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Abotract

A description is given of G-edanken, a simple typeless

language, developed by John Reynolds, and an implementation

of the language on the IBM 3£>0/^1i computer at St. Andrews

University is presented.

The formal definition of Gedanken is based on work

by Landin on his SECD Machine and his later Sharing Machine, and

a summary of these is given.

Reynolds has specified a formal definition of C-eaanken,

based on the Vienna definition method. A description of this

is given.

A description is given of the author's implentation

of G-edanken using 3CPL as the defining language. The

implementation proved to be inefficient, and a critical

examination of it is made in an attempt to discover the sources

of the major inefficiencies. A number of changes are suggested

to remedy these inefficiencies.
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CHAPTER 1 - INTRODUCTION

Gedanken (refs 1,2) is a language unusual for its

generality and completeness, and in which it is thereby easy to

model many of the features of other high-level languages. In

particular it may conveniently "be used to model the more unusual

and subtle concepts in high-level programming, and would

therefore make a very good tool for teaching computer semantics

to more advanced students. The aim of the work described in this

thesis was to produce an implementation of G-edanken which would
I

be of use in such courses.

A working and complete implementation was produced

but it became apparent that this version was extremely

inefficient. In fact the implementation failed to achieve its

aim, since all but the simplest programs ran so slowly that it

was of no use as a teaching tool.

In the thesis a description of the implementation is

given, and then an attempt is made to assess the major

inefficiencies and to suggest how these might be remedied.

A brief introduction to Gedanken itself is given in

the latter .part of this chapter.
j

The definitional machine for Gedanlcen is based closely

on work done by Landin in which he defines his SECD machine, and

his later Sharing Machine. An account of this work is given in

Chapter 2.

The formal definition of Gedanken, based on the Vienna

definition method, specifies an abstract syntax for Gedanken, and

lays down the manner in which concrete programs should be

translated into abstract programs. The semantics .of the language

are then defined by an interpreter for these abstract programs.

These aspects of the formal semantics are described in Chapter 3

and compared with the SHC.D and Sharing Machine systems.
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Chapter U describes the author's implementation of

Gedanken on the IBM ^SO/bU computer at St Andrews University,

using BCPL as the defining language. This implementation adheres

closely to Reynolds' definitional system, and a description is

given of the: way in which this is modelled in BCPL.

The. final chapter takes a critical look at the

"implementation in an attempt to discover the sources of the

major inefficiencies. A number of changes are suggested to

remedy these inefficiencies, from which it is believed, a

useable BCPL implementation would result.

The. Philosophy of Gedanken

Gedanken has been described by its. author as an

attack on the. problem of "the simultaneous achievement of

simplicity and generality in language design"* » These, points are

exposed using the method due to Strachey (ref 3) This method uses

the two related criteria of types and domain structures for the

description and comparison of programming languages.

Gedanken follows the philosophy of dynamic types,

whereby each object has a type, but these types are not tested at

compile time. Types are recognised by differences in the internal

representation'.'of''■ permitting explicit type-testing of the

values of identifiers. It is left to the user to provide his own

feasibility checks on the data within the functions he designs,

or to allow the run-time system to complain if asked to perform

impossible tasks.

The domain structure of Gedanken is :—

D =V=R+Ch+T+J+A+F+L

F=V-(S-(V S))

L=L+(Updater loader)

Updater=V-(S-S)

Lo.ader-S-(V S)

^Throughout this thesis all items quoted but not credited are
taken from ref 1, "Gedanken - A Simple Typeless Language Which
Permits Functional Data Structures and Co-routines"' by John C.Reynolds
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where the following abbreviations are used

N - integers

Ch - characters

T - truth values

J - labels (jump-points)

A - atoms

F — functions

L - locations

V — stored objects,i.e. objects which may be assigned

D - denotations, i.e. objects which may be- named

S - stores or machine states

Atoms are special objects, similar to LISP atoms.

Examples of their use appear below.

The. Updater Loader pairs are. unusual, and relate to

the implicit reference, system, also to be described later*.

The domain structure reveals a number of points

concerning the language :-

(a) Real numbers are excluded from the current version of the

language.,

(b) There are no data structures included in the basic domains..

This is because all data structures are treated as functions

(c) All functions in G-edanken take a single value as argument
j

and produce a new machine state and a single value result.

However, both the argument and the result may be the functio

nal equivalent of sequences of any length (including zero).

(d) Labels have the same status as other identifiers and may be

assigned or returned as the result of a function. It is this

that is responsible for many of the powers peculiar to

G-edanken.

(e) The general structure of Gedanken is fairly simple, and all

objects may be named, stored or assigned. It is also vei'y

clean, in the sense that any value permitted in some context



of the language, is permissible in any other meaningful

content„

Gedahken is also a language "based directly upon the

X-calculi of Alonzo Church (ref h) . Actual "A" symbols are

used,, and functional application is effected by means of

/S —substitutions,

A Brief Introduction to Gedanken as a Programming Language*

(a) Functions and Functional Data-Structures

Functions in Gedanken are created by the evaluation of

X-expressions. When aX-expression is evaluated any variables

occurring free, in it are. bound, to the values they possess at

the time of evaluation. This binding is the same as that used in

.Algol.

It has been mentioned that all data-structures in

Gedanken are treated as functions. A data-structure is any

function which, when applied to an appropriate argument, will

yield the corresponding field or component value.

For example, consider a vector to be a one-dimensional

array with lower and upper bounds the integers b., and b^
respectively. Such a structure could be represented by a function

1 2
applicable to the integers from b to b inclusive, and yielding

for each integer the appropriate component of the vector.

A semi-basic function VFCTOli is provided, which takes

a function and two integers as arguments, and produces a

functional vector whose bounds are the two given integers, and

whose, comjjonents are the results of applying the function to all

the' integers in the given range. The vector may also be applied

to the atoms UL or LL, and then yield its upper or lower bound

respectively.

* For more detail references 1 and 2 should be consulted.



A sequence is a vector with a lower "bound of 1 . A

sequence may "be created "by a function like any other vector, "but

they mayalso "be created "by the evaluation of a special expression

—form, a sequence expression.. These are either empty or take

the form

expression , expression r expression *

These are very similar to the collateral clauses of

Algol 68.

Sequence expressions are parallelled "by sequence

parameter forms , which are either empty or take the form

pform , pform pform

"In general, if a is any value and p is any parameter

form, then the binding of p to a is defined recursively as

follows:

(1) If p is an identifier, then p is bound to a.

(2) If p has the form (pf), then p' is bound to a.

(3) If p is a sequence parameter form, p^ , ,p (n*-l), then a,
which must be a function, is applied to each integer from 1

to n, and each p^ is bound to the value of a(i).
The combined syntax of sequence expressions and

sequence parameter forms is designed to preserve conventional

notation for functions of several arguments".
j

This approach to data structures means that a function

expecting an argument of a given form will accept any function

producing a logically equivalent structure,regardless of the

internal representation.

(b) Assignment

Assignment in Gedanken is possible only to special

entities called references, each of which possesses a value, and

* Braces are used around a syntactic entity which may occur any
number of time (including zero) in a given syntactic form.



which may themselves "be possessed "by either an identifier or

another reference. Assignment is defined, as it is in Algol 63,

to alter the relationship hotween a reference and its value,

rather than "between an identifier and its; value.

There are three "basic functions for reference

manipulation:

REE X returns a distinct new reference,initialised to

possess the value X.

SET (R,x) (which may "be abbreviated to R:=X) causes

the reference R to possess the value X, and also

returns the value of X.

VAL R returns the value possessed by.the reference R.

To reduce the need for frequent use of the VAL function

a coercion convention is introduced, whereby references are

automatically replaced by their values in contexts where they

would otherwise, be meaningless. A basic function COERCE is also

provided for use elsewhere by the programmer.

Rathei1 more unusual than the above explicit references

are Gedanlcenr s implicit references. These are functional referen¬

ces, analogous to the functional data structures described
1
1 above. Associated with each implicit reference are. two functions.

The first, of one argument, is evaluated each time the reference

is set, i.e. assignment to the refer;enee(SET (R,X) or R;=X )
causes this function to be applied to the argument of the

assignment. The other is a function of zero arguments, and this

is evaluated whenever the implicit reference is evaluated.

An Implicit reference is created by the execution of

the basic function IftlPREE, which requires for its arguments two

functions, say SE.TF and VALE, of one and zero arguments respecti¬

vely. The application of IMPREE to its arguments -creates a new

implicit reference- which satisfies the. predicate ISREE, ana may



"be coerced like an explicit reference„ However the effects of

SET ana VAL on an implicit reference are to execute the functions

SET? and VALE respectively.

This is demonstrated in the following example where it

should "be- considered that Y is an explicit reference global to V,

whose value is a sequence.

V IS IMPREE (\X Y:=CONS(X,Y),

X() (Z IS Y 1; Y: =TAIL Y;, Z) ) .

Then SET(V,P) would "be equivalent to

(^X Y:=CONS(X,Y)) P

i .e. P would "be added to the front of the sequence possessed "by

Y.

VAL V would remove the first item from this sequence

and return it as a result.

In this way an implicit reference could be used to

operate a stack.

(c) Program Control

There exist certain semantic differences between

labels in Gedanken and those used in most other languages. It is

usual that the statement GOTO L should transfer control to the

statement following the label L. In Gedanken, evaluation of the

statement GOTO L will also cause the state of the computation

to revert to that at the time when L was evaluated. In effect

machine states may be stored by the use of labels. All identifier

bindings holding at the time of the evaluation of L come into

play again, and the information necessary to complete block

exit becomes available again, although references do not revert

to their former values.

.Another feature peculiar to Gedanken, which makes

the above assume great importance, is the fact that labels are

treated as first-class objects, and may be assigned, or returned



as the result of an expression or function. These two features

together present the capability of jumping bach into a block

after it has been exited, thereby producing many interesting and

unconventional programming possibilities. For example, in such

things as parsers it is often convenient to return to a previous

control state. In Gedanken it is possible to do this using a

simple GOTO command, all back-tracking being rendered unnecessary

Labels may be. assigned and stored, so that succeeding

control states in a block which is iterated may be saved.

Another capability presented is the use of co-routines, i.e.

programs which can relinquish control to a calling program, and

later be re-activated to continue computation.
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OHAfVAk 2 - HISTORIC BACKC-kGui.")

The definitional machine for Gedanken has "been "based

upon the work done "by Landin in the rnid-60's, on programming

languages (refs 5,6 and ~() »& brief account of this work is given

here as a basis for a discussion of the Gedanken abstract

machine.

The AS/'SkCD Machine System

The basis of the work was the demonstration that

certain of the expression forms used in programming languages

can be expressed in terms of X-expressions, operator/operand

•combinations and expressions, and then be evaluated mechanically.

An abstract machine to perform this evaluation was specified.

The class of applicative expressions (referred to

hereafter as AhJ's) is defined to denote the expressions constr¬

ucted using these three expression-types, and structure

definitions are introduced as a means of describing and

manipulating composite information-structures such as AE's.

A structure definition for a given class of object

will specify for each alternative format:—

J

(a) The number of components.

(b) The type of each component.

(c) The identifiers to be used for the predicates and component

selectors appropriate to that class.

For example, the structure definition for an AE is

given as: -

"An AE is either

an identifier

or a X—expression (Xexp) and has a
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bound-variable ("bv) which is an identifier-

list

end a X -"body ("body) which is an AS

or a combination and has an operator (rator)

which is an AS

and an operand (rand) which is an lid".

Here 'identifier', 'X-expression' and 'combination'

(and any abbreviations after them) are the predicates, and

'bound-variable', 'X-body ', 'operator' etc are the selectors.

It is possible to evaluate an AE mechanically if the

values of all its free identifiers are known, and if all arguments
}

in it are compatible with their functions. If mathematical

expressions or computer1 programs could be expressed as single

AE's then these could be evaluated mechanically in the same way.

It is demonstrated that this may in fact be done for certain

features important in programming languages, namely function

definitions, lists, conditional expressions and recursive

definitions.

Function Definitions

Function definitions may be expressed very easily as

AE's in such a way that there is no dummy variable on the left-

hand side, e.gi

f (x.) = x2+2 = x.x2+2
This paves the way for expressing as an Ad an expression

which uses an auxiliary function definition, e..g.

f(2) - f(ii-) = ( f„f(2)-f(4))( x.x2+2)
> 2

where f(x)=x +2

lasts

An expression list may be rendered as. a single AS by

considering commas as binary infixed operators with the following
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Let the two operands "be a and * then

(1) If a0 is a list, it is transformed into a list of length

one more "by "being prefixed "by .

(2) If a0 is not a list then a list is made toy prefixing a tocL X.

the empty list, and prefixing to. the list so formed.

A list may have components which are lists, thus

forming a list-structure, and this may toe expressed as an AE

in the same way.

If lists are considered in this way, any function

may properly appear with a single argument if this is a list of

appropriate length.

Conditional Expressions

A conditional expression may toe rendered as an AE toy

considering 'if' as a function-producing function such that:

if (true) = 1st

and if (false)= 2nd

The function produced as its result will expect as an

argument a 2-list, whose two components represent the two

"branches of the conditional. In this way, a conditional expression

having the form

if q. then e0 else e_,1 \ 2 _5

would toe expressed as the AE

if (epCeg, e_)
However this rendering is not acceptable in the case

where one or other of the arms of the conditional may toe undefined

since it v/ould toe necessary to evaluate tooth e^ and e^ in order
to form the 2-list.

For example consider the AE

if (a=0) (1, 1/a)

l/a is undefined when a=0, and thus the list could not toe formed.

It is necessary that only the appropriate "branch of



the conditional should "be evaluated. This may be effected by

means of X-expressions with dummy arguments. An expression of

the form

if ethen e0 else e^ is expressed as
if (e-| ) (X () e2 ? ^ ) e3) ()
Both arms of the conditional are now always defined,

their values being functions of no arguments, but only the

appropriate one is actually applied ana evaluated in any case.

Recursive Definitions

A method of rewriting recursive definitions so that

they are not formally circular by means of the. 'fixed point

function' is used to demonstrate how recursive definitions may

be. expressed as AE's.

The Evaluation of AE's

The evaluation of an AS is defined as taking place

relative to an environment which provides the value for each

identifier occurring free in the AS. An environment may be

thought of as a function which takes an identifier as argument

and returns its value, which may be a number, or a list of

numbers, or a function, or a list of functions.

To find the value of any AS in a given environment

the function 'val'\ is defined, such that val S X is the value

of expression X relative to environment E. The function val is

specifiedby the following rules:

1, If X is an identifier then val E X=E X

2„ If'x is a -expression, then val E X is that function whose

result for any given argument x may be found by evaluating

the body of X in a new environment E', where E* may be derived

from E by pairing the bound-variables of X with the components

of x (where x must be a list of appropriate length).



3. If X is a combination., val E X may be found by subjecting

both the operator and the operand to val E, and applying

the result of the former to the result of the latter.

These rules may be used to evaluate AE1s mechanically,

and an abstract machine to do so is described. In this machine,

the state of progress of the evaluation at any time may be

defined entirely in terms of four components. Thus a machine-

state may be described by the following structure definition:-

"A state consists of a stack, which is a list, each of whose

items is an intermediate result of evaluation,

awaiting subsequent use;

and an environment, which is a list-structure made up of

name/value pairs;

and a control, which is a list, each of whose items is

either an AE awaiting evaluation, or a special object

designated by 'ap', distinct from all AE's;

and a dump, which is a complete state, i.e. comprising four

components as listed here".

A state may be denoted by (S,E,C,D).
\

■ Defining:

(a) a closure to comprise a X-expression and the

environment relative to which it was evaluated,

(b) h and t as being the head and tail functions

respectively on lists

then the procedure for the evaluation of an AE, say X, is as

follow's:

Evaluation begins from a state with environment E,

and control X. h G is examined at each step of the evaluation,

and a new state is produced, in a manner depending- on h C.

The transition function applied at each step may be
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defined by:-

1. If G is null then:

let current dump "be, (Sf ,Er ,C! ,D')

The current state is replaced by hS: S' ,E * ,C' ,D'

(v/here. x:L is used tO' denote, prefixing x to L)

2. If C is not null then:

(a) If hC is an identifier then

S:=location E X E:S (where the function 'location' is

defined such that location S X

denotes the selector which

selects the value of X from E)
I

G: = tC

(h) If hC is a X-expression X, the closure derived from E

and X is loaded onto the stack.

(c) If hC is the special object 'ap' then if hS is a closure

derived from E' and X' then

3:= the empty list

E:= the environment derived from E' "by associating the

hound variables of X with the component(s) of

2nd So

C:=unitlist(body X')

D:=( t(tS) ,E, tC,D)

(d) If hG is a combination X then

C:=rand X:(rator X:(ap:tC))

If X is an A3, and E is an environment such that

val E X is defined, then starting at any state 8,E,X:C,D, and

repeatedly applying the transition function, eventually the

state val E X:S,E,C,D will be reached, i.e. the value of X in

the current environment will have been loaded onto the stack.

In order for the above transition rule to suffice for



the. evaluation of Ahf s it is necessary to assume that the

initial environment "binds the values of constants to their

representations,, and also that any basic functions used? such

as ?if', 'prefix' etc. are defined in the environment as

X—expressions.
C becomes empty whenever a function has been applied

and the result loaded on the stack. This result may be the

final result or it may be the component of another Ah, the

evaluation of which is continued by installing the most recent

dump as the new state, and using the result on the stack during

the evaluation. Thus the dump is used to store the state of

the machine at the start of evaluation of an AE,.at any'level

of nesting. This corresponds to the block-structure of certain

high-level languages, such as Algol-60, a new dump element

being added each time a new 'block' is entered.

The IAE/Sharing Machine System

In subsequent work an attempt was made to model

Algol-60 in a similar manner, using a development of the AE/SEGD

system, the IAE/'sharing machine' system which could deal with

imperative features.

To model Algol-60 it was necessary to add jumps and

assignment to the AE/SECD system. This made the evaluation of

expressions much more difficult, since the value of any

expression was no longer dependent solely on the values of its

subexpressions, but also on the side-effects produced by their

evaluation. A variable declared and used in the evaluation of

an expression might be changed by assignment in that expression

itself or one of its sub-expressions. Also there is the problem

that two variables might be declared as equivalent, so that

assignment to one will also change the value of the other.

Landin's sharing machine models the fact that distinct



'positions' in the machine, with equal occupants might share the

same., representation, and thus get updated collectively.

The. expressions evaluated "by the machine are called

imperative applicative expressions (lAE's) and consist of Ad's

with the addition of

an assigner which consists of a lefthand side (LHS),
which is an IAS

and a righthand side (RHS),

v/hich is an IAh

hach state in the system is characterised "by "both an

SECD state, and also an equivalence relation, v/hich specifies

the sharing among its component positions. Each time the

transition rule is applied it is necessary to specify how the

equivalence relation changes. This means that while the semantics

of Ah1 s may "be. specified formally independently. of any machine,

it is impossible to describe the semantics of IAS' s other than

in terms of a machine.

There are four rules which govern whether or not two

state-positions share:

1» When an identifier is scanned, the stack-head is left sharing

with, the environment position which holds the value of the
]

identifier. \

2. When a closure is applied, the newest member of the new

environment shares with any surviving co-sharers of the old

stack-head. Thus a function can have non-local effects by

assigning to arguments that are called by reference. This also

means that there is no need to use a special procedure to

scan an identifier on the LHS of an assigner.

3. When a closure is applied, components of older levels of the

new environment share with the corresponding components of

the environment from v/hich it was drawn. This means that
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fpositions' in the machine, with equal occupants might share the

same representation, and thus get updated collectively.

The expressions evaluated "by the machine are called

imperative applicative expressions (lAE's) and consist of AE's

with the addition of

an assigner which consists of a lefthand side (LHS),
which is an IAE

and a righthand side (RHS),

v/hich is an IAE

Each state in the system is characterised "by "both an

SECD state, and also an equivalence relation, which specifies
i

the sharing among its component positions. Each time the

transition rule is applied it is necessary to specify how the

equivalence relation changes. This means that while the semantics

of Ad's may "be specified formally independently of any machine,

it is impossible to describe the semantics of LAB's other than

in terms of a machine.

There are four rules v/hich govern whether or not two

state-positions share:

1. When an identifier is scanned, the stack-head is left sharing

with the environment position, v/hich holds the value of the

identifier.
'

I

2. When a closure is applied, the newest member of the new

environment shares with any surviving co-sharers of the old

stack-head. Thus a function can have non-local effects by

assigning to arguments that are called by reference. This also

means that there is no need to use a special procedure to

scan an identifier on the LHS of an assigner.

3. When a closure is applied, components of older levels of the

new environment share with the corresponding components of

the environment from which it was drawn. This means that
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non-local effects can also "be achieved if a function assigns

to its free variables.

h® When a control-string is exhausted, the new stack-head is

left sharing with any remaining co-sharers of the old. stack-

head, so that an application of a function is appropriate as

the LHS of an assigner.

Execution of an Assignor

It has been mentioned that the left and right-hand

sides of an assigner may both be evaluated in the same way.

However, a LHS must refer to a previously named object, or a

component thereof, already occupying a certain position in the

current state. Execution of an assigner will change the value of

this state-position, and hence of all positions sharing 'with it,

and leave a nugatory result on the stack.

Jumps

In order to effect jumps in the system an operation

"J" is introduced, applicable to functions, which has the effect

of forcing an exit fx>om functions under certain conditions,

e.g. f(x)= g( )

where g=jX(u,v).....

g may occur anywhere in the definiens.

If ever this sub-expression is evaluated while f is

being applied, there will be an immediate return from f , and the

value of the subexpression will be given as the result of f.

A program-closure is introduced as another possible

result of evaluation. If J is applied to a closure, it is

transformed to a program-closure. This differs fmm a closure

in that in addition to including the current environment (for

subsequent installation) and an expression (for evaluation) it

also includes the current dump, which is installed when the
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program-closure comes to "be activated. By contrast, when a

closure is activated, the dump is used to record the current

state for later resumption. An expression of the. form J(XL.S)

known as a 'program-point'.



CHAPTER 3 - THE PORLIAL SEMANTICS OF GEDAKKeH

The semantic interpretation of Gedanken programs is

formally defined, "by the specification of:-

(a) A set of rules "by which a concrete Gedanken program may be

translated into an abstract data structure.

(b) An abstract machine to evaluate such data-structures.

Abstract Gedanken

Before it can be evaluated a parsed Gedanken program

must be translated into am abstract form, an information structure

amenable to evaluation by the interpreter.

An abstract Gedanken program is made up of sequences

and records, where:-

(a) A sequence is the functional equivalent of a one-dimensional ,

array.

(b) A record is the functional equivalent of a finite collection

of fields, each identified by a field-name. Each record

belongs to a particular class such that all records in the

same class have the same set of fields.

For a particular field of all records in a particular

class, the range of xoossible field values is specified by a

class definition^ of the form:-

(CLASS,<classname> ,(<fieldname>,grange descriptor}) )

where

<range descriptor}: : =<(set name}\sEQ,£setname>

If the range descriptor is a set-name, S, then the

corresponding field is a member of the set denoted by S. If the

range descriptor has the form SEQ, 3 then the corresponding

field is a sequence, the components of which are all members of
the set denoted by S.



"A set name, may be any of tlie f o '.lowing: (l) INTOLASS,

BOOLCLASS, and GHARCLASS , denoting the se .s of integers, "boolean

values, and characters respectively; (2) I NIVLRSAL, denoting the

universal value set; (3) A class name, de. oting a class of

records; (ij.) A union name. denoting the u. ion of sets denoted

"by other set names. The meaning of union r nines is described

by expressions called union definitions, with the form:

< union definition>: :=(UNION,<set name) set name>] *)

The union definition (UNION, s^ , s^ s^) implies
that the set name Sq denotes the union of the sets denoted by

s » Circular union definitions, e,g, (UNION,X,X) are not

permitted.

A colle.ction of interrelated class and union definition

defining various recoi>d classes and other sets, is called an

abstract syntax definition."1*

An abstract syntax is. equivalent to Landin's structuiu

definitions. Thus the three definitions:

(UNION,c,C^,C2)
(CLASS,c^,(f^,s^)}
( CLASo, c2} (. 2> 9 ^ ^ 3' s3 ^ ^

are equivalent to the structure definition

a c is either a c^ and has an f^ which is an s^
or a c2 and has an f2 which is an s2

and an f^ which is an s..3 A

* N.B. in this chapter those sections in quotation marks are
taken from John C. Reynolds' "Gedanken: A Simple Typeless
Language Which Permits Functional Data Structures and Coroutines"

1969, Argonne national Laboratory, ANL-7621.
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The abstract syntax for abstract Gedanken data-

structures is given below.

( UNI Oil, EXP j C ONSTANT, IDENT, FUNCTDE S, LAMBDAEXP, C ONDEXP, CASEEXP,

BLOCK),

(CLASS,CONSTANT,(VALUE,VALUEDEN)),

(UNIOK,IDENT,PROGIDENT,INTRIDENT),

(CLASS,PROGIDEM, ( STRING, SEQ,CHARCLASS) ) ,

( CLASS, INTRIDENT, ( NAME, INTCLASS) ) ,

(CLASS,FUNCTDES, (FUNCTPART,EXP) , (ARC-PART,EXP) ) ,

(CLASS,LAMBDAEXP,(PARAMPART,IDSNT),(BODY,EXP)),

(CLASS,CONDEXP,(PREMISS,EXP),(CONCLUSION,EXP),(ALTERNATIVE,EXP)),

(CLASS,CASEEXP,(INDEX,EXP),(BODY,SEQ,EXP)),

(CLASS,BLOCK,(RDECLPART,SEQ,RDECL),(LDECLPART,SEQ,LDECL),

(BODY,SEQ,EXP)),

(CLASS,RDECL,(LEFT,IDEM),(RIGHT,LAMBDAEXP)),

(CLASS,LDECL,(LEFT,IDEM1),(RIGHT,SEQ,EXP)),

(UNION,PFORM, IDEM, SEQPFGRK) ,

(CLASS,SEQPFORM,(BODY,SEQ,PFORM))

Record Creation and Testing

Three functions are specified which test records for

set membership by searching through the abstract syntax, In the

following definitions the abstract syntax is the sequence D.

"T ISR X(X,S)

IP S—INTCLASS THEN ISINTEGER X ELSE IF S=300LCLASS

THEN ISBOOLEAN X

ELSE IF S=CHARCLASS THEN ISCHAR X

ELSE IF S=UNIVERSAL THEN TRUE

ELSE SEARCH(D UL, Al(D l)2=S,

IF(D I)1=CLASS THEN ISFUNCTION X

AND X TYPE=S

ELSE TUNION(X,TAIL TAIL D I),
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A() GOTO ERROR);
TUNION ISR X(X,U)

SEARCIl(U UL, Xl T(X,U I), Xl TRUE, X ( ) FALSE);

TSEQ ISR X(X,S)

X LL=1 AM) SEARCH(X UL, Xl ROT T(X I,S),

Xl FALSE,X( ) TRUE);

T.(X,S) accepts a record or primitive, datura X and a

set name S, and tests whether X is a member of the set denoted

by S. TUNION(X,U) accepts a sequence U of set names, and tests

whether the record or primitive datum X is a member of any of

the sets denoted by the components of U. TSEQ(X,S) accepts a

vector X whose components are records or primitive data,, and

tests whether X is a sequence in which every component is a

member of the set denoted by the set name S.

The function M is used to create records. It accepts

as argument a sequence of v/hich the first element is a class-name

C, and the remaining elements are field values, M searches the

abstract syntax to ensure that the correct number of field

values have been provided, and uses the set membership functions

to ensure-, that each, of the'field. values satisfies its., range

descriptor. j
M has the following definition:

M ISR XX

(C,V IS IF ISATOM X THEN X, () ELSE (X 1,TAIL X);

SEARCH(D UL, Xl (D I)1=CLASS AND (D l)2=C,

Xl IvI1 (C, V, TAIL TAIL D i) , X (0 GOTO ERROR));

111 ISR X(C,V,F)
HP V UL' 5= F UL AND SEARCH V UL,

Xl ROT (IP (F I) 2=3E Q TITER

TSEQ(Y I,(P 1)3) ELSE T(V I,(F 1)2)),



/

Xl FALSE, X() TRUE)

THEN AX IF X=TYPE THEN C ELSE

SEARCH(V UL, Xl X=(F l)l,V,X() GOTO ERROR)
ELSE GOTO ERROR;

Translation into Abstract Form

23

Before a Gedanken program can be converted into

abstract form it must be parsed according to the concrete

grammar of Gedanken.

"'The syntax of concrete programs is defined in two

stages: (l) A unique partitioning of the program into a sequence

of character strings called tokens is specified, and 'then (2) The

set of well-formed programs is defined by a grammar over the

infinite vocabulary of tokens.

The tokens themselves satisfy the following grammar

4. character) :: =" }<quotable character)

•(quotable character)::=<letter or digit>] X | , |-\:\(J )] ;|u|
<extra character)

^letter or digit) :: =<letter)|< digitX
< le 11 er>: : =a| bi c l die | f | gI ii \ 11 j\k\L \f.i V III o\ p\q\li[ s\ t\ u( v\ w[x\ y\ z
< digi t> : : =0 \l \ 2 b\U\516\?\6\ 9

. , £token):: =£integer token)^4 quoted string token)| ( word token>|
<£ punctuation tokenX

<. integer token) : :={digit) ^(digit)j
•(quoted string token)::="£^quotable character)^ "
Cword token) :: =<Clettei)^<(letter or aigit)J
£ punctuation token) : = =

Here the symbol denotes a blank, and the undefined

class <extra character) denotes the set of all input-representable

characters not occurring elsewhere in the syntax

....The class of <,word tokenVs is subdivided intopreserved

word token)'s, which are the strings AND, OR, IF, THEN, ELSE,
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CASE, OP, IS, and ISR, and 4. identifier tokens>'s which are all

o t he r <word t ok ens>'s."

Once a program has "been partitioned into tokens it is

parsed according to the grammar on the left-hand of table 1, and

transformed into a derivation tree with the following properties:

"(l) Each node is associated with either a token or a production

of the grammar in Table 1.

(2) A node associated with a token is a terminal node.

(3) If a node is associated with a production which has n items

on its right side, then the node has n subnodes. If the ith

item on the right side of the production is a specific token

(token class, syntactic class), then the ith subnode is

associated with the specific token (some member of the token

class, some production whose left side is the syntactic

class)....

....With each production of the grammar in Table 1 we

associate a GEDANKE1T function which expresses the translation of

any phrase which is an instance of that production in terms of

the translations of its sub-phrases.

This process can be described more precisely as

"follows: The nodes of the derivation tree are translated in some

order such that no node is translated until after all of its

subnodes have been translated. If a node is associated with a

token, its translation is a sequence whose components are the

characters of the token. If a node is associated with a production

its translation is obtained by applying the corresponding

translation function to a sequeiice whose components are the

translations of the immediate subnodes, excepting those subnodes

which are associated with reserved word or punctuation tokens. In

the special case where this sequence has a single"'component,

the component itself, rather than the one-component sequence, is
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used as the argument to the translation function....

. ...Y/hen the right side of a production is <empty>, the

associated translation function receives an empty sequence as

its argument. The following subsidiary functions and other values

are used by the translation functions:

iicount 13 rep 0;

grident is X() iicount:=inc iicount; m(lntrident, val iicount));

equalcon is m(constant, getvalpredep Ivl(progident, "equal" ));
setcon is m(constant, getvalpredep m(progident,"set"));
coercecon is m(constant, getvalpredep m(progident, "coerce" )) ;

convertint isr xx ip x ul=0 then 0 else

add(digittoint x x ul, multiply(10, convertint head x));
transtring is xx ip x ul=1 then m(constant, x 1) else

(i is cridento; m(lambdaexp, i, m(caseexp, m(functdes,

coercecon,i), vector(1, x ul, xj m(constant, x j)))));

transdecl isrx(p,e,b) m(punctdes, translamdda(p,b),e);
translambda isr X(p,b) ip t(p,ident) then m(lambdaexp,p,b)

else (i is crident(); ii is rep(p body) ul; r is rep 3;

loop: ip k=0 then goto done else

r:=transdecl((p body) val k, m(punctdes, m(punctdes,

coercecon,i), k(constant, val k)), val r);
k:udsc k; goto loop;

done: m(lambdaexp,i,val r));

traipsequexp isr xx

(s IS VECT0R( 1 ,X UL,xj CRIDENTO); i IS CRIDENTO;
k is rep x ul; r is rep m(lambdaexp, i,m(caseexp,

m( puitctde s, coercecon, i) , s ) ) ;

loop: ip k=0 then goto done else

•r:=transdecl(s val k, x val k, val r);

k: -dec k; goto loop;

done: val r);
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The global reference IICOUTTT maintains a count of the

number of internal identifiers which have been created during

the' translation process* It is used by the function CRIDEI.rT(),

which returns a distinct internal identifier each time it is

executed."

M is a function such that M(c,a ) will createI n

and return a record with class name c and field values

"The values of EQUALCGIT, SBTCON, and COERCECON are

constants denoting the basic functions EQUAL, SET, and COERCE.

The value fields of these constants are obtained from the

function G-ETVALPREDEF ( to be defined later), which produces

the value denotations of predefined identifiers. The use of

these constants instead of the corresponding identifiers insures

that redeclaration of the identifiers will not affect implicit

coercion or the meaning of the operations = and:=.

COI'lYERTINT converts a sequence of digits into the

corresponding integer.

TRANSTRING translates quoted string tokens. If n=1,

the token "c^...cn" is translated into the abstract equivalent of
i (CAGE i OR "c ",...,"c ").

I il

The three interconnected functions TRAKSDECL,

TRA1TSLAMBDA, and TRANSEQEXP eliminate declarations, sequence

parameter forms, and sequence expressions»Their effect is

essentially equivalent to repeated application of the following

equivalences

p is e; b=>(Mp)(b))(e)

MP., » • • •>Pn)^ (when n=1)
=>Xi(p. is i 1;...;pnis i n; b)

e-j ® • • • »en (when n=1)
^>(i1 is ein is e^; &i(CASE i OR ^,...,1^))

where....i,i^,...,in are unique internal identifiers".
The working of these three functions is not immediately
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obvious, and might he clarified somewhat by stating that their

ultimate effect is. that expressions of the form:

p IS e; b (X(p)(b)(e) (as stated above)

X(p1,P2>o..,pn)b
=>Xl(Xp1(Xp2,...(Xpn t)l 1) )I n-l)ln

(e^ . . • ,

=>Xl l(Xl 2(....Xl n(Xl n+1 CASE I n+1 OP (I 1,1 2,...

I n))e ) e2''ei
the components of each expression being similarly transformed

as appropriate. Thus thses expression forms are transformed

into nested X-expressions, each of which takes a "single, argument.

Expressions involving = , AMD, OR, or:= are also

eliminated during the translation from concrete to abstract

Gedanken, and explicit calls of COERCE are inserted for the

implicit coercion performed by certain functions.

The Abstract Machine

The machine defining the interpretation of abstract

Gedanken data-structures is fundamentally similar to the sharing

machine, but diverges in some respects, and boasts a number of

.elaborations.

The construction of the machine is somewhat different,
\

this being apparent in the abstract syntax for states. Each

state of the Gedanken machine consists of an SSCD state, together

with two extra fields, a memory and an atomcount.

The memory is a sequence of value denotations, each

of which* specifies the value of an explicit reference. Each

element may be accessed by the appropriate references by means

of the integer-valued address-field contained in each explicit

reference, giving the number of the memory component which

specifies its value.

The atomcount is an integer value giving the number
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of atoms which have "been created during program execution. Each

atom has an integer name field, i "being the name of the ith atom

created, where i =-atomcount+1 at the time of that atom's creation.

Another divergence from the sharing machine is that

each dump-element consists not of an entire state, "but merely of

a control, stack and environment. The memory and atomcount are

added to progressively throughout execution and are used in

such a way that they do not need to "be saved and reinstalled.

The dump component may "be omitted "because a Gedanken machine

dump consists of asequence of dump elements rather than a single

element. When the transition rule is applied, the entire sequence

may "be passed to the new state, the sequence "being used according

to a stack discipline.

The transition rule used is "based on that of the

sharing machine. If P is the abstract form of the program, and

a state takes the form (control, stack, environment, dump,

memory, atomcount), then starting from the initial state

(unitseq p,(),(),(),(),0)
transition is applied repeatedly until a terminal state is

reached, i'.e. one in which the control and dump are both empty.

The value of the program is then the first (and only) stack

element.

As in the sharing machine, the first control instruction

is considered for each application of transition. If the control

is empty, the control, stack and environment of the first dump

component are installed, otherwise a branch is made on the first

control instruction.

The range of values that a control instruction may

take greatly exceeds that of the sharing machine. The instructions

may be broadly divided into three groups:-

(a) The classes of expressions which may be included in an
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abstract program. In Gedanken these include the three basic

JS's, and also constants, conditionals, case expressions,

blocks, recursive declarations and label declarations.

(b) Control instructions created during execution to enable

complex instructions' to be broken down into a sequence of

simpler instructions.

(c) Basic function instructions which effect the evaluation of

the basic functions of Gedanken.

(a) Expressions

The evaluation of each expression-type is described in

turn, however it should be mentioned that in some cases-this

evaluation is not completed in a single explication of transition.

In such cases one application of the transition function will
i

break down the expression into a sequence of simpler instructions

as mentioned in (b) above.

Constants

The value of the constant is put on the stack.

Identifiers

The value of the identifier is found using the GETVAL

function, and put on the stack.

Function Designators (AC combinations)

The finction and argument parts are evaluated, and

the value of the former is apjolied to the value of the latter.

Lambda Expressions ,

When the expression is evaluated, a closure comprising

the X-body and the current environment is loaded into the stack.

Also included in the closure is an instruction to bind the

parameter of the X-expression to the value on top of the stack.

Thus when this closure is subsequently applied, the body and

control of the closure are installed as the current control and
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environment, and the environment is extended "by "binding the

parameter to its argument. The closure-body is then executed in

this extended environment.

Conditional Expressions

In Gedanlten the conditional expression is invariably

of the form IF <e,> THEI\r <e0> ELSE < e~} . The premiss (e.) isi E j i

evaluated first, producing a Boolean result on the stack. Then

cither the conclusion (e^) or alternative (e^) is installed as
the control and evaluated, depending on the Boolean result

"being true or false respectively.

This method of evaluation is exactly equivalent to the

functional if e^ (X()^()©-)() expression suggested for
con.ditionals in the AE/SECD system, with only the correct "branch

"being evaluated each time.

Case Expressions

The index part is evaluated, ana a chec& is made that

its value is an integer not less than one, and not greater than

the number of component expressions in the body. Then for an

index of value n, the nth expression in the body is evaluated.

Blocks

A new dump element (comprising the current control,

stack and environment) is put on the dump, and the stack is set to

empty. This is very similar to the treatment of nested sub¬

expressions in the sharing machine. The control is then set to

the following sequence

recursive declaration}<label declarations}

^environment mk>,<exec (<block body}))

Thus subsequently the recursive declarations, and

then the label declarations will be evaluated, and the environment

will be marked. The block body will .then be evaluated in the

resulting environment.
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Recursive Declarations

It is in connection with recursive declarations and

also label declarations that the environment is marked during

block execution. The environment mark then delimits the environment

available to the recursive functions and labels declared in that

block.

When a recursive declaration of the form cio) IGR

xp*> is evaluated, the environment is extended by an element

binding the identifier part to a recursive function denotation

for the X-expression. A recursive function denotation has a

control, but no environment field. When a recursive denotation

is later yielded in a search of the environment, in order that

it may be arjplied an environment field will be added, being

that portion of the environment beginning at the last encountered

mark. In this manner a function may refer to itself, without

needing to use the fixed-point function suggested by Landin for

the 8LCD and sharing machines.

Label Declarations

When the declaration is evaluated the current environment

is extended by an element binding the label name to a recursive

label denotation. This comprises the body of the innermost block

containing the label and also the current dump. When this

denotation is subsequently yielded in a search of the environment

(i.e. when control is transferred to this label) then the current

control, stack, environment and dump are discarded. The stack is

emptied, the denotation body is installed as control, and the

environment, as with recursive, functions, becomes that starting at

the last encountered environment mark. Thus even if control is

transferred from outside the block containing a label, any

declarations preceding the label still hold, and the entire

state of the computation, apart from reference bindings and



atomcount, returns to that at the time of declaration of the

label. This is effectively the 'program-closure' described by

Landin for the sharing machine.

("b) The Control Instructions

These are created during xerogram execution, and are

used to instruct the machine in what manner instructions or

instruction sequences-are..-to., ber-manipulated. Their effects, are as

follows:-

"EXEC: The sequence of expressions in the instruction body is

evaluated, and the value of the last expression is added to the

stack.

BRANCH: If the first stack component is TRUE (or FALSI) then the

CONCLUSION ( or ALTERNATIVE) is evaluated and its value replaces

the first stack component.

SELECT: If the first stack component is an integer i, then the

ith component of the instruction body is evaluated and -its

value replaces the first stack component. If the first stack

component is the atom LL (or UL), then it is rex^laced by 1

(or the length of the instruction body).

BIND: The environment is extended by binding the identifier in

the instruction body to the first stack component, which is

deleted from the stack.
)

APPLY:The second stack component, which must be a function

denotation, is applied to the first stack component, and the

result of this apxxlication replaces the first two stack components.

HARKENV: A mark is added to the environment.

DELETE: The first stack component is deleted."

(c) Basic Function Instructions

These denote the basic functions and values of

Gedanken. Their evaluation is effected with -the use of two

predefined sequences. One of these consists of all the
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of the value denotations necessary to effect the meanings of

these strings.

In the case of the strings "TRUE", "FALSE" and

"QUOTECHAR" the value denotations are merely the appropriate

values, TRUE, FALSE and

"LL", "UL" and "ERROR" are denoted "by the fieldless

records for ildenotation, uldenotation and errordenotation.

The remaining strings denote functions of zero, one

or two arguments, some with implicit coercions and some without.

The value denotation for each of these is a function denotation

with an empty environment field, and whose sequence of control

instructions consists of the appropriate "basic instruction-

preceded "by an instruction sequence termed a prelude. When the

value denotation comes to "be evaluated, this prelude is

evaluated first and ensures that the correct argument(■ s) ,

coerced as appropriate, and in the required order (last argument

first) are on top of the stack when the basic function is

executed.

Thus when an identifier cannot be found in any search

of the environment, it is assumed that it must be a predefined

string. It is searched for in the sequence of predefined

strings, and if found the corresponding component from the

■sequence of value denotations is returned as its value.

The effect of evaluating each of the basic function.
\

instructions is described below. It is assumed that the arguments

have already been spread and coerced by the prelude. In all

cases an error condition will result if the arguments are not

of the required type.

REF or KCREF

The argument is removed from the stack and added to
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memory, and a new explicit reference is put on the stack, its

integer valued address Toeing the component number of the new

memory element.

SET or EC SET

The first and second elements are taken from the stack,

and must "be an expression (e) and reference denotation (r)

respectivelyo The execution depends on whether the reference is

explicit or implicit.

(a) For an explicit reference, the memory component indicated "by

its address field is changed to the value of e, which is. itself

placed on top of the stack.

(h) For an implicit reference the following sequence is concat¬

enated onto the top of the stack:-

(e, setf function of r, e)

Apply and delete instructions are added to the control

so that subsequently the setf function will be applied to e and

the result deleted.

Thus e is left on the stack top as the result for

either type of reference.

Thus assignment is treated as just another basic funct¬

ion, and not as a fundamental expression typ>e, which it is in

the sharing machine system.

VAL !
$

The first stack element, which must be a reference, r,

is removed.

(a) If r is explicit, with address field n, then the value of

the nth memory component is put on the stack.

(b) If r is implicit, its valf function is executed, and the

result put On the stack.



COKRCii. If the stacktop is a reference, then VAL and COERCE

instructions are put on the control as the first and second

elements respectively. Otherwise nothing at all is done, i.e.

the stack top is returned as a result. The effect is that VAL

will he applied to the stack top and to subsequent results until

a non-reference value is produced, and this value will then he

the result of the coercion.

OPTO

The stack top must he a programmer-defined label

denotation. The control, environment and dump fields of the label

are installed, and the stack is set to empty. Execution then

continues using these new values.

Predicate functions IS INTEGER-, I SBPOLEAll, ISC JIAR. I SATO".A

I3EUITCTI0N, ISREE, ISLABEL

The stack top is removed, and tested for membership

of the appropriate class, and the appropriate Boolean result is

put on the stack.

IMPREE

The first and second stack elements, which must both

be functions, (f^ and f^) are removed. A new implicit reference
denotation, using f^ and f^ as its 8ETE and VALE fields respect¬
ively, is created and put on the stack as a result.

EQUAL and RCEQUAL

The first and second stack elements are removed and

the value TRUE is put on the stack if:-

(a) They are both members of the same one class from integer,

Boolean, and character, and both have the same value, or

(b) They both denote LL or both denote UL, or

(c) They are both program atoms with the same name fields, or

(d) They are both explicit references with the same address



field - i.e. they "both denote-the same reference.

Otherwise the value FALSE is put on the stack.

GREATER (CHARGREATER )

The top two stack elements, which must "both denote

integers (characters) are removed and a Boolean result is put

on the stack, being TRUE if the second element is the greater

and FALSE otherwise. (K.B. an ordering is placed on the

characters).

IRQ (DEC) The stack top, which must be an integer, is removed,

and an integer result 1 greater (less) is returned on the stack.

READCHAR

A single character is read and the denotation placed

on' the stack.

V7RITECIIAR

The stack top must be a character denotation. The

character that it denotes is written, and the denotation is

left on the stack as a result.
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In Reynolds' definition of Gedanken he gave an abstract

syntax for the language, showed how to translate concrete

Gedanken programs into abstract objects satisfying this syntax,

and defined the semantics by means of an interpreter for the

abstract programs.

It was decided to implement this formal definition on

the IBM 360/iiij- computer at St. Andrews University, using BCPL as

the defining language. The original definition was translated as

faithfully as possible from Gedanken into BCPL, in order to

preserve the correct semantic interpretation.

The Gedanlcen programs are interpreted in three passes:

(a), Lexical Analysis

A fairly standard lexical analyser is used, which

accepts Gedanken program text, and translates each symbol into

an internal integer representation. The output from this pass

is a symbolic representation of the input text.

(b) Syntax Analysis and Translation into Abstract Form

The output of lexical analysis is parsed according to

the concrete grammar of Gedanken, to build a syntax derivation

tree, making use of a top-down 'fast-back' parsing algorithm.

Concurrently with syntax analysis the derivation tree is

translated into an abstract Gedanlcen data-structure.

(c) Interpretation of the Abstract Gedanken Program

The abstract program produced in the second pass is

interpreted, using a translation of Reynolds' abstract machine,

an elaboration of the Sharing Machine.
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A more detailed description of each stage of the

processing now follows.

(A) Lexical Analysis

The text of the Gedanken program is transformed during

lexical analysis to the following effect:

1. Each complete textual symbol is replaced by an integer,

the internal representation of the symbol. These

integer representations, together with semantic inform¬

ation giving the values of constants and the names of

identifiers, form the output string.

2. Blanks and quotation-marks are eliminated.

3. If an illegal character is encountered, a message to

this effect is output. Thereafter the character is

ignored, and the analysis proceeds with the next

character.

The method of analysis is based on an algorithm

described by Gries (ref 8). The scanner makes use of two tables:

1• The Character Class Table (Table C)

This assigns an integer class to all the characters

which are permissible in the text of a Gedanken program. This

class is used to decide on the interpretation to be put on each

new symbol of the program, as it is encountered. The table is

direct-access and is keyed by the EBCDIC representation of the

character. Illegal characters are assigned a class of zero.

2. Table of Symbol Representations (Table Symdef)

This gives an internal integer representation for each

of the 21 possible types of symbol in a Gedanken program. There

is an entry for each reserved word or delimiter, and one each
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for identifiers, quoted constants and digital constants. A

symbol is located by a sequential search, its index in the table

being its internal representation.

The procedure for the recognition of each symbol may

be summarised into an algorithm:

1. Read up to the next non-blank character.

2. Obtain its class from Table C.

3. If the class is zero, print an error message and return to

step 1. Otherwise:

(a) If the character is a digit, continue to read characters

until a non-digit is reached. Output the symbol for a

digital constant and the values of the digits Just read.

(b) If the character is alphabetic, continue to read charact¬

ers until, something nonalphanumeric is encountered.

Search Table Symdef to find out if the characters Just

read form a reserved word.

(i) If so, output its internal representation.

(ii) Otherwise output the symbol for an identifier and the

characters which denote that identifier.

(c) If the character is a quotation mark, continue to i>ead

until another quotation mark is encountered. Output the

integer representation for a constant, ana the characters
I

composing it\

(d) If the character is a colon, read the next character to

check for the double symbol "Output the appropriate

integer representation, according to the result.

(e) If the character is any other punctuation symbol, locate

it in Table Symdef, and output its integer representation.

The procedure is repeated until the character "?" is

encountered, which indicates the end of the input text.
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Note In this implementation the character 'hi" is used, mstead

of "A", since the latter is not available.

(B) Syntax Analysis and translation to Abstract Fori:

Synt ax Analysis

The syntax analyser accepts the output spring of

lexical analysis, analyses it according to the grammar of

Gedanken, and produces from it a derivation tree representing

the structure of the Gedanken program.

The parser is of the top-down, 'fast-back' variety,

and like the lexical analyser is based on an algorithm described

by Gries (ref 9). Gries' own terminology has been used in the

following brief description of his algorithm._

The Parsing Algorithm

The algorithm may be described in terms of men whose

30b it is to build the derivation tree. At any time during the

parse, there is a man standing on each node of the partial tree

-formed so far. The man at each node is responsible for the men

on his sub-nodes. The man standing on the root node will be

assigned the task of building the entire tree.

The man at the root begins by looking at the first

derivation for the distinguished symbol of the grammar. If he

is unable to build the tree from the input string using the first
l

rule, he will try the second and so on. If none of the derivation

rules work, then the input text does not form a correct program

of the grammar.

To find out whether a derivation is correct, he will

go through it sequentially, adopting for each component a son,

whose 30b it is to try to find his allotted component. These

sons in turn will adopt sons to find their own. derivations.
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which must be matched with the symbols of the input string.

If a man receives a report from any of his sons that

the son has tried all his derivations, but is unable to find

his assigned goal, then the man will disown all his current sons

and start adopting a new set according to the next alternative

derivation.

A stack is used to build the derivation tree. Each

stack element represents one node of the tree, and has the form

(goal, gind, fat, son, iind)
The components have the following meanings:

the symbol for which the man is searching, assigned to
!

him by his father

the location in the grammar of the symbol in the

derivation for his goal that the man is currently

working on

the location in the stack of the man's father, or zero

for the root node

the location in the stack of the man's most recently

adopted son

the location of the symbol in the input string

currently awaiting recognition.

In this! implementation the algorithm has been
\

extended to permit two additional features in the rules.of the

grammar:

(a) A string which may occur- in a derivation any number

(including zero) of times.

(b) A string which may occur in a derivation, but which may

legitimately be absent.

The algorithm requires that the grammar be arranged in

a certain way, so that the correct rules are tried first. Tor

goal -

gind -

fat -

son

iind -



/
I

example, a rule of the form

S: : =T + E

must "be tried "before a rule

E: : =T

Also it is necessary to devise a notation to indicate

which parts of derivations are the 1repeatahle' and 'optional'

strings. The grammar of Gedanken, rearranged to suit these

requirements, is read in immediately prior to parsing, and

stored in core in the form of a tree. Each node has the form:

(name,def,alt,pred,need) , '

where the fields denote the following:

name - the internal name for the grammar symbol, Si represented,

"by that node. For non-terminal symbols the name is a three-

character abbreviation of the grammar element, packed into one

machine-word. For terminals the integer internal representation

of the symbol is used.

def - this field is zero if S is a terminal; otherwise it

indicates the node for the first symbol in the first derivation

for S.

alt - if'S is the first symbol in a derivation, this field

points to the node for the first symbol in the next alternative

derivation. If no alternative exists, or 3 is not the first

symbol in a rule then alt is set to zero

prod - set to zero if 3 is the first symbol of a derivation.

Otherwise it points to the node for the preceding symbol in

the rule.



need. - set to 1 for all nodes in 'optional* parts of derivations

to 2 for nodes in ' repeata"ble' portions, and to zero

for all other nodes.

Paz'sing proceeds as in the "basic algorithm with the

addition of certain rules made necessary by the extensions

mentioned above:

1. If a man receives a report of failure from one of his sons,

he must look at that son's need field, to see if he was an

essential part of the dei'ivation. If so, he proceeds according

to the basic algorithm. If the son was in an 'optional' or

'repeatable' string, however, he disowns all sons in that part o

of the derivation, and reports success to his own father.

2. When a man has received a report of success from every

component of a derivation, he must check the need field of his

youngest son to see if the end part of the rule forms a

'repeatable' string (these only occur at the ends of dex^ivations

If this is so, he must return his attention to the star>t of this

string andattempt to find another occurrence; otherwise he

reports success to his father, as in the basic algorithm.

Another stack, T0PVA1S, has been introduced to deal

with these extensions. Every time the beginning of an optional

or repeatable part of a derivation is encountered a new element
'

is placed on this stack.

Each stack element has two components:

1. The level of the derivation tree stack before the start of

that portion of the derivation.

2. The current man's youngest son before the optional or*

repeatable string, i.e. his last 'essential' son.

This stack operates as follows:

1. V/hen a man adopts the first son of an optional or repeatable



string, an element is added to the stack.

2. If a son in an optional or repeatable string reports failure,

the derivation tree stack returns to the level indicated in the

top element of TOPVALS. All the man's sons younger than, the one

specified in the top TOPVALS element are disowned. This top

element is now removed from the stack.

3. If an entire optional string is recognised, the top element

of the stack will not he required, and is therefore deleted.

i+. If the end of a repeatahle string is recognised, so that

attention must return to the start of that string, the top

stack element is replaced hy a new one giving the current

information. t

Modified thus, the "basic parser may he used for the

syntax analysis of a G-edanken program.

Gedanken Syntax Errors

Syntax errors are recognised in five ways:

(a) Each of the reserved words and delimiters may only appear in

certain constructs of the grammar. Their recognition in effect

identifies the construct which is heing used. If a reserved

word or delimiter is not followed hy the expected element, then

the syntax rules have heen violated. A'corniclete list of what

must .follow each^symbol is given in Tahle II of the Appendix,
(h) The reserved'words THEN and ELSE may he used only in

conjunction with IP. Similarly OP may appear only after CASE.

(c) Conversely the word IP must always he followed hy a construct

of the form ..... THEN ..... ELSE, and CASE hy OP .....

(d) The parser might find a complete program structure before

reaching the end of the input string. This is usually the result

of the mismatch of parentheses.
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(e) The converse of (&) may occur,., i.e. the input string may be

exhausted before a complete program structure has been built up.

This is also likely to be due to a parentheses mismatch.

Types, of course, are not checked at this stage, and

diagnostics for type errors are not produced until the program

is interpreted.

On the discovery of a syntax error, the following actions

are taken:

(1)A message is output to the programmer, stating what the error

is, and the context in which it occurred. The context is given

by writingout the last ten symbols of the program text prior to

the point where the error occurred.

(2) The derivation tree stack is returned to the elvel of the

last element whose goal was a block-2, the highest level of

block. A block-2 thereby becomes the next element to be sought.

(3) The grammar index (gind) is set to point to a block-2.

(i-l-) The pointer to the input string (iinfl) is moved to the symbol

immediately following the next semi-colon, since these act as

block seperators.

(5) Two flags are set:

(i) ERRPLAG is set.to 'true', to indicate to the parser that

a syntax error has been found, and that the normal

parsing procedure is to be temporarily abandoned. This

flag is reset to 'false* whenever a new component of a

derivation is sought.

(ii) GOALAG is set to 'false' once and for all when the

first syntax error is encountered. It indicates that

although parsing will continue, there will be no attempt

to- interpret the program, and the translation to abstract

form should be discontinued.
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and (ij.) are unnecessary, and are omitted. This recovery procedure

may give rise to parenthesis mismatches, and messages indicating

these after the occurrence of other syntax errors are quite

likely to he spurious.

Briefly then, if a syntax error is identified, the

parser fails up to "block level, and continues from there, while

the translation to abstract form and program interpretation do

not take place.

The Organisation of Space

The use of space is not organised according to a stack

discipline, so a method, is required for controlling the special

storage area reserved for the abstract G-edanken data-structures.

The correct amount of space must be allocated when it is needed,

and released for re-use when a given data-structure is no longer

required. The problem is handled in a fairly conventional manner,

All the free space in the record area is held in the

form of a chain, the location of the first item of the chain

being held in a variable, PRBBLIST. Subsequent items of the chain

contain two items of information:

(1) The first word holds the number of contiguous machine words

of free space starting at that location.

(2) The second word contains the location of the next link in

the chain.

If n words of storage are required to create a record

then the FINDSPACh function chains through the free-space until

it finds an item n or more words long. The chaining is adjusted

to exclude these words, and their location is returned as the.

result of PIKDSPACh. If there is no space sufficiently large

then garbage collection is necessary.
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The second word of every record is a 'mark-word' used

by the garbage collector. If set, it indicates that the data-

structure in question is still in use, while if it is not set,

that structure is no longer accessible and the space may be set

free ready for re-use.

Garbage collection involves three main stages:

(1) The record space is searched sequentially and every mark-

word is unset.

(2) All the records which are currently accessible are rooted in

the current state. Any other data structures are inaccessible

anyway, and the space they occupy is wasted. A complete traverse

is made of the current state resetting all the mark-words,

taking precautions to ensure that no part of the state is

traversed more than once. This, however, does not protect quite

all the records which must be saved. If garbage collection takes

place in the middle of an execution of the transition function,

those records and sequences created during that call will be

vulnerable to garbage collection.

The problem is solved by using another stack, RECSTACK,

upon which is placed the location of every record or sequence as

it is created. The data-structures on this stack are also

traversed, and their mark-words reset. At the end of each call

of the transition function RECSTACK is emptied ready for re-use.

(3) The space is again searched sequentially, and the chain of

free-space is re-composed, chaining around all records and

sequences for which the mark-word is set, and linking up all

areas with three or more contiguous free words.

If FIND SPACE looks again but is still-unable; to find

a space sufficiently large, then program execution is terminated

because of shortage of space.
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Representation or" the Abstract Gedanken Program

Before it can "be evaluated, the parsed Gedanken

program must be translated into an abstract form, the equivalent

of the abstract ISWIM mentioned in Chapter 3. The abstract

program forms an information-structure, amenable to evaluation bp

the interpreter.

An abstract Gedanken program is made up of sequences

and records, where:

a sequence is a one-dimensional array

and

a record is a finite collection of fields, each identified by a

field-name. Each record belongs to a x^articular class, such

that all records in the same class have the same set of fields.

Representation of the Abstract Syntax

Before syntax analysis and the concurrent translation

into abstract form, a representation of the abstract syntax of

Gedanken is read and stored. It is held in core as a BCPL

structux^e which mimics the Gedanlcen definition of the abstract

syntax.

In order to represent the syntax as a BCPL structure,

each of the identifiers occurring in the Gedanken definition

is abbreviated to a unique sequence of three letters, which may

be packed into a single computer word. The syntax is represented

by a BCPL vector with ho elements, each of which is the address
!

of a structure, representing either a class definition or a union

definition.

Each definition is represented by a BCPL vector having

one element for each element in the appropriate Gedanken sequence.

Thus each element will be either a three letter encoding for an

identifier, or a pointer to a further BCPL vector if that element



sub-sequence,

I1'or example the grammar

(CLASS, CONSTANT, (VALUE, IKTCLASS)),

(CLASS, VARIABLE, (STRING, SEQ, CKARGLASS)):

(UNION, EXP CONSTANT, VA1UABLE)

repre sented 1oy the following BCPL structure:

J A "CLS"1 "CON" |-Ja,
2 "VAL it " !CL"

A "CLS" "VAR"

3 "STR" "SEC" "CCL"

"CI" "UNI" "EXP" "CON" "VAR"

The first word in each vector gives its length in

words.

In Gedanken all data-structures are treated as

functions, hut this approach is not feasible in BCPL. The

definition system has been copied as closely as possible, but

records and sequences are held explicitly in BCPL vectors, in

special garbage-collected storage area. The functions for the

manipulation of data-structures have been adapted accordingly,

A record is held, in a BCPL vector as shown below:

N \ El! CN|
N is an integer giving the number of computer words

following it in that record,

MW is a mark-word, used for garbage collection,

CN is the record class-name.

P is a field value.

Seouences are held in the same format as records.
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!

Terminal values, i.e. Gedanken integers, Booleans and

characters are held in four-word terminal records taking the form

The atoms LL and UL are simulated as follows:

LL always takes the value 1, and is held as a constant,

UL is found by deducting 2 from the value of IT.

Records are created by a function M, which mimics the

M in the Gedanken system. M accepts a class name, an integer n,

and n-1 arguments; it reserves an appropriate amount of space in

the free area, checks its field values using the set-membership

functions, and constructs from them a new record of the. given
|

class.

The set-membership functions also mimic the T, TSEQ

and'. TUITION functions of. the'.Gedanken definition, searching

through the abstract syntax to test that records are in a given

class.

Translation into Abstract Gedanken

Associated with each production of the concrete

grammar, there is an expression which specifies the translation

of that phrase into abstract form, in terms of the translations

of its subphrases. This makes it necessary that the nodes of the

derivation tree be]translated in such an order that no node is
\

translated until after all of its sub-nodes have been translated.

Such an ordering combines well with the parser used, and

translation is performed concurrently with syntax analysis.

During parsing, whenever a node is successful in

finding its assigned goal the appropriate translation is

performed. A stack, PSTACIi, is used to ensure that the correct



arguments are at hand, on the top of the stack, for the

translation of each phrase• It is also used as a method of

'undoing' the relevant part of the translation v/hen back-tracking

occurs.

Each element of the stack has three components:

(1) The 'location of the node which will require the element as an

argument of its translation function, i.e. the 'father' of the

node producing the element.

(2) The name of the type of grammar element which jproduced the

element.

(3) The location of the data-structure produced by the

translation of the current node.

The order of recognition of the parser means that when

a production is recognised, the translations of its sub-phrases

will form the top elements of PSTACK. The arguments of the node

are recognised by their first field, removed from the stack, and

used by the translation function. The correct translation functio

is selected on the basis of the type of grammatical entity just

recognised, and the number and type of arguments for it on the

stack. The result of translation is then used to form a new

element on top of the stack.

.When baek-tracking occurs it is merely necessary to
j

remove any arguments for the failed node from the top of the

stack. Any records or sequences created by the rejected portion

of the derived tree are thereby cut loose, and made available

for the next garbage^collection.
The translation process has certain effects on the

structure of the Gedanken program. Expressions involving =, AMD,

OR and : = , and also sequence expressions, sequence parameter

forms and non-recursive declarations are eliminated by expressing



them in terms of other constructs. At this stage also? an

additional class of internal identifiers is introduced for use

during interpretation.

After translation labels are declared explicitly. They

no longer appear in the "block-body, "but are included instead in a

special label-declaration, which is paired with the list of

unlabelled statements to be executed after a jump to the label.

Translation also inserts explicit calls of COERCE

instead'of the implicit . coercion performed for; certain .

grammatical forms.

Semi-Basic Functions

Certain of the functions used in G-edanken are not basic

in a theoretic sense, but are used for convenience of programming.

In Reynolds' system these functions are not accepted by the

interpreter, but are defined in terms of basic functions. Concrete

G-edanken programs are assumed to be enclosed in parentheses and

preceded by the declarations of these functions, namely UUITSEQ,

NOT, INTTODIG-IT, DIGITTOINT, VECTOR, NEG-, ADD, SUBTRACT, . MULTIPLY,

DIVIDE and REMAINDER.

However, in practice, this approach was found to be

unworkable, since the time required to execute arithmetic

operations defined entirely in terms of incrementing and

decrementing by 1, was prohibitive. The arithmetic and type

conversion functions jv/ere therefore incorporated into the

interpreter as basic functions, and only UKITSEQ, and VECTOR are

declared before each program.

(C) Interpretation of the Abstract Program

• The BCPL interpreter is modelled very closely on the

G-edanken abstract machine. The different natures of the two
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languages, however, make certain changes necessary.

The record creation and testing functions are

translated as directly as possible into BCPL, and these

translations, search. through the abstract syntax as do the G-edanken

versions. However, since BCPLrecor&s are strictly data-structures

and are not functional, it is not possible to apply them to field¬

names, and thereby select field values. This is done by means of

a BCPL function, FIELD, which accepts a record R and a field-name

F, and returns the value of field F in record R. It does so by

talcing the class of R, and then consulting the abstract syntax

to find the position of field F in a record of that class.

The difference between functional and non-functional

data-structures is also reflected in the translation into BCPL

of the sequence manipulation functions, i.e. TAIL, CONS, AUG,

REPLACE, COKC and SUBSEQ. The translated functions all create a

new sequence of appropriate length, and copy into it the values

of the appropriate components of the original sequence(s). Also

there is no BCPL equivalent of the Gedanlcen sequence expression

form. Where these occur in the definitional machine, a vector

is constructed corresponding to the sequence expression form,

and this is used as an argument to the sequence manipulation

functions.

Transition

The 'transition function proceeds much as in the

Gedanlcen. machine, examining the first control element (henceforth

■referred to as X) of the current state, and replenishing it from

the first dump element if the control is empty.

The class of X is determined by successively using

function1 T to test.it for each of the possible classes of control

values. When its class is established the appropriate action is



taken.
f

The fields of the current state are stored as global

variables at the start of each execution of the transition

function. Certain of these will be changed during TRANSITION,

and they will all., be used as the fields of the new current

state created at the end of the function.
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CHAPTER 5 - A CRITICAL REVIEW OP TIE IMPLiiRLlITTATI QIC

When the BCPL implementation was run on the IBM ^GO/l\b

computer at St. Andrews University it appeared, to interpret

Gedanken programs correctly. However it was too slow to he of

use as a teaching tool. Even when full core (i.e. 25&K hytes) was

used, very simple Gedanken programs took a long time to run. Por

example it took about i+ minutes to r n a program to find factorial

3, and' examples A and B' Included in' the Appendix'took 12+ and 16

minutes respectively. Garbage collection was found to be

necessary even for very short simple programs.

A major reason for this extreme slowness is an over-

strict adherence to Reynolds' definitional system, which resulted

in great, inefficiency in the implementation. The definitional
i

system is just that, and was not intended as the basis of an

implementation. The situation is worsened in translation to BCPL

by certain devices made necessary by the lack of functional data-

structures in that language.

A useable implementation might be achieved by means

of modifications which, while involving certain changes to
l
-- Reynolds' system, would still preserve his intended interpretation.

_1. A great deal |of time is spent in searching the abstract

syntax in order to test record class, create records and select

fields. In fact this is unnecessary, since in the interpreter

the M and T functions are always used with a known class argument

and FIELD is always applied to a known field-name.

The general M function for record construction should

be discarded, and the records should be constructed directly,

both in the translation process and in the interpreter. The

class of record required, and therefore the classes of its
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component fields are always known, so that any type checks

considered necessary could also be made directly.

Similarly there is no need for the general type-

checking! functions T, TSEQ and. TUITION since the record type being

tested for is specified throughout the interpreter. A direct

test on the class-name is all that is necessary to find out

whether a recoi'd is of a given class.

The FIELD function could also be dispensed with,

since the record type and class name are always known. The

appropriate component from the BCPL data-structure modelling the

record could be selected immediately.

If these changes were made there would be no need to

consult the abstract syntax: at all. There would therefore be no

point in storing it in core, so that a saving of 630 words of

space in the free area would be made in addition to the saving

of time.

2. Another major inefficiency lies in the modelling of all

Gedanken sequences as fixed-length BCPL vectors. This is

satisfactory for a sequence which will always be handled as a uni

(such as the sequence of characters forming a program identifier)

or on which the only operation is selection of a single component

(ouch as the body of a case-expression). However it means that

most sequence manipulation operations reouire the creation of a
i

new vector, and the copying across of components from the old

vector(s) to the new. This is clearly very inefficient for

sequences of instructions, stacks and sequences of dump elements,

since the principal operations on these are the addition or

deletion of the first one or two elements. It would be much

better to model such sequences as linked lists, and thereby

avoid much copying and duplication of structures.
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Thus, while identifier names, "basic function

instructions and the bodies of case expressions and sequence

pforrns could still be modelled as BGPL vectors, all other

sequences specified in the abstract syntax would be better

modelled as linked lists.

The head of each list should specify:.

(1) The address of the first link in the list.

(2) The address of the last link.

(3) The number of links in the list.

All these fields are zero in the case of the empty

list.

Each list element should specify:

(1) The address of the data-structure forming the body of that

particular element.

(2) A pointer to the next element of the list.

The manipulation of such lists would require merely

the creation of new list heads or the changing of pointers, rather

than the time- and space-consuming copying of sequences. The

amount of garbage-collection necessary would therefore be

drastically reduced.

These two modifications are fundamental to the

interpreter, and would greatly improve its efficiency. Further

improvements could be made by a number of more minor changes.

3. Basic function instructions are carried around as sequences

of characters. Considerable space could be saved by giving

these integer names. Not only would such a representation be

more compact, but also it would allow the interpreter to select

the appropriate instruction using the BCPL equivalent to a

case-statement, instead of matching each character sequence in
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turn.

I}-. In the abstract form of Gedanken, an entire computer word

is used to mark records for garbage-collection, which is wantonly

extravagant of space. The first word of each record contains an

integer giving the record length, for which two bytes would be

more than adequate. One of the remaining two bytes could then be

used as a mark-byte, at a saving of one word per record, sequence

or list element.

5. The parser used involves back-tracking, albeit of a limited

amount. This is undesirable, especially since the translation

of the program into abstract form takes place concurrently with

parsing. A parser which did not back-track, perhaps a precedence

parser, would be more satisfactory. However the amount of time

used for parsing is very small compared to that used for inter¬

pretation and the problem is of fairly low priority.

There are also certain changes which would have only

a small effect on efficiency, but which would make the modified

interpreter more elegant and more readable.

6. It would be possible to alter the abstract syntax slightly,

without affecting the semantics of the language, so that a field
i i

with a given name is always in a given location within a record.

This could be effected by rearranging the order of the fields :

in certain records, and renaming the fields in others. For

example, many different record types in the abstract syntax

have a field called 'body'. In a 'bind' or 'exec' class record

this is the first field, in a 'X-expression' record it is the

second,'etc. If these fields were renamed, for example 'bodyl',

'body2' etc. according to their position within a record, then

they could be used directly as- field selectors. In BCPL this
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position using a I.Ill:If!ST declaration.

7. The major branch of the interpreter on the type of the first

control instruction is effected by repeated testing against

each possibility until a successful comparison is made. A direct

branch could be made using the BCPL equivalent of a case-

statement, by assigning integer class-names instead.

Each record class should be represented by an integer

code rather than the present three-character string. These codes

like the field names in 6 above, could be bound to the appropriate

class-names for greater readability. Similarly an integer code

could be used to identify sequences, and the heads and links of

linked-lists.

Thereby one word could be saved on each of the above

structures if the integer codes used are all less than 128. The

code could be stored in a .single byte, namely the remaining,

byte in the first word of each BCPL vector, as mentioned in br

above. It is true that this suggestion and k would involve

masking, since BCPL is a word orientated language. However,

in the case of the class-names the extra time required for the

masking would probably be little more than that used in the

present string-handling. Also a considerable proportion of the

time used is spent garbage-collecting, and the saving of two
\

words per record should reduce this considerably.
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APPENDIX



Productions <identifier>:;=<identifiertoken> <expQ>:;=<integertoken> [ <quotedstringtoken> 1<identifier> |(<block2>) <exp1><expQ> | <expQ><exp;L> <exp0>;:=<exp1> [ <exp1>=<exp2> <exp3>::=<exp2> [ <exp2>AND<exp3>
<exp>=<exp„> •+O | <exp3>OR<exp4>

<exp^>j5=<ey.p^> jIF<exp3>THEN<exp^>ELSE<exp,.> [X<pformc><cxp[.> | <exp4>:=<exp5>

TA3T

AssociatedTranslationFunctions XXK(PROGIDENT,X) XXM(CONSTANT,CONVERTINTX) XXTRANSTRINGHEADTAILX XXX XXX XXX X(X,Y)M(FUNCTDES,M(FUNCTDES,COERCECON,X),Y) XXX X(x,Y)M(FUNCTD£S,EQUALCON,TRANSEQEXP(X,Y)) XXX X(X,Y)M(CCNDEXP,M(FUNCTDES,CCERCECGN,X), M(FUNCTDES,•COERCECON,Y),M(CONSTANT,FALSE))
XXX X(X,Y)tUCONDEXP,M(FuNCTDESsCOERCEON,X), M(CONSTANT,TRUE),M(FUNCTDES,COERCECON,Y))

XXX X(X,Y,Z)M(C0NDEXP,M(FUNCTDES,CCERCECON,X),Y, TRANSLAMBDA X(X,Y)K(FUNCTDES,SETCOM,TRANSEQEXP(X,Y))



Productions <expg>::=<exp5> | <empty> i <exp5>,<exp5>{,<exp5>)A [CASE<exp^>OF<exp^>{,<exp^>}A <pformQ><identifier> |(<pform^>) <pform^>::=*<pforin0> [<empty> | <pforvnQ>,<pformQ>{,<pformQ>}ft
<block>:;<exp>06

| <exp6>5<bIockQ> | <identifier>:<blockg> <block^>:•=<b.lockQ> | <identifier>ISRX<pformQ><exp^>j<block^> <block>:;=<block>21
| <pforx.^>IS<expg>;<block2> <prograu>J:=<block2>•..

TABLEI(cont
AssociatedTranslationFunctions XXX TRANSEQEXP TRANSEQEXP XXK(CASEEXP,M(FUNCTDES,COERCECON,X1),TAILX) XXX XXX XXX XXM(SEQPFORM,X) XXH(SEQPFORM,X) XXMC3L0CK,(),(),UNITSEQX) X(X,Y)M(BL0CK,(),YLDECLPART,CONS(X,YBODY)) X(X,Y)K(BLOCK,(), CONS(M(LDECL,X,YBODY).,YLDECLPART),YBODY)

XXX X(X,Y,Z,W)M(BLOCK,"CONS(M(RDECL,X,TRANSLAMBDA(Y, KRDECLPART),HLDECLPART,WBODY)
XXX, TRANSDECL XXX

,'"»\

ued)



TABLE. II /

Syntactic Entities Required to Follow the Reserved Words

and Punctuation Symbols

Reserved Word

or Symbol

Required Successor

AND

OR

ELSE

IF

THEN

CASE

IS

OF

ISR

X

expression 3

expression 2

expression 4

expression 5

expression 6

expression 6

expression 6

expression 6

expression 5

expression 5

X

parameter form

expression 5 or parameter

block 0

parameter form or block

any expression or block
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