

University of St Andrews

Full metadata for this thesis is available in

St Andrews Research Repository
at:

http://research-repository.st-andrews.ac.uk/

This thesis is protected by original copyright

http://research-repository.st-andrews.ac.uk/

Formal Methods for Control Engineering:
A Validated Decision Procedure

for Nichols Plot Analysis

A thesis to be submitted to the

UNIVERSITY OF ST ANDREWS

for the degree of
DOCTOR OF PHILOSOPHY

by

Ruth Hardy

School of Computer Science

University of St Andrews

February 2006

Tk.

"Science is simply common sense at its best."
— Thomas Huxley

Abstract

Software and hardware implementations of control systems are commonly used to augment

engineered products by enhancing performance features, such as handling qualities, mis¬

sion critical features, such as energy efficiency, or safety critical features, such as stability.

Classically, a control system is modelled by control engineers with mathematical formulae

to represent the behaviour of the system and these formulae are analysed with respect to

some design criteria. Classical control engineering techniques for this analysis are informal
and numerical, typically involving the plotting and visual inspection of graphs. However,

informal techniques provide no guarantee of the correctness of their results and numerical

techniques only allow the analysis of the system at sample values rather than for all values.

This thesis presents work with automated formal mathematics applied in the field of control

engineering. A method for formal symbolic analysis of control systems, based on the

existing informal, numerical analysis technique, the Nichols plot, is introduced in terms of a

widely applicable decision procedure. The procedure determines the positivity or negativity
of a finitely inflective function, i.e. a function that has a finite number of points of inflection,
based on its convexity. Systems for which this method is applicable are characterised, along
with practical and technological limitations that limit the class of permissible systems.

The Nichols plot Requirements Verifier (NRV) implements this method to produce proofs
that systems meet, or fail to meet, their Nichols plot requirements. NRV is implemented
in the computer algebra system Maple, the formal theorem prover PVS and the quantifier
elimination system QEPCAD. Maple is used for the manipulation and initial symbolic

analysis of the mathematical formulae representing the control systems; PVS and QEPCAD

then provide a formal proof that Maple's results are correct and perform the final analysis

of the system based on these results. The Maple procedures, extensive PVS libraries, and

strategies that automate this process are introduced and the correctness of the underlying

decision procedure for symbolic Nichols plot analysis is shown.

The technique of symbolic Nichols plot analysis is demonstrated using NRV on several

moderate sized case studies and the results are compared with classical Nichols plot analy¬

sis. NRV allows not only the formal assurance of the correctness of results that is lacking in

classical Nichols plot analysis but also the analysis of systems for all values of a parameter

rather than for sample values only.

I, Ruth Hardy, hereby certify that this thesis, which is approximately 40000 words in length,

has been written by me, that it is the record of work carried out by me, and that it has not

been submitted in any previous application for a higher degree.

date ^L,3> Ofr • _ signature ofcandidate.

I was admitted as a research student in September 2001 and as a candidate for the degree

of Doctor of Philosophy in September 2001; the higher study for which this is a record was

carried out in the University of St Andrews between 2001 and 2006.

date 2-^.3 • C) • ?~C>C>£> signature of candidate

I hereby certify that the candidate has fulfilled the conditions of the Resolution and Regu¬

lations appropriate for the degree of Doctor of Philosophy in the University of St Andrews
and that the candidate is qualified to submit this thesis in application for that degree.

date. _ signature ofsupervisor

In submitting this thesis to the University of St Andrews I understand that I am giving

permission for it to be made available for use in accordance with the regulations of the

University Library for the time being in force, subject to any copyright vested in the work
not being affected thereby. I also understand that the title and abstract will be published,

and that a copy of the work may be made and supplied to any bona fide library or research
worker.

date. IS '0%. 3-OC)h _ signature ofcandidatt

Acknowledgements

Thanks go to John Hall (DSTL), Rick Hyde (Mathworks) and Yoge Patel (QinetiQ) for

sharing their insights into control engineering, and to Rob Arthan (Lemma 1), Richard

Boulton, Tom Kelsey (University of St Andrews), Colin O'Halloran (QinetiQ) and Nicholas

Tudor (QinetiQ) for many helpful discussions.

I am grateful to Hanne Gottliebsen (Queen Mary, University of London) for allowing me

to use her transcendentals library and for the useful discussions about PVS, which allowed

me to benefit from her experience.

Thanks go to Tim Storer and Amanda Martinson for allowing themselves to be used as

sounding boards and for the many useful discussions that followed. Thanks also go to Tim

for providing many useful latex packages that were used in the typesetting of this thesis.

I am grateful to my supervisor, Roy Dyckhoff, and second supervisor, Steve Linton, for

their continuing help and guidance and to Ursula Martin for the help and guidance she

provided, especially in the early stages of this work.

Thanks also go to my family for the support and encouragement they have given me

throughout my studies and to David whose patience, support and love has been invaluable

during my work toward this thesis.

Contents

List of Figures v

List of Tables vii

1 Introduction 1

1.1 Aims and Motivation 2

1.2 Main Hypothesis 5

1.3 Results and Achievements 5

1.4 Thesis Structure 7

2 Classical Control System Development 9

2.1 Modelling Dynamic Systems 10

2.1.1 Differential Equation 10

2.1.2 Laplace Transform and Transfer Function 11

2.1.3 Fourier Transform 13

2.1.4 System Configuration 14

2.2 Classical System Analysis 16

2.2.1 Graphical Analysis 17

2.3 Development Tools 21

3 Formal and Symbolic Methods for Control System Development 23

3.1 Hybrid Systems and Model Checking 24

3.2 Qualitative and Semi-Quantitative Reasoning 27

3.3 Formal and Symbolic Methods for Analysis 31

i

3.4 Code Generation and Verification

4 Computer Mathematics and Automated Theorem Proving

4.1 Computer Mathematics Systems

4.1.1 Maple

4.2 Automated Theorem Proving

4.2.1 PVS

4.3 Quantifier Elimination

4.4 Formalised Mathematics

5 A Decision Procedure for Positivity and Negativity of Finitely Inflective Func¬

tions

5.1 Convexity

5.2 Points of Inflection

5.3 Geometric Properties of Curves

5.4 Classification

5.5 Language C\

5.6 Minimal Isolated Formulae

5.6.1 Quantifier Isolation

5.7 Decision Procedure for Functions of One Variable

5.8 Decision Procedure for Functions of Two Variables

6 Formalisation of the Decision Procedure

6.1 Convexity

6.2 Points of Inflection

6.3 Geometric Properties of Curves

6.4 Classification

6.5 Language L\

6.6 Quantifier Isolation

6.6.1 Normal Forms

6.6.2 Formula Manipulation

11

33

36

37

39

42

43

46

48

50

51

53

55

56

57

59

60

64

66

68

69

74

78

80

83

91

91

94

iii

6.7 Decision Procedure for Functions of One Variable 99

7 Automated Formal and Symbolic Nichols Plot Analysis 108

7.1 Requirements for Formal and Symbolic Nichols Plot Analysis 109

7.2 Overview of the Nichols Plot Requirements Verifier Ill

7.3 Interactions Between Maple, PVS and QEPCAD 114

8 Case Studies 121

8.1 Nichols Plot Requirements 122

8.2 Inverted Pendulum 122

8.2.1 Modelling an Inverted Pendulum 123

8.2.2 Analysis of an Inverted Pendulum that Meets its Requirements . . . 124

8.2.3 Analysis of an Inverted Pendulum that Fails to Meet its Requirements 127

8.3 Disk Drive Read System 129

8.3.1 Modelling a Disk Drive Reader 129

8.3.2 Analysis of a Disk Drive Reader that meets its Requirements 131

8.4 Case Study Conclusions 134

9 Conclusions and Further Work 136

9.1 Conclusions 136

9.2 Further Work 138

9.2.1 Nichols Plot Requirements Verification 138

9.2.2 Applications of the Decision Procedure 141

A Time-Domain Analysis 143

A.l State-space Representation 143

A.2 Time-Response Analysis 145

A.3 Time-Response Requirements 147

A.4 Basic Control Actions: The PID controller 148

B PVS Libraries Formalising the Decision Procedure 151

C PVS Libraries used by NRV 241

IV

Bibliography 273

List of Figures

2.1 A simple spring/mass/damper system 11

2.2 System configurations 15

2.3 Nyquist contour (left) and example Nyquist plot (right) 17

2.4 An example Bode diagram 18

2.5 An example Nichols plot showing an exclusion region (shaded) 19

2.6 A Nichols plot showing a region (unshaded) in which the handling qualities

of an aeroplane are good 20

2.7 Nichols plots showing hexagonal (left) and extended hexagonal (right) ex¬

clusion regions 21

4.1 Illustration of 2-dimensional (left) and 3-dimensional (right) plotting qual¬

ity of command line Maple 39

4.2 Illustration of 2-dimensional (left) and 3-dimensional (right) plotting qual¬

ity ofMaple GUI 40

5.1 Convexity of a curve 52

5.2 A variation of the topologist's sine curve on [—0.05, 0.05] by Maple 54

7.1 The Maple-PVS-QEPCAD system Ill

7.2 Nichols plot showing a hexagonal exclusion region around (—7r, 0) 112
7.3 Illustration of conversion from X to uj (a) 115

7.4 Illustration of conversion from X to oj (b) 116

8.1 Nichols plot showing a hexagonal exclusion region around (—ir, 0) 122
8.2 Inverted pendulum 123

v

vi

8.3 Block diagram for an inverted pendulum system 124

8.4 Nichols plot for an inverted pendulum system 125

8.5 Nichols plot for an inverted pendulum system 127

8.6 Block diagram for a disk drive read system 130

8.7 Nichols plot for a disk drive read system 132

A. 1 Classes of inputs for time-response analysis 146

A.2 Classes of system behaviour in time-response analysis 147

A.3 An example time-response curve 149

List of Tables

5.1 Rules for transfer of quantifiers 61

8.1 Values for parameters in an inverted pendulum system 124
8.2 Values for parameters in a disk drive system 131

A. 1 Response analysis for systems with quadratic transfer functions 148

A.2 Control actions 149

A.3 PID effects on response 150

vii

Chapter 1

Introduction

This thesis describes research into integrating automated formal and symbolic analysis into

the classical analysis of control systems via Nichols plot analysis. An introduction to the
relevant aspects of classical control system development and analysis is given along with

a discussion of existing formal and symbolic techniques for control system analysis. A

widely applicable procedure for deciding the positivity or negativity of finitely inflective

functions is given, along with a description of an implementation of this procedure specifi¬

cally applicable to formal and symbolic Nichols plot analysis of control systems.

Standard notation from the fields of control engineering, computer algebra and theorem

proving are used where possible throughout this thesis. Where conflicts in notation arise

one convention is chosen. This thesis adopts the convention in control engineering of

referring to the mathematical formulae modelling the behaviour of a control system, rather

than an implementation in software or hardware, as the control system.

In Section 1.1 the aims and motivation for the research are described. The main hypoth¬

esis is detailed in Section 1.2. Section 1.3 contains a summary of the main results and

achievements of the work. An overview of the structure of this thesis is given in Section

1.4.

Several papers on the research presented in this thesis have been published. In Boulton et

1

2

al [23] an overview is given of the early stages of research (led by Ursula Martin) toward

integrating formal methods into control system analysis. This represents the initial investi¬

gations into the use of formal methods in the analysis of control systems based on classical

graphical analysis techniques. The paper presents an incomplete set of conditions for de¬

termining the positivity/negativity of a convex or concave function and demonstrates their

use in the analysis of a very simple control system. In [58, 59, 60], 1 present the results of
later stages ofmy research, including a complete set of conditions for determining the pos¬

itivity/negativity of a convex or concave function (see Section 5.3), a decision procedure

for determining the positivity/negativity of a finitely inflective function (see Section 5.7),

the classification of formulae to which this decision procedure applies in terms of a logic

C\ (see Section 5.4), and an implementation of this procedure designed specifically for the

automated formal analysis of Nichols plot requirements (see Chapter 7). Related work in

which I was peripherally involved is presented in [24] (see Section 3.3).

1.1 Aims and Motivation

The process for designing control systems is well established and well documented [22,

102, 108]. In traditional control engineering mathematical formulae modelling the be¬

haviour of dynamical and control systems are developed, often as difference or differential

equations. These formulae or models can be considered to be specifications for systems,

which may later be implemented in software or hardware. In control engineering, the model

rather than its implementations is referred to as the control system. Control systems are

analysed with respect to some design criteria to ensure they display the correct behaviour.
This analysis traditionally uses numerical techniques, often involving the visual inspection
of a number of plots, or the performance of a number of simulations. Systems are analysed

for a number of sample inputs and the assumption is made that the results of this analy¬

sis also hold for all the values between sample points. This assumption is not sound and

may lead to incorrect conclusions being drawn about a system if it behaves unexpectedly

between sample points. This problem is amplified when the precise values of parameters

3

are unknown (uncertain parameters); the system is only analysed for a limited number of
values of the parameters (and combinations of values) and the assumption is made that the

results of the analysis hold for any values of the parameters (and combination of values).

Conclusions are drawn about the entire system without formal justification.

Although the control system requirements that are classically expressed graphically have

precise underlying meanings that can be expressed formally, the analysis is performed in¬

formally, with the analyst relying on the visual representation rather than on a mathematical

expression of the requirements as the basis for analysis.

The design and analysis of control and dynamical systems is the first stage in the devel¬

opment of a product. In the second stage software and/or hardware is developed from the

models designed by the control engineer. The software (or hardware) is integrated to form

the complete system and various tests are performed on it; for instance, rig testing and flight

testing are performed on aeroplanes. The final stage of development is the certification of
the system.

Since control system software and hardware are developed from the control system models

and are designed to display equivalent behaviour, it is important to ensure that the models

are correct. It is now widely accepted that the informal and numerical techniques for control
and dynamical system analysis are not sufficient to ensure the correct behaviour of systems.

Following the in-flight breakup of TWA Flight 800 in 1996, the National Transport Safety

Board was forced to conclude that the design and certification process for aircraft fuel sys¬

tems was flawed [100], The fuel system of the aeroplane had been certified as "safe" by
the Federal Aviation Administration (FAA), i.e. it had been certified that there was nothing

that could ignite the fuel/air vapour in the tank. However, during the accident investigation,

tests simulating the air pressure, altitude and fuel mass loading of TWA flight 800 showed

that the temperature in the fuel tank could exceed the ignition temperature of the fuel/air

vapour. The investigators found that the cause of the accident was poorly maintained hard¬

ware, which caused a spark that ignited the fuel/air vapour in the tank. Nevertheless, an

underlying design flaw had been revealed, showing the certification to be unreliable. This

4

case highlights the problems inherent with simulation and numerical analysis; during the

design process the system would have been tested for a range of different air pressures,

altitudes, fuel mass loadings, etc, but the specific combination that was identified during

the accident investigation was overlooked.

Owing to the inherent difficulty of identifying the exact cause of most catastrophic acci¬

dents and to the confidential nature of the aerospace and auto industries it is difficult to
cite examples of flawed control system design causing accidents. It has, however, been ac¬

knowledged [108, p. 26] that several air-vehicle accidents, which were initially attributed

to implementation faults, were, in fact, due to procedural failures or design errors, with the

software performing exactly as specified.

The cost of implementing a change to a system increases substantially as the development

moves from one stage to the next [108, p. 183]. For this reason, it is desirable to detect

errors at as early a stage as possible.

There has not yet been a widespread integration of reliable formal and symbolic analysis

techniques into control system development. In order for this to be achieved, the formal and

symbolic analysis methods must be easy to use and must provide sufficient improvements
over existing analysis techniques.

Symbolic techniques provide a clear benefit over numerical techniques as they allow anal¬

ysis to be performed over a range of values rather than at specific sample points; however,

they do not provide guarantees of correctness unless implemented in a suitably formal

setting. Formal theorem proving techniques provide guarantees that results provided are

correct; however, these techniques are largely unfamiliar to control engineers and are con¬

sidered generally quite difficult to use, especially for those with little or no background in

formal methods. This complexity of formal methods makes their integration into existing

control system development infeasible without high levels of automation.

5

1.2 Main Hypothesis

In this thesis it is argued that

1. formal and symbolic methods can be integrated into classical informal and numerical

analysis of linear, continuous-time, single-input single-output control systems in an

unobtrusive manner,

2. using formal and symbolic techniques rather than the visual analysis of suites of plots
increases the reliability of the results, both removing the possibility of erroneous

results due to plotting errors and allowing systems to be analysed for all input values

rather than just sample values,

3. formal and symbolic techniques can be used to analyse systems with uncertain pa¬

rameters for all combinations of all permissible values of the parameters rather than

just sample combinations,

4. the formal and symbolic analysis of Nichols plots in particular can be automated and

integrated unobtrusively into classical control system development.

1.3 Results and Achievements

The underlying mathematical representation of a particular form of control system require¬
ments — Nichols plot requirements — was examined. These requirements were reduced
to their most basic form and a decision procedure was developed for use in the analysis
of Nichols plot requirements. The procedure is widely applicable and can be used to de¬
cide the positivity or negativity of finitely inflective functions (as defined and explained in

Chapter 5).

A logic L\ is developed to classify the formulae to which the procedure applies. The

concept of a minimal isolated formula is introduced and a quantifier isolation algorithm to

convert arbitrary formulae in C\ into this form is introduced.

6

The underlying theory of the procedure is built in the higher order theorem prover PVS as

an extensive library. Proofs of the completeness and termination of the procedure and the

quantifier isolation algorithm have also been developed in PVS.

The Nichols plot Requirements Verifier NRV uses the procedure as the basis for formal and

symbolic Nichols plot analysis. NRV was developed in the Maple-PVS-QEPCAD system,

which exploits the symbolic computation provided by the computer algebra system Maple,
the formal techniques provided by the theorem prover PVS and the quantifier elimination

routines provided by QEPCAD. Both Maple and PVS are industry standard tools and are

highly programmable. PVS has a high level of built in automation and provides a powerful

strategy language for developing further automation.

NRV is designed to be used by control engineers with little or no knowledge of formal
methods. NRV provides a graphical user interface, similar in appearance to a java applet,

which allows the user of the system to have no knowledge of the underlying decision pro¬

cedure, formal methods or the Maple or PVS syntax.

NRV is highly automated and, in theory, can automatically produce a proof (if one exists)
that a system meets its requirements or a proof (if one exists) that the system does not

meet its requirements. In practice, several case studies have been performed and NRV has

produced promising results rarely failing to find proofs. In cases in which a proof is not

found automatically, NRV attempts to produce useful feedback to the analyst, indicating

where the analysis failed, whether the failure was within a Maple computation or in a PVS

proof, and highlighting areas that may require closer inspection.

It has been indicated by control engineers from companies such as DSTL, QinetiQ and The

Mathworks that automated Nichols plot analysis would be useful if it could be applied to

control systems of degree 5. NRV is highly successful in the analysis of control systems of
this degree and has been successfully applied to control systems of up to degree 10.

7

1.4 Thesis Structure

In Chapter 2 a brief introduction to the relevant aspects of classical control system devel¬

opment is given. Various methods for the analysis of control systems in the complex and

frequency domain are introduced and Nichols plots are discussed in detail. The commonly

used tools for control system development are introduced and their strengths and weakness

are discussed.

Chapter 3 discusses existing applications of formal and symbolic techniques to control

system development and analysis. The benefits and particular usage of each method is

highlighted and the areas of control system development that could benefit further from
formal and symbolic techniques are highlighted.

The general topics of computer mathematics and theorem proving are introduced in Chapter

4. The strengths and weaknesses of computer algebra systems and theorem provers are

introduced and shown to be complementary. The computer algebra system Maple and

theorem prover PVS are introduced in some detail, highlighting some of the features that

are important in the development of automated formal and symbolic formal methods for
Nichols plot analysis.

In Chapter 5 a procedure for deciding the positivity or negativity of finitely inflective func¬
tions is described. The basic mathematical concepts upon which the procedure relies are

introduced and the underlying set of conditions for determining the positivity or negativ¬

ity of convex or concave functions is described. The formulae for which the procedure is

applicable are classified in terms of a fragment of logic and an algorithm for converting

arbitrary formulae into a form that can be analysed using the decision procedure. The pro¬

cedure is described first for functions of one variable then extended to functions of two

variables. The formalisation of the decision procedure in the higher order theorem prover

PVS is described in Chapter 6 .

The method for applying the decision procedure to formal and symbolic Nichols plot anal¬

ysis is described in Chapter 7. The requirements of any system in which this method is to

8

be automated are described and an implementation in the Maple-PVS-QEPCAD system,

the Nichols plot Requirements Verifier (NRV), is introduced.

In Chapter 8 several moderate sized case studies using the NRV are presented. These case

studies show different aspects of the NRV and illustrate the improvements this makes over

classical Nichols plot analysis.

In Chapter 9 conclusions are drawn about the applicability of formal and symbolic methods
to classical control system analysis. The success of the method for formal symbolic Nichols

plot analysis and of the NRV are discussed. Directions for further development of formal
and symbolic Nichols plot analysis are discussed along with potential improvements to the
NRV. Other applications for the underlying decision procedure, both within and outwith
the field of control engineering, are discussed.

An introduction to the analysis of control systems in the time domain is omitted from Chap¬

ter 2 as this thesis does not deal directly with this form of analysis; however, for complete¬

ness, a brief introduction to this is presented in Appendix A, along with an introduction to

a commonly used form of controller, the PID (Proportional/Integral/Derivative) controller.

The PVS libraries for the formalisation of the decision procedure and it foundations are

given in Appendix B and the libraries used in the formal analysis of control systems are

given in Appendix C.

Chapter 2

Classical Control System Development

Many modern dynamical systems require a software or hardware control system to control

their behaviour in order to meet certain design criteria. These criteria can be performance

related, such as having desirable handling qualities, or safety or mission critical, such as be¬

ing stable or energy efficient. These software or hardware control systems are implemented

from the control systems as represented mathematically by control engineers.

This chapter presents some of the basic concepts and methods used by control engineers in
the development of linear1, continuous-time, single-input single-output control systems.
A detailed treatment of these concepts can be found in any standard text book on control

systems, such as [43, 102, 124], This chapter focuses on the modelling and analysis of

control systems in the complex and frequency domains and highlights the informal and

numerical nature of classical analysis techniques.

In Section 2.1 various mathematical representations used in modelling continuous-time

systems are presented. Section 2.2 introduces classical control engineering methods for

analysing systems with respect to various design criteria, focusing particularly on the anal-
1 For a system to be linear it is necessary that the principle of superposition and the property of homo¬

geneity hold. The principle of superposition holds if, given that the response of the system to an input X\ is

t/i and the response to £2 is 2/2. the response of the system to £1 +£2 is 2/1 +2/2- The property of homogeneity
holds if, given that the response of a system to an input a: is y, the response of the system to fix is fiy.

9

10

ysis of systems using Nichols plots. In Section 2.3 the properties of computer-aided control

system design (CACSD) packages are described with reference to some of the most com¬

monly used systems.

2.1 Modelling Dynamic Systems

Dynamical systems can be considered in several ways and at several different levels of
abstraction. They are generally considered in terms of their response or behaviour when

exposed to some input or force. In general, systems are modelled mathematically in one of
three domains: (1) the time domain, (2) the complex domain (also known as the s—domain),

(3) the frequency domain. In this section several different representations are introduced.

2.1.1 Differential Equation

Systems of ordinary or partial differential equations (ODEs or PDEs) are used to model the

outputs of continuous-time systems in terms of the rates of change of their state variables

over time. A general linear differential equation of order n for a system with input u(t),

output y(t) and initial conditions y(0) = y0, y'(0) = y\,..., yn-1(0) = yn-\, is shown in

Equation 2.1.

anl/n{t) + °>n-iyn 1(f) + • • • + aiy1 (t) + cioy(t) = u(t). (2.1)

Example 2.1 A simple spring/mass/damper system (see Figure 2.1), with the parameters

m, k and b representing the mass of the body attached to the spring, the spring constant (the
ratio offorce applied to the spring and the corresponding displacement), and the coefficient

by which friction is proportional to the velocity of the body, respectively. The input to the

system u(t) is the externalforce placed upon the system and the output y{t) is the resulting

displacement of the body at time t.

11

m

i i

i
y(t>

k = spring constant

b= coefficient of friction
for block in container

u(t) = external force placed
on system at lime t

y(t)= output at time t

Figure 2.1: A simple spring/mass/damper system.

The differential equation for the spring/mass/damper system ofFigure 2.1 is:

my"{t) 4- by'(t) + ky(t) = u(t) (2.2)

with the initial conditions given by equations

y{0) = 0, y'(0) = 0.

2.1.2 Laplace Transform and Transfer Function

The Laplace transform provides a method for deriving a representation of a system in the

complex or s domain from equations representing it in the time domain, with

C : Rr —» Cc.

Given a continuous-time linear system, the resulting equation is a rational equation in the

complex variable s, which is comparatively easy to solve.

The Laplace transform of a function / of time is defined in terms of a transformation

integral 2
POO

C[f] = F = \s. / f(t)e-stdt. (2.3)Jo

2The definition given here is of the unilateral Laplace transform rather than the bilateral Laplace trans¬

form as we are interested only in the former.

12

The Laplace transform for linear differential equations exists only if the transformation

integral converges. For / to be transformable, it is sufficient that
f'OO

/ \f (t)\e~at dt < oc (2.4)Jo
for some real positive a. If there exist real constants M and a such that |/(f)| < Meat for
all positive t, the integral will converge for a > a [43, 41],

Using the transformation integral, the Laplace transform of the derivative of a signal over

time is calculated as

C[fn] = Xs. snF(s) - sn~7(0) - sn~7'(0), • • •, -/"-1 (0). (2.5)

This is an important transformation and can be substituted directly into sets of differential

equations to give the Laplace transform. For instance, given a general linear differential

equation (see Equation 2.1) with all initial conditions set to zero (i.e, /(0) = 0, /'(0) =
0,..., /n_1 (0) = 0), the Laplace transform is

ansnY(s) + an-1sn~1Y (s) + • • • + aisF(s) + a0U(s) = U(s). (2.6)

The Laplace transform can be used to produce the complex valued transferfunction, which

represents the ratio of the output variable to the input variable in the s-domain. The transfer

function F(s) is simply calculated as the quotient of the Laplace transform of the output of
the system Y(s) and the Laplace transform of the input of the system U(s) with all initial
conditions assumed to be zero .

The transfer function of a general linear differential equation (Equation 2.1) is

F(s) = = I . (2.7)
U(s) cnsn + an—\sn 1 + • • • 4- ajs + cto

Example 2.2 The Laplace transform of the spring/mass/damper system ofExample 2.1 is

as follows:

ms2Y(s) + bsY(s) + kY(s) = U(s) (2.8)

and thus the transferfunction is:

13

2.1.3 Fourier Transform

The Fourier transform provides a method for deriving a representation of a system in the

frequency domain from the set of differential equations representing it in the time domain.

T : Rr —> Rc

The Fourier transformation of a function / of time is defined in terms of a transformation

integral3

/OO f(t)e~jutdt (2.10)
•OO

and exists for / if

/OO |/(f)| dt < oo. (2.11)
-OO

The Fourier transformation is clearly closely related to the Laplace transformation (Equa¬

tions 2.3 and 2.4). The transformation integrals differ only in the complex variable.4 Given

this fact, the Fourier transform can be calculated directly from the Laplace transform simply

by substituting s = ju>. For instance, given a general linear differential equation (see Equa¬

tion 2.1) with all initial conditions set to zero (i.e, /(0) — 0, /'(0) = 0,..., /n_1(0) = 0),
the Fourier transform is

an(juj)nY(juj) + an-1(ju>)n-1Y(ju>) + • • • + adutY(ju) + a0Y(jcu) = U(ju). (2.12)

The function gained from substituting s — jio into the transfer function of a system is

also referred to as a transferfunction. The transfer function of a general linear differential

equation (Equation 2.1) is

G(io) = l^4 = —— 1 7 . (2.13)U(uj) an(]u))n + an-1(jcj)n 1 -\ haijtu + oo

3In control engineering j, rather than i, is used to represent the complex constant.
4The lower limit of the Fourier transformation integral may differ from the lower limit of the Laplace

transformation integral. However, by defining f(t) only on I > 0, as is often desired, the lower limit of the
Fourier transformation integral can be considered to be 0. This is equivalent to the lower limit of the unilateral

Laplace transformation integral.

14

Example 2.3 The transfer function for the spring/mass/damper system of Example 2.1 is

as follows:

G(io) = ^4 = tAt r- (2-14)U (uj) ~muj2 + bju + k

2.1.4 System Configuration

Systems can often be modelled hierarchically; that is, a system can be built from a number

of subsystems, which in turn can be built from subsystems. This hierarchical modelling

allows distinctions to be made between a controller and the dynamical system it controls

(often referred to as the plant), and to be made between components within the controller

and the plant. This hierarchical structure can be modelled graphically using block diagrams

[43, pp. 62-66]. Block diagrams are graphical representations of the mathematical models
of systems and are composed of a number of blocks representing a system component

and directed edges between them. Each block can itself contain a block diagram allowing

complex systems to be considered at different levels of abstraction.

There are several common system configurations, including sequencing, closed-loop, closed-

loop with a component in the feedback path and summation (see Figure 2.2), by which most

systems can be represented. Closed-loopfeedback systems [43, p. 174] (also referred to as

closed-loop systems) allow some measurement of the actual output of a system to be com¬

pared to the desired output and use the difference as a means of control. Often a component

in the feedback path amplifies the difference, which is then used in the control process to

ensure the difference is continually reduced. Open-loop systems operate without feedback,

directly generating output in response to an input signal.

For each of the different system configurations there is a corresponding formula for deter¬

mining the transfer function of the system as a whole from the transfer functions of the

sub-systems [43, p. 64], The simplest of these system configurations contains two systems

represented by the transfer functions H(s) and G(s) in sequence. The transfer function for
such a system configuration can be obtained by taking the product of the transfer functions

15

a) Sequencing
u

H G
Y

b) Closed-loop
U O G

c) Closed-loop with
feedback component

U O G
Y

H

d) Summation
G

U

H

Y

for the subsystems:

Figure 2.2: System configurations.

HG{s) = H(s)G(s). (2.15)

The transfer function for a system G(s) contained within a loop (the closed-loop transfer

function) is obtained by evaluating and simplifying the following expression:

G(a)
1 + G(s)'

In this configuration G(s) is referred to as the loop transferfunction [43, p. 65].

(2.16)

A closed-loop system with a feedback component H(s) has a transfer function obtained

by evaluating and simplifying the following:

G(s)
1 + G(s)H(s)'

In this configuration G(s)H(s) is referred to as the loop transferfunction [43, p. 65].

(2.17)

16

The transfer function for a system consisting of the summing of the output of two systems

G(s) and H(s) is obtained by evaluating and simplifying the following:

G{s) + H(s). (2.18)

2.2 Classical System Analysis

Systems are analysed with respect to their specific design requirements. Analysis can be

performed in the time domain, i.e, the response of the system to inputs over time, in the

frequency domain, i.e, response of the system to inputs over frequency, or in the complex

plane5. This section focuses on graphical methods for system analysis in the frequency
domain and complex plane. A brief introduction to system analysis in the time-domain is

given in Appendix A.

Many classical methods for system analysis focus on the property of stability. A system can

be considered stable if for any bounded input the system has a bounded output (bounded-

input,, bounded-output stability). This definition of stability merely states whether a system

is stable or not (sometimes referred to as absolute stability) but no inference is made about

the degree to which the system is stable (relative stability). In general, stability is inversely

proportional to performance and a balance must be found between the two. Modern fighter

aircraft have a lower degree of relative stability than passenger aircraft as they require

greater manoeuvrability. Absolute stability is a requirement for virtually all systems.

In the complex plane, the stability of a linear system can be determined by analysing the

poles (the roots of the denominator) of the transfer function representing it. A system is

stable if all the poles are in the left half of the complex plane (the poles have negative real

parts), and it has a good transient response when the poles and zeros are away from the

y-axis [43, p. 294],

"'The complex plane is also referred to as the s-plane in control theory literature.

17

2.2.1 Graphical Analysis

There are three main graphical analysis techniques used in the analysis of systems in the

frequency or complex plane: the Nyquist plot (complex plane), Bode diagrams (frequency

domain) and Nichols plots (frequency domain).

Nyquist stability analysis [43, pp. 470-487] allows stability of a closed-loop system

F(s) = t0 be determined from the analysis of its loop transfer function L(s). The

analysis relies upon Cauchy's theorem or principle of the argument. The Nyquist contour
that encloses the right-hand s-plane is mapped into the L(s)-plane to give a Nyquist plot

(Figure 2.3).

The Nyquist stability criterion states that for a closed-loop system F(s) = yq^~y to be
stable, the Nyquist plot must make 1 counter-clockwise encirclement of the point (—1,0)
for each pole of L(s) lying in the right-hand plane and the plot must not encircle the

point (— 1,0) if no poles of L(s) lie in the right-hand plane. The proximity of the plot
to the stability point (—1,0) is a measure of the relative stability of the system. If the

plot passes through the point (—1,0) then the system is marginally stable. This method of

analysis requires that the number of poles of L(s) with positive real parts be known and
thus requires calculation using complex mathematics.

18

Bode diagrams and Nichols plots provide graphical representations of the response of a

system in the frequency domain. A system is exposed to a sinusoidal signal as input and

produces a sinusoidal output. The input sinusoid has constant amplitude but varying fre¬

quency. The system is analysed by comparing the output sinusoid to the input sinusoid.

The output sinusoid may have a different magnitude than the input and may also have

undergone a displacement of waveform. The proportion by which the magnitude of the

input sinusoid had increased is called the gain, which is often expressed in decibels. The

displacement of waveform of the sinusoid is known as phase-shift and is measured in

degrees.

The Bode diagram [50, p. 34] (e.g. see Figure 2.4) consists of two graphs: one plotting the

phase-shift of the output sinusoid against logarithm of frequency and the other plotting the

gain in decibels of the output sinusoid against the logarithm of frequency.

■5 "18°

1
-360

Bode Diagram

-540

10"z 10

Frequency (rad/sec)

Figure 2.4: An example Bode diagram.

The Nichols plot [43, p.435] (e.g. see Figure 2.5) (also known as a Nichols chart) plots

the gain (in decibels) against the phase-shift of the output sinusoid as the frequency varies.

Nichols plots often show exclusion regions that are used in the analysis of systems.

19

Nichols Chart

Figure 2.5: An example Nichols plot showing an exclusion region (shaded).

Nichols plots and Bode diagrams are very closely related: a Nichols plot can be constructed

from a Bode diagram by reading the values of the gain and phase-shift for particular fre¬

quencies and plotting the gain against the corresponding phase-shift. Requirements that

can be expressed in terms of Bode diagrams can be expressed in terms of Nichols plots,

allowing equivalent analysis to be performed.

Nichols Plots

Nichols plots can be constructed by calculating the gain and phase-shift of a system F

explicitly using Equations 2.19 and 2.20 and plotting the gain against the corresponding

phase-shift

gain = 201og10(|F(jo;)|) (2.19)

phase-shift = argument (F(ju>)) —

arctan {mm) + 180k
90 + 180A: [K(F(ju;)) = 0]

(2.20)

where 3? denotes the real part of a complex number and k is some integer. When using
arctan to calculate the value of phase-shift one must take into account the fact that the

range of arctan is restricted to (—90, 90) (or (—|) in radians). If the shift in phase at
uj is greater than 90° then arctan must be adjusted by an appropriate multiple k
of 90 to give the phase-shift.

20

The point (OdB, —180°) on the Nichols plot corresponds to the stability point (—1, 0) on
the Nyquist plot [43, p. 487]. Just as the proximity of a Nyquist plot to the stability point

is a measure of relative stability (see Section 2.2.1) so is the proximity of the Nichols plot.

The proximity of the Nichols plot to the stability point is often measured in terms of the

gain margin and the phase margin. The gain margin is the reciprocal of the gain at the

frequency where phase-shift is —180° and the phase margin is the difference between the

phase-shift at the frequency where the gain is OdB and —180°.

More complex analysis of the response of a system can also be determined by examining
Nichols plots. The plot can be used to determine relative stability, but can also be used
to determine other aspects of the response of the system. Nichols plot requirements are

specified in terms of bounded regions on the plane that the plot must either be inside or be

outside. The specific regions depend upon purpose and can be as restrictive as required.
For example, the High Incidence Research Model (H1RM) [48, p. 49] specifies a region
within which the handling qualities of an aeroplane are good, i.e.it has a good response

(Figure 2.6).

Good response

-350 -300 -250 -200 -150 -100 -50 0
Phase (degrees)

Figure 2.6: A Nichols plot showing a region (unshaded) in which the handling qualities of
an aeroplane are good.

Common regions to be avoided are a hexagon about the point (—180,0), passing through
the points (-180,-6), (-145,-3), (-145,3), (-180,6), (-215,3), (-215,-3) and an

extended hexagonal region [108, p. 243] (see Figure 2.7). In general, a good balance

21

between stability and performance is achieved when the plot is close to, but does not enter,

these regions.

Figure 2.7: Nichols plots showing hexagonal (left) and extended hexagonal (right) exclu¬

sion regions.

'-6 " '-5' "_4 -3 "-2 -i 0

phase-shift (radians)

-6 -5 -4 -3 -2 -1 0

phase-shift (radians)

2.3 Development Tools

There are many packages available for computer-aided control system design (CACSD).

However, only a few CACSD systems are commonly used in industry, academia and educa¬

tion. The most popular are the freeware product Scilab [109] and the two commercial prod¬
ucts the Mathworks' MATLAB [68] (MATrix LABoratory) and the National Instrument's

suite of tools Matrix* [95]. These tools are so pervasive in control system development that

they are used to introduce basic concepts of control system design in several introductory
textbooks [43, 101, 114].

These systems are all at their core numerical computing systems providing libraries of

generic mathematical functions and algorithms. Each of these systems provides efficient
numerical computation, clear plotting graphics and allows the extension of the functionality
of the systems by the inclusion of modules (MATLAB and Scilab refer to the modules

as toolboxes, Matrixx refers to them as Add-Ons). Specialised libraries of functions and

22

algorithms for control system development and analysis are provided by means of modules
for each of the systems. Dynamic systems can be represented in each of these systems

in mathematical form and their response to various inputs can be simulated and analysed

using classical techniques for control system analysis, including Nichols plots.

The systems are matrix-based, that is, data is represented in matrix form, and have an

inherent ability to handle matrices (basic matrix manipulation, concatenation, transpose,

inverse etc.,). This allows complex calculations on large data sets to be performed effi¬

ciently; however, they have no inherent ability to perform symbolic computation. This

means that the response of systems to a continuous range of inputs can not be analysed di¬

rectly, rather the system is analysed at sample values and then assumptions are made about
the system's response over the range based on the results at the sample points. Systems

containing parameters with a range of values must also be analysed at sample values rather

than symbolically for all values of the parameter. MATLAB and Scilab provide links to

the computer algebra (CA) system Distributed Maple to allow a number of symbolic oper¬

ations to be performed from these systems using their language and syntax; however, these

symbolic operations are not integrated into any control system analysis performed by these

systems.

Although the input to each of the core computing systems is textual each can be linked

with a graphical development environment (GDE), in which systems can be developed

as hierarchical block diagrams. For example, the Simulink GDE [38] is closely coupled

with MATLAB, the Matrixx suite includes the SystemBuild GDE [96] and Scilab can be

extended with Scicos Toolbox [99] to provide a GDE. Systems modelled in the GDEs can

be simulated and analysed from the core numerical computing systems. Tools exist to

automatically generate code from systems modelled in the GDEs but no formal guarantees

are provided that the code accurately implements the behaviour of the model.

Chapter 3

Formal and Symbolic Methods for

Control System Development

Research into integrating formal or symbolic methods into the development of control sys¬

tems generally falls into one of two categories: firstly, design verification, in which a de¬

sign specification, usually in the form of a mathematical representation of the dynamic

behaviour of a system, is analysed with respect to some design criteria and secondly, imple¬

mentation verification, in which a software or hardware implementation is verified against

a system specification.

Formal and symbolic methods for design verification can be further divided into those

methods that are based on existing development techniques and those that introduce new

methods for development, often based on techniques commonly used in computer science.

New methods for development include new methods for modelling systems and their re¬

quirements as well as new methods for analysis. These methods are often unfamiliar to
control engineers, which may hinder their widespread inclusion in control system devel¬

opment. Methods based on existing analysis techniques do not require any fundamental

change in modelling or analysis but instead provide more assurance that the results of clas¬
sical analysis are correct.

23

24

In this chapter an overview of formal methods for control system development is presented.

In Sections 3.1, 3.2 and 3.3 a range of methods for formal and symbolic design verification

are described. Section 3.4 details methods for use in the implementation verification phase.

Various methods for using hybrid systems to model and analyse control systems are de¬

scribed in Section 3.1. In Section 3.2 qualitative and semi-quantitative reasoning are in¬

troduced as methods for modelling and simulating the behaviour of dynamic and control

systems. In Section 3.3 symbolic methods based on classical control system analysis are

described. Methods for code generation and verification are described in Section 3.4.

3.1 Hybrid Systems and Model Checking

Control systems may consist of both continuous plants and digital controllers; these are

examples of hybrid control systems. Hybrid control systems are networks of interacting
continuous and discrete components. The structure of these systems is similar to that of

(in)finite-state (concurrent) systems that arise in several areas of computer science.

There has been much research within the field of computer science into the development of
formal languages and techniques for the specification and analysis of (in)finite-state (con¬

current) systems. The use of these techniques has been well established in the development

and analysis of software. The ISO standard formal description technique, Full LOTOS [21],

whose semantics are basically those of state transition systems, is widely used.

The most common method for the formal analysis of (in)finite state systems is Model check¬

ing [33], The aim of model checking is to perform an exhaustive search of all reachable

states and associated behaviours using explicit or implicit enumeration. Explicit enumer¬
ation will often lead to an infinite state system, which is not amenable to an exhaustive

search. Implicit enumeration will often lead to a significantly simpler state system. For this
reason symbolic model checking, in which implicit enumeration is performed, is desirable.

To allow symbolic model checking of Full LOTOS specifications, a theory of symbolic

25

transition system and a modal logic have been developed [89].

When model checking a system, if a property fails to hold for a given trace then this can be

used as a counter example. If an exhaustive search is performed and no counter example is
found then the property holds for the system. However, if the system is large it is unlikely
that an exhaustive search can be performed, even using implicit enumeration, and in these

cases failure to find a counter example does not guarantee the requirement holds. Model

checking can be fully automated and is useful in pinpointing errors. It is suitable for de¬

termining whether a system fails to meet a requirement, though generally, can not provide

guarantees that a requirement has been met.

Several approaches to modelling hybrid control systems for the application of analysis tech¬

niques, such as model checking, have been suggested [6, 88, 90, 98, 97]. These modelling

techniques are generally very similar. The most commonly used are hybrid automata [6]

and hybrid I/O automata [88]. A hybrid (I/O) automaton can be viewed as a transition

system with (in)finitely many states and consists of a directed multigraph (V, E) with a set

of vertices V a set of edges E C V x V, a set of variables X, and two operators prime' and
dot'. The set X' represents the continuous change in the variables and X represents the

change in variables after a discrete step. Hybrid I/O automata make a distinction between

internal and external actions and variables.

There are several approaches to the specification of requirements for hybrid control sys¬

tems. In [87] both the system and system requirements are modelled as hybrid I/O automata

(HIOA). An abstractprotector is used to ensure that a system meets its safety requirements.

An abstract protector is parameterised with a physical plant PP, which is represented as a

HIOA, subsets R, G and S of the states of PP, a port index j representing a communica¬

tion channel between PP and the protector, and a sampling period d. R represents the set

of states to which PP is restricted when considering the protector. G represents the set of
states to which the protector should restrict PP. S represents the set of states for which

the protector is said to guarantee G from R. A state s' G R is //-reachable from s e R if

there is a trace from s to s' whose states are all in R. The sets S and G are subsets of R

26

and S is 'safe' for PP, R, G and j if there exists an input action on port j whose imme¬

diate execution guarantees that all subsequent /(-reachable states with no input actions on

port j are in G. Consider an abstract protector designed to ensure that a vehicle PP in an

automated transit system does not go above a designated maximum speed. The protector

and PP communicate on port j. R may be the set of states for which the vehicle has not

collided. G would be the set of states for which the vehicle is below the designated speed

limit. S would be the set of 'safe' states for PP, R, G and j. input action on port j The

proof of correctness of an abstract protector leads to simple correctness proofs of a protec¬
tor implementation for particular instantiations of the abstract model. The composition of

independent and dependent protectors under certain conditions guarantee the conjunction

of the safety properties guaranteed by the individual protectors. In [6] systems are repre¬

sented as hybrid automata and their requirements are represented as formulae consisting

of boolean combinations of inequalities over the variables of the system. To show that a

system A meets the requirement represented by a formula 4> it must be shown that <j> is an

invariant of A, that is, given a set Rj of 'bad' states as determined by <f> it must be shown
that Rf is unreachable from any reachable state.

Despite the fact that the problem of determining the reachability of a state is unsolvable [62]
even for a highly restricted class of hybrid automata, it is shown [5, 6] that several tech¬

niques, such as fixed point computation and minimisation procedures for timed-automata,

can be adapted to perform analysis of these systems, and many algorithms have been sug¬

gested to improve the efficiency of model checking to allow the analysis of large (finite)

systems [32, 81,129], These analysis techniques still suffer from the problem of state space

explosion, which occurs when the number of states becomes intractable and it is impracti¬

cal to perform an exhaustive search. This occurs in large systems with many components

or in systems in which variables can assume many different values. This is common in
control systems and means that although these techniques are applicable to simple systems

they are not useful in the analysis of large and complex systems that are found in practice.

Work in the field of hybrid system abstraction attempts to abstract away from large or

possibly infinite state systems without loss of relevant behaviour, to reduce complexity and

27

allow the model checking of these systems. The aim is to produce a simplified system that

is more accessible to analysis tools but is still sufficient to establish desirable properties.

Various classes of hybrid systems that allow property preserving abstractions to discrete

systems are presented in [8] and for those systems for which discrete abstractions are not

possible the use of abstraction to 'sufficient' systems rather than equivalent systems is

suggested. By over or under approximating the reachable sets of differential equations,

systems belonging to undecidable classes can be analysed. Methods for the abstraction and

verification of restricted classes of hybrid systems that are presented in [7, 117] also focus

on constructing discrete finite state abstractions for hybrid systems, which can then be

more easily model-checked for safety properties. These methods are only applicable to a

restricted class of hybrid systems. In [128] a method for abstracting analogue infinite-state

systems is presented.

Most control systems are not initially developed as hybrid (I/O) automata or state systems

and must therefore be translated into this representation before model checking can be per¬

formed. This translation, if performed manually, can introduce errors. The Vapor (Verilog

Abstraction for Processor verification) [10] tool was developed to eliminate these errors

by automatically translating models into finite state system representations. This tool ap¬

plies only to discrete models described using behavioural RTL (Register Transfer Level)

Verilog. The system is translated into the CLU (Counter arithmetic with Lambda expres¬

sions and Uninterpreted functions) language used by the UCLID (Uninterpreted functions,

Counter arithmetic and Lambda expressions for Infinite Domains) [28] tool for verification
of (in)finite state systems.

3.2 Qualitative and Semi-Quantitative Reasoning

Many classical analysis techniques can only be applied to models of systems with exact

numerical values for all parameters. For complex systems, exact quantitative information

is often unknown; for instance, it may only be known that the relationship between two

28

quantities is monotonic or that a parameter lies within some range.

Qualitative reasoning [79] is a method for reasoning about systems where knowledge of

them is incomplete. A Qualitative description of a system describes only the aspects of

the system that make important qualitative differences and ignores those that do not. These

descriptions do not rely on quantitative knowledge; they describe the system in terms of

a continuous set of values split into qualitatively distinct regions at significant boundary

points. These boundary points can either be landmark values, which have a precise numer¬

ical value that may be known or unknown, or be. fuzzy values, which have no meaningful

precise numerical value. For instance, an appropriate qualitative description of a water tank

could consist of the two landmark values 'full' and 'empty' (representing the precise values
of the maximum and minimum capacity of the tank), the three fuzzy values 'low', 'normal'

and 'high', which have no meaningful precise values, and the six intervals ('empty','low'),

('low', 'normal'), ('normal', 'high'), ('high', 'full') and ('full', infinity). Other information

about the tank, such as its dimensions and the material from which it is made, are ignored.

Any aspect of a system's behaviour that is modelled using ordinary differential equations

(ODEs) can be represented in qualitative terms as qualitative differential equations (QDEs)

[79] or using confluences [41]. QDEs allow the relationship between two variables to be

specified as being in the class of monotonically increasing (or decreasing) functions over

the extended reals without specifying the particular function. The set of values that the

variables can take is described qualitatively in terms of landmark values from the extended

reals and intervals between them. A QDE may be an abstraction of many ODEs. The

relationship between the theory of differential equations and the qualitative representation

is made explicit and precise in the QS1M (Qualitative SIMulator) framework for qualitative

simulation [79], Confluences are equations or qualitative expressions that evaluate to signs.

Confluences can be constructed from equations by considering only the signs of their inputs

and conclusions can be drawn about their qualitative properties.

Simulating the behaviour of a system represented by the QDEs Q given some initial state s

involves the construction of a finite structure D of qualitative state descriptions that repre-

29

sents the possible behaviours consistent with Q and s. Each behaviour consists of a series

of time points at which one or more variables change qualitative value and the intervals

between them over which the qualitative behaviour is unchanging. The structure D can

be used to infer which qualitative behaviours might occur in a given instance and can be

used along with the qualitative description of the system to infer further constraints on the

landmark values and other terms. The analysis of the structure D allows conclusions to be

drawn about the behaviour of any 'reasonable' extended real-valued ODE abstracting to

the QDE Q. However, qualitative simulations cannot infer which qualitative behaviour will

be the one to actually occur in any given instance. This limits the usefulness of qualitative

simulation.

Semi-Quantitative reasoning [79, pp. 203-236] combines qualitative and incomplete quan¬

titative knowledge. Semi-quantitative simulation can be viewed as a constraint satisfaction

problem that is used to refute potential qualitative behaviours of a system. Given the quali¬

tative description of a system, a structure representing possible behaviours and the implied

constraints on the landmark values and other terms, limited quantitative knowledge of the

landmark values can be used to attempt to find inconsistencies between the allowable val¬

ues and the implied constraints. Inconsistent behaviours can be excluded and consistent

behaviours can be annotated with constraints on values. The quantitative knowledge pro¬

vided can be in the form of bounding intervals, probability distribution functions and fuzzy

sets.

Quantitative information inferred by semi-quantitative simulation can be very coarse due

to weak quantitative inferences and can be viewed as a variant of the issue of step size in

numerical simulation of ODEs, i.e. in semi-quantitative simulation the weaker the quanti¬

tative knowledge, the coarser the information inferred by semi-quantitative reasoning and

the weaker the knowledge about the system, and in numerical simulation the larger the step

size the less accurate the simulation. The inferences made in semi-quantitative simulation

can been be strengthened somewhat using a variety of techniques, such as step-size refine¬
ment [19] and dynamic envelopes [74], though each has weaknesses. Step-size refinement

is an iterative process in which new explicit states are interpolated between distinct qualita-

30

tive states. Constraints implied by these new states are propagated and more new states are

interpolated if possible. This method is not guaranteed to terminate if constraints contain
an infinite number of elements, for instance, real intervals. Dynamic envelopes are bounds

on the derivatives of state variables built up from bounds on the state variables along with

fundamental properties of addition, subtraction, multiplication, division and properties of

monotonic functions. For instance, let x and x represent lower and upper bounds on any

real number x, given a QDE y' — c — f(y), where / is monotonic increasing and the con¬

stant c and state variable y are positive, the dynamic envelope for the QDE is y' = c — f(y)
and y1 = c — f(y). Integrating dynamic envelopes into semi-quantitative simulation po¬

tentially reduces step size and the range of variables.

Qualitative and semi-quantitative simulation can be used to predict the behaviour of a

system making it ideally suited to the monitoring and diagnosis of existing systems. The

existing system is observed and a qualitative model is built. This model is simulated and

from this predictions can be made about the behaviour of the physical system [45, 115].

Qualitative and semi-quantitative reasoning can also be used in the development of control

systems. In each region in which a system has a distinct qualitative behaviour, qualitative

modelling and simulation can be used to synthesise a qualitative controller [80], This

qualitative controller can be used as a basis for the design of a control system.

Although there have been attempts to model large-scale, realistic mechanisms [73], quali¬

tative and semi-quantitative techniques can lack the expressiveness, soundness, efficiency

and tractability to apply to analysis of complex real world systems. There is also no unified
framework that binds all the steps involved in qualitative and semi-quantitative reasoning;

the representation of ODEs as QDEs, qualitative simulation and semi-quantitative simula¬

tion.

31

3.3 Formal and Symbolic Methods for Analysis

Classical control system analysis often involves either the plotting and visual analysis of

graphs or the solving of real or complex equations or inequalities. The techniques classi¬

cally used for solving these (in)equalities are numerical and often require the exact values

of all parameters to be known. In many cases, symbolic methods can be used in place of
the numerical techniques.

Grobner bases [77, pp. 85 - 144] are a tool from constructive commutative algebra, which

provide a means for solving systems of multivariate polynomial equations. Grobner bases
have been applied in many areas of classical control system analysis and development. In

[49] Grobner bases are applied to the analysis of linear systems and nonlinear systems that

have polynomial nonlinearities. Grobner bases are used in the analysis of linear systems
in terms of their gain and phase margins. The analysis of nonlinear systems focuses on

problems in Lyapunov theory [105] in particular those involving local Lyapunov functions,
and on stability analysis using the harmonic balancing method [14], These symbolic tech¬

niques are implemented in the CA system Maple 4.1.1 and provide improvements over the

classically used numerical techniques; however, unless implemented in a formal setting
little assurance can be given about the correctness of the results of the analysis.

In [70] Grobner bases are also used in the analysis of linear systems in terms of their gain
and phase margins; however, this analysis is augmented with quantifier elimination (see

Section 4.3). These techniques are also applied to the analysis of linear system using the

Routh-Hurwitz conditions [43, p. 295] for stability, the calculation of equilibrium points

[14] of nonlinear systems, and the choice of parameters in controllers for systems with
uncertain parameters. Quantifier elimination has been used in a similar manner in the

stability analysis of difference schemes [86, 66], the stability analysis and design of linear

control systems [1] and the design of nonlinear control systems [71].

A logic in the style of Hoare [64] for single-input single-output continuous-time control

systems, which is used to infer properties of the gain and phase-shift of a system from

32

properties of its subsystems, is presented in [24], Rules are formalised for computing the

gain and phase-shift of large systems from their structure and the gains and phase-shifts of

their subsystems. Based on these rules, a simple language Cosy for describing control sys¬

tems in terms of their gain and phase-shift is defined. The language consists of two atomic

and three compound constructs: Unit representing a system that makes no change in gain

or phase-shift whose gain is 1 and phase-shift is 0; Fcn< d:9> representing a system,

with no subsystems, whose gain is d and phase-shift is 9\ Seq< G\, G2 > representing a

system consisting of two subsystems G1 and G2 in sequence; Loop< Gi, G2 > represent¬

ing a system consisting of a closed loop with Gi in the feed forward path and G2 in the

feedback path; and Sum< Gi, G2 > representing a system consisting of the summation of
two subsystems G\ and G2. The Hoare logic for the Cosy language operates on a triple

consisting of a pre-condition P, a Cosy representation of a control system C <d,9>, and
a post-condition Q. Both P and Q represent some condition on gain and phase-shift. The

triple is interpreted to mean that, given that P holds, the system C < d, 9 > will produce

a gain and phase-shift for which Q holds. The Hoare rules and tactics provide a means

either of determining constraints on the gain and phase-shift of a system from constraints

on the gain and phase-shift of its subsystems or of determining conditions on parameters

that ensure that the gain and phase-shift of the system meets their constraints. This method

exploits the hierarchical nature of control systems and allows propositions about commonly

used subsystems to be proved just once; however, this method requires symbolic reasoning

about (nested) inverse trigonometric functions and may produce large and complex condi¬

tions which must be verified. The method is implemented [24] in the theorem prover HOL

[52]; proof construction is semi-automatic, i.e. it may require user assistance.

Higher order logic is used in the analysis of DSP (digital signal processing) systems. The

analysis focuses on formally verifying levels of error of fixed- and floating-point specifi¬
cations against an idealised real number specification and then verifying an RTL (register
transfer level) description against the fixed-point specification [4].

33

3.4 Code Generation and Verification

The ultimate aim of control system development is the production of a software or hard¬

ware implementation of a control system. In the first stage of the development process a

control system design is produced by control engineers. This design usually takes the form

of mathematical formulae representing the behaviour of the system. In the second stage of

the development process, the design is treated either as a model from which a formal spec¬

ification is developed or as a specification from which an implementation is developed.

The commonly used tools for control system development (see Section 2.3) allow a control

system design to be treated as a specification and provide means to automatically generate

program code from it; however, no formal guarantees are provided that the code accurately

implements the behaviour that the design models.

The "correct by construction" approach [15] aims to ensure that automatically generated

code is correct by proving that the rules used to translate from a specification into an im¬

plementation are correct. If it can be shown that the translation process preserves the be¬

havioural properties of the specification then it follows that the implementation generated

by this process also displays the behaviour. A major benefit of this approach is that each

rule for translation must be verified only once and no verification of an implementation

generated using these rules is necessary The approach has been successfully demonstrated
in several case studies in which software for centralised controllers for moderate sized sys¬

tems have been generated [120]; however, the source code produced is generally larger than

that produced by manual implementation, which can be an issue for embedded systems,

where space is seriously limited. If the source code is altered in any way all assurances of

its correctness are lost and it must be verified using other methods. There is also a lack of

support for common specification and programming languages.

Code that has been developed manually or has been automatically generated using poten¬

tially unsound methods must be verified against its specification to ensure that the imple¬

mentation is correct. Formal verification of software against a specification is an inherently

difficult task. This is due in part to the inclusion in most commonly used programming lan-

34

guages of certain features and constructs, such as recursion, pointers and goto statements,

that are difficult to reason about. Owing to their complex nature, the use of these constructs
is likely to introduce errors into an implementation. By omitting these problematic features

and constructs the formal definitions of a language is simpler, making it easier to reason

about. The Omnibus language [125] is an object-oriented language that is superficially
similar to Java but does not contain certain aspects that complicate analysis, such as the

default use of reference semantics for objects. The Omnibus language includes constructs

for asserting properties about the behaviour and requirements of constructors, functions
and operations. The Omnibus system includes interactive and automated verifiers along
with a Java code generator. The system provides a range of techniques, such as, run-time
assertion checking, extended static checking and full formal verification, to verify prop¬

erties of an Omnibus implementation. SPARK Ada [17] is a subset of Ada that excludes

features and constructs, such as exceptions, type aliasing and goto statements. SPARK Ada

implementations must be annotated with non-Ada formal comments to allow their verifi¬
cation in the SPARK Examiner. This checks whether the implementation conforms to the

rules of SPARK and checks consistency between the implementation and its annotations.
The SPARK Examiner may generate conditions, which must be verified in some formal

system to ensure the consistency of the implementation. The SPADE static analysis suite
consists of the Automatic Simplifies which allows the automatic verification of many of
the trivial conditions, and the Proof Checker, in which the remaining conditions can be

manually verified. SPARK Ada code can be verified against a formal specification in the Z

language [112] using the Compliance Tool [83] component of the ProofPower [84] system.
A 'compliance argument' is generated, which may consist of a large number of conditions
that must be verified. Currently, the conditions must be verified manually; however, the

conditions are largely trivial, for instance [true => true].

The ClawZ [12] tool uses a similar approach to the "correct by construction" method to

produce a formal specification of a system in the Z language from a Simulink diagram (see
Section 2.3). Auto-generated or manually developed implementation in any programming

language can, in principle, be verified against the formal specification of the system. The

35

ClawZ and Compliance tools have been used in the verification of SPARK Ada code against

a significant flight control system; this was shown to require significantly less effort and

time than similar verifications in the past [11].

These methods and tools can dramatically reduce the effort, and therefore the time and

cost, of producing verified software. However, these tools provide no means of assuring
that the specification against which the implementation is verified is itself sound and there

have been several cases in which a correct implementation of a flawed design has led to an

accident [108, p. 26],

Chapter 4

Computer Mathematics and Automated

Theorem Proving

The terms "computer mathematics" and "automated theorem proving" refer to the uses of

computers to perform mathematical calculations and to produce formal proofs of theorems,

respectively.

There is a wide range of computer mathematics systems and theorem provers all placing

different emphasis on properties, such as efficiency, reliability, expressiveness and usability.

In general, when performing mathematical calculations a balance must be found between
the often mutually exclusive goals of efficiency and reliability. Computer mathematics

systems tend to favour efficiency whereas theorem provers place the emphasis on reliability.

In this chapter the ideas of computer mathematics and theorem proving are introduced. The

strengths and weaknesses of a number of computer algebra systems and theorem provers

are discussed and these systems are evaluated in terms of their suitability for use in the
formal and symbolic analysis of control systems. In Section 4.1 computer mathematics is
introduced and the Maple [94], Mathematicci [127] and Axiom [39] systems are evaluated.

In Section 4.1.1 the Maple system is discussed in more detail. The concept of theorem

proving is introduced in Section 4.2 and the theorem provers HOL [53] and PVS [103],

36

37

and the proof assistant Coq [26] are evaluated. In Section 4.2.1 the theorem prover PVS
is described in more detail. The technique of quantifier elimination, which is an algorith¬

mic technique for solving quantified formulae, is introduced in Section 4.3. Section 4.4

provides an overview of various systems designed to combine computer mathematics sys¬

tems and theorem provers to take advantage of the strength of these systems and produce

efficient and reliable mathematics systems.

4.1 Computer Mathematics Systems

Mathematical systems that are commonly used in the fields of science and engineering

generally fall into one of two categories: numerical computing systems (see Section 2.3)
and computer algebra (CA) systems. Numerical computing systems provide a means to

perform efficient numerical calculations but do not generally have an inherent ability to

perform symbolic calculations. CA systems provide a means to perform a wide variety

of symbolic manipulation and numerical calculations; however, the methods for numeri¬
cal calculations employed in these systems are generally not very efficient. The different

strengths and weaknesses of these systems have led to numerical computing systems be¬

ing favoured by the engineering community and CA systems being more popular among

physicists.

CA systems, such as Maple [94], Mathematica [127] and Axiom [39], provide powerful
tools for the solving and manipulation of formulae; but they do not guarantee the correct¬

ness of their results. In general it is deemed better for CA systems to produce an answer, in

real-time, that is likely, but not guaranteed, to be correct than to produce no answer. The

emphasis in these systems is generally on efficient computation rather than correctness or

completeness of results.

Typically the mathematical formalisms and knowledge used by CA systems to perform cal¬
culations are stored in libraries, which contain packages or modules of procedures or func¬
tions. The libraries are generally separate from the kernel of the system, which performs

38

low-level operations, such as precision arithmetic, file input and output, and simple math¬

ematics. This improves the efficiency of the systems by allowing the loading of libraries

only when they are needed. The extent to which the implementation of the mathematical

functions within the kernel and modules can be viewed and altered varies; for instance, Ma-

thematica conceals large portions of its library and kernel, whereas Maple allows virtually

all code in both its library and kernel to be viewed and allows code in most modules to be

altered.

Strongly typed systems, such as Axiom, attempt to improve the reliability of their results

by using type information to prevent functions being applied to inappropriate arguments.

These systems are generally 'safer' than the more common weakly typed systems, that is

they are less likely to produce an incorrect result. Weakly typed systems support datatypes

but do not use them in a strict fashion. They generally do not type check the input to func¬

tions and procedures and may ignore type information and side conditions in calculations;

however, they are often easier to use. Both Mathematica and Maple are weakly typed,

performing very little type checking, but are considered easy to use and are consequently

widely used in industry, academia and teaching.

A major factor contributing to the popularity of these systems is their programmability.

They each provide their own programming languages. The Maple programming language

is essentially procedural whereas the Mathematica language is essentially functional, im¬

plemented as a term-rewriting system with extensive pattern-matching capabilities.

The Maple and Mathematica systems are very similar and the choice of which to use often

falls to personal preference. However, for application to the formal and symbolic analysis
of control systems, Maple has a key benefit over Mathematica. Both Maple and Mathe¬

matica provide interfaces to external systems, which allow them to benefit from those sys¬

tems' strengths; for instance they both provide links to MATLAB (see Section 2.3), which

provides more efficient numerical calculation. However, Maple has been more widely in¬

tegrated with theorem proving systems (see Section 4.4), which can be used to increase the

reliability of results by providing formal proofs of their correctness.

39

4.1.1 Maple

Maple is a general purpose computer algebra system, which provides many powerful tools
for manipulating and solving symbolic equations or inequalities. As with most computer

algebra systems, the emphasis in Maple is placed upon the efficient calculation of a solution
rather than on the correctness or completeness of the solution; however, recent versions of

Maple implement more facilities that may be used to increase the reliability of its results.

Maple is provided with several different user interfaces. The most basic of these interfaces
is the command line interface, which is most commonly used for batch processing or for

solving large problems. The visualisation and plotting procedures provided by Maple can

be accessed from the command line; however, the results of these procedures are generally

very basic (see Figure 4.1). The Maple graphical user interface provides worksheets into

A 4 + A /
AA AA //////

A A -////////////-/////
A A ////////////-////// ////
AA A ///////-//-//-/// /-/// mi¬

A 3 + A ni /////-/-////—
A A ./ // /././__
A A ///.//-///-\
A A / _/./ /\
AA AA //-//////w
AA 2 + AA / \i \/ \\
AAA AA //VA//

AA AA \\ \\ \\

AA AA

\-\—\-\\/
\\ \\

AA 1 + AA

AA + AA \\\\\
AAA + AAA -\\\\\\\\\\\\\\-\-\ \-\\\\\

AAAA + AAAA \\\\\\\\\\\\\\\\-\\\\\-
AAAAA + AAAAA \\\\\\\-\\\ \\\\-

-\\-\\-\
-2 -1 1 2

Figure 4.1: Illustration of 2-dimensional (left) and 3-dimensional (right) plotting quality

of command line Maple.

which Maple commands are typed and results are displayed, and is generally used for

interactive sessions and for visualisation and plotting (see Figure 4.2). Maplets are user

defined graphical user interfaces. They are written using a Java-like programming language
and produce applet-like interfaces, consisting of components such as windows, buttons,

checkboxes, textboxes, etc. Interactions with components in a Maplet can be associated
with actions in Maple; for example, the click of a button in a Maplet could be associated
with the execution of a Maple procedure. This allows the end-user of the Maplet to use

the computational power of Maple without knowledge of the underlying Maple syntax or

language.

40

ofMaple GUI.

The Maple library can be extended with user defined functions, procedures and modules.

These can be defined either within Maple in the Maple language or outwith the Maple

environment in C, FORTRAN or Java.

The most fundamental procedures that Maple provides for solving equations and inequal¬

ities are the solve procedures. There are several variations of the solve procedure, each

of which solves a specific problem; for example, dsolve solves differential equations and

fsolve finds floating-point solutions to systems of equations. The/so/v<? procedure may fail
to find all solutions to a problem and any results it does produce can often only be viewed

as an approximation to a solution due to the inexact nature of floating-point arithmetic. The

solve procedure attempts to provide a symbolic solution to inequalities or systems of equa¬

tions. The solve procedure may return an implicit solution in terms of the RootOf function,

which allows the representation of all the roots of an equation as a single variable. If solve

returns no solutions this may mean either that no solutions exist or that the procedure has

simply failed to find them. A more reliable method of finding the solutions to a univariate

polynomial with integer coefficients is the realroot procedure, which determines isolating
intervals for each real root. The procedure implements Descartes' rule of signs to deter¬

mine the isolating intervals [37] and takes an optional argument, which allows the user to

set the maximum width for the isolating intervals.

41

Maple provides a limited amount of automatic simplification of any input; however, more

complex simplification rules can be applied using the simplify procedure. The procedure

searches the input expression for function calls, square roots, radicals, and powers and in¬

vokes the appropriate simplification rules. The simplify procedure takes an optional second

argument, which may be used to assert properties about the indeterminates in the expres¬

sion; for instance, assume=real asserts that all indeterminates in the expression are real.

These properties are used within the simplification procedure to further simplify the ex¬

pression.

Maple allows assumptions to be made about the properties of any variable. The assume

procedure sets properties of variables, associating given properties with given variables.

Assumptions essentially provide information about the type or range of variables; for in¬

stance, assume(x::real) asserts that x is a real number, assume(fcontinuous) asserts that/
is continuous and assume(z<y) asserts both that z is less than y and that y is greater than

z. Additional assumptions can be made about variables using the additionally procedure,

which, unlike assume, preserves existing properties of the variable. Owing to the simple

type checking provided by Maple, properties of a variable are not necessarily taken into

account during various calculations; for instance, given the assumption assume(x::posint),

which asserts that x has the type posint, the type procedure, which determines whether an

expression is of a given type, returns false for the arguments x and posint.

The is procedure determines whether an expression e satisfies the property p for all per¬

missible values of e. This procedure uses the properties associated with variables within its

calculation and will return true if all possible values of e satisfy p, false if any possible value

of e does not satisfy p and FAIL if it cannot determine whether the property is true or false

due to insufficient information or an inability to compute the logical derivation. Given the

assumption assume(x::posint), which asserts that x has the type posint, then is(x::posint)

returns true.

42

4.2 Automated Theorem Proving

The idea of automated theorem proving is to use a computer to construct proofs of results

that are expressed in a given logic from a basic set of 'facts' or axioms. Automatic theo¬

rem proving, that is theorem proving that requires no interaction with the user, is desirable.

However, truely automatic theorem provers can be built only for very simple logics, which
limits the types of theorems that can be expressed. Higher order logics allow quantifica¬
tion over individuals, predicates and functions and thus are more expressive than zero or

first order logics, which have, at most, syntactic categories for individuals, functions, and

predicates, but do not allow quantification over predicates and functions.

Within higher-order theorem proving there are various approaches to proof construction.
The Coq proof assistant [26] is based on the calculus of inductive constructions, which is a

higher-order typed A-calculus. Coq is a constructive proof system, which does not allow

the law of excluded middle and associated principles, such as the law of double negation

and proof by contradiction, in proofs. Coq proves a proposition by representing it as a type

and showing the type to be inhabited (by finding an inhabitant of the type). The theorem

prover HOL [53] is an LCF-style theorem prover. It is based on typed A-calculus and uses

a core of primitive inference rules in typed classical higher-order logic to construct proofs.
HOL theorems can only be created by applying sequences of these primitive rules, either

manually or by invoking functions which apply a sequence of rules. When applied, these

functions are broken down into their primitive inferences and these expansions may be very

inefficient. Recent versions of HOL allow limited use of decision procedures that are not

based on the primitive inference rules. The theorem prover PVS [103] is also based on a

typed A-calculus; however, PVS allows predicate and dependent subtyping. PVS provides

primitive inference rules along with decision procedures for various theories, such as linear

arithmetic, for the construction of proofs. Some may question the soundness of decision

procedures; however, if used in a disciplined manner they can be quite safe and generally
lead to simpler, more efficient proofs.

Coq, HOL and PVS are semiautomatic theorem provers, which means that they can perform

43

some automatic proving but may also require some user input to complete proofs. Each

of these systems provides a means of writing tacticals or strategies, designed to capture

common inference patterns. These proof strategies generally consist of sequences of rules
to be applied and strategies for controlling their application.The ML language forms the

strategy language of both Coq and HOL, whereas the PVS strategy language is based on

the Lisp language.

Each of these systems offers varying degrees of automation, efficiency, expressibility and

usability. There are various schools of thought on which of these systems is 'best'. Those

who subscribe to constructivism rather than classicism prefer Coq and generally perceive

PVS to be unreliable. For those who subscribe to classicism, their view on the use of

decision procedures generally informs their preference between HOL and PVS.

PVS is chosen for use in the application to the formal and symbolic analysis of control

systems.

4.2.1 PVS

PVS (Prototype Verification System) [104] is a specification and verification tool based on

classical, higher order logic. It consists of a specification language and a theorem prover,

which supports a high level of automation. Specifications in PVS are organised into theo¬

ries. Conventionally, a theory appears in a file of the same name, which must end in the

extension '.pvs'. Each theory has an associated proof file containing the proof commands
that have been used to (partially) prove each lemma, corollary, postulate, etc, in the theory.

Only the theories in the prelude file and the declarations preceding any point in the theory

are visible at that point. To allow declarations in other theories to be accessed one may

import theories. PVS keeps track of those theories that are currently visible through the

import chain in a context file. During each proof PVS keeps track of the consequents to

be proved (positive labels) and the antecedents currently available (negative labels). Lem¬

mas that are visible at a given point can be used in a proof. Use of a lemma adds it to the

44

available antecedents.

The PVS language is strongly typed, that is every expression has an associated type, and

supports predicate and dependent sub-typing. This subtyping provides PVS with an ex¬

pressive language but also increases the complexity of the type system and of typechecking
theories and expressions in PVS.

The type of an expression in PVS need not be unique. The type system is based on struc¬

tural equivalence rather than name equivalence; two types are equal iff they have the same

elements. There are strong links between predicates, sets and types in PVS; types are mod¬

elled as sets and sets are represented as predicates. Consider the following declarations:

pi: pred[real] = {x:reall 0<x}
p2 : setof[real] = {x:real| 0<x}
p3 : setEreal] = {x:real| 0<x}
p4: TYPE = {x: real | 0<x}
p5: TYPE = {x:real | pl(x)}

The first two declarations pi and p2 are semantically equivalent and are provided to em¬

phasise the intention of their use; pred indicates a focus on properties whereas setof
indicates a focus on elements. The third declaration p3 can be used in place of the first

two declarations but also has a number of the common operations on sets associated with

it. The fourth and fifth declaialiuns1 describe the same type since every element of one of
the types also belongs to the other; however, this is not immediately obvious to the PVS

typechecker as named predicates, such as pi, are not expanded. PVS also allows types to

be uninterpreted, for instance, one can declare a type T as some unspecified subset of R:

T: TYPE FROM real

This is interpreted by PVS as shorthand for the following

T_pred : Ereal->bool]
T: TYPE = (T_pred)

'The fifth declaration can also be written p5: TYPE = (pi) in shorthand.

45

In order to cope with the complex sub-typing allowed in the PVS language the typechecker

performs two passes of any theory being typechecked. In the first pass possible types for

subexpressions are collected. In the second pass the typechecker recursively tries to deter¬

mine a unique type for expressions based on the expected types. If the typechecker cannot

do this then it generates a type correctness condition (TCC), which must be discharged.

Given the above type declarations a type correctness condition would be generated in sit¬

uations in which a variable of type p4 is expected but a variable of type p5 is found. The

type information of a variable x ofpred4 is recognised by PVS as real_pred (x) AND 0<x

whereas the type information of a variable x of pred5 is recognised as pl(x). This TCC
can be discharged simply by expanding the definition of pl(x). The typechecker often

produces TCCs that are trivial to prove and may produce many redundant TCCs that essen¬

tially represent the same type obligation.

PVS allows judgements as means to provide the typechecker with extra type information

about expressions, operations and types. When a judgement declaration is typechecked the

judgement is added to the current context for use in typechecking expressions. Judgements

inhibit the generation of TCCs during typechecking and are also used by the prover ex¬

plicitly in the typepred command, which adds the type of subject to the sequent list, and

implicitly in the assert command, where the type information is provided for simplifica¬

tion and rewriting. One can prevent the generation of TCCs where a variable of type p5

is found in place of a variable of type p4 declaring and proving the following judgement

asserting that p5 is a subtype of p4:

p5_is_p4 : JUDGEMENT p5 SUBTYPE_OF p4

Theories may be parameterised; this allows abstraction from types and/or parameters used

in the theory, allowing more general theories to be proven. For instance, the follow¬

ing theory named 'parameterised' is parameterised with the uninterpreted subtype of R

T and an element of that type a, which are referenced in the (currently unprovable) lemma

not_one_element.

parameterised [T: TYPE FROM real, a:T]: THEORY

46

BEGIN

not_one_element : LEMMA

FORALL (x : T) : EXISTS (y:T) : x/ = y
END parameterised

When accessing declarations in this theory from another one must provide values for T and

a. PVS provides a facility to allow more detailed restrictions to be placed on a theory's

parameters. One may assume that the parameters have given properties. For instance, one

may wish to assert that a is not the smallest element in T:

parameterised [T: TYPE FROM real, a:T]: THEORY
BEGIN

ASSUMING

a_not_least : ASSUMPTION EXISTS (x:T): x<a

ENDASSUMING

not_one_element : ASSUMPTION

FORALL (x:T): EXISTS (y:T): x/=y
END parameterised

This assumption makes the previously unprovable lemma provable; however, when the

declarations in this theory are accessed from outwith the theory the assumptions become

TCCs which must be proven.

4.3 Quantifier Elimination

Quantifier Elimination (QE) is a general term meaning the removal of all quantifiers from

a quantified formula to produce an equivalent formula in only the free variables of the

original formula. An example of a quantifier elimination problem is that of determining
whether a quadratic equation has any real roots i.e,

3x. (a^ OA ax2 + bx + c = 0)

47

An equivalent quantifier free formula is

a 7^ 0 A b2 — 4ac > 0

Many QE methods are applicable only to sentences in the language of real closed fields

(RCF). Sentences in RCF are closed formulae built up from conjunctions, disjunctions and

negations of equalities and inequalities between arbitrary polynomials in any number of

variables with integer coefficients.

Tarski developed a QE method for the elementary theory of real closed fields [113] and

showed that any QE method in this theory was a decision method. Many alternative QE

methods for RCF have been suggested in attempts to improve efficiency [110, 34], Various

algorithms have been suggested for special types of problems involving trigonometric or

transcendental functions [9, 123] but these are limited to very specific problems and often
do not include support for inverse trigonometric or transcendental functions, such as arctan

or the natural logarithm, which are important in control engineering and vital in the analysis
of Nichols plot requirements.

An important algorithm in QE is cylindrical algebraic decomposition (CAD) [35], which

significantly reduces the time complexity ofQE. Several improvements to this method have

been suggested which further improve efficiency and reduce complexity [36, 92].

In simplest terms, the CAD of a formula 0 constructed from r-variate polynomials is a de¬

composition of r-dimensional real space R' into a finite number of disjoint connected sets

called cells, in each of which each distinct polynomial component of 0 is sign-invariant.

From this CAD any QE problem-0 = (Qk+ixk+i)... (Qrxr)(t)(xi,..., xr), where 0 <k<r,
can be solved by examining sample points within each cell. The time complexity of this QE
method is doubly-exponential in the number of variables, which is a significant improve¬
ment over previous methods and makes the practical application of QE to many real-world

problems feasible.

Quantifier elimination and cylindrical algebraic decomposition have a wide range of appli¬

cations in the fields of computer science, mathematics and control engineering. QE can be

48

used for the optimisation of polynomials, i.e, finding the maximum value of polynomials

subject to polynomial inequality constraints, and CAD can be used to find the solutions of

systems of polynomial equalities and inequalities. For this reason QE and CAD are ideally

suited to stability analysis of control systems (as in Section 2.2.1) and have been suc¬

cessfully applied to Von Neumann stability analysis [86] and to common stability analysis

problems [66]. QE has also been applied to the design of linear feedback control systems

[70, Chapter 8] and to the design of nonlinear control systems [71] where design criteria
can be reduced to problems involving polynomial constraints over polynomial inequalities.

4.4 Formalised Mathematics

The applications of CA and TP systems are limited by their respective weaknesses. CA

systems (Section 4.1) are excellent at symbolic manipulation and often provide powerful
methods for numerical calculations; however, they cannot guarantee correct results. For this

reason their applicability to any formal, symbolic mathematical analysis is limited. Formal

theorem provers (TPs) (Section 4.2) can guarantee correct results but are often difficult to
use and inefficient for automatic symbolic manipulation and numerical calculations, which

limits their practical application. Automated formal and symbolic analysis of control sys¬
tems requires validated calculations, both symbolic and numerical. The Maple-PVS [2]

system provides a link between the CA system Maple and the TP PVS. This system com¬

bines two industry-standard systems into a robust and highly programmable formalised
mathematics system that is ideal for symbolic Nichols plot analysis.

There has been much interest in the development of systems that provide the power of a CA

system and the rigour of a TP. Systems of this type fall into two main categories; compu¬

tational support for TPs and formal support for CA systems. Systems such as Maple-HOL

[61] and Maple-Isabelle [16] provide links between the TPs HOL and Isabelle and the CA

system Maple, allowing the TPs to call upon the computational power of Maple under ap¬

propriate circumstance to increase efficiency of proof or proof search and the Omega proof

49

development system [75] supports the integration of computer algebra into mechanised rea¬

soning systems at the proof planning stage. The majority of the workload falls on the TPs

in these systems and only the limited operations of the CA system that can be validated

can be used for any proof to remain sound. Redlog [42], Analytica [18] and Theorema

[29] extend CA systems with support for formal theorem proving and the Maple-PVS [2]

system provides a link between the CA system Maple and the TP PVS, allowing Maple to

call upon the theorem proving power of PVS to increase the reliability of its results.

Chapter 5

A Decision Procedure for Positivity and

Negativity of Finitely Inflective

Functions

Many classical methods for control system analysis can be reduced to the problem of deter¬

mining whether a given function is positive or negative in an interval, for example, Nichols

plot analysis (see Section 2.2.1) and time-response analysis (see Appendix A.2). The func¬
tions involved in these forms of analysis often involve inverse trigonometric and transcen¬

dental functions. Many functions of this kind art finitely inflective in the sense that they are

continuously differentiable with a finite number of points of inflection. Despite the power

of quantifier elimination, the algorithms that have been suggested appear not to be applica¬
ble in sufficient degree to solve many problems involving this class of functions (Section

4.3).

The decision procedure presented here is applicable to this problem for functions / : D —>

R, where D is a closed convex subset of R and / is finitely inflective. The procedure is

extended to be applicable to real functions of two variables.

The concepts of convexity and points of inflection are introduced in 5.1 and 5.2. Geometric

50

51

properties that can be inferred from convexity are introduced in 5.3. Some terminology is

introduced in 5.4. The formulae for which the decision procedure is applicable are clas¬

sified in Section 5.5 in terms of a fragment of a logic C\ for the reals and functions of
a real variable. Section 5.6 introduces the concept of a (minimal) isolated formula along

with an algorithm to convert arbitrary formulae in into this form. Rather than apply

to prenex normal formulae, as is often the case for decision procedures, the decision pro¬

cedure described in this chapter applies to minimal isolated formulae. In Section 5.7 the

procedure for deciding positivity/negativity of a finitely inflective function of one variable

over an interval is described. In Section 5.8 the procedure is extended to functions of two

variables.

5.1 Convexity

A set D C Rra is a convex set if every point that lies on the line segment between two points
in D is also in D; it is closed if all limit points of D are in D. An interval is closed if it

is one of the following: the empty interval 0, (—oo, oo), (—oo, b], [a, oo) or [a, b], where a

and b are real numbers. A set D C R is a (closed) convex set if and only if D is a (closed)

interval.

Definitions for the convexity of functions appear in most introductory calculus text books

[111, pp. 191-198], [3, pp. 264-268]. Although the definitions (and terminology1) vary
slightly, fundamentally they represent the same geometric idea; that is that in some convex

set D C R" a function / : D —> R is convex if for all x, y G D the line segment between

(x, /(x)) and (y, /(y)) lies on or above the graph of f. A function f : D R, where
D is a convex set in Rra, is defined as convex (as illustrated in Figure 5.1) if the following

inequality holds for all x, y e D and 0 < 0 < 1:

/(0x + (1 - 9)y) < 0/(x) + (1 - d)f(y) (5.1)

1 [111] refers to functions as convex or concave, whereas, [3] uses concave up and concave down

52

f(a) f(x)

a' x b'

Figure 5.1: Convexity of a curve.

Reversing the inequality of Equation 5.1 gives the definition of a concave function. A

function is strictly convex (or strictly concave) if the inequality is strict. A curve {(x, y) :

y = /(x)} defined by a function / : D —» R, where D C R", is convex!concave in the

regions in which the function is convex/concave. A function that is linear in all variables is

both convex and concave but neither strictly convex nor strictly concave.

A differentiable function / in one variable is convex on the convex set D C R iff f'(x) (y —

x) < f{y) — f(x) and is concave on D iff the inequality is reversed. This is equivalent
to the condition for convexity that /' is not decreasing on D and for concavity that /' is
not increasing on D. A twice differentiable function / in one variable is convex on D iff

f" > 0. Proofs of these theorems appear in [13] and the theorems have also been formalised
in PVS (see Chapter 6.1).

The sum of convex functions is a convex function [13] and equivalently the sum of concave

functions is a concave function. From this it is clear that addition and subtraction of a

function that is linear in all variables preserves convexity. Conclusions cannot be drawn

about the convexity of the sum of a convex and a concave function.

For a function in several variables there may be regions over which the function is neither
convex nor concave (consider z = x2 — y2). In these regions the function is convex in some

directions and concave in others.

53

5.2 Points of Inflection

The concept of a point of inflection is rather vague and is generally not treated thoroughly in

mathematical analysis texts. It can be described informally as a point at which the curvature

of the graph of a function of one variable changes. This can be interpreted in a number of

ways and is particularly ambiguous when dealing with linear functions; at any point the

graph of a linear function is both convex and concave and can be considered both to change

curvature and to retain the same curvature. To resolve this ambiguity we consider a point

of inflection to be a point at which the graph of a function makes a 'smooth' transition

between convexity and strict concavity (or between strict concavity and convexity). Given

this informal description of a point of inflection it is clear that a function that is linear has no

points of inflection even though it is both convex and concave on its domain. Trivially, the

addition of a linear function to a given function leaves the points of inflection unchanged.

In general, for a differentiable function / in one variable the point c is a point of inflection
if the tangent to the graph of / at (c, /(c)) crosses it at (c, /(c)) [111, p. 197]. For
'reasonable' twice differentiable functions the point c is a point of inflection iff /"(c) = 0

and, for all points a and b sufficiently close to c with a < c < b, f"(a) has the opposite

sign to f"(b) [111, p. 197], This would seem to be a suitably precise definition of a

point of inflection except that the concept of a reasonable function is rather vague and is

not specified in [111]. There are many seemingly appropriate definitions of reasonable

functions, such as, those functions that are twice differentiable with a continuous second

derivative; however, there are functions that meet these criteria but which do not behave in

a reasonable manner. Consider a variation of the topologist's sine curve,

J x5 sin(^) x/0^
\ 0 x=0

This curve is a sine wave whose wavelength and amplitude decrease as x approaches 0 (see

Fig. 5.2). This function is continuously twice differentiable and has an infinite number of

points of inflection in the interval [—1,1]. At 0 both the first and second derivatives of this
function are 0 and higher derivatives are undefined. The function has the property that one

54

\

\ i
2e-07

I
1 /

1e-07

0 Aa~
\

aA 1
lc-07* \\J

\ /
-0.04 -0.02 0 0.02 0.04

Figure 5.2: A variation of the topologist's sine curve on [—0.05, 0.05] by Maple.

can not isolate any neighbourhood of 0 in which the sign of f" is constant on each side of
0. This means that 0 neither lies in an interval of convexity or concavity nor is a point of

inflection. One also cannot determine important properties of the function at 0, such as,

whether it has a local maximum or minimum. This does not meet the intuitive concept of a

reasonable function. In this context, for a function to be reasonable, each point in its range

must be either lie in an interval of convexity or concavity, or be a point of inflection. This

concept gives rise to the definition of a reasonable function and of a point of inflection:

Definition 5.1 Reasonable function: a function ofone variable that has a continuous sec¬

ond derivative and whose domain can be split into (in)finitely many intervals over each of

which it is convex or concave

Definition 5.2 Point of inflection ofa reasonablefunction f: a point c at which f"(c) = 0

and, for all points a and b sufficiently close to c with a < c < b, f"(a) has the opposite

sign to f"(b)

This definition of a reasonable function includes functions such as x2, sin and cos but

excludes any variation of the topologist's sine curve over any interval containing 0. The

trigonometric functions sin and cos over R are reasonable and have an infinite number of

points of inflection.

55

5.3 Geometric Properties of Curves

A number of geometric properties can be inferred from the definition of convexity. A

differentiable convex function / is greater than or equal to any tangent to the graph of /. In

any interval [a, b] a convex function f is less than or equal to the chord joining (a, /(a))

Based on the convexity and these geometric properties of functions it is possible to de¬

termine the relative position of a convex (or concave) function / in one variable and the

constant 0 function by examination of / at a number of carefully determined points.

The following details a set of conditions that allow the positivity or negativity of a convex

function / : D —> R, where D is the closed interval [a, b], to be determined. The conditions
for a concave function are simply reflections of the conditions for a convex function and

can be worked out by looking at —/ in the appropriate intervals.

Suppose the function / is continuously differentiable and convex on the closed convex set

D = [a, b], then:

1. The function is negative on D iff the function _i 0

and (6, /(&)).

is negative at the end points of D, i.e, / (a) <
0 and f(b) < 0

2. The function is positive on D iff one of

the following two mutually exclusive con¬

ditions holds:

(a) the gradient of the graph of / is equal

to zero at some point within D and

/ is positive at that point, i.e, 3x e

D.f'(x) = 0 A f(x) > 0

56

(b) the gradient of the graph of / does not

equal zero at any point within D and the

function is positive at the end points of

D, i.e, \/x G D. f'(x) i=- 0, /(a) > 0,
and f(b) >0

/

\

If none of the above conditions hold for a convex function then there is at least one point

within the interval at which the function is equal to zero. These conditions have been

formalised (see Section 6.3) in PVS along with proof of correctness and coverage of the
cases.

These conditions can be used to determine the positivity or negativity of an arbitrary rea¬

sonable function /. The domain, of / can be split into intervals [a^,^] over which / is
either convex or concave. By applying the set of conditions detailed here to / in each

interval [a;, 6;], one can determine whether / is positive or negative on its domain.

5.4 Classification

In this thesis, the notion of functions and their syntax corresponds to that of PVS [104], As

in the PVS language, functions are considered to be total maps from domain D to range B;
that is each element in D is mapped to some element of B.

In this framework we define linear functions as those functions that can be represented

by expressions that are linear in all variables, i.e, they are represented by expressions of
the form a0 + YH=\ aixi where are real coefficients and Xi are real variables. Polyno¬
mial functions are those functions that can be represented by expressions consisting of the

57

sum of real variable(s) xt raised to powers, multiplied by real coefficients ay, for instance,

polynomial functions in one variable are represented by expressions of the form XX-o aixl-
Rational functions are those functions that can be represented by expressions made up of

quotients of polynomials in the variables Xi with real coefficients a;.

Rationally dijferentiable functions are defined to be those differentiable functions whose

partial derivatives are rational functions, i.e, they are the expressions of the form /(x) such

that V/ exists and is a vector of rational functions. Continuously dijferentiable functions

are those differentiable functions whose partial derivatives are continuous, i.e, they are

expressions of the form /(x), such that V/ exists and is a vector of continuous functions.

Continuously twice differentiable functions are those twice differentiable functions whose

partial derivatives are continuously differentiable. Reasonable functions (see Section 5.2)

are those continuously twice differentiable functions of one variable whose domains consist

of intervals over which the functions are convex or concave. Finitely inflective functions of

one variable are those reasonable functions that have a finite number of points of inflection.

A function of several variables is finitely inflective in its i-th variable Xi if fixing all but the i-
th variable gives a finitely inflective function in the variable x^. Finitely inflective functions

of several variables are those functions of several variables that are finitely inflective in all

variables.

5.5 Language

The metavariable symbol / is used to range over functions of a real variable, for example,

Xx. sm2(x), Ay. In(y) — 3 cos(y), etc.

In the language C\ an atomic formula in the variable x and with domain D is an expression

f(x) ~ 0, where D is a convex subset of R, / is a total function2 from D to R, and ~ is
one of the relational operators <, < =, >, >, 7^; in interpreting the formula the variable

2As in the PVS language, predicate subtyping can be used to model a partial function / as a total function
from the domain D C dom(/), upon which it is defined, to its range.

58

x will be restricted to range over D. Atomic formulae are essentially tuples of a domain

and an inequality, for example, the tuples (sin2(:r) < 0, [0, 7r]) and (ln(y) — 3 cos(y) >

0, [—1, 1]) represent atomic formulae in the variables x and y and with the domains [0, 7r],

[—1, 1] respectively.

It should be noted that the negation of an atomic formula in the variable x with the domain

D is also such an atomic formula, since the negation of a relational operator is also a

relational operator, for example, f is the negation of =, < is the negation of >, etc. The

values TRUE and FALSE can be represented as atomic formulae using the expressions

\x. 0 = 0 and Ax. 1 = 0 with the domain R. Thus, literals in the language C\ are simply

atomic formulae.

Arbitraryformulae are built from atomic formulae using the prepositional operators V and

A and the quantifiers 3, V. Arbitrary formulae are associated with zero or more variables

and domains but care must be taken when determining these. An arbitrary formula con¬

structed from formulae in the same variable is also in this variable and its domain is the in¬

tersection of the domains of the subformulae, for example, sin2 (x) > 0 Aln(ar)—3cos(a;) <
0 is a formula in the variable x with domain D1 n D2, where Di and D2 are the domains

of the subformulae. An arbitrary formula constructed from formulae in different variables
is in these variables and its domain is the product of the domains of the subformulae, for

example sin2(:r) > 0 A ln(y) — 3 cos(y) < 0 is a formula in the two variables x and y with
domain D\ x D2, where Dj and D2 are the domains of the subformulae.

Quantifying over a variable x which appears in a formula A(x) produces a formula in the
variables excluding x and with domain no longer including the domain of x, i,e, given
the formula A(x\,..., x,..., xn) in variables including x, the range of x is D and the
domain of A(x) is Dx x • • - x D x • • • x Dn, then the quantified formulae Va; £ D. A{x)
and 3x £ D.A{x) are formulae in the variables x^,... ,xn, excluding x, with the domain
D]X'"X Dn, excluding D. For example, applying universal quantification to the variable

y in the formula sin2(z) > 0 A In(y) — 3cos(y) < 0, which has domain D] x D2, gives
the formula My. sin2(x) > 0 A In(y) — 3 cos(y) < 0 in the variable x with the domain Di.

59

If all occurrences of all variables in a formula A are quantified then A is a closedformulci or

sentence and, given the natural interpretation of formulae over reals, is either true or false.

5.6 Minimal Isolated Formulae

Many decision procedures are applicable to formulae in prenex normal form, that is for¬
mulae in which there are no quantifiers within the scope of any of the logical connectives.
This normal form is not ideal for application of the decision procedure described in this

chapter. A more appropriate normal form, (Minimal) isolatedform is introduced.

A formula is in isolated form if there is no nesting of quantifiers within the formula, i.e,

it is built up from conjunctions and disjunctions of formulae each of which contains either

a single quantifier or no quantifier. For instance, given the atomic formulae A(x), B(x)
and C(y), where x does not appear free in C and y does not appear free in A or B, the

following formula are in isolated form

A(x)
Bx. A{x)
By.A(x)

{(fix. A{x)) A (fix. B(x))) V By. C(y)

(\/x. A(x) A B(x)) V By. C(y).

However, the following are not in isolated form as they contain nested quantifiers

3,-r. My. A{x)

By. (fix. A{x) A B(x)) V C{y).

A formula is in minimal isolatedform if it can not be reduced using any of the rules given
in Table 5.1 [76, p. 162] applied from left to right. A formula in isolated form need not

be in minimal isolated form; for instance, the following formulae are in isolated but not

minimal isolated form

By.A{x)

(f/x. A{x) A B{x)) V By. C(y).

60

A formula in minimal isolated form is also in isolated form; for instance, the following

formulae are in both isolated and minimal isolated form

A(x)
3x. A(x)

((Vx. A(x)) A (Vx. B(x))) V 3y. C(y).

Any formula that can be written in isolated form can also be written in minimal isolated

form by repeatedly applying the rules given in Table 5.1 from left to right to reduce the

formula. Since there is no nesting of quantifiers in an isolated formula A, the scope B of
each quantifier Q in A is a conjunction, a disjunction or an atomic formula. If B is an

atomic formula then Q. B is either in minimal isolated form or can be reduced to an atomic

formula, which is by definition minimal isolated, by the application of rules (Rl.a), (Rl.b),

(R2.a) or (Rl.b). If B is a conjunction or disjunction then Q can be distributed across the

disjunction or conjunction by application of rules (R3), (R4), (R5) or (R6). These rules

can be applied repeatedly to reduce the scope of each quantifier until the scope cannot

be reduced further. The formula is then by definition in minimal isolated formula. An

algorithm for the conversion of a formula to a minimal isolated formula is given in Section

5.6.1 and a proof of the termination of the algorithm has been produced in PVS (Section

6.6)

5.6.1 Quantifier Isolation

Just as every formula of a first-order logic can be converted into prenex normal form, every
formula of can be converted into minimal isolated form. This is owing to the fact that

each atomic formula of C\ contains at most a single variable. Formulae of languages that

allow more than one variable in an atomic formula can not necessarily be converted into

(minimal) isolated form; for instance, given the atomic formulae A(x), B(x) and C(x, y)
the following formula cannot be reduced to isolated form

(Mx. A(x) A B(x) V 3y. C(x, y)).

61

(Rl.a) Vx. A -<=> A x does not appear free in A and

the range of x is non-empty

(Rl.b) Vx.A(x) «=» TRUE the range of x is empty

(R2.a) 3x.A <=^> A x does not appear free in A and

the range of x is non-empty

(R2.b) 3x.A(x) 4=> FALSE the range of x is empty

(R3) Vx. (A(x) A B(x)) 4=> Vx. A(x) A Vx. B(x)
(R4) 3x. (A(x) V B(x)) 4=> 3x. A(x) V 3x. B{x)
(R5) Vx. (A V B(x)) ^ AWx.B(x) x does not appear free in A

(R6) 3X.(AaB(x)) A=4> AA3X.B(X) x does not appear free in A

Table 5.1: Rules for transfer of quantifiers

Quantifier isolation is a general term describing a process for reducing a formula into

isolated form. Quantifier isolation can be performed using the standard rules governing

the transfer of quantifiers over conjunction and disjunction (see Table 5.1) applied left to

right and a modified notion of conjunctive and disjunctive normal form (CNF and DNF).

A formula is in CNF (or DNF) if it is a conjunction of disjunctions (or a disjunction of

conjunctions) of literals [55, p. 34] and every formula containing no quantifiers can be put

into CNF or DNF. Modifying this notion for quantifier isolation, a formula is considered to

be in modified CNF (ormodified DNF) if it is a conjunction of disjunctions (or a disjunction

of conjunctions) of literals and formulae in isolated form. Just as any formula containing no

quantifiers can be converted into CNF or DNF, any formula containing only combinations
of literals and isolated formulae can be converted into the modified CNF or modified DNF.

The following steps describe a method for quantifier isolation that reduces a formula A in

L\ to minimal isolated form.

1. From A take the innermost quantified formula(e) ib — Qx. 4> that is not in minimal

isolated form, where Q is a quantifier and </> is a formula that may or may not contain

x. If the quantifier Q is 3 then

62

(a) Rewrite 0 in modified disjunctive normal form3

0' = <f>i V • • • V 0„

where each 0TO is a conjunction of literals and minimal isolated formulae and

may contain free occurrences of x and other variables.

(b) For each 0m use the commutativity and associativity of conjunction4 to collect

all literals containing x free, giving 5

0m = C[AC1
0' = Qx. (0'O[A,0g]) V • • • V (0jt[A0"])

where <p'm and 0^ are conjunctions of literals and minimal isolated formulae,

(j)'m does not contain a free occurrence of x, and 0^ must only contain free
occurrences of only x.

(c) Apply (R2.a), (R2.b), (R4) and (R6) from left to right to move Q inward. This

gives the minimal isolated formula

ib" = (<f>'0[AQx. 0o]) V • • • V {<f>'n[/\Qx. 0£])

(d) Replace ip with ip" in A to give A'. If A' is a minimal isolated formula then stop

otherwise repeat the algorithm on A'.

2. If the quantifier Q is V then

(a) Rewrite 0 in modified conjunctive normal form6

0' = 0! A ■ • • A 0n

3Since ip is the innermost quantified formula that is not in minimal isolated form, 6 will contain only

conjunctions or disjunctions of literals and minimal isolated formulae. Thus, <j> contains only combinations
of literals and isolated formulae and can be converted into modified DNF.

4Since <j>' is in modified DNF, each <pm will contain only conjunctions.
5The subformulae [A<{)[[] do not appear if (f>n contains no free occurrences of x
6Since ip is the innermost quantified formula that is not in minimal isolated form, <j> will contain only

conjunctions or disjunctions of literals and minimal isolated formulae. Thus, 0 contains only combinations
of literals and isolated formulae and can be converted into modified CNF.

63

where each 0m is a disjunction of literals and minimal isolated formulae, and

may contain free occurrences of x and other variables.

(b) For each 0m use the commutativity and associativity of disjunction7 to collect

all literals containing x free, giving8

0rn — 0m[V0m]
0' = Qx. (^[V<0 A " " ' A {4>'n[V<t>'n])

where 4>'m and 0^ are disjunctions of literals and minimal isolated formulae,

(j)'m does not contain a free occurrence of x and must only contain free
occurrences of x.

(c) Apply (Rl.a), (Rl.b), (R3) and (R5) from left to right to move Qi inward. This

gives the minimal isolated formula

0" = (fiolvQiXi. <0 A • • • A {^[vQiXi. 0"])

(d) Replace 0 with 0" in A to give A'. If A' is a minimal isolated formula then stop

otherwise repeat the algorithm on A'.

Any quantified formula Qx. 4>{x) within a minimally isolated formula 0 will have one of
three forms: 0 is a literal; Q is 3 and 0 is a conjunction of literals; Q is V and 0 is a

disjunction of literals. Consider the formula

0 = \/x. A{x) A B(x)

This formula is in isolated form but is not in minimal isolated form. Performing quantifier

isolation as described above yields the following formula in minimal isolated form

0" = (\/x. A{x)) A (\/x.B(x))

Now consider the formula

0 = \/x. A(x) V B(x)
7Since 0' is in modified CNF, each <pm will contain only disjunctions.
xThe subformulae [V0"] do not appear if 0n contains no free occurrences of x

64

This formula is in isolated form and cannot be reduced using quantifier isolation so it is

also in minimal isolated form.

Quantifier isolation relies on the fact that each literal in the language L\ contains only a

single quantifiable variable. Consider the four formulae A{x), B{x), C(x) and D(x), and
the prenex formula

<f>{xltx2,X3,x4) = {A(x4) A A[xi)) V ((B(x2) A C(x3)) V D(x4))
ip = mxi. 3x2. Vx3. 3x4. 4>{xi, x2, x3, x4)

This can be rewritten in minimal isolated form

ip" = {{3x4. >1(0:4)) A \/x,\. >l(o:i)) V ((3x2. B(x2)) A Vx3. C(x3)) V 3x4. D(x4)

Now consider the formulae >l(a-), B(x), C(x) and D(x, y), and the prenex formula

<j>(x1,x2,x3,x4) = {A(x4) A A(xi)) V ((B(x2) A <7(0:3)) v £>(0:1,0:4))
xp = Vo:i- 3o:2. Vx3. 3x4. <j>(xi,x2, x3,x4)

This cannot be written in isolated form as we cannot isolate £>(o:i, o:4) in such a way that it
is within the scope of only one quantifier.

5.7 Decision Procedure for Functions of One Variable

The decision procedure described in this section was developed to take those minimal iso¬

lated formulae (as defined in Section 5.6) in which all functions are finitely inflective and

the scope of any quantifier is a literal formula in the language C\, and output the truth of
the formula9.

The procedure was developed to be applied to the analysis of control systems and is appli¬

cable not only to sentences of real closed fields but also to any function whose derivative is

a rational function, including the natural logarithm and arctan.

9The decision procedure cannot be applied to formulae in which the scope of any quantifier is a compound

expression, e.g Vx. A(x) V B(x).

65

In order to use the conditions described here to decide a sentence 4> of the language C-\ the

sentence must be converted into minimal isolated form using the algorithm described in

Section 5.6.1. The domains of the functions in cf) must be split into intervals over which the

function is either convex or concave.

The decision procedure takes a sentence (j> in minimal isolated form, in which the scope of

any quantifier is a literal formula in the language C\ and all functions ft in <j) are finitely

inflective, and performs the following steps:

1. Convert existential quantification in <j> to universal quantification giving 4>'. This is a

syntactic conversion to simplify the algorithm: 3x.P(x) becomes -^/x.-iP(x)

2. Take each quantified formula A in <j)' containing a single literal fi 0 then deter¬

mine the intervals of convexity and concavity for /;.

3. For each of the intervals within dom/; apply the appropriate case from the set of

conditions given in Section 5.3. If the correct conditions hold for all these intervals

then the i-th formula has the value TRUE. If the condition fails to hold for any interval

then the formula has the value FALSE.

4. Construct the truth value for the sentence </>' (and thus <j>) by applying the preposi¬

tional operators within it to the truth values of Step 3.

The procedure presented in this section is applicable to functions that are finitely inflective,

that is reasonable functions that have a finite number of intervals in which the curve is

convex or concave.

Section 6.7 gives the proof in PVS of the correctness and termination of the procedure.

66

5.8 Decision Procedure for Functions of Two Variables

Given a set D C R" and functions a, b : D —» R, the subset [a, b] x'DofRx Rn is
defined as

{(z,y) : y e D A a(y) < x < 6(y)}.

For a (partial) function / : R x Rn —» R, with domain D' = [a, b] x' Rn, the partial
derivative §£ |(a.ijr) is denoted by fx(x, y).

By fixing all but the k-th variable of a continuously twice differentiable function / of
n + 1 variables, the conditions presented in Section 5.3 for determining the positivity or

negativity of a function in one variable may be applied to /. For simplicity, consider a

continuously twice differentiable function / : R x R —> R with domain D' = [a, b] x' D,
where a, b : D —» R and D C R. If for all y 6 D, Xx £ [a(y), b(y)].f(x, y) is convex then
the conditions in Section 5.3 correspond to:

1. / is negative on D' iff for all y e D, / is negative at (a(y), y) and at (b(y), y).

2. / is positive iff for all y G D one of the following two mutually exclusive conditions

holds

(a) the derivative of / with respect to its first argument (/i) is equal to zero at some

point within [a(y), b(y)} and / is positive at that point, i.e,

3a: e [a(y), b{y)}. h(x, y) = 0 A /(:r, y) > 0.

(b) the derivative of / with respect to its first argument (fi) does not equal zero at

any point within [a(y), b(y)), and / is positive at (a(y), y) and at (b(y), y).

If the domain of / can be split into a finite number of regions over which it is convex

or concave in one of its variables, then applying the above conditions in each of these

regions will result in inequalities between the constant 0 function and functions g in only

67

one variable. If each g is finitely inflective then the decision procedure of Section 5.7 can

be applied.

The conditions and decision procedure can be extended to higher dimensions by consider¬

ing (partial) functions / : Rx R" —» R with domain D' = [a, b] x'D, where a, b : D' —» R
and DCR".

Chapter 6

Formalisation of the Decision Procedure

To demonstrate the correctness of the decision procedure introduced in Chapter 5, the pro¬

cedure along with its mathematical foundations and the logic were formalised in the

formal theorem prover PVS (Section 4.2.1). Proofs of the correctness of the procedure

and mathematical foundations were first sketched by hand; however, the formalisation of

C\ was done directly in PVS. The formalisation in PVS provides greater assurance of cor¬
rectness than hand proofs alone and many of the lemmas concerning the mathematical
foundations are re-used for the automated analysis of Nichols plots. This chapter details

this formalisation, highlighting some of the interesting issues arising from the use of PVS,
and focuses mainly on the definitions of important concepts and the main results. The

chapter includes fragments of the PVS code used to model and reason about the concepts

introduced in the previous chapter along with high level descriptions of the code.

The PVS code is organised into separate theories. Many of the theories are parameterised

with the uninterpreted subtype T: TYPE FROM real. As stated in Section 4.2.1 PVS in¬

terprets this essentially as shorthand for the the two definitions,

T_pred : [real ->bool]
T: TYPE = (T_pred)

the first of which is a predicate T_pred from R to boolean, and the second of which is a

68

69

type T that contains those elements for which T_pred is true.

As noted in Section 4.2.1 types and sets are closely related and in this chapter the two

terms may be used interchangeably in reference to PVS types, sets and predicates. As in

PVS notation, when referring to a predicate P as a type the predicate name is enclosed in

parentheses (P).

The structure of this Chapter follows the structure of Chapter 5. Sections 6.1 and 6.2

details the modelling of convexity and of points of inflection in PVS. The representation

of the geometric properties of curves in PVS is detailed in Section 6.3. The modelling of

different classifications of functions is detailed in Section 6.4. The representation of the

fragment of a logic C\ is detailed in Section 6.5. Section 6.6 details the representation of

quantifier isolation in PVS. In Section 6.7 the representation of the decision procedure is

described.

6.1 Convexity

Convexity is defined only for those functions whose domains are convex sets (Section 5.1).

When modelling the concept of a convex set in PVS it is useful to keep in mind the particu¬

lar usage to which it will be put. The ultimate aim is to reason about functions over subsets

of their domains. The function domains are likely to be subsets of the reals.

Defining convexity for subsets of R is relatively straightforward in PVS. The new type

convex_set is introduced. This type is the set of all subsets P of R for which all points

lying between two points in P are also in P.

convex_set : TYPE = {P: set [real] I

(FORALL (x,y: (P)), (z: real):
x < —■ z AND z <= y IMPLIES P(z))>

This can be used to reason about the domains, and subsets of the domains, of functions;

however, due to the complex nature of the PVS type system this definition will often cause

70

type correctness conditions (TCCs) to be generated. Consider a function f with domain

Tc R and a predicate P from T. Since P can only be applied to elements of T, using the

definition above to assert that P is convex leads to the generation of a TCC to ensure that

any real variable to which P is applied is an element of T

FORALL (x,y: (P)), (z: real):
x< — z AND z< = y IMPLIES T_pred(z)

If T is convex then this TCC is trivial to prove; however, it cannot be dismissed automati¬

cally.

To prevent the generation of this commonly occurring and often trivial TCC the definition

of convex_set is altered to allow sets from arbitrary subsets of R to be declared as convex.

The PVS theory in which this type is declared is parameterised with the uninterpreted type

T. which is a subset of R. The altered type definition requires the implicit assumption

that T is also a convex set. This can be modelled in two ways in PVS, either by using

the assumption facility to assert that T is convex, or by building this assumption directly

into the definition of a convex set. The first approach more accurately models the way

mathematicians describe a convex subset i.e, 'given that T is convex and PCT then P is a

convex set iff; however, the second is more convenient for use in PVS. The use of the

assumption facility in the first approach means that each time the type is used outside the

theory in which it is defined a TCC representing the assumption must be proved.

The second method for modelling a convex set essentially asserts that both P and T are

convex in the domain of P avoiding the use of the assumption facility

convex_set : TYPE = {P: set [T] I

(FORALL (x , y : (P), z: real): x<=z AND z< = y IMPLIES

T_pred(z) AND P(z))}

Rather than generating TCCs this definition can be used to discharge some frequently oc¬

curring TCCs.

The concepts of nontrivial sets and nontrivial convex sets are modelled in a similar manner

71

as the new types nontrivial_set and nontrivial_convex_set.

The two types convex_set and nontrivial_convex_set have two important practical
uses. Firstly, they allow the simplification of the definition of lemmas. Secondly, they allow

the automatic discharge of some frequently occurring TCCs.

Two new theories are used to introduce several basic types representing subintervals. The

first theory is parameterised with a subtype T of R and an element a of T. The four types

It, le, ge and gt are defined to represent the subsets of T containing all those elements of
T that are less than, less than or equal, greater than or equal, or greater than the value a,

respectively. The second theory is parameterised with a subtype T of R and two elements

a and b of T. The four types closed, open_l, open_r and open are defined to represent

the subsets of T containing all those elements of T that are in [a, b], (a, b], [a, b) or (a,

b), respectively. These types are used to simplify the many definitions and lemmas used
in the formalisation of the decision procedure. Defining these types in parametrised theo¬

ries avoids problems associated with parameterised types (see Section 4.2.1). Rather than

parameterising, for instance, the type It with T and a

It(T:pred [real] ,a:T) : TYPE = fu:T|u<a}

the theory is parameterised allowing It to be defined more elegantly as

It: TYPE = {u : TIu<a}.

As well as allowing a more elegant definition of the types, parameterising the theory rather

than the types also reduces the number of TCC generated when these types are used. For

instance, given the definition n: It [real ,2], the type of n is recognised as n<2 rather

than It (real, 2) (n).

The concept of the convexity/concavity of a function is defined only on convex sets. The

theories concerning the convexity of functions are parameterised with a type TC R. In

order to specify that T is convex the assumption facility is used.

connected_domainT : ASSUMPTION

FORALL (x, y: T), (z: real):

72

x <= z AND z <= y IMPLIES T_pred(z)

The previously defined predicate convex_set can not be used in an assumption as it must

appear at the beginning of the theory, before the main body in which definitions in other

user defined theories may be accessed.

The concepts of convexity and concavity of functions could either be introduced as types

of functions or as predicates over functions. Given the particular usage, predicates are the

most natural choice, providing an easy means of reasoning about the convexity or concavity
of arbitrary functions. The two predicates 'convex?' and 'concave?' are defined using the

the basic geometric definition of convexity (Equation 5.1) and concavity.

concave?(f: [T->real]): bool =

FORALL (x,y: T, 1: closed [real ,0,1]) :

f(l*x+(l-l)*y)>=l*f(x)+(l-l)*f(y)

convex?(f: [T->real]): bool =

FORALL (x,y: T, 1: closed [real , 0 , 1]) :

f(l*x+(l-l)*y)<=1* f(x) + (l-l)*f(y)

The relationship between convexity and concavity is proven trivially in two lemmas.

concave_neg_convex : LEMMA FORALL (f: [T->real]):
concave?(f) IFF convex?(LAMBDA (x: T): -f(x))

convex_neg_concave: LEMMA FORALL (f: [T->real]):
convex?(f) IFF concave?(LAMBDA (x: T): -f(x))

The concepts of continuity and differentiability of functions are not defined within the PVS

prelude library; however, they have been defined and made available in various user de¬

fined libraries. Dutertre developed a real analysis library [44], which was later updated and
extended by Gottliebsen [54] in her transcendentals library. In both these libraries the def¬
initions of continuity and differentiability are based on standard epsilon-delta definitions1
using the predicates continuous and derivable respectively.

'Consider a non-trivial convex set T, a function / : [T— > R] and a point x € T. f is continuous at x iff

Ve € R+.3i5 e R+.Vy € T.\y - x\ < 5 => \f(y) - f(x)\ < e

73

Lemmas relating differentiability and continuity, as defined in the transcendentals library,

to convexity, are given in their own theory. These lemmas are important in the modelling

of the geometric properties of curves. The theory is parameterised with a type T. The

same assumption about the convexity of T is made and the assumption that the set does

not contain just a single element is also made. These assumptions are required as the

differentiability of functions is only defined on domains for which these assumptions hold.

Two new types are introduced representing twice differentiable, and continuously twice

differentiable functions.

fT: TYPE = {f:[T -> real] I derivable(f) AND

derivable(deriv(f))}

fT3: TYPE = {f:[T -> real] I derivable(f) AND

derivable(deriv(f)) AND

continuous(deriv(deriv(f)))}

It is proven that if a function is (continuously) twice differentiable in T then it also has

this property in any convex subset of T that does not contain only one element. The type

not_one_convex_set_tcc is used to simplify the definition of the lemma and allow the

assumptions that the domain of a differentiable function is a non singleton convex set to be

discharged.

fT_subtype : LEMMA
FORALL (P:not_one_convex_set_tcc [T]) , (f:fT):

derivable(LAMBDA (s:(P)): f(s)) AND

derivable(deriv(LAMBDA (s:(P)): f(s)))

fT3_subtype : LEMMA
FORALL (P:not_one_convex_set_tcc [T]) , (f:fT3):

derivable(LAMBDA (s:(P)): f(s)) AND

and is differentiable at x iff

f(y) - f(x)31 G R.Ve G R+.36 G R+.Vy G T.(y ± x A \y — x\ < 6)
y - x

< e.

74

derivable(deriv(LAMBDA (s:(P)): f(s))) AND

continuous(deriv(deriv(LAMBDA (s:(P)): f(s))))

It is shown that on any nonempty nontrivial closed interval a differentiable function is con¬

vex (concave) iff the derivative is increasing (decreasing) on that interval and that a twice
differentiable function is convex (concave) iff the second derivative is positive (negative)
on that interval and that.

increasing_deriv: LEMMA
FORALL (f : { f 1 : [T->real] I derivable(f 1) }) ,

FORALL (y:T,x:gt [T , y]) :

(convex?[closed[T,y ,x]]
(LAMBDA (s : closed[T,y,x]):f (s))
IFF

increasing
(LAMBDA (s : closed [T , y,x]) : deriv(f)(s)))

convex_aux4 : LEMMA

FORALL (f : fT , y : T , x : gt [T , y]) :

(convex?[closed[T,y,x]]
(LAMBDA (s:closed[T,y,x]):f (s))
IFF

FORALL (s:closed [T , y , x]) :

deriv(deriv(f))(s)>=0)

6.2 Points of Inflection

It is impossible to model a change in convexity in PVS without reference to some neigh¬

bourhood around a point; however, as discussed in Section 5.2 this can lead to problems.

Points of inflection are thus defined only for reasonable functions.

In order to model a reasonable function in PVS the concept of a reasonable domain is first
introduced. Informally a reasonable domain for a function / is some group of sub-domains

75

in which / is either convex or concave. This could be modelled in PVS using one of several

inbuilt PVS data structures — set, list, sequence, f inseq — however, none of these

structures is ideal.

Sets are unordered and do not provide an easy means of accessing specific elements. Lists

in PVS are a recursive data type and although they are ordered and provide a means of

accessing the n-th element they are generally cumbersome to use requiring the repeated

expansion of definitions; for instance to access the n-th element of a list requires n + 1

expansions of the recursive function nth. Sequences in PVS are modelled using two dif¬
ferent types sequence and f inseq to represent infinite and finite sequences respectively.

Sequences are ordered and provide a means of accessing the n-th element directly; how¬

ever, infinite and finite sequences are unrelated in PVS, that is, f inseq is not a subtype of

sequence. An infinite sequence is simply a mapping from the natural numbers to elements

of some type T; whereas, a finite sequence is a mapping from the natural numbers below

some value length to elements of some type T.

Modelling reasonable domains for a function / using sequence would only allow domains
which could be split into an infinite number of sub-domains for which / is either convex
or concave, allowing, for instance, sin over R to have a reasonable domain but not x2. On
the other hand, modelling reasonable domains for a function / using f inseq would only

allow domains which could be split into a finite number of sub-domains for which f is

either convex or concave, allowing, for instance, x2 over R to have a reasonable domain

but not sin.

To take advantage of the positive aspects of sequences but allow reasonable domains to be

split into both finite and infinite sub-domains a new data type mseq is defined to bridge
the gap between sequence and f inseq. This type has a similar format to f inseq in that

it consists of a length and a mapping from the natural numbers indicated by the length to

elements of some type T. If the length is —1 then the sequence is infinite and maps from
the natural numbers to elements of T otherwise the sequence is a finite sequence and maps

from the natural numbers less than the length to elements of T. A new type that allows this

76

mapping from length to the appropriate subset of the natural numbers is introduced.

mbelow [n:int]: THEORY

BEGIN

mbelow: TYPE = {u:nat| IF n<0 THEN TRUE ELSE u<n END IF}

END mbelow

Defining this in a separate theory parametrised by an integer avoids problems associated
with parameterised types allowing the type of, for instance, n:mbelow [2] to be recognised

immediately as n<2.

The type mseq is defined in a separate theory parameterised with a type T as a record

consisting of an integer greater than —2 that represents the length of the sequence and a

function from the appropriate subset of the natural numbers to T. No functions are defined
for elements of type mseq; however, judgements about equivalences between mseq, f inseq

and sequence are proved, allowing the functions defined for f inseq and sequence to be

applied to elements ofmseq in appropriate circumstances.

mlength: TYPE = {u:int| -2<u}
m_sequence: TYPE =

[# length: mlength, seq: [mbelow[length] -> T] #]
mseq: TYPE = m_sequence

finseq_mseq: JUDGEMENT finseq[T] SUBTYPE_OF mseq

mseq_f inseq : JUDGEMENT {S: mseq I -1<S c length}
SUBTYPE_OF finseq [T]

mseq_sequence: JUDGEMENT seq(S:fu:mseqI u'length<0>)
HAS_TYPE sequence [T]

The predicate reasonable_dom? takes a twice differentiable function f and a sequence S

of nontrivial convex sets. This predicate is true if for every sequential pair of nontrivial
convex sets (S„, Sn+i) in S the function f is convex in Sn (or Sn+1) and strict concave in

Sn+1 (or Sn). If S contains only one nontrivial convex set (S0) then the predicate is true if f

77

is convex in S0 or f is concave in S0.

reasonable_dom?

(f:fT3, S:mseq[nontrivial_convex_set_tcc[T]]): bool =

IF S'length/=0 AMD S'length/=1 THEN
(FORALL (n:mbelow[Sclength-1]) :

(FORALL (u:(S'seq(n)), v :(S'seq(n+l))):
sgn(deriv(deriv(f))(u)) / = sgn(deriv(deriv(f))(v))))

ELSE

(FORALL (n:mbelow[Sclength]):
(FORALL (u: (S'seq(n)) ,v:(S'seq(n))) :

sgn(deriv(deriv(f))(u)) = sgn(deriv(deriv(f))(v))))
END I F

This strengthens the definition of a reasonable domain from a domain that can be spilt

into intervals in which the function is convex or concave to a domain that can be spilt into

intervals in which the function is convex or strictly concave. This removes any ambiguity

introduced by linear functions and ultimately allows the domain of a function to be split

into a unique sequence of sub-domains. To ensure that a unique sequence of sub-domain

can be derived for a reasonable function two additional predicates are introduced:

complete?(S:mseq [pred [T]]) : bool =

FORALL (x:T): EXISTS (n:mbelow [S'length]) : (S'seq(n))(x)

ordered?(S:mseq [pred [T]]) : bool =

FORALL (n:mbelow[Sclength],m:mbelow[n]):
FORALL (x:(S<seq(m)),y:(S'seq(n))): x<=y

The first predicate takes a sequence of predicates on T and returns true if every element of
T is in at least one of the predicates in the sequence. The second predicate takes a sequence

of predicates on T and returns true if every element of any predicate in the sequence is less

than or equal to every element in any predicate later in the sequence than it.

A reasonable function is defined as a continuously twice differentiable function whose

domain can be split into an ordered and complete sequence of nontrivial subsets of T

78

reasonable: TYPE =

{f:fT3 I EXISTS (S : mseq[nontrivial_convex_set_tcc [T]]) :

complete?(S) AND ordered?(S) AND reasonable_dom?(f,S)}

The set of points of inflection of a function are defined as the set of points z for which

f"(z) = 0 and for which all points sufficiently close to a have different signs on either
sides of 2.

poi(f:reasonable) : set[T] =

{z:T| deriv(deriv(f)) (z) = 0 AND

EXISTS (x : It [T , z] , y:gt[T,z]):
FORALL (m:open [T , x , z] , n:open [T , z , y]) :

sgn(deriv(deriv (f)) (m)) / =
sgn(deriv(deriv(f))(n)) }

6.3 Geometric Properties of Curves

The geometric properties of curves described in Section 5.3 involve reference to the deriva¬

tive of functions. Differentiability is modelled in PVS as a predicate derivable on func¬
tions and is true if the function is differentiable on its domain. It is not immediately known

in PVS that a differentiable function is also differentiable on any nontrivial subset of its do¬

main. In the context of the decision procedure, which involves reasoning about functions

on subsets of their domains, this could lead to a large number of type correctness conditions

that are trivially true though not necessarily trivial to prove. For this reason the theory con¬

cerning geometric properties of curves is parameterised by a type T, which represents the

domain of a function, and two values a and b from the type T, which represent the bounds

on a closed convex set.

curve_bound[T:TYPE FROM real, a:T, b:{u:TIa<u}]: THEORY

Since differentiability is only defined on non-singleton convex sets the assumption must

be made that T is such a set.

79

ASSUMING

connected_domainT :

FORALL (x, y : T) ,

x <= z AND z <=

ASSUMPTION

(z: real) :

y IMPLIES T_pred(z)

not_one_elementT: ASSUMPTION

FORALL (x: T): EXISTS (y: T): x /= y

ENDASSUMING

Given these assumptions judgements are used to show that T has the type convex_set and

not_one_convex_set, which suppresses the generation of certain TCCs and allows the

automatic proof of others.

T_is_convex_set : JUDGEMENT

T_pred HAS_TYPE convex_set [real]

The types AB and AB_open are defined as the closed and open intervals between a and b,

respectively.

AB: TYPE = {u:real Ia< = u AND u< =b}

AB_open : TYPE = -[u : r e a 1 I a<u AND u < b }

The closed interval is proven to be a convex set which does not contain only one element

and the open interval is shown to be a subtype of the closed interval. Due to the definition
of AB and AB_open it is not immediately obvious to PVS that these are in fact subtypes of T.

Altering the definition of AB to {u:T| a<=u AND u<=b> would solve this but would cause

the generation of many trivial TCCs during proofs. Using a judgement to show that AB is
a subtype of T allows the PVS type checker to determine that AB is a subtype of T without

causing the additional TCCs that would be generated with the altered definition.

Each of the conditions given in Section 5.3 is modelled and proven in a separate lemma,

including the conditions for concave curves to be positive/negative. These lemmas are

modelled in terms of functions lying above or below lines since addition or subtraction of
linear functions does not change the convexity of a function. Six new predicates are defined

80

to represent the conditions for a convex or concave function to be less than, less than or

equal, greater than, greater than or equal, equal, and not equal to a line in an interval. For

example,

c u r v e
_ g t _ 1 i n e

(f:{u:fT [T] [convex?(LAMBDA (x:AB): f(x)) OR

concave?(LAMBDA (x:AB): f(x))> ,m,c:real) : bool =

(convex?(LAMBDA (x:AB): f(x)) AND

((deriv(f,b)<m AND f(b)>m*b+c) OR

(deriv(f,a)>m AND f(a)>m*a+c) OR

(EXISTS (n:AB): deriv(f,n)=m AND f(n)>m*n+c)))
OR

(concave?(LAMBDA (x:AB): f(x)) AND

(f(a)>m*a+c AND f(b)>m*b + c)) .

These predicates are proven to hold iff the appropriate (in)equality holds. For example,

curve_gt_line_aux : LEMMA
FORALL (f : {u:fT[T] | convex?(LAMBDA (x:AB): f(x)) OR

concave?(LAMBDA (x:AB): f(x)f)},m,c:real):

(FORALL (x:AB): f(x)>m*x+c) IFF

curve_gt_line(f,m,c)

6.4 Classification

In tools such as MATLAB (Section 2.3), transfer functions are entered as a function applied

to two lists of values. The first list represents the coefficients of the polynomial numerator

of the transfer function, the second represents the coefficients of the denominator. A similar

structure is adopted to model polynomials in PVS. A polynomial function is constructed

from a finite sequence of real numbers. Given that a polynomial is a function of x, the z-th

element of the sequence represents the coefficient of xl. The polynomial is constructed by

summing these values.

81

polynomial (S:finseq [real]) : [real->real] =

LAMBDA (x:real) :

sumto(S'length)
(LAMBDA (n:below[S'length]): S c seq (n) * expt (x , n))

A function / is defined to be a polynomial if there exists a sequence of R from which /
can be constructed using the polynomial function.

poly_type: TYPE =

{f: [real->real] I

EXISTS (S:finseq[real]) : f =polynomial (S)}

The differentiability of any polynomial to any degree is proven along with value of those
derivatives. Judgements are used to show that polynomials are differentiable functions.

Proving this in a judgement rather than as a lemma allows the PVS type checker access to

this information and can prevent the generation of certain TCCs.

This definition of a polynomial makes no assertion that the lead coefficient be nonzero. The

recursive function degree is used to calculate the degree of a polynomial. The constant 0
function is considered to have degree 0.

degree(S:finseq [real]) : RECURSIVE nat =

IF S'length = 0 THEM 0
ELSIF S'seq(S'length - 1)=0 THEN

degree(subseq(S,0,S clength-2))
ELSE

S clength -1
END I F

MEASURE S clength

Linear, rational and rationally differentiable functions are all defined in terms of polynomi¬
als. Linear functions are defined as those polynomials whose degree is less than or equal to
1. Rational functions are defined as those functions that can be represented by a quotient
of polynomials. This has the added requirement that the denominator of the quotient is

always nonzero. Rationally differentiable functions are defined as those functions whose

82

derivative can be represented as a rational function.

Finitely inflective functions are defined in two ways. First, as a function whose domain

can be split into a finite number of nontrivial intervals of convexity or strict concavity,
and second, as a function with a finite number of points of inflection. Although the second

definition models precisely the definition of a finitely inflective function as given in Section

5.4 the first is significantly easier to reason about and corresponds more closely to the

notion of a reasonable function.

finitely_inflective: TYPE =

{f:fT3| EXISTS (S:finseq[nontrivial_convex_set_tcc [T]]) :

complete?(S) AMD ordered?(S) AND reasonable_dom?(f , S)}

finitely_inf1ective_alt: TYPE =

{f:reasonable I is_finite(poi(f))>

In order to show the equivalence of the two definitions it is first shown that in any nonempty

ordered sequence of nontrivial intervals all but the last interval in the sequence is guaranteed

to have an upper bound. Similarly it is shown that all but the first is guaranteed to have a

lower bound.

reasonable_dom_bounded_above : LEMMA

FORALL (S:mseq[nontrivial_convex_set_tcc [T]]) :

ordered ?(S) AND Sclength/=0 IMPLIES
FORALL (n: [below[S£length-1]]) :

EXISTS (x:T): upper_bound?(x,S'seq(n))

reasonable_dom_bounded_below : LEMMA

FORALL (S:mseq[nontrivial_convex_set_tcc[T]]):
ordered?(S) AND S£length/=0 IMPLIES

FORALL (n:[below[S£length]]):
n/=0 IMPLIES

EXISTS (x:T): lower_bound?(x,S£seq (n))

83

The proofs of these lemmas rely on the fact that the sequence S is ordered and that every

element Sn of S is a nonempty set. To show that Sn has a lower bound it must be shown that

there exists a point that is less than or equal to all elements x eSn. An element y in S„_i

is chosen. Since S is ordered, y < x and thus S„ is bounded below. A similar argument

follows to show that S„ is bounded above.

For convenience the function f i_dom is declared to determine the sequence of domains
into which the domain of a finitely inflective function can be split.

fi_dom(f:finitely_inflective):
finseq[nontrivial_convex_set_tcc[T]] =

choose({S:finseq[nontrivial_convex_set_tcc [T]] [
complete?(S) AND ordered?(S) AND

reasonable_dom?(f,S)})

6.5 Language C\

The formulae of C\ are modelled in PVS in two stages. First, they are modelled as syntac¬

tic constructs. This allows the manipulation of the structure of formulae, for instance, the

conversion from disjunctive to conjunctive normal form or isolated form. Second, the se¬

mantics of the language are modelled. This allows assertions that the meaning of a formula

does not change when a syntactic conversion is performed.

The formulae of £1 are built up recursively, for instance, a formula can be a conjunction of
several formulae. PVS provides datatypes as a means of defining recursive types using a

base case and constructors. Datatypes are simply a syntactic construction which hides the

complexity involved in defining recursive types in PVS. Ideally, this construction would

be used to model atomic formulae as the base type for the language, and conjunction,

disjunction and quantification as constructors. However, it is not possible to do this and

also specify the format of atomic formulae. Rather than using the datatype construction to

hide the complexity, this must be modelled directly in PVS.

84

The uninterpreted type f rmla is declared2 and the base case and constructors are then

defined axiomatically. The uninterpreted function atomic takes a predicate P over the

reals, a name, a function from (P) to R and an element from an enumerated type inq that

represents inequality signs and returns a frmla. An axiom is used to assert that such a

function exists to allow the discharge of the equivalent TCC. The predicate atomic? takes

a formula B and returns true if there exists a predicate P, a name x, a function f from (P)
to R and an element s from inq, such that B =atomic (P,x,f ,s). The uninterpreted
functions dom, name, func and ineq take a formula and return a predicate, name, function
and element of inq, respectively. Axioms are used to assert that the predicate, name,

function and element of inq returned when these functions are applied to an atomic formula
are the expected values. For instance,

dom: [frmla -> predfreal]]

dom_atomic : AXIOM

FORALL (P: pred[real], x: name),
(f: [(P) -> real], s:inq):
dom(atomic(P , x, f, s)) = P;

The values true and false are modelled as the atomic formulae T and F.

T: frmla = atomic(fx:real I TRUE},

char (0) ,

LAMBDA (x:real) : 0,

eq)

F: frmla = atomic(fx:real 1 TRUE},

char (0) ,

LAMBDA (x:real) : 1,

eq)

Conjunction and disjunctions are modelled as the uninterpreted functions conj and disj

that take finite sequences of formulae, which have at least two elements, and return a for-
2Formula is a keyword in PVS therefore cannot be used as an identifier

85

mula. This construction allows the simplification of the syntactic conversions between the

normal forms. The predicates conj? and disj? take a formula B and return true if there
exists a finite sequence of formulae S such that £=conj (S) or B=disj (S) respectively.

The uninterpreted function args takes a formula and returns a finite sequence of formulae.
Axioms are again used to assert that the results of applying the function to a conjunction

or disjunction are as expected. Axioms are also used to assert that atomic formulae, con¬

junctions and disjunctions are syntactically distinct, that is, a conjunction is not an atomic

formula or a disjunction. For instance,

conj_not_atomic: AXIOM
FORALL (A:frmla_seq2) : NOT atomic?(conj (A))

conj_not_atomic_alt : LEMMA
FORALL (A : (conj ?)) : NOT atomic?(A)

Universal and existential quantification are modelled as the uninterpreted functions A and

E that take a name and a formula and return a formula. The predicates A? and E? take a

formula B and return true if there exists a name x and a formula C such that B-A(x,C)

or B=E(x,C) respectively. The uninterpreted functions name and arg take a formula and

return a name and a formula, respectively. Axioms are again used to assert that the results of

applying the function to a quantified formula are as expected. Axioms are also used to assert

that atomic formulae, conjunctions, disjunctions and quantified formulae are syntactically

distinct.

Many syntactic conversions of formulae can be modelled as recursive functions on formu¬

lae. However, in order to define recursive functions over formulae PVS requires a measure

of the complexity of formulae that decreases on each recursive call of the function. This

allows assertions about the termination of the recursive function to be made. Often the

depth of a formula is used as a measure of its complexity; however, this measure is not

suitable for the conversion of formulae into conjunctive normal, disjunctive normal or min¬

imal isolated form as the depth of the formula may increase during this conversion. A more

general measure of the complexity of a formula B can be considered to be some measure

86

of the complexity of the construction of B along with a measure of the complexity of the

arguments of B; for instance if B is conjunction of the three formulae C, D and F then the

complexity of B is a measure of complexity of the conjunction plus the complexity of C,
D and F. The complexity of a formula is referred to as the degree of the formula.

The function deg_args is defined as a recursive function that takes a finite sequence of

formulae and a function g from formulae to natural numbers representing some measure of
the complexity of the formula. deg_args returns the sum of the complexity as defined by

g of all the formulae in the sequence. The measure used to guarantee termination of this

function is the length of the sequence as this decreases with each recursive call.

deg_args(f:finseq[frmla],g:[frmla->nat]):
RECURSIVE nat =

IF f£length = 0 THEN 0
ELSIF f'length = 1 THEN g(f£seq(0))
ELSE g(f'seq(0)) + deg_args(f~(1,f£length-1),g)
END I F

MEASURE f£length

The uninterpreted function deg (for degree) is declared as a function that takes a formula
and returns a natural number. Axioms are used to assert that the results of calling deg on

an atomic formula is 0, of calling it on a conjunction or a disjunction is the length of the

sequence of arguments plus the sum of the degree of the arguments, and of calling it on a

quantified formula is 1 plus the degree of its argument. Mutual recursion is required in this

definition; however, in PVS, mutually recursive functions cannot be defined directly. This

is owing to the fact that in PVS a function can only refer to functions whose definitions

precede it in the file or import chain. The definition of deg_args precedes the definition
of deg, which means that deg can refer to deg_args in its definition but deg_args cannot

refer to deg. By parameterising deg_args with a function g, deg can pass itself as an argu¬

ment to deg_args. In this context, expanding the definition deg produces some expression

involving deg_args and expanding deg_args produces some expression involving deg.

This essentially produces mutual recursion between deg and deg_args.

87

deg:[frmla->nat]

deg_conj : AXIOM
FORALL (A:frmla_seq2) :

deg(conj(A)) = Aclength + deg_args(A,deg)

The type f rmla is not restricted to those formulae that are constructed only from atomic

formulae, conjunctions, disjunctions and quantified formulae, nor should it be. However,

it is useful to be able to refer only to those (un)quantified formula, that are built up using
the defined base case and constructors. The recursive predicate f rmla? takes a formula
and returns true if it is either an atomic formula or it is a conjunction or disjunction, whose

arguments are of type (frmla?).

frmla?(A:frmla): RECURSIVE bool =

IF atomic ?(A) THEN TRUE

ELSIF conj ?(A) OR disj?(A) THEN
FORALL (n:below[args(A)£length]): frmla?(arg(A,n))

ELSE FALSE

END I F

MEASURE deg(A)

The recursive predicate qf rmla? takes a formula and returns true if it is either an atomic

formula, a conjunction or disjunction, whose arguments are of type (qf rmla?), or a quan¬
tified formula whose argument is of type (qfrmla?).

To determine the domain of arbitrary formulae the uninterpreted function get_dom, which
takes a formula and returns a finite sequence of name and predicate pairings is declared.

Axioms are used to define the behaviour of this function for specific types of formulae.

Defining the function to determine the domain of an atomic or a quantified formula is

relatively straight forward. The domain of an atomic formula B is simply its domain

get_dom(B) = dom(B).

The domain of a quantified formula B is the domain of the formula that is quantified with

the domain of the quantified variable removed

88

get_dom(B) = remove(name(B),get_dom(arg(B))).

Defining a method to extract the domain of a conjunction or disjunction is a more complex
matter. As stated in Section 5.5, the domain of such a formula is the intersection of the

domains of the variables common to its subformulae and the product of the domains of

the remaining variables. Since conjunctions and disjunctions are modelled essentially as

functions that take two or more formulae and produce a formula, the domains of each of

these subformulae must be found and composed in the appropriate manner. An auxiliary
function that models the appropriate composition of two domains is defined. This is a

recursive function that takes two sequences f and g of predicate/name pairings and returns
a single sequence of such pairings. For each element of g, the function calls contains to

determine whether the name appear in f. If it does, then the domain associated with that

name is replaced in f with the intersection of the domain in f and the domain in g. If f
does not contain the name then that element of g is appended to the sequence f. At this

point there are no assertions made about the uniqueness of any name in either sequence.

dom_product(f,g:finseq[[pred[real],name]]):
RECURSIVE finseq [[pred [real] ,name]] =

IF f1 length =0 THEN g

ELSIF g £length =0 THEN f
ELSIF contains?(g£seq (0) '2,f) THEN

dom_product ((#length:=f clength ,

seq: = LAMBDA (n:below [f£length]) :

IF f£seq(n) £2 =g£seq (0) £2 THEN

({x:real| f£seq(n) £1(x) AND g£seq(0) £1(x)} ,

f'seq(n) £2)
ELSE f £ seq(n)
ENDIF #) ,

g~(1,g'length-1))
ELSE

dom_product ((#length:=f £length + 1,

seq:=LAMBDA (n:below[f£length+l]):
IF n=f'length THEN

89

g c seq (0)
ELSE f £ seq(n)
ENDIF #) ,

g~(1,g clength -1))
ENDIF

MEASURE g'length

The definition of the domain of an arbitrary conjunction (or disjunction) can then be mod¬

elled using this function to combine the domains of each of its subformulae.

IF args(A)'length=2 THEN

get_dom(A) =

dom_product(get_dom(arg(A,0)),
get_dom(arg(A, 1)))

ELSE

get_dom(A) =

dom_product(get_dom(arg(A,0)),
get_dom(conj (args(A)~ (1,args(A) 'length -1))))

ENDIF

The decision procedure of Section 5.7 is defined only on formulae that can be reduced

to minimal isolated form, where the scope of each quantifier is a literal formula and the

functions within the literal formulae are finitely inflective in the domain of the formulae.
The domain of a formula must be bounded. Two new predicates are introduced, which to¬

gether define formulae to which the procedure can be applied. The first defines a quantified
formula whose scope is an atomic formula, whose func component is a finitely inflective

function, and whose domain is bounded.

q_atomic?(B:frmla): bool =

IF A ?(B) THEN

atomic?(arg(B)) AND
(EXISTS (x,y:(dom(arg(B)))):
x<y AND

(FORALL (z:real):

dom(arg(B))(z) IFF (x< = z AND z<=y))) AND

90

derivable(func(arg(B))) AND

derivable(deriv(func(arg(B)))) AND

continuous(deriv(deriv(func(arg(B))))) AND

convexity_props[(dom(arg(B)))].
finitely_inflective?(func(arg(B)))

ELSIF E? (B) THEN

atomic?(arg(B)) AND

(EXISTS (x,y:(dom(arg(B)))) :

x<y AND

(FORALL (z:real):

dom(arg(B))(z) IFF (x<=z AND z<=y))) AND

derivable(func(arg(B))) AND

derivable(deriv(func(arg(B)))) AND

continuous(deriv(deriv(func(arg(B))))) AND

convexity_props[(dom(arg(B)))].
finitely_inflective?(func(arg(B)))

ELSE

FALSE

END I F

The second predicate is recursive and defines formulae that are built from conjunctions and

disjunctions of formulae for which q_atomic? holds.

dp_frmla?(B : frmla): RECURSIVE bool =

IF qf rmla ?(B) THEN
IF atomic?(B) THEN

FALSE

ELSIF conj ?(B) OR disj ?(B) THEN
FORALL (n:below[args(B) 'length]) :

dp_frmla?(arg(B,n))
ELSE

q_atomic ?(B)
END I F

ELSE

FALSE

91

END I F

MEASURE deg(B)

6.6 Quantifier Isolation

To model quantifier isolation several key concepts are required. These concepts include the

representation of formulae in various normal forms and conversion between these normal

forms.

In Section 6.6.1 the representation in PVS of normal forms, including (minimal) isolated

form, is detailed. Section 6.6.2 details the algorithm for conversion of formulae to normal

forms, including conversion to minimal isolated form.

6.6.1 Normal Forms

Since conjunction and disjunction are modelled as functions which take a finite sequence

of formulae rather than a pair of formulae, as is traditionally the case, conjunctions and

disjunctions may be constructed as 'flat' as well as hierarchical structures, for instance, the

following two formulae can be represented directly.

AA BAC A D

((A AB)AC)AD

No decision is forced about the associativity of the conjunctions in the first formulae but

the associativity of the second can still be represented. The first formula is considered flat

whereas the second is not. A flat formula is a formula that does not contain a conjunction

of conjunctions or disjunctions of disjunctions. The concept of a flat formula is modelled

as the recursive predicate flat?.

flat ? (A : f rmla) : RECURSIVE bool =

IF at omic ? (A) THEN TRUE

92

ELSIF con j ? (A) THEM
FORALL (n:below[args(A)'length]):

(NOT conj?(arg(A, n))) AND
flat ?(arg(A , n))

ELSIF disj ? (A) THEN

FORALL (n:below[args(A)'length]):
(NOT disj?(arg(A, n))) AND
flat ?(arg (A , n))

ELSIF A ?(A) OR E?(A) THEN

flat ?(arg(A))
ELSE FALSE

END I F

MEASURE deg(A)

The notions of conjunctive and disjunctive formulae are modelled as recursive predicates,

which take a formula and return true if it is a conjunction (disjunction) and all of its argu¬

ments are either atomic formulae or conjunctive (disjunctive) formulae.

conjunctive_f?(B:frmla): RECURSIVE bool =

IF conj ?(B) THEN
FORALL (n:below[args(B)'length]) :

(atomic?(arg(B,n)) OR conjunctive_f?(arg(B,n)))
ELSE FALSE

END I F

MEASURE deg(B)

The concept of a basic formula is modelled using a predicate basic?, which takes a for¬

mula and returns true if it is either an atomic formula or a quantified formula that contains

no other quantifiers within its scope. The modified notions of conjunctive and disjunctive
formulae are modelled as recursive predicates, which take a formula and return true if it is

a conjunction (disjunction) and all of its arguments are either basic formulae or conjunctive

(disjunctive) formulae.

conjunctive ? (B : f rmla) : RECURSIVE bool =

IF conj ?(B) THEN

93

FORALL (n:below[args(B)'length]):
(basic?(arg(B,n)) OR conjunctive?(arg (B , n)))

ELSE FALSE

ENDIF

MEASURE deg(B)

Modified conjunctive and disjunctive normal forms are modelled similarly. Judgements

are used to show that modified conjunctive (normal) and disjunctive (normal) formulae are

quantified formulae (qfrmla?).

The concepts of an isolated and minimal isolated formula are modelled as recursive pred¬

icates. Rather than defining these predicates over elements of type (qfrmla?), which
would generate a TCC each time the predicates were used, the predicates are defined over

elements of type frmla but will return false if they are not also of type (qfrmla?).

isolated?(B:frmla): RECURSIVE bool =

IF qf rmla ?(B) THEN

IF atomic ?(B) THEN

TRUE

ELSIF conj ?(B) OR disj?(B) THEN
FORALL (n:below[args(B)clength]):
isolated?(arg(B,n))

ELSE

frmla?(arg(B)) AND

contains_only?(name (B) , get_dom(arg(B)))
ENDIF

ELSE

FALSE

ENDIF

MEASURE deg(B)

min_isolated?(B:frmla): RECURSIVE bool =

IF qfrmla?(B) THEN
IF at omic ?(B) THEN

TRUE

94

ELSIF conj ? (B) OR disj?(B) THEN
FORALL (n:below[args(B)'length]):
min_isolated?(arg(B,n))

ELSIF A ? (B) THEN

disjunctive_f?(arg(B)) AND

contains_only?(name(B), get_dom(arg(B)))
ELSE

conjunctive_f?(arg(B)) AND

contains_only?(name(B), get_dom(arg(B)))
END I F

ELSE

FALSE

END I F

MEASURE deg(B)

Given these definitions it is not immediately recognised that (minimal) isolated is a subtype

of quantified formulae (qfrmla?). Judgements are used to show this.

6.6.2 Formula Manipulation

Two recursive functions are defined that take a name and a finite sequence of formulae

and returns a finite subsequence containing only those formulae that contain the name in

their domain or a finite subsequence containing only those formulae that do not contain the

name.

The rules of Table 5.1 are modelled as functions that take a quantified formula and return a

formula. For instance, the following models rules (l.a) and (l.b) from the table in a single

function.

rulel_alt(B : (A?)) : frmla =

IF contains?(name(B),get_dom(arg(B))) THEN
IF nonempty?(get_pred(name(B),get_dom(arg(B)))) THEN

B

95

ELSE

T

END I F

ELSE arg(B)
END I F

The recursive function flatten takes a (qfrmla?) and returns a (flat?) formula. It

is proven that the degree of a flattened formula is less than or equal to the degree of the

original formula and if the original formula is not a flat formula then the degree of the

flattened formula is strictly less then the degree of the original.

The recursive functions mcn_aux and mdn_aux are defined as auxiliary function for con¬

verting formulae into conjunctive or disjunctive normal form (CNF or DNF). The func¬

tion mcn_aux takes an isolated formula (isolated?) and returns either a (basic?),

(disjunctive?) or (conj_norm?) formula. The function mdn_aux returns a (basic?),

(conjunctive?) or (disj_norm?)). These functions are required as not all formulae can

be converted into the required form without adding extra components; for instance, Bv C
can only be converted into CNF by taking its conjunction with true, i.e. true A (J5V C).
These extra components should only be added after it has been determined that the formula

cannot be put into CNF without them.

The conversion of a conjunction B into CNF is relatively simple to define in PVS. Con¬

verting the subformulae of B into CNF converts B into such a form. The conversion of

disjunction B into CNF is not such a simple matter. If its subformulae contain any con¬

junctions then, given that B is flat, at least one of its arguments must be a conjunction.

This can be distributed across the disjunction converting it into a conjunction B'. This can

then be converted into CNF by converting the subformulae of B'. If the formula is not flat

then, although it contains a conjunction within its subformulae, none of the arguments of
B are necessarily a conjunction; for instance, CV(Dv(F A G)). The formula B must be
flattened and then converted into CNF.

mcn_aux(B:(isolated?)):

RECURSIVE {B:(isolated?)|(basic?(B) OR

96

disjunctive?(B) OR conj_norm? (B)) } =

IF basic?(B) OR conj_norm?(B) OR disjunctive?(B) THEN
B

ELSIF conj ? (B) THEN

conj ((#length:=args(B) 'length ,

seq:=LAMBDA (n:below[args(B)'length]):
mcn_aux(arg(B,n))#))

ELSE

IF flat ?(B) THEN

LET

m=choose({n:below[args(B)'length]I
conj ? (arg (B , n)) }) ,

ml=args(arg(B,m))'length
IN

conj((#length:=ml,
seq: = LAMBDA (n:below [ml]) :

mcn_aux (

disj((#length: = args(B)'length,
seq:=LAMBDA (p:below[args(B)'length]):
IF p =args(B)'length-1 THEN arg(arg(B,m) ,n)
ELSE

remove_nth(args(B),m)'seq(p)
ENDIF #)))#))

ELSE mcn_aux(flatten(B))

END I F

END I F

MEASURE deg(B)

The functions make_conj_norm and make_disj_norm are defined to convert formulae
into conjunctive or disjunctive normal form and make use of the auxiliary functions above,

adding extra components where necessary to complete the conversion. Judgements are used

to show that the result of applying make_conj_norm (make_disj_norm) to an isolated

formula is a formula in conjunctive (disjunctive) normal form.

make_conj_norm(B :(isolated?)) : (isolated?) =

97

IF basic?(B) THEN

conj ((#length : =2,

seq: = LAMBDA (n:be low [2]) :

IF n=1 THEN T(name(B))

ELSE B ENDIF #))

ELSIF disjunctive?(B) THEN

conj ((#length:=2,
seq:= LAMBDA (n:below [2]) :

IF n=1 THEN T

ELSE B ENDIF #))

ELSE mcn_aux(B)

END IF

To perform quantifier isolation, the transfer of quantifiers over conjunctions and disjunc¬

tions is required. Two functions are defined that apply the appropriate rules for this transfer.

move_A_in(B:{u:(A?)| basic?(arg(u)) OR

disjunctive?(arg(u)) OR conj_norm?(arg(u))>) :

(min_isolated?) =

IF basic?(arg(B)) THEN

rulel_alt(B)

ELSIF conj ?(arg (B)) THEN

rule3(B)

ELSE

rule5(B)

END I F

move_E_in(B : {u : (A?) | basic?(arg(u)) OR

conjunctive?(arg(u)) OR disj_norm?(arg(u))}) :

(min_isolated?) =

IF basic?(arg(B)) THEN

rule2_alt(B)

ELSIF disj?(arg(B)) THEN

rule4(B)

ELSE

98

rule6(B)

END I F

The recursive function qi (quantifier isolation) takes a (qfrmla?) and returns a formula in

minimal isolated form. This function is more complex than the previous recursive functions

as it may require nested applications, i.e, qi(A(name(B),qi(arg(B)))). The simple
measure of the degree of a formula that has previously been used when defining recursive

functions over formulae is no longer sufficient to guarantee termination. A new measure

deg_qi is introduced. This measure is very similar to deg only the new degree ofminimal
isolated formulae is 0.

qi(B:(qfrmla?)): RECURSIVE (min_isolated?) =

IF min_isolated?(B) THEN B

ELSIF A ? (B) THEN

IF min_isolated?(arg(B)) THEN

move_A_in(A(name(B),flatten(mcn_aux(arg(B)))))
ELSE

qi(A(name(B) ,qi(arg(B))))
END I F

ELSIF E?(B) THEN

IF min_isolated?(arg(B)) THEN

move_E_in(E(name(B),flatten(mdn_aux(arg(B)))))
ELSE

qi(E(name(B) ,qi(arg(B))))
END I F

ELSIF conj ?(B) THEN

conj ((#length: = args (B) 'length ,

seq:= LAMBDA (n:below[args(B)'length]) :

qi (arg (B , n)) #))
ELSE

disj ((#length: = args (B) 'length,
seq:= LAMBDA (n:below[args(B)'length]):
qi(arg(B , n))#))

END I F

99

MEASURE deg_qi(B)

6.7 Decision Procedure for Functions of One Variable

Sections 6.5 to 6.6.2 have dealt purely with the modelling of syntactic aspects of formulae
of C\. Since the decision procedure is concerned with semantic properties of formulae
these must be modelled before the decision procedure.

Formulae are interpreted with respect to a variable. When interpreting a formula, a symbol

table is constructed that associates a name and type predicate with a variable. This table is
modelled using the finite sequence type that is inbuilt in PVS. A symbol table is defined for
a specific formula and contains a single entry for each name in the domain of the formula.
The type predicate associated with the name is a subset of (or is equal to) the domain

associated with it within the formula.

symb_table(A:frmla): TYPE =

{u:finseq[[P:pred[real] ,name , (P)]] I
u ' length > = get _dom (A) ' length AND
FORALL (n:below[get_dom(A)'length]):
(EXISTS (m:below[u'length]) :

get_dom(A) 'seq(n) ' 2 = u'seq(m)'2)
AND

(FORALL (m:below[u'length]) :

get_dom(A)'seq(n)'2 = u'seq(m)'2
IMPLIES

FORALL (x: (u'seq(m) ' 1)) :

(get_dom(A) 'seq(n) ' 1)(x))}

When interpreting a formula, those variables that are free (not quantified) are interpreted
as implicitly universally quantified. This is represented in the function interpret, which
takes a formula. The sequence x is universally quantified and contains the same number of
variables as there are free variables in A. The symbol table is initialised using these vari-

100

ables, ensuring that each variable is associated with the appropriate name and type pred¬

icate. An auxiliary function is called to interpret the formula with respect to this symbol

table.

interpret(A:frmla): bool =

FORALL (x:vars(get_dom(A))) :

interpret_aux(A,
(#length:=x'length ,

seq:= LAMBDA (n:below[x'length]) :

(get_dom(A) 'seq(n) ' 1,
get_dom(A)'seq(n)'2, x'seq(n))#))

The auxiliary function interprets formulae as would be expected; for instance a formula
of type (conj?) is interpreted as the conjunction of the interpretation of its subformulae.
The symbol table remains the same for all arguments of the conjunction. The symbol table

is only updated when a quantifier is encountered. Since quantifying a variable removes it
from the domain of the resulting formula, this process must essentially be reversed when

interpreting it. If the formula is of type (E?) then the formula is interpreted as the existen¬

tial quantification of the variable y over the interpretation of the subformula. The variable

is added along with the appropriate name and type predicate to the symbol table. If the ta¬

ble already contains an entry for the given name then the entry is overwritten. This causes

a name to be connected with the most recent binding.

interpret_aux(B:frmla,x:symb_table(B)):
RECURSIVE bool =

IF qf rmla ?(B) THEN
IF atomic?(B) THEN

interpret_atomic(B,get_var(name(B) , x))
ELSIF conj ? (B) THEN

IF args(B)£length=2 THEN

interpret_aux(arg(B,0),x) AND

interpret_aux(arg(B,1),x)
ELSE

interpret_aux(arg(B,0),x) AND

101

interpret_aux(

conj (args(B)~ (1,args(B)'length -1)) ,x)
END IF

ELSIF dis j ? (B) THEN
IF args(B)£length=2 THEN

interpret_aux(arg(B,0),x) OR

interpret_aux(arg(B,1),x)
ELSE

interpret_aux(arg(B,0),x) OR

interpret_aux(
disj (args (B) ~ (1 , args (B) 1 length -1)) , x)

END I F

ELSIF E?(B) THEN

EXISTS (y :(get_pred(name(B),get_dom(arg(B))))):
interpret_aux(arg(B), x o

(#length:=l, seq:= LAMBDA (n:be low [1]):
(get_pred(name(B),get_dom(arg(B))),
name (B) , y) #))

ELSE

FORALL (y:(get_pred(name(B),get_dom(arg(B))))):
interpret_aux(arg(B),
insert(get_pred(name(B),get_dom(arg(B))),

name (B) ,y,x))
END I F

ELSE

FALSE

END I F

MEASURE deg(B)

The interpretation of an atomic formula is based on its component parts. It is interpreted as

an (in)equality between a function and 0 for a given variable x.

interpret_atomic(A:(atomic?),x:(dom(A))): bool =

IF ineq(A) = It THEN

func(A)(x) < 0

102

ELSIF ineq(A) = le THEN

func (A) (x) <= 0

ELSIF ineq(A) = eq THEN

func(A)(x) = 0

ELSIF ineq(A) = ge THEN

func(A)(x) >= 0

ELSIF ineq(A) = gt THEN
func(A)(x) > 0

ELSE

func(A)(x) /= 0

END IF

Given this interpretation of formulae the decision procedure, described in Section 5.7, is

modelled in four separate predicates.

The theory in which the first two predicates are defined is parameterised with two real vari¬

ables a and b, which represent the maximum and minimum elements of a closed set. The

function f is defined as finitely inflective over this interval. The predicate dp_single_aux

recursively applies a predicate to determine the positivity/negativity (as appropriate) of f

in some of the intervals in [a, b] in which f is either convex or concave.

dp_single_aux(f:finitely_inflective [closed [real,a,b]] ,

m:real, c:real , n:below[fi_dom(f)'length] ,s:inq):
RECURSIVE bool =

LET lb = gib (f i_dom (f) ' seq (n)) ,

ub = lub(fi_dom (f) 'seq(n)) IN
IF n = 0 THEN

IF S — It THEN

curve_lt_line[closed[real ,a,b] ,lb,ub](f,m,c)
ELSIF s=le THEN

ELSE

curve_neq[closed [real, a , b] ,lb,ub] (f ,m,c)
END IF

103

ELSE

(IF S — It THEN

curve_lt_line[closed[real, a, b] ,lb,ub] (f ,m,c)
ELSIF s=le THEN

ELSE

curve_neq[closed [real, a , b] ,lb,ub]
(f,m,c)

END IF)

AND

dp_single_aux(f ,m,c , n -1,s)
END IF

MEASURE n;

The function f is finitely inflective. By definition (Section 6.4), this means that the domain

of f can be split into a unique sequence f i_dom(f) of disjoint interval in each of which

the function is either convex or concave. The predicate dp_single_aux takes the natural

number n as an argument and determines whether f is above/below/etc the line m*x+c in

all intervals in f i_dom(f) whose indices are less than or equal to n.

The predicate dp_single simply calls dp_single_aux the with n equal to the maximum
index of elements in f i_dom(f) to ensure that the function is examined over all of [a, b|.

dp_single(f:finitely_inflective [closed [real , a , b]] ,

m:real,c:real,s:inq):
bool =

dp_single_aux(f,m,c , fi_dom (f) clength-1,s)

The predicate dp_q_atomic takes an element of (q_atomic?) and extracts the quantifier,
and the components from the atomic formula. If the formula is existentially quantified it is

converted into an equivalent universally quantified formula. The predicate dp_single is

applied to the components of the atomic formula.

dp_q_atomic(B:(q_atomic?)) : bool =

104

IF A ?(B) THEN

dp_single[lub(dom(arg(B))),glb(dom(arg(B)))]
(func(arg(B)),0,0,ineq(arg(B)))

ELSE

NOT dp_single [lub(dom(arg(B))) ,gib(dom(arg (B)))]
(func(arg(B)),0,0,neg(ineq(arg(B))))

END I F

The predicate dp represents the complete decision procedure of Section 5.7. It takes an

element of (dp_frmla?) and if the formula is an element of (q_atomic?) the predicate

dp_q_atomic is applied. If the formula is a conjunction then dp is applied recursively
to the components of the formula and the conjunction of the results is the taken. If the
formula is a disjunction then dp is applied recursively to the components of the formula
and the disjunction of the results is taken.

dp (B : (dp_f rmla?)) : RECURSIVE bool -

IF conj ?(B) THEN
IF args(B)'length=2 THEN

dp (arg (B , 0)) AND dp (arg (B , 1))
ELSE

dp (arg (B , 0)) AND

dp(conj(args(B)~(l,args(B)clength-l)))
END I F

ELSIF dis j ? (B) THEN
IF args(B)'length=2 THEN

dp(arg(B,0)) OR dp(arg(B,l))
ELSE

dp (arg (B,0)) OR

dp(disj (args(B)~(l,args(B) 'length-1)))
END I F

ELSE

dp_q_atomic(B)
END IF

MEASURE deg(B)

105

Theorem 6.1 The decision procedure terminates.

PROOF: The termination of the procedure relies on two facts: (1) any formula B to which

the procedure applies is in minimal isolated form and is thus composed of a finite or count-

ably infinite number of (quantified) atomic formulae Bi, (2) every function fa in B is finitely

inflective, which means that the domain of fa can be split into a finite number of intervals

over which fa is convex or concave. The procedure determines the truth of each Bi in
each sub-domain of fa in which fa is convex or concave. It then composes the results.

Since there is a finite or countably infinite number of formulae Bt and each fa is finitely

inflective the procedure will eventually determine the truth of every subformula Bi in every

sub-domain of fa. ■

The proof of termination of the decision procedure in PVS requires the proof of termination

of both dp_single_aux and dp. As with all recursive functions, PVS requires measures,

which decrease with each successive call of dp_single_aux and dp, to guarantee termina¬
tion. The measure of dp_single_aux is a natural number n, which is explicitly decreased
on each recursive call. This leads to a trivial termination condition, that is, n-l<n. The

measure of dp is the degree of the formula B. The termination conditions for this function

are more complex. Several TCCs representing the termination argument are generated,

one for each recursive call of dp. Each TCC ensures that the measure decreases for a sin¬

gle recursive call. For instance, the termination TCCs generated for the case when B is a

conjunction with more than two arguments3 are:

dp_TCC9 : OBLIGATION
FORALL (B: (dp_frmla?)):
conj ?(B) AMD MOT args(B)'length = 2 IMPLIES

deg(arg(B, 0)) < deg(B);

dp_TCC 13 : OBLIGATION
FORALL (B: (dp_frmla?)) ,

3The case when the input is a conjunction with more than two arguments corresponds to the sixth and
seventh lines of dp, that is. dp(arg(B, 0)) AND dp (conj (args(B) ~ (1, args(B)' length-1))).

106

(v: [{z: (dp_frmla?) I deg(z) < deg(B)} -> bool]):
conj?(B) AND NOT args(B)clength = 2 AND v(arg(B, 0))

IMPLIES

deg (
conj ("[frmla] (args(B) , (1, args(B) 'length - 1))))

< deg(B) ;

The proof of these TCCs, and thus of the termination of the decision procedure, rely on the

fact that the degree of any subformula C of a conjunctive, disjunctive or quantified formula
B has a lower degree than B itself. Showing that the degree of C is less than the degree of

B is relatively simple; involving the expansion of the definition of deg. Further TCC are

generated to ensure that these subformulae have the type (dp_frmla?). These TCCs are

also relatively simple to prove and involve the expansion of the definition of (dp_f rmla?).
In total, 30 TCCs are generated for this recursive function, 8 of which are concerned with

termination.

Theorem 6.2 For all minimal isolated formulae B in which the scope of any quantifier is

a literal formula in the language C \ and in which all functions are finitely inflective, the

procedure correctly determines the truth of B.

Proof: The truth of any conjunction B a C can be determined by determining the truth

of B and C independently and then taking the conjunction of the results. The truth of any

disjunction B v C can be determined by determining the truth of B and C independently

and then taking the disjunction of the results. The truth of any inequality / ~ 0 can

be determined by determining the truth of the inequality in sub-domains D.t of /, where

D0 U... U Dn = domain(/), and taking the conjunction of the results. The set of conditions

given in Section 5.3 are correct. The decision procedure uses the above facts to decomposes
an input formula B, determine the truth of the sub-formulae and then correctly build truth

B. ■

In PVS, the decision procedure is shown to be correct by proving that the result gained by

applying the decision procedure to a formula B is equivalent to the interpretation of B.

107

dp_atomic_lem : LEMMA
FORALL (B:(q_frmla?)):
interpret(B) IFF dp_q_atomic(B)

dp_lem : LEMMA
FORALL (B:(dp_frmla?)):
interpret (B) IFF dp(B)

The proof of the first lemma requires induction to be performed over the number of intervals
n over which the function func (B) is convex or concave. The base case (n = 0) is proven

by contradiction. Since func(B) is a finitely inflective function, if there are no intervals

in dom(B) over which it is convex or concave then dom(B) must be empty; however, by

definition, the domain of any q_f rmla? is non-empty. In the inductive step, the fact that

dom(B) can be represented as a sequence S of intervals over which func(B) is convex or

concave is exploited. dom(B) is split into two intervals h and J2, where ii is equal to the

first n — 1 intervals in S, and /2 is equal to the final interval in S. It must then be shown

that interpret (B) IFF dp_q_atomic (B) in both intervals. In I\ this is done using the

inductive step. In /2, a case split is performed on the type of the inequality inq(B) (for

instance inq(B)=lt or inq(B)=le). In each of the cases, the lemma representing the

appropriate condition (see Section 6.3) is applied. The proof of the second lemma requires

induction over the natural number n, which is greater than or equal to the degree of B4.
The base case is proved by contradiction. The degree of a formula is 0 iff it is an atomic

formula; however, by definition, a dp_frmla? cannot be atomic. If B is a q_atomic?

formula then the previous lemma is applied. If B is a conjunction or disjunction then use

the induction step on the components of the conjunction or disjunction. During each of

these proofs many TCCs are generated to ensure that intervals are nontrivial convex sets

and that formulae are of type (dp_f rmla?).

4Inducting over the degree of the formula would not be useful in producing a proof of the lemma. The

degree of the component parts of a conjunction or disjunction B is not one less than the degree of B, thus the
induction step could not be used in the proof.

Chapter 7

Automated Formal and Symbolic

Nichols Plot Analysis

The current process for the Nichols plot analysis of control and dynamical systems involves

the plotting and visual analysis of suites of Nichols plots. Commonly used control engi¬

neering tools (Section 2.3), such as the Mathwork's MATLAB and Simulink [38], produce

Nichols plots (without showing exclusion or desired regions) for a system given only its

transfer function, thus allowing the engineer to avoid dealing with the underlying com¬

plex mathematics involved in the plotting process. When automating the process of formal

symbolic Nichols plot analysis it is desirable that this complex mathematics remains hidden

from the engineer.

In this chapter a tool, NRV (Nichols plot Requirements Verifier), for the automation of

formal and symbolic Nichols plot analysis is described. NRV was developed to allow

the replacement of the informal visual analysis with formal symbolic analysis of Nichols

plots. The tool is designed to fit into the development process and require no extra work

to be performed by the control engineer. The tool requires the user to provide the transfer

function representing the system and the Nichols plot requirements in terms of the boundary

lines for the exclusion region. The tool applies the decision procedure of Section 5.7 and

produces a formal proof that the system meets its requirements, a counter example to show

108

109

that the system does not meet its requirements, or, if it can do neither of these, highlights the

particular areas for which the process failed for closer examination by the control engineer.

In Section 7.1 some of the issues associated with the automation of formal symbolic Nichols

plot analysis are discussed in terms of the required functionality of any tool in which the

process is to be automated. The Maple-PVS-QEPCAD system, which meets these re¬

quirements, is introduced. An overview of NRV is given in Section 7.2 and a more detail

description of the division of labour between Maple and PVS is given in 7.3. It is important

to note that Maple uses radians rather than degrees in trigonometric calculations and in the

preceding chapters the phase-shift of a control system will be measured in radians.

7.1 Requirements for Formal and Symbolic Nichols Plot

Analysis

In order to use the decision procedure of Section 5.7 in formal symbolic Nichols plot anal¬

ysis one must be able to reliably calculate the points of inflection of a reasonable function,

the convexity of the corresponding curve and the sign of the curve at given points. This

requires not only powerful symbolic manipulation whose results are assured but also nu¬

merical calculations that are correct to within certain guaranteed tolerances.

As discussed in Chapter 4, computer algebra (CA) systems provide a powerful method for

symbolic manipulation and analysis ofmathematical formulae and are ideal for performing

the transformations and calculations required for the application of decision procedure to

Nichols plot analysis. However, they can not always guarantee correct results, for instance,

they may ignore assumptions and side conditions or produce floating point errors during nu¬

merical calculation. Formal theorem provers provide powerful methods for formal analysis
but lack the ability to perform symbolic manipulation or numerical calculations efficiently.

A combination of these two types of system can provide the desirable properties of both.

The Maple-PVS tool [2] (Section 4.4) provides a link between the CA system Maple [94]

110

and the theorem prover PVS [103], allowing PVS processes to be spawned by a Maple

process. This system allows the calculations performed by Maple to be formally verified

by PVS, providing efficient and reliable mathematics. The onus is on Maple to formulate

the lemmas to be proved and pass them to PVS along with the proof steps to be taken,

usually in the form of high level PVS strategies.

During formal symbolic Nichols plot analysis PVS is required to prove that rationally dif-

ferentiable functions are convex or concave in intervals, that is to prove lemmas of the form
Vx <E D. f(x) ~ 0, where D is some closed convex set, / is some rational function and ~
is one of > or <. One efficient method for proving such lemmas is quantifier elimination

(Section 4.3).

The QEPCAD tool [65] provides automation of quantifier elimination using the highly

efficient method of (partial) cylindrical algebraic decomposition (Section 4.3). As input

QEPCAD takes a prenex normal formula <j> constructed from conjunctions and disjunc¬

tions of inequalities between r-variate polynomials and returns an equivalent quantifier
free formula in only the free variables of 4>. If there are no free variables in f then the only

possible output is either true or false.

The QEPCAD-PVS [116] tool provides a link between QEPCAD and PVS, which al¬

lows quantifier elimination routines to be accessed by PVS via foreign function calls.

Rather than two separate processes running, as is the case with the Maple-PVS system,

the QEPCAD-PVS system only requires a single PVS process, which loads a shared ob¬

ject file that provides two PVS strategies. The first of these strategies converts formulae

into prenex normal form. The second applies quantifier elimination to a formula. PVS

considers the results of calling these strategies to be reliable. This system allows PVS to

use powerful and efficient quantifier elimination within its proofs.

The Maple-PVS system has been extended to allow the automatic loading of the QEPCAD-

PVS shared object file into the PVS child process (see Figure 7.1). This, in effect, allows

Maple to invoke QEPCAD routines as part of PVS proofs.

Ill

Figure 7.1: The Maple-PVS-QEPCAD system.

7.2 Overview of the Nichols Plot Requirements Verifier

The Nichols plot Requirements Verifier (NRV) is implemented in the Maple-QEPCAD-

PVS system. Maple is used to perform the bulk of the calculations as well as providing

the user interface. PVS is used to verify the results of Maple's calculations, using, when

necessary, QEPCAD routines.

The minimum amount of data required to perform Nichols plot analysis is a representation

of the system to be analysed, usually in the form of a transfer function, and some repre¬

sentation of the exclusion/desired region. The decision procedure of Section 5.7 can not

be applied directly to this input, thus it is necessary to perform some pre-processing to

correctly formulate the problem. This pre-processing requires both symbolic manipulation

of the input and numerical calculation and is a task ideally suited to Maple.

Maple provides the front end of NRV via Maple Maplets. These provide a Java applet-like

graphical user interface into which the input is entered and any results or error messages

are displayed. A simple type check mechanism ensures that the input is of the correct type

and format. Maple processes the input to form the appropriate sentences for use in the

decision procedure and invokes PVS, which in turn may invoke QEPCAD, to perform the

required verification. If PVS fails to provide proofs then attempts to find counter examples

are made and the process continues. Maple records appropriate messages depending on

the results of the PVS calls. Once the process is complete Maple displays the results of
the decision procedure, the messages recorded as a result of PVS calls, and a plot showing

the bounding lines for the specified region along with the plot of the curve representing the

system. This allows the analyst to view the Nichols plot as traditionally used tools allow

112

10

5

CQ
3 0 z .

c : '.) .'
§LOA vOs£>

-5

-10

-6 5 4 -3 -2 -1 0

phase-shift (radians)

Figure 7.2: Nichols plot showing a hexagonal exclusion region around (—7T, 0).

but also provides either assurances that the system meets or does not meet its requirements,

or suggestions of areas that require closer examination.

The input to NRV is, where possible, similar in format to input required by traditional tools.

A transfer function is entered as two lists of integers or variables; the first represents the

coefficients of the polynomial numerator of a transfer function, the second represents the

coefficients of the polynomial denominator. Each list is ordered such that the n-th element

in it represents the coefficient of sl~n where I is the length of the list, for example [a, b, c]

represents as2 -f bs + c. The permissible range for any variable coefficient of the transfer
function is entered in standard Maple format as name = range, for example c = 0..10. The

exclusion region is entered as a list B of pairs each of which has as components an interval

[aj, bi], and a list L,t of pairs of lines and inequality signs ~j,-; for example,

B = [(-fvr.. - 7T, [{y +fx+ 18, <),(y-fx- 18, >)]),
(-IT.. - §7T, [(y + fX + 6, <), (y-™x- 6, >)]),

(-3-3, [(a; + fvr, >), (x + \ir, <)])]
Each element of L.l represents a constraint on the range of the parametric function; in the

above example (y + ™x + 18, <) represents the constraint y < —^x — 18, and (x +
|7r, >) represents the constraint x > —\tt. Each tuple in B represents the disjunction of
the constraints in Li in the domain [a;, bi]. The list B represents the conjunction of the
constraints represented by the tuples. The above example represents the constraint that the

plot for a system does not enter a hexagonal region about the point (—tt, 0) (see Figure 7.2).

Given input of the form described above the steps performed by NRV can be separated into

113

a number of logical tasks.

1. Calculate the transfer function from the lists of coefficients along with the formulae

for the gain and phase-shift of the system. Calculate the first and second derivatives

of the parametric equation representing the system with respect to x.

2. Safely converting the intervals [a*, bt] from being in terms of x to being in terms of
u>, i.e, determine all iok, uj such that [a;, fy] C [X(uk), X(ujj)\.

3. Calculate the points of inflection of the curve representing the system including any

points at which it becomes vertical in the intervals and split the intervals at these

points.

4. Based on the convexity of the curve in each of the intervals, formulate the appropriate

problem to be solved, i.e, of the form Acu e [a, b]. fij(u>) ^ 0, and apply the correct
case from the conditions of Section 5.3.

5. Determine whether the system meets its Nichols plot requirements by building up

the conjunctions or disjunctions, as appropriate, of the truth of the subformulae.

6. If it can not be shown that the system meets its Nichols plot requirements then attempt

to find a counter example.

7. Produce a plot of the lines and the parametric equation representing the system.

Each of these logical tasks corresponds to a group of Maple procedures designed specifi¬

cally for the task, which can be further separated into those procedures that perform initial

calculations, those that perform appropriate adjustments where necessary to ensure the re¬

sults are 'safe', and those that confirm, by invoking PVS, that Maple's calculations are

correct.

The procedure for Nichols plot requirements verification depends on the type of lines that
bound the exclusion region. If the lines bounding the exclusion region are not vertical
then in order to show that the system meets its requirements it must be shown that in

114

each interval of interest the gain of the system lies above or below the bounding lines as

appropriate. If any of the lines bounding the exclusion region are vertical then it must also
be shown that the phase-shift of the system lies above or below these lines as appropriate.

7.3 Interactions Between Maple, PVS and QEPCAD

The top level Maple procedure in the Nichols plot requirements verifier accepts a constant

<5 by which adjustments are to be made, a transfer function and a representation of an
exclusion region as a list B of pairs each of which has as components an interval [a*, h], and
a list Li of pairs of lines k3 and inequality signs The gain, phase-shift and derivatives
are calculated and for each element in the list B a Maple procedure is called to determine

whether the gain or phase-shift lies above or below the bounding lines as appropriate.

The following describes the steps taken by the prototype tool when considering a system

F(s) and an exclusion/desired region, described in terms of a number of intervals [a*, bi\,
in which there are a number of disjoint regions (e.g, of the form kj{x) < y < Uk(x))
described in terms of the lines kn(x) bounding them.

1. The user supplied input is type checked and if it is not of the correct format an error

message is produced and the prototype tool halts.

2. Maple calculates the equations for gain y = Y(u>) and phase-shift x = X(u) of the
system F(juj).

3. Maple functions are used to calculate, rewrite and simplify the first and second

derivatives (expressed as functions of u>) of y (with respect to x) given the set of

parametric equations y = Y(u>) and x = AA(cu).

4. To analyse the Nichols plot requirements of a system the intervals of interest must

first be calculated in terms of u; rather than xx. Ideally, one wishes to find all solutions
'The intervals may be in terms of y rather than x. For simplicity the procedure described here refers only

to intervals in terms of x but it applies equally to intervals in terms of y

115

u)ai and iobi such that [X(u>ai), X(uJbi)] = [aj, &*]; however, since these solutions are

likely to be calculated using floating point arithmetic it is not likely that the intervals

will correspond directly. In practice, the best solution is to find 'safe' conversions,
that is, the values coai and uju such that [X(ujai), X(ujbi)] D [a», 6»]- To calculate
these intervals Maple uses inbuilt functions to solve equalities and evaluate floating

point numbers to find all solutions to Oj = X(u>) or bi = X(u>). All non-
real and non-positive solutions are discarded and the remaining results are sorted
into ascending order. Maple calculates small intervals [a>ik — 6, uj^k+i) + £] around
each of its solutions to compensate for floating point error. The intervals in co that

correspond to the intervals in x are then calculated. This is done by determining

whether X(0) lies within or outwith [a*, bi]. IfX(0) is not in [a*, bi] then the intervals
[u>2ik — 8, <^>i(2k+i) + £] correspond to [ai: 6;] (see Figure 7.3), otherwise the intervals

[0,cejo+(>] and [tU2»fc+i — b, ^i(2k+2)+b] (see Figure 7.4). To ensure that these intervals
are 'safe', i.e.that [X(cjai), X(cubi)] D [Gj, bi], NRV must show that for all u outside
the intervals x(uj) is outside [a, b]. This problem can be formulated as a conjunction
of inequalities and can be solved by essentially reapplying NRV to it. The problem

does not involve parametric equations and thus does not require step 4. Owing to

this, there will not be any uncontrolled recursion. If NRV fails to provide any of the

116

w4

Twz

(K w,

\ "V\

^\o "^\o
Figure 7.4: Illustration of conversion from X to co (b).

required proofs, an appropriate error message is recorded and the process continues.

5. Maple calculates the points of inflection of the function represented by the set of

parametric equations x = X(u>), y = Y(u>), including any points at which it becomes

vertical, in the intervals [toik — <5, u;;(fc+1) + £]. This is achieved using numerical
methods to find points at which the second derivative of the function with respect to

x is zero and as a consequence is subject to errors due to inexact arithmetic. In an

attempt to avoid this problem Maple calculates small intervals \pikm — f Pikm + £]
in which these points should lie (referred to as intervals of inflection). PVS is called

to confirm not only that these intervals contain true points of inflection rather than

points of zero curvature between two regions both strictly convex or concave but

also that for each the derivative of the parametric equations is not equal to the

derivative of kj in the interval unless it is exactly at the point of inflection. This
is a relatively difficult problem for PVS to solve; however, since the derivative and

second derivative of the parametric equations are rational the problem is ideal for

quantifier elimination. PVS uses the QEPCAD-PVS link to invoke the QEPCAD

strategies to verify Maple's results. IfNRV fails to provide any of the required proofs

an appropriate error message is recorded and the process continues.

6. It must be ensured that in those intervals between the intervals of inflection the

117

Nichols plot for the system is either convex or concave. Maple examines the sign

of second derivative of the curve at a point within each interval. Based on the re¬

sults of this examination PVS is used to determine whether the curve is convex or

concave in each interval. Again, this is a relatively difficult problem for PVS to

solve; however, since the derivative and second derivative of the curve are rational

QEPCAD strategies can be invoked. If NRV fails to provide any of the required

proofs an appropriate error message is recorded and the process continues. The in¬
tervals \p>ik 5, T t^re Split intO \pJik 5, Pikm \Pikm ~ Pikm T 5]
[Pikm + ^i(k+1) + ^]- over which the curve is either convex or concave, or is an

interval of inflection.

7. Maple formulates the lemmas to be solved by PVS in the form Acc £ [an, bn]. Y(u>) —

~ij 0, where is the inequality sign indicating whether the curve

should lie above (>) or below (<) the line and [an, bn] are the intervals calculated
in step 6. For intervals in which the curve is convex or concave, PVS is called by

Maple to prove these lemmas; determining whether the desired case from the set

of conditions holds. Owing to the nature of intervals of inflection, the maximum

and minimum of Y(u) — lij(X(u)) must lie on the bounds of the interval. If it has
already been proven that the curve lies on the correct side of the line in the intervals

adjacent to an interval of inflection then it can be inferred that the curve lies on

the correct side of the line in that interval. For this reason it is only necessary to

explicitly determine whether the curve lies above or below the line in an interval
of inflection if it has not been shown that the curve lies on the correct side of the

line in the intervals adjacent to it. Whether the curve lies out with/within any given

region in any interval is determined by the conjunction of the truth of the appropriate

lemmas. Maple maintains a list of potential counter examples and if it can not be
shown that the Nichols plot lies outwith the exclusion region in any given interval

NRV uses Maple to select a likely counter example from its list and PVS to prove

that the counter example holds. If NRV fails to provide any of the required proofs an

appropriate error message is recorded and the process continues.

118

8. The truth of whether the system meets its Nichols plot requirements in each interval

is built up from the disjunction of the truth values for the curve remaining out with-

/within each of the regions within the interval. The truth of whether the system meets

its Nichols plot requirements is built up from the conjunction of the truth values in

each interval.

9. NRV produces an appropriate message indicating whether the Nichols requirements

have been met along with details of any failure in proofs. A Nichols plot for the

system, showing the exclusion region is displayed.

The NRV process is fully automated. Once a user has entered the transfer function of a

control system and a set of requirements NRV requires no further intervention to produce

its result. Maple procedures and high level PVS strategies are defined to automate the

calculations and proofs required by NRV. During the NRV process, PVS uses custom built

libraries (see Appendix C) containing lemmas concerning various functions important in

control system analysis, such as arctan, natural logarithm and logarithm to the base ten.

These libraries contain definitions of the natural logarithm and arctan as Taylor series,

which allow bounds on the values of these functions for any given input to be defined and

numerical calculations using these functions to be validated. In practice the Taylor series

for the natural logarithm converges so slowly that it is of little use. For this reason, the

natural logarithm and logarithm to the base ten are not reasoned about directly; rather, they

are eliminated from inequalities using exponentiation. This allows the substantially more

efficient Taylor series expansion of the exponential, as defined in the transcendentals library

[54], to be used.

The PVS libraries used by NRV are designed to allow efficient proofs to be carried out in

PVS. In many case, two alternative definitions are given for a function. The first definition

represents the standard 'text book' definition, while the second is an equivalent definition

that can be expanded more efficiently in PVS. For instance, exponentiation is defined in the

prelude library in the standard manner,

expt(r:real, n:nat): RECURSIVE real =

119

IF n = 0 THEN 1

ELSE r * expt (r , n-1)
END IF

MEASURE n;

but is also defined as follows:

expt (x : real , n : nat) : RECURSIVE real =

IF n>=10 THEN

x * (x * (x * (x * (x * (x * (x * (x * (x * (x *

expt(x,n-10))))))))))
ELSIF n>5 THEN

x * (x * (x * (x * (x * expt (x , n-5)))))
ELSIF n=5 THEN

X * (x * (x * (x * x)))

ELSIF n = 1 THEN

x

ELSIF n = 0 THEN

1

ELSE

x * expt (x , n-1)
END I F

MEASURE n.

The second definition is equivalent to the first but reduces the number of times the function

must be expanded in proofs.

The lemmas that are used directly in the NRV process are designed to eliminate the need

to deal with the infinite Taylor series definitions of arctan and In. For instance, to show

that arctan (p) is greater than c, the following lemma is used.

arctan_gt_line: LEMMA
FORALL (p , nm : real,d:nzreal,c,cb:real,n:nat):
p>=nm/d AND cb>=c

IMPLIES

(arctan_lb(n)(nm,d)>cb

120

IMPLIES

arctan(p)>c) ;

The PVS strategies used in NRV apply the appropriate lemma, which discharges the orig¬

inal proof goal and leaves a number of significantly simpler subgoals to be proved. The

strategies then repeatedly split the subgoals, simplify and expand function definitions until
the proof is complete.

Chapter 8

Case Studies

In this chapter two case studies are presented to demonstrate the practical application of
the theory presented in Chapter 5 using the NRV system presented in Chapter 7. The case

studies involve the analysis of moderately sized systems and each demonstrates a different

utility of NRV. In each case study the system is analysed with respect to a certain hexagonal

exclusion region about the point (—7r, 0dB), which is commonly used to represent stability

(Section 2.2.1).

Section 8.1 formalises the hexagonal exclusion region representing the Nichols plot re¬

quirements in each of the case studies. In Section 8.2 a classic example from control

engineering, the inverted pendulum [106] is analysed. The system is analysed twice: firstly
with parameters that ensure the system meets its requirements; and secondly with a param¬

eter that causes the system to fail to meet its requirements. In Section 8.3 a disk drive reader

system [43, p. 444] is analysed. This system has an 'uncertain' parameter, whose value

is known to lie within some range. Based on the results of these case studies, conclusions
about the successes and failures of NRV are drawn in Section 8.4.

121

122

Figure 8.1: Nichols plot showing a hexagonal exclusion region around (—7r, 0).

8.1 Nichols Plot Requirements

In general, a system is considered stable (Section 2.2.1) if its Nichols plot does not enter a

certain hexagonal region about the point (—7r, 0) as shown in Figure 8.1. This requirement
can be expressed in terms of the lines bounding the region in particular intervals. The

Nichols plot for the system must lie below the line between the points (—|7r, —3) and
(—71, —6) or above the line between the points (—|7r, 3) and (—7r, 6). It must lie below
the line between the points (—tt, —6) and (—f 7r, —3) or above the line between the points
(—7r, 6) and (—§77, 3). It must lie to the left of the line between the points (—f tt, —3) and
(—f 7r, 3) or to the right of the line between the points (—f 7r, —3) and (—|7r, 3).

The exclusion region representing the Nichols plot requirements of the system is formulated

as follows for input into NRV

B = [(-f l(y + Vx + 18' <)» (y ~ ~ 18> >)])'
(-7T.. - §7r, [(y + fx + 6, <), (y-™x- 6, >)]),

(-3..3, [(x + §7r, >), (x + |tt, <)])]

8.2 Inverted Pendulum

This section focuses on the modelling and analysis of an inverted pendulum system [106].
In Section 8.2.1 a model for the system is described. Sections 8.2.2 and 8.2.3 describe the

123

analysis of the system using the NRV tool described in Chapter 7. In Section 8.2.2 the

system is shown to meet its requirements, whereas in Section 8.2.3 the system fails to meet

its requirements.

8.2.1 Modelling an Inverted Pendulum

The inverted pendulum is a classic example from control engineering. An inverted pendu¬

lum is balanced on a cart (see Figure 8.2 and Table 8.1); when a force F is applied to the

cart the pendulum and the cart move. There are two outputs of interest: the displacement

Figure 8.2: Inverted pendulum

of the cart x and the angle of the pendulum 9. When concerned only with the angle of

the pendulum, the behaviour of the system can be represented using the following transfer
function (see Table 8.1)

G — m^S
(MI + Mml2 + ml)s3 + (bl + bml2)s2 — (Mmgl + m2gl)s — bmgl

The system can be modelled as the sequential combination (see Figure 8.3) of a controller

Gc and the system G\. The controller Gc used in this example is a PID (Proportional/In¬

tegral/Derivative) controller (see Appendix A.4), which is a commonly used form of con¬
troller

n _ K^s2 + Kps + Ki
Kjr c

designed to make the system produce the desired response.

124

Figure 8.3: Block diagram for an inverted pendulum system

Table 8.1 shows the values for the parameters of the system chosen for this example. The

value of the mass of the pendulum m is left undecided.

Mass of cart M 0.5 kg

Friction of the cart b 0.1 N/m/sec

Length to the pendulum's centre of mass I 0.3 m

Inertia of the pendulum I 0.006 kgm2
Force of gravity 9 9.8msec2

Proportional coefficient Kp 3.5

Integral coefficient Ki -1

Derivative coefficient Kd -1

Table 8.1: Values for parameters in an inverted pendulum system.

8.2.2 Analysis of an Inverted Pendulum that Meets its Requirements

In order to analyse the inverted pendulum system modelled in Section 8.2.1 with regards to

the Nichols plot requirements of Section 8.1, one must provide NRV with the transfer func¬

tion of the system along with the correct formalisation of the exclusion region as defined in

Section 7.2.

Assuming that the mass of the pendulum is 0.2kg, the open loop transfer function for the

inverted pendulum system is

—25(2s2 - 7s + 2)
c 1

lis3 + 2s2- 343s-49'

125

The Nichols plot for the system, showing the exclusion region is shown in Figure 8.4. Note

the difficulty of ensuring that the Nichols plot requirements are met by visual inspection.

. . . ,-f
0

i
r

/
--10

i1
--20

--30

--40

Figure 8.4: Nichols plot for an inverted pendulum system

NRV considers the relationship between the curve and the bounds of the exclusion region

in each interval.

1. NRV calculates that the interval [—f 7r, —7r], in terms of x, corresponds to the interval

tit!' Wl' 'n terms °f u and uses PVS to show that
157 129 5

> u; V ce > —— => —^7r — argument(G) V argument (G) > —7T.

Within this interval there is one point of inflection, which lies in the interval [|||,
The curve is convex for oj e [y||, |||] and concave for uj e [^jy,]• NRV uses
the conditions given in Section 5.3 to determine points at which the curve should be

examined to ensure that it lies below the line ——x — 18 or above the line —x + 18.
7T 7T

PVS proves that the curve lies below —^x — 18 at |||, ||| and and thus that it
lies outwith the exclusion region for x e [—|tt, —7t],

2. NRV calculates that the interval [—n, —|tt], in terms of x, corresponds to the interval

126

57 629
128 ' 512], in terms of lu and uses PVS to show that

Within this interval there are no points of inflection. The curve is convex for lu e

tm' 512] NRV uses the conditions given in Section 5.3 to determine points at which
the curve should be examined to ensure that it lies below the line —x + 6 or above

7T

the line — — 6. PVS proves that the curve lies below ~x + 6 at ^ and Iff, and
thus that it lies outwith the exclusion region for x £ [—7r, — f tt]-

Given the nature of the exclusion region, the final condition:

could be excluded, as it is implied by the first two conditions. However, for completeness
this condition is also proved. In order to prove this condition is met, rather than considering

the curve represented by the set of parametric equations x — argument(G'), y = gain(G),
one must consider the curve represented by the set of parametric equations x = gain(G),
y = argument (G).

3. NRV calculates that the interval [—3,3], in terms of y, corresponds to the interval

[0, jrji], in terms of lu and uses PVS to show that

Within this interval there are no points of inflection. The curve is convex for lu £

[0, NRV uses the conditions given in Section 5.3 to determine points at which
the curve should be examined to ensure that it lies below —17r or above — §tt- PVS
proves that the curve lies above — |7r at and thus that it lies outwith the exclusion
region for y £ [—3, 3],

3 5

Vlu.lu > —— =>• —3 > gain(G) V gain(G) > 3.
OiZ

127

8.2.3 Analysis of an Inverted Pendulum that Fails to Meet its Require¬

ments

In order to analyse the inverted pendulum system modelled in Section 8.2.1 with regards to

the Nichols plot requirements of Section 8.1, one must provide NRV with the transfer func¬

tion of the system along with the correct formalisation of the exclusion region as defined in

Section 7.2.

Given that the mass of the pendulum in the inverted pendulum system has the value 0.17,

the open loop transfer function for the system is

—4250(2s2 — 75 + 2)
' 11945s3 + 355s2-55811s- 8330

The Nichols plot for the system, showing the exclusion region is shown in Figure 8.5. Note

the difficulty of ensuring that the Nichols plot requirements are met by visual inspection.

-4
. . . .

0

i

/
"-10

--20

--30

"-40

Figure 8.5: Nichols plot for an inverted pendulum system

NRV considers the relationship between the curve and the bounds of the exclusion region

in each interval.

128

1. NRV calculates that the interval [— f tt, —7t], in terms of x, corresponds to the interval

[||, in terms of lu and uses PVS to show that
79 517 5

Vcu.— > a; V tc > — => > argument (G) V argument(G), > —n.

Within this interval there is one point of inflection, which lies in the interval [^77, f§§].
The curve is convex for lu G [||, 1777] and concave for 1u G [fff, f||]. NRV uses the
conditions given in Section 5.3 to determine points at which the curve should be ex¬

amined to ensure that it lies below the line ——x — 18 or above the line —x + 18.
7r 7r

PVS proves that the curve lies below —~x — 18 at |f and but cannot show that
it lies below it at |||. NRV attempts to show that the curve lies above 77x + 18 at

, 1777 and f|| but fails. NRV attempts to find a counter example to show that the
Nichols plot does not meets its requirements in this interval. Since a proof could not

be found that the curve either lay above the upper or below the lower bounding lines

at f||, this is used. PVS proves that at this point the curve lies within the exclusion
region and thus the Nichols plot fails to meets its requirements for x € [— f ir, —n\.

2. NRV calculates that the interval [—tt, — f7t], in terms of x, corresponds to the interval

[512' iff]' *n terms °f w and uses PVS to show that

w 231 633 3Vo>.—— > lu V lu > => —7r > argument(G) V argument(G) > — -7r.512 512 4

Within this interval there are no points of inflection. The curve is convex for 10 e

fill' iff] NRV uses the conditions given in Section 5.3 to determine points at which
the curve should be examined to ensure that it lies below the line —x + 6 or above

7T

the line — 6. NRV attempts to prove that the curve lies below 77x + 6 at
and |||, however, no proof can be found. NRV then attempts to prove that the curve
lies above — 77X — 6 at however, no proof can be found. NRV attempts to find a
counter example to show that the Nichols plot does not meets its requirements in this

interval. Since a proof could not be found that the curve either lay above the upper

or below the lower bounding lines at this is used. PVS proves that at this point
the curve lies within the exclusion region and thus the Nichols plot fails to meets its

requirements for x G [—n, — |7r].

129

Given the nature of the exclusion region, the final condition:
3 5

—3 < y A y < 3 ==> — -tt <iVi< — -n,_ y y _

4 4

could be excluded, as it is implied by the first two conditions. However, for complete¬
ness this condition is also examined. In order to prove this condition is met, rather than

considering the curve represented by the set of parametric equations x = argument(G),
y = gain(G), one must consider the curve represented by the set of parametric equations
x = gain(G), y = argument(G).

1. NRV calculates that the interval [—3,3], in terms of y, corresponds to the interval

[0, ^], in terms of u) and uses PVS to show that
r r

Vce.ce > —- => —3 > gain(G) V gain(G) > 3.
ZOO

Within this interval there is one point of inflection, which lies in the interval [^|, ||].
The curve is convex for lu e [0, |y§] and concave for u> G [||, NRV uses the
conditions given in Section 5.3 to determine points at which the curve should be

examined to ensure that it lies below — |7r or above —|tt- PVS proves that the curve

lies above — |7r at |y§, || and and thus that it lies outwith the exclusion region
for y e [—3,3].

8.3 Disk Drive Read System

This section focuses on the modelling and analysis of a magnetic disk drive reader system

[43, p. 444], In Section 8.3.1 a model for the system is described. Section 8.3.2 describes

the analysis of the system using the NRV system described in Chapter 7.

8.3.1 Modelling a Disk Drive Reader

Modern computers use magnetic disks to store data. Data on a disk is accessed using a disk

drive reader, which positions a reader head over a track on the disk in order to read the data.

130

A disk drive reader consists of a controller (or amplifier), a motor, an arm and a read head.

A metal spring (or flexure) is used to hold the read head slightly above the disk.

The system can be modelled as the sequential combination of a controller Gc, a motor coil

Gi, an arm G2, and a flexure and head G3 [43, p. 444] (see 8.6).

+ f- Gc G1 G2 G3
-i

Figure 8.6: Block diagram for a disk drive read system

The motor coil and arm are modelled as a two mass spring/mass/damper system G0 with a

rigid spring.
Go = G1G2

Q — Km^ Ls+R

pi 1
s((M1+M2)s+bi)

The flexure and head is modelled as a single mass spring/mass/damper system (see Exam¬

ple 2.2).

M0s2 + bs + k

The controller is a simple proportional controller (Appendix A.4) designed to make the

system produce the desired response more quickly.

Gc = Kp

Table 8.2 shows the values for these parameters based on the typical values for disk drive

systems [43, p. 156], The value of the motor constant Km is left undecided.

131

Field inductance L 1 mil

Field resistance R 1 tt

Motor mass mi 0.02 kg

Arm mass m2 0.005 kg

Friction at motor bi 0.5 kg/m/s

Head mass M0 0.3 10~6kg
Friction at head b 0.3 10~2kg/m/s
Force of spring k 10

Proportional coefficient Kp 700

Table 8.2: Values for parameters in a disk drive system.

8.3.2 Analysis of a Disk Drive Reader that meets its Requirements

In order to analyse the disk drive reader system modelled in Section 8.3.1 with regards to

the Nichols plot requirements of Section 8.1, one must provide NRV with the transfer func¬

tion of the system along with the correct formalisation of the exclusion region as defined in

Section 7.2.

Given that the motor constant is known to lie within the interval [120,130] and is repre¬

sented by the constant Krn, the open loop transfer function for the disk drive reader system

is

G — Q G G 280, 000, 000, 0007fmC 0 3
(s + l,000)s(s + 20)(3s2 + 30, 000s + 100,000,000)

The Nichols plot for the system, showing the exclusion region is shown in Figure 8.7.

NRV considers the relationship between the curve and the bounds of the exclusion region
in each interval.

1. NRV calculates that the interval [—\?r, — 7r], in terms of x, corresponds to the interval
13' terms °f,jJ an<3 uses PVS to show that

w 15839 354991 5Vco. >uVw>
^ =>■ _*^7r > argument(G) V argument(G) > — ir.

132

100

80

60

40

20

0
' 1 1 L ' | ' ' • " | " I ■ I-V-" i i | .

-4 -3.5" -3 "2

-20

-40

-60

Figure 8.7: Nichols plot for a disk drive read system

To determine whether the Nichols plot meets its requirements in this interval it must

be shown that gain(G) < ——argument(G)—18 or gain(G) > ~argument(G')T-l8.
First the function gain(G) + —argument(G) + 18 is considered. By differentiating
this function with respect to Km it is determined that it is convex with respect to Km
for all Km and uj. NRV uses the conditions given in Section 5.8 to determine that the

function should be examined at Km = 120 and Km = 130 to ensure that it is negative

for all Km and uj. The problem has been reduced to two one-dimensional problems

in the variable uj only. NRV determines that the function is convex for Krn = 120

for all uj £ [yfjp, 3-^929—]. PVS proves that the function is negative at w =

and w = 35gX9291. NRV determines that the function is convex for Km = 130 for
all uj e [yfy, 35549291]. PVS proves that the function is negative at w = and
w = 354991. Thus, using the conditions of Section 5.3 it is concluded that the Nichols

plot lies outwith the exclusion region for x £ [—f 7r, — tt].

2. NRV calculates that the interval [—7r — f 7r], in terms of x, corresponds to the interval

[^y, yfy], in terms of u; and uses PVS to show that
w 9745 63357 3
yuo. > io V uj > —7T > argument(G) V argument(G) > — -7r.512 512 4

To determine whether the Nichols plot meets its requirements in this interval it must

133

be shown that gain(G) < ^argument(G) + 6 or gain(G) > — argument (G) — 6.
First the function gain(G) — ^argument (G') — 6 is considered. By differentiating
this function with respect to Km it is determined that it is convex with respect to Km

for all Km and u. NRV uses the conditions given in Section 5.8 to determine that

the function should be examined at Km = 120 and Km = 130 to ensure that it is

negative for all Km and co. The problem has been reduced to two one-dimensional

problems in the variable cu only. NRV determines that the function is convex for

Km = 120 for all ao e PVS proves that the function is negative at

w = and w = NRV determines that the function is convex for Km = 130

for all ao e proves that the function is negative at w = and

w = ^liF- Thus, using the conditions of Section 5.3 it is concluded that the Nichols
plot lies outwith the exclusion region for x e [—7r, —f7r].

Given the nature of the exclusion region, the final condition:

could be excluded, as it is implied by the first two conditions. However, for completeness

this condition is also proved.

1. NRV calculates that the interval [—3,3], in terms of y, corresponds to the interval
terms °f ^ and uses PVS to show that

1347 9001

Vw.-j-gg- > uj V ui > ==> -3 > gain(G) V gain(G) > 3.
To determine whether the Nichols plot meets its requirements in this interval it must

be shown that argument(G*) > — |-7r or argument(G) < — First the function
argument(G) + |7r is considered. By differentiating this function with respect to

Km it is determined that it linear with respect to Km for all Krn and co; that is it

is both convex and concave. By default this is treated as a convex. NRV uses the

conditions given in Section 5.8 to determine that the function should be examined at

Km — 120 and Krn = 130 to ensure that it is positive for all Km and uj. The problem

3 5

134

has been reduced to two one-dimensional problems in the variable lu only. NRV

determines that the function is convex for Km = 120 for all lu e i^f]- PVS
proves that the function is positive at w = NRV determines that the function

is convex for Km = 130 for all lu e > ^r]- proves that the function is
positive at w = Thus, using the conditions of Section 5.3 it is concluded that

the Nichols plot lies outwith the exclusion region for y e [—3,3].

8.4 Case Study Conclusions

In this chapter, two moderately sized case studies are presented. Both case studies are based

on example systems that appear regularly within control engineering texts.

In Section 8.2, an inverted pendulum system is analysed with respect to stability. The

stability criteria are specified in terms of three intervals in which the Nichols plot of the

system must not enter a given bounded region on the graph. In Section 8.2.2 NRV is used
to analyse this system with respect to these criteria and provides guarantees that it meets

its requirements. In Section 8.2.3 a parameter of the inverted pendulum system is altered

slightly and the system is re-analysed with respect to the same criteria. NRV attempts to

show that the system meets its requirements and when this fails NRV demonstrates that the

requirements are not met by providing a counter example. In both cases, the Nichols plot
for the system lies close to the exclusion region and it is difficult to be certain whether or

not the plot enters it by simple visual analysis.

In Section 8.3, a disk drive reader system is analysed with respect to stability. This system

has an 'uncertain' parameter, whose value is known to lie within an interval. This type of

problem is difficult to analyse using classical Nichols plot techniques as it is a three di¬

mensional rather than two dimensional problem. The classical solution is generally to plot

a suite of Nichols plots showing the system response for various values of the parameter.

If the system meets its requirements in all of these plots the assumption is made that the

system meets its requirements for all permissible values of the parameter. In this case study

135

NRV provides symbolic analysis of the system for all permissible values of the parameter,

providing a formal proof that the system meets its requirements.

Chapter 9

Conclusions and Further Work

The main results and achievements of the work presented in this thesis are summarised in

Section 9.1 and Section 9.2 presents suggestions for further work.

9.1 Conclusions

In this thesis it has been argued that formal and symbolic methods can be integrated into

classical informal and numerical analysis of linear, continuous-time, single-input single-

output control systems. It has been argued that this integration can be done in an unobtru¬

sive manner and that it is of benefit as it increases the assurance that control systems meet

their requirements. This has been demonstrated by the development of a decision proce¬

dure and a system NRV for the automated formal and symbolic analysis of Nichols plot

requirements.

The underlying mathematical representation of Nichols plot requirements have been exam¬

ined and reduced to their most basic form. A decision procedure has been developed for

use in the analysis of Nichols plot requirements. The procedure is widely applicable and
can be used to decide the positivity or negativity of finitely inflective functions (as defined
and explained in Chapter 5).

136

137

A logic £1 has been developed to classify the formulae to which the procedure applies.

The concept of minimal isolated formulae has been developed and a quantifier isolation

algorithm to convert arbitrary formulae in C\ into this form has been introduced.

The underlying theory of the procedure has been formalised in the higher order theorem

prover PVS as an extensive library. Both the geometric properties of functions, upon which
the procedure relies, and the logic £1 have been formalised. Proofs of the completeness
and termination of the procedure and the quantifier isolation algorithm have also been de¬

veloped in PVS.

A system for the automated and symbolic verification of Nichols plot requirements NRV,

which uses the procedure as the basis of its analysis, has been developed. NRV was de¬

veloped in the Maple-PVS-QEPCAD system, which exploits the symbolic computation

provided by the computer algebra system Maple, the formal techniques provided by the

theorem prover PVS and the quantifier elimination routines provided by QEPCAD. NRV

is highly automated and provides a graphical user interface, similar in appearance to a java

applet, which allows the user of the system to have no knowledge of the underlying decision

procedure, formal methods or the Maple or PVS syntax.

Two case studies have been presented, in which NRV either produces proofs that a system

meets its requirements, or produces a counter example to demonstrate that the system fails

to meets its requirements.

NRV may fail to provide a proof or counter example automatically. In these cases, NRV

attempts to produce useful feedback to the analyst, indicating where the analysis failed and

whether the failure was within a Maple computation or in a PVS proof. NRV attempts to

highlight areas that may require closer inspection. In practice, several case studies have

been performed and NRV has produced promising results rarely failing to find proofs. The
case studies presented in Chapter 8 are representative of the case studies performed.

It has been indicated by control engineers from companies such as DSTL, QinetiQ and The

Mathworks that automated Nichols plot analysis would be useful if it could be applied to

138

control systems of degree 5. Several case studies have been performed that show that NRV

is highly successful in the analysis of control systems of this degree, a representative case

of which has been presented in this thesis.

9.2 Further Work

This chapter suggests several directions for further work based on the work presented in
this thesis. These directions fall into one of two broad categories. In Section 9.2.1 potential

improvements to the NRV tool described in Chapter 7 are suggested. Section 9.2.2 presents

potential applications of the decision procedure of Chapter 5 both within and outwith the

field of control engineering.

9.2.1 Nichols Plot Requirements Verification

The NRV tool for the automated formal and symbolic analysis ofNichols plot requirements

for control or dynamical systems is described in Chapter 5. The tool is implemented in the

Maple-PVS-QEPCAD system and is designed to take advantage of the strengths of each

of the individual systems. The tool provides improvements over traditional Nichols plot

requirement analysis; however, there are several improvements that could be made to NRV.

NKV uses Maple to provide efficient symbolic calculation and PVS to provide assuiauces

of correctness. NRV is more efficient than an implementation of the decision procedure

in PVS alone; however, owing to its reliance on PVS for certain key calculations, it can

still take several hours to produce proofs that even a moderately sized system meets its

requirements. This is acceptable if NRV is used only a small number of times, particularly

during the final stages of analysis but may not be acceptable during the earlier stages of

experimentation. As evidenced in Section 3.3 the use of symbolic methods in the analysis
of systems is desirable; even without any formal assurance of correctness symbolic analysis

still provides improvements over classical numerical analysis. Allowing NRV to have two

139

modes -formal mode, which uses Maple-PVS-QEPCAD to provide formal assurances of

correctness, and symbolic mode, which uses only Maple to provide symbolic analysis -

would allow NRV to be used at any stage of system development. Symbolic mode could

be used in the earliest stages of system development to provide higher levels of assurance
than numerical techniques, with little or no extra cost. The more time consuming formal

mode of analysis could be used in the later stages of system development to provide formal
assurance of correctness. The alteration to NRVto allow two separate modes is relatively

minor and could be implemented using a flag in the Maple code that indicates whether
the PVS should be used or not, along with some simple Maple procedures that perform

numeric calculations in place of the PVS proofs.

Currently the system is fairly monolithic, providing no means of 'pausing' or halting the

calculation. NRV will analyse a system for all given requirements; if it is found that the

system fails to meet one of its requirements NRV will continue to analyse the system for

any remaining requirements. It may be desirable to allow the user to instruct NRV to

halt as soon as it determines that a system fails to meet its requirements. This could be

implemented using a flag in the Maple code and would require fairly minor alterations to

the structure of the Maple procedures.

NRV accepts an input 5 that represents the degree of accuracy to which calculations should

be performed. This value is propagated throughout the system. NRV does not allow dif¬
ferent degrees of accuracy to be specified for different calculations. A lower degree of

accuracy generally allows efficiency to be increased and may be sufficient for certain cal¬

culations but not others. If the degree of accuracy is too low for any particular calculation,

conclusions can not be drawn about a control system. Allowing the user to specify different

degrees of accuracy for different calculations may allow the efficiency of the analysis to be

increased without increasing the risk of failure. This alteration could be done in various

different ways, with varying degrees of ease. In the simplest method, the user would be

prompted to provide several degrees of accuracy, one for each distinct type of calculation.

For instance, would specify the degree of accuracy for calculating of points of inflection,

§2 would specify the degree of accuracy for converting between coordinate systems, and

140

5,3 would specify the degree of accuracy for calculating bounds on the natural logarithm

and arctan. These values would be propagated throughout the system and used where ap¬

propriate. In a more complex method, the user could specify several degrees of accuracy

for different types of calculation. The different degrees would be used when analysing the

system in different intervals.

If NRV fails to find a proof that a system meets its requirements it attempts to produce a

counter example. Currently, if a counter example is found NRV concludes that the sys¬

tem fails to meet its requirements and presents the user with this counter example. By

incorporating simple control system design strategies into NRV, counter examples could

be presented along with suggested alterations that would allow the control system to meet

its requirements. If NRV fails to find either a proof or a counter example, an indication is

given as to where this failure took place, in Maple or in PVS, and the user is presented with

the values of the gain, phase-shift and frequency at the point of failure. This is very basic

information designed to indicate to the user where the failure took place. By examining the

values of various internal variables NRV could perform an amount of self-diagnosis and

produce suggestions to correct the failure. These suggestions would likely involve alter¬

ing the degree of accuracy in various calculations. The structure of NRV allows the easy

addition ofMaple procedures that could be used for either of these tasks.

NRV attempts to show that the Nichols plot of a system meets given requirements. These

requirements are represented as a list. NRV analyses the system for each element in the

list. As indicated in Chapter 8, there may be cases in which the conditions represented in

an element of the list are implied by conditions represented in the other elements. NRV

could use simple inference rules to simplify conditions, reducing the amount of analysis

required thus increasing efficiency. Maple has a limited ability to determine whether logical

formulae are true or false. By using the is procedure to determine whether a (pair of)

condition(s) implies another, Maple may be able to simplify the conditions. Investigation

should be performed into how effective this strategy for simplification is.

141

9.2.2 Applications of the Decision Procedure

The decision procedure presented in Chapter 5 can be used to determine the positivity or

negativity of finitely inflective functions in intervals. The procedure is general enough to be

widely applicable both within and outwith the field of control engineering. The suggestions

for further work presented in this section are speculative and would require more extensive

research than those in the previous section.

It has been shown that this procedure can be used to provide formal and symbolic analysis

of control systems with respect to Nichols plot requirements. These requirements are ex¬

pressed in terms of regions on a graph, which the plot must not enter, and are classically

analysed visually. Many classical control system analysis techniques are graphical, with

requirements that can be expressed in a similar manner to Nichols plot requirements. It

is likely that the decision procedure could be applied directly to the analysis of Bode dia¬

grams, since Bode diagrams and Nichols plots are essentially different methods of viewing

the same gain/phase-shift data. There is potential for further investigation into the applica¬

tion of the procedure to other graphical analysis techniques, such as, Nyquist (see Section

2.2.1) and time-response plots (see Appendix A.3).

In this thesis the focus has been placed on the analysis of continuous-time, single-input,

single-output, linear, time-invariant control systems. Further investigations could be per¬

formed into the applicability of the procedure to the analysis of multi-input, multi-output,

discrete and nonlinear systems. Initially, it must be determined whether the analysis tech¬

niques and requirements for these types of systems can be expressed appropriately for the

decision procedure. The NRVtool could then be extended to allow the analysis of these

systems.

Investigations could be performed into the use of the procedure in fields other than control

engineering. For instance, in 3-dimensional graphical imaging, the technique of ray trac¬

ing, in which it must be determined whether a ray intersects a curve, is used. Efficiency of

computation is often extremely important in ray tracing. Currently, the Lipschitz method is

142

most commonly used for ray tracing. Investigations could be performed into the efficiency

and accuracy of the Lipschitz method versus the decision procedure.

Appendix A

Time-Domain Analysis

This appendix gives a brief introduction to some of the basic concepts and methods used

by control engineers in the development of control systems in the time domain. This ap¬

pendix complements Chapter 2, highlighting the fact that analysis in the time domain is

also numerical and often graphical, and is included for completeness. The commonly used

PID controller is detailed in Section A.4

A.l State-space Representation

Many systems of linear differential equations can be written in state-space form. State-

space representation uses vector-matrix notation to represent the system of first-order dif¬

ferential equations that model a system, and comprise a state vector x(f), which represents

the state variables of a system at a given time t, and an output equation y(t).

Given the general linear differential equation shown in 2.1 and introducing additional vari¬

ables x^t) = y(t), x2(t) = y'{t),..., xn(t) = yn~l(t), then:

x\(t) = X2(t), x'2(t) = X3(t),..., = xn(t),

143

Appendix A. Time-Domain Analysis 144

x'nit) = yn(t) = -On-1 xn(t)

and the state-space representation is as follows:

a0xi(t) + q0u(t) (A.l)

x'(f) = Ax(f) -I- u(t)B

y(t) = c.x(f)

where the state vector x(f) and its derivative with respect to time are:

xx(t)

x(t)
X2 (t)

, x'(f) =
x'2(t)

Xn(t)

the system matrix A is an nxn matrix given by

0 1 0 ... 0

0 0 1 0

A =

0 0 ... 0 1

-Go —°1 ~ °2

and the control vector B is an n-vector of the form

0

0

0

Jo
The output equation is of the form:

1

(A.2)

y(t) = c.x(t)

where

c = [Cl c2 ... cj

Appendix A. Time-Domain Analysis 145

Example A.l The state-space representation of the spring/mass/damper system ofExam¬

ple 2.1 is as follows:

Letxiit) = y(t), x2(t) = y\t)
k b u

Then x\(t) = x2 (t), xUt) = x\ it) x2(t) 4 ,
m m m

x'(£) = Ax(i) + u(t)B =
0 1 Xi (t)

T" u(t)
0

k_ b_
rri m_

x2 (t) _ra_

(A.3)

The complexity of the equations in this representation does not increase with the numbers

of inputs, outputs and state variables. This means systems with many inputs and outputs,

which may interrelate in a complex way, can be represented in a relatively simple manner.

A.2 Time-Response Analysis

To analyse the stability of a system expressed in state-space form, the Liapunov stability

criteria can be used. Given a linear time-invariant continuous-times system x'(f) = Ax(f),
where x(t) is a state-vector (n-vector) and A is an n x n matrix, the system is stable if for

any real and symmetric matrix Q there exists a real, symmetric, positive definite1 matrix P
such that ATP + PA = —Q.

To analyse the real-time response of a system one can examine the shape of the curve

produced by exposing the system to various inputs. There are three types of input for

time-response analysis, as shown in Figure A.l.

There are three types of response that a system could have to these inputs and a system

may have a different response depending on the chosen input. It would be desirable for

the system to have the same response to all classes of inputs, since one usually does not

know exactly what inputs the system will encounter in practice. The three responses that a

system could have are shown in Figure A.2.

'A matrix P is positive definite if x7Px > 0 for all x € Cn

Appendix A. Time-Domain Analysis 146

o o o o o o o

The step input

The ramp input

The impulse input

Figure A.l: Classes of inputs for time-response analysis.

This analysis of a system can be performed by examining the poles of the Laplace transform

of a system. For example, suppose a closed loop system has the Laplace transform

C(s)
_ f(ujn)

f?(s) s2 + 2(^u)ns + to2

where u>n is the natural frequency of the system. The poles of this system can be found

by finding the roots of s2 + 2(u>ns + a;2. Given any quadratic equation there are three

categories that the roots could fall into — two complex roots; two real, equal roots; two

real, non-equal roots — and each of these categories corresponds to a different type of

response that the system could have (see Table A.l). Using the table one could easily see

what the type of response a particular system of this form would have by examining the
value of (.

Appendix A. Time-Domain Analysis 147

Under

Damped

Over

Damped

Critically

Damped

Figure A.2: Classes of system behaviour in time-response analysis.

A.3 Time-Response Requirements

When designing a system one usually has a more detailed set of requirements for its real¬

time response; for example, one may have a desired time in which the system should be¬

come steady. These requirements can be expressed in the form of a response specification.

It is usual for response specifications to contain the following information:

1. Desired delay time td — the time required for the response to first reach half the
desired final value.

Appendix A. Time-Domain Analysis 148

Roots Response Parameter Inverse Laplace Transform of Quadratic

Transfer Function

Complex under

damped

0 < c < 1
/■g C

1 sin(cont) + e~^Unt cos(u>nt)
v1 - C2

Real and

Equal

critically

damped

C = i 1 — e~Wnt(l + unt)

Real and

Non-equal

over

damped

C> 1 1 _ e-(C-VC2-iW

Table A.l: Response analysis for systems with quadratic transfer functions.

2. Desired rise time tr — the time required for the response to rise from either 10% to

90%, 5% to 95% or 0% to 100% of its desired final value, depending on the system.

3. Desired peak time tp — the time required for the response to reach the first peak of
the overshoot.

4. Maximum percent Mp — the percentage of the final value that the maximum peak
can overshoot the desired final output by.

5. Desired settling time ts — the time required for the response to reach and stay within

a specified range of the final value (usually 2% or 5%).

If all of these values are specified then the shape of the response curve is virtually deter¬

mined (see Figure A.3).

A.4 Basic Control Actions: The PID controller

Often when modelling a system one finds that the system as is cannot meet the desired

requirements, for instance it is a general requirement for aeroplanes that they are stable,

however, many modern fighter jets are inherently unstable. In these cases a controller must

be added to modify the system response. These controllers are combined with the original

Appendix A. Time-Domain Analysis 149

Figure A.3: An example time-response curve.

system using one of the configurations show in the Section 2.1.4. Controllers can take

many different forms. Three commonly used control actions are the proportional gain, the

integral gain, and the derivative gain controllers (see Table A.2).

Proportional
E(s) K„ U{\) u(t) = Kpe(t)

Integral
E(s) Ki U

s
du(t)
dt Kie(t)

Derivative
E(s) Kds U(s) u(t) is de(t)

1Xd dt

Table A.2: Control actions.

The three different control actions have different effects on a system (see Table A.3). The
control action that should be used depends on which requirement(s) the system is failing to

meet. One may add a combination of controllers if necessary. For example, if a system is

Appendix A. Time-Domain Analysis 150

under damped (i.e has a long rise time) one may add a proportional controller to decrease

the rise time. From Table A.3, one can see that along with decreasing the rise time a

proportional controller also increases the overshoot. One may find that the proportional

controller increases the overshoot to an unacceptable level. In this case one could add a

derivative controller, which decreases overshoot but makes very little difference to the rise

time. By adjusting the values of Kp and Kd one can increase or decrease the effect that the
controllers have on the system.

Rise time tr Overshoot Mp Settling time ts

Kp \

Ki \ S /*

Kd \ \

Table A.3: PID effects on response.

Appendix B

PVS Libraries Formalising the Decision

Procedure

This appendix contains the PVS library formalising the mathematical foundations used as

a basis for the decision procedure detailed in Section 5.7, along with the logic L\ and the

decision procedure itself. This formalisation is presented in some detail in Chapter 6.

In the following theory, polynomial, linear, rational and rationally differentiable functions
are defined.

polynomial [T: TYPE from real]: THEORY

BEGIN

X

'/ Since this theory deals with the differentiability of
Z polynomials and differentiability is only defined on

Z non-singleton convex sets, assumptions must be made
Z that T is such a set.

%

ASSUMING

connected_domain : ASSUMPTION

151

Appendix B. PVS Libraries Formalising the Decision Procedure

FORALL (x, y : T) , (z : real) :

x <= z AND z <= y IMPLIES T_pred(z)

not_one_element : ASSUMPTION

FORALL (x : T) : EXISTS (y : T). : x /= y

ENDASSUMING

IMPORTING transcendentalsOdiffl_pow,
nth_derivatives@nth_derivatives

'/, The following are auxiliary definitions concerning
'/, subsequences , sums and factorials that are required
X in the definition of polynomials.
X

subseq(f:finseq[real] ,m:nat,n : int) : finseq [real] =

IF m > n OR m >= f'length THEN

empty_seq

ELSE

LET len = min(n - m + 1, f'length - m) IN
(# length := len,

seq := (LAMBDA (x: below [len]) : f'seq(x + m)) #)
ENDIF

nonempty_list : TYPE = {1:list [real] I length(1)>0}

f acn (n : nat , m : {x : nat I x< =n}) : RECURSIVE posnat =

IF n = m THEN 1 ELSE n * facn(n - 1, m) ENDIF

MEASURE n

sumto (m : nat)(f : [below [m] - >real]) : RECURSIVE real =

IF m = 0 THEN 0

ELSE sumto(m - 1)(LAMBDA (n:below [m -1]) : f(n)) + f(m-l)

ENDIF

MEASURE m

Appendix B. PVS Libraries Formalising the Decision Procedure

%

'/, Relate the definition of sumto to Hanne's definition of
'/, sum; sum is defined for functions over the entire
'/, naturals whereas sumto is defined for functions over

'/, a subset of the naturals .

%

sumto_sum: LEMMA FORALL (m:nat, f: [below [m]->real]) :

sumt o(m)(f) =

sum(0,m)(LAMBDA (n:nat): IF n<m THEN f(n) ELSE 0 ENDIF)

x

'/, The function polynomial takes a sequence of reals and
7, returns a polynomial functions whose coefficients are

7, the elements of the sequence .

x

polynomial(S:finseq[real]): [T->real] =

LAMBDA (x:T):

sumto(S'length)
(LAMBDA (n:below[S'length]) : S'seq(n)*expt(x,n))

x

7, This function finds index of the last nonzero element in
7 a sequence of reals. This is used to find the degree of
7 a polynomial.
X

degree (S : f inseq [real]) : RECURSIVE nat =

IF S'length=0 THEN 0
ELSIF S'seq(S'length-l) = 0 THEN

degree(subseq(S,0,S'length-2))
ELSE S'length -1
ENDIF

MEASURE S<length

X

7, The function type of polynomials is defined as a

Appendix B. PVS Libraries Formalising the Decision Procedure 154

'/, function that can be constructed for a sequence of reals
7, using the polynomial predicate . Judgements are used to
7, relate the varoius definitions.
%

poly_type: TYPE =

{f : [T->real] I EXISTS (S:finseq [real]) : f = polynomial(S)}

nzreal_poly_type: TYPE =

{p:poly_typeI FORALL (x:T): p(x)/=0}

nzreal_poly_type_nzreal : JUDGEMENT
nzreal_poly_type SUBTYPE_OF [T->nzreal]

polynomial_has_poly_type : JUDGEMENT
polynomial(S:finseq[real]) HAS_TYPE poly_type

x

7, The following definitions and lemmas concern the
7, differentiability of polynomials.
•/,

poly_diffl: LEMMA
FORALL (S:finseq[real],x:T):

diff1(polynomial(S),x,
IF S'length <=1 THEN 0
ELSE

sumto(S'length-1)
(LAMBDA (n:below[Sclength-1]):
(n+1)*S'seq(n+l)*expt(x,n))

ENDIF)

poly_derivable : LEMMA
FORALL (S:finseq[real]):

derivable(polynomial (S))

poly_deriv_fun: JUDGEMENT

polynomial(S: finseq [real]) HAS_TYPE deriv_fun[T]

Appendix B. PVS Libraries Formalising the Decision Procedure

poly_type_deriv_fun : JUDGEMENT
poly_type SUBTYPE_OF deriv_fun[T]

poly_deriv: LEMMA
FORALL (S:finseq[real],x:T):

deriv(polynomial(S),x)=
IF S1 length <= 1 THEN 0
ELSE

sumto(S'length-l)
(LAMBDA (n:below[S'length-1]) :

(n+l)*S'seq(n+l)*expt(x,n))
ENDIF

poly_deriv2 : LEMMA
FORALL (S:finseq [real]):

deriv(polynomial(S))=LAMBDA (x:T):
IF Sclength <= 1 THEN 0
ELSE

sumto(S'length -1)
(LAMBDA (n:below[S<length-1]) :

(n+l)*S'seq(n+l)*expt(x,n))
ENDIF

deriv_poly(S:finseq[real]): finseq[real] =

IF S<length <= 1 THEN

(#length:=1, seq:= LAMBDA (n:below [1]) : 0#)
ELSE

(#length:= S'length-1,
seq:= LAMBDA (n:below[Sclength - 1]) :

(n+1)*S'seq(n+1) #)
ENDIF

deriv_length : LEMMA
FORALL (S:finseq [real]) :

deriv_poly(S)'length =

IF S'length < = 1 THEN 1

Appendix B. PVS Libraries Formalising the Decision Procedure

ELSE S'length -1 ENDIF

deriv_nth : LEMMA

FORALL (S:finseq[real] ,n:{m:nat| m<S 'length - 1}) :

deriv_poly(S)1seq(n)=(n+l)*S'seq(n+l)

deriv_poly_deriv : LEMMA
FORALL (S:finseq[real] ,x:T) :

deriv(polynomial(S),x) =

polynomial(deriv_poly(S))(x)

deriv_poly_deriv2 : LEMMA
FORALL (S:finseq[real]):

deriv(polynomial(S))=
polynomial(deriv_poly(S))

deriv_poly_type : JUDGEMENT
deriv(p:poly_type) HAS_TYPE poly_type

cubic_deriv: LEMMA

FORALL (a,b,c,d:real,w:T):

deriv(polynomial(list2finseq[real] ((:d,c,b,a :))))(w
3*a*expt(w,2)+2*b*w+c

poly_derivable_n_times_aux : LEMMA
FORALL (S:finseq[real]) :

derivable_n_times(polynomial(S), S 'length)

poly_derivable_n_times : LEMMA
FORALL (S:finseq [real]) :

FORALL (n:nat): derivab1e_n_times(polynomial(S),n)

nderiv_poly_type : JUDGEME)NT
nderiv(x:nat,p:poly_type) HAS_TYPE poly_type

poly_nderiv: LEMMA
FORALL (S:finseq[real],m:nat,x:T):

Appendix B. PVS Libraries Formalising the Decision Procedure

nderiv(m,polynomial(S))(x)=
IF m<S'length THEN sumto(S'length-m)

(LAMBDA (n:below[S'length-m]):
facn(n+m,n)*S'seq(n+m)*expt(x,n))

ELSE 0 ENDIF

poly_nderiv2 : LEMMA
FORALL (S:finseq[real],m:nat):
nderiv(m,polynomial(S))=

LAMBDA (x:T):

IF m<S'length THEN sumto(S'length-m)
(LAMBDA (n:below[S'length-m]) :

facn(n+m,n)*S'seq(n+m)*expt(x,n))
ELSE 0 ENDIF

nderiv_poly(m:nat,S:finseq [real]) : finseq[real] =

IF m<S'length THEN

(#length:= S'length-m,
seq:= LAMBDA (n:below[S'length-m]):
facn(n+m,n)*S'seq(n+m) #)

ELSE

(#length:=l, seq:= LAMBDA (n:below [1]) : 0#)
ENDIF

nderiv_length : LEMMA
FORALL (S:finseq[real],m:nat):

nderiv_poly(m,S)'length =

IF S'length < = m THEN 1
ELSE S'length-m ENDIF

nderiv_poly_nderiv : LEMMA
FORALL (S:finseq[real],n:nat,x:T):
nderiv(n,polynomial(S))(x)=

polynomial(nderiv_poly(n,S))(x)

nderiv_poly_nderiv2 : LEMMA
FORALL (S:finseq[real],n:nat):

Appendix B. PVS Libraries Formalising the Decision Procedure

nderiv(n,polynomial(S))=
polynomial(nderiv_poly(n,S))

x

7 The following are definitions of linear, rational and
7, rationally differentiable functions . These are defined
7 in terms of polynomials.
X

linear : TYPE = {f:[T->real]I

EXISTS (S: finseq [real]):

degree(S)<=l AND f=polynomial(S)}

rational : TYPE = ff:[T->real]I

EXISTS (p: poly_type, p2: nzreal_poly_type):
f=p/p2>

rational_differentiable : TYPE = {f:[T->real]I

derivable(f) AND

EXISTS (p: poly_type , p2: nzreal_poly_type) :

deriv(f)=p/p2>

END polynomial

In the following theory, convex and non-trivial sets are defined.

convex_set_aux [T: TYPE FROM real]: THEORY

BEGIN

X

7 A convex subset P of T has the implicit condition that
7 T also be a convex set. This is so that we can show

7 that any real z to which P is applied is of type T,
7 preventing the generation of unsolveable TCCs.
X

convex_set: TYPE = {P:set [T] I

(FORALL (x, y:(P), z:real): x <= z AND z <= y

Appendix B. PVS Libraries Formalising the Decision Procedure 159

IMPLIES T_pred(z) AND P(z))}

not_singleton_set : TYPE = {P:set[T]|
(FORALL (x: (P)): EXISTS (y: (P)) : x /= y)>

not_one_convex_set: TYPE = {P:set[T]|

(FORALL (x, y:(P), z:real): x <= z AND z <= y

IMPLIES T_pred(z) AND P(z))
AND

(FORALL (x: (P)): EXISTS (y: (P)) : x /= y)>

nontrivial_set: TYPE = {P:set[T]|

(EXISTS (x: T): P(x)) AND

(FORALL (x: (P)): EXISTS (y: (P)) : x /= y)}

nontrivial_convex_set: TYPE = {P:set[T]|

(FORALL (x, y:(P), z:real): x <= z AND z <= y

IMPLIES T_pred(z) AND P(z))
AND

(FORALL (x: (P)): EXISTS (y: (P)) : x /= y)
AND

(EXISTS (x: T): P(x))>

x

'/, Relate the previous definitions of sets using
'/, judgements. This can prevent the generation of TCC when
7, a subtype is used where its supertype is expected.
%

nontrivial_convex_set1 : JUDGEMENT

nontrivial_convex_set SUBTYPE_OF nontrivial_set

nontrivial_convex_set2: JUDGEMENT

nontrivial_convex_set SUBTYPE_OF convex.set

END convex_set_aux

In the following theory, convexity and concavity of functions of one variable are defined.

Appendix B. PVS Libraries Formalising the Decision Procedure 160

Various auxiliary lemmas that are useful in reasoning about convexity and concavity are

proven.

convexity [T: TYPE FROM real]: THEORY

BEGIN

%

7 Since convexity is only defined on functions whose
7 domains are convex sets, assumptions must be made
7 that T is such a set.

'/t

ASSUMING

connected_domainT : ASSUMPTION

FORALL (x, y : T), (z : real) :

x <= z AND z <= y IMPLIES T_pred(z)

ENDASSIMING

IMPORTING convex_set, NRV_lib@typesl, NRV_lib@types2

T_is_convex_set : JUDGEMENT

T_pred HAS_TYPE convex.set[real]

line_equiv: LEMMA FORALL (f : [T->re al] , x , a : T , b : gt [T , a]) :

(f (b) - f(a)) / (b - a) * (x - b) + f(b)

(f (b) - f(a)) / (b - a) * (x - a) + f(a)

%

7 Define convexity and concavity and relate the
7 definitions.
%

concave?(f: [T->real]): bool =

FORALL (x,y:T, 1: closed [real , 0 ,1]) :

f (l*x+(l-1)*y)> = l*f(x) + (l-l)*f(y)

Appendix B. PVS Libraries Formalising the Decision Procedure

convex?(f:[T->real]): bool =

FORALL (x,y:T, 1:closed[real ,0 ,1]):
f(l*x+(l -1)*y)< = l*f(x)+(l-l)*f(y)

concave_neg_convex: LEMMA FORALL (f : [T->real]):
concave?(f) IFF convex?(LAMBDA (x:T):-f(x))

convex_neg_concave: LEMMA FORALL (f:[T->real]):
convex?(f) IFF concave?(LAMBDA (x:T):-f(x))

•/

'/, The following lemmas are fairly trivial but are useful
7, in the proof of later lemmas.
x

concave_aux: LEMMA

F0RALL(f: [T->real] ,a:T,b:gt [T,a] , x :open_l [T,a,b]):
concave ?(f) IMPLIES

(f(x)-f(a))/(x-a)>=(f(b)-f(a))/(b-a)

concave_aux2 : LEMMA

FORALL(f : [T->real]) :

concave?(f) IFF

FORALL (x:T,xl:lt[T,x],x2:ge[T,x]):
(f(x)-f(xl))/(x-xl)>=(f(x2)-f(xl))/(x2-xl)

concave_aux3 : LEMMA

FORALL(f:[T->real]):

concave?(f) IFF

FORALL (x:T,xl:le [T,x] ,x2:gt [T,x]) :

(f(x2)-f(x))/(x2-x)<=(f(x2)-f(xl))/(x2-xl)

convex_aux: LEMMA

F0RALL(f : [T->real] , a : T , b : gt [T , a] ,x:open_l[T,a,b]):
convex ?(f) IMPLIES

(f(x)-f(a))/(x-a)<=(f(b)-f(a))/(b-a)

Appendix B. PVS Libraries Formalising the Decision Procedure 162

convex_aux2: LEMMA

FORALL (f : [T->real]) :

convex?(f) IFF

FORALL (x:T,xl:It[T,x],x2:ge[T,x]):
(f(x)-f(xl))/(x-xl)<=(f(x2)-f(xl))/(x2- xl)

convex_aux3 : LEMMA

FORALL(f : [T->real]) :

convex?(f) IFF

FORALL (x:T,xl:le[T,x],x2:gt[T,x]):
(f(x2) - f(x))/(x2-x)>=(f(x2)-f(xl))/(x2-xl)

END convexity

In the following theory, further properties of convex and concave functions are given. The
notion of a reasonable function is formalised and two alternative definitions of a finitely
inflective function are given and shown to be equivalent.

convexity_props [T: TYPE FROM real]: THEORY

BEGIN

X

7 Since this theory deals with the differentiability of
7 functions and differentiability is only defined on

7 non-singleton convex sets, assumptions must be made
7 that T is such a set.

%

ASSUMING

connected.domainT : ASSUMPTION

FORALL (x, y : T) , (z : real) :

x <= z AND z <= y IMPLIES T_pred(z)

not_one_elementT ASSUMPTION

FORALL (x : T) : EXISTS (y : T) : x /= y

Appendix B. PVS Libraries Formalising the Decision Procedure

ENDASSUMING

IMPORTING

convexity , convex.set , inv_func@deriv_eq ,

inv_funcOderiv_help , mseq ,

transcendentals@continuous_functions_props_general

add(S:mseq[pred[T]] , n:mbelow [S'length] , P:pred[T]):
mseq [pred [T]] =

(# length:=S'length ,

seq:= LAMBDA (m:mbelow[Sclength]):
IF m=n THEN {x:T| P(x) OR S'seq(m)(x)}
ELSE S'seq(m) ENDIF#)

fT: TYPE = {f:[T -> real] |

derivable(f) AND derivable(deriv (f))}

fT3: TYPE = {f:[T -> real] I derivable(f) AND

derivable(deriv(f)) AND continuous(deriv(deriv(f)))}

T_is_not_singleton:
JUDGEMENT T_pred HAS_TYPE not_singleton_set[real]

T_is_convex: JUDGEMENT T_pred HAS_TYPE convex.set[real]
T.is.not.one.convex: JUDGEMENT T_pred HAS_TYPE

not.one.convex.set[real]

fT_subtype: LEMMA FORALL (P : not.one.convex.set[T]):
FORALL (f:fT):

derivable(LAMBDA (s:(P)): f(s)) AND

derivable(deriv(LAMBDA (s:(P)): f(s)))

fT3_subtype: LEMMA FORALL (P : not.one.convex.set [T]) :

FORALL (f:fT3) :

derivable(LAMBDA (s:(P)): f(s)) AND

derivable(deriv(LAMBDA (s:(P)): f(s))) AND

continuous(deriv(deriv(LAMBDA (s:(P)): f(s))))

connected.subset : LEMMA FORALL (n : T , m : {u : T | u>n})

FORALL (x, y: closed[T,n,m]), (z : real) :

Appendix B. PVS Libraries Formalising the Decision Procedure

x <= z AND z <= y

IMPLIES T_pred(z) and n<=z and z< = y

not_one_subset : LEMMA FORALL (n:T,m:{u:T|u>n>):

FORALL (x: closed[T,n,m]) :

EXISTS (y: closed[T,n,m]) : x /= y

x

7, Lemmas relating differentiability and convexity / concavity
X

decreasing_deriv_aux: LEMMA
FORALL (f: [T->real] , y : T , x : gt [T,y]) :

concave?[closed[T,y,x]](LAMBDA (s: closed [T,y,x]):f(s))
AND derivable(f,y) IMPLIES

deriv(f,y)>=(f(x)-f(y))/(x-y)

decreasing_deriv_aux2: LEMMA
FORALL (f: [T->real] ,y:T,x:lt[T,y]):
concave?[closed[T,x,y]](LAMBDA (s:closed[T,x,y]):f(s))
AND derivable(f,y) IMPLIES

deriv(f,y)<=(f(x)-f(y))/(x-y)

decreasing_deriv : LEMMA
FORALL (f : {f1 : [T->real] I derivable(fl)},y:T,x:gt [T,y]) :

(concave?[closed[T,y,x]](LAMBDA (s:closed[T,y,x]):f(s))
IFF

decreasing(LAMBDA (s:closed [T,y,x]) : deriv(f)(s)))

concave_aux4 : LEMMA FORALL (f : f T , y : T , x : gt [T , y]) :

(concave?[closed [T,y,x]](LAMBDA (s:closed[T,y,x]):f(s))
IFF

Forall (s:closed[T,y,x]) : deriv(deriv(f))(s)< = 0)

increasing_deriv : LEMMA
FORALL (f : {f1 : [T->real] |derivable(fl)},y:T,x:gt [T,y]) :

(convex?[closed[T,y,x]](LAMBDA (s:closed [T,y,x]) :f (s))
IFF

Appendix B. PVS Libraries Formalising the Decision Procedure

increasing(LAMBDA (s:closed [T,y,x]) : deriv(f) (s)))

convex_aux4 : LEMMA FORALL (f : f T , y : T , x : gt [T , y]) :

(convex? [closed [T , y,x]](LAMBDA (s:closed [T ,y,x]):f(s))
IFF

Forall (s:closed[T,y,x]) : deriv(deriv(f))(s)> =0)

deriv2zero(f: fT): set[T] = {u:T| deriv(deriv(f))(u) = 0}

x

'/, Definitions for reasonable functions .

%

complete?(S:mseq[pred [T]]) : bool =

FORALL (x:T): EXISTS (n:mbelow [S'length]) : (S'seq(n))(x)

ordered?(S:mseq[pred[T]]): bool =

FORALL (n:mbelow[S'length],m:mbelow[n]):
FORALL (x:(S'seq(m)),y:(S'seq(n))): x<=y

reasonable_dom?

(f:fT3, S:mseq[nontrivial_convex_set_tcc [T]]) : bool =

IF S clength/ = 0 AND S'length/ = 1 THEN
(FORALL (n:mbelow [S'length - 1]) :

(FORALL (u:(S'seq(n)),v:(S'seq(n+l))):
sgn(deriv(deriv(f))(u)) /= sgn(deriv(deriv(f))(v))))

ELSE

(FORALL (n:mbelow[S'length]):
(FORALL (u: (S'seq(n)) , v :(S'seq(n))) :

sgn(deriv(deriv(f))(u)) = sgn(deriv(deriv(f))(v))))
ENDIF

x

'/, Auxiliary lemmas, which are used in the proof of
'/, equivalence between two definitions of finitely
'/, inflective.
x

reasonable_dom_ordered: LEMMA

Appendix B. PVS Libraries Formalising the Decision Procedure

FORALL (S:mseq[nontrivial_convex_set_tcc [T]]) :

ordered ?(S) AND complete?(S) IMPLIES
FORALL (n,m: [mbelow[S£length]]) :

FORALL (x:(S£seq(n)), y :(S'seq(m)),z:real):
x< = z AND z< = y IMPLIES T_pred(z) AND

EXISTS (k:nat):

min(n,m)<=k AND k<=max(n,m) AND (S'seq(k))(z

reasonable_dom_bounded_above: LEVIMA

FORALL (S:mseq[nontrivial_convex_set_tcc[T]]):
ordered?(S) AND S£length/=0 IMPLIES

FORALL (11: [mbelow [S £ length - 1]]) :

EXISTS (x:T): upper_bound?(x,S£seq(n))

reasonable_dom_bounded_above2: LEMMA

FORALL (S:mseq[nontrivial_convex_set_tcc[T]]):
ordered?(S) AND S£length/ = 0 IMPLIES

FORALL (n: [mbelow [S£length-1]]) :

nonempty?[real]
(extend [real , T, bool , FALSE](S£seq(n)))

AND

bounded_real_defs.bounded_above?

(extend [real , T, bool, FALSE](S£seq(n)))

reasonable_dom_bounded_below : LEMMA

FORALL (S:mseq[nontrivial_convex_set_tcc[T]]):
ordered?(S) AND S£length/=0 IMPLIES

FORALL (n: [mbelow[S£length]]) :

n/=0 IMPLIES

EXISTS (x:T): lower_bound?(x,S£seq(n))

reasonable_dom_bounded_below2 : LEMMA

FORALL (S:mseq[nontrivial_convex_set_tcc [T]]) :

ordered?(S) AND S£length/ = 0 IMPLIES
FORALL (n: [mbelow[S'length]]) :

n/=0 IMPLIES

nonempty?[real]

Appendix B. PVS Libraries Formalising the Decision Procedure

(extend[real, T, bool, FALSE](S'seq(n)))
AND

bounded_real_defs.bounded_below?

(extend [real , T, bool, FALSE](S'seq(n)))

reasonable_dom_bounded : LEMMA

FORALL (S:mseq[nontrivial_convex_set_tcc[T]]) :

ordered?(S) AND Sclength/=0 IMPLIES
FORALL (n:mbelow [S'length-1]) : n/ = 0

IMPLIES bounded?(S{seq(n))

glb_T_pred : LEMMA
FORALL (S:mseq[nontrivial_convex_set_tcc[T]]) :

ordered?(S) AND S'length/=0 IMPLIES
FORALL (n:mbelow[S1length-1]) :

T_pred(glb(S'seq(n+l)))

glb_typepred : LEMMA
FORALL (S:mseq[nontrivial_convex_set_tcc[T]]):
ordered?(S) AND complete?(S) AND Sclength/=0 IMPLIES

FORALL (n:mbelow[S'length - 1]) :

(S'seq(n))(glb(S'seq(n+l))) OR

(S'seq(n+1))(glb(S'seq(n+l)))

lub_T_pred: LEMMA
FORALL (S:mseq[nontrivial_convex_set_tcc[T]]):
ordered?(S) AND S'length/ = 0 IMPLIES

FORALL (n:mbelow[S'length - 1]) :

T_pred(lub(Scseq(n)))

lub_typepred: LEMMA
FORALL (S:mseq[nontrivial_convex_set_tcc[T]]):
ordered?(S) AND complete?(S) AND S'length/=0 IMPLIES

FORALL (n:mbelow[S'length - 1]) :

(S'seq(n))(lub(S'seq(n))) OR

(S'seq(n+1))(lub(S'seq(n)))

Appendix B. PVS Libraries Formalising the Decision Procedure

reasonable_dom_bounds : LEMMA

FORALL (S:mseq[nontrivial_convex_set_tcc[T]]):
ordered?(S) AND complete?(S) AND S£length/=0 IMPLIES

FORALL (11: mbelow [S ' length - 1]) :

glb(S£seq(n+l))=lub(S£seq(n))

reasonable_dom_lub_ordered : LEMMA

FORALL (S:mseq[nontrivial_convex_set_tcc [T]]) :

ordered?(S) AND complete?(S) AND S£length/=0 IMPLIES
FORALL (n: [mbelow[S£length - 1]]) :

FORALL (x:(S'seq(n)),z:real):
x<z AND z<lub(S'seq(n)) IMPLIES

T_pred(z) AND (S'seq(n))(z)

reasonable_dom_glb_ordered : IEMMA
FORALL (S:mseq[nontrivial_convex_set_tcc [T]]) :

ordered?(S) AND complete?(S) AND S£length/=0 IMPLIES
FORALL (n: [mbelow[S'length-1]]) :

FORALL (y:(S£seq(n+1)),z:real):
gib (S'seq(n + l))<z AND z<y IMPLIES

T_pred(z) AND (S£seq(n+1))(z)

reasonable_dom_bounds_ordered : LEMMA

FORALL (S:mseq[nontrivial_convex_set_tcc[T]]):
ordered?(S) AND complete?(S) AND S'length/ = 0 IMPLIES

FORALL (n: [mbelow[S£length - 1]]) :

FORALL (m:mbelow[S'length], x :(S'seq(m))):
(x<lub(S£seq(n)) IMPLIES m<=n)
AND

(lub (S£seq(n))<x IMPLIES n<m)

choose.ordered: LEMMA

FORALL (S:mseq[nontrivial_convex_set_tcc[T]]):
ordered?(S) AND S£length/ = 0 IMPLIES
(FORALL (n: [mbelow[S£length-l]] ,x : (S'seq(n))) :

EXISTS (y:(S£seq(n+1))): x<y)

Appendix B. PVS Libraries Formalising the Decision Procedure

choose_ordered2: LEMMA

FORALL (S:mseq[nontrivial_convex_set_tcc[T]]) :

ordered ?(S) IMPLIES

(FORALL (11: [mbelow[S£length]] ,x: (S'seq(n)) ,

m:{u:mbelow[S£length] |n + l<u}, z: (S'seq(m))):
EXISTS (y : (S'seq(n + 1))) : x<y AND y<z)

reasonable_dom_n: LEMMA

FORALL (f:fT3, S:mseq[nontrivial_convex_set_tcc[T]]):
reasonable_dom?(f, S) IMPLIES

FORALL (n:mbelow[S£length]):
FORALL (u,v:(S'seq(n))) :

sgn(deriv(deriv(f))(u)) = sgn(deriv(deriv(f)) (v))

reasonable: TYPE =

{f:fT3| EXISTS (S:mseq [nontrivial_convex_set_tcc [T]]) :

complete?(S) AND ordered?(S) AND reasonable_dom?(f,S)}

r_dom(f:reasonable):

mseq[nontrivial_convex_set_tcc[T]] =

choose({S:mseq[nontrivial_convex_set_tcc[T]]I
complete?(S) AND ordered?(S) AND reasonable_dom?(f,S)})

r_dom_typepred: LEMMA FORALL (f:reasonable):

complet e ? (r_dom (f)) AND

ordered?(r_dom(f)) AND

reasonable_dom?(f,r_dom(f))

r_bounds_0: LEMMA

FORALL (f:reasonable):

r_dom(f)£length >0 IMPLIES
FORALL (n:mbelow[r_dom(f)' length-1]):
deriv(deriv(f))(glb(r_dom(f)£seq(n+l)))=0
AND

deriv(deriv(f))(lub(r_dom(f)£seq(n)))=0

finitely_inflective: TYPE =

Appendix B. PVS Libraries Formalising the Decision Procedure

{f:fT3I EXISTS (S:finseq[nontrivial_convex_set_tcc [T]]):

complete?(S) AND ordered?(S) AND reasonable.dom?(f,S)}

finitely_inflective?(f:[T->real]): bool =

EXISTS (S:finseq[nontrivial_convex_set_tcc[T]]):
complete?(S) AND ordered?(S) AND reasonable_dom?(f,S)

fi_dom(f:finitely_inflective):
finseq[nontrivial_convex.set_tcc[T]] =

choose({S:finseq[nontrivial_convex_set_tcc[T]]I

complete?(S) AND ordered?(S) AND reasonable_dom?(f,S)})

fi_dom_typepred: LEMMA FORALL (f:finitely_inflective):

complete?(fi_dom (f)) AND

ordered?(fi_dom(f)) AND

reasonable_dom?(f,fi_dom(f))

fi_dom_length_is_r_dom_auxl : LEMMA
FORALL (f:finitely_inflective):

1<fi_dom(f)'length AND

(l<r_dom(f)'length OR r_dom(f)'length<0)
IMPLIES

lub(fi_dom(f)'seq (0)) = lub(r_dom(f)'seq (0))

f i_dom_length_is_r_dom_auxO : LEMMA
FORALL (f:finitely_inflective, n : nat):
n/ = 0 AND n<fi_dom(f)'length AND

(r_dom(f)'length>=0 IMPLIES n<r_dom(f)'length)
IMPLIES

lub(fi_dom(f)'seq(n - 1)) = lub(r_dom(f)'seq (n - 1))

f i_dom_is_r_dom_aux : LEMMA

FORALL (f:finitely_inflective),

(n:mbelow[r_dom(f)'length],x:T):
n<fi_dom(f)'length IMPLIES

(fi_dom(f)'seq(n)(x) IFF r_dom(f)'seq(n)(x))

Appendix B. PVS Libraries Formalising the Decision Procedure

fi_dom_is_r_dom : LEMMA

FORALL (f : finitely_inflective) :

fi_dom(f)=r_dom(f)

f i_bounds_0 : LEMMA

FORALL (f:finitely_inflective) :

fi_dom(f)'length>0 IMPLIES
FORALL (n:below[fi_dom(f)'length -1]) :

deriv(deriv(f))(glb(fi_dom(f)'seq(n+l)))=0
AND

deriv(deriv(f)) (lub(fi_dom(f) 'seq(n)))=0

poi(f:reasonable): set[T] =

{z:T| deriv(deriv(f))(z) = 0 AND

EXISTS (x:lt [T,z] ,y:gt [T,z]) :

FORALL (m:open[T,x,z],n:open[T,z,y]):
sgn(deriv(deriv(f))(m)) /= sgn(deriv(deriv(f))(n))}

finitely_inflective_alt: TYPE =

{f:reasonable I is_finite (poi(f))}

'/, More auxiliary lemmas, which are used in the proof of
% equivalence between the two definitions of finitely
7, inflective functions.

no_poi_dom: LEMMA
FORALL (f:finitely_inflective):

fi_dom(f)'length<=1 IFF
(FORALL (x:T):

deriv(deriv(f))(x)>=0)

OR

(FORALL (x:T):

deriv(deriv(f))(x)<0)

empty_poi : LEMMA
FORALL (f:finitely_inflective):

Appendix B. PVS Libraries Formalising the Decision Procedure 172

empty?(poi(f)) IFF
(FORALL (x:T):

deriv(deriv(f))(x)>=0)

OR

(FORALL (x:T) :

deriv(deriv(f))(x)<0)

%

'/, Lemmas showing the equivalence of the two definitions
7, of finitely inflective functions .

%

fi_poi: LEMMA
FORALL (f:finitely_inflective):
IF f i_dom (f)'length = 0 THEN poi(f) = emptyset

ELSIF fi_dom(f)£length=1 THEN poi(f) = emptyset

ELSE poi(f) =

{x:T| EXISTS (n:below [fi_dom(f)'length-1]) :

x=lub(fi_dom(f)£seq(n))}
ENDIF

fi_poi_is_finite : LEMMA
FORALL (f:finitely_inflective) :

is_finite(poi(f))

fi_is_fi_alt : JUDGEMENT finitely_inflective

SUBTYPE_OF finitely_inflective_alt
fi_alt_is_fi : JUDGEMENT finitely_inflective_alt

SUBTYPE_OF finitely_inflective

END convexity_props

In the following theory, geometric properties of curves are given of functions of one vari¬
able.

curve_bound[T:TYPE FROM real, a:T, b:fbl:T|a<bl>]: THEORY

BEGIN

Appendix B. PVS Libraries Formalising the Decision Procedure

%

7, Since this theory deals with the differentiability of
7, functions and differentiability is only defined on

7, non - singleton convex sets, assumptions must be made
7, that T is such a set.

/

assuming

connected_domainT : assumption

FORALL (x, y : T), (z : real) :

x <= z AMD z <= y IMPLIES T_pred(z)

not _one_elementT : assumption

FORALL (x : T) : EXISTS (y : T) : x /= y

endassimim;

importing convexity_props , inv_func@deriv_eq ,

inv_func@deriv_help

x

7 Definition of various types used to simplify the
7, definition of lemmas. Judgements are used to relate the
7, types .

%

T_is_convex_set: judgement

T_pred HAS_TYPE convex.set.tcc[real]
T_is_nontrivial_set: judgement

T_pred HAS_TYPE nontrivial_set[real]

AB: type = {u:real|a<=u AND u<=b}

AB_pred: nontrivial_convex_set_tcc[T] =

{u:real|a<=u AND u<=b}

AB_pred_is_AB: judgement (AB_pred) SUBTYPE_OF AB

Appendix B. PVS Libraries Formalising the Decision Procedure 174

AB_is_AB_pred: JUDGEMENT AB SUBTYPE_OF (AB_pred)

connected_domainAB : LEMMA

FORALL (x, y : AB), (z : real) :

x <= z AND z <= y IMPLIES a<=z AND z<=b

not_one_elementAB : LEMMA

FORALL (x : AB) : EXISTS (y : AB) : x /= y

AB_open: TYPE = {u:real| a<u AND u<b}

AB_subtype_T : JUDGEMENT AB SUBTYPE_OF T

AB_open_subtype_AB : JUDGEMENT AB_open SUBTYPE_OF AB
AB_is_nontrivial_convex_set : JUDGEMENT

AB_pred HAS_TYPE nontrivial_convex_set_tcc[real]

%

'/, Lemmas relating lines.

x

line.intersection : LEMMA FORALL (m , c , n , d : real) :

m/=n IMPLIES EXISTS (x:real): m*x+c=n*x+d

line_intersection2 : LEMMA FORALL (m , c , n , d : real) :
\

m/=n IMPLIES

FORALL (x:real) :

m*x+c=n*x+d

IFF

x=(d-c)/(m-n)

line_below_line: LEMMA FORALL (m,c,n,d:real):
IF m=n THEN

(IF c<d THEN

(FORALL (x:real): m*x+c<n*x+d)

ELSIF c>d THEN

(FORALL (x:real): m*x+c>n*x+d)

Appendix B. PVS Libraries Formalising the Decision Procedure

ELSE

(FORALL (x:real): m*x+c=n*x+d)

ENDIF)

ELSIF m<n THEN (EXISTS (xlrreal): m*xl+c=n*xl+d

AND (FORALL (x:It [real ,x1]) : m*x + c>n*x +d)

AND (FORALL (x:gt [real,xl]): m*x + c<n*x +d))
ELSE (EXISTS (xl:real): m*xl+c=n*xl+d

AND (FORALL (x:It [real,x1]) : m*x + c<n*x +d)

AND (FORALL (x : gt [real , xl]) : m*x+c>n*x+d))
ENDIF

intersect_exists: LEMMA

FORALL (f: [T->real] ,a,b:T,m,c:real):

(f(a)<=m*a+c AND f(b)>m*b+c AND continuous(f))

IMPLIES

(IF (a<b) THEN

EXISTS (n:closed[T,a,b]): f(n)=m*n+c

ELSE

EXISTS (n:closed [T,b,a]) : f(n)=m*n+c

ENDIF)

%

'/, Lemmas relating convex/concave curves to their tangents .

%

concave_above_line: LEMMA

FORALL (f: [T->real]) :

concave?(LAMBDA (x:AB): f(x)) IMPLIES

(FORALL (x:AB): f(x)>=(f(b)-f(a))/(b-a)*(x-b)+f(b))

convex_below_line : LEMMA

FORALL (f: [T->real]):

Convex?(LAMBDA (x:AB): f(x)) IMPLIES

(FORALL (x:AB): f(x)<=(f(b)-f(a))/(b-a)*(x-b)+f(b))

concave_below_tang: LEMMA
FORALL (f: [T->real] , y:AB):
derivable (f,y) AND concave?(LAMBDA (x:AB): f(x))

Appendix B. PVS Libraries Formalising the Decision Procedure

IMPLIES

(FORALL (x:AB) : f (x)<=deriv(f,y)*(x-y)+f(y))

concave_below_tang2: LEMMA
FORALL (f:deriv_fun [T]) :

concave?(LAMBDA (x:AB): f(x)) IMPLIES

(FORALL (x,y : AB) : f(x)<=deriv(f,y)*(x-y)+f(y))

convex_above_tang : LEMMA
FORALL (f:[T->real], y:AB):
derivable(f,y) AND convex?(LAMBDA (x:AB): f(x))

IMPLIES

(FORALL (x:AB): f(x)>=deriv(f,y)*(x-y)+f(y))

convex_above_tang2: LEMMA
FORALL (f: [T->real]) :

derivable(f) AND convex?(LAMBDA (x:AB): f(x))

IMPLIES

(FORALL (x,y:AB): f(x)> =deriv(f,y)*(x-y)+f (y))

x

7, Lemmas about the relationship of a concave function to
% a line. These lemmas represent the conditions used
7, within the decision procedure .

%

concave.gradient : LEMMA
FORALL (f:[T->real],m:real):

(concave?(LAMBDA (x:AB): f(x)) AND derivable(f) AND

continuous(deriv(f)) AND

deriv(f,a)>=m AND deriv(f,b)<=m) IMPLIES

(EXISTS (n : AB) : deriv(f,n)=m)

concave_gradient2: LEMMA
FORALL

(f:{f1:deriv_fun [T] | concave?(LAMBDA (x:AB): fl(x))

AND continuous(deriv(fl))},m:real):

(deriv(f,a)>=m AND deriv(f,b)<=m) IFF

Appendix B. PVS Libraries Formalising the Decision Procedure

(EXISTS (n:AB): deriv(f,n)=m)

concave_curve_above_line: LEMMA

FORALL (f: [T->real] ,m,c:real):

concave?(LAMBDA (x:AB): f(x)) IMPLIES

IF (f(a)>m*a+c AND f(b)>m*b+c)

THEN (FORALL (x:AB): f(x)>m*x+c)

ELSE

(EXISTS (x:AB): f(x)<=m*x+c)

ENDIF

concave_curve_above_line2 : LEMMA

FORALL (f:[T->real],m,c:real):

concave?(LAMBDA (x:AB): f(x)) IMPLIES

((f(a)>m*a+c AND f(b)>m*b+c) IFF

(FORALL (x:AB): f(x)>m*x+c))

concave_curve_below_line: LEMMA

FORALL (f:[T->real],m,c:real):

concave?(LAMBDA (x:AB): f(x)) AND derivable(f) AND

continuous(deriv(f)) IMPLIES

IF (deriv(f,a)<m AND f(a)<m*a+c)

THEN (FORALL (x:AB): f(x)<m*x+c)

ELSIF (deriv(f,b)>m AND f(b)<m*b+c)

THEN (FORALL (x:AB): f(x)<m*x+c)

ELSIF (EXISTS (n:AB): deriv(f,n)=m AND f(n)<m*n+c)

THEN (FORALL (x:AB): f(x)<m*x+c)

ELSE (EXISTS (x:AB): f(x)>=m*x+c)

ENDIF

concave_curve_below_line2 : LEMMA

FORALL (f : [T->real] ,m,c:real):

concave?(LAMBDA (x:AB): f(x)) AND derivable(f) AND

continuous(deriv (f)) IMPLIES

(((deriv(f,a)<m AND f(a)<m*a+c) OR

(deriv(f,b)>m AND f(b)<m*b+c) OR

(EXISTS (n:AB): deriv(f,n)=m AND f(n)<m*n+c))

Appendix B. PVS Libraries Formalising the Decision Procedure

IFF

(FORALL (x:AB): f(x)<m*x+c))

concave_curve_below_line3 : LEMMA

FORALL (f:deriv_fun [T] ,m,c:real):

deriv(f)(b)/=deriv(f)(a) IMPLIES

LET p = (f(a)-deriv(f)(a)*a-f(b)+deriv(f)(b)*b)/
(deriv(f)(b)-deriv(f)(a))

IN

concave?(LAMBDA (x:AB): f(x)) AND

continuous(deriv(f)) AND

(EXISTS (n:AB): deriv(f,n)=m) AND

f(a)+deriv(f)(a)*(p-a)<m*p+c
IMPLIES

(FORALL (x:AB): f(x)<m*x+c)

concave_intersect_line : LEMMA

FORALL (f: [T->real] ,m,c:real) :

concave?(LAMBDA (x:AB): f(x)) AND derivable(f) AND

continuous(deriv(f)) IMPLIES

IF (f(a)>m*a + c AND f (b)>m*b + c)

THEN (FORALL (x:AB): f(x)>m*x+c)

ELSIF (deriv(f,a)<m AND f(a)<m*a+c)

THEN (FORALL (x:AB): f(x)<m*x+c)

ELSIF (deriv(f,b)>m AND f(b)<m*b+c)
THEN (FORALL (x:AB): f(x)<m*x+c)

ELSIF (EXISTS (x:AB): deriv(f,x)=m AND f(x)<m*x+c)

THEN (FORALL (x:AB): f(x)<m*x+c)

ELSE

(EXISTS (x:AB): f(x)=m*x+c)

ENDIF

x

'/, Lemmas about the relationship of a convex fundi on to
7, a line. These lemmas represent the conditions used
% within the decision procedure .

x

Appendix B. PVS Libraries Formalising the Decision Procedure 179

convex_gradient : LEMMA
FORALL (f: [T->real] ,m:real):

(convex?(LAMBDA (x:AB): f(x)) AND derivable(f) AND

continuous(deriv(f)) AND

deriv(f,a)<=m AND deriv(f,b)>=m) IMPLIES

(EXISTS (n:AB): deriv(f,n)=m)

convex_gradient2: LEMMA
FORALL (f :{fl : [T->real] I convex?(LAMBDA (x:AB): fl(x)) AND

derivable(f1) AND continuous(deriv(f1))},m:real):

(deriv(f,a)<=m AND deriv(f,b)>=m) IFF

(EXISTS (n:AB): deriv(f,n)=m)

convex_curve_above_line : LEMMA

FORALL (f:[T->real],m,c:real):

convex?(LAMBDA (x:AB): f(x)) AND derivable(f) AND

continuous(deriv(f)) IMPLIES

IF (deriv(f,b)<m AND f(b)>m*b+c)

THEN (FORALL (x:AB): f(x)>m*x+c)

ELSIF (deriv(f,a)>m AND f(a)>m*a+c)

THEN (FORALL (x:AB): f(x)>m*x+c)

ELSIF (EXISTS (n:AB): deriv(f,n)=m AND f(n)>m*n+c)

THEN (FORALL (x:AB): f(x)>m*x+c)

ELSE (EXISTS (x:AB): f(x)<=m*x+c)

ENDIF

convex_curve_above_line2 : LEMMA

FORALL (f:[T->real],m,c:real):

convex?(LAMBDA (x:AB) : f(x)) AND derivable(f) AND

continuous(deriv(f)) IMPLIES

(((deriv(f,b)<m AND f(b)>m*b+c) OR

(deriv(f,a)>m AND f(a)>m*a+c) OR

(EXISTS (n:AB): deriv(f,n)=m AND f(n)>m*n+c))

IFF

(FORALL (x:AB): f(x)>m*x+c))

convex_curve_above_line3 : LEMMA

Appendix B. PVS Libraries Formalising the Decision Procedure

FORALL (f:deriv_fun [T] ,m,c:real):

LET p = (f(a)-deriv(f)(a)*a-f(b)+deriv(f)(b)*b)/
(deriv(f)(b)-deriv(f)(a))

IN

convex?(LAMBDA (x:AB): f(x)) AND continuous(deriv(f))

AND (EXISTS (n:AB): deriv(f,n)=m) AND

f(a)+deriv(f)(a)*(p-a)>m*p+c
IMPLIES

(FORALL (x:AB): f(x)>m*x+c)

convex_curve_below_line : LEMMA

FORALL (f : [T->real] ,m,c:real):
convex ?(LAMBDA (x:AB): f(x)) IMPLIES

IF (f(a)<m*a+c AND f(b)<m*b+c)

THEN (FORALL (x:AB): f(x)<m*x+c)

ELSE

(EXISTS (x:AB): f(x)>=m*x+c)

ENDIF

convex_curve_below_line2 : LEMMA

FORALL (f:[T->real],m,c:real):

convex?(LAMBDA (x:AB): f(x)) IMPLIES

((f(a)<m*a+c AND f(b)<m*b+c) IFF

(FORALL (x:AB): f(x)<m*x+c))

convex_intersect_line: LEMMA

FORALL (fr [T->real] ,m,c:real):

convex?(LAMBDA (x:AB): f(x)) AND derivable(f) AND

continuous(deriv(f)) IMPLIES

IF (f(a)<m*a+c AND f(b)<m*b+c)

THEN (FORALL (x:AB): f(x)<m*x+c)

ELSIF (deriv(f,a)>m AND f(a)>m*a+c)

THEN (FORALL (x:AB): f(x)>m*x+c)

ELSIF (deriv(f,b)<m AND f(b)>m*b+c)
THEN (FORALL (x:AB): f(x)>m*x+c)

ELSIF (EXISTS (x:AB): deriv(f,x)=m AND f(x)>m*x+c)

THEN (FORALL (x : AB) : f(x)>m*x + c)

Appendix B. PVS Libraries Formalising the Decision Procedure

ELSE

(EXISTS (x:AB): f(x)=m*x+c)

ENDIF

/

'/, Predicates that are used in the decision procedure.

%

curve_gt_line
(f :{u:fT[T] | convex?(LAMBDA (x:AB): u(x)) OR

concave?(LAMBDA (x:AB): u(x))} ,m,c:real): bool =

(convex?(LAMBDA (x:AB): f(x)) AND

((deriv(f,b)<m AND f(b)>m*b + c) OR

(deriv(f,a)>m AND f(a)>m*a+c) OR

(EXISTS (n:AB): deriv(f,n)=m AND f(n)>m*n+c)))

OR

(concave?(LAMBDA (x:AB): f(x)) AND

(f(a)>m*a+c AND f(b)>m*b+c))

curve_lt_line

(f:{u:fT [T] | convex?(LAMBDA (x:AB) : u(x)) OR

concave?(LAMBDA (x:AB): u(x))},m,c:real): bool =

(convex?(LAMBDA (x:AB): f(x)) AND

(f(a)<m*a+c AND f(b)<m*b+c))

OR

(concave?(LAMBDA (x:AB): f(x)) AND

((deriv(f,a)<m AND f(a)<m*a+c) OR

(deriv(f,b)>m AND f(b)<m*b+c) OR

(EXISTS (n:AB): deriv(f,n)=m AND f(n)<m*n+c)))

curve_ge_line
(f : {u:fT [T] | convex?(LAMBDA (x:AB): u(x)) OR

concave?(LAMBDA (x:AB): u(x))} ,m,c:real): bool =

(convex?(LAMBDA (x:AB): f(x)) AND

((deriv(f,b)<m AND f(b)>=m*b+c) OR

(deriv(f,a)>m AND f(a)>=m*a+c) OR

(EXISTS (n:AB): deriv(f,n)=m AND f(n)>=m*n+c)))

Appendix B. PVS Libraries Formalising the Decision Procedure 182

(concave?(LAMBDA (x:AB): f(x)) AND

(f(a)>=m*a+c AND f(b)>=m*b+c))

curve_le_line

(f:{u:fT[T]|convex?(LAMBDA (x:AB): u(x)) OR

concave?(LAMBDA (x:AB): u(x))},m,c:real): bool =

(convex?(LAMBDA (x:AB): f(x)) AND

(f(a)<=m*a+c AND f(b)<=m*b+c))

OR

(concave?(LAMBDA (x:AB): f(x)) AND

((deriv(f,a)<m AND f(a)<=m*a+c) OR

(deriv(f,b)>m AND f(b)<=m*b+c) OR

(EXISTS (n:AB): deriv(f,n)=m AND f(n)<=m*n+c)))

curve.neq

(f : {u : fT [T] | convex?(LAMBDA (x:AB): u(x)) OR

concave?(LAMBDA (x:AB): u(x))},m,c:real) : bool =

curve_gt_1ine(f,m,c) OR curve_lt_1ine(f,m,c) ;

curve.eq(f:fT [T] ,m,c:real) : bool =

(FORALL (x:T): deriv(f.x) = 0) AND

f(a)=m*a+c;

%

7, Lemma asserting that if the predicates defined above
7, are true for a given curve and line then the curve lies
7, on the expected side of the line.
X

curve_gt_line_aux : LEMMA
FORALL (f:{u:fT[T]|convex?(LAMBDA (x:AB): u(x)) OR

concave?(LAMBDA (x:AB): u(x))} ,m,c:real):

(FORALL (x:AB): f(x)>m*x+c) IFF curve_gt_1ine(f,m,c)

curve_lt_line_aux: LEMMA

FORALL (f :{u:fT[T] I convex?(LAMBDA (x:AB): u(x)) OR

concave?(LAMBDA (x:AB): u(x))} ,m,c:real):

(FORALL (x:AB): f(x)<m*x+c) IFF curve_1t_1ine(f,m,c)

Appendix B. PVS Libraries Formalising the Decision Procedure 183

curve_ge_line_aux : LEMMA
FORALL (f:{u:fT[T]|convex?(LAMBDA (x:AB): u(x)) OR

concave?(LAMBDA (x:AB): u(x))} ,m,c:real):

(FORALL (x:AB): f(x)>=m*x+c) IFF curve_ge_1ine(f,m,c)

curve_le_line_aux: LEMMA

FORALL (f :{u:fT[T] | convex?(LAMBDA (x:AB) : u(x)) OR

concave?(LAMBDA (x:AB): u(x))} ,m,c:real):

(FORALL (x:AB): f(x)<=m*x+c) IFF curve_1e_1ine(f,m,c)

curve_eq_aux: LEMMA
FORALL (f:{u:fT[T]Iconvex?(LAMBDA (x:AB): u(x)) OR

concave?(LAMBDA (x:AB): u(x))} ,m,c:real):

(FORALL (x:AB): f(x)=m*x+c) IFF curve_eq(f,m,c)

curve_neq_aux: LEMMA
FORALL (f:{u : fT [T] I convex?(LAMBDA (x:AB): u(x)) OR

concave?(LAMBDA (x:AB): u(x))} ,i,c:real):

(FORALL (x:AB): f(x)/=m*x+c) IFF curve_neq(f,m,c)

END curve_bound

In the following theory, geometric properties of curves are given of functions of two vari¬
ables.

curve_bound_2D[T:TYPE FROM real, T2:TYPE FROM real]: THEORY

BEGIN

7,

'/, Since this theory deals with the differentiability of
7, functions and differentiability is only defined on

7, non-singleton convex sets, assumptions must be made

7, that T is such a set.

/

ASSUMING

Appendix B. PVS Libraries Formalising the Decision Procedure

connected_domainT : ASSUMPTION

FORALL (x, y : T) , (z : real) :

x <= z AND z <= y IMPLIES T_pred(z)

not_one_elementT : ASSUMPTION

FORALL (x : T) : EXISTS (y : T) : x /= y

connected_domainT2 : ASSUMPTION

FORALL (x, y : T2) , (z : real) :

x <= z AND z <= y IMPLIES T2_pred(z)

not_one_elementT2 : ASSUMPTION

FORALL (x : T2) : EXISTS (y : T2) : x /= y

ENDASSUMING

IMPORTING curve.bound , NRV_lib@types2

AB: TYPE from real

AB_open: TYPE from real
AB2: TYPE from real

a,b: real

%

7 Lemmas about the relationship of a convex function of
7 two variables to a line. These lemmas make explicit

7, which points should be examined to determine whether
7 the function is greater than the line.
/

concave_above_line_2Dl : LEMMA

FORALL (f:[[T,T2]->real],m,n,c:real)

(a : T , b : gt [T , a])
(a2:[T->T2],

b2:{u : [T->T2] | FORALL (x:closed[T,a,b]) : a2(x)< =u(x)>) :

(FORALL (x:closed [T,a,b]) :

concave?(LAMBDA (y:closed [T2,a2(x) ,b2(x)]) : f(x,y)))

Appendix B. PVS Libraries Formalising the Decision Procedure

AND

concave?(LAMBDA (z:closed [T,a , b]): f(z,a2(z))-n*a2(z))
AND

concave?(LAMBDA (z:closed[T,a , b]) : f(z,b2(z))-n*b2(z))
AND

f(a,a2(a))>m*a+n*a2(a)+c AND f(a,b2(a))>m*a+n*b2(a)+c
AND

f(b,a2(b))>m*b+n*a2(b)+c AND f(b,b2(b))>m*b+n*b2(b)+c

IMPLIES

(FORALL (z:closed [T,a , b] , y:closed[T2,a2(z) ,b2 (z)]) :

f(z,y) > m*z+n*y+c)

concave_above_line_2D2 : LEMMA

FORALL (f:[[T, T2]->real],m,c:real)

(a : T , b : gt [T , a])
(a2:[T->T2],

b2:{u : [T->T2] | FORALL (x:closed [T,a,b]) : a2(x)< =u(x)>) :

(FORALL (x:closed[T,a,b]):

concave?(LAMBDA (y:closed [T2,a2(x) ,b2(x)]): f(x,y)))
AND

concave?(LAMBDA (z:closed [T,a,b]) : f(z,a2(z))) AND

convex?(LAMBDA (z:closed [T,a , b]) : f(z,b2(z))) AND

derivable(LAMBDA (z:T): f(z,b2(z))) AND

continuous(deriv(LAMBDA (z:T): f(z,b2(z)))) AND

f(a,a2(a))>m*a+c AND f(b,a2(b))>m*b+c AND

((deriv(LAMBDA (y:T): f(y,b2(y)),b)<m AND
f (b,b2(b))>m*b + c)

OR

(deriv(LAMBDA (y:T): f(y,b2(y)),a)>m AND

f(a,b2(a))>m*a+c)

OR

(EXISTS (n:closed [T,a,b]):

deriv(LAMBDA (y:T): f(y,b2(y)),n)=m AND

f(n,b2(n))>m*n+c))
IMPLIES

(FORALL (z : closed[T,a,b] , y:closed[T2,a2(z),b2(z)]) :

f(z,y) > m*z+c)

Appendix B. PVS Libraries Formalising the Decision Procedure

concave_above_line_2D3 : LEMMA

FORALL (f : [[T,T2]->real] ,m,c:real)

(a : T , b : gt [T , a])
(a2 : [T - >T2] ,

b2:{u : [T->T2] | FORALL (x:closed[T,a,b]) : a2(x)< =u(x)>) :

(FORALL (x:closed[T,a,b]):

concave?(LAMBDA (y:closed[T2,a2(x),b2(x)]): f(x,y)))
AND

concave?(LAMBDA (z:closed [T,a,b]) : f(z,b2(z))) AND

convex?(LAMBDA (z:closed [T,a,b]) : f(z,a2(z))) AND

derivable(LAMBDA (z:T): f(z,a2(z))) AND

continuous(deriv(LAMBDA (z:T): f(z,a2(z)))) AND

f(a,b2(a))>m*a+c AND f(b,b2(b))>m*b+c AND

((deriv(LAMBDA (y:T): f(y,a2(y)),b)<m AND
f(b,a2(b))>m*b+c)

OR

(deriv(LAMBDA (y:T): f(y,a2(y)),a)>m AND
f(a,a2(a))>m*a+c)

OR

(EXISTS (n:closed[T,a,b]):

deriv(LAMBDA (y:T): f(y,a2(y)),n)=m AND
f(n,a2(n))>m*n+c))

IMPLIES

(FORALL (z:closed [T,a , b] , y:closed[T2,a2(z),b2(z)])
f(z,y) > ra*z+c)

concave_above_line_2D4 : LEMMA

FORALL (f:[[T,T2]->real],m,c:real)

(a : T , b : gt [T , a])
(a2:[T->T2],

b2:{u : [T->T2] | FORALL (x:closed[T,a,b]) : a2(x)< =u(x)>) :

(FORALL (x:closed [T,a,b]) :

concave?(LAMBDA (y:closed[T2,a2(x) ,b2(x)]): f(x,y)))
AND

convex?(LAMBDA (z:closed [T,a,b]) : f(z,a2(z))) AND

derivable(LAMBDA (z:T): f(z,a2(z))) AND

Appendix B. PVS Libraries Formalising the Decision Procedure

continuous(deriv(LAMBDA (z:T): f(z,a2(z)))) AND

convex?(LAMBDA (z:closed [T,a,b]) : f(z,b2(z))) AND

derivable(LAMBDA (z:T): f(z,b2(z))) AND

continuous(deriv(LAMBDA (z:T): f(z,b2(z)))) AND

(((deriv(LAMBDA (y:T): f(y,a2(y)),b)<m AND
f(b,a2(b))>m*b+c)

OR

(deriv(LAMBDA (y:T): f(y,a2(y)),a)>m AND
f(a,a2(a))>m*a+c)

OR

(EXISTS (n:closed [T,a,b]) :

deriv(LAMBDA (y:T): f(y,a2(y)),n)=m AND
f(n,a2(n))>m*n+c))

AND

((deriv(LAMBDA (y:T): f(y,b2(y)),b)<m AND
f(b,b2(b))>m*b+c)

OR

(deriv(LAMBDA (y:T): f(y,b2(y)),a)>m AND
f(a,b2(a))>m*a+c)

OR

(EXISTS (n:closed [T,a, b]) :

deriv(LAMBDA (y:T): f(y,b2(y)),n)=m AND
f(n,b2(n))>m*n+c)))

IMPLIES

(FORALL (z:closed [T,a,b] ,y:closed[T2, a2(z) ,b2(z)])
f(z,y) > m*z+c)

concave_below_line_2D2: LEMMA

FORALL (f:[[T,T2]->real],m,c:real)

(a:T, b:gt [T,a])
(a2:T2, b2 : gt [T2 , a2]) :

(FORALL (x:closed [T,a,b]) :

concave?(LAMBDA (y:closed [T2,a2,b2]) : f(x,y)) AND
derivable(LAMBDA (y: T2): f(x, y)) AND
continuous(deriv(LAMBDA (y: T2): f(x, y))) AND
deriv(LAMBDA (y:T2): f(x,y))(a2)<0) AND
concave?(LAMBDA (z:closed [T,a,b]) : f(z,a2)) AND

Appendix B. PVS Libraries Formalising the Decision Procedure

derivable(LAMBDA (z:T): f(z,a2)) AND

continuous(deriv(LAMBDA (z:T): f(z,a2)))

IMPLIES

((FORALL (y: closed[T2,a2,b2],z:closed[T,a,b]):
f(z,y) < m*z+c)

IFF

((deriv(LAMBDA (y:T): f(y,a2),b)>m AND f(b,a2)<m*b+c)
OR

(deriv(LAMBDA (y:T): f(y,a2),a)<m AND f(a,a2)<m*a+c)
OR

(EXISTS (n:closed [T,a,b]):

deriv(LAMBDA (y:T): f(y,a2),n)=m AND

f(n,a2)<m*n+c)))

concave_below_line_2D3 : LEMMA

FORALL (f: [[T,T2]->real] ,m,c:real)

(a : T , b : gt [T , a])
(a2:T2, b2 : gt [T2 , a2]) :

(FORALL (x:closed [T,a,b]) :

concave?(LAMBDA (y:closed [T2,a2,b2]) : f(x,y)) AND
derivable(LAMBDA (y: T2): f(x, y)) AND
continuous(deriv(LAMBDA (y: T2): f(x, y))) AND
deriv(LAMBDA (y:T2): f(x,y))(b2)>0) AND
concave?(LAMBDA (z:closed [T , a , b]) : f(z,b2)) AND

derivable(LAMBDA (z:T): f(z,b2)) AND

continuous(deriv(LAMBDA (z:T): f(z,b2)))

IMPLIES

((FORALL (y:closed[T2,a2,b2],z:closed[T,a,b]):
f(z,y) < m*z+c)

IFF

((deriv(LAMBDA (y:T): f(y,b2),b)>m AND f(b,b2)<m*b+c)
OR

(deriv(LAMBDA (y:T): f(y,b2),a)<m AND f(a,b2)<m*a+c)
OR

(EXISTS (n:closed [T,a,b]) :

deriv(LAMBDA (y:T): f(y,b2),n)=m AND

f(n,b2)<m*n+c)))

Appendix B. PVS Libraries Formalising the Decision Procedure 189

concave_below_line_2D4 : LEMMA

FORALL (f: [[T,T2]->real] ,m,c:real)

(a : T , b : gt [T , a])
(a2:T2, b2:gt [T2,a2]):

(FORALL (x:closed [T,a,b]) :

concave?(LAMBDA (y:closed[T2,a2,b2]): f(x,y)) AND
derivable(LAMBDA (y: T2): f(x, y)) AND
continuous(deriv(LAMBDA (y: T2): f(x, y))) AND
EXISTS (p:closed[T2,a2,b2]):
deriv(LAMBDA (y:T2): f(x,y))(p)=0 AND
concave?(LAMBDA (z:closed [T,a,b]) : f (z,p)) AND
derivable(LAMBDA (z:T): f(z,p)) AND

continuous(deriv(LAMBDA (z:T): f(z,p))))
IMPLIES

((FORALL (y:closed[T2,a2,b2] ,z:closed[T,a,b]) :

f(z,y) < m*z+c)
IFF

(FORALL (x:closed[T ,a,b]) : EXISTS (p:closed[T2,a2,b2]) :

deriv(LAMBDA (y:T2): f(x,y))(p)=0 AND
((deriv(LAMBDA (y:T): f(y,p),b)>m AND f(b,p)<m*b+c)
OR

(deriv(LAMBDA (y:T): f(y,p),a)<m AND f(a,p)<m*a+c)
OR

(EXISTS (n:closed [T,a,b]):

deriv(LAMBDA (y:T): f(y,p),n)=m AND

f(n,p)<m*n+c))))

END curve_bound_2D

In the following theory, geometric properties of curves are given of functions of several
variables.

%

'/, Since we cannot express functions from an arbitrary
'/, number of real variables to the reals, we must use

'/, functions from a sequence of reals to the reals. To

Appendix B. PVS Libraries Formalising the Decision Procedure

7, restrict the domain of the function we use a predicate
7, over lists -- the desired usage is that this predicate
7, restricts the ranges of each variable (possibly as a

7, function of some of the other variables).
•/,

curve_bound_multi

[N:posnat, T: pred[finseq[real]], Tl: TYPE from real,
a: [(T)->T1] , b : {u : [(T)->T1] I FORALL (x:(T)): a(x)< =u(x)}]

THEORY

BEGIN

X

7 Since this theory deals with the differentiability of
7 functions and differentiability is only defined on

7, non - singleton convex sets, assumptions must be made
7, that T is such a set.

%

ASSUMING

connected_domain_x : ASSUMPTION

FORALL (x: Tl, y: Tl),(z:real):
x<=z AND z<=y IMPLIES Tl_pred(z)

not_one_element_x : ASSUMPTION

FORALL (x: Tl):

(EXISTS (y: Tl): x/=y)

ENDASSUMING

IMPORTING curve.bound

a_le_b : JUDGEMENT a(p:(T)) HAS_TYPE le[Tl,b(p)]
b_ge_a : JUDGEMENT b(p: (T)) HAS_TYPE ge[Tl,a(p)]

f inseq (n : nat) : TYPE = {u : f inseq [real] | u' length = n}-

Appendix B. PVS Libraries Formalising the Decision Procedure

TN: TYPE = {u:(T)| u'length=N}
AB(p:TN): TYPE = closed [real,a(p),b(p)]

connected_AB: JUDGEMENT AB(p:TN) SUBTYPE_OF T1

not_one_element_AB: LEMMA

FORALL (p:TN): a(p)/=b(p) IMPLIES
FORALL (x:AB(p)): EXISTS (y:AB(p)): x/=y

%

Z These lemmas demonstate that, using the geometric
'/, properties of a function of several variables,
Z inequalities can be reduced to problems involving
Z functions of fewer variables .

%

convex_curve_below_line_multi : LEMMA

FORALL (f: [[T1,TN]->real] , m,c:real):

(FORALL (p:TN):
convex? [AB(p)](LAMBDA (x:AB(p)): f(x,p)))
IMPLIES

((FORALL (p:TN,x:AB (p)) :

f(x,p) < m*x+c)
IFF

(FORALL (p:TN) :

f(a(p),p)<m*a(p)+c AND

f(b(p),p)<m*b(p) + c))

convex_curve_above_line_multi : LEMMA

FORALL (f: [[T1,TN]->real] ,mn:finseq(N) , m,c:real):
(FORALL (p:TN):
derivable(LAMBDA (x:Tl): f(x,p)) AND

continuous(deriv(LAMBDA (x:Tl): f(x,p))) AND

convex?[AB(p)](LAMBDA (x:AB(p)): f(x,p)))
IMPLIES

((FORALL (p:TN,x:AB(p)) : m*x + c < f(x,p))
IFF

(FORALL (p:TN):

Appendix B. PVS Libraries Formalising the Decision Procedure

(EXISTS (x:AB(p)):
deriv(LAMBDA (y:T1): f(y,p),x)=m
AND f(x,p)>m*x+c)

OR

((NOT EXISTS (x:AB(p)):
deriv(LAMBDA (y:Tl): f(y,p),x)=m) AND

f(a(p),p)>m*a(p)+c AND

f(b(p),p)>m*b(p)+c)))

concave_curve_above_line_multi : LEMMA

FORALL (f : [[T1,TN]->real] , mn:finseq(N) , m,c:real):
(FORALL (p:TN):
concave? [AB(p)](LAMBDA (x:AB(p)): f(x,p)))

IMPLIES

((FORALL (p:TN,x:AB(p)): f(x,p)> m*x+c)
IFF

(FORALL (p:TN):

f(a(p),p)>m*a(p)+c AND

f(b(p),p)>m*b(p)+c))

concave_curve_below_line_multi : LEMMA

FORALL (f:[[T1,TN]->real] ,mn:finseq(N) , m,c:real):
(FORALL (p:TN):
derivable(LAMBDA (x:Tl): f(x,p)) AND

continuous(deriv(LAMBDA (x:Tl): f(x,p))) AND
concave? [AB(p)](LAMBDA (x:AB(p)): f(x,p)))

IMPLIES

((FORALL (p:TN,x:AB(p)) : m*x + c > f(x,p))
IFF

(FORALL (p:TN):
(EXISTS (x:AB(p)):
deriv(LAMBDA (y:Tl): f(y,p),x)=m
AND f (x , p)<m*x + c)

OR

((NOT EXISTS (x:AB(p)):

Appendix B. PVS Libraries Formalising the Decision Procedure 193

deriv(LAMBDA (y:Tl): f(y,p),x)=m) AND

f(a(p),p)<m*a(p)+c AND

f(b(p),p)<m*b(p)+c)))

END curve_bound_multi

In the following theory, the geometric properties of the previous theories are used to show
where a finitely inflective function in one variable lies in relation to a line.

decision_proc_single [a:real , b:{u:real Ia<u}] : THEORY

BEGIN

IMPORTING NRV_lib@types2 , curve_bound, language@language

This fundi on takes a function f, two reals m and c, and
and element ~ of inq. This represents the inequality

f ~ m*x+c. The inq ~ must be interpreted and the

appropriate predicate is applied to determine whether
the inequality holds. The function takes a natural
number and uses this as a measure to repreatedly apply
the appropriate predicate in intervals .

dp_single_aux(f:finitely_inflective[closed[real, a , b]],
m:real , c : real , n:below[fi_dom(f)'length] ,s:inq) :

RECURSIVE bool =

LET lb = gib (f i_dom (f) ' seq (11)) ,

ub = lub(fi_dom(f)cseq(n)) IN
IF n = 0 THEN

IF s=lt THEN

curve_lt_line

[closed[real,a,b], lb , ub]

(f,m,c)

ELSIF s=le THEN

curve_le_line

[closed[real,a,b], lb , ub]

Appendix B. PVS Libraries Formalising the Decision Procedure

(f,m,c)

ELSIF s=eq THEN

curve_eq

[closed[real, a , b], lb , ub]

(f,m , c)

ELSIF s=ge THEN

curve_ge_line

[closed [real,a,b], lb , ub]

(f,m,c)

ELSIF s=gt THEN

curve_gt_line

[closed[real,a,b], lb , ub]

(f,m,c)

ELSE

curve.neq

[closed[real,a,b],lb,ub]

(f ,m,c)

ENDIF

ELSE

(IF s=lt THEN

curve.lt.line

[closed[real, a , b], lb , ub]

(f,m,c)
ELSIF s=le THEN

curve.le.line

[closed[real, a , b], lb , ub]

(f,m,c)
ELSIF s=eq THEN

curve.eq

[closed[real,a,b], lb , ub]

(f,m,c)
ELSIF s=ge THEN

curve_ge_line
[closed[real, a, b], lb , ub]

(f,m,c)
ELSIF s=gt THEN

curve_gt_line

Appendix B. PVS Libraries Formalising the Decision Procedure

[closed[real, a , b], lb , ub]

(f,m,c)

ELSE

curve_neq

[closed [real,a,b] , lb , ub]

(f,m,c)

ENDIF)

AND

dp_single_aux(f,m,c,n-l,s)
ENDIF

MEASURE n;

x

7, This function applies the above function in all
7, intervals in which a function is convex or concave .

%

dp_single(f:finitely_inflective[closed [real, a,b]] ,

m:real,c:real,s:inq):
bool =

dp_single_aux(f,m,c,fi_dom(f)<length-l,s)

END decision_proc_single

In the following theory, atomic formulae are formalised,

atomic_frmla: THEORY

BEGIN

IMPORTING language

frmla: TYPE

X

7, Define atomic formulae
%

atomic_TCC : AXIOM

Appendix B. PVS Libraries Formalising the Decision Procedure

EXISTS (x: [[P : pred[real] ,

name, [(P)->real], inq]->frmla]) : TRUE;

atomic:[[P:pred [real] , name, [(P)->real], inq] -> frmla]

atomic?(A:frmla): bool =

(EXISTS (P:pred [real] , v:name , f : [(P)->real] , s:inq):
A=atomic(P,v,f,s))

atomic_atomic?: JUDGEMENT

atomic(P:pred[real] , x:name , f : [(P)->real] , s:inq)
HAS_TYPE (atomic?)

atomic_is_atomic?: LEMMA

FORALL (P:pred[real], x:name, f:[(P)->real], s:inq):
«

atomic?(atomic(P,x,f,s))

X

'/, Axioms used in the definition of atomic formulae.
%

dom: [frmla -> pred[real]]
name: [frmla -> name]

func: [A:frmla -> [(dom(A))-> real]]

ineq: [A:frmla -> inq]

atomic_extensionality: AXIOM
FORALL (A,B: (atomic?)):

dom(A) = dom(B) AND

name(A) = name(B) AND

func(A) = func(B) AND

ineq(A) = ineq(B)
•IMPLIES A = B;

atomic_eta: AXIOM

FORALL (A: (atomic?)):

atomic(dom(A), name(A), func(A), ineq(A)) = A;

dom_atomic: AXIOM

Appendix B. PVS Libraries Formalising the Decision Procedure

FORALL (P:pred[real] , x:name , f:[(P) -> real], s:inq)
dom(atomic(P, x, f, s)) = P;

name_atomic : AXIOM

FORALL (P:pred [real] , x:name , f:[(P) -> real], s:inq)
name(atomic(P, x, f, s)) = x;

func.atomic : AXIOM

FORALL (P:pred[real], x:name , f:[(P) -> real], s:inq)
func(atomic(P, x, f, s)) = f;

ineq_at omic : AXIOM
FORALL (P : pred [real] , x:name , f:[(P) -> real], s:inq)

ineq(atomic(P, x, f, s)) = s;

x

7, Define atomic formula representing true and false.
%

T: frmla = atomic({x:real I TRUE},

char(0),

LAMBDA (x:real): 0,

eq)

F: frmla = atomic({x:real I TRUE},

char(0),
LAMBDA (x:real): 1,

eq)

T(n:name): frmla = atomic({x:real I TRUE},
n ,

LAMBDA (x:real): 0,

eq)

F(n:name): frmla = atomic({x:real I TRUE},
n ,

LAMBDA (x:real): 1,

eq)

Appendix B. PVS Libraries Formalising the Decision Procedure

END atomic_frmla

In the following theory, conjunctive and disjunctive formulae are formalised,

f rmla : THEORY

BEGIN

IMPORTING atomic_frmla

frmla_seq: TYPE = {u:finseq [frmla] | 0<uclength}
frmla_seq2: TYPE = fu:finseq [frmla] | l<u'length}

frmla_seq: JUDGEMENT frmla_seq2 SUBTYPE_OF frmla_seq

x

% Define conjunction and disjunction as functions that
'/, take a sequence , which contains at least two formulae
/ and constructs a formula.
/

conj:[frmla_seq2 -> frmla]

disj:[frmla_seq2 -> frmla]

conj?(A:frmla): bool =

(EXISTS (B:f rmla_ seq2) : A=conj(B))
disj?(A:frmla): bool =

(EXISTS (B:frmla_seq2): A=disj(B))

conj_conj?: JUDGEMENT
conj(A:frmla_seq2) HAS_TYPE (conj?)

conj_conj_or_disj?: JUDGEMENT
(conj?) SUBTYPE..0F {A:frmla| conj?(A) OR disj?(A)>

disj_disj?: JUDGEMENT
disj(A:frmla_seq2) HAS_TYPE (disj?)

disj_conj_or_disj? : JUDGEMENT
(disj?) SUBTYPE_OF {A:frmla| conj?(A) OR disj?(A)}

Appendix B. PVS Libraries Formalising the Decision Procedure

args:[frmla -> finseq [frmla]]

/

'/, Axioms used in the definition of conjunctions and
'/, dis junct ions .

/

args.atomic : AXIOM
FORALL (A:(atomic?)):

args(A) = empty_seq[frmla]

conj_extensionality: AXIOM
FORALL (A , B : (conj?)):
args(A) = args(B)

IMPLIES A = B;

args_conj : AXIOM
FORALL (A:frmla_seq2):

args(conj(A)) = A;

length_conj _args : JUDGEMENT args (A : (conj ?))
HAS_TYPE frmla_seq2

conj_eta: AXIOM
FORALL (A: (conj?)):

conj(args(A)) = A;

disj _extensionality : AXIOM
FORALL (A , B : (disj?)):
args(A) = args(B)

IMPLIES A = B;

args_disj : AXIOM
FORALL (A:frmla_seq2):
args(disj(A)) = A;

length_dis j .args : JUDGEMENT args (A : (dis j ?))

Appendix B. PVS Libraries Formalising the Decision Procedure 200

HAS_TYPE frmla_seq2

disj_eta : AXIOM
FORALL (A: (disj?)):
disj(args(A)) = A ;

cd_args : JUDGEMENT
args(A:{u:frmla I conj?(u) OR disj?(u)>)

HAS_TYPE frmla_seq2

x

7 Preserve important syntactic differences between atomic,
7, disj, and conj. This does not affect semantic
7, equivalence e.g A n T is semantically equivalent to A
7 but syntactically different
%

con j _not_atomic : AXIOM
FORALL (A:frmla_seq2): NOT atomic?(conj(A))

conj _not_atomic_alt : LEMMA
FORALL (A:(conj?)): NOT atomic?(A)

atomic_not_conj: COROLLARY
FORALL (A:(atomic?)): NOT conj?(A)

dis j _not_atomic : AXIOM
FORALL (A:frmla_seq2): NOT atomic?(disj(A))

disj_not_atomic_alt: COROLLARY
FORALL (A:(disj?)): NOT atomic?(A)

atomic_not_disj: LEMMA
FORALL (A:(atomic?)): NOT disj?(A)

conj_not_disj : AXIOM
FORALL (A:frmla_seq2): NOT disj?(conj(A))

Appendix B. PVS Libraries Formalising the Decision Procedure

conj_not_disj_alt: COROLLARY
FORALL (A:(conj ?)): NOT disj?(A)

disj_not_conj: COROLLARY
FORALL (A:frmla_seq2): NOT conj?(disj(A))

disj_not_conj_alt: COROLLARY
FORALL (A:(disj ?)): NOT conj?(A)

arg(A:frmla,n:below [args(A)'length]) : frmla =

args(A)'seq(n)

%

'/, Define measure of degree for formulae.
%

deg:[frmla->nat]

deg_args(f:finseq [frmla] ,g:[frmla->nat]): RECURSIVE nat =

IF f£length = 0 THEN 0
ELSE g(f£seq(0)) + deg_args(f~(1,f'length-1),g)
ENDIF

MEASURE f£length

deg_args_alt(f :finseq [frmla] ,g: [frmla-> nat]):
RECURSIVE nat =

IF f £length = 0 THEN 0
ELSIF f £length = 1 THEN g(f£seq(0))
ELSE

g(f £ seq(0)) +

deg_args_alt(f~(l,f1 length-1) ,g)
ENDIF

MEASURE f£length

deg_args_alt_equiv : LEMMA
FORALL (f:finseq [frmla]):

deg_args(f,deg)=deg_args_alt(f, deg)

Appendix B. PVS Libraries Formalising the Decision Procedure 202

deg_atomic : AXIOM
FORALL (A:(atomic?)):

deg(A) = 0

deg_conj : AXIOM
FORALL (A:frmla_seq2):

deg(conj(A)) = A'length + deg_args(A,deg)

deg_disj : AXIOM
FORALL (A:frmla_seq2):

deg(disj(A)) = A'length + deg_args(A,deg)

deg_cd : AXIOM
FORALL (A:frmla):

conj ?(A) OR disj ?(A) IMPLIES

deg(A) = args(A)'length + deg_args(args(A) , deg)

deg_args_o: LEMMA
FORALL (A,B:finseq[frmla]):

deg_args(o[frmla](A , B),deg) =

deg_args(A,deg) + deg_args(B,deg)

deg_arg : LEMMA
FORALL (A:frmla,n:below[args(A) 'length]) :

conj ?(A) OR disj ?(A) IMPLIES

deg(arg(A , n)) < deg(A)

deg_args_cd_equiv : LEMMA
FORALL (A:frmla_seq2):

deg(conj(A)) = deg(disj(A))

deg_args_cd: LEMMA
FORALL (A:frmla):

conj ?(A) OR disj ?(A) IMPLIES
FORALL (m,n:below[args(A)'length]):
l<n-m IMPLIES

Appendix B. PVS Libraries Formalising the Decision Procedure 203

deg(conj(args(A)~(m,n-1))) < deg(A)
AND

deg(disj(args(A)~(m,n- 1))) < deg(A)

deg_args_conj : LEMMA
FORALL (A:frmla):

conj ?(A) IMPLIES
FORALL (m,n:below[args(A)'length]):
l<n-m IMPLIES

deg(conj(args(A)~(m,n-1))) < deg(A)

deg_args_disj: LEMMA
FORALL (A:frmla):

disj ?(A) IMPLIES
FORALL (n,m:below[args(A)'length]):
l<n-m IMPLIES

deg(disj(args(A)~(m,n-1))) < deg(A)

deg_args_le: LEMMA
FORALL (A,B:finseq[frmla]):

0<A'length AND A'length = B'length AND
(FORALL (n:below [A'length]):
deg(A'seq(n)) <= deg(B'seq(n)))

IMPLIES

deg_args(A,deg) <= deg_args(B,deg)

deg_args_lt : LEMMA
FORALL (A,B:finseq [frmla]):

0<A'length AND A'length = B'length AND
(FORALL (n:below[A'length]):
deg(A'seq(n)) <= deg(B'seq(n))) AND
(EXISTS (n:below[A'length]) :

deg(A'seq(n)) < deg(B'seq(n)))
IMPLIES

deg_args(A,deg) < deg_args(B,deg)

/

Appendix B. PVS Libraries Formalising the Decision Procedure 204

7 Define the predicate frmla? that represents those
7 formulae that are made up from atomic, conjunctive or

7 disjunctive formulae.

f rmla? (A : f rmla) : RECURSIVE bool =

IF atomic?(A) THEN TRUE

ELSIF conj ?(A) OR disj?(A) THEN
FORALL (n:below[args(A)'length]): frmla?(arg(A,n))

ELSE FALSE

ENDIF

MEASURE deg(A)

frmla?_seq: TYPE = {u:finseq [(frmla?)] | 0<u'length}
frmla?_seq2: TYPE = {u:finseq[(frmla?)]I l<u'length}

conj_frmla?: JUDGEMENT
conj(A:frmla?_seq2) HAS_TYPE (frmla?)

disj_frmla?: JUDGEMENT
disj(A:frmla?_seq2) HAS_TYPE (frmla?)

atomic.frmla?: JUDGEMENT

(atomic?) SUBTYPE_0F (frmla?)

f rmla.f rmla?_seq : JUDGEMENT

args(A:{u:(frmla?)I conj?(u) OR disj?(u)>)
HAS_TYPE frmla?_seq2

%

7 Function that gets the domain of a formula. The
7 function is interpreted by means of axioms
/

get_dom: [frmla -> finseq[[pred[real] , name]]]

get_dom_f rmla? : AXIOM
FORALL (A:frmla):

IF atomic?(A) THEN

get_dom(A) = (# length := 1,

seq:= LAMBDA (n:below [1]) : (dom(A), name(A))#)

Appendix B. PVS Libraries Formalising the Decision Procedure 205

ELSIF conj ?(A) THEM
IF args(A)'length=2 THEN

get_dom(A) =

dom_product(get_dom(arg(A,0)),
get_dom(arg(A , 1)))

ELSE

get_dom(A) =

dom_product(get_dom(arg(A,0)),

get_dom(conj(args(A)~(l,args(A)'length -1))))
EMDIF

ELSIF dis j ? (A) THEN
IF args(A)'length=2 THEN

get_dom(A) =

dom_product(get_dom(arg(A,0)),
get_dom(arg(A , 1)))

ELSE

get_dom(A) =

dom_product(get_dom(arg(A,0)),
get_dom(disj(args(A)~(l,args(A)£length-l))))

ENDIF

ELSE TRUE

ENDIF

deg_0 : LEMMA
FORALL (A:(frmla?)):

deg(A) = 0 IFF atomic?(A)

deg_ 1 : LEMMA
FORALL (A:(frmla?)):

deg(A) = 2 IFF

((conj ?(A) OR disj ?(A)) AND

args(A)£length = 2 AND

atomic?(args(A)'seq (0)) AND

atomic?(args(A)£seq(l)))

'/, Define formulae that consist only of conjunctions or

Appendix B. PVS Libraries Formalising the Decision Procedure 206

7 (disjunctions) of atomic formulae.

conjunctive_f?(B:frmla): RECURSIVE bool =

IF conj ?(B) THEN
FORALL (n:below[args(B)'length]):
atomic?(arg(B , n)) OR conjunctive_f?(arg(B,n))

ELSE FALSE

ENDIF

MEASURE deg(B)

conj unctive.f rmla? : JUDGEMENT
(conjunctive_f?) SUBTYPE_0F (frmla?)

disj unct ive_f ?(B : f rmla) : RECURSIVE bool =

IF disj ?(B) THEN
FORALL (n:below[args(B)'length]):
atomic?(arg(B,n)) OR disjunctive_f?(arg(B,n))

ELSE FALSE

ENDIF

MEASURE deg(B)

disjunctive_frmla?: JUDGEMENT
(disjunctive_f?) SUBTYPE_0F (frmla?)

END frmla

In the following theory, quantified formulae are formalised,

quantification: THEORY

BEGIN

IMPORTING frmla

£

7 Define universal and existential quantification as

7 functions that take a name and a formula and constructs

Appendix B. PVS Libraries Formalising the Decision Procedure 207

/ a formuI a.
%

A:[[name, frmla] -> frmla]

E:[[name, frmla] -> frmla]

A_n?(x:name, B:frmla): bool =

(EXISTS (C:frmla): B=A(x,C))

E_n?(x:name, Brfrmla): bool =

(EXISTS (C:f rmla): B =E(x,C))

A?(B:frmla): bool =

(EXISTS (x:name, Crfrmla): B=A(x,C))

E?(B:frmla): bool =

(EXISTS (x:name , C:frmla): B =E(x,C))

A_A ? : JUDGEMENT A (x: name , B:frmla) HAS_TYPE (A?)

E_E ? : JUDGEMENT E(x : name , B:frmla) HAS_TYPE (E?)

arg: [frmla -> frmla]

'/, Axioms used in the definition of quantification.
%

A_extensionality : AXIOM
FORALL (B , C : (A?)):

name(B) = name(C) AND

arg(B) = arg(C)
IMPLIES B = C;

A
_ e t a : AXIOM

FORALL (B:

A(name(B)

(A?)):

,arg(B)) = B;

name..A : AXIOM

FORALL (x:name, Brfrmla)

name(A(x,B)) = x;

Appendix B. PVS Libraries Formalising the Decision Procedure 208

arg_A : AXIOM
FORALL (xrname, Brfrmla):

arg(A(x,B)) = B ;

E_extensionality : AXIOM
FORALL (B,C : (E?)):

name(B) = name(C) AND

arg (B) = arg(C)
IMPLIES B = C;

E
_ e t a : AXIOM

FORALL (B: (E?)) :

E(name(B),arg(B)) = B;

name_E : AXIOM

FORALL (x:name, B:frmla):

name(E(x , B)) = x;

arg_E : AXIOM
FORALL (x:name, B:frmla):

arg(E(x,B)) = B ;

%

7 Preserve important syntactic differences between atomic,
7 disj, conj, A and E. This does not affect semantic
7 equival ence.
%

A_not_atomic: AXIOM

FORALL (x:name, B:frmla): NOT atomic?(A(x , B))

A_not_atomic_alt : LEMMA

FORALL (B:(A?)) : NOT atomic?(B)

atomic_not_A: COROLLARY

FORALL (B:(atomic?)): NOT A?(B)

Appendix B. PVS Libraries Formalising the Decision Procedure 209

A_not_conj : AXIOM
FORALL (x:name, B:frmla): NOT conj?(A(x,B))

A_not_conj _alt : LEMMA
FORALL (B : (A?)) : NOT conj?(B)

conj _not_A : COROLLARY
FORALL (B:(conj ?)) : NOT A?(B)

A_not_disj : AXIOM
FORALL (xrname, B:frmla): NOT disj?(A(x,B))

A_not_disj_alt : LEMMA
FORALL (B:(A?)): NOT disj?(B)

dis j _not_A : COROLLARY
FORALL (B:(disj ?)) : NOT A?(B)

A_not _f rmla? : LEMMA

FORALL (x:name, B:frmla): NOT frmla?(A(x,B))

A_not_frmla?_alt: COROLLARY

FORALL (B : (A?)) : NOT frmla?(B)

frmla?_not_A: COROLLARY

FORALL (B:(frmla?)): NOT A?(B)

E_not _at omic : AXIOM

FORALL (x:name,B:frmla) : NOT atomic?(E(x,B))

E_not_atomic_alt : COROLLARY

FORALL (B : (E?)) : NOT atomic?(B)

atomic_not_E: LEMMA

FORALL (B:(atomic?)): NOT E?(B)

E_not_conj : AXIOM

Appendix B. PVS Libraries Formalising the Decision Procedure 210

FORALL (x:name,B:frmla): NOT conj?(E(x , B))

E_not_conj_alt: COROLLARY
FORALL (B:(E?)): NOT conj?(B)

conj_not_E: LEMMA
FORALL (B : (conj ?)) : NOT E?(B)

E_not_disj: AXIOM
FORALL (x:name,B:frmla): NOT disj?(E(x , B))

E_not_disj_alt: COROLLARY
FORALL (B:(E?)): NOT disj?(B)

disj_not_E: LEMMA
FORALL (B:(disj ?)): NOT E?(B)

E_not_frmla?: LEMMA

FORALL (x:name,B:frmla): NOT frmla?(E(x , B))

E_not_frmla?_alt: COROLLARY

FORALL (B:(E?)): NOT frmla?(B)

frmla?_not_E: COROLLARY

FORALL (B:(frmla?)): NOT E?(B)

A_not_E : AXIOM

FORALL (x:name,B:frmla): NOT E?(A(x,B))

A_not_E_alt: COROLLARY

FORALL (B:(A?)): NOT E?(B)

E_not_A : COROLLARY

FORALL (x:name,B:frmla): NOT A?(E(x,B))

E_not_A_alt : COROLLARY

FORALL (B : (E ?)) : NOT A?(B)

Appendix B. PVS Libraries Formalising the Decision Procedure

%

7 Define measure of degree for quantified formulae.
%

d e g _ A : AXIOM
FORALL (x:name,B:frmla):

deg(A(x,B)) = 1+deg(B)

deg_E : AXIOM
FORALL (x:name,B:frmla):

deg(E(x , B)) = 1 + deg(B)

deg_arg_AE: LEMMA
FORALL (B:frmla):

A?(B) OR E?(B) IMPLIES deg(arg(B)) < deg(B)

X

7 Define the predicate qfrmla? that represents those
7, formulae that are made up from atomic, conjunctive ,

7 disjunctive, universal and quantified formulae.
%

qfrmla?(B : f rmla) : RECURSIVE bool =

IF atomic ?(B) THEN TRUE

ELSIF conj ?(B) OR disj?(B) THEN
FORALL (n:below[args(B)1length]): qfrmla?(arg(B,n))

ELSIF A?(B) OR E?(B)

THEN qfrmla?(arg(B))
ELSE FALSE

ENDIF

MEASURE deg(B)

frmla_qfrmla: JUDGEMENT (frmla?) SUBTYPE_OF (qfrmla?)

%

7 Axioms defining the domain of a quantified formula.
'/,

get_dom_qf rmla : AXIOM

Appendix B. PVS Libraries Formalising the Decision Procedure 212

FORALL (B:frmla) :

A ?(B) OR E?(B) IMPLIES

get_dom(B) = remove(name(B), get_dom(arg(B)))

get_dom_f rmla: AXIOM
FORALL (B:frmla):

IF atomic?(B) THEN

get_dom(B) = (# length:= 1,

seq:= LAMBDA (n:below [1]): (dom(B), name(B))#)
ELSIF conj ?(B) THEN
IF args(B)'length=2 THEN

get_dom(B) =

dom_product(get_dom(arg(B,0)) ,

get_dom(arg(B , 1)))
ELSE

get_dom(B) =

dom_product(get_dom(arg(B,0)),
get_dom(conj(args(B)~(l,args(B)'length -1))))

ENDIF

ELSIF disj ?(B) THEN
IF args(B)'length=2 THEN

get_dom(B) =

dom_product(get_dom(arg(B,0)),
get_dom(arg(B , 1)))

ELSE

get_dom(B) =

dom_product(get_dom(arg(B,0)),
get_dom(disj(args(B)~(l,args(B)'length -1))))

ENDIF

ELSIF (A?(B) OR E?(B)) THEN

get_dom(B) = remove(name(B), get_dom(arg(B)))
ELSE TRUE

ENDIF

END quantification

In the following theory, the concept of a flat formula is formalised.

Appendix B. PVS Libraries Formalising the Decision Procedure 213

frmla_props: THEORY

BEGIN

IMPORTING quantification, seq_props

%

7 Definitions concerning the extraction of variables and
7 domains from formulae.
%

vars(A:finseq [[pred [real] ,name]]) : TYPE =

{u:finseq [real] 1u£length=A'length AND
FORALL (n:below[u'length]) : (A'seq(n) c1)(u'seq(n))>

dom.vars(A : frmla): TYPE =

{u:finseq[[P:pred[real] ,name , (P)]] I

u'length>=get_dom(A)'length AND
FORALL (n:below[get_dom(A)'length]):
EXISTS (m:below[u'length]):
get_dom(A)'seq(n) ' 1 = u'seqCm) '1 AND

get_dom(A)'seq(n) '2 = u'seq(m) ' 2}

get_var(x:name ,f:finseq[[P:pred[real] ,name , (P)]]) :

RECURSIVE real =

IF f'length=0 THEN choose({x:real I TRUE})
ELSIF (f'seq(O))'2=x THEN (f'seq(0))c3
ELSE get_var(x, f~ (1,f'length - 1))
ENDIF

MEASURE f'length

X

7, Definitions and lemmas concerning the concept of a

7 flat formula. This is important in the termination of
7 various syntactic conversions , such as conversion to
7 conjunctive normal form.
x

flat?(A : frmla) : RECURSIVE bool =

Appendix B. PVS Libraries Formalising the Decision Procedure 214

IF atomic ?(A) THEN TRUE

ELSIF conj ?(A) THEN
FORALL (n:below[args(A)'length]):

(NOT conj?(arg(A, n))) AND
flat ?(arg(A, n))

ELSIF disj ?(A) THEN
FORALL (n:below[args(A)'length]):

(NOT disj?(arg(A, n))) AND
flat ?(arg(A , n))

ELSIF A?(A) OR E?(A) THEN

flat ?(arg(A))
ELSE FALSE

ENDIF

MEASURE deg(A)

flatten_deg: LEMMA
FORALL (B:(qfrmla?),n:below[args(B)'length],
P,Q:pred[frmla], f:[frmla_seq2->frmla]):

(conj ? = P OR disj? = P) AND P(B) AND

(conj? = Q OR disj? = Q) AND Q(arg(B, n)) AND

(f=conj OR f=disj)
IMPLIES

deg(f(o[frmla]

(args(arg(B , n)) ,

remove_nth[frmla](args(B) , n))))
< deg(B)

f latten_qf rmla : LEMMA
FORALL (B:(qfrmla?),n:below[args(B)'length],
P,Q:pred[frmla], f:[frmla_seq2->frmla]):
(conj? = P OR disj? = P) AND P(B) AND

(conj? = Q OR disj? = Q) AND Q(arg(B, n)) AND

(f=conj OR f=disj)
IMPLIES

qfrmla?(f(o[frmla]

(args(arg(B, n)),

remove_nth[frmla](args(B) , n))))

Appendix B. PVS Libraries Formalising the Decision Procedure 215

flatten(B:(qfrmla?)): RECURSIVE (qfrmla?) =

IF flat ?(B) THEN B

ELSIF conj ?(B) THEN
IF EXISTS (n:below[args(B)'length]): conj?(arg(B, n))
THEN

LET n =

choose ({n : below [args (B) ' length] | conj?(arg(B, n))>)
IN

flatten(conj(args(arg (B , n))
o remove.nth(args(B),n)))

ELSE

conj ((#length: = args(B) 'length ,

seq:= LAMBDA (n:below[args(B)'length]):

flatten(arg(B , n))#))
ENDIF

ELSIF disj ?(B) THEN
IF EXISTS (n:below [args(B)'length]) : disj?(arg(B, n))
THEN

LET n =

choose({n:below[args(B)'length]1 disj?(arg(B, n))>)
IN

f latten (disj (args (arg (B , n))
o remove_nth(args(B),n)))

ELSE

disj ((#length: = args(B)'length ,

seq:= LAMBDA (n:below[args(B)'length]):

flatten(arg(B,n))#))
ENDIF

ELSIF A?(B) THEN

A(name(B),flatten(arg(B)))
ELSE

E(name(B),flatten(arg(B)))
ENDIF

MEASURE deg(B)

Appendix B. PVS Libraries Formalising the Decision Procedure 216

'/, Judgements to show that flattening a formula does not
7, change the topmost conectzve .

flatten_atomic: JUDGEMENT

flatten(B:(atomic?)) HAS_TYPE (atomic?)

f latten_conj : JUDGEMENT
flatten(B:{u:(qfrmla?)|conj?(u)}) HAS_TYPE (conj?)

f latten_disj : JUDGEMENT
flatten(B:{u:(qfrmla?)Idisj?(u)}) HAS_TYPE (disj?)

flatten_A : JUDGEMENT

flatten(B:{u:(qfrmla?)|A?(u)>) HAS_TYPE (A?)
flatten_E : JUDGEMENT

flatten(B:{u:(qfrmla?)|E?(u)}) HAS_TYPE (E?)

conj_flatten: LEMMA
FORALL (B:(qfrmla?)):

conj?(flatten(B)) IMPLIES conj?(B)
dis j _f latten : LEMMA

FORALL (B:(qfrmla?)):

disj?(flatten(B)) IMPLIES disj?(B)

flatten_flat : JUDGEMENT

flatten(B:(qfrmla?)) HAS_TYPE (flat?)

frmla_remove_nth_conj : LEMMA
FORALL (B:(frmla?),n:below[args(B)'length]):
conj?(B) AND conj?(arg(B,n))

IMPLIES

frmla?(conj(args(arg(B , n)) o

remove_nth(args(B) , n)))

frmla_remove_nth_disj : LEMMA
FORALL (B:(frmla?),n:below[args(B)'length]):
disj?(B) AND disj?(arg(B,n))

IMPLIES

frmla?(disj(args(arg(B, n)) o

remove_nth(args(B) , n)))

Appendix B. PVS Libraries Formalising the Decision Procedure 217

f latten_f rmla : JUDGEMENT f latten (B : (f rmla?))

HAS_TYPE (frmla?)

%

'/, Lemma concerning the degree and domain of flattened
'/, formu lae .

X

flatten_deg2 : LEMMA
FORALL (B:(qfrmla?),n: below[args(B)'length],
m:below[args(arg(B,n)) 'length] ,

P,Q:pred[frmla], f:[frmla_seq2->frmla]):

(conj ? = P OR disj ? = P) AND P(B) AND

(conj ? = Q OR disj? = Q) AND Q(arg(B, n)) AND

(f=conj OR f=disj)
IMPLIES

deg(f((# length := args(B)'length,
seq := LAMBDA (p: below[args(B)'length]):
IF p = args(B)'length - 1
THEN arg(arg(B, n),m)
ELSE remove_nth(args(B) , n)'seq(p)
ENDIF #)))

< deg(B)

flatten_get_dom: LEMMA
FORALL (B:(frmla?)):

get_dom(B) = get_dom(flatten (B))

deg_f latten_le : LEMMA
FORALL (B:(qfrmla?)):

deg(flatten(B)) <= deg(B)

deg_flatten: LEMMA
FORALL (B:(qfrmla?)):

NOT flat?(B) IMPLIES

deg(flatten(B)) < deg(B)

Appendix B. PVS Libraries Formalising the Decision Procedure 218

END f rmla_props

In the following theory, various normal forms are formalised along with functions to con¬

vert from arbitrary forms in to these normal forms.

normal.forms: THEORY

BEGIN

IMPORTING frmla_props , seq_props

'/, Rules for 'collecting' all subformulae which contain
'/, (or do not contain) a given name.

collect_x(x:name,B:finseq[frmla]):
RECURSIVE [f inseq[frmla]] =

IF B'length = 0 THEN empty_seq [frmla]
ELSIF contains?(x,get_dom(B'seq (0))) THEN

(#length:=l, seq:=LAMBDA (n:below [1]) : B'seq(O)#) o

collect_x(x, B~(l, B'length-1))
ELSE

collect.x(x,B"(l , B'length-1))
ENDIF

MEASURE length(B)

collect_non_x(x:name,B:finseq[frmla]):
RECURSIVE [f inseq [frmla]] =

IF B£length = 0 THEN empty_seq [frmla]
ELSIF contains?(x,get_dom(B1seq(0))) THEN

collect_non_x(x,B~(l, B'length-l))
ELSE

(#length:=l, seq: = LAMBDA (n:below [1]) : B'seq(O)#) o

collect_non_x(x,B"(l, Bc length - 1))
ENDIF

Appendix B. PVS Libraries Formalising the Decision Procedure 219

MEASURE length(B)

collecting: LEMMA
FORALL (x:name,B:finseq [frmla]) :

collect_x(x, B)'length+collect_non_x(x,B)'length=
B'length

%

7 Formal i s at i on of rules for transfering quantifiers
7 over disjunctions and conjunctions.
%

rulel_alt(B : (A?)) : frmla =

IF contains?(name(B),get_dom(arg (B))) THEN
IF nonempty?(get_pred(name(B),get_dom(arg(B)))) THEN
B

ELSE

T

ENDIF

ELSE arg(B)
ENDIF

rule 1(B : (A?)) : frmla =

IF contains?(name(B),get_dom(arg (B))) AND

nonempty?(get_pred(name(B),get_dom(arg(B)))) THEN
B

ELSE arg(B)
ENDIF

rule2_alt(B : (E?)) : frmla =

IF contains?(name(B),get_dom(arg(B))) THEN
IF nonempty?(get_pred(name(B),get_dom(arg(B)))) THEN
B

ELSE

F

ENDIF

ELSE arg(B)

Appendix B. PVS Libraries Formalising the Decision Procedure 220

ENDIF

rule2(B:(E?)): frmla =

IF contains?(name(B),get_dom(arg(B))) THEN B
ELSE arg(B)
ENDIF

rule3(B:{u:(A?)| conj?(arg(u))}): frmla =

conj ((#length:=args(arg(B)) 'length ,

seq:= LAMBDA (n:below[args(arg(B))'length]):
A(name(B),arg(arg(B), n)) #))

rule4(B:{u:(E?)| disj?(arg(u))}): frmla =

disj((#length:=args(arg(B))'length,
seq:= LAMBDA (n:below[args(arg(B))'length]):
E(name(B) ,arg(arg(B),n)) #))

rule5(B:{u:(A?) | disj?(arg(u))}) : frmla =

LET m = collect_non_x(name(B),args(arg(B)))'length IN
IF m = args(arg(B))'length THEN

disj(collect_non_x(name(B),args(arg(B))))
ELSIF m=args(arg(B))'length-1 THEN

disj ((#length:= m + 1 ,

seq:= LAMBDA (n:below[m+1]):
IF n=m THEN

A(name(B),collect_x(name(B),args(arg(B)))'seq(O))
ELSE

colle ct_non_x(name(B) ,args(arg(B))) 'seq(n)
ENDIF#))

ELSIF m = 0 THEN

A(name(B),disj(collect_x(name(B),args(arg(B)))))
ELSE

disj((#length:= m+1,

seq:= LAMBDA (n:below[m+1]):
IF n=m THEN

A(name(B),disj(collect_x(name(B),args(arg(B)))))
ELSE

Appendix B. PVS Libraries Formalising the Decision Procedure

collect_non_x(name(B),args (arg(B)))'seq(n)
ENDIF#))

ENDIF

rule6(B:{u:(E?)| conj?(arg(u))>): frmla =

LET m = collect_non_x(name(B),args(arg(B)))'length IN
IF m = args(arg(B))clength THEN

conj(collect_non_x(name(B),args(arg(B))))
ELSIF m=args(arg(B))'length-1 THEN

conj ((#length : = m + 1 ,

seq:= LAMBDA (n:below[m+1]):
IF n=m THEN

E(name(B),collect_x(name(B),args(arg(B)))'seq(O))
ELSE

collect_non_x(name(B),args(arg(B))) 'seq(n)
ENDIF#))

ELSIF m = 0 THEN

E(name(B), conj(collect_x(name(B),args(arg(B)))))
ELSE

conj((#length:= m+1,

seq:= LAMBDA (n:below[m+1]):
IF n=m THEN

E(name(B),conj(collect_x(name(B),args(arg(B)))))
ELSE

collect_non_x(name(B),args(arg(B)))'seq(n)
ENDIF#))

ENDIF

x

'/, Define the concept of isolated and minimal isolated
7, formulae, along with judgements concerning the
7, preservation of types.
X

isolated?(B : frmla) : RECURSIVE bool =

IF qfrmla?(B) THEN
IF atomic?(B) THEN

TRUE

Appendix B. PVS Libraries Formalising the Decision Procedure 222

ELSIF conj ?(B) OR disj?(B) THEN
FORALL (n:below[args(B)'length]):
isolated?(arg(B,n))

ELSE

frmla?(arg(B)) AND

contains_only?(name(B), get_dom(arg(B)))
ENDIF

ELSE

FALSE

ENDIF

MEASURE deg(B)

isolated_qf rmla : JUDGEMENT
(isolated?) SUBTYPE_OF (qfrmla?)

atomic_isolated: JUDGEMENT

(atomic?) SUBTYPE_OF (isolated?)

conj_isolated: JUDGEMENT
conj(B :{u:finseq[(isolated?)] I1 <u ' length})

HAS_TYPE (isolated?)

disj_isolated: JUDGEMENT
disj (B:{u:finseq[(isolated?)] Il<u'length})

HAS_TYPE (isolated?)

isolated_remove_nth_conj : LEMMA
FORALL (B:(isolated?),n:below [args(B)'length]):
conj?(B) AND conj?(arg(B,n))

IMPLIES

isolated?(conj(args(arg(B , n)) o

remove.nth(args(B) , n)))

isolated_remove_nth_disj : LEMMA
FORALL (B: (isolated?) ,n:below [args(B)'length]) :

disj?(B) AND disj?(arg(B,n))
IMPLIES

isolated?(disj(args(arg(B , n)) o

remove_nth(args(B), n)))

Appendix B. PVS Libraries Formalising the Decision Procedure 223

flatten_isolated: JUDGEMENT

flatten(B:(isolated?)) HAS_TYPE (isolated?)

min_isolated? (B : f rmla) : RECURSIVE bool =

IF qfrmla?(B) THEN
IF atomic?(B) THEN

TRUE

ELSIF conj ?(B) OR disj?(B) THEN
FORALL (n:below[args(B)'length]):
min_isolated?(arg(B,n))

ELSIF A? (B) THEN

disjunctive_f?(arg(B)) AND

contains_only?(name(B), get_dom(arg(B)))
ELSE

conjunctive_f?(arg(B)) AND

contains_only?(name(B), get_dom(arg(B)))
ENDIF

ELSE

FALSE

ENDIF

MEASURE deg(B)

min_isolated_isolated: JUDGEMENT

(min_isolated?) SUBTYPE_OF (isolated?)

7, Define basic formulae and the modified concept of
7, conjunctive and disjunctive formulae.

bas i c ? (B : f rmla) : RECURSIVE bool =

IF at omic ?(B) THEN TRUE

ELSIF A ? (B) OR E?(B) THEN

frmla?(arg(B)) AND

contains_only?(name(B), get_dom(arg(B)))
ELSE FALSE

ENDIF

MEASURE deg(B)

Appendix B. PVS Libraries Formalising the Decision Procedure 224

basic_qf rmla: JUDGEMENT
(basic?) SUBTYPE_OF (qfrmla?)
basic_isolated : JUDGEMENT

(basic?) SUBTYPE_OF (isolated?)

dis j _not_basic : LEMMA
FORALL (B:(disj ?)) : NOT basic?(B)

con j _not _bas i c : LEMMA
FORALL (B:(conj ?)): NOT basic?(B)

con j unct i ve ? (B : f rml a) : RECURSIVE bool =

IF conj ?(B) THEN
FORALL (n:below[args(B)'length]):
(basic?(arg(B,n)) OR conjunctive?(arg(B,n)))

ELSE FALSE

ENDIF

MEASURE deg(B)

conjunctive_qfrmla?: JUDGEMENT
(conjunctive?) SUBTYPE_OF (qfrmla?)

conjunctive_isolated: JUDGEMENT

(conjunctive?) SUBTYPE_OF (isolated?)

di sj unct ive ?(B : f rmla) : RECURSIVE bool =

IF disj ?(B) THEN
FORALL (n:below[args(B)'length]):
(basic?(arg(B,n)) OR disjunctive?(arg(B,n)))

ELSE FALSE

ENDIF

MEASURE deg(B)

dis j unct i ve _qf rml a? : JUDGEMENT
(disjunctive?) SUBTYPE_OF (qfrmla?)

dis j unct ive_isolated : JUDGEMENT

(disjunctive?) SUBTYPE_OF (isolated?)

Appendix B. PVS Libraries Formalising the Decision Procedure 225

disj_isolated_alt : JUDGEMENT
{u:(isolated?) I NOT basic?(u) AND

NOT conj?(u) AND NOT disjunctive?(u)}
SUBTYPE_OF (disj?)

7 Define conjunctive (disjunctive) normal form and
7, recursive functions to convert arbitrary formulae into
7 these forms.

con j .norm ? (B : f rmla) : RECURSIVE bool =

IF conj ?(B) THEN
FORALL (n:below[args(B)'length]):
(basic?(arg(B,n)) OR

disjunctive?(arg(B,n)) OR

conj_norm?(arg(B,n)))
ELSE

FALSE

ENDIF

MEASURE deg(B)

conj _norm_isolated : JUDGEMENT
(conj.norm?) SUBTYPE_OF (isolated?)

con j unct ive_ con j .norm : JUDGEMENT
(conjunctive?) SUBTYPE_OF (conj_norm?)

dis j _norm?(B : f rmla) : RECURSIVE bool =

IF disj ?(B) THEN
FORALL (n:below[args(B)'length]) :

(basic?(arg(B,n)) OR

conjunctive?(arg(B,n)) OR

disj_norm?(arg(B,n)))
ELSE

FALSE

ENDIF

MEASURE deg(B)

Appendix B. PVS Libraries Formalising the Decision Procedure 226

disj _norm_isolated : JUDGEMENT
(disj_norm?) SUBTYPE_OF (isolated?)

dis j unct ive_dis j .norm : JUDGEMENT
(disjunctive?) SUBTYPE_OF (disj_norm?)

mcn_aux(B: (isolated?)) :

RECURSIVE {B :(isolated?) |(basic?(B) OR

disjunctive?(B) OR conj.norm?(B))J =

IF basic?(B) OR conj.norm?(B) OR disjunctive?(B) THEN
B

ELSIF conj ?(B) THEN

conj ((#length: = args(B)'length ,

seq:=LAMBDA (n:below[args(B)'length]):
mcn_aux(arg(B,n))#))

ELSE

IF flat?(B) THEN

LET m=

choose({n:below[args(B) 'length] Iconj?(arg(B,n))>) ,

ml=args(arg(B,m))'length
IN

conj ((#length:=ml,
seq:=LAMBDA (n:be1ow [ml]) :

mcn.aux(

disj ((#length: = args(B)'length,
seq:=LAMBDA (p:below[args(B)'length]):
IF p =args(B)'length - 1 THEN arg(arg(B,m) ,n)
ELSE

remove_nth(args(B),m)'seq(p)
ENDIF#)))#))

ELSE mcn.aux(flatten(B))

ENDIF

ENDIF

MEASURE deg(B)

mcn.aux.typepred.aux: LEMMA
FORALL (B:{u:(isolated?)I flat?(u)>):

(basic ?(B) IMPLIES

Appendix B. PVS Libraries Formalising the Decision Procedure 227

basic?(mcn.aux(B))) AND

(disjunctive?(B) IMPLIES

disjunctive?(mcn.aux(B))) AND

(NOT (basic?(B) OR disjunctive?(B)) IMPLIES

conj ?(mcn_aux(B)))

mcn_aux_typepred : LEMMA
FORALL (B : {u: (isolated?) Iflat?(u)}) :

(basic ?(B) IFF

basic?(mcn_aux(B))) AND

(disjunctive?(B) IFF

disjunctive?(mcn_aux(B))) AND
(NOT (basic?(B) OR disjunctive?(B)) IFF

conj_norm?(mcn_aux(B)))

make_conj_norm(B:{u:(isolated?)Iflat?(u)}):
{u:(isolated?)|flat?(u)} =

IF basic?(B) THEN

conj ((#length:=2,
seq:= LAMBDA (n:below [2]) :

IF n=l THEN T(name(B))

ELSE B ENDIF #))

ELSIF disjunctive?(B) THEN

conj ((#length:=args(B)'length+1 ,

seq:= LAMBDA (n:below[args(B)'length+1]):
IF n=args(B)'length THEN T
ELSE B ENDIF #))

ELSE mcn_aux(B)

ENDIF

make_ con j .norm : JUDGEMENT
make_conj_norm(B:{u:(isolated?)Iflat?(u)})

HAS_TYPE (conj.norm?)

mdn_aux(B:(isolated?)):

RECURSIVE {B : (isolat ed ?) | basic ? (B) OR

Appendix B. PVS Libraries Formalising the Decision Procedure 228

conjunctive?(B) OR disj_norm?(B) } =

IF basic?(B) OR disj.norm?(B) OR conjunctive?(B) THEN
B

ELSIF dis j ? (B) THEN

disj ((#length:=args(B)'length ,

seq:=LAMBDA (n:below[args(B)'length]):
mdn_aux(arg(B,n))#))

ELSE

IF flat ?(B) THEN

LET m=

chpose({n:below[args(B)'length] |disj?(arg(B,n))}) ,

ml=args(arg(B,m))'length
IN

disj((#length:=ml,
seq:=LAMBDA (n:below[ml]):
mdn_aux(

conj((#length:=args(B)'length,
seq: = LAMBDA (p:below[args(B)'length]) :

IF p =args(B)'length-1 THEN arg(arg(B,m) ,n)
ELSE

remove_nth(args(B),m)'seq(p)
ENDIF#)))#))

ELSE mdn_aux(flatten(B))

ENDIF

ENDIF

MEASURE deg(B)

mdn_aux_typepred_aux : LEMMA
FORALL (B:{u:(isolated?)Iflat?(u)}):

(basic ?(B) IMPLIES

basic?(mdn_aux(B))) AND

(conjunctive?(B) IMPLIES

conjunctive?(mdn_aux(B))) AND
(NOT (basic?(B) OR conjunctive?(B)) IMPLIES

disj ?(mdn_aux(B)))

Appendix B. PVS Libraries Formalising the Decision Procedure 229

mdn_aux_typepred : LEMMA
FORALL (B:{u:(isolated?)|flat?(u)>):

(basic ?(B) IFF

basic?(mdn_aux(B))) AND

(conjunctive?(B) IFF

conjunctive?(mdn_aux(B))) AND
(NOT (basic?(B) OR conjunctive?(B)) IFF

disj_norm?(mdn_aux(B)))

make_disj_norm(B:{u:(isolated?)Iflat?(u)>):
{u :(isolated?) I flat?(u)} =

IF basic?(B) THEN

disj ((#length:=2,
seq:= LAMBDA (n:below [2]) :

IF n=1 THEN T(name(B))

ELSE B ENDIF #))

ELSIF conjunctive?(B) THEN

disj((#length:=args(B)'length+1,
seq:= LAMBDA (n:below[args(B)£length+1]):
IF n=args(B)'length THEN T
ELSE B ENDIF #))

ELSE mdn_aux(B)

ENDIF

make_dis j .norm : JUDGEMENT
make_disj_norm(B:{u:(isolated?)|flat?(u)})

HAS_TYPE (disj _norm?)

x

'/, Functions that apply the rules for transfering
7, quantifiers. These functions are key components of the
7, quantifier isolation algorithm.
%

move_A_in(B : {u:(A?) | basic?(arg(u)) OR

disjunctive?(arg(u)) OR conj_norm?(arg(u))>):
(min_isolated?) =

IF basic?(arg(B)) THEN

Appendix B. PVS Libraries Formalising the Decision Procedure 230

rulel_alt(B)

ELSIF conj ?(arg(B)) THEN
rule3(B)

ELSE

rule5(B)

ENDIF

move_E_in(B : {u:(E?) | basic?(arg(u)) OR

conjunctive?(arg(u)) OR disj.norm?(arg(n))>) :

(min_isolated?) =

IF basic?(arg(B)) THEN
rule2_alt(B)

ELSIF disj ?(arg(B)) THEN

rule4(B)

ELSE

rule6(B)

ENDIF

END normal_forms

In the following theory, (minimal) isolated formulae are formalised along with an algorithm
for quantifier isolation.

quant_isolation : THEORY

BEGIN

IMPORTING normal_forms

x

7 Define new measure for the degree of formulae. This
7, measure is required as it can not be shown the the

7c quantifier isolation algorithm (defined as a recursive
7c function) terminates.
X

deg_qi:[frmla->nat]

Appendix B. PVS Libraries Formalising the Decision Procedure

deg_qi_min_isolated : AXIOM
FORALL (A:(min_iso1ated?)):

deg_qi(A) = 0

deg_qi_conj : AXIOM
FORALL (A:frmla_seq2):
deg_qi(conj(A)) = A'length + deg_args(A,deg_qi)

deg_qi_disj: AXIOM
FORALL (A:frmla_seq2):

deg_qi(disj(A)) = A'length + deg_args(A,deg_qi)

deg_qi_cd : AXIOM
FORALL (A:frmla) :

conj ?(A) OR disj?(A) IMPLIES

deg_qi(A) = args(A)'length + deg_args(args(A),deg_qi)

deg_qi_A : AXIOM
FORALL (A:frmla):

A?(A) IMPLIES

deg_qi(A) = 1 +

deg_qi_E : AXIOM
FORALL (A:f rmla):

E?(A) IMPLIES

deg_qi(A) = 1 +

deg_qi_ae : AXIOM
FORALL (A:frmla):

A?(A) OR E?(A) IMPLIES

deg_qi(A) = 1 + deg_qi(arg(A))

deg_qi_min : LEMMA
FORALL (B:(qfrmla?)):

(conj ?(B) OR disj ?(B)) AND
min_isolated?(B)

IMPLIES

deg_qi(arg(A))

deg_qi(arg(A))

Appendix B. PVS Libraries Formalising the Decision Procedure 232

deg_args(args(B),deg_qi) = 0

deg_qi_arg: LEMMA
FORALL (B:(qfrmla?)):

(conj ?(B) OR disj ?(B)) AND
NOT min_isolated?(B)

IMPLIES

FORALL (n:below[args(B)'length]) :

deg_qi(arg(B,n)) < deg_qi(B)

deg_qi_arg_ae : LEMMA
FORALL (B:(qfrmla?)):

(A ?(B) OR E?(B)) AND

NOT min_isolated?(B)

IMPLIES

deg_qi(arg(B)) < deg_qi(B)

7, The algorithm for quantifier isolation is defined as a

7, recursive function.

qi (B :(qfrmla?)) : RECURSIVE (min_isolated?) =

IF min_isolated?(B) THEN B

ELSIF A? (B) THEN

IF min_isolated?(arg(B)) THEN

move_A_in(A(name(B),flatten(mcn_aux(arg(B)))))
ELSE

qi(A(name(B) , qi (arg(B))))
ENDIF

ELSIF E?(B) THEN

IF min_isolated?(arg(B)) THEN

move_E_in(E(name(B),flatten(mdn_aux(arg(B)))))
ELSE

qi (E(name(B),qi(arg (B))))
ENDIF

ELSIF conj ?(B) THEN

conj ((#length:=args(B)'length ,

Appendix B. PVS Libraries Formalising the Decision Procedure 233

seq:= LAMBDA (n:below[args(B)'length]) :

qi (arg (B , n))#))
ELSE

disj ((#length:=args(B)'length ,

seq:= LAMBDA (n:below[args(B)'length]) :

qi(arg(B,n)) #))
ENDIF

MEASURE deg_qi(B)

qi_minimal: JUDGEMENT qi(B:(qfrmla?)) HAS_TYPE (min_isolated?)

END quant_isolation

In the following theory, the semantics of the logic £1 are formalised,

frmla_semantics: THEORY

BEGIN

IMPORTING frmla_props, seq_props

x

7 Define the type symb_table to represent a symbol table
7, for use in the interpretation of a formula. The table
7 is modelled as a sequence of predicate, name, variable
7 tuples .

/

symb_table(A:frmla): TYPE =

fu:finseq[[P:pred[real] ,name , (P)]] I

u'length>=get_dom(A)'length AMD
FORALL (n:below[get_dom(A)'length]):
(EXISTS (m:below [u'length]) :

get_dom(A)'seq(n) ' 2 = u'seq(m)'2)
AND

(FORALL (m:below[u'length]):
get_dom(A)'seq(n) ' 2 = u'seq(m)'2

IMPLIES

Appendix B. PVS Libraries Formalising the Decision Procedure 234

FORALL (x:(u'seq(m) ' 1)):
(get_dom(A)'seq(n)c 1)(x))>

%

'/, Define function for inserting and selecting elements of
'/, a symbo I table .

%

insert(P:pred[real] , n :name , x : (P),

S:finseq[[C]:pred[real] , name , (Q)]]) :

finseq[[P:pred[real] ,name , (P)]] =

(#length := S'length,
seq := LAMBDA (m:below[S'length]) :

IF S'seq(m)'2 = n THEN (P,n,x) ELSE S'seq(m) ENDIF#)

get _n (x : name , f : f inseq [[P : pred [real], name ,(P)]]) : int =

IF (EXISTS (m:below [fclength]) : x=(fcseq(m)) c2) THEN

choose({m:below[f£length]| x=f£seq(m)'2})
ELSE

-1

ENDIF

get _var (x : name , f : f inseq [[P : pred [re al] , name ,(P)]]) : real =

IF (EXISTS (m:below[f£length]) : x=(f'seq(m)) ' 2) THEN

f£seq(get_n(x,f)) '3
ELSE

choose({x:real I TRUE})

ENDIF

x

'/, Define functions for interpreting formulae.
'/t

interpret_atomic(A:(atomic?),x:(dom(A))): bool =

IF ineq(A) = It THEN

func(A)(x) < 0

ELSIF ineq(A) = le THEN

func(A)(x) <= 0

ELSIF ineq(A) = eq THEN

Appendix B. PVS Libraries Formalising the Decision Procedure 235

func(A)(x) = 0

ELSIF ineq(A) = ge THEN
func(A)(x) >= 0

ELSIF ineq(A) = gt THEN
func(A)(x) > 0

ELSE

func(A)(x) /= 0

ENDIF

interpret_aux(B:frmla,x:symb_table(B)):
RECURSIVE bool =

IF qfrmla?(B) THEN
IF atomic?(B) THEN

interpret_atomic(B,get_var(name(B),x))
ELSIF conj ?(B) THEN

IF args(B)'length=2 THEN

interpret.aux(arg(B , 0) ,x) AND

interpret.aux(arg(B , 1) ,x)
ELSE

interpret.aux(arg(B,0),x) AND

interpret.aux(

conj(args(B)~(l,args(B)'length -1)) ,x)
ENDIF

ELSIF disj?(B) THEN
IF args(B)'length=2 THEN

interpret.aux(arg(B,0),x) OR

interpret.aux(arg(B , 1) ,x)
ELSE

interpret.aux(arg(B , 0) ,x) OR

interpret.aux(

disj (args (B) ~ (1 , args (B) ' length -1)) , x)
ENDIF

ELSIF E?(B) THEN

EXISTS (y:(get_pred(name(B),get_dom(arg(B))))):
interpret_aux(arg(B), x o

(#length:=l, seq:= LAMBDA (n:below[1]):

(get_pred(name(B),get_dom(arg(B))),

Appendix B. PVS Libraries Formalising the Decision Procedure 236

name(B),y)#))
ELSE

FORALL (y:(get_pred(name(B),get_dom(arg(B))))):
interpret_aux(arg(B),
insert(get_pred(name(B),get_dom(arg(B))),
name(B),y,x))

ENDIF

ELSE

FALSE

ENDIF

MEASURE deg(B)

interpret(A:frmla) : bool =

FORALL (x:vars(get_dom(A))):
interpret.aux(A,

(#length: =x'length ,

seq:= LAMBDA (n:below [x'length]) :

(get_dom(A)'seq(n) '1,
get.dom(A)'seq(n) ' 2 ,

x'seq(n))#))

x

7, Lemmas showing that atomic formulae representing true
7, and false are interpreted in the correct way.

/

T.true : LEMMA

(FORALL (x:name):

interpret(T(x)) = TRUE)

F.false : LEMMA

(FORALL (x:name):

interpret(F(x)) = FALSE)

X

7 Declaring interpret as a CONVERSION means that at any

7 point at which PVS expects a boolean but finds a

7, formula it will apply the interpret function .

Appendix B. PVS Libraries Formalising the Decision Procedure 237

CONVERSION interpret

END frmla.semantics

In the following theory, the decision procedure is formalised.

decision_proc: THEORY

BEGIN

IMPORTING normal_forms, frmla_semantics ,

curve_bound@decision_proc_single,

curve_bound@convexity_props ,

NRV_lib@types2

inf le ct ive_equiv : LEMMA
FORALL (T:pred [real] ,a,b:(T) ,f:fT3 [(T)]) :

(FORALL (x:real): T(x) IFF (a<=x AND x<=b)) IMPLIES

((EXISTS (S: finseq [nontrivial_convex_set_tcc [(T)]]) :

complete? [(T)] (S) AND
ordered? [(T)] (S) AND

reasonable_dom? [(T)] (f , S)) IFF

(EXISTS (S:

finseq[nontrivial_convex_set_tcc[closed[real,a,b]]]):
complete ?[closed[real,a,b]] (S) AND

ordered?[closed[real,a,b]](S) AND

reasonable_dom?[closed [real ,a,b]] (f , S)))

X

7, Classify the formulae to which the procedure applies .

X

q_atomic?(B:frmla): bool =

IF A ?(B) THEN

atomic?(arg(B)) AND
(EXISTS (x,y:(dom(arg(B)))) :

x<y AND

Appendix B. PVS Libraries Formalising the Decision Procedure 238

(FORALL (z:real):

dom(arg(B))(z) IFF (x< = z AND z<=y))) AND

derivable(func(arg(B))) AND

derivable(deriv(func(arg(B)))) AND

continuous(deriv(deriv(func(arg(B))))) AND

convexity_props[(dom(arg(B)))].
finitely_inflective?(func(arg(B)))

ELSIF E?(B) THEN

atomic ? (arg (B)) AND
(EXISTS (x,y:(dom(arg(B)))):
x<y AND
(FORALL (z:real):

dom(arg(B))(z) IFF (x<=z AND z<=y))) AND

derivable(func(arg(B))) AND

derivable(deriv(func(arg(B)))) AND

continuous(deriv(deriv(func(arg(B))))) AND

convexity_props[(dom(arg(B)))].
finitely_inflective?(func(arg(B)))

ELSE

FALSE

ENDIF

bound(B:(q_atomic?)): [(dom(arg(B))),(dom(arg(B)))] =

choose({x,y:(dom(arg(B))) I
FORALL (z:real):

dom(arg(B))(z) IFF (x<=z AND z<=y)})

bound_ordered: LEMMA FORALL (B:(q_atomic?)):
bound(B) 'Kbound(B) 1 2

bound_dom: LEMMA FORALL (B:(q_atomic?)):
FORALL (x:real): dom(arg(B))(x) IFF
(bound(B)'l <= x AND x <= bound(B)'2)

f unc_dom : LEMMA

FORALL (B:(q_atomic?), f:[(dom(arg(B)))->realj):
(LAMBDA

Appendix B. PVS Libraries Formalising the Decision Procedure 239

(x: closed [real , bound(B)'l, bound(B) ' 2]): f(x))
= f

dp_f rmla?(B : f rmla) : RECURSIVE bool =

IF qfrmla?(B) THEN
IF atomic?(B) THEN

FALSE

ELSIF conj ?(B) OR disj?(B) THEN
FORALL (n:below[args(B)'length]):

dp_frmla?(arg(B,n))
ELSE

q_atomic ?(B)
ENDIF

ELSE

FALSE

ENDIF

MEASURE deg(B)

get_dom_dp_frmla?: LEMMA
FORALL (B:(dp_frmla ?)) :

get_dom(B)=empty_seq

7, Define the decision procedure as (recursive) functions
7, and show that the procedure produces the same boolean
% result as the interpretation of the formula.

dp_q_atomic(B:(q_atomic?)): bool =

IF A?(B) THEN

dp_single [bound(B) 'l.bound(B) '2]
(func(arg(B)),0,0,ineq(arg(B)))

ELSE

NOT dp_single [bound(B) '1,bound(B) '2]

(func(arg(B)) ,0,0,neg(ineq(arg (B))))
ENDIF

dp_atomic_lem: LEMMA

Appendix B. PVS Libraries Formalising the Decision Procedure 240

FORALL (B:(q_atomic?)):

interpret(B) IFF dp_q_atomic(B)

dp (B : (dp_f rmla?)) : RECURSIVE bool =

IF con j ? (B) THEN
IF args(B)<length=2 THEN

dp (arg (B , 0)) AND

dp(arg(B , 1))
ELSE

dp (arg (B , 0)) AND

dp(conj (args(B)~(l , args(B) ' length - 1)))
ENDIF

ELSIF disj ?(B) THEN
IF args(B)'length=2 THEN

dp (arg (B,0)) OR

dp(arg(B , 1))
ELSE

dp (arg (B , 0)) OR

dp(disj (args(B)~(l,args(B)'length -1)))
ENDIF

ELSE

dp_q_atomic(B)
ENDIF

MEASURE deg(B)

dp_lem r LEMMA
FORALL (B:(dp_frmla ?)) :

interpret (B) IFF dp(B)

END decision_proc

Appendix C

PVS Libraries used by NRV

This appendix contains main PVS theories used by NRV to produce proofs that a system

meets its Nichols plot requirements.

In the following, theory arctan is defined using its Taylor series,

arctan: THEORY

BEGIN

IMPORTING der ivable_inv , deriv_help , typesl , types2 ,

transcendentals@inv_trig

x, y, 1: var real
k, n: var nat

i: var int

X

7, The Taylor series is only defined over (-1, 1]. These
7, lemmas assert that this interval does not contain only
7, a single element and that it is connected . These appear

7 frequently as TCC.
/

not_one_element_modl: LEMMA

241

Appendix C. PVS Libraries used by NRV 242

FORALL (x: open.l [real ,-1,1]):
EXISTS (y: open_l[real ,-1 ,1]) : x /= y

connected_domain_modl : LEMMA

FORALL (x, y: open_l [real ,-1,1]) , (z: real):
x <= z AND z <= y IMPLIES -1 < z AND z <= 1

/

7, Tan is only defined over (k*pi -pi/2, k*pi+pi/2). These
7, lemmas assert that this interval does not contain only

7, a single element and that it is connected . These appear

7 frequently as TCC.
x

not.one.element: LEMMA FORALL (k:int):

FORALL (x: {u: cos_nz_type I
k*pi -pi/2<u AND u < k * pi + pi / 2}) :

EXISTS (y: {u: cos_nz_type I
k*pi - pi / 2 < u AND u < k * pi + pi / 2}) :

x /= y

connected_domain: LEMMA FORALL (k:int)

FORALL (x, y: -[u: cos_nz_type |
k*pi-pi/2<u AND u < k * pi
(z: real) :

x <= z AND z <= y IMPLIES
(FORALL (k2:int):

NOT z = (2 * (k2 * pi) + pi)

k*pi -pi/2<z AND

z<pi/2 + k*pi

x

7> This function defines a component of the Taylor series.
%

arctan_ser(n): real = ((- 1)~n)/(2*n + l)

x

+ pi / 2>) ,

/ 2) AND

7, These lemmas are auxiliary lemmas required to show that

Appendix C. PVS Libraries used by NRV 243

/ the Taylor series converges .

•/,

arctan_ser_2n_ 1 _decreasing : LEMMA
decreasing(LAMBDA (r: nat):
sum(0, r)(LAMBDA 11:

((-1) " (1 + 2 * n)) / (3 + 4 * n) +

(-1) ~ (2 + 2 * n) / (5 + 4 * n)))

arctan_ser_2n_l_bounded : LEMMA

bounded_below?[nat](LAMBDA (r: nat):

sum(0, r)(LAMBDA n:

((-1) ~ (1 + 2 * n)) / (3 + 4 * n) +

(-1) - (2 + 2 * n) / (5 + 4 * n)))

arctan_ser_2n_increasing : LEMMA
increasing((LAMBDA (r: nat):
sum(0, r)(LAMBDA n:

((-1) ~ (2 * n)) / (1 + 4 * n) +

((-1) ~ (1 + 2 * n)) / (3 + 4 * n))))

arctan_ser_2n_bounded : LEMMA

bounded.above?[nat](LAMBDA (r: nat):

sum(0, r)(LAMBDA n:

((-1) - (2 * n)) / (1 + 4 * n) +

((-1) - (1 + 2 * n)) / (3 + 4 * n)))

arctan_at_l_conv: LEMMA

EXISTS 1:

sums(LAMBDA n: arctan_ser(n) * (1 ~ (2*n+l)), 1)

arctan.converges : LEMMA
FORALL (y: {z:real I(-1)<z AND z< = l}):

EXISTS 1:

sums(LAMBDA n: arctan_ser(n) * (y ~ (2*n+l)), 1)

%

'/, This lemma shows that the Taylor series for arctan

Appendix C. PVS Libraries used by NRV 244

7 converges on (-1,1].
%

arctan_alt_converges : LEMMA
FORALL (y: {z:real I(-1)<z AND z< = l>) :

summable(LAMBDA n:

(if even?(n) then 0 else ((-1)~((n- 1)/2))/n ENDIF)*y~n)

x

7 This function defines arctan over (-1,1].
%

arctan_modl(y:{yl:real| -l<yl AND yl<=l}):
real = suminf(LAMBDA n: arctan_ser(n)*(y~(2*n + l)))

x

7 These functions provide an alternative definition of the
7 Taylor series for arctan.
%

arctan_alt_aux : LEMMA

FORALL (n: nat): NOT even?(n) IMPLIES

integer_pred((n - 1) / 2)

arctan_modl_alt : LEMMA

FORALL (y:{yl:real I -l<yl AND y1<=1>):

arctan_modl(y)=suminf(LAMBDA (n:nat):
(if even?(n) then 0 else ((- 1)~((n- 1)/2))/n ENDIF)*y~n)

x

7 These lemmas concern the differentiablity of arctan.
7 They use the alternative definintion of arctan as this
7 power series is easier to reason about for this purpose.

%

atn_alt_diffs : LEMMA

FORALL (y:{y1 : real I -Kyi AND yl <=1 >) :

(LAMBDA (n:nat): diffs(

LAMBDA (m:nat): if even?(m) then 0

else ((-1)~((m-1)/2))/m ENDIF)(n)*y~n) =

(LAMBDA (n:nat):

Appendix C. PVS Libraries used by NRV 245

IF even ? (1 + n) THEN 0 ELSE (-1 * y~2) ~ (n/2) ENDIF)

atn_alt_diffs.sums : LEMMA

FORALL (x:{y1:real I -l<yl AND yl<l>):
sums(LAMBDA (n:nat):

diffs(LAMBDA (m:nat): if even?(m) then 0

else ((-l)~((m-l)/2))/m ENDIF)(n)*x~n , l/(l+x~2))

arctan_modl_derivable1: LEMMA

FORALL (x:{yl:real| -l<yl AND yl<l>):
derivable(arctan_modl,x)

arctan_modl_derivable2 : LEMMA

derivable(arctan_modl ,1)

arctan_modl_derivable3 : LEMMA

derivable(arctan_modl)

%

'/, This lemma shows the derivative of arctan.
x

arctan_modl_derivl : LEMMA

FORALL (y:{yl:real| -Kyi AND yl<=l}):
deriv(arctan_modl,y)=l/(l+y~2)

X

'/, This lemma shows that arctan is increasing on (-1,1].
X

arctan_modl_increasing : LEMMA
FORALL (x,y:{yl:real I -Kyi AND yl< = l>):
x<y IMPLIES arctan_modl(x)<arctan_modl(y)

x

'/, This function defines arctan for all reals.

x

arctan(x:real): real =

IF -1 < x AND x <= 1 THEN arctan.modl(x)

ELSIF x=-l THEN -arctan_modl(-x)

Appendix C. PVS Libraries used by NRV 246

ELSIF l<x THEM pi/2-arctan_mod1(1/x)
ELSE - pi/2-arctan_modl(1/x) ENDIF

%

7 This function shows that arctan is positive/negative
'/, for positive/negative inputs. This is important when
'/, defining the upper and lower bounds of arctan for any

'/, given input .

•/,

arctan_sign: LEMMA
FORALL (x:real):

IF x<0 then arctan(x)<0

ELSIF x>0 THEM arctan(x)>0

ELSE arctan(x)=0 ENDIF

x

7, These lemmas show the relationship between arctan (x)
7, and arctan (1/x) .

x

arctan_periodic_pos : LEMMA
FORALL (x:posreal): arctan(x) = pi/2-arctan(1/x)

arctan_periodic_neg : LEMMA
FORALL (xrnegreal): arctan(x) = - pi/2-arctan(1/x)

X

7 This shows that the derivative of arctan at x is equal
7, to the derivative at -x.

x

arctan_deriv_inv : LEMMA

FORALL (xinzreal) :

deriv(arctan,x)= deriv(arctan,-x)

END arctan

In the following theory, bounds on arctan are defined.

Appendix C. PVS Libraries used by NRV 247

arctan_bounds: THEORY

BEGIN

IMPORTING arctan

x, 1 : var real

k , n : var nat

modi: TYPE = {yl:real| -l<yl AND yl<=l}
y: var modi

modl_0 : JUDGEMENT 0 HAS_TYPE modi

X

'/, The following formula is declared as a hound on arctan
'/, on (-1,1]. Lemmas are used to show under what

7, conditions this is an upper or a lower bound.
%

arctan_modl_bound

(y:{yl:real| -l<yl AND yl<=1})(n:nat) : real =

sum(0,n)(LAMBDA (n:nat): arctan.ser(n)*y~(2*n+l))

arctan_modl_0: LEMMA arctan_modl(0)=0

arctan_modl_bound_0: LEMMA FORALL (n:nat):

arctan_modl_bound(0)(n)=arctan_modl(0)

arctan_modl_bound_is_lb : LEMMA

FORALL (y:{z:nzreal I -Kz AND z< = l} , n: nat) :

((odd?(n) and y>0) or (even?(n) and y<0))
IMPLIES

arctan_modl_bound(y)(n) < arctan_modl(y)

arctan_modl_bound_is_ub : LEMMA

FORALL (y : {z : nzreal I -Kz AND z< = l} , n : nat) :

((even?(n) and y>0) or (odd?(n) and y<0))
IMPLIES

Appendix C. PVS Libraries used by NRV 248

arctan_modl_bound (y) (11) > arctan_modl (y)

7, The following formula is declared as a bound on arctan
7, on the reals. A Lemma is used to show under what

7 conditions this is an upper or a lower bound.
%

arctan_bound(x:real)(n:nat): real =

IF -1 < x AND x <= 1 THEN arctan_mod1.bound(x)(n)

ELSIF x=-l THEN -arctan_modl_bound(-x)(n)

ELSIF l<x THEN pi/2-arctan_mod1.bound(1/x)(n)
ELSE - pi/2-arctan_modl_bound(1/x)(n) ENDIF

arctan_bound_is_bound : LEMMA

FORALL (x:real,n:nat):

IF x=0 THEN

arctan(x)=0

ELSIF (odd?(n) AND l>=x AND x>0) or

(even?(n) AND -l<=x AND x<0) THEN

arctan_bound(x)(n) < arctan(x)

AND

arctan(x) < arctan.bound(x)(n+1)

ELSIF (odd?(n) AND -l>x) or (even?(n) AND x>l) THEN

arctan_bound(x)(n) < arctan(x)

AND

arctan(x) < arctan_bound(x)(n+1)

ELSE

arctan_bound(x)(n+1) < arctan(x)

AND

arctan(x) < arctan_bound(x)(n)

ENDIF

END arctan_bounds

The following library was developed by Hanne Gottliebsen [54]. It has been extended to

Appendix C. PVS Libraries used by NRV 249

include definitions of bounds on the exponential function,

transc : THEORY

BEGIN

IMPORTING powser , exponent_props ,

continuous_functions_props_general,
chain_rule, more_infseries

n, m, i, j , r: VAR nat

a, b, c, d, 1, x, y, xl, x2: VAR real

z : VAR nzreal

y

7, The three functions we define by series are exp, sin, cos

y

exp_ser(n): real = 1 / fac(n)

sin_ser(n): real =

IF even?(n) THEN 0

ELSE ((-1) " ((n - 1) / 2)) / fac(n) ENDIF

cos.ser(n): real =

IF even?(n) THEN ((-1) ~ (n / 2)) / fac(n) ELSE 0 ENDIF

y

'/, Show the series for exp converges, using the ratio test
y

exp_converges: LEMMA
FORALL x:

EXISTS 1: sums(LAMBDA n: exp_ser(n) * (x ~ n), 1)

exp_converges_abs : LEMMA
FORALL x:

Appendix C. PVS Libraries used by NRV 250

EXISTS 1: sums (LAMBDA n: abs (exp_ser (11) * (x ~ n)), 1)

exp(x): real = suminf(LAMBDA n: exp_ser(n) * (x ~ n))

X

'/, Show by the comparison test that sin and cos converge

%

sin_converges : LEMMA
FORALL x:

EXISTS 1: sums(LAMBDA n: sin_ser(n) * (x ~ n) , 1)

sin(x): real = suminf(LAMBDA n: sin_ser(n) * (x " n))

cos_converges : LEMMA
FORALL x:

EXISTS 1: sums(LAMBDA n: cos_ser(n) * (x ~ n), 1)

cos(x): real = suminf(LAMBDA n: cos_ser(n) * (x ~ n))

x

7, Show what the formal derivatives of these series are

x

exp_diff: LEMMA FORALL n: diffs(exp_ser)(n) = exp_ser(n)

sin_diff : LEMMA FORALL n: diffs(sin_ser)(n) = cos_ser(n)

cos_diff : LEMMA FORALL n: diffs(cos.ser)(n) = -sin_ser(n)

X

7, Now at last we can get the derivatives of exp, sin and cos

%

diff_exp: LEMMA FORALL x: diffl(exp, x, exp(x))

exp_continuous: LEMMA
FORALL x: continuous_functions [real] .continuous(exp, x)

exp_convergent : LEMMA FORALL x: convergent(exp, x)

Appendix C. PVS Libraries used by NRV 251

exp_limit : LEMMA FORALL x: lim(exp, x) = exp(x)

exp_convergence: LEMMA FORALL x: convergence(exp, x, exp(x))

diff_sin : LEMMA FORALL x: diffl(sin, x, cos(x))

sin.continuous: LEMMA

FORALL x: continuous_functions[real].continuous(sin, x)

sin_convergent: LEMMA FORALL x: convergent(sin , x)

sin_limit: LEMMA FORALL x: lim(sin, x) = sin(x)

sin_convergence: LEMMA FORALL x: convergence(sin , x, sin(x))

diff_cos : LEMMA FORALL x: diffl(cos, x, -sin(x))

cos_continuous: LEMMA

FORALL x: continuous^functions [real] . continuous(cos, x)

cos.convergent : LEMMA FORALL x: convergent (cos , x)

cos_limit: LEMMA FORALL x: lim(cos, x) = cos(x)

cos_convergence: LEMMA FORALL x: convergence(cos , x, cos(x))

%

'/, Properties of the exponential fundi on
%

exp_0_lemma: LEMMA sums(LAMBDA n: exp_ser(n) * (0 ~ n) , 1)

exp_0 : LEMMA exp(0) = 1

exp_le_x_lemma : LEMMA
FORALL x, a:

(0 <= x AND sums(LAMBDA n: exp.ser(n) * (x ~ n) , a))

Appendix C. PVS Libraries used by NRV 252

IMPLIES

(1 + x) <= a

exp_le_x: LEMMA FORALL x : 0 <= x IMPLIES (1 + x) <= exp(x)

exp_le_l_lemma: LEMMA
FORALL x, a:

(0 < x AND sums(LAMBDA n: exp_ser(n) * (x ~ n), a))
IMPLIES 1 < a

exp_le_ 1 : LEMMA FORALL x: 0 < x IMPLIES 1 < exp(x)

binomial_formula: LEMMA

FORALL x, y , n :

y /= 0 IMPLIES

exp.ser(n) * ((x + y) ~ n) =

exp.ser(n) *

sum(0 , n)

(LAMBDA m: bin_q(n, m) * (x ~ m) * (y ~ (n - m)))

exp_add_mul_lemmal: LEMMA
FORALL x , a, b :

diffl(LAMBDA y: exp(a + b + y) * exp(-y), x, 0)

exp_add_mul_lemma2: LEMMA
FORALL x, a, b:

(LAMBDA y: exp(a + b + y) * exp(-y))(x) = exp(a + b)

exp_add_mul: LEMMA
FORALL x, y: exp(x + y) * exp(-x) = exp(y)

exp_neg_mul: LEMMA FORALL x: exp(x) * exp(-x) = 1

exp_neg_mul2: LEMMA FORALL x: exp(-x) * exp(x) = 1

exp_add: LEMMA FORALL x, y: exp(x + y) = exp(x) * exp(y)

Appendix C. PVS Libraries used by NRV 253

exp_pos_le: LEMMA FORALL x: 0 <= exp(x)

exp_nz : LEMMA FORALL x: exp(x) /= 0

exp_neg : LEMMA FORALL x: exp(-x) = 1 / exp(x)

exp_pos_lt : LEMMA FORALL x: 0 < exp(x)

exp_pos: JUDGEMENT exp(x:real) HAS_TYPE posreal

exp_n : LEMMA FORALL x, n: exp(n * x) = exp(x) ~ n

exp_sub : LEMMA FORALL x, y: exp(x) / exp(y) = exp(x - y)

exp_mono_imp: LEMMA FORALL x, y: x < y IMPLIES exp(x) < exp(y)

exp_mono_lt : LEMMA FORALL x, y: exp(x) < exp(y) IFF x < y

exp_mono_le : LEMMA FORALL x, y: exp(x) <= exp(y) IFF x <= y

exp_inj : LEMMA FORALL x, y: exp(x) = exp(y) IFF x = y

exp_total_lemma : LEMMA
FORALL y:

1 <= y IMPLIES
(EXISTS x: 0 <= x AND x <= y - 1 AND exp(x) = y)

exp_total : LEMMA
FORALL y: 0 < y IMPLIES (EXISTS x: exp(x) = y)

x

'/, The following definitions and lemmas were added by
'/, R Hardy and define bounds on exp .

%

exp_neg_lb(x:negreal)(n:nat): nnreal =

max(0,sum(0,n)(LAMBDA n: exp_ser(2*n) * (x ~ (2*n))

Appendix C. PVS Libraries used by NRV 254

+ exp_ser(2*n+l) * (x " (2*n+l))))

exp_neg_ub(x:negreal)(n:nat): real =

1 + sum (0,n)(LAMBDA n: exp.ser(2*n + l) * (x ~ (2*n + l))
+ exp_ser(2*n+2) * (x ~ (2*n+2)))

exp_neg_lb_aux: LEMMA
FORALL (x:negreal,n:nat):
(-x<l+2*n IFF

0<exp_ser (2*n) * (x ~ (2*n)) +

exp_ser(2*n+l) * (x ~ (2*n+l)))

exp_neg_lb_aux2 : LEMMA
FORALL (x:negreal,n:nat):
(_x=l+2*n IFF

0=exp_ser (2*n) * (x ~ (2*n)) +

exp_ser(2*n+l) * (x ~ (2*n+l)))

exp_neg_ub_aux: LEMMA
FORALL (x:negreal,n:nat):
(-x<2+2*n IFF

0>exp_ser(2*n+l) * (x " (2*n+l)) +

exp_ser(2*n+2) * (x ~ (2*n+2)))

exp_neg_ub_aux2: LEMMA
FORALL (x:negreal,n:nat):
(-x=2+2*n IFF

0=exp_ser (2*n + l) * (x " (2*n + l)) +

exp_ser (2*n + 2) * (x ~ (2*n +2)))

exp_neg_bound_is_bound: LEMMA
FORALL (x:negreal ,n:nat) :

(-x<2+2*n IMPLIES exp(x)<exp_neg_ub(x)(n))
AND

(-x<l+2*n IMPLIES exp_neg_lb(x)(n)<exp(x))

exp_pos_bound_is_bound : LEMMA

Appendix C. PVS Libraries used by NRV 255

FORALL (x:posreal,n:nat):
(x<l+2*n AND exp_neg_lb(-x)(n)/=0 IMPLIES

exp(x)<1/exp_neg_lb(-x)(n))
AND

exp_neg_lb(x)(n)<exp(x)

exp_bound_is_bound: LEMMA
FORALL (x:real,n:nat):

IF x<0 AND -x<l +2*n THEN

exp(x)<exp_neg_ub(x)(n)
AND

exp_neg_lb(x)(n)<exp(x)
ELSIF x>0 AND x<l+2*n AND exp_neg_lb(-x)(n)/=0 THEN

exp(x)<1/exp_neg_lb(-x)(n)
AND

exp_neg_lb(x)(n)<exp(x)
ELSIF x>0 THEN

exp_neg_lb(x)(n)<exp(x)
ELSIF x=0 THEN

exp(x)=1
ELSE

true

ENDIF

END transc

In the following theory, alternative definitions are given for several recursive functions

previously defined in PVS. These alternative definitions allow more efficient proofs and are

used to increase the efficiency of NRV. The new definitions are shown to have equivalent

meaning to the original, mathematically cleaner functions.

NRV_exp : THEORY

BEGIN

IMPORTING typesl , types2 , arctan_bounds ,

transcendentals@pi_prop

Appendix C. PVS Libraries used by NRV 256

%

7 Useful judgements about the type (-1,1]
•/,

nzreal_modl: JUDGEMENT

/(y:closed[real,l,l], x:gt[nzreal,l]) HAS_TYPE

open[iizreal , -1 ,1]

nzreal_modl_2: JUDGEMENT

/(y:closed[real,l,l], x:lt[nzreal,-l]) HAS_TYPE

open[nzreal ,-1 ,1]

7 An alternative definition of sumc that can be expanded
7 significantly faster and thus increase the efficiency
7 of proofs. A lemma shows that this and the original
7 definition have the same meaning.
%

sumc(n:nat, m:nat , f : [nat->real]) : RECURSIVE real =

IF m-n >= 5 THEN

sumc(n, m-5, f) + f(m-4) + f(m-3) +

f(m-2) + f(m-l) + f(m)

ELSIF m < n THEN

0

ELSIF m = n THEN

f (m)

ELSE

sumc(n, m-1, f) + f(m)

ENDIF

MEASURE m

sumc_equiv: LEMMA
FORALL(n:nat , m:nat , f : [nat->real]) :

sumc(n,m,f) = series.sumc(n,m,f)

x

7 An alternative definition of expt that can

Appendix C. PVS Libraries used by NRV 257

'/, be used to increase the efficiency of proof.
7, A lemma shows that this and the original
7, definition have the same meaning .

%

expt (x : real , n : nat) : RECURSIVE real =

IF n>=10 THEN

X * (x * (x * (x * (x * (x * (x * (x * (x * (x *

expt(x,n-10))))))))))
ELSIF n>5 THEN

x * (x * (x * (x * (x * expt(x,n-5)))))
ELSIF n=5 THEN

X * (x * (x * (x * x)))

ELSIF n = 1 THEN

x

ELSIF n = 0 THEN

1

ELSE

x * expt(x , n-1)
ENDIF

MEASURE n

expt_equiv: LEMMA
FORALL (x:real,n:nat) :

expt(x,n) = exponentiat ion.expt(x,n)

expt_pos : JUDGEMENT

expt(x:nzreal,n:{u:nat|even?(u)}) HAS_TYPE posreal

expt_pos2 : JUDGEMENT
expt(x : posreal ,n:nat) HAS_TYPE posreal

expt_neg : JUDGEMENT
expt(x:negreal ,n:{u:natI odd?(u)>) HAS_TYPE negreal

X

7, An alternative definition of factorial that
7, can be used to increase the efficiency of proof

Appendix C. PVS Libraries used by NRV 258

'/, A lemma shows that this and the original
'/, definition have the same meaning .

%

fac(n:nat): RECURSIVE posnat =

IF n>=5 THEN

n * ((n-1) * ((n-2) * ((n-3) * ((n-4) * fac(n-5)))))

ELSIF n = 1 THEN

1

ELSIF n = 0 THEN

1

ELSE

n*fac(n-1)

ENDIF

MEASURE n

f ac_equiv : LEMMA
FORALL (n:nat):

fac(n) = aux.fac(n)

Alternative definitions of the bounds on exp are given.
These take two values, which are intended to represent
the numerator and denominator of the input to exp. If
these values are integers then these definitions are

significantly more efficient (and clearer) to expand -

PVS will not automatically simplify 2/3*2/3 this can

lead to incredibly long and difficult to interpret

proof statements; however, PVS will simplify (2*2)/(3*3)
to 4/6.

sgn and abs are used for the same reason - PVS will not

automatically simplify, for instance -2*-3, it will
however simplify -(2*3) to -6.
Lemmas show that these and the original

definitions have the same meanings .

exp_neg_lb(x:real,y:{u:nzreal| x/u<0})(n:nat): nnreal =

max(0,sumc(0,n, LAMBDA (n:nat):

Appendix C. PVS Libraries used by NRV 259

(expt(abs(x)*abs(x), n)*((2*n+1)*y + x))/

(expt(abs(y)*abs(x), n)*y*fac(2*n+l))))

exp_neg_ub(x:real,y:{u:nzreal| x/u<0})(n:nat): real =

1 + sumc(0,n, LAMBDA (n:nat):

(x*expt(abs(x)*abs(x), n)*((2*n+2)*y + x))/

(y*expt(abs(y)*abs(y), n)*y*fac(2*n+2)))

exp_neg_lb_equiv: LEMMA
FORALL (x:real,y:nzreal):
(LAMBDA (n:nat):

(expt (abs (x) * abs (x) , n)*((2*n+1)*y + x))/
(expt(abs(y)*abs(y), n)*y*fac(2*n+l)))

(LAMBDA (n:nat): exp_ser(2*n) * ((x/y) " (2*n)) +

exp_ser(2*n+l) * ((x/y) ~ (2*n+l)))

exp_neg_ub_equiv: LEMMA
FORALL (x:real,y:nzreal):
(LAMBDA (n:nat):

(x*expt(abs(x)*abs(x), n)*((2*n+2)*y + x))/
(y*expt(abs(y)*abs(y), n)*y*fac(2*n+2)))

(LAMBDA (n:nat): exp_ser (2*n +1) * ((x/y) ~ (2*n + l)) +

exp_ser(2*n+2) * ((x/y) " (2*n+2)))

exp_lb(n:nat)(x:real,y:nzreal): nnreal =

IF x = 0 THEN 1

ELSE

max(0,sumc(0,n , LAMBDA (n:nat):

(expt(abs(x)*abs(x), n)*((2*n+l)*y + x))/

(expt(abs(y)*abs(y), n)*y*fac(2*n+l))))
ENDIF

exp_ub(n:nat)(x:real,y:{u:nzrealI x/u>0 implies

exp_neg_lb(-x,u)(n)/=0>): real =

IF x = 0 THEN 1

Appendix C. PVS Libraries used by NRV 260

ELSIF x/y<0 THEN
1 + sumc(0,n, LAMBDA (n:nat):

(x*expt(abs(x)*abs(x), n)*((2*n+2)*y + x))/

(y*expt(abs(y)*abs(y), n)*y*fac(2*n+2)))
ELSE

1/exp_neg_lb(-x,y)(n)
ENDIF

exp_lb_aux: LEVIMA
FORALL (x:real,y:nzreal,n:nat):
IF x/y<0 THEN

-x/y<l+2*n implies exp_lb(n)(x,y)<exp(x/y)
ELSIF x/y>0 THEN

exp_lb(n)(x,y)<exp(x/y)
ELSE

exp(x/y)=1
ENDIF

exp_ub_aux: LEMMA
FORALL (x:real,y:nzreal,n:nat):
IF x/y<0 THEN

-x/y<l+2*n implies exp(x/y)<exp_ub(n)(x,y)
ELSIF x/y>0 THEN

x/y<l+2*n AND exp_neg_lb(-x,y)(n)/=0 implies

exp(x/y)<exp_ub(n)(x,y)
ELSE

exp(x/y)=1
ENDIF

exp_bound_is_bound: LEMMA
FORALL (x : real,y:nzreal ,n:nat):
IF x/y<0 THEN

-x/y<l+2*n implies

(exp(x/y)<exp_ub(n)(x,y)
AND

exp_lb(n)(x,y)<exp(x/y))
ELSIF x/y>0 THEN

Appendix C. PVS Libraries used by NRV

(x/y<l+2*n AND exp_neg_lb(-x,y)(n)/=0 implies

exp(x/y)<exp_ub(n)(x , y))
AND

exp_lb(n)(x,y)<exp(x/y)
ELSE

exp(x/y)=1
ENDIF

Since Nichols plot requirements involve reasoning about
decibels (loglO(f) - or In(f)/In(10)), upper and lower
bounds on ln(10) are defined. These bounds are defined
as macros so that there is no need to expand them within

proofs.

ln_10_lb: MACRO posreal = 2302585/1000000

ln_10_ub: MACRO posreal = 23025851/10000000

ln_exp : LEMMA
FORALL (x:real): ln(exp(x)) = x

exp_ln : LEMMA
FORALL (x:posreal): exp(ln(x)) = x

ln_bounds : LEMMA

ln_10_lb<ln (10) AND In(10)<ln_10_ub AND In (2)+ln (5)=ln (10)

ln_10_pos: JUDGEMENT In (u : gt [real , 1]) HAS_TYPE posreal

ln_monotonic : LEMMA

FORALL (x, y:posreal): ln(x) < ln(y) IFF x < y

Pi: posreal = pi

Pi_lb : MACRO posreal = 314159/100000

Appendix C. PVS Libraries used by NRV 262

Pi_ub: MACRO posreal = 31416/10000

Pi_bounds : LEMMA Pi_lb < Pi AND Pi < Pi_ub

arctan_modl_bound2

(x:real,y:{u:nzrealI -l<=x/u AND x/u<=l>)(n:nat): real =

IF x/y= -1 THEN

-sumc(0,n, LAMBDA (m:nat):

(IF even?(m) THEN 1 ELSE -1 ENDIF)*expt(1 , 2*m+1)/(2*m +1))
ELSE

sumc(0,n, LAMBDA (i:nat):

(IF even?(m) THEN 1 ELSE -1 ENDIF)*

sgn(x)*expt(abs(x) ,2*m+l)/

(sgn(y)*(2*m+l)*expt(abs(y) ,2*m+l)))
ENDIF

Alternative definitions of the bounds on arctan. These take
two values, which are intended to represent the
numerator and denominator of the input to exp. If these
values are integers then these definitions are

significantly more efficient (and clearer) to expand.
Lemmas show that these and the original

definitions have the same meanings.

arctan_modl_bound

(x:nzreal,y:{u:nzreal| -l<=x/u AND x/u<=l})(n:nat): real =

IF (x/y= -1) THEN

-sumc(0,(IF even?(n) THEN n ELSE n-1 ENDIF),

LAMBDA (m:nat): l/(4*m+l) - l/(4*m+3))
- (IF even?(n) THEN l/(4*n+3) ELSE 0 ENDIF)

ELSE

sumc (0, (IF even?(n) THEN n ELSE n-1 ENDIF),
LAMBDA (m:nat):

(((4*m+3)*y*y-(4*m+l)*x*x)*x*
expt(abs(x)*abs(x)*abs(x)*abs(x),m))/
((4*m +3)*y*y*(4*m+l)*y*

Appendix C. PVS Libraries used by NRV 263

expt (abs (y)*abs (y)*abs (y)*abs(y) ,m)))
+ (IF even?(n) THEN

x*abs(x)*abs(x)* expt(abs(x)*abs(x)*abs(x)*abs(x),n)/
((4*n +3)*y*abs(y)*abs(y)*
expt(abs(y)*abs(y)*abs(y)*abs(y),n))

ELSE 0 ENDIF)

ENDIF

arctan_lb(n:nat)(x:real,y:nzreal) : real =

IF x=0 THEN

0

ELSIF abs(x/y)=1 THEN

sgn (x/y)*Pi/4
ELSIF -1< =x/y AND x/y<0 THEN

arctan_modl_bound(x,y)(2*n)
ELSIF 1>=x/y AND x/y>0 THEN

max(0,arctan_modl_bound(x,y)(2*n+l))
ELSIF -1>x/y THEN

-Pi_ub/2-arctan_modl_bound(y,x)(2*n+l)
ELSE

max(0,Pi_lb/2-arctan_modl_bound(yJx)(2*n))
ENDIF

arctan_ub(n:nat)(x:real ,y:nzreal) : real =

IF x=0 THEN

0

ELSIF abs(x/y)=1 THEN

sgn(x/y)*Pi/4
ELSIF -1< =x/y AND x/y<0 THEN

min(0,arctan_modl_bound(x,y)(2*n+l))
ELSIF 1>=x/y AND x/y>0 THEN

arctan_modl_bound(x,y)(2*n)
ELSIF -1>x/y THEN

min(0,-Pi_lb/2-arctan_modl_bound(y,x)(2*n))
ELSE

Pi_ub/2-arctan_modl_bound(y,x)(2*n+l)
ENDIF

Appendix C. PVS Libraries used by NRV 264

arctan_modl_bound_equiv3 : LEMMA
FORALL (x:nzreal ,y:{u:nzreal I -l< =x/u AND x/u<=l>,n:nat) :

arctan_modl_bound(x,y)(n) =

(if x/y= -1 then

-sumc(0,2*floor(n/2) ,

LAMBDA (m:nat) : l/(4*m + l) - l/(4*m +3))
- (if (2*floor(n/2)=n) then l/(4*n+3) else 0 endif)

else

sumc(0,2*floor(n/2) ,

LAMBDA (m:nat): l/(4*m+l) * (x/y)~(4*m + l)
-l/(4*m+3) * (x/y)~(4*m+3))

+ (if (2*floor(n/2)=n) then 1/(4*n+3)*(x/y)~(4*n+3)
else 0 endif)

endif)

arctan_modl_bound_equiv : LEMMA
FORALL (x:nzreal ,y:{u:nzrealI -l<x/u AND x/u<=l},n:nat) :

arctan_mod1_bound(x,y)(n) =

arctan_bounds.arctan_modl_bound(x/y)
(IF even?(n) THEN 2*n ELSE 2*n-l ENDIF)

arctan_modl_bound_equiv_ml : LEMMA
FORALL (x:real,y:nzreal,n:nat):
x/y=-1 IMPLIES

arctan_modl_bound(x,y)(n) =

-arctan_bounds.arctan_modl_bound(l)

(IF even?(n) THEN 2*n ELSE 2*n-l ENDIF)

arctan_bound_equiv: LEMMA
FORALL (x:nzreal ,y:{u:nzreal | abs(x/u)/ =1},n:nat):

arctan_lb(n)(x,y)< arctan(x/y)
AND

arctan(x/y)< arctan_ub(n)(x,y)

arctan_bound_equiv2: LEMMA
FORALL (x:real,y:nzreal ,n:nat) :

Appendix C. PVS Libraries used by NRV 265

arctan_lb(n)(x,y)<= arctan(x/y)
AND

arctan(x/y)<= arctan.ub(n)(x,y)

END NRV_exp

In the following theory, various rewrite rules are defined. These rules are automatically

applied when the (assert) proof command is called. These rewrite rules simplify proofs

by reducing the need to expand certain common functions such as abs and sgn (absolute
value and sign of a real variable, respectively).

NRV_rewrites: THEORY

BEGIN

IMPORTING NRV_exp

neg_neg : LEMMA FORALL (x:real): --x = x

AlK) REWRITE+ abs

a: real

abs1 : FORMULA a>=0 IMPLIES abs(a) = a

abs2 : FORMULA a<0 IMPLIES abs(a) = -a

AlK) RKWRITLt sgn

b : real

sgnl : FORMULA b>=0 IMPLIES sgn(b) = 1

sgn2 : FORMULA b<0 IMPLIES sgn(b) = -1

AUTO_REWRHE+ neg_neg

c : real

negl : FORMULA c> = 0 IMPLIES --c = c

AUTO_REWRITE+ Pi_bounds

Appendix C. PVS Libraries used by NRV 266

d: real

Pil : FORMULA d> = 0 IMPLIES d/Pi> = 0

END NRV_rewrites

In the following theory, definitions are given of various functions used in NRV in the con¬

struction of lemmas along with several lemmas that are used within proofs by NRV.

NRV: THEORY

BEGIN

IMPORTING NRV_rewrites , Field@extra_tegies

%

7, Define various functions that simplify lemma definitions
% in NRV.

x

poi_interval(n:[real->real],d:[real->real],z,x,y:real):
bool =

((n(x)> = 0 AND d(x)> = 0) OR (n(x)< = 0 AND d(x)< =0)) AND

(n(y)>0 AND d(y)<0);

poi_interval2(n:[real->real],d:[real->real],z,x,y:real):
bool =

((ii (x) > = 0 AND d (x) > =0) OR (n(x)< = 0 AND d(x)< =0)) AND

(n(y)<0 AND d(y)>0);

convexity(n : [real->real] , d : [real->real] ,x:real) : bool =

(n(x)>=0 AND d(x)>=0) OR (n(x)<=0 AND d(x)<=0)

concavity(n : [real->real] , d : [real->real] ,x:real) : bool =

(n(x)>=0 AND d(x)<=0) OR (n(x)<=0 AND d(x)>=0);

deer(n,d:real): bool =

(n> = 0 AND d< = 0) OR (n< = 0 AND d> =0);

Appendix C. PVS Libraries used by NRV 267

X

'/, Lemmas used within proofs in NRV.
X

sqrt_pos : JUDGEMENT sqrt(x:posreal) HAS_TYPE posreal

line_lb(X:real ,Xlb:le [real ,X] ,

Xub:{u:ge[real,X]|sgn(u)=sgn(Xlb)>, c,m:real,
mlb:le[real,m] ,mub:{u:ge [real ,m] |sgn(u) = sgn(mlb)>) : real =

if m>=0 and Xlb>=0 then

ln_10_lb/20 * mlb * Xlb +

min(ln_10_lb/20*c,(ln_10_ub)/20*c)

elsif m>=0 and Xlb<0 then

ln_10_ub/20 * mub * Xlb +

min(ln_10_lb/20*c,(ln_10_ub)/20*c)

elsif m<0 and Xlb>=0 then

ln_10_ub/20 * mlb * Xub +

min(ln_10_lb/20*c,(ln_10_ub)/20*c)

else

ln_10_lb/20 * mub * Xub +

min(ln_10_lb/20*c,(ln_10_ub)/20*c)

endif;

ln_lt_line: LEMMA

FORALL (X,Xlb,Xub,c,m,mlb,mub:real) :

mlb< = m AND m< =mub AND sgn(mlb) = sgn(mub) AND
Xlb < = X AND X< = Xub AND sgn(Xlb) = sgn(Xub)

IMPLIES

line_lb(X,Xlb, Xub,c,m,mlb,mub)
<= In (10)/20*(m*X + c)

ln_lt_line2: LEMMA

FORALL (p:posreal,q,m,c,X:real,n:nat):
(q<0 IMPLIES -2*q<2*n+l) AND

q<=ln(10)/20*(m*X+c)
IMPLIES

Appendix C. PVS Libraries used by NRV 268

(p < exp_lb(n)(2*q , 1)
IMPLIES

20*ln(sqrt(p))/ln(10)<m*X+c)

ln_lt_line3: LEMMA

FORALL (p:posreal ,q,m,c,X:real ,

mlb:le[real,m], mub:{u:ge [real , m] |sgn(u) = sgn(mlb)},
Xlb:le[real ,X] ,Xub:-(u:ge [real ,X] | sgn(u)=sgn(Xlb)},n:nat) :

(q<0 IMPLIES -2*q<2*n+l) AND

q<=line_lb(X,Xlb,Xub,c,m,mlb,mub)
IMPLIES

(p < exp_lb(n)(2*q , 1)
IMPLIES

20*ln(sqrt(p))/ln(10)<m*X+c)

ln_lt_line4 : LEMMA

FORALL (p:posreal,nm:real,d:nzreal,m,c,X:real,
mlb:le[real,m], mub:{u:ge[real,m]|sgn(u)=sgn(mlb)>,
Xlb:le [real,X] ,Xub:{u:ge [real,X] isgn(u)=sgn(Xlb)},n:nat) :

(nm/d<0 IMPLIES -nm/d<2*n+l) AND

nm/(2*d)<=line_lb(X,Xlb,Xub,c,m,mlb,mub)
IMPLIES

(p < exp_lb(n)(nm,d)
IMPLIES

20*ln(sqrt(p))/ln(10)<m*X+c)

ln_le_line4: LEMMA

FORALL (p:posreal,nm:real,d:nzreal,m,c,X:real,
mlb:le[real,m], mub:{u:ge[real,m]|sgn(u)=sgn(mlb)},
Xlb:le [real,X] ,Xub:{u:ge [real , X] |sgn(u) = sgn(Xlb)>,n:nat) :

(nm/d<0 IMPLIES -nm/d<2*n+l) AND

nm/(2*d)<=line_lb(X,Xlb,Xub,c,m,mlb,mub)

IMPLIES

(p <= exp_lb(n)(nm,d)
IMPLIES

20*ln(sqrt(p))/ln(10)<=m*X+c)

Appendix C. PVS Libraries used by NRV 269

line_ub(X:real ,Xlb:le[real ,X] ,

Xub:{u:ge[real,X] |sgn(u)=sgn(Xlb)>, c,m:real ,

mlb : le [real , m] , mub : {u : ge [real , m] | sgn (u) = sgn (mlb) }) : real =

if m>=0 and Xlb>=0 then

ln_10_ub/20 * mub * Xub +

max(ln_10_lb/20*c,(ln_10_ub)/20*c)

elsif m>=0 and Xlb<0 then

ln_10_lb/20 * mlb * Xub +

max(ln_10_lb/20*c,(ln_10_ub)/20*c)
elsif m<0 and Xlb>=0 then

ln_10_lb/20 * mub * Xlb +

max(ln_10_lb/20*c,(ln_10_ub)/20*c)
else

ln_10_ub/20 * mlb * Xlb +

max(ln_10_lb/20*c,(ln_10_ub)/20*c)

endif;

ln_gt_line : LEMMA
FORALL (X, Xlb,Xub, c,m,mlb, mub: real) :

mlb<=m AND m<=mub AND sgn(mlb)=sgn(mub) AND
Xlb< = X AND X< = Xub AND sgn(Xlb) = sgn(Xub)

IMPLIES

line_ub(X,Xlb,Xub,c,m,mlb ,mub)
>= In(10)/20*(m*X+c)

ln_gt_line2: LEMMA
FORALL (prposreal,q,m,c,X:real,n:nat):
(q>0 IMPLIES exp_neg_lb(-2*q,1)(n)/=0) AND

abs(2*q)<2*n+l AND

q>=ln(10)/20*(m*X+c)
IMPLIES

(p > exp_ub(n)(2*q , 1)
IMPLIES

20*ln(sqrt(p))/ln(10)>m*X+c);

Appendix C. PVS Libraries used by NRV 270

ln_gt_line3 : LEMMA
FORALL (p:posreal ,q,m,c,X:real ,

mlb:le[real,m], mub:{u:ge[real,m]|sgn(u)=sgn(mlb)},
Xlb:le[real,X] ,Xub:{u:ge[real,X] |sgn(u)=sgn(Xlb)},n:nat):
(q>0 IMPLIES exp_neg_lb(-2*q,1)(n)/=0) AND

abs(2*q)<2*n+l AND

q>=line_ub(X,Xlb,Xub, c ,m , mlb ,mub)
IMPLIES

(p > exp_ub(n)(2*q , 1)
IMPLIES

20*ln(sqrt(p))/ln(10)>m*X + c) ;

ln_gt_l ine4 : IEMMA
FORALL (p:posreal,nm:real,d:nzreal,m,c,X:real,
mlb:le[real,m], mub:{u:ge[real,m]|sgn(u)=sgn(mlb)},
Xlb:le [real,X] ,Xub:{u:ge [real,X] |sgn(u)=sgn(Xlb)},n:nat):
(nm/d>0 IMPLIES exp_neg_lb(-nm,d)(n)/=0) AND
abs(nm/d)<2*n+l AND

nm/(2*d)>=line_ub(X,Xlb,Xub,c,m,mlb,mub)

IMPLIES

(p > exp_ub(n)(nm,d)
IMPLIES

20*ln(sqrt(p))/ln(10)>m*X+c);

ln_ge_line4: LEMMA
FORALL (p:posreal,nm:real,d:nzreal, m , c,X:real,

mlb:le[real,m], mub:{u:ge [real ,m]|sgn(u)=sgn(mlb)},
Xlb:le[real,X] ,Xub:{u:ge [real,X] |sgn(u) = sgn(Xlb)>,n:nat):
(nm/d>0 IMPLIES exp_neg_lb(-nm,d)(n)/=0) AND
abs(nm/d)<2*n+l AND

nm / (2*d)>=line_ub(X,Xlb,Xub,c,m,mlb,mub)
IMPLIES

(p >= exp_ub(n)(nm,d)
IMPLIES

20*ln(sqrt(p))/ln (10)> =m*X + c);

arctan_lt_line : LEMMA

Appendix C. PVS Libraries used by NRV 271

FORALL (p,nm:real,d:nzreal,c,cb:real,n:nat):
p<=nm/d AND cb<=c

IMPLIES

(arctan_ub (n) (nm,d)<cb

IMPLIES

arctan(p)<c)

arctan_le_line : LEMMA

FORALL (p,nm:real,d:nzreal,c,cb:real,n:nat):

p<=nm/d AND cb<=c

IMPLIES

(arctan_ub(n)(nm,d)<=cb
IMPLIES

arctan(p)<=c)

arctan_gt_line : LEMMA
FORALL (p,nm:real,d:nzreal, c,cb:real,n:nat):

p>=nm/d AND cb>=c

IMPLIES

(arctan_lb(n)(nm,d)>cb

IMPLIES

arctan(p)>c) ;

arctan_ge_line : LEMMA
FORALL (p ,nm:real,d:nzreal, c , cb : real,n:nat):

p>=nm/d AND cb>=c

IMPLIES

(arctan_lb(n)(nm,d)>=cb
IMPLIES

arctan(p)>=c);

cross_mult_le : lemma

FORALL (px,py:posreal,q,r:real):
q/px <= r/py IFF q*py <= r*px

cross_mult_ge : lemma
FORALL (px,py:posreal,q,r:real):

Appendix C. PVS Libraries used by NRV 272

q/px >= r/py IFF q*py >= r*px

x

'/, Maple repesents square roots using "(1/2) so the
'/, definition of ~ is extended to refelect this.
x

~(x:real ,n:{u:real I u = l/2 or (integer_pred(u) and u> =0)}):
real =

IF n=l/2 then

sqrt(x)
ELSE

expt(x,n)
ENDIF

END NRV

Bibliography

[1] C Abdallah, P Dorato, R Liska, S Steinberg, and W Yang. Application of quanti¬

fier elimination theory to control theory. Technical Report EECE95-007, Dept. of
Electrical and Computer Engineering, University of New Mexico, 1995.

[2] A Adams, M Dunstan, H Gottliebsen, T Kelsey, U Martin, and S Owre. Computer

algebra meets automated theorem proving: Integrating Maple and PVS. In Boulton

and Jackson [25], pages 27^42.

[3] R A Adams. Calculus: a complete course. Addison-Wesley, third edition, 1995.

[4] B Akbarpour and S Tahar. A methodology for the formal verification of FFT algo¬

rithms in HOL. In Hu and Martin [67], pages 37-51.

[5] R Alur, C Courcoubetis, N Halbwachs, T A Henzinger, P H Ho, X Nicollin, A Oliv-

ero, J Sifakis, and S Yovine. The algorithmic analysis of hybrid systems. Theor.

Comput. Sci., 138(1):3-34, 1995.

[6] R Alur, C Courcoubetis, T A Henzinger, and P H Ho. Hybrid automata: An algorith¬

mic approach to the specification and verification of hybrid systems. In Grossman

et al. [56], pages 209-229.

[7] R Alur, T Dang, and F Ivancic. Counter-example guided predicate abstraction of

hybrid systems. In Garavel and Hatcliff [51], pages 208-223.

[8] R Alur, T Henzinger, G Lafferriere, and G J Pappas. Discrete abstractions of hybrid

systems. In Proceedings of the IEEE, volume 88, pages 971-984, 2000.

273

Bibliography 274

[9] H Anai and V Weispfenning. Deciding linear-trigonometric problems. In Traverso

[119], pages 14-22.

[10] Z S Andraus and K A Sakallah. Automatic abstraction and verification of Verilog

models. In Malik et al. [91], pages 218-223.

[11] R Arthan, P Caseley, C O'Halloran, and A Smith. ClawZ: Control laws in Z. In

McDermid et al. [93], pages 169-176.

[12] R D Arthan. ClawZ. Lemma 1, 2003. Available at http: //www. lemma-one . com/

clawz_docs/clawz_docs.html.

[13] E Artin. The Gamma Function. Holt, Rinehart and Winston, Inc, 1964.

[14] D Atherton. Nonlinear Control Engineering. Van Nostrand, 1975.

[15] R Backhouse. Program construction and verification. Prentice-Hall, 1986.

[16] C Ballarin, K Homann, and J Calmet. Theorems and algorithms: An interface be¬

tween Isabelle and Maple. In Levelt [85], pages 150-157.

[17] J Barnes. High Integrity Software: The SPARK Approach to Safety and Security.

Addi son-Wesley, 2003.

[18] A Bauer, E Clark, and X Zhao. Analytica — an experiment in combining theorem

proving and symbolic computation. Journal ofAutomated Reasoning, 21 (3):295—

325, 1998.

[19] D Berleant and B Kuipers. Qualitative and quantitative simulation: Bridging the

gap. Artificial Intelligence, 95(2):215-255, 1997.

[20] E A Boiten, J Derrick, and G Smith, editors. Integrated Formal Methods, 4th Inter¬

national Conference, volume 2999 of Lecture Notes in Computer Science. Springer,

2004.

[21] T Bolognesi and E Brinksma. Introduction to the ISO specification language LO¬
TOS. ComputerNetworks and ISDN Systems, 14(l):25-59, 1987.

Bibliography 275

[22] O H Bosgra, H Kwakernaak, and G Meinsma. Design Methods for Control Systems:
Notes for a course of the Dutch Institute ofSystems and Control, Winter term 2001-

2002. Department of Systems, Signals and Control, University of Twente, 2001.

[23] R Boulton, H Gottliebsen, R Hardy, T Kelsey, and U Martin. Design verification for
control engineering. In Boiten et al. [20], pages 21-35.

[24] R Boulton, R Hardy, and U Martin. A Hoare logic for single-input single-output

continuous-time control systems. In Pnueli and Maler [107], pages 113-125.

[25] R J Boulton and P B Jackson, editors. Proceedings of the 14th International Con¬

ference on Theorem Proving in Higher Order Logics (TPIIOLs 2001), volume 2152

of Lecture Notes in Computer Science. Springer-Verlag, 2001.

[26] W Brauer, G Rozenberg, and A Salomaa, editors. Interactive theorem Proving

and Program Development — Coq'Art: The Calculus of Inductive Constructions.

Springer, 1998.

[27] E Brinksma and K Guldstrand Larsen, editors. CAV '02: Proceedings of the 14th

International Conference on Computer Aided Verification. Springer-Verlag, 2002.

[28] R E Bryant, S K Lahiri, and S A Seshia. Modeling and verifying systems using a

logic of counter arithmetic with lambda expressions and uninterpreted functions. In

Brinksma and Guldstrand Larsen [27], pages 78-92.

[29] B Buchberger, T Jebelean, F Kriftner, M Marin, E Tomuta, and D Vasaru. A survey

of the Theorema project. In Kuechlin [78], pages 384-391.

[30] M Butler, C Jones, A Romanovsky, and E Troubitsyna, editors. Proceedings of the

Workshop on Rigorous Engineering ofFault-Tolerant Systems, 2005.

[31] J Carette and W M Farmer, editors. Proceedings of the 12th Symposium on the In¬

tegration ofSymbolic Computation and Mechanized Reasoning (Calculemus 2005).

ENTCS, 2005.

Bibliography 276

[32] E M Clarke, A Biere, R Raimi, and Y Zhu. Bounded model checking using satisfia¬

bility solving. Formal Methods in System Design, 19(1):7—34, 2001.

[33] E M Clarke Jr, O Grumberg, and D A Peled. Model Checking. MIT Press, 2001.

[34] P J Cohen. Decision procedures for real and p-adic fields. Commun. Pure Appl.

Math., 22(2): 131-151, 1969.

[35] G E Collins. Quantifier elimination for the elementary theory of real closed fields

by cylindrical algebraic decomposition. Automata Theory and Formal Languages,

33:134-138,1975.

[36] G E Collins and H Hong. Partial cylindrical algebraic decomposition for quantifier
elimination. Journal ofSymbolic Computation, 12(3):299-328, 1991.

[37] G E Collins and R Loos. Polynomial real root isolation by differentiation. In Jenks

[69], pages 15-25.

[38] J B Dabney and T L Harman. Mastering Simulink. Prentice Hall, 2004.

[39] T Daly. Axiom: The 30 Year Horizon, 2003. Available at http://page.

axiom-developer.org/zope/Plone/refs/books/axiom-book2.pdf/.

[40] J W de Bakker, C Huizing, W P de Roever, and G Rozenberg, editors. Real-Time:

Theory in Practice, REX Workshop, volume 600 of Lecture Notes in Computer Sci¬

ence. Springer, 1992.

[41] J de Kleer and J S Brown. A qualitative physics based on confluences. Artificial

Intelligence, 24(1-3):7-83, 1984.

[42] A Dolzmann and T Sturm. Redlog: Computer algebra meets computer logic. ACM

SIGSAM Bulletin, 31(2):2-9, 1997.

[43] R C Dorf and R H Bishop. Modern Control Systems. Prentice-Hall, ninth edition,

2001.

Bibliography 277

[44] B Dutertre. Elements of mathematical analysis in PVS. In von Wright et al. [121],

pages 141-156.

[45] D L Dvorak. Monitoring and diagnosis of continuous dynamic systems using semi¬

quantitative simulation. (Doctoral dissertation, Department of Computer Sciences)

AI 92-170, University of Texas at Austin, Artificial Intelligence Laboratory, 1992.

[46] EPSRC. Proceedings ofPREP 2004, 2004.

[47] R Fikes and W Lehnert, editors. Proceedings of the 11th National Conference on

Artificial Intelligence (AAAI-93). The AAAI Press/The MIT Press, 1993.

[48] Action Group FM(AG08). Robust flight control design challenge problem formu¬
lation and manual: the High Incidence Research Model (HIRM). Technical Report

TP-088-4, version 3, Group for Aeronautical Research and Technology in Europe

(GARTEUR), 1997.

[49] K Forsman. Constructive commutative algebra in nonlinear control theory. PhD

thesis, Linkoping University, 1991.

[50] G F Franklin, J D Powell, and M Workman. Digital Control ofDynamic Systems.

Addison Wesley Longman, third edition, 1998.

[51] H Garavel and J Hatcliff, editors. Tools and Algorithms for the Construction and

Analysis of Systems TACAS 2003, volume 2619 of Lecture Notes in Computer Sci¬

ence. Springer, 2003.

[52] M Gordon, A Cohn, T Melham, A Pitts, K Slind, and M Norrish. The HOL System

description. Cambridge HOL group. Available at http: //hoi. sourceforge . net/
documentation.html.

[53] M J C Gordon and T F Melham. Introduction to HOL: A theorem proving environ¬

mentfor higher order logic. Cambridge University Press, 1993.

[54] H Gottliebsen. Automated Theorem ProvingforMathematics: Real Analysis in PVS.
PhD thesis, University of St Andrews, 2001.

Bibliography 278

[55] W K Grassmann and J Tremblay. Logic and Discrete Mathematics: A Computer

Science Perspective. Prentice Hall, 1996.

[56] R L Grossman, A Nerode, A P Ravn, and H Rischel, editors. Hybrid Systems,

volume 736 of Lecture Notes in Computer Science. Springer, 1993.

[57] M H Hamza, editor Proceedings of Modelling, Identification and Control MIC—

2004. ACTA Press, 2004.

[58] R Hardy. Formal methods for control engineering. In Proceedings of PREP 2004

[46], pages 137-138.

[59] R Hardy. Interactions between PVS and Maple in symbolic analysis of control sys¬

tems. In Carette and Farmer [31],

[60] R Hardy. Symbolic analysis of control systems. Technical Report RR-05-06, School

of Computer Science, Queen Mary University of London, 2005. Proceedings of

Workshop on Verification and Theorem Proving for Continuous Systems (NetCA

Workshop 2005).

[61] J Harrison and L Thery. Reasoning about the reals: The marriage of HOL and Maple.

In Voronkov [122], pages 351-359.

[62] T Henzinger, P Kopke, A Puri, and P Varaiya. What's decidable about hybrid au¬

tomata? In Leighton and Borodin [82], pages 373-382.

[63] T A Henzinger and S Sastry, editors. Hybrid Systems: Computation and Control

HSCC 98, volume 1386 of LNCS. Springer, april 1998.

[64] CAR Hoare. An axiomatic basis for computer programming. Communications of

the ACM, 12:576-583, oct 1969.

[65] H Hong. QEPCAD. Available at http://www.cs.usna.edU/~qepcad/B/

QEPCAD.html.

[66] H Hong, R Liska, and S Steinberg. Testing stability by quantifier elimination. Jour¬
nal ofSymbolic Computation, 24(2): 161-188, 1997.

Bibliography 279

[67] A J Hu and A K Martin, editors. Formal Methods in Computer-Aided Design FM-

CAD 2004, volume 3312 of Lecture Notes in Computer Science. Springer, 2004.

[68] B R Hunt, R L Lipsman, and J M Rosenberg. A Guide to MATLAB. Cambridge

University Press, 2001.

[69] R D Jenks, editor. SYMSAC '76: Proceedings of the third ACM symposium on

Symbolic and algebraic computation. ACM Press, 1976.

[70] M Jirstrand. Algebraic Methods for Modeling and Design in Control. PhD thesis,

Linkoping University, 1996.

[71] M Jirstrand. Nonlinear control system design by quantifier elimination. Journal of

Symbolic Computation, 24(2): 137-152, 1997.

[72] D Kapur, editor. / Ith International Conference on Automated Deduction, volume

607 of Lecture Notes in Computer Science. Springer, 1992.

[73] H Kay. A qualitative model of the space shuttle reaction control system. Technical

Report AI92-188, University of Texas at Austin, Artificial Intelligence Laboratory,

1992.

[74] H Kay and B Kuipers. Numerical behavior envelopes for qualitative models. In

Fikes and Lehnert [47], pages 606-613.

[75] M Kerber, M Kohlhase, and V Sorge. Integrating computer algebra into proof plan¬

ning. Journal ofAutomated Reasoning, 21 (3):327—355, 1998.

[76] S C Kleene. Introduction to Metamathematics. Wolters-Noordhoff Publishing and

North-Holland Publishing Company, 1971.

[77] M Kreuzer and L Robbiano. Computational Commutative Algebra 1. Springer,

2000.

[781 W Kuechlin, editor. ISSAC '97: Proceedings of the 1997 International Symposium

on Symbolic andAlgebraic Computation. ACM Press, 1997.

Bibliography 280

[79] B Kuipers. Qualitative Reasoning: Modeling and Simulation with Incomplete

Knowledge. MIT Press, 1994.

[80] B Kuipers and S Ramamoorthy. Qualitative modeling and heterogeneous control of

global system behavior. In Tomlin and Greenstreet [118], pages 294—307.

[81] T Latvala, A Biere, K Heljanko, and T A Junttila. Simple bounded LTL model

checking. In Hu and Martin [67], pages 186-200.

[82] F T Leighton and A Borodin, editors. Proceedings of the Twenty-Seventh Annual

ACM Symposium on Theory ofComputing. ACM Press, 1995.

[83] Lemma 1. ProofPower Compliance Tool - User Guide, 2000. Available at http:

//www.lemma-one.com/ProofPower/doc/doc.html.

[84] Lemma 1. ProofPower Description, 2000. Available at http://www. lemma-one .

com/ProofPower/doc/doc.html.

[85] A H M Levelt, editor. ISSAC '95: Proceedings of the 1995 International Symposium
on Symbolic and Algebraic Computation. ACM Press, 1995.

[86] R Liska and S Steinberg. Applying quantifier elimination to stability analysis of

difference schemes. Comput. Journal, 36(5):497-503, 1993.

[87] C Livadas and N A Lynch. Formal Verification of Safety-Critical Hybrid Systems.

In Henzinger and Sastry [63], pages 253-272.

[88] N A Lynch, R Segala, and F W Vaandrager. Hybrid I/O automata. Inf. Comput.,

185(1): 105—157, 2003.

[89] S Maharaj. A PVS theory of Symbolic Transition Systems. In R J Boulton and P B

Jackson, editors, Supplemental Proceedings of the 14th International Conference

on Theorem Proving in Higher Order Logics (TPHOLs 2001), pages pp. 255-266.

University of Edinburgh, Devision of Infomatics, 2001. Research Report EDLINF-

RR-0046.

Bibliography 281

[90] O Maler, Z Manna, and A Pnueli. From timed to hybrid systems. In de Bakker et al.

[40], pages 447-484.

[91] S Malik, L Fix, and A B Kahng, editors. DAC '04: Proceedings of the 41st annual

conference on Design automation. ACM Press, 2004.

[92] S McCallum. An improved projection operation for cylindrical algebraic decomposi¬

tion of three-dimensional space. Journal ofSymbolic Computation, 5(1 /2): 141—161,

1988.

[93] J A McDermid, M G Hinchey, and S Liu, editors. Proceedings ofthe 3rd IEEE Inter¬

national Conference on Formal Engineering Methods (ICFEM 2000). IEEE Com¬

puter Society Press, 2000.

[94] M B Monagan, K O Geddes, K M Heal, G Labahn, S M Vorkoetter, J McCarron,

and P DeMarco. Maple 7 Programming Guide. Waterloo Maple Inc, 2001.

[95] National Instruments. Matrixx — Getting Started Guide.

[96] National Instruments. SystemBuild user Guide.

[97] X Nicollin, A Olivero, J Sifakis, and S Yovine. An approach to the description and

analysis of hybrid systems. In Grossman et al. [56], pages 149-178.

[98] X Nicollin, J Sifakis, and S Yovine. From ATP to timed graphs and hybrid systems.

In de Bakker et al. [40], pages 549-572.

[99] R Nikoukhah. Scicos: A dynamic systems modeler and simulator. In Hamza [57],

[100] In-flight breakup over the Atlantic Ocean of Trans World Airlines Flight 800 Boeing

747-131, n93119, near East Moriches, New York july 17 1996. Aircraft Accident

Report AAR-00/03, National Transport Safety Board, 2000.

[101] K Ogata. Discrete-Time Control Systems. Prentice-Hall, second edition, 1995.

[102] K Ogata. Modern control engineering. Prentice-Hall, third edition, 1997.

Bibliography 282

[103] S Owre, J M Rushby, and N Shankar. PVS: A prototype verification system. In

Kapur [72], pages 748-752. Available at http://www.csl.sri.com/papers/

cade92-pvs/.

[104] S Owre, N Shankar, J M Rushby, and D W J Stringer-Calvert. PVS Lan¬

guage Reference. SRI International. Available at http://pvs.csl.sri.com/
documentation.shtml.

[105] P C Parks. A M Lyapunov's stability theory — 100 years on. IMA Journal of

Mathematical Control and Information, 9(4):275-303, 1992.

[106] A B Pippard. The inverted pendulum. European Journal of Physics, 8:203-206,

1987.

[107] A Pnueli and O Maler, editors. Proceedings of the 6th International Workshop on

Hybrid Systems: Computation and Control (HSCC 2003), volume 2623 of Lecture

Notes in Computer Science. Springer, 2003.

[108] R W Pratt, editor. Flight control systems: Practical issues in design and implemen¬

tation, volume 57 of IEE Control Engineering Series. The Institution of Electrical

Engineers, 2000. Copublished by The American Institute of Aeronautics and Astro¬

nautics.

[109] Scilab Group, 1NRIA, Unite de recherche de Rocquencourt, Projet Meta2, Domaine

de Voluceau, Rocquencourt, B.P. 105, 78153 Le Chesnay Cedex (France). Introduc¬

tion to Scilab.

[110] A Seidenberg. A new decision method for elementary algebra. Annals of Math,

60:365-374, 1954.

[111] M Spivak. Calculus. Addison-Wesley, 1973.

[112] J M Spivey. The Z notation: A reference manual. Prentice-Hall, second edition,

1992.

Bibliography 283

[113] A Tarski. A Decision method for elementary algebra and geometry. University of

California Press, 1951.

[114] A Tewari. Modern Control Design with MATLAB and Simulink. JohnWiley & Sons,

Inc, 2002.

[115] D Throop. Model-based diagnosis ofcomplex, continuous mechanisms. PhD thesis,

Department of Computer Sciences, University of Texas at Austin, 1991.

[116] A Tiwari. PVS-QEPCAD. Available at http://www.csl.sri.com/users/

tiwari/qepcad.html.

[117] A Tiwari and G Khanna. Series of abstractions for hybrid automata. In Tomlin and

Greenstreet [118], pages 465-478.

[118] C J Tomlin and M R Greenstreet, editors. Hybrid Systems: Computation and Control

HSCC, volume 2289 of LNCS. Springer, March 2002.

[119] C Traverse, editor. ISSAC '00: Proceedings of the 2000 International Symposium
on Symbolic andAlgebraic Computation. ACM Press, 2000.

[120] E Tronci. Automatic synthesis of control software for an industrial automation con¬

trol system. In Wing et al. [126], pages 247-250.

[121] J von Wright, J Grundy, and J Harrison, editors. Proceedings of the 9th International

Conference on Theorem Proving in Higher Order Logics (TPHOLs 2001), volume

1125 of Lecture Notes in Computer Science. Springer-Verlag, 1996.

[122] A Voronkov, editor. Logic programming and automated reasoning: proceedings of
the 4th international conference, LPAR '93, volume 698 of Lecture Notes in Com¬

puter Science. Springer-Verlag, 1993.

[123] V Weispfenning. Deciding linear-exponential problems. SIGSAM Bullettin,

34(l):30-31,2000.

[124] J Wilkie, M Tohnson, and R Katebi. Control Engineering: An Introductory Course.

Palgrave Publishers Ltd, October 2001.

Bibliography 284

[125] T Wilson, S Maharaj, and R G Clark. Omnibus: A clean language and supporting

tool for integrating different assertion-based verification techniques. In Butler et al.

[30], pages 43-52.

[126] J M Wing, J Woodcock, and J Davies, editors. FM '99: Proceedings of the Wold

Congress on Formal Methods in the Development of Computing Systems - Volume

II. Springer-Verlag, 1999.

[127] S Wolfram. The Mathematica Book, 2005. Available at http://documents .

wolfram.com/v5/TheMathematicaBook/.

[128] M H Zaki, A Habibi, S Tahar, and G Bois. On the formal analysis of analogue

systems using interval abstraction. Technical Report RR-05-06, School of Com¬

puter Science, Queen Mary University of London, 2005. Proceedings of Workshop

on Verification and Theorem Proving for Continuous Systems (NetCA Workshop

2005).

[129] E Zarpas. Simple yet efficient improvements of SAT based bounded model checking.
In Hu and Martin [67], pages 174-185.

