further degree of generalisation is required.

(7.4.4) Theorem

Let be a vector state of a system comprising two

spin-half particles with masses m, and m^ . Let [v, ,vj ] and

tv^y'] be proper closed intervals in . Then

lim ( ( E (x( ; [ y, t, v't ]) ® 1) ® 1) u5 f||- - -

= H ( ( E ( p, ;[m, v, , m, v,' ] )® 1) ® 1)$'l| and

lim II ( ( 1 ® E(xa ; [ Vi t, v' t] )) ® 1 ) Uf $"||
t-f <0

= II ( ( 1 ® E ( pa ; [ mj. Vj , mj. vx' ] ) ) ® 1) I"" II .

where Ut' is the time-evolution operator for the two-particle
spin system, namely:U£ = Ufc® 1.
Proof

The degree of generalisation in taking the tensor product of
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the Lx space with the four-dimensional spin space is in fact

less then the generalisation already incurred in taking the

tensor product of the two L2 spaces. The form of Wan and

McLean 's proof for (7.4.1) may therefore be employed a

fortiori for the present case.

Of course we can then generalise the definition (7.4.2)

and the corollary (7.4.3) to incorporate the spin, simply by

including the tensor product with the identity operator on

the spin algebra. Finally we point out that generalisations

of these results exist in two further senses. Firstly it is

possible to prove the following.

(7.4.5) Theorem

Let W* be any normal state on B(^ll) the algebra of bounded

operators on a system of two spin-half particles, and let

[ v, , vf ] , t v2 , ] be proper closed intervals in . Then
lim vf<r( ( E (x ; t v, t, v't ] ) <3> 1) ® 1)
t-»«
= w"° ( ( E ( p( ;[m,y, , m, y,' ] ) ® 1) & 1) , and
lim v/^((1®E(xl;[vlt,vilt]))®1)
fc-froO

= »✓'•(( 1® E(pt ;[mxYt ]))® 1).
where w*(k) = ^°"(At) for every A e IB (H*), Afc is the time
developed operator in the Heisenberg picture [cf (2.1)], and

is the state at infinity generated by w*.

Proof

Notice firstly that w"°( (E(p, ;[m,Y> » m, v,' ] ) ® 1) ® 1) is equal

to w<r( ( E ( p, ; [m, v, , m, y,' ] ) ® 1)®1) since the operator argument

is in Lo0(p1 , px )®a5£ and that if W" is given by a pure
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state , then the theorem reduces to (7.1.4). For the

general case we remark that a normal state w* is given by a

convex linear sum of pure states

v/' = Z X;P/ , X- >0
I X L

where £ X^ = 1.Hence we have
i

lim w* ( ( E (x, ; [ v, t, v,' t ] ) &> 1) ® 1)
t-»<o

= lim ll^ X' ( (E(x, ; [v, t, v^ t] ) S> 1) ® 1) U.*$*11.
Now the terms of the sum are uniformly bounded by Xt since

IK ( E (x, ; [ v, t, v ' t ] ) ® 1) ® 1) U* || is bounded uniformly by 1

and so, by the Weierstrass H-test [Apostol 1957 p396, eg]

the sum converges uniformly. Hence we can interchange the

limit and the sum to obtain

lim w* ( ( E (x , ; [ v, t, v,' t ] ) » 1) ® 1)
t-**> "

= Z Xtlim II ( ( E ( x, ; [v, t, v,' t ] ) ® 1) ® 1) II
= IX- II ( ( E(p, ; [m, v, , m, v,' ] ) ® 1) ® 1)

i L

= w'"{ ( E (p( ; [ m, y, , m, v/ ] ) ® 1) ® 1) .

Similarly for the second particle.

A further generalisation is possible. In each of

(7.3.1), (7 . 4.1),(7.4.4) and (7.4.5) it is possible to

replace the projections of the position operator by any

essentially bounded complex-valued function g(mx/t). A

theorem in Amrein [1981,p1 233 ensures that the limit yields

the function g(p). For details of this and an application

of the more general result to states at infinity we refer

the reader to Wan and Jackson [1985].
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7.5 Spatial Separation for Finite Time

Finally we shall define a notion of spatial separation

which is not asymptotic but exists for finite time t.

(7.6.1) Definition

Two states <Q , & M are said to be spatially separate at

time t if there exist A, A' 6 8 ( IR") such that

<Pt = E(x ; A )<Pt
= E( x ; A') U)fc •

Two systems and described by the two-particle state

vector $ at time t are said to be spatially separate at

time t if there exist A,A' £ S (flC) such that A„ A = 0

$ = E(x,®xJ_;A*(Rrt)$
= E(x,® Xj ; lRnxA' ) .

Evidently the instantaneous spreading of the wavepacket

[(7.1)] means that even if such a localisation of subsystems

in disjoint regions occurs for a particular time t there is

going to be a subsequent overlapping of the systems for

later time. However this does not prevent us considering

the possibility that at a particular time t we have

separation of the two systems (or states) into disjoint

spatial regions. It will emerge later [cf (9.8)] that

consideration of such spatial separation for finite time

yields some insight into the problems of correlated

subsystems in quantum mechanics. There is an obvious
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extension of the concept of spatial separation for finite

times to systems with spin.



- 165 -

CHAPTER 8

REDUCED STATISTICAL OPERATORS

AND

CORRELATIONS BETWEEN SUBSYSTEMS
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8 . 1 Introduction

At the heart of the so-called paradoxes in quantum

mechanics concerning two-particle systems (eg the EPR

experiment [Einstein,Podolski and Rosen 1935, Bohm 1951])

lies the relationship between the state of the overall

system I+II and the states of the individual component

subsystems, namely the reduced statistical operators. In

particular therefore we must elucidate the following two

questions.

(8.1.1) Given a state w of I+II what are the states w2

and w2 of the individual component subsystems ?

(8.1.2) Given states w2 and w2 of systems I and II,

what is the state w of the combined system ?

The next section in this chapter discusses these

questions in the context of the conventional theory.

Following this we examine the problem for the

WM-algebra [cf(2.4)]. Defining, in section (8.4),

several precise (and distinct) formulations used in the

literature under the blanket term "correlations", we

then show in what sense, correlations do and do not

exist in the WM-theory.
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We shall assume for most of what follows that we

are dealing with a system of two distinguishable

particles of masses m, and mA, and to start with we are

going to consider systems without spin. The time

evolution will be taken as Ut = Ult® U2t. This amounts
to an assumption that the systems are non-interactive.

Since we are concerned with free particles here, U,t and

UAt will be the respective free particle evolution

operators [cf (2.1.2)] for I and II.

8 .2 Reduced Statistical Operators: Conventional Theory

Consider a state w of a two particle system given

by the density operator ? on 4-|t. Now one defines the

one particle observables in a two particle system as

the observables of the form A,® 1,1® Ax , with A,

A2elB(H,). We shall follow the usual, very reasonable

assumption that the statistics of the individual

subsystems of the system, reflected in the reduced

particle states wx and wz, are consistent with the

statistics of the one particle observables in the state

w of the combined system. That is we have the

following requirement [cf Beltrametti and Cassinelli

1981 p 65 3
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(8.2.1) Consistency Requirement

The probability of obtaining a value in the set b on

measurement of the observable A, of system I in state

w, is equal to the probability of obtaining a value in

the set b * (R on measurement of the observable A,® 1 of

the composite system in state w. Similarly for system

K.

Mathematically requirement (8.2.1) yields the

following.

w, ( E ( A, ; b ) ) = w(E(A,®1;b*<R)), for all A, « 16(H)
(8.2.2)

wz ( E ( Az ; b ) ) = w( E ( 1 ® Az ; (Rx b ) , for al 1 Az e l$(flL)
for every b 6 (<v\, ) .

Since we are considering the conventional

formulation in which every bounded operator on 4-\

belongs to A , (8.2.3) may be expressed in terms of the

projections P, on 4-1, , Pz on 4-|z and in terms of the

traces of the density operators ^ and ^ corresponding

to w, and wz . So we have

Tr ( P, ) = Tr(f (P, ® 1) ) , for all P, e /.(«,),
(8.2.3) and

Tr ( Pz ) = Tr (^ (1 <g> PA ) ) , for all ?z e JL (f1z) .
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We point out that this consistency requirement

could as easily have been formulated in terms of

expectation values, since these are interderivable with

probabilities [cf(2.6)]. Thus we have, equally

Tr(f, A, ) = Tr (^ (A, ® 1)), for all A,e &(U.)
(8.2.4) a nd

Tr(^Az) = Tr ( ^ ( 1 <g> At) ) , for all A2 €• (B ( UL) .

It turns out that these consistency requirements

enable us to provide fairly concise answers to the

questions (8.1.1) and (8.1.2). We shall state these

results without proof and refer the reader to

Beltrametti and Cassinelli [1981, Chapter 7] and von

Neumann [1955] for further details.

(8.2.5) Lemma

Let be the state of the composite system. Suppose ?

and both satisfy (8 .2 . 2)-(8.2 . 4) . Then the

respective reduced statistical operators p, and ^' for

system I satisfy = P, ' • Similarly for system II.

We can derive explicit expressions for the unique

reduced statistical operators generated by a specific

state ^ of the composite system.

(8.2.6) Theorem
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(i) Let <P-1 'H, , W t Mlt be an orthonormal basisJ 1 J

for 4HC • Suppose ^ is a pure state on (S () given by

the state vector $ whose decomposition in the

orthonormal basis is

$ Z , X.J c- i ( £ -- 1
i/j l,J

Then and & are given by

<>,<? = Z c,- If><^l?>
i(j J

= Z dlJI^X^lU>>
:'j

where c;; = 2 X* \,k , and d-- = Z\w\k:.J K u k J

(ii) If the state of the composite system is given by

the mixture

(> =/<<?' + > o</< < 1

then the reduced statistical operators are given by

e, = /"f/ * -We,"

where and f ' are the reduced statistical operators

corresponding to and , p2" are those corresponding to

e"-
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This theorem ensures that once the state of the

composite system is known the reduced statistical

operators are also determined. Moreover everything can

be reduced (according to (ii)) to the case in which

is pure and for which £ yields precise expressions for

the operators ^ and . The following corollaries
detail certain specific cases.

(8.2.7) Corollary

(i) Suppose that $ = Z (<p;® ) . Then

e, = iwf p,.
e2= z IXvIx p„.

t

(ii) If f is a pure state represented by the simple

tensor <ps>ty> , then are also pure states and are

represented by the vectors q and respectively.

We now tackle the converse problem (8.1.2).

(8.2.8) Theorem

Let and be the density operators associated with

two subsystems I and II of a composite system of

particles I+II. Then

(i) The state is always a possible state

for the system.

(ii) If ^ and are pure states then the state of
the composite system is uniquely determined as £ =

e. ® &. •
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(iii) If and are not pure then there may be a

number of possible states for the composite system.

It is of interest to note that the proof of (iii)

in (8.2.8) illustrates a feature peculiar to quantum

mechanics, namely that the composite state may be pure

while the reduced statistical states are mixed. We

shall come across a particular example of this in the

isotropic spin-zero vector of the EPR paradox.

8.3 Reduced Statistical States: The WM-Theorv

Let us now turn our attention to the WM theory, in

which the algebra of observables is given by the

asymptotic algebra 'Ayac. [of (2.4)] with states which

include the normal NPLF's on and the normal NPLF's

at infinity on AWM£. tcf (2.4.3)]. As in the

conventional case we shall adopt the physical

requirement (8.2.1). Now however we must generalise

the mathematical requirements to include all the states

on the system. For every Borel set b we require:

w, ( E ( A, ; b ) ) = w( E ( A, ; b ) ® 1), for all A, 6 Aw«i
(8.3.1) and

w2(E(Aa;b)) = w( 1 ® E ( Az ; b) ) , for all Az

We shall also make use of the following equalities
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corresponding to (8.2.4):

w, (A, ) = w ( A, g> 1) for all A, e aA*mi ,

(8.3.2) and
wz (Az ) = w( 1® Az) for all •

If A is a selfadjoint element of the algebra where

^Awh is a WM-algebra then [Wan and McLean 1 984(a) Theorem

8] every projection of A is in It follows that

(8.3.2) implies (8.3.1). Conversely the spectral

theorem ensures that (8.3.1) implies (8.3.2).So these

two conditions are again equivalent. For the case of

the WM-theory we recall that states are of two distinct

kinds. There are normal states given as usual by the

density operators on , and the states at infinity,

generated from the normal states as the limits in time

of the time-developed normal states [(2.4.3)]. We

shall use the notation wf to specify normal states and
w" to specify states at infinity. In both cases the

subscripted greek letter denotes the density operator

generating the state. A general state w is of the form

[Wan and McLean 1 984(b) Postulate 3] w = w? + (1-/Ow~»
0 1. Let us suppose first that the state w of the

composite system has been given.

(8.3.3) Lemma

Let w be the state of I+II. If w, and w,' are states of

1 which both satisfy (8.3.2) then w, = w,'. If wz and
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wA are states of II which both satisfy (8.3.2) then wA

= w/.

Proof

The states w, , w,' are by definition elements of the dual

space of ^Awmi [Bratteli and Robinson 1 97 9 p48],

w, -w,' is a well-defined, though not necessarily

positive, element of this space. Since w,(A, ) = w,'(A, )

for every A e , we have w, -w,' = 0. Hence the

result.

We have shown here that the reduced statistical

states (as we shall call them in a natural extension of

the term reduced statistical operator) are uniquely

determined by the state w of the composite system and

we shall therefore refer to (8.3-3) as "the uniqueness

lemma". We use this lemma to generalise Theorem

(8.2.6) above to our present case.

(8.3.4) Theorem

(i) Let w be the state of the composite system I+II

and suppose that w is pure. Then w can be represented

by some vector $ in 4-it with

$ - Z Xlj
vj

where is an orthonormal basis in fy,. Moreover

we have

w, = wf| ; wz = wfi
where and ^ are the reduced statistical operators
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determined by the vector <| according to Theorem

(8.2.6) .

(ii) If w is a mixture of the form

w = yuv' + ( 1-/M)W"
where 0 </« < 1 , then the states w, and wt satisfy

vi, = /a w,' + (1-/0 w,"

wi = /< wx + ( 1 -/O wx*
where w/ , wt' are the reduced statistical states of w'
and w," , wt" are those of w".
Proof

(i) Theorem 5 in Wan and McLean 1981(b) tell3 us

that $ has the given form in the orthonormal basis.

Theorem (8.2.6) ensures that the states w, and w2

satisfy (8.3.2) which has the trace form (8.2.1) for

this particular case. Their uniqueness as solutions to

the problem follows from the uniqueness lemma.

(ii) This follows easily from the uniqueness lemma

and the linearity of the states.

(8.3.5) Corollary

(i) If w is a pure state $ = X , then w, =
t

wf » wi = where

l 1

?ivi* v.
(ii) If $ = cpeip , then w, and wa are also pure

states represented by the vectors (p and

respectively .

Proof
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Both (i) and (ii) follow easily from (8.3.4).

There is another useful consequence of (8.3.3) and

(8.3.4).

(8.3.6) Corollary

If w is a normal state, then so are w, and wx .

Proof

Follows immediately from (8.3.4)(ii).

In the case where w is normal therefore, all the

states, including reduced particle states are given by

density operators and the results that hold for the

conventional formalism concerning the form of the

reduced statistical states and their uniqueness are

reproduced for the asymptotic theory (WM). We now

investigate the problem of the states at infinity,

which of course do not exist in the conventional

theory.

(8.3.7) Theorem

Let w be a state at infinity given by w = w^. Then the

reduced statistical states for the subsystems I and II

are given by w® and w°° respectively, where T, and
I,

are the reduced statistical operators determined

uniquely by f.

Proof

For each A, in we have
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w*( A, ) = lim Tr(Y, Alt ) = lim Tr (T (A 1 ) ) = w"®( A,® 1 ) ,
V-P» t-VOo ^

and

v"{kx) = lim Tr(Y,Alk ) = lim Tr(T(1®Ait)) = w~(1®A^).1 fc->4JO

The uniqueness lemma ensures that the states w" and w~

are the appropriate reduced statistical states.

Of course the results of Theorem (8.2.6) suffice

to elucidate the form of the density operators T, and

which generate w" and w^f. In addition, when t is a

mixed state we have a further result

(8.3.8) Corollary

Let w = w£ where T i s a mixed state T =/nx' + (1-/m)t".
Then w, = /< w,' + (1-/OW,", where w/ = w , w," = w*, and'

i i

similarly for wt.

Proof

For every A, in .A,*,, we have

w (A, ) = wf (A, ) = lim Tr(T,Alt)
1

= lim Tr((/u'Y1'+ (1-/0 X," ) A lt )

= /aim Tr (r,' A ,t ) + (1-/Olim Tr(Y,"Alt )

(by linearity of Tr and the limit)

= /»wt'(A,) + ( 1 -,m ) w," ( A, )

Similarly wz ( A 4 ) = /t w^ ( Az ) + ( 1 ->0 w* ( Az ) .

It was noted above that a general state of the

WM-theory is given as a linear sum of a normal state

and a state at infinity. By the following lemma we can

transfer this mixture to the subsystems.
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(8.3.9) Lemma

Let w = ^w( + ( l-ztOw^5, 0 </** < 1 . Then

w, = /twfi + ( 1-/M)w"
w* = ^ wCi + ^ wr,

vjhere t. , are determined according to Theorems

(8.3.1) and (8.3.8).

Proof

Using the uniqueness lemma we have only to show that w,

and wt satisfy (8.3.2). This is straightforward since

w. (eg) is a linear sum of states w. and w* which have1 li »i

already been shown to satisfy the consistency

requirement.

We now consider the reverse problem. Given the

states w, and wz of the subsystems of a composite

system, when and how can we determine the state of the

composite system ? Firstly,let us prove a preli minary

lemma .

(8.3.10) Lemma

(i) If w, and wA are both normal states then w is

normal.

(ii) If w, and w^ are both states at infinity, then w

is a state at infinity.

Proof

(i) Suppose that w is not normal; ie suppose that

W = /U w? + ( 1 ~/\) w^°
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where 0 < 1 . Then from lemma (8.3.9)

w, = /*w. + ( 1 -/<)1 M Tl

so that w, is not normal. The result follows by

contradiction.

(ii) The proof is similar to that of (i).

Now, suppose that w, and w2 are any two states of

I and II. By definition, w, and wz are members of

and respectively. We can form the tensor product

of these dual spaces, consisting of linear

combinations of simple tensor elements w, ® wz which act

on in the following way: let A- be an

arbitrary element of J then

( W, 0 W, ) (2 At <S> A ) = £. X;; W, ( A t ) W2 ( A . ) .
\j J J \) J J

We can now generalise Theorem (8.2.8) to the present

case .

(8.3.11) Theorem

Let w, and wz be the states of the systems I and II.

Then:

(i) A possible state of the combined system is

alway s

w = w,& wz

(ii) If w, and w2 are pure states with state vectors

<$> and V respectively, then w is pure and has state

vector cf>9 4>.

(iii) If w, and wz are not pure, then the solution w

to (8.3.2) for the state of the composite system is not
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necessarily unique.

Proof

( i ) Atmi ® wnt is a space of continuous linear

functionals on . Hence the functional defined

by w = w, ® Wj. is continuous (ie bounded) and hence

[cf(2.2.2)] positive. Moreover w(1) = w,(1)wt(1) = 1,

so w defines a state on A^c, • If A,fc*AWMl we have

(w, ® w2 ) (A, ® 1 ) =w, (A, )wl(1) = w, ( A, ) .

Similarly for system II.

(ii) Since w, and w2 are pure they are normal

[Theorem 5 Wan and McLean 1984(b)]. According to Lemma

(8.3.10) w is also normal and the problem is reduced to

the density matrix form of the conventional case so

that the result follows from Theorem (8.2.8).

(iii) The example of (8.2.8) suffices here.

8.4

We have made an extensive comparison of the

relationships between composite and reduced statistical

states in the conventional theory to the relationships

between such states in the asymptotic (WM) theory. It

transpires that many of the results for the

conventional theory in which states correspond to the

density operators in (£> (M ) are echoed in the

asymptotic theory. In both cases, the state of the
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composite system I+II uniquely determines the reduced

statistical states for the component subsystems. In

both cases the state of the composite system is

uniquely determined by the states of the subsystems if

and only if the states of the subsystems are both

pure. In addition the form of the reduced statistical

states for a given pure state of the composite system

is identical in both theories. One important

difference emerges however, which we shall now

elucidate by examining the concept of correlations

between subsystems. Unfortunately, the quantum

mechanical literature is littered freely with the term

correlation (or sometimes correlation function) and it

is possible to isolate three distinct usages.

Firstly, the term correlation or correlation

function is often used to refer to the joint

expectation function <A» B;^> or the joint probability

function <A® B;A,*At;£ >. In particular many authors

employ this term when considering such joint

probabilities in Bell-type analyses of two-particle

systems [cf many of the references in Appendix A.3].

To avoid confusion, which is particularly likely in the

precise situation in which we are talking about

"correlations" in more than one way, we shall always

refer to these "correlation functions" as a joint

expectation functions or joint probability functions.
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In another sense, the term correlation is

sometimes used to refer to the effects of coherence

which characterise the difference between a pure state

and a mixed one. Given some expectation value

<A ; (<p +■ 1> ) /J~~2> , say, the so-called correlation terms are

those given by < <S> IA l*>> for example and yield the

statistical difference between <A;(<p-*-4> ) / J"2> and the

mixed state <A ; ( 1/2) ( +PV ) > . As an example of this

meaning of the term correlations the WM-algebra is an

algebra of "asymptotically vanishing correlations" in

precisely this sense [Wan and McLean 1981(a)]. When

describing a system in which two states <J> and H> are

asymptotically separating [cf (7.3-1)] the Wan and

McLean algebra ensures that the coherence terms vanish

in the asymptotic limit. This means that pure states

evolve to mixtures "at infinity" and these proper [cf

Cufaro Petroni 1977, Jauch 1968,eg] mixtures provide an

essentially classical statistics for large times. The

concept of correlations in this sense, which from now

on we shall refer to as coherence, arises in the

extension of asymptotic separation of states to the

two-particle case and is cited by Wan and McLean

[1981(c)] in their resolution of the momentum

formulation of the EPR paradox. The resolution

consists in demonstrating that at infinity a system

comprising two particles whose states are a

superposition of asymptotically separating vectors is
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described by an incoherent mixture. We shall see later

that this analysis has no straightforward extension to

the spin case. We shall attempt to provide such an

extension by employing a stronger notion of

correlations.

Classically, [Cramer 1946, eg] correlations are

supposed to exist in a combined statistical system if

the joint expectation function E for the overall system

and the expectation functions E, and Ez for the

individual systems fail to satisfy the following "no

correlation" condition.

(8.4.1)

E (A, kz) = E, (A, ) Ez ( Az )

for all pairs of random variables A, and Ar (ie,

physical magnitudes) on the probability spaces XI, and

.

In quantum mechanics a simplistic extension of

this condition for the conventional formulation is

given by [Beltrametti and Cassinelli 1981 p68]

(8.4.2)

Tr(f (A, ® Ax ) ) = Tr( f, A, )Tr(fz Ax )

where ^ is the state of the composite system and f, ,

are the reduced statistical operators for the

individual subsystems, and A,,At are bounded
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observables on 44, and 44j, . For a general quantum

system, therefore we might require as a no-correlation

condition

(8.1.3)

w( A, ® A j, ) = w, (A, ) wz ( A4 ) ,

where w is the state of the composite system and w, , wt

are the reduced statistical states; A, and Az are

elements of the C*-algebra associated with the systems

I and II. This is in fact the no-correlation condition

given by Beltrametti and Cassinelli [1981] for

example. It corresponds, moreover to the separability

requirement usually made in the analysis of Bell-type

systems [Aspect 1976, eg]. The classical correlations

themselves are defined by

(8.1.1)

C(A,,Az;/M) = <A,A*;/n> - <A, ; /A, >< Az ;/Mz >

[V(«.i»,)]'l[V|Al;A)]1l

where V ( A, ; /", ) , V ( Aa ; are the variance s of the

random variables with respect to the probability

measures /a, and ^ respectively. A quantum mechanical

counterpart of this classical correlation is defined in

Beltrametti and Cassinelli [1981 p68].
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We shall adopt the usage of the term correlation

in this third sense, since it obviously corresponds

most exactly with the classical usage. We suggest one

generalisation , however, designed to take into account

the possibility of considering sums of simple tensor

observables. Namely, we propose as the no-correlation

condition

(8.1.5)

w(A) r w,® wx ( A )

for every observable A in the composite algebra $for
the combined system. We shall also call this a

separability requirement for a two-particle system, and

say the the two particles are separable if they are

correlation-free in the sense of (8.4.5).

Now for a classical system if the state is pure

then the system is always correlation-free. For a

quantum mechanical system this is also true when the

pure state vector $ is of the simple tensor form $ =

4> » as it is easy to verify from (8.4.5). Such a

system is always separable therefore. However, in

quantum mechanics there exist pure states which are not

correlation-free.

(8.4.6) Example [cf Beltrametti and Cassinelli 1981

§7.4, eg]
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Consider a system of two particles I+II described by

the spin half algebra £c = SeS of bounded operators

/C 'f
on the Hilbert space 0- . Suppose that the state of the

system is <gg = ( 1 / J~2) (fit - where are

[cf (2.3)] the eigenvectors of spin z in the up and

down directions (respectively) for the (respective)

systems. In the matrix notation the spin observable in

the z-direction is given by

= i
i o

O -I
=

(where we have chosen units with 15 = 1). Hence the

observable Jz = JIZ ® has the matrix representation

O

-1

o

O

o

o

-I

0

° \

o

0

l/
Then we have

1^C> =

l°\ /' 0 0

' 0 -5 0

/ 0 0 I

w- \ 0 0 0

0 \

W
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While

/o\ I ' °
0 -t

8

i

-i

\o/.
0

\ 0

0 0

0 o

o -I 0

O o |

I

g

fo\
I

-I

1°/

/ 0 \
-I

t

[o /
= -1/4

It follows that w(J„® ^ Ui'Wj, (Jj and therefore
this is an example of a correlated system.

We have here an example of a system in a pure

state which is not correlation-free therefore. This is

an undeniably nonclassical aspect to quantum theory

responsible for such effects as the EPR paradox. If we

examine the algebraic theory proposed by Wan and McLean

we find that we still have correlations in the sense of

(8.4.5) even when the states are asymptotically

separating.
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(8.4.7) Example

Let w = w^ where f is the projection operator
corresponding to J = ( ^/J~2) ( <p, & - ip,'&(p^' > and <j>, , y,'
and ip/ , ipz are pairs of asymptotically separating

vectors. Let A = A,® A*. be any observable in

Then we have s-lim Afc = f & fA for some f( e L^Cp, ),
t-»«o

f2 c- L"(p4), and hence

w!° (A) = lim Tr(^(A,® Ax )t )
= Tr (e (f. ® fi ) )

= ( 1/2) (<<p, l f, q>, X VJ ft mV > + <tf/|f, V/Xtf/I f,.<P2#>
while

w*(A, ) = ( 1/ 2) ( < <p,lf, <p, > + <V,/|f,V,'>)
and

w*(Ax) = ( 1 / 2) ( <<?// fx<pj> + <4'Jf1^>).

Easy computation shows that v f° (A) i VL°(A, )w*(A; ) and
v. I C| ti

hence the state is not correlation free.

The point of the WM analysis is that the coherence

terms, that is the correlations in the second sense

mentioned above, vanish and hence the correlations that

remain are essentially those of a classical mixture.

At infinity, therefore, the pure state has evolved to a

mixture and it is quite all right, even classically,

for a mixed state to exhibit correlations in the sense

that (8.4.5) is not satisfied.
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8.5 Remarks

It is illuminating to compare the WM treatment of

the EPR paradox (in the momentum formulation) to the

discussions concerning "sensitive" and "indifferent"

observables in quantum mechanics [Capasso,Fortunato and

Selleri 1973, eg]. In a sense, the observables in the

WM-algebra are indifferent to the difference between a

pure state "of the second type" [op.cit] and a mixture

of state vectors "of the first type", at infinity, when

the states are asymptotically separating. Finally we

mention that, while it is not possible to determine the

state of a composite system from a knowledge of the

reduced statistical states [Theorems (8.2.8) and

(8.3.11)3, one can introduce a physical operator,

called the correlation operator and it turns out that a

knowledge of this operator together with a knowledge of

just one of the reduced statistical states provides all

the information concerning the composite system [Herbut

and Vujicic 1975 and 1984].
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CHAPTER 9

LOCAL OBSERVABLES

FOR

TWO-PARTICLE SYSTEMS AND SYSTEMS WITH SPIN
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9 • 1

In Chapter 3 we discussed the concept of local

observables and the localisation of bounded

one-particle observables according to a well-defined

scheme. We now wish to extend this discussion to the

two-particle case and to the case of systems with

spin. Sections (9.2) and (9.3) are concerned with

defining these local observables. The next few

sections elucidate the algebraic properties of sets of

these local operators and the correlation properties of

states on these algebras. We shall apply the analysis

of Chapter 8 to some pertinent examples and thereby

draw some conclusions as to the relevance of these

local observables to a certain naive resolution of the

EPR-type paradoxes. This resolution is based on the

idea [cf Chapter 1] that when the wavefunctions of the

subsystems become disjoint, there are no correlations

between the subsystems. Finally we include a few brief

examples to illustrate how local observables apply to

the case of identical particle systems.



- 192 -

9 • 2 I.noal Ohservables for Two-Particle Systems

Following the motivation behind the formulation of

-observables [Chapter 3] we postulate for the present

case as follows.

(9.2.1) Measurement Postulate

A measuring device or apparatus of finite size A cannot

detect either particle of a two-particle system if that

particle lies outside A.

Now in the description of two-particle systems in

quantum mechanics we retain the option of only

considering one of the particles by allowing for the

existence of one-particle observables tcf(2.4)] of the

form A,® 1 (or 1 <S> Ax). The mathematical requirement

for one-particle observables which arises from (9.2.1)

is

(9.2.2) One-particle observables A,® 1, 1® Aa

measurable with finite apparatus of size A must satisfy

(i) <$|A,® 1 | > = 0, for all <|=(E(xl;/\J")®1)fl

(ii) <il1©A1l > = 0, for all |= ( 1 ® E (xz ; A1") ) £ .
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When we consider two-particle observables however

we have

(9.2.3) Two-particle observables A measurable with

finite apparatus of size A must satisfy

<&l A $ > = 0

for every $ = (E(x, ; Ax ) ® 1)$ and for every £ =

( 1® E(xz ; Aa) | .

We now define our local observables for these

systems. Although we restrict our attention to bounded

observables here, it should be noted that the

definition itself can be generalised to arbitrary

observables in much the same way as (3.2.1).

(9.2.4) Definitions

A one-particle observable (OP-observable) A,® 1

(1® AZ),A,6 (B ( H, ) (At e iM+tj.)), is a local one-particle

observable in A for system I (II), or LA1 -observable

(LAX-observable) for short, if A, (Ar) is an

LA-observabl e on W, (Hx) . An arbitrary observable A on

Mo is a local two-particle observable in A , or

LTPa -observable for short, if A satisfies

E (x,® ?2 » A* A ) AE (x,® xL ; A x A ) = A.
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It turns out, as in the one particle case that

these definitions provide exactly the appropriate

observables to satisfy the measurement requirement

(9.2.1).

(9.2.5) Theorem

(i) The selfadjoint operator A €■ (B (+0 is an

LTPA-observable if and only if it satisfies (9.2.3).

(ii) The selfadjoint OP-operator A,® 1, A, 6 IB (13, ) is

an La1 -observable if and only if it satisfies (9.2.2).

Similarly for LAi -observables.

Proof

(i) It is easy to show that every LTPA -observable

satisfies (9.2.3). Conversely, suppose that (9.2.3)

holds for some observable A in . Then we have

<$IA$ > = 0 for all $ = Ei"(xl8>xi ;AxA)

This implies that AE A( x, ® xz ; AxA) $ = 0 for all J? in

Ht, and hence we have

0 = E(x ®xt ; A*A)AEa(x,® xt ; A* A)
= EA(x,® xt ;AxA) AEa ( x,® xt ; A*A) ,

and since A is selfadjoint we also have

0 = Ei(x,® xt ; AxA ) AE(x,® xt ; AxA) tcf Theorem (3.2.2)].

Therefore A = E( x,® x^ ;Ax A ) A E ( x, <$ xt ; As A) .

(ii) Straightforward using the Theorem (3.2.1).



We shall follow a procedure similar to the above

when considering systems with spin. We start with a

one-particle spin system. The usual measurement

requirement [cf (3.1.1) and (9.2.1)] yields the

mathematical requirement

(9.3.1) All observables k" on a one particle spin

system must satisfy

Cfp'lA" > = 0

for all 4-1' such that ^ = (E(x;A)® 1) * .

(9.3.2) Definition

A bounded observable A* on M* is a local observable in

A, or L* -observable for short, if A* satisfies

(E ( x ; A )® 1)A(E(x;/\) ® 1) = A .

Once again we can show that the L*-observables are

precisely the observables which satisfy the measurement

requirement.

(9.3.3) Theorem

Let A* t (B> (4i8') and suppose that kr is selfadjoint. Then

A" is an -observable if and only if k° satisfies

(9.3.1 ) .

Proof

It is evident that each local observable satisfies
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(9.3.1). Conversely ,( 9 . 3 .1 ) implies that ke<!}f= 0 for all

q'e +-('(A)X and the proof follows exactly as for

(3-2.2) .

For two-particle systems with spin we again use

the measurement requirement (9.2.1) to deduce a

mathematical requirement.

(9-3 - 4) OP-observables measurable with apparatus of

finite size must satisfy

<$'iA^g> 1 $'> = 0, for all Y- (E(x,® xx ; AxfiC) ® 1)4'
<$'11 9 Af Y> = 0, for all Y= ( E (x, ® xz ; l*\ A ) ® 1) £'.

Two-particle observables must satisfy

<i'lAr4'> = 0,

for all $"= E1*( x,s> xz ; AxA ) ® 1)$'.

We define local observables in the expected way

(9.3.5) Definitions

A bounded two-particle observable A8- in (B () is a

local two-particle observable in A, or LTP^-observable
for short, if A8" satisfies

( E ( x,® xz ; AxA) ® 1 ) A*( E (x,® xt ; AxA ) ® 1) = A"
A one-particle observable A'® 1 (1® AX ) is a local one

particle observable in A for system 1 (2),

L^i -observable (L^,-observable) for short, if A, (Az)

is an -observable on "M, .
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(9.3.6) Theorem

An observable A9" in U?>(43£ ) is an LTP^-observable if and

only if A9- satisfies (9.3.1). An OP-observable A*® 1

in (E>(+Vf)®> 1 is an -observable if and only if Afg> 1

satisfies the appropriate equality in (9.3.1).

Similarly for L^-observables

The proof of this theorem is a straightforward

extension of what has gone before. As a consequence of

the above analysis we see that the LjJ-observables are

tensor products of local observables with spin

observables. Thus for instance, the simplest form of

Lj-observable is E(x;A)® S,for some S in £ , the

algebra of spin operators. This is a significant

feature of the formulation, for it embodies the

insistence that we consider the locality of the

particle and the confines of the measurement situation,

even when it is only the spin parts of the observables

that appear to be of interest. It will be seen below

that this fact has important consequences in the

physical analysis of spin measurements on two-particle

sy stems.



- 198 -

9 .1 Localisation of Bounded, 0-b£gr3Lables

Exactly as for the localisation of bounded

one-particle observables for systems without spin, it

is possible to introduce a procedure for the

localisation of bounded two-particle observables and

observables for systems with spin.

(9.4.1) Definitions

For each kff e IB where H9" is the Hilbert space

corresponding to a one-particle system the localisation

A9 of kr in A is defined by

A' = ( E (x ;A ) ® 1)A*(E(X;A)® 1) ,

for each AtBtOX*).
For each A9 in S ( 44* ) , the localisation k* of A9" in A

is defined by

A' =(E(x,® xx ; AxA) ® 1)Aff(E(x(® xz 1),
for all ) .

Obviously the localisation in A of kr e (£> ( "H9" ) is

an L9-observable, while the localisation in A of

A^e ) is an LTP*-observable. Similar

localisation procedures can be defined for one-particle

observables in two-particle systems. Without much

difficulty it is possible to prove several convergence

results corresponding to those in (3.3). Essentially,

these amount to the fact that in the limit of large
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apparatus size we regain the usual global observables.

In addition it is of some interest to explore

formulation of bounded globally related families of

LA-observables and LTP^-observables. Since we have

carried all this through in some detail for the

one-particle case however, we shall not detail the

extension to the present cases. Rather, we shall

concern ourselves here with an investigation into the

algebraic properties of the local observables. In

particular we shall investigate the correlation

properties [cf (8.4) ] of certain states with respect to

algebras of local operators.

9 .5

We start by considering sets of LA-operators on

one-particle systems without spin. Throughout A will

denote an element of Sc(lR,fl ) .

(9-5.1) Lemma

Let jAa = {A t lE> (*l ) : A is an LA-operator)

= {A fc IB (): A = E(x;A)AE(x;A) }.

Then is a C*-subalgebra of iB (44 ) .

Proof

Lemma (8.2) in McLean 1984.
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(9.5.2) Lemma

Let Ai = {A fc 6 (^ ): A is an LA1 -operator}
= {A e IE ( A = A,® 1 , A, e }, and

let = (A e fe ( ) : A is an LAl -operator}

= (A e (B ( M, ) : A = 1®AZ,AZ £ .<Aa } .

Then Am and At are C*-subalgebras of (&(+!,. )•

Proof

A^ is the tensor product algebra of AK with the

trivial C*-algebra {1} and by the properties of tensor

products of C*-algebras [cf (2.4)J is itself a

C*-algebra. Similarly for A^. .

(9-5.3) Theorem

Let A = {A 6 lj?> ( M ) : A s ^\A for some A e 8t (lR" ) }

• UA.
A

and let „AU denote the closure in the operator norm of

j\L. Then

(i) A is a proper *-subalgebra of (E (4-\ ).

(ii) Al. is a proper C*-subalgebra of (fe (+\ ) .

Proof

(i) Theorem (8.5) in McLean 1984.

(ii) Evidently A is a C*"-algebra. Moreover 1 j Ai. ,

nor is 1 the uniform limit of members of A u since

It E (x ; A ) - 1 II = l| E (x ; Ax ) II = 1 for all A. Hence 1 4.A and

Au is a proper C*"-subalgebra of £> (M ) .

(9.5.4) Theorem

Let A = {A 6 (B ( ): Afi AA1 for some \k 8t((»0)}
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At = {A « ®> ( 4Ae ) : A e .Aa1. for some A f Bt( (R" ) } ,

and let A, , Ax denote the norm closures of these

sets.Then we have

(i) A, and are proper *-subalgebras of ft(+lt).

(ii) A, and Ax are proper C*"-subalgebr as of (B( ).

Proof

(i) It is sufficient to observe that A, and At are

tensor product algebras of proper*-subalgebras.

(ii) As for the proof of (i).

(9.5.5) Coroilary

Let A^ = A, o At . Alt is a *-subalgebra of ft ( Mc ) .

Au, is a C*-subalgebra of ft ( Ht ) .

Proof

Follows immediately from (9.5.4) and definition.

(9.5.6) Theorem

Let AltPa= {A« ft ( ) : A is an LTPA-operator}
and = {A 6 ft ( ) ; A e A„i>a , for some At 8C ()} .

Then

(i) -AtrP^ is a proper C*-subalgebra of ft ( Mc ).
(ii) is a proper C*-subalgebra of ft( Wc ).

(iii) AuTP c A^ ^ A\ <= 6(^c) .

Proof

(i) ^LTf\ = A^x^A^x'
(ii) Let A,B 6 ALTf . Then there exist A, A' such that A

is an LTPA-operator, B is an LTPA/-operator. It is a

straightforward matter to show that A+B is an
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LTP^/ -operator, while AB is an LTPAftA» - ope rator.
Closure under the adjoint operation is straightforward

and it follows that A,# is a subalgebra of IB ( Ho )•

1 is not in [cf proof of (9.5.3)] and hence .A^ is

proper. /ALTp is therefore a proper C*-subalgebra of

fe ( H, ) •

(iii) Every element of /ALTp is a sum of elements

A,Am for some A. But A,^0 AM is a product of A|a® 1

and 1® AM which are both in Au. . Now Aia© 1 is in Au.
but not in /vAltP an8 we have -AltP c Au. • For each

L„|-operator A , say, we have

s -lim ((A,A® 1 ). ) = s -lim(AlAt ) = 0
cO V

by Theorem (9.20) in McLean 1984. Similarly

s*-lim((1® A 1A)t ) = 0. Hence each LA, -operator or
k-*<e

Lax-operator is in . Since A0 is a C*-algebra [Wan

and McLean 1984(b)] it follows that arbitrary sums and

products of such operators are in . This exhausts

all the operators in Au: ; ie Au.c . The final

inclusion is obvious. The result follows by closure.

When we introduce spin quantities into the

discussion we shall use, as before, the superscript <r.

C -algebras are generated by taking the tensor product

of the local algebras A,*» » e^c wit*1 ^he relevant

spin algebras. The algebras inherit the nomenclature

of the operators. Thus, for example, is the

L^j-algebra comprising all LA,-operators, *s t^e

LC^-algebra comprising all LC^*-operators, Al-tp is the
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LTPff-algebra of all LTP^-operators, and so on.

9.6 Correlatipn Properties for Lp<?al S£lii_A2gebras

In Chapter 8 it was shown in the proof of Theorem

(8.4. ) that the spin state <tf0 - ( 1//"2) (*>® jfe - ) is
not separable (ie not correlation free) on the algebra

of observables . That analysis was carried out using

purely spin quantities. We shall examine this case

(among others) anew in the light of our present

understanding that we must take into account the

spatial location of the various states and subsystems,

due to the finite limitations of the measuring device.

Before proceeding we need to clarify the concepts

"pure" and "mixed" as applied to states. In

particular, when we have a separable product w =

Wipo.<4® w of a spin state with a space state, for
example it is possible for the overall state to be a

mixture in the conventional sense, ie

W = /M w' + ( 1 -/-<) w " ,

and yet only one part of the state, say the space part

wip<xca. » is Since the pure part of the state, the
spin part for example, may be a superposition of

correlated vectors, it will not necessarily be

sufficient for our purposes (in examining correlations
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between subsystems) to show simply that the overall

state is mixed.

(9.6.1) Definition

We call a normal state w on a spin algebra,

spin-separable if we can write

w = wipM> w^
with the obvious nomenclature.

The states , $ 6 Ht , are all spin-separable,

for example. Notice that a spin-separable state is not

necessarily separable in the sense of being

correlation-free. When a distinction is necessary

between these two concepts we shall refer to the latter

as particle-separability as opposed to

spin-separability.

(9-6.2) Definitions

We call a spin-separable state w,fc(Jlg> w^ spin-mixed if

w5p1A is a mixed state, and we call it space mixed if

w5p»<iL i s a mixed state.

(9.6.3) Lemma

A spin-separable state w is mixed if and only if it is

either spin-mixed or space-mixed.
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The proof of the lemma is obvious. Notice however

that w being mixed does not imply that w is spin-mixed

(eg) .

(9.6.4) Example

Consider the state where is the isotropic

spin-zero vector, and $ is the example of (8.4.7)

given by

$ = ( 1 //2) ( © V* + V,' © Qx ) ,

We recall from (8.4.7) that the state $ is mixed on

the algebra L°° (p, , pt ) and hence $ ® is space-mixed on

the algebra ^(p, , pt )® X . But fa is not mixed on

So this state is not spin-mixed on

It is evident that to a certain extent at least,

just as the notion of mixed or pure is dependent on the

algebra on which a state acts, so is the notion of

spin-separability. As an illustration of this we

observe that, while a state given by a pure vector cp®iV

is separable on any algebra, any state w is separable

on a one-particle algebra, since by definition w(A,®1)

= w, (A,) = w, ® w2 ( A, ® 1 ) . Equally a vector state =

L" (p, » Px )® X •

separability: both particle separability and

is spin-separable on any algebra, while any state

is spin-separable on an algebra or 1®^ .
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We shall formulate some results concerning

spin-separable states. First we must introduce one or

two further definitions.

(9.6.5) Definitions

Let w be a spin-separable state w = ww^;ft . We shall
say that w is spin-simple if w„.A is a pure state of the

simple tensor form. We shall say that w is

space-simple if w is a pure state of the simple

tensor form. Finally we shall say that w is simple if

w is both spin-simple and space-simple: ie w is given

by a pure state ) ® ( g(S> ) .

The notions of spin and space simple are not

algebra dependent. However it does follow that a simple

state is both particle separable and spin-separable on

any algebra. Some immediate results are presented in

the following.

(9.6.6) Theorem

Let be any one-particle algebra. Then

(i) Every state on is particle-separable (ie

correlation free).

Let A' be an OP^-algebra. Then

(ii) Every spin-separable state is either

space-simple or space-mixed.

(iii) Every spin-separable state is either spin-simple
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or spin-mixed.

(iv) Every spin-separable state is either simple (and

hence correlation free) or mixed.

Proof

(i) Evident from the preceding remarks.

(ii) Let w = Wj^® w^iA . Let A ® 1 6 > and suppose
that Aff = Z B.® S. , B^eA , S e S' . Then we have

w ( A0" ® 1 ) = 2 w ( B;® 1) . w ( S ; ® 1 )
■ . Span I J

* z «£. (s)-
Where and are reduced particle states. Now it

follows from Theorem (8.2.8) that is mixed unless

w^ is given by a simple tensor, and hence w is either
space-simple or space-mixed.

(iii) The proof is identical to (ii).

(iv) Follows from (ii) and (iii).

The physical importance of this result may best be

seen as follows. Recall [(8.4.1)] that in classical

probability theory every pure state is correlation

free. What we have shown in the above is that for a

certain class of states (namely spin-separable ones) on

a certain class of algebras (one-particle algebras) the

classical respect for pure states is echoed. Every

state which is not mixed is correlation free. As a

corollary we examine a particular example.

(9.6.7) Corollary

Let $ = ( 1 / J~2) ( <pl/s s> + 4^' ® )» where the subscripts
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A,A' denote the support of the wavefunctions. Let w =

Pj <g) . Then w is a mixed, space-mixed and
spin-mixed, correlation-free state on each of

( a ) ( b ) Aa ( c ) ( d ) A[x .

Proof

w is spin separable but is neither space-simple or

spin-simple and the result follows from Theorem (9.6.6)

therefore.

(S•6.8) Theor em

Let w be the state defined in (9.6.7) and let *Alc.a„ be
any LCA'-algebra with /\'n A' = 0. Then w is either

space-mixed, spin-mixed and correlation free or else

zero on all elements of this algebra.

Proof

For all one-particle observables w is spin-mixed,

space-mixed and correlation-free. The other

observables in Axc » are generated by the

LTPA'-observables and it is straightforward to show that
w is zero on these observables since every term in the

JL

wavefunction 3? contains a vector in 3-lA» .

(9.6.9) Theorem

Let w be as in (9.6.7). Consider the LTP^-algebra -^ALTf.
There are observables in for which w is neither

zero, nor mixed, nor correlation free.

Proof

Take 6 At-rp » A<r = E(® Xx » V* A") ® Je , where Ja is as
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in example (8.4.6), and A"n A 4 0 and A"* A' 4 0. The

space part of the state is nonzero and the spin part is

not correlation free. Neither part is mixed.

(9-6.10) Corollary-

Let w be as above and consider the LC^-algebra .

There are observables in for which w is neither

zero, nor mixed, nor correlation free.

Proof

by (9.5.8).

We remark that the results of (9.6.7)—(9.6.10) can

be proved a fortiori for the state given by vector

(<P,*®4W)® •

9.7 The EPR-Paradox

Recall from (2.7) that the spin vector relevant to

the EPR paradox is the isotropic spin vector <£e .

Almost invariably no attention is paid to the space

part of the wavefunction in consideration of this

problem in the literature. We have learned in the

present chapter, however that this neglect is not only

unjustified but represents a major oversight in the

analysis of the issue. We must therefore reconsider

the problem, trying to take into account the space-part
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of the wavefunction in order to be able to specify the

locality of the particles in the system at the time of

the measurement. Remember that the two particles are

supposed to fly off in opposite directions after time t

= 0 at which they are in the spin-zero state, so that

when a measurement is made on them, the two particles

are (arbitrarily) separated. This can come about in

two ways. Either the particles are asymptotically

separating, so that for large times they occupy

disjoint spatial regions. Or else, for some finite

time t,say, the particles are spatially separate in the

sense of (7.6.1). In either case the form of the

overall wavefunction for the EPR system must be:

(9.7.1) |f = (1//2)(<p®iy M*,®^ - Wi)

where <$> and 4> are either asymptotically separating or

spatially separate for some finite time t. In this

chapter we shall consider the case for finite time and

suppose that at that time (we suppress reference to the

exact time itself) the two particles are spatially

separate. Thus, (9.7.1) becomes a special case of the

wavefunction I of (9.6.7) — (9.6.10) . In particular

Theorem (9.6.8) holds for this case.
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Our resolution of the EPR paradox as formulated in

(2.7) consists in the following line of reasoning;

(9.7.2)

(i) The appropriate wavefunction to describe the

system is

(ii) A measurement of one of the particles in the

system can only satisfy the nondisturbance criterion if

the measurement apparatus does not interfere with the

other particle. In particular this means that the

finite domain A" of the measurement apparatus and the

support of the wavefunction of the second particle are

disjoint.

(iii) The C*-algebra of observables measurable with

finite apparatus of size A' is Mu^tThis follows from
(9.2.2)] .

(iv) The state given by and all possible algebras

of observables measurable in such a way as to satisfy

the EPR non-disturbance criterion satisfy the

conditions of Theorem (9.6.8).

(v) The state w is mixed,spin-mixed and space-mixed,

and correlation-free (ie separable) for all non-trivial

observables in all possible non-disturbing algebras.
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We consider (v) to constitute a resolution to the

paradox in this limited finite time case: w is not only

mixed, but demonstrably separable with respect to the

physical algebras relevant to the situation. The

limitations of the resolution are obviously the ones

already mentioned concerning the instantaneous

spreading of the wavepacket. This resolution exists

only instantaneously. The next instant, the

wavefunctions will have spread irrevocably, no further

spatial separation is possible and the two systems

become inseparable according to the standard laws of

time-evolution for quantum mechanics Ccf(7.1)]. We

cannot alleviate this problem by considering a sequence

of local algebras because we would then involve

ourselves in considering the algebra , and we have

seen [(9.6.10)] that Ah is neither mixed nor separable

on this algebra. The only way out of this dilemma

would be to claim that the time-evolution in quantum

mechanics is faulty ,at least globally. (We have

already suggested an alternative time-evolution in a

box [(7.2)].) But such drastic measures must await

elucidation elsewhere. Another solution is possible in

the asymptotic limit where a "localisation" in disjoint

spatial regions occurs [(7.1.2)]. We shall investigate

this situation in the next chapter.
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Although it is not our purpose here to discuss

identical particle systems in great depth we shall

briefly mention one or two examples in which the use of

local observables illuminates the breaking of particle

symmetry suggested by Pauli [cf Chapter 1],

(9.8.1) Example

Consider the state w given by the vector

$ = ( 1//2)()
where (x) =0, x 4 A , and lf>(x) = 0, x4 A' , AaA' =

0, and let Aa' be the symmetrised observable given by

A« = Aa® 1 + 1 ® Aa

where Aa is an LA-observable . Notice that the

observable AJ is a sum of local one-particle

observables and hence belongs to The symmetry of

both state and observable suggest this description as

the appropriate one for two identical symmetric

particles, that is bosons, and we have

w(Aa') = ( 1/2) ( < cfiAA<p > + <<plAA<J>>)
= <<PI Aa<P >

= (1/2)Tr(PwA«) + (1/2)Tr(PWfA»)
It is evident from the above that (a) w is a mixed

state with respect to observables of the given form and

(b) Aa is in some sense a one-particle observable. The

sense in which A^ may be regarded as a one-particle
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observable is as follows. With respect to observables

measurable using apparatus of finite size A and

appropriately symmetrised w is no longer a pure

superposition of state in which 1 is on the

left, say and H on the right with state in which

X is on the right, ][ on the left; it is now a mixture

of these states. Since it is a mixture we are entitled

to conceptualise the problem in the following manner:

one (and only one) of the particles is on the left (ie,

in A )> one (and only one ) is on the right (in A' ) but

we do not know which is which. This is the classical

ignorance interpretation of a mixture. The use of

local observables therefore enables us to break the

identical particle symmetry, when the particles become

disjoint [cf Pauli 1 973 p 1 68] .

(9.8.2) Example

Consider the non-spin-separable identical particle

(boson) state w given by the vector

V = ( 1//2) ( ® VfJ + 4>&®<P°<),
where we have suppressed the spin tensor product for

ease of writing. Consider an observable = A^® 1 +

1® A*, where this time Aa is an LA-observable. Let us

take a simple case: suppose Aa is the local spin

observable in the z-direction = E(x;A)J, and write

Ja' = J2A ® 1+1® JZA . Then w(J') is easily calculated
and we find w(J') = 1/2. In other words, the expected

value for a measurement of spin in the z-direction in
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region A is 1/2. This makes physical sense since it

is seen by inspection of the wavefunction that the

spin up state is always allied to the wavefunction

whose support is in A . What is surprising is that if

we tried to proceed in the conventional way by

considering a spin measurement corresponding to the

spin observable = Ja ® 1 + 1 ® Ja we discover that

w ( J') = < f I 1 ® ( J, <S> 1 + 1 0 J2 ) I >

= 1/2(<<*®j3l(J2® 1+1® Jz )«&£>> + < p»«|( Jj,<S> 1 + 1® Jz ) >
= (1/2){((1/2) - (1/2)) + ((1/2 - (1/2))}

= 0.

The identical particle symmetry seems to prevent us

making a non-trivial measurement on a single particle.

But once again we see that the use of a local

spin-observable does allow such a measurement once the

particle symmetry is broken by the fact that the wave

functions no longer overlap. It turns out in addition

that is an eigenvector of the local operator J2A

with eigenvalue 1/2, and not surprisingly it is also an

eigenvector of J7, with eigenvalue -1/2.
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CHAPTER 10

ASYMPTOTICALLY SEPARABLE QUANTUM MECHANICS

AND

THE EPR EXAMPLE
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10.1 Introduction

The Einstein Podolski and Rosen experiment in the

spin formulation [Bohm 1951] hinges on the separability

of systems described by wavevectors of the form

(10.1.1) = ( 1 / J~2) ( cp ® V )® ( *,» fa - )

[cf ( 2.7 ) , ( 9.7 ) ] . In chapter 9 we showed that if cp and

were considered to be spatially separate states

[(7.5)] localised in disjoint spatial regions A and A'

respectively at time t,say, then the state w given by

could indeed be regarded as separable with respect

to any algebra of observables relevant to the

non-disturbative measurement of the system in A', say.

This is one analysis of the EPR problem. Quite a

different analysis has recently been proposed by Wan

and McLean [198'Kc)] for the momentum formulation of

the paradox. They consider the wavefunction

(10.1.2) $ = ( 1//2) ( <p,® + y/® <Pi ) ,

where <p, and V, are a pair of asymptotically separating

states for particle I and cp/ and are a pair of

asymptotically separating states for particle II.

Their solution consists in demonstrating that the state

$ has vanishing coherence terms ( sometimes called
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correlation terms [cf(8. 4. )]) in the asymptotic limit

of large times with respect to the algebra [cf

(2.4)]. Our aim now is to generalise these results, or

rather to approach the problem in a slightly different

fashion which will allow us to present an algebraic

solution to the EPR problem by providing asymptotic

separability of the relevant state whenever the systems

are asymptotically separating. This generalisation

will be applicable to both the spin and the momentum

formulation of the problem.

Let us suppose first that we can extend the

WM-theory to the spin case by simply considering the

algebra

(10.1.3) A =

and let us investigate to what extent separability may

be achieved for the wavefunction say of (10.1.1).

Although the space part of the spin separable

wavefunction is obviously correlation free (and also

mixed at infinity) the spin part yields expectation

values of the form <£<,' S y, >,S 6 , where is the
isotropic spin-zero vector, and it has already been

demonstrated [(8.4.6) eg] that this state exhibits

correlations for certain observables. Neither is w a

mixed state with respect to A .
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The problem we have encountered here stems from

the fact that the usual quantum mechanical description

of two independent systems proceeds via the

specification of the tensor product of the individual

algebras and Hilbert spaces. Using the usual state

specification on the tensor product algebra, one

arrives at what is supposedly a joint probability

measure for results of experiments carried out with

respect to observables on the two-particle system.

Unfortunately, however, the quantum mechanical

superposition of wavefunctions yields coherence effects

in the probability measure which mean that two systems

described in this fashion can never be treated as

independent or isolated. That this is an intrinsic

property of the logic (and hence probability) of

quantum mechanics has been pointed out recently by

Aerts [1984], It is evident then that the mathematical

formulation of the conventional formulation is actually

inadequate to the description of a situation where we

demand that two systems be isolated from each other and

independent of each other. This remains the case no

matter how far apart the systems might be. Of course,

this fact (and the philosophy behind it) is exactly

what constitutes the huge sledgehammer that allows

followers of the Copenhagen interpretation of quantum

mechanics to knock the EPR argument on the head: EPR's

reasoning is faulty, they will say, because no matter
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how far apart the particles it is not possible to

measure one system "without in any way disturbing" the

other.
Our aim in this thesis has

largely been to mitigate the extremity of this

position. For the finite case , a sort of uneasy truce

was negotiated by restricting the observables relevant

to the physical situation. Unfortunately the truce is

short-lived. In the long-term, namely the asymptotic

limit, as we have seen before [cf 7 .4) J it is possible

to consider a localisation of particles in disjoint

regions at infinity. In this chapter we shall pursue a

theory which provides separability in the asymptotic

limit of large times, when the particles in a

two-particle system are asymptotically separating. To

this end we shall consider an approach in which we make

use of the freedom of the algebraic theory of quantum

mechanics to regard the C*-algebra of observables as

the fundamental building block and consider as states

the NPLF's on the algebra. Our asymptotically

separable theory will be based on a restriction of the

NPLF's on the WM -algebra



Before constructing the asymptotically separable

theory, we return to the asymptotic separation of

particles once again [cf(7.4.2)] and introduce some

concepts and notation that will be of use in the

subsequent analysis.

Firstly we shall use the abbreviation

E(p,® Pi jn^AxmjA') = E(m,Ax mt4 ) throughout this chapter
for the spectral measure of the momentum operator. Let

us consider a vector state <§"" of a two-particle spin

system. For each such vector, we define the following

sets:

(10.2.1)

A,(|ff) = f){AeS(f^): « (E ( m.A * m4 <*A ) 8> 1) || = 1}

Az(r) = H (A&S(\Rn): H(E(m,(iO* mtA )0 1)f II = 1}

Ac = *<($') = A,(r)

(10.2.2) Definition

Let As = IR^^Ac* We call As the region of asymptotic

separation of the (vector) state . We define a

parameter of separation X(f<r) by

\($') = ||( E ( m,A5 x m^Aj) ® 1 ) $"" |\
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and we say that a state has no (asymptotic) separation

if the parameter of separation is zero.

(10.2.3) Theorem

The following statements are equivalent:

(i) $)' is an asymptotically separating state.

(ii) The region of asymptotic separation of <]>' is |R" .

(iii) The parameter of separation for ^ is 1.

Proof

(i)^(ii): If 1' is asymptotically separating, then

there exist disjoint Borel sets A', A such that

l|(E(m,A* mjjRT) ® 1) $"" H = 1 = H (E (m(riC< mzA' )® 1)&'l\, and it

follows that Ac($ff) = A' = 0. Hence As =

fR\

(ii)^(iii): Obvious since E ( m, iRrt * mz lRrt ) = 1.

(iii)^(i): l\( E ( m, As x mz A6 ) ® 1)$'ll = 1 implies that

m,i5< m^jS m,A, * mzAx and hence A& 2 A, Az . It follows

that Ac = 0 and hence is asymptotically separating.

Now we define two vectors and 1' by:

(10.2.4)

= ( 1/X( 1^)) (E(m,A5> m, A^) ® 1)$°"

= ( 1/( 1- \l) ^(EJ-tm.A^x mzAs) ® 1)1'.

It is straightforward to show that these vectors are

normalised and that

(10.2.5)
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F = X( F)F + (1- xl( F))* ¥■

(10.2.6) Theorem

Let ¥ and IT be as defined in (10.2./}.). Then we have

X( = ^ and X($T) = Furthermore the decomposition

(10.2.5) of F into two orthogonal vectors, one of

which is separating, and the other which has no

separation, is unique.

Proof

Let A' = A^Ac, Az= A^Ac. . Then

( E ( m, A( x m^11 ) ® 1 ) <j>T = and

( E ( m.fR" * m2 A^ ) ® 1 ) F = IT •

But A^a&i= 0 and it follows that asymptotically

separating, and (by (10.2.3)) X($^) = 1.

Next, we have (E(m,A,x mzlKrt ) ® 1)$T = F , since the

projections commute and so A,($T)- A, = A,(F). Now

suppose that A,(F)£^,- Then
( 1- X1 )!iIKE(m, A,( ¥c)*mxtf)<S> 1)FU =

||(E(m,A, ( $T ) " ® 1 ) ( EJ'( m.Ajx miA5) ® 1 ) F II =

||( E ( m, A, ( IT)*%AJ + E(m, (A. (K)„ At ^As) ) • 1 Fll =

ll(E(m, A, ($T )* niiAc) ® 1 ) F II + II ( E ( m, ( A, ( $T ) n )< mzAs) ®> 1 ) F |l <

||( E ( m.fiO* m2 AJ &> 1 ) $"^|\ + II ( E ( m,At< mzAs) ® 1)F)I =

l|(E4-(m,A4xm2As) ® 1 ) F II = ( 1- X1 )hftl
It follows by contradiction that A,($T) = A,. Similarly

we have AZ($F = Az and hence At( i^T) = At and AS(F) =

As . Therefore we have

X(l') = II (E (m, A5(^T )*mx As(iT ) ® 1) $T H

= ||(E (m, As>< mz A5 ) ® 1 ) $T'I
= o.
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For the uniqueness,suppose that

$'=/«*; + d-/*2)'**;
we observe that if is asymptotically separating then

there exist A,s , A16 with A4aAas = 0 and

||( E( m, x mA AxS, ) ® 1) $s' It = 1 .

Since i>5' and $c' are orthogonal we must have

( E ( m, A* x mxKs) ® 1)$e' = 0 , and hence

(i) (E(m,A,sx ciiAy)® 1)$^ = /"$$, and

(ii) ll( E( m,A,s x mx AxS ) ® Di'll = /H •

Now

1 = II ( E (m, A, x mA Ax ) ® 1 J^ll1
= /**■ II ( E ( m. A, x mx Ax ) <g> 1 ) II1 + ( 1 -/il) ||( E ( m, A, x mx Ax ) 8> 1 ) f'c II2"

Each of the norms on the right of the equality is less

than or equal to one and actually we must have

(E(m,A,x mA Az ) ® 1)}^ = $5' and since §>&' is separating the

stronger result, ( E (m, A' x m2 Ax ) ® 1) $s' = , mustalso

hold. Then we have m,A,5*mxAX5 c= n^A/* mAAx or

A,' 2 A,5 , AA2Ai4, and 30 from (i)
( i i i) $/ = ( 1 //*.) ( E ( m, A,'s * mA A'^) ® 1) $ ®"

= (X//«) ( E(m,A^* m1Als ) ®
A t /

and from (ii) we have \>y/<. Suppose that A,5 = A, and
/

IS = Aa . Then X = M and

= (X/> ) (E(m, A'X m* Aa ) ® 1 )f £ = $ J .

Suppose that A,'S£A,' and Als£Ax. Then from (ii) /"< ^ and

from (iii), we have

1 = |l|;il = (X//i) IKEUXj* m^A^ ) ® 1 )$*»l < 1.

The result follows by contradiction.
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The generalisation of the preceding formulation to

arbitrary normal states is relatively straightforward.

Let be a normal state given by the density operator

^ on VI* . Then the definitions (10.2.1) become

(10.2.7)

A, (w? ) = H ( A tB(( E ( m,A x mtftn ) ® 1) = 1 }

A2(w?) = Pi { A * £> (^ ) : ( E ( m, * mt A ) ® 1) = 1}

At(we ) = A,( w^ ) r\Aj. ( Wg ) .

Evidently this definition reduces to the previous case

whenever ^ is a projection operator corresponding to a
A \

vector in . The region of asymptotic separation is

defined exactly as in (10.2.2), and we can define a

parameter of asymptotic separation by: X (w^ ) =

w^ ( E (m, As * mx As ) ® 1), and prove results analogous to
(10.2.3), without any great difficulty. If however, we

look for a decomposition of an arbitrary state w? in
terms of an asymptotically separating state and a state

with no separation, we shall not be successful. In

fact it is easy enough to see that even for the vector

case with f = , say, it is not in general true that

w£ = + ( 1-X*) wc , since w? is generally a pure state
and not a mixed one. Nevertheless, it is still

possible to define an asymptotically separating state

(weX. and a state (we)c with no separation by
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( 10.2.8)

(w? )s = wfj
where

( E ( m,As x m,, As ) ® 1) £ ( E ( m, A5x As ) ® 1)
es = :

Tr( ^ (E ( m, A3 < in, Aj ) ® 1)
and

( w{ )t =

where

( E1" ( m, Ai x uii As ) ® 1 ) f ( E1 ( m, A5< mi As ) ® 1 )
f _ .

Tr ( £ (E"1 ( m, A5 x ma As ) ® 1)

and actually £ is decomposable in terms of these

states on the algebra at infinity:

(10.2.9) Theorem

Let F = F(p, , p^ , <r ) be any operator in the algebra at

infinity °° = L^Cp, , p ) ® £>L . Then for every normal

state wf we have

w? ( F ) = X1 ( wc )5 ( F ) + ( 1 - X1 ) ( we )t ( F ) ,

where \ = X(wt) is the parameter of separation for w^ .

Proof

Set ECm^i x miA5)® 1 = E, E"1^ m, A5 x As ) ® 1 = Ex. Then E

and EA commute with F and

wc (F) = Tr( e F)
= Tr( e (e+e-'-jfce+e-1-) )

= Tr ( ^ EFE) + Tr ( ^ E^FE^)
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= Tr (E e EF) + Tr(Ex ( EXF)
= Tr (E £ )(wp)s (F) + Tr(EAe )(wp)c (F)
= XZ ( wt )s ( F ) + ( 1 - \x ) ( we )c ( F ) .

For the special case of the algebra at infinity

therefore w? has the decomposition into an

asymptotically separating state and a state with no

separation. We shall say that a state at infinity is

separating if the normal state from which it is

generated is asymptotically separating, and that it has

no separation if the normal state from which it is

generated has parameter of separation zero.

(10.2.10) Corollary

Every state at infinity is decomposable as a sum of a

separating state and a state with no separation.

Proof

We are required to prove that

w 00 = Xx ( w~ ) + ( 1 - X1 ) ( wc )

for some separating state w* and state w* with no

separation. It is obvious that the states (we)c and

(we)s will suffice and the result follows immediately

from Theorem (10.2.8).
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10.3 Asymptotically Separable States on the Algebra

We define an asymptotically separable state to be

any state w for which the state at infinity w00

generated from w by w °° = lim w(At) exists and is

separable. We attempt to formulate a theory for which

the following physical requirement is satisfied.

(10.3.1) Every asymptotically separating two-particle

state is asymptotically separable.

(10.3-2) Lemma

The WM-theory comprising the algebra ^ and the normal

states and normal states at infinity on does not

satisfy (10.3.1).

Proof

Example (8.1.7) suffices to demonstrate the lemma.

We overcome this difficulty by dropping the

restriction to normal states and by defining a new

class of state wf determined by density operators but
satisfying (10.3.1). For each density operator £ on

4-lf we denote, as before, the asymptotically separating

part of w{ by (we \ and the state with no separation by

(we )t . These states are defined as in (10.2.8). We

denote further the reduced statistical operators

corresponding to e4 and ec by eit » Csi and Co» Clx.
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respectively.

( 10.3.3) Lemma

For each density operator £ on Ml let w^ be the
functional defined on by

we(A0+ F) = w?(A) + \l wCs® wfsi ( F ) + ( 1 - X2" ) w£t ( F ) ,

where X is A( ^ ) the parameter of separation associated
with the density operator £ and A + F is an arbitrary

element of . Then we is a well-defined linear
functional on A .

Proof

For each fixed £ , \(( ) is a constant and w^ ® =
w. at> is a well-defined linear functional on ^ . It

follows that wf is a linear sum of well-defined linear

functionals on A and is therefore a linear functional

on <A .

( 10.3.4) Lemma

w? is an NPLF on A .

Proof

Firstly we have w£ ( 1 ) = X2, wfs 8> w^ ( 1 ) + ( 1 - ) wgt( 1 )
= x2- + ( 1 - X1) = 1 .

For positivity it is sufficient [Arveson 1 976 ,p 3 3 3 to

show boundedness on -A . Now A is a C*-subalgebra of

IB ( W* ) and so w^ ( A ) s< II AII < 00 and w^( F ) H F H <
for all A+F in ,-A. Similarly, w„ ® w„ (F) •$ H F l\ < 00

and X^jU-X2") are both less than 1 so that

w?(A + F) = w?(A) + \z wCs® w^si (F) + (1-X2)w?(F)
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|lA )| + X^IIF II + (1- X1 )l| Fl\

< c*0
m

(10.3.5) Lemma

Let w£ be defined by

w£ (A) = lim w?(At), for each A e .fc.-* °0

Then w" is a well-defined NPLF on A .

Proof

Let A = A + F.Then

w£ ( A ) = lim {w£ ( At ) + X%fsi® wesi(Ft) + (1-Xz)w£t(Ft)}
= lim Xs" w. ® Wp ( Ft ) + lim ( 1- X2" ) we ( Ft )
= \L w£s ® wCst ( F) + ( 1 - \l ) w£t( F ) .

It follows that each of the limits is well-defined and

that w- is an NPLF on

Now we can define reduced statistical states

corresponding to the states w^ . Obviously we require
these states to satisfy the usual physical requirement

(8.2.1). Indeed we define the reduced statistical

states by

(10.3.6)

w£) (A,) = w£ (A, ® 1), for each A, in .A, ,

w^ (A,. ) = w£ ( 1 ® kt) , for each A* in .

(10.3.7) Lemma

The reduced statistical states w£) and w£i satisfy

wti = wfi ; wei =

where w£ and w£^ are the reduced statistical states
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for the normal state w? •

Proof

(A, +F,) = w? (A,® 1+F,® 1)
= w,(A,® 1) + XZwfs® wesj_(F ,® 1) + ( 1- \l )w£t(F, S> 1)
= w?(A,® 1) + xf'Wg^F,® 1) + ( 1 - \z ) w€t( F, ® 1)
= we (A, ® 1 + F, « 1) , by ( 10.2.8) ,

= wC( (A + F,).
Similarly we show that we^ = w?

It is also possible to show that w.°e = wi° and w.*0
ti ti ft

= wf . These results are straightforward consequences
ft

of (10.3.7). Now we shall say that a state w^ is
asymptotically separating if there exist disjoint sets

A and A' such that

Wg ( E ( p, ;«n,A)® 1) = 1 = w? ( E ( p^ ) ® 1).
This is obviously a straightforward extension of

(7.4.2) and indeed we see from (10.3.7) that w£ is

asymptotically separating if and only if w^ is
asymptotically separating. We can now show that the

states we satisfy the physical requirement (10.3-1).

(10.3.8) Theorem

Let wf be an asymptotically separating state. Then

(i) we is asymptotically separable

(ii) we is separable if and only if we is separable.
Proof

we is asymptotically separating implies that £ is

asymptotically separating and hence that X(^ ) =1 and
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we have

(i) w 00 ( A + F ) = w^(F) = w?s®wesi(F) = w*®w£ (A + F).
(ii) Suppose w^(A + F) = w(8> (A + F) for all A+F in .

In particular therefore w? ( A) = w <g> wej (A) for all A in
Hence w^(A) = wf ® (A) for every A in and

it follows that ^ and therefore w^ is separable
on .

Conversely, if w^ = w^ ® w^ we have ^ and so

w^ ( A + F) = w?® w^(A) + X1 w^ S> w^ ( F) + ( 1 - X*" ) w^ ® Wg ( F )
= w?i® w?jl (A + F)
= w? ® w^ (A + F) .

We shall call the states w AS-states to indicate

that they satisfy the requirement of asymptotic

separability whenever they are asymptotically

separating as is evident from the above theorem. It

follows, moreover, that these AS-states are not

unnecessarily restrictive when w is not separating.

As we remarked above we have obtained the required

separability by first allowing states on s\ which are

non-normal and then restricting this set to the state

of the form (10.3*3) • We shall see nevertheless that

the states w£ are "almost" normal states in certain

senses.

(10.3.9) Theorem

(i) The restriction of w^ to the algebra ^Aot is a
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normal state on

(il) The restriction of w£ to the algebra at infinity

JC* is a normal state on jV*s L"(p„?.)»£.
(iii) Every state at infinity w^40 is a normal state at
infinity.

(iv) A state is a normal state on if and only

if q = + (1- xz )et •

Proof

(i) w?(A0) = wt(A0), for all Ae in •

(ii) wt(F) = ^w€s®w£si(F) + ( 1-X1 )w£c(F)
= XZTr(fSl»Csa.P') + (1-Xz)Tr(ec F)

= Tr( XzCSl®esi F + < 1-X1 >Cc F)
= Tr(^ F)
= w~(F ) ,

where £ = XlfS)®^ + (1-XZ)£C is a density operator on

Ml.
(iii) Follows immediately from (ii).

(iv) Suppose that w. is a normal state. Then there

exists a density operator £ on 4^ such that w^ = w~,

ie

Tr (£ (A 0 +F ) ) = Tr(^A0) + XZ Tr (?Sl®e«F ) + (1--Xz)Tr(£tF)
for every Ae+F in $\ . In particular therefore we have

Tr(^A0) = Tr (^ Ae ) for each A„ in ;

Tr (£ F) = Tr ( ( + ( 1-X2 ) )F) ,

for each F in = L°°(pt , pt ) <S> . It follows that

£ = i = + (i-x2 )?c • (*)
Conversely if £ = \l (sz + (1-XZ)£C , it is easy to
show that w^ = w^ .
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(10.3.10) Corollary

(i) If ^ has no separation then w^ is normal.
(ii) If £ is separable then w^ is normal.
Proof

Using (iv) of Theorem (10.3.9) we see that (i) if £ =

then (*) is satisfied trivially and (ii) if £ is

separable so is and therefore and

hence (*) holds again.

(10.3.11) Corollary

Not every AS-state is a normal state.

Proof

It is evident from (10.3«9)(iv) that we can construct a

state w^ for which (*) is not satisfied.

10.4 Asymptotically Separable Quantum Mechanics

We shall formulate a quantum mechanical theory

which is asymptotically separable in the sense that it

satisfies requirement (10.3.1).

(10.4.1) Postulate I

A composite system of two non-identical free spin-half

quantum particles moving in configuration space fiV* has

associated with it the C*-algebra . Selfadjoint
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elements of correspond to physical observables of

the system.

The time-development of the system is the usual

one .

( 10.1.2) Postulate II

The time evolution of the system is described by a

one-parameter group [«t:tt iR } of automorphisms of
defined by

«t( A) = Ufc AUt ,

where Ut is the time-evolution operator given in (2.3).

Notice that is in s\ for each tf so that the

theory is self-contained in the sense that the

time-evolution operator is an operator in the algebra

of the theory. We now specify the states of the

sy stem.

(10.4.3)Postulate III

Physical states of the system are given by the

AS-states w^ where £ is a density operator on the
Hilbert space and by the states at infinity w*

generated by wg according to (10.3.5). w {h),k<Z$\ ,

represents the expectation value of the observable A

upon measurement.
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10.5 The PPR Example

In the conventional theory, the state vector for

the spin formulation of the EPR example is given by a

vector of the form (10.1.1). We now make the

assumption that the state in the new theory is wD<r
1 0

where p" is the projector onto the subspace generated

by . This assumption is certainly reasonable, for
■V1 _ —

wpr yields the same statistics as the state vector

in the conventional formulation for every observable in
»sir

and particularly therefore for every observable

measurable with finite apparatus. In addition w0.r isro

asymptotically separable and at infinity the systems

are localised in the same regions as for the

conventional formulation. Now however a significant

difference between the usual theory and the

asymptotically separable theory emerges. In the usual

theory the state §£ is not separable even at infinity.

For the AS-theory however we have

wp(r (A+F) = w?®w^(F) = w(^®w£(A + F)

where and ^ are the reduced statistical operators

determined by . This is evidently a separable

state. Moreover it turns out that the state at

infinity w~ is both spin mixed and space mixed.
P.
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We have demonstrated then how a system which for

finite times and overlapping wavefunctions possesses

correlated subsystems may in the asymptotic limit

separate spatially and be moreover separable. No

correlations exist between the subsystems when this has

occurred and the state is a statistical mixture. This

provides an asymptotic resolution to the EPR paradox.

We remark that this algebraic theory includes the local

theory proposed in Chapter 9 in so far as the local

spin algebras *AUCa are all contained in .

10.6 Another Theory

In a recent paper [Wan and Jackson 1985] we have

presented a slightly different theory to describe a

system of two spin-half particles. Essentially this

latter theory is based on the assumption that at

infinity it is not possible to measure two-particle

observables. This assumption arises from the concept

of "chronological disordering" [Wan and Timson 1985].

The algebra of observables at infinity then turns out

to be a direct sum algebra. Details of this theory may

be found in Appendix A.3 or Wan and Jackson [1985].

What we have attempted in the present chapter is to

extend the slightly simplified direct sum theory so as
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to include the possibility that two systems which do

not separate at all may still be correlated at

infinity. In addition, the present formulation

provides immediately the joint expectation functions

which we shall need for our discussion of hidden

variable issues in the next chapter.
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CHAPTER 11

HIDDEN VARIABLES AND BELL'S THEOREM
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11.1 Introduction

In classical mechanics every pure state is

dispersion free. That is to say that the value each

idempotent random variable takes on the pure states is

either one or zero. We can easily see that this is the

case. Idempotent random variables in classical

mechanics are the characteristic functions ^ on the
phase space.

(11.1.1) 1 if (x,p)t A

0 if ( x , p) 4 A .

The pure states in classical mechanics are simply the

points (x,p) in phase space. The value taken by an

observable f in state (x,p) is f(x,p) and it follows

immediately from (11.1.1) that every idempotent random

variable takes either one or zero on the pure states.

In quantum mechanics it is no longer the case that

the idempotent random variables take only the values

one or zero on all pure states. For now the pure

states are vectors cp in an appropriate Hilbert space

. The idempotent random variables are projectors E

in the lattice of projections Ji ) on . In general

only expectation values are determined [cf(2.6)J and
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generally we have

(11.1.2) 0 <E ; <p > « 1 .

In fact <E;cf > can only take the value 1 if <p is a

vector in the range of E and the value 0 if <() is a

vector in the range of E1.

We have a situation in quantum mechanics therefore

in which the extent of our knowledge of any system in a

pure state is still apparently incomplete. We can

determine only expectation values for observables and

not actual values. In other words the pure states are

not dispersion-free. This apparent incompleteness in

quantum mechanics led people to wonder whether it is

perhaps possible to introduce some extra parameters or

hidden variables A, say, such that ( <p ,\) together

constitutes a dispersion free state on some state

space.

The literature on this subject, which has

inspired, perplexed, and occasionally enlightened

quantum physicists for fifty years or more, is vast.

It was Einstein who became the arch proponent of the

view that quantum mechanics was incomplete. His paper

[1935] with Podolski and Rosen caused unrest and

controversy that has remained unabated. Various

authors [von Neumann 1932/55, Jauch and Piron 1963,

Gleason 1957 inter alia] have proven theorems which

allege the impossibility of hidden variables in quantum
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mechanics. But these "no-go" theorems have themselves

been criticised [cf Bell 1966 and refs therein] and

hidden variables theories of one kind and another have

actually been proposed [Bohm 1951, Bohm and Bub 1966].

Part of the problem has been an insufficiently exact

definition of a hidden variables theory, or rather the

inability of the antagonists in the dispute to agree on

one. Moreover the "no-go" theorems themselves have

been shown to rest on questionable premises. A

thorough historical and theoretical background to all

this may be found in Belinfante [1973] or Jammer

[1974].

Whatever the case for hidden variables generally,

the situation as regards the EPR gedankenexperiment

seemed to receive a significant clarification when Bell

published his paper [1964] on the impossibility of a

hidden variables theory which satisfied not only the

quantum mechanical statistics but also a certain

locality condition, demanded,so it seemed, by Einstein

locality [Einstein 1948; cf also Aspect 1976, Seller!

1978, Jammer 1974]. Bell's theorem as it has come to

be known consisted of deducing a certain inequality

necessary for the so-called local hidden variable (LHV)

theories, but violated by quantum mechanical systems.

Since the publication of this work, Bell's inequality

and various other forms of inequality which

collectively are referred to as Bell inequalities, have
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been the subject of extensive discussion and supposedly

crucial experimentation to determine th validity of

quantum mechanics against the LHV theories. We shall

later have occasion to discuss both the relevance and

the effectiveness of such theories it perform this

determination [cf Chapter 12]. As for the vast

literature which has sprung up concerning Bell's

theorem we content ourselves here with mentioning that

it is largely the "locality condition" which has caused

controversy. We shall examine this in more detail

later [(11.6)] and mention here only our belief that a

locality condition which makes no reference to spatial

location is almost bound to cause confusion. A survey

of some of the literature is included as an Appendix to

this thesis [Appendix A.4]. The immediate task in hand

is to clarify the issue of what exactly we take a

hidden variables theory to be. We do this in the next

section. The following three sections are devoted to

several, variously successful, hidden variables

theories. We then turn our attention to Bell's theorem

and the locality condition , and examine these issues

in the light of the asymptotically separable quantum

mechanics proposed in the previous chapter.
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11.2 Hidden Variables and Hidden Variables at Infinity

A fairly concise definition of a hidden variables

theory is provided by Jauch [1968]

(11.2.1) Definition

A physical system is said to admit hidden variables if

there exists a measure space P together with a finite

measure /a (normalised so that /a ( P ) = 1) on P such

that every state W of the system can be represented as

a mixture

of the dispersion free states .

For several reasons this definition is not really

satisfactory for our purposes, however. Firstly it

will be more useful for us to have a definition

expressed more generally in terms of expectation values

rather than in terms of Jauch's more limited definition

of a state on the lattice of projections. More

importantly, Definition (11.2.1) is more stringent than

it needs to be and in fact seems to be too stringent to

be fulfilled by any theory. In particular there seems

to be no reason why we cannot allow the particular

finite measure /H to be dependent on the state of the

W ( E)
r
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system. This is generally the ease in a classical

theory. We shall therefore use a definition closer to

the ones given by Bub [1969] or Jammer [1974].

(11.2.2) Definition

A quantum mechanical theory is said to admit hidden

variables if there exists a measure space T of hidden

parameters X ( \ may itself be a set), a set of measures

/tif on P and a set of real-valued functions fft , such

that the following conditions hold:

(i) Each (statistical) state vector dp of the

quantum mechanical system is associated with a measure

/iq on r1 normalised so that (P ) = 1 and subject to
the interpretation that for each measurable subset A

of P we have

(A ) = probability that the hidden state \ of the

system lies in A .

(ii) Each observable (selfadjoint operator) A of the

physical system is associated with a function f„ : P->

Pv . fft is single-valued and has the interpretation
that fA (\) is the result of measuring A when the state

is characterised by the parameter X. (Thus the X may

be seen as dispersion-free states in the same way that

the points in phase space are for classical mechanics.)

(iii) The expectation value of the observable A when

the (statistical) state is , seen as a mixture with

distribution /M^ over the values fft (X ) of states X ,

agrees with the usual quantum mechanical expectation
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value. That Is:

<A;^f> = ffl(\ )<V<(X)

We remark that this definition is less stringent

in its conditions than some others. It is not

uncommon, for example, to find the following additional

condition [cf Bub 1969 p103]:

(iv) If ffl(X) = a, then f^((0(X) = g(a).
This condition is, however, close to the sort of

assumptions which have been objected to in

impossibility proofs. We will bear it in mind for

future comparison, but not include it in our

definition.

We now turn our attention to asymptotic theories.

(11.2.3) Definition

We shall say that a quantum mechanical theory admits

hidden variables at infinity if:

(0) The algebra of observables of the system is an

asymptotic algebra in the sense of Wan and McLean

[1984(a)], ie

lim <At; cp > exists for each (p in "H , ,
00

and there exists a measure space P of parameters X ,

called (hidden) states at infinity, a set of measures

fiq on r and a set of functions ffl such that

(1) Each statistical state vector <p of the quantum

mechanical system is associated with a measure ^ on P
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normalised so that /i ( P ) = 1 and subject to the

interpretation that for each measurable subset A of l-1

we have:

A<r ) = probability that the (hidden) state at
infinity \ lies in A .

(ii) Each observable of the system is associated with

a function fft : V -* (R. such that fft is single-valued and

with the interpretation that ffl(\) is the result of

measuring A when the state at infinity is X.

(iii) The expectation value of A over the space of

hidden states at infinity when the statistical state

vector is agrees with the quantum mechanical

expectation value of A in the state at infinity w*

generated by cp :

w^5 ( A ) = lim <A b ; <? > = J* fft ( \ ) d^( X ) .

The proximity of this definition to (11.2.2) is

obvious. It raises the possibility however, that it

makes some sense to describe a certain aspect of a

particular system by means of hidden variables. We

shall discuss this further later on in our analysis.

We shall now examine whether it is possible to

construct hidden variable theories at infinity for

certain simple quantum mechanical systems. First let

us conclude this section with another definition.

(11.2.4) Definition

If a system admits hidden variables at infinity, we
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shall call the triplet (T ,{ffl } , {//^ } ) comprising state
space,measure set and set of functions, a hidden

variables theory at infinity.

11.3 The Single Particle without Spin

We prove the main result of this section in the

form of the following theorem.

(11.3.1) Theor em

Let ,£5 be a quantum mechanical system described by the

WM-algebra + if0 (p) . Then the system admits a

hidden variables theory (P ,{ffl }>(/<<p}) at infinity
with f1 = iR , {ffl } = L°°(p), where d^/dp the

probability density function is given by

d/^/dp = |<p|q>>|1 (*)
where <pl<p> is the momentum representation of q [cf
(2.1.3)].

Proof

(0) Firstly it makes sense to talk of a hidden

variables theory at infinity because is by

construction an asymptotic algebra.

(1) Suppose that /m- is as given by (*). Then we

have :

Ap( A) = Kp icp>ll dp
A
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which can be interpreted as the requisite probability

that the parameter p is in the measurable subset A of
since

/*v () = I 1 <p'(P >t1 dp
JiRn

I (p ( x )|Xd x = 1 .
*

Notice that this is nothing more than the usual quantum

mechanical interpretation of the probability measure

defined by the momentum observable.

(ii) Each observable A in A*, may be written

A = Ae+F

where F e L°° (p). We prescribe the functions fA

corresponding to the observables A by setting fft = F

for each A of the above form in the algebra. The

interpretation that fA (p) is the result of measuring A

when the state at infinity is p is reminiscent of the

phase space interpretation of classical mechanics and

makes sense here since fA is single valued and

real-valued.

(iii) We need to show that the expectation values

determined by the statistical distribution op over the
hidden parameters p are equal to the quantum mechanical

expectation values for the state at infinity w"" . This

is straightforward since:
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<A5/VHV = f„ ( p )d/< (p )

Kp|cp>|1F(p)dp
IS."

= < <p I f(p) q> >

= w- (A)

For any system described by the WM-algebra then, a

hidden variables theory exists to describe the system

at infinity. In terms of dispersion-free states, we

have a theory for which such states exist at infinity,

namely they are given by the hidden parameters p. Of

course p are simply the momentum values and hence it is

rather misleading to call them hidden. Nevertheless

the essential form of a hidden variables theory has

been achieved.

Now in quantum mechanics the states are usually

thought of as NPLF's on the algebra of observables. In

the hidden variables theory, the states appear as

points in a "phase space". These two descriptions can

be rendered compatible for the hidden variables theory

at infinity proposed here in the following way: for

each hidden state p at infinity define an NPLF by:

-Qp (A) = F(p), A = Ae +F C-
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This is a pure state on [cf Wan and McLean

1904(b)], and it is straightforward to verify that

these states are dispersion free on the WM algebra.

As a point of interest it is perhaps worth noting

that if g is any polynomial function, then g(A) =

g(A„+F) = g(A') + g(F) where A' e aA» , and hence we have

f^)(p) = g(F)(p) = g(f«(p)),
so that condition (iv) of (11.2) is in fact satisfied

in the hidden variables theory at infinity for a single

particle without spin.

11 .1 The Single Spin Half Particle

In Bell's original paper [1964] and a later paper

[1966], he brought attention to the fact that it is

possible to construct a hidden variables theory for the

spin of a spin-half particle. In Appendix A.2 we have

elaborated a version of such a theory based on Bell's

suggestions. Essentially the theory consists of the

triplet (P,{/np},{f5}) where P the state space is

given by:

(11.4.1) P = SU) = { X c- (R3 : IXI = 1 } .

The measures /4p are determined for each polarisation
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vector P (or for each spin vector ^ ) by

(11.4.2) /Mp( A ) = ( 1/2TT) sin© d<9 dtp
AaHAnp

where Hp is the hemisphere given by X.P > 0, and the

functions f5 are given for each spin observable S =

* 1 + <y. a by :

(11.4.3) = <x + a signX.a'

where a' is obtained by rotating a until

(11.4.4) a . P = 1 - ( 2/rr)cos"(a ' . P)

[cf Appendix A.2 for details and a proof that this

theory yields the usual quantum mechanical results

under the appropriate statistical averaging.]

A rather important point now arises. Evidently T

and /Hp satisfy the conditions in (i) of definition

(11.2.2) and, from the results of Appendix Ail , the

condition (iii) is also satisfied, namely the quantum

mechanical expectations coincide with the hidden

variables expectations. If we look carefully at

condition (ii) however, and compare it with the

prescription (11.4.3) and (11.4.4) for the function f6

we discover a crucial difference. While fA in

condition (iii) of Definition (11.2.2) is a function
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from the hidden state space f to the reals, it may be

seen that the prescription (11.4.3) — ( 11-4.4) is

essentially for a function fs : Px M -*> R , where 3"| is

the Hilbert space of quantum states ^ . In other
words, the particular value fs(X) of the observable S

is not in fact determined solely by \, but by ^ (or P)
as well. This seems to indicate that after all

Definition (11.2.2) is too stringent to include a

hidden variable theory of the type proposed here. In

order to include such theories we would need to amend

the definition as follows.

(11.4.5) Definition

A quantum mechanical system is said to admit hidden

variables if there exists a triplet (P ,»tffl }) as

before such that

(i) As in Definition (11.2.2)

(ii) Each observable A of the system is associated

with a map fA : f| -» where ^ is the space of state

vectors and is the set of real-valued functions on

the hidden state space r1 . We denote by f' the image

ffl (<p ) of ty under the map fft . We require further that

the functions f* are single-valued and we interpret

fA(\) as the value of the observable A when the quantum
state is (p and the hidden state is

(iii) The expectation value of A as a statistical

average over the values fp,(X) under the distribution <p

must coincide with the usual quantum mechanical
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expectation values:

< A ; Cp > fj (A)<H(A )
p

In other words, we have amended our definition in

such a way that the quantum mechanical state vector (f>

now not only plays the role of determining the

statistical distribution function but also partly

determines the the values of the observables. Given

that the role of the hidden variables was originally to

"complete" the quantum mechanical states this does not

seem unreasonable . Evidently it is this form of

hidden variables theory that Bell had in mind when he

wrote [1966 p398]:

"The question at issue is whether the

quantum mechanical states can be regarded as

ensembles of states specified by additional

variables, such that given values of these

variables together with the state vector

determine precisely the results of individual

measurements."

In this respect some of the literature on the

subject is manifestly unclear. Jammer's definition

[1974 p2 6 2] of hidden variables contains the clause:
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"(1) Each individual quantum system

described by the usual state function <p is

characterised by additional hidden states

labelled by a parameter A; the totality of

all hidden states is the "phase space" V of

hidden states; (J) and \ determine the result

of measuring any observable on the system."

While the underlined parts of the clause (our

underlining) indicate a sympathy with Bell's view of a

hidden variable theory and our definition (11.1.5), the

phrase in quotation marks (our quotation marks)

indicates a sympathy with the previous definition.

Indeed when Jammer explicitly characterises the

functions fA he does so in the stricter sense of

Definition (11.2.2). There is obviously some confusion

here. For the sake of the present analysis we shall

adopt the view that the quantum mechanical state vector

may in part determine the results of measurement of an

observable, these results being completely determined

only by additional variables A . Notice that the

sentence in parentheses in Definition (11.2.2)(ii) is

now no longer strictly true. VJe cannot regard the X as

dispersion-free states or as points in a phase space in

the same way as we can with classical mechanics. We

must now say that a dispersion-free state is determined

by X and and write ( ,X), say, for such an object.
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Presumably we would then want to regard ( ,\) as

points in some phase space in the classical sense.

Certainly, in the theory we are considering here this

can be done: each vector ^ is determined by a

polarisation vector P which in its turn is specified by

two angles © and <p ; we can regard the phase space

therefore as the space I^r« if of all points

(<p,0,X) where if = [ 0, 2it ], if = [ 0,IT] and P is as

given by (11.4.1).

The question now arises whether we can formulate a

hidden variables theory at infinity which incorporates

the spin and the spatial part of the system. Since our

spin hidden variables theory is specified in terms of

the broader definition (11.4.5) we shall use this as

our criterion to judge whether or not such a theory

exists. Or, more precisely, we should use the obvious

extension of (11.4.5) to the case at infinity.

We consider a quantum mechanical system St*

comprising one particle with spin half described by the

WM-algebra fAun. Now the problem we have to face here

is how we may combine the two hidden variable measures

for the tensor product states dj9 of the combined spin

and space system. We prove the following theorem.

(11.4.6) Theorem

Let be a measure on I-1* (P? given by
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M ,{ Ax A' ) = (1/2TT) Kpt (p > I1 sin© d® dcP dp ,

where cp' = q>®^ is a spin separable [cf(9.6.1)j vector

in the product space Mr. Then the expectation value for

the hidden variable theory at infinity of this spin

system is the same as the quantum mechanical

expectation value.

Proof

Firstly of course, we must clarify the hidden variables

theory itself by specifying the value fft, (p,X) of each
observable A" in . We define for each observable

i er

A® S in the function f^sCpjX) by:

Cs(P'*> = f« <P'fs(X)

It then follows that for each such A® S we have

<A® S;/y>y = ( 1/2K) l<P l<f f a(p )fs (X ) <Udp
rfcs Jr

| <p I cf >lz fA(p )dp
A1

fs (X)dX

= <A >Hv, <S ;/<p >HV,

= <A;w~>.<S; % >

= < A ® S ; w ^ > .

For a sum of observables A J? A.® S- we putC J
'J
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ff <?•*> =2 f^(pA).
"J ' J

It follows that < X A;® Sj )/Uy*>^v - ^ <A;s> S.;/yr> =
J

Z <Ats>S.;w*> = <Z A;» S.;w"f>, The swopping of sum and
•",j J T ;,j f
limit being justified by the uniform convergence of the

partial sums [cf (7.4.5)].

The case for an arbitrary state vector presents

a considerable complication in the question of which is

the correct measure in the hidden variable theory.

Even for the simplest case where the observable is a

simple tensor we do not have an obvious way of

combining the measures that will yield the quantum

mechanical expectations. Suppose that we consider a

vector (f0" = Z C|j<P-®^j in M*. Then the expectation
'J

values <A® S; p0" > for a simple tensor observable are

given by

<A® S;<p<r> = Z c* ck, < A @ S > •
J

Note that these expectation values contain crossterms

arising from coherence effects in the quantum

mechanical measure and hence the hidden variable

measure will also have to contain crossterms. Let us

attempt to construct the appropriate measure. We

observe first that the spin measure satisfies
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/iAp{ A ) = ( 1/2TT) x„.d* -

where is the characteristic function of the
A Hp

hemisphere Hp, so that

<WM - X»f

and we can think of 2T as an appropriately

normalised probability density function d*»p/d*.

Likewise of course |<pi(p>l1 is the probability density

function for the spatial part and we can think of

I <p lip >|Z / 2TT as the probability density function

d (p, X ) for the combined state, when we are

<T *
considering a simple tensor = <$& % . Now suppose

that we have a state vector of the second type, that is

an arbitrary vector of the form:

,<r

'J

where the { } and { } constitute orthonormal systems

in the respective spaces. For simplicity we shall

consider only two terms:

y* = c<?|®^ + d 'Pi®ft! , c1 +d5" = 1.

How are we to construct the measure on the hidden

variable space ? Suppose that we try to

include crossterms in the measure. Then the

probability density functions must have terms

in them corresponding to the crossterms arising from

different spin vectors. Since these spin vectors are

orthogonal however, the polarisation vectors P, and P,
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satisfy P, = -Px and it follows that the two

hemispheres X . P, > 0 and X.P2 > 0 are disjoint. Hence

the probability density function vanishes on the

crossterms and we are left with

d/yVdpdX = c1 d/y-/dpdX + dz d/y/dpdX

= e1 I <pl > \lX»l + dZ I <Plf,i>|1XH?
1"

where (pf = . Now we can get agreement with quantum

mechanics generally only for (mixtures of)

spin-separable states of the first kind or

alternatively if we consider only spin observables 1® S

or only space observables A® 1. In the case of spin

observables we have

iBr np

= CZ

cz I <p\cpt>!1 fs (X)dXdp + dz | <p i^XI1 f5 (A)dX dp

V fs (X)dX + dZ ^H+fs (X)dX
guy !> J

= cz<S;/Mp>HV + dJ-<S;/^pi>HV,

= cz<S; fa > + dl <S; fa >

= <1®
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We are left then in the position of being unable to

provide a hidden variables theory which agrees with quantum

mechanics for an arbitrary state vector even at infinity,

unless we restrict the observables even further. Moreover,

the existence or lack of existence of such a theory remains

eminently undecidable. The usual "no-go" theorems do not

apply in this instance, either because the underlying logic

is not the usual one or because the kind of hidden variables

theory we are attempting to construct lacks the necessary

algebraic premises - we tried to make it as broad as

possible.

In a sense we could say that we have here a contextual

hidden variable theory at infinity in that, for either spin

observables or space observables the theory in question

reproduces quantum mechanical results. This is actually

broader than the usual definition of a contextual hidden

variable theory [Beltrametti and Cassinelli 1981, eg] since

it is usual to take a contextual hidden variable theory as

meaning a theory for a set of compatible observables whereas

here we have a theory which embraces, contextually, a set of

incompatible observables, namely the spin observables.

What is of particular interest in this case is that the

obvious combination of two hidden variable theories has not

provided us with a hidden variables theory (that satisfies

quantum mechanics). This of course should not surprise us,
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since it is precisely the difficulty encountered in the

attempt to provide a hidden variables theory for two spin

half particles. It is obviously of extreme interest to know

whether in the case we have examined here it is possible to

provide a noncontextual hidden variable theory at infinity

which completely satisfies condition (iii) of (11.4.5). But

this will have to remain an open question for the present.

Supposing that the answer to such a question were negative,

what could we still glean from all this ? Firstly, of

course, we might be tempted to drop the requirement that the

theory should agree with quantum mechanics, argue that

quantum mechanics is wrong, and construct an experiment

designed to test the hidden variable predictions against

those of quantum mechanics. We do not know of any

experiment which has been motivated in this way for the case

of spin and space vectors, although of course this is

precisely what is being tested for the case of two

spin-particles by the many experimental tests [cf Aspect

1976, Aspect et al 1981,1982, Lamehi-Rachti and Kittig 1976]

involving photon cascades and the like. It seems then that

there should be interesting lessons to be learned concerning

the latter case by considering carefully what prevented the

straightforward formulation of a hidden variable theory in

the former. Specifically we remark that what seemed to

stand in the way of agreement was the coherence in the

quantum mechanical measure which had no counterpart in the

hidden variable measure space and it is not at all clear

that this has anything to do with whether or not the
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measurement results in the asymptotic theory are separable.

There is another option open to us in the face of the failure of
such a hidden variables theory to conform to the results of quantum
mechanics. It could be that our definition of a hidden variable theory is

still too stringent. Perhaps a further broadening could allow hidden
variables which do reproduce quantum mechanical expectations. In fact
the quantum potential theories of Bohm, Hiley et al are very much along
these lines. In this thesis however we shall restrict our attention to

the sort of theories outljned here. This is primarily because our main

interest is in the locality questions which (11.6 et seq) are best

investigated in the present form.

11.5 Two Particles without Spin at Infinity

We are going to consider first the theory described by

the WM-algebra •

(11.5.1) Theor em

Let I+II be a two particle system described by the algebra

j\WMC with states given by the normal states on , the

normal states at infinity u*, and the singular states at

infinity of the form:

with the obvious notation. Then I+II admits a hidden

variable theory at infinity in which the hidden variables

Sl~U0 + F) = F (p. ,pt )

(p, ,pz ) are in one-one correspondence with the
/-> 0°

dispersion-free singular states .

Proof

(0) is an asymptotic algebra [Wan and McLean 198h(c).

Define for each $ in the measure by(i)

A ) = I $ ( P, , ))*" dp( dpt ,

where f\ is a measurable subset in the phase space P =

= and $ denotes the Fourier transformed
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wavefunction. Evidently we have

/Vr ) I £ (p, , Pj. )l dp, dpi = 1
n" ft

(ii) We can define a single valued function fA (p( , ) for

each A = A0+F in by f( p, , p% ) = F(p, , pt ) = .0-* Pt ( A ) • The
one-one correspondence of singular states to phase space

points (p( , p^ ) is then clear and the dispersion-free nature
of the singular states can be demonstrated exactly as for

the one particle case.

(iii) Finally we must show that = <A;w^ >. We have

<A;/V«v li (p, > PL )1L (p, , Px )dp, dpr

$ ( p, , pt )F ( p, , P^ ) (p, , P^ )dp, dpt

= <F;$ >

<Ac +F ; w*° >
i

<A ; w°° >
»

So we have a very straightforward extension of the

previous hidden variables theory at infinity (11.3) to the

two particle case. This theory also satisfies the condition

(iv) of (11.2).
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Next we consider the theory of chapter 10 for the

spinless case. Once again the algebra is But now the

states are a different set of NPLF's.

(11.5.2) Theorem

Let I+II be a system of two-particles without spin described

by the algebra Let the physical states on comprise

the states w? defined in (10.2) and the states at infinity
w® generated by these states. Then I+II admits a hidden

variables theory at infinity.

Proof

We must show that an appropriate measure exists which

will fulfill the normalisation condition and yield the

quantum mechanical expectation values. Firstly, we remark

that the measure defined for a state vector ^ in (11.5.1)

can be extended to any normal state by taking

<K ~ <P' ' Pi!f '
where | p( , P2 > are the generalised momentum eigenf unctions.
This reduces to the previous case when £ = P^ for some
vector ^ since [cf A Bohm 1 97 9 p18 et seq. ] <p, , p^i > =

~§ (P. » Pi ) • In the more general case it is easy enough to

show that the measure /*£ yields the quantum mechanical

expectation values <F;£ > in the state £ for all
observables in LIJ0(p, ,p ). Now for each vector $ in "e

have $ = + ( 1 - X* )* J>t [cf (10.2.5)]. We define our

measure for the present theory by

d/«|/d?idPz = >,i<P. »PjPj,*OPi ' Pi > + ( 1~ ^ (P' ' Pi )|2"
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where £>S( and %sl are the reduced statistical operators

determined by ^s. Then we have

( r ) = <p. »Pi »fn*e*iP, »p, >dP, dp,

+ C 1 - X) ifc (p, » Px )ld P, dpt

= 1

since and CS)®eS4 are both normalised states,

each observable F(p, , p ) in L"° (p, , pt ) we have

tsz > + ( 1 - X2- ) <F ; Ce >

= <F ; w*° > ,
£

Moreover for

11.6 Local Hidden Variables and Bell's Theorem

Since Bell's original paper [ 19 6 U] in which he proved

an "impossibility theorem" for local hidden variable

theories in quantum mechanics by providing an inequality

which he claimed should be satisfied by every LHV theory but

which was violated by quantum mechanics, a number of

generalised inequalities have been proposed which go under

the collective name of Bell inequalities. [cf refs in

Appendix A.4]•
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In this chapter we shall use the following Bell

inequality.

(11.6.1)

|P(a,b) - P(a,b ' )I + |P(a',b) + P(a',b')l^ 2

This inequality is Selleri's [1972] amended version of a

similar inequality deduced by Clauser, Home, Shimony, and

Holt (CHSH) [1969]. The striking feature of this amendment

is not so much that it strengthens CHSH's inequality, but

that it does away with the physical requirement that for

certain parameter values b,b' say, a definite (or even

slightly indefinite) joint expectation P(b,b') exists. It

is now possible to prove (11.6.1) using only the fact that

the two dichotomic observables satisfy a certain "locality

requirement" which we shall specify below.

Let us begin at the beginning; that is to say, with a

system I+II of two particles on which we are to carry out

measurements of certain physical quantities. Let us suppose

that we wish to measure the values A and B of two physical

quantities A and B. Suppose also that the two systems are

separated and that there are measurement parameters a,b

determining the measurements at system I and II

respectively. Then the systems are said to fulfill the

condition of Bell locality if the following holds.

(11.6.2) Bell Locality
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The measurement results A and B for the measurement of the

quantities A and B on I and II respectively satisfy

A = A(a,X ) ; B = B(b,X )

The important point here is that A depends only on the

state X and the parameter at I and B depends only on X and

the parameter at II and neither measurement result is

influenced by the parameter at the distant system. This

condition has also been called Einstein locality, or

Einstein separability [cf Aspect, eg].

Bell's theorem then consists of the following line of

reasoning. A local hidden variable theory must satisfy

(11.6.1). Quantum mechanical expectation values do not

always satisfy (11.6.1). Therefore no local hidden variable

theory is possible for quantum mechanics.

This result was proved by Bell for the specific case of

spin observables. Notice, however, that we can apply the

reasoning to any observables. In particular, for any

observable T, on system I the observable given by

A, = 2 E (T, ; a ) - 1

represents a dichotomic physical quantity. Similarly

Bz = 2 E ( T z ; b ) - 1

represents such a quantity for system II. Now if we denote

by Pj(a,b) the joint expectation values for these two
observables in state $ we can proceed to examine whether

Bell's inequality is satisfied. If there exist a,b,a',b'
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for which the inequality (11.6.1) is violated then it can be

said that no local hidden variable theory of the Bell type

is possible for the observables T, and Tz. (Notice that we

are asking the question of hidden variables contextually

here; ie in terms of specific observables.) The following

result is extremely important for our subsequent analysis

(11.6.3) Theorem

Let T, , Tx be observables on 41, and Hz respectively, and let

A, and Bz be as above. Suppose that the joint expectation

value in state ^ is Pg(a,b) where ^ is a mixture of state
vectors of the first type (ie, simple tensors). Then Bell's

inequality is always satisfied for any a,b,a',b'.

Proof

Capasso,Fortunato and Selleri 1972.

11.7 LHV-Theorles and Bell's Theorem at Infinity

Suppose that f, and f2 are any dichotomic observables

in Lo0(pl ) and L" (pz ) respectively. Then E, = (1/2)(f, + 1)

defines a projection in L88 (p, ) for which f, = 2E, - 1.

Similarly for ft . It follows that every dichotomic

observable in the algebra at infinity A" in the WM-theory

is of the form 2E, - 1. The parameters of measurement are

then subsets of (Rn.
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(11.7.1) Theorem

Suppose that the two-particle system I+II without spin is
described by the WM-algebra with states given by the

normal NPLF's on AwMt and the normal states at infinity

generated by normal NPLF's. For every vector state $ of

the form

$ = ( 1/J"2) ( 4>,® )

where <?, ,V,' are asymptotically separating states and

are asymptotically separating, the joint expectation values

P* at infinity satisfy the Bell inequality for every pair of

dichotomic observables.

Proof

The dichotomic observables with nonzero expectation values

at infinity are all derived from projectors in L^Cp,) and

L83 (pA ) . For each F(pt , pt ) in L^Cp^p^) we have
w . (F) i <il F i >

£

= ( 1/2) <£P,®4>11 F Q, 8> 4>A > + ( 1/2)<i»Jl®(Pl/|F|l#l,®(Pi >

since (p, , 4>,' and ,1^ are asymptotically separating pairs of
states. Hence w^ corresponds to a mixture of state vectors
of the first type and therefore by Theorem (11.6.3)

satisfies the Bell inequality for every pair of dichotomic

observables.

Now let us consider the asymptotically separable

algebra of Chapter 10.

(11.7.2) Theorem

Let I+II be a two particle spinless system described by the
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algebra jAwhc and the AS-states and AS-states at infinity.

Suppose that the two particles are asymptotically

separating. ie, the AS-state is asymptotically separating.

Then the joint expectation values at infinity for dichotomic

observables all satisfy the Bell inequality.

Proof

If w is asymptotically separating then w 00 is separable.

That is w00 = wt°°® . This state is a mixture of states

of the first type and hence [(11.6.3)] satisfies the Bell

inequality .

What we have demonstrated then is that for both the

asymptotic theory of Wan and McLean and the AS-theory of

chapter 10, the quantum mechanical expectations satisfy the

Bell inequality when we take appropriate account of the

asymptotic localisation of the particles. Specifically, the

inequality is satisfied when the particles are separating.

Hence we have shown that by making inherent reference to the

localisation of the two particles in the formalism we can

recover separability in the form of the Bell inequality.
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11.8 Bell's Theorem for Two Particles with Spin

We are going to consider spin observables as in the

usual Bell analysis, but in the present analysis the

(asymptotic) localisation of the particles plays an

important role, so we must consider wavefunctions which

involve both spin and space parts.

Let us consider first the WM-theory in which the

algebra of observables is -sA and the states are normal

NPLF's on A and the normal states at infinity. We

consider joint expectation values P| (a,b) for the
observable 1® S, ® Sj. where S, and St are dichotomic

observables on H, and Ht respectively. For such an

observable we deduce by a similar analysis to tht used for

the one particle algebras [cf (9.6.6)] that every state is

spin separable, so that the expectation values reduce to the

ones encountered in the usual Bell analysis no matter

whether the state is asymptotically separating or not. It

follows that there are states and measurement parameters

a,b,a',b' for which the Bell inequality is violated. For

example if the state is given by a simple tensor product of

any space state with the isotropic spin zero vector and the

parameters a,b,a',b' are as shown in the diagram
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(11.8.1)

then [cf Beltrametti and Cassinelli 1981 Chapter 7,eg] the

quantum mechanical expectation values violate (11.6.1). The

WM-theory does not satisfy the Bell inequality therefore.

Indeed the discussion in (10.1) concerning the

nonseparability of WM even asymptotically should already

have led us to expect such violation.

Next we examine whether the AS-theory of chapter 10

violates the inequality.

(11.8.2) Theorem

Let Wg be any asymptotically separable AS-state. Let S, and
S2 be dichotomic spin observables on H, and H2 respectively,

'V ^
and let P (a,b) denote the joint expectation function for

the observable 1® S, s> S2 in the AS-state at infinity

generated by Then the expectation values P °° (a,b)

always satisfy the Bell inequality (11.6.1).

Proof

Firstly, the observable 1® S,® Si lies in the algebra at

infinity L-°°(p, , p2 )s>Se. and is asymptotically separating,

so the expectation values P (a,b) are given by
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P°°(a,b) = w,® w^ (1® S, ® Si)
= w„ ( 1® S, )w. ( 1 ® S )e, ■ fx

= w ( S, ) w, ( Si ) ,
\| J" VX3"

where f , ^ are the unique reduced statistical operators

on H, ,Ht determined by ^ . It follows that on observables of
**60

the form 1® S,® Sz , P is either equivalent to a state

corresponding to a vector of the first type on llc or a

mixture of such vectors and hence [cf Theorem(11.6.3)J

satisfies the Bell inequality.

This result means that Bell's inequality is satisfied

asymptotically by every asymptotically separating state in

the AS-theory. Does every AS-state satisfy the Bell

inequality asymptotically ? The answer to this question must

be negative. Consider the spin-separable state vector =

&%o where is the isotropic spin zero vector and is

any space state with parameter of separation zero. Then the
V ^

relevant expectation values P., (a,b) are given by
!c

P® (a,b) = <1*11® (S, 9 Sz )lt>

= <£js, ® st\y%>,
and it is known [(11.8.1)] that there are spin directions

for which these expectation values violate the Bell

inequality.
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11.9 A Hidden Variable Theory for Two Particles with Spin

Bell's theorem is an impossibility theorem.

Violation of the inequality implies the impossibility
1 Oi£X.\

of a^hidden variables description. Satisfaction of the

inequality does not imply the existence of such a

description. As far as the AS-theory is concerned

therefore, what, we have shown is that no hidden

variable theory exists which will describe every

AS-state at infinity. However it remains a possibility

(though not a certainty) that a hidden variable

description at infinity exists which will describe the

asymptotically separating states. Happily it turns out

that we can demonstrate just such a theory.

(11.9.1) Theorem

Let S = S,® SA where S, , are any two spin observables on

H, ,Hz respectively. Then for each asymptotically

separating AS-state w? there exists a set P of
(hidden) parameters /a , a measure on P and a set of

functions f(a,b,^) such that

(i) ( P ) = 1

(ii)

Proof

Define the set P of hidden states by f1 : Sa)x Su1 where

SC is the unit sphere [cf (11.1) and Appendix (A.2)].

Now denote by the unique reduced statistical

d,M^f ( a , b, m ) = p* (a,b)
r
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operator defined on Hc by f and suppose first that

is a pure state on Hc . Each pure state can be written

as a projection where % is some vector in Hc and
each such vector can be written as

~ ^ X <* l ® Pj f Z I I = 1 >

where {«^} is any pair of orthonormal base vectors in

H, and { } is any pair of orthonormal base vectors in

Hz . For each such ^ we define the measure on P by

/u^, ( A x A' ) = A ) ./•-.( A' )x
m j ' pj

where is the hidden variable measure defined on S

for oic by (11.4.2) and m. is the corresponding measure
j

for R. . Immediately we have /<L( P ) = Z l^;;lV ( Su>) . ( £^)
j a j pj

= Zl X- = 1. Next define the functions f(a,b,^) by

f ( a , b ,/*) = fs (a,X ) .fSt(b,X ) ,

where the single valued functions f, (a.X) and fe (b,X )S» SX.

are as given in (11.4.3). It follows that

10

d/( f(a,b,/M) = ZlX-P
a ;

d^. ( X ) fSi ( a, x ) . j d.vy ( x') fSi( b ,x')
, Jr> J

ZA/<S, ; xl>.<S1 jfj. >

= ZlV-fcs,® Sz ; >

= <S,® S2 ; * >

= < 18>S,>.
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For a mixture on Hc, let us suppose that

(;«- = = ^

where are pure states on Hc . Then we define the

measure by

( A x A7 ) = IE /*L /H^. ( A * A' ) ,

and it is straightforward to show that this measure

yields the quantum mechanical expectation values so

long as the interchange of the integral and the

arbitrary sum of pure states is valid. We justify this

by considerations of uniform convergence of the partial

sums.

The extension of the theorem to arbitrary spin

operators is a straightforward matter of the

interchangeability of integral and arbitrary sum. The

extension to arbitrary observables in the algebra A
is not so straightforward however. The reason for this

is the difficulty already encountered in providing a

hidden variable measure to echo the tensor product

between spin and space systems. In the particular case

in which the state is spin separable, we recall from

(11.4.6) that this is unprobi ematic. We state the

following theorem without formal proof.

(11.8.4) Theorem

Let A ® S,® Sz be an observable in A . Then for each

spin-separable, asymptotically separating AS-state
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there exists a measure on the space P = iK1* < Sc^ x

of hidden states at infinity and a set of functions

f(p, » Pt » a, b,£) , given by

f(p. » Pj. » a, b,M) = F(p, ,p4 ) .fSi(X ) .f$,(X')
such that

<A®S ® S ; H >HV = <A 8> S, ® Sz ; > .

Sketch of Proof

The measure is defined by

d/u /d* dp, dpz = ( d,^/d4») . <p, , pt l Pj, I P,,P2>»
and the integral becomes separable into the space

hidden variable integral for two particle systems as in

(11.'!) and the spin integral in (11.8.3).
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CHAPTER 12

CONCLUSIONS AND PROSPECTS
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In 1936, shortly after the appearance of the EPR

article, Furry [1936(a)] published a paper in which he

investigated the statistical differences between

coherent wavefunctions of the EPR type and mixtures of

factorisable state vectors. He demonstrated explicitly

that the statistical inferences which may be obtained

from a wavefunction

(12.1)

(eg), are not generally the same as those obtained by

assuming that the state is a mixture

(12.2)

"• = (1/2)pw ('/2)IW,

of factorisable wavefunctions, even though such

inferences may agree in certain instances. For reasons

which are now obscured by the tide of history, the

thesis that the state of the EPR example somehow

evolves into a mixture (12.2) of factorisable state

vectors (and hence provides a resolution to the
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paradox) has become known as Furry's hypothesis. It is

clear from that paper and a subsequent note [1936(b)]

that Furry did not in fact espouse this view, which was

actually advanced first by Schrodinger [1935].

Nevertheless we shall refer to the hypothesis in

question as Furry's hypothesis. (Interestingly, Furry

himself seems [1936(b)] to have attributed the

interference terms in the coherent state to the overlap

of wavefunctions and also refers to Pauli's discussion

in support of this.)

Evidently the theory we have proposed in Chapter

10 as an asymptotic solution to the EPR paradox is

closely related to the Furry hypothesis. We have, in

effect proposed an explicit evolution of the quantum

mechanical state into a mixture of factorisable state

vectors. Recall from (10.5), that the AS-state

relevant to the EPR example is given by w., where is

the vector given by

( 12.3)

V. = ( 1//2) ( (p® IP ) ® y0 ,

where and are asymptotically separating state

vectors. Hence, in the asymptotic limit the spin part

of the state is given by

(12.4)

w„ = (1/2MP*, + Pp ) ® ( 1/2) (P^ + Ppx)
= (""Jew W W W-
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which is again a mixture of factorisable state vectors,

although not the same mixture (12.2) that generally

appears in the Furry hypothesis.

Now let us consider this solution in the light of

certain remarks and objections that have been raised in

the literature concerning the separability of quantum

systems and the Furry hypothesis in particular.

Firstly, it must be observed that the state

given in (12.1) is isotropic,ie spherically symmetric

in configuration space, so that under any change of

coordinate basis in the Hilbert space Ht , retains the

form of (12.1) [cf Beltrametti and Cassinelli 1981 p70,

eg]. The state given by (12.2), on the other hand is

non-isotropic. This has led to some rather complicated

averaging procedures [cf Bohm and Aharanov 1957,

Baracca et al 1975 eg] in order to regain spherical

symmetry for the separable state. In the case of the

AS-theory however we observe that the spin state (12.1)

is already spherically symmetric. It is

straightforward to verify this using the direct matrix

product notation. The projectors P^^, P*^ , P^#«l » and
P. are given by the matricesP.®P2-
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/o o
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o

0

0

o

0

0

1

Hence the state (12.4) is simply (1/4)1 where 1 is the

identity operator in the space. Since the identity

operator is invariant under any change of coordinate

bases the state w0 is spherically symmetric as

desired. In our theory, therefore, no complicated

averaging is required; the symmetry falls out quite

naturally from the limiting process.

The reason why our state at infinity (12.4)

retains spherical symmetry while (12.2) does not is the

inclusion of the terms P* and P„ which yield thed Otj Pt^Pl

unpolarised mixture. Ironically this feature seems to

produce a new complication in the physical analysis of

the solution. In previous analyses, the only

factorisable state vectors considered as permissible in

the mixed state for the solution of the paradox have

been states and p,®<*2 corresponding to systems
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whose z-component of spin (eg) are correlated so that

the total spin in that direction is zero. Allowing

states o(,8>o(z and seems to deny the conservation

law that preserves this spin zero component. In an

ensemble of identically prepared systems, therefore,

the mixture (12.2) indicates that a measurement of the

z-component of spin on (say) the leftgoing particle

would yield about half of the systems having spin up

and half having spin down. Similarly for the

rightgoing particle. The state (12.1) in the AS-theory

yields the same proportions for each particle. The

difference between the former analysis and ours is that

(12.2) predicts that for each particle pair on which we

conduct a simultaneous measurement of spin in the

z-direction one will have spin-up and the other will

have spin down. (12.1) on the other hand predicts that

only a half of the particle pairs measured will be

correlated in this way. Of the rest of the systems

measured half will yield both particles having spin up

and half will yield spin down for both particles. We

still have

<J,»® 1 + 1® J^jw„ > = Tr( (JIZ® 1 + 1® JZ2) ( 1/1) 1)

= ( 1 /1)Tr

/ I o
0 O

O O

\ 0 O

0 O

o o

0 0

0 -I
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= ( 1 / 4) ( 1 - 1 ) ~ O

so that, on the average, the z-eomponent (and indeed

every component) of spin of the system is conserved as

zero. Now however, there exist pairs of particles for

which the conservation law seems to be violated.

It has recently been shown by Wan and Timson

[1985] that this apparent violation of conservation is

precisely what we would expect to be observed

physically for separating particles. The spread of the

wavepacket and the finite size of the measurement

device means that a "chronological disordering" of

particle pairs is introduced and we are no longer able

to correlate particular pairs of particles after they

have left the source. It is this chronological

disordering which allows the existence of states

which seem to violate the conservation laws.

We now turn our attention to some rather different

sorts of objections to separability in quantum

mechanics. Since the time of Bell's original analysis

of the EPR experiment and before, people have proposed

a number of variants on experimental situations

designed to provide conclusive proof of the essential

nonlocality of quantum mechanics. With each such

experiment performed the experimenters concerned have

claimed the right of experimentum crucis in the
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determination: which of Einstein locality or quantum

mechanics is right. The most recent experiments

concerning this issue are those of Aspect et al

[1581,1982], These experiments have been criticised

from the point of view of the statistical significance

of the data [cf Marshall 1 983 , 1 9811], but have

nevertheless been widely accepted as providing firm

evidence for the nonlocality of quantum mechanics and

hence for the denial of Einstein locality.

Aspect's experiments were carried out using photon

cascades. For this reason no direct comparison between

his experimental results and our theory is possible.

We have only tackled the case of massive particles for

which a well-defined position operator enables us to

describe the locality of the particles in question and

hence to undergo the analysis of the AS-theory for

separating particles. Photons are massless particles.

They do not fall under the sphere of description of our

theory. Nevertheless, there are one or two remarks

that perhaps are worth making concerning the Aspect

results. In particular, we reiterate the belief that

in order to discuss the question of nonlocality it is

of paramount importance that we be able to represent

the spatial location of the particles. For photons

this is not entirely straightforward, since the

definition of a position operator for massless

particles is not without problems. Until such a
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definition is possible, however, and until a firm

theoretical basis in which to discuss localisation is

available, it seems rather dangerous to draw the sort

of conclusions concerning locality that are being drawn

from the experimental results of the photon cascade

experiments.

So far as experiments using massive particles are

concerned, there are unfortunately few of these and the

ones that have been carried out are not able to help us

in the determination of the truth of our hypothesis

concerning the separability of systems when the

particles are separating. Lamehi-Rachti and Mittig,

who performed such an experiment using protons [1976]

remark

"Our device does not fulfil the

conditions of spacelike separation.. We

assume that this does not affect the result

of the measurement."

Obviously, from our point of view, it precisely

this lack of spacelike separation which does affect the

results of the experiment. Equally obviously, if we

wish to test our theory we must perform experiments for

which such separation is achieved (at least to a large

extent).
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Finally, we mention that apart from the extension

of the present analysis to massless particles, there

are various other avenues of exploration which would

seem to lead directly from the present study. For

instance, it has been shown by Aerts [1984] that

(conventional) quantum mechanics is logically incapable

of describing separated systems. The logical axioms

which are responsible for this failure are, according

to Aerts, the weak modularity and the covering law on

the lattice of propositions. It would be worth

investigating the logical structure of the AS-theory in

respect of these points. In particular we might

examine the hypothesis that separation involves a sort

of super selection principle in the logic which

overcomes the inability of the conventional theory to

describe separated systems. In addition we remark that

our theory which is asymptotic in nature and hence

provides a complete resolution only in the

(unattainable) limit of infinite time might be extended

by considering the following variation. We define the

sets A, and A,, for the wavefunction $ of a twoparticle

system at time t by

(12.6)

A, = fl { A fc $> (>S.A ) : II E (x, ® Xj ; A t«^)Utl II = 1 }

AL = 0 { A 6 £ ( fiC ) : || E ( x, ® 3ct ; fiCx A t ) } II = 1 }

and a "region of separation" for the two particles by
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As = Ac , where Ac = A, . The analogy with

(10.2.1), and (10.2.2) is obvious. Now, however, we

are describing the localisation of the two particles in

disjoint regions for finite times. If it were possible

to construct some algebra, and set of states in analogy

to chapter 10 for finite times, we believe that this

theory would be an even better description of the way

in which the spatial separation of particles determines

the degree of separability of the systems.

In summary, we have made an extensive study of

local observables in quantum mechanics paying close

attention to the physical limitations of measurement.

We have used the concepts involved in localisation of

observables to provide a sort of resolution to the EPR

paradox for finite times and in addition, we have

attempted to provide a quantum mechanical theory which

accounts for the separation of systems and allows for

the separability of such systems in the event that they

separate completely. It seems that a consequence such

a theory is that we may return a measure of reality, we

might say local reality, to the quantum mechanical

wavefunction.
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APPENDICES
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A . 1 Maximisatlgj_aiL w( Sp, A ,<V,

Let <Pe+1, <P( x ) =0 , x 4 A0 • The state E(p;A )<p is given

by (Byron and Fuller 1969):

(E(p;A )<p)(x) = (2rrh)si <j>(X)exp[iXx/h]dX,
A

where cp (X) = <flflp> is the Fourier transform of <$> . It

follows that:

| ( E ( p ; A )(f)(x)|l dx =
/ /V /V

K (\-\)<p(\ty"(\')dXdX,
A A

where

K (X-X) = (21th)"
A»

exp[i(X-X)x/fi]dx.

And since (as in the proof of Theorem (4.4.U))

IIE (p ; A )<P II1 = [|<?(X )l*dX,
A

we deduce that the maximum value w^ of w is given by

the maximum value of

K^(X -X')<p (X )$*(\' )dX dX'/ ||(p (X )|1d\ .
AA A
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The maximum value of this fraction is given

[Landau and Pollak 1961 & 1962] by the maximum

eigenvalue /^say, of the integral equation

(A.1 . 1 )

/*< n (X) = ( ^(X-X'^CXW, X6 A .

/V

The corresponding eigenfunction f|9(X), XeA , provides a

restriction on the initial wave function <p.

Explicitly must satisfy X ) = t[9(X ) for \& A .

When this is satisfied we have w = w = m..
Maoc /

In order to specify <PMiUC_ completely, we recall

first that must vanish outside A0 and, therefore,
/V

that <PM4x(X ) must be nonzero almost everywhere. We can
f\j

in fact use (A.1.1) to define r[(X) everywhere by

(A. 1 .2)

T\(X) = 1//a |KA>(X-X')t[(X/)dX/, Xel^ .
-"A

In particular we can so extend T|0(X) and we claim that

T|0(\), X&ffc. , provides the appropriate initial wave

function ^ ° maximise w. To show this, we need

only demonstrate that any solution T|(X),XtR, of

(A.1.2) (and hence "Y]o(\) in particular) is position

limited in the range A0.
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Let T|(x) be the inverse Fourier transform of t|(X).
Denote by ^ the characteristic function of the set A
and let ^)(X) = ^a(\)Y|(X). Let lp(x) be the inverse
Fourier transform of lp(X). Now (A. 1.2) is equivalent
to

where * denotes convolution. Then by the convolution

Theorem [Papoulis,eg] we have

Thus we have shown that solutions of (A.1.2) are

position limited in A0 • In particular, for T|0 we have

T|o(x)=0, x ^ A0 > and hence we can take as maximising
initial wave function x ) = f)0( x ) .

We want to find out now what the function T|9(x) is
like and the dependence of the eigenvalue /i0 on A and

A0 . We cast the problem into an already investigated

form (ops.cit) by looking at the function lp„(x) from

which Is obtained by truncation in A0 and,

observing that, since (X ) = ^(X )"f|( \) , we have, by the
convolution theorem again,

(X) = tp(X)*KA(\),

(A.1 .3)

l^(x) = Ka(x)*T^(x) = 1 Ka(x-x ' )T|(x ' )dx' .
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Now we use (A.1.3) to deduce that

(A.1 .4)

/W I4' ( x ) = K4 (x-x ' )1})(x ' ) dx ' ,

A0

which is essentially the same equation as (A.1.2) with

the same eigenvalues. In particular, the maximum

eigenvalue is . Now

K.(x-x') = exp [ iil0( x-x ' )/h ]—^—x )fl/K ) g Q thatTT (x - x.')

(A.1.4) is equivalent to

(A.1 .5)

/t $ ( x ) =
s>a(u-xwo q,(x,)dx,

"IT (x-x') *

where (J) (x) = exp [-i ilpX/ti ](j) (x) . The solutions to

(A.1.5) are known to be the prolate spheroidal wave

functions. The maximum eigenvalue ^ and the
corresponding eigenfunction (x) are both dependent on

the product JLT/ft (ops.cit).

Since \$0 (x) satisfies (A.1.4) with /<=/<e > we have

^)0(x) = exp [iil„x/h 3 5?0( x ) ,

where Jo is the appropriate prolate spheroidal wave

function. And it is now clear from (A.1.3) that the

initial wave function required to attain w = wm4jt = ^a0

is given by

$<***. = *]o(x) = ^ E^X ' ^9 )exp -! ^e^x) •
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A . 2 A Hidden, Variable Theory for a Spin-half Particle

This model is an elaboration on the one proposed

by Bell in his famous paper [1964] on local hidden

variables and the EPR experiment. We observe first

that the observables of a spin-half system are

generated by the four 2*2 matrices

A general observable S for the system may be written in

the form

S = o< 1 + a .a

where oit (R and a is a real vector (o".a represents the

spin observable in the direction a). Pure states of

the system may be represented [cf Fano 1983, eg] either

by a two-component spinor

/ £~t<V* cos &A. \
=

;<nV t Sin 6% J

or alternatively by a unit vector P of direction (0,<p)

known as the polarisation vector. The expectation

value of any observable S in state ^ is given by
(A.2.1) <S; g > = <£IS % >

= <£l<*1 + ? .a l ^ >
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= o( + a. P

Now we can construct a hidden variable theory by taking

the state space P to be the set of all unit vectors X

with A.P> 0 and specifying the result of measurement of

an observable S of the form (A.2.1) to be

(A.2 .2)

S( X) = <x + a signtX.a']

where a is the magnitude of a, ie a = aa, and where a'

is a unit vector obtained by rotating a towards P until

the angle T|' between a' and P and the angle Yy between a
and P satisfy

(A.2.3)

1 - = cos .

This procedure amounts to the specification of a

function fs : P -e> (R. [cf ( 11 .2 .1) ] by

(A.2 .4)

f5 (X ) = oi + a sign X .a' .

Evidently fs is si ngle-valued and therefore

fulfils the condition (ii) of Definition (11.2.2). For

the probability measure or /Mp on I-1 we take a

uniform distribution over all vectors X in the

hemisphere X.P> 0. We average uniformly over all these

hidden states to get the hidden variable expectation

values <S;a"p>hv. corresponding to a statistical state y

or P. If we choose our axes so that the x-axis

coincides with P we see [Fig (A.2.5)1 that the
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hemisphere A.P> 0 is the right hand side of the sphere

depicted in the diagram.

(A.2 .5) Figure
X.P> O

Now

zy-plane,

xy-plane.

^ fart of tam'isphcft X.o.'>0

let ©' be the angular variable in the

and let <p' be the angular variable in the

We shall choose our y-axis as in the figure

(A.2.5) so that a' is in the xy-plane. Then becomes

the <q' -coordinate of §'. Also, the hemisphere X.P is

then characterised by the ranges 0^6><"»T ,

2 tf <3/f tr / 2, so that the uniform distribution /Hp over

the given hemisphere X.P> 0 is given by the constant

probability density k where

7t Vt

1 = k sin©' dq*' d©'

= 2iTk .

Hence if we take k = 1 / 2tt the measure is appropriately

normalised and for each measurable subset A (©,£?) in

the hemisphere we have:

My (A ) = (1/2TT) ( sin© d© dcp
J J A
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Thus /Mp provides the normalised measure required by (i)
of Definition (11.2.2). It remains to show that the

expectation value <S;/Mp> given by the hidden variable

theory is equal to the expectation value <S ; ^ > of the
quantum mechanical theory. To this end we observe

that, since a' is in the same plane as <$>', we have A.a'

> 0 for <p' e (- (tt/2) + Y ,tt/2] while \.a»< 0 for

<p'c- [--rt/2,-( "ir/2) +f| ). It follows that
(A.2 .6)

<S ;^?> = (1/2-tr) S(K ) sin©' d<p'd©'
Jo

= ( 1/2TT ) C^ + asignA.aMsinOd©' d<$>
a J ^

1/2

= 1 /TT

sin© <16'-
TT

a sign! . a' dtf + a,

■ri
a d<p' - 1 At

5+n'

r'W
adq>

-"1

= U + ( 1 - 2rj'/TT )i

= oc + aco s

= oi + a. P = <S ;y >.
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A .3 Anothen. Asymptotically Separable Theory.

In a recent paper [Wan and Jackson 1985] we

proposed an asymptotically separable theory for two

spin half particles based on the construction of a

direct sum algebra for the description of two isolated

systems. Recall from (2.2) that the direct sum of two

C -algebras is a well-defined C -algebra. Our

description of two isolated systems formally as a

composite system, to be called a composite description

of isolated systems, consists of (i) the association of

the C*-algebra ^,©^2. with the composite system, where

and are the respective algebras for systems I and

II; (ii) the identification of the set

{w,@ wit0® w.^ , w, © 0:w, , wA are normal NPLF's on ,-Ai
respectively} of positive linear functionals on

as the set of states of the composite system. Clearly

the composite description is simply as a pair of

totally independent one-particle descriptions which

automatically excludes all observables capable of

correlating the two systems. When dealing with the

first particle we can ignore the second particle

entirely by considering observables A,© 0 and states

w,® 0. Such states are normalised to one while the

two-particle state w,@ wt is normalised to two. The

two particle states therefore find a natural

interpretation as a sum of probability measures on the
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lattice of projections of the respective algebras,

rather than as a probability measure on the direct sum

lattice associated with the two-particle algebra. For

the particular case of two spin half particles let us

spell out the postulates on observables and states.

(A.3.1) Postulate 1

(i) A composite system of two free, nonidentical

spin-half particles in configuration space has

associated with it the C-algebra

A - AZ©A": ®

J&G , aoS
where is the finite spin algebra [cf (9.5.8)],^,
is (J^Cp, )k>S S> 1 and -Az is 1® L^tp* )$>•£> .

(ii) The time evolution of the system is described by a

one-parameter group { : t t (R } of automorphisms of ,A, ®-Ai.

defined by

F, © F2 ) = IJ A0Ut © F, © .

(iii)Selfadjoint members of correspond to bounded

observables of the system at finite times and
i/OCT »oOcT

selfadjoint members of ©aAz correspond to bounded

observables pertaining to the system at infinity.

(A.3.2) Postulate 2

Any state of the composite system is represented by
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w0© 0 © 0 or 0 © wf© wf or w„ ® w^© v?, where w0 are NPLF's

on A*, wf are NPLF's on A, and w" are NPLF's on *Aj. .

Acting on observables, wD© 0 © 0 has a nonvanishing

expectation only with respect observables in the finite

spin algebra AT. > while w** = v/f © has a nonzero

expectation value only with respect to an observable at

infinity. At infinity there are basically only

one-particle observables, ie those in A**, AT and

their direct sums for which no correlations between the

systems exist. Further details of all of this and some

convergence results concerning states at infinity in

the theory may be found in Wan and Jackson [1985].
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f1 .4 Bibliography of References on Hidden Variables and EPR

This bibliography gives a brief resume of a number

of important papers eoneerning the hidden variables

question and the EPR experiment. It is in

chronological order and the exact reference for each

item is to be found in the alphabetically ordered

reference section below.

1 964

J S Bell : "On the EPR Paradox"

Bell's original paper in which he

derives the inequality. Proves that with "the

vital assumption..that the result B for

particle 2 does not depend on the setting a

of the magnet for particle 1, nor A on b",

Bell's inequality is satisfied. He then

shows that quantum mechanics violates this

inequality. Also of interest in the paper is

an illustration of a hidden variable theory

for one-particle

1 966

J S Bell : "On the Problem of Hidden Variables in

Quantum Mechanics"
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Actually written prior to Bell [1964] this

paper looks at the impossibility proofs of

von Neumann, Jauch and Piron, and Gleason for

hidden variable theories and argues that the

validity of these is limited by unreasonable

assumptions concerning the additivity of

expectation values. An explicit hidden

variable model is proposed for a one-particle

system. The model does not retain the

additivity assumption.

1967

S Kochen and E P Specker :

Impossibility proof for hidden variables

based on showing that one cannot represent

the statistics of quantum mechanics by

measures on a classical probability space if

the random variables representing the

magnitudes are required to preserve the

algebraic structure of the magnitudes. This

includes the controversial assumption

concerning additivity of the magnitudes

challenged by Bell [1966],
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1 969

J F Clauser, M A Home, A Shimony, and R A Holt :

"Proposed Experiment to Test Local Hidden Variable

Theories"

Proposes an experimental test for the Bell

inequality

I P(a,b ) - P(a,b')) +|P(a',b) + P(a'b')U 2,

using the polarisation correlation of a pair

of optical photons.

J Bub : "What is a Hidden Variable Theory of Quantum

Phenomena?"

Resolves the conflict between the

impossibility proofs of von Neumann [1955],

Kochen and Specher [1967] and Jauch and Piron

[19 63] and the hidden variables theory of

Bohm [1952(b)] by giving an explicit

definition of a hidden variable theory. It

is shown that the impossibility proofs have

additional assumptions.

1 97 1

H P Stapp

He chanics"

"S-Matrix Interpretation of Quantum
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Of interest to the present discussion is the

thesis that the Bell argument is essentially

between locality and a lawful description of

the world.

1 972

S J Freedman and J F Clauser : "Experimental Test of

Local Hidden Variable Theories"

Experimental tests of CHSH's generalisation

of Bell's inequality using photon correlation

give results in agreement with quantum

mechanics and in violation of the

inequality.

F Selleri : "A Stronger Form of the Bell Inequality"

A proof of the inequality (11.6.1).

1973

V Capasso, D Fortunato, and F Selleri : " Sensitive

Observables of Quantum Mechanics"

Defines state vectors of the first and second

type, mixtures if the first and second type,

and sensitive and indifferent observables.

Proves that for a mixture of the first type
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Bell's inequality is always satisfied, but

for a mixture of the second type we can find

parameters such that Bell's inequality is

violated.

1 97U

A Baracca, S Bergia, R Bigoni and A Ceechini:

"Statistics of Observations for "Proper" and "Improper"

Mixtures in Quantum Mechanics"

"Roughly speaking it turns out that, with

reference to certain physical situations QM

implies the existence of "improper mixtures"

which are .. incompatible with a description

in terras of hidden variables." An

investigation of von Neumann's results and

Furry's analysis. Specifically it is proven

that for every $ there are observables which

are correlated by $ .

J Clauser and M Home: "Experimental Consequences of

Objective Local Theories"

Extends the discussion of CHSH to

probabilistic local theories.
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1 975

A Baracca, D Bohm, B Hiley, and A Stuart : "On some New

Notions Concerning Locality and Nonlocality in the

Quantum Theory"

Proposes a new form for the dynamical laws

which might induce the Furry hypothesis,

namely that the wavefunction of a many body

system factorises into a product of localised

states at large distances. Also gives an

explicit Bell separable average over the spin

directions.

1 97 6

A Aspect: "Proposed Experiment to Test the

Honseparability of Quantum Mechanics"

Proposes an experiment based on Einsteinian

separability: the setting of a measuring

device at a certain time (event A) does not

influence the result obtained with another

device (event B) if B is not in the forward

light cone of A. Bell locality implies

Einstein separability but not vice versa.

The experiment proposed uses photon

cascade s.
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D Fortunato and F Seller!: "Sensitive Observables on

Infinite Dimensional Hilbert Spaces"

Extends the previous analysis to infinite

dimensional spaces.

F Herbut and M Vujicic: "Distant Measurement"

Expounds a " strictly quantum mechanical

theory of distant correlations which

completely replaces [the two particle state

vector] by [the reduced statistical

operators] and a third operator U which

expresses precisely the correlations inherent

in [the two particle state vector]." In fact

either of the reduced statistical states

together with U is sufficient to completely

determine the two particle state.

M Laraehi-Rachti and W Mittig: "Quantum Mechanics and

Hidden Variables: A Test of Bell's Inequalities by the

Measurement of Spin Correlations in Low Energy

Proton-Proton Scattering."
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One of the few correlation experiments

carried out using massive particles and

therefore of considerable importance to our

analysis. The author's motivation for the

use of protons as opposed to photons includes

the remark that the coherence length of the

photons used in cascade experiments were of

the order of the dimensions of the apparatus

and hence separation could not be

guaranteed. However even this experiment

does not fulfil the conditions for spacelike

separation. The authors assume that "This

does not affect the result of the

measurement."

1977

N Cufaro Petroni: "On the Observable Difference Between

Proper and Improper Mixtures."

Constructs a particular sensitive observable

for each state vector $ of the second type.

The observable is X„I ><IAI where & = ip<» .

D Fortunato: "Observable Consequences from Second Type

State Vectors of Quantum Mechanics."
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Using the singlet state vector, the paper

presents an observable for which the

expectation is 3 according to quantum

mechanics while it has a maximum value of 1

if only state vectors of the first type are

considered.

A Garuccio, G Seal era and F Selleri: "On Local

Causality and the Quantum Mechanical State Vector"

Shows that it is not possible to drop state

vectors of the second type and that state

vectors of the second type and local

causality are quite different things by

considering two inequalities satisfied

(resp.)(i) by all locally causal theories as

well as all vectors of the first type and

(ii) by all state vectors of the first type

but not all locally causal theories.

1 97 8

J Clauser and A Shimony: "Bell's Theorem: Experimental

Tests and Implications"
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Extensive review article on the subject, from

Bell's early work to the experimental tests

and much historical background.

Interpretation biassed in favour of the

success of experiment in refuting objective

local theories. NB Appendix on Furry's

hypothesis.

A Garuccio: "Generalised Inequalities Following From

Einstein Locality"

Deduces a set of inequalities of which Bell's

is the strongest. Einstein locality is taken

to be "the assumption that some variables

exist which together with the variable

instrumental parameter a determine.. the

results of measurement of some observable A."

A Garuccio and F Selleri: "On the Equivalence of

Deterministic and Probabilistic Local Theories"

The deterministic approach has P(a,b) =

j"/*i ( X ) A (a ,X ) B( b ,X ) d\ while the the
probabilistic one has P(a,b) =

(X )p(a,X ) p ( b ,X )dX. The paper shows that

the class of DLT's is equivalent to the class

of PLT's as far as inequalities for linear
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combinations of correlation functions goes.

F Selleri: "On the Consequences of Einstein Locality"

More inequalities following from Einstein

locality, namely A=A(a,\) or "Measurements on

distant correlated systems by apparatus with

variable parameters cannot influence the

result of the measurement of A." Both DLT's

and PL T' s are considered. Consequences at

small angles are investigated.

1 980

A Garuccio and F Selleri: "Systematic Derivation of all

the Inequalities of Einstein Locality"

Deduces inequalities of the type

Z c-. P ( a . , b ■ ) £ M from Einstein locality for
J ^ J

J

probabilistic models.

F Selleri and G Tarozzi: "Is Clauser and Home's

Factorability a Necessary Requirement for a

Probabilistic Local Theory ?"

An explicit example is constructed of a PLT

satisfying Bell's inequality for which the

factorability hypothesis is not valid.

Therefore "all considerations developed from
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the factorability hypothesis are generally

valid only for DLT's." Rather surprising in

view of Garuccio and Selleri [1978]. The

following statement is of interest to our

present analysis of hidden variables: "If one

found that local hidden variable models of a

probabilistic nature ..exist which do not

satisfy Bell's inequality, the latter would

lose the general empirical and

epistemological significance which is

commonly attributed to it and the door for a

reconciliation between quantum mechanics and

local causality would be open."

H Stapp: "Locality and Reality"

More on the view that Bell's theorem is

concerned only with locality. "No process

that selects observations that conform to the

contingent predictions of quantum theory can

be local." Stapp proposes a theory without

hidden variables (and also without objective

reality) for which locality and quantum

mechanics are still incompatible.
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1981

A Aspect, P Grangier, and G Roger: "Experimental Tests

of Realistic Local Theories via Bell's Theorem."

F Seller! and G Tarozzi: "Quantum Mechanics, Reality

and Separability"

Another comprehensive review article with

more cf the theoretical background and

philosophical and epistemological

implications than Clauser and Shimony

t19783. De Broglie's paradox and the EPR

paradox are discussed.

1982

D Aerts: "Description of Many Separated Physical

Entities without the Paradoxes Encountered in Quantum

Mechanics"

The paper shows how from a logical point of

view quantum mechanics cannot describe

separated systems. Five axioms are given for

a quantum logical system. The axioms of weak

modularity and the covering law are found to

be responsible for the inability to describe

separate systems. Of interest with reference

to our description of separated systems.
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A Aspect, P Grangier and G Roger: "Experimental

Realisation of the EPR Gedankenexperiment: A New

Violation of Bell's Inequalities"

A Aspect, J Dalibard and G Roger: "Experimental Tests

of Bell's Inequalities Using Time-Varying Analysers"

Further experiments claiming to support

quantum mechanics over Bell inequalities.

All three Aspect experiments use photon

cascade s.

F Selleri: "Generalised EPR Paradox"

Expounds on the difficulties of existing

theories concerning deterministic criterion

or probabilistic factorability and presents a

generalised theory starting from a

generalised reality criterion. Of particular

interest to us is the observation that the

factorability criterion is not in general

satisfied by local probabilistic models and

the example is given where \ is a set of

variables A' and \".
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1 983

T Angelidis: "Bell's Theorem: Does the CH-lnequality

hold for all Local Theories ?"

Argues that the universality claimed for the

CH inequality does not hold and hence quantum

mechanics is not necessarily nonlocal. The

argument involves showing that the

universality claim is incompatible with the

conservation of angular momentum.

D Dieks: "Stochastic Locality and Conservation Laws"

A proof that stochastic hidden variable

theories which obey Bell's inequalities do

not admit the usual conservation laws. Hence

physically interesting stochastic theories

must violate Bell inequalities.

D Liddy: "On Locality, Correlation and Hidden

Variables"

Since the factorability criterion of CH is

not necessary for PLT's, what is ? Liddy

concludes that the theory is already local in

underlying structure and produces a hidden

variables theory which is also therefore
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local.

T Marshall: "The Distance Separating Quantum Theory

from Reality"

T Marshall, E Santos and F Selleri: "Local Realism has

not been Refuted by Atomic Cascade Experiments"

Arguing that the data from the Aspect

experiments is inconclusive.

M Vujicic and F Herbut: "A Quantum Mechanical Theory of

Distant Correlations"

further exploration of EFR type correlations

in terms of the reduced statistical operators

and the correlation operator [cf Herbut and

Vujicic 1976].

1984

A Barut and P Meystre: "A Classical Model of the EPR

experiment vjith Quantum Mechanical Correlations and

Bell Inequalities"

A simple model of a classical breakup has

correlation of spin components identical to

the q.m. one. It is local but the

normalisation procedure for correlation

functions is different. Discretisation
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reproduces q.m. fully.

D Home and S Sengupta: "Bell's Inequality and

Non-contextual Dispersion-free States"

Argues that Bell's inequality is derivable

from general consequences of no neontextual

hidden variables and that gedankenexperiments

can be formulated for which locality is not

an issue but Bell's inequality is violated.

D Liddy: "An Objective, Local Hidden-Variables Theory

of the Clauser-Horne Experiment"

Extends ideas in Liddy [19833 by proposing a

modle for the photon experiments.

T Marshall: "Testing for Reality with Atomic Cascades"

More arguments on the inconclusiveness of the

Aspect experiments.
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