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Abstract

A fundamental goal of visual neuroscience is to understand the sequence of representations

and transformations by which the brain extracts meaningful information from the retinal

image. However, feature selectivities of neurons in higher visual areas of temporal cortex

(e.g. STS and IT) are complex and poorly understood. This thesis describes a novel

computational method for determining effective stimuli for visual neurons. It attempts to

optimise the response of a cell by changing stimuli in the estimated direction of the response

gradient with respect to stimulus parameters. Results are presented showing that this method

produces multiple effective solutions for a simulated complex cell. It may therefore prove

more applicable than reverse correlation since it can characterise non-linear neurons.

Due to the high dimensionality of image space, optimisation is more likely to be successful if

the search can be restricted to a specific stimulus subspace. To this end, the colour and spatial

frequency response of neurons in areas STS and IT was investigated. Theories of coarse to

fine processing (e.g. Delorme et al. 2000) suggest that, at the high presentation rates

necessary for stimulus optimisation, the response of these neurons may be largely determined

by low spatial frequency achromatic aspects of a stimulus.

Recordings were made from 50 neurons in STS/IT to colour, achromatic, false colour and

high- and low-pass filtered versions of each cell's preferred stimulus. Differential activity for

achromatic and coloured stimuli was evident from response onset; thus the hypothesis that

information about object colour is delayed with respect to object form is not supported.

Furthermore, no evidence was found to support the idea that high spatial frequencies were

delayed with respect to low spatial frequencies. Overall, low-pass achromatic stimuli were not

found to be effective stimuli, even at the fastest presentation rate (14ms/image). Thus this

thesis finds no evidence for progressive availability of spatial frequency information from

coarse to fine.
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1. General Introduction

1.1. The Problem: Characterisation of Visual Receptive Fields

A pattern of light falls on the retina and is transformed by the brain into a rich visual

world - our perception is of objects and individuals, colours and textures. How does

the brain represent the visual world? And what sequence of computations leads to this

representation?

Theoretical models of object recognition generally suppose a sequence of

computational steps, whereby progressively more complex features are extracted from

the retinal image with each stage of processing (e.g. Marr, 1982).

In the primate brain, object recognition is thought to be accomplished by the ventral

visual pathway, which carries visual information from VI (the first area of cortex to

receive retinal input) to area TE of the inferior temporal lobe, via areas V2, V4 and

TEO. Bilateral removal of inferior temporal cortex results in a severe deficit in

learning tasks that require object recognition and discrimination (see reviews in

Mishkin, 1982; Dean, 1976; Gross, 1973).

Within the ventral visual pathway, neurons with increasingly complex feature

selectivities are found, as visual information progresses along the pathway and away

from the retina (Kobatake & Tanaka, 1994). For instance, neurons in the retina and

LGN respond to spots of light, while the "simple cells" of VI respond to bars of a

specific orientation. With each stage of processing it is assumed that neurons use the

output of the preceding area to extract increasingly complex features from the retinal

input. Thus a bar detector in VI could be formed by combining the output of a set of

LGN cells with collinear receptive fields.
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This increasing complexity makes an objective description of the feature selectivity of

neurons in higher visual areas (i.e. towards the end of the pathway) very difficult. In

TE, neurons have been described that respond selectively to the sight of a face, a

hand, or complex geometrical objects (Perrett et al., 1982; Gross, 1972; Tanaka et ah,

1991). However, the current methods for establishing the stimulus selectivity of these

cells rely on the assumptions and luck of the experimenters, and make use of a limited

and predetermined set of stimuli. Thus, we can say that a particular stimulus is the

most effective of those that we have tested, but this does not allow us to say with any

certainty what the actual trigger features of the cell are. Furthermore, an estimated

minimum of eight synapses lie between VI and TE (Oram & Perrett, 1992), which

places few constraints on the type of features that cells may be interested in.

At present, we lack a complete and objective description of the feature selectivities of

neurons at all but the earliest stages of the visual system. Such a description would not

only allow us to better understand how the visual world is represented, but would also

provide valuable insights into the general principles of organisation and computation

in the brain.

1.2. The Present Thesis: Towards a Systematic Method

This thesis describes work on a systematic method to find the optimal stimulus that

could be used to investigate the properties of receptive fields in higher visual areas. In

essence, the idea is to use the response of a neuron under study as a feedback signal to

guide the computer-based generation of new stimuli. Although this idea is not new

(see e.g. ALOPEX, Harth & Tzanakou, 1974), the method we describe is novel, and is

designed to be more widely applicable than previous attempts.
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A systematic search requires that responses to a large number of candidate stimuli be

measured. To this end, we use the rapid serial visual presentation (RSVP) paradigm

(Keysers et al., 2001) whereby responses are measured to a rapid and continuous

stream of visual images, each presented for as little as 13 milliseconds.

However, a number of studies have suggested (e.g. Sugase et al., 1999; Delorme et al.,

2000; Parker et al., 1992) that a serial and feedforward model of the visual system -

whereby each visual area processes its input, then passes the result on to the next

stage of processing - may be an over simplification. Stimulus representations may not

emerge fully formed, rather information might become progressively available in a

coarse to fine manner over several tens ofmilliseconds.

If this is the case, any search technique employing rapid stimulus presentation should

take this into account, perhaps by rapidly optimising a coarse stimulus, then slowing

down the presentation rate to allow finer levels of detail to be investigated. Therefore,

the latter part of this thesis presents two neurophysiological experiments investigating

the response of cells in area TE to stimuli with reduced levels of detail, at varying

rates of presentation.

1.3. The Organisation of This Thesis

Firstly, the properties of visual neurons that are relevant to a discussion of stimulus

optimisation will be reviewed in Chapter 2. Our consideration will be largely centred

on the properties of neurons in areas STS and IT of the temporal cortex, since these

areas contain visual neurons with complex and poorly understood receptive fields -

the main area of study.

Chapter 3 will review the previous attempts to study receptive field properties of
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neurons in a systematic way. Although this chapter concentrates on the visual

modality, we will also look at relevant work that has been carried out on the other

senses, specifically the auditory system. Chapter 4 presents the novel algorithm we

have developed for visual stimulus optimisation, how it can be adapted to make use of

different image basis sets, and its performance with simulated neurons.

In recognition of the high dimensionality of the problem faced, Chapters 5, 6 and 7

will explore some of the features of neurons in STS and IT that might be used to

constrain the search for optimal stimuli. Chapter 5 provides an introduction to this

idea and reviews the relevant literature. Chapter 6 describes the results with colour,

then Chapter 7 goes on to look at spatial frequency. Finally, Chapter 8 concludes this

thesis and gives an overview of the main findings. Appendices at the end of this thesis

contain the list of stimuli, histological reconstructions of the positions of cells studied

in Chapters 6 & 7, and the computer code, with a commentary, written to support the

optimisation algorithm described in Chapter 4.

Some of the findings of this thesis, specifically those relating to the colour and

frequency experiments (Chapters 6 & 7) have already been presented at the Society

for Neuroscience meeting in New Orleans (2000). Chapter 6 has also been published

as a paper in the Journal of Neurophysiology1. I also intend to prepare chapter 7 for

publication. The findings on contrast sensitivity (Chapter 2) were presented at the

Society for Neuroscience meeting in 2001.

1 Edwards, R., Xiao, D-K., Keysers, C., Foldiak, P. & Perrett, D. (2003). Color Sensitivity of Cells

Responsive to Complex Stimuli in the Temporal Cortex. Journal ofNeurophysiology 90: 1245-1256.
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2. Properties of Cells in Higher Visual Areas

This chapter will discuss in some detail the properties of neurons in higher visual

areas of temporal cortex, specifically STS and IT. The complex properties of these

cells underlines the need for a systematic means of study, and illustrates some of the

constraints that must be built into such a process.

2.1. Anatomy and Connectivity of the Inferior Temporal lobe

The inferior temporal cortex (or IT) of the monkey is located on the inferior convexity

of the temporal lobe, extending from the superior temporal sulcus (STS) dorsally to

the rhinal sulcus, ventrally and medially. On the basis of cell morphology, the anterior

part of IT was considered by von Bonin & Bailey (1947) to be a single

cytoarchitectonic division, which they labelled TE. A more posterior area, in the

vicinity of the inferior occipital sulcus, was labelled TEO. This nomenclature is still

in current usage, and is broadly equivalent to a more recent division between anterior

IT (AIT) and posterior IT (PIT) that has been proposed by Tanaka et al. (1991) and

based on receptive field properties. TE (or AIT) consists of the anterior two-thirds of

IT cortex, with TEO (or PIT) occupying the posterior third; the boundary between TE

and TEO lies at the rostral tip of the posterior middle temporal sulcus (PMTS;

Boussaoud et al. 1991; Iwai & Mishkin, 1969).

TE lies at the head of the ventral visual pathway (Ungerleider & Mishkin, 1982) and

receives visual input from VI after processing in areas V2, V4 and TEO. Although

certain pathways exist that allow visual information to take shortcuts (e.g. from V2 to

TEO, from V4 to posterior TE; for refs. see review by Tanaka, 1996), the stepwise

projections are most numerous, and the pathway is generally considered to be a set of
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serial processing steps, albeit with certain shortcuts.

IT projects to several areas outside visual cortex including the perirhinal cortex and

hippocampus, prefrontal cortex, the amygdala and the striatum of the basal ganglia

(see Tanaka, 1996). Projections to these areas are more numerous from TE than from

any of the earlier stages of the visual pathway.

Anatomically, the anterior part of IT is divided into the middle temporal gyrus (MTG)

dorsally and the inferior temporal gyrus (ITG) ventrally by the anterior middle

temporal sulcus2 (AMTS), with these areas largely corresponding to Brodmann's

areas 20 and 21 respectively (Brodmann, 1905). This division is also reflected in

patterns of connectivity, and several researchers have suggested (see Buckley et al.,

1997) the division of TE and TEO into dorsal and ventral subregions, with the part of

TE lateral to the AMTS often referred to as TEd, and the part medial to the AMTS

(and occupying the ITG) as TEv.

However, although the ITG was previously thought to be included within the area

broadly designated as TE, it is now thought (Buckley et ah, 1997) that the lateral edge

of perirhinal cortex (Brodmann's areas 35 and 36) may actually lie near the fundus of

the AMTS (i.e. at the MTG-ITG boundary). For this reason, this thesis shall adopt the

following conventions for clarity when referring to these areas of anterior

inferotemporal cortex-

2 These two gyri are, somewhat confusingly, collectively referred to as the Inferior Temporal Gyrus by

some authors (e.g. Baylis et al., 1987).
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(i) The area of cortex extending laterally and dorsally from the fundus of the

AMTS to the fundus of the STS (i.e. TEd) will be referred to as TE.

(ii) Cortex extending medially from the fundus of the AMTS to the rhinal

sulcus (i.e. TEv) will be referred to as perirhinal cortex (PRh).

TE has been subdivided into many smaller areas labelled TEa, TEm, TE3, TE2 and

TE1 (Seltzer & Pandya, 1978). These areas run roughly parallel to the gyri, with TEa

and TEm lying inside and on the ventral lip of the STS, followed by areas TE3-1

across the MTG and ITG. Of the areas outside the STS, TE3 is most posterior and

projects to the more anterior areas TE2 and TE1. Functional differences between these

areas have been investigated by Baylis et al. (1987), who found some differentiation

between receptive field types and latencies, particularly between areas TEa, TEm and

figure 2.1 - Anatomy of the macaque temporal lobe, (a) lateral view, with dotted lines indicating
boundaries between TE, TEO and V4 (b) ventral view (c) coronal section (d) unfolded map of
anterior inferior temporal cortex. STS - superior temporal sulcus, AMTS - anterior middle temporal
sulcus, PMTS - posterior middle temporal sulcus, RS - rhinal sulcus, OTS - occipito-temporal
sulcus, IOS - inferior occipital sulcus, LS - luncate sulcus, [adapted from Kobatake & Tanaka
(1994); Higuchi & Miyashita (1996); Kobatake et al. (1998); Komatsu & Ideura (1993)].

RS

12



TE3 and the more anterior areas TE2 and TE1. However, since most studies do not

report recording location to this degree of accuracy, this terminology will not be used

in this thesis.

2.1.1. Behavioural Effects of IT Lesions

Studies carried out over the past half-century indicate that lesions of monkey anterior

inferotemporal cortex lead to deficits in learning visual discriminations, and loss of

those acquired prior to surgery (reviewed in Gross, 1973; Dean, 1976). The deficits

reported include discriminations of 3-D objects, 2-D shapes, and along the dimensions

of hue, brightness, orientation and size. Impairment was found to be strictly visual,

with IT lesioned animals unimpaired in learning discriminations of audition, touch or

olfaction. However, monkeys with anterior IT lesions do show some residual visual

discrimination ability, and the severity of a deficit tends to depend on the difficulty of

the task (i.e. how long it takes a normal monkey to learn the discrimination).

The effect of IT lesions on visual recognition has also been investigated (Mishkin,

1982). Monkeys were trained in a delayed non-matching to sample (DNMS) task,

where they were rewarded for choosing a novel object which did not match a

previously shown sample object. Animals with bilateral lesions of anterior IT were

found to be significantly impaired at relearning the task, with an abrupt increase in

impairment as the delay between sample presentation and choice went up. In contrast,

animals with lesions of posterior IT were found to perform as well as controls, except

where the number of objects to be remembered was also increased, which led to a fall

in performance of this group (though their performance remained superior to that of

TE lesioned animals).
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Mishkin (1982) concluded that TE was critical in the recognition of previously seen

objects, acting as a storehouse, where central representations of visual stimuli are

formed and stored. TEO was necessary for shape perception, but unnecessary for the

recognition task, so long as the number of objects was low and could be adequately

discriminated on the basis of other features, such as colour or size.

Is IT largely concerned with visual discrimination (i.e. perception), or with

recognition (i.e. learning or memory)? The early lesion studies described above

generally destroyed the whole of anterior IT cortex, including both the middle- and

inferior temporal gyri (i.e. TEd and TEv/PRh). However, a recent study (Buckley et

al., 1997) has provided evidence of a functional double dissociation between these

two areas, which has helped clarify anterior inferotemporal cortex's role in the

discrimination and recognition processes.

Buckley et al. (1997) trained monkeys in two tasks: a hue discrimination task, where

subjects were required to choose green from an array of nine equiluminant colour

patches, and a recognition task, based on the DMNS task of Mishkin (1982). The

animals were then given lesions of either ITG (PRh group) or TEd (MTG group) and,

after recovery, tested again with the two tasks. In the colour discrimination task, the

MTG group showed a large impairment in post-operative learning, whereas the PRh

group was not impaired. In contrast, the MTG group was only mildly impaired in the

DNMS task, but the PRh group showed a large impairment.

The study reveals that there are functional differences within inferotemporal cortex,

with TEd more important in the perception of visual form (specifically colour, in this
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study3), and PRh playing some role in the visual learning and memory of stimuli,

allowing objects to be recognised as familiar. However, a more precise description of

the function of these areas remains an important goal of future studies.

2.2. Feature Selectivity of IT neurons

The receptive fields of IT neurons (particularly those of area TE) are well described as

complex - cells have been found that maximally respond to the outline of a hand,

certain views of particular faces, and complex geometrical figures, with specificity for

boundary, texture and colour (Gross et al., 1972; Perrett et al., 1982; Tanaka et al.,

1991). This section will first review the properties of shape selective responses,

investigated in some detail by Tanaka and colleagues in area TE, and will then go on

to describe the properties of face-selective cells that have been discovered using

somewhat different methodologies in TE and STS.

2.2.1. Shape Selective Responses in TE

The stimulus selectivity of single units in the temporal lobe was first investigated by

Gross et al. (1969, 1972) recording from the posterior and central regions of IT. They

noted that the receptive fields of TE neurons were large, always included the fovea,

and frequently extended across the midline into the ipsilateral hemifield. They also

concluded that their standard stimulus set (consisting of slits, spots of light and

checkerboards) was less than ideal, with many neurons failing to respond to it,

preferring instead to respond uniquely to specific outlines such as the shadow of a

hand, or three-dimensional objects placed in front of the animal.

3 A more complete account of studies investigating the effect of inferotemporal lesions on colour

discrimination is presented in chapter 5.
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This study led to a reductive technique where many objects were first presented to

each cell in order to find effective stimuli. Then, cardboard cut-outs were made of

effective stimuli in order to determine what particular features were critical to excite

the cell (Desimone et al., 1984).

This method has been further developed by Tanaka and colleagues (Tanaka et al.,

1991; Fujita et al., 1992; Kobatake & Tanaka, 1994; Tanaka, 1996), and remains the

most effective and systematic way to determine the property of these cells -

(i) A large number of pictures and three-dimensional stimuli are presented to

the animal.

(ii) Images of effective stimuli are digitised and presented on a computer

monitor.

(iii) The image of the most effective stimulus is simplified step by step, until

the minimum combination of features that produces the maximal

activation of the cell is found.

(iv) After reduction, the features of the simplified stimulus are modified so that

the selectivity of the cell can be further examined.

Using an early version of the technique outlined above, Tanaka et al. (1991) examined

the selectivity of cells in anterior and posterior regions of IT (TE and TEO) and

classified cells into three broad categories of primary (activated by slits or spots by

adjusting size, colour or orientation), texture (activated by simple textures such as

stripes or dots) and elaborate (requiring a particular shape, or combination of shape

with colour or texture). Although cells of each category were present in both regions,
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there was an abrupt change in their distribution, with elaborate cells predominantly

found in TE, and primary cells mainly found in TEO. An example of two different

elaborate cells from this study is presented in figure 2.2.

A later study (Kobatake & Tanaka, 1994) further examined the complexity of

stimulus selectivity along the ventral stream, using the same methods to compare V2,

V4, TEO and TE. Neurons in V2 were found to respond equally well to simple stimuli

(such as coloured bars and dots) when compared the more complex stimuli produced

using the reductive technique. However, about half of the cells in V4 and TEO, and

the majority of cells in TE required the complex features that had been found,

producing little or no response to the simpler stimuli. The authors concluded that there

is a systematic increase in complexity along the ventral stream, with ever more

elaborate feature detectors created from the output of previous steps and, in parallel, a

progressive increase in the area over which these stimuli will provoke a response (i.e.

the receptive field size).
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figure 2.2 - The visual selectivity of two TE neurons, from the study of Tanaka et al. (1991). The
magnitude of the response relative to the best stimulus is shown by a number above the PSTH, with an
asterisk if the difference was significant. Stimulus presentation is indicated by a bar under the PSTH.
(a) This cell required the presence of a dark disc above a light disc. Neither feature presented alone
produces a response, (b) This cell required the combination of triangular shape and a vertically oriented
texture.
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However, there are rather obvious flaws in determining visual selectivity using the

systematic reduction technique, specifically - how can we be sure that the initial set of

stimuli will contain features sufficient to drive a particular cell? Is the simplified

image a true reflection of a cell's underlying selectivity, or are there additional

features which, if added or substituted, would produce an even bigger response?

Furthermore, is it realistic to assume that a complete description of a cell can be

provided by a single set of features, or does the cell in fact code for multiple

combinations of features, of which we have only found one? Despite these objections,

the method has proved very effective in finding combinations of features that are, at

the least, sufficient to drive cells in TE (and other higher visual areas), and the

findings are important in providing constraints to inform the design of more

methodical and systematic techniques to determine stimulus selectivity.

Two important properties of TE neurons are made apparent by the responses of

neurons shown in figure 2.2. Firstly —

1. The responses of TE neurons are non-linear, i.e. the response to features A & B

presented together is not the sum of the responses to features A or B, when presented
alone. [boxed paragraphs indicate observations with implications for optimisation]

This principle is very clearly illustrated by the cell shown on the left of figure 2.2.

There is a large response to a dark circle above a light circle, but the response to either

circle presented alone is close to baseline. A second, very important, property is that -

2. The response of a TE neuron is not all-or-nothing, but increases gradually as a

stimulus becomes closer to an 'optimal' set of features.

The existence of a gradient around an optimal stimulus is necessary for any

optimisation technique, and this is can be seen in the cells illustrated in figure 2.2,
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with both cells producing reduced responses to stimuli that possess some, but not all,

of the features necessary to maximally drive the cell.

2.2.2. Constancy of Shape Selective Response

(a) Position (Retinal Location)

As previously noted, neurons in TE have large receptive fields, and stimulus

selectivity has been found to be largely constant across these fields (Tanaka, 1996;

Gross et al., 1985). Thus TE cells can respond selectively to a stimulus, regardless of

its specific location on the retina, providing a basis for perceptual equivalence across

retinal translation. An example of a cell displaying this behaviour is shown in figure

2.3(c).

(b) Size

Stimulus selectivity also remains constant over changes in the size of a stimulus, as

shown in figure 2.3(a). The tolerance of individual cells varies widely, with some

cells continuing to respond strongly to a stimulus over a range of sizes covering four

octaves, however the majority of cells are more narrowly tuned to size (Tanaka, 1996;

Tanaka et ah, 1991). Despite these differences in the overall breadth of tuning, cells

tend to have an optimal size of stimulus, that produces the maximal response.

(c) Orientation

In contrast to the wide tuning curves found for position and size, TE cells are very

strongly selective for the orientation of a stimulus, with a sharp decline in response as

an object is rotated (in the picture plane) away from a cell's preferred orientation. The

responses of 8 TE cells, which were typical of the study of Tanaka et ah (1991) are
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shown in figure 2.4.

(d) Contrast andBoundary Definition

Figure 2.3(b) shows how some TE cells can maintain selectivity over changes in

stimulus contrast (inversion in the example illustrated)4. Shape selective responses

have also been found which are maintained whether the boundary of the stimulus is

defined by luminance, motion (by opposing movement of random dot patterns), and

texture (Vogels & Orban, 1996).

(e) Colour

There have been a mixture of reports as to the degree of colour selectivity exhibited

by TE neurons. This topic is discussed in a later chapter and is just briefly reviewed

here for completeness. Some studies (e.g. Tanaka et al., 1991) suggested that only a

small proportion of cells are selective for colour in addition to shape. However, other

reports have shown that a majority of cells do have a degree of preference for

particular colours, at least within the population of cells that can be driven by

relatively simple stimuli (Komatsu et ah, 1992; Komatsu & Ideura, 1993). Two

examples of cells from the later study, one showing both shape and colour selectivity,

the other showing only shape selectivity, can be seen in figure 2.5.

3. While TE neurons are selective for the orientation, and often colour, of a stimulus,

they can show invariance for size, position and the means by which the stimulus

boundary is defined. However, there may be optimal settings for these parameters

which produce the greatest response.

4 In a later section we shall see that response latency, as well as magnitude, can be altered by stimulus

contrast. This has the potential to be problematic for stimulus optimisation procedures.
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2.2.3. Face Selective Responses in STS/TE

Gross (1972) made the first discovery of cells that responded selectively to faces in

the temporal cortex. These cells are treated separately here because they may form a

distinct population, and there is an extensive body of literature (perhaps more

extensive than that examining pattern selectivity in IT more generally) which has

concentrated exclusively on the properties of these cells.

Face cells are defined as those cells that produce responses to faces that are at least

twice as large as to any other stimulus tested, such as gratings, geometric stimuli and

three-dimensional objects (Perrett et al., 1982; Baylis et al., 1985). Though face cells

have been found in throughout the STS and TE, there is some evidence for differential

properties between the two regions, which will be discussed below.

(a) Viewer- and Object-Centred coding in STS

Face cells generally exhibit a preference for a particular view of the head (e.g. a front

view or profile view) with the response falling as the head is rotated away from the

preferred view (Perrett et ah, 1982, 1991). These cells are termed "viewer-centred",

because their response to a particular head or individual is not invariant, but depends

on the position of the viewer relative to the head or individual being viewed. A small

number of cells produce bimodal responses (e.g. to both the left and right profile

views), and a smaller number still have been found that respond to all views of a head,

without distinguishing between particular views. This latter category is termed

"object-centred" since they would produce an invariant response to an individual

irrespective of viewing position. Examples of the responses of uni- and bimodal

viewer-centred cells, and a object-centred cell are shown in figure 2.6.
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It has been suggested that object-centred representations could be built from the

outputs of a number of viewer-centred cells, and an analysis of latency data (Perrett et

al., 1992) indicates that this may be the case, with slightly higher latencies found for

cells that show view-invariant (i.e. object-centred) properties.

4. If a cell responds to an object (e.g. a head) irrespective of view, where particular
views can share little or nothing in terms of retinal input, then multiple runs or

multiple solutions would be required for optimisation to produce an adequate

description of the cell.

figure 2.6 - Viewer-centred (left) and object-centred (right) coding of faces in STS. Bimodal responses,
such as that shown (middle) may reflect intermediate stages of face processing. Dotted lines at the bottom
of each graph show spontaneous activity, and that to control (i.e. non-face) stimuli. From Perrett et al.
(1991).

(b) Response to Elements and Structural Configuration ofa Face

Are these cells responding to the face as a whole, or perhaps just some element (e.g.

the eyes) that might reduce to a more simple geometric description of the selectivity?

This has been investigated to some extent (Perrett et al., 1982; Rolls et al., 1985) and

a continuum of selectivities found. For example, Perrett et al. (1982) reports cells that

require only a single feature (the eyes), any one of several features or, in some cases,

require all of the features of the face in order to respond. This study also found that

the relative positioning of facial elements is important, with jumbled faces leading to

a significant reduction in the response.
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(c) Invariance to Position, Size, Colour, Contrast and Orientation

Although the spatial arrangement of features within a face is important, face cells

show generalisation for their preferred view across retinal translation (Desimone et

al., 1984), size and contrast (Rolls & Baylis, 1986) and colour5 (Perrett et ah, 1982) -

though, like the shape-selective responses described earlier, cells may have preferred

settings for these properties that will evoke a maximal response.

Neurons in TE are selective for shape orientation in the picture plane and this

orientation sensitivity has also been found for cells responsive to faces in TE (Tanaka

et ah, 1991). In STS, however, responses that are invariant to changes in orientation

have been described (Perrett et ah, 1982; Ashbridge et ah, 2000). This may reflect the

location of TE at an earlier stage in a pathway that leads to object-centred responses,

since TE is known to project to the STS (Seltzer & Pandya, 1978).

(d) Population Coding ofIdentity in STS and TE

Although Perrett et ah (1984, 1991) found that the majority of cells in the dorsal bank

of the STS were not sensitive to the identity of a face, other studies have indicated that

a large proportion of cells do code for facial identity, particularly those that were

recorded from the ventral bank of the STS (part of TE) and the inferior temporal gyrus

(Baylis et ah, 1985; Hasselmo et ah, 1989a).

5 The effect of colour on the responses of neurons in IT to faces (and other complex stimuli) is

investigated more fully in a later chapter.
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Baylis et al. (1985) found that cells had relatively broad tuning for identity, with few

cells that responded exclusively to views of only one individual. They suggested that

identity was coded by an ensemble of neurons, with different relative responses to

each member of a set of faces.

Although they only found a small number of cells showing this behaviour, Perrett et

al. 1991) noted that both viewer- and object-centred cells could produce differential

responses to individuals.

Knowing something about the population coding being used by a set of neurons offers

the potential to restrict optimisation to a small subset of image space. For example, if

we are confident that cells in a particular area are coding for facial identity, we could

carry out optimisation on a set of parameters designed to be sufficient to span this

'face' space (i.e. with parameters for eye separation, colour, etc). Obviously, this is

moving away from the ideal of an generalised image search (i.e. sufficient to find the

optimal stimuli for any cell) but limiting the search space by this approach may allow

optimisation techniques to be applied in a to a more tractable domain.

5. Knowledge of population coding may allow optimisation to be restricted to a more

limited image subspace, improving the chances of success.

(e) Neurons Responsive to Movement and Gestures in STS

A minority of neurons in STS produce no response to static faces, and respond only if

the face is moving e.g. towards or away from the viewer, or if it is rotated into profile

(Perrett et al., 1985; Jeeves et al., 1983). This was further investigated in some detail

by Hasselmo et al. (1989b), who tested cells with a variety of different head

movements. A small number of neurons were found that responded selectively to
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ventral flexion (head lowering - a gesture important in social interaction), dorsal

flexion, rotation and translation of the head (e.g. from left to right).

Furthermore, cells responsive to heads undergoing ventral flexion were found to

respond specifically, even when the view of the head was inverted. This suggests that

these cells operate in a object-centred manner, since retinal movement vectors relating

to flexion would be reversed by the inversion.

(j) Differential Populations in STS and TE

Some of the studies presented above had led to the suggestion that face cells in TE

code largely for facial identity, whereas the populations found in STS may be more

involved in the processing of expressions, movements, gestures and gaze (Rolls,

1992; Perrett et al., 1992; Hasselmo et ah, 1989a).

It seems likely that cells in STS largely operate in an object-centred space, with

networks within TE (and from TE to STS) largely responsible for combining the

outputs of neurons with appropriate selectivity to make this possible. On this basis -

6. Optimisation techniques relying on the manipulation of two-dimensional images
are more likely to find success in TE and TEO, whereas investigations of STS may

require a methodology based on dynamic manipulation of three-dimensional objects.

(g) Are Face Cells Really a Special Case?

In a later section we shall see that neurons with some very similar properties to face

cells (e.g. view invariance) are found in TE after exposure to novel three-dimensional

shapes (a comparison of figures 2.6 and 2.16 is instructive). This suggests that face
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cells may simply be the result of a more general form of learning that allows the brain

to discriminate between similar objects.

This could be problematic for optimisation, since face cells in STS that respond to

specific movements and gestures show that dynamic properties of the visual world

can also be integrated into stimulus selectivity, where this aids discrimination. This

could occur if inputs representing constituent parts of a gesture are activated

simultaneously (the range of latencies found in STS and IT would make this possible

even without specific delay or mnemonic mechanisms) or if neurons can distinguish

the order of activation of their inputs.

More generally, it is therefore possible that stimulus selectivity in IT might also

involve a dynamic component, if this was relevant and could play a role in helping the

visual system to discriminate between objects or behaviours in a social context.

Neurons with such properties might go unnoticed with standard stimulus test batteries,

and could perhaps account for many of the neurons currently classed as visually

unresponsive.

2.3. Response Dynamics

Up to this point, we have assumed that visual neurons have a fixed latency and that

the response to a particular stimulus is fully described by a simple measure of the total

number of spikes emitted in the time window following stimulus presentation. In this

section we shall challenge this assumption, reviewing a number of studies that have

investigated the temporal dynamics of visual responses in IT.
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2.3.1. Persistence and Masking

Visual persistence is the effect whereby the duration of the response of a visual cell to

a stimulus outlasts the duration of the actual stimulus presentation itself. This

phenomenon is found throughout the visual system, up to and including IT, where

Rolls & Tovee (1994) described responses lasting 200-300ms to very briefly (16ms)

presented faces (see figure 2.7a).

If visual stimuli are represented by particular neurons (or subsets of neurons) in IT,

and these cells continue to respond to a stimulus long after it has disappeared from

view, then it is interesting to consider what happens when two stimuli are presented in

rapid succession. Perhaps both stimuli will be simultaneously represented, with the

firing of two different sets of neurons overlapping in time; alternatively, the activity

of neurons responding to the first stimulus could be suppressed by the firing of other

cells responding to the second stimulus, perhaps by means of reciprocal inhibitory

connections between pattern selective units.

This question was answered by backward-masking studies, where the presentation of

an effective stimulus is closely followed by a masking stimulus, with varying stimulus

onset asynchrony (SOA). In general these studies have shown that the presence of a

masking stimulus significantly shortens the response to an effective stimulus, both

with face-selective cells in STS (Rolls & Tovee, 1994 - figure 2.7b-e), and cells

responding to shapes in TE (Kovacs et al., 1995), with the response duration

becoming shorter and shorter as the SOA is reduced. Despite this, responses still

outlast stimulus presentation time, and information analysis (Rolls et ah, 1999) shows

that significant amounts of information about the stimulus seen are still available even
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with an SOA of 20ms.

Generally, the mask stimulus is chosen to be one that is not effective at driving the

cell under study. Interesting, therefore, is the final experiment conducted by Rolls &

Tovee (1994) where masking was investigated using an effective stimulus as a mask.

As might be expected, perhaps, two separate responses were seen at higher SOAs.

However, when SOA was reduced, the standard masking effect was seen, with the

response to the target stimulus being shortened and reduced, such that the overall

response was smaller than that to the target stimulus presented alone.

These studies indicate that the duration of response to an effective stimulus (and

therefore the overall spike count and total information available) can be shortened by

following stimuli, irrespective of whether these subsequent stimuli are also effective
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figure 2.7 - Persistence and backward masking. Effective stimuli were either presented alone (a) or
followed by a mask (b)-(e) In this case, the mask stimulus was ineffective at driving the cell by itself.
Stimulus onset asynchrony (SOA) indicates the amount of time between stimulus and mask
presentation. It can be seen that, without a mask, the response is several hundred milliseconds longer
than the stimulus duration. Presentation of the mask shortens the response to the effective stimulus.
However, even with an SOA of 20ms (e) the cell's response is still much longer than the actual
presentation time of the effective stimulus. Adapted from Rolls & Tovee (1994).
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at driving the cell or not. This is very surprising, since we might have assumed that

two effective stimuli following each other closely would provoke a greater (or longer)

response that the presentation of a single stimulus alone. This finding does not rest

easily with the idea that masking is due to lateral inhibitory effects between cells with

different pattern selectivities (Rolls & Tovee, 1994), though it can be made to do so if

we assume short-term depression of incoming connections resulting in a reduced

response to the presentation of the second stimulus, alongside inhibition from

neighbouring cells that are also (at least partially) tuned to aspects of that stimulus.

7. The response to a stimulus can outlast the presentation time by hundreds of

milliseconds; however, response persistence can be cut short by subsequent stimuli,
whether or not these stimuli are effective in driving the cell by themselves.
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2.3.2. Rapid Serial Visual Presentation (RSVP)

RSVP can be viewed as a more extreme version of the masking paradigm, where

rather than simply being following by a single masking image, stimuli are instead

embedded in a continuous stream of images, which are rapidly presented, one after

another, at the same location on a screen. While RSVP has been used elsewhere for

behavioural studies (Chun & Potter, 1995; Potter & Levy, 1969), it was first

developed and applied to neurophysiological experiments by Keysers et al. (2001), in

order to allow the selectivity of visual neurons to be investigated with large numbers

of different stimuli.

The paradigm is outlined in figure 2.8, and has been compared to normal viewing

conditions, where a saccade occurs approximately 3 times a second, resulting in a

series of snapshots of the visual world, each falling on the same region of the retina.

Because modern computer monitors can present a new image approximately every

14ms, RSVP could provide a powerful technique for exhaustively investigating the

properties of visual neurons, with the potential to test almost one hundred novel

stimuli per second.

figure 2.8 - RSVP paradigm. Eye position is monitored, and presentation begins when the subject
fixates on a dot presented in the centre of the screen. This is followed by a rapid and continuous
sequence of images (in the centre of the monitor), which ends only when the subject breaks fixation.
Responses relating to the first and last images in the fixation period are discarded. Redrawn from
Keysers (2000).
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2.3.3. Response Properties Under RSVP

Under RSVP conditions, a cell is not simply responding to a single stimulus presented

in isolation, but instead to a randomised stream of images. The response to a

particular stimulus can be established by lining up each section of the continuous

recording which contains an occurrence of the stimulus, and represents the systematic

response to that stimulus against a background of the activity evoked by all the

stimuli.

Keysers et al. (2001) tested IT neurons with 8 stimuli which were chosen to span the

response range of the neuron under study. They found that the majority of cells (65%)

were able to discriminate between stimuli to a significant level, even at the fastest

presentation rate of 14ms per image. This can be seen in figure 2.9(a), where stimulus

rank is plotted against presentation rate for the population of cells tested. It is

noteworthy that, although selectivity is preserved at higher rates, the range spanned by

the responses decreased dramatically.

The response duration to an effective stimulus in an RSVP sequence was found to

typically last 60ms more than the duration of the stimulus itself, and this effect was

robust across the presentation rates tested. This can be compared to the masking

results described earlier, where reducing the SOA resulted in shortened responses, but

not below a certain lower limit to response duration, which was also around 60ms

(Rolls & Tovee, 1994). This has implications for using the RSVP technique for

stimulus optimisation, because the response of cell at any given point in time cannot

be simply and directly attributed to a particular stimulus in the sequence, particularly

if the presentation rate is high. If the set of stimuli contains a mixture of effective and

ineffective stimuli, then a solution is provided by averaging the response over
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multiple presentations (as described earlier). Other potential solutions to the response

sampling problem are addressed in chapter 4.

Introducing gaps between stimuli leads to response persistence, such that responses

are similar to those that would be obtained had the stimulus remained on the screen

(Keysers, 2000). This was unpredictable from the masking results described earlier,

and implies that SOA rather than stimulus duration effects the persistence of visual

responses in IT. An example of this effect is shown in figure 2.9(b).

8. SOA, rather than stimulus duration, affects the response magnitude and duration.

9. The response duration to stimuli presented in RSVP sequences equals SOA +

60ms.

figure 2.9 - (a) Response as a function of presentation rate and stimulus rank order (ranking is based
on responses during the slowest presentation rate condition). Responses were normalised for each
presentation rate then averaged across the population. Black vertical lines indicate the standard error. It
can be clearly seen that stimulus selectivity is maintained, even at the fastest presentation rate. From
Keysers et al. (2001).

(b) Responses to an effective stimulus in an RSVP sequence, with (bottom) and without (top) gaps.
The SOA was equal in both cases (111ms). Responses are shown superimposed on the right, with the
gap condition in grey and the no-gap condition in black. Filled rectangles indicate the stimulus of
alignment, empty rectangles indicate other randomised stimuli in the sequence. The response duration
is equal in both cases. This effect was replicated at twice the presentation rate (SOA=55ms, not
shown). From Keysers (2000).

33



2.3.4. Temporal Encoding in Pattern-Selective Responses

Is it reasonable to assume that the response latency of a cell is fixed, with different

patterns producing responses that vary only in magnitude? Perhaps not - Perrett et al.

(1998) suggest at least one means by which evidence accumulation could lead to

differences in latency within a single cell. In this framework, objects presented in

unfamiliar views might be expected to only partially activate the subset of neurons

tuned to the object's features. This would lead to increased response latencies in

postsynaptic cells, since more time would be required for them to integrate sufficient

activity to reach threshold. In a later section we shall see that this effect almost

certainly occurs in conditions of reduced stimulus contrast.

Richmond et al. (1987) report both latency differences in response onset for different

Walsh patterns (figure 2.10a) and varying response dynamics, with different patterns

of excitation and inhibition, depending on the stimulus (figure 2.10b). In the second

paper of this series (Richmond & Optican, 1987) principal component analysis was

used to quantify these temporal effects. While the first principal component was
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figure 2.10 - (left) Latency difference in response onset in one neuron to two different patterns. Line
below the axis represents stimulus presentation. Measured latencies were 120ms and 150ms to A and
B respectively, (right) Differing temporal dynamics in the response of one neuron to two different
stimuli. Notice how the response to stimulus A shows an early excitatory peak which is entirely absent
from the response in B. From Richmond et al. (1987).
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highly correlated with the spike count, higher principal components were also

dependent on stimulus, indicating that the distribution of spikes, as well as their

number, depends on stimulus features. Information analysis (Optican & Richmond,

1987) showed that, while about half of the information was contained in the

magnitude of the response, the other half was accounted for by temporal effects

within the response.

In many ways, this is not entirely surprising. Neurons with a range of latencies are

found throughout the visual system, so it would seem reasonable to expect that a

neuron with complex pattern selectivity in IT might undergo distinct patterns of

excitation and inhibition as separate individual features of a stimulus are signalled by

different pre-synaptic cells of varying latency.

However, a potential problem with temporal encoding is the necessarily large amount

of time it takes to decode the information, e.g. Richmond et al. (1987) describe

variations in the spike train taking place over hundreds of milliseconds. Yet the

latency of pattern selective responses in IT are often under 100ms, which allows only

about 15ms at each stage of cortical processing before output is available at the next

stage (Rolls 1991, 1992; Oram & Perrett, 1992), and we have already seen that pattern

selective responses in IT can be as short as 60ms.

Later studies (Tovee et al., 1993; Tovee & Rolls, 1995), using a set of faces as

stimuli, have questioned the amount of information carried by second and subsequent

principal components. They found that the first principal component (i.e. firing rate)

carries by far the most information, with the second and third principal components

accounting for only small proportions. Furthermore, the first 20 or 50ms is sufficient
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to give a reasonable proportion (-85%) of the information available in the firing rate

over 400ms.

However, it is also clear that subtle differences in pattern selectivity might be revealed

if the window of analysis is varied over the time course of the response.

10. The majority of stimulus information is carried by the first principal component of
the response correlated with stimulus identity i.e. the spike count.

2.3.5. Contrast Effects on Latency

Response latency has been found to increase as stimulus contrast decreases in a

number of visual areas, including the retina, LGN and VI. This effect is responsible

for a number of visual illusions, including the Pulfrich pendulum illusion (Pulfrich,

1922).

Earlier we saw that the response magnitude of face cells in STS decreases as stimulus

contrast is reduced. However, experiments using the RSVP technique6 have revealed

that stimulus contrast also has a striking effect on the latency of cells in STS and IT

(see figure 2.11), with a halving of stimulus contrast resulting in an increase in

response latency of 50-100ms. This effect was found at both rapid (55ms per

stimulus) and slower (332 ms per stimulus) rates of presentation, with similar shifts in

response latency at the two speeds.

6 This work (Oram, in preparation) was carried out in parallel with the experiments contained in this

thesis, and a table of cells included in this contrast experiment, along with reconstructions of cell

locations have been included in appendices 2 & 3.
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The change in latency cannot be simply explained as a consequence of the reduced

response magnitude, because responses to the full contrast versions of intermediate

stimuli were often smaller than those to reduced contrast versions of the effective

stimulus, yet occurred at earlier latencies.

This effect has the potential to be problematic for the design of stimulus optimisation

experiments, because it could cause the response of a low contrast stimulus to be

incorrectly attributed to a following higher contrast image. It would be interesting to

know whether high contrast stimuli (whether effective or not in themselves) could

mask the delayed response to a lower contrast stimulus. Although the experiment

included a presentation rate of 55ms, low contrast effective stimuli would, in some

cases, be followed by low contrast ineffective stimuli, which might not be sufficient

to mask the response. On the other hand, they would also be sometimes followed by a

figure 2.11 - Contrast effects on latency, (left) Rastergrams and PSTH showing the effect of stimulus
contrast on a single neuron in IT. As stimulus contrast is reduced, there is a dramatic increase in response
latency, (right) Population results for 21 neurons. Individual responses were normalised to the peak
response for the maximum contrast stimulus, then averaged. Reducing stimulus contrast leads to a
reduction in the maximum firing rate, and an increase in response latency [M.Oram, forthcoming].
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high-contrast ineffective stimuli, which might mask the response, but not produce a

response by themselves in the cell. The averaging of these two effects could partially

account for decreasing responsive magnitude as the contrast of the stimulus of

alignment is reduced.

It is also interesting to ask if this finding might be related to the temporal dynamics of

the response waveform described earlier. A stimulus (e.g. a face) may contain areas of

relatively high and low contrast, resulting temporal differences in the activation of

feature detectors earlier in the visual system. This could result in temporally dispersed

patterns of excitation and inhibition when these features are integrated further along

the visual system, such as in the response of a face cell in STS.

11. Response latency increases in STS and IT as stimulus contrast is reduced. This
effect is relatively large, and can result in latency shifts of hundreds of milliseconds.

2.3.6. Summary

Responses outlast stimulus duration by 200-300 milliseconds. This persistence is

curtailed by subsequent stimulus presentation in masking and RSVP paradigms.

However, even at very high presentation rates, responses are still typically 60ms

longer than stimulus duration, which presents a sampling problem which must be

dealt with.

There is some evidence that, within a single cell, different stimuli can evoke responses

with different latencies. However, analysis has shown that the majority of information

about stimulus identity is carried in the overall rate of firing. Manipulating the

contrast of a stimulus results in a large effect on response latency. This finding will

need to be incorporated into the design of stimulus optimisation experiments.
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2.4. Plasticity, Learning and Memory in Visual IT Neurons

A role for IT in visual learning and memory is suggested both by the lesion studies

described earlier, and by its location at the end of the ventral visual processing

pathway, with close anatomical links to areas implicated in the function of memory.

This section reviews studies showing mnemonic effects in IT neurons, considering the

implications this may have for stimulus optimisation experiments.

2.4.1. Short-Term Memory

Inferotemporal visual neurons are not adequately described as simple visual filters - a

number of studies (Miller & Desimone, 1994; Miller et al., 1991; Baylis & Rolls,

1987) have shown that, in many cells, their response is a joint function of both the

immediate visual input and short-term memory traces.

Two parallel short term influences have been described (Miller & Desimone, 1994):

an automatic mechanism, relating to visual experience of the immediate past, and an

active system which is coupled to working memory. Different subsets of IT neurons

appear to participate in each of these mechanisms, and they are discussed in turn

below.

(a) Automatic System

The automatic system has been termed "adaptive mnemonic filtering" (Miller et ah,

1991) describing an effect whereby the response of a visually driven neuron is

changed (generally suppressed) on repeat presentations of a stimulus.

Baylis & Rolls (1987) found this effect in 26% of visually responsive neurons in STS

& TE, with "familiar" presentations of a stimulus evoking a different response to the

"novel" presentation, in a serial recognition task. However, they found the effect to
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be short-lived, failing to span even one intermediate stimulus in the majority of cases.

They note that the effect was also present in an untrained animal, with the second

presentation of a stimulus generally leading to a suppression of the response,

suggesting that the effect is not task-related. However, this was not studied in detail.

A longer lasting effect was found by Miller et al. (1991) using a delayed match to

sample (DMS) task. Monkeys were trained to indicate when one of a sequence of test

stimuli matched a previously seen sample stimulus. They found that responses to test

stimuli which matched the sample were significantly lower than responses to non-

matching test items (figure 2.12a). This effect was seen in about 50% of cells.

Moreover, this difference in response between matching and non-matching stimuli

was found to span several intervening items (figure 2.12b). The authors suggested that

IT neurons act as filters which preferentially pass on information about aspects of the

visual world which are novel or have not been recently seen. It is not clear why this

(a) Nonmatch Match Nonmatch Match (b) A 40

Number of intervening stimuli

figure 2.12 - From Miller et al. (1991). (a) The responses of a single IT neuron to six test items,
which matched the sample in some trials (left) and did not match on others (right). There were one to
four intervening test presentations between the sample and the test item shown, (b) The average
response to matching and non-matching test items with the number of intervening stimuli indicated
along the x-axis. This figure includes only test items where there a significant difference was found
in the response to matching and non-matching items.
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result differed from the earlier experiment of Baylis & Rolls (1987), but it may be

related to differences between the tasks and recording location.

The above experiment could not determine whether the suppression of response

related to a passive mechanism involving stimulus novelty, or was due to active

influences of the sample stimulus held in working memory. However, a further study

by Miller & Desimone (1994) with a variant of the task has allowed these factors to

be distinguished.

In addition to the conventional trials in the DMS task, where none of the test stimuli

matched each other (e.g. sample "A" followed by test items "BCDEA"), Miller &

Desimone (1994) introduced a second type of trial, which was termed "ABBA",

where repeated non-matching test items were shown. The task allows changes in the

response of a cell to be attributed to either simple repetition, or the effect of a sample

held in working memory. It is outlined in figure 2.13.

Of the cells showing both stimulus selectivity and mnemonic effects (about 50% of

the ventral IT neurons tested), roughly two-thirds showed suppression of the response

figure 2.13 - The modified DMS task used in Miller & Desimone (1994), with standard trials shown
at the top, and the additional ABBA trials shown at the bottom. Repeated non-match trials had either
zero (as pictured) or one intervening trial (i.e. ABCBA).

Nonmatching test items
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to match stimuli, as in earlier studies. However, the ABBA trials revealed that this

suppression also occurred with the repeat presentation of the non-matching stimuli,

with no significant difference found between the two (illustrated in the left panels of

figure 2.14). Thus responses were suppressed with stimulus repetition, whether or not

this was relevant to the task.

Automatic suppression of familiar stimuli may be inherent within IT visual networks,

perhaps caused by depression of synapses after repeated use. However, the remaining

third of mnemonic cells in this study showed a very different pattern of behaviour,

which instead related to the sample held in working memory. This is described below.

(b) Active System

The majority of cells studied by Miller & Desimone (1994) showed response

suppression to stimulus repetition, regardless of whether a stimulus matched the

sample in memory. However, one-third of the cells behaved quite differently, with

enhanced responses to test stimuli matching the sample. In contrast to the suppressed

cells, this enhancement was specific to matching test items, as it did not occur with

repeated presentation of non-match test items (as shown in the right panels of figure

1.14). This effect also spanned several stimuli, uniquely identifying the stimulus

matching the sample held in memory.

The active system appears to allow the response of IT neurons to be biased by the

contents ofworking memory such that they give a potentiated response to a matching

stimulus, when it occurs. This appears more likely than enhancement by a memory-

related feedback signal, since the increased response is present simultaneously with

the onset of visually evoked activity (see figure 2.14, bottom right).
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These studies reveal at least two parallel short term mnemonic mechanisms acting on

different subsets of IT cells. One system results in a reduction of the response to

stimuli that have recently be seen, and could be viewed as short-term habituation to a

stimulus; the other enhances the response to a stimulus if it matches one held in

working memory. The effects of both systems appear to be relatively weak,

modifying, rather than completely overriding the stimulus selectivity of a cell.
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neurons

enhanced
neurons
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figure 2.14 - From Miller & Desimone (1994). Left - suppressed neurons, Right - enhanced
neurons. The top charts show the population average response to matching, non-matching and
repeated non-matching stimuli. The lower charts show the population response across time.

12. Habituation occurs to visual stimuli in at least some cells in IT. Working memory

can potentiate responses to relevant stimuli. Both effects, however, are relatively
weak.
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2.4.2. Experience-Dependent Plasticity in Receptive Fields

The previous section considered how both working memory and recent visual

experience can bias the responsiveness of IT cells in the short-term, acting in

conjunction with stimulus selectivity to determine the response. This section

examines whether stimulus selectivity itself is modified as a result of visual

experience.

The receptive fields of cells in monkey striate cortex (VI) have been known for some

time to be shaped as a result of visual experience, at least in the early stages of

development (Hubel et al, 1977). Does the visual system continue to remain plastic?

And to what extent is the stimulus selectivity of neurons in a high-order area (such as

anterior IT) also shaped by visual experience, particularly in the adult animal? A

number of studies have recently provided clear evidence that experience dependent

plasticity does indeed occur, at least for a subset of the cells present within AIT

cortex.

Kobatake et al. (1998) looked to see what changes occurred in TE of adult monkeys

that had been trained over a period of months to discriminate among members of a

class of simple geometric shapes in a DMS task. When training was complete, they

measured the response of neurons to a large range of visual stimuli, including the

training set. It was found that those stimuli that had been part of the training set

evoked a higher response than any other stimuli in 25% of TE neurons in the trained

monkeys, compared to only 5% of the cells in untrained monkeys.

The tuning of cells was found to be relatively broad (illustrated by the example cell

shown in figure 2.15a), with several of the training stimuli often evoking significant
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figure 2.15 - Population coding of learned shapes, from Kobatake et al (1998). (a) The 28 training
stimuli used in the experiment and the response of a single neuron to each shape. The numbers show
response magnitudes relative to the maximum for those responses that were statistically significant
(p<0.05). (b) Distributions of the distances between 2 training stimuli in the space spanned by responses
in trained (top) and control (bottom) animals. Left - distances calculated from responses that were first
normalised to the maximum response for a cell. Right — distances were calculated from absolute
responses. In both cases there is a shift towards larger distances between stimuli after training.

responses in a single cell, suggesting that stimuli were represented on the basis of a

population code. The effectiveness with which this code could differentially represent

the training set of stimuli was measured by calculating the distances7 between stimuli

in the space spanned by the responses of the TE cells, in both the trained and control

animals. This showed that the distances between stimuli in trained animals were

consistently larger than in the controls, demonstrating that there were not only more

neurons representing these stimuli, but that the responses of these cells were also

more effective in spanning the stimulus space (see figure 2.15b).

An earlier study by Logothetis et al. (1995) trained monkeys (again over a period of

months) to recognise views of two classes of 3-dimensional novel shapes (wire frame

7 Each stimulus was represented as a point in n-dimensional space, with each axis describing the

response to the stimulus by one cell. The distance between any two stimuli was simply the Euclidean

distance between the points.
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and amoeboid objects). Although no controls were present in this study, a large

proportion of TE cells in the trained animals (28.5%) were again found to respond

significantly more to these novel objects that to any other visual stimulus tested. It

was also noted that the percentage of cells responding to stimuli belonging to a

particular class of object was correlated with the amount of training that each animal

had received in that class.

Of the cells responding best to target objects, the majority were found to be view-

selective, with the response decaying sharply as the object was rotated away from the

preferred viewing angle. Different cells showed different preferred viewing angles,

often for the same target object. A smaller number of cells had 2 preferred views,

spaced 180° apart, and a single cell was found which showed completely view-

independent responses (illustrative tuning curves from this study are shown in figure

2.16). This suggests that neurons in TE can build view-invariant responses to learned

objects in perhaps the same way that has been suggested for view-invariant face

responses (Perrett, 1984; Rolls, 1992), by associating the outputs of neurons that

respond to different views of the same object. It is not clear from the above studies

whether TE neurons built representations for novel objects simply as a result of

frequent exposure to these stimuli over a period of time (i.e. a passive mechanism), or

if the task-based training itself is vital. Two further studies provide somewhat

contradictory views on this point.

Booth and Rolls (1998) allowed monkeys to play with novel 3D objects in their cages

over several months, and then recorded from visual neurons in STS and IT, presenting

4 different digitised views of each object. Although the monkeys were not explicitly
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figure 2.17 - Categorisation training influences feature selectivity, from Sigala & Logothetis (2002).
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trained with the objects, they found 14% of neurons responded in a view-invariant

way to one or more of the cage objects, but not to other visual stimuli tested. In

common with Kobatake et al. (1998), some neurons were found to respond to more

than one object, again suggesting a population code.

In contrast, Sigala & Logothetis (2002) found that the feature selectivity of

inferotemporal neurons can be shaped by explicit training in a categorisation task.

Monkeys learned to classify sets of stimuli (line drawings of faces and fish), where

each set had four variable features, two of which were diagnostic of category, two of

which were not. They examined neurons in TE that had significantly different

responses across at least one feature of the stimulus set, and discovered that the

majority (about 75%) of these cells were tuned to one or both of the diagnostic

features, but not to the non-diagnostic features. Population averages for the face set of

stimuli (shown in figure 2.17) indicate that neuronal selectivity is shaped by the

stimulus features that are most relevant to the task that the animal is performing.

The above studies show that a significant proportion of neurons in IT (specifically

area TE) are not fixed in their feature selectivity and can be recruited to represent

stimulus spaces that are novel and relevant to the adult animal. They can be described

as having "tunable receptive fields" (Logothetis et al., 1995), and representation

appears to be on the basis of a population code. The features coded by individual

neurons appear to range from partial stimulus features (Kobatake et al., 1998; Sigala

& Logothetis, 2002) to view-invariant responses to complete objects (Booth & Rolls,

1998), consistent with the pattern of feature-selectivity found more generally in IT

neurons.
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Table 2.1 - Proportion of neurons showing learning-related selectivity

Study Proportion
in trained

monkeys

Proportion
in controls

Explicit
training

Stimuli Recording
site

Kobatake et al. (1998) 25% 5% Yes Simple geometric
shapes

TE

Logothetis et al. (1995) 28.5% - Yes Novel 3D objects TE

Booth & Rolls (1998) 14%a - No Novel 3D objects STS/TE

a criteria was a greater response to all views of object i.e. view-invariant.

Neurons with tunable receptive fields do not appear to be confined to a specific sub-

area of TE, since Booth & Rolls (1998) found neurons responding to learned objects

from the lower bank of the STS, across the MTG to the AMTS. Cell position was not

rigorously reported in the other experiments described, but there is some agreement

over the proportion of cells showing plasticity, at around 20% (see table 2.1).

While the timescale over which plasticity occurs is not clear from the experiments

described above, some other studies have looked at the effect of repeated exposure to

stimuli over the course of a recording session (Rolls et al., 1989; Miller et al., 1991;

Li et al. 1993). These have found changes in neuronal response which may be related

to the initial phases of a plastic change.

The DMS task has already been described in relation to short-term memory, where it

was found that the response to a test stimulus was suppressed if it matched a

previously shown sample. However, this suppression has also been investigated (Li et

al., 1993) across trials, since the monkey was repeatedly exposed to the same set of

stimuli over many trials. It was found that, superimposed on the match suppression

described earlier, there was a progressive decline in response in about a third of

neurons, as stimuli become more familiar.
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This decline can be seen to be greatest when only a small number of trials intervene

between repeat presentation of a stimulus (figure 2.18). Furthermore, the response of

neurons was found to rebound with the introduction of novel sets of stimuli,

suggesting that the decline in response may be due to synaptic depression specific to a

stimulus-related subset of the incoming connections.

The recording site in this study was close to the rhinal sulcus, and probably not within

area TE proper, so it is not clear whether this occurs in visual neurons throughout IT

cortex. An earlier study by Rolls et al. (1989) recorded from face-selective cells in

STS and TE, repeatedly presenting a set of novel faces until they became familiar.

They found that about a quarter of neurons changed their relative responses to the

faces in the set, but in this case the changes that occurred happened very rapidly,

largely between the first and second presentations of a stimulus. This effect was not

found when already familiar faces were repeatedly presented.

Sample

Number of trials measured from first trial

figure 2.18 - Average response of 25 neurons that showed a significant decline in response to a
stimulus across DMS trials (from Li et al., 1993). The responses to sample and match stimuli are
shown separately. Both show a progressive decline, as stimulus familiarity increases over trials (x-
axis). The stimulus was repeated every 3 or 35 trials alternately.
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While both these studies show changes in stimulus selectivity with repeated exposure

to stimuli, it is not clear whether these effects have a short or a lasting effect on

neuronal receptive fields. The changes in selectivity reported by Rolls et al. (1989) are

very rapid and may actually be indicative of a form of short term memory, specific to

face-selective neurons, which could allow the faces of new individuals to be quickly

learnt.

13. At least some visual neurons in IT show experience-dependent plasticity. There

may be multiple mechanisms, and time course of this plasticity remains unclear. The
task-relevance of stimulus features can influence selectivity.

Finally, we shall consider a form of associative learning that has been extensively

studied in IT neurons. In this section we have already seen differing degrees of view

independence (figure 2.16) reported by Logothetis et al. (1995) that are suggestive of

a hierarchical model of processing and plasticity in TE, with increasing levels of

invariance perhaps formed by associating the outputs of the preceding level. Booth &

Rolls (1998) suggest that the natural transformations of objects under normal viewing

conditions may lead to view-invariant representations, as close temporal activation of

specific features causes them to become associated together (see also Foldiak, 1991,

1997) . Association learning in IT has been specifically investigated in a number of

studies in IT, and this form of learning is discussed in detail in the next section.

8
Though this hypothesis might lead us to expect that invariance should develop by the progressive

widening of view tuning curves, rather than via bimodal responses to views 180° apart (as seen in

figure 2.5).
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2.4.3. Association Learning

A series of studies have investigated the responses of inferotemporal neurons after

pair association learning. The basic task is as follows: a set of pictures is sorted into

pairs. In each trial, the monkey is presented with a cue stimulus on the monitor. This

disappears, and after a short delay, a choice of two stimuli is presented, the paired-

associate of the cue, and one from a different pair. The monkey is rewarded for

correctly choosing the paired-associate of the cue stimulus. With sufficient trials,

monkeys can learn to perform this task to a high level of accuracy.

Sakai & Miyashita (1991) recorded from neurons in anterior IT (recording sites

included both TE and PRh) in monkeys that had learned the pair association task

described above. During the cue period, neurons showed selective responses to

particular pictures, with the majority of cells responding to at least two of the pictures.

This is as would be expected, given the results of experiments described in the

previous sections. More interesting, however, was the pattern of responses of those

neurons that responded to two or more of pictures. In these cells, the maximal and

second best responses tended to be evoked by pictures that were part of a pair. These

neurons, showing selective cue responses to both pictures of the paired-associates,

were termed "pair-coding" neurons, and their behaviour is illustrated in the top part of

figure 2.19.

A second class of neuron was also found which, like the pair-coding neurons, had

selective responses to particular pictures during the cue period. However, when the

paired-associate of a picture was shown as a cue, there was little initial response in

these cells. Instead, there was growing and sustained activity during the delay period,

until the choice of stimuli was presented. These cells were termed "pair-recall"
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neurons, where the paired-associate of a cue-optimal picture gave the highest activity

in the delay period (figure 2.19 - bottom).

This study provides strong evidence that inferotemporal visual neurons can acquire

their selectivity for patterns through associative learning, though the role of the

different types of neurons is not clear. Visual association learning is known to depend

on the integrity of limbic structures, since bilateral removal of the hippocampus and

amygdala prevents monkeys from relearning the pair association task, as does

disruption of the pathway from visual areas to the medial temporal lobe through rhinal

cortex (Murray et al., 1993). Subsequent studies have provided more detail about the

influence this backwards projection has on inferotemporal neurons.

\ 2 3 ' s e r a 9 io 11 ta
IS

figure 2.19 - From Sakai & Miyashita (1991). Top - "Pair coding" neuron, (a) Rastergram and SDF
showing the response to the stimulus that elicited the highest response during the cue period, (b) Mean
discharge rates during the cue period for the same neuron, with the response to all 12 pairs of pictures
shown (light and dark bars). The maximal and second best responses belong to paired stimuli. Bottom -
"Pair recall" neuron, (c) Trials for the cue which elicited the highest response, (d) Trials for the paired-
associate. There is little activity with the cue presentation but growing activity during the delay period.
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Higuchi & Miyashita (1996) first transected the anterior commissure (AC), removing

the input to anterior IT neurons from the other hemisphere, then trained monkeys in

the pair association task with a first set of pictures (set A). After training was

complete they measured the response of IT (area TE) neurons as a prelesion control.

Then, inferotemporal neurons were disconnected from the backwards projection from

the medial temporal lobe, with a unilateral lesion to entorhinal and perirhinal cortex.

Monkeys then relearned the task with the original stimuli (set A), and a novel set of

images (set B). Recordings were then made from the same area as in the prelesion

control.

They found neurons selective to both the set A and the set B stimuli. However, while

there was a tendency for neurons to show response correlation to paired-associates in

the control recordings, this behaviour had been abolished by the lesion. Paired

responses were seen neither for the set of images learned prior to the lesion (set A),

nor with those learned after it (set B).

Thus the lesion appears not only to have destroyed the ability of IT neurons to form

new associations, but also to have disrupted the associations already formed (i.e. set

A). This neuronal retrograde amnesia implies that the pair-encoding properties of

visual neurons in inferotemporal cortex are dependent on a backwards projection from

rhinal cortex, rather than based on associations formed within IT cortex itself.

Secondly, because highly selective visual responses were seen to set B (even though

training with this set occurred after the lesion), this backwards projection is therefore

clearly unnecessary for the kind of experience-based plasticity described earlier. This

is consistent with a view that learning in inferotemporal neurons can be shaped by
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multiple parallel mechanisms, a point which will be discussed further at the end of

this section.

Further evidence that TE neurons can be activated by a backwards memory signal

from limbic areas has been provided by Naya et al. (2001), who compared the visual

latency of responses in areas TE and PRh (area 36) while monkeys performed the pair

association task. They found that the latencies of neurons in area 36 were significantly

longer than those in area TE, suggesting that the perceptual signal reaches TE neurons

first. However, when they looked at the time course of activity to the paired-associate

of the cue-optimal stimulus, the reverse was found, with neurons in area 36

responding first, and those in area TE following much later (figure 2.20).

Finally, it is of interest to ask how rapidly visual stimuli become associated in IT.

This question has been investigated recently (Messinger et al. 2001), and the results

show that changes in selectivity can be seen over the course of an experiment.
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figure 2.20 - From Naya et al. (2001). Rastergrams and SDFs for neurons in area 36 (left) and TE
(right). The response of each neuron to the stimulus that evoked the highest response during the cue
period is pictured top. The response to the paired-associate of this cue optimal stimulus is pictured
bottom. Although both neurons respond to cue and paired-associate images, activity relating to the
paired-associate begins first in area 36.
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Recording from both TE and PRh, they found

single stimulus began to respond increasingly

progressed. This is illustrated in figure 2.21.

that neurons initially selective to a

to the paired-associate as learning

14. Neurons in TE respond selectively to specific stimuli. They can also respond to

other images that are repeatedly paired (i.e. closely temporally associated) with these
stimuli. However, responses to paired stimuli occur with higher latency.

2.4.4. Summary

The studies presented in this section reveal that IT neurons do more than simply code

for features immediately present in the visual world; their responses and selectivity is

also shaped by a number of factors including experience of the immediate and longer-

term visual past, working memory, and associations between separate elements of the

world that have been appeared together frequently, or even in close temporal

proximity.

20
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figure 2.21 - Stimulus associations developing in an IT neuron, from Messinger et al. (2001).
Monkeys were trained in a pair association task with 2 sets of paired stimuli (A&B, C&D). The
neuron pictured was initially selective for a single stimulus, but developed a pair-selective response
to stimuli A&B as training with this set of images progressed.
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About one-third of IT neurons have been shown to undergo short-term response

suppression to repeatedly presented stimuli, and a similar (probably overlapping9)

proportion also show a longer-term decline in response with increased stimulus

familiarity. These effects could clearly play a role in the outcome of stimulus

optimisation experiments, where a large number of variations on a stimulus might

need to be shown in order to explore a region of stimulus-space. It would therefore be

of great interest to know whether this decline in responsiveness is correlated with

stimulus similarity, or if it requires the stimuli be completely identical.

The effects relating to association learning and working memory would be expected

to cause little interference with optimisation experiments, though these studies do

make it clear that optimisation would provide only a partial, and not complete,

description of the properties of these cells.

Finally, we have also seen that TE neurons can undergo plasticity in their receptive

fields, probably to allow the animal to represent novel objects or faces. Although the

studies carried out have been fairly consistent in the proportion of cells reported to

encode aspects of a new stimulus space (i.e. around 20%), it is also possible that all

TE neurons exhibit plasticity in the adult animal, at least to some degree. If a sparse-

distributed code (see Rolls et al., 1989) is used to represent the visual world in IT,

both increases and (more often) decreases in response might be observed over the

course of an optimisation experiment, as a new population code is established to

9
Li et al. (1993) note that neurons showing a decline in responsiveness with increasing stimulus

familiarity account for most of the match suppression described in their earlier study (Miller et al.,

1991).
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represent the feature space. However, the timescale over which we can expect these

kind of changes to occur (and the importance of the behavioural relevance of the task)

remains far from clear from the studies carried out to date.

2.5. Guidelines for Optimisation

This chapter has reviewed the known properties of cells in IT, and extracted a set of

guidelines which should be taken into account in the design of an optimisation

algorithm for use in IT cortex. To review the main points -

1. The responses of TE neurons are non-linear.

2. The response of a TE neuron is increases gradually, as a stimulus becomes closer

to an optimal set of features.

3. TE neurons are selective for the orientation, and often colour, of a stimulus, but

can show invariance for size, position and stimulus boundary definition. There

may be optimal settings for these parameters which produce the greatest response.

4. If a cell responds to an object (e.g. a head) irrespective of view, multiple runs or

multiple solutions would be required for optimisation to produce an adequate

description of the cell.

5. Knowledge of population codes in IT may allow optimisation to be restricted to a

more limited image subspace, improving the chances of success.

6. A technique relying on the manipulation of two-dimensional images is more likely

to find success in TE and TEO. Investigations of STS may require a methodology

based manipulation of three-dimensional objects.
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7. A response can outlast stimulus presentation time by hundreds of milliseconds.

Response persistence can be cut short by subsequent stimuli, whether or not these

stimuli are themselves effective in driving the cell.

8. SOA, rather than stimulus duration, affects the response magnitude and duration.

9. Response duration under RSVP conditions equals SOA + 60ms.

10. The majority of stimulus information is carried by the spike count, rather than in

temporal patterns in firing.

11. Response latency increases in STS and IT as stimulus contrast is reduced. This

can result in latency shifts of hundreds ofmilliseconds.

12. Habituation can occur to visual stimuli. Working memory can potentiate

responses to relevant stimuli. Both effects are weak.

13. Some visual neurons in IT show experience-dependent plasticity. The task-

relevance of stimulus features can also influence selectivity.

14. Neurons in TE respond selectively to specific stimuli. They can also begin to

respond to other images that are repeatedly paired with these stimuli. These

responses to paired stimuli occur with higher latency.
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3. Systematic Methods for Investigating Receptive Fields

The studies discussed in the previous chapter have revealed many interesting

properties of neurons in STS and IT. However, the experimental methods used to

study these cells rely on the assumptions of investigators, and make use of a limited

and predetermined set of stimuli. Thus we can say that a given cell responds better to

a picture of a face compared to the other stimuli tested, but we cannot say with any

certainty what the actual trigger features of the cell are, or indeed be sure that there is

not a different stimulus that would produce an even greater response. This chapter

reviews some of the more systematic methods that have be used to study the receptive

fields of sensory neurons, both earlier in the visual system, and elsewhere in the brain.

3.1. Stimulus Optimisation Studies

The space of possible sensory inputs is enormously large, which makes determining

the trigger features of neurons a very difficult task. For example, consider a static

image presented on a computer screen to a visual neuron. If the screen is 64 pixels

wide by 64 pixels tall, and each pixel can be one of sixteen grey levels (ignoring, for

now, the additional complexity of colour), there are 16 4096 = 1.2 x 10 4932 possible

different images.

How can we hope to find the optimal stimulus in such an enormous space? Stimulus

optimisation studies have made use of the assumption that the response is some

continuous function of the input - thus we can make an informed guess at what might

be a better stimulus from the known responses to stimuli we have already presented.
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3.1.1. The Neuronal Response Function

In the visual modality, we can imagine an image with n pixels (or n degrees of

freedom) to be a point in an n-dimensional space, with every possible image

occupying a unique location in this space. The neuronal response function maps this

space of possible stimuli to a scalar response, generally the firing rate in a given

interval.

Ifwe consider an image with only two degrees of freedom (i.e. a two pixel image), we

can picture the neuronal response function as a three-dimensional surface, where the

height of the surface above the stimulus plane reflects the firing rate of the neuron to a

particular two-pixel image (see figure 3.1).

As additional pixels are added to the image, new axes are added to the stimulus space,

and the response function becomes a hypersurface in n+1 dimensions, where n is the

number of free parameters in the image.

While we have assumed that each parameter of the stimulus represents the luminance

of an individual pixel, this need not be the case. A variety of basis functions can be

figure 3.1 - hypothetical neuronal response surface for a stimulus described by two parameters.
Each point on the plane describes an individual stimulus, with the height of the surface above the
plane reflecting the response of the neuron to a particular stimulus.
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used to represent images, such as sines and cosines of varying frequency (Fourier

transform) or wavelet basis functions. However, if the new basis is an orthonormal

transform of the original, as in the examples above, then the general topography of the

neuronal response surface will be maintained, since orthonormal transforms are

equivalent to rotations and/ or translations of the axes in n-dimensions.

Assumptions regarding the neuronal response function -

(i) The existence of a neuronal response function, as described, implies that the

response of the neuron is instantaneous (i.e. it is not affected by a memory of

past stimuli). Results in the previous chapter indicate that this may not always

be true for IT neurons, but this simplifying assumption is necessary for

optimisation to be a possibility.

(ii) If we are to explore the surface in any systematic manner, it is also necessary

that the surface is continuous along the chosen axes. While we have seen in

the previous chapter that this is the case with axes chosen arbitrarily by the

experimenter, this may not hold using the more traditional bases used to

represent images, such as a pixel basis, or some orthonormal transform of this

basis.

(iii) Finally, we must assume that there is not a large number of local maxima

present on the surface which may prevent a search technique from finding the

true maximum.

3.1.2. Introduction to Optimisation Methods

Optimisation algorithms are designed to find the maximum (or minimum) of a

function which depends on one or more variables, generally with the assumption that,
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for reasons of computational effort, we wish to evaluate the function as few times as

possible. This is particularly true when we are trying to optimise the response of a

neuron, since there is a limit to the length of time over which a stable recording from

a cell can be obtained, and therefore a limit to the number of potential stimuli we can

test.

Optimisation is a large field and a number of different algorithms exist (for a review,

see Press et al., 1988). There is no perfect algorithm - the best choice depends on the

nature of the function to be optimised, and on the information available. It is

instructive, however, to see why one of the most widely applicable algorithms for

optimisation, the method of steepest ascent10, is not appropriate for use with visual

responses.

The method of steepest ascent evaluates the gradient (a vector, in the

multidimensional case) by measuring the change in response from the current location

to a series of small perturbations directed along each axis. It can then proceed directly

up the gradient to a new point where the response is better. Because the method takes

a series of small steps towards an optimum, this acts as a filtering mechanism that

ameliorates the effect of noisy gradient estimations.

However, obtaining the complete gradient vector at each location required by steepest

ascent is impractical with a high-dimensional stimulus. For example, with the 64x64

image described earlier, we would need to test 4096 images in order to determine the

full gradient vector at each location.

10 The steepest descent form of this algorithm is discussed in detail in Widrow (1985).
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Despite this, it is possible to obtain a noisy, or low-resolution, estimate of the gradient

simply by testing the response to a single image. Although it is now no longer

possible to proceed directly uphill along the steepest gradient, we can still move in a

general uphill direction. The dynamics of this strategy have been investigated in detail

using quadratic performance surfaces by Widrow (1985). This analysis shows that,

convergence is faster if function evaluations are used to take a large number of steps

based on coarse gradient information, rather than using function evaluations to obtain

a detailed description of the gradient, and taking a lower number of steps. This is

especially true where the dimensionality of the search is high, and this strategy is used

by the ALOPEX algorithm, discussed below.

3.1.3. ALOPEX

The ALOPEX11 technique (Harth & Tzanakou, 1974; Tzanakou et al., 1979) was the

first attempt to apply optimisation methods to the characterisation of sensory

receptive fields.

Relatively low resolution images (up to 32x32 pixels) were presented to cells in the

frog visual tectum, and the images were updated based on response feedback from the

cell. The algorithm, which implements hill climbing in multidimensions, is described

in detail in box 3.1. Noise is added to an underlying image (initially of uniform

luminance) then a response to that noisy image is obtained. The visual noise is then

correlated with the change in response, and the underlying image updated

accordingly. Essentially, ALOPEX makes a estimate of the gradient along a randomly

chosen direction, then attempts to move up that gradient. The algorithm itself can be

11 An acronym for ALgorithm Of Pattern Extraction
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compared to the method of linear random search (LRS), for which a proof of

convergence, and rate estimations for a quadratic performance surface, can be found

in Widrow (1985).

Computer simulations using the algorithm (Harth & Tzanakou, 1974) demonstrated

that the method was capable of characterising not just simple linear receptive fields,

Box 3.1 - The ALOPEX Algorithm

The screen is divided into NxN elements (pixels) with intensitities

The stimulus at iteration n can be viewed as a vector ofpixel intensities -

/(/!) =
h (")

iN2 («)

with ij (n) = bj (n) + r. («)
where b} (n) is the pixel bias, and r. (n) is a random variable drawn from a normal
distribution with zero mean.

Each image, I(n), produces a scalar response, R(n), from the system.

Every iteration, for each pixel, biases are updated by cross-correlating the change
in intensity with the change in the response -

Abj (n) = /uAR(n - l)A/7 (n -1)

where AR(n -1) = R(n -1) - R(n - 2), Ai. (n -1) = z7 (n -1) - zj. (« - 2) and ju is a

learning rate parameter.

Thus, the bias (or underlying intensity) of each pixel is raised if, in the preceding
two iterations, the intensity of that element and the response changed in the same

direction. Otherwise the bias is reduced.
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but also the receptive fields of non-linear model complex cells, with multiple runs

producing alternative optimal stimuli.

Optimisation runs on real visual cells produced images that showed a high degree of

correlation with receptive fields characterised using scan techniques, as illustrated in

figure 3.2 (the scan method is applicable in the case of linear tectal cells and is similar

to reverse correlation, described in a later section). However, a major criticism of the

ALOPEX experiments was that they failed to reveal anything new about the cells

under investigation.

A problem with the technique lies in the limit to spatial resolution. As the number of

pixels is increased, the spectrum of the input becomes more uniformly distributed

over the Fourier plane, leading to a decrease in the power falling within any given part

of the cell's receptive field. An approach to this problem is to use different basis

functions to represent the image, and restrict the search to a subspace of the possible

inputs. This approach is developed in the following chapter.

3.1.4. Simplex in Auditory Cortex

ALOPEX makes use of approximate gradient computations to search for peaks in the

neuronal response surface. However, other optimisation algorithms exist which do not

figure 3.2 - (left) An averaged result from 3 ALOPEX runs on a visual tectal cell, (right) The
receptive field of the same cell as characterised by a scanning technique. Both images have been
spatially smoothed, [from Tzanakou et al., 1979],
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require explicit calculation of the gradient, and which can behave more robustly when

the function values are noisy. One such algorithm is simplex (Press et al., 1988; see
1 7

box 3.2), which was used by Nelken et al. (1994) to optimise high dimensional

stimuli in cat auditory cortex.

Primary auditory cortex has a tonotopic organisation, with a frequency gradient in one

direction, with biaural interaction bands (where ipsilateral input suppresses or

enhances the response to contralateral stimulation) orthogonal to it. Despite this,

many cells are unresponsive to simple tones, responding strongly only to complex

stimuli of various kinds.

The stimuli space searched by Nelken et al. (1994) consisted of single tones bursts (1-

D stimuli), two tone bursts (2-D stimuli), four tone bursts (4-D stimuli) and nine tone

bursts (characterised by centre and spacing parameters, and therefore 2-D). All the

multiple tone bursts consisted of the tones presented simultaneously. The response

was measured from population activity consisting of several cells, rather than a single

unit.

The optimisation runs met with moderate success in that many of the stimuli found by

the process were much more effective than the starting stimuli. Figure 3.3 (left)

illustrates two search runs with different outcomes - the first leading to more effective

stimuli, the second failing to improve from the starting point.

12 though the stimuli in this study are very low dimensional compared to the visual stimuli used by

ALOPEX
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It is also interesting to note from the successful run illustrated that the method finds a

local maximum relatively early in the process, with subsequent steps only serving to

move the other points of the simplex closer to the maximum that has already been

found.

Multiple optimisation runs were performed on many cells (figure 3.3, right) to assess

the consistency of convergence points. The authors note that, although the runs

produced apparently widely different results, there is some evidence that the

optimised tones tended to cluster around certain frequencies in each cell, suggesting

that combinations of specific tones may be the relevant features for these cells.

Unlike the ALOPEX studies, where receptive fields studied had already been

characterised by simpler methods, Nelken et al. (1994) obtained novel results in

auditory cortex. However, in the higher dimensionality of visual space, the additional
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figure 3.3 - (left) Two example search runs. In the successful top run, the stimuli were nine-tone
bursts (with two variable parameters). The responses to each of the three stimuli described by the
vertices of the simplex can be seen at each time step. The lower unsuccessful run used two-tone
bursts, (right) Multiple runs in two cells. Although there was considerable variation in the optimised
stimuli, the dotted lines can be seen to indicate tones which were common to many results, [from
Nelken et al., 1994],
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information provided by a measure of the gradient (even if noisy and approximate) is

likely to improve the likelihood of convergence.

Box 3.2 - The Simplex Method
A simplex is a geometrical figure consisting of, in N dimensions, N+l vertices, and
all interconnecting lines, faces, etc. In three dimensions, a simplex is a tetrahedron.
The function is evaluated at each vertex, with the algorithm attempting to choose
new vertices that will take the simplex to the maximum (or minimum) of the

function, while maintaining non-degeneracy.

Start ofround. The function is evaluated at each of the
vertices of the simplex.

Reflection. The smallest vertex is reflected to the opposite
side of the hyperplane defined by the other vertices,

replacing the old vertex if better. If the new vertex is better
than the previous best, proceed to step 3. If the new vertex

is better than the second worst vertex, this is the end of the

round (the direction of the next reflection will be

different). Otherwise, proceed to step 4, since (at best) we
have simply moved the worst vertex.

Expansion. A new vertex at twice the distance is

generated, replacing the old vertex, if better. Since a better
vertex was found by moving along the direction in step 2,
an even better point may be found by moving further. This
is the end of the round.

Contraction. A new vertex is generated at half the distance
between the smallest vertex and the hyperplane defined by
the other vertices, replacing the old vertex, if better. If the
old vertex is replaced, this is the end of the round, since
the simplex has been compressed towards the higher
values of the function that lie close to the hyperplane.

Otherwise, proceed to step 5.

Multiple Contraction. Each vertex, except the largest, is

replaced by a new vertex at half the distance to the

maximum vertex. This occurs when the smallest vertex

could not be improved by any of the previous steps, useful
near a local maximum.



3.2. Other Systematic Methods

3.2.1. Reverse Correlation

The reverse correlation technique was first developed by Jones & Palmer (1987) to

quantify the 2-D spatial structure of simple cell receptive fields. The method involved

presenting a rapid continuous sequence of bright and dark spots randomly positioned

on a 16x16 grid (making a total of 512 distinct stimuli), with each spot displayed for a

few tens of milliseconds (generally 50ms). Spikes were recorded throughout the

presentation sequence, and whenever a spike occurred, the index of the stimulus

currently on-screen was recorded.

When data acquisition was completed, a process termed "reverse correlation" was

carried out to determine the set of stimuli that were present when spikes were emitted

from the neuron. Two 2-D arrays were maintained, one for bright stimuli and one for

dark stimuli. For each spike, the stimulus displayed was resolved into its x, y and

contrast components, and +1 was added to the corresponding (x,y) position of the

appropriate array. This process is illustrated in figure 3.4.

The 2-D spatial response profile of the cell is then obtained by subtracting the

response to dark stimuli from the response to bright stimuli. This was necessary

because simple cells have little or no spontaneous activity, so the inhibitory effect of

bright stimuli must be estimated in this manner. An example of the bright and dark

responses, and the spatial response profile given by their subtraction is shown in

figure 3.4 (right).

Reverse correlation also allows the evolution of the receptive field profile across time

to be studied, since it is possible to correlate spikes with the stimuli that precede them
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by varying time intervals. However, in this study, the relatively long duration (50ms)

of stimulus presentation makes this of limited value.

This form of reverse correlation can only be used to study cells that significantly

change their probability of firing based on the presence or absence of single small

spots of light. This clearly limits the value of the technique with cells later in the

visual system. However, a technique has recently been described (Ringach et al.,

1997) which makes use of different image basis functions, allowing them to be

matched to the properties of the cell under study. This allows the technique to be

applied to cells that do not respond to the presentation of single pixels, but do fire in

response to e.g. sinusoidal gratings.

Reverse correlation can only be used to characterise fully cells that have a linear (or

close to linear) spatial response, such as the simple cells in this study. Because single

elements of the receptive field are stimulated in isolation, there is no scope for

8192 spikes

Difference

figure 3.4 - (left) The reverse correlation procedure. Stimuli are encoded in a randomised
presentation list. When spikes occur, the stimulus address is recorded in a separate list. Two separate
arrays (for bright and dark stimuli) correlate spikes with the locations of the stimuli that produced
them, (right) The arrays after 8192 spikes had been recorded from a simple cell. The lower figure
shows the gabor-like spatial response profile obtained by subtracting the dark from the bright array,
[from Jones & Palmer, 1987].

Spike address list

Correlograms

Spika train
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evaluating the spatial interactions that may occur when multiple regions of the

receptive field are stimulated simultaneously. The method can therefore be considered

to be a subset of the more powerful Gaussian white noise approach, which is able to

characterise these receptive field non-linearities, and is discussed in the following

section.

3.2.2. Gaussian White Noise Analysis

White noise analysis is a general tool for characterising the input/output behaviour of

linear and non-linear systems, which has been applied to the mapping of visual

receptive fields (for reviews see Marmarelis & Marmarelis, 1978; Sakai, 1992;

DeAngelis et al., 1995). The receptive field of a cell is covered with a square grid, and

the luminance of individual pixels is modulated by independent Gaussian white noise

processes. The output of the cell is then cross-correlated with the stimulus sequence to

obtain the first-order cross-correlation, which completely characterises the linear

response of the cell. This process is equivalent to the reverse correlation technique

described above, and produces three dimensional entities describing the response

across spatial location and time.

However, the power of the technique lies in its ability to characterise non-linear

neurons, such as complex cells, where the response depends on interactions between

stimuli at different positions (or times). Unlike the reverse correlation technique,

where the luminance of each pixel is varied in isolation, white noise analysis varies

the luminance of every pixel simultaneously. This allows higher order cross-

correlations to be computed, such as the second order cross-correlation between the

luminance of two individual pixels and the response.
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Unlike optimisation methods, it is not necessary to assume that the response of the

cell under study is instantaneous (i.e. memoryless) because correlations can be

evaluated between the response and the presence of pixels with varying time delays.

These high-dimensional correlations are hard to visualise and interpret but have

proved useful for evaluating models of complex cells (e.g. Jacobson et al., 1993).

White noise analysis tests random locations in image space, rather than concentrating

the search on images that are likely to produce high responses. This means that, while

the technique is very powerful in fully characterising the first- and second-order

correlation functions of cells earlier in the visual system, it would be of little value in

a later area such as IT. This is because IT neurons have such complex trigger features

that responses to an enormous number of stimuli would have to be collected in order

to characterise these very high order correlations.

3.2.3. Modelling Techniques

An alternative technique for characterising the spatial response of a cell is to construct

a model that attempts to reproduce the non-linear input/output relationships of the

cell. This model can then be inverted to find the optimal stimulus for the model and,

ideally, also for the cell.

This method was first applied by Lehky et al. (1992) to the study of complex cells in

VI. First they presented a bank of four hundred stimuli to each cell, and measured the

average response to individual stimuli over several presentations. The stimuli

included simple patterns, such as sinusoidal gratings, gabor functions, and oriented

bars, along with more complex patterns including textures and 3-D synthetic surfaces.

Each cell was then separately modelled with a 3-layer neural network (see figure 3.5),
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using the backpropagation algorithm (Rumelhart et al., 1986) to train the network to

produce the correct response for each of the input patterns. The input layer sampled

images with a large number of on- and off-centre units, arranged into two spatially

superimposed hexagonal arrays, designed to replicate the organisation of cells in the

retinal and lateral geniculate nucleus (LGN). The network had a single output unit,

which was trained against a normalised time-windowed cell response. The number of

hidden units was varied in order to best fit the data, while preserving the ability of the

network to generalise.

The networks were trained using a subset of the patterns presented to the real cells,

with the remainder reserved to test the ability of a trained network to generalise its

response to novel patterns. Networks with sixteen hidden units were found to be able

to capture the input/output relationships well, with a correlation of 0.95 between

network output and the response of the actual cell to the training patterns.

A. Network organization

Output layer
(1 unit)

Hidden layer
0*32 mils)

OOOOOG ipp~uUffier1542 units)

B. Input iayer

un^s

V ;

fsSSgSSFmBem

On units,

Optimal stimuli
A.

figure 3.5 — (left) Organisation of the 3-layer feedforward network used to model complex cell
input/output relations. Each layer was fully connected to the next layer. The input layer consisted of
542 units, divided into parallel (and spatially superimposed) sets of on- and off-centre units, both
with antagonistic centre/surround receptive fields, (right) Two examples of 'optimal' stimuli,
obtained by inverting networks after training, [from Lehky et al., 1992].
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The predictive power of the networks was found to be somewhat lower, with
correlations in the range 0.4 - 0.94 between the network response to untrained stimuli

and the recorded responses from cells. While the fit to training data could be

improved by increasing the number of hidden units, the predictive power of the
network was not similarly improved, suggesting that the increased degrees of freedom

in the model with more than sixteen hidden units caused it to over-fit the data. The

optimal stimulus for each network was then obtained by inverting the network

(Linden & Kinderman, 1990) and typical examples of the optimal input patterns are

shown on the right hand side of figure 3.5. Sadly, these optimal patterns were never

tested on the real cells, since the training and inversion procedures took sufficiently

long to make this impractical.

This is an interesting technique, but its usefulness in studying cells further along the

visual stream is questionable, primarily because each step away from the retina adds

many more degrees of freedom and any model would require ever larger numbers of

input/output pairs in order to constrain it adequately. Replacing the antagonistic
centre-surround input units with simple cell-like gabor filters has the potential to

improve the power of technique, certainly in the study of the complex fields found in
VI (which are assumed to be a non-linear combination of a number of simple cell

inputs), but this is unlikely to extend the reach of the technique to areas much further

up the visual system.

3.3. Summary

The space of sensory stimuli is enormously large. Optimisation methods make certain

simplifying assumptions about the neuronal response function in order to

systematically search locations in the space where the response is increasing. It is
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better to use stimulus presentations to take many small steps, based on a rough

estimate of the gradient, rather than use them to gather more accurate gradient

information at a single point. However, attempts at stimulus optimisation using real

neurons have met with mixed success.

The SIMPLEX method (used in auditory cortex) does not use gradient information

and is likely to be of limited use in visual optimisation experiments. This is because

the first round requires N+l stimulus presentations (where N is the dimensionality of

the stimulus space - potentially a large number in visual experiments) before any

optimisation takes place. Each subsequent round requires the response to a previous

stimulus to be known before the next can be generated and presented. In contrast, the

ALOPEX method makes use of gradient information, and is easily adapted to a

paradigm where multiple stimuli are generated and presented at once, with

optimisation rounds taking place in between. This may be useful because it allows a

large amount of information to be obtained when an animal is fixating, with

optimisation and (potentially lengthy) stimulus generation calculations taking place

between fixation periods.

Gaussian white noise analysis generates stimuli distributed randomly in stimulus

space, correlating them against the response. It makes fewer assumptions about the

neuronal response function, and can characterise linear, non-linear and time-

dependent aspects of the response. It has proved useful in characterising cells early in

the visual system, such as simple and complex cells. Neural networks can also be used

to model the response of non-linear cells, then inverted to produce an optimal input.

However, since neither technique concentrates on areas of stimulus space where the

response is high, both procedures would require enormous numbers of stimuli to fully
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characterise cells in higher visual areas such as IT.

It is clear from the studies reviewed in this, and the preceding chapter, that a method

suitable for systematically characterising receptive fields in IT should have the

following properties -

(i) It should be able to characterise non-linear fields

(ii) It should explore areas of the stimulus space where the response is greatest

(iii) Images should be represented using basis functions that are related to the

properties of preceding visual areas

An algorithm designed to possess these properties is presented in the following

chapter.
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4. Computerised Stimulus Optimisation for Visual Cortical
Neurons

4.1. Introduction

An understanding of the stimulus selectivities of visual neurons is important, ifwe are

to understand the representations and transformations carried out by the visual system.

While the receptive field properties of neurons early in the visual system are fairly

well understood (e.g. in the LGN and VI), this is certainly not the case for later visual

areas, such as V4, STS and IT.

Effective stimuli for these neurons have traditionally been characterised manually, but

these methods are restricted by a limited and predetermined set of stimuli, based on

the assumptions of the investigators. In the previous chapter, we reviewed some of the

more systematic methods for characterising sensory neurons, and introduced the idea

of a neuronal response surface that may allow us to search for effective stimuli in a

systematic manner.

This chapter presents a novel computational method for determining effective stimuli

for visual neurons. The system is inspired by ALOPEX (Harth & Tzanakou, 1974;

Tzanakou et al., 1979), similar to the LRS method of search described by Widrow

(1985). This chapter presents the design of the system, which takes into account

considerations based on some of the properties of cells in STS and IT discussed

earlier. Results that have been obtained with artificial hardware and software

simulated neurons are also presented in this chapter.
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4.2. System Design

4.2.1. General Overview

This section introduces a system designed to search for optimal stimuli for visual

neurons. The system has a closed-loop architecture (see figure 4.1) such that the

generation of stimuli is not predetermined, but is instead guided by the responses of

the cell under study. At any point during an experiment, the location in the search

space is described by a set of parameters, which represent the current (or "base")

image. Each stimulus is generated by adding noise to the parameters prior to their

transformation into an image. When a response to this stimulus has been recorded

from the cell, the parameters are updated by correlating the added noise with the

resultant change in response. Thus, the characteristics of the stimuli generated evolve

over time, as the system performs an approximate gradient ascent in stimulus space.

figure 4.1 - Closed-loop design of the stimulus optimisation system presented in this chapter. Symbols
are defined in the text.
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4.2.2. Correlation Algorithm

The search algorithm presented here optimises a set of parameters which represent an

image. The actual representation of the image does not affect the operation of the

search, and is therefore discussed later. However, for the purposes of this description,

it may be useful to imagine that the parameters simply represent the intensities of each

of the pixels that comprise the image.

If, after i iterations of the search, the current underlying (or "base") parameter values

are denoted by the vector quantity b{,), then a stimulus ,s,(" is generated by perturbing

the parameters by a quantity of noise, n(,) -

where each element of the noise vector n(,) is drawn from a Gaussian distribution

with zero mean and standard deviation cr .

The stimulus parameters, s(,), are then transformed into an image, with the specifics

of the transformation being dependant on the image model in use. This image is

presented to the cell under study, resulting in a scalar response, r(,). The base

parameter values are then updated by correlating the response with the added noise

vector -

where a is a small constant determining the learning rate, and r is the average

response over the previous few iterations. After this correlation has been evaluated,

and the base parameters updated, the stimulus for the next iteration is then generated

SU) = bU) + nU) (1)

b(M) = b(i) +a(r0) -r)nU) (2)
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by adding a new set of noise to the new base parameters, as in (1).

The result of equations (1) and (2) can be summarised as follows - equation (1) first

chooses a random direction in parameter space to test at each iteration, equation (2)

then performs gradient ascent along the randomly chosen path, moving the parameters

in the direction chosen if the response has increased, and in the opposite direction if

the response falls.

This algorithm performs gradient ascent, but rather than fully evaluate the gradient at

each point (which would require at least as many stimulus presentations as there were

parameters), it instead takes many small steps, making a rough estimate of the

gradient each time13.

Note that the change in response on each iteration is evaluated with respect to a short

term average over past iterations, r . This average will tend towards the response to

the base parameters (as a —> 0 & cr —» 0 ), because each measured response is drawn

from randomly distributed positions centred on this location.

4.2.3. Design Constraints

(a) Block Design

Updating the parameters after every stimulus presentation, as described above, is not

readily achievable within the context of a single unit recording experiment. Firstly,

the response latencies of visual cells are significant, with VI responses tending to

13 For a proof that this kind of strategy results in faster convergence on a quadratic performance

surface, especially when the dimensionality of the search is high, see Widrow (1985), p. 162.
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have latencies in the range 40-100ms (Vogels & Orban, 1991), and by the time visual

information reaches later areas such as IT and STS, response latencies have risen to

60-220ms (Richmond et al., 1983; this thesis). Latencies of this order set an upper

limit on the presentation rate at around 5-10Hz, significantly less than the 50Hz

presentation rate at which we are able to record specific responses to stimuli presented

in an RSVP14 sequence (Keysers et al., 2002).

Computational issues also limit the presentation rate if parameter updates occur with

every stimulus-response pair. Depending on the complexity of the image model, it

may take a significant amount of time to compute an image from the stimulus

parameters.

For these reasons, the design of the system was modified to instead generate and

present short "blocks" of stimuli, each composed ofmany different images, which can

be presented rapidly and continuously in an RSVP sequence. This style of

presentation also fits well with the typical length of fixation periods that are obtained

during recording sessions.

Each block of stimuli is created by adding multiple independent noise patterns to the

base parameters. In the z'th block of stimuli, the /th perturbation of the base parameter

vector is now given by -

SU)U) = bd) + nmu) (3)

14 In RSVP, the continuous recording of responses can simply be shifted to align each response to the

stimulus that evoked it.
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and after this block of stimuli has been presented, the base parameters are updated

according to -

b(M) = ba) + a{(rmj) - F(i))n(i)(J))j (4)

where is the response to the /th stimulus of block i, rU] is the average response

during the block and ( ) denotes the expected value across the j perturbations.

As in (2), the parameter update performs gradient ascent on the response, as the

correlation is proportional to the partial derivative for independent noise (see box 4.1).

After the updates to the parameters have been computed, the next block of stimuli is

then generated by adding a new set of noise to the new base parameters.

Box 4.1 - Proof that Correlation is Proportional to Gradient

The gradient of the performance surface, f(x) , is a column vector designated V(f) -

r8f(x)~
3x,

V(/) =
df(x)
dxn

(1)
Ifwe perturb the values of the input vector by an amount Ax, then a linear approximation (which will

be accurate when the step size is low) to the resultant change in the response, Af, will be given by -

A/ = Axr.V(/) (2)
The search algorithm evaluates the correlation -

(Ax.A/) -(Ax.Ax7 .Vsubstituting, from (2)

-{Ax.Axr^V(/)
= Cov[Ax]V(/)

and V(/) = Cov[Ax]-1(Ax.A/^ (3)
In this case, each element of Ax is independent, so -

(Ax.A/) = O"21V(/) (4)
showing that the correlation is proportional to the gradient.
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The block presentation algorithm spends more time gathering information about the

gradient around the current location before moving to a new location. Stimuli can be

more rapidly presented, and the computations involved in parameter updates and

image generation can be carried out in between fixation periods.

(b) Multiple solutions

A further addition to the system allows multiple parameter optimisations to be carried

out simultaneously. It is possible that the neuronal response surface may have

multiple peaks, corresponding to different patterns, sharing few, if any, features in

terms of retinal input. For example, in chapter 2 we saw how some neurons in IT and

STS can produce invariant responses to particular objects, irrespective of which view

of the object was presented.

The perturbationj of the Ath base parameter vector after i blocks is now given by -

s(i)um = bim) + n(i)(j)(k) (5)

and the correlation equation becomes -

b(M)(k) = b(i)(k) + -r(i)(k))n0)uw} . (6)

Note that stimulus generation and correlations are carried out completely

independently for each base parameter vector. This provides multiple independent

solutions to the optimisation.

At each step of the optimisation, the block of stimuli to be presented will consist of

multiple perturbations of multiple base images. Stimuli based on different parameter

vectors are randomly interleaved in the continuous presentation sequence (see figure
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4.2), which reduces the risk that a neuron under study will habituate to any particular

image feature.

(c) Response Sampling in RSVP

The response to each stimulus presented as part of a block is obtained by cutting the

spike train into slices of lengths equal to the stimulus presentation time, after taking

the response latency of the neuron (which is assumed to be constant across stimuli)

into account. This is shown in figure 4.3.

As discussed in chapter 2, responses to effective stimuli typically outlast the stimulus

presentation time, by about 60ms in STS and IT (Keysers, 2000). This effect is also

illustrated on figure 4.3, where spikes that relating to the effective stimulus can be

t+0 t+J

RSVP block

stimulus

parameters

base

parameters

<i)d)(l)
S

^ s(i)(l)(2)
(i)(2)(l) /

i3
<i)(2)(2)

S

(0(3)(1)
s

mm
s

(00)ft) s(i)(i)(2)

. (i)0)
b

ft) (2) —

. (1)0)
b

(1)(2)

figure 4.2 - An RSVP block consisting of randomly interleaved stimuli, which are derived from one or
more base parameter vectors. Stimuli may also be generated directly from the base parameters
themselves, without the addition of noise. Copies are kept of the original base parameters, prior to any
parameter updates (indicated by the dotted boxes). These may also be included in a block, as a baseline
measure. Note that every stimulus is included once in the sequence, but only some of the arrows have
been drawn, for clarity.
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seen to fall into one (or more) of the windows belonging to previous and subsequent

stimuli.

There are two simple solutions to this problem. Firstly, stimulus presentation can be

slowed down, which will dilute the effect of spike "overspill" between stimulus

windows. Because neurons in STS and IT tend to show response persistence until a

new stimulus is displayed, it should make little difference whether this slowing takes

the form of longer stimulus presentation, or the introduction of gaps between stimuli

(see figure 2.9b).

A second solution is to present each stimulus multiple times within a block, and use

an average spike count across the multiple presentations when calculating the

correlation in (6). This will not only reduce the effect on noise on the response

estimate, but will also dilute the influence of spike overspill between stimuli.

(d) Baseline Measures

Monitoring the progress of the optimisation process requires a baseline measure

because cells may habituate to a particular image (see chapter 2) or exhibit a change

in responsiveness over time. For this reason, a copy of the initial parameters is made,

figure 4.3 - Response sampling in RSVP. The continuous recording sequence is sliced into windows,
each of length equal to the stimulus presentation time. Taking cell latency into account, a windowed
spike count is obtained for each stimulus. The lower filled rectangle indicates an effective stimulus
producing the response above. Lower unfilled rectangles represent previous and subsequent stimuli.
Spikes falling within the window indicated by the arrow would be attributed to the effective stimulus.
Spikes falling with the earlier and later windows (shown by dotted rectangles) would be attributed to
the previous and subsequent ineffective stimuli.
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allowing an image created from these parameters to be inserted in every stimulus

presentation block (see figure 4.2). An image created from the base parameters can

also be shown in each block to evaluate the response to the stimulus generated from

the parameters in the absence of noise.

(e) Starting Point ofSearch

The neuronal response surface may contain vast areas where the response (and

therefore the gradient) is close to zero. Stimulus optimisation is most likely to succeed

if the search can initialised in the region of a peak.

This can be achieved if the neuron is first tested with a standard test battery of images,

and the image(s) producing the best response selected for optimisation. This requires

the image model to support both a forward transform (from parameters to image) and

a backward transform (from image to parameters).

4.2.4. Two-staqe Image Model

A stimulus parameter vector, s(')(j)(-k), is converted into a pixel image by means of the

two-stage image model outlined in figure 4.4. The image model determines how

stimuli are generated from a set of parameters, and therefore constrains the type and

range of images that can be generated. The first stage is dependent on the particular

representation employed, and the details of each implementation are discussed in the

sections that follow. The output of the first stage is always a virtual pixel based

image, in YCbCr colour space. This is acted on by the second stage, which is common

to all representations, and is therefore discussed first here.

YCbCr colour space (Bhaskaran & Konstantinides, 1997) is used in all stimulus

representations because it separates out luminance from chromatic information. The
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parameters
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physicalpixels
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figure 4.4 - The two-stage image model. Stage 1 is dependent on the particular image representation in
use, and transforms the stimulus parameter vector into a pixel image basis, with three matrices
representing virtual pixels in YCbCr colour space. Stage 2 is invariant of image model and converts
virtual pixels into physical RGB pixels, ready for display on a monitor. The forwards transform (solid
arrows) is carried out for every stimulus generated. The backwards transform (dashed arrows) occurs
once, prior to generation of the first block of stimuli, if the optimisation process is initialised with a
particular starting image.

output of the first stage is a matrix, IY[x,y], containing the luminance values of each

virtual pixel and, if optimisation is being carried out in colour, two additional matrices

ICh [x,y] and ICr [x, y] contain the blue-yellow and red-green chromatic information

respectively. Each YCbCr triplet is converted into its equivalent RGB value by first

shifting Y from the range [-0.5..0.5] into the range [0..1] then applying the following

transformation -

Y 0.299 0.587 0.114 R

Cb = -0.169 -0.331 0.500 G

Cr 0.500 -0.419 -0.081 B
(7)

Thus (0, 0, 0) in YCbCr colour space describes a mid-luminance grey and is translated

to (0.5, 0.5, 0.5) in RGB space. Increasingly positive values ofY generate pixels with

luminance above the mid-level, increasingly negative values generate pixels with

below mid-level luminance. Similarly, positive values of Cb generate increasingly

blue colours, negative values generate increasingly yellow colours; positive values of

Cr generate redder colours, negative values generate greens.

Finally, each virtual pixel can correspond to many physical pixels in the final image
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Stimulus Parameters

s[l] • • • s[tJ s(t+lJ • • • S[2t] S[2l+1] • • • S [31]

Y Cb Cr

figure 4.5 - Organisation of pixel data in a stimulus parameter vector, for the pixel image model. Each
parameter specifies attributes of a single pixel. If the optimisation is being carried out for luminance
(Y) alone, only the first set of parameters is used. Otherwise, two additional sets of parameters specify
the chromatic information (Cb & Cr) for each pixel, t is the total number of virtual pixels in the
stimulus image.

prepared for display. Width and height magnification factors can be separately

controlled to determine the size (and therefore the spatial resolution) of the stimulus.

4.3. Pixel Image Model

The pixel image model is the simplest of the image models implemented, with each

parameter simply representing the luminance of a particular pixel. If the optimisation

is being carried out in colour, two additional sets of parameters specify the chromatic

components for each pixel. Therefore the first stage of the image model is effectively

an identity transform, with only a simple repackaging of coefficients taking place.

If the resolution of the image to be optimised is x pixels wide by y pixels high, the

total number of parameters will therefore be xy (for achromatic optimisation) or 3xy

(in colour). The packaging of information in the parameters is shown in figure 4.5.

The following sections describe results obtained with this pixel image model.

4.3.1. Simulation with Model Complex Cell

A complex cell model was constructed in order to simulate the dynamics of the

optimisation algorithm with a non-linear response. In this case, the single presentation

form of the algorithm (equations (1) and (2)) was used. A test of the block
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presentation algorithm is described in the section that follows this one.

The complex cell was modelled as a summation of multiple simple cell inputs (figure

4.6a), where each simple cell consisted of a linear spatial filter, based on a gabor

function, followed by a threshold non-linearity (Movshon, Thompson & Tolhurst,

1978a; Jones & Palmer, 1987). The complex cell was modelled as a sum of several of

these simple cell inputs (Movshon, Thompson & Tolhurst, 1978b), with the spatial

filter of each input differing in phase, sampled evenly across the range [0,27i].

Optimisation of a Model Complex Cell

Simple Cells

Complex Cell

£ ) > r(I[x,y])

figure 4.6 - (a) A complex cell modelled as a summation of simple cell inputs. Each simple cell is
modelled as a linear (L) and static non-linear (N) cascade - i.e. a spatial filter followed by a threshold.
The complex cell sums parallel LN channels, whose linear spatial filters differ in phase, (b) The results
of two optimisation runs carried out on the model complex cell (Gaussian filtered). Each run was
initialised with identical parameters, but different random seeds. The optimised images both produce
near-maximum output from the complex cell model, but the patterns differ in phase, with the bright
area of one stimulus occupying the same spatial location as a dark region in the second. [ CC =0.002,
<7=0.1, i=2000]
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The results of two optimisation simulations with the model complex cell are shown in

figure 4.6b. In both cases the parameters were initialised at zero, to produce a uniform

mid-luminance grey image, but with a different random seed in each simulation. The

optimised images both produce near-maximal output from the complex cell model,

but the patterns differ in phase, with light regions in one image corresponding to dark

regions in the other.

This simulation illustrates how the algorithm can find alternative maxima in the

neuronal response surface, where the system under study is a non-linear function of

the input (i.e. the regions where light excites and inhibits the response are not fixed).

4.3.2. Coarse to Fine Optimisation

The optimisation method presented allows the spatial resolution of the image to be

changed mid optimisation, thus allowing us to rapidly optimise a coarse stimulus

(described by a low number of parameters), yet change to a higher resolution image

when performance reaches a plateau.

This is illustrated by the simulation shown in figure 4.7. In this case, an image is

optimised by carrying out gradient descent15 on an quadratic error function, which

was calculated as the mean squared error of pixel differences between the current

image and a 64 x 64 pixel target image.

15 On a real neuron, we are trying to make our way uphill on the performance surface. However, with

an error measure, we wish to do the opposite. The algorithm will perform gradient descent (rather than

ascent) if the sign of the learning rate constant (a) is reversed in equation (2).
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Initially, there are only 1/16th as many parameter as pixels in the image, with each

parameter controlling a 4 x 4 pixel block. After 1500 iterations, performance is no

longer improving, and the remaining error being is due to residual detail below the

resolution of the optimisation. The number of parameters is then increased, such that

each pixel is controlled by a single parameter, and performance starts to increase

again, with additional fine detail in the target image being discovered.

In this example, converge is faster with a coarse stimulus representation because the

target image is naturalistic and has local correlations between pixel values (any point

in the image tends to be like its immediate neighbours). Therefore a coarse

iteration

target iteration 5000 iteration 20000

figure 4.7 - Optimisation of an image by error descent. The quadratic error function measured the
difference between the search image and a 64 x 64 pixel target image (lena, an image used widely in
image processing). The error was the mean squared pixel difference (where each pixel value ranged from
0-255). Top trace - Each parameter represented the luminance of one pixel (total of 4096 parameters).
Bottom trace - initially, each parameter represented the luminance of a 4 x 4 pixel block (total of 256
parameters). At iteration 5000 (arrow), the number of parameters was increased (using a backwards
transform on the image) such that each parameter controlled a single pixel (4096 parameters, as in top
trace). This simulation used the single presentation form of the optimisation algorithm (equations (1) &
(2)). In all cases the values of the convergence parameters were the same. [a=0.001, a=0.05, average
over=10].
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representation of the image can account for a large proportion of the error measure.

To what extent is this technique likely to be useful with a real visual neuron? If the

optimal stimulus for a cell is a mix of both low- and high-spatial resolution

information (e.g. a face) and a significant response can be obtained when the low-

spatial resolution information alone is presented (i.e. the cell responds to a coarse

representation of the stimulus) then the coarse-to-fine optimisation technique should

prove experimentally useful. There is at least some evidence that IT cells do indeed

respond significantly to coarse versions of their preferred stimulus (e.g. Rolls et. al.,

1995 showed this with faces) and I shall return to this question later in the thesis.

4.3.3. Test with Artificial Neuron

In order to verify the working of the block design algorithm within the context of the

complete physiology system, a hardware artificial neuron was built which could be

tested in place of a real visual cell. The artificial neuron consisted of a square wave

generator connected to two photoresistors which were attached to the monitor used for

stimulus presentation. The photoresistors were connected as a "push-pull" pair, with

one increasing the frequency of the square wave as the light intensity increased, and

the other decreasing the frequency as light intensity increased.

The results of an optimisation run on this artificial neuron are shown in figure 4.8.

After one parameter update, a bright spot has appeared under the photoresistor which

increased the output frequency, with a corresponding dark spot evident under the

inhibitory one. With subsequent presentations the spots become more clearly defined,

and, after five to six parameter updates, the artificial neuron reaches its maximal

output rate.
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Optimisation of an Artifical Neuron
base image
block 0 block 1 block 3 block 6

figure 4.8 - Optimisation run with an artificial neuron, consisting of two photoresistors attached to the
display screen and modulating the frequency of a square wave produced by a function generator. The
approximate location of each photoresistor is shown in the top left of the figure. Light falling on the
photoresistor indicated by a + increased the output frequency, whereas light falling on the photoresistor
indicated by a - decreased the output frequency. The top row of images shows the evolution of the base
parameters across presentation blocks. Middle and lower right hand side images show Gaussian
smoothed and contours versions of the final image. The graph shows the response to the base
parameters (upper curve) and the unoptimised start image (lower curve) across presentation blocks.
Note that the parameters were resampled after block 3 to increase the spatial resolution (see text).
[ a =0.005, <7 =0.1, 100 stimuli per block]

This example also illustrates how the resolution of the image can be changed from

coarse to fine during an optimisation run. After the third parameter update, the base

image was resampled to initialise a new parameter set with twice the spatial

resolution. As described earlier, this allows a coarse image to be rapidly optimised,

then the spatial resolution increased to provide a finer picture of the receptive field.
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Box 4.1 - Choice of Convergence Parameters

The convergence parameters, a & cr, must be chosen with respect to the system under

study.

• The value of a should be chosen such that the value of a(r(,) -r) (see equation 2)

will be « 1, otherwise the optimisation will be unstable. However, if it is too low,
little learning will take place. The dynamic range of the response will determine a

reasonable range for this parameter.

• The value of a is dependent on the nature of the image model employed, and

determines the magnitude of the noise, n(,), added to the image parameter vector.

This should be chosen to be large enough such that the noisy images produce

measurably different responses from the response to the base image, or no learning
can take place. If too large, cr may produce an unreliable estimate of the gradient

(depending on the nature of the performance surface).

Given the constraints above, the graphs below illustrate the effect on convergence over a

range of values for these parameters (using the single step form of the algorithm).

5000 10000 15000 20000
iteration

5000 10000 15000 20000
iteration

Learning Rate (a)
a = 0.01

Noise (g)

o - 0.06
a = 0.05

Pixel-based optimisation (gradient descent on a quadratic error function - for additional details on method
see figure 4.7), using a 64x64 pixel target image. Left - Varying the value of the learning rate (a). When
the learning rate is too high (a = 0.01), convergence is not achieved. Lower values (a<0.01) result in stable
convergence. In this stable range, higher values of a result in faster convergence initially, but stabilise with
a higher mean squared error. Lower values convergence less rapidly, but stabilise closer to the optimal
values (a = 0.001 is still converging at the end of the trace shown, and will eventually stabilise at an error
level below that of higher values of a). Right — Varying the value of the noise standard deviation (a). As
with the learning rate, when the value of a is too high, convergence is not achieved. Within the stable
range, lower values result in slower convergence initially, but stabilise with lower error levels.
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4.4. Spatial-Frequency Image Model

For any «-pixel image, one requires an ^-dimensional space to represent the set of all

possible images, with every possible image occupying a unique location in this space.

In the pixel based image model described above, we can imagine that each parameter

describes the distance along a specific coordinate axis, where each axis represents the

intensity of a particular pixel. The spatial frequency model, described here, is based

on a transformation of the coordinate axes, where each axis now represents the

contribution of a specific spatial frequency to the image. This transformation is

achieved by a Fourier transform16 (an orthonormal transform, equivalent to a rotation

and/or reflection of the coordinate axes).

Specifics of the implementation of this image model (along with a scaling step that is

discussed later) are shown in figure 4.9.

4.4.1. The Fourier Transform and Stimulus Generation

Each stimulus generated by the optimisation algorithm is picked from a random

location in parameter space, with the probability density described by an n-

dimensional Gaussian centred on the current values of the parameters.

It is worth noting that this probability density will have the same shape in image

space, irrespective of whether the parameters represent a pixel basis, a Fourier basis,

or any other orthonormal transform of the axes. This is because orthonormal

transforms are isometric (i.e. form preserving). Thus the Fourier transform, by itself,

16 See Press et al., (1988) for details of the specific implementation used here.
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will have no effect on either the type of stimuli generated, or the performance of the

optimisation.

However, the spatial-frequency based model does allows us to develop two different

strategies to constrain the search -

(i) We can simply reduce the number of parameters and thus restrict the

stimulus search to a lower dimensional subspace. This allows a priori

17
knowledge about the tuning of cells to be used to constrain the search .

This idea is investigated further in the following two chapters, where we

test the hypotheses that, at high stimulus presentation rates (where the

visual system has little time to process one stimulus being presented with

Stimulus Parameters
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figure 4.9 - Stimulus parameterisation with the 1/f frequency image model. Stimulus parameters
represent Fourier coefficients. For an image with X x y pixels, there are (x — 1) x (y — 1) parameters.
The first parameter represents F(0), the DC component of the image. Subsequent parameters are
grouped into pairs, representing real and imaginary parts of each spatial frequency. Nyquist frequencies
are set to zero (and are not represented by parameters) resulting in an decrease in dimensionality. Each
parameter pair is scaled by a factor of 1/f (where f is the frequency represented by the pair) prior to the
inverse Fourier transform. Only the Y channel is shown. An identical process takes place for the Cb
and Cr channels when optimisation is carried out in colour. [For a complete description of how
individual spatial frequencies are encoded by the parameters see Appendix 4 and Press et al., 1988].

17 The same idea is discussed with respect to the reverse-correlation technique by Ringach et al. (1997).
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the next one), the response of neurons in STS and IT may be determined

only by low-spatial frequency and achromatic aspects of a stimulus.

(ii) Alternatively, we can try to incorporate knowledge about the statistics of

natural images into the generative image model. It is likely that neurons in

the visual system of an organism are tuned to features of its natural

environment. Analysis of these natural images has revealed consistent

statistical properties, which can be used to constrain the search. This idea

is considered next.

It is obvious that both of these approaches reduce the generality of the

optimisation technique. However, if the constraints placed on the search volume

are well chosen, and matched to the properties of the cells under study (and cells

providing input to the cells under study), this should not be detrimental to the

accuracy of the results.

4.4.2. 1/f Amplitude Spectra of Natural Images

The visual environment of an animal is not random, but highly structured. The pattern

of light reflected by a scene is determined by specific physical laws, and reflects the

properties and configuration of the independent objects within it. This structure limits

the range of images the organism will encounter, such that natural images only

occupy a small fraction of the total image space. Therefore we can say that there is

redundancy in the retinal input.

Field (1987) has described one consistent statistical feature of natural images in terms

of their amplitude (or power) spectra. In contrast with white noise images, which have

a flat amplitude spectra, natural images show the greatest amplitudes at low
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frequencies, with decreasing amplitude as frequency increases. The amplitude falloff

with frequency is approximately 1/f, a relationship that holds for a wide range of

natural images. If natural images have stationary statistics (over the whole population,

the statistics at one location are no different from any other location) then all the

redundancy reflected in correlations between pixels will be captured by the amplitude

spectrum of the data.

We can modify the spatial frequency image model to produce noise patterns that have

a 1/f spectrum (and therefore the same kinds of correlations between pixels as natural

images) by introducing a scaling step (shown in figure 4.9) between the parameters

and the Fourier transform. This alters the dynamic range of each parameter, such that

parameters representing higher frequencies have a reduced effect on the amplitude of

the spatial frequency that they represent. This yields correlated noise patterns like the

images shown in figure 4.10.

0 12

Log10 spatial frequency (cycles/picture)

figure 4.10 - (a) Example noise images, (b) Two-dimensional amplitude spectra for the images shown
to the left. 0 spatial frequency is shown in the centre of the plot. Amplitude decreases rapidly with
increasing spatial frequency at all orientations. For clarity, each point on the grid is a 2x2 average
region of the spectrum, (c) Amplitude spectra for these images (plus a third, not pictured). With log-log
coordinates, the spectra fall off by a factor of 1/f (indicated by a slope of—1). [After Field, 1987].
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It is important to note, however, that Field (1994) has also argued that much of the

redundancy in natural scenes is not captured by correlations between pixels, and

suggests that pyramid codes (e.g. based on Gabor functions), rather than pure

frequency based representations are necessary to model the statistical regularities in

natural images. The Fourier model presented in this section should therefore simply

be considered as a first tentative step towards modelling natural image statistics, and

we shall return to the subject ofwavelet coding in the discussion.

4.4.3. Test of the 1/f Image Model with Artificial Neuron

The 1/f image model has also been tested with the artificial neuron described earlier.

The results of one test are shown in figure 4.11. Convergence to the optimal stimulus

is faster than with the pixel model as can be seen be a comparison of this figure and

figure 4.7. This would be expected, because the photoresistors were sensitive to light

falling over a fairly wide spatial extent. With the 1/f image model, there would be a

high signal to noise ratio for the parameters controlling the amplitude of the low

spatial frequencies. In contrast, there would be relatively low signal to noise ratios in

the pixel model, since each pixel would have a comparatively small influence on the

response.

1/f Optimisation of an Artifical Neuron
base image
block 0 block 1 block 3

block

figure 4.11 - Optimisation run on the artificial neuron with the 1/f frequency image model.
Convergence is more rapid, and the images clearer than those obtained with the pixel model described
earlier. + and - indicate approximate photoresistor positions (see figure 4.7 for full details), [a =0.005,
(J =0.03, 100 stimuli per block]
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4.4.4. Experimental Results

Experimental tests using the optimisation system on real IT visual neurons proved

inconclusive. The system was tested with 11 cells, but it was rarely possible to

achieve a stable recording over a long period. Before running an optimisation test,

visual neurons were identified as such by first testing their responses using a

screening set of images (similar or identical to the set shown in Appendix 1).

During optimisation, the maximum number of iterations achieved was 11, but more

generally only 5 or 6 iterations were obtained. The results are shown in Table 4.1 and

Figure 4.12. There is little evidence of increasing response to the images across

iterations.

The table shows the parameters used for each test, the images (if any) used to

initialise each set of parameters, and notes that were recorded during the test. In

general, the presentation time was 56ms per stimulus (4 frames) with a 167 ms gap

between stimuli (12 frames).

Stimulus presentation blocks always included noiseless images based on the current

parameters, as well as the original base images (after parameterisation), as a baseline

measure. However, the images after parameterisation (to 32 x 32 virtual pixels)

produced a severely reduced response compared to that obtained with the original

images testing during the screening phase, and in general, the baseline measures can

be seen to be extremely variable.
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Table 4.1 - Optimisation Tests in IT Cells

Date Cell Test Notes

11/4/00 250/7 1 Pixel optimisation. Terminated after 2 iterations, monkey not working.

26/4/00 254/8 ja,b 1/f colour optimisation with 3 parameter sets initialised from screening
images (boxc_, Ml_00c, ColorMc_)
a=0.005, <7=0.02, 8 iterations. 32x32 vitual pixels.
198 images per iteration (66 per parameter set).

26/4/00 254/8 2a'b 1/f colour optimisation with 3 parameter sets (default initial images).
Parameters as above, 5 iterations. Computer crash terminated test.

27/4/00 255/6 J a,b 1/f colour optimisation with 3 parameter sets (default).
a=0.02, a=0.02, 8 iterations. 32x32 vitual pixels.
198 images per iteration (66 per parameter set).

23/5/00 258/4 1 1/f optimisation - cell lost.

2/6/00 266/15 j a,b 1/f achromatic optimisation with 2 parameter sets (default).
a=0.01, <7=0.03, 11 iterations. 32x32 vitual pixels.
200 images per iteration (100 per parameter set).

19/6/00 271/9 j a,b 1/f colour optimisation from 3 grey images.
a=0.005, <7=0.03, 5 iterations. 32x32 vitual pixels.
300 images per iteration (100 per parameter set).

29/8/00 285/2 C 1/f colour optimisation. Single parameter set.
a=0.01, <7=0.1, 5 iterations. 32x32 vitual pixels.
100 images per iteration.
Lost cell? retest with screening set showed different selectivity.

21/2/01 3027/5 I" 1/f achromatic optimisation with 2 parameter sets (default).
a=0.01, <7=0.1, 5 iterations. 32x32 vitual pixels.
200 images per iteration (100 per parameter set).
Cell probably lost during test.

15/3/01 307/16 1 1/f colour optimisation with 3 parameter sets (Handc_ , 2 default).
a=0.05, <7=0.1, 0 iterations. 32x32 vitual pixels.
"Aborted".

4/4/01 311/3 la 1/f colour optimisation with 3 parameter sets (Alienc_, 2 default).
a=0.05, <7=0.1, 5 iterations. 32x32 vitual pixels.
180 images per iteration (60 per parameter set).
Lost cell, monkey not working.

a

Complete results for this test are shown in a separate figure.
b The 1/f image model used in this test was slightly different to that described in the thesis. Values for a are
therefore not comparable to the later results.
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254/8 (1)

254/8 (2)

255/6

5 6 7 8

266/15

23456789 10 11

271/9

4 5

311/3

9 10 11

285/2

302/5

figure 4.12 - Optimisation runs on mutliple IT cells. Separate graphs (arranged from left to right) are
shown for a cell where multiple parameter sets were simultaneously optimised. Parameter sets were
initialised as described in Table 4.1, with the leftmost graph corresponding to the first initial image
listed (and so on). A single copy of the original base image was included in the block of images
presented every iteration to act as baseline measure (for further details - see text and figure 4.2). The
response to this image is shown by the grey dashed line. The solid lines (and marks) indicate the
response to the base image, with error bars showing the maximum and minimum responses produced by
the search images. X-axis labels indicates iteration number, Y-axis labels indicate spike count.
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4.5. Discussion

The stimulus optimisation technique is shown to reveal multiple receptive fields for

non-linear artificial neurons. This indicates that it should be more applicable than the

reverse correlation technique for non-linear neurons such as complex cells (see

Foldiak, 2001). It may also be suitable for studying stimulus selectivity in higher

areas, such as V4 or IT. However, this is likely to require a stable recording from a

single cell over long periods of stimulus presentation, which was never achieved

during the course of the work described in this thesis. Particularly worrisome was the

lack of consistency in the measured responses to the original images over the course

of optimisation testing on real cells, which were intended to act as a baseline measure.

If there is a very high level of noise present in the responses attributed to each

stimulus, the process of optimisation is likely to be very slow.

However, the main problem with stimulus search is likely to be one of dimensionality.

The speed of convergence is dependent on the number of parameters used to represent

the stimulus. It is possible to reduce the dimensionality of the problem if we are

prepared to search only a subspace of image space. This may be applicable in some

cases, and in the next chapter we consider whether a search of the specific subspace

corresponding to low spatial frequency achromatic images might prove a practical

approach in STS and IT. Parallel work which seeks to understand receptive field

properties in terms of natural image statistics may also prove useful to generating

candidate stimuli that are more likely to contain the trigger features of a visual cell.

4.5.1. Natural Image Statistics

Several authors have argued convincingly that visual processing is best understood in

104



terms of transforming or reducing the redundancy present in the natural environment,

in order to produce a representation that can represent natural images efficiently.

Barlow (1961) first suggested that the goal of sensory processing was to represent the

information in the natural environment with minimal redundancy. Atick & Redlich

(1990, 1992) apply the principle to retinal ganglion cells, showing their receptive

fields can be understood in terms of a strategy for decorrelating their outputs in

response to the 1/f amplitude spectrum of natural images. Field (1987, 1994)

discusses how a set of self-similar gabor wavelet filters are effective at transforming

the high-order redundancy present in natural images into first order redundancy in the

response distribution of the coefficients, where each input is represented by the

minimum number of active units (i.e. a sparse code). Olshausen & Field (1996) show

that a network designed to discover sparse representations produces receptive field

structures similar to those determined for simple cells in VI, if presented with a large

number of natural image samples.

This line of study has been effective in providing explanations for the structure of

early visual receptive fields, and as the techniques become more powerful, will also

enable the prediction of receptive field structures later in the visual system.

4.5.2. Relationship to Stimulus Optimisation

Field (1994) suggests that a first approximation to natural scenes may be achieved by

producing a random sum of orientated wavelet basis functions, where the probability

of any particular coefficient taking on a high value is very low (in essence, inverting

the visual code proposed for VI). Later work (see Schwartz & Simoncelli, 2001)

suggests that natural images contain consistent relationships between the values of
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wavelet coefficients across neighbouring positions, orientations and scales.

Simoncelli's work shows structure beyond correlation - the magnitude of one filter

response is not predictive of the magnitude of a second (in fact the correlation is zero)

but is instead predictive of the variance of the second filter, with the strength of the

dependency varying depending the on the specific pair of filters chosen.

As further regularities are discovered, these could be incorporated into a generative

stimulus model, to produce potential stimuli that contain the kinds of features present

in natural images, and therefore likely to be trigger features of visual neurons.

However, although natural images contain redundancy, wavelet representations do not

allow for simple reduction in the number of parameters used to represent images. In

fact, the basis may be overcomplete (i.e. more basis functions that pixels). As

Olshausan & Field (1996) point out, there is no reason to suppose that an image with

N pixels is composed from N independent causes. Rather, the regularities present in

natural images are described by the distribution of (i.e. sparse), and relationship

between, the wavelet coefficients.

It is worth noting that this will be non-trivial to incorporate in the image model and

search proposed in this chapter, because it is based on statistically independent

parameters. It is possible that other types of search, such as genetic algorithms, may

prove a more effective base for implementing the kinds of constraints described

above.
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5. Coarse to Fine Processing in Neurons of Temporal Visual
Cortex - An Introduction to Chapters 6 & 7

5.1. Introduction

The visual system is often described as a hierarchy of processing modules, each

specialised to a particular attribute of the visual scene. However, more recent work

(Sugase et al., 1999) has suggested that there may also be a temporal hierarchy of

information processing in the visual system, with coarse information about a stimulus

becoming available before the fine detail. Recording from neurons in inferior

temporal cortex (IT), they found that the early part of a cell's response related only to

the global stimulus category (e.g. face or non-face) with the more detailed information

about the stimulus (e.g. facial expression) available only in the later (> 50 ms)

component of the response.

The idea that processing in the visual system proceeds in a coarse to fine manner has

been proposed by a number of authors (Carpenter & Grossberg, 1987; Schyns &

Oliva, 1994; Ullman, 1995; Nowak & Bullier, 1997). Coarse to fine processing in

terms of spatial frequency is proposed by Parker et al. (1992) to explain differential

reaction times to sinusoidal gratings. Delorme et al. (2000) found that, in a rapid

categorisation task, colour makes little difference to speed or accuracy, leading to a

suggestion that the first wave of visual information is essentially low spatial

frequency and achromatic, with colour and the high frequencies following later.

One potential physiological basis for these theories may lie in the differential

processing speeds of the magnocellular (M) and parvocellular (P) pathways from the

retina to area VI of the cortex. The distinction between M & P pathways originates in

the primate retina (for reviews see Milner & Goodale, 1985; Merigan & Maunsell,
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1993) with two distinct classes of retinal ganglion cells. One class (the Pa cells) have

large cell bodies and dendritic radiations, a transient response to visual stimulation

and, because all three cone types make excitatory synapses on these cells, they are

spectrally broad-band. In contrast, the second class of cells (PP) have medium to

small sized cell bodies, small dendritic radiations, produce sustained responses and

generally receive excitatory synapses from only one or two types of cones, thus

conferring spectral sensitivity. The outputs from these two classes of retinal cells form

two anatomically distinct pathways to visual cortex. The M pathway begins with Pa

cells which project to the magnocellular layers of the lateral geniculate nucleus (LGN)

and thence to layer 4Ca of cortical area VI. In contrast, Pp cells project to the

parvocellular layers of the LGN and thence to layer 4CP ofVI.

The two systems can be said to transmit different regions of the "window of

visibility" (Watson & Ahumada, 1985) in that the P system appears to provide greater

spatial resolution, colour selectivity and responds to slowly changing stimuli. In

contrast, the M system is effectively colour-blind, but is much more sensitive to

rapidly changing stimuli (Merigan & Maunsell, 1993). It was once thought

(Livingstone & Hubel, 1988) that the ventral visual stream was dominated by input

from the P system, but more recent work (Ferrera, et al., 1994) has shown that, in V4,

neurons may be driven by either system and there is an almost equal contribution by

the two inputs across the whole population of V4 cells.

Consistent differences have been observed between the latency of the magnocellular

and parvocellular pathways. In the LGN, the earliest magnocellular responses precede

parvocellular responses by 10 ms (Marrocco, 1976; Maunsell et ah, 1999) and, in VI,
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the latencies in the parvo-recipient layer 4Cp are about 20 ms longer compared to

4Ca (Nowak et al., 1995).

If an achromatic low-frequency signal about a stimulus reaches V1 prior to the colour

high-frequency information, does the visual system compensate for this latency

difference in the later stages of processing, or might this be a plausible explanation

for the latency difference between global and fine information found by Sugase et al.

(1999)?

The answer to this question has profound implications for the rapid serial visual

presentation technique (RSVP), particularly at the high presentation rates we intend to

employ for stimulus optimisation experiments. If colour and high frequency

information is not reaching IT until 50 ms after the low frequencies, this would set a

upper bound for presentation rate in an RSVP paradigm. Were we to go faster than

that rate, we would either be measuring a component of the response relating only to

the achromatic gross features of the stimulus or, even worse, a response to

components of the current stimulus mixed up with the colours and fine detail from

some previous stimulus.

The latter part of this thesis is concerned with exploring these ideas. The literature

concerning colour and frequency is reviewed in the remainder of this chapter,

particular those studies which make reference to issues of latency. The two

experimental chapters that follow present neurophysiological experiments

investigating the latency of colour (Chapter 6) and frequency (Chapter 7) information

in a population of cells in IT.

It is worth explicitly pointing out that the experiments in the following chapters make
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use of a limited and restricted set of stimuli, marking a departure from the

methodologies discussed up to this point in the thesis. However, in the experiments

that follow it is not necessary for us to know what the optimal stimulus for a cell is -

as long as we can find an effective stimulus amongst the limited range of stimuli, then

it will be possible to investigate the timing and characteristics of colour- and

frequency-specific aspects of the response. This information should be valuable in

shaping the design of future optimisation methodologies.

5.2. The Role of Colour

5.2.1. Evidence from Physiology

The extent to which visual neurons in IT cortex are sensitive to colour is not clear

from the literature. In the macaque, Tanaka et al. (1991) found that colour was

relevant for only about 10% of their sample and that proportion fell to about 7% for

those cells whose receptive fields were considered to be elaborate (responding to a

face or particular combination of shape and texture). An earlier study (Gross et al.,

1972) had detected colour sensitivity in some cells in IT, but the extent of its

importance was not accurately quantified.

A study specifically looking at colour sensitivity in anterior IT was carried out by

Komatsu et al. (1992). The colour of simple geometric shapes was varied

systematically and colour was found to influence the response of the vast majority of

cells tested (-90%). Unfortunately, colour was only studied with those cells that could

be driven by simple shapes, and cells responding to more complex stimuli (such as

faces and natural scenes) were not tested.

A second study (Komatsu & Ideura, 1993) varied shape (simple geometric figures)
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and texture in addition to colour. Again, a high degree of colour sensitivity was found,

with 69% percent of neurons selective for colour (similar to the proportion found to

be shape selective). There was no evidence of any interaction between shape and

colour selectivity (i.e. the colour preference of a cell did not depend on the shape).

Perrett et al. (1982) recorded from face selective cells in rhesus superior temporal

sulcus (STS) and noted that colour did not seem to play an important role, with only

one out of 18 cells showing a reduction in response when the faces were viewed

through a colour filter. However, there has been little systematic study of the effect of

colour in neurons with complex stimulus selectivity (or indeed the latency of colour

information), and we must look beyond physiology for further evidence of its role.

5.2.2. Lesion and Imaging Studies

In addition to the role that IT cortex plays in object recognition, there have been a

number of studies examining the effect of lesions on colour processing. Heywood et

al. (1995) found almost complete impairment of hue discrimination after ablation of

the inferior temporal lobe in macaque monkeys, yet luminance discrimination was

relatively spared. Similarly, Dean (1979) found no retention of a colour

discrimination task after IT ablation, though after retraining, hue discrimination

thresholds were found to be unaltered with respect to their preoperative levels. It is

possible, however, that slight departures from isoluminance in this study may have

allowed the monkeys to discriminate on this basis when relearning the task. Horel

(1994) used cold-suppression of the dorsal aspect of IT to examine colour and form

discrimination in trained macaques, finding disruption of colour discrimination even

though form discrimination was spared.
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Imaging studies also indicate that IT has a role in the processing of colour. Takechi et

al. (1997) used PET to look at the cortical areas involved in colour, luminance and

positional discrimination (again in the macaque). Using simple square stimuli, they

found significant activation in the posterior part of IT cortex in the (colour -

brightness) and (colour - position) subtraction pairs.

fMRI imaging has been used in the human (Zeki & Marini, 1998) to look at the areas

involved in colour processing with more natural stimuli. Their stimuli included

common objects and landscapes that were presented in full colour, achromatic or false

colour conditions. The (colour - achromatic) subtraction resulted in an area of

activation extending anteriorly beyond V4 in the temporal lobe into areas the authors

suggest may be analogous to monkey IT. Interestingly, this activation is not found in

the (false - achromatic) subtraction, suggesting that the role of this inferior temporal

area anterior to V4 is specific to the role colour plays in object recognition, rather than

simply processing colour in a more abstract capacity.

Together, the above studies suggest that colour processing is an important property of

inferior temporal cortex in both the monkey and human, though the extent to which

this is specific to object processing is unclear (particularly in human).

5.2.3. Psychophvsics

Psychophysical studies provide the majority of evidence that colour information is

delayed with respect to form in the visual system, though there has been a great

amount of debate in the literature about the precise role it plays in object recognition.

Several studies have indicated that colour is unimportant for object recognition, with

subjects responding just as quickly and accurately to black and white line drawings or
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photographs when compared with colour photographs (Ostergaard & Davidoff, 1985;

Biederman & Ju, 1988; Davidoff & Ostergaard, 1988). However, there been a greater

number of studies which do not support this position, finding that colour and detail

consistently enhance the speed of reaction or accuracy (Price & Humphreys, 1989;

Wurm et al., 1993; Humprey et ah, 1994; Lee & Perrett, 1997).

There are major methodological differences between all the studies and a potential

explanation for the conflicting data is given by Price & Humphreys (1989), who

suggest that no advantage for colour is found when the subjects are required to make

very fast decisions or the stimuli are masked. This contrasts with the situation when

subjects can react in their own time where a consistent advantage for colour is found.

Perhaps subjects reacting quickly have access only to coarse representation, which

does not include colour?

Delorme et al. (2000) required both monkey and human subjects to make a rapid

categorisation (food or non-food / animal or non-animal) of briefly presented (32 ms)

stimuli, which were either colour or achromatic photographs. Colour was found to

make little difference in terms of either accuracy or reaction time in the majority of

subjects. Interestingly, they noted that there was a strong correlation between the

accuracy impairment for achromatic images and reaction time, with the slowest

reacting subjects showing the highest impairment with achromatic images and the

faster subjects categorising equally well in both conditions. Like Price & Humphreys

(1989), they suggest that colour is not an important cue when reactions must be made

quickly, but that it can be used as a relevant feature when a subject takes longer to

respond.
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Chapter 6 will therefore set out to answer two questions - firstly to what extent are

cells in IT sensitive to colour, particularly with complex or naturalistic objects and,

secondly, does colour information arrive quickly enough to contribute to a response in

a rapid presentation paradigm?

5.3. The Role of Spatial Frequency

5.3.1. Evidence from Physiology & Lesion Studies

Rolls et al. (1985) varied the spatial frequency composition of facial stimuli while

recording from neurons in STS of the macaque. They found a wide variety of

frequency tuning curves, but noted that the majority of neurons tested would respond

well both to low-pass filtered faces, containing only these frequencies below 8 cycles

per faces, and to high-pass images, containing only frequencies above 8 cycles per

face. This fits well with the results of Fiorentini et al. (1984) who found that spatial

frequencies above or below 8 cycles/face are adequate to recognise different

individuals' faces. Rolls et al. (1985) did not attempt to establish whether there was

any differential latency between the cells' responses to low- and high-pass filtered

images.

However, evoked potential studies in the human do provide evidence for spatial

frequency dependent changes in latency (Parker & Salzen, 1977a, 1977b; Parker &

Salzen, 1982). The time to peak of a visual evoked response triggered by the onset,

contrast reversal, or offset of a sinusoidal grating was measured, and found to increase

with increasing stimulus spatial frequency. The magnitude of this increase was

generally found to be around 20ms/octave, and persisted even when the stimuli are

matched for apparent contrast.
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If this increase in latency is mediated by differential speeds of the M and P pathways,

then is it possible to establish a relationship between stimulus spatial frequency and

processing latency by taking into account the spectral sensitivity tuning curves of the

two different channels? Unfortunately, this is not straightforward. At a given

eccentricity, neurons in the two pathways have almost identical spatial resolution

(Crook et al., 1988) and there is a great deal of overlap in the spatial frequency tuning

of the two pathways (Shapley & Lennie, 1985). However, lesion studies in the LGN

of the macaque (Merigan & Maunsell, 1993) have provided a somewhat clearer

picture. M pathway lesions (Mergian et al., 1991a) allow the characteristics of the P

system to be studied in isolation, showing that its spatial frequency sensitivity peaks

at around 1 cycle per degree. In contrast, P pathway lesions (Merigan et al., 1991b)

show the M system has a much lower peak spatial frequency sensitivity at around 0.1

cycles per degree. While there is considerable overlap between the spatial frequency

response of the two systems, spatial frequency response over 10 cycles per degree is

entirely dependent on the P system. A possible explanation for these findings, despite

the similar spatial resolution of individual cells mentioned earlier, probably reflects

the higher sampling density of the more numerous P pathway cells (Merigan et al.,

1991b).

5.3.2. Evidence from Psvchophysics

The processing delays for high spatial frequencies implied by evoked potential studies

appear to have clear psychophysical correlates. Reaction times (RTs) to sinusoidal

gratings (Breitmeyer 1975; Parker 1980; Parker & Salzen, 1982) have been found to

increase monotonically with the spatial frequency of the grating, with estimated

delays ranging from 20 - 32 ms per octave increase in spatial frequency. However, at
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least one study (Barr, 1983) found no significant difference between RTs between

high and low frequency gratings.

A matching task paradigm (Parker & Dutch, 1987) attempted to more accurately

quantify the delay by removing the variability present in earlier reaction time tasks.

Subjects were instead required to adjust a visual probe such that its onset was

perceived as being simultaneous with that of a grating. In this case, a much smaller

delay of around 7 ms per octave was found. Parker & Dutch (1987) suggest that a

latency lag of this order of magnitude could have been swamped by motor variability

in earlier studies, and this may account for the failure of Barr (1983) to find any

significant difference in latency.

However, it is clear from the studies above that any mapping of this pattern of spatial

frequency processing delays onto the parvocellular and magnocellular systems

requires delays to be found within as well as between the two systems (Parker, 1980).

For instance, the gratings used by Parker & Dutch (1987) lie entirely within the range

(as determined by lesion studies) of both the P & M pathways, which would allow

either pathway to mediate the responses. Despite this, there is a steady increase in

both reaction and perception time as spatial frequency increases.

This would seem to support a view of the visual system where there is a gradual

progression in the availability of spatial frequency information, from coarse to fine. If

this is the case, then we might ask how recognition systems integrate the different

waves of spatial frequency information. Two distinct possibilities have been

suggested, which are termed the temporally anisotropic and temporally isotropic

models (Parker et al., 1992). In the temporally anisotropic model, the integration

116



process is dependent on the availability of information progressing from coarse to

fine, with the earlier and coarser information used to prime and contextualise later

waves of increasingly fine detail. In contrast, the temporally isotropic model assumes

that there is no inherent bias in the integration process, information is simply

integrated as and when it becomes available.

A number of studies have attempted to establish which model is correct, by presenting

sequences of spatial frequency filtered images in rapid succession, and asking subjects

to rate the perceived quality of the image sequence as a whole (Parker et al., 1992;

Parker et al., 1997; McSorley & Findlay, 1999). In these studies, subjects rated more

highly image sequences where the order of presentation swept from low to high

frequencies compared to those sequences where the order of presentation ran from

high to low. This was interpreted as strong evidence that spatial frequency integration

is temporally anisotropic.

These studies would seem to strongly support the view that spatial frequencies are

processed and integrated in a coarse to fine manner, and that the differential time

courses of global and fine information found in neurons in IT may be a reflection of

this integration process, with the global information acting as a "header" to set the

context in target areas for the fine detail information that is about to follow (Sugase et

al., 1999). It is worth pointing out that global information, as defined in the study of

Sugase et al. (1999), may simply equate to the low spatial frequencies, since these

would be sufficient to make the "global" categorisation between human face, monkey

face or non-face images, but not the "fine" categorisation between different facial

expressions, which would require the higher spatial frequencies.
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If this is the case, then it is interesting to ask how the visual system reacts when

images are presented in very rapid succession. The evidence presented above would

seem to suggest that neurons in higher visual areas, such is IT and STS, would only

have time to respond to the information that was first to arrive, corresponding to the

coarse stimulus information carried by the low spatial frequencies. Inherent in this

view, however, is an assumption that the late arriving fine detail information about

one stimulus is suppressed by coarse information from the following stimulus (see

figure 5.1a).

(a) "Reset" Model
IT/STS

(b) "Mismatch" Model
IT/STS

figure 5.1 - At high presentation stimulus rates, the relatively slow processing rate of high spatial
frequencies might either result in (a) "Reset" - only the low frequencies reach higher visual areas, since
change of stimulus generates a signal which resets the visual processing system, (b) "Mismatch" - low and
high spatial frequencies of different stimuli are inappropriately combined in upstream integration areas.



If the visual system lacks a "reset" signal of this type, then different processing speeds

of each spatial frequency channel would allow the potential for a "mismatch" between

different aspects of stimuli, particularly at high processing speeds, when the

information is combined upstream in areas such as STS and IT (see figure 5.1b).

The aim of the experiment described in Chapter 7 is to first establish whether low and

high spatial frequency information arrives with differing latencies in higher visual

neurons, after which the above models will be considered further.
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6. The Role of Colour in the Response of Neurons in Temporal
Visual Cortex to Complex Stimuli

6.1. Experimental Hypothesis

The work summarised in Chapter 5 suggests that the colour information is used by the

visual neurons in temporal cortex, but the extent of its importance in the processing of

complex visual stimuli is unclear. The evidence also suggests that the colour signal

may be delayed with respect to the luminance signal. This leads us to the following

experimental hypothesis:

As stimulus presentation rate increases, any response due to colour information in the

stimulus will be progressively diminished because the colour signal will not arrive in

time to contribute to the response, resulting in an equal response to achromatic and

colour stimuli at the highest presentation rate.

6.2. Methods

6.2.1. Recording Techniques

The subject (male Macaca mulatta, age 6 years) was seated in a primate chair and

head restrained. Neural signals were recorded using standard methods (Oram &

Perrett, 1992). Neurons were localised to the upper and lower banks of the superior

temporal sulcus and inferotemporal cortex (see figure 6.2, Appendix 3 for details).

The subject's eye position was monitored (accuracy ±1°; IView, SMI, Germany). A

486 PC and Cambridge Electronics CED 1401 interface recorded eye position, spike

arrival times and measured stimulus onset times.

6.2.2. Stimulus Presentation

Stimuli (256 x 256 pixels) were presented centrally on a Sony GDM-20D11 monitor
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(72Hz refresh rate, image size 10°x 10°) which was attached to an Indigo2 Silicon

Graphics workstation. Stimuli were presented against a black background. Onset and

duration of the stimuli were measured using light sensitive diodes on the monitor

screen. If the measured stimulus duration differed from the intended duration, the data

for that stimulus sequence was discarded. Sequence presentation commenced when

the subject's gaze remained within a fixation window ± 5° of the monitor centre for

>500 ms and terminated if the subject's gaze moved outside the fixation window.

Fixation was rewarded with fruit juice delivery. Activity relating to the first and last

image of each sequence was discarded.

6.2.3. Visual Stimuli

The stimulus set consisted of 38 colour images (256 x 256 pixels) including

photographs of human and monkey heads, animals, everyday objects and abstract

figures. Monkey (two individuals) and human (one individual) head images formed

complete rotational sequences around the head with 45° spacing, such that 0° was the

front (or facial) view of the head and 180° was the rear. The full set of stimuli can be

seen in Appendix 1, with those stimuli considered to be abstract (and treated

separately in the results) marked as such.

False-colour and achromatic versions (figure 6.1a) of each image were prepared as

outlined below. First, images were transformed to YCbCr colour space, which has

separate luminance (corresponding to the CIE Y primary) and chromaticity

components (Bhaskaran & Konstantinides, 1997).
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forward transform back transform

"

Y~ 0.299 0.587 0.114" ~R~ ~R~ "1.0 0.0 1.4021" "7"
Cb — -0.169 -0.331 0.500 G G = 1.0 -0.3441 0.7142 Cb

Cr 0.500 -0.419 -0.081 B B 1.0 1.7718 0.0 Cr

Achromatic images were generated simply by setting the chromatic components (Cb

& Cr) to zero for each pixel, followed by a transform back to RGB. This process

always produces a valid RGB triplet.

False-colour images were prepared by reflecting the colour of each pixel in turn about

the origin of the chromatic (CbCr) plane, keeping Y constant. The process often

generates invalid RGB triplets which correspond to colours that cannot be produced

on a standard monitor (e.g. very bright pure blue). When this occurred, points were

moved back towards the origin of the chromatic plane until displayable colours were

obtained (effectively reducing the saturation of the colour). The false-colour algorithm

(and its implementation in the C programming language) is contained in an appendix.

A digital photometer (Tektronix, Model J6523-2) was used to test the success of these

transformations in maintaining both overall image luminance and contrast edges

within images. Overall image luminance was measured by placing a perspex diffusion

plate between the computer screen and photometer. Contrast borders were tested by

individually measuring a series of colour patches (diameter 1°) before and after image

transformation. The process was judged to be satisfactory for the purposes of the

experiment, with most measured luminances falling within ± 10% of the pre-

transformation levels (figure 6.1, b & c).
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figure 6.1 - (a) Colour, achromatic and false-colour versions for a selection of the images used, (b)
Average image luminance for each of these stimuli and their colour transformed counterparts. Image
Luminance was measured using a Perspex diffusion plate placed in front of the monitor, (c) Luminance
measurements for small patches (circle, diameter 1°) within the images, with a description of the
approximate shade.
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6.2.4. Procedure

(a) Screening Phase

On detection of a neuron, we first conducted a screening test to establish whether any

of the stimuli were sufficient to evoke a visual response.

In Experiment 1, each cell was tested using only the 38 colour images. Stimuli were

presented in a random sequence with a stimulus presentation time of 111 ms (8

frames) and no gap between stimuli. Each stimulus was repeated several times during

the screening phase (median 30, range 11 - 58). 32 cells were found to have a

preference for particular stimuli and were further tested. Preference was judged by eye

from the set of peri-stimulus time histograms (PSTHs) computed online.

Experiment 2 differed only in the number of stimuli used for the screening phase,

each cell being tested with the 38 achromatic images in addition to the original 38

colour images. This was intended to remove any potential bias towards colour

sensitive cells in the sample. Due to the increased number of stimuli present, there

was a lower number of stimulus repetitions during this screening phase (median 20,

range 9 - 34). 18 cells showed stimulus preference and were tested further.

(b) Colour Response Test

A total of 50 cells were found to have a preference for at least one of the stimuli

during the screening phase. For each cell, we selected its "best" and "worst" images

(those producing highest and lowest responses respectively) from the screening set,

along with 3 other images that had produced intermediate responses. This was

intended to reduce the contamination produced by adjacent stimuli since it has been

shown that the neural response to a stimulus typically outlasts stimulus presentation
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time by about 60 ms (Keysers et al., 2001).

A cell was then tested using a set of stimuli for each of the images chosen above.

Each set included the colour image, achromatic and false-colour transformed versions,

as well as an additional set of 4 frequency-filtered colour and achromatic versions of

the image that will be discussed in full in the next chapter. In total, the complete test

set was comprised of 35 stimuli per cell.

For the first 11 cells in Experiment 1, no false-colour images were present in the test

set. These cells were tested using only 6 versions of each image, with a total test set of

30 stimuli per cell.

The stimuli were presented in 4 different stimulus duration conditions (table 6.1),

interleaved in blocks of a single presentation rate. Within a block, stimuli were

presented in pseudo-random order, with the constraints that no 2 identical stimuli

were ever presented in immediate succession and each stimulus was presented an

equal number of times. Each block contained a number of repetitions of each

stimulus, such that the length of each block was the same, and thus the total

presentation time was identical for each of the four conditions (i.e. there were more

repetitions of the shorter duration conditions). The presentation rate blocks were also

Table 6.1 - Experimental Conditions

Condition Stimulus presentation time Time taken for 1
complete cycle (s)

Stimulus repeats per
block

Stim. (ms) Gap (ms) Total (ms)

S56G167 55.6 166.7 222.2 7.8 3

S56G0 55.6 - 55.6 1.9 12

S28G0 27.8 - 27.8 1.0 24

S14G0 13.9 - 13.9 0.5 48
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randomly ordered. The median number of stimulus repeats in the slowest condition

(S56G167) was 17 (range 6 - 42) and the median number of stimulus repeats in the

fastest condition (S14G0) was 209 (range 119 - 333).

Condition S14G0 only took place when a sufficiently strong response was obtained

and was often carried out post-hoc in isolation, after the data from the other conditions

had been examined. Only 7 cells were tested at this rate.

6.2.5. Response Analysis

A cell's response to a particular stimulus in the sequence was calculated by aligning

segments in the continuous recording which contained an occurrence of the stimulus.

Each segment lasted from 250 ms before stimulus onset to 550 ms after stimulus

offset. The peri-stimulus time histogram (PSTH) was generated by summing across

all the aligned segments, and represented the response triggered by that particular

stimulus against a background of activity evoked by all the surrounding stimuli.

"Best" and "worst" stimuli for a cell at the end of the screening phase were simply

judged by eye from the set of PSTHs calculated on-line and were selected (along with

3 intermediate images) for the colour response test.

After the colour response test, the sets of stimuli were ranked from "best" to "worst"

separately for each condition, based on the cell's response to the colour stimuli. This

ranking and the cell latency was calculated as follows -

First, the responses were summed across trials (bin-size = 1 ms) and smoothed

(gaussian, a = 20 ms). A control period was defined as the 200 ms preceding stimulus

onset. The latency of response onset was measured as the first 1ms time bin at which
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the firing rate exceeded the mean + 2.58 a (i.e. p< .005) of activity during the control

period, for at least 15 consecutive bins (i.e. 15 ms). Where this criterion was not met,

a fixed latency of 100 ms was assumed for that stimulus. If a latency could not be

detected for any of the stimuli, the cell was excluded from the analysis of that

condition.

Next, the response to each stimulus was measured in a time window starting with the

latency measured above and lasting for the length of the stimulus + half the gaussian

width of the smoothing filter (10 ms). Stimulus sets were ranked according to this

windowed response, and cell latency was defined as being the onset time of the

maximum response.

6.2.6. Population Analysis

A spike density function (SDF) was calculated from the raw spike counts for every

cell and stimulus by smoothing with a gaussian (a = 5 ms). A single normalising

factor for each cell was calculated as the maximum value of the SDF for the colour

version of the best stimulus. Colour, achromatic and false-colour responses to the best

stimulus were weighted by this factor, so that every cell would have an equal

contribution in the population response, with the colour response acting as baseline.

Finally, population curves were calculated for each condition as the average SDF for

colour, achromatic, and false-colour versions of the best stimulus.

For the latency aligned population curves, an additional step took place prior to

averaging, with each SDF shifted in time such that time 0 reflected the detected cell

latency, as measured above.
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6.3. Results

6.3.1. Stimulus Preference

Stimuli were categorised as being abstract if no natural colouring existed for that

image (see Appendix 1). Those stimuli which had natural colouring were broken

down into faces (which included all head views) and non-faces. The category of the

preferred (or "best") stimulus for each cell is shown in table 6.2. Where a cell's

preferred stimulus was not consistent across presentation rate conditions, or if no

response was obtained for any condition (excluding S14G0 since only 7 cells were

tested at this rate), the cell was categorised as having unknown preference.

A list of stimulus preferences for each individual cell is presented in Appendix 2, and

approximate electrode tracks and cell locations are reconstructed in Appendix 3.

These are also summarised in figure 6.2.

We first consider the effect of colour on the whole population of cells tested

(experiments 1 & 2 combined). Although it seems unlikely that screening with colour

stimuli alone (experiment 1) introduced a sampling bias in favour of chromatically

tuned cells (since luminance information is still present in these colour images), this

point is considered later in this section.

Table 6.2 - Preferred Stimulus Category

Preferred Stimulus Number ofcells Percentage
Category

abstract 6 12
non-abstract 26 52

(face) (22) (44)
(non-face) (4) (8)

unknown 18 36

total 50 100
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figure 6.2 - Coronal sections showing the location and stimulus preference of cells tested in this, and the
following, chapter, sts - superior temporal sulcus, amts - anterior middle temporal sulcus, sf - sylvian fissure.
Bracketed figures indicate approximate stereotaxic position on the anterior - posterior axis.
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6.4. Whole population analysis

6.4.1. As a population, cells in STS/IT are strongly colour-tuned

Neurons in STS/IT exhibit a high degree of chromatic tuning in addition to their shape

tuning, as illustrated by the response of a single cell (figure 6.3) and the population

response to the best stimulus (figure 6.4). Achromatic versions of the best stimulus

produce, at a population level, much weaker responses than the original colour

images. The reduction in response is even greater when stimuli are falsely coloured,

suggesting that these cells not only have a preference for certain colour profiles, but

this tuning extends to inhibition of the shape response, when an incorrect colour

profile is present. This initial qualitative description is backed by a formal statistical

treatment of the colour and shape responses in the following sections.

The population includes cells with a wide range of response latencies (median 91,

range 58-141 ms) and we can see the extent of chromatic tuning even more clearly if

this variation in response latency is removed by aligning the data from each cell on

the cell latency (figure 6.4b).

The stimulus aligned population histogram shows what looks like a clear latency

difference in the population response, with colour images producing earlier responses

than achromatic or false colour images. However, when the responses are aligned on

cell latency, this effect disappears, implying that the earliest responding cells are

particularly colour sensitive, with little response to the achromatic and false colour

versions of their preferred stimulus. This relationship between cell latency and colour

sensitivity is examined in a later section of the results, where it will be considered

whether it is reasonable to treat the cells in this study as a single population.
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If we are correct in our hypothesis that the colour signal will be delayed with respect

to the luminance signal, then given the effects noted above, we should see two

separate effects in the population response -

colour achromatic false
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figure 6.3 - Response of a single cell to colour, achromatic and false colour versions of its best stimulus in
different presentation rate conditions (56 ms + 167 ms gap top, 56 ms middle, 28 ms bottom). This
particular cell was not tested at the fastest rate of 14 ms. SDFs were created by summing the data across
trials and smoothing with a gaussian (a = 10 ms). Stimulus presentation is shown by a filled rectangle below
the SDF and hollow rectangles show previous or subsequent stimulus presentations. The latency of this cell
(66ms) was at the lower end of the cell population tested. Scale is indicated in the bottom right corner.
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Population Response to Best Stimulus

(a) Stimulus aligned (b) Latency aligned

figure 6.4 - (a) Stimulus-aligned and (b) Latency-aligned normalised average population responses to colour,
achromatic and false-colour versions of the best stimulus for each cell. Slowest presentation rate at the top,
fastest at the bottom. Filled rectangle indicates stimulus presentation, outlined rectangles show earlier or
subsequent stimulus presentations. Each set of responses for a cell was aligned to the detected latency of the
colour response, as described in methods, n's indicate the number of cells contributing to each SDF.
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(i) Colour, achromatic and false-colour curves should be initially similar, then

diverge, reflecting the delayed contribution of colour-specific information

to the response

(ii) Any difference between the curves should be progressively reduced as

presentation rate increases, since the appropriate colour information will

not arrive in time to contribute to the response

In fact, neither of these effects is seen. Preference for the colour version of the

stimulus appears almost immediately at the start of the population response (figure

6.4b) and this preference is consistent across the different presentation rate conditions,

and is clearly apparent even at the fastest presentation rate of 14 ms.

6.4.2. Inhibitory responses to stimuli

The worst stimulus for a cell (i.e. that stimulus producing the lowest activity during

response assessment) often resulted in inhibition, with the response falling below

baseline (figure 6.5). This inhibition was also dependent on stimulus colour, with

achromatic and false colour versions of a stimulus resulting in less inhibition than the

original colour image. This effect is consistently seen across the different presentation

rate conditions.

Due to the technique we are using, the baseline is the average response to all stimuli

presented, rather than a measure of the true spontaneous firing rate of the cell. The

periods before and after the presentation of a particular stimulus will therefore contain

a fraction of the spikes relating to all other stimuli. We would therefore expect the

worst stimulus to produce a drop in firing compared to the baseline simply because,

during the presentation of that stimulus, we are not measuring that fraction of the
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spikes relating to effective stimuli.

This is, however, not sufficient to account for the pattern seen - firstly, because there

is a consistent pattern in the responses to worst stimulus and secondly, because the

ordering (of colour, achromatic and false colour responses) seen with the best

stimulus is perfectly reversed with the worst stimulus, as would be expected in the

case of a colour-tuned inhibitory response.

6.4.3. Time course of colour and shape tuning - population statistical analysis

The time course of shape and colour tuning was accurately established using a sliding

window statistical test to measure the probability of discrimination between stimuli as

a function of time.

colour versions of the worst stimulus for each cell. Each set of responses for a cell was aligned to the
detected latency of the colour response to the best stimulus, as described in methods. Filled rectangles
indicate stimulus presentation, outlined rectangles show previous or subsequent stimulus presentations.
Note that the responses have been aligned to cell latency, such that response onset coincides in time with
the onset of the stimulus evoking the response.
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For each cell, and each presentation rate, normalised and latency-aligned SDFs were

calculated as previously described. Shape tuning was then determined by comparing

the SDFs for the achromatic stimuli with related one-way ANOVA (5 levels,

corresponding to the five different stimuli), performed separately for each 1 ms time

bin. Colour tuning was measured in a similar manner, with a one-way ANOVA (3

levels) comparing the responses to colour, achromatic and false-colour versions of the

best stimulus for each cell. The analysis was restricted to the subset of cells for which

we had collected false-colour responses. There was an insufficient number of cells

tested at the 14 ms presentation rate to perform the analysis for this condition.

The results of this analysis can been see in figure 6.6. Shape and colour discrimination

have an almost equal onset time, with shape leading colour by not more than 5 ms at

the uncorrected p = .01 level (lower dashed line) and no difference when considered

the same criterion level with Bonferrori correction (upper dashed line). The

Bonferroni level was calculated by dividing the criterion level (p = .01) by the number

of time bins over which the analysis was performed (500) and is, in fact, over-

corrected since there is a high degree of correlation between consecutive time bins

due to firstly the response properties of the cells themselves and secondly due to the

smoothing procedure used to create the SDFs.

If we consider the overall pattern of colour and shape discrimination, the data appears

to suggest that, in fact, the colour signal dominates the earlier part of the response,

with optimal colour discrimination peaking before that of shape by 10-20 ms. The

latter part of the response is dominated by shape discrimination, which outlasts colour

discrimination by around 20 ms in the zero gap conditions.
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Timing of Colour & Shape Discrimination

S56G167
fl colour

shape

S28G0

ANOVA p (n=36)
colour

shape

figure 6.6 - Time course of colour and shape discrimination, measured using sliding window ANOVAs. SDFs
were calculated for each stimulus, normalised and latency aligned (see method). Shape tuning was determined by a
related one-way ANOVA (5 levels) and compared responses to the achromatic stimuli (insets, bottom - darkest
line = best stimulus, lightest line = worst). Colour tuning was measured in a similar manner, with a one-way
ANOVA (3 levels) comparing responses to colour, achromatic and false-colour versions of the best stimulus for
each cell (insets, top - colour = red, achromatic = black, false = blue). This analysis was performed separately for
each 1msec time bin. Probability is plotted on a negative log scale, and curtailed at -Logi0(p)=17. Lower dotted
line shows significance at the p = .01 level (uncorrected). Upper dotted line shows the same level Bonferroni
corrected. Yellow shaded area indicates duration of colour discrimination at the uncorrected level and is used to

define the window in the cell by cell analysis. [Software used to perform the analysis: Mathematica 4, Wolfram
Researchl.
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This pattern is particularly evident in slowest presentation condition, where a 168 ms

gap is present between each stimulus. During the entire gap period, the response

continues to carry information on the shape of the previous stimulus and this is

extinguished only when the next stimulus is presented. However, this "visual

memory" for stimulus shape appears to be colour blind, since colour discrimination is

as short lived as in the conditions where no gap exists.

6.4.4. Colour tuning of individual cells

The colour responses of individual cells were assessed by comparing windowed spike

counts for each individual trial for the best colour, achromatic and false-colour (when

presented) stimuli. The window was determined from the population analysis above,

and was calculated separately for each condition as follows. The window began with

the first 1 ms time bin when colour discrimination exceeded the p = 0.01

(uncorrected) level. It ended when population colour discrimination fell back below

this criterion level, with the constraint that the window was at least as long as the

stimulus presentation time.

Colour sensitivity was measured with a one-way ANOVA with 2 or 3 levels

corresponding to colour, achromatic and false colour responses (false colour

responses were only measured in a subset of the cells).

The variance of spike counts has previously been found to be approximately

proportional to the mean response (Tolhurst et al, 1981; Dean, 1981), therefore it was

first necessary to perform a square-root transform on the raw spike counts prior to the

statistical tests.
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Table 6.3 shows the proportion of cells where a significant effect of colour was found

for each condition. 70% of the cells in our population showed a significant effect of

Table 6.3 - Colour Tuning as a Function of Presentation Rate

Condition Stimulus

presentation
time (ms)

Gap time
(ms)

n Mean Response
onset (ms)

Window duration

(ms)
Percentage of

neurons

discriminating
coloura

S56G167 55.6 166.7 46 94 51 41

S56G0 55.6 - 47 94 59 68
S28 27.8 - 46 83 58 65

any - - 50 -
- 70 b

a Percent of neurons with a significant ANOVA testing the effect of stimulus colour on neuron response (p < .05)
b Percent of neurons with a significant effect of colour in at least one condition (p < .05, Bonferrori corrected)

colour in at least one of the conditions (p < .05, corrected). This breaks down into

72% of the cells screened using just colour stimuli (experiment 1) and 67% of the

cells screened using colour and achromatic stimuli (experiment 2). This difference

was not significant (%2 = 0.70, d.f. = 2, n.s.) and it therefore seems unlikely that there

was any substantial sampling bias towards colour sensitive cells when screening took

place with colour stimuli alone (experiment 1).

6.4.5. Colour sensitivity index

In order to assess whether there was any relationship between colour sensitivity and

cell latency, a colour sensitivity index was calculated for each cell -

colour sensitivity index =———
c + a

where c was the mean spike count for the best colour stimulus and a was the mean

spike count for the achromatic version of the best stimulus. The window was
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calculated separately for each condition as described in the previous section.

The colour sensitivity index ranges from +1 (preference for colour stimuli) to -1

(preference for achromatic stimuli) with a value of 0 indicating that a cell responded

identically to the colour and achromatic stimuli. Extreme values were unlikely to be

obtained, however, because spike counts were not corrected by subtraction of the

background firing rate from stimulus response (this resulted in a measure that was too

sensitive to noise).

Figure 6.7(a) shows colour sensitivity plotted against latency for each cell. Latency

and colour sensitivity has been averaged across the 3 conditions (where possible) to

produce a single figure for each cell. There is a negative correlation between latency

and colour sensitivity (r = -0.394, n = 50, p < .01 two-tailed), with the most colour

sensitive cells tending to respond earliest at around 70 - 90 ms.

The figure also indicates cells where there was no significant effect of colour on

response - as would be expected these cells have colour sensitivity indices close to 0

but there is no tendency for these cells to have similar latencies.

6.4.6. The relationship between latency, colour sensitivity and stimulus type

The same data is presented in figure 6.7(b) with cells labelled with the category of

their preferred stimulus. Cells classed as unknown (where preference changed across

conditions, or if no response was obtained for any condition) are not shown. While

face responsive cells are present across the full range of latencies, they tended to have

shorter latencies than non-face cells (face cells, mean latency = 85 ms; non-face cells,

mean latency = 102 ms) . This difference was found to be significant (t = 2.91, df =

30, p < .01 two-tailed).
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figure 6.7 - Colour sensitivity and cell latency. Colour sensitivity was defined as the difference between colour
and achromatic responses over the sum of colour and achromatic responses. Increasingly positive values represent
increasing preference for colour, increasingly negative values represent a preference for the achromatic stimuli. A
value of around zero indicates similar responses to colour and achromatic stimuli. Colour sensitivity and latency
figures were averaged across all conditions, (a) All cells. Filled circles show those cells which had a significant
effect of colour (p<0.05 corrected) in at least one condition. Hollow circles indicate cells where no significant
effect was found. The dashed line shows the least-squares regression for all cells, (b) The category of a cell's
preferred stimulus is indicated by the labelled symbols. Those cells which were categorised as unknown (having
inconsistent stimulus preference) are not shown. The dashed line shows the least-squares regression for the face-
selective sub-population.
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Because face cells tend to have shorter latencies, and there is a negative correlation

between latency and colour sensitivity, this is reflected in the mean colour

sensitivities for the two groups (face cells, mean colour sensitivity = 0.23; non-face

cells, mean colour sensitivity = 0.13). However this difference was not significant, (t

= -1.34, df= 30, p = 0.191, n.s.)

While the data suggests that there is some tendency for cells responding to abstract

stimuli to have a lower degree of colour sensitivity, the sample is too small to draw

any firm conclusions.

6.4.7. A Single Population?

As implied by the population average histograms (figure 6.4), the results of the

preceding section show that there is a relationship between colour sensitivity and cell

latency (figure 6.7), with the earliest cells tending to be more colour-sensitive than

later cells. In order to verify that the results of the statistical analysis were robust

across the population as a whole (and not biased by a small subset of early latency and

particularly colour-sensitive cells), the population was divided into 3 groups -

(i) The earliest cells (Cell latency < 70ms)

(ii) Middle latency cells (latency between 70 and 90ms)

(iii) Late cells (latency > 90ms).

This division ensured approximately equal numbers of cells in (ii) & (iii), with (i)

included to verify that early colour effect seen in figure 6.4 was indeed due to a small

number of low-latency cells that produced little to no achromatic and false colour

responses.
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The analysis was carried out for the S56G0 condition only, and the results are

presented in figure 6.8. Firstly, it can be seen that the population results obtained

earlier are representative across latency. Colour images always produce the greatest

response, irrespective of latency sub-group.

figure 6.8 - The population sub-divided into 3 groups, based on cell latency. Only responses in the S56G0
condition are shown, (a) Stimulus-aligned and (b) Latency-aligned group average responses to the colour,
achromatic and false colour versions of the best stimulus for each cell. The vertical dashed line shows
100ms, making the latency shift apparent between groups, (c) The preferred stimulus of each cell
belonging to the latency groups, established as described at the beginning of the results section (i.e. across
all presentation rate conditions), (d) The time course of colour and shape discrimination for each latency
group. As before, this analysis was restricted to the subset of cells for which false colour data had been
obtained. For a complete description, please refer to the legend of figure 6.6.
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Furthermore, discrimination between stimuli on the basis of colour does not lag

behind discrimination on the basis of shapes in either the mid- or high- latency groups

(with the n's being too small in the early group to achieve significance).

It is noteworthy that the lowest latency group consists entirely of faces, produced little

achromatic response, and also show a marked inhibition with false colour versions of

the preferred face, an effect that is not seen in the other two latency groups.

6.4.8. The effect of colour on stimulus selectivity

Despite an overall reduction in response, many cells continued to show the same

selectivity for achromatic and false colour stimuli. This can be seen in figure 6.9,

which shows the population responses to colour, achromatic and false colour versions

of each stimulus, with the stimuli ranked from left to right based on the response to
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figure 6.9 - Population responses (n=36) for colour, achromatic and false colour versions of the 5
different stimuli tested with each cell. Stimuli were ranked from best (1) to worst (5) based on the
responses to the colour version of each stimulus (see methods). Prior to the population averaging,
responses were normalised to the best colour response for each cell, such that every cell has an equal
contribution to the population response. The data shown is for the S56G0 presentation condition, and is
restricted to the subset of cells for which false colour responses were obtained. Error bars indicate the
standard error of the mean.
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the colour version of each stimulus. Thus, any change in stimulus selectivity in the

achromatic or false colour conditions should be reflected in a deviation from the

overall downwards slope from left to right, an effect which is not seen.

There is considerable overlap between the error bars for rankings 4 and 5. This would

be expected since, for each cell, stimuli were selected from the screening set on the

basis that the best, worst and three intermediate stimuli were included. For many cells

tested, however, there were only one or two stimuli that evoked a response, and as

such, stimuli ranked 3 and 4 were typically ineffective at driving cells. As described

earlier, the worst stimulus for a cell (rank 5) often caused inhibition, and it is therefore

notable the ordering is reversed at this point (implying as mentioned earlier, that the

correct colouring was often necessary for the inhibition to occur).

However, the population average masks considerable variation between cells. For the

36 cells examined individually in figure 6.10, less than 50% show unchanged

selectivity for achromatic and false colour images, with the majority either showing a

change in selectivity, or no selectivity to the achromatic or false colour stimuli.
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figure 6.10 - Individual stimulus selectivity tuning curves for each of the 36 cells included in the
population average shown in figure 6.8. The solid black lines, grey lines and dashed lines indicate colour,
achromatic and false colour responses respectively. The axes are not labelled for reasons of clarity, but are
identical to those in the population figure. Cell number is indicated in the upper right comer.
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6.5. Face-selective sub-population analysis

6.5.1. Face-selective sub-population also shows colour tuning

Almost half our cells (n=22) consistently responded best to an image of a face or head

view. The effect of colour on this sub-population of face-selective cells (figure 6.11)

is consistent with the effect of colour on the population overall, with the original (or

naturally coloured images) producing far greater responses that achromatic or falsely

coloured images.

6.5.2. Colour tuning of individual face-selective cells

The colour tuning of individual face-selective cells was measured using the same

technique as previously described in the overall population analysis (table 6.4). 68%

of these cells showed a significant effect of colour in at least one of the conditions (p

< .05, corrected).

6.5.3. Colour sensitivity and latency

The negative correlation between latency and colour sensitivity found for the

population as a whole is largely due to the contribution of a number of face-selective

cells (figure 6.7b). If the analysis is restricted to the face-selective sub-population, a

significant correlation is obtained (r = -0.438, n = 22, p < .05 two-tailed), with those

face-cells responding earliest tending to be the most strongly colour tuned.

Table 6.4 - Face-Selective Cells' Colour Tuning as a Function of Presentation Rate

Condition Stimulus

presentation
time (ms)

Gap time
(ms)

n Mean Response
onset (ms)

Window duration

(ms)
%age ofneurons
discriminating

coloura
S56G167 55.6 166.7 22 91 51 36

S56G0 55.6 - 22 87 59 72
S28 27.8 - 22 78 58 72

any - - 22 - - 68 b

a Percent of neurons with a significant ANOVA testing the effect of stimulus colour on neuron response (p < .05)
b Percent of neurons with a significant effect of colour in at least one condition (p < .05, Bonferrori corrected)
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Face-Selective Sub-Population

(a) Stimulus aligned (b) Latency aligned
S56G167

colour (n=22)
achromatic (n=22)

colour (n=22)
achromatic (n=22)
false (n=13)

colour (n=22)
achromatic (n=22)
false (n=13)

colour (n=4)
achromatic (n=4)
false (n=2)

1r S56G0

r S28G0

figure 6.11 - (a) Stimulus-aligned and (b) Latency-aligned normalised average responses to the colour,
achromatic and false-colour versions of the best stimulus. This analysis is restricted to the sub-population of
cells whose preferred stimulus was a face. Slowest presentation rate at the top, fastest at the bottom. Filled
rectangle indicates stimulus presentation, outlined rectangles show earlier or subsequent stimulus
presentations. Each set of responses for a cell was aligned to the detected latency of the colour response, as
described in methods.
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6.5.4. Colour aids in the discrimination of face orientation

A particularly dramatic example of a colour sensitive face-tuned cell (colour

sensitivity index = 0.56) can be seen in figure 6.12, with data was obtained during a

screening phase in experiment 2. The cell responds best to the front view of a face,

with the response decreasing sharply as the face turns away. In contrast, there is

almost no response to the achromatic head views. Also shown is the response to a

frequency filtered (low-pass) version of the face, which produces little response from

figure 6.12 - An example colour-tuned face cell. The polar plot in the centre of the figure shows the
average spike count in a fixed window (beginning at the detected cell latency and with width equal to the
stimulus length + lA the gaussian width for latency detection). The red line and black lines show colour
and achromatic responses respectively. The stimuli themselves and corresponding PSTHs are shown
around the edges of the plot. Inset, bottom right - the response to a frequency filtered low-pass version of
the 0° colour face view, showing that the cell is not simply a "pink-blob" detector.
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the cell. This is strong evidence that the cell is truly a colour sensitive face-tuned cell,

and not simply a "pink-blob" detector.

6.6. Discussion

6.6.1. Timing of colour information

This experiment provides no evidence to support the idea that colour information is

delayed with respect to luminance in inferior temporal cortex. As a population, cells

show strong colour tuning and discriminate on the basis of stimulus colour just as

early as they discriminate on the basis of shape. Colour tuning is evident across all the

presentation rates tested and even at the fast presentation rate, where stimuli are

presented in rapid succession for only 14 ms with no gap, there is a clear preference

for colour over achromatic stimuli. Thus, colour discrimination did not fail even at the

highest presentation rates.

How then do we interpret the result of Delorme et al. (2000), suggesting that rapid

reactions are made on the basis of a first wave of achromatic coarse visual

information? There is certainly no evidence in the present study to support the idea

that the first wave of information is achromatic. There is, however, evidence of a

differential effect of colour and shape in "visual memory", apparent in the cells'

response during the gap between stimuli (figure 6.6). Delorme et al. (2000) presented

stimuli briefly against a black background, then the stimulus disappeared while the

subject responded. The results of the present study suggest that, during this gap

period, neurons in temporal cortex continue to represent the shape of the last stimulus,

but not its colour. It might be suggested, therefore, that the subjects in the study of

Delorme et al. (2000) are not actually responding on the basis of a first wave of visual
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information, but instead to a colour-blind memory of the stimulus that is signalled by

these cells.

However, where a stimulus is immediately followed by a mask, we would expect a

quite different pattern of results. Any visual input following the stimulus presentation

would abolish the visual memory (compare figure 6.6 top with middle and bottom)

and the subject would instead be forced to react on the basis of the response during

the stimulus presentation. In this case, our results would lead us to expect a clear

advantage for colour over achromatic images. This pattern of results is evident in e.g.

Lee & Perrett (1997) who briefly presented images of famous faces sandwiched

between masking images, and found that colour images were recognised more

accurately than achromatic images, even though the stimulus presentation time was

comparable to the study ofDelorme et al. (2000).

The presence of colour discrimination in the earliest part of our populations' response

strongly suggests that either the higher areas of the ventral pathway are exclusively

fed by the P pathway, or (more likely) that any latency difference between M & P

pathways, as found in VI (Nowak et al., 1995) has been corrected for by the time

visual information reaches higher levels of processing. Indeed, Maunsell et al. (1999)

suggested that any latency difference found in VI between the pathways may be

illusory, simply because there are ten times more parvocellular neurons than

magnocellular neurons, allowing for a far greater degree of convergence on

postsynaptic cells, and perhaps providing P-recipient neurons with a sufficient level of

excitatory input to cross threshold more quickly than their M-recipient counterparts,

despite latency differences present in the individual inputs themselves.
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6.6.2. Proportion of colour tuned cells

The proportion of cells showing a significant level of colour tuning is around 70%.

This is remarkably similar to the figure obtained by Komatsu et al. (1992) using

simple colour patches, and would suggest that there is a high degree of colour tuning

in IT, regardless of whether the shape selectivity of a cell is simple (i.e. capable of

being driven by simple geometric shapes), as in their study, or complex (e.g. selective

for face and head view), as in the present study. It is not clear why Tanaka et al.

(1991) found a much lower proportion of colour-tuned cells.

The range of latencies of those cells categorised as face-selective was 66 - 123 ms,

with the sample skewed towards the earlier part of this range (mean 85 ms). The

colour insensitivity of face cells noted by Perrett et al. (1982) was from a population

of cells with somewhat longer latencies than this (range 80 - 180 ms, mean not

provided but approximately 125 ms). This might suggest that the presence of separate

colour-sensitive and colour-insensitive populations of face cells in temporal cortex,

with those producing colour invariant responses having longer latency. There is also

evidence to support this view in our results (see also figure 6.7b), with a significant

negative correlation between latency and colour sensitivity both for the face-selective

subset and the population as a whole.

In a later study of face-selective cells in temporal cortex, Perrett et al. (1992) note that

cells which are view-independent (i.e. respond equally to different views of the head)

tend to have longer latencies (by about 10 ms) than those that are view-selective. They

suggest this may be evidence of a hierarchical processing scheme, where the outputs

from cells responsive to particular views of an object synapse on a single neuron

upstream to produce the view-invariant response. We might speculate that the
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negative correlation we find between colour sensitivity and latency is evidence of an

analogous system of processing for object colour, where several cells, each tuned for a

different possible colour of an object, make synapses on a single upstream neuron to

produce a colour-invariant response.

6.6.3. The nature of colour tuning

Many of the stimuli used in this experiment had natural colours, i.e. colours that are

generally associated with that particular pattern (e.g. a face), and the response to these

stimuli was often greatly suppressed when the images were falsely coloured. It seems

possible that inferotemporal cortex contains cells that become tuned by visual

experience to the specific conjunctions of colour and shape that represent commonly

occurring objects in the visual world. For instance, although many cells in temporal

cortex respond to images of faces and bodies of different orientations and sizes, the

majority are found to be tuned to real life sized and upright orientations (Perrett et al.,

1998; Ashbridge et al., 2000). This might explain why naturally coloured scenes

activated a region of the human brain corresponding to inferior temporal cortex in the

macaque (Zeki & Marini, 1998) but falsely coloured scenes did not. However, since

the population of cells we tested was selected on the basis that they responded to at

least one image from our screening set (and this set largely consisted of natural

images) it is impossible to tell to what extent the cells in IT code for the shapes and

colours of naturally occurring objects.

Finally, this experiment has also shown that colour plays a central role in the

selectivity of IT neurons. While some cells showed the same stimulus selectivity

when achromatic or false colour images were presented, the majority did not. Thus,

the idea that colour plays a secondary role to object form in IT (i.e. useful to provide
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extra detail, but not necessary) gains little support from the results of this study.

6.6.4. Implications for stimulus optimisation experiments

One of the motivations behind this experiment was to find out whether, at the high

rates of presentation required by stimulus optimisation, colour information would

arrive too late to contribute to the measured response. This possibly was suggested by

a range of studies, which I discussed in Chapter 5. If this were the case, it would be

possible to present achromatic-only images, and reduce the dimensionality of the

search space by two-thirds. However, the results of this experiment suggest otherwise.

Colour is a necessary attribute for effective stimuli in a large proportion of IT cells.

Achromatic images produce greatly reduced responses, and this reduction is evident

from the response onset. In IT at least, it seems that effective optimisation will require

the use of colour stimuli.

6.6.5. Concluding comments

It is clear from the present study that any latency differences present in VI (and

earlier in the visual system) between colour information, in the P pathway, and

achromatic information, in the M pathway, are either illusory or have been corrected

for before the information about a stimulus reaches the higher visual areas such as IT.

This study suggests a strong role for colour in object recognition, and provides no

evidence to support the idea of a first wave of purely achromatic information in the

visual system.
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7. The Role of Spatial Frequency in the Response of Neurons
in Temporal Visual Cortex to Complex Stimuli

7.1. Experimental Hypotheses

(i) At any presentation rate, discrimination between patterns based on high spatial

frequencies will occur at increased latency, and with a later peak, than discrimination

of patterns based on low spatial frequency.

(ii) Additionally, the "reset" model (introduced in Chapter 5) would predict that, as

stimulus presentation rate increases, any response due to high frequency information

in the stimulus will be progressively diminished because the high frequency signal

will not arrive in time to contribute to the response. Thus, the response to high-pass

stimuli will tend towards baseline, with low-pass stimuli generating an equal response

to the corresponding unfiltered images at the highest presentation rate. Neither of

these effects would be predicted by the "mismatch" model - the high frequency aspect

of response would still occur, simply with higher latency.

7.2. Methods

Since this experiment was carried out in parallel with the colour experiment described

in the previous chapter, only the visual stimuli and those aspects of the analysis that

differed are described in detail here.

7.2.1. Visual Stimuli

Frequency filtered versions of the stimulus set (Appendix 1) were prepared using a

Fast Fourier Transform algorithm (Press et al., 1988). Each image was transformed

into frequency space and multiplied with circularly symmetric high- and low-pass

filters. The high and low-pass filters were exactly complementary, with the cut-off
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frequency at 8 cycles per image. Thus the low-pass filter preserved all frequencies

less than or equal to 8 Hz, and the high-pass filter all the remaining frequencies above

8 Hz. The cut-off frequency was chosen with reference to the study of Rolls et al.

(1984) who found that almost all of the face selective cells they tested produced at

least half the maximal response to images filtered either above or below this

frequency. The DC component was treated separately, and was maintained in both

high- and low-pass images, in order to preserve the overall luminance. No adjustment

was made to the contrast of the resultant images, since this may have distorted the

neuronal response.

In addition to the colour images, frequency filtering was also carried out on the

achromatic images prepared in the previous chapter. Thus, for each of the stimuli,

there were 6 different versions (an example is shown in figure 7.1).

colour

achromatic

unfiltered low pass
(<=0.8 cyc/°)

high pass
(>0.8 cyc/°)

figure 7.1 - The six different versions of one of the stimuli used in the experiment. The top row shows the
original image, and corresponding low- and high-pass versions of the image. Frequency filtering was
carried out as described in the methods section. The bottom row shows corresponding achromatic
versions of the stimuli, with the colour filtering carried out as described in the previous chapter. The DC
components of the image were preserved in both the low- and high-pass filtered conditions to maintain
overall image luminance. , ,



7.2.2. Procedure

(a) Colour Stimuli

Cell preference and latency was established as described in the previous chapter,

based on the cell's response to the colour unfdtered stimuli.

The normalising factor for each cell was calculated as the maximum value of the SDF

(spike density function) for the unfdtered colour version of the best stimulus. Highl¬

and low-pass responses to the best stimulus were weighted by this factor, so that

every cell would have an equal contribution in the population response, with the

response to the unfiltered colour stimulus acting as baseline.

(b) Achromatic Stimuli

Achromatic versions of the stimuli were analysed separately using exactly the same

procedure as above, but with ordering and latency detection based on the cell's

response to the achromatic unfiltered stimuli. Because achromatic stimuli produced

greatly reduced responses from the majority of cells tested, there were approximately

20% fewer cells in each of the achromatic conditions, with the excluded cells failing

to produce a response with measurable latency to any of the unfdtered achromatic

stimuli.

In this case, the normalising factor for each cell was calculated as the maximum value

of the SDF for the unfdtered achromatic version of the best stimulus. High- and low-

pass responses to the best stimulus were weighted by this factor, so that every cell

would have an equal contribution in the population response, with the unfiltered

achromatic response acting as baseline.
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7.3. Results

7.3.1. Stimulus Preference

The stimulus preference for each cell tested was established in the previous chapter,

but is reprinted below for reference.

Table 7.1 - Preferred Stimulus Category

Preferred Stimulus Number ofcells Percentage
Category

abstract 6 12
non-abstract 26 52

(face) (22) (44)
(non-face) (4) (8)

unknown 18 36

total 50 100

Each cell was tested with both colour and achromatic frequency filtered images (see

figure 7.1). Because colour images consistently produce larger responses in the

majority of cells tested (see previous chapter) we shall first examine the effect of

frequency filtering with colour images. In the second part of this section we will

examine the smaller responses evoked by the achromatic versions of the stimuli.

7.4. Colour Stimuli

7.4.1. Qualitative description of frequency tuning

(a) Single Cell

Figure 7.2 shows the response of a single cell to the frequency filtered versions of its

best stimulus in the four different presentation rate conditions. Also shown in this

figure are the responses to unfiltered, high- and low-pass stimuli superimposed and

aligned in time.
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figure 7.2 - Response of a single cell to the unfiltered, low- and high-pass versions of its best colour
stimulus in different presentation rate conditions, (top row: 56 ms + 167 ms gap, 2nd row - 56 ms,
3rd row - 28 ms, bottom row - 14ms). SDFs were created by summing the data across trials and
smoothing with a gaussian (ct = 10 ms). Stimulus presentation is shown by a filled rectangle below
the SDF and hollow rectangles show previous or subsequent stimulus presentations. The latency of
this cell was 66 ms. Scale is indicated in the bottom right comer. Insets (right) show regions of the
response to unfiltered (green), low-pass (blue) and high-pass (red) images magnified and time
aligned, with stimulus onset at 0 ms.
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Firstly, it can be seen that this cell can be driven by either the low- or the high spatial

frequency components of an image, even though the two stimuli share no spatial

frequencies in common. This property was noted in an earlier study by Rolls et al.

(1984). However, the responses to both of the filtered stimuli are substantially less

than to the unfiltered original, an effect that is repeated across the presentation rate

conditions.

If our hypothesis that high spatial frequency information about a stimulus is delayed

with respect to the low spatial frequencies, then we should expect to see the following

effects in this cell, and the population response as a whole -

(i) Unfiltered and low-pass responses should have an equal onset in time, leading

the high-pass response.

(ii) The unfiltered and low-pass responses should be initially identical, then

diverge to reflect the delayed contribution of the high spatial frequency

stimulus information present in the unfiltered image

Furthermore, the "reset" model would additionally predict that -

(iii) Any difference between unfiltered and low-pass curves should be

progressively reduced as presentation rate increases, since high frequency

information will not arrive in time to contribute to the response

(iv) The high-pass curve should tend towards the baseline as presentation rate

increases, for the same reason as in (iii)

Although some of these effects can be seen in the response of this single cell, the

picture is not consistent. There does appear to be a latency difference between the
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high- and low-pass responses in some of the presentation rate conditions (particularly

S56G167), but little evidence that unfiltered and low-pass responses are equal during

the early part of the response.

With reference to the "reset" model in particular, we can also see that, even though

the high-pass response diminishes as the presentation rate is increased, this is matched

by a similar reduction in the low-pass response, with little indication that the low-pass

and unfiltered responses become equivalent at the fastest rate.

(b) Population Results

Results from the population as a whole are shown in figure 7.3, and it is clear that the

cells are being driven by information carried across the whole range of spatial

frequencies, with a sharp reduction in response when either the high or the low

frequency components of the image are removed.

There is, however, little evidence for any of the latency effects we are looking for in

the population response. In the fastest condition (S14G0), the initial 15-20 ms of

response is apparently dominated by a low frequency response, with the high

frequencies coming in later, but this does not appear to be the case in the other

presentation rate conditions. Condition S14G0 was only carried out with those cells

giving a sufficiently strong response, and as such, the number of cells is relatively low

(n=7) in this condition. Condition S56G0 shows what might appear to be an earlier

response to the low-frequencies, but this effect disappears when the responses are

latency aligned.

There is also no evidence that the high frequency curve tends towards baseline as

presentation rate increases, or that the difference between low-pass and unfiltered
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curves is reduced as speed increases (with, again, the exception of the fastest

condition, S14G0).

Population Response to Best Colour Stimulus

(a) Stimulus aligned (b) Latency aligned

1r S14G0
unfpltered (n=7)
high pass (>0.8 eye/0)
low pass (<=0.8 eye/0)

S56G0
unfiltered (n=47)

S28G0
unfiltered (n=46)

unfiltered (n=46)
high pass (>0.8 eye/0)

eye/0)

S56G167

figure 7.3 - (a) Stimulus-aligned and (b) Latency-aligned normalised average population responses to
unfiltered, high- and low-pass versions of the best colour stimulus for each cell. Slowest presentation rate at
the top, fastest at the bottom. Filled rectangle indicates stimulus presentation, outlined rectangles show
earlier or subsequent stimulus presentations. Each set of responses for a cell was aligned to the detected
latency of the unfiltered response, as described in methods.
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7.4.2. Time course of frequency tuning - population statistical analysis

The time course of tuning for high- and low spatial frequencies was assessed

quantitatively using a sliding window statistical test to measure the probability of

discrimination between stimuli as a function of time.

For each cell, and each presentation rate (with the exception of S14G0, where there

was an insufficient number of cells to perform the analysis), normalised and latency-

aligned SDFs were calculated as previously described. The time course of overall

shape discrimination was then determined by comparing the SDFs for the unfiltered

colour stimuli with a related one-way ANOVA (5 levels, corresponding to the five

different stimuli), performed separately for each 1 ms time bin. High- and low-

frequency tuning was established using a similar procedure with two further 5 level

ANOVAs over the high- and low-pass images respectively, and thus describing the

time course of stimulus discrimination by the population when only these restricted

frequency subsets were available.

The results of this analysis can be seen in figure 7.4. and is tabulated in table 7.2.

Despite the much stronger level of discrimination based on the (generally higher)

responses to the high-pass images, onset and offset times of discrimination for low-

and high- pass stimuli are approximately equal, with nothing to suggest that pattern

discrimination based on low-frequencies precedes that of high frequencies.

Table 7.2 - Onset1 ofpattern discrimination at the p=0.01 (corrected) level

Condition Unfiltered (ms) High-pass (ms) Low-pass (ms)
S56G167 -6 4 6

S56G0 -7 2 1

S28G0 -9 -4 3

1
onset times are relative to detected cell latency
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figure 7.4 - Time course of frequency discrimination, measured using sliding window ANOVAs. SDFs
were calculated for each stimulus, normalised and latency aligned (see method). Overall shape
discrimination was determined by a related one-way ANOVA (5 levels) and compared responses to the
unfiltered colour stimuli (insets, top - darkest line = best stimulus, lightest line = worst). Tuning for highl¬
and low spatial frequencies was measured in a similar way, with ANOVAs across the high- and low-pass
colour stimuli respectively (insets, middle and bottom). This analysis was performed separately for each
lmsec time bin. Probability is plotted on a negative log scale, and curtailed at -Logi0(p)=17, which is the
limit of the numerical accuracy of the software used to perform the analysis (Mathematica 4, Wolfram
Research). Lower dotted line shows significance at the p = .01 level (uncorrected). Upper dotted line shows
the same level Bonferroni corrected. Yellow shaded area indicates duration of overall shape discrimination
at the uncorrected level and is used to define the window in the cell by cell analysis.
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7.4.3. Frequency sensitivity index

The statistical analysis above finds no difference in response onset time between high-

and low-frequency stimuli within the context of each cell's response. However,

because the responses have been previously aligned on detected cell latency (based on

the unfiltered response), this type of analysis would mask potential latency differences

between cells that may be differentially tuned to the high- and low frequencies. If

there was, for example, a shorter-latency sub-population of cells that responded only

to the low frequencies, this would explain why there appeared to be a earlier response

to low- compared to high-frequencies in the stimulus-aligned population response, but

this effect disappeared when the data was latency-aligned (see figure 7.3 (a) S56G0,

S14G0).

Therefore, we now assess whether there was any relationship between frequency

sensitivity and cell latency, using a frequency sensitivity index calculated individually

for each cell -

frequency sensitivity index ==—L
h +1

where h was the mean spike count for the high-pass version of the best colour

unfiltered stimulus and J was the mean spike count for low-pass version. The

window was determined from the population analysis above, and was calculated

separately for each condition as follows. The window began with the first 1 ms time

bin when unfiltered shape discrimination exceeded the p = 0.01 (uncorrected) level. It

ended when shape discrimination fell back below this criterion level, with the

constraint that the window was at least as long as the stimulus presentation time.
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The frequency sensitivity index ranges from +1 (preference for high-pass stimuli) to

-1 (preference for low-pass stimuli) with a value of 0 indicating that a cell responded

identically to the high- and low-pass stimuli. Extreme values were unlikely to be

obtained, however, because spike counts were not corrected by subtraction of the

background firing rate from stimulus response (this resulted in a measure that was too

sensitive to noise).

Figure 7.5 shows frequency sensitivity plotted against latency for each cell. Both

latency and frequency sensitivity have been averaged across the 3 stimulus

presentation rate conditions S56G167, S55G0 and S28G0 (where possible) to produce
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figure 7.5 — Frequency sensitivity and cell latency. Frequency sensitivity was defined as the difference
between high- and low-pass responses over the sum of high- and low pass responses. Increasingly positive
values represent preference for high-pass stimuli, increasingly negative values represent a preference for
the low-pass stimuli. A value of zero indicates equal responses to high- and low-pass stimuli. Frequency
sensitivity and latency figures were averaged across all conditions. The category of a cell's preferred
stimulus is indicated by the labelled symbols. The dashed line shows the least-squares regression.
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a single latency and frequency sensitivity figure for each cell. Although the earliest

responding cells in our population do appear to have a preference for the low-

frequency stimuli, there is no significant correlation between these two properties (r =

.044, n = 50, n.s.).

7.5. Achromatic Stimuli

7.5.1. Qualitative description of frequency tuning

Achromatic stimuli consistently produced smaller responses than their colour

counterparts, as would be expected given the results of the previous chapter. This is

particularly evident in the population responses to achromatic stimuli (figure 7.6)

where the low frequency response is almost completely abolished by the absence of

colour.

Since there is no consistent response to low-pass achromatic stimuli (except in

condition S56G167), this makes it rather difficult to compare the time courses of

responses to the different versions of the stimuli. In the condition where a low-pass

response is obtained, however, the onset and offset times of responses to the

unfiltered, high- and low-pass images appear to be similar, despite their difference in

magnitude.

166



Population Response to Best Achromatic Stimulus

(a) Stimulus aligned (b) Latency aligned

unfiltered (n=5)
high pass (>0.8 eye/0)
low pass (<=0.8 eye/0)

unfiltered (n=39)
high pass (>0.8 eye/0)
low pass (<=0.8 eye/0)

unfiltered (n=39)
high pass (>0.8 eye/0)

eye/°)

unfiltered (n=37)
high pass (>0.8 eye/0)
low pass (<=0.8 eye/0)

r S28G0

S56G167

S56G0

figure 7.6 - (a) Stimulus-aligned and (b) Latency-aligned normalised average population responses to
unfiltered, high- and low-pass versions of the best achromatic stimulus for each cell. Slowest presentation
rate at the top, fastest at the bottom. Filled rectangle indicates stimulus presentation, outlined rectangles
show earlier or subsequent stimulus presentations. Each set of responses for a cell was aligned to the
detected latency of the unfiltered response, as described in methods.
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7.5.2. Time course of frequency tuning - population statistical analysis

A statistical analysis of the discrimination of achromatic stimuli was carried using the

method previously described (figure 7.7). Despite the very small responses to the low-

pass achromatic stimuli, the population was found to be discriminating amongst these

stimulus versions to a statistically significant level.

It is however, difficult to draw any solid conclusions from this analysis. Although the

population appears to be discriminating on the basis of high frequency information

approximately 10-20 ms before low frequency discrimination reaches a comparable

threshold, the difference in magnitude makes this conclusion open to question.

Overall the time courses of high- and low-frequency discrimination appear similar,

with both curves appearing to peak at similar times. There is certainly no evidence to

support the hypothesis that high spatial frequency information has a longer latency

than low frequency information.
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Timing of Frequency Discrimination
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figure 7.7 - Time course of frequency discrimination, measured using sliding window ANOVAs. SDFs
were calculated for each stimulus, normalised and latency aligned (see method). Overall shape
discrimination was determined by a related one-way ANOVA (5 levels) and compared responses to the
unfiltered achromatic stimuli (insets, top - darkest line = best stimulus, lightest line = worst). High and
low frequency tuning were measured in a similar way, with ANOVAs across the high- and low-pass
achromatic stimuli respectively (insets, middle and bottom). This analysis was performed separately for
each 1msec time bin. Probability is plotted on a negative log scale, and curtailed at -Logi0(p)=17. Lower
dotted line shows significance at the p = .01 level (uncorrected). Upper dotted line shows the same level
Bonferroni corrected. [Software used to perform the analysis: Mathematica 4, Wolfram Research].
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7.6. Discussion

7.6.1. Timing of frequency information

Although somewhat less clear than the previous study, this results of this experiment

fail to support the idea that high spatial frequencies have a delayed arrival time with

respect to low spatial frequencies in IT/STS. This is demonstrated by the following

observations -

(i) unfiltered and low-pass responses differ from the onset of response

(ii) unfiltered and low-pass responses remain different even at the fastest

presentation rate (condition S14G0), a difference that can only be due to

the absence of the high spatial frequencies

(iii) high-pass responses are present even when stimuli are presented in a rapid

continuous sequence, with each stimulus present for only 14 ms (conditon

S14G0)

(iv) rising phase of stimulus discrimination shows an equal time course,

irrespective of whether discrimination is on the basis of low-pass or high-

pass stimuli

(v) spatial frequency preference is not correlated with latency across different

cells

It is therefore quite clear that neurons in the area studied have access to all spatial

frequencies of a stimulus, from the very beginning of their response, and that neither

of the models postulated in the introduction is required to explain our findings.
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This result supports the use of the RSVP technique for stimulus optimisation

experiments. Evidence for either the "reset" and "mismatch" models would have

reduced the experimental value of the RSVP technique. If the high spatial frequencies

were lost at high presentation rates, it would be impossible to fully characterise the

response properties of cells in the area under investigation. Alternatively, if the high

spatial frequencies were simply delayed, this too would be problematic, since the

window for capturing the response to a stimulus can only be as long as the stimulus

itself, allowing us to measure the cell's response to either the low- or high-frequency

aspect of the stimulus, but never both.

7.6.2. Theoretical implications for coarse to fine processing

It could be argued that the cutoff point chosen to construct the low- and high-pass

images used in this study did not ensure a clear division between the magnocellular

and parvocellular pathways. While this is certainly the case (witness the greatly

increased response from the low-pass colour images compared to the achromatic

versions - showing clear involvement of P pathway inputs), the considerable overlap

in sensitivities between the two systems would make it practically impossible to

create stimuli that fulfilled this criteria. Furthermore, the psychophysical and

physiological studies discussed in the introduction would also strongly imply that

there are spatial frequency related delays within (as well as between) the systems, and

that the stimuli used in the present study should have been sufficient to expose any

latency delays that were present.

In the context of the results of this study, how do we interpret the findings of Sugase

et al. (1999), showing that global information about a stimulus is present in

inferotemporal neurons before the fine detail? It certainly seems that there cannot be a
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simple correspondence between the 'global' and 'fine' information of their study and

the low- and high-spatial frequencies of the present study. In many ways this is not

surprising, since the kind of properties exhibited by neurons in STS/IT (such as view

tuning to facial stimuli) imply that the inputs that drive these cells already possess

considerable complexity, and are more likely to relate to meaningful aspects of

complex real world objects, rather than specific spatial frequency channels.

If there are latency differences between different spatial frequency channels earlier in

the visual system, the results presented here imply that this information must be

integrated in a way that compensates for the differential arrival time of information,

and this integration has must have already taken place by the time stimulus

information reaches higher visual areas involved in recognition, such as the area

studied here. This view is compatible with the idea that integration proceeds

according to a temporally anisotropic model, but suggests that this may be largely

irrelevant for recognition processes, which receive a signal only after the integration

process is complete.

An alternative explanation might be that latency differences seen earlier in the visual

system could be cancelled out by anatomical features, such as a convergence ofmore

numerous higher-spatial frequency P pathway synapses on higher visual neurons.

These could provide sufficient EPSPs on a IT/STS neuron to cause it to fire, despite

having higher latency than a smaller number of low frequency inputs. This would be

consistent with the higher sampling density of P pathways cells mentioned in the

introduction (Merigan et al., 1991b).
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7.6.3. Concluding comments

In this and the preceding study we have tested the theory that visual information is

processed in distinct waves, with the first wave consisting of low spatial frequency

achromatic information, and coloured fine detail information following later.

Recording from neurons in the higher visual areas involved in recognition, we find no

evidence for this model. These cells respond selectively to colour and high

frequencies even at the fastest presentation rates tested, and there is no evidence for a

differential time course of colour or frequency discrimination within the responses

themselves. We thus reject the model of visual recognition proposed most recently by

Delorme et al. (2000).

We can therefore be confident that the RSVP technique used here and elsewhere

(Keysers et al., 2001) is sufficient to explore the complete stimulus selectivity of

higher visual neurons, with respect to colour and spatial frequency, rather than just a

restricted subset of these properties.
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8. Summary of Main Findings and Conclusions

8.1. Optimisation

The first part of this thesis described a novel computerised approach to the problem of

characterising visual receptive fields. The method employs a correlation based search

algorithm and an image model which can be used to tune the search to the properties

of the cells under study.

Optimisation simulations using both pixel and frequency based image models showed

that the algorithm can be highly effective at finding optimal stimuli for artificial and

simulated non-linear neurons. Attempts to find optimal stimuli for visual neurons in

IT and STS were less successful. However, the method may prove more applicable

than the reverse correlation technique (Jones & Palmer, 1987; Ringach et al., 1996) or

ALOPEX (Harth & Tzanakou, 1974; Tzanakou et al., 1979), firstly because it is able

to provide multiple solutions for non-linear receptive fields and, secondly, because it

allows the search to be restricted to particular stimulus subspaces, which could be

chosen with reference to known properties of the particular area under study.

Also introduced was the idea of coarse-to-fine optimisation, where we initially

optimise a low resolution image (with a low dimensionality), and increase the

resolution when effective stimuli are found. In Chapter 7 it was found that low-pass

images can be effective stimuli for at least some cells in STS and IT. This approach

may go some way towards helping with the problem of searching high dimensional

spaces that is discussed below.
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8.2. Problems Encountered with Optimisation

Optimisation in a neurophysiological context presented considerable technical

difficulties. Obtaining a stable recording for a long period of time proved problematic,

and typical optimisation attempts only completed 4 iterations before the cell was lost.

Stable recordings can be achieved with floating electrodes over longer periods (days -

months) and this is therefore an area which can be readily improved upon.

An unexpected problem was that RSVP sequences of the noise images produced by

the algorithm seem inherently less rewarding to the animal than RSVP sequences of

meaningful or well structured images. It was typically found that the monkey would

be eager to view the sequence ofmeaningful screening images that were initially used

to characterise the cell, but lost interest rapidly when presented with the set of images

generated by the optimisation software.

Depending on the complexity of the image model, the generation of search images for

each iteration of the optimisation can also take a significant time, which introduces

long delays between stimulus presentations. This is partly a side-effect of the system

design used, with separate computers carrying out the image generation and response

recording. With a faster computer carrying out both tasks, it would be possible to

carry out the correlations and image generation in closer to real time. A further

improvement to the design might be to run multiple optimisations in parallel, with

updates and new image generation taking place for one set of parameter values while

a stimulus relating to a different parameter set was being displayed. This would

compensate for the inherent latency between stimulus display and the response

becoming available.
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The primary problem however, is the high dimensionality of the search space. Even

when the optimisation process is started with an image that is capable of (at least

partly) driving a cell, the search method described in this thesis may take steps

downwards, producing images that lead to worsened responses from the neuron rather

than better ones. Why is this the case? Although there may be a path leading upwards

towards the optimal stimulus, the vast majority of possible steps at any one point may

actually lead downwards. The situation can be compared to that of a blindfolded man

trying to find his way up a narrow and twisting mountain path, with precipitous drops

on either side of the way.

Even with a well behaved and regular performance surface (e.g. the quadratic

response function used in some of the simulations in this thesis), high dimensionality

can make convergence troublesome. Consider the two-dimensional optimisation

pictured below, in which we are trying to find the optimal value for 2 parameters, pO

& p 1. The dotted circular lines show the contours of a quadratic response function.

P1

Po

figure 8.1 - Optimisation on a quadratic performance surface. See text for details. J 76



At point 1, the optimisation algorithm will generate random search points with a two

dimensional gaussian distribution around the current parameter values. The solid

circle around point 1 indicates one standard deviation of this distribution. Consider

the following three possibilities -

(i) If the randomly chosen point lands in the left shaded area within this circle, then

the new image will result in a better response, and the optimisation will move the

parameters towards these new values, up the performance surface.

(ii) Conversely, if the randomly adjusted parameter values produce a point that lies in

the right hand shaded area, a worse response is obtained, and the optimisation will

proceed directly away from this point, again resulting in a step up the performance

surface.

(iii) However, if the point chosen lies within the two unshaded segments of the circle,

then not only is a worse response obtained, but when we try to move in the opposite

direction, we still end up with a worse response. In this case, the optimisation process

will take a step downhill.

When we are far away from the optimal parameter values, these unshaded areas will

be small (as at point 1), since the contour lines of the performance function will tend

to bisect the distribution of noisy images.

However, nearer the optimal value (e.g. point 2), the curvature of the contour lines is

higher, and the unshaded areas occupy a larger proportion of the space in which our
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samples fall. Thus, the closer we are to a peak, the higher the probability that
18

optimisation steps will fail to improve the response .

As the dimensionality of the search increases, then so does the size of the unshaded

area relative to the shaded area. At high degrees of dimensionality it becomes

vanishingly unlikely that a randomly chosen point will allow us to proceed uphill.

Furthermore, this example has used a relatively forgiving performance surface, which

is unlikely to be a good model for a neural performance surface. If instead the contour

lines are thin and elongated, then it is easy to see that it will be much harder to find a

point that lies uphill, and the potential for making downwards steps is much

increased.

8.3. Colour and Spatial Frequency Response in IT

In the second part of this thesis, I explored with idea of restricting the search to

specific stimulus subspaces, with a view of reducing the dimensionality of the

optimisation problem. The colour and spatial frequency response of neurons in STS

and IT was investigated, inspired by theories of coarse to fine processing in the visual

system, and most recently a study by Delorme et al. (2000), which had suggested that

the first wave of visual information about a stimulus may be coarse and achromatic.

Under RSVP conditions, where stimuli are presented rapidly and continuously, we

hypothesised that the response due to colour and high-spatial frequency aspects of a

18 The figure also shows how the search will get closer to finding optimal parameter values as a is

reduced. This effect is illustrated in box 4.1.
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stimulus would be progressively diminished as the presentation rate increased,

resulting in equivalent responses to both the original stimulus and its low-frequency

achromatic counterpart.

The population of neurons studied in IT and STS showed a marked reduction in

response to the achromatic and low-spatial frequency stimuli, an effect that persisted,

even at the highest presentation rate of 14ms per stimulus. Analysis of the onset of

discrimination revealed differential responses to colour and achromatic stimuli during

the earliest part of the response, failing to support the hypothesis that the first wave of

information about a stimulus was achromatic. Similarly, discrimination between low-

spatial frequency stimuli did not precede that of high-spatial frequency stimuli, but

had an equal onset time, failing to support the hypothesis that the first wave of visual

information consisted of low spatial frequencies only.

Sugase et al. (1999) found that the early component of the response in IT (the first

50ms) signalled only coarse aspects of a stimulus, with fine detail following later.

This was attributed by Delorme et al. (2000) to a slower processing speed within the

visual system for high spatial frequency and colour information. This thesis has

shown that this cannot be the case, since colour and high-spatial frequency

information about a stimulus is present from the response onset. Therefore, alternative

explanations must be sought to explain Sugase's findings. One possibility is that the

emergence of fine detail discrimination over time might reflect the effect of lateral

inhibitory connections between several neurons that are initially activated by the

stimulus, an effect suggested by many PDP models (see Oram & Perrett, 1992).
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We also found that 70% of cells tested in STS/IT were strongly colour tuned,

producing differential (and mainly reduced) responses to the luminance matched

achromatic and false colour versions of their preferred colour stimulus. Furthermore,

at least half of the individual cells examined also showed a change in the ranking of

stimulus preference when the colouring of stimuli was manipulated, suggesting a

strong role for colour in the stimulus selectivity of cells responsive to complex and

naturalistic objects. It has been suggested that object recognition is based on an

abstract edge-based representation of objects (Biederman & Ju, 1988) and cells have

been described in IT that show invariant responses to objects irrespective of how their

boundaries are defined (Vogels & Orban, 1996). The results presented here do not

directly support this view, though it seems possible that there is a hierarchy of

stimulus representations within IT, perhaps with the outputs of neurons selective for

basic properties of objects, such as colour and texture, being combined into higher-

level object representations that can be invariant of these properties. Consistent with

this idea, this thesis also found a significant negative correlation between colour

sensitivity and response latency, such that colour sensitivity was lower in those cells

with longer latency, suggestive of the progressive emergence of invariant properties.

In general, the finding of this thesis are broadly positive in terms of using RSVP to

rapidly explore the stimulus selectivity of cells in STS and IT. However, the work of

Sugase et al. (1999) does suggests that there may be broad activation across a group

of cells to a particular stimulus (e.g. a face), followed by competition over the next

few tens of milliseconds which leads to a representation encoded by a small number

of cells best tuned to the features of the stimulus. If this is the case, RSVP in itself

may not be sufficient to characterise in full the stimulus selectivity of these neurons.
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8.4. Ideas for Future work

An obvious path for future work to take would be to roughly characterise IT cells by

testing them with a large bank of images using RSVP. When the approximate

preference of the cell is established (e.g. a preference for geometrical shapes, or

faces), an appropriate image model could be selected for optimisation. These image

models could each have a very restricted domain, with perhaps just tens of parameters

describing e.g. eye size and spacing, face colour, and so on (in the case of faces).

Obviously, this lacks much of the generality we hoped for at the start of this work, but

is likely to prove a much more tractable problem.

Rather than trying to search for optimal stimuli in IT, an alternative approach might

be to progressively characterise the visual system, starting in VI, where optimisation

techniques such as the one presented here are likely to be successful. Such an

approach would be able to combine the known properties of a particular stage of the

visual system with along with theoretical considerations (such as a drive towards

sparse representations), thus placing more constraints on the range of stimuli to be

tested in order characterise neurons in a subsequent stage.

The RSVP technique also presents an number of unknowns that would be useful to

investigate in order to progress with the optimisation methodology. For example, it

would be very interesting to know if any habituation occurs for repeatedly presented

stimulus over the sort of timescales relevant for optimisation (i.e. tens of minutes),

and furthermore to know how similar images need to be to produce habituation, e.g.

do cells habituate to faces in general, or just a particular view of a specific face.

Trying to find the optimal stimulus is a hard enough problem without a moving target.
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8.5. Concluding Comments

The work described in this thesis represents a first attempt to apply optimisation

techniques to the complex receptive fields found in STS and IT, and will hopefully

inspire future work in this direction. With hindsight, the work was perhaps too

ambitious and general in its approach, and future attempts may find it profitable to

constrain the generality of the image model while the effectiveness of different search

algorithms are evaluated on the relatively unknown responses surfaces of these

neurons.
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9. Appendix 1 - Stimuli used in Experiments

|Biohazardj

M2 225c

E99c_ Boxc_ Owlc_

HI 45c

M2 270c

Orangec

Fract2c

HI 180c

Ml 315c

Ml 180c

M2 45c

M2 90c

M2 315c

Fractlc

Biohazc

HI 225c

figure Al.l — The full set of 38 colour images used in the experiment. For each image there were
corresponding achromatic and false-colour versions (not shown). Images classified as abstract for the
purposes of cell classification are indicated with a red asterisk to their upper right.
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0.02

-0.02

M2_225c_

M2_00c_

98

0.26

0.40

M2_90c_

M2_00c_

98

0.13

0.06

230L

10

M2_00c_

Eggc_

115

0.23

-0.17

M2_00c_

Biohazc_

118

0.41

0.01

Alienc_

Eggc_

110

-0.19

-0.29

231L

6

H1135c_

ColorMc_

71

0.17

-0.06

H1_135c_

Eggc_

88

0.09

-0.16

H1_135c_

Eggc_

87

-0.11

-0.21

233L

4

Orangec_

Catc_

60

0.07

-0.20

Fract2c_

Catc_

55

0.22

-0.44

235L

6

H1_270c_

Abscocc_

80

0.23

-0.18

H1_270c_

Boxc_

97

0.33

0.06

H1_270c_

Boxc_

77

0.04

0.57

235L

7

H1_90c_

Eggc_

72

0.16

0.07

H1_90c_

Abscocc_

72

0.29

0.16

H1_90c_

Abscocc_

97

0.58

0.99

238L

4

Abscocc_

H1_00c_

81

0.08

0.22

Abscocc_

Orangec_

98

-0.03

0.33

Abscocc_

Orangec_

151

-0.03

0.17

238L

5

Handc_

Eggc_

84

0.15

0.25

Handc_

Eggc_

95

0.09

0.31

Handc_

Eggc_

95

0.02

0.38

239L

5

H1_00c_

ColorMc_

73

0.07

0.16

M2_00c_

Cok>rMc_

78

-0.01

0.25

H1_00c_

Handc_

78

0.53

0.44

240L

4

H1_00c_

Fract2c_

69

H1_00c_

Fract2c_

65

0.49

-0.08

H1_00c_

Fract2c_

67

0.55

-0.01

H1_00c_

Alienc_

79

0.63

0.25

240L

6

Abscocc_

Eggc_

115

-0.05

0.07

Abscocc_

Eggc_

112

-0.04

0.16

Abscocc_

Handc_

99

0.12

0.24

240L

7

H1_180c_

M1_180c_

79

0.05

0.35

H1_180c_

Boxc_

87

0.00

0.50

H1_180c_

Boxc_

87

0.04

0.45

244L

10

M1_00c_

Eggc_

83

0.04

0.06

M1_00c_

Eggc_

94

0.16

-0.02

M1_00c_

Catc_

108

0.07

-0.08

244L

9

M2_180c_

Handc_

79

0.27

0.14

M2_180c_

Boxc_

76

0.31

0.48

M2_180c_

Boxc_

93

0.17

0.34

24SL

3

M1_315c_

Catc_

106

0.08

-0.12

245L

5

Biohazc_

Eggc_

88

0.43

-0.01

251L

M2_00c_

Boxc_

115

-0.07

0.25

252L

3

M2_315c_

Abscocc_

82

-0.02

0.09

M2_315c_

Abscocc_

82

0.03

0.13

M2_315c_

Alienc_

92

0.12

0.41

252L

5

M2_315c_

Biohazc_

67

0.10

0.12

M2_315c_

Biohazc_

77

0.04

0.29

M2_315c_

Biohazc_

67

0.02

0.41

253L

6

Alienc_

Orangec_

102

0.01

-0.04

Alienc_

M1_270c_

100

-0.03

-0.01

253L

8

Handc_

Eggc_

103

0.24

0.11

Handc_

Owlc_

105

0.14

0.06

Handc_

Eggc_

129

0.21

0.25

264L

7

Boxc_

M1_270c_

95

0.21

0.20

Boxc_

M1_00c_

103

0.39

0.35

Boxc_

M1_00c_

117

0.07

0.52

255L

3

Alienc_

M2_00c_

108

0.18

0.08

Alienc_

Biohazc_

119

0.14

0.06

Alienc_

Landscc_

110

0.10

-0.18

255L

4

Alienc_

Eggc_

117

0.08

0.00

Alienc_

Eggc_

102

0.23

-0.05

Alienc_

Eggc_

110

0.20

0.04

255L

5

Orangec_

Eggc_

86

0.38

0.13

Orangec_

Boxc_

89

0.28

0.16

Orangec_

Owlc_

88

0.17

-0.03

260L

6

M2_00c_

Boxc_

69

0.05

-0.05

M1_00c_

Boxc_

80

0.28

-0.14

M2_00c_

Abscocc_

60

0.15

-0.09

2601

9

M2_00c_

Orangec_

60

0.09

0.03

M1_45c_

Eggc_

81

0.06

0.38

M2_00c_

Eggc_

69

0.03

-0.11

2661

15

Abscocc_

Eggc_

74

Abscocc_

Eggc_

84

-0.04

0.22

Abscocc_

Eggc_

79

0.01

0.49

Abscocc_

Eggc_

96

-0.07

0.39

268L

2

M2_90c_

Eggc_

85

-0.02

0.06

M2_90c_

Biohazc_

98

0.15

-0.27

M2_225c_

Biohazc_

101

0.10

0.16

268L

4

M2_270c_

Eggc_

84

M2_270c_

Boxc_

82

0.13

-0.01

H1_270c_

Eggc_

96

0.24

-0.16

H1_270c_

Eggc_

108

0.07

0.10

Notes- (1)Topshadedareashowsexperimentswherenofalsecolourimageswereshown (2)Bottomshadedareashowsexperimentswherescreeningphasecontainedbothcolourandachromaticimages



10.2. Cells in Contrast Experiment

Pen Cell

302 4

304 10

307 10

307 15

307 16

311 3

311 6

312 9

313 13

314 2

314 6

314 8

316 7

317 3

321 8

321 10
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11. Appendix 3 - Reconstruction of Electrode Tracks and Cell
Positions

11.1. X-Ravs

11.1.1. Measurements

Lateral and frontal X-rays were taken at the end of every recording session and show

the position of the electrode relative to bone landmarks. The trajectory and position of

the electrode tip were calculated from the X-ray relative to a co-ordinate system

superimposed on the visible landmarks. For frontal X-rays, a horizontal axis was

drawn between the two auditory canals, and a second, vertical axis, perpendicular to

the first, at the midpoint of the skull. The position (x, y) of the electrode tip was then

measured, along with the position of a second point on the path of the electrode

(20mm away from the tip), in order to allow the trajectory to be established. For

lateral X-rays, a horizontal axis was drawn between the external auditory meatus and

the orbital ridge, and a vertical axis, perpendicular to the first, also drawn through the

auditory meatus. As with the frontal X-rays, measurements (z, y) of the tip of the

electrode and a point along its path were then taken.

Because auditory canals were not always visible on frontal X-rays, only the medio-

lateral measurement (x) was retained, and was combined with the superior-inferior (y)

and anterior-posterior (z) measurements from the lateral X-rays to provide a complete

3-dimensional position.

11.2. Histology

11.2.1. Final Recording and Microlesions

At the end of the final recording session, electrolytic microlesions were made, that

marked approximate anterior and posterior boundaries of the recording region. Three
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lesions were made in total, consisting of a single large posterior lesion (current of

40pA for 30 seconds) and two smaller anterior lesions at differing depths (shallow -

20pA, 20s.; deep - 30pA, 30s). As in all previous recording sessions, frontal and

lateral X-rays were taken.

11.2.2. Perfusion

The monkey was given an injection of ketamine to sedate it and, after 10-15 minutes,

a lethal dose of barbiturate (sagatal). After a few minutes the effect of the barbiturate

was verified by the absence of the gabella reflex (closure of the eyelids following

contact with cornea).

The electrode and stereotaxic apparatus were kept in place throughout perfusion. The

monkey was removed from the chair, and the thorax cut open to expose the heart. The

pericardium was removed and a large bore cannula inserted into the left ventricle. The

descending aorta was clamped so that the upper torso and head only were perfused.

An incision was made in the right auricle to allow outflow of fluid from the

circulation.

Solution was passed through the large bore canula and into the circulation using a

mechanical centrifugal pump (C16-C, Charles Ansten Pumps Ltd.). A pre-fixative

wash of phosphate buffered saline and 0.2% sodium nitrate (for vasodilation) was

passed through the monkey to remove blood from the system. Approximately 5 litres

of solution was required to flush out all the blood. The perfusing liquid was then

changed to a phosphate buffered fixative solution (4% paraformaldehyde). After

approximately 5 litres of fixative was passed through the monkey, the muscles of the

head and neck went rigid and perfusion was complete. The cannula was removed
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from the heart, and the head severed from the body.

11.2.3. Histology

The head was first placed in a stereotaxic frame with ear bars and orbital ridge grips,

and skin and muscle were removed. The skull, including the implant and stainless

steel wells, were then removed using bone cutters and a drill. The brain was removed

from the skull and the frontal lobes cut away. The brain was then sunk in successively

higher concentrations of sucrose solution (10, 15, 20, 30%) over a period of one

month. Before sectioning, the brain was immersed in a bath of isopentane, cooled to

below minus 40°C using dry ice (CO2). After 25 minutes, the brain was removed from

the isopentane and placed in a cryostat (Bright Instruments Co., Huntingdon, UK) at

minus 15°C, with the cerebellum forming a base for the sectioning. The brain was left

for two hours to equilibrate in temperature.

The brain was sliced into sections of 25pm thickness. A digital photograph was taken

every 250pm, and the section retained and placed in a set of bays filled with 0.1M

phosphate buffer and 0.9% NaCl. The retained sections were transferred to dishes

containing water and guided onto glass microscope slides. Once dry, the sections were

Nissl stained (for cell bodies) and coverslipped. Drawing were made of one in every

four sections (i.e. with 1mm spacing) from the grey and white matter boundaries as

visible from the digital photographs.

11.3. Co-reqistration of X-rays and Histology

In order to determine the position of cells relative to the structures of the brain, it is

necessary to establish a mapping between X-ray co-ordinates and photographs of the
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actual tissue sections.

First, the location of the large posterior lesion was identified on one of the Nissl

stained slides (figure A3.2). This provided not only a common point in the two co¬

ordinate systems, but also a scale factor for the medio-lateral (x) axis, since a distance

to the midline could be measured in both cases. In the absence of definitive locations

for the remaining two anterior lesions, uniform tissue shrinkage was assumed,

allowing this scale factor to be applied to the remaining two axes. Each cell could

now be located to a known point on a known section.

Confidence in the accuracy of this mapping was greatly increased when the calculated

positions of the two anterior lesions were found to fall on two areas of tissue that had

been provisionally, but not conclusively, identified as the locations of these lesions.

11.4. Electrode Tracks and Cell Positions

The figures that follow show a sequence of coronal sections (traced from the digital

photographs) with the individual electrode tracks and cell positions superimposed on

the nearest section. The spacing between sections is 1mm, with the most anterior

section first and the most posterior section last. In stereotaxic co-ordinates, these

slices are located from approximately + 19.5 mm to + 8.8 mm on the A-P axis.
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figure A3.1 - Coronal sections of the left hemisphere showing electrode tracks (dashed lines) and
penetration numbers, cell positions (filled circles) and lesion positions (outlined circles).
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figure A3.1 (contd) - Coronal sections of the left hemisphere showing electrode tracks (dashed lines)
and penetration numbers, cell positions (filled circles) and lesion positions (outlined circles).
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figure A3.1 (contd) - Coronal sections of the left hemisphere showing electrode tracks (dashed lines)
and penetration numbers, cell positions (filled circles) and lesion positions (outlined circles).
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figure A3.1 (contd) - Coronal sections of the left hemisphere showing electrode tracks (dashed lines)
and penetration numbers, cell positions (filled circles) and lesion positions (outlined circles).

193



figure A3.1 (contd) - Coronal sections of the left hemisphere showing electrode tracks (dashed lines)
and penetration numbers, cell positions (filled circles) and lesion positions (outlined circles).

figure A3.2 - Nissl stained sections of the lesion sites. Left - the posterior lesion is indicated by an
arrow. Right - the arrows indicate the probable locations of the smaller anterior lesions. These sites lie
almost exactly in the region predicted by the co-registration and plotted on section 28 in the previous
figure.
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12. Appendix 4 - Optimisation C Code

This appendix contains a listing (in the C language) and commentary on the computer

code written to implement the optimisation algorithm and interface it with the

physiology system. It is intended to provide further detail, if required, to the

description in Chapter 4.

Note that, for clarity and ease of navigation, each new function declaration is printed

in bold type. Comments have been added in a different typeface, and follow the

region of code that the comment relates to. The ^ symbol indicates a single line of

code which has been split between multiple lines.

12.1. optimise.c

Stimulus Optimisation
Robin Edwards 3/2/2000
Version 4.21a

optimise.c
"/

// 3.0 - [24/ 2/2000]
// 3.01 - [28/ 2/2000]
// 3.02 - [ 1/ 3/2000]
// 4.0 - [27/ 3/2000]
// 1o [29/ 3/2000]
// 4.02 - [08/ 5/2000]
// 4.03 - [12/ 6/2000]
// 4.04 - [13/ 6/2000]
// 4.1 - [19/ 6/2000]
// 4.2 - [10/ 8/2000]
// 4.21 - [28/ 8/2000]

first version. Tested OK with artificial neuron

list passed to optimise() changed from type int to float
now possible to change parameters during optimisation
major rewrite to sort out the image model framework
1/f model complete. Combined fft.c & nrutil.c
minor bug with float vs int type
changed variance to st.deviation
added decay term
**changed image models**
added arbitray basis function image model (Gabors implemented)
initialise images with coefficient files

// Questions to resolve with Peter:
// Decay (& u) once per image or per iteration?

// CC optimise.c main.c fft.c gabor.c -lm -lgl -1X11 -w
// CC Tser06.c optimise.c fft.c gabor.c -lgl -1X11 -laudio -lm -w -s -o neuron9

/* Parameters to the optimisation (from struct para in Myvso04.h)
* blocks_x - x dimension of the grid
* blocks_y - y dimension of the grid
* block_width - pixel width of element
* block_height - pixel height of element
* colour - colour(YCbCr) or luminance based optimisation?
* learning_rate - how much we move every step
* noise_stdev - how noisy the images are
* decay - decay term
* max_images - how many noisy images to make
* /

/* DEFINITIONS ******
#define kMODEL_IDENTITY 0
#define kMODEL_CORRELATED 1
#define kMODEL BASIS 2

#define kNOISY_ONLY
#define kNOISY BASE ORIGINAL

/* OPTIONS ***********
const int image_model

kickkkkkkk

kMODEL BASIS;
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const int search_image_set = kNOISY_BASE_ORIGINAL;

/ * INCLUDES ***********************
#include "fft.h"
#include "gabor.h"
#include "Myvso04.h"

/* LOCAL STRUCTURES ***************
// image parameter set structure
struct img_pset {

int blocks_x, blocks_y;
int block_width, block_height;
int colour;

*********

int n;

float *vals;
// number of parameters
// pointer to values

>;

This data structure stores a set of parameters encoding the image being optimised. The actual representation of the
image (and also the number of parameters) depends on the image model in use. There may be multiple instances of
this structure if more than one image is being optimised simultaneously.

// stimulus structure
struct stim {

int orig; // 1 = original parameters, 0 = current
int pset; // parameter set #
long seed; // random seed (0 = none)

};

This structure is created for every stimulus that is displayed. It records which parameter set an image is derived
from, and the seed for added noise.

typedef unsigned char byte;

/•'• LOCAL VARIABLES * *
int num_psets;
struct img_pset *psets = NULL;
struct img_pset *orig_psets = NULL;
struct stim *stims = NULL;
int iteration;
char filename[32];
int pre_t, dis_t, aft_t;
char tmp[200];
static int iset - 0;

// number of parameter sets
// pointer to parameter sets
// pointer to original parameter sets
// stimuli
// current iteration
// results filename

// error message buffer
// moved outside gasdev() so can be reset

basis_fn basis[BASIS_SIZE];

/* LOCAL COPIES
These parameters can be changed from the PC user iterface between trials
so we must keep copies here of the previous values */

float old_noise_stdev;
int old_colour;
int o_blocks_x, o_blocks_y, o_block_width, o_block_height;

extern struct stimulus_image *image_data;
extern struct parameters *para;
extern int serpt;

k a a * a a a * a a a

k a a a * a a

/' INTERFACE FUNCTION PROTOTYPES **************************a
int optimise(float *list, int flag);

/ LOCAL FUNCTION PROTOTYPES * * a * * * a a * * a a a a * a a a a a a a a a a a a a a a a
int optimise_begin(float *image_list);
int update_parameters(float *response_list);
void optimise_end(void);

int write_data(float *response_list);
int make_img_set();
int default_pset(struct img_pset *pset);
int copy_pset(struct img_pset *src, struct img_pset *dst);
int resample_parameters();

// forward transforms
int pset_to_image(struct img_pset *pset, long seed, struct stimulus_image *img);
int identity_transform_f(struct img_pset *pset, float *nvals, float **ch_Y, float **ch_Cb, float^
**ch_Cr);
int basis_transform_f(struct img_pset *pset, float *nvals, float **ch_Y, float **ch_Cb, float^
**ch_Cr);
void scaled_basis_transform(float *src, float **ch, int width, int height);
int freq_transform_f(struct img_pset *pset, float *nvals, float **ch_Y, float **ch_Cb, float^
**ch_Cr);
void scaled_ift(float *src, float **ch, int width, int height);
int matrix_to_image(float **ch_Y, float **ch_Cb, float **ch_Cr, struct stimulus_image *img, int4*
nx, int ny, int bw, int bh);
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// backward transforms
int image_to_pset(struct stimulus_image *img, struct img_pset *pset);
int identity_transform_b(float **ch_Y, float **ch_Cb, float **ch_Cr, struct img_pset *pset);
int freq_transform_b(fJ oat **ch_Y, float **ch_Cb, float **ch_Cr, struct img_pset *pset);
void scaled_fft(float **ch, float *dst, int width, int height);
int load_coefficients(struct stimulus_image *img, struct img_pset *pset);
int image_to_matrix(struct stimulus_image *img, float **ch_Y, float **ch_Cb, float **ch_Cr, int^
nx, int ny, int bw, int bh);

void RGB_to_YCbCr(float r, float g, float b, float *Y, float *Cb, float *Cr) ;
void YCbCr_to_RGB(float Y, float Cb, float Cr, float *r, float *g, float *b);
void get_pixel_rgb(struct stimulus_image *img, int x, int y, byte *r, byte *g, byte *b);
void put_pixel_rgb(struct stimulus_image *img, int x, int y, byte r, byte g, byte b);
float gasdev(void);

/* INTERFACE FUNCTIONS *********************************************************************/

/* int optimise(float *list, int flag)
* Interface to the rest of the program.
* flag = 0: begin optimisation (*list = list of images)
* flag = 1: update parameters (*list = list of responses)
* flag = 2; end optimisation (*list = NULL)
* returns 1 for success, 0 for failure
*/
int optimise(float *list, int flag)
{

switch (flag)
{

case 0:
if (!optimise_begin(list))

return 0;
break;

case 1:
if (!update_parameters(list))

return 0;
break;

case 2:

optimise_end();
return 1;

}

old_noise_stdev = para->noise_stdev;
old_colour = para->colour;
o_blocks_x = para->blocks_x;
o_blocks_y = para->blocks_y;
o_block_width = para->block_width;
o_block_height = para->block_height;

sprintf(tmp,"%d total\n", para->total_images);
write(serpt,tmp,strlen(tmp));
return 1;

}

This is the entry point from the physiology system. When called initially, it can be passed a list of one or more images
to be optimised. In subsequent calls, it is passed a list of windowed spike counts that describe the response to each
of the stimuli.

/* LOCAL FUNCTIONS ************************************************************************/

/* int optimise_begin(float *img_list)
* Parameterises the images passed to the function in image_list
* img_list[0] : number of images
* img_list[1..n] : indices of each image
* if passed a negative number of images, create that many default parameter sets)
* (minor hack = can't send -1 images, so we must subtract 1)
*/

int optimise_begin(float *img_list)
{

int i;
if (!img_list) return 0; // null pointer check

srand48(time(0)); // random seed
iteration = -1;

// take some defaults from image 0
pre_t = (image_data+0)->pre_t;
dis_t = (image_data+0)->dis_t;
aft_t = (image_data+0)->aft_t;

// initialise basic functions
if (image_model == kMODEL_BASIS)
{

if (para->blocks_x == para->blocks_y)
{

sprintf(tmp,"2\ncreating basis fns...\n");
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write(serpt/tmp,strlen(tmp));
create_basis(para->blocks_x);

}
else

{
sprintf(tmp,"l\nimage dimensions must match!\n");
write(serpt, tmp,strlen(tmp));
return 0;

num_psets = (int)img_list[0];
if (num_psets < 0) num_psets = abs(num_psets) - 1;

// allocate memory for parameter sets
psets = (struct img_pset *)malloc(sizeof(img_pset) * num_psets);
orig_psets = (struct img_pset *)malloc(sizeof(img_pset) * num_psets);

if (!psets || !orig_psets) return 0; // malloc error

for (i=0; i<num_psets; i++)
{

(psets+i)->vals = NULL;
(orig_psets+i)->vals = NULL;

}

// now create the parameter sets
if ((int)img_list[0] < 0)

// no images passed, create default parameters
for (i=0; i<num_psets; i++)
{

sprintf(tmp,"2\ndefault pset %03d\n", i+1);
write(serpt,tmp,strlen(tmp));

if (!default_pset(psets+i))
{

sprintf(tmp,"l\nERROR: default pset %03d\n", i+1);
write(serpt,tmp,strlen(tmp));
return 0;

}
}

else
// otherwise encode each image
for (i=0; i<num_psets; i++)
{

sprintf(tmp,"2\ncoding img %03d\n", i+1);
write(serpt,tmp,strlen(tmp));

if (!image_to_pset(image_data+((int)img_list[i+1]), psets+i))
(

sprintf(tmp,"l\nERROR: coding img %03d\n", i+1);
write(serpt,tmp,strlen(tmp));
return 0;

}
}

At Ihe beginning of the optimisation process, the last set of images displayed by the physiology system is still held in
memory. One or more of these images can be used as a starting point for the optimisation. Each image selected
must be encoded into a set of parameters.

// backup the parameter sets
for (i=0; i<num_psets; i++)

if (!copy_pset(psets+i, orig_psets+i))
{

sprintf(tmp,"l\nERROR: copying pset %03d\n", i+1);
write(serpt,tmp,strlen(tmp));
return 0;

}

A backup is made of each of the parameter sets that have just been calculated. This allows an unoptimised image to
be included in every iteration, as a baseline measure.

if (!make_img_set())
This function creates the first set of stimuli by adding noise to the parameters set(s).

{
sprintf(tmp,"l\nERROR: making img set\n");
write(serpt,tmp,strlen(tmp));
return 0;

}

sprintf(tmp,"2\nOkay.\n");
write(serpt,tmp,strlen(tmp));

return 1;
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/* int update_parameters(float *response_list)
* Updates the parameters based on the responses contained in response_list
* response_list[0] = number of responses
* response_list[n] = response n
*/
int update_parameters(float *response_list)
A set of stimuli (images derived from noisy versions of each parameter set) has now been presented, and we have
been passed a list containing the response to each stimulus.
{

int i,j,k,n;
float mean;

float c; // constant for each image
float *dst, *orig;
float decay;

if (!response_list) return 0;

// check we have the right number of spike counts
if ((int)response_list[0] != para->total_images)
{

sprintf(tmp,"l\nbad # of responses [r=%03d, i=%03d]\n",(int)response_list[0],para4*
->total_images);

write(serpt,tmp,strlen(tmp));
return 0;

}

if (!write_data(response_list))
{

sprintf(tmp,"l\nERROR: writing results to disk\n");
write(serpt,tmp,strlen(tmp));
return 0;

}

for (i=0; i<num_psets; i++)
{

sprintf(tmp,"2\nUpdating param %03d\n",i+1);
write(serpt,tmp,strlen(tmp));

// calculate the mean response for each parameter set
// (ignoring any noiseless images)
mean = 0.0; n = 0;
for (j = 0; j < para->total_images; j++)

if (stims[j].pset == i && stims[j].seed) {
mean += response_list[j+1];
n++;

}
mean /= n;

// add each noisy image to the parameter set
for (j = 0; j < para->total_images; j++)
{

if (stims[j].pset == i && stims[j].seed) {

srand48(stims[j].seed); iset=0; // seed the random number stream
c = response_list[j+1] - mean;
c *= para->learning_rate * old_noise_stdev;
dst = (psets+i)->vals;

// update parameters
for (k=0; k < (psets+i)->n; k++)

(*dst++) += c * gasdevO;
}

}

The section above implements the correlation algorithm.

// decay the parameters
dst = (psets+i)->vals;
orig = (orig_psets+i)->vals;

decay = 1.0 - (para->decay);
for (k=0; k < (psets+i)->n; k++)

(*dst++) *= decay;

// do we need to resample the parameters?
if ( (para->colour != old_colour) ||

(para->blocks_x != o_blocks_x) ||
(para->blocks_y != o_blocks_y) ||
(para->block_width != o_block_width) ||
(para->block_height != o_block_height) )

{
sprintf(tmp,"2\nresampling psets\n");
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write(serpt,tmp,strlen(tmp));

if (!resample_parameters())
{

sprintf(tmp,"l\nERROR: resampling\n");
write(serpt,tmp,strlen(tmp));
return 0;

}
}

The size of virtual pixels can be changed mid optimisation to increase or decrease the resolution. This region calls
the resampling process, if required.

if (!make_img_set())

Finally, we generate the next set of stimuli.
(

sprintf(tmp,"l\nERROR: making new img set\n");
write(serpt,tmp,strlen(tmp));
return 0;

}

sprintf(tmp,"2\nOkay.\n");
write(serpt,tmp,strlen(tmp));

return 1;
)

/* void optimise end(void)
* Clean up, and write final values of parameters
*/
void optimise_end(void)
{

int i;

write_data(NULL);

// free the memory used by the parameter sets
if (psets)
{

for (i=0; i<num_psets; i++)
if ((psets+i)->vals)

free((psets+i)->vals);
free(psets);

}
if (orig_psets)
{

for (i=0; i<num_psets; i++)
if ((orig_psets+i)->vals)

free((orig_psets+i)->vals);
free(orig_psets);

}

// free the memory used by stimulus descriptions
if (stims) free(stims);

}

/* int resample_parameters()
We've updated the parameters, but the user has changed one (or more) of the settings.
So... we need to recreate the parameters, keeping what we have 'learned' so far.
The copied original parameters are also resampled, so we have a baseline to decay to.

This code does not work with the arbirary basis functions since they are not orthonormal
*/
int resample_parameters()
{

int i;

if (image_model == kMODEL_BASIS)
return 1;

// free the current images
for (i=0; i<para->total_images; i++)

free((image_data+i)->pixel);
free(image_data);

// allocate memory for a new image for every parameter set
image_data=(struct stimulus_image *)malloc(sizeof(struct stimulus_image) * num_psets);
if (!image_data) return 0;

// create a new image for every parameter set (no noise, obviously)
for (i=0; i<num_psets; i++)

if (!pset_to_image(psets+i, 0, image_data+i))
return 0;
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para->total_images = num_psets;

// free the current parameter sets
for (i=0; i<num_psets; i++)

if ((psets+i)->vals)
free((psets+i)->vals);

// create new parameter sets based on the images
for (i=0; i<num_psets; i++)

if (!image_to_pset(image_data+i, psets+i))
return 0;

return 1;
}

/* int write_data(float *response_list)
* Write the parameters and spike counts for each derived image to disk
* (if response_list is NULL only parameters are written)
* Called by update_parameters() & optimise_end()
*/
int write_data(float *response_list)
{

int i,j, ips;
FILE *fp;
char fname[32]/ suffix[32];

if (++iteration==0)
{

time_t t = time(NULL);
struct tm *tp = localtime(&t);
strftime(filename, 32, "results_%H%M_%d%m%y_", tp);

}

for (i=0; i<num_psets; i++)
{

strcpy(fname, filename); // base filename
sprintf(suffix,"%03d.txt", i + 1) ; // append parameter number & extension
strcat(fname, suffix); // full filename
fp = fopen(fname,"a");
if (!fp)

return 0;

// write parameter set
fprintf(fp,"ITERATION #%03d *************************\n",iteration);
fprintf(fp,"PARAMETER SET #%03d (%02dx%02dx%ld)

i+1, (psets+i)->blocks_x, (psets+i)->blocks_y, (psets+i)->colour?3:1);
for (j=0; j<(psets+i)->n; j++)

fprintf(fp,"%5.3f ",(psets+i)->vals[j]) ;
fprintf(fp,"\n");
if (response_list)
{

fprintf(fp,"VARIABLES *******************************\n");
fprintf (fp,"Learning Rate = %f\n",para->learning_rate);
fprintf(fp,"Noise Std.Dev = %f\n",old_noise_stdev);
fprintf(fp,"CELL RESPONSE ***************************\n");
fprintf(fp," Image Seed Spks\n");
ips = para->total_images / num_psets;

for (j =0; j < para->total_images; j++)
if (stims[j].pset == i)

fprintf(fp," #%03d [%010d] %5.1f\n", j, stims[j].seed, 4*
response_list[j+1]);

}

fprintf (fp,"\n");
fclose(fp);

}
return 1;

}

/* int make_img_set ()
* Creates a set of images derived from the parameter sets
*/
int make_img_set ()
This function creates a set of stimuli by adding noise to the parameter values. Each noisy set of parameters is then
transformed into an image. Different functions implement the actual transformation, depending on the image model
in use. Images based on noiseless and original versions of the parameters can also be included in the stimulus set,
in order to monitor the progress of the procedure.
{

int i,j;
int pset_images; // number of images per pset
struct img_pset *ppset;
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// free memory occupied by original/last set of images
for (i=0; i<para->total_images; i++)
{

if ((image_data+i)->load)
{ free((image_data+i)->pixel); (image_data+i)->load = 0; }

if ((image_data+i)->filename)
free((image_data+i)->filename);

}
free(image_data);

// free memory occupied by last set of stimulus descriptions
if (stims) free(stims);

// There must be at least 3 images per parameter set, since we need 2 for the
// original and noiseless images
pset_images = para->max_images / num_psets;
if (pset_images < 3) return 0;

para->total_images = pset_images * num_psets;

// allocate image memory

image_data=(struct stimulus_image *)malloc(sizeof(struct stimulus_image) * para4*
->total_images);

if (!image_data) return 0;

// allocate memory for stimulus descriptions
stims=(struct stim *)malloc(sizeof(struct stim) * para->total_images);
if (!stims) return 0;

// generate the stimulus descriptions
for (i=0; i<para->total_images; i++)
{

j = i / pset_images;
stims[i].orig = 0;
stims[i].pset = j;
stims[i].seed = lrand48() + 1;

if (search_image_set == kNOISY_BASE_ORIGINAL)
{

// each first image is the original
if (i % pset_images == 0) {stims[i].orig =1; stims[i].seed = 0;}

// each second is the noiseless
if (i % pset_images == 1) stims[i].seed = 0;

}
}

// now create each stimulus image
for (i=0; i<para->total_images; i++)
{

sprintf(tmp,"2\nnoisy image %03d\n",i+1);
write(serpt,tmp,strlen(tmp));

if (stims[i].orig)
ppset = orig_psets + stims[i].pset;

else

ppset = psets + stims[i].pset;

if (!pset_to_image(ppset, stims[i].seed, image_data+i))
return 0;

The forward transform is called to convert the parameters plus noise into an image.

)
return 1;

}

/* int copy_pset(struct img_pset *src, struct img_pset *dst)
* Copies parameter set src to dst. Allocates memory for the copied values
*/
int copy_j?set(struct img_pset *src, struct img_pset *dst)
{

int i;

dst->colour = src->colour;
dst->blocks_x = src->blocks_x;
dst->blocks_y = src->blocks_y;
dst->block_width = src->block_width;
dst->block_height = src->block_height;
dst->n = src->n;

dst->vals = (float *)malloc(sizeof(float) * dst->n);
if (!dst->vals) return 0;

for (i=0; i<dst->n; i++)
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dst->vals[i] = src->vals[i];

return 1;

/*************** ****************************************************************************
* default_pset() - Initialises the parameters.
* The parameters are initialised such that the current image model will produce a mean
* grey image when the parameters are fed through.
*******************************************************************************************/

int default_pset(struct img_pset *pset)
{

int i; // counter
int num;

pset->colour = para->colour;
pset->blocks_x = para->blocks_x;
pset->blocks_y = para->blocks_y;
pset->block_width = para->block_width;
pset->block_height = para->block_height;

// determine how many values we need
switch (image_model)
{

case kMODEL_IDENTITY:
num = (pset->blocks_x) * (pset->blocks_y);
break;

case kMODEL_CORRELATED:
num = (pset->blocks_x - 1) * (pset->blocks_y - 1);
break;

case kMODEL_BASIS:
num = BASIS_SIZE;
break;

}

// allocate the memory
if (pset->colour)

pset->n = 3 * num;
else

pset->n = num;

pset->vals = (float *)malloc(sizeof(float) * pset->n);
if (!pset->vals) return 0;

float *dst = pset->vals;

// initialise the values to zero

for (i=0; i < pset->n; i++)
*dst++ = 0.0;

return 1;
}

If the user has not selected an image to optimise, we instead optimise one (or more) mean luminance images. This
function sets initialises the parameters to describe a mean luminance image.

/*******************************************************************************************

* pset_to_image() - Implements the two-step image model.
* The parameters and noise are added, and the values fed into the chosen image model,
* resulting in an image ready for display.
*******************************************************************************************/

int pset_to_image(struct img_j?set *pset, long seed, struct stimulus_image *img)
{

int i, nx, ny;
float * *Y = NULL;
float **Cb = NULL;
float **Cr = NULL;

float *nvals;

nx = pset->blocks_x;
ny = pset->blocks_y;

// add the noise and parameters
srand48(seed); iset=0;
nvals = (float *)malloc(sizeof(float) * pset->n);
for (i=0; i < pset->n; i++)

if (seed)
nvals[i] = pset->vals[i] + (gasdevO * para->noise_stdev);

else

nvals[i] = pset->vals[i];
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// create matrices to hold the intermediate values
Y = matrix(1,ny,1,nx);
if (pset->colour)
{

Cb = matrix(1,ny,1,nx);
Cr = matrix(1,ny,1,nx);

}

// pass the values through the first stage of the image model
switch (image_model)
{

case kMODEL_IDENTITY:
identity_transform_f(pset, nvals, Y, Cb, Cr);
break;

case kMODEL_CORRELATED:
freq_transform_f(pset, nvals, Y, Cb, Cr);
break;

case kMODEL_BASIS:
basis_transform_f(pset, nvals, Y, Cb, Cr);
break;

}

First, the parameters are transformed to a pixel basis, with a YCbCr colour representation.
// now pass them through the second stage
if (!matrix_to_image(Y, Cb, Cr, img, nx, ny, pset->block_width, pset->block_height))

return 0;

Then the virtual pixels are converted to real RGB pixels ready for display.

free_matrix(Y,1,ny,1,nx);
if (pset->colour)
{

free_matrix(Cb,1,ny,1,nx);
free_matrix(Cr,1,ny,1,nx);

}

free(nvals);

return 1;
}
^*******************************************************************************************
* x_transform_f() These functions implement the first step of the forward image model.
* The noisy parameters are fed into an image model, producing matrices for the luminance
* channel and (optionally) two colour channels.
*******************************************************************************************/
int identity_transform_f(struct img_j?set *pset, float *nvals, float **ch_Y, float **ch_Cb, float^
**ch_Cr)

{
int bx, by;
float *src = nvals;

for (by = 0; by < (pset->blocks_y); by++)
for (bx = 0; bx < (pset->blocks_x); bx++)
{

ch_Y[by+1][bx+1] = *src++;

if (pset->colour)
{

ch_Cb[by+1][bx+1] = *src++;
ch_Cr[by+1][bx+1] = *src++;

)

}
return 1;

}

The parameters already represent the image in a pixel basis, so there is little to do here, simply copy the (linear)
parameter set into a matrix of the appropriate size. This results in a YCbCr virtual pixel based representation.
int basis_transform_f(struct img_pset *pset, float *nvals, float **ch_Y, float **ch_Cb, float*!*
**ch_Cr)

<
int num = BASIS_SIZE;

scaled_basis_transform(nvals, ch_Y, pset->blocks_x, pset->blocks_y);
if (pset->colour)
{

scaled_basis_transform(nvals+num, ch_Cb, pset->blocks_x, pset->blocks_y);
scaled_basis_transform(nvals+num+num, ch_Cr, pset->blocks_x, pset->blocks_y);

)
return 1;

}

void scaled_basis_transform(float *src, float **ch, int width, int height)
{
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int x,y;
int i,j,k;
float w,s;
float *ptr;

for (y = 0; y < height; y++)
for (x =0; x < width; x++)

ch[y+l][x+l] = 0.0;

for (1=0, j=0, k=8, s=1.0; i<BASIS_SIZE; i++, j++)
{

ptr = basis[i].f;
w = s * (*src++);
if (j==k) {k*=4; s/=0.5; j=0;} // previously 2 - incorrect

for (y=basis[i]. yO; y<=basis [i] . yl; y++)
for (x=basis[i] .x0; x<=basis[i] .xl; x++)

ch[height-y][x+1] += w * (*ptr++);
}

}

Here, the parameters represent coefficients of a set of Gabor functions. The coefficients are scaled such that the
image noise has a 1/f frequency spectrum. The end result is a YCbCr virtual pixel based image.
int freg_transform_f (struct img_pset *pset, float *nvals, float **ch_Y, float **ch_Cb, float4*
**ch_Cr)

{
int num = (pset->blocks_x - 1) * (pset->blocks_y - 1);

scaled_ift(nvals, ch_Y, pset->blocks_x, pset->blocks_y);
if (pset->colour)
{

scaled_ift(nvals+num, ch_Cb, pset->blocks_x, pset->blocks_y);
scaled_ift(nvals+num+num, ch_Cr, pset->blocks_x, pset->blocks_y);

}

return 1;
}

void scaled_ift(float *src, float **ch, int width, int height)
{

int x,y;
float ***data, **speq;
float fd;

data = f3tensor(1,1,1,height,1,width);
speq = matrix(1,1,1,2*height);

// make sure all the coefficients are zero

for (y=l; y<=height; y++)
{

for (x=l; x<=width; x++)
data[l][y][x]=0.0;

speq[l][y*2]=0.0;
speq[1][y*2-l]=0.0;

}

// scale the coefficents by 1/f
for (y=l; y<=height/2; y++)
{

for (x=l; x<=width/2; x++)
{

if (x—— 1 && y==l) // fOO
{

data[1][1][1] = (*src++);
data[1][1][2] = 0.0;
continue;

}

fd = 1.0 / sqrt( (x-1)*(x-1) + (y-1)*(y-1) );

data[1][y][x*2] = fd * (*src++);
data[1][y][x*2-l] = fd * (*src++);

if (y!=l)
{

if (x==l) // set the -fO's to be *f0
{

data[l][height-y+2][1] = data[l][y][1];
data[l][height-y+2][2] = -data[1][y][2];

}
else // independent -f's
{

data[1][height-y+2][x*2-l] = fd * (*src++);
data[1] [height-y+2] [x*2] = fd * (*src++);
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}
}

}
}
// inverse transform
rlft3(data,speq,1,height,width,-1);

// copy to channel
for (y=l; y<=height; y++)

for (x=l; x<=width; x++)
ch [y] [x] = data [1] [y] [x] ;

free_matrix(speq,1,1,1,2*height);
free_f3tensor(data,1,1,1,height,1,width);

}

In this case, parameters represent real and imaginary parts of the component frequencies of the image. Again,
coefficients are first scaled to produce noise with a 1/f frequency spectrum. The end result is a YCbCr virtual pixel
based image.
^*******************************************************************************************
* matrix_to_image() - Implements the second step of the forward image model.
* a matrix specifying the luminance channel is (optionally) combined with two colour
* channels and an RGB image of the specified size is created, ready for display.
*******************************************************************************************/

int matrix_to_image(float **ch_Y, float **ch_Cb, float **ch_Cr, struct stimulus_image *img, int4*
nx, int ny, int bw, int bh)

This function simply converts a YCbCr virtual pixel representation into an RGB real pixels, ready for display.
{

int bx,by;// block counters
int x,y; // pixel counters

int tlx, tly, brx, bry;

float r,g,b, Y, Cb = 0.0, Cr = 0.0;
byte pix_r, pix_g, pix_b;

img->width = nx * bw;
img->height = ny * bh;
img->pixel = (unsigned long *)malloc(sizeof(unsigned long) * img->width * img->height);
if (!img->pixel) return 0;

// the following need to be set for the external code
img->load = 1; img->filename = NULL;
img->cx = para->center_x; img->cy = para->center_y;
img->pre_t = pre_t; img->dis_t = dis_t; img->aft_t = aft_t;

for (by=0; by < ny; by++)
for (bx=0; bx < nx; bx++)
{

Y = ch_Y[by+l][bx+1];
if (ch_Cb) Cb = ch_Cb[by+1][bx+1];
if (ch_Cr) Cr = ch_Cr[by+l][bx+1];

// convert to P.,G,B
YCbCr_to_RGB(Y,Cb,Cr,&r,&g,&b);

// bounds check
if (r>l.0) r=l.0; if (g>1.0) g=1.0; if (b>1.0) b=1.0;
if (r<0.0) r=0.0; if (g<0.0) g=0.0; if (b<0.0) b=0.0;

pix_r = (byte)(r*255.0);
pix_g = (byte) (g*255.0);
pix_b = (byte) (b*255.0);

tlx = bx * bw;
tly = by * bh;
brx = tlx + bw;
bry = tly + bh;

// write the pixels
for (y=tly; y<bry; y++)

for (x=tlx; x<brx; x++)

put_pixel_rgb(img, x, y, pix_r, pix_g, pix_b);

}
return 1;

}

/*******************************************************************************************
* image_to_pset() - Implements the two-step inverse image model.
*******************************************************************************************i
int image_to_pset(struct stimulus_image *img, struct img_pset *pset)
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This, and the following functions are used at the start of the optimisation process to transform the pixel based
image(s) that has been selected for optimisation into parameters (the form of encoding depends on the choice of
image model).

(
int nx, ny;
float **Y = NULL;
float **Cb = NULL;
float **Cr = NULL;

if (!img->pixel I I !img->load) return 0;

pset->colour = para->colour;
pset->blocks_x = para->blocks_x;
pset->blocks_y = para->blocks_y;
pset->block_width = para->block_width;
pset->block_height = para->block_height;

nx = pset->blocks_x;
ny = pset->blocks_y;

// create matrices to hold the intermediate values
Y = matrix(1,ny,1,nx);
if (pset->colour)
{

Cb = matrix(1,ny,1,nx);
Cr = matrix(1,ny,1,nx);

}

// pass the image through the first stage of the inverse model
image_to_matrix(img, Y, Cb, Cr, nx, ny, pset->block_width, pset->block_height);

// pass the values through the second stage of the inverse model
switch (image_model)
{

case kMODEL_IDENTITY:
identity_transform_b(Y, Cb, Cr, pset);
break;

case kMODEL_CORRELATED:
freq_transform_b(Y, Cb, Cr, pset);
break;

case kMODEL_BASIS:
// just load the pre-stored coeffs, since
// it would take too long to calculate them
load_coefficients(img, pset);
break;

}

free_matrix(Y,1,ny,1,nx);
if (pset->colour)
{

free_matrix(Cb,1,ny,1,nx);
free_matrix(Cr,1,ny,1,nx);

}
return 1;

}

int load_coefficients(struct stimulus_image *img, struct img_pset *pset)
Because computing the Gabor representation of an image is very time consuming, we simply load a set of
coefficients that have been pre-computed.

{
int i;
char filename[256];
FILE *fp;

// open the coefficient file
strncpy(filename, img->filename, strlen(img->filename)-4);
filename[strlen(img->filename)-4]='\0';
streat(filename,".txt\0");

fp = fopen(filename,"r");
if (!fp)
{

printf("coefficient filename = %s\n",filename);
sprintf(tmp,"l\nNo coefficient file!\n");
write(serpt,tmp,strlen(tmp));
return 0;

}

// allocate memory for the parameters
pset->n = BASIS_SIZE;
if (pset->colour) pset->n *= 3;
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pset->vals = (float *)malloc(sizeof(float) * pset->n);
if (!pset->vals) return 0;

// then load them
float *dst = pset->vals;
for (i=0; i<pset->n; i++)

fscanf(fp,"%f\n",dst++);
fclose(fp);

// now scale the parameters
int j,k;
float s;

dst = pset->vals;
for (i=0, j=0, k=8, s-1.0; i<BASIS_SIZE; i++, j++)
{

*(dst) *= s;

if (pset->colour)
{

*(dst+BASIS_SIZE) *= s;
*(dst+BASIS_SIZE*2) *= s;

}
dst++;
if (j==k) (k*=4; s*=0.5; j=0;} // previously 2 - incorrect

/*******************************************************************************************

* x_transform_b() These functions implement the second step of the inverse image model.
*******************************************************************************************/

int identity_transform_b(float **ch_Y, float **ch_Cb, float **ch_Cr, struct img_pset *pset)
{

int bx, by;

// work out the number of parameters
pset->n = (pset->blocks_x) * (pset->blocks_y);
if (pset->colour) pset->n *= 3;

// allocate memory for them
pset->vals = (float *)malloc(sizeof(float) * pset->n);
if (!pset->vals) return 0;

float *dst = pset->vals;
for (by = 0; by < (pset->blocks_y); by++)

for (bx = 0; bx < (pset->blocks_x); bx++)
{

*dst++ = ch_Y[by+1][bx+1];
if (pset->colour)
{

*dst++ = ch_Cb[by+1][bx+1];
*dst++ = ch_Cr[by+1][bx+1];

}
}

return 1;
}

The first step already produced YCbCr virtual pixels. Just need to copy them into the parameter structure.
int freq^transforn^b (float **ch_Y, float **ch_Cb, float **ch_Cr, struct img_pset *pset)
{

int num;

// work out the number of parameters
num = pset->n = (pset->blocks_x - 1) * (pset->blocks_y - 1);
if (pset->colour) pset->n *= 3;

// allocate memory for them
pset->vals = (float *)malloc(sizeof(float) * pset->n);
if (!pset->vals) return 0;

float *dst = pset->vals;

scaled_fft(ch_Y/ dst, pset->blocks_x, pset->blocks_y);
if (pset->colour)
{

scaled_fft(ch_Cb, dst+num, pset->blocks_x, pset->blocks_y);
scaled_fft(ch_Cr, dst+num+num, pset->blocks_x, pset->blocks_y);

}
return 1;

}

void scaled_fft(float **ch, float *dst, int width, int height)
{

int x,y;
float ***data, **speq;
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float fd;

data = f3tensor(1,1,1,height,1,width);
speq = matrix(1,1,1, 2*height);

// copy channel to matrix
for (y=l; y<=height; y++)

for (x=l; x<=width; x++)
data [1] [y] [x] =ch[y][x];

// forward transform

rlft3(data,speq,1,height,width, 1);

// scale the coefficents by f
// (& further scale by width*height/2 since I don't do this in inverse transform)
float scale = width*height/2.0;

for (y=l; y<=height/2; y++)
{

for (x=l; x<=width/2; x++)
{

if (x==l && y==l) // fOO
{

(*dst++) = data[1][1][1] / scale;
continue;

}

fd = sqrt

(*dst++)
(*dst++)

if (y!=1)
{

if (
{

}
else

{

}
}

}
}

free_matrix(speq,1,1,1,2*height);
free_f3tensor(data,1,1,1,height,1,width);

}

When transforming the parameters into an image, the coefficients are scaled such that the image noise has a 1/f
spectrum. This must be compensated for during the initial encoding step above, such that the underlying initial
image will remain the same.

/*******************************************************************************************
* image_to_matrix() - Implements the first step of the inverse image model.
* an RGB image in memory is resampled at the resolution specified and converted into
* seperate luminance (and optional) colour channels.
*******************************************************************************************/

int image_to_matrix(struct stimulus_image *img, float **ch_Y, float **ch_Cb, float **ch_Cr, int^
nx, int ny, int bw, int bh)

{
int bx,by;// block counters
int x,y; // pixel counters

int zero_x, zero_y, tlx, tly, brx, bry;

float r,g,b, Y,Cb,Cr;
long tot_r,tot_g,tot_b;
byte pix_r, pix_g, pix_b, def_r, def_g, def_b;

if (!img->pixel I I !img->load) return 0;

// establish a mapping between the original and new coordinate systems
zero_x = (img->width - nx*bw) / 2;
zero_y = (img->height - ny*bh) / 2;

// get the default background colour from (0,0)
get_pixel_rgb(img, 0, 0, &def_r, &def_g, &def_b);

for (by=0; by < ny; by++)
for (bx=0; bx < nx; bx++)
{

// calculate the average R,G,B for

( (x-1)*(x-l)+(y-l)*(y-1) ) / scale;

= fd * data[1][y][x*2];
= fd * data[1][y][x*2-l];

x==l) // set the -fO's to be *f0

data[1][height-y+2][1] = data[1][y][1];
data[1] [height-y+2] [2] = -data[1] [y] [2];

// independent -f's

(*dst++) = fd * data[1][height-y+2][x*2-l];
(*dst++) = fd * data[1][height-y+2][x*2];
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/' this block in the original image

tlx = zero_x + (bx * bw);
tly = zero_y + (by * bh);
brx = tlx + bw;
bry = tly + bh;

tot_r=0.0; tot_g=0.0; tot_b=0.0;
for (y=tly; y<bry; y++)

for (x=tlx; x<brx; x++)
{

if (x >= 0 && y >= 0 && x < img->width && y < img->height)
get_pixel_rgb(img, x, y, &pix_r, &pix_g, &pix_b);

else

{pix_r = def_r; pix_g = def_g; pix_b = def_b;}

tot_r += pix_r;
tot_g += pix_g;
tot_b += pix_b;

}

// get R, G, B in [0,1]
r = (float)tot_r / (bw * bh * 255)
g = (float)tot_g / (bw * bh * 255)
b = (float)tot_b / (bw * bh * 255)

// convert to Y,Cb,Cr
RGB_to_YCbCr(r,g,b,&Y,&Cb,&Cr);

// and store

ch_Y[by+1][bx+1] = Y;
if (ch_Cb) ch_Cb[by+1][bx+1] = Cb;
if (ch_Cr) ch_Cr[by+l][bx+1] = Cr;

}
return 1;

}

This code resamples the selected image according to the resolution settings chosen by the user. The result is a
matrix based YCbCr virtual pixel representation, ready for transformation using the selected image model.

* helper functions
*******************************************************************************************/

void get_jpixel_rgb(struct stimulus_image *img, int x, int y, byte *r, byte *g, byte *b)
{

long index = x + (y * img->width);
unsigned long tmp = *(img->pixel + index);

// colour layout in pixmap is xBGR
*r = (tmp&OxFF);
*g = (tmp>>8)&0xFF;
*b = (tmp»16) &0xFF;

}

void put_pixel_rgb(struct stimulus_image *img, int x, int y, byte r, byte g, byte b)
{

long index = x + (y * img->width);
unsigned long tmp = ((long)r) | ((long)g<<8) | ( (long) b«16) ;

*(img->pixel + index) = tmp;
}

vc

(
RGB_to YCbCr(float r, float g, float b, float *Y,

* Y = ( 0.299 * r) + 0.587 * g) + 0.114 * b) ;
*Cb = (-0.169 * r) + (-0.331 * g) + 0.500 * b) ;
*Cr = ( 0.530 * r) + (-0.419 * g) + -0.081 * b) ;

* Y -= 0.5;

YCbCr_to_RGB(float Y, float Cb float Cr, float *r

Y += 0 .5;

*r = ( 1.0 * Y) + 0 0000 * Cb) + ( 1.4021 * Cr) ;

*g = ( 1.0 * Y) + (-0 3441 * Cb) + (--0.7142 * Cr) ;
*b = ( 1.0 * Y) + 1 7718 * Cb) + ( 0.0000 * Cr) ;

}

float gasdev(void)
(

/* returns a normally distributed deviate, with zero mean
and unit variance. From Numerical Recipes in C 2nd ed. */
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//static inn iset=0;
static float gset;
float fac,rsq,vl,v2;

if (iset==0) {
do {

vl=2.0*drand48()-1.0;
v2=2.0*drand48()-1.0;
rsq=vl*vl+v2*v2;

} while (rsq >=1.0 || rsq == 0.0);
fac=sqrt(-2.0*log(rsq)/rsq);
gset=vl*fac;
iset=l;
return v2*fac;

} else {
iset=0;
return gset;

}
}

12.2. qabor.h

// basis function structure

typedef struct {
int x0,y0; // top left
int xl,yl; // bottom right
float *f;

} basis_fn;

#define BASIS_SIZE 2729

void create_basis(int size);

12.3. qabor.c

#include "gabor.h"
#include <stdio.h>
#include <stdlib.h>
#include <math.h>

#define PI3.14159265

extern basis_fn basis[BASIS_SIZE];

float gabor(float x, float y,
float xO, float yO, float w, float f, float o, float p, float size)

{
float k = 2 * 3.14159265 / size;
x = x - x0;

y = y - yO;

return exp(-(x*x+y*y)/(2*w*w)) * cos(k*f*(x*cos(o)+y*sin(o))+p);

// create a five level gabor wavelet pyramid basis for an image
// of dimensions (size x size) pixels
void create_basis(int size)
{

int i = 1;

int x, y, sx, fc, f, o, p;
float cx, cy, w;
float *ptr;

f = 1;
sx = size;

// create the DC component

basis[0].x0 = 0; basis[0].y0 = 0;
basis[0].xl = size-1; basis[0].yl = size-1;
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basis[0].f = (float *)malloc(sizeof(float) * size * size);
ptr = basis[0].f;
for (y=0; y<=size-l; y++)

for (x=0; x<=size-l; x++)
*ptr++ = 1;

// now the gabors

for (fc = 1; fc <= 5 fC + +)
\

w = sx / sqrt(2.0*PI);
for (o=0; o<=3; o++)

for (cx = (sx-1.0)/2.0; cx<size ; cx+=sx )
for (cy = (sx-1.0)/2.0; cy<size ; cy+=sx )

for (p=0; p<=l; p++)
i
i

basis[i].x0 = (cx-w*3.0)<0 ? 0:(cx-w*3.0);
basis[i].y0 = (cy-w*3.0)<0 ? 0:(cy-w*3.0);
basis[i].xl = (cx+w*3.0)>(size-1) ? size-1: (cx+w*3.0);
basis[i].yl = (cy+w*3.0)>(size-1) ? size-1: (cy+w*3.0);
basis[i].f = (float *)malloc(sizeof(float) *

(1+basis[i].xl-basis[i].x0) * (1+basis[i].yl-basis[i].yO));
ptr = basis[i].f;
for (y=basis[i].yO; y<=basis[i].yl; y++)

for (x=basis[i].xO; x<=basis[i].xl; x++)
*ptr++ = gabor( x,y,cx,cy,w,f,o*(PI/4.0),p*(PI/2.0),size );

i++;

f*=2.0;
sx/=2.0;

}
}

}

12.4, fft.h

// FFT routine and other utilities from Numerical Recipes in C, 2nd Ed

float **matrix(long nrl, long nrh, long ncl, long nch);
float ***f3tensor(long nrl, long nrh, long ncl, long nch, long ndl, long ndh);
void free_matrix(float **m, long nrl, long nrh, long ncl, long nch);
void free_f3tensor(float ***t, long nrl, long nrh, long ncl, long nch, long ndl, long ndh);

void rlft3(float ***data, float **speq, unsigned long nnl, unsigned long nn2, unsigned long nn3,4*
int isign);
void fourn(float data[], unsigned long nn[] , int ndim, int isign);

12.5. fft.c

// FFT routine and other utilities from Numerical Recipes in C, 2nd Ed
#include <math.h>
#include <stdio.h>
#include <stdlib.h>

#define NR_END 1
#define FREE_ARG char*
#define SWAP(a,b) tempr=(a);(a)=(b);(b)=tempr

void nrerror(char error_text[])
{

fprintf(stderr,"Numerical Recipes run-time error..An");
fprintf(stderr,"%s\n",error_text);
fprintf(stderr,.now exiting to system...\n");
exit(1);

}

float **matrix(long nrl, long nrh, long ncl, long nch)
/* allocate a float matrix with subscript range m[nrl..nrh][ncl..nch] */
{

long i, nrow=nrh-nrl+l,ncol=nch-ncl+l;
float **m;

/* allocate pointers to rows */
m=(float **) malloc((size_t)((nrow+NR_END)*sizeof(float*)));
if (!m) nrerror("allocation failure 1 in matrix()");
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m += NR_END;
m -= nrl;

/* allocate rows and set pointers to them */
m[nrl]=(float *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(float)));
if (!m[nrl]) nrerror("allocation failure 2 in matrix()");
m[nrl] += NR_END;
m[nrl] -= ncl;

for(i=nrl+l;i<=nrh;i++) m[i]=m[i-1]+ncol;

/* return pointer to array of pointers to rows */
return m;

}

float ***f3tensor(long nrl, long nrh, long ncl, long nch, long ndl, long ndh)
/* allocate a float 3tensor with range t[nrl..nrh][ncl..nch][ndl..ndh] */
{

long i,j,nrow=nrh-nrl+l,ncol=nch-ncl+l,ndep=ndh-ndl+l;
float ***t;

/* allocate pointers to pointers to rows */
t=(float ***) malloc((size_t)((nrow+NR_END)*sizeof(float**)));
if (!t) nrerror("allocation failure 1 in f3tensor()");
t += NR_END;
t -= nrl;

/* allocate pointers to rows and set pointers to them */
t[nrl]=(float **) malloc((size_t)( (nrow*ncol+NR_END)*sizeof(float*)));
if (!t[nrl]) nrerror("allocation failure 2 in f3tensor()");
t[nrl] += NR_END;
t[nrl] -= ncl;

/* allocate rows and set pointers to them */
t[nrl][ncl]=(float *) malloc((size_t)((nrow*ncol*ndep+NR_END)*sizeof(float)));
if (!t[nrl] [ncl]) nrerror("allocation failure 3 in f3tensor ()");
t[nrl][ncl] += NR_END;
t[nrl][ncl] -= ndl;

for(j=ncl+l;j<=nch;j++) t[nrl][j]=t[nrl][j-l]+ndep;
for(i=nrl+l;i<=nrh;i++) {

t[i]=t[i-1]+ncol;
t[i][ncl]=t[i-l][ncl]+ncol*ndep;
for(j=ncl+l;j<=nch;j++) t[i][j]=t[i][j-l]+ndep;

}

/* return pointer to array of pointers to rows */
return t;

}

void free_matrix(float **m, long nrl, long nrh, long ncl, long nch)
/* free a float matrix allocated by matrix() */
{

free((FREE_ARG) (m[nrl]+ncl-NR_END));
free((FREE_ARG) (m+nrl-NR_END));

}

void free_f3tensor(float ***t, long nrl, long nrh, long ncl, long nch, long ndl, long ndh)
/* free a float f3tensor allocated by f3tensor() */
{

free((FREE_ARG) (t[nrl][ncl]+ndl-NR_END));
free((FREE_ARG) (t[nrl]+ncl-NR_END));
free((FREE_ARG) (t+nrl-NR_END));

}

// FFT routines follow...

void rlft3(float ***data, float **speq, unsigned long nnl, unsigned long nn2, unsigned long nn3,^
int isign)

{
void fourn(float data[], unsigned long nn[], int ndim, int isign);
void nrerror(char error_text[]);
unsigned long il,i2,i3,j1,j2,j3,nn[4],ii3;
double theta,wi,wpi,wpr,wr,wtemp;
float cl,c2,hlr,hli,h2r,h2i;

if (l+&data[nnl][nn2][nn3]-Sdata[1][1][1] != nnl*nn2*nn3)
nrerror ("rlft3: problem with dimensions or contiguity of data array\n");

cl=0.5;
c2 = -0.5*isign;
theta=isign*(6.28318530717959/nn3);
wtemp=sin(0.5*theta) ;
wpr = -2.0*wtemp*wtemp;
wpi=sin(theta);
nn[1]=nnl;
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nn[2]=nn2;
nn[3]=nn3 » 1;
if (isign == 1) {

fourn(Sdata[1][1][1]-1,nn,3,isign);
for (i1=1;il<=nnl;il++)

for (i2=l,j 2=0;i2<=nn2;i2++) {
speq[il][++j2]=data[il][i2][1];
speq[il][++j2]=data[il][i2][2];

}
}
for (il=l;il<=nnl;il++) {

j1=(il != 1 ? nnl-il+2 : 1);
wr=l.0;
wi=0.0;
for (ii3=l, i3=l; i3<= (nn3»2) +1; i3++, ii3+=2) {

for (i2=l;i2<=nn2;i2++) {
if (i3 == 1) {

j2= (i2 ! = 1 ? ( (nn2-i2)«l)+3 : 1);
hlr=cl*(data[il] [i2] [1]+speq[jl] [j 2]);
hli=cl*(data[il] [i2] [2]-speq[jl] [j 2+1]);
h2i=c2*(data[il] [i2] [1]-speq[jl] [j2]);
h2r= -c2*(data[il] [i2] [2]+speq[j1] [j 2+1]);
data[il][i2][l]=hlr+h2r;
data[il][i2][2]=hli+h2i;
speq[jl][j2]=hlr-h2r;
speq[jl] [j 2+1]=h2i-hli;

} else {
j2=(i2 != 1 ? nn2-i2+2 : 1);
j 3=nn3+3- (i3«l) ;
hlr=cl*(data[il] [i2] [ii3]+data[j1] [j 2] [j 3]);
hli=cl*(data[il] [i2] [ii3+l]-data[j1] [j 2] [j 3+1]);
h2i=c2*(data[il] [i2] [ii3]-data[j1] [j2] [j 3]);
h2r= -c2*(data[il] [i2] [ii3+1]+data[jl] [j 2] [j 3+1]);
data[il][i2][ii3]=hlr+wr*h2r-wi*h2i;
data[il][i2][ii3+l]=hli+wr*h2i+wi*h2r;
data[jl] [j 2] [j3]=hlr-wr*h2r+wi*h2i;
data[jl] [j 2] [j 3+1]= -hli+wr*h2i+wi*h2r;

}
}
wr=(wtemp=wr)*wpr-wi*wpi+wr;
wi=wi*wpr+wtemp*wpi+wi;

}
}
if (isign == -1)

fourn(sdata[1][1][1]-1,nn,3,isign);
}

void fourn(float data[], unsigned long nn[], int ndim, int isign)
{

int idim;
unsigned long il,i2,i3,i2rev,i3rev,ipl,ip2,ip3,ifpl,ifp2;
unsigned long ibit,kl,k2,n,nprev,nrem,ntot;
float tempi,tempr;
double theta,wi,wpi,wpr,wr,wtemp;

for (ntot=l,idim=l;idim<=ndim;idim++)
ntot *= nn[idim];

nprev=l;
for (idim=ndim;idim>=l;idim—) {

n=nn[idim];
nrem=ntot/(n*nprev);
ipl=nprev « 1;
ip2=ipl*n;
ip3=ip2*nrem;
i2rev=l;
for (i2=l;i2<=ip2;i2+=ipl) {

if (i2 < i2rev) {
for (il=i2;il<=i2+ipl-2;il+=2) {

for (i3=il;i3<=ip3;i3+=ip2) {
i3rev=i2rev+i3-i2;
SWAP(data[i3],data[i3rev]);
SWAP(data[i3+l],data[i3rev+l]);

}
}

}
ibit=ip2 » 1;
while (ibit >= ipl && i2rev > ibit) {

i2rev -= ibit;
ibit »= 1;

}
i2rev += ibit;

}
ifpl=ipl;
while (ifpl < ip2) {

ifp2=ifpl << 1;
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theta=isign*6.28318530717959/(ifp2/ipl);
wtemp=sin(0.5*theta);
wpr = -2.0*wtemp*wtemp;
wpi=sin(theta);
wr=l.0;
wi=0.0;
for (i3=1;i3<=ifpl;i3+=ipl) {

for (i1=13;il<=i3+ipl-2;il+=2) {
for (i2=il;i2<=ip3;i2+=ifp2) {

kl=i2;
k2=kl+ifpl;
tempr=(float)wr*data[k2]-(float)wi*data[k2+l]
tempi=(float)wr*data[k2+l]+(float)wi*data[k2]
data[k2]=data[kl]-tempr;
data[k2+l]=data[kl+1]-tempi;
data[kl] += tempr;
data[kl+1] += tempi;

}
}
wr=(wtemp=wr)*wpr-wi*wpi+wr;
wi=wi*wpr+wtemp*wpi+wi;

}
ifpl=ifp2;

}
nprev *= n;
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