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1.

CHAPTER 1.

INTRODUCTION.

1. The Problem.

A rigorous, treatment of the motion of an

electron in liquid helium would involve the elu¬

cidation of a complicated many-body problem. An

electrons interaction with a helium atom is in

itself a complex phenomenon that involves both

electromagnetic forces and quantum mechanical ef¬

fects. The problem of liquid helium alone is one

that has drawn much attention and still has not

been solved without many restrictions on the re¬

gion of validity of the solution. The mathematical

approach to any physical situation involves an

idealization of it. In building a model we are

forced to make fairly drastic assumptions that ha¬

ve to be justified and this may only be possible

if we limit the ranges of the physical parameters

that describe the problem. In this thesis; we have

tried to point to the approximations we have made

and to justify them.
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We would have liked to lift all restrictions on

the theory, hut this was clearly impossible. Not

only have we been forced to ignore the detailed

structure of the helium atoms, to idealize their

interactions but virtually to ignore the composi¬

tion of the liquid altogether. 'We have had to

judge which aspects of the problem could be co¬

vered by a blanketing parameter. For example,

since we will only be considering low energy col¬

lisions between the electron and helium atoms, we

have been able to conceal the profusion of forces

that govern the scattering in the concept of a

scattering-length. This has been justified both

theoretically and by experiment for it has been

shown that the low-energy scattering process is

insensitive to the details of the collision.

The use of a purely repulsive interaction in

place of the real helium atom-atom interaction is

not so simply vindicated. Here we have had to

appeal to mathematical expediency to excuse our

model. The idea that the attractive part of the

atom-atom potential may be described by a uniform

external pressure is not valid for this problem
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and in this aspect our treatment is not realistic.

This will be more quantitatively discussed in

Chapter 3. when the Hamiltonian governing the

motion of the electron is set up.

The problem we are studying is an interes¬

ting one. In 1959, Careri. Scaramuzzi and Thompson

proposed that the negative ion in liquid helium

might not only be an unbound electron but that

this electron might be self-trapped in a cavity

created by virtue of its high zero-point energy

in the space between the helium atoms. The elec¬

tron reduces this energy by repelling the helium

atoms in its immediate vicinity. In I960, Careri,

Fasoli and Gaeta reported the results of some

experiments that tested and confirmed this idea

and pointed out that Ferrell (1957) had proposed'

independently a similar structure for the positro-

nium atom in liquid helium. Kuper (1961) was the

first to present a calculation of the size of

the cavity based on sound physical arguments. He

pointed out that the growth of the bubble was not

restricted by surface tension as Ferrell had pro¬

posed nor by electrostriction (i.e. polarization

of the atoms around the electron) but largely by
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the zero-point pressure exerted by helium atoms

on the bubble. Kuper found that the radius of

the bubble to be about twelve Angstroms, which

leads to values of the effective mass and scat¬

tering cross-section that account remarkably well

for the observed mobility. Kuper's estimate is

still the touchstone against which other calcu¬

lations are measured,

The idea of self-trapped electrons was origi¬

nally put forward in 1933 by Landau to explain

F-centers in ionic crystals. This early theory

has grown into the well developed polaron problem

considered by a number of authors (Frohlich 1952,

Landau and Pelcar 19*+6, Tiablikov 1952, Feynman 1955

and others). The polaron problem has a number of

points akin to the subject of this thesis, and

many more if we extend the discussion to cover

all impurities in liquid helium. This similarity

has been pointed out by many physicists working

on liquid helium problems, notably Gross (1958),
Girardeau (1961) and Miller, Pines and Nozieres

(1962). In this thesis we use as our starting

point some ideas put forward by Gross (1958) and
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show that these lead to a bubble structure around

a light particle, provided only that the interac¬

tion between the liquid helium and the particle

is sufficiently strong.

2. Outline of the Thesis.

In the next chapter, we will look at Kuper's-

model of the negative ion and compare it with the

band-like mode of propagation of an electron in

liquid helium. We will also discuss the experi¬

mental evidence in favour of the bubble model and

Atkins model of the positive ion to illustrate the

effect of electrostriction. In Chapter 3. we will

derive Gross' equations, and, using a pseudo-poten¬

tial to describe the interactions, express them

in a form from which a bubble-like solution can

be shown to exist. Chapter 3. also describes some

computer calculations of these solutions showing

clearly the extent of the cavity. In Chapter 1+.

we use a variational principal to obtain estima¬

tes of the energy of the bubble structure. The

wave-functions which minimize the energy are

compared with the computed ones. Also included
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in this chapter is a prediction of the existence

of excited electronic states in the bubble and

an estimate is made of the minimum coupling

strength needed before a bubble state can be

sustained.

Chapter 5* discusses how excited states of

the' bosons might be included in treatments of the

problem and estimates their effect. The effective

mass of the ion is shown to be determined by the

bubble radius and that distortions of the bubble

at low velocities are unimportant.

In Chapter 6. we consider the application of

standard polaron techniques to the problem of an

impurity of arbitrary mass in liquid helium. In

particular it is shown that Feynman's path inte¬

gral treatment seems to break down for this pro¬

blem for any other trial action functional than

a simple perturbation theoretic one. Chapter 7.

shows that the bubble structure is not limited

to boson systems but is rather the result of the

relative energies of the impurity and the atoms

of the surrounding liquid. An illustrative cal¬

culation for a fermion system is made. Finally



in Chapter 8. conclusions and further problems

are presented.

3. Notation.

Mostly a symbol is defined only when it is

first used but occasionally, for clarity, its de¬

finition has been repeated. The convention

"fcv - yx. - \ , where "tv is Plancks constant
divided by 2tt and yx is the impurity mass, has
been used frequently but usually the reader is

warned in the text when this occurs. The sym¬

bol juk stands for a general impurity mass, but
sometimes more specifically for the electronic

mass, 9-| X 10-"



CHAPTER 2.

MODELS OF THE IONS IN He II.

In this chapter, we shall critically revie\>/

the various models proposed for the ions in li¬

quid HeA The experimental evidence in favour

of the bubble model will be presented as will be

the theory of the band-like mode of propagation

of the electron. The electron helium-atom scat¬

tering length will be discussed.

1. The Negative Ion.

The bubble model for the negative ion has

been analyzed semi-phenomenologically by Kuper

(1961). It is assumed that the negative ion is

a free electron whose interactions with the atoms

of the liquid are mainly short range repulsions.

If the electron is localised in a sphere radius

, then the pressures exerted by the elec¬

tron outward on the liquid have to be balanced

by the inward pressures, of the atoms on bubble.

This leads to the equation



^
p O (2-1)

where j)o is the unperturbed number density and Tkl
is the pressure due to the kinetic energy of the

localised electron. ?&s is the pressure due to the
electrostatic forces between the electron and the

polarized atoms. isthe kinetic energy per

unit volume of the atoms and is the pressure

term due to the van der V/aals forces between the

atoms. If the electron is taken as a particle in

an infinitely deep spherical well, then

and the polarization term

cxL ]1where oC is the atonic pola-
rizability. The van der Waals pressure may be

calculated if we know the radial distribution

function (j 0- "fa l") of the atoms in the liquid.
Kuper assumes that <^(f) - 0 if -r 4 c where C
is the mean interatomic distance in the liquid

and <^("0 -if r >c , and finds after a

straightforward calculation that

PvAW *" Cw) t"1 (l- £) (2-2)
where - r / is the van der V/aals potential.



Solving equation (2-1) graphically, he cal-
o

culates the radius of the bubble to be 11- \ P\ .

It is interesting -to note that he electro¬

static pressure a this radius is le than 10%
of ana ignoring it would ly increase,

the radius to approximately 11-• 3 . Hence

the only effect of polarization is to increase the

effective mass of the ion. Kuper has shown that

polarization increases the effective mass by 20%,
However in any calculation of the structure of

the bubble, the polarization can be treated as a

correction term.

There are a number of possible errors in

Kuper's treatment of the problem, which could

significantly affect the radius of the bubble.

The first is the estimated correction to the pres¬

sure on the. bubble from van der Waals forces. As

Kuper himself has pointed out, his approximation

to the radial distribution function is quite

crude and if one uses it to calculate the latent

heat per atom, it gives an answer that is 33% too

low. If one takes this as an estimate of the un¬

certainty in the van der Waals pressure, one



finds that the radius of the bubble could lie
c

anywhere between the approximate limits il- 3 A
CI

£

and 13'£ (\ , being smaller than i'I- 1 h if

i ^vlW | is- overestimated and larger than

11- \ A if \ ^vAw | is underestimated.

A second source of error is the assumption

that the kinetic energy of the electrons is given

by the formula . This assumes

that the bubble constitutes an infinitely deep well

in which the electron is trapped and that there

is no penetration by the electrons \</ave-function

into the fluid. This is clearly not the case. The

fluid constitutes a well of finite depth of order

V - />«
(2-3)

where t is the electron-helium atom scatte¬

ring length, yU is the. electronic mass and
is the density of the fluid. The approxi¬

mation that the well is infinitely deep can only

be made if

V. »



or

Since this criterion is not completely sa¬

tisfied there will be a significant overlap of

the electrons wave-function and the fluid. Hence

there exists the interesting possibility that

the electrostatic attractive forces -small at
°

_ L

IX- 1 A , but which increase as f - may

become large more rapidly than the repulsive

pressure exerted by the electron and hence redu¬

ce the bubble radius to a much smaller value

than Kuper found (Gross, 1965). There would then

be a finite probability of finding the electron

outside the bubble and the electrostatic pressu¬

re would no longer be that around a point charge.

Later calculations in this thesis (Chapters

3. and 1+.) allow overlap of the wave-functions

but find this causes no drastic change in the

radius. Hence it appears that the electrostatic
o

attraction is too weak at i X- \ f\ to promote

time collapse to a smaller radius mentioned above.

Only a detailed comparison of the energies in-



bulk liquid current,

current through two phases.

Figure 2.1. . (after Gareri, 1961)



volved could decide whether the smaller radius

bubble is more likely to exist than the larger.

Experimentally it may be feasible to decide bet¬

ween the two on the basis of effective masses,

scattering cross-sections or excitation energies

but the two radii are not sufficiently different

to make decisive experiments easy.

2. The Experimental Evidence.

The experimental evidence supporting the bub

ble model of trie negative ion in liquid helium

four rests mainly on the behaviour of the ion

as it crosses a phase boundary of helium. Careri

et alii (I960) performed the earliest experiment

of this type, the results of which are shown

schematically in Figure 2.1.. The gap between

two horizontal plates of a parallel plate conden¬

ser were filled or half-filled with liquid helium

On the lower plate was a radioactive layer which

ionised the helium in its vicinity and from which

ions of either sign could be selected by the ap¬

propriate field.

The currents collected at the top plate were



measured and plotted as a function of the field

across the space. When the space was filled with

liquid helium, the currents collected were the

same for both positive and negative ions and were

approximately independent of temperature. Above

the \ -point the -currents collected were ap¬

proximately the same whether the space was filled

or only half-filled with liquid helium, but below

the \ -point, the positive ion current, dropped

rapidly with decreasing temperature. The negative

ion current, on the other hand, remained high to

lower temperatures, though eventually it too dis¬

appeared near I K
As Careri pointed out this behaviour of the

negative ion can only be satisfactorily explained

on the basis of the bubble model. Firstly, since

collisions with excitations (rotons) in the li¬

quid are needed to enable either ion to overcome

the attractive polarization forces and cross the

phase boundary, the decrease in current with tem¬

perature is explicable in terms of the drop in

roton density with temperature. Secondly, since

the negative ion penetrates the surface more



easily than the positive, the negative must be

a substantially lighter quantity. This, since

the positive ion is suspected to be Ha x ,

rules out any such models as He ^ or a

negatively charged impurity atom.

Thus it is probable that the negative ion is

an electron. The final point made by Careri that

the negative ion is trapped at low enough tempe¬

ratures, argues against the model of a relative¬

ly free electron proposed by Davis et alii (1962)

for the negative ion in "e 1_ . For if the

electron moves through.the helium with an energy

of about 1 eV (see below), it would have this .

energy available to penetrate the surface on pas¬

sing out the helium. However if some of this

energy has been dissipated in creating a bubble

structure, then the electron would be trapped by

the surface more readily. This argument makes

some physical assumptions about the nature of

the energy barrier at the surface but accounts

for the experimental result. It would be interes¬

ting to measure experimentally the energy requi¬

red by an electron to penetrate the surface from



below for this might shed some light on the abo¬

ve theory.

These considerations have been given some qua¬

litative support by Sommer (196^). Sommer tried

to pass electrons into liquid He'* from the va¬

pour and found that the surface represented a

barrier to the passage of electrons of slightly

more than I eV . If the surface is kept

drained of charge and the energy distribution

function of the electrons impinging on the surfa¬

ce is known, then a measure of that fraction of

the current that penetrates the surface gives an

indication of the size of the energy barrier.

Sommer calculates the barrier to be about l* eV

but estimates that the errors.could alter this

by 30%.

More recently Woolf and Hayfield (1965) have

confirmed Sommers result that the energy required

to inject an electron into liauid helium is about

one electron volt. By measuring the spectral res¬

ponse of a photocathode both when covered in he¬

lium and when in vacuum, they can deduce direct¬

ly the extra energy needed to inject electrons into



liquid helium. They find a value of 1-02. t. 0-0?
This is in very good agreement with the value

I- 09 eV found by Burdick (1965) theore¬

tically on the basis of a free electron model.

3. The Quasi-Free Electron.

Burdick has calculated the energy of an elec¬

tron moving in periodic lattice. He considers so¬

lutions of the Schrodinger equation for an elec¬

tron moving through a periodic array of hardcores.

(v^ ir) - -4^ I ^-9 2-jjh
Writing ^(f) - ^ <£>

(2-6)
t i • f

b

where the vectors b are 3-tT times the

reciprocal lattice vectors generated by the lat¬

tice <x , Burdick shows that

__ tb. r

Ttn -
A ^

(2-7)

and applies the boundary condition that T(£)~ 0
on the surface of each hard sphere. ( ^ in



(2-7) is in fact calculated from the equation

( v"+ ir) ¥(c), k-xi X 7^-0
so that this condition has not been used yet).

Borrowing techniques from solid state theory,

where similar sums are performed to calculate

Madelungs constant, he obtains an algebraic equa¬

tion for 1<X
Calculations have -been performed for various

types of lattice; namely simple cubic, body-cen¬

tered cubic and face-centered cubic. These cal¬

culations yield the values \ ~li , 1-7C and

t 77 e.V respectively for the energy if the scat¬

tering-length t is 1 (where <xo

is the Bohr radius). If (_ - I- 17 <x0 , the sim¬
ple cubic lattice gives an energy value of

\ • 0 ^ e_\/ . All the above energies are cal

culated with the density chosen to be that of li¬

quid helium.

Thus from both experiment and theory we have

a picture of the electron moving as in a lattice

immediately after injection. Since the bubble re¬

presents a lower energy state, the electron must
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decay into this state in a time of the order of

\0"a sec; this being roughly the time re¬

quired by the helium atoms to move a distance of
the order of the bubble radius (WooIf and Rayfield,.

1965). Burdick suggests that in this process the

extra energy is dispersed by phonon emission. The

analogy with the strongly coupled polaron can be

invoked to show thau although the electron will

take advantage of any density depression in order

to aid the transition to the bubble state, there

is no energy barrier to be overcome and that, the

process can proceed spontaneously.

*+. The Electron-Helium Atom Scattering Length.

The value V \T> <xt of the scattering length

used by Burdick agrees with that found to fit the

observed total elastic cross-section of helium

atoms for scattering by slow electrons, (O'Malley,

1963). Moreover he, Burdick, calculates a pola¬

rization correction to the theoretical scattering

length \ li (>a.0 (Moiseiwitsch, 1953) and shows

that it also reduces to \l3>a . Moiseiwitsch's
o

scattering length calculation includes the effect



of exchange but not of polarization. The method

used by Burdick is due to O'Malley, Spruch and

Rosenberg (1961), who have modified the usual

effective range theory for short range poten¬

tials to include the 'long range' polarization

potential Vc^) = ^^ where cxl is cons¬

tant. Here ' long range' means the the potential

only falls off at large distances as some power

of T" rhe argument is essentially that the

radial equation

I £££ - % M11 w = °
(2-8)

does not have solutions which behave asymptotical¬

ly as linear combinations of solutions of the free

particle equation

€ 4 lcl - U(f) - o
cU* / (2-9)

unless V£) drops off for large -c more rapidly

than any power of f . In other words for long

range potentials it is not valid to drop the V(r)
term in determining the asymptotic behaviour of

solutions of (2-6).



The knowledge of the asymptotic behaviour of

the solutions of (2-8) is essential to the usual

method of calculating the phase shifts. The cor¬

respondence between the form of the solutions of

(2-8) and of (2-9) together with the boundary con¬

ditions that U(c-)-0 at t= 0 defines the phase

shift and hence the scattering length and the

effective range.

O'Malley, opruch and Rosenberg observe how¬

ever that the equation

( £ + , L[L^ + g- \ aw , 0
V / (2-10)

can be solved exactly, since the equation can be

related to Mathieu's equation by the transformation

LL(r) , ^ 4>(V) (2"n)
Hence, if two independent solutions are V (r)

and V?s (f) , then solutions of (2-8) that behave
for large f- as V?s (A) + "B> Vpt (r) may be
found if the potential in (2-8) is of the form

V (v) ■=• A V60 + ^/V H (2-12)

where A\J(r) is 'short range'. An expression



for the phase shift may now be found as the asymp¬

totic forms of \/fS if) and V pc(0 are known and
may be compared to the usual form

SUv j n^ i— u -v- /^ (/-) (2-13)

As Burdick (1965) points out if A VA) is a

hard-core potential the application of the above

is especially simple for the potential may be re¬

placed by the boundary condition that the radial

wave-function vanishes on the hard-core, but sa¬

tisfies (2-10) everywhere else.

The substitution t 1 converts (2-10), (in

the low energy limit, V~~ o ) into the equation

( * A + ^ *3 ' L(-L^ W) <P W ' 0 (2-xif)
where <p __ Ul(cM) , and this is the equation
for the spherical Bessel functions. Hence the so¬

lution of (2-10) is

5 L. (fi/r ) (2-15)

where 30 is determined by the boundary condition
on the surface of the hard sphere. The asymptotic

form of this solution so) is
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\ L \ — (f- + 0
(fit*) _ (t/f) -

(luOu (2-16)
Comparison of this with the usual expansion for

low energies in terras of the scattering length

gives the formula for the modified S -wave

scattering length.

I,- H '
s.

7s . ^(//
<i° (// y)(

v

(2-17)

\where a is the hard core radius.

The value of £ depends fairly critical-

ly on the ratio /S / \ , vanishing if \ = — fl
bur rending to \ if \ is large.

Now the atomic polarizability of liquid

helium lo2> f\s) gives a value of Q ■= ■ ft
and if the hard core radius is taken to be the

value \ = o ~J~7 A. which is the value

found by Moiseiwitsch (1953) the polarization

correction gives



t* 0- Cok- I 13 ^
(2-18)

This value agrees exactly with the experimentally

measured value (O'Malley, 1963) as mentioned

above.

9. The Positive Ion.

This section will describe briefly the theory

of the structure of the positive ion put forward

by Atkins (1959, 1963). This theory reveals the

strong effect that the polarization forces may

have. Around the negative ion the atoms are dis¬

placed beyond the effective range of these forces.

Atkins gives good arguments for assuming that

the positive ion is We- ^ where ro is
a small integer (probably rt - 2 ), and hence

that the charge is localized to a small region.

This being so the electric field around the ion

polarizes the atoms. By a straightforward ther¬

modynamic argument, assuming only that the liquid

can be treated as a continuum, Atkins shows

(see also Durney, 1963) that the molar volume V



of the liquid at pressure p is related to
the field L at any point by

. f WT -Yo J-0

(2-19)

where pu is the pressure at the point where
the electric, field £~ = O and P is

the polarization vector... Using the Clausius-

Mosotti formula, the relation

f - —.
£ T

(2-20)

where £ is the dielectric constant and

is: the distance from the charge, Atkins evalu¬

ates the integral approximately (where p— p0
is small) as vc (_f- f* ) . The change in
density in this region is,

Y hi

(2-21)

where V is the ratio of the specific heats;

kj is Avogadro''S number; is the mole-



cular polarizability; and u, is the velocity
of first sound.

The pressure and density both increase as
_ L , °

~T 1 as T' decreases and at 6 i> f\ from

the ion the pressure reaches the melting pressure.

However as both Atkins and Kuper (1963) remark

the continuum approximation breaks down at these

distances.and there is in fact no reason to be¬

lieve that a solid-like structure is formed. It

is certain that the density is increased over a

large distance around the ion and this causes

the ion to have a large effective mass. Atkins

estimates that about forty helium atoms move

with the ion which, if one includes the hyarody-

namic mass (Kuper, 1961) leads to a total effec¬

tive mass of approximately seventy-five helium

atom masses. This estimate is based on the as-

sumption that only the part inside 6 - 0 P\
contributes to the hydrodynamic mass, i.e. the

quasi-solid part. Gross (1962) has made a more

detailed appraisal of the flow pattern around

the ion, concluding that it is not simply dipo¬

lar but that far in front of the ion atoms move



in towards it because of the polarization forces.

Gross' treatment leads to very high effective

masses ZOO 1^1 He1* but as he remarks his

approximation to the boson-boson interaction is

not realistic enough to warrant drawing more than

order of magnitude values from the theory.

Atkins1 theory reveals that the polarization

forces play a very important part in determining

the effective mass of the ion. The detailed struc¬

ture close to the ion is not clear but this is

not critical to the arguments He also originally

proposed a similar model for the negative ion on

the grounds that the electron might behave as

though it were in the bottom of the conduction

band of an insulator, and that increasing the

density of the helium would lower the energy of

the bottom of the band. This idea has yet to be

worked out in detail but it seems likely that

any energy gained in this fashion would be offset

by the higher kinetic energy of the electron.

This energy increase is due to the reduction in

the space available to the electron between the

helium atoms. Presumably Atkins included this



change in the kinetic energy when he estimated

that the band energy would lowered. He gives no

details. However it would be surprising if the

total energy was finally lower than the energy

of the bubble structure, which involves a similar

displacement of the atoms but with a very pronoun¬

ced reduction in the energy of the electron.



CHAPTER 3.

SOLUTIONS OF THE EQUATION OF MOTION.

In this chapter we shall set up a Hamilto-

nian that approximates to that of an electron in

liquid helium. In this chapter and in most of

the rest of the thesis we shall take as a model

of the negative ion, a light impurity in a hard-

sphere boson system. A hard-sphere system is the

best model of liquid helium that is amenable to

calculation. Even so, since no mathematical tech¬

nique has been devised capable of handling it over

all ranges of its parameters, it is unphysical in

that it requires the system to be both dilute and

degenerate., It is not the purpose of this thesis

to review its successes and failures but merely

to recognise its limitations in particular with

respect to the density of the system.

Having stated this limitation we are imme¬

diately led into a situation which cannot be

glossed over. It will be shown below that the



existence of a bubble-like state depends on the

strength of the interaction between the bosons

and the impurity and hence indirectly on the den¬

sity. With values of the masses and scattering

lengths pertinent to an electron in helium, we

find that tue minimum density showing a bubble

structure is already above the maximum for which

our model is valid. This is not as serious as it

sounds, for the magnitude of the coupling cons¬

tant may be taken to be model-independent. In

other words, if we use the actual value of the

coupling constant of an electron in liquid helium

our model shows a bubble structure despite the

low density. Hence we feel reasonably justified

in extrapolating results found with the model to

the real physical problem.

I. Elementary Considerations.

In order to permit mathematically the forma¬

tion of a bubble-like state in the boson system,

we require a formulation of the problem in which

the bosons may be described by a spatially inho-

mogeneous state.. Clearly if the bubble is formed



and is at rest with respect to the surrounding

boson fluid then we may expect the state of the

bosons to have spherical symmetry about the bub¬

ble centre. Moreover we expect the system to re¬

turn to its undisturbed state at not very large

distances from the bubble. Indeed on the basis of

tiiis type of argument we can make a very crude

variational estimate of the radius of the bubble.

Assume that the electron is effectively trap¬

ped in an infinitely deep spherical well of radius

Similarly if the only effect on the boson system

is to decrease the volume available to it by an

r hen its energy is just

(3-D

amount V ~ A-"* ^ , then the energy

of the system is

(3-2)

where we have used the ground state energy of



bosons interacting via a hard short-range repul¬

sive potential derived by many different authors

and methods. Since V is small compared to A
the volume of the system, equation (3-2) can be

written

/jlfa N £E
at
iSA1

/ itA
o

V

Si
H Ah
,5-A a

A'i

(3-3)

and the radius of the bubble may be found by rni-

with respect to f

ile find

nimising i A

r J =
(A

y

u \»/,
on

iC - 'h
I 11

A

(3-^)"

where ^ - 'y.II is the number density of the
bosons. Though the energy (3-2) cannot be applied

to liquid helium, it is of interest to calculate

Y~ on inserting values of cl and

that are approximately those of liquid helium.

Taking

and

ex. , the boson diameter, to be 3" *7 A

r to be (3-6 a)' we find the radius



of the bubble

V « \l-li ft
(3-5)

It is not surprising that this, estimate is

fairly close to the phenomenological value found

is merely a refinement of the following physical

argument. London (195L0 pointed out that the

properties of liquid helium at low temperature

are essentially due to the zero-point energy of

the atoms and the relative feebleness of the

attractive forces between them. Indeed he states,

that if one treats liquid helium as a system of

hard spheres, the energy per atom lies somewhere

between Lena's (1929) value for a low density

system

o

by Kuper of ! f[ . For the above calculation

(3-6)

and a high density limit

(3-7)



where c is the mean interparticle distance,

, and R -= 2 6C is the distance

between centre of nearest neighbours in a close-

packed structure.

Since liquid helium is a fairly dense medium,

we will take (3-7) as the energy per atom. Then

an approximate value for the radius of the bubble

can be obtained by equating the pressure

exerted outwards by the trapped electron to

the pressure h. f> of the bosons inwards on the

bubble volume,

. O. ,

"if "f- i i k

zn(R-A)
(3-8)

In liquid helium, R-cl ~ - c. , so we

arrive at the approximate expression for

M5 _ 1 / !V\ \
c) ig ,r IaJ (3-9)

or
1- - J- ( h c"

™
(3-10)

Equation (3-10) gives a value of of



approximately \ 0 !\ . Now it is clear that

what we have done to obtain (3-10) is an appro¬

ximation to Kuper's method and that the method

used to obtain (3-3-) is equivalent to it, except

insofar as we have used different expressions for

the energy per atom.

Expressions (3-3-) and (3-10) are however

transparent in a manner that Kuper's expression

is not. Both show how the radius of the bubble

is proportional to the fifth power of the ratio

of helium atom mass to the electron mass. The

other factors in each expression merely define a

significant unit of distance in the boson system,

effectively the interparticle distance. This has

been deliberately brought out in (3-10) by the

substitution ( R- c

To develop the elementary treatments, given

above we need to consider the Hamiltonian of the

system.

2. The Hamiltonian.

The Hamiltonian of the electron and the

interacting boson system can be written down
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immediately in configuration space.

Ir\ * H -V- H + H
t e bz. (3-11)

where

I v: r
\ L > \L ^ ^

Hkt 0
where the coordinate vector ^ refers to the

position of the electron and xto the <-

"boson. In writing down this Hamiltonian it has

been assumed that only two-body interactions

need be considered and that these only depend on

the modulus of the relative distance between the

interacting bodies. We have also assumed that

there are no electron-electron interactions,

i.e. the density of the electrons is low enough

to merit treating them as single particles.

In order to be able to treat the boson sys¬

tem we have to know Its lowest single-particle

state. This state will be occupied by the majo-

• a



rity of the bosons. The presence of the electron

makes it impossible to assume that this state can

be described by a wave-function, /(C) = const.,
as is usually done when discussing boson systems.

In order to find the ground state we will make a

Hartree approximation and assume that the wave-

function on which the Kamiltonian (3-11) acts can

be written

V ( ^ > *1 " x-v) * nfei)- - • u (xJi3)
(3-12)

where' (j)(b) and Life) are normalized to unity.
Using the variational method and evaluating

f H ¥ AI., - ..Ajj j '■ " L ^
X

(3-13)

where all integrals are over the volume of the

total system, we obtain N equations of the

form

[X ^ +1 S IX
+ X| a'n) " £k v(-xk)

(3-1Y-)



and one of the form

K V,
UAA

i- \
/
/

J

Z/A v 2. r Z- ) ^i) (p (s) = M:'Z)
(3-15)

where k ~ \/ (i x 3 - x k|) and \J ^ . \J ( ] ^ _ a k\)
These equations can be written, dropping

suffixes and substituting L^x) for jN as

LZV + ^
■t {4%) w(i ut(x) =«, tpx)

(3-16)

L" £ ^'"Jrj d-(i)W(i «-*i) lift) at] <j,ft) .■J e o ft)

(3-17)

Equations (3-16) and (3-17) are essentially

the same as obtained by Gross (1953) using a se¬

mi-classical approach. This is not surprising as

the semi-classical approach to the ground-state

is completely equivalent to the Hartree one. The

Hartree method we have used here makes clear the

ideas behind the calculation. We assume that each

atom moves in a ootential due to all the other



atoms and to the electron and that all atoms are

in identical states. 'The electron is assumed to

move in a potential due to the presence of the

bosons. These potentials are self-consistent in

that they depend on the wave-functions (A('x) an^
i .

themselves.

To study equations (3-lo) and (3-17) we

need to make some assumptions about the nature

of the potentials V (j * -x' jj and W ('•'i ~ i/f).
In liquid He L , we would expect them both to

consist of a strong short-range repulsion accom¬

panied in the boson-boson case by a van der V/aals

attractive force and in the electron-boson case

by a long range attractive polarization force®

In the following exposition we shall assume the

repulsive forces to be dominant. The neglect of

the polarization forces may be justified by re¬

ferring to Chapter 2., where their effects were

shown to be small. The inclusion of an attracti¬

ve term of the right magnitude in the computer

calculation described below, only altered the so¬

lutions within the error range. In neglecting

the attractive component of the boson-boson po-



tential, we are departing from reality. Kuper
has shown that this can reduce the effective

pressure exerted by the atoms on the bubble by

more than 50%. To a certain extent we can incor¬

porate the attraction in our definition of the

atom-atom scattering length but this is not com¬

pletely satisfactory. The concept of a uniform

negative potential applied externally to the sys¬

tem fails when we have non-uniform systems, for

we do not know how to calculate the change in

potential at the boundary. That we obtain a radius

in good agreement with Kuper!s calculation implies

that the result is not strongly dependent on the

model. The problem, however, really requires an

adequate treatment of the effect of the attrac¬

tive part of the potential.

3. The Model Equations.

As mentioned above the model that will be

considered is that of a light particle in an

imperfect Bose gas. All interactions will be ta¬

ken to be purely repulsive and of short-range.

The force between the impurity and a boson par-



ticle will be assumed to be large compared with

the boson-boson interaction. These potentials

will be described by the pseudo-potential

V (l i) XlfLB/ 2 tv\ ' > (3-18)

md

W (ii- »i) -- tiln ^|x -sj)^ ' (3-19)

Here a. is the boson-boson scattering length

(the hard-core diameter) and t is the impurity-

boson scattering length. Since the impurity mass^
io . is assumed to be much less than the boson
/ >

mass M ,( yu M. ); in (3-19) the reduced mass,

( y(a.'"1 +- AV"') _) ^as been replaced by the impuri¬
ty mass yii-

The use of the potential (3-18) to describe

the boson-boson interaction restricts the calcu¬

lation to low-density systems., for this potential

only simulates the hard-core correctly to first-
/ i \IA-

order in the parameter (_o- p) in perturbation
theoretical calculations of the ground state

i t
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energy. V/1thin the Hartree approximation made ear¬

lier, this first order term is all that could be

expected, since no particles are permitted to be

in 'excited1 states. It is for corrections to

this first order energy of the system due to the

presence of the impurity that we are looking. The

use of the potential (3-18) is consistent with

the Hartree approximation for (3-18) is essen¬

tially an 'optical approximation'. That is, the

rest of the boson system is replaced by a medium

having an index of refraction (see Huang, 1963),
and the wave-functions required are those of par¬

ticles moving in this medium.

Inserting the potentials (3-18) and (3-19)

in equations (3-16) and (3-17) and dropping a

factor of order h! ' , they become

(3-21)



Let us look for spherically symmetric solutions

of the form

- r) Y,t (e,<lO>2. ;i,L~ \ / (3-22)

and put ^-0 , so that only the radial depen¬

dence of the wave-function is considered. Then
1 'L 1 i ^

writing £ T L k. and c „ ~ k,°
i

i K e 2.^
the equations (3-2o) and (3-21) become,

R£') * Ck> - C«)«,(-•)' o (3-23)

w £ ^ £!1) + (h1 - - u(%) yv.) R
(3—2lJ-)

with the normalization conditions

f 11 r£ f j R x r'L <R -rh >l )0 (3-25.)'

I
ITi \ R, t-"1 cl r - N^

o

(3-26)



In equations (3-23) to (3-2o) we have assumed

that R^(<-) and "R-Jq) are real (we are looking
for stationary solutions) and we will impose the

boundary condition that both wave-functions va¬

nish on the wall of the container, T - h- .Of

course, since these are radial wave-functions,

we only consider solutions that are finite at

the origin.

To show that equations (3-23) to (3-2o)

have solutions that describe a bubble-like struc-

ture, let us first consider (3-2^+) with Kv - O
i.e. when no electron is present.

& 1 t f; * {*- K) K ' °
(3-27)

This equation should have a nearly uniform solu¬

tion, with = everywhere except at the

wall. If we let the radius of the container be¬

come infinite, 7? , then = j)Jx every¬
where satisfies the normalization condition.

Equation (3-27) has a solution of this form if

' % ir <x . The energy of the boson

system in this uniform state is N i,1 , in
r* v. "



J* ^
units of . The factor half arises since

we have counted all boson-boson interactions;

twice in finding M kx by the Hartree method.

Equation (3-27) is a very interesting non¬

linear equation that it would be useful to be

able to solve with other boundary conditions

than those required for the uniform solution. It

is> an equation of the type

'i ^ , 4 w - o<JU 1 cVr ^ 1 y
(3-23)

known as Emden type (see Davis, I960) after the

astrophysicist R. Emden who first studied equa¬

tions of this nature in 190?. We discuss this

equation more fully in Appendix A . Here, all

we need to know is that there exist solutions of

(3-27) that behave like the uniform solution at

large distances from the origin but which vanish

at some finite distance from the origin.

Now we can give a qualitative description of

the bubble-like solutions of (3-23) and (3-2k).

Let us relax the boundary condition at t * 71 and

assume simply that (v) /?/' and 1\ I'D O



as T" —? . Also assume that &i(p) ~ 0 and

W (0) is so large that

4 K C°) C
' (3-29)

We can take = 0 and ^ q at the origin.
cl-r .

Then Rv(r) behaves approximately as kx / -r

and (\-) remains small but steadily increasing
until such a radius that

u t ( d) c * c
(3-30)

(the classical turning-point). At this radius Kv(0
increases rapidly with f- , but the term tfvfc, K-

has the effect of turning the wave-function to the

asymptotic value pt . K, («-) on the other hand
behaves like the wave-function of a particle

seeing a finite potential step and decays expo¬

nentially to zero. Note we must have kv <
for this behaviour.

Solutions of this form, if they exist, des¬

cribe the ground state of the system since we have
assumed that the wave-functions have no nodes.

Equations (3-23) and (3-2*0 have been studied



on an analogue computer and solutions of the type

described above have been shown to exist. The pro¬

gramming and details of the techniques used are

discussed in the next section. The results are

displayed in Figure 3.2..

i+. Analogue Computer Calculations.

An analogue computer provides a rapid and

convenient way of analysing non-linear differen¬

tial equations such as (3-25) and (3-26). The in¬

dependent variable on the machine is time, 't ,

and the dependent variables, in our case R.(-0
and (^(r) , are calculated as functions of time
progressively from some initial value. The tech¬

nique is most useful when the solutions are

stable. Stability can be rigorously defined for

an analogue computer by Liapunov's definition,

i.e. a solution x(t) of a differential equation

is.stable if for each e> o , there exists a

(3-31)

& > o such that any solution u, It) of (3-31)atisfying|1 x- u \\ < i for i ^ o also aa-so sa-



tisfies \\ x- - H ^ 6 for all t • Here
13.

\\ ~P 11 = zl 1 x i j , where x is an yv - dimen-
I* S

sional vector.

Now the set of equations (3-23) to (3-26)
have boundary conditions at both ends of the

interval over which we wish to calculate i\. and

. For we are given ~ ®

T _ q and also R. = ^ Q at « £ .

Therefore we have to calculate the solutions

starting from some trial values of R. (o) and i?,(o)
and vary these initial values until we find the

solutions that satisfy the boundary conditions,

at 7t . Moreover from these solutions, we have

to select those satisfying the integral condi¬

tions (3-25) and (3-26) by varying kl and kz
until the correct solutions are found.

The equations are simplified somewhat if we

let N and PL —> . At distances far from the
o

origin ( "r 3i> b the bubble radius) we expect Kj-y)
to be negligible and Rx(t) to have the value •

Hence we can set ^vc\o and neglect the nor¬

malization condition (3-26) since corrections
j T.

to k due to the finite size of the bubble



will be of order kJ . Thus we can replace (3-26)

and RjK)* 0 by the single condition ti
6as

tnat

Nov; the solution Rx(0 - o'J1 to (3—2k-) is
/

unstable as is shown in the Appendix. Also we are

looking for solutions of (3-23) that behave like
.. ^
f e for large -r and these are also

unstable. This, is easily demonstrated if we as¬

sume that R., M =■ po ^ for all r "> ^->c say.
}

Then (3-23) becomes

— i _ |<x R, - 0
Tv cu- oir 1 (3-32)

-where

i< ^ = ( A ^ - U? )fs " ' ^ (3-33)

Letting R, =?■ f "X > we have

€ (3-34)

■<v
which has solutions v,. + b

—> -Iix- C ,o
Let x ^ o e , and ^ - o b +t>e •

S> > O , then l! ^ — * i| = at r- \ , but

11 -x ~ .. ^ e. ^ ^ for t >4- so given > o

v;e can alx^ays find a value of ~r such that



» i- " 1 \' >6 irrespective of the value

of \ . Thus the solutions are unstable.

The significance of this instability on the

analogue computer, is that it is impossible to

set up equation (3-32) and to choose the initial

conditions on i?.t and c^/jLr (or equivalently on "X
and d* n ) such that the computer plots the so¬

lution /v • Any small error in the ini¬
tial conditions, such as are inherent in an analo¬

gue computer, results in an exponentially accu¬

mulating error in the solution.

This error can be largely avoided in the re¬

gion of interest by careful setting of the para-
r

meters so that b is close to zero. But this in

itself would not ensure sufficient accuracy. To

obtain this we break the interval over which we

calculate into two parts. For f larger than

some value, ^ , we can calculate with increasing
T and for f- less than , we can calcu¬

late backwards to the origin with decreasing .

Although we have now two extra parameters to

vary, the fact that the controlled values of the

functions and their derivatives are closer to the



Figure 3.1.



region of divergence means that we can trace the

critical solution with much greater accuracy.

This procedure was adopted and the critical

solution was held in the unstable region by using

a cut-off where this was necessary. The function

that diverged most rapidly was the function l\x60
and this, for h >^ , was held to its maximum
value as soon as its derivative

vanished. The parameters were chosen to ensure

R%(-v^<) Cu • For ^ ^ , Y" itself was
used to switch the comparator and (-v") was

held to zero for all "t~ less than the value

where both and X^rJ0Kr were small simulta¬
neously.

The circuit diagram is shown in Figure 3.1..

The symbols used are defined as follows :

denotes an amplifier used

as an inverter

denotes an amplifier used

as an integrator.
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X

3
X + 3 T 10 2

P*

denotes an amplifier used

as a summer. (The gain is

indicated if it is not

unity).

denotes a potentiometer.

(Note ^ is necessari¬
ly <' I ).

denotes an amplifier in

high-gain mode.

denotes a quarter-square

multiplier used to pro¬

duce a product.

denotes a quarter- square

multiplier used to pro¬

duce a quotient.

-W-

L_r

denotes a solid state diode

l(x> denotes a diode function

generator.



X

denotes a comparator.(The

relay switches when x-r ^

passes through zero).V I

Figure 3.1. does not show the switching me¬

chanism incorporated to enable rapid changing

from computing for ^ ? the breakpoint, to
computing for f- 4 *3 ♦ N°r is the simple circuit

shown in the diagram. The variables marked in

the diagram are unsealed and only indicate the

proportional variation of the voltage at that

point.

■5. Scaling and Procedure.

The equations. (3-23) and (3-21+) are not

conveniently scaled for setting up on the com¬

puter. If we take as a unit of length, ■= (i crur,c

that evaluates the integral,

the equations become

0
(3-35)



(3-36)

where we have also written for /)/~ R, and
.. (/i / " ^

\x v for ( L| f f0 ) R, so that all the terms
are dimensionless. The normalization condition is,

in these units :

1 R clr - \
(3-37)

On an analogue computer all explicit variables are

represented by a voltage that must not exceed a

certain maximum. On the PACE TR *+8 computer this

maximum is 10 volts, so we could choose variables

that have a maximum modulus of 10.

It is more convenient however to call 10

volts, one machine unit, and to scale the varia¬

bles to a maximum of unity. Rough approximations

were taken at first for the ranges of the varia¬

bles and these were refined as the nature of the

solutions became apparent. The final scaled va¬

riables selected were

a) (to R0 b) (Z.xtoJ'R,) o) (zL.)
d) (>A) e) (.01,-r)



Each of these quantities lay in the range

- \ ^ x < \ over all the region of computation.

The breakpoint ^ was chosen at (- o ^ t) =■ ■ bt>
and the integral was evaluated at the maximum

range of t-X5 . At this distance R( had

dropped to a very small value and the integral

was virtually constant. Several runs were made

with different values.of ^ to ensure that
the solution did not depend on the chosen break¬

point.

The procedure adopted to find these values

was the following :

1. To obtain approximate solutions, it was pos¬

sible to switch the computer into its slowest

Rep-Op. mode in which it continuously cycled

from . ^ to r- Av or from ^ to •<- o
depending on which section had been chosen.

In this mode the parameters could be varied

manually, watching the functions on a oscil¬

loscope, until the boundary conditions were

roughly satisfied. Because of the unstable

nature of the solutions, only approximations

to them could be found in Rep-Op mode.



2. The computer was switched to Operate and

and R j were varied to make R» (q) show the
correct behaviour as -r-^G and as r -? .

Rx(^) and ?\'r were then varied to en¬

sure that i\L(r) satisfied its boundary con¬

ditions and (\v(^) and £,(<y> readjusted if ne¬

cessary. The solutions were then plotted on

an X- V plotter and the value of the inte¬

gral read off.
i *-

3. was varied to increase or decrease the

integral and the procedure repeated. Although

tedious, with a little practice, it became

possible to find solutions satisfying the

boundary conditions fairly rapidly.

6. Errors and Limitations.

The main source of error in the analogue

solutions of equations (3-35) and (3-36) lies in
,j / jV\ \

the- very large constant" (.(_-£ j , and in the non-

linearity of the equations. On an analogue compu¬

ter, generation of products or squares of varia¬

bles is effected by diode-function generators.

These function generators are set to produce an



output voltage that is the square of the input

voltage by means of diodes biased to conduct at

preset potentials. The PACE TR *+8 quarter-square

multipliers have seven diodes to cover the range

0-10 volts, which implies that a parabola is ap¬

proximated by seven straight line segments. Thus,

if the output voltages are low the errors are high

and the makers only claim an accuracy of 0.25%

of full scale voltage. Hence below 0-5 volts out¬

put the accuracy is less than 5% and the multi¬

pliers should not be used below this voltage.

(Multiplication in a quarter-square multiplier

is performed by using the identity

~ j- (3-39)
Hence the name).

Unfortunately the critical product in the

equations, the term R*. is such that &
is small when R( is large and Rk is small when

Rx is large. This meant that the output of the

multiplier was always small (the variables are

scaled so that they never exceed one machine

unit) and hence optimum scaling was necessary.

This was effected by the device of overloading



the multiplier in the 'uninteresting' region

where Kx- 0 . The variable \iK (scaled) was
0 - -

only greater than 0-1 machine units when K-y u .

Thus it was possible to multiply it by a factor

ten to ensure maximum sensitivity of the multi¬

plier in the region where its output had most

effect.

Note since the solutions were computed back¬

wards towards the origin from the breakpoint ,

the overloading of the amplifiers had no effect

on the results whatsoever. If the solutions had

been computed forwards, with T increasing, the

amplifiers would have had to come out of an over¬

loaded condition, which takes an appreciable

time. Thus the results would have been meaning¬

less.

Despite this improvement, the output of the

multiplier would still have been low, since the

scaled variables were always less than unity and

one or the other was small over the whole inter¬

esting range. This was partially avoided by pro-

ducing in the same multiplier the term kx , as

is shown in Figure 3.1.. This meant that at least



one of the inputs was close to unity over the

full working range of the multiplier and at the

same time was physically satisfying as it is just
o s (j i^\ f) ^

the sum of these two terms, Kx +■ — Kv Kx
that determines the behaviour of the function

An inaccuracy that does not affect the na¬

ture of the solutions but could cause numerical

errors is involved in evaluation of the norma¬

lization integral
• ^ -N

T - \ A rJ C

(3-^0)
t- f) ~L

Here again we needed to generate C \is , in a mul¬

tiplier the output of which became small as

Vm o . Once again since we had the break¬

point at n-. u we could rescale in the re¬

gion where was greater than ^ to produce
more accurate results for that part of the inte¬

gral in this range. However, the errors involved

in evaluating the integral are estimated to be

r 2 Vc . i'his error did noi give rise to a large

error in the wave-functions .A number of runs were

made with the calculated value of the integral

lying within I'0-0-05 and the difference in
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the values of the wave-functions for any given

f , was found to be less than Z . Rather
closer limits can be given to the error in the

value, of k , as the scaling was such that ZoU* was

actually set on the potentiometer. For k, , the

error is estimated as approximately ^% .

It is worth noting that the instability of

the wave-functions did not limit the accuracy with

which solutions could be found, for the solution

that was the critical one between diverging ones

was, in fact, quite definite. At O , the terms
4 P

iz Lz> in the equations caused the slooe to change-r ft. r x *

rapidly (became infinite) unless the correct
C\ ^

solution was found. This divergence made the cor¬

rect solution more definite than it would have

been had the others not diverged. It 'was only when

Ka tended to unity or when tended to zero, whe¬

re the. solutions were so unstable that we were for¬

ced to use a cut-off, that errors arose. Close to

cut-offs the computed function is undoubtedly

inaccurate and we can only imply that this function

approximates to the solution of equation (3-36) in

this region. In this next chapter, it is shown that



Figure 3.2.



wave-functions of approximately this form do cons¬

titute a minimum in the energy of the system and

this energy is evaluated.

The solutions have been computed for a num¬

ber of values of the parameter and for

two values of l_ for given cv and .

It should be remembered that we have taken hc to

be unity and hence decreasing ot is equivalent to

decreasing the density of the boson system as

"well as decreasing the nass-ratio. In the next

chapter a minimum value for cc , giving solu¬

tions of the type shown in Figure 3.2. is cal-

culated. The value of fc, , for each value of the

parameters is shown in Table 3.1..

In Figure 3.2. the curves labelled 1, 2, 3,

k, are the dimensionless functions corres¬

ponding to the values of ^ and & in

Table 3.1.. The curves labelled 1', 2', 3', *+',
are the complementary solutions k!, . The x-axis

shows distance from the origin in units of "TV, .

The behaviour of the functions for the dif¬

ferent values of the parameters is readily under¬

stood quantitatively. For small ^ , which cor-



TABLE 3.1

oi 1
CK

C K

1 5.24 x 103 .222 .0275

2 1.18 x 104 • 50 .0314

3 1.0 x 103 .222 .0497

4 5-0 x 102 .222 .0651
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responds to large impurit;, particle mass, or low

scattering cross-section the bubble radius is

small. Increasing (? for a given mass-ratio results

in a steepening of the wave-functions but no ef¬

fective change in the radius.
o ,

The particular choices of ok and were

governed partly by the need to equate the model

to the only known physical system, that of an

electron in He il . If we take IX x \0 ,

W//*- as the ratio of a helium atom mass to the
electronic mass and o- as 2-1 (\ , we have for

the two values (L= Sl ^ and • 2X2 ^ ^ ir^xio1

and X lo3 respectively. The value

is the experimentally determined electron-helium

atom scattering length. The lower values of oc

were chosen with the intention of seeing whether

approaching the limit of applicability of the

model was detectable as pronounced instability.

This was verified.



CHAPTER 4-.

THE SELF-ENERGY OF THE ION.

I. A Variational Estimate of the Energy.

To obtain an estimate of the energy of the

electron-bubble structure we minimise the energy

_ f f eAc, - . I1* „

(W)

The Hamiltonian H is given by (3-11) and the

potentials by (3-13). and (3-19).

H = --1^1+ > >
1 I > 6

- f r + \
2-/s- 4/A A- /

(4-2)

The many-particle wave-function Fr-
may again be taken to be the product wave-function

- mA
Y - Pty.N Ui*K) ■ U(xN)

Ct-3)



where j (j) (j) d ^ = 1 and J U U i x -- Kl .
The choice of trial wave-functions may be

governed by the results of the preceeding sec¬

tion, for the 'best' wave-functions are those

plotted in Figure 3.2.. For the boson radial

wave-function an expression is needed that beha¬

ves approximately like the Fermi-Dirac distri¬

bution function substracted from unity

Unr) . 1 [i - i

(Mt)

while for the electron wave-function, we need

an expression that behaves as near
- tc f-

the origin and as e as -r —> . On the

other hand, the choice must be tempered by our

ability to perform the integrals and the mini¬

misation, so we choose for (p (r) the function

<b (>) = A (I + Vr) e ^
0-5)

For (A(?) choice (d-^) leads to integrals

- i



that can only be performed if we make use of the

Sommerfeld expansion for this type of integral,

i.e.

r 4^. = 7^^ + iV £'(t) + .K + \ )o C
(W>)

However this is only valid if <p(*) is slowly

varying over a range of width h- about -x - i
and the function (^-5) is not sufficiently slow¬

ly varying. Hence we choose for tlW a function

for which the integrals can be evaluated exactly

ll(r) . 1 (l-
- O j 1- ^ \>

(Li—7)

Inserting these choices in (^-1) to C+-3) gives

f- K rAjfS'-'-*

(=+-8)

In all the above integrals the radius of the
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container may be let tend to infinity with¬

out complication, except in the second integral

where there is a term of the form

r~ftlUv-e V rUr i- V? ^ a 1
3 V 1

Now &
malisation condition so

72
t- r t_

61 r^<kr =- IV ~ au Q from the

(6-9)

nor-

il 3_r3
£3

1 k + !f
2 C-1- x r 4,

(>+-10)

Hence if we let , the effect of (6—9) is to

contribute to the energy two terms ;

*

2^ .

a

3
J

(6-11)

The first being the energy of the undisturbed

boson system and the second a contribution to the

total energy due the decrease in the volume avai¬

lable to the bosons.

The remaining integrals can easily be eva¬

luated in terms of incomplete gamma functions of



integral argument. The normalisation constant of

is

ft' Y2 '/•1-

(ft—12)
7T

The expressions simplify if a change of

variable is made. Writing /C and x-Yi> so

that 3c and ^ are dimensionless and putting,
as in Chapter 3.,

rc '

the energy (ft—8) becomes

e. n
Z*H X

i (\xr. lift 1 i , >L ^ ^ 4- us

''A.

=■ -ix
2A 2c.

4-

43v+W) + l(s+,T3%Tf + «(,a'

13)

where
2

Fix,*)* *if- ^(-u) + 23 .2! e5(^ +£ (f!
- u « + 31 v

2(.

z - (2*+*) (ft-ift-)
W - l(x+i)

and oZ is the coupling constant defined in the las
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chapter
-

t 'H
A

and c t/ (if-15)5> - V.

Differentiating t with respect to 1) , x and
^ , and equating the results to zero, we

obtain

\7x x*

I . <L* H(.,^

i< &(», i)

7

'2.« x1

7 W 7

16)

(if-17)

(if-18)

where

S|,) • <««

c<» ■ S " K' - y (if-21)

~^) /a) = - ^ -1 fil , 11 + 4ii 13 i 7St^) (lf_22)



H (*,3} ; -
1

■h L
-t -x-

- 2 F(*, O

2lHx) + ^ (t+xHUI0^i"^
lx(u^+^) ( iH'iv) +1U(t4lx) (js-j*

+• 2^o i - i
£-t Li ^ C+-23)

and

& ( x / ii)

- x"1 ( U%)v e"lx + xV1k £(l+1x- 2xv)( u*) [Vi
4- (U»«x 4-UV -10*»)(^- i) +
(a^-x +llx"_ 40x^^-1^4- UX(342x-
+ HWl-.0x)(3,-J-.) - 2y>,'&-i)~ (U--2h)

The variable \> can readily be eliminated

from equations (^-16) to (tf—18) giving the equa¬
tions in X. and ^ :

H h' 1 ^
i ^ 7 Az (^-23)



where A =• A J) - S C . These equations

have to be solved numerically. This is more easi¬

ly done if we rearrange the equations so that

the left-hand sides depend largely on <3 and
the right-hand sides on x . This can be useful¬

ly done provided • The equations actually

solved were

The solution was found to be approximately

and

(h-27)

oc - 2- ^

<j - v 10
C+-28)

which gives for L , Y and T

l> « 12- O T
c

Y = k- ^

1 2-^2 ro (**-29)



where cC and 1 have been taken to have the

values

= 5 - Zk X 10^

S. -122 ('"30)
Figure ^.1. shows the wave-function used abo¬

ve with the calculated values of fcy , V and y

and also for comparison the computed solutions

for the same values of « and £ . The solid

curves are the computed solutions and the dashed

curves the variational ones. The solid vertical

line is the position of the step found variation-

ally if a step-function is used for Ufr) . The

difference between the two sets of curves shows

that the wave-functions C1)--5) and (*f-7) could

probably be greatly improved. The function

is too sharply peaked at the

origin. The function

(p (r) = A ( 14-V-r 4- e_ (1+-31)

as used by Pekar (19^6), would simulate the be¬

haviour near the origin better but the extra pa¬

rameter would make the minimisation procedure



more difficult and tedious. Moreover the improve¬

ment in the value of the energy obtained would

probably be small. Pekar (1951) remarks that in

the polaron theory, C+-31) improves the energy

over (k-7) by only 2$, and this can be taken as

an indication of the order of magnitude of the

difference one might expect.

Better wave-functions for the boson ground

state are not hard to guess, but difficult to

use in practice. The function (*+-*+) is one such.

In order to obtain an estimate of how important

the choice of wave-function is, we can minimise

the energy using a step-function for the boson

system and (*f-7) for the impurity. This is equi¬

valent .to putting » in the above and igno¬

ring the infinite surface energy term. The results

for the two sets of wave-functions used are shown

in Table *+.1.. The energy of the impurity-boson

system is

r _ i>
. N '

2^ 1 2(\ ^ 32-)
where is given in Table *+.!..



TABLE 4.1

Exponential Step

t 12.57 16.12

X"1 4.42 4.39

T 2.92 0

5.24 x 103 5.24 x 103

i .222 .222

£ 2199.5 2235.4



A rather surprising result is that the step-

function representation of the boson state in¬

creases the energy over the 'improved' wave-func¬

tion (*+-7) by only 1.6$. Thus for values of

(the coupling constant) such that (3 > (Or; , the

spherical well model for the ground state of the

boson system is probably satisfactory.

For values of t <( (<%„ , the slope of the

boson wave-function becomes less as can be seen

from the solutions for low oc in Figure 3.2..

This region will be explored in section *+.3.

where an estimate will be made of the minimum

value of showing bubble-like solutions.

Here we will compare the energy (*+-32) with the

energy found by Burdick (1965) for an electron in

a periodic lattice. The values of the parameters

and ^ chosen above, were made with this

comparison in mind.

The energy (*+-32) is expressed in units of

.If values of and ,

that are relevant to liquid helium are used, we
6

find -Co - -"2 3 A and the value



7*K

ET- W^ .12^ ^ (3-33)

for the variational upper bound to the energy of

the system. This should be compared with the ener¬

gies V i-0 eV found by Burdick at approximate¬

ly the same densities. The model used above is not

applicable to densities as high as liquid helium

densities, C°?p "0 > 'bu"t result suggest that
probably the bubble represents a lower energy stru¬

cture than a 'free' electron propagating through

undisturbed He 1 . The difference between these

energies is the binding energy of the bubble stru¬

cture.

2, Excited Electronic States.

The simple spherical well model of the bub¬

ble gives rise to the following possibility. The

depth of the well.is

and the radius from Table ^.1. is

I - u>- u. (3-33)



From the simple quantum-mechanical theory

of the spherical well, it is known that the well

will support a p-state if

when . Hence since (*+-35) satisfies this

inequality, there exists an excited state of the

electron that would still be trapped. Actually

the radius of the bubble is sufficiently large

to maintain a second s-state, but this is close

to the top of the well and the curvature of the

walls may increase the energy of the state beyond

the well depth. It is straightforward (see for

example Schiff, 1955) to calculate the energy

difference between the ground state and the

p-state. We find

(5-36)

\Jith (5-35), this condition becomes



and between the higher s-state and the ground

state

- £~s - 7- o ^ x. ic?'1" ( ~ })M V / (1+-39)

If helium-densities are used to determine f~0

these differences are, »i50 eV and «A/
respectively. Thus, with radiation of about

2\ 0yu. wavelength it, should be possible to
excite the electron into its p-state. The boson

system would then accomodate to the new electro¬

nic state by emitting phonons and the system would

find a new self-consistent state, presumably with

p-wave symmetry. This provides a method of testing

the bubble theory for negative ions in liauid he¬

lium. The density of negative ions may be too low

to permit seeing an absorption line but if the

p-wave accomodated state decays to an s-state, it

may be possible to see a line at a longer wave¬

length.

3. Least Value of the .Coupling Constant.

The variational procedure used above, pro¬

vides us with a means of estimating the least



value of the coupling constant oc that can sustain

a bubble. That this minimum exists, can be

understood from the spherical well model used abo¬

ve. The radius of the well, i> , is monotonically

dependent on the coupling constant ^ . For

small values of ec , decreases to a value at

which the criterion

v. f >
. 1 i l

can no longer be satisfied and no bound states of

the impurity exist. The penetration of the elec¬

tronic wave-function into the boson system beco¬

mes so great that it becomes energetically fa¬

vourable for the cavity to collapse and the elec¬

tron to become a free particle in the medium. In

reality, the transition from the bubble mode to

the free-electron mode is governed by the rela¬

tive energies of the two modes. Our optical mo¬

del of helium cannot describe the free-electron

mode at all so the calculation that follows at

best, can only give an order of magnitude of the

minimum value of »C. . This can be obtained from



equations (**-16) and C^f-lB). Eliminating b from

these eauations we rapidly obtain

where (\ ? A fS) , & = 6^) and G*
are defined in (1+-19), (*+-20) and ()+-2!+). Now the

function of x and Cj on the right-hand side of
(^f-^-l) has a positive minimum. Hence in order to

be able to minimise the energy of the system we

must have that,

^ f f^2£: VV (A + 2*-^) ]
T * (LwJ'L**—-J) (^)

& (*o) is a complicated function of x and ^
and no attempt has been made to find the exact

values of x and that minimise (**-^2) and

satisfy (^-17). However if ^ \ ^x'Cs
has its minimum near x = 1 and also if ^ 4b x

G- 5 has its minimum near 'x - \ .

Putting x — ) in (^--9-2) and minimising with res¬

pect to ^ , we find the minimum occurs near ^
if S = , giving



^ 1 75 -0 (4-43)

However ^-(<-0 5 x-l-o does not satisfy (M—17)
hence does- not represent a true minimum to the

energy of the system. If Y , ^ can be deter¬
mined from equation (>+-25) for a given value of i .

The value \ - approximately satisfies the

equations giving
"tr > Hi,

or eC > loo (>+-¥+)
It is of interest to perform the same calculation

using a step-function representation for the bo¬

son wave-function although we might expect this

to be a bad representation because of the low

value of found above ( 5 •= 5 where t is

essentially the width of the surface of the bo¬

son state). The calculation gives as a minimum

for (oC S3/l)
*c > 2.1-6

(i+-1+5)

or if ^ = • 5-12 '

- > ^ (4-4-6)



Thus to obtain an order of magnitude the step-

function is good enough.

Figure 3.2. shows how the computed solutions

behave as c*n approaches these low values. Much

below ^ - 500 , it became impossible even to

approximately satisfy the boundary conditions,

because as the lower end of the boson wave-func¬

tion approached the origin, it diverged more and

more rapidly. Thus it was found impossible to ge¬

nerate solutions for low values of oc that

still satisfied the integral condition on t? .



CHAPTER 5-

THE EFFECTIVE MASS.

In the preceding chapter we have dealt with

the ground state of boson system in semi-classi¬

cal manner. This can only be regarded as a first

approximation to a quantum-mechanical treatment

of the interacting bosons and impurity. In the

case of strong coupling the disturbance of the

ground state and the energy of the trapped im¬

purity dominate the changes in the energy of the

system, //hen the coupling is weak, so that dis¬

turbance of the ground state is neglegible, and

in the intermediate coupling case (the transi¬

tion region) interactions involving excited sta¬

tes of the boson system will become important.

We will consider the latter two cases in the

next chapter,, Here, we will discuss mainly the

strongly coupled impurity.



1. Excited Boson States in Strong Coupling;.

The Hamiltonian covering all strengths of

the coupling constant is

H - W, f + Hu (5_l}

where M

i-1 > (5-2)

H t - - i 73
/ (5-3)

N

^ = 3. w 0* - A
l~ i

(5-^)

To enable us to treat the excited states as

well as the ground state of the bosons, we will

transform from the Schrodinger representation to

the formalism of second quantization for the bosons.

H„, -f Ab

i | Y(x') *A) HA H{x') Ac A.V■v

h. ■ -t v;
Hk. <,7+(» W(lv-4i)T(x) fx

82,



where -*') (5-6)C y c?), ^ <y')
The Hamiltonian in this form has been stu¬

died by Gross (1962) for the wealc-coupling case

in which U/ (|"x- y() is a hard-core plus a polari¬
zation potential and by Girardeau (1961) for the

weakly coupled case when is solely a

repulsive hard-core. Gross (1958) also outlines

the equations we have analysed in Chapters 3. and

*+.. Writing the whole Kamiltonian in second quan¬

tization notation, we have

^ r m ^
Y (*') Y(x)

145"1" v" 4> A3
2 J HfejYjfx') J. xcLV

H -i1
3

4>r('s) b|x) W(u-*i)if J.!i3
(5-71

This is the Hamiltonian of two interacting quan¬

tized fields. The operators <p(%) CYfuh , if we
are considering the impurity to be an electron,

obey the anti-commutation relation

C<Hb iV/] - £(*-*')
+ ' (5-8)



Vie can simplify the Harailtonian somewhat if we

use the Bogolubov approximation and assume that

a single boson state is macroscopically occupied

and that no other state is so occupied. Expand

T'

V(x) - L h

in terms of an orthonormal basis fj - (l) y e* 0J ■
tf>

jfWO

If?) - £ rp fe)
A - o (5-9)

where Si ^ | f[ (x) \*~ S*x. = '[
and choose to be the 'most-occupied' boson

state. Here the bnt b^ are the creation and an¬

nihilation operators for particles into the

states fjvv W »

k * 75"v i ^si

(5-10)

rfe may extract the <jD(x) state by writing
- %(*) + r«.<y

(5-11)

in the Hamiltonian (5-7), where

hlfi) - l
(5-12)
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and (-x) represents the sum of other possi¬
ble states available to the bosons

I i(?_13)
A* \

Writing (5-11) in (5-7) and extracting only the

dependent terms and the terms linear in ^ ,

we obtain

H
k - £ (V r/. Vf At . i j ^ w %U V(ix.x.i) r.r. AUb

+ 5 \ C*t+vrt< + ■ vn) At +
(% % VOx-x'l^^dxA^' -V ( Yb Vtlx-'X'fy'Y % d-x c\?x'J (5-15)

=

p (76 + vi> i\7" ; ^ (5-15)

V • l^b Yd) W (|,-,[) 40(l) Vo (x) Ah A\,

+ b4x U(l»-!l)<t? % «AV ^3

(5-16)



Now since the state flo(x) is macroscopically
occupied we can, following Bogolubov, replace bc
by 0./x , so that

(x). „ w1 / (5-17)

If we assume that the electron is a single par¬

ticle and occupies a given state, we can also

replace the operator (x) by its equivalent

state (x) , and by <£>*(*) . Then putting
(*)-=- O , and using only the first li¬

nes of (5-15-), (5-15) and (5-16), we have the

Hamiltonian used in Chapter 3.. The analysis

that followed showed that (*) and k> (^) were
/

given the computed curves in Figure 3.2.. The

above approximation is equivalent to assuming

that , the ground state occupation number,

equals |\1 , the total number of particles,

since the number operator is

N0f - $W) r(x) ciV
, a0 + j(Y0V) +-

(5-18)
Hence putting , we have A0= K/ .



To improve on the lowest order result we

need to include the oscillations of the boson s

system about its lowest state HI (x) that are

concealed in (*) . These excited states re¬

present different configurations of trie bosons,

each of which presents to the electron a diffe¬

rent array of potentials in which to move. We

have already assumed that the electron can adia-

batically follow trie changing configuration of

the bosons. In our variational treatment we have

shown that only those configurations that produce

a potential well in which the electron can reduce

its energy are important. The electron energy is

degenerate as the shape of the well can vary con¬

tinuously but within a given well it exists in

discrete states. Since these higher electronic

states are separated from the lowest state by an

energy of the same order as the depth of the well,

we can probably ignore transitions of the electron

into these states. The approximation is equivalent

to the Born-Oppenheimer approximation in metals

and is used in strong-coupling theories of the

polaron, (see Allcock, 195o> for a review).



Since only a small number of bosons is not

in the state , the electronic ware-function

is largely determined by the variational proce¬

dure. Thus as a first approximation to the self-

energy of the bubble, we can take and (p
as determined by the variational ansatz. This

procedure separates out the electronic part of

the Hamiltonian and we are effectively left with

the problem of a boson system bounded on the one

hand, at a large distance, by the walls of the

container and on the other by the surface of the

bubble. The electron-boson interaction term in

the Hamiltonian becomes a single-particle poten¬

tial acting on the boson system if we assume fit*)
to be known and integrate over y . liven if

W 0 -\) taken to te proportional to i (lv
r>

the Dirac ^-function, the problem is still non-

trivial because the electron density Y*b)
at any is not a simple function. Probably

the simplest form of the problem that one might

hope to treat analytically is to assume that the

electronic bubble constitutes a hard-sphere in

the boson system and force the boson wave-function



to vanish on the surface of the sphere by using

a pseudo-potential. One could expand the boson

wave-function \(x) in terms of spherical har¬

monics and suitable radial wave-functions. This

is essentially the method suggested by Gross (1962)

in connection with the problem of the heavy impu¬

rity. Notice we have altered the light impurity

problem to one with infinite mass as we have not

permitted recoil of the bubble in any interaction

with the excited boson states. This is not a too

strong assumption as the effective mass of the

bubble'is indeed large. However distortions of

the bubble may be important, and should be in¬

cluded in any attempt at analysis.

2, The Effective Mass.

Throughout the work, so far, we have formula¬

ted the problem as a static one without considera¬

tion of the possible motions of the electron

through the bosons. In order 'to obtain the effec¬

tive mass, we have to reformulate the problem in

a way that permits us to obtain the energy of

the system as a function £.(p) of the total



momentum P
Since the Harniltonian (5-7) is translational-

ly invariant, the total momentum is a constant of
the motion. The total momentum operator IP is

1? - -f L + ((T+vr-vr+r)i
(5-19)

which can readily be shown to satisfy

it 3 I p HI - 0
M L Z ' 'J - (5-20)

In the Hartree approximation, we can replace

the (j) operator and the operator by the cho¬
sen occupied state wave-functions , -and. their Her-

mitean conjugates by tne complex conjugate states.

This leads us to the enuation

t$(V'.yrc - vv0^)tt
^

(5-21)

We should attempt to find wave-functions that

diagonalize both P and H simultaneously.

Clearly the Hartree wave-functions used previously



can in no way do this. On the other hand it is

reasonably to assume that at low momenta the bub¬

ble will not be greatly distorted and that the

density distribution of bosons around the bubble

is largely described by the stationary state den¬

sity. This is equivalent to assuming the boson

system is a nearly incompressible fluid and the

problem of the effective mass of the bubble be¬

comes hydrodynamical. If we assume that the bub¬

ble constitutes a hard-sphere and that there is

a dipolar flow around it, the effective mass is

Y (5-22)

where is the equilibrura boson density. This

assumes that the density of the bosons is uniform

up to the bubble surface and zero inside it, i.e.

a step-function. We have seen variationally that

this gives a good estimate of the energy despite

the interpenetration of the two fields and hence

(5-22) probably is a close approximation to the

real effective mass. In any case, corrections to

this estimate from quantum effects will almost



certainly be smaller, in any application of the

theory to the negative ion, than corrections due

to polarization increases in the density around

the ion. However the theory can be put on a more

rigorous basis, by assuming a general wave-func¬

tion that diagonalises P and performing a func¬

tional variation to minimise the expectation va¬

lue of the Hamiltonian. This has been done for the

heavy impurity by'Feynman (1951!-) and for the hea¬

vy ion by Gross (1962) and we will apply much the

same arguments to the light impurity here.

We do not wish to consider explicitly the

momentum of the electron, only its average veloci¬

ty through the bosons. Hence we need a description

of the bubble which reduces to the Hartree state

in the limit of zero velocity.

Because such a description cannot diagona-

lise the total momentum we need a different va¬

riational procedure from the usual one. We will

use a method described by Alicock (1956) and

applied by him to the effective mass of a pola-

ron in the strong coupling limit. We describe

the bubble by a wave packet and attempt to sa-



tisfy the time dependent Cchrodinger equation.

We will find a new variational principle that

tells us whether our trial wave-functions are

approximate solutions of this equation or not.

Consider the following time dependent wave-

functions

(5-23)

This represents a distribution of the bosons and

the impurity about the point £ which is moving
through the liquid with velocity \J . In order

that % ^cj/ represents a solution of the time
dependent Schrodinger equation, Allcock suggests

that "X t) should be chosen to minimise the

positive definite expression

(5-2M-)

Minimising first with respect to \ , we find

trivially that

\ » <■% Ml H- P-V |*.(,,oj>



and that •> reduces to

P.Y)hr(i,c)> - £.;>][
(5-25)

Now Allcock points out that any eigenstate of the

operator H - £• V will exactly minimise (5-25),
and moreover the lowest will correspond to the

lowest eigenstate of H . So we look for the

lowest eigenstate of (H - f y) , or eciuiva-
lently minimise

Tv - p.v lx(a.o>>
(5-26)

with | = 1
To find the effective mass we observe (see

Allcock, 1962) that if is an eigenstate

that diagonalises both \\ and r then

H "X P. = £ fp's ^ P- (5-2?)

and P ft- (5-28)

where is the momentum eigenvalue correspon¬

ding to the state Also that for small p

hfe)= E(o) +• _Ei (5-29)



where r\,1( is defined as the effective mass.

Hence the eigenvalues of 3V are

£[o) + - p>„-\/ (5-30)

which has a minimum at V ,

(5-31)

from the formula.

f(«) - i «eW V1
Hence we can estimate <A.

i <Vt1
M.I .V 0 .

V
V-* a (5-32)

Now the function '"X- (v0) must allow for the
motion of the bubble and also a backflow of bo¬

sons around the bubble. On the other hand sine©

as V-» D we expect the impurity to be in a

Hartree state, let us write

X (<U») = T (*-*> ?«--*)
i /v V x

C t

fx]

(*-<?) ii Lf \ tHx-r
L* V

T

Then the expectation value of (U- P V) i<

(5-33)



Y = .* + ^ A;
IK J

+• N ^ ^V) W^|*-i'l) <jhv) A3*r*fJ
+• + Y4

x 3 ^
- tVN.jVsp5;

(5-31*)

Writing W % M-5 , we see that the first
bracket in this expression is the term we mini¬

mised before. Also if ^dp~<^x - \ then the se¬
cond bracket becomes

At s •ay + k
x in Vsf rkt -2L ws YWJ•j

(5-35)

where we have written i_i< - (Av
let us assume at this point that the backflow

around the bubble may be described by a dipolar

flow. i.e.

Aj_
^ (5-36)

S (tc) -

where we take along the direction of \/



Following Feynman (195*+) > we have to slightly
alter St*) at large distances so that the last

terra in (5-35) converges and may be integrated

by parts. Then minimising with respect to A
we find after a straightforward calculation

— t

2 I 3 " f-J _ (5-37)

2- L/ 2. ^3 / ' — (5-38)

where
^V)

-f k
-if "A A

To obtain this result we have assumed that n V;
is a function of \X j only. In the notation of

Feynman, (z) =- P A) *

It is unnecessary to minimise 3{y) with

respect to (jb and for the following
reason. J (v) differs from only in order

V*" . do if ^cf>0, minimises and
minimises 3"v , then [<\(4>*<-fy")

will be of order \A . For the difference bet¬

ween 3V and A0 can ke regarded as a small



perturbation of and the perturbation of the

wave-function will be of the same order. We have

also .

V- + (5-39)

and since minimises , then

f.(<Mv)- is of order
C(4>.nh -o., 143"• i-e- order v% •

Hence using <£>0 and -f-0 in in place of
C ^ v , -]"v) only introduces terms of order V *

So to determine the effective mass we may use

our previously found value of 4^
Hence

+ ? tty-Yti yf'1
(5-^-0)

The step-function ansatz for %;gives

the hydrodynamical mass (5-22). Using the

found in Chapter 3. slightly reduces the effec¬

tive mass but vie have not undertaken this calcu¬

lation as (5-1+0) neglects the important polari¬

zation induced mass. Crross (1962) has pointed out

that around the positive ion one no longer gets

dipolar flovi if one includes the attractive pola-



rization forces. The procedure he adopts will be

outlined below.

The polarization effect, which is dominant

in the positive ion case, is not so important in

the negative ion case, because the region imme¬

diately around the charge is cleared of bosons.

The polarization force rapidly falls off (as ^ )

and is small outside the bubble radius. However

Kuper finds that it increases the effective mass

even of the negative ion by 20%. Notice, that

because of the spherical symmetry of the bubble

and the fact that the electron is largely loca¬

lised we can consider the charge as located at

the bubble centre. Actually the bosons experience

a rapidly fluctuating force as the electron oscil¬

lates across the bubble but the frequency of this

fluctuation is so large that the bosons cannot

respond to the force. The frequency US ^ of the
fluctuation is of the order of i. I , whereas

the natural frequency of the bosons is ^

Since

(5-W



we see that u3e ^ ±

To find a better than dipolar, we

use the variational principle on <,(y) . In our

case this leads to the equation,

V, ]_ p(-o (if - v^3 = & (5_h2)

(cf. Feynman, 195*+> equation 7-*+. and Gross, 1962,

equation 2-9.). Multiplying by Sfe) , integrating

and substituting back in A .) gives

a (5-^3)

where

-t ' A

is defined by

ySU - - ^ s A (5-hh)
Writing $/k") = lc"z ^l- j and inserting

in (5-^2) gives

A f^ PW a ^ = 2pv
Ar v v (5-^5)

and in (5-1+J+) gives

~

/*■ ^ ^ a r (5-^6)

where 1 i s defined by the asymptotic form of



V(<"") > V (-r) -c- -v- ^ -r z ? and b is the ra¬

dius of the bubble } j = Q .Lt
Gross solves (5-^-5) for the case p dh - Ik •r~i< ,

(3 < >r < c ; pfcr) - p** 5 r 5 and calculates
the effective mass in terms of two parameters CO
the radius of the hard-core of the ion -r- t and

[i) the radius -r^ c at which K<--1( -J>oo .
He finds in the limit C> « c

^ ' r+ d o-w

However his pA~) is not applicable to the bubble
as the polarization part is already small at the

bubble radius. The best way to find the effective

mass, including polarization, would be to minimise

"3"v with a polarization term included and solve

for V (fO from (5-*+5) numerically. This has not

yet been undertaken.



T:"S VffiAKLY COUPLED IMPURITY.

1. Introduction.

The weak-coupling case that we will consider

in this chapter, covers a number of different

physical situations. The coupling constant oc

depends not only on the relative masses of the

impurity and the bosons, but also on the boson-

impurity scattering length and on the density of

the boson system. By 1 weak-coupling1 we shall

mean that the impurity nearly leaves the bosons

undisturbed, that is, that the ground state may
»

be regarded as a uniform state. This criterion

distinguishes this range of from the strong

•coupling range where the boson ground state is

greatly distorted.

Girardeau (1961) has treated the weak-cou¬

pling case of the heavy impurity. He restricts

himself to heavy impurities by neglecting cer-

(*\
tain terms of order — in his transformed Ilamil-



103.

tonian. Since the weak-coupling case also inclu¬

des the light impurity in a low-density medium,

we should be able to extend his work to cover

the light impurity provided the coupling cons¬

tant is sufficiently low.

2:. The Polaron-Like Hamlltonian.

The Hamiltonian we shall use has been given

in equation (5-5) and is, with the boson operators

expressed in the notation of second quantization

but with the impurity operators in the Schrodinger

picture

H- ir Ue H-

+ T ^T+(x) th') \/(l*-*'l) *+(*') VfJ) ill3*'
He - ^ _ W- V7 ^

x/^ 1/- a

(6-1)

Since we have postulated that the ground state is

undisturbed, let us follow the usual procedure



and expand t fx) in plane-wave states

(b.2)

Denoting the boson creation and annihilation ope¬

rators by t>k and \>k we obtain

U = - y LlL* 1 +■ - \ vk h y L Ii> ^ h is Z__ - 4H o-f? "h *
- !s,4.*>

H, - £

H - i \ U, L tL-hbe si - - (6-3)
!sA

where

= \ V(V) £~C J^c

W, * j W(r) e-lk - jlV
(6-i+)

-v

The operators ^ satisfy the commutation

relations

[kA'J'K-Cl-0
Ds.^l- s«i-

(6-5)



and the total number operator M-1 a, -1C h
K

vie have imposed periodic boundary conditions

so that k takes discrete values. The uK opera¬

tors, of course, commute with v and p which

obey the usual commutation relations for conju¬

gate dchrodinger operators.

_ ^ ^ ^ k (6-6)

From the Harniltonian (6-3), we separate out the

k - 0 state following the usual Bogolubov

procedure (Bogolubov, 19^7), and let n'J* , i.e

adopt the viewpoint that A^l or any other A. ^

Replacing t>fa and by i\Jx only introduces
-1

an error of order ft0 ■ . If we consider only tho
se terms in the interaction part of Hb that have
at least two factors A^ and in Uhe. at least

one, we obtain from (6-3)

U k\ - y I —11 + a- \ /b ,1 ^ -n. + ^ k-

> "iv,-. A„
4-fl- 7

2^- kfo
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He' £
K' 4:* 41

V *o (6-k-)

where, following Hugenholtz and Pines (1959), we

consider V\ - ^ \\1 in order to permit us to consi¬
der processes that do not conserve the total num¬

ber of bosons N .

The next step is to diagonalise VI ^ . This
we do by writing

a k = ^ k 4 K 4 k

ak - ^ k iu +Ak 4 k
(6-5)

where and are c-nurnbers which are to be

determined by the criterion that the terms invol-
"P ~h

ving <X_ u and vanish in the
transformed Hamiltonian. In order that the a.^

obey the same commutation relations as the

operators - we choose
T T_

W ~~ /k ~ 1 (6-6)\w - a) - 1
Thenc e, wr i t ing

(X - i 44 _ ^ v^o vv A0



and

i x , , ^ 1 'A
- A0 V,r k

sl' (6-7)

we obtain

Hbr +UC"-^|
icf O

«c • 'V

Hk .
-ft- -ft tr0 UM^7 t- (6-8)

The values of andjx^ that give (6-7) are found
from equation (6-6) together with

(\ u + * \ Zvk a0 _ v

Now the factor (^/^^is related by the
Feynman-Bijl formula to S(X) , It has, in fact,
been shown by Miller, Pines and Nozieres (1962)

in the Bogolubov approximation to be exactly

equal to — S (k) 5 where S(k) is the liquid struc-
ture factor defined by

- tL^
S(b = ^ <°y,f>\ io> - pwe (6-10)



and p(r) _L 4? ( pr(6yO(<9(o)> is the pair cor¬
relation function. Hence we can write the Hamil-

tonian

H- h + n + tk & ^
2A U» - "

+ fl^ L ' " (6-11)

where

r , A^kJo . | r /p \
2. XL XI i -yUA& (6_12)

kfo

Now expression (6-11) is a Hamiltonian of

the type proposed hy Frohlich for the polaron

problem (see Frohlich, 195*+). This Hamiltonian

has been treated in a very elegant way by Feynman

(1965) using his path integral techniques (Feynman,

19^8), and it would be interesting to apply the

same method to (6-11).

Feynman's treatment of the polaron problem

covers, all values of the coupling constant but

this we can clearly not expect in this problem

for the following reason. As we hwve seen in ear¬

lier chapters the strong coupling region corres-



ponds to a macroscopic depletion of the uniform

ground state. In setting up the Hamiltonian (6-11)
we have assumed that everywhere r\0 the number
of particles in the ground state is large. Hence

we cannot expect to find (6-11) describing the

strictly localised impurity that exists in a den¬

sity depression of the same order as the uniform

density of the bosons. The theory should describe

the weak-coupling and intermediate coupling re¬

gions where we can describe the density fluctu¬

ations around the impurity as a cloud of virtual

excitations. Indeed the impurity particle has been

so described by Girardeau (19ol) and by Miller,

Pines and Nozieres (1962), using, in the former

case, the intermediate coupling polaroid technicme

of canonical transformations (Lee, Low and Pines,

1953) and in the latter case, perturbation theory.

At least Feynman's method should reproduce the

results of these works and, at best, may indicate

the limits of validity of the Hamiltonian (6-11).

3. Path-Integral Methods.

Since (6-11), apart from the term , is



exactly of the general form given by Feynman in

his paper (1955, the last two equations are the

relevant ones here) we can immediately write

down the energy intergral that has to be mini¬

mised with respect to the parameters used by

Feynman in his trial action :

tU>

At- r "f ^ A(jV s J ' ,J
o / (2ir)

(6-13)

where (y) = -f 0"e-V) ; f> - jj- ;
\J , wr are the variational parameters, and we

have taken "k - j^. - i in accord with Feynman.
To establish contact with earlier work, we can

let V - isT , in which case the energy should cor¬

respond to that found by the perturbation theory

method, since this is equivalent to taking as the

trial action

S, - -i1 z jUt / (6-1*0

i.e. the action of a free particle. We have used

here Feynman's notation, i.e. ~t stands for ft



where 4/ is real time and S, stands for lS where

S' corresponds zo the more commonly defined ac¬

tion.

When \J = t~y

- F(V) = T (6-15)L

and integrating over V gives

„ f> r su toy riAtc
2*) 0 (tk+

(b-16)

Substituting for S* from (6-7) and using the

result that the chemical potential ^iiF0 ,

/ SL
we obtain

At,.„ ~ Lr £-k + b]
(6-17)

where fu " ^ + ^ ^f" ^ 6
K

(6-18)

Now (6-17) is exactly the perturbation theory

result with the total momentum P - O , found

by Miller, Pines and Kozieres. As expected,
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Feynman's theory reproduces this result. The
same thing can he shown for the effective mass.

We are however interested in going beyond per¬

turbation theory and would like to be able to

integrate (6-13) for values of \j and ^ other

than \J =■ . Let us look, following Feynman, at

the case W = [\ +1^ ur where 1 is small. Then,
to first order in £ ,

-i-• F W = T + Ai (I - wr _ eV^ ur 1 y (6-19)

Atand At becomes

At, - At.. +- — ^Zur

4- ^ (i-uT.rdA^LiH
= +| £V - f sku;uui.

fhri?(t 4- t -j- to

(6-20)

We have, in order to proceed further, to as¬

sume a form of the potentials W (j*~ y IJ and
V ^ I tc -x' . since we are interested in the

case of a hard-sphere impurity interacting with



hard-sphere bosons we will use the pseudo-poten¬

tials already used in Chapter 3.,

V (l*- *'i) =■ i (i- h)v ' (3-18)

W (l? - h) - \
4

(3-19)

These gives from (6—Lf-)

\/ _ If-CK
k " ~~ (6-21)

and Wk - ^1-16 (6-22)
/*•

k. The Perturbation Energy.

If we insert these forms of Vk and Ok in

(6-20) and make no further comment, we would be

neglecting an important point. The use of (6-21)
for V/k need not worry us as .we are only using
the excitation spectrum of the bosons in (6-20)

- the ground state energy having already been

substracted off. However inserting (6-22) into

the term A^ v,^ i.e. (6-17), causes it to



diverge. This is because (3-19) is not; the correct

pseudo-potential and fails when the wave-function

A number of authors have proposed alterations of

the original pseudo-potential treatment of Huang

and Yang (1957), (notably Wu, 1959, Lieb, I960,
and Liu and Wong, 19b3) that by various devices

are arranged to remove the divergent terms automa¬

tically. However none is simpler to use in our

case than the original method of Huang and Yang.

This method consists of calculating the first

Order perturbation correction to the wave-function

explicitly, so that the terms that have to be

substracted out become obvious.

The first order correction to the ground

state wave-function is from Miller, Pines and

Nozieres, (1962),

on which it acts has a '/V singularity at 0 .

I

(6-23)

where

(6-2*0



We have to study ^ (f-) , when V - o •> near
f" - 0 . Since Uk in (6-2*+) acts on a well-be¬

haved function at r- O i.e. without a ~r

singularity, we can substitute from (o-22). Hence

we need to look at the behaviour as o of

c^(~r) - 2^^ £
cl< • r

e - -

-■ °.iK

(6-25)

where c~- 14>it ^yOo^ 5 and the sum is over all j<
of the form 1< = [t/^/ *) /L where l_z = 5L
and £ , «*v , a are integral and not all zero.

Taking the limit as !-*«?, we can replace

the summation by an integral

^ (?) - 2tc £ . -L (dsi< i———^ (2«) J ' JC (uM"x + b.1

(6-26)

- 2 L f. M f S ^ ^ ^
T r~ I t\\c + (l<v+c*)V*

(6-27)

where we have extended the range of integration
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to V ^ O since this causes no singularity in

the integral. The integral is a Fourier sine trans¬

form that in general cannot be done in closed

form. However two special cases O and P\-\
can be done and are tabulated (Oberhettinger, 1957)

Sva Icr- |
- - I ^

(lcN-0?-)'^ I '

, 1c i

)0 i< + (U-u-) 1 cv

Lc (ct) - IL/^)
(6-28)

X, Ccr) - L (c-0
i

(6-29)

where L^('z) is the modified Bessel function and
IL C'2.) is the modified Struve function. Since

for small , these functions behave as :

, ft)* .x„« ■ n(v+o

Lm -(if

iP (v+P

if
P(t)rfv+|)

(6-30)

+

(6-31)

we see that as 0 , in the two cases,



<\(r) , t(fl i -*£)
r_>o ^ n^o U (6-32)

Ll^ <\k~) = lA (i - As A
r-^o 43 i ^ 3tt / (6-33)

both of which contain a f ' singularity.

The range of fA that we are particularly

interested in, is f\ >> \ i.e. small impurity

mass. In this region we can evaluate the inte¬

gral in (6-27) approximately in the following

way.

Since the term dominates the denomina¬

tor for all U > /V , we can split the range of

integration at k- C ;

ice cXlc ( CT- t JLt
* (icV)Jo n-t + (e+t)

c<-t cJ-t4-
i At" 1- (l"1 4 0

'/v

(6-34)

Since fA. is large and since the first integral

converges as we go to the limit -4 0 ,
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i-Lvw \
r o J

S W dd

o 0 +■ (UHt-)L

= L. f c
T-> o

°°

si2_£ll_iir
1 (n-H) t

i_ Mhf) + fH£iVi
1 (KV-^l) t / i (H«) i )

■r

4-
<act cli

U A'A.
9 M-t + (V+i)

-1 Of-") ?
5

= I
, - £L \ dfc /tVVM + C-rt oU" +

-w ^ L ' [i^rjr^
(6-35)

Nov; both the remaining integrals can be done

exactly by substituting 4 - which re¬

duces the integrands to rational functions.

i t L ; y * (* -o

0+ rA
"t oLt

-f U JL_
(,-t-vfi-

"X*<-
° 2-M Jv Tc'^xb-^)

= J_

zH

d

if i+ A +- l»

(6-36)

1 — yt-r- jl \
) — <<■ -t- J1 (l-

(6-37)

v;here
^ 'n~lC<. -

/H +• I



Since as ^ O

St (cr) -» k _ c-r + 0 (cr)3 , .o,
2- lo-jOJ

we nave lor large ;

<5^ S1 - ■A1),— -—
r-=> o 1 U,AVi)^ t^(^)vL

(6-39)

where the next term is of order ^ . Thus in

all the cases considered, we have an 1 diver¬

gence plus a constant ternu Denoting the constant

in the brackets by - -j-(W), we have for
after removing.the divergence,

A - It t ■2cj ^ . N75 -TL

, \ 'A.

wnere

C iy'Yy {(h)
L (M) — ; M « l

= 'A \

(6-4-0)

/A U -kil : ^>>j(ru.fi nfsy rv+

(6-41)
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5. Higher Order Terms in the Energy.

As we have seen in equation (6-20) correc¬

tions to the total energy are of the form

At { 'If* - r~ sh iC^ 2-s1- i"
(o-m-2)

Substituting for \/u , Wk , and from

equation (o-21), (6-22), (6-7) and (6-18) and

remembering that "k -^ - I , we can write (6-k2)
as

Aft*-
Z-x

£ UAL [ (IA+^ [(UV»^ [lAvjtW.j
I

(6-^3)

where ^ ~ ^T£xy^0 .

The integral can be done exactly. Writing
c /!_*.) reduces the integral in (6-k3) to£ a 5c

Z T/.,V= f' (l-x^cUi-(40) =

(i+«)i o«)h A

(6-MO
x</nere "again

I



Although (6-^*+) can in principle be evaluated

exactly the expression obtained is complicated and

not very illuminating, The expression (6-^3) still

has to be minimised with respect to u<r and £

and in general this involves solving a transcen¬

dental equation. An interesting special case is

obtained by letting c-0 in equation (6-^-3) i.e.

taking the boson spectrum to be proportional to

k.1 instead of the Bogolubov spectrum. Then

(6-^3) reduces to

A£ - It1* - \!x
ww/ i (6_lt5)

/ 1
which is a function of [iw) only and minimises
when

£60 = L . £L I — \ _

3 vil V J R 11 (6-M-6)

and

(6-1+7)

For D , the minimisation is not so straight-

forward, and it is simpler to proceed as follows.

From (6-Lf3) and (6-Mf)
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Differentiating with respect to £. gives

1.12 i\
? (!<-«/ "f (6-49)

and

A? 5 L (U-«f c. .

us L (u> ~)
(6-50)

so we have the problem of finding the maximum va-
■~L

lue of us i (W) or equivalently the zeros of

14-2 io cl£
4 (6-51)

Since (6—44-) is a convergent integral the

differentiation can be performed under the inte¬

gral sign giving,

r + ai -. r
Ja . [_(l-x^fl-«rV)

(6-52)

It is clearly a necessary condition for (6-52) to

vanish that the numerator vanishes for some value



of X in the range O ^ ^ C \ , since all

other quantities in the integrand are positive

over the range of integration. However, although

it is always possible to find a ls such that

this condition is satisfied for any x

(6-52) does not necessarily vanish for some fini¬

te hy . Indeed it only appears to vanish as ur

tends to infinity. For the case \ , i) ,

this is easily verified, since then

_L (w) -

h2*"- ^ (0-5

. wih . ft-"1 (6-5*0

which increases monotonically as u to the

limit

I - . T"V \ oV
1^ —> Co u?~-1 S'Z.

1
— T~

(6-55)

For X1"- 1) , the integral in (6-52) may

be readily evaluated and enuating the result to

zero gives the equation



:\HM (t-0

«/,

(6-56)

where t- ^ c • The behaviour of the left-

hand side of this equation for small -fc and

-6^1 is more easily seen if it is written

(t-0M
- M + M - (HL -Lr1

1 5 1 J
4-1 4«)

(6-57)

v,
(6-58)where 1 (4r-Q v _ ^

if t < i .

Equations (6-56) and (6-57) appear to have

no solution other than at ir = -do . From this re¬

sult and from the fact that as us tends to in¬

finity

L~
£0 130

to -h (ui)
c. Ti

f&O4^) (6-59)

which increases as decreases in the range

— \<y < i , we infer that the maximum value



X x
of hi J_ (<*>) for any oC. is the result (o-59).
However if we try and interpret this result in

terms of the model used by Feynman to obtain his

trisl action, we run into difficulty. Feynman's

model is that of the impurity bound harmonically

to another particle of mass (h. . In the pertur¬

bation theory limit both the spring constant K of

the binding and the mass ?v\ of the second fic¬

tional particle vanish. However the limit we have
-'/r

here, u) o° , £-~" w implies (Schultz, 1962).

« -5.

„ Wl/V O (6-60)

The combination of these two is such that there

is a resulting finite energy correction. This

energy is given by equations (6-50) and (6-59)

and is

- -v 3v^.a>*rA
(6-61)

It is not surprising that this is t. e same

result as (6-i+7), since it is independent of c .

The reason for this is that when uj is large



only large k in the integral in (b-M-3) has any

importance. 1'his is more easily seen in (b-'+M-)
where it is the region of x near aero which

is dominant.

It is clear from (o-60) that we have failed

to find the extension of perturbation theory that

we were looking for. Feynman's trial action is

(6-62)

where C. = ~ 0 ) . Perturbation theory

takes C ~ 0 , but if (\j-iS) and tends to

infinity then the second term outweighs the first;

Thus the expansion (6-6.0) fails, as (\J~ oj) is

not small but becomes infinite as , although

£ itself tends to zero as .

It is reasonable to ask how much this dis¬

crepancy depends on the treatment of the hard-core

interaction and in particular on the pseudo-po¬

tential (6-22). To analyse this dependence let us

consider using a well-behaved function for

ki u . The simplest to use is
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I/J k - Ui0 e
_ [i U74

(6-63)

For convenience, let us also take c= 0 . Then we

have for A.1 from (6-13)

At
i, v v '

_ 7/2: -+- frt)I r *+ 112 L A i-r
x

The integration over l<
formed,

1

(6-640

can now readily be per-

Af.. kw , ac n ( — —■—■_
4 v n ) f-r + <-r +^'(,-e-vr)tyS[_ IA \y> ^ 7 '

Vv

(6-65)

Let us again look for the expected extension to

perturbation theory. V/ri ting \J- (i + i) <-x and

expanding in powers of t ( A is a constant),
/*■* >

i ii 6'wr~eAt - 5. o 7 - A ( ^———- v ,k U^)*£TL
i

_ ^ zj V 0(7)

(6-66)
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3 v
-Csi -ft 2. [ na''^[

'A- f^ \ 2- n AvM-t- g. o v [•—-] n c .&
rw -1 (*£)'

(6-67)

The first term in the square bracket is the ener¬

gy one would obtain putting V = i.e. the per¬

turbation theory energy. The other two terms is

the expression (6-}+5), which is reobtained if we

let & => 0 . Minimising with respect to 8 in

these two terms we find

h t - - 1 fl\
— n

^ v
/wg*

6ric 1 ftvv-i
yL

(6-68)

md
'/v 2 n Vv/^\5^

- t ft-
3

(6-69)

Putting 0 we again have the results (6-A-6)
| /

and (6-^7)» i.e. x is constant and so the

expansion in powers of L is not the expected

extension of perturbation theory as demonstrated



above. Moreover if o , then (6-68) is minimi-
. 1/

sed when ^ ^ 0 and again £<h is a constant.

Thus it would appear that the expansion used by

Feynman is not even valid for as well-behaved a

potential as a Gaussian.

Finally it should be remarked that extending
1

to expansion to order £ does not improve matters.

If we write

Ab ^ i A(^) + &(~>) ■+ O(sA) (6_7o)
A

and minimise with respect to £ , we find

We have seen above that A^w) behaves as for

large so (o-71) has a minimum for finite U

only if 'B (<~>) ^ , (P ^ 0 ^or larSe 60 •

However when hJ is large, we may replace the

Bogolubov spectrum by a parabolic one i.e. let

C - O ? since only large k is important. If

C ^ 0 , it is easy to see from (o-6o) tnat if

fi Q , the dependence on to of , B(w)
and any coefficient of higher order £ is m,/v .

Thus for tne hard-core pseudo-potential the



unevaluated terms make no difference.

6. Discussion.

Although this chapter was opened in the hope

that the path-integral techniques might provide

some insight into the mode -of behaviour of the

untrapped impurity, we have to close it with the

unfortunate conclusion that the method us.ed is

inapplicable to the problem. We cannot even in¬

dicate the region of applicability of perturba¬

tion theory techniques as we have been unable to

obtain meaningful results when we attempt to ex¬

tend them. What is not clear at present, is

whether the difficulty we have found is a mathe¬

matical or a physical one. The trial action func¬

tional is sufficiently general to be capable of

simulating the behaviour of the electron. Yet

this very generality leads us into mathematical

difficulties. Until we have found a better way of

evaluating txxe integral in (6-13) for all ranges

of the variables V and U , we cannot improve

on the perturbation theory result and test the

validity of the trial action. This point is cer-



tainly worth further investigation, if only for

the light it sheds on Feynman's method and on the

application of path-integral techniques to Hamil-

tonians of the form (6-11).



CHAPTER 7.

THE I:EC-ATIVE jjjK IE A FERMI SYSTEM.

1. Introduction.

In the earlier parts of this thesis, we

have been exclusively working with boson systems

and have shown that when there is a strong repul¬

sive interaction between the system and an impu¬

rity, the impurity becomes self-trapped and cre¬

ates a bubble around itself. How boson systems

are characterised by the existence of a ground

state with long-range order and it is essential¬

ly the distortion of this state that we have con¬

sidered to be the formation of the bubble. We

have been able to do this because at low tempe¬

ratures it is legitimate to equate the local den¬

sity of the bosons with the local density of the

ground state. However, having made this correla¬

tion, it is not clear how much the results depend

on the boson statistics or to what extent they are



•hydrodynamic1 results, i.e. that the bubble would

exist in any liquid that has a sufficiently strong

interaction with the impurity. The criterion on

which the existence of the bubble depends is in

fact independent of the statistics of the system.

The criterion is that the energy of the trapped

impurity must be higher than any energies asso¬

ciated with the surrounding medium, or equiva-

lently, that the frequency of the motion of the

impurity is rapid compared to those of the atoms

containing it. Stated thus, it is clear that the

statistics the atoms obey only effect the bubble

insofar as they determine the energies of the indi¬

vidual atoms. Hence it should be possible for a

self-trapped state to exist in a Fermi system as

well as in a boson system, provided only that the

Fermi energy is less than the energy of the trap¬

ped impurity. To demonstrate this, let us consi¬

der an imperfect Fermi gas and use the- Thomas-

Fermi approximation to obtain the variation in

density of the fermions.



13^.

2. The Equation of Motion.

The basic equation for the energy of

the impurity in this system is

F v> +■ <1? |w 'EAl~kK- (7-1)

where we assume that the impurity may be descri¬

bed by a wave-function 4Ki) whose behaviour is

governed by its interaction with the density

of the fermions. With the Thomas-Fermi appro¬

ximation, we nave that the density is determined

by the condition that the maximum energy- per par¬

ticle of the fermion system at any point is

constant 5

tx - + ^
^ ^ Vj " *:') (p (*' )

(7-2)

We will again use the pseudo-potential form

of the potentials discussed in Chapter 3.

V ( ~x-~ £ f x- x'\
M (3-18)

(3-19)

W (X - x>) „ fjJS \ (x -X')



Inserting these into (7-1) and (7-2) and letting

"k =- \ we obtain the following pair

of equations,

(7-3)7> (*) I o (X) <j)(x) ^ 0

3-tcy)/3" d- ^-rr&-^>(x) -v i\ <jpx(*) _ 2fc\ - o
(7-k)

The quantity bz can be immediately determined

from the condition that (j) (x) vanishes at large
distances from the origin and that 0(x) there is

the undisturbed fermion density.

21 ^ - ^2)^ ^(3") -V" yo(^) (7-5)
Moreover since ^ (x) can never be negative, it
is clear from (7-'+) that the density vanishes

everywhere that

> rx

It is this condition together with the normali¬

zation of the function pc*) that determines the
size of the cavity in the fermion system. The
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behaviour of bp-) is determined by (7-3) which

can be reduced to a second-order non-linear equa¬

tion dependent on tp only by substituting for />(*-)
from (7-^). The resulting equation is only valid

if (7-o) is violated. If (7-6) is satisfied then

<p(l) satisfies,

7 r<pd) + £,<$>(*,) - o (

3. Analogue Computation.

Equations (7-3) and (7_i+) can be readily re¬

duced to radial equations (neglecting angular mo¬

mentum states) and in this form were set up on a *

PACE IR ^8 analogue computer. In view of the fact

that this technique has already been fully dis¬

cussed in Chapter 3., we will restrict comments

here to those specific to the problem.

As has been pointed out already the equations

can converted into a single non-linear differential

equation, so they are much simpler to handle than

the pair of coupled differential equations we dis¬

cussed above. Since there are only two boundary

conditions to be satisfied, namely c^/d-r
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and where Kir) is the radial
P-=> oo

part of 5 machine can be made to hunt

solutions that satisfy the integral condition.

One has only then to vary £~( manually in order
to find the solution that satisfies the boundary

condition when or is large.

The analogue programme is shown in Figure 7.1

and the solution in Figure 7.2.. Figure 7.3. shows

a sequence of solutions in a typical machine hunt

for that solution which satisfied the integral

condition. In this sequence, /f( was virtually at
its correct value and the final trial solution is

tending to zero as f- increases. If £x had been
set too large the solution would, have cut the

r-axis, too small then the solution would never

have reached the axis. For clarity only on the

final run was the function ^>(r) plotted. The ne¬
gative values of y?(r) have no significance.

High accuracy was not sought in this calcu¬

lation in view of the crudity of the Thomas-Fermi

approximation, particularly in the vicinity of

the boundary. The parameters however were selec¬

ted so that easy comparisons with more realistic



 



predictions of the ionic cavity radius in Wt*
could be made. The values used were

- - S ki XI0*; * 0-5 : £^aN 5-3 1 (7-8)
jj-

The functions plotted in Figure 7.2. and Figure

7.3. are the dimensionless fermion density

p tr) p and K ^ 63 , the radial part of
<£(x) times a scale factor K chosen so that
kR is dimensionless,

Z5 (It) (7-9)

In Figure 7.3. the vertical units- are only mean¬

ingful for the function K & . The units along

the x-axis are such that one small division is

/ 3tt in length. If o- is taken to be the

diameter of a helium atom A) the scale is
such that the point at which vanishes is

)l\- \ f\ . The energy of the trapped particle

is 0- 0$ OJ , if we take its mass to be an

electronic mass, which is a factor 10 larger

than cx , the maximum energy per particle of

the fermions. hence the criterion stated at the

beginning of this chapter is satisfied.



k. Discussion.

Although the calculation cannot he applied

with any confidence to liquid Vie5 , it is inte¬

resting to compare the computed radius with a

phenomenological estimate based on Kuper's cal¬

culation (1961) in liquid Vle^ . It is simple to

adapt his calculation. The pressure exerted out¬

wards by the electron has to be equated to the

inward pressure of the zero-point motion of the

atoms minus the van der V/aals pressure. There is

also a small electrostriction term.

tv v. r~
—-

c - C-o P ' vAW /1 -uk (7-i°)

n - IS
Taking tne values £ = \-lL\X\0 ergs/atom

(London, 195^0 and D - \.49 X to atoms/cc
r

we find the equation

b

- I'M 4- a:lL+
b" +

(7-11)

where h is expressed in Angstroms. Since the



last two terms are small we can solve this equation

by successive approximations. We find the solution,

i) ^ H • £7 A. (7-12)

which is surprisingly close to the computer solu¬

tion. We feel that this is fortuitous, since the

imperfect Fermi gas is not a good model of .

But the fact that the two values found are close,

together with the same proximity in the case of

Vie** , indicates that the radius is more strong¬

ly dependent on the parameters of the liquid than

on the model. It should be noted, however, that

the only other published estimate of the bubble

radius in (to A J differs wildly from the above

(Clark, 1963).



CHAPTER 8.

FURTHER PROBLEMS AKD CONCLUSION.

1. The Pressure Dependence of the Ions.

The bubble model of the negative ion has

been successful in explaining the observed mobi¬

lity of the negative ion at low fields and also

provides a basis for discussion of phenomena

such as the Careri steps (Careri, Cunsolo and

Mazzoldi, 19ol). But the mobilities of both the

positive and negative ions and their step-like

behaviour with increasing field are qualitatively

similar. Thus it is only required that the theo¬

retical models of the positive and negative ions

have a similar macroscopic structure. Since the

ratio of the theoretical radii of the ions is the

same as the ratio of the experimental critical

drift velocities at which the Careri steps occur,

we have reasons to think that the models are cor¬

rect. Apart from this indirect evidence, the ex-
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periments do not critically differentiate between
the models of the ions. Where the behaviour of

the ions differs drastically is in the observed

pressure dependence of the mobilities (Meyer and

Reif, 1961, and Cunsolo and Mazzoldi, 1961). This
is shown in Figure 8.1.. The behaviour of the mo¬

bility of the positive ion under pressure can be

explained straightforwardly. The mobility is go¬

verned by collisions between the ion and rotons.

The known change in number density of rotons with

pressure accounts well for the observed change in

the mobility. This theory also accounts for the

behaviour of the mobility of the negative ion

above 10 atmospheres. Below 10 atmospheres the

behaviour of the negative ion mobility is stri¬

kingly different. A.t zero pressure the mobility

is substantially lower that that of the positive

ion and, as the pressure increases, the mobility

increases to a value close to that of the positi¬

ve ion, from which it then steadily decreases.

The difficulties associated with explaining

this behaviour on the basis of the bubble model

are manifold. If one accpets Atkins (1959) electro-



striction model of the positive ion, one can ex¬

plain the above mobility change by postulating

that the model is virtually pressure independent.

This can be forced on the theory by assuming

that the growth of the central solid core (if it

exists), as the external pressure approaches the

melting pressure, is restricted by surface ten¬

sion (Atkins, 1959, 1963). Above 10 atmospheres

we must assume that electrostriction effects

play a dominant role in determining the mobility

of the negative ion as well. This implies that

radius of the bubble decreases steadily from
o

about 17 A at zero pressure to a value approxi¬

mately that of the radius of the positive ions ■
o

core ( L or 7 ft ) as the pressure increases. How¬

ever this requires that the bubble model is very

much more sensitive to pressure than Kuper's

(1961) calculation allows. If this calculation

is taken as a basis, a change of 10 atmospheres

in the external pressure would reduce the radius

of the bubble by less than one Angstrom, i.e.

less than 10%, whereas a change of the order of

%>0% is needed.



The only concept that could explain such a

behaviour is that of electron penetration into

the liquid. Kuper assumes that the electron is
virtually in an infinite potential well and we

have seen in earlier chapters that this is not

a bad approximation. As the pressure increases

however, the penetration will become larger and
the electrostrictive forces will play a more

important part in determining the radius of the

bubble. This may cause the bubble radius to be

strongly pressure dependent. This theory certain¬

ly merits further investigation.

The rough idea of the collapsing bubble was

mentioned in a footnote by Kuper (1961) and was

also conceived by Cunsolo and Mazzoldi (1961).

Neither of these authors have worked out any

details.

2. The Transition from the Free to the Trap¬

ped Mode.

A second problem of some interest is an ade¬

quate treatment of the transition of the electron



from the self-trapped state to the conduction band

behaviour. As we have seen in Chapter 6., path-

integral techniques seem to be inapplicable beyond

the perturbation theory limit. In any case, we

would not expect the theory to apply to the bubble

mode because of the assumption in developing the

Hamiltonian of the validity of the expansion into

plane wave states. At present, the best that can

be done, in order to predict the density at which

the transition occurs, is to compare the energy

given by perturbation theory with the energy of

the bubble structure at various densities and

choose that density at which they are enual to be

the transition density. This has been done (in a

paper to be. published) by Jortner, Kestner, Rice

and Cohen. Their perturbation theory differs

from ours in that it assumes that the helium

atoms occupy rigid sates, whereas the polaronic

perturbation theory allows the atoms to' recoil.

Their estimate of the bubble radius (21 R) also

differs from ours as they assume that the radius

is determined by the external pressure not by

the zero-point pressure of the atoms as we have



done, Their calculation however is aimed at deter¬

mining the structure of the negative ion in helium

gas as it is only in densities as low as those of

tue gas that one obtains the transition. The den¬

sity at which they find the transition should oc¬

cur is 0-3 X loxl o-fev^/cc. , which in terms of
the coupling constant defined in Chapters 3. and

1+. is = \-\\ \ to* . This is a factor 5 lar¬

ger than the minimum pd found in Chapter b. but

as remarked there, the model could not describe

the free-electron so could not be expected to

give more than an order, of magnitude.

This argument is quite crude but the result

is in fair agreement with the density at which a

sharp drop in the negative ions mobility occurs

(Levine and Sanders, 1962). 'The experimental va¬

lues of the mobility drop rapidly over four or¬

ders of magnitude as the density is increased
^ I

between the values 0-6 * 10 atoms/cc and

lb X loM atoms/cc. There seems little doubt .

that this drop is caused by the transition from

the free electron state to the trapped state, par¬

ticularly in view of the agreement with theory,



bat the mechanism is not altogether clear as the

pressure required for the mobility drop to occur

is close to the saturated vapour pressure and

hence the pure gas model may not be valid. Apart

from this one reservation, we believe that the

result is additional evidence in support of the

bubble theory. It is fair to say, however, that

the theories that describe the motion of the

electron above and below the transition fail in

the region of the transition. A theory that covers

both limits and the transition region remains

unknwn.

3. Conclusion.

In this thesis we have attempted to put the

bubble model of the negative ion on a firm theo¬

retical basis and to calculate from first prin¬

ciples some of its characteristics. Whether we

have succeeded depends on the judgement of the

reader. There remain many problems most of which

we hope we have outlined in the body of this work.

The behaviour under pressure, the effect of pola¬

rization, the transition to the free state, the



effect of collisions with excitations in the

helium, further excited states of the ion, in

particular rotational states and deformed confi¬

gurations are but a few of these problems, '//hat

is certain is that there now exists a body of

work on the structure of the negative ion, to

which we have contributed a little and from

which discussion of these further problems can

proceed.



APPENDIX A.

THE EQUATION RV 0 .

In this appendix, trie non-linear, non-auto¬

nomous second-order differential equation

^ \ ^ =*" ° (A-l)

will be studied. Primes denote differentiation

with respect to t . Equation (A-l) has three tri¬

vial solutions,

R' h (A-2)
*

The solutions R= t i divide all solutions that

obey the boundary condition, O at -r- 0 , into

three distinct types ; (a) \ <Uo) 1 < 1 , (b) R.(o) > I

(c) \l(p) < — i . Type (a) perform damped oscilla¬

tions about R-- 0 , types (b) and (c) diverge mo-

notonically to +■ <*> and — 1:0 respectively.

More specifically the following theorems can

be proved.

Theorem 1, (a)

If Xqd is a solution of (A-l), continuous
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and with continuous derivatives, and X 60 =• 0 for

some value of f , U say, such that X(k)>i ,

then X (f) X i for all rXo and V/(-r)> o for

all r > k , and < O for all 0 < ^ X k .

Proof : If X'(.k) =0 then from (A-l)

X 10 = - xCic) > o (a-3)

Hence X(U) is a minimum of X(r) in the plane.

Hence for some £ > o , X/(k + S)>0 and X/(U-$)<0,
and X (k i 0 X X (k) . Hence X\<-) >0 for

all T- > U and x'o) X. 0 for all O <r < k .

Since if Xy(r) -0 for some r> k , let ~r- I be

the first value of t- at which X (O ~ 0 . 'l'hen

x'(e) must be a minimum. Hence, since X'(c) is

continuous and X'(k+S)>0 and X '(£ - 0 <« O ,

there exists some in k + & < r < ^ at which

X' (-0 - O . , which contradicts the assumption

that I was trie first value of -r >U at which X V)
vanished. Similarly for r < k .

q.E.-D.

Similar theorems can be proved for the cases

(b) X U) < - I

(c) O < X(k) < \ U-b)
Cd) o > x 00 > - 1



In case (b) X (it) can be proved to be a maximum
and )('(?) > O for all 0<-r<\c and (r) <£ 0 for

all r>k . In (c), X(k) is. also a maximum and X V)
cannot change sign at any C- £_ =#■ k unless X (+■)

vanishes in the open interval (£./ V) . In (d), X (U)
is a minimum and X (f) similarly cannot change

sign at t unless X(r) vanishes in [l, k) .

Theorems (b) and (d) can be deduced from (a) and

(c) by observing that (A-l) is unaltered under

the transformation K(r) _ R(r), i.e. reflexion

in the r~- 0 axis in the plane.

The substitution i X- (c) reduces (A-l)
to tt

7- + y- - * - o (a-5) *
t'L

If the maximum value of "X. <£^5 'the solu¬

tions of (A-5) tend asymptotically to the solu¬

tions of // .

A + X ^ O (A-6)

However, in Chapter 3., we are more interested

in solutions that behave asymptotically as

$t= ! , so for large -f, write,

X - <r V IX)
(A-7)



where' £)(<-) is small, and ->> 0 as . Then

+ , i' + (r+n - = o (A-f

or since S(-c) is small, neglecting higher order

terms than the first

u

h - n =■ o

>n h -1'

(A-9)

The solution 6 (c) =• a. e satisfies the

condition that O as -> «o , Hence there

exists solutions of (A-l), that for large be¬

have as -lr
y - i -V o- h— (A-10)

~r

These solutions are not necessarily finite at

O , but we are interested in Chapter 3. in

solutions like (A-10) that vanish for some finite

T > O . If in Vfc) , a<0 , from Theorem 1. (c),
since for some finite /h , Y(K) < i and

W) )> O , then either for some 0 <

Y(r) must vanish, or Y(>) is monotonically in¬

creasing from some value Y(o) at -c=-0 , & <Y(o) < 1
and s//(o) > 0 • Now these last two conditions

are mutually incompatible for the condition that

Y(o) is finite, implies y?o) -o. The proof
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of this statement is as follows (Chandrasekhar,

1939, proves this theorem for the equation
"

-4- "2-_ $ -v -= O . We merely adapt his

proof here).

The solutions of (A-l) that are finite at

the origin in the (R.,r) plane correspond to solu¬
tions of (A— 5) that pass through the origin in

the (X, -<-) plane. Also
^ » J- (A-ll)
X-r r r

%■

Hence \ i • / I Y-
rJ " Xr ~ 7-J (A-12)

Expanding X(d and X(_r) in a Taylor series about
<- » O -

Xtf - o ^ 77o) + £ %"<*» -f • - -

and x' (<9 - X'C°) X"(o) +- - - ,

and substituting in (A-12) gives

(rh. ' fe Li*»]
• i~ I {(?•-')]
•- 0

since * is finite at ^ O . and 7"0 at v= 0 ,
V '

Hence Y(*-) must vanish for some finite -r , since

Y (o) cannot be greater than zero at t- 0 for



 



finite Y . Figure A.1. shows solutions that have

R'-O at o and R (0) ^ ! . Also shown in

Figure A.l. are two solutions that vanish at

c= ^ and are upper and lower bounds to the solu¬
tion that satisfies the condition that R-^. I as

r- do . The solution that satisfies this con¬

dition lies between these two.

The two solutions I and Rr-t are un¬

stable. This is easily seen from Figure A.2.

which shows the phase-plane diagram of solutions

of (A-l) which are finite at the origin. The so¬

lutions R=« 1 , R=-l are the points (0, \) and (o,- 0 •

Unstable solutions are characterised by saddle-

points in a phase-plane diagram. Stable points,

such as (Cb Q) , are characterised by lines that

spiral into them. To find the separatrices, we

observe that they result from the limiting solu¬

tions above and below R- i or R=- -1 . Hence,

since we can always find a solution such that

given 4^) is negligible at y- , the sepa¬
ratrices result from the limiting solutions of

(A-13)



 



for which 0 5 and R(o") = , as ^ -s> o .

Let ^(r) and x- 6/(0 , where x- O , O
are the coordinate axes in the phase-plane. Then

R"- £ - e1- « - »'-* a-w)

and *p ' R' " ,c (A-15)

Hence the separatrices are given by the solutions

°f J oS _

xi ^ ^ - (A-16)

which pass through the points (0,i) , (o,-i) . These

are the two parabolae

> ( I t JI x) (A-17)

enclosing the origin.

The separatrices are drawn in Figure A.2..

Also for comparison, is shown the phase-plane dia¬

gram of the solutions of

R + £ = ° (A-18)

that satisfy £'-o ,£-•=" 1 at .

Equation (A-13) is, of course, a special case of

the equation whose solutions are Jacobean ellip-
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tic functions. The solutions of more general equa¬

tions^ ^ 1 > ^ > O , <x real^j
ft' 2= (_l + ^)R. - R* - O (A-19)

+ f ^l+^) ^ ~~ ^ " ° (A-20)

that satisfy the boundary conditions R'(b) - 0,

R(o) =- i , are dc. {^£ \ and cd
respectively. As *k->> i , I both these solu¬

tions degenerate to the line, Q.(r) - [ .

Finally we list a few alternative forms of

(A-l) that might be useful for special purposes.

1) £ - i x (0 ■, %" + % - ^ - o

,A R . 1' yw , - fir.Xs- O
■f t"®-

U0 "^= -tH > X + >—%** O<\.v

lv) R-
^ e . X. -t X -X* + €^X - O

v _ ciy-
where A- " 7-7

cl"t
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