University of St Andrews

Full metadata for this thesis is available in
St Andrews Research Repository
at:
http.//research-repository.st-andrews.ac.uk/

This thesis is protected by original copyright

http://research-repository.st-andrews.ac.uk/

Abatract

A description is given of Gedanken, & simple typeless
language, developed by John Reynolds, and an implementation
of the language on the IBN 360/LL conmputer at St. Andrews

University is presented.

The formal definition of Gedanken is based on work
by Landin on his SECD lMachine and his later Sharing lMachine, and
a sunmary of these is given,

Reynolds has specified a formal definition of Gedanken,
based on the Vienna definition method. A description of this

5 given.

(=1

A description is given of the suthor's implentation
of Gedanken using BCPL as the defining language. The
implementation proved to be inefficient, and & critical
examination of it is made in an attempt to discover the sources
ol the major inefficiencies. A number of changes are suggested

to remedy these inefficiencies.

AN -INMPLEMENTATION OF GEDANKEN

STEPHANIE J. HOWIETT

ka8

I hereﬁy declare that this thesis has been composed by
myself; that the work of which it is alrecqrd has not been
arcepted in any previous application for a higher degree
and was undertaken on 1lst October 1973, the date of my

admission as an M.Sc. student under Ordinance No. 51.

I hereby declare that the conditions of the Ordinances
and Regulations for the degree of Master of Science have

been fulfilled by the candidate, Stephanie J. Howlett.

ACIITOWLEDGELENT

It is my pleasure to acknowledge the financisl support
of an SRC course award. The BCPL system used was supplied by
Martin Richards of Cambridge and maintsined by Patrick Currivan

of the Computing Laboratory in St. Andrews.

Table of Contents

Chapter 1 - Introduction
The Philosophy of Gedanken
A Brief Introduction to Gedanken as a
Programming Language
Chapter 2 - Historic Background
- The AE/SECD Machine Systen
The IAR/Sharing Machine Systen.
Chapter 3 = The INormal Semantics of Gedsanken
Abstract Gedanken
ny Record creation and Testing
Translation into Abstract Form
phapter l, = An Implementgtion of Gedanken

Lexical Analysis

Syntax Analysis and Translation to Abstract Form

The Organisation of Space

Garbage Collection

Translation into Abstract Gedanken

Interpretation of the Abstract Program
References

Appendix

-

CIAPTER 1 = IKTRODUCTION

Gedanken (refs 1,2) is a langusge unusual for its

}__-

generality and completeness, and in which it is thereby easy to
model many of the features of other high-level languages. In
particular it may conveniently be used to nodel the more unusual
and subtle concepts in high-level programming, and would
therefore make a very good tool for teaching computer semantics
to more advanced students. The aim of the work described in this
thesis was to produce an implementation of CGedanken which would
be of use in such courses,
A working and complete implementation was produced

)

but it became apparent that this version was extrenely

inefficient. In fact the implementation failed to achieve its

1.

aim, since all but the simplest programs ran so slowly that 1t

was oi no use as a teaching tool. .

In the thesis a description of the implementation is
siven, and then an attempt is made to assess the major
inerficiencies and to suggest how these might be remedied.

A Dbrief introduction to Gedanken itself is given in
the latter part of this chapter. -

|

The definitional machine ror CGedanken is based closely
on work done by Landin in which he defines his SuCD machine, and
his later Sharing Machine. An account of this work is given in
Chapter 2.

. The formal definition of Gedanken, based on
definition method, specifies an ebstract syntax for Gedanken, and
lays down the manner in which concrete programs should be
translated into abstroct programs. The semantics of the language
are then defined by an interpreter for these abstract programs.

These aspects of the formal semantics are described in Chepier 3

PpE——. | SRS P . 1 = e £ 5 —y S o e T To 3 em ~ e oy
mpared with the 8:CD and Sharing Lachine sysitems.

no

Chapter L describes the author's im

Lo
|_l
(—‘
ey
)
=]
o
LAY
c
'_l
o
H
e}
H

o

Gedanken on the IBM 360/L4 computer at St Andrews University,
using BCPL as the defining language. This implementation adheres
closely to Reynolds' definitional system, and a description is
given of the way in which this is modelled in BCPL.

The final chapter takes a critical lock at the
"implementation in an attempt to discover the sources of the
major inefficiencies. A number of changes are suggested to
remedy these inefficiencies, from which it is believed, a
useable BCPL implementation would result. . »

The Philosophy of Gedanken

. Gedanken has been described by its author as an

attack on the problem of "the simultaneous achievement of
simplicity end generality in language design"*. These points are
exposed using the method due to Strachey (ref 3) This method uses
the two related criteria of types and domain structures for the
description and comparison of programming lenguages.

Gedanken follows the philosophy of dynamic types,
whereby each object has a type, but these types are not tested at
compile time. Types are recognised by differences in the internal
représentationmbf%abjacma permitting explicit type-testing of the
values of identifiers. It is left to the user to provide his own
feasibility checks on the data within the functions he designs,
or to allow the run-time system to complain if asked to perform
impossible tesks.

' The domain structure of Gedanken is :-
D=V=l+Ch+T+J+L+1"+L

F=v-(8-(Vv 8))

L=L+(Updater loader)

Updater=V-(5-5)

Loader=S-(V 9)

*TPhroughout this thesis all items guoted but not credited are
taken from ref 1, "Gedanken - A Simple Typeless Lenguage Which
ol
L

Permits Functional Data Structures and Co-routines™ by John C.Reynolds

whe

Wi

re the following abbreviations are used :=—

N - integers

Ch - charscters

T - truth values

J - lsbels (Jjump-points)

A - atoms

¥ - functions

L - locations

V - stored objects,i.e. Objects which may be assigned
D - denotations, i.e. objects which may be named

S - stores oﬁ machine states

Atoms are special objects, similar to LISP atoms.

Examples of their use appear below.

the

The Updater Loa&cr pairs are unusual, and relate to
implicit reference system, also to be described later,

The domain structure reveals a number of points

concerning the language :-—

(a)

(b)

(e)

Real nunmbers are excluded from the current version of the
lanpguage..

There are no data structures included in the basic domains.
This is because all data structures are treated as functions.
All functicns in Gedanken take a single value as argument

and produce d new machine state and a singlé valuec result.
However, both the argument and the result may be the functio-
nal equivalent of sequences of any length (including zero).
Labels have the same status as other identifiers and may be

assigned or returned as the result of a function. It is this

ct
s

12t is responsible for many of the powers peculiar to
Gedanken,

The gcnerallstructure of Gedanken is fairly simple, and all
objects may be named, stored or assigned., It is also very

clean, in the sense that any value permitted in some context

Fr

of the language is permissible in any other meaningful
contexte.
Gedanken is also a language based directly upon the
N-calculi of Alonzo Church (ref L). Actual "A' symbols are

g

used, and functional application is effected by means of
S

R

}S—-substitutions.

A Brief Introduction to Gedsnken as a Programming Language

(a) Punctions and Functional Data-Structures

Functions in Gedanken are created by the evaluation of
k—expressions. WWhen auh-expression is evalusted any variables
occurring free in it are bound to the values they possess at
the time of evaluation. This binding is the same as that used in
Algol.

It has been mentioned that all data-structures in
Gedanken are treated es functions. A data-structure is any
function which, when applied to an approrriate argument, will
yield the corresponding field or component value,

Yor example, consider a vector to be a one-dimensional
array with lower and upper bounds the integers b1 and b2
respectively. Such a structure could be represented by a function
epplicsble to the integers from b? %o b2 inclusive, and yielding
for each integer therappropriate component of the vector.

A semi—basic function VECTOR is provided, which takes
a function &nd two integers as arguments, and produces a
functional vector whose bounds are the two given integers, and
whose components are the results of applying the function to all
the’ integers in the given range. The vector may also be applied
to the atoms UL or LL, and then yield its upper or lower bound

respectively.

* I'or more detall references 1 and 2 should be consulted.

A sequence is a vector with a lower bound of 1. A

sequence may be created by a function like any other vector, bu

ct

they mayalso be created by the evaluation of a special expression

~form, a sequence exoression. These are either empity or take

the form
_expression , expression , expression
These are very similar to the collateral clauses of
Alpgol 68,
Sequence expressions are parallelled by seguence

————

parameter forms , which are either empty or take the form

pform , pform , pform

"In general, if a is any value and p is any parameter
form, then the binding of p to a is defined recursively as
foilows;

(1) If p is an identifier, then p is bound to a.

(2) If p has the form (p'), then p' is bound to a.

(3) If p is a sequence parameter form, Dys %o (n#1), then a,
which must be a function, is applied to each integer from 1
to n, and each p; is bound to the value of a(i).

The combined syntax of segquence expressions and
éequence parameter forms is designed to preserve conventional
noﬁation for functions of several arguments".

This approach to data structures means that a function
expecting an argument of & given form will accept any function
producing a logically equivalent structure,regardless of the

internel representation.

(b) Assignment

Assignment in Gedanken is possible only to special

entities called ref'erences, each of which possesses a value, and

Braces are used around a syntactic entity which may occur any
number of time (including zero) in a given syntactic form.

N

3

which may themselves be possessed by either an identifier or

¢

another reference. Assignment is defined, as it is in Algol 68,
to alter the relationship between a reference and its value,
rather than between an identifier and its valuee.

There are three basic funciions for reference
manipulation:

Rl X returns a distinct new reference,initialised to

possess the value X.

SET (R,X) (which may be abbreviated to R:=X) causes

the reference R to possess the value X, and also

returns the value of X.

VAL R returns the value possessed by the reférence R.

To reduce the need for frequent use of the VAL function
a coercion convention is introduced, whereby references are
automatically replaced by their values in contexts where they
would otherwise be meaningless. A basic function COBRCE is also
provided for use elsewhere by the programmer,

Rather more unusual than the above explicit references

are Gedanken's implicit references, These are functional referen-

ces, analogous to the functional data structures described
above. Associated with each implicit reference are two functions.
The first, of one argument, is evaluated each time the reference
is set, i.e. assignment to the reference(SiT (R,X) or R:=X)
causes this function to be applied to the argument of the
assignment. The other is a function of zero arguments, and this
is evaluated whenever the implicit reflerence is evaluated.

. An implicit reference is created by the execution of
the basic function IMPREF, which requires for its arguments two
functions, say SuETYF and VALF, of one and zero arguments respecti-

vely. The spplication of IMPREX to its arguments -creates a new

implicit reference which satisfies the predicate ISRLF, and may

be coerced like an explicit reference. However the effects of
SET and VAL on an implicit reference are to execute the functions
SETF and VALF respectively.

This 1s demonstrated in the following example where it
should be considered that ¥ is an explicit reference global to V,

whose value is a sequence,

V IS IMPREF (QNX Y:=CONS(X,Y),
N() (2 IS Y 4; Y:=TAIL ¥; 2)).

Then SET(V,P) would be equivalent to
(XX Y:=CONS(X,Y)) P
i.e. P would be added to the front of the sequehce possessed by
¥
. VAL V would remove the first item from this seqguence
and return it as a result.

In this way an implicit reference could be used to

operate a stack.

(e¢) Prozram Control

There exist certain semantic differences between
:leabels in Gedanken and those used in most other languages. It is
usual that the statement GOTO L should transfer control to the
statemént following the label L. In Gedanken, evaluation of the
statement GOTO L will also cause the state of the computation
to revert to that at the time when L was evaluated., In effect
machine states may be stored by the use of labels., L1l identifier
bindings holding at the time of the evaluation of L come into
play aéain, and the information necessary to complete block
exit becomes available. again, although references do not revert
to their former values,

Another feature peculiar to CGedanken, which makes

the above assume great importence, is the fact that labels are

treated as first-class objects, and may be assigned, or returned

&s the result of an expreséion or function. These two features
together present the capability of jumping back into a block
after it has been exited, thereby producing many interesting and
unconventional programming possibilities. For example, in such
things as parsers it is often convenient to return to a previous
control state. In Gedanken it is possible to do this usihg a
simple GOTO command, all back-tracking heing rendered unnecessary
Labels may be assigned and stored, so that succeeding
control states in a block which is iterated may pe saved.
Another capability presented is the use of co—routines,_i.e.
programs which can relinguish control to a calling proéram, and

later be re-activated to continue computation.

0

CHAPTER 2 - HISTORIC BACKGROUIND

e

The definitional machine for Gedanken has been based
upon the work done by Landin in the mid-60's, on programming
languages (refs 5,6 and 7).A brief account of this work is given

da

here as a basis for a discussion of the Gedanken abstract

machine.

The AR/81CD Machine System

The basis of the work was the demonstration that
certain of the expression forms used in programming 'languages
can be expressed in terms of)»-expressions, operator/operand
combinations and expressions, and then be evaluated mechanically.

An gbstract machine to perform this evaluztion was specified.

The class of applicative expressions (referred to

herecafter as AL's) is defined to denote the expressions constr-—
ucted using these three expression-types, and structure

definitions are introduced as a means of describing and

manipulating composite. information-structures such as /&'s,

A structure definition for a given class of object

vill specify for each alternative format:-

(2) The number of components.
(b) The type of each component,
(c) The identifiers to be used for the predicates and component

selectors appropriate to that class.

'or example, the structure definition for an AL is

given as:-

“An AL is either

an identifier

4]

or ak-expression (’\exp) and has

-t
(@)

bound-vearieble (bv) which is an identifier-

end aM-body (body) which is an AE
or a combination and has an operator (rator)
which is an AB

and an operand (rand) which is an A"

Here ‘'identifier', 'A-expression' and 'combination'
(and any ebbreviations after them) are the predicates, and
'bound-varizble', 'A-body ', 'operator' etc are the selectors.

It is possible to evaluate an AL mechanically if the
values of all its free identifiers are known, and if all arguments
in it are compatible with their functions. IT mathématical
expressions or computer programs could be expressed as single
AE's then these could be evaluated mechanically in the sane way.
It is demonstrated that this may in fact be done for certain
Teatures important in programming languages, namely ITunction
definitions, lists, conditional expressions and recursive

definitions.

Munction Definitions

Munction definitions may be expressed very easily as
£i's in such a way that there is no dummy varigble on the left-
hand side, €ofa

f(lez x°42 = X xo42

This paves the wey for expressing as an Al an exprecssion
which uses an auxiliary function definition, e.g.

£(2) = £(4) = (£or(2)-2(4))(x.x"+2)

L where f(x)=x2+2

An expression list may be rendered as & single AE by

considering commas as binary infixed opecrators with the following

Let the two operands be a, and 8,9 then
]
o]

(1) If a, is 2 list, it is transformed int

n

one more by being prefixed by fye
(2) If a, is not a list then a list is made by prefixing &, to

J

i

the empty list, and prefixing 31 to the list so formed.

A list may have components which are lists, thus
Torming a list-structure, and this may be expressed as an AL
in the same way.

If lists are considered in this way, any function

may properly apprear with a single argument if this is a list of

appropriate length. 3

Conditional Expressions

'
i

A conditional expression may be rendered as an AL Dby

considering 'if' as a function-producing function such that:
v if (true) = 1st
and if (false)= 2nd

The function produced as its result will expect as an
argument a 2-list, whose two components represent the two
branches of the conditional. In this way, a conditional expression
having the form

. if e1ithen e, else e
would be expressed as the AW

if (81)(82, 83)

Hlowever this rendering is not acceptable in the case
where one or other of the arms of the conditional may be undefined
siﬂce it would be necessary to evaluate both €, and 63 in order
to form the 2-list.

For example consider the AE

if (a=0) (1, 1/a)

1/a is undefined when a=0, and thus the list could not be formed.

It is necessary that only the appropriate branch of

the conditional should be evaluated. This may be effected by
means ofﬂk—cxpressions with dumny arguments. An expression of
the fornm

if €, then e, else 83 is expressed as

. g | . N

if (e,) MW(OeysM()ez) ()

1 2 5

Both arms of the conditional are now always defined,

their values being functions of no arguments, but only the

appropriate one is actually applied and evaluated in any case.

Recursive Definitions

A method of rewriting recursive definitions so that
they are not formally circular by means of the 'fixed point
function' is used to demonstrate how recursive definitions may

be. expressed as AR's,

The Evaluation of Al's

The evaluation of an AL is defined as taking place
relative to an environment which provides the value for ecach
identifier occurring free in the A, An environment may be

thought of as a function which takes an identifier as argument

and returns its value, which may be a number, or & list of
znumbers, or a function, or a list of functions.

To £ind the wvalue of any Ax in a given environment
the function ‘val'iis def'ined, such that val B X is the value

of' expression X relative to environment E., The function val is

specifiedby the following rules:

1 If X is an identifier then val E X=E X

If X is a =-expression, then val E X is that function whose

o
°

result for any given argument x may be found by evaluating

12

the body of X in a new enviromment L', where E' may be derived

from £ by pairing the bound-variables of X with the components

of x (where x must be a list of appropriate length).

15

« IT X is a combination, val E X may be found by subjecting

(S

both the operator and the operand to val L, and applying
the result of the former to the result of the latter,

These rules may be used to evaluate Al's mechanicsally,
and an abstract machine to do so ip described. In this machine,
the state of progress of the evaluation at any time mey be
defined entirely in terms of four components. Thus a machine-

state may be described by the following structure definition:-

"A state consists of a stack, which is a list, each of whose
items is an intermediate resultlof evaluation,
awaiting subsequent use;

and an environment, which is a list-structure mede up of
name/value pairs;

and a control, which is a list, each of whose items is
either an AE eawaiting evaluation, or a special object
dcsignatcd by 'ap', distinct from all AR's;

and a dump, which is a complcte state, l.c. comprlsing four

components as listed here",

A state may be denoted by (S,2,C,D).
: ' Defining:
3 (a) a closure to comprise a N-expression and the
envifonment relative to which it was evaluated,
(b) h and t as being the head and tail functions

respectively on lists

£

[N
w
)
w

then the procedure for the evaluation of an Ak, say X,
follovis:

Zvaluation begins from & state with environment L,
and control X. h C is examined at each step of the evaluation,
and a new state is produced, in a manner depending on h C.

The trensition function applied at each step may be

defined by:=-

1; If C is null then:
let current dump be (S',B*,C',D')
The current state is replaced by hs:s8',2',C*,D'
(vhere x:L is used to denote prefixing x to L)
2, If C is not null then:
(a) If hC is an identifier then
S:=location E X E:S (where the function 'location' is
defined such that location E X
denotes the selector which

selects the value of X from E)

'

C:=tC
(b) If nC is a A-expression X, the closure derived from L
and X is loaded onto the stack.
(e¢) If nC is the special object 'ap' then if hS is a closure
derived from E' and X' then

the enmpty list

93]
I

the environment derived from E' by associating the

=
]

bound variables of X with the component(s) of
2nd S.
Cs=unitlist{body X')
D:=(t(ts),BE,tC,D)
(4) If hC is a combination X then

C:=rand X:(rator X:(ap:tC))

I X is an AL, and £ is an environment such that
val_E X is defined, then starting at any state 8,E,X:C,D, and
repeatedly applying the transition function, eventuzlly the
state vel E X:8,E,C,D will be reached, i.e. the value of X in

the current environment will have been loaded onto the stack.

In order for the above transition rule to suffice for

the evaluation of iI's it is necessary to assume that

bt
-

3

c

ct

initial environment binds the wvalues of constants to their
representations, and also that any basic functions used, such

Yif', 'prefix' etc. are defined in the environment as

e

5]
0]

k—expressions.

C becomes empty whenever a function has been applied
and the result loaded on the stacke. This result may be the
final result or it may be the component of another AL, the
evaluation of which is continued by installing the most recent
dump as the new state, and using the result on the stack during
the evaluation. Thus the dump is used to store the state of
the machine at the start of evaluation of an Ak, at any'ievel
of nestinge. This corresponds to the block-structure of certzain
hiﬁh—level languages, such as Algol-60, a new dump element

being added each time a new 'block' is entered.

The IAB/Sharing Machine Systen

In subseqguent work an attempt was made to model
Algol-60 in a similar manner, using a development of the AE/SECD
system, the IAE/'sharing machine' system which could deal with
‘imperative features.

To model 4lgol-60 it was necessary to add jumps and
assignﬁent to the AL/SECD system. This made the evaluation of
expressions much more dirfficult, since the value of any
exprecasion was no longer dependent solely on the values of its
subexpressions, but also on the side-e¢lfects produced by thelr
evaluation. A variable declared and used in the evaluation of
an expression might be changed by assignment in that expression
itselfl or one of its sub-expressions. Also there is the problem
that two variables might be declared as equivalent, so that
asgignment to one will also change the value of the other.

Landin's sharing machine models the fact that distinct

—t

G

*positions' in the machine, with egual occupants might share the

same. representation, and thus get updated

imperative applicative expressions (IAE'S) and consist of As

collectively.

The expressions evaluated by the machine are called

E

S

with the addition of

an assigner which consists of a lefthand side (LHS),
which is an IAR
and a righthand side (RHS),
which is an IAE

lach state in the system is characterised by both an

SECD state, and also an equivalence relation, which specifies

the sharing among its component positions. liach time the

transition rule is applied it is necessary to specify how the

equivalence relation changes. This means that while the semantics

of’

At's may be specified formally independently of any machine,

it is impossible to describe the semantics of IAE's other than

in terms of a machine,

There are four rules which govern whether or not two

state-positions share:

..1.

When an identifier is scanned, the stack-head is left sharing
with the environment position which holds the value of the

identifier. \

Y"hen & closure is applied, the newest member of the new
environment shares with any surviving co-sharers of the old
stack-head. Thus a function can have non-local effects by
asgdipning to arpguments that arce called by reference. Thig also

means that there is no need to use a special procedure to

scan an identifier on the LHS of an assigner.

When a closure is applied, componenis of older levels of the
new environment share with the corresponding components of

the environment from which it was drawn. This means that

"

*positions' in the machine, with equal occupants might share the

same representation, and thus get updated collectively.

The expressions evaluated by the machine are called

imperative applicative expressions (IAE's) and consist of AR's

with the addition of

an assigner which consists of a lef'thand side (LHS),
. which is an IAL
and a righthand side (RHS),
which is an IAE

Lach state in the system is characterisa@ by both an

SIECD state, and also an equivalence relation, which specifies

the sharing esmong its component positions. lach time the

transition rule is applied it is necessary to specif'y how the

equivalence relation changes. This means that while the semant

of
it

in

.

-h

cs
AB's may be specified formally independently of any machine,
is impossible to describe the semantics of IAR's other than

terms of a machine.

There are four rules which govern whether or not two

state-positions share:

1e

WWhen an identifier 1s scanned, the stack-head is left sharing
with the environment position.which holds the value of the

identifier.
e i

"hen & closure is prlied, the newest member of the new
environment shares with any surviving co-sharers of the old
stack-head, Thus a function can have non-local effects by
assigning to arguments that are called by reference, This also
means that there is no need to use a special procedure to

scan an identifier on the LIS of an assigner,

When a closure is applied, components of older levels of the
new environment share with the corresponding components of

the environment from which it was drawn. This measns that

non-local effects can also he achieved if a function assigns
to its free varisbles.
lio When a control-string is exhsusted, the new stack-head is

lef't sharing with any remaining co-sharers of the old stack-

[

head, so that an application of a function is sppropriate as

the LHS of an assigner,

Bxecution of an Assigner

It has been mentioned that the left and right-hand
sides of an assigner may both be evaluated in the same waye.
However, a LHS must refer to a previously named objJect, or a
component thereof, already occupying a certain positiﬁn in the
current state. Execution of an assigner will change the value of

this state-position, and hence of all positions sharing with it,

and leave a nugatory result on the stack.

Jumps

In order to effect Jumps in the system an operation
"J" is introduced, applicable to functions, which has the effect
of forcing an exit from functions under certain conditions,

T N o) N T T, p——
vhere g=dMU,V)eeeee

g may occur anywhere in the def'iniens,

If ever this sub-expression is evaluated while f is
being applied, there will be an immediate return from £ , and the
value of the subexpression will be given as the result of f.

A program—-closure is introduced as another poséible
resﬁlt of evaluation. If J is applied to a closure, it is
transformed to a program-—closure, This differs from a closure
in that in addition to including the current environment (for
subsequent installation) and an expression (forhevaluation) 1%

also includes the current dump, which is installed when the

18
program—closure comes to be activated. By contrast, when =a
closure is zctivated, the dump is used to record the current

state for later resumption. An expression of the form J()tL.S) is

known as a 'program-point'.

=
\D

ITADMID = AT AT A AT AT T Y O =1 AT ATIICINY
Gll;,.:’f;'al‘.. G e 2o 1 i1 .;.'O.i.Ll.;.‘lIl E}.LAJ'\-.J‘.-.!-\-IJ..IUL) O.J i LA BN D)y

The semantic interpretation of Gedanken programs is

formally defined by the specification of:-

(a) A set of rules by which a concrete Gedanken program may be
trenslated into an abstrect data structure.

(b) An abstract machine to evaluate such data-structures.

Abstract Gedanken

Before it can be evaluated a parsed Gedanken program
must be translated into an abstract form, an information structure
amenable to evaluation by the interpreter.

An sbstract Gedanken program is made up of sgecuences

and records, where:-

(a) A sequence is the functional eguivalent of a one-dimensional
array.

(b) A record is the functional equivalent of a finite collection
of fields, each identified by a field-name., Each record
belongs to a particular class such that all records in the

same class have the same set of fields.

1

‘or & particular field of all records in a particular

-

class, the range of possible field values is specifiied by a
.
class definition), of the form:=-
(CLASS,&classname » ,(€fieldname®,{range descriptor?d))

where

{range descriptord::=4sct name)\ﬁi@,(sotname)

If the range descriptor is a set-name, S, then the
corresponding field is a member of the sct denoted by S. ITf the
range descriptor has the form SEQ, S then the corresponding
field is a sequence, the components of which are all members of

the set denoted by S.

"A set name may be any of the v .lowing: (1) INTCLASS,

BOOLCLASS, and CHARCLASS, denoting the se¢ s of integess, boolean

(=

values, and characters respectively; (2) [NIVERSAL, denoting the

universal value set; (3) A class neme, de. oting a class of

by expressions called union definitions, with the form:

{union definitiond::=(UNION,¢set name) i,(set name)} %)

The union definition (UNION,SO,S1,....,Sn) implies

that the set name s, denotes the union of the sets denoted by

0
S,seeee,S o Circular union definitions, e,g, (UNION,X,X) are not
* permitted.
A collection of interrelated class and union definitions

defining various record classes and other sets, is called an

agbstract syntax definition.™*

An abstract syntax is equivalent to Landin's structure
definitions., Thus the three definitions:

(UNION,c,c1,02}
(CLASS, ¢,y 5(L, 58,))

(CLASS! 02,(f2,52),(f3,83))
are equivalent to the structure definition

a ¢ ig either =a ¢y and has an , which is an s

or a c

1 1

2 and has an f2 which is an 52

and an f3 which is an 83

IN.B. in this chapter those sections in quotation marks are
taken from John C. Reynolds' “Gedanken: A Simple Typeless
Language Which Permits Functional Data Structures and Coroutines"

1969, Argonne national Lgboratory, ANL-7621,

27
The abstract syntax Lor abstract Gedanken data-

structures is given below.

(unIoN,LXP,CONSTANT, IDENT, FUNCTDES, LAMBDAEXP, COIDEXP, CASELXP,
BLOCK),

(CLASS,CONSTANT, (VALUL , VALUEDEN)),

(UNION, IDENT, QOGIDENT;INTRIDLNT),

(CLASS,PROGIDENT, (STRING, SLQ,CIHARCLASS)),

(CLASS, INTRIDLNT, (NAME, INTCLASS)),

(CLASS, FUNCTDLS, (FULCTPART,EXP), (ARGPART, EXP)),

(CLASS, LANBDAEXP, (PARAKNPART, IDENT), (BODY,EXP)),

(CLASS,CONDEXP, (PRENISS, uXP), (CONCLUSION, 8XP), (ALTERNATIVE, 8XP)),

(CLASS,CASEEXP, (INDLX,sXP), (BODY, SEQ,EXP)),

(CLASS, BLOCK, (RDECLPART, SEQ, RDECL) , (LDECLPART, SEG, LDECL),
(BODY, 514, EXP)), '

(CLASS,RDECL, (LEFT, IDEET), (RIGHT, LAKBDARXP)),

(CLAsSS,LDLECL, (LEFT, IDENT), (RIGHT, SEG,EXP)),

(UNION,PIORM, IDENT, SEQPFORMN),

(CLASS, SEGPI'ORM, (BODY, S&q, PFORM))

Record Creastion and Testing

Three functions are specified which test records for
set membership by searching through the abstract syntaex, In the

following definitions the abstract syntax is the sequence D.

" ISR A(X,S)
IF S=INTCLASS THuN ISINTLGER X ELSE IF S=BOOLCLASS
THEN ISBOOLiAN X
ELSL IF S=CHARCLASS THEN ISCHAR X
ELSE IF S=UNIVuRSAL THEN TRUz
ELSE SEARCH(D UL, AI(D I)2=sS,
MAI IP(D I)1=CLASS TilLN ISFUNCTION X
AND X TYPE=S

WLSE TUNION(X,TAIL TAIL D I),

2

A() GOTO ERRCR);
TUNION ISR A(X,U)
SBARCI(U UL, &I T(X,U I), AI TKUs, N() raLSE);
TSEEQ ISR A(X,S)
X LL=1 AND SuARCH(X UL, AI KOT T(X I,S),
AI FPALSE,N) TRUL);

T(X,S) accepts a record or primitive datum X and a
set name 8, and tests whether X is a member of the set denoted
by S. TUNION(X,U) accepts a sequence U of set names, and tests
wvhether the record or primitive datum X is a member of any of
the sets denoted by the components of U. TSk¢(X,S) accepts a
vector X whose components are records or primitive data, and
tests whether X is ‘a secguence in which every component is &
member of the set denoted by the set name S.

The function M is used to create records. It accepts
as argument a sequence of which the first element is a class-name
C, and the remaining-elements are field values, [searches the
abstract syntax to ensure that the correct number of field
values have been provided, and useg the set meﬁbership functions

to ensure.that each. of the"field,values satisfies its.range

descriptor.,]
M has the following definition:

M ISR AX
(¢,v Is IF ISATOM X THEN X, () ELSE (X 1,TAIL X);
SEARCH(D UL, NI (D I)1=CLASS AND (D I)2=C,
NI 11(C,V,TAIL TAIL D I), Z(?) GOTO ERROR));
M1 ISR N(C,V,¥)
SV UL = F UL AND SEARCH V UL,
NI NOT(IF (F I)2=SEQ THEN

TSEG(V I,(x I)3) BLSE T(V I,(# I)2)),

NI PALSE, M) TRUE)
THEN AX IP X=TYP& THEN C LLSE
SEARCH(V UL, ANI X=(F I)1,V,x() GOTO ERROR)

ELSE GOTO ERKOR;

Translation into Abstract Form

Beflore o Gedanken program can be converted into
abstract form it must be parsed according to the concrete

grammar of Gedanken,

"Ihe syntax of concrete programs is deflined in two
stages: (1) A unigue partitioning of the program into a sequence
of character strings called tokens is specified, and then (2) The
set of well-formed programs 1s defined by a grammar over the
'infinite vocabulary of tokens.

The tokens themselves satisfy the following grammar
dcharacterd::=" k(;uo‘uable character)
{guotable characterp::=<letter or digit}]?ﬂl ,\:\:\ (l)} ;lu\
{extra character)
{letter or digit):::(letter)l(digit2
Cietterd: :=allclnlzlrleblrlatxin b) ol e |l &l s} 2| uf v]w\x\ vl 2
(digi-c)::=0\1\2\3\u\5\6\7\5\9
.(token):::(integer token}\l guoted string token)\(word tol{en)l
(Ipunctuation token »
¢ integer tokenY::={digit) i{digit)}
¢ quoted string token): :=“£(quotable c‘nar::cter)} "
{vord tolce_n}::=(letter)£(letter or digit}}

¢ punctuation tokend: :=}\\,\=\:\ (\)\ ;\ =

Here the symbol,, denotes a blank, and the undei'ined

w0
w

class {extra character) denotes the set of all input-representeble
characters not occurring elsewhere in the synteX.eees
eessThe class of {word token®?'s is subdivided intod{reserved

11 AT

word tokend's, which are the strings AND, OR, I, TIuN, LLSE,

|

2l

CASE, 0Or, IS, end ISR, and &identifier tokens)'s which are all

other €word tokens)'s."

Once a program has been partitioned into tokens it is
parsed according to the grammar on the left-hand of table 1, and
transformed into a derivation tree with the following properties:
"(1) Lach node is associated with either a token or a production

of the grammar in Table 1.

(2) A node associated with a token is a terminal node.

(3) If a node is associated with a production which has n items
on its right side, then the node has n subnodes. IL the ith
item on the right side of the production is a specifiic token
(token class, syntactic class), then the i%h subnode is

: assOciated with the specific token (some member of the token
class, some production whose left side 1is the syntactic
Cclass)eess

eessWith each production of the grammar in Table 1 we
associate a GEDANKLEI! function which expresses the translation of
any phrase which is an instance of that production in terms of
the translations of its sub-phrases.

This process can be described more precisely as
follows: The nodes of the derivation tree are translated in some
order-éuch that no node is translated until after all of its
subnodes have been translated. If a node is associated with a

token, its translation is a sequence whose components are the

characters of the token. If a node is associated with a production
its translation is obtained by applying the corresponding
trancslation function to & seguence whose components are the
translations of the immediate subnodes, excepting those subnodes
which are associated with reserved word or punctuation tokens. Ian
the special case where thié sequence has a single component,

the component itself, rather than the one-component seguence, 1is

n
w

used as the argument to the translation functioNee..

seesnhien the right side of a production is {empty), the
associated translation function receives an emnpty seqguence as
its argument. The following subsidiary functions and other values

are used by the translation functions:

IICOUNT IS REF O;
CRIDENT IS A() IICOUNT:=INC IICOUNT; M(INTRIDENT, VAL IICOUNT));
BQUALCON IS M(CONSTANT, GUTVALPREDEF K(PROGIDLIMT,"EQUALM));
SETCON IS M(CONSTANT, GETVALPRUDEF M(PROGIDENT,"SET!"));
COERCECON IS WM(CONSTANT, GETVALPREDEX M(PROGIDENT,"COERCE"));
CONVERTINT ISR MX IF X UL=0 THEN O ELSE

ADD(DIGITTOINT X X UL, MULTIPLY(10, CONVERTINT HEAD X));
TRANSTRING IS AX IF X UL=1 THEN m(GOHSTAﬁT, X 1) BLSE

(I Is CRIDENT(); M(LAMBDAEXP, I, M(CASELXP, M(FUNCTDES,

COERCECON,I), VECTOR(1, X UL, NJ M(CONSTANT, X J)))));
TRANSDECL ISR N(P,x,B) M(FUNCTDES, TRANSLAMBDA(P,B),E); |

TRANSLAMBDA ISR AN(P,B) I¥ T(P,IDENT) THsI M(LAMBDALXP,P,B)
ELSE (I IS CRIDENT(); K IS REr(P BODY) UL; R IS REF Bj

LOOP: Ii K=0 THEN GOTO DONZ ELSE

b

: =TRANSDECL((P BODY) VAL K, M(FUNCTDLS, M(IFUNCTDES,
COERCECON,I), M(CONSTANT, VAL K)), VAL R);
X:=DEC K; GOTO LOCP;
DONE: M(LAMBDALXP,I,VAL R));
THRANSEQUEXP IS8R AX
(5 I8 VBCTOR(1,X UL,NJ CRIDSNT()); I IS CRIDENT();
K IS ReF X UL; R IS REF M(LAMBDAEXP,I,M(CASBEXP,
M(* UNCTDES,COBRCHECON,I),S));
LOOP: Ii K=0 THLN GOTO DONZ BLSE
R:=TRAMNSDECL(S VAL K, X VAL K, VAL h},
K:=D&C K; GOTO LOOP;

DONE: VAL R);

The global reference IICOUNT maintains a count of the
nanber of internal identifiers which have been created during
the translation processe. It is used by the function CRIDENT(),
which returns a distinct internal identifier ezch time it is
executed."

I is a function such that M(c,a,,¢es0,2) Will create

1

and return a record with class name ¢ and field values a1,...,an.
"The values of EQUAICCN, SiTCON, and COERCECON are

constants denoting the basic functions IQUAL, SET, and CCLRCE.

The value fields of these constents are obtained from the

function GETVALPREDEF (to be defined later), which produces

the value denotations of predefined identiliers. The use oT

these constants instead of the corresponding identifiers insures

that redeclaration of the identifiers will not affect implicit

coercion or the meaning of the operations = and:=,

CONVERTINT converts a seqguence of digits into the
correcponding integer.

TRANSTRING translates quoted string tokens, If n=1,
the token "01...cn“ is translated into the abstract equivalent of

(cast i ox "c,l",...,”cn“). -

The three interconnected functions TRANSDLCL,
TRAINSLANMBDA, and TRANBEGEXP eliminate declarations, seguence
parameter forms, and sequence expressions,Their eflect is
essentially equivaient to repeated application of the following
equivalences

p is e; pY M ()(p))(e)
k(pi,...,pn)b (when n=1)

. i)hi(p1 is 1 1;e003p i85 1 n; D)
Chaeeesry (when n=1)
o - _—.}(11 is e 340031, 18 €, ; Ai(CAsE 1 oL i,i,...,in))

where....i,ij,...,in are unigue internsl identificrs".

The working of these three funcitions is not immediately

27

obvious, and might be clarified somewhat by stating that their

(@]

ultimate effect is that expressions of
pISe; b= Mp)b)le) (as stated above)
h(pﬁ,p2,o..,pn)b
=}XI(X91(XPZ,...(APH BIT) wawe) n—1}In
CHPEPPIRRPLN
DAI 1(M 2(eeo A n(RI n+1 CASE I n+1 OF (I 1,I 2,...
I n))en)....ee}eﬁ
the components of each expression being similarly transiormed
as eppropriate. Thus thses expression Tforms are transformed
into nested A-expressions, esch of which takes a single érgument.
Expressions involving =, AND, OR, or:= are also
eliminated during the translation from concrete to agbstract
Gedanken, and explicit calls of COCRCE are inserted for the

implicit coercion performed by certain functions.

The Abstract Machine

The machine defining the interpretation of abstract
Gedanken data-structures is fundamentally similar to the sharing
machine, but diverges in some respects, and boasts a number of
elaborations.

" The construction of the machine is somewhat different,

this being appearent in the abstracf syntax for states. Hach
state of the Gedanken machine consists of an SECD state, together
with two extra fields, a memory and an atomcount.

The memory is a seqguence of value denotations, each
of which‘specifies the value of an explicit reference. Each
-element may be accessed by the appropriate references by means
of the integer-valued address-field contained in each explicit
reference, giving the number of the memory component“which
specifies its value.

-

The atomcount is an imteger value giving the nunber

5
J

(8¢

of atoms which have been created during program execution. Lach

nteger name field, 1 being the name of the ith atom

e

atom has an

created, where 1 =atomcount+1 at the time of that atom's creation.
Another divergence from the sharing machine is tha

each dunmp-element consists not of an entire state, but merely of

a control, stack and environment. The memory and atomcount are

added to progressively throughout execution and are used in

such a way that they do not need to be saved and reinstalled.

The dump component may be omitted because a Gedanken machine

dump consists of asequence of dump elements rather than a single

element. When the transition rule is applied, the entire sequence

mey Pe passed to the new state, the secquence being used accqraing

to a stack discipline.

The transition rule used is based on that of the

sharing machine. If P is the abstract form of the program, and
a state takes the form (control, stack, environment, dump,
memory, atomcount), then starting from the initial state
(unitseq p,(),(),(),(),0)
transition is epplied repcatedly until a terminal state is
reached, i;e. one in which the control and dump are both empty.
The value of the program is then the first {and only) stack
element.,

As in the sharing machine, the first control instruction
i1s considered for each gpplication of transition. If the control
is empty, the control, stack and environment of the first dum:
component are installed, otherwise a branch is made on the first
control instruction.

The range of values that a control instruction may

¥

take greatly exceeds that of the sharing machine, The instructions
nay be broadly divided into three groups:-

(a) The classes of expressions which may be included in an

29

abstract program. In Gedanken these include the three b

LB

sic

H]

AB's, and also constants, cqhditionals, case expressions,
blocks, recursive declarations and label declarations.

(b) Control instructions created during execution to ensgble
conplex instructions to be broken down into a sequence of
simpler instructions.

(¢) Basic function instructions which effect the evaluation of

the basic functions of Gedanken.

(a) Bxpressions

The evaluation of each expression-type is described in
turn. However it should be mentioned that in some cases-this
evaluation is not completed in a single application of transition.
In such cases one application of the transition function will
break down the expression into a sequence of simpler instructions

as mentiened in (b) above.

Constants

The value of the constant is put on the stack.

Tdentifiers

The value of the identifier is found using the GETVAL
function, and put on the stack.

Punction Desipgnators (Al combinations)

The finction and argument parts are evaluated, and
the value of the former is applied to the value of the latter.

Lambda Expressions

V/hen the ekprcssion is evaluated, a closure comprising
the}\—body and the current environment is loaded into the stack.
Algo included.in the closure is en instruction to bind the
parameter of the A-expression to the value on top éf the stacik.
Thus when this closure is subsequently applied, the body and

control of the closure are installed as the current control and

environment, and the environment is extended by binding the
parameter to its argument. The closure-body is then executed in
this extended environment.

Conditional LExoressions

In Gedanken the conditionzsl expression is invariebly
of the form IF €ey THLK Le/y LLSE (ej) . The premiss (31) is
evaluated first, producing a Boolean result on the stack. Then
cither the conclusion (62) or alternative (83) is installed as

the control and evaluated, depending on the Boolean result
being true or false respectively.

This method of evaluation is exactly egquivalent to the

functional if e ()()62,)\()63}() cxpression suggested for

1
conditionals in the AL/SECD system, with only the correct branch
being evaluated each time.

Case LXpressions

The index part is eveluated, and & check is made that
its velue is an integer not less than one, and not greater than
the nunmber of component expressions in the body. Then for an
index of value n, the nth expression in the body is evaluated.
BDlocks
= A 2 : S = s . ol e .

A new dump element (comprising the current control,

L

stack and environment) is put on the dump, and the stack is set

ot

o]
empty. This is verf similar to the treatment of nested sub-
expressions in the sharing machine. 1'he control is then set to
the following sequence
Lrecursive declarationy,c...,€label ‘declarationsP,ces.,
{environment nk>,Lexec ({block body?))

Thus subseqguently the recursive declarations, and
then the label declarations will be evaluated, and the environment
will be marked., The block body will .then be evaluated in the

resulting environment,

Ui

Recursive Declarations

It is in connection with recursive declarations and
2l1ls0 label declarations that the environment is marked during
block execution. The environment mark then delimits the environment
available to the recursive functions and labels declared in that
block.

WWhen a recursive declaration of the form £idy ISR

Q=xpy is evaluated, the environment is extended by an element
binding the identifier part to a recursive function denotation
for the A-expression. A recursive function denotation has a
control, but no environment field. When a recursive denotation
is later yielded in a search of the environment, in order that
it may be applied an environment field will be added, being
that portion of the environment beginning at the last encountered
mark. In this manner a function may refer to itself, without
needing to use the fixed-point function suggested by Landin for

the SECD and sharing machines,

Label Declarations

When the declaration is evaluatedlthe current environment
is extended by an element binding the label name to a recursive
label denotation. This comprises the body of the innermost block
céntaining the label and also the current dump. When this
denotation is subseqpently yielded in a search of the environment
(i.e. when control ié transierred to this label) then the current
control, stack, environment and dump are discarded. The stack is
emptied, the denotation body 1s installed as control, and the
environment, as with recursive functions, becomes that starting at
the last, encountered environment mark, Thus even if control is
transferred from outside the block containing a label, any
declarations preceding the label still hold, and the entire

state of the computation, apart from reference bindings and

32
atomcount, returns to that at the time of declaration of the

label, This is effectively the ‘'program-closure' described by

Landin for the sharing machine,

(b) The Control Instructions

These are created during program execution, and are
used to instruct the machine in what manner instructions or
instruction sequences- are.to. bermanipulated. Their effects. are as
follows: -

"EXEC: The sequence of expressions in the instruction body is
evaluated, and the value of the last expression is added to the
stack.,

BRANCH: If the first stack component is TRUE (or IALS:) then the
CONCLUSION (or ALTURNATIVL) is evaluated and its value replaces
the first stack component.

SELiECT: If the Tirst stack component is an integer i, then thé
ith component of the instruction body is evaluated and -its

value replaces the first stack component, IT the first stack
component is the atom LL (or UL), then it is replaced by 1

(or the length of the instruction body).

BIlD: The environment is extended Dby binding the identifier in
the instruction body to the first stack component, which is
deleted from the stack.,

APELY:The seéond stack component, which must be a function
denotation, is applied to the first stack component, and the
result of this application replaces the first two stack components.
MARKENV: A mark is added to the environment.

DELETE: The first stack component is deleted."

(c) Basic Munction Instructions

11

enote the basic functions and values of

jal]

=3
w i

@
)}

A

v

Gedanken. Their evaluation is effected with ithe use of two

consists of all the

o

predefined sequences. One of thes

L
W

redefined strings of the language, wnile the other consists
of’ the value denotatlons necessary to effect the meanings of
these strings.

In the case of the strings "TRUB", "PFALSZ" and

J

"GUOTECIHARY the value denotations are merely the appropriate

values, TRUE, FALSE and ".
P "pL", "UL" and "ERROR" are denoted by the fieldless

records for lldenotation, uldenotation and errordenotation.

The remaining strings denote functions of zero, one
or two arguments, some with implicit coercions and some without
The value denotation for each of these is a function denotation
with an empty environment field, and whose seguence of control

nstructions consists of the appropriate basic instruction
preceded by an instruction sequence termed & prelude. When the
value denotation comes to be evaluated, this prelude is'
evaluated first and ensures that the correct argunent(s),
coerced as appropriate, and in the required order (last argument
first) arec on top of the stack when the basic function is
executed,

Thus when an identifier cannot be found in any search
of the environment, it is assumed that it must be a predefined
string. It is searched for in the sequence of predefined
 strings, and il found the corresponding component from the

sequence of value denotations is returned ss its value.

The effect of evaluating each of the basic function.
instructions is d. cribed below, It is assumed that the arguments
have already been spread and coerced by the prelude. In &ail
cases en crror condition will result if the arguments are not

of the required type.

REF or ICRLL

The argument is removed from the stack and added to

memory, and & new explicit reference is put on the stack, its
integer valued address beling the component number of the new

nemory element,

P

ovin YoM
T or NOSET

C

The first and second elements are taken from the stack,
and must be an expression (e) and reference denotation (r)
regpectively. The execution depends on whether the reference is
explicit or implicit.
(a) Ifor an explicit reference, the memory component indicated by
its address field is changed to the value of e, which 1s itselfl
rlaced on top of the stack.
(b) For an implicit reference the following sequence is concat-
enated onto the top of the stack:- S |
(e, setf function of r, e)
Apply and delete instructions are added to the control
so that subsequently the setf function will be applied to e and
the result deleted.

Thus e is left on the stack top as the reéult Tor
either type of reference.

Thus assignment is treated as Jjust another basic funct-—
ion, and not as a fundanental expression type, which it is in

the sharing machine system.

VAL |
The first Etaok element, which must be a reference, r,
is removed.

(a) If r is explicit, with address field n, then the value of
the nth memory component is put on the stack,

(b) If r is implicit, its valf function is executed, and the

result put on the stack.

o
CONRCL I the stacktop is a rererence, then VAL and COLRCE
instructions are put on the control as the first and second
elements respectiively. Otherwise nothing at all is done, i.e.
the stack top is returned as a result., The efTect is that VAL
will be applied to the stack top and to subsequent results until
a non-reference value is produced, and this value will then be

%y

the result of the coercion.

The stack top must be a programmer-defined label
denotation. The control, environment and dump fields of the label
are installed, and the stack is set to empity. Execution then

continues using these new values,

Predicate Functions ISTITEGER, ISBOCLsAN, ISCILAR, ISATON,

JSUNCTION, ISRER, ISLABLL

The stack top is removed, and tested for membership

of the appropriate class, and the appropriate Boolean result is

[

put on the stack.
IMPRiE T

The first and second stack elements, which must both
be functions, (f1 and f2) are removed. A new implicit reference
denotation, using f2 and f1 as its SETF and VALY fields respect—

ively, is created and put on the stack as a result.

BECUAL and IICHQUAL

The first and second stack elements are removed and
the value TRUE is put on the stack if:~
(a) They are both members of the same one class from integer,
Boolean, and character, and both have the same value, or
(b) They both denote LL or both denote UL, or

-

(¢) They are both progresm atoms with the same neme fields, or

=
<

(d) They arec both explicit references with the same address

field - i.e. they both denote,the same reference,

Otherwise the value ¥ALS: is put on the stack,

GREATER (CHARGRI AT)

The top two stack elements, which must both denote
integers (characters) arc removed and a Boolean result is put
on the svuack, being TRUL if the second element is the greater
end FALSE otherwise. (I.B. an ordering is placed on the

characters).

INC (DiC) The stack top, which must be an integer, is removed,

and an integer result 1 greater (less) is returned on the stacke.

READCHAR
A single character is read and the denotation placed

on' the ‘stack., .

WRITLCHAR

The stack top must be a character denotation. The
character that i1t denotes is written, and the denotation is

left on the stack as a result.

[

W
]

]

HAPTER L —~ AN INPLEMENTATION OF GLDANKISN

In Reynolds' definition of Gedanken he gave an abstract
syntax for the language, showed how to translate concrete
Gedanken programs into abstract objects satisfying this syntax,
and defined the semantics by means of an interpreter for the
abstract programs.

It was decided to implement this formal definition on
the IBl 360/4lL computer at St. Andrews University, using BCPL as
the defining language. The original definition was translated as
faithfully as possible from Gedanken into BCPL, in order to
preserve the correct semantic interpretation.

The Gedanken programs are interpreted in three passes:

(a) Lexicel Anslysis

-

A fzairly standerd lexical analyser is used, which
accepts Gedanken program text, and translates each symbol into
an internal integer representation. The output Ifrom this pass

is a symbolic representation of the input text.

(v) Syntax Analysis and Transletion into Abstract Form

The output of lexical analysis is parsed according to

the concrete grammar of Gedanken, to build a syntax derivation

tree, making use of a top-down 'fast-back' parsing algorithm.
Concurrently with syntax analysis the derivation tree is

translated into an abstract Gedanken dats-structure.

(¢c) Interpretation of the Abstract Gedanken Program

The abstract program produced in the second pass is
terpreted, using a translation of Reynolds' ebstract machine,

an elsboration of the Sharing Machine,

{81

A more detailed description of each stage of the

processing now follows,

(A) Lexicel Analysis

The text of the Gedanken program is translformed during

fa]

lexical analysis to the following effect:

Te

2.

Lach complete textual symbol is replaced by an integer,
the internal representation of the symbol. These
integer representations, together with semantic inform-
ation giving the values of constants and the names of

identifiers, form the output string.
Blanks and gquotation-marks are eliminated.

If an illegal character is encountered, a message to
this effect is output. Thereafter the character is
ignored, and the analysis proceeds with the next .

character.

The method of analysis is based on an algorithm

described by Gries (ref 8). The scanner makes use of two tables:

1. The Character Class Table (Table C)

This assigns an integer class to all the characters

which are permissible in the text of a Gedanken program. This

class is used to decide on the interpretation to be put on each

new symbol of the program, as it is encountered. The table is

T

direct—-access and is keyed by the EBCDIC representation of the

character. Illegal characters are assigned a class of zero.

2. Teble of Symbol Revpresentations (Table Symdef

This gives an internal integer representation for each

of the 21 possible types of symbol in a Gedanken program. There

is an entry for each reserved word or delimiter, and one each

for identifiers, guoted constants and digital constants. A .
symbol i1s located by a sequential search, its index in the table
being its internal representation.

The procedure for the recognition of each symbol may

be summarised into an algorithm:

1. Read up to the next non-blank character.

2. Obtain its class Tfrom Table C.

34 I the class is zero, print an error nessage and return to
step 1. Otherwise:

(a) If the character is a digit, continue to read characters
until a non-digit is reached. Output the symbol Tor a
digital constant and the values of the digits just read.

(b) If the character is alphabetic, continue to read charact-—

. ers until.somefhing nonalphanumeric is encountered, .
Search Table Symdef to find out if the characters Just
read Torm a reserved word.

(i) If so, output its internal representation.
(ii) Otherwise output the symbol for an identifier and the
characters which denote that identifier,

(c) If the character is a quotation mark, continue to read
until another quotation mark is encountercd. Output the
;nteger reppesentation for a constant, and the characters
composing if

(a) If the character is a colon, read the next character to
check for the double symbol ":=", Output the appropriate
integer representation, according to the result,

(e) If.the character is any other punctuation symbol, locate
it in Teble Symdel, and output its integer representation.

The procedure is repeated until the chawracter "?" is

encountered, which indicates the end of the input text.

Lo

lfote In this implementation the character "&" is used .nstead

of "A", since the latter is not available.

(B) Syntax Analysis and translation to Abstract For:

The syntax analyser accepts the output c.ring of
lexicel analysis, analyses it according to the gr mmar ol
Gedanken, and produces from it a derivation tree representing
the structure of the Gedanken program.

The parscr is of the top-down, 'fast-back' variety,
and like the lexical analyser is based on an algorithn described
by Gries (ref 9). Gries' own terminology has been used in the

'

following brief description of his algorithm.

The Parsing Algorithnm

o

The algorithm may be described in terms of men whose °
job it is to build the derivation tree. At any time during the
parse, there 1s a man standing on each node of the partial tree

- formed so far, The man at each node is responsible for the men-
on his sub-nodes. The man standing on the root node will be
assigned the task of building the entire tree.

The man at the root begins by looking at the Tfirst
derivation for the distinguished symbol of the grammar. If he
is unable to build the tree from the input string using the first
rule, he will trf the second and so on. If none of the derivation
rules work, then the input text does not form & correct program
of the grammar.,

To find out whether a derivation is correct, he will
go through it sequentially, adopting for each component a son,

"

whose Jjob it is to try to find his allotted component. These

@

sons in turn will adopt sons to find their own. derivations.

Ult

| S

mately, the assigned goals will be actuszl program tokens,
which must be matched with the symbols of the input string.

If a man receives a report from any of his sons that
the son has tried all his derivations, but is unsghle to find
his assipgned goal, then the men will disown all his current sons
and start adopting a new set according to the next alternative
derivation.

A stack is used to huild the derivation tree, lkach
stack element represents one node of the tree, and has the form

(goal, gind, fat, son, iind)

The components have the following meanings:
goal -~ the symbol for which the man is searching, assigned To

him by his father

gind the location in the grammar of the symbol in the

derivation for his goal that the man 1is currently'

working on

fat = the location in the stack of the man's father, or zero
for the root node

son - the location in the stack of the man's most recently
adopted son

iind - the location of the symbol in the input string

currently awaiting recognition.

In this implementation the algorithm has been
extended to permi£ two additional features in the rules. of the
grammar:

(a) A string which may occur in a derivation any number
(including zero) of times.
(b) 4 string which may occur in a derivation, but which may
legitimately be absent.
The algorithm requires that the grammar be arranged in

a certain way, so that the correct rules are tried Tirsi. Yor

example, a rule of the form

g

e

+ E

]

mist be tried before & rule

L=

&)

Also 1t 1s necessary to devise a notation to indicate
which parts of derivations are the 'repeatable' and 'optional!
strings. The grammar of Gedanken, rearranged to sult these
requirements, ié read in immediately prior to parsing, and

stored in core in the form of a tree. Each node has the form:

(name,def,alt,pred,neced)

where the fields denote the following:

name - the internal name for the grammar symbol, 5, represented
by that node. or non-terminal symbols the name is a three-
character abbreviation of the grammar element, packed into one

machine-word. l'or teriminals the integer internal representation

of the symbol is used.

def - this field is zero if & is a terminal; otherwise it

indicates the node for the first symbol in the first derivation

for S.

[ue
w

alt - if"8 the first symbol in a derivation, this field

points to the node for the Tirst symbol in the next alternative

)]

da 1

derivation. If no alternative exists, or -8 is not the Lirst
symbhol in a rule then alt is set to zero

pred - set to zero if 8 is the first symbol of & derivation.
Otherwise it points to the node for the preceding symbol in

the rule.

need - set to 1 for all nodes in ‘optional' paris of derivations,

¢

2 for nodes in 'repeatable' portions, and to zero

ct
o]

for all other nodes.

Parsing proceeds as in the basic algorithm with the
addition of certain rules made necessary by the extensions
mentioned above:

1« If a man receives a report of failure from one of his sons,

he must look at that son's need field, to see if he was an
essential part of the derivation. If so, he proceeds according

to the basic algorithm. If the son was in an ‘'optional' or
'repeatable' string, however, he disowns all sons in that part of
of the derivation, and reports success to his own father.

2. VWhen a man has received a report of success from every
component of a derivation, he must check the need field of his
youngest son to see if the end part of the rule forms a
'repeatable' string (these only occur at the ends of derivations).
If this is so, he must return his attention to the start of this
string andattempt to find another occurrence; otherwise he
reports success to his father, as in the basic algorithm.

Lnother stack, TOPVALS, has been introduced to desl
with these extensions. Every time the beginning of an optional
or repeatable part of a derivation is encountered a new elemehﬁ
is placed on this stack,

ach stack element has two components:
1+ The level of the derivation tree stack before the @tart o
that portion of the derivation.

2. The current man's youngest son before the optional or
repeatable string, i.e., his last 'essential' son.

This stack operates as follows:

1. Vhen a man adopts the Tirst son of an optional oxr repcatable

string, an element is added to the stack.

2. If a son in an optional or repeatable string reports failure,

o

the derivation tree stacik returns to the level indicated in the

g

top element of TOPVALS, All the men's sons younger than the one

pecified in the top TOPVALS element are discvned. This top

&

4]

element is now removed from the stack,
3. If an entire optional string is recognised, the top element
of the stack will ndt be required, and is therefore deleted.
L, If the end of a repeatable string is recognised, so that
attention must return to the start of that string, the top
stack element is replaced by a new one giving the current.
information. ;
Modified thus, the basic parser may he used for the

syntax analysis of a Gedanken program.

Gedanken Syntax Errors

Syntax errors are recognised in five ways:
(a) Bach of the reserved words and delimiters may only appear in
cértain constructs of the grammar., Their recognition in effect
identifies the construct which is being used. If a reserved
word or delimiter is not followed by the expected element, then
the syntax rules have been violated. A compléete list of what
must.follow each,symbol is given in Table IIof the Appendix.

|

(b) The reserved words THLN and HLSs may be used only in
conjunction with II'. Similarly OF may appear only after CASL,
(¢) Conversely the word I¥ must always be followed by a construct
of the Torm seeee THEN eooee BLSE, and CASZE DY esvese O coeve
(d) The parser might find a complete program structure before
réaching the end of the input string. This is usually the result

of the mismatch of parentheses.

(e) The converse of (d) may ocecur, i.ec. the input string may be

exhausted before a complete program structure has

This is also likely to be due to a parentheses misnmsa
Types, of course, are not checked

diagnostics for type errors are not produced until the program

On the discovery of a syntax error, the following actions

are taken:

(1)A message is output to the progremmer, stating what the error
is, and the context in which it occurred. The context is given
by writingout the last ten symbols of the program text pfior to
the point where the error occurred.
(2) The derivation tree stack is returned to the elvel of the
last element whose goal was a block-2, the highest lével of
block, A block-2 thereby becomes the next element to be sought.
(3) The grammar index (gind) is set to point to a block-2.
(L,) The pointer to the input string (;;Qg) is moved to the symbol
immediately following the next semi-colon, since these act as
bloclk seperators.
(5) Two flags are sei:
(i) ERRVLAG is set.io '4rue', to indicate to the parser that
a syntax error has been found, and that the normal
parsing procedure is to be temporarily sbandoned. This
flag is reset to 'false' whenever a new component of a
derivation is sought.
(ii) GOYLAG is set to 'false' once and for all when the
first syntex error is encountered. It indicates tha
although parsing will continue, there will be no attempt
to- interpret the program, and the translation to abstract

form should be discontinued.

ol

n the case of an error, of type (e), actions (2), (3)

omitted. This recovery nrocedurs

~
m
by
a

and (L) are unnecessary, an
nay give rise to parenthesis mismatches, and messages indicating
these alfter the occurrence of other syntax errors are guite
likely to be spurious.

Briefly then, if a syntax error is identified, the
parser fails uwp to block level, and continues from there, while

the translation to abstract form and program interpretation do

-

not take place.

The Organisation off Svace

The use of space 1s not organised according tola stack
discipline, so a method is required for controlling the special
storage arca reserved Lor the sbstract Gedanken data-structures.
The correct amount of gpace must be allocated when it is needed,
and released for re-use when a given data-structure is no longer
required., The problem is handled in a fairly conventional manner,

All the free space in the record area is held in the
Torm of a chain, the location of the first item of the chain
peing held in a varieble, FREELIST. Subseguent items of the chain
contain two items of information:

(1) The first word holds the number of contiguous machine words
of free space starting at that location.

(2) The second word contains the location of the next link in
the éﬁain.

If n words of storage are reguired to create a record
then the MINDSPACE function chains through the free-space until
it finds an item n or more words long. The chaining is adjusted
to exclude these words, and their location is returned as the
result of FINDSPACE, If there is no space sufficiently large

then garbage collection is necessary.

L7
e 5

~

Garbare Collection

he second word of every record is a 'mark-word' used

=

)]

o

by the garbage collector. If set, if indicates that the data-
structure in question is still in use, while if it is not set,
that structure is no longer accessible and'the space may be set
free ready for re-use,

Garbage collection involves three main stages:

(1) The record space is searched sequentially and every mark-
word is unset.

(2) All.the'records which are currently accessible are rooted in
the current state. Any other data structures are inaccessible
anyway, and the space they occupy is wasted. A complete tfaverse
is made of the current state resetting all the mark-words,
talking precautions to ensure that no part of the state is
traversed more thaen once., This, however, does not protect quite
all the records which must be saved. If garbage collection takes
place in the middle of an execution of the transition function,
those records and sequences creabted during that call will be
vulnerabhle to garbage collection. .

The problem is solved by using another stack, RiECSTACK,
upon which is placed the location of every record or sequence as
it is created. The data-structures on this stack are also
~traversed, and their mark-words reset. At the end of each call
of the transition function RECSTACK is emptied ready for re-usec.
(3) The space is again searched sequentially, and the chain of
free-space is re-composed, chaining around all records and
seguenccs for which the mark-word is set, and linking up all
areas with three or more contiguous free words.

. If FINDSPACE looks égain but is still-unable: to find
& gpace sufficiently large, then program execution is terminated

because of shortagze of space,

Representation of"the Abstract Gedanken Progrsm

Before it can be evaluated, the parsed CGedanken

~ P O = B e a7 y ~ R e Vi S L
program must be translated into an abstract form, the equivalent
Eal s} "1 iR 4. T OET R e IR Rt a b s R - o " by P

of the abstrect ISWILM nentioned in Chapter 3. The shstract

program forms an information-siructure, aunenable to evaluation by
the interpreter,
An abstract Gedanken program is made up of sequences

"

and records, where:

o

a seqguence is a one-dimensicnal array

and

a record is a finite collection of fields, each identified by a
field-name, kLach record belongs to a particular class, such

that all records in the same cless have the same set of fields.

Representation of the Abstraect Syntax

Beflore syntax analysis and the concurrent translation
into sabstract form, a representation of the abstract syntax of
Gedanken is read and stored. It is held in core as a BCPL
structﬁre which mimics the Gedanken definition of the abstract
syntax.

In order to represent the syntax as a BCFPL structure,
eéch of the identifiers occurring in the Gedanken definition
is abbreviated to a unigue sequence of three letters, which may
_be packed intd a single computer word. The syntex is represented
by & BCPL vector with L5 elements, each of which is the address
of a structure repregenting either a class definition or a union
definition.

Mach definition is represented by a BCPL wvector having
one element for each element in the appropriate Gedanken sequence.
Thus each element will be either a three letter encoding for an

identifier, or a pointer to a further BCPL vector if that element

Ior example the grammar

(CLASS, COMSPANT, (VALUE, INTCLASS)),
(CLASS, VARIABLE, (STRING, S2@, CIARCLASS)),
(UNION, EXP, CONSTANT, VARIABLK)

would be represented by the Tollowing BCPL structure:

=

: 3 noLLg Moo

o "vpﬁL" IIICL'I!

- 3 noLan Yy ARM

3 USTR™ "gEQ" M"COLM

-—ﬁ)-i— “UI'--TI” MR ielelial iy ARY i ¥

) The first word in each vector gives its length in
words.

In Gedanken 2all data-structures are treated as
Tunctions, but this approach is not feasible in BCPL. The
definition system has been copied as closely as possible, but
records and sequences arce held explicitly in BCPL vectors, in a
special garbage—-collected storage area. The funciions for the
manipulation of data-siructures have been adapted accordingly.

™

A record is held in a BCPL vector as shown below:

IT \ Nyl | CH \ Bt \ 21 \ iy

N is an integer giving the number of computer words

following it in that record.
MW is a mark-word, used for garbage collection.

ClN is the record class-name.

U_
f:’
o
=
(@]
@
0]
o
H
®
=
(4]
-
o
=
-
ct
I'jd
@
[0]
4]
=]
@
i_
o}
B
=
L]
ct
]
]
¢
Q
(@]
)
jo X
m
-

50

but with a class-name of 'vec'.

Terminal values, l.e. Gedanken integers, Dooleans and

o o T | = a L aa iy e oy LR - il e, (L) [S o " 2. 1 -
characters are held in Ifour-word terminal records taking the form

NIEYJCN | ¥

toms LL and UL are simulated as Tollows:

-

i)
o
fo

t he value 1, and is held as a constant.
UL is found by deducting 2 from the value of Ii.

Records are created by a function M, which mimics the
¥ in the Gedanken system. Il accepts a class neme, an integer n,
and n-1 arguments; it reserves an appropriate amount of space in
the free area, checks its field values using the set-membership
functions, and constructs from them a new record of the. given

classe.

The set-membership functions also mimic the T, TSL{
and' TUNION functions of.the .Gedanken definition, searching
through the abstract syntax to test that records are in a given

class.

Translation into Abstract CGedanken

Associated with each production of the concrete
grammar, there is an expression which specifies the translation
Iof that phrase into abstract form, in terms of the traznslations
of its subphrases. This makes it necessary that the nodes of the
derivation tree be|translated in such an order that no node is
translated until aftor all of its sub-nodes have been translated.
Such an ordering combines well with the parser used, and
translation is performed concurrently with syntax analysis.

During parsing, whenever a node is successful in
finding its assipgned gosl the appropriate translation is

performed. A stack, PSTACK, is used to ensure that the correct
2 7

|

arcuments are at hand, on the ton of the stack, for the
tranglation of ecach phraees It is also used as a nethod ol
'undoing® the relevant part of the translation when back-tracking
occurs.

Kach element of the stack has three components:

(1) The .-location of the node which will require the element as an
argument of its franslation function, i.e. the ‘'father' of the
node producing the element.

(2) The name of the type of grammar element which produced the
element.,

(3) The location of the data-structure produced by the

translation of the current node.

The order of recognition of the parser means that when
a proauction is recognised, the translations of its sub-phrases
will form the top elements of PSTACK. The arguments of the node
are recognised by their first field, removed from the stack, and
used by the translation function. The correct translation function
is selected on the basis of the type of grammatical entity Jjust
recognised, and the number and type of arguments for it on the
stack. The result of translation is then used to form & new
element on top or the stack.

.When back-tracking occurs it is merely necessary to

: |

remove any arguments for the failed node from the top of the -
stack. Any records or sequences created by the rejected portion
of the derived tree are thereby cut locose, and made available
Lfor the next garbage collection.

The translation process has certain effects on the

-

structure of the Gedanken program. cxpressions involving =, AND,
OR and :=, and elso sequence expressions, sequence parameter

Tforms and non-recursive declarations are eliminated by expressing

n

ra

them in terms ol other consiructs. At this stage also, an

additional class of internal identifiers is introduced for use

anslation lgbels are declared explicitly. They

b
-,
ct
m
L]
ct
H

no longer appear in the block-body, but are included instead in a

special label-declaration, which is paired with the list of

unlsabelled statements to be executed after a jump to the label.
Trenslation also inserts explicit ealls of CCERCE

instead of the implicit.coercion performed for: cértain

grammatical forms,

Semi-Basic Munctions

Certain of the functions used in Gedanken are not basic
in a theoretic sense, but are used for convenlence orf programming.
In Reynolds' system these functions are not acceptéd by the
interpreter, but are defined in terms of basic functions. Concrete
Gedanken programs are assumed to be enclosed in parentihcses and
preceded by the declarations of these functions, namely UNITEEQ,
10T, INTTODIGIT, DIGITTOINT, VHCTOR, NNkG, ADD, SUBTRACT,. MULTIPLY,
DIVIDE and REMAIIDER.

However, in practice, this approach was found to be
unworkable, since the time reguired to execute arithmetic
operations defined entirely in terms of incrementing and
decrementing by 1, was prohibitive. The arithmetic and type
conversion functions{were therefore incorporated into the
interpfster as basic functions, and only UNITSEZ and ViiCTOR are

declared before each program,.

(C) Interpretation of the Lbsiract Program

- The BCPL interpreter is modelled very closely on the

Gedanken abstract machine., The different natures of the two

L%
L8Y]

languages, however, make certain changes necessary.

The record creation and testing functions are
translated as directly as possible into BCYL, and these
translations. search through the abétract syntax as do the CGedanken
versions,. liowever, since 3CPLrecords are strictly data-strucitures

ot possible to apply them to field-

)
w0

and are not functional, it is
names, and thereby select field values. This is done by means of
a BCPL function, MIZLD, which accepts a record R and a rield-name
F, and returns the value of field ¥ in record R. It does so by
taking the class of R, and then consulting the abstiract syntax
to find the position of field ¥ in a record of that class.

The difference between functional and non-functional
data=-structures is also reflected in the translation into BCPL
of the sequence manipulation functions, i.e. TAIL, CONS, AUG,
REPLACE, CONC and SUBSEQ. The translated functions all create a
new sequence of appropriate length, and copy into it the wvalues
of the appropriate components of the original sequence(s). Also
there is no BCPL ecuivalent of the Gedanken seguence expression
form. V/here these occur in the definitional machine, a vector
is constructed corresponding to the sequence expression form,
and this is used as an argument to the segquence manipulation

functions.

Transition

Theltransition function proceeds much as in the
Gedanken machine, examining the first control element (henceforth
‘referred to as X) of the current state, and replenishing it from
the Tirst dump element if the control is empty.

The.class of' X is determined by successively using
Punction' T to test it for each of the possible classes of contral

values, wWhen its class is established the appropriate action is

taken.

The fields of the cu%rent state are stored as globa
variables at the start of each execution of the transition
function. Certain of these will be changed during TRAWSITION,
and they will all, be used as the fields of the new currcht

state created at the end of the function.

W
un

CHAPTER 5 =~ A CRITICAL RIVIBW OF THE INPLENENTATION

When the BCPL implementation was run on the IBL 360/LL

C.’)

computer at St. Andrews University it appeared to interpret
Gedanken programs correctly. ﬁowever it was too slow to be of

use as a teaching tool. Even when full core (i.e. 256K bytes) was
used, very simple Gedanken programs took a long time to run. I'or
example it took about L4 minutes to r n a program to find factorial
3, and exemples A and B'included in'‘the Appendix’took 14 and 16
minutes respectively. Garbage collection was found to be
necessary even for very short simple programs.

A major reason for this extreme slowness is an over-
strict adherence to Reynolds' definitional system, which resulted
in great inefficiency in the implementation, Thebdefinitiqnal
system is Jjust that, and was not intended as the basis of én
implementation., The situation is worsened in itranslation to BCPL
by certain devices made necessary by the lack of functional data-
structures in that language

A useable implementation might be achieved by means

" of modifications which, while involving certain changes to

- Reynolds' system, would still preserve his intended interpretation.

.

1« A great dealiof time is spent in searching the abstract
syntax in order to test record class, create records ana select
Tields., In fact this is unnecessary,. since in the interpreter

the M and T functions are always used with a known class argument

and I'IELD is always applied to a known field-name,

-

=

'he general Il function for record construction should
¢ discarded, and tne records should be constructed directly,
both in the translation process and in the interpreter. The

class of record reqguired, and therefore the classes of its

w
[

a

component fields are always known, so that any type checks
considered necessary could also be made directly.

Similerly there is no need for the general type-
checking functions T, TSEG and. TUNION since the record type being
tested for is speciried throughout the interpreter. A direct
test on the class-name is all that is necessary to f£ind out
whether a record is of a given class,

The FIELD Tunction could also be dispensed with,
since the record type end class name are always known. The
appropriate component from the BCPL data-structure modelling the
record could be selected immediately.

If these changes were made there would be no need to
consult the abstract syntax at all. There would therefore be no
point in storing it in core, so that a saving of 630 words of
space in the free area would be made in addition teo the saving

-

of time.

2. 4nother major inefficiency lies in the modelling of all
Gedanken sequences as fixed-length BCPL vectors. This is

atisfactory for a sequence which will always be hendled as a unit

0]

(such as the sequence of characters forming a program identifier)
or on which the only operation is selection of a single component .
(such as the body of a case-expression). However it means that
most sequence manipulation operations require the creation of a
new vector, and tﬁe copying across of conponents from the old
vector(s) to the new. This is clearly very inefficient for
scquences of instructions, stacks and sequences of dunp elements,
since the principal operations on these are the addition or

deletion of the first one or two elements. It would be much

better to model such gequences as linked lists, and thereby

avoid much copying and duplication of structures.

Thus, while identifier names, basic function

Fa
4

case expressions snd seguence

o
(=N

cS

o]

instructions and the bo

[0}
s’

pforms could still be modell as BCPL vectors, all other

sequences specified

C—I-
g
@

-

n abstract syntax would be better
modelled as linked lists.
The head of each list should specify:

.

(1) The sddress of the first link in the list.
(2) The =ddress of the last link.

(3) The number of links in the list.

All these fields are zero in the case of the empty

Bach list element should specify:

(1) The address of the data-structure forming the body of that
pagriticular element.

(2) A pointer to the next element of the list.

The manipulation of such lists would require merely
the creation of new list heads or the changing of pointers, ratner
'than the time- and space-consuming copying of sequences. The
amount of garbage-collection necessary would therefore be
drastically reduced.

These two modifications are fundamental to the
-interpreter, and would greatly improve its efficiency. IMurther

improvements could be made by a number of more minor changes.

3. Basic function instructions are carried around as seguences
of characters. Considerable space could be saved by giving
these integer names. ot only would sucihh a representation be

more compact, but also it would allow the interpreter to select

3

the appropriate instruction using the BCIL equivalent to &

¢

ase-statement, instead of matching each character seguence in

LUl

Le In the abstract form of Gedanken, an entire conmputer word

i

e

used to mark records for garbage-collection, which is wantonly
extravagant of space., The first word of each record contains an
integer giving the record length, for which two bytes would be

more than adequate. One of the remaining two bytes could tihen be

used as a mark-byte, &t a saving of one word per record, seguence

ol

element.

clk

or lis

5. The parser used involves back-tracking, albeit of a limited

his is undescireble, especially since the translation

=

amount.
of the program into abstract form tskes place concurrently with
parsing. A parser which did not back-track, perhaps a precedence
parser, would be more satisfactory. liowever the amount of time

used for parsing is very small compared to that used for inter-

pretation and the problem 1is of Tairly low priocrity.

There are also certain changes which would have only
a small effect on elfficiency, but which would make the modified

interpreter more elegant and more readable.

6. It would be possible to alter the abstract syntax élightly,
qithout affecting the semantics of the langusge, so that a field_
.with a given name is always in a given location within a record.
This could be effected by rearrsnging the order of the fields

in certain records,tand renaming the fields in others. For
example, many different record types in the abstract syntax

have a field called 'body'. In a 'bind' or ‘'exec' class record
this is the first field, in a 'k-expression' record it is the
second, ‘etc., If these fields were renamed, for example 'bodyil',
'"pody2' etec. according to their position within a record, then

they could be used directly as field selectors. In BCPL this

i
0

could be done by binding the field nsmes to their component

7« The major branch of the interpreter on the type ol the first
control instruction is effected by repeated testing against

each possibility until a successful comparison is made. A direct
branch could be mede using the BCPL eguivalent of & case-
statement, by assigning integer class-names instead.

Iach record class should be represented by an integer
code rather than the present three—-character string. These codes
like the field names in 6 above, could be bound to the aﬁpro,riate
class-names for greater readaebility. Similarly an integer code
could be used to identifly sequences, and the heads and links of
linked-lists,.

: Thereby one word could be saved on each of the above
structures if the integer codes used are all less than 128. The
code could be stored in &.single byte, namely the remaining
byte in the I'irst word of each BCPI vector, as mentioned in L
gbove, It is true that this suggestion and L would involve
masking, since BCPL is a word orientated 1anguage. llowever,
in the case of the class-names the extra time required for the
masking would probably be little more then that used in the

'présent string-handling. Also a consgiderable proportion of the
tine usedpis spent garbage-collecting, and the saving of two

words per record should reduce this considerably.

e

L,

Se

(o)
(@)

ety BT o]

- FAeU Ul N Ol
b L LA

i

Reynolds, J. GEDANKEI: A Simple Typeless Language waich

o

Pernits Fuunctional Data Structures and Co-routines.

Reynolds, J. GEDANKulI-2 simple typeless language based on
the principle of completeness and the ref'erence
concept. C&CM 13, 5, 308-319 (1970).

Strachey, C. Varieties of Programming Language. High Level
Languages. Infotech State of the Art Report 7.

Church, A., The Calculi ol Lambda-Conversion, Princeton
Univergity Press, Princeton 19.L1. -

Landin, P.J. A Iormal Description of Algol 60. IMorma

Language Description of ALGOL 60. Formal Language - '

Description Languages for Computer Progrémming,

ed. T.B. Steel, Amsterdam. North Holland Publishing

Company 1966 (266 - 294). |

Landin, P.J. Correspondence between ALGOL 60 and Church's
Lambda liotation. Perts I and II. Comm, ACM. Vol. 8
lo's 2 and 3, 89 - 101, 158 - 165.

Landin, P.J. The Next 700 Programming Languages. Comm. ACM

Vol. 9. March 1966. 157 - 166,

Gries, D., Compiler Construction for Digital Computers,

John Wiley and Sons, 1971,6L - 71.

ibids, 91-2. 1

|

APPENDIX

(Z “X (X *NODIONZO

°1 F1EVL

((X “X)d¥IVISKVEL *NOOLIS ‘SIALONNIIN (X “X)Y
JAGRVISNVIL

. “SIALOMGIR aXTNODNH (2 A N

| X XY

({1 *NODTIEE0D “SICITNAI)R “(IN¥l *LNVISNOO)H

” S ar Tt sarr © - L [
C{X *NOTONI0T *SETIONNI)W *AXIENOUIH (X X)X

(2]

X XX

((ISTVA CINVISNOO)H ‘(X NODZIWIOS- S3ALONNIIM

(X €NODTIII0D “SICLONAI)R “dXIGNODIN (A X)X
X XY
((X *X)dXIDISHVEL NOSTVADT “SIGLONNI)N (X “X)Y¢

X XY

(X “(X “NOOTO¥S0D *SIALONAIIW “SIALONNIIW (X *X)X
R

. X XY

X XY

X TIVL QVIH ONIUISNVEL XY

(X INILMIANOD “INVISNOD)H XY

(X “IN3CIO0UAIN XX

—— e

<?dxss =3 n:&xmv _

0

[+ .
<7dxor<Twaoyds ¥

9

1
i

<Sdxa 9873 <Jexes NEHL < dwos 21 _
S

A:axmv =b: < dxo»

<dxoy ¥0 <Eaxes ~

<“dusy =1t Asmxwv

<Eaxas any Amaxmv_

Ammxwv =4 Ammxov

Aﬂmxmvnoaxvv “
Ao&xmv =1 Aﬂaxmv
(<%300165) |
<IBTFTIUWLDPT> |
<udo3} BuTIls paiond> |
<U{01 ISTIJUT> =!: Aoaxov

<Ud0} JXITFTIUIPT> =2! <IBTFTIUSPT>

SUOT3ONpoRd

T e e IR LSRN

bbb Y

4

a

TN N AT AT T A TR A 1T

———
L

el Rttt S A et Wb Cobs g - AT e B P il e bl e b e A

(penuijuod) I JT4VL

X X¢
T03ASNYEL
X XY

(X008 B CI¥VETOTAT M ¢ (IYVATOICY A
${(Z *X)VOSHYISNVIL *X CTOIGY)W)SNOD ¥O0TTIN (% °Z ‘X X)X

X XY

(X00€ X *(IMvVa103aT X “(XA0E X X “I03AT)H)SKOD
€() MO0TIE)H (X ‘%)Y

(¢G0T & *X)SNOD ‘I¥VATOTAT X () “MOOTE)R (X *X)¥
(X DISLINA () () “MO0TE)X XY
(X *HY0JaVIAS)H XX

(X *HY0JADIS)H XX

X X¢

X XY
X XY

(X 7TIVI (T X *NOOIOWZOD *SIAIONNIIK *dXIASYO)A XY
| IXIDISNVIL

~ dXADISNVAL

X XX

SUOTIOUNJ UOTIeTSURI], PRIBIO0SSY

<

1

w4 ANxUOHav =1t <uexBoads

AmeOHpv ¢<2duas 37 Aaﬁmommv m
: ¢
nHMUOHﬂv =it < ooTg>

Ouzozds ¥ ¥SI <IoTITIUSPT> _

aoxuoﬂav =il AH&UOHpv

00T ¢ Sdxoy <

onuoanv P <AITS

rd
P
[+
o
L]
i
v

Oyootgy ¢ <2dxes _

Amaxvv =41 onUOHﬂv

0

¢ﬁncanommv .u.AoEnomav ¢ <Cuxozds |

<Kyduss _
Quxozds =it Aaemommv
(<lwaozds) |
ADTITIUSPT> =it ncEpommv
¢&Ammxov “3 Ammxvv J0 Aongv 1SYD _
aﬁnmmxwv .u.nmmxwv ¢ Sdxas _

<fyduss _

Amaxwv =4 ammxuv

sSuoTIONPOIJ

P

e e

e e e T

T b

T TR

B s -y

i

TABLE II

Syntactic Entities Required to Follow the Reserved Words

and Punctuation Symbols

Reserved Word Required Successor
or S ik
AND) expression 3

= expression 2

OR expression 4

ELSE expression 5
IF expression 6 i
THEN , expression 6
CASE - expression 6
Is expression 6
OF expression 5

expression 5

ISR A

A parameter form

: expression 5 or parameter
g block O

{ =™ 1 parameter form or block

) i_ any expression or block

block 2

-

CTcoc0b 00 LV J3LNIWd 3ANIT SIHL *

NITLTILYYd aNNO¥9NdvE 3HL NI d31n23X3 qu gor SIHL s e e 4 ool e e e o sk e e ek
18°L ¥ SvM 80r SIdAL 40 1S0D 3LvAIX0dddy 3HL e sde st e e A st e s sl e deofeole e e R e
g3sn S¥M A 19 1S¥371 Ly HOIHM 40 9 002 : SvM 3Y¥D2D 27AVIIVAV 3HIL sfe s oot st e ol e stk e o st e de e e de
*g3r 341 ¥04 3313NvH 3434 $1S3AND3Y INdLN0/1NdNI G1LG 40 Ivl0L ONVYD V¥ ste e e s 2 e st A e sl e s s e sl e dleeole de
1262 * av3y S4uvd 0 : J3HINNd SOYvI QG : Q3INIY¥Yd S39vd e sl s e He B st ofe sl e e s e sl e ool e
nZ*30°00 : Qv3H¥3IA0 W3LSAS O1°10°00 ¢ 3JWIL LIVM RT°*»1°00 = IAIL NdI st e ok A e ok stk ol el ol de sl de ke
L3°9T*02 ¢ 33Sdvd 12°61°00 : 3HIL 14v1S 282yl = 31va 431S0W = 3JWHVN 400 e e s ol ot e s o e e s de e e e Aol e e
190734 g0r-40-3N3 ¥3130dS/LdAYYy ~ AYOLVY08YT ONILNdWOD ALISY3IAINA SHIYINV© LS ste e ol e i 3 e e ol sl e e s el e e e e e

e |
" y2°G6e 00 ?/

NOILV1I3¥de3IINT 43 ON3 8 v 7 @ V 7
Q3131dW0D A11N4SS32INS 3SYvd
898=9NTY1LSS 43 3ZIS
(A
(((F A YYHIILIYM £ 4N A ¢§1)404d
A IVA YVHI3LI¥M =(F A MYHOILIYM 3 49N A 1) ¥0d
C(uZu®A) L3S fudVe=:
$((z2 A 1IVL=: $T A ST ZY()F*(AEX)ISNDD=2A X3)4349dAdT ST A
£ 439 ST A)
s((4¢g%y ONI)Y0d t(¢)d4) 3s713 () N3AHL (9 sy)y3LY3y9 41 (4 *g *V)F ¥SI dod
C{X *INn X ¢2)d3Sans X3 SI 11vl
¢((1*1)aav 23aQ X I¥ (7 fn)lovylans ONI ¢T)U0LI3A (X ¢n *71)3 SI B3SANS
C(A X D3SLINN)IIONOD (A ¢X)3F SI SNOJ
(I x 3S713 (1N X41)13vdl8nsS A N3IHL (N X*1)y¥3Lv3H9 41 I3
(N A 1N X)Aaav ‘T)Y¥OLI3ZA (A¢X)3 ST 3NOD
)
SO((I A 3873 L N3HL n =1 41 3573 N N3HL 10 = 1 41
£] 324300 SI 1) I3 tnN 4 SI L ¢(4 N 233 “1)y¥0LI3A SI A) 313
(y0y¥yYy3 0109 351713 1 733 N3HL 10 = T 41 3$713 1 N341 11 = I 41
$1 32%300 SI 1) I¥ N3HL (N*T1)1¥31V3Y9 dI
¢4 394¥300 SI 4 fN 32¥300 SI A 7 39%300 ST 1) (d48147)F ¥S1 d3LD23A
$(x 40 1 3S¥I) I3 X3 SI J3SI1INND

P

8%°60°TO 1V QJ3LINI¥d INIT SIHL #

NOTLTLYVd INNOYONIVE IHL NI Q31n23X3 SvM 90f SIHL 36 e e e e e st A 3 e sl o e ok sele e e o

PC*6 §F SVM 90f SIHL 40 1S0D 31VWIXOdddy 3IHL 36 e sk e o ol 2 sk e st e s ol e e ok e o

aasn SvH A 19 1SV3IT 1v HIIHM 40 A GOZ ¢ SVYM 3¥0D ITOVIIVAV 3HL ste 3 Sl o ste e e e e A o ofe e o o e ol ok o 3k

“80F 3JHL ¥04 J3TINVH J¥3IM SLS3IND3IY INdINO/ZLINGNI G2lS 40 Iv10L ONvY9 ¢ 5 e sl e e e ol dfe e e ole o ok ke ok
Z2ESZ ¢ AviY SayvI 0] : (0340NNd SJ¥vD 94 : Q2INIY¥d S33vd 3¢ 56 e e o 3l st o ol e e sl ot e o e

6I°C20°00 : QVIHYIAD AILSAS TT*T0°00 = 3JWIL LIVM 8E°9T°00 ¢ 3IWIL NdI 3% 3 3 e 3¢ 3l 3l e sl e s o e o sl 6ok e ok i
2Z*83T*00 ¢ 03Sdv3 SH*2H°00 ¢ IWIL LYvlsS 28¢%l ¢+ 31va AJLSOW 3 JAUN GOO sk sordorkkeor kb ko kkkkk
Q43034 d0C-40-0N3 ¥3100dS/7LdWbY - AYOLYH0AYT ONILNdWO)D ALISYIAINN SM3IYANV©eLS 36 2 3 ol e sle Sl e sle st e ol el ok ok ok e

!

O
e

60°T0°10 ¥/
NOITLVLI3¥d¥3IINI 340 ON3 9 D
J3137dW02 AT1IN4SS3IINS 3SYvd
3 TL6=9NI¥LISS 40 371IS
éd
((INNOD LIOIQOLINI YVHOIILIUM ¢ (ndn)ANIONIJ YVHIILINY
S(X VA ()Y
(329 f()9 fINNDD ONI=:INNOD 14
V3 0139 3S73 (23 0109 fdAT=:X) NIHL T 93IN=X 4JI
SOLSTIEgAT)IdMIDDT=2X $18=:87 X VA ST 9A7T) ()35 ¥ST &
$(:2Y)V CINNDD ONI=:INNOD :1V
(87 0109 3573 ()8 N3HL 0=d71 41) 3S13 (2V 0109 $VAT=:X) NIHL I 9IN =X 41
S(LSITVEVATIANNADTI=:X $TV=:vT ¢X VA SI VA1) ()3 ST v
*C 43¥ ST 871 0 d43¥ SI vl A 43¥ SI X)
: A3 SI GN3IANI4
T 43¢ SI INNOD
S(TALSTT4Z)TdNNDDT (LSIT4Z)3 ST dNdIIT)
(I ONI®LSITZ)TdN¥00T 3ST73 T 93N NIHL IN LSIT=I 41 3573
¢ (I LSIT) N3HL T (I 1S11)=7 41
(T¢LSIT*Z)3 ¥ST TdINIIT
SlaHYn ndSuludVu) ST 1SIT9 f(uddu®uSdn*u¥in) SI 1S1v
)

e R,
e

S(((I A 3ST3 L N3HL N = I 41.3S73 1 N3HL 17 = I 41
T 324200 ST I) IF ¢N 4 SI L (4 N 230 $71)¥0LI3A SI A) 3§73
: (¥0¥¥3 01209 3S73 1 2930 N3HL 1IN =1 41 3S73 1 NI4L 11 = 1 41
*I 32¥320 SI 1) I3 N3HL (N*1)Y¥3LVIy9 d1
*3 32¥302 SI 4 N 32¥302 SI N ¢1 329309 SI 1) (39747)3 §ST ¥IL1I23A
*(X 40 1 3SVvI) I¥ X3 SI 53SLINN

