University of St Andrews

Full metadata for this thesis is available in St Andrews Research Repository at:
http://research-repository.st-andrews.ac.uk/

This thesis is protected by original copyright

NEW ROUTES FOR THE SYNTHESIS OF AZIRIDINES, OXAZOLINES AND THIAZOLINES

by

Steven D McGill
B. Sc. (Hons), AMRSC

Thesis presented towards the degree of DOCTOR OF PHILOSOPHY

DECLARATION

I, Steven McGill, hereby certify that this thesis, which is of approximately 40000 words in length has been written by me, that it is the record of work carried out by me and that it has not been submitted in any previous application for a higher degree.

signature of candidate

I was admitted as a research student in October 2000 and as a candidate for the degree of Doctor of Philosophy in October 2001; the higher study for which this is a record was carried out in the University of St. Andrews between 2000 and 2004.
date $99^{4} 02=2004$
signature of candidate

I hereby certify that the candidate has fulfilled the conditions of the Resolution and Regulations appropriate for the degree of Doctor of Philosophy in the University of St. Andrews and that the candidate is qualified to submit this thesis in application for that degree.
date 10^{4} De........... 2004 signature of supervisor

In submitting this thesis to the University of St. Andrews I understand that I am giving permission for it to be made available for use in accordance with the regulations of the University Library for the time being in force, subject to any copyright vested in the work not being affected thereby. I also understand that the title and abstract will be published, and that a copy of the work may be made and supplied to any bona fide library or research worker.
date $9^{\text {t. }} 0$ 20ch 2004 signature of candidate

ACKNOWLEDGEMENTS

I would primarily like to thank Dr. R. A. Aitken for his excellent supervision, enthusiasm and assistance over the past four years.

I would like to express my gratitude to the technical staff, especially Melanja Smith, Marjory Parker, Caroline Horsburgh, Sylvia Williamson and Colin Millar.

I am grateful to Professor A. M. Z. Slawin for determining the X-ray structures.

I would also like to thank Lee and Stephen for their friendship. I would also like to thank my family and friends for their support and advice over the past four years.

Finally I would like to thank the University of St. Andrews for providing financial assistance throughout.

LECTURE COURSES ATTENDED

The following is a statement of lecture courses attended during the period of study

Organic Research Seminars	3 years attendance
School Colloquia	3 years attendance
Organic Problem Solving	Prof. D. O'Hagan
Dr. N. P. Botting	
Molecular Rearrangements in Organic Chemistry	Prof. J. C. Walton
The Chemistry of Sulfur and Related Elements	Dr. R. A. Aitken
The Chemistry of Phosphorus and Related Elements	Dr. R. A. Aitken

Abstract

A range of N-acyloxazolidin- 5 -ones have been synthesised from readily available α-amino acids and their behaviour under conditions of Flash Vacuum Pyrolysis (FVP) has been examined for the first time. Several of the oxazolidinones were previously unknown compounds and were fully characterised including an X-ray structure determination of one example. In all cases the NMR spectra were complicated by restricted rotation of the N-acyl groups and this was quantified in one case by a variable temperature NMR study. In general FVP of the trans oxazolidinones at $450^{\circ} \mathrm{C}$ resulted in loss of carbon dioxide to give cis N acylaziridines. Many of these possessed non-zero optical rotations. FVP at $550^{\circ} \mathrm{C}$ produced mainly cis 2-oxazolines and in some cases a N-(1-phenyalkenyl)benzamide. The stereochemistry of these new heterocyclic reactions is considered in terms of frontier molecular orbital theory.

Alkylation of one example at the 4-position resulted in a change in the pyrolysis behaviour to give exclusively the alkenylamide product, N-(1,3-diphenyl-2-methylprop-2enyl)benzamide.

In an attempt to learn more about the processes a range of chiral N -thioacyloxazolidin-5-ones were synthesised from N -acyloxazolidin-5-ones using Lawesson's reagent. This class of compounds is previously unknown in the literature and they were fully chacterised including X-ray structure determinations in two cases. Their FVP between $450^{\circ} \mathrm{C}$ and $550^{\circ} \mathrm{C}$ again resulted in loss of carbon dioxide this time yielding 2-thiazolines. No N -thioacylaziridines were observed.

In an attempt to extend the approach to synthetically useful bis(oxazoline) ligands, bis(oxazolidinones) were synthesised from α-amino acids and characterised. Their FVP at $550^{\circ} \mathrm{C}$ is expected yield bis(oxazolines) although there was not enough time to fully investigate this.

Contents
 Introduction

Page No.
A. Scope and general principles 1
B. Nucleophilic ring opening 2

1. Addition of hydrogen halides and halide anions 2
2. Addition of water, alcohols and carboxylic acids 5
3. Additions of thiols 10
4. Addition of amines and amide anions 13
5. Addition of azide and cyanide 14
6. Addition of carbanions 16
7. Addition of P and As ylides 20
8. Addition of phosphate and other phosphorus nucleophiles 21
9. Reaction with DMSO 22
10. S_{RN} Reaction with nucleophiles 23
C. $\mathrm{S}_{\mathrm{N}}{ }^{\prime}$ Attack on C-vinyl aziridines 24
11. Intermolecular 24
12. Intramolecular 24
D. Radical Ring Opening 25
13. Photochemical 25
14. Chemically Induced 26
E. Ring expansion to oxazolines 27
15. Thermal 27
16. Photochemical 29
17. Brønsted acid catalysed 30
18. Lewis acid catalysed 33
19. Catalysed by anions 38
a Iodide 38
b Azide 42
c Phosphorus Ylides 42
d Olah's reagent 43
20. N-Carbamoyl and Thiocarbamoylaziridines 43
21. Vinylogous ring-expansion to dihydro-1,3-oxazepines 44
F. Isomerisation to N -allylamides 45
G. Reactions initiated by attack at CO 47
22. Nucleophilic attack at CO - behaviour as acylating agents 47
23. Reduction at CO - aldehyde synthesis 49
24. SET mediated ring-expansion to 2-pyrrolidinones 49
H. Other reactions 50
25. Conversion to thiazolines 50
26. Reaction with isocyanates to give imidazolidinones 51
27. Reaction with nitrones 51
28. Conversion of thioacyaziridine to isocyanate 52
29. Reaction with super acids 52
I. Programme of Research 53

Experimental

A. Abbreviations 56
B. Instrumentation and General Techniques 56
C. Synthesis of chiral N-acyloxazolidin-5-ones

1. Preparation of $(2 S, 4 S)$ - and $(2 R, 4 S)$-3-benzoyl-2-t-butyl-4-methyl-1,3-oxazolidin-5-one $\mathbf{3 8 1}$ and $\mathbf{3 8 2}$59

2. Preparation of (2R,4S)-3-benzoyl-2-phenyl-4-methyl-1,3-oxazolidin-5one 383

3. Preparation of $(2 R, 4 S)$-3-benzoyl-4-isopropyl-2-phenyl-1,3-oxazolidin-5-one 384

4. Preparation of $(2 R, 4 S)$-3-benzoyl-4-benzyl-2-phenyl-1,3-oxazolidin-5one 385

5. Preparation of $\left(2 R, 4 S, 2^{\prime} S\right)$-3-benzoyl-4-s-butyl-2-phenyl-1,3-oxazolidin-5-one 386

6. Preparation of $(2 S, 4 R)$-3-benzoyl-2,4-diphenyl-1,3-oxazolidin-5-one 387

7. Preparation of $(2 R, 4 S)$-3-acetyl-4-methyl-2-phenyl-1,3-oxazolidin-5one 388

8. Preparation of ($2 R, 4 S$)-3-acetyl-4-isopropyl-2-phenyl-1,3-oxazolidin-5-one 389

9. Preparation of (2R,4S)-3-acetyl-4-benzyl-2-phenyl-1,3-oxazolidin-5one 390

10. Preparation of ($2 R, 4 S, 2$ 'S)-3-acetyl-4-s-butyl-2-phenyl-1,3-oxazolidin -5-one 391

11. Preparation of $(2 S, 4 R)$-3-acetyl-2,4-diphenyl-1,3-oxazolidin-5-one 392

12. Preparation of $(2 R, 4 S)$-3-acetyl-2,4-diphenyl-1,3-oxazolidin-5-one 393

13. Attempted Preparation of $(2 S, 4 R)$-3-benzoyl-4-methoxy-2-phenyl-1,3-oxazolidin-5-one 394

D. Flash Vacuum Pyrolysis of N -acyloxazolidin-5-ones
14. Pyrolysis of $(2 R, 4 S)$-3-benzoyl-2-phenyl-4-methyl-1,3-oxazolidin-5one 383

15. Pyrolysis of (2R,4S)-3-benzoyl-4-isopropyl-2-phenyl-1,3-oxazolidin-5-one 382

16. Pyrolysis of $(2 R, 4 S)$-3-benzoyl-4-benzyl-2-phenyl-1,3-oxazolidin-5one 385

17. Pyrolysis of $\left(2 R, 4 S, 2^{\prime} S\right)$-3-benzoyl-4-s-butyl-2-phenyl-1,3-oxazolidin-

5-one 386

5. Pyrolysis of $(2 S, 4 R)$-3-benzoyl-2,4-diphenyl-1,3-oxazolidin-5-one 387

6. Pyrolysis of (2R,4S)-3-acetyl-4-methyl-2-phenyl-1,3-oxazolidin-5-one 388

7. Pyrolysis of (2R,4S)-3-acetyl-4-isopropyl-2-phenyl-1,3-oxazolidin-5-one 389

8. Pyrolysis of $(2 R, 4 S)$-3-acetyl-4-benzyl-2-phenyl-1,3-oxazolidin-5-one

390

9. Pyrolysis of ($2 R, 4 S, 2^{\prime} S$)-3-acetyl-4-s-butyl-2-phenyl-1,3-oxazolidin-5one 391

10. Pyrolysis of (2S,4R)-3-acetyl-2,4-diphenyl-1,3-oxazolidin-5-one 392

11. Pyrolysis of (2R,4S)-3-acetyl-2,4-diphenyl-1,3-oxazolidin-5-one 393

E. Hydrolysis of oxazolines to amino alcohols
F. Attempted reactions of 1-acetyl-2-methyl-3-phenylaziridine

1. with maleic anhydride 85
2. with DMAD 85
3. with dimethyl maleate 85
4. with sodium iodide 85
5. with sulfuric acid 85
6. with trifluoroacetic acid 86
7. with p-toluenesulfonic acid 86
8. by refluxing in xylene 86
G. Synthesis of chiral N-thioacyloxazolidin-5-ones from thiobenzoyl chloride 87
9. Preparation of phenylcarbodithioic acid $\mathbf{4 7 7}$ 87

10. Preparation of thiobenzoyl chloride $\mathbf{4 7 8}$87

11. Attempted preparation of ($2 R, 4 S$)-4-benzyl-2-phenyl-3-thiobenzoyl-1,3-oxazolidin-5-one 48188

H. Synthesis of chiral N-thioacyloxazolidin-5-ones

1. Preparation of $(2 R, 4 S)$-4-methyl-2-phenyl-3-thiobenzoyl-1,3-oxazolidin-5-one 481

2. Preparation of $(2 R, 4 S)$-4-isopropyl-2-phenyl-3-thiobenzoyl-1,3-oxazolidin-5-one 482

3. Preparation of ($2 R, 4 S$)-4-benzyl-2-phenyl-3-thiobenzoyl-1,3-oxazolidin-5one 483

4. Preparation of $\left(2 R, 4 S, 2^{\prime} S\right)$-4-s-butyl-2-phenyl-3-thiobenzoyl-1,3-oxazolidin -5-one 484

5. Preparation of $(2 R, 4 S)$-4-methyl-2-phenyl-3-thioacetyl-1,3-oxazolidin-5one 485

6. Attempted Preparation of (2R,4S)-4-isopropyl-2-phenyl-3-thioacetyl-1,3-oxazolidin-5-one 486

7. Preparation of $(2 R, 4 S)$-4-benzyl-2-phenyl-3-thioacetyl-1,3-oxazolidin-5one 487

I. Flash Vacuum Pyrolysis of N-thioacyloxazolidin-5-ones
8. Pyrolysis of $(2 R, 4 S)$-4-methyl-2-phenyl-3-thiobenzoyl-1,3-oxazolidin-5one 481

9. Pyrolysis of $(2 R, 4 S)$-4-isopropyl-2-phenyl-3-thiobenzoyl-1,3-oxazolidin-5-one 482

10. Pyrolysis of $(2 R, 4 S)$-4-benzyl-2-phenyl-3-thiobenzoyl-1,3-oxazolidin-5one 483

11. Pyrolysis of ($2 R, 4 S, 2^{\prime} S$)-4-s-butyl-2-phenyl-3-thiobenzoyl-1,3-oxazolidin-5-one 484

12. Pyrolysis of $(2 R, 4 S)$-4-methyl-2-phenyl-3-thioacetyl-1,3-oxazolidin-5-one 485

13. Pyrolysis of (2R,4S)-4-benzyl-2-phenyl-3-thioacetyl-1,3-oxazolidin-5-one 487

J. Preparation of Aziridines from Amino Alcohols 99
14. Attempted preparation of $(2 S, 3 S)$-2-methyl-3-phenylaziridine 99
15. Attempted preparation of $(2 S, 3 S)$-2-methyl-3-phenylaziridine 99
16. Attempted Preparation of (2S)-2-benzylaziridine 99
17. Attempted preparation of (2S,3S)-1-acetyl-2-methyl-3-phenylaziridine 100
K. Alkylation of chiral N -acyloxazolidin-5-ones 101
18. Attempted preparation of (2R,4S)-3-benzoyl-4-ethyl-4-methyl-2-phenyl-

1,3-oxazolidin-5-one

1012. Preparation of $(2 R, 4 R)$-3-benzoyl-4-benzyl-4-methyl-2-phenyl-1,3-oxazolidin-5-one 506

3. Pyrolysis of (2R,4R)-3-benzoyl-4-benzyl-4-methyl-2-phenyl-1,3-oxazolidin-5-one 506102

L. Preparation of Bis(oxazolidin-5-ones)103
4. Attempted preparation of 2,2'-dimethylmalonylbis-(2R,4S)-2-methyl-4-phenyl-1,3-oxazolidin-5-one103
5. Attempted preparation of oxalylbis-(2R,4S)-2-methyl-4-phenyl-1,3-
oxazolidin-5-one 103
6. Preparation of 2,2'-malonylbis-($2 R, 4 S$)-2-methyl-4-phenyl-1,3-oxazolidin -5-one $515 \quad 104$

7. Preparation of 3,3'-succinylbis-(2R,4S)-2-methyl-4-phenyl-1,3-oxazolidin-5-one $516 \quad 104$

8. Preparation of 3,3'-succinylbis-(2R,4S)-2-isopropyl-4-phenyl-1,3-oxazolidin-5-one 517

9. Preparation of 3,3'-succinylbis-(2R,4S)-2,4-diphenyl-1,3-oxazolidin-5-one 518

M. X-Ray Structure Determinations
10. $(2 R, 4 S)$-3-acetyl-4-methyl-2-phenyl-1,3-oxazolidin-5-one $\mathbf{3 8 8}$

11. $(2 R, 4 S)$-4-methyl-2-phenyl-3-thioacetyl-1,3-oxazolidin-5-one $\mathbf{4 8 5}$

12. ($2 R, 4 S$)-4-benzyl-2-phenyl-3-thiobenzoyl-1,3-oxazolidin-5-one 483

Discussion

A. Synthesis and Properties of N -Acyloxazolidin-5-ones 109

1. Synthesis 109
2. Structure and Properties 110
B. FVP of N -acyloxazolidin-5-ones 118
3. Results 118
4. Mechanism and Stereochemistry of Products 140
C. Synthesis and Properties of N -thioacyloxazolidin-5-ones 146
5. Synthesis 146
6. Structure and Properties 149
D. FVP of N -thioacyloxazolidin-5-ones 155
E. Alkylation of chiral N-acyloxazolidin-5-ones 161
F. $\quad \operatorname{Bis}(N$-acyloxazolidin-5-ones) 163
Appendix
X-Ray Structural Data
References 166

INTRODUCTION

A. Scope and general principles

Although there have been several previous reviews on the chemistry of aziridines, these have either been general, ${ }^{1-4}$ or focused on particular aspects such as nucleophilic ringopening, ${ }^{5}$ a comparison between aziridines and epoxides, ${ }^{6}$ or use of chiral aziridines in asymmetric synthesis. ${ }^{7}$ As far as we are aware the reactions of N-acylaziridines have not been specifically reviewed before. This is unfortunate since, as summarised in Scheme 1, these simple starting materials can react in many different ways to give a variety of useful products.

For a general N-acylaziridine 1 nucleophilic attack can result in ring opening by attack at a ring carbon and for unsymmetrical aziridines this may occur in either regiochemical sense to give, after protonation, the functionalised amides $\mathbf{4}$ or 5 . Alternatively the initially formed anions $\mathbf{2}$ or $\mathbf{3}$ may react in their azaenolate forms $\mathbf{2}^{\prime}$ or $\mathbf{3}^{\prime}$
and cyclise with loss of Nu^{-}to give oxazolines 6 or 7 . The overall rearrangement to the regiomeric oxazolines may also be brought about thermally or by Lewis acid catalysis. Of course, not only the regioselectivity but also the diastereo- and enantioselectivity of this process is highly relevant when it cames to chiral aziridines. An alterative mode of nucleophilic attack is at the carbonyl carbon in $\mathbf{1}$ leading to products $\mathbf{8}$ in which the N acylaziridine has acted as an acylating agent. Where we have an unsaturated substituent on the aziridine ring, nucleophilic ring opening may occur in an S_{N} ' sense to give functionalised allylamides 9. Allylamides $\mathbf{1 0}$ also result from thermal rearrangement of compounds $\mathbf{1}$ with a hydrogen atom on one substituent.

In the following sections these processes are considered in turn and all the important reactions of the N -acylaziridine function are surveyed. It should be noted that reactions such as asymmetric alkylation of the N-acyl group in $\mathbf{1 1}$ to give $\mathbf{1 2}$ and $\mathbf{1 3}$, in which the acylaziridine moiety remains intact have been investigated recently, ${ }^{8}$ but these are not considered further in this review.

B. Nucleophilic ring opening

1. Addition of hydrogen halides and halide anions

Synthesis of fluoroamides 15 by ring-opening of N-benzoylaziridines 14 with hydrogen fluoride, Olah's reagent (hydrogen fluoride and pyridine) or its analogues has been attempted. ${ }^{9}$ In order to improve the fluoroamide yields the ring nitrogen needs to be activated. A less acidic and more nucleophilic agent than Olah's was required to decrease the
oxazoline yields. N -benzoylaziridines when treated with $\mathrm{Et}_{3} \mathrm{~N}$ and HF give predominantly fluoroamides. Compound $\mathbf{1 4} \mathbf{a}$ was ring opened using 2.5 equivalents of HF to produce threo fluoroamide $15 \mathbf{t}$ (69\%) and erythro fluoroamide 15 e (17\%). Aziridine 14b gave poorer yields of 5 and 25% for $\mathbf{1 5 t}$ and $\mathbf{1 5 e}$ respectively. A single isomer of compound $\mathbf{1 5}$ was obtained from the reaction of compound $\mathbf{1 4 c}(85 \%)$. Its stereochemistry was not determined.

N -benzoyl-2-methyl-3-phenylaziridine 16 gave only 46% of the desired N benzoylfluoroamine 17 and 2-phenyl-2-oxazolines 18 in 47% yield when reacted with Olah's reagent. ${ }^{10}$ However the N-ethoxycarbonyl derivative rearranged quantitatively to $\mathbf{1 7}$ under the same conditions.

An iodoamide was suggested as a possible intermediate in the formation of 2oxazolines from N-acylaziridines. ${ }^{11}$ Treatment of N -benzoylcyclohexenimine $\mathbf{2 0}$ with sodium iodide in acetonitrile or acetone indeed gives the ring-opened iodoamide, 21. The analogous p-nitrobenzoyl derivative was treated with sodium iodide in acetone to give primarily the oxazoline and very little of the iodo amide. In acetonitrile the oxazoline was the sole product (95\%).

Attack of chloride ion from hydrogen chloride ${ }^{12}$ has the same effect as iodide, opening the ring to yield the N -(trans-2-chlorocyclohexyl)benzamide 19 .

The N-acety1-3- n-hexylaziridine ester $\mathbf{2 2}$ gave a single diastereomer of the product $\mathbf{2 3}$ upon treatment with various nucleophiles including Cl^{-13} Reacting 22 with ethereal hydrogen chloride gave the ring opened product arising from nucleophilic reaction at C-3. Catalysis by protonation at nitrogen or oxygen will cause attack at C-3. The positive charge cannot be stabilized at C-2 due to the electron-withdrawing ester group.

The ring-opening at C-3 of (S)-(-)-N-acetyl-2-methoxycarbonylaziridine 24 by hydrogen chloride afforded the unnatural α-amino acid derivative 25. ${ }^{14}$ The reaction of chloride at the $\mathrm{C}-2$ ring carbon gives rise to the β-amino acid derivative 26. Compounds $\mathbf{2 5}$ and 26 were produced in a 1:1 ratio showing the reaction was not regioselective. The total yield was 80%.

Unusually, reaction of the l-menthyl aziridine-2-carboxylate 27 and sodium iodide gave iodoalkylamide 28. ${ }^{15}$ Normally this would not be observed, but would be considered an intermediate in the formation of the corresponding 2-oxazoline. The isolation of the intermediate β-haloamide in the rearrangement of aziridines is rare. Ring closure to the expected oxazoline product $\mathbf{2 9}$ is achieved by addition of triethylamine.

The cyclic fluoroamidosulfone $\mathbf{3 1}$ was formed as the sole product of the reaction between N -ethoxycarbonyl aziridine $\mathbf{3 0}$ and boron trifluoride etherate. ${ }^{16}$

The low nucleophilicity of the carbamate nitrogen allows fluoride attack as opposed to the expected attack of N^{-}at $\mathrm{C}-6$ to form a bicylic pyrrolidine analogous to 33. In contrast the N-tosylaziridine $\mathbf{3 2}$ forms both the pyrrolidine $\mathbf{3 3}$ and the cyclic fluoroamidosulfone $\mathbf{3 4}$ in a ratio of $60: 40$. No yields are given. Varying the amount of Lewis acid used and the temperature had no effect on the ratio of $\mathbf{3 3}: \mathbf{3 4}$. Using a $9: 1$ mixture of dichloromethane and nitromethane as solvent gave $\mathbf{3 3}$ and an unidentified product in a ratio of 65:35.

2. Addition of water, alcohols and carboxylic acids

Reaction of N-acyl-2,2-dimethylaziridines 35 with water gave the hydroxyethylamides 37 . The presence of two methyl groups at C-2 of the aziridines accelerated the hydrolysis ${ }^{17}$ of the aziridine (3 days compared to 11 for unsubstituted) and considerably increased the yields. The authors suggest the possibility of hydrogen bonding between the acyl oxygen atom and a hydrogen atom of the first water molecule. This weakens the $\mathrm{N}-\mathrm{C}-2$ bond and the donor inductive effect of two methyl groups makes attack of a second water molecule more facile (see 36). The author concludes that water attacks the more positive carbon atom of the aziridine ring.

The acylaziridine 38 was irradiated with cerium chloride hexahydrate in toluene for 10 minutes to form compound 39 as the sole product in quantitive yield. ${ }^{18}$ The oxazoline that would arise from ring expansion of $\mathbf{3 8}$ also provides $\mathbf{3 9}$ under the same conditions.

In a similar example (R)-aziridine-2-ester dipeptide 40 reacted with $\mathrm{MgBr}_{2} \cdot \mathrm{Et}_{2} \mathrm{O}$ and one equivalent of water in THF to give a D-serine-containing dipeptide 41. ${ }^{19}$ However, as in the previous example it is not clear whether an isomerisation to the oxazoline occured before the addition of $\mathrm{H}_{2} \mathrm{O}$.

The reaction of the N-benzoylaziridinecarboxylate 42 with $\mathrm{BF}_{3} 2 \mathrm{H}_{2} \mathrm{O}$ is solvent dependant. ${ }^{20}$ In DMF an α-hydroxy- β-amino acid derivative 44 is formed while in dichloromethane the β-hydroxy- α-amino acid derivative $\mathbf{4 3}$ is the product.

In the presence of $\mathrm{BF}_{3} \cdot \mathrm{Et}_{2} \mathrm{O}$, the 2-acetylamino-3-hydroxypropionate 46 is isolated from the N -acetylaziridine-2-carboxylate $\mathbf{4 5}$ after 12 hours in quantitative yield. ${ }^{21}$ There is no mention of the source of the water in the paper.

The enantiomerically pure, activated aziridine 47 was treated with methanol under acid conditions to give the dimethoxy amide $48(91 \%) .^{22}$ Attack of the nucleophile (MeOH) on the protonated aziridine occurs regio and stereoselectively as shown.

The cephalosporin spiro- N-acylaziridines 49 can undergo ring opening reactions with alcohols to give 2-alkoxy-2-acetylaminomethyl derivatives $\mathbf{5 0}$ in yields of $38-84 \%{ }^{23}$

The photo-irradiation of N-(2-naphthoyl)aziridine 51 in methanol afforded N -(2-methoxyethyl)-2-naphthamide 52a (31\%). ${ }^{24}$ Hydrogen bonding of methanol to the acyl oxygen would make the nucleophilic attack easier. The photochemical reaction of $\mathbf{5 1}$ in phenol afforded N-(2-phenoxyethyl)-2-naphthamide 52b (42\%) but also phenyl 2-naphthoate resulting from attack at the carbonyl group (23\%) and an oligomer (35\%). In the acidic medium of acetic acid, the quantitative acetolysis of $\mathbf{5 1}$ was observed to afford N -(2-acetoxyethyl)-2-naphthamide 52c.

Treatment of the 2,2-dichloro-3-methylaziridine 53 with methanolic hydrogen chloride at room temperature for one week gave two products: ${ }^{25} \mathrm{~N}$-benzoylalanine methyl ester 54 (39\%) and trichloroisopropylamide 55 from the nucleophilic attack of chloride at C-2 (13\%).

Similar treatment of the 2,2-dichloro-3-phenylaziridine 56 resulted in a more destructive reaction, which produced methyl benzoate 57 in 90% yield from attack at the benzoyl group. In the absence of acid, the phenylaziridine 56 was stable in methanol.

The reaction of methanol with (S)-(-)- N-acetyl-2-methoxycarbonylaziridine $\mathbf{2 4}$ in the presence of boron trifluoride etherate furnished the unnatural α-amino acid derivative $\mathbf{5 8}$ in 55% yield. ${ }^{14}$ No products derived from attack at C-2 were observed.

As part of the synthesis of a tripeptide, ${ }^{26}$ the $(2 S, 3 R)$-aziridine 59 was opened by acetic acid to give the $(2 S, 3 S)$ - allo-threonine derivative $\mathbf{6 0}$ in 95% yield.

Treatment of the tricyclic aziridine 61 with $\mathrm{HBr} / \mathrm{H}_{2} \mathrm{O} / \mathrm{AcOH}\left(20^{\circ} \mathrm{C}, 1 \mathrm{hr}\right)$ gave the lactone 62 as the sole product (65%). ${ }^{27}$ This is due to removal of the carboxylate methyl group by the nucleophile $\left(\mathrm{H}_{2} \mathrm{O}, \mathrm{HBr}\right)$, followed by attack of the resulting carboxylate anion

on an aziridine ring carbon. However, in a less nucleophilic medium $\left(\mathrm{CF}_{3} \mathrm{CH}(\mathrm{OH}) \mathrm{CF}_{3}\right)$ the N-benzoylaziridine 61 was rearranged readily and quantitatively to the oxazoline 63 (77%). These conditions allow more time for the cationic intermediate to undergo an intramolecular process. A 2.3:1 mixture of $\mathbf{6 2 : 6 3}$ was obtained by bubbling dry hydrogen chloride gas through a solution of $\mathbf{6 1}$ in dichloromethane.

Treatment of the tricyclic N-benzoylaziridine $\mathbf{6 4}$ with hydrogen bromide in a solution of acetic acid and dichloromethane was shown to yield the corresponding benzamide $\mathbf{6 5}$ with high stereoselectivity. ${ }^{28}$

The N-acetyl-3- n-hexylaziridine ester 22 gave a single diastereomer of the products 66 upon treatment with acetic acid (78\%) and neat formic acid (91\%). ${ }^{13}$ Compound 22 ringopens by nucleophilic reaction at C-3.

The reaction of (S)-(-)-N-acetyl-2-methoxycarbonylaziridine 24 in acetic acid gave the unnatural α-amino acid derivative 67 in 55% yield. ${ }^{14}$ No amino acid derivatives formed from attack at C-2 were observed in this case.

3. Additions of thiols

In a short communication, ${ }^{29}$ Hayashi et al. carried out the ring opening of bicyclo N benzoyl and $N-p$-nitrobenzoylaziridines 68 with p tert butylbenzenethiol 69 using chiral zinc complexes. They found that the enantioselectivity of the reaction was influenced by the molar ratio of the reactants, i.e. substrate, $\mathrm{Et}_{2} \mathrm{Zn}$, tartrate and thiol. Using a ratio of 1:3:1:4.8 produced the desired sulfide 70 in a yield of 98% and 88% e.e. In a further publication, ${ }^{30}$ range of chiral additives were investigated including L-(+)-diethyl, diisopropyl, diisobutyl,

dicyclohexyl and di-tert-butyl tartrates. Generally, diethyl zinc/dicyclohexyl tartrate complex gave the best results. The reaction also proceded with a cyclopentane ring fused to the aziridne. Compound 71 afforded the sulfide 72 in 89% yield and 85% e.e.

The ring opening of N -benzoylcyclohexenimine $\mathbf{2 0}$ proceeded smoothly under mild conditions to afford the desired β-amino sulfides 73 in high yields. ${ }^{31}$ Softer Lewis acids gave better results. Coordination of the Lewis acid to form a highly reactive intermediate is an important prequisite for the reaction.

The formation of sulfides $\mathbf{7 5}$ and $\mathbf{7 6}$ must involve nucleophilic attack by the sulfur atom of 2-hydroxyethyl methyl sulfide at C-3 of the N-acetylaziridine 74 once it has been protonated. ${ }^{32}$ This produces a sulfonium salt that undergoes nucleophilic attack by acetate ion mainly at the methyl group removing it. Attack by an acetate ion at the more hindered carbon gives the S-methyl (minor) product.

There are many other examples using dialkyl sulfides, dialkyl disulfides and dialkyl trisulfides. ${ }^{32}$

The reaction of N -acyl-2,2-dimethylaziridine 37 with thiophenoxide gave mainly the sulfide 77 resulting from attack by the nucleophile at C-2. ${ }^{33}$ The yields were mostly $50-70 \%$ with two other possible products, the opposite regioisomers and an unsaturated amide in yields of 1-3 and 2-21\% respectively. Thiophenoxide was prepared by adding thiophenol to a solution of sodium naphthalenide. Use of methanol as the solvent gave more by-products since it acted as a competing nucleophile.

Reaction of the aziridine lactone 78 with ethanethiol in the presence of a Lewis acid gave the 3-acetamido-4-ethylthio ring opened 79 resulting from nucleophilic attack at $\mathrm{C}-2$ of the aziridine ring. ${ }^{34}$

The N-acety1-3- n-hexylaziridine ester $\mathbf{2 2}$ gave a single diastereomer of the product $\mathbf{8 0}$ (38\%) upon reaction with thiophenol in the presence of a boron trifluoride etherate. ${ }^{13}$

The ring-opening at $\mathrm{C}-3$ and $\mathrm{C}-2$ of (S)-(-)- N -acetyl-2-methoxycarbonylaziridine 24 by benzyl thiol in the presence of boron trifluoride etherate provided the unnatural α - and β amino acid derivatives $\mathbf{8 1}(41 \%)$ and $\mathbf{8 2}(10 \%)$ respecively. ${ }^{14}$

4. Addition of amines and amide anions

Sato and Kozikowski became interested in making tryptophan derivatives from indoles and 2-aziridinecarboxlyates, but only a single example was reported using N-benzoyl-2-methoxycarbonylaziridine $\mathbf{8 3}$ and indole to produce the 3-substituted indoles $\mathbf{8 4}$ (38\%) and 85 (14\%). ${ }^{35}$ The stereochemistry of compound 85 was not determined. We might have predicted compound $\mathbf{8 5}$ to be the main product as it is formed via attack of the carbon next to an electron withdrawing group.

In another method, the indole was lithiated in ether then the solvent was replaced by toluene. The lithiated indole 87 was then reactive enough for the nucleophilic attack on the acylaziridine $\mathbf{8 6}$ solely at C-2 to afford the amide $\mathbf{8 8}{ }^{36}$ in 80% yield. The reaction does not proceed with 2,2-dimethyl- N -pivaloylaziridine or in tetrahydrofuran.

Strangely the reaction takes place at the more sterically hindered of the two aziridine ring carbons. This carbon is also the more electron rich of the two.

The N-benzoyl-2,2-dimethylaziridines $\mathbf{8 9}$ are also opened by nucleophilic attack at the dimethyl carbon atom of the ring by substituted anilines $\mathbf{9 0}$ to give 91 in high yields. ${ }^{37}$ There are nine examples of this process starting from 2,2-dimethylbenzoylaziridines with various substituents on the benzene ring making this process fairly general. An excess of compounds 90 is used as they are mainly liquids (THF is employed where necessary).

Again, the reaction takes place at the more sterically hindered, more electron rich aziridine ring carbons.

Another similar example using aziridines $\mathbf{9 2}$ unsubstituted at C-2 and C-3 and anilines 93 is as shown below. ${ }^{38}$ The reaction proceeded for one day at room temperature before the product 94 crystallised out. There were twenty-three examples synthesised in all (mostly 50$80 \%$ yield). Most have R^{2} and $R^{3}=H$ and when $R^{3} \neq H, R^{1}=H$.

5. Addition of azide and cyanide

In reacting the N-acetyl aziridine $\mathbf{2 4}$ with sodium azide in DMF and in the presence of boron trifluoride etherate, two ring-opened products $\mathbf{9 5}$ and 96 were obtained in a ratio of 1:1 and 50% total yield. ${ }^{14}$ The substituent has no effect on the regiochemisrty of the reaction. Nucleophilic attack occurred at C-3 and C-2 affording two regioisomers each with 90% e.e. This occurs in a similar way to an $\mathrm{S}_{\mathrm{N}} 2$ reaction with inversion at C-2.

Treatment of the N -benzoylaziridinomannoside 97 with sodium azide and ammonium chloride in boiling DMF gave a mixture of oxazoline $99(36 \%)$ and the expected azido amide $98(20 \%) .{ }^{39}$ This is perhaps because the thermal ring expansion is competing with the nucleophilic ring opening in DMF in the absence of any Lewis acid. When the aziridine ring is on the opposite side of the tetrahydropyran ring only the azido amide is obtained.

Ring-opening reactions of aziridines with trimethylsilyl compounds can be initiated by tetrabutylammonium fluoride (TBAF). ${ }^{40}$ TBAF reacts with $\mathrm{Me}_{3} \mathrm{SiX}$ to form the reactive $\mathrm{Bu}_{4} \mathrm{~N}^{+} \mathrm{X}^{-}$species. It was found that electron-withdrawing substituents were necessary and are expected to stabilize the leaving group during nucleophilic attack. Ring opening of the N benzoylcyclohexenimine $\mathbf{2 0}$ using TBAF and trimethylsilyl azide or trimethylsilyl cyanide afforded N-(2-azidocyclohexyl)benzamide 100a (82\%) and N-(2-cyanocyclohexyl)benzamide 100b (88\%) respectively. Apart from supplying the nucleophile, $\mathrm{Me}_{3} \mathrm{SiX}$ is also thought to displace $\mathrm{Bu}_{4} \mathrm{~N}^{+}$from the nitrogen. The reaction does not proceed in the absence of TBAF.

This reaction also proceeds with electron withdrawing groups present on the benzoyl group. N-Acylcyclohexenimines 101 were easily ring opened using TMSN_{3} in the presence
of oxophilic Lewis acids (such as $\mathrm{Yb}\left(2,2^{\prime}\right.$-biphenol)OTf) to give N-(2-azidocyclohexyl) benzamides 102 as before. ${ }^{41}$

6. Addition of carbanions

The tricyclic acylaziridine 103a was reacted with lithium dibutylcuprate at room temperature to give the lactam 104a in approximately 65% yield. ${ }^{42}$ The yield was difficult to calculate because of the volatility of the lactam when $\mathrm{R}=\mathrm{H}$. As would be predicted the aziridine ring opens via attack of its least hindered, more positive carbon rather than the quaternary one. The yield $\mathbf{1 0 4 b}$ is not given.

a) $R=H$
b) $\mathrm{R}=\mathrm{OPr}{ }^{\mathrm{i}}$

The C-amidoethylation of the enolates of simple ketones 105 with N-acylaziridines 106 represents a one-step syntheses of N-(4-oxoalkyl)-carboxamides $107,{ }^{43}$ which may be regarded as protected γ-aminoketones. The ketones are deprotonated with tritylsodium in THF then reacted with the aziridine derivatives. Some α, α-bis amidoethylation may occur, usually with methyl ketones. R^{1} and R^{2} are usually H, Me or Ph .

However the trityl anion can itself effect the ring opening by attacking a ring carbon of the aziridine $\mathbf{1 0 8}$ to give the amide 109. ${ }^{44}$

The β-ketoester 110 is firstly partially deprotonated by $\mathrm{Et}_{3} \mathrm{~N}(111)$ without solvent.
Since 110 is a β-dicarbonyl compound enolisation occurs more readily at the α-carbon between the two carbonyls. This is then amidoethylated using N-benzoylaziridine $\mathbf{1 0 8}$ to give compound 112 in 64% yield. ${ }^{45}$

Dianions $\mathbf{1 1 4}$ of carboxylic acids $\mathbf{1 1 3}$ formed by deprotonation using sodium naphthalenide can easily be amidoethylated with N-benzoylaziridines $\mathbf{1 0 8}$ yielding the γ amidobutyric acids $\mathbf{1 1 5}(38-76 \%) .{ }^{46} \mathrm{R}^{1}$ is mainly Ph and R^{2} is mainly H or Me.

The γ-amidopropanephosphonic esters 117 can be made from N-benzoylaziridines 108 in either of the two ways shown below. ${ }^{47}$ In the first, the phosphonates 116 were deprotonated with sodium hydride in a suitable solvent (usually THF) and then N benzoylaziridine 108 was added. In the second method triethylamine, aziridine 106 and the phosphonate 116 were mixed, usually without solvent. An excess of 116 was employed to suppress secondary reactions by protonating anionic primary products. The carbon next to phosphorus is deprotonated and attacks at the aziridine ring carbon opening the ring to give 117.

Reaction of sodium naphthalenide with the 2,2-dimethyl- N-pivaloylaziridine $\mathbf{1 1 8}$ for one hour provided $119(43 \%) .{ }^{48}$ With an excess (3:1) of sodium anthracenide only the amidoethylated dihydroanthracene $\mathbf{1 2 0}$ was obtained (75\%) after completion of the reaction.

120
Adding N-benzoyl-2-methylaziridine $\mathbf{1 2 1}$ to the carbanion of methyl acetoacetate 122 forms methyl 3,5-dioxo-5-phenylpentanoate $\mathbf{1 2 3}$ in 98% yield. ${ }^{49}$ The carbanion is formed from the ester using 2 equivalents of NaH . The carbanion attacks the aziridine at the carbonyl displacing the aziridine ring.

The carbanion of 9,10-dihydroanthracene attacks the N-benzoyl-2-phenylaziridine 124 at the most positive ring carbon (next to the phenyl group) opening the ring to give the amide $\mathbf{1 2 5} .{ }^{50}$

124

125

The anion of the nitrile compound 126 attacks the N-benzoyl-2,2-dimethylaziridine 86 on the dimethyl carbon to form the ring-opened benzamide $127 .{ }^{51}$ This is an abnormal ring opening i.e. at the most hindered position. All nitriles give mainly the acyclic products except when $\mathrm{R}^{1}=\mathrm{R}^{2}=\mathrm{Ph}$ with $\mathrm{Ph}_{3} \mathrm{CNa}$ as base when only the cyclised product $\mathbf{1 2 9}$ is formed via 128.

When the aziridine $\mathbf{8 6}$ is reacted with ethyl 2-cyanophenylacetate anion the reaction stops at the ring-opened amide 135. On the other hand, if ethyl 2-cyanopropanionate is employed, the amide $\mathbf{1 3 1}$ cyclises to the pyrrolidin-2-one 132. Under the conditions of the reaction $(\mathrm{NaOEt} / \mathrm{EtOH})$, the benzoyl group is removed to give 132 . In both reactions the ring opening is considered abnormal. ${ }^{52}$

Disubstituted N-benzoylaziridines $\mathbf{1 3 6}$ (one of the three R groups is always H) react with sodium and naphthalene in tetrahydrofuran to form the benzamide shown below as the major product. ${ }^{53}$ Firstly a ketyl 137 is produced which then undergoes homolytic ring

opening to form a more stable radical 138. The reaction is quenched by hydrogen abstraction from the solvent to give 139. Other, minor products can arise from dimerisation or disproportionation.

7. Addition of \mathbf{P} and As ylides

Reaction of methyl N-acylaziridine-(2S)-carboxylates 140 with the carbonyl stabilised Wittig reagent methyl (triphenylphosphoranylidene)acetate 139, provides an isolable optically-pure phosphorus ylide $142(49 \%) .{ }^{54}$ The opposite regioisomer 143 (12\%) plus an unwanted β-aziridinoacrylate $\mathbf{1 4 4}(16 \%)$ are also formed. When an N-trifluoroacetylaziridine was used the sole product was compound 144 .

$\mathrm{R}=\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{NO}_{2}-p, \mathrm{CF}_{3}$

144
Heating triphenylarsonium phenacylide 145 and N - p-nitrobenzoylaziridine 146 in toluene gives N-(γ-benzoyl- γ-triphenylarsenanylpropyl)-p-nitrobenzamide in 41% yield. ${ }^{55}$

Firstly the carbanionic centre attacks the aziridinyl carbon opening the ring to give 147 . Then the arsenic compound $\mathbf{1 4 8}$ is formed via a proton transfer to the nitrogen.

In contrast, the phosphorus analogue catalyses the isomerisation of 146 to 2-p-nitrophenyl-2-oxazoline 149. Heating N - p-nitrobenzoylaziridine 146 in toluene alone results in complete recovery of the starting material.

The carbanionic centre of the phosphorus ylide 151 attacks the more positive of the ring carbons of the N - p-nitrobenzoylaziridine $\mathbf{1 5 0}$ to give an ylide amide $\mathbf{1 5 2} .{ }^{56}$

When a carbamoyl aziridine $\mathbf{1 5 3}$ is used, ylide $\mathbf{1 5 1}$ is acylated as it attacks the carbonyl displacing the aziridine ring to produce 154.

Reaction of aziridine $\mathbf{1 5 5}$ with the ethyl 2-triphenylphosphoranylidenepropionate $\mathbf{1 5 6}$ in boiling toluene gave 1-(p-nitrobenzoyl)-2-ethoxy-3-methyl-2-pyrroline 157. After the initial attack of the ylide, the amide nitrogen could attack the ester group to yield a Wittig intermediate. This would then behave in the usual way to eliminate triphenylphosphine oxide and form the carbon-carbon double bond.

8. Addition of phosphate and other phosphorus nucleophiles

The ring opening of the N-acyl-2-phenoxymethylaziridines 158 was performed at 40 ${ }^{\circ} \mathrm{C}$ in a two phase system comprising an aqueous phosphate buffer and an organic layer in which the starting material is present. ${ }^{57}$ Using a buffer concentration of 10 mM increased the
rate and gave complete regioselectivity. Due to attack of a phosphate anion on the aziridine ring carbon exposed to the aqueous phase only one isomer is obtained. The reaction that produces compound 159 occurs at the organic-aqueous interface. C-3 is exposed to the aqueous side since the long aliphatic chain and the phenyl ring remain in the organic phase whilst the carbonyl aligns with the hydroxyl of the phosphate.

Heating N -benzoylaziridine 108 and triethyl phosphite $\mathbf{1 6 0}$ together at $110^{\circ} \mathrm{C}$ with no solvent gave the diethyl 2-amidoethylphosphonate $\mathbf{1 6 2}$ in 66% yield (by NMR). ${ }^{58}$ Interestingly, one of the phosphite ethyl groups migrates to the nitrogen.

It is possible for aziridines to react with triphenylphosphine to give intermediates which then undergo Wittig type reactions with aldehydes. ${ }^{59}$ Thus N-Boc aziridine $\mathbf{1 6 3}$ forms a phosphorus ylide 164 and its carbanionic centre attacks the carbonyl of the aldehyde and forms the alkene 165 in the usual way.

9. Reaction with DMSO

Heating N-p-nitrobenzoyl-2-phenylaziridine 166 in DMSO at $117{ }^{\circ} \mathrm{C}$ produced N -phenacyl-p-nitrobenzamide 167 in 83% yield. ${ }^{60}$ The more positive, phenyl bearing ring
carbon is attacked by the oxygen of DMSO. Rearrangement of the intermediate then results in loss of dimethyl sulfide to yield the product amide.

The oxidative ring opening of the N-alkoxycarbonylaziridines 168 by dimethyl sulfoxide produces either regioisomer of the alkoxycarbonylamino ketone 169 and $\mathbf{1 7 0} .{ }^{61}$ This occurs via an attack of DMSO on either of the aziridine ring carbons. Of the five examples given only one was studied more detail. Trans-168 $\left(\mathrm{R}^{1}=\mathrm{Ph}, \mathrm{R}^{2}=\mathrm{Me}, \mathrm{R}^{3}=\mathrm{Et}\right)$ under varying condition gave $93-100 \%$ of $\mathbf{1 6 9}$ whereas the cis-isomer produced a mixture of both products.

10. $\quad S_{R N}$ Reaction with nucleophiles

The following process is considered to be an abnormal ring opening as a nucleophile would be expected to attack the most positive ring carbon of N-benzoyl-2,2-dimethylaziridine 86. ${ }^{62}$ A single electron transfer (SET) mechanism was proposed in view of this anomaly.

Single electron transfer from the nucleophile gave the ketyl 171, which rearranges cleaving the ring to give 172. The radicals then combine to form the product amide 173. The aziridine is only weakly activated thus slowing down nucleophilic substitution and enabling

SET to occur. $\quad\left(\mathrm{Nu}=p-\mathrm{PhC}_{6} \mathrm{H}_{4} \mathrm{CH}^{-} \mathrm{CN}, \mathrm{EtPhC}^{-} \mathrm{CN}, \mathrm{PhC}^{-}(\mathrm{CN}) \mathrm{CO}_{2} \mathrm{Et}\right.$, fluorenyl and piperidine.)

C. $\quad \mathrm{S}_{\mathrm{N}}{ }^{\prime}$ Attack on C-vinyl aziridines

1. Intermolecular

There are several electrophilic sites that are potential points of attack on the alkenylaziridines $\mathbf{1 7 4}$ for organocuprate reagents. The desired α-alkylation product $\mathbf{1 7 5}$ was obtained by predominantly anti $\mathrm{S}_{\mathrm{N}} 2$ '-reaction of the organocuprate ($>81: 19$ anti/syn). ${ }^{63}$ Generally, the formation of (E)-alkenyl amides was accompanied by γ-alkylation and reduction products. SET from the copper(I) species followed by hydrogen radical abstraction or enolisation of the α-copper(III) species could account for the reduction product. The

trans-oxazoline was also observed, although only in a significant amount when 3 equivalents $\mathrm{PhCu} . \mathrm{BF}_{3}$ in diethyl ether are used. No O-alkylation or conjugate addition products were observed. The best results were obtained with alkylcopper reagents $\mathrm{R}^{2} \mathrm{Cu}$ in the presence of boron trifluoride etherate. Nucleophilic attack on the N-benzoylated substrate led to significant amounts of γ-alkylation. This was not the case with N-sulfonated or Bocprotected aziridines and therefore higher yields were observed (70-90\%).

2. Intramolecular

When N-acetyl vinylaziridine $\mathbf{1 7 6}$ was added to LiHMDS at $-78^{\circ} \mathrm{C}$ followed by a slow warming of the resultant mixture to room temperature, seven membered lactam rings

177 were formed via a highly stereoselective aza-[3,3]-Claisen rearrangement. ${ }^{64}$ Bond formation between the enolate and the alkene and opening of the aziridine gives the observed lactam. It is assumed the olefin and enolate moieties involved are cis in order to facilitate bond formation and that both these groups adopt an endo conformation. Several lactams were synthesised altogether in yields of 73-85\%.

D. Radical Ring Opening

1. Photochemical

The photo-irradiation of N-(2-naphthoyl)aziridine 51 in halogenated hydrocarbons resulted in α-cleavage of the aziridine ring to afford halogen substituted secondary amides 178, N -(2-chloroethyl)-2-naphthamide in CCl_{4} (57\%) and chloroform (55\%) or N -(2-bromoethyl)-2-naphthamide (84\%) in dibromomethane. ${ }^{24}$

Photolysis of chloroform affords hydrogen chloride. The ring opening by alkyl halide is thought to proceed via an aziridinium salt.

2. Chemically Induced

The N-acetyl-2-ethoxycarbonyl-3-phenylaziridine $\mathbf{1 7 9}$ is reduced by samarium iodide, cleaving the ring to give the β-amido ester $\mathbf{1 8 0}$ in 89% yield. Reaction of samarium iodide with the ketone carbonyl generates a ketyl, which is rapidly protonated by DMEA. ${ }^{65}$ At this stage cleavage of the nitrogen heterocycle could occur by two diferent pathways. The protonated ketyl could undergo further reduction by the second equivalent of samarium iodide, producing a carbanion. This anion would then induce the ring opening of the aziridine. Tautomerisation of the intermediate enol would provide the observed amino ketone, with loss of stereochemistry adjacent to the carbonyl. Alternatively, the protonated ketyl could undergo a radical ring scission, producing the nitrogen radical. Further reduction of the nitrogen radical to the nitrogen anion by the second equivalent of samarium iodide followed by protonation would lead to the observed product.

Reacting 2,2-dimethyl- N -pivaloylaziridine 118 with an excess (3:1) of sodium anthracenide gave only the monoamidoethylated dihydroanthracene 120 in 75% yield after completion of the reaction ($10-20 \mathrm{mins}$) and in 26% yield after a 10 second reaction time. ${ }^{48}$

However, pivaloylaziridine $\mathbf{1 8 1}$ forms a diamide $\mathbf{1 8 2}$ with sodium anthracenide. This is because the intermediate monosubstituted anthracene anion is more reactive than the one generated from the 2,2-dimethylaziridine 118. Traces of the monosubstituted product are
only detected when a large excess of anthracenide is employed. Both of these reactions proceed via a ketyl which rearranges cleaving the aziridine ring as in earlier examples.

E. Ring expansion to oxazolines

1. Thermal

The rearrangement from N-acylaziridine 183 to oxazoline 186 is thought to occur via a four membered transition state. ${ }^{66}$ This could be in the form of a tight ion pair intermediate 185 or via a concerted pathway 184 both involving attack of the acyl oxygen on the more positive carbon of the ring.

The rearrangement from acylaziridine $187(\mathrm{R}=\mathrm{Me}, \mathrm{Ph})$ to oxazoline $\mathbf{1 8 8}$ was found to occur cleanly and regioselectively after stirring the aziridine in chloroform at room temperature for 10 hours ($>95 \%$). ${ }^{21}$

N-Ethoxycarbonyl-2,2,3,3-tetramethoxyaziridine $\mathbf{1 8 9}$ was heated at $90^{\circ} \mathrm{C}$ for 4 days to give entirely the 2-ethoxy-4,4,5,5-tetramethoxyoxazoline $190 .{ }^{67}$ Since all the substituents at C-2 and C-3 are identical there can be no regio or stereoisomers.

Thermolysis of cis-N-p-nitrobenzoyl-2,3-diphenylaziridine 191 gave cis-2-p-nitrophenyl-4,5-diphenyl-2-oxazoline 192. Similarly trans- N - p-nitrobenzoyl-2,3diphenylaziridine gave trans- N-2-p-nitrophenyl-4,5-diphenyl-2-oxazoline. ${ }^{68}$ Thermolysis of cis- N -benzoyl-2,3-diphenylaziridine gave recovery of the starting material and a residue which could not be characterised. This perhaps suggests that the para-nitro group activates the aziridine towards ring expansion in this case.

The N-benzoyl-3-trifluoromethyl-2-phenylaziridine 193 rearranges when pyrolysed at $140^{\circ} \mathrm{C}$ for 52 hours to both cis and trans isomers 194 (21\%) and 195 (7\%) of the corresponding 2 -oxazoline. ${ }^{69}$

3-Benzoyl-3-azatricyclo[3.2.1.0 ${ }^{2,4}$]octane 196 rearranges to 2-phenyl-4,7-methanohexahydrobenzoxazole 197 when distilled at atmospheric pressure. ${ }^{70}$

The thermolysis of N -benzoyl-2,2-dichloro-3-phenylaziridine 56 is an interesting example. It rearranges to the oxazoline 198 when heated in boiling xylene, but HCl is then eliminated to give the oxazole 199 in good yield (81\%). ${ }^{25}$

Pyrolysis of cis-13-p-nitrobenzoyl-13-azabicyclo[10.1.0]tridecane 200 in xylene afforded $\quad N-(E-2$-cyclododecenyl)-p-nitrobenzamide 201 and trans-2-pnitrophenylcyclododecano[4,5]oxazoline 202 in a ratio of 7:1 (no yields given). ${ }^{71}$ Models have shown that the carbonyl oxygen can approach cis or trans aziridine hydrogens without much conformational change to the ring.

2. Photochemical

The photo-irradiation of N -(2-naphthoyl)aziridine $\mathbf{5 1}$ at wavelengths of greater than 286 nm in dibromomethane resulted in the formation of 2-(2-naphthyI)-2-oxazoline 203 (52\%) along with N-(2-bromoethyl)-2-naphthamide 204 (17\%). ${ }^{24}$ What is not clear is
whether this is an acid catalysed reaction since photolysis of dibromomethane gives hydrogen bromide.

3. Brønsted acid catalysed

The N -benzoylaziridine 193 rearranges when reacted with concentrated sulfuric acid at room temperature to both cis and trans isomers 194 (6\%) and 195 (38\%) of the corresponding 2-oxazoline along with an amino ester $\mathbf{2 0 5}$ of undetermined stereochemistry. ${ }^{69}$

Interestingly, the N-Boc derivative 206 forms both cis and trans oxazolidinones 207 (24%) and $208(29 \%)$ upon treatment with 50% sulfuric acid. ${ }^{69}$

The N-acyl-2,2-dimethylaziridines 35 rearrange smoothly to the 5,5dimethyloxazolines 209 using a catalytic amount of sulfuric acid at room temperature in ether or dichloromethane $(50-80 \%) .{ }^{72}$

35

209

$$
\begin{aligned}
& \mathrm{R}= \mathrm{MeCO}\left(\mathrm{CH}_{2}\right)_{2} \\
& \mathrm{MeO} 2 \mathrm{C}\left(\mathrm{CH}_{2}\right)_{4} \\
& p \text {-CNPh } \\
& \text { 2-pyrrole }
\end{aligned}
$$

Sulfuric acid also catalyses the rearrangement of p-bromobenzoyl-2,2dimethylaziridine $\mathbf{2 1 0}$ to 2-(4-bromophenyl)-5,5-dimethyl-2-oxazoline 211. ${ }^{73}$

It has been proposed that N-acylaziridines 212 rearrange to 2 -oxazolines 214 by sulfuric acid via their oxazolinium ions 213. ${ }^{74} O$-Protonated aziridines were not observed. The N-protonated species $\mathbf{2 1 3}$ were identified by examination of their NMR spectra, isolation and subsequent identification as 2-oxazolines and the synthesis of the same cationic species from authentic samples of 2-oxazolines.

Reacting the tricyclic N-benzoylaziridine 196 with hydrochloric acid and picric acid gives the chloride 215 (20\%) and the picrate 216 (26\%) respectively. ${ }^{70}$

In $\mathrm{CF}_{3} \mathrm{CH}(\mathrm{OH}) \mathrm{CF}_{3}$ containing triflic acid and triflic anhydride, the dimethyl 3-benzoyl-8-oxa-3-azatricyclo [3.2.1.0 $0^{2,4}$]octane-6,7-dicarboxylate 61 was rearranged readily and quantitatively to the oxazoline $63(77 \%) .{ }^{27}$

Heating the N-benzoylaziridine 217 in $\mathrm{CF}_{3} \mathrm{CH}(\mathrm{OH}) \mathrm{CF}_{3}$ containing trifluoromethanesulfonic acid at $80^{\circ} \mathrm{C}$ for 2 hours gave the 2-oxazoline $218(81 \%) .{ }^{75}$

When chloroaziridines 218 were stirred in dry methanol for an hour, quantitative yields of methoxyoxazoline hydrochlorides 221 were obtained. ${ }^{76}$ The solvent displaces chlorine generating 220 and HCl which in turn catalyses the ring expansion.

Treatment of the N-benzoylaziridine-2-carboxylate 222 with trifluoromethanesulfonic acid gave both regioisomers $\mathbf{2 2 3}$ and $\mathbf{2 2 4}$ of the ring expanded products ($\sim 6: 1$ in favour of the 4-carboxylate 223). ${ }^{77}$ No yields are reported in the paper.

When an allyl group is adjacent to the amido carbonyl as in compound $\mathbf{2 2 5}$, solely the 4-carboxylate $\mathbf{2 2 6}$ is formed in $\mathbf{7 8 \%}$ yield.

Cis-N-phenylcarbamyl-2,3-dimethylaziridine 227 was isomerised to cis-2-anilino-4,5-dimethyl-2-oxazoline 228 by p-toluenesulfonic acid in benzene (84%), THF (70%), DME (64%), DMF (52%) and nitromethane (76%). ${ }^{78}$ This isomerisation can also be carried out
using 2,4,6-trinitrobenzenesulfonic acid in THF (50\%) and with picric acid in benzene (74\%), THF (82\%), DME (72\%), DMF (58\%) and nitromethane (64\%).

Interestingly, cis- N-phenylthiocarbamyl-2,3-dimethylaziridine 229 is similarly isomerised to cis-2-anilino-4,5-dimethyl-2-thiazoline 230 by p-toluenesulfonic acid in benzene (80%), TMF (68%), DME (75%), DMF (78%) and nitromethane $(72 \%){ }^{78}$ This can also be isomerised using 2,4,6-trinitrobenzenesulfonic acid in THF (70\%) and picric acid using THF (72\%) and DMF (83\%). Using 2,4-dinitrophenol or trifluoroacetic acid in DMF gives only 42% and 40% yields respectively.

4. Lewis acid catalysed

$N-p$-Ethoxybenzoylethylenimine 231 was easily isomerised in heptane using aluminium chloride or bromide to give 2-p-ethoxyphenyl-2-oxazoline 234 in 97% yield. ${ }^{79}$ The reaction proceeds via coordination of aluminium halide to nitrogen producing cation 232 which then rearranges to the oxazolinium salt 233.

The enantiomerically pure aziridine 235 was treated with N-acetylleucine 236 and DCC giving the N-acylaziridine 237 in 95% yield. The acylaziridine moiety spontaneously isomerised to the oxazoline $\mathbf{2 3 8}$ in nearly quantitative yield. ${ }^{80}$

236
The aziridine-dipeptide 239 rearranged quickly upon treatment with $\mathrm{BF}_{3} \cdot \mathrm{Et}_{2} \mathrm{O}$ yielding a single regio and stereoisomer of the oxazoline $\mathbf{2 4 0} .{ }^{19}$

Trans- N-benzoylaziridine carboxylates 241 exclusively ring expanded to the trans-4-alkyl-2, 5-diphenyloxazoline-4-carboxylates 242 ($>95 \%$) using $\mathrm{BF}_{3} .{ }^{19}$ This process was completely regio- and stereoselective.

Also, when the carboxylate group is on the opposite face of the aziridine ring as in 243 the reaction proceeds in the same fashion to provide the 2-phenyloxazoline-4-carboxylate (94\%) 244.

Benzyl N-benzoylaziridine-2-carboxylate $\mathbf{2 4 5}$ forms the 2-oxazoline 266 as the sole product (no yield given) when treated with $\mathrm{BF}_{3} \cdot \mathrm{Et}_{2} \mathrm{O}$ in chloroform. ${ }^{20}$

Selectivity studies on the reaction of $\mathbf{2 4 7}$ show that $\mathrm{MgBr}_{2} \cdot \mathrm{Et}_{2} \mathrm{O}$ favours the formation of the 4 -imidazolidinoyl oxazoline 248 , while $\mathrm{BF}_{3} \cdot \mathrm{Et}_{2} \mathrm{O}$ gives the 5 -imidazolidinoyl oxazoline 249 as the major product. ${ }^{18}$ This result shows that the reaction could occur via attack of the carbonyl oxygen at either C-3 or C-2 on the ring, depending on the Lewis acid. Although all reactions completely convert the aziridine, a detailed analysis showed the presence of regiomeric oxazolines and ring-opened products derived from nucleophilic attack.

Lewis Acid	solvent	$\mathbf{2 4 8}: \mathbf{2 4 9}$	total yield (\%)
$\mathrm{MgBr}_{2} \cdot \mathrm{Et}_{2} \mathrm{O}$	THF	$85: 15$	95
$\mathrm{MgBr}_{2} \cdot \mathrm{Et}_{2} \mathrm{O}$	toluene	$70: 30$	70
$\mathrm{BF}_{3} \cdot \mathrm{Et}_{2} \mathrm{O}$	THF	$1: 99$	95
$\mathrm{BF}_{3} \cdot \mathrm{Et}_{2} \mathrm{O}$	toluene	$45: 65$	85

The Lewis acid catalysed ring expansion of aziridine $\mathbf{2 5 0}$ to oxazoline $\mathbf{2 5 1}$ is used here in the synthesis of a dipeptide derivative. ${ }^{26}$

250

251

The (2S)-N-acetylaziridine methyl ester 252 was ring expanded under microwave assisted conditions in toluene and in the presence of various Lewis acids $\left(\mathrm{MgBr}_{2} \cdot \mathrm{Et}_{2} \mathrm{O}\right.$,
$\mathrm{BF}_{3} \cdot \mathrm{Et}_{2} \mathrm{O}, \mathrm{Cu}(\mathrm{OTf})_{2}$ and $\left.\mathrm{Zn}(\mathrm{OTf})_{2}\right)$ to form (4S)-2-methyl-4-methoxycarbonyloxazoline 253 as the major product in yields of $40-75 \% .^{18}$ Again by products arising from ring opening were observed as well as some unreacted starting material.

It was thought that more azaphilic salts such as $\mathrm{Zn}(\mathrm{OTf})_{2}, \mathrm{Cu}(\mathrm{OTf})_{2}$ and $\mathrm{Sn}(\mathrm{OTf})_{2}$ would increase the chance of N -coordination but instead they induced the rearrangement of the aziridines $\mathbf{9 9}$ to 2-aryloxazolines $\mathbf{2 5 4}$ in the presence of a variety of nucleophiles. ${ }^{40}$

The N-benzoyl-2-phenylaziridine 255 is isomerised to the 2,5-diphenyloxazoline 256 induced by $\mathrm{Cu}(\mathrm{OTf})_{2}$. This is the expected product since the carbonyl oxygen attacks the more electrophilic aziridine ring carbon.

The trans- N-Boc aziridines 257 rearrange to the corresponding trans-4-methoxycarbonyloxazolidin-2-ones $\mathbf{2 5 9}$ catalysed by $\mathrm{N}-\mathrm{BF}_{3}$ coordination (258). ${ }^{81}$ Compounds 259a and 259b are obtained in yields of 15% and 30% respectively catalysed by $\mathrm{BF}_{3} \cdot \mathrm{Et}_{2} \mathrm{O}$. The phenyl compound $\mathbf{2 5 9}$ c is produced in 98% and 92% yield by $\mathrm{BF}_{3} \cdot \mathrm{H}_{2} \mathrm{O}$ and $\mathrm{BF}_{3} \cdot \mathrm{Et}_{2} \mathrm{O}$ respectively.

The best results are obtained using $\mathrm{Cu}(\mathrm{OTf})_{2}$ which gives $\mathbf{2 5 9}$ a, 259b and $\mathbf{2 5 9}$ c in 99 , 85 and 98% respectively. In this case the metal coordinates to both nitrogen and the ester carbonyl.

The cis-aziridine $\mathbf{2 6 0}$ below also isomerises to the corresponding cis-oxazoline $\mathbf{2 6 1}$ using $\mathrm{BF}_{3} \cdot \mathrm{Et}_{2} \mathrm{O}^{82}$ The oxazoline is obtained in 40% yield after 18 hours at room temperature whereas heating under reflux gave 60% yield after 2 hours.

The N -acetylaziridinecarboxylate 262 undergoes a ring-expansion reaction to produce a trans-oxazoline 264 with a catalytic amount of boron trifluoride etherate in acetonitrile. ${ }^{83}$ This reaction resembles the isomerisation of N -acylaziridines to oxazolines catalyzed by iodide. Iodide causes initial ring opening, which is followed by nucleophilic ring closure via $\mathrm{S}_{\mathrm{N}} 2$ displacement of the iodide ion. This double inversion gives a net retention overall. In this case acetonitrile serves as the nucleophile for the initial ring opening to give a zwitterionic intermediate 263 , which then cyclises to the oxazoline 264 by expulsion of the nitrile unit.

In some cases the use of acetonitrile can cause complications because it behaves as a nucleophile. ${ }^{19}$ This was discovered whilst attempting the hydrolytic ring opening of N benzoylaziridinecarboxylate 40 with $\mathrm{BF}_{3} 2 \mathrm{H}_{2} \mathrm{O}$. The acetonitrile competes with the water as

a nucleophile. To investigate this reaction it was repeated using the etherate and both regioisomers of the N-benzoyl imidazoles $\mathbf{2 6 5}(80 \%)$ and $\mathbf{2 6 6}(10 \%)$ were formed.

5. Catalysed by Anions

a Iodide

When catalysed by sodium iodide, the cis-aziridine 27 ring opens to give a mixture of trans and cis-l-menthyl-2-oxazolines 29a and 29b (30:70) in 53\% yield. ${ }^{15}$ Interestingly isolation of the intermediate, l-menthyl- N - p-nitrobenzoyl-3-iodo-phenylalaninate 27, was possible in this (rare) case. The ring closure is affected with $\mathrm{Et}_{3} \mathrm{~N}$.

The N-benzoyl-3-methyl-2-phenylaziridine 267 ring expands to both cis-4-methyl-2,5-diphenyloxazoline 268 (42\%) and trans-4-methyl-2,5-diphenyloxazoline (29\%) 269 plus the opposite regioisomer, trans-5-methyl-2,4-diphenyloxazoline 270 (5\%). ${ }^{68}$

p-Nitrobenzoylcyclohexenimine 76 was treated with sodium iodide in acetone to give mainly the oxazoline 271 and a small amount of iodo amide. ${ }^{11}$ In acetonitrile the oxazoline was the sole product (95%). There is no mention of imidazole formation.

The N-benzoylaziridine-2-carboxylate 272, upon treatment with sodium iodide in DMF gives both regioisomers of the oxazoline 273 (31\%) and 274 (45%) plus the unsaturated amide 275 (14\%). ${ }^{76}$

N - p-Nitrobenzoyl-2-vinylaziridine 276 reacted with iodide ion in acetone solution to give 2-p-nitrophenyl-5-vinyl-2-oxazoline 277. ${ }^{84}$

The iodide ion catalysed isomerisation of cis- and trans- N -acetyl and N -benzoyl-2,3disubstituted aziridines to 2 -oxazolines is stereoselective, the selectivity being greater with trans-aziridines than with cis-aziridines. ${ }^{85}$ The trans-aziridines yield $90-95 \%$ transoxazolines and 10-5\% cis while the cis-aziridines 278 give 40-90\% cis-oxazoline 279 and 60$10 \%$ trans. The selectivity of isomerisation for cis- N -benzoylaziridines was found to vary with iodide ion concentration and the solvent employed while the ratio of oxazolines formed from the corresponding trans-aziridines was unaffected.

For N -benzoyl-cis-2,3-diethylaziridine, the effect of varying concentrations of iodide ion was studied. A pronounced change in the cis:trans ratio of the oxazoline was observed. At very high concentrations of iodide ion the amount of cis-oxazoline falls to a level of about 40%, while at very low concentration the amount of cis-oxazoline formed increases asymptotically until nearly total selectivity is observed. As the iodide ion concentration decreased the rate of isomerisation also decreased. At an iodide : aziridine ratio of $1: 10$ less than 50% of the starting aziridine was isomerised after 60 hr of reaction.

The reaction of N -benzoyl-trans-2,3-diethylaziridine is unaffected by solvent. However, the reaction of the cis-aziridine is affected by using 2% water in acetone (or MeCN) increasing the yield of cis-oxazoline to as much as 75%.

It has been proposed that the formation of oxazoline $\mathbf{2 8 2}$ from aziridine $\mathbf{2 8 0}$ occurs via attack of a second iodide ion on the intermediate $\mathbf{2 8 1}$ before ring closure. Although irrelevant in the example below, the retention of relative configuration (cis or trans) would be achieved because two inversions occur.

Ring enlargement of N -acylaziridines $\mathbf{2 8 3}$ bearing an electron donating substituent at C-2 using sodium iodide in acetone all proceeded with complete regioselectivity, providing 4-substituted oxazolines 284 in good yields (83-98\%). ${ }^{86}$

In acetone the iodide ion catalyses the isomerisation of cis- N -p-nitrobenzoyl-2,3dimethylaziridines 285 into cis-2-p-nitrophenyl-4,5-dimethyl-2-oxazoline 286. ${ }^{87}$ Sodium iodide also catalyses the rearrangement of the trans-aziridine into the trans-oxazoline.

With the same catalyst, cis- and trans-N-p-nitrobenzoyl-2,3-diphenylaziridine 287 both rearrange into trans-2-p-nitrophenyl-4,5-diphenyl-2-oxazoline 288 . This is likely to be due to the steric bulk of the groups at C-2 and C-3 of the aziridine.

1,1-Carbonylbis(aziridine) 289 was isomerised by tetra- n-butylammonium iodide in benzene to 2-aziridinyl-2-oxazoline 290 (79%). ${ }^{88}$

289
290
$N-p$-Nitrobenzoyl-2,2-dimethylaziridine 291 was selectively isomerisated into 2- p -nitrophenyl-4,4-dimethyl-2-oxazoline 294 by sodium iodide in acetone in $93 \% .{ }^{89}$ Iodide ion was thought to attack the aziridine at either C-2 of the ring giving 293 or at the carbonyl giving 292.

b Azide

Acylaziridines can also be isomerised by lithium azide in methanol. ${ }^{75}$ The N -acyl-2-chloro-3,3-dimethyl-2-phenylaziridines $\mathbf{2 1 9}$ are isomerised to the azido 2-oxazolines $\mathbf{2 9 6}$ via an azido acylaziridine intermediate 295. The intermediate could only be isolated for the N benzoyl and N-pivaloylaziridines after a few minutes reaction time.

Reaction of the N -benzoylaziridino-mannoside 95 with sodium azide and ammonium chloride in boiling DMF gave a mixture of oxazoline $97(36 \%)$ and the expected diaxial azide $96(20 \%) .{ }^{38}$

c Phosphorus Ylides

When N - p-nitrobenzoylaziridine $\mathbf{1 4 4}$ is heated under reflux with a catalytic amount of triphenylphosphonium phenacylide 297 in toluene, it isomerises to 2-p-nitrophenyl-2oxazoline $147 .{ }^{54}$ The ylide is displaced by the benzoyl oxygen when the intermediate 298 cyclises.

d Olah's reagent

When N -benzoyl-3-methyl-2-phenylaziridine 16 reacts with Olah's reagent, the main product isolated is not only the desired N-benzoylfluoroamine $17 .{ }^{9}$ The 2-phenyl-2oxazolines $\mathbf{1 8}$ are also formed. The author suggests that Olah's reagent is insufficiently nucleophilic to give entirely the desired product 17.

6. $\quad \mathrm{N}$-Carbamoyl and Thiocarbamoylaziridines

The N-phenylthiocarbamoylaziridine 299 is isomerised to cis-2-anilino-2-thiazoline 300 exclusively upon interaction with iodide ion. ${ }^{90}$ Similarly, the N, N diphenylcarbamoylaziridine 301 is isomerised to 2-anilino-2-oxazoline 302.

The steroid derived N-carbamoylaziridine $\mathbf{3 0 3}$ below can also be isomerised by sodium iodide. ${ }^{91}$ Whether it exists as the 2 -iminooxazolidine $\mathbf{3 0 4}$ or the 2-oxazoline is not investigated. The yield was calculated at 88%.

This can be compared with the behaviour of the corresponding N -acetylaziridine 305
which is isomerised in 89% yield by sodium iodide to the 2-methyl-2-oxazoline 306.

Reaction of N-phenylcarbamoylaziridine 307 with the anion of cyanoacetic acid butyl ester gave the pyrrolidin-2-one 309. ${ }^{92}$ Once the aziridine ring has been opened, the intermediate 308 cyclises by attack of the aziridinyl nitrogen at the new carbonyl centre eliminating the butoxy group. There are no ring-opened products observed.

7. Vinylogous ring-expansion to dihydro-1,3-oxazepines

Interestingly, heating $N-p$-nitrobenzoyl-2-vinylaziridine 275 in toluene leads to formation of 2-p-nitrophenyl-4,7-dihydro-1,3-oxazepine 310. ${ }^{84}$ No mechanism is proposed by the authors but the carbonyl must attack the end of the carbon-carbon double bond to initiate the Cope type cyclisation.

F. Isomerisation to N -allylamides

The amides 314 (and all other amides formed from acylaziridines) are thought to form via a six-membered transition state $\mathbf{3 1 2}$ from the N-acylaziridine 311. The tautomer $\mathbf{3 1 3}$ of the amide is formed first. ${ }^{65}$

In benzene solution at $200-210^{\circ} \mathrm{C}, N$-acylcyclohexenimine 99 was isomerised to the unsaturated amide 315. ${ }^{11}$

N-Benzoyl-2,2-dimethylaziridines 316 are isomerised to the N-(β-methallyl) benzamides 317 by heatinging in xylene. ${ }^{93}$ Significant amounts of oxazoline are detected only when the p-toluylaziridine is pyrolysed $\left(33 \%\right.$ at $80^{\circ} \mathrm{C}, 13 \%$ at $\left.145^{\circ} \mathrm{C}\right)$.

The pyrolysis of N -benzoyl-2-chloro-2-phenyl-3,3-dimethylaziridine $\mathbf{3 1 8}$ in toluene affords N-benzoylmethacrylophenone imine 319 (90\%). ${ }^{75}$ The reaction also proceeds using silver perchlorate in benzene.

The thermal rearrangement of N -(p-nitrobenzoyl)-2-benzylaziridine $\mathbf{3 2 0}$ to the benzamide 321 is suggested to be an intramolecular cis elimination. ${ }^{94}$

Single electron transfer from the trityl anion to N -acyl-2,2-dimethylaziridines 37 yield unsaturated amides $\mathbf{3 2 2}$ and triphenylmethane derived products $\mathbf{3 2 3}$ (plus other minor products). ${ }^{95}$ The unsatured amides arise from transfer of a single hydrogen from the second intermediate species to the trityl radical, the triphenylmethanes are formed by combination of these radicals.

323
Vitamin B_{12} catalyses the isomerisation of achiral N-acylaziridines $\mathbf{9 9}$ and $\mathbf{3 2 5}$ to optically active (R)- N -acyl- N -(cycloalk-2-en-1-yl)amines $\mathbf{3 2 4}$ and 326. This proceeds in two steps. ${ }^{96}$ Firstly, the aziridine ring is opened by an $\mathrm{S}_{\mathrm{N}}{ }^{2}$-type displacement of nitrogen by the chiral cobalt nucleophile to afford a mixture of the diastereoisomeric $(1 R, 2 R)$ - and $(1 S, 2 S)$ -

Co- β-(2-(acylaminocycloalkyl)cob(III)alamins in different amounts. The intermediate then decomposes to give the product (plus Co and H^{+}).

$R=E t, P h, t-B u O$
 MeOH

324

$R=P h, t-B u O$

326

Heating trans-13-p-nitrobenzoyl-13-azabicyclo[10.1.0]tridecane 327 under reflux in toluene gave a 2:1 ratio of E - N-(2-cyclodecenyl)-p-nitrobenzamide 201 and its Z-isomer 328. ${ }^{70}$ No yields are given.

328

G. Reactions initiated by attack at CO

1. Nucleophilic attack at $\mathbf{C O}$ - behaviour as acylating agents

1-triphenylsilyl-1,2-epoxyethyllithium 329 reacts with N-benzoylaziridine to form 1benzoylepoxyethyltriphenysilane $\mathbf{3 3 1}$ in 61% yield. ${ }^{97}$ The lithiated epoxide behaves as RLi and R^{-}attacks the carbonyl group of the benzoylaziridine $\mathbf{1 0 8}$ and thus the epoxide is acylated providing 331.

N -acyl-2-methylaziridines 332 react with Grignard reagents and alkyllithiums to give ketones 334. ${ }^{98}$ As above, R^{-}attacks the carbonyl group and the metal stabilises the charge on oxygen in the intermediate 333. Addition of acid gives the ketones in yields of over 70%.

$\mathrm{R}=\mathrm{Me}, \mathrm{Ph}, \mathrm{Bu}^{\mathrm{t}}$
Reaction of N -benzoylaziridine $\mathbf{1 0 8}$ with an excess of lithium anthracene hydride $\mathbf{3 3 5}$ gives the mono-acylated anthracene $\mathbf{3 3 6}$ in 93% after one minute. ${ }^{99}$ A 4:5 defecit of anthracenide reacted with the same aziridine for twenty minutes gave a yield of only 54%.

Cyanoacetic acid ester anions are acylated when reacted with N phenylcarbamoylaziridine 307. There is no opening of the aziridine ring observed in this case. ${ }^{92}$ The reaction is solvent dependant since use of tertiary butanol yields a pyrrolidine-2one (see earlier). The resulting products 337 and $\mathbf{3 3 9}$ exist to a significant extent in the enol forms $\mathbf{3 3 8}$ and $\mathbf{3 4 0}$ as shown.

Adding methyl acetoacetate $\mathbf{1 2 2}$ to aziridine $\mathbf{1 2 1}$ forms methyl-3,5-dioxo-5phenylpentanoate $\mathbf{1 2 3}$ in 98% yield. ${ }^{48}$ The carbanion is formed from the ester using 2 equivalents of NaH . The carbanion attacks the aziridine at the carbonyl displacing the aziridine ring.

2. Reduction at $\mathbf{C O}$ - aldehyde synthesis

This is essentially the same as the ketone synthesis outlined earlier except that hydride is the nucleophile. ${ }^{100}$ Therefore, the hydride anion attacks the carbonyl of compound 341 displacing the aziridine ring. Acid work-up gave the cyclopropanecarboxaldehyde 342 in 60% yield.

3. SET mediated ring-expansion to 2-pyrrolidinones

Substituted 2-pyrrolidones $\mathbf{3 4 3}$ are formed by single electron transfer mediated ringexpansion of N-cinnamoylaziridines $344 .^{101}$ Firstly addition of an electron forms the ketyl
(metallated $-\mathrm{Li}^{+}, \mathrm{Na}^{+}$) which rearranges, cleaving the aziridine ring. The acryloyl carboncarbon double bond then traps the radical. The reaction was quenched with acid to give the 2-pyrrolidones.

Very similar to the previous example, single electron transfer mediated ringexpansion of N -cinnamoylaziridines $\mathbf{3 4 5}$ gives the products as 2-pyrrolidones $\mathbf{3 4 7}$ via a metallated ketyl intermediate $346 .{ }^{102}$ Yields of 86 and 78% were reported when $\mathrm{R}=\mathrm{H}$ and Me respectively.

H. Other reactions

1. Conversion to thiazolines

2-alky-2-thiazolines $\mathbf{3 5 0}$ can be prepared by heating N -acylaziridines $\mathbf{3 4 8}$ under reflux with an excess of $\mathrm{P}_{2} \mathrm{~S}_{5}$ in toluene. ${ }^{103}$ This probably proceeds via a thioacylaziridine intermediate $\mathbf{3 4 9}$ or by a single step concerted mechanism. No intermediates were observed by the author.

2. Reaction with isocyanates to give imidazolidinones

A variety of imidazolidinones $\mathbf{3 5 2}$ can be formed from N -acylaziridines $\mathbf{3 4 8}$ and isocyanates 351. ${ }^{104}$ If only hydrogen is present on nitrogen then N -carbamoylaziridines $\mathbf{3 5 3}$ are formed.

3. Reaction with nitrones

Tetrahydro-1,2,4-oxadiazines $\mathbf{3 5 6}$ can be formed by heaing nitrones $\mathbf{3 5 5}$ with N benzoylaziridines $\mathbf{3 5 4}$ under reflux in either toluene or m-xylene. ${ }^{105}$ Ten examples were synthesised by Calcagno, Heine, et al starting from nitrobenzoylaziridines. The first step is the attack of the nitrone oxygen the aziridine ring carbon. This could then ring close to the oxadiazine 357.

The 2-oxazolines are sometimes observed as a minor product and in some cases there was little or no oxadiazine formed and the oxazoline was the major product. This was the case with N-dinitrobenzoylaziridine 357 which gave 2-dinitrophenyl-2-oxazoline $\mathbf{3 5 8}$ (80%) when reacted with nitrone 359. The 2-oxazoline is formed by expulsion of the nitrone from the intermediate.

4. Conversion of thioacyaziridine to isocyanate

Heating N-phenylthiocarbonyl aziridine $\mathbf{3 6 0}$ under reflux in toluene or xylene produced an isocyanate 361 in which the thiophenyl group has attacked one of the aziridine ring carbons. ${ }^{106}$ However, no explanation or yield was given.

5. Reaction with super acids

In order to isolate the O-protonated aziridine species 362 a strong acid, generated from $\mathrm{FSO}_{3} \mathrm{H} / \mathrm{SbF}_{5}$ was added to aziridine 212 at $-55^{\circ} \mathrm{C} .{ }^{73}$ Five examples were made, two N benzoyl and three N-acetyl. The O-protonated aziridine could rearrange to a short lived O protonated oxazolinium ion which in turn gives the product 214.

Olah and Szilgyi had previously observed the O-protonated N-acylaziridines 364 below. ${ }^{107}{ }^{1} \mathrm{H}$ chemical shifts of around 5 ppm were observed for the ring protons.

I. Programme of Research

In previous work in this laboratory 108 it was shown that dioxolanones 366 are readily formed from α-hydroxy acids 365 , and they may be alkylated to give 367 . The Flash Vacuum Pyrolysis (FVP) of 367 causes fragmentation to give acetone, carbon monoxide and ketones 368 thus making 366 a new type of acyl anion equivalent. This was further developed to give a

chiral acyl anion equivalent by alkylation of chiral dioxolanones 369 to give chiral products such as $\mathbf{3 7 0}$. The FVP of the dioxolanones $\mathbf{3 7 0}$ resulted in the loss of carbon monoxide and pivalaldehyde to give the desired chiral product 371 in good enantiomeric excess. One drawback of this method is that there are only a few chiral α-hydroxy acids available $(\mathrm{R}=\mathrm{Ph}$, $\mathrm{Me})$. This is unfortunate since it limits the scope of what might otherwise be a versatile new method of obtaining chiral acyl anion equivalents.

It was now planned to extend this work to functionalised oxazolidin-5-ones 374 and 375 whose synthesis and alkylation at C-4 has already been thoroughly investigated by Seebach. 109 These can be synthesised from any of the 20 readily available α-amino acids 372 via their sodium salts by condensation with an aldehyde and cyclisation of the intermediate $\mathbf{3 7 3}$
with an acid chloride. A range of these 3-acyloxazolidin-5-ones would be prepared using the literature method shown below. ${ }^{110}$ In agreement with previous work these were expected to exist mainly as the 2,4 -trans isomers taking their stereochemistry at the 2 -position from the starting S-amino acids.

Apparently, the pyrolytic behaviour of this ring system had not been studied before. The FVP was expected to have the same effect as before (elimination of CO) although the R^{1} substituent of interest can now end up either as the ketone 376 or its imine 377 due to the presence of an oxygen and nitrogen in the ring where there were two oxygens previously. This should not be a serious problem however, since 377 should be easily hydrolysed to give 376 .

By alkylation of $\mathbf{3 7 4}$ at the 4 -position we would obtain compounds such as $\mathbf{3 7 8}$ (from ethyl crotonate) and upon FVP this might fragment as shown to give either $\mathbf{3 7 9}$ or $\mathbf{3 8 0}$.

Thus the scope of asymmetric acyl anion chemistry could be greatly extended to a variety of groups R^{1}. As shown, 379 would be expected to hydrolyse to 371 .

EXPERIMENTAL

A.	Abbreviations
4ry	
bp	quaternary (in ${ }^{13} \mathrm{C}$ NMR data)
br, s, t, q, m,,	broad, singlet, doublet, triplet, quartet, multiplet
CI	chemical ionisation
δ	chemical shift in parts per million
ether	diethyl ether
FVP	flash vacuum pyrolysis
h, min	hours, minutes
J	spin-spin coupling constant in Hertz
lit.	literature
M^{+}	mass of the molecular ion
mp	melting point
m / z	mass to charge ratio
pet ether	petroleum ether
NMR	nuclear magnetic resonance
RT	room temperature
TLC	thin layer chromatography
$v_{\text {max }}$	infra-red absorption wave number
$*$	signal due to minor isomer (in NMR data)

B. Instrumentation and General Techniques

1. NMR Spectroscopy

Spectra were obtained for ${ }^{1} \mathrm{H}$ at 200 or 300 MHz on Varian Gemini 200 or 2000 instruments and for ${ }^{13} \mathrm{C}$ NMR at 75 MHz on a Varian Gemini 2000. All spectra were obtained
from solutions in deuteriochloroform unless indicated otherwise and chemical shifts are expressed in ppm to high frequency of internal tetramethylsilane.

2. Mass Spectrometry

Mass spectra were obtained on an A.E.I./ Kratos M.S.-50 spectrometer operated by Mr. C. Millar or Mrs. C. Horsburgh. Unless otherwise indicated the spectra were obtained using impact at 70 eV . Chemical ionisation spectra were obtained using isobutane as the ionising gas and fast atom bombardment spectra were obtained using 3-nitrobenzyl alcohol as the matrix.

3. Elemental Analysis

Microanalysis were carried out for C, H and N using a Carlo-Erba 1106 elemental analyser by Mrs. S. Williamson.

4. Melting Points

Melting points for routine analysis were carried out on a Gallenkamp melting point apparatus. Those for new compounds were determined on a Reichert hot-stage microscope. All melting points are uncorrected.

5. Thin Layer Chromatography

This was carried out using $250 \mu \mathrm{~m}$ layers of silica (PE SilG / UV_{254}) on polyester sheets. The products were observed under uv light.

6. Column Chromatography

This was carried out using Fluka silica gel for chromatography (60-120 mesh) or BDH 'flash' grade aluminium oxide (120 mesh) (pH 7.0).

7. Flash Vacuum Pyrolysis

The apparatus used was based on the design of W. D. Crow, Australian National University. A similar set up is illustrated in a recent book by Brown. ${ }^{111}$ The essential features of the apparatus are illustrated in Figure 1. The șample was volatilised from a horizontal inlet tube, heated via an external heat source, through a $30 \times 2.5 \mathrm{~cm}$ silica tube. This was heated at a
temperature of between 400 and $700^{\circ} \mathrm{C}$ by a Carbolite Eurotherm Tube Furnace MTF-12/38A, the temperature being measured by a $\mathrm{Pt} / \mathrm{Pt}-13 \% \mathrm{Rh}$ thermocouple situated in the centre of the furnace. The non-volatile products were collected at the furnace exit and the volatile products collected in a U-shaped trap cooled in liquid nitrogen. The whole system was maintained at a pressure of 10^{-2} to 10^{-3} Torr by an Edwards Model E2M5 high capacity rotary oil pump, the pressure being measured on a Pirani guage situated between the trap and the pump. Under these conditions the contact time in the hot zone was estimated to be in the range $1-10 \mathrm{~ms}$.

After pyrolysis the system was isolated from the pump. The products were then dissolved in dichloromethane, which was removed under reduced pressure. The products were then dissolved using deuteriochloroform and analysed using NMR.

Figure 1: Flash vacuum pyrolysis apparatus

8. Optical Rotation

Optical rotation measurements were performed with an Optical Activity AA-1000 polarimeter operating at 589 nm using a $1 \mathrm{~cm}^{3}$ solution cell with a 20 cm path length. Values for $[\alpha]_{D}$ are expressed in units of 10^{-1} deg cm $\mathrm{g}^{2} \mathrm{~g}^{-1}$.

C. Synthesis of chiral N-acyloxazolidin-5-ones

1. Preparation of $(2 S, 4 S)$ - and $(2 R, 4 S)$-3-benzoyl-2-t-butyl-4-methyl-1,3-oxazolidin-5-one 381 and 382

Using the literature procedure, ${ }^{110}(S)$-alanine $(4.45 \mathrm{~g}, 0.05 \mathrm{~mol})$ was added to $\mathrm{NaOH}(\mathrm{aq})$ ($1 \mathrm{~mol} \mathrm{dm}{ }^{-3}, 50 \mathrm{~cm}^{3}$) and ethanol ($2-3 \mathrm{~cm}^{3}$) was also added to obtain solution. The solvent was evaporated under reduced pressure until precipitation began. Pivalaldehyde ($6.45 \mathrm{~g}, 0.075 \mathrm{~mol}$) and pentane $\left(50 \mathrm{~cm}^{3}\right)$ were added. The mixture was heated under reflux with azeotropic removal of water (Dean and Stark trap) for 5-8 hours. The solvent was removed and the solid dried overnight. The solid was heated under reflux with $\mathrm{CH}_{2} \mathrm{Cl}_{2}\left(200 \mathrm{~cm}^{3}\right)$ and benzoyl chloride ($7.0 \mathrm{~g}, 0.05 \mathrm{~mol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}\left(40 \mathrm{~cm}^{3}\right)$ overnight. The resulting cloudy solution was washed successively with water, $5 \% \mathrm{NaHCO}_{3}, 5 \% \mathrm{NaHSO}_{3}$ solutions and again with water. The solution was then dried using magnesium sulfate and evaporated. The clear oily substance obtained was shown by ${ }^{1} \mathrm{H}$ NMR to contain both isomers and so it was subjected to column chromatography $\left[\mathrm{SiO}_{2}\right.$, ether-pet ether (1:1)]. This did not give complete separation but the first fraction was mainly the minor, trans isomer:
$381 \delta_{\mathrm{H}} 7.75-7.25(5 \mathrm{H}, \mathrm{m}$, aromatic H$), 6.25(1 \mathrm{H}, \mathrm{s}, 2-\mathrm{H}), 4.37(1 \mathrm{H}, \mathrm{q}, J 7,4-\mathrm{H}), 1.11(3 \mathrm{H}, \mathrm{d}$, $J 7,4-\mathrm{Me})$ and $1.04\left(9 \mathrm{H}, \mathrm{s}, \mathrm{Bu}^{\mathrm{t}}\right)$.
while the later fractions showed a ratio of about 8:1 in favour of the major cis isomer:
$382 \delta_{\mathrm{H}} 7.45(5 \mathrm{H}, \mathrm{m}$, aromatic), $6.13(1 \mathrm{H}, \mathrm{s}, 2-\mathrm{H}), 4.07(1 \mathrm{H}, \mathrm{q}, J 7,4-\mathrm{H}), 1.5(3 \mathrm{H}, \mathrm{d}, J 7,4-$ $\mathrm{Me})$ and $1.06\left(9 \mathrm{H}, \mathrm{s}, \mathrm{Bu}^{\mathrm{t}}\right)$.

In the hope of obtaining the isomers pure, the fractions were set aside at RT for a number of weeks but they had still only partly crystallised. In view of the more convenient route to 2-phenyloxazolidinones the pyrolysis of this compound was not examined.

2. Preparation of ($2 R, 4 S$)-3-benzoyl-2-phenyl-4-methyl-1,3-oxazolidin-5-one 383

Following the literature procedure, ${ }^{112}(S)$-alanine $(4.45 \mathrm{~g}, 0.05 \mathrm{~mol})$ was added to $\mathrm{NaOH}(\mathrm{aq})\left(1 \mathrm{~mol} \mathrm{dm}^{-3}, 50 \mathrm{~cm}^{3}\right)$ and ethanol $\left(2-3 \mathrm{~cm}^{3}\right)$ was added to obtain solution. The solvent was evaporated under reduced pressure until precipitation began. Benzaldehyde (7.95 g , $0.075 \mathrm{~mol})$ and $\mathrm{CH}_{2} \mathrm{Cl}_{2}\left(300 \mathrm{~cm}^{3}\right)$ were added and the mixture heated with azeatropic removal of water (inverted Dean and Stark trap) for 5-8 hours. The imine was formed as a white precipitate. The mixture was stirred at $0{ }^{\circ} \mathrm{C}$ while a solution of benzoyl chloride $(7.0 \mathrm{~g}, 0.05$ $\mathrm{mol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}\left(40 \mathrm{~cm}^{3}\right)$ was added and the mixture was then stirred at room temperature overnight. The turbid mixture was washed successively with water, $5 \% \mathrm{NaHCO}_{3}, 5 \% \mathrm{NaHSO}_{3}$ solutions and again with water. The solution was then dried using magnesium sulfate and evaporated and the residue recrystallised [ether- $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3: 1)$] to give the product 383 (4.72 g , 34%) as colourless crystals, mp $163-165^{\circ} \mathrm{C}$ (lit., $112164.8^{\circ} \mathrm{C}$); $[\alpha]_{\mathrm{D}}^{20}+216.5\left(\mathrm{c} 1, \mathrm{CHCl}_{3}\right)$ (lit., ${ }^{112}+225.0$); (Found $\mathrm{C}, 72.3 ; \mathrm{H}, 5.1 ; \mathrm{N}, 5.0 . \mathrm{C}_{17} \mathrm{H}_{15} \mathrm{NO}_{3}$ requires $\mathrm{C}, 72.6 ; \mathrm{H}, 5.4 ; \mathrm{N}$, $5.0 \%) ; \delta_{\mathrm{H}} 7.45-7.10(10 \mathrm{H}, \mathrm{m}$, aromatic), $6.76(1 \mathrm{H}, \mathrm{s}, 2-\mathrm{H}), 4.84(1 \mathrm{H}, \mathrm{q}, J 7,4-\mathrm{H})$ and $1.50(3$ $\mathrm{H}, \mathrm{d}, J 7,4-\mathrm{Me})$. This spectrum shows good agreement with the literature ${ }^{112}$ in terms of chemical shift but most signals showed considerable broadening presumably due to restricted rotation about the $\mathrm{N}-\mathrm{COPh}$ group.

3. Preparation of (2R,4S)-3-benzoyl-4-isopropyl-2-phenyl-1,3-oxazolidin-5-one 384

This was prepared following the same procedure as for 383 but using (S)-valine (5.86 g , $0.05 \mathrm{~mol})$. Recrystallisation gave the product $384(7.60 \mathrm{~g}, 49 \%)$ as a colourless solid, mp $176.5-178.5^{\circ} \mathrm{C}\left(\right.$ lit., $\left.{ }^{112} 178.1^{\circ} \mathrm{C}\right) ;[\alpha]_{\mathrm{D}}^{20}+187.45\left(\mathrm{c} 1, \mathrm{CHCl}_{3}\right)$ (lit., ${ }^{112}+221.8$). (Found C , 73.5; $\mathrm{H}, 6.1 ; \mathrm{N}, 4.4 . \mathrm{C}_{19} \mathrm{H}_{19} \mathrm{NO}_{3}$ requires $\left.\mathrm{C}, 73.8 ; \mathrm{H}, 6.2 ; \mathrm{N}, 4.5 \%\right)$; $\delta_{\mathrm{H}}\left(50{ }^{\circ} \mathrm{C}\right) 7.6-7.1(10 \mathrm{H}$, m , aromatic), $6.62(1 \mathrm{H}, \mathrm{s}, 2-\mathrm{H}), 4.84(1 \mathrm{H}, \mathrm{br} \mathrm{s}, 4-\mathrm{H}), 2.6-2.1\left(1 \mathrm{H}, \mathrm{m}, \mathrm{CH}\right.$ of $\left.\mathrm{Pr}^{\mathrm{i}}\right), 1.15(3 \mathrm{H}, \mathrm{d}$, $J 7, \mathrm{Me}$ of $\left.\mathrm{Pr}^{\mathrm{i}}\right)$ and $1.05\left(3 \mathrm{H}, \mathrm{d}, J 7, \mathrm{Me}\right.$ of $\left.\mathrm{Pr}^{\mathrm{i}}\right)$. At $25{ }^{\circ} \mathrm{C}$ the NMR spectrum showed very broad peaks but these sharpened up considerably when it was recorded at $50{ }^{\circ} \mathrm{C}$. $\delta_{\mathrm{C}} 170.1$
(CO), 169.6 (CO), 136.8 (4ry), 135.6 (4ry), 131.1, $129.8,128.6$ (4 C), 126.9 (2 C), 126.7 (2 C), $91.3(\mathrm{C}-2), 61.6(\mathrm{C}-4), 31.1\left(\mathrm{CHMe}_{2}\right), 17.9(\mathrm{CHMe} 2)$ and $16.7\left(\mathrm{CHMe} e_{2}\right)$.

4. Preparation of ($2 R, 4 S$)-3-benzoyl-4-benzyl-2-phenyl-1,3-oxazolidin-5-one 385

This was prepared following the same procedure as for $\mathbf{3 8 3}$ using (S) phenylalanine $(8.25 \mathrm{~g}, 0.05 \mathrm{~mol})$. Recrystallisation gave the product 385 ($3.9 \mathrm{~g}, 23 \%$) as colourless needles, mp 183-185 ${ }^{\circ} \mathrm{C}$ (lit., ${ }^{112} 184.3^{\circ} \mathrm{C}$); $[\alpha]_{\mathrm{D}}^{20}+318.1$ (c 1, CHCl_{3}) (lit., ${ }^{112}+385.2$). (Found C , $77.4 ; \mathrm{H}, 5.3 ; \mathrm{N}, 4.35 . \mathrm{C}_{23} \mathrm{H}_{19} \mathrm{NO}_{3}$ requires $\left.\mathrm{C}, 77.3 ; \mathrm{H}, 5.4 ; \mathrm{N}, 3.9 \%\right) ; \delta_{\mathrm{H}} 7.45-6.75(15 \mathrm{H}, \mathrm{m}$, aromatic), $5.83(1 \mathrm{H}, \mathrm{s}, 2-\mathrm{H}), 5.20(1 \mathrm{H}, \mathrm{m}, 4-\mathrm{H})$ and $3.8-3.3(2 \mathrm{H}, 2 \times \mathrm{br}$ s, benzyl CH 2$)$.

5. Preparation of ($2 R, 4 S, 2^{\prime}$ ' S)-3-benzoyl-4-s-butyl-2-phenyl-1,3-oxazolidin-5-one 386

This was prepared following the same procedure as for 383 using ($(S, S$)-isoleucine (6.56 $\mathrm{g}, 0.05 \mathrm{~mol})$. Recrystallisation gave the product $386(8.14 \mathrm{~g}, 0.025 \mathrm{~mol}, 50 \%)$ as colourless crystals, $\mathrm{mp} 168-170{ }^{\circ} \mathrm{C} ;[\alpha]_{\mathrm{D}}^{20}+226.55$ (c 1, CHCl_{3}); (Found C, 73.75; H, 6.6; N, 4.35. $\mathrm{C}_{20} \mathrm{H}_{21} \mathrm{NO}_{3}$ requires $\mathrm{C}, 74.3 ; \mathrm{H}, 6.5 ; \mathrm{N}, 4.3 \%$); $v_{\max } / \mathrm{cm}^{-1} 1782,1638,1405,1245,1176,1040$, 1020 and $697 ; \delta_{\mathrm{H}}\left(50{ }^{\circ} \mathrm{C}\right) 7.5-6.9(10 \mathrm{H}, \mathrm{m}$, aromatic), $6.64(1 \mathrm{H}, \mathrm{s}, 2-\mathrm{H}), 4.91(1 \mathrm{H}, \mathrm{br}$ s, $4-\mathrm{H})$, $1.8-1.65\left(1 \mathrm{H}, \mathrm{m}, \mathrm{CH}\right.$ of $\left.\mathrm{Bu}^{\mathrm{s}}\right), 1.55-1.45\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}\right.$ of $\left.\mathrm{Bu}^{\mathrm{s}}\right), 1.07(3 \mathrm{H}, \mathrm{d}, J 7, M e \mathrm{CH})$ and $0.90\left(3 \mathrm{H}, \mathrm{t}, J 7, M e \mathrm{CH}_{2}\right) ; \delta_{\mathrm{C}} 170.0(\mathrm{CO}), 169.4$ (CO) 136.8 (4ry), 135.6 (4ry), 131.1, 129.7, $128.6(4 \mathrm{C}), 126.9(2 \mathrm{C}), 126.7(2 \mathrm{C}), 91.3(\mathrm{C}-2), 60.3(\mathrm{C}-4), 37.8(\mathrm{MeCH}), 25.1\left(\mathrm{MeCH}_{2}\right)$, $14.3(\mathrm{CHMe})$ and $11.7\left(\mathrm{CH}_{2} \mathrm{Me}\right) ; m / z 323\left(\mathrm{M}^{+}, 20 \%\right), 189$ (10), 174 (12), 161 (19), 145 (5), 117 (10), 105 (100), 77 (38) and 51 (6).
6. Preparation of ($2 S, 4 R$)-3-benzoyl-2,4-diphenyl-1,3-oxazolidin-5-one 387

This was prepared following the same procedure as for $\mathbf{3 8 3}$ using (R)-phenylglycine $(7.56 \mathrm{~g}, 0.05 \mathrm{~mol})$. Recrystallisation gave the product $387(7.04 \mathrm{~g}, 41 \%)$ as colourless crystals,
mp 179-181 ${ }^{\circ} \mathrm{C}$ (lit., ${ }^{113} 193-194{ }^{\circ} \mathrm{C}$ for opposite enantiomer of "unknown optical purity") (Found C, 76.8; $\mathrm{H}, 4.8 ; \mathrm{N}, 4.2 . \mathrm{C}_{22} \mathrm{H}_{17} \mathrm{NO}_{3}$ requires $\mathrm{C}, 77.0 ; \mathrm{H}, 5.0 ; \mathrm{N}, 4.1 \%$); $\delta_{\mathrm{H}} 7.5-7.0$ (16 H, m, aromatic and $2-\mathrm{H})$ and $5.65(1 \mathrm{H}$, br s, $4-\mathrm{H})$ [good agreement with lit. ${ }^{113}$].

7. Preparation of ($2 R, 4 S$)-3-acetyl-4-methyl-2-phenyl-1,3-oxazolidin-5-one 388

This was prepared following the same procedure as for 383 using (S)-alanine (4.45 g , 0.05 mol) and acetyl chloride ($3.92 \mathrm{~g}, 0.05 \mathrm{~mol}$). The product 388 was obtained as colourless crystals ($3.76 \mathrm{~g}, 34 \%$), mp $106-108{ }^{\circ} \mathrm{C}$; $[\alpha]_{\mathrm{D}}^{20}+113.0\left(\mathrm{c} \mathrm{1}, \mathrm{CHCl}_{3}\right.$); (Found C, 65.6; H, 6.2; $\mathrm{N}, 6.4 . \mathrm{C}_{12} \mathrm{H}_{13} \mathrm{NO}_{3}$ requires $\mathrm{C}, 65.7 ; \mathrm{H}, 6.0 ; \mathrm{N}, 6.4 \%$); $v_{\max } / \mathrm{cm}^{-1} 1786,1652,1307,1236$, $1169,1075,1051,993,969,928,840,768,724,702,687$ and $655 ; \delta_{\mathrm{H}} 7.55-7.30(5 \mathrm{H}, \mathrm{m}$, aromatic), 6.66* and $6.58(1 \mathrm{H}, \mathrm{s}, 2-\mathrm{H}), 4.72$ and $4.60^{*}(1 \mathrm{H}, \mathrm{q}, J 7,4-\mathrm{H}), 2.6^{*}$ and $1.70(3 \mathrm{H}$, s, COMe), $1.72(3 \mathrm{H}, \mathrm{d}, J 7,4-\mathrm{Me})$ and $1.59^{*}(3 \mathrm{H}, \mathrm{br} . \mathrm{s}, 4-\mathrm{Me}) ; \delta_{\mathrm{C}} 172.1(\mathrm{CO}), 168.1(\mathrm{CO})$, 136.4 (4ry), $130.8,129.5$ (2 C), 126.6 (2 C), 90.0 (C-2), 52.6 (C-4), 23.3 (MeCO) and 16.7 (4$\mathrm{Me}) ; m / z 219\left(\mathrm{M}^{+}, 20 \%\right), 176$ (14), 164 (9), 132 (77), 105 (61), 90 (9), 77 (26) and 51 (12).

8. Preparation of $(2 R, 4 S)$-3-acetyl-4-isopropyl-2-phenyl-1,3-oxazolidin-5-one 389

This was prepared following the same procedure as for 383 using (S)-valine (5.86 g , 0.05 mol) and acetyl chloride ($3.92 \mathrm{~g}, 0.05 \mathrm{~mol}$). The crude product (yellow oil) was crystallised from ether to give the product $389(5.41 \mathrm{~g}, 44 \%)$ as colourless needles, $\mathrm{mp} 78-80^{\circ} \mathrm{C} ;[\alpha]_{\mathrm{D}}^{20}$ +53.8 (c 1, CHCl_{3}); (Found C, 68.1; H, 7.0; N, 5.6. $\mathrm{C}_{14} \mathrm{H}_{17} \mathrm{NO}_{3}$ requires $\mathrm{C}, 68.0 ; \mathrm{H}, 6.9 ; \mathrm{N}$, $5.7 \%) ; v_{\max } / \mathrm{cm}^{-1} 1785,1640,1310,1260,1185,1130,1060,860,780,730$ and $700 ; \delta_{\mathrm{H}}$ 7.5-7.3 ($5 \mathrm{H}, \mathrm{m}$, aromatic), 6.56^{*} and $6.50(1 \mathrm{H}, \mathrm{s}, 2-\mathrm{H}), 4.68$ and $4.49^{*}(1 \mathrm{H}, \mathrm{d}, J 4,4-\mathrm{H})$, 2.96-2.84 and 2.48-2.36* ($1 \mathrm{H}, \mathrm{m}, \mathrm{CH}$ of Pr^{i}), 2.12* and $1.67(3 \mathrm{H}, \mathrm{s}, \mathrm{COMe}), 1.29^{*}$ and $1.24\left(3 \mathrm{H}, \mathrm{d}, J 7, \mathrm{Me}\right.$ of $\left.\mathrm{Pr}^{\mathrm{i}}\right)$, 1.07* and $1.00\left(3 \mathrm{H}, \mathrm{d}, J 7, \mathrm{Me}\right.$ of $\left.\operatorname{Pr}^{\mathrm{i}}\right)$; $\delta_{\mathrm{C}} 169.6$ (CO), 168.1 (CO) 136.8 (4ry), 130.8, 129.5 (2 C), 126.7 (2 C), 90.5 (C-2), 61.6 (C-4), 28.4 (MeCO), 23.6
$\left(\mathrm{CHMe}_{2}\right), 17.9\left(\mathrm{CHMe}{ }_{2}\right)$ and $16.2(\mathrm{CHMe} 2) ; m / z 247\left(\mathrm{M}^{+}, 62 \%\right), 162(61), 145(8), 117(32)$, 107 (20), 90 (9), 77 (15), 71 (8) and 58 (100).

9. Preparation of ($2 R, 4 S$)-3-acetyl-4-benzyl-2-phenyl-1,3-oxazolidin-5-one 390

This was prepared following the same procedure as for $\mathbf{3 8 3}$ using (S) \ddagger phenylalanine $(8.25 \mathrm{~g}, 0.05 \mathrm{~mol})$ and acetyl chloride $(3.92 \mathrm{~g}, 0.05 \mathrm{~mol})$. Recrystallisation gave the product $390(7.03 \mathrm{~g}, 47 \%)$ as colourless crystals, mp $150-152{ }^{\circ} \mathrm{C}$ (lit., ${ }^{114} 148-150{ }^{\circ} \mathrm{C}$ for opposite enantiomer); (Found $\mathrm{C}, 73.4 ; \mathrm{H}, 5.6 ; \mathrm{N}, 4.6 . \mathrm{C}_{18} \mathrm{H}_{17} \mathrm{NO}_{3}$ requires $\mathrm{C}, 73.2 ; \mathrm{H}, 5.8 ; \mathrm{N}, 4.6 \%$); $v_{\max } / \mathrm{cm}^{-1} 1795,1670,1350,1290,1250,1180,1160,1090,1020,920,735$ and $700 ; \delta_{\mathrm{H}} 7.5-7.1$ $\left(10 \mathrm{H}, \mathrm{m}\right.$, aromatic), 5.66^{*} and $5.53(1 \mathrm{H}, \mathrm{s}, 2-\mathrm{H}), 5.20$ and $4.88^{*}(1 \mathrm{H}, \mathrm{m}, 4-\mathrm{H}), 3.95-3.81(1 \mathrm{H}$, A part of $\left.\mathrm{ABX}, J_{\mathrm{AB}} 14, J_{\mathrm{AX}} 6, \mathrm{CH}_{2} \mathrm{Ph}\right), 3.38^{*}\left(2 \mathrm{H}\right.$, br. s, $\left.\mathrm{CH}_{2} \mathrm{Ph}\right)$; 3.33-3.18 $(1 \mathrm{H}$, B part of $\left.\mathrm{ABX}, J_{\mathrm{AB}} 14, J_{\mathrm{AX}} 2, \mathrm{CH}_{2} \mathrm{Ph}\right)$ and $1.58(3 \mathrm{H}, \mathrm{s}, \mathrm{COMe}) ; \delta_{\mathrm{C}} 171.1(\mathrm{CO}), 168.3(\mathrm{CO}), 136.1$ (4ry), 134.9 (4ry), $130.8,129.7$ (2 C), 129.4 (2 C), 128.8 (2 C), 127.6, 126.8 (2 C), 90.5 (C-2), $58.6(\mathrm{C}-4), 34.2\left(\mathrm{CH}_{2}\right)$ and $23.4(\mathrm{Me}) ; \mathrm{m} / z 295\left(\mathrm{M}^{+}, 53 \%\right), 253(23), 204$ (6), 181 (5), 162 (96), 134 (5), 119 (12), 107 (13), 91 (48), 77 (16), 65 (9), 57 (7) and 51 (7).

10. Preparation of $\left(2 R, 4 S, 2^{\prime} S\right)$-3-acetyl-4-s-butyl-2-phenyl-1,3-oxazolidin-5-one 391

This was prepared following the same procedure as for $\mathbf{3 8 3}$ using (S, S)-isoleucine (6.56 $\mathrm{g}, 0.05 \mathrm{~mol})$ and acetyl chloride $(3.92 \mathrm{~g}, 0.05 \mathrm{~mol})$. The crude product obtained $(10.89 \mathrm{~g})$ crystallised when left overnight. The product 391 ($3.77 \mathrm{~g}, 29 \%$) was obtained by washing this with pet ether and filtering to give colourless crystals, $m p 120-122{ }^{\circ} \mathrm{C} ;[\alpha]_{\mathrm{D}}^{20}+122.3$ (c 1, CHCl_{3}); (Found C, 68.9; H, 7.6; N, 5.3. $\mathrm{C}_{15} \mathrm{H}_{19} \mathrm{NO}_{3}$ requires $\mathrm{C}, 68.9 ; \mathrm{H}, 7.3 ; \mathrm{N}, 5.4 \%$); $v_{\max } / \mathrm{cm}^{-1} 1795,1651,1286,1252,1217,1166,1133,1078,1030,978,927,869,828,775,724$, 700 and 647; $\delta_{\mathrm{H}} 7.44-7.29\left(5 \mathrm{H}, \mathrm{m}\right.$, aromatic), 6.49^{*} and $6.42(1 \mathrm{H}, \mathrm{s}, 2-\mathrm{H}), 4.70$ and 4.51^{*} (1 $\mathrm{H}, \mathrm{d}, J 4,4-\mathrm{H}), 2.57\left(1 \mathrm{H}, \mathrm{m}, \mathrm{CH}\right.$ of $\left.\mathrm{Bu}^{\mathrm{s}}\right), 2.05^{*}$ and $1.60(3 \mathrm{H}, \mathrm{s}, \mathrm{COMe}), 1.80-1.40(2 \mathrm{H}, 2 \times$ $\left.\mathrm{m}, \mathrm{CH}_{2}\right), 0.97\left(3 \mathrm{H}, \mathrm{t}, J 7, \mathrm{CH}_{2} \mathrm{Me}\right)$ and $0.89(3 \mathrm{H}, \mathrm{d}, J 7, \mathrm{CH} M e)$; $\delta_{\mathrm{C}} 169.7$ and 169.7* (CO), 167.9 and 167.6^{*} (CO), 136.8 and 136.5^{*} (4ry), 130.8, 129.8*, 129.5 (2 C), 128.6*, 126.7 (2
C), 126.7*, 91.2* and $90.6(\mathrm{C}-2), 60.5^{*}$ and $60.5(\mathrm{C}-4), 34.9^{*}$ and $34.9(\mathrm{MeCH}), 25.2^{*}$ and $25.1\left(\mathrm{MeCH}_{2}\right), 23.6$ and $22.8^{*}(\mathrm{MeCO}), 13.8$ and $13.8^{*}(\mathrm{CHMe}), 12.0$ and $12.0^{*}\left(\mathrm{CH}_{2} \mathrm{Me}\right)$; $m / z 261\left(\mathrm{M}^{+}, 31 \%\right), 205(10), 174$ (7), 162 (48), 145 (24), 127 (16), 117 (72), 107 (32), 77 (17) and 57 (8) and 43 (100).

11. Preparation of (2S,4R)-3-acetyl-2,4-diphenyl-1,3-oxazolidin-5-one 392

This was prepared following the same procedure as for 383 using (R)-phenylglycine $(7.56 \mathrm{~g}, 0.05 \mathrm{~mol})$ and acetyl chloride $(3.92 \mathrm{~g}, 0.05 \mathrm{~mol})$. Recrystallisation gave the product $392(6.21 \mathrm{~g}, 44 \%)$ as colourless crystals, mp $218-220{ }^{\circ} \mathrm{C}$; $[\alpha]_{\mathrm{D}}^{20} \quad+165.75$ (c 1, CHCl_{3}); (Found C, $70.7 ; \mathrm{H}, 5.2 ; \mathrm{N}, 4.9 . \mathrm{C}_{17} \mathrm{H}_{15} \mathrm{NO}_{3}$ requires $\mathrm{C}, 72.6 ; \mathrm{H}, 5.4 ; \mathrm{N}, 5.0 \%$); $v_{\max } / \mathrm{cm}^{-1}$ $1778,1658,1404,1353,1326,1261,1241,1187,1173,1006$ and $746 ; \delta_{\mathrm{H}} 7.65-7.3(10 \mathrm{H}, \mathrm{m}$, aromatic), 6.96 and $6.81^{*}(1 \mathrm{H}, \mathrm{s}, 2-\mathrm{H}), 5.68^{*}$ and $5.45(1 \mathrm{H}, \mathrm{s}, 4-\mathrm{H}), 1.75$ and $1.72^{*}(3 \mathrm{H}, \mathrm{s}$, $\mathrm{Me}) ; \delta_{\mathrm{C}} 169.6$ and 169.4* (CO), 168.8 and 168.6* (CO), 136.3 and 136.3* (4ry), 135.5 and 134.9* (4ry), 130.0, 129.8 (2 C), 129.6, 129.3*, 129.0*, 128.8 (2 C), 128.4*, 126.8*, 126.6 (2 C), 126.4 (2 C), 126.0*, 91.1 and $90.8^{*}(\mathrm{C}-2), 61.1$ and $60.5^{*}(\mathrm{C}-4)$ and 23.6 and 23.3* (Me); $m / z 281\left(\mathrm{M}^{+}, 3 \%\right), 237(2), 194$ (100), 175 (49), 165 (7), 147 (11), 89 (10), 77 (16) and 51(7).
12. Preparation of (2R,4S)-3-acetyl-2,4-diphenyl-1,3-oxazolidin-5-one 393

This was prepared following the same procedure as for 383 using (S)-phenylglycine $(7.56 \mathrm{~g}, 0.05 \mathrm{~mol})$. Recrystallisation gave the product $393(4.25 \mathrm{~g}, 30 \%)$ as colourless crystals, mp 212-214 ${ }^{\circ} \mathrm{C}$; $[\alpha]_{\mathrm{D}}^{20}+162.9$ (c 1, CHCl_{3}); (Found: C, 71.9; H, 5.2; N, 4.9. $\mathrm{C}_{17} \mathrm{H}_{15} \mathrm{NO}_{3}$ requires $\mathrm{C}, 72.6 ; \mathrm{H}, 5.4 ; \mathrm{N}, 5.0 \%) ; v_{\max } \mathrm{cm}^{-1} 1778,1659,1241,1188,1007,745$ and $699 ; \delta_{\mathrm{H}}$ 7.55-7.28 ($10 \mathrm{H}, \mathrm{m}$, arom.), 6.96* and $6.81(1 \mathrm{H}, 2 \times \mathrm{s}, 2-\mathrm{H}), 5.68^{*}$ and $5.45(1 \mathrm{H}, 2 \times \mathrm{s}, 4-\mathrm{H})$, 1.75 and $1.72^{*}(3 \mathrm{H}, 2 \times \mathrm{s}, \mathrm{Me})$; $\delta_{\mathrm{C}} 169.7(\mathrm{CO}), 168.9(\mathrm{CO}), 136.3$ (4ry), 135.5 (4ry), 130.4, 130.2 (2 C), 130.1, 129.2 (2 C), 127.0 (2 C), 126.8 (2 C), 91.5 and $91.2^{*}(\mathrm{C}-2), 61.5$ and 60.9^{*}

13. Attempted Preparation of (2S,4R)-3-benzoyl-4-methoxymethyl-2-phenyl-1,3-oxazolidin-5-one 394

Following the literature procedure, ${ }^{115}$ benzyl chloroformate $\left(16.0 \mathrm{~cm}^{3}, 19.2 \mathrm{~g}, 112\right.$ mmol) and $\mathrm{NaOH}(\mathrm{aq})\left(2 \mathrm{~mol} \mathrm{dm}^{-3}, 56 \mathrm{~cm}^{3}\right)$ were added dropwise simultaneously to a stirred solution of (S)-serine $(11.8 \mathrm{~g}, 112 \mathrm{mmol})$ in $\mathrm{NaOH}(\mathrm{aq})\left(2 \mathrm{~mol} \mathrm{dm}^{-3}, 56 \mathrm{~cm}^{3}\right)$ at $0{ }^{\circ} \mathrm{C}$. The mixture was stirred for 3 hours at $0{ }^{\circ} \mathrm{C}$ then washed with ether $\left(20 \mathrm{~cm}^{3}\right)$. The aqueous phase was acidified with 2 M HCl and extracted with ethyl acetate $\left(3 \times 50 \mathrm{~cm}^{3}\right)$. The combined organic phase was dried $\left(\mathrm{MgSO}_{4}\right)$ and evaporated to give N -carbobenzoxy- (S)-serine as a colourless solid ($12.34 \mathrm{~g}, 46 \%$); mp 114-116 ${ }^{\circ} \mathrm{C}$ (lit. $.^{115} 115-120^{\circ} \mathrm{C}$).

To a solution of N-benzoxycarbonyl-((S)-serine ($1.72 \mathrm{~g}, 7.2 \mathrm{mmol}$) in acetonitrile (150 $\left.\mathrm{cm}^{3}\right)$ were added successively $\mathrm{Ag}_{2} \mathrm{O}(8.40 \mathrm{~g}, 36 \mathrm{mmol})$ and $\mathrm{MeI}\left(4.5 \mathrm{~cm}^{3}, 72 \mathrm{mmol}\right)$ and the mixture was stirred at room temperature for 24 hours according to the literature procedure. 116 The mixture was filtered (through Celite) and evaporated to obtain the crude product, (S)-methyl 2-(benzyloxycarbonylamino)-3-methoxypropionate, as an oily residue ($1.92 \mathrm{~g}, 99.7 \%$); δ_{H} 7.40-7.28 ($5 \mathrm{H}, \mathrm{m}$, aromatic), $5.61(1 \mathrm{H}, \mathrm{d}, \mathrm{NH}, J 8), 5.52\left(2 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{2} \mathrm{Ph}\right), 4.49(1 \mathrm{H}, \mathrm{m}, \mathrm{CH})$, 3.83 and $3.62\left(2 \mathrm{H}, \mathrm{AB}\right.$ pattern of $\left.\mathrm{d}, J 9,3, C H_{2} \mathrm{OMe}\right), 3.68\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CO}_{2} \mathrm{Me}\right)$ and $3.34(3 \mathrm{H}, \mathrm{s}$, $\mathrm{CH}_{2} \mathrm{OMe}$) [lit. ${ }^{116} 7.40-7.33\left(5 \mathrm{H}, \mathrm{m}\right.$, aromatic), $5.67(1 \mathrm{H}, \mathrm{d}, \mathrm{NH}, J 8), 5.14\left(2 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{2} \mathrm{Ph}\right)$, 4.46-4.40 $(1 \mathrm{H}, \mathrm{m}, \mathrm{CH}), 3.84$ and $3.62\left(2 \mathrm{H}, 2 \times \mathrm{dd}, J 9,3, \mathrm{CH}_{2} \mathrm{OMe}\right), 3.78\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CO}_{2} \mathrm{Me}\right)$ and $\left.3.34\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{2} \mathrm{OMe}\right)\right]$.

In accordance with the literature procedure, ${ }^{116} \mathrm{~K}_{2} \mathrm{CO}_{3}(2.00 \mathrm{~g}, 14.47 \mathrm{mmol})$ was added to a solution of (S)-methyl 2-(benzyloxycarbonylamino)-3-methoxypropionate ($1.92 \mathrm{~g}, 7.19$ $\mathrm{mmol})$ dissolved in $\mathrm{MeOH}-\mathrm{H}_{2} \mathrm{O}\left(9: 1,40 \mathrm{~cm}^{3}\right)$ and the mixture stirred at room temperature for 8 hours. The mixture was poured into $\mathrm{H}_{2} \mathrm{O}\left(20 \mathrm{~cm}^{3}\right)$, adjusted to pH 3 and extracted with ethyl acetate $\left(3 \times 30 \mathrm{~cm}^{3}\right)$. The organic extracts were combined, dried and evaporated to give a clear oil, (S)-2-(benzyloxycarbonylamino)-3-methoxypropionic acid (1.15 g, 63\%); $\delta_{\mathrm{H}} 8.84(1 \mathrm{H}, \mathrm{s}$
br, OH), $7.41-7.22(5 \mathrm{H}, \mathrm{m}$, aromatic $), 5.69(1 \mathrm{H}, \mathrm{d}, J 8, \mathrm{NH}), 5.15\left(2 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{2}\right), 4.52(1 \mathrm{H}, \mathrm{m}$, $\mathrm{CH}), 3.86$ and $3.64\left(2 \mathrm{H}, \mathrm{AB}\right.$ pattern of d, $\left.\mathrm{J} 9,3, \mathrm{CH}_{2} \mathrm{OMe}\right)$ and $3.36\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{2} \mathrm{OMe}\right)$ [lit. ${ }^{116}$ $\delta_{\mathrm{H}} 7.47-7.28\left(5 \mathrm{H}, \mathrm{m}\right.$, aromatic), $5.78(1 \mathrm{H}, \mathrm{d}, J 8.4, \mathrm{NH}), 5.11\left(2 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{2}\right), 4.45-4.56(1 \mathrm{H}$, $\mathrm{m}, \mathrm{CH}), 3.85\left(2 \mathrm{H}, \mathrm{dd}, J 9.3,3.2, C H_{2} \mathrm{OMe}\right), 3.61\left(2 \mathrm{H}, \mathrm{dd}, J 9.3,2.7, C H_{2} \mathrm{OMe}\right)$ and $3.32(3 \mathrm{H}$, $\left.\mathrm{s}, \mathrm{CH}_{2} \mathrm{OMe}\right)$].

A solution of (S)-2-(benzyloxycarbonylamino)-3-methoxypropionic acid $(1.15 \mathrm{~g}, 4.55$ mmol) in methanol ($15 \mathrm{~cm}^{3}$) was hydrogenated in the presence of $10 \% \mathrm{Pd}-\mathrm{C}(0.25 \mathrm{~g})$. (Approximately $100 \mathrm{~cm}^{3}$ of hydrogen was used). The catalyst was removed by filtration through Celite and the filtrate evaporated to give O-methyl-(S)-serine as a colourless solid (0.48 $\mathrm{g}, 87 \%$), mp 222-224 ${ }^{\circ} \mathrm{C}$ (decomposed) [lit. ${ }^{116} 228-230^{\circ} \mathrm{C}$ (decomposed)]; $\delta_{\mathrm{H}}\left(\mathrm{CD}_{3} \mathrm{OD}\right)$ 3.95-3.75 ($3 \mathrm{H}, \mathrm{m}, \mathrm{CHCH}_{2}$) and $3.52(3 \mathrm{H}, \mathrm{s}, \mathrm{Me})\left[\mathrm{lit} .{ }^{116} \delta_{\mathrm{H}}\left(\mathrm{CD}_{3} \mathrm{OD}\right) 3.85-3.65(3 \mathrm{H}, \mathrm{m}\right.$, $\left.\mathrm{CHCH}_{2}\right)$ and $\left.3.39(3 \mathrm{H}, \mathrm{s}, \mathrm{Me})\right] ; \delta_{\mathrm{C}}\left(\mathrm{CD}_{3} \mathrm{COD}\right) 72.0,59.3$ and 56.1 (CO not observed) [lit. ${ }^{116}$ $172.2(\mathrm{CO}), 72.2\left(\mathrm{CH}_{2}\right), 59.4\left(\mathrm{CH}_{3}\right)$ and $56.3(\mathrm{CH})$].
O-methyl-(S)-serine ($0.48 \mathrm{~g}, 4.03 \mathrm{mmol}$) was dissolved in NaOH (aq) ($1 \mathrm{~mol} \mathrm{dm}^{-3}, 4$ cm^{3}) and the water evaporated. Benzaldehyde ($0.42 \mathrm{~g}, 4 \mathrm{mmol}$) and dichloromethane ($50 \mathrm{~cm}^{3}$) were added and the mixture heated under reflux with azeotropic removal of water (inverted Dean and Stark trap) for 5-8 hours. The imine was formed as a white precipitate; $\delta_{\mathrm{H}} 7.73-6.90(5 \mathrm{H}$, m , arom.), $3.92(1 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{CH}), 3.58\left(2 \mathrm{H}\right.$, br d, $\left.\mathrm{CH}_{2}\right)$ and $3.05(3 \mathrm{H}, \mathrm{s}, \mathrm{Me})$.

The mixture was stirred at $0{ }^{\circ} \mathrm{C}$ while a solution of benzoyl chloride ($0.57 \mathrm{~g}, 4 \mathrm{mmol}$) in dichloromethane ($15 \mathrm{~cm}^{3}$) was added and the mixture was then stirred at room temperature overnight. Analysis of the product by ${ }^{1} \mathrm{H}$ NMR showed that the desired product 394 had not formed.

D. Flash Vacuum Pyrolysis of N-acyloxazolidin-5-ones

1. Pyrolysis of (2R,4S)-3-benzoyl-2-phenyl-4-methyl-1,3-oxazolidin-5-one 383

a) at $600{ }^{\circ} \mathrm{C}$

A sample of compound 383 (361 mg) was subjected to FVP at $600{ }^{\circ} \mathrm{C}_{i}$ and 1×10^{-2} Torr. The crude product $(0.263 \mathrm{~g})$ was found by ${ }^{1} \mathrm{H}$ NMR analysis to be a mixpture of cis-4-methyl-2,5-diphenyloxazoline 268 (56\%) and trans-4-methyl-2,5-diphenyloxazoline 269 (16\%), N-(1-phenylprop-2-enyl)benzamide 399 (23\%) and propiophenone 400 (3\%).

b) at $550{ }^{\circ} \mathrm{C}$

A sample of $383(1.061 \mathrm{~g}, 3.776 \mathrm{mmol})$ was subjected to FVP at $550{ }^{\circ} \mathrm{C}$ and 6×10^{-3} Torr. The crude product ($890 \mathrm{mg}, 99 \%$) was chromatographed [alumina, n-hexane-ether (8:2)] to give several fractions. Analysis of these showed the products from the reaction to be cis-4-methyl-2,5-diphenyloxazoline 268, trans-4-methyl-2,5-diphenyloxazoline 269, N -(1-phenylprop-2-enyl)benzamide 399 and an isomer of 5-methyl-2,4-diphenyloxazoline 270.

268; (333 mg, 37\%); $[\alpha]_{D}^{20} 0.0$ (c 1, CHCl_{3}); (Found: $\mathrm{M}+\mathrm{H}^{+}, 238.1230 . \mathrm{C}_{16} \mathrm{H}_{16} \mathrm{NO}$ requires $M+\mathrm{H}^{+}, 238.1232$); $v_{\max } / \mathrm{cm}^{-1} 2924,1964,1905,1885,1818,1719,1651,1580,1493,1449$, 1366, 1211, 1175, 1100, 628 and $549 ; \delta_{\mathrm{H}} 8.05(2 \mathrm{H}, \mathrm{m}$, aromatic), $7.55-7.18(8 \mathrm{H}, \mathrm{m}$, aromatic), $5.75(1 \mathrm{H}, \mathrm{d}, J 10,5-\mathrm{H}), 4.66(1 \mathrm{H}, \mathrm{dq}, J 10,7,4-\mathrm{H})$ and $0.89(3 \mathrm{H}, \mathrm{d}, J 7, \mathrm{Me})\left[\mathrm{lit}^{117} \delta_{\mathrm{H}}\right.$ 8.06-8.04 ($2 \mathrm{H}, \mathrm{m}$, arom.), 7.53-7.47 ($1 \mathrm{H}, \mathrm{m}$, arom.), 7.46-7.42 ($2 \mathrm{H}, \mathrm{m}$, arom.), 7.37-7.25 (5 H, m, arom.), $5.76(1 \mathrm{H}, \mathrm{d}, J 10,5-\mathrm{H}), 4.66(1 \mathrm{H}, \mathrm{dq}, J 10,7,4-\mathrm{H})$ and $0.88(3 \mathrm{H}, \mathrm{d}, J 7, \mathrm{Me})]$; $\delta_{\mathrm{C}} 162.5(\mathrm{CN}), 136.7$ (4ry), 131.0, 128.0 (2 C), 127.9 (2 C), 127.8 (2 C), 127.4, 127.3 (4ry), 125.7 (2 C), 83.5 (C-5), $65.0(\mathrm{C}-4)$ and 17.4 (Me) [lit. ${ }^{117} \delta_{\mathrm{C}} 163.0,137.2,131.5,128.4,128.3$, 127.9, 127.7, 126.2, 84.1, 65.5 and 17.8]; $m / z 238\left(\mathrm{M}+\mathrm{H}^{+}, 100 \%\right)$ and 131 (9).
 238.1227. $\mathrm{C}_{16} \mathrm{H}_{16} \mathrm{NO}$ requires $M+\mathrm{H}^{+}, 238.1232$); $v_{\max } / \mathrm{cm}^{-1} 2924,1719,1647,1580,1493$, $1449,1397,1376,1326,1175,1108,628$ and $545 ; \delta_{\mathrm{H}} 8.02$ (2 H, m, aromatic), 7.52-7.22 (8 H , m , aromatic), $5.10(1 \mathrm{H}, \mathrm{d}, J 8,5-\mathrm{H}), 4.21(1 \mathrm{H}, \mathrm{m}, 4-\mathrm{H})$ and $1.49(3 \mathrm{H}, \mathrm{d}, J 7, \mathrm{Me})\left[\right.$ lit. ${ }^{118} \delta_{\mathrm{H}}$
8.06-8.00 ($2 \mathrm{H}, \mathrm{m}$, arom.), $7.54-7.30(8 \mathrm{H}, \mathrm{m}, \operatorname{arom}),. 5.10(1 \mathrm{H}, \mathrm{d}, J 8,5-\mathrm{H}), 4.21(1 \mathrm{H}, \mathrm{dq}, J 7$, 8, 4-H) and 1.49 ($3 \mathrm{H}, \mathrm{d}, J 7, \mathrm{Me}$)]; $\delta_{\mathrm{C}} 162.8(\mathrm{CN}), 140.4$ (4ry), 131.4, 128.8 (2 C), 128.4 (4 C), $128.3,127.7$ (4ry), 125.6 (2 C), 88.2 (C-5), 70.9 (C-4) and 21.4 (Me) [lit. ${ }^{118} \delta_{\mathrm{C}}$ 162.6, 140.3, 131.3, 128.7, 128.2, 128.2, 128.2, 127.6, 125.5, 88.1, 70.9, 21.5]; m/z $238\left(\mathrm{M}+\mathrm{H}^{+}\right.$, 100%) and 131 (16).

399; ($137 \mathrm{mg}, 15 \%$); mp 105-107 ${ }^{\circ} \mathrm{C}$; $\delta_{\mathrm{H}} 7.79(2 \mathrm{H}, \mathrm{m}$, aromatic), $7.50-7.22(8 \mathrm{H}, \mathrm{m}$, aromatic), $6.78(1 \mathrm{H}, \mathrm{brd}, \mathrm{NH}), 6.08\left(1 \mathrm{H}\right.$, ddd, $\left.J 17,10,5, \mathrm{CH}=\mathrm{CH}_{2}\right), 5.82(1 \mathrm{H}$, br dd, $\mathrm{CH}-\mathrm{N}), 5.28(1$ $\left.\mathrm{H}, \mathrm{d}, J 5,=\mathrm{CH}_{2}\right)$ and $5.26\left(1 \mathrm{H}, \mathrm{d}, J 17,=\mathrm{CH}_{2}\right)$ [good agreement with lit. spectrum of N-benzoyl derivative, $404^{119} \delta_{\mathrm{H}} 6.78$ (ddd), 6.45 (d), 5.45 (d) and 5.41 (d)]; $\delta_{\mathrm{C}} 166.5(\mathrm{CO}), 140.5$ (4ry), 137.2, 134.3 (4ry), 131.6, 128.8 (2 C), 128.6 (2 C), 127.8, 127.3 (2 C), 127.0 (2 C), 116.1 and 55.5 (CHN) [N-benzoyl lit. ${ }^{119} 119.4$ and 63.7]; $m / z 237\left(\mathrm{M}^{+}, 26 \%\right), 222$ (16), 132 (9), 115 (11), 105 (100), 77 (44) and 51 (10).

270; (65 mg, 7\%); $[\alpha]_{\mathrm{D}}^{20} \quad 0.0$ (c 1, CHCl_{3}); (Found: $\mathrm{M}+\mathrm{H}^{+}, 238.1230 . \mathrm{C}_{16} \mathrm{H}_{16} \mathrm{NO}$ requires $\left.M+\mathrm{H}^{+}, 238.1232\right) ; v_{\max } / \mathrm{cm}^{-1} 2924,1964,1901,1818,1719,1643,1580,1493,1358,1334$, $1207,1175,1005,933$ and $858 ; \delta_{\mathrm{H}} 8.06(2 \mathrm{H}, \mathrm{m}$, aromatic), $758-7.17(8 \mathrm{H}, \mathrm{m}$, aromatic), 5.43 $(1 \mathrm{H}, \mathrm{d}, J 10,5-\mathrm{H}), 5.09(1 \mathrm{H}, \mathrm{dq}, J 10,7,4-\mathrm{H})$ and $0.97(3 \mathrm{H}, \mathrm{d}, J 7, \mathrm{Me}) ; \delta_{\mathrm{C}} 163.6(\mathrm{CN}), 137.0$ (4ry), 130.4, 128.3 (4ry), 127.4 (2 C), 127.3 (2 C), 127.2 (2 C), 126.7 (2 C), 126.4, 78.7 (C-5), $71.4(\mathrm{C}-4)$ and $15.9(\mathrm{Me}) ; m / z 238\left(\mathrm{M}+\mathrm{H}^{+}, 100 \%\right)$.

c) at $500{ }^{\circ} \mathrm{C}$

A sample of 383 ($106.4 \mathrm{mg}, 0.377 \mathrm{mmol}$) was subjected to FVP at $500{ }^{\circ} \mathrm{C}$ and $6-10 \times 10^{-3}$ Torr. The crude product ($85.7 \mathrm{mg}, 97 \%$) was a mixture of $\mathbf{2 6 8},(30.0 \mathrm{mg}, 34 \%)$, 399 ($15.9 \mathrm{mg}, 18 \%$) and cis-1-benzoyl-2-methyl-3-phenylaziridine 267.

267; (16.8 mg, 19\%) (Found: $\mathrm{M}+\mathrm{Na}^{+}$, 260.1045. $\mathrm{C}_{16} \mathrm{H}_{15} \mathrm{NO}$ requires $M+\mathrm{Na}, 260.1051$); δ_{H} 8.2-8.0 ($2 \mathrm{H}, \mathrm{m}$, aromatic), $7.5-7.2(8 \mathrm{H}, \mathrm{m}$, aromatic), $3.86(1 \mathrm{H}, \mathrm{d}, J 7,3-\mathrm{H}), 2.97(1 \mathrm{H}$, quintet, $J 7,2-\mathrm{H})$ and $1.18(3 \mathrm{H}, \mathrm{d}, J 7,2-\mathrm{Me})\left[\right.$ lit. ${ }^{9} 8.15-7.5(10 \mathrm{H}, 2 \mathrm{~m}), 3.72(1 \mathrm{H}, \mathrm{d}, J 6)$, $2.90(1 \mathrm{H}, \mathrm{m}, J 6)$ and $1.12(3 \mathrm{H}, \mathrm{d}, J 6)] ; \delta_{\mathrm{C}} 179.8(\mathrm{CO}), 134.8$ (4ry), 132.8, 129.7 (4ry), 129.1 (2 C), 128.4 (2 C), 128.3 (2 C), 127.7 (2 C), 127.5, 44.2 (C-3), 40.1 (C-2) and 12.6 (Me)
[lit. ${ }^{118} \delta_{\mathrm{C}} 179.5,134.6,132.8,132.6,128.9,128.3,128.1,127.6,127.4,44.2,40.1$ and 12.6]; m / z (GCMS) $237\left(\mathrm{M}^{+}, 3 \%\right), 222(8), 132$ (9), 115 (11), 105 (94), 77 (100) and 65 (5).
d) at $450{ }^{\circ} \mathrm{C}$

A sample of $383(4.70 \mathrm{~g}, 16.73 \mathrm{mmol})$ was subjected to FVP at $450^{\circ} \mathrm{C}$ and $8-10 \times 10^{-3}$ Torr. The product was chromatographed [alumina, ether-pet ether (1:1)]. Analysis by ${ }^{1} \mathrm{H}$ NMR showed the products from the reaction to be mainly unreacted $383(3.38 \mathrm{~g}, 12.04 \mathrm{mmol})$. Kugelrohr distillation gave $267(0.91 \mathrm{~g}, 23 \%)$ and $268(0.20 \mathrm{~g}, 5 \%)$.

e) at $400{ }^{\circ} \mathrm{C}$

A sample of 383 ($196 \mathrm{mg}, 0.698 \mathrm{mmol}$) was subjected to FVP at $400{ }^{\circ} \mathrm{C}$ and $6-10 \times 10^{-3}$ Torr. Analysis by ${ }^{1} \mathrm{H}$ NMR showed the products from the reaction to be mainly unreacted 383 ($185 \mathrm{mg}, 0.658 \mathrm{mmol}$) and Kugelrohr distillation gave a small amount of 267 ($6.5 \mathrm{mg}, 4 \%$).

f) at $700{ }^{\circ} \mathrm{C}$

A sample of $\mathbf{3 8 3}$ was subjected to FVP at $700^{\circ} \mathrm{C}$ and $7-10 \times 10^{-3}$ Torr. Surprisingly, the major component of the product was propiophenone 400 (21%) followed by 399 (19\%), 268 (14\%) and 269 (13\%). Yields were calculated from ${ }^{1} \mathrm{H}$ NMR using acetone as an internal standard

2. Pyrolysis of (2R,4S)-3-benzoyl-4-isopropyl-2-phenyl-1,3-oxazolidin-5-one 384

a) at $550{ }^{\circ} \mathrm{C}$

A sample of $\mathbf{3 8 4}(599 \mathrm{mg}, 1.939 \mathrm{mmol})$ was subjected to FVP at $550{ }^{\circ} \mathrm{C}$ and 8×10^{-3} Torr. The crude product ($345 \mathrm{mg}, 68 \%$) was a $5: 1$ mixture (by ${ }^{1} \mathrm{H}$ NMR integration) of cis-4-isopropyl-2,5-diphenyloxazoline 407 to trans-4-isopropyl-2,5-diphenyloxazoline 408. This was chromatographed [alumina, n-hexane-ether (9:1)].

407 (170 mg, 32\%); (Found: $\mathrm{M}+\mathrm{H}^{+}$, 266.1539. $\mathrm{C}_{18} \mathrm{H}_{19} \mathrm{NO}$ requires $M+\mathrm{H}^{+}, 266.1545$); $v_{\max } / \mathrm{cm}^{-1} 1963,1950,1910,1896,1844,1830,1806,1741,1642,1578,1494,1446,1334$,
$1210,1174,1061,1026,951,906,860,765,704$ and $586 ; \delta_{\mathrm{H}} 8.05(2 \mathrm{H}, \mathrm{m}$, arom.), 7.55-7.10 (8 $\mathrm{H}, \mathrm{m}, \operatorname{arom}.), 5.67(1 \mathrm{H}, \mathrm{d}, J 10,5-\mathrm{H}), 4.20(1 \mathrm{H}, \mathrm{dd}, J 10,8,4-\mathrm{H}), 1.00\left(1 \mathrm{H}, \mathrm{m}, \mathrm{CH}\right.$ of $\left.\mathrm{Pr}^{\mathrm{i}}\right)$, $0.92\left(3 \mathrm{H}, \mathrm{d}, J 7, \mathrm{Me}\right.$ of $\left.\mathrm{Pr}^{\mathrm{i}}\right)$ and $0.76\left(3 \mathrm{H}, \mathrm{d}, J 7\right.$, Me of $\left.\operatorname{Pr}^{\mathrm{i}}\right) ; \delta_{\mathrm{C}} 163.9(\mathrm{C}=\mathrm{N}), 137.7$ (4ry), $131.9,128.9$ (2 C), 128.9, 128.8 (2 C), 128.6 (2 C), 128.3 (4ry), 127.6 (2 C), 84.8 (C-5), 76.9 (C-4), $29.7\left(\mathrm{CH}\right.$ of $\left.\mathrm{Pr}^{\mathrm{i}}\right), 21.6(\mathrm{Me})$ and $19.9(\mathrm{Me}) ; m / z 266\left(\mathrm{M}+\mathrm{H}^{+}, 100 \%\right)$.

408 (70 mg, 14\%); (Found: $\mathrm{M}+\mathrm{H}^{+}, 266.1541 . \mathrm{C}_{18} \mathrm{H}_{19} \mathrm{NO}$ requires $M+\mathrm{H}^{+}, 266.1545$); δ_{H} $8.06(2 \mathrm{H}, \mathrm{m}, \operatorname{arom}),. 7.55-7.10(8 \mathrm{H}, \mathrm{m}, \operatorname{arom}),. 5.26(1 \mathrm{H}, \mathrm{d}, J 6,5-\mathrm{H}), 4.39(1 \mathrm{H}, \mathrm{t}, J 6,4-\mathrm{H})$, $1.60\left(1 \mathrm{H}, \mathrm{m}, \mathrm{CH}\right.$ of $\left.\mathrm{Pr}^{\mathrm{i}}\right), 0.98\left(3 \mathrm{H}, \mathrm{d}, J 7, \mathrm{Me}\right.$ of $\left.\operatorname{Pr}^{\mathrm{i}}\right)$ and $0.67\left(3 \mathrm{H}, \mathrm{d}, J 7, \mathrm{Me}\right.$ of $\left.\mathrm{Pr}^{\mathrm{i}}\right)$ [lit. ${ }^{118}$ $\delta_{\mathrm{H}} 8.07-8.00(2 \mathrm{H}, \mathrm{m}), 7.54-7.27(8 \mathrm{H}, \mathrm{m}), 5.28(1 \mathrm{H}, \mathrm{d}, J 6), 4.04(1 \mathrm{H}, \mathrm{dd}, J 6,6), 2.12-1.90$ $(1 \mathrm{H}, \mathrm{m}), 1.07(3 \mathrm{H}, \mathrm{d}, J 7)$ and $1.01(3 \mathrm{H}, \mathrm{d}, J 7)] ; \delta_{\mathrm{C}} 164.6(\mathrm{C}=\mathrm{N}), 137.3$ (4ry), 131.5 (4ry), 130.3, 129.3, 129.1 (2 C), 128.9 (2 C), 128.6 (2 C), 128.5 (2 C), 90.2 (C-5), 72.3 (C-4), 28.3 $\left(\mathrm{CH}\right.$ of $\left.\mathrm{Pr}^{\mathrm{i}}\right), 20.3(\mathrm{Me})$ and $19.5(\mathrm{Me})\left[\right.$ lit. ${ }^{118} \delta_{\mathrm{C}} 162.2,141.6,131.1,128.6,128.2,128.1$, $127.9,127.6,125.5,83.2,81.0,32.9,18.6$ and 18.2]; $m / z 266\left(\mathrm{M}+\mathrm{H}^{+}, 100 \%\right)$.

The ${ }^{1} \mathrm{H}$ NMR spectrum of each oxazoline ($25 \mathrm{mg}, 0.094 \mathrm{mmol}$) was recorded in the presence of praseodymium tris(heptafluorobutrylcamphorate) ($25 \mathrm{mg}, 0.028 \mathrm{mmol}$). Using the doublets at 5.67 and 5.26 ppm the compounds appeared to be racemic in each case.

b) at $450{ }^{\circ} \mathrm{C}$

A sample of compound $384(2.53 \mathrm{~g}, 8.20 \mathrm{mmol})$ was subjected to FVP at $450{ }^{\circ} \mathrm{C}$ and 7 $\times 10^{-3}$ Torr. The crude product was Kugelrohr distilled to give a colourless liquid $(0.502 \mathrm{~g}$, 23%) consisting of a single isomer of 1-benzoyl-2-isopropyl-3-phenylaziridine $409(0.377 \mathrm{~g}$, 17%) and 407 ($0.126 \mathrm{~g}, 6 \%$).

409; $\delta_{\mathrm{H}} 8.03(2 \mathrm{H}, \mathrm{m}$, aromatic), $7.55-7.20(8 \mathrm{H}, \mathrm{m}$, aromatic), $3.69(1 \mathrm{H}, \mathrm{d}, J 6,3-\mathrm{H}), 2.68(1$ $\mathrm{H}, \mathrm{dd}, J 9,6,2-\mathrm{H}), 1.70-1.48\left(1 \mathrm{H}, \mathrm{m}, \mathrm{CH}\right.$ of $\left.\operatorname{Pr}^{\mathrm{i}}\right), 1.19(3 \mathrm{H}, \mathrm{d}, J 6, \mathrm{Me})$ and $0.70(3 \mathrm{H}, \mathrm{d}, J 6$, $\mathrm{Me}), \delta_{\mathrm{C}} 179.7$ (CO), 133.1 (4ry), 132.6 (4ry), 130.0, 128.9 (2 C), 128.3 (3 C), 128.2 (2 C), $127.4(2 \mathrm{C}), 50.5(\mathrm{C}-3), 45.6(\mathrm{C}-2), 26.0\left(\mathrm{CH}\right.$ of $\left.\mathrm{Pr}^{\mathrm{i}}\right), 20.8(\mathrm{Me})$ and $18.8(\mathrm{Me})$.

3. Pyrolysis of (2R,4S)-3-benzoyl-4-benzyl-2-phenyl-1,3-oxazolidin-5-one 385

a) at $600{ }^{\circ} \mathrm{C}$

A sample of compound $385(103 \mathrm{mg}, 0.288 \mathrm{mmol})$ was subjected to FVP at $600{ }^{\circ} \mathrm{C}$ and $6-10 \times 10^{-3}$ Torr. The resulting product was chromatographed [alumina, ether-pet ether (1:1)]. Similar fractions were combined and the solvent was removed. The main fraction (26.5 mg , 26%) appeared to be cis-4-benzyl-2,5-diphenyloxazoline 410, (Found: $\mathrm{M}+\mathrm{H}^{+}, 314.1534$. $\mathrm{C}_{22} \mathrm{H}_{20} \mathrm{NO}$ requires $M+\mathrm{H}^{+}, 314.1545$); $v_{\text {max }} / \mathrm{cm}^{-1} 1958,1812,1701,1647,1580,1525,1495$, $1334,1175,1081,1026,910,844,782,706$ and $654 ; \delta_{\mathrm{H}}\left(\mathrm{C}_{6} \mathrm{D}_{6}\right) 8.55-8.45(2 \mathrm{H}, \mathrm{m}$, aromatic $)$, 7.35-7.10 $(13 \mathrm{H}, \mathrm{m}$, aromatic), $5.57(1 \mathrm{H}, \mathrm{d}, J 10,5-\mathrm{H}), 4.88(1 \mathrm{H}, \mathrm{t}$ of d, $J 10,7,4-\mathrm{H}), 2.87(1$ H , half $\left.\mathrm{ABX}, J 15,10, \mathrm{PhCH}_{2}\right)$ and $2.60\left(1 \mathrm{H}\right.$, half $\left.\mathrm{ABX}, J 15,7, \mathrm{PhCH}_{2}\right) ; \delta_{\mathrm{C}}\left(\mathrm{C}_{6} \mathrm{D}_{6}\right) 163.0$ (CN), 139.8 (4ry), 137.7 (4ry), signals between 131.5 and 127.0 obscured by solvent, 84.1 (C5), $71.8(\mathrm{C}-4)$ and $39.2\left(\mathrm{CH}_{2}\right) ; m / z 314\left(\mathrm{M}+\mathrm{H}^{+}, 100 \%\right)$.

For comparison with a literature spectrum of the trans isomer ${ }^{120}$ this was also recorded in $\mathrm{CDCl}_{3}, \delta_{\mathrm{H}} 8.1-8.0(2 \mathrm{H}, \mathrm{m}$, aromatic), $7.50-7.10(11 \mathrm{H}, \mathrm{m}$, aromatic), $6.95(2 \mathrm{H}, \mathrm{m}$, aromatic), $5.78(1 \mathrm{H}, \mathrm{d}, J 10,5-\mathrm{H}), 4.88(1 \mathrm{H}$, ddd, $J 10,8,7,4-\mathrm{H}), 2.69(1 \mathrm{H}, \mathrm{dd}, J 14,8, \mathrm{CH}$ of $\left.\mathrm{CH}_{2}\right)$ and $2.40\left(1 \mathrm{H}, \mathrm{dd}, J 14,7, \mathrm{CH}\right.$ of $\left.\mathrm{CH}_{2}\right)$ [cf. lit. ${ }^{120}$ for trans, $\delta_{\mathrm{H}} 8.07-8.02(2 \mathrm{H}), 7.5-7.2$ $(11 \mathrm{H}), 6.95-6.9(2 \mathrm{H}), 5.29(1 \mathrm{H}, \mathrm{d}, J 6), 4.42(1 \mathrm{H}, \mathrm{ddd}, J 9,6,5), 3.34(1 \mathrm{H}, \mathrm{dd}, J 14,5)$ and 2.84 ($1 \mathrm{H}, \mathrm{dd}, J 14,9$)]; $\delta_{\mathrm{C}} 164.2$ (CN), 139.2 (4ry), 137.1 (4ry), 132.1, 129.4 (2 C), 129.0 (2 C), 128.9 (2 C), 128.7 (2 C), $128.6,128.5$ (2 C), 127.9 (4ry), 127.3 (2 C), 126.4, 84.5 (C-5), $71.5(\mathrm{C}-4)$ and $38.8\left(\mathrm{CH}_{2}\right)$.

A trace of the trans isomer 411 was observed in a ratio of approximately $1: 7$ (from ${ }^{1} \mathrm{H}$ integration) with the cis isomer 410.

414; $\delta_{\mathrm{H}} 8.04-8.00(2 \mathrm{H}, \mathrm{m}$, aromatic), $7.60-7.10(13 \mathrm{H}, \mathrm{m}$, aromatic), $5.30(1 \mathrm{H}, \mathrm{d}, J 6,5-\mathrm{H})$, $4.47(1 \mathrm{H}$, ddd, $J 9,6,5,4-\mathrm{H}), 3.35\left(1 \mathrm{H}, \mathrm{dd}, J 14,5, \mathrm{CH}\right.$ of $\left.\mathrm{CH}_{2}\right)$ and $2.85(1 \mathrm{H}, \mathrm{dd}, J 14,9, \mathrm{CH}$ of CH_{2}) [good agreement with lit. ${ }^{120}$].

b) at $550{ }^{\circ} \mathrm{C}$

A further sample of compound 385 ($550 \mathrm{mg}, 1.541 \mathrm{mmol}$) was subjected to FVP at $550{ }^{\circ} \mathrm{C}$ and $6-10 \times 10^{-3}$ Torr. The resulting product was chromatographed [silica,
ether-n-hexane (3:7)]. Similar fractions were combined and the solvent was removed. In this case the products obtained were found to be 410 ($168 \mathrm{mg}, 38 \%$), N-(1,3-diphenylprop-2enyl)benzamide 412 ($97 \mathrm{mg}, 22 \%$) and 5-benzyl-2,4-diphenyloxazoline 413 ($40 \mathrm{mg}, 9 \%$).412; (Found: $\mathrm{M}+\mathrm{H}^{+}, 314.1536 . \mathrm{C}_{22} \mathrm{H}_{19} \mathrm{NO}$ requires $M+H, 314.1545$); $\delta_{\mathrm{H}} 7.34-6.94(10 \mathrm{H}, \mathrm{m}$, arom.), $6.76(1 \mathrm{H}$, br d, $J 8 \mathrm{NH}), 6.60(1 \mathrm{H}, \mathrm{dd}, J 16,1,=\mathrm{CHPh}), 6.41(1 \mathrm{H}, \mathrm{dd}, J 16,6$, $\mathrm{CH}=\mathrm{CHPh})$ and 5.78 ($1 \mathrm{H}, \mathrm{t}, J 7, \mathrm{NCHPh}$); $\delta_{\mathrm{C}} 167.0$ (CO), 141.2 (4ry), 136.8 (4ry), 134.7 (4ry), 132.2, 132.1, 129.3 (2 C), 129.1, 129.0 (2 C), 129.0 (2 C), 128.3, 128.2, 127.7 (2 C), $127.5(2 \mathrm{C}), 127.0(2 \mathrm{C})$ and $55.7(\mathrm{NCH}) ; m / z 314\left(\mathrm{M}+\mathrm{H}^{+}, 3 \%\right), 222(44)$ and $193(100) .413$; $\delta_{\mathrm{H}} 8.04-8.00(2 \mathrm{H}, \mathrm{m}$, aromatic), $7.6-7.1(13 \mathrm{H}, \mathrm{m}$, aromatic), $5.49(1 \mathrm{H}, \mathrm{d}, J 10,4-\mathrm{H}), 5.11$ (1 $\mathrm{H}, \mathrm{dt}, J 10,4,5-\mathrm{H}), 2.54\left(1 \mathrm{H}, \mathrm{dd}, J 15,10, \mathrm{CH}\right.$ of $\left.\mathrm{CH}_{2}\right)$ and $2.38\left(1 \mathrm{H}, \mathrm{dd}, J 15,4, \mathrm{CH}\right.$ of $\left.\mathrm{CH}_{2}\right)$; δ_{C} (identifiable signals) $167.1(\mathrm{CN}), 138.6$, (4ry), 138.1 (4ry), 131.2 (4ry), 84.8 (C-5), 72.5 (C$4)$ and $38.4\left(\mathrm{CH}_{2}\right)$.

c) at $450{ }^{\circ} \mathrm{C}$

A sample of compound $\mathbf{3 8 5}(2.48 \mathrm{~g}, 6.95 \mathrm{mmol})$ was subjected to FVP at $450{ }^{\circ} \mathrm{C}$ and 8 $\times 10^{-3}$ Torr. The crude product (1.69 g) was separated by column chromatography [silica, ether-pet ether (1:1)] to give cis-1-benzoyl-2-benzyl-3-phenylaziridine 414 ($289 \mathrm{mg}, 13 \%$); (Found: $\mathrm{M}+\mathrm{H}^{+}, 314.1550$. $\mathrm{C}_{22} \mathrm{H}_{19} \mathrm{NO}$ requires $\left.M+H, 314.1545\right)$; $\delta_{\mathrm{H}} 8.0(2 \mathrm{H}, \mathrm{m}$, aromatic), $7.5-7.0(13 \mathrm{H}$, m, aromatic), $3.78(1 \mathrm{H}, \mathrm{d}, J 6,3-\mathrm{H}), 3.19(1 \mathrm{H}, \mathrm{q}, J 6,2-\mathrm{H}), 2.99\left(1 \mathrm{H}, \mathrm{A}\right.$ part of $\mathrm{ABX}, J_{\mathrm{AB}} 15, J_{\mathrm{AX}} 5$, $\left.\mathrm{CH}_{2} \mathrm{Ph}\right)$ and $2.64\left(1 \mathrm{H}\right.$, B part of $\mathrm{ABX}, J_{\mathrm{AB}} 15, J_{\mathrm{AX}} 8, \mathrm{CH}_{2} \mathrm{Ph}$) [lit. ${ }^{121} 8.03-7.97$ (ortho H of benzoyl, m), 7.52-7.29 (8 H, m), 7.24-7.14 (3 H, m), 7.00-6.93 (2 H, m), 3.78 ($1 \mathrm{H}, \mathrm{d}, J 6,3-$ H), $3.19(1 \mathrm{H}$, ddd, $J 8,6,5,2-\mathrm{H}), 2.99\left(1 \mathrm{H}\right.$, dd, $\left.J 15,5, \mathrm{CH}_{2}\right), 2.63\left(1 \mathrm{H}, \mathrm{dd}, J 15,8, \mathrm{CH}_{2}\right)$]; δ_{C} 179.5 (CO), 137.7 (4ry), 134.4 (4ry), 132.7, 129.0 (2 C), 128.7 (2 C), 128.4 (4 C), 128.3 (3 C), 127.8, $127.7(2 \mathrm{C}), 126.3,44.8(\mathrm{CPh}), 44.7(\mathrm{CPh})$ and $32.9\left(\mathrm{CHCH}_{2}\right) ; m / z 314\left(\mathrm{M}+\mathrm{H}^{+}\right.$, 100%), 208 (16), 122 (7) and 56 (43).

4. Pyrolysis of ($2 R, 4 S, 2^{\prime}$ 'S)-3-benzoyl-4-s-butyl-2-phenyl-1,3-oxazolidin-5-one 386

a) at $550{ }^{\circ} \mathrm{C}$

A sample of compound $386(1.936 \mathrm{~g}, 6 \mathrm{mmol})$ was subjected to FVP at $550{ }^{\circ} \mathrm{C}$ and $5 \times$ 10^{-3} Torr. The crude product (1.69 g) was chromatographed [alumina, ether in pet ether $(5-15 \%)$] to give i) both cis-diastereomers of 4-isobutyl-2,5-diphenyloxazoline $415(0.328 \mathrm{~g}$, $20 \%, 0 \%$ d.e.); $m / z 280\left(\mathrm{M}+\mathrm{H}^{+}, 100 \%\right)$ and 222 (9);

1st diastereomer; $\delta_{\mathrm{H}} 8.06(2 \mathrm{H}, \mathrm{d}$, arom.), $7.56-7.22(8 \mathrm{H}, \mathrm{m}, \operatorname{arom}),. 5.73(1 \mathrm{H}, \mathrm{d}, J 10,5-\mathrm{H})$, $4.28(1 \mathrm{H}, \mathrm{dd}, J 10,8,4-\mathrm{H}), 1.22\left(1 \mathrm{H}, \mathrm{m}, \mathrm{CH}\right.$ of $\left.\mathrm{Bu}^{\mathrm{s}}\right), 1.10-0.88\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}\right), 0.63(3 \mathrm{H}, \mathrm{d}, J$ 6, CHMe) and $0.59\left(3 \mathrm{H}, \mathrm{t}, J 7, \mathrm{CH}_{2} \mathrm{Me}\right)$; $\delta_{\mathrm{C}} 163.9(\mathrm{CN}), 137.9$ (4ry), 131.9 (4ry), 131.8, 129.1, 128.9 (2 C), 128.8 (2 C), 128.6 (2 C), 127.7 (2 C), 84.8 (C-5), 76.5 (C-4), 36.0 (CHMe), 26.4 $\left(\mathrm{CH}_{2} \mathrm{Me}\right), 17.7(\mathrm{CHMe})$ and $11.6\left(\mathrm{CH}_{2} \mathrm{Me}\right)$.

2nd diastereomer; $\delta_{\mathrm{H}} 8.07$ ($2 \mathrm{H}, \mathrm{d}$, arom.), 7.56-7.22 ($8 \mathrm{H}, \mathrm{m}$, arom.), 5.76 ($1 \mathrm{H}, \mathrm{d}, J 10,5-\mathrm{H}$), $4.39(1 \mathrm{H}, \mathrm{dd}, J 10,7,4-\mathrm{H}), 1.62\left(1 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}\right), 1.03\left(1 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}\right), 1.02\left(1 \mathrm{H}, \mathrm{m}, \mathrm{CH}\right.$ of $\left.\mathrm{Bu}^{\mathrm{s}}\right)$, $0.70(3 \mathrm{H}, \mathrm{d}, J 7, \mathrm{CHMe})$ and $0.58\left(3 \mathrm{H}, \mathrm{t}, J 7, \mathrm{CH}_{2} \mathrm{Me}\right)$; $\delta_{\mathrm{C}} 163.8$ (CN), 137.9 (4ry), 131.9 (4ry), 131.3, 128.9 (2 C), 128.8 (2 C), 128.6 (2 C), 128.5, 127.3 (2 C), 84.7 (C-5), 74.9 (C-4), $36.2(\mathrm{CHMe}), 28.4\left(\mathrm{CH}_{2} \mathrm{Me}\right), 16.0(\mathrm{CHMe})$ and $12.0\left(\mathrm{CH}_{2} \mathrm{Me}\right)$.
ii) both trans-diastereomers of 4-isobutyl-2,5-diphenyloxazoline 415 ($0.132 \mathrm{~g}, 7 \%, 12 \%$ d.e.); (Found: $\mathrm{M}+\mathrm{H}^{+}, 280.1691 . \mathrm{C}_{19} \mathrm{H}_{21} \mathrm{NO}$ requires $\left.M+\mathrm{H}^{+}, 280.1701\right) ; m / z 280\left(\mathrm{M}+\mathrm{H}^{+}, 100 \%\right)$, 193 (23), 123 (16), 58 (48), 57 (62), 56 (44) and 43 (95);

1st diastereomer; $\delta_{\mathrm{H}} 8.09(2 \mathrm{H}, \mathrm{d}$, arom.), $7.58-7.09(8 \mathrm{H}, \mathrm{m}$, arom.), $5.36(1 \mathrm{H}, \mathrm{d}, J 9,5-\mathrm{H})$, $4.59(1 \mathrm{H}, \mathrm{t}, J 9,4-\mathrm{H}), 1.33\left(1 \mathrm{H}, \mathrm{m}, \mathrm{CH}\right.$ of $\left.\mathrm{Bu}^{\mathrm{s}}\right), 1.31\left(1 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}\right), 1.01\left(1 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}\right), 0.95$ ($3 \mathrm{H}, \mathrm{d}, J 6, \mathrm{CH} M e$), 0.64 ($3 \mathrm{H}, \mathrm{t}, J 7, \mathrm{CH}_{2} M e$); $\delta_{\mathrm{C}} 165.2$ (CN), 138.0 (4ry), 132.1 (4ry), 129.2 (2 C), 128.81 (2 C), 128.78 (2 C), 128.7, 128.5 (2 C), 128.0, 88.4 (C-5), 72.4 (C-4), 34.9 $(\mathrm{CHMe}), 26.5\left(\mathrm{CH}_{2} \mathrm{Me}\right), 16.0(\mathrm{CHMe})$ and $11.2\left(\mathrm{CH}_{2} \mathrm{Me}\right)$.

2nd diastereomer; $\delta_{\mathrm{H}} 8.05(2 \mathrm{H}, \mathrm{d}$, arom.), 7.58-7.09 ($8 \mathrm{H}, \mathrm{m}$, arom.), $5.27(1 \mathrm{H}, \mathrm{d}, J 9,5-\mathrm{H})$, $4.50(1 \mathrm{H}, \mathrm{dd}, J 10,9,4-\mathrm{H}), 1.78\left(1 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}\right), 1.45\left(1 \mathrm{H}, \mathrm{m}, \mathrm{CH}\right.$ of $\left.\mathrm{Bu}^{\mathrm{s}}\right), 1.30\left(1 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}\right)$, $0.84\left(3 \mathrm{H}, \mathrm{t}, J 7, \mathrm{CH}_{2} \mathrm{Me}\right)$ and $0.70(3 \mathrm{H}, \mathrm{d}, J 6, \mathrm{CH} M e) ; \delta_{\mathrm{C}} 165.2(\mathrm{CN}), 138.2$ (4ry), 131.9, 128.9 (2 C), 128.81 (2 C), 128.78 (2 C), 128.5 (2 C), 128.3 (4ry), 128.1, 88.9 (C-5), 72.6 (C-4), $35.4(\mathrm{CHMe}), 26.8\left(\mathrm{CH}_{2} \mathrm{Me}\right), 15.5(\mathrm{CHMe})$ and $10.9\left(\mathrm{CH}_{2} \mathrm{Me}\right)$.
iii) 2 isomers of N-(3-methyl-1-phenylpent-2-enyl)benzamide 416 ($0.293 \mathrm{~g}, 17 \%$); $\mathrm{m} / \mathrm{z} 280$ (M $+\mathrm{H}^{+}, 100 \%$).

1st isomer; $\delta_{\mathrm{H}} 7.78(2 \mathrm{H}, \mathrm{m}$, aromatic), $7.55-7.18(8 \mathrm{H}, \mathrm{m}$, aromatic), $6.45(1 \mathrm{H}, \mathrm{br} \mathrm{d}, J 8, \mathrm{NH})$, $6.03(1 \mathrm{H}, \mathrm{t}, J 8, \mathrm{CHPh}), 5.36(1 \mathrm{H}, \mathrm{m},=\mathrm{CH}), 2.26\left(1 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{Me}\right), 1.77(3 \mathrm{H}, \mathrm{d}, J 1, \mathrm{MeC}=)$ and $1.04\left(3 \mathrm{H}, \mathrm{t}, J 7 \mathrm{CH}_{2} \mathrm{Me}\right)$; $\delta_{\mathrm{C}} 166.2(\mathrm{CO}), 142.4$ (4ry), 142.1 (4ry), 134.4 ($C=\mathrm{CH}$), 131.4, 128.6 (2 C), 128.5 (2 C), 127.1, 126.9 (2 C), 126.5 (2 C), 123.8, $51.1(\mathrm{CHPh}), 32.2\left(\mathrm{CH}_{2} \mathrm{Me}\right)$, $22.9(=\mathrm{CHMe})$ and $12.8\left(\mathrm{CH}_{2} \mathrm{Me}\right)$.

2nd isomer; $\delta_{\mathrm{H}} 7.78(2 \mathrm{H}, \mathrm{m}$, aromatic), $7.55-7.18(8 \mathrm{H}, \mathrm{m}$, aromatic), $6.45(1 \mathrm{H}, \mathrm{br} \mathrm{d}, J 8 \mathrm{NH})$, $6.03(1 \mathrm{H}, \mathrm{t}, J 8, \mathrm{C} H \mathrm{Ph}), 5.36(1 \mathrm{H}, \mathrm{m},=\mathrm{CH}), 2.09\left(1 \mathrm{H}, \mathrm{q}, J 8, \mathrm{CH}_{2} \mathrm{Me}\right), 1.93(3 \mathrm{H}, \mathrm{d}, J 1$, $M e \mathrm{C}=$) and $1.03\left(3 \mathrm{H}, \mathrm{t}, J 8, \mathrm{CH}_{2} \mathrm{Me}\right)$; $\delta_{\mathrm{C}} 166.3(\mathrm{CO}), 142.4$ (4ry), 142.0 (4ry), 134.4 ($\mathrm{C}=\mathrm{CH}$), 131.4, 128.6 (2 C), 128.5 (2 C), 127.1, 126.9 (2 C), 126.5 (2 C), 122.7, 51.4 (CHPh), 25.5 $\left(\mathrm{CH}_{2} \mathrm{Me}\right), 16.9(=\mathrm{CHMe})$ and $12.4\left(\mathrm{CH}_{2} \mathrm{Me}\right)$.

There was also a trace of what is likely to be an isomer of 5-isobutyl-2,4-diphenyloxazoline.

b) at $450{ }^{\circ} \mathrm{C}$

A sample of compound $\mathbf{3 8 6}(700 \mathrm{mg}, 2.167 \mathrm{mmol})$ was subjected to FVP at $550{ }^{\circ} \mathrm{C}$ and 6×10^{-3} Torr. The crude product (640 mg) was distilled to give both diastereomers of 1 -acetyl-2-s-butyl-3-phenylaziridine 417 (146 mg, 24\%, 18\% d.e.); (Found: $\mathrm{M}+\mathrm{H}^{+}, 280.1709$. $\mathrm{C}_{19} \mathrm{H}_{21}$ NO requires $\left.M+H, 280.1701\right) ; m / z 280\left(\mathrm{M}+\mathrm{H}^{+}, 100 \%\right)$;

1st diastereomer; $\delta_{\mathrm{H}} 7.91(2 \mathrm{H}, \mathrm{d}$, arom.), $7.59-7.10(8 \mathrm{H}, \mathrm{m}$, arom. $), 3.60(1 \mathrm{H}, \mathrm{d}, J 6,3-\mathrm{H})$, $3.17(1 \mathrm{H}, \mathrm{dd}, J 10,6,2-\mathrm{H}), 1.69\left(1 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}\right), 1.31\left(1 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}\right), 1.10\left(1 \mathrm{H}, \mathrm{m}, \mathrm{CH}\right.$ of $\left.\mathrm{Bu}^{\mathrm{s}}\right)$, 1.08 ($3 \mathrm{H}, \mathrm{d}, J 7, \mathrm{CHMe}$) and $0.51\left(3 \mathrm{H}, \mathrm{t}, J 7, \mathrm{CH}_{2} \mathrm{Me}\right)$; $\delta_{\mathrm{C}} 180.4$ (CO), 135.4 (4ry), 130.6 (4ry), 130.5, 129.4 (2 C), 129.1, 128.8 (2 C), 128.7 (2 C), 127.9 (2 C), 50.2 (C-3), 46.7 (C-2), $32.6(\mathrm{CHMe}), 27.4\left(\mathrm{CH}_{2} \mathrm{Me}\right), 18.7(\mathrm{CHMe})$ and $11.7\left(\mathrm{CH}_{2} \mathrm{Me}\right)$.

2nd diastereomer; $\delta_{\mathrm{H}} 7.91(2 \mathrm{H}, \mathrm{d}$, arom.), 7.59-7.10 ($8 \mathrm{H}, \mathrm{m}$, arom.), $3.57(1 \mathrm{H}, \mathrm{d}, J 6,3-\mathrm{H}$), $3.16(1 \mathrm{H}, \mathrm{dd}, J 10,6,2-\mathrm{H}), 1.64\left(1 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}\right), 1.40\left(1 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}\right), 1.10\left(1 \mathrm{H}, \mathrm{m}, \mathrm{CH}\right.$ of $\left.\mathrm{Bu}^{\mathrm{s}}\right)$, $0.91\left(3 \mathrm{H}, \mathrm{t}, J 7, \mathrm{CH}_{2} \mathrm{Me}\right)$ and $0.55(3 \mathrm{H}, \mathrm{d}, J 7, \mathrm{CH} M e)$; $\delta_{\mathrm{C}} 180.1$ (CO), 135.1 (4ry), 133.2 (4ry), 130.5, 129.4 (2 C), 128.81 (2 C), 128.0 (2 C), 127.9 (2 C), 49.8 (C-3), 45.5 (C-2), 32.1 $(\mathrm{CHMe}), 28.7\left(\mathrm{CH}_{2} \mathrm{Me}\right), 16.4(\mathrm{CHMe})$ and $11.5\left(\mathrm{CH}_{2} \mathrm{Me}\right)$.

5. Pyrolysis of (2S, 4R)-3-benzoyl-2,4-diphenyl-1,3-oxazolidin-5-one 387

a) at $550{ }^{\circ} \mathrm{C}$

A sample of compound $387(573.9 \mathrm{mg}, 1.67 \mathrm{mmol})$ was subjected to FVP at $550{ }^{\circ} \mathrm{C}$ and 8×10^{-3} Torr. ${ }^{1} \mathrm{H}$ NMR of the crude product ($410 \mathrm{mg}, 82 \%$) showed it to be a mixture of cis-2,4,5-triphenyloxazoline 419 and trans-2,4,5-triphenyloxazoline 418 in a ratio of approximately $1: 2$. These were separated by column chromatography [alumina, pet ether-ether (6:4)]. Compound 75 was recrystallised from dichloromethane and ether.

418; (197.6 mg, 40\%); $[\alpha]_{D}^{20} 0.0$ (c 1, CHCl_{3}); mp 110-112 ${ }^{\circ} \mathrm{C}$ (Found C, 84.1; H, 5.7; N, 4.6. $\mathrm{C}_{23} \mathrm{H}_{17} \mathrm{NO}_{3}$ requires $\mathrm{C}, 85.4 ; \mathrm{H}, 5.3 ; \mathrm{N}, 4.3 \%$); $v_{\text {max }} / \mathrm{cm}^{-1} 3686,3055,1649,1604,1581,1495$, $1451,1325,1261,1177,1086,1065,969,894,765,752,736,724,705$ and $694 ; \delta_{\mathrm{H}} 8.2-8.1$ (2 H, m, aromatic), $7.5-6.9(13 \mathrm{H}, \mathrm{m}$, aromatic), $5.42(1 \mathrm{H}, \mathrm{d}, J 8,5-\mathrm{H})$ and $5.25(1 \mathrm{H}, \mathrm{d}, J 8,4-\mathrm{H})$ [lit. ${ }^{120 ~ 8.15-8.12(2 ~ H), ~ 7.49-7.13(13 ~ H), ~} 5.41(1 \mathrm{H}, \mathrm{d}, J 8, \mathrm{OCH})$ and $5.23(1 \mathrm{H}, \mathrm{d}, J 8$, $\mathrm{NCH})] ; \delta_{\mathrm{C}} 164.5(\mathrm{CN}), 142.4$ (4ry), 140.9 (4ry), 132.2, 129.4 (2 C), 129.3 (2 C), 129.1 (2 C), 128.9 (2 C), 128.9, 128.2, 127.9 (4ry), 127.2 (2 C), 126.1 (2 C), 89.4 (C-5) and 79.4 (C-4); m / z $300\left(\mathrm{M}+\mathrm{H}^{+}, 100 \%\right)$.

419; ($58.7 \mathrm{mg}, 12 \%$); $[\alpha]_{\mathrm{D}}^{20} 0.0\left(\mathrm{c} 1, \mathrm{CHCl}_{3}\right) ; \delta_{\mathrm{H}} 8.2-8.1(2 \mathrm{H}, \mathrm{m}$, aromatic), $7.5-6.9(13 \mathrm{H}, \mathrm{m}$, aromatic), $6.03(1 \mathrm{H}, \mathrm{d}, J 10,5-\mathrm{H})$ and $5.77(1 \mathrm{H}, \mathrm{d}, J 10,4-\mathrm{H})$ [lit. ${ }^{69} 8.21-8.17(2 \mathrm{H})$, 7.55-6.92 (13 H), $6.03(1 \mathrm{H}, \mathrm{d})$ and $5.76(1 \mathrm{H}, \mathrm{d})] ; \delta_{\mathrm{C}} 165.4(\mathrm{CN}), 138.1$ (4ry), 136.9 (4ry), 136.9 (4ry), 132.2, 129.0 (2 C), 129.0 (2 C), 128.3 (2 C), 128.1 (2 C), 128.1 (2 C), 127.8, 127.4, 126.7 (2 C), $85.7(\mathrm{C}-5)$ and $74.8(\mathrm{C}-4) ; m / z 300\left(\mathrm{M}+\mathrm{H}^{+}, 100 \%\right)$ and $226(83)$.

b) at $500{ }^{\circ} \mathrm{C}$

A sample of compound $387(101 \mathrm{mg}, 0.294 \mathrm{~mol})$ was subjected to FVP at $500{ }^{\circ} \mathrm{C}$ and $6-10 \times 10^{-3}$ Torr. The crude product ($37 \mathrm{mg}, 0.125 \mathrm{~mol}, 43 \%$) showed ${ }^{1} \mathrm{H}$ NMR signals indicating the presence of four compounds which in decreasing order of amount were 418, 419, cis-1-benzoyl-2,3-diphenylaziridine $\mathbf{4 2 0}$ and trans-1-benzoyl-2,3-diphenylaziridine 421. 420; $\delta_{\mathrm{H}} 8.2-6.9(15 \mathrm{H}, \mathrm{m})$ and $4.08(2 \mathrm{H}, \mathrm{s}, \mathrm{CH})\left[\mathrm{lit} .{ }^{9} 8.1-7.3(15 \mathrm{H}, \mathrm{m})\right.$ and $\left.4.10(2 \mathrm{H}, \mathrm{s})\right]$.

421; δ_{H} 8.2-6.9 $(15 \mathrm{H}, \mathrm{m})$ and $3.97(2 \mathrm{H}, \mathrm{s}, \mathrm{CH})\left[\mathrm{lit} .{ }^{9} 8.0-7.4(15 \mathrm{H}, \mathrm{m})\right.$ and $\left.4.00(2 \mathrm{H}, \mathrm{s})\right]$.

c) at $450{ }^{\circ} \mathrm{C}$

A further sample of compound $387(106 \mathrm{mg}, 0.309 \mathrm{mmol})$ was subjected to FVP at 450 ${ }^{\circ} \mathrm{C}$ and 1×10^{-2} Torr. From ${ }^{1} \mathrm{H}$ integration the resulting crude product ($33 \mathrm{mg}, 36 \%$) was found to be $\mathbf{4 1 8}, \mathbf{4 2 0}, 419$ and $\mathbf{4 2 1}$ in a ratio of 4:4:2:1 along with some of starting material, spectra as above.

d) at $400{ }^{\circ} \mathrm{C}$

A sample of compound $387(122 \mathrm{mg}, 0.356 \mathrm{mmol})$ was subjected to FVP at $400{ }^{\circ} \mathrm{C}$ and $6-10 \times 10^{-3}$ Torr. Analysis by ${ }^{1} \mathrm{H}$ NMR showed the products of the reaction to be mainly unreacted 387, but traces of $\mathbf{4 2 0}$ and 421 were observed.

6. Pyrolysis of (2R, 4S)-3-acetyl-4-methyl-2-phenyl-1,3-oxazolidin-5-one 388

a) at $550{ }^{\circ} \mathrm{C}$

A sample of compound $388(2.00 \mathrm{~g}, 9.132 \mathrm{mmol})$ was subjected to FVP at $550^{\circ} \mathrm{C}$ and 1 $\times 10^{-2}$ Torr. The resulting crude product was a mixture of cis-2,4-dimethyl-5-phenyloxazoline 423 (15\%) and trans-2,4-dimethyl-5-phenyloxazoline 424 (9\%), 3-acetamido-3-phenylprop-1ene 425 (44%) and a trace of 1-acetyl-2-methyl-3-phenylaziridine 422 (7\%). Yields were calculated from ${ }^{1} \mathrm{H}$ NMR using acetone as an internal standard.

423, $\delta_{\mathrm{H}} 7.5-7.1(5 \mathrm{H}, \mathrm{m}$, arom. $)$, $5.56(1 \mathrm{H}, \mathrm{d}, J 10,5-\mathrm{H}), 4.38(1 \mathrm{H}, \mathrm{m}, 4-\mathrm{H}), 2.08(3 \mathrm{H}, \mathrm{d}, J 1$, 2-Me) and $0.75(3 \mathrm{H}, \mathrm{d}, J 7,4-\mathrm{Me})$ [lit. ${ }^{122} 7.37-7.26(3 \mathrm{H}, \mathrm{m}), 7.20-7.15(2 \mathrm{H}, \mathrm{m}), 5.57(1 \mathrm{H}$, d, $J 9.77), 4.45-4.37(1 \mathrm{H}, \mathrm{m}), 2.10(3 \mathrm{H}, \mathrm{d}, J 1.46)$ and $0.76(3 \mathrm{H}, \mathrm{d}, J 7.33)] ; \delta_{\mathrm{C}} 163.7(\mathrm{CN})$, 136.4 (4ry), 127.3, 126.9 (2 C), 125.5 (2 C), 83.5 (C-5), 64.3 (C-4), 17.3 (2-Me) and 13.4 (4Me) [lit. ${ }^{122} 164.0,137.1,128.3,127.8,126.1,84.0,65.5,17.8$ and 14.1].

424, $\delta_{\mathrm{H}} 7.5-7.1(5 \mathrm{H}, \mathrm{m}$, arom.) , $4.90(1 \mathrm{H}, \mathrm{d}, J 8,5-\mathrm{H}), 3.97(1 \mathrm{H}, \mathrm{m}, 4-\mathrm{H}), 2.05(3 \mathrm{H}, \mathrm{d}, J 1,2-$ $\mathrm{Me})$ and $1.36(3 \mathrm{H}, \mathrm{d}, J 7,4-\mathrm{Me})$ [good agreement with lit. ${ }^{123}$]; $\delta_{\mathrm{C}} 163.5(\mathrm{CN}), 139.9$ (4ry), 128.5 (2 C), 128.2, 125.3 (2 C), 87.7 (C-5), $69.8(\mathrm{C}-4), 20.9(2-\mathrm{Me})$ and 12.1 (4-Me) [good agreement with lit. ${ }^{123}$].

425, $\delta_{\mathrm{H}} 7.5-7.1\left(5 \mathrm{H}, \mathrm{m}\right.$, arom.), 6.07-5.9 (1 H , ddd, $\left.J 16,10,5, \mathrm{CH}=\mathrm{CH}_{2}\right), 5.63(1 \mathrm{H}, \mathrm{t}, J 5$, $\mathrm{CH}-\mathrm{N}), 5.23\left(1 \mathrm{H}, \mathrm{d},=\mathrm{CH}_{2}\right)$ and $5.16\left(1 \mathrm{H}, \mathrm{d},=\mathrm{CH}_{2}\right)$ and $1.96(3 \mathrm{H}, \mathrm{s}, \mathrm{MeCO})$ [lit. ${ }^{124}$ 7.40-7.22 (5 H), $6.01\left(1 \mathrm{H}, \operatorname{ddd}, J 17,10,5, \mathrm{CH}=\mathrm{CH}_{2}\right), 5.80(1 \mathrm{H}, \mathrm{br}, \mathrm{NH}), 5.64(1 \mathrm{H}, \mathrm{m}$, $\mathrm{PhC} H), 5.26\left(1 \mathrm{H}, \mathrm{dt}, J 10,1, \mathrm{CH}=\mathrm{CH}_{(Z)}\right), 5.22\left(1 \mathrm{H}, \mathrm{dt}, J 17,1.5, \mathrm{CH}=\mathrm{CH}_{(E)}\right)$ and $2.03(3 \mathrm{H}, \mathrm{s}$, NCOMe)]; $\delta_{\mathrm{C}} 169.2$ (CO), 140.4 (4ry), 137.2 (CH=), 128.0 (2 C), 127.8, 126.8 (2 C), 115.1 $\left(=\mathrm{CH}_{2}\right), 54.7(\mathrm{CH})$ and $22.5(\mathrm{Me}) ; m / z 176\left(\mathrm{M}+\mathrm{H}^{+}, 66 \%\right)$ and $134(84)$.

Chromatographic separation gave 422 ($80 \mathrm{mg}, 5 \%$), 425 ($355 \mathrm{mg}, 22 \%$) (Found: $\mathrm{M}+\mathrm{H}^{+}, 176.1067 . \mathrm{C}_{11} \mathrm{H}_{14} \mathrm{NO}$ requires $M+\mathrm{H}^{+}, 176.1075$); and 2-acetamido-1-phenylpropanol ($470 \mathrm{mg}, 27 \%$).
major isomer: $\delta_{\mathrm{H}} 7.35-7.05(5 \mathrm{H}, \mathrm{m}$, arom. $), 6.02(1 \mathrm{H}, \mathrm{d}, J 9, \mathrm{NH}), 4.80(1 \mathrm{H}, \mathrm{d}, J 3,1-\mathrm{H}), 4.17$ $(1 \mathrm{H}, \mathrm{m}, 2-\mathrm{H}), 3.60(1 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{OH}), 1.86(3 \mathrm{H}, \mathrm{s}, \mathrm{MeCO})$ and $0.92(3 \mathrm{H}, \mathrm{d}, J 7,2-\mathrm{Me}) ; \delta_{\mathrm{C}} 170.4$ (CO), 141.1 (4ry), 127.6 (2 C), 126.7, 125.7 (2 C), 75.1 (CHPh), 50.7 (CHMe), 22.6 (MeCO) and $13.0(2-\mathrm{Me})$.
minor isomer: $\delta_{\mathrm{H}} 7.35-7.05(5 \mathrm{H}, \mathrm{m}$, arom. $), 6.02(1 \mathrm{H}, \mathrm{d}, J 9, \mathrm{NH}), 4.52(1 \mathrm{H}, \mathrm{d}, J 5,1-\mathrm{H}), 4.11$ $(1 \mathrm{H}, \mathrm{m}, 2-\mathrm{H}), 3.60(1 \mathrm{H}, \mathrm{br} s, \mathrm{OH}), 1.80(3 \mathrm{H}, \mathrm{s}, \mathrm{MeCO})$ and $1.05(3 \mathrm{H}, \mathrm{d}, 2-\mathrm{Me}) ; \delta_{\mathrm{C}} 170.8$ (CO), 141.8 (4ry), 127.7 (2 C), 127.0, 126.0 (2 C), 76.2 (CHPh), 51.0 (CHMe), 22.5 (MeCO) and 17.1 (2-Me).

b) at $500{ }^{\circ} \mathrm{C}$

A sample of compound $\mathbf{3 8 8}(200 \mathrm{mg}, 9.12 \mathrm{mmol})$ was subjected to FVP at $500{ }^{\circ} \mathrm{C}$ and 1 $\times 10^{-2}$ Torr. The resulting crude product (175 mg) was a mixture of 422 (see below for data), 423, 424, 425 and starting material 388.

c) at $450{ }^{\circ} \mathrm{C}$

A sample of compound $\mathbf{3 8 8}(2.23 \mathrm{~g}, 10.18 \mathrm{mmol})$ was subjected to FVP at $450{ }^{\circ} \mathrm{C}$ and 1 $\times 10^{-2}$ Torr. The resulting crude product after distillation was found to be the starting material 388 (1.51 g, 64\%) and 1-acetyl-2-methyl-3-phenylaziridine 422; (222 mg, 12\%); $[\alpha]_{D}^{20} \quad-22.7$ (c 1, $\left.\mathrm{CHCl}_{3}\right) ; \delta_{\mathrm{H}} 7.4-7.28(5 \mathrm{H}, \mathrm{m}$, arom. $), 3.62(1 \mathrm{H}, \mathrm{d}, J 6,3-\mathrm{H}), 2.89(1 \mathrm{H}$, quintet, $J 6,2-\mathrm{H})$,
$2.21(3 \mathrm{H}, \mathrm{s}, \mathrm{MeCO})$ and $1.02(3 \mathrm{H}, \mathrm{d}, J 6,2-\mathrm{Me}) ; \delta_{\mathrm{C}} 183.2(\mathrm{CO}), 134.5$ (4ry), 128.0 (2 C), 127.3 (2 C), 126.4, 42.7 (C-3), $38.9(\mathrm{C}-2), 23.0(\mathrm{MeCO})$ and $12.4(\mathrm{Me})$.

c) at $600{ }^{\circ} \mathrm{C}$

A sample of compound $\mathbf{3 8 8}(100 \mathrm{mg}, 0.46 \mathrm{mmol})$ was subjected to FVP at $450{ }^{\circ} \mathrm{C}$ and 5 $\times 10^{-2}$ Torr. The resulting crude product $(72 \mathrm{mg}, 89 \%)$ was found to be a mixture of $\mathbf{4 2 5}, 423$ and 424 in a $4: 3: 2$ ratio.

7. Pyrolysis of (2R,4S)-3-acetyl-4-isopropyl-2-phenyl-1,3-oxazolidin-5-one 389

a) at $550{ }^{\circ} \mathrm{C}$

A sample of compound $389(506 \mathrm{mg})$ was subjected to FVP at $550{ }^{\circ} \mathrm{C}$ and 8×10^{-3} Torr. The resulting product was chromatographed [alumina, ether-pet ether (1:1)]. The major product appeared to be a single isomer of 4-isopropyl-2-methyl-5-phenyloxazoline 426 (61.8 $\mathrm{mg}, 15 \%), \delta_{\mathrm{H}} 7.4-7.2(5 \mathrm{H}, \mathrm{m}$, aromatic), $5.07(1 \mathrm{H}, \mathrm{d}, J 8,5-\mathrm{H}), 3.81(1 \mathrm{H}, \mathrm{t}, J 8,4-\mathrm{H}), 2.08$ (3 $\mathrm{H}, \mathrm{d}, J 1,2-\mathrm{Me}), 1.82\left(1 \mathrm{H}, \mathrm{m}, \mathrm{C} H \mathrm{Me}_{2}\right), 1.01\left(3 \mathrm{H}, \mathrm{d}, J 7, \mathrm{CH} M e_{2}\right)$ and $0.95(3 \mathrm{H}, \mathrm{d}, J 7$, CHMe 2).

b) at $450{ }^{\circ} \mathrm{C}$

A sample of compound $\mathbf{3 8 9}(2.75 \mathrm{~g}, 11.13 \mathrm{mmol})$ was subjected to FVP at $450{ }^{\circ} \mathrm{C}$ and 8 $\times 10^{-3}$ Torr. The resulting product was Kugelrohr distilled to give a single isomer of 1-acetyl-2-isopropyl-3-phenylaziridine 427 ($517 \mathrm{mg}, 23 \%, 16 \%$ ee); $[\alpha]_{\mathrm{D}}^{20}-26.3$ (c 1, CHCl_{3}) (Found: $\mathrm{M}+\mathrm{H}^{+}$, 204.1383. $\mathrm{C}_{13} \mathrm{H}_{17} \mathrm{NO}$ requires $M+\mathrm{H}^{+}, 204.1388$); $v_{\max } / \mathrm{cm}^{-1} 2962,1700,1468,1454$, 1427, 1367, 1314, 1269, 1278, 1230, 1090, 1032, 763 and $701 ; \delta_{\mathrm{H}} 7.4-7.2(5 \mathrm{H}, \mathrm{m}$, aromatic), $3.67(1 \mathrm{H}, \mathrm{d}, J 6,3-\mathrm{H}), 2.42(1 \mathrm{H}, \mathrm{dd}, J 9,6,2-\mathrm{H}), 2.19(3 \mathrm{H}, \mathrm{s}, M e \mathrm{CO}), 1.22-1.08(1 \mathrm{H}, \mathrm{m}$, $\left.C H \mathrm{Me}_{2}\right) 1.12\left(3 \mathrm{H}, \mathrm{s}, \mathrm{Me} e_{2} \mathrm{CH}\right)$ and $0.70\left(3 \mathrm{H}, \mathrm{d}, J 6, M e_{2} \mathrm{CH}\right) ; \delta_{\mathrm{C}} 183.8$ (CO), 135.3 (4ry), 128.9 (2 C), 127.8, 127.7 (2 C), 51.1 (C-3), 43.6 (C-2) $26.8\left(\mathrm{Me}_{2} \mathrm{CH}\right), 23.6$ (MeCO), 21.4 $\left(M e_{2} \mathrm{CH}\right)$ and $\left.19.0 \mathrm{Me}_{2} \mathrm{CH}\right)$); $m / z 203\left(\mathrm{M}^{+}, 2 \%\right), 160$ (67), 146 (7), 114 (51), 106 (14), 100 (11), 91 (20), 77 (15), 72 (100), 55 (23) and 43 (27).

8. Pyrolysis of (2R, 4S)-3-acetyl-4-benzyl-2-phenyl-1,3-oxazolidin-5-one 390

a) at $550{ }^{\circ} \mathrm{C}$

A sample of compound $\mathbf{3 9 0}(1.01 \mathrm{~g}, 3.42 \mathrm{mmol})$ was subjected to FVP at $550{ }^{\circ} \mathrm{C}$ and 7 $\times 10^{-3}$ Torr. The crude product $(0.746 . \mathrm{g}, 87 \%)$ was found to be a mixture of cis-4-benzyl-2-methyl-5-phenyloxazoline 428, trans-4-benzyl-2-methyl-5-phenyloxazoline 429 and N-(1,3-diphenylprop-2-enyl)acetamide 430 in a ratio of approximately 10:9:3. Both of these oxazolines hydrolysed during column chromatography $\left[\mathrm{SiO}_{2}\right.$, ether-n-hexane (8:92)]. cis-4-benzyl-2-methyl-5-phenyloxazoline 428; $\delta_{\mathrm{H}} 7.34-6.94(10 \mathrm{H}, \mathrm{m}$, arom.), $5.55(1 \mathrm{H}, \mathrm{d}, J$ $10,5-\mathrm{H}), 4.62(1 \mathrm{H}, \mathrm{m}, 4-\mathrm{H}), 2.41\left(1 \mathrm{H}\right.$, A part of $\left.\mathrm{ABX}, J_{\mathrm{AB}} 14, J_{\mathrm{AX}} 5, \mathrm{CH}_{2} \mathrm{Ph}\right), 2.30(1 \mathrm{H}, \mathrm{B}$ part of $\left.\mathrm{ABX}, J_{\mathrm{AB}} 14, J_{\mathrm{AX}} 6, \mathrm{CH}_{2} \mathrm{Ph}\right)$ and $2.09(3 \mathrm{H}, \mathrm{d}, J 1,2-\mathrm{Me})$ [lit. ${ }^{125} \delta_{\mathrm{H}}$ (DMSO) 7.50 and $7.40(10 \mathrm{H}, 2 \times \mathrm{s}$, arom. $)$, $5.70(1 \mathrm{H}, \mathrm{d}, J 7,5-\mathrm{H}), 4.20-3.80(1 \mathrm{H}, \mathrm{m}, 4-\mathrm{H}), 2.82\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}\right)$ and $2.10(3 \mathrm{H}, \mathrm{s}, 2-\mathrm{Me})$]; $\delta_{\mathrm{C}} 163.6(\mathrm{CN}), 137.7$ (4ry), 135.4 (4ry), 127.5 (2 C), 127.2 (2 C), $127.0(2 \mathrm{C}), 126.7,126.5,126.1(2 \mathrm{C}), 82.7(\mathrm{C}-5), 69.7(\mathrm{C}-4), 37.4\left(\mathrm{CH}_{2}\right)$ and $13.0(2-\mathrm{Me})$. trans-4-benzyl-2-methyl-5-phenyloxazoline 429; $\delta_{\mathrm{H}} 7.34-6.94(10 \mathrm{H}, \mathrm{m}$, arom.), $5.07(1 \mathrm{H}, \mathrm{d}, J$ $6,5-\mathrm{H}), 4.20(1 \mathrm{H}, \mathrm{m}, 4-\mathrm{H}), 3.15\left(1 \mathrm{H}\right.$, A part of ABX, $\left.J_{\mathrm{AB}} 14, J_{\mathrm{AX}} 6, \mathrm{CH}_{2} \mathrm{Ph}\right), 2.75(1 \mathrm{H}$, B part of $\left.\mathrm{ABX}, J_{\mathrm{AB}} 14, J_{\mathrm{AX}} 8, \mathrm{CH}_{2} \mathrm{Ph}\right)$ and $2.07(3 \mathrm{H}, \mathrm{d}, J 1,2-\mathrm{Me}) ; \delta_{\mathrm{C}} 163.4(\mathrm{CN}), 139.7$ (4ry), 137.3 (4ry), 127.9 (2 C), 127.8 (2 C), 127.4 (2 C), 126.8 (2 C), 126.6, 126.4, 83.9 (C-5), 75.1 $(\mathrm{C}-4), 40.8\left(\mathrm{CH}_{2}\right)$ and $13.1(2-\mathrm{Me})$.
N-(1,3-diphenylprop-2-enyl)acetamide 430; $\delta_{\mathrm{H}} 7.34-6.94(10 \mathrm{H}, \mathrm{m}$, arom.), $6.47(1 \mathrm{H}, \mathrm{br}, \mathrm{NH})$, $6.41(1 \mathrm{H}, \mathrm{dd}, J 16,1,=\mathrm{CHPh}), 6.20(1 \mathrm{H}, \mathrm{dd}, J 16,6, \mathrm{CH}=\mathrm{CHPh}), 5.78(1 \mathrm{H}, \operatorname{ddd}, J 8,6,1$, NCHPh) and 1.97 ($3 \mathrm{H}, \mathrm{s}, \mathrm{MeCO}$); $\delta_{\mathrm{C}} 168.3$ (CO), 139.8, (4ry), 137.9 (4ry), 130.2, 128.5, 127.70 (2 C), 127.65 (2 C), 125.5 (2 C), 125.4 (2 C), 124.9, 124.0, 53.7 (NCHPh) and 22.2 (COMe).

b) at $450{ }^{\circ} \mathrm{C}$

A sample of compound $390(3.07 \mathrm{~g})$ was subjected to FVP at $450{ }^{\circ} \mathrm{C}$ and 1×10^{-3} Torr. The crude product was Kugelrohr distilled to give a single isomer of 1-acetyl-2-benzyl-3phenylaziridine $431(0.324 \mathrm{~g}, 12 \%)$; $[\alpha]_{\mathrm{D}}^{20} \quad-5.7$ (c 1, CHCl_{3}); (Found: $\mathrm{M}+\mathrm{H}^{+}, 252.1380$.
$\mathrm{C}_{17} \mathrm{H}_{17} \mathrm{NO}$ requires $M+H, 252.1388$); $v_{\max } / \mathrm{cm}^{-1} 3317,3085,3062,3029,1952,1885,1801$, $1700,1604,1544,1496,1453,1369,1280,1280,1230,1179,1088,1030,966,918,748$ and $701 ; \mathrm{m} / \mathrm{z} 252\left(\mathrm{M}+\mathrm{H}^{+}, 100 \%\right) ; \delta_{\mathrm{H}} 7.4-7.1(10 \mathrm{H}, \mathrm{m}$, aromatic), $3.73(1 \mathrm{H}, \mathrm{d}, J 6,3-\mathrm{H}), 2.97$ (1 $\mathrm{H}, \mathrm{q}, J 6,2-\mathrm{H}), 2.62$ and $2.53\left(2 \mathrm{H}, \mathrm{AB}\right.$ pattern of d, $\left.J 12,6, \mathrm{CH}_{2} \mathrm{Ph}\right)$ and $2.01(3 \mathrm{H}, \mathrm{s}, \mathrm{MeCO})$; $\delta_{\mathrm{C}} 183.3$ (CO), 138.0 (4ry), 134.5 (4ry), 128.7, 128.4, 128.2, 127.7, 127.5, 126.6, 44.7, 43.1, $33.4\left(\mathrm{CH}_{2}\right)$ and $23.1(\mathrm{MeCO})$.

9. Pyrolysis of (2R,4S,2'S)-3-acetyl-4-s-butyl-2-phenyl-1,3-oxazolidin-5-one 391

 a) at $550{ }^{\circ} \mathrm{C}$A sample of compound 391 ($645 \mathrm{mg}, 2.471 \mathrm{mmol}$) was subjected to FVP at $550{ }^{\circ} \mathrm{C}$ and 9×10^{-3} Torr. The crude product ($445 \mathrm{mg}, 83 \%$)was chromatographed [alumina, ether-pet ether (1:1)]. This gave (i) two diastereomers of 4-s-butyl-2-methyl-5-phenyloxazoline 432 (134 $\mathrm{mg}, 25 \%$) and (ii) N-(3-methyl-1-phenylpent-2-enyl)acetamide 433 ($120 \mathrm{mg}, 22 \%$).

4-s-butyl-2-methyl-5-phenyloxazoline 432; (134 mg, 25\%); m/z 217 (${ }^{+}$, 3\%), 174 (100), 146 (23), 128 (6), 118 (11), 106 (46), 91 (55), 86 (11), 77 (10) and 43 (29).

1st diastereomer; $\delta_{\mathrm{H}} 7.35-7.08(5 \mathrm{H}, \mathrm{m}$, aromatic), $5.00(1 \mathrm{H}, \mathrm{d}, J 7,5-\mathrm{H}), 3.850(1 \mathrm{H}, \mathrm{t}, J 7,4-$ H), $2.01(3 \mathrm{H}, \mathrm{d}, J 1,2-\mathrm{Me}), 1.66-1.08\left(3 \mathrm{H}, 2 \times \mathrm{m}, \mathrm{CH}_{2} \mathrm{Me}\right.$ and $\left.C H \mathrm{Me}\right), 0.83(3 \mathrm{H}, \mathrm{d}, J 7$, $\mathrm{CH} M e)$ and $0.82\left(3 \mathrm{H}, \mathrm{t}, \mathrm{J} 7, \mathrm{CH}_{2} \mathrm{Me}\right)$; $\delta_{\mathrm{C}} 163.4(\mathrm{CN}), 141.6$ (4ry), $128.7(2 \mathrm{C}), 128.1(2 \mathrm{C})$, 125.8, 83.1 (C-5), $79.3(\mathrm{C}-4), 39.1(2-\mathrm{Me}), 35.8(\mathrm{CHMe}), 25.6\left(\mathrm{CH}_{2}\right), 14.5(\mathrm{CHMe})$ and 11.5 $\left(\mathrm{CH}_{2} \mathrm{Me}\right)$.

2nd diastereomer; $\delta_{\mathrm{H}} 7.35-7.08(5 \mathrm{H}, \mathrm{m}$, aromatic), $4.99(1 \mathrm{H}, \mathrm{d}, J 7,5-\mathrm{H}), 3.854(1 \mathrm{H}, \mathrm{t}, J 7,4-$ H), $2.01(3 \mathrm{H}, \mathrm{d}, J 1,2-\mathrm{Me}), 1.66-1.08\left(3 \mathrm{H}, 2 \times \mathrm{m}, \mathrm{CH}_{2} \mathrm{Me}\right.$ and CHMe$), 0.87(3 \mathrm{H}, \mathrm{d}, J 7$, $\mathrm{CH} M e)$ and $0.83\left(3 \mathrm{H}, \mathrm{t}, \mathrm{J} 7, \mathrm{CH}_{2} \mathrm{Me}\right)$; $\delta_{\mathrm{C}} 163.6(\mathrm{CN}), 141.6$ (4ry), $128.7(2 \mathrm{C}), 128.1$ (2 C), 125.8, 84.0 (C-5), 79.3 (C-4), 39.3 (2-Me), 36.3 (CHMe), $25.7\left(\mathrm{CH}_{2}\right), 13.9$ (CHMe), 11.7 $\left(\mathrm{CH}_{2} \mathrm{Me}\right)$.

The diastereomeric excess of the oxazolines was calculated directly from the ${ }^{1} \mathrm{H}$ NMR spectrum to be 12%.
(E / Z)- N -(3-methyl-1-phenylpent-2-enyl)acetamide 433 ; ($120 \mathrm{mg}, 22 \%$) (Found: $\mathrm{M}+\mathrm{Na}^{+}$, 240.1358. $\mathrm{C}_{14} \mathrm{H}_{19} \mathrm{NO}$ requires $\left.M+\mathrm{Na}^{+}, 240.1364\right) ; \delta_{\mathrm{H}} 7.28-7.06(5 \mathrm{H}$, m, aromatic), 6.59 (1
$\mathrm{H}, \mathrm{d}, J 8, \mathrm{NH}), 5.72(1 \mathrm{H}, \mathrm{t}, J 8, \mathrm{CHPh}), 5.18(1 \mathrm{H}, \mathrm{m}, \mathrm{CH}=\mathrm{C}), 2.06^{*}\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}\right), 1.94(2 \mathrm{H}$, $\left.\mathrm{q}, J 7, \mathrm{CH}_{2}\right), 1.83(3 \mathrm{H}, \mathrm{s}, 2-\mathrm{Me}), 1.82^{*}(3 \mathrm{H}, \mathrm{s}, 2-\mathrm{Me}), 1.64(3 \mathrm{H}, \mathrm{d}, J 1, M e \mathrm{C}=), 1.63^{*}(3 \mathrm{H}, \mathrm{d}$, $J 1, M e \mathrm{C}=), 0.91\left(3 \mathrm{H}, \mathrm{t}, J 7, \mathrm{CH}_{2} \mathrm{Me}\right)$ and $0.89^{*}\left(3 \mathrm{H}, \mathrm{t}, J 7, \mathrm{CH}_{2} M e\right)$; $\delta_{\mathrm{C}} 169.7(\mathrm{CO}), 169.6^{*}$ (CO), 143.0* (4ry), 142.9 (4ry), 141.6* (4ry), 141.5 (4ry), 128.9, 127.4, 126.9, 124.5, 123.4, 51.4 (CHPh), 51.1* (CHPh), 32.6* $\left(\mathrm{CH}_{2} \mathrm{Me}\right)$, $25.8\left(\mathrm{CH}_{2} \mathrm{Me}\right)$, $23.6(\mathrm{COMe})$, 23.3* (=CMe), $17.2(=\mathrm{CMe}), 13.1^{*}\left(\mathrm{CH}_{2} \mathrm{Me}\right)$, and $12.8\left(\mathrm{CH}_{2} \mathrm{Me}\right)$.

After approximately two weeks the oxazolines had begun to hydrolyse to 2-acetamido-3-methyl-1-phenylpentan-1-ol; $m / z 258\left(\mathrm{M}+\mathrm{Na}^{+}, 100 \%\right)$.

1st diastereomer; $\delta_{\mathrm{H}} 7.39-7.21(5 \mathrm{H}, \mathrm{m}$, aromatic), $5.85(1 \mathrm{H}, \mathrm{d}, J 9, \mathrm{NH}), 4.93(1 \mathrm{H}, \mathrm{d}, J 4$, CHPh), 3.78 (1 H , ddd, $J 9,8,4, \mathrm{CHNH}$), $1.88(3 \mathrm{H}, \mathrm{s}, \mathrm{COMe}), 1.73(1 \mathrm{H}, \mathrm{m}, \mathrm{CHMe}), 1.56(1$ $\left.\mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}\right), 1.17\left(1 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}\right), 1.03(3 \mathrm{H}, \mathrm{d}, J 7, C \mathrm{HMe})$ and $0.89\left(3 \mathrm{H}, \mathrm{t}, J 7, \mathrm{CH}_{2} \mathrm{Me}\right)$. 2nd diastereomer; $\delta_{\mathrm{H}} 7.39-7.21(5 \mathrm{H}, \mathrm{m}$, aromatic), $5.82(1 \mathrm{H}, \mathrm{d}, J 9, \mathrm{NH}), 4.79(1 \mathrm{H}, \mathrm{d}, J 6$, CHPh), 3.78 ($1 \mathrm{H}, \mathrm{dt}, J 9,6, \mathrm{CHNH}$), $1.95(3 \mathrm{H}, \mathrm{s}, \mathrm{COMe}), 1.58(1 \mathrm{H}, \mathrm{m}, C H \mathrm{Me}), 1.54(1 \mathrm{H}, \mathrm{m}$, $\left.\mathrm{CH}_{2}\right), 1.12\left(1 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}\right), 0.90(3 \mathrm{H}, \mathrm{d}, J 7, \mathrm{CHMe})$ and $0.88\left(3 \mathrm{H}, \mathrm{t}, J 7, \mathrm{CH}_{2} \mathrm{Me}\right)$.

b) at $450{ }^{\circ} \mathrm{C}$

A sample of compound $391(2.15 \mathrm{~g}, 8.24 \mathrm{mmol})$ was subjected to FVP at $450{ }^{\circ} \mathrm{C}$ and 1 $\times 10^{-3}$ Torr. The resulting product was Kugelrohr distilled to give 1-acetyl-2-s-butyl-3phenylaziridine $434(0.517 \mathrm{~g}, 29 \%$, d.e. $14 \%)$; $[\alpha]_{\mathrm{D}}^{20}-30.8\left(\mathrm{c} \mathrm{1}, \mathrm{CHCl}_{3}\right)$; (Found: $\mathrm{M}+\mathrm{H}^{+}$, 218.1554. $\mathrm{C}_{14} \mathrm{H}_{20} \mathrm{NO}$ requires $M+H$, 218.1545); $v_{\max } / \mathrm{cm}^{-1} 2963,2929,2876,1700,1457$, $1426,1376,1315,1279,1229,761$ and $701 ; m / z 218\left(\mathrm{M}+\mathrm{H}^{+}, 100 \%\right)$.

1st diastereomer; $\delta_{\mathrm{H}} 7.4-7.2(5 \mathrm{H}, \mathrm{m}$, aromatic), $3.66(1 \mathrm{H}, \mathrm{d}, J 6,3-\mathrm{H}), 2.52-2.44(1 \mathrm{H}, \mathrm{m}, 2-$ H), $2.18(3 \mathrm{H}, \mathrm{s}, \mathrm{MeCO}), 1.25-0.84\left(2 \mathrm{H}, 2 \times \mathrm{m}, \mathrm{CH}_{2} \mathrm{Me}\right), 1.07-0.85(1 \mathrm{H}, \mathrm{m}, \mathrm{CHMe}), 0.65(3$ $\mathrm{H}, \mathrm{d}, J 7, M e \mathrm{CH})$ and $0.61\left(3 \mathrm{H}, \mathrm{t}, J 7, \mathrm{MeCH}_{2}\right) ; \delta_{\mathrm{C}} 183.3(\mathrm{CO}), 134.8$ (4ry), 128.0, 127.33 (2 C), 127.29 (2 C), $50.0(\mathrm{C}-3), 43.5(\mathrm{C}-2), 31.9(\mathrm{MeCH}), 26.6\left(\mathrm{MeCH}_{2}\right), 23.2(\mathrm{MeCO}), 18.2$ (CHMe) and $11.0\left(\mathrm{CH}_{2} \mathrm{Me}\right)$.

2nd diastereomer: $\delta_{\mathrm{H}} 7.4-7.2(5 \mathrm{H}, \mathrm{m}$, aromatic), $3.62(1 \mathrm{H}, \mathrm{d}, J 6,3-\mathrm{H}), 2.52-2.44(1 \mathrm{H}, \mathrm{m}, 2-$ H), $2.17(3 \mathrm{H}, \mathrm{s}, \mathrm{MeCO}), 1.75-1.62\left(1 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{Me}\right), 1.45-1.30\left(1 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{Me}\right), 1.10(3 \mathrm{H}$,
d, $J 7, M e \mathrm{CH}), 1.07-0.85(1 \mathrm{H}, \mathrm{m}, \mathrm{CHMe})$ and $0.93\left(3 \mathrm{H}, \mathrm{t}, J 7, M e \mathrm{CH}_{2}\right) ; \delta_{\mathrm{C}} 183.1(\mathrm{CO}), 134.8$ (4ry), 127.9, 127.33 (2 C), 127.29 (2 C), $49.8(\mathrm{C}-3), 42.5(\mathrm{C}-2), 31.9(\mathrm{MeCH}), 28.0\left(\mathrm{MeCH}_{2}\right)$, $23.2(\mathrm{MeCO}), 15.3(\mathrm{CHMe})$ and $10.9\left(\mathrm{CH}_{2} \mathrm{Me}\right)$.
10. Pyrolysis of (2S, 4R)-3-acetyl-2,4-diphenyl-1,3-oxazolidin-5-one 392
a) at $550{ }^{\circ} \mathrm{C}$

A sample of compound $392(111 \mathrm{mg}, 0.395 \mathrm{mmol})$ was subjected to FVP at $550{ }^{\circ} \mathrm{C}$ and 1×10^{-2} Torr. Initially the crude product ($90 \mathrm{mg}, 96 \%$) was a mixture of cis-2-methyl-4,5diphenyloxazoline 437 and trans-2-methyl-4,5-diphenyloxazoline 438 in a ratio of 1:4, but these were found to slowly hydrolyse in air to 2-acetamido-1,2-diphenylethanols 439 and 440. 438; $\delta_{\mathrm{H}} 7.6-6.75(10 \mathrm{H}, \mathrm{m}$, aromatic), $5.24(1 \mathrm{H}, \mathrm{d}, J 8,5-\mathrm{H}), 5.02(1 \mathrm{H}, \mathrm{dq}, J 8,1,4-\mathrm{H})$ and $2.24(3 \mathrm{H}, \mathrm{d}, J 1,2-\mathrm{Me})$ [cf. lit. ${ }^{126}$ for trans; 7.6-7.2 ($10 \mathrm{H}, \mathrm{m}$, arom.), $5.20(1 \mathrm{H}, \mathrm{d}, J 7.6$, $\mathrm{CHO}), 5.00(1 \mathrm{H}, \mathrm{dq}, J 7.6,1.4)$ and $2.20(3 \mathrm{H}, \mathrm{d}, J 1.4, \mathrm{Me})]$.

437; $\delta_{\mathrm{H}} 7.6-6.75(10 \mathrm{H}, \mathrm{m}$, aromatic), $5.82(1 \mathrm{H}, \mathrm{d}, J 10,5-\mathrm{H}), 5.52(1 \mathrm{H}, \mathrm{dq}, 10,1,4-\mathrm{H})$ and 2.28 ($3 \mathrm{H}, \mathrm{d}, \mathrm{J} 1,2-\mathrm{Me}$).
$\left(1 R^{*}, 2 S^{*}\right)$-2-acetamido-1,2-diphenylethanol 440; $\delta_{\mathrm{H}} 7.37-7.12(10 \mathrm{H}, \mathrm{m}$, aromatic), $6.62(1 \mathrm{H}$, d, $J 8, \mathrm{NH}), 5.15(1 \mathrm{H}, \mathrm{dd}, J 8,5,2-\mathrm{H}), 4.92(1 \mathrm{H}, \mathrm{d}, J 5,1-\mathrm{H}), 3.53(1 \mathrm{H}, \mathrm{br}$ s, OH$)$ and $1.88(3$ $\mathrm{H}, \mathrm{s}, \mathrm{MeCO}$) [cf. lit. ${ }^{126}$ for ($1 R, 2 S$) 7.25 (arom.), 5.16 (dd, J 7.9, 4.7, CHO), 4.94 (d, J 4.7, CHN) and 1.9 (s, Me)].
$\left(1 S^{*}, 2 S^{*}\right)$-2-acetamido-1,2-diphenylethanol 439; $\delta_{\mathrm{H}} 7.05-6.92(10 \mathrm{H}, \mathrm{m}$, aromatic), $6.62(1 \mathrm{H}$, d, $J 8, \mathrm{NH}), 5.21(1 \mathrm{H}, \mathrm{dd}, J 8,3,2-\mathrm{H}), 5.00(1 \mathrm{H}, \mathrm{d}, J 3,1-\mathrm{H}), 3.53(1 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{OH})$ and $1.92(3$ $\mathrm{H}, \mathrm{s}, \mathrm{MeCO})$.

A further sample of $\mathbf{3 9 2}(327 \mathrm{mg}, 1.164 \mathrm{mmol})$ was subjected to FVP at $550{ }^{\circ} \mathrm{C}$ and $1 \times$ 10^{-2} Torr. The resulting crude product ($257 \mathrm{mg}, 93 \%$) was a mixture of cis- and trans-2-methyl-4,5-diphenyloxazoline in a ratio of 1:4. Disappointingly, column chromatography [alumina, ether-n-hexane (1:1)] resulted in a 2% total yield of the oxazolines.

b) at $450{ }^{\circ} \mathrm{C}$

A sample of compound $392(112 \mathrm{mg}, 0.473 \mathrm{mmol})$ was subjected to FVP at $450{ }^{\circ} \mathrm{C}$ and 1×10^{-2} Torr. The major product appeared to be a mixture of cis-1-acetyl-2,3diphenylaziridine 436 and trans-1-acetyl-2,3-diphenylaziridine 435; (Found: $\mathrm{M}+\mathrm{H}^{+}, 238.1240$. $\mathrm{C}_{16} \mathrm{H}_{15} \mathrm{NO}$ requires $\left.M+H, 238.1232\right) ; m / z 238\left(\mathrm{M}+\mathrm{H}^{+}, 100 \%\right)$. 436; $\delta_{\mathrm{H}} 7.5-7.0(10 \mathrm{H}, \mathrm{m}$, aromatic), $3.95(2 \mathrm{H}, \mathrm{s}, \mathrm{CH})$ and $2.28(3 \mathrm{H}, \mathrm{s}, \mathrm{MeCO})$. 435; $\delta_{\mathrm{H}} 7.5-7.0(10 \mathrm{H}, \mathrm{m}$, aromatic), $3.78(2 \mathrm{H}, \mathrm{s}, \mathrm{CH})$ and $1.85(3 \mathrm{H}, \mathrm{s}, \mathrm{MeCO})$.

There were no literature spectra available for comparison. Small amounts of oxazoline and starting material were also present.

A sample of compound $392(2.90 \mathrm{~g})$ was subjected to FVP at $450^{\circ} \mathrm{C}$ and 1×10^{-2} Torr. The crude product was left for two weeks before analysis and had been hydrolysed by air to give (1S, 2S)-2-acetamido-1,2-diphenylethanol $439(0.29 \mathrm{~g}, 11 \%),[\alpha]_{D}^{20}+18.46^{\circ}\left(\mathrm{c} \mathrm{1}, \mathrm{CHCl}_{3}\right)$; $\delta_{\mathrm{C}} 170.7$ (CO), 141.0 (4ry), 139.6 (4ry), 128.5, 128.2, 127.5, 127.0, 126.1, 59.7 (C-2), 53.5 (C1) and 23.0 (Me).

A sample of compound $392(2.60 \mathrm{~g})$ was subjected to FVP at $450^{\circ} \mathrm{C}$ and 1×10^{-3} Torr. The crude product was Kugelrohr distilled to give a mixture of trans-1-acetyl-2,3diphenyloxazoline 438 ($333 \mathrm{mg}, 15 \%$), cis-1-acetyl-2,3-diphenylaziridine 436 ($262 \mathrm{mg}, 12 \%$) and trans-1-acetyl-2,3-diphenylaziridine $\mathbf{4 3 5}(72 \mathrm{mg}, 3 \%)$ (see above for ${ }^{1} \mathrm{H}$ NMR spectra) . Identifiable ${ }^{13} \mathrm{C}$ NMR signals:

438, $\delta_{\mathrm{C}} 162.3(\mathrm{C}=\mathrm{N}), 142.3$ (4ry), 140.7 (4ry), 89.3 (C-5) and 78.9 (C-4);
$436 \delta_{\mathrm{C}} 183.5(\mathrm{CO}), 134.1$ (4ry) and 46.1 (C-2, C- 3);
435, $\delta_{\mathrm{C}} 180.1(\mathrm{CO})$ and 48.5 (C-2, C- 3).
11. Pyrolysis of (2R, 4S)-3-acetyl-2,4-diphenyl-1,3-oxazolidin-5-one 393
a) at $550{ }^{\circ} \mathrm{C}$

A sample of compound $393(502 \mathrm{mg}, 1.92 \mathrm{mmol})$ was subjected to FVP at $550^{\circ} \mathrm{C}$ and 3 $\times 10^{-3}$ Torr. The crude product ($390 \mathrm{mg}, 86 \%$), a $1: 5$ mixture of 437 and 438 was separated by column chromatography [alumina, ether-n-hexane (6:4)].
$437(2 \mathrm{mg}, 0.5 \%) ; \delta_{\mathrm{H}} 7.6-6.75(10 \mathrm{H}, \mathrm{m}$, aromatic), $5.82(1 \mathrm{H}, \mathrm{d}, J 10,5-\mathrm{H}), 5.52(1 \mathrm{H}, \mathrm{dq}, 10$, $1,4-\mathrm{H})$ and 2.28 ($3 \mathrm{H}, \mathrm{d}, \mathrm{J} 1,2-\mathrm{Me}$).

438 ($143 \mathrm{mg}, 32 \%$); $v_{\max } / \mathrm{cm}^{-1} 3434,3052,1667,1496,1449,1263$ and $1195 ; \delta_{\mathrm{H}} 7.6-6.75$ (10 H, m, aromatic), $5.24(1 \mathrm{H}, \mathrm{d}, J 8,5-\mathrm{H}), 5.02(1 \mathrm{H}, \mathrm{dq}, J 8,1,4-\mathrm{H})$ and $2.24(3 \mathrm{H}, \mathrm{d}, J 1,2-\mathrm{Me})$ [good agreement with lit. ${ }^{126}$]; $\delta_{\mathrm{C}} 165.7$ (CN), 142.3 (4ry), 140.7 (4ry), 129.3 (2 C), 129.2 (2 C), 128.8, 128.1, 126.9 (2 C), 126.1 (2 C), 89.3 (C-5) 78.9 (C-4) and 23.3 (2-Me); m/z 238 $\left(\mathrm{M}+\mathrm{H}^{+}, 100 \%\right)$ and 57 (44).

E. Hydrolysis of oxazolines to amino alcohols

A sample of compound $\mathbf{3 8 3}(202 \mathrm{mg})$ was subjected to FVP at $500{ }^{\circ} \mathrm{C}$ and 1×10^{-2} Torr. The resulting crude product (163 mg) consisting mainly of compounds 268 and 267 (see above) was heated under reflux with $\mathrm{HCl}\left(2.3 \mathrm{~cm}^{3}\right.$ of $\left.3 \mathrm{M}, 6.9 \mathrm{mmol}\right)$ and water $\left(20 \mathrm{~cm}^{3}\right)$ for 20 mins. The crude product ($434 \mathrm{mg}, 25 \%$) was a mixture of 2 isomers of 2-benzoylamino-1-phenylpropan-1-ol 472 and 473 in a ratio of approximately 10:1. This was chromatographed [silica, ether-pet ether, 9:1] to give $472(191 \mathrm{mg}, 11 \%)$ as colourless crystals; mp $143-145{ }^{\circ} \mathrm{C}$; $[\alpha]_{\mathrm{D}}^{20} 0.0\left(\mathrm{c} 1, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$ (Found: $\mathrm{M}+\mathrm{Na}^{+}$, 278.1152. $\mathrm{C}_{16} \mathrm{H}_{17} \mathrm{NO}_{2}$ requires $M+\mathrm{Na}$, 278.1157); $\delta_{\mathrm{H}} 7.73(2 \mathrm{H}, \mathrm{d}$, arom. $), 7.54-7.22(8 \mathrm{H}, \mathrm{m}, \operatorname{arom}),. 6.43(1 \mathrm{H}, \mathrm{d}, J 10, \mathrm{NH}), 4.96(1 \mathrm{H}, \mathrm{d}, J 2,1-$ H), $4.52(1 \mathrm{H}, \mathrm{m}, 2-\mathrm{H}), 3.61(1 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{OH})$ and $1.10(3 \mathrm{H}, \mathrm{d}, J 10, \mathrm{Me}) ; \delta_{\mathrm{C}} 168.5(\mathrm{CO}), 141.1$ (4ry), 134.6 (4ry), 132.1, 129.0 (2 C), 128.6 (2 C), $128.0,127.4$ (2 C), 126.7 (2 C), 76.9 (CHPh), $51.8(\mathrm{CHMe})$ and $14.9(\mathrm{Me}) ; m / z 278\left(\mathrm{M}+\mathrm{Na}^{+}, 100 \%\right)$.

Compound 473 was present in some fractions but never completely separated, δ_{H} $7.55-7.20(10 \mathrm{H}, \mathrm{m}, \operatorname{arom}),. 6.45(1 \mathrm{H}, \mathrm{d}, J 10, \mathrm{NH}), 4.73(1 \mathrm{H}, \mathrm{d}, J 6,1-\mathrm{H}), 4.38(1 \mathrm{H}, \mathrm{m}, 2-\mathrm{H})$ and $1.18(3 \mathrm{H}, \mathrm{d}, J 10, \mathrm{Me})$.

F. Attempted reactions of 1-acetyl-2-methyl-3-phenylaziridine

1. with maleic anhydride

A solution of 1-acetyl-2-methyl-3-phenylaziridine $\mathbf{4 2 2}$ [obtained from FVP of $\mathbf{3 8 8}$ as in section D] $(0.10 \mathrm{~g}, 0.57 \mathrm{mmol})$ and maleic anhydride $(0.056 \mathrm{~g}, 0.57 \mathrm{mmol})$ in toluene $\left(5 \mathrm{~cm}^{3}\right)$ was heated under reflux for 72 hours. The solvent was evaporated. ${ }^{1} \mathrm{H}$ NMR of the resulting product showed that the aziridine had reacted completely. The mass spectrum showed $\mathrm{m} / \mathrm{z} 325$ whereas 359 was the expected M^{+}. The aziridine had not reacted in the expected way and the identity of the product needs further study.

2. with DMAD

A solution of $422(0.10 \mathrm{~g}, 0.57 \mathrm{mmol})$ and DMAD $(0.081 \mathrm{~g}, 0.57 \mathrm{mmol})$ in toluene (5 cm^{3}) was heated under reflux for 72 hours. The solvent was evaporated and the ${ }^{1} \mathrm{H}$ NMR spectrum recorded. The aziridine was unreacted.

3. with dimethyl maleate

A solution of $422(0.0935 \mathrm{~g}, 0.53 \mathrm{mmol})$ and dimethyl maleate $(0.0795 \mathrm{~g}, 0.55 \mathrm{mmol})$ in toluene ($5 \mathrm{~cm}^{3}$) were heated under reflux for 72 hours. The solvent was evaporated. The ${ }^{1} \mathrm{H}$ NMR spectrum showed that the aziridine was unreacted.

4. with sodium iodide

A solution of $422(0.1853 \mathrm{~g} .1 .06 \mathrm{mmol})$ and sodium iodide $(0.1661 \mathrm{~g}, 1.06 \mathrm{mmol})$ in acetone $\left(15 \mathrm{~cm}^{3}\right)$ was heated under reflux for 22 hours. The solvent was evaporated. The ${ }^{1} \mathrm{H}$ NMR spectrum showed that the aziridine was unreacted.

5. with sulfuric acid

To a solution of $422(0.0824 \mathrm{~g} .0 .47 \mathrm{mmol})$ in ether $\left(20 \mathrm{~cm}^{3}\right)$ was added sulfuric acid conc. (1 drop). A white precipitate was formed instantly and filtered off. The ${ }^{1} \mathrm{H}$ NMR
spectrum showed that the aziridine had completely reacted but none of the expected products had formed. The spectrum was too complicated to interpret.

6. with trifluoroacetic acid

A solution of $422(0.1090 \mathrm{~g} .0 .61 \mathrm{mmol})$ and TFA $(0.0704 \mathrm{~g}, 0.61 \mathrm{mmol})$ in toluene (20 cm^{3}) was heated under reflux for 2 hours. The solution was evaporated and the residue analysed by NMR. ${ }^{1} \mathrm{H}$ NMR spectrum showed that the aziridine was completely reacted but none of the desired products had formed. The presence of 2 quartets in the ${ }^{13} \mathrm{C}$ NMR spectrum showed that there has been a trifluoro compound formed, $\delta_{\mathrm{C}} 162.2(\mathrm{q}, J 142)$ and $116.7(\mathrm{q}, J$ 1154).

7. with \boldsymbol{p}-toluenesulfonic acid

A solution of $422(0.1007 \mathrm{~g} .0 .57 \mathrm{mmol})$ and p-toluenesulfonic acid $(0.0951 \mathrm{~g}, 0.57$ mmol) in toluene ($20 \mathrm{~cm}^{3}$) was heated under reflux for 1 hour. The solution was evaporated and an ${ }^{1} \mathrm{H}$ NMR spectrum of the residue showed that the aziridine had completely reacted but none of the expected products had formed.

8. by refluxing in xylene

A solution of $422(0.1007 \mathrm{~g} .0 .57 \mathrm{mmol})$ in xylene $\left(10 \mathrm{~cm}^{3}\right)$ was heated under reflux for 1 hour. There was no reaction by TLC. A further 2 hours heating was required to react the aziridine completely but a ${ }^{1} \mathrm{H}$ NMR spectrum of the residue upon evaporation showed that none of the desired products had formed.

G. Synthesis of chiral \boldsymbol{N}-thioacyloxazolidin-5-ones from thiobenzoyl chloride

1. Preparation of phenylcarbodithioic acid 477^{127}

Magnesium turnings ($6.2 \mathrm{~g}, 0.26 \mathrm{~mol}$) were stirred in a dried 3-neck $500 \mathrm{~cm}^{3}$ flask fitted with a condenser and a dropping funnel under nitrogen with dry ether ($150 \mathrm{~cm}^{3}$). A little of a solution of bromobenzene $(40 \mathrm{~g}, 0.26 \mathrm{~mol})$ in dry ether $\left(50 \mathrm{~cm}^{3}\right)$ was added At this point the reaction did not begin so a small single crystal of iodine was added to initiate it. The remainder of the bromobenzene was added at such a rate as to keep the reaction going whilst not allowing it to become too vigorous. The resulting solution was cooled to $-20{ }^{\circ} \mathrm{C}$ and carbon disulfide ($19.3 \mathrm{~g}, 15.29 \mathrm{~cm}^{3}, 0.26 \mathrm{~mol}$) was added dropwise at a rate such that the reaction mixture did not boil. After 30 mins the mixture was slowly allowed to reach room temperature and then stirred for 12 hrs .

The mixture was again cooled to $-20^{\circ} \mathrm{C}$ and some ice was added. Both layers were transferred to a separating funnel along with some water and washings from the flask. At this stage the magnesium salt is mostly in the aqueous layer although both are a deep red colour. The organic layer was removed and the aqueous layer was washed with ether $\left(2 \times 40 \mathrm{~cm}^{3}\right)$.

The aqueous layer was acidified with $\mathrm{HCl}(\mathrm{aq})$ which led to precipitation of the product 477 as a violet-red, sharp smelling oil. This was extracted with ether $\left(3 \times 100 \mathrm{~cm}^{3}\right)$ and dried over magnesium sulfate. The solution was not fully evaporated but reduced to $80-100 \mathrm{~cm}^{3}$ to avoid decomposition. This could then be used directly for the next stage of the reaction.

2. Preparation of thiobenzoyl chloride $\mathbf{4 7 8}{ }^{128}$

The solution of carbodithioic acid from part 1 was stirred in a dried 3-neck flask fitted with a condenser and a dropping funnel under nitrogen. Thionyl chloride $\left(80 \mathrm{~g}, 49 \mathrm{~cm}^{3}, 0.67\right.$ mol) was added slowly through the dropping funnel and the vigorous reaction began with evolution of hydrogen chloride and sulfur dioxide. The mixture was heated under reflux for 7 hrs. The excess thionyl chloride and ether was evaporated off to give a red-brown liquid.

The liquid was then transferred to a flask for fractional distillation. The liquid was firstly distilled at $50^{\circ} \mathrm{C}$ under oil pump vacuum to remove any SOCl_{2} and a little $\mathrm{S}_{2} \mathrm{Cl}_{2}$. The
temperature was increased to $150^{\circ} \mathrm{C}$ and vigorous foaming occurred as the compound decomposed to give thiobenzoyl chloride and $\mathrm{S}_{2} \mathrm{Cl}_{2}$. The thiobenzoyl chloride condensed at room temperature while the $\mathrm{S}_{2} \mathrm{Cl}_{2}$ condensed separately in a cold trap (liquid N_{2}). The temperature was then increased to $200^{\circ} \mathrm{C}$ to distil over the remainder of the product $478(35 \mathrm{~g})$. Approximately $4 \mathrm{~cm}^{3}$ of $\mathrm{S}_{2} \mathrm{Cl}_{2}$ was obtained.

The thiobenzoyl chloride 478 was purified by distilling the product four times at the vacuum pump to give a deep violet, nasty smelling liquid. This was distilled carefully to avoid decomposition of the product to $\mathrm{S}_{2} \mathrm{Cl}_{2}$ and was stored under nitrogen until further use. The pure thiobenzoyl chloride boiled at $60-65^{\circ} \mathrm{C}$ and 0.2 mmHg as described in the literature. ${ }^{128}$

3. Attempted preparation of (2R,4S)-4-benzyl-2-phenyl-3-thiobenzoyl-1,3-oxazolidin-5-one 483

Following the literature procedure, ${ }^{112}(S)$-phenylalanine ($5.775 \mathrm{~g}, 35 \mathrm{mmol}$) was added to $\mathrm{NaOH}(\mathrm{aq})\left(1 \mathrm{~mol} \mathrm{dm}^{-3}, 35 \mathrm{~cm}^{3}\right)$ and ethanol $\left(1-2 \mathrm{~cm}^{3}\right)$ was added to obtain solution. The solvent was evaporated under reduced pressure until precipitation began. Benzaldehyde (3.71 g , $35 \mathrm{mmol})$ and $\mathrm{CH}_{2} \mathrm{Cl}_{2}\left(300 \mathrm{~cm}^{3}\right)$ were added and the mixture heated with azeotropic removal of water (inverted Dean and Stark trap) for 5-8 hours. The imine was formed as a white precipitate. The mixture was stirred at $0^{\circ} \mathrm{C}$ while a solution of thiobenzoyl chloride $(5.48 \mathrm{~g}, 35$ nimol) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ ($40 \mathrm{cmi}^{3}$) was added and the mixture was then stirred at room temperatue overnight. The turbid mixture was washed successively with water, $5 \% \mathrm{NaHCO}_{3}, 5 \% \mathrm{NaHSO}_{3}$ solutions and again with water. The solution was then dried using magnesium sulfate and evaporated under reduced pressure to give a red liquid. The liquid was allowed to stand for 14 hours and a yellow solid (360 mg) precipitated. This solid had a melting point of $114-116{ }^{\circ} \mathrm{C}$ and was highly insoluble. This solid was assumed to be sulfur. The ${ }^{1} \mathrm{H}$ NMR spectrum of the red liquid showed that none of the desired product had formed.

H. Synthesis of chiral N-thioacyloxazolidin-5-ones

1. Preparation of (2R,4S)-4-methyl-2-phenyl-3-thiobenzoyl-1,3-oxazolidin-5-one 481

A solution of compound $383(3.00 \mathrm{~g}, 10.7 \mathrm{mmol})$ and Lawesson's reagent $(2.16 \mathrm{~g}, 5.3$ mmol) in toluene ($120 \mathrm{~cm}^{3}$) was heated under reflux for 3 hours. The solution was allowed to cool and the by-product of Lawesson's reagent precipitated out along with unreacted Lawesson's reagent. The precipitate was filtered off at the water pump and the solvent was removed under reduced pressure. The crude product was recrystallised from $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and pet ether to give $481(2.49 \mathrm{~g}, 79 \%)$ as pale yellow crystals, $\mathrm{mp} 159-161{ }^{\circ} \mathrm{C}$; $[\alpha]_{\mathrm{D}}^{20} \quad+591$ (c=1, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$); (Found C, 67.9; H, 4.6; N, 4.6. $\mathrm{C}_{17} \mathrm{H}_{15} \mathrm{NO}_{2} \mathrm{~S}$ requires $\mathrm{C}, 68.7 ; \mathrm{H}, 5.1 ; \mathrm{N}, 4.7 \%$); $v_{\max } / \mathrm{cm}^{-1} 1801,1447,1415,1359,1290,1278,1254,1215,1191,1029,1011,762,752,714$ and 693; $\delta_{\mathrm{H}} 7.60-6.70\left(10 \mathrm{H}, \mathrm{m}\right.$, arom.) , 7.44* and $6.67(1 \mathrm{H}, 2 \times \mathrm{s}, 2-\mathrm{H}), 5.42^{*}$ and $4.86(1$ $\mathrm{H}, 2 \times \mathrm{q}, J 7,4-\mathrm{H}), 1.90^{*}$ and $1.19(3 \mathrm{H}, 2 \times \mathrm{d}, J 7,4-\mathrm{Me}) ; \delta_{\mathrm{C}} 202.1^{*}$ and $200.5(\mathrm{CS}), 171.33^{*}$ and 171.27 (CO), 142.5 and 142.2^{*} (4ry), 135.5 and 134.6^{*} (4ry), 133.2*, 132.1, 130.6*, 129.9* (2 C), 129.8, 128.7 (2 C and $2 \mathrm{C}^{*}$), 128.6 (2 C), 128.2 (2 C), 127.2* (2 C), 126.5* (2 C), 126.0 (2 C), 93.3 and $92.8^{*}(\mathrm{C}-2), 56.8^{*}$ and 56.3 (C-4) and 18.0^{*} and 15.2 ($4-\mathrm{Me}$); m / z $297\left(\mathrm{M}^{+}, 55 \%\right), 242(6), 209(5), 191(26), 163(15), 130(17), 121(100), 105(73), 77$ (37) and 51 (13).

2. Preparation of ($2 R, 4 S$)-4-isopropyl-2-phenyl-3-thiobenzoyl-1,3-oxazolidin-5one 482

A solution of compound $384(3.00 \mathrm{~g}, 9.7 \mathrm{mmol})$ and Lawesson's reagent $(1.96 \mathrm{~g}, 4.9$ $\mathrm{mmol})$ in toluene $\left(120 \mathrm{~cm}^{3}\right)$ was heated under reflux for 3 hours. The solution was allowed to cool and the by-product of Lawesson's reagent precipitated out along with unreacted Lawesson's reagent. The precipitate was filtered off at the water pump and the solvent was removed under reduced pressure. The crude product was recrystallised from $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and pet
ether to give $482(1.90 \mathrm{~g}, 60 \%)$ as pale yellow crystals, $\mathrm{mp} 141-143{ }^{\circ} \mathrm{C}$; $[\alpha]_{\mathrm{D}}^{20} \quad+273(\mathrm{c}=1$, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$); (Found C, 70.6; H, 5.5; N, 4.3. $\mathrm{C}_{19} \mathrm{H}_{21} \mathrm{NO}_{2} \mathrm{~S}$ requires C, 70.1; H, 5.9; N, 4.3\%); $v_{\max } / \mathrm{cm}^{-1} 1794,1445,1422,1393,1360,1346,1305,1282,1264,1208,1181,1145,1126$, $1079,1021,1011,775,754,725$ and $699 ; \delta_{\mathrm{H}} 7.63-6.70(10 \mathrm{H}, \mathrm{m}$, arom. $), 7.20^{*}$ and $6.60(1 \mathrm{H}$, $2 \times \mathrm{s}, 2-\mathrm{H}), 5.42^{*}$ and $4.85(1 \mathrm{H}, 2 \times \mathrm{d}, J 7,4-\mathrm{H}), 3.25^{*}$ and $1.98\left(1 \mathrm{H}, 2 \times \mathrm{m}, \mathrm{CH}\right.$ of $\left.\mathrm{Pr}^{\mathrm{i}}\right)$, 1.35^{*} and $0.94\left(3 \mathrm{H}, 2 \times \mathrm{d}, J 7\right.$, Me of $\left.\mathrm{Pr}^{\mathrm{i}}\right), 1.19^{*}$ and $0.97\left(3 \mathrm{H}, 2 \times \mathrm{d}, J 7\right.$, Me of $\left.\mathrm{Pr}^{\mathrm{i}}\right)$; δ_{C} 202.4* and 201.0 (CS), 169.6* and 169.5 (CO), 143.4* and 142.6 (4ry), 136.3* and 135.4 (4ry), 131.3*, 130.3 (1 C and $1 \mathrm{C}^{*}$), $130.2,129.2$ (2 C), 129.1 (2 C), 128.7 (2 C and $2 \mathrm{C}^{*}$), 127.9* (2 C), 127.1 (2 C), 126.6* (2 C), 126.4* (2 C), 94.3* and 94.1 (C-2), 66.4* and 65.7 (C-4), 32.4 and $28.3\left(\mathrm{CH}\right.$ of $\left.\mathrm{Pr}^{\mathrm{i}}\right), 18.5^{*}$ and $18.3\left(\mathrm{Me}\right.$ of $\left.\mathrm{Pr}^{\mathrm{i}}\right), 17.1^{*}$ and $16.3\left(\mathrm{Me}^{\mathrm{Ce}} \mathrm{Pr}^{\mathrm{i}}\right) ; m / z$ $325\left(\mathrm{M}^{+}, 64 \%\right), 242(14), 219(65), 191(28), 158(63), 121(100), 105(59), 77(28)$ and 55 (15).

3. Preparation of ($2 R, 4 S$)-4-benzyl-2-phenyl-3-thiobenzoyl-1,3-oxazolidin-5-one 483

A solution of compound $385(3.52 \mathrm{~g}, 9.9 \mathrm{mmol})$ and Lawesson's reagent $(1.99 \mathrm{~g}, 4.9$ mmol) in toluene ($120 \mathrm{~cm}^{3}$) was heated under reflux for 3 hours. The solution was allowed to cool and the by-product of Lawesson's reagent precipitated out along with unreacted Lawesson's reagent. The precipitate was filtered off at the water pump and the solvent was removed under reduced pressure. The crude product was recrystallised from $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and ether to give $483(2.30 \mathrm{~g}, 62 \%)$ as yellow crystals, $\mathrm{mp} 134-136{ }^{\circ} \mathrm{C} ;[\alpha]_{\mathrm{D}}^{20} \quad+442\left(\mathrm{c}=1, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$; (Found C, 68.9; H, 4.8; N, 3.3. $\mathrm{C}_{23} \mathrm{H}_{19} \mathrm{NO}_{2}$ S requires $\mathrm{C}, 74.0 ; \mathrm{H}, 5.1 ; \mathrm{N}, 3.8 \%$); $v_{\max } / \mathrm{cm}^{-1}$ $1801,1417,1360,1347,1309,1290,1258,1213,1185,1164,1152,1042,1032,759,736,703$, 695 and $618 ; \delta_{\mathrm{H}} 7.70-6.90(11 \mathrm{H}, \mathrm{m}$, arom. $), 6.65(4 \mathrm{H}, \mathrm{m}$, arom. $), 6.40^{*}$ and $5.80(1 \mathrm{H}, 2 \times \mathrm{s}$, $2-\mathrm{H}), 5.68^{*}$ and $5.26(1 \mathrm{H}, 2 \times \mathrm{dd}, J 6,2,4-\mathrm{H}), 4.34\left(1 \mathrm{H}\right.$, A part of $\mathrm{ABX}, J_{\mathrm{AB}} 14, J_{\mathrm{AX}} 6$, $\left.\mathrm{CH}_{2} \mathrm{Ph}\right), 3.40\left(1 \mathrm{H}, \mathrm{B}\right.$ part of $\left.\mathrm{ABX}, J_{\mathrm{AB}} 14, J_{\mathrm{AX}} 2, \mathrm{CH}_{2} \mathrm{Ph}\right) ; \delta_{\mathrm{C}} 201.6(\mathrm{C}=\mathrm{S}), 170.5(\mathrm{C}=\mathrm{O})$, 142.5 (4ry), 135.3 (4ry), 134.9 (4ry), 130.3 (2×2 C), 130.2, 129.4 (3 C), 129.0 (2 C), 128.5 (2
C), 128.4, 127.1 (2 C), $93.9(\mathrm{C}-2), 61.8(\mathrm{C}-4)$ and $32.6\left(\mathrm{CH}_{2}\right) ; \mathrm{m} / \mathrm{z} 374\left(\mathrm{M}+\mathrm{H}^{+}, 100 \%\right), 268$ (10), 178 (8) and 107 (21).

4. Preparation of ($2 R, 4 S, 2$ 'S)-4-s-butyl-2-phenyl-3-thiobenzoyl-1,3-oxazolidin-5one 484

A solution of compound $386(2.5 \mathrm{~g}, 7.7 \mathrm{mmol})$ and Lawesson's reagent $(2.34 \mathrm{~g}, 5.8$ $\mathrm{mmol})$ in toluene $\left(120 \mathrm{~cm}^{3}\right)$ was heated under reflux for 3 hours. The solution was allowed to cool and the by-product of Lawesson's reagent precipitated out along with unreacted Lawesson's reagent. The precipitate was filtered off at the water pump and the solvent was removed under reduced pressure. The crude product (4.81 g) was recrystallised from $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and pet ether to give $484(2.49 \mathrm{~g}, 95 \%)$ as yellow crystals, mp $156-158{ }^{\circ} \mathrm{C} ;[\alpha]_{\mathrm{D}}^{20} \quad+240(\mathrm{c}=1$, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$); (Found C, 70.6; H, 6.1; N, 4.1. $\mathrm{C}_{20} \mathrm{H}_{21} \mathrm{NO}_{2} \mathrm{~S}$ requires $\mathrm{C}, 70.8 ; \mathrm{H}, 6.2 ; \mathrm{N}, 4.1 \%$); $v_{\max } / \mathrm{cm}^{-1} 1812,1447,1412,1365,1345,1306,1292,1258,1217,1174,1121,1023,1003,920$, 763,729 and $694 ; \delta_{\mathrm{H}} 7.58-6.70(10 \mathrm{H}, \mathrm{m}$, arom. $), 7.18^{*}$ and $6.59(1 \mathrm{H}, 2 \times \mathrm{s}, 2-\mathrm{H}), 5.52$ and 4.93* $(1 \mathrm{H}, 2 \times \mathrm{d}, J 3,4-\mathrm{H}), 3.00$ and $1.62^{*}\left(1 \mathrm{H}, 2 \times \mathrm{m}, \mathrm{CH}\right.$ of $\left.\mathrm{Bu}^{\mathrm{s}}\right), 1.88,1.70,1.48^{*}$ and 1.24* $\left(2 \mathrm{H}, 4 \times \mathrm{m}, \mathrm{CH}_{2}\right.$ of $\left.\mathrm{Bu}^{\mathrm{s}}\right), 1.18$ and $0.95^{*}\left(3 \mathrm{H}, 2 \times \mathrm{d}, J 7, M e \mathrm{CH}\right.$ of $\left.\mathrm{Bu}^{\mathrm{s}}\right), 1.13$ and $0.57^{*}\left(3 \mathrm{H}, 2 \times \mathrm{t}, J 7, M e \mathrm{CH}_{2}\right.$ of $\left.\mathrm{Bu}^{\mathrm{s}}\right) ; \delta_{\mathrm{C}} 201.7$ and 200.5* (CS), 169.2* and 169.1 (CO), 143.0 and 142.3^{*} (4ry), 135.9 and 135.0* (4ry), 130.7*, 129.8 (2 C), 129.7* (2 C), 128.7 (4 C), 128.2 (2 C and $1 \mathrm{C}^{*}$), 127.5* (2 C), 126.7* (4 C), 126.3, 126.0, 94.0 and 93.7* (C-2), 64.0 (C-4), 38.9* and $34.2\left(\mathrm{CH}\right.$ of $\left.\mathrm{Bu}^{\mathrm{s}}\right), 25.3$ and $24.9^{*}\left(\mathrm{CH}_{2}\right.$ of $\left.\mathrm{Bu}^{\mathrm{s}}\right), 14.6$ and 14.3* $(\mathrm{MeCH}$ of $\left.\mathrm{Bu}^{\mathrm{s}}\right)$ and 11.8 and $11.5^{*}\left(\mathrm{MeCH}_{2}\right) ; m / z 339\left(\mathrm{M}^{+}, 47 \%\right), 242(16), 233$ (47), 205 (24), 172 (38), 121 (100), 105 (62), 97 (15), 77(27) and 69 (22).

5. Preparation of ($2 R, 4 S$)-4-methyl-2-phenyl-3-thioacetyl-1,3-oxazolidin-5-one 485

A solution of compound $388(3.56 \mathrm{~g}, 16.2 \mathrm{mmol})$ and Lawesson's reagent $(3.28 \mathrm{~g}, 8.1$ $\mathrm{mmol})$ in toluene $\left(120 \mathrm{~cm}^{3}\right)$ was heated under reflux for 3 hours. The solution was allowed to cool and the by-product of Lawesson's reagent precipitated out along with unreacted

Lawesson's reagent. The precipitate was filtered off at the water pump and the solvent was removed under reduced pressure. The crude product was recrystallised from $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and pet ether to give $485(2.49 \mathrm{~g}, 65 \%)$ as pale yellow crystals, $\mathrm{mp} 116-118{ }^{\circ} \mathrm{C} ;[\alpha]_{\mathrm{D}}^{20}+120.6$ (c 1, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$); (Found C, 61.0; H, 5.4; N, 5.8. $\mathrm{C}_{12} \mathrm{H}_{13} \mathrm{NO}_{2}$ S requires $\mathrm{C}, 61.3 ; \mathrm{H}, 5.6 ; \mathrm{N}, 6.0 \%$); $v_{\max } / \mathrm{cm}^{-1} 1805,1429,1358,1331,1310,1279,1256,1202,1174,1124,1062,1040,992,782$, $773,718,702$ and $612 ; \delta_{\mathrm{H}} 7.20-7.25\left(5 \mathrm{H}, \mathrm{m}\right.$, arom.), 7.12^{*} and $6.70(1 \mathrm{H}, 2 \times \mathrm{k}, 2-\mathrm{H}), 5.17 *$ and $4.78(1 \mathrm{H}, 2 \times \mathrm{q}, J 7,4-\mathrm{H}), 2.74^{*}$ and $2.19(3 \mathrm{H}, 2 \times \mathrm{s}, \mathrm{MeCS}), 1.90^{*}$ and $1.85(3 \mathrm{H}, 2 \times \mathrm{d}$, $J 7,4-\mathrm{Me}) ; \delta_{\mathrm{C}} 199.643^{*}$ and $199.636(\mathrm{CS}), 171.2^{*}$ and $171.0(\mathrm{CO}), 135.5^{*}$ and 134.9 (4ry), 131.4, 131.2 (2 C), 130.0*, 129.7* (2 C), 128.7* (2 C), 126.9 (2 C), 93.1^{*} and 92.2 (C-2), 56.9* and 56.0 (C-4), 33.9* and $33.5(\mathrm{MeCS})$ and 19.2* and $15.5(4-\mathrm{Me}) ; m / z 235\left(\mathrm{M}^{+}\right.$, 70%), 219 (8), 180 (10), 132 (29), 129 (31), 105 (100), 101 (48), 89 (9), 77 (26), 68 (33), 59 (77), 51 (13) and 43 (29).

6. Attempted Preparation of (2R,4S)-4-isopropyl-2-phenyl-3-thioacetyl-1,3-oxazolidin-5-one 486

A solution of compound $389(3.01 \mathrm{~g}, 12.2 \mathrm{mmol})$ and Lawesson's reagent $(2.46 \mathrm{~g}, 6.1$ mmol) in toluene $\left(150 \mathrm{~cm}^{3}\right)$ was heated under reflux for 3 hours. The product (5.20 g) was recrystallised several times but was never pure enough for the messy ${ }^{1} \mathrm{H}$ NMR to be assigned. The reaction was repeated to no avail.

7. Preparation of ($2 R, 4 S$)-4-benzyl-2-phenyl-3-thioacetyl-1,3-oxazolidin-5-one 487

A solution of compound $390(3.50 \mathrm{~g}, 11.9 \mathrm{mmol})$ and Lawesson's reagent ($2.4 \mathrm{~g}, 5.9$ mmol) in toluene ($150 \mathrm{~cm}^{3}$) was heated under reflux for 3 hours. The solution was allowed to cool and the by-product of Lawesson's reagent precipitated out along with unreacted Lawesson's reagent. The precipitate was filtered off at the water pump and the solvent was removed under reduced pressure. The crude product was recrystallised from $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and ether
to give $487(3.03 \mathrm{~g}, 82 \%)$ as yellow crystals, mp $155-157{ }^{\circ} \mathrm{C} ;[\alpha]_{\mathrm{D}}^{20} \quad+223\left(\mathrm{c}=1, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$; (Found C, 69.1; H, 5.3; $\mathrm{N}, 4.4 . \mathrm{C}_{18} \mathrm{H}_{17} \mathrm{NO}_{2} \mathrm{~S}$ requires $\mathrm{C}, 69.4 ; \mathrm{H}, 5.5 ; \mathrm{N}, 4.5 \%$); $v_{\text {max }} / \mathrm{cm}^{-1}$ $1802,1494,1359,1350,1310,1266,1199,1159,1149,1121,1075,1037,1023,988,769,738$ and 703; $\delta_{\mathrm{H}} 7.46-7.10(10 \mathrm{H}, \mathrm{m}$, arom. $), 6.06^{*}$ and $5.60(1 \mathrm{H}, \mathrm{s}, 2-\mathrm{H}), 5.48^{*}$ and $5.12(1 \mathrm{H}, \mathrm{dt}$, $J, 4-\mathrm{H}), 4.49$ and $3.57^{*}\left(1 \mathrm{H}, \mathrm{A}\right.$ part of $\mathrm{ABX}, J_{\mathrm{AB}} 14, J_{\mathrm{AX}} 6$ and $\left.5^{*}, \mathrm{CH}_{2} \mathrm{Ph}\right), 3: 34^{*}$ and 3.19 $\left(1 \mathrm{H}, \mathrm{B}\right.$ part of $\left.\mathrm{ABX}, J_{\mathrm{AB}} 14, J_{\mathrm{AX}} 2, \mathrm{CH}_{2} \mathrm{Ph}\right), 2.86^{*}$ and $2.09(3 \mathrm{H}, \mathrm{s}, \mathrm{MeCS}) ; \delta_{\mathrm{C}} 199.8$ and 198.5* (CS), 169.8 and 169.7* (CO), 135.1 (4ry), 134.7* and 134.5 (4ry), 131.4* (2 C), 130.3* (2 C), 130.1 (2 C), 130.1*, 129.6*, 129.3, 129.0* (2 C), 128.2 (2 C), 128.2 (2 C), $127.5^{*}(2 \mathrm{C}), 127.1(2 \mathrm{C}), 126.5,93.9^{*}$ and $92.8(\mathrm{C}-2), 62.8$ and $62.0^{*}(\mathrm{C}-4), 37.8^{*}\left(\mathrm{CH}_{2}\right)$, 33.9* and $33.5(\mathrm{MeCS})$ and $32.1\left(\mathrm{CH}_{2}\right) ; m / z 312\left(\mathrm{M}+\mathrm{H}^{+}, 100 \%\right), 296(5), 268(6), 206(12)$, 190 (6), 107 (10) and 57 (32).

I. Flash Vacuum Pyrolysis of N-thioacyloxazolidin-5-ones

1. Pyrolysis of (2R,4S)-4-methyl-2-phenyl-3-thiobenzoyl-1,3-oxazolidin-5-one 481

a) at $550{ }^{\circ} \mathrm{C}$

A sample of $481(128 \mathrm{mg}, 0.43 \mathrm{mmol})$ was subjected to FVP at $550{ }^{\circ} \mathrm{C}$. and 6×10^{-3} Torr. The crude product was a yellow liquid ($98 \mathrm{mg}, 90 \%$). ${ }^{1} \mathrm{H}$ NMR analysis showed it to be a mixture of cis-4-methyl-2,5-diphenylthiazoline 490 and trans-4-methyl-2,5-diphenylthiazoline 491 in a ratio of 5:4.

490; $\delta_{\mathrm{H}} 7.57-7.02(10 \mathrm{H}, \mathrm{m}$, aromatic), $4.96(1 \mathrm{H}, \mathrm{d}, J 8,5-\mathrm{H}), 4.86(1 \mathrm{H}, \mathrm{m}, 4-\mathrm{H})$ and $1.16(3$ $\mathrm{H}, \mathrm{d}, J 7,4-\mathrm{Me}) ; \delta_{\mathrm{C}} 167.0(\mathrm{CN}), 138.0$ (4ry), 133.0 (4ry), 131.2, 128.44 (2 C), 128.42 (2 C), 128.3 (2 C), 128.2 (2 C), 127.7, 81.1 (C-5), 61.5 (C-4) and $16.5(\mathrm{Me})$.

491; $\delta_{\mathrm{H}} 7.55-7.00(10 \mathrm{H}, \mathrm{m}$, aromatic), $4.77(1 \mathrm{H}, \mathrm{m}, 4-\mathrm{H}), 4.61(1 \mathrm{H}, \mathrm{d}, J 6,5-\mathrm{H})$ and $1.45(3$ H, d, J 7, 4-Me) [lit., ${ }^{129} \delta_{\mathrm{H}} 7.88-7.80(2 \mathrm{H}, \mathrm{m}), 7.48-7.20(8 \mathrm{H}, \mathrm{m}), 4.80-4.78(1 \mathrm{H}, \mathrm{m}), 4.61(1$ $\mathrm{H}, \mathrm{d}, J 6)$ and $1.46(3 \mathrm{H}, \mathrm{d}, J 7)] ; \delta_{\mathrm{C}} 165.5(\mathrm{CN}), 141.2$ (4ry), 131.0 (4ry), 131.1, 128.7 (2 C), 128.3 (2 C), 128.2, 127.7 (2 C), 127.4 (2 C), 76.0 (C-5), 58.4 (C-4) and 20.0 (Me).

The ${ }^{1} \mathrm{H}$ NMR spectrum of this mixture ($94 \mathrm{mg}, 0.37 \mathrm{mmol}$) was recorded in the presence of praseodymium tris(heptafluorobutrylcamphorate) ($0.154 \mathrm{~g}, 0.173 \mathrm{mmol}$). Using the doublets at 4.96 and 4.61 ppm the enantiomeric excess was found to be 9% in each case.

2. Pyrolysis of (2R,4S)-4-isopropyl-2-phenyl-3-thiobenzoyl-1,3-oxazolidin-5-one 482

a) at $550{ }^{\circ} \mathrm{C}$

A sample of $482(758 \mathrm{mg}, 2.30 \mathrm{mmol})$ was subjected to FVP at $550{ }^{\circ} \mathrm{C}$ and 3×10^{-3} Torr. The crude product was a yellow liquid ($562 \mathrm{mg}, 87 \%$). ${ }^{1} \mathrm{H}$ NMR analysis showed it to be a mixture of cis-4-isopropyl-2,5-diphenylthiazoline 493 and trans-4-isopropyl-2,5diphenylthiazoline 494. This was separated by column chromatography [alumina, ether-nhexane (3:97)] to give:

493; ($181 \mathrm{mg}, 28 \%$); $[\alpha]_{\mathrm{D}}^{20}+11\left(\mathrm{c} 1, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) ; \delta_{\mathrm{H}} 7.85(2 \mathrm{H}, \mathrm{d}, J 7$, aromatic), $7.50-7.05(8 \mathrm{H}$, m , aromatic), $4.82(1 \mathrm{H}, \mathrm{d}, J 7,5-\mathrm{H}), 4.15(1 \mathrm{H}, \mathrm{dd}, J 10,7,4-\mathrm{H}), 1.87\left(1 \mathrm{H}, \mathrm{m}, \mathrm{CH}\right.$ of $\left.\operatorname{Pr}^{\mathrm{i}}\right), 1.30$
($3 \mathrm{H}, \mathrm{d} J 6$, Me of $\operatorname{Pr}^{\mathrm{i}}$) and $0.87\left(3 \mathrm{H}, \mathrm{d}, J 6, \mathrm{Me}\right.$ of $\left.\mathrm{Pr}^{\mathrm{i}}\right)$; $\delta_{\mathrm{C}} 167.2(\mathrm{CN}), 140.6$ (4ry), 134.0 (4ry), 131.6, 128.9 (2 C), 128.9 (2 C), 128.7 (2 C), 128.6 (2 C), 128.2, 89.1 (C-5), 57.4 (C-4), $29.9(\mathrm{CH}), 23.0(\mathrm{Me})$ and $21.0(\mathrm{Me}) ; m / z 282\left(\mathrm{M}+\mathrm{H}^{+}, 100 \%\right)$.

494; ($109 \mathrm{mg}, 17 \%$); $[\alpha]_{\mathrm{D}}^{20}-23\left(\mathrm{c} 1, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) ; \delta_{\mathrm{H}} 7.87(2 \mathrm{H}, \mathrm{m}$, aromatic), $7.52-7.18(8 \mathrm{H}, \mathrm{m}$, aromatic), $4.76(1 \mathrm{H}, \mathrm{d}, J 5,5-\mathrm{H}), 4.67(1 \mathrm{H}, \mathrm{t}, J 5,4-\mathrm{H}), 2.09\left(1 \mathrm{H}, \mathrm{m}, \mathrm{CH}\right.$ of $\left.\operatorname{Pr}^{\mathrm{i}}\right), 1.08(3 \mathrm{H}, \mathrm{d}$ $J 7, \mathrm{Me}$ of Pr^{i}) and 1.06 ($3 \mathrm{H}, \mathrm{d}, J 7$, Me of Pr^{i}); $\delta_{\mathrm{C}} 164.1(\mathrm{CN}$), 142.7 (4ry), 132.3 (4ry), $130.0,127.8(2 \mathrm{C}), 127.4(2 \times 2 \mathrm{C}), 126.43,126.39(2 \mathrm{C}), 91.5(\mathrm{C}-5), 55.2(\mathrm{C}-4), 32.3(\mathrm{CH})$, $18.5(\mathrm{Me})$ and $17.4(\mathrm{Me}) ; m / z 282\left(\mathrm{M}+\mathrm{H}^{+}, 100 \%\right)$.

The ${ }^{1} \mathrm{H}$ NMR spectrum of this mixture was recorded in the presence of varying amounts of praseodymium tris(heptafluorobutrylcamphorate) and europium tris(heptafluorobutrylcamphorate) but the e.e. could not be determined in either case.

3. Pyrolysis of ($2 R, 4 S$)-4-benzyl-2-phenyl-3-thiobenzoyl-1,3-oxazolidin-5-one 483

a) at $550{ }^{\circ} \mathrm{C}$

A sample of $\mathbf{4 8 3}(97 \mathrm{mg}, 0.26 \mathrm{mmol})$ was subjected to FVP at $550{ }^{\circ} \mathrm{C}$ and 6×10^{-3} Torr. The crude product ($71 \mathrm{mg}, 86 \%$) was a mixture of cis-4-benzyl-2,5-diphenylthiazoline 495 and trans-4-benzyl-2,5-diphenylthiazoline 496 in a $65: 35$ ratio, (Found: $\mathrm{M}+\mathrm{H}^{+}$, 330.1319. $\mathrm{C}_{22} \mathrm{H}_{19} \mathrm{NS}$ requires $\left.M+\mathrm{H}^{+}, 330.1316\right) ; m / z 330\left(\mathrm{M}+\mathrm{H}^{+}, 100 \%\right)$. Attempts to separate these using column chromatography on silica and alumina were both unsuccessful.

495; $\delta_{\mathrm{H}} 7.92$ ($2 \mathrm{H}, \mathrm{m}$, aromatic), $7.68-6.95(13 \mathrm{H}, \mathrm{m}$, aromatic), $4.98(1 \mathrm{H}, \mathrm{q}, J 8,4-\mathrm{H}), 4.83$ (1 $\mathrm{H}, \mathrm{d}, J 8,5-\mathrm{H}), 3.22$ and $2.71\left(2 \mathrm{H}, \mathrm{ABX}, J_{\mathrm{AB}} 14, J_{\mathrm{AX}} 8, \mathrm{CH}_{2} \mathrm{Ph}\right) ; \delta_{\mathrm{C}} 167.9(\mathrm{CN}), 139.7$ (4ry), 139.2 (4ry), 132.2 (4ry), $131.80,130.77,130.0,129.6$ (2 C), 129.0 ($2 \times 2 \mathrm{C}$), 128.9 (2 C), $128.8(2 \mathrm{C}), 126.6(2 \mathrm{C}), 82.5(\mathrm{C}-4), 57.7(\mathrm{C}-5)$ and $37.8\left(\mathrm{CH}_{2}\right)$.

496; $\delta_{\mathrm{H}} 7.92(2 \mathrm{H}, \mathrm{m}$, aromatic), $7.68-6.95(13 \mathrm{H}, \mathrm{m}$, aromatic), $5.03(1 \mathrm{H}, \mathrm{m}, 4-\mathrm{H}), 4.69(1 \mathrm{H}$, d, $J 4,5-\mathrm{H}), 3.22$ and $2.88\left(2 \mathrm{H}, \mathrm{ABX}, J_{\mathrm{AB}} 14, J_{\mathrm{AX}} 8, \mathrm{CH}_{2} \mathrm{Ph}\right) ; \delta_{\mathrm{C}} 166.9(\mathrm{CN}), 142.8$ (4ry), 138.4 (4ry), 133.7 (4ry), $129.6,129.4,129.2$ (2 C), 128.9 (2 C), 128.4 (2 C), 128.0 (2 C), 127.5 $(2 \mathrm{C}), 127.0,126.6(2 \mathrm{C}), 87.3(\mathrm{C}-4), 57.8(\mathrm{C}-5)$ and $40.4\left(\mathrm{CH}_{2}\right)$.

The ${ }^{1} \mathrm{H}$ NMR spectrum of this mixture was recorded in the presence of varying amounts of praseodymium tris(heptafluorobutrylcamphorate) and europium tris(heptafluorobutrylcamphorate) but the enantiomeric excess could not be determined in either case.

4. Pyrolysis of (2R,4S,2'S)-4-s-butyl-2-phenyl-3-thiobenzoyl-1,3-oxazolidin-5-one 484

a) at $550{ }^{\circ} \mathrm{C}$

A sample of $484(96 \mathrm{mg}, 0.28 \mathrm{mmol})$ was subjected to FVP at $550{ }^{\circ} \mathrm{C}$ and 5×10^{-3}
Torr. The crude product ($73 \mathrm{mg}, 88 \%$) was a mixture of cis-4-benzyl-2-s-butyl-5phenylthiazoline 496/497 and trans-4-benzyl-2-s-butyl-5-phenylthiazoline 498/499. This was separated by column chromatography [alumina, ether-n-hexane (6:94)] to give:
i) cis-4-s-butyl-2-methyl-5-phenylthiazoline ($20 \mathrm{mg}, 24 \%, 0 \%$ d.e.), (Found: $\mathrm{M}+\mathrm{H}^{+}, 296.1482$. $\mathrm{C}_{19} \mathrm{H}_{22} \mathrm{NS}$ requires $M+\mathrm{H}^{+}, 296.1473$); $m / z 295\left(\mathrm{M}^{+}, 13 \%\right), 264(10), 238(100), 210(28), 180$ (64), 165 (22), 158 (15), 144 (80), 105 (10), 91 (25) and 77 (16).

496; $\delta_{\mathrm{H}} 7.84(2 \mathrm{H}, \mathrm{m}$, aromatic), 7.48-7.02 ($8 \mathrm{H}, \mathrm{m}$, aromatic), $4.79(1 \mathrm{H}, \mathrm{d}, J 7,5-\mathrm{H}), 4.24$ (1 $\mathrm{H}, \mathrm{dd}, J 10,7,4-\mathrm{H}), 1.65\left(1 \mathrm{H}, \mathrm{m}, \mathrm{CH}\right.$ of $\left.\mathrm{Bu}^{\mathrm{s}}\right), 1.38\left(1 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}\right), 1.18(3 \mathrm{H}, \mathrm{d}, J 7, M e \mathrm{CH})$, $1.04\left(1 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}\right)$ and $0.67\left(3 \mathrm{H}, \mathrm{t}, J 7, M e \mathrm{CH}_{2}\right) ; \delta_{\mathrm{C}} 165.4(\mathrm{CN}), 139.3$ (4ry), 132.6 (4ry), 127.64 (2 C), 127.57, 127.44 (2 C), 127.39 (2 C), 126.70 (2 C), 126.6, 86.2 (C-5), 56.0 (C-4), $34.6\left(\mathrm{CH}\right.$ of $\left.\mathrm{Bu}^{\mathrm{s}}\right), 26.0\left(\mathrm{CH}_{2}\right), 17.2(\mathrm{MeCH})$ and $9.7\left(\mathrm{MeCH}_{2}\right)$.

497; $\delta_{\mathrm{H}} 7.84(2 \mathrm{H}, \mathrm{m}$, aromatic), $7.48-7.02(8 \mathrm{H}, \mathrm{m}$, aromatic), $4.72(1 \mathrm{H}, \mathrm{d}, J 7,5-\mathrm{H}), 4.16(1$ $\mathrm{H}, \mathrm{dd}, J 11,7,4-\mathrm{H}), 2.12\left(1 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}\right), 1.67\left(1 \mathrm{H}, \mathrm{m}, \mathrm{CH}\right.$ of $\left.\mathrm{Bu}^{\mathrm{s}}\right), 1.36\left(1 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}\right), 0.83(3$ $\left.\mathrm{H}, \mathrm{t}, J 7, M e \mathrm{CH}_{2}\right)$ and $0.77(3 \mathrm{H}, \mathrm{d}, J 7, M e \mathrm{CH}) ; \delta_{\mathrm{C}} 165.6(\mathrm{CN}), 139.0$ (4ry), 132.6 (4ry), 130.1, 127.44 (2 C), 127.30 (2 C), 127.28 (2 C), 127.2 (2 C), $126.65,85.8$ (C-5), 56.0 (C-4), 34.4 (CH of $\left.\mathrm{Bu}^{\mathrm{S}}\right)$, $27.5\left(\mathrm{CH}_{2}\right), 15.6(\mathrm{MeCH})$ and $9.9\left(\mathrm{MeCH}_{2}\right)$.
ii) trans-4-s-butyl-2-methyl-5-phenylthiazoline ($16 \mathrm{mg}, 19 \%, 37 \%$ d.e.), (Found: $\mathrm{M}+\mathrm{H}^{+}$, 296.1473. $\mathrm{C}_{19} \mathrm{H}_{22} \mathrm{NS}$ requires $\left.M+\mathrm{H}^{+}, 296.1473\right) ; \mathrm{m} / \mathrm{z} 296\left(\mathrm{M}+\mathrm{H}^{+}, 100 \%\right)$.

498; $\delta_{\mathrm{H}} 7.79(2 \mathrm{H}, \mathrm{m}$, aromatic), $7.46-7.04(8 \mathrm{H}, \mathrm{m}$, aromatic), $4.72(1 \mathrm{H}, \mathrm{s}, 5-\mathrm{H}), 4.72(1 \mathrm{H}, \mathrm{d}, J$ $10,4-\mathrm{H}), 3.05\left(1 \mathrm{H}, \mathrm{m}, \mathrm{CH}\right.$ of $\left.\mathrm{Bu}^{\mathrm{s}}\right), 1.88-1.52\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}\right), 1.42(3 \mathrm{H}, \mathrm{d}, J 7, \mathrm{MeCH})$ and
$0.94\left(3 \mathrm{H}, \mathrm{t}, \mathrm{J} \mathrm{7}, \mathrm{MeCH} \mathrm{C}_{2}\right) ; \delta_{\mathrm{C}}$ (identifiable signals) 164.2 (CN), 143.0 (4ry), 131.4 (4ry), 90.3 (C-5), $55.9(\mathrm{C}-4), 39.2\left(\mathrm{CH}\right.$ of $\left.\mathrm{Bu}^{\mathrm{s}}\right), 25.7\left(\mathrm{CH}_{2}\right), 13.6(\mathrm{MeCH})$ and $10.9\left(\mathrm{MeCH}_{2}\right)$. 499; $\delta_{\mathrm{H}} 7.79(2 \mathrm{H}, \mathrm{m}$, aromatic), $7.46-7.04(8 \mathrm{H}, \mathrm{m}$, aromatic), $4.67(1 \mathrm{H}, \mathrm{s}, 5-\mathrm{H}), 4.66(1 \mathrm{H}, \mathrm{d}, J$ $2,4-\mathrm{H}), 1.98\left(1 \mathrm{H}, \mathrm{m}, \mathrm{CH}\right.$ of $\left.\mathrm{Bu}^{\mathrm{s}}\right), 1.95-1.64\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}\right), 1.12(3 \mathrm{H}, \mathrm{d}, J 7, \mathrm{MeCH})$ and 1.11 $\left(3 \mathrm{H}, \mathrm{t}, \mathrm{J} 7, \mathrm{MeCH}_{2}\right)$; δ_{C} (identifiable signals) $164.0(\mathrm{CN}), 143.0$ (4ry), 134.2 (4ry), 90.4 (C-5), $54.3(\mathrm{C}-4), 39.0\left(\mathrm{CH}\right.$ of $\left.\mathrm{Bu}^{\mathrm{s}}\right), 24.6\left(\mathrm{CH}_{2}\right), 14.3(\mathrm{MeCH})$ and $10.8\left(\mathrm{MeCH}_{2}\right)$.

b) at $450{ }^{\circ} \mathrm{C}$

A sample of $484(100 \mathrm{mg}, 0.29 \mathrm{mmol})$ was subjected to FVP at $550{ }^{\circ} \mathrm{C}$ and 3×10^{-3} Torr. The crude product was a yellow solid (90 mg). ${ }^{1} \mathrm{H}$ NMR analysis showed this to consist mainly of the starting material 484 with only a trace of the 2-thiazolines.

5. Pyrolysis of (2R,4S)-4-methyl-2-phenyl-3-thioacetyl-1,3-oxazolidin-5-one 485

a) at $550{ }^{\circ} \mathrm{C}$

A sample of 485 ($99 \mathrm{mg}, 0.42 \mathrm{mmol}$) was subjected to FVP at $550{ }^{\circ} \mathrm{C}$ and 6×10^{-3} Torr. The crude product was a yellow liquid ($68 \mathrm{mg}, 85 \%$). ${ }^{1} \mathrm{H}$ NMR analysis showed it to be a mixture of cis-2,4-dimethyl-5-phenylthiazoline 501, trans-2,4-dimethyl-5-phenylthiazoline 502 and a trace of the vinyl compound 503. This was separated by column chromatography [alumina, ether-n-hexane (5:95)] to give:
$501(20 \mathrm{mg}, 25 \%)$; $\delta_{\mathrm{H}} 7.56-7.02(5 \mathrm{H}, \mathrm{m}$, arom.), $4.92(1 \mathrm{H}, \mathrm{d}, J 8,5-\mathrm{H}), 4.62(1 \mathrm{H}, \mathrm{m}, 4-\mathrm{H})$, 2.32 ($3 \mathrm{H}, \mathrm{s}, \mathrm{MeCO}$) and 1.03 ($3 \mathrm{H}, \mathrm{d}, J 7,4-\mathrm{Me}$); $\delta_{\mathrm{C}} 168.3(\mathrm{CN}), 139.1$ (4ry), 129.0, 128.7 (2 C), 128.7 (2 C), 75.9 (C-5), 60.1 (C-4), 20.9 (Me) and 16.9 (Me).
$502(12 \mathrm{mg}, 15 \%) ; \delta_{\mathrm{H}} 7.48-7.16(5 \mathrm{H}, \mathrm{m}$, arom. $), 4.65-4.44(2 \mathrm{H}, \mathrm{m}, 5-\mathrm{H}$ and $4-\mathrm{H}), 2.26(3 \mathrm{H}$, $\mathrm{s}, 2-\mathrm{Me})$ and 1.37 ($3 \mathrm{H}, \mathrm{d}, J 7,4-\mathrm{Me}$); $\delta_{\mathrm{C}} 164.7(\mathrm{CN}), 141.7$ (4ry), 129.2 (2 C), 128.1, 127.8 (2 C), 81.4 (C-5), 63.5 (C-4), $20.8(\mathrm{Me})$ and $20.5(\mathrm{Me})$.

503; $\delta_{\mathrm{H}} 7.73-6.89\left(5 \mathrm{H}, \mathrm{m}\right.$, aromatic), $6.17(1 \mathrm{H}$, br d, NH$), 5.99\left(1 \mathrm{H}\right.$, ddd, $\left.\mathrm{CH}=\mathrm{CH}_{2}\right)$, $5.62(1$ $\mathrm{H}, \mathrm{t}, \mathrm{CH}-\mathrm{N}), 5.21\left(2 \mathrm{H}, \mathrm{m},=\mathrm{CH}_{2}\right)$ and $1.99(3 \mathrm{H}, \mathrm{s}, \mathrm{COMe}) ; \delta_{\mathrm{C}}$ (selected signals) 139.1 (4ry), $137.6(=\mathrm{CH}), 116.2\left(\mathrm{CH}_{2}\right), 23.7(\mathrm{Me})$.

The ${ }^{1} \mathrm{H}$ NMR spectra of $\mathbf{5 0 1}$ and $\mathbf{5 0 2}$ were recorded in the presence of varying amounts of praseodymium tris(heptafluorobutrylcamphorate) and europium tris(heptafluorobutrylcamphorate) but the enantiomeric excess could not be determined in either case.

6. Pyrolysis of (2R,4S)-4-benzyl-2-phenyl-3-thioacetyl-1,3-oxazolidinis 5-one 487

a) at $550{ }^{\circ} \mathrm{C}$

A sample of $487(100 \mathrm{mg}, 0.32 \mathrm{mmol})$ was subjected to FVP at $550{ }^{\circ} \mathrm{C}$ and 4×10^{-3} Torr. The crude product ($75 \mathrm{mg}, 88 \%$) was assumed to be a mixture of cis-4-benzyl-2-methyl-5-phenylthiazoline 504 and trans-4-benzyl-2-methyl-5-phenylthiazoline 505. 504; $\delta_{\mathrm{H}} 7.53-6.92(10 \mathrm{H}, \mathrm{m}$, aromatic), $4.77(1 \mathrm{H}, \mathrm{m}, 4-\mathrm{H}), 4.75(1 \mathrm{H}, \mathrm{d}, J 7,5-\mathrm{H}), 3.04$ and $2.62\left(2 \mathrm{H}, \mathrm{ABX}, J_{\mathrm{AB}} 14, J_{\mathrm{AX}} 7, \mathrm{CH}_{2} \mathrm{Ph}\right)$ and $2.32(3 \mathrm{H}, \mathrm{d}, J 2,2-\mathrm{Me}) ; \delta_{\mathrm{C}} 167.2(\mathrm{CN}), 139.6$ (4ry), 139.2 (4ry), 129.9, 128.9 (2×2 C), 128.8 (2 C), 128.6 (2 C), 128.4, 82.0 (C-5), 59.2 (C4), $37.7\left(\mathrm{CH}_{2}\right)$ and $21.1(\mathrm{Me})$.
$505 ; \delta_{\mathrm{H}} 7.53-6.92(10 \mathrm{H}, \mathrm{m}$, aromatic $), 4.77(1 \mathrm{H}, \mathrm{m}, 4-\mathrm{H}), 4.59(1 \mathrm{H}, \mathrm{d}, J 4,5-\mathrm{H}), 3.09(1 \mathrm{H}, \mathrm{A}$ part of $\left.\mathrm{ABX}, J_{\mathrm{AB}} 14, J_{\mathrm{AX}} 5, \mathrm{CH}_{2} \mathrm{Ph}\right), 2.78\left(1 \mathrm{H}, \mathrm{B}\right.$ part of $\left.\mathrm{ABX}, J_{\mathrm{AB}} 14, J_{\mathrm{AX}} 7, \mathrm{CH}_{2} \mathrm{Ph}\right)$ and 2.28 ($3 \mathrm{H}, \mathrm{d}, J 1,2-\mathrm{Me}$); $\delta_{\mathrm{C}} 165.9(\mathrm{CN}), 142.9$ (4ry), 138.2 (4ry), 129.5, 128.4, 127.5 (2 C), $127.0(2 \mathrm{C}), 126.6(2 \mathrm{C}), 125.9(2 \mathrm{C}), 87.1(\mathrm{C}-5), 59.2(\mathrm{C}-4), 40.5\left(\mathrm{CH}_{2}\right)$ and $20.7(\mathrm{Me})$.

The ${ }^{1} \mathrm{H}$ NMR spectrum of this mixture was recorded in the presence of varying amounts of praseodymium tris(heptafluorobutrylcamphorate) and europium tris(heptafluorobutrylcamphorate) but the e.e. could not be determined in either case.

J. Preparation of Aziridines from Amino Alcohols

1. Attempted preparation of ($2 S, 3 S$)-2-methyl-3-phenylaziridine

To a cooled solution $\left(0^{\circ} \mathrm{C}\right)$ of $(1 R, 2 S)-(-)$-norephedrine $(3.00 \mathrm{~g}, 0.02 \mathrm{~mol})$ and triphenylphosphine ($5.25 \mathrm{~g}, 0.02 \mathrm{~mol}$) in ether $\left(100 \mathrm{~cm}^{3}\right)$ under nitrogen was slowly added diisopropyl azodicarboxylate ($95 \%, 4.26 \mathrm{~g}, 4.15 \mathrm{~cm}^{3}, 0.02 \mathrm{~mol}$) via a syringe stirring constantly. The ice bath was then removed and the solution was stirred for a further 10 hours. A crystalline precipitate (triphenylphosphine-DIAD complex) was filtered off and washed with n -hexane-ether ($1: 1,100 \mathrm{~cm}^{3}$). The filtrate was evaporated to give 2-methyl-3-phenylaziridine ($68 \mathrm{mg}, 8 \%$). In light of the poor yield obtained, the following procedure was attempted.

2. Attempted preparation of ($2 S, 3 S$)-2-methyl-3-phenylaziridine

To a cooled solution $\left(0^{\circ} \mathrm{C}\right)$ of $(1 R, 2 S)-(-)$-norephedrine $(3.00 \mathrm{~g}, 0.02 \mathrm{~mol})$, triphenylphosphine $(5.25 \mathrm{~g}, 0.02 \mathrm{~mol})$ and triethylamine $\left(8 \mathrm{~cm}^{3}\right)$ in tetrahydrofuran $\left(60 \mathrm{~cm}^{3}\right)$ under nitrogen was slowly added diisopropyl azodicarboxylate $\left(95 \%, 4.26 \mathrm{~g}, 4.15 \mathrm{~cm}^{3}, 0.02\right.$ mol) via a syringe stirring constantly. The ice bath was then removed and the solution was stirred for a further 10 hours. The crystalline by-product (triphenylphosphine-DIAD complex) was filtered off and washed with n-hexane-ether $\left(1: 1,100 \mathrm{~cm}^{3}\right)$. The filtrate was evaporated. A ${ }^{1} \mathrm{H}$ NMR spectrum showed that none of the correct product had formed.

3. Attempted Preparation of (2S)-2-benzylaziridine

To a cooled solution $\left(0^{\circ} \mathrm{C}\right)$ of (2S)-2-amino-3-phenylpropan-1-ol (3.00 g, 0.02 mol), triphenylphosphine ($5.25 \mathrm{~g}, 0.02 \mathrm{~mol}$) and triethylamine $\left(8 \mathrm{~cm}^{3}\right)$ in ether $\left(100 \mathrm{~cm}^{3}\right)$ under nitrogen was slowly added diisopropylazodicarboxylate ($95 \%, 4.26 \mathrm{~g}, 4.15 \mathrm{~cm}^{3}, 0.02 \mathrm{~mol}$) via a syringe stirring constantly. The ice bath was then removed and the solution was stirred for a further 2 days. The crystalline by-product (triphenylphosphine-DIAD complex) was filtered
off and washed with n-hexane-ether $\left(1: 1,100 \mathrm{~cm}^{3}\right)$. The filtrate was evaporated. A ${ }^{1} \mathrm{H}$ NMR spectrum showed that none of the correct product had formed.

4. Attempted preparation of (2S,3S)-1-acetyl-2-methyl-3-phenylaziridine 425

To a cooled solution $\left(0^{\circ} \mathrm{C}\right)$ of $(1 R, 2 S)-(-)$-norephedrine $(2.00 \mathrm{~g}, 13.2 \mathrm{mmol})$ and triethylamine $\left(1.34 \mathrm{~g}, 1.84 \mathrm{~cm}^{3}, 12.3 \mathrm{mmol}\right)$ in dried dichloromethane was treated dropwise with a solution of acetyl chloride $(1.04 \mathrm{~g}, 13.2 \mathrm{mmol})$ in dichloromethane $\left(10 \mathrm{~cm}^{3}\right)$. The ice bath was removed and the solution was stirred for 3 hours. Water $\left(20 \mathrm{~cm}^{3}\right)$ was added and the organic layer separated and dried over sodium sulfate. Evaporation gave the product as a colourless solid ($0.93 \mathrm{~g}, 37 \%$); $\delta_{\mathrm{H}} 7.41-7.29(5 \mathrm{H}, \mathrm{m}$, arom.), $5.85(1 \mathrm{H}, \mathrm{d}, ~ J 4, \mathrm{CHPh}), 5.43$ (1 $\mathrm{H}, \mathrm{d}, J 9, \mathrm{NH}), 4.47(1 \mathrm{H}, \mathrm{m}, \mathrm{CHMe}), 1.98(3 \mathrm{H}, \mathrm{s}, \mathrm{MeCO})$ and $1.08(3 \mathrm{H}, \mathrm{d}, J 7, M e \mathrm{CH})$.

To a solution of ($1 R, 2 S$)-(-)-N-acetylnorephedrine ($0.93 \mathrm{~g}, 4.82 \mathrm{mmol}$) and triphenylphosphine ($5.25 \mathrm{~g}, 0.02 \mathrm{~mol}$) in tetrahydrofuran ($40 \mathrm{~cm}^{3}$) under nitrogen was slowly added diisopropylazodicarboxylate $\left(95 \%, 1.06 \mathrm{~g}, 1.09 \mathrm{~cm}^{3}, 4.82 \mathrm{mmol}\right)$ via a syringe stirring constantly. The ice bath was then removed and the solution was stirred overnight. The crystalline by-product (triphenylphosphine-DIAD complex) was filtered off and washed with n-hexane-ether ($1: 1,100 \mathrm{~cm}^{3}$). The filtrate was evaporated and column chromatography [silica gel, n-hexane-ether-triethylamine (69:30:1)] of the residue gave not ($2 S, 3 S$)-1-acetyl-2-methyl-3-phenylaziridine 422, the expected product, but trans-2,4-dimethyl-5-phenyloxazoline 424, as a colourless oil (443 mg, 52\%); $[\alpha]_{D}^{20}-75\left(c ~ 1, \mathrm{CHCl}_{3}\right)$; (Found: $\mathrm{M}+\mathrm{H}^{+}, 176.1070 . \mathrm{C}_{11} \mathrm{H}_{14} \mathrm{NO}$ requires $\left.M+\mathrm{H}^{+}, 176.1075\right)$; $\delta_{\mathrm{H}} 7.5-7.1(5 \mathrm{H}, \mathrm{m}$, arom.), $4.90(1 \mathrm{H}, \mathrm{d}, J 8,5-\mathrm{H}), 3.97(1 \mathrm{H}, \mathrm{m}, 4-$ $\mathrm{H}), 2.05(3 \mathrm{H}, \mathrm{d}, J 1,2-\mathrm{Me})$ and $1.36(3 \mathrm{H}, \mathrm{d}, J 7,4-\mathrm{Me})$ [good agreement with lit. ${ }^{123}$]; $\delta_{\mathrm{C}} 163.5$ (CN), 139.9 (4ry), 128.5 (2 C), 128.2, 125.3 (2 C), 87.7 (C-5), 69.8 (C-4), 20.9 (2-Me) and 12.1 (4-Me); $m / z 176\left(\mathrm{M}+\mathrm{H}^{+}, 76 \%\right)$ and 134 (87).

K. Alkylation of chiral N-acyloxazolidin-5-ones

1. Attempted preparation of (2R,4S)-3-benzoyl-4-ethyl-4-methyl-2-phenyl-1,3-oxazolidin-5-one

To a stirred solution of diisopropylamine ($1.99 \mathrm{~cm}^{3}, 14.2 \mathrm{mmol}$) in dry THF ($125 \mathrm{~cm}^{3}$) at $-78{ }^{\circ} \mathrm{C}$ under nitrogen was added $\mathrm{n}-\mathrm{BuLi}\left(5.68 \mathrm{~cm}^{3}\right.$ of 2.5 M in hexane, 14.2 mmol$)$. The solution was allowed to warm up to room temperature before re-cooling to $-78{ }^{\circ} \mathrm{C}$. A solution of compound $383(4.00 \mathrm{~g}, 14.2 \mathrm{mmol})$ in dry THF ($50 \mathrm{~cm}^{3}$) was added and the solution allowed to warm to room temperature. The solution was cooled to $-78{ }^{\circ} \mathrm{C}$ and iodoethane (0.99 $\mathrm{cm}^{3} 14.2 \mathrm{mmol}$) was added, the solution allowed to warm to room temperature and stirred overnight. The solution was worked up by adding to a half saturated $\mathrm{NH}_{4} \mathrm{Cl}$ solution $\left(75 \mathrm{~cm}^{3}\right)$. The product was extracted with ether $\left(3 \times 30 \mathrm{~cm}^{3}\right)$. The combined extracts were washed with water ($2 \times 25 \mathrm{~cm}^{3}$) and dried over MgSO_{4}. The solvent was evaporated under reduced pressure. An ${ }^{1} \mathrm{H}$ NMR spectrum of the residue showed that not all of the starting material had reacted and none of the desired product had been formed.

2. Preparation of ($2 R, 4 R$)-3-benzoyl-4-benzyl-4-methyl-2-phenyl-1,3-oxazolidin-5-one 506

To a stirred solution of diisopropylamine $\left(1.99 \mathrm{~cm}^{3}, 14.2 \mathrm{mmol}\right)$ in dry THF $125 \mathrm{~cm}^{3}$ at $-78{ }^{\circ} \mathrm{C}$ under nitrogen was added $\mathrm{n}-\mathrm{BuLi}\left(5.68 \mathrm{~cm}^{3}\right.$ of 2.5 M in hexane, 14.2 mmol). The solution was allowed to warm up to room temperature before re-cooling to $-78{ }^{\circ} \mathrm{C}$. A solution of $\mathbf{3 8 5}(5.08 \mathrm{~g}, 14.2 \mathrm{mmol})$ in dry THF $\left(50 \mathrm{~cm}^{3}\right)$ was added and the solution allowed to warm to room temperature. The solution was cooled to $-78{ }^{\circ} \mathrm{C}$ and iodomethane $\left(0.89 \mathrm{~cm}^{3}, 14.2\right.$ mmol) was added, the solution allowed to warm to room temperature and stirred overnight. The solution was worked up by adding to a half saturated $\mathrm{NH}_{4} \mathrm{Cl}$ solution $\left(75 \mathrm{~cm}^{3}\right)$. The product was extracted with ether $\left(3 \times 30 \mathrm{~cm}^{3}\right)$. The combined extracts were washed with water $(2 \times 25$ cm^{3}) and dried over MgSO_{4}. The solvent was evaporated under reduced pressure to give the
product $506(360 \mathrm{mg}, 12 \%)$ as a yellow solid; $\mathrm{mp} 184-186{ }^{\circ} \mathrm{C} ;[\alpha]_{\mathrm{D}}^{20}+3.1\left(\mathrm{c} 1, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$ (Found C, $77.2 ; \mathrm{H}, 5.15 ; \mathrm{N}, 3.8 . \mathrm{C}_{24} \mathrm{H}_{21} \mathrm{NO}_{3}$ requires $\mathrm{C}, 77.6 ; \mathrm{H}, 5.7 ; \mathrm{N}, 3.8 \%$); $v_{\max } / \mathrm{cm}^{-1}$ $1791,1653,1401,1225,1175,1016,880,742,697$ and $619 ; \delta_{\mathrm{H}} 7.45-6.63(13 \mathrm{H}, \mathrm{m}$, arom.), $6.19(1 \mathrm{H}, \mathrm{s}, 2-\mathrm{H}), 5.59(2 \mathrm{H}, \mathrm{d}, J 8$, arom. $), 4.08\left(1 \mathrm{H}, \mathrm{d}, J 14,1 \mathrm{H}\right.$ of $\left.\mathrm{CH}_{2}\right), 3.43(1 \mathrm{H}, \mathrm{d}, J 14$, 1 H of CH_{2}), $1.95(3 \mathrm{H}, \mathrm{s}, \mathrm{Me}) ; \delta_{\mathrm{C}} 173.8(\mathrm{CO}), 169.6(\mathrm{CO}), 136.6$ (4ry), 136.5 (4ry), 136.1 (4ry), 130.6 (2 C), 129.1 (2 C), 128.9 (2 C), 128.2 (2 C), 127.9 (2 C), 127.5, 127.4 (2 C), 125.0 (2 C), $89.5(\mathrm{C}-2), 65.8(\mathrm{C}-4), 42.1\left(\mathrm{CH}_{2}\right)$ and $22.3(\mathrm{Me}) ; \mathrm{m} / \mathrm{z} 394\left(\mathrm{M}+\mathrm{Na}^{+}, 100 \%\right), 372(5)$ and 222 (14).

3. Pyrolysis of (2R,4R)-3-benzoyl-4-benzyl-4-methyl-2-phenyl-1,3-oxazolidin-5one 506

a) at $550{ }^{\circ} \mathrm{C}$

A sample of compound $\mathbf{5 0 6}(89 \mathrm{mg}, 0.24 \mathrm{mmol})$ was subjected to FVP at $550{ }^{\circ} \mathrm{C}$ and 5 $\times 10^{-3}$ Torr. The resulting crude product was N-(1,3-diphenyl-2-methylprop-2-enyl)benzamide 507 (60 mg, 76\%); (Found: $\mathrm{M}+\mathrm{Na}^{+}, 350.1514 . \mathrm{C}_{23} \mathrm{H}_{21} \mathrm{NO}$ requires $M+\mathrm{Na}, 350.1521$); δ_{H} $7.82(2 \mathrm{H}, \mathrm{d}$, arom.), 7.52-7.16 ($13 \mathrm{H}, \mathrm{m}$, arom.), $6.64(1 \mathrm{H}, \mathrm{s},=\mathrm{CH}), 6.52(1 \mathrm{H}, \mathrm{d}, \mathrm{NH}), 5.87(1$ $\mathrm{H}, \mathrm{d}, \mathrm{NCH})$ and 1.86 ($3 \mathrm{H}, \mathrm{s}, \mathrm{Me}$); $\delta_{\mathrm{C}} 166.4$ (CO), 140.5 (4ry), 137.8 (4ry), 137.2 (4ry), 134.8 (4ry), 123.1, 129.5 (2 C), 129.3 (2 C), 129.1 (2 C), 128.5 (2 C), 128.2, 127.9 (2 C), 127.4 (2 C), 127.0, 126.9, $60.7(\mathrm{NCH})$ and $16.9(\mathrm{Me}) ; m / z 327\left(\mathrm{M}^{+}, 3 \%\right), 237(100), 105(45), 91(12)$ and 77 (25); $m / z 350\left(\mathrm{M}+\mathrm{Na}^{+}, 100 \%\right), 328$ (6) and 207 (17).

b) at $500{ }^{\circ} \mathrm{C}$

A sample of $\mathbf{5 0 6}(90 \mathrm{mg})$ was subjected to FVP at $500{ }^{\circ} \mathrm{C}$ and 5×10^{-3} Torr. The resulting crude product was a mixture of $\mathbf{5 0 7}$ and the starting material in a ratio of approx. $1: 1$ from ${ }^{1} \mathrm{H}$ NMR.

c) at $450{ }^{\circ} \mathrm{C}$

A sample of $\mathbf{5 0 6}(96 \mathrm{mg})$ was subjected to FVP at $450{ }^{\circ} \mathrm{C}$ and 5×10^{-3} Torr. The ${ }^{1} \mathrm{H}$ spectrum shows $\mathbf{5 0 6}$ almost completely unreacted, and only a trace of $\mathbf{5 0 7}$ had formed.

L. Preparation of Bisoxazolidin-5-ones

1. Attempted preparation of 3,3 '-dimethylmalonylbis((2R,4S)-2-methyl-4-phenyl-1,3-oxazolidin-5-one)

Dimethylmalonic acid ($6.35 \mathrm{~g}, 48 \mathrm{mmol}$) was heated under reflux in an excess thionyl chloride ($25 \mathrm{~cm}^{3}, 343 \mathrm{mmol}$) for 2 hours. The remaining thionyl chloride was removed under reduced pressure. The crude product was Kugelrohr distilled at the water pump at around $55^{\circ} \mathrm{C}$ to give the dimethylmalonyl chloride as a colourless liquid ($4.63 \mathrm{~g}, 57 \%$).
(S)-Alanine ($2.22 \mathrm{~g}, 25 \mathrm{mmol}$) was added to $\mathrm{NaOH}(\mathrm{aq})\left(1 \mathrm{~mol} \mathrm{dm}^{-3}, 25 \mathrm{~cm}^{3}\right)$ and ethanol ($1-2 \mathrm{~cm}^{3}$) was added to obtain solution. The solvent was evaporated under reduced pressure until precipitation began. Benzaldehyde ($2.65 \mathrm{~g}, 25 \mathrm{mmol}$) and $\mathrm{CH}_{2} \mathrm{Cl}_{2}\left(150 \mathrm{~cm}^{3}\right)$ were added and the mixture heated with azeotropic removal of water (inverted Dean and Stark trap) for 5-8 hours. The imine was formed as a white precipitate. The mixture was stirred at $0{ }^{\circ} \mathrm{C}$ while a solution of dimethyl malonyl chloride ($2.11 \mathrm{~g}, 1.65 \mathrm{~cm}^{3}, 12.5 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}\left(25 \mathrm{~cm}^{3}\right)$ was added slowly and the mixture was then stirred at room temperature overnight. The turbid mixture was washed successively with water, $5 \% \mathrm{NaHCO}_{3}, 5 \% \mathrm{NaHSO}_{3}$ solutions and again with water. The solution was then dried using magnesium sulfate and evaporated and the residue recrystallised. ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra indicated that the desired product had not formed.

2. Attempted preparation of 3,3'-oxalylbis((2R,4S)-2-methyl-4-phenyl-1,3-oxazolidin-5-one)

(S)-Alanine ($2.22 \mathrm{~g}, 25 \mathrm{mmol}$) was added to $\mathrm{NaOH}(\mathrm{aq})\left(1 \mathrm{~mol} \mathrm{dm}^{-3}, 25 \mathrm{~cm}^{3}\right)$ and ethanol ($1-2 \mathrm{~cm}^{3}$) was added to obtain solution. The solvent was evaporated under reduced pressure until precipitation began. Benzaldehyde ($2.65 \mathrm{~g}, 25 \mathrm{mmol}$) and $\mathrm{CH}_{2} \mathrm{Cl}_{2}\left(150 \mathrm{~cm}^{3}\right)$ were added and the mixture heated with azeotropic removal of water (inverted Dean and Stark trap) for 5-8 hours. The imine was formed as a white precipitate. The mixture was stirred at $0{ }^{\circ} \mathrm{C}$ while a
solution of oxalyl chloride $(1.59 \mathrm{~g}, 12.5 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}\left(25 \mathrm{~cm}^{3}\right)$ was added slowly and the mixture was then stirred at room temperature overnight. The turbid mixture was washed successively with water, $5 \% \mathrm{NaHCO}_{3}, 5 \% \mathrm{NaHSO}_{3}$ solutions and again with water. The solution was then dried using magnesium sulfate and evaporated and the residue recrystallised. ${ }^{1} \mathrm{H}$ NMR indicated that the desired product had not formed.

3. Preparation of 3,3 '-malonylbis($(2 R, 4 S)$-2-methyl-4-phenyl-1,3-oxazolidin-5one) 516

(S)-Alanine ($1.11 \mathrm{~g}, 12.5 \mathrm{mmol}$) was added to $\mathrm{NaOH}(\mathrm{aq})\left(1 \mathrm{~mol} \mathrm{dm}^{-3}, 25 \mathrm{~cm}^{3}\right)$ and ethanol ($1-2 \mathrm{~cm}^{3}$) was added to obtain solution. The solvent was evaporated under reduced pressure until precipitation began. Benzaldehyde $(1.83 \mathrm{~g}, 12.5 \mathrm{mmol})$ and $\mathrm{CH}_{2} \mathrm{Cl}_{2}\left(150 \mathrm{~cm}^{3}\right)$ were added and the mixture heated with azeotropic removal of water (inverted Dean and Stark trap) for 5-8 hours. The imine was formed as a white precipitate ($2.487 \mathrm{~g}, 12.5 \mathrm{mmol}$). The mixture was stirred at $0{ }^{\circ} \mathrm{C}$ while a solution of malonyl chloride $\left(0.88 \mathrm{~g}, 0.61 \mathrm{~cm}^{3}, 6.3 \mathrm{mmol}\right)$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}\left(5 \mathrm{~cm}^{3}\right)$ was added slowly and the mixture was then stirred at room temperature overnight. The turbid mixture was washed successively with water, $5 \% \mathrm{NaHCO}_{3}, 5 \% \mathrm{NaHSO}_{3}$ solutions and again with water. The solution was then dried using magnesium sulfate and evaporated and the residue recrystallised to give 516 ($1.45 \mathrm{~g}, 28 \%$) as a colourless solid, mp $198-200{ }^{\circ} \mathrm{C} ; \delta_{\mathrm{H}} 7.59-7.13(10 \mathrm{H}$, br m, aromatic), $7.00-6.57(2 \mathrm{H}, 4 \times \mathrm{br} \mathrm{s}, 2 \times \mathrm{CHPh})$, 4.95-4.25 ($2 \mathrm{H}, 4 \times \mathrm{br}$ q, $2 \times \mathrm{CHMe})$, $3.59-2.88\left(2 \mathrm{H}, 4 \times \mathrm{br} \mathrm{s}, \mathrm{CH}_{2}\right)$ and $1.83-1.42(6 \mathrm{H}$, br $\mathrm{m}, 2 \times \mathrm{Me}$). Variable temperature ${ }^{13} \mathrm{C} \mathrm{NMR} \mathrm{in} \mathrm{CDBr}_{3}$ indicated restricted rotation around the N -acyl bond.

4. Preparation of 3,3 'succinylbis($(2 R, 4 S)$-2-methyl-4-phenyl-1,3-oxazolidin-5one) 517

(S)-Alanine ($1.11 \mathrm{~g}, 12.5 \mathrm{mmol}$) was added to $\mathrm{NaOH}(\mathrm{aq})\left(1 \mathrm{~mol} \mathrm{dm}^{-3}, 25 \mathrm{~cm}^{3}\right)$ and ethanol ($1-2 \mathrm{~cm}^{3}$) was added to obtain solution. The solvent was evaporated under reduced
pressure until precipitation began. Benzaldehyde $(1.11 \mathrm{~g}, 12.5 \mathrm{mmol})$ and $\mathrm{CH}_{2} \mathrm{Cl}_{2}\left(150 \mathrm{~cm}^{3}\right)$ were added and the mixture heated with azeotropic removal of water (inverted Dean and Stark trap) for 5-8 hours. The imine was formed as a white precipitate. The mixture was stirred at 0 ${ }^{\circ} \mathrm{C}$ while a solution of succinyl chloride ($0.97 \mathrm{~g}, 0.69 \mathrm{~cm}^{3}, 6.3 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}\left(5 \mathrm{~cm}^{3}\right)$ was added slowly and the mixture was then stirred at room temperature overnight. The turbid mixture was washed successively with water, $5 \% \mathrm{NaHCO}_{3}, 5 \% \mathrm{NaHSO}_{3}$ solutions and again with water. The solution was then dried using magnesium sulfate and evaporated and the residue recrystallised to give the product $517(1.74 \mathrm{~g}, 32 \%)$ as a colourless powder; δ_{H} 7.55-7.14 (10 H , br m, aromatic), 6.74-6.46 (2 H , br m, $2 \times \mathrm{CHPh}$), 4.78-4.49 $(2 \mathrm{H}, \mathrm{br}$ m, $2 \times$ $\mathrm{CHMe}), 2.88-2.16\left(2 \mathrm{H}, 2 \times \mathrm{br} \mathrm{m}, \mathrm{CH}_{2}\right), 1.68(6 \mathrm{H}, \mathrm{br} \mathrm{d}, 2 \times \mathrm{Me})$ and $1.52-1.22(2 \mathrm{H}, \mathrm{br} \mathrm{m}$, $\left.\mathrm{CH}_{2}\right) ; \delta_{\mathrm{C}} 172.0^{*}$ and $171.9(2 \mathrm{CO}), 169.7$ and $169.4^{*}(\mathrm{CO}), 136.4$ and 136.1^{*} (4ry), 130.8 and 129.8*, 129.5 and 128.7* (2 C), 126.8 and 126.5* (2 C), 90.4* and 89.6 (2 CHPh), 52.8 and 52.0* $(2 \mathrm{CHMe}), 30.4,30.2^{*}$ and $30.0^{*}\left(2 \mathrm{CH}_{2}\right), 19.4^{*}, 19.3^{*}$ and $16.2(2 \mathrm{Me})$.

5. Preparation of 3,3 '-succinylbis(($2 R, 4 S$)-2-isopropyl-4-phenyl-1,3-oxazolidin-5one) 518

(S)-Valine $(5.86 \mathrm{~g}, 50 \mathrm{mmol})$ was added to $\mathrm{NaOH}(\mathrm{aq})\left(1 \mathrm{~mol} \mathrm{dm}^{-3}, 50 \mathrm{~cm}^{3}\right)$ and ethanol ($2-3 \mathrm{~cm}^{3}$) was added to obtain solution. The solvent was evaporated under reduced pressure until precipitation began. Benzaldehyde $(5.30 \mathrm{~g}, 50 \mathrm{mmol})$ and $\mathrm{CH}_{2} \mathrm{Cl}_{2}\left(300 \mathrm{~cm}^{3}\right)$ were added and the mixture heated with azeotropic removal of water (inverted Dean and Stark trap) for 5-8 hours. The imine was formed as a white precipitate. The mixture was stirred at $0{ }^{\circ} \mathrm{C}$ while a solution of succinyl chloride ($3.88 \mathrm{~g}, 2.76 \mathrm{~cm}^{3}, 25 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}\left(40 \mathrm{~cm}^{3}\right)$ was added slowly and the mixture was then stirred at room temperature overnight. The turbid mixture was washed successively with water, $5 \% \mathrm{NaHCO}_{3}, 5 \% \mathrm{NaHSO}_{3}$ solutions and again with water. The solution was then dried using magnesium sulfate and evaporated and the residue recrystallised to give the product $\mathbf{5 1 8}$ as a colourless powder ($2.09 \mathrm{~g}, 17 \%$), $\mathrm{mp} 219-221{ }^{\circ} \mathrm{C}$; (Found: $\mathrm{M}+\mathrm{Na}^{+}, 515.2160 . \mathrm{C}_{28} \mathrm{H}_{32} \mathrm{~N}_{2} \mathrm{O}_{6}$ requires $M+\mathrm{Na}^{+}, 515.2158$); $v_{\text {max }} / \mathrm{cm}^{-1} 1787,1646$, $1404,1297,1260,1222,1170,1126,1088,1034,1009,956,934,893,848$ and $830 ; \delta_{\mathrm{H}}$
8.14-7.20 (10 H, m. aromatic), 6.68-6.40 ($2 \mathrm{H}, \mathrm{br} \mathrm{m}, 2 \times \mathrm{CHPh}$), 4.73-4.48 ($2 \mathrm{H}, \mathrm{br}$ m, $2 \times$ $\left.\mathrm{C} H \mathrm{Pr}^{\mathrm{i}}\right), 2.92-2.08\left(4 \mathrm{H}, 2 \times \mathrm{br} \mathrm{m}, 2 \mathrm{CH}_{2}\right)$ and $1.39-0.42(12 \mathrm{H}, 4 \times \mathrm{br} \mathrm{d}, 4 \times \mathrm{Me}) ; m / z 515(\mathrm{M}$ $\left.+\mathrm{H}^{+}, 100 \%\right)$.

6. Preparation of $\mathbf{3 , 3}$ '-succinylbis((2R,4S)-2,4-diphenyl-1,3-oxazolidin-5-one) 519

(R)-phenylglycine $(7.56 \mathrm{~g}, 50 \mathrm{mmol})$ was added to $\mathrm{NaOH}(\mathrm{aq})\left(1 \mathrm{~mol} \mathrm{dm}^{-3}, 50 \mathrm{~cm}^{3}\right)$ and ethanol $\left(2-3 \mathrm{~cm}^{3}\right)$ was added to obtain solution. The solvent was evaporated under reduced pressure until precipitation began. Benzaldehyde ($5.30 \mathrm{~g}, 50 \mathrm{mmol}$) and $\mathrm{CH}_{2} \mathrm{Cl}_{2}\left(300 \mathrm{~cm}^{3}\right)$ were added and the mixture heated with azeotropic removal of water (inverted Dean and Stark trap) for 5-8 hours. The imine was formed as a white precipitate. The mixture was stirred at 0 ${ }^{\circ} \mathrm{C}$ while a solution of succinyl chloride ($3.88 \mathrm{~g}, 2.76 \mathrm{~cm}^{3}, 25 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}\left(40 \mathrm{~cm}^{3}\right)$ was added slowly and the mixture was then stirred at room temperature overnight. The turbid mixture was washed successively with water, $5 \% \mathrm{NaHCO}_{3}, 5 \% \mathrm{NaHSO}_{3}$ solutions and again with water. The solution was then dried using magnesium sulfate and evaporated and the residue recrystallised to give the product 519 ($3.56 \mathrm{~g}, 26 \%$) as a colourless solid, $\mathrm{mp} 210-212$ ${ }^{\circ} \mathrm{C}$; (Found: $\mathrm{M}+\mathrm{H}^{+}, 583.1864 . \mathrm{C}_{34} \mathrm{H}_{28} \mathrm{~N}_{2} \mathrm{O}_{6}$ requires $M+\mathrm{H}^{+}$, 583.1845); $v_{\max } / \mathrm{cm}^{-1} 1788$, $1649,1587,1560,1493,1420,1376,1327,1301,1241,1168,1075,1040,1002,929,912,880$ and 834; $\delta_{\mathrm{H}} 7.74-6.98(20 \mathrm{H}, \mathrm{m}$, aromatic $), 6.96-6.69(2 \mathrm{H}, \mathrm{br} \mathrm{m}, 2 \times \mathrm{CHPh}), 5.74-5.29(2 \mathrm{H}$, br m, $2 \times \mathrm{CHPh}$) and $2.66-1.34\left(4 \mathrm{H}, 4 \mathrm{br} \mathrm{m}, 2 \times \mathrm{CH}_{2}\right) ; \delta_{\mathrm{C}} 170.3(\mathrm{CO}), 169.8(\mathrm{CO}), 136.0$ (4ry), 135.8 (4ry), $131.4,130.4,130.1,130.0,129.2,128.9,127.2,127.1,126.8,126.7,126.6$, 126.2, 91.5 and $90.7^{*}(2 \mathrm{CHPh}), 61.0$ and $60.8^{*}(2 \mathrm{CHPh})$ and $30.6\left(2 \mathrm{CH}_{2}\right) ; m / z 583(\mathrm{M}+$ $\left.\mathrm{H}^{+}, 100 \%\right)$.

M. X-Ray Structure Determinations

1. (2R,4S) 3-acetyl-4-methyl-2-phenyl-1,3-oxazolidin-5-one 388

Crystal data for $\mathrm{C}_{12} \mathrm{H}_{13} \mathrm{NO}_{3}, \mathrm{M}=219.23$, colourless prism, crystal dimensions $0.13 \times$ $0.1 \times 0.1 \mathrm{~mm}$, orthorombic, space group $\mathrm{P} 2_{1} 2_{1} 2_{1}, \mathrm{a}=6.568(16), \mathrm{b}=11.00(3), \mathrm{c}=15.41$ (4) $\AA, \beta=90^{\circ}, \mathrm{V}=1114(5) \AA^{3}, \mathrm{Z}=4, \mathrm{D}_{\mathrm{c}}=1.308 \mathrm{Mg} \mathrm{m}^{-3}, \mathrm{~T}=293 \mathrm{~K}, \mathrm{R}=0.0483, \mathrm{R}_{\mathrm{w}}=0.0988$ for 1026 reflections with $\mathrm{I}>2 \sigma(\mathrm{I})$ and 146 variables. Data were collected on a Bruker SMART diffractometer with graphite-monochromated $\mathrm{Mo}-\mathrm{K} \alpha$ radiation $(\mathrm{a}=0.71073 \AA)$. The structure was solved by direct methods and refined using full-matrix least squares methods. Atomic coordinates and bond lengths and angles are listed in the Appendix in tables and the structure is shown in the discussion.

2. (2R,4S)-4-methyl-2-phenyl-3-thioacetyl-1,3-oxazolidin-5-one 485

Crystal data for $\mathrm{C}_{12} \mathrm{H}_{13} \mathrm{NO}_{2} \mathrm{~S}, \mathrm{M}=235.29$, colourless prism, crystal dimensions $0.2 \times$ $0.2 \times 0.2 \mathrm{~mm}$, orthorombic, space group $\mathrm{P} 2_{1} 2_{1} 2_{1}, \mathrm{a}=8.390(3), \mathrm{b}=9.276(4), \mathrm{c}=15.439$ (6) $\AA, \beta=90^{\circ}, V=1201.6(8) \AA^{3}, Z=4, D_{c}=1.301 \mathrm{Mg} \mathrm{m}^{-3}, T=293 \mathrm{~K}, \mathrm{R}=0.0431, \mathrm{R}_{\mathrm{w}}=0.1096$ for 1461 reflections with $\mathrm{I}>2 \sigma(\mathrm{I})$ and 146 variables. Data were collected on a Bruker SMART diffractometer with graphite-monochromated Mo-K α radiation ($\mathrm{a}=0.71073 \AA$). The structure was solved by direct methods and refined using full-matrix least squares methods. Atomic coordinates and bond lengths and angles are listed in the Appendix in tables and the structure is shown in the discussion.

3. (2R,4S)-4-benzyl-2-phenyl-3-thiobenzoyl-1,3-oxazolidin-5-one 483

Crystal data for $\mathrm{C}_{23} \mathrm{H}_{19} \mathrm{NO}_{2} \mathrm{~S} \cdot 0.75 \mathrm{CH}_{2} \mathrm{Cl}_{2}, \mathrm{M}=437.15$, yellow plate, crystal dimensions $0.1 \times 0.1 \times 0.05 \mathrm{~mm}$, monoclinic, space group $\mathrm{P} 2{ }_{1}, \mathrm{a}=10.4985(18), \mathrm{b}=9.2896$ (16), $\mathrm{c}=12.254$ (2) $\AA, \beta=104.215(3)^{\circ}, \mathrm{V}=1158.5(3) \AA^{3}, \mathrm{Z}=2, \mathrm{D}_{\mathrm{c}}=1.253 \mathrm{Mg} \mathrm{m}^{-3}, \mathrm{~T}=293$
$\mathrm{K}, \mathrm{R}=0.0717, \mathrm{R}_{\mathrm{w}}=0.1568$ for 1941 reflections with $\mathrm{I}>2 \sigma(\mathrm{I})$ and 272 variables. Data were collected on a Bruker SMART diffractometer with graphite-monochromated Mo-K α radiation $(a=0.71073 \AA)$. The structure was solved by direct methods and refined using full-matrix least squares methods. Atomic coordinates and bond lengths and angles are listed in the Appendix in tables and the structure is shown in the Discussion.

DISCUSSION

A. Synthesis and Properties of N -Acyloxazolidin-5-ones

1. Synthesis

A range of oxazolidin-5-ones $\mathbf{3 7 4}$ were prepared starting from amino acids $\mathbf{3 7 2}$ using the route shown below ${ }^{112}$. These can be synthesised from any of the 20 readily available α amino acids via their sodium salts $\mathbf{3 8 0}$ by condensation with an aldehyde to form the imine 373 . This step is limited to non-enolisable aldehydes. An inverse Dean and Stark trap is employed to remove any water formed since dichloromethane is the solvent here. Cyclisation of the imine with an acid chloride gives the N-acyloxazolidin-5-one 374. The amino acids used were

(S)-alanine, (S)-valine, (S, S)-isoleucine, (S)-phenylalanine and (R) and (S)-phenylglycine. The aldehyde component was usually benzaldehyde although pivalaldehyde was also examined. Both benzoyl chloride and acetyl chloride were used as the acid chloride component. Although much of Seebach's important work on these systems has used pivalaldehyde, ${ }^{109}$ the method for this ${ }^{110}$ involved azeotropic distillation with the expensive n-pentane and afforded low-melting products which were a mixture of difficultly separable cis and trans isomers. In view of this most effort was concentrated on the use of benzaldehyde ${ }^{112}$ which involved azeotropic distillation with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and gave higher melting products which were the pure trans isomers. The products obtained are shown below.

Isomers 381 and $\mathbf{3 8 2},{ }^{110}$ compounds $\mathbf{3 8 3} \mathbf{- 3 8 5}, 112$ and the opposite enantiomer of 387113 are all known compounds and the physical and spectroscopic data obtained were in good agreement with the literature. Compound 390 was already known, ${ }^{114}$ but the ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra had been recorded in DMSO so we characterised 390 in CDCl_{3} for easier future reference. The previously unknown compounds 386, 388, 389, 391-393 have been fully characterised. The synthesis of $\mathbf{3 9 4}$ from O-methyl-((S)-serine ${ }^{115,116}$ was unsuccessful.

381

382

383

384

385

386

387

2. Structure and Properties

The ${ }^{1} \mathrm{H}$ NMR spectra (Table 1) of all the N-benzoyloxazolidin-5-ones synthesised are in agreement with the literature. ${ }^{112,113}$ The previously unknown compound derived from leucine shows values for $2-\mathrm{H}$ and $4-\mathrm{H}$ that are within the expected range for these type of
compounds. Of the N-acetyloxazolidin-5-ones formed only the 4-benzyl compound is known. 114 All ${ }^{1} \mathrm{H}$ NMR spectra of the acetyl compounds (Table 2) show two sets of broad peaks due to restricted rotation around the amide bond. With the exception of the 4 -phenyl compound all the minor conformers have higher shifts for 2-H and the acetyl group, and lower shifts for $4-\mathrm{H}$. The pattern of these signals and those for R^{1} are also as would be expected. The shifts for 2-H, 4-H and the acetyl groups of these unknown compounds are consistent with each other and known oxazolidinones.

The ${ }^{13} \mathrm{C}$ NMR spectra of the N -acetyloxazolidin-5-ones (Table 3) are also consistent with each other and what would be anticipated from literature data ${ }^{112,114}$ of their N-benzoyl counterparts. What is interesting is that the ${ }^{13} \mathrm{C}$ NMR spectra only show two conformers when R^{1} is s-butyl or phenyl. Also we can be fairly confident of distinguishing between the aromatic carbons of the benzoyl and R^{1} (where they are present).

Table 1: ${ }^{1} \mathrm{H}$ NMR spectra of N -benzoyloxazolidin-5-ones

R^{1}	Aromatic	$2-\mathrm{H}$	$4-\mathrm{H}$	R^{1}
Me	$7.45-7.10(10 \mathrm{H}, \mathrm{m})$	$6.76(\mathrm{~s})$	$4.84(\mathrm{q}, J 7)$	$1.50(3 \mathrm{H}, \mathrm{d}, J 7)$
$\mathrm{Pr}^{\mathrm{i}} \S$	$7.60-7.10(10 \mathrm{H}, \mathrm{m})$	$6.62(\mathrm{~s})$	$4.84(\mathrm{br} \mathrm{s})$	$2.60-2.1(1 \mathrm{H}, \mathrm{m}, \mathrm{CH}), 1.15(3 \mathrm{H}, \mathrm{d}$, $J 7, \mathrm{Me}), 1.05(3 \mathrm{H}, \mathrm{d}, J 7, \mathrm{Me})$
Bn	$7.45-6.75(15 \mathrm{H}, \mathrm{m})$	$5.83(\mathrm{~s})$	$5.20(\mathrm{~m})$	$3.80-3.30\left(2 \mathrm{H}, 2 \times \mathrm{br} \mathrm{s}, \mathrm{CH}_{2}\right)$
$\mathrm{Bu}^{\mathrm{s} \S}$ §	$7.50-6.90(10 \mathrm{H}, \mathrm{m})$	$6.64(\mathrm{~s})$	$4.91(\mathrm{br} \mathrm{s})$	$1.73(1 \mathrm{H}, \mathrm{m}, \mathrm{CH}), 1.50\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}\right)$
				$1.07(3 \mathrm{H}, \mathrm{d}, J 7, M e \mathrm{CH})$ $0.90\left(3 \mathrm{H}, \mathrm{t}, J 7, M e \mathrm{CH}_{2}\right)$
Ph	$7.50-7.00(16 \mathrm{H}, \mathrm{m})$	in arom.	$5.65(\mathrm{br} \mathrm{s})$	in aromatic

[^0]

Me	7.55-7.30 ($5 \mathrm{H}, \mathrm{m}$)	6.58 (s) 4.72 (q, J7)	1.70 (s)	1.72 (3 H, d, J 7, Me)
Me*	$7.55-7.30$ ($5 \mathrm{H}, \mathrm{m}$)	6.66 (s) 4.60 (q, J 7)	2.16 (s)	1.59 ($3 \mathrm{H}, \mathrm{br} . \mathrm{s}, \mathrm{Me}$)
Pr^{1}	$7.50-7.30$ ($5 \mathrm{H}, \mathrm{m}$)	6.50 (s) 4.68 (d, J 4)	1.67 (s)	$2.96-2.84(1 \mathrm{H}, \mathrm{m}, \mathrm{CH}), 1.24(3 \mathrm{H}, \mathrm{d}, J 7, \mathrm{Me}), 1.00(3 \mathrm{H}, \mathrm{d}, J 7, \mathrm{Me})$ こ
Pri*	$7.50-7.30$ ($5 \mathrm{H}, \mathrm{m}$)	6.56 (s) 4.49 (d, J 4)	2.12 (s)	$2.48-2.36(1 \mathrm{H}, \mathrm{m}, \mathrm{CH}), 1.29(3 \mathrm{H}, \mathrm{d}, J 7, \mathrm{Me}), 1.07$ ($3 \mathrm{H}, \mathrm{d}, J 7, \mathrm{Me}$)
Bn	7.50-7.10 ($10 \mathrm{H}, \mathrm{m}$)	5.53 (s) 5.20 (m)	1.58 (s)	3.95-3.80 ($\left.1 \mathrm{H}, \mathrm{dd}, J 14,6, \mathrm{CH}_{2} \mathrm{Ph}\right), 3.33-3.18\left(1 \mathrm{H}, \mathrm{dd}, J 14,2, \mathrm{CH}_{2} \mathrm{Ph}\right)$
Bn*	7.50-7.10 ($10 \mathrm{H}, \mathrm{m}$)	5.66 (s) 4.88 (m)	1.58 (s)	3.38 (2 H, br. s, $\mathrm{CH}_{2} \mathrm{Ph}$)
$\mathrm{Bu}^{\text {s }}$	7.44-7.29 (5 H, m)	6.49 (s) 4.70 (d, J 4)	1.60 (s)	$2.57(1 \mathrm{H}, \mathrm{m}, \mathrm{CH}), 1.80-1.40\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}\right), 0.97\left(3 \mathrm{H}, \mathrm{t}, J 7, \mathrm{CH}_{2} M e\right), 0.89(3 \mathrm{H}, \mathrm{d}, J 7, \mathrm{CH} M e)$
$\mathrm{Bu}^{\text {* }}$	7.44-7.29 (5 H, m)	6.42 (s) 4.51 (d, J 4)	2.05 (s)	$2.57(1 \mathrm{H}, \mathrm{m}, \mathrm{CH}), 1.80-1.40\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}\right), 097\left(3 \mathrm{H}, \mathrm{t}, J 7, \mathrm{CH}_{2} \mathrm{Me} e\right), 0.89(3 \mathrm{H}, \mathrm{d}, J 7, \mathrm{CHMe})$
Ph	$7.65-7.3$ (10 H, m)	6.96 (s) 5.45 (s)	1.75 (s)	
Ph*	7.25 (10 H, m)	6.81 (s) 5.68 (s)	1.72 (s)	

	$\varepsilon \varepsilon \varepsilon \tau$	¢ 09	8.06		98991＇t＇691	＊4d
	$9 . \varepsilon \tau$	I＇19	I＇16		8．891＇9＇691	पd
	$8{ }^{\circ}$	S＇09	で16	L＇9ZI＇988ZI＇8＇6ZI＇（Kırt）¢＇9EI	9＇L9I＇L＇69I	ng
	$9 . \varepsilon z$	S＇09	9.06		6＇L9I＇L＇69I	$\mathrm{s}^{\text {ng }}$
	ナ゙とz	985	S＇06		ع＇891＇I＇TLI	ug
	†＇8z	9＇19	¢．06		I＇891＇9699	${ }^{\text {Id }}$ d
（จW）$\langle\cdot 9$ I	$\varepsilon \cdot \varepsilon z$	9 zs	0.06		I＇891＇I＇zLI	ขW

${ }^{14}$

Table 3：${ }^{13} \mathrm{C}$ NMR spectra of N－acetyloxazolidin－ 5 －ones

It was noticed that the ${ }^{1} \mathrm{H}$ NMR spectra of the N-benzoyloxazolidin- 5 -ones displayed extremely broad peaks at $25^{\circ} \mathrm{C}$. By running the spectra at $50{ }^{\circ} \mathrm{C}$ the signals were seen to sharpen up considerably. Also, the ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra of the N -acetyloxazolidin-5-ones showed two sets of broad peaks in most cases and could be mistaken for a mixture of isomers. This behaviour is indicative of restricted rotation of the molecule around the amide bond. This means that the molecule has two conformers 395 and 396 as shown.

Since the conversion between these two conformers is slow in comparison to the time scale of the NMR experiment both are observed. At higher temperatures the interconversion is sufficiently fast that the signal is observed as an "average." At lower temperatures, the spectra due to each of the conformers are recorded. The equilibrium existing between the conformers can be described by the following thermodynamic equations:

$$
\begin{equation*}
\Delta G^{*} / R T_{c}=22.96+\ln \left(T_{c} / \delta_{v}\right) \tag{Equation1}
\end{equation*}
$$

$$
\begin{equation*}
\mathrm{n}_{\mathrm{a}} / \mathrm{n}_{\mathrm{b}}=\exp (\Delta \mathrm{G} / \mathrm{RT}) \tag{Equation2}
\end{equation*}
$$

where δ_{v} is the low temperature separation of the signals of the two conformers, T_{c} is the coalescence temperature for a given pair of signals (i.e. the temperature at which the signals merge) and $\Delta G^{*}, \Delta G, T$ and R have their usual thermodynamic meanings. n_{a} / n_{b} is the low temperature ratio of the conformers and can be determined from the integral trace.

In a variable temperature NMR experiment, a spectrum is recorded at a temperature high enough such that only the "average" signal is observed. The temperature is then lowered in increments of 10 K and a spectrum recorded at each of these temperatures in order to find T_{c} for as many of the signals as possible. This is, of course, is limited by the temperature range at which the most suitable solvent is in its liquid state.

This procedure was carried out for $(2 R, 4 S)$ 3-acetyl-4-methyl-2-phenyl-1,3-oxazolidin5 -one. The results are shown below.

Signal (ppm)	$\mathrm{T}_{\mathrm{c}}(\mathrm{K})$	$\delta_{v}(\mathrm{~Hz})$	$\Delta \mathrm{G}^{*}\left(\mathrm{~kJ} \mathrm{~mol}^{-1}\right)$	$\Delta \mathrm{G}\left(\mathrm{kJ} \mathrm{mol}^{-1}\right)$
6.58	325 ± 1	174	63.73	2.47
4.72	328 ± 1	201	63.95	2.47

The energy barrier for rotation, $\Delta \mathrm{G}^{*}$, is determined from the coalescence temperature, T_{C} using Equation 1. The difference in energy between the two states, $\Delta \mathrm{G}$, is calculated from the ratio of the conformers using Equation 2.

The X-ray crystal structure of $\mathbf{3 8 8}$ was determined to confirm the relative position of the substituents at $\mathrm{C}-2$ and $\mathrm{C}-4$ as trans. Like other examples synthesised from (S)-amino acids by Seebach, the structure of N-acetyl-4-methyl-2-phenyl-1,3-oxazolidin-5-one proves the absolute configuration is $(2 R, 4 S)$ since the configuration at the 4 -position is already known.

Figure 1: X-ray structure of ($2 R, 4 S$)-3-acetyl-4-methyl-2-phenyl-1,3-oxazolidin-5-one 388 showing the crystallographic numbering scheme. Selected bond lengths and angles; $\mathrm{O}(1)-$ $\mathrm{C}(5) 1.351(6), \mathrm{O}(1)-\mathrm{C}(2) 1.451(5), \mathrm{C}(2)-\mathrm{N}(3) 1.464(6), \mathrm{C}(2)-\mathrm{C}(9) 1.512(7), \mathrm{N}(3)-\mathrm{C}(6)$ $1.361(5), \mathrm{N}(3)-\mathrm{C}(4) 1.453(6), \mathrm{C}(4)-\mathrm{C}(8) 1.511(6), \mathrm{C}(4)-\mathrm{C}(5) 1.512(7), \mathrm{C}(5)-\mathrm{O}(5) 1.194(5)$, $\mathrm{C}(6)-\mathrm{O}(6) 1.231(5), \mathrm{C}(6)-\mathrm{C}(7) 1.489(6) \AA ; \mathrm{C}(5)-\mathrm{O}(1)-\mathrm{C}(2) 111.4(3), \mathrm{O}(1)-\mathrm{C}(2)-\mathrm{N}(3)$ 103.3(4), O(1)-C(2)-C(9) 107.3(3), N(3)-C(2)-C(9) 115.5(3), C(6)-N(3)-C(4) 130.1(3), C(6)-$\mathrm{N}(3)-\mathrm{C}(2) 118.0(4), \mathrm{C}(4)-\mathrm{N}(3)-\mathrm{C}(2) 111.6(3), \mathrm{N}(3)-\mathrm{C}(4)-\mathrm{C}(8) 116.7(3), \mathrm{N}(3)-\mathrm{C}(4)-\mathrm{C}(5)$ 102.1(3), C(8)-C(5)-C(4) 108.9(4), O(6)-C(6)-N(3) 119.3(4), O(6)-C(6)-C(7) 122.8(4), O(1)-$\mathrm{C}(4)-\mathrm{C}(5) 110.2(4), \mathrm{N}(3)-\mathrm{C}(6)-\mathrm{C}(7) 117.8(4)^{\circ}$.

For comparison, the reported structure of $\mathbf{3 9 7}{ }^{130}$ is shown in Figure 2. It can be seen that the key bond lengths and angles are generally very similar although the length of C (2)$\mathrm{C}(9)$ is substantially greater for our compound than the literature example.

Figure 2: Literature X-ray structure of (2S,4R)-3-benzoxycarbonyl-4-(2-t-butoxycarbonylethyl)-4-methyl-2-phenyl-1,3-oxazolidin-5-one 397 showing the crystallographic numbering scheme. Selected bond lengths and angles; $\mathrm{O}(1)-\mathrm{C}(5) 1.340, \mathrm{O}(1)-$ $\mathrm{C}(2) 1.444, \mathrm{C}(2)-\mathrm{N}(3) 1.466, \mathrm{C}(2)-\mathrm{C}(9) 1.468, \mathrm{~N}(3)-\mathrm{C}(6) 1.388, \mathrm{~N}(3)-(\mathrm{C} 4) 1.462, \mathrm{C}(4)-\mathrm{C}(8)$ 1.530, C(4)-C(5) 1.526, O(5)-C(5) 1.182, O(6)-C(6) 1.206, C(7)-C(4) $1.533 \AA ; \mathrm{C}(2)-\mathrm{O}(1)-$ $\mathrm{C}(5) 112.67, \mathrm{~N}(3)-\mathrm{C}(2)-\mathrm{O}(1) 102.64, \mathrm{C}(9)-\mathrm{C}(2)-\mathrm{O}(1) 107.77, \mathrm{~N}(3)-\mathrm{C}(2)-\mathrm{C}(9) 116.01, \mathrm{C}(6)-$ $\mathrm{N}(3)-\mathrm{C}(4) 121.90, \mathrm{C}(6)-\mathrm{N}(3)-\mathrm{C}(2) 125.18, \mathrm{C}(2)-\mathrm{N}(3)-\mathrm{C}(4) 111.90, \mathrm{~N}(3)-\mathrm{C}(4)-\mathrm{C}(8) 113.49$, $\mathrm{N}(3)-\mathrm{C}(4)-\mathrm{C}(7) 113.26, \mathrm{~N}(3)-\mathrm{C}(4)-\mathrm{C}(5) 100.33, \mathrm{C}(7)-\mathrm{C}(4)-\mathrm{C}(5) 108.91, \mathrm{C}(8)-\mathrm{C}(4)-\mathrm{C}(5)$ $110.85, \mathrm{O}(1)-\mathrm{C}(5)-\mathrm{O}(5) 129.91, \mathrm{O}(1)-\mathrm{C}(5)-\mathrm{C}(4) 111.56, \mathrm{O}(5)-\mathrm{C}(5)-\mathrm{C}(4) 126.50, \mathrm{O}(6)-\mathrm{C}(6)-$ $\mathrm{N}(3) 125.45^{\circ}$.

For comparison, the reported structure of $\mathbf{3 9 8}{ }^{131}$ is shown in Figure 3. It can be seen that the key bond lengths and angles are generally very similar although the angle of $\mathrm{C}(6)-\mathrm{N}(3)$ $\mathrm{C}(4)$ is substantially greater for our compound than the literature example.

Figure 3: Literature X-ray structure of (2S)-2-t-butyl-1,3-oxazolidin-5-one $398{ }^{131}$ showing the crystallographic numbering scheme. Selected bond lengths and angles; $\mathrm{O}(1)-\mathrm{C}(5) 1.345, \mathrm{C}(2)$ O (1) 1.449, C(2)-N(3) 1.465, C(2)-C(7) 1.529, N(3)-C(6) 1.366, N(3)-C(4) 1.458, C(4)-C(5) 1.497, C(5)-O(5) 1.200, C(6)-O(6) $1.204 \AA$; C(2)-O(1)-C(5) 110.95, N(3)-C(2)-O(1) 109.21, $\mathrm{C}(7)-\mathrm{C}(2)-\mathrm{O}(1) 104.02, \mathrm{~N}(3)-\mathrm{C}(2)-\mathrm{C}(7) 115.16, \mathrm{C}(6)-\mathrm{N}(3)-\mathrm{C}(4) 117.71, \mathrm{C}(6)-\mathrm{N}(3)-\mathrm{C}(2)$ $122.45, \mathrm{C}(2)-\mathrm{N}(3)-\mathrm{C}(4) 109.21, \mathrm{~N}(3)-\mathrm{C}(4)-\mathrm{C}(5) 102.72, \mathrm{O}(1)-\mathrm{C}(5)-\mathrm{O}(5) 121.53, \mathrm{O}(1)-\mathrm{C}(5)-$ $\mathrm{C}(4) 110.26, \mathrm{O}(5)-\mathrm{C}(5)-\mathrm{C}(4) 128.21, \mathrm{O}(6)-\mathrm{C}(6)-\mathrm{N}(3) 124.93^{\circ}$.

B. FVP of N-acyloxazolidin-5-ones

1. Results

The first compound subjected to FVP was the (S)-alanine derived 383. The experiment was carried out at $50^{\circ} \mathrm{C}$ increments between 600 and $400^{\circ} \mathrm{C}$. A summary of the results is shown in the diagram below.

Temperature$\left({ }^{\circ} \mathrm{C}\right)$	Yield (\%)						
	383	267	268	269	399	270	400
400	(94)	4	-	-	-	-	-
450	(72)	23	5	-	-	-	-
500	-	19	34	-	18	-	-
550	-	-	37	6	15	7	-
600	-	-	56	16	23	-	3
700	-	-	14	13	19	-	21

Although previous work in this laboratory ${ }^{108}$ suggested that carbon monoxide would be expelled from the ring, initial reactions showed that the 3-acyloxazolidin-5-ones did not fragment as expected to give the aldehyde or its imine, which would be required for acyl anion equivalence. In this case it was possible to identify the products as the cis- and trans-4-methyl-2,5-diphenyloxazolines 268 and 269 and 1-benzoyl-2-methyl-3-phenylaziridine 267 by comparison with literature spectra. ${ }^{117,118,9}$ Also a rather interesting by-product 399 was found to form.

Pyrolysis of the oxazolidinone 383 was first examined at $600{ }^{\circ} \mathrm{C}$. The main product proved to be the cis 4-methyl-2,5-diphenyloxazoline 268 (56\%) and it showed good agreement of ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR data with published values. ${ }^{117}$ Its trans-isomer 269 (16\%), N -(1-phenylprop-2-enyl)benzamide 399 (23\%) and propiophenone 400 (3\%) were also formed.

In view of this we proposed the fragmentation pathway below for 374 . Under FVP conditions this ring system loses CO_{2} to give the diradical, which ring-closes to the N acylaziridine 401 which under these conditions yields the 2-oxazolines 402 or $\mathbf{4 0 3}$ by a rearrangement of the N -acylaziridine as shown.

The nature of the main products was now clear. As shown the aziridine may break open in either way to give isomeric oxazolines. It might be assumed that because the conversion of 374 to $\mathbf{4 0 1}$ to $\mathbf{4 0 3}$ involves two ring cleavages and a diradical mechanism that all stereochemistry would be lost.

In a first large-scale pyrolysis of this compound at $550{ }^{\circ} \mathrm{C}$, chromatographic separation gave the oxazoline 268 (60% yield) and N-(1-phenylprop-2-enyl)benzamide 399 (20\%). The

${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra of this showed good agreement with the corresponding N, N dibenzoyl analogue 404 reported by Overman. ${ }^{119}$ This is most probably the product of an alternative rearrangement of the aziridine 267 as shown. In a further large scale pyrolysis of 383 at $550^{\circ} \mathrm{C}$, chromatographic separation gave the oxazoline 268 (37\%), its trans isomer 269 (6\%), 1-phenylprop-2-enyl benzamide 399 (15%) and what is presumed to be 5-methyl-2,4diphenyloxazoline $\mathbf{2 7 0}(7 \%) .{ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR data of the trans-isomer of $\mathbf{2 7 0}{ }^{31}$ are available for comparison but results are not conclusive as to which isomer has formed. The coupling constant of the $4-\mathrm{H}$ doublet in the ${ }^{1} \mathrm{H}$ NMR suggests that it is the cis-isomer.

It therefore appeared that the intermediate aziridine fragments almost exclusively by $\mathrm{N}-\mathrm{CHPh}$ cleavage since only a small amount of the isomeric 5-methyl-2,4-diphenyl product was obtained. Why the rearrangement of the aziridine should give the apparently more sterically hindered cis-isomer will be described later.

In an attempt to detect the proposed aziridine intermediate the pyrolysis was repeated at $500{ }^{\circ} \mathrm{C}$ and this again gave mainly 268 together with NMR signals corresponding to the published data for the cis aziridine. ${ }^{9}$ We wanted to isolate the cis aziridine therefore the experiment was repeated at 400 and $450^{\circ} \mathrm{C}$. Pyrolysis at $400^{\circ} \mathrm{C}$ left the starting material almost completely unreacted with only a trace of the cis aziridine 267 formed (4%) while at $450{ }^{\circ} \mathrm{C}$ the products were 267 (23\%), 268 (5\%) and starting material 383.

Our final study on this compound's pyrolytic behaviour was performed at $700{ }^{\circ} \mathrm{C}$. Surprisingly, the major component of the product was propiophenone $\mathbf{4 0 0}$ (21%) followed by $399(19 \%), 268$ (14%) and 269 (13%). Therefore it was decided that this temperature was of

no use. The propiophenone 400 probably results from a secondary fragmentation of the oxazoline via 405 as shown. This reaction of oxazolines appears to be new although FVP of an oxazole $\mathbf{4 0 6}$ with loss of PhCN has been reported recently. ${ }^{132}$

It should be pointed out that at this stage that in all of the pyrolyses an intensely red or purple (in one case blue) colour was formed and the components responsible for this proved to be highly reactive. Since CDCl_{3} caused almost immediate disappearance of the colour, initial experiments were analysed in $\mathrm{C}_{6} \mathrm{D}_{6}$. It later became clear that the coloured component (perhaps an azirine or indigo derivative) was only present in trace amounts and the main products were thereafter analysed in CDCl_{3} to aid comparison with literature spectra where available.

Since conditions of $450{ }^{\circ} \mathrm{C}$ and 10^{-2} Torr were found to give good yield of N -acyl aziridine 401 while use of $550^{\circ} \mathrm{C}$ cleanly gave the oxazolines 403 these two were temperatures focused upon for most of the remaining pyrolyses.

Pyrolysis of the valine-derived compound 384 at $550{ }^{\circ} \mathrm{C}$ again gave the cis and transoxazolines 407 and 408 in a ratio of $5: 1$ from ${ }^{1} \mathrm{H}$ NMR integration. These were isolated in yields of 32% and 14% respectively. There are discrepancies between data for the trans isomer 408 and that of the literature ${ }^{118}$ which remain unexplained. There was no trace of an analogue of the vinyl compound 399 formed in the pyrolysis of 383 . By carrying out the pyrolysis at $450{ }^{\circ} \mathrm{C}$ the aziridine 409 was obtained in 17% yield, together with 407 (6\%) and some unreacted starting material.

Pyrolysis of 385 at $600{ }^{\circ} \mathrm{C}$ gave a single stereoisomer of the oxazoline (26\%) and by comparison with the literature data for the trans isomer, ${ }^{7}$ this was deduced to be the cis product 410. By carrying out this reaction on a large scale at $550{ }^{\circ} \mathrm{C}$ and using chromatographic separation, the main product $\mathbf{4 1 0}$ was isolated in 38% yield. A trace of the trans-isomer 411 was observed and its ${ }^{1} \mathrm{H}$ NMR data was in good agreement with that of the literature. ${ }^{120}$ In addition the previously unknown N-(1,3-diphenylprop-2-enyl)benzamide 412 (22\%) and what is believed to be an isomer of 5-benzyl-2,4-diphenyloxazoline 413 (9\%) were also obtained. In order to obtain the aziridine the experiment was repeated at $450{ }^{\circ} \mathrm{C}$. The products after separation were a single isomer of the cis-aziridine $\mathbf{4 1 4}{ }^{121}$ (13\%), the starting material 385.

The next compound to be investigated was the (S, S)-isoleucine derived 386. As expected FVP of the starting material at $550{ }^{\circ} \mathrm{C}$ yields oxazolines and with three stereocentres being present in the molecule all four diastereomers of $\mathbf{4 1 5}$ are identifiable by NMR. Using
column chromatography it was only possible to separate the cis isomers (20\%) from the trans (7\%, 12% d.e.). Also, both (E) and (Z) isomers of N-(3-methyl-1-phenylpent-2enyl)benzamide 416 were formed in the reaction.

On completion of FVP of $\mathbf{3 8 6}$ at $450{ }^{\circ} \mathrm{C}$ both diastereomers of the aziridine 417 were formed in 24% yield with a d.e. of 18%. Some unreacted staring material 386 was recovered.

The FVP of the oxazolidinone 387 derived from (R)-phenylglycine at $500{ }^{\circ} \mathrm{C}$ gave a mixture containing in decreasing order of amount, the trans-oxazoline 418, the cis-oxazoline 419, cis-aziridine 420 and trans-aziridine 421 . Fortunately all of these could be identified by comparison with published spectroscopic data. ${ }^{120,69,9}$

A sample of $\mathbf{3 8 7}$ was subjected to FVP at $400^{\circ} \mathrm{C}$, the resulting producs were unreacted starting material $\mathbf{3 8 7}$ and traces of the aziridines $\mathbf{4 2 0}$ and $\mathbf{4 2 1}$. At $450{ }^{\circ} \mathrm{C}$, the products were shown to be $\mathbf{4 1 8}, \mathbf{4 2 0}, 419$ and 421 in a ratio of 6:3:3:1 (from ${ }^{1} \mathrm{H}$ integration) along with some of starting material. Then at $550^{\circ} \mathrm{C}$ the reaction proceeded in 82% yield (crude) to give cleanly the cis- and trans-oxazolines in a ratio of approximately $1: 2$. These were isolated by
chromatography in yields of 40 and 12% respectively. There was no sign of an analogue of compound 399 at any temperature.

Pyrolysis of N-acetyl-2-methyl-4-phenyloxazolidin-5-one 388 was investigated at 450, 500,550 and $600^{\circ} \mathrm{C}$. A single isomer of the aziridine 422 (12% yield) and recovered starting material (64% crude) were obtained at $450{ }^{\circ} \mathrm{C}$. At $500{ }^{\circ} \mathrm{C}$ the major products was still the aziridine 422 and N-(1-phenylprop-2-enyl)acetamide 425 was identifiable from literature data. 124 Traces of the cis- and trans-oxazolines 423 and 424 were identifiable from literature data ${ }^{122,123}$ as well as a significant amount of starting material. On increasing the furnace temperature to $550{ }^{\circ} \mathrm{C}$ the starting material was completely reacted giving the acetamide $\mathbf{4 2 5}$ as

the major product along with the cis and trans-oxazolines 423 and $\mathbf{4 2 4}$ in NMR yields of 44, 15 and 9% respectively. A trace of the aziridine 422 was also observed.

Any chromatography of the crude products usually resulted in poor yields and hydrolysis of the oxazolines $\mathbf{4 2 3}$ and $\mathbf{4 2 4}$ to amino alcohols. However the allylamide $\mathbf{4 2 5}$ was isolated in 22% yield after chromatography of the products from the pyrolysis at $550^{\circ} \mathrm{C}$. At $600^{\circ} \mathrm{C}$ pyrolysis gave compounds $\mathbf{4 2 5}, 423$ and 424 in a $4: 3: 2$ ratio (89% total yield).

Temperature	Yield				
$\left({ }^{\circ} \mathrm{C}\right)$	$\mathbf{3 8 8}$	$\mathbf{4 2 2}$	$\mathbf{4 2 3}$	$\mathbf{4 2 4}$	$\mathbf{4 2 5}$
450	(64)	12		-	-

$$
\begin{aligned}
\sqrt{ } V & =\text { major } \\
\sqrt{ } & =\text { minor } \\
(\sqrt{ }) & =\text { trace }
\end{aligned}
$$

Pyrolysis of the N-acetyloxazolidinone 389 was complete at $550{ }^{\circ} \mathrm{C}$ to give 2methyloxazoline 426 resulting from loss of CO_{2} in a yield of 15% after chromatographic isolation. Although there is no information as to what the stereochemistry of this might be, it appears from the spectra to be the trans-isomer. Determination of which isomer is formed will

require further investigation. Pyrolysis at $450^{\circ} \mathrm{C}$ gives the aziridine 427 as expected. This was present as a single isomer (23\%) and with an enantiomeric excess of 16% from the ${ }^{1} \mathrm{H}$ NMR spectrum recorded in the presence of a lanthanide shift reagent. Some starting material $\mathbf{3 8 9}$ was also recovered.

The next compound to be investigated was the (S)-phenyalanine derived 390 . At $450{ }^{\circ} \mathrm{C}$ reaction yielded the expected aziridine $\mathbf{4 3 1}$ as the cis-isomer (12%). At $550{ }^{\circ} \mathrm{C}$ reaction of $\mathbf{3 9 0}$ gave the cis and trans-oxazolines 428 and 429 along with the elimination product 430 . These products could not be separated using column chromatography after several attempts although
they could be identified clearly by comparison of NMR data. Compound 428 was known in the literature ${ }^{125}$ but had been characterised in DMSO.

FVP of the (S, S)-isoleucine derived 391 at $550{ }^{\circ} \mathrm{C}$ yielded what appeared to be two diastereoisomers of the oxazoline 432 (25\%)although whether they are cis or trans needs to be ascertained. In this instance the diastereomeric excess was determined as 12% directly from the

${ }^{1} \mathrm{H}$ NMR spectrum without the use of a chiral lanthanide shift reagent. Elimination product 433 (22%) was also formed as a mixture of (E) and (Z) isomers in a ratio of 55:45. Upon separating these products by column chromatography the oxazolines partially hydrolysed to the corresponding β-acetylamino alcohols. At $450{ }^{\circ} \mathrm{C}$ a single isomer of the aziridine 434 (29\%) was obtained. Once again the diastereomeric excess could be determined directly from the ${ }^{1} \mathrm{H}$ spectrum without the use of a chiral lanthanide shift reagent. This was calculated as 14%.

The (R)-phenyglycine-derived 392 was also studied. From earlier work the optimum temperatures seemed to be 450 and $550{ }^{\circ} \mathrm{C}$. A small scale pyrolysis were carried out first and these confirmed this as pyrolysis at $450{ }^{\circ} \mathrm{C}$ produced the cis- and trans-aziridines $\mathbf{4 3 5}{ }^{126}$ and 436 in a ratio of approximately 5:3. Some starting material 392 and a little of the oxazolines

392

435
436

437
438

439

440

437 and 438 were also obtained. As with FVP of 387 this suggested that there would be no temperature at which we would obtain purely the aziridines. The experiment was repeated on a larger scale and attempted separation of the products by column chromatography resulted in hydrolysis to the β-acetylamino alcohol 439 as the major product and a trace of the cis-isomer 440 (also some starting material 392 was recovered). At $550{ }^{\circ} \mathrm{C}$ reaction of 392 gave the oxazolines $\mathbf{4 3 7}$ and $\mathbf{4 3 8}$ in a 1:4 ratio. A white solid crystallised out from NMR samples of both of these products, so both were filtered off and the ${ }^{1} \mathrm{H}$ spectra re-recorded. Both of the samples had hydrolysed either in the air or in CDCl_{3} to the β-amino alcohol. The oxazolines and the aziridines both hydrolysed to 2-acetamido-1,2-diphenylethanols 439 and 440. ${ }^{126}$

On completion of pyrolysis at $550{ }^{\circ} \mathrm{C}$ on a large scale the results were consistent with the small scale i.e. the crude product was a mixture of cis- and trans-oxazolines 437 and 438 in a ratio of 1:4 and a yield of 93%. After chromatography the cis-isomer was obtained in less than 2% yield. This would imply that most of the oxazoline is reacting on the column and becoming stuck. It seems that column chromatography on alumina is not always efficient in isolating the products.

Upon pyrolysis of the $(2 R, 4 S)$ isomer of 393 at $550^{\circ} \mathrm{C}$ the results were consistent with those of $\mathbf{3 9 2}$ in that the crude product was a mixture of cis- and trans-oxazolines 437 and 438 in a 1:4 ratio. However chromatography gave these oxazolines in 0.5% and 32% respectively.

Where the oxazolines synthesised were known, their ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR data are in good agreement with literature values. Where the compounds are unknown their data (Tables 4-7) are consistent with that of similar materials. An exception is the unusually high ${ }^{13} \mathrm{C}$ NMR shift for the 2-Me of the isoleucine derived oxazoline. There is no apparent explanation for this.

R^{1}	Aromatic	5-H	4-H	R ${ }^{1}$
$\mathrm{Me}(c)$	$8.05(2 \mathrm{H}, \mathrm{m}),, 7.55-7.18(8 \mathrm{H}, \mathrm{m})$	5.75 (d, J 10)	4.66 (dq, J 10, 7)	0.89 (3 H, d, J 7, Me)
$\mathrm{Me}(t)$	$8.02(2 \mathrm{H}, \mathrm{m}), 7.52-7.22(8 \mathrm{H}, \mathrm{m})$	5.10 (d, J 8)	4.21 (m)	1.49 (3 H, d, J 7, Me)
$\operatorname{Pr}^{\text {i }}$ (c)	$8.05(2 \mathrm{H}, \mathrm{m}), 7.55-7.10(8 \mathrm{H}, \mathrm{m})$	5.67 (d, J 10)	4.20 (dd, J 10, 8)	$1.00(1 \mathrm{H}, \mathrm{m}, \mathrm{CH}), 0.92$ and $0.76(2 \times 3 \mathrm{H}, 2 \mathrm{~d}, J 7,2 \times \mathrm{Me})$
$\operatorname{Pr}^{1}(t)$	$8.06(2 \mathrm{H}, \mathrm{m}), 7.55-7.10(8 \mathrm{H}, \mathrm{m})$	5.26 (d, J 6)	4.39 (t, J 6)	$1.60(1 \mathrm{H}, \mathrm{m}, \mathrm{CH}), 0.98$ and $0.67(2 \times 3 \mathrm{H}, 2 \mathrm{~d}, J 7,2 \times \mathrm{Me})$
$\mathrm{Bn}(c)$	$8.05(2 \mathrm{H}, \mathrm{m}), 7.50-7.10(11 \mathrm{H}, \mathrm{m}), 6.95(2 \mathrm{H}, \mathrm{m})$	5.78 (d, J 10)	4.88 (ddd, J 10, 8, 7)	$2.69\left(1 \mathrm{H}, \mathrm{dd}, J 14,8, \mathrm{CH}_{2}\right)$ and $2.40\left(1 \mathrm{H}, \mathrm{dd}, J 14,7, \mathrm{CH}_{2}\right)$
$\mathrm{Bn}(t)$	$8.04-8.00(2 \mathrm{H}, \mathrm{m}), 7.60-6.95$ (13 H, m)	5.30 (d, J 6)	4.47 (ddd, $J 9,6,5)$	$3.35\left(1 \mathrm{H}, \mathrm{dd}, J 14,5, \mathrm{CH}_{2}\right)$ and $2.85\left(1 \mathrm{H}, \mathrm{dd}, J 14,9, \mathrm{CH}_{2}\right)$
Bu^{s} (c)	$8.06(2 \mathrm{H}, \mathrm{d}), 7.56-7.22(8 \mathrm{H}, \mathrm{m})$	5.73 (d, J 10)	4.28 (dd, J 10, 8)	$\begin{aligned} & 1.22(1 \mathrm{H}, \mathrm{~m}, \mathrm{CH}), 1.10-0.88\left(2 \mathrm{H}, \mathrm{~m}, \mathrm{CH}_{2}\right) \\ & 0.63(3 \mathrm{H}, \mathrm{~d}, J 6, \mathrm{CH} M e), 0.59\left(3 \mathrm{H}, \mathrm{t}, J 7, \mathrm{CH}_{2} M e\right) \end{aligned}$
$\mathrm{Bu}^{\mathrm{s}}(c)$ *	$8.07(2 \mathrm{H}, \mathrm{d}), 7.56-7.22(8 \mathrm{H}, \mathrm{m})$	5.76 (d, J 10)	4.39 (dd, J 10, 7)	$\begin{aligned} & 1.62 \text { and } 1.03\left(2 \times 1 \mathrm{H}, 2 \times \mathrm{m}, \mathrm{CH}_{2}\right), 1.02(1 \mathrm{H}, \mathrm{~m}, \mathrm{CH}) \\ & 0.70(3 \mathrm{H}, \mathrm{~d}, J 7, \mathrm{CH} M e), 0.58\left(3 \mathrm{H}, \mathrm{t}, J 7, \mathrm{CH}_{2} M e\right) \end{aligned}$
$\mathrm{Bu}^{\mathrm{s}}(t)$	$8.09(2 \mathrm{H}, \mathrm{d}), 7.58-7.09(8 \mathrm{H}, \mathrm{m})$	5.36 (d, J 9)	4.59 (t, J 9)	$\begin{aligned} & 1.33(1 \mathrm{H}, \mathrm{~m}, \mathrm{CH}), 1.31 \text { and } 1.01\left(2 \times 1 \mathrm{H}, 2 \times \mathrm{m}, \mathrm{CH}_{2}\right) \\ & 0.95(3 \mathrm{H}, \mathrm{~d}, J 6, \mathrm{CH} M e), 0.64\left(3 \mathrm{H}, \mathrm{t}, J 7, \mathrm{CH}_{2} M e\right) \end{aligned}$
$\mathrm{Bu}^{\mathrm{s}}(t)^{*}$	$8.02(2 \mathrm{H}, \mathrm{d}), 7.58-7.09(8 \mathrm{H}, \mathrm{m})$	5.27 (d, J 9)	4.50 (dd, J 10, 9)	$1.78\left(1 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}\right), 1.45(1 \mathrm{H}, \mathrm{m}, \mathrm{CH}), 1.30\left(1 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}\right)$ $0.84(3 \mathrm{H}, \mathrm{t}, J 7, \mathrm{CHMe}), 0.70\left(3 \mathrm{H}, \mathrm{d}, J 6, \mathrm{CH}_{2} \mathrm{Me}\right)$
Ph (c)	8.15 ($2 \mathrm{H}, \mathrm{m}$), 7.50-6.90 ($13 \mathrm{H}, \mathrm{m}$)	6.03 (d, J 10)	5.77 (d, J 10)	
$\mathrm{Ph}(t)$	8.15 ($2 \mathrm{H}, \mathrm{m}$), 7.50-6.90 ($13 \mathrm{H}, \mathrm{m}$)	5.42 (d, J 8)	5.25 (d, $J 8)$	

	${ }^{+6}$	†＇68	 	¢＇t9	（sup．l）प¢
		L＇S8	 	\dagger－ 591	（s！p）प¢
	9 \％L	688		て＇S91	＊（supu）${ }_{\text {s }} \mathrm{ng}$
	ゅで	†88		z＇S91	（sup．u）${ }_{\text {s }} \mathrm{ng}$
	$6+\downarrow$	L＇＋8		8＇£91	＊（s！o）n¢
	s＇9L	8＇18	 	6＇E9I	（s！p）n¢
	S＇IL	$5+8$	 	でャ91	（s！o）ug
	$\varepsilon \cdot z L$	Z．06		9＇t91	（sudit）$!^{\text {Id }}$
（əW \times 乙）6＇6I pue 9＇IZ＇（HJ）L＇6て	6.92	8.88		6＇E91	（s！${ }^{(1)}$ ）${ }^{\text {I }}$
（วん）がして	602	$\tau 78$		8＇291	（suput）әИ
（2W）がLI	0．59	¢． 88		s＇z91	（s！o）วһ

	$\varepsilon \varepsilon \varepsilon \tau$	681	ع＇68			（suex）प\％
	£＇6を	$\varepsilon^{\prime} 6 L$	0＇t8			＊（sur．1．） $\mathrm{s}^{\text {ng }}$
	I＇68	ع＇6L	I＇E8		\dagger †91	（sur．i）s s g
	I＇$๕ 1$	I＇SL	6 ¢8		ヶ¢91	（suex）ug
	0 － 1	L＇69	L＇z8		9 E ¢	（s！o）ug
（วW）I＇ZI	6.02	$8 \cdot 69$	L＇L8		¢．£91	（suen）วW
（วW）\downarrow ¢	\＆＇LI	と＇t9			L＇E9I	（ s （ ）ว W
	ขW－乙	$\stackrel{\square}{ }$	S－3	งฺ̣ршогу	$\mathrm{N}=\mathrm{O}$	${ }_{14}$

Table 9: ${ }^{1} \mathrm{H}$ NMR spectra of N -acetylaziridines

Table 10: ${ }^{13} \mathrm{C}$ NMR spectra of N -benzoylaziridines

	で\＆	ς^{\prime} ¢ \downarrow	8.67		I＇E8I	＊sng
	でEz	$S^{*} \mathcal{E}$	0.0 S		£゙๕8I	$\mathrm{s}^{\text {ng }}$
	I＇Ez	［＇Et	L゙カt	9＇92I＇L｀LZI＇L＇8ZI＇s＇tEI	£ E8I	ug
（əW）0．6I＇（əW）t｀Iて＇（HD）8．9Z	9 9を	$9 \cdot \varepsilon \downarrow$	I＇IS		8＇E8I	$\mathrm{I}^{\text {I }}$ d
（əW）t てI	0 ¢	6.8ε	しても		でと8I	（s！）ว N
${ }_{1}{ }^{\text {d }}$	$\mathrm{OJ}^{2} \mathrm{~W}$	て－つ	\＆－ว	tọpreorv	OD	${ }^{14}$

Table 11：${ }^{13} \mathrm{C}$ NMR spectra of N －acetylaziridines

Generally, the literature suggests that the signals for $5-\mathrm{H}$ and $4-\mathrm{H}$ in the cis-isomers will have higher chemical shifts than those of the trans-isomers. The literature also suggests that the coupling constant for the doublet arising from $5-\mathrm{H}$ will be larger than that of the transisomer. This seems to be in agreement with the Karplus equation. Cis and trans isomers for the previously unknown oxazolines have been assigned on this basis.

In the ${ }^{1} \mathrm{H}$ NMR spectra the signal at approximately 8.05 ppm must represent the 2 ortho hydrogens of the phenyl group at the 2-position since no similar signal is observed in the 2methyloxazolines. Another interesting feature of the ${ }^{1} \mathrm{H}$ NMR spectra is the long range coupling of the 2 -methyl group to the $4-\mathrm{H}$ through the $\mathrm{C}=\mathrm{N}$ bond in the 2 -methyloxazolines. What might be expected to give a singlet actually produces a doublet with a 1 Hz coupling.

The amino acid (S)-isoleucine was employed in order to give the oxazoline and aziridine products an extra stereocentre. This made it possible to identify all 4 possible diastereomers by NMR. This meant that the diastereomeric excess could be calculated directly from the ${ }^{1} \mathrm{H}$ NMR spectra making the use of lanthanide shift reagents superfluous.
${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR data for the aziridines are presented in Tables $8-11$. Where the aziridines synthesised so far are known they are 100% cis with exception of aziridines derived from 2,4diphenyloxazolidinones where a mixture of cis and trans is obtained. This is presumably due to steric hindrance. In all other cases the unknown single isomer observed is therefore assumed to be the cis-aziridine as they also have $3-\mathrm{H}$ signals with similar chemical shifts and couplings. When phenyl groups are present at both C-2 and C-3 the signals arising from these carbons or the attached hydrogens are identical due to the symmetry of the molecule.

Table 12: Summary of Pyrolysis results for N-acyloxazolidin-5-ones

There are a number of precedents for the extrusion of CO_{2} under FVP conditions from similar ring systems. The most relevant of these are displayed above. The first shows the pyrolysis of (4H)-2-phenyl-1,3-oxazol-5-one 446 which yields 3-phenyl- 2 H -azirine 447 as the only identifiable product in 34% yield. ${ }^{133}$ The oxazolidin-2,4-dione 448 eliminates CO_{2} to produce a 3-phenyaziridin-2-one 449. ${ }^{134}$ The final example illustrates a useful synthesis of thiiranes $\mathbf{4 5 1}$ from 1,3-oxathiolan-5-ones $\mathbf{4 5 0} .{ }^{135}$ This reaction is quite general and involves inversion of relative configuration as shown below as well as giving high yields. It is also thought that the reaction proceeds via a 1,3-diradical.

R^{1}	R^{2}	Yield	cis:trans $\mathbf{4 5 0}$	cis:trans $\mathbf{4 5 1}$
Ph	Ph	91	$10: 90$	$92: 8$
Me	Ph	93	$59: 41$	$42: 58$
Ph	Me	89	$67: 33$	$33: 67$
Me	Pr^{n}	95	$63: 37$	$38: 62$

2. Mechanism and Stereochemistry of Products

The results show that using standard FVP equipment, conditions of $450{ }^{\circ} \mathrm{C}$ and 10^{-2} Torr were optimum for yielding N-acyl aziridines $\mathbf{4 5 3}$ from 452 while use of $550{ }^{\circ} \mathrm{C}$ cleanly gave the oxazolines 455. Although the mechanism described earlier would suggest that any products would be racemic this proved not to be the case. Most of the aziridine products possess non-zero optical rotations or show an enantiomeric excess by way of chiral lanthanide shift reagents. The fact that we have started from enantiomerically pure oxazolidinones makes this result more significant.

The application of frontier orbital theory to the FVP induced ring opening of the N -acyloxazolidin-5-one is quite informative. Below the frontier orbitals of the dipolar, aziridine derived species 456 and carbon dioxide 457 are shown. The dipolar species 456 is treated as an allyl anion.

The reaction occurs between the HOMO (highest occupied molecular orbital) of one species and the LUMO (lowest unoccupied molecular orbital) of the other. The ring opening will happen in the same way as the ring closure (which is easier to visualise), so the ring closure was examined. Two possible modes of closure are below. The HOMO of the dipolar species

and the LUMO of the carbon dioxide $\mathbf{4 5 8}$ or the LUMO of the dipolar species and the HOMO of the carbon dioxide $\mathbf{4 5 9}$ may combine as shown. Both are disrotatory as the orbitals involved (on the dipolar species) must rotate in different directions (one clockwise and one anticlockwise) to form the bonds therefore the ring opening is disrotatory as well.

The intramolecular ring closure of the aziridine $\mathbf{4 6 0}$ takes place in the HOMO 461 and therefore must be conrotatory as the orbitals must both turn in the same direction to form the bond.

Of the products of pyrolysis tested so far many have non-zero optical rotations so some speculation is needed as to how this could be so. Nearly all of the aziridines synthesised up until now (with one exception) show a definite preference for the cis-isomer. The outline below shows a route to one particular stereoisomer. To arrive at this isomer we must first suppose that when the oxazolidinone opens to the dipolar intermediate that it retains a little of the

460
pyramidal shape at the nitrogen (461). Next we must suggest that the preferred ring closure of the aziridine would occur such as to place the N-acyl group as far away from Ph - and R^{1} as possible producing the least sterically hindered product 460. Without these suppositions we would expect the products to be racemic but a non-zero optical rotation means they are not racemic.

Something that cannot be explained so easily is the mechanism for the 2,4-diphenyloxazolidin-5-ones 463. Since there are two phenyl groups the two possible ring opened products 464 and 466 are symmetrical and therefore identical to each other. Now there are only two possible stereoisomers (as opposed to the above case with $\mathrm{R}^{1} \neq \mathrm{Ph}$ where four are possible) and again we would expect the sterically less hindered aziridine 467 to be favoured.

An alternative explanation for the retention of the stereochemistry in the aziridines is that the ring closure begins before the CO_{2} has been fully lost in an intermediate such as $\mathbf{4 6 8}$

shown. Although this has the advantage of readily explaining the retention of chirality since 468 is obviously chiral, it is not so obvious why the cis aziridine 462 would be produced.

The next step in the mechanism is the ring expansion. Again this is considered using the cis-aziridine 422, this time as the starting point. From the results so far we know that the oxygen must attack the phenyl bearing carbon so we would expect either the cis-oxazoline $\mathbf{4 2 3}$ (retention, see below) or the trans-oxazoline (inversion).

Note that the cis-aziridine is now drawn differently in light of our knowledge of how the frontier orbitals must align.

In the case of the 2,3-diphenylaziridine 436 twice as many isomers are possible as the oxygen can attack at either C-2 or C-3. The reaction can take place with either retention or

inversion of configuration leading to a racemic mixture of four isomers. This is in any case obvious as the aziridine is achiral.

It must therefore be proposed that the non-zero rotation observed for $\mathbf{4 3 9}$ arises because it is formed from hydrolysis of the oxazolines derived from the minor trans-aziridine 435 as

435

these are non racemic. The other trans-aziridine would produce the opposite cis-oxazoline (non racemic).

Whatever the mechanism involved the relative stereochemistry of the products involved is as shown below.

The aziridines formed at $450{ }^{\circ} \mathrm{C}$ are confirmed as cis where they are known in the literature with the exception of the 2,3-diphenyl examples where both cis and trans are formed.

Where they are not known it is clear from the trend of the accumulated NMR data that they are also cis. Therefore there is an inversion in the relative configuration as we have started from oxazolidinones possessing substituents at positions 2 and 4 that are trans to one another. Note that although the yields of aziridine are quite low ($<30 \%$) the starting material obtained after FVP can be recrystallised and used again.

In general although not always, FVP of the starting materials at $550{ }^{\circ} \mathrm{C}$ with Ph at $\mathrm{C}-2$ give oxazolines with Ph at $\mathrm{C}-5$. This is most probably due to the greater electrophilicity of the carbon adjacent to Ph . In only one case is an N -allylamide the major product and this product is formed when R^{1} is methyl, benzyl or s-butyl. Results obtained where the oxazolines are known in the literature show a definite preference for the cis isomer. Only when phenylglycine is employed the does the trans-oxazoline become the major product due to steric factors.

In order to chemically trap the dipolar intermediates proposed for aziridine formation, an aziridine was reacted with various dipolarophiles. Small amounts of 1-acetyl-2-methyl-3phenylaziridine 422 were heated with maleic anhydride, DMAD, and dimethyl maleate. The aziridine had reacted to form a little of the oxazoline $\mathbf{4 2 3}$ and the rest was unreacted after having been heated with the latter two. This shows that the ring expansion to the oxazoline happens so readily that any alternative process involving a dipolar species cannot compete. The maleic anhydride had reacted with the aziridine (no traces of characteristic peaks in ${ }^{1} \mathrm{H}$ NMR spectrum) but the product could not be identified. The ${ }^{1} \mathrm{H}$ NMR and mass spectra ($\mathrm{M}^{+} 325$) did not confirm what was expected (addition across the double bond) and no obvious explanation could be found.

It was noticed earlier that some of the oxazolines hydrolysed upon storage. It was thought that by carrying out this reaction, acylamino alcohols would be obtained whose relative and absolute configuration might be more easily determined. In an attempt to effect the hydrolysis of oxazolines ourselves a pyrolysis of $\mathbf{3 8 3}$ was carried out at $500{ }^{\circ} \mathrm{C}$. The products, mainly 267 and 268, were hydrolysed by heating under reflux with HCl . The ${ }^{1} \mathrm{H}$ NMR spectrum showed that the threo and erythro isomers 472 and 473 of the acylamino alcohol were present in a ratio of approximately $1: 3$. The rotation of the acylamino alcohol mixture was measured in the polarimeter and found to be zero; therefore the products were racemic.

C. Synthesis and Properties of N-thioacyloxazolidin-5-ones

1. Synthesis

To extend the chemistry and perhaps learn more about the mechanism of reaction it was decided to synthesise N-thioacyloxazolidin-5-ones and subject them to similar FVP conditions. In the first approach the previously used method was employed again but using thiobenzoyl chloride ${ }^{128}$ instead of an acid chloride.

First a Grignard reagent 475 was synthesised from bromobenzene 474 and magnesium and this was used to alkylate carbon disulfide to give the salt 476. Then the rection mixture was extracted with water and the aqueous layer acidified to precipitate phenylcarbodithioic acid 477. ${ }^{127}$ This was used directly for the next step of the reaction without evaporation or purification due to its instability.

The product 477 was heated with thionyl chloride under nitrogen to convert the thiol group to the chloride giving 478. The reaction proceeds via $\mathrm{PhC}(\mathrm{S}) \mathrm{S}-\mathrm{S}(\mathrm{O}) \mathrm{Cl}$ and evolves $\mathrm{S}_{2} \mathrm{O}$ and hydrogen chloride. The process is complicated by a side reaction where $\mathrm{S}_{2} \mathrm{O}$ reacts with excess thionyl chloride to give $\mathrm{S}_{2} \mathrm{Cl}_{2}$ which then forms a complex 479 with $\mathrm{PhC}(\mathrm{S}) \mathrm{Cl}$.

Distilling the product at $150^{\circ} \mathrm{C}$ causes decomposition to thiobenzoyl chloride 478 and $\mathrm{S}_{2} \mathrm{Cl}_{2}$. The latter is collected in a dry-ice cooled trap whereas the thiobenzoyl chloride condenses at room temperature.

Unfortunately the thiobenzoyl chloride was more air and moisture sensitive than was first thought and this made it unsuitable for reaction with the imine as the solvent carried over from the previous stage was not dry. Also, thiobenzoyl chloride was less reactive towards the imine since sulfur is less electronegative than oxygen and the method failed.

For these reasons it was decided to try an alternative approach using Lawesson's reagent to convert preformed N-acyloxazolidin-5-ones to the target compounds. This reacts solely at the amido oxygen making it unnecessary to synthesise thioacyl chlorides.

From the range of oxazolidin-5-ones 452 prepared previously a selection of N -thioacyloxazolidin-5-ones 480 were synthesised by heating under reflux with Lawesson's reagent in toluene for approximately 3 hours. Normally, only a quarter of a mole of Lawesson's reagent is required since all four sulfurs are available for reaction. In this case it was found that only two sulfurs were reactive, so a half equivalent of Lawesson's reagent was
used. The by-product derived from Lawesson's reagent is insoluble in toluene at room temperature. Therefore, once the reaction was complete the mixture was allowed to cool and then filtered. The filtrate was evaporated and the residue was recrystallised from dichloromethane and ether to give the product as a yellow crystalline solid.

484

487

485

488

486

489

The compounds 481-485 and 487 are all unknown compounds in the literature and therefore they were fully characterised. Synthesis of compounds 486,488 and 489 was unsuccessful. There was almost no conversion of compounds 389, 392 and 393 , even when a 100% excess of Lawesson's reagent was employed.

2. Structure and Properties

Since all the N-thioacyloxazolidin-5-ones synthesised are previously unknown in the literature their NMR spectra (Tables 13-15) can only be compared with those of the N -acyloxazolidin-5-ones. The ${ }^{1} \mathrm{H}$ spectra have values for $2-\mathrm{H}$ and $4-\mathrm{H}$ that are within the expected range for this type of compound. All ${ }^{1} \mathrm{H}$ NMR spectra of these compounds are also shown to have two sets of broad peaks due to conformers and their signals combine and sharpen to a single set at increased temperatures. The N-benzoyloxazolidin-5-ones showed only one set of broadened peaks meaning that they are closer to coalescence at room temperature than their sulfur analogues. The pattern of these signals and those for R^{1} are also as would be expected. The ${ }^{13} \mathrm{C}$ NMR spectra of the N-thioacyloxazolidin-5-ones are also consistent with each other and what would be expected from the data of their N-acyl counterparts. The main difference is the presence of a characteristic signal for the $\mathrm{C}=\mathrm{S}$ carbon at around 200 ppm .

$\left({ }^{(} \mathrm{HO}^{2} W\right) * S{ }^{\text {L }}$ II						
 $\left.{ }^{(2} \mathrm{HO}{ }^{2} \mathrm{~W}\right) 8 . \mathrm{II}$	0 －$\dagger 9$	L＇E6		で69I	S002	＊s ${ }^{\text {ng }}$
	$0 \cdot 59$	0 － 6		I＇69I	L＇IOZ	s^{ng}
	8＇19	$6 \cdot \varepsilon 6$		S．0LI	9．102	ug
	＊－99	ع゙ャ6		9691	†でZ	＊！${ }^{\text {I }}{ }^{\text {d }}$
	L＇S9	I＇t6		¢691	0 10z	$!_{1}^{\text {I }}$ d
	8.95	$8^{\prime} 76$		$\varepsilon \varepsilon^{\prime} I L I$	I＇zoz	＊${ }^{\text {a }}$
$\tau \cdot \mathrm{SI}$	$\varepsilon \cdot 95$	$\varepsilon \cdot \varepsilon 6$		LZ＇ILI	S．002	วN
${ }_{18}$	†－つ	でつ	эฺ̣ешог	$\mathrm{O}=2$	$S=2$	${ }^{18}$

($28 t$) ug ' ($\mathbf{(8 t)}$) วW = ${ }_{\mathrm{I}}{ }^{\text {U }}$

Table 15: ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra of N -thioacetyloxazolidin-5-ones

Crystals of the N-thioacyloxazolidin-5-one $\mathbf{4 8 5}$ suitable for an X-ray diffraction study were obtained and the resulting structure is shown in Figure 3. As would be expected this shows that the configuration of the ring is unaffected by the action of Lawesson's reagent on the acetyl group and the structure is ($2 R, 4 S$) N-thioacetyl-4-methyl-2-phenyl-1,3-oxazolidin-5one. However, the thioacetyl group is inverted relative to the acetyl group: the sulfur points towards C-4 while for the oxygen analogue the oxygen pointed towards C-2.

Figure 4: X- ray structure of $(2 R, 4 S)$ 4-methyl-2-phenyl-3-thioacetyl-1,3-oxazolidin-5-one 485 showing the crystallographic numbering scheme. Selected bond lengths and angles; $\mathrm{O}(1)-\mathrm{C}(5) 1.358(4), \mathrm{O}(1)-\mathrm{C}(2) 1.436(3), \mathrm{C}(2)-\mathrm{N}(3) 1.466(4), \mathrm{C}(2)-\mathrm{C}(9) 1.493(4), \mathrm{N}(3)-\mathrm{C}(6)$ $1.351(4), \mathrm{N}(3)-\mathrm{C}(4) 1.462(4), \mathrm{C}(4)-\mathrm{C}(5) 1.502(5), \mathrm{C}(4)-\mathrm{C}(8) 1.511(4), \mathrm{C}(6)-\mathrm{C}(7) 1.492(4)$, $\mathrm{C}(6)-\mathrm{S}(6) 1.661(3) \AA ; \mathrm{C}(5)-\mathrm{O}(1)-\mathrm{C}(2) 112.4(2), \mathrm{O}(1)-\mathrm{C}(2)-\mathrm{N}(3) 103.5(2), \mathrm{O}(1)-\mathrm{C}(2)-\mathrm{C}(9)$ 110.0 (2), $\mathrm{N}(3)-\mathrm{C}(2)-\mathrm{C}(9) 114.8(3), \mathrm{C}(6)-\mathrm{N}(3)-\mathrm{C}(4) 123.1(3), \mathrm{C}(6)-\mathrm{N}(3)-\mathrm{C}(2) 123.8(3), \mathrm{C}(4)-$ $\mathrm{N}(3)-\mathrm{C}(2) 112.0(2), \mathrm{N}(3)-\mathrm{C}(4)-\mathrm{C}(5) 101.9(3), \mathrm{N}(3)-\mathrm{C}(4)-\mathrm{C}(8) 113.6(3), \mathrm{C}(5)-\mathrm{C}(4)-\mathrm{C}(8)$ 110.6(3), O(5)-C(5)-O(1) 121.8(4), O(5)-C(5)-C(4) 128.0(4), O(1)-C(5)-C(4) 110.2(3), N(3)-$\mathrm{C}(6)-\mathrm{C}(7) 117.2(3), \mathrm{N}(3)-\mathrm{C}(6)-\mathrm{S}(6) 121.6(2), \mathrm{C}(7)-\mathrm{C}(6)-\mathrm{S}(6) 121.1(3)^{\circ}$.

This was thought to be due to sulfur being larger than oxygen. In the light of this the X-ray crystal structure of $\mathbf{4 8 3}$ was determined but this thiobenzoyl compound also shows the same effect.

Figure 5: X-ray structure of ($2 R, 4 S$) 4-benzyl-2-phenyl-3-thiobenzoyl-1,3-oxazolidin-5-one 483 showing the crystallographic numbering scheme. Selected bond lengths and angles; $\mathrm{O}(1)-\mathrm{C}(5) 1.323(10), \mathrm{O}(1)-\mathrm{C}(2) 1.446(9), \mathrm{C}(2)-\mathrm{C}(13) 1.454(11), \mathrm{C}(2)-\mathrm{N}(3) 1.488(9), \mathrm{N}(3)-$ C(6) 1.356(8), N(3)-C(4) 1.461(9), C(4)-C(5) 1.504(11), C(4)-C(19) 1.519(11), C(6)-C(7) $1.479(10), \mathrm{C}(6)-\mathrm{S}(6) 1.640(7) \AA$; C(5)-O(1)-C(2) 113.5(6), O(1)-C(2)-C(13) 110.6(6), O(1)-$\mathrm{C}(2)-\mathrm{N}(3) 102.2(6), \mathrm{C}(13)-\mathrm{C}(2)-\mathrm{N}(3) 114.5(6), \mathrm{C}(6)-\mathrm{N}(3)-\mathrm{C}(4) 122.9(5), \mathrm{C}(6)-\mathrm{N}(3)-\mathrm{C}(2)$ 124.1(5), C(4)-N(3)-C(2) 111.6(5), N(3)-C(4)-C(5) 101.7(6), N(3)-C(4)-C(19) 116.3(6), $\mathrm{C}(5)-\mathrm{C}(4)-\mathrm{C}(19) 110.5(6), \mathrm{O}(5)-\mathrm{C}(5)-\mathrm{O}(1) 121.2(8), \mathrm{O}(5)-\mathrm{C}(5)-\mathrm{C}(4) 127.8(8), \mathrm{O}(1)-\mathrm{C}(5)-$ $\mathrm{C}(4) 111.0(7), \mathrm{N}(3)-\mathrm{C}(6)-\mathrm{C}(7) 116.0(6), \mathrm{N}(3)-\mathrm{C}(6)-\mathrm{S}(6) 122.1(5), \mathrm{C}(7)-\mathrm{C}(6)-\mathrm{S}(6) 121.8(5)^{\circ}$.

D. FVP of N-thioacyloxazolidin-5-ones

The first of these compounds subjected to FVP was the (S)-alanine derived compound 481. The mass spectrum showed that CO_{2} had been lost and the NMR data was consistent with the formation of a 2-thiazoline ring. The ${ }^{1} \mathrm{H}$ NMR spectrum showed a similar pattern to that of the oxazolines obtained earlier but as would be expected, the doublet arising from the hydrogen at the 5 -position is at a lower chemical shift. Compound 491 was known in the literature ${ }^{129}$ although which isomer had not been determined. By comparison of the data obtained earlier for the oxazolines we are confident in assigning it as the trans isomer. Therefore it appears that the FVP of $\mathbf{4 8 1}$ yields the cis and trans 2-thiazolines $\mathbf{4 9 0}$ and 491.

Interestingly at $450{ }^{\circ} \mathrm{C}$, there was no sign of the N-thioacylaziridine but there were traces of the thiazolines that were observed at $550^{\circ} \mathrm{C}$. In this case the aziridine must be so reactive once it has formed under these conditions that it immediately ring expands into the thiazoline. There was also no sign of the allylthioamide product 492 corresponding to compound $\mathbf{3 9 9}$ formed from the N -benzoyloxazolidinone 383.

Pyrolysis of the (S)-valine derived compound $\mathbf{4 8 2}$ followed the same pattern as the previous reaction. FVP at $550^{\circ} \mathrm{C}$ afforded the cis and trans thiazolines 493 and 494 in yields of 28 and 17% after column chromatography. These both gave non-zero optical rotations, +11 for the cis isomer and -23 for the trans. What is interesting is that none of the oxazolines synthesized in this way had significant optical rotations.

Upon FVP at $450^{\circ} \mathrm{C}$ the starting material was only partially reacted and again traces of the thiazolines were apparent. The aziridine is assumed to be an unobserved intermediate in the FVP of N-thioacyloxazolidin-5-ones. In light of this the succeeding pyrolyses were carried out at $550^{\circ} \mathrm{C}$ only.

Pyrolysis of the (S)-phenylalanine derived compound 483 again gave cis and trans thiazolines. Compounds 495 and 496 were produced in a ratio of approximately $65: 35$. We were unable to separate these compounds by column chromatography. Interestingly there was no sign of the N-allylthioamide product in this case. Its analogue $\mathbf{4 1 2}$ formed in 22% yield by the pyrolysis of N-acyloxazolidinone 385 .

The ${ }^{1} \mathrm{H}$ NMR spectrum of this mixture was recorded in the presence of varying amounts of praseodymium tris(heptafluorobutrylcamphorate) and europium tris(heptafluorobutrylcamphorate). The enantiomeric excess could not be determined in either case as the signals become too broad before the peaks for the different enantiomers separated.

Another oxazolidinone 484 derived from (S)-isoleucine was studied at $550{ }^{\circ} \mathrm{C}$. Once again as there are three stereocentres present in the molecule and therefore all four diastereomers are identifiable by NMR. Using column chromatography it was only possible to separate the cis isomers from the trans. This pyrolysis provides the cis-thiazolines 497 and 498, and trans-thiazolines 499 and 500 in almost equal amount. Column chromatography separated these in 24% and 19% yield and in 0% and 37% diastereomeric excess respectively.

Again there was no sign of an analogue of the allyl compound 416 formed in 17% yield by the pyrolysis compound 386.

Only two of the three thioacetyloxazolidinones synthesized were subjected to pyrolysis at $550^{\circ} \mathrm{C}$. The first was the (S)-alanine derived compound 485 . This reaction produced cisand trans-2-thiazolines $\mathbf{5 0 1}$ and $\mathbf{5 0 2}$ isolated in yields of $\mathbf{2 0 \%}$ and $\mathbf{1 2 \%}$ respectively. A trace of the N-thioacetyl analogue of compound 425 was also observed. This in contrast to the pyrolysis of $\mathbf{3 8 8}$ where the N-allylamide compound had been the major product.

Next the (S)-phenyalanine derived compound 487 subjected to pyrolysis at $550{ }^{\circ} \mathrm{C}$. This reaction provided cis- and trans-2-thiazolines $\mathbf{5 0 4}$ and $\mathbf{5 0 5}$ in yields of $\mathbf{2 4 \%}$ and $\mathbf{1 9 \%}$ respectively. There was no sign of an analogue of the allyl compound 434 that had formed in the pyrolysis of 390 at $550^{\circ} \mathrm{C}$.

Attempts to establish the enantiomeric excess via the use of lanthanide shift reagents were unsuccessful. Also, since these thiazolines were not separated by column chromatography their optical rotations could not be determined. The ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR data for all the thiazolines obtained are presented in Tables 16-18 and again these show a highly consistent pattern.

$\mathrm{Bu}^{\mathrm{s}}(\mathrm{c})^{*} 7.84(2 \mathrm{H}, \mathrm{m}), 7.48-7.02(8 \mathrm{H}, \mathrm{m}) \quad 4.72(\mathrm{~d}, J 7)$
$\mathrm{Bu}^{\mathrm{s}}(\mathrm{c}) 7.84(2 \mathrm{H}, \mathrm{m}), 7.48-7.02(8 \mathrm{H}, \mathrm{m}) \quad 4.97(\mathrm{~d}, J 7)$

 농 Me (t) 7.55-7.00 ($10 \mathrm{H}, \mathrm{m}$)
Table 16 : ${ }^{1} \mathrm{H}$ NMR spectra of 2-phenylthiazolines

	Loz	て＇6S	I＇L8		6．591	（ ）ug
	1＇ı	て＇6S	0 \％8		でL9I	（）ug
soz	802	ς ¢ $¢$	＋18		L＇59I	（ ）$\partial \mathrm{W}$
691	602	I＇09	6 S 2		\＆891	（）ว N
I_{4}	วW－乙	－ヵ	2－5	toneworv	$\mathrm{N}=\mathrm{J}$	ı ${ }^{\text {¢ }}$

$\mathrm{Bn}(c) \quad 7.53-6.92(10 \mathrm{H}, \mathrm{m}) \quad 4.75(\mathrm{~d}, J 7) \quad 4.77(\mathrm{~m})$ $\stackrel{3}{0} \stackrel{3}{0}$
oṇewory ，IY

（S0s＇tos）ug＇（zos＇tos） วN $={ }_{I}$ प

It

$\mathrm{H}^{-} \dagger$
－

（I $\left.\int^{\prime} \mathrm{p}\right) 8 \tau^{2} \tau$
$\left(z f^{\prime} p\right) \tau \varepsilon \tau$
（s） 9 qて
（s）$て$ とて
І ๖ ЈW－て

E. Alkylation of chiral N -acyloxazolidin-5-ones

Originally the N -acyloxazolidin-5-ones were to be alkylated at $\mathrm{C}-4$ in order to extend the acyl anion equivalent chemistry of the dioxolanones. Although the behavior of N -acyloxazolidin-5-ones under FVP conditions has turned out to be entirely different to that of the dioxolanones, it was decided to investigate the alkylation briefly. To this end the ($2 R, 4 R$)-3-benzoyl-4-benzyl-4-methyl-2-phenyl-1,3-oxazolidin-5-one 506 was prepared by methylating 385 using LDA. The synthesis of these type of compounds has already been thoroughly investigated by Seebach. ${ }^{110}$ However this particular compound was unknown in the literature and was fully characterised with the spectroscopic data confirming the expected structure.

When the FVP of this compound was examined it gave rather surprising results. There is no sign of an aziridine at $450^{\circ} \mathrm{C}$ or an oxazoline at $550^{\circ} \mathrm{C}$. As shown below only the ringopened amide 507 is formed within the temperature range studied. At $550^{\circ} \mathrm{C}$ the oxazolidinone $\mathbf{5 0 6}$ is completely reacted to form N-(1,3-diphenyl-2-methylprop-2-enyl)benzamide $\mathbf{5 0 7}$ in $\mathbf{7 6 \%}$ yield. The reaction was also carried out at $500^{\circ} \mathrm{C}$ but the starting material was not fully reacted.

Given the previous examples it is presumed that the aziridine $\mathbf{5 0 8}$ is an unobserved intermediate in this process. The outcome of the experiment can be explained as follows. In the unalkylated examples the cis-aziridine intermediate exists predominantly with the N-acyl group trans to the C-2 and C-3 substituents. The unfavourable all cis form $\mathbf{5 0 9}$ required to
allow reaction to give allyl products $\mathbf{5 1 0}$ is only a minor contributor and this means that this is a minor side reaction.

When we come to compound 511 we can first assume that the aziridine is formed with inversion of one centre, as in the other cases, so the benzyl group which was originally cis to the phenyl is now trans to it. The fact that there is at least one alkyl group on each side of the ring

511

513

makes the two forms more comparable in energy than before, but the form with benzoyl trans to phenyl (511) is favoured and this leads to the observed product $\mathbf{5 1 3}$ as shown. This process is apparently more favourable now and overrides any tendency to form oxazolines. The fact that only 513 and not the isomer 514 is formed is in agreement with this explanation.

F. $\quad \operatorname{Bis}(N$-acyloxazolidin-5-ones)

Bis(oxazoline) ligands are important in the field of catalytic asymmetric synthesis. ${ }^{136,137} \operatorname{Bis}$ (oxazoline) ligand-metals catalysts are already employed in a variety of processes including aziridination reactions, oxidations, reductions, hydrosilylations and carboncarbon forming reactions. Among the carbon-carbon forming reactions are 1,3-dipolar cycloadditions, $[2+2]$ photochemical cycloaddition, aldol reactions, Diels-Alder and hetero Diels-Alder reactions to name a few.

The C_{2} axis of symmetry in bis(oxazolines) limits the number of potential transitions states in a given reaction. The donor nitrogens are close to the chiral centres producing a strong directing effect. Also, the bis(oxazoline) can be synthesised with variety of spacers between the rings. Therefore, the size can of the space between rings can be adjusted to allow for the best ligand geometry.

Bis(oxazolidin-5-ones) 515 were prepared starting from amino acids 372 using the route shown previously. The aldehyde component was benzaldehyde. The acid chlorides

employed were malonyl and succinyl chloride. Only half as many moles are required since we have two reactive sites on these acid chlorides. Syntheses with dimethylmalonyl and oxalyl chlorides failed due to steric factors. The reaction to form the bis(oxazolidinone) $\mathbf{5 1 6}$ from malonyl chloride and (S)-alanine was successful giving a yield of 28%. Unfortunately this product could not be obtained in a suitable form for X-ray diffraction.

It was then decided that succinyl chloride would be used in order to improve the yields. It was thought that increasing the length of the chain between the carbonyl groups of the acid would reduce steric hindrance. The amino acids used were (S)-alanine, (S)-valine, and (S)phenylglycine and this gave compounds 517, 518 and 519 in yields of $32 \%, 26 \%$ and 17% respectively.

516

518

517

519

The ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra of the bis(oxazolidin-5-ones) displayed extremely broad peaks at $25^{\circ} \mathrm{C}$. As many as four rotamers are observed at room temperature because there are two possible rotamers for each end of the molecule. By running the spectra at $50{ }^{\circ} \mathrm{C}$ the signals were seen to sharpen up considerably. Therefore these oxazolidinones also display restricted rotation of the molecule around the amide bond. This means that the molecule has two or more conformers. The energy barrier for rotation, $\Delta \mathrm{G}^{*}$ and the difference in energy between the two states, $\Delta \mathrm{G}$, are calculated from the thermodynamic equations 1 and 2 (see earlier).

This procedure was carried out for 3,3'-succinylbis-(2R,4S)-2-methyl-4-phenyl-1,3-oxazolidin-5-one 517. The results are shown below.

Signal (ppm)	$\mathrm{T}_{\mathrm{c}}(\mathrm{K})$	$\delta_{v}(\mathrm{~Hz})$	$\Delta \mathrm{G}^{*}\left(\mathrm{~kJ} \mathrm{~mol}^{-1}\right)$	$\Delta \mathrm{G}\left(\mathrm{kJ} \mathrm{mol}^{-1}\right)$
16.2	328 ± 1	226	63.32	3.46
30.4	305 ± 1	29	64.13	3.46
52.8	318 ± 1	57	65.24	3.46
89.6	315 ± 1	57	64.57	3.46

The values of $\Delta \mathrm{G}^{*}$ and $\Delta \mathrm{G}$ are very similar to those obtained earlier for the mono oxazolidinones.

Improved analytical and spectroscopic data is required for these compounds. Also, a wider variety of acids need to be examined in order to broaden their applications and improve yields.

Due to time constraints and the need for a larger catalogue of bis(oxazolidinone) precursors, the subsequent FVP of these compounds to produce the synthetically valuable bis(oxazoline) compounds has not yet been investigated but this is a promising area for future work.

APPENDIX

X-Ray Structural Data

Compound 388 Tables 19-22

Compound 485 Tables 23-26

Compound 483 Tables 27-30

Table 19 Atomic coordinates and $\mathrm{U}(\mathrm{eq})$ for 388

Atom	x	y	z	$\mathrm{U}(\mathrm{eq})$
$\mathrm{O}(1)$	$10193(5)$	$9506(2)$	$1729(2)$	$52(1)$
$\mathrm{C}(2)$	$8642(6)$	$10263(4)$	$1332(3)$	$40(1)$
$\mathrm{N}(3)$	$9571(5)$	$11473(3)$	$1331(2)$	$40(1)$
$\mathrm{C}(4)$	$11720(6)$	$11420(3)$	$1550(3)$	$40(1)$
$\mathrm{C}(5)$	$11990(8)$	$10097(4)$	$1788(3)$	$47(1)$
$\mathrm{O}(5)$	$13506(5)$	$9605(3)$	$2032(2)$	$66(1)$
$\mathrm{C}(6)$	$8414(7)$	$12428(4)$	$1062(3)$	$43(1)$
$\mathrm{O}(6)$	$6613(4)$	$12258(2)$	$877(2)$	$58(1)$
$\mathrm{C}(7)$	$9417(6)$	$13638(4)$	$985(3)$	$52(1)$
$\mathrm{C}(8)$	$12416(7)$	$12200(4)$	$2301(3)$	$64(2)$
$\mathrm{C}(9)$	$8187(6)$	$9734(3)$	$448(3)$	$38(1)$
$\mathrm{C}(10)$	$9251(6)$	$10091(4)$	$-288(3)$	$46(1)$
$\mathrm{C}(11)$	$8963(7)$	$9504(4)$	$-1064(3)$	$56(1)$
$\mathrm{C}(12)$	$7603(7)$	$8565(4)$	$-1126(3)$	$61(1)$
$\mathrm{C}(13)$	$6493(7)$	$8227(4)$	$-401(4)$	$62(2)$
$\mathrm{C}(14)$	$6775(6)$	$8809(4)$	$378(3)$	$48(1)$
$\mathrm{H}(2 \mathrm{~A})$	7409	10265	1690	48
$\mathrm{H}(4 \mathrm{~A})$	12537	11608	1035	48
$\mathrm{H}(7 \mathrm{~A})$	8440	14228	791	77
$\mathrm{H}(7 \mathrm{~B})$	10512	13588	574	77
$\mathrm{H}(7 \mathrm{C})$	9944	13877	1540	77
$\mathrm{H}(8 \mathrm{~A})$	12250	13042	2155	96
$\mathrm{H}(8 \mathrm{~B})$	13825	12038	2420	96
$\mathrm{H}(8 \mathrm{C})$	11616	12014	2805	96
$\mathrm{H}(10 \mathrm{~A})$	10168	10733	-254	55
$\mathrm{H}(11 \mathrm{~A})$	9696	9746	-1551	67
$\mathrm{H}(12 \mathrm{~A})$	7425	8159	-1649	73
$\mathrm{H}(13 \mathrm{~A})$	5549	7600	-442	75
$\mathrm{H}(14 \mathrm{~A})$	6013	8580	859	58

Table 20 Bond lengths (\AA) for 388

Atom	Atom	Distance	Atom	Atom	Distance
$\mathrm{O}(1)$	$\mathrm{C}(5)$	$1.351(6)$	$\mathrm{C}(6)$	$\mathrm{C}(7)$	$1.489(6)$
$\mathrm{O}(1)$	$\mathrm{C}(2)$	$1.451(5)$	$\mathrm{C}(6)$	$\mathrm{O}(6)$	$1.231(5)$
$\mathrm{C}(2)$	$\mathrm{N}(3)$	$1.464(6)$	$\mathrm{C}(9)$	$\mathrm{C}(14)$	$1.381(6)$
$\mathrm{C}(2)$	$\mathrm{C}(9)$	$1.512(7)$	$\mathrm{C}(9)$	$\mathrm{C}(10)$	$1.389(6)$
$\mathrm{N}(3)$	$\mathrm{C}(6)$	$1.361(5)$	$\mathrm{C}(10)$	$\mathrm{C}(11)$	$1.372(7)$
$\mathrm{N}(3)$	$\mathrm{C}(4)$	$1.453(6)$	$\mathrm{C}(11)$	$\mathrm{C}(12)$	$1.369(6)$
$\mathrm{C}(4)$	$\mathrm{C}(8)$	$1.511(6)$	$\mathrm{C}(12)$	$\mathrm{C}(13)$	$1.385(7)$
$\mathrm{C}(4)$	$\mathrm{C}(5)$	$1.512(7)$	$\mathrm{C}(13)$	$\mathrm{C}(14)$	$1.373(7)$
$\mathrm{C}(5)$	$\mathrm{O}(5)$	$1.194(5)$			

Table 21 Bond angles $\left({ }^{\circ}\right)$ for 388

Atom	Atom	Atom	Angle	Atom	Atom	Atom	Angle
$\mathrm{C}(5)$	$\mathrm{O}(1)$	$\mathrm{C}(2)$	$111.4(3)$	$\mathrm{O}(1)$	$\mathrm{C}(5)$	$\mathrm{C}(4)$	$110.2(4)$
$\mathrm{O}(1)$	$\mathrm{C}(2)$	$\mathrm{N}(3)$	$103.3(4)$	$\mathrm{O}(6)$	$\mathrm{C}(6)$	$\mathrm{N}(3)$	$119.3(4)$
$\mathrm{O}(1)$	$\mathrm{C}(2)$	$\mathrm{C}(9)$	$107.3(3)$	$\mathrm{O}(6)$	$\mathrm{C}(6)$	$\mathrm{C}(7)$	$122.8(4)$
$\mathrm{N}(3)$	$\mathrm{C}(2)$	$\mathrm{C}(9)$	$115.5(3)$	$\mathrm{N}(3)$	$\mathrm{C}(6)$	$\mathrm{C}(7)$	$117.8(4)$
$\mathrm{C}(6)$	$\mathrm{N}(3)$	$\mathrm{C}(4)$	$130.1(3)$	$\mathrm{C}(14)$	$\mathrm{C}(9)$	$\mathrm{C}(10)$	$118.8(4)$
$\mathrm{C}(6)$	$\mathrm{N}(3)$	$\mathrm{C}(2)$	$118.0(4)$	$\mathrm{C}(14)$	$\mathrm{C}(9)$	$\mathrm{C}(2)$	$119.2(4)$
$\mathrm{C}(4)$	$\mathrm{N}(3)$	$\mathrm{C}(2)$	$111.6(3)$	$\mathrm{C}(10)$	$\mathrm{C}(9)$	$\mathrm{C}(2)$	$121.9(4)$
$\mathrm{N}(3)$	$\mathrm{C}(4)$	$\mathrm{C}(8)$	$116.7(3)$	$\mathrm{C}(11)$	$\mathrm{C}(10)$	$\mathrm{C}(9)$	$120.7(4)$
$\mathrm{N}(3)$	$\mathrm{C}(4)$	$\mathrm{C}(5)$	$102.1(3)$	$\mathrm{C}(12)$	$\mathrm{C}(11)$	$\mathrm{C}(10)$	$120.3(5)$
$\mathrm{C}(8)$	$\mathrm{C}(4)$	$\mathrm{C}(5)$	$108.9(4)$	$\mathrm{C}(11)$	$\mathrm{C}(12)$	$\mathrm{C}(13)$	$119.4(5)$
$\mathrm{O}(5)$	$\mathrm{C}(5)$	$\mathrm{O}(1)$	$122.2(4)$	$\mathrm{C}(14)$	$\mathrm{C}(13)$	$\mathrm{C}(12)$	$120.6(5)$
$\mathrm{O}(5)$	$\mathrm{C}(5)$	$\mathrm{C}(4)$	$127.6(4)$	$\mathrm{C}(13)$	$\mathrm{C}(14)$	$\mathrm{C}(9)$	$120.2(4)$

Table 22 Torsion angles [${ }^{\circ}$] for $\mathbf{3 8 8}$

Atom	Atom	Atom	Atom	Angle
$\mathrm{C}(5)$	$\mathrm{O}(1)$	$\mathrm{C}(2)$	$\mathrm{N}(3)$	$-12.1(4)$
$\mathrm{C}(5)$	$\mathrm{O}(1)$	$\mathrm{C}(2)$	$\mathrm{C}(9)$	$110.5(4)$
$\mathrm{O}(1)$	$\mathrm{C}(2)$	$\mathrm{N}(3)$	$\mathrm{C}(6)$	$-174.5(3)$
$\mathrm{C}(9)$	$\mathrm{C}(2)$	$\mathrm{N}(3)$	$\mathrm{C}(6)$	$68.7(4)$
$\mathrm{O}(1)$	$\mathrm{C}(2)$	$\mathrm{N}(3)$	$\mathrm{C}(4)$	$11.1(4)$
$\mathrm{C}(9)$	$\mathrm{C}(2)$	$\mathrm{N}(3)$	$\mathrm{C}(4)$	$-105.8(4)$
$\mathrm{C}(6)$	$\mathrm{N}(3)$	$\mathrm{C}(4)$	$\mathrm{C}(8)$	$61.5(6)$
$\mathrm{C}(2)$	$\mathrm{N}(3)$	$\mathrm{C}(4)$	$\mathrm{C}(8)$	$-124.9(4)$
$\mathrm{C}(6)$	$\mathrm{N}(3)$	$\mathrm{C}(4)$	$\mathrm{C}(5)$	$-179.8(4)$
$\mathrm{C}(2)$	$\mathrm{N}(3)$	$\mathrm{C}(4)$	$\mathrm{C}(5)$	$-6.2(4)$
$\mathrm{C}(2)$	$\mathrm{O}(1)$	$\mathrm{C}(5)$	$\mathrm{O}(5)$	$-174.0(4)$
$\mathrm{C}(2)$	$\mathrm{O}(1)$	$\mathrm{C}(5)$	$\mathrm{C}(4)$	$8.8(4)$
$\mathrm{N}(3)$	$\mathrm{C}(4)$	$\mathrm{C}(5)$	$\mathrm{O}(5)$	$-178.6(4)$
$\mathrm{C}(8)$	$\mathrm{C}(4)$	$\mathrm{C}(5)$	$\mathrm{O}(5)$	$-54.5(6)$
$\mathrm{N}(3)$	$\mathrm{C}(4)$	$\mathrm{C}(5)$	$\mathrm{O}(1)$	$-1.5(4)$
$\mathrm{C}(8)$	$\mathrm{C}(4)$	$\mathrm{C}(5)$	$\mathrm{O}(1)$	$122.5(4)$
$\mathrm{C}(4)$	$\mathrm{N}(3)$	$\mathrm{C}(6)$	$\mathrm{O}(6)$	$177.2(4)$
$\mathrm{C}(2)$	$\mathrm{N}(3)$	$\mathrm{C}(6)$	$\mathrm{O}(6)$	$4.0(5)$
$\mathrm{C}(4)$	$\mathrm{N}(3)$	$\mathrm{C}(6)$	$\mathrm{C}(7)$	$-1.3(6)$
$\mathrm{C}(2)$	$\mathrm{N}(3)$	$\mathrm{C}(6)$	$\mathrm{C}(7)$	$-174.6(4)$
$\mathrm{O}(1)$	$\mathrm{C}(2)$	$\mathrm{C}(9)$	$\mathrm{C}(14)$	$85.6(4)$
$\mathrm{N}(3)$	$\mathrm{C}(2)$	$\mathrm{C}(9)$	$\mathrm{C}(14)$	$-159.8(4)$
$\mathrm{O}(1)$	$\mathrm{C}(2)$	$\mathrm{C}(9)$	$\mathrm{C}(10)$	$-89.7(4)$
$\mathrm{N}(3)$	$\mathrm{C}(2)$	$\mathrm{C}(9)$	$\mathrm{C}(10)$	$24.9(5)$
$\mathrm{C}(14)$	$\mathrm{C}(9)$	$\mathrm{C}(10)$	$\mathrm{C}(11)$	$-2.5(6)$
$\mathrm{C}(2)$	$\mathrm{C}(9)$	$\mathrm{C}(10)$	$\mathrm{C}(11)$	$172.9(4)$
$\mathrm{C}(9)$	$\mathrm{C}(10)$	$\mathrm{C}(11)$	$\mathrm{C}(12)$	$0.7(7)$
$\mathrm{C}(10)$	$\mathrm{C}(11)$	$\mathrm{C}(12)$	$\mathrm{C}(13)$	$1.1(7)$
$\mathrm{C}(11)$	$\mathrm{C}(12)$	$\mathrm{C}(13)$	$\mathrm{C}(14)$	$-1.2(7)$
$\mathrm{C}(12)$	$\mathrm{C}(13)$	$\mathrm{C}(14)$	$\mathrm{C}(9)$	$-0.6(7)$
$\mathrm{C}(10)$	$\mathrm{C}(9)$	$\mathrm{C}(14)$	$\mathrm{C}(13)$	$2.4(6)$
$\mathrm{C}(2)$	$\mathrm{C}(9)$	$\mathrm{C}(14)$	$\mathrm{C}(13)$	$-173.1(4)$

Table 23 Atomic coordinates and U(eq) for 485

Atom	x	y	z	$\mathrm{U}(\mathrm{eq})$
$\mathrm{O}(1)$	$5544(3)$	$3475(3)$	$-997(1)$	$55(1)$
$\mathrm{C}(2)$	$6489(4)$	$3802(3)$	$-247(2)$	$41(1)$
$\mathrm{N}(3)$	$6755(3)$	$5359(3)$	$-318(2)$	$40(1)$
$\mathrm{C}(4)$	$5988(4)$	$5969(4)$	$-1085(2)$	$44(1)$
$\mathrm{C}(5)$	$5232(4)$	$4661(4)$	$-1484(2)$	$52(1)$
$\mathrm{O}(5)$	$4454(3)$	$4595(3)$	$-2128(2)$	$78(1)$
$\mathrm{C}(6)$	$7363(3)$	$6177(3)$	$327(2)$	$42(1)$
$\mathrm{S}(6)$	$7043(1)$	$7941(1)$	$375(1)$	$60(1)$
$\mathrm{C}(7)$	$8365(4)$	$5432(4)$	$989(2)$	$60(1)$
$\mathrm{C}(8)$	$7142(5)$	$6662(4)$	$-1711(2)$	$64(1)$
$\mathrm{C}(9)$	$5635(4)$	$3337(3)$	$554(2)$	$41(1)$
$\mathrm{C}(10)$	$6053(4)$	$2052(4)$	$941(2)$	$63(1)$
$\mathrm{C}(11)$	$5260(6)$	$1607(6)$	$1684(3)$	$88(2)$
$\mathrm{C}(12)$	$4076(7)$	$2411(7)$	$2022(3)$	$87(2)$
$\mathrm{C}(13)$	$3618(5)$	$3691(5)$	$1633(2)$	$70(1)$
$\mathrm{C}(14)$	$4412(4)$	$4151(4)$	$899(2)$	$52(1)$
H(2A)	7513	3297	-286	49
H(4A)	5166	6663	-913	53
H(7A)	8419	4422	857	90
H(7B)	7901	5562	1552	90
H(7C)	9420	5833	983	90
H(8A)	7610	7497	-1446	96
H(8B)	6584	6943	-2227	96
H(8C)	7965	5985	-1857	96
H(10A)	6860	1487	706	75
H(11A)	5548	746	1951	105
H(12A)	3561	2103	2522	104
H(13A)	2787	4234	1863	83
H(14A)	4121	5014	636	62

Table 24 Bond lengths [\AA] for 485

Atom	Atom	Distance	Atom	Atom	Distance
$\mathrm{O}(1)$	$\mathrm{C}(5)$	$1.358(4)$	$\mathrm{C}(6)$	$\mathrm{C}(7)$	$1.492(4)$
$\mathrm{O}(1)$	$\mathrm{C}(2)$	$1.436(3)$	$\mathrm{C}(6)$	$\mathrm{S}(6)$	$1.661(3)$
$\mathrm{C}(2)$	$\mathrm{N}(3)$	$1.466(4)$	$\mathrm{C}(9)$	$\mathrm{C}(14)$	$1.381(4)$
$\mathrm{C}(2)$	$\mathrm{C}(9)$	$1.493(4)$	$\mathrm{C}(9)$	$\mathrm{C}(10)$	$1.379(5)$
$\mathrm{N}(3)$	$\mathrm{C}(6)$	$1.351(4)$	$\mathrm{C}(10)$	$\mathrm{C}(11)$	$1.389(6)$
$\mathrm{N}(3)$	$\mathrm{C}(4)$	$1.462(4)$	$\mathrm{C}(11)$	$\mathrm{C}(12)$	$1.347(7)$
$\mathrm{C}(4)$	$\mathrm{C}(5)$	$1.502(5)$	$\mathrm{C}(12)$	$\mathrm{C}(13)$	$1.385(7)$
$\mathrm{C}(4)$	$\mathrm{C}(8)$	$1.511(4)$	$\mathrm{C}(13)$	$\mathrm{C}(14)$	$1.383(5)$
$\mathrm{C}(5)$	$\mathrm{O}(5)$	$1.190(4)$			

Table 25 Bond angles $\left({ }^{\circ}\right)$ for 485

Atom	Atom	Atom	Angle	Atom	Atom	Atom	Angle
$\mathrm{C}(5)$	$\mathrm{O}(1)$	$\mathrm{C}(2)$	$112.4(2)$	$\mathrm{O}(1)$	$\mathrm{C}(5)$	$\mathrm{C}(4)$	$110.2(3)$
$\mathrm{O}(1)$	$\mathrm{C}(2)$	$\mathrm{N}(3)$	$103.5(2)$	$\mathrm{N}(3)-$	$\mathrm{C}(6)$	$\mathrm{C}(7)$	$117.2(3)$
$\mathrm{O}(1)$	$\mathrm{C}(2)$	$\mathrm{C}(9)$	$110.0(2)$	$\mathrm{N}(3)$	$\mathrm{C}(6)$	$\mathrm{S}(6)$	$121.6(2)$
$\mathrm{N}(3)$	$\mathrm{C}(2)$	$\mathrm{C}(9)$	$114.8(3)$	$\mathrm{C}(7)$	$\mathrm{C}(6)$	$\mathrm{S}(6)$	$121.1(3)$
$\mathrm{C}(6)$	$\mathrm{N}(3)$	$\mathrm{C}(4)$	$123.1(3)$	$\mathrm{C}(14)$	$\mathrm{C}(9)$	$\mathrm{C}(10)$	$119.6(3)$
$\mathrm{C}(6)$	$\mathrm{N}(3)$	$\mathrm{C}(2)$	$123.8(3)$	$\mathrm{C}(14)$	$\mathrm{C}(9)$	$\mathrm{C}(2)$	$121.2(3)$
$\mathrm{C}(4)$	$\mathrm{N}(3)$	$\mathrm{C}(2)$	$112.0(2)$	$\mathrm{C}(10)$	$\mathrm{C}(9)$	$\mathrm{C}(2)$	$119.1(3)$
$\mathrm{N}(3)$	$\mathrm{C}(4)$	$\mathrm{C}(5)$	$101.9(3)$	$\mathrm{C}(9)$	$\mathrm{C}(10)$	$\mathrm{C}(11)$	$119.6(4)$
$\mathrm{N}(3)$	$\mathrm{C}(4)$	$\mathrm{C}(8)$	$113.6(3)$	$\mathrm{C}(12)$	$\mathrm{C}(11)$	$\mathrm{C}(10)$	$120.5(4)$
$\mathrm{C}(5)$	$\mathrm{C}(4)$	$\mathrm{C}(8)$	$110.6(3)$	$\mathrm{C}(13)$	$\mathrm{C}(12)$	$\mathrm{C}(11)$	$120.8(4)$
$\mathrm{O}(5)$	$\mathrm{C}(5)$	$\mathrm{O}(1)$	$121.8(4)$	$\mathrm{C}(12)$	$\mathrm{C}(13)$	$\mathrm{C}(14)$	$119.1(4)$
$\mathrm{O}(5)$	$\mathrm{C}(5)$	$\mathrm{C}(4)$	$128.0(4)$	$\mathrm{C}(13)$	$\mathrm{C}(14)$	$\mathrm{C}(9)$	$120.4(4)$

Table 26 Torsion angles [${ }^{\circ}$] for 485

Atom	Atom	Atom	Atom	Angle
$\mathrm{C}(5)$	$\mathrm{O}(1)$	$\mathrm{C}(2)$	$\mathrm{N}(3)$	$-0.3(3)$
$\mathrm{C}(5)$	$\mathrm{O}(1)$	$\mathrm{C}(2)$	$\mathrm{C}(9)$	$122.7(3)$
$\mathrm{O}(1)$	$\mathrm{C}(2)$	$\mathrm{N}(3)$	$\mathrm{C}(6)$	$168.4(2)$
$\mathrm{C}(9)$	$\mathrm{C}(2)$	$\mathrm{N}(3)$	$\mathrm{C}(6)$	$48.5(4)$
$\mathrm{O}(1)$	$\mathrm{C}(2)$	$\mathrm{N}(3)$	$\mathrm{C}(4)$	$0.3(3)$
$\mathrm{C}(9)$	$\mathrm{C}(2)$	$\mathrm{N}(3)$	$\mathrm{C}(4)$	$-119.6(3)$
$\mathrm{C}(6)$	$\mathrm{N}(3)$	$\mathrm{C}(4)$	$\mathrm{C}(5)$	$-168.3(3)$
$\mathrm{C}(2)$	$\mathrm{N}(3)$	$\mathrm{C}(4)$	$\mathrm{C}(5)$	$-0.2(3)$
$\mathrm{C}(6)$	$\mathrm{N}(3)$	$\mathrm{C}(4)$	$\mathrm{C}(8)$	$72.7(4)$
$\mathrm{C}(2)$	$\mathrm{N}(3)$	$\mathrm{C}(4)$	$\mathrm{C}(8)$	$-119.1(3)$
$\mathrm{C}(2)$	$\mathrm{O}(1)$	$\mathrm{C}(5)$	$\mathrm{O}(5)$	$-179.5(3)$
$\mathrm{C}(2)$	$\mathrm{O}(1)$	$\mathrm{C}(5)$	$\mathrm{C}(4)$	$0.2(4)$
$\mathrm{N}(3)$	$\mathrm{C}(4)$	$\mathrm{C}(5)$	$\mathrm{O}(5)$	$179.7(3)$
$\mathrm{C}(8)$	$\mathrm{C}(4)$	$\mathrm{C}(5)$	$\mathrm{O}(5)$	$-59.2(5)$
$\mathrm{N}(3)$	$\mathrm{C}(4)$	$\mathrm{C}(5)$	$\mathrm{O}(1)$	$0.0(3)$
$\mathrm{C}(8)$	$\mathrm{C}(4)$	$\mathrm{C}(5)$	$\mathrm{O}(1)$	$121.1(3)$
$\mathrm{C}(4)$	$\mathrm{N}(3)$	$\mathrm{C}(6)$	$\mathrm{C}(7)$	$-169.2(3)$
$\mathrm{C}(2)$	$\mathrm{N}(3)$	$\mathrm{C}(6)$	$\mathrm{C}(7)$	$24.0(4)$
$\mathrm{C}(4)$	$\mathrm{N}(3)$	$\mathrm{C}(6)$	$\mathrm{S}(6)$	$9.7(4)$
$\mathrm{C}(2)$	$\mathrm{N}(3)$	$\mathrm{C}(6)$	$\mathrm{S}(6)$	$-157.2(2)$
$\mathrm{O}(1)$	$\mathrm{C}(2)$	$\mathrm{C}(9)$	$\mathrm{C}(14)$	$-78.4(3)$
$\mathrm{N}(3)$	$\mathrm{C}(2)$	$\mathrm{C}(9)$	$\mathrm{C}(14)$	$37.7(4)$
$\mathrm{O}(1)$	$\mathrm{C}(2)$	$\mathrm{C}(9)$	$\mathrm{C}(10)$	$99.8(3)$
$\mathrm{N}(3)$	$\mathrm{C}(2)$	$\mathrm{C}(9)$	$\mathrm{C}(10)$	$-144.0(3)$
$\mathrm{C}(14)$	$\mathrm{C}(9)$	$\mathrm{C}(10)$	$\mathrm{C}(11)$	$-1.4(5)$
$\mathrm{C}(2)$	$\mathrm{C}(9)$	$\mathrm{C}(10)$	$\mathrm{C}(11)$	$-179.7(3)$
$\mathrm{C}(9)$	$\mathrm{C}(10)$	$\mathrm{C}(11)$	$\mathrm{C}(12)$	$0.8(6)$
$\mathrm{C}(10)$	$\mathrm{C}(11)$	$\mathrm{C}(12)$	$\mathrm{C}(13)$	$0.5(6)$
$\mathrm{C}(11)$	$\mathrm{C}(12)$	$\mathrm{C}(13)$	$\mathrm{C}(14)$	$-1.2(6)$
$\mathrm{C}(12)$	$\mathrm{C}(13)$	$\mathrm{C}(14)$	$\mathrm{C}(9)$	$0.6(5)$
$\mathrm{C}(10)$	$\mathrm{C}(9)$	$\mathrm{C}(14)$	$\mathrm{C}(13)$	$0.6(5)$
$\mathrm{C}(2)$	$\mathrm{C}(9)$	$\mathrm{C}(14)$	$\mathrm{C}(13)$	$178.9(3)$

Table 27 Atomic coordinates and $\mathrm{U}(\mathrm{eq})$ for $\mathbf{4 8 3}$

Atom	x	y	z	$\mathrm{U}(\mathrm{eq})$
$\mathrm{O}(1)$	$-2862(6)$	$411(7)$	$11582(5)$	$84(2)$
$\mathrm{C}(2)$	$-2936(7)$	$1447(8)$	$10688(6)$	$65(2)$
$\mathrm{N}(3)$	$-1531(5)$	$1622(6)$	$10676(5)$	$56(2)$
$\mathrm{C}(4)$	$-673(7)$	$734(8)$	$11536(6)$	$65(2)$
$\mathrm{C}(5)$	$-1650(10)$	$-20(9)$	$12052(7)$	$70(2)$
$\mathrm{O}(5)$	$-1436(7)$	$-922(7)$	$12780(5)$	$99(2)$
$\mathrm{C}(6)$	$-1116(7)$	$2269(8)$	$9833(6)$	$57(2)$
$\mathrm{S}(6)$	$392(2)$	$2094(2)$	$9698(2)$	$76(1)$
$\mathrm{C}(7)$	$-2087(6)$	$3198(7)$	$9072(6)$	$54(2)$
$\mathrm{C}(8)$	$-2357(8)$	$2938(8)$	$7902(7)$	$66(2)$
$\mathrm{C}(9)$	$-3263(10)$	$3788(10)$	$7176(8)$	$83(2)$
$\mathrm{C}(10)$	$-3873(9)$	$4895(10)$	$7577(8)$	$82(3)$
$\mathrm{C}(11)$	$-3570(8)$	$5187(9)$	$8719(8)$	$73(2)$
$\mathrm{C}(12)$	$-2688(7)$	$4322(8)$	$9464(6)$	$64(2)$
$\mathrm{C}(13)$	$-3774(7)$	$915(8)$	$9640(6)$	$61(2)$
$\mathrm{C}(14)$	$-3445(9)$	$-294(9)$	$9107(7)$	$78(3)$
$\mathrm{C}(15)$	$-4229(12)$	$-828(12)$	$8110(9)$	$113(4)$
$\mathrm{C}(16)$	$-5412(13)$	$-64(16)$	$7663(9)$	$116(4)$
$\mathrm{C}(17)$	$-5767(10)$	$1125(14)$	$8166(10)$	$104(3)$
$\mathrm{C}(18)$	$-4969(8)$	$1608(10)$	$9107(8)$	$84(3)$
$\mathrm{C}(19)$	$337(8)$	$1531(8)$	$12433(7)$	$75(2)$
$\mathrm{C}(20)$	$-184(7)$	$2785(9)$	$12972(6)$	$66(2)$
$\mathrm{C}(21)$	$-130(8)$	$4206(9)$	$12562(7)$	$78(2)$
$\mathrm{C}(22)$	$-607(10)$	$5328(10)$	$13045(10)$	$95(3)$
$\mathrm{C}(23)$	$-1107(10)$	$5090(11)$	$13965(10)$	$94(3)$
$\mathrm{C}(24)$	$-1181(10)$	$3754(13)$	$14364(8)$	$98(3)$
$\mathrm{C}(25)$	$-715(8)$	$2580(10)$	$13873(7)$	$82(2)$
$\mathrm{C}(30)$	$2789(11)$	$4023(15)$	$5155(10)$	$88(3)$
$\mathrm{Cl}(1)$	$3489(4)$	$2499(4)$	$4736(3)$	$113(1)$
$\mathrm{Cl}(2)$	$3415(4)$	$5599(4)$	$4813(3)$	$122(1)$
$\mathrm{H}(2 \mathrm{~A})$	-3289	2381	10896	78

Table 27 Atomic coordinates and U(eq) for 483 (Cont'd)

Atom	x	y	z
H(4A)	-216	8	11164
H(8A)	-1919	2184	7617
H(9A)	-3465	3600	6390
H(10A)	-4505	5466	7072
H(11A)	-3968	5983	8993
H(12A)	-2500	4511	10249
H(14A)	-2646	-778	9439
H(15A)	-3990	-1654	7749
H(16A)	-5981	-396	6983
H(17A)	-6573	1602	7849
H(18A)	-5208	2457	9439
H(19A)	743	837	13031
H(19B)	1039	1886	12091
H(21A)	244	4372	11942
H(22A)	-596	6272	12750
H(23A)	-1406	5883	14324
H(24A)	-1554	3610	14988
H(25A)	-765	1639	14163
H(30A)	1832	4007	4807
H(30B)	2911	3989	5982

Table 28 Bond lengths [\AA] for 483

Atom	Atom	Distance	Atom	Atom	Distance
$\mathrm{O}(1)$	$\mathrm{C}(5)$	$1.323(10)$	$\mathrm{C}(11)$	$\mathrm{C}(12)$	$1.386(11)$
$\mathrm{O}(1)$	$\mathrm{C}(2)$	$1.446(9)$	$\mathrm{C}(13)$	$\mathrm{C}(14)$	$1.385(11)$
$\mathrm{C}(2)$	$\mathrm{C}(13)$	$1.454(11)$	$\mathrm{C}(13)$	$\mathrm{C}(18)$	$1.418(11)$
$\mathrm{C}(2)$	$\mathrm{N}(3)$	$1.488(9)$	$\mathrm{C}(14)$	$\mathrm{C}(15)$	$1.387(12)$
$\mathrm{N}(3)$	$\mathrm{C}(6)$	$1.356(8)$	$\mathrm{C}(15)$	$\mathrm{C}(16)$	$1.418(16)$
$\mathrm{N}(3)$	$\mathrm{C}(4)$	$1.461(9)$	$\mathrm{C}(16)$	$\mathrm{C}(17)$	$1.361(16)$
$\mathrm{C}(4)$	$\mathrm{C}(5)$	$1.504(11)$	$\mathrm{C}(17)$	$\mathrm{C}(18)$	$1.325(13)$
$\mathrm{C}(4)$	$\mathrm{C}(19)$	$1.519(11$	$\mathrm{C}(19)$	$\mathrm{C}(20)$	$1.506(11)$
$\mathrm{C}(5)$	$\mathrm{O}(5)$	$1.204(9)$	$\mathrm{C}(20)$	$\mathrm{C}(25)$	$1.367(11)$
$\mathrm{C}(6)$	$\mathrm{C}(7)$	$1.479(10)$	$\mathrm{C}(20)$	$\mathrm{C}(21)$	$1.418(11)$
$\mathrm{C}(6)$	$\mathrm{S}(6)$	$1.640(7)$	$\mathrm{C}(21)$	$\mathrm{C}(22)$	$1.354(12)$
$\mathrm{C}(7)$	$\mathrm{C}(12)$	$1.367(10)$	$\mathrm{C}(22)$	$\mathrm{C}(23)$	$1.372(13)$
$\mathrm{C}(7)$	$\mathrm{C}(8)$	$1.412(10)$	$\mathrm{C}(23)$	$\mathrm{C}(24)$	$1.343(15)$
$\mathrm{C}(8)$	$\mathrm{C}(9)$	$1.380(11)$	$\mathrm{C}(24)$	$\mathrm{C}(25)$	$1.392(13)$
$\mathrm{C}(9)$	$\mathrm{C}(10)$	$1.365(12)$	$\mathrm{C}(30)$	$\mathrm{Cl}(2)$	$1.699(13)$
$\mathrm{C}(10)$	$\mathrm{C}(11)$	$1.383(12)$	$\mathrm{C}(30)$	$\mathrm{Cl}(1)$	$1.730(14)$

Table 29 Bond angles $\left({ }^{\circ}\right)$ for 483

Atom	Atom	Atom	Angle	Atom	Atom	Atom	Angle
$\mathrm{C}(5)$	$\mathrm{O}(1)$	$\mathrm{C}(2)$	$113.5(6)$	$\mathrm{C}(9)$	$\mathrm{C}(10)$	$\mathrm{C}(11)$	$120.0(8)$
$\mathrm{O}(1)$	$\mathrm{C}(2)$	$\mathrm{C}(13)$	$110.6(6)$	$\mathrm{C}(10)$	$\mathrm{C}(11)$	$\mathrm{C}(12)$	$120.2(7)$
$\mathrm{O}(1)$	$\mathrm{C}(2)$	$\mathrm{N}(3)$	$102.2(6)$	$\mathrm{C}(7)$	$\mathrm{C}(12)$	$\mathrm{C}(11)$	$120.2(7)$
$\mathrm{C}(13)$	$\mathrm{C}(2)$	$\mathrm{N}(3)$	$114.5(6)$	$\mathrm{C}(14)$	$\mathrm{C}(13)$	$\mathrm{C}(18)$	$116.4(8)$
$\mathrm{C}(6)$	$\mathrm{N}(3)$	$\mathrm{C}(4)$	$122.9(5)$	$\mathrm{C}(14)$	$\mathrm{C}(13)$	$\mathrm{C}(2)$	$121.7(7)$
$\mathrm{C}(6)$	$\mathrm{N}(3)$	$\mathrm{C}(2)$	$124.1(5)$	$\mathrm{C}(18)$	$\mathrm{C}(13)$	$\mathrm{C}(2)$	$121.9(8)$
$\mathrm{C}(4)$	$\mathrm{N}(3)$	$\mathrm{C}(2)$	$111.6(5)$	$\mathrm{C}(13)$	$\mathrm{C}(14)$	$\mathrm{C}(15)$	$122.9(9)$
$\mathrm{N}(3)$	$\mathrm{C}(4)$	$\mathrm{C}(5)$	$101.7(6)$	$\mathrm{C}(14)$	$\mathrm{C}(15)$	$\mathrm{C}(16)$	$115.8(10)$
$\mathrm{N}(3)$	$\mathrm{C}(4)$	$\mathrm{C}(19)$	$116.3(6)$	$\mathrm{C}(17)$	$\mathrm{C}(16)$	$\mathrm{C}(15)$	$122.9(10)$

Table 29 Bond angles (${ }^{\circ}$) for 483 (Cont'd)

Atom	Atom	Atom	Angle	Atom	Atom	Atom	Angle
$\mathrm{C}(5)$	$\mathrm{C}(4)$	$\mathrm{C}(19)$	$110.5(6)$	$\mathrm{C}(18)$	$\mathrm{C}(17)$	$\mathrm{C}(16)$	$118.9(10)$
$\mathrm{O}(5)$	$\mathrm{C}(5)$	$\mathrm{O}(1)$	$121.2(8)$	$\mathrm{C}(17)$	$\mathrm{C}(18)$	$\mathrm{C}(13)$	$123.1(9)$
$\mathrm{O}(5)$	$\mathrm{C}(5)$	$\mathrm{C}(4)$	$127.8(8)$	$\mathrm{C}(20)$	$\mathrm{C}(19)$	$\mathrm{C}(4)$	$115.5(6)$
$\mathrm{O}(1)$	$\mathrm{C}(5)$	$\mathrm{C}(4)$	$111.0(7)$	$\mathrm{C}(25)$	$\mathrm{C}(20)$	$\mathrm{C}(21)$	$118.4(8)$
$\mathrm{N}(3)$	$\mathrm{C}(6)$	$\mathrm{C}(7)$	$116.0(6)$	$\mathrm{C}(25)$	$\mathrm{C}(20)$	$\mathrm{C}(19)$	$120.7(7)$
$\mathrm{N}(3)$	$\mathrm{C}(6)$	$\mathrm{S}(6)$	$122.1(5)$	$\mathrm{C}(21)$	$\mathrm{C}(20)$	$\mathrm{C}(19)$	$121.0(7)$
$\mathrm{C}(7)$	$\mathrm{C}(6)$	$\mathrm{S}(6)$	$121.8(5)$	$\mathrm{C}(22)$	$\mathrm{C}(21)$	$\mathrm{C}(20)$	$120.7(9)$
$\mathrm{C}(12)$	$\mathrm{C}(7)$	$\mathrm{C}(8)$	$119.5(7)$	$\mathrm{C}(21)$	$\mathrm{C}(22)$	$\mathrm{C}(23)$	$119.5(9)$
$\mathrm{C}(12)$	$\mathrm{C}(7)$	$\mathrm{C}(6)$	$122.0(7)$	$\mathrm{C}(24)$	$\mathrm{C}(23)$	$\mathrm{C}(22)$	$121.1(9)$
$\mathrm{C}(8)$	$\mathrm{C}(7)$	$\mathrm{C}(6)$	$118.4(6)$	$\mathrm{C}(23)$	$\mathrm{C}(24)$	$\mathrm{C}(25)$	$120.6(9)$
$\mathrm{C}(9)$	$\mathrm{C}(8)$	$\mathrm{C}(7)$	$119.5(7)$	$\mathrm{C}(20)$	$\mathrm{C}(25)$	$\mathrm{C}(24)$	$119.8(9)$
$\mathrm{C}(10)$	$\mathrm{C}(9)$	$\mathrm{C}(8)$	$120.6(8)$	$\mathrm{Cl}(2)$	$\mathrm{C}(30)$	$\mathrm{Cl}(1)$	$114.5(6)$

Table 30 Torsion angles [${ }^{\circ}$] for $\mathbf{4 8 3}$

Atom	Atom	Atom	Atom	Angle
$\mathrm{C}(5)$	$\mathrm{O}(1)$	$\mathrm{C}(2)$	$\mathrm{C}(13)$	$121.6(7)$
$\mathrm{C}(5)$	$\mathrm{O}(1)$	$\mathrm{C}(2)$	$\mathrm{N}(3)$	$-0.7(7)$
$\mathrm{O}(1)$	$\mathrm{C}(2)$	$\mathrm{N}(3)$	$\mathrm{C}(6)$	$166.2(6)$
$\mathrm{C}(13)$	$\mathrm{C}(2)$	$\mathrm{N}(3)$	$\mathrm{C}(6)$	$46.7(9)$
$\mathrm{O}(1)$	$\mathrm{C}(2)$	$\mathrm{N}(3)$	$\mathrm{C}(4)$	$-0.5(7)$
$\mathrm{C}(13)$	$\mathrm{C}(2)$	$\mathrm{N}(3)$	$\mathrm{C}(4)$	$-120.1(7)$
$\mathrm{C}(6)$	$\mathrm{N}(3)$	$\mathrm{C}(4)$	$\mathrm{C}(5)$	$-165.6(6)$
$\mathrm{C}(2)$	$\mathrm{N}(3)$	$\mathrm{C}(4)$	$\mathrm{C}(5)$	$1.4(7)$
$\mathrm{C}(6)$	$\mathrm{N}(3)$	$\mathrm{C}(4)$	$\mathrm{C}(19)$	$74.3(9)$
$\mathrm{C}(2)$	$\mathrm{N}(3)$	$\mathrm{C}(4)$	$\mathrm{C}(19)$	$-118.7(7)$
$\mathrm{C}(2)$	$\mathrm{O}(1)$	$\mathrm{C}(5)$	$\mathrm{O}(5)$	$-177.2(7)$
$\mathrm{C}(2)$	$\mathrm{O}(1)$	$\mathrm{C}(5)$	$\mathrm{C}(4)$	$1.6(9)$
$\mathrm{N}(3)$	$\mathrm{C}(4)$	$\mathrm{C}(5)$	$\mathrm{O}(5)$	$176.9(8)$
$\mathrm{C}(19)$	$\mathrm{C}(4)$	$\mathrm{C}(5)$	$\mathrm{O}(5)$	$-59.0(11)$
$\mathrm{N}(3)$	$\mathrm{C}(4)$	$\mathrm{C}(5)$	$\mathrm{O}(1)$	$-1.8(8)$
$\mathrm{C}(19)$	$\mathrm{C}(4)$	$\mathrm{C}(5)$	$\mathrm{O}(1)$	$122.3(7)$
$\mathrm{C}(4)$	$\mathrm{N}(3)$	$\mathrm{C}(6)$	$\mathrm{C}(7)$	$-176.6(6)$
$\mathrm{C}(2)$	$\mathrm{N}(3)$	$\mathrm{C}(6)$	$\mathrm{C}(7)$	$18.1(9)$
$\mathrm{C}(4)$	$\mathrm{N}(3)$	$\mathrm{C}(6)$	$\mathrm{S}(6)$	$0.7(9)$
$\mathrm{C}(2)$	$\mathrm{N}(3)$	$\mathrm{C}(6)$	$\mathrm{S}(6)$	$-164.7(5)$
$\mathrm{N}(3)$	$\mathrm{C}(6)$	$\mathrm{C}(7)$	$\mathrm{C}(12)$	$56.2(9)$
$\mathrm{S}(6)$	$\mathrm{C}(6)$	$\mathrm{C}(7)$	$\mathrm{C}(12)$	$-121.1(7)$
$\mathrm{N}(3)$	$\mathrm{C}(6)$	$\mathrm{C}(7)$	$\mathrm{C}(8)$	$-126.2(7)$
$\mathrm{S}(6)$	$\mathrm{C}(6)$	$\mathrm{C}(7)$	$\mathrm{C}(8)$	$56.5(9)$
$\mathrm{C}(12)$	$\mathrm{C}(7)$	$\mathrm{C}(8)$	$\mathrm{C}(9)$	$-2.5(10)$
$\mathrm{C}(6)$	$\mathrm{C}(7)$	$\mathrm{C}(8)$	$\mathrm{C}(9)$	$179.8(7)$
$\mathrm{C}(7)$	$\mathrm{C}(8)$	$\mathrm{C}(9)$	$\mathrm{C}(10)$	$1.6(12)$
$\mathrm{C}(8)$	$\mathrm{C}(9)$	$\mathrm{C}(10)$	$\mathrm{C}(11)$	$0.9(13)$
$\mathrm{C}(9)$	$\mathrm{C}(10)$	$\mathrm{C}(11)$	$\mathrm{C}(12)$	$-2.6(12)$
$\mathrm{C}(8)$	$\mathrm{C}(7)$	$\mathrm{C}(12)$	$\mathrm{C}(11)$	$0.9(10)$
$\mathrm{C}(6)$	$\mathrm{C}(7)$	$\mathrm{C}(12)$	$\mathrm{C}(11)$	$178.5(7)$

Table 30 Torsion angles [${ }^{\circ}$] for $\mathbf{4 8 3}$ (Cont'd)

Atom	Atom	Atom	Atom	Angle
				$1.7(11)$
$\mathrm{C}(10)$	$\mathrm{C}(11)$	$\mathrm{C}(12)$	$\mathrm{C}(7)$	$-64.7(9)$
$\mathrm{O}(1)$	$\mathrm{C}(2)$	$\mathrm{C}(13)$	$\mathrm{C}(14)$	$50.0(9)$
$\mathrm{N}(3)$	$\mathrm{C}(2)$	$\mathrm{C}(13)$	$\mathrm{C}(14)$	$115.5(7)$
$\mathrm{O}(1)$	$\mathrm{C}(2)$	$\mathrm{C}(13)$	$\mathrm{C}(18)$	$-129.7(7)$
$\mathrm{N}(3)$	$\mathrm{C}(2)$	$\mathrm{C}(13)$	$\mathrm{C}(18)$	$-0.6(12)$
$\mathrm{C}(18)$	$\mathrm{C}(13)$	$\mathrm{C}(14)$	$\mathrm{C}(15)$	$179.7(8)$
$\mathrm{C}(2)$	$\mathrm{C}(13)$	$\mathrm{C}(14)$	$\mathrm{C}(15)$	$-0.5(14)$
$\mathrm{C}(13)$	$\mathrm{C}(14)$	$\mathrm{C}(15)$	$\mathrm{C}(16)$	$0.3(16)$
$\mathrm{C}(14)$	$\mathrm{C}(15)$	$\mathrm{C}(16)$	$\mathrm{C}(17)$	$1.0(17)$
$\mathrm{C}(15)$	$\mathrm{C}(16)$	$\mathrm{C}(17)$	$\mathrm{C}(18)$	$-2.1(15)$
$\mathrm{C}(16)$	$\mathrm{C}(17)$	$\mathrm{C}(18)$	$\mathrm{C}(13)$	$2.0(12)$
$\mathrm{C}(14)$	$\mathrm{C}(13)$	$\mathrm{C}(18)$	$\mathrm{C}(17)$	$-178.3(8)$
$\mathrm{C}(2)$	$\mathrm{C}(13)$	$\mathrm{C}(18)$	$\mathrm{C}(17)$	$48.4(9)$
$\mathrm{N}(3)$	$\mathrm{C}(4)$	$\mathrm{C}(19)$	$\mathrm{C}(20)$	$-66.8(9)$
$\mathrm{C}(5)$	$\mathrm{C}(4)$	$\mathrm{C}(19)$	$\mathrm{C}(20)$	$86.1(9)$
$\mathrm{C}(4)$	$\mathrm{C}(19)$	$\mathrm{C}(20)$	$\mathrm{C}(25)$	$-94.3(9)$
$\mathrm{C}(4)$	$\mathrm{C}(19)$	$\mathrm{C}(20)$	$\mathrm{C}(21)$	$-0.7(12)$
$\mathrm{C}(25)$	$\mathrm{C}(20)$	$\mathrm{C}(21)$	$\mathrm{C}(22)$	$179.6(8)$
$\mathrm{C}(19)$	$\mathrm{C}(20)$	$\mathrm{C}(21)$	$\mathrm{C}(22)$	$2.2(13)$
$\mathrm{C}(20)$	$\mathrm{C}(21)$	$\mathrm{C}(22)$	$\mathrm{C}(23)$	$-2.8(15)$
$\mathrm{C}(21)$	$\mathrm{C}(22)$	$\mathrm{C}(23)$	$\mathrm{C}(24)$	$1.8(15)$
$\mathrm{C}(22)$	$\mathrm{C}(23)$	$\mathrm{C}(24)$	$\mathrm{C}(25)$	$-0.2(12)$
$\mathrm{C}(21)$	$\mathrm{C}(20)$	$\mathrm{C}(25)$	$\mathrm{C}(24)$	$179.5(8)$
$\mathrm{C}(19)$	$\mathrm{C}(20)$	$\mathrm{C}(25)$	$\mathrm{C}(24)$	$-0.3(14)$
$\mathrm{C}(23)$	$\mathrm{C}(24)$	$\mathrm{C}(25)$	$\mathrm{C}(20)$	

References

1. W. H. Pearson, B. W. Lian and S. C. Bergmeier, in Comprehensive Heterocyclic Chemistry II, A. R. Katritzky, C. W. Rees and E. F. V. Scriven eds., 1996, Vol. 1A, Chapter 1.01, 1-60.
2. A. Padwa and A. D. Woodhouse, in Comprehensive Heterocyclic Chemistry, A. R. Katritzky and C. W. Rees eds., 1984, Vol. 7, Chapter 5.04, 47-93.
3. P. E. Fanta, in The Chemistry of Heterocyclic Compounds, A. Weissberger ed.,1964, Vol. 19 part 1, Chapter 2, 524-575.
4. J. A. Deyrup, in The Chemistry of Heterocyclic Compounds, A. Hassner ed., 1983, Vol. 42, Chapter 1, 1-214.
5. X. E. Hu, Tetrahedron, 2004, 60, 2701-2743.
6. J. B. Sweeny, Chem. Soc. Rev., 2002, 31, 247-258.
7. W. M Coull and F. A. Davis, Synthesis, 2000, 1347-1365.
8. D.Tanner, C. Birgersson and A. Gogoll, Tetrahedron, 1994, 50, 9797-9824.
9. G. M. Alvernhe, C. M. Ennakoua, S. M. Lacombe and A. J. Laurent, J. Org. Chem., 1981, 46, 4938-4948.
10. G. M. Alvernhe, S. Lacombe and A. Laurent, Tetrahedron Lett., 1980, 21, 289-292.
11. P. E. Fanta and E. N. Walsh, J. Org. Chem., 1965, 30, 3574-3575.
12. F. Winternitz, M. Mousseron and R. Dennilauler, Bull. Soc. Chim. Fr., 1965, 382-391.
13. J. Legeters, J. G. H. Willems, L. Thijs and B. Zwanenburg, Recl. Trav. Chim. Pays-Bas, 1992, 111, 59-68.
14. M. Bucciarelli, A. Forni, I. Morretti, F. Prati and G.Torre, Tetrahedron: Asymmetry, 1995, 6, 2073-2080.
15. J. W. Lown, T. Itoh and N. Ono, Can. J. Chem., 1973, 51, 856-869.
16. C. M. G. Löftström and J.-E. Bäckvall, Tetrahedron Lett., 1996, 37, 3371-3374.
17. N. Besbes, Tetrahedron Lett., 1999, 40, 6569-6570.
18. G. Cardillo, L. Gentilucci, M. Gianotti and A. Tolomelli, Tetrahedron, 2001, 57, 2807-2812.
19. G. Cardillo, L. Gentalucci and A. Tolomelli, Tetrahedron, 1999, 55, 15151-15158.
20. C. Papa and C. Tomasini, Eur. J. Org. Chem., 2000, 1569-1576.
21. G. Cardillo, L. Gentalucci, A. Tolomelli and C. Tomasini, Tetrahedron, 1997, 38, 6953-6956.
22. P. Crotti, V. Di Bussolo, F. Macchia and M. Pineschi, Tetrahedron: Asymmetry, 1996, 7,779-786.
23. D. O. Spry, Tetrahedron Lett., 1977, 3611-3614.
24.
25.
26.

S. Amaroli, G. Cardillo, L. Gentilucci, M. Gianotti and A. Tolomelli, Org. Lett., 2000, 2, 1105-1107.
27. S. Allemann, J.-L. Reymond and P. Vogel, Helv. Chim. Acta, 1990, 73, 674-689.
28. E. Reynard, J.-L. Reymond and P. Vogel, Synlett, 1991, 469-471.
29. M. Hayashi, K. Ono, H. Hoshimi and N. Oguni, J. Chem. Soc., Chem. Commun., 1994, 2699-2700.
30. M. Hayashi, K. Ono, H. Hoshimi and N. Oguni, Tetrahedron, 1996, 52, 7817-7832.
31. J. Wu, X.-L. Hou and L.-X. Dai, J. Chem. Soc., Perkin Trans. 1, 2001, 1314-1317.
33. P.-Y. Lin, K. Bellos, H. Stamm and A. Onistschenko, Tetrahedron, 1992, 48, 2359-2372.
34. P. Dauban, A. Chiaroni, C. Riche and R. H. Dodd, J. Org. Chem., 1996, 61, 2488-2496.
35. K. Sato and A. P. Kozikowski, Tetrahedron Lett., 1989, 30, 4073-4076.
36. A. Onistschenko and H. Stamm, Chem. Ber., 1989, 122, 2397-2398.
37. B. Buchholtz, A. Onistschenko and H. Stamm, Arch. Pharm., 1993, 326, 189-191.
38. K.-W. Wünsch, H. Dettmann and S. Schönberg, Chem. Ber., 1969, 102, 3891-3902.
39. R. D. Guthrie and D. Murphy, J. Chem. Soc., 1965, 3828-3834.
40. J. Wu, X.-L. Hou and L.-X. Dai, J. Org. Chem., 2000, 65, 1344-1348.
41. D. Ferraris, W. J. Drury III, C. Cox and T. Lectka, J. Org. Chem., 1998, 63, 4568-4569.
42. M. Aranti, L. V. Dunkerton, T. Fukuyama, Y. Kishi, H. Kakoi, S. Sugiyura and S. Inoue, J. Org. Chem., 1975, 40, 2009-2011.
H. Stamm and R. Wiess, Synthesis, 1986, 392-395.
H. Stamm and W. Wiesert, Chem. Ber., 1978, 111, 502-515.
H. Stamm and J. Bundy, J. Chem. Res. (S), 1983, 54-55.
46. H. Stamm and R. Wiess, Synthesis, 1986, 395-397.
47. T. Baumann, B. Buchholtz and H. Stamm, Synthesis, 1995, 44-46.
48. P.-Y. Lin, J. Werry, G. Bentz and H. Stamm, J. Chem. Soc., Perkin Trans. 1, 1993, 1139-1145.
49. B. Lygo, Synlett, 1993, 764-766.
50. H. Stamm and R. Falkenstein, Chem. Ber., 1990, 123, 2227-2230.
51. P. Assithianakis and H. Stamm, Chem. Ber., 1987, 120, 855-857.
52. B. Buchholtz and H. Stamm, Chem. Ber., 1987, 120, 1239-1244.
53. P.-Y. Lin, K. Bellos, J. Werry, P. Assithianakis, R. Weiß and T. Mall, J. Prakt. Chem., 1996, 338, 270-278.
54. J. E. Baldwin, R. M. Adlington and N. G. Robinson, J. Chem. Soc., Chem. Commun., 1987, 153-155.
H. W. Heine and G. D. Wachob, J. Org. Chem., 1972, 37, 1049-1051.
56. H. W. Heine, G. B. Lowrie III and K. C. Irving, J. Org. Chem., 1970, 35, 444-447.
57. P. J. J. A. Buijnsters, M. C. Feiters, R. J. M. Nolte, N. A. J. M. Sommedijk and B. Zwanenburg, Chem. Commun., 2001, 269-270.
58. H. Stamm and G. Gerster, Tetrahedron Lett., 1980, 1623-1626.
59. J. F. Dellaria Jr. and K. J. Sallin, Tetrahedron Lett., 1990, 31, 2661-2664.
60. H. W. Heine and T. Newton, Tetrahedron Lett., 1967, 1859-1860.
61. S. Fujita, T. Hiyama and H. Nozaki, Tetrahedron, 1970, 26, 4347-4352.
62. H. Stamm and P. Assithianakis, B. Buchholtz and R. Weiß, Tetrahedron Lett., 1982, 23, 5021-5024.
63. P. Wipf and P.C. Fritch, J. Org. Chem., 1994, 59, 4875-4886.
64. U. M. Lindstrom and P. Somfai, J. Am. Chem. Soc., 1997, 119, 8385-8
65. G. A. Molander and P. J. Stengel, J. Org. Chem., 1995, 60, 6660-6661.
66. P. E. Fanta and E. N. Walsh, J. Org. Chem., 1966, 31, 59-62.
67. M. L. Graziano and R.Scorpati, J. Heterocycl. Chem., 1976, 13, 205-210.
68. H. W. Heine and M. S. Kaplan, J. Org. Chem., 1967, 32, 3069-3074.
69. K. Quinze, A. Laurent and P. Mison, J. Fluorine Chem., 1989, 44, 233-265.
70. R. Huisgen, H. Möbuis, G. Muller, H. Stangl, G. Szeimies and J. M. Vernon, Chem. Ber., 1965, 98, 3992-4013.
71. I. J. Burnstein, P. E. Fanta and B. S. Green, J. Org. Chem., 1970, 35, 4084-4087.
72. D. Haidukewych and A. I. Meyers, Tetrahedron Lett., 1972, 3031-3034.
73. A. I. Meyers, D. L. Temple, D. Haidukewych and E. D. Mihelich, J. Org. Chem., 1974, 39, 2787-2793.
74. C. U. Pittmann Jr. and S. P. M'Manus, J. Org. Chem., 1970, 35, 1187-1190.
75. S. Allemann and P. Vogel, Synthesis, 1991, 923-928.
76. A. Hassner, S. S. Burke and J. C. I, J. Am. Chem. Soc., 1975, 97, 4692-4700.
77. F. W. Eastwood, P. Perlmutter and Q. Yang, Tetrahedron Lett., 1994, 35, 2039-2042.
78. T. Nishiguchi, H. Tochio, A. Nabeya and Y. Iwakura, J. Am. Chem. Soc., 1969, 91, 5835-5841.
79. H. W. Heine and Z. Proctor, J. Org. Chem., 1958, 23, 1554-1556.
80. G. Cardillo, L. Gentalucci and A. Tolomelli, Chem. Commun., 1999, 167-168.
81. C. Tomasini and A. Vecchione, Org. Lett.,1999, 1, 2153-2156.
82. G. Cardillo, L. Gentalucci and G. P. Mohr, Eur. J. Org. Chem., 2001, 3545-3551.
83. J. Legeters, L. Thijs and B. Zwanenburg, Recl. Trav. Chim. Pays-Bas, 1992, 111, 16-21.
84. P. G. Mente, H. W. Heine and G. R. Scharoubim, J. Org. Chem., 1968, 33, 4547-4548.
85. T. A. Foglia, L. M. Gregory and G. Maeker, J. Org. Chem., 1970, 35, 3779-3785.
86. F. W. Eastwood, P. Perlmutter and Q. Yang, J. Chem. Soc., Perkin Trans. 1, 1997, 35-42.
87. H. W. Heine, D. C. King and L. A. Portland, J. Org. Chem., 1966, 31, 2662-2665.
88. D. A. Tomalia, N. D. Ojha and B. P. Thill, J. Org. Chem., 1968, 33, 1400-1405.
89. H. W. Heine, M. E. Fetter and E. M. Nicholson, J. Am. Chem. Soc., 1959, 81, 2202-2204.
90. H. W. Heine, W. G. Kenyon and E. M. Johnson, J. Am. Chem. Soc., 1961, 83, 2570-2574.
91. K. Ponsold and W. Preibsch, Chem. Ber., 1971, 104, 1752-1760.
92. H. Stamm and G. Fuhrling, Tetrahedron Lett., 1970, 1937-1940.
93. C. H. Chang and P. E. Fanta, J. Org. Chem., 1971, 36, 3907-3910.
94. D. V. Kashlikar and P. E. Fanta, J. Am. Chem. Soc., 1960, 82, 4930-4931.
95. J. Werry, P. Y. Lin, K. Bellos, P. Assithianakis and H. Stamm, J. Chem. Soc., Chem. Coтmии., 1990, 1389-1390.
96. Z. da Zang and R. Scheffold, Helv. Chim. Acta, 1993, 76, 2602-2615.
97. J. J. Eisch and J. E. Galle, J. Am. Chem. Soc., 1976, 98, 4646-4648.
98. S. Wattanasin and F. G. Kathawala, Tetrahedron Lett., 1984, 25, 811-814.
99. T. Mall and H. Stamm, J. Chem. Res. (S), 1996, 375.
100. H. C. Brown and A. Tsukamoto, J. Am. Chem. Soc., 1961, 83, 2016-2017.
101. G. Bentz, N. Besbes, A. Laurent and H. Stamm, Tetrahedron Lett., 1987, 28, 2511-2512.
102. G. Bentz, J. Werry and H. Stamm, J. Chem. Soc., Perkin Trans. 1, 1993, 2793-2797.
103. F. A. Vingiello, M. P. Rorer and M. A. Oligiaruso, Chem. Commun., 1971, 329.
104. E. Gulbins, R. Morlock and K. Hamann, Liebigs Ann. Chem., 1966, 698, 180-185.
105. M. A. Calcagno, H. W. Heine, C. Kruse and W. A. Kofke, J. Org. Chem., 1974, 39, 162-166.
106. H. W. Heine, Angew. Chem., 1962, 74, 772-776.
107. G. A. Olah and P.J. Szilgyi, J. Am. Chem. Soc., 1969, 91, 2949-2945.
108. R. A. Aitken and A. W. Thomas, Synlett, 1998, 102-104.
109. review: D. Seebach, A. R. Sting and M. Hoffmann, Angew. Chem., Int. Ed. Engl., 1996, 35, 2708-2748.
110. D. Seebach and A. Fadel, Helv. Chim. Acta, 1985, 68, 1243-1249.
111. R. F. C. Brown, "Pyrolytic Methods in Organic Chemistry," Acedemic Press, London, 1980.
112. A. Fadel and J. Salaün, Tetrahedron Lett., 1987, 28, 2243-2246.
113. M. J. O'Donnell, Z. Fang, X. Ma and J. C. Huffman, Heterocycles, 1997, 46, 617-630.
114. A. D. Abell, R. A. Edwards and M. D. Oldham, J. Chem. Soc., Perkin Trans. 1, 1997, 1655.
115. E. Baer and J. Maurukas, J. Biol. Chem., 1995, 212, 25-38.
116. S. V. Andurkar, J. P. Stables and H. Kohn, Tetrahedron Asymm., 1998, 9, 3841-3854.
117. M. Tiecco, L. Testaferri, C. Santi, C. Tomassini, F. Marini, L. Bagnoli and A. Temperini, Eur. J. Org. Chem., 2000, 3451-3457.
118. M. Nishimura, S. Minakata, T. Takahashi, Y. Oderaotoshi and M. Komatsu, J. Org. Chem., 2002, 67, 2101-2110.
119. M. Reuman and A. I. Meyers, Tetrahedron, 1985, 41, 837-860.
120. T. Mall, B. Buchholz and H. Stamm, Arch. Pharm. (Weinheim, Ger.), 1994, 327, 377-380.
121. H. Stamm, A. Sommer, A. Woderer, W. Wiesert, T. Mall and P. Assithianakis, J. Org. Chem., 1985, 50, 4946-4955.
122. P. Lafargue, P. Guenot and J.-P. Lellouche, Heterocycles, 1995, 41, 947-958.
123. K. Kazuyuki, I. Agata and A. I. Meyers, J. Org. Chem., 1998, 63, 3113-3116.
124. Y. Ichikawa, M. Yamazaki and M. Isobe, J. Chem. Soc., Perkin Trans. 1, 1993, 2429-2432.
125. B. Marcot, A. Rabaron and C. Viel, Can. J. Chem., 1981, 59, 1224-1234.
126. G. Bellucci, R. Bianchini and C. Chiappe, J. Org. Chem., 1991, 56, 3067-3073.
127. J. Houben, Ber. Dtsch. Chem. Ges., 1906, 39, 3219-3233.
128. H. Staudinger and J. Siegwart, Helv. Chim. Acta, 1930, 3, 824-833.
129. T. Nishio, J. Org. Chem., 1997, 62, 1106-1111.
130. E. Altmann, K. Nebel and M. Mutter, Helv. Chim. Acta, 1991, 74, 800-808.
131. D. Seebach and T. Gees, Liebigs. Ann. Chem., 1993, , 785-800.
132. M. D. Banciu, D. Istrati, D. Mihaiescu and C. Draghici, Molecules, 2000, 5, 1004-1010. 133. R. A. Aitken and A. W. Thomas, Arkivoc, 2002, 3, Issue iii, 71-79.
134. S. Lesniak, G. Mloston and H. Heimgartner, Pol. J. Chem., 1998, 72, 1915-1920.
135. T. B. Cameron and H. W. Pinnick, J. Am. Chem. Soc., 1979, 101, 4755; 1980, 102, 744-747.
136. A. K. Ghosh, P. Mathivanan and J. Cappiello, Tetrahedron Asymm. 1998, 9, 1-45.
137. K. A. Jorgensen, M. Johannsen, S. Yao, H. Audrain and J. Thorhauge, Acc. Chem. Res., 1999, 32, 605-613.

[^0]: § denotes spectrum recorded at $50^{\circ} \mathrm{C}$

