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Abstract

The use of graph theory has become widespread in the algebraic theory of semi¬
groups. In this context, the graph is mainly used as a visual aid to make presenta¬
tion clearer and the problems more manageable. Central to such approaches is the
Cayley graph of a semigroup. There are also many variations on the idea of the
Cayley graph, usually special kinds of subgraph or factor graph, that have become
important in their own right. Examples include Schiitzenberger graphs, Schreier
coset graphs and Van Kampen diagrams (for groups), Munn trees, Adian graphs,
Squier complexes, semigroup diagrams, and graphs of completely 0-simple semi¬
groups. Also, the representation of elements in finite transformation semigroups
as digraphs has proved a useful tool.

This thesis consists of several problems in the theory of semigroups with the com¬
mon feature that they are all best attacked using graph theory. The thesis has two
parts. In the first part combinatorial questions for finite semigroups and monoids
are considered. In particular, we look at the problem of finding minimal generat¬
ing sets for various endomorphism monoids and their ideals. This is achieved by
detailed analysis of the generating sets of completely 0-simple semigroups. This
investigation is carried out using a bipartite graph representation.

The second part of the thesis is about infinite semigroup theory, and in particular
some problems in the theory of semigroup presentations. In particular we con¬
sider the general problem of finding presentations for subsemigroups of finitely
presented semigroups. Sufficient conditions are introduced that force such a sub-
semigroup to be finitely presented. These conditions are given in terms of the
position of the subsemigroup in the parent semigroup's left and right Cayley
graphs.
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Preface

This thesis is a collection of problems, and some solutions, from the theory of
semigroups. It is divided into two parts. In the first part finite semigroups are
considered and some combinatorial questions are investigated. In the second part
infinite semigroups are considered, in particular we look at a number of questions
in the theory of semigroup presentations. A summary of the topics covered in
this thesis is given below.

In Chapter 1 the necessary semigroup theory and graph theory preliminaries
are given. In Chapter 2 minimal generating sets for finite completely 0-simple
semigroups are investigated. In particular, we give a formula for the minimum
cardinality of a generating set for such a semigroup. Several applications to var¬
ious finite semigroups of transformations are also given. In Chapter 3 semibands
(idempotent generated regular semigroups) are considered. Connections between
minimal generating sets of idempotents of semibands, and matchings in bipartite
graphs are explored. Necessary and sufficient conditions for a completely 0-simple
semigroup to have an extremal idempotent generating set are given. These results
are applied to ideals of the full transformation and the general linear semigroups.
A consequence of this is a result giving necessary and sufficient conditions for
a subset of a two-sided ideal of the general linear semigroup to be a minimal
generating set.

Independence algebras and their endomorphism monoids are the subject of
Chapters 4 and 5. The main results of these chapters generalise combinatorial
results of Howie and McFadden for the full transformation semigroup, and re¬
sults of Dawlings for the general linear semigroup, to the more general context
of endomorphism monoids of independence algebras. The necessary and suffi¬
cient conditions for completely 0-simple semigroups to have extremal idempotent
generating sets, established in Chapter 3, provide the basis on which the main
results of Chapters 4 and 5 are constructed. We finish our consideration of finite
semigroups in Chapter 6 where an extremal problem for subseniigroups of the
full transformation semigroup is discussed. The largest order completely simple
subsemigroups of the full transformation semigroup are described using an argu¬
ment that involves counting the number of distinct r-colourings of members of a
certain family of r-partite graphs.

Chapter 7 is the place that we begin our study of infinite semigroups and
in particular the theory of semigroup presentations. Given a finitely generated
semigroup S and subsemigroup T of S we define the notion of the boundary of

xi



T in S which, intuitively, describes the position of T inside the left and right
Cayley graphs of S. We prove that if S is finitely generated and T has a finite
boundary in S then T is finitely generated. We also prove that if S is finitely
presented and T has a finite boundary in S then T is finitely presented. Several
corollaries and examples are given. In Chapter 8 we continue with the subject-
matter introduced in Chapter 7. In particular, the boundaries of left and right
unitary subsemigroups are analysed which leads to results for presentations of
unitary subsemigroups. Several applications are given.

The main results of the thesis have been written up as a series of five research
articles; see [42], [43], [44], [45], [46], For all of the main results of this thesis,
approaching the problem from the point of view of graphs proved to be the "right
way" of thinking about the problem. I hope the ideas that appear here will be of
interest to those who read them and especially to others who, like me, think in
pictures.



Chapter 1

Preliminaries
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2 Chapter 1, Preliminaries

1.1 Semigroup theory preliminaries

In this section all of the basic semigroup theory needed to understand the results
of the thesis will be presented. All of the definitions and results are standard and
can be found in any introductory text on the subject (see for example [57], [64],
[49], [52] or [21]).

Subsemigroups and generating sets

A semigroup is a pair (S1, •) where S is a non-empty set and • is a binary operation
defined on S that satisfies the associative law

(x ■ y) ■ z = x ■ (y ■ z)

for all x,y, z £ S. The product of two elements x and y is usually written just as

xy rather than x-y. If a semigroup contains an element 1 with the property that
xl = Ix = x for all x £ S then we call 1 the identity element of the S and we

call S a monoid. If a semigroup contains an element 0 that satisfies xO = Ox = 0
for all x € S then 0 is called a zero element of the semigroup. A semigroup can

have at most one identity element and at most one zero element.
We use S11 and S° to denote the semigroup S with an identity or a zero

adjoined, respectively. That is,

I S if S has an identity element

1 S U {1} otherwise

and

„ S" if S has a zero element
S = <

I S U {0} otherwise.

If A and D are subsets of a semigroup we define the product of the two sets as

AB = {ab : a £ A, b £ B}. In the special case of singleton subsets A = {a} we
write aB rather than {a}B. So for example, S^a — Sa U {a}.

A non-empty subset T of S is called a subsemigroup if it is closed under
multiplication. Let S be a semigroup and let {T[ : i £ 1} be an indexed set of
subsemigroups of S. Then if the set Hie/ ^ is non-empty, it is a subsemigroup
of S. In particular, for any non-empty subset A of S the intersection of all the
subsemigroups of S that contain A is non-empty and is a subsemigroup of S. We
use (A) to denote this subsemigroup and call it the subsemigroup of S generated
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by the set A. The subsemigroup (A) is the set of all elements in S that can be
written as a finite product of elements of A.

An element e 6 S is called an idempotent if it satisfies e2 = e. We use E(S)
and F(S) to denote the idempotents of S and the subsemigroup generated by the
set of idempotents, respectively. A band is a semigroup such that every element
is an idempotent.

Homomorphisms and congruences

A right congruence on a semigroup S is an equivalence relation p that is stable
under multiplication on the right. In other words, for all a,s,t€.S

(s, t) G p =4> (sa, ta) € p.

An equivalence relation which is stable under left multiplication is called a left
congruence and a relation that is both a left and right congruence is called a

(two-sided) congruence on S. If p is a congruence on S then we can define a

binary operation on the quotient set S/p by

{ap) {bp) = (ab)p.

A map 4> : S —> T where S and T are semigroups is called a homomorphism
if for all x,y E S

{xy)4> = xcjjycf).

If S and T are monoids then, to be called a monoid homomorphism, <f> must also
satisfy 1 s4> = It- A homomorphism that is injective will be called a monomor-

phism and if it is surjective it will be called an epimorphism. Also, a homomor¬
phism is called an isomorphism if it is bijective. When there exists an epimor¬
phism from S onto T we say that T is a homomorphic image of S. If there is an

isomorphism <j> : S —*T we say that S and T are isomorphic and write = T. A
homomorphism from S to itself is called an endomorphism and an isomorphism
from S to itself is called an automorphism. The set of all endomorphisms of S,
under composition of maps, forms a monoid. We call this monoid the endomor¬
phism monoid of S and denote it by End(5). Similarly, the set of automorphisms
forms a group that is denoted Aut(S) and is called the automorphism group of
S. Given a map (f> : S —* T we define

ker = {(x,y) £ S x S : xcj) = ycj)}
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and call this the kernel of the map (f>. The first isomorphism theorem for semi¬
groups tells us that with every epimorphism (f : S —> T the kernel ker </> is a

congruence on S and S/kerf) = T. Conversely, if p is a congruence on S then
the map f> '■ S —> S/p defined by xcf> = x/p is an epimorphism from S onto the
factor semigroup S/p.

Ideals and Rees quotients

A subsemigroup T of a semigroup S that satisfies TS C T is called a right ideal.
Dually, if ST C T then T is called a left ideal and T is called a (two-sided) ideal
if it is both a left and a right ideal. An ideal I of S is called proper if I ^ S. If
I is a proper ideal of a semigroup S then

Pi = {(s> s) : s £ S} U (I x I)

is a congruence on S. It is useful to think of S/pj as (S \ I) U {0} where all
products not falling in S \ I are equal to zero. We shall call a congruence of this
type a Rees congruence, and if a homomorphism <f : S T is such that ker f> is a

Rees congruence we shall say that 4> is a Rees homomorphism. We shall normally
write S/I rather than S/pj and call this the Rees quotient of S with respect to I.

Regular semigroups, Green's relations and the structure of a ID-
class

Green's relation were first introduced in [48], They describe the ideal structure
of a semigroup. Since their introduction they have played a central role in the
structure theory of semigroups. We now define Green's relations TZ, C, J, V and
H and give some of their basic properties.

Let S be a semigroup and let s £ S. The principal right, left and two-
sided ideals generated by s are the sets sS1 = sS U {s}, S1s = Ss U {s} and
S^sS1 = sS U Ss U SsS U {s}, respectively. For s,t € S we say that s and t are

7\l-related, writing sTZt, if s and t generate the same principal right ideal. We say

they are £-related if they generate the same principal left ideal, in which case we

write sCt. Also, we say s and t are ^-related, writing sjt, if they generate the
same principal two-sided ideal. We define TL = 1Z Pi C and T> = lZoC = Co7Z:
the composition of the binary relations TZ and C. Each of these relations is an

equivalence relation on the semigroup S and we call the corresponding equivalence
classes the 1Z-, £-, J-, V- and Tf-classes, respectively of S.

Given an element s £ S, we will use Rs, Ls, Js, Ds and Hs to denote the TZ-,
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J-, V- and 7-f-classes, respectively, of s in S. Since 1Z, C and J are defined
in terms of ideals, ordering the right, left and two-sided ideals of S by inclusion
induces a partial order on these equivalence classes given by

In finite semigroups the relations V and J coincide and, when working with finite
semigroups, we write Ds < Dt to mean Js < Jt.

Each D-class of a semigroup S is a union of 7?.-classes and also is a union of
£-classes. Moreover, aVb if and only if Ra n Lb ^ 0 which is true if and only if
Rb D La 7^ 0. If D is a D-class of S and if a,b E D are 7£-related in S, say with
as = b and bs' = a, then the right translation ps : S —> S defined by xps = xs

maps La to Lb. The map psi : S —> S maps Lb back to La and the composition of
the maps psps> : S —» S acts as the identity map on La. Moreover, the map ps is
Al-class preserving in the sense that it maps each Tf-class on La in a 1-1 manner

onto the corresponding (7^-equivalent) Tf-class of Lb- There is a dual result for
£-classes. These results, collectively, are known as Green's lemma.

It is often useful to visualise a D-class of a semigroup using a so called egg-box
diagram. An egg-box diagram of a P-class D is a grid whose rows represent the
7?.-classes of D, its columns represent the £-classes of D, and the intersections
of the rows and columns, that is, the cells of the grid, represent the H-classes of
the semigroup. Egg-box diagrams will be found scattered amongst the chapters
of this thesis. They provide a useful tool for visualising semigroups.

The Tf-classes of a given P-class all have the same size. Each Tf-class H of S
is either a subgroup of S or satisfies H2 n H = 0. An Tf-class is a subgroup of
S if and only if it contains an idempotent (which will act as the identity of that
subgroup). We call the 7-f-classes that contain idempotents the group LL-classes
of S. Any two group TAclasses in a given D-class are isomorphic.

An element a G S is called regular if there exists igS such that axa = a.

The semigroup S is said to be regular if all of its elements are regular. If D
is a D-class then either every element in D is regular or none of them are. The
D-classes that have regular elements are called the regular T>-classes. In a regular
D-class each 7?.-class and each £-class contains an idempotent. If a € S then we

say that a' is an inverse of a if

La A Lb
Ra A Rb
Ja A Jb

<=> LaS^a C S1b

aS1 C bSl
<* S^S1 C S1bS1.

aa'a = a, a'aa' = a!.
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An element has an inverse if and only if that element is regular. The following
lemma is used extensively in the thesis.

Lemma 1.1. Let a, b be elements in a T>-class D. Then ab G Ra D Lb if and
only if La n Rb contains an idempotent.

O-simple semigroups, the Rees theorem and principal factors

A semigroup is called simple if it has no proper ideals. This is equivalent to

saying that the semigroup has a single ^7-class. A completely simple semigroup
is a simple semigroup that has minimal left and right ideals. Every finite simple
semigroup is completely simple.

A left zero semigroup is a semigroup in which every element acts as a left zero

(i.e. in which xy = x for all x,y G S). A right zero semigroup is one in which
every element acts as a right zero. Note that left and right zero semigroups are

just special kinds of completely simple semigroup.
A semigroup is called O-simple if {0} and S are its only ideals (and S2 {0}).

This is equivalent to saying that {0} and S \ {0} are its only ^/-classes (and
S2 ^ {0}). A semigroup is 0-simple if and only if SaS = S for every a ^ 0 in S.
A semigroup S is said to be completely 0-simple if it is 0-simple and has 0-minimal
left and right ideals. By a 0-minimal left (respectively right) ideal we mean a

left (respectively right) ideal that is minimal within the set of all non-zero left
(respectively right) ideals ordered by inclusion. Every finite 0-simple semigroup
is completely 0-simple.

0-simple semigroups occur naturally 'inside' arbitrary semigroups appearing
as principal factors of jAclasses. Let J be some j7"-class of a semigroup S. Then
the principal factor of S corresponding to J is the set J* = J U {0} with multi¬
plication

The semigroup J* is either a semigroup with zero multiplication or is a 0-simple
semigroup. The following construction, due to Rees, gives a method for building
completely 0-simple semigroups

Let G be a group, let I, A be non-empty index sets and P = (p\i) a regular
Ax I matrix over Gu{0} (where regular means that every row and every column
of P has at least one non-zero entry). Then S = _M°[G; /, A; P], the I x A
Rees matrix semigroup over the 0-group G U {0} with sandwich matrix P, is the

st if s, t,st G J
0 otherwise.
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semigroup (/ x G x A) U {0} with multiplication defined by

(i,9P\jh,y) if P\j 7^ 0
0 otherwise

(i, g, A)0 = 0(z, g, A) = 00 = 0.

The semigroup S = _M0[G; I, A; P] is completely 0-simple. Moreover, by [57,
Theorem 3.2.3] every completely 0-simple semigroup is isomorphic to some

Semigroups of transformations

Let X be a non-empty set. The symmetric group Sx consists of all Injections from
X to itself under composition of maps. The full transformation semigroup Tx
consists of all maps from X into X under the operation of composition of maps.

The partial transformation semigroup Px consists of all partial maps of X, while
the symmetric inverse semigroup Ix consists of all partial one-one maps of X.
When ]X| = n we often write Sn, Tn, Pn and In in place of Sx, Tx, Px and Ix
respectively. When |A| = n we often identify X with the set Xn = {1,2,..., n}.
For every a £ Tx we define

and call this the kernel of the map a. This is clearly an equivalence relation on

the set X. We call the equivalence classes of kera the kernel classes of the map

a. A partition of the set X is a family of pairwise disjoint, non-empty subsets
of X whose union is X. Thus the kernel classes of a transformation in Tx are

a partition of the set X. Often it will be convenient to write kera in terms of
this partition rather than as a subset of X x X. For example, the kernel of the
element

would be written as ker a = {{1}, {2, 3}, {4}}.
Given a partition Uie/Xj of X we define the weight of the partition to be

|/|. The Stirling number of the second kind, S(n,r), is the number of partitions

M°[G-I,A-P\.

ima = {xa : a £ X}

and call this the image of the map a. Also we define

kera = {(x,y) £ X x X : xa = ya}
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of {1,... , n} with r (non-empty) parts. This number is given by the following
recursion formula:

S(n + 1, k) = kS(n, k) + 5(n, k — 1)

where 5(1, 0) = 0 and 5(1,1) = 1. Given a partition of the set X we call a system
of distinct representatives of this family of sets a transversal of the family.

Direct and semidirect products

If 5 and T are semigroups then the set 5 x T with multiplication

(si,t2)(s2,t2) = (s1S2,tit2)

forms a semigroup that we call the direct product of 5 and T. More generally,
let T and 5 be semigroups and xp be a homomorphism of 5 into End(T). Denote
by st the value of xp(s) £ End(T) at t £ T. We view xp as a left action of 5 on

T, Sl(S2t) = SlS2t, by endomorphisms s{t\t2) = stist2. The semidirect product of
T and 5 over xp is the semigroup T 5 on the Cartesian product T x 5 with
multiplication

(h,si){t2,s2) = (hSlt2,sis2).

In the special case where xp(S) = {lEnd(T)} 5 End(T) the semidirect product of
T and 5 over xp is equal to the direct product of 5 and T.

Free semigroups, monoids and presentations

Let A be a non-empty set. Let A+ be the set of all finite, non-empty words in
the alphabet A. With respect to the binary operation of juxtaposition of words
the set A+ forms a semigroup that we call the free semigroup on A. The set A
is a generating set for A+ and it is the unique minimal generating set of A+.
Adjoining an identity 1 to the free semigroup A+ gives the free monoid which we

denote A*. We think of the identity of the free semigroup A* as the empty word
and sometimes denote it by e. Every semigroup can be expressed as a quotient
of a free semigroup by a congruence. If A is a finite alphabet and if we can find a

finite set R C A+ x A+ such that 5 = A+/p, where p is the smallest congruence
of A+ containing R, then we say that 5 is finitely presented.
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1.2 Graph theory preliminaries

We need some basic concepts from graph theory. The ideas presented here are

standard and may be found in any introductory text on graph theory. See for
example [51], [10], [8] and [15].

Subgraphs and isomorphisms

A graph T is a pair (V, 5) where V is a set and £ is a set of 2-subsets of V. The
set V is the set of vertices and the set £ is the set of edges. Given a graph T we

use V(r) and £(T) to denote the set of vertices and the set of edges, respectively,
of the graph T. An edge {i,j} is said to join the vertices i and j and this edge
is denoted ij. The vertices i and j are called the endvertices of the edge ij. If
ij G <?(T) we say that the vertices i and j are adjacent in the graph T. We say

that i and j are incident to the edge ij. We say that two edges are adjacent if
they have a common incident vertex.

We think of a graph as a collection of vertices, some of which are joined by
edges, and as a result graphs are often represented as pictures. For example, the
graph F = (V,£) = ({1, 2, 3,4}, {{1, 2}, {2,3}, {3,4}}) is given in Figure 1.1.

The graph F' = (V', £') is a subgraph of T if V C V and £' C £. If T' contains
all the edges of F that join vertices of V then we call F' the subgraph of T induced
by V.

Given a subset W of V(T) we use T — W to denote the subgraph of F obtained
by deleting the vertices W and all of the edges adjacent with them. Similarly,
given a subset T of the edge set £(T) we use F — T to denote the subgraph
obtained by deleting the edges T. An elementary contraction of a graph F is
obtained by identifying two adjacent vertices u and v, that is, by deleting u and
v and replacing them by a single vertex w adjacent all to the vertices to which u or

v were adjacent. A graph T is contractible to a graph T' if T' can be obtained from
T by a finite sequence of elementary contractions. If the graph F is contractable
to the graph F' then we call T' a contraction of F.

The graphs F = (V,£) and T' = (V',£') are said to be isomorphic if there

20 Q3

1 64

Figure 1.1: A graph.
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is a bijection (f : V —► V that preserves adjacency. That is, for all x,y € V,
xy G 8 if and only if </>(x)0(y) € £'. We write T = T' to mean that Y and T' are

isomorphic.
The complete graph of order n is defined to be the unique graph with n vertices

and (2) edges, so that there is an edge connecting every pair of vertices, and is
denoted Kn.

The degree of a vertex v is the number of edges adjacent to it and will be
denoted by d[y). The set of vertices adjacent to a vertex v is called the neigh¬
bourhood of v and is denoted N(v). More generally, if W is a subset of V then
the neighbourhood of W, denoted N(W), is defined to be the set of all vertices
of V \ W which are neighbours of at least one vertex from W. We call a graph
k-regular if every vertex has degree k for some number k. A graph is regular if
it is fc-regular for some k.

Paths and connectedness

A path in a graph T is a set of vertices 7r = {uo, v\,...,vn} such that belong
to £(T) for all 1 < i < n. We call r>o and vk the initial and terminal vertices,
respectively, of the path n. A walk T is a sequence (i>o, ei, v\, e2, V2, ■ ■ ■, en, vn)
where is the edge Vi-\V{ for i = 1,..., n. A trail is a walk where all the edges
are distinct. A trail whose endvertices coincide is called a circuit. A walk with at

least three vertices, where all the vertices are distinct, and where the endvertices
coincide, is called a cycle.

A graph Y is called connected if for every pair {x,y} of distinct vertices there
is a path from x to y. The maximum connected subgraphs of a graph Y are called
the connected components of T. A forest is a graph with no cycles and a tree is a

connected graph with no cycles. Therefore, the connected components of a forest
are all trees. A spanning tree of a graph T is a subgraph T that is a tree and that
contains every vertex of the graph T. Frequent use will be made of the following
easy result.

Lemma 1.2. Every connected graph contains a spanning tree.

Of course, if T has n vertices and T is a spanning tree of Y then T has n

vertices and n — 1 edges.
A graph Y is bipartite if V can be written as the disjoint union of two sets Vi

and V2 in such a way that every edge in 8 has one vertex in Vi and the other
in V2. We say that the bipartite graph T = Vi U V2 is balanced if |Vi| = | V21.
Similarly, we say that the graph T is r-partite with vertex classes Vi,..., Vr if



Section 1.2 11

V(r) = Vi U ... U Vr, and Vt n Vj — 0 whenever i / j and no edge joins two
vertices of the same class. A complete r-partite graph is denoted Knlt...,nr, it
has rii vertices in the zth class and contains all edges joining vertices in distinct
classes.

In the above definition of graph we do not allow multiple edges or loops (an
edge joining a vertex to itself). We call a graph that is allowed multiple edges
and loops a multigraph. If the edges are ordered pairs (rather than two-sets) then
we get the notion of a digraph (directed graph) and directed multigraph. The
notions above for graphs, such as paths and walks, carry over to the context of
multigraphs and digraphs in a natural way.

Hamiltonian graphs

A cycle containing all the vertices of a graph is said to be a Hamiltonian cycle.
A Hamiltonian path is a path containing all the vertices of a graph. A graph
containing a Hamiltonian cycle is said to be Hamiltonian. No efficient algorithm
is known for constructing a Hamiltonian cycle, though neither is it known that no

such algorithm exists. On the other hand, some sufficient conditions for a graph
to be Hamiltonian are known. The following result gives a sufficient condition
for a bipartite graph to be Hamiltonian.

Theorem 1.3 (Moon and Moser, [75]). IfF = XuY is a bipartite graph with
\X\ = |Yj = n such that any non-adjacent pair of vertices (x,y) € X x Y satisfies
d(x) + d(y) >n + l, then F is Hamiltonian.

Matchings and Hall's theorem

A subset T of £(T) is called independent if no two edges have a vertex in common.

Similarly, a subset V of V(r) is called independent of no two vertices in V are

adjacent. A matching in a graph is a set of independent edges. A perfect matching
is a matching on |V|/2 edges. In particular, in a bipartite graph F = A U B
associated with any perfect matching is a bijection 7r : A —> B that satisfies
{x,x7r} E £(r) for all x € A. Note that if F = AUB has a perfect matching then
\A\ = \B\.

Let A\,..., An be sets. A system of distinct representatives (SDR) for these
sets is an n-tuple (xi,... ,xn) of element with the properties:

(i) Xi € Ai for i = 1,..., n;

(ii) X{ 7^ Xj for i j.
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Hall's marriage theorem gives necessary and sufficient conditions for a family
(A\,... , An) of finite sets to have a SDR.

Theorem 1.4 (Hall's theorem, [50]). The family (A\,...,An) of finite sets to
have a SDR if and only if

When a family of sets (A\,..., An) satisfies condition (1.1) we say that it
satisfies Hall's condition. A family A = (Ai,...,An), where A{ C X for all i,
is naturally identifiable with a bipartite graph with vertex classes V\ = A and
V2 = X where Ai € A is joined to x G X if and only if 1 £ ij. A system of
distinct representatives is then just a perfect matching in this bipartite graph. In
this context Hall's marriage theorem becomes.

Theorem 1.5. The bipartite graph G = X U Y has a perfect matching if and
only if |./V(A)| > |A| for all subsets A of X.

A colouring of a graph is an assignment of colours to the vertices such that
adjacent vertices have distinct colours. A ^-colouring of P is a function c : V(r) —>

{1, 2,... , A;} such that for each j the set c~l(j) is independent. The chromatic
number x(r) of the graph T is the minimal number of colours in a vertex colouring
of the graph T.

The dual of the graph T is the graph -D(r) with vertex set V(r) and ij 6

5(Z)(r)) if and only if ij 0 £(r).

IK > | J\ for every J C {1,..., n}.
jeJ

(1.1)
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2.1 Finite semigroups and their generating sets

It is often convenient to give a finite semigroup S in terms of a set of generators A.
In many cases this set may be chosen to have considerably fewer elements than S
itself. For example, the full transformation semigroup Tn has nn elements while it
may be generated by just three transformations. In particular, the transposition

(12), the rr-cycle (12 ... n), and any transformation a satisfying | im a| = n — 1,
together will generate Tn (see [57, Exercise 1.7]).

In this chapter we will be concerned with the problem of finding "small"
generating sets for finite semigroups. Given a semigroup S we will use rank(S)
to denote the minimum cardinality of a generating set for S. In other words:

rank(S) = min{|A| : (.A) = S}.

Our interest is in determining rank(S) and, whenever possible, in describing all
generating sets with this size. We will call any generating set of S with size
rank(5) a basis of the semigroup S.

The ranks of a wide number of finite groups are well known. In a finite group

G every subsemigroup is a subgroup (since for any g e G we have gm = g~l
for some positive number m) and thus, given a subset A of G, the subsemigroup
of G generated by A is equal to the subgroup of G generated by A. There is,
therefore, no distinction between the group rank and the semigroup rank of G.
For infinite groups this is not necessarily the case. For example, the infinite cyclic
group Z has rank 2 as a semigroup but rank 1 as a group. It is well known that
the symmetric group satisfies rank(S,n) = 2 for n > 3, as does the alternating
group An for n > 4. In fact, any finite non-abelian simple group G has rank
2. This result is a consequence of the classification of finite simple groups. The
rank of any non-trivial finite general linear group is also known to equal 2 (see
for example [94]).

The function rank : S —» N, from the class (pseudo-variety) of all finite
semigroups to the natural numbers, does not behave well with respect to taking
subsemigroups. For example, by Cayley's theorem, every finite semigroup is
embeddable in some finite full transformation semigroup Tn while, as already
mentioned, rank(Tn) = 3 for all n > 3. On the other hand, if T is the image of S
under a homomorphism then it is clear that rank(S') > rank(T). This is because
of the following simple observation.

Lemma 2.1. Let S and T be semigroups, let A be a subset of S and let (f :

S —> T be an epimorphism. If A generates S then A<f> generates T. In particular
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IAcj>\ < |^4| and rank(5) > rank(T).

In [23] a group G is defined to be generator critical if all of its proper hoino-
morphic images H satisfy rank(G) > rank(P). The idea being that if a group

is not generator critical then we may factor down to an "easier" group with the
same rank. Exactly the same idea carries over to semigroups and the general idea
of studying large homomorphic images of S in order to determine its rank will
be a re-occurring theme throughout this chapter.

In terms of semigroup theory, the question of rank has been considered mainly
for various semigroups of transformations. The theory of transformation semi¬
groups is one of the oldest and most developed within semigroup theory. In [58]
Howie argues that

"It is this connection with maps (arising from the associative axiom)
that is the strongest reason why semigroups are more important both
theoretically and in applications that the various non-associative gen¬

eralizations of groups".

Early work on generators and relations in transformation semigroups was

carried out by Aizenstat in [2] and [3], In [37] Gomes and Howie prove that
the semigroup Singn of of all singular self-maps of Xn satisfies rank(Singn) =

n(n — l)/2. In the same paper they also consider the semigroup SPn < In,
of all proper subpermutations of Xn, proving that r&nk(SPn) = n + 1. In [59]
Howie and McFadden generalized the above result for the semigroup of singular
mappings by considering a general two-sided ideal of Tn. These ideals have the
form:

K(n, r) = {a € Tn : | im a\ < r}

where 1 < r < n (we will see the reason for this in Proposition 2.14). In particular,
in [59] it is shown that rank(/\ (n, r)) = S(n, r): the Stirling number of the second
kind. Garba, in [34], considered the semigroup of all partial transformations Pn
on the set Xn and showed rank(KP(n,r)) = S(n + l,r + 1) where

KP(n,r) = {a E Pn : |ima| < r}.

In [36] he also generalised Gomes and Howie's result for SPn by showing
rank(L(n, r)) = (") + 1, where

L(n, r) = {a E In ■ | hna\ < r}.
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Various order preserving versions of the examples above have also been consid¬
ered. Originally in [4] Aizenstat considered the semigroup of order preserving
transformations:

On = {a e Singn : (Vx,y £ Xn) x <y => xa < ya}.

She showed that it is idempotent generated and that it has a uniquely determined
irreducible set of idempotent generators (namely the identity along with all the
idempotents e that satisfy | im e| = n— 1). This result was later reproven by Howie
in [38]. We will see more on idempotent generating sets in subsequent chapters.
Also, in [38] it was shown that the semigroup On has rank n. In the same paper

the semigroup of partial order preserving transformations of Xn (excluding the
identity map):

POn = On U {a : dom(o:) C Xn, (Vx,y £ dom(a)) x < y => xa < ya}

was shown to have rank 2n — 1 and the strictly partial order preserving transfor¬
mations:

SPOn = POn \ On

were shown to have rank 2n —2. Also, in a series of papers [68], [67] and [66] Levi
and Seif have considered semigroups generated by transformations of prescribed
partition type. These semigroups are closely related to the S^-normal semigroups
introduced in [65].

Given an arbitrary finite semigroup S, if A generates S and Jm is some

maximal ^V-class of S then A fl Jm must generate the principal factor Jm*■ As
a consequence, the rank of S is equal to at least the sum of the ranks of the
principal factors that correspond to the maximal f7-classes of S. If S happens to
be generated by the elements of its maximal 77-classes then rank(S') is precisely
equal to this sum. In fact, this is a property that is shared by the majority
of the semigroups described above. As a consequence, in each case the rank of
the semigroup in question is equal to the rank of a corresponding completely 0-
sirnple semigroup. In this way, these results act as motivation for finding a general
formula for the rank of an arbitrary finite completely 0-simple semigroup.

The first occurrence of a formula for the rank of a completely 0-simple semi¬
group can be found in [37] where, in order to find the rank of the semigroup SPn,
the authors give an expression for the rank of an arbitrary Brandt semigroup
B(G, {1,... ,n}) in terms of its dimension n, and of the rank of the underlying
group G. In another paper [81] the author considers a class of completely 0-simple
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semigroups he calls connected, a restriction on the form of the matrix P which
in particular is satisfied by all completely simple semigroups, and gives a formula
for the rank of an arbitrary connected completely 0-simple semigroup.

In this chapter we will build on the ideas of [81] giving a general formula for
the rank of an arbitrary completely 0-simple semigroup in terms of the group

G, the size of the index sets I and A, the number of "components" in the ma¬

trix P, and a special term rmin that will be defined. In §2.2 some preliminary
results are introduced then in §2.3 the special case of combinatorial completely
0-simple semigroups (those whose maximal subgroups are trivial) is considered.
Graph theoretic methods for working with completely 0-simple semigroups are

introduced in §2.4. Results for connected completely 0-simple semigroups are

given in §2.5 and in §2.6-2.9 the general case is considered and the main results
of the chapter are presented. A normalization theorem is the subject of §2.10
and finally, in §2.11-2.13, several applications of the main results are discussed.

2.2 Preliminaries

Let S = A4°[G;I, A;P] be a finite completely 0-simple semigroup. We will use

7Zi, C\ and Tii\ to denote the 1Z, C and 7Y-classes indexed by i £ /, A € A and
(i, A) G I x A respectively. We can only hope to answer our question "modulo
groups" and the concept of relative rank gives us a way of accomplishing this.
Given a subset A of a semigroup S, we define the relative rank of S modulo A
as the minimum number of elements of S that need to be added to A in order to

generate the whole of S:

rank(S' : A) = min{|X| : (A U X) = S1}.

Example 2.2. From the discussion at the beginning of Section 2.1 we conclude
that rank(Tn : Sn) = 1.

Since all the semigroups we consider here have a zero we will always include
the zero in any given subsemigroup. As a consequence of this by (X) we will
mean all the elements that can be written as products of elements of X, plus
zero if necessary. This is really just a matter of convenience and we do not lose
anything by doing it. Without this convention we would have to deal with the
cases 0 € (S\ {0})2 and 0 0 (S \ {0})2 separately with the rank differing by 1
each time.

The following lemma states the obvious fact that a generating set for S =

A4°[G; I, A; P] must intersect every 1Z- and every £-class of S.
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Lemma 2.3. Let S = M°[G] /, A; P] be a completely 0-simple semigroup. Then
rank(5) > max(|/|, |A|).

As a direct consequence of Green's Lemmas (see Chapter 1) it follows that if
A generates every element of a single group 7d-class and at least one element in
every other Tf-class then this is enough to say that A generates the whole of S.
More precisely:

Lemma 2.4. [81, Lemma 3.7] Let S = M°[G; I, A; P] be a completely 0-simple
semigroup, let Hi\ be a group and let A C S. If Hi\ C (A) and (A) n HjM / 0
for all j £ I, p £ A then S = {A).

The result above may be thought of as analogous to the following situation
in group theory. Let G be a group and let iV be a normal subgroup of G. Let
A be a subset of G. If (A) D N and (A/N) — G/N then (A) = G. Here N is
playing the role of Hi\ and the cosets of N in G play the role of the non-trivial
H-classes of S.

Roughly speaking, if S is a completely 0-simple semigroup and A is a gener¬

ating set for S then every generator a e A makes a two-fold contribution. Firstly,
the generator contributes to generating at least one element in every H-class of
S. Secondly, each generator contributes to generating the underlying group.

2.3 Rectangular 0-bands

A rectangular 0-band, denoted by S = A/1°[{1}; /, A; P], is a O-Rees matrix semi¬
group over the trivial group. Understanding the generating sets of rectangular
0-bands will give us a useful first step towards understanding generating sets of
Rees matrix semigroups over non trivial groups. Since the middle component of
every triple equals 1 we can effectively ignore it and consider the semigroup of
pairs S = (/xA)U {0} with I = {1,2,..., m] and A = {l,2,...,n},Pa regular
n x m matrix over {0,1}, whose multiplication is given by

(i,A)0 = 0(i, A) = 00 = 0.

Associated with any completely 0-simple semigroup S = M°[G] /, A; P] is the
rectangular 0-band given by replacing all the non-zero entries in the matrix P by
the symbol 1 and by replacing G by the trivial group.

if pxj = 1
if P\j = 0
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Definition 2.5. Given S = M°[G;I,A;P] by the natural rectangular 0-band
homomorphic image of S we mean S/TL. This semigroup can be concretely rep¬

resented as T = JM°[{1};/,A;Q] where q\i = 1 if p\i ^ 0, and q\i = 0 otherwise.
We will use \ to denote the corresponding epimorphism from S to T with 0t] = 0
and = (i, A).

We call two nx m matrices A and B over {0,1} equivalent, writing A ~ B, if
B can be obtained from A by permuting its rows and columns. Clearly ~ is an

equivalence relation on the set ofnxm matrices over {0,1} and, as a special case
of Theorem 2.54 below, two matrices are equivalent if and only if the rectangular
0-bands that they correspond to are isomorphic.

Definition 2.6. Let P be an n x m matrix over {0,1}. Then we use

P[i\,... • • • ,jk\ to denote the submatrix of P obtained by deleting all ele¬
ments with first coordinate in the set {«i,... or second coordinate in the set
{ji,..., jk}. We use 0 when no rows or columns are to be deleted. For example
P[0][1] means leave the rows alone but delete column 1.

First we will show that given a non-square matrix we can always delete a row

or a column while maintaining regularity.

Lemma 2.7. Let P be a regular nxm matrix over {0,1}.

(i) If m > n then there exists j £ {1,..., m} such that Q = P[0][j] is regular.

(ii) If m < n then there exists is {l,...,n} such that Q = P[i][0] is regular.

(Hi) If n = m then there exists j £ {1,... ,n} such that P[0][j] is regular if and
only if there exists i £ {1,... ,n} such that P[i][0] is regular which is the
case if and only if P ^ In (the n x n identity matrix).

Proof, (i) Suppose otherwise, so that for all j £ {1,... ,m} the matrix P[0] [7] is
not regular. Then for each j £ {1,..., m} there is a row that has 1 in the jth
position and zeros everywhere else. All of these rows are distinct and there are m

of them which contradicts the fact that m > n. (ii) Use a symmetric argument
to that of part (i). (iii) By the same argument as in part (i) it follows that if
P[0][z] is not regular for all i £ {1,..., n} then P ~ In. Conversely, if P ~ In it
is clear that for any i £ {1,... ,n}, P[0][i] is not regular. □

Corollary 2.8. Let P be a regular n x n matrix over {0,1} such that P 7^ In.
Then there exist i,j £ {l,...,n} such that P[0][j], P[i][0] and P[i] [j] are all
regular.
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Proof. By Lemma 2.7 we can find i,j £ {1,... , n} so that P[0][?'] and P[i][0] are

regular. Hence P[i] [j], which is their intersection, is clearly regular. □

The Brandt semigroup B = B(G, {1,... , n}) is the Rees matrix semigroup
M°[G] /, /; P] where P ~ the n x n identity matrix, and I = {l,...,n}.
When G is the trivial group P(G,/) is a rectangular 0-band that we call the
aperiodic Brandt semigroup and denote by Bn.

Lemma 2.9. The aperiodic Brandt semigroup Bn has rank n.

Proof. (>) By Lemma 2.3 rank(Pn) > n. (<) The set {(1,2), (2,3),... , (n—
1 , n), (n, 1)} generates Bn. Indeed, if (x,y) £ Bn then:

f (x, x + l)(x + 1, x + 2)... (y - 1, y) if y > x

|(x,x + l)(x + l,x + 2)... (n - 1 ,n)(n, 1)(1,2)... (y - l,y) if y < x.

□

In fact, it is fairly easy to describe all the bases of the aperiodic Brandt
semigroup Bn and we will do so at the end of §2.4. Corollary 2.8 forms the basis
of the inductive step that proves the following result.

Theorem 2.10. Let S = W1°[{1}; I, A; P] be an mxn rectangular 0-band. Then

rank(5) = max(m,n).

Proof. It follows from Lemma 2.3 that rank(5) > max(m,n). Now we have to
show that we can always find a generating set of this size. We must prove:

U(m, n) : If S is an m x n rectangular 0-band then S has a generating
set with cardinality max(m, n).

First we consider the case where m — n and use induction on n. U(l,l) holds
trivially. Suppose XJ(k,k) holds and let T be a (k + 1) x [k + 1) rectangular
0-band with I = A = {1, 2,..., k + 1}, and underlying matrix P. If P ~ Ik+i
then U(&: + l,fc + 1) holds by Lemma 2.9. If P Ik+i then by Corollary 2.8
we can suppose without loss of generality that the submatrices M = P[k + 1] [0],
N = P[0][P + 1] and O = P[k + l][/c + 1] are all regular. Let Tm,Tn and To
be the sub-rectangular 0-bands corresponding to these regular matrices. By the
inductive hypothesis we can find A C To such that |A| = k and (A) = To- Now
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let B = A U {(k + 1, k + 1)} C T. Clearly |Z?| = k + 1 and we also claim that
(B) = T. Indeed, we have

(B} = (A U {(A; + 1, k + 1)}) = ((A) U {(k + 1, k + 1)}) = (To U {(fc + 1, k + 1)}).

We are left to show {(/c+l,z), (z, k+1) : z G {1,... , k}} C (B). Let j £ {1,, k}.
By the regularity of M and N we can find v,l G {1,..., k} such that P(k+i),l =

Pv,(k+1) = 1- Then we have

(k + 1 ,j) = (k + l,k + 1 )(l,j), (j,k + 1) = (j,v)(k + 1, k + 1)

with (l,j), (j, v) G To which completes the inductive step.
Now we consider the case where T is an m x n rectangular 0-band with,

say, n > m. By repeated application of Lemma 2.7 without loss of generality
we can suppose that Q — P[m + 1, m + 2,..., n][0] is regular. Let Tq be the
sub-rectangular 0-band corresponding to Q. Since Q is an m x m matrix by
the previous case we can find A C Tq with |A| = m and (A) = Tq. Now let
R = {(1, A) : A = m + 1,... ,n} and B = AU R C T. Clearly \B\ = n and we
also claim that (B) — T. Indeed, we have

(.B) = (AUR) = {(A) U R) = (Tq U R).

We are left to show {(i,j) : i € {1,... ,m}, j € {m + 1,... ,n}} C (B). By the
regularity of Q we can find x £ {1,..., m} such that px\ = 1 and we conclude
that (i,j) = (i,x)(l,j) where (i,x) E Tq and (l,j) G R. □

Using just this simple result we may now determine the rank of a special class
of completely 0-simple semigroup.

Definition 2.11. A semigroup S is called idempotent generated if (E(S)) = S.

Lemma 2.12. Let S be a finite idempotent generated semigroup and let A be
a subset of S. If A has non-trivial intersection with every B-class of S then A
generates S.

Proof. Since S = (E(S)) it is sufficient to prove E(S) C (A). Let e G E(S) and
let b G A n He. Since He is a finite group with identity e it follows that bl = e

for some i G N, the smallest such i just being the order of b in the group He. It
follows that e = bl G (A) and since e was arbitrary that E(S) C (A). □

Combining this with Theorem 2.10 gives:
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Theorem 2.13. Let S = A4°[G;/,A;P] be a finite completely 0-simple semi¬
group. If S is idempotent generated then rank(S) = max(|/|, |A|).

Proof. The fact that rank(5) > max(|/|, |A|) follows from Lemma 2.3. For the
converse let T = St], the natural rectangular 0-band homomorphic image of S.
By Theorem 2.10 we can find a generating set A for T with size max(|/|, |A|).
The pre-image of A under the map \\ is a union of 7d-classes of S. Let B be a

transversal of this set of 7-f-classes. Since (A) = T it follows that (B) has non-

trivial intersection with every (non-zero) 7d-class of S and so B generates S, by
Lemma 2.12, and \B\ — |A| = max(|/|, |A|). □

This result is not quite as obscure as it might at first seem. Many naturally
occurring semigroups are idempotent generated and when, in addition to this,
they are generated by the elements in their maximal ^-classes, determining their
rank just reduces to the problem of counting the number of IZ- and T-classes.
The full transformation semigroup Tn provides us with a family of examples of
this kind.

Proposition 2.14. Let n G N and let 1 < r < n. Let a, (3 € Tn.

(i) Green's relations are given by:

(a) aTZ/3 <=> im a = im /?;

(b) a£/3 O ker a = ker j3;

(c) aT>(3 <=>• | ima| = | im/?|.

(ii) K(n,r) = (E{Dr)).

(in) The number of IZ-classes in Dr = {a E Tn : |ima| = r} is the Stirling
number of the second kind S(n,r).

(iv) The number of C- classes in Dr is (").

(v) The Tt-class indexed by the image I and the kernel K is a group if and only
if I is a transversal of K.

Proof, (i) See [57, Exercise 1.16], (ii) By [57, Theorem 6.3.1] the semigroup Singn
is regular and idempotent generated. By [57, Exercise 6.12] if S is a semiband
then every element a € S is expressible as a product of idempotents in Ja. Also,
from [57, Lemma 6.3.2] it follows that (Dr) = K(n,r). The result is an immediate
consequence of these three facts, (iii) and (iv) are immediate consequences of (i).
(v) See [57, Exercise 1.18]. □
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These facts, along with Theorem 2.13 allow us to determine the rank of the
semigroup K(n,r). This result was originally proven in [59, Theorem 5], where
they also determined the so called idempotent rank of the semigroup. We will
see more about this in the following chapter.

Theorem 2.15. Let n € N and let 1 < r < n. Then:

rank(K(n,r)) = S(n,r).

Proof. It follows from Proposition 2.14 that rank(5) = rarik(A(n, r)/K(n, r — 1))
and that K(n,r)/K(n,r — 1) is idempotent generated. Applying Theorem 2.13
to the idempotent generated completely 0-simple semigroup K(n,r)/K(n,r — 1)
gives:

rank(K(n,r)) = rank(A'(n,r)/K(n,r — 1)) = max(S'(n,r), ^ j) = S(n,r).
□

Theorem 2.13 may be applied to a number of other examples. In particular
the exact analogue of the above result may be proven for the ideals of End(V)
where V is a finite vector space. See Section 3.5.2 for more details on this.

Another consequence of Theorem 2.10 is that with S = A4°[G;/, A; P] we
have

rank(S) < rank(G) + max(|/|, |A|).

We obtain this bound by joining together a generating set for T — S\\ and a gener¬

ating set for G. In each case, exactly where the answer lies between max(|/|, |A|)
and rank(G) + max(|/|, |A|) will depend on the "contribution" that is made by
the idempotents of S.

2.4 Finite 0-simple semigroups and their associated
graphs

Given an element (i,g, A) e S — M°[G] I, A] P] we may visualise this triple as
two vertices i and A joined by a directed edge labelled with g:

(i,g, A) = i —^ A
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Taking this idea further, we may wish to view composition of elements of S as

composition of such paths so that:

(b 5, A) o (j, h,fi)= i —X o j n

and since (provided p\j ^ 0) we have:

= (i, gp\jh, p)

we amend our diagram to give:

9 . PAj . h
i >■ A >3 > M •

Grouping together elements of I and those of A gives:

which is starting to take the form of a directed bipartite graph with edges labelled
by elements of G.

Such representations of completely 0-simple semigroups have been exploited
with success in the past. The first place that such an idea appears in the literature
is in [41]. In this paper Graham uses the graph theoretic approach to describe all
maximal nilpotent subsemigroups of M°[G\ /, A; P] (a semigroup T is nilpotent if
for some n £ N we have Tn = {0}). Moreover, necessary and sufficient conditions
are given for a completely 0-simple semigroup to have a unique maximal nilpotent
subsemigroup. Secondly, in the same paper a new normal form is introduced
for completely 0-simple semigroups (see Section 2.10 for more details on this).
This normal form is used to give a general description of the form that the
maximal subsemigroups of an arbitrary finite completely 0-simple semigroup must
take. This "local" result was later successfully used by Graham, Graham and
Rhodes in [40] to give the form of the maximal subsemigroups of arbitrary finite
semigroups. In [56] the bipartite graph representation was used to describe the
subsemigroup generated by the idempotents of a completely 0-simple semigroup
S and in [54] Houghton considered the homological properties of these graphs.

Here we will define three graphs, each with a different purpose. The first
helps us find what a given subset of S generates. The second facilitates the study
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of (E(S)) and the third gives us the concept of connectedness in S.

Graph 1: A(S : A)
Given S = _M°[G; /, A; P] and ACS where 0 ^ A we define a bipartite digraph
A (S1 : A) with labelled edges in the following way. The vertex set of A(S : A) is
I U A, where I and A are assumed to be disjoint. Edges from I to A represent
elements of A and edges from A to I represent idempotents of S in the following
way:

(i) corresponding to each a = (i,g, A) £ A there is an edge i A labelled with
g\

(ii) corresponding to each non-zero entry pw- £ P there is an edge p j
labelled with p^j.

Note that the graph A(S : A) is allowed to have multiple edges, so when
describing a path in this graph it is not enough to just give an ordered list of
vertices that the path is to traverse.

Definition 2.16. Let f — i —y A be an edge from I to A and e = p, > j be an

edge from A to I in A(S : A). We define the functions V and W:

V(/) = g, V(e)=pri, W(f) = (i,g, A) £ A.

Let x,y £ IU A and let p = (ei, e2,..., e^) be a directed path in A(S : A) starting
in x and ending in y. Then we write

V(p) = V(e1)V(e2)...V(ek)£G,

and call this the value of the path p. We will use Vx,y with x,y £ I U A to
denote the set of all paths starting at x and ending at y in A(£> : A) and define
VXty = {V(p) : p £ Px,y}- We call paths that start in I and end in A the valid
paths. For every valid path p = (/i, ei, /2, e2,..., fk-i, ek-l,fk) we write

W(p) - W{h)W(h)W(h)... W{fk) £ 5.

Clearly if p is a valid path from i to A then

W(p) = (i,V(p), A).
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There is a clear correspondence between non-zero products of elements of A
and valid paths in the graph A (S : A). As a consequence of this correspondence
we have the following straightforward lemma:

Lemma 2.17. Let S = A4°[G]I, A;P] and let ACS. If R is the set of valid
paths in A(S : A) then

(A) = {W(p):peR}A{0}.

Proof. This is obvious from the definitions. □

Graph 2: A(P)
When A = E(S) the graph A(S : A) — A(S : E(S)) takes a particularly nice
form. Since E(S) = {(z,PAi_1)A) : p\i ^ 0} U {0} every edge f = i A

pxC1has a corresponding reverse edge e(f) = A —-—> i. In this situation we can

simplify the graph A(S : E(S)) in the following way. Let A(P) denote the
underlying undirected graph of A(S : E(S)) noting that A(P) has precisely one

edge corresponding to each non-zero p\i of P. In A(P) the edges are unlabelled
but we will still assign values to the paths through the graph. The value of the
path 7r = z\ —> Z2 —■► ... —^► zt is defined to be

V(ix) = 4>{z\,Z2)4>{Z2,Z2f) .. .<f(zt-i,zt)

where

A) = P\l, =p\i, iel, A 6 A,

and Vx,y and VXty have the same meaning as before. Note that the graph A(P)
does not have multiple edges and so paths in the graph are uniquely determined
by ordered lists of vertices. Given two vertices x and y in A(P) we write iMj
if there is a path from x to y in the graph A(P). This connectedness relation M
on the graph A (P) is an equivalence relation on the set I U A and in [56] Howie
proves the following result:

Theorem 2.18. [56, Theorem 1] Let S = MP[G] /, A; P] be a completely 0-
simple semigroup, let E be the set of idempotents in S. Then

(E) = {(z, a, A) € S : i M A and a € Vi \} U {0}.
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Graph 3: T(HIs)
Given CC/xAwe will let T(C) denote the undirected graph with set of vertices
C and two vertices (i, A) and (j, p) adjacent if and only if i = j or A = /i. In
particular given S = A4°[G; I, A; P] we define Hs C I x A as the set of coordinates
of the group H-classes of S, that is

Hs = {(i, A) G I x A : is a group} = {(i, A) € I x A : pXi ± 0}.

We will show, in Lemma 2.24, that the graph r(Hs) is connected if and only if
the graph A(P) is connected. We say that S is connected if and only if r(llls)
(or equivalently A(P)) is connected (see Figure 2.1 for examples).

Also, for /' C I and A' C A we say that /' x A' is a connected component
of S precisely when the subgraph of r(EI,s) induced by the vertices I' U A' is a
connected component of r(IHIs).

Example 2.19. Let G = S3 = {(), (1 2), (1 3), (2 3), (1 2 3), (1 3 2)}, the sym¬
metric group of degree three. DefineS" = A4°[G; {h, i2, ^3}, {Ai, A2, A3}; P] where

f 0 (12) 0 \
P = 0

V(2 3)
0

0

(13 2)
0

Let

A = {(1, (1 2), 1), (2, (), 2), (3, (1 2 3), 3)} C 5.

Then, for this example, the three graphs defined above are given below.

(1.1&-

(2 S

(3,2

1,3)
Ai A2

29 93̂,3)

(12) I

«3 ^l

r(Ms) A (P) A(S : A)

Since r(lHIs) is connected, the semigroup S is a connected completely 0-simple
semigroup.

Since F(S) = (E(S)) is a subsemigroup of S and Hi\ is a subgroup of S the
intersection F(S) n Hi\ is a subsemigroup of Hi\ in S and therefore must be a
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Figure 2.1: Two egg-box pictures of D-classes of completely 0-simple semigroups.
The shaded boxes are the group Tf-classes.

Connected Disconnected

subgroup of S. But what does this group look like? Clearly

F(S) C Hi\ C : k <E K}

where K is the subgroup of G generated by the non-zero entries of the matrix P.
In general, however, these two sets are not going to be equal.

Example 2.20. Let G be the cyclic group of order 5 written multiplicatively
and generated by a: so G = {a0, a1, a2, a3, a4}. Let S = M°[G\ {1, 2}, {1, 2}; P]
with:

From the discussion above we deduce that:

F(S)nHn < 1 x G x 1 = Hn.

However, by Theorem 2.54, the semigroup S is isomorphic to

T = M°[G\ {1,2}, {1,2}; Q]

where:

and hence for every group 7-f-class H,\ of T = S we have:

F(T) fl Hi\ = {(1, a0,1)}.
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Since T = S it follows that:

F(S) D H\\ = {(l,o°,l)} / 1 x G x 1.

This example is important for the following reason. If we are interested in
determining (E(S)) for S a finite 0-simple semigroup then, in the example above,
the latter of the two representations is a more useful one. It satisfies the property
that the subsemigroup generated by the idempotents intersected with a group

TAclass is isomorphic to the subgroup of G generated by the non-zero entries in
the matrix P. In fact, such a "nice" normalization always exists. This is called
Graham normal form (see [41]) and will be discussed in detail in Section 2.10.

Returning to the problem of describing the group F(S)nHi\ we now show how
this group relates to a group of paths in the graph A(P). Let S = A4°[G; /, A; P]
be connected and let (1/, 1a) € I x A with piAi7 ^ 0 so that Hi,iA is a group
7-f-class of S.

Lemma 2.21. [81, Lemma 4.3/ The mapping ip : H\,\A —> G defined by

VK(i /,3,1A)) = gpiAh

is a group isomorphism. It maps Hi,iA fl F(S) onto Vri/iAPiAi/.

Proof. It is routine to check that the map is an isomorphism. The second asser¬

tion follows from Theorem 2.18. □

We can actually say a lot more about the subgroups V^xPm of G.

Lemma 2.22. Let Hix and HjM be group TL-classes of a connected completely
0-simple semigroup S = M°[G\ /, A; P}. Then the subgroups V{\Pxi and Vj^P/xj
are conjugate in G.

Proof. Since S is connected we can fix a path n in A(S : E(S)) from p to i. We
claim that with g = p~jV(n) we have

gVixpxig — ^jnPnj"

It is sufficient to show:

p-Jy^)ViXPxlV(n)~l C IV
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Let p € Pt\. In the graph A(S : E(S)) this path may be extended to

.

J —> V- -» i
n P\i ■

-> A > 2

It follows that

P;/^(vr)C(p)pAjy(7r)-1 € Vm.
Since this is true for every p £ Pi\ the result follows. □

As promised earlier we now describe all the bases of the aperiodic Brandt
semigroup Bn. The structure matrix P of Bn is the n x n identity matrix In.
Therefore the graph A(P) has the following form.

Alo Ab

.0 .0
l\ 12

^n.
o

o

Let A C Bn. Let G(Bn,A) be the graph given by contracting the edges (Ak,h),
for all 1 < k < n, in the graph A(Bn : A). Thus the graph G(Bn,A) is isomorphic
to the graph with vertex set {1,... ,n} and set of directed edges equal to A. It
follows from Lemma 2.17 that A generates Bn if and only if the graph G(Bn, A) is
strongly connected (i.e. there is a directed path between every pair of vertices).
It follows from [8, Corollary 7.2.3] that if |A| = n then G(Bn,A) is strongly
connected if and only if it is isomorphic to the following graph.

This proves the following result.

Proposition 2.23. Let S = Bn be the n x n aperiodic Brandt semigroup and let
a € Sn. Then

A-a = {(i,ia) : 1 < i < n}

generates S if and only if a is a n-cycle in Sn.
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A

p p\i 7T
— 1

I J

Figure 2.2: Diagram showing that the groups Vj^p^j and Vi\p\i are conjugate in

2.5 Connected completely O-simple semigroups

The question of finding a formula for rank(S') divides into two cases: the case
when S is connected and the case when it is not. The connected case was dealt

with in [81] and in what follows we will extend these results to deal with the dis¬
connected case. For what remains of this section S will denote a finite connected

completely O-simple semigroup. We now give the details of a number of results
from [81] which will be needed later on.

Lemma 2.24. [81, Theorem 2.1] The following conditions are equivalent for
any completely O-simple semigroup S:

(i) r(Hs) is a connected graph;

(ii) A(P) is a connected graph;

(Hi) F(S) D Hi\ 7^ 0 for any i € I and any A 6 A.

Proof, ((i) «=> (ii)) The graph r(Hs) is disconnected if and only if there exist
vertices (z, A) and (j,p) in different connected components of r(Hs) which is true
if and only if the edges {i, A} and {j, p) are in different connected components of
the graph A(P). Such a pair of edges exists if and only if A(P) is not connected,
((ii) => (iii)) Since the graph r(Hs) is connected it follows that the graph A(P)
is connected. Given some i € I and A € A let p = (ei, e2,. ■., e^) be a directed
path in A(P) starting at i and ending at A. This is a valid path, as defined in
the previous section, and the corresponding element W(jp) G F(S) belongs to the
Tf-class Hi\. Since i and A were arbitrary it follows that F(S) fl Hi\ ^ 0 for all
(i, A) e/xA. ((iii) =>• (i)) Suppose that H{\ n F(S) is empty. Then it follows
from the definition of the graph that there is no path from i to A in the graph
A(P). It follows that A(P) is not connected and so neither is r(Hs).

G

□

In the next lemma we introduce the function <j)(i, A, j, pi). This function will
play a crucial role in what follows. The family of functions <j>(i, A, j, p) where
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i,j G I and X,p E A allow us to use the idempotents of connected completely
0-simple semigroups to "move between the 7d-classes". More than this, when
moving between two group H-classes we are able to map in an isomorphic way.

Lemma 2.25. [81, Theorem 2.1] Let S = M°[G\ I, A; P] be a connected com¬

pletely 0-simple semigroup. For any i,j G I and any X, p E A there exist

p(i, A, j, p), q(i, A, j, p) E F(S) such that the mapping A, j, p) : Hi\ —> Hj^
defined by

4>(i, A, j, p)(x) = p(i, A,j, p)xq(i, A, j, p)

is a bijection.
The elements p(i, X,j, p),q(i, X,j, p) can be chosen so that

A, j^r1 = f(j,g,i,X)

and (f>(i, X,j,p) is a group isomorphism if both Hi\ and Hj^ are groups.

Proof. First we show that a bijection can be found with the given properties.
Then we show that in the special case where Hi\ and HjM are both groups this
bijection may be chosen to be an isomorphism.

In the graph A (P) choose and fix a path ir which starts at j and finishes at
i. Such a path exists since the graph A(P) is connected. Say this path is:

j > hi > J2 > > • • • * jm * hm > L

This is not a valid path but if we shorten it slightly we do get a valid path. Let 7r'
denote the path 7r but restricted from j to pm. In a similar way let £ be a fixed
path in the graph A(P) connecting A to p. Such a path exists since the graph is
connected. Say the path £ is:

A > i\ » Ai > * • • • * An > in > p.

Once again, this path is not valid in A(P) but if we shorten it, by removing the
initial vertex, we get a path starting at i\ and ending at p which is valid. Call
this path £'. By the definition of A(P) we have W(it') G F(S) and W(£') G F(S).

Now define p(i,X,j,p) = W(ix') and q(i,X,j,p) = W(£'). The map

A,j, p)(x) = p(i, A, j, p)xq(i, A, j, p)

is a bijection from Hi\ to Hj^ since it sends (i,g, A) G Ht\ to (j, V(n)gV(£), p)
where V(7r), V(£) G G are both fixed.
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Now define the path 7r-1 from i to j to be the reverse of the path 7r and
the path £_1 to be the reverse of the path £. The patlis 7r~1' and £_1/ are

defined in the analogous way to above and then define p(j,p,i, A) = W(7r-1')
and A) = In this way the map <f>(j,p,i, A) maps (j, h, p) E Hj^
to (i, IA(7r)_1/iV(£)_1, A). Therefore for every (i,g, A) E Hi\ we have:

4>(j, V, i, A)0(i, A,j, p)((i, g, A))) = (p(j, p, i, A)((j, V(tt)gV(0, P))
= (i, V(TT)"1 V(tt)SW (f)V(0~\ A)
= (i,9, A)

and so <f>(i, A, j, p)~l = p,i, A).
Now consider the special case where both Hi\ and Hjfl are group "H-classes.

This means that the edges i —A A and j p belong to the graph A(P). This
gives some control over the choice of the paths 7r and £ in the above construction.
Carry out the same process as above but this time once 7r has been fixed we may

define

s- \ PXi ■ 7T-1 . P/lj£ = A —>i » j > p.

Now the map A, j, p) maps (i, g, A) E HiX to (j, V(ir)gpxiV(n)~lp~j, h) €
Hj^. Again, this map is clearly a bijection. Moreover, it is an isomorphism since:

</>((i,g,\)(i,h,'\)) = <f>(i,gpXih,\)
= (j> V(TT)(gpXih)pxiV(7r)_1p~/,p)
= (i> ^(K)(gpxi)(hpxi)V(tr)-1p~/, /i)w

= (T^(7r)(5PAi)^, A)
= (j, V(n)gpxiV(tr)_1p~^ /i)(i, V(tT)hpXiV(tt)~V~1, p)

□

Lemma 2.26. Let Hix and Hj^ be group H-classes of the connected completely
0-simple semigroup S. There is an isomorphism 9 : Hix —> Hj^ such that (F(S) D
Hix)9 = F(S) n

Proof. The map <f> = </>(i, A, j, /j) : //a —> f/J/t by Lemma 2.25 is an isomorphism.
We claim that <p(F(S) D Fa) = F(S) C Hj^. Indeed, if x G F(5) n then
4>{x) E F(S)xF(S) E F(S)3 = F(S) and so <f>(F(S) n HiX) C F(5) n HjfX. Since
f> is a bijection and since, by Lemma 2.22 the groups F(S) n H^x and F(S) fl HjM
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are isomorphic, it follows that <f>(F(S) fl HiX) — F(S) fl Hj^. □

So the subgroups F(S) fl Hi\ and F(S) n Hj^ are not only isomorphic but
they sit inside their respective group H-classes in the same way. The following
result now follows.

Corollary 2.27. Let S be a connected completely 0-simple semigroup with Hi\
and Hj^ two group Fl-classes of S. Then

rank{HlX : F{S) n HlX) = rank(Hjfl : F(S) D Hm).

The next lemma, roughly speaking, shows us how effective a given subset A
of S can be in helping to generate the elements of a fixed group Ff-class HlX.

Lemma 2.28. [81, Lemma 3.4] Let A — {ai,... ,ar} C S where aj G HijXj,j =
1,..., r and let HiX be a group Li-class. If we write

B = \i,i, \)(ai),... ,4>(ir, \r,i, C HiX

then

(.F(S) u A) n HiX = ((F(S) n HiX) u B).

Proof. (2) First note that by definition B C F(S)AF(S) and so B = B n HiX C
F(S)AF(S) D HiX. It follows that:

((F(S) n HiX) U5) C <(F(S) n HiX) u (F(S)AF(S) n HiX))
C (F(S) U F(S)AF(S)) n HiX
C (F(S)uA)DHlX.

(C) First observe that A C F(S)BF(S) since for a G A Pi Hj^ we have

a = </>(i, \,j, n,i, \)(a)) = p(i, X,j, n,i, X)(a)q(i, A, j, p)
G F(5)0(i,^,t, A)(a)F(5) C F(S)BF(S).

It follows that:

(F(S)uA)nHiX C (F(5)uF(5)BF(5))nfJa
c (F(5) uB)n HiX.

Also:

(F(5) u 5} n = (£?(5) u 5) n HiX c ((F(5) n i/a) u B).
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Indeed, any product in (E(S) U B) D Ha has the form:

ei . . . eri bien + i . . . er2b2&r2+l • ■ • U"fc-i lTrfc_i+l • • •

where each bm G Ha and en G E(S) for all n. Let ejA denote the idempotent of
Hi\ which is the identity of this group Tf-class. The above product is equal to:

(e^ ... en 6a)b\ (ejAeri-j-i ■ ■ ■ ®r2®iA)^2 (®»A6r2+l • • • &i\)bk—1 (®iA®r^._1 +1 • • • Cj-fc )

which has the form

/l&l/2&2 • • • bk-ifk

where fi G T(5) D iLjA and bi G B for all I. The reason that /i and fk belong to
Hi\ is because the entire product /1&1/2&2 • • belongs to L/jA. It follows
that:

<F(S) ui)n tfiA c (F(S) uB)n HlX c <(F(S) n tfiA) u 5)

as required. □

Using the previous result we may obtain a result concerning the relative rank
of any subset of F(S) in S.

Lemma 2.29. Let S be a connected completely 0-simple semigroup with Ha a

group H.-class and U C F(S). Then

rank(S' : U) > rank (Ha : Ha H F(S)).

Proof. Let V C 5 be such that (U U V) = S, say V = {tq,... ,um} C S where
Vk € Hik\k (k = 1,..., m). If we write

B — , Ai, z, A)(tq),..., 4>(imi L (Tm)} U Ha

then by Lemma 2.28 we have

(F(S) u V) n tfiA = <(T(S) n Ha) u 5).

Now since U U V is a generating set for S, we have

= 5 n Ha = {U U U) n Ha = (F(S) u U u U) n tfiA
= (F(5)uy)nHiA = ((F(S)nHlA)uB).
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Therefore

\V\>\B\>rank(HiX:F(S)nHiX).

□

This leads to the following corollary which gives an important lower bound
for ranks of connected completely 0-simple semigroups.

Corollary 2.30. [81, Lemma 3.6] If Hi\ is a group H-class then

rank(S) > rank(HiX : HiX n F(S)).

Proof. By Lemma 2.29 we have:

rank(S') = rank(S' : 0) > rank(Hi\ : Hi\ f~l F(S))

as required. □

2.6 Arbitrary completely 0-simple semigroups

Now we look at the case when r(Hs) is not necessarily connected. For the
remainder of this chapter, unless otherwise stated, S will denote a completely 0-
simple semigroup, represented as a Rees matrix semigroup M°[G] I, A; P], with k
connected components I\ x A) ,..., //. x Af. so the matrix P has the form suggested
by the following picture:

Ai
A2

h h

(Ci
C2

h
0 \

Ak \ 0 Ck)

We will first consider some properties that all generating sets of S must have.

Definition 2.31. We say that A C S is an 71-class transversal generating set if

{A) D Hia 7^ 0 for all i e I and A 6 A.

For example, Theorem 2.24 tells us that r(Hs) is connected if and only if E(S) is
an H-class transversal generating set. Clearly the smallest size such a set can have
is max(|/|, |A|). In fact, as a consequence of the results of Section 2.3, concerning
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the rank of an arbitrary rectangular 0-band, we know that we can always find at
least one 7F-class transversal generating set with this minimal size.

Lemma 2.32. There exists ACS such that |A| = max(|/|, |A|) and A is an

TL-class transversal generating set.

Proof. The assertion follows from Theorem 2.10 and from the fact that the
mapping (i,g, A) h-> (i,A) defines an epimorphism from S onto a rectangular
0-band. □

An H-class transversal generating set with size max(|/|,|A|) will be the first
building block we will use when constructing minimal generating sets for S. We
will call an If-class transversal generating set with size max(|/|, |A|) an hi-class
transversal basis.

Definition 2.33. We call CC/xA component connecting coordinates if F^sU
C) is connected. Similarly we will call A C S a component connecting set if
{(i, A)|(i,g, A) € A} C I x A is a set of component connecting coordinates.

If r(Hs) has k connected components then the smallest size a component con¬

necting set can have is k — 1. We will call these the minimal connecting sets.

Lemma 2.34. Every component connecting set D has a subset E C D that is
minimal.

Proof. Let A be the coordinates of the component connecting set D. Let
C\,... ,Ck be the connected components of T(lHIs). Construct a new graph F'
with vertices C\,..., Ck and Cj adjacent to Cj if and only if there is some Cj E Cj,
Cj E Cj and a E A such that {cj,a} and {a,Cj} are edges in T^s). Then T' is
a connected graph with k vertices and so has a spanning tree with k — 1 edges.
This spanning tree corresponds, in an obvious way, to a minimal set of coordinates
A! C A which in turn correspond to a subset E C D that is minimal. □

Lemma 2.35. Every Ti-class transversal generating set is component connecting.

Proof. Suppose otherwise. Let A be an 7F-class transversal generating set that
is not component connecting. Then we can choose (i, A), (j,/a) E I x A such that
(i, A) and (j, /i) are in different connected components of r(Hs U A). It follows
that i and p are in different connected components of the graph A(S : A) and so

by Lemma 2.17 we have (A) fl Hi^ = 0, a contradiction. □
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Corollary 2.36. Every H-class transversal generating set (and in particular ev¬

ery 7i-class transversal basis) has a component connecting subset which is mini¬
mal.

Example 2.37. Let G = {1, a} be the cyclic group of order 2 and let

S = M.Q[G\ {1,... ,4}, {1,... ,4}; P]

where

P =

( a 0 0 0 \
a 1 0 0

0 0 a 0

0 0 0 1 j

S9*

i* O
•

B o
•

(i-& a>2) §>3) £'4)

(2-2)
r (Ms)

The graph A(P) has 3 connected components.

(i) C = {(1, 3), (2,1), (3,4), (4, 2)} C I x A is a set of component connecting
coordinates.

(ii) A = {(1, a, 3), (2,1,1), (3,1,4), (4, a, 2)} C S is an H-class transversal basis
which is a component connecting set.

(iii) T = {(1, a, 3), (3,1,4)} C A is a minimal component connecting subset of
A.

We now define rm;n which is the most complicated term that will appear in
the formula for the rank of a O-Rees matrix semigroup. We use Map(X, Y) to
denote the set of all maps from a set X into a set Y.

Definition 2.38. Given the structure matrix P of S we define Pc:e where C C
Ax/ and 6 G Map(C, G) to be a new |A| x |/| matrix with entries p*Xi where

P\i
(A,i)0 if (A,i)eC
p\i otherwise.

Also let Sc,g = M°[G\I,k\Pcfi\- When \C\ = 1 we will use the more relaxed
notation S^A, i, (A, i)9).
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Since, depending on the circumstances, we may need to view sets of coordi¬
nates sometimes as subsets of I x A and at other times as subsets of A x I we

make the following definition.

Definition 2.39. Given A C I x A we define AT as

At = {(A,i) : (i,A) G A} C A x I,

and call this set the transpose of A.

Definition 2.40. Let Hi\ be any group 7-f-class of S and let C C / x A be a set
of component connecting coordinates with minimal size. Then define

rmin = min (rank(Ha : HiX n F(Sct e))).
0eMaP(CT,G) '

If S is connected then C = 0 and rm;n = r&nk(Ha : Ha G H(S)). Otherwise
S is not connected and we associate the family {Sct q : 0 E Map(CT,G)} of
connected completely 0-simple semigroups with S. We then look through this
family searching for a member that minimizes the relative rank of F(S) in a

group 7-f-class.
We have to show rra;n is well defined i.e. that it does not depend on the choice

of Hi\ or on the choice of C. First we note that, since Sct q is connected, by
Corollary 2.27 the number rmjn is independent of the choice of Hi\. That rmin

does not depend on the choice of C will eventually be proved in Lemma 2.43.

Lemma 2.41. Suppose that P has two connected components Ai x I\ and A2 x I2,
and let Hi\ be a group Ti-class. If (y,k) E (Ai x I2) U (A2 x 11) then for
every g E G there exists g' E G such that

HiX n F(S(fx,j,g)) = HiX DF(S(u,k,g')).

Proof. There are essentially two cases to consider.

Case 1: (g,j), (y, k) E A^ x p. Let (z, A) E I x A be arbitrary. We will show that
given (g,j), (v, k) and g E G we can choose g' E G so that if we let S\ = S(fi,j,g)
with structure matrix P\ and S2 = S(u,k,g') with matrix P2, then we have

Here denotes the set of values of all paths from i to A (so far denoted simply
as ViX) in the graph A (Q) where Q is the structure matrix of U. This convention
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will be used throughout and will also apply to sets of paths P{\. Let us choose
and fix a path 7in Pf and define = V(jr„^) G . Also, choose and fix a

path 7Tjk in P?k defining Wjk = V{iTjk) G V?k. Such paths exist since I\ U Ai and
/2 U A2 are both connected components in A(P). Now define

g' = WvnQWjk G V^gVfk
so that

9 = w~kg'w-f} G V^g'Vfi.
We observe that A (Pi) is connected and is precisely A(P) with the extra edge
p j. Also A(P2) is connected and is precisely A(P) with the extra edge
v k. Let p be an arbitrary path from i to A in A (Pi). We show that there is
a corresponding path p* in A(P2) with the same value. While following the path
p whenever we come across

... -f p -» j -» ...

we replace it with
H-* v -* k -* j

Recall that the graph A(P) is directed and has unlabelled edges. Also, paths are

uniquely determined by giving a list of vertices. Above we move from ptov using
the fixed path and from k to j using the path 7xkj. Clearly V{p*) = V(p) by
definition of g' and so V^1 C Vfx2. Similarly V^x C and the result follows
from Theorem 2.18. The case where iy,k) G A2 x I\ is dual to this case.

Case 2: (p,j) G Aj x J2 and (u, k) G A2 x I\. We follow a very similar argument
but this time let w^j G V^- and wuk G V^k, which is possible since I\ U Ai and
/2 U A2 are both connected components in A(P). Then g' is chosen so that the
paths

p —> k

and

p —> j —> n —>k

have the same value. □

Lemma 2.42. Let T be the family of all spanning trees of the complete graph
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Kn. IfT denotes the graph with vertex set T and edges defined by

(Ti,T2) E €(T) O 3ei,e2 E £(/in) : (Tj - {ei}) U {e2} = T2

then T is connected.

Proof. Observe that the set of acyclic subsets of the edge set of a graph T defines
a matroid (see [15, Chapter 12]). Then since in particular the spanning trees of
Kn are acyclic edge sets they are independent sets in the corresponding matroid.
That there is a path between the vertices T\, T2 G T is now a consequence of the
exchange axiom for matroids. □

Combining the previous two lemmas, we conclude the following which tells us

that rm;n is indeed well defined.

Lemma 2.43. Let S — A4°[G; I, A; P] be a completely 0-simple semigroup with
connected components I\ x Ai,...,Ik x A&. Let C, D C I x A be two sets of
minimal component connecting coordinates. If Hi\ is a group H-class in S then

min (rank(i7iA : HiX n F(SCTt9))) - min (rank(/7a : HiX n F(Sdtt<j>))).
0£Map(CT ,G) </>(EMap (DT ,G)

Proof. First we note that r(lHs U C) and T(Hs U D) are connected. We remove
one c G C, changing r(Hs U C) into T(M^ U (C \ {c})) which has two connected
components. Now by Lemma 2.42 we can find d G D such that T(lHI,sU(C\{c})lJ
{d}) is connected and by Lemma 2.41 we can replace 0 by 9' so that rank(Hi\ :

HiX n F(SCTte)) equals rank(HiX : HiX n F{S^C\{c})u{d})T,$'))■ Repeating this
process we can, by Lemma 2.42, move from C to D in a finite number of steps,
and, by Lemma 2.41, keep the relative ranks equal at each step. □

2.7 Substitution lemma

In this section we analyse how an element a G S can compensate for a "missing"
entry of the matrix P. We will see how generators may be used to "connect" S
back together.

First we need some more notation. Let S = A4°[G; I, A; P] and T =

A4°[G; I, A; Q\. Note that S and T are equal as sets. For A C S = T we
will write {A)s and (A)t to mean the subsemigroups generated by the set A in
S and T respectively.

Lemma 2.44. Let S = A4°[G; I, A; P], Let i,j E I and X,fi G A be such that
HjXjHi^ are group H-classes and are not group H-classes. If A C S
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with a = (i,g, A) € A and T = S(p, j,p^igp\j) then

(A)s = (A)t-

Proof. Let A5 = A(5 : A) and Ay = A(T : A) with Lis and Ay the edge sets of
As and Ay respectively. The only difference between E$ and Ay is that Ay has

P^i9P\j
the extra edge /i » j. Let Rs and Ay be the sets of valid paths in As, Ay
respectively. It follows from Lemma 2.17 that

(A)s = {W(p) : p £ Rs} = {(k,V(pU) : k £ /,£ £ A,p £ V^}
and

(A)y = (W(p) -.peRT} = {(k, V(p),Z) :k e I, f e A, pe A^}.

It is obvious that (A)s C (A)y since any valid path in As is a valid path in
Ay and so Rs C Ay. For the converse we argue in much the same way as in
Lemma 2.41. For p € Ay we show that there is a corresponding path p* £ As
with V(p) = V(p*). In p whenever we come across

P[ii9P\j
> 3 -► ...

we replace it with
^ P/U; ^ 9^ ^ P><i) j ^

Clearly V(p*) = V(p) and so (A)s = (A)y. □

We now, after first making another couple of technical definitions, combine
the main ideas of this section together in the form of Corollaries 2.47 and 2.48
which will be used in the proof of the main theorem of this chapter in the next
section.

Definition 2.45. Let C C / x A be a minimal set of component connecting
coordinates for S. For each (z, A) £ C choose and fix a pair (V'(A), 4>{i)) C / x A
such that 7^ 0 and Pa^(A) 7^ 0- Define

Cs = {(iP(AM(i)):(i,A)eC}

noting that Cs C I x A. We call C"5 the dual of C determined by if and <j>, or

more often just the dual of C (see Figure 2.3).
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A p 0(/) <t>(j)

T(A)

H'(ia)

j

Figure 2.3: Egg-box picture of a 3 component completely 0-simple semigroup
showing a set of minimal connecting coordinates (in white) and its dual (in black)
(determined by 4> and 4').

Note that if C is a minimal set of component connecting coordinates then so

is C5.

Definition 2.46. Given S as above and B C S a minimal component connecting
subset of S with coordinates C we define the connected completely 0-simple
semigroup Con(S,B) by Con(S,B) — S^cs^r a where Cs is the dual of C and
for (i,g, A) E B we have (4>(i),if(\))a = p^gpx^x)- We call Con(S', B) the
completion of S by B.

Note that Con(S,B) is a connected completely 0-simple semigroup.

Corollary 2.47. For any set of minimal connecting coordinates C there is a set
ICS with coordinates C such that rank (Hix : Hix C F(Con(S, X))) = rmin.

Proof. Since Con(5, X) = S^C6^Tta where for (i,g, A) e X we have

(0(f), = p<p(i)igpxy,(\)

it follows that we can choose middle components of X so that a satisfies

rank(#iA : HiX n F(Con(S, X))) = rank (Ha : HiX n F(S{cs)T)a)) = rmin.

•

B

•

o

mm

o

n
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Corollary 2.48. Let S = A4°[G; I, A; P] with connected components I\ x

Ai,..., Jfc x Afc, let B C 5 6e a minimal component connecting set with coor¬

dinates C Q I x A, let Hi\ be a group H-class in S, let T = Con(S,B) and let
A C S be such that B C A. We have:

(i) B C F(T);

(ii) (A)s = {A)t;

(Hi) rank(S : B) = rank(T : B).

Proof, (i) If (i,g, A) G J3 then (i,g,X) = (i,p~^{i),(f)(i))(ip(X),p~*x)x, X), a product
of two idempotents. (ii) Repeated application of Lemma 2.44. (iii) A direct
consequence of (ii). □

2.8 Main theorem

Given a generating set for K = 51], the natural rectangular 0-band homomorphic
image of the finite completely 0-simple semigroup 5, we will show how we can

build a generating set for S around its coordinates.

Proposition 2.49. Let S = A4°[G; /, A; P] be any completely 0-simple semigroup
with connected components I\ x Ai,..., Ik x A&. Let K be the natural rectangular
0-band homomorphic image of S. Let B be a generating set for K. Then there
exists a generating set X of S such that

\X\ = max(|R|, rmin + k — 1)

where

rmin = min (rank(tfiA : Hi\ G F(Sct 6))),
0eMap (CT,G) '

and where C C I x A is any minimal set of component connecting coordinates,
and Hi\ is any group hi-class. In particular, if t) : S —> K is the natural homo-
morphism (i,g,X) (i, A) then X may be chosen to satisfy B C X\\.

Proof. Let B C I x A be a generating set of K. Let ZD be a minimal connecting
subset of B, which exists by Corollary 2.36, so |ZD| = k — 1. By Corollary 2.47
we can find A C S with coordinates D such that for T = Con(5, A) we have
rank(ZZjA : Hi\ n F(T)) = rm;n. We will extend A to a generating set for T,
which, by Corollary 2.48, will serve as a generating set for S also. Let U C ZZiA
be such that \U\ = rmin and (U U (HiX D F{T))) = HiX, say U = {ux,... ,«rmin}-
There are two cases to consider:
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Case 1: \B\ > rm;n + k — 1. First we note that

\B \ D\ — \B\ -{k-l)> rmin + (k - 1) - (A: - 1) = rmin.

We can extend A to X = .A U y C T with coordinates B in the following way. Let
Y = {ni,... , tymin,..., f|£|_(fc_i)} C T have coordinates corresponding to B\D.
Since T is connected we can choose middle components of v\,..., urmin so that
for every vq in Hiq\q with 1 < q < rm;n we have

qi b tyiyq) = ^q•

Choose middle components of urmin_|_i,..., arbitrarily. We claim that X
generates T. It follows immediately from the fact that X is an 'If-class transversal
generating set that E(T) C (X). It now follows, by Lemma 2.28, that with
this choice of v\,..., vrmin we have {ui,..., urmin} C (X). We conclude that
((X) n Hi\) = Hj\, which, along with the fact that X is an Lf-class transversal
generating set, implies by Lemma 2.4 that X generates T, and, as a consequence,

generates S. Determining the size of X we have

\X\ = \A\ + |y| = k - 1 + \B\ - (k- 1) = \B\ = rnax(|5|,rmin + k - 1),

as required.

Case 2: |S| < rm;n + k — 1. First we note that \B \ D\ = \B\ — (k — 1) < rmin.
We can extend ^4toX = duyuZCT where A U Y has coordinates B while all

2 £ Z have the fixed coordinate (j, /.i) where (j, n) e B. Let Y = {ui,..., C T
(where S = \B\ — (k — 1)) with coordinates B\D and middle components chosen
so that for every vq in Hiqxq we have

</>(iq,\q,i,\)(vq) = Uq.

Further let Z = {vs+i,vs+2, ■ • • Wrmin} with middle components chosen so that:

= Uq.

Then as before X generates T, and, as a consequence, generates S with

\X\ = \A\ + |y | + \Z\ = (k — l) + 8 + (rmin — (5 + 1) + 1)
= ^"rnin + k - 1 = max(|5|,rmin + k - 1)
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as required. □

Corollary 2.50. Let S = Ai°[G; /, A; P] be any completely 0-simple semigroup
with connected components I\ x x A&. Then

rank(5) < max(|/|, |A|,rmin + k - 1).

Proof. Let T = 5"t|. By Theorem 2.10 we have rank(T) = max(|/|, |A|). The
result now follows from Proposition 2.49. □

We now state and prove the main result of this chapter.

Theorem 2.51. Let S = A4°[G;J, A; P] be any completely 0-simple semigroup
with connected components I\ x Ai, ...,/& x Afc. Then

rank(S') = max(|/|, |A|,rmin + k — 1),

where

7-min = min (rank(#iA : HiX n F(Sct «))),
0eMap(CT,G)

and where C C / x A is any minimal set of component connecting coordinates
and Hi\ is any group Tt-class.

Proof. The fact that a generating set with the required size can be found was

proven in Corollary 2.50.
To complete the proof, let A C S be an arbitrary generating set of S. By

Lemma 2.3, we must have |A| > max(|/|, |A) so we are just left to show that
|^4| > rmin + k — 1. By Lemma 2.34, the set A must have a minimal component
connecting subset say D C A with \D\ = k — 1. Clearly by definition \A \ D\ >
rank(5 : D). Let T — Con(5, D), a corresponding connected completely 0-simple
semigroup, which by Corollary 2.48 satisfies

rank(5 : D) = rank(T : D)

and D C F(T). Therefore

|A\H| > rank(5 : D)
= rank(T : D)
> : Hi\ fl F{T)) (by Lemma 2.29)
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and so Jj4| = \D\ + \A \ D\ > rmin + k — 1. □

2.9 Expressing rmin as a property of G

Recall that

rmin = min (rank(HiX : HiX n F(Sct e)))
0eMap(CT,G)

where Sct q is a connected completely 0-simple semigroup. Since Sct q is con¬
nected we can investigate Hi\ n F(Sct q) in more depth. We saw in Lemma 2.21
that if S is a connected completely 0-simple semigroup then Hi7iA n F(S) is iso¬
morphic to ViJiApiAi/. We will now construct a generating set for Fi7iaPiai7 as
described in [81].

For each i 6 / and A £ A let us choose a path n\ connecting 1/ to A in A(P)
and a path 7r7 connecting i to 1a in A(P) (with 7Tia = 7i"i7 = 1/ —> 1a); this is
possible since S is connected. Then with

aM = v (TT\)p\iV (7ri)piAi7

we have:

Lemma 2.52. [81, Lemma 4-5] The group Vi7iApiAi7 is generated by the set
A — {a\i | i £ /, A (E A}.

Proof. Consider an arbitrary path in the graph A(P) starting at 1/ and ending
at 1a:

7T = 1/ —» Ai —> 12 —> A2 —i► 73 -* A3 —> . . . —> %r-1 —► Ar_i —» ir —■* 1a-

The value of this path is:

PAll7TAli2PA2i2PA2i3PA3i3 ' ' ' P\r-lir-lT*r-lirPlAir-

Now we amend the path slightly by adding in "spurs" (see Figure 2.4). These
will not change the value of the path. The new path is:

l/(—► 1A —>)1 / —► Ai(—1/ —^->)Ai —»i2(—A 1a(-^A 17 Tii->)1A —2-*)i2 —> A2(—> ...

■j Pll -i nir ■
... 1/ -* 1A » lr —> J-A-
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Computing the value of this path we have:

VMPIaI/ = PxlljP^Px^P^isPx^ ■ ■ • Pxt.ir^PK-lirPllirPlKh
= aAll/aAli2a\2i2aX2i3Cl\3i3 ' ' ■ aXr.lir^r-liralAir-

Therefore the group ViJiApiAi/ is generated by A. □

Using this generating set we may obtain a more concrete result than Theo¬
rem 2.51. It generalises [81, Theorem 4.6],

Theorem 2.53. Let S = A4°[G;/, A;P] be a finite Rees matrix semigroup with
k connected components I\ x A\,... ,1k x ^-k- For every j — 1,... ,k choose

(1IjAhj) e Ij x Aj with piA.ij. A 0 so that Hi7.,iA. are group Li-classes. For
A 6 Ar and i 6 /; let 7r^ 6e a pat/i connecting l/r to A in t/ie subgraph Ir U Ar and
/et 7Tj fre a path connecting i to ly; in the subgraph Ii U A/ (with 7Ti7 = 7Tia? =

piA i/ _1
1/ -—-—> -^or every r = 1,..., k let

axi = V(Trx)pxiV(iTi)piAriIr ((A,i) e Ar x Ir).

Let Hr be the subgroup of G generated by the set {a\i | (A,i) E Ar x Ir,a\i A 0}-
Then

rank(S') = max(|I|, |A|,pmin + k- 1),

where
k

Pmin — min{rank(G : U QiFLiQi 1)|pi,... ,gk € G}.
i= 1

Proof. The way to think about this complicated looking theorem is as follows.
With each connected component Aj x L, of P there is an associated subgroup Hi
of G which is determined by the position and values of the entries of A, x /j. Note
that as a consequence of Lemmas 2.21 and 2.52 the subgroup Hr is isomorphic
to F(S) PI Hi\ where Hi\ is some fixed group 7d-class of component Ar x Ir. We
conjugate each of these subgroups in turn by any elements we want from G. We
go on to look at the relative rank in G of the union of these subgroups. The
number /9m;n is the smallest possible value this relative rank can take.

Let C be the connecting set

C = {(l/2i IaJ. (l/3> lAi), (l/4, IaJ, • • • (1/fc, lAi)} C / x A,

let 9 E Map(CT,G) with (lA1}l/r)0 = gr for 2 < r < k with g\ = PiA ij and
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A1 \ \

Figure 2.5: The connected graph A(Q) constructed from the disconnected graph
A(P) and the connecting set C.

consider

rank(i/iJiiAi : tfi7liAl nf(%i9)).
We are really interested in T7i7 iA flF(T), where T = Sct q is connected and so
we can use Lemmas 2.21 and 2.52 to compute it.

In order to determine T7i7 iA n F(T) we consider the graph A(Q) (see Fig¬
ure 2.5) where Q = Pct e with entries q\i,i G 7, A G A. The graph A(Q) is
connected and in it we can find paths from 1/j to any A and from any i to lAl
which we need in order to compute T7i7iia fl F(T). For each A G Ar C A let w\
be the following path from lj1 to A

zj\ : 1/j -> lAl -> 1/,. PA A.

Note that V(w\) = 1[ grV(nr). Similarly for i G Ir C 7 let zui be the
following path from i to lAl

zVi . i -> lAr * 1 ir * lAi •

Note that V(wi) = V('^i)qiAriIr9r~1 ■ Also choose zzi} = z&iA = l/7 —> lAl.
Now let

w\i = V(zax)qxiV(wi)qlAiiIi.
For (A, i) G Am x In with m ^ n we either have q\t = 0 in which case w\j = 0 or
else we have A = lAl,i = l/n and q\i = giA i7n = gn in which case

w\i — wlAl l/r = )9rV{l&lir )91a7 1/j =71a11/1 9r9r 9lAl l/7 1g-
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When (A, i) G Ar x Ir for some 1 < r < k, we have

w\i = V{wx)q\iV{wi)qiKiih
= (llAl l/! ~V)VMq\iV(tVi)qlAriIr (5r_1<7lAl l7l)
= (P1A1 l7l ~l9r)VMpxiV{TTi)piAr\Ir (»r_1PlAl lq )
— hj- QjXx h'T

with hr = PiAliIl~1gr and axi defined as before with (A,i) G Ar x Ir.
It follows that the subgroup generated by

{wAi \ X e A, i e I, wxi ^ 0}

is equal to the subgroup generated by

k

{hjaxihj |(A, i) £ Aj x Ij}.
j=i

Therefore

= »€M,KiSx,0)(rank(ifl"u': nF(Scr»)))

= min (rank(G : (wxi I A G A, i G I,wxi 7^ 0)))
0eMap(CT,G)

k

= min{rank(G : (J giHig'1) j g2,..., gk G G} with cq = piAli7l

k

= min{rank(G : (J giHig'1) \ gu ..., gk G G}
i=l

= Pmin-

□

2.10 Isomorphism theorem and normal forms

Given a finite 0-simple semigroup it will have, up to isomorphism, a unique non¬

zero maximal subgroup. This subgroup is isomorphic to G in the Rees matrix
construction. The Al-classes are indexed by I and the £-classes by A. The matrix
P with entries in Gu{0} is not, however, uniquely determined by S. In the proof
of the Rees theorem (see Chapter 1) there is some choice in its construction.
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That is, with G, I and A fixed, two different matrices may give rise to isomorphic
semigroups. The following result demonstrates exactly how much variation in
the matrix P is allowed.

Theorem 2.54. [57, Theorem 3-4-1] Two regular Rees matrix semigroups S =

M°[G\ /, A; P] and T = A4°[K; J, M\ Q] are isomorphic if and only if there exist
an isomorphism 9 : G —> K, bisections if : I —» J, x '■ A —> M and elements
Ui (i £ I), (A £ A) such that:

P\i@ =

for all i £ I and A £ A.

It follows from Theorem 2.54 that if S = Af°[G; /, A; P] and T =

M°\K\ J, M; Q] are isomorphic then so are the graphs A(P) and A(Q). The
values of the paths in A(P) will however not equal the values of the correspond¬
ing paths in A(Q), in general.

Another way of expressing this result is the following. If there is a A x A
diagonal matrix V with entries in G and an I x I diagonal matrix with entries in
G such that P = VQU, then the map (i,a, A) t—> (i,Uiav\, A) is an isomorphism
from M°[G\ /, A; P} onto _M°[G; /, A; Q\.

In particular, when P happens to contain only non-zero entries, i.e. S =

J U {0} where J is a completely simple semigroup, then there is an obvious
normal form that any matrix P may be put into:

Definition 2.55. We say that the matrix P = (p\i) with entries in G is in normal
form if every entry in the first row and the first column is equal to the identity
1G of G.

Theorem 2.56. If S is a completely simple semigroup then S is isomorphic to
a Rees matrix semigroup M. [G; /, A; P] in which the matrix P is normal.

If S is a connected completely 0-simple semigroup then we can normalise the
matrix in a special way using the graph A (P).

Theorem 2.57. Let S = A4°[G; /, A; P} be a connected completely 0-simple semi¬
group. For any spanning tree T of the bipartite graph A(P) it is possible to
normalize the matrix P so that every edge in T is labelled by the identity of G.

Proof. We proceed by induction on the number of vertices of the graph A(P).
When A(P) has two vertices the result is trivial. For the inductive step we will
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isolate a leaf in the tree, remove it, normalize the resulting completely 0-simple
semigroup, then add the vertex back in and normalize appropriately.

Let T be a spanning tree of the graph A (P). Let v E T be a vertex of degree
one in T (a leaf of the tree) and suppose that v E I. The vertex v labels a

column of the matrix P and by construction the matrix P' = P[0][u] (the matrix
P with column v removed) is also connected. By induction the matrix P' may
be normalized in such a way that the edges of T \ {u}, which is a spanning tree
of A (P'), have value Iq- Let 9 : A —> G and 5 : I \ {u} —> G be the functions
defining such a normalization. We will extend 5 to <5* so that the pair (9,5*)
normalize P in the desired way. Since v has degree one in T there is a unique
element A„ G A to which i is connected in T. Therefore p\ViV ^ 0 in P. Now
define

5*(v)=p-xtv9(^r\
and thus the edge (A„,u) has value:

(0(K))p\v,v(Pxlv9(K)~l) = 1G-

Also, since v has degree one in T, all of the other values of edges of T in A(P)
once normalized by (6,6*) are left unaltered (i.e. are all equal to 1g)- This
completes the inductive step. There is a dual argument when v E A. □

Now consider the generating set A = {aAi | i E /, A € A} described in the
previous section. It is constructed by fixing paths 7q for each i E I and tt\ for
each A E A. Once P has been normalized, by the process described above, all of
the paths 7q and 7T\ can be chosen to only use edges from the spanning tree T.
Therefore V(7T\) = V(^%) = 1G for all i and A. In addition to this we can find
H\\ such that p\\ = 1 g- Now

A = {a\i | i E I, A E A} = {V(n\)pxiV(n^pn \ i E I,\ E A}
= {p\i | « € /, A G A}.

We conclude that the group VnPii is equal to (p\i \ i E I, X E A,p\i A 0), the
subgroup generated by the non-zero entries in the matrix P. Carrying out this
normalization process on each of the connected components of a matrix P in turn

gives a matrix that we say is in Graham normal form. Graham [41] was the first
to realise that the matrix P may be normalized in such a way.

Theorem 2.58. [41, Theorem 2] Let S = M°{G\ /, A; P] be a finite regular Rees
matrix semigroup. It is always possible to normalize the structure matrix P to
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obtain Q with the following properties:

(i) the matrix Q is a direct sum of r blocks C\,..., Cr suggested by the following
picture:

B\ B2 • ■ • Br
Mi (Cx 0 \
M

Ar

c2

\ 0 Crj

(ii) Each matrix Ci : Ai x Bi —> G° is regular and

r

F(S) = (E(S)) = (J M^Gi-A^Bt-Ci)
i= 1

where Gi is the subgroup of G generated by the non-zero entries of Ci, for
i = l,...,r.

2.11 Applications, examples and remarks

We begin by using the notion of Graham normal form to obtain the following
neat formulation of Theorem 2.53.

Corollary 2.59. Let S = Ai°[G] I, A] P] be a finite Rees matrix semigroup with
k connected components I\ x Ai,..., Ik x and with regular matrix P in Graham
normal form. For every r = 1,..., k let Hr be the subgroup of G generated by the
non-zero entries of component Cr = Ir x Ar of the matrix P. Then

rank(S) = max(|J|, |A|, ermin + k - 1)

where
k

crmin = min{rank(G : |J giEbigE1) \ gi,...,gk € G}.
2 = 1

Proof. By Theorem 2.57 we may choose, for every j = 1...., k. an element

(1/^., lyy,-) G Ij x Aj with piA.,iT. = 1 g- For every r = 1,... , k we have

a\i = V (lT\)p\iV (TTi)lG ■

The subgroup Hr of G is generated by:

i | (^> ^ ^-r X IriP\i 7^
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In fact, by Lemma 2.52

Hr = ^l/rlArlG = ^l/rlAr-

By Lemma 2.21 the map if : Hi/?.iA —> G defined by

■0(1 /r.P.Ur) = 9

is an isomorphism which maps iA H F(S) onto ViIriAr ■ Since the matrix P
is in Graham normal form we have

HiIriAr n F(S) = 1 ir x Gr x lAr

where Gr is the subgroup of G generated by the non-zero entries in component
Cr. We conclude that

Hr = Vllrlhr =GrCG.
In other words, Hr and Gr are equal as sets. Now the result follows as a direct
application of Theorem 2.53. □

In fact, using Theorem 2.54, once the best conjugating elements have been
found we can conjugate the entries in the matrix putting it in a new normal form.

Corollary 2.60. Let S = A4°[G;I, A;P] be a finite completely 0-simple semi¬
group where P has k connected components. It is possible to normalize the matrix
P to obtain a matrix Q with the property that:

rank(5) = max(|I|, |A|,rank(G : K) + k — 1)

where K is the subgroup of G generated by the non-zero entries in the matrix Q.

Note that the above result contains less information than the main theorems,
Theorems 2.51 and 2.53, in the sense that there are no instructions given for
finding the appropriate normalization. It just tells us that such a normalization
exists.

A Hamiltonian group is a group all of whose subgroups are normal. In partic¬
ular, all abelian groups are Hamiltonian. The quaternion group Qs is an example
of a non-abelian Hamiltonian group. If G is an abelian group, or more generally
a Hamiltonian group, then conjugating has no effect on subgroups which gives us

the following corollary.
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Corollary 2.61. Let S = A;P] be a finite Rees matrix semigroup with
G a Hamiltonian group, k connected components and with regular matrix P in
Graham normal form. Let H be the subgroup of G generated by the non-zero

entries of P. Then

rank(S) = max(|/|, |A|,rank(G : H) + k — 1).

Given a completely 0-simple semigroup it is sometimes possible to express it
as a Rees matrix semigroup over a group where P is made up entirely of elements
from {0, 1G}. A formula for the rank, in this situation, is given by the following
corollary.

Corollary 2.62. Let S = _M°[G;/, A; P] be a finite Rees matrix semigroup with
k connected components and with regular matrix P only containing entries from
{0, 1G}. Then

rank(S) = max(|/|, |A|,rank(G) + k — 1).

Proof. Since P has only 0 and 1 G as entries then it is in Graham normal form.
Therefore

k

rmin = min{rank(G : (J giHigi~l)\gu. .. <E G} = rank(G : {1G}) = rank(G).
i=1

n

Recall that the Brandt semigroup B = B(G, {1,... , n}) is a Rees matrix
semigroup Ai°[G; I, I; P] where P ~ In, the n x n identity matrix, and I =

{1,... ,n). The Brandt semigroup represents the extreme case where T(Hs) is
as disconnected as possible. The Brandt semigroup clearly satisfies the criteria
of Corollary 2.62 and as a result we obtain the following theorem of Gomes and
Howie:

Corollary 2.63. [37, Theorem 3.3] Let B = B(G, {1,... , n}) be a Brandt semi¬
group, where G is a finite group of rank r > 1. Then the rank of B is r + n — I.

We saw in Lemma 2.9 that when rank(G) = 0 (i.e. G is the trivial group)
then rank(H) = n. Note that the original result of Gomes and Howie actually
gave the rank of B as an inverse semigroup but in [35] Garba shows that, when
r > 1, the rank of B as a semigroup is equal to the rank of B as an inverse
semigroup.

Definition 2.64. We call S locally generated if Hi — G for some 1 < i < k.
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Corollary 2.65. If S = M°[G\ A,I;P] is a locally generated completely 0-simple
semigroup then

rank(S) = max(|/|, |A|).

Proof.

k

rank(5) = max(|/|, |A|, min{rank(G : U diHtgi l)\g\,...,gk € G}))
i= 1

= max(|/|, |A|,rank(G : G))
= max(|/|, |A|).

□

After proving Theorem 2.10, and considering the results for the connected
case, it would perhaps have seemed reasonable, as an initial guess, to think that
the rank of a completely 0-simple semigroup might be given by

rank(S') = max(|/|, |A|, min (rank(i/j,\ : Hi\ fl F(S)))). (2-1)
iel,AeA

In fact the expression on the right hand side does not even serve as an upper

or lower bound for the rank in general, as the following two examples show.

Example 2.66. Let G be a group with rank(G) = 3 (such as C2 x C2 x C2 for
example) and let S be the Brandt semigroup S = B(G, {1,2}). Then F(S) =

{(1,1G,1),(2,1G,2),0} and so

max(|/|, |A|, min (rank(iL,A : Hi\ n F(S)))) = max(2, 2,1) = 2 < 4
iel,AeA

= r + k — 1 = rank(»S).

Example 2.67. Let G be a group with rank(G) = 11 (such as C211 for example)
and suppose G — (gi,. ■ ■ ,gu)- Let

( 1 1 1 0 0 0

1 51 52 0 0 0

1 53 54 0 0 0

0 0 0 1 1 1

0 0 0 1 55 56

K 0 0 0 1 57 58 )
which is in fact in Graham normal form. Letting H1 = (pi, ^2? <73? P4) and Hi =
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(55,56,57,5s) we have

rmin = min{rank(G : h\Hih~[l U /i2-f^2^2"1)|^i, ^2 £ G} < rank(G : H\ U Hf) = 3.

Then we have

rank(S') = max(|/|, |A|,rmin +2 - 1) = max(6,6,rmin + 1) = 6.

The right hand side of (2.1) gives

max(|/|,|A|, min (va,nk(Hi\ : Hi\ D F(S))) = max(6,6, min(7, 7))
iei,AeA

= 7 > 6 = rank(S).

2.12 Non-regular Rees matrix semigroups

The definition of Rees matrix semigroup generalizes in a number of ways. For
example, if we remove the assumption that the matrix P is regular we still obtain
a semigroup, but in general it will not be a 0-simple semigroup. We call such
semigroups generalized Rees matrix semigroups. We begin this section with an

easy generalization of the main theorem of the previous section with the removal
of the assumption that the matrix is regular.

Theorem 2.68. Let S = Ad°[G;/, A; P] be a generalized Rees matrix semigroup
over a group G. Write P in the form:

Ai

A2

h h

Q

\

where Q = Ai x I\ is regular and the rest of the entries equal zero. Let T
M°[G\ I\, h\\Q\, which is a completely 0-simple semigroup. Then

rank(S) = rank(T) + |/2| + |A2|.

Proof. (<) We begin by demonstrating that a generating set with the required size
can be found. Let B C Ix x G x Ai be a generating set for T with |£?| = rank(T).
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Fix i* G I\ and A* G Ai and define

5/ = {(z\ 1 g, A) : A G A2}, 5a = {(«, 1g, A*) : i G /2}-

Now

|5 U 5/ U 5aI = rank(T) + JZ2I + |A21

and this set generates S.

(>) Let A be a generating set of S with |A| = rank(S').

Claim. (A n T) = (A) n T = T.

Proof. Consider the graph A(S : A) and recall the connection between (A) and
the values of the valid paths in the graph. Consider a path (with non-zero value)
beginning in I\ and ending in A^. No such path passes through a vertex of
I2 U A2, since there are no directed edges from A2 to I2, from Ai to I2, or from
A2 to I\. □

Claim. (A\(I2xGx A2)) = S.

Proof. Let 5 = A\ (/2 x G x A2). First observe that for every s G I2 x G x A2 and
for every t G 5 we have st = ts = 0. It follows from this that since A generates
S we must have (5) D S \ (I2 x G x A2). Finally note that 5 \ (I2 x G x A2)
generates 5 since for ^2 G I2 and A2 G A2, if we fix A G Ai and iGl1 such that
PAi / 0, which we can since Q is regular, we have:

{(*2,5, A2) :«GG} = {(i2,0, A) : g G G}{(z, 5, A2) : g G G}.

□

Returning to the proof of the theorem, since A \ (/2 x G x A2) generates 5 it
must intersect every row and every column of S. (Notice here that it is incorrect
to use the expressions 7Z- and £-class for the rows and the columns since these
are not the Abclasses and 5-classes anymore.) We conclude that:

rank(5) = |A| > |A n T| + |A n (J2 x G x Ai)| + |A n (Jj x G x A2)|
> rank(T) + |/2| + |A2|

as required. □
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In particular, if S = A4°[G; I, A] P] is a finite completely 0-simple semigroup
with I' C I and A' C A, then (I7 x G x A') U {0} is a subsemigroup of S and
is isomorphic to the generalized 0-Rees matrix semigroup M°{G] I7, A'; Q] where
Q\i = P\i f°r all (^> i) 6 A'x I'. In other words, if S" is a finite completely 0-simple
semigroup and if R\,..., Rm is a set of non-zero 7\l-classes of S, and L\,... ,Ln
is a set of non-zero ^-classes of S then

{(Ri U ... U Rm) n (Li U ... U Ln)} U {0}

is a subsemigroup of S and is isomorphic to a generalized 0-Rees matrix semi¬

group, as described above.

2.13 A family of transformation semigroups

As mentioned in the introduction, in current literature one of the most common

areas of investigation has been that of the ranks of various semigroups of trans¬
formations. Many examples that have been considered happen to be idempotent
generated and therefore the question of rank is answered simply by applying The¬
orem 2.13. In order to find less trivial applications for Theorem 2.51 examples
that are not idempotent generated, and those that are not even connected, should
be considered.

Definition 2.69. Let n, r € N with 2 < r < n. Let A be a set of r-subsets
of {1,... ,n} and let B be a set of partitions of {1,... ,ra}, each with r classes.
Define:

S"(A, B) = ( {a £ Tn : im a £ A, ker a £ B} )

the semigroup generated by all maps with image in A and kernel in B.

Example 2.70. In [68], [67] and [66] subsemigroups of Tn generated by elements
all with the same kernel type are considered. These semigroups are idempo¬
tent generated and in this series of papers their ranks and idempotent ranks
are computed. The semigroups S(A,B) are a more general class since when
A — {X C {l,...,n} : |X| = r} and B is the set of kernels of a particular-
partition type then we recover the examples of [68],

Example 2.71. Let S be a transformation semigroup over a finite set X gener¬

ated by elements with fixed rank r and with the property that S has a subgroup
that is isomorphic to the symmetric group Sr. Then this semigroup belongs to
the class of semigroups of the type S(A, B).
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Definition 2.72. Let T be a finite simple graph. For a subset X of the vertices
of T define

V0(X) = {i6l: d(x) = 0},

the set of all isolated vertices, and

V+(X) = {x E X : d(x) > 0},

the vertices with non-zero degree so that X — Vq(X) U V+(X). Also define
v0(X) = |Vb(X)|, u+(X) = |F+(X)| and MV(T) = max{d(v) : v E V(r)}: the
maximum degree of a vertex of the graph.

Recall that the edges in the graph A(P) corresponded to idempotents in the
completely 0-simple semigroup. From Proposition 2.14 the idempotents in Tn are

indexed by pairs (/, K) where I is an image and K is a kernel such that I is a

transversal of K. This leads to the following definition.

Definition 2.73. Let A be a set of r-subsets of {1,... , n} and B be a set of
partitions of {1,... ,71} of weight r. Define the bipartite graph F(A, B) to have
vertices A U B and a E A connected to b E B if and only if a is a transversal of b.

Lemma 2.74. Let I = {a E S(A,B) : |imo;| < r} which, provided it is non¬

empty, is a two-sided ideal of S(A, B). Then S(A,B)/1 is isomorphic to a gen¬

eralized Rees matrix semigroup over the symmetric group G = Sr and

rank(5(A, B)) = rank(S(A,B)/I).

Proof. Let S = K{n,r). Let T = K(n,r)/K(n,r — 1) which is a finite completely
0-simple semigroup. Let f : S —> T be the natural epimorphism from S onto T.
By definition

S(A, B)/T = (S{A, B) n Dr) u {0}

with a product of two elements x,y E S(A,B) Pi Dr equal to 0 if and only if
xy £ 5(A, B)C\Dr. By the definition of f it follows that S(A, B)/I is isomorphic
to (<S'(A, B) fl Dr)f>U {0} < T. From the definition of the semigroup 5(A, B) this
subsemigroup of T has the form

{(i?i u... u Rm) n (Li u... u Ln)} u {0}

where R\,..., Rm is a set of non-zero 7£-classes of S and L\,..., Ln is a set of
non-zero T-classes of S. Therefore, if T = A4°[G; /, A; P) then there are subsets
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/' C I and A'CA satisfying

(S(A, B) n Dr)<t> U {0} = (/' x G x A') u {0}

which is a generalized 0-Rees matrix semigroup. Since the maximal subgroups of
Dr are isomorphic to Sr it follows that G = Sr.

For the second part, by definition 5(A, B) fl Dr generates S(A, B). Therefore
rank(5(A, B)) < rank((S(A, B)/X)). On the other hand, since S(A, B)/X is a ho-
momorphic image of S(A, B) it follows that rank(5(A, B)) > rank((5(A, B)/X)).

□

Theorem 2.75. Let n,r € N with 2 < r < n. Let A be a set of r-sets of
{1,... ,n} and B be a set partitions of {1,... , n} with weight r, and construct
the bipartite graph T(A, B). Then:

max(v+(A), v+(B)) + vq{A U B) if MV{A U B) > 2

rank(5(A, B)) = < max(u+(A), v+(B)) + vq{A U B) + 1 if A4V(A U B) — 1

\A\\B\rl ifMV(AuB) = 0

where v+, vo and A4V(A U B) refer to values of the graph T(A, B).

Proof. As a result of Lemma 2.74 is is sufficient to prove the result for the
generalized Rees matrix semigroup S = LA°[Sr] I, A] P] which is isomorphic
to S(A,B)/X. There are three cases to consider depending on the value of
MV{AUB).

Case 1: A/iV(A U B) — 0. In this case the structure matrix P consists entirely
of zeros so S(A,B)/X is a null semigroup with |A[|5|r! non-zero elements and
the result follows trivially.

Case 2: Jv[V(A U B) = 1. In this case the matrix P has the form:

A,

h h

D

A2

where D is a diagonal matrix with entries in G. As in Theorem 2.68 let
T = A4°[G; Ii, Ai; D] which, since D is diagonal, is isomorphic to the Brandt



Section 2.13 65

semigroup B{G,\I\\) with G = Sr. Since r > 3 it follows that rank(G) =

rank(SV) = 2. Thus, by Corollary 2.63 we have:

rank(T) = 17x1+ rank(G) — 1 = |Ii| + 2 — 1 = |/i| + 1.

Now by definition
\h \ = | All = max(v+(A),v+(B))

and

\I2\ + \A2\ = v0(ADB).

It follows that:

rank(S,(^4, B)) = rank(S(A,B)/1)
= rank(T) + |/2| + |A2|
= (\I\\ + 1) + |72| + | A21
= max(u+(A), v+(B)) + vq{A U B) + 1

as required.

Case 3: A4T>(A U B) > 2. In this case P has the form:

(Lemma 2.74)
(Theorem 2.68)

Ai

A2

(
h h

Q

\

\

where Q is regular, non-diagonal and every entry outside of Q is equal to zero.

As before, let T = A4°[G; 7i, Ai; Q\. Since Q is not diagonal the number of
components that Q has, when decomposed as in Proposition 2.58, must be strictly
less than max(|/i|, |Ai|). Also since r > 2 it follows that rank(G) = rank(SV) = 2
and so rm;n < rank(SV) = 2. We conclude that:

tmin + k - 1 <2 + k - 1 < max(|/i|, I Ax I).
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It follows that rank(T) = max(|/i|, |Aj |). We conclude:

rank(5(A, B)) = rank(S(A,B)/l) (Lemma 2.74)
= rank(T) + \I^ \ + |A21 (Theorem 2.68)
= max(|Ii|, |Ai|) + \I2\ + |A2|
= max(u+(v4),u+(5)) + vq{A U B)

as required. □

Note that the result is slightly different for r = 2 since S2 is cyclic and so has
rank 1, not 2.

Example 2.76. Let n = 7 and r = 3 and define the set of images:

A = {{1, 2, 3}, {1,6, 7}, {5,6, 7}, {2,4, 6}, {1, 2, 5}}

and set of partitions:

B = {(1)4, 7|2,5|3,6), (1, 2,3|6, 5|7), (1, 2|6, 7,4|3,5)}.

Then the graph F(A,B) is isomorphic to:

(1,4,7|2,5|3,6) (I,2,3|6j5|7) (l,2|6,7g|3,5)

{1,2,3} {1,6,7} {5,6,7} {2,4,6} {1,2°}

which has two isolated vertices so that vo(AuB) = 2, v+(A) = 2, v+(B) — 4 and
maximum degree AiV(A U B) = 3. Therefore:

rank(5(^4, B)) — max(2,4) + 2 = 6.

Corollary 2.77. If S(A, B)/X is regular and has at least two idempotents in one
1Z- or C-class then

rank(5(yl, B)) = max(|A|, |5|).

In particular the semigroups K(n, r) satisfy the conditions of the above Corol¬
lary.
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2.13.1 Ranks of regular subsemigroups of the full transformation

In [16], while considering the question of the length of finite groups, the authors
give a sketch of the proof of the following result, due originally to P. Neumann.

Theorem 2.78 (P. Neumann). rank(G) < max(2, \ji/2\) for all G < Sn.

A similar result for subsemigroups of the full transformation semigroup would
be of interest. In general this still seems like a difficult problem:

Open Problem 1. Determine a formula for max{rank(S') : S < Tn}.

One feels that the answer, if there is any reasonable answer, will be given by
finding a very large block of non-group H-classes in some J-class and taking this
set of elements as generators. If we add a number of hypotheses we are able to
obtain a positive result of the the above type.

Theorem 2.79. Let n > 4 and let 1 < r < n. Every regular subsemigroup of Tn
that is generated by mappings all with rank r, and has a unique maximal J-class,
is generated by at most S(n,r) elements. Moreover, the bound is attained by the
semigroup K (n, r).

Proof. Let S be a regular subsemigroup of Tn generated by mappings of rank
r and with a unique maximal ^7-class. Let Jm be the unique maximal j7-class
of S. Then rank(5) = rank(J^*) where the principal factor Jm* is isomorphic
to a completely 0-simple A;P] where G < Sr and the matrix P has at
most (") connected components. By Theorem 2.78, since G < Sr, it follows that
rank(G) < |_r/2J. By Theorem 2.8

semigroup

ran.k(S) < max(S(n,r), [r/2j + (^j - 1)
Of course

max(S'(n, r) ,\r/2\ + 1) = max(5(n, r), |_r-/2j + -!)•

Also, for n > 4 and 1 < r < n we have:

It follows that rank(S1) < S(n,r). □
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Can we remove the hypothesis that the subsemigroup must have a unique
maximal jAclass?

Open Problem 2. Let n > 4 and 1 < r < n. Prove that any regular subsemi¬
group of Tn that is generated by mappings of rank r is generated by at most

S(n,r) elements.

Another direction might be to consider inverse subsemigroups of the symmet¬
ric inverse semigroup In.

Open Problem 3. Find max{rank(S') : S < In} where S is an inverse subsemi¬
group of In.
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3.1 Semigroups generated by idempotents

In [57, Section 6], where various classes of regular semigroup are being discussed,
there is a section devoted to, so called, semibands. A semiband is a regular
semigroup that is generated by its idempotents. The canonical example of such
a semigroup is the semigroup Singn of all non-invertible elements of Tn. More
generally, the semigroup K(n,r) is a semiband for r = 1,... , n — 1 (see Propo¬
sition 2.14). The reason Howie gives for including a section on semibands in his
monograph is because

"...of the frequency with which such semigroups occur 'in nature' and
in the universal property they possess."

The universal property being that every semigroup is embeddable in a semiband.
As he points out, many naturally occurring semigroups turn out to be idempo¬
tent generated. The proper ideals of the full transformation semigroup, we have
already seen, are idempotent generated. The ideals of the semigroup On of or¬

der preserving mappings were shown to be idempotent generated by Aizenstat
in [4], This was reproven in [38] where, in addition, the semigroup of partial order
preserving transformations POn was also shown to be idempotent generated. A
subsemigroup S of Tn is called Sn-normal if S is stable under conjugation by
elements of Sn (i.e. Va € Sn : aSa~l = S). In [65] it is shown that SVj-normal
semigroups are idempotent generated which generalizes the result for I\ (n, r)
since K(n,r) is an 5n-normal subsemigroup of Tn.

In addition to these transformation monoids, various linear semigroups have
been considered. The proper ideals of the semigroup of all linear transformations
of a finite vector space were shown to be semibands in [25] and [29]. Also, the
proper ideals of the semigroup of affine mappings of a finite vector space were

shown to be idempotent generated in [24]. In [31] the semigroup ofnxn matrices
over Z was shown to be idempotent generated.

It follows from [57, Exercise 6.12] that a finite semigroup is a semiband if and
only if every principal factor of the semigroup is idempotent generated. Each
of these factors is completely 0-simple and, using the normal form introduced in
Section 2.10, we can determine exactly when a completely 0-simple semigroup
will be idempotent generated.

Theorem 3.1. Let S = A4°[G;/, A; P] be a finite completely 0-simple semigroup
in Graham normal form. Then S is idempotent generated if and only if S is
connected, and the group G is generated by the non-zero entries in the matrix P.
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Proof. Follows from Theorem 2.58. □

Given an idempotent generated semigroup S its idempotent rank is defined
to be the minimal cardinality of a generating set of idempotents for S. In other
words

idrank(S) = min{|S| : B C E{S), (B) = 5}.

Clearly the idempotent rank is at least as large as the rank. In general, however,
they will not be equal. On the other hand, a fair number of semigroups are known
to have idempotent rank equal to rank. In [59], the semigroup K(n,r) was shown
to have this property. Since then, many other idempotent generated semigroups
have been shown to have this property. A list of some other examples, along with
their ranks and idempotent ranks, is given in Table 3.1. As with the question of
rank, for many of these examples the question of idempotent rank reduces to the
same question for a corresponding completely 0-simple semigroup.

Amongst the collection of papers where idempotent rank is considered is
a series of papers [68], [67] and [66], where the authors consider semigroups
generated by transformations of prescribed partition type. These semigroups
are closely related to the ^-normal semigroups defined above. Stealing the
expression from [67], if a semigroup S is idempotent generated and satisfies
rank(5) = idrank(S') then we say it has an extremal idempotent generating set.
In [67] it is shown that Sn-normal semigroups have extremal idempotent gener¬

ating sets. The methods used involve relating the idempotent rank problem to

the, so called, Partition Type Conjecture. The Partition Type Conjecture is a

generalization of the famous Middle Level Conjecture, attributed to Paul Erdos
(see [85]), which asks whether the bipartite graph given by the middle two levels
of the poset of all subsets of X2n+\, ordered by inclusion, is Hamiltonian.

It is the connections between finding extremal idempotent generating sets
and combinatorial problems in bipartite graphs which will be the main focus of
this chapter. Finite idempotent generated completely 0-simple semigroups will
be considered with a view to classifying those that have extremal idempotent
generating sets. The results will then be applied to a number of concrete ex¬

amples. In particular, it will be shown that while the existence of Hamiltonian
cycle is sufficient for finding extremal idempotent generating sets, it is actually
not necessary.

In §3.2 relationships between ranks and idempotent ranks of rectangular 0-
bands and their substructures are explored. Then in §3.3 and §3.4 the ranks
and idempotent ranks of completely O-siinple semigroups are considered, and the
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main results of the chapter are given. Some applications of these results are given
in §3.5. Nilpotent rank is the subject of §3.6 and in §3.7 the connections between
idempotent rank and the problem of counting the number of bases of a semigroup
are explored.

3.2 Division and direct products

We now introduce a few notions concerning completely 0-simple semigroups which
we will need in what follows. A rectangular band with a zero adjoined is a

band (every element is idempotent) and therefore has an extremal idempotent
generating set. Recall that we call two m x n matrices A and B over {0,1}
equivalent if B can be obtained from A by permuting its rows and columns.
Given a regular matrix Q with entries in {0,1} we will use ZB(Q) to denote the
rectangular 0-band with structure matrix Q.

We say that the rectangular 0-band ZB(P) divides the rectangular 0-band
ZB(Q) if P is equivalent to a submatrix of Q. We say that ZB{P) is an IZ-class
(respectively C-class) filling subsemigroup of ZB(Q) if ZB(P) divides ZB(Q)
and ZBfiP) has the same number of non-zero 7?.-classes (respectively ^-classes)
as ZB(Q).

We call a completely 0-simple semigroup S tall if it has at least as many

7?.-classes as £-classes and wide if it has no more 7£-classes than £-classes. Note

that S is both tall and wide if and only if the number of 7?.-classes equals the
number of £-classes. In this case we say that S is square.

Example 3.2. Let S and T be the rectangular 0-bands with structure matrices
P and Q, respectively, where:

P

Then S is wide, T is tall

The next lemma tells us that finding a suitable submatrix of P is enough to
conclude that ZB(P) has an extremal idempotent generating set.

Lemma 3.3. Let S and T be rectangular 0-bands such that T has an extremal
idempotent generating set. Then:

(l 0 \\
1 1 1

0 0 1

V1 0

and T is an Al-class filling subsemigroup of S.
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(i) if S and T are both tall and T is an C-class filling subsemigroup of S then
S has an extremal idempotent generating set;

(ii) if S and T are both wide and T is an IZ-class filling subsemigroup of S then
S has an extremal idempotent generating set.

Proof, (i) Let B C T < S be an extremal idempotent generating set for T. If
S = T then B is an extremal idempotent generating set for S and we are done.
Suppose otherwise so that S is strictly taller than T. Since S and T are both tall,
and T is an £-class filling subsemigroup of S, the set B intersects every £-class of
S but does not intersect every Al-class. Let C be a subset of S, consisting entirely
of idempotents, that forms a transversal of the 7£-classes of S that the set B does
not intersect. Such a set C exists since S is regular and so every Al-class contains
at least one idempotent. We claim that the set B U C is an extremal idempotent
generating set of S. The number of elements in B U C is equal to the number
of 7?.-classes in S and since S is tall this number equals rank(S') by Lemma 2.10.
It follows that \B U C\ = rank(5) which is the required size for an extremal
idempotent generating set. Also, by construction it follows that every element in
B U C is an idempotent. We are just left to prove that B U C generates S. Let
s £ S. If s £ T < S1 then s £ (B) C (BuC). Otherwise we have s £ S\T and in
this case we let {u} = Rs DC and let e be some idempotent in T that is Li-related
to u. Such an element e exists since the subsemigroup T is regular. Finally let
{v} = Ref~) Ls Q T. Since B generates T and since v £ T it follows that v £ (B).
Also by definition we have u £ C. But now s = uv (since e is an idempotent)
and so s £ (B U C). Since s was arbitrary it follows that (B U C) = S. (ii) Is
proved using a dual argument. □

In general the direct product of two completely 0-simple semigroups is not a

completely 0-simple semigroup.

Definition 3.4. Let S and T be semigroups each with a zero element. Let

Z — {(x, 0) : x £ S} U {(0, y) : y £ T} C S x T

noting that Z is a two-sided ideal of S x T. Let S XqT denote the Rees quotient
(S x T)/Z. We call S XqT the direct product of S and T with amalgamated zero.

If S and T are completely 0-simple semigroups then so is S Xo T. In the
particular case where S and T are rectangular 0-bands then so is S x q T and the
structure matrix of S Xq T is constructed from the structure matrices of S and
T in the following way.
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Given two matrices P and Q over {0,1} the tensor product of P and Q,
written P Q, is given by:

'pnQ ■■■ PinQ ^
p®q= ; ;

\PmlQ ■ ■ ■ PmnQJ
with 0 and 1 multiplying in the usual way. For any two regular matrices P and
Q over {0,1} the matrix P ® Q is regular and ZB(P) xo ZB(Q) = ZB(P <g> Q).

The following simple lemma provides an upper bound for the idempotent rank
of the direct product, with amalgamated zero, of two semigroups.

Lemma 3.5. Let S and T be idempotent generated semigroups each with a zero

element. Then

idrank(S' Xo T) < idrank(S)idrank(T).

Proof. First note that if S and T are idempotent generated then so is S x T
and idrank(S" x T) < idrank(5')idrank(T). Indeed, if A and B are idempotent
generating sets for S and T, respectively, then we claim that AxBCSxT is
an idempotent generating set for S x T. To see this let (s,t) £ S x T and write
s = ei ■ ■ ■ ek where ej E A for 1 < i < k and t = fi ■ ■ • fr where ft € B for all
1 < i < r. Suppose without loss of generality that k < r. Then we have:

(s,t) — (6l)/"l) ' ' ' (fifc—1) fk—1) ifik i fkjifik i /fc+l) {pk i fk+2) (®fc> fr) S (-<4 X B}

so the set Ax B generates S xT. Also we have \A x B\ = |A||5| so the set Ax B
has the required size. Using the claim we have:

idrank(S" XqT) = idrank((S" x T)/Z) < idrank}^ xf)< idrank(S)idrank(T)

as required. □

From the above lemma we now give a sufficient condition for S XqT to have
an extremal idempotent generating set.

Lemma 3.6. Let S and T be rectangular 0-bands such that idrank(S) = rank(5)
and idrank(T) = rank(T). If S and T are both tall (or both wide) then

idrank(5 XqT) = rank(S' XqT).

Proof. Let P and Q be the structure matrices of S and T, respectively, where P
is an a x b matrix and Q is a c x d matrix. Since S and T are both tall it follows
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that b > a and d > c. We have

idrank(5 Xq T) > rank(5 xq T) — max{bd,ac} = bd.

Also, by Lemma 3.5, we have

idrank(5 Xq T) < idrank(5)idrank(T) = rank(5)rank(T) = bd.

We conclude that

idrank(S' XqT) = bd = rank(S' xqT).

□

The condition that S and T are either both tall or both wide is necessary as

the following example demonstrates.

Example 3.7. Let S and T be rectangular 0-bands with structure matrices P
and Q, respectively, where

P =

Then S <g>T has structure matrix

Q =

P®Q =

110 0

V

1 1

1 1

1 1

0 0

1 1

1 1

In this example S and T both have extremal idempotent generating sets but
5 <g> T does not have one. Indeed, T is a band and so obviously has an extremal
idempotent generating set, and S is generated by {(1,1), (2, 2), (3, 2), (4, 2)}. The
semigroup S does not have an extremal idempotent generating set because
it does not satisfy SHC (see the next section for the definition of SHC and the
proof of this fact).

Example 3.8. Let S and T be the 4-element right zero semigroup and 3-element
left zero semigroup, respectively (both with zero adjoined). Then S <g> T is the
3x4 rectangular band (with 0 adjoined) which does have an extremal idempotent
generating set even though S is tall and T is wide.
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Finally we include an example that shows S ® T can have an extremal idem-
potent generating set even if neither S nor T does.

Example 3.9. Let S and T be rectangular 0-bands with structure matrices P
and Q, respectively, where

P =

( 1 °
1 1

\0 1
Q =

l o

l l

Then S ® T has structure matrix

( 1 0 0 0 \
110 0

P®Q =
0

1

1 0

1 1

0 0 10

0 0 11

and in this example neither S nor T both have extremal idempotent generating
sets but S <S>T does have an extremal idempotent generating set. For example
the set A = {(1,1), (2, 2), (3, 2), (4,1), (5,3), (6,4)} C E(S ® T) generates S <g> T.

3.3 Idempotent generated completely 0-simple semi¬
groups

Recall that with every completely 0-simple semigroup S we may associate a rect¬

angular 0-band T = S\\ with the same dimensions. In the previous chapter we

saw a connection between the generating sets of T and those of S. In the case

when S is idempotent generated this connection is even stronger.

Lemma 3.10. Let S = A4°[G; /, A; P] be a finite idempotent generated completely
0-simple semigroup and let T = S\] be the natural rectangular 0-band homomor-
phic image of S. Then A C S is a generating set for S if and only if A\] C T is
a generating set for T.

Proof. If A generates S then, since \\ is a homomorphism, it follows that A\\
generates T. For the converse, if A\ generates T then it follows that A generates
at least one element of every non-zero H-class of S. But S is idempotent generated
so (A) = S by Lemma 2.4. □
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Combined with the results for rectangular 0-bands in the previous chapter we

have:

Lemma 3.11. Let S = Ad°[G; I, A; P] be an idempotent generated completely 0-
simple semigroup and let T = St] be the natural rectangular 0-band homomorphic
image of S. Then:

(i) rank(S) = rank(T) — max(|/|, |A|);

(ii) idrank(5) = idrank(T).

In particular S has an extremal idempotent generating set if and only if T has
one.

Proof, (i) See Theorem 2.13. (ii) If X C E(S) generates S then X\\ C E(T) with
|Alt]| < \X\ and {X\\) = T. Therefore idrank(S') > idrank(T). For the converse

let Y C E(T) generate T. Then X = {{i,P~\l, A) : (i, A) € Y} is a subset of the
non-zero idempotents of S satisfying X\\ = Y and so generates S by Lemma 3.10.
Since |X| = |Y| it follows that idrank(S') < idrank(T).

□

Given a rectangular 0-band S we will often suppose that the index sets consist
of natural numbers (i.e. that I = {l,...,m} and A = {l,...,n}). This is a

possible source of confusion since we will still want to view I and A as being
disjoint sets. In some situations, in order to avoid ambiguity, we will use I =

,..., im} and A — {Ai> • • • j Yi}-
Recall the correspondence between non-zero products of idempotents in T =

St] and paths between vertices of I and those of A in the graph A(P). Indeed, the
equality («i, Ai) • • • (ik, Lk) = (r> A&), with (ip Xi) € E(T) for 1 < I < k, holds in
T precisely when p\xi2,... ,P\k_1ik are all non-zero, which is the same as saying
that i\ —> Ai —* ... —» ik —> is a path in the graph A(P).

Lemma 3.12. The set E' C E(T) of idempotents generates (ii,Afe) G T if and
only if there is a path i\ —> X\ —> i2 —> A2 —> ... —^► ik —► A^ in A(P) such that
{im, Am) G E' for 1 < m < k. □

There is a limited range of values that the idempotent rank can take.

Proposition 3.13. If S = A4°[G;I, A; P] is idempotent generated then

max(|/|, |A|) < idrank(5) < |/| + |A| — 1.
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Proof. The first inequality holds since idrank(S') > rank(S) = max(|/|,|A|) by
Lemma 2.3. As for the second inequality, since S is idempotent generated the
graph A(P) is connected. Let T be a spanning tree of A(P) noting that \T\ =

|/| + |A| — 1. The set of idempotents given by the edges in this tree is a generating
set for 5 as a consequence of Lemma 3.12. □

Example 3.14. It was observed in [4] that the semigroup On of all non-identity
order preserving mappings of Xn is idempotent generated. Let S be the principal
factor of the unique maximal f7-class of On. The semigroup S has n — 1 non-zero

7?.-classes and n non-zero £-classes. The graph A (5) is isomorphic to

which is connected but has the property that the removal of any edge will dis¬
connect the graph. As a result, every idempotent is required in order to generate
the completely 0-simple semigroup S and

idrank(5") = n + (n — 1) — 1 = 2n — 2.

In fact, with |/| and |A| fixed, for every j in the range max(|/|,|A|) up to
|/| + |A| — 1 there are semigroups with idempotent rank equal to j.

Example 3.15. Let |/| = m and |A| = n. Suppose without loss of generality
that m > n. For 1 < k < n draw a complete bipartite graph Kk,k and then
extend it using a tree to obtain the following graph

m

k

n

Let S be the rectangular 0-band with structure matrix P where A(P) is isomor¬
phic to the above graph. Then

idrank(S') = k + 2 (n — k) + (m — n) = n + m — k



Section 3.3 79

which ranges between max(m, n) and n + m — lasl<k<n.

We now return our attention to the question of which completely 0-simple
semigroups have extremal idempotent generating sets. We start by considering
square idempotent generated Rees matrix semigroups (i.e. when \I\ = |A|) and
then extend our results to deal with non-square ones. Note that if S is a square

idempotent generated Rees matrix semigroup, with structure matrix P, then
A (P) is a connected and balanced bipartite graph.

If A(P) is Hamiltonian then S will have an extremal idempotent generating
set. Indeed if i\ —> Ai —> ... —> in —> An —> i\, with n = |/| = |A], is a

Hamiltonian cycle then, by Lemma 3.12, the subset E' = {(iy, Aj) : 1 < j < n} of
E(S) generates T = St]. It is, however, not necessary that A(P) is Hamiltonian
in order for S to have an extremal idempotent generating set.

Example 3.16. Let S be the rectangular 0-band with structure matrix

/ 1 1

P = 01
1 0

V 0 1

A (P)

The graph A(P) is not Hamiltonian since the edges {a,e}, {e,b}, {b,h},
{h,d}, {d,g} and {g,a} must all be included in any Hamiltonian cycle and
they themselves already form a closed path. However, the set of idempotents
E' = {(1,1), (2, 2), (3, 3), (4,4)} generates S and so S has an extremal idempo¬
tent generating set.

On the other hand, it is clear that for a square idempotent generated Rees
matrix semigroup S to have an extremal idempotent generating set the graph
A(P) must have a perfect matching. Indeed, given a generating set consisting of
n idempotents the edges in A (P) corresponding to these elements will constitute a

perfect matching in A(P). This is equivalent, as a consequence of Hall's marriage
theorem, to saying that in A(P) for every subset X of / we have |Ai(A)| > |X|.
It is, however, not sufficient that A(P) has a perfect matching (and is connected)
to conclude that S has an extremal idempotent generating set.
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Example 3.17. Let S be the rectangular 0-band with structure matrix

The graph A(P) is connected and has a perfect matching but idrank(S') = 3 (for
the same reason as Example 3.14) while rank(S) = 2.

Definition 3.18. We call a subset A of the semigroup S — M°[G;I, A;P] a

sparse cover of S if |A| = max(|/|, |A|) and A intersects every non-zero 7£-class
and every non-zero £-class of S.

Theorem 2.10 in Section 2.3 says that every rectangular 0-band, and as a

consequence every idempotent generated completely 0-simple semigroup, has at
least one sparse cover that generates it. Of course, when |/| = |A| = n the
semigroup S = A4°[G;I, A; P] has at most \G\nn\ generating sets of size n, and
this number is attained precisely when any sparse cover of S generates S.

Lemma 3.19. Let T = / U A be a connected and balanced bipartite graph. Then
the following are equivalent:

(i) |AI(X)| > |X| for every non-empty proper subset X of I;

(ii) |JV(y)| > \Y\ for every non-empty proper subset Y of A.

Proof. Let X be a non-empty proper subset of I. Suppose that |A(X)| < |A|. It
follows that (|A|-|N(X)|)-|A| > {\I\ - \X\) - \I\ and so |A\IV(A)| > \I\X\ >

If a connected balanced bipartite graph T = I U A satisfies either, and hence
both, of the conditions given in Lemma 3.19 we say that T satisfies strong Hall's
condition (SHC for short). We say that S = A4°[G; I, A; P], with \I\ = |A|,
satisfies SHC if the graph A(P) does (see Figure 3.1 for an example of this).

We now describe the class of square idempotent generated completely 0-simple
semigroups that have extremal idempotent generating sets.

Theorem 3.20. Let S = A4°[G; /, A; P] be an idempotent generated completely
0-simple semigroup with |/| = |A|. Then the following are equivalent:

(i) rank(S) = idrank(S);

A (P)

|IV(A\IVP0)|. □

(ii) any sparse cover of S generates S;
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S = M°[G-, I, A-,P]

/ 0 1 0 1 \

Q =
10 10

0 0 11

^110 0/
T = M°[{1};/,A;Q]

Figure 3.1: Egg-box picture of a Rees matrix semigroup S, the structure matrix
Q of T = 5^, the associated graph A(P) and the neighbourhood of a collection
of vertices X. The set X satisfies |]V(X)| > |A|. In fact, in this graph for every
proper subset Y of I we have |iV(y)| > \Y\ and so S satisfies SHC.

(in) S satisfies SHC.

Proof. As a consequence of Lemma 3.11 it is sufficient to prove the result for
rectangular 0-bands. Let S = (/ x A) U {0} be annxn rectangular 0-band with
I = A = {l,...,n}. Condition (ii) for rectangular 0-bands says that for every

(3 E Sn (the symmetric group on {1,... ,n}) the set X{(3) = {(1,1/3),... , {n,n(3)}
generates S.

((i) =4> (ii)) Suppose without loss of generality that E' = {(1,1),... , (n,n)} is an
extremal idempotent generating set for S. Let X{(3) — {(1,1(3),... , (n,n(3)} for
some (3 6 Sn. Let k be the order of (3 in Sn. Then

(i,i) = (i,i(3)(i(3,i(32)... {i(3k~l, i(3k)

where each of the terms on the right hand side belongs to X{(3). Therefore
(X{(3)) D (E') = S and we conclude that X(f3) generates S.

((ii) => (iii)) Suppose that S does not satisfy SHC and let J be a non-empty
proper subset of I such that |iV(J)[ < |J|. We will find a sparse cover of S that
does not generate S. Let I = {i\,..., in}, A = {Ai,..., An} with J — {i\,... ,iq}
and N(J) = {Ai,...,A/} where I < q. We claim that the sparse cover Y =
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{(H) Ai(in, An)} does not generate S, in particular (in, Ai) ^ (Y). Consider
a path in —> An —> iqi —> A?1 iqt —> \qt, corresponding to a product of
elements of Y, starting at in. We know that N(A \ N(J)) C / \ J which implies
that G / \ J. It follows, since I < g, that Agi G A \ iV( J) and so iq2 £ I \ J.
Continuing in this way we see that iqt £ I \ J giving \qt G A \ N(J) and as a

consequence Xqt ^ \\.

((iii) => (i)) Suppose that S satisfies SHC. Then in particular S satisfies HC and,
by Hall's marriage theorem, the graph A(P) has a perfect matching tt : I —* A.
We claim that M = {(z, 7r(z)) : i £ 1} generates S. Let (i, A) £ S be arbitrary.
We will construct a path from i to A in A(P) such that the first, third, fifth, and
so on, edges all belong to belong to M. Start with the path i —> tt(i). If tt(i) = A
we are done. Otherwise by SHC we know that |iV(7r(i))| > 1 which allows us to
choose 12 £ I \ {i} and extend our path to i —> 7r(i) —> —> 7t(h)- If = A
we are done. Otherwise by SHC we know that |A({7r(z),71(^2)})] > 2 and so
there exists an £ I \ {1,12} which we can extend the path to. Continuing in
this way since all of the ir are distinct and 7r is a perfect matching, all the tt(ir)
are distinct. Since |/| = |A| is finite, we will eventually have a path from i to A
corresponding to a product of elements of M. □

The above result can be extended to give the general result for the non-

square case. This will be done in Theorem 3.27. First we note that if we can find
a 'subsquare' that satisfies SHC then this is sufficient for proving the existence
of an extremal idempotent generating set.

Proposition 3.21. Let S = A/f0[G; /, A; P] be an idempotent generated com¬

pletely 0-simple semigroup. If A(P) has a connected and balanced, bipartite sub¬
graph on 2min(|/|, |A|) vertices that satisfies SHC then

idrank(5) = rank(S") = max(|/|, |A|).

Proof. Without loss of generality assume that |/| < |A|. As a consequence of
Lemma 3.11 it is sufficient to prove the result for rectangular 0-bands. The result
now follows from Lemma 3.3 and Theorem 3.20. □

The converse of the above result does not hold. It is not true that if a

completely 0-simple semigroup has an extremal idempotent generating set then
we can necessarily find a subsquare that satisfies SHC.
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Example 3.22. Let S be the rectangular 0-band with structure matrix

/1 0 1 0 \
p = 0 1 0 1

V i 1 1 i y
In this example the set A = {(1,1), (2, 2), (3, 3), (4, 3)} consists entirely of idem-
potents and generates S while none of the sub 3x3 rectangular 0-bands of S
have idempotent bases (since none of them satisfy SHC).

We now describe a process of extending non-square matrices to square ma¬

trices by making copies of existing rows (columns). By a square extension of an
m x n matrix P, where m < n, we mean annxn matrix Q where the first m rows

are the same as the first m rows of P and each of the remaining rows is the same

as one of these first m rows. More precisely we have the following definition.

Definition 3.23. Let I = {1,..., n} and A = {1,..., m} with m < n, and let
P = (p\i) be an m x n matrix with entries in {0,1} indexed by A and I. For
this definition we no longer want to thing of I and A as being disjoint sets. In
particular we have I fl A = A = {1,... ,m}. Let F = {B\ : A € A} be a set of
disjoint subsets of I such that A £ B\ for all A £ A and B\ = I. Given
such a partition F of I define / : I —> A so that i £ Bj^y Note here that / is a
retraction.

By the square extension of P by F we mean the n x n matrix Q with entries

Qxy = PJ(x)y f°r 1 < x,y < n. We use Sq(P) to denote the set of all square
extensions of the matrix P.

Example 3.24. If
/ 1 0 0 1 1 \

P= 11100

\ o o i o i J
., Qg} wherethen Sq(P) = {Qi,Q2,-

Q i =

/ i 0 0 1 1 \ ( 1 0 0 1 1 \ / 1 0 0 1 1 \

i 1 1 0 0 1 1 1 0 0 1 1 1 0 0

0 0 1 0 1 , Qi = 0 0 1 0 1 > Q .3 = 0 0 1 0 1

1 0 0 1 1 1 1 1 0 0 0 0 1 0 1

\ 1 0 0 1 1 J V 1 1 1 0 0 / \ 0 0 1 0 1 y
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/ 1 0 0 1 1 \ i 1 0 0 1 1 \ / 1 0 0 1 1 \
1 1 1 0 0 1 1 1 0 0 1 1 1 0 0

Q4 = 0 0 1 0 1 , Qs 0 0 1 0 1 j Qe = 0 0 1 0 1

1 0 0 1 1 1 0 0 1 1 1 1 1 0 0

V 1 1 1 0 0 / \ 0 0 1 0 1 / V 0 0 1 0 1 /
and {Q7, Qs> Q9} is the set of matrices {Q4,Qs,Q6} with the last two rows

swapped around. In particular if P is a square matrix then Sq(P) = {P}.
Given a rectangular 0-band S we also define Sq(S) to be the set of rectangular

0-bands corresponding to the matrices in the set Sq(P).

Definition 3.25. A subsemigroup T of a semigroup S is called a retract of S if
there is a homomorphism / : S —> T, called a retraction, such that f(t) = t for
all t G T.

Lemma 3.26. Let S be a completely 0-simple semigroup and let Sq(S') be the set
of square extensions of S. For every T in Sq(S) the semigroup S is a retract of
the semigroup T.

Proof. Follows from the definition of square extension and [57, Section 3.5] on

congruences of completely 0-simple semigroups. □

With I = {1,... , m}, A = {1,..., n}, A C. I and 6 G A we define

(A, b) = {(a, 6) : a € A} C I x A.

Theorem 3.27. Let S = A4°[G] I, A; P] be an idempotent generated completely
0-simple semigroup. Then S has an extremal idempotent generating set if and
only if A(Q) satisfies SHC for some Q G Sq(P).

Proof. As a consequence of Lemma 3.11 it is sufficient to prove the result for
rectangular 0-bands. Let / = {1,... ,n} and A = {1,... ,m} with m < n. Let
S be a rectangular 0-band indexed by I and A with structure matrix P = (p\i)
and extremal idempotent generating set

B = (Ai, 1) U (A2,2) U ... U {Am, m)

where Ai ^ 0 for 1 < i < m and {l,...,n} is the disjoint union of the sets
Ai for 1 < i < m. Also suppose, without loss of generality, that j G Aj for
1 < j < m. Let Q be the square extension of P by F where P = {A\,..., Am}
(see Figure 3.2). Let T be the rectangular 0-band defined by Q. We claim that
T has an extremal idempotent generating set and thus, by Theorem 3.20, the
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Figure 3.2: Extending a 10 x 4 semigroup S = M°[G]I, A; P] using F =

{Ai, A2, A3, A4} where A\ x A\ = H, Ai x A2 =

A\ x A4 = EH.

graph A(Q) satisfies SHC. For 1 < i < m choose and fix a bijection fa : Ai —»■ A-
Since I is equal to the disjoint union (JIEi Ai we can combine these functions
together to give 0 : / —> / where fax) = fa{x) for x G Ai. We claim that the
set X = {(1,0(1)),... , (n,fan))} is a subset of E(T) and that (X) = T. For the
first part note that if x, y G Ai for some 1 < i < m then

Qxy = Pf(x)y — Piy = Pf(y)y ~ 1>

since (y, f(y)) belongs to B and is therefore an idempotent. In particular =

1 for 1 < j < n since j and faj) both belong to the set Aj^y It follows from this
that Aj x Aj is a subset of the idempotents of T for 1 < j < m. Now we observe
that A x Ai is contained in (X) for 1 < i < m since given (x, y) G Ai x Ai we
have

(x,y) = (x,fa(x))(fa~l(y),y) = (x,fa(x)){fa~1(y),fa(fa~1(y)))

where = 1 since <MX)> G A{. Given any element (x,y) of
T the subset {y} of {l,...,n} can be extended to a transversal J of the sets
A, • • •, Arn. Consider the subset I x J of T. By construction {I x J} U {0} is
isomorphic to S and since B generates S it follows that

A3 x A3 == m and

{((A! x Ai) U ... U (Am x Am)) n (I x J)) = {I x J} U {0}.
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We conclude that

(x, y) G I x J C (((Hi x Hi) U ... U (Am x Hm))) C (X},

and since (x, y) was arbitrary it follows that X generates T.
For the converse let Q be a square extension of P by F = {B\,..., Bm}

where A(Q) satisfies SHC. Let T be the rectangular 0-band defined by Q. By
Theorem 3.20 we know that T has an extremal idempotent generating set. Let
t £ Sn be such that Y = {(1, r(l)),... , (n, r(n))} is an extremal idempotent
generating set of T. Define a map ip : T —> S by A)) = (i,f(A)) and
-0(0) = 0. The map if) is an onto homomorphism (it is a retraction mapping
from T to S) and \fi(Y)\ = n. Since Y C E(T) and ip is a homomorphism it
follows that tp(Y) C E(S). Since (Y) = T and ^ is a homomorphism it follows
that (ip(Y)) — S with \tp(Y)\ = n and therefore S has an extremal idempotent
generating set. □

3.4 Regular and symmetric bipartite graphs

The main result of the previous section gives necessary and sufficient conditions
for an idempotent generated completely 0-simple semigroup to have an extremal
idempotent generating set. Unfortunately, testing SHC directly is a time con¬

suming business since it involves looking at all the subsets of a set. In practice
it will be useful for us to note a few conditions which are slightly stronger than
SHC but are easier to check.

Lemma 3.28. If T — X U Y is a k-regular, connected and balanced bipartite
graph then T satisfies SHC.

Proof. The number of edges adjacent to the vertices of X and N(X) are k\X\
and fc|!V(JQ| respectively. The set of edges adjacent to X is a subset of the edges
that are adjacent to N(X) giving k\N(X)\ > k\X\ which implies |IV(X)| > |X|.
When |iV(X)| = |X| the edges that are adjacent to X are precisely the edges
that are adjacent to N(X). It follows that X U N(X) is a connected component
of T which, since T is connected, implies that |X| = |Y|. □

We say that a balanced bipartite graph F = X U Y with a perfect matching
7r : X —> Y (a bijection such that {x,ir(x)} 6 E(T) for every x in X) has a

symmetric distribution of edges with respect to the matching it if d(x) = d(n(x))
for every x in X (See Figure 3.3 for an example). Note that if F = X U Y is



Section 3.4 87

7r(l) 7T(2) 7t(3) 7T(4) tt(5)

2 3 l. 5

d(l) = d(7r(l)) = 2, d(2) = d(7r(2)) - 4,
c?(3) = d(7r(3)) = 2, d(4) = cl(7r(4)) = 3,
d{5) = d(7r(5)) = 2.

Figure 3.3: A bipartite graph that has a symmetric distribution of edges with
respect to the perfect matching it.

/c-regular and connected then T satisfies HC which implies that T has a perfect
matching and T clearly has a symmetric distribution of idempotents with respect
to this matching. Thus T being /c-regular and connected is a stronger property
than F having a symmetric distribution of idempotents with respect to some

perfect matching.

Lemma 3.29. IfY — XUY is a connected and balanced bipartite graph that has a

symmetric distribution of edges with respect to some perfect matching 7r : X —> Y
then r satisfies SHC.

Proof. Let A be a non-empty (not necessarily proper) subset of X. Since |7r(A)| =

|A| and 7r(A) C N(A) it follows that |iV(A)| > |tt(A)| = \A\. In addition to this
if |iV(A)| = |A| then |Af(A)| = |tt(A)| which means that N(A) = ir(A). But the
total number of edges adjacent to A is ^(a) while the total number of edges
adjacent to N(A) = tt(A) is

It follows that A U N(A) — A U ir(A) is a connected component of X U Y but

We say that S = A4°[G; /, A; P] has a /c-uniform distribution of idempotents
if the graph A(P) is /c-regular. We say that S = A4°[G; I, A; P] has a symmetric
distribution of idempotents with respect to some perfect matching if A(P) has a

symmetric distribution of edges with respect to some perfect matching.
Loosely speaking, the results above tell us that if we can find some symmetry

in A(P) (or equivalently in the egg-box diagram of S) then we stand a chance of
showing that SHC holds without having to resort to any laborious computation.

d(6)= 5Zd(7r(a)) = ^2d(a)-

since T is connected this means that A = X. □
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3.5 Applications

3.5.1 Ideals of the full transformation semigroup

Our first application of the results of the previous two sections is to prove that
the semigroup K(n,r) has an extremal idempotent generating set. The original
proof [59] used a fairly complicated Pascal's triangle type induction. Recall that,
by Proposition 2.14, the semigroup K(n,r) is generated by elements in its unique
maximal f7-class.

Lemma 3.30. Let Jr denote the top J-class of the semigroup K(n,r) and Pr =

K(n,r)/K(n,r — 1) for 1 < r < n. Then

rank(iir(n, r)) = rank(Pr), idrank(/f (n, r)) = idrank(Pr).

□

Our aim is to prove that the (("),5(n,r)) bipartite graph A(Pr), with 1 < r <
n, has a balanced ((™), (")) bipartite subgraph that is connected and has a perfect
matching 7t : X —> Y with respect to which Pr has a symmetric distribution of
idempotents. Then, as a consequence of Theorem 3.20 and Lemma 3.29, it will
follow that K(n,r) has an extremal idempotent generating set.

Let Tr denote the family of all subsets of Xn = {1,..., n} with size r, so that

Tr = {d C Xn : \A\ = r}.

Define /Cr C Xn x Xn to be the family of all partitions of Xn with weight r.

By Proposition 2.14 the graph A(Pr) is isomorphic to the graph F(Pr,JCr) of
Definition 2.73. It has vertex set Tr U K,r (disjoint union) with A € Tr connected
to K £ ICr if and only if A is a transversal of K. We are mainly concerned
with subsets and partitions of Xn = {1,... , n} and will want to use modular
arithmetic on these symbols rather than the usual {0,... , n — 1}. In view of this
fact we will use the convention that n mod n = n rather than n mod n = 0.

Definition 3.31. Given a, h £ Xn we define:

[a, 6] = {a, a + 1, a + 2,..., b}

with all entries reduced mod n. We call [a, 6] the interval between a and b.

Example 3.32. Given 2,4 £ X5 we have [4,2] = {4,5,1,2} while [2,4] =

{2,3,4}. Also [1,1] = {1}.
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Figure 3.4: The symmetric distribution of idempotents with respect to the perfect
matching 4> corresponding to the idempotents along the main diagonal in J3 of
T5. The kernel that labels row i is 0(1) where I is the image that labels column
i. The shaded boxes give the positions of the idempotents in J3.

Definition 3.33. Define </> : Tr —+ fCr by:

H1) = {[h,i2 - 1], [12,h - 1],..., [ir,i 1 - 1]}

where I = {ii,..., ir} C Xn, i\ < ... < ir and all entries are reduced mod n.

We are using the convention of writing partitions of Xn as sets of sets.
For example, if n — 5, r = 3 and I = {2,3,4} then

0({2,3,4}) = {[2,2], [3,3], [4,1]} = {{2}, {3}, {4, 5,1}}.

It is clear from the definition that the map f> is injective. In a natural way

it associates a kernel, with weight r, to each r-subset of Xn (for example see

Figure 3.4). Note that every image I is a transversal of the kernel <f>(I).

Lemma 3.34. The balanced bipartite graph V = Tr U is connected and
has a symmetric distribution of edges with respect to the perfect matching <f>.

Proof. First we will show that the graph is connected. By definition, each A G T'r
is connected to the corresponding <f>(A) G KLr and as a consequence the graph T'
is connected precisely when the contraction of the graph F', given by contracting
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the pairs {A,f>(A)} to single vertices, is connected. Let G denote this new graph
which is made up of (") vertices labelled by the r-subsets of Xn. In particular
the vertices corresponding to the subsets A and B are connected if (but not

only if) B may be obtained by adding the number 1 to one of the entries of A.
Indeed, if A\ = {ii,... ,ik,ik+i, ■ ■ ■ Ar}, where k < r and ik+\ > ifc + 1, and
A2 = {ii,...,ifc + 1, ifc+i,..., ir}, then A<i is a transversal of the kernel <f{A\)
which means that vertex A\ is adjacent to vertex A<i in the graph G. As a

consequence of this we can show that an arbitrary r-set I — {ii,... ,ir} with
i\ < ... < ir is connected to {1,2,..., r} since (with the symbol ~ to be read as

'is connected to'):

{1,... r — 2,r — l,r} ~ {1,... ,r — 2,r — l,r + 1} ~ ~ {1,... r — 2,r — l,ir}
~ {1,..., r — 2, r, ir) ~ ~ {1,... r - 2, ir_i, ir}

~ ~ {1,... ir—2, ir—l > V }

~ \i1, . . . ?r—2, it— 1 j ir}-

Therefore every vertex is connected to the vertex {1,... ,r}. We conclude that
the graph G is connected and thus the graph T' is connected.

Secondly we have to check that T' has a symmetric distribution of idempotents
with respect to the perfect matching cf> (i.e. that for every A G Br we have
d(A) = d(4>{A))). O11 one hand if we fix the partition K = — 1], [^2,^3 _

1],..., [ir, — 1]} then the number of images of size r that form a transversal of
this partition is equal to the product nj=i IKj> b'+i ~ ■*-]!• °tlier hand if we
fix the image I = (zi,..., ir}, with i\ < < .. ■ < ir, and consider the partitions
in (f>(K.r) that this image is a transversal of, we see that I is a transversal of
{[ji) J2 - 1], b'20'3 - 1], • • •, [jr,ji ~ 1]}, with ii £ [ji, j2 - 1] say, if and only if
jl £ [ii-1 + 1 ,ii\ (subscripts reduced mod r) for 1 < I < r. We conclude that

r r

d(</>(A)) = - 1] = + 1, ij+i) = d{A)
j=1 j=1

where all subscripts are reduced mod r. □

Theorem 3.35. [59, Theorem 5] The semigroup K(n,r) = {a £ Tn : |ima| <
r} satisfies

idrank(/L(n, r)) = rank (K(n,r)) = S(n,r)

for 1 < r < n.



Section 3.5 91

Proof. It follows from Lemma 3.34, Lemma 3.29 and Proposition 3.21 that Pr has
an extremal idempotent generating set and then as a consequence of Lemma 3.30
so does K(n, r). □

Finally note that the proof above is constructive and as a consequence we can

write down a generating set of idempotents explicitly.

Corollary 3.36. Let Y be the set of the maps

(1 2 ... ii — l ii ... «2 — 1 ii ir — 1 ir ... n— 1 n \Zf Zf . . . Zf Z\ . . . Z\ Z2 • • • Zf j Zf ... Zf Zy> J

where 1 < i\ < i2 < ■ ■ ■ < ir < n. For i G Xn let Ca(i) C Xn be the kernel class
of a that contains i. Then with

Z = {a : ker a ^ ker/3 for all (3 G Y} n {a : ia = min(CQ(i)) for i G Xn}

the set of idempotents YUZ has cardinality S(n, r) and it generates K(n,r). □

The subsquare of Jr defined by the map was chosen carefully so that the
distribution of idempotents was symmetric. If a subsquare were chosen at random
then it may well fail to satisfy SHC.

Example 3.37. Let n = 6 and consider the following partitions of Xq which all
have weight 5.

h = {1,2},{3}, {4}, {5}, {6} k2 = {1,3},{2}, {4}, {5}, {6}
k3 = {1,4},{2}, {3}, {5}, {6} k4 = {2,3},{1}, {4}, {5}, {6}
h = {2,4},{1},{3}, {5}, {6} k6 = {3,4}, {1}, {2}, {5}, {6}

The set of all transversals is given by X§ \ {i} for i = 1,2, 3,4. Therefore, in the
graph T(X,/C), we have

\N({ki,... ,/c6})| =4<6 = \{k1,...,ke}\

and SHC is not satisfied. In fact, this subsquare is not even connected.

3.5.2 Ideals of the general linear semigroup

Now we will apply our results to give an analogous result to Theorem 3.35 but
for the proper ideals of the monoid of endomorphisms of a finite vector space. In
this case the j7-classes are square allowing us to apply Theorem 3.20 directly.
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Let V be an n-dimensional vector space over a finite field F with \F\ = q. Let
End(P) denote the monoid of all linear transformations of V. Of course, End(Vr)
can be represented concretely as the monoid of all n x n matrices with entries in
the field F. The ideals of End(H) are given by

I(r,n,q) = [A € End(H) : dim(imA) < r} for 1 < r < n

(see [21]). Denote the top ^7-class of this subsemigroup, the j7-class consisting
of all linear maps with dim(imA) = r, by J(r,n,q) and the completely 0-simple
semigroup I(r,n,q)/I(r — 1 ,n,q) by PF(r,n,q). A summary of some known
properties of End(H) is given below.

Proposition 3.38. Let V be an n-dimensional vector space over the finite field
F where |Tj = q.

(i) Green's relations are given by:

A1ZB null A = null B;

ALB im A = im B;

AJB dim(im A) = dim(imH).

(ii) Denote the H-class consisting of elements A for which im A = I and
null A = N by HjtN. Then is a group if and only if I D N = {0}.

(Hi) The number of non-zero C-classes of J(r,n,q) equals the number of non-zero
TZ-classes of J(r,n,q) which equals the Gaussian coefficient

(.qn - l)(gn_1 - 1). .. {qn~r+l - 1)
{qr — i)(9r-1 — i) •••(? — i)

(iv) The number of idempotents in any non-zero L-class of J(r,n,q) equals the
number of idempotents in any non-zero IZ-class of J(r,n,q) which equals
qr(n-r)

(v) The semigroup I(r,n,q) is idempotent generated and in particular is gener¬
ated by the idempotents in its unique maximal J-class J(r,n,q).

Proof, (i) [21, Exercise 2.2.6] and [57, Exercise 2.16] (ii) [57, Exercise 2.19] (iii)
This is just the formula for the number of r (and also n — r) dimensional subspaces
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of an n-dimensional vector space over a field F with size q (see [15, Chapter
9, Section 2]). (iv) A subspace of dimension r has qr(n~rl complements [11,
Lemma 9.3.2.]. Also, a subspace of dimension n — r has g(n_r)(n_(n_r)) = qr(n~r)
complements, (v) This is a consequence of the main result of [29]. □

These facts along with the general results from §3.3 and §3.4 allow us to
deduce the following.

Theorem 3.39. Let V be an n-dimensional vector space over the finite field F
where |F| = q. Then the semigroup I(r,n,q) = {A E End(H) : dim(imA) < r}
satisfies

n

rank(/(r, n, q)) = idrank(/(r, n, q)) =

for 1 < r < n.

Proof. By Proposition 3.38 the completely 0-simple semigroup PF(r, n, q) has a

qr(n~r>-uniform distribution of idempotents which by Lemma 3.28 tells us that
PF(r, n, q) has an extremal idempotent generating set which in turn implies that
I(r,n,q) has an extremal idempotent generating set. □

As a byproduct of the above discussion we get the following result which char¬
acterises all generating sets of minimum cardinality of the semigroup J(r, n, q).

Corollary 3.40. A subset of I(r,n,q) is a generating set of minimum cardinality
for I(r,n,q) if and only if it consists of ™ matrices all of whose images have
dimension r no two of which have the same nullspace or the same image space.

Proof. The completely 0-simple semigroup PF(r,n,q) is square and has an
extremal idempotent generating set. By Theorem 3.20 any sparse cover of
PF(r, n, q) generates PF(r, n, q) which is equivalent to the statement in the corol¬
lary. □

We have seen that the graph A(PF(r,n,q)) satisfies SHC for all 1 < r < n.

In fact, for the particular case when r = n — 1, we can show that the graph
A(PF(n — 1 ,n,q)) is Hamiltonian. The first step is to verify that 2gn_1 > (qn —

l)/(q — l) (this follows from the fact that q > 2) which tells us that in the balanced
bipartite graph A(PF(n — 1 ,n,q)), which has 2{{qn — 1 )/(<? — 1)) vertices, every
vertex has degree strictly greater than ((qn — 1 )/(<?— l))/2. Then consider the
following result, mentioned in Chapter 1, which gives a sufficient condition for a

bipartite graph to have a Hamiltonian cycle.
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Figure 3.5: Egg-box picture of the unique maximal j7-class of the semigroup
/(2,4,2) C End(Z2 x Z2 x Z2 x Z2). It has 35 non-zero 77-classes, 35 non-zero
£-classes and 16 idempotents in every 1Z- and £-class (represented by the Is).

Theorem 3.41 (Moon and Moser, [75]). If G = (X, Y) is a bipartite graph
with |X| = |y| = n such that for any non-adjacent pair of vertices (x,y) G
V(X) x V{Y) satisfies d(x) + d(y) > n + I, then G has a Hamiltonian cycle.

Proposition 3.42. The graph A{PF(n — 1 ,n,q)) is Hamiltonian.

Proof. Let X U Y be the set of vertices of he balanced bipartite graph
A(PF(n — l,n, q)) with |X| = |y| = (qn — l)/(q — 1). Let x G X and y G Y be
non-adjacent vertices in the graph. Then:

d(x) + d(y) = 2qn-1 > (qn - 1 )/{q - 1) = \X\.

It follows from Theorem 3.41 that A(PF(n — 1 ,n,q)) is Hamiltonian. □

The same approach cannot be used to prove the same thing for graphs asso¬

ciated with principal factors that are lower down in the semigroup.

Example 3.43. Let V = Z2 0 Z2 © Z2 © Z2 and consider the semigroup PF2 ■

Then according to Proposition 3.38 the graph ^{PFfi) is bipartite with |/| =

|A| = 35 and each vertex has degree 16 (see Figure 3.5). In this example we
cannot show that the graph is Hamiltonian by applying Moon and Moser's result
since 16 + 16 = 32 < 35.
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This leaves open the following question.

Open Problem 4. Is A(PF(r,n,q)) Hamiltonian for all 1 < r < n?

We have seen that it is true when r = n — 1 and in [20] the author shows
that it is true for some other special cases. The information given in Proposi¬
tion 3.38 is not enough on its own to guarantee a Hamiltonian cycle. It is not
true in general that every connected, fc-regular bipartite graph necessarily has
a Hamiltonian cycle. For example, in [28] an example is given of a 3-connected
(a stronger condition than being connected), 3-regular bipartite graph that is
non-Hamiltonian.

3.5.3 Transformation semigroups generated by mappings with
prescribed image

In the introduction to this chapter the work of Levi and Seif was mentioned. In
their work they say a partition of the set Xn has type r = c?2^2^ ... d^dk^
if it has classes of size di, where d\ > d2 > ■ ■ ■ > d^ and n = X)i=i dm(di).
The number of mappings with partition type r is denoted by A/*(r). They consider
the semigroups S(t) generated by all transformations with partition type r. In
particular they prove the following.

Theorem 3.44. [68, Theorem 1.10] Let n and r be positive integers with n

greater than r, and let r be a partition type of Xn of weight r. Then

What happens if, rather than prescribing the kernels of the transformations,
we prescribe the images? We begin with a result for completely 0-simple semi¬
groups.

Theorem 3.45. Let S = A4°[G;/,A;P] be an idempotent generated completely
0-simple semigroup with rank(5) = idrank(S') and \I\ < |A|. For A C I define:

a, not necessarily regular, Rees matrix subsemigroup of S. If rank(G) < 2 then

idrank(S(r)) = rank(5(r)) = max(A/"(r), )■

S'(Al) — {(z, g, A) : i G A, g G G, A G A} U {0}

rank(5(^4)) = max(|/|, |A|) = |A|.

Proof. The generalised Rees matrix semigroup S(A), in general, will not be reg¬
ular. It will, however, have the property that for every i G A there exists at least
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one A G A such that p\i ^ 0. In this sense it is semi-regular. That is, the matrix
P has the form

A
( \

Ai

A2

Q

V /

where Q is regular and all other entries equal zero. Let T — M°[G] A, Ai; Q\.
Since S has an extremal idempotent generating set, by Theorem 3.27, for every

subset Y of A we have |iV(y)| > |Y"|. In particular it follows that Q is not the
identity matrix and moreover that Q has strictly more rows than it has columns
(as suggested in the picture above). Since rank(G) < 2 it follows that in the
formula for rank(T) (given by Theorem 2.51) we have rm;n < 2. Also, the matrix
Q has at most |*4| < |Ai| connected components. It follows that:

rmin + k — 1 < 2 + | Ai | — 1 = JAi | + 1

and therefore by Theorem 2.68

rank(S(„4)) = rank(T) + |A2| = max(|Al|, |Ai|,rmin + k - 1) + |A2|
= |A: | + | A21 = A

as required. □

There is an obvious dual result to the one above for the case |A| > |/[ and
A C A. Since the finite symmetric and general linear groups are both 2-generated
(see [94]) the following corollaries are obtained.

Theorem 3.46. Let A be a set of r-subsets of {1,... ,n} where 1 < r < n. Let
S(A) be the semigroup generated by the set of all mappings a with ima G A.
Then:

rank(S,(y4.)) = S(n,r).

Proof. Let S — K(n,r)/K(n,r — 1) and let I = {a G >5(^4) : |ima| < r}.
Then S(A)/I is isomorphic to a subsemigroup of S of the form described in
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Theorem 3.45. By Theorem 3.35 the semigroup S has an extremal idempotent
generating set. Moreover, the symmetric group is 2-generated. Thus all the
conditions of Theorem 3.45 are satisfied and the result follows. □

It is a little surprising that the rank of S(A) only depends on n and r and is
independent of the particular set A of r-subsets chosen. The exact analogue of
the above results holds for the ideals of the general linear semigroup.

Theorem 3.47. Let V be a finite vector space with dimension n over the finite
field F with |F| = q. Let F be a family of subspaces of V each with dimension r

for some 1 < r < n. Let S(F) be the subsemigroup o/End(F) generated by the
set of all linear transformations a with ima £ J'. Then

rank(5(J7)) =

Proof. Since I(r, n, q) has an extremal idempotent generating set and the general
linear group is two generated the conditions are satisfied for applying Theo¬
rem 3.45.

□

3.6 Nilpotent rank

In [87] it was suggested by Schwarz that the role of nilpotents in semigroups
should be investigated further. Recall that given a semigroup S with zero 0 G S
we say s £ S is nilpotent if sn = 0 for some n 6 N. Let N(S) denote the set of
nilpotents of a semigroup S.

In [91] it was shown that the semigroup SPn of strictly partial transformations
on Xn is nilpotent generated if n is even, and if n is odd then (N(SPn)} =

SPn \ IVn_i where Wn_\ consists of all elements Jn-\ whose completions are

odd permutations. Similarly, in [38] Gomes and Howie showed that for n even,
the semigroup of proper subpermutations SIn < In is nilpotent generated, and
for n odd the nilpotents generate SIn \ Wn_i. One major difference between
analysing the subsemigroup generated by the nilpotent elements, as opposed to
that generated by the idenrpotents, is that if e is an idempotent in the principal
factor J* then it is an idempotent in S. The same is not, however, true of
nilpotent elements.

(I 2 3\
Example 3.48. Let a = I G P3 the partial transformation semigroup
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on X3. The zero of Pn is z =
1 2 3

. Clearly no power of a is equal to z

so a is not a nilpotent element in P3. On the other hand, in the principal factor

By analogy with the rank and idempotent rank we define the nilpotent rank
as

Because of examples like the one immediately above, in most cases, determining
the nilpotent rank of a semigroup does not reduce to determining the nilpotent
rank of its principal factors. In the same way as for idempotent rank, the nilpotent
rank of S and the rank of S are not going to be the same in general.

Example 3.49. The rectangular 0-band with structure matrix

has rank 3 and nilpotent rank 4.

One of the earliest results on nilpotent rank was given by Gomes and Howie
in [38] where they show that SIn < In satisfies:

for n even and n > 4. Some other nilpotent generated semigroups and their
nilpotent ranks are given in Table 3.1. In this section we will consider the question
of nilpotent rank for arbitrary finite completely 0-simple semigroups.

As we did for idempotent rank we want to relate the question of nilpotent
rank of S to the study of the nilpotent rank of its natural rectangular 0-band
homomorphic image. It is not quite as simple as the idempotent rank case here
though. We make use of Proposition 2.49, from the previous chapter, which tells
us how we can build generating sets for S around the coordinates of generating
sets of T = St].

Theorem 3.50. Let S = A4°[G;/, A; P] be a nilpotent generated completely 0-
simple semigroup. Let T be the rectangular 0-band homomorphic image of S.

Ja* we have a2 = 0.

nilrank(S) = min{|B| : B C N(S), (B) = S}.

I 1 °
P = 0 1

V1 0

rank (57n) = nilrank(S7n) = n + 1

Then

nilrank(5) = max(rank(Sl), nilrank(T)).



Semigroup
Description

Rank

Idrank

Nilrank

Reference

Singn

a£Tn:|ima\<n—1

n(n—1) 2

n(n—l) 2

-

[37]

Sing(K)

a£End(K):dim(ima)|<n—1
<?n-i 9-1

9"-l 9-1

9n —1 9-1

[26]and Theorem3.55

K(n,r)

a£Tn:\ima\<r

S(n,r)

S(n,r)

-

[59]

s?

K*-1

a£End(K):|dim(ima)|<r
w.

w.

M,

Theorems3.39 and3.55

KP(n,r)

a£Pn:ima<r

S(n+l,r+1)
S(n+l,r+1)

-

[34]

On

a€Sing„:(Vx,y£Xn)
x<y=>■xa<ya

n

2n-2

~~

[38]

POn

OnU{a:dom(a)CXn, (Vx,y£dom(a))x<y=>xa<ya}
In-1

c4

1

CO

_

[38]

SPOn

POn\On

In—2

??

??

[38]

OPr

principalfactorof0n

0

(™)(for2<r<n-2)
0

[96]

U(n,r)

a£SIn:|ima|<r

C)+i

-

O+i

[36]

V(n,r)

a£SPn:|ima|<r

(r+1)S(n,r+1)
??

(r+l)5(n,r+1)
[36]

Pr

K(n,r)/K(n,r—1)

S(n,r)

S(n,r)

S(n,r)

[95]

S(t)

(a£Tn'■ahastyper)

max{A/*(r),(")}
max{W(r),(")}

-

[67]

PFr

principalfactorofPn

5(n+1,r+1)
5(n+l,r+1)

S(n+l,r+1)

[97]

OFr

principalfactorofPOn

on/n\/fc—1\2-^k=r\k)\r—1/

(n\

2-jk=r\k)\r—1/

EJ-rfflC:!)

[97]

Table3.1:Knownresultsconcerningranksofsemigroups.Wewrite-whenthequestiondoesnotapply,forexampleSingndoes nothaveazeroelementandsoitdoesn'tmakesensetoaskforthenilpotentrank.Wewrite??iftheanswerisunknown.
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Proof. (>) Let A be a nilpotent basis for S. Then \A\ > rank(S) and since
A\ C T is a nilpotent generating set of T it follows that |A| > nilrank(T). (<)
By Proposition 2.49 there exists a generating set A! of S such that A'\\ C A where
A is a nilpotent generating set for T with |A| = nilrank(T) and

\A'\ = max(rank(S), |A|) = max(rank(S'), nilrank(T)).

Since A C N{T) it follows that A' C N(S). □

As an immediate consequence we have

Corollary 3.51. If S = Ai°[G]I, A;P] is both idempotent and nilpotent gener¬

ated and T = S\\ then
nilrank(S') = nilrank(T).

Proof. Since S is idempotent generated it follows from Theorem 2.13 that
rank(S) = max(|/|, |A|). Therefore by Theorem 3.50

nilrank(5) = max(|/|, |A|, nilrank(T)) = nilrank(T).

□

We may now determine the nilpotent rank of the principal factors of some of
the examples in Table 3.1.

Corollary 3.52. [95, Theorem 5/ The principal factors Pr = K(n,r)/K(n,r — 1)
all satisfy:

rank(Pr) = idrank(Pr) = nilrank(Pr) = S(n,r).

Proof. We saw the proof of the rank and idempotent rank results in Theo¬
rem 3.35. Take the subsquare of the unique maximal f7-class of I\(n,r) de¬
scribed in Lemma 3.34. The dual of the bipartite graph T' = Tr U 4>(Tr) also has
a uniform distribution of edges. By the same arguments we can find a perfect
matching which can be used to pick (") non-group elements which form a sparse
cover of the subsquare. This sparse cover generates a transversal of the Lf-classes
of Tr U f>(Tr) by Theorem 3.20. Taking these generators along with arbitrary
non-group TY-class representatives, one from every remaining P-class or Pr, gives
a generating set with S(n, r) elements all of which belong to non-group 7-f-classes
of Jr and so are nilpotents in Jr*. □

Note that the question of the nilpotent rank of K(n,r) itself does not arise
since K(n,r) does not have a zero. A related question would be to consider
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generating with elements a such that for some natural number k the element ak
is a constant.

Returning to the Brandt semigroup we recover the following result:

Proposition 3.53. [97, Theorem 4-1] Let B = B(G, {1,... , n}) be a Brandt
semigroup, where G is a group of rank r (r > 1). Then

nilrank(B) = rank(13) = n + r — 1.

Proof. The natural rectangular 0-band homomorphic image T is the aperiodic
Brandt semigroup which satisfies nilrank(T) = n (in fact all bases of this zero

rectangular band are made up of nilpotents). By Theorem 3.50 nilrank(B) =

max(nilrank(T), rank(B)) = max(n, n + r — \)—n + r — 1. □

We now determine the nilpotent rank of the ideals of the general linear semi¬
group. We must first show that they are nilpotent generated. We rely on the fact
that it is idempotent generated in order to prove this. The key to proving the
result is the observation that every non-group //-class of End(T) has at least one

nilpotent element. This, along with the fact that it has an extremal idempotent
generating set, allows the problem to be reduced to a corresponding question for
completely 0-simple semigroups.

Lemma 3.54. Let I be a subspace of V with dimR = n and dim / = r. Let N
be a subspace of V with dimension n — r. If I D N ^ {0} then the TL-class i//,yv
contains at least one nilpotent element.

Proof. Let W = I D N and, say, dim IT = k where 1 < k < min(r, n — r).
Let B\y = {w\,... ,Wk} be a basis for W. Define Bjg = {iq,..., fn_r_fc} and
Bi — {/l> • • • > Lr-k} so that /?iy UBjv is a basis for N and B\yL>Bj is a basis for I.
Note that is an independent subset of V with \Bw^BnL)Bj\ = n—k.
This is because it has n — k elements and generates I + N. But dim(/ + N) =

dim(/) + dim(iV) — dim(/ D N) = n — k (see [77, Theorem 2.15]) so the set
must be independent. Now extend Bw U Bn U Bj by C = {c\,..., c^} to a basis
BwUBnUBjUC of V. Define a € End(T) to be the unique linear transformation
extending the map

( ii i2 ... Lr—k—\ Lr—k T • • • Ck—1 Qc ^1 • • • ^k "1 • • ■ ^n—r—k |
I i2 ^3 ... W\ W2 ■ ■ ■ Wk t\ 0 ... 0 0 . . . 0 J

Then ima — (B\y U Bj) = / and nulla = (Bw U Bjy) = N so a G Also
ar~k+1 = o, since it sends every basis element to 0, and hence is nilpotent. □
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Theorem 3.55. Let V be an n-dimensional vector space over the finite field F
where |T| = q. Then the semigroup I(r,n,q) = {A G End(H) : dim(imH) < r}
satisfies

Tl

nilrank(/(r, n, q)) =
r

for 1 < r < n.

Proof. Let S = I(r,n,q)/I(r — 1 ,n,q) and let M — " . By Theorem 3.20LrJ q

any sparse cover of S is a generating set for S. The complement of the graph
A(S) is a regular bipartite graph and so has a perfect matching. Let Hi,..., Hm
be the non-group Tf-classes of Jr C I(r, n, q) corresponding to the edges in this
perfect matching. By Lemma 3.54 each Hj contains at least one nilpotent linear
transformation. Let aj G Hj be a nilpotent linear transformation for 1 < j < M.
The subset {aj : 1 < j < M} of N(I(r,n,q)) is a sparse cover of Jr* and so

generates JT*, by Theorem 3.20, and hence generates the whole of I(r,n,q) by
Proposition 3.38. □

3.7 Counting generating sets

One of the surprising things highlighted by Theorem 3.20 is the connection be¬
tween the idempotent rank of S and the problem of counting the number of gen¬

erating sets with minimum cardinality. These connections will be investigated
further in this section.

Given a rectangular 0-band S with structure matrix P we use S[i] [A] to denote
the (not necessarily regular) rectangular 0-band with structure matrix P[A][i].

Definition 3.56. Let 5 be a rectangular 0-band with structure matrix P and
let s = (j, n) G S. Define T(s,S) to be the rectangular 0-band with the same
dimensions as S and with structure matrix Q = (q\i) defined by:

{1 if P\i = 1 or p^i = px,j = 10 otherwise.

We call T(s,S) the full completion of S with respect to s. The graph A(Q)
is constructed from the graph A(P) by adding in various edges. The following
diagram illustrates this, the dotted edges in the diagram are those that are being
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added in.

We have the following basic properties:

Proposition 3.57. Let S be a rectangular 0-band and let s = (j, p) 6 S be an

element such that there are idempotents e and f with e ^ s, f ^ s, sTZe and sCf.
Then:

(i) T{s, S')[j][^], T(s, S)[0][/i] and T(s, S)[j][0] are all regular;

(ii) for any subset A of S with s € A we have {A)s = {A}p(S)s)-

Proof, (i) We start by proving that T(s, >S)[0][/i] is regular. This is equivalent
to showing that the bipartite graph A(T(s, 5)[0][/r]) has no isolated vertices.
This graph has vertex set I U (A \ {^}). None of the vertices in A \ {p} are
isolated in A(T(s, 5)[0][/x]) since none of them are isolated in A(S'). None of
the vertices in I \ N(p) (the neighbourhood of p) are isolated for the same rea¬
son. By assumption, N(j) \ {p} is non-empty and every vertex of N(j) \ {p}
is connected to every vertex of N(p) in A(T(s, S)[0][/i]). Therefore, none of
the vertices of A(T(s, 5)[0][/r]) are isolated and so T(s, S)[0][^/] is regular. The
fact that T(s,5)[j][0] is regular follows from a dual argument. The semigroup
T(s, <S,)[j][/i] is regular since T(s, and T(s,5)[j][0] both are. (ii) Follows
from the definitions combined with Lemma 2.44. □

In Theorem 2.10 is was shown that for every finite n x n rectangular 0-band
S we can always find at least one set A with |^4| = n such that (^4) = S. In fact
we can say much more than this.

Theorem 3.58. Let S be an n x n rectangular 0-band. Let:

B(S) = {A C 5 : \A\ = n & (A) = S}.

Then |B(S)| > (n — 1)!. Moreover, there exist examples where this lower bound
is attained.

Proof. We prove the result by induction on the dimension of S. When n = 1 the
result holds trivially since in this case ^(S1)! = 1 = 0!. Now let S have dimension
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k and suppose that the result holds for all smaller examples. There are two cases

to consider:

Case 1: S is equivalent to the k x k aperiodic Brandt semigroup. In this case

the result follows from Lemma 2.23.

Case 2: S is not equivalent to the kxk aperiodic Brandt semigroup. In this case

by Lemma 2.7 there exist i, A G {1..., k} such that S[0][A], 5[z][0] and S[i][A] are

all regular. Let (i, fi) be an idempotent in S with y, ^ A. Such an idempotent
must exist since >S[0][A] is regular. Now define:

X = {(i,0€S:£^}.

Claim. For every x € X there are at least (n — 2)! sets B € B(S) such that
x 6 B.

Proof. Let x 6 X. If x = s = (i, A) then the (k — 1) x (k — 1) rectangular 0-
band ■S'fijfA] is regular by definition, so we can apply induction constructing the
set {Ci,... , C(£_2)i} of generating sets for S'fzJfA]. Each of the sets {x} U Cy for
y € {1,... , (k — 2)!} is a generating set for S and they are all distinct.

On the other hand, if x = (i,£) (z, A) then S'fzJfO] is regular, by definition,
but <S[0][£] and <S[z][£] may not be regular. Now construct S(x,S) noting that,
by Proposition 3.57, all of S(x, <S')[i][0], S(x, ^[O]^] and S(x, 5)[z][^] are regular.
By induction the rectangular 0-band S(x, 5)[z][^] has at least (n — 2)! distinct
bases {Ci,... , C^_2)\}- Each of the sets {x} U Cy for y G {1,..., {k — 2)!} is a
generating set for S(x, S) and they are all distinct. But then, by Proposition 3.57,
we have

({x} U Cy)s(XfS) ~ (It} O Cy) S

and so {x} U Cy are all bases of S. □

Combining all of these generating sets together we get (n — l)(n — 2)! = (n — 1)!
distinct bases for S. □

Example 3.59. Let S be an n x n rectangular band. Clearly

Aa = {(z,ia) : 1 < i < n}

generates S for all a G Sn and so = n! in this case.
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Example 3.60. Let S be the rectangular nxn rectangular 0-band with structure
matrix

^0 1 1 . •

1 0 0 . . 0

p = 1 0 0 . . 0

I1 0 0 . • °J
Since (1,1) $ (S \ {(1,1)}) this element must be included in every generating
set of S. Then the set {(1,1), (2, 2a), (3, 3a),... (n,na)} generates S for every
a G 5"({2, 3,... , n}). Therefore |B(S)| = |Sn_i| = (n — 1)! in this case.

This leads to the following result.

Proposition 3.61. Let S be an m x n rectangular 0-band where m < n. Then

(m — 1)! < \B(S)\ < m\ S(n,m).

Proof. By Lemma 2.7 the semigroup S has an m x m regular sub-rectangular
0-band which by Theorem 3.58 has at least (m — 1)! distinct bases. For each of
these bases we can choose arbitrarily from the remaining columns, giving a basis
for S. We conclude that |B(5)| > (m — 1 )!mn-Tn. The upper bound is just the
number of onto maps from an ra-set to an m-set. □

This gives a corresponding lower bound for the number of bases of an arbitrary
finite completely 0-simple semigroup.

Proposition 3.62. Let S = _M°[G;7, A; P] be a finite completely 0-simple semi¬
group where |/| < |A|. Then

1^(5)1 > (|/| - 1)! |/|(IAI-I7D.

Proof. Let T be the natural rectangular 0-band homomorphic image of S. By
Proposition 3.61 the semigroup T has at least (|/| — 1)! |/|(IAI_I/D distinct bases.
By Proposition 2.49 corresponding to every basis of T there is at least one basis
of S with the same coordinates. □

In Theorem 3.20 we saw that square rectangular 0-bands have extremal idem-
potent generating sets if and only if every sparse cover is a generating set. This
is not true for arbitrary, non-square, examples.
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Example 3.63. Let S be the rectangular 0-band with structure matrix

/o o i A
0 110

110 0

P= 1001
1 0 0 0

10 0 0

10 0 0

y^l 0 0 Oy
Then

A = {(4,1), (3,2), (2,3), (1,4), (1,5), (1,6), (1, 7), (1,8)}

is an idempotent basis for S. However, the set

B = {(4,1), (4,2), (4, 3), (4,4), (4, 5), (3, 6), (2, 7), (1, 8)}

is a sparse cover of S and does not generate S.

This leaves us the problem of describing all non-square completely 0-simple
semigroups that are generated by all their sparse covers. Can a completely 0-
simple semigroup that is not idempotent generated have this property? We seek
the answer to this question below.

Lemma 3.64. Let S be a finite completely 0-simple semigroup. If S is generated
by all of its sparse covers then S is idempotent generated.

Proof. Let S = _A4°[G;/, A; P] be a completely 0-simple semigroup that is not
idempotent generated. Suppose that S is in Graham normal form. Then either S
is not connected, or S is connected and the non-zero entries of P do not generate
G.

Case 1: S is not connected. If S is not connected then it is easy to find a sparse

cover that does not generate S. Indeed, since S is not connected the matrix P
can be assumed without loss of generality to have the form:

/ \
A Oi

02 B

V /
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where the entries in Oi and O2 are all equal to zero. Also assuming without loss
of generality that I = {1,, n}, A = {1,... , m} and n <mn we let

A = {(1,1G, 1), (2,1G, 2),..., (n, 1G, n), (n, 1G, n + 1), (n, 1G, n + 2),..., (n, 1G, m)}.

Then X intersects A and B, and either 0\, or O2, but not both. If X intersects
0\ then (X) does not intersect O2 and visa-versa. Therefore A is a sparse cover
of S that does not generate S.

Case 2: S is connected. In this case let

A = {(^i, 1G, Ai),... 1 (ir, 1G, A)}

be a sparse cover of S such that the middle components are all equal to the
identity of the group G. Suppose without loss of generality that pn = 1. Since

(A) n Hu C {(1, h, 1) : h € H} C 1 X G x 1

where H is the subgroup generated by the non-zero entries in the matrix P, it
follows that A does not generate S. □

Theorem 3.65. Let S = A4°[(7; /, A; P] be a finite completely 0-simple semi¬
group. Then every sparse cover of S is a generating set for S if and only if S is
idempotent generated and every square extension of S satisfies SHC.

Proof. (<=) Let E C S be a sparse cover of S. Say E = (Ai, 1) U (A2,2) U ... U
(An,n) where, without loss of generality, we suppose that i € Ai for all i. Let Ty
be the square extension of S constructed using the family T = {A\,..., An}. By
assumption Ty satisfies SHC. Fix bijections fg : Ai —> Ai for all i and use these
maps to construct a bijection <f> : {l,...,m} —> {l,...,m}. Since Ty satisfies
SHC and B — {(i, <f>(i)) : i G {1... ,m}} is a sparse cover of Ty it follows from
Theorem 3.20 that (B) = Ty- Let if : T —> S be the onto homomorphism defined
by (a,b)tp = (a,f(b)) (i.e. the retraction mapping associated with the square
extension T). Then Bif = E and (B) = S which implies that (B'if) = T since if
is a homomorphism. Therefore (E) = T which completes the proof since E was
an arbitrary sparse cover of S.

(=>) Suppose that every sparse cover of S is a generating set for S. It follows from
Lemma 3.64 that S is idempotent generated. Since S is idempotent generated,
it follows from Lemma 3.11 that it is sufficient to prove the result under the
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assumption that S is a rectangular 0-band. Therefore let S be a m x n(m > n)
rectangular 0-band such that every sparse cover of S is a generating set.

Claim. Every non-zero C-class of S has at least m — n + 1 idempotents.

Proof. Suppose otherwise and seek a contradiction. Say column 1 has x idempo¬
tents where x < m — n + 1. Without loss of generality say {(1,1), (2,1),... , (x, 1)}
are all the idempotents in this £-class. Let

Y = {(1,1), (2,1),... , (x, 1), (x + 1,2), (x + 2,3),...,

(x + (n — 1), n), (x + n,n), (x + n + l,n), (x + n + 2,n),... , (m,n)},

which is is a sparse cover of S. However, (Y) ^ S since in particular (1 ,n) fL
(Y}. This contradicts the assumption that every sparse cover is a generating set,
completing the proof of the claim. □

Now consider an arbitrary square extension T of S and an arbitrary sparse

cover C of T thinking of S as a subsemigroup of T. Using the claim we know that
every C-class has strictly more that m — n elements. It follows that C generates
a sparse cover of S inside T. By assumption this sparse cover generates S. Now
using the elements in S and the elements in C \ S we can, by regularity of S,
generate the whole of T. Since the original sparse cover was arbitrary we conclude
that every sparse cover of T generates T which, by Theorem 3.20, implies that T
satisfies SHC. □

We saw in Corollary 3.40 that every sparse cover of I(r,n,q)/I(r — 1, n, q) is a

generating set. In general, the same is not true for the semigroup K(n,r)/K(n,r—
!)•

Example 3.66. The number of idempotents in every 7Uclass of Jr C Tn is rn~r.
Whenever S(n,r) — (") > rn~r we can find a square extension of Jr* that does
not satisfy SHC. Consider K(5,3) for example. In this example every 7£-class of
J3 has 9 idempotents, 5(5, 3) = 25 and (3) = 10. If we extend J3* to a square by
repeatedly adjoining copies of a single 7£-class then, since 9 < 15, the resulting
square extension will not satisfy SHC. We conclude that not every sparse cover

of J3 C T5 generates J3*.

Using Corollary 3.40 we can count the number of bases of the semigroup
I(r,n,q).
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Proposition 3.67. Let F be a finite field with size q and let S be the general
linear semigroup GLS(n, q). Let I(r, n, q) be a two-sided ideal of GLS(n, q). Then
the number of generating sets of I(r, n, q) with minimum cardinality is given by

On the other hand, for K(n, r) we still do not have an exact formula for the
number of bases. Using Lemma 3.34 we may obtain a lower bound.

Proposition 3.68. Let n, r E N with 2 < r < n — 1. Then a lower bound for the
number of generating sets of K(n, r) with minimum cardinality is given by

Proof. Consider the subsemigroup of Pr = K(n, r)/K(n.r — 1) which is the union
of the 7?.-classes indexed by the partitions defined in Definition 3.31. Let T be
the natural rectangular 0-band homomorphic image of this semigroup. Then T
is a square rectangular 0-band that satisfies SHC. Therefore T has (")! distinct
generating sets. Let S be the natural rectangular 0-band homomorphic image
of K(n,r)/K(n,r — 1). The semigroup T is a subsemigroup of S and every

generating set of T may be extended to a generating set for S in (S(n, r) — (™)) (*•)
different ways. Let X be the family of all such generating sets of S. Since Pr is
idempotent generated, for every X G X the coordinates X may be extended to a

generating set of triples for Pr in r!'^' = (r\)S^n'r^ different ways. □

Thus, many of the sparse covers do generate Jr*. On the other hand, not all
of the sparse covers do. This leaves the following problem.

Open Problem 5. Describe all generating sets of K(n,r) with minimal cardi¬
nality, and then count them.

n

\B(I(r,n,q))\= "r ! [(<f - l)(qr - q)... (<f - q^)} L"J,.
L J <7
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4.1 Introduction

For any mathematical object M the set End(M) of all endomorphisms of M is
closed under composition and forms a monoid. For example, the semigroup of
order preserving mappings On, introduced in Section 2.1, may be viewed as the
endomorphism monoid of a linearly ordered set with n elements. The general
linear semigroup GLS(n, F) of all n x n matrices over the field F, introduced
in Section 3.5.2, is the endomorphism monoid of a vector space. Also, if X is a

non-empty set then the full transformation semigroup Tx is the endomorphism
monoid of the (very basic) mathematical object X.

Over the next two chapters we will consider the endomorphism monoids of a

number of different mathematical objects. By "mathematical object" what we

mean is a general algebra, in the sense of universal algebra. The formal definition
of an algebra will be given in §4.2. In §4.3 the special class of algebras that we

are interested in, namely the so called independence algebras, will be defined. In
§4.4 we consider generating sets of End(A) and in §4.5 known results concerning
the ideal structure of End(.4) are presented. In §4.6 an outline of the strategy
of the proof of the main result is given. In §4.7 and §4.8 endomorphism monoids
of finite trivial independence algebras are considered and the main results of the
chapter are presented.

4.2 Universal algebra

We will need some basic ideas from the field of universal algebra. In particular,
we need the notion of algebra, subalgebra and homomorphism. The main sources

for the definitions and results of this section are [27] and [74].

Definition 4.1. Let A be a set and let n be a natural number. A function

/ : An —» A is called an n-ary operation defined on A and it is said to have arity
n.

An n-ary operation f on A can be regarded as an (n + l)-ary relation on A
(i.e. a subset of An+l) called the graph of / and defined by:

{(ai,..., an+\) G An+l : f{ax ,...,an) — Un+l}•

Example 4.2. Consider the set N of natural numbers and the binary operation
/ : A x A —> A defined by /(a, b) = a + b. It has the graph:

{(1,1, 2), (1, 2,3), (2,1, 3), (2, 2,4), (2,3, 5), (3, 2,5),...}
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which may be visualised as

•

•

•

CO 4 5 6

to 3 4 5

1 2 3 4

123...

In this way the notion of graph is a generalization of that of Cayley table.

The definition of n-ary operation can be extended to the special case where
n = 0 to get a, so called, nullary operation. In this case we define A0 = {0}
so that / : {0} —* A. A nullary operation on A is uniquely determined by
/(0) € A. Conversely, for all a E A there is exactly one mapping fa : {0} —> A
with /a(0) = cl. Therefore, a nullary operation may be thought of as selecting
an element from A.

Definition 4.3. Let A be a non-empty set. Let I be some non-empty index
set and let (fiA)iti be a function that assigns to each element of I an n^-ary

operation fiA defined on A. Then the pair A = (A ; (fiA)iel) is called an algebra
(indexed by the set I).

The set A is called the universe of the algebra A, and (fiA)iel is called the
sequence of fundamental operations of A- We call the number nj the arity of fiA
and the sequence r = (rij)j6/ of all arities is called the type of the algebra.

Often fA will be denoted simply by /. Operations of arities zero, one, two
and three are often said to be nullary, unary, binary and ternary operations.

Example 4.4. A monoid M. = (M ; •, e) is an algebra of type (2, 0) that satisfies
the identities

Vx,y,z E M x ■ (y • z) = (x ■ y) ■ z

Vx E M x ■ e — e ■ x = x.

Example 4.5. A ring 1Z = (R ; +, —, 0) is an algebra of type (2, 2,1,0) where
(R ; +, —, 0) is an abelian group, (i? ; •) is a semigroup and

Vx,y,z E R x-(y + z) = x- y + x- z

Vx,y,z E R (x + y) ■ z — x ■ z + y ■ z.

Example 4.6. Let 1Z = (R ; 0) be a ring such that R is infinite. An alge¬
bra M. — (M ; +, —,0,R) of type (2,1,0, (l)rei?), so there is a unary operation
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for every r € R, is called an 7Z-module if (M ; , 0) is an abelian group and
if for all r, s £ R and x,y £ M

r(x + y) = r(x) + r(y)
(r + s)x = r(x) + s(x)
(r • s)(x) = r(s(x)).

If R also has an identity element 1 then we must also have l(x) = x. In the
special case that TZ is a field, an 1Z-module is usually called an 1Z vector space.

In this way, modules and vector spaces may be thought of as algebras with
infinitely many operations (when 7Z is infinite).

Example 4.7. Let X be a non-empty set. Then X may be viewed as the algebra
X = {X ; ) which has an empty set of operations.

Our interest will be in semigroups of mappings between algebras. We will
need the notion of subalgebra.

Definition 4.8. Let B = (B ; (fiB)iel) be an algebra of type r. Then an algebra
A is called a subalgebra of B, written ^4 < if

(i) A = {A ; (fiA)iei) is an algebra of type r;

(ii) ACB;

(iii) For alHe/ the graph of fiA is a subset of the graph of fB.
Note that, in particular, a miliary operation must designate the same ele¬

ment in each subalgebra A of B.

Proposition 4.9. The non-empty intersection A of a non-empty family {Aj\j €
J} of subalgebras of an algebra B is a subalgebra of B.

Definition 4.10. Let X C B with 1/0. Define:

(X)6 = Pi {A \ A < B & X C A},

the subalgebra of B generated by X.

It is often more convenient to think about generation of subalgebras in the
following way. Define

E(X) = IU {fiB(ai,.. .,ani) | i G I,au ... ,ani € X}.
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Then define inductively

E°(X) = X, Ek+1(X) = E{Ek{X))

for all k G N.

Proposition 4.11. Let B be an algebra and let X be a non-empty subset of B.
Then

OO

(X)B = U Ek(X).
k=0

When there is no danger of ambiguity in doing so we write (X) rather than
{X)s for the subalgebra generated by X.

In a poset we say that 2 is a lower bound of x and y if z < x and z < y.

A greatest lower bound is a maximal element in the set of lower bounds. Upper
bounds and greatest upper bounds may be defined in a similar way. A lattice is
a poset in which each pair of elements has a unique greatest lower bound and a

unique least upper bound. If we take the set of all subalgebras of an algebra A
and order it by inclusion (i.e. B\ < B2 <=> B\ C B2) then the resulting poset is a
lattice. We call this lattice the subalgebra lattice of the algebra A

Finally we need the notion of a homomorphism between algebras.

Definition 4.12. Let A = (A ; (fiA)i<=i) and B = (B ; (fiB)i^i) be algebras of
the same type. A function 4> '■ A —> B is called a homomorphism of A into B if
for allie/

4>(fiA{ai,---,ani)) = /sB(0(a i),...^(anj))

for all ai,... ,ani G A. In the special case that rii = 0, this equation means that
<f(fiA(0)) = That is, the element designated by the miliary operation
fiA in A must be mapped to the corresponding element f B in B.

If the map is bijective then is called an isomorphism. A homomorphism
of an algebra into itself is called an endomorphism of A and a bijective endo-
morphism is called an automorphism of A. The set of all automorphisms of an

algebra A is closed under composition and forms a group that we call the auto¬
morphism group of A and denote Aut(A). Similarly, the set of endomorphisms
of A is closed under composition and forms a monoid which we denote End(^4).
If A is an algebra we call the subalgebra (0) the constants of the algebra. The
endomorphisms of an algebra A must act identically on the set of constants. In
other words if a 6 End(^4) and c G (0) then ca = c. Also, the image of any

endomorphism is a subalgebra of A.
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All of the examples of transformation semigroup given in previous chapters
may be viewed as endomorphism monoids of various algebras. Indeed, it is easily
observed, for example, that each monoid M is isomorphic to its monoid of left
translations (Cayley's theorem), which is precisely the monoid of endomorphisms
of the algebra M = (M ; (,fm)meM) of type (l)mgm where fm is defined by
fm(s) — msi the product of m and s in M.

Example 4.13. Another example is given by the semigroup of order preserving
mappings On which is the endomorphism monoid of the algebra 3^ = {Xn ; •) of
type (2) where the binary operation • : Xn x Xn —* Xn is defined by (a, 6) >—>

min(a, 6). Thus for a < b and 0 £ End(A) we have

0(a) = 0(min(a, 6)) = 0(a ■ b) = 0(a) • 0(6) = min(0(a), 0(6))

and so 0(a) < 0(6) (i.e. the map is order preserving).

4.3 Independence algebras

Looking at Proposition 2.14, which describes the structure of Tn, and Proposi¬
tion 3.38, which describes the structure of End(V), there are a striking number
of similarities between the two semigroups. In [39] Gould asks the question:

"What do vector spaces and sets have in common which forces End(P)
and Tn to support a similar pleasing structure?"

She answers this question by defining a class of algebra called an independence
algebra. In fact the algebras she defines are precisely the u*-algebras of [76], An
independence algebra is an algebra that satisfies two properties. The first is the
exchange property:

[EP] For every subset X of the algebra A and all elements x,y € A,
if y G (X U {x}) and y £ (X) then ie(IU {?/})•

A subset X of an algebra A is said to be independent if for all x £ X we have
x qL (A\{x|) and is called dependent otherwise. There are a number of equivalent
ways of stating the exchange property.

Proposition 4.14. [74, page 50, exercise 6] Let A be an algebra. Then the
following conditions are equivalent.

(i) The algebra A satisfies the exchange property.



Section 4.3 117

(ii) For every subset X of A and for every element u of A if X is independent
and u qL (X) then X U {u} is independent.

(Hi) For every subset X of A if Y is a maximal independent subset of X then
{Y) = {X).

(iv) For subsets X,Y of A with Y C X if Y is independent then there is an

independent set Z with Y C Z C X and (Z) = (X). □

A basis for A is a subset of A which generates A and is independent. Any
algebra satisfying [EP] has a basis. Moreover, in such an algebra a subset X is a

basis if and only if X is a minimal generating set which is true if and only if X is
a maximal independent set. All of the bases of A have the same cardinality which
we call the dimension of the algebra. By the third of the equivalent conditions
above, it follows that any independent subset of an algebra satisfying [EP] can

be extended to a basis.

The second property that an independence algebra must satisfy is the free
basis property:

[FB] Any map from a basis of A into A can be extended to an endo-
morphism of A.

Examples of independence algebras include sets (with an empty set of opera¬

tions), vector spaces and free (right) G-sets (which will be discussed in the next
section). In [39] independence algebras are defined and some properties of their
endomorphism monoids are given. In the papers [30] and [32] Fountain and Lewin
consider the subsemigroup generated by the idempotents of End(M), firstly for
finite dimensional independence algebras, and then for the infinite dimensional
case. These results provide a common generalisation of the results of Howie [55]
and Erdos [29], in the former case, and of Howie [55] and Reynolds and Sulli¬
van [79], in the latter. Also, in [33] Fountain obtained combinatorial results for
the depths of endomorphism monoids End(M) where A is a strong independence
algebra. As far as things stand, however, no generalisation has yet been made of
the results on minimal generating sets of ideals of Tn and of End(E) to the wider
class of semigroups End(M), where A is an independence algebra. These are the
questions that will be addressed in the following two chapters.

Included in [39] is a description of Green's relations in End(M).

Lemma 4.15. [39, Corollary 4.6/ Let A be an independence algebra. Then for
a, (3 € End(M) we have:
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(i) aC(3 if and only i/ima = im/3;

(ii) aTZ/3 if and only if ker(a) = ker(/?);

(Hi) aV/3 if and only i/dim(ima) = dim(im/3);

(iv) J = V. □

In condition (iii), it makes sense to speak of the dimension of ima because any

subalgebra of an independence algebra is again an independence algebra and thus
has a well defined dimension. Since J = T> we will adopt the convention of always
referring to the P-classes and not to the ./-classes.

For an n-dimensional independence algebra A the ideals of End(.4) are the
sets

Ir = {a G End(*4) : dim(ima) < r},

where 0 < r < n, and Ir = Do U • • • U Dr, a union of P-classes, where

Dr — {a € End(.4) : dim(ima;) = r}

and Do < D\ < ... < Dr. The next result is taken from [30]. It tells us that
the minimal (with respect to inclusion) generating sets of Ir are contained wholly
within its unique maximal P-class Dr.

Lemma 4.16. [30, Lemma 2.2] Let a € TV-1 where 1 < r < n — 1. Then there
are endomorphisms /3,7 € Dr such that a = /Fy.

If A has constants then Jo is non-empty and is a principal factor in End (^4).
If A does not have constants then Iq is empty and / is a principal factor. In
either case the other principal factors are the remaining Rees quotients Ir/Ir-1-

For r E N we denote the principal factor Lr/Ir-i by Pr. If A has constants
then Pi = I1/I0 and Po = lo, otherwise Pi = L\. It was proven in [39] that
each Pr is a completely 0-simple semigroup. It follows from Lemma 4.16 that
rank(/T.) = rank(Pr) and that idrank(/r) = idrank(Pr).

We conclude the section with a method, first described in [14], for building
new independence algebras from old. Let A be an independence algebra and
B be a subalgebra of A. Let A[B\ denote the algebra A with the additional
miliary operations z^,, with value 6, for all b G B. If ^4. is an independence algebra
with dimension n and B is a subalgebra with dimension m < n then A[B] is
an independence algebra with dimension n — m. The subalgebras of A[B\ are

the subalgebras of A that contain B, and the endomorphisms of A[B] are the
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endomorphisms of A that fix B elementwise. In other words

End(A[£]) = {ae End(A) :ba = b,Vbe B}.

4.4 Generating sets for End(*4)
We begin with the problem of finding generating sets for the semigroup End(4).
In the special cases of Tn and End(E) the answer is already known. As mentioned
in the introduction to Chapter 2 the full transformation semigroup Tn has rank
3. In fact, Tn is generated by Sn, its group of units, together with any element
from the j7"-class Jn-i- In a similar way, the general linear semigroup of n x n

matrices over a finite field is generated by three elements (and no fewer). Again,
GLS(n,F) is generated by its group of units GL(n,F) together with any matrix
with rank n — 1. This was originally proven by Waterhouse in [94],

Of course, in general it will not be the case that every finite independence alge¬
bra A satisfies rank(End(A)) = 3. In fact, for every group G there is an indepen¬
dence algebra A such that End(A) = G. Namely the algebra A = (G ; (fg )geG) of
type (l)3e(5, one unary operation for every element of G, where fg{h) = gh. It is
easy to see that A is a one dimensional independence algebra with (0) = 0. The
bases of this algebra are the singleton subsets of G and End(A) = Aut(A) = G.
Therefore the question of determining rank(End(A)) is at least as hard as the
question of determining rank(G) for all finite groups G. The interesting thing
about Tn and End(V) is not that the ranks both equal three, but that in order
to generate the semigroup, once the group of units has been generated, only one

more element needs to be added. In the language of relative ranks, introduced in
Section 2.2, if the independence algebra A is either a finite set or a finite vector

space then
rank(End(«4) : Aut(4)) = 1.

Is the same true of all finite Independence algebras? This is the question we

address in this section.

Definition 4.17. Let n and m be natural numbers. Define Pn^m to be the
subsemigroup of Tn+m made up of all maps that fix the last m points, elementwise.
In other words:

Pn,m = {a e Tn+m : ia — i for i = n + 1,..., n + m}.

In particular, Pn^\ = Pn (the partial transformation monoid on n points). We
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call Pn rn the generalized partial transformation monoid.
The monoid Pn,m is the endomorphism monoid of the independence algebra

A[B\ where A = (Xn+rn ; ) is just a set, and B < A with B = {n + 1,..., n + m}.
Thus A[B] is the algebra

of type (0)i6{n+l! n+m| where the operations are defined by fi(0) = i. It follows
that (0) = {n + 1,..., n+m} and the subalgebras of A of dimension r are subsets
of Xn+m of the form Bu{n + 1,... ,n + m} where B C Xn and \B\ — r. It follows
that the D-classes of End(*4) are given by

for 0 < r < n.

Proposition 4.18. Let m and n be natural numbers with n > 3. Then the
monoid Pn,m satisfies:

rank (P„;rra) = 3 + m.

Proof. We begin with some notation. For every a G Pnjn let

Observe that for every a G i either a (a) = 0 or a(a) = {j} for some

j € {n + 1,... ,n + m}.
We now show that a generating set of the required size can be found. Identify,

in the obvious way, elements of the symmetric group Sn with those of the group

of units of Pn^m. Let a, ft G Sn generate Sn and let:

({!' . . . ,n + m} , (/i)ig{n+l,...,n+m})

Dr = {a G pn,m : I irno n Xn\ = r}

a(a) = {1,..., n}a n {n + 1,... , n + m}.

7 =
1 2 3 ... n n + 1 ... n + m

2 2 3 ... n n+1 ... n + m

7j =
1 2 3 ... n n + 1 ... n + m

j 2 3 ... n n + 1 ... n + m

for j = n+ l,...,n + m. Let

A = {a,/?,7} U {71 :i = n + l,...,n + m}.

Then |^4| = 3 + m and we claim that A generates Pn,m■ Let <5 G Jn-1- There
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are two cases to consider depending on the value of a(5). If a(8) = 0 then there
exist at\,a2 £ Sn such that (*170:2 = On the other hand, if a{8) = {A:} then
there exist /?i,/?2 £ Sn such that /?i7fc/?2 = d. It follows that Jn-i Q (A) and, by
Lemma 4.16, A generates Pn.m-

For the converse let A be a generating set for Pn,m- We claim that A n Jn_i
must contain an element a such that a (a) = 0. Indeed, if no such element be¬
longed to A then every a £ (A)\Sn would satisfy a (a) 7^ 0 and as a consequence

(A) 7^ Pn,m-
Claim. Let 71,... ,7r £ Pn,m and let 8 = 71 ... 7r- If i £ cr{8) then i £ c(js) for
some s.

Proof. Let t be the smallest number such that i £ <7(7172 .. .71). If t = 1 then
i £ 0(71). Otherwise there is a A; £ Xn such that &7172 • • • 7t-i £ Xn and
(A7172 • • -7t-i)7t = L It follows from the definition of a that i £ 0(74). □

It follows from the above claim that for every j £ {n + 1,..., n + m} the set
.An Jn-\ must contain some element a such that a{oi) = {j}. Since, including 0,
there are m + 1 possibilities for the set cr(a) where a £ Jn_ 1, we conclude that
|A| > 2 + (m + 1) and so

rank(Pn,m) > 3 + m.

□

Therefore, for every natural number n there exists a finite independence al¬
gebra A that satisfies:

rank(End(A) : Aut(.4)) = n.

If we consider only independence algebras where (0) = 0 then things work
out differently.

Theorem 4.19. Let A be an n-dimensional independence algebra with (0) = 0.
If a £ End(Tl) is any endomorphism with dim(im a) = n — 1 then:

(Aut(A) U {a}) = End(A).

In particular

rank(End(A) : Aut(A)) = 1.

Before proving the result we first need to prove a lemma.
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Definition 4.20. Let a G End(_4). A subset X of A is a preimage basis for a if
a is one-one on X and Xa is a basis for ima.

In [39] it is shown that if X is a preimage basis for A then X is an independent
subset of A. Using this definition we prove the following lemma which describes
what the elements of Jn-\ look like.

Lemma 4.21. Let A be an n-dimensional independence algebra with (0) = 0 and
let a G End(*4) with dim(ima) = re—1. Then there exists a basis B — {bi,..., bn}
of A and a basis Q = {qi,..., qn-i} of im a such that:

Proof. Let D = {d\,..., dn_i} be a basis for im a. Let C — {ci,... , cn_i} be a

preimage basis of D where Cj i—> di for all i. Then C is an independent subset of
A and therefore generates an re — 1 dimensional subalgebra (C) of A. Restricting
a to the subspace (C) gives a homomorphism (in fact an isomorphism) from (C)
onto (D). Now choose and fix an element d belonging to the image of A\(C) under
a, say x G A\ (C) where xa — d. Note that d G ima = (D). Since d $ (0) = 0
we can extend d to a basis E = {d,e2 ■ ■ ■, en-i} of im a. If d were allowed to be a

constant then this would not be possible. Since a maps (C) onto (D) we can find a

basis L — {ai,...,an_1} of (C) such that a\a = d, a^a = e2, . • •, an_ia = en_i.
Now x (L) = (C) and it follows that L U {x} is a basis for A and satisfies the
conditions given in the statement of the lemma. □

The result above does not hold for independence algebras where (0) 7^ 0.

Example 4.22. Let A be the independence algebra with universe {1, 2, 3,4} and
a single nullary operation with image 4. Consider the endomorphism

The unique basis of A is {1,2,3} and the unique basis of ima is {1,2}. With
respect to these bases a does not have the form given in Lemma 4.21 (since 3 i-> 4
under a).

if i G {1,... ,re - 1}
if i = n.

Proof of Theorem 4.19. We show that given a, (3 G Jn-1 there exist 7, <5 G Aut(^4)
such that

7a6 = (3.
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Let a,f3 € Jn-1- By Lemma 4.21 there exist bases B = {b\,... ,bn} and C =

{ci,,cn} of A such that

\ q% if i € (l,...,n- 1} f pi if i € {l,...,n- 1}M = \ .. . , <*0= <
[ qn-1 if i = n [ pn_i if « = n.

Define 7 to be the unique endomorphism that satisfies <77 = bi for all i. Extend
{qi,.. .,qn-1} by {<?„} to a basis of A. Similarly extend {pi,... ,pn_i} by {pn}
to a basis of A. Let 5 be the unique endomorphism satisfying qA = pi for all i.
Then 7,8 € Aut(^4) with

chrf) = kaS=(h- if T
y [ qn-i if I = n. J

f pi if i G {1,... ,n - 1}
= < = CiP

[ pn-1 if i = n

and therefore 7ad = (3. This fact, along with Lemma 4.16, implies that for every

^ ^ Jn—1

(Aut(A.) U {a}) = (Aut(A) U Jn_i) = End(.4).

□

The converse of Theorem 4.19 does not hold. That is, if

rank(End(A) : Aut(A)) = 1

it does not follow necessarily that (0) = 0. For example, a finite vector space V
has the zero vector 0 as a constant but still satisfies rank(End(A) : Aut(A)) = 1.

Open Problem 6. Investigate rank(End(A) : Aut(A)) in the infinite dimen¬
sional case. The answer is known for the full transformation semigroup Tx,
in [60] it was shown that if X is infinite then rank(Xx : Sx) = 2.

4.5 Generating sets for ideals of End(^4)
In [30] it was shown that any proper ideal of End(A), where A is a finite dimen¬
sional independence algebra, is idempotent generated. We saw in Theorems 3.35
and 3.39 that, in the cases where A is a finite set or A is a finite vector space,

not only are the ideals idempotent generated, but they have extremal idempo¬
tent generating sets. Does the same hold for all End(A) where A is an arbitrary
finite independence algebra? The results of the previous section act as a warning
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against supposing that the answer must be true just because it is true both for
sets and for vector spaces. The main focus of this chapter, and the one that
follows it, will be to show that, in most cases, the analogous result does hold for
arbitrary finite independence algebras. We will eventually prove:

Theorem 4.23. Let A be a finite independence algebra with dim(_4) > 3. Then
every proper two-sided ideal of End(*4) has an extremal idempotent generating
set.

In fact we will do more than this. We will go through every class of finite
independence algebra given by the classification in [14] and for each class we

give a formula for the rank (and idempotent rank) for that class. The condition
dim(.4) > 3 is necessary. In fact, we will show:

Theorem 4.24. Let A be a finite independence algebra with dimension n and let

Ir — {a E End(^4) : dim(ima) < r}

where 0 < r < n. Then

rank(/r) = max(p, A)

and

I rank(/r) + 1 if r = 1 and End(^4) = P2 m for some m > 1
idrank(/r) = < .

I rank(lrj otherwise

where p and A are the number of 71- and C-classes, respectively, in the unique
maximal J-class of Ir.

In light of Lemma 4.16 what we are really interested in are the ranks and
idempotent ranks of the completely 0-simple semigroups that appear as prin¬
cipal factors in End(A). Since the ideals of End(*4) are idempotent generated
determining the (ordinary) rank is easy.

Proposition 4.25. Let A be a finite independence algebra with dimension n and
let

Ir = {a E End(vl) : dim(ima) < r}

where 0 < r < n. Then

rank(/r) = max(/?, A)

where p and A are the number of IZ- and C-classes, respectively, in the unique
maximal J-class of Ir.
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Proof. It follows from Lemma 4.16 that rank(/r) = rank(Pr). Since Ir is idem-
potent generated, Pr is an idempotent generated completely 0-simple semigroup.
By Lemma 3.11 we have rank(Pr) = max(p, A) and so rank(P) = max(p, A). □

Determining the idempotent rank is less straightforward and is the subject of
the rest of this, and the whole of the next, chapter. We will consider only the
endomorphism monoids End (.4) where A has dimension n > 2. This is reasonable
since when n = 0 the endomorphism monoid has no proper ideals and when n = 1
either there are no proper ideals or there is exactly one which, by [39, Lemma
4.4], must be isomorphic to a left zero semigroup with mn elements, where m is
the number of constants in the algebra. In this case Theorem 4.24 follows trivially
from the observation that every band has idempotent rank equal to rank.

4.6 General strategy

We will make use of the classification of finite independence algebras given in [14].
In fact, independence algebras had previously been classified many years ago by
those working with u*-algebras (see [92] for details). Cameron and Szabo's clas¬
sification [14] is given up to equivalence, where two independence algebras are

called equivalent if their subalgebra lattices are isomorphic, and their endomor¬
phism monoids are isomorphic. More precisely, two independence algebras A\
and A2 are equivalent if there exists a bijection 0 : A\ —> A<i such that:

(i) both 6 and 9~l map subalgebras to subalgebras;

(ii) if fi : Ai —> Ai (for i = 1,2) are maps satisfying fiO — Ofi then f\ is an

endomorphism of A\ if and only if is an endomorphism of Ai-

The main theorem of [14] states that every finite independence algebra is equiv¬
alent to one of the classes that can be found in Sections 2 and 3 of the paper.

Over the next four sections we will go through the classes of algebra in those two
sections describing the endomorphism monoids, and determining the rank and
idempotent rank, in each case.

There are effectively four kinds of independence algebra to consider, depend¬
ing on whether or not the algebra is trivial (a class of algebra that we define at
the beginning of the next section) and whether or not it has constants. In each
case we follow the four steps described below.

(I) Find a concrete way of representing the endomorphism monoid, usually as

a semigroup of pairs.
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(II) Describe Green's relations in the monoid, identify the group 7-f-classes and
determine the dimensions of the D-classes.

(III) For each P-class, Dr, use the position of the group H-classes to construct
a rectangular 0-band T that satisfies idrank(T) = idrank(/r).

(IV) Compute the idempotent rank of T using the results of Chapter 3 along
with Theorem 3.35 and Theorem 3.39.

This approach is made clearer by thinking in terms of egg-box pictures. For
*

each class of independence algebra we get enough information to draw an egg-

box picture of End(.4). We compare this picture with the egg-box pictures of Tn
and End(V). In each case the picture of End(A) contains copies of, in the sense

described in Section 3.2, either the egg-box picture of Tn or that of End(V). In
the majority of cases the existence of these substructures is all that we need in
order to find the idempotent rank.

4.7 Trivial independence algebras without constants

Let G be a group. A right G-set is a triple (X, G, ip) where tp : X x G —> X is a

map, written (x,g)ip = x ■ g e X, that satisfies

(i) (x ■ g) ■ h = x ■ (gh)

(ii) x • 1 — x

for all x G X and g,h € G. We say that the group G acts on the set X.
It is customary to say that X is a right G-set, without giving a name to the
homomorphism. Let G be a group and I be some index set (most of the time we

are concerned with I finite and we will usually suppose I — {1,, n}). The free
right G-set over I consists of pairs (i,g) with the action (i,g) • h = (i,gh).

An independence algebra is called trivial if its subalgebra lattice is isomorphic
to the power set V(X) (ordered by inclusion) for some set X. In [14] the authors
describe all the trivial independence algebras, up to equivalence, in terms of group

actions. Let X be a set, G a group and G a right G-set. The set (X x G) U G
forms an independence algebra

A = ((X x G) U G ; (vc)cec, (Pg)geG)
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of type ((0)cec, (l)seG?) where (0)i/c = c and

(x,h)pg = (x,hg), x € X,g,h E G
(c)Pg = c~ 9, c E G.

This algebra has dimension |A|, the subalgebras are the subsets of the form
(Y x G) U G for Y a subset of X, and (0) = C.

We begin by considering trivial independence algebras without constants. As
a result of the above classification, trivial independence algebras without con¬

stants are just free (right) G-sets. The endomorphism monoids of free and pro¬

jective S-acts where S is a semigroup (of which free G-sets are an example)
were considered in [12]. In that paper the author makes use of a wreath prod¬
uct construction to describe the endomorphism monoid. We will use the same

construction here.

We start by describing the construction. It depends on which way round we

compose our functions. There are many different functions involved and to try
and keep things as simple as possible we view all our functions as mapping on

the right and we compose them from left to right always.
Let A = (X x G ; {pg)g&o) be a trivial independence algebra with (0) =

0. Any transversal of the copies of G is a basis of this algebra in particular
B = {(x, 1) : x E X} is a basis that we call the natural basis of this algebra.
The free basis property tells us that the endomorphisms of End(A) are uniquely
determined by their action on this basis. Associated with every n E End(A) there
are two functions. Firstly we have an E T(X) (the full transformation semigroup
on X) and secondly we have fn:X-^G defined by:

(x, l)vr = (xaw,xfn).

Now consider what happens to the associated functions when we compose two

endomorphisms from End(A). Let 7Ti,7T2 E End(A) and consider the product
7Ti7T2. We have:

(x,l)7ri7r2 = ((X,1)7Ti)TT2 = (xani,xfni)7T2
= ((xani, 1) • (xfni))Tr2 = ((xani, 1)tt2) • (xfni)
= ((aiClTrj )ci7r2 , (xa^j )/7r2) • (xfnj) = (xa^j Q:^, (xCIttj )/7r2 (x/jrj )).

This motivates the following definition.

Definition 4.26. Define the semigroup G\Tn to be made up of pairs (a, /) where
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QgT„ and / € Map(X„, G) with products defined by:

(a,ip){(3,<t>) = (a(3,(/)aip)

where i(paip = ((ia)4>) (iip) (a product of two elements in G).

To verify that G I Tn and End(A) are isomorphic, define £ : End (.A) —> G \ Tn
by 7r h-> (an,fn). It is clear that £ is a bijection. We want to show it is a

homomorphism. Since:

(i, 1)7Ti7T2 = {iCX-K-y QL-K2 I (^771 )/tT2 ))

it follows that

(7Tl7T2)C = a-TT2i /tt2 1 fir 1 )•

Therefore

(7rl^)(7r2^) — (a7ri) fni ){an2i fn2) ~ (aTriaTT2 j /?T2 1 fni ) =

and £ is indeed a homomorphism.
From now on we will view End(A), where A is a finite trivial independence

algebra without constants, always in terms of the isomorphic semigroups G I Tn.
We start by describing Green's relations in G I Tn.

Lemma 4.27. Green's relations inGlTn are given by:

(i) (ct,xp)TZ(/3, (f>) if and only if alZ/3 in Tn and (i0)(z-0)_1 = for aM
(i,j) € ker(a).

(ii) (a,if)jC(p,4>) if and only if aC(3 inTn.

(Hi) (a, ip)T>((3, f>) if and only if | irn a \ = | im /3|.

Proof. (i)(=>) If follows from the definition of multiplication in G I Tn that a1Z(3.
For the second part suppose that

(a, ip)(7, n) = ((3, (j>), (/3, <p)(5, 0 = (a, ip).

Then we have ay = (3, (35 = a, yGxp — <p and £?<p = xp which means that for all

((ia)n){iip) = i{/J.aip) = {i<p), ((«/?)£) NO = {^(p) = (ixp).
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Hence for (i, j) E kera

(#)(#)_1 = = (ja)fi = (j^ijip)'1

as required.
(4=) Suppose that the two conditions in (i) hold. Say 7,5 ETn with 07 = (3

and (35 = a. Now define /z : Xn —> G by:

f (j^)(j'0)~1 if i = jot f°r some j E Xn
V — \I 1c otherwise.

This map is well defined since by assumption if (i,j) £ kera then (z</>)(i'0)_1 =

{j4>)(ji(>)~1 • Now we have

iOQV>) = ((ia)n)(iip) = (iip) = ij>

implying that (a,ip)(7,/z) = (/3,<j>). Similarly we can find £ e Map(Xn,G) such
that ((3,4>)(6,£) = We conclude that (a, tp)lZ((3, 4>) in GlTn.

(ii) (=>) Follows from the definition of multiplication in Gl Tn.

(7=) Suppose that 5a = (3 and that 7/? = a. Then define fx, u : Xn —> G by:

ifi = ((hf)^)"1 [icj)), iv = (Oy)^)-1 (#)■

It follows that

iOV) = ((^)VO(v) = ((^)V')((^)V')_1(^) = ^

and

z(^7z/) = {{i-y)4>){iv) = ((z7)</>)((z7)0)~1(#) = ii(.

We conclude that

(5,n)(u,ip) = (/?,</>), (7,1;)(/3,</>) = (a,tp)

and (a, ip)£((3, (f>) in G ? Tn as required.

(iii) Follows from Lemma 4.15. □

It follows that for this monoid

Dr = {(a, tp) E G lTn : | ima| = r}
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for 1 < r < n. We are interested in the distribution of the idempotents in Dr.
The following lemma tells us how to identify the group Tf-classes (and thus find
the idempotents).

Lemma 4.28. Let (/3,ip) G G I Tn. Then H^p^ is a group TL-class in G\Tn if
and only if Hp is a group H-class in Tn.

Proof. If H(p^ is a group then ((3,if)2Tt((3,'if) in G I Tn which, by Lemma 4.27,
means that /32H/3 in Tn and so Hp is a group Tf-class.

For the converse suppose that Hp is a group H-class in Tn. This is the
same thing as saying that /32H/3. We have (/3,if)2 = where iip^xp =

((i/3)ip)(iip) in G. If (i,j) £ ker(/3) then

(i = (if3)il> =

= (upwu^)u^r1 =

It follows from Lemma 4.27 that and therefore H^p^ is a group
If-class in G I Tn. □

We now find an embedding of Tn in G I Tn that dictates the structure of
G \Tn. Define l G Map(Xn, G) to be the map that sends every element of Xn to
the identity of G (i.e. xl = Iq for all x G Xn). Let

N = {(a, t) : a G Tn}

noting that TV is a subsemigroup of G I Tn and is isomorphic to Tn. Also define

£ = {(l,</0 :VeMap(An,G)}

where 1 denotes the identity of the monoid Tn. The set Q is a subgroup of the
group of units of G I Tn and is isomorphic to the direct product of n copies of G.
The group Q acts on the 77.-classes of Dr in the following natural way. Let R be
an 77,-class in Dr and let (1,^) G Q. Then define

(l, V) • R .*= (l, fj)R = {(l,m <!>) ■ (A t) e R}.

This is a well defined action of Q on the 77.-classes in Dr since given any (1,^0 G G
and any 77.-class R in Dr, by Lemma 4.27, the set (1 ,xf)R is an 77.-class in Dr.
Given (a,ip) G G I Tn we use G(Q,^) to denote the orbit of the 77.-class f?(a>^).

We now prove that the 77-classcs of N n Dr form a transversal of the orbits
of the 77,-classes of Dr under the action of Q, that all the orbits have the same
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size, and that any two 77,-classes in the same orbit look the same, in terms of
the position of idempotents (i.e. that the map / : R —> (1 ,ip)R defined by
/(r) = (1 sends group 7d-classes to group 7d-classes).

Lemma 4.29. The IZ-classes of N n Dr form a transversal of the orbits of the
IZ-classes of Dr.

Proof. First we show that every orbit contains at least one 77.-class from Nr\Dr.
Let (a,tp) G Dr and define G Map(Xn,Gr) by iip~~l = (iif)~1 for all i G Xn.
Then (1 ,ip~1)(a,4) = which belongs to N fl Dr since for all i G Xn
we haveiijj= 1. It follows that where
(a.V'V-1) G NnDr.

To see that only one 77.-class of N D Dr belongs to each orbit, first let
(/3,<f>) GJVfl Dr where R(a^) and R(/3^) belong to the same orbit. Then

there exists some (/?',</>') G R(p^) and (1,¥?) G Q such that

But by definition we have:

(1, ip) (a, if) = (a,V>V)

and so (/?',<//) = (a,^1^)- We conclude that a = f3' and so a = /3'1Z/3 in Tn.
Moreover, for all i G Xn we have itf = 1 = if> so in particular for (i,j) G kera
we have iip = 1 = jcf. It now follows from Lemma 4.27 that (a, if)TZ(/3, <f) and so

-R(q,V') =

Lemma 4.30. Let (a,tp) G Gl Tn and let (1,6) G Q. Then is a group if
and only if is a group.

Proof. From Lemma 4.28 it follows that LT(Qi^) is a group if and only if Ha is a
group in Tn which is true if and only if id(i!e)(a,^) = H(a,i/ae) is a group in GlTn.

□

Lemma 4.31. For every (a,ip) G Dr we have \0^a^ \ = |G|n_r.

Proof. Let (a,ip) G IV n Dr. From the definition of the action we have:

<) — {R{a,4>) '■ 4* € Map(Xn,G)}.

Fix (a,ip) £ Dr and define Y = {(a,cf>) '■ (cv:, 0)7^.(o;, V^)} where a is fixed. We
claim that |V| = \G\r. Indeed, by Lemma 4.27, (a, if and only if for
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(i,j) G kera we have
(if) = (jf)(jip)~1 (iift)-

We now count the number of choices for <j> that satisfy this equation. For each
kernel class of a, once the image under cf> of a single element of this class is
determined, the equation above determines the images under f of every other
element in the same kernel class. Therefore, if we fix a transversal of the kernel
classes of a, once the images of this set under <j> are defined, the map f will be
completely determined. Since the elements in this set can be mapped anywhere in
G, there are |G|r possibilities in total. We conclude that \0(a^\ — |G[n/|G|r =

|G|n-r. □

The correspondence that the three preceding lemmas establish between the
structure of Tn and that of G }Tn is demonstrated by the following example.

Example 4.32. Let G = S2, the symmetric group of degree 2. The semigroup
S = G IT3 may be embedded in Tq where it is generated by the following trans¬
formations:

/l 2 3 4 5 6\ /l 2 3 4 5 6\
ai ~ (^3 4 5 6 1 2J ' ^ ~ \3 4 1 2 5 6j '

A 2 3 4 5 6\ fl 2 3 4 5 6\

^2 13456/ yl 2 1 2 5 6y
The elements on generate the group of units S2IT3 and (3 is a singular idempotent
in the second top P-class of the semigroup. The semigroup has size 216. The
group of units is isomorphic to S21 S3 and has size 48. The group TGclasses in the
middle P-class are isomorphic to S2 I S2 while the group TGclasses in the bottom
D-class are isomorphic to S2 I 5'i.

The egg-box diagram of the semigroup is given in Figure 4.1 and shows how
each of the D-classes looks like a "vertical tiling" of the P-classes of the full
transformation semigroup. In the language of Section 3.2 this vertical tiling is
a direct product (with amalgamated zero) of a principal factor of Tn with a left
zero semigroup.

Finally we note that the group Tf-classes of G \Tn in Dr are, as one would
expect, isomorphic to GlSr. Combining these observations together we conclude:

Proposition 4.33. Let G be a finite group and let n G N. Let

K'(n,r) = {(a,if) G G I Tn : | ima| < r}, K(n,r) = {a G T„ : | ima| < r}.
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Figure 4.1: Comparing the egg-box pictures of T3 and S2 IT3. As usual, the
shaded boxes correspond to group 77-classes.

Also let Vnr = K(n,r)/K(n,r — 1), Qn)V = K'(n,r)/K'(n,r — 1) and

Dr = {(a, xp) G G I Tn : | irria\ = r}.

Then we have:

(i) The number of C- classes in Dr is (").

(ii) The number of TZ-classes in Dr is \G\n~rS(n,r).

(Hi) Let T\ and T2 be the rectangular 0-band homomorphic images of Qn,r and
Vntr respectively. ThenT\ = LQ\Q\n-r X0T2 where L°k denotes the k-element
left zero semigroup with a zero adjoined.

Proof, (i) Follows from Lemma 4.27(h). (iii) Follows from Lemmas 4.29, 4.30
and 4.31. (ii) Follows from (iii) and Proposition 2.14 which gives the dimensions
of the D-classes of Tn.

□

Using the proposition above we now compute the idempotent rank of the
ideals of G I Tn.

Theorem 4.34. Let G be a finite group and let n G N. Let

K'(n, r) = {(a, xp) G G I Tn : \ ima| < r}
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where 1 < r < n. Then for 2 < r < n we have

idrank(E"'(n, r)) = rank(K'(n,r)) = \G\n~rS{n, r).

Also, when r = 1 we have

idrank(K'(n, 1)) = rank(K'(n, 1)) = j ^
Proof. For the first part, using Proposition 4.33(iii), and the fact that r > 2,
it follows that the rectangular 0-band T\ is the direct product with amalga¬
mated zero of the two tall rectangular 0-bands T2 and LQ\Q\n-r. The rectangular
0-band T2 has an extremal idempotent generating set by Theorem 3.35. The
semigroup L°|G|n-r is a band and so has an extremal idempotent generating set.
By Lemma 3.6 it follows that T\ has an extremal idempotent generating set and,
as a consequence of Lemma 4.16, so does K'(n,r).

For the second part we note that, by Proposition 4.33(iii), the D-class in
question is completely simple with dimensions |G|n_1 x n. The result then follows
since max(|G|n_1, n) is n if G is trivial and |G|n_1 otherwise. □

4.8 Trivial independence algebras with constants

These algebras are given by the definition at the beginning of §4.7 with the
condition that 0. Let

•A = ((Xn x G) U G ; (Xg)geG, (yc)cec)

where G = {ci,... ,cm}. The bases of this algebra are the transversals of the
copies of G. In particular B = {(i, Iq) : i £ Xn} is a basis for the independence
algebra A and every a € End(.4) is determined by its action on this basis.

We begin by observing that the semigroup G I Tn embeds in End(*4) in a

particularly nice way. In fact, the way that G\Tn embeds in End(*4) is analogous
to the way that Tn embeds into Pn.

Lemma 4.35. Let T = {a G End(*4) : Ba n C = 0}. Then T < End(^4) and
T = GlTn.

Proof. First we show that T is a subsemigroup. Let a, (3 £ T. Since (3 G T it
follows that B/3DC = 0. It follows that for all (i, g) G Xn x G we have (i, g)(3 0 G
(since if (i,g)(3 £ C then (z, lG)(3 = {i,gg~l)(3 = ((laO/?) • 9~l £ C). Therefore,
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if {c} = baf3 f~l C for some fee/? then ba G C which contradicts the fact that
a G T.

To see that T = G \ Tn we just have to show that T = End(X„ x G), since
we have already seen that End(Xn x G) = G I Tn. Define T : T —» End(Xn x G),
noting that B is both a basis for A and for Xn x G, by

6(aT) = ba

for b G B. Then the map T is an isomorphism. □

Now consider the P-classes of End(*4). As already mentioned, the subalgebras
of A are the sets (Y xG)UC where Y C X. Therefore, by Theorem 4.15, the
D-classes are given by

Dr = {a G End(«4) : |{i G Xn : (i,g) = ba for some b G B}\ = r}

for 0 < r < n. Also by Theorem 4.15 the number of E-classes in Dr, for 1 < r < n,

is equal to ("), which is the number of r-dimensional subalgebras of A-

Lemma 4.36. Let 1 < r < n. Then T n Dr is a union of the IZ-classes of Dr in
End (.A).

Proof Let r G T n Dr and a G End(^l) be Al-related to r in End(^4). By
Theorem 4.15 it follows that ker(a) = ker(r). Since r G T it follows that BtDC =

0 and so ker(r) has the set {c} among its kernel classes for each c G C. If a 0 T
then for some b G B we would have ba — c G C. But then b and c would belong to
the same kernel class of a and thus ker(cr) ^ ker(r) which is a contradiction. □

It follows from these observations that the D-classes of GI Tn "sit inside" the
H-classes of End(_4) in the following sense.

Lemma 4.37. Let G be a finite group and let m,n G N. Let

K(n, r) = {(a, ip) £ G lTn : \ima\ < r}

and

K'(n,r) — {a G End(^4) : |{z G Xn : ba = (i,g) for some b G B}| < r}

for 1 < r < n. Also let

Vntr = K(n,r)/K(n,r - 1), Qn>r = K'(n,r)/K'(n,r - 1).
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Then Vn^r is an C-class filling subsemigroup of Qn,r- □

Furthermore, since the group 77-classes in any D-class of End(.4) are all iso¬
morphic, and since we know what the group 77-classes of G I Tn are, we have the
following result.

Lemma 4.38. Let 1 < r < n. Then in Dr C End(^f) the group Ti-classes are

isomorphic to G I Sr.

We now divide our analysis of End(*4) into the case where G is trivial and
the case where G is non-trivial.

Trivial independence algebras where (0) 7^ 0 and G is trivial

When G is trivial, and |G| = m, the semigroup End(„4) is isomorphic to the
generalized partial transformation semigroup Pn,m and the ideals are the sets

where 1 < r < n. It is not true that the ideals of P,^rn always have extremal
idempotent generating sets as we now show.

Lemma 4.39. For all m £ N the semigroup 1(1, 2, m) satisfies

idrank(/(l, 2, m)) = rank(/(l, 2, m)) + 1.

Proof. The unique maximal 77-class of the semigroup 7(1, 2, m) is

This j7-class has only two G-classes which correspond to the elements with images

{1, 3,... , m + 2} and {2, 3,..., m + 2}, respectively. The number of P-classes in
D is 2m + 1 and every P-class, except one, contains only one idempotent. The
single exception is the 7Gclass that contains the pair of idempotents £1,62 given

Let E be the set of idempotents in D. We claim that any idempotent generating
set of 7(1, 2, m) must contain all the elements of E. Indeed, we need all of the
idempotents E\{ei, £2} since otherwise one of the 7£-classes of D would be missed

I(r,n,m) = {a e Pn>m : | im a n Xn \ < r}

D = {a G P2,m : ({!"} U {2a}) n {1, 2} 7^ 0}.

by:
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1 2 3

1 3 3

1 2 3

2 3 3

1 2 3

1 1 3

1 2 3

2 2 3

1 2 3

3 1 3

1 2 3

3 2 3

1 2 3

3 3 3

Figure 4.2: The structure of the unique maximal P-class of the semigroup
7(1,2,1).

out. Also, since ei 0 (E U {62}) and 62 ^ (E U {ei}} we conclude that both e\
and £2 are required in any idempotent generating set. Thus

idrank(/(l, 2, m)) = \E\ = 2m + 2 = rank(/(l, 2, m)) + 1

as required. □

Example 4.40. Consider 7(1,2,1) which is one of the two sided ideals of P2,i-
The elements are

I{1,2,1) =
1 2 3\ 1 2 3\ 1 2 3\ 1 2 3

1 3 3 / ' \ 2 3 3/ \ 3 1 3 / ' 13 2 3,

If we arrange the elements in an egg-box diagram and put a star next to the
idempotents we get the diagram in Figure 4.2. The distribution of idempotents
in this example agrees with the general description given in Lemma 4.39.

Looking back at the statement of Theorem 4.24 observe that the exceptions
to the rule in the theorem (i.e. those examples where idempotent rank and rank
are not the same) are precisely the examples given in Lemma 4.39. All the other
ideals of Pn^m do have extremal idempotent generating sets.

Proposition 4.41. Let n,m € N with n > 2. Let = {a € Pn,m '■
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| im a fl Xn\ < r} for 0 < r < n. Then we have

. f i&nk(K'(n,r)) + 1 if n = 2, r = 1 and m> 1
idrank(ii (n,r)) = <

I rank(AT (n,r)) otherwise.

Proof. Let K(n,r) = {a 6 Tn : |ima| < r}, = K(n,r)/K(n,r — 1) and
Qn,r = K'(n,r)/K'(n,r — 1). There are a number of cases to consider depending
on the value of r.

Case 1: r = 0. In this case K'(n,r) is a band and as a consequence has an

extremal idempotent generating set.

Case 2: r > 2. In this case, by Lemma 4.37, Vn r is an G-class filling subsemi-
group of Qn,r where, since r > 2, Vn^r and Qn,r are both tall. The result now
follows by Lemma 3.3.

Case 3: r = 1 and n > 2. Let D\ denote the top ^7-class of the semigroup

K'(n, 1). The number of G-classes in D\ is equal to n, corresponding to the
images

Iq = {q,n+ 1,..., n + m},

where 1 < q < n. Now consider the following n kernels:

Kj = {{j,j + l},Xn+i \ {j,j + l},{n + 2},..., {n + m}}

for 1 < j < n — 1 and

Kn = {{n, 1}, Xn+i \ {n, 1}, {n + 2},..., {n + m}}.

Note that for 1 < j < n — 1 the only images that form a transversal of the kernel

Kj are Ij and Ij+i- Also, the only images that form a transversal of the kernel
Kn are I\ and In. In a similar way each image is a transversal of precisely 2 of
the kernels {K\,..., Kn}. Let T be the natural rectangular 0-band homomorphic
image of the principal factor Pn< The kernels listed correspond to a rectangular
0-band T2 that is a tall (since it is square) £-class filling subsemigroup of T.
We have seen above that the number 1 appears exactly twice in every row and
every column of the structure matrix of T2. In other words the matrix has
a symmetric distribution of idempotents. Also, it is easy to see that T2 is a

connected rectangular 0-band. Therefore, by Lemma 3.28, the rectangular 0-band
I2 has an extremal idempotent generating set which, by Lemma 3.3, implies that
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T has an extremal idempotent generating set. It now follows from Lemma 4.16
that K'{n, r) has an extremal idempotent generating set.

Case 4: r = 1 and n = 2. This is the one case where the idempotent rank and
the rank are not the same. It is dealt with in Lemma 4.39. □

Trivial independence algebras where (0) 7^ 0 and G is non-trivial

We show that when G is non-trivial the proper ideals of End(.4) have extremal
idempotent generating sets. We saw in the previous section that the number of
£-classes in Dr C End(_4) is equal to (") for 1 < r < n. Finding an expression for
the number of 77.-classes is slightly more tricky. We know from Lemma 4.37 that
there are at least as many 77.-classes as in the corresponding P-class of G I Tn.

Definition 4.42. Let

1 "~r / \
7(n,m,r,G) = ^Y^nk\G\n-k {^j S(n - k,r)

where \C\ — m > 0.

Lemma 4.43. The formula -y(n,m,r,G) gives the number of IZ-classes of Dr C
End(*4) where G is non-trivial and 1 < r < n — 1.

Proof. First we claim that

Ic-I = (")r!Em'IiGrt(j)s(« - *,r)
where 1 < r < n. We count the number of distinct maps a G Map(B,^4) that
extend to endomorphisms a with dim(ima) = r. There are (") choices for ima,
since A has (") r-dimensional subalgebras. Let k — |{6 e B : ba € C}\ noting
that since dim(ima) — r we have 0 < k < n — r (since |£?| = n and if more
than n — r elements mapped to constants then dim(ima) < r). There are (£)
possible choices for the set {6 G B : ba G C} and there are mk ways of assigning
the images of the elements in {b G B : ba G C}. The term S(n — k,r) gives the
number of ways of partitioning {6 G B : ba 0 C} into r kernel classes. There
are r! ways of assigning the images to these kernel classes and \G\n~k choices
within the groups for each of the elements of the set {b E B : ba ^ C} to map to.
Summing as k runs from 0 up to n — r gives the displayed formula above for \Dr\.
Note that this formula does not hold for C — 0. Let p and A denote the number
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of IZ- and £-classes, respectively, of Dr. By Lemma 4.38, the group TGclasses of
Dr are isomorphic to G I Sr. It follows that

IA-1 \Dr\ \Dr\
- -

= 7(72, to, r, G).p
A|G?Sr| {nr)\GlSr\ (™) r\ |G|r

□

To complete the chapter, we determine the idempotent rank of the proper

ideals of the semigroup End(*4), where A is a trivial independence algebra with
constants, and G is non-trivial.

Theorem 4.44. Let G be a finite group, let to, n E N, and let A = (Xn xG)uC
where \C\ = to. Let

K'(n,r) = {a E End(*4) : |{i E Xn : (i,g) = ba for some b E B}\ < r}

for 0 < r < n. If r = 0 then

idrank(iL'(n, r)) = rank(K'(n,r)) = mn.

If G is non-trivial and r > 1 then

idrank(/C'(n,r)) = rank(iL'(n,r)) = max(^ J,7(n,m,r,G)).
If G is trivial and r > 1 then End(.4) = Pn,m and

idrank (ST'(n, r)) = { maX<®'7<"'r' G» + 1 if n = 2, r = 1 and m> 1I max(("), 7(71, m, r, G)) otherwise.

Proof. The case when G is trivial is dealt with in Proposition 4.41. When G is
non-trivial there are a number of cases to consider depending on the value of r.

Case 1: r = 0. In this case K'(n,r) is a left zero semigroup, every b € B has C
places it can map to giving mn choices in total.

Case 2: r = 1. Let T be the rectangular 0-band homomorphic image of
the principal factor corresponding to the unique maximal ^7-class of K'(n,r).
Let RB®b denote the a x b rectangular band with a zero adjoined. Then, by
Lemma 4.37, n is an £-class filling subsemigroup of T. When G is non-
trivial |G|n_1 > n and RB®G|„_! n is tall. The result now follows from Lemma 3.3
and the dimensions of the P-class Dr C End (^4).
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Case 3: r > 2. Let T\ and Ti be the rectangular 0-band homomorphic images
of the principal factors that correspond to the maximal ^-classes of K(n,r) and
K'(n, r) respectively. By Theorem 4.34 the rectangular 0-band T\ has an extremal
idempotent generating set. By Lemma 4.37 the rectangular 0-band T\ is an C-
class filling subsemigroup of T2. Also, T\ and T2 are both tall. The result now

follows from Lemma 3.3 and the dimensions of the P-class Dr C End (A). □
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5.1 Non-trivial independence algebras

Let V be an n-dimensional vector space over the finite field F with \F\ — q — pk
where p is a prime. Let W be an m-dimensional subspace of V. As mentioned
in the introduction to the previous chapter, a vector space is an independence
algebra. It is a non-trivial independence algebra with a single constant (the
zero vector). The basic properties of this algebra's endomorphism monoid, the
general linear semigroup GLS(n,F), were given in Section 3.5. We saw that
the ideals of the general linear semigroup have extremal idempotent generating
sets in Theorem 3.39. More generally than this, the algebra V[W] (using the
construction described at the end of Section 4.3) is a finite independence algebra.
It has dimension n — m and its subalgebras are the subspaces of V that contain
W and (0) = W. Moreover, as a result of [14, Proposition 8.1], every finite
non-trivial independence algebra with constants is equivalent to one constructed
from a vector space and a subspace in this way.

In the following section we will describe the structure of the semigroup

End(V[W]). In particular, a detailed description of the distribution of the idem-
potents in the semigroup will be provided. This will then be used to determine
the rank and idempotent rank of the ideals of the semigroup.

5.2 Non-trivial independence algebras with constants

Let Mataxb(F) denote the set of all a x b matrices over the field F. The endo¬
morphism monoid End(V[W]) consists of all linear transformations of V that fix
W elementwise. Concretely we may represent End(V[W]) as the subsemigroup
of GLS(n,F) defined by:

■ A e Mat(n_m)xm(E), X€GLS(n —m,E)| <GLS(n,F)
where Im denotes the m x m identity matrix. Multiplying two of these matrices
together gives:

Im ()\ flm (A / Im 0 \
A XJ\B YJ \A + XB XYJ '

Therefore End(V[IT]) is isomorphic to the semigroup of pairs

Mat(n_m)xm(F) x Mat(n_m)x(n_m)(F)
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with multiplication:

(A,X){B,Y) = (A + XB,XY).

For what remains of this section we will think of End(H[VF]) as this semigroup
of pairs. An important subsemigroup of End(V[W]) is

N = {(0,1):Ie GLS(n - m,F)} < End(V[W]).

Let U = Fn~m and observe that N = End(t/) = GLS(n — m,F). In much the
same way as Tn dictated the structure of G I Tn (see Section 4.7), the semigroup
End(I/) will determine the structure of End(V[LF]).

We start by describing Green's relations in the semigroup. Given an element
(A,X) in End(V[W]) we view X as belonging to the general linear semigroup
GLS(n — m,F) and we write dimX to mean the dimension of the image of the
linear transformation X in GLS(n — m,F). Thus dimX lies somewhere between
0 and n — m.

Lemma 5.1. Let (A, X), (B, Y) 6 End(V[W]). Then

(i) (A,X)C{B,Y) in End(V[W]) if and only if XCY in End(U).

(ii) (A,X)7Z(B,Y) in End(V[W]) if and only if X1ZY in End(f/) and there
exists some Z € Mat(n-m)xTn(F) such that YZ — A — B.

(Hi) (A,X)V(B,Y) if and only if dim(im X) = dim(imT).

Proof, (i) From the definition of multiplication in the semigroup it is seen that
(A,X) and (B,Y) are L-related in End(F[VF]) if and only if X and Y are Li-
related in End(t/).

(ii) The elements (A, X) and (B,Y) are 77-related in End(y[LF]) if and only if
there exist and () in End(V[W]) such that

(A + XDi,XQi) = (A,X)(Di,Qi) = (B,Y)

and

(.B + YD2,YQ2) = (B, Y)(D2, Q2) = (A, X).

This is equivalent to saying that X and Y are 77-related in End(C/), XD\ = B — A
and YD2 = A — D. However, if YD2 = A — B then XQ\D2 = A — B and it
follows that X{—I)Q\D2 — D — A. It follows that if there exists a matrix D\
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satisfying XD\ = B — A then there exists a matrix such that YD2 = A — B.
The converse also holds and so the two conditions are equivalent and one of them
may be omitted.

(iii) Follows from Proposition 4.15. □

Now we will find where the idempotents are by identifying the group Tf-classes.

Lemma 5.2. The TL-class HtAx) in End(V[TV]) is a group if and only if Hx is
a group in End(C/).

Proof. The H-class H[a,X) *s a group if and only if (A,X) is 7-f-related to
(A,X)2 = (A + XA,X2). This is equivalent, by Lemma 5.1, to saying that
X is 7-f-related to X2 in End({7) and there exists a Z G Mat(n_m)xm(F) such
that XZ = {A + XA) — A = XA. This equation is satisfied by setting Z = A
and the result follows. □

The semigroup End (V [IV]) has n — m + 1 F-classes given by

Dr = {(A,X) G End(V[IV]) : dim(imX) = r}

where 0 < r < n — m. Also, from Lemma 5.1 (i), it follows that the T-classes of
Dr are in one-one correspondence with the r-dimensional subspaces of End(£/).

Now consider the F-classes. Our first step will be to partition the set of 1Z-
classes in Dr. Let H be the group of all (n — m) x m matrices over the field F
under addition. This group is just the direct power of m(n — m) copies of the
additive group of the field F. The group H acts on the F-classes of Dr in the
following way. Let A G H and let R be an F-class of Dr. Then define

A-R=(A, I)R = {(A, I)(B, Y) : (B, Y) G R}

where I denotes the (n—m) x (n—m) identity matrix. The element (A, I)(B, Y) =

(.A+B, Y) is F-related to (B, Y), by Lemma 5.1, and so by Green's lemma (A, I)R
is an F-class of End(V[lV]) in Dr. Since 0 • R = (0,1)R = R and

(AB) ■ R = ((A,I)(B,I))R = (A,I)((B,I)R) = A- (B ■ R)

this is a group action. Denote the orbit of the F-class R[a,X) by C(a,X) •

As in the previous section, we now prove that each of the orbits has the same

size, that the F-classes of Dr in N form a transversal of the orbits, and that
any two R-classes in the same orbit look the same in terms of the position of
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idempotents (i.e. that the map / : R —> (.A,I)R defined by x h-> (A,I)x sends
group H-classes to group TY-classes).

Lemma 5.3. The IZ-classes of N fl Dr form a transversal of the orbits of the
1Z-classes of Dr.

Proof. Let (A,X) G Dr. Then (—A,I)(A,X) — (0, X) G N and so the set of
X-classes of N D Dr intersects every orbit at least once.

To see that no orbit is intersected more than once let C(o,x) — C(o,y)- Then
(D,I)R(0,x) — R(o,Y) f°r some (D,I) where D G H. Therefore (d,x) G R(o,y)
giving x1zy in End({7) (by Lemma 5.1) and it follows that R(o,X) = R(o,y)- ^

Lemma 5.4. Let (A,X),(B,I) G End(V[W]). Then H(a,X) i-s a group if and
only if #(B)/)(X*) is a 9rouP-

Proof. The Tf-class H(a,X) is a grouP) by Lemma 5.2, if and only if Hx is a
group in End(CZ) which is true if and only if H(b+a,X) = H{b,l)(a,X) is a group
in End(V[W]). □

Now we prove that the orbits all have the same size. Before we do this,
however, we need to make another definition. For each (0, Q) G N define

^(o.Q) = {A G Mat(n_m)xm(F) : (A, X) G -R(0,<9) for some X G GLS(n - m, F)}

If (A, X), (B, Y) G R(o,q) then by Lemma 5.1 there exist Z\, Z2 G Mat(n_m)xm(F)
such that QZ\ = A and QZ2 = B so that Q{Z\ + Zf) = A + B which, along with
the fact that X1ZQ in End(17), gives (A + B,X) G R(o,q)- bi a similar way one
can prove that (A + B,Y) G R(o,q)- It follows from this that Q(o,Q) is a subgroup
of the group H of all (n — m) x m matrices over F under addition. The next
lemma justifies the definition of the group G(o,X)-

Lemma 5.5. Let X G GLS(n — m,F). Then the number of IZ-classes in C(o,x)
is equal to the index of G(o,X) in R-

Proof. For each 7?.-class R in C>(o,x) let

L(R) = {A G Mat(n_m)xm(E) : {A,X) G R for some X G GLS(n — m, F)}.

Since (A,I)(0,X) — {A,X) it follows that (JRe0 L(R) = H. From this,
and from the definition of the action, it follows that {L(R) : R G C(o,x)} is
precisely the set of all cosets of the subgroup G(o,x) °f the additive group H.
Moreover, it follows from the definition of the action that if R\, R2 G C(o,x) anb
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L{R\) = L(R2) then R\ = R2. Thus, there is a one-one correspondence between
7£-classes in O(o,x) and cosets of G(o,x) in H. □

Therefore, proving |0(o,x)l = |C(o,K)l is equivalent to proving that \G(o,x)\ =

|£(0,Y)l-
Lemma 5.6. Let (0, X) and (0,y) be in Dr. Then G(o,x) and @(0,Y) are isomor¬
phic groups.

Proof. We can suppose without loss of generality that X, Y are C-related in
End(f/). This is because X and Y are D-related in End(t/) and so there is an
X' such that XIZX'CY satisfying G(o,X) = G(o,X')- Let U\,U2 € End(V) so that

UxX = V, U2Y = X.

By Lemma 5.1

G(o,X) = Me Mat(n_m)xm(F) : (A, K) G R(o,x) for some K e GLS(n -m,F)}
= {d€ Mat(n_m)xm(F) : (A, K)TZ(0, X) for some K G GLS(n — m,F)}
= {4 G Mat(n_m)xrn(F) : K1ZX in End(f7) and

there exists Z G Mat(n_m)xm(F) : XZ = A
for some K G GLS(n — m, F)}

= {A G Mat(n_m)xm(F) : A = XZ for some Z G Mat(n_m)xm}

and similarly

G(o,y) {-^ ^ Mat(n_m)xm(T") . A YZ for some Z G Mat^n_m^xm}.

Define cj> : G(o,X) G(o,Y) by Af) = B where A = XZ and B — YZ. This map
is well defined since if A = XZ\ — XZ2 then YZ\ = U\XZ\ = U\XZ2 = YZ2.
Now define <f>' : G(o,Y) —¥ £(0,X) by B(j>' = A where B = YZ and A = XZ. This
map is well defined by the same argument as above. Now we have

XZW = YZ</>' = XZ

and it follows that (f> is a bijection. Also, 0 is a homomorphism since:

(.XZx+XZ2)<f = (X(Zx + Z2))<t) = Y(Zx + Z2) = YZx+YZ2 = {XZ^cf+iXZ^cf).

□
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Now we compute the size of the group G(o,Q)- We will then use this number
to find the number of 7£-classes in Dr. The field F is a vector space over P =

{1,1 + 1,... , 1 + ... + 1}, and P = Zp. The additive abelian group of the field FS
V y
V

is isomorphic to Zp and so H = Zp"^n m\ the direct power of m(n — m) copies
of Z*.

Lemma 5.7. If (A,X) G Dr then \0{A)X) \ =

Proof. From the proof of Lemma 5.6 it follows that

G(o,Q) = {-4 e Mat(n_m)xm(F) : A = QZ for some Z G Mat(n_m)xm(F)}.

Let Q be the (n — m) x (n — m) matrix

Q =
ir o

.0 0,

which has an r x r identity matrix in the top left corner and zeros everywhere
else. Then

G(o,q) = ^ (0) ■ ^4 €E Matrxm(F)| C Mat(n_Tri)XTn(.F').
This group is isomorphic to T^fm. It follows that:

\H\ vkm{n-m)
10(0,0,1 = [H : = P-w^- =

Since, by Lemma 5.6, all the groups G(otx) are isomorphic it follows that for every
matrix P G GLS(n — m,F) we have |C(o,p)| = qm(n-m-r). n

Combining these lemmas together gives the following result.

Proposition 5.8. Let V be a vector space with dimension n over the finite field
F, with |F| = q, let W be an m-dimensional subspace of V, and let U = Fn~m.
Let

I(n,q,r) = {(A,X) G End(P[IT]) : dim(imX) < r}

and

I'(n,q,r) = {X G End(I7) : dim(imX) < r}

for 0 < r < n — m. Also, let Vn^r = I(n,q,r)/I(n,q,r — 1), Qn,r —
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I'(n,q,r)/I'(n,q,r — 1) and

Dr = {(A, X) e End(V[W]) : dim(imV) = r}.

Then we have:

(i) The number of C-classes in Dr is

(ii) The number of TZ-classes in Dr is qm(n-rn~r)

(Hi) Let T\ and T2 be the 0-rectangular band homomorphic images of Vn^r and
Qn r respectively. Then T\ = L° m(„_m-r) Xo T2 where Ldenotes the It-
element left zero semigroup with a zero adjoined.

Proof, (i) By Lemma 5.1 the ^-classes are in one-one correspondence with the r-

dimensional subspaces of the vector space U. Since dim(V) = n — vn this number
is given by the expression in the proposition.

ii) Since N is isomorphic to U, the number of 7£-classes in Dr fl N is equal to
n_m

. The result now follows from Lemma 5.3 and Lemma 5.7.
J q

(iii) Follows from Lemmas 5.3, 5.4 and 5.7. □

Example 5.9. Let V = Z2 © Z2 © Z2 © Z2, a 4-dimensional vector space over

the field with 2 elements, and let W = Z2 © Z2 © {0} © {0}, a 2-dimensional
subspace of V. In this example U = Z2 © Z2. The independence algebra V[W]
has dimension dim(V) — dim(VF) = 2. The endomorphism monoid of the algebra
is isomorphic to

End(V[IF]) = I rj : A,B e GLS(2,Z2)j> < GLS(4,Z2).
The semigroup End(V[IF]) has 28 elements, it has 3 P-classes corresponding to
maps with image dimension 2,1 and 0. Figure 5.1 shows how the structure of
End(V[IF]) and of End(17) are related to one another. The middle 77-class of
End(V[W]) is built from 4 copies of the middle D-class of End(V), stacked on

top of one another. The bottom D-class of End(V[W]) is built from 16 copies of
the bottom T>-class of End(I7), stacked on top of one another. In the language of
Section 3.2, the rectangular 0-band homomorphic images of the principal factors
of End(V[IF]) are isomorphic to direct products, with amalgamated zero, of
certain left zero semigroups and the rectangular 0-band homomorphic images of
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Figure 5.1: Comparing the egg-box pictures of the semigroup End(U) where U =

7Li © 2^2, on the left, and the semigroup End(1F[lF']) where V = Z2 0^20^20^2
and W = Z2 0 Z2 © {0} 0 {0}, on the right.

the principal factors of End(17). Notice how similar this figure is to Figure 4.1
which showed the relationship between the structure of Tn and that of End(G?Tn).

In the next example we compute all the elements of a particular D-class and
then describe the orbits of the 7?.-classes under the action of the group H.

Example 5.10. Let V = Z2©Z2©Z2 and W = Z20{O}0{O}. The independence
algebra V[W] has dimension 2 and the endomorphism monoid End(V[W]) has
three H-classes. The middle H-class is illustrated in Figure 5.2 with the elements
arranged into TZ-, C- and Ff-classes. Here n = 3, m — 1 and the group H is the
additive group of 2 x 1 matrices over Z2. This group is isomorphic to Z2 © Z2.
The orbits of the set {i?i,..., Re} of 7£-classes under the action of the group H
are given by:

o
[

o

.0 - 0

= o

0"
0>" '©-a

: : ;

{Ri,Re},

{i?2, R4},

{i?3, R$}.
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Figure 5.2: The elements of the middle P-class of the monoid End(V[VF]) where
V = Z2 © Z2 © Z2 and W = Z2 0 {0} © {0}.
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The set N D J — {Ri, R2, R3} is indeed a transversal of the orbits above, as
Lemma 5.3 says it must be. Using this example we can work through the steps
of the proof of Lemma 5.6. Let

(Q,X) =
0 0 cr

.0 u
(0 ,Y) =

01

0.

0 1

.0 0,

noting that XCY in End(Z2 © Z2) since with

Ui =
1 1

1 0,
u2 =

we have

and

Now

U,X =

U2X =

fl 1\ (0 (L{1 o){o 1,

:) (::) '.1

= Y

= X.

and

G(o,X) — Q

&(o,Y) = Q

CM::

(YoNi (° A"
.W

Oh

The map 4> '■ G(o,X) Q(o,Y) is defined by A(fr = D where A — XZ and D = YZ
for some Z G Mat2xi(^2). Therefore

'(T

.0,

0

.0,

0

,1.

The map is an isomorphism from the additive group of matrices G(o,X) to the
additive group of matrices G(o,y)- h°r every X G GLS(2,Z2) the group G(o,X) has
index 2 in H which, as Lemma 5.5 says it must do, equals the size of each of the
orbits of the 7£-classes.

We now determine the idempotent rank of the ideals of End(V[TU]).

Theorem 5.11. Let V be a vector space with dimension n over the finite field
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F, with |F| = q and let W be an m-dimensional subspace of V. Let

I(n,q,r) = {(A,X) € End(V[W]) : dim(imX) < r}

for 0 < r < n — m. Then we have

idrank(/(n, g, r)) = rank(I(n,q,r)) = gm(n_7n_r)

Proof. By Lemma 4.16 we know that the rank and idempotent rank of I(n,q,r)
equal the rank and idempotent rank of Vn^r. Now the result follows from the fact
that Qn,r is square, Lemma 3.6, Proposition 5.8(iii) and Theorem 3.39. □

5.3 Non-trivial independence algebras without con¬

stants

Affine independence algebras

We begin with a brief discussion of affine groups and semigroups (see [7] for more

details). The n-dimensional affine group over the field F is

Affn(F) = | ^ ^ : A € GL(n, F), v G Fn j < GL(n + 1, F).
Actually, the affine group is often given as the set of transposes of the above
matrices, but these two groups are isomorphic (under f defined by A >—> (AT)-1).
We use the matrices above because we are viewing our matrices as acting on the
vector space V on the right. Identify x G Fn with the vector (rc, 1) 6 Fn+l so

that

0M) ^ = (xA + v, 1)
which gives an action of Affn(F) on Fn. Transformations of Fn with the form
x i—► xA + v are called affine transformations. The vector space Fn can be viewed
as the translational subgroup of Affn(F)

Trans„(F) = / K A : u G Fn| < Affn(F)
since

(' °) ('= f 7 °)\v 1 \w 1 I \v + w 1/
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the group Transn(F) is isomorphic to the additive group of the vector space FT
Another important subgroup is

A (T

0 1,
: A e gl(n,F) > < affn(F)

which may be identified with the group GL(n,F). It is now straightforward to
verify that Transn(F) is a normal subgroup of Affn(F), that

Affn(F) = GL(n, F)Transn(F) = {gt : g 6 GL(n, F), t 6 Transn(F)}

and finally that GL(n, F) D Transn(F) = {0} (this is because the every linear
transformation fixes the zero vector while the only translation that does so is
translation by the zero vector itself). These three conditions holding imply that
Affn(F) is a semidirect product of Transn(F) by GL(n,F) where the action of
GL(n,F) on Transn(F) is given by

cnoco-
Related to the group Affn(F) is the n-dimensional affine semigroup

AffSg;n(F) = | : A e GLS(n,F),v e Fnj <GLS(n + l,F).
In a similar way, this semigroup may be viewed as a semidirect product. Indeed,
since

(a o\ (b o\
_ ( ab o\

ya 1/ \/3 1j \ab + (3 1j
it follows that the semigroup AffSgn(F) has a description as the semigroup of
pairs V x End(R) with multiplication:

(a,a)((3,b) = (ab + (3,ab).

We will use End(Aff(R)) to denote this semigroup of pairs.
The connection between affine semigroups and non-trivial independence al¬

gebras without constants is given by [14, Example 3.2]. Let V be a vector space
over a finite field F where |F| > 3. For each c G F with c^0,l, define a binary
operator gc on V by gc(x, y) = x + c(y — x). The set V, with operations yuc, is an

independence algebra whose subalgebras are the affine subspaces of V (i.e. cosets
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2

1

0

0 1 2

Figure 5.3: The affine subspaces of V = Z3 © Z3.

of subspaces). If |.F| = 2 then the construction must be adapted by adding the
ternary operator a(x, y,z) =■ x + y + z. In either case the algebra is written as

Aff(V).
The algebra Aff (V) has dimension n + 1 (not n) and as a result has exactly

this many D-classes. The endomorphism monoid of Aff(V) is isomorphic to the
n-dimensional affine semigroup described above.

Example 5.12. Let V = Z3QZ3, where Z3 = {0,1, 2}, and consider the algebra
Aff(V). It has a single binary operation defined by:

y) = x + 2(y - x) = 2y - x.

The independence algebra Aff(V) has dimension 3. The 1-dimensional sub-
algebras are the singletons (which are cosets of the trivial subspace of V).
The one dimensional subspaces of the vector space V are {(0, 0), (1,0), (2, 0)},
{(0, 0), (0,1), (0, 2)}, {(0, 0), (1,1), (2, 2)} and {(0, 0), (1, 2), (2,1)}. Taking all
translates (cosets) of these subspaces gives all the 2-dimensional subalgebras of
Aff(V). These affine subspaces correspond to horizontal, vertical and diagonal
straight lines in Z3 © Z3. Any two distinct points in Z3 © Z3 extend uniquely to
one of these lines and this is the affine subspace generated by these two points (see
Figure 5.3). For example {(2,0), (0,2)} extends to the line {(1,1), (2, 0), (0, 2)}.
Any three non-collinear points generate the whole algebra Aff(V) and these 3-sets
are the bases of the algebra.

As in the previous sections, our first step is to determine Green's relations in
the semigroup End(Aff(V)).

Lemma 5.13. Let (a, A), (/?, B) e End(Aff(V)). Then

(i) (a, A)C{f3, B) in End(Aff(V)) if and only if ALB in End(V) and a — (3 &
im A = im B.
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(ii) (a, A)R((3, D) in End(Aff(V)) if and only if ARB in End(V).

(Hi) (a, A)V((3, B) in End(Aff(V)) if and only «/dim(imA) = dim(im5).

Proof, (i) The elements (a, A) and ((3,B) are ^-related in End(Aff(V)) if and
only if there exist (7, C) and (S,D) in End(F[VF]) such that

(nA + a, CA) = (7, C)(a, A) = (/?, B)

and

(SB + /?, DB) = (8, D)(/3, B) = (a, A).

This is equivalent to saying that A and B are >C-related in End(V), 7A = (3 — a

and SB = a — (5. Since imi = iml? is closed under addition it follows that
a — P £ irn A = irni? if and only if (3 — a E im A = irni?. We conclude that the
last of these conditions is redundant and we can exclude it.

(ii) The elements (a, A) and ((3,B) are 7£-related in End(Aff(V)) if and only if
there exist (7, C) and (S,D) in End(V[W]) such that

(aC + 7, AC) = (a, A)(<y, C) = (/3, B)

and

(j3D + 6,DB) = (/3,B)(5,D) = {a,A).

This is equivalent to saying that A and B are 7?.-related in End(V), 7 = /? — aC
and S = a — (3D. We can just define 7 and 5 to equal these vectors.

(iii) Follows from Proposition 4.15. □

As already mentioned, the algebra Aff(V) has dimension n + 1 and so the V-
classes are given by:

Dr = {(a, A) e End(Aff(V)) : dim(im A) = r}

for 0 < r < n. The 7?.-classes are in one-one correspondence with the Al-classes of
End(V). Note that one big difference between the P-classes of these monoids and
those of previous sections is that here the number of £-classes in Dr is greater
than the number of 7\l-classes, while in the previous sections it was the other way

around (consider Figures 4.1 and 5.1 for example).
Now we determine where the idempotents are by identifying the group 71-

classes.
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Lemma 5.14. The TL-class H^aA) in End(Aff(V)) is a group if and only if Ha
is a group in End(V).

Proof. The 7d-class H^aA) is a group if and only if (a, A) is 7-f-related to (a, A)2
in End(Aff(V)). This is, by Lemma 5.13, equivalent to saying that A is hi related
to A2 in End(V) and aA = (aA + a) — a E im A. The first condition is equivalent
to saying that Ha is a group in End(V) and the second is always true. □

Let N = {(0,A) € End(Aff(V)) : A E End(V)} where 0 denotes the zero

vector. Observe that N is a subsemigroup of End(Aff(V)) and is isomorphic to
End(V). In the same way that Tn dictated the structure of G I Tn, and End(f/)
related to that of End(V[W]), the subsemigroup N will determine the structure
of End(Aff(V)).

It follows from Lemma 5.13 that the £-classes of Dr are in one-one correspon¬

dence with the cosets of the subspaces of V of dimension r. The vector space V
acts on the £-classes of End(Aff(V)) in the following way. Let L be an £-class
of End(Aff(V)) in Dr and let v E V. Then define

L ■ v = L(v, I) = {(w, A){v, I) : (w, A) E L}

where I is the identity matrix. Since (w, B)(v, I) = (w + v,B) the set L ■ v

is indeed an £-class in Dr. We will show that the £-classes in N D Dr form a

transversal of the orbits of the £-classes, that each of the orbits has the same

size, and that all the £-classes in a given orbit look the same, in terms of the
position of idempotents (i.e. that the map / : L —> L ■ v defined by x > x(v, /)
sends group H-classes to group 7d-classes).

Lemma 5.15. The C-classes in N D Dr form a transversal of the orbits of the
C-classes of Dr.

Proof. Let (a, A) E Dr. Then (a, A) ■ (—a) = (0, A) E N which means that every
orbit contains at least one 7?.-class of n Dr.

Suppose that L(o,n) and £(o,B) belong to the same orbit. Then we have

L(o,A) = L(O,B) ■ v =

We conclude that (0, A)C(v,B) which means, by Lemma 5.13, that ALB in
End(V) and, as a consequence of Lemma 5.13 and of the fact that 0 G imd, it
follows that L(o,a) = L(o,B) • Q
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Lemma 5.16. Let (v, A), (w, I) G Dr. Then H(Via) is a group It-class if and
only if H(v>a)(w,I) is a 9rouP TL-class.

Proof. By Lemma 5.14, the 7d-class H(v<a) is a group if and only if H(vA)(w,I) =

H(v+w,A) is a group. □
Lemma 5.17. If (a, A) G Dr then |C(aj^)| = qn~T.

Proof. From Lemma 5.13 it follows that {a, A) and (P,B) are ^-related if and
only if imA = im B and a and f3 belong to the same coset of iin A in V. Also,
for any orbit O and any v G V there exists some element in O with the form

L(v,A)- This is because, by Lemma 5.15, every orbit contains some £-class of the
form L(o,b) and (0,B)(v,I) = {v,B) which implies that L^b) G O. From this
we conclude that each orbit has size

n

.71—r[V : im A] = = — =q1 J | im A\ qr H
□

Tying together the lemmas above we obtain:

Proposition 5.18. Let V be a finite vector space of dimension n over the finite
field F, with |F| = q. Let

I(n,q,r) = {(u, A) G End(Aff(P)) : dim(iinA) < r}

and

I'(n,q,r) = {A G End(F) : dim(imA) < r}.

Also let Vn^r = I(n,q,r)/I(n,q,r - 1), Qn>r = I'(n,q,r)/I'(n,q,r - 1) and

Dr — {(u, A) G End(Aff(F)) : dim(imA) = r}

for 0 < r < n. Then we have the following.

(i) The number of C-classes in Dr is qn~r

(ii) The number of 1Z-classes in Dr is

(Hi) Let T\ and T2 be the 0-rectangular band homomorphic images of Vn^r and
Qn^r respectively. Then T\ == R°qn-r X0T2 where R°k denotes the k-element
right zero semigroup with a zero adjoined.
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Figure 5.4: Egg-box picture of End(AfF(V)) where V = Z2 © Z2. Here n = 2,
q = 2 and when r = 1 we have gn_r = 2 and the middle H-class is constructed
from 2 copies of the middle P-class of the semigroup End(V) sitting side-by-side.

Proof, (i) Since N is isomorphic to End(V) it follows that the number of £-classes
in iV fl Dr is equal to the number of r-dimensional subspaces of V which is given
by " . Now the result follows from Lemmas 5.15 and 5.17.

LrJ<7

(ii) It follows from Lemma 5.13 that the 77-classes are in one-one correspon¬
dence with the (n — r)-dimensional subspaces of V. This number is given by the
expression in the proposition.

(iii) This follows from Lemmas 5.14, 5.15 and 5.17. □

Example 5.19. Let V = Z2 © Z2. Then the semigroup End(Aff(V)) has 3
H-classes, the middle D-class is a horizontal tiling of two copies of the middle
P-class of End(V) and the bottom 2?-class is a horizontal tiling of 4 copies of the
bottom D-class of End(V) (see Figure 5.4).

We now calculate the idempotent rank of the ideals of the semigroups
End(Aff(V)).

Theorem 5.20. Let S = End(Aff(V)) with V a vector space of dimension n

over the finite field F and with |F| = q. Let

I(n,q,r) — {(A, A) € End(Aff(V)) : dim(imA) < r}.

Then we have

idrank(/(n, q, r)) = rank(I(n,q,r)) = qn~
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Proof. By Lemma 4.16 the rank and idempotent rank of I(n,q,r) equals the
rank and idempotent rank of Vn^r. Now the result follows from Lemma 3.6,

We saw in Section 5.1 that given a vector space V, and a subspace W of V,
we can construct the independence algebra V[W], The endomorphism monoid
of this algebra has a structure that is strongly related to that of End(Z7). In
a similar way, given a subspace W of V we may construct a new non-trivial
independence algebra, without constants, by combining Aff(V) and W. We do
not want the new algebra to have any constants, however, so introducing new

miliary operations will not work. Start with Aff(V) and then adjoin a collection
of unary operators tw for w G W where

This new algebra is defined in [14, Example 3.2] where it is denoted by
Aff(V)[+W], The algebra Aff(V)[+W] is an independence algebra with dimen¬
sion n — m + 1. Its non-empty subalgebras are the affine subspaces of V that
contain some coset of IT as a subset.

Example 5.21. Recall the example AfF(V) where V = Z3 © Z3. Let W =

{(0, 0), (1, 0), (2, 0)}, a 1-dimensional subspace of the vector space V. Then
Aff(E[+W]) is a 2 dimensional independence algebra. The new unary operations
are t(o,o)i ri,o) and r(2,0)i and its 1-dimensional subalgebras are the horizontal
lines {(0,0), (1,0), (2,0)}, {(0,1), (1,1), (2,1)} and {(0,2), (1, 2), (2, 2)}.

The endomorphism monoid of Aff(E)[+W] is a submonoid of End(Aff(E))
and consists of all the endomorphisms that preserve the new unary operations
(tw)w€w■ In other words (a, A) 6 End(Aff (V)[+W]) if and only if for all w e W:

Proposition 5.18 (Part (iii)) and Theorem 3.39. □

The semigroup Aff(V)[+LE]

xtw — x + w.

(Tw(x))(a,A) rw(x(a,A))
rw(xA + a)
xA + a + w

xA + w + a

w.

(x + w)(a,A)
[x + w)A + a

xA + wA + a

O- wA

It follows that

End(Aff(T)[+IT]) = {(y,A) € End(Aff(T)) :wA = w, we W}.
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Using the representation of elements from End(V[W]) given in Section 5.2 we

can identify the elements of End(V[+W]) with the set of pairs:

{(a, (A, A)) : a G Fn, A G Mat(n_m)xrn(F), V G GLS(n - m, F)}

with multiplication

(a, (A, X))(P, (B,Y)) = (a(B, Y) + p, (A, X)(B, Y)).

As in Section 5.2, let U denote the vector space Fn~m. Using identical arguments
as in the previous section one may prove:

Lemma 5.22. Let (a, (A, X)), (/3, (B,Y)) G End(Aff(V[+VU])). Then

(i) (a,(A,X))£(j3,(B,Y)) in End(Aff(V[+IV])) if and only ifXCY inEnd(U)
and a — ft G im (A, X) = im (B, Y).

(ii) (a,(A,X))K(p,(B,Y)) mEnd(Aff(V[+W])) if and only ifXFY mEnd(U)
and there exists Z G Mat(n_m)xm(.F) such that YZ = A — B.

(Hi) (a, A)T>(/3, B) in End(Aff(V[+W])) if and only i/dim(im X) = dim(imV).
□

It follows that the semigroup End(V[+W]) has n — m + 1 P-classes given by

Dr = {(a, (A,X)) : dini(imX) = r}

for 0 < r < n — m. Identifying the group 7-f-classes we have:

Lemma 5.23. The H-class H^a^x)) i-n End(Aff(U[+IU])) is a group if and
only if H^A x) is a group in End(U[W]) which is true if and only if Hx is a
group in End(U). □

Define

N - {(0, (A, A)) : (A, A) G End(V[W])} < End(Aff(U[+IU]))

which is isomorphic to End(U[IU]) and dictates the distribution of idempotents
in Dr in the same way as End(V) did for Aff(V) in Lemma 5.15. In the same

way as for Aff(V) the vector space V acts on the £-classes of the semigroup
End(AfF(V(+W))) partitioning them into orbits with

L ■ v = L(v, (0, /)) = {(u;, (A, X))(v, (0, /)) : (w, (A, A)) G L}.
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Using identical arguments to the proofs of Lemmas 5.15 and 5.16 we have the
following two results.

Lemma 5.24. The C-classes in N n Dr form a transversal of the orbits of the
C-classes of Dr. □

Lemma 5.25. Let (a, (A, X)), (/?, (0,/)) G Dr. Then H^a^x)) *s a group TL-
class if and only if H(a,(A,X))(p,(0,I)) ^s a grouP Li-class. □

Computing the size of the orbits gives

Lemma 5.26. If(a,(A,X)) G Dr in End(Aff(V[+W])) then \0(aA) \ = qn-™~r.

Proof. From Lemma 5.22 it follows that (a, (A, X)) and (/?, (B, E)) are E-related
if XCY in End(t/) and a and (3 belong to the same coset of im(A, X) in the
vector space V. Since dim(imX) = r it follows that dim(im {A, X)) = m + r and

n

n—m—r[V : im (A, X)] = — = q1 v ' n | irn (A, X)| qm+r

□

It follows that Dr has q' ^-classes. Moreover, by Proposition 5.8 it
q

follows that Dr has qm(n-m-r) n ~ m X-classes. Summarising these results we
L r J q

have the following.

Proposition 5.27. Let S = End(Aff(U[+VF])) where V is a finite vector space

of dimension n over the finite field F, with |F| = q, and W is an m-dimensional
subspace ofV. Let

I(n, q, r) = {(u, (A, X)) G End(Aff(V[+W])) : dim(imX) < r}

and

I'(n,q,r) = {A G End(C7) : dim(imA) < r}.

Also let Vn r = I(n, q, r)/I(n, q,r — 1), Qn,r = I'(n, Q,r)/1'(n, Q,r ~ 1) and

Dr = {(u,(A,X)) G End(AfF(V[+W])) : dim(imX) = r}

for 0 < r < n — m. Then we have the following.

(i) The number of C-classes in Dr is qn-m~

(ii) The number of IZ-classes in Dr is qm(n-m~r)
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Figure 5.5: Egg-box picture of End(Aff(V[+W])) where V = Z2 © Z2 © Z2 and
W = 7L<i © {0} © {0}. In this example n = 3, m = 1 and q = 2 so when r = 1 we
have qn-m-r = qm{n-m-r) _ 2. This relates to the fact that the middle D-class
in the above diagram is a 2 x 2 tiling of the middle D-class of End(Z2 © Z2).

(Hi) Let T\ and T% be the 0-rectangular band homomorphic images of Vn<r and
Qn,r respectively. Then Tx = RB°n_m_r^ grn(n_m_r) x0 T2 where RB°a b de¬
notes the a x b rectangular band with a zero adjoined. □

Example 5.28. Let V = Z2 © Z2 © Z2 and W = Z2 © {0} © {0}. Then

End(Aff(V[+IF])) = <

(1 0 0 0 ^
a b c 0

d e f
: a, b, c,d,e, f € F, a G F3

0

\ a 1

The algebra Aff(V[+VF]) has dimension 3 and has 3 T>-classes. Its egg-box dia¬
gram is illustrated in Figure 5.5.

The question of idempotent rank may now be answered for the ideals of the
semigroup End(Aff(V[+IV])).

Theorem 5.29. Let S = End(Aff(V[+kF])) where V is a finite vector space

of dimension n over the finite field F, with |F| = q, and W an m-dimensional
subspace of V. Let

I(n,q,r) = {(u, (A, X)) e End(Aff(V[+VF])) : dim(imX) < r}
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for 0 < r < n — m. Then we have

idrank(/(ra, q, r)) = rank(/(n, q, r)) =

if m A 0

if m = 0.
V L J q

Proof. It follows from Proposition 5.27(iii) and Theorem 3.6 that Vn^r has an
extremal idempotent generating set. The result then follows from Lemma 4.16.

Note that when m = 0 we have End(Aff(V)) = End(Aff(E[+IT])) and the
above result agrees with Theorem 5.20.

Affine nearfield algebras

The last remaining examples of non-trivial independence algebras are the so called
affine nearfield algebras (see [14, Example 3.3]). They are constructed in the
following way. Let G be a sharply 2-transitive permutation group on a set X.
Here 2-transitive means that for any two pairs (x,y), (z,t) £ X x X there is at
least one g G G such that g • (x,y) = (g • x,g ■ y) = (z,t). Sharply 2-transitive
means that there is precisely one g in G that sends (x, y) to (z, t). Let {Oi : i € 1}
be the orbits of G on ordered triples of distinct elements of X. Define binary
operations for each i G / by

The set X along with these binary operations is a 2-dimensional independence
algebra whose proper endomorphisms are the constant maps. This means that the
only proper ideal is a right zero semigroup and hence has an extremal idempotent
generating set.

Proof of Theorem 4.24

Let A be a finite independence algebra and let End(A) be the endomorphism
monoid of A. By Cameron and Szabo's classification of finite independence al¬
gebras the monoid End(A) must be isomorphic to one of the examples given
in either this, or the previous, chapter. Therefore combining the results of this
section with Proposition 4.25 and Theorems 4.34, 4.44, 5.11, and 5.20 this
completes the proof of Theorem 4.24.

□

Hi(x, x) = x, m(x, y) = z, if (x, y, z) e O*.
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5.4 Proving the result directly from the definition

Before moving on it will be worth our while stopping to reflect on the method
of proof employed in order to prove Theorem 4.24. Cameron and Szabo's classi¬
fication is a highly non-trivial result. In particular, it relies on the classification
of finite simple groups. It is not very satisfactory that Theorem 4.24 is proven

for all independence algebras basically by checking all of them one at a time.
This approach goes against the original philosophy for considering independence
algebras. The "nice" thing about independence algebras is the common frame¬
work that they provide, allowing results for the general linear semigroup and the
full transformation semigroup to be unified with single proofs. What we have
resorted to here is, in some sense, exactly the opposite. We began by proving the
result for Tn and End(V) and then built the proof for End(A) using these two
results, together with the classification.

What problems does one come across when trying to prove Theorem 4.24
directly from the definition of independence algebra? In light of the results of
Chapter 3 is would seem reasonable to try and prove that every principal factor
of End(A) has a subsquare that is connected and has a uniform distribution of
idempotents with respect to some perfect matching. It may be seen that this is
indeed the case by glancing through the structural results of the previous two

chapters. One problem in proving such a result directly from the definition is
that sometimes the number of 7?.-classes dominates the number of £-classes in

Dr, and other times it is the other way around. As a result it is unclear whether
pinning down a subsquare involves finding an injection from the set of subspaces
of dimension r into the set of kernels with weight r, or vice versa. An alternative
approach to proving the result may be to prove the result by induction on the
dimension of the algebra. This is, for example, how Fountain and Lewin proved
that the ideals of End(A) are idempotent generated.

Open Problem 7. Prove Theorem 4.24 directly from the definition of indepen¬
dence algebra (i.e. without using the classification of Cameron and Szabo).
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6.1 Introduction

It is well known, by Cayley's theorem, that every finite semigroup S may be
embedded in a finite full transformation semigroup Tn. An obvious question to
ask is what is the smallest n such that S can be embedded in Tn? In other words,
determine

p(S) = min{n € N : S Tn}.

The corresponding problem for groups of finding minimal faithful permutation
representations has been well studied (see [63] and [47] for example). Related to
the problem of finding p(S) is the question of finding maximal order subsemi¬
groups of Tn. Let C be a class of finite semigroups and let S G C. If

v(n) = max{|Tj : T G C, T > Tn}

and if v(m) < |Sj < v{m + 1) then p{S) > m. Of course, in general this lower
bound will not be attained.

The question of finding maximal, with respect to inclusion, subsemigroups
has been extensively studied. Liebeck, Praeger and Saxl considered maximal
subgroups of An and Sn in [70], Yang considered the maximal subsemigroups of
various transformation semigroups in [99], [98] and [100], The results of Yang are,
in some sense, special cases of a general description of maximal subsemigroups
of finite semigroups given by Graham, Graham and Rhodes in [40], In [69] Levi
and Wood describe a class of maximal subsemigroups of the infinite Baer-Levi
semigroup BL(p, q) and conjecture that every maximal subsemigroup of BL{p, q)
is one of that type. In [78] Reilly describes a large class of maximal inverse
subsemigroups of Tx (where X is infinite).

In terms of determining the maximal order of subsemigroups of Sn and Tn,
less is known. Of course we need only look amongst the maximal subsemigroups
in order to find those with maximal order, but there still might be many of these
to consider. In [13] Burns and Goldsmith determined the maximal orders of the
abelian subgroups of the symmetric group Sn. Also, in [100] Yang gives formulae
for the cardinalities of the maximal subsemigroups of the semigroup of all singular
transformations Singn.

The class of completely simple semigroups will be considered in this chapter.
We will determine the maximal order completely simple subsemigroups in each V-
class of Tn. In particular when r > 3 we show that the maximal order completely
simple subsemigroups in Dr are all left groups (direct products of a left zero

semigroups with groups). The case when r = 2 is dealt with separately.
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The structural information of Proposition 2.14 will be used throughout. Given
a subset X of Tn we use Kers S and Ims X to denote the set of all kernels and all

images, respectively, of elements of X. In other words

KersX = {kero : a G X}, ImsX = {ima : a G X}.

It follows from Proposition 2.14 that a subsemigroup S of Tn in Dr is completely
simple if and only if every image in Ims S is a transversal of every kernel in Kers S.
Given a G Tn we call | ima| the rank of the transformation a.

We will also need the following well known inequality. Given a set of real
numbers {aq,... ,am} the arithmetic mean of this set of numbers is (ai + ... +
dm)/m and the geometric mean is given by (a\a2 ■ ■. arn)l/m. These two quantities
are related by the following inequality:

(<" + '" + °m> > (a,a2 ... am)V™.
m

This is known as the arithmetic-geometric means inequality.
In §6.2 we consider the largest order of left and right zero subsemigroups of

Tn. Completely simple semigroups are the subject of §6.3 and it is in this section
that the main results of the chapter are presented. Later in §6.3 a full description
of all largest order completely simple subsemigroups of Tn is given.

6.2 Left and right zero semigroups

Before we consider the question of the largest order completely simple subsemi¬
group in Tn we first consider the related problem of finding the largest order left
and right zero subsemigroups of Tn.

We start by describing the largest left and right zero semigroups in the V-
class Dr. Then to find the largest overall just involves maximizing this number
with r in the range 1 < r < n.

Proposition 6.1. Let U be a subsemigroup of Tn where every a G U satisfies
| im a\ = r.

(i) If U is a left zero semigroup then \U\ < rn~r.

(ii) If U is a right zero semigroup then \U\ < \n/r~\t[n/r\7 where n = t
mod r.

Moreover, there exist left and right zero semigroups that attain these bounds.
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Proof, (i) Let A C Xn with |X| = r. We will count the number of idempotents
in Dr with image X. These are precisely the elements

E = {e £ Tn : ie = i for i £ A}.

It is clear that \E\ = rn~r since we may map each i £ Xn \ A anywhere in A.

(ii) It suffices to find the largest set of idempotents with a given kernel of weight
r. The difference with the previous case is that, in general, different choices of
kernel will give rise to right zero semigroups with different sizes. Our task is to
chose a kernel that corresponds to a right zero semigroup of largest possible size.

K K = U.e, Ki is a kernel of weight r (i.e. |/| = r) then the total number
of idempotents with kernel K is equal to riie/ \Ki\ (i.e. the number of distinct
transversals of the kernel classes (Jie/ ^)- ^ follows that we must determine the
number

M(n, r) = max{ai ... ar : n = ai + ... + ar}

over all possible partitions of n into r numbers a\,...,ar.

Claim. M(n,r) = \n/r]t[n/r\r~t where n = t mod r.

Proof. If r divides n then from the arithmetic-geometric means inequality

(aid2 ... ar)l/r < (ai + ... + ar)/r = n/r

which implies that M(n, r) < (n/r)r. Also, M(n,r) > (n/r)r just by setting
ai =a2 = ... = ar = n/r.

Now suppose that r does not divide n. Write n — ar + t where 0 < t < r.

(>) We have \n/r\ = a and \n/r] = a + 1. Now let a\ = ... = at = [n/r] and
at+1 — ... = ar — [n/rj so that:

a\ + ... + ar = t\n/r \ + (r — t) [n/rj = t(a + 1) + (r — t)a — ar + t = n

and

ai... ar = \n/r]t[n/r\r~t
as required.

(<) Let bi,..., br £ N such that b\ + ... + br = n and b\ ... br = M(n, r). Since r

does not divide n it follows that r / 1. If b\ > [n/r] then there is some bi < [n/rj
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with i ^ 1 since otherwise for all bi with i ^ 1 we would have bi > [n/rj > [n/r].
Then this would imply:

n = b\ + ... + br > [n/r] + (r — l)([n/r]) = (a + l)r

which is a contradiction.

Without loss of generality suppose that 62 < [n/rj. It follows that

b\ > [n/r] > [n/rj > 62

implying that b\ > 62 + 2 and so

(61 — 1)(62 + 1) = b\b2 — 62 + 61 — 1 > 6162 — 62 + (^2 + 2) — 1 = &i&2 + 1 > &i&2-

Then we have

(pi - l)(p2 + 1)63 ... br > b\... br = M(n, r)

which is a contradiction. If 61 < [n/rj then we obtain a contradiction using a
dual argument. We conclude that bi € {|_n/rj, [n/r]} for all i.

Now the result follows from the fact that n may be written in a unique way

as a sum, with r terms, of numbers from the set {Ln/rJ, [n/r]}. □

The result now follows from the claim above.

□

Using the proposition above we may determine the largest left and right zero

semigroups in the whole of Tn.

Theorem 6.2. The largest size of a left zero semigroup in Tn is given by
ma: u G {[mj, [a;]}} where x G R is the solution to x(l + lnx) = n.

Proof. Differentiating we obtain:

— (xn-x) = xn-x+1(n - x(l + lnx)).
ax

If u is a solution to the equation x(l + lnx) — n then xn~x is increasing when
1 < x < u and decreasing when x > u. Therefore the function xn~x has a

maximum when x(l + lnx) = n. □



172 Chapter 6, Large completely simple subsemigroups and graph colouring

Theorem 6.3. Let U be a right zero subsemigroup of Tn of largest size where
n> 2. Then the size of U is given by:

I3(n/3) if n = 0 mod 34 3(n~4)/3 if n = 1 mod 3

2_3(n-2)/3 if n = 2 mod 3.

Moreover, U is contained in Dn/3 ifn = 0 mod 3 and in -D[n/3] ifn = 2 mod 3.
If n = 1 mod 3 then there is a largest order right zero semigroup in both D\n/s\
and -0[n/3J •

Proof. When n — 2,3 the result is easily verified, so suppose that n > 4. We call
any fc-tuple (ai,... , a^) such that n = a\ + ... + o^, and 1 < k < n, a partition
of n. We will call a partition (ai,..., a^) maximal if

aia2 ... afc = max{aia2 ... a; : a\ + a2 + ... + a; = n, 1 < I < n}.

We define the value of a partition to be the product of the terms in the partition.
Let (ai,..., a*,) be a maximal partition of n.

Claim, ai ^ 1 for all i.

Suppose without loss of generality that ai = 1 and look for a contradiction. If
k = 2 then the partition (oi + 02) = (1 + 02) has value 1 + a<2 which is strictly
greater than 0102 = 02, the value of the partition (01,02). This contradicts the
fact that (ai,..., a^) is maximal. If k > 2 then the partition (ai + 02,03,..., ajf)
has value

(ai + a2)a3 ... afc = o3a4 ... a/t + aia2 ... ak > a\o2 ... o^

which again contradicts the maximality of the partition (ai,..., ajf). □

Claim. Oj < 4 for all i.

Suppose without loss of generality that a\ > 5 and look for a contradiction. Then

2(ai — 2)a2 ... ak = (2ai - 4)a2 ... a& > (2ai - ai)a2 ... = aia2 ...ak

which is a contradiction of the maximality of the original decomposition. □

Claim. If ai = 2 then aj 7^ 4 for all j.
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If a\ = 2 and 02 = 4 then

(di + l)(d2 — 1)0.3 • • • Ofc = 903 . . . Ofc > 803 . . . Ofc = 010203 . . . Ofc

which is a contradiction of the maximality of the original decomposition. □
Similarly if Oj = 4 then aj ^ 2 for all j. Using similar arguments it is clear

that the number 2 appears at most twice in (ai,...,Ofc). Also, the maximum
number of occurrences of the number 4 is 1. We conclude that:

(i) if n = 0 mod 3 then (ai,..., a&) = (3,..., 3);

(ii) if n = 1 mod 3 then either (ai,..., a^) = (3,... , 3,4) or (ai,... , o^) =

(3,..., 3, 2, 2) (or some permutation of these /c-tuples);

(iii) if n = 2 mod 3 then (ai,..., a*,) = (3,..., 3, 2) (or some permutation of
this fc-tuple).

□

In general the largest right zero and largest left zero semigroups do not lie
in the same P-class of Tn. For example, in T3 the largest right zero semigroup
is unique and consists of the set of constant mappings. On the other hand, the
largest left zero semigroups can be found in D^- For example:

is a left zero semigroup of T3 with largest possible order.

6.3 Completely simple semigroups

In this section we determine the largest order that a completely simple subsemi-
group of Tn can have. The results of the previous section provide us with bounds
on the size of such a semigroup. Indeed, if U is a left, or right, zero subsemigroup
of Tn then V = {a € Tn : im a e Ims U & ker(a) € Kers U} is completely simple.
It is just the union of the group 7-f-classes that U intersects. Also, if U contains
elements of rank r then |Vj = r\\U\. Therefore a completely simple subsemigroup
T of Tn with elements of rank r, and largest possible size, satisfies

|Tj > inax(r! rn r, r\\n/r~\t [n/r\r t)
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(which equals r! rn~T when r > 2) where n = t mod r. Also, if r = 1 then the
largest completely simple semigroup has size n (i.e. is the set of constant maps).
On the other hand, the number of C-classes in T is at most {n/r]1 [n/r\r~ and
the number of Al-classes is at most rn~r. Therefore

|T| < r\\n/r]t[n/r\r~trn^r.

We will now show that it is, in fact, the lower of these two bounds that is best

possible.
We will convert the problem into a problem concerning counting the number

of colourings of a particular graph.

Definition 6.4. Let A be a nonempty set of r-element subsets of {1,... ,n}. Let
T(A) be that graph with set of vertices {1,... ,n} and i adjacent to j if and only
if {Li} Q A f°r some A G A.

By an r-colouring of the graph r(_4) we mean an assignment of r colours to
the vertices of the graph such that no two adjacent vertices are coloured with the
same colour. Let C = {c\,... ,cr} denote the set of colours. Then formally we

define an r-colouring of F(A) to be a surjective map 6 from the vertices of T(*4)
onto C satisfying:

V(i,j) € E(T(A)), 0{i)±0{j).

We will use Cr(r) to denote the set of all r-colourings of a graph T. The connec¬
tion between the graph F(„4) and our problem is given in the following lemma.

Lemma 6.5. Let U be a completely simple subsemigroup of Tn contained in Dr.
Then \U\ < \ Ims £/||Cr(r(Ims U))\. Also, there exist completely simple semi¬
groups with this size.

Proof. For every i G Ims U let Ki denote the set of kernels that the image i is
a transversal of. Then define /C = f^e sef °f kernels for which

every image of Ims U is a transversal. Clearly we have \U\ < \ Ims U\r\\K.\. The
kernel of an r-colouring k of r(ImsC/) is a partition of Xn (i.e. the colour classes
of the colouring). By the definition of r(ImsC/) every I G Imst/ is a transversal
of these colour classes. There are r! distinct colourings corresponding to each
kernel. On the other hand, every k G fC gives rise to r! colourings of r(Imsf7).
Thus r\\K.\ = |Cr(r(ImsU))\ and so

\U\ < | Ims C/|r!|/C| = |Ims£/||Cr(r(ImsI7))|



Section 6.3 175

where equality is achieved by taking all maps with image in Ims U and kernel in
1C. □

Example 6.6. Let n = 6 and r = 3. Also, let

.4 = {{1,3,5}, {1,3,6}, {1,4,5}, {1,4,6}, {2,3,5}, {2,3,6}, {2,4,5}, {2,4,6}}.

The 3-sets of A correspond to the triangles in the complete tripartite graph below.

There are 3! — 6 ways of colouring the vertices of this graph with three colours.
It follows that if U is a completely simple subsemigroup of Tq with Ims U = A
then \U\ < |A||C3(r(A))| = 8.6 - 48.

The next lemma is vital for the proof of the main result of this section.

Lemma 6.7. Let A be a set of subsets of {1,... ,n} each with size r. If |A|
has at least two elements then there exists a strict subset A! of A such that

\A'\\Cr(T(A'))\ > |A||Cr(r(A))|.

Proof. If L(A) has no r-colourings then let A' be any singleton subset of A and
we have |A'||Cr(r(A'))| > 0 = |A||Cr(r(A))|. Suppose on the other hand that
T(A) has at least one r-colouring. Since A has at least two elements and is r-
colourable there must exist x, y in Xn such that the degrees of x and y are both
non-zero and that x and y are not connected by an edge in T(_4). Indeed, if no

such pair x,y existed then every vertex with non-zero degree in T(A) would be
connected to every other vertex with non-zero degree in T(A). Since T(A) is r-

colourable this would mean that L (A) has at most r vertices with non-zero degree
contradicting that fact that | A\ > 2. Choose such a pair x, y and suppose without
loss of generality that d(x) < d(y). Now let A' consist of all the elements of A
that do not contain the number x. Since d(x) < d(y) it follows that |A' I > 1-41/2
(i.e. we have discarded no more than half of the sets from A). In the graph
r(A') vertex x has degree zero. Now consider the number of r-colourings of the
graph r(A'). Let T be the set of all colourings of T(A) where each if G T is a
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map from Xn to a set of r distinct colours C. Since r(A') is a subgraph of r(A)
every r-colouring of r(A) is an r-colouring of r(A'). For each colouring 0 £ *F
we define the following new r-colouring 9^ : Xn —> C by

9xp(m) =
ip(m) if m ^ x

c £ C \ ip(x) otherwise.

Let 0 = {6^ : ip £ T}. We claim that T U 0 are colourings of F(A') and that
they are all distinct. Each of the maps is a colouring of T(W) since T(A')
is a subgraph of r(A). Let 9^ £ 0 and let v,w be adjacent vertices in the
graph r(A'). Since x has degree zero in r(A') it follows that v ^ x and w ^ x.

Therefore

9^{v) = ip(v) ± i>(w) = 9ip(w)

and 9^ is an r-colouring. The colourings T are all distinct by assumption. To see
that the colourings © are distinct note that if 9^l = 9^2 then ip\ and 0i agree on

every vertex of T(A) except possibly on x. However, in the graph F(A) vertex
x has non-zero degree and so is contained in a subgraph that is isomorphic to

Kr (the complete graph on r vertices). The colour of x, therefore, is uniquely
determined once the rest of the vertices have been coloured. We conclude that if

91p1 = 9^2 then ipi = 02 and as a consequence that |©| = |T| and the colourings
T are all distinct. Also, if 9^1 £ 0 is different from 02 € 'L then either they differ
on some vertex in Xn \ {x} or they agree on all of these vertices in which case

(as above) 0i = 02 and 9^l{x) 0 C\0i(x) = C\02(x) and thus 9^1(x) ^ 02(x).
It follows that T U © are colourings of T(A') and that

M'||Cr(rM'))l > Kl(l*l + l©l) > (Hl)(2|Cr(rM))|) = |.4||cr(r(.4))|

as required. □

In fact, in the argument above if \C\ > 3 then |C\0(x)| > 2 so that for every

colouring of the old graph we can define two new colourings of the new graph.
Then by exactly the same arguments we have:

KI|Cr(r(4'))l > W(|*| + |e|)>(Hl)(3|cr(r(^))|)
= |wicr(rM))| > unc,(rM))|.

Interpreted in terms of maximal order completely simple semigroups these results
tell us the following.
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Proposition 6.8. Let U be a completely simple subsemigroup of Tn contained
in Dr where r > 2 and |Imst/| > 2. Then these exists a completely simple
semigroup V C Dr such that |ImsE| < |Imst/| and \V\ > \U\. Moreover, if
r > 2 then V may be chosen so that \V\ > \U\. □

It is important to note that the lemma above does not say we can remove

£-classes one at a time with the size of the completely simple semigroup staying
at least as large at each step.

Example 6.9. In Example 6.6 if we remove a single element from A to obtain
A', say A' = A \ {1, 3, 5}, then the number of distinct 3-colourings of the graph
r(^4') is still only 3! and it follows that

|^4,||C3(r(_4./))| = 7.6 < 8.6 = |-4||C3(r(w4.))|.

By symmetry, the same is true regardless of which 3-set we remove from A.

We may now prove the main result of this section.

Theorem 6.10. Let U be a subsemigroup ofTn of mappings all with rank r where
r >2. If U is completely simple then \U\ < r\rn~r, and this number is attained
by the completely simple semigroup {a G Tn : ima = ima2 = {1,..., r*}}.

Proof. By repeated application of Lemma 6.8 it follows that for some I G Ims U
there is a completely simple subsemigroup V of Dr such that ImsE = {/} and
\U\ < \y\- It follows from Lemma 6.1 that \U\ < |E| < r\rn~r. □

As a consequence of this result, and since

n! > (n — l)(n — 1)! > (n — 2)2(n — 2)! > (n — 3)3(n — 3)! > ... > 2n_22!,

we have

Theorem 6.11. If U is a completely simple subsemigroup of K(n,r) with max¬

imal order then \U\ = r! rn~r. In particular, the largest completely simple sub-
semigroup in Tn is Sn.

In general, the maximal order completely subsemigroups of Z?2 are not all
isomorphic, as the following examples show.

Example 6.12. The elements

/l234 5\ fl 234 5\ /l 2 3 4 5\ (\ 2 3 4 5\
V 2 1 1 2 1 / ' \ 3 4 3 4 4 / ' I 3 4 3 4 3/'V4 3 3 4 4/
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generate a completely simple semigroup which is a subsemigroup of T$ with two

£-classes, four 7?.-classes and has size 16 = 2! 23.

Example 6.13. The elements

fl 2 3 4 5\ (\ 234 5\ (l 2 3 4 5\ (l 2 3 4 5\

\2 1 2 2 l/'\3 2 3 2 3J ' \3 2 3 3 3^ ' ^3 2 3 2 2J
generate a completely simple semigroup which is a subsemigroup of T5 with two

£-classes, four 7?.-classes and has size 16 = 2! 23.

Example 6.14. The elements

/1 2 3 4 5 6 \ /1 2 3 4 5 6'

I 2 1 2 1 2 1 / ' I 3 2 3 2 2 3

1 2 3 4 5 6 \ /1 2 3 4 5 6\

\^3 4 3 4 3 3y'yl 4 1 4 4 4J
generate a completely simple semigroup which is a subsemigroup of T5 with four
^-classes, four IZ-classes and has size 32 = 2! 24.

In the example above we have an example of a largest completely simple
semigroup with four £-classes. We will now show that this is in fact the largest
number of £-classes that a maximal order completely simple semigroup in D2
can have (for any value of n).

The maximal (with respect to inclusion) subsemigroups of Tn in D2 are in one-

one correspondence with the set of all, not necessarily connected, bipartite graphs
on n vertices. In Figure 6.1 all of the maximal completely simple subsemigroups
of T>2 in T5 are described using this correspondence. In this example there are four
types of maximal order completely simple subsemigroup, each with 16 elements
(i.e. the last 4 in the table). We will show that this example is representative of
the general situation since every maximal order subsemigroup in D2, for any n,

corresponds to one of the types given in Figure 6.2.

Theorem 6.15. Let U be a completely simple subsemigroup of K(n,r) with max¬

imal order.

(i) If r — 1 then U = K(n,r) which is an n element right zero semigroup,

(ii) If r = 2 then U is of one of the 4 types given in Figure 6.2.

(Hi) If r > 3 then U is the direct product of an rn~r-element left zero semigroup
and the symmetric group Sr (i.e. is a left group).
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Graph Dimensions Size Graph Dimensions Size

C? p ^0

¥—-0

1x4 8 C

Nr
1x6 12

Cp p ^0

O

2x3 12 c

NP 0
2x4 16

C

*)^
2x3 12 cpoo

Y 0

4x2 16

c

c

P ? °

^ c1)

4x2 16 c

c

p 0 0

\ 0

8 x 1 16

Figure 6.1: The graphs associated with the maximal completely simple semi¬
groups in T>2 C T5.

Let A be a set of 2-sets of Xn. The 2-sets of A are in one-one correspondence
with the edges of the graph T(.4). The number of 2-colourings of the graph is
simply a function of the number of connected components of the graph T(^4).
Indeed, we have C2(T(.4.)) = 2k where k is the number of connected components
in the graph T(*4). We call the connected components of T(.A) with only a single
vertex the trivial components of the graph.

Lemma 6.16. Let U < J2 be completely simple. If T(lmsU) has more than two
non-trivial components then there exists a completely simple semigroup V C J2
such that |V| > \U\.

Proof. The graph T(ImsI7) is bipartite since it is two colourable. Let Ai U Bi
where 1 < i < I be the non-trivial connected components of the graph r(Imst/)
and let C C V(T(Ims U)) be the set of all trivial components (i.e. the set of
vertices with degree zero). Let ej denote the number of edges in the component
Ai U Bi for 1 < i < I. Since T(Imsf7) has at least three non-trivial components
we may assume without loss of generality that ei < \E|/3 (since Y^\=i ei = l-^D-
Let V be the unique largest completely simple subsemigroup of D2 with Ims V =

ImsC/\(Ai x B\). We claim that |V| > \U\. By construction |ImsV| > ||ImsC/|
and |C2(T(Ims V))| > 2|C2(T(ImsC/))| (by exactly the same argument as in the
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O

(ii) c) O O

3 O O
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(iv) (

Np 0

0

Figure 6.2: The bipartite graphs corresponding to the maximal order completely
simple semigroups in H2.

proof of Lemma 6.7). It follows that

\V\ = |Imsl/||C2(r(ImsV))| > ^ Ims t/||C2(r(Ims t/))|
> | Ims {7||C2(r(Ims C/))| = \U\

as required. □

It follows that if we are given a completely simple subsemigroup U of £)2,
such that r(Ims U) has three or more non-trivial components, then U is definitely
not of maximal order in its D-class. As we saw in the examples of Figure 6.1
it is possible to have maximal order examples with two components, but by
Theorem 6.11 this is only possible when r — 2.

Lemma 6.17. Let U be a maximal order completely simple subsemigroup of
in Tn where F(Imst/) has at least two components. Let E be the set of edges in
a largest connected component of T(lmsU). Define V to be the unique largest
completely simple semigroup with ImsV^ = E. Then \V\ > \U\ and V is also a

maximal order completely simple subsemigroup of H2.

Proof. We have

\V\ = |C2(r(Ims I0)|| Ims V| > 2|C2(r(Ims C/))||| ImsU\ > \U\
as required. □

Let U be a maximal order completely simple subsemigroup of Z)2 such that
r(Ims£/) has only one non-trivial connected component. Let A U B be the non-
trivial component and let D be the set of vertices with degree zero. Since U has
maximal order, and the number of colourings is simply a function of the number
of connected components, it follows that every vertex of A is connected to every
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Graph Size
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N
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Figure 6.3: Two component bipartite graphs such that the largest components
are maximal and the total number of edges is a power of two.

vertex of D. Thus we have:

\U\ = | Ims C/||C2(r(C/))| = ab2d+1

where a = d), b = \D\ and d = \D\. From Theorem 6.11, since U has maximal
order, it follows that \U\ = ab2c+1 = 2n_1. Since c — n — a — b it follows that a, b
must satisfy the equation:

ab = 2a+b~2

where a,b £ N. When a + b > 8 we have ab < (a + b)2 < 2(a+fe' 2. Testing all
values in the range 1 < a,b < 8 it is easily verified that the only solutions (a, b),
with a < b, are given by

(a,6)e{(l,l),(l,2),(2,2)}.

These pairs correspond to the graphs (i), (ii) and (iv) in Figure 6.2. This gives
all the single non-trivial component solutions to our problem.

Now we consider the two component solutions. Let U be a maximal order
completely simple subsemigroup of D2 such that r(Ims!7) has exactly two non-
trivial connected components. It follows from Lemma 6.17 that either the two
non-trivial components of r(Imsf7) are isomorphic and they both correspond to
maximal single component solutions (i.e. those given in Figure 6.2), or they are
not isomorphic and the larger of the two components corresponds to a maximal
single component solution.

Start with a maximal single component solution (see Figure 6.2) and consider
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all ways of extending it to a two component solution where the new component
has strictly fewer edges than the component we started with. Keep in mind
the restriction that the number of edges must be a power of two, for the graph
to stand a chance of being maximal, since |jE1 11C21 = 2n_1 and the number of
2-colourings is always a power of two. It is now easily verified, by exhaustion,
that only three graphs may arise in this way. They are given in Figure 6.3.
From the second column of the table in Figure 6.3 it follows that the only two

component maximal solution is given by the graph (iii). Since, by Lemma 6.16,
every maximal graph has at most two non-trivial components, this completes the
proof of Theorem 6.15

Of course, for other classes of semigroup we can ask the same question. In [44]
the largest size of an inverse subsemigroup of Tn is computed. In particular it is
shown that:

Theorem 6.18. The largest possible size of an inverse subsemigroup of Tn is
53m=o Cm') Moreover, the subsemigroup generated by the transformations:

1 2 3 ... n — 1 n\ l\ 2 3 ... n — 1 n\ /l 2 3 ... n — 1 n\
2 1 3 ... n — 1 nj ' y2 3 4 ... 1 «/'\l 2 3 ... n n)

is an inverse subsemigroup ofTn with this size.

One class closely related to the completely simple semigroups are the com¬

pletely regular semigroups. These are the semigroups with the property that
every element lies in a subgroup of the semigroup. We leave the task of finding
large completely regular semigroups as an open problem. Clearly the answer is
at least n! but is there are larger example?

Open Problem 8. Determine the maximal order of a completely regular sub-
semigroup of Tn.
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7.1 Introduction

In previous chapters we have been concerned with the problem of finding "nice"
generating sets for finite semigroups. We will now move our attention to infinite
semigroups. We also change our question from that of the rank of the semigroup
to the question of whether or not the semigroup may be generated by a finite
set. Such semigroups are called finitely generated. Every finite semigroup is, of
course, finitely generated. Also, for an infinite semigroup to stand a chance of
being finitely generated it must be countably infinite (since the set of all finite
words over a finite alphabet is a countable union of finite sets, words of length
one, two three, etc..., and hence is countable). It was observed in our rank
investigations that the rank function is not well behaved with respect to taking
subsemigroups. Analogous to this is the fact that it is possible to embed non-

finitely generated semigroups in finitely generated ones (we will see examples of
this later in the chapter). In the previous chapters we approached the study
of finite semigroups by concentrating mainly on semigroups of transformations,
of one form or another. When working with infinite semigroups the theory of
semigroup presentations, representing semigroups as factor semigroups of free
semigroups, is often a more profitable approach. As a result of this, the theory
of semigroup presentations will be central this part of the thesis.

Given a semigroup S and a subsemigroup T of S it is natural to consider
which properties S and T have in common. In the case of groups, for example, it
is known that a group shares many of its properties with its subgroups of finite
index. In particular we have the Reidemeister-Schreier theorem which says that
subgroups of finitely presented groups with finite index are finitely presented;
see [71, Proposition 4.2]. The general study of subgroups of finitely presented
groups continues to receive a lot of attention; see for example [9], [22] and [90]. An
important problem in the development of a similar theory for arbitrary monoids
has been the search for a suitable notion of index for subsemigroups. One ap¬

proach is to define the index of T in S to be the cardinality of the set S\T. This
is normally known as the Rees index of T in S. In [61] and [62] Jura discusses
the problem of finding all the ideals of a given Rees index in a finitely presented
semigroup. In order to obtain this result he proves the Hilbert-Schreier theorem
for semigroups i.e. that if S is a finitely generated semigroup and T is a sub-
semigroup of S with finite Rees index then T is finitely generated. This result
was reproved in [82] where, in addition, it was also shown that subsemigroups of
finitely presented semigroups with finite Rees index are themselves finitely pre¬

sented, although the proof given in that paper is incomplete. We discuss how the
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proof may be fixed in §7.5. An important tool that was used in the proof of this
result is the Reidemeister-Schreier rewriting theorem for semigroups introduced
in [17].

In [101] and [102] the groups of units of finitely presented monoids are con¬
sidered. The author considers so called special monoids and proves that, for
this class of monoid, from a finite presentation for the monoid we may obtain a

finite presentation for the group of units (with the same number of defining rela¬
tions). In [83] and [84] presentations for arbitrary subgroups of finitely presented
monoids are considered. In particular in [83] an example is given of a finitely
presented monoid whose group of units is not finitely presented. Presentations
of ideals of finitely presented semigroups were considered in [19] and of those of
arbitrary subsemigroups were considered in [18].

In [53] automatic semigroups were investigated and it was shown that if T is
a finite Rees index subsemigroup of S then S is automatic if and only if T is.

The theory of monoid presentations is closely linked to that of string-rewriting
systems. An important problem in this area is to classify all monoids that may

be presented by some finite complete string-rewriting system. Monoids that may

be defined by such presentations have nice properties: for example they all have
solvable word problem. On the other hand, in [88] Squier showed that not every
monoid that has solvable word problem is presented by some finite complete
string-rewriting system. In a subsequent paper [89] Squier, Otto and Kobayashi
introduced the notion of finite derivation type, proving that a monoid has finite
derivation type if it can be presented by a finite complete rewriting system. In [93]
it was shown that if T is a finite Rees index subsemigroup of S and T has finite
derivation type then so does S. The converse of this result is still an open problem
although has recently been solved by Malheiro [1] in the special case where T is
an ideal with finite Rees index. In the same paper it was also shown that if T
has finite Rees index in S then S can be presented by a finite complete rewriting
system if T can.

In this chapter we introduce a new notion of index for subsemigroups which
is significantly weaker than Rees index but is still strong enough to force T to
inherit certain properties from S. The general idea is that rather than forcing the
entire complement S \ T to be finite we need only restrict the number of points
where T and S\T meet each other in the Cayley graphs to be finite.

Let 5 be a finitely generated semigroup with T a subsemigroup of S. Let A
be a finite generating set of S. Let rr(A, 5) and Ti(A,S) denote the right and
left Cayley graphs of S with respect to A. Thus the vertices of Tr(A, S) are the
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elements of S and there is a directed edge from s to t, labelled with a E A, if
and only if sa = t. The left Cayley graph is defined analogously. We define the
right boundary edges of T in Tr(.A, S) to be those edges whose initial vertex is
in S \ T and terminal vertex is in T. The left boundary edges are defined in the
same way but using the left Cayley graph. We define the right boundary of T
in S with respect to A to be the set of terminal vertices of the right boundary
edges of T in Tr(.A, S) together with the elements of A that belong to T. The left
boundary of T in S with respect to A is defined to be the set of terminal vertices
of the left boundary edges of T in T;(H, S) together with the elements of A that
belong to T. We define the (two-sided) boundary of T in S to be the union of
the left and right boundaries. We use BfiA,T), Br(A,T) and B(A,T) to denote
the left, right and two-sided boundaries, respectively, of T in S with respect to
A. Formally these sets are given by

BfiA, T) = AUX C\ T = {au : u (E U1, a e A} T,

Br(A,T) = UlAf\T= {ua : u G Ul,a e A} nT

and

B(A,T) = Bl(A,T)uBr(A,T)

where S1 denotes S with an identity adjoined (even if it already has one), U
denotes the complement S\T and Ul denotes S1 \T. We say that T has a finite
boundary in S if for some finite generating set A of S the boundary B{A,T) is
finite.

Clearly the sets defined above depend on the choice of generating set A.
However, the finiteness (or otherwise) of these sets is independent of the choice
of generating set (see Proposition 7.3). Thus we may speak of T being a sub-
semigroup with finite (left, right or two-sided) boundary without reference to the
generating set for S.

The main results of this chapter show that the properties of finite generation
and presentability are inherited by subsemigroups with finite boundary.

Theorem 7.1. If S is a finitely generated semigroup and T is a subsemigroup of
S with finite boundary then T is finitely generated.

Theorem 7.2. Let S be a finitely generated semigroup and T be a subsemigroup
of S. If S is finitely presented and T has a finite boundary in S then T is finitely
presented.

The chapter is structured as follows. We begin by describing the basic prop-
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r (S)

• Directed edges: right
boundary edges

• Filled vertices: the right
boundary of T in S

Figure 7.1: Visualising the right boundary of the subsemigroup T of the semi¬
group S.

erties of boundaries in §7.2. In §7.3 we show the connection between boundaries
and generating sets of subsemigroups and in the process prove Theorem 7.1. We
consider semigroup presentations in §7.4 and we prove Theorem 7.2. In §7.5
we give some applications of the main results and we show that having a finite
boundary is not a transitive property. The question of finite presentability when
only one of the boundaries is finite is the subject of §7.6 and in §7.7 the possible
sizes of left and right boundaries are explored. The converse of Theorem 7.2 is
the subject of §7.8 and in §7.9 boundaries of subsemigroups of free semigroups
are investigated.

7.2 Examples and basic properties

Let S be a semigroup generated by a finite set A. Let A+ denote the set of all
non-empty words over the alphabet A, and let A* denote the set of all words over

the alphabet A including the empty word e. There is a natural homomorphism
6 : A+ —* S mapping each word in A+ to its corresponding product of generators
in S. Since A generates S the map 6 is surjective. Associated with the map 6
is a congruence 77 011 the free semigroup A+ given by (w, v) G 77 if and only if
wO = v6. Then the quotient A+/rj is isomorphic to S under the natural map

w/rj 1—> wO. Given some w G A+ we will, where there is no chance of confusion,
often omit reference to the function 6 or the relation 77 altogether and talk of w

in S rather than w9 in S or w/r] G A+/rj.
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Given a word w g A+ we will use |io| to denote its length. Given w,v g A+
we write w = v if they represent the same element of S (i.e. if w9 = vQ) and
write w = v if they are identical as words in A+. Furthermore, given w g A+
and sgS we write w = s meaning that w0 = s in S. We write S1 to denote the
semigroup S with an identity adjoined (even if S already has an identity) and we

extend the definition of 6 so that 6 : A* —» S1 by setting eO = 1.
For two words w,v g A+ we say that w is a prefix (respectively suffix) of

v if v = w(3 (respectively v = (3w) for some (3 g A*. We say that w is &

subword of v if v = aw/3 where a, (3 g A*. Also, for a subset Y of S1 we define
C(A,Y) = {w g A* : wd g Y} and call this set the language of Y in A*. Note
that from the convention described in the previous paragraph it follows that, for
Y c S, we have C(A, Y1) = C(A, Y) u {e}.

We now show that whether the boundary is finite or not is independent of
the choice of generating set.

Proposition 7.3. Let S be a finitely generated semigroup, let T be a subsemi-
group of S and let A and B be two finite generating sets for S. Then Br(A,T)
is finite if and only if Br(B,T) is finite. Also, BfiA,T) is finite if and only if
B[(B,T) is finite.

Proof. We will prove the first statement only. The second may be proven using
a dual argument. For each b g B let 7tyi(6) g A+ be some fixed decomposition of
b into generators from A so that b = 7^(6) in S. Let m = max{|7r^(6)| : b g B}
which exists since B is finite. We claim that

m

Br(B,T) c |J Br(A, T)Ai
i=i

which is a finite set since both A and Br(A,T) are finite. To see this first let t g

Br(B, T). By the definition of Br(B, T) we can write t = ub = wn^b) = ua\ ...

where u g U1, b g B, ai g A for 1 < i < k and k < m. Let I be the smallest
subscript such that ua\ ... ai belongs to T. It follows that ua\... ai g Br(A, T)
and we have

m

t=.(uai...ai)(al+1...ak)eBr(A,T)Ak'1 c (J Br(A,T)Ai
2—1

since k — I < m. □
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b

Figure 7.2: The right Cayley graph of the bicyclic monoid.

Example 7.4. Let B = N° x N° subject to the multiplication

(m, n)(p, q) = (m — n + max(n,p), q — p + max(n,p)).

This semigroup is called the bicyclic monoid and is generated by A = {b, c}
where b = (0,1) and c = (1,0). The right Cayley graph of B with respect
to A is given in Figure 7.2. The subsemigroup T = {bl : i G N0} satisfies
Br(A,T) = {6} and so has a finite right boundary. On the other hand, the
subsemigroup L = {cl : i G N0} satisfies Br(A,L) = L and hence has an infinite
right boundary.

Finite boundaries arise in many natural situations. We describe a few of them
in the following proposition. The proof follows straight from the definition of the
boundary.

Proposition 7.5. Let S be a semigroup generated by a finite set A and let T be
a subsemigroup of S. Then we have:

(i) ifT is finite then B(A,T) is finite;

(ii) if S\T is finite then B(A,T) is finite;

(Hi) if S\T is a right (resp. left) ideal in S then Br(A,T) (resp. BfiA,T)) is
finite;
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(iv) if S\T is an ideal in S then B(A,T) is finite.

The depth of an element s G S is defined to be the minimal possible length of
a product in A+ that equals s in S, and is denoted by d(s). In other words:

d(s) = min{|u;| : w G A+,w = s in S}.

For a subset X of S we define the depth of X to be:

d(X) — max{d(x) : x G X}

when it exists and say that X has infinite depth otherwise. Also, given a word
w G A+ we define the depth of w by d{w) = d(w0).

Fix a transversal 77 of the 77-classes of A+ chosen so that every w G 77 is a

word of shortest length in its 77-class. For every w G A+ define w = (w/rj) n 77:
the fixed shortest length word in 77 that equals w in S.

The next result gives a characterisation of subsemigroups with finite boundary
that does not refer to the generating set of S. The properties described in the
proposition will be used frequently in later sections.

Proposition 7.6. Let S be a finitely generated semigroup with T a subsemigroup
of S. Then T has a finite boundary in S if and only if the following properties
hold:

(i) for every finite subset X of S the set UlX D T is finite;

(ii) for every finite subset X of S the set XUl D T is finite;

(Hi) the set U2 nT is finite.

Proof. Let A be a finite generating set for S. Suppose that T has an infinite
boundary in S. Then either the right or the left boundary must be infinite.
Suppose that the right boundary is infinite. Then we can find an infinite subset
{u\,U2, • • •} of U and a generator a G A such that [u\a,U2a,...} is an infinite
subset of T. If a G U then condition (iii) fails. Otherwise {a} is a finite subset of
T for which condition (i) fails. On the other hand if the left boundary is infinite
then, by a dual argument, either condition (iii) or condition (ii) fails.

For the converse suppose that T has a finite boundary in S. We now show
that each of the three conditions given in the proposition must hold.

(i) Let X be a finite subset of S. Define B = X U A which is a finite generating
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set for S. Now we have:

[/'inTC U1BnT = Br{B,T)

where Br(B,T) is finite by Proposition 7.3. That condition (ii) holds is proven

using a dual argument.

(iii) Let m = d(B(A,T)), the depth of the boundary of T in S, which is well
defined since B(A,T) is finite. Define Z = {w E £(A,T) : |ru| < 3m}, Y =

(Z9) n U2 and let

k = max min{|u| : u,v E £(A,U),uv = y}
yeY

which must exist since Y is finite.

Claim. For all u,v E £(A,U) where uv E £(A,T) there exist u\,v\ E £{A,U)
such that |ui| < k and uv = u\V\ in S.

Proof. We prove the claim by induction on the length of the word \uv\. Let
u, v E £(A,U) where uv E £(A,T). If \uv\ = 2 then the result holds trivially.
Now suppose that the result holds for all pairs 7,6 E £(A, U) where yd E C(A, T)
and |yd| < \uv\. We prove the result for uv by considering the following cases.

Case 1: u has no prefix in C(A,T). In this case since v E £(A,U) and uv E

£(A,T) we can write uv = u!(3\ where u! is a prefix of u, v is a suffix of f3\
and /3i E £(A, B[(A,T)). We have uv = u'Pi where, since u has 110 prefix in
£(A,T), v! E £(A,U1) and u'Pi E £(A,T). We can, therefore, write u'Pi = /327
where Pi E £(A,Br(A,T)), u' is a prefix of Pi and 7 is a suffix of Pi. Therefore
uv = P2J = P2I where

|/?27l = |/%| + l7l <\(h\ + \Pi\ <2m< 3m.

It follows that d{uv) < 2>m which implies that (uv)9 E Y and, by the definition
of k, we can write uv — uivi where |ui| < k.

Case 2: u has a prefix in £{A, T). In this case, since u has a prefix in £(A, T), we

write uv = Pu'v = Pu'v where P E £(A, Br(A, T)) and, since T is a subsemigroup
of S, u' E £{A, U). This case now splits into two subcases depending on whether
or not u'v E £(A,T).

Case 2.1: u'v 0 £(A,T). Since Pu'v E £(A,T) we can write Pu'v = -yPi where
Pi E £(A,Bi(A,T)), 7 is a prefix of P and u'v is a suffix of Pi. Now we have
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uv = (3u'v = 7/?2 which satisfies < 2m < 3m. It follows that d(uv) < 3m
which implies that (uv)0 G Y and, by the definition of k, we can write uv = u\V\

where |ui| < k.

Case 2.2: u'v G C(A,T). In this case u',v G jC(A,U), u'v G C(A,T) and
\u'v\ < \uv\, so we can apply induction writing u'v = U2V2 where \v2\ < k. Now we

have uv = (3u'v — (3u2V2- If (3u2 G C[A, U) then we are done since uv = ((3u2)v2
where (3u2,V2 G C(A,U) and |t>2| < k. On the other hand, if (3u2 G £(A,T)
then since U2 G £(A,U) and (3u2 G £(A,T) we can write (3u2 = 7/?i where
/?i G C{A,Bi(A,T)), 7 is a prefix of (3 and U2 is a suffix of /3j. Now we have
uv = (3u'v = 0U2V2 = 7/01^2- Since U2 G £(A,U) and 7/?if2 G £(A,T) we can

write 7/3iU2 = <5/^2 where /% G C(A,Bi(A,T)), 5 is a prefix of 7^1 and U2 is a

suffix of /?2- Therefore uv = 8(32 where

|%| < |5| + |A| < |7| + |A| + \W2\ < \P\ + \Wi\ + 1^1 < 3m.

It follows that d(uv) < 3m which implies that (icu)# G T and, by the definition
of k, we can write uv = u\v\ where |ui| < k.

This completes the proof of the claim. □

Returning to the proof of Proposition 7.6, let W be the set of words of C{A, U)
that have length no greater than k. This set is finite and as a consequence so is
the set W6. It now follows from the claim that U2 <lT C U(WO) n T which, by
condition (i), is a finite set. □

7.3 Generating subsemigroups using boundaries

In this section we will prove the first main result of this chapter:

Theorem 7.1 If S is a finitely generated semigroup and T is a subsemigroup of
S with finite boundary then T is finitely generated.

The right (or left) boundary of a subsemigroup T of a semigroup S may be
used to construct a generating set for T.

Proposition 7.7. Let S be a finitely generated semigroup and let T be a sub-
semigroup of S. Let A be a finite generating set for S. Then either of the sets
below generates T:

Xp = Br(A:T)Ul nT, Xx = U1Bt(A,T)nT.
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Proof. Let t £ T be arbitrary. Write t — a\ ... where a; £ A for 1 < i < k.
Let m be the smallest subscript such that Pi = a\... am belongs to T, let
71 = am+i ... at and note that Pi £ Br(A,T). If 71 € 1/ or is empty
then stop. Otherwise repeat the same process on the word am+1 ... writ¬
ing it as /?272 where P2 is the shortest prefix that belongs to C(A,T) so that
P2 £ Br(A,T). Continuing in this way, in a finite number of steps, we can write
t = Pi . .. Pm—iPmlm where Pi,... ,pm £ Br(A, T) and -ym £ U1. The elements
Pi,..., Pm-i, Pmlm all belong to Xp and, since t was arbitrary, it follows that Xp
generates T. The fact that X\ generates T follows from a dual argument. □

Proof of Theorem 7.1. If BpA,T) and Br(A,T) are finite then Xp is finite, by
Proposition 7.6 (ii), and generates T, by Proposition 7.7. □

We can use this result to give an upper bound for the rank of T based on the
size and depth of the boundary.

Corollary 7.8. Let S be a semigroup generated by A and let T be a subsemigroup
of S. Then

rank(T) < d(Br(A,T))\Br{A,T)\\Bi(A,T)\.

Proof. Let w £ C(A,Xp) and let Y C C(A, Br(A,T)) be a fixed set of shortest
length word representatives of the elements of Br(A,T). Then w = vu where
v £ Y and u £ £(^4,171). Since u £ C(A,Ul) and vu £ C{A,T) we can write
vu = v'P where /? £ C(Bi{A,T)) and v' is a prefix of v. Since w was arbitrary it
follows that every word in C{A, Xp) is equal to a word W\W2 where w\ is a prefix,
possibly the empty word, of a word from Y and w<i £ £{A,Bi{A,T)) fl 1Z. The
result follows since there are at most d(Br(A,T))\Br(A,T)\ choices for w\ and
\B[(A, T)\ choices for u>2. □

The above bound is attained infinitely often as the following example shows.

Example 7.9. Let S = Z the infinite cyclic group written additively so that it is
generated, as a semigroup, by {—1,1}- Let m £ N and let T = {n £ 7L : n > m}.
Then T is a subsemigroup of S, T does not have finite Rees index in S, and

rank(T) = m = d(Br(A,T))\Br(A,T)\\Bi(A,T)\.

The generating set given in the Proposition 7.7 is best possible in general as

the following example demonstrates.
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Example 7.10. Let A and B be finite alphabets and let S be the semigroup
defined by the presentation

[A, B, 0 | ab = ba = 0, aO = 0a = bO = Ob = 00 = 0, a £ A, b £ B).

The semigroup S is generated by the set ALiB. Let T = {w £ A+ | |tu| > /c}u{0}
which is a subsemigroup of T and has infinite Rees index in T. Then

Br(A U B, T) = {w € A+ | \w\ — k} U {0}

and

U1 = {e} U B+ U {a £ A+ \ |w| < k}.

Therefore

Xp = Br(A U B, T)Ul (~)T — {w £ A+ \ k < \w\ < 2k - 1} Li {0}.

Since T \ {0} is a subsemigroup of the free semigroup A+ it follows from [57,
Chapter 7] that the unique minimal generating set for T is T \ T2 U {0} = Xp.

Note that if only the right (or left) boundary is finite then T need not inherit
the property of being finitely generated as the following example demonstrates.

Example 7.11. Let F = A+, the free semigroup over the alphabet A, where
A = {a,&}. Let R be the subsemigroup of all words that begin with the letter a.
Then Br(A,T) = {a} which is finite but R is not finitely generated since all the
elements ab1 where i € N must be included in any generating set.

7.4 Presentations

Preliminaries: definitions and notation

A semigroup presentation is a pair = (A|9t) where A is a an alphabet and
91 C A+ x A+ is a set of pairs of words. An element (u, v) of 91 is called a

relation and is usually written u = v. We say that S is the semigroup defined
by the presentation fp if S = A+/77 where rj is the smallest congruence on A+
containing 91. We may think of S as the largest semigroup generated by the set
A which satisfies all the relations of 91. We say that a semigroup S is finitely
presented if it can be defined by (A|i?) where A and R are both finite. For example
the free semigroup on the alphabet {a,b} is given by the presentation (a,b|) and
hence is finitely presented. At the other extreme, every finite semigroup is finitely
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presented: by including the entire multiplication table in the set of relations if
necessary. Note that not every semigroup is finitely presented: consider the
semigroup defined by the presentation (a, b \ abla = aba, (i € N)) for example. If
S is a finitely presented semigroup and T is a finitely generated subsemigroup of
S then T need not be finitely presented, as the following example demonstrates.

Example 7.12. Let S = {a, b, c}+, a free semigroup of rank 3, and let T be the
subsemigroup of S generated by the set X = {ba,ba2,a3,ac,a2c}. Let = ba,
£2 = ba2, £3 = a3, £4 = ac, and £5 = a?c. The relations

■?2^3nC4 = Ci^3n^5, (n € N)

all hold in T and they are irreducible in the sense that 110 non-trivial relation
may be applied to either side of the relation. It follows that T is not finitely
presented.

We say that the word w G A+ represents the element s £ S if s = 10/77. As
in §7.2 given two words w, v G A+ we write w = v if w and v represent the same

element of S and write w = v if w and v are identical as words. Also, given an

element s G S and a word w G A+ we write w — s when w/r] = s in S.
We say that w is obtained from v by one application of a relation from 91 if

there exist a, (3 G A* and (x = y) G 91 such that w = ax/3 and v = ay(3. We say
that the relation w = v is a consequence of the relations 91 (or of the presentation
fP) if there is a finite sequence of words (on,..., am) such that w = a\, v = am

and, for all k, a/c+i is obtained from a& by one application of a relation from 91.
We now state a basic result that will be used frequently in what follows.

Proposition 7.13. Let f}3 = (A|91) be a semigroup presentation, let S = A+/rj
be the semigroup defined by it, and let a, (3 G A+ be any two words. Then the
relation a — (3 holds in S if and only if it is a consequence o/f}3.

The Reidemeister-Schreier theorem for semigroups

Before embarking on the proof of the second main result of this chapter we need
to give some background on the Reidemeister-Schreier theorem for semigroups
described in [17]. This theorem is the semigroup analogue of Theorem 2.6 of [72].
It gives a general method for finding presentations for subsemigroups of a given
finitely presented semigroup.

Begin with a semigroup S defined by a presentation (A\R). We will find a pre¬

sentation (B\Q) for a subsemigroup T of S where every element of B corresponds



198 Chapter 7, Generators and relations via boundaries in Cayley graphs

to a word in A+. More precisely, let T be the subsemigroup of S generated by X6
where X = {£j : i G 1} with the being words from A+. Introduce a new alpha¬
bet B = {bi : i G 1} in 1-1 correspondence with the set X. Define ip : B+ —> A+
by extending the map ipibf) = i G I. We call ip the representation mapping
since given any w G B+ the word wip G A+ represents an element of T.

We say that a mapping (p : £(A, T) —> B+ is a rewriting mapping if it satisfies
uxptp = w in S for all w G C{A,T). Note that this is not the same as saying that
wfip = w in A+. The map <p may be thought of as rewriting every w G C(A, T)
as a product of the given generators for T. Such a representation mapping always
exists since for each word w in C{A, T) there is a set of products in B+ that equal
w and we can choose one of them.

Theorem 7.14. [17, Theorem 2.1] Let S be the semigroup defined by a presen¬
tation (A\R), and let T be the subsemigroup of S generated by X = {£j : i G 1} C
A+. Introduce a new alphabet B = {6, : i G 1}, and let ip and f> be the represen¬
tation mapping and the rewriting mapping. Then T is defined by generators B
and relations:

where W\,W2 G C{A,T), u — v is a relation from R, and G A* are any
words such that W3UW4 G £(A,T).

If T is finitely generated then the set of relations (7.1) will be finite. The sets
of relations (7.2) and (7.3) will not, in general, be finite. A pictorial representation
of the theorem is given in Figure 7.3.

One problem with Theorem 7.14 is that it asserts the existence of a rewriting
mapping without actually constructing one. Also, the presentation it produces is
necessarily infinite even if T is finitely presented. The usefulness of the theorem
is that it may be used as a tool for finding finite presentations for subsemigroups
in various special circumstances. In certain situations it is possible to pin down
a specific rewriting mapping and then build a presentation with finitely many

relations from which all of the relations given in Theorem 7.14 may be deduced.
This approach has been used successfully in the past. For example, in the special
case where T is a two-sided ideal with finite Rees index a finite presentation may

be explicitly written down for T (see [17, Theorem 4.1]).

bi — fif, i G I

(wiW2)<f = (wi<f)(w2(j))
— (wzvwfjf)

(7.1)
(7.2)

(7.3)
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Figure 7.3: A diagram representing the Reidemeister-Schreier rewriting process
for semigroups. On the left the semigroup S is represented as the factor semigroup
A+ /t] and on the right the subsemigroup T is represented as the factor semigroup
B+/a. Here 77 is the smallest congruence on A+ containing R and cr is the
smallest congruence on B+ containing Q, where Q is the set of relations given
in Theorem 7.14. The "boxes" represent the 77- and a- classes of A+ and B+
respectively. The subsemigroup T is generated by the words W = {&: i € 1}
and the shaded areas on the left correspond to words in the subsemigroup of the
free semigroup A+ generated by W. Note that (W) C C(A, T) in A+ and C(A, T)
is just the union of the 77-classes of A+ that {W) intersects (in the picture this
is the union of the boxes that contain some shading). The words in {W) are
not quite in one to one correspondence with the words in B+ since the map ip
may not be injective (in the picture £3^4 = ^5^6 in A+ while 6364 and 6560 are
distinct in B+). Carrying out deductions on words of B+ using the relations
from Q we first use relations (7.2) to move to a word in the image of £(A,T)
under 4>. This may be thought of as a "bracket rearranging process". We then
mirror a sequence of deductions in A+, using relations from R, in the image of
A+ under <j>, using the relations (7.3). Finally we again use relations (7.2) to
move to the appropriate word within the target ip"1-class of B+. An example
of such a sequence of deductions is given by the directed path indicated in the
diagram.
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Proof of Theorem 7.2: bars and hats

We now begin the task of proving Theorem 7.2. We will use the Reidemeister-
Schreier theorem described above to construct a presentation for T from a given

presentation of S. This presentation will be of the form (B\Q) where B is finite
and Q is infinite. We then go on to prove that there exists a finite set of relations
V that all hold in T with the property that every relation of Q is a consequence

of the relations V. It will follow that T is defined by (B\T>) where B and V are

both finite.

Let S be the semigroup defined by the presentation ip = (A|9T) and let 77 be
the smallest congruence on A+ containing 91. Let T be a subsemigroup of S with
a finite boundary.

As before, fix a transversal 7Z of the 77-classes of A+ chosen so that every

w € 77 is a word of shortest length in its 77-class. For every w € A+ define
w = (w/rj) Pi 1Z: the fixed shortest length word in 7Z that equals w in S.

Define VI(A, T) C C(A, T) to be the set of words w such that every prefix of
w (with the exception of w itself) belongs to C(A,U1). We call VI(A,T)/rj the
strict right boundary ofT in S. Note that that strict right boundary of T in S is
a subset of the right boundary of T. In Section 7.3 we found a generating set for
T by multiplying the elements of the right boundary on the right by elements of
U. In fact, if we just take the strict right boundary and multiply on the right by
elements of U we obtain a generating set. This is the generating set with respect
to which we will write a presentation for T. Let SBr(A,T) = VI(A,T)/rj and
define

which is a generating set for T by exactly the same argument as in the proof of
Lemma 7.7.

We will now partition the elements of U into classes depending on how they
interact with T.

Definition 7.15. Choose a symbol 0 0 S and for each u G U define fu,9u '■

Xp = SBr(A,T)U1 n T

T U {0} -> T U {0} by:

if x € T, xu € T
otherwise,

if x 6 T, ux e T
otherwise.

Then, given a subset X of T and given u, v € U we write u v if and only if
fu \x= fv \x and gu \x= 9v fx- (Here fu fx denotes the map fu restricted to
the set X.)



Section 7.4 201

The relation ~x so defined is clearly an equivalence relation. Moreover, if
X is finite then, by Proposition 7.6, has finitely many equivalence classes.
Indeed, we have fu fx: X —> UX U {0} and gu fx: A —> XU U {0} and, by
Proposition 7.6, the ranges of both of these functions are finite. In particular,
since the generating set Xp is finite, the subset U has finitely many ~xp-classes.

Given w,u G C(A,Ul) we write w «x u if w/v u/v■ Again, this is
an equivalence relation. Let £ C C[A,Ul) be a set of smallest length word
representatives of the «xp classes. Clearly e G E.

We define the operation hat (w i—> w) on the words of C(A,Ul) by {in} =

(w/rj) Pi E and e = e. Note that any word in A* may be barred but only words
in £(A, U1) may be hatted.

The following lemma summarises several properties of the hat operation. Its
proof is an immediate consequence of the above definitions and discussion.

Lemma 7.16. The following properties hold:

(i) For u G £(A, U) we have |it| < |u|.

(ii) The set £ is finite.

(Hi) If 7 G £(A, Xp),u 6 £(A,U) and wy € C{A, T) thenwy = u-y.

(iv) If 7 € C(A, Xp),u E £(A, U) and qu € £(A, T) then ju = yu.

Proof (continued): representation and rewriting mappings

In this section we find a presentation for T. It will have infinitely many relations
and the rest of the proof will be devoted to reducing this infinite set to a finite
one.

The generating set Xp can be represented by the following set of words in A+\

{vu : v G VT(A,T),u G E,vu G C(A,T)}.

We construct a new alphabet B in one-one correspondence with these generating
words:

B = {bv,u : v G Vl(A,T),u G E,vu £ C(A,T)}.

This set is finite since A is finite and T has a finite boundary in S.
Let ip : B+ —> A+ be the unique homomorphism extending by^u h-> vu and,

using the terminology introduced earlier in the section, call this map the repre¬

sentation mapping. It has the property that for every w G B+, the words w and
wip G A+ represent the same element of S (and, of course, of T).
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Now define a map </> : £(A,T) —> B+ as follows. For w £ £(A,T) write
to = a/3 where a £ ^4+,/3 £ >1* and a is the shortest prefix of w belonging to

£{A,T): so a is the unique prefix of w that belongs to VT(A,T). Then (j> is
defined inductively by:

It is easy to see that for every w £ £(A, T) the relation wftif = w holds in S.
(But we usually have w<f>ip ^ w.) Using the terminology introduced earlier in the
section, the map 0 is a rewriting mapping.

It now follows from Theorem 7.14 that the semigroup T is defined by the
presentation with generators B and relations:

where v £ VI(A,T), u £ E, vu £ £(A,T), w\,W2 £ £(A,T), w^,W4 € A*,
(x = y) £ W3XW4 £ £(^4,T).

The set of relations (7.4) is finite since B is finite. The remainder of the proof
is concerned with proving that the relations (7.5) and (7.6) are all consequences

of a fixed finite set of relations D that we define below.

Before we do that, we state a lemma which gives a canonical decomposition
of words from £(A,T) that is compatible with the operation of <j>. The proof is
an immediate consequence of the definition of <j>.

Lemma 7.17. Let w £ £(A,T) be arbitrary. The word w can be written uniquely
as

w = a\... a.k-i°tkUk+i

where k > 1, ai,...,otk £ V1(A, T), a^+i £ £(A,U1) and a.kO-k+1 € £{A,T).
When applying the rewriting mapping we obtain:

if P#£(A,T)
if (3 £ C(A,T).

by,u
(wiW2)4>

(w^xw^cj)

(vu)4>

(w1(j>)(w2(l>)

(w3yw4)(p

(7.4)

(7.5)

(7.6)

w<f> = (ai<j>)... (a/c_1^)(afcQ/c+i)0 =

We call the words ai,..., «fc_i, ak&k+i the principal factors of w and when
we write w £ £(A,T) as ft]... ak-iOk^k+i we saY that it has been decomposed
into principal factors.
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Proof (continued): a finite set T> of relations

We use the fact that T has a finite boundary in S and that, by Proposition 7.6,
U2 D T is finite to define the following four numbers:

(i) Mb = max{p| : 7 G V1(A,T),6 G C(A, U1),^ G C(A,T)} (well defined
by Proposition 7.7);

(ii) Ms = max{|<r| : a G £} = max{|u| : u G C{A,UX)} (by Lemma 7.16 part
(ii));

(iii) Muu — max{|uu| : u, v G C(A,Ul),uv G C(A,T)} (by Proposition 7.6);

(iv) = max{|uu| : (u — v) G 91} (well defined since 91 is finite).

Let V be the set of all relations in the alphabet B which hold in T and have
length that does not exceed

N = 4(max{Me, Ms, Muu, M^} + 1).

In other words V = {(it,u) G B+ x B+ : \uv\ < N,utp = vip holds in S}. The
rest of this section will be spent proving the following theorem.

Theorem 7.18. The presentation (B\V) defines T.

Proof (continued): three technical lemmas

We now present three key lemmas that are used to prove Theorem 7.18.

Lemma 7.19. The relations (uv)<f> = (uv)cf> where u,v G C(A,U ) and uv G

C(A,T) are consequences ofD.

Proof. We proceed by induction on the length of the word uv. When |uu| < 2
the relation (uv)<j> = (uv)<f is in V since

\(uv)fi(uv)(f)\ = \{uv)<f\ + \(uv)<f \ < \uv\ + \v/v\ <2 + 2 = 4.

Now let u, v G C(A,Ul) where uv G C(A,T) and suppose that the result holds
for all u\,v\ G C(A,U1) with u\V\ G C(A,T) and |uiui| < \uv\. There are two
cases to consider depending on whether or not u has a prefix in C{A,T).

Case 1: u has a prefix in C(A,T). Write u = u'u" where v! is the shortest such
prefix. Since T is a subsemigroup, u G L{A,Ul) and v! G C(A,T) it follows that
u" 0 C(A,T). The case now splits into two subcases.
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Case 1.1: u"v 0 C(A, T). In this case (uv)4> is a single letter and (uv)(f> = (uv)4'
belongs to V since

\(uv)f(uv)(f)\ = 1 + \(uv)(f>\ < 1 + \uv\ < 1 + Muu-

Case 1.2: u"v G C(A,T). In this case since u",v G C(A, U1), u"v G C(A,T)
and \u"v\ < \uv\ we can apply induction giving

(uv)(f> = {u')(f>{u"v)(f> (by Lemma 7.17)
= (u')4>(u"v)4> (induction)
= (uv)4> (in V).

In the last step the relation (u')(f>(u"v)(t> = (uv)4> is in V since

|(u')(fi(u"v)(f) (uv)cf)\ = 1 + \{u"v)4>\ + \(uv)(f)\ < 1 + \u"v\ + |uu| < 1 + 2Muu-

Case 2: u has no prefix in C(A, T). First decompose uv = uf3\ ... PbPb+\ where
the principal factors are u/3i,/?2, • • •, Pb-i, PbPb+i- We follow the convention that
/always exists and fib+i may be the empty word. This case now splits into two
subcases.

Case 2.1: 6 = 1. In this case (uv)p is a single letter and (uv)4> = {uv)<f is in V
since it has length \{uv)f{uv)4>\ < 1 + \uv\ < 1 + Muu-

Case 2.2: 6 > 2. First note that since PbPb+1 £ £(A,T) and v 0 jC(A,T) it
follows that Pi ... Pb-i 72(^4, T). Then we have:

(•uv)4> = (uPi ... Pb-\PbPb+i)4>
= {upi ... pb-i)f(PbPb+i)4> (by Lemma 7.17)
= (upi ... Pb-i)p(PbPb+i)f (induction)
= (uv)4> (in V).

In the last step the relation {uP\ ... Pb-^PiPbPb+i)^ = (uv)4> is in V since

\(uPi ... pb-i)(f{PbPb+i)P{y^)4>\ = \(uPi ... Pb-i)4>\ + \(PbPb+i)<t>\ + \(uv)<t>\
< \(uPl ■ ■ ■ Pb-l)\ + 1 + |(wl,)| 1 + ZMuU

as required.
□
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Lemma 7.20. The relations (P^5)<f> — (P 75)0 where P £ C(A,U1),^ £

VI(A,T),5 £ jC(A,U1),-jS £ C(A,T) and PjS £ C(A,T) are consequences of
V.

Proof. We proceed by induction on the length of the word \PjS\. When \PjS\ < 3
the relation (075)0 = (0 75)0 is in V since

1(075)0(0 -y6)p\ < \P")8\ + \P\ + |7<51 < 3 + Ms + Mb.

Now let p £ £04, U1), 7 £ V1(A, T), 5 £ £04,Ul) and yS £ £04, T) where
075 £ C(A,T), and suppose that the result holds for 0i,7i,5i satisfying the
analogous conditions and with |0i7i5i| < |075|. First observe that if P is empty
then the relation becomes (75)0 = (75)(f> which has length |(75)0(75)0| < 1 + Me
and so belongs to V. When P is not empty there are two cases to consider
depending on whether or not P has a prefix in £04, T).

Case 1: P has a prefix in C(A,T). Let 0' be the shortest such prefix and write
P = P'P". Note that since P £ C(A, U1), 0' £ £(A, T) and T is a subsemigroup of
S it follows that P" £ £04, Ul). This case now splits into two subcases depending
on whether or not P"j5 £ C(A,T).

Case 1.1: P"y5 0 £(A,T). In this case (075)0 is a single letter and (075)0 =

(0 75)0 is in V since

1(075)0(0 j6)(j>\ = 1 + |(0 75)0| < 1 + \P 751 = 1 + |/3| + |7<5| < 1 + My, + Ms-

Case 1.2: P"yd £ £04, T). In this case we have:

(075)0 = (P'P"y5)<f>
= (P')p(p"'y5)(j> (by Lemma 7.17)
= (0')0(0" 7<5)0 (induction)
= (P 7^)0 (in V).

In the last step the relation (/3,)0(/?//7<5)0 = (0 75)0 is in V since

\(P')<i>(P" t5)0(/3 t5)0| = 1 + 1(^75)01 + 1(^75)01 < 1 + W' t5| + |0t5|
= 1 + |0"| + |t5| + |0| + |T5| < 1 + 2MS + 2MB.
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Case 2: (3 has no prefix in C(A,T). In this case we decompose:

@78 = /?7i... 7c+i<h • • • 8d8d+1

where the principal factors are @71,72, ■ ■ ■, 7c, 7c+i^i, ^2, • • •, 5d_i, 5d5d+i.
A few words of explanation are in order here. As usual, we think of the

principal factors as being obtained by reading the word @78 from left to right,
and writing successive prefixes that belong to VI(A, T), as long as the remaining
suffix is in C(A,T). Thus, /371 is the first such prefix, provided it is also a prefix
of (37. If the first such prefix is longer than (37 we take c = 0 and 7c+i = 71 = 7-

Also, 7C is the last of these prefixes which ends inside 7, and 7c+i is the rest of
7. Of course, it may happen that 7C ends at the last letter of 7, in which case

we take 7c+i = e. Furthermore, in this case, 78 is the final principal factor since
8 0 £(A, T) and so we take d = 0 and 8d+i = 81 = 8.

This case now splits into two subcases.

Case 2.1: d > 2. In this case, by the definition of <j>, we have

(@78)@ = (/?7<5I ... 8d_i)(t>(8d8d+i)4>.

This subcase now splits into two subcases depending on whether or not

781 ... 8d-1 G £>(A, T).

Case 2.1.1: 781 .. .8d-1 ^ C(A,T). Then since (3 0 £(A,T) we can apply the
previous lemma to give:

(@78)<f) = (/3781... 8d-i)(f>(8d8d+i)<j>
= (@7$i ■ ■ ■ ^d-i)HSd^d+i)(t> (by Lemma 7.19)
= 078)<f> (in©).

In the last step the relation ((3781 ... 8d-i)4>(8d8d+i)4> = 0 78)4> is in V since

K^i... 8d-i)<p{8d5d+i)(t>075)fi\ = \(@7si ■ ■ •^-1)01 + 1 + \01&)4>\
< \@7$\ ■■ + 1 + \P\ + Ml
< Mjju + 1 + MY, + MB ■

Case 2.1.2: 78\...8d_i € C(A,T). Then, since <5^5^+1 G C(A,T), 8 G C{A,Ul)
and T is a subsemigroup of S, we have <$1 ... Sd_i £ £{A, T) and so 781 ... 8d_\ G
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C{A,Xp) and we can apply induction giving:

(/?7S)cf> = (p-ySi ... 5d-i)<j>(6d6d+1)<j) (by Lemma 7.17)
= 0 7<5i ... 5d-i)4>(SdSd+i)<f> (induction)
= 0-y6)(j) (mV).

In the last step the relation ((3 ^8\ ... 5d-i)(/)(5d5d+i)(j) = (/? 7<5)<j> is in V since

\(/3 ^5i... 5d_i)4>(8dSd+1)(J)(p-yS)(f)\ = |(/3 7^ ... £d-i)</>| + 1 + |(/3 7^)^*1
< \(3\ + |7^i • • • 5d-i| + 1 + |/3| + |7<5|
< 2Ms + 2MB ~t~ 1.

Case 2.2: d E {0,1}. This subcase splits into two further subcases depending
on the value of c.

Case 2.2.1: c > 2. Since 7 E VI(A,T) no strict prefix of 7 belongs to C(A,T).
In particular we have 71... 7c_i E C{A, U1). Now we have:

(P^/S)4> = (/?7i ... 7c-i7c7c+i^)^
= (/?7i ... 7c-i)<^(7clc+i5)4> (by Lemma 7.17 and since c > 2)
= (/?7l • • • lc-i)4>(lclc+i5)4> (by Lemma 7.19)
= (/?75)(f) (in V).

I11 the last step the relation (/Tq ... 7c-i)<K7c7c+i^)^ = (/? 75)(j) belongs to T>
since

|(/?7i .. .7C-I)<K7C7C+I<5)<K/? "fS)4>\ = I(/?7i •. .7c_i)<£| + |(7C7C+I5)</>| + \{P 7^)01
< |/?7l •• -7c-l| + 2 + |/?| + |7<S|
< Mjju + 2 + Ms + Mg.

Case 2.2.2: c € {0,1}. In this case c € {0,1} and d E {0,1} and (3 has no prefix
in C(A,T). It follows that \((3j5)(f)\ < 2 and so (/3^5)<j> = ((3 78)<f> is in V since

\(PjS)<f>0 7<5)^| < \(f3j8)<j)\ + \ (fi j8)(j)\ < 2 + \P\ + |75| = 2 + + MB

as required. □

Lemma 7.21. The relations (a/3-y5)(f) = {a(3)cf)(^5)(f) where 0,7 E VT(A,T),
(3,5 E C(A,Ul),a(3 E C{A,T) and 7<5 E C(A,T) are consequences ofV.
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Proof. First note that if (3 is the empty word then, by Lemma 7.17, we have:

(aP"f5)(j) = (cvyS)# = a4>(jS)4> = {af3)4>{-y5)(j).

Now suppose that (3 is non-empty. There are two cases to consider depending on

whether or not (3j6 G C(A,T).

Case 1: (3^/8 0 £(A,T). In this case (a(3^5)4> is a single letter and the relation
(■a/3'yS)(f) = {a(3)(f){-y8)(j) is in V since

\(aP^6)cj)(a/3)(f)(^5)(f)\ = \(aP-yS)4>\ + \(a(3)(t>\ + |(7<$)<£| < 1 + 2Mb-

Case 2: (3j5 G C(A,T). In this case we have:

(a(3~f6)(f> = af>{(3^5)(j)
= a<j)((3 ^8)<f> (by Lemma 7.20)
= {aP)4>{l8)4>- (in V)

In the last step the relation a<f>((3 75)(f> = (a(3)(j)('y5)(f> is in V since

\a4>(J3 7<5)</>(Q:/3)0(7^)^| < \af>\ + \0 ^S)p\ + \(a/3)<j>\ + 1(7^)^1
< 1 + 0\ + |^| + 1 + 1
< 3 + \p\ + |t^| < 3 + Ms + Mb

as required. □

Completing the proof of Theorem 7.2

We now complete the proof by proving that the relations (7.5) and (7.6) are all
consequences of the fixed finite set of relations V.

Lemma 7.22. The relations (uqwf)4> = (w\)(j)(w2)<f) where tu1,102 G £{A,T) are

consequences ofV.

Proof. We proceed by induction on the length of the word w\W2- When |w\ to21 <
2 the relation (w\W2)(j) = (wi)f(w2)f is in T> since:

\{w\W2)<i>{wi)4>(w2)<i>\ = \{w\W2)4>\ + \w\<t>\ + \w2<t>\ <2 + 1 + 1 = 4.

Let wi,W2 G C(A,T) and suppose that the result holds for all w'x, w'2 G C(A,T)
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such that \w[w'2\ < \w\W2\. Now decompose the word W2'-

W2 = Pi ■ ■ ■ PbPb+1

where the principal factors are Pi, ■ ■ ■, Pb-\, PbPb+1- Now consider the following
prefixes of the word W\W2'.

£o = ^i, 6 = wiP\ - --Pi (2 < z < 6 — 1).

These words all belong to C(A, T) since they are products of elements of C{A, T).
There are two cases to consider:

Case 1: \CkP\ = 1 for all 0 < k < b - 1. In this case we can repeatedly apply
Lemma 7.21 to get:

(wi(j))(w2p) = (wi)p(PiP2 • • • Pb-\PbPb+l)P
= (wi )P(Pi)P(P2)P ■ ■ ■ (Pb-i)4>(PbPb+\)P
= (mPi)p(p2)P. ■. {Pb-i)4>{PbPb+i)P
= (wiPiP2)4>- ■ ■ {Pb-\)4>(PbPb+i)4>

= OiP1P2 ■ ■ ■ Pb-i)4>(PbPb+i)4>
= {W1P1P2... Pb-\PbPb+i)4>
= (w\W2)4>.

Case 2: > 1 for some 0 < k < b — 1. Let k be the smallest number such
that > 1. Decompose £& into principal factors:

& = 71 • • • 7c7c+l

where, since \^k4>\ > 1, we know that c > 2. Proceeding as in Case 1 we first
obtain

{wi4>)(w2<t>) = {W1P1P2 ■ ..Pk)P(Pk+1 • • -PbPb+l)<t>-
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This time we continue as follows:

Oi/?i/?2 • • • 0k)<f>(flk+i ■ ■ ■ PbPb+1)4>
= (71 • • • 7c7c+i)0(AH-I • ■ • A>A>+i)0
= (71)0(72 • • • 7c+i)0(/?jfc+i • • • PbPb+1)0 (by Lemma 7.17 and since c > 2)
= (7i)0(72 • • • Ic+iPk+l ■ ■ ■ PbPb+1)0 (induction)
= (7172-••7c+i/5fc+i-••^6+i)0 (by Lemma 7.17)
= (l/liW2)0

as required. □

Lemma 7.23. The relations (1113x1114)0 = (11131/1114)0 where 1113,1114 G A*,(x =

y) G fK and 1113x1114 G £(A,T) are consequences of T>.

Proof. We proceed by induction on the combined length of 1113x1114 and 11131/1114.

When \w3XW4W3yu>4\ = 2 the words 1113 and W4 are empty and the relation
(■1113x1114)0 = (11131/1114)0 belongs to V since

\(w3xw4)cf)(w3yw4)f\ = \(w3xw4)4>\ + \ {w3yw4)(j)\ < \w3xw4\ + \w3yw4\ < 2.

Let 1113, W4 G A*,(x = y) G and 1113x1114 G £(A,T) and suppose that the
result holds for all 1113,1114 and (x' = y') satisfying the analogous conditions where
\w'3x'w'4ui'3y'w'4\ < \w3xw4wsyw4\. There are two cases to consider depending on
whether or not 1113 has a prefix that belongs to £(A,T).

Case 1: 1113 has a prefix that belongs to £(A,T). Then write 1113 = 11131113 where
1113 is the shortest such prefix. This case now splits into two subcases depending
on whether or not 1113X1114 G £(A,T).

Case 1.1: 1113x1114 £ £(A,T). Then we also have UI3I/1114 0 £(A,T) and so

(1113x1114)0 and (11131/1114)0 are both single letters and the relation (1113x1114)0 =

(11131/1114)0 is trivial.

Case 1.2: 1113X1114 G £(A,T). Then we have:

(1113x1114)0 = (11131113X1114)0
= (1113)0(1113x1114)0 (by Lemma 7.17)
= (1113)0(11131/1114)0 (induction)
= {w3yw4)(j).
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Case 2: w3 has no prefix that belongs to C(A,T). In this case we decompose our

words into principal factors:

w3xw4 = ... Pb+ili ■ ■ ■ 7c+i, w3yw4 = w3fi[ ... fiv+il'i • • • 7c'+i

where x = (3\ ... (3b+1, V = ■ ■ -P'b'+i and principal factors of w3xw4 are
,/%»•••, fibi A>+i7i > 72> • • •; 7c—1 and 7c7c+i, and those of w3yw4 are w3(3[,

(3'2, ■ ■ ■ ,/3'b,, /%+17i, 72,. • •, 7c'—i and 7c'7c'+r There are two cases to consider
depending on the values of c and of d.

Case 2.1: c > 2 or c' > 2. If c > 2 we have:

03xu;4)(/> : (^3x71... 7c7c+i)<t>
= {w3x^i... 7c-i)0(7c7c+i)0
= {w3yi\ ■ ■ ■ 70-1)^(7070+1)^
= {wzyn ■ ■ ■ 7c-i7c7c+i)</>
= (w3yw4)(f>.

The case c' > 2 is dealt with analogously.

Case 2.2: c,c' G {0,1}. In this case first note that \(w3xw4)(j>\ — b + c <
Mm + 1. Likewise \{w3yw4)4>\ = b' + c' < M<r + 1 and we conclude that
\{w3xw4)fi{w3yw4)(j)\ < 2M94+2 and therefore the relation (w3xw4)4> = (w3yw4)(f>
belongs to V. □

7.5 Applications

In this section we list a number of corollaries of the main theorems of the chapter.
Recall that, given a semigroup S and a subsemigroup T of S the Rees index of T
in S is the cardinality of the set S \ T. If S \ T is finite we say that T has finite
Rees index in S.

Corollary 7.24. If S is finitely generated (resp. presented) andT has finite Rees
index in S then T is finitely generated (resp. presented).

Proof. By Proposition 7.5, T has a finite boundary in S and is therefore by
Theorems 7.1 and B finitely generated (resp. presented). □

This is in fact the more difficult direction of the main result of [82]. We remark
here that the proof of the finite presentability result given in [82] is incomplete.

(by Lemma 7.17)
(induction)
(by Lemma 7.22)
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We outline briefly here the nature of the problem and explain how to fix it directly,
without reference to Theorem 7.2.

Stage 2 of the proof of [82, Theorem 1.3] is concerned with proving that the
relation (a(3^)4> = (af3~/)<f> is a consequence of a suitably defined set of "short"
relations T>, for all words a, (3,7 such that a,/3,7 £ A* and (3 0 C(A,T). The
words a/Ty and a/37 are decomposed into principal factors as:

a/?7 — • • ■ QpQ'ipQp+lPlQ'ji ■ ■ ■ Pqdjqfiq+l'YlQ'ki ■ ■ • Tr&fcrbr-f 11

a/?7 = Qq&ij . . . lTl®mi • • • Tt^mtTt+l•

Here the notation is slightly different than in the previous section: each a-symbol,
except for a^r and amt, is the last symbol in its principal factor. Then six cases are
considered depending on the values of the numbers p, q, r, s and t. The problems
occur when either r = 0 or t = 0. For instance Case 6 deals with the situation

when p = r = t = 0. In this case the decompositions become:

a(37 = aifiiah ... (3qajq(3q+i71, a(3-y = oti(3[ah ... (3'sais(3's+

where the last principal factor in the first decomposition is (3qajq(3q+i^\ and in
the second decomposition is (3'sais(3's+l7J. The second step in the proof of Case 6
claims that the relation

(7r(e, a)dia527T)0 = (7r(e, a)(3 7[)(p

belongs to V. This is only true if both 71 and belong to C(A,U1) otherwise
we we have very little control over |tT| and |. In order to deal with the cases

where 71 £ £(A, T) or 7^ £ £(A, T) a new concept must be introduced.
Let a, [3 £ A* where a £ C(A, U1) and a/3 £ C{A, U1). Amongst all the words

(3\ with the property that a/?i = a/? in S let er(a, (3) be one of minimal possible
length. Now define the number

P* = max{|o"(a, (3)\ : a, a/3 £ C(A, H1)}.

Since T has finite Rees index in S this number is well defined. It gives a measure

of how far apart two elements of U can be in the right Cayley graph.
The definition of V must now be altered so that V also contains all relations

that hold in T and whose length does not exceed

Q* = max{5M + 4P + 3 + 2P*,7M + P + 4,4M + IV}.



Section 7.5 213

Now Case 6 splits into four parts depending on whether or not 71 or 7] belong
to C(A,T). Changing the proof, in each case, involves replacing occurrences of
71, when 71 £ C(A,T), in the original proof by a((3q+i, 71). Similarly, whenever
7] £ C(A,T) we replace 7] by a(P's+1,^[). So for example if 71 £ C(A,T) and
7] jL C(A,T) then the argument becomes:

(af37)0 = Mc ot)(3iah ... fiqajqfiq^x)fi
= (Tr(e,a)Piajl ... /3qajq(3q+1a((3q+i,
= (n(e,a)5iaS2cr(f3q+i,-yi))(J)
= (7r(e, ot)8\ ad2cr(/39+i, 7i))0
= (n(e,a)]3 j[) = (aPj)#.

Using exactly the same method one may also fix the proofs of Cases 4 and 5.
Our second corollary concerns subsemigroups of free semigroups.

Corollary 7.25. [18, Corollary 3.6/ If F is a free semigroup with finite rank
and I is a two-sided ideal that is finitely generated as a subsemigroup then I is
finitely presented.

Proof. We will show that I has a finite boundary in F. Let W be a finite gen¬

erating set for I. If w belongs to the right boundary of I then, writing w = w'a
where a is the last letter of w, the word w' belongs to F \ I. Since I is a right
ideal no prefix of w belongs to I and therefore w € W, a finite set. A similar
argument tells us that the left boundary is finite. Then I is finitely presented by
Theorem 7.2. □

In fact, in [18] a stronger result is proved: I must have finite Rees index in F.
In general, it is not true that ideals of finitely presented semigroups that are

finitely generated as subsernigroups are finitely presented. One such example is
given in [19, Theorem 3.1]. This example is in fact a semilattice of semigroups
where the semilattice in question is a two element chain. In other words, it has
the form S = T U I where I is an ideal. We can obtain a positive result for this
case if we introduce an additional hypothesis. If S = T U I (a disjoint union)
where T is a semigroup and I is an ideal then T acts naturally by left and right
multiplication on I. The orbits of these actions are the sets iT1 and Tli where
i £ I.

Corollary 7.26. Let S — T UI, a disjoint union, where I is a two-sided ideal of
S and T is a subsemigroup of S. If S is finitely generated (resp. presented) and
the cardinality of every orbit of I under the action of T is finite then I is finitely
generated (resp. presented).
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Proof. Since all the the orbits are finite it follows that properties (i) and (ii) of
Proposition 7.6 both hold. Also, since T is a subsemigroup of S clearly T2 fl I
is finite (in fact it is empty) so condition (iii) of Proposition 7.6 holds. It now
follows from Proposition 7.6 that T has a finite boundary in S and is therefore
finitely generated (resp. presented) by Theorem 7.1 (resp. Theorem 7.2). □

We also have as a corollary the following folk-lore result concerning subsemi-
groups with ideal complement.

Corollary 7.27. Let S be a semigroup with T a subsemigroup of S such that
S \ T is an ideal. If S is finitely generated (resp. presented) then T is finitely
generated (resp. presented).

Proof. For any finite generating set A of S the sets UA D T and AU D T are both
empty since U is an ideal. It follows that the boundary of T in S has no more

than |A| elements and so is finite. The result then follows from Theorem 7.1
(resp. Theorem 7.2). □

The next example shows that it is possible to have a chain K < T < S of
subsemigroups such that the boundaries of K in T and of T in S are finite while
the boundary of K in S is infinite. It therefore warns us against taking too far
the analogy between boundaries and other notions of index.

Example 7.28. Let S be the semigroup with underlying set

S = [N° x N° x N° \ {(0,0,0)}] U {0}

and multiplication that we describe below.
Define F : S \ {0} —► {1,2,3} where, for a G S \ {0}, F(a) is the position

of the first non-zero entry of the triple a (e.g. F(0,1,1) = 2). Also define
L : S \ {0} —> {1, 2, 3} where L(a) is the position of the last non-zero entry of a

(e.g. L(0,1,1) = 3). Now multiplication in S is given by:

{(:xi + x2,yi +V2,Zl + z2)if L(x1,y1,z1) < F(x2,y2,z2)
0 otherwise

and

(x, y, z) 0 = 0(x, y,z) = 0-0 = 0.

So for example (1, 2, 3)(4, 5, 6) = 0 since L(l,2,3) = 3 > 1 = 1^(4, 5,6). On the



Section 7.5 215

other hand (1, 2, 0)(0, 5, 6) = (1,7,6) since L(l,2,0) = 2 < 2 = 1^(0, 5,6). It is
routine to check that the multiplication is associative.

The semigroup S is finitely generated by the set A = {(1, 0,0), (0,1, 0), (0, 0,1)}
since for (x, y, z) G S \ {0} we can write

(x> y, z) — (1J 0,0)^(0,1, 0)y (0,0, l)2

and we generate 0 with (0,0,1)(1,0,0) = 0. In fact, S is defined by the presen¬
tation

(a, b, c, 0 | ba — 0, cb = 0, ca = 0, 02 = a0 = 0a = 60 = 06 = cO = 0c = 0)

where a, b and c correspond to the generators (1, 0, 0), (0,1,0) and (0,0,1), re¬

spectively. Let B = {(1,0,0), (0,1, 0), (0,1,1)}, C = {(1,0, 0), (1,1,1)}, T = (B)
and K — (C). Clearly K < T < S. We begin with a straightforward observation
concerning the elements of these subsemigroups:

T — {(x, y, 0) : x > 0, y > 0, x and y not both zero}

U{(x,y, 1) : x > 0,y > 1} U {0}

and

K = {(x, 0,0) : x > 1} U {(x, 1,1) : x > 1} U {0}.

Claim. The boundary of I\ in S is infinite.

Proof. We will show that B(A, K) in S is infinite. For all x > 1 we have (x, 1,0) 0
K. However (x, 1,0)(0, 0,1) = (x, 1,1) G K where (0,0,1) G A. Thus {(x, 1,1) :
x > 1} is an infinite subset of the boundary of K in S. □

Claim. The boundary of K in T is finite.

Proof. We will show that B(B,K) in T is finite. Let Q\ = {(x,y,0) : y > 1},
Q2 = {{x, y, 1) : y > 2}, and note that T\K = Q\ U Q2 U {(0,1,1)}. Next note
that every (x, y, z) G K has y < 1 so that the intersection of each of the sets

Q2B, BQ2, {(0,1,0),(0,1,1)}Q!, QiKO, 1,0), (0,1,1)},

{(0,1,1)}{(0,1,0), (0,1,1)}, {(0,1,0), (0,1,1)}{(0,1,0)}

with K is either empty or equal to {0}. Also

<?!{(!,0,0)} = {0} = {(0,1,1)}{(1,0,0)}
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by the definition of multiplication. Hence the right boundary is equal to

{(1)0,0), 0}.
For the left boundary we have

B(T \ K)1 n K = (P U (1,0,0)Qi U (1,0,0){(0,1,1)} U {0}) n K
= (BU{(r,i/,0) :x,y > 1} U {(1,1,1)} U {0}) n K
= {(1,0,0), (1,1,1), 0}.

We conclude that the boundary of K in T is equal to {(1, 0, 0), (1,1,1), 0}. □

Claim. The semigroup T has a finite boundary in S.

Proof. We will show that t3(A,T) in S is finite. Let Pi = {(x,0,1) : x > 0},
P2 = {(x,y,z) : z > 2} noting that S\T = PiUP2. Note that every (x,y,z) E T
has z < 1 and so the intersections of each of the sets

(0,0,i)Pi, Pi(0,0,1), p2a n r, ap2 n t

with t is either empty or is equal to {0}. In addition Pi(l,0,0) = Pi(0,1,0) =

{0} and so the right boundary is equal to {0, (1, 0, 0), (0,1, 0)}. For the left
boundary we have

aisxtfnt = (a U (1,0,0)Pi U (0,1,0)Pi) nt
= (A U {(or, 0,1) :x> l}u{(0,l,l),0})nr
= {(0,1,1), (1,0,0), (0,1,0),0}.

We conclude that the boundary of T in S is equal to {(1,0, 0), (0,1, 0), (0,1,1), 0}.
□

7.6 One sided boundaries

In §7.3 we saw that subsemigroups of finitely presented semigroups with only the
right (or left) boundary finite need not be finitely generated, never mind finitely
presented. This still leaves us with the question of whether finitely generated
subsemigroups of finitely presented semigroups, with only a finite right (or left)
boundary are always finitely presented. We now answer this question in the
negative.

Let M be a monoid and let 6 be an endomorphism of M. The Bruck-Reilly
extension of M with respect to 6 is the semigroup of triples N° x M x N° with
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multiplication defined by:

(m, a, n)(p, b, q) = [m — n + t, (a6t~n)(bQt~p), <7 — p + t)

where t = max(n,p). Bruck-Reilly extensions are an important class of infinite
simple semigroup. (For more details on Bruck-Reilly extensions see [57, Chapter
5].)

Proposition 7.29. Suppose that the Bruck-Reilly extension S = BR(M, 9) of a

monoid M is finitely generated and consider the subsemigroup T = {(0, a, n) : a G
M,n G N0}. Then the right boundary of T in S is finite, while the left boundary
is infinite.

Proof. Let U = BR(M, 6) \ T. Since

m — n + t = m — n + max(n, p) > m — n + n = m

it follows that U is a right ideal in BR(M, 9) and thus, by Proposition 7.5, the
right boundary of T in BR(M, 9) is finite.

Let X be a finite generating set for BR(M, 9). Since, by Proposition 7.3,
the finiteness or otherwise of the left boundary is independent of the choice of
generating set, we may assume without loss of generality that (0, ljWiO) G X.
For n G N we have:

(0,1M, 1)(1> s, n) = (0, s, n);

note that here (l,s,n) G U and (0, s,n) G T. Therefore, the left boundary of T
in S is infinite (and equal to the whole of T). □

Example 7.30. Let M be a non-finitely presented monoid which has a finitely
presented Bruck-Reilly extension S = BR(M,9). One possible choice for M is
the group defined by the presentation:

(a,b,c,d | a2 b2 = c2 d2 (i G N0))

where 9 : M —> M extends the map x9 — x2 for x G {a, b, c, d}. This example is
taken from [83, Proposition 3.3] where it was shown that M is finitely generated
but not finitely presented and BR(M, 9) is finitely presented.

Let T be as in the proposition and let N — {(0, o, 0) : a G M}. Clearly
N = M, N C T and T \ N is an ideal of T. Hence, by Corollary 7.27, T is not
finitely presented, although, it is finitely generated: any finite generating set for
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N together with the element (0, 1a/, 1) is a generating set for T. It now follows
from Proposition 7.29 that T has a finite right boundary.

7.7 Left and right independence

We have seen three situations where the right and left boundaries are both finite.
We also know that the right boundary may be infinite while the left finite and
vice-versa, consider the boundaries in the bicyclic monoid for example (see Fig¬
ure 7.2). The next proposition shows how any possible combination of left and
right boundary sizes is possible.

Proposition 7.31. Let S be the semigroup with set of generators A = {a}uBU
C U {0}, where B and C are finite alphabets, and relations R given by:

(Hi) S and T are both infinite;

(iv) T has infinite Rees index in S.

Proof. First we find a normal form for the elements of S. We claim that every
element of S may be written uniquely as a word from the set

N = {0} U {a* : i € N} U B U C U BC U CB U BCB u CBC U...a+.

If w £ {a1 : i £ N} then none of the relations of R may be applied to w and
w = u in S only if u = w. If u; = &ici&2c2 • • • bpcp then applying relations from R
to w must give a word of the form

allb\C\al2b2C2a13 ... alpbpcpalp+1

where ij £ N° for all j. If w = c06iCi62C2 • • • bpcp then applying relations from R
to w must give a word of the form

ab = b, ba = 0
ac = 0, ca = c

xO = Ox = 0

beB

c € C

x £ A.

Let T = (A \ a). Then:

(i) \Br(A, T)\ = |B| + 1;

(ii) \Bi(A,T)\ = \C\ + l;

CQallb\Cial2b2C2ahz ... alpbpcpalp+l
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where ij G N° for all j. If w = 61C162C2 ■ ■ ■ bpcpbp+i then applying relations from
R to w must give a word of the form

allbiCial'2b2C2Ci13 ... alpbpcpalp+1bp+i

where ij G N° for all j. Also, If w = C161C262 -.. cpbp then applying relations from
R to w must give a word of the form

c\anb\C2anb2C2,a13 ... atp~lbp^\cpalpbp

where ij G N° for all j. In particular if w has any of these four forms then w ^ 0
and w {a1 : i G N}. It follows from the observations above that if w,u £ N
with w ^ u then w ^ u in S, i.e. the words in N represent distinct elements.

Let w G A+. We have to show that using the relations from R the word w

can be transformed into one of the words from the set N. If w G N then stop.

Otherwise, if w contains the symbol 0, or has a subword from either of BA or

AC then applying relations we can transform w into 0. Also, for all 61,62 £ B
we have

6162 = 61062 = O62 = 0.

Similarly for all ci,C2 G C we have C1C2 = 0. Therefore, if w has a subword from
either the set BB or the set CC then applying relations we can transform w into
0. Otherwise w must belong to one of the sets:

a*BCa*BCa* ... a*BCa*

Ca*BCa*BCa* ... a*BCa*

a*BCa*BCa* ... a*BCa*B

Ca*BCa*BCa* ... a*BCa*B

and any powers of a may be removed from w by applying relations from R, thus
reducing w to a word from N.

Now that the normal forms have been established the rest of the proof is
straightforward. The semigroup S is infinite since the set N is infinite. The
subsemigroup T has normal forms

M = {0} U B U C U BC U CB U BCB U CBC U ... C A+

and is infinite since M is infinite. The Rees index of T in S is infinite since N\M
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is infinite. Computing the boundaries we have:

Br(A, T) = {ai:ie N°}A n T = B U {0},

Bt(A,T) = A{ai : i £ N°}nT = Cu{0}.

Therefore \Br(A,T)\ = \B\ + 1 and \Bt(A,T)\ = \C\ + 1. □

7.8 The converse: unions of semigroups

When defining the boundary B(A,T) it is essential to assume that S is finitely
generated. Therefore the converse of Theorem 7.1 is not a sensible thing to
consider. The converse of Theorem 7.2 may be formulated as follows. Let S be a

semigroup generated by a finite set A and let T be a subsemigroup of S. If T is
finitely presented and B(A, T) is finite then is S necessarily finitely presented? It
is not hard to see that the answer to this question is no in general. For example,
if S is any non-finitely presented semigroup that has a finite subsemigroup T then
T is finitely presented and has a finite boundary in S.

One interesting situation where the converse does hold is when the comple¬
ment of T happens to be a subsemigroup of S, i.e. when S is a disjoint union
of two subsemigroups. In general we can prove the following result when S is a

disjoint union of finitely many subsemigroups.

Theorem 7.32. Let S = IJie/ &i> a disjoint union, where I is finite and each
Si is a suhsemigroup of S. If each Si is finitely presented and has a finite right
boundary in S then S itself is finitely presented.

Proof. For each i £ / let Si be defined by the presentation (Ai\Ri). We will write
a presentation for S of the form (B\[ji€l Ri, R) where B = (Jig/ At and R is a
finite set of relations holding in S that we describe below.

Let i, j £ I with i f j. Consider the set of words w £ AJ such that there exists
some a £ B with wa £ C(B, Sj). Denote this set of words by Wr(i,j) C Af. Note
that the elements that the words Wr(i,j) represent may constitute an infinite
subset of S{. Let w £ Wr(i,j) and a £ B with wa £ C(B,Sj). Amongst all the
words w\ £ Af~ with the property that wa = w\a in S let nr(w, a) be such a word
of shortest length. So we have wa = TTr(w,a)a in S. Now define:

dr(i,j) — max{|7Tr(u;,a)| : w £ Af,a £ B,wa £ C(B,Sj)}

provided Wr(i,j) is non-empty; when Wr(i,j) is empty we define dr(i,j) = 0.
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The number dr(i,j) is well defined since B is finite and the boundary of Sj in S
is finite. Now define

/ = max{dr(i,j) : i,j G I,i ± j}

which is well defined since I is finite. For every word w G B+ let w G Afu..
be a fixed word such that w — w holds in S. Now let:

R = {(ru = w) : w G B+, \w\ < f + 2}.

Note that the relations wa = irr(w,a)a with \w\ < f + 1 are consequences of
Ue/fliUi2.
Claim 1. For every w G A^~ and every a G B there exists some u G A^U..
such that wa = u is a consequence of the relations R.

Proof. We prove the claim by induction on the length of the word w. If |iu| < /+1
then the relation wa = wa belongs to R and we are done. Now let w G Af with
|u;| > / T 1 and suppose that the result holds for all v G Asuch that |u| < |w|.
Write wa = w'w"a where \w"\ — f + 1. There are two cases to consider:

Case 1: w"a G Si. Then the relation w"a = w"a belongs to R. Now w' G Af
and w"a G A~f and so we can deduce

wa = w'(w"a) = w\w"a) G A^f

as required.

Case 2: w"a G Sj where j ^ i. Then the relation w"a = irr(w",a)a is a
consequence of [JieI Ri U R where |7rr(u;",a)| = / < / + 1 = \w"\ and so
\w'irr(w",a)\ < \w'w"\. Therefore we may apply induction to deduce:

wa — w'w"a = w'irr(w", a)a = u G Af U ... U A^
as required. □

Claim 2. For every w G B+ there exists u G A^ U ... U ^4^ such that w = u is
a consequence of the relations R.

Proof. We prove the claim by induction on the length of the word w. When
|to| < / + 2 the relation w = w belongs to R and we are done. Now let w G B+
with |tu| > / + 2 and suppose that the result holds for all v G B+ with |u| < \w\.
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Figure 7.4: Picture of a semigroup that is the disjoint union of finitely many

semigroups each with a finite boundary. It may be thought of as a patchwork
quilt with finitely many patches sewn together with a finite amount of thread.

Write w = w'a where a £ B is the last letter of w. By induction we can deduce
w' = u where u £ Af U ... U . By Claim 1 we can deduce ua = v where
v £ Af U ... U Ay^y It follows that we can deduce:

w = w'a = ua = v £ Aj1" U ... U

as required. □

Let w, v £ B+ such that w = v holds in S and w, v £ C(B, Si), say. Then there
exist w', v' £ Af such that the relations w = w' and v = v' are consequences of R.
Furthermore, the relation w' = v' is a consequence of the relations i?j. Therefore,
using the relations U»e/ U i? we may deduce w = w' = v' = v and, since w and
v were arbitrary, S is defined by the presentation (B\ Uie/ > ^

There is an obvious dual result where the left boundaries are all finite. Now

if we combine Theorem 7.32 with Theorem 7.2 we obtain:

Corollary 7.33. Let S be a finitely generated semigroup which can be decomposed
into a finite disjoint union s = Ue/ Si of subsemigroups with finite boundaries.
Then S is finitely presented if and only if all the Si are finitely presented.

Example 7.34. Let S\, S2,. ■ ■, Sm be finitely generated semigroups. Define a

semigroup
T = Si U S2 U ... U Sm U {0}

where all products of elements belonging to different Si equal zero. We call T the
0-disjoint union of S1,..., Sm. Each of the semigroups Si has a finite boundary
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in T, since they each have ideal complement. Also, the subsemigroup {0} is finite
and hence has a finite boundary. Therefore, T is a finitely generated semigroup
which can be decomposed into a finite disjoint union of subsemigroups with finite
boundaries. It now follows from Corollary 7.33 that T is finitely presented if and
only if all the Sj are finitely presented.

Note that the converse of Theorem 7.32 does not hold in general. For example
let A = {a, b},T\ = {aw : w € A*} and T2 = {bw : w & A*}. Then S = A+ is the
disjoint union of Tj and T2, both T\ and T2 have finite right boundaries in S but
neither of them is finitely presented (since they are not even finitely generated).

Without the restriction that the boundaries are finite Corollary 7.33 no longer
holds. For example, in [5, Example 3.4] an example is given of a non-finitely pre¬
sented semigroup S that is a disjoint union of two finitely presented semigroups.

7.9 Subsemigroups of free semigroups

Earlier in this chapter we saw an application of Theorem 7.2 to finitely generated
ideals of free semigroups with finite rank. We discuss a few other results relating
to boundaries of subsemigroups of free semigroups in this section. Let F = A+
where \A\ = r be the free semigroup of rank r.

Proposition 7.35. If I is a right ideal in F and I is finitely generated as a

subsemigroup then I has a finite right boundary in F.

Proof. Let IF be a finite generating set for I. Let w be on the right boundary
of I in F with respect to the generating set A. This means that we can write
w = ua where a € A, u € A+ and u is not in T. Since I is a right ideal we

conclude that 110 prefix of u belongs to T and therefore w G W. □

We know that subsemigroups of free semigroups can have finite boundaries
while having infinite Rees index. The next result tells us that the same is not
true for the ideals of F.

Proposition 7.36. A right (respectively left) ideal I of F has finite Rees index
if and only if it has a finite left (respectively right) boundary in F.

Proof. If the Rees index is finite then the boundaries are obviously finite. For
the converse, suppose that I does not have finite index in F. Let Y be an infinite
subset of F \ I and let w £ I be fixed. Then, since I is a right ideal, wY is an
infinite subset of I. Clearly this is only possible if the left boundary of I in F is
infinite. □
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This gives the following corollary which was originally proven in [18].

Corollary 7.37. If I is a two-sided ideal of F that is finitely generated as a

subsemigroup then I has finite Rees index in F.

Proof. Since I is a left ideal and is finitely generated, by Proposition 7.35, I has
a finite left boundary in F. Therefore I is a right ideal with finite left boundary
which, by Proposition 7.36, must have finite Rees index. □

There do exist examples of right ideals that are finitely generated but do not
have finite index. It was shown in [18] that right ideals of F that are finitely
generated as subsemigroups are finitely presented. The propositions above tell us

that finite boundary theory alone cannot be used to deduce this result. That is,
it is not true that every right ideal that is finitely generated as a subsemigroup
has finite left and right boundaries.

There is an interesting question here though. We know that if T is a subsemi¬
group of F and T has a finite right boundary then T need not be finitely generated.
For example given a G A the subsemigroup of all words {aw : w G A+} is not
finitely generated but has a finite right boundary. What happens if we force the
subsemigroup to be finitely generated? We saw in Proposition 7.29 that, in gen¬

eral, finitely generated subsemigroups with finite one-sided boundaries will not
be finitely presented. We will see below that for subsemigroups of free semigroups
they are.

Given a word w G A+ define

pref(ry) = {u : w = uv for some v G A*}

and for a subset X of A+ define

pref(X) = |^J pref(rc).
w£X

We call the set pref(X) the prefix closure of the set X. Given a subset X of
A+ we say that X is prefix closed if pref(X) = X and almost prefix closed if
pref(X) \ X is finite. Also, given w G A+ and n G {1,..., |ro|}. Then define
w(n) — ai ... an where w = a\ ... a|„,|.

The connection with subsemigroups with finite boundaries is given by the
following result.

Proposition 7.38. Let T be a subsemigroup of the free semigroup Fr of rank r.

Then T has a finite right (resp. left) boundary if and only if T is almost prefix
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(resp. suffix) closed.

Proof. Suppose that T is almost prefix closed. Let w G t3r(A,T) where |tc| = m.

Then w(m — 1) belongs to pref(T) \ T which is finite, because T is almost prefix
closed, and puts a bound on \w\. For the converse suppose that T is not almost
prefix closed. Then we can find arbitrarily long words w G F \T such that for
some u G A+ we have wu G T. This implies that we can find arbitrarily long
words on the right boundary which, since F is free, contradicts the assumption
that the right boundary is finite. □

Theorem 7.39. Let F be a free semigroup of finite rank and let T be a finitely
generated subsemigroup of F.

(i) If T has a finite right boundary in F then T is finitely presented.

(ii) If T has a finite left boundary in F then T is finitely presented.

Proof. We prove part (i). Part (ii) follows from a dual argument.
By Proposition 7.38 there exists some M G N such that for every w G T with

|ro| > M, and for every I > M, we have w(l) G T. Fix a finite generating set
W = {tui,..., wm} for T and let B = {6j,..., bm} be a new set of symbols in
one-one correspondence with the words in W. Given a relation

that holds in T we define its length to be

|wh ...wir| = \wjl ...wjs|.

Define

N = max{|ry| : w G W}.

We claim that T is defined by the presentation (B \ Q) where Q C B+ x B+ is
the set of all relations that hold in T and have length not exceeding MN.

Let (a = (3) G B+ x B+ be a relation that holds in T. We prove the result by
induction on the length of the relation a = (3. For the base case, if (a = /?) G Q
then we are done. Now suppose that (a = (3) Q and that every relation that is
strictly shorter can be deduced from the relations Q. Say

® — bi1 ... bir, (3 — bjx ... bjs
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Since a = (3 holds in T it follows that Wi1 ... wir = Wjl ... wjs in A+. Suppose,
without loss of generality, that \w^\ < \wj1\. There are two cases to consider
depending on the length of the word icq.

Case 1: |icq1 = \wj11. It follows that bq = bj1 and icq ... Wir = Wj2 ... Wjs and
so the relation bi2 ... bir = bj2 ... bjs holds in T and has length strictly less than
the relation a = (3. Therefore by induction we can deduce:

KK • • • bir = bjibi2 ... bir = bjxbj2 ... bjs.

Case 2: \wix\ < |Wj^\. Begin by writing Wj1 = Wi1£ so that Wi2...Wir =

(u>j2 .. .Wjs = w'. Since (a = (3) 0 Q it follows that \w'\ > M and w' G T.
By definition of M it follows that for every I > M we have w'{l) G T. It follows
that for some k < M we have Qw]2 ... Wjk G T. Therefore

|(wj2 ...WjJ = |C| + \wj2\ + ... + |wjk| <kN <MN.

We can, therefore, write it in terms of generators giving:

(wj2...wjk =wh...wtq.

The relation:

bjibj2 ■ ■ ■ bjk = b^bij .. ,biq

belongs to Q since it has length

| Wjl ... Wjk | < kN < MN.

Moreover, the relation

bi2bi3 ■ ■ - biT = bix ... biqbjk+1 ... bjs

holds in T and is deducible from the relations Q by induction since it has length

|wi2 ...wir\ < \wh ...wir\.

Therefore we may deduce:

bjibj2 ■ ■ ■ bjkbjk+1 ... bjs = 6jx6/j ... biqbjk+1 ... bjs = bi1bi2 .. ,biT

as required. □
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As an immediate corollary we have the following result:

Corollary 7.40. [18, Theorem 4-8] If R is a finitely generated right ideal of a

free semigroup S, then R is finitely presented.

So the finitely generated subsemigroups of Fr with finite one sided boundaries
provide a fairly large class of finitely presented subsemigroups of Fr. By no means,

however, does this set account for all finitely presented subsemigroups of Fr. For
example T = {ah) < {a, 6}+ is free, and hence finitely presented, but has an
infinite right and infinite left boundary in T.

Open Problem 9. Use the notion of boundary to "describe" the subsemigroups
of free semigroups that are finitely presented.

In [73] a finitely generated semigroup S isomorphic to some subsemigroup of
a free semigroup is called an F-semigroup. In this paper Markov proves that it
is decidable whether or not an F-semigroup has a finite presentation.
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8.1 Introduction

In the previous chapter the importance of the strict right and left boundaries
became apparent. In particular, strict boundary elements played a crucial role
when decomposing words from £(A,T) into principal factors. In this chapter we

investigate the strict boundary in more detail.
The chapter is structured as follows. In §8.2 we recall the definitions of

strict right and left boundaries given in the previous chapter and we provide
some motivation for their study. In §8.3 we consider generating sets of unitary
subsemigroups with finite strict boundaries and in §8.4 we consider presentations
of such semigroups and present the main results of the chapter. Finally in §8.5 we

give applications of the main results firstly to subgroups of groups and secondly
to maximal subgroups of completely 0-simple semigroups.

8.2 Preliminaries

We first recall the definitions of strict right and left boundaries that were given
in the previous chapter.

Definition 8.1. Let S be a semigroup generated by the finite set A and let T be
a subsemigroup of S. We call w € A+ a strict left boundary word of T in S with
respect to A if w € £(A,T) and no proper suffix of w belongs to £(A,T). Also,
we call w a strict right boundary word of T in S with respect to A if w G C(A, T)
and no proper prefix of w belongs to C{A,T).

We denote the set of strict right and left boundary words, respectively, by
SWBr(A,T) and SWBi{A,T).

Definition 8.2. The strict left boundary of T in S with respect to the generating
set A is SBi(A,T) = SWBi(A,T)9 and the strict right boundary is defined as

SBr{A,T) = SWBr(A,T)6. Moreover we define the strict two-sided boundary by
SB(A, T) = SBi(A, T) U SBr{A, T).

The first thing to observe is that SBi(A,T) C Bi(A,T) and SBr(A,T) C
Br(A,T). This inclusion may well be proper as we will see below.

Unfortunately the finiteness or otherwise of the strict right, left and two-sided
boundaries does depend on the choice of generating set.

Example 8.3. Let S — Z © Z2 which is generated, as a semigroup, by A =

{(1, 0), (—1, 0), (0,1)} and also by the set B = {(1,1), (—1,1), (0,1)}. Let T =
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The right Cayley graph
of S with respect to the
generating set B.

The right Cayley graph
of S with respect to the

_£> — 6^ 6^ 62 • • • generating set A.

Figure 8.1: The right Cayley graph of S with respect to the generating sets A
and B.

Z© {0}, a subsemigroup of S. We claim that SB{A, T) is infinite while SB(B, T)
is finite.

For all 61,62 G B we have 61 + 62 G T and so the strict (left, right and
two-sided) boundaries all equal to {(0,0), (—2, 0), (2, 0), (1,0), ( —1,0)}.

To see that SB(A, T) is infinite note that:

(0,1) + (1, o) + (1, 0) + ... + (1, 0) +(0,1) = (m, 0)
V

V '
m

belongs to SB(A, T) for all m G N.

This leads to the following definition.

Definition 8.4. We say that T has a finite strict left, right or two-sided boundary
in S if for some finite generating set A of S the sets SBi(A,T), SBr(A,T) or

SB(A,T), respectively, are finite.

The motivation for the study of strict boundaries came from considering cer¬

tain subgroups of groups. The main result of the previous chapter does not tell
us anything interesting when applied to groups. Indeed, if G is an infinite group

and H is a proper subgroup of G then, by Proposition 7.6(iii), H has a finite
boundary in G if and only if H is finite. On the other hand, if G is a group and
N < G such that the factor group G/N is a finite cyclic group then, as we will
see in Lemma 8.21, N has a finite strict boundary in G.

Words in subgroups of groups decompose into principal factors in a particu¬
larly "nice" way. Let G be a group generated, as a semigroup, by the finite set
A. Let H be a subgroup of G. Given a word w G A+ when we decompose it into
principal factors (as in Lemma 7.17) we obtain:

w — a 1 ... a/cOfc+i
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where o^ G SBr(A, H) for 1 < i < k and q^+i = e. This is because if otk+i £

C(A,G \ H) and ak G C(A,H) then ak&k+\ & H, contrary to assumption. It
follows that the strict right boundary of a subgroup is a generating set for that
subgroup. In the special cases when this strict boundary is finite we are able to
conclude that the subgroup is finitely generated. More generally than this, the
same is true for left and right unitary subsemigroups of arbitrary semigroups.

Definition 8.5. Let S be a semigroup with T a subsemigroup of S. Then T is
right unitary if

Vs G S, Vt G T, steT&seT;

and left unitary if

Vs G S, Vt G T, IsGTosGT.

The main aim of this chapter is to prove the following result and discuss a

couple of applications.

Theorem 8.6. Let S be a semigroup and let T be a left unitary subsemigroup
of S. If S is finitely generated (resp. presented) and T has a finite strict right
boundary in S then T is finitely generated (resp. presented).

There is an obvious dual result when T is right unitary and has a finite strict left
boundary.

8.3 Generating sets

Our first result concerns generation.

Theorem 8.7. Let S be a semigroup generated by the finite set A. Let T be a

left unitary subsemigroup of S. Then (SBr(A,T)) = T.

Proof. By Proposition 7.7 the subsemigroup T is generated by SBr(A,T)Ux DT.
Since T is left unitary it follows that:

SBr(A, T)Ul n T = SBr{A, T)nT = SBr(A, T).

Therefore, SBr(A, T) is a finite generating set for T. □

Corollary 8.8. Let S be a finitely generated semigroup and let T be a subsemi¬
group of S. Then:
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(i) if T is left unitary and has a finite strict right boundary in S then T is
finitely generated;

(ii) if T is right unitary and has a finite strict left boundary in S then T is
finitely generated.

Notice that, unlike in the the previous section, the strict boundary does form a

generating set for the subsemigroup. It is not true, in general, that subsemigroups
with finite strict boundaries are finitely generated.

Example 8.9. Let S = A+, where A = {a, 6}, and T — {a} Ua{a,6}*a, a

subsemigroup of S. Clearly T is not finitely generated since the elements abla
must all be included in any generating set. We have

SBfiA,T) = SBr{A,T) = {a}.

Therefore, T has a finite strict boundary in S but T is not finitely generated.
Note that T is not left unitary since a G T, bla 0 T but abla G T. Similarly T is
not right unitary.

8.4 Presentations

In this section we will prove the following result.

Theorem 8.10. Let S be a finitely presented semigroup with T a subsemigroup
of S. Then:

(i) if T is left unitary and has a finite strict right boundary in S then T is
finitely presented;

(ii) if T is right unitary and has a finite strict left boundary in S then T is
finitely presented.

We will go through an argument that is similar to the one given in the proof
of Theorem 7.2 of the previous section. This time, however, the decomposition
of words in C(A, T) is much less complicated and as a result the proof is more

straightforward than that of Theorem 7.2. It is also worth noting that Theo¬
rem 8.10 neither implies, nor is implied by, Theorem 7.2 of the previous section.

Let S be a finitely presented semigroup with T a left unitary subsemigroup
of S with a finite strict right boundary. Let A be a finite generating set for S
with respect to which T has a finite strict right boundary, and let = (-A|9t)
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be a finite presentation for S with respect to this generating set. Let 77 be the
smallest congruence on A+ containing 9b

We will use the generating set described in Theorem 8.7. Define

X = {v :v eTZn £(A, SBr(A, T))}

a set of shortest length word representatives of the elements of the strict right
boundary. Define a new alphabet in one to one correspondence with these gen¬

erating words:
B = {bv : v £ 1ln£(A,SBr(A,T))}.

Let if : B+ —> A+ be the unique homomorphism extending bv i—> v and call this
the representation mapping.

Now we define our rewriting mapping. For w £ £(A, T) write w = a/3 where
a is the shortest prefix of w that belongs to C(A,T). Since T is left unitary it
follows that (3 £ £(A,T). We can, therefore, define </> inductively by

( ba if (3 = e
wq> = <

I ba(P(f)) otherwise,

where bar is defined as in Chapter 7, §7.4. Note that it is necessary to bar words
in the above definition because it is possible that SWt3r(A,T) is infinite while
SBr{A, T) is finite.

Now by Theorem 7.14 it follows that the semigroup T is defined by the pre¬

sentation with generators B and relations

bv = vcf) (8-1)

{w\W2)4> = {wi(f>){w2<j)) (8.2)
(W3XW4 )(f> = {w3yw4)(f> (8.3)

where v £ 7Z n £{A, SBr(A, T)),w\,W2 € £{A, T),w3,1^4 £ A*, (x = y) £ R and
W3XW4 £ £(A, T).

The relations (8.1) are all trivial by the definition of <j>. We now prove that
the relations (8.2) are also all trivial.

Lemma 8.11. Let w £ £(A,T). Then w may be written uniquely as w =
... at where k > 1 and on £ £(A,SBr(A,T)) for all i. Moreover, this decom-
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position satisfies:

wp = (a i ... ak)p = (aifi)... (akp) = ... b^p.

Also, given w\,w2 £ C(A,T), where w\ and W2 decompose as a\...ak and
... Pi respectively, we have:

(wiw2)<j> = (ai . ..akPi . ..Pi)(f> = baY... baj:b^-... = {wxp)(w2p).

Proof. The first part follows directly from the definition of p. For the second part
let w\ and w2 be as in the statement of the lemma. It follows that a; £ SBr(A, T)
and Pi G SB{A, T) for all i. Then from the definition of p we have

(ai ... akPi ... Pi)p = {oi\p)... (akp)(Pip)... (Pip)

and the result follows. □

We now write a presentation for T.

Theorem 8.12. The presentation (B\Q) where

Q = {(u = v) £ B+ x B+ : |uu| < max{|a/?| : (a = P) £ 91}}

defines T. In particular, if 91 is finite then T is finitely presented.

As a consequence of the discussion above it is sufficient for us to prove the
following lemma.

Lemma 8.13. The relations (wav)p = (wfiv)p where w,v £ A* and (a = P) £ 91
are consequences of Q.

Proof. We prove this by induction on the length of the word wavwpv. When
\wav\ + \wPv\ = 2 we have \{wav)p{wPv)p\ = 2 = \aP\ and so, by definition, the
relation (wav)p = (wPv)p belongs to Q. Now suppose that the result holds for
all u',v' £ A* and (a' = /?') £ 91, satisfying the analogous conditions, such that
\w'a'v'w'p'v'\ < \wavwPv\. Decompose wav and wpv into principal factors:

wav = 7i..-7fc, wPv = 8\...8i.



236 Chapter 8, Strict boundaries and unitary subsemigroups

Case 1: |-/i| < |w|. Write w = 7i£ where C € A*. Then we have

(wav)4> = (71 (av)(p = 71 cf>((av)(j)
=

= (71 Cf3v)(j) = (wf3v)fi.

(Lemma 8.11)
(by induction)

Case 2: |7fc| < |u|. Write v = C,^k where £ £ A*. Then we have

(wav)fi ee (wa(jk)<t> = (waO^k^
= (wfit
ee (wP(-fk)(p = (w(3v)(j).

(Lemma 8.11)
(by induction)

Case 3: |<5i| < |to|. Exactly the same argument as in Case 1.

Case 4: |<5/| < |u|. Exactly the same argument as in Case 2.

Case 5: I711 > |iu|, |<5i| > \w\, \^k\ > M and |<5;| > |u|. It follows that
172 - - - 7A;—11 < |o:| — 2 and that |^2 ... <5/_i | < \f3\ — 2. Therefore k < |a| and
I < \/3\. In particular \{wctv)4>(w(3v)ct)\ = k + I < |a/?| and so (wav)cf> = (w/3v)(f)
belongs to Q. □

In order to prove the dual result we decompose words into principal factors
from right to left rather than from left to right. This completes the proof of
Theorem 8.12.

The condition that the subsemigroup is left unitary cannot be removed. We
saw in Example 8.9 that S can be finitely presented and have a subsemigroup
T that has a finite strict boundary but is not finitely generated. Also, if S is
finitely presented, T < S is finitely generated and T has a finite strict boundary
it is not necessarily true that T is finitely presented. To see this we consider
subsemigroups of free semigroups.

Lemma 8.14. Let S = A+ where A is a finite alphabet and let T be a sub-
semigroup of S. If T is finitely generated then T has a finite strict boundary in

Proof. We will show that SB(A,T) is finite. Let B C A+ be a finite generating
set for T. Let w £ SBr(A,T). Write w = pi ... fik where fii £ B for all i. Since
no strict prefix of w belongs to T it follows that k = 1 and w £ B. By a dual
argument it follows that SBfiA,T) C B. Therefore SB(A,T) C B is finite. □

S
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Example 8.15. Let T be a finitely generated and non-finitely presented subsemi-
group of the free semigroup S = A+, over a finite alphabet A (see Example 7.12
for example). Then T has a finite strict boundary in S by Lemma 8.14. On the
other hand, since T is not finitely presented, it cannot have a finite boundary by
Theorem 7.2.

Combining Lemma 8.14 with the presentation given in Theorem 8.12 we re¬

cover the following well known fact.

Corollary 8.16. Finitely generated right or left unitary subsemigroups of free
semigroups are free.

In fact, a more general result than this is known. In Chapter 7 of [57], which
is on the subject of codes, Proposition 7.2.1 states that a subsemigroup T of A*
is free if and only if

(\/w G A+)[wT fl T 7^ 0 & Tw PIT ^ 0] =>• w G T.

In particular, left and right unitary subsemigroups satisfy this condition. This
result is originally due to Schutzenberger; see [86].

Of course, in general left and right unitary subsemigroups of finitely gener¬

ated (presented) semigroups need not be finitely generated (presented). Consider
subgroups of groups for example. We also have the following example.

Example 8.17. Recall the bicyclic monoid, introduced in Example 7.4. It is an

inverse semigroup and so its idempotents form a subsemigroup. The subsemi¬
group of idempotents of this inverse semigroup is both left and right unitary.
In fact this semigroup is an E-unitary inverse semigroup so this must be the
case. This subsemigroup is isomorphic to an infinite semilattice (in fact an infi¬
nite chain) which is clearly not finitely generated. Both the left and right strict
boundaries of E in B are infinite (see Figure 7.2).

8.5 Applications

Subgroups of groups

Since the original motivation for studying the strict boundary in more detail came

from considering subgroups of groups we revisit them here. We begin with a result
that compares the left, right and two-sided strict boundaries of a subgroup.
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Proposition 8.18. Let G be a group generated, as a semigroup, by a finite set
A. Let H be a subgroup of G. Then:

SBfiA, H) = SBfiA, H) = SB{A, H).

Proof. Let h G SBr(A, H). Write h = a\... = w such that no strict prefix of
w belongs to H. For all r G {2,... , k} we have

ar ... cifc = (ai ... ar_i)-1h 0 H

since ai...ar_i £ H which implies that (ai ... ar_i)_1 qL H. Therefore, h G

SBfiA, H) and so SBr(A, H) C SBfiA, H). Similarly SBfiA, H) C SBr(A, H)
and the result follows. □

As a result we need only speak of the strict boundary of H in G with respect
to A. Example 8.3 tells us that, even for groups, the finiteness of the strict
boundary may depend on the choice of the generating set A.

In an ideal world, whenever G is a finitely generated group and H a sub¬
group of G with finite index the strict right boundary of H in G would be finite.
Unfortunately, this is not the case.

Proposition 8.19. Let N = Z, H = Z2 ©Z2 and let G = N © H = Z © Z2 © 'Li-
Then for any finite generating set A of G the strict boundary of N in G, with
respect to A, is infinite.

Proof. Let A be a finite generating set for G. Since A generates G there is some

(x,y,z) G A with x 7^ 0 and some (a, b, c) G A such that (b,c) (y,z) and
(6, c) ^ (0,0). Define the following word in these generators:

w2k = (a, b, c) + (x,y,z) + ... + (x, y, z) +(0, 6, c).
2k

We have w2k € N since

w2k = (2(a + kx), 2(6 + ky), 2(c + kz)) = (2(a + kx), 0, 0) G N.

We claim that w2k & SWBr(A,N) and as a consequence that w2kd G

SBr(A, N) = SB(A, N). First note that (a, 6, c) 0 N since (6, c) (0,0). Now
let I G {1,..., 2k} and consider the word:

vi = (a, 6, c) + (x, y, z) + ... + (x, y, z) = (o + Ix, b + ly,c + lz).
V

V '
I
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If I is even then b + ly = b (mod 2), c + lz = c (mod 2) and since (b,c) ^ (0,0) it
follows that vi N. On the other hand, if I is odd then b + ly = b + y (mod 2),
c + ly = c + z (mod 2) and since (b, c) (y, z) then either b ^ y, which means

that b + y = 1 (mod 2), or c ^ z, in which case c + z = 1 (mod 2). In either case
we conclude that vi ^ N.

It follows that for all k £ N the element kd £ SI3(A, H). □

In the example above N has index 4 in G but the strict boundary of N in G
is infinite. One simple situation where we may obtain a positive result is given by
the following lemma. Before stating the lemma we need the following definition.

Definition 8.20. Let G be a group and let H be a subgroup of G. Then

Core(fL) = f| gHg~l.
geG

Core(H) is a normal subgroup of G and it is well known that if H has finite
index in G then so does Core(iL).

Lemma 8.21. Let G be a finitely generated group with H a subgroup of G. If
G/Core(H) ^ Zm for some m £ N then H has a finite strict boundary in G.

Proof. If Core(lL) = G the result is trivial. Otherwise let C be a coset of Core(H)
in G that corresponds to a generator of G/Core(H). It follows that (C) = G and,
since G is finitely generated, there is a finite subset B of C that generates G.
Then the strict right boundary of Core(H) in G with respect to B is finite since
any product of generators of C of length m must belong to Core(lL). □

The example given in Proposition 8.19 also answers the question of whether
or not having a finite strict boundary is a transitive property for subgroups of
groups. If we define K = Z © Z2 © {0} and let N and G be as in the proposition
then it is clear that N < K < G. Moreover, the index of K in G is 2 and the
index of N in K is 2. It follows from Lemma 8.21 that N has a finite strict

boundary in K and that K has a finite strict boundary in G. Thus the property
of having a finite strict boundary is not a transitive one, not even for groups.

This leads to the following question.

If G is a finitely presented group with H a subgroup of G with finite
index, then can we always construct a finite chain of subgroups

G = K0 > I<i > • • • > Km = H
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such that Ki has finite strict boundary in for all i?

We provide a partial answer to this question here. A group is soluble if it has
a normal series such that each normal factor is abelian, and a group is polycyclic
if it has a normal series such that each normal factor is cyclic. It is well known
that a finite group if soluble if and only if it is polycyclic (i.e. every finite soluble
group has a subnormal series with cyclic factors; see [80, 5.4.12.]).

Proposition 8.22. Let G be a finitely generated group with N a normal subgroup
of G. IfG/N is a finite soluble group then there exists a finite chain

G = Kt> ...> K0 = N

such that the strict right boundary of Ki in Ki+\ is finite for all i.

Proof. We prove the result by induction on the index of N in G. When [G :

jV] = 2 we have G/N = Z2 and the result follows from Lemma 8.21. Now
suppose that the result holds for all groups G' with normal subgroups N' such
that [G' : N'] < [G : N] and G'/N' is finite and soluble. Since G/N is finite and
soluble we can write:

G/N = L0 > Li > ... > Lk = {1}

where Lj/Lj+i is finite and cyclic for all i. By the correspondence theorem there
exist groups:

G = K0 > Kx > ... > Kk = N

such that Ki/N = Li for all i. Also, since L\ < Lq = G/N it follows that
K\<Kq = G. By construction we have K\/N = Li. Note that [K\ : N] < [G : N]
and K\/N is soluble so we can apply induction. By induction there is a chain:

K\ = H0 > Hi > ... > Hi = N

such that Hi+\ has a finite strict boundary in Hi for all i. By the third isomor¬
phism theorem we have:

G<K> - WJN = L°/L'
where Lq/L\ is a finite cyclic group. If follows from Lemma 8.21 that K\ has a
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finite strict boundary in G. Therefore the chain:

G = G0 > Ki > Hx > H2 > ... > Hi = N

has the property that each group has a finite strict finite boundary in the previous
one. This completes the inductive step and the proof of the proposition. □

We leave the general question as an open problem.

Open Problem 10. Let G be a finitely generated group with N a normal
subgroup of G. Prove that if N has finite index in G there is a finite chain:

G = K0 > K\ > ... > Kr = N

such that Ki+\ has a finite strict boundary in K{ for all i.

Subgroups of completely 0-simple semigroups

In Chapter 2 we undertook a fairly detailed analysis of the generating sets of finite
completely 0-simple semigroups. It is obvious, using ideas from those chapters,
that for S = Ai°[G] /, A; P] to stand a chance of being finitely generated, both
I and A must be finite. Furthermore, if G is finitely generated and I and A are

finite then S is obviously finitely generated. What about the converses? These
questions were considered in [6] where it was shown that S is finitely generated
(resp. presented) if and only if I and A are finite and G is finitely generated
(resp. presented). In this subsection we will recover one direction of this result
as an application of Theorem 8.10.

Our approach is as follows. Given a finitely generated completely 0-simple
semigroup S — _M0[G; I, A; P], where I and A are finite, we will show the ex¬

istence of a subsemigroup T of S that is right unitary, has a finite strict left
boundary in S, and has a subgroup H isomorphic to G that is left unitary in T
and has a finite strict right boundary in T. It then follows from Theorem 8.10
that if S is finitely presented then T is finitely presented and so G is finitely
presented.

Let S = M°[G] I, A; P] where I = {1,..., m}, A = {1,... , n} and where P
has been normalised (using Theorem 2.54) so that every non-zero entry in the
first row and first column is equal to 1, and so that pn = 1.

Proposition 8.23. Let S be a completely 0-simple semigroup. Let R and L be
a non-zero LI- and C-class, respectively, of S.
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(i) The union of group TL-classes of S that intersect R is a right unitary sub-
semigroup of S.

(ii) The union of group TL-classes of S that intersect L is a left unitary sub-
semigroup of S.

Proof. We prove part (i) only. Part (ii) may be proven using a dual argument.
Let se5\T and let t € T. There are three possibilities to consider.

Case 1: s = 0. In this case st = 0 which is not in T.

Case 2: s / 0 and Ls fl T = 0. In this case st = 0 which is not in T.

Case 3: s / 0 and LsnT ^ 0. Then st belongs to the same 7£-class as s which
means that st T.

It follows that T is right unitary in S. □

By exactly the same argument we have:

Proposition 8.24. Let S be a completely simple semigroup. Let R and L be a

non-zero 1Z- and C-class, respectively, of S. Then R and L are right and left
unitary subsemigroups, respectively, of S. □

We now want to show that these subsemigroups have finite strict left or right
boundaries in S. In order to do this we will give a method for transforming an ar¬

bitrary finite generating set of S into one with respect to which the subsemigroup
R (or L) has a finite strict boundary.

Lemma 8.26. If A C S generates S and p\\ — 1 then f(A) — (Jag/1 /(a)
generates S.

Proof. Since (i, 1,1)(1, g, A) = (i, lg, A) = {i,g, A) it follows that A C (f(A)) and

Definition 8.25. Define / : S —> V(S) by

/( ) =
{(«,£?, A)} if i = 1

{(1, g, A), (i, 1,1)} otherwise.

so (f(A)) D (A) = S. □

Lemma 8.27. Let A be a finite generating set for S. Let T = {(1,(7, A) : g £

G,p\i = !}• Then the strict left boundary ofT in S with respect to f(A) is finite.
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Proof. It is immediate from the definitions that every element in SBi(f(A),T)
has the form

(l,5fc, A)(ifc_i, 1, l)(«fc-2) 1,1) • • • (h, L1)

where ij 1 for all j. Now we have

(l,gk, A)(ifc_i, 1,1)... (ii, 1,1) = (l,9kP\ik^Puk.2 ■ • -Piul, 1) = (l,5fcPAifc_!, !)■

We conclude that SBi(f(A),T) C {(1, 5PA,i> 1) : 5 G m(f(A)),i € /, A € A} which
is a finite since f(A) is finite and I and A are both finite. Here m(f(A)) denotes
the set of middle components of the set f(A) which is a subset of G. □

Now we do the same thing but for H\\ inside T. first we define the dual of
the function /.

Definition 8.28. Define f'\S—y V(S) by

/'( (i,9, A) ) =
{(b5,^)} if A = 1

{(1, g, A), (1,1, A)} otherwise.

In the same way as in Lemma 8.26 if A generates T then f'(A) generates T.
Let H\\ be the H-class H\\ = {(1,5,1) : g € G}. It is a group since p\\ = 1 by
assumption.

Lemma 8.29. The subsemigroup H\\ is left unitary in T and if A is any finite
generating set for T then Hn has a finite strict right boundary in T with respect
to the generating set f'(A).

Proof. For the first part let h € H\\ and let t G T\Hu. Then ht is in the £-class
of t in T and so does not belong to Hn.

For the second part consider an arbitrary element of SBr(f'(A), H\i) in T.
It can be written as

(1) 1> A:)... (1,1, gk, 1)

where Aj 1 for all j. Now we have

(1,1, Ai)... (1,1, Afc_i)(l,0fc, 1) = (l,PA!iPA2i • --Px^igk, 1) = (1,9k, 1).

Since f'(A) is finite it follows that the strict right boundary of H\\ in T is
finite. □

From these results we can conclude the following.
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Theorem 8.30. Let S be a completely 0-simple semigroup with finitely many

7Z- and C- classes. Let G be the unique non-zero maximal subgroup of S. If S
is finitely generated (resp. finitely presented) then G is finitely generated (resp.
finitely presented).

Proof. Let G be a maximal subsemigroup of S. Let T be the union of the group PC-
classes that intersect the 7?.-class of G. Then by Proposition 8.23 and Lemma 8.27
the subsemigroup T is right unitary in S and has a finite strict left boundary in
S. By Lemma 8.29 the subsemigroup G is left unitary in T and has a finite strict
right boundary in T. The result now follows by applying Theorem 8.10. □

We conclude this chapter by mentioning that in [83] a much more general re¬

sult than the one above was proven. It was shown that if S is a regular semigroup
with finitely many 1Z- and T-classes then S is finitely presented if and only if all
of its maximal subgroups are finitely presented.
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