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Abstract

The theory of high field transport is applied to the properties
of small band gap semiconductors. To describe the transport propert¬

ies of small band gap semiconductors it is necessary to include the
full effects of the lattice periodicity on the electron. Consequent¬

ly the relaxation times and collision integrals for the various

scattering mechanisms require generalisation, since the usual deriv¬
ation of these quantities only consider the effect of the bulk

properties of the lattice on the electrons. The theoretical methods
which are developed will be concerned with this generalisation.

This thesis is principally concerned with the properties of polar
semiconductors for which the traditional relaxation time approximation
is inapplicable. Two methods of solution are discussed with regards
to a description of the high field transport properties of n-InSb.
The first method, the drifted Maxwellian approach, is based on the

approximation that the functional form of the carrier distribution
function is determined by carrier-carrier interactions. The

simplicity of this approach is shown to provide a convenient starting

point for calculation of semiconductor transport properties. Various
scattering mechanisms are considered in a single energy band model of

InSb, and reasonable semi-quantitative agreement with experiment is
obtained when suitable material constants are chosen.

The second theoretical method considered is based on the solution

of the Boltzmann equation by iteration, and is therefore essentially
exact. The properties of the integral equations involved are

discussed, with particular emphasis being placed on the numerical
aspects of convergence. This method is applied to InSb where the
effects of intervalley scattering are included producing good

agreement with experiment.

Finally the two methods are compared, and a discussion is
presented concerning the extension of the two theories to more

realistic problems.
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CHAPTER 1

INTRODUCTION

Interest in the high field transport properties of solids first
arose in connection with the dielectric breakdown of insulators

[2]. Only at very high fields was it possible to produce any current
flow in these materials. In the case of semiconductors, the applica¬
tion of a high field can result in a very large increase in the
carrier energies, without any significant increase in carrier
concentration. Thus, it is possible to deduce directly the effect
of a high field on the carriers. A review of the subject has recently
been published by E. M. Conwell f1], where a fairly extensive account
of the high field transport properties of semiconductors is presented.
The application of a high field to a metal does not produce any

substantial change in the electron energies, and in general does not

lead to any phenomena which do not occur at lower fields.
The definition of what can be regarded as a high field in a

semiconductor will now be made: When the carriers of a non-degenerate

system are in thermodynamic equilibrium, they will assume a Maxwellian

energy distribution of the form

ftt) * exp(-E(i)/£eTc) 1.1.1

E andwhere C and are the carrier energy and momentum respectively,
and ~Jo is the temperature of the system.

If a small field is applied to this system, the carriers will
drift in the direction of the field, and introduce an asymmetric

component into the distribution function. This leads to the assumption
which is adopted in the theory of low field transport, for which the
distribution function is taken to be of the form

fW = £(e)+&s)r£(e)
with -ft(E) ^ jo(^) i

where is defined by equation 1.1.1, is the asymmetric

contribution, and is the angle between the carrier momentum and
the field. This equation can be used in conjunction with the
Boltzmann equation to derive the low field mobility of the carriers
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provided details of the relevant scattering processes are known ^462 -

The mobility is expressed in terms of ^"0(£) and is thus constant. At
higher fields the average carrier energy begins to increase, and it
is no longer possible to represent the spherically symmetric part
of the distribution function by equation 1.1.1. If the "carrier

heating" is not too large, this function may be given as

fje)« (<!$(£)) eKpt-e/^x), 1.1.3

where ^(£) represents a polynomial expansion in powers of the carrier
energy. When equation 1.1.3 is substituted into equation 1.1.2, the

resulting distribution function corresponds to what is termed the

"warm electron" region, and it describes the onset of non-ohmic

behaviour. At higher fields still, where the increase in carrier

energy is large in comparison to the thermal equilibrium carrier

energy, the function defined by equation 1.1.3 would become inapprop¬
riate and requires too many terms in order to represent the spherically

symmetric part of the distribution function; this defines the "hot
electron" region. When the dominant scattering processes of a system
are essentially elastic the relaxation time approximation is

applicable HI}, and only the first two terms in the Legendre expansion
of the distribution function as defined by equation 1.1.2 need be

considered, even at high fields. But for the case of inelastic

scattering, as for example when short wavelength acoustic phonons
or optical phonons are present, this approximation is no longer valid
and further terms in the Legendre expansion may be needed. The
solution of the inelastic scattering problem will be of special
interest in the chapters which follow.

The transport theory of semiconductors at low fields is
concerned with carriers located in the close vicinity of specific

symmetry points of the Brillouin zone. In the case of TfT-'V compounds,
this region of interest lies at the centre of the B.Z., but for
materials such as Ge and Si the region of interest consists of a set

of equivalent valleys located on the surface of the B.Z.. At higher
fields carriers may become sufficiently energetic to redistribute
themselves throughout large regions of the B.Z.. Consequently, band

structure peculiarities become more evident than at lower fields;
in Ge for example, the many valley band structure produces anisotropy
in the carrier mobility for the different crystal orientations. A
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phenomenon of particular interest arises in materials such as GaAs,
and InSb £5] with higher valleys which lie a few tenths of an electron
volt above the conduction band edge. Electrons with sufficient energy

may be excited into these valleys, and thus radically change the

average carrier mobility. In order to describe the transport properties
of small band gap semiconductors accurately even at low fields, it
has been necessary to include the effects of band structure non-

parabolicity £22"]. The following chapters will be concerned with the
inclusion of these effects on the transport properties of small band

gap semiconductors at high fields.
In recent years three methods have been applied to the solution

of the high field transport problem in polar semiconductors. Firstly,
an approximate method based on the assumption that the carrier
distribution function can be represented by a transformed Maxwellian w-

hich was originally suggested by Frohlich [3}, and has been applied
to the case of polar semiconductors by Stratton £21], Hammar and

Weissglas [10], and others £8,9]. The simplicity of the method

provides a convenient though inexact treatment of the transport

problem, and Chapter 3 will be concerned with its generalisation to

include the effects of band structure non-parabolicity, and other

effects resulting from the periodicity of the crystal lattice. The

theory is then applied to the material InSb in Chapter 4, in an

attempt to understand the important scattering processes for various

temperatures and fields. Most of the work presented in these two

chapters has recently been published Cll,12J.
Two other methods which have been developed involve the

solution of Boltzmann's equation by numerical means. Firstly, Monte
Carlo techniques have been introduced by Kurosawa [4 J and Boardman,
Fawcett and Rees [5], where the properties of a single electron

travelling through the crystal are simulated and averaged. It has
been proved [5] that these Monte Carlo methods generate the
Boltzmann solution. Secondly, a method for solving the Boltzmann

equation by iteration from a trial distribution function has been
discussed by Rees [6,7], This approach provides a more comprehensive
treatment of transport phenomena than the Monte Carlo technique since
it is possible, for example, to include the effects of carrier-
carrier scattering, and time varying effects in a straightforward
manner. However, complex problems associated with the time

independent solution of the Boltzmann equation can be treated more

efficiently by the Monte Carlo approach.
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Chapter 4 is concerned with the derivation of the Boltzmann

equation and the associated collision integrals including the effects
of band structure non-parabolicity, and Chapter 5 will involve the
time dependent and time independent solutions of this equation for
InSb at 77CK using Rees' iterative method. Since Rees1 approach

yields the exact result for the carrier transport in a semiconductor,
it was possible to evaluate the electron mobility in InSb at very

high fields with confidence. At such fields the effects of inter-

valley scattering are shown to be important, and the results are in

good agreement with a recent Monte Carlo calculation which has been

made by Fawcett and Ruch Finally in Chapter 5 a comparison
is made between the solution of the high field transport problem by
the drifted Maxwellian approach of Chapters 2 and 3, and by the
iterative solution of the Boltzmann equation given in Chapter 5.



CHAPTER 2

THE GENERAL THEORY OF THE DRIFTED

MAXWELLIAN APPROACH

2.1 Introduction

The problem of evaluating the transport properties of electrons
in solids can be considerably simplified if the distribution function
of the particular system is known. Under the condition that carrier-

carrier collisions are predominant, the distribution function is of
the form [3]

j(i) * 2.1.1

where the electrons are out of thermal equilibrium with the lattice

at a temperature ~[g , and T$0 is the displacement of the electron
distribution function in momentum space due to the applied field.
In the case of small band gap semiconductors it is necessary to gen¬

eralise the above function in order to include the effects of band

structure non-parabolicity. Licea [13-16] assumed a displaced Maxwe-
llian of the form

f(i)o< e>p[-E(liS-il)/tt]) 2.1.2

which is the solution of Boltzmann's equation (4.6), but for a non-

parabolic band structure there is no simple relationship between fyo
and the average drift velocity of the carriers. A more suitable

expression for the solution to the Boltzmann equation is the drifted
Maxwellian

f(i) <* j 2.1.3

suggested by Hammar and Weissglas Qo] . With this form the electrons
assume a Maxwellian distribution function at a temperature Te , in
a reference frame moving at a velocity relative to that of the
lattice.

There are a number of ways of obtaining the mobility—field
characteristic of a particular system with a known distribution fun¬
ction. The usual method is to average the electron energy and momen¬

tum over the change of the distribution function with time due to
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collis ion with the different scattering mechanisms. The resulting

equations are HI

'3f-j em** - ^-i
2.1.4

where £ is the applied field, and is the resultant drift
velocity. An alternative but entirely equivalent method (cf. C1'10])
is to average the rate of loss of energy and the rate of loss of

momentum due to the different scattering mechanisms, giving

-J fjm 4 = e&■£
-fdfwfw4 = ef

2.1.5

Both these methods involve a triple intergration over the momentum

space associated with the scattering mechanisms, followed by a triple

integration over the momentum space associated with the electrons.
Since equations 2.1.5 do not involve the distribution function until

the final triple integration, it will be shown that this leads to
a simpler and more generally applicable formulation than that of

equations 2.1.4. Thus using the distribution function 2.1.3 in

equations 2.1.5 it is possible to evaluate the mobility-field char¬
acteristic resulting from various combinations of scattering mecha¬

nisms in closed integral form.
The following sections of this chapter will be concerned with

the derivation of equations 2.1.5 for lattice scattering due to polar

optical and acoustic phonons, and ionised impurity scattering. The
equations are expressed in terms of a generalised band structure
which is spherically symmetric in ^ space, and the effects of
the mixing of the Bloch states and spin reversal scattering are

included in each case.

It has been usual to approximate the distribution functions

2.1.1 - 2.1.3 by expanding the drift term in the exponential to
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first order, in order to make subsequent calculations tractable.
This is equivalent to assuming that the ratio of the drift velocity
to the "thermal" velocity of the electrons is small, which is not
true in all circumstances C <0 . This assumption is not made throu¬
ghout the following theory.
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2.2 Polar Optical Scattering

The rate of loss of energy and momentum by electrons as a

consequence of interacting with the polar optical phonon field have
been calculated for a parabolic band by Conwell £17] and Paranjape
[18] , and for a simplified Kane band structure Qi by Hammar and

Weissglas £l0] . They will now be evaluated for a generalised band
structure.

The rate of loss of energy by an electron in a state ^ is
given by

[ft
where is the absorption probability, and
is the emission probability, is the phonon energy, and
is the phonon wave vector. Similarly the rate of loss of momentum
in the direction ft is

2.2.1

2.2.2

2.2.3

dm) =
Cltr %

^

where -(%■%) ft , with ft. defining the unit vector.
According to Frohlich [20] , the matrix element for s-type

wave functions for polar optical scattering is given by

•here M = (e* pfcw/ftT.)->V is the crystal volume,
UJ is the frequency of the longitudinal phonons (taken as constant),
'/ is the lattice temperature, 6^, and are the high and low

frequency dielectric constants respectively, and £0 the permitt¬

ivity of free space.

2.2.(a) Rate of loss of energy

The parabolic case is described by Conwell [i] p. 156. It will
now be generalised for an arbitrary band structure. Assuming the

validity of perturbation theory, equation 2.2.1 can be written as

f = v<~^) 8-g<4

%^,-y
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with the usual transformation

%
2.2.3 and 2.2.5 give

2.2.5

* 'tmtm,(L-i). \C Sl'6«*»»-em-*">
-cxpf

Thus

= e2ttujfN(I _ i
477*£e -# V £*> £s

where

2.2.6

- Ef£zj -?fy JVn 0^0^^ j

and

j>) -ff 6(m-0~Eff)+ti>')W*<ty-
To facilitate the evaluation of these integrals the function

F(6) is defined such that -42~ F(£) is the inverse of E = £«*).
Thus, taking Re) = dF/d£ and letting

* = EH+ftf,
then

2£c^cose + c£ r=F(x) ,
and

- IfysinQ o{& = -
By substitution

~JJ ~ S(x- t
w*& 1
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which when intergrated results in

Jptkj„
j.

w , 2.2.7

The limits for the integration over must satisfy the conditions
defined in the argument of the & function in equation 2.2.4, i.e.

1(e) = f £
2 Jfc) Jo,, a

Etti+qf) = +
Thus

= F(B+*u>) .

Defining T) then = which results in
-- |"$'j + | -^| » since must be positive.

Hence

Q/na* r \J ^ ]J F(£) 2.2.8

which when substituted into the limits of equation 2.2.7 produces

T fp) - F(c+£p\ -±JI~/£)
*■ " 2Jf(E) 3

By a similar calculation
I

and

T fp) = El£zM£oau 2 fp(e) '

4 E _

dt 8~n~t,$JW)W \
2.2.9

-expll-tI Rc-fcj }.'V.' ejm-JF<£-*U>)
2,2.(b) Rate of loss of momentum

The derivation of the rate of loss of momentum follows closely

that of the rate of loss of energy. Thus, substituting equations
2.2.3 and 2.2.5 into equation 2.2.2 and

im"££it#v [ M
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where

d
dt

where

t}X) ^E&u) J s*n 9 )
A

^ - c^LosO ii - Therefore
'

'«/£)- enp^jMjeJ_ eitujN Mi _x
"

4r«,/^7 ~l£« ^
2.2.10

and

MP) -Jjocose &(E((i/-fyf-)-E'(#l)+ti*>)sir\OMj.
These integrals can be evaluated using the method described earlier
by defining the function F(e) as the inverse of £*£(*')■
Therefore if *= , then

and as before

Hence

- Ida si"Odd=

zH-q,?)
hie) - - [f — (F(x)-i-<f)S(x-£-tuj)c/xc/fy

which gives

Mje) - ElEt&d f_ , <ya.+ fF(e) J qr>
The limits for this integration are given by equation 2.2.8, and

r

MJE) =
4 Ffel

[FrenfuiJ-fife)] dDCf-^M^0L
- lJffJ
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Similarly

Mj£) s Ap®4rn?) <• ° slFte)-fi=7eliZ)
+ J ;

which results in

" u/kft)' F'er^(z^*^-f^3
%Set^M -***$ - «*$■**....„

2.2.(c) Averaging the rates of loss of energy and momentum

Averaging the rate of loss of energy over the drifted Maxwe-
.lian distribution function defined by equation 2.1.3 and

Jltfy'

L f
\r'(f) =

111 We (£(&')-£%>■£)]tsMMMi
fhere is the upper limit of the band. Hence

f
/olE\ _ Jo ^^Jdt*P(~£rJd&
\ dt/ r* '

J Y(£,\iji)fne)mexp(-gj.Jd£ 2°2°13
~ S±ok&f and q = Vp/Rg.

01
A

Similarly averaging the rate of loss of momentum in the \/n
rection,

i(U)\ _v
TT / '^Tfp '

JJJ ^pUtM})
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hence

/cf(*i£)V- I FE) Re) fcU^g
\St/ 3« f*, , ' 2.2.14

'C,Vs>X)m F&eV(-£r.)d£
.here ■£ foV^le) = 1 (a cosha - S/VlhCf) .

Thus, averaging equations 2.2.9 and 2.2.12 as indicated above,
taking the limits of integration over the energy from O to X~
for absorption, and from to ~)C for emission,

/- _ iMsttL (' i) X 2-2-15Volt/" m.t IF>~eJ 1„
and

(7^ ^ N (x -1)\ctt / ■mi%l
where

X

I, -- J {W)e*p(*£-U)-Kl)r<*M&

2.2.16
)

li - J Rjzy-tJl) F'(£+tu>)Ffo[F(er&>)-Fp![l
X tMLexp(--£ ) ,<fJF(S t-ftuj) " <Jf(E) ^ $eJe'

I3 - Fle-rfw) e%p(~^

t%pi'ir,)de'$ele'
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RtmXt) = {2(b)^p(fr:%)ilw},
b = Mwe**") 2 and 6J are defined above.

If we assume that the drift parameter in the distribution
function is small, taking a first order approximation it can be
seen that and "7 tend to unity. Choosing F(e) - 2m*e/t ,

*
as is the case for a parabolic band where m is the effective mass

at the centre of the B.Z., equations 2.1.15 and 2.1.16 reduce to
those given by Stratton [21] . For an approximated Kane band struc¬
ture [19] , where F(s)-2 , Fy is bhe band gap,

equations 2.1.15 and 2.1.16 reduce to those given by Hammar and

Weissglas [10] . (A factor of • /A #8 'e is missing from equation
(8) in reference [10] , but is included in the subsequent calculat¬
ion of that paper).

2.2.(d) Inclusion of the mixing of Bloch states and spin-reversal

scattering

When the full effect of the periodic lattice is taken into

account, not only is the band structure non-parabolic, but the
electron energy eigen functions are not pure plane waves. The latter

part requires the insertion on the right-hand side of equation 2„2.3
a multiplicative factor as shown by Ehrenreich [22] ,

where

"<111
vy

are the cell periodic parts of the Bloch wave functions, and

^4 ,yfai * are spin labels. Kane [19] has evaluated these functions
in the case of compounds with a conduction band minimum at the centre
of the B.Z., which results in an expansion of the form

2.2. 17

Gd^j) - 2.2.
where an(* ^ .

The rate of loss of energy can be derived in the same way as
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2.2.19

plane wave case in sub-section 2.2. (a). Thus

by analogy with equation 2.2.6. Now

ff I %(£((£+$?) - SiriOdQolc^
where ~1§ ~ » and y ^ (A+fyLDS9)/£' • Defining X- f
in the usual way and 14 z: ^ *Ffaj ~ , which leads to

' 2*</m

t!e,= a Iff f 5".®'*
f ^f \ ^(X " '

Hence with S. ~JFtFttfuj)

W - Fjm}[ - em% + sm{\c<v2m\j: %
where

and

Qm = $(W + ——^F) +u'\£f°~<w) >J t-KR 4*« n

mn - w-at -"■*'>■

Hence using the limits of integration from equation 2.2.8 and

W= -

T (c\ — F fe+Jui) f (S £+#uj) #

v ;" 2m

Similarly

7 (f\ - ft£z*m>t(e-#iu,e).VCJ 2yFP)
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The rate of loss of momentum can be calculated in exactly the same

manner giving

Ajfit) e £ujN [l MJ£J- e*pffe>) Mc (9) J 2.2.20
At u I * piW

where

Msp|f3= JJ\u>s6GLi&y) SfEU+tfi-Zlfi-faiSinedidi.
Integrating over Q as forw and

W* Ji («■-«-W<5-
This reduces to

M^£) = - 2m+2SM'(«4
- 2[<?«'- M4'l#Ul)+SM*'+J2#*+

where Q , fi , aae/^are defined above.
Thus

^p=(£i-#Lo)-F(ej] T(BtBt^ip) - 2U(£,tt#o/)J
and

Mjej - Be^> f(f®- Fir-*»nT(e-*»,E) + 2 Wt-fo.fJ .^ 4- Fflr) L

Equations 2.2.19 and 2.2.20 can be averaged in exactly the same way

as equations 2.2.9 and 2.2.12, resulting in modified forms of equa¬

tions 2.2.15 and 2.2.16.
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2.3 Acoustic Phonon Scattering

Acoustic phonon scattering can be treated in a similar way to

polar optical phonon scattering. The s-type matrix element that is

analogous to that of equation 2.2.3 is given by Conwell [l] p.108,
where

i^io tt= 4M*^i+'*) *
= Pftty/fiefc)- I )~' ' £< is the deformation potential, U

the average longitudinal sound velocity, and ^ the crystal density.
The remaining parameters have been defined earlier.

A linear dispersion relation U ^ will be assumed for the
longitudinal acoustic phonon spectrum. For most materials of inter¬
est at temperatures greater than about 20"K the acoustic phonon

energy is much less than the average energy of the carriers, so it
will be assumed that throughout the following calcul¬

ations. This in fact defines the condition of equipartition of energy

for the lattice oscillators [1] p.9.

2.3.(a) Rate of loss of energy

The parabolic case is described in [1] chapter 3. It will now

be calculated for a generalised band structure, thus, substituting

equations 2.2.5 and 2.3.1 into equation 2.2.1 gives

-(Ncj/fi) & (£((£-§?)- E(£l)i cfsihQolqrifldf .
Now since thus

where

Zt?) 1 JJ ^(isX-*«%) £(eU<tf)-£(£)-&<),)Sm9c
and

Substituting r-m and X r Ek&qf- where
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F (X t fiytpJ r F(X)+ /UfyF(x) - -/ -t24y,(oS&+ <js )

[_F(x) -+ ^"fFoo^c/x - - 2-H<tyUK&o/#
leads to

T+(e) = ff£ (-feTo-ikt,)S(^-e)(fN-t^F(k) d* ■
Thus

%(e) - J (4X- £?*/F(£)+% r©J4,
where the limits of integration must satisfy the equation

(jl-Uif ~ F(£+#uy) '== F(F) + i&{pF(£) i
+ 1"Fta Fee))) — o

Since must take a positive value the allowed range of integrat¬
ion is

1M in - O) 7
out = Ufffi-tfuFfci. J 2-3"2

Integrating over results in

therefore

and

J (g)= ' f (2jflfe) RWJ)^6T0Re) •+■ (vm +F<e)fyu(%r0$)-&)}j
13 4- 2 J

Similarly

37e)= X- r(2jqi)-fefMV rej -A 2ml3 4- * J
which when subtracted from Me) produces

X(e7 - He) = Jg [Ww &C + f*J -Efj]
after retaining first order terms. Thus

dF _ S, t{Ffc) FM.-T(F,t
dt yF1 [*«X(Fib + F£J F?ffJ J - FM1E&J 2. 3.3

For a parabolic band structure, and e»Arc , the above formula
reduces to equation (3.4.27) in Conwell [1J.
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2.3.(b) Rate of loss of momentum

Substituting into equation 2.2.2 in the usual way, and

T'~?»'///0?
this can be written as

ma = _tii (L(e)_ U£1)
at wgttM

where

LJE) - fj914£f6- rfpj e
and

L. (eJ =]J<fc*s» (^T0+%•)£ (EK*-*?)- +*1) ed%-
Substituting - F(^) and X - (z(($+fyf') - where

CoS9 ~ (Ffx)--H\^(JC^F(x)-<£)/;2^
^ ri&j f*T'~

(fix)+ F(X))o(x-b) cixdo
~ 4kmJI1̂ ^)(^1p{£> -11) ( f<£> 4 dq, ■

The limits for this integration are given by equation 2.3.2. Thus

leads to

Lf(e) r^j. (m>±,
and similarly

L (£) r - ^gft p[ej-t- -$g( ~ f^f0 -l
~^f=re)L ^T0 13 ^

Henc e

L fler)-L - (£)- -2mHQ
after retaining only first order terms. This results in

djH) -- JtiAL# f'(e)
dt 2Tf(u~ 2-3-4
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Divide through by n , assume a parabolic band structure and
equation 2.3.4 reduces to the momentum relaxation time given by
Conwell [1] , equation 3.1.11.

2.3.(c) Inclusion of the mixing of Bloch states and spin-reversal

scattering

When the factor W,j) defined by equation 2.2.17 is inserted
in the right-hand side of equation 2.3.1 the effect of the periodicity
of the lattice on the electron is accounted for [23] . Thus it is

necessary to replace of Section 2.3.(a) by ^Sp<-(£) , where

~2^fifffffflr %f&) sin ededy,.
Since we assume that the acoustic phonon energy is much larger than
the electron energy, the terms which appear in 6(4,j will be

expanded to first order with respect to the phonon energy, thus

-A(e)+4
V 2.3.5

vLW) - G(e) + 4u$,nt£) >y- Pity$(£,<{,) \
Thus by substitution, including only first order terms in the phonon
energy for MXy) and

,2.

/£)<ft( fafc- ( f'(£i + ifaf f(£) )[a+CP+&P
f ifuq (BtCQi PD + 1GPQ+ HP*j]n»0d&do.

^ /V i

Now is defined in equation 2.1.18 as thus

The integration over 0 can now be performed in the usual way

2.3.6

giving

+c+<?)

'Ml1 (c+2&)+4^& + D+ M
.-! . i

fZ. J
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Using the normalisation condition which is imposed upon Q (4j4'y)
where AhCf& = l the integrand results in

Jsp+(£) /ff« (c+7G-) f
+ jut} [ (ieT0 F(e)~ F&>)( )
+ ~@eZF(£)(B+D+H • •• ) J J" o(c^.

The limits for this integration are given by equations 2.3.2, which
produces after some calculation

* *u [(&% R£J -%k)('&££*/*- ^(cm+
-fkXm((6+D+H) - (D +2H-{C-f2GJ^)^'

+ (h-

•f

where W - 2/F^tJ ? and X ^ 6=) .

By a similar calculation

- J"U&TeF(sM-xf _ jw-x)V2<s0+■
+■ &7; F(E)((Bi-DtH)(y^f-(pf2H-(C+26)^i){^t2fL 12. %

+ / M -$-xf l 1^ -** ' 32lP J J '
Hence

D7P, (e) - ^.(s) = 4-/« F'^J f/-2cj
+F(£) ~ oyj ^i^-ct-26-j

+ Ffe)-fti; Re) (B - +. fSb fc-GA •25 3 Rfcl J
This result in a similar expression to that given by equation 2.3.3
where
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x(<~$(&-">))+■ 4XF£)Fh(8+j{ o
The rate of loss of momentum can be obtained by the inclusion of an

additional factor MJ.y) in the derivation of equation 2.3.4. It
can be seen that terms involving the phonon energy can be ignored,
therefore

On integration

where and . Hence

Lipt(e)- Up- (e) - - 2 F(e)F(e) A\(zc+&)) ,
and

d(*i)= - m(i-U2L^) ,

di 2l'e«z
Equations 2.3.3 and 2.3.4, 2.3.7 and 2.3.8 can be averaged by direct
substitution in equations 2,2.13 and 2.2.14.

The inclusion of p-type electron wave functions result in the

possibility of scattering by transverse acoustic phonons. Also it

would be expected that the non-parabolicity of the energy band would
result in some variation of the deformation potential. These effects
are discussed by Korenblit and Sherstobitov [24] and are expected to
be small.
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2.4 Ionised Impurity Scattering

Ionised impurity scattering has been considered by many previous

authors, and in most cases of interest which arise in semiconductors

the determination of the scattering matrix by the Born approximation
is found to be satisfactory [257 • Thus, if the electron-impurity
interaction takes place via a screened Coulomb interaction, the

appropriate s-type matrix element is given by

where I/\ is the screening length of the impurity, and the remaining
parameters have been defined earlier.

The mass of the ionised impurity is much greater than that of
an electron, so it will be assumed that the electron-impurity colli¬
sions are elastic.

2.4,(a) Rate of loss of momentum

The impurity ions will be assumed stationary so the electrons
can only lose momentum. Thus, substituting equation 2.4.1 into

equation 2.2.2 taking N/j as the impurity concentration results in

d (*£) _
_21A V fcfff cose

dt t\ Iffe) JJJ (4-TStU) V
*S(£«£-$?) - £(&)) s\t\9 dfyciedQ.

This equation reduces to n

d rn « _ -g 2m eVgj f q3 d
dt ~ (4-Tt.u) JfW)

The limits for this integration must satisfy the equation

) » so that 0 and Z^f=(e) •

Hence

d (ti) = - ■iJrthtFh 6(2) ,dt (4-irtois) Jf(£)
2.4.2

where "Z ~ 4 FC£) / /? , and B(Z) - + ~Z)-~Z ((i+Z) defin
the Brooks-Herring function [25 ] .

The resulting momentum relaxation time from equation 2.4.2

agrees with that of Barrie [26] .

es



-24-

2-Mb) Inclusion of the mixing of Bloch states and spin-reversal
scattering

The appropriate matrix element was first derived by Ehrenreich

[22] and is the product of equations 2.4.1 and 2.2.17. This can be
substituted into the rate of loss of momentum defined by equation

2.2.2 in a similar manner to that described in Section 2.4.(a)
producing

Equations 2.4.2 and 2.4.3 can be averaged by direct substitution in

equation 2.2.14.



CHAPTER 3

THE APPLICATION OF THE DRIFTED

MAXWELLIAN APPROACH TO n-InSb

3.1. Introduction

A theory of the high field transport properties of semiconductors
that is based on the drifted Maxwellian distribution function was

developed in Chapter 2. In this chapter the theory will be applied
to InSb, and the results of numerical calculations on several model
band structures, particularly those of Kane p.9] , will be descibed.
It will be shown that even though the drifted Maxwellian distribution
function may nDt be the Boltzmann solution, good semi-quantitative

agreement with experiment can be obtained for a large range of temp¬
eratures and electric fields.

In Chapter 2 the effect of the periodicity of the lattice on

the electron is taken into account. This manifests itself not only
in the non-parabolicity of the band structure, but also in the non-

planar form of the Bloch wave functions. For InSb spin-orbit coupling
leads to the possibility of spin-reversal scattering. This is incl¬
uded in the mixing of Bloch states. It is found that for small band

gap semiconductors, these factors can significantly alter their

transport properties. With their inclusion it is possible to obtain
better agreement between theory and experiment for high and low field

transport properties. In particular the high field drift-velocity
field characteristics of InSb at 20°K and 77°K, and the low field

mobility-field characteristic between 20"K and 500°K are considered.

Optical polar, acoustic and ionised impurity scattering mechanisms
are included with suitably chosen values of the material constants
of InSb.

A great deal of experimental work has been done on the low and

high field transport properties of InSb over a wide range of temper¬
atures £8,9,27-30] . Difficulties have been encountered in interpre¬

ting these results. These arise not only from doubts about theoretical
methods applied, but also from uncertainties about the relative

strengths of the various scattering mechanisms in InSb, as these

depend on imprecisely known physical constants. Experimental values
of the static dielectric constant range from 17.50 to 18.7, [32-35].
This leads to a change in the coupling constant of polar mode

scattering by as much as 50$. Similarly, Ehrenreich [22] suggested



a value of -7.2eV for the acoustic deformation potential, but othe
evidence has suggested a value of -30eV £28,36,37 J . This would

increase the coupling constant of acoustic mode deformation

potential scattering by a factor of about 17. To help clarify this
situation a comparative study is presented of the transport

properties of InSb, over a wide range of lattice temperatures and

fields in an attempt to resolve the contradictions resulting from
these uncertainties. It will be shown that greater consistency
between theory and experiment can be achieved by taking the most
recent value of the static dielectric constant given by Sanderson

[35] of 17.50, with Ehrenreich's value for the acoustic mode
deformation potential of -7.2eV.

The effect of expanding the drift parameter of the drifted
Maxwellian distribution function to first order is investigated in

Section 3.2. It is shown that the approximation leads to the

disappearence of the region in which the electron temperature Ig.
is less than the lattice temperature without significantly

affecting the mobility-field characteristic.
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o
3.2 Discussion of the Method through its Application to InSb at 77~K

The low field mobility of InSb has been calculated by Ehrenreich

[22] for a wide range of lattice temperatures and scattering mechan¬
isms. He concluded that polar optical mode scattering was dominant
from relatively low temperatures up to about 400*K. Using this

assumption at 77*K, many previous workers C8>9,10,38,39] have utilised
the displaced Maxwellian and the drifted Maxwellian approaches to
calculate its high field transport properties. Experimental high
field characteristics are given by C8>9>30], and a review assuming
a parabolic band structure is given by C39j.

In Chapter 2 if equations 2.2.15 and 2.2.16 are substituted
into equations 2.1.5 to form a set of simultaneous equations with

two unknowns it is straightforward to compute the drift velocity

, and field F corresponding to a particular electron temper¬
ature 7^ . All that remains is the choice of a suitable band
structure. Kane [19] has obtained the band structure of InSb using

a ~H" -jS perturbation calculation, and his results are summarised
in Appendix 1. This predicts a band model of the form

rfr \ - E(£j-G-)(£j-G+4)(C-t}a)* ' &(G+a) ("£■+<? + ^ 3,2,1
where m is the effective mass of an electron at the centre of the

B.Z., G" is the band gap, and ^ is the spin-orbit splitting of
the valence band. This formula is valid provided VT\ ^ m ? where

ifY\ is the free electron mass, and will be called the Kane (l)
band structure hereafter. If A ^>G:£ a good approximation to this«/

formula is

Fie) = e/cr) .
-3 .2 .2

This will be called the Kane (2) band structure. If the band gap

Qr is much greater than the electron energy t then this further
reduces to the parabolic band strucure for which

F(£) ~ ^2. & • 3.2.3

Taking a first order expansion in the drift parameter of the

distribution function, as described in Section 2.2.(c), plots 1,
2 and 3 result for the band structures 3.2.1, 3.2.2 and 3.2.3

respectively in Fig.l and Fig.2. For the purpose of comparison the
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Hie variation of drift velocity with field for InSb at, 7T°K
assuming in plots 1, 2, and 3; Kane (l), Kane (2), and parabolic hand
triH tures respectively,, The approximated distribution function is

as s ur-:ed ®
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FIG. 2.

The variation of electron temperature with field for InSb at 77"K

assuming in plots 1, 2, and 3$ Kane (l), Kane (2), and parabolic band
structures respectively, The approximated distribution function is

assumed,
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the material constants of InSb are initially taken from Glicksman
and Hicinbothem f 9 J , which are ffl * = 0.013rVt , £«, - 15.7, 18.7
and the Dcbye temperature © is taken to be 260°K. It is assumed

that the longitudinal optical phonon energy is constant such that

^u0- • The values for the band gap Q and the spin-orbit

splitting ZS of the valence band are 0.23eV and 0.98eV respectively
[40]. Plots 2 and 3 in Fig.l and Fig.2 agree with those given in

references [17] and [27]. The effect of spin-orbit splitting

appears to be relatively small, as can be seen by comparing plots
1 and 2.

By choosing a suitable iterative method it is possible to

compute transport characteristics for the exact drifted Maxwellian
distribution function. For the Kane (l) band structure this leads

to plot 2, Fig.3 and Fig.4. The same result, but with the drift

parameter of the distribution function expanded to first order is
included for comparison in plot 1.

It can be seen from Fig.4 that equations 2.2.15 and 2.2.16

can be satisfied when the electron temperature is less than
the lattice temperature "77 • This arises simply out of the
definition of the distribution function [38,41,42] and can be seen

as follows. It is straightforward to evaluate the average carrier

energy for a system with an exact drifted Maxwellian distribution
function assuming a parabolic band structure, and it is given by

< E> = | t*'Te -t . 3,2.4

When the carriers are heated this everage energy must be greater

than the average thermal equilibrium carrier energy ■£ . The
contribution of the second term on the right-hand of equation 3.2.4
leads to the possibility that the electron temperature "Tg can be
less than the lattice temperatureX . It should be noted that the

expansion of the drift parameter of the distribution function to
first order is equivalent to approximating the average carrier energy

by 57 $aTe and hence the elimination of the region where Te^X .
When the drift parameter ^ is small, the approximated

and exact distribution functions are most similar. This is true

when Vj) is small and when and Te are large, so that when Vd
assumes an intermediate value the approximation is least applicable.
This is confirmed by Fig.3 and Fig.4. The resulting drift-velocity-
field characteristic of Fig.3 shows that there is little difference



FIG. 3.

The variation of drift velocity with field for InSb at 77JK

talcing the approximated and exact distribution functions in plots I
and 2 respectively,



FIG. 4-.

The variation of electron temperature with field for InSb at 77®K

taking the approximated and exact distribution functions in plots I
arc- 2 respectively*
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3,2. 5

between the calculation of the exact and approximated distribution
functions. This conclusion was also reached by Mukhopadhyay and

Nag for the parabolic case [39], So all remaining calculations of
this chapter will assume the approximated distribution function.

In Section 2.2.(d), the inclusion of the mixing of Bloch states
and spin-reversal scattering in the formula for polar optical

scattering is considered in detail. For InSb the function
defined by equation 2.2.17 can be evaluated using Kane's model,
and gives

~ + 2. tffg'( bg ■+ C#Cfi)^
-b (bfi. bfi' + C^ J y14 by -f-j- (b$ by
+■ £<£#) - fc* h' (b*Cp+Ct (I - y~)

as shown by Matz [43], Thus, the functions , £ and c>^ of
equation 2.2.18 can be obtained by comparison since &A , and

C(L are given by equation (15) of Kane's paper. The calculation
for the Kane (l) band structure with the inclusion of the mixing
of Bloch states and spin-reversal scattering results in plot 2,

Fig.5 and Fig.6, with the straightforward plane wave calculation

plot 1 being shown for comparison.
The factors ^ , b# and C(i are discussed in Appendix 1,

and in the limit where the spin-orbit splitting of the valence band

becomes infinite

Qi -(tf+fe) J k* = "(s(G"t2€)) ' 3'2»6

When the mixing of Bloch states is taken into account to first order
7.

C\fc - ( and ip H — — O . Thus , (l~ S> ~ C and Q— ' in equati on
2.2.20. This results in an extra factor of (jj-i in

the rate of loss of momentum which does not appear in the plane

wave calculation. The ratio for InSb is about 0.1 which leads

to an increase in the low field mobility of 10^>. An exact calculation

gives an increase of \Tfo as shown in Table 1, Section 3.3. Thus it
should be emphasised that for narrow band gap polar semiconductors,
the effect of the mixing of Bloch states and spin-reversal scatter¬

ing on their transport properties can be significant.
The low field mobility for acoustic scattering assuming a

parabolic band structure which can be deduced from equation 2.3.4,
differs from that given by Madelung [40] by a factor 32/cjfjr — /*/3
Fig.7 compares the mobility-electron temperature characteristics
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Fi G.5.

The variation of drift velocity with field for InSb at 77°K

assuming a Kane (l) band structure with and without the inclusion of

s p nixing in plots 2 and \ respectively^
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FIG. 6.

The variation of electron temperature with field for InSb at 77®K

assuming a Kane (l) band structure with and without the inclusion of

s-p r. ixing in plots 1 and 1 respectively.
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The variation cf -.:ofcility with electron temperature for InSb at
77"K for acoustic scattering assuming a parabolic band structure, and

a Kane (2) band structure with and without s-p mixing in plots 1, 2,
and 3 respectively. Plot 4 shows the polar case for a Kane (2) band
structure.
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of the acoustic and optical polar modes of scattering. Plots 1, 2
and 3, Fig.7 describe the parabolic, the Kane (l) and the Kane (2)
with the inclusion of the mixing of Bloch states cases for acoustic

scattering. Further details are given in Appendix 1. Plot 4, Fig.7
shows the polar optical characteristic for the Kane (2) band struct¬

ure. The material constants of InSb used for this calculation assume

an acoustic deformation potential of -7.2eV, a longitudinal sound

velocity of 3,700m/s and a crystal density of 5.79gm/cm*.
The rate of loss of energy by an electron to the acoustic phonon

field is much less than the loss to the optical polar phonon field
even assuming an acoustic deformation potential of -30eV, so the
electric field at a particular electron temperature is principally
determined by the polar optical scattering mechanism.

For ionised impurity scattering the mobility- electron tempera¬
ture chatacteristic can be deduced from equations 2.4.2 and 2.4.3,

The resulting low field mobility for the parabolic case differs from
that given by Madelung [40] by a factor 32/377":= and by the
form of the integral in which the Brooks-Herring function arises.

Usually the integral is approximated by substituting in the Brooks-

Herring function the value of & at which the remaining integrand

has a maximum. This value is 3^7; in the formula given by Madelung

[40], However, this cannot be done for the mobility resulting from

equation 2.4.2 because when the Brooks-Herring function is removed

from the integral, the remaining integrand does not possess a maxi¬
mum value. Using Dingle's suggestion [44], the value of E substi¬
tuted in the Brooks-Herring function is taken as that at which the

remaining integral has a mean value. This value of & is
for the above case. Thus, plot 1, Fig.8 shows the mobility-electron

temperature characteristic for a parabolic band, approximating the

integral according to Dingle's method. Plot 2 shows the exact calc¬

ulation for a Kane (2) band structure. The effects of the mixing of
Bloch states was found to be small.

For this calculation it is assumed that the system is non-

degenerate and the impurities are completely ionised, so that the

Debye screening length I//. is given by [44]

x = ,

4TT&&
where is 77°K, the carrier concentration TU is taken as SX/O /rv?
and the impurity concentration as I X 10 /• It should be
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The variation of robility wit'i electron temperature for InSb at
ll°li considering ionised impurity scattering ( Nj ~ 10aym3) for a
parabolic band using Dingle's approximation in plot 1, and for a Kane

(2) band structure in plot 2,
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noted that the mobility resulting from ionised impurities is very

insensitive to the electron concentration 7L
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3,3 Analysis of the Scattering Mechanisms of InSb at High and Low

Fields

There is some confusion about the experimental value of the
static dielectric constant of InSb [32-35], Table 1 lists the low

field polar mobility for InSb at 77"K for two different dielectric

constants, 18,7 and 17.50 and the corresponding Dobyc temperatures
of 260*K and 278*K given by references [33] and [35] respectively.

Parabolic, Kane (l) and Kane (2) band structures with and without
the inclusion of the s-type mixing of Bloch states are considered.
The mobilities are given in ma/V-s.

18.7 17.50
V

260 278

Parabolic 72.6 131.6

Kane (1) 53.2 94.8

Kane (2) 51.8 92.3

Kane (l)+s-p 62.0 111.5

Kane (2)+ s-p 61.2 109.5

Table 1.

Experimental values of the low field mobility of InSb at 77®K [8,
9, 30] range from 50-75ml/V-s, the variation for different samples

being due presumably to the different impurity concentrations. These
values suggest that the dielectric constant of 17.50 leads to a more

appropriate result for the polar mobility of 111.5, which is somewhat
higher than the experimental values, as should be expected. The
remaining calculations of this chapter for convenience will take a

Kane (2) band structure with the inclusion of s-p mixing and spin-
reversal scattering.

There is some doubt about the deformation potential of acoustic

mode scattering. If the value of -30eV is taken [28, 36, 37], combi¬

ning acoustic and polar scattering, the low field mobility of InSb
at 77*K is about 67m*/V-s, which is rather low. Plot 1, Fig.9 shows
the experimental high field characteristic given by Glicksman and
Hicinbothem [9] for InSb at 77°K, plots 2 and 3 combine the effect
of polar and acoustic scattering with deformation potentials of
-7.2eV and -30eV respectively. Plot 2 also includes the effect of

2P / 3
ionised impurities of concentration 1.4 X 10 /m which leads to

good agreement with experiment up to 3X |04V/m. This suggests that
-7.2eV is the more appropriate deformation potential.
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Fi&.q.

The variation of drift velocity with field for InSb at 77°K

including polar, acoustic (and ionised•inpurities for plot 2)
scattering, with an acoustic defonration potential of -7„2eV and

-•30eV for plots 2 and 3 respectively. Plot 1 is experimental [9].
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Bok and Guthmann ^8] give experimental data for InSb at 77°K
and 20oK. Taking a deformation potential of -7.2eV, an impurity
concentration of 3.3 ?< lO^/m* is required to produce a low field

mobility of 50ml/V-s at 77"K. The agreement at high fields is good.

Also, the corresponding theoretical plot at 20®K given by Fig.10
is in good agreement with experiment, and has a low field mobility
of 25mx/V-s. It was not possible to explain the high field charac¬
teristics of InSb at 77*K and 20*K consistently with a deformation

potential of -30eV.
An attempt was made to include the effects of electron-electron

screening [22], but it appeared to make little difference at the
electron concentrations stated for the experimental samples of
references [8, 9, 30] for InSb at 77°K. Recent experimental evidence

[45] has been obtained for very high fields above 5xlO*V/m prior
to the onset of carrier multiplication due to impact ionisation. At

such fields electron energies are acheived which introduce the

possibility of intervalley scattering. These effects will be
discussed in chapters 4 and 5.

The experimental low field mobility of InSb over a wide range

of lattice temperatures is given by Kinch [28] in plot 1, Fig.11.
Plot 2 shows the theoretical mobility characteristic resulting from
a combination of polar, acoustic (deformation potential -7.2eV)
and ionised impurity scattering of concentration 3.3 x 10M/m^.
Plot 3, Fig.11 shows the effect of electron-hole scattering as given

by Ehrenreich [22]. If this is included in plot 2 it can be seen

that good agreement with experiment would result at high and medium

temperatures. Below 20*K the disagreement is explained by Kinch [28] ,

and is due to electron-electron effects.
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FIG. 10.

TI.c variation of rotility with field for I, S.b at 20»K where a

lane (2) band structure is assumed including s-p mixing, and polar,
acrustic, and ionised impurity scattering ( |sL - 3.3 x 10**/a? ) are all
tr fen into account.
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FIG. II.

The variation of low field mobility with lattice temperature for
InSb is shown by plots 1 and 2. Plot 1 is experimental [28], and plot
2 is theoretical "here a Kane (2) band structure with s-p mixing is
assumed and polar, acoustic,, and ionised impurity scattering ( f\jy ~

3,3 x 10 /m ) is ir.cl-.dod. Plot 3 is given by Ehrenreich £2g[ for
e 1 ec t ron-iio 1 e scattering.



CHAPTER 4

THE FORMULATION OF THE BOLTZMANN EQUATION

AND THE DERIVATION OF THE COLLISION INTEGRALS

FOR SMALL BAND GAP SEMICONDUCTORS

4.1 Introduction

The Boltzmann carrier transport equation can be written

symbolically in its most general form as

4.1.1

dt.
The first term represents the variation of the distribution function

with time due to the application of a field, and the

second term represents the variation due to carrier collisions.
The distribution function is defined in the usual way with the

normalisation condition given at any time fc such that

IfI 4.1.2

It is straightforward to deduce that

I — + -k 3f + V 4.1,3U4 ffi■ a/ ^ /V

where the electron velocity as shown by Wilson [46].
The validity and justification for the use of Boltzmann's

equation to describe low and high field transport in semiconductors
is discussed in references [1,47,48]. The general conclusions

reached are that provided the carrier concentration is sufficiently
dilute such that the velocity of a carrier is uncorrelated with
its position, and in the case where carrier-carrier energy exchange
is large that the collisions are predominantly binary, then Boltzmann's

equation is applicable. In the case of degenerate semiconductors the
inclusion of the Pauli exclusion principle on the carrier-carrier
interaction is an additional condition, but the following chapters

are principally concerned with non-degenerate semiconductors.
There are two types of scattering processes which will be

considered in the following sections of this chapter. Firstly there
will be scattering due to phonons and ionised impurities, where
the collision integral is of the form [1]
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dt Jij Z] 4 14

the notation being the same as that used in 2.2, where fa and /*£
are the absorption and emission probabilities for an electron

■4-/1 /
scattered through a momentum change — ft . The subscripts ( and J
refer to the different valleys, with M) and i-d) defining the
distribution functions corresponding to valleys labelled ( and J
respectively. The intervalley collision integral given by equation

« •

4.1.4 reduces to the intravalley collision integral by taking <>=J'
The second type of collision integral to be considered will be that
due to intravalley carrier-carrier collisions. This takes the form

[49]

<« -
where an electron with momentum ^ is scattered into a state "J2

A/ ,-V*

due to collision with an electron of initial momentum and final

momentum K . This equation will be discussed in Section 4.5. The
/'V /

detailed evaluation of the relevant collision integrals will be

performed in Sections 4.2-4.6.
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4.2 Polar Optical Scattering

The collision integral for polar optical scattering assuming
a parabolic band structure is discuS5ed by Conwell [1], Chapter
It will now be derived for a general band structure which is

spherically symmetric in ^ space.
Using first order perturbation theory the collision integral

for intravalley scattering obtained from equation 4.1.4 becomes

dfi£) _ 2TT

4.2.1
+ KB I I 4 ~ ^

The notation is the same as that used in Chapter 2 where the polar

optical phonon matrix element is defined by equation 2.2.3 for the
case of carriers possessing s-type wave functions. Thus, transforming
the summation over ^ fe0 an integral in the usual way and substitut¬
ing the matrix element produces

c)f(i) £ (#">) (i i
d e (4-TTQZJt jiw)S {£($)- q j

A/ £((#-<$)4.2.2+

Consider the first term in the integral where

the polar axis being in the direction . The integration over

0 can be performed in the usual way by defining the function

~F(£") (2.2). It is convenient to define the function i11^ ^
terms of the carrier energy £ and an angle ^ , where COStf-

defining the unit vector in the direction of the field. The

function FH) can be obtained since
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E«&*fJ =

where — £«?S$ COSY+ $ tA Q£Irl /C6$(j) as can be seen from the
diagram. Hence integrating over 0 gives

T _ fjgtjn) f f* J<<**«>. Corf) ctcpcttf, ,//=©
where

tos *'=/S,{11m r
+ J4-F&<f-Crt&**>)-F£)-ffsi*t<^jj ,

— j/f- (Gi ¥\Ljj i. JF~£)
The second term of the integral on the right-hand side of equation

4.2.2 can be evaluated in a similar manner, and the third and fourth

terms can be evaluated resulting in terms not unlike those of equat¬

ion 2.2.9. Thus, the collision integral reduces to

_ £iu_tL(I . I \ fqT2F(£^) ff .{(e-f^casit*)^,
dk /(r (<*{*« sjl <]&>]] f,

fie-Mwj-) zvfFmM 4

JrfcjJJ % 7 f im
2.3

J JF (r+i?Lj\ -\p(fr\ Jpfe) vjF(e) -iFle-M"If (£ J ■" tj p(fe"J iF(E)
fousAI

where the limits of integration over <fi are 0 -* 7T , the limits
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of integration over are tfFfc)andC^ty ={F(b]
for the first and second integrals respectively, and

cD^t=\-m-
F(etfa)

cos X 4- (jF(e-stu) - ne-j -^] cos ^
•f <

■ J4-He)cf- (F(e±#w) - Re) -<J?T S>i )
It is assumed that the function (=■(£") is taken as zero if its

argument becomes negative.
The inclusion of the mixing of Bloch states and spin-reversal

scattering can be performed in a manner similar to that shown in
Section 2.2.(d) by the insertion of the function
the matrix element. It can be seen from the derivation of equation

2.2.19 that the integrands in equation 4.2.3 require an additional

multiplicative factor

Q(U')~ £(,-h S(tf)<?
where jF(Etrfui) . The third and f ourth terms on the right-
hand side of equation 4.2.3 require their logarithms replaced by
the factor

Thus the full effect of the lattice periodicity is taken into account
in the derivation of the polar optic mode collision integral.
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4.3 Acoustic Phonon Scattering

The derivation of the acoustic phonon collision integral follows

closely that of the polar optical phonon collision integral. It
is necessary to use the matrix element defined by equation 2.3.1,
and substitute it into equation 4.2.1 in the usual manner. Thus,

using the fact that the & -function is even
.2.

+fw/fir-fj - (n*i)f(i)} Som-%f) -wx>*%)] 4'3'1
where and . It will be assumed that

the phonon energy is much less than the carrier energy throughout
as in 2.3.

Consider the second term of the integrand and

£ C^ded(j),
which can be integrated over $ in the usual way by defining i -- Re)
resulting in

^ „
^ ~20)JJF(eU^F(e))titydf,

-f -ffot as given by equation 2.3.2. Integrating, and
disregarding terms above second order in the phonon energy produces

I = jffe) F(e) F(£)+ ^u(2iiTc5R£lF'(£)i j F(£{f<FFl£l~$pE)\)
+fcX F(t)+4-mmL&lRb -i f&]-2&)&))}.

It is necessary to retain second order terms in order to include
the contribution of the spherically symmetric part of the distrib¬
ution function in the collision integral. This is discussed in

Conwell p.218 [1]. Thus integrating the remaining terms in the
integrand of equation 4.3.1 and^ ^

, /A"**
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J| mXFme
4.3.2

where the upper limit of the integration over <£, is given by
ax - 2^Rfe\) t^u F (g) for the first and second terms respectively.

Also

<« *W' ~ fM' 4.3.3

which can be derived in a similar manner to equation 4.2,3.

If a strong energy relaxation mechanism exists, as in the case

of a polar semiconductor at sufficiently high temperatures, it may

be that the acoustic phonon field only affects the momentum relaxation
of the carriers significantly. In this situation the higher order
terms involving the phonon energy may be neglected resulting in a

simplified collision integral of the form

dm - £'«r -
dt

4.3.4

The inclusion of the mixing of Bloch states can be performed
in the manner decribed in Sectioiv-42.3. (e) and is straightforward
but produces a rather lengthy expression for equation 4.3.2. For

equation 4.3.4 an additional factor of

/ - — (C+lGr) + % &
im Am

appears in the integral, and the final term requires multiplying

by ( — where C and G are defined in Appendix 1.
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4.4 Ionised Impurity Scattering

The derivation of the rate of loss of momentum for ionised

impurity scattering given in Section 2.4, was based on the assumption
that the impurities could be regarded as infinitely massive and

stationary with respect to the lattice. Consequently the carriers
could not gain momentum as a result of being scattered by an impurity.
This assumption will also be made in the derivation of the appropriate
collision integral. Hence, substituting the matrix element given

by equation 2.4.1 into equation 4.1.4 for the case of intravalley

scattering gives

4-e+l^ I1111
~j~(£) &(£(('£+<%ft ~~ £(fi1) )J ci90I<j>

all the parameters being previously defined. Consider the second

term in the integral, where

which can be integrated over 0 and d> giving

fFte'Jc *
Z{F(e) as given in the derivation of equation 2.4.2,

Thus,
T — 2 Ffe \ t

. " (M) fit__
and -fr £0=)

2fg) ±£NiF/ejA I JL- fcusx'lotaM
27T F(e) f(£a><t)

%(£+* mY

4.4. 1

where is defined by equation 4.3.3.
As can be seen from equation 2.4.3, Section 2.4.(b) the inclusion

of the mixing of Bloch states requires the additional factor

U- tf+Sq,*) in the integrand of the first term of equation
4.4.1. In the second term 2 needs replacing by

te+XS)- +4Fg)S-
where f2. and are defined in Appendix 1.
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4„5 Intervalley Scattering

The intervalley collision integral is defined by equation 4.1.4.
In order to include the full effects of intervalley scattering it

is necessary to sum the collision integrals for equivalent and

inequivalent intervalley scattering, over all the allowed transitions,
In some cases this may involve very many terms [50J. The appropriate
matrix element is given by Conwell, p. 154 , and is

4.5. L

where iZiu *s intervalley coupling constant, the number
of equivalent valleys of type J , ithe intervalley phonon freq¬
uency, and is the phonon occupation number.

r~l
Thus, assuming —^^• and OJ/j as constants, substituting 4.5.1J

into 4.1.4 produces

m -£33'*
+• {w jj n-v -ot o id)} H-0 - (*')+*<*]i]

MpSiv\6dq,cl0d<p
where and tZj represent energy states for carriers in valleys

L and j respectively. The energy bands can be expressed in the
usual generalised formalism by taking

(j§-£<) = Fi(£,-At) 45.3

where is the relative displacement of the L th valley from
the centre of the B.Z, and A; is the energy of the valley minimum.

Consider the first term of the integrand on the right-hand

side of equation 4.5.2 and

r -Jffd(EJ[(it0- 9dc^dddp,
Let

x = £:H+af) -Er^^i-J " 1-1 "'ij
therefore

(4+%-£j) ~ Fj(k(--Aj+*)
Choosing the polar axis directed along tS-£j results in

- 2 / jjsjlfy SmO dO ~ Fj(£"/1 dtcocj +x) dx
Thus, substituting and integrating over X produces
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2 iFjCEj-Aj)
where the limits for the integration are given by the conditions
defined in the argument of the S function

which are

fe - (£;*■*<>>$-Aj) ±]F;(£j-Aj)
The energy £ is defined as zero at the bottom of the ( th valley

and S* ~ -f <d ' —/i' » therefore
, ' J

J _

2/«57 J J. JJ
o tyMt*

where ^ = T , and f
Hence

<—'6'•A/Z;

%Tf£^cj i w Ijfjfe7)
Ej (q -Hu)^+ fiif'W'^jw'tyw -irfceby*.

where the limits of integration over (p are 0"ZTT , and those
^ are ~=^Fj(£ '~t /F'(£*)^or ^irst integralover

#U}cj) for the second integral.

+ J^FjTe'jtf-D'jte 'J-^2J ^
where <£T -f . This derivation is similar to that given

for equation 4.2.3. The inclusion of the mixing of Bloch states
is straightforward but somewhat lengthy and follows closely that

given in Sections 2,2.(d) and 4.2.
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4.6. Electron-electron Scattering

The carrier-carrier collision integral defined by equation

4.1.5 was derived by Chapman and Cowling [49]. It has been applied
to the transport properties of semiconductors by Appel [51], and
found to have little effect at low fields. However Hasegawa and

Yamashita [52] considered the warm electron problem and found that
at sufficiently high electron densities, electron-electron collisions
make a significant difference to the conductivity of H.-type germanium.
Their derivation was concerned with the spherically symmetric part
of the collision integral. It will now be generalised to include
the non-symmetric part of the collision integral and band structure

non-parabolicity.
The collision integral will initially be derived for a parabolic

band structure. Equation 4.5.1 can be written in a suitable form

as

If4' = ^-1
*Sin%d%eticl4> .

where electrons with momenta ^ and ~fit mutually scatter into states
"■$ ' and , with relative momenta 'T^~ ~f£i - jQ and 77- ~ "jl •

is the angle between 7^ an(l T"' » specifies the orientation
of T' ' - I 0s (% ,T-) l*1$7*-/ rft* » where ofcjT) is
the differential cross-section and T\, is the electron concentration.

The constant which appears before the integral in equation 4.6.1
arises from the definition of the distribution function given by

equation 4.1.2. Chapman and Cowling [49] define their distribution
function as the occupation number per unit volume of configuration

space.

The collision integral can be evaluated by using the conservation

equations of momentum and energy which apply to electrons in a parabo¬
lic band. These are

and
4. + i = i! + i\
4]+f-- i;\r

It is easy to show that the magnitudes of the relative momenta 'T"
and 1 before and after the collision respectively, are equal.

A transformation of coordinates to the system ( 71,, Q , ) will
be made choosing the origin of the coordinate system at ^ — £ ,

and the polar axis directed along -(L . Thus
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fF 7(vwuf,JifeSm
oldde 7l'lfM 0

where _ -j£ j. >yi ">

i'-i + Lt-x-'i/t, ( 4-6':and '

(t+X')/2 ■
J

These equations can be squared to produce

& + 2-£T<-wig/ 7^ 5^
/'-/> 4.6.3

$\ -Hi" (los/9+ttsd') ^O+^lz

It can be seen from the diagram that

CoSS' ~ (oS&C/XX SfhO SmX Ct>$ 6 .

The distribution function will be defined so thatJ^T^J— j~CE;U&<f)
the angle being defined with respect to the unit vector

in the direction of the applied field. Hence, multiplying equations
4.6.2 by the vector 7'p gives

-ii^d ~ £toS$ / 7*-CoS/3
t'urt + r-(Cotp- oosfZ )/z ,

Mfi-h .

4.6.4
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where

and

CoSfi - U>$@ 0oS% + S/nfcoSifi ,

9)S/g' - Co$S (te y + Sia 9 'S/A y 0*S<fi
MS I can be obtained from the equation

COSX - COS9 COS9 '-t S/'l 9 Strtd'Cos{ft-(f)')
Redefining the distribution function in energy space such that

JAM1 jf'/-
t' and taking X= p=- gives2trf Jfn*

E, - E-t 2/EXO)St9^ XZ
£' r £ + {ex[u)S9 ~U>$9) + XY(-coiX)/Z
E, - E f /5X(CoSO-f- C0S9'J+xz(haxX)/z

4.6,5

and

r

COS & being given in equations 4.6.3. Similarly,

cos

WSX'

LoSH,

=j=-[fe u>sX f xtfS
Z-(,

- ,jp{{£ wS*+ %,

4.6,6

COSP and 0>$/3 being defined in equations 4.6.4. The collision
integral reduces to
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21f TfooQrfjT

W ~ 2TrmJ'J/ //
4.6,7

x M%riSf*y>c(%dG \li'ini9cfxc/0c/(f),

^-rTTfrJlf
— 4-
- »+ "A% X

L'&£&*(£4 U«Yf)/ifD
as given by Conwell £l3. The derivation of o/(Xx) is based on the

\1 '
Born approximation with A defined by equation 3.2.6.

It was possible for the collision integrals arising from carrier-

phonon interactions to include the effects of band structure non-

parabolicity in a very general way. In the case of the carrier-carrier
collision integral this is not possible. However, by choosing a

simplified Kane band structure of the form (ij- ^IQ)/^ ,

which has been discussed in Section 3.1, with some additional

assumptions, the calculation can be performed.
The angle X defined in the collision integral (equation 4.5.1)

refers to the angle between the relative velocities of the carriers

before and after collision. In the case of a parabolic band this
is also the angle between the relative momenta of the carriers before
and after collision. For a non-parabolic band this is no longer the

case and care has to be taken to choose ")C correctly.

The effective mass of a carrier in an energy band of the above

form is AA* (I / , so the relative velocity of the carriers
with momenta and is given by

i" ^ 1 - — f"
m* I (i+ 2J,j(/ + |fj j w ~ '

the parameters being defined in a manner analogous to the parabolic
case. From this equation it is straightforward to deduce that

t.
— £

where

f - + 2/ fu>s& ■+ xz i

'a+Ht ("¥)
and X being defined in the usual way. These equations reduce

to the parabolic expressions when Q is large.
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Consideration of the relative velocity after collision leads to

f)4
which, after the inclusion of energy and momentum conservation
necessitates the solution of a quartic equation in order to find

I r~ »

C and fcr, • However, the problem reduces to the solution of a

quadratic equation if it is assumed that

f=l + £ 5>> X, b
"

Or
4,6.8

This condition is satisfied reasonably well for fields which

produce average carrier energies corresponding to small fractions
of the energy gap. In the case of InSb the average carrier energy

is about 0.05eV at 3xlO^V/m (see Ch. 5). The band gap of InSb is
0.23eV as given in Ch. 2, so + £r is roughly a factor of 10

greater than (Q-, This approximation is least valid for collisions
between very energetic electrons.

Another consequence of the above assumption is that the relative

velocity has a constant magnitude throughout the collision process,

as in the parabolic case. Therefore after some calculation

£ -
_ &
*0-%)

JI - i-fu-v) -MuV-W1) - (l - j-,
and

G- r

2(1 - P-) JI - ±(a-v)- $(<»»))),
where

u 4t
\ I +

Gr

+ 4/e x we (0 &£)
V 6- y

V =

-2

x1,
and

The cosines of the angles and ^ can be obtained in a
similar manner to those defined by equations 4.6.5.
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To include the effects of non-parabolicity on the mixing of
Bloch states in the differential scattering cross-section £>-(*,X)
requires the insertion of the function j defined by equation
2.2.17. It should be noted that the condition defined by equation
4.6.8 has the effect of keeping the reduced mass of the inter-carrier
collision process constant.



CHAPTER 5

SOLUTION OF THE BOLTZMANN EQUATION

BY ITERATION AND ITS APPLICATION TO

InSb AT 77 °K

5ol Introduction

A number of methods have recently been suggested for the
iterative solution of the high field Boltzmann transport equation

£6,53,54.], They involve the reformulation of Boltzmann's equation in
such a manner that its solution can be generated from an initial trial

function. The development of these approaches originated from the
desire to evaluate the transport properties for realistic models of
semiconductors to a required degree of accuracy. Consequently
numerical considerations of the problem in question are of prime

importance, since analytic solutions rarely exist in all but the

simplest cases. This chapter is concerned with the theory of Rees'
iterative solution of Boltzmann1s equation and its application to

InSb, with both the time dependent and time independent cases being
discussed,

The time dependent Boltzmann equation which describes a non-

degenerate semiconductor at high fields was derived in Chapter 4,
and can be written in a general form as

been assumed in this equation that the problem under consideration

is spatially homogeneous, and that only electric fields are present.
The simplest possible iterative scheme for solving this equation can

be obtained by a "stepwise" integration with respect to time,, Since

bo I , 1

represents the appropriate collision integral. It has

- Jim
— t

equation 5.1,1 can be written in the form

This equation could be used to evaluate the time development of the
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distribution function provided t is sufficiently small. If the
collision integral and the applied field are time independent, then
a steady state solution can exist; it would be expected that after

enough "steps in time" the distribution function would stabilise, and
thus satify the time independent Boltzmann equation, which is given

by equating the final term in equation 5.1.2 to zero. It should be

noted that

therefore to first order in At

4-^ i- FV rv J?* iTV

5.1.3

where 4 —^ $ - <~^r & symbolises the projection of the function in
~h

braces along its collision free trajectory for a period Afc: . This

equation, with the inclusion of higher order terms in At" , has been

discussed by Kwok and Schultz [55,56], who also considered other

approaches for generating the solution of Boltzmann1 s equation in such
a manner. However, it is essential that the method chosen should be
amenable to easy numerical evaluation, and the uniqueness of the
resultant solution be known. Recently a method has been developed by
Rees which possesses both of these qualities. This approach is initial
concerned with the solution of the time independent transport problem,

and will now be discussed,

The time independent Boltzmann equation is given by equation 5,1,
when the distribution function can be expressed solely in terms of j$
A reformulation of this equation can conveniently be obtained by

adding a term linear in ■> Thus

If' ^ 5a°4
G

This can be solved by introducing the integrating factor , such
that

* dtJ
where Qf can be obtained from the equation

5.1.5
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^ F. (~$ ) 5 „ 1 o 6

The inverse of an operator can conveniently be defined so that
oo

P — J ds £ t for Re p > O
This facilitates the solution of equation 5.1.6 giving

oo

which after application of the translation operator produces
oo

G(i) ~fdi°i(i- e*F)4

where £(<*>) is cho sen to be zero. The solution of equation 5,1,5

can be obtained in a similar manner leading to
C*3

£_

5,1.7

The above derivation of this integral equation was given by Vassell

[57] .

The collision integral for many problems of physical interest

may be expressed as a linear functional of •> A collision

integral of such a form is given by equation 4.1.4, which may be
taken as

m) = -fcfii') P(£'J- P(£jfiet£
The second term in the integrand may be integrated so that

cfi£)= X(£)
Thus by substituting equation 5.1.8 into equation 5.1,7, a

homogeneous Fredholm integral equation of the second kind is

obtained such that

5.1„8

j(£)-Jet-e(-foiit l-
F



-64-

Rees has discussed this equation in some detail and considered the

"self scattering" rate °^(^,) , which has no physical significance
since it involves the scattering of a carrier with no change of

momentum, and chose it to remain a constant value. Therefore, with

^(t) - ^ ^

^

jr(~£) - J £ {[J1-+■di 5.1.10
Ui-f'Z

It was known to Rees that when I is large this equation generates

the time evolution of the distribution function. This can be shown

simply by assuming that the second factor in the integral varies

slowly when is large, and can be removed from the integral
choosing its argument at the time corresponding to the average value
for the remaining integral. The remaining exponential can be

integrated and equation 5.1,10 reduces to the time evolution form

given by equation 5,1,3. Consequently Rees intuitively deduced that

by appealing to the stability of the steady state, provided the total
"self scattering" rate r-«6§> is positive, equation 5.1.10
generates the Boltzmann time independent solution. This condition has
been given mathematical justification by Vassell (57] who proved that
when the kernel of the integral equation is positive and linear, and
the initial trial iterate is also positive, then the unique steady
state solution to the Boltzmann equation 5,1,1 can be obtained. More

recently Kwok and Schultz Q55,56], and Rees ([7] have shown that the
speed of convergence of equation 5,1.10 can be increased in many

cases by choosing a "self scattering" rate that can be negative.

By taking <*($) = A($) in equation 5,1.9 we obtain the
iterative method which has been introduced by Budd ((53] and Price

(54], Budd applied the method to a specific problem where the
scattering processes are independent of the change in momenta of
the carriers. Consequently it was possible to express the anisotropic
part of the distribution function in terms of the symmetric part,

thus expressing the problem wholly in terms of a one dimensional

integral equation. This transformation is not possible for the

important scattering processes which arise in a polar semiconductor,
which is the problem of interest here,

A theorem from functional analysis proved by Banach (58] and
concerning the properties of continuous operators in metric spaces

will now be introduced, bearing in mind consideration of the

numerical solution of the integral equation 5,1.9.
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Theorem

If a contraction operator U maps a complete metric space X
into itself, then we have a unique fixed point and this point can

be obtained by the method of succesive approximation from any

point X„ 6 X - The contraction operator given in the metric

space X is defined such that a positive constant I exists
for any X'^X" 6 X where

pCcix'jUx") 4*<■ p(x'jX")
(X j X '/defines the "distance" between X and X • The fixed

point X* is defined by the condition LiX* ~X* This theorem can

be applied directly to the numerical solution of the integral equ¬

ations discussed previously by defining the metric space X as

the complete set of positive functions with the property

-f(H) - O
HI-*00

' r"
The distance between any two functions J , -j- can be defined as

eW>f") = Ma« if'-/"i
Consequently, if the metric distance between successive iterates is

monotonically decreasing, the theorem above proves that convergence

to a unique fixed point is obtained*
The reason for introducing this theorem is twofold: Firstly,

the uniqueness of the solution to the Boltzmann equation can be

proved numerically irrespective of the linearity of the kernel of
the chosen integral equation; and secondly, the rate of convergence

of the iterative process can quickly be ascertained. By consideration
of the drift velocity or average energy of the successive distribution
functions generated by the integral equation 5.1.10, it may take time
to decide whether the process is convergent or weakly divergent, and
it is of some importance that [ ' be chosen as small as is consistent
with generating a steady state convergent solution. Otherwise a great
deal of unnecessary computational effort will be involved. However, the

application of the above theorem readily gives the rate of convergence

after some few iterations*
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The remaining sections of this chapter will be concerned with
the application of the theoretical methods discussed in this section
to InSb.
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5o2 Time Dependent and Time Independent Solutions for n-InSb at 1J°K
Rees' method for solving the Boltzmann equation given by 5,1.10

will now be applied to InSb for combinations of the scattering
mechanisms discussed in Chapter 4. The calculations presented in

Chapter 3, which gave a good qualitative account of the main features
of the transport properties of InSb, were based on an approximate

method. Evidence was provided for the strength of the coupling
constants for the different scattering mechanisms, and, as a consequ¬

ence, the values of certain material constants of InSb. It is conven¬

ient to choose these values for the exact solution of the Boltzmann

equation for InSb.

Recent experimental evidence [59,6Cf) suggests that at very high
fields the effects of intervalley scattering become significant. In

previous calculations concerning intervalley scattering and the

transport properties of GaAs [[61,633 the application of the drifted
Maxwellian approach has proved unsatisfactory when comparison with
more exact calculations is made. (A more detailed discussion will

be presented in section 5.3). However, since the approach discussed
in Section 5.1 is essentially exact, intervalley scattering can be
included with confidence, A Monte-Carlo calculation recently repor¬

ted by Fawcett and Ruch [.62^ on InSb has included these effects:
The material constants for describing the higher valleys and inter¬

valley scattering which this calculation was based on will also be
used here, and the constants for the central (000) valley as descr¬
ibed previously.

The application of Rees' iterative method can conveniently be

performed in two stages. Firstly, the appropriate collision integral
can be evaluated leading to

yi),p-- +ffii1)Pdti)dt' ».«.i
and secondly, the resulting function is projected along the collision
free trajectory of a carrier, followed by an additional integration

The inclusion of the effects of band structure non-parabolicity to

the evaluation of equation 5.2.1 have been given in Chapter 4. Its
inclusion for equation 5.2.2 will now be discussed.
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In evaluating the collision integrals of Chapter 4 it was found
convenient to define the distribution function as J ~ Cf?jCoS&),,
Consequently to perform the operation defined by equation 5.2.2 it
is necessary to find expressions for £ and , where

jfl -
For the band structure co,

F(e') - » and u>iy'= > (ft~)
Therefore

pfe'J = F{G) -'Uf(G)^to9s 5.2.3
and ^

CoSY' — (jF(£) U>S>X — ~-j/jFte')
To solve equation 5.2.3 the inverse of the function Ffe) must be

known and it may be necessary to do this numerically. However, the
calculations of Chapter 3 show that a good approximation to the band
structure of InSb is given by

fr(i=) — 2 +*=/£)/•#
which has an inverse

E - G./l\ + tilEMI _ c) 5.2.4*
2 W G- / •

The solution of equation 5.2.3 is obtained by substitution, A brief

description of the numerical < solution of the problem described
above will now be given.

A representative programme is listed in Appendix 2 which calcula¬
tes the polar mobility, including the full effects of the lattice

periodicity, for InSb at 77°K and a field of l(F"V/m, The distribution
function was given by a matrix of 500 points in the (E , Co) plane
to produce an accuracy of greater than \°/o for the corresponding drift

velocity and average energy. The integration over the phonon field

parameters and (p were evaluated using a 10 step Gaussian integra¬
tion method for each, taking the appropriate values for the distribut¬
ion function using a three point Lagrange interpolation formula. No

interpolation over the energy is necessary since the original values
for the distribution function were judiciously chosen as integral
fractions of the phonon energy. The final stage of the iterative

process described by equation 5.2.2 was accomplished by using a 20

step Gaussian integration method for fc over an appropriate range,
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and using a six point bivariate interpolation formula on the logari¬
thm of the distribution function. This part of the calculation is

very much quicker than the first part, and the accuracy of the resul¬
tant drift velocity and average energy is greater than 2over the
whole calculation. In Appendix 2 the first listing shows the variat¬
ion of drift velocity and average energy of the electrons as they

tip .

evolve from thermal equilibrium to the steady state value for 10 V/m„
It was necessary to choose a small value of ( /1 1 initially corresp¬

onding to 0.2 picoseconds in order to obtain convergence, but a

larger value of 0.75ps was possible when the distribution function
was nearer the steady state solution. A convenient way of making
the convergence process more rapid can be obtained by choosing an

appropriate distribution function near the expected solution. In
the example given by the second listing shown in Appendix 2 an

exact drifted Maxwellian distribution function with an average

energy and drift velocity close to the expected solution was chosen,

resulting in rapid convergence. The uniqueness of the solutions
for the two above calculations is evident from the distance between

successive iterates through consideration of Banach's theorem stated
in the previous section of this chapter. To include the effects of

intervalley scattering, which will now be discussed, it was necess¬

ary to improve the efficiency of the above programme.

Table 2

(000) valley (111^ valleys

m* 0. 013m 0. 2m

Acoustic deformation potential 7, 2eV lOeV

Optical deformation potential 0 1 x 10"eV/m
Band Gap 0, 23eV

Spin orbit splitting of valence band oo

Static dielectric constant 15 68

High frequency dielectric constant 17. 50

Debye temperature 278°K

Crystal density 5. 79 x lO^Kg/m^
Sound velocity 3. 7 x 103m/s
Lattice spacing 6. 48A
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Table 2 lists the material constants for the central (000)
valley and the four satellite •(111> valleys for InSb used in the

calculations which follow. The intervalley scattering process was

assumed to take place between inequivalent valleys by interaction with

longitudinal acoustic phonons at the <(lli)> edge of the B.Z. with an

energy of 12„7meV [64,65j. The <^111> valley was assumed to be 0.45eV
above the conduction band edge, and the intervalley coupling constant

lo .

was taken as 5 x 10 eV/m. Plot 1, Fig., 12 shows the drift velocity
field characteristic for the model described. Plot 2 and the points

(®) of Fig. 12 indicate the theoretical calculation by Fawcett and
Ruch and the experimental results by Neukerman and Kino [45? .

Fig. 13 shows the average electron energy (bold line) and the fraction
of electrons in the (000) valley (dotted line) for InSb at The

strength of the scattering by the polar phonon field resulting from
the material constants of InSb chosen by Fawcett and Ruch is greater

than in the present calculation and produces a lower population of
the higher valleys. Convergence of the iterative process is slow at
low fields but the low field mobility is estimated to be about
1.8 x id*"ma/V~s.

Figs. 14 and 15 show th£ first four terms of the spherical
harmonic expansion of the distribution function corresponding to
fields 1 x 10^V/m and 5 x lO^V/m respectively. The Legendre functions
are normalised such that o At a field of 1 x 10^"v/m the distr¬
ibution function is streamed in the direction of the field as would

be expected since the average carrier energy is about the same as the

polar phonon energy. The change in slope of the spherically symmetric

part of the distribution function is due to the onset of polar phonon
emission. At high fields the carrier energy increases with respect to
the polar phonon energy, and the higher terms in the spherical
harmonic expansion begin to decrease as can be seen in Fig. 15. The

average carrier energy is still only seven times the polar phonon
4* /

energy at 5 x 10 V/m. At energies above 0.45eV the distribution
function rapidly decreases due to intervalley transfer,

The inclusion of electron-electron scattering was considered in

the above calculation for the spherically symmetric part of the
distribution function. It was found to have a small effect of the

order of a few percent for carrier concentrations in the range
(9 xo -3

10 —10 m and was subsequently ignored. This conclusion was also
reached by Rees .
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F (x iO4 V/m )

F Iff. 12

The variation of drift velocity wUh field for InSb at 77CK for

the present calculation in plot 1, and in a similar calculation bv

Fawcett and Ruch [_62j in plot 20 The experimental points (®>) are

given by Neukerman and Kino [45] , (J5 H [lOO])



F Cx/oV/m)
Fie. IS

The variation of average electron energy (bold line) and fraction
electrons in the (000) valley (dotted line) with field for InSb at
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E(*

FIG. 14

The spherical harmonic expansion of the distribution function for

a field of 10^V/m for InSb at 7 i' K 0



7 4

o / 2 5 4- 2 £
E(x/o~'e^ J

FIG..15

The spherical harmonic expansion of the distribution function for

a field of 5 x 10*V/m for InSb at 77" K.
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By choosing a suitably large value of r the time evolution
of the distribution function can be obtained from equation 5„1.10,

Appendix 2 lists the time evolution of the drift velocity and
4- /

average carrier energy for a field of 1 x 10 V/m. This is represented

by plot 2, Figs. 16 and 17, Plots 1 and 3, Figs. 16 and 17 show the
drift velocity and average energy evolution for the application of
fields 1 x 103V/m and 4 x 10*V/m$ only polar scattering has been
included for convenience. As has been pointed out by Rees, at higher
fields the carrier drift velocity overshoots its steady state value,
reaches a maximum value and then decreases. The approach to the steady
state at the lowest field is slow.
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The evolution of the drift velocity in time for electrons in InSb

at 77°K for fields of 10^V/m, lO^V/m, and 4 x 10 v/m in plots 1, 29
and 3 respectively, Only polar scattering, is .included.



I

/ £

The evolution of the average energy in time for electrons in InSb

at 77 K for fields of 10 V/m, 10^V/m. and 4 x lO^V/m in plots 1, 2f
and 3 respectively. Only polar scattering is included.
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5,3 Comparison of the Drifted Maxwellian Approach with the Boltzmann

Solution

The solution of a particular problem by the drifted Maxwellian

approach is considerably easier than by the exact methods previously

discussed, and consequently has some value for qualitative or perhaps

semiquantitative analysis. It is estimated that the computational
effort involved in satisfying the one dimensional simultaneous

equations for the drifted Maxwellian solution is about two or three

orders of magnitude easier than the integral equation methods.

Consequently it is of considerable interest to discuss the limitations
of the farmer approach through comparison with the exact Boltzmann

solution.

The drift velocity-field characteristic, including polar

scattering only and the full effects of the lattice periodicity, are

shown for the solution of Boltzmann's equation in plot 1, Fig, 18,
and for the drifted Maxwellian solution in plot 2, Fig, 18, The
material constants for InSb at 77°K are those discussed previously,

A. .

It can be shown that the agreement for fields between .1 and 4 x 10 V/m
is very good, the two solutions differing by only 10%5 at higher
fields the difference increases somewhat. The mobility for the
Boltzmann solution at low fields is estimated to be about 1,9 x 10* m^/V-s?
the drifted Maxwellian approach is about 40^ lower. This large difference
can be understood by considering the onset of polar phonon emissions
At low fields the average electron energy is about half the polar

phonon energy, thus the polar phonon emission produces a rapid decrease
in the exact distribution function at higher energies. The

corresponding drifted Maxwellian solution attempts to approximate the

rapidly varying function by a smoothly varying function. This produces
a corresponding inaccuracy in the resulting mobility. At higher fields
the average electron energy increases, and the exact distribution is
able to accommodate the onset of polar phonon emission, Consequently,
as can be seen from Figs, 14 and 15, the distribution function varies
less rapidly and the drifted Maxwellian is more able to represent the
Boltzmann solution.

In plots 1 and 2, Fig, 19, the average energy and field are given
for the exact and drifted Maxwellian solution for carriers scattered

by polar phonons in InSb as discussed above. Very good agreement
between the two theories is obtained. The reason for this is because

at energies above the onset of polar phonon emission the corresponding
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F (x/C? )

F16. 18

The variation of drift velocity with field for InSb at 77CK La

given for the exact calculation in plot 1 and the corresponding drifted
Maxwellian calculation in plot 2, with the exclusion of acoustic and
intervaI ley scattering, Plots 3 and 4 are the same calculation for
plots I and 2 out with the inclusion of acoustic scattering with a

deformation potential of -30eVo
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F ( X l O* V/m )

FIG: \°l

The variation of the average energy with field for InSb at 7 7° K

is given for the exact calculation in plot 1 and the corresponding
drifted Maxwellian calculation in plot 2„ with the exclusion of
acoustic and intervalley scattering. Plots 3 and 4 are the same

calculation as for plots 1 and 2 but with the inclusion of a8oust<

scattering with a •deformat ion potential of -30eV„
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relaxation time is given by a slowly varying function, as can be
seen from equation 2.2.20, and since the average carrier energy

depends directly on the spherically symmetric part of the distribut¬
ion function which is least affected by the detailed peculiarities
of the distribution function, the drifted Maxwellian is able to

give a good approximation to the exact solution. Fig, 20 compares

the spherically symmetric parts of the distribution functions

corresponding to the exact solution for plot 1, and the drifted
Maxwellian solution in plot 2, at a field of 5 x l(/~V/m. The
average energy for the two functions is close, but the detailed form
is different. This is due to the weakening of polar scattering at

high energies as has been discussed by Fawcett et al (B3] in
connection with intervalley scattering, and the inadequacies of
the drifted Maxwellian approach to represent the inclusion of these
ef fects o

Plots 3 and 4, Figs. 18 and 19, describe the properties of the
above system for InSb, with the inclusion of acoustic phonon scatt¬

ering taking a deformation potential of -30eV, for the exact and
drifted Maxwellian solutions respectively. Reasonable agreement
exists between the two treatments up to about 3 x 10 V/ro, and the
low field mobility for the exact solution is estimated to be

1 x /
1.0 x 10 m /V-s, and the corresponding drifted Maxwellian solution
about 30^ less, However, the solutions at higher fields are very

different. It can be seen from equation 2.3.8 that the relaxation
time for acoustic scattering rapidly decreases with increasing

energy. From the above discussion this is precisely a situation
in which the drifted Maxwellian distribution function has diffi¬

culty representing the exact solution. Consequently the drifted
Maxwellian treatment overestimates the average electron energy at

high fields.

Interpretation of the inadequacies of the drifted Maxwellian

theory is not straightforward since the resulting solution

depends simultaneously on the average energy loss and the average

momentum loss of the carriers. However, some insight into the
nature of the approximation can be obtained by a detailed study
of the relaxation mechanisms present as indicated above, The
solution of more realistic models for semiconductors involving

spatial inhomogeneity for example, cannot be solved by the
iterative method discussed here at the present time, since it
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£ (eVJ

FIG. 20.

The spherically symmetric part of the distribution function for

electrons scattered by polar phonons in InSb at 77°.K tor an exact

calculation in plot 1, and the corresponding drifted Maxwel l «art

calculation in plot 2.
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would involve at least an order of magnitude more computation than
can reasonably be carried out by existing computers. The application
of a set of drifted Maxwellian distribution functions suitably
modified to represent the corresponding spatially homogeneous
Boltzmann solutions could prove a useful starting point for such

a calculation.



APPENDIX .1

A summary of the relevant results from Kane's [l9j O band
structure calculation of InSb will now be given.

Equation 10 of Kane's paper gives the functional form of the

conduction band of InSb as

Al.l^-ff2 _ & [h -j-G) C<= t (s +&)(& + jA )
2m* ~ &(G+A\(l='+Gi^A)

where {r — E - $ (2m* , Q is the band gap, A the spin orbit
• J *

splitting of the valence band, (T) the effective mass at the
centre of the B.Z., and fy\ the free electron mass. Since |r ^ (Ztto*
and m ^ 0.013m it is a good approximation to replace £ by £
in equation Al.l. The coefficients for the inclusion of the terms

arising from the mixing of Bloch states and spin-reversal scattering
are given by equation 15 in Kane's paper and can be written as

ai

bg =

iP(E+G + Ui/3)
/i-fPVc'nfVGr jap r / <? '

{2 AE/3

and

C* =

2^ET/ q >

E(t-h6±2A/s)
/(WV£lJ (E4 6 i |Z)V 2 AZ Ez fq >

A1.2

where

_ £UZJJtJCJ+J-IA)
~(£-+G+-~2A/$~)

The spin orbit splitting for InSb A ^ 16.V , and a reasonable

approximation for equations Al.l and Al»2 arise from the assumption

£ A ■ ThiB 1 eads to

~i.J- = £ (( f £ (G) ,

2M*
and

~ J(\ + E/G)((\+2E(G) A1.3

bt = JE / (_3(g+2.S) = Ce Uz .
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To incorporate the effects of equations A1.3 for the case of
acoustic phonon scattering it is necessary to replace lr by
and expand the resulting function to first order in . Thus,

taking

b

I ZZ

=

+ x

I +2X

3(1+2*) (« -t

^ UQ, \
2G(l+x)((+2x) /

ji nq,
2&x( / + 2x)

and

2* (I 1 •fiuq,
2Gx (i+2x)

Therefore

emu

I

it* uy

ix (/+*)

(i + ax)v

( I +Zx V - x1 + ('t | xj \ ^ -jWjgV 4- + G- ( l + ix) / ^ !

j - c+
l+2x)(/-fX)

and

O
3xl

4 ( 1 + 2 x J1
+

4 x ( i+Zx) ) - G ,

in the notation previously defined,, It is straightforward to obtain
the factors resulting from the inclusion of lattice periodicity.



APPENDIX 2

PRO-GRAMME FOR CALCULATING THE POLAR MOBILITY OF INSB AT HIGH
ELECTRIC FIELlDS.

DIMENSION WGC 12).F(3) >DF( 3 ) . GM C 16) . GN C 16). BFC 40. 15) .AAC 3) ..BBC
1WNC 20) .ENC 20)
COMMON BG (40. 15). BTC40. 15). WY (45). GG ( 15 ) . WXC 40) . WZ C 40)
READ(5.101) (GNCI).WG(I).1=2.11)
READ ( 5. 103) (WY(I).WYC 16-1).1 = 1.8)
READ(5. 104) CWXCI).WXC1 + 1).1=2. 10. 2)
READ(5.105) CENCI).UNCI).1 = 1. 20)
PI=3.1416
GAMMA=1./O.2E-12
N= 6
DO 5 1=1.15
GG(I)= - 1 • + (I - 1 )/7•
GMCI+1)=COS(PI/2.*C1.-GNCI+1)))

5 CONTINUE
DO 6 1=1.15
WXC I ) =Yi Y ( I )

6 CONTINUE
DO 77 1=1 .15
WYC 30-1)=WYCI)
WYC 28 + 1 ) =VJYC I )

77 CONTINUE
WYC15)=2.*UYC15)
WYC29)=WYC29)*2.
THETA=2.78E+2
EM= 0• 13E- 1
T = 7•7E+ 1
EG = 2.3E- 1
TEX=EXPC THETA/T)
FIN=5•093E +8*THETA*SQRTC EM)/C TEX-1.)
VD=0 •

EL,EC — 1 • E+^i
TEMP=7.7E+1
c 1 = 1 ./C8.617E-5*TEMP)
B1 = 3•37E-6*SORT C EM)
D2=4./EG

C2=3.37E-6*C1*VD*SQRTCEM)
A=8.617E-5*THETA
C3= 1 •

C5 = 3•37E-6*SQRT C EM)*VD
AZ = 7 .

100 ,FORMAT C 15E12.4)
977 FORMAT CE12.4)
101 FORMAT C2E12.4)
103 FORMATC2F10.7)
104 FORMAT C2F10.7)
105 FORMAT C2F9.6)
106 FORMAT C IX. 'THE VALUE OF GAMMA IS'.El 2.4)

TABULATION OF TRIAL FUNCTION

DO 7 1=1.30
E=CI - 1)*A/N
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XX=EXPC-E*C1)*C3
XY=SQRTCE+E*E/EG)*C2
DO 9 J= 1 j 1 5;
BTCIj J)=XX*EXP(XY*GG( J))

9 CONTINUE
7 CONTINUE

TEM=EXP(THETA/TEMP)
TEMX=EXP( THETA/C N *TEMP))
LL= 1
CALL VEL.0 C LL. B 1. EGi Aj N)

MAIN PROGRAMME

NN=29+N
DO 3 KK=1.2
TD=ELEC/GAMMA/B1
WRITE (6.106) GAMMA
DO 999 LL = 2.25
DO 98 J=l.15
IU=29+N
DO 99 1=30.IU
BGCI.J)=BGC29.J)/TEMX**C1-29)

99 CONTINUE
98' CONTINUE

DO 15 1=2.29
E=CI - 1)*A/N
IF CI.GT.N+1) GOTO 17
IN=2
GOTO 19

17, IN=3
19 E = E+A.

DO 21 M=1.IN
FCM)=E+E*E/EG
DF(M)=1.+2.*E/EG
S F= S QRTC1.+E/EG)
,SDF=SQRT(DFCM))
AACM)=SF/SDF
BBCM)=SQRTCE/C3.*EG))/SDF
E =E-A

21, CONTINUE
F 1 = F ( 1 )
F2 = FC 2)

A1=SQRT(F1)
A2=SQRTCF2)
A5=2.*A1*A2
F4=CF1-F2)/C2.*F2)
AP=AA,( 1 ) *AA( 2 )
AP2=AP*AP

BP=BB C 1)*BBC2)
BP2=BP*BP

ALP=AP2+2« 25*BP2
BEP=6.*A.P*BP

GAP=6.75*BP2
FAP=CF1+F2)/A5
FAP2=FAP*FAP
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P£P=C AL.P+FAB*BEP+FAP2*GAP:>
BPP= ( B£P + 2..*,PAP*GAP:> /A.5
ZEP-GAP/ ( 4 .jsnF 1 *;F2)
TPi -DFC 1-}..*:C!DE"P*AL'0GC < A2+A1) / ( A1 -A2) ) -A5* < EPP-A5*FAP*ZEP) >
TI?3MP»
H 1*=A;P-/A 1
£ LrpJPXl)*PI*TEX
I r =1 +N*:
IP .CI^.L.T.3^ -GOTO 23
F 3 *F(3).
A3--SQOT( F3>
A6 - 2 ?

. • A2*A3
F5=C F3-F2);A,C;-2. *F2)
AN=AA( a')

AN2=AN*AN
BN=BB(2)*BB(3)
BN2=BN*BN
ALN=AN2+2.25*BN2
BEN=6.*AN*BN

GAN=6.75*BN2
FAN=CF2+F3)/A6
FAN2=FAN*FAN
DEN=AL.N + FAN*BEN+ FAN2* GAN
EPN=CBEN+2.*FAN*GAN>/A6
2EM=GAN/CA6*A6)
TR3=TEX*DFC3)*CDEN*ALOGC CA2+A3)/(A2-A3))-A6*CEPN-A6*FAN*ZEN))

fI3=A2/A3
Z2=DFC3)*PI*A3/A2

. I"D=L-N
23 REL=2.*PI/A2*CTR1+TR3>
30 DO 25 J= 1 .15

GC=GG(J)
GS=SQRTC1.-GC*GC)
SUL1=0.
SUL3=0•
DO 27 L=2j 11

■

, Q1=A2*GNCL)+A1
■OP=DEP//Q 1 - Q1* ( EPP-ZEP*Q1 *Q1)
Q2=Q1*Q1/F2
R1=F4-0.5*G2
R2 =SQRTCQ2-Rl*Ri:>*GS*Hl;
S1=H1*GC*<1.+H1)
SON 1 = 0-
IF CIN.LT.3) GOTO 29
Q3=A2+GNCL)*A3
QN=DEN/Q3-03*(EPN-ZEN*Q3* Q3)
Q4=Q3*Q3/F2

. R3=F5-0.5*Q4
R4=SQRTCQ4-R3*R3)*GS*H3
S3=H3*GC* C 1•+R3)
SUM3 = 0•

29 DO 33 M=2j 11
GM1=S1-GMCM)*R2
R =7.0*GMl+8•0
J1 =R



-89-

R=R-J1
IF CR.LT.0.5) GOTO 71
R=R-1.
J1=J1+1

71 IF CJ1.EQ.1.OR.J1.EQ.15) GOTO 198
GOTO 199

198 J1 = C 8 +6*Jl)/7
R=C1.-ABSCR))*CJl-3)/IABSC Jl-3)

199 RR=R*R
SUM 1 = SUM 1+U G C M ) * CCRR-R)/2.*BGCII.Jl-1)+C 1. - RR) * BG C 11. J1 )1 + (RR+R)/2.*BGCII.J1+1))
IF CIM.LT.3) GOTO 33
GM3=S3+R4*GMCM)
R =7•0*GM3+8•0
J3 =R

R=R-J3
IF CR.LT.0.5) GOTO 73
R=R-1.
J3=J3+1

73 IF CJ3.EQ.1.0R.J3.EQ.15) GOTO 298
GOTO 299

298 J3=(8 +6*J3)/7
R=C 1.-ABSCR))*CJ3-3)/IABSC J3-3)

299 RR=R*R

SUM3 = SUM3+WG CM)* C C RR-R)/2•*BG CI D. J3-1) + C 1.-RR)*BGCID. J3)
1+CRR+R)/2.*3GCID.J3+1))

33 CONTINUE
SUL1= SUL1+WG C L)* S UM 1* QP
IF CIN.LT.3) GOTO27
SUL.3 =SUL3+WGCL)*SUM3*QN

27 CONTINUE
BFC I . J) = C Z 1 *SUL 1+Z 2*SUL.3) *FI N+ C GAMMA.-REL*FIN) *BG CI. J)
BFC I.J) =ALOG C BFCI. J)/ GAMMA.)

25 CONTINUE
15 CONTINUE

PROJECTION ALONG COLLISION FREE TRAJECTORIES

DO 398 J=l.15
IU=29+N
DO 399 I=30.IU
BFCI.J)=BFC 29.J)-A*C1*C 1-29)

399 CONTINUE
398 CONTINUE

DO 45 1=2.29
E= CI - 1)*A/N
F1=E+E*E/EG
A1=SQRT C F1)
D1=1./CC1*A1)
ET=SQRTCE)*2.

89 DO 47 J=1 .15
GC = GGC J)
XL=AZ*TD
SUM= 0•
DO 49 NM=1.20
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T C=XL/2.* C 1.+EN C NM)>
GD=F1-2.*GC*A1*TC+TC*TC
Z=CSQRTC1.+D2*GD )-l.)*EG/2.
RE=N *Z /A+1•
I 1 =RE
RE=RE-1 1
IF CI 1 .ME. 1) GOTO 50
RE =RE - 1 .
I 1=2

IM=29+N
50 IF CI1.LT.IM-1) GOTO 51

I 1 = 1M- 1
RE= 1 .

51 GF=CA1*GC-TC)/SQRT(GD)
I 2 = 1 1 + 1
RG=7•0*GF+8.0
J1 =RG
RG=RG-J1
IFCJ1.NE.1) GOTO 58
RG =RG- 1.
J1 = 2

58 IF(J1•ME.15) GOTO 59
RG= 1 .
J1 = 1 4

59 J2= J1+ 1

Rl=RE/2.

R2=RG/2•

R3=RE*RE/2.
R4=RG*RG/2.
HF=RE*RG
SUM=SUM
1+pNCNM)* EXPC CR3-R1)*QFC I 1 - 1.» J1) + C R4-R2 ) *BFC I 1, Jl-T ) + C 1 • +HF-2
2.* C R3 +R4))*BFCI 1>J1) + CR3 +R1-HF)*BFCI 2* J1) + CR4+R2-HF)*BFCI I,J2)+HF*
3BF (I2.»J2)-TC/TD)

49, CONTINUE'

BTCIjJ)=SUM*Bl/ELEC*XL/2.*GAMMA
47 CONTINUE
45 CONTINUE

CALL VELO CLLjBL EG J A* N )
999 CONTINUE

GA.MMA= 1 • / 0 • 7 5E- 1 2
3 CONTINUE

STOP
END

SUBROUTINE VELOCLJ BLEGj AJN)

COMMON BG ( 40.» 1 5) j B£C40J15), YiY (45), GGC 1 5) J WXC 40) .» VJZ C 40)
DIMENSION ,VC 1 00) >XLP 1C 40) > XLP2C 40) ^XLP3C 40) ^XLP4C 40)
TX=4.
MN=21+N
VEL=0.
SUM2=0•

200 FORMAT CI4,4E12.4)
201 FORMAT ( 14.» 2E 1 2• 4.> 12XJE12.»4)
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202 FORMAT(15F8.5)
SUM3 = 0•
SUM4=0.
DO 5 I = 1 j 29
E=C I - 1)*A./N
F1=E+E*E/EG
A1 = S QRT ( F 1)
DF=,C 1 . +2 • *E/EG ) *A 1
SUMA= 0..
SUMB=0.

66 DO 8 J-1 * 15
Z,G=BG:C I 3 J)
ZF-BT CI>J)

,9 BGCIjJ)=ZF
T =ABS C ZG-ZF)
WW=WXCJ)*ZF
IF CT.LT.VEL) GOTO 13
VEL = T

13 SUMA=SUMA+WW*GGC J)
SUMB=SUMB+WW

8 CONTINUE

If CL.EQ.. 1 .Q'R.L. EQ.20) GOTO 22
GOTO 22

23 K=1/2

T=I-2*K
I F C T. GT,. 0. 1) GOTO 22
WRITEC 6j202) C BTCIj J)J J=1J 15)

22 SUM2=SUM2+WyCI)*SUMA*F1
TERM=WYCI)*SUMB*DF
SUM3=SUM3+TERM
SUM4=SUM4+TERM*E

5 CONTINUE
IF CL.EQ.1.OR.L.EQ.20) GOTO 56

. GOTO 56
54 DO 51 1=2^30,2

XL.L 1 = 0 •

XLL2=0.
XLL3=0.

. XLL4=0•
DO 53 J=1j15
XMU=GG(J)
DIF=BGC N J)*WXC J)/0. 250193
XLL1=XLLl+DIF/2* ^
XL.L 2=XLL 2 +DI F* 3. / 2 . *XMU
XLL3=XLL3+DIF*5./2.*C 3.*XMU*XMU-1.)/2.
XLL4=XLL4+DIF*7./2.*XMU* C 5•*XMU*XMU-3•)/2.

53 CONTINUE '
XL P1 CI ) =XLL, 1
XL.P2C I ) =XLL2
XLP3CI)=XLL3
XLP4CI)=XLL4

51 CONTINUE
WRITE C 6j 202) CXLP1CI)JI=2J30J2)
WRITE C 6j 202) CXLP2C DM =Q, 30.* 2)
WRITE (6^ 202) (XLP3CI)iI=2j 30J 2)
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WRITE C 6j 202) CXLP4C I ) * I =2* 30* 2)
56 VX=2.*SUM2/SUM3/B1

AVE = SUM4 / SUM 3
VCD =VEL.
IF CL.LT.3) GOTO 10
RAT=VEL/VCL-1)
WRITE C 6j 200) D VX* AVE* RAT *VEL
GOTO 12

10 WRITE C 6* 201) L*VX*AVE*VEL
12 RETURN

END
/DATA
-0.9739E+00
-0.8651E+ 00
-0.6794E+00
-0•4334E+ 00
-0. 148.9E+ 00
0. 1489E+ 00

0.4334E+00
0.6794E+00
0.8651E+ 00
0.9739E+00
.0090242

.0710987
- .0770721-
•3501443

- .6625093-
1.2630122 1.

0.6667E-01
0. 1495E+00
0.2191E+00
0.2693E+00
0.2955E+00
0.2955E+00
0.2693E+00
0.2191E+00
0. 1495E+00
0.6667E-01
0090242
0710987
.0770721
3501443
.6625093
2630123

-1.6802270-1.6802270
1.9534439 1 .9534439
0.0069028 0.0603652
-0.0926840 0.4301592

2.2336420
4.3920768
1 .5148337
.017614

-1 .0343692
-3.5331888
-3.7088370
- .993128
- .963972
- .912234
- .839117
- .746332
-

. 6/§6054
- .510867
- .3^3706
- .227786
- .076527
.076527
• 227786
.373706
• 5 10867
• 636054
.746332
.839 1 17
.912234
.963972
.993128

.040601

.062672

.083277
• 1019.30
. 1 18195
.131689
.142096
. 149 173
. 152753

. 152753

. 149173

. 142096

. 131689

. 118 195

. 101930

.083277
• 062672
.040601
.017614
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4
Time evolution for a field of 1 x 10 V/m

The programme listed above will calculate the time evolution
of the distribution function for InSb at a field of 1 x lO^V/m,
For brevity, only the effects of polar phonon scattering has been

included, but at this particular field it is the dominant scattering
mechanismu

The following table lists the time evolution of the carrier

drift velocity and average carrier energy for InSb at 77°K from

equilibrium* The first column gives the number of the iterate, the
second column the carrier drift velocity in m/s, the third column
the average carrier energy in eV, the fourth column the maximum
"distance" between two successive iterates, and the fifth column
the ratio of successive "distances" between iterates:

1 0,1404E 01 0.1092E-01 OolOOOE 01

THE VALUE OF GAMMA IS 1./0. 2E-12

2 0.2417E 05 0.1096E-01 0.5235E-01
3 0 * 4632E 05 0„1106E-01 0.5023E-01 0.9594E 00
4 0„6744E 05 0.1122E-01 0.4806E-01 0.9569E 00

5 0 * 8798E 05 0„1142E-01 0»4940E-01 0.1028E 01

6 0„1081E 06 0.1165E-01 0„4979E-01 0.1008E 01

7 0,1279E 06 0o1I93E-01 0„4930E-01 0.9901E 00

8 0.1473E 06 0.1224E-01 0.4804E-01 0.9746E 00

9 0.1664E 06 0„1258E-01 0.4711E-01 0.9807E 00

10 0,1850E 06 0 *1295E-01 0 »4751E-01 0.1008E 01

11 0 o2032E 06 0*1334E-01 0 * 4722E-01 0«9941E 00

12 0„2209E 06 0.1375E-01 0«4633E-01 0.9811E 00

13 0 * 2381E 06 0*1418E-01 0.4556E-01 0.9833E 00

14 0 * 2548E 06 0*1461E-01 0»4569E-01 0.1003E 01

15 0„2710E 06 0.1505E-01 0 * 4527E-01 0.9908E 00

16 0 * 2867E 06 0.1548E-01 0„4435E-01 0.9798E 00

17 0o 3019E 06 0.1591E-01 0.4425E-01 0.9976E 00

18 0 * 3166E 06 0.1634E-01 0.4403E-01 0.9952E 00

19 0»3308E 06 0*1675E-01 0 o 4336E-01 0.9848E 00

20 0 *3444E 06 0.1714E-01 0.4306E-01 0.9930E 00

21 0o 3574E 06 0,1752E-01 0.4293E-01 0.9969E 00

22 0 * 3698E 06 0.1788E-01 0»4238E-01 0 * 9872E 00

23 0„3814E 06 0»1822E-01 0„4147E-01 0.9784E 00

24 0 * 3924E 06 0,1855E-01 0.4025E-01 0.9706E 00

25 0 * 4026E 06 0.1886E-01 0 <, 3879E-01 0.9637E 00

THE VALUE OF GAMMA IS 1./0.75E-12

2

3
4

5

6
7

0,436IE 06 0.2007E-01
0.4498E 06
0.4570E 06
0 *4603E 06
0o4613E 06
0„4612E 06

0.2095E-01
0.2169E-01
0o 2225E-01
0„2264E-01
0„2292E-01

0.1364E 00
0.1139E 00
0.9813E-01
0.8339E-01
0.6952E-01
0,5767E-01

0.8355E 00
0.8613E 00
0.8498E 00
0.8337E 00
0.8295E 00

8 0o4604E 06 0.2312E-01 0»4876E-01 0.8455E 00
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9 0 o4593E 06 0.2326E-01 0.43I3E-01 0.8846E 00
10 0 o4582E 06 0.2336E-01 0.4035E-01 0.9355E 00
11 0.4570E 06 0.2343E-01 0.3833E-01 0.9499E 00
12 0.4558E 06 0.2348E-01 0.3650E-01 0.9522E 00
13 0.4548E 06 0.2351fi-01 0.3466E-01 0.9466E 00
14 0.4538E 03 0.2354E-01 0.3281E-01 0.9466E 00

15 0,4528E 06 0,2355E-01 0.3101E-01 0.9452E 00

16 0.4520E 06 0.2355E-01 0.2933E-01 0.9457E 00
17 0.4512E 06 0.2355E-01 0.2877E-01 0.981IE 00

18 0.4504E 06 0.2355E-01 0.2898E-01 0.1007E 01

19 0.4497E 06 0.2355E-01 0.2901E-01 0.100 IE 01
20 0.449 IE 06 0.2354E-01 0.2889E-01 0.9959E 00
21 0.4485E 06 0.2353E-01 0.2865E-01 0.9919E 00
22 0.4480E 06 0.2352E-01 0.2833E-01 0.9887E 00
23 0.4475E 06 0.2351E-01 0.2794E-01 0.9864E 00
24 0.447 IE 06 0.2350E-01 0.2751E-01 0.9845E 00
25 0.4467E 06 0 o 2349E-01 0.2705E-01 0.9833E 00

Steady state for a field of 1 x 10^V/m
The corresponding steady state distribution function can be

evaluated by choosing a suitable initial distribution function
with the same average energy and drift velocity. In this case an

exact drifted Maxwellian distribution function with an electron
O i

temperature of 95 K and drift velocity of 4.5 x 10 m/s was chosen
for the initial function. The columns correspond to those previously
defined;

1 0.4517E 06 0 o 2483E-01 0.257IE 01

THE VALUE OF GAMMA IS 1./0. 75E-12

2 0.4464E 06 0.2477E-01 0.4800E 00
3 0 o 4482E 06 0.2438E-01 0.3805E 00 0.7928E 00
4 0„451IE 06 0.2420E-01 0.2833E 00 0.7444E 00
5 0.4527E 06 0.2407E-01 0.1978E 00 0.6983E 00

6 0.4519E 06 0.2394E-01 0.1162E 00 0.5874E 00
7 0.4496E 06 0.2382E-01 0.6327E-01 0.5446E 00
8 0.447 IE 06 0.2372E-01 0.3121E-01 0.4932E 00
9 0 o 4451E 06 0.2363E-01 0.2757E-01 0.8835E 00

10 0.4438E 06 0.2357E-01 0.2580E-01 0.9358E 00
11 0.4431E 06 0.2352E-01 0.2526E-01 0.9789E 00
12 0„4428E 06 0.2349E-01 0.2436E-01 0.9647E 00
13 0.4427E 06 0.2347E-01 0.2285E-01 0.9378E 00

14 0.4426E 06 0.2346E-01 0.2125E-01 0.9300E 00
15 0.4426E 06 0.2346E-01 0.1979E-01 0.9315E 00
16 0.4425E 06 0.2345E-01 0.1854E-01 0.9366E 00

17 0.4425E 06 0.2344E-01 0.1747E-01 0.9421E 00
18 0.4424E 06 0.2344E-01 0.1655E-01 0.9477E 00

19 0.4424E 06 0.2343E-01 0.1578E-01 0.9531E 00

20 0.4424E 06 0.2343E-01 0.1512E-01 0.9582E 00

21 0.4424E 06 0.2342E-01 0.1547E-01 0.9637E 00

22 0 o 4424E 06 0.2342E-01 0.1411E-01 0.9684E 00

23 0.4424E 06 0.2342E-01 0.1387E-01 0.9831E 00

24 0.4424E 06 0.2342E-01 0.1379E-01 0.9941E 00
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