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Abstract

Building models for wildlife populations is a vital part in the advancement of
scientific understanding of the natural world we inhabit. However, most wildlife

populations are not randomly distributed in space; models must account for spatial
structure to avoid erroneous judgements and predictions. Furthermore, the dynamics
of wildlife populations are generally determined by complex, non-linear processes

that are strongly affected by stochasticity; our observations on these populations are

seldom made without error. The state-space approach to wildlife modelling, which
can incorporate all these facets, was utilised in this thesis.

This work examines the spatial population dynamics of the British grey seal

(.Halichoerus grypus) using genetic, photo-identification and abundance data.
Microsatellite DNA data examined for this species revealed genetic differentiation
between colonies from different regions around the British Isles, but approximate

panmixia among the four main breeding colonies in the North Sea region. The
remainder of this thesis was devoted to building spatially-explicit models for grey

seals breeding at the four colonies in this region.

One of the most difficult problems in developing spatially-explicit models of

population dynamics is the validation and parameterisation of the movement process.

I demonstrate how movement models derived from a multisite capture-recapture

analysis of photo-identification data can be improved by incorporating them into a set

of spatially-explicit state-space metapopulation models, which are then fitted to a time
series of abundance data.

The best fitting state-space model had only a single movement parameter. The
variance associated with this parameter was greatly reduced compared to that
obtained from the capture-recapture study. There was some support for a model that
included the effect of distance between colonies on movement rates. Predictions of

future colony sizes made using these models demonstrated that the incorporation of
movement and the way in which it was modelled affected both local and regional

dynamics.
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Chapter 1

General Introduction

The major cause of the worldwide decline in biodiversity is probably the

anthropogenic destruction and fragmentation of natural landscapes (Gaggiotti et al.
2004; Hanski 2005). It is therefore vital for conservation of species that we

understand their spatial dynamics. However, as it is not possible to collect data on all
the worlds' species, we must select some for intensive study and use them as model

systems with which to acquire a baseline of information (Ehrlich & Hanski 2004).
The grey seal is one species that has been studied extensively and for which large
datasets have been compiled. In this thesis I have used genetic, photo-identification

(photo-ID) and abundance data to better understand the spatial structure of this

species.

1.1 Pinnipeds and the grey seal

Pinnipeds are a group of marine mammals that descended from a common terrestrial
carnivore ancestor (probably bear or otter-like) some 25 million years ago (Boness &
Bowen 1996). They include 33 extant species of seals, sea-lions and walruses, making
them the most numerous group of marine mammals within the order Carnivora. The
most diverse pinniped family is the Phocidae, or true seals, with 18 extant species

(Brownell, Ralls & Perrin 1995). It is to this family that the focal species of this thesis
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- the grey seal, Halichoerus grypus (meaning "hooked-nose pig of the sea")

(Fabricius 1791) - belongs.

The grey seal is conveniently divided into three distinct populations: the north-west
Atlantic (the largest population); the north-east Atlantic; and a relatively small

population in the Baltic. No mixing is believed to occur between these populations

(Allen et al. 1995). Grey seals, like other pinnipeds, spend most of their time at sea

foraging for food. During this time they disperse over a wide area, potentially

travelling thousands of kilometres (McConnell et al. 1992; Hammond et al. 1993), but

they require solid substrate (land or ice) on which to give birth. Females have

spatially and temporally synchronized reproduction (Boyd 2002): an annual cycle
which offers a predictable opportunity for males and females to interact (Brown, Beck
& Austin 2002).

The grey seal has a world population of around 300,000 individuals, 40% of which
breed around the British Isles (SCOS 2004). The total number of pups born at British
colonies has grown steadily since the 1960s, when records began (Harwood & Prime

1978). The breeding season for British grey seals is during September-December
when each breeding female gives birth to a single white coated pup. This white coat is
known as the lanugo (Figure 1.1) and is shed after the pup has been suckled for

approximately 18 days (Hall 2002). The lanugo makes pups very visible from the air
and the Sea Mammal Research Unit (SMRU), based at St Andrews University,
conducts annual aerial surveys of the major breeding colonies in Britain to determine
the number of pups produced there (Duck 2004). This pup production data can be
used in population dynamics modelling for this species (as in chapter 5 of this thesis).

Furthermore, pups remain on the breeding colonies while they are nursed by their
mothers and for a further 10 to 28 days post-weaning (Hall 2002), so that the
collection of small tissue samples from them is relatively straightforward. DNA can

then be extracted from this tissue and used in population genetics analyses for this

species (as in chapter 3 of this thesis).
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Figure 1.1 Grey seal pup showing partial moulting of its white coat, known as the lanugo,
around the head and flippers (photograph taken by SWT/NTS Ranger, Kevin Rideout)

Females aggregate during the breeding season on small islands and coastal beaches.
This favours the evolution of male mating strategies that involve competition for
access to large numbers of oestrous females (Boness & Bowen 1996), potentially

leading to high levels of polygyny. This provides an opportunity for sexual selection
to act on male body size, because large males are likely to be better able to defend
access to large numbers of females or to stay ashore for longer periods. Indeed,
mature male grey seals (weighing 170-310kg) are much larger than mature females

(weighing 100-190kg) (Hall 2002). Another difference between the sexes is the colour
and markings on their pelage. Males have a relatively uniform dark pelage, whereas
females have a light background pelage colouration with dark markings (Figure 1.2).
The markings of females are often very distinctive and allow them to be individually

recognised and "marked" for capture-recapture (CR) analysis using photo-ID (see

chapter 4 of this thesis).
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Figure 1.2 An adult female grey seal showing the typical light pelage colouration with
individually identifiable dark markings (photograph taken by Philip Harrison).

1.2 Metapopulation dynamics

The colonial aggregations of female grey seals during the breeding season can be used
in spatially-explicit modelling for this species. Ideally, for such modelling, we must

take account both of processes that occur within aggregation (e.g. birth and death) and
between them (e.g. movement and colonization) (Thrall, Burdon & Murray 2000).
The metapopulation approach (Hanski & Simberloff 1997; Elmhagen & Angerbjorn

2001; Hanski & Gaggiotti 2004) provides a conceptual tool which allows both sets of

processes to be modelled in a single framework. The term "metapopulation" was

coined by Levins in 1969 and his classical metapopulation concept applies to a spatial
structure in which: (1) individuals spend the majority of their time within their own

aggregations; (2) individuals only occasionally move between aggregations; (3) the

dynamics of aggregations are asynchronous: and (4) aggregations are prone to

extinction, but the space they occupy can be recolonized (i.e. there is population

turnover). In a metapopulation, the dynamics of any one aggregation cannot be

completely understood without reference to the entire ensemble of aggregations

(Stacey, Johnson & Taper 1997).



Real world metapopulations are unlikely to conform strictly to these four conditions,
let alone Levins' original assumptions that all aggregations are equal in size and

degree of isolation. However, the only critical requirement for a metapopulation is
that aggregations are discrete but connected by migration. If this is not the case, then a

metapopulation framework is inappropriate (Hanski & Simberloff 1997).

Grey seal colonies meet all the assumptions for a metapopulation: (1) studies of seals
"marked" by hot-iron branding have shown high site fidelity in both sexes at one

colony (Pomeroy et al. 1994, Twiss et al. 1994); (2) studies of adult female seals
"marked" by photo-ID have shown that females occasionally move between colonies
in the North Sea (see chapter 4); (3) the UK grey seal colonies show diverse dynamics

(Gaggiotti et al. 2002); and (4) in the last 40 years, three of the 21 breeding colonies
in the Orkney Isles (off northern Scotland) have gone extinct and two of these have
been recolonized.

One of the key parameters in a metapopulation model is the probability of movement

between aggregations (in this case, between colonies). In insect and small mammal

populations this parameter can sometimes be estimated using direct observations of
the movement of marked individuals (Elmhagen & Angerbjorn 2001). However, for

species such as the grey seal, which spends more than 80% of its time at sea

(McConnell et al. 1999) and 90% of this time below the surface (Thompson et al.

1991), direct observation of movement is impracticable. Indeed, Parker et al. (1998)
state that estimating dispersal is "universally problematic" and according to Waser &
Storbeck (1998) it remains "one of the most enigmatic parameters in population and
conservation biology".

Various types of data can be used to make inferences about (meta)population structure

and the nature and amount of movement between population units. I analysed three:

(1) genetic data, where microsatellite markers were used to explore population
differentiation between grey seal colonies (see section 1.3 and chapter 3); (2) photo-
ID data, where multisite CR analysis was used to estimate movement probabilities

(see section 1.4 and chapter 4); and (3) pup production estimates, which where used to

parameterise a spatially-explicit model of the grey seal metapopulation in the North
Sea (see section 1.5, 1.6 and chapter 5).

5



1.3 Microsatellite genetic markers

Genetics is essentially the study of heredity and inherited attributes. Most genetic

investigations of natural populations - from both an evolutionary and ecological

perspective - are concerned with relative differences in consanguinity (i.e. kinship or

relatedness). However, the degree of relatedness we are interested in depends on the

specifications of the study. For example, a study of population subdivision will be

looking at a finer resolution in consanguinity than one attempting to construct a

phylogenetic tree (Palsbpll 2002).

Genetic analyses have been widely used in the assessment of threatened species

(Daugherty et al. 1990; May 1990; Moritz 1994). Traditionally, the emphasis has
been on determining levels of inbreeding from surveys of gene and allelic diversity

(Sherwin & Moritz 2000). Genetic information is less influenced by environmental
factors than morphological characteristics and therefore provides a more

representative measure of the degree of relatedness between individuals. In its most

basic form this information comes from the nucleotide sequence of the genome itself.
With the development of the polymerase chain reaction (PCR1) in 1987 it became

possible to analyse DNA sequences directly. The more differences there are in the
same sequence from different individuals (i.e. the more mutations that have occurred
at the same locus) the less related they are. A mutation is an alteration in the
nucleotide sequence of a DNA molecule (Miglani 2000): the most common forms of
mutation are nucleotide substitutions, insertions and deletions (Palsbpll 2002).

Genetic diversity at the population level is measured using codominant molecular
markers (such as allozymes, restriction fragment length polymorphisms (RFLPs) and

microsatellites). RFLPs and microsatellites are neutral to the effects of selection and
do not affect the individual's phenotype. These genetic analyses are principally

1 PCR - a cyclic, in vitro enzymatic reaction by which a small fragment of DNA can be replicated
exponentially (Baker & Lento 2002)
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concerned with relative differences in allele frequencies2. Using these markers it is

possible to analyse the mating system and social structure of populations, to infer

parentage and to assess the degree of population differentiation and thus estimate the
levels of genetic drift3 and gene flow4.

Microsatellites are tandemly repeated units of short nucleotide motifs 1-6 base-pairs

(bp) long that are extensively distributed throughout the nuclear genomes of animals
and plants. The most prevalent are di- tri- and tetranucleotide repeats (e.g. (CA)n,

(AAT)n, and (GATA)n respectively), (Lindenmayer & Peakall 2000). Microsatellites
are inherited in a Mendelian fashion - at each locus individuals inherit two alleles,

one from each parent. Because they are highly variable, have a high mutation rate, are

distributed in large numbers throughout the genome, and have codominant

inheritance, microsatellite loci are now though of as the most appropriate nuclear
markers for many population genetics applications (Gutierrez-Espeleta et al. 2000).

1.3.1 Mating systems

Behavioural observations of grey seal mating systems have tended to imply that there
are high levels of polygyny, with the majority of pups being fathered by a small
number of dominant males. Microsatellite data, however, have shown that the mating

system of the grey seal is rather more complex than was originally believed. For

example, Amos et al. (1995) showed that both polygyny and mate fidelity occur

within this species. It also appears that only a small handful of males enjoy elevated

mating success at the heart of a group of aggregating females (Worthington Wilmer et

al. 1999). The majority of pups are fathered by any of a large number of adult males,
who all have low but approximately identical success rates (Worthington Wilmer et

al. 2000). A sizeable proportion of these males, beyond the reaches of present

2
Allele frequency is defined as the proportion of all alleles at a locus that are of the specified type,

among a group of individuals (Hartl 2000).
3 Genetic drift - a random sampling effect primarily effecting smaller subpopulations whereby alleles
are fixed in the different subpopulations by chance (Campbell 1996)
4 Gene flow - a consequence of migration, higher levels of which counteracts the effects of genetic
drift and act to homogenise subpopulations (Campbell 1996)
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sampling techniques, are thought to employ aquatic mating and may not even come

ashore at the breeding colony (Worthington Wilmer et al. 1999). A further puzzling
occurrence is that, on average, females "choose" partners in successive years that are

less genetically related to the previous partner than would be expected from random

mating (Amos et al. 2001b). In chapter 2 of this thesis I explore the effect of this mate

choice mechanism on the genetic structure of a hypothetical grey seal colony using
simulation models.

1.3.2 Population differentiation

Several genetic studies of marine mammals have been undertaken with the aim of

discovering the degree of genetic heterogeneity among sub-populations (Palsb0ll

2002). Microsatellite-based analyses of population structure of the grey seal have
demonstrated significant differentiation between two colonies in Scotland (North
Rona off the north-west coast and the Isle of May off the east coast), indicating
restricted gene flow between these two colonies (Allen et al. 1995). More recently,

Gaggiotti et al. (2002, 2004) studied the colonization process in a grey seal

metapopulation in the Orkney Isles and demonstrated that new colonies are formed by
seals moving from the nearest and largest of the surrounding established colonies.

In chapter 3 of this thesis I explore the population structure of grey seal colonies in
more detail using nine microsatellite markers. I compared the differentiation between
the Canadian and UK populations, among regions in the UK population, and among

colonies in one region: the North Sea. Four types of analyses were used on the
microsatellite data: (1) exact tests, which use randomization procedures to test for
differentiation between pairs of colonies (Goudet et al. 1996) ; (2) Fst (Weir &
Cockerham 1984), which measures the proportion of variance in allele frequencies
that can be attributed to differences between pairs of colonies (Balloux & Lugon-
Moulin 2002); (3) assignment-based tests (Cornuet et al. 1999), which assign each
individual's genotype to the colony where its likelihood of occurrence is highest; and

(4) Bayesian model-based clustering (Pritchard et al. 2000; Falush et al. 2003), which
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calculates posterior probabilities for the number of distinct sub-populations

represented in the data set analysed.

1.4 Capture-recapture analysis using photo-ID

Genetic data can help to establish the extent to which populations are subdivided but
cannot easily be used to estimate the present levels of movement between population
units. Multisite CR data, on the other hand, can be used to estimate such probabilities.

Traditionally grey seals have been "marked" with tags or even hot-iron brands. A less
intrusive method is to use the animals' own natural markings. For the UK grey seal a

large photo-ID dataset has been compiled for identifiable females based on the unique

marking patterns on their head and neck. Such an approach is not as feasible for

males, however, as they are much less clearly marked.

There are often logistic and financial difficulties that prevent the systematic collection
of samples for multisite CR analysis from all colonies that animals may frequent in a

sequence of years (Spendelow et al. 1995). However, photographs of female grey

seals breeding at the four main colonies in the North Sea (Isle of May, Fast Castle,
Fame Islands and Donna Nook) were systematically collected between 1999 and
2001. Photographs of the same seal were matched using software developed by Hiby
& Lovell (1990). The software fits a surface model to the photograph of the side of
the head, which compensates for the viewpoint of the camera and the posture of the
seal (Figure 1.3a). A pattern cell is then located in relation to morphological features
on the seal's head and an identifier array is produced (Figure 1.3b). This identifier

array is converted into a numerical description of the grey-scale intensities that can be

compared to all others in the computer library. Those that score above a pre-set

similarity threshold are presented for final comparison by eye.
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(a)

pic\iowS7Q4<S 1-Q2-S3 19:35:51

(b)

Fig 1.3 (a) Surface model fitted to a digitised grey seal photograph.(b) The pattern cell and,
to the right of the main photograph, the identifier array used by the image processing software
of Hiby & Lovell (1990).

The output from this matching software was converted into a capture history for each
animal. For example, a capture history of "102" would indicate that this female was

photographed on colony 1 in 1999, not seen at any of the four North Sea colonies in

2000, and re-photographed on colony 2 in 2001. The data for all the females stored in
this form were analysed using specifically designed software for multisite CR analysis
known as M-SURGE (Choquet et al. 2004). Recent advances in approaches for

statistically analysing multisite data, such as those utilised by M-SURGE, have greatly
widened the scope for studying movement patterns in natural populations (Cam et al.

2004). Different models to describe these data were compared and the model(s)
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giving the most parsimonious5 description of the data were identified using standard
model selection procedures (Johnson & Omland 2004) (see chapter 4).

1.5 Pup production estimates

Another potential source of information about movement within a grey seal

metapopulation is the annual estimates of the number of pups produced at each

breeding colony. However, these data are only useful in this context if there is some

prior knowledge of the population dynamics of the species. For example, if the annual

pup production increases faster than is possible as a result of internal recruitment of
adult females into the breeding population, one may infer that net immigration must

be taking place. This idea can be formalized by fitting the pup production data to

different candidate models for the dynamics of the metapopulation. Model selection
criteria can be used to evaluate the different models in much the same way as for the
CR data. An ideal conceptual framework for this analysis is the state-space model

(SSM) described in section 1.6.

Most of the major UK grey seal colonies have been surveyed annually from the air by
SMRU each year since 1962, although some (such as the Fame Islands and Donna

Nook) are surveyed by observers on the ground. However, aerial survey methods
were changed somewhat after a fatal plane crash in 1983. These survey results are

used to provide an annual estimate of pup production for each colony (Hiby & Duck,

unpublished). In chapter 5 I use pup production estimates from 1984 to 2003 for the
four North Sea colonies (Duck 2004) to estimate the parameters of a SSM of this

region.

5
Principle of parsimony - to make a trade off between bias and precision given the information content

in the data. In general, more complicated models will fit the data better (because they are more
flexible); they are penalised for the extra parameters that need to be estimated.
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1.6 State-space models: a unifying framework

As a general rule, the dynamics of wildlife populations are determined by complex,
non-linear processes that are strongly affected by stochasticity (Harwood & Stokes

2003); observations on these populations are seldom made without error. SSMs

provide a framework that links measurements taken on a wildlife population to a

stochastic population dynamics model (PDM). A SSM incorporates two parallel and
simultaneous processes: the state process, which models the true but unknown state of
the population; and the observation process, which links the state process to a time
series of observational data. The advantage of this approach is that all major sources

of uncertainty can be easily incorporated (Buckland et al. 2004). The explicit

recognition of the various sources of uncertainty inherent in the population's

dynamics, our observations of it, and our model formulations about it, provide a

reliable and honest account of the present state of our understanding about the animal

population in question.

The state process model is a modification of the familiar Leslie matrix. Individual

processes (e.g. survival, birth, migration, etc.) are represented by separate sub-process

matrices, either as expectations (with stochastic errors attached) or probability density
functions (pdfs). These sub-process matrices are then chained together to form the

complete PDM. This allows each of the sub-processes in a complex model with
numerous interactions to be specified separately. It provides a convenient and
accessible connection between mathematics, statistics and biology, because the model

building process is done in a number of separate steps, each of which is easily

manageable and models an intuitive aspect of the biology of the population in

question (Buckland et al. 2004; Thomas et al. 2005). The SSM structure can also be
extended to incorporate a wide range of biologically important interactions, such as

competition, density dependence, predator-prey interactions and metapopulation

dynamics. In chapter 5 of this thesis I develop SSMs for the female grey seals

breeding at the four main colonies in the North Sea. These models imply that males
do not influence the population's dynamics (Fujiwara & Caswell 2002). This

assumption is valid for the grey seal system as the size of the male population is likely
to be sufficient large at all times to ensure that female reproduction is not restricted by
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a lack of mates. Figure 1.4 shows a schematic for these models indicating how the

state-processes are broken down and the place of the observation process in this
structure.

state process model

STATE,.,
>i

STATE.

observation

process
model 1 survival movement ageing breeding

OBSERVATION,.,
(pup production
estimate at 4 NS

colonies in year t-1)

OBSERVATION.

t = 1984 to 2003

Figure 1.4 Schematic of the state-space model used in this thesis for the four North Sea
(NS) grey seal colonies.

Fitting models to data necessitates the use of statistical methods. Which method to use

is a controversial issue; on one side of the coin is the frequentist approach, which

although imperfect, has a proven track record, and on the other side is the Bayesian

approach. The frequentist statistician assumes that there exists a true underlying

process with fixed parameter values. These can be estimated from the data, which are

seen as random observations from this process. The Bayesian statistician, however,
sees the data as fixed and the parameter values as being the random variables (Ellison

1996). The Bayesian approach: (a) provides a means by which uncertainty can be

incorporated into the modelling framework; (b) can explicitly incorporate prior
information from previous experiments - in the words of Hilborn & Mangel (1997):
"If we fail to use what we have learnt in previous studies, we will learn very slowly

indeed"; and (c) can make use of complicated models that would be intractable from a

frequentist perspective (Beaumont & Rannala 2004).

Inference about which SSM provides the best fit to the available data is usually
obtained using computer-intensive Bayesian methods (Millar & Meyer 2000; Doucet,
Frietas & Gordon 2001; Liu 2001). Prior distributions for the model parameters and
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initial states are specified using information from previous experiments and expert

knowledge. A further advantage of the SSM approach for the research described in
this thesis is that the results from the CR analysis (from chapter 4) could be used to

provide informative priors for the population dynamics modelling, thus combining the

strengths of both the CR and pup production data sets. Bayesian inference proceeds

by interpreting these prior distributions with respect to the pup production data, and

generating posterior distributions for the parameters and states of the model (Luikart
& England 1999). These posterior distributions can then be used to project the models
forward in time and make predictions about future animal abundances.

1.7 Thesis aims

Building models for wildlife populations is a vital part in the advancement of
scientific understanding of the natural world we inhabit. Models help to clarify

assumptions, combine knowledge from different sources, and oblige us to be

unambiguous and precise in our logic (Burgman & Possingham 2000). Through
model selection we can identify the important processes governing animal population

dynamics. By projecting the models forward in time we can investigate the

consequences of what we deem to be tme. In this thesis I have used statistically
defensible state-of-the-art modelling approaches to add to the scientific understanding
of the spatial structure and population dynamics of the grey seal. It is also hoped that
the work herein might advance the methods available to statistical ecologists studying
wildlife populations in highly fragmented landscapes where spatial considerations are

of utmost importance.

I start in chapter 2 by using individual-based simulation models to explore the effects
of females "choosing" a mate in year t that is genetically dissimilar to their mate from

year t-1. The effects on allele frequencies are monitored through time. These
simulations are purely hypothetical; the models are not fitted to any data, but they are

defined using the notation of SSMs, so this chapter also provides an introduction to

the state-space framework used later in this thesis. In chapter 3 I explore the degree of

population differentiation between grey seal colonies using microsatellite DNA data.
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Samples from colonies around the UK are compared to one another and to a sample
from Sable Island in Canada. I address the following questions. Are seals born in a

colony on the east coast of the UK more differentiated from Canadian pups than those
born on the west coast? Are colonies which are closer together around the UK less
differentiated from one another than those separated by larger distances? In chapter 4
I investigate the photo-ID data for female grey seals breeding at colonies in the North
Sea. The key questions in this section are as follows. What amount of movement is
there between these colonies? Is the probability of moving between colonies related to

the distance separating them? Is this probability related to the difference in abundance
between the colonies? In chapter 5 I develop a set of SSMs for the females breeding
in the North Sea using the results of chapter 4 to provide informative priors on the
movement model parameters. These metapopulation models were fitted to a 20 year

time series of pup production data using a Bayesian approach. I address the following

questions. What movement model structure provides the best description of these
abundance data? Is there information content in these data with which to refine the

movement probability estimates obtained from the CR study? In chapter 6 I draw the
thesis to an end with a general discussion of the findings from the previous chapters.
In Appendix 1 I describe a simulation study, related to chapter 4, which investigated
different photo-ID sampling strategies to determine the optimal sampling strategy to

collect a large number of photographs of different animals within a single breeding
season. In Appendix 2 I propose a suggestion for how to extend the SSMs developed
in chapter 5 to simultaneously fit to both the pup production and photo-ID data.

Finally, the CD that accompanies this thesis provides example source code and data,
written using the statistical computing language R Version 2.0.1 (R Development
Core Team, 2004), to implement the state-space modelling methods described in

chapter 5.
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Chapter 2

A Simulation-Based Exploration into the Mating

System of the British Grey Seal

2.1 Introduction

Grey seals show sexual dimorphism in body size, with males being much larger than
females (Hall 2002). Larger males are thought better able to compete for territory

among aggregations of females during the breeding season, thus maximizing the
number of copulations they achieve (Boness & Bowen 1996). Furthermore, as

females invest much more in their pups than males, theory suggests that females
should select males who have high genetic quality, as possibly indicated by body size

(Amos et al. 2001b). The outcome of these factors is a classical polygynous mating

system, with a relatively small number of dominant males fathering the majority of

pups. Numerous behavioural studies have sustained this theory (Worthington Wilmer
etal. 1999).

Recently, however, the degree of polygyny maintained on grey seal colonies around
the UK has come under scrutiny based on the results of genetic studies. DNA

fingerprints and single locus minisatellite analyses of grey seals on North Rona (Outer

Hebrides, Scotland) have shown the presence of many pups sharing the same mother
and father (full siblings), yet the majority of these fathers are not the dominant males
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on the colony (Amos et al. 1995). This suggests that mate fidelity is in operation on

this colony with animals coordinating their behaviours both within and between
seasons.

An extensive microsatellite-based study of grey seals on both North Rona and the Isle
of May (North Sea, Scotland) (Worthington Wilmer et al. 1999, 2000) which sampled
a much more varied cross-section of males than had previously been done, found that
behavioural dominance to increase fitness is a quality of only a handful of males at

the core of a colony of aggregating females. Most pups were fathered by any of a

large number of males who all shared a small but approximately equal success rate.

Furthermore, between 50 and 70% of pups could not be allocated a father from those

sampled, leading to the hypothesis that aquatic mating is important for this pinniped

species.

Perhaps the most fascinating result to come from these genetic studies was the finding

by Amos et al. (2001b) that, on average, pups sharing the same mother are less

paternally related than would be expected by chance. This implies some mechanism
of "choice" - where a female chooses partners in successive years that are genetically
unrelated. (Possible mechanisms controlling this mate choice are discussed in section

2.4.1). It was also found that the signal in the data for this mate choice was stronger

than could be explained by pups with the same mother being fathered by males from

opposite ends of the Scottish metapopulation (North Rona and the Isle of May).

Furthermore, this choice could not be explained by females selecting males based on

genetic dissimilarity to themselves.

In this chapter I am primarily concerned with how this mate choice affects the genetic
structure and dynamics of a hypothetical grey seal colony, which I have explored

using computer simulation models. The simulations are initiated assuming that an

island has been colonized by a group of breeding age male and female seals drawn at

random from a hypothetical allele distribution. Following this colony founding event,

for the sake of simplicity, I have assumed that there is no further immigration to or

emigration from the island. From the simulations I wish to ascertain how the allele

frequencies in the population change through time with different mating models. For
these simulations I specifically explore how the "true" pup population allele
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frequency distribution changes through time and how this is affected by changes in
the mating model. Two mating models were investigated:

1. random mating - null model;
2. females "choose" a mate in year t genetically dissimilar to their mate from

year t — 1 ;

The simulation models are not fit to any data, but I have defined the model in the

stochastic matrix formulation currently being utilized for state-space models (SSMs)

(Buckland et al. 2004, Thomas et al. 2005, Newman et al. in press). SSMs were

introduced in chapter 1 of this thesis and are also developed and fit to pup production
data for the grey seal in chapter 5. However, this matrix formulation does not fully

specify the model, and additional information is given when required. The simulations
I have performed are akin to a sensitivity analysis: I wish to investigate how sensitive
the pup allele frequencies are to non-random matings. The mate choice simulation
necessitated the use of individual based models (IBMs).

2.2 Methods

2.2.1 Model formulation

Each seal is represented as a matrix that specifies its genotype. For instance, if we

were interested in 3 microsatellite loci, then each individual seal would be represented

by a 3 by 2 matrix (due to the fact that seals are diploid and have 2 alleles at each

locus). These matrices are collected together according to sex and age and stored as

3D arrays, where the third dimension represents the number of seals present of a

certain sex and a specific age. Despite the fact that the model is an individual-based

one, the underlying process model is an age-based one. At each process step (e.g.

survival, births, etc) probabilistic calculations are done on numbers of seals in each

age and sex class (i.e. if the probabilistic survival function predicts x age 2 females
will die between year t — 1 and year t, then x of the age 2 female matrices are removed
at random, from the array of age 2 females. The age 2 females remaining advance to
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become age 3 females, and so forth). The formulation of the age-based processes can

be expressed as an adaptation of the familiar Leslie matrix notation presently being
used for state-space models of animal population dynamics (see section 2.3).

So let us consider the grey seals at the hypothetical colony from time t —1 to time t.

The time step for the model is one year beginning just after the pups have been born
in the autumn. The age-based state vector for the entire population is of length sixteen

for the colony, representing female pups (n0f), age one females (n, f), through to age

five females (n5 f) and then age six and older females grouped into a single category

(n6+y). In general na f t represents the number of females of age a in the colony at

time t. The following nine entries in the state vector represent the males in the

population, however, for the males we go up to an 8+ age category, as males are

thought to become sexually mature later than females. Thus, na m t represents the

number of males of age a in the colony at time t. Hence:

n, =

n,

n

n

0,f,t

1J.t

M

5,/,(

6+,/,(

n,O.m.I

1 ,m,t

M

7,m,I

n,8+,m,t

This state vector represents the state of the population at the end of the year after the
state sub-processes, described below, have occurred.
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2.2.2 State process: stochastic representation

The progression from nM to n, is characterised by a series of linked probability

density functions (pdfs), which represent each stochastic sub-process, the input to

each pdf being the output from the previous one. For the grey seal model we begin
with survival (sub-process 1), followed by age advancement (sub-process 2), and

finally births (which includes sexing), (sub-process 3).The distributions for these sub-

processes at time t being expressed as:

uu

U2,t ~ H2,,(«!.,)

where Hxt{-) is the pdf for sub-process x and uxt is a realization of the state vector

at time t after sub-process x has occurred. In more detail these sub-process pdfs are

as follows. For the females ($) and males (S) in the population, where the females

represent the first seven entries to the vector and the males the following nine,

survival, u1( ~ Hu{nM):

$ =

ui,o,f,t ~ Binomial(no f t_v(/>p t)
Binomial (n, ,M, (j)f)i,i, f,t

M

u15ft ~ Binomial(n5 / ,(f)f)
1,6+,f,t Binomial(n6+,/,r-l' Tf

8 =

ui,o,m,t ~ Binomial(ni) m t ], (f>p t)
uu,m,t ~ Binomial(n] m t_{, <pm)
M

ui,7,m,t ~ Binomial(nl m t_l,</>J
ui,s+,m,t ~ Binomial{n%Jr m t_x, (f)M)

Where u10ft is the first element of the state vector for the female seals and it

represents the number of female pups surviving. The probability of pup survival is a

function of the number of pups (of both sexes) born in the previous year, npups t_,, and
is modelled as a density dependent binomial process, with survival probability given

by:
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tp max

1 + fixn
(eqn 2.1)

pups,t—I

This is akin to the Beverton-Holt stock recruitment formulation frequently used in

fisheries (Quinn & Deriso 1999) where 0pimx represents the pup survival rate when
there are few pups present and /? is the main parameter invoking density dependent

reductions in the numbers of pups surviving when their numbers increase. The larger
the value of this parameter the earlier the onset of density-dependent reductions in

pup survival (Thomas et al. 2005). Survival for females aged one and over is assumed
to be density independent with survival probabilities (f)f.

Male pup survival is similarly density dependent, with the same parameter </) t. For

males aged 1 to 7 (pm = </>f, however on reaching maturity, at the age of 8, the
survival rate of males is thought to decrease, and this lower rate is given by (f)M .

Survival is then followed by age advancement, u2l ~ H2t(uu):

? =

U2,0,f,t ~ 0
M2,1,/,i = Ml,0,/,r

U2,2,f,t =M1,1,/,I
M

U2,5,/,< ~U\AJ,t

_U2,6+,f,t =Ul,5 ,f,t +U\

S —

U2,0,m,t ~ ^
M2,l ,m,t — Ml,0 ,m,l

U2,2,m,t ~~

M

U2,l,m,t ~ U\,6,m,l

U2M,m,t ~U1J,m,t +W1.8+,m,t
_

The age advancement sub-process is entirely deterministic; all females are aged by
one year, except for age six and older females who remain in the same class. Males
can again be described in the same manner but with the addition of two more age

classes. (It should be noted that H2, (u,,) is a degenerate distribution such that with

u1( being given, u2r is known with certainty).

The final birth (and sexing of pups) process is given by:
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K,/,r. no,mj> mt) ~ Trinomial(u26+f t,0.5y, 0.57, (I-7))

where:

n0ft= the number of female pups born;

n0ml = the number of male pups born;

u2 6+ / 1 = number of mature (breeding age) females present;

m, = (u26+fl ~nof t -nomf) = the number of mature females that have not

successfully given birth, and;

y = the probability that a female successfully gives birth to and weans a pup.

The trinomial distribution given above is equivalent to performing two binomial
calculations in succession. The first calculation gives the number of pups produced, as

a density independent function of the number of mature females present, u2 6+ f,, with
binomial probability y. The second binomial calculation partitions those pups born

into sexes (i.e. the number of female pups produced, n0fl, being a binomial random
variable of the total number of pups produced with probability 0.5). The trinomial
distribution thus allows us to perform both births and the sexing of pups in one step.

The entire population vector in year t is therefore given by:

n

n

n

where:

n,0j,1
as above nomt ~as above

ni,m,t =U2Xm,lU2,\J.I

n/,I — n2.f,t ~ U2.2,f,t n n2.m.l ~ U2,2,m.l
M M

n6+,f,t ~ U2,6+,f,t nS+.m,t M2,8+,m,I
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The mating model that gives rise to the births process cannot easily be specified in the
vector form as above. I shall, however, describe it presently out with this vector form.
The mating model determines the genotypes of the pups born with respect to the

genotypes of the mature seals that mate. If this were to be incorporated the states

would have to reflect genotype as well as age and sex. The number of permutations of

genotypes becomes rapidly very large as the number of loci, and the number of alleles

possible at each locus, increases, and therefore a representation in this form has not

been presented here.

For the random mating model each mature breeding age female (6+), that has been
selected to breed, mates with one mature breeding age male (8+) chosen at random.
This male is then replaced into the male population (i.e. one male can potentially
father more than one pup). For the mate "choice" model the situation is somewhat
more interesting.

I have attempted to emulate the mate "choice" mechanism probabilistically in the

following way. If the female has not mated before then mating follows the random
model. However, if the female has mated before, then she can copulate with an equal

probability with between two and six males. Six males was chosen as an upper limit
based on Amos et aVs (2001b) hypothesis that females mating both on land and

aquatically could potentially mate with this number of males. These 2-6 males are

chosen at random from the 8+ male population. An index of relatedness (Queller &

Goodnight 1989, Van de Casteele, Galbusera & Matthysen 2001), Rt, was calculated

between each of these new males (subscripted i) and the female's previous partner

(subscripted old) using the coefficient developed by Queller & Goodnight (1989),
such that:

Pold,k,a)~^^J'^j(Pold,k,a ^\,k,a)
R = ~r " —k (eqn 2.2)

ZZ^JU " Pcld.k.o )+ZZ(If - PU, )
k a k a
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The calculation is summed over loci (k) and allelic position (a) (seals are diploid and
therefore the sum is over 2 allelic positions). In the first half of the equation (i.e. the
numerator and denominator parts before the + signs) the female's previous partner is
used as the reference individual such that Poldka can be 0.5 or 1, depending on

whether the female's previous partner is heterozygous or homozygous at the locus

under scrutiny. Whereas Poldka is the frequency of the old partner's allele in the

population at large. Finally, Pika can be 0, 0.5, or 1 (0 if the new male does not have

the allele under consideration, 0.5 if it has it and is heterozygous and 1 if it has it and
is homozygous). The second half of the equation gives a similar calculation using the
new male as the reference individual. This index of relatedness is only useful with
multiallelic loci; with a diallelic locus the denominator is zero when the two

compared individuals are both heterozygous (Van de Casteele et al. 2001). A positive
R value means the individuals are related, and a zero or negative value indicates that
the individuals are unrelated. The next task in the simulations is to calculate a

probability of fertilization for each of the new males that the female has copulated
with - to do this R{ was re-scaled so that it could only be positive and re-labelled as

Z> . The probability of fertilization for male i, Ft, was then calculated as:

F
D,

' " 1

z—
mDJ

(eqn 2.3)

where the summation limit in the denominator, n, ranges from 2-6 depending on the
number of copulations the female in question had. Of the new males selected for

copulation, the one with the highest Di value (the one most related to the females

previous partner) will have the lowest Fi value. Now say, for example, we had 4

males (<$\ to <S4) that had copulated with the female under consideration and found
that:

Fj = 0.5

F2= 0.2
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F3 = 0.2

F4=0.1

We then generate one deviate (i.e. one male for fertilization) from this multinomial
distribution, for example by using one deviate from a Uniform distribution between
zero and one:

Si Si S3 Sa

0 0.5 0.7 0.9 1

The male that fertilized the female then replaces the female's previous partner (and is
stored along with the female) and is used for comparison in the following year

(assuming the female survives and is selected for mating in the following year). On

mating, the pup produced inherits one allele from its mother and one from its father at

each locus. The loci are assumed not to be linked. Furthermore, no affects of mutation

are modelled to occur, as they are thought unlikely to be of great significance over the
time scales I am investigating.

2.2.3 State process: matrix representation

For ease of interpretation it has become conventional to define the state process in
terms of population projection matrices. The familiar Leslie matrix for population

projection of the abundance of each age class to the next is defined (see Caswell

1989) as:

n, = An,_j (eqn 2.4)

where A is the population projection matrix. This formulation can be extended to

account for a stochastic state process, such that:
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E [ n, | nM ] = An,_, (eqn 2.5)

where £[n, | nM] is the expected value of n( given nM and A now represents the
average effect of a set of stochastic processes. It is useful to split A up into a series of

sub-process matrices. For the age-structured definition of the seal model developed
the key sub-processes are survival, advancement to the next age category and births

(which includes the assignment of sex). These can be expressed respectively by the
matrices St, A and B , such that:

fifnj n(_J~ BASrn,__i (eqn 2.6)

The expectation being an approximation due to the non-linearity in the pup survival
function, as described earlier. Again, for the reasons that have been discussed, the

mating process cannot be explicitly specified in the matrix formation. For the parts

that can be specified, for the females and males in the population, we first have the
survival matrix defined as:

rs,( o i
S( =

L0 s-_

where:

1

0 0 0 0 0 0 0 0

_ 0 0m 0 0 0 0 0 0 0

0p,t 0 0 0 0 0 0

0 </>j.
0 0 0 0 0 0 0 0,n 0 0 0 0 0 0

0 0 tf 0 0 0 0 0 0 0 0m 0 0 0 0 0

II

<CZ3 0 0 0 tf 0 0 0 Sm,t 0 0 0 0 0m 0 0 0 0

0 0 0 0 fif 0 0 0 0 0 0 0 0m 0 0 0

0 0 0 0 0 </>f 0 0 0 0 0 0 0 0m 0 0

0 0 0 0 0 0 */_ 0

0

0

0

0

0

0

0

0

0

0

0

0

0

0m
0

0

0
M
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This is followed by age advancement:

~A/ 0
A =

0 Am

where:

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0

t 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0

0 0 1 0 0 0 0 A -
m 0 0 0 1 0 0 0 0 0

0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0

0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0

0 0 0 0 0 1 1 0 0 0 0 0 0 1 0 0

0 0 0 0 0 0 0 1 1

And finally births (which includes the sexing of pups):

0 0 0 0 0 0 0.5a 0 0 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0.5a 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1
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In complex situations splitting up the process matrix into sub-processes is

advantageous. For my model the single Leslie matrix is the product of the above three

sub-process matrices and is:

0 0 0 0 0 0.5<z> a
f

0.50 a
f

0 0 0 0 0 0 0 0 0

p,t
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0
f

0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0
f

0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0
/

0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0
f

0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0
f

0
/

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0.50 a
f

0.50 a
f

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 *
,p,t

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0
m

0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0
m

0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0
m

0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0
m

0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0
m

0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0
m

0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
III

0
M

2.2.4 Computer simulation description

The computer simulations were done using the computer package R: A Programming
Environment for Data Analysis and Graphics Version 1.6.1. All model runs were

given the parameter values shown in Table 2.1. All the parameters were given values
that should be feasible based on the work of Thomas et al. (2005). The parameter

related to the carrying capacity, J3, was given a relatively high value to limit the

population growth to a certain extent. The mature male survival parameter, (pM , was

given a value compatible with current opinion. One hundred age 8 males and one

hundred age 6 females were created and given genotypes drawn at random from the
initial allele frequency distributions. These seals having mated went through the
survival process and new births occurred on the newly founded colony. As mature
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males are given a lower survival rate than mature females it is likely that fewer males
made it to the new colony than females. As a consequence of these differing survival
rates there is a skew in the sex distribution for the grey seal population. The male

population is believed to be approximately 60% of the female population (SCOS

2002).

Four models were explored, each one building on the previous ones. Models 1 and 2
each have 1 locus with 4 alleles possible at that locus (each locus having 2 alleles for
each individual seal but 4 alleles possible from the gene pool). In model 3 the locus in
model 1 is combined with the locus in model 2 to produce a 2 locus system (i.e. each
individual seal having 2 loci with 2 alleles possible at each). In the fourth and final
model two more loci are added, again each with 4 possible alleles, to the system of
model 3. The initial gene pool allele frequencies for all the models are described in
Table 2.2, where A stands for allele.

Table 2.1: Parameter values used in the simulation model runs

Parameter Description Value

Age 1+ female survival rate 0.96

</>m Age 1 to age 7 male survival rate 0.96

<PM Mature (i.e. age 8+) male survival rate 0.8

Qp,max
Pup survival rate when few are present 0.6

7 Probability of female breeding successfully 0.92

P Related to carrying capacity 0.005

Table 2.2: Initial allele frequencies for the four simulation models
Model locus Allele frequency

A1 A2 A3 A4 A5 A6 A7 A8 A9 A10 All A12 A13 A14 A15 A16

1 1 0.5 0.3 0.1 0.1

2 1 0.4 0.3 0.2 0.1

3 1 0.5 0.3 0.1 0.1

2 0.4 0.3 0.2 0.1

4 1 0.5 0.3 0.1 0.1

2 0.4 0.3 0.2 0.1

3 0.6 0.2 0.1 0.1

4 0.6 0.25 0.1 0.05
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All of the models were run with 100 "particles" for 50 years (where one particle

represents one possible population with parameter values that are specific to it). The

outputs of the models run with random mating and those run with mate choice were

compared graphically. These outputs include the trajectory of the following through
time: the total 1+ population size, the ratio of 1+ males to 1+ females, the rate of
increase of the 1+ population and the "true" pup allele frequencies. As the models

incorporated demographic stochasticity, the mean of the simulated allele frequency

trajectories provides an estimate of the population's genetic structure through time,
and the variation among trajectories indicates the anticipated demographic variability
under the chosen model. Bootstrapping was also done to compare the mean

differences between the pup allele frequencies for the random and mate choice models
with 999 bootstrap resamples being taken. The bootstrapping done assumes that the

particles are independently and identically distributed. As there is no interaction
between the particles this seems a valid assumption. It is fair to also assume that the
means of the bootstrap resamples are indicative of the variability we would observe in
our sample means if we took repeated samples, thus circumventing the need for a

larger number of particles to be run through the model. This is a benefit due to the
extensive number of calculations being undertaken for each particle in the mate

choice models. More details of the bootstrapping procedure are given below.

2.3 Results

Figure 2.1 shows the mean 1+ population size, the mean ratio of 1+ males to 1+

females, and the mean rate of increase for the population, with 95% confidence limits,
for the simulation models.
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mean 1+ population size with 95% confidence limits
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mean male to female ratio with 95% confidence limits

0 10 20 30 40 50

time

mean rate of increase with 95% confidence limits
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Figure 2.1: Graphs displaying demographic changes for the simulation model runs

These graphs show that the population growth is density dependent and the population
size graph shows a slight sigmoidal shape in conjunction with a slowing down of the
rate of increase as shown in the third graph. The sex ratio is initially quite unstable as

a consequence of the population being started with only mature seals (see section 4
for a discussion of this artefact). This ratio appears to be stabilizing at between 0.5
and 0.6, which is in line with current opinion on the skew in this ratio.

I now focus on a graphical representation of the results for model 1 (i.e. which has a

locus with initial allele frequencies given by 0.5, 0.3, 0.1 and 0.1). I follow the results

given by this locus as the complexity of the system grows from a one locus system to

a two locus system and finally a four locus system. The locus given in model 2
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produced similar results to those I am about to describe for the locus in model 1. Two

graphical representations are given for each of the systems. The first shows how the
mean of the "true" pup allele frequency for the particles changes through time with
95% confidence limits. The mate choice simulation is shown in red and the random

simulation in black. The second graphical representation for each model shows the

bootstrap differences between the mean pup allele frequencies, for the mate choice

simulations, for each particle at each time point, minus the initial allele frequencies.
The difference was calculated in this manner (as opposed to subtracting the mean

value for each particle in the random simulation) to reduce Monte Carlo error, as the
random model runs in all situations did not show any significant deviation from the
initial allele frequencies (as had been expected). In more detail these bootstraps run as

follows: The initial allele frequency for allele 1 was subtracted from its frequency for

particle 1 at time t =1 for the mate choice model. The same was done for the other 99

particles. 100 values were then resampled with replacement from these 100
differences and the mean recorded. This was repeated 999 times and a 95%
confidence interval for the mean difference at time t=l was produced. The same

process was done for all of the time steps of the model. This bootstrapping procedure
was done for each allele at each locus.

Figure 2.2 shows the trajectory through time for model 1 with one locus. It appears

that for the mate choice simulations the most common allele in the population (allele

1) decreases quite markedly as time passes while the rarest alleles (3 and 4) increase.
This is shown somewhat more clearly in the bootstraps of Figure 2.3. These
differences are clearly significant as shown by the fact that the bootstrap confidence
intervals for these three changing alleles do not contain zero by the end of the time
horizon explored. Allele 2 does not change with the passing of time - this is perhaps
because its initial frequency is close to 0.25 (1 divided by the number of alleles at the

locus). This observation is consistent with the outcome expected from an outbreeding
model.
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Figure 2.2: Trajectories for the pup allele frequencies through time for the random
simulation (black) and the mate choice simulation (red) for model 1. The dotted line gives the
initial allele frequency and the solid lines for each of the simulations show the mean, 2.5th and
97.5th percentiles.
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One locus model
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Allele 2 (initial fx = 0.3)
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Figure 2.3: Bootstraps performed on the mate choice simulation differences from the initial
allele frequencies for model 1. Solid lines show the 2.5th and 97.5th percentiles.
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Figure 2.4 shows the allele frequency changes through time for the same locus used in
model 1, in model 3 (where there are two loci for the population). These trajectories
follow a similar pattern as the one observed for the single-locus model except that the
effect is less marked. The bootstraps (shown in Figure 2.5) show that this difference is
not immediately significant and emerges more gradually.

Figure 2.6 shows the pup allele frequency changes with time for our locus under

scrutiny in the fourth and final model, wherein the seals have four loci. This time the

pattern evident in the previous two simpler systems is diminishing somewhat. The
most common allele at the locus shows a slight tendency to decrease as time passes;

however, the bootstraps (Figure 2.7) show that this difference is not quite significant
within the 50 year window. Furthermore, the rarer alleles are no longer showing a

tendency to increase.
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Figure 2.4: Trajectories for the pup allele frequencies through time for the random
simulation (black) and the mate choice simulation (red) for model 3. The dotted line gives the
initial allele frequency and the solid lines for each of the simulations show the mean, 2.5th and
97.5th percentiles.
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Figure 2.5: Bootstraps performed on the mate choice simulation differences from the initial
allele frequencies for model 3. Solid lines show the 2.5th and 97.5th percentiles.
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Figure 2.6: Trajectories for the pup allele frequencies through time for the random
simulation (black) and the mate choice simulation (red) for model 4. The dotted line gives the
initial allele frequency and the solid lines for each of the simulations show the mean, 2.5th and
97.5th percentiles.
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Figure 2.7: Bootstraps performed on the mate choice simulation differences from the initial
allele frequencies for model 4. Solid lines show the 2.5th and 97.5th percentiles.
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2.4 Discussion

The results hint at patterns, but also present some challenges to interpretation. It is
feasible that the initial instability in the sex ratio may have affected the results of the
mate choice model because a greater diversity of males is available to females for

mating early in the time series. This discrepancy was, however, consistent across

simulations. Furthermore it is unlikely that a newly founded colony would have a

stable sex or age ratio.

Concerning the pup allele frequencies, it appears that at least in the simpler systems

with fewer loci the mate choice mechanism as I have set it up in my simulations
causes common alleles to decrease in frequency, rarer alleles to increase in frequency
and those close to the average frequency (i.e. close to 0.25 when there are four alleles
at the locus) not to change. Why would mate choice by females for a mate dissimilar
to the previous one give rise to such observations? If a female chooses a dissimilar
male to her last partner; then from those chosen to copulate the male with the rarest

allele will more often be dissimilar to the previous, probably more common males,
and will thus have a much higher probability of fertilization. On the other hand, a

more common male that copulates with the female will often be more similar to the

previous male, and will therefore have a lower probability of fertilization which
would lead to the decreasing frequency of the commonest allele. One would assume

that the endpoint of the simulations (i.e. the allele frequency distributions at

equilibrium in this theoretical system) would give allele frequencies of \/n for each
allele (where n is the number of alleles at the locus under consideration).

These results are consistent with the expectation of an outbreeding model: rarer forms
are favoured and more common forms are penalized. Such a mechanism would act to

maintain genetic diversity in the population. However, this effect diminishes as the
number of loci across which the comparison is made is increased.

In the real grey seal world the differences between individuals are likely to be affected

by multiple interacting loci. Nevertheless, it is feasible that the mate choice
mechanism may be driven by differences at only a handful of loci.
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2.4.1 Inbreeding avoidance

The mechanism controlling the mate choice of female grey seals is presently
somewhat elusive. The mechanism, however, is likely to be either behavioural or

physiological. A behavioural mechanism could be driven by MHC olfactory cues, in
which case it is plausible that diversity maintenance, where rarer forms are favoured

(as represented by the simpler systems presented in this report), could be in operation.
However, given that a female can copulate with as many as six males, she would need
some way of "knowing" and "remembering" who the true father was.

A physiological mechanism is perhaps more plausible. Amos et al. (2001b) postulate
that the mate choice may be a consequence of sperm competition - if females have

antisperm antibodies, then weak immunointolerance could develop towards the sperm

of the females' previous mates. In many mammals the cervical mucus contains such
antibodies which develop due to exposure to sperm and may reduce fertility.

However, Amos et al. (2001b) also point out that these antibodies would need to be
raised after fertilization and that this hypothesis is presently without empirical

support, so therefore MHC-related olfactory cues and other, at the moment

unidentified, mechanisms cannot be dismissed.

Given the high levels of site fidelity of both male and female grey seals (Pomeroy et

al. 1994; Twiss et al. 1994) under the classical polygynous mating system it is evident
that inbreeding depression may result where the offspring of closely related parents

show reduced fitness (Amos et al. 2001a). It therefore seems likely that mating

systems, such as the mate choice system explored in this chapter, would evolve as a

means of avoiding inbreeding. Inbreeding avoidance has also been put forward as a

major determinant in the evolution of dispersal (Clobert, Ims & Rousset 2004). It is

interesting to note that in the grey seal system a male arriving from another colony

may accrue an above average success rate in fertilization of females given his

dissimilarity to the other males at that colony.
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2.4.2 Further modelling considerations

There are other complexities in the mating system that could be in operation that have
not been explored here which may affect the genetic composition of grey seal
colonies. These include: (i) some females having higher lifetime reproductive success

than others; (ii) inbred pups having a reduced survival rate (Amos et al. 2001a) and;

(iii) mate fidelity (Amos et al. 1995). These three scenarios could potentially be

explored, separately or together, using individual-based simulation models similar to

those used in this chapter. Furthermore, the mate choice mechanism could be set up to

compare the males mated with to all of the females' previous partners as opposed to

just the last partner.

The simulation models presented in this chapter utilised a relatedness coefficient

developed by Queller & Goodnight (1989) to compare the copulating male seals to

one another. There are other methods for calculating relatedness between pairs of
individuals from microsatellite data that one can utilise (see examples in Van de
Casteele et al. 2001). However, as the simulations explored in this chapter were

purely hypothetical it would have been interesting to calculate the "true" relatedness
between individuals based on the ancestry information that could potentially be saved
and searched during the simulations. Models where all the founders of the colony are

unrelated could be compared to those where some of the colony's founding seals are

relatives. Such scenarios, however, would necessitate a lot more computational time
and memory during the simulations. These possible extensions were not explored

during this thesis due to time limitations.
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Chapter 3

Use of microsatellite analysis to identify links
between grey seal breeding colonies

3.1 Introduction

Reproduction in grey seals is highly synchronized, both spatially and temporally

(Pomeroy et al. 1994; Boyd 2002), with females aggregating colonially during the

breeding season to give birth, suckle their pups and to mate. These breeding colonies
are grouped into three distinct populations between which no mixing is believed to

occur: the north-west Atlantic (the largest population); the north-east Atlantic; and a

relatively small population in the Baltic (Allen et al. 1995). The grey seal has a world

population of around 300,000 individuals, 40% of which breed around the British
Isles (SCOS 2004).

The grey seal has high dispersal capabilities: satellite tracking data have shown that
these mammalian predators can travel long distances in short periods of time

(McConnell et al. 1992; Hammond et al. 1993). Given the wide-ranging ability of
these animals and their potential ability to visit many colonies during the breeding

season, one might expect low genetic structuring (Jones et al. 2004) within the three

recognized populations. However, Allen et al. (1995) found small but highly

significant differences in microsatellite allele frequencies between two colonies,
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North Rona and the Isle of May, in the north-east Atlantic population, indicating that
there may be restricted gene flow between colonies. This is supported by studies that
have shown high site fidelity by female grey seals on Sable Island in the north-west
Atlantic population (Boness & James 1979) and by both males and females at North
Rona (Pomeroy et al. 1994, Twiss et al. 1994). Both sexes have been shown to be

philopatric (returning as adults to breed at their natal colony) at North Rona and the
Isle of May (Pomeroy et al. 2000).

The advantages of site fidelity include familiarity with the terrain and with other
animals visiting the colony - this could reduce energy expenditure on aggression
between females and males, and between rival males (Twiss et al. 1994). The

potential benefits of philopatry in females include access to prime breeding locations
on a colony through matrilineal associations, and an increased likelihood of cross-

sucking (Pomeroy et al. 2000). However, there is a striking disadvantage to these
behaviours: the increased likelihood of mating between relatives, potentially leading
to inbreeding depression (Amos et al. 2001a). Movement of animals between colonies
could reduce the chances of this occurring. Indeed, inbreeding avoidance has been put

forward as a major determinant in the evolution of dispersal (Clobert, Ims & Rousset

2004). The relative strength of these two forces (site fidelity and philopatry on the one

hand and dispersal on the other) together with non-random mating patterns will
determine the genetic structure of the population. High site fidelity accelerates genetic
drift, causing colonies to become differentiated from one another, whereas dispersal
will act to homogenise colonies (Slatkin 1987).

There is a growing body of evidence that movement does occur between grey seal

breeding colonies, with anecdotal evidence of both male and female pups recruiting to

non-natal colonies and adult females breeding on different colonies in different years

(Harwood et al. 1975, Pomeroy et al. 2000). A recent multisite capture-recapture

analysis of adult females breeding on the four main colonies in the North Sea region
has shown that a small proportion of females do move between colonies in successive

years and that the probability of movement is affected by the distances separating the
colonies (see chapters 4 and 5). However, Thomas et al. (2005) found little evidence
for the movement of recruiting females among regions in the UK.
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The above evidence gives a direct indication of the present level of movement

between colonies. Genetic data, on the other hand, provides a measure of the amount

of movement between colonies averaged over a long time period (Slatkin 1987). If the

present levels of exchange between colonies are indicative of past levels, one would

expect colonies from different regions around the UK to be more differentiated than
those from the same region. Of further interest is the level of differentiation between
the three recognized populations of the grey seal, between which no present mixing is
believed to occur. For instance, are animals from the north-east Atlantic population
more differentiated from colonies on the east coast of the UK than from those on the

west coast?

In this chapter I explore the population structure of grey seal colonies in more detail

using nine microsatellite markers (see section 1.3 of chapter 1 for a description of
these markers). I compared the differentiation between Sable Island and UK colonies,

among colonies from different regions around the UK, and among colonies in one

region: the North Sea. Four types of analyses were used: (1) pairwise exact tests,

which use randomization procedures to test for differentiation between pairs of
colonies (Goudet et al. 1996) ; (2) pairwise Fst (Weir & Cockerham 1984), which
measures the proportion of variance in allele frequencies that can be attributed to

differences between pairs of colonies (Balloux & Lugon-Moulin 2002); (3)

assignment-based tests (Cornuet et al. 1999), which assign each individual's genotype

to the colony where its likelihood of occurrence is highest; and (4) Bayesian model-
based clustering (Pritchard et al. 2000; Falush et al 2003), which calculates posterior

probabilities for the number of distinct sub-populations represented in the data set

analysed.

3.2 Methods

3.2.1 Study animals, sampling occasions and locations

Tissue samples were collected from a total of 541 grey seal pups from seven colonies.
The colonies included one from the north-east Atlantic - Sable Island (Nova Scotia, n
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= 28) and six from the north-west Atlantic: Faray (Orkney, n = 76); Monach Isles

(Outer Hebrides, n = 94); Isle of May (North Sea, n = 134); Fast Castle (North Sea, n

= 82); Fame Islands (North Sea, n = 94) and; Donna Nook (North Sea, n = 33). The

locations of the six colonies around the UK are shown in Figure 1. All samples were

collected in the late 1990s and early 2000s by staff of Cambridge University and St
Andrews University.

400 Kilometers

Figure 3.1 Locations of the six colonies around the UK from which tissue samples of grey
seal pups were taken.

Faray

Monach Isles

Isle of May

Fast Castle

Fame Islands

Donna Nook
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3.2.2 Microsatellite genotyping

DNA was extracted and purified from the tissue samples and PCR6 was used for
selective amplification of the nine microsatellite loci. The PCR products were then

separated using gel electrophoresis (whereby the application of an electric current

through the gel caused alleles to migrate to different positions along the gel). The gels
were then exposed to X-ray film and the banding patterns evident on the film

provided the required information on the alleles possessed by each pup at each locus

(Joe Hoffman, pers. comm.). More details on the genotyping process can be found in
Hoffman & Amos (2005). This genotyping was carried out by staff at Cambridge

University.

3.2.3 Three levels of analysis

In the first analysis, the samples from the colonies at Sable Island and the Fame

Islands, which were expected to be quite distinct, were compared using the four
statistical methods outlined in section 3.2.5. This analysis was done to test these four
methods on data where a pronounced difference is expected - given that no present

exchange of individuals between the eastern and western Atlantic populations is

thought to occur. In the second analysis, Sable Island was compared to colonies from
three different regions around the UK - Faray, the Monach Isles and the Fame
Islands. The level of structuring between the colonies from these different UK regions
was also explored. In the third analysis, four colonies within the North Sea region -

the Isle of May, Fast Castle, the Fame Islands and Donna Nook - were compared.

3.2.4 Preliminary data analysis

Test for departures from Hardy-Weinberg equilibrium (HWE) were undertaken for
each locus at each colony using randomization tests. The tests report whether there is

6 PCR - a cyclic, in vitro enzymatic reaction by which a small fragment of DNA can be replicated
exponentially (Baker & Lento 2002)
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a deficit or an excess of heterozygotes at any of the loci and overall. Departures from
HWE at one locus may indicate the presence of null alleles7. Departures across all loci
could be an indication that non-random mating is occurring (Allen et al. 1995).

Tests for the presence of genotypic disequilibrium (i.e. associations between loci)
were performed for each pair of loci in each sample using randomization tests. Such
associations between loci can be due to the loci being close to one another on the
same chromosome or alternatively through the admixture of two or more populations
with different gametic frequencies (Hartl 2000).

These preliminary tests on the data were carried out using the computer program

FSTAT (Goudet 1995).

3.2.5 Colony differentiation and structuring

The degree of differentiation between the grey seal colonies was assessed using the
four statistical methods detailed below.

Pairwise Exact tests

For each pair of colonies complete multilocus genotypes were randomised between
the two samples. A multilocus log likelihood ratio statistic (known as the G-statistic)
was then used to classify contingency tables. For each locus the contingency tables,

excluding the marginal totals, were of size 2 (the number of colonies compared) by A

(the number of alleles at the locus). For each table the individual locus G-statistic

(Goudet et al. 1996, Petit, Balloux & Goudet 2001) was calculated as

G=~2ZEBcflln
f

n.
2 A

(eqn 3.1)
c=l a-\ n Pnc*a

7 Null allele - an allele that fails to amplify during the genotyping process.
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where nca is the number of occurrences of allele a (from a set of A alleles at the locus)

at colony c, nc is the number of alleles at colony c (twice the number of pups) and pa

is the number of occurrences of allele a in both colonies divided by the number of

alleles sampled from both colonies at the locus under consideration. Hence, nca

represent the observed frequencies and ncpa the expected frequencies, for each

randomized contingency table. The multilocus G-statistic is simply the summation
over loci of the statistics for each locus. The proportion of randomizations with a

multilocus G-statistic larger in magnitude than or equal to that of the original data set

gave the required p-value of the test. This test statistic is powerful at detecting

population differentiation even when sample sizes are unbalanced, and is valid even

when there is non-random mating (Goudet et al. 1996; Petit, Balloux & Goudet 2001).
This exact test was performed using the software FSTAT.

Pairwise Fst

Weir & Cockerham's (1984) estimate of Fst (9) was calculated for each locus

separately and over all loci, for each of the pairwise comparisons undertaken. FSTAT

was utilized to make these comparisons. Pairwise 9 values measure the proportion of
variance in allele frequencies that is explained by differences between the two

colonies (Weir 1996), such that

(eqn 3.2)
+ <?i +(Ja

where the variance components correspond to between colonies, erf, between

individuals within colonies, erf, and between alleles within individuals, erf. When

the estimate of 9 is close to unity there exists substantial differentiation, and

conversely, a value close to zero is consistent with panmixia, or random mating
between the two colonies (Balloux & Lugon-Moulin 2002).

The estimate of 9 can be negative if the true value is positive but very close to zero, or

when the parameter is in fact negative (a negative interclass correlation not a negative
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variance). The latter case implies that alleles are less related within colonies than
between them (Weir 1996).

A confidence interval was also calculated for the estimate of 6 over all loci using

nonparameteric bootstrapping of sampled loci (Rousset & Raymond 1997). This is
advocated when the loci are unlinked and should therefore represent the result of

replicated measures of the same evolutionary processes (Excoffier 2001). This

resampling technique, however, is only asymptotically correct, converging to the
correct confidence interval only when the number of loci sampled increases (for a

discussion of this property see Raymond & Rousset 1995) - the program FSTAT only

permits bootstrapping when more than four loci have been sampled.

An alternative measure of population subdivision for microsatellites is Rst (Slatkin

1995) which uses information from the variance in allele sizes as opposed to variance
in allele frequency (Balloux & Lugon-Moulin 2002). Gaggiotti et al. (1999)
concluded from simulation studies that Rst only outperforms Fst under ideal
conditions. Under the normal conditions faced by molecular ecologists, Fst estimates
of population differentiation may be more reliable than those from Rst- For this
reason only the Fst estimates have been reported herein.

Traditionally, Fst estimates have been translated into measures of gene flow (Nm =

the number of migrants per generation). However, the mathematical model used to

perform this translation makes biologically unrealistic assumptions, the violation of
which can produce misleading results (Whitlock & McCauley 1999). For this reason,

gene flow estimates have not been given in these analyses.

Assignment-based tests

Using assignment methods, each pup was assigned to the population where its
likelihood of occurrence was highest. The likelihoods were calculated according to

the criterion of Paetkau et al. (1995) and were executed using the computer package
GENECLASS2 (Piry et al. 2004). The assignments proceed as follows:
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The frequency of allele a at colony c for locus I, pacl, was calculated. If the colony

considered was the one from which the pup was sampled, this frequency was

computed with this pup excluded (Piry et al. 2004). Assuming HWE, the likelihood of

the pups genotype, XaXa., at locus I is proportional to (pacl f if a = a and to

2pac,Pa'ci if a* a. Assuming that the loci are independent (i.e. not linked) the

likelihood of the pup's multilocus genotype belonging to colony c is the product of
the likelihoods across each locus (Cornuet et al. 1999). When an allele was found in

the pup that was not in the colony considered, the frequency was set to 0.01 at that

colony to avoid a zero likelihood being computed (given that the allele may be present

but rare at the colony and was therefore not sampled). The value of 0.01 is reasonable

given the sample sizes available in this study. According to Paetkau et al. (2004), the

assignment results are not sensitive to the value set for missing alleles.

Bayesian model-based clustering

Bayesian model-based clustering, a method derived from assignment tests, was

performed using the software STRUCTURE (Pritchard et al. 2000; Falush et al. 2003).
When running the STRUCTURE program there are two primary modelling
considerations: (i) whether individuals in the populations can be admixed (i.e.
individuals may have recent ancestors in more than one of the populations); and (ii)
whether allele frequencies are assumed to be correlated or independent (they could be
correlated as a result of shared ancestry in the past).

The Bayesian approach to statistical inference is revolutionising the analysis of data
on animal populations, including those from DNA samples (Beaumont & Rannala

2004), enabling scientists to build complex, realistic models which account for

stochasticity and can incorporate prior information. Using the STRUCTURE program

the primary inference task is to obtain samples from the posterior distribution,

Pr(Z,P|x), given that:

Pr(Z,P|x)°cPr(Z)Pr(P)Pr(x|Z,P) (eqn 3.3)
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where X represents the genotypes of the sampled pups, Z, the unknown population of

origin of the pups and P the unknown allele frequencies in each population. Pr(Z)

and Pr(P) give the independent prior distributions for P and Z and Pr(x|Z,/>)
gives the likelihood. In the admixture model the prior distribution for Z is modified to

allow alleles within a pup to have originated from different populations. In the
correlated allele frequencies model the prior distribution for P is modified to allow
allele frequencies to be correlated across populations. Markov chain Monte Carlo

(MCMC) methods8 are used to obtain an approximate sample from the posterior
distribution.

An important difference between the assignment tests undertaken above (section

3.2.5.3) and the analysis done by STRUCTURE is that the number of distinct

populations is not known a priori when STRUCTURE is used (Jones et al. 2004).
Instead this program assigns individuals to populations (without using any

information about how many separate colonies were sampled) and gives posterior

probabilities for the number of distinct populations (or clusters) represented in the
data set analysed. However, Pritchard et al. (2000) stress the difficulties associated
with inferring the true number of clusters, and propose that their solution (based on

Bayesian deviance) should only be used as a guide.

3.3 Results

There was no evidence for departures from HWE or the presence of genotypic

disequilibrium at any of the colonies explored in the three analyses using the tests

described in section 3.2.4 after standard Bonferroni corrections for multiple tests had
been applied.

The numbers of alleles sampled at each locus on each of the colonies explored are

presented in Table 3.1.

8 MCMC - a computer-intensive approach which simulates a Markov chain whose stationary
distribution is the posterior of interest (Gamerman 1997).
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Table 3.1 Numbers of alleles sampled at each locus on each of the colonies and the
total number of alleles at each locus represented in the entire data set.
Locus Sable Faray Monach Isle of Fast Fame Donna Total

Island Isles May Castle Islands Nook

Hg3.6 6 8 8 8 8 8 8 8

Hg4.2 5 8 5 6 6 7 5 8

Hg6.1 4 6 6 6 6 6 5 6

Hg6.3 6 6 6 6 6 6 6 6

Hg8.9 7 10 9 11 10 10 10 11

Hg8.10 5 9 10 10 9 9 7 10

Hgd.2 7 8 8 8 8 8 8 8
Pv9 4 7 7 7 7 7 7 7
Pvll 6 8 7 8 7 7 6 8

First analysis

Figure 3.2 compares the allele frequencies for the 9 loci genotyped at Sable Island and
the Fame Islands. The multilocus G-test showed clear evidence of differentiation

between these two colonies, with the results being significant at the 0.1% nominal
level. Pairwise 6 values are given in Table 3.2 for each locus separately and over all.
A 95% bootstrap confidence interval is also provided for the estimate over all loci.
There is clear differentiation between these two colonies based on this statistic, which

is supported by the fact that the bootstrap confidence interval does not contain zero.
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Figure 3.2 Allele frequency comparison plot for the 9 microsatellite loci genotyped for
Sable Island and the Fame Islands.
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Table 3.2 Weir & Cockerham's (1984) estimates of FST {&) for each locus separately and
over all in the comparison between Sable Island and the Fame Islands. A 95% bootstrap
confidence interval is also provided for the estimate over all loci

locus 9 95% CI

Hg3.6 0.052 -

Hg4.2 0.048 -

Hg6.1 0.085 -

Hg6.3 0.111 -

Hg8.9 0.012 -

Hg8.10 0.036 -

Hgd.2 0.019 -

Pv9 0.057 -

Pvll 0.009 —

All loci 0.048 (0.028, 0.070)

The results of the likelihood-based assignment methods are shown in Table 3.3. In
this case 89.3% of animals were assigned to the colony where they were sampled.

Table 3.3 Proportion of pups assigned to each colony given their sampling locations
Sampling location No. of pups sampled Percentage of pups assigned to

each colony
Sable Island Fame Islands

Sable Island 28 0.893 0.107
Fame Islands 94 0.106 0.894

In the model-based clustering analysis the "no admixture" model was used based on

the assumption that there is now very little exchange of individuals between these two

widely separated colonies. The correlated allele frequencies model was also used
based on the assumption that current allele frequencies could be correlated because of
shared ancestry in the distant past. The models were run with K (the number of

populations) ranging from 1 to 4. Each model (with a separate K) was run twice to

assess whether or not the models had converged. A burn-in length of 50,000 and a run

length of 100,000 were used.

There was little Monte Carlo error between runs of the same model, indicating that
the burn-in and run lengths were sufficient. The posterior probabilities of K given in
Table 3.4 indicate that there is strong support for two populations. The results from
the model with K = 2 are shown in Table 3.5 and Figure 3.3. From these results it is
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clear that the model is more successful at assigning the Sable Island animals to the
correct population than the Fame Islands pups. Nevertheless, most animals were

assigned to the correct clusters.

Table 3.4 Inferring the value of K (the number of distinct populations) from model-based
clustering using data from Sable Island and the Fame Islands

K log P(X\K) P(K\X)
1 -3263.3 ~0
2 -3225.9 ~1
3 -3299.1 ~0
4 -3324.7 ~0

Table 3.5 Proportion of membership of each sampled colony in each of the two clusters
Sampling location Inferred cluster No. of pups sampled

1 2
Sable Island 0.914 0.086 28

Fame Islands 0.273 0.727 94

Figure 3.3 Posterior probabilities that each pup belongs to each of the two inferred clusters.
Each pup is represented by a vertical coloured line. Red is the colour for inferred cluster 1 and
green for cluster 2. The animals sampled in Sable Island are in section 1 along the horizontal
axis and those from the Fame Islands are in section 2.

Second analysis

Figure 3.4 compares allele frequencies at the 9 loci genotyped at Sable Island, Faray,
the Monach Isles and the Fame Islands. The multilocus G-tests showed clear evidence

of differentiation for all pairwise comparisons made, with the results being significant
at the 0.1% nominal level for all comparisons apart from Faray versus the Fame

Islands, which was only significant at the 1% nominal level. Pairwise 6 values are

given in Table 3.6 for each locus separately and overall.
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Table 3.6 Weir & Cockerham's (1984) estimates of FSj (9) for each pairwise comparison at
each locus separately and overall (l=Sable Island, 2=Faray, 3=Monach Isles, 4=Farne
Islands). A 95% bootstrap confidence interval is also provided for the estimates over all loci

Locus Pairwise 9
l<->2 l<-»3 l<->4 2<->3 2<-»4 3<->4

Hg3.6 0.012 0.031 0.052 0.009 0.006 0.020

Hg4.2 0.050 0.038 0.048 0.001 0.007 -0.001

Hg6.1 0.095 0.088 0.085 -0.006 -0.007 -0.007

Hg6.3 0.161 0.100 0.111 0.004 0.027 0.008

Hg8.9 0.011 0.024 0.012 0.001 0.000 0.006

Hg8.10 0.061 0.074 0.036 0.017 0.006 0.022

Hgd.2 0.025 0.009 0.019 0.001 0.003 0.004
Pv9 0.082 0.075 0.057 -0.001 -0.000 0.004
Pvll 0.005 0.029 0.009 0.004 -0.003 0.002

All loci 0.058 0.052 0.048 0.004 0.005 0.007
95% CI (0.027, (0.016, (0.028, (-0.000, (-0.000, (0.001,

0.093) 0.091) 0.070) 0.008) 0.013) 0.013)

These results show that the three UK populations are much more differentiated from
the Sable Island population than they are among themselves, as had been expected. It
had been hypothesised that the Sable Island pups may have been more closely related
to seals on the west coast of the UK (Monach Isles) than to those on the east coast

(Fame Islands) but, in fact, Faray was found to be the most differentiated colony from
Sable Island, followed by the Monach Isles and lastly the Fame Islands. However, it
should be noted that the sample sizes are unbalanced, with a rather small sample from
Sable Island (28 pups).

The sample sizes for the three UK colonies were larger and more balanced. The most

differentiated UK colonies are the two separated by the largest distance (the Monach
Isles and the Fame Islands). Again, however, caution should be used in interpreting
these results given that the 9 values are quite variable between loci, with some

negative values being estimated. It should be noted that the 95 % bootstrap confidence
intervals for the comparisons between Faray and the Monach Isles, and between Faray
and the Fame Islands have a lower limit on the zero borderline.

The results of the likelihood-based assignment methods are shown in Table 3.7. In
this case, 52.1% of animals were assigned to the colony where they were sampled.
When Sable Island was removed from the analysis, 51.9% of animals were assigned
to the colony where they were sampled.
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Table 3.7 Proportion of pups assigned to each colony given their sampling locations when
Sable Island was retained in the analysis (a) and when it was removed (b)
(a)

Sampling
location

No. of pups
sampled

Proportion of pups assigned to each colony

Sable Island Faray Monach Isles Fame Islands
Sable Island 28 0.893 0.036 0.036 0.036

Faray 76 0.026 0.434 0.316 0.224
Monach Isles 94 0.085 0.245 0.489 0.181
Fame Islands 94 0.096 0.213 0.181 0.511

(b)
Sampling
location

No. of pups
sampled

Proportion of pups assigned to each colony

Sable Island Faray Monach Isles Fame Islands
Sable Island - - - - -

Faray 76 - 0.434 0.316 0.250
Monach Isles 94 - 0.255 0.542 0.202
Fame Islands 94 - 0.223 0.213 0.564

Most of the results in Table 3.7 are consistent with the results based on FSt- Only two

animals sampled in Faray were assigned to Sable Island (Table 3.7a), most of the UK

pups were assigned to their colony of birth (Tables 3.7a and b), but a large proportion
were also assigned to the other two colonies. Most pups not assigned to their colony
of birth were assigned to the closer of the other two colonies, although the difference
in numbers was small. Furthermore, Faray, the colony mid-way between the other two

colonies, had the lowest self-assignment rate.

Given that Sable Island is clearly quite differentiated from the other three colonies, it
seems appropriate to exclude this colony from the STRUCTURE analysis to increase the

power to detect the more subtle structure that exists among the UK colonies and also
to justify the models used (e.g. it may be appropriate to use the admixture model for

comparing the UK colonies to one another but not for comparing them to the north¬
west Atlantic population).

In this analysis, I used both the "no admixture" model and the "admixture" model. In
both cases I assumed that the allele frequencies are correlated to some degree, due to

the probable shared ancestry.
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Neither of these models showed evidence of sub-structuring among the three UK

colonies. Presumably the level of divergence between these colonies is insufficient to

be detected using structure and/or the sample sizes used and number of loci typed is
too small.

Third analysis

In Figure 3.5 allele frequencies at the 9 loci genotyped are compared between the four
colonies in the North Sea region. The results of the multilocus G-test in Table 3.8
show significant differentiation for the pairwise comparisons involving Donna Nook,
but non-significant results for all other comparisons. However, after inspecting the
allele frequency comparison plots in Figure 3.5 it appears the significance of the
Donna Nook comparisons are driven almost entirely by Locus Hg8.10. If this locus is
removed from the analysis, all the exact test comparisons are non-significant.
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Table 3.8 Pairwise multilocus G-test results for the four North Sea colonies. The results are

based on standard Bonferroni corrections for multiple tests, where "***" corresponds to
significance at the 0.1% nominal level, "**" significance at the 1% nominal level and "*"
significance at the 5% nominal level. "NS" stands for non-significant.

Fast Castle Fame Islands Donna Nook
Isle of May NS NS **
Fast Castle - NS ***

Fame Islands - - *

Pairwise 0 values are given in Table 3.9 for each locus separately and over all. From
these comparisons it is quite clear that there is very little differentiation between the
four North Sea colonies (especially when one considers the number of negative values
estimated and the fact that all the 95% bootstrap confidence intervals clearly contain

zero). Again, the differences found between Donna Nook and the other three colonies
can be almost entirely explained by differences at locus Hg8.10. The confidence
intervals for the Donna Nook comparisons are also rather wide because of this locus.

Table 3.9 Weir & Cockerham's (1984) estimate of FSt (6) for each pairwise comparison at
each locus separately and overall (l=Isle of May, 2=Fast Castle, 3=Farne Islands, 4=Donna
Nook). A 95% bootstrap confidence interval is also provided for the estimates over all loci

Locus Pairwise 6
l<->2 l<-+3 l<-»4 2<->3 2<->4 3<->4

Hg3.6 0.017 0.007 -0.006 0.002 0.013 0.009

Hg4.2 -0.003 -0.000 0.000 -0.001 -0.006 0.004

Hg6.1 0.005 -0.006 0.009 0.009 0.040 -0.002

Hg6.3 -0.004 -0.002 -0.004 -0.001 -0.009 0.003

Hg8.9 -0.001 -0.002 0.000 -0.004 -0.004 -0.005

Hg8.10 -0.003 0.001 0.065 -0.002 0.053 0.052

Hgd.2 -0.003 -0.002 -0.005 -0.003 -0.006 -0.008
Pv9 0.001 0.004 -0.000 0.014 0.016 -0.008
Pvll -0.004 -0.000 -0.004 -0.005 -0.007 -0.006

All loci 0.001 0.000 0.007 0.001 0.010 0.005
95% CI (-0.003, (-0.002, (-0.003, (-0.003, (-0.002, (-0.005,

0.005) 0.002) 0.024) 0.005 0.026) 0.019)

The results of the likelihood-based assignment methods are shown in Table 3.10. In
this case 33.5% of animals were assigned to the colony where they were sampled.
When locus Hg8.10 was removed from the analysis, however, only 27.1% of animals
were assigned to the colony where they were sampled: the animals sampled in each
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colony were assigned in roughly equal amounts between the four possible colonies,

indicating very little population structuring.

Table 3.10 Proportion of pups assigned to each colony given their sampling locations when
locus Hg8.10 was retained in the analysis (a) and when it was removed (b)
(a)

Sampling
location

No. of pups
sampled

Proportion of pups assigned to each colony

Isle of May Fast Castle Fame Islands Donna Nook
Isle of May 134 0.299 0.261 0.306 0.134
Fast Castle 82 0.341 0.256 0.305 0.098

Fame Islands 94 0.255 0.266 0.372 0.106
Donna Nook 33 0.182 0.091 0.152 0.576

(b)
Sampling
location

No. of pups
sampled

Proportion of pups assigned to each colony

Isle of May Fast Castle Fame Islands Donna Nook
Isle of May 134 0.269 0.269 0.246 0.216
Fast Castle 82 0.256 0.244 0.280 0.220

Fame Islands 94 0.213 0.277 0.330 0.181
Donna Nook 33 0.303 0.242 0.273 0.182

No analysis was done of this North Sea data set using the STRUCTURE program

because of the lack of genetic differentiation found between the colonies from this

region.

3.3 Discussion

The grey seal pups sampled on Sable Island were clearly differentiated from those

sampled at colonies around the British Isles. In the comparisons between Sable Island
and the three widely separated UK colonies, Faray (the most northern of the UK
colonies analysed) was the most strongly differentiated colony, based on the 6 values
and the assignment tests, and the Fame Islands (the most southern colony analysed),
was the least differentiated. However, sample size at Sable Island was small and the
confidence intervals for the 6 values in these three comparisons show considerable

overlap (see Table 3.6). A larger sample size from Sable Island would help to clarify
this relationship. It would also be of interest to see how the animals from the Baltic

population fit into this relationship.
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In the comparison of colonies from different regions within the UK, there is some

support for a correlation between degree of differentiation and distance, with the two

most distant colonies being the most differentiated. The ordering of the average 6
values across loci for these pairwise comparisons also supports a relationship with
distance. In the assignment-based tests most pups were assigned to the colony where

they were sampled. Those not assigned to their colony of sampling were assigned
with a slight preference to the closer of the other two colonies.

It had been thought that STRUCTURE, would be able to detect the sub-structuring
between the colonies from different regions around the UK. However, this program

can have difficulties when allele frequency differences are small (Pritchard et al

2000). It is essentially solving a much more complicated problem than that addressed

by the other tests used, where the colony labels are known in advance (Jonathan

Pritchard, pers. comm.).

Allen et al. (1995) found a significant difference between microsatellite frequencies in

samples taken a two UK colonies: North Rona (Outer Hebrides) and the Isle of May

(North Sea). In spite of this differentiation, they proposed that there could still be

major population subdivisions among the colonies around the UK. For example, there
could be an east-west divide with approximate panmixia on either side. The data

analysed here lends some support to this hypothesis: there does at least appear to be

approximate panmixia among the colonies in the North Sea region.

However, for the North Sea comparison, it was surprising to see such strong

differentiation at locus Hg8.10 for the pups sampled at Donna Nook. It was initially

thought that this could represent a scoring error made whilst reading the gel for this

sample. The gel was re-scored but this made no difference to the analysis results. The
difference found at this locus could therefore be due to: sampling of families; founder
effects; and/or small sample size.

Sampling of families could occur as a result of the high site fidelity and philopatry
observed in grey seals (see section 3.1). However, Donna Nook is a vast, featureless
beach. Spatial clustering of closely-related individuals is less likely to occur here than
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at colonies like North Rona and the Isle of May, where such clustering has been

observed. Founder effects could be important at Donna Nook, where the number of

pups produced increase by three-fold between 1992 and 2000. A large proportion of
this growth is believed to be attributable to immigration. However, this immigration
would only lead to a founder effect if all the immigrants came from one part of one

colony, or if most founders were from a few families.

A more intriguing possibility is that locus Hg8.10 is actually behaving differently to

the other markers as a consequence of linkage to a gene that is under natural selection

(Slatkin 1987), favouring different alleles at Donna Nook than at the other three North
Sea colonies. Nevertheless, given the small sample size taken at Donna Nook, and the

possibility of other factors contributing to this difference, this hypothesis can only be

put forward very tentatively.

Overall, however, there appears to be little genetic differentiation among the four
North Sea colonies. This is not surprising when one considers the history of colony
formation in this region. The only long-established colony in the region is the Fame

Islands, whereas only a few pups were born at the Isle of May prior to the mid-1970s,
and none were born at Donna Nook. However, during the late 1970s the National
Trust began a programme to deter seals from breeding on two of the most important
islands in the Fame Islands group, in order to reduce damage to delicate vegetation

(Prime 1981). Seals displaced from the Fame Islands are believed to have been

responsible for the rapid growth at the Isle of May observed around this time. Fast
Castle is the most recently established colony in the region: seals were first noticed
there by local fishermen in 1990 (Kevin Rideout, SWT/NTS Ranger, pers. comm.),
and most of the immigrants to this colony are thought to have come from the Isle of

May.

In conclusion, there appears to be evidence for different levels of structuring of
colonies around the British Isles with some evidence for a distance effect and of

approximate panmixia in the North Sea region. The microsatellite DNA data

compared in this chapter came from pups, so they represent the average effects of

philopatry and site fidelity in both sexes. However, in many mammals, such colony
faithful behaviours are thought to be stronger in females (Greenwood 1980), with
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males being more likely to disperse. In grey seals it is difficult for a female to change

breeding colonies because the timing of the peak in pupping varies among colonies.
On the other hand, males could gain significant fitness benefits by tracking the shift in
the timing of oestrus around the different colonies. However, this would require an

ability to predict these differences in timing. Two other factors may make dispersal
even more advantageous in males: (1) in the grey seal system a male arriving from
another colony may accrue an above average success rate in fertilization of females

given his dissimilarity to the other males at that colony (based on the mate "choice"
mechanism uncovered by Amos et al. (2001b) and explored in chapter 2 of this

thesis); and (2) given that a significant proportion of copulations are thought to

happen aquatically (Worthington Wilmer et al. 1999, 2000), the survival cost to a

dispersing male mating aquatically would be less than if he had to do battle with
dominant males protecting females on shore. Genetic data collected from adult males
and females could help uncover the level of bias in dispersal between the sexes.

However, adult grey seals are much more difficult to sample than pups, especially
those males that do not come ashore during the breeding season. An alternative, and

logistically simpler method, would be to compare estimates of population
differentiation from nuclear DNA (microsatellites) to those obtained from

mitochondrial DNA (Petit & Mayer 1999; Petit, Balloux & Goudet 2001) for grey

seal pups. If the latter indicates more differentiation than the former then a higher
male-to-female dispersal rate is implied.
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Chapter 4

A Multisite Capture-Recapture Analysis of
Female Grey Seals Breeding at Colonies in the
North Sea

4.1 Introduction

Grey seals in Britain breed in the autumn at around 50 breeding colonies (Gaggiotti et

al. 2002), over 90% of which occur in Scotland, particularly in the Hebrides and in

Orkney (SCOS 2004). At these colonies females give birth to and suckle a single

offspring, and mate (Anderson, Burton & Summers 1975). At North Rona - an island
off the north-west coast of Scotland - both males and females grey seals show a high
level of breeding site fidelity and philopatry (Pomeroy et al. 1994; Twiss et al. 1994),

suggesting that there is restricted movement between breeding colonies. Gaggiotti et

al (2002) used the results of DNA analysis to show that grey seal colonies in Orkney
have metapopulation structure: new colonies are formed by seals moving from the
nearest and largest colonies to found new colonies. However, no assessment has yet

been done to determine to what extent adult grey seals move among already
established breeding colonies.

Grey seal colonies meet the assumptions for a metapopulation (as discussed in section
1.2 of chapter 1): the sites occupied by aggregations are discrete, individuals only
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occasionally move between these sites, and there is turnover of occupied sites (i.e.

previously occupied sites are recolonized following local extinction). However,

metapopulation models are only useful if model parameters can be estimated reliably.
One of the key parameters is the probability of movement between aggregations. For

large mammals, such as the grey seal, which spends more than 80% of its time at sea

(McConnell et al. 1999) and 90% of this time below the surface (Thompson et al.

1991), directly observing movement is practically impossible. However, movement

probabilities can be estimated using multisite capture-recapture techniques (Brownie
et al. 1993).

Individual female grey seals can be identified by unique patterns of black markings on

their white background colouration. The Sea Mammal Research Unit (SMRU) has

collected a large catalogue of photographs of UK grey seals. Photographs of the same

individual are identified with the aid of a computer matching program that uses

markings on a specific area on the side of the seal's neck that is usually boldly

patterned (Hiby & Lovell 1990).Although photographs have not been collected from
all grey seal breeding colonies in all years, systematic samples were collected at four
colonies in the North Sea (Isle of May, Fast Castle, Fame Islands and Donna Nook)
between 1999 and 2001.

For statistical modelling of multisite capture-recapture data the Arnason-Schwarz

(AS) model (Arnason 1972, 1973; Schwarz, Schweigert & Arnason 1993) provides a

good starting point. The AS model is the multisite equivalent of the familiar single
site Cormack-Jolly-Seber (CJS) model (Cormack 1964, Jolly 1965, Seber 1965).
Maximum likelihood estimates (MLEs) of the parameters for these models can be

easily obtained using the iterative methods utilized in software programs such as

MARK (White & Bumham 1999) and M-SURGE (Choquet et al. 2004).The AS model is

highly parameterised, and it may not be possible to estimate all of these parameters

given the information content in the data. However, reduced-parameter versions of
this model are available (Brownie et al. 1993) and a suitable model can be chosen

using standard model selection procedures (Lebreton et al. 1992).

For the single site case Uebreton et al. (1992) recommend the following procedure for
model building and model selection for capture-recapture data: (1) select the most
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general model and assess its fit; (2) select a more parsimonious model using Akaike's
Information Criterion (AIC); (3) test biological questions (such as whether external

factors affect the probabilities in the model); and (4) obtain MLEs for the model

parameters. This procedure can also be applied to the multisite case, especially in

light of recent advances in assessing the goodness-of-fit (GOF) of the AS model

(Pradel, Wintrebert & Giminez 2003) using the program U-CARE (Choquet et al.

2003).

MARK and M-SURGE utilize a generalised linear model (GLM) framework, so that it is

possible to relate variation in demographic rates to environmental variables

(Buckland, Goudie & Borchers 2000). This has been referred to as ultrastructural

modelling (Spendelow et al. 1995).

In this study, the model selection procedures described above were used to select the
most parsimonious models to describe capture-recapture data collected from female

grey seals breeding at the North Sea colonies between 1999 and 2001. I tested the

hypotheses that the probability of movement between colonies was related to the
distance between them and their population sizes.

4.2 Methods

4.2.1 Study animals, sampling occasions and locations

The locations of the four colonies are shown in Figure 4.1. The colonies are the Isle of

May, Fast Castle, the Fame Islands and Donna Nook; these will occasionally be
indexed 1 to 4 in what follows. Samples were taken at all four colonies between 1999
and 2001. The main visits to each colony occurred on one or two occasions each year

between 26 October and 10 December. As many adult females as possible were

photographed either on land or in the water using a Canon EOS 505si 35mm camera

fitted with a 600mm lens and xl.4 converter xp2 film. The photographs were taken

by members of the Sea Mammal Research Unit at St Andrews University, the

majority by Rob Harris.
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Isle of May

Fast Castle

Fame Islands

Donna Nook

Females were photographed from the left hand side (LHS) or the right hand side

(RHS). In the data sets used for analysis there are 1122 female grey seals known by
the LHS and 1181 known by the RHS. In the field it was sometimes possible to match
the LHS and RHS photographs to the same animal - in the data analysed 358 animals
are known by both sides. I assumed that all the photographed females were breeding
at the colonies where they were photographed.

400 Kilometers

Figure 4.1. Map of the UK showing the four North Sea grey seal breeding colonies used in
the capture-recapture study

4.2.2 Recapture detection

The pelage on the side of an adult female grey seal's head and neck is boldly

patterned and can act as a "fingerprint", thus enabling a seal to be recognised
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whenever subsequently seen from that side. It is believed that these patterns are

constant over time (Hiby & Lovell 1990).

Photographs were digitized and then analyzed using image-processing software

developed by Hiby & Lovell (1990). Decisions on which photographs to put through
the software were made based on the exposure, image size on the negative, the
amount of blurring (due to camera or seal movement) and the distinctness of the

pelage pattern (John Watkins, pers. comm.). This software locates a specific area on

the side of the seal's neck and uses a three dimensional model of the seal's head to

derive a numerical description of this area (see section 1.4 of chapter 1). This

description is then compared to all others in the computer library and pairs of

photographs that score above a pre-set similarity threshold are presented for final

comparison by eye. This method is robust to changes in orientation and position of the

seal, average brightness and contrast (Hiby & Lovell 1990; Hiby & Hammond 1998).

4.2.3 Capture histories

The LHS and RHS data were analyzed separately - to combine the two data sets

would require the development of new models with non-standard parameters, such as

the probability of matching the two sides of a seal's head whilst taking photographs at

a colony. Parameter estimates from these two analyses are not, however, completely

independent, because an unknown proportion of animals in one data set are also

represented in the other. The input data for the capture-recapture software are coded
as "capture histories", for example the capture history "302" represents a seal

photographed at colony 3 in the first year, not seen at any colony in the second year

and re-photographed at colony 2 in the third year.

4.2.4 Observation error

One of the assumptions of capture-recapture models is that marked animals are

identified with certainty when they are recaptured. However, when photographic
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information is used to uniquely identify individuals there is a chance that previously

photographed animals may not be recognized when they are photographed again.
That is, individual capture histories may contain false negatives. The user of the

image processing software has some control of this process because final matches are

made by the user. The conventional approach is to attempt to minimize the number of
false positive matches (where two different animals are thought to represent the same

animal). However, the more conservative this step, the higher the chances of making
false negative errors (Stevick et al. 2001). In addition, the probability of generating a

false negative record decreases over time as more photographs of the same animal are

added to the library and are available for comparison.

4.2.5 Data screening

Seven seals (4 from the 1122 known by the LHS and 3 from the 1181 known by the

RHS) were photographed at more than one colony in the same year, indicating that
within-season movement does occur. Each of these animals was allocated to one

breeding colony based on the relative timing of each photograph relative to the start

and end of the pupping season and the duration of lactation. For instance one of the
LHS seals seen at two colonies in one year was photographed at the Isle of May on

26th October 2001 and then again at Fast Castle on 3rd November 2001. This female
was allocated to Fast Castle as the peak of pupping occurs at Fast Castle in November
and at the Isle of May in late October. As lactation lasts approximately 3 weeks it is

unlikely that she would have had time to have bred at the Isle of May and to have
finished lactation by 3rd November when she was photographed at Fast Castle.

4.2.6 Models, parameters and assumptions

The full model considered for this analysis is the time-dependent conditional AS
model (CAS - Choquet et al. 2004), which does not estimate population size. The
model parameters in this analysis are:
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Oi(= the survival probability: The probability that a seal alive on colony i in

year t-1 survives (and does not permanently leave the four North Sea

colonies) until year t, where i = 1,,4 and t = 2000 or 2001.

TV. (= the movement probability: The probability that a seal (conditional on

surviving) moves from colony i in year t-1 to colony j in year t.

Pj, = the recapture probability: The probability that a seal photographed in a

previous year and alive on colony j at time t, is re-photographed there.

In this parameterisation I have used the time step t-1 to t, instead of t to t+1, which is

conventionally used in the capture-recapture literature (e.g. Hestbeck, Nichols &
Malecki 1991; Brownie et al. 1993; Nichols & Kendall 1995), for consistency with
the state-space modelling described in chapter 5.

Using the parameterisation above; the probability that a seal photographed in 1999 at

colony i, survives until 2000, moves to colony j and is identified there in 2000 is
O 2x¥,^j 2Pj i ■ Hence, the CAS model assumes that an animal's survival from t— 1 to t

depends only on the colony it occupies at time t— 1. Movement between colonies is
assumed to be a first-order Markov process (i.e. the probability of movement between
t-1 and t depends only on the location at time t— 1 and not before). Models that relax
this assumption have been explored in the literature (see Hestbeck et al. 1991;
Brownie et al. 1993) but, due to the increase in the number of parameters, require a

much larger amount of data than was available for this analysis.

Further assumptions of the CAS model are: independence of individuals; identity of
individuals (all share the same probabilities); independence of successive capture

events (probabilities are independent of previous capture histories). The validity of
some of these assumptions can be tested using GOF tests.

Female grey seals are long lived (35-40 years) so most animals were expected to

survive the entire study period. It was therefore unlikely that it would be possible to

obtain precise estimates of survival probabilities from this data set (Lebreton et al.

1992). The survival rate, O, was therefore fixed at 0.96 - an estimate based on an

extended study of a group of branded and tagged adult females at the Isle of May
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(Paddy Pomeroy, pers. comm.). The sensitivity of the analysis to uncertainty in this

parameter estimate was checked by repeating the analysis using the lower and upper

95% confidence limits (0.896 and 0.985 respectively).

4.2.7 Maximum likelihood estimation

Summary information required for parameter estimation for the CAS model can be

displayed in a multisite m-array (Brownie et al. 1993) such as Table 4.1, where:

/?.
t - the number of seals uniquely identified on colony i at time t.

my m ~ the number of seals identified on colony i at time t first recaptured at
time u on site j.

r
t = X mij m (i-e. the total number of first recaptures for the entire study

j u

at all colonies given release on colony i at time /).

Table 4.1. Multisite m-array representation of summary information required for parameter
estimation for the Arnason-Schwarz model with three capture occasions and four colonies

Number of first recaptures by year (and colony)
Release Number Not seen

year,
colony

released 2

(1 2 3 4)

3

(1 2 3 4)

again

1, 1 *u "*11,12 "*12,12 "*13,12 ^4,12 "*11,13 "*12,13 '**13,13 "*14,13 *1,1-6,1
1,2 *2,1 m2i,i2 m22,l2 m23,12 W24,12 "*21,13 "*22,13 "*23,13 "*24,13 *2,1 — **2,1
1,3 *3,1 m31,12 "*32,12 m33,\2 ^4,12 "*31,13 "*32,13 "*33,13 "*34,13 *3,1 — *3,1
1,4 *4,1 "*41,12 "*42,12 m43,12 m44,12 "*41,13 "*42,13 '"43,13 "*44,13 *4,1 — *4,1
2,1 *1,2 "*11,23 "*12,23 "*13,23 "*14,23 *1,2 — 6,2
2,2 *2,2 "*21,23 "*22,23 "*23,23 "*24,23 *2,2 — *2,2
2,3 *3,2 "*31,23 "*32,23 "*33,23 "*34,23 *3,2 — *3,2
2,4 *4,2 "*41,23 "*42,23 "*43,23 "*44,23 *4,2 — *4,2

Conditional on the number of animals released, the values in each row of the m-array

are mutually exclusive and are distributed multinomially. Programs like M-SURGE

utilize iterative methods to calculate MLEs of the parameter values. The MLEs are the
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parameter values that bring the observed and expected numbers in the m-array as

close as possible given the flexibility in the model. This is known as minimizing the
Deviance (which is calculated as minus two multiplied by the natural logarithm of the
likelihood for the model). M-SURGE was used in the present analysis as it has been

designed specifically for multisite capture-recapture data analysis.

Using the CAS model with survival fixed to 0.96, the individuals in the m-array that
make up mi213 each have the capture history "302". These individuals may have

visited any of the four colonies in the year where the zero was recorded. The

probability of an individual visiting colony 1 on occasion 2, for instance, is given by

0.96*xF3^12212 *0.96*4/1_^23P23, where <212 = l-^i2 (i-e- the seal released on

colony 3 on occasion 1 survived the following time period, moved from colony 3 to

colony 1, was not seen there, survived the next time period, moved from colony 1 to

colony 2 and was seen on colony 2). Accounting for all the locations possible on

occasion 2 the expected number in this cell of the m-array is thus given by:

For the movement parameters in the above model the site fidelity parameter, (,

i.e. the probability of returning to the colony that was last bred at, is post-processed
as:

where i = 1,..,4.

Similar probabilistic statements can be written for all the other cells in the table. Note
that those released in the m-array in the second year of the study are assumed to be a

combination of those previously caught and those newly caught. This assumes that

capture history does not affect capture probability, an assumption that can be
validated with GOF tests.

2->2,3* 2,3^2,3) +
(eqn 4.1)

XV. = 1-Y*P. .X
l-H,t A A (eqn 4.2)
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4.2.8 Goodness of fit and variance inflation factors

Lebreton et al. (1992) and Burnham et al. (1987) recommend that the fit of the most

general model being explored is evaluated first. Until recently, however, assessing the
fit of multisite models was not straightforward and there was no standard method for

doing this. However, Pradel et al. (2003) have developed methods for testing the

assumption that all animals released at a given time behave the same irrespective of
their past capture history and for comparing the fate of animals photographed at a

particular time with those photographed at other times. These tests can be performed

using the companion program to M-SURGE known as U-CARE. Pradel et al. (2003)
recommend that these tests be utilised to obtain a variance inflation factor, c, which

should subsequently be used in model selection and variance estimation (Choquet et

al. 2004).

As there are only three years of data in the present study only one of Pradel et aV s

tests (test 3GSR) could be applied. This is a x1 test f°r transients, an age effect or a

marking effect. It tests the assumption that all animals present at any given time on

the same site behave the same regardless of their past capture history. Even this test

could only be applied to the 2000 data because the animals must have been caught
both before and after the occasion fixed on.

A reliable measure of lack of fit in this case is to use the ratio > known as c, for

the GOF tests that can be performed. A value of one for c is what is expected if the
model assumptions have not been violated. When c is greater than one it can be an

indication of over-dispersion in the data or that some of the structural assumptions of
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the model are wrong (Lebreton et al. 1992). In this case c was calculated

4.2.9 Model selection

Lebreton et al. (1992) recommend that the fit of all other models is compared to that
of the general model using Akaike's information criterion (AIC) or quasi-likelihood

adjusted AIC (QAIC), which is the AIC adjusted using c (Burnham & Anderson

2002), such that:

where the QAIC for model m depends on its deviance, Devm, the variance-inflation

factor, c, and the number of parameters it has, pm. This model selection procedure

makes a trade off between bias and precision based on the information content of the
data. As more complicated models will fit the data better (because they are more

flexible); they are penalised for the extra parameters that need to be estimated.

Furthermore, when c is greater than unity, QAIC favours models with fewer

parameters.

I also used the QAIC weights in model selection. This is essentially the Akaike

weight that incorporates the variance inflation factor described above. This weight can

be thought of as the probability for each model being the "best" approximating model
from the models compared (Buckland et al. 1997; Burnham & Anderson 2002;
Thomas & Harwood 2003; Cam et al. 2004; Johnson & Omland 2004) To calculate

this weight first the difference between each model in the set and the "best" model

(i.e. the model with the minimum QAIC value) are calculated

(eqn 4.3)
c

Am=QAICm-QAIC (eqn 4.4)
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Then the relative weight for each model, Wm , is calculated as

exp(-Am /2)
^ = V < I n\ (eqn4"5)2jexp(-A? /2j

where q = 1,..., Q and Q represents the number of models being compared.

To limit the number of models explored, and to focus on the hypotheses of most

interest, I followed this route through model space: 1) start from the CAS model with
survival fixed to 0.96; 2) explore the effect of time on the movement and recapture

probabilities; 3) reduce the number of recapture parameters and test biological

hypotheses relating to recapture; 4) repeat step 3) for the movement models. I report

only those models with a QAIC weight greater than 0.05.

4.2.10 Testing biological hypotheses

One of the aims of model selection is to test biological hypotheses such as the role of
environmental covariates in explaining differences in parameter values (Buckland et

al. 2000; Lebreton et al. 1992; Nichols & Kendall 1995; Spendelow et al. 1995). M-

SURGE utilises a GLM framework, so such hypotheses can be easily tested (Choquet
et al. 2004).

Often the recapture probabilities in capture-recapture analyses are thought of as

nuisance parameters. They can, however, provide interesting insights into the

processes that generated the data. The first hypothesis I tested was whether P was

related to the number of marked seals divided by the known number of females

breeding on a colony in a particular year (Zi t), where

tn..,,
Z11 — — (eqn 4.6)

y0.i,
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such that m6+ f t represents the number of adult female seals (by assumption seals of

six years and older) uniquely identified on colony i in year t, and y0i ; is the pup

production estimate on colony i in year t. Pup production estimates are obtained every

year for all the major grey seal breeding colonies around Great Britain using counts of
white-coated pups obtained from aerial photographs or direct census (SCOS 2004).
The coefficient of variation of these estimates is generally low (Callan Duck, pers.

comm.), so they should be a close approximation to the number of females present at

the colony in each year as grey seals can only give birth to one pup.

I tested this hypothesis using a linear-logistic regression:

where and ^ are intercept and slope parameters. The recapture parameters are

replaced with the regression model in the multisite m-array and the £ parameters are

estimated directly (Nichols & Kendall 1995) by maximising the likelihood with

respect to and ^ . I expected that ^ would be positive - as Z; ( increases, so too

should Pit. For compactness the logistic models explored in this thesis will

subsequently be described on the logit scale (Cam et al. 2004). The above model

being described as:

Then I tested the hypothesis that the probability of moving between colonies is related
to the distance separating them using the linear-logistic model:

4b+£izi.i

(eqn 4.7)

logit(/>,,) = ln -2k- =#„+f,Z„,
itV <•' /

(eqn 4.8)

(eqn 4.9)
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where dist^j is the distance between colony i and j in kms, calculated "as the seal
swims". Taking the reciprocal with respect to the distance between colonies assumes

that small changes in distance are more important between close colonies than
between those that are further apart. For the above regression model, if the hypothesis
of a decreased probability of movement with increased distance is correct the slope

parameter ax should be positive. If ax equals one then one can infer that movement

probabilities are independent of distance. Note that there is no time dependence in the

regression equation and moves are assumed to be symmetrical (i.e. the probability of

moving from colony i to j is identical to the probability of moving from colony j to

colony i).

The distance model was then extended to include the difference in abundance between

the two colonies such that:

The difference between the pup production estimates was used rather than their ratio,
because it was thought to have better distributional properties for use on the logit
scale. In the above model a2 greater than zero indicates that seals avoid colonies

larger than the one they last bred at, whereas a2 less than zero indicates an attraction

towards larger colonies. Note that there is time dependence in this regression equation
and symmetric moves are no longer equivalent.

4.2.11 Numerical and statistical issues

As multisite capture-recapture models are relatively new, there are a number of
statistical and numerical issues that can cause problems, some of which are not

presently well understood. According to Lebreton & Pradel (2002), the three main and

recurring problems are:
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1. Parameter redundancy and identifiability issues. There are two types of

parameter redundancy - "intrinsic" due to the structure of the model (such as

the last survival and recapture parameters in the CJS model) and "extrinsic"
due to limitations in the data (e.g. could be caused by a capture occasion on

which no animals were recaptured);
2. Boundary parameters and the number of estimable parameters in a model.

Boundary parameters (parameters estimated at either the zero or one

boundary) cause irregularities in the likelihood surface, which are not well
understood. Nevertheless it is advisable to include these as estimable

parameters for model selection - this is preferred so that model selection by
AIC will not favour models with several boundary parameters (Viallefont et

al. 1998);

3. Local minima in the likelihood surface. This could mean that the estimates

produced by the model are not the MLEs. This can be assessed automatically
in M-SURGE by changing the initial values for the parameters (during the
estimation stage) and doing several runs of the same model - if all of these
model runs converge to the same deviance value, then there are no local
minima in the likelihood surface.

4.3 Results

The raw capture data are presented as multisite m-arrays in Table 4.2. It is clear that
the recapture rate is low and the site fidelity is high (the highest numbers within the

m-array are for animals returning to the colonies where they were previously

photographed). Furthermore, there are no movements to or from Donna Nook.
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Table 4.2. Multisite m-arrays giving the number of animals photographed on their left-hand
side (LHS) and right-hand side (RHS)
LHS Number of first recaptures by year (and colony)
Release Number 2 3 Not

year, released seen
colony (1 2 3 4) (1 2 3 4) again
1, 1 230 7 1 1 0 10 1 0 0 211

1,2 55 1 5 1 0 1 6 0 0 41

1,3 192 1 1 21 0 1 2 9 0 157

1,4 63 0 0 0 5 0 0 0 4 54

2, 1 252 22 0 0 0 230

2,2 93 2 15 0 0 76

2,3 180 0 0 12 0 168

2,4 101 0 0 0 6 95

RHS Number of first recaptures by year (and colony)
Release Number 2 3 Not

year, released seen

colony (1 2 3 4) (1 2 3 4) again
1, 1 259 13 0 0 0 7 2 0 0 237

1,2 54 1 3 0 0 0 3 0 0 47

1,3 228 0 0 28 0 0 3 8 0 189

1,4 63 0 0 0 5 0 0 0 1 57

2, 1 272 28 1 0 0 243

2,2 65 1 8 0 0 56

2,3 179 1 0 12 0 166

2,4 111 0 0 0 4 107

Test 3GSR showed some evidence of lack of fit to the data, c was therefore used as a

precautionary measure to make the model selection and inference as robust as

possible to potential failure of the assumptions. As it is difficult to conceive of
reasons why the LHS data should be different from the RHS data, the average value
of c from both analyses (2.79) was used. This value is not particularly high for

capture-recapture models exhibiting over-dispersion (Lebreton et al. 1992). The tests

results from the LHS and RHS data varied among colonies suggesting that there may

be extra multinomial "noise", as opposed to structural error.

The results from the model selection procedure are shown in Table 4.3 for both LHS
and RHS data. The estimated logistic regression model parameters are given in Table
4.4. The estimate of the slope parameters <f, for the recapture rate regressions for the

LHS models were positive, indicating that the recapture probability increased as the

proportion of breeding seals that were photographed increased. Similarly, the estimate
of the slope parameter ax was also positive for the models that included distance
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effects on movement (LI, L2, R1 and R2), indicating that movement probabilities
decreased with increasing distance between colonies. However, for the models that

incorporated the effect of both distance and abundance on movement (LI and R2) the
estimate of the slope parameter a2 was negative, indicating that seals were attracted

towards colonies larger than the one they previously bred at. For both the LHS and
RHS data there was also some support for a model with just a single parameter

estimated for movement; model L3 and R3 both had a QAIC weight greater than 0.15.

Table 4.3 Number of parameters, QAIC and QAIC weight for the capture-recapture models
for the left-hand side (LHS) and right-hand side (RHS) data. Only the models with a QAIC
weight greater than 0.05 are shown. Model descriptions are given in the footnote. Models are
indexed LI to L3 for the LHS and R1 to R3 for the RHS and are ordered according to their
QAIC weights.
LHS
Model Model parameters No. of

params

QAIC QAIC
weight

LI O q> p
(0.96) T (dist & abun) (Z)

5 374.687 0.586

L2 O T P
(0.96) T (dist) (Z)

4 376.391 0.250

L3 OTP
(0.96) T (int) (Z)

3 377.373 0.153

RHS
Model Model parameters No. of

params

QAIC QAIC
weight

R1 OTP
(0.96) 1 (dist) (int)

3 362.335 0.570

R2 O T P
(0.96) (dist & abun) (int)

4 364.194 0.225

R3 OTP
(0.96) 1 (int) (int)

2 364.530 0.190

QAIC: Quasi-likelihood adjusted Akaike's information criterion (see text)
Model parameters: O = survival probability; ¥ = movement probability; P = Recapture
probability
Model specification: int = intercept (single parameter estimated); dist = movement probability
constrained to be a function distance between colonies (see eqn 4.9); dist & abun = movement
probability constrained to be a function of distance and abundance (see eqn 4.10); Z =

recapture probability constrained to be a function of Z; t (see eqn 4.8).
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Table 4.4 Logistic regression model parameter estimates for the capture-recapture models
given in Table 4.3. The mean, 2.5th and 97.5th percentiles are given for each parameter

Logistic regression model parameters
Recapture parameters Movement parameters

Model 4 4 01o or2
LI -3.39 6.72 -5.63 114 -0.0008

(-3.95, -2.84) (3.28, 10.2) (-7.24, -4.02) (39.8, 188) (-0.0013, -0.0003)
L2 -2.99 3.91 -5.38 96.3 not

(-3.42, -2.55) (1.49, 6.33) (-6.92, -3.85) (24.6, 168) applicable
L3 -3.06 4.44 -3.78 not not

(-3.49, -2.64) (2.10, 6.79) (-4.34, -3.23) applicable applicable

R1 -2.49 not -6.42 145 not

(-2.67, -2.31) applicable (-8.63, -4.20) (47.8, 242) applicable
R2 -2.49 not -6.44 149 -0.0002

(-2.67, -2.31) applicable (-8.68, -4.20) (50.5, 248) (-0.0006, 0.0003)
R3 -2.49 not -3.89 not not

(-2.67, -2.31) applicable (-4.54, -3.25) applicable applicable

Table 4.5 gives a comparison of the movement probabilities, , for the "best"
models from the LHS and RHS analyses (i.e. the models with the highest QAIC

weights). The site fidelity parameters are all very high. The movement probability
estimates for the two models appear dissimilar, but their CI's overlap. For the LHS
model LI there is a great deal of uncertainty in the movement probabilities associated
with Fast Castle.

Re-running the models with the upper and lower bounds on survival had a relatively
small effect on the movement probabilities. Recapture probabilities, however, were

sensitive. A comparison of the recapture probabilities, Pt t, for the models LI with the

covariate Zit showed that the estimates of Pit were significantly lower than the

values of Zit. This was an unexpected result; it was hypothesised that these two

measures would be quite similar. The effect of re-running these models with the lower
survival rate of 0.896 caused an increase in the Pit estimates, but these estimates

were still consistently lower than those predicted by the external covariate - see Table
4.6.
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Table 4.5. A comparison of the movement probabilities from year t— 1 to year t for the two
"best" models selected by QAIC (models LI and Rl). The 95% CIs are given along with the
parameter estimates. (Colony l=Isle of May, colony 2 = Fast Castle, colony 3 = Fame
Islands, colony 4 = Donna Nook):
Movement
between
colonies

LHS

Probability with CI
Model LI
t = 2000

Probability with CI
Model LI
t = 2001

RHS

Probability with CI
Model Rl
t = 2000 & 2001 (i.e. no
time dependence)

1—»1
2—>2
3—>3
4—>4

1—>2
I—>3
1—>4
2—>1
2—>3
2—>4
3—>1
3—>2
3—>4
4—>1
4—>2
4—>3

0.971 (0.820, 0.995)
0.745 (0.257, 0.936)
0.951 (0.794, 0.988)
0.975 (0.754, 0.998)

0.021 (0.003, 0.119)
0.006 (0.001, 0.035)
0.002 (0.0001, 0.026)
0.205 (0.047, 0.577)
0.043 (0.017, 0.107)
0.006 (0.0006, 0.059)
0.028 (0.006, 0.113)
0.017 (0.005, 0.052)
0.004 (0.0004, 0.041)
0.014 (0.001, 0.140)
0.004 (0.0004, 0.043)
0.007 (0.0007, 0.064)

0.975 (0.827, 0.997)
0.701 (0.146, 0.932)
0.954 (0.797, 0.989)
0.970 (0.704, 0.997)

0.017 (0.002, 0.115)
0.006 (0.001, 0.034)
0.001 (0.0001, 0.024)
0.242 (0.049, 0.663)
0.051 (0.018, 0.132)
0.006 (0.0006, 0.059)
0.029 (0.006, 0.118)
0.014 (0.004, 0.049)
0.003 (0.0003, 0.036)
0.017 (0.001, 0.178)
0.004 (0.0004, 0.043)
0.008 (0.0009, 0.075)

0.916 (0.643, 0.979)
0.903 (0.630, 0.974)
0.967 (0.806, 0.993)
0.992 (0.818, 0.9997)

0.073 (0.019, 0.236)
0.009 (0.001, 0.060)
0.002 (0.0001, 0.061)
0.073 (0.019, 0.236)
0.022 (0.006, 0.073)
0.003 (0.0001, 0.061)
0.009 (0.001, 0.060)
0.022 (0.006, 0.073)
0.003 (0.0001, 0.060)
0.002 (0.0001, 0.061)
0.003 (0.0001, 0.061)
0.003 (0.0001, 0.060)

Table 4.6. A comparison of the recapture probabilities, P{ t (with their 95% CIs), for the
model LI, and the covariate Zit. The recapture estimates for the same model run with the
lower survival rate of 0.896 are also given.
LHS: model LI

Colony and year Z P estimated with CI P estimated with CI
O =0.96 O =0.896

Isle of May 2000 0.118 0.069 (0.049, 0.097) 0.076 (0.054, 0.106)
Isle of May 2001 0.134 0.076 (0.056, 0.103) 0.084 (0.062, 0.112)
Fast Castle 2000 0.244 0.148 (0.086, 0.242) 0.160 (0.094, 0.260)
Fast Castle 2001 0.324 0.229 (0.096, 0.455) 0.246 (0.104, 0.478)
Fame Islands 2000 0.154 0.086 (0.065, 0.114) 0.095 (0.071, 0.125)
Fame Islands 2001 0.076 0.053 (0.032, 0.087) 0.058 (0.035, 0.096)
Donna Nook 2000 0.163 0.091 (0.068, 0.121) 0.100 (0.075, 0.132)
Donna Nook 2001 0.161 0.090 (0.068, 0.119) 0.099 (0.074, 0.130)
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4.4 Discussion

Concerning the numerical and statistical issues raised by Lebreton & Pradel (2002):
There was no parameter redundancy or boundary parameters in the models shown in
Table 4.3. However, there were boundary parameters for the more parameterised
models that are not shown in this table, specifically for the movement probabilities
associated with Donna Nook. This is due to the fact that no movements to or from this

colony were present in the data sets analysed. There were no local minima detected in
the likelihood surfaces for the models compared - multiple runs of each model with

randomly selected initial values all converged to the same Deviance values.

Overall the results indicate that female grey seals showed a high degree of fidelity to

the four North Sea breeding colonies between 1999 and 2001, supporting Pomeroy et

aVs (1994) conclusions from the North Rona colony. The highest fidelity was for
Donna Nook, which is relatively isolated from the other three colonies. In fact, no

movements either into or out of Donna Nook were detected during the study period.

However, such moves do occur: photographs were also taken at some colonies in

1998, incorporating these data into the analysis showed that one female moved from
Donna Nook to the Fame Islands.

4.4.1 Covariates affecting movement

For both the LHS and RHS analyses, distance between colonies was an important
covariate affecting the movement probability. It has long been held that distances
between subpopulations are an important factor in animal movement models

(MacArthur & Wilson 1967) and they have been said to influence movement

probabilities in both theoretical and empirical studies (Serrano & Telia 2003).

For model LI (the model with the highest QAIC weight for the LHS data analysis)
there was also some evidence that colony size affected movement probabilities; where
the movement probability was higher from the smaller colonies to the larger ones.

This may have been a result of conspecific attraction (Smith & Peacock 1990; Serrano
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& Telia 2003; Cam et al. 2004), or perhaps the larger colonies have more space

and/or better conditions. One possible basis for conspecific attraction is avoidance of
mate shortage (Hanski 1994). As grey seals mate after having lactated their pup, a

small colony of breeding females may be less likely to attract a large number of

prospecting males, and hence lower a female's fecundity for the following year.

However, the abundance effect observed could alternatively have been an artefact
caused by the fact that Fast Castle, the smallest and most recently established colony,
had a much lower fidelity rate than any other colony. This view is supported by the
fact that the movement probabilities associated with Fast Castle had wide confidence
limits and means of the movement estimates were highly sensitive to the choice of
model.

It was initially thought that animals would leave the larger colonies in favour of the
smaller ones due to intraspecific competition and/or habitat saturation (Serrano &
Telia 2003). However, it could be that as all four North Sea colonies are still growing
such saturation levels have not yet been reached.

4.4.2 Modelling considerations

Bayesian methods provide an alternative to the maximum likelihood framework used
to analyse the multisite capture-recapture data in this chapter. Dupuis (1995) shows
how the Arnason-Schwarz model can be implemented in a Bayesian context and King
& Brooks (2002) show how this can be extended to perform model comparisons. The
benefit of reframing the problem as a Bayesian one is that prior information can be

brought into the models before fitting to the capture-recapture data. Use of a Bayesian

approach in this particular analysis would have allowed a prior distribution on the
survival probability to be specified rather than simply using a point estimate.
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4.4.3 Within-season movements

There are some very important considerations to be taken into account when

interpreting the estimated movement probabilities. The model assumes that all the
females photographed at a specific colony during a specific year are breeding there. In

fact, some females were seen at two colonies in one year, indicating that there is some

within-season movements between colonies and that some females may not have bred
at the colony to which they were attributed. Such females may have been

photographed either when they were passing by a colony after breeding or when they
were prospecting potential breeding sites. This effect is likely to result in the estimates
of the movement rates being biased upwards, although the magnitude of that bias
cannot be estimated at present.

4.4.4 False negative errors

There was support for the probability of recapture varying by colony and time as a

function of the external covariate Zir However, the actual probabilities were

significantly lower than those expected based on this covariate. Several factors may

have contributed to this:

1. Within-season movements of breeding females could result in more females

being present at a colony than those breeding there;
2. The population is growing and there is recruitment to the breeding population,

thus some females that are breeding may not have been present to be

photographed on a previous occasion;
3. The presence of non-breeding but recruited females at the colony. The

pregnancy rate is curently estimated to be 90-95%, so the maximum bias

resulting from this is likely to be small;
4. Juvenile males may have been mistaken for females;
5. The presence of false negatives (i.e. missing matches) in individual capture

histories. The matching process is designed to minimize the probability of a
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false positive match, so the probability of a false negative is relatively high
and this would cause a downward bias on the recapture estimates;

6. Survival may have been lower in the years of the survey than the assumed
value of 0.96. Using the lower 95% confidence limit for this estimate (0.896)
did result in a small increase in the recapture estimates, but not enough to

account for all the difference observed;

7. The pup production estimates are biased downwards. However, pup

production estimates at the Fame Islands and Donna Nook are based on direct

censuses, so this seems unlikely.

Of these seven possibilities, the fifth is the most likely: the current photograph

matching protocol is very conservative and a high proportion of potential matches

(possibly greater than 30%) are rejected.

One of the main objectives of this work was to obtain estimates of movement

probabilities that could be used in a Bayesian state-space metapopulation model of the
British grey seal population (Buckland et al. 2004; Thomas et al. 2005). This is
described in chapter 5.

4.4.5 Future data collection

Collecting additional photo-ID data for the four North Sea colonies studied in this

chapter would provide further information on movement rates between colonies and
with a longer time series of data could allow the estimation of an independent survival
rate for seals from these colonies. The fact that there will be a few years without any

capture events is dealt with in the models by setting the recapture rate in these

intervening years to zero.

However, there are a number of logistic and financial considerations that need to be
considered before undertaking such an exercise. Appendix 1 details these
considerations and compares different sampling protocols using simulation modelling.
The main aim of these simulations was to determine the optimal sampling strategy to
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collect a large number of photographs of different animals within a single breeding
season. The models were parameterised with data on pup production at the Isle of

May in 2003 and with other information on the breeding biology of this species.
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Chapter 5

State-Space Modelling of Female Grey Seals

Breeding at Colonies in the North Sea

5.1 Introduction

The grey seal (Halichoerus grypus Fabricius 1791) is a colonially breeding pinniped
whose distribution is confined to the North Atlantic and its contiguous seas. It has a

world population of around 300,000 individuals, 40% of whom breed around the
British Isles (SCOS 2004). The total number of pups bom at British colonies has

grown steadily since the 1960s (Harwood & Prime 1978). Commercial fishermen are

concerned about the impacts of seal predation on depleted fish stocks and
conservation agencies about the effects of breeding seals on sensitive terrestrial
habitats. It is therefore important to be able to predict the future size and spread of the
British population. Individual female grey seals show high levels of fidelity to

specific pupping locations at a single colony (Pomeroy et al. 1994). This may account

for the highly significant differences in microsatellite allele frequency which have
been observed between breeding colonies (Allen et al. 1995), and suggests that the
British grey seal population cannot be modelled as if it is a single, homogenous unit.
Instead, we require a spatially-explicit model which accounts for differences in colony

dynamics, and the impact of movement between colonies on local and regional

dynamics (Gaggiotti et al. 2004; Thomas et al. 2005; Matthiopoulos, Harwood &
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Thomas 2005). Grey seal colonies meet all of the assumptions for a metapopulation

(Hanski & Gaggiotti 2004): the sites occupied by aggregations are discrete,
individuals only occasionally move between these sites, and there is turnover of

occupied sites (i.e. previously occupied sites are recolonized following local
extinction).

As with most spatially-explicit models, the most difficult problem experienced to date
has been the validation and parameterisation of realistic models of movement between
colonies. In the belief that much of the model and parameter uncertainty could be
removed by bringing together the analysis of different data sets, I used input from a

multisite capture-recapture (CR) study to parameterise spatially-explicit models of the

dynamics of the same set of grey seal colonies.

It is clear that grey seal colonies meet the assumptions for a metapopulation (as
discussed above). It is, however, unclear what level of realism should be incorporated
into the movement process in metapopulation models. Hanski & Gaggiotti (2004)
state that what is needed is a family of models that incorporate different levels of
realism. In this chapter, I compare metapopulation models incorporating different
movement processes in their ability to track a time series of pup production data.

It was thought (as discussed in section 1.5 of chapter 1) that the pup production data

may contain some information on movement. For example, if the annual pup

production increases faster than is possible as a result of internal recruitment of adult
females into the breeding population, one may infer that net immigration must be

taking place. In this chapter I formalize this idea by fitting different candidate state-

space models (SSMs) for the dynamics of the metapopulation to the pup production
data..

The state-space framework was introduced in section 1.6 of chapter 1. There are

several benefits to using this modelling approach. For instance, one of the primary
aims of state-space modelling is to explicitly model the observation process that is

"always ... interposed between the ecological system and our notebooks" (Hilborn &

Mangel 1997). SSMs can be applied to many ecological scenarios and wildlife

populations. They can be used to assess the present status of an animal population or
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its possible future status under a range of management options. They can potentially
be fit to many different forms of data including count, capture-recapture, line transect

and genetic data. They are very flexible and can incorporate realistic processes such
as density dependence, competition, metapopulation dynamics and predator prey

interactions. The fact that they take explicit account of all the major sources of

uncertainty means that the results and inference they provide are much more reliable
and give an honest account of the present state of understanding about the animal

population in question.

SSMs are also fit to data using Bayesian inference (see section 1.6 of chapter 1) and
thus results from previous analyses can be used to provide informative priors for the
model parameters. In this chapter I have used parameters estimated from a CR study

(see chapter 4) to provide the prior distributions for the movement process model

parameters in this SSM analysis.

Thomas et al. (2005) developed a spatially-explicit SSM of the British grey seal

population, which they divided into four regions: the North Sea (4 colonies), Inner
Hebrides (19 colonies), Outer Hebrides (11 colonies) and the Orkneys (22 colonies).
At this spatial scale, there was little evidence for movement of animals between local

populations. Here, I develop colony-level SSMs of grey seal population dynamics in
one of these regions (the North Sea) and use it to investigate the nature of movement

at this scale. The SSMs were also projected into the future to investigate the

consequences of the different model structures for the abundance of seals in the North
Sea metapopulation at both the colony and regional level.

Bayesian modelling of metapopulation data has previously been done for patch

occupancy data using Markov Chain Monte Carlo (MCMC) methods to estimate the
model parameters (O'Hara et al. 2002; Ter Braak & Etienne 2003). Our method is
different in two respects. Firstly, we use abundance data rather than patch occupancy

data. Secondly, we fitted our models to the data using Sequential Importance

Sampling (SIS) - an alternative Bayesian method to MCMC which is potentially
better suited to analysing a time-series of abundance data (see section 5.2.6).
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5.2 Methods

5.2.1 Data and model structure

The available data consisted of annual estimates of the pup production between 1984
and 2003 for four North Sea colonies derived from aerial surveys conducted at the Isle
of May and Fast Castle by the Sea Mammal Research Unit, and ground censuses

conducted at the Fame Islands and Donna Nook by staff of the National Trust and the

Lincolnshire Wildlife Trust respectively (Duck 2004). These colonies are occasionally
indexed 1-4 in what follows. There are no aerial survey results for Fast Castle prior to

1997. The locations of the four colonies are shown in Figure 4.1 in chapter 4.

Annual time steps began just after all pups had been born. We used individual age-

classes for pups (age 0) and animals up to 5 year olds, and a composite class for adult
seals > 6 years. We assumed that only adult females move between colonies, because
the capture-recapture data is for these animals. Allowing 5 year-olds (recruiting

females) to move made no difference to the results. Age-class 0 included both male
and female pups, but the other age-classes are for females only. Four processes

(survival (5), movement (m), ageing (a) - which includes sex determination for pups -

and breeding (b)) are modelled. The state vector n( representing the state of the

population at time t has 28 elements (4 colonies x 7 age classes). Only the elements
for the first colony are shown below, the parts for the other three colonies being

implied by the dots (l^I.
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n

M

The first subscript is for age (0 to 6+), the second is for colony (1 to 4) and the third is
for time. Uncertainty in the progression of animals from n(_, to n( is captured by a

series of linked probability density functions (pdfs), in which the input to one pdf is
the output from the previous pdf. This is akin to a "divide-and-conquer" strategy (Liu
et al. 1998) where a complex problem is broken down into a series of connected and

simpler structures:

where Hx t is the pdf for sub-process x and is a realisation of the state vector at

time t after sub-process x has occurred.

5.2.2 Full model: stochastic representation

The sub-process pdfs for the most fully-parameterised model (designated SI) used in
this analysis, are given in detail below. Again only the elements for the first colony

are shown, the other elements being implied by the dots (1^1.

us,<~HsAn,-1)

n, ~Hb,, K.,)
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Survival

us,o,u ~ Binomial ("0,1,1-1' 0Pxt)

Us,2,U ~ Bin0mial ( W2,l,(-1' Qa )
Us,l,U~ Bin0mial(n3,U-l'^a)
",,4,U~Bin°mial(n4,l,r-l'^)
«s,5,U~Bin0mial(n5,U-l'^)
"s,6+,U~Bin0mial("6+,U-l'^)

M

In this survival vector (f)a represents adult survival at colony i (animals of age 1 and

older are assumed to have adult survival). Pup survival, <j)pi t, is where density

dependence is thought most likely to operate for the British grey seal population. I

therefore model pup survival as a function of n0. t_x, the number of pups (of both

sexes) born on that colony in year t -1, using the Beverton-Holt function such that:

tpmax

1 + A"o,m-1
(eqn 5.1)

where <ppmaK represents the pup survival rate when there are few pups present. The

equilibrium pup production at colony i is proportional to 11 ft. This function was

originally used to describe variations in pup survival at the Fame Islands (Harwood

1981).
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Movement

Mm,0,l,r ~ Us,0,l,t

Um,l,U ~ UsXU

Um,2,l,t Us,2,l,t

Um,3Xt ~ Us,3Xt

UmA,\,l ~ UsA,l,t

Um,5,1,1 — Us,5,1,1

umMXt ~ see below
M

Movement of age 6+ females is modelled as a multinomial random variable (Newman
et al. in prep) such that:

("m,6+,u»■■umMA,t) ~ Multinomial £(usX+JJ ), P6+XtP6+A,,
v j=1

where p6+ is the probability that an age 6+ female will be in colony j following

movement, given by

P6+,jJ = — 4 (eqn 5.2)

H(UsMXt)
i=1

and VP6+ f . t is the probability of movement for age 6+ females between colony i and

colony j. The logit of this probability is given by:

logit(^^ () = or0 + —~(no,«,f-i ~no,j,t-i) (eqn 5-3)dist.
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The structure of this movement model and the prior distributions for the a

parameters were derived from the CR analysis described in chapter 4. The CR study
was (by assumption) of age 6+ females only, hence in the SSM only females in this

age category are able to move between colonies. In the CR analysis the pup

production estimates at each colony, y0it_x, were used in the movement model. In the

SSM these pup production estimates were replaced by the pup numbers predicted by
the model, n0. f_,.

The site fidelity probability for the age 6+ females, vF6+ i_^i (, i.e. the probability of

returning to breed at the same colony the female bred at the previous year, is post-

processed as:

(eqn 5.4)

Ageing and sex determination

Binomial^ wm 0,,, 0.5)
Ua,2Xt ~ UmXU

Ua,3Xt ~~ Um,2Xt

UaA,l,t ~ Um,3Xt

Ua,5,i,t ~ UmAXt

Ua,6+Xt ~~ Um,5Xt Um,6+.1.I

M

Hence, on average, half the pups are expected to be female.
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Breeding

01t - Binomial(ua6+lt, y)
ni,l ,1 Ua,\,\,t

n2,\,t ~ Ua,2,1,1

n2,U Ua,3,1,1

nA,1,< ~ UaA,U

n5,l,t ~ Ua,5,l,t

n6+Xt ~ UaMXt

M

In the breeding vector y is the fecundity of 6+ females.

Observation model

The elements of the vector of pup production estimates at each of the colonies are

assumed to be normally distributed. Their coefficient of variation (CV), 5, is
assumed to be a linear function of the true pup production squared:

you~ Norma! (nox„S2nllt)
y0,2,r Norma1 (n0,2,t,^2«o22,,)
y0,3i!~ Normal (n0,3,
y0 4 t ~ Normal (n04(, 52n20A l)

This formulation implies that more emphasis is given to the fit of the model to the pup

production data for the smaller colonies than the larger ones.

5.2.3 Full model: matrix representation

The process model can also be written as a product of the four sub-process models:

£[n, | nM] = BAM(S,nM (eqn 5.5)
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As pup survival is a non-linear function of the number of pups born in the previous

year this expectation is only approximate. The four sub-process matrices for model SI
are shown below, only the parts for the first and forth colonies are shown, the other
two colonies being implied by dots (...). Sr is the matrix for survival, M, is for
movement between colonies, A is for ageing and sexing of pups and B is for breeding.

fpu 0 0 0 0 0 0 ... 0 0 0 0 0 0 0 0 0 0 0 0 0 0 .. 0 0 0 0 0 0 0

0 fa 0 0 0 0 0 ... 0 0 0 0 0 0 0 0.5 0 0 0 0 0 0 .. 0 0 0 0 0 0 0

0 0 fa 0 0 0 0 ... 0 0 0 0 0 0 0 0 1 0 0 0 0 0 .. 0 0 0 0 0 0 0

0 0 0 fa 0 0 0 ... 0 0 0 0 0 0 0 0 0 1 0 0 0 0 .. 0 0 0 0 0 0 0

0 0 0 0 fa 0 0 ... 0 0 0 0 0 0 0 0 0 0 1 0 0 0 .. 0 0 0 0 0 0 0

0 0 0 0 0 fa 0 ... 0 0 0 0 0 0 0 0 0 0 0 1 0 0 .. 0 0 0 0 0 0 0

0 0 0 0 0 0 fa ••• 0 0 0 0 0 0 0 0 0 0 0 0 1 1 .. 0 0 0 0 0 0 0

... ... ... ... ... ... ... ... ... ... ... A = ... ... ... ... ... ... ...

0 0 0 0 0 0 0 ... fpAj 0 0 0 0 0 0 0 0 0 0 0 0 0 .. 0 0 0 0 0 0 0

0 0 0 0 0 0 0 ... 0 fa 0 0 0 0 0 0 0 0 0 0 0 0 .. 0.5 0 0 0 0 0 0

0 0 0 0 0 0 0 ... 0 0 fa 0 0 0 0 0 0 0 0 0 0 0 .. 0 1 0 0 0 0 0

0 0 0 0 0 0 0 ... 0 0 0 fa 0 0 0 0 0 0 0 0 0 0 .. 0 0 1 0 0 0 0

0 0 0 0 0 0 0 ... 0 0 0 0 fa 0 0 0 0 0 0 0 0 0 .. 0 0 0 1 0 0 0

0 0 0 0 0 0 0 ... 0 0 0 0 0 fa 0 0 0 0 0 0 0 0 .. 0 0 0 0 1 0 0

0 0 0 0 0 0 0 ... 0 0 0 0 0 0 fa. 0 0 0 0 0 0 0 .. 0 0 0 0 0 1 1

1 0 0 0 0 0 0 . 0 0 0 0 0 0 0 0 0 0 0 0 0 y .. 0 0 0 0 0 0 0

0 1 0 0 0 0 0 . 0 0 0 0 0 0 0 0 1 0 0 0 0 0 .. 0 0 0 0 0 0 0

0 0 1 0 0 0 0 . 0 0 0 0 0 0 0 0 0 1 0 0 0 0 .. 0 0 0 0 0 0 0

0 0 0 1 0 0 0 . 0 0 0 0 0 0 0 0 0 0 1 0 0 0 .. 0 0 0 0 0 0 0

0 0 0 0 1 0 0 . 0 0 0 0 0 0 0 0 0 0 0 1 0 0 .. 0 0 0 0 0 0 0

0 0 0 0 0 1 0 . 0 0 0 0 0 0 0 0 0 0 0 0 1 0 .. 0 0 0 0 0 0 0

0 0 0 0 0 0 . 0 0 0 0 0 0 ^6+,4->U 0 0 0 0 0 0 1 .. 0 0 0 0 0 0 0

... ... ... ... ... ... ... B =
... ... ... ... ... ... ...

0 0 0 0 0 0 0 . 1 0 0 0 0 0 0 0 0 0 0 0 0 0 .. 0 0 0 0 0 0 y

0 0 0 0 0 0 0 . 0 1 0 0 0 0 0 0 0 0 0 0 0 0 .. 0 1 0 0 0 0 0

0 0 0 0 0 0 0 . 0 0 1 0 0 0 0 0 0 0 0 0 0 0 .. 0 0 1 0 0 0 0

0 0 0 0 0 0 0 . 0 0 0 1 0 0 0 0 0 0 0 0 0 0 .. 0 0 0 1 0 0 0

0 0 0 0 0 0 0 . 0 0 0 0 1 0 0 0 0 0 0 0 0 0 .. 0 0 0 0 1 0 0

0 0 0 0 0 0 0 . 0 0 0 0 0 1 0 0 0 0 0 0 0 0 .. 0 0 0 0 0 1 0

0 0 0 0 0 0 . 0 0 0 0 0 0 V^6+.4 0 0 0 0 0 0 0 .. 0 0 0 0 0 0 1
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The full generalised Leslie matrix is:

0 0 0 0 0 faY fa^s+l-^r ■
0 0 0 0 0 far fa^i+A^Ur

0-5«Vu 0 0 0 0 0 0 0 0 0 0 0 0 0

0 fa 0 0 0 0 0 0 0 0 0 0 0 0

0 0 fa 0 0 0 0 0 0 0 0 0 0 0

0 0 0 fa 0 0 0 0 0 0 0 0 0 0

0 0 0 0 fa 0 0 0 0 0 0 0 0 0

0 0 0 0 0 fa fa*T 0 0 0 0 0 fa fa^6+A-Aji

0 0 0 0 0 faY fa^fn-A^ijr ■
0 0 0 0 0 far fa^6*A-Mjr

0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 fa 0 0 0 0 0

0 0 0 0 0 0 0 0 0 fa 0 0 0 0

0 0 0 0 0 0 0 0 0 0 fa 0 0 0

0 0 0 0 0 0 0 0 0 0 0 fa 0 0

0 0 0 0 0 fa fa >1,1 0 0 0 0 0 fa fa^6+,4->4,/

SI has 11 parameters: adult survival, </>a, maximum pup survival, </>pmax, one density

dependent parameter on pup survival for each colony, (3{ /?4, three movement model

parameters, flr0,ar,,andaf2, fecundity, y, and the observation model CV, S, and 28
states representing 7 age categories at 4 colonies.

5.2.4 Reduced models

Because SSMs have a modular structure, it is relatively easy to test hypotheses

concerning the individual processes within the model. In this study, the primary focus
was on the movement process model. Three movement models provided an adequate

description of CR data for the four North Sea colonies. These were all logistic models.
The full model had three parameters: an intercept, a0, a regression slope for a

distance covariate, ax, and a regression slope for an abundance covariate, a2. The

other two models had a2 = 0, and ax = a2 = 0. Three reduced models (S2 to S4),

summarised in Table 5.1, were fitted to the data. In models SI, S2 and S3 age 6+
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females could move and in model S4 there were no female movements (this model

can be thought of as a control model).

Table 5.1: Details for the four state-space models (SSMs) fit to the pup production data. The
models are ordered according to the number of parameters they have. The source of the a
priors for each of the SSMs from the capture-recapture (CR) study is also given. The models

Model nparams Movement model form Source of a

priors

SI 11 iOgit (fijj) = OS0 + ? + a2 ( n0 no )
y

CR model LI

S2 10 108,1(^") = °» +4lJ

CR model R1

S3 9 logit (^,7,) = «o
CR model R3

S4 8 no movement not applicable

5.2.5 Prior distributions on model parameters

The prior distributions on all the model parameters are given in Table 5.2. The prior
distribution on (j)a comes from a study of branded and tagged adult females on the Isle

of May (Paddy Pomeroy, pers. comm.). The priors on (/)pmax,y<m& 8 are the same as

those used by Thomas et al. (2005). The J3j parameters, which are related to the

carrying capacity at each of the colonies are specified to give an expected pup

carrying capacity n0cci, of 3000 for the Isle of May, 1000 for Fast Castle, 2500 for

the Fame Islands, and 10000 for Donna Nook. The prior expectation for the [I

parameters were calculated for a model with no movement (S4) according to the

equation given below (Len Thomas, pers. comm.):

2(1 -tWcc,
(eqn 5.6)

The other parameters used in this calculation being set to their prior expectations. The

values chosen for the pup carrying capacities, n0cci, were thought to represent a
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reasonably informed guess for the expected pup carrying capacities based on the
available space at each of the colonies. These values are, however, quite uncertain so

the prior distributions on the /? parameters were made quite dispersed to reflect this.

The standard deviation on the parameters is equivalent to a standard deviation on

The prior distributions on anda2, and their variance-covariance (VC) matrices

were obtained from the results of the CR analysis described in Chapter 4. These priors
and VC matrices were used to generate correlated priors from a multivariate normal
distribution. The movement probabilities estimated for the LHS and RHS CR analyses
were very similar when the same movement model form was used. We therefore used
the a priors from the CR analysis that gave the maximum variance in the movement

probabilities, as it is more important that the priors encompass all likely values than
have minimum variance. The capture-recapture estimates for the a parameters are

given in Table 4.4 of Chapter 4. As the priors on (j)a, or0, and er2 came from

previous data analyses they are known as "data-based priors" (Wade 2000).

Table 5.2: Prior distributions for the parameters used in the state-space models (SSMs)
Parameter Prior distribution Prior

expectation
t logit(^fl ) ~ Norm(mean=3.178, sd=0.521) 0.96

d>
t pmax

Beta(shapel = 14.53, shape2=6.23) 0.70

Y Beta(shape 1=22.05, shape2=1.15) 0.95

8 Gamma(shape=4, scale=0.025) 0.10

A Gamma(shape=4, scale=0.000481) 0.00193

Pi Gamma(shape=4, scale=0.00144) 0.00578

A Gamma(shape=4, scale=0.000578) 0.00231

Pa Gamma(shape=4, scale=0.000145) 0.000578

a{), at and a2 Prior distributions and variance-covariance structure obtained -

from the CR analyses for the various movement model forms
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5.2.6 Fitting the models

In its entirety, the state-space model is specified using four classes of pdfs:

So(0)
£o(nol0)
gt(nf|nM,0)
/,(y, |n,,0)

Prior parameter distribution
Initial state distribution

State process distribution
Observation process distribution

where 0 is a vector of the model parameters, n( represents the state at time t and y(

represents the data observed at time t. Generally, it is the parameters 0 that we want

to make inferences about, but we also need to estimate the unknown states, nr.

Analytical approaches are rarely practicable in this case, due to the high-

dimensionality of the integrals that would need to be solved, and methods based on

simulated inference - such as likelihood based approaches and Bayesian analysis -

are more appropriate (Buckland et al. 2004).

The approach used here was Bayesian. Bayesian analysis uses prior knowledge about
the distribution of the model's parameters (these are set up as "prior distributions" on

the parameters), and these prior parameters and their distributions are then interpreted
with respect to the data. The resulting "posterior distributions" for the parameters are

given in the modelling output (Luikart & England 1999). The high dimensionality of
the parameter space means that Monte Carlo simulation procedures (see Gelman et al.

1995) are usually required to perform the integration necessary to find these posterior
distributions. Two commonly used procedures are sequential importance sampling
(SIS) and Markov chain Monte Carlo (McMC) algorithms. SIS was used here because
it is well suited to the fitting to time series data (Trenkel et al. 2000).

The basic SIS algorithm

Step 1 Initializing: For the year 1984 (t = 0), K particles are drawn from the joint
distribution of prior parameters and initial states, (see Initializing the States
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below). A particle can be thought of as one possible population with

parameter values that are specific to it. For the models investigated here, K =

350,000.

Step 2 Projection: The particle swarm is projected stochastically forward one year

using the state process model.

Step 3 Correction: A weight, proportional to the likelihood for the particle given
the current data, is calculated for each particle (see below).

Step 4 Resampling: Particles are resampled stochastically according to these

weights. This is akin to "survival of the fittest" in a Darwinian analogy:

particles with a high weight propagate themselves while those with a low

weight are lost.

Step 5 Iteration: Steps 2 to 4 are repeated until the final time point (2003) is
reached.

One benefit of the SIS algorithm is that only the observation model density, which

gives the likelihoods, and not the state process density, which can be very

complicated, needs to be evaluated. In the observation model used in the present state-

space modelling the likelihood is the product of the normal densities for the colonies.
As there is no pup production data for colony 2 (Fast Castle) prior to 1997 the

likelihood lik] forf= {!,...,12} for particle k is

4"=/,(y,|ni".e"1)=II
1

exp
n

o,/,(

" "a,1,)
252[k]nl[l?t

J J

where i = 1,3,4, the superscript k represents the particle number, k = 1,...,350,000,

y0it is the pup production estimate for colony i in year t, nl0k-t is the number of pups

predicted for particle k and ^ is the value of the observation model CV parameter

for particle k. The likelihood for t =13,..., 19, is as above except for this period there is
data for all four colonies and hence i = 1,...,4.

The weight calculated in step 3 of the SIS algorithm for particle k, \^k], and used in

step 4 for resampling the particles is derived as
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/I
wft] = '

[*]

E4m (eqn 5.7)

where & = 1,...,350,000.

Particle depletion

The main problem with this SIS algorithm is that the number of particles is rapidly

depleted because the variance in the weights increases with time until a few particles
have almost all the weight. In effect, Step 4 results in a loss of particle "diversity"
(Doucet, Godsill & Andrieu 2000). The resulting posterior distributions show just a

few point masses. This is not useful for inference and results in large Monte Carlo
error. I used four techniques to combat particle depletion: rejection control (Liu, Chen
& Wong 1998; Liu 2001); auxiliary particle filtering (Pitt & Shepherd 1999; Liu &
West 2001; Thomas et al. 2005); residual resampling (Liu & Chen 1998; Liu 2001)
and kernel smoothing (Trenkel et al. 2000; Liu & West 2001; Thomas et al. 2005;
Newman et al. in press). Details of the four techniques and the augmented SIS

algorithm incorporating them are given below.

7. Rejection Control

Rejection control is a technique to reduce the number of particles required to

represent the distribution of the posterior at a given time point, without significantly

increasing the Monte-Carlo error. It is described in detail by Liu (2001) and Liu,
Chen & Wong (1998). I implemented rejection control in the second year of the SIS

algorithm (the first year being used to initialize the states) because most of the

particles generated from the priors are extremely unlikely given the data. In the
second year particles with low likelihood were rejected probabilistically if their
likelihood was less than a threshold of c (calculated as the 95th percentile of the
likelihoods for the first run of the rejection controller). If the particle has a higher
likelihood than the threshold it is accepted, if its likelihood is lower it is accepted with
a probability equal to its likelihood divided by the threshold. Particles that survive,
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even though their likelihood is less than c, have their likelihood inflated to c. The
discarded particles are replaced with new ones drawn from the original priors and
states.

In this analysis rejection control was only implemented in the second year. It is,
however, possible to incorporate other checkpoints during the time-series. With a lot
of checkpoints, however, the algorithm can become very demanding in terms of

computational time.

2. Auxiliary Particle Filter

Auxiliary particle filtering works by looking ahead in the data and concentrating in

parts of the time series where the model fit is expected to be particularly "good" (i.e.
have high likelihood given the observation equation). The technique is described in
detail by Liu & West (2001) and Pitt & Shepherd (1999).

The particles at time t— 1 are projected forward to time t deterministically according to

their parameter values. The particles are then resampled according to their weights at

time t, (i.e. those that are expected to be in an area of high density are given a higher

weight at this stage than the others, the idea being here to sample from particles with

high predictive likelihoods). These are the first weights. The parameter values of this
new set of "auxilliary" particles are kernel smoothed (see 3, below) and their states

are taken back to time t-1 and projected forward stochastically. These particles are

then resampled according to a second weight, which is proportional to the stochastic
likelihood divided by the predictive (deterministic) likelihood for the particles -

dividing by the deterministic likelihoods here corrects for having "looked ahead".
This causes those particles that do better than expected from the first filtering to get a

higher final weight.

3. Kernel Smoothing
Kernel smoothing involves perturbing the parameter values of the particles, to

generate new parameter values in the vicinity of parameter space supported by the
data (this is akin to "mutation" in a Darwinian analogy). In this analysis a multivariate
normal kernel, which smoothes out the parameters with respect to their variance-
covariance plane, was used. This form of kernel smoothing preserves the first and
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second order moments of the parameters (i.e. their means and variances), and the
correlations between them. Kernel smoothing of the states is not necessary, as these

change stochastically as the particles are sent through the state process for each time

step (Trenkel et al. 2000; Liu & West 2001; Thomas et al. 2005; Newman et al. in

press).

Perturbing the parameters increases overall variation. One symptom is that those close
to the edges of the variance-covariance plane will be pushed beyond its boundaries.
To overcome this problem, the parameter values are shrunk back in towards their
overall mean, which preserves the second order moments of the parameters. Liu &
West (2001) suggest that auxiliary particle filters should be used in combination with
kernel smoothing.

Many parameters are bounded; in order to deal with this, parameters are transformed
before kernel smoothing (probabilities getting a logit transform and parameters that
can only be positive getting a log transform). After smoothing the parameters are then
back-transformed.

The amount of kernel smoothing done is governed by a smoothing parameter a. In the
work described here a was set to 0.7 (a relatively moderate amount of smoothing), the
same value used by Thomas et al. (2005) in their SSM for the British grey seal

population and very close to the value used by Trenkel et al. (2000) in their SSM for
red deer in Scotland.

Kernel smoothing makes the fitting algorithm more efficient and can compensate for

poor choices of prior distributions and outliers in the data. However, as a result of the

perterbations, some bias is introduced into the posterior estimates (Trenkel et al.
2000).

4. Residual Resampling
Residual resampling (Liu 2001) reduces the Monte-Carlo variance introduced during
the resampling stage relative to simple random sampling with replacement. Samples
are first drawn deterministically from the particles in the set and then the leftovers
(the residuals) are drawn probabilistically. For example, in a set of 100 particles, a
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particle with a weight of 0.501 will be sampled 50 times deterministically. At the end
of the deterministic stage there may be 1 particle left to make up the new set of 100

particles. The residual for the aforementioned particle is 0.001. The residuals for all
the particles are then normalised to sum to 1, and the particle set is made up by

sampling stochastically from these residuals. Residual resampling gives the same

expected distribution of particles as standard stochastic resampling (Thomas et al.

2005) but gives smaller Monte Carlo variance and uses less computational time (Liu

2001). It was therefore used when resampling particles as part of the auxiliary

particle filter.

The augmented SIS algorithm
The time points in the model are / = 0where T = 19, r = 0 corresponds to 1984
and t = T corresponds to 2003. Step 1 of the augmented algorithm builds up a swarm

of relatively probably particles by implementing rejection control at time point t = 1.
For all subsequent time points we use an auxiliary particle filter with kernel

smoothing of parameter values as detailed in steps 2-11.

Step la Initialising: K particles jnj,*1,©1*1] are drawn from g0(«0| ©) and g0(©),
where k = K= 350,000. Set/ = 1.

Step lb Stochastic projection: The particle swarm is projected forward

stochastically through the state process model from time t-1 to time t to give

{ n([*],0[*]J. A likelihood is calculated for each of the particles, ZJf1, given
the data at time t and { n}*1,©1*1}.

Step lc Rejection Control: Accept particle k with probability

where c is the 95th percentile of the likelihoods obtained on the first iteration
of the rejection controller. Repeat Steps la to lc until K particles have been

r[k] = min 1,
c

V

accepted. Denote this new set of particles and set their

likelihoods to

ZJf1* =max(zl/:]*, c)
Step Id Correction: Calculate a weight for each particle
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Step le Resampling: Use these weights in residual resampling of the particles to

obtain a new set of particles denoted j nj*1",©1*1**} .

Step If Fork = 1,...,Predefine = jw([tl,0[tlJ .

Step lg Increment t to t + 1.

Step 2 Deterministic projection: The particle swarm is projected forward

deterministically through the state process model from time t-1 to time t to

give | nj*1,©1*1].
Step 3 Calculate a kernel location, mlk], for the parameter vector, a weighted

combination of the particle and the mean vector for the parameter values

across all particles, 0 :

mw=a0[*]+(l-a)0
herein a = 0.7. Then calculate a likelihood for each of the particles, 4teLrm,< >

given the data at time t and jn\k],m[k]J .

Step 4 Correction: Calculate a first weight for each particle
j[k]

determ ,t
~

y r[k]/ ; determ,/
k

Step 5 Resampling: Use the first weights in residual resampling of the particles to

obtain a new set of "auxiliary" particles denoted {«[*'*,mlk]*}.
Step 6 Parameter mutation: Kernel smooth the parameter values and denote the

mutated parameters 011'*:
0[<rl*~ Multivariate Normal (m[k]* ,h2\ j

where h2 = 1 -a2 and V is the variance-covariance matrix of the parameter

vector 01*1 prior to resampling.

Step 7 Stochastic projection: Trace the particle swarm back to time t-1 to give

{«!!!*,0[t]*J. Project these particles forward stochastically through the state

107



process model to time t. A likelihood is then calculated for each of the

particles, L^*h t, given the data at time t and jnj*1*,©1*1*]
Step 8 Correction: Calculate a second weight for each particle

<=-

"istoch, t ,

' Lm*
determ,/ y

"istoch,?.
' llk]*

determ,? y

Step 9 Resampling: Use residual resampling on the particles according to the
second weights to get the final set of K particles for time t denoted

{„[*]« ^ ©[*]«}_
Step 10 For k = 1,...,A'redefine =|«([A;1,0[<:]J .

Step 11 Iteration: If t < T, increment to t+1, go to step 2, and repeat.

Initialising the states

The priors for the states were generated using the pup production estimate for 1984

together with the priors for the parameters (Thomas et al. 2005). The initial number of

pups for each particle, nj^0, was generated by "reversing" the observation equation,

i.e. by sampling from

</,o ~ Normal (y0i0, S2[k]ylifi)

where y0i0 is the estimated pup production at colony i in 1984 and ^ is the value

of the CV parameter 5 sampled from the prior for particle k. These values were

further dispersed by resampling them from a uniform distribution with bounds given

by the sampled value divided by 1.3 and the sampled value multiplied by 1.3 and then
rounded to the nearest integer. This was done to make sure all likely values for the
initial states were contained in the sample (the value of 1.3 was chosen by Thomas et

al. (2005) by trial and error). Initial values for the age 1 females were generated by

assuming that half of the pups were female and sampling from
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]0 ~ Binomial (n^0,0.5^0)

and ages 2 to 5 females from

"So-Binomial (nlk\i0,<p[k])

where a = 2,...,5, for the subscript on n. Again these values were further dispersed

using a uniform distribution. To generate the initial distribution of age 6+ females the

breeding sub-process was "reversed" by sampling from

and once again these values were further dispersed using a uniform distribution.

Sampling from the Negative Binomial distribution gives the number of failures (i.e.
the number of adult females not producing a pup) given the number of successes,

"cu.o > f°r Particle k (i.e. the number of females producing a pup).

For model S4 in which no movement occurred the number of female seals at Fast

Castle was initialised in 1997 (the first year of data for this colony) using the same

methods as above. For the other three models (SI to S3) this was not necessary as

seals were able to move to this colony from the established colonies from 1990
onwards according to the various movement process models used. Colonisation

occurring at Fast Castle in 1990 as this was when seals were first noticed there by
local fishermen (Kevin Rideout, SWT/NTS Ranger, pers. comm.).

5.2.7 Inference and model selection

Smoothed inference (Thomas & Harwood 2003; Thomas et al. 2005) was used for

assessing the fit of the models to the data. Smoothed inference explores the past state

of the population given all the data up to the current time. Smoothing was done by

Negative Binomial (nl0k-0, yk]) + nl0k.Q
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tracing back through time to find the "ancestors" of the particles that were still present

in the particle swarm in the final year. This provided the smoothed estimates for the
number of pups at each of the four colonies in each of the years.

These smoothed estimates were also used for model selection by calculating the AIC

(Akaike Information Criterion) values for the models (Buckland, Burnham &

Augustin 1997; Burnham & Anderson 2002; Thomas & Harwood 2003; Cam et al.

2004; Johnson & Omland 2004). AIC works on the principle of parsimony - i.e. it
makes a bias-precision trade-off given the information content in the data. More

complicated models, which will fit the data better because they are more flexible, are

penalised for the extra parameters that need to be estimated.

The algorithm for comparing the different models runs as follows.

1. Re-calculate the likelihoods at each time point for each of the smoothed

particles for model m, , using the posterior observation model CV, <S^3
(i.e. the CVs in the final time point for the particles), where t = 0,...,19 and k =

1,...,350,000. Note that 5 has a time subscript because the mutations
introduced by kernel smoothing perturb the parameter values slightly from

year to year.

2. Calculate the likelihood for each particle in model m, L^1, as

t

3. Calculate the AIC for each particle in model m, AIC^1, using the likelihoods

from step 2, such that

AIC"=—21n(4;1) + 2p„

where pm is the number of parameters in model m.
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4. Calculate the mean posterior AIC for model m, MPAICm as

MPAIC =-*
K

where K (= 350,000) is the number of particles.

5. Repeat steps 1 to 4 for all models in the candidate set.

6. After all models have been run, calculate mean posterior Akaike weights

(Thomas & Harwood 2003) Wm for each model. To calculate this weight first

the difference between each model in the set and the "best" model (i.e. the

model with the minimum MPAIC value) are calculated

Am = MPAICm -MPAIC^

Then the relative weight for each model, Wm , is calculated as

= exp(-A„, / 2)
^expHV2)

q

where q = 1,...,4.

Due to particle depletion, however, using the data in the early part of the smoothed
time series can cause substantial Monte Carlo error in the MPAIC values calculated.

To minimise this problem, the Akaike weights were calculated for the MPAIC values
calculated for the smoothed particles between 1990 and 2003 (i.e. t = 6,...,19).

5.2.8 Future abundance prediction

The future abundances of pups at each of the colonies were assessed by projecting the
models forward using the posterior distributions of states and parameter values. In the
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present analysis 1000 particles were randomly selected from the particles that
survived until the final time point (2003). These were projected forward stochastically
over a time horizon of 200 years, when the colonies had reached equilibrium.

All of the models were coded in R Version 2.0.1 (R Development Core Team, 2004).
Source code is available in the CD that accompanies this thesis (see section 5.5 for

details). Each model was run four times in order to assess the level of Monte Carlo

variation in the posterior estimates and to assess whether or not the models had

converged.

5.3 Results

The results from the model selection are given in Table 5.3. As there was some Monte
Carlo error in the MPAIC values calculated (repeat runs of the models producing

slightly different outputs), the average of the four MPAIC values was used in the
calculation of the mean posterior Akaike weights. Model S3 has a clear advantage
based on these weights. This model assumes a constant movement probability
between colonies, with no effect of distance or abundance. The "no movement"

model, S4, had effectively zero Akaike weight.

SSM Average MPAIC
over four mns

mean posterior Akaike weight
(using average MPAIC over four mns)

SI 603.4 0.052
S2 600.6 0.211
S3 598.1 0.737
S4 643.1 0.000

MPAIC: Mean posterior Akaike's information criterion (see text)

Figure 5.1 shows the performance of model S3 using the run that had the smallest
amount of particle depletion. Only two pup production estimates show a poor fit: the
Fame Islands in 1999 and Fast Castle in 2003.
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1. Isle of May 2. Fast Castle

3. Fame Islands 4. Donna Nook

Figure 5.1: Pup production data and smoothed estimates for model S3. Input data are shown
as circles, the smoothed mean of the particles is shown by the solid line and the dashed lines
show the 2.5th and 97.5th percentiles (the posterior 95% Bayesian credibility intervals).

The prior and posterior distributions for the parameters in model S3 are shown in

Figure 5.2. The posteriors on adult survival, <f>a, fecundity, y, the observation model

CV, S, and the movement parameter, a0, have all changed significantly from the

priors, indicative of information content in the data on these parameter values.
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Figure 5.2: Priors (solid lines), posteriors (histograms) and posterior means (dotted vertical
line) for model S3. The posterior mean is given underneath the name of the parameter

Table 5.4 compares the movement probabilities estimated in the initial CR analyses
with those from model S3. The SSM analysis produces a lower estimate for
movement that the CR analyses, and consequently the SSM estimate of the site

fidelity rate (returning to the same colony from one year to the next) is higher. The
width of the credibility interval for the movement probability, obtained from CR
model R3 (from chapter 4), was reduced by 82% when the SSM S3 was fit to the pup

production data.
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Table 5.4: A comparison of the movement probability estimates from the capture-recapture
(CR) models and the state-space model (SSM) S3 incorporating only a single movement
parameter. The mean, 2.5th and 97.5th percentiles are given. The movement probability, 4*, is
given in terms of the source colony and the destination colony.
Movement CR model L3 CR model R3 SSM S3

probability (a prior from this) (run with smallest amount
¥ of particle depletion)

0.933 (0.838, 0.973) 0.940 (0.830, 0.979) 0.961 (0.947, 0.973)
0.022 (0.009, 0.054) 0.020 (0.007, 0.057) 0.013 (0.009, 0.018)

gives the site fidelity probability and i<->j gives the probability of moving from one
colony to each of the other three colonies available (see eqn 5.4)

As there was also some support, based on Akaike weights, for model S2, Table 5.5

compares the movement rates estimated from the CR models with the same

movement form as this SSM. The SSM estimates show a less pronounced distance
effect than the CR estimates, again the level of movement picked up by the SSM is
lower than the CR analysis suggested and the uncertainty in the movement

probabilities is much reduced.

Table 5.5: A comparison of the movement probability estimates from the capture-recapture
(CR) models and state-space model (SSM) S2 incorporating a distance effect for movement.
The mean, 2.5th and 97.5th percentiles are given.
Y CR model L2 CR model R1 SSM S2

(a priors from this) (run with smallest amount
of particle depletion)

1<->1 0.924 (0.716, 0.979) 0.916 (0.643, 0.979) 0.961 (0.946, 0.973)
2<->2 0.912 (0.703, 0.973) 0.903 (0.630, 0.974) 0.959 (0.943, 0.972)
3<->3 0.955 (0.828, 0.986) 0.967 (0.806, 0.993) 0.964 (0.949, 0.976)
4<->4 0.981 (0.838, 0.998) 0.992 (0.818, 0.9997) 0.970 (0.948, 0.984)

l<->2 0.057 (0.016, 0.177) 0.073 (0.019, 0.236) 0.017 (0.010, 0.028)
l«-»3 0.014 (0.003, 0.053) 0.009 (0.001, 0.060) 0.012 (0.008, 0.017)
l<->4 0.006 (0.0006, 0.054) 0.002 (0.0001, 0.061) 0.010 (0.005, 0.017)
2<->3 0.025 (0.010, 0.066) 0.022 (0.006, 0.073) 0.014 (0.010, 0.019)
2<->4 0.006 (0.0007, 0.054) 0.003 (0.0001, 0.061) 0.010 (0.005, 0.017)
3<->4 0.006 (0.0007, 0.054) 0.003 (0.0001, 0.060) 0.010 (0.005, 0.017)
1 = the Isle of May, 2 = Fast Castle, 3 = the Fame Islands and 4 = Donna Nook.
1<->1 represents the probability of site fidelity at the Isle of May and 1 <->2 represents the
probability of moving in either direction between the Isle of May and Fast Castle.

The predicted future pup abundances from projecting model S3 forward 200 year

(towards equilibrium) using the posterior states and parameters are shown in Figure
5.3. There is wide variability in the equilibrium sizes predicted. These sizes, however,
tend to be greater than our prior estimates for colonies 1, 2 and 3.
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Figure 5.3: Predicted future pup abundances using posterior states and parameters from
SSM S3. Mean of the particles is shown by the solid line, the dashed lines showing the 95%
Bayesian credibility interval and the dotted horizontal line gives the prior estimates for pup
abundance at carrying capacity at each colony.

A comparison of the mean predicted future pup abundances from projecting three of
the four SSMs forward 200 years using the posterior states and parameters are shown
in Figure 5.4. Model SI produced unstable pathological behaviour where all animals
were drawn from the smaller colonies into the larger ones; such instability is thought

unlikely in reality, so this model has not been shown in this comparison. The no

movement model, S4, despite getting a zero Akaike weight has been left in for

comparison with the other two models. Incorporating movement into the SSMs results
in a different equilibrium distribution of animals between the four colonies and also in
a different equilibrium size for the whole system. The results from the two best fitting
models, S2 and S3, are very similar in their predictions. For all three models,
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however, there is considerable overlap in the 95 % Bayesian credibility intervals for
the trajectories at all four colonies (not shown here). Again, all the models

consistently reach higher equilibrium values for colonies 1, 2, and 3 than our prior
estimates. The model-averaged carrying capacity for each colony (Buckland et al.

1997), calculated using the MPAIC weights were: Isle of May 6595 pups, Fast Castle
4809 pups, Fame Islands 5616 pups, and Donna Nook 10887 pups.

1. Isle of May 2. Fast Castle

2000

year year

3. Fame Islands 4. Donna Nook

year

Figure 5.4: Mean predicted future pup abundances (from 2003 to 2203) using posterior
states and parameters from models S2 (dashed line), S3 (solid line) and S4 (dotted and dashed
line). The dotted horizontal line gives the prior estimates for pup abundance at carrying
capacity at each colony.
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5.4 Discussion

5.4.1 Posterior parameter estimates

We found that the pup production data did contain information on adult female

survival, a similar result to that obtained by Thomas et al. (2005) for the entire UK

grey seal data set. The posterior mean (0.967) was slightly higher than that of the

prior ( 0.96), which came from a study of branded and tagged breeding females at the
Isle of May (Paddy Pomeroy, pers. comm.). The prior estimate was based on the

assumption that there was no emigration from this colony, and this may explain why
the posterior mean was higher. There was also information in the data on the amount

of movement by adult females between the four colonies (see next section). The pup

production data provide additional information on the CV of the observation model.
The posterior estimate of 13% was somewhat higher than expected. This may be
because this parameter includes model misfit (Len Thomas, pers. comm.). There was

also a small amount of information on the fecundity rate.

There was, however, little information to refine our estimates of the maximum pup

survival rate and the beta parameters that affect the equilibrium values at the colonies.
This is not surprising as all four colonies are still growing so there will be little if any

information in this data on density dependence and the equilibrium values at the
colonies.

5.4.2 Grey seal movement

There was strong evidence that incorporating movement between the colonies

improved model performance. In fact, the model with no movement (S4) had

effectively zero MPAIC weight. The estimated movement probability from the "best"
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SSM, S3, was approximately 35% lower than that estimated from the CR data. This

may be because the CR data are likely to have included some short-term within-
season movements by females. Most of these movements are likely to be categorised
as "true" between year moves between colonies, thus biasing the CR estimate

upwards. The SSM estimate also had a much tighter confidence interval, indicating
the additional information about movement contained in the count data.

Although this analysis provided strong evidence for movement between colonies, the
estimated probability of not moving, from model S3, was high (0.961) so that most

adult females remain faithful to the same breeding colony from one year to the next.

Pomeroy et al (1994) obtained a similar result from a detailed study of permanently
marked breeding female grey seals at North Rona. However, Thomas et al. (2005)
found little evidence for movement when they modelled grey seal population

dynamics at a regional level. This may be a result of the different spatial scale used

by the two models: even relatively high levels of movement between adjacent
colonies would not necessarily generate significant levels of movement between

adjacent regions.

It has long been held that distance is an important factor in animal movement models

(MacArthur & Wilson 1967) and there was some support for model S2 which

incorporated distance effects into the movement process (Akaike weight of 0.211).
The effect of distance on moving picked up by this model was not particularly strong

however, which explains why this model was not preferred above model S3 based on

Akaike weights. Again the stronger effect of distance picked up in the CR analysis,
when compared to the SSM results, may have been a consequence of within-season
movements of females affecting the CR data (within-season movements may be

higher between closer colonies).

The CR analysis supported a model which included both distance and colony size as

determinants of movement probability. However, this model predicted that seals are

attracted from smaller colonies to larger ones, possibly as a result of conspecific
attraction (Smith & Peacock 1990; Cam et al. 2004). An alternative explanation is
that it is an artefact caused by the fact that Fast Castle, the smallest and most recently
established colony, had a much lower fidelity rate than any other colony. This view is
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supported by the fact that the movement probabilities associated with Fast Castle had
wide confidence limits and were highly sensitive to the choice of movement model.
When this movement process was incorporated into a SSM, there was little support

from the pup production data (MPAIC weight of 0.052) and it produced pathological

long-term dynamics, with the largest two colonies acting as sinks which drained all
the animals out of the other two colonies.

5.4.3 Abundance prediction

Bowne and Bowers (2004) point out that relatively few studies of metapopulations
document rates of inter-patch (in our case inter-colony) movements, and even those
that do rarely determine population level consequences of these movements. The

primary aim of the modelling done in this chapter was to explore the nature and
amount of movement present in my study population, but I was also interested in the

consequences of this movement for long-term dynamics. The best fitting model

predicted equilibrium sizes for the individual colonies that were very different from
the initial expectations. The results suggest that all four colonies are still growing and
that there is little information on their equilibrium size in the time series that is

currently available. The 95% Bayesian credible intervals in Fig. 5.3 indicate that the

predictions range from virtually no increase to a continuation of the current growth
trend.

Clearly, movement is necessary for the establishment of new colonies, such as Fast

Castle, but it can also alter the dynamics of the individual colonies and the

metapopulation as a whole (Hanski, Kuussaari & Nieminen 1994; Hanski, Alho &
Moilanen 2000; Matthiopoulos et al. in press). Incorporating movement into the
SSMs resulted in a different equilibrium distribution of animals between the four
colonies and also in a different equilibrium size for the whole system.

The fact that the equilibrium densities at the Isle of May, Fast Castle and the Fame
Islands predicted by model S3 (see Fig. 5.3) are quite different from the priors - in

spite of the fact that the /? posteriors did not change much from their priors - is partly
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a consequence of the other parameters in the models changing from their priors. The

[i prior expectations were set relative to the prior expectations for the other model

parameters. If there is no movement, the equilibrium size of each colony is
determined by the ft parameters. When movement is incorporated, however,

equilibrium size at a particular colony is no longer determined only by the internal

pup survival but it is also affected by emigration and immigration: at equilibrium
some colonies will be net suppliers of migrants while others will be net receivers. The
reason that the carrying capacity at Donna Nook does not overshoot its prior

expectation (unlike the other three colonies) is because this colony (which is believed
to have the potential to grow the largest) is a net supplier of migrants at equilibrium.

The most noticeable difference in the predictions under the different SSMs is for
Donna Nook (see Fig. 5.4), where the no movement model (S4) predicts a much

larger equilibrium density than the other models. This is likely to be because at

equilibrium no animals were able to emigrate from Donna Nook in model S4 and also
because this model was only able to explain the rapid early rise in pup numbers at this

colony by having a very large equilibrium density. However, when migration into
Donna Nook was allowed (as in models S3) the rapid early rise at this colony could be

adequately charted (see Fig. 5.1).

5.4.4 Density dependence

The functional form for density dependent pup survival we used here implies that the

largest changes in pup survival occur at relatively low pup production levels. It was

initially developed using data collected at the Fame Islands before 1972 (Harwood &
Prime 1978; Harwood 1981). However, it is generally believed that long-lived

animals, like grey seals, show the strongest evidence of density-dependence when

they are close to their carrying capacity (Fowler 1981); this could be modelled by

incorporating a shape parameter into the pup survival function. There is also

continuing debate about whether or not density dependence operates on pup survival

(Twiss, Duck & Pomeroy 2003); it may instead operate on adult fecundity (Thomas &
Harwood 2004a). Such an alteration to the model structure would be simple to
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implement. Nevertheless, in a review of 160 studies of marine mammals and large
terrestrial herbivores, Sinclair (1996) found that in 66 of these density dependence
acted on first-year survival.

It is also possible that as the colonies start to level off in the future density may have
an effect on female seals movement probabilities. A more appropriate movement

model in this case may be one similar in form to that used by Thomas et al (2005) in
their regional level SSM analysis of the British grey seal population - the form of
their movement model was theoretically driven based on the hypothesis that fitness
and distance factors determine movement (Ruxton & Rohani, 1999). In their

movement process model a seal will only move to a new colony if the survival of its

offspring is higher at that colony than at its original colony and when the new colony
is not too far away from the original one.

These are just some of the factors that need to be considered before the future size and

spread of the British grey seal population can be reliably predicted.

5.4.5 Fitting state-space models

A major problem with fitting SSMs using SIS is particle depletion, which gives rise to

Monte Carlo (MC) error in the posterior estimates. In other words, particle depletion
lowers precision. To lower the amount of particle depletion and reduce this variability
one solution is to use more particles, but this requires more memory. The next

generation of SSMs are being programmed using C as opposed to R or S-Plus to

obtain this extra memory.

In the present state-space modelling exercise several techniques were used to combat
the problem of particle depletion and hence reduce the level of MC error between
model runs. However, there are problems with these techniques. For example, the

optimum level for kernel smoothing is not well understood. If too much smoothing is

done, then the relationship between the states and parameters is not preserved.
Thomas and Harwood (2004a) explored a modified algorithm for fitting SSMs that
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had no kernel smoothing at all. Although this algorithm was simple and reliable, it
was inefficient, requiring a large amount of computer time.

Markov Chain Monte Carlo (MCMC) methods provide an alternative to SIS.

However, there are significant difficulties in choosing an MCMC sampler (i.e.

choosing the proposal distributions and updating schemes) when the models are non¬

linear and non-Gaussian. Furthermore, MCMC suffers from an analogous problem to

particle depletion in SIS: the proposition of moves in parameter/state space that are

rarely accepted, in which case the model becomes "stuck" in the parameter/state space

and does not "mix" well (Newman et al. in prep).

5.4.6 Model selection

In this analysis, model selection was based on MPAIC. Each model was run

independently, its MPAIC value was calculated, and then a model weight was

calculated from the MPAIC value. An alternative approach with SIS is to run all the
models together and to then resample particles at each time point according to their
Akaike weight. Models that fit well will have more particles resampled from them
than those that fit the data poorly. Posterior model probabilities are then determined

by the proportion of surviving particles representing each model. This is analagous to

the technique of Reversible-Jump MCMC9 (Jamieson & Brooks 2003). In this case,

posterior model probabilities are determined by the proportion of time spent in the

parameter space for each model.

Clearly, the model selection criterion used will affect the weights given to each model
in the candidate set. AIC and its "relatives" work on the principle of parsimony, such
that there is a penalty term for the number of parameters that must be estimated. It is
not clear, however, if it is appropriate to penalise the number of parameters in SSMs.
We have also applied AIC, traditionally a frequentist tool, in a Bayesian framework to

calculate the mean posterior AIC. Whether the mean was the right statistic to use is
also uncertain. There are also other Bayesian approaches to model selection that are

9
Reversible-Jump MCMC extends MCMC to search model space as well as parameter/state space.
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based on somewhat different assumptions to those made by AIC (Burnham &

Anderson 2002).

Another important issue with respect to model selection is the weighting of different
models a priori. In the analysis done in this chapter all four models were essentially

given equal weights to begin with. However, we could have perhaps capitalised more

efficiently on the information present from the capture-recapture data by utilising the
model weights given in Table 4.3 of chapter 4. However, as the ordering and size of
the relative weights for the various movement model forms were different for the
LHS and RHS, it would have been difficult to justify which weights to use.

Furthermore, it would have been hard to determine a prior weight for the "no
movement" SSM (S4).

5.4.7 Comparison with other modelling methods

Modelling procedures comparable to those used here have been used by Fujiwara and
Caswell (2002). They demonstrate how multi-stage mark-recapture data can be used
to estimate the transition probabilities in a stage-based population projection matrix.
Our methodology is similar, although we used mark-recapture data on transitions
between geographic locations rather than life stages to parameterise our age-based

population projection matrix. We extend the use of such matrices, however, by

including an observation model that allows us to fit our population projection matrix
to further data on the species in question. This in turn enables us to further refine the

parameters in such matrices as well as making future predictions using the models.

For population viability analysis of metapopulations the simulation software
RAMAS/METAPOP (http://www.ramas.com/software.htm) is valuable. The models
the user can build are very flexible and can incorporate environmental and

demographic stochasticity and density dependence, and can be used to predict the risk
of extinction due to human impacts. The results from CR experiments can be

incorporated to provide the input movement parameters for the simulations and the
effects of movement on future colony and regional population dynamics can be
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explored (e.g. Inchausti & Weimerskirch 2002). However, the software presently does
not explicitly incorporate uncertainty in the parameters used for input, nor can it be

directly fit to abundance data to refine parameter estimates as can be done using
SSMs.

5.5 Supplementary material

The CD that accompanies this thesis contains source code and data to implement
model S3, written using the statistical computing language R Version 2.0.1 (R

Development Core Team, 2004). The CD contains six text files for running the model
and a ReadMe text file which lists the contents of the other files and how to use them.
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Chapter 6

General Discussion

In the preceding chapters I have demonstrated a range of methods for making
inferences about the population dynamics and spatial structure of wildlife populations.

Specifically, I used a variety of statistical analysis tools to uncover patterns in genetic,

photo-ID and abundance data for the British grey seal population.

6.1 Main findings

In chapter 2, I used individual-based simulation models to explore the genetic

consequences of female grey seals "choosing" mates in year t that are genetically
dissimilar to their mates from year t-l. When this choice was based on only one or

two loci, a marked effect on the population allele frequencies was observed: rarer

forms were favoured and more common forms were penalized. As the number of loci
on which this choice was based increased, the effect on population allele frequencies

(over a fifty year time horizon) was far less detectable. In chapter 3, I explored
microsatellite DNA data for the grey seal and found that there is genetic
differentiation between colonies from different regions around the British Isles, but

approximate panmixia among the four main breeding colonies in the North Sea

region. The remainder of this thesis explored the population dynamics and spatial
structure of female grey seals breeding in this region. Multisite capture-recapture
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modelling of photo-ID data for these colonies revealed that most females remained
faithful to a specific colony, but that some of them did move between colonies in
successive years. Model selection revealed that this movement was more likely
between colonies that were close together and from smaller colonies to larger ones.

This analysis was based on a rather short (3-year) dataset. Therefore, in chapter 5, I

developed a set of metapopulation models for the North Sea system that were fitted to

a 20 year time series of pup production estimates for these four colonies. A Bayesian

state-space approach was used to fit these models to the data.

The results from the capture-recapture study provided informative priors for the
movement process models in these metapopulation models. The precision in the
movement parameter estimates were improved substantially by the use of this
extended time series. Model selection in this instance favoured a movement model

with only a single parameter and no effects of distance or abundance. However, there
was also some support for a movement model that incorporated distance. There was

little support in these data for an effect of abundance on movement probabilities.
Predictions of future colony sizes made using these models demonstrated that the

incorporation of movement, and the way in which it was modelled, affected both local
and regional dynamics. The differences between model predictions were most evident
as colonies approached their carrying capacities, suggesting that our ability to

discriminate between models should improve as the length of the grey seal time series
increases.

6.2 Grey seals and man in the North Sea

Most species on Earth are affected directly or indirectly, purposefully or accidentally,

by the activities of man. The British grey seal is no exception to this rule. It has had a

varied relationship with man over the years. In the past this species was exploited for
the oil which could be extracted from seal carcases (Watt 1951). However, in 1914

the Grey Seal Protection Act was passed as it was believed that the population had
been reduced to 500 individuals (Harwood 1984). This was replaced by the Grey Seal
Protection Act 1932 which protected seals during the breeding season, from 1
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September to 31 December (Watt 1951). As a result of this protection, the size of the

population increased and, in 1963 and 1965, grey seal pups were killed at the Fame
Islands (the only long-established grey seal breeding colony in the North Sea at that

time) as part of an attempt to protect fisheries (Coulson & Hickling 1965, 1969).

Howevere, the size of the population using the Fame Islands continued to increase,
and these culls were abandoned. In the 1970s, the National Tmst (which owns the

Fame Islands) became concerned about the effects of seals breeding on Brownsman
and Staple Island on areas of delicate vegetation, such as the sea campion, Silene

maritima, and the subsequent erosion of the fragile soil cap (Bonner & Hickling

1971). It was also believed that further culling would result in better conditions for the

seals, with less pup mortality and injury resulting from overcrowding. A management

plan was adopted that involved the killing of adult seals and their pups (a more

effective measure than only killing pups). This was carried out in 1972 (Bonner &

Hickling 1974) and 1975 (Hickling, Hawkey & Harwood 1976). In 1977 a further
measure to protect the two vegetated islands (Hickling, Hawkey & Harwood 1978),
known as the "disturbance plan" (Prime 1981), was introduced. Seals tend to avoid
islands continuously inhabited by humans, so wardens were housed on Brownsman
and Staple during the breeding season (Hickling, Hawkey & Harwood 1978) to deter
them from pupping there. This plan is still in operation today.

Intriguingly, the "disturbance plan" seems to have been responsible, at least in part,

for the establishment and growth of two other colonies in the North Sea (the Isle of

May and Donna Nook). The Isle of May, the closer of these two colonies to the Fame

Islands, had an estimated pup production of 25 in 1977, but this rose to 300 in 1979
and 499 in 1980. In 1980 an adult female seal branded at the Fame Islands in 1970

was observed by the water's edge at the Isle of May (Prime 1981), supporting the

hypothesis that at least some of the growth at the Isle of May was the result of

immigration from the Fame Islands.

No grey seal pups were found at Donna Nook during a survey undertaken in 1973. No
further counts were made until 1981, when 34 pups were present (SCOS 2002). The
more dramatic initial rise in the numbers of seals at the Isle of May is perhaps due to

the proximity of this island to the Fame Islands, and the fact that there were already a

few seals present at the Isle of May in the mid-1970s. Dispersing individuals are
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thought to use the presence of conspecifics as cues for habitat suitability when

selecting a new colony (Clobert, Ims & Rousset 2004).

The state-space models (SSMs) developed in chapter 5 of this thesis were fitted to the

pup production data for the North Sea colonies between 1984 and 2003. During this
time another colony, Fast Castle, was established. The best fitting models predicted
that most of the animals involved in this colonization came from the Isle of May, the
closest and largest of the three colonies in the North Sea region.

Based on the history of the colonies in the North Sea outlined above it is not

surprising that the microsatellite genetic analysis (chapter 3) uncovered little
differentiation between them. This history also emphasizes the fact that human

presence on a breeding site can strongly deter females from pupping there. Indeed,
some of the apparent movements of females suggested by the photo-ID dataset may

have been an artefact of the way in which the observations were collected. For

example, a female looking for a place to pup on a particular colony might have been
disturbed by the photography team and decided to go elsewhere to give birth.

Furthermore, such a scenario could help to explain the within-season movements

between colonies observed in this dataset. The preceding considerations bring to light
two related complications when studying wildlife populations: (1) it is difficult to

observe a system without also having an effect on it; (2) it is not easy to untangle
"natural" from anthropogenic effects in wildlife population dynamics.

6.3 Embedding simulation models in inference

"At the moment, the Bayesian revolution is in its earliest phase, and it will be some

time yet before the dust has settled and we can judge which are the most promising
avenues for exploration" (Beaumont & Rannala 2004).

The culmination of this thesis is a set of SSMs describing the dynamics of female

grey seals breeding at colonies in the North Sea. The state-space framework provides
a very promising avenue for exploring ecological data from a Bayesian perspective.
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SSMs use simulations from a realistic stochastic population dynamics model to create

multiple realizations of the population (Buckland, Goudie & Borchers 2000).

Complex simulation models are often criticised because the large number of

parameters can rarely be rigorously estimated and structural assumptions cannot be
tested (Hanski & Gaggiotti 2004). If no account is taken of the uncertainty associated
with such models, it can be fatal to trust their predictions (Hanski 2004). However,
the underlying process model of an SSM is embedded into an inference framework
via the observation model, so that the models can be calibrated using survey data

(Buckland et al 2004). The state-space approach can incorporate both process and
measurement errors using probability density functions (Newman et al, in press).
Structural assumptions can be explored using model selection techniques, such as

those described in chapter 5, to compare different models of the movement process.

Furthermore, parameters for which the data provides little information are easily
identified because their posterior distributions are virtually identical to their priors

(Harwood & Stokes 2003).

6.4 Future directions

In this thesis I have shown how two different data sources (in this case, photo-ID and

pup production) can be combined to provide improved inference about levels of
movement between grey seal colonies in the North Sea. In this case the photo-ID data

provided informative priors for the SSMs that were fitted to the pup production data.
A potentially more rigorous way to combine these data sources would have been to fit
to both datasets simultaneously through the state-space framework. The SSM would

require significant expansion to include a process and observation model for the

capture-recapture analysis, but - provided the two data sets are independent - the

weight for each simulated population (each particle) would be proportional to the

product of its likelihoods for the two data sets.

The state-space approach could also provide a means to extract more information
from the photo-ID data. Specifically, animals were photographed from both the left-
hand side (LHS) and the right-hand side (RHS). In a substantial number of cases it
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was possible to match the two sides of the head in the field, but this information was

not included in the analysis. Instead, I analysed the LHS and RHS data separately. An
additional difficulty with the photo-ID dataset is the fact that it contains a number of
false negative records: previously photographed animals that were not recognized
when they were photographed again. Accounting for such errors would reduce any

bias potentially caused by them (Stevick et al. 2001). Appendix 2 describes how an

SSM could be extended to incorporate the capture-recapture data directly, taking into
consideration photographs of both sides of the seals head and the possibility of false

negative errors.

SSMs that can be fitted to genetic data would also be valuable. Where a time series of

genetic data for adult animals and pups exist, such as for the Isle of May, these SSMs
could help to resolve complexities in the mating system. For example a model of the
form given in chapter 2, which explores the consequences of mate choice, could, with

appropriate modification, be fitted to the genetic data. However, the required SSM
would probably need to be individual-based in order to replicate the complexities of
the mating system. This would put extreme demands on computer power if fitting
methods similar to those used in chapter 5 were adopted. Such computer-intensive
models would probably require the fitting procedure to be recoded in a lower-level

computing language, such as Fortran or C. The same modelling approach could also
be used to estimate levels of polygyny and mate fidelity, and to examine the effects of

inbreeding.

Genetic data can also be utilized to explore the colonization process if samples can be
collected before pups born at newly established colonies have returned there to breed.

Gaggiotti et al (2002, 2004) used this approach to determine the likely source of the
animals that founded recently established grey seal colonies in Orkney. It would have
been interesting to explore the colonization of Fast Castle in the North Sea region

using such an approach. However, the sample sizes at the North Sea colonies,

particularly Donna Nook, were probably too small to make this feasible, and those
from Fast Castle were taken too long after that colony was established to be useful.

The state-space approach advocated in this thesis is still in its infancy. There are

methodological issues that are currently being explored and refined, such as whether
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models should be fit to data via sequential importance sampling (SIS) or Markov
chain Monte Carlo (MCMC). SIS methods are simpler to program, and slightly more

intuitive, but MCMC appears to give less Monte Carlo error in posterior estimates

(Newman et al, in prep).

The Holy Grail for state-space modellers is the development of a spatiotemporal

ecosystem model: a virtual reality on the computer (Buckland, Goudie & Borchers
2000). In such a model, each simulated "particle" would represent an entire

ecosystem, rather than a single population. Such a model could be fitted

simultaneously to data from many species in order to quantify key ecosystem level

processes. Such modelling could, for example, help identify how best to slow down,
or even halt, the present worldwide decline in biodiversity. Such modelling is clearly
rather ambitious at present, but the foundations have been laid and, with the ever-

increasing power of computers, there is great potential for such an integrated

approach to wildlife conservation.

6.5 A concluding remark

Most of this thesis describes the building of models that were fitted to the various data
sources. A model attempts to capture certain fundamental aspects of reality. However,
the Earth's biota and environment are extraordinarily complex and due to our limited

knowledge there is barely one aspect of their interactions that we can confidently
describe with a mathematical equation (Lovelock, 1989). In the words of Cormack

(1968): "Even the most general mathematical model is a plaything relative to the

complexities of an animal population". It is likely that truth is high (effectively
infinite) dimensional (Buckland, Burnham & Augustin 1997), such that, no matter

how rich our data sources, we will only ever be able to approximate reality.

Nevertheless, as more data are collected we should be able to build increasingly
realistic models of biological systems. Model selection procedures enable us to assess

which models are most appropriate, given the data at hand. Furthermore, the growing

power of computers, along with the development of numerical model fitting

132



procedures, means that realistic models, such as SSMs, that are unsolvable

analytically, can be used to gain a better approximation of reality.
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Appendix 1

Comparing photo-ID sampling strategies

Additional photo-ID data for the four North Sea colonies studied in Chapter 4 would

provide further information on movement rates between colonies and could allow the
estimation of an independent survival rate for seals from these colonies. However,
there are a number of logistic and financial considerations that need to be considered
before undertaking such an exercise. As more photographs are taken at a colony the
likelihood of re-photographing the same animal increases. Since there is a fixed cost

associated with processing each photograph, any additional photography increases
total cost.

The option of making more than one visit to a colony separated by a reasonable length
of time may reduce the number of times the same animal is photographed, but this
must be set against the cost of the additional visits. Furthermore, if the colony is only
visited during the peak of pupping, females who consistently breed either early or late
in the season will not be available for capture, thus adding a potential source of bias to

the capture-recapture parameter estimates.

In this appendix I compare different sampling protocols using simulation modelling.
The main aim was to determine the optimal sampling strategy to collect a large
number of photographs of different animals within a single breeding season. The
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models were parameterised with data on pup production at the Isle of May in 2003
and with other information on the breeding biology of this species.

A1.1 Simulation model input

Female grey seals are thought to arrive at a colony 1-3 days before they give birth and

they tend to stay for approximately 25 days, with a standard deviation of 5 days. On
the Isle of May in 2003 the pup production estimate was 1882. For simplicity in the
simulations it is assumed that 1882 females used the colony in this year. The
estimated birth curve parameters (Duck, pers. comm.) from the model used to

estimate pup production for the Isle of May in 2003 (Duck 2004), were:

day 1 = 1st October
start date = 20 August

mean pupping date = 28 October
standard deviation = 7.92

The birth curve is assumed to have a Lognormal distribution, so it is necessary to

convert the mean and standard deviation for use with this distribution (Newman, pers.

comm.). Let us label the mean and variance on the log scale a and b respectively, and
the equivalent values on the linear scale as m and v. Then:

b — log(——+1)
m

a = log(m) - ^
By substituting m = 69.2 and v = 7.922 into these equations we can calculate a and b.
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A1.2 Simulation model structure

Combining the above information I simulated 400 populations. For each population I
calculated an arrival date and a departure date for each of the 1882 females in the

populations as follows:

arrive, i "b. i ~^2.i

^
depart,i arrived *^3, i

where darrivei is the arrival date for female i, where i = 1, , 1882, and ddeparti is the

departure date for female i. For the three x values we sample one deviate respectively
from each of the following distributions:

xlLognormal(a, b)

x2j~ Uniform (l, 3)

x3; ~ Normal (25, 5)

As each female's head has two sides that can be photographed, the total number of

unique photographs possible during the simulations are 3764 (= 2*1882). Female
seals are photographed with replacement during the simulations.

In the simulations I explored four different sampling protocols: (1). Peak day

sampling, done on the day when most females were present (this value was calculated
from the simulations); (2). Two samples were taken 26 days apart centred on the peak

day; (3). Two samples were taken 30 days apart; (4). Two samples were taken 40 days

apart. Under each protocol 500, 750 and 1000 photographs were taken of randomly
chosen animals with replacement. For protocols 2-4, half of the photographs were

taken on the first date and half on the second. The number of unique photographs
taken under each scenario was recorded, as was the total number of breeding females
that had not been photographed on either side. For protocols 2-4, the number of
animals that arrived and left between the two sampling events and the number that
were present on both sampling events were recorded.

153



A1.3 Results

The results from the simulations are shown in Table Al.l. There was little Monte

Carlo error in these results (i.e. repeat runs of the simulation model produced

practically identical results). The date when the largest numbers of females were

present was on 7 November (ten days after the date when most pups were born). The
95% confidence interval on this value was ± 1 day.

Table Al.l Statistics estimated from the simulation model comparing different photo-

Statisticf Mean and 95% CI
1. PEAK SAMPLING

unique500 463 (452,474)
unique700 671 (655, 686)
unique1000 862 (844, 881)
already left 119 (83, 163)
not yet arrived 134 (93, 172)
2. TWO SAMPLES 26 DAYS APART

unique500 463 (452, 473)
unique750 669 (654, 683)
unique1000 859 (838, 878)
already left 2 (0, 5)
missed in middle 168 (142, 196)
not yet arrived 6 (1, 12)
overlappers 170 (145, 198)
3. TWO SAMPLES 30 DAYS APART

unique500 459 (448, 470)
unique750 660 (645, 676)
unique1000 845 (825, 864)
alreadyleft 1 (0, 3)
missed in middle 394 (354, 428)
not yet arrived 3 (0, 7)
overlappers 48 (32, 63)
4. TWO SAMPLES 40 DAYS APART

unique500 423 (407, 438)
unique750 588 (564, 609)
unique1000 725 (695, 753)
alreadyleft 0 (0, 1)
missed in middle 1108 (1068, 1148)
not yet arrived 1 (0, 3)
overlappers 0 (0, 1)

f All the statistics starting with the word "unique" are out of 3764 (i.e. the total
number of unique photographs possible), whereas the other statistics are out of 1882
(i.e. the total number of females breeding on the Isle of May). The number following
the word "unique" gives the total number of photographs taken, (e.g. unique500 when
peak sampling was done represents the statistic for the number of unique photographs
achieved when 500 photographs were taken on the peak day).
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From Table Al.l it appears that protocol 1 provides the greatest proportion of unique

photographs. For this protocol both the proportion of females that bred early in the
season and have left already (~ 0.06) and the proportion that bred late and had not yet

arrived (~ 0.07) were relatively small. Protocol 2 reduces these proportions but results
in some animals (~ 0.09) that arrive in the middle of the season being missed.

Approximately 9% of the females present on the first visit were also present on the
second. Increasing the number of days between the sampling events greatly reduces
the proportion of seals that overlap the two sampling events but substantially
increases the proportion of the seals from the middle of the season that are missed.

Protocols 1 and 2 yielded rather similar numbers of unique photographs; protocols 3
and 4 were less effective. According to the simulation results, taking 1000

photographs on the peak day provides 862 unique photographs, equivalent to a

capture probability of ~ 0.23 for each side of the head.

A1.4 Discussion

The higher the capture probability in capture-recapture models the greater the

precision with which all the model parameters can be estimated. Thus it is important
to maximize the number of unique animals identified on each sampling occasion.

There appear to be significant benefits to only visiting each colony once. Two visits
will be twice as expensive as one, and weather conditions may not allow two visits
within a season. Some animals that bred early and late in the season are not available
for sampling when visiting on the peak day, but these are a relatively small proportion
of the population. However, females that consistently pup early or late in the season

will be missed. If migrant animals are more likely to pup at these times, then

migration rates may be underestimated. This potential bias could be avoided by

making two visits to the colony, but the additional extra cost and logistic difficulties
involved in making more than one visit are hard to justify because there would be no

increase in the number of unique photographs collected.
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Appendix 2

Extending the State-Space Modelling to

Incorporate the Photo-ID Data

This appendix details a suggestion for how to extend the state-space models (SSMs)

developed in chapter 5 to simultaneously fit to both the pup production and the

capture-recapture photo-ID data for the grey seal (as discussed in section 6.4 of

chapter 6), taking into consideration photographs of both sides of the seals head and
the possibility of false negative errors.

For simplicity I only consider the formulation specifically necessary for the capture-

recapture process and observation models of the SSM. I give suggested formulations
for how to incorporate photographs of both sides of the seal's head, thus accounting
for instances where the two sides of the head are matched in the field. I also consider

a method for dealing with false negative errors (whereby previously photographed
animals are not recognized when they are photographed again). I assume that error of
the opposite nature - false positives (whereby two different animals are thought to

represent the same animal) - are negligible due to the conservative nature of the

matching process, as detailed in section 4.2.4 of chapter 4. I only present the single-
site case and just the first two time points are considered, thus keeping the
formulations in a presentable form. I also assume 100% survival and no recruitment
into the breeding population between the first and second time period for ease of

explanation.
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The length of the state and observation vectors increase with time due to the

increasing number of permutations of capture histories possible. The observation
vector is a subset of the state vector and in parts is a convolution of more than one

element from the state vector as detailed below. The state vectors for the first two

time periods are as follows:

n,

nL, 1

nR. 1

nB, 1

n,0,1

—> n

nLL.2

nLR, 2

nLB.2

nL0.2

nRL,2

nRR, 2

nRB.2

nR 0,2

nBL.2

nBR,2

lBB,2

B0.2

-0L.2

n,0R.2

OB.2

'00,2

Where the states for the first time period, nLl,nRl and nB ,, are the numbers of females

photographed from the LHS only, the RHS only and both sides during the first

capture event, and the number of females not captured is given by:

where N] is the "true" number of females present in the population when the first

capture event occurs. There is pup production data available before the first capture

event, so fitting to both pup production and photo-ED data sets simultaneously means

157



a value for TV, will be estimated for each simulated population. The increase in the

number of elements in the state vector for the second time point is apparent where, for

example, nLL 2 represents the number of animals seen by the LHS on both the first and

second capture occasions. The number of distinct elements of n, at each time point is

4'.

The states for the second time period are computed through the capture-recapture

process model given below. Only the elements for the first four and last four states are

shown, the other elements being implied by the dots (l^I.

(nLL,2> nLR,2 >nLB,2>"2,0,2 ) ~ Multinomial(nLl, pL, pR, pB, (1 - pL - pR - pB))
M

('n0L,2. n0R,2> ■n0B,2> ■"oo.2) ~ Multinomial (n0A, pL, pR, pB, (:1 - pL - pR - pB))

The recapture probabilities, pL,pR and pH, can be constant or time varying and/or a

function of covariates (as in chapter 4). The hypothesis that pL = pR can also be

tested.

The elements in the observation vector in the first time period are simply:

nL, 1

yi = 'R.l

lB, 1

In the second time period, however, the elements in the observation vector are

somewhat more complex and convoluted: (1) there are false negative errors to be

incorporated and (2) individual animals seen by one side in the first year, and the
other side in the second year, are indistinguishable from those animals seen in the
second year by one of the sides but missed altogether in the first year and those
animals whose true matches were missed. The elements in the observation vector in

the second time period are therefore given by:
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yLL,2~ Binomial(nLL2,(\-f))
ylb,2~bin0mial{nlb,2>{l~f))
yRR 2~ Binomial(nRR2,(\-f))
yRB,2 ~ Binomial [nRB2,(1 -/))
ybl,2~ Binomial(nBL2,(1 - /))

y =

yBR,2~ Binomial(nfiR 2,(l-/))
yBB2~ Binomial (nBB2,(l-/2))
fOZ.,2 = nol,2 +nrl,2 ~*~(nll, 2 ~ ^LZ.,2 ) {nbl,2 ~ ybl,2)
y0r,2 = nO«,2 2 _ ^«^,2 ) + {nbr,2 ~

^0fi,2 = nob,2 y(nlb,2 ~ ylb.2 ) + {nrb,2 ~ ^RB.2 ) {nbb,2 ~ ^BB,2 )

where / represents the probability of making a false negative error. /2 is used in the

calculation for yBB 2 as to make a false negative error in this instance requires that

both the LHS match and the RHS match are missed. An independent estimate of /

would be extremely useful for defining a prior distribution on this parameter. For the
final three rows in the above vector the parts in brackets represent those animals
whose true matches were missed.

SSMs of the kind detailed above, fitting to the pup production and capture-recapture

data simultaneously, were not explored in this thesis due to time limitations.

Incorporating photographs of both sides of the head and false negative errors is

clearly quite complicated - a recommendation for exploring such models would be to

first fit to the pup production and capture-recapture data for one of the North Sea

colonies, ignoring the other three in the system. When such a model has been suitably

developed and explored, extending to the multisite case, although significantly more

convoluted, should be possible.
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