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SIL-IMAHY

Methods of calculating the correlation energy of

an electron gas are examined. The first section reviews

those developed for the uniform electron gas. The second

part is devoted to the non-uniform gas problem. Possible

application of these theories to electrons in metals is

discussed.
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BUTE Ob UK I'IS Al's D SYMBOLS

It is convenient to express the correlation energy of a

solid in rydbergs/electron, a rydberg being defined :
4

1 rydberg =

s Energy of the first Bohr orbit
l~j»6 e.v,

or alternatively in terms of the units used in cohesive

energy calculations :

1 ryd/atom = 312 k. cat /
I TnaC

The inter-electron spacing is expressed in units of the radius

of the first Bohr orbit aQ i.e.

4 Tc(r a ) ^ - —3 s o' n

where n is the number of electrons per unit volume,

and r& the inter-electron spacing in units of aQ,
where = J 2

- 0.5292 A

Some of the symbols used are :-

P - Fermi momentum

Ey - Fermi energy

Hg - Energy gap

q - momentum transfer

kc - maximum wave vector for which collective behaviour
k exists.

ft - -£M
P
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- real part of the dielectric constant

£ - imaginary part of the dielectric constant
. e2X - coupling constant = ——
q v

V - volume of the system
2' L

Si

/ Avne^ i ^
U)p - classical plasma frequency = / —-—- J
^ - Fourier transform of the density fluctuations

a., a^. - creation and destruction operators respectively
for an electron of momentum k

3€
c, ,c, - creation and destruction operators for
^ ^ electron hole pairs.

m - effective mass ratio

f - oscillator strength associated with the transition
on

from state o to state n

S / - Dirac delta function
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IKTRODUCTIOK

One of the major problems of metal physics is the

calculation of the cohesive energy. This may be defined as

the difference in energy at O^K between the combined energy of

the atoms of the metal and the sum of the energies of the atoms

when taken separately. Early attempts at calculating the

cohesive energy using an independent particle model failed,

because of the neglect of the Pauli Principle and electron

interactions.

Calculating the energy of an electron gas by the Eartree,

Fock^^ approximation one uses a wave function constructed by

taking a Slater determinant of free electron wave functions

<Mx-i) 'Mxi^ <M3C--)

f =
'lv,(x2) <|>2Uj)

! I (

1 i ;

This wave function does not give the correct cohesive

(I.I)

energy for a metal, for, although it includes the Pauli Principle,

it omits any interaction between the electrons. The energy

arising from this interaction was termed CORRELATION ENERGY by
(2)

WICKER : i.e. the correlation energy of an electron gas is

the difference between the true energy and that obtained by the

HARTREE, FOCK approximation.



We shall first consider the hypothetical case of a

uniform electron gas at highcfensity. Here it is normally

assumed that the gas is an infinite one and is at 0°K. The

positive ions are smeared out to form a uniform background of

positive charge which cancels the effect of the average electron

charge density. The potential of the ions is in fact replaced

by an infinite constant and its effect is found to cancel in all

physical processes.

Any attempt to include the electron interaction by standard

perturbation theory leads to a divergent answer. This is

entirely due to the long range nature of the Coulomb field.

It is well known however, that these divergences are cancelled

by polarization effects, any out of balance in the charge

distribution being quickly screened. A physical example of this

is the skin effect found in metals.

Failure of standard perturbative methods can be simply

demonstrated. The Hamiltonian for the free electron gas may

be written :
,2. p

„ I Ji. , I £ e (1.2)
L 2 m 2 ij r

= H, -+• H, .ke int

The ground state energy of the gas E is,

E s e,. + e -+■ e (1.3)
o f x corr



where ef is the Fermi energy/electron = -1
2 - 2.1 rydbergs

z

a
r 2

and ex = first order interaction energy.

ecorr ~ correlation energy i.e. the energy arising
from the sum of the higher order perturbation terms

ex = { h[ UjlHintl iJ) " (13 I Hlnt | ji) ] (1.4
The first term is the electrostatic energy which is assumed

to be cancelled by the interaction with the positive charge

background. The second term, the exchange interaction, vanishes

unless the interacting pair have parallel spins. Fourier

transforming the potential in a box of unit volume

, 2 r_i .2 f
>: = e J -■ (I*5)I < - *i\

- rydberg^/electron
[e... .+ ex] is obtained from the Hartree-Fock theory

The second order perturbation term is not quite as

straightfo rward

, 0 I Hi** | o>|1AE =£ - (1.6)

01 I Eov - £ol
Here there are two terms since the electrons may have

parallel or anti-parallel spins. These will be referred to

as the direct and exchange contributions respectively.
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In these virtual processes two electrons in the Fermi Sea with

initial momenta k. and -k2 undergo a collision with momentum
transfer q, emerging into unoccupied states (k^ + qj and

~ £) above the Fermi surface and then return to their initial

states.

The direct contribution is : (momentum in units of P)

= L* j t?Jd~J d~* f* • r f** +h)\ d.7)
lhi<l ~

and the exchange term: I

(1.8)

(2) (fttfb! ,In there is a factor for each collision [Fouriera t,

transform of the Coulomb potential] while in e) J one factor is

the other 7 c2 in which exchange occurs.1 *, + '
If the summations are now performed it can be readily seen that

the direct contribution gives a divergent result.

For low momentum transfers the gf in fr. (fo +$£} ] I
can be neglected. The following summation has then to be

performed g „ jM jf
which has a logarithmic divergence for q->~o

The exchange contribution on the other hand hes no such divergence

since there is a factor less, hence,
V r , „ rto , r dj f 4k Jk

~

* *. J k
1/



Closer examination of the higher order perturbation terms

reveals that these are also divergent.

The occurrence of this divergence could have been

anticipated from a classical viewpoint. In a gas of charged

particles i.e. a plasma, two collective effects take place,

Debye screening and plasma oscillations. The screening effect

is due to the polarization of the medium by the charged particles,

and prevents the action of the coulomb interaction at distances

appreciably greater than the screening distance. Plasma

oscillations are due to electrostatic forces in the system which

act if any local change excess or deficiency exists. Both of

these effects involve the co-operative action of many particles

and hence cannot be treated by standard perturbation theory. The

Debye screening does in fact remove the divergence discussed

earlier.

These considerations can be put on a. quantum mechanical
(3)

footing by the Thomas-fermi statistical method. ' One might

think tnat introduction of statistics would have considerable

influence on the classical argument. However, this is not so,

oecause these phenomena involve distances long compared with the

wavelength associated with the electrons. In the Thomas-Fermi

method of treating the many body problem, it is assumed that the

electrons are effectively free at each point. If a charge q is

in noduced into a neutral plasma then a change in the electron

density Sp occurs and an effective potential 0 is set up. These
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These are related through Poisson's equation, i.e.

yzj) + Atre - 1+^ <j/ (1.9)
£p can be readily shown to be,

3X

Inserting this into equation (1.9) and solving for 0 one finds,

Arr) (I.10)

where / F "\~£0^ft V 6-rr me2y
Hence, as in the classical Debye - Huckel theory^' one finds

that the long range coulomb potential is screened within a distance.

Xp,. . It will be shown later however, that this approach
overestimates the screening power of the electron gas.
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2 - COLLECTIVE DESCitlPTIuE 0 ■. LLeCIKOi BiTERAOTIOl.S

The presence of individual and collective excitations can

be readily illustrated by a simple examination of the density

fluctuations pk of the electron gas. Re-writing the
electron Hamiltonian as :

bz
H . £ — 4- Sire £ 4Cp*Pk - (2.1)
i 2"rn. kj^o K

where £ = CC*)^ (" *) = 2 ("
Since commutes with the potential energy we

may write : •
~ h3

Hence the equation of motion for is :

p . -i (iii- + a*1)^ (-*.* •> - z^ *.t er , ,I \ nm 2w/ 11 / ^ V (2.2)
Separating the term q - k and transposing it to the left

hand side, equation 2.2 becomes :

ck + 4 & - - f (%' * (2.3)
2 4nne2

where 60 ^ " » 00 0 being the plasma frequency.

Hence Cfc performs simple harmonic motion at a frequency

^p providing the terms on the right hand side of equation 2.3

can be neglected.
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This corresponds to the physical picture of electrons moving

in a completely collective manner. Under what conditions is

this picture valid ? The second term may be neglected if the

electrons are distributed at random, since there will be

contributions from many electrons to . The phase factors

appearing in the exponential being distributed at random, tend
(5)

to cancel one another. Bohm and Pines* ' call this the

Kandoia Phase Approximation. Tne first term may be approximated
2 2

to k V Qpk where VQ is the velocity of an electron at the top
of tne Fermi distribution.

The condition for plasma oscillations then is

k^V^ I
— I or k less than some critical vector k

<o* 1
Hence one may expect the electron gas to exhibit collective

behaviour for k<k and individual particle motion for k?-k .
V V

The latter may be regarded as statistical fluctuations coming

from the thermal motion of weakly interacting electrons. The

Deb^e screening length ^ is of the order ofS fCc

The basic problem is to develop a theory which is capable

of treating the collective and individual effects together.
(.6)

Bohm and Pines ' found that in a particular co-ordinate

system, the plasma oscillations could be described by a set of

equivalent harmonic oscillators, which only contribute a zero

point energy to the system, leaving an effective Hamiltonian



H =^ + U?2 tp*e*~ n] <2-"
for the individual motion of the electrons. They

employ an extended Hamiltonian,
2

2
a - 1 ■ » 2?te r * n , „ r a 3?
n = ^ 2m + £ k2 ^pkpk k<k ^Vk + ^k

c 2

2

^ P|] (2.5)k2

where they have introduced n' field co-ordinates Qk
and their conjugate momenta IIk which commute with the
co-ordinates of the individual particles.

ie, tnk,Qk'] « -iESkk', [nk>Pil = o [nkXi] = 0

tvh) =0 h'-ii =0
These co-ordinates represent the collective excitations

of the electron gas and their number n' is given by the number

of wave vectgrs between 0 and k i.e.
k^ c
c

6m~
n's

In order to conserve the number of degrees of freedom

of the system they are compelled to introduce an associated

set of subsidiary conditions,

iy = 0 (k<kQ) (2.6)
Where ¥ is the extended wave function. J3y carrying

out a canonical transformation of the form,
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0 m exp(~^ ) 0 , - ext>( ^ ^new n ola E

Taking
k<kc>J pf- «k pk <2-7>

the extended Hemiltonian becomes,

H = Z + Hsr + £ ^ ~ ]
i ^ ~r k<k 2 P kc

+ Hint + u (2.8)
2ire2

where Her - £ —exptik.Ca^- ) ] (2.9)
li kc k
i

H. . is the contribution from a linear interaction
mt

between the electrons and the plasiaons.

k<k
c

Hint " 1 ( "^T + PI-' 'Qk (2.10)

and U, an electron interaction terra which is bi-linear

in the plasmon co-ordinates,

U = 2ML. e g* g
m J *V J (2.11)

If the terms Hint and U ere neglected then we have a

system of electrons interacting via a screened Coulomb
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potential of range k ~ 1 and a set of n* plasmone. The

neglect of U corresponds to the Random Phase Approximation,

while Hint corresponds to the first term on the right hand side
of equation (2.3). Considering H to be a small perturbation

Boha and Pines find that the coupling introduced between the

electrons and plasaons by EL^ may be measured by a constant,

2 r , lc*pix T 82
g = [ ( —-) J average over » f-

P k ^ kc 3

kc
where £ = —• , and r is the inter-electron spacing measured

k s
in units of the Bohr radius aQ.

Hence for sufficiently small values of p, represents

a weak coupling between the electrons and plasmons which may

be treated by perturbations methods, U being an even weaker term.

The ground state energy of the electron gas is calculated by

assuEiing a wave function f = %sc <fo for the system.
'[> is a product of simple harmonic oscillator wave functions
osc 1

and <fiQ is a Slater determinant lor the free electron gas.
The energy each electron is,

Ecu 2
E= f * + E i (-^ - )+(Hsr)av (2.12)

k<k k
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The first term is the kinetic energy, the second, the

difference between the zero point oscillations of the plasmons

and the self-energy of the charge distribution they have

replaced. The last term is the exchange energy associated

with H _

sr.

The second term is readily evaluated and is

_ 2TT-ne2N & _ in ft
Z ) "*/l

Excluding the contribution of the short range portion

of II
, Bohm and Pines minimize the energy of the electronsSx J

with respect to p. After including a contribution from
I

the^j find p - Q.4rsz . This cut-off is very much lower than
k \

that obtained by the Fermi-Thomas method ( ~ O- -8Jo ^ J
H
„ is calculated from conventional second ordersr

perturbation theory

II T,Corr - 0.1244 In 0 - 0.0508 - 0(p2) (2.14)sr

(?)
Adding this to the second order exchange energy e^ » (see

(7)
equation 1.8) calculated by Gell-Mann and Brueckner ' by a

Monte Carlo process to be 0.046 rydbergs, one finds the

correlation energy:

Ecorr « 0.1244 In p - 0.0048 + 0.866 ^ + 1.22 | (2.15)
r<a 3

(2.15)



1/2
Substituting p « °«4r„s

Ecorr * f°*0622 ln rs - 0«140+ 0(rs) ]ryd/electron (2,16)

This result agrees with the result obtained earlier by

Wigner and also with experiment, showing the physical concepts

bo be correct. The method, however lacks mathematical rigour#

The Random Phase Approximation which neglects the coupling

between the excitations corresponding to different momentum

transfers is not substantiated though later work does in fact

show tnat it is exact in the high density limit. Inclusion

of the electron plasmon coupling term H^n- by perturbation
/o\

theoretic methods is questioned by Sawada et al. The

determination of the cut-off for plasmon behaviour is one of

weak points of the Bohm-Pines theory being evaluated by

minimizing the energy given by part of the transformed

Hamiltonian neglecting all the remaining terms dependent on p.

They are forced to exclude the short range term H which would

give a divergent result. This procedure must be questioned

since the actual correlation energy is independent of p. It is

not possible to separate a small part of the Hamiltonian giving

a p dependent energy end to minimize it with respect to p

neglecting the variation of larger terms.
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Their approach is rather artificial and is by far inferior to

the linked cluster expansion method used by Gell-Mann Brlgrtlekner,

which gives an exact and mathematically rigorous, answer for

the uniform gas at high density.
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3 - LIMED CLUST.R -PERTURBATION tiEIrlOD

To avoid the divergence which appears in each order we

may apply the adiabatic process, replacing the singular

potential by a soft one and making the adiabatic parameter tend

to zero. The original potential is recovered after the summation

has been done. Here it is assumed that the energy levels

remain discrete and do not cross. This assumption has been shown

to be correct for the uniform electron gas by Luttinger and

Ward^
As before H s H -f Ho 1 c

where H0 s unperturbed Hamiltonian of the electrons
and II - coulomb interaction term

c

Assuming 0o to be the unperturbed wave function and
the lowest eigenfunction of H then t

Hq - Eo (5a)

and H - (£o + AE)¥Q (3.2)

W0 is derived from 0Q by adiabatically switching on the
interaction H over the time interval - oo to 0. Goldstone^^

c

proves the adiabatic theorem in the following way for the case

of a discrete set of eigenstates with a unique ground state.

He first defines the operators,

Hj(t) » exp(iHQt) Hc exp(~iHot) exp(ott) (3,3)
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and Ua = L~ (-i)n H^) H^tg) dtn
n»o o?-t.>t0>ti 2 n

As a ->-0 the unitary operator 0^ describes the adiabatic

(3.4)

process
u (o, - oo) 0

* (t.o) . Lim , u 10.- (3.5)a ->-o v*o j a I yo)

U and the scattering or S matrix are simply related,

S - Lim Lim ^a^i' ^2^ (3.6)
a o tt*oo

->• -oo

(see for instance Akhiezer and Berestetsky P.250)

Hence E = C0O 1 % I f0)
«ol¥.l'o'

Vio ~Wi U«P7" ^
Processes involved in this matrix element may be represented

by graphs of the form,

Figure I Figure 2

where a line directed to the right represents an electron

excited above the Fermi surface, and one to the left, a hole

below the surface. These diagrams can either be linked or
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unlinked as in Figure 2. Ib follows that Ua0Q is given by
rules applying to the sume of linked graphs multiplied by a

factor consisting only of unlinked parts. This factor is

I "« I S*o>- Ihus *o as defined in equation (3*5) is given
by taking the limit a o in the sum of the linked graphs only.

Hence *o - J 'H1>* *0 (3.8)
o o

and the energy shift is,

E = E <^o iHi <irru VnK> l3-9)
1 0 0

where E stands for the summation over all connected diagrams
1

leading from 0Q to 0Q ie. those having no external lines.
Equations 3*8 and 3*9 ere the linked cluster perturbation

formulae. They differ from the usual bound state formula by

having EQ in the denominator instead of (Ec+ AE). This
difference is compensated by the different enumeration of terms,

summing over linked graphs and by ignoring the Fauli Exclusion

Principle.

Bohm and Pines show that the correlation energy of an

electron gas at high density may be expressed as :

e = 0.0622 In r + C
corr s

where the constant C has been determined approximately. As

pointed out earlier, each term in the perturbation series diverges.
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(12)
Macke ' realised, that if he summed the linked perturbation

series to infinity, the divergences would cancel and produce a

convergent result. Unfortunately he failed to sum all the

pertinent diagrams. The full summation was carried out by
(13)

Gell-Mann and Brueckner using techniques developed by Feynman*

and Dyson^1^ for use in quantum electrodynamics.

The most divergent processes occur in the linked diagrams

where a single momentum transfer q is passed from virtual

electron-hole pair to electron-hole pair. These processes

may be conveniently illustrated by graphs, the third order

term is shown in Figure 3.

Figure 3

The number of possible diagrams in each order of

perturbation is equal to the number of distinct ways of ordering
i/lni

the vertices in time. For the n order diagram this is

-s Macke sums the first diagram in each order of the

perturbation series. Selection of linked diagrams of the type

shown in Figure 3 is exactly equivalent to the Random Phase

Approximation of Boha and Pines.
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Exchange may take place at any of the vertices* Each

time this occurs, however, the divergence is reduced by a factor
/ i

-~2 which becomes v 2 (see equation 1,8)
4 (4 + kt+ kz)

The only exchange term to contribute to the constant C

is the second order one. Higher exchange terms contribute to

higher powers of r and can be neglected in this approximation.s

The summation of the direct interaction perturbation terms

to all orders, allowing for all possible time sequences presents

some difficulty. Gell-Mann, Brueckner carry out the time

sequence sum by introducing a Feynman propagator function,

F(t1) = fdki exp[- fc^-i 2 ) ^ (3.10)
Each term in the perturbation series can then be written in

the form: ^

\ = 5 K dtn **i>- " "«V (V - "V
(3.11)

By transforming the S function,
f 00

i.e. S(^ tn) = fit I du exp ^^i t2 ^ ^ C3-12)
J

9/ r\

can be written [Q^Cu) ] (3#13)
r> o 2

where Qq(u) = / dk / dt exp [~t(k.q +%> ) ] exp(iqtu) (3.14)
oo
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Carrying out the sum over n they find the Contribution

from the direct scattering to be :

oo

r . f -2- 2\£ r / . ^ ^ A.\l ,w

(3.15)
dir scatt a /" C
£ = — • J- oU
corr STr* in- ^(ST f■& (1+rvv L ^ -«y j tv.

In the q integral, only small values of q contribute, since

it converges rapidly as q-=»-«».

The first term on the right hand side of equation (3*15) can be

rewritten as,
OO r 00

j fif) & =|[py-fiy)] ^ +j & (3-is)
o

where ^(q) second order direct contribution to the
correlation energy. The leading q dependence in the first two

terms of equation (3.16) now cancels for large q, the difference
i

going as at high density. Since the contribution to the

integral comes from small q it is possible to select an arbitrary

cut-off which Gell-Mann, Brueckner make q « 1. It is now possible

to approximate the integrals for small q. Equation (3»16) can

now be written as :
( oo

f f <3'17>
o

the logarithmic divergence at the lower limit in the last two
♦

integrals cancelling. The small q form of F(q) is obtained by

taking the small q limit of Qfl(u)H



- 23 -

Q./«) = fdi % 4~i/' ~ (3.18)

As q tends to zero this can be approximated to,

Qq (u) as 4*[ I - utan""1(J) ] (3.19)
» 4xR(u)

Hence

tjf
x x U7ff i+ ^RV^^l+Soorr 2.rJ J y \ xrj [ ( vtf ) V J (3.20)

_oo o

lx\/s .where a - (^1
and £ represents the last two terms in equation (3.16).

Evaluating the integrals and neglecting terms which vanish

as r„->0, Gell-Mann and Brueckner find,s

®corr^ 58 °»0622 ln rs ~ 0.142 ryd/electron (3.21)
Adding the second order exchange energy, which they evaluate

by a Monte-Carlo method to be 0.046 ryd., the correlation

energy is:

Ecorr = £0,0622 ln r^ - 0.096] ryd/electron (3.22)
This method is more mathematically rigorous than

the Bohm-Pines approach. Their summation is however only

convergent for large momentum transfers. They assume with no



- 24 -

justification that their result could he extended into the

region of low momentum transfer. This approach is vindicated

by Sawada and others who derive the result in a manner which

avoids the perturbation expansion.
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A - ANALOGY ma TUB MHSOK PAIH THEORY

Gell-Mann and Brueckner show that one can use a

propagator for pairs between interactions. The pair created

with momentum transfer q propagates from one interaction to the

next, changing itself into another pair with the same momentum

difference between electron and hole. The pair in fact appears

(15)
to propagate as a single particle. Sawada noted the

similarity of this problem with that of an infinitely heavy

particle interacting with a neutral scalar meson field through a

product potential, a problem solved earlier by Wentzel^^, Using

his method Sawada re-derives the Gell-Mann, Brueckner result

showing that their assumptions are indeed valid. Later
(17)

WentzelN gsve the result in a more elegant form. It is

convenient to write the Hamiltonian in second quantization.

Here the quiescent Fermi sea can be identified with the vacuum

state in quantum electrodynamics. Simple excited states, in

the form of electron-hole pairs, are produced from the vacuum

state by operating on it with the creation and destruction

operators a and a. These operators are obtained by expanding

the wave function f of the electrons in plane waves :

i.e W (r) a L exp (ikr)
k

The Coulomb interaction term

(4.1)

H - ■ ¥* (r') ¥ (r') v (r-r') ¥K(r) f (r)drdr
c

(4.2)

then becomes:
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HC = k£,k a*k ak *k r^r7 exP£ic* (r"r')] dr dr'
i ^2 12 3 4

k3'K4 (4.3)

where q is the momentum transfer - k0-k. = k.-k-2 l 4 3
7 ire2- ar SJ

Hence H - £ -—^ av av ak (4.4)
klfk2 q 12 3 4
k3,k4

? = 4- £,= 4-^3

In physical terms is a creation operator and a^, a
destruction operator for an electron of momentum k. These

operators anti-commute, i.e.,

[ak'ak3 = ^ kk' ' ^ak'ak3 a t^f^.3 = 0
The Hamiltonian expressed in second quantization is,

H s £ ©,, afa, + 4 £ / * * \ ,
. k k k T 2 q(a_, a . + a. ^ neL ) X

k

q

vi2 -krh-* V

(aK2ak2-q+ (4-5)
■ "k + Hc

. 2

A Awe •- —r— , the summations over k, and q being subjectq q^V
to the conditions |k] < P and jk + qj > P
Writing . „ , * N . «

q = I k,q c -kf -a^ ' ckq = % ak -q

H a lX A* A„C qq q q (4.6)
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Wentzel following Sawada adopts the approximation commutation

rules:

[H ,c*. ] a A A94 ; [H .c, ] a -X AL c kqJ q L c' kqJ vq q

[H, ,c* ] = c* ; [H, ,c, ] » _ c,L k' kqJ kq kq L k' kqJ kq kq

where W, _ [E, -E, ]kq Lk+q kJ

Since only enters Sawada's calculation via these

commutators, it is possiole to replace by

Hk = ^kq C*kq Ckq (4.7)
which yields the same commutators.

The problem then becomes exactly equivalent to the

meson pair tneory, each electron-hole pair being effectively

treated like a boson.

Introducing the canonical field variables,

^kq = (2«£q'^ f °kq + °*-k-q^ (4-S)
and nkq - i< -f4 [c£q - o_k_q] (4.9)
where 0Rq = 0^k_q and nkq = n_*_q fQr reallty

The Hamiltonian expressed in terms of these field variables is:
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B = l£kqf"5%+%VVk9 -"V
ak k'V"'1"1 "*«' 1/2 ^ \q l"'10)lkik2 12 1 a

i.e. the proolem has been reduced to a system of linearly

coupled oscillators. The secular determinant is :

0 (a2) =1+ 2\ L ( !°kq ?) = 0 (4.11)q q k oof -a
*q

The roots a of this equation are the excitation energies

of the one pair states and the correlation energy, the zero

point energy of the normal vibrations.

Eo = 2 1 ^°kq " "kq) constant (4.12)kq

The secular determinant may be v/ritten as

A(o2) s n ( a2 - a kq) (4.13)k

In the limit of the coupling constant 0

A 0(o) = n (a - CO ,q) (4.14)ic

2

0^(a ) expressed in terms of poles and zeros in the complex
plane is therefore :

0q(°Z) ■ h&r l4a5)
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,!«<> - J = -k§ ~ -j£%)
r (ft da2 f(a2)£ dC1p ^q ^1- (4.16)
V q do

JL
=
2fti .

q

where the closed contour in the complex a plane is taken to
2 2

encircle all zeros a , and «ies to , .

kq Kq

Integrating by parts,

£ [ f(a2q) - i(<d ,(i) ] = - -^(frlda2 f•(o2)ln0(c2) (4.17)
Hence the direct scattering contribution to the correlation

energy is :

Eq = - 7~T^ do L In + constant (4.18)
The constant is the self energy of the electrons.

Going to the continuum limit i.e. V —oo and replacing

£ by an integral subject to the conditions Jk\<p and |k +■ q\ P,
k ~
the function 0^(o ) becomes discontinuous along part of the real
axis. The integral breaks into two parts, one corresponding to

the scattering states and the other to the plasmon pole.

The total correlation energy is obtained by integrating round

c
I

\

^ ^

)

J U*
S

Figure 4
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Here it is convenient to calculate the contribution of the

scattering states and the plasmons separately.

The scattering contribution is found by carrying out the

contour integral C2 which is found to be,

Sscatt = _£ A* £ + A
I In

corr
q ^ k q q k [7-fJ

1 <-

where (k) = ^ LI* <1 k <V a > (\q+ a-«)

and <r)*(k)1 complex conjugate

(4,19)

Hence ,, \
gScatt ,AQ ,
00rr "

q 2 k

ia L
I

-1
X 2LI

1 +
•c

(4.20)

This contribution has been calculated by Sawada et al to be,

gSCatt _ (0.0622 In r - 0,273) ryd/electron
corr s

(4.21)

The plasmon contribution is found from the residue of the pole

at h u) ,.
Pi

Onaager calculates this to be 0.131 rydbergs (see Sawada
(

et al ' for details.) Adding the second order exchange term
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to the scattering and plasmon eontrioutions the correlation

energy is :

£
wv. = [0.0622 In r - 0.096] ryd/electroncorr s

which is exactly the Gell-Mann, Brueckner result. This shows

that they include the contributions of the plasmons and displays

the equivalence of the Wentzel, Sawada, and Gell-Mann, Brueckner

techniques. Sawada et al show that plasmons are simply pair

excitations with fixed momentum transfer summed with a certain

phase relation.
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5 - DIELECTRIC APPROACH

If an external potential V(x) is applied to a medium, then

an effective potential U(x) composed of the external potential

together with the potential change produced by the charges within

the medium, will be experienced by the medium. V(x) and U(x)

are related by

U(x) = J*K(x,x') V(x') dx' (3.1)
K(x,x') is simply the inverse of the dielectric constant of

the medium.

(18)
Hubbard ' shows by summing a similar series to that of

Gell-Mann and Brueckner that the Coulomb potential in an electron

gas becomes

Veff(k'w) = [I - v*((k»w) ]

[I - V (k,w) ] being the dielectric constant

This is of the form :

Wk'*> = .,2°' g, ^.3)(k + a )

Taking the inverse transform, this becomes,
2

Veff(r) = ^7 exp(-ar) (5.*)

Hence the polarizibility of the electron gas reduces the

Coulomb potential to a Yukawa type potential. The parameter 'a'

can be identified as the inverse of the Thomas-Fermi screening

length. It is this screening action which prevents the Infra-red

divergence which is apparent in the second order perturbation term.
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(19)
Hozieres and Pines 'have shown that the Sellmeyer

formula for the dielectric constant,

£ = I -V- Ana

where Ana is the Kramers-Heisenberg complex polarizibility,

is applicable to a metal in spite of its high polarizibility.

Hence we can identify Hubbards V (k,w) with the polarizibility

of the electron gas.

The dielectric approach is perhaps the most important,

from the experimental point of view, for it is through measuring the

longitudinal dielectric constant of the solid that an estimate of

the correlation energy can be obtained.

Lindhard (20)>pointed out that the imaginary part of
can be calculated from the scattering of high energy electrons

in passing through thin metal films. The probability/unit
dw

time (^") that a particle transfers momentum k to the electronic
system is (21):

2
dw Site aj T r I ■] / c
dt = .2 ImL£(k,oO J

Having obtained the interaction energy

Eint= ^oKIV (5>6)
where ¥n ' s are the exact wave functions for the system,
can be calculated since,

I 2nne2
E. . = L
int

K
I I dv 7 (5.7)
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The ground state energy may then be ootained from

using the relation :
2

e

E0(e2) = Eq(o) f / ^1 E,rd-(^) (5.8)
^3ee Sawada^1"^ for proof^

2
where g' = e , the coupling constant

Integrating over g*
oo

z

E0(^) = E0(o) + 2 J" Z-rr/ne

~Tl '(5.9)

wnere^al •+ 4ita^ s real part of the dielectric constant
and 4ita2 - imaginary "

hozieres and Pines find for the free electron gas that,

Z
U)

i+-rott _ 8 ire2, v 1 (£Q<w
* *l ~

nio

(5.10)

and

47TX = 2 I feO<Kal4s (Ji-a,4<5-11)
m £2

where

(Cfc) = <fnUli*.>v 'mo
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Assuming free electron wave functions :

4-ir
Sir ez y £( & + EM—
~~f ,,f<p J (»$-*(*%-**

ifc^i >P (5.12)

and

4iriei £ 5 Ai - ~4<ir<*, _ e > 8 {-ft* & \ *

UI4P (5.15)Isl
lfc+ fr| =jfeesitihj

>P
Inserting these expf§ssft>hs into equation 5.9 produces

the Gell-Mann, Brueckner result, showing the compatibility

of this method.

The success of a simple dielectric formulation in the

Gell-Mann, Brueckner limit arises from the fact that here the

important momentum transfers corresponds to wavelengths which are

large compared to the interparticle spacing.

Another approach worth mentioning here is the electron
(22)

self-energy method developed by Quinn and Ferrel . A single

electron near the surface of the Fermi sea is singled out and the

polarization of the gas around it studied in detail. This single

electron together with its polarization ebud may be thought of as

a quasi-particle. The energy of this clothed particle is given

by the difference between the self energy of the particle in the
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medium and in a vacuum ; somewhat analogous to the mass

renormalization found in quantum electrodynamics.

They calculate the Greens function or polarization

propagator of the electron gas, by considering the inelastic

scattering of a fast incident electron. This procedure is

equivalent to Hubbard's summation of linked diagrams for the

effective potential existing between the electrons. Quinn and

Ferrel also give an alternative derivation using Lindhard's^
expression for the dielectric constant :

{*,») =

-f

12s
-&n. U -t ( + 2

u — | +• Z
- Z

where u =
com Z =

1?
ajrxcL j3

P
2 m. u)f

For the case u) = O and k small this may be approximated to

6(^;°) - I
4P

TT Ji1
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and for co large and k small.

6 (#; °°) — I ~
A P

5tt

From the work of Feynman it can he readily shown that the self

energy of a particle, in terms of the dielectric constant is,

S. E. ( %)
r

Air
<L

d 3-A du)
CO

while the self energy in a vacuum is

= _£T i jta x
X

Air' t(a)- -<*)-«»

The change in self energy due to the presence of the

dielectric medium is

A£(<?) = S.E.(i) - S.H0^)

On evaluating the integrals one finds that the exchange

contribution appears from the residue associated with a pole
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in the integration the line integral producing the direct term.

The result obtained is identical uith that obtained by Gell-Mann,

Brueckner.

One pleasing thing about this method is that there is no

artificial separation of the direct and exchange terms. Another

advantage of the formulation is that it is possible to replace

the dielectric constant of the uniform gas by that pertaining to

a real metal. Hence the method is quite attractive though no

new result has been obtained.
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6 - EXTEMSION OF THE U1.1FORM ELECTRON GAS THEORY BEYOKD

THE RAHDOM PHASE APPROXIMATION

(23)
Dubois has extended the theory of an electon gas

beyond the 'Random Phase Approximation' using the Gell-Mann,

Brueckner propagator technique. He does this by including

higher order graphs, replacing Qa(u) in the Gell-Mann, Brueckner
expression for the correlation energy (see equation 3.15) by :

=• + £p(") +-<£p\u) + Q^V") +
— S (u) (6.1)

z *

Q°(u) represents the terms obtained under the Random
d

Phase Approximation. Some of the higher terms are shown

graphically in Figure 5.

0 9 §
((d) (J &)

Figure 5
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The generalized expression for the direct part of the

correlation energy is :

Corf

A .J An."NA.
U) -

«rsSQf(«)

(6.2)

Including the first two Q functions,

H j_
C") - Zir1

CO OO
f r

Jm
J

r

oiu2 ct3fk. dl4 (6.3)
J

_ o© _ »©

x s.

and

« w
/ J_

I? WJ

(ft ")■ SFN*t, 5p ft 4)
OO

r

du duz \ d}£ dl fe
J
— CO _ o<5

* SF +") (6.

where S„(k,w) is the Feynman particles propagator

s
F ^ « = -

tffc

ftrr)4-
cTT

U - U (A)
Sf u- u(f) 0<

0<v - the adiabatic switching parameter.
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ana

% (*,u) =

^+. *5 Q (*,«)
"TT S

Dubois calculates the correlation energy to be :

Ecorr = f°*0622 ln rs ~ 0.096 -+ 0.0049 ro In ro + B r„ ]s

ryd/elecfcron.
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7 - HAnGH Oi'' VAUDIT! OP THE LIhKhD CLPST.L.K EXPAHSIOK

All methods evolved for estimating the correlation energy

of the electron gas have included some kind of approximation.

It is clearly desirable to have some check on the range of

validity of the expansions. An estimate can oe made using the

fact that the lowest eigenvalue of a. Hermitian operator,

containing a parameter linearly, has a negative second

derivative with respect to the parameter. This result may be

derived from the virial theorem in classical mechanics.

Here it will be derived by a quantum mechanical method.

The wave equation corresponding to this problem is :

H(})fC\)= E(h)fO) (7.1)

where H is a linear function of the coupling constant A
Differentiation of equation with respect to A gives

H' J + Hf' = e'^ + Ef' (7.2)

3)

which on substitution into :

E"(x) = <f'|H'|f> + <f (7-
yields the result,

E"(i) = - if} 2E <f If}
+ E'r<rif> +<?if> (7-a)
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The coefficient of £ £\) is zero by normalization, so that
the final answer is :

E'ft) =-Kf'l?> _ E (7.5)

Since 4 minimizes the energy, the first term on the right hand

side of equation 7.5, cannot be less than E, from which it

follows that : // / v ✓
re u

(7.6)
e'OO

Thus the second derivative of the ground state energy of the
2

electron gas with respect to the coupling constant e cannot

be positive.
(25)

Ferrelv ' has applied this theorem to the Gell-Mann,

Brueckner expansion. He finds it convenient to fix the density

by making r =r 1 and to vary the coupling constant froms

2 . \ 2
e to A.e . One then obtains the energy of the electrons in

terms of the coupling constant by replacing r by A

and by multiplying by A . Hence:

= l-lI -0-9I6A + 0.0«2 V-^ (7.7)

Differentiating this twice and applying equation 7.6 one finds

that :

X ' I. OS
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Alternatively, we may conclude that the Gell-Mann, Brueckner

result is valid only for ^ ~ I . Ferrel estimates that for

the density corresponding to ~ 3 ) the error is at least 40 °f
Applying this technique to the result derived by Dubois

one finds that his theory is valid for ~ Z . Since the

highest electron density found in metals is in aluminium

where r ^ 2.0, it is apparent that we still await a theorys

which is applicable to realistic densities.
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6 - COKhmLATIch ENEKGY AX LOW Ah.D IRTFRhLPIAXE DEM SITIES

As yet, no satisfactory method has been produced for

calculating the correlation energy of an electron gas at

intermediate density i.e.2< r 5»5 There are however,

some interpolation formulae in existence which are in fair

agreement with experiment. These will be discussed briefly in

this section along with a short comment on the low density case.

The low density case will be considered first. Here the

potential energy is very much greater than the kinetic energy,

quite the reverse of the high density C8.se. This is generally

referred to as tne 'strong coupling' case on account of the strong

interaction between the particles. For densities corresponding

to r,^ 20, the potential energy is so great that the electronss

are forced to form a lattice. Here of course, the Random Phc?se

Approximation is not valid. The correlation energy may again be

expressed as a series expansion :

E" " (% *
The first term represents the difference between the potential

energy of the electrons and the exchange energy, while the second

represents their zero point energy. The constant A may be

determined by carrying out an Kwald sum for the lattice. The

binding energy is found^^) £o be __ 1. 8 ryd/electron.
^5
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Subtracting the first order exchange energy — .

on finally obtains :

E^ ^
for the correlation energy of a low density electron gas.

(21)
On the basis of the Lindemann formula for the melting

of a solid Nozieres and Pines estimate that the expression

is valid only for r 20, the electronic solid being unstable

for higher densities.

Wigner^*^ combines this with his high density result and

obtains an expression for intermediate densities:

Ecorr = (r~ "'"fs) ryd/electron (8.3)
s

This expression is in remarkably good agreement with the

experimental results obtained for the alkali metals (see Table I)

Determination of the constant B in equation requires

precise knowledge of the spectrum of oscillations of the electron

gas. For a rough estimate of the zero point energy one can

consider an Einstein model of the lattice in which each electron

vibrates independently with a frequency where

is the classical plasma frequency. Since there are two transverse
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and one longitudinal modes, one finds that the constant B,

representing the zero point energy is 3 ryd/electron. These
(29)

lattice waves obey the Kohn% ' sum rule
3

•>

I "/ = wp
* = J

An alternative solution to the problem, still compatible with this

sum rule would be to assume longitudinal phonons only. In this

case B m 1.73 ryd/electron. Ferrel^*^ estimates the correction

to the Einstein model and finds

C O.S8 ,2.8a?^ /
Ecorr(r3> = l~ ^+ (8-4)

Using the high density result of Gell-Mann, Brueckner and his

own low density result, he proposes an interpolation formula

E (r ) = j - O. 0186 - ?- + 2corr' s

isf] v/^t <8-5)
for the region 0.85 rn 7.0s

As one goes from high to low density, half of the direct

term is cancelled by the exchange part of the second order
(31)

perturbation term. One can showx that the probability density

p(rij) for finding any electron at ri and any other at r^ is
given by

e = ['-1 Pr C(jS Prf - /Sun P-f-

(fW3
(8.6)

where p is the Fermi momentum
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If one plots the probability of finding an electron at a distance
/T

Electrons with anti-parallel spins are not correlated

because they are unaffected by the Pauli Principle. Moreover,

at long distances^— > ) electrons with parallel spins are
not correlated. This is due to the fact that the Pauli

Principle is purely quantum mechanical and cannot be effective

for distances greater than the wavelength that can be

associated with the electrons. Using this fact Nozieres and
(32)

Pinesw 'propose a rather crude approximation in which they assume
y

the Random Phase Approximation result for /3 —

and retain only the contribution to the second order perturbation

term from electrons with anti-parallel spins for jQ> Q.J+lrC^
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The interpolation formula thus produced, is:

f
E (r ) = -corrx s' 1 0. (8#7)

Hubbard also modifies his exact high density in a

similar manner. He does so by multiplying the real and

imaginary parts of the dielectric constant, A and £ by an

empirical factor r z
i %
£ + P2)

This is equivalent to replacing the Coulomb potential
kL

z
by yrre

¥
I _ ■ -z (*2+p9J

In this way the correlation affects of electrons with parallel

spins at short distances are much reduced. Hubbard finds that

his answer is in close agreement with that of Pines, An advantage

of this method over that of Pines is that it provides a smooth

continuous expression for the correlation energy. Pines and

Hubbard estimate that their expressions should give the
°/

correlation energy to within i 20/ in the intermediate region.
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9 - CRITIQUE OF THE VARIOUS Mj.Tr!OPS

First and foremost the restrictions common to all methods

will be considered. The system of interacting particles are

are enclosed in a box. Both the number of particles n and the

volume V of the box are assumed to be so large that all effects

which vanish in the limit V, n-*-<», ~ remaining constant, can be

neglected. The theories are limited to systems in their ground

state i.e. at zero temperature. This restriction prevents one

from considering the interaction of virtual with real electron

hole pairs, though there is no reason why the methods cannot be

extended to incorporate these. The problem is greatly

simplified by assuming two body interactions between the particles,

the total interaction being a sum over two particle interactions.

This approach has been applied, with great success, to the theory

of nuclear structure and of liquids. So far, the positive

background has been smeared out, all periodic effects due to the

lattice being ignored.

All high density methods employ the 'Random Phase

Approximation", all coupling between excitations corresponding

to different momentum transfers q and q' are neglected. Wentzel

shows that this is in fact the only approximation required to

obtain the high density result. Convergence of the perturbative

expansion is assumed, though as will be shown in Part II, this

is only true in special cases.
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The Bohm, Fines method describes the physics of the plasma

in a neat end concise way. It does however, introduce some

approximations which are quite unnecessary in obtaining the high

density result. A momentum cut-off is introduced above which

the gas exhibits collective behaviour and below independent

particle motion. This cut-off they estimate to be

fyna#- s 0.40 r * which is much lower than the value obtained
p s

>
using tne Linked Cluster Expansion (0.47 r *• ). Hence ans

important part of the plasmon contribution is omitted since this
3

goes aep . The derivation of this cut-off by Bohm, Pines is

somewhat suspect since it is evaluated by minimizing the energy

given by part of their transformed extended Hamiltonian

(see equation 2.8) assuming that the other terms arising from

the Hamiltonian, dependent on 0 can be neglected. The terms

arising from equation 2.9 are however by no means negligible, so

that their approach can at most be only a semi-quantitative one.

Much of the discrepancy between the Bohm, Pines and Linked

Cluster Expansion methods originates from this approximation.

Bohm and Pines introduce an extra *L field co-ordinates
6-rri

to represent the plasmon modes. In order to preserve the total

number of degrees of freedom, they are forced to introduce an

equal number of constraints or subsidiary conditions. The

actual techniques employed by Bohm and Pines in obtaining their
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expression for the correlation energy leads to certain violation

of the subsidiary conditions though no real serious error appears

to be incurred. (see Bohm, Huang, and Pines) ' These

subsidiary conditions do in fact define the ground state of the

electron gas. The particle wave functions used, consist of a

Slater determinant of plane waves slightly modified by the short

range correlation introduced by H „ and H , and do not satisfysr rp

the subsidiary conditions. Modifications to the wave function

involve the introduction of slight correlations in electron

positions of the type that would reduce the long range density

fluctuations. The effect on the potential energy coming from

Hgr is negligible for this involves the short wavelength
fluctuations. Hence the only way H _ can be affected is throughsr

coupling with the long wavelength density fluctuations. This

coupling is in fact small, so that the subsidiary conditions have

little effect on H . The kinetic energy is also unaffected for
sr

it involves only slowly varying density fluctuations. Neglect

of the subsidiary conditions is therefore not thought to be a

serious omission in the Bohm, Pines theory and appears to be

only a point of mathematical rigour.

As we have seen, it is possible to avoid the divergences

without resorting to an artificial separation of collective and

individual particle motion as used by 3ohra and Pines.



This can be done by an adiabatic process in which the singular

potential is replaced by a soft one, making the adiabatic

parameter tend to zero and recovering the original potential after

the summation has been completed. In this procedure it is

assumed that the levels in the unperturbed system go over to

discrete levels in the perturbed system when the interaction is

switched on. Luttinger and Ward have shown this to be so for a

uniform gas of electrons at high density, though some caution must

be exercised in other cases as will be shown in Part II. Using

the linked cluster expansion Gell-Mann and Brueckner obtain a

finite answer by summing the perturbation series to infinity the

divergence for small momentum transfer q being shown to be spurious.

The Random Phase Approximation of Bohm and Pines is implicit in

their method by the choice of diagrams. They find however, that

the perturbation series converges only for large q and assume

that this result can be extended into the region of divergence.

This assumption of Gell-Mann, Brueckner is substantiated

by Sawada who rederives their result without resorting to perturbatioi

theory. He considers the same diagrams neglecting interactions

between holes and excited electrons. Subsequent reformulation

of Sawada's method by Wentzel treats electron-hole pairs as

bosons. This paper together with that of Sawada et al gives a

most mathematically and exact approach within the RPA formalism.
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Possible extension of this theory to non-uniform gases v/ill be

discussed in Part II.

In its original form, the Linked Cluster Expansion method

did not exhibit the collective effects associated wifcb the

electron gas. Doubt cxx stod as to whether the plasmon

contribution had in fact been included. Brout and Sawada et al

point out how the plasmon solutions are inherent in the

Gell-Kiann, Brueckner and Sawada theories.

The work of Dubois is a natural extension of the work of

Gell-Mann, Brueckner. Application of Ferrel's check on the

range of validity shows that his expression is valid for

r ^ 2. He calculates the contribution of Q^,a^ and

( 2)
but does not derive an expression for Q* '• Dubois points out

that for the purposes of calculating the ground state energy in
(2)

this approximation, the effect of Qv » being additive, may be

calculated by third order perturbation theory. Suhl and
{34) {2 ^Werthamerv ' have calculated Qv ' in terms of the Kozieres and

Pines dielectric constant. Extension beyond this approximation

to obtain an expression valid for metallic densities is

unlikely as the mathematics associated with the higher order

diagrams become exceedingly complex.

Thermodynamic methods using Grand Partition Functions
("35)

developed by several authors, ' have not been discussed since

nothing new appears to emerge from them, being simply other
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ways of formulating the Linked Cluster Expansion, If one takes

the Partition Function
Z s trace exp ( - 0 H)

where ^ is equivalent to the coupling constant, and expand the

exponential then one just reverts to the linked cluster

perturbation series.

The dielectric approach has been developed neglecting local

field corrections, i.e. the effects of localized charges. In the

high density case where one has almost free electrons the Sellmeyer

formula for the dielectric constant £ m I + 4ita is assumed to

hold. This breaks down when I Ana . Here local field

corrections arise but they are small on account of the low

polarizability. Local field effects can be expected to be

important in the intermediate region*

The Lorentz expression,

5(£ - I) » 4tta
(6+2)

should be used at low density where the electrons are spatially

ordered. Here of course, the Random Phase Approximation does not

hold. The ground state energy has been shown to be dependent on

the complex dielectric constant and may be calculated from

derived from a characteristic energy loss experiment.

Application of the Kramers, Kronig relations,
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[ - 1 ]= Tv\vLco
CO

r ' — | 1 = — r 6 (j) ^1)
[ J tir'c (w'-«9

permi t calculation of the(R(--r) from the measurement of Ira ( )
W C

The correlation energy can then be obtained by direct

substitution into equation

Since the Linked Cluster Expansion is valid only up to

r ^ I and its extension by Dubois to r ^ 2. some form of
S 3

interpolation between the high and low density limits is required

to estimate the correlation energy of the electrons in metals.

Values of r found in metals range from 2 (Aluminium) to 5.6
s

(Caesium) Interpolation methods developed by Ferrel, Wigner

and Pines appear to be in fair agreement with experimental

results, (see Table I ).

i
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■

TABLE I

COHESIVE ERERG7 OF THE ALKALI METALS

hrjP is the cohesive energy calculated in the Hartree Fock
approximation, EeXp is the experimental value, and E^igrier etc
is the cohesive energy calculated incorporating the respective

expression for the correlation energy. All energies are given

in rydbergs.

Metal r
s

— 3£
E.
IdOT. ERF SWIGLER EF£RREL £ thES p *

EXP

Li 3.22 -0.280 -0,055 -0.135 -0.100 -0.132 -0.II7

La 3.96 -0.230 -0.022 -0.098 -0.062 -0.095 -0.084

K 4.87 -0.166 -0.014 -0.083 -0.052 -0.080 -0.073

RD 5.18 -0.153 -0.011 -0.079 -0.048 -0.076 -0.061

Cs 5.57 -0.140 -0.009 -0.07b -0.045 -0.072 -0.060

st Taken from H Brooks Phys. Rev, 1027

/ Taken from D Pines Solid State Physics X 3-57
(Academic Press 1955)



- 58 -

Unfortunately we cannot compare Hubbard's method as he is

forced to evaluate his integrals numerically. He does so

for r0 s 2, 3, 4, 5, so that it is not possible to compare his

result with the others as above, though his answer will not

differ much from that of Pines. An additional check on the

interpolation procedure is provided by Perrel's condition that

Ert (X) ~ 0. When comparing the experimental values with

those derived from interpolation methods, it should be remembered

that these formulae have been derived from the theory of a

uniform gas. fhe discrepancy between theory and experiment

may well be due to local field effects which become important

in this region. Methods of assessing the effect of the ion

lattice on the correlation energy will be discussed in the

next section.
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10 - CHARACTERISTIC ElmRGY LOSS O,' aLECTRGRS In

PASSING THROUGH hETAL fILMS

The dielectric formulation discussed in Part I is

particularly well suited to the non-uniform gas problem, as the

maximum amount of information about the electrons in the solid

is contained in Im * Normally this is measured by

observing the scattering of electrons in the kilovolt energy range

in passing through foil of the order of a few hundred Angstroms

thick. 6 (k,<n), the exact dielectric constant of the valence

electrons in the solid, is defined for tne momentum transfer k

and energy transferinvolved in a single inelastic event.
/ A"J \

It can be readily shown^ ' that the probability/unit
dw

time, , that a particle transfers momentum k and energy

to an electron gas is,

dw
= 2jr/Wy«Z , . |2S/W o>)At * ( J« ^ ™ J (10.1)

where (p^)no is the matrix element of the density fluctuations.
By introducing a test charge and examining its effect on the

electron gas one can define and calculate the dielectric constant.

Nozieres and Pines do this and find that,

2.

2. I
V l/0.> M J ( 1 I (lo.2)i - m

6(^) iik * l<%ru>'lnl CO + CO +i
no
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Combining equations 10.1 and 10.2 one then obtains the connection

between the energy loss and the dielectric constant,

c(W Swe1 ? / ' \ ,
_ cu cM. / \ (10.3)

dt V £[£,«>)/
From energy loss experiments one can therefore determine

6 (_£, u>) and hence the correlation energy (see Chapter 5)
Limitations of equation (10.3) have of course, to be borne in

mind.

The characteristic energy loss spectrum of a metal can be

expected to contain two groups of individual particle energy

losses, a strong low energy peak associated with the intraband

transitions, cutting off at and a series of broad peaks
rn.

associated with interband transitions. These transitions are,

however, heavily screened. The major energy absorption comes

from the excitation of plasmons associated with the zero of

The plasmon dispersion relation is,

i 4tt'£2' <STl -fovI = Z, — 1 (10.4)
^ v ~ "yo

If the majority of the transitions associated with f are such

that wVo Wp then the plasmon frequency wQ in a solid is,

z 2.
IA2- _ co sp i"cv ^Vo
o — P ^ Z-t —Z (10.5)

ra y 6op
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being almost equal to the classical free electron value. One

would expect this to oe applicable to most non-transition metals,

since here, valence electron plasmons are of the order of 15 e.v,

( f
while most 4- 6 are only a few electron volts. Hence one would

JoV

expect non-transition metals with a small energy gap, to exhibit

the same characteristic energy loss spectrum as a free electron

gas. This prediction is found to be in good agreement with

experiment.

The plasmon excitations are formed in the wake of the

exciting particle in a similar manner to the production of

Cerenkov radiation. Since the plasma oscillations are quantized

(plasmons), the observed discrete energy losses will appear as

multiples of the basic plasmon energy. Such discrete energy

losses were first observed by Huthemann^ *^and Lang^^and recent

work has been reviewed by Marton et al^^ Good agreement

between the classical result for a free electron gas and experiment

is obtained for some metals as can be seen from Table II.

TABLc II. (energies in e.v.) (data taken from reference 39)

Metal Be Mg At Ge Ptr

19 10 15 17 13

#<0p
19 11 16 16
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These figures have been calculated by assuming that the valence

electrons are completely free and that the core electrons take

no part in the interaction.

Distinction between individual electron behaviour and the

collective mode is less clear in the transition metals. Here

the individual core excitation energies are comparable with the

plasaon energy. As a result, the plasmons are damped and there

is a shift in the plasmon energy. This is illustrated in

recent measurements by Powell^A possible phenomenological

model has been put forward by Wilson. As he correctly

points out, most metals have optical absorption levels which

occur at similar energies as the plasmons; it is therefore

possible that a fast electron may excite an optical transition

as well as a plasmon. This may well be the reason for the

discrepancy between theory and experiment as found in the case

of copper, where the calculated plasmon energy is 11 e.v. while

that observed is 20 e.v. Wilson suggests that there is an

optical transition band stretching from 11 e.v. to at least 20 e.v.

In order to calculate the dielectric constant one must also

measure the angular distribution of the characteristic energy

losses, since from this one can derive the dispersion relation.

This can be readily shown from the Bohm, Pines dispersion relation
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for the free electron gas, which can be obtained from

equation (4.11) by a simple transformation and is,

I - SK* £
nm 1 i+vn. .

(10.6)

Expanding the denominator one can approximately write,

~ % -1 ^
where Ep is the Fermi energy.
Let us now consider an electron of energy E = which emits

a plasmon of energy Ttujp and in so doing, is scattered through
an single 0

By the conservation of energy and momentum.

e ~ M
p

Substituting in equation (10.7) for k gives

- e* -t- (E^_)coz = £2^ ^ do.8)(a E,

This is the equation of a hyperbola with a focus on the CO axis

An angular distribution of this type was first observed by

Watanabe,^2^ who, by careful measurement of the curve, obtained a

reasonable value for the dispersion relation. Good agreement

between his measurement and that predicted by the free electron

theory is obtained for A1 and Be.
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11 - PRELIMINARY CQKSIDh'RAIICflS FOR a KOL-u1.IFQRI-; GAS TlihCRY

In this section it will be shown how the foregoing picture

of the uniform electron gas developed in Part I is modified in

the presence of a periodic field such as that existing in solids.

The inclusion of this periodic potential leads to a band

structure in momentum representation, allowing two types of

excitations for the solid (a) intraband transitions and (b)

interband transitions. The latter are associated with the

periodic nature of the potential and one would expect that these

could alter the free electron result. The periodic potential may

alter the shape of the band from the simple free electron

parabola E(k) a a—■ , if the effect on the band shape is
Zon

regular then this may be incorporated into the correlation theory
9€

by introducing an effective mass mm in place of the real mass m.

How the theory is altered by the energy gap is harder to predict,

though it is evident thot the logarithmic term in the correlation

energy expression remains.

Application of a modified theory of the electron gas may be

possible for simple valence solids such as the light alkali metals

and alkaline earths. Here there is a distinct separation between

the valence electrons and the core electrons. The problem may

then be treated as one in which the valence electrons are moving
in the potential of the periodic array of nuclei and of the core

electrons. It is assumed that one can neglect core-valence
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exchange and correlations, which is equivalent to saying that the
(19)

core polarizihility is very small. hozieres and Pines ' have

shown that this is a reasonable approximation.

The potential due to the core electrons and nuclei can be

well described by a Hartree potential V(r) so that the Hamiltonian

of the valence electrons may be written

p?
H - £ [ ^ + V(r.) ] + | (11.1)

i i »3 ri
3

= Ho + Hc

Hq con now be treated as the unperturbed Hamiltonian
with eigenstates which are the usual Bloch wave functions.

The valence electron-electron interaction term may then be

treated as a perturbation on Hq.
As before the system is assumed to be at absolute zero so

that all particles are in their ground states. The metal is

also assumed to possess a perfect lattice the effect of

dislocations etc, being ignored. The wave function for the system

J(x) may be expanded in terms of the Bloch wave functions 4*^.
having energy £pk

^(x) = £ ank 4^ (11.2)
n,k
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Hence for a gas of non interacting Bloch electrons, the

energy of the system expressed in second quantized form is:

Ho = *)ir>

m

m'Jk'

Ho *= 2
£

96
where the a^. and a^ are creation and destruction operators
for Bloch electrons.

The Coulomb term II is :
c

, ^ '
Hc - T f*(*) f (?) £(*) drd*'

On substitution for f

V 2vez -* •*
Hc = ^ z a q a

V ' h ^
■Ri - = ~ $5 ~ 1^
Hence to extend the Gell-Mann, Brueckner type of approach

to non uniform gases, one replaces the free electron energies by

Bloch energies. The perturbation series, however, becomes

rather cumbersome, and it is no longer possible to sum it except

in some soecial cases. TJ.- ±. ^ ±It is not essential to expand in terms

of Bloch waves. As an alternative procedure we can retain the

kinetic energy as the unperturbed term and treat both the
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electron-electron and electron-core interactions as perturbation

terms. The perturbation series now contains three types of terms,

electron-electron, electron-ion, and ion-ion interaction terms.

The first group give the Gell-Mann, Brueckner result while the

others represent corrections due to the presence of the ions.

Both methods have been used on the problem and the relative merits

of each will be discussed in detail.
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12 - kLgCIhOh-IOh PLASMA AP I'hOACIi

The problem of calculating the correlation energy of an

electron gas in the presence of a periodic field can be greatly

simplified by replacing the rigid lattice by an ion plasma.

This method has been applied by Silverman and Weiss ^ and others

with a fair measure of success. In their model, the positively

charged ions are smeared out and replaced by point charges whose

magnitudes are determined by the valency of the atoms.

Silverman and Weiss extend the Wentzel formulation to

include the electron-ion interaction term . Their

Hamiltonian is of the form:

H - H -+■ H + Ht (12.1)O C Jl

Where H +• H are the Wentzel terms:
o c

HT - | L »' c, + i S V1 c k (12.2)1 2
k,q 1 k« k,q "I "k- 1

X til
The summations extend over all k and q, V being the q—

Fourier component of the electron-ion potential. Imposing the

restriction that |k| < P andjk+q|p»P, Hj becomes:

HI - 2 E [vq ( ckq + c-k-q} + C*C*] (l2,3)k, q

Introducing Wentzel's canonical field variables 0^ and ,

the Ilamiltonian reduces to:
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h - ~ £ (nf n, «+• iv ? 0*0, - )2
k kq kq kq "kq^kq kq'

q ^q k^k'^kq "k** ^ ^kq ^k'q

+ -f £ (2^q )* ( V* 0kq + c.c.) (12.4)K, q

Silverman and Weiss then diagonalize the Hamiltonian by

transforming to a new set of co-ordinates Q and P which are

related to 0 and II hy the equations:

*k = l dkk- v + \

nk " f. dkk' pk'k1

where d^k, and b^ are constants which satisfy the relations:

S « 2 d <L* a*L Z»*l 'V^
**' r w i'r a * *
is chosen in such a way as to eliminate terms linear in Q.

H then becomes:

H = e\W%+Wq<k,f ty % h) (12.5)

- s \<Wh\ __

^ ( 1 + 2-\o ^ UU

Md|<P T,
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The second term represents the shift in the ground state

energy due to the introduction of the point charges. To evaluate

this contribution to the energy, Silverman and Weiss assume that

the charge impurities are distributed at random. Averaging in

a manner similar to Kohn and Luttinger^^ they find:

£ £ *

*1 = vf
where n ■ is the number of charge impurities and z the

charge on each impurity or ion. Evaluating the correction to

the tfentzel ground state one finds:

AE =» - 2zi ^ '
(jr«)5 V71/ *&*• (12.6)

4 "T
where a s (<^) ali(* 11 the number of electrons.

This result may be obtained by a variety of less elegant

methods. Perhaps the most obvious way of tackling the problem

is to treat the electron-ion along with electron-electron

interaction as a perturbation. The perturbation expansion then

contains three sub-series, terms which include processes with

B only, others with H., and those having a mixture of H and H..C X " C X

Vientzel has already summed the contribution of the first group.

Those containing H. only, corresponding to the ion-ion interaction
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are neglected, since they are in no way connected with the

correlation energy. Silverman and Weiss sua the electron-ion

terms, which may be represented by graphs of the form:

From these graphs it is evident that the energy must be at

least quadratic in the electron-ion matrix element in order that

the system may return to its vacuum state. Possible graphs fall

into two groups, those in which connects an electron and a hole

as shown in Figure 7 End others such as in Figure 8. The latter

can be ignored since these contribute a lower divergence and may

be neglected in the high density limit. Summing the relevant

diagrams leads to similar results to that obtained by

diagonalizing the Hamiltonian.

Silverman and Weiss suggest that the power series expansion

for the correlation energy of a non uniform gas should contain a

(cross represents electron-ion interaction)

Figure 7 Figure 8

well as r .

s
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13 - CALCULATION OF THE COitKELATIQR ENERGY IK THE

PRESENCE &!■ A RIGID LATTICE

The electron-ion plasma approach, discussed in the previous

section, while being simple, does not yield any information on

the effects of the periodicity of the lattice. In this section

the effects of a perfect rigid lattice at 0 K on the correlation

energy will be considered, first in the weak binding and later in

the tight binding approximation.

(a) Weak Binding Approximation

In Part I, Section 5* it has been shown how the

correlation energy can be calculated from the dielectric
(21)

constant of the electron gas. The Nozieres, Pines

formulae for the polarization can be simply adapted to the

non-uniform case by replacing the free electron wave

functions by Bloch wave functions. The expressions for the

real and imaginary parts of the polarization are :

™V
(13.1)

(13.2)
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where the Bloeh function oscillator strengths

I
,rn

ov

LO
Vo (IjOoV (13.3)

obey the sume rule 1 f - nav
y

The suramations in equation 13.1 and 13.2 extend over intraband

and interband transitions. For an isotropic metal and in the

long wave limit i.e. |^| o

unl^.

'oqriL M- t„Z ^ E"

it- ^ ^ *'
= -32 7n

<x
3 o< (13.4)

oW
on.

(°) =
Oqrri
I I (ft0C)an'

00
(13.5)

a q

whereM-J „ is the effective mass tensor
Vm*/o(p

and k an arbitrary wave vector inside the Brillouin zond.

Inserting these expressions into equations 13.1 and 13.2

one finds that the polarizibility and hence the dielectric constant

and correlation energy are only slightly affected by the presence

of the periodic ion field. The correlation energy is

to a first approximation, modified by a factor/2!L\
Uv
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Falk^^ has also formulated this problem via the

dielectric approach. He assumes Bloch wave functions for the

electrons of the form:

= Us (R, exf>^ l g.T)
and expands the U ( & ,t)<5 in a Fourier series in the reciproca^1^* ^
lattice vector K

US(V) = 2 Xs ( k) (- <-£
(13.7)

K

He then determines the dielectric constant of the medium

and finds:

€ (&, K,M) = + (*' ^ *")
<x (-ft- K' K -K',

(13.8

K IGTTez I
r p

l4-KlZ ss' J (znr)
dV

. . ? rm ^ v60Z ^ K'

x('-yz *>-«>:>x,s' ' 3 ' (13.9)
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Close inspection of the form of a reveals that this and

hence 6 (a) has a simple pole when k = K 4 K' and a simple
zero for k - K* ^ K . These poles and zeros simply correspond

to Bragg's law.

Falk finds for the inverse of the dielectric constant

i
. in the weak binding limit:

_j = C ! -A- Q tfl P(&,K»1
6(e,K») Ko ) |r- k| +?(*,*,»)] <13'10

UrflesK

(S ( K; K- < •) =^ -)
The first term in equation 13-10 corresponds to the free electron

gas result slightly modified by the periodic field while the

second term results from the modification of the energy v

momentum relation near the Brillouin zone boundary.

Inserting this result for the dielectric constant into

Hubbard's formulation, Falk finds the correlation energy to be:

(excluding the exchange term)

E =. tL^LjAi + zpu k «)1 (13rcorf iJH5 Zp(*,K») * ' ' -! "

Comparing this result with equation 3.15 of Part I we can see

that this is a simple generalization of the free electron result
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Hubbard uses a similar approach, modifying his free
(IS)

electron model by incorporating the effect of the ion cores

by a Hartree field V - £ V( ). He then writes the

Hamiltonian in the form

H . (Hq + V) + (H* - V)
where H' is the normal Coulomb term (Hq + V) is treated as
the unperturbed Hamiltonian and (H' - ¥) as the perturbation.

The theory is then similar to that derived for the uniform gas.

However, this method produces an answer as complicated as Falk's,

Hartree equations for the electrons in the lattice have to be

solved and also the effective interaction which is expressed

as an integral equation,

(b) Tight binding Approximation

Callaway* using the Gell-Mann, Brueckner technique,

has calculated the correlation energy of a semiconductor. He

assumes a simple oand structure model in which there is an energy

gap E above the Fermi surface, and electrons having an effective
Q

mass m m . All other effects of crystal structure are

ignored, Callaway considers two limiting cases, (a) that of

the large energy gap corresponding to an insulator, and (b) the

small energy gap, the semiconducting case.

The second order perturbation term in Gell-Mann, Brueckner

notation becomes after inclusion of the energy gap E and
&

effective mass m^:
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^2. - dfy{dfc,l (dfcp ni <?4 2 l/<l JSirrJ 'J J HUwti*

OrflvK £- J±
& £EF

In the insulator case we need only consider this term, for two

reasons. The first is that the divergence obtained for the free

electron gas is no longer present and therefore it is unnecessary

to sum the perturbation series. This is due to the presence of

E in the energy denominator, which, being independent oi the

momentum transfer q, makes the contrioubion independent of r •

The second reason for the neglect of higher or perturbation terms

is that their contribution is small since an energy denominator

containing E is obtained for each virtual pair interaction,

Callaway evaluates the second order contribution using
(12)

Macke's co-ordinate system and Monte Carlo methods. He

finds it to be:

E2 - - 0.526 ± (15.13
fc6"

where is the Fermi energy.

As Callaway points out however, we cannot really identify

this with the true correlation energy of an insulator since it
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vanishes in the limit of very large E • This is contrary to

what one would expect, for the correlation energy arises from the

inability of the Hartree-Fock method to localize the electrons

sufficiently. In the tight binding case of an insulator, the

electrons are well localized on individual atoms so that the

correlation energy should be non zero in the limit of a large

energy gap. The limits within which one can apply this result,

are therefore in doubt.

Callaway then calculates the correlation energy of a

semiconductor, corresponding to the case of small E^,. He does
this using the method of Gell-Mann, Brueckner modifying the

Feynman propagator to include the energy gap. Inclusion of

the effective mass of the electrons is trivial. The result

consists of a series in E and r . the zero order term being the

correlation of the free electron gas :

(13.1'
Ec ( E.) = + [ 100 |

where E (o) = m* [0.0622 ^ - 0.096] ryd/electo

Extension of this method to the electrons in metals, where

the Fermi surface and Brillouin zone boundaries do not coincide,

is rather difficult, since each virtual excitation can be either

intraband or interband. It is the summation of these processes
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that presents the problem. We can however, modify Callaway's

method for the insulator, to suit the case of a metal, by

assuming a band structure of the form shown in Figure 9> where

the breadth of the valence band is less than the energy gap.

The second order direct interaction perturbation term,

using the above band structure, is approximately:

(fa)
AE =-

Coyf

3 'Tri <ri

pt
h- £

— t

i "i

<60

7

< £
p

L ■'
AVI

iZ-t +

MA1

m-\>j . u>

>1

<60

P
(13.
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while the corresponding Gell-Mann, Brueckner term is:

AE
(2A)

\ZiiZ
I * Mz<l

Sv H*+p■(*>*& (13.16)

Subtracting equation 13J6 from 13.15 one obtains the correction

to the Gell-Mann, Brueckner result i.e.

AE Corfecticr.ion A -fa)At — AE
Cent art G-. B.

(13.17)

If the effective mass ratio m is assumed to be unity then :

(cPV

/\ E -: — At o^f~
d(Ae.(tcrt ^Trr<a ]/

'I +Z\j/ W6r

F fe+£|?,<f M^>jr (13.18)
In the first term of equation 12.18 both excited electrons
must cross the energy gap so that one can approximate this to :

>.

(<7A.

AE

21 ■
R, l

(^) > ^

3

c(o?"^d" QJ>f
8^ f f

A 2
V Z

<1

1!.'^ ?K

(13.19)
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Evaluating the volumes of integration using Macke's co-ordinate
^ p

system and expanding in terms of the parameter $ —
P

one finds that the correction is to the first approximation:

(on
_ J

= - — W ^F|( r A-I _ V 4- iv (15.
IT2- V ^/J L V £ |2 J

o

Hence this naive approach still possesses an infra-red divergence

even though the Gell-Mann, Brueckner term has been subtracted.

This could have been anticipated as one part of the non-uniform

second order perturbation term allows an interband transition for

one excited electron and an intra-band transition for the other,

the divergence arising from the latter as in the uniform gas case.

The correction can however be calculated by applying a cut-off

to the integral. This would normally beobtained by summing the

whole perturbation series. However, the error incurred using the
J*

rigorous free electron gas cut-off, 0 » 0.47 would be

slight.

The second order exchange term cannot be similarly
i

calculated on account of the momentum transfer factor . ~ ~~7?

It can however be worked out using Monte Carlo methods. Callaway

has shown for the case of an insulator, that this contribution is
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small compered to the second order direct term. Hence one feels

justified in neglecting the correction of the exchange term in

this approximation for a metal.

This method can at most, give us a qualitative answer,

since in the calculation one is forced to assume unit

effective mass and a spherical Fermi sea. The range of validity

is also in doubt though one might expect the result to be

applicable in cases where the energy gap is two or three times

the Dreadth of the valence band.
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1£ - PI AGGHALI £ATICli or' Tile. HAlULIOfrlAfr si\ A
IV.-JJLtir.

One method of extending the range of validity of the theory

is by including higher order linked cluster and electron-ion

terms. These can be more readily included if the Wentzel

Hamiltonian is first diagonalized. Silverman and Weiss do this,

but in such a way that they need not know the exact form of the

transformation. If it is known, one can obtain the wave function

corresponding to the Wentzel Hamiltonian by operating with it on

the vacuum state wave function. This wave function can be

considered as the unperturbed wave function and higher terms in

the Hamiltonian may then be treated as perturbations. Such a

procedure is satisfactory for the electron-ion interaction but

not for the higher order electron-electron terms for these have

been shown to possess subsidiary divergences of the form

r lnr . It may be possible however, to sum the perturbations s

series produced by expanding in terms of the Wentzel rather than

the free electron wave functions. Hence it would appear

worthwhile attempting to calculate the required transformation.

The un-physical, though often instructive, one dimensional case

is considered first.

One Dimensional Case

The transformation required to diagonalize the Hamiltonian

of a one dimensional electron gas is a relatively simple one.
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Taking the Hamiltonian in the Wentzel form, the q . term is

z 2 ,*
\ \+ + f

-X

■k r£ (14.1)

Applying the cyclic transformation :

h -Zj=°r(^) (14.2)

one finds the Haailtonian assumes the form:

Hv
- 2 TT,

k

^ ^2.-7--* -r~

TT»+JZ ffcfk £ £
60
£

Two solutions are obtained for Si, one corresponding to the

scattering states, the other to the plasmons.

Three dimensional u. ac

In the three dimensional case the Haiailtonian is :

z
k

r
2-,*i

TT Tr -f to <p q>
k ft ^ t m

-x-
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A possible canonical transformation capable of diagonalizing

equation 14,4 is :

T = [«fe
where va is anti- hermitian for reality

i.e.

This leaves the n^II^ term unaffected, operating on the 0's only.

0^ transform to = T 1 (j> ~T
Expanding the exponentials one finds :

?£ = ^l>^4l + 4[sts[s^4
(£ f£ - 2" [ ©xjD

k

(14.5)

Applying this to equation 14.4 and equating diagonal and

non-diagonal parts one obtains the equations for the matrix

elements :

Z ~ ~lX jsi e>„ 6 = w^ ^ firm rrnfi KOn

-I

\tsL- B~ 6L Try. "rtft 7n£
A J

(14.6)

(14.7)

urffijtc
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Solution of these equations gives a,^ and hence the required
transform.

Fukuda^^ has also attempted to calculate this unitary

transformation. He assumes that the ground state wave function

can be expressed:

*0 * a V $o (14.8)

where a is a normalization constant, V an operator containing

electron creation operators only, and 0Q is the vacuum state wave
function. Taking V to be of the general form :

I5 ( ^ KV = e*t> ( 2 K c*c*
k t -

(14.9)

he then calculates Kj^i by a variational method. Fukuda shows
taat the transformation does in principle work, though the

mathematics become rather involved, and it remains to be seen

whether the higher matrix elements can in fact be calculated

in this way.
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15 — LlnllAXIOhB Ox' l'.iij LlnK^D CLbSX.cK Laj. . JlOI'i KEIHQD

w.IBA APPLIED JO JHjj aCh—til.IFUAi'i GAS i^OBLLM

One must exercise some degree of caution in applying the

Linked Cluster Expansion method to electron gas systems such as

those found in metals. This method assumes that when the

interaction between the electrons is switched on, the levels in

the unperturbed system retain their identity in the perturbed

system i.e. they remain discrete. This has been shown by
( Q \

Luttinger and Ward ' to be so, for a system of fermions of

spin , in which both the energies and the perturbing potential

are spherically symmetric, indicating that the Brueckner, Goldstone

series is convergent for this particular case.

Kohn and Luttinger^^, on the other hand, prove that the

series is no longer convergent for the non-spherical case such as

one has in a metal. Here the interaction potential (Coulomb)

is indeed spherically symmetric but the Fermi surface has only

the symmetry of the lattice. The energy levels lose their

identity in the perturbed system and the Brueckner, Goldstone

series is found to have a zero radius of convergence. As long

as the volume of the system V is large but finite, the true

energy levels regarded as functions of the coupling constant ,

nave sharp bends but do not cross. In the limit V-^»oo, the
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terras which ensure that the levels do not cross are lost as they

are of order V . Hence, for a finite value of \ , the state

which grows smoothly out of the original ground state is no

longer the lowest.

Instead of switching the interaction in adiabatically as

Goldstone does, Kohn and Luttinger calculate the energy of the

ground state at a temperature T, take the limit V —> <» first and

then let the temperature tend to zero. The Brueckner, Goldstone

formula is obtained if the order of the limiting procedures is

reversed. This is the only fundamental difference between the

two methods.

They calculate the energy using the Grand Partition Function
(35)

method developed by Montroll and Ward and others . Due to the

finite temperature, contrioutions of two types of diagrams have

to be considered. One group is composed of the Brueckner,

Goldstone graphs which have been considered earlier. The second

and third order diagrams are shown below :

Figure 10(a) Figure 10(b)
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The second group consists of anomalous diagrams which arise

from the finite temperature. The second and third order diagrams

are shown below in order that they may be compared with the

Brueckner, Goldstone counterparts.

The anomalous diagrams are those in which some electrons

and holes are forced by momentum conservation, to be in the same

state. This is only possible at a finite temperature. Kohn and

Lubtinger find that the contribution of these diagrams remains

finite after they take the limit T0. In order to illustrate

their point, they evaluate the second order term. (The first

order term is unchanged since the first non vanishing anomalous

diagram is of second order). The anomalous diagrams reduce the

contribution of the second order term indicating th; t there is a

lower state than the Brueckner, Goldstone one for this particular

cose. This correction is found to vanish only if the interaction

potential and the unperturbed energies are spherically symmetric,

partially confirming the findings of Luttinger and Ward.

<

Figure 11(b)Figure 11(a)
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(5C )
Wentzel has interpreted the meaning of the Kohn and

Luttinger term geometrically. He points out that, since the new

term involves the diagonal part of the interaction only it should

be possible to derive the result more simply by omitting the

off-diagonal terms of the Hamiltonian. He assumes an expression

for the ground state energy of the form :

=j6^ Os.i)
fW m

where f d'*. denotes integration over the non-spherical Fermi

sea. 3ince the Fermi sea is defined as that surface over viiich E.

is a minimum one can write :

+ * J (15.2)

Differentiating equation (I5»l) v.ith respect to X and using the

fact that j d3jk equal to the total number of states below the
?(*)

Fermi surface, is a constant, one finds :

(M.3)
rty rty

/2zf\
The Kohn, Luttinger term is — )

v*>=o
which is obviously zero in the spherical co.se.
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In the linked cluster expansion, it has been assumed that the

in wnich all the states up to ttu Fermi surface are filled and those

above, empty. This presupposes that the Fermi surface is a sharp,

v/ho, on the basis of recent work, casts doubt on the existence of

a sharp surface even for weak repulsive forces.

The chief reasons for this are that the coulomb interactions

between the electrons in metals are of the same order of magnitude

as their kinetic energies and the correlation energy is

comparable to the binding energy. Therefore we cannot expect the

momenta of the individual electrons to be good quantum numbers and

consequently the Fermi surface cannot be sharp.

In the unperturbed system the occupation number n^ may

system is at 0°K. The vacuum state is then considered to be that

(51)
well defined entity. Luttinger has shown that this

/ C p\
assumption is quite wrong. This view is shared by Van Hove

be written :
i jfg- ek

or alternatively in terms of a contour integral :

?+ t-oo

(15.4)

f»_ CCO



- 92 -

If an interaction is present may be written :

P+cOo

(15.

j> - eft - <V^]
^„ -

c/

P- coo

where ^ til@ -propasatior o;f> ^ie systern and

is the proper self energy part of the propagator. This

describes how the propagation of a particle is affected by the

presence of others with which it interacts. It is determined

by summing polarization graphs of the type considered by Quinn

and Ferrel^22^.
The analytic properties of Gk(y) are i

1) analytic everywhere except on the real axis.

2) liiii Gk(y * ip) - Kk(y) + iJk(y) where lk(y) ^ 0

3) JR(x) » Ck(y - P)2 : ck ^ 0 as V *
The last property comes about in the following way. The

contribution of the diagram shown in Figure 12 bo G ^ (y) is :

Figure 12
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«, ^ >f

(15.6)

«3<f

This contribution has on imaginary part S [ y- C%~
Since k^, k2 represent electrons with energies greater than the
Fermi momentum P and k^» a hole with energy less than P,

S + " p (15>7)
Hence for y near P, one obtains a contribution from a very small

portion of phase space and it is for this reason that

V*) <*
The true Fermi surface is given by :

P - £ (p) = O (15.8)

and the single particle energy by the solution of the equation :

- K*(E) = 0y (15.9)
For electrons in a lattice, one must average over the band index

before the Fermi surface and single particle energies are known.
(53)

Luttinger and Migdal have shown that the Fermi surface as well

as being smeared out at 0 k, possesses a finite discontinuity at
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the Fermi surface. These effects, however should produce

negligible effects on the correlation energy for De Hass- Van

Alphen measurements^*^ have shown that the Fermi surface is
4

sharp to one part in 10 .
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16 - CONCLUSIONS

As we have seen from the work of Bohin and Pines, the

electron gas in a metal behaves in a plasma-like way. Any

slight deviation from neutrality creates forces which try to

cancel the space charge. If there is little damping, over

compensation takes place and the system oscillates longtitudinally

as in a sound wave. This condition is known as plasma

oscillation. The positions of the electrons are correlated by

this plasma behaviour and by scattering type interactions.

Localization of the electrons leads to a contribution to the

electron energy over and above that derived from the Hartree,

Pock theory and has been celled correlation energy. Addition

oi this energy term produces more binding and reasonable

agreement with experimental results. (See Table I). Unfortunately

this comparison can only be made using interpolation results

derived from calculations made in the high and low density limits.

The formulation of the high density uniform gas case by

tefentzel gives perhaps the most lucid account of the problem.
(55) (8)

Brput and Sawada et al point out the existence of the

plasmon contribution in the linked cluster expansion. The low

density case can be reduced to the problem of calculating the
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energy of an electron in an electron lattice. Methods for

treating the uniform gas have however, been adequately discussed

at the end ox Part I and this section will be confined to

analysis of the various methods developed for the non-uniform

gas.

In theory, the uniform gas methods can be simply extended

to the non-uniform case by replacing the free electron wave

functions by Bloch functions. Expressions become complicated,

and it is no longer possible to sum the perturbation series.

Approximate methods of dealing with the problem have however

been evolved.

The approach developed by Silverman and Weiss, in which the

electron-ion system is regarded as a two component plasma is

rather interesting. The ions are treated as a gas of charged

impurities mingling with the electrons. One immediate drawback

of the method is that it does not incorporate any effects

associated with the periodicity of the lattice. It may be of use

in the theory ox liquid metals, though here it should be remembered

that only the long range order is destroyed, band structure,

arising from the short range order being still very much in

evidence. For the alkali metals, having I vilence electron/atom

I, the Silverman and Weiss formula reduces to

where
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This represents the correction to the Gell-Mann, Brueckner high

density result and appears to be rather large. One would

however, be inclined to look for a substantial correction, as

the effect of the charged impurities is to bunch the electrons,

localizing them to a greater degree and thus increasing the

correlation energy.

The dielectric formulation is perhaps the most useful since

the correlation energy can then be estimated directly from energy

loss experiments. The Nozieres, Pines free electron formula is

simply modified by inserting Block wave functions into the

expressions for the polarizability. Falk's expression is just

a simple generalization of the free electron case, but the energy

cannot be readily calculated from it, though it does show how

the periodic field modifies the free electron gas expression.

His result agrees with that of Nozieres and Pines and confirms that

interband transitions do not make an important contribution to the

correlation energy in the weak binding limit. Hubbard's^^
solution of this problem, obtained from the extension of his

uniform theory, also becomes rather intractable. The Hartree

equations for the electrons in the lattice have to be solved and

secondly the effective interaction expressed as an integral

equation when the screening is modified by the ionic field.

These equations have yet to be solved and it looks as though

computer techniques are necessary.
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In order to obtain a quantitative answer one is forced to

make sweeping assumptions, such as those made by Callaway,

His work on the correlation energy of an insulator must be

regarded with suspicion since his expression goes to zero as
«

-*■ oo, quite the reverse of what one would expect. Consequently

the range, over which the extension of his theory to metals is

applicable, is in doubt, though one would expect it to hold for

the case where the energy gap is two or three times the breadth

of the valence band. The extension to metals provides an

answer dependent on the parameters, effective mass m3*, ratio of

valence bandwidth to energy gap, and position of the Fermi level

relative to the Brillouin zone boundary. A complete theory of

the non-uniform gas should embody all these parameters. This

expression may be applied to a metal such as aluminium which has

a valence bandwidth of 15 e.v., an energy gap A e.v. and m - I.

It should be remembered however, that this result has been

calculated for the high density case so that it is not possible

to compare it with experiment.

Kohn and Luttinger's work shows that a simple extension of

the linked Cluster expansion to the non-uniform case in which the

Fermi surface is non-spherical, such as that in a metal, is not

valid, the series being convergent only for spherical symmetry.
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Van Hove has indicated how terras which cannot be represented by

a power series may be found in the ground state energy, even for

the case of very weak repulsive forces. These terms are

however, found to be exponentially small, so that in a case such

as this, one would expect the linked cluster expansion to give a

reasonable asymptotic representation. The Fermi surface at

0°K is defined by Luttinger, as the locus of the discontinuity in

the momentum distrioution curve and is generally distorted by the

electron-electron interactions. This distortion is, however

slight, as can be seen from De Hass Van Alphen results, which

show that the surface is sharp to one part in 10^.
It can be argued that the error incurred by applying a

modified form of the linked cluster expansion to metals such as

sodium, will be slight, S;.nce here the Fermi surface is almost

isotropic. The periodic field will influence states very close

to the Brillouin zone boundary in k space, though only a small

fraction of the total number in the Fermi distribution will be

affected, even in polyvalent metals such as Mg and Al. Interband

transitions may alter the properties of the quasi-particles and
/ rr \

their interactions. Their mean lifetime decreases quadratically

as they approach the Fermi surface while their energy varies

linearly. Hence it can be concluded that the effect of the

periodic potential on the correlation energy should be small,.
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properties such as electron transport and specific heat, which

depend on the states near the Fermi surface being more likely

to be affected.

Further work must be done to incorporate higher order

exchange terms and the rescattering of real excited particles

(non zero temperatures). The effect of the smearing out of the

Fermi surface should be investigated more closely. The question

of the existence and sharpness of the Fermi surface may be

studied as Kohn suggests, by examining the singularities of the

dielectric constant. One possible way of developing a theory

for the intermediate region (2 r ■<. 5»5) is to determine the

wave function for the Wentzel Hamiltonian, as has been attempted

here. Once this has been determined, one can expand in terms

of this wave function rather than in plane waves. The

subsidiary divergences in the perturbation expansion which are

known to exist i.e. r, In r can be treated in a manner analogouss s

to the Gell-Mann, Brueckner method. Higher order exchange terms

must also be incorporated.
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