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SUMMARY

Methods of calculating the correlation energy of
an electron gas are examined. The first section reviewvs
those developed for the uniform electron gas. The second
part is devoted to the non-uniform gas problem, Possible
application of these theories to electrons in metals is

discussed.,
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NOTE ON UNITS AND SYMBOLS

It is convenient to express the correlation cenergy of a

solid in rydbergs/electron, a rydberg being defined :

4
1 rydberg = -%5%1
= Energy or the first Bohr orbit
13,6 €.V,

=
o1 alternatively in terms of the units used in cohesive

energy calculations :
1 ryd/atom = 312 k.Cﬂz/;wt

The inter-electron spacing is expresgeed in units of the radius
of the first Bohr orbit a, i.e.

4 >_ i

3 Tt(rsao) = n
where n is the number of elechrons per unit volume,

and ry the inter-electron spacing in units of &g

H
where 2 = me 2
o
- 0.5292 A

Some of the symbols used are -
P - Fermi momentum

EF ~ Fermi energy

BG - Energy gap
g = momentum transfer
kc - maximum wave vector for which collective behaviour
k exists.

-
: P



real part of the dielectric constant

imaginery part of the dielectric constant

4we2

eV

coupling constant =
volume of the system

A
41“182) 2

classical plasma frequency =( =

Fourier transform of the density fluctuations

creation and destruction operators respectively
for an electron of momentum k

creation and destruction operators for
electron hole pairs,

effective masgs ratio

oscillator strength associated with the transition
from state o to state n

Dirac delta function
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I - INTRODUCTION

One of the major problems of metal physics is the
calculation of the cohesive energy. This moy be defined as
the difference in energy at OOK betwveen the combined energy of
the stoms of the metal and the sum of the energies of the atoms
when taken separately. Early attempts at calculating the
cohesive energy using an independént partiqle model failed,
because of the neglect of the Pauli Principle and electron
interactions,

Calculating the energy of an electron gas by the Hartree,

(1)

Foe approximation one uses a wave function constructed by

taking a Slater determinant of free electron wave functions

4‘1(1‘1) b:(xi) ’-b;(xi) ------

¢2(xi) 52():2) @2(}(3) ——————

I

o
( ! !
This wave function does not give the correct cohesive

¥ = (1.1)

energy fbr 2 metal, for, although it includes the Pauli Principle,
it omits any interaction between the electrons. The energy
ariging from this interaction was termed CORRELATION ENERGY by
HIGNER(z): i.e. the correlation energy of an electron gas is
the difference between the true energy and that obtained by the

HARTREE, FOCK approximation.



We shall first consider the hypothetical case of a
uniform electron gas at high énsity. Here it is normally
assumed that the gas is an infinite one and is at 0°K. The
positive ions are émeared out to form a uniform background of
positive charge which cancels the effect of the average electron
charge density. The potential of the ions is in fact replaced
by an infinite constant and its effect is found to cancel in all
physical processes.

Any attempt to include the electron interaction by standard
perturbation theory leads to a divergent answer. This is
entirely due to the long range nature of the Coulomb field.

It is well known however, that these divergences are cancelled
by polarization effects, any out of balance in the charge
distribution being quickly screened. A physical example of this
is the skin effect found in metals.

Failure of stendard perturbative methods can be simply
demonstrated. The Hamiltonian for the free electron gas may

be written :

2
Hs & _E‘.:.. 4+ L2 22 (1.2)
® 1T 2n 21ij rij
ik
= H H

The ground state energy of the gas Eo is,

E, =€, + e -+ e (I.3)

O corr
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where e, is the Fermi energy/electron = S Zm 2R*
2.2l  rydbergs
= r2
s

and e, = first order interaction energy.

Soorr = correlation energy 1i.e. the energy sarising

from the sum of the higher order perturbation terms.

e, = 3 Y3l (ijlm | 48) - (i3lm | 31) ] (1.4)

The first term is the electrostatic energy which is assumed
to be cancelled by the interaction with the positive charge
background, The second term, the exchange interszction, vanishes
unless the interscting peir have parallel spins. Fourier

transforming the potential in a box of unit volume

dk, dR;

2 L .2
— -4 s A Io
e, ne [(2.103] 'ﬁ -—-é-’z (I.5)
¢ 3
- - Q?ﬁlé rydbergs/electron
S
[ef + ex] is obtained from the Hartree-Fock theory
The second order perturbation term is not quite 2s
straightforward 5
|<"‘-| H"":tl O>‘ (1.6)

AE =3

m ‘ E‘?L_'Eo'

Here there are two terms since the electrons may have
parzallel or anti-parallel spins. These will be referred to

as the direct and exchange contributions respectively.



In these virtual processes two electrons in the Fermi Sea with
initial momenta k., end -k, undergo & collision with momentum
transfer q, emerging into unoccupied states (gi + g) =nd
(-k, - g) above the Fermi surface end then return to their initial
states.
The direct contribution is ¢ (momentum in units of P)
EE? = %‘J"‘?de‘] “&; }L‘? ' [ 92+ 7- (R+8a)| (1.7)

‘f‘"‘l [Ryl<l
[kt A>T Ryt 2]>!

and the exchgnge ternm:

[ |
TR rrny e

{*1 “l [‘l’."l
( 2) (&« y{?( [l!.“.'-fl—’l
there is a fvctor-éz for each collision [Fourier

transform of the Coulomb potential] while in egz) one factor is

the other T 1 )2 in which exchange occurs.,
R + Rty

If the summations are now performed it can be readily seen that
the direct contribution gives a divergent result.

For low momentum transfers the s,z in [7/24— Z’ (&, +_,gz)']-{
can be neglected. The following summation hes then to be

2
- (2) & AR A
performed e - % *5 — e -_)-f Z

a
which has a logarithmic divergence for gq—o0
The exchange contribution on the other hand has no such divergence

. . !
since there is a factor ’i; less, hencs,

— df
eEGD o %gf,;é_ ——;:J-ffié de%
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Closer examination of the higher order perturbation terms
reveals that these are also divergent.

The occurrence of this divergence could have been
enticipated from a classical viewpoint, In a gas of charged
particles i.e. a plasma, two collective effects take place,
Debye screening and plasma oscillations, The screening effect
is due to the polarization of the medium by the charged particles,
and prevents the action of the coulomb interaction at distances
appreciably greater than the screening distance. Plagma
oscillations are due to electrostatic forces in the system which
act if any local charge excess or deficiency exists. Both of
these effects involve the co-operative action of many particles
and hence cannot be treated by standard perturbation theory. The
Debye screening does in fact remove the divergence discussed
earlier.

These consider=ztions can be put on a quantum mechanical
fooking by the Thomes~Permi statistical method.'?’  one might
think that introduction of stabtistics would have considerable
influence on the classical argument. However, this is not so,
because these phenomena involve distences long compared with the
wavelength associated with the electrons. In the Thomas-Fermi
method of treating the many body problem, it is assumed that the
electrons are effectively free at each point. If a charge q is
in.roduced into & neutral plasma then a change in the electron

density Sp occurs and an effective potential @ is set up. These



- B W

These are related through Poisson's equation, i.e.

v’-¢ + hTe §Q = 4Ty (1.9)

Sp can be readily shown to be,
2m E_ —+ esé) 4 m =~ 3 n e
°p = ( 2 e

Inserting this into equation (I.9) and solving for @ one finds,

_ ¥ (--'i
p = = A, (1.10)
where {E
( 61 me?

Hence, a8 in the classical Debye - Huckel theory(4) one finds
that the long range coulomb potential is screened within a distance
}'FT' It will be shown later however, that this approach

overestimates the screening power of the electron gas




2 - COLLECTIVE DESCRIPTION OF ELECTRON INTERACTIONS

The presence of individual and collective excitations can
be readily illustrated by a simple examination of the density
fluctuations p, of the electron ges.  Re-writing the

electron Hamiltonian as @

RF 2 E
Hael— + 2ne“L -L[plp, - n] (2.1)
i m ko B K K

where Cﬁ = I(’(}) Eml:r (""Ef)d”" ==§ mF(*@o?f)

Since E%- commutes with the potential energy we
may write ¢ . i
Pr = % [Cenl

Hence the equation of motion for {p is @

b - F (5B (an)-Z =00 bty

4

Separating the term q = k and transposing it to the left

hand side, eguation 2.2 becomes $

Ek+w1{,@ﬁ = Z(‘Ew‘fﬁ)&"f’(“ﬂ ) - ﬂ% ‘”fﬁ; y (2.3)

A
2
where W § = 4Eﬁ2" ’ LUP being the plasma frequency.

Hence e ¢ performs simple harmonic motion at a frequency
u)p providing the terms on the right hand side of equation 2.3

can be neglected.
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This corresponds to the physical picture of electrons moving

in a completely collective manner. Under what conditions is
this picture valid ? The second term may be neglected if the
electrons are distributed at random, since there will be
contributions from many electrons %o p, ,,. The phase factors
eppearing in the exponential being distributed a2t random, tend
to cancel one another. Bohm and Pines(S) cell this the
Random Phase Approximation, The first term may be approximated
to k2V2°pk where V_ is the velocity of an electron at the top
of the Fermi distribution.

The condition for plasma oscillations then is
2,2

kV

2
w
¢

4@5' or k less than some critical vector kc

Hence one may expect the electron gas to exhibit collective
behaviour for k4:kc and individual particle motion for k:»kc.
The latter may be regarded as statistical fluctuations coming
from the thermal motion of weakly interacting electrons. The

(
Debye screening length As is of the order of —:&/c .

The basic problem is to develop a theory which is capable
of treating the collective and individual effects together.
Bohm and Pineste) found that in a particular co-ordinate
system, the plasma oscillations could be described by a set of
equivalent harmonic oscillators, which only contribute a zero

point energy to the system, leaving an effective Hamiltonian
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2
Py on 2 *
- Eet ¥ -—i - ™~
1= § 2n t i ke ]2 [pkeﬁ n] 2.4)

for the individual motion of the electrons. They

employ an extended Hamiltonian,
2

Py ggez % # = gnez ]
He L= 42 [prp, -nl+ 2 [mm n e (2.5)
i 2m Kk k2 kFk k‘kc l; k + Tk k2 E

where they have introduced n' field co-ordinates Q
and their conjugate momente Hk which commute with the
co-ordinates of the individual particles.

ie, [M,q']=-1Kd,, ', [m P;1=0 [mx]=0
[Qk’Pi] =0 [:“k’xi] =0

These co=-ordinates represent the collective excitations
of the electron gas and their number n' is given by the number
of wave vectgrs betveen 0 and kc i.e.

k
c

n'= e

én
In order to conserve the number of degrees of freedom
of the system they are compelled to introduce an associsted
set of subsidiary conditions,
my =0 (k<k,) (2.6)
Where ¥ is the extended wave function. By carrying

out a canonicazl transformation of the form,



o oxil{ g . ig )
onew exp( h ) Oold exp( h
2
Teking 8 = L e o p, (2:7)
kd:kc k

. the extended Hemiltonian becomes,

2 =
Pé £ G, Q 2
2m sr Lk p 2 2

i k(kc 2 k
4 Hint + U (2.8)
2
where H . = L 228 exp[;g.(gi- 53) ] (2.9)
k>k, k“
i#)
H is the contribution from a linear interaction

int
between the electrons and the plasmons,

k.P, 2 2
. - h k Ame L -
Hip =12 { malh g B 2 Q, exp[-ikx, ] (2.10)

k(kc

and U, an electron interaction term which is bi-linear
in the plasmon co=ordinates,

2

ve S kg, 4 ‘*q,‘i?;? 7k e[y x] e
Fa

If the ternms Hin

" and U are neglected then we have a

system of electrons interacting via o screened Coulomb
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potential of range k end & set of n' plasmongs The

neglect of U corresponds to the Random Phase Approximation,
vhile Hint corresponds to the first term on tﬁ;.right hand side
of equation (2.3). Considering H . to be a small perturbation
Bohm and Pines find that the coupling introduced between the

electrons and plasmons by H ot DAY be measured by a constant,

2
g =[ ( —-—l) ] average over = %;
k ‘;k 8
ke
wvhere § = -— , and r, is the inter-electron spacing measured
k
in units of the Bohr radius age

Hence for sufficiently small values of B, Hint represents
a weak coupling between the electrons and plesmons which may
be treated by perturbations methods, U being an even weaker term.
Tﬁe ground state energy of the electron gas is calculated by
assuning a2 wave Ifunction f = ﬁbos:. ¢o for the systenm.
¢osc is a product of simple hermonic oscillator wave functions

and ¢° is a Slater determinant for the free electron gas.

The energy of eaclh electron is,

hw
Ea §P+z%(—§ m)+(ﬂ) (2.12)

sT’av
‘C
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The first term is the kinetic energy, the second, the
difference between the zero point oscillations of the plasmons
and the self-energy of the charge distribution they have
replaced. The last term is the exchange energy associated
with Har

L]

The second term is readily evaluated and is 2~

2 3
L ¥ (@r_ 2_"1“2)-_. o0.86 L _ L2 [

- (2.13)
m & w 7% £ ¢
R< £ k S s
Excluding the contribution of the short range portion
of Hsra Bohm and Pines minimize the energy of the electrons

with respect to p. After including a contribution from Hint

L
thesfind B = 0.4rsz . This cut-~off is very much lower than
4
thet obtained by the Fermi-Thomas method ( B = O 815 Ay z)
Hsr is calculated from conventional second order
perturbation theory
%)

H _®°TT o 0.1244 In B - 0.0508 - O(p

- (2.14)

(2)

Adding this to the second order exchange energy e, y (see
equation 1.,8) calculated by Gell-lMann and Brueckner(7) by a
Monte Carlo process to be 0.046 rydbergs, one finds the

correlation energy:

E

g’ 8
corr « 0.1244 1n B - 0.0048 + 0,866 % 1a22 = (2.15)
3
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1/2
Substituting § = 0.41‘B

Esorr = [0.0622 1n r_ - 0.140 + 0(r,) Jryd/electron (2.16)

This result agrees with the result obtained earlier by
Wigner and also with experiment, showing the physical concepts
bo be correct. The method, however lacks mathemstical rigour.
The Random Phase Approximation which neglects the coupling
between the excitations correspouding to different momentum
transfers is not substantiated though later work does in fact
show that it is exact in the high density limit, Inclusion
of the electron plasmon coupling perm Hint by perturbation
theoretic methods is questioned by Sawada et al.(a) The
determination of the cut-off for plasmon behaviour is one of
weak points of the Bohm-Pines theory being evaluated by
minimizing the energy given by part of the transformed
Hamiltonian neglecting all the remaining terms dependent on f.
They are forced to exclude the short range term Har vhich would
give a divergent result. This procedure must be questioned
since the actual correlation energy is independent of B. It is
not possible to separate & small part of the Hamilbtonian giving
a B dependent energy end to minimize it with respect to B

neglecting the variation of larger terms.
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Their approach is rather artificial and is by fer inferior to
the linked cluster expansion method used by Gell-Fann Briglckner,
which gives an exact and mathematicelly rigorous, answer for

the uniform gas at high density.
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53 = LINKED CLUSTIR PERTURBATION METHOD

To avoid the divergence which appears in each order ve
may apply the adiabatic process, replacing the singular
potential by a soft one and making the adiabatic parameter tend
to zero. The original potential is recovered after the summation
has been done. Here it is assumed that the energy levels
remain discrete and do not cross. This assumption has been shown
to be correct for the uniform electron gas by Luttinger and
wardl?)
As before H = Ho + Hc
where Ho = unperturbed Hamiltonian of the electrons
and Hc = coulomb interaction term
Assuning ﬁo to be the unperturbed wave function and ¥
the lowest eigenfunction of H then ¢
B, #, = E, @, (3.1)

and HY¥ = (E + AE)¥ (3.2)

¥ is derived from ¢° by sdiabatically switching on the
interaction H, over the time interval - to O. Goldstone(lo)
proves the adisbatic theorem in the following way for the case
of a discrete set of eigenstates with a unique ground state.

He first defines the operators,

H(t) = exﬁ(iﬁot) H, exp(-ifi_t) exp(at) (3.3)



w 38 w

end U = L% (-i)® Hp(ty) H (8,) - - - -H (8 )at, -

N=0 orti?tgvtn

As ¢ -0 the unitary operator Ua describes the adiabatic

process
Ua(o’ - o0) gO

Yo(t=0) = Lim _(Bol Ual go)

o ~p0

U and the scattering or S matrix are simply related,

S w Lim Lim Ua(ti’ tz)
a->0 ta¥m
tz.q.ﬂm

(see for instance Akhiezer and Berestetsky P.230)

Hence E = (ﬁol Hy i%)
(8, | B,U, | 9,)
= Lim ﬁol ﬁ'f! %?

a0

Processes involved in this metrix element may be represented

by graphs of the form, 8

.,

Do T

Figure 1 Figure 2

where 2 line directed to the right represents an electron
excited above the Fermi surface, and one to the left, a hole

below the surface, These diagrams can either be linked or

- —dtn

(3.4)

(3.5)

(3.6)

(3.7)
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unlinked as in Figure 2., It follows that Uago is given by
rules applying to the sume of linked graphs multiplied by a
factor consisting only of unlinked parts. This factor is

(90 | U, | #,). Thus ¥ as defined in equation (3:5) is given
by taking the limit ¢ 90 in the sum of the linked graphs only,

n
Hence ¥, = § (g5 1) g (3.8)
0 o
and the energy shift is,
Baz (8, |1, (cEg 5 |8 (3.9)
1 © i Eo - Ho 1i 0

where L stands for the summation over all connected diagramal
leadiné from ¢° to ﬁo ie. those having no external lines.
Equations 3.8 and 3.9 ere the linked cluster perturbation
formulee. They differ from the usual bound state formula by
having E, in the denominator instead of (E_+ AE). This
difference is compensated by the different enumeration of terms,
summing over linked graephs and by ignoring the Pauli Exclusion
Principle.

Bohm and Pines show that the correlation energy of an
electron gas at high density may be expressed as @

P 0.0622 1n ry + C

where the constant C has been determined approximately. AB

pointed out earlier, each term in the perturbation series diverges.
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Macke‘le)

realised, that ii he summed the linked perturbation
series to infinity, the divergences would cancel and produce a
convergent result., Unfortunately he failed to sum all the
pertinent diagrams. The full summation was carried out by
Gell-Mann and Brueckner using techniques developed by Feynman(13)
and Dyson(14) for use in quantum electrodynamics.

The mosﬁ divergent processes occur in the linked diagrams
where a2 single momentum trensfer q is passed from virtual
electron-hole pair to electron-hole pair. These processes

may be conveniently illustrated by graphs, the third order

term is shown in Figure 3.

)
{

———
Q

|

Figure

The number of possible diagrams in each order of
perturbation is equal to the number of distinet ways of ordering

the vertices in time. For the nth order diagram this is

t
= Bﬁ Macke sums the first diagram in each order of the
perturbation series. Selection of linked diagrams of the type
shown in Figure 3 is exactly equivalent to the Rendom Phase

Approximation of Bohm and Pines.,
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Exchange may take place at any of the vertices., Each

time this occurs, however, the divergence is reduced by a factor

—% which becomes L 2 (see equation 1.8)

q (q +y *‘2)

The only exchange term to contribute to the constant C
is the second order one. Higher exchange terms contribute to
higher powers of ry and can be neglected in this approximation,
The summation of the direct interaction perturbation teras
to all orders, allowing for all possible time sequences presents

some difficulty. Cell-Mann, Brueckner carry out the time

sequence sum by introducing a Feynman propagator function,

2

F(t,) = fiki oxp[~ ty(k; sa+ 3 ) ] (3.10)
Esch term in the perturbation series can then be written in
the form:

|
A,sg [db ==« At F(ti)- - -F(tn) (ti- - =t.)
(3411)

By transforming the S fugg}ion,
A, can be written 2ﬂ¢l[q (u) ° (3.13)

where Q, (u) = fdkf at exp [-t(k.g +9— ) ] exp(iqtu) (3.14)
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Carrying out the sum over n they find the Contribution
from the direct scattering to be @

%ir seatt . fé& ([ & _LQ;L)) } (3.15)
Sws ZW

corr

In the q integral, only small values of q contribute, since
it converges rapidly as q— .
The first term on the right hand side of equation (3.15) can be
rewritten as,

pr(zf) %f/ .—-[EFW)-F&(?/)] %?/ +f:'z(7/) —“g/ (3.16)

V)

where Fg(q) is the second order direct contribution to the
correlation energy. The leading g dependence in the first two
terms of equation (3.16) now cancels for large q, the difference
going as 'éz at high density. Since the contribution to the
integral comes from small g it is possible to select an arbitrary
cut-off which Gell-Mann, Brueckner make q = 1. It is now possible
to approximate the integrals for small q. Equation (3,16) can

now be written as 3
ey +o—JZ F(ﬂ[ﬂ(am
[F(‘V E P+°[fF(? ) f )

the logarithmic divergence at the lower limit in the last two

integrals cancelling. The small q form of F(q) is obtained by

teking the suall q limit of Q(u)



Qﬁ(u) = [ dg Z +ﬂ' . (3.18)
(? + k) gu

As q tends to zero this can be approximated to,

Qg () = 4x{ I - utan™ &) ) (3.19)

= 4nR(u)

Hence
dvred

Scat. . dy/ [ 1 ___5R ‘“déé]+5
Eoorr = gn® jd“ va ('&_g) ['g"’(H g} LA (3.20)

W\
wvhere @ = (’{})

and § represents the last two terms in equation (3,16).

Evaluating the integrals and neglecting terms which vanish

as rébo, Gell-Mann and Brueckner find,

scatt
Eoopp = 040622 1n r, - 0.142 ryd/electron (3.21)

Adding the second order exchange energy, which they evaluate
by a Monte~Carlo method to be 0,046 ryd., the correlation
energy iss
 o— [0.0622 1n r, - 0.096] ryd/electron (3.22)

This method is more mathematically rigorous than

the Bohm~-Pines approach. Their summation is however only

convergent for large momentum transfers. They assume with no
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justification that their result could be extended into the
region of low momentum transfer, This approach is vindicated
by Sawada and others who derive the result in a manner which

avoids the perturbation expansion,




4 - ANALOGY WITH THE MESON PAIR THEORY

Gell-Mann and Brueckner show that one can use a
propagator for pairs between interasctions. The pair created
with momentum transfer q propagates from one interaction to the
next, changing itself into another pair with the same momentum
difference between electron and hole. The pair in fact appears
to propagate as & single particle. Sawada(ls) noted the
similarity of this problem with that of an infinitely heavy
particle interacting with a neutral scalar meson field through a
product potential, az problem solved earlier by Wentzel(ls). Using
his method Sawada re-derives the Gell-Mann, Brueckner result
showing that their assumptions are indeed valid. Later

antz91(17)

gave the result in a more elegant form. It is
convenient to write the Hamiltonian in second quantization.
Here the quiescent Fermi sea can be identified with the vacuunm
state in quantum electrodynamics. Simple excited states, in
the form of electron-hole pairs, are produced from the vacuum
state by operating on it with the creation and destruction
operators a and a. These operators are obtained by expanding

the wave function ¥ of the electrons in plane waves @

i.e ¥ (r) =% a, exp (ikr) (4.1)
k

The Coulomb interaction term
)
Hc = -ff‘f* (r') ¢ (r') v (r=r') ¥®(r) ¥ (r)drdr’ (4.2)

then becomes:
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-~ = | ;
H =.,L, a - expliq (r=r')] dr dr'
c ki k2 ktakzak;k“ r-r
kyoky (4.3)
where q is the momentum transfer = k2--ki = kd-k3
3
Hence HZ =1L él%? a: &y a: 8y (4.4)
keok q b S . |
1772
ksoky
W: 'EZ- k‘r—"‘- ‘&4"’&5

In physical terms a§ is a creation operator and 2. 2
destruction operator for an electron of momentum k. These
operators anti-commute, i.e.,

- . *® =
[a'k’ak] = Skk' , ak’ak] = [ak’akl] = 0
The Hamiltonian expressed in second quantization is,

H=ZLe a + L A o #*
. k Bt T 2 ala_a_, —q T ak£+ qaki) X

kisk, 171
g
(atzakz_q + aﬁ-kz-ﬂa“k; (4.5)
= H + H
whereiaq'= ﬁi%; y the summations over k, and q being subject

o the conditions [k|<P and lgu-l- 9-—1 > P

Writing -~

. *®
A=l log,qt ¢y, =g ¥ Ckq =% %

¢ 4% T 1 (4.6)
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Wentzel following Sawada adopts the approximation commutation

rules:

[Hc,cﬁkq]- Aqﬁx ’ [Hc’ckq] = ""l

q q

* L .
[HK,C kq] =@ c ’ [Hklc

where “qu = [Ek+ . -Ek]

Since Hk only enters Sawada's calculation via these

commutators, it is possible to replace Hk by

H L w cchkq

=
k kq

kq

which yields the same commutztors.

The problem then becones exactly equivalent to the

meson pair theory, each electron-hole pair being effectively

treated like a boson,

Introducing the canonical field variables,

I 4 *
gkq = (Eaié)z [ %q T+ © -k—q]
W, /%
and nkq o 3 —%9) [c;fq - c_K_q]

where @ . = g and My =11

-
k=g ~k-q for reality

A

q

-w
kq] = kq ®kq

(4.7)

(4.8)

(4.9)

The Hamiltonian expressed in terms of these field variables is:



?, (4.10)

i.e., the problem has been reduced to a system of linearly
coupled oscillators. The secular determinant is @

w
§ (6°) =14 22 3 (=) =0 (2.11)
q 9 § w2 _g°
-0
kq
The roots ¢ of this equation are the excitation energies
of the one pair states and the correlation energy, the zero
point energy of the normal vibrations,
i w =
E = b 5 (akq - kq) 4+ constant (4.12)

0 21{(1

The secular determinant may be written as

15(62) = 0O 02 - 02 ) (4.13)
k kq
In the limit oi the coupling constant A+ 0
2 2
A (o) = n (o - w'y,) (4.14)

ﬂq(az) expressed in terms of poles and zeros in the complex

plane is therefore :

2 A (6°
ACOR A;{-E;%— (4.15)



Now
Z 2 2 1 2 2 1 i b

f(d ) - f(w ) ] - = do f(a )z i
kq[ kg kq 2ni - 2 .2

kq\ © -akq g -mkq
2
= =r 0 a0” £(c”)z afin 7 @) (4.16)
i q daz

where the closed contour in the complex ¢ plane is taken to

. Z 2

encircle all zeros ¢ kq and pdles W kq"
Integrating by parts,
: 2 2 : - O 2
i [ f(akq) - f(wkq) ] = = =532 gda £'(0°)1ng(c“) (4.17)
Hence the direct scattering contribution to the correlation
energy is ¢

E = - A do L 1n ¢4 (62) + constant (4.18)

o Ami a qQ ’ o

The constent is the self energy of the electrons.
Going to the continuum limit i.es V —» o and replacing

L by an integral subject to the conditions |k|l<P =nd [k + q| = P,
k _~

the function ¢q(02) becomes discontinuous along part of the real
axis. The integral breaks into two parts, one corresponding to
the scattering states and the other to the plasmon pole,

The total correlation energy is obtained by integrating round

contour Cy ( see figure 4).

"y
- N
e




Here it is convenient to calculate the contribution of the
scattering stotes and the plasmons separately.
The scattering contribution is found by carrying out the

contour integral 02 which is found to be,

scatt _'A_a_ . A [ 1n ‘*"’h,(ﬁ)
corr = "2 732 i"{ + & qk [ J ' *&) (4.19)
+
' . 113 Ll
1
where '? (k) ::A L —L—y W&)
and «rt:(k) = couplex conjugate
Hence -
SeCINIL L
a “k “9° £ 7\[‘2 ‘n'S -)]
-1 z S We —~ O
X Tam A% ( LY/ ) (4.20)
[ \
\"i" x% wﬁ.-%-.g NR.-f-O'-C&
This contribution has been calculated by Sawada et al to be,
“igigt = (0.0622 1in r. - 0.273) ryd/electron (4.21)

The plasmon contribution is found from the residue of the pole
at hw p1°
Onsager calculates this to be 0,131 rydbergs (see Sawada

et a2l (&) for details,) Adding the second order exchange term



w XX .

to the scattering and plasmon contriobutions the correlation
energy is @

Esorr = [0.0622 1n r - 0.096] ryd/electron

which is exactly the Gell-Mann, Brueckner result. This shows
that they include the contributions of the plasmons and displays
the equivalence of the Wentzel, Sawada, and Gell-=Mann, Brueckner
techniques. Sawada et al show that plasmons are simply pair
excitations with fixed momentum transfer summed with a certain

phase relation,.




5 = DIELECTRIC APFROACH
If an external potential V(x) is applied to a medium, then

an effective potential U(x) composed of the external potential
together with the potential change produced by the charges within
the medium, will be experienced by the medium. V(x) and U(x)
are related by

U(x) = fK(x,x') Y(x*) dx* (5.1)

K(x,x') is simply the inverse of the dielectric constant of

the medium,
Hubbard(ls) shows by summing a sinilar serieg to that of
Gell-Mann znd Brueckner that the Coulomb potential in an electron

gas becomes

(k)
Vors(ko¥) = =7 (iw) ] (5.2)

[1 - v¥(k,w) ] being the dielectric constent

This is of the form ¢
2

V_oolk,w) = =g (5.3)
eff (k24- a2)
Taking the inverse transform, this becones,

2
V re(r) = & exp(-ar) (5.4)

Hence the polarizibility of the electron ges reduces the
Coulomb potential to a Yukawa type potential. The parameter ‘a!
can be identified as the inverse of the Thomas-Fermi screening
length, It is this screening action which prevents the Infra-red

divergence which is apparent in the second order perturbation term.
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(19)

Nozicres and Pines have shown that the Sellmeyer
formula for the dielectric constent,

€ =1+ 4na
where 4ma is the Kramers-Heisenberg complex polarizibility,
i8 applicable to a metal in spite of its high polarizibility.
Hence we can identify Hubbards V*(k,w) with the polarizibility
of the electron gas.

The dielectric approach is perhaps the most important,
from the experimental point of view, for it is through measuring the
longitudinal dielectric constent of the solid that an estimate of
the correlation energy can be obtained.

Lindhard (2Q)pointed out that the imaginary part of
can be calculated from the scattering of high energy electrons
in passing through thin metal films. The probability/unit

time (%%) that a particle transiers momentum k to the electronic
system is (21):
dw 8-rce2

I
at * 2 L Inlzgsy ) (5.5)

[
Having obtained jmt(ga the interaction energy

E (v, [ 5| %) (5.6)

int =
where Yn 's are the exact wave functions for the systen,

can be calculated since,

b3 I 2nne2
Eint=§ o fdw Im—é—(m oy 5 (5.7)
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The ground state energy may then be obtained from Eint
using the relation @
2
c d i
{
By(e”) = Ey(0) + f =} £t (§) (5.8)

(ee Sawada (1 )) for nroof) 3

2
where g' = e, the coupling constant

Integrating over g'

B () = E, (9 + % me i Jl"?‘““‘e (5.9)

&l

wﬂereéf=1-+ 4na1 = real part of the dielectric constant
end éi- 4na, =  imaginary " " " "

Nozieres and Pines find for the free electron gas that,

1{-’]’1"'0(‘ — ?_EEZ Z l(eﬁ)om.lzwrm:
RK ™ (wz _Qz)

me

(5.10)

and

LT o = frte’ S '@ﬁ)ml S(.Q w,,w)(s 11)
rof A

where

(& LTl Gl D

mo



Assuming free electron wave functions :

g o2 E(R+g) — E(R)
Ty = — Z 2 2
P ger [l E0] -2

and

2_2 B E(ﬁ-&-f,)—-f(ﬁ)
b, — HTe Z S(-ﬂ- e

= 2
0 lﬂ( P (5.13)
1&+ K) >P

Inserting these expré€ss 8 into equation 5.9 precduccs
the Gell-Mann, Brueckner result, showing the compatibility
of this method.

The success of a simple dielectric formulation in the
Gell-Mann, Brueckner limit arises from the fact that here the
important momentum transfers corresponds to wavelengths which are
large compared to the interparticle spacing.

Another approach worth mentioning here is the electron
self-energy method developed by Quinn and Ferrel(22). A single
electron near the surface of the Fermi sea is singled out and the
polarization of the gas around it studied in detzil. This single
electron together with its polarization cdoud may be thought of as
a quasi-particle. The energy of this clothed particle is given

by the difference between the self energy of the particle in the
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medium and in a vacuum j somewhat snalogous to the mess
renormalization found in quantum electrodynamics.

They calculate the Greens function or polarization
propagator of the electron gas, by considering the inelastic
scattering of a fast incident electron. This procedure is
equivalent to Hubbard's summation of linked diagrams for the
effective potential existing between the electrons. Quinn and
Ferrel also give an alternative derivation using Lindhard's(20)

expression for the dielectric constent @

- - 5 u-2) =1 u-1-z
é(/ﬁjw) = | 2 2 é——)——— ol

L
z) — | Z
4 @z=’ &, | BTSN L 2
2% U= |+2%2
2
£ i
where 4 = “’%”;J & = _Z—; amd F’ = 2m wp

For the case w = O and k small this may be approximated to :

e(ko) = |+ 2L



and for w large and k small.

ing_’_
3T w?

€ (k © = |

From the work of Feynman it can be readily shown that the self

energy of a particle, in terms of the dielectric comstant is,

e? dik dw P
f e [Frnt 4]

while the self energy in a vacuum is

S.E (R =

8 = Lo do A
B Av ®* [E(&)— E (k) —LS)'“’]

The change in self energy due to the presence of the

dielectric medium is

AE(R = S.E.(R — SE,(R)

On evaluating the integrals one finds that the exchange

contribution appears from the residue associated with a pole
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in the integrztion the line integral producing the direct term,
The result obtained is identical with that obtained by Gell-Menn,
Brueckner,

One pleasing thing about this method is that there is no
artificial separation of the direct and exchange terms. Another
advantage of the formulation is that it is possible to replace
the dielectric constant of the uniform gas by that pertaining to
a real metal. Hence the method is quite attractive though no

new result has been obtained,
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6 - EXTENSICN COF THE UNIFORM ELECTRON GAS THEORY BEYOND

THE RANDOM PHASE APPROXIMATION

Duuois(JB) has extended the theory of an electon gas
beyond the 'Random Phase Approximation' using the Gell-Mann,
Brueckner propagstor techunigue, He does this by including
higher order graphs, replacing Qq(u) in the Gell-Mann, Brueckner

expression for the correlation energy (see equation 3.15) by :

©) & @) @)
4 = w + W +Q. (u) + 4 o
(£)
= >R, (W (6.1)
v 1%
ug(u) represents the terms obtained under the Random
Phase Approximation. Some of the higher terms are shown

graphically in Figure 5.



The generalized expression for the direct part of the

correlation energy is @

=2 . ‘f?/f_z XA, Z@;(“) MZQ(“)
8 Zn* a, (f Za

(6.2)

Including the first two Q fuxutlons,

Q- - 3 @J j Juf £k (6

3 SF(ﬁxm*ffDSrW' O (- 4m5): (R g5 )5 (6,0

and

Q. (u)___dﬁ'(l ‘{“zjdﬁjdﬁ’

SF(&JW’“’M SF(&'“) F:‘“s(ﬁf’ﬁzf “"ua Se (Rtg, u+ 9
* O (’éz*'%“z +4) (6.4)

where SF(k,w) is the Feynman particles propagator

O (ﬁf“) = - (3:1;-‘* P N m‘%[w u(%)_] x]

W - (k)

O - the adiabatic switching parameter.



ana

P’rs (ﬁ’ u) =

-H.Z

%%21- il Q,rs(ﬁ,“)J

Duvois calculates the correlztion energy to be :

Ecorr = [0.0622 1n ry - 0.096 0.0049 ry in Y. % B

ryd/electron.
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7 = RAKGE OF VALIDITY OF THE LINKED CLUSTER EXPANSION

All methods evolved for estimating the correlation energy

of the electron gas have included some kind of approximation,

It is clearly desirable to have some check on the range of

validity of the expansions. An estimate can be made using the

fact that the lowest eigenvalue of a Hermitian operator,

contcining a pereameter linearly, has a negative second

derivative with respect to the parameter, This result may be

derived from the virial theorem in classical mechanics.(24)

Here it will be derived by a quantum mechaniczal method.

The wzve equation corresponding to this problem is :

HR F () = EMNFD

where H is a linear function of the coupling constant A

Differentiation of equation with respect to A gives
W' e W = B rEY
which on substitution into @
') = <TIWIEY + STIHIED

yields the rasult,

(N = -2<T[u|FD + 2E<SFIT
- E’[<y’m?> +<*’f|?'>]

(7.1)

(7.2)

(7.3)

(7.4)



/
The coefficient of E_(R) is zero by normalization, so that

the fingl answver is @

! [
u f ! <§F [H[T> 2.5
() =2<TFP>| === ~ F e
<¥LF>
Since ¥ minimizes the energy, the first term on the right hand
side of equation 7.5, cannot be less than E, from which it
follows that @ Vi 7
(7.6)
Thus the second derivative of the ground state energy of the
electron ges with respect to the coupling constent 92 cannot
be positive.

(25) has applied this theorem to the Gell-Mann,

Ferrel
Brueckner expansion, fle finds it convenient to fix the density
by making r, = 1l and to vary the coupling constant fron
92 to Xez. One then obtains the energy of the electrons in
terms of the coupling constant by replacing Py by A

2
and by multiplying by A . Hence:

EQ) = [z.zl ~0.916\ +0.06222%m A “'0'09"’7\2}’“3‘{/@% (7.7)

Differentiating this twice and applying equation 7.6 one finds

that :
h\ =< . oS



Alternatively, we may conclude that the Gell-Mann, Brueckner
result is velid only for Ay % | . Ferrel estimates that for
the density corresponding to 43’” 3 , the error is at least 40 3;
Applying this technique to the result derived by Dubois
one finds that his theory is valid for**% =8 4 Since the
highest electron density found in metals is in 2luminium
where Py o~ 2.0, it is apparent that we still await a theory

which is appnlicavle to realistic densities.
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8 = CORRELATIUN ENERGY AT LOW AND INTERMEDIATE DENSITIES

rs yet, no satisfactory method has been produced for
calculating the correlation energy of an electron gas at
intermediate density i.e.2 < ro < 5¢5 There are however,
some interpolation formulae in existence which are in fair
agreement with experiment. These will be discussed briefly in
this section along with a short comment on the low density cace.

The low density case will be considered first. Here the
potential energy is very much greater than the kinetic energy,
quite the reverse of the high density case. This is generally
referred to as the 'strong coupling' case on account of the strong
interaction between the particles. For densities corresponding
to rsa~f20, the potential energy is so great that the electrons
are forced to form a lattice. dere of course, the Random Phose
Approximation is not valid, The correlation energy may again be

expressed as a series expansion @

_ /r 8 )

The first term represents the difference between the potential
energy of the electrons and the exchange energy, while the second
reprdsents their zero point energy. The constznt A may be

determined by carrying out an Ewald sum for the lattice. The

(20) to be — 1-:8 ryd/electron.

As

binding energy is found
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Subtracting the first order exchange energy — Eﬁjlf
$
S
on finally obtains :
£ 4m® | 088
Lol - A 'E&J?V?b (8‘2)

S

for the correlation energy of a2 low densiiy electron gas.
Un the basis of the Lindemann(27) formula for the melting
of 2 solid Nozieres and Pines estimate that the expression

is valid only for r_ > 20, the electronic solid being unstuole

8

for higher densities.

(28)

Wigner combines this with his high density result and

obtains an expression for intermediate densities:

- 0,88

Eoorr = (rS 7.8)

ryd/electron (8.3)

This expression is in remarkably good agreement with the
experimental results obtained for the alkali metals (see Table I)
Determination of the constant B in equation requires
precise knowledge of the spectrum of oscillations of the electron

gas., For a rough estimate of the zero point energy one can
congider an Einstein model of the lattice in which ezch electron
_69._‘:

vibrates independently with a frequency where

by
i

4w mel \Z

LU? = (. ’)

am

is the classical plasma frequency. Jince there are two transverse



and one longitudinal modes, one finds that the constant B,
representing the zero point energy is 3 ryd/electron. These

lattice waves obey the Kohn(29) sum rule
3 2 5
Z w‘: = UJ’P
A’:-::]

An alternative solution to the problem, still compatible with this
sum rule would be to assume longitudinal phonons only. In this
case B = 1.73 ryd/electron. Ferrel(Bo) estimates the correction

to the Einstein model and finds

0.88 2. 82 &
Ecorr(Ts) = {- g * ,;-53/2.} "8 et (8.4)

Using the high density result of Gell-Mann, Brueckner and his

own low density result, he proposes an interpolation formula

Ecorr(ra) = {-—- 0.0186 — 9- 3_‘?4— + o’z-zzg "50(/‘&&.5‘: §3-5)
S s

for the rezion 0.85 < i < 7.0

As one goes from high to low density, half of the direct
term is cancelled by the exchange part of the second order
perturbation term. One can show(sl) that the probability density
p(rij) for finding any electron at r; and any other at T is

given by

9 ( PrcosPi —smP 2
N

where p is the Fermi momentum



If one plots the probability of finding an electron at a distance

A
r from any particular electron r against jf' one obtains:
S

g o Parallel
Spins

_____________ Anti-Parallel
Spins

7
( 2 3 A s 4%

Figure 6

Electrons with anti-parallel spins are not correlated
because they are unaffected by the Pauli Principle. Moreover,
at long distances (jd_‘s > 4) , electrons with parallel spins are
not correlated. This is due to the fact that the Pauli
Principle is purely quantum mechanical and cannot be effective
for distances greater than the wavelength that can be
associated with the electrons. Using this fact Nozieres and

(32)

Pines propose a rather crude approximation in which they assume

5
the Random Phase Approximation result for /3 < Q- 44,2
and retain only the contribution to the second order perturbation

{
term from electrons with anti-parallel spins for /3 = 0. Ll ﬁéé



The interpolation formula thus produced is:

Boorrt?y) 2 {o, 0622, bm A — Q- 159 rnjd»/ » (8.7)

Hubbard ‘18) alse modifies his exact high density in a
similar manner. He does so by multiplying the real and

imaginary parts of the dielectric constant, A and ¥ by an

{' -z (&’-wl)?]

2
This is equivalent to replacing the Coulomb potential 4?(&): ﬁjf

2
by Lwe” . o ]
e 4 REP)

In this way the correlation affects of electrons with parallel

empirical factor

spins at short distances are much reduced. Hubbard finds that
his answer is in close zgreement with that of Pines. An advantage
of this method over that of Pines is that it provides a smooth
continuous expression for the correlation energy. Pines and
Hubbard estimate that their expressions should give the

=)
correlation energy to within =+ 20/0 in the intermediate region.




9 = CRITIQUE OF THE VARICUS METHODS

First and foremost the restrictions common to all methods
will be considered. The system of interacting particles are
are enclosed in & box. Both the number of particles n znd the
volume V of the box are assumed to be so large that 2ll effects
which vanish in the limit V, n -, % remaining constant, can be
neglected. The theories are limited to systems in their ground
state i.e. at zero temperature. This restriction prevents one
from considering the interaction of virtual with real electron
hole pairs, though there is no reason why the methods cannot be
extended to incorporate these. The problem is greatly
simplified by assuuing two body interactions between the particles,
the totel interaction being = sum over two particle interactions.
This approach has been applied, with great success, to the theory
of nuclear structure ond of liquids. So far, the positive
background has been smezred out, all periodic effects due to the
lattice being ignored.

All high density mebhods employ the 'Random Phase
Approximation", all coupling between excitations corresponding
to different momentum transfers q and q' are neglected. Wentzel
shows that this is in fact the only approximation required to
obtain the high density result. Convergence of the perturbative
expansion is assumed, though as will be shown in Part II, this

is only true in special cases.
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The Bohm, Pines method describes the physics of the plasma
in a neat and concise way. It does however, introduce some
approximations which aré guite unnecessary in obtaining the high
density result. A momentum cut-off is introduced above which
the ges exhibits collective behaviour and below independent

particle motion. This cut-off they estimate to be

e

A
zﬁﬁﬂ = 040 r 2 which is much lower than the value obtazined
P

)
“Z

using the Linked Cluster Expansion (0.47 Yo

)e Hence =n
importsnt part of the plasmon contribution is omitted since this
goes 3353 . The derivation of this cut-off by Bohm, Pines is
sounewhat suspect since it is evaluated by minimizing the energy
given by part of their transformed extended Hamiltonien

(see equation 2.,8) assuming that the other terms arising from
the Hamiltonien, dependent on B can be neglected. The terms
ariging from equation 2.9 are however by no means negligible, so
that their approach can at most be only z semi-guantitative one.
Much of the discrepency between the Bohm, Pines and Linked

Cluster Expansion methods originates from this approximation.

3
Bohm asnd Pines introduce an extra :§&1 field co~ordincstes
T

to represent the plasmon modes, In order to preserve the total
nunber of degrees of freedom, they are forced to introduce an
equal number of constraints or subsidiary conditions. The

actual techniques employed by Bohm and Pines in obtaining their
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expreseion for the correlation energy leads to certain violation
of the subsidiary conditions though no real serious error appears
to be incurred. (see Bohm, Huang, and Pinea)(33) These
subsidiery conditionsg do in fact define the ground state of the
electron gas. The particle wave functions used, consist of a
Slater determinaent of plane waves slightly modified by the short
range correlation introduced by Har and Hrp’ and do not satisfy
the subsidiary conditions, Modifications to the wave function
involve the introduction of slight correlations in electron
positions of the type that would reduce the long range density
fluctuations. The effect on the potential energy coming from
Har is negligible for this involves the short wavelength
fluctuations. Hence the only way Hsr can be affected is through
coupling vwith the long wavelength density fluctuations,. This
coupling is in fact swall, so that the subsidiary conditions have
little effect on Hsr‘ The kinetic energy is also unaffected for
it involves only slowly varying density fluctuations. Neglect
of the subsidiary conditious is therefore not thought to be a
serious omission in the Bohm, Pines theory and appears 1o be
only a point of mathematical rigour.

As we have seen, it is possible to avoid the divergences
without resorting to an artificial separation of collective and

individual particle motion as used by Bohm and Pines.
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This can be done by an adiabatic process in which the singular
potential is replaced by a soft one, making the adiabatic
parameter tend to zero and recovering the original potential after
the summation has been completed. In this procedure it is
agssumed that the levels in the unperturbed system go over to
discrete levels in the perturbed system when the interaction is
switched on. Iuttinger and Ward have shown this to be so for a
uniform gas of electrons at high density, though some caution must
be exercised in other cases as will be shown in Part II. Using
the linked cluster expansion Gell-Mann and Brueckner obtain a
finite answer by summing the perturbation series to infinity the
divergence for small momentum transfer q being shown $0 be spurious
The Random Phase Approximation of Bohm and Pines is implicit in
their methed by the choice of diagrams. They find however, that
the perturbation series converges only for large q and assume
that this result can be extended into the region of divergence.
This zssunption of CGell-Mann, Brueckner is substantiated
by Saweda who rederives their result without resorting to perturbatio
theory., He considers the same diagrams neglecting interactions
between holes and excited électrons. Subsequent reformulation
of Sawada's method by Wentzel treats electron-hole pairs as
bosons. This paper together with that of Sawada et al gives a

most mathemstically end exact approach within the RPA formalism,
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Possible extension of this theory to non-uniform gases will be
discussed in Part II.

In its originel form, the Linked Cluster Expansion method
did not exhibit the collective effects associated with the
electron gas. Doubt existed as to whether the plasmon
contribution had in fact been included. Brout and Sawada et al
point out how the plasmon solutions are inherent in the
Gell-Mann, Brueckner and Sawada theories.

The work of Dubois is a natural extension of the work of
Gell-Mann, Brueckner, Application of Ferrel's check on the
range of validity shows that his expression is valid for
r, £ 2. He calculates the contribution of ol'8) gng Qli®)
but does not derive an expression for Q(z). Dubois points out
that for the purposes of calculabing the ground state energy in
this epproximation, the effect of Q'2), being additive, may be
calculated by third order perturbation theory. Suhl and
Herthaaer(34) have calculated Q(e) in terms of the Nozieres and
Pines dielectric constants. Extension beyond this approximation
to obtain an expression valid for metallic densities is
unlikely as the mathematics associated with the higher order
diagrems become exceedingly complex.

Thermodynanic methods using Grand Partition Functions
developed by several authors.(35) have not been discussed since

nothing new appears to emerge from them, being simply other
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ways of formulating the Linked Cluster Expansion. If one takes

the Partition Function
Z = trace exp ( -8 H)

where § is equivalent to the coupling constant, and expand the
exponential then one just reverts to the linked cluster
perturbation series.

The dielectric approach has been developed neglecting local
field corrections, i.e. the effects of localized charges, In the
high density case where one has almost free electrons the Sellmeyer
formula for the dielectric constent € =1 + 4nma is assumed to
holds This breaks down when I3 4ma . Here local field
corrections arise but they are small on account of the low
polarizability. Local field effects can be expected to be
important in the intermediate region.

The Lorentz expression,

€ - = 4na

%e + 2)
should be used at low density where the electrons are spatially
ordered. Here of course, the Random Phasge Approximation does not
hold. The ground state energy has been shown t¢ be dependent on
the complex dielectric constant and may be celculated from 5401(?")

derived from a characteristic energy loss experiment,

Application of the Kramers, Kronig relations,



€(4 w? dis”
/ 4 w
[ G(k, w) - 1 ] = ‘;"1:’ (w:_ w)

I ' T 3 y
[ é(ﬁjw) ] v o (w'-—-uJ)

permit calculstion of the ﬁ(—'é') from the measurement of Im (é)
The correlation energy can then be obtained by direct
substitution into equation

Since the Linked Cluster Expansion is valid only up %o
T, ~1 2nd its extension by Dubois to rs,‘; 2, some form of
interpolation between the high and low density limits is required
to estimate the correlation energy of the electrons in metals.
Values of . found in metals range from 2 (Aluminium) to 5.6
(Caesium) Interpolation methods developed by Ferrel, Wigner
and Pines appear to be in fair agrecment with experimental

results. (seec Table I ).
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COHESIVE ENERGY OF THE ALKALI METALS

EHF is the cohesive energy calculated in the Hartree Fock

approximation, E

exp

is the experimental value, and E

Wigner

ete

is the cohesive cnergy calculated incorporating the respective

expression T

in rydbergs.

z corrclation energy.

All energies are given

Ul ; ¥ " W © 2 o ¥
Hetal Te iam “gF | “wicnER | “FERREL I"Pilm ES “EXP
Na 396 -0, 230 -0.022 -0,098 -0.062 -0.,095 -0,084
Rb 5.18 -0, I5% -0.,0I1 -0,079 -0,048 -0,076 -0,061
Cs 557 -0, L40 -0.009 -0 076 -U.045 -0,072 -0,060
Taken from H Brooks  Phays. Rev, 91 1027
Taken from D Pines Solid State Physics 1 367

(Academic Press 1955)




Unfortunately we cannot compare Hubbaerd's method as he is
forced to evaluate his integrals numerically. He does so
for ro = 2, 3, 4, 5, so that it is not possible to compare his
regult with the others as above, though his answer will not
differ much from that of Pines. An additional check on the
interpolation procedure is provided by Ferrel's condition that
E" (A) £0. Vhen comparing the experimental values with
those derived from interpolation methods, it should be remembered
that these formulae have been derived from the theory of a
uniform gas. The discrepancy between theory and experiment
may well be due to local field effects which become important
in thie region, |Methods of assessing the effect oi the ion
lattice on the correlation energy will be discussed in the

next section.




PART 11

NON-UNIFORM G



10 - CHARACTERISTIC ENERGY LOSS OF ELECTRONS IN

PASSING THROUGH METAL FILMS

The dielectric formulation discussed in Part I is
particularly well suited to the non-uniform gas problem, as the
maximum amount of information about the electrons in the solid
is contzined in Im CE?E}&) . Normally this is measured by
observing the scattering of electrons in the kilovolt energy range
in passing through foil of the order of a few hundred Angstrous
thicke € (k,w ), the exact dielectric constant of the valence
electrons in the solid, is defined for the momentum transfer k
and energy tronsfer AW involved in a single inelastic event.

It can be readily shown'Z:) that the prebability/unit
time, %% y that a particle transfers momentum k and energy

to an electron gas is,

% _ 2m (4}:1& ) Z I(E)ﬁ)mo} = “’) (10.1)

where (pk)no is the matrix element of the density fluctuztions.
By introducing a test charge and examining its effect on the
electron g=s one can define and calculate the dielectric constont.

Nozieres and Pines do this and find that,

| _ | - 4w S ey 1 (10.2)
é(/ﬁ,w) - I _ﬁ.k&% ,(ek)mo\ wfno'w'wl +w,no+w+wz
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Combining equations 10.1 and 10.2 one then obtains the connection

' between the energy loss and the dielectric constant,

2
dw _ 8me® 4 ( ' (10.3)
dt 'S € (#,)

From energy loss experiments one can therefore determine

€ (ﬁ,UQ and hence the correlation energy (see Chapter 5)
Limitations of equation (10.3) have of course, to be borne in
mind.

The characteristic energy loss spectrum of a metal can be
expected to contain two groups of individual particle energy
losses, a strong low energy peak associated with the intraband
transitions, cutting off at fﬂ? and a series of broad peaks
associated with interband traszitions. These transitions are,
however, heavily screened. The major energy absorption comes
from the excitation of plasmons associated with the zero of

6(&} w)_ The plasmon dispersion relation is,

2

™ v

g~ '[i_fi_z L > (10.4)
LI w%"“’vo

If the majority of the transitions associated with for are such

that W, << Wp then the plasmon frequency W, in = solid is,

2
2 “ “"Tre.a “’vo
w, = By = == Z—fg’-’-z"‘ (10.5)
m v w

P
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being zlmost equal to the classical free electron value. One
would expect this to ve applicable to most non-transition metols,
since here, valence electron plasmons are of the order of 15 e.V.
while most ](;vtd are only a few electron volts. Hence one would
expect non=transition metals with a small energy gap, to exhibit
the same characteristic energy loss spectrum as a free electron
gas. This prediction is found to be in good agreement with
experiment.

The plasmon  excitations are formed in the wake of the
exciting particle in a similar manner to tﬂe production of
Cerenkov radistion. Since the plasma oscillations are quantized
(plasmons), the observed discrete energy losses will annear as

multiples of the basic plasmon energy. Such discrete energy
(36)and Lang(37)

38)

losses were first observed by Ruthemann and recent

work has been reviewed by Marton et alt Good agreeuent
between the classical result for a free electron gass and experiment

is obtained for some metals as can be seen from Table I1I,

TABLE II. (energies in e V.) (data tzken from reference 39)

Metal | Be | Mg |Af | Ge Pe

AE,, | 19 |20 |15 |27 3

1 il 16 16
7&'&09 7 \3




These figures have been calculated by essuming that the valence
electrons are coupletely free and that the core electrons take
no part in the interaction.

Distinction between individual electron behaviour and the
collective mode is less clear in the transition metazls. Here
the individual core excitation energies are comparable with the
plasmon energy. As =2 result, the plasmons are damped and there
is 2 shift in the plasmon energy. This is illustrated in

recent measurements by Powe11£40) A possible phenomenological

(41) As he correctly

model has been put forward by Wilson.
points out, most metals have optical absorption levels which

occur at similar energies a8 the plasmons; it is therefore
possible that a fast electron may excite an optical transition

as well as a plasmon. This mey well be the reason for the
discrepancy between theory and experiment as found in the case

of copper, where the calculated plasmon energy is 1l e.v. while
that observed is 20 e.v. Wilson suggests that there is an
optical transition band stretching from 11l e.v. to at least 20 e.v.

In order to calculate the dielectric congstant one must also

measure the angular distribution of the characteristic energy
losses, since from this one can derive the dispersion relation.

This can be readily shown from the Bohm, Pines dispersion relation



for the free electron gas, which can be obtsined from

equation (4.11) by = simple transformation and is,

Aﬂre EE

Kw..apa)f- #&] W
Expanding the denominator one can approximately write,
2k
w* ws + TC;’.- E‘f (10.7)
where EF is the Fermi energy. i
Let us now consider an electron of energy E = -E;L which emits
a plasmon of energyTﬁhﬁ,and in so doing, is scattered through
an angle &
By the conservation of energy and momentim.
o ~ k&
r)
Substituting in equation (10.7) for k gives
2 2
o= ez' ~+ M oo?' = MZ w‘;' (10.8)
éEFPz éEF,o

This is the equation of a hyperbola with a focus on the W axis
An angular distribution of this type was first observed by

Watanabe,(42)

who, by cereful measurement of the curve, obtained a
reasonable value for the dispersion relation. Good agreement
between his measurement and that predicted by the free electron

theory is obtained for Al and Be.



In this section it will be shown how the foregoing picture
of the uniform electron gas developed in Part I is modified in
the presence of a periodic field such as that existing in solids.
The inclusion of this periodic potential leads to a band
structure in momentum representation, allowing two types of
excitations for the solid (a) intraband transitions and (b)
interband transitions. The latter are associated with the
periodic nature of the potegtial and one would expect that these
could alter the free electron result. The periodic potential may
alter the shape oi the band from the simple free electron
parabola E(k) = ﬁ;ﬁi If the effect on the band shape is
regular then this may be incorporated into the correlation theory
by introducing an effective mass mwm in place of the real mess m.
How the theory is altered by the energy gap is harder to predict,
though it is evident that the logarithmic term in the correlation
energy expression remains.

Application of a modified theory of the electron gas may be
possible for simple valence solids such as the light alkali metals
and alkaline earths, Here there is a distinct separation between
the valence electrons and the core electrons. The problem may
then be treated as one in which the velence electrons are moving

in the potential of the periodic array of nuclei and of the core

electrons., It is assumed that one can neglect core-valence



exchange and correlations, which is equivalent to saying that the
core polarizibility is very small. hozieres and Pinea(lg) have
shown that this is & reasonable approximation.

The potential due to the core electrons and nuclei can be
well described by a Hartree potential V(r) so that the Hamil tonian

of the valence electrons may be written

pf L 92
Hel[== + ¥(r,)] +5 £ — {11.1)
A 2m i -
i P ri
CcFy I
B Ho -+ Hc

Ho can now be treated as the unperturbed Hamiltonian
with eigenstates ¥, which are the usual Bloch wave functions.
The valence electron-electron interaction term may then be
treated as a perturbation on Ho.

As before the system is assumed to be at absolute zero so
that all particles are in their ground states. The metal is
also assumed to possess a perfect lattice the effect of
dislocations etc, being ignored. The wave function for the systenm

f’(x) may be expanded in terms of the Bloch wave functions d’nk

heving energy Enk

¥(x) = L 8 Ynk (11.2)
n,k



Hence for a gas of non interacting Bloch electrons, the

energy of the system expressed in second quantized form is:

B, = <@*l(—z§£v‘+ 1>
J }Umﬁ. V T V)j" (11.3)

i
H = a, Q E
° ;ﬁ R & 1R (11.4)

where the a: and a, are creation and destruction operators
for Bloch electrons,

The Coulomb term HC is

4 [TOFD (I FWFO x|

On substitution for V¥

2re? % %
Hc= 2 ’—% aﬁa QR a
bk ks ke 7 Nk TR e,
Ri-Re=Ru-R3= }

Hence to extend the Gell-Mann, Brueckner type of approach

(11.6

to non uniform gases, one replaces the free electron energies by
Bloch energies. The perturbation series, however, becomes
rather cumbersome, and it is no longer possiovle to sum it except

in some special cases. : i ;
. It is not essential to expand in terms

of Bloch waves. As an alternative procedure we can retain the

kinetic energy as the unperturbed term and treat both the



electron-electron and electron-core interactions as perturbation
terms., The perturbation series now contains three types of terms,
electron-electron, electron-ion, and ion-ion interaction teras.

The first group give the Gell-Mann, Brueckner result while the
others represent corrections due to the presence of the ions,

Both methods have been used on the problem and the relative merits

of each will be discussed in detail.




12 - LELECTRON-ION PLASMA APPROACH

The problem of czlculating the correlation energy of an
electron gas in the presence of a periodic field can be greatly
simplified by replacing the rigid lattice by an ion plasma.

(43) and others

This method has been applied by Silverman and Weiss
with a fair measure of success. In their model, the positively
charged ions are smeared out and replaced by point charges whose
megnitudes are determined by the valency of the aotoms.

Silverman and Weiss extend the Wentzel formulation to
include the electtron-ion interaction ternm Hx' Their
Hamiltonien is oi the form:

H = H ~+ H, + H (12.1)
Where HO + Hc are the Wentzel terms:
+ Lz v ¢ (12.2)

i
L V. e

i -k -
T B B | "~ d

H

S]]
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The summations extend over all k and q, V; being the qig
Fourier component of the electron-ion potential. Imposing the

restriction that lg] < P eond|k+ gl; P, H; becomes:

1 i *
E = = kzq [Vg (ogq + coyg) + cece) (12.3)
’

Introducing Wentzel's canonical field varisbles qu and I, ,

kq
the Hamiltonian reduces to:



+ .—z'ﬂk;s’;q (24, V% (VB + cucl) (12.4)

Silverman and Weiss then diagonalize the Hamiltonian by
transforming to a new set of co-ordinates Q and P which are
related to ¢ and 1 by the eqguations:

e = L dger Qoo + By

nk- f"dk'P

where dkk' and bk are constants which satisfy the relations:

T
5 Zd 4 amLZw;’:@.—.-z%é‘_ﬂ;

ﬁ&’ ﬁn 'ﬁ&" 'ﬁ Aﬁ” & ﬁ ‘& (‘ + ZAZ% '2;1;?)

bk is chosen in such a way as to eliminate terms linear in Q.

H then becomes:
X
L5 (PP +8 @ a - w)
H & 5/( /7 ﬁg,Qﬁy &y Ry (12.5)

s {V?/]fnw Ry
/4
Q+ Z}\}[EH? “’@)




The second term represents the shift in the ground state
energy due to the introduction of the point charges. To evaluate
this contribution to the energy, Silverman and Weiss assume that
the ciiarge impurities are distributed at random. Averaging in

a manner similar to Kohn and Luttinger(44) they find:

2_2 4

R em™z e m
" =
/ 4
Vy
where.ni is the number of charge impurities znd 2z the

charge on ezch impurity or ion. Evaluating the correction to
the Wentzel ground state one finds:

= - 2z [m) L
4k () =

@m)’i n (12.6)

where a = (5%15' and n the number of electrons.

This result may be obtained by 2 variety of less elegant
methods. Perhaps the most obvious way of tackling the problem
is to treat the electron-ion along with electron-electron
interaction as a perturbation. The perturbation expansion then
containg three sub-series, terms which include processes with
Hc only, others with Hi’ and those having a mixture of Hc and Hi‘
Wentzel has already summed the contribution of the first group.

Those containing Hi only, corresponding to the ion-ion interaction
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are neglected, since they are in no way connected with the
correlation energy. Silverman and Weiss sum the electron-ion

terms, which may be represented by graphs of the form:

(cross represents electron-ion interaction)
Figure 7 Figure 8

From these graphs it is evident that the energy must be at
least quadratic in the electron-ion matrix element in order that
the system may return to its vacuum state. Possible graphs fall
into two groups, those in which Hi connects en electron and a hole
as shown in Figure T and others such as in Figure 8. The latter
can be ignored since these contribute a2 lower divergence and may
be neglected in the high density limit. Summing the relevant
diagrams leads to similar results to that obtained by
diagonalizing the Hamiltonian.

Silverman aend Weiss suggest that the power series expansion
for the correlation energy of.a non uniform gas should contein a

n
paraneter (Ej as well as T
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13 - CALCULATION OF THE COXRELATION ENERGY IN THE
PRESENCE/OF A RIGID LATTICE

The electron-ion plasma approasch, discussed in the previous

section, while being simple, does not yield any information on
the effects of the periodicity of the lattice. In this section
the effects of a perfect rigid lattice at 0% on the correlation
energy will be considered, first in the weak binding =nd later in
the tight binding approximation.
(a) Weak Binding Approximstion

In Part I, Section 5, it has been shown how the

correlation energy can be calculated from the dielectric
congtant of the electron gas. The Nozieres, Pinea(el)
formulae for the polarization can be simply adapled to the
non-uniform case by replacing the free eleciron wave

functions by Bloch wave functions, The expressions for the

real and imaginary parts oi the polarization are @

41\"&,2' .
4‘1"“1 = o 2 -—i"’-——- (13.1)
v 2 -
Wos ~ S ‘
z 2
Al—'ﬂ'«z e 2’"’6 2 _Fg-,a S(‘Q”w)’(})
m Y w (13.2)



where the Bloch function oscillator strengths

Zm
= w.,,
]C = @R)cﬂ’ (13.3)
oy
obey the sume rule_g ﬁm; n
The summations in equation 13.1 and 13,2 extend over intraband
and interband transitions. For an isotropic metal and in the
long wave limié i,e. lﬁ] == 0
)C"iz; (= = ¥ E LS [ .y
om a2 W % e i KX 13.4
SK o R o
o f 9=z 3 L0
on 3 (13.5)

T o E LN

wherek#J is the effective mass tensor
‘mu(F'
and k an arbitrary wave vector inside the Brillouin zonaé.
Inserting these expressions into equations 13.1 and 13,2
one finds that the polarizibility and hence the dielectric constent
and correlation energy are only slightly affected by the presence
of the periodic ion field. The correlation energy is

to a first approximation, modified by a factor(ﬁ%&
m
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Folk'4®) has slso formulated this problem via the
dielectric approach. He assumes Bloch wave functions for the

electrons of the form:

Ys(#7) = ug (k) exp( f-7)
and expands the us(&qﬁjk in a Fourier series in the reciproca&13.6)

lattice vector K

U (#,7) = % X (£,K) e’*f“('%'i-)

(13.7)

He then determines the dielectric constant of the medium

and finds:

é(&) wa> - % +O((1%‘ K»’ w>

KO
(13.8
whese. d(’kﬂl{{) K_K,!} w')
v KK kmet s "k
B-kl* m s J (am)?
@]
2 T AR ‘"
X — - § € X (R K) X (R K)
* ;U o
X (I— 355«)% Xs’ (E‘K;K) Xs (&ﬁK’ « ) (13.9)



Close inspection of the form of @ reveals that this and

hence € (,f;} w) has a simple pole when k = K £ K' and a simple
zero for k = K' £ K , These poles and zeros simply correspond
to Bragg's law,

Falk finds for the inverse of the dielectric constant

I
in the weak binding limit:
(%K)

[ = & . S S = 4 ) . fg(ﬂ;& w)
6(&}&‘0) Ko I+P(‘ﬁ/o)w) lﬁ ' E"’F(ﬁ,f’,“’ﬂ (1310

whie
P (&’K: K-K, w) = M O(('E'K: K=K w)
-«

The first term in equation 13.10 corresponds to the free electron
gas result slightly modified by the periodic fie¢ld while the
second term results from the modification of the energy v
momentum relation near the Brillouin zone boundary.

Inserting this result for the dielectric constant into

Hubbard's formulation, Falk finds the correlation energy to be:

(excluding the exchange term)

dk do P(Row)
E o =“£@J P 2 (i ) ['*i?ﬁ (* “f“’ﬂ (15,1

Comparing this result with equation 3,15 of Part I we can see

that this is 2 simple generalization of the free electron result
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Hubbard(46) uges & similar approach, modifying his free
electron model(ls) by incorporating the effect of the ion cores
by a Hartree field V = E‘ V( xc). He then writéa the
Hemiltonian in the form

H = (Ho + V) + (H' - V)
where H' is the normal Coulomb term (Ho + V) 41is treated as
the unperturbed Hamiltonian and (H' - V) as the perturbation.
The theory is then similer to that derived for the uniform gas,
However, this method produces sn answer as complicaled as Falk's,
Hartree equations for the electrons in the lattice have to be
gsolved and also the effective interaction which is expressed
as an integral equation.
(b) Tight Binding Approximation

Callaway(47) uging the CGell-Mann, Brueckner technique,
has calculated the correlation energy of a semiconductor. e
assumes & simple band structure model in which there is an energy
gep Eg above the Fermi surfzce, and electrons having an effective
mass mz?n*' . All other effects ofi crystel structure are
ignored, Callaway considers two limiting cases, (2) that of
the large energy gap corresponding to an insulator, and (b) the
small energy gap, the semiconducting case.

Thé second order perturbation term in Gell-Mann, Brueckner
notation becomes after inclusion of the energy gap Eg and

effective mass m%n:
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E, = -2m df/fdkjd&z. l [‘4“ - 2] (13.12)

s ¢ Z +5 +
oE [ eplenyeedt? Flher)

Wﬁm é(? = -_E_g
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In the insulator case we need only consider this term, for two
reasons. The first is that the divergence obtained for the free
electron gas is no longer present and therefore it is unnecessary
%o sum the perturbation series. This is due to the presence of
Eg in the energy denominator, which, being independent oi the
momentum transfer ¢, makes the contribution independent of e
The second reason for the neglect of higher or perturbation terms
is that their contribution is small since an energy denominator
containing Eg is ootained for each virtual pair interaction,
Callaway evaluates the second order contribution using

(12)

Macke's co-ordinate system and Monte Carlo methods, He

finds it to be:

- >
L. w o« 0,526 E,
Bo 226 m —E% ””d"/z&af?m (13.1%3

where Ef is the Fermi energy.
As Callaway points out however, we cannot really identify

this with the true correlation energy of an insulstor since it



- T8 =

vanighes in the limit of very large Eg. This is contrary to
what one would expect, for the correlation energy arises from the
inability of the Hartree-~Fock method to localize the electrons
sufficiently., In the tight binding case of an insulator, the
electrons are well localized on individual atoms so that the
correlation energy should be non zero in the limit of a large
energy &aepe The linits within which one can apply this result,
are therefore in doubt.

Callaway then calculates the correlation energy of a
geniconductor, corresponding to the case of small Eg. He does
this using the method of Gell-lMann, Brueckner modifying the
Feynman propagator to include the energy gap. Inclusion of
the effective mass of the electrons is trivisal. The result

congists of a series in Eg and r the zero order term being the

correlation of the free electron gas @

* Y. F, (150
EL(EG) = E;(o) a7 [0- |00 (T;._; )6_0_079,“1{]??:%&/&%@

i k.
where E_(0) = n* [0.0622 Amm T - 0,096] ryd/elect

Extension of this method to the electrons in metals, where
the Fermi surface and Brillouin zone boundsries do not coincide,
is rather difficult, since each virtual excitation can be either

intraband or interband. It is the summation of these processes



that presents the problem. We can however, modify Callaway's
method for the insulator, to suit the case of a metal, by
assuming a band structure of the form shown in Figure 9, vhere

the breadth of the valence band is less than the energy gap.
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Figure 9

The second order direct interaction perturbation term,

using the above band structure, is zpproximately:

: ﬂ,
L
X ferl>S (fegl %
[ktg]> g1 Rl
<o 5

& (13.15)
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while the corresponding Gell-Mann, Brueckner term is:

(22)
AE Z—-’—
T 6.8, zz i k,< | [ *?(R'J’kﬂ (13.16)
(k2>
[&et7]>

Subtracting equation 18.!/6 from 13.15 one obtains the correction

to the Gell-llann, Brueckner result i.e.

(2
AE(aﬂCdr_ah :[AE(Z:; - AP (1%.27)

o G.B.

' ; , ® . . ;
If the effective mass ratio m* is assumed to be unity then @

{249 - ! ! |
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[Re*g]>2 {Ez*ﬂ"“% ket >%  (13.18)
In the first term of equation 12.18 both excited electrons
must cross the energy gap so that one can approximate this to :

e
&, -ﬁz_ql @
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Hemea . thetyl > 4
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Evalusting the volumes of integration using Macke's co-ordinate
system and expanding in terms of the parameter $ = ol

P
one finds that the correction is to the first spproximation:

d(rl'ani' 12

AAE =-'2§, f[—___ __(?4__22]013, (13.20

Hence this néive approach still possesses an infra-red divergence
even though the Gell-Mann, Brueckner term has been subtracted.
This could heve been anticipated as one part of the non-uniform
second order perturbation term allows an interband transition for
one excited electron and an intra-band transition for the other,
the divergence erising from the lztter as in the uniform gas case.
The correction cen however be calculated by applying a cut-off

to the integral. This would normally beobtained by summing the
whole perturbastion series. However, the error incurred using the
rigorous free electron gas cut=off, p = 0,47 ﬁgﬁ would be
glight,

The second order exchange term cannot be similarly

calculated on account of the momentum transfer factor

{
|8 <

It can however be worked oul using Monte Carlo methods. Callaway

has shown for the case of an insulator, that this contribution is



-~ 82 =

small compared to the second order direct term, Hence one feels
justified in neglecting the correction of the exchange term in
this approximation for a metal.

This method can at most, give us a gqualitative answer,
since in the calculation one is forced to assume unit
effective mass and a spherical Fermi sea, The range of validity
is also in doubt though one might expect the result to be
applicable in cases vhere the energy gap is two or three tinmes

the breadth of the valence band.




14 -~ DIAGONALIZATION OF THE HAMILTONIAN BY A
CANONICAL TRANSFORMATION

One method of extending the range of validity of the theory

is by including higher order linked cluster and electron-ion
terms. These can be more readily included if the Wentzel
Hamiltonian is first diagonalized. Silverman and Weiss do this,
but in such =z way that they need not know the exact form of the
transformation. If it is known, one can obtazin the wave function
corresponding to the Wentzel Hamiltonian by operating with it on
the vacuum state wave function. This wave function can be
considered as the unperturbed wave function and higher terms in
the Hamiltonian may then be treated as perturbations. Such a
procedure is satisfzctory for the electron-ion interaction but
not for the higher order electron-electron terms for these have
been shown to possess subsidiary divergences of the form
ry lnrs. It may be possible however, to sum the perturbation
series produced by expanding in terms of the Wentzel rather than
the free electron wave functions. Hence it would appear
worthwhile attempting to calculate the required transformation.
The un-physical, though often instructive, one dimensional case
is considered first.
One Dimensional Case

The trensformation required to diagonalize the Hamiltonian

of a one dimensional electron gas is a relatively simple one,
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Toking the Hamiltonian in the Wentzel form, the qth. term is ¢

X
— Tr Tr 2 | % _ | 5 *
H? %: g T +w ?ﬂﬁ?ﬁk W o | % 551% ?2 (14.1)

Applying the cyclic transformation 2
I 2T ¢ R m
— Z — &x —— ?5 (14.2)
J@E& T {m § m .

one finds the Hamiltonian assumes the form:

2 T o+ 2% (
H?/ R % g IR £ )
k
Two solutions are obtained for fl, one corresponding to the
scattering stcotes, the other to the plasmons.

IThree Dimengional Casge

In the three dimensional case the Hamiltonian is @

* —
H$ = Z Tr& Tr'ﬁ & w; ?;ﬁé -wﬁ + );Jw&% ﬁ*}é{ (14.4)
f



A possible canonical transformation capable of diagonalizing

equation 1l4.4 is :

= oy [dﬁerﬁ ?5&]

where O(ke is anti- hermitian for reality

ioeo dk‘e = = d‘zk

This leaves the IL I, term unaffected, operating on the @'s only.
gé

Expanding the exponentials one finds :

ﬂ* = ?5;3 _%%—[s}%]h Z‘—;;z[ﬁ@ ?‘zﬂ+ g%z[s[s[s;s{,_]'ﬂ o

. -
transform to §€ = T ?SZT

@ §e = %‘ [e”"F (- o(ﬁa)] ?5& (14.5)

Applying this to equation 1l4.4 and equating diagonsl =nd
non-dizgonal parts one obtains the equaotions for the matrix

elements

> a8 B = w (14.6)

S o2 8 8 = A Jwgu (14.7)
m
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Solution of these equations gives @ 4 end nence the required
transform.

Fokuda'?®) has aleo attempied to caloulate this unitery
transformation, He assumes that the ground state wave function

can be expressed:

b4

o= a vy ¢o (14.8)
where a is a normalization constant, V an operator containing
electron creation operators only, and ﬁo is the vacuun state vave

function. Taking V to be of the general form @

V= e (2 K C*C*) (14.9)

he then calculates Kkk' by a variational method. Fukuda shows
tuat the transformzftion does in principle work, though the
mathematics become rather involved, and it remains to be seen
whether the higher matrix elements can in f=ct be calculated

in this way.




WEEN APPLIED TO THE NON-UNIFORM GAS PROBLEM

One must exercise some degree of caution in applying the

Linked Cluster Expansion method to electron gas systems such as
those found in metals. This method assumes that when the
interaction between the electrons is switched on, the levels in

the unperturbed system retain their identity in the perturbed
system i.e., they remain discrete. This has been shown by
Luttinger and Ward(g) to be so, for a system of fermions of

spin é{, in which both the energies and the perturbing potential
are spherically symmetric, indicating that the Brueckner, Goldstone
series is convergent for this particular case.

(49), on the other hand, prove that the

Kohn and ILuttinger
gseries is no longer convergent for the non-spherical case such as
one has in a metal. Here the interaction potential (Coulomb)
is indeed spherically symmetric but the Fermi surface has only
the symmetry of the lattice. The energy levels lose their
identity in the perturbed system and the Brueckner, Goldstone
series is found to have a zero radius of convergence. As long
a8 the volume of the system V is large but finite, the true

energy levels regarded as functions of the coupling constant ’

have sharp bends but do not cross. In the limit V- o, the
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terms which ensure that the levels do not cross are lost as they
are of order V<. Hence, for & finite value of A , the state
which grows smoothly out of the original ground state is no
longer the lowvest.

Instead of switching the interaction in adiabatically as
Goldstone does, Kohn and Luttinger calculate the energy of the
ground state at a temperature T, take the limit V-—» o first and
then let the teumperature tend to zero. The Brueckner, Goldstone
formula is obtained if the order of the limiting procedures is
reversed, This is the only fundamental difference between the
two methods.

They calculate the energy using the Grand Partition Function
method developed by Montroll and Ward and others(ss). Due to the
finite teuperature, contributions of two types of diagrams have
to be considered. One group is composed of the Brueckner,
Goldstone graphs which have been considered earlier. The second

and third order diagrams are shown belovw @

—_—— e — -
I
-_—
:—_i
——

d

——
-_——— —

< =

Figure 10(a) Figure 10(b)
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The second group consists of anomalous diagrams which arise
from the finite temperature. The second and third order diagrams
are shown below in order that they may be compared with the

Brueckner, Goldstone counterparts.

Figure 11(a Figure 11(b)

The anomalous diagrams are those in which some electrons
and holes are forced by momentum conservation, to be in the same
state. This is only possible at a finite temperature. Kohn and
Luttinger find thet the contribution of these diagrams remains
finite after they take the limit T-— 0. In order t0 illustrate
their point, they evaluate the second order ternm. (The first
order term is unchanged since the first non vanishing anomalous
diagram is ol second order). The anomalous diagrams reduce the
contribution of the second order term indicating thot there is a
lower state than the Brueckner, Goldstone one for this particular
case. This correction is found to vanish only if the interaction
potential and the unperturbed energies are spherically symmetric,

partially confirming the findings of Luttinger and Ward.
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Wentzel(Bc) has interpreted the meaning of the Kohn and
Luttinger term geometrically. lle points out that, since the new
term involves the diagonal part of the interaction only it should
be possible to derive the result more simply by omitting the
off-diagonal terms of the [Hamiltonian, e assumes an expression

for the ground state energy oi the form ¢

E(z) fé 438 +fL7lf a[),’},j (15.1)

where j} d{k denotes integration over the non-spherical Fermi
({6)
sea. 3ince the Fermi sez is defined as that surfezce over which E

is a minimum one can write @

e(?)
Differentiating equation (15.1) with respect to A and using the
fact that J' d{& equal to the total number of states below the
(3)

Fermi surfece, is = constant, one finds :

B 3 Y
-B_ACE(“)) _ %ja&j v dg

fer! (15.3)
P e
The Kohn, Luttinger term is 2EY)
2AY A=o0

which is obviously zero in the spherical case.



In the linked cluster expznsion, it has been assumed that the
system is at 0°K. The vacuum state is then considered to be that
in which all the states up to the¢ Fermi surface are filled and those.
above, empty. This presupposes that the Fermi surface is a sharp,

(51)

well defined entity. Luttinger has shown that this

assumption is quite wrong. This view is shared by Van Hove(sz),
who, on the basis of recent work, casts doubt on the existence of
a sharp surfazace even for weak repulsive forces.

The chief reasons for this are that the coulomb interactions
between the electrons in metals are of the same order of magnitude
as their kinetic energies and the correlation energy is
comparavle to the binding energy. Therefore we cannot expect the
momenta of the individual electrons to be good gquentum numbers and
consequently the Fermi surface cannot be sharp.

In the unperturbed system the occupation number n, may
be written : | 'F"" 6* < P

T o fx g >p

or alternastively in terms of a contour integral :

n, = ;r'::f _exp (49 dy (15.4)
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If on interaction is present n, may be written :

P+ o0
: e (45) dy, (15.5)
,nﬁ - 'z—_" i .
m™e _ _
[‘5 & C’&(‘-‘)]
P
(
where Eé" eﬁ"&ﬁ("éil is the propagator of the system and

Gk(g) is the proper self energy part of the propagator. This
describes how the propagation of a particle is affected by the
presence of others with which it interacts, It is determined
by summing polarization graphs of the type congidered by Quinn

end F@rrel(ze).

The analytic properties of Gk(y) are ¢

1) Gk(y) is analytic everywhere except on the real axis.
2) Lim Gk(y T ig) = Kk(y) o iJk(y) where Jk(y) = 0

%) Jk(x) = Ck(y — P) 2 CK >0 asy—>PF

The last property comes about in the following way. The

contribution of the diagram shown in Figure 12 to J‘& (y) is ¢

R,

}""g 1 > 1 3“&
' ke |
<l

'&3

Figure 12
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f o 2
Gﬁo(‘i) _ Z |<§L ﬁs\ l 3 £>)
Mk 87 6o )

R K, > P
g3<f’

(15.6)

This contribution has an imaginary part S [ vy- (6&-(- &, = & ﬂ
( Rf- ?3
Since ki' k2 represent electrons with energies greater than the

Fermi momentum P and kj, & hole with energy less than P,

- € = .
(éfﬂ « € ﬁ) P (15.7)

Hence for y near P, one obtains a contribution from a very small

portion of phase space and it is for this reason thaot

Tln) =< (4-P)°

The true Fermi surface is given by @
po—- €g — K (@O =0 (15.8)
and the single particle energy zk by the solution of the equation @
— & — =
E& 13 KQ(E) = 52

For electrons in a lattice, one must average over the band index

(15.9)

before the Fermi surfaoce and single particle energies are known.
Luttinger and Higda1(53) have shown that the Fermi surfoce as well

R S = : o, s :
a8 belng smeared out a2t 0k, possesses 2 finite discontinuity at



the Fermi surface. These effectis, however sghould produce
negligible effects on the correlation energy for De Hass- Van
Alphen measurementa(54) have shown that the Fermi surface is

sharp to one part in 104.




16 - CONCLUSIONS

As we have seen from the work of Bohm and Pines, the
electron gas in a metal behaves in a plasma-like way. Any
slight deviation from neutrality creates forces which try to
cancel the space charge, If there is little dampling, over
compensation takes place and the system oscillates longtitudinally
as in a sound wave, Thies condition is known as plasma
oscilletion, The positions of the electrons are correlated by
this plasma behaviour and by scatiering type interactions.
Localization of the electrons leads to a contribution to the
electron energy over and above that derived from the Hartree,
Fock Gtheory and has been called correlation energy. Addition
of this energy term produces more binding and reasonable
agreement with experimental results. (See Tzble I). Unfortunately
this comparison can only be made using interpolation results
derived from calculations made in the high and low density limits.
The formulation of the high density uniform gas case by
Wentzel gives perhaps the most lucid account of the problem,
Brout'5%) and sewada et 21¢®) point out the existence of the
plasmon contribution in the linked cluster expansion, The low

density case can be reduced to the problem of calculating the



energy of an electron in an electron lattice. Methods for
treating the uniform gss have however, been adeguately discussed
at the end of Part I and this section will be confined to
analysis of the various methods developed for the non-uniform
gase

In theory, the uniform gas methods can be simply extended
to the non-uniform case by replacing the free electron wave
functions by Bloch functions. Expressions become compliczated,
and it is no longer possible to sum the perturbation series.
Approximate methods of dealing with the problem have however
been evolved.

The approach developed by Silverman and Weiss, in which the
electron-ion system is regarded as a two component plasma is
rather interesting. The ions are treated as & gas of charged
impurities mingling with the electrons. One immediate drawback
of the method is that it does not incorporate any effects
agsociated with the periodicity of the lattice. It may be of use
in the theory oi liquid metals, though here it should be remembered
that only the long range order is destroyed, band structure,
arising from the short range order being still very much in
evidence. For the alkali metals, having I wvalence electron/ztom

= I, the Silverman and Weiss formula reduces to:
lon, 2 "/:_;-
= = AR
where a = (_{t)‘é
qr



This represents the correction to the Gell-Mann, Brueckner high
dengsity result and appears to be rather large. One would
however, be inclined to look for a substantial correction, as
the effect of the charged impurities is to bunch the electrons,
localizing them to & greater degree and thus increasing the
correlation energy.

The dielectric formulation is perhaps the most useful since
the correlation energy can then be estimated directly from energy
loss experiments, The Nozieres, Pines free electron formula is
simply modified by inserting Block wave functions into the

expressions for the polarizability. Falk's expression is just

e simple generalizction of the free electron case, but the energy
cannot be readily calculated from it, though it does show how

the periodic field modifies the free electron gas expression.
His result agrees with that of Nozieres and Pines and confirms that
interband transitions do not make an importaent contribution to the
correlation energy in the weak binding limit, Hubbard's(46)
solution of this problem, obtained from the extension of his
uniform theory, also becomes rather intractable, The Hartree
equations for the electrons in the lattice have to be solved and
secondly the effective interaction expressed as an integral
equation when the screening is modified by the ionic field.

These equations have yet to be solved and it looks as though

computer techniques are necessary.



In order to obtain a quantitative ansvwer one is forced to
make sweeping assumptions, such as those made by Callaway,
His work on the correlation energy of an insulator must be
regarded wit@ suspicion since his expression goes to zero as
Eg-.m, quite the reverse of what one would expect. Consegquently
the range, over which the extension of his theory to metals is
applicable, is in doubt, though one would expect it to hold for
the case where the energy gap is two or three times the breadth
of the valence band, The extension to metals provides an
answer dependent on the parameters, effective mass m*, ratio of
valence bandwidth to energy gap, and position of the Fermi level
relative to the Brillouin zone boundary. A complete theory of
the non-uniform gas should embody all these parameters. This
expression may be applied to a metal such as aluminium which has
a valence bandwidth of 15 e.v., an energy gap 4 e.v. and 2™ - T
It should be remembered however, that this result has been
calculated for the high density case so that it is not possible
to compare it with experiment,

Kohn and Luttinger's work shows that 2 simple extension of
the linked Cluster expansion to the non-uniform case in which the
Fermi surface is non-spherical, such as that in a metal, is not

valid, the series being convergent only for spherical symmetry.
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Van Hove has indicated how terms which cannot be represented by
a power series may be found in the ground state energy, even for
the case of very weak repulsive forces. These terms are
nowever, found to be exponentially small, so that in a case such
as this, one would expect the linked cluster expansion to give a
reasonable asymptotic representation. The Fermi surface at
0%k is defined by Luttinger, as the locus of the discontinuity in
the momentum distribution curve and is generally distorted by the
electron-electron interactions. This distortion is, however
slight, as can be seen from De Hass Van Alphen results, which
show that the surface is sharp to one part in 104.
It can be argued that the error incurred by applying a
modified form of the linked cluster expansion to metals such as
sodium, will be slight, since here the Fermi surfoce is almost
isotropic. The periodic field will influence states very close
to the Brillouin zone boundary in k space, though only a small
fraction of the total number in the Fermi distribution will be
aifected, even in polyvalent metals such as Mg and Al. Interband
transitions may zlter the properties of the quasi-particles and
their interactions. Their mean lifetime decrecses quadratically(sﬁ)
as they approach the Fermi surface while their energy varies

linearly. Hence it can be concluded that the effect of the

periodic poteuntial on the correlation energy should be small,
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properties such as electron transport and specific hezt, which
depend on the states near the Fermi surface being more likely
to be affected.

Further work must be done to incorporate higher order
exchange terms and the rescattering of real excited particles
(non zero temperatures). The effect of the smearing out of the
Fermi surface should be investigated more closely. The question
of the existence and sharpness of the Fermi surface may be
studied as Kohn suggests, by examining the gingularities of the
dielectric constant. One possible way of developing a theory
for the intermediate region (2 < r, < 5.5) is to determine the
wave function for the Wentzel Hamiltonian, as ﬁas been attempted
here. Once this has been determined, one can expand in terms
of this wave function rather than in plane waves. The
subsidiary divergences in the perturbation expansion which are
known to exist i.e. ry 1n rg cen be treated in a manner analogous
to the Gell-Mann, Brueckner method. Higher order exchange terms

must also be incorporated.
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