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INTRODUCTION

The introduction* of group theory into the study of quantum

mechanics shows that the degeneracy of many quantum systems may be

accounted for as a forced degeneracy that is due to some symmetry

possessed bjr the system. For example, the spherical symmetry of the

central force has as a consequence the conservation of angular mom¬

entum and gives rise to a degeneracy in the sense that many states,

independent and corresponding to different values of the third com¬

ponent of angular momentum, have the same energy.

In addition, in some potentials (e.g. that of the three dimen¬

sional isotropic harmonic oscillator and of the hydrogen atom), the

spherical symmetry alone is not enough to account for the observed

degeneracy: an accidental degeneracy remains and it is tempting to

think that there may be present a higher symmetry which has been over¬

looked and which will explain completely all the degeneracies present.

It seems traditional to refer to these higher symmetries (if toe;,

as 'hidden'. As Alliluev (1957) points out, such hidden symmetries

actually exist in the two-dimensional oscillator. The study of several

systems with accidental degeneracy, in particular the hydrogen atom

(Fock, 1935), the three-dimensional oscillator (Demkov, 1953), an,

the n-dimensional oscillator (Baker, 1956), has shown that these systems

possess in addition to the obvious symmetry, also a hidden symmetry.

iv
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The most serious problem in this respect is to identify the

generators of the complete symmetry group with something that possesses

physical significance — constants of the motion, for instance. The

fact that these accidental degeneracies are connected with the exist¬

ence of constants of motion was recognized by Pauli (1926) who invest¬

igated the Kepler problem. In this problem, the commutation relations

(on a classical level) of a new vector invariant, called the Lenz

vector (Lenz, 1924), with the angular momentum components was recognized

by Klein (Hulthen, 1933) as those of the four-dimensional rotation

group (Fock, 1935; Bargmann, 1936). Numerous papers have been written

on the degeneracy in the Kepler problem (Lenz, 1924; Pauli, 1926;

Born, Jordan, 1930; Ilulthen, 1933; Fock, 1935; Bargmann, 1936; Jauch,

Hill, 1940; Pauli, 1956; Biedenharn, 1961; Schweiger, 1964). It has

been shown that the invariance group of the Hamiltonian is isomorphic

to the four-dimensiopal rotation group in the case of bound states and
\

to the homogeneous Lorentz group for unbound states. For the three-

dimensional isotropic harmonic oscillator, the relavent group has been

shewn tc be F»U(3) (Bargmann, 1936).

On a classical basis , an account of the Lenz vector in the Kepler

oroblem is given by Sexl (1966) who also defines an analogous vector

for the three-dimensional oscillator. For work on the oscillator and

its connection with SU(3), a derivation of the generators is given by

rradkin (1965), For more general central potentials, Bacry, Ruegg and

Souriau (1966) show the existence of a vector analogous to the Lenz

vector. Indeed, it has recently been shown (Fradkin, 1967; Mukunca, 1967)

that the symmetries of S0(4) and SU(3) exist for all classical central
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potential problems.

It seems that very little work has been done on the quantization

of the various forms of the second vector invariant of the central

potential (with the special cases of the hydrogen atom and oscillator)

and the consequent determination of the corresponding wave functions.

A rudimentary account of the SU(3) wave functions for the quantized

oscillator is given by Elliott (1958).

" The statement that group theory is 'introduced' into quantum
mechanics may be erroneous; to see the structure of quantum mechanics
made wholly group-theoretic is, at present, more than a mere aesthetic
vision.

\

\
\
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PREFACE

These pages embody the results of work carried out in the

first half of 1967 pt the University of Ft. Andrews. As claims to

originality, it may be said that the theory of the quantized

oscillator given in Part III has, as far as I am aware, never before

been attempted though the unearthing some day of some obscure

manuscript purporting to give explicitly the oscillator wave

functions cannot entirely be overruled at this stage. Part III, then,

is a complete account of the quantized oscillator and incorporates

a derivation of the classical SU(3) generators (whose final express¬

ions are similar to those defined by Fradkin (1965)) and of the

SU(3) wave functions,; it may be that these functions, as the basic
\

vectors of certain representations of SU(3), have also a purely

groun-theoretic interest.

The quantization of the vector B, the second fundamental

vector invariant of the central potential, in Part II, section 2,

introduces new results, though there still remain problems concern¬

ing their interpretation. Portions of Part II, section 1, concerning

the general problem of quantization, have evaded all my attempts

to trace them in the literature.

The second vector invariant is derived in Part I and elsewhere

no similar explicit expression has been found at the time of writing.

Part I, then, is an account of the symmetry pertaining to the
vii
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central force, with reference to the special cases of the Kepler

problem, oscillator and free particle.

The tale throughout is of a non-relativistic single particle

and no considerations are given to what modifications the introd-
*

uction of general or special relativity or the two-body problem

may produce. N

To the reader who needs assistance through some of the more

mathematical passages, I may refer him to Shephard (1966),

Scott (1964), Chevalley (1946), Kobayashi and Nomizu (1963)—in that

order.
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THE CLASSICAL PROBLEM

1. A Survey of Classical Mechanics

We take as configuration space, M, that of a three-dimensional

differentiable manifold of xero curvature and endowed with a Euclidean

metric of signature 3 and a system of global coordinates fq/t q , q?J.
A point of M will be denoted by

q = (q,» qa» q3).
Phase space,, is a six-dimensional differentiable manifold with

global coordinates (q,a,q,p,p,pl and is the cotangent1 ' 3 / x 3 J

bundle over M. A point of My will be denoted by

(q, p) = (q/ , qa, q^, p/ , p^ , p? ).
A classical observable is a real-valued function

\

f: (q, p) > f(q, p) 6

on phase space. Any such function f can be taken as defining a one-

parameter group* of diffeomorphisms ofMy . In fact, if is the single

parameter, the one-parameter group describes a curve in My that is def¬

ined by the system of equations

^2+* if ; = -P/ (1)
Ol(X. ^ Jg-L '

Singled out from the infinity of functions is one cal.led the

Hamiltonian whose corresponding one-parameter group describes the

evolution of the system in time (.of - t). The Hamiltonian has the form



H~ S- (-??+•&*+-ff) +■ a)
-Zttt

where V is a function on M, called the potential, and 777" is a constant

called the mass of the particle.

The rate of change of-f along the curve defined by <j is
df _

where

Cf'ri a>
\

is the Poisson Bracket of f and q .In particular, if <\ =H, then

dj = If H)
ou lji • W

Thus f is a constant of motion iff [f,H]=0.

Let

-f- {f,A,fjj
be a set of linearly independent classical observabi.es that is closed

with respect to Poisson Bracket. is then a basis of a Lie algebra €L.
\ ^

Each function r\defines a covar.fant vector field df>.

It will be recalled that a covariant vector field f is a mapping

where is the dual of the tangent space at the point (q,p)

ofM„. The covariant vector fields i=l,2,3) map (q,p) onto the
_ _ *

basic elements of (which will also be denoted by 4*yA-(i=i,2,3>),
respectively, these being defined as the image of the basic elements

, S? (i=l,2,3) of T under the natural isomorphism that exists
OZ-L <3>p^ {*'P)
oetween and

The differential of the fundamental covariant vector field of
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is defined by

clW°= J (fa ® fai - d-i; ®faSj . CVJ
< -I

Its value at (q,p) is a tensor in and hence can be

considered as a linear mapping of into > whence it has the

form

= («)

with resnect to the ordered basis \ f7 fa fa fa td o> 1 of 7<f> r/flv).fa> far 'fa * 'fa, fa, 'fa, J ^
( o h t

We see thattfw is non-singular and so the inverse mapping exists.
<e.r>

S\J

Thus if f" is a covariant vector field, we define the contravariant

vector field f by

(dw° r'fv U'pfa 5f«,/
F . (jw° V f ^

,p>n,r>

and thus, if
■V ?

^ .1
I/Oj

then
3

5" = 2 f-^V - «V ) el
(Here j2? fa (i=l,2,3) are contravariant vector fields that man (q,n)

fa-l fa-i
onto the basic elements of 72 *faJ -)

Each function f, then, defines a contravariant vector field df:

dS = £ ( ^ - <Zf d>n.
't'/

02;

THEOREM (Jost,1964)

d[f,5] = [df,dj], (/J;

where

(F.JJ c/v - j,c i; (r.P-;;,
and f, r<n are functions on Mv , the latter being defined by



Phase space, being a Euclidean space, can be considered as a

vector space and hence identifiable with its own tangent space at every

point, the isomorphism being
7

■i - A <^2+ eVv' •

(n)
<*2+

Under this isomorphism, each contravariant vector field is a mapping

of phase space into itself.

An arbitrary function defines a one-parameter group,

r = iiJ. of diffeomorphisms of/M^, given by (1). The infinitesima.l
generator, J , of the group is defined by

for all It can be shown that J" is linear iff ^ is linear.Alsc
r= (&L. ■ ' «>

which is a consequence of the definitions.

Now

\ L otoi V=o L ct(X i-t <5>ft

-! f (Pi 4(4&>) j i

- i (£? £ - £/ ^ AV ''A® Jf. lyjo, Sf,) '
from (1), where ^(q»p)=( («">, 2sbVj~P'W, A(°0, fiM) and we have
written f4,PA i=l,2,3).

Thus

- cty (/>)
from (12).

From (13), the set^ now defines a group of diffeomorphisms of
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whose linear closure of infinitesimal generators is a Lie algebra

having the same structure constants as "0. .

For literature touching on aspects of classical mechanics

similar to those of this section, see Hermann (1966), Jost (196'0,

Mackey (1963).

" Strictly speaking, we should say that f defines a local one-
parameter group of diffeomorphisms, this including the case of those
functions for which the solutions of (1) do not exist for all oC .
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2. The Symmetry Group of a Particle in a Central Potential

2.1 Definition of the Symmetry Group

The symmetry group of a particle described by the Hamiltonian (2)

is defined ,by

{" -l / H(■£(z,y))j y

where \

is a mapping of /YJV into itsel^. The subset ^ of J* defined by
{ -/ V MM *(#,•?')), (/?)

where ^ is a diffeomomhism. A one-parameter subgroup of^ is
g = f f a < * < £i Hli(J\<*(?,?)

with , te €- .

It can be shown that the infinitesimal generator of ^^is of the

form ^ , i.e .is derivable from a real-valued function . ^ccan
now be characterized-by the fact that

■4# - //(C (f.-pi) = a,

from (3). Thus ^ is a constant of the motion. Conversly, each corrc^rt
of motion defines a one-parameter group of dfffeomorphisms that :

subgroup cf the full symmetry group, , of the system.

Gi ven a set^ ■ • ■, r real-valued constan ts '
not'or that is the basis of a Lie algebra , we can define an r-

oarameter Lie group of ditfeomorphisms of that is a subgroup of

r-
2.2 The Constants of Motion for a Central Potential

The equation [f,H]=0 or



*2 (if if- =0
t" -/ <fp*. (??)

is a partial, differential equation whose solutions are exactly

calculable for a general central potential, when expressed in

spherical polar coordinates. We have

//« + -pj + Pf +
*/0' '

with

yv= } Ps>= -rrrt7dO dj*** otf oU '

2 2 - f- suk Q <f>
2l - f-C<r> 9 B - cUoc^a f Z ? "j

d2*+?*x<-9S' /(WJ 2P+9^1 i
*f- CLftdctoy*

t~fr - ?'% + P*?7+ P*2?,
GSiTfi* izrpt- hy-i,

Pf= Z,p2-f,/), .

(22) becomes

+- df + W <df + ( 7jf 7 + -ff1 - -rrrdl/)*>T <2<p ^ + 3 &y*-B oU'^f-r
, p<fPoer>& cP-f

o—~ T~ - 0
-r2u*3& ^P&

THEOREM (rorsyth,195U)

W)

The equation

-p. (ft:,,*!,..., f ■/-•••
<JZ, fx?,

+ -&<n (*,,**, ..., *r-n)<if - o
cPZ-n

ias the general solution

2 = 2- P -<f„ Ux, ■• •, -/) f (Z ?)
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where

sU, - <u< ( X', ** 2-^ ) ^ <r, ,

•••»'• «

'tf'H-t c •tfti -t C *%'> Xz,,.., X~n) 9 &tt~/

is a complete systerp of (n-1) distinct and independent integrals of

the (n-1) simultaneous equations

/{fall r = .=
. . . sr C&t-r\ ("2 6)

*/ ^

Moreover, every solution of (24) is contained in (25) (i.e. there

are no 'special' integrals).

(26) is, in our case,

f+ -f» -f<f>
- nrdy\

e . c/£<?
P<?XCV& O ' ^

whose five independent solutions are

\ ^ ,

■Li - ffr g<P> <fi — py Sts* 9^ f

Li* ?<?,
t

"^7rr v -t7so^^B
£ - — f ^ 1 ^ ^

nr ^ . x ^7^- ia)

S. 6+ ^S£r)

for fit =0, with y , ~'/z
*- /V(

(2 87

for ft ^0, and

(*2«<
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(E and I. being considered as constants in the integration).
33 * t

Writing L = L/ + T.,a + , we see that L/ , I.a , , are the components

of angular momentum; E is just the total energy; the physical inter¬

pretation of the fifth constant of motion, S, will be discussed

below. The general solution of (23) can now be written

f = f/(La, Lgt,L9, E, S) = fg(L/t Lg, Lf, E, S);
thus any constant of motion can be expressed in terms of the five

quantities L/, La, , E, S. We shall, however, introduce a quantity

P,, instead of S.

Define

B< = -^[^LsinG - (q- q^Ty)cosG] (31)
- rcosGp^- - (n^cosG - J=.sinG)qt-, (32)

where (i,j,k) are in cyclic order and we have used identity 4 in

writing (32). From (28), we see that

Bj = -J iA - L* cos?, (3 ,

and we may write

f = f(L/ , La, L3, E, B3). (34)
The quantities B/ and Ba are also constants of motion, for -

following relations may be easily derived from the definition .'32)
1 1 9 * 2

E = B, + B, + Bj = L , t, 3'*.

V', + V'* + B °' (3' •

"rom (31), it is seen that B/, B , are the components of a 3-

vector

B_ = -f[rLsinG - (rx L)cosG], (37)

which, from (36) and (35), is perpendicular to the angular momentum

vector L and equal in magnitude.



10

Define

[(q^I^ - q^Ly)sinG + q^LcosG] (38)
= (q^sinG + cosG)q^ - rsinGp^-, (39)

■f

where (i,j,k) are in cyclic order and we have used identity 4. From

(28), we see that
n ?

C- = / L - L^sinS, (40)
and from the definition (39),

a_ * * * a ,

c = £ + ca + Gj = L , (41)

C,L, + C*L* + %h = °- .(l,2)
From (38), it is seen that C/ , are the components of a 3-

vector

£ = ~ [(rx L)sinG + rLcosG], (43)

which, from (42) and (41), is perpendicular to the angular momentum

vector L and equal in magnitude. From (4Q)-(42), it is seen that £

is a constant of motion. (37) and (43) show that

B .£ = £, (44 )
so that B and C are perpendicular, and that

J_ (£* £) = £,

2~ (-L* W = £» (45)
(L«£) = £,

shewing that the set

{ -S/£ , ^ J
is an orthonormal positive triad. Further,

rLcosG = £.r, rLsinG = £x r, (46)
which follow from the definitions (37) and (43). Thus G is the angle

between C and r, measured in .the positive direction, B, C and r
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lying in the plane of motion:

We give below the explicit form of the component B^ , calculated

from (32), in the cases of the hydrogen atom, oscillator and free

particle, for each of which G can be evaluated exactly.

l (+/>+ f><i-?\K+_*>%-) (U7)
Tf j '

sJttt (-C %FT +
- f+ff* - 2-rrrkhp+L ^

J* *• J J-mivrFl-2Wy J Jirr(jvEt-2kLi) '

(V* W) (H8)

PP r —j
T?V » vyyyv - Jz-m-e 0± (V-o) fVj)

HA
It is seen that B • is proportional to the component of the

HO

Lenz vector (Lenz, 1924), and that B- is very similar to that of the

axial vector as used by Sexl (1966).

For those motions for which p^ = 0, the vectors and C_ do not



12

exist. Consequently, we are led to define B = C = 0 for such motions.

These motions are, of course, defined by

~ TrreO- ~ o
oUr }

or r = constant,

and are seen to be the circular motions. The Hamilton equations of
\

motion are

-nrcUvfr ; 7wdp+ = f»* + f<P* -7vdV
oU ^ cU

wdQ = Ha , -wcjjty =
dt ^ obt ~^2' (S~°)

Tfrd<P = a££- o(££ - 0
(At ' olt '

and, for p. = 0, we have

urdy - _/_2 (51)
obf~ 3

\

so.that, for circular motions to be possible, there must exist a

region r ^ r r for which dV/c>if<A o.
/ 7.

2.3 The Symmetry Groups S0(3,l) and S0(<+)

For p j 0, it can be shown, by a direct and somewhat tedious

calculation, that the following commutation relations hold:

[B, , B2] = ~Lj, fB/ , L2] = By, [Tv , B,] = B,,

[B2, B,] = -L , [B2, Lj] = B/f [Lx, Bj] = B, ,

[B, , B/] = -L2, [B, , L/ ] = B?, [LJ} B/] = Bg, (52)
[B/ , L,] = [B2 , L^] = [B, , Lp = 0.

Add to these the relations

U, , L,] . Ij, [La, tp = L(, a,. L,] = La, (53)
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and we have the commutation relations of the Lie algebra of the

homogeneous Lorentz group.

However, we note that (i = l,2,3)is not uniquely determined

by the relations (52), for let

B* = ^ B<» (i = l ,2,3) (54)
where ^ = ^(E,L), be another function satisfying (52)*. Then a

straightforward calculation, making use of (35) and (36), shows that

^ must satisfy the equation

if J> (55)cJ L

the solution of which is
<

. -y '
(56)^ - JT~+- ,

where X (E) is an arbitrary function.

Let V(r) be such that there exists a region r^ ^ r £ rz for
wh i ch 0 and such that there exists E = Ec for which the

/

motion is circular. We require 3. (.i = l,2,3) to be a continuous

function of the coordinates { £"i%, i3', ft, -fi ^ , so that we

must have

lim B (L, E,...) = 0. (i=l,2,3) (57)

This condition determines ^ :

f (E0 , I.) = 0

or % (Ec) = -L*. (58)

This is so because (51) permits a solution

r = r(L), (52)

and the equation

E = _ 4 + l/HOj (60)
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permits a solution

L = (61)

We write

X (E) = -CL(E)] . (6?)

Consider the hydrogen atom, with V = - <ra/V ;

(51) gives *

A* ~ rrre*

giving, for (59),
lx

r =

"77T€ 2

whence (60) becomes

E = - rrr-e**
57~ '

and (61) —^

L
1/

Thus

A'/' <L

X (^ - ?rre (63)

and ~z_ 1
H4 ' '

X

A similar argument applied to the oscillator (V=kr ) gives
//a /rJ

X (<^= - yr (65)
■Zk

and

//
Using (47) and (48), we now find

- (.6,
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HA

/Ittt/E + '

~6+ - (tttV1- 2mkL*) *f /txJvr(.w£t-2ki2f^ -t-f>tL
"~~77^*V L *

- tt (m£*-2^1*) - 2-nrk?frL (6 S)

-7t

For a potential V = -it r , it is straightforward to verify that
~2/n - \

we)*-„-(*«) (I*L\ (W,-*;
h <n+2^l '

*(f) = o , f-v? - o; W
- ^TTT^t

. (>71--*J
\

\

It will be noted that (i=l,2,3) is a real-valued function of

the coordinates, for the integrand of f5 is just Voyw, wh i ch i s

real. For potentials V(r) such that there exists no region, ^ ^"C - A ,

for which dtfcU- y o, circular motion is not possible and ^ ~^-5 1jn-

determined. Indeed, (1=1,2,3) is a real-valued continuous function

of the coordinates for all such potentials. For other potentials,

when (1=1,2,3) is pure imaginary, write

b' = iB*, (j =1,2,3) (70)

with (j=l,2,3) real. (52) now shows that the set 3 ^
satisfy the commutation relations of the four-dimensional rotation
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group. With these considerations, then, we con make the following

observations:

For entirely repulsive potentials, i.e. those for which <q
for all r, the Lorentz group is a symmetry group for all values of

the energy. No general statements at this stage can be made for

other potentials; however, for the hydrogen atom,(67) shows thata

symmetry group is SO(U) for E ^ 0 and E0(3,l) for E )> 0 and for the

oscillator, (68) shows that a symmetry group is SO('i) for all energies.

2,'\ S0(3,l) as a Hroup of Transformations of Phase Space

To find explicitly the transformations generated by the set

i i

\L,", lb • i = l,2,3j we have^integrate equations (1). In the case of our
six-parameter group this can be accomplished by an easier, indirect

/
method. The integration to find the group generated by is carried

out as follows:

jfl, = U,,4j:), -/Sj, dU „ (l2,£3']r J

do<i d°<3

.3-0 , Cfj,'. [B,\SS"J*U,dl
^3

<&'• -I, , o

which leads to

/

Lt = LfC> cosh«j - Bao sinhc^,
L4 = L„0coshofj + B,c'sinh«j,
L 3 = L3O > (71)
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B/' = B,o cosh (V3 + L2o sinh^j ,
/ f

B« = E2ocosho<y - L^sinh0^,

B/ = Bjl >

/ f

where are the values of 1,^, when - 0. The same argument
r . /

can be applied to the parameters ^ ( B, ) and <** ( Ai ) and similar

expressions result.\The set of equations (71) can be written in matrix

form

M/ / < O o o — ° \ 1 l,o\1 o c^rrk^i o JwJI otj o £2 0

** o o / o o o ^ ]o
=

o c c<ryfi.<* I ° o fi,o

r
— Und[ 0<J o o O ocrrfi.0* 3 °

Ui o o o o ' u.

(7Z)

or x = YJx0. (73)
For the group generated by , with parameter 9^ , we find, by a

procedure exactly analogous to that which led to (71),

with

X.x0, (74)

At- = <2*; o

O cfv

cir>6>, J o zxr>6>7

(7f)

- / ^ ® O \ /* ^2 o <9
' ~ ( o -$vk$/ ) <?a.-

2

0
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/C4P $ I &2
<23 ~ / &■$ fij

\ o o

For an arbitrary infinitesimal transformation specified by

parameters dP) , d^, d/J, • d 0tt% d </} , it is

x = («? + d4 )x0 1

with

/ * St O

1 h 0 -e, *3 -«/

A = -St o ~c>7x o(, O

o ^3 O

o o(, o -s,

\ o7t -U, O s, 0

(76)

(77)

3 + d4 is, of.course, just

lim
cipi-^o X^Y, Y<Y

<yV -e/oft
(78)

The explicit finite transformations, in the form of a set of six

simultaneous algebraic equations in the variables Qf ,q^ ,q^ , jj. ,0^,?^,
can now be obtained from

4
x - e x„. (79)

Alternatively, the explicit infinitesimal transformations can be
' n '

obtained by writing + dL^ , B,-=0. + dB^ (i = l,2,3), giving
dx = d4 x, ( 80)

whereby, since
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- 5 (^'),
j*/ Zo

Ctg;'-.
/:,1 d/» J' (i=i,2,3)

we obtain a set of six linear simultaneous equations from which

dq, , dq^ , dq^ , dp^ , dp^ , dpy can be calculated.

I am grateful to Mr. A. Bors for first suggesting this possibility.
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THE QUANTUM PROBLEM

1. The Quantization of a Classical System
\

The quantum mechanical substitute for phase space is the

infinite-dimensional Hilbert space, of square-summable complex-

valued functions on M, with respect to Lebesque measure (or the

analogue of M in the case of two or more particles).

The problem of quantizing a classical system may be stated as,

given a set ^ = ff, , ft, • • • , f-n} of linearly independent classical
observables that is the basis of a Lie algebra a with respect to

Poisson Bracket, we require a mapping

A :/3 tr~),
where f ={A i=l,2,3,...,n] and I. (tin ; Ijai ) is the snace of
linear mappings of into itself, that is a Lie algebra homomorphism,

A [f;, f;) - (A f-XA f,) - .

We must concentrate on a subset of the set of all classical obse^vables

because of a general theorem (Van Hove, 1951; Amiet, 1963) asserting

that it is impossible to define the required homomorphism for Lie

algebras of arbitrary large dimension.

The quantum observable 3^ corresponding to the classical observable

f is defined as (not necessarily uniquely) the self-adjoint extension

of/l f (Mackey, 1963).
20
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A quantization procedure having certain desirable features is

that which extends the representation of the Heisenberg algebra given

by the Stone-von Neumann theorem (von Neumann, 1931). The Heisenberg

algebra is that algebra (for a one-dimensional configuration space)

having as its basis the set of the three basic classical observables

q, p, and 1, with the commutation relations

fq, p] = 1, [q, 1] = Cp, 1] = 0. (1)

The corresponding linear onerators on ^are given by (Kirilov, 1964)

A q = q, A P ~ \ A 1 = 1. ( 2)

THEOREM (Hermann, 1966)

Given a set ^f, , f^ ,. .., of classical observables
that is the basis of a Lie algebra ^ > with

fc(t'.t'.ts) *2 /, -fx i>3 t (3>
<71,,Wl,*?

where n/ , n2, nj are non-negative integers, then the mapnin&A » with

sit-<*>
<»/, 7J & 2, 1-2. 2 3

defines a representation of <0. that extends that of the Heisenberg

algebra.

The self-adjoint extension (with respect to the usual inner

product f

< tilto = I ^ Y~Z
J" (9)

defined in^, ) of an operator of the form (4) will be taken to be
%+Hx+Hi ti?

*3 A
)

"f « 'ur /f j

(-It)

where A is a positive real nuriber called Planc'h's constant.



An alternative procedure of quantization which need not extend

the representation of the Heisenberg algebra, is based on more group

theoretic arguments. It was shown in 1.1 that a Cooclassical observable
f defined a one-parameter group "C = j ^ £ e( ■C of transformationr

given by (1.1). Under the mapping

^ 5(2,y)—> i , (7)
the group T~ defines a curve in M via the mapping

-?£ ' : M 'Tlx '(t)- . (8)

The condition for T ' -(V; «<->«) to be a representation (not

necessarily linear) of "2" is that

(£><>), o)*= ^ (?, O) J (9)
which can be seen by applying (8) twice, for the L.H.S. is just

That (9) is not always satisfied can be seen from the
* 1

example f = q + p (for one-dimensional M), which generates a curve

in defined by \
\

q = q^cos?o(. + pt>sin2<x' ,

t> = p cos2«' - q sin2«f.L. G

The L.H.S. of (9) is seen to be qcos2<^ cos2«'2 and the R.B.S.

qcos2( + o(x ).

When (9) is satisfied, we have a homomorphism between the

one-parameter groups, of transformations of /W„, M, respectively,

fiver, n functions ff , f^,... , f^ that are the basic elements of a

Lie algebra-^ , and for each of whose one-parameter groups,^",

(9) is satisfied, we can construct the infinitesimal generators

J ^ of Tt , tz which will then span a Lie algebra

homomorphic to . The determination of the linear operators /f f , // f2,
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fm is then attained using the theory of induced representations
-

•

(Kirilov, 196'i):

For ^ , v(o< ) & zf , define the mapping

T : ^ \ * (10)
by

(T^f )(qc) = v(tf )Y-(-C~i0). (ID
I

It is easily seen that T is a representation of ^ iff v()v( •"?) -

xX

v( «/ + ) or v(°f ) = e , where x is a number .independent of o( .

The infinitesimal generator, I, of y ={™«) is given by

(iy-)(q) = (£J' 0 \ JX Jx-o
f

W) J
—JS L.O [ J,

= \ f "k) Jfrc-'il + f£,L *zn-«)̂-L„ t r '*;-Uc
-5 (dg£<v) J t+

<S?<K JoC =£> ^9
-t"/'

Thus

s f ^fkW] £
£ [ •Wo ^ • (12)

<9 -£o(
<—/

is, of course,£ ( ^ | = ( T q )_t~, from (1,16), and
carrying out the above argument for each of the grouns T~t\ £,. . . , "£,
we find -

= • ** - z y*y ,

where Yf = f
j^-o

The ^ (k=l,2,..»,n) are determined from the fact that a

(1")
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necessary and sufficient condition for two groups to be (locally)

homomorphic is that their Lie algebras shall be homomorphic. The

group whose one-parameter subgroups are is defined

to be a representation of the group whose one-parameter subgroups
f f f ^ • • • •

are T~, , £t With this definition, the ^ are found in
terms of the structure constants of*d . Let

tf*'V % ■ <15>
We then require that

CI^ » | *** ^ ■ (15)
This leads to the set of equations

^ 'Xf = ^ ((f j--' - V . <17)J:,^ <??<■/ y<-
That this is so can be seen as follows. Write 4 = ~ / & ;* %, ^
then we must have

r + 4 , + 4 ] = ^ 4/ + 4^
r 2*, x/ i + r , 4 i + r 4, ^ i + r4 »3
= $ P/ =9 | V . art

Now a special case of the definition (11) is when v(o( ) = .1 or x = 0,

(in) then becoming

c4 » ^ ] = ^ ^ ^ •
Since 4* does not involve , this last equation is true always.

(18) thus reduces to

, K( 1 *̂] + Zfy , ,

On noticing that the first bracket is zero and on substituting the

explicit form for 4 , we have

} ^9"$%V/ + v/£, ** - -riy zjt * ^ */> ] ,
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which easily reduces to (17), from which as a function of

1/» can he determined. Then
09)

In some special cases, the A fy, obtained by this method are the

same as those found by using (4). Indeed, with x = 0, the foregoing

method can be used to derive the equation A p = -d •

The discussions of this section, culminating in equations

(4) and (19), are helpful in obtaining explicitly, as differential

operators, expressions for the quantum observables. When these

methods fail, the quantum operators can usually be obtained abstractly
V_

as matrices, using pure Lie algebra representation theory. Such a case

will be considered in the next section.

It is of interest to note that quantization procedures involving

bracket relations other than the Poisson Bracket have been suggested

(Jordan, Sudarshan, 1961; Sudarshan 1961; Shankara, 1967).

\
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2. Degeneracy and the Group Theoretic Classification of

Eigenvalues

Let T be a representation of a group Y; then T is a mapping

T : Y y —>T(y) «= L(^ ; v/Z ),

where A is the representation space.

. Let IT be a self-adjoint linear operator (with respect to an

inner product defined in XL ) .in JX that commutes with all T(y). Let

Y be such that all representations are decomposable.

Let T = T, + Tx + ..

be the primary decomposition of T, i.e., each is the direct sum

of mutually equivalent, irreducible representations:

€p*uyt/eM/ 8

A;

A.

}
. J A."

. £MAA*nz<L£*U~ «L ,

^ | {Is
'ih^lciciTT- )

"i" -•

L...

jet 4(I = ... be the decomposition of A induced

by this primary decomposition of T. Write
(')„ c <2L

j (i—1,2,3,...)
D ^ r\ ^whereare subspaces, irreducible with respect to T, each

of dimension JV .



27

In all of what' follows, we shall be concerned with representations T

such that the T.^ are irreducible, i.e. the extra index ' (j)' will not be

necessary,

T^ , where T^-(y) = T(y)jj\^ , is an irreducible representation of Y
of degree s^ with values in L(^2. ; ) and v/& ^ commutes with all T^-(y)

(it can be shown that IT leaves 72^' invariant). Schur's lemma states
\

that a linear operator that commutes with each element of a group of
V

linear operators defined on a space that is irreducible with respect to

the group is a multiple of the identity operator when defined on that

space. Thus

<*t, (20,

for all , where is a real number, and so 72^ is an eigen-

space of JT with eigenvalue ^.

We therefore see that when T contains irreducible components that

are not one-dimensionh.1, some eigenspaces of 77" are forced to be

greater than one-dimensional. This occurrence of multiple eigenvalues

is called degeneracy. Accidental degeneracy occurs when 77^-, = Thc%
for some t, f

When TT =J/-, the Hamiltonian, we are led to the most important

case of degeneracy.

I
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3, The Quantization of B_

3.1 General

We require a representation yi. of the algebra scanned by

L•, B. (i=l,2,3) and having the structure given by (1.52) and (1,53).
a H

With regard to representation theory, the results are independent of
t

the nature of the bsisic elements; we can, therefore, consider B.(i=l,2,3)

to be, in general, complex-valued functions on phase space. Our

problem thus reduces to that of finding the representations of the

Lie algebra of thb homogeneous Lorentz group. We shall merely quote

the results. For convenience, A a Ba- will also be denoted by L^,
(
, respectively.

The algebra is a rank two semi-simple algebra and in the

standard notation (Racah, 1951) we define

H, = T(B3 + EV>
E*

E-V =^(iL, -I
f

\ + i\),

E
«,-/

- ' ( T T B ' -'

r iBa'),
= ^(iL, - L, t

/

B, + «;),

E-<* = y£(iL' + Tj? +
f

B, " iBa ),
with the commutation relations

[K, , H2] = [K, , F.^l = [H, , E^.,1 = [Ha , Y.,/0 ] = [Ha , E.,J = 0,
= T

iJ/)0 » w, , E,/0] = - E./<0,
ru
L ^ ,

r "1 -

o,/ 1 (22)

I—;0J .—1w tn
$

ii n: >4 «#

all relations not derivable from these being zero.

The irreducible representations are characterized by a two-
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component highest weight (j,k), with j ,k = 0,^, 1, the

representation space having dimension s = (2j + l)(2k + 1).

Let f ; /*■ = -j j+1,..., j ; 0 =-k ,-k+.l,... ,k J be a normalized
basis ofJljjk . Then

H,^,0 = ,

^2 ~ I? Oot7 y

rty t^o = Ji [k(k+l)-f ( 0 +1]^^/ ,

E^^;= Ji [k(k+l)- J(0 -DlV.y./, (23)
L//0 ^ Ti( j+ !)-/« 0"+l)](%v^ »

E-/,«<> = (5+1)-/4^-1)T^.//|? ,

Let us consider the possible self-adjoint extensions of the

operators L^-, (i=l,2,3). Since H t and H ^ are self-adjoint, we have
/ + -f- /

B j — ^""^2 ~ B J ^ j j
r+

. + '
B? + iL, = Rj " iL,,

from (21), Hence
ft- +

p3 = V Li = -V
We consequently define the quantum observables

^/ = i^L,» = i4"L2, ^ = \iChj ,
&, = *B,\ = * B/, ^ = *B/. (2b)

(23) now gives
&3 ~

}

($3 CyU.0 ~ i\(^lLtO)
(25)

(/*+#*)£«,> = 2[j(j+l)+k(k+l)]£*€^ , (26)
where c^2= oC, ^ + oCx + oCz » = + t$a + c^j » (25) and
(26) are derived from the relations inverse to (2]):
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TV = (E
\fe<

+ E
Oj-/

+ + e-60>.

I'K - ^- - + w.
L, ■ /<», - v.
/

B, = -J-(E +
0,-/

- - E-,«,).
= —( (E - E

o,~'
+ - E-,J.

= H, + nH? %

(07)

(26) shows that L - B * is a Casimir operator of S0(3,l).

Decompose into subspaces irreducible with respect to

the subalgebra spanned by L(i=l,2,3); then

^ ~ /i-k/> /i-h/+l,..., j+k.

There will be 2min(j,k)+l such subspaces. As an operator on sf2 j,k, the

Hamiltonian H is a multiple of the identity. will be an eigenspace,

then, of H, with eigenvalue SV* > say, of multiplicity (2j+l)(2k+l).

For C V2 » we skail have

/*y = Jt (/ + (or)
and since

j£l - il Av) ^ i/w
-2nr^X ()-f- J-r * (?q)

which follows from the classical expressions for H and L and (6), we

have

- ~k * ) v- i/^j r (/
l-nrr-11- J*" J (3o)

considering to be a subspace of (j^ . With the condition that

o^3 = m^^- , (31)
ith m=- Jl ,-^ +1,.., , J' , the normalized solutions of (30) can bewi

written
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(—*.-/♦! i) (M)

here are the spherical harmonics:

/£„(4 f)~ (33)

The •£<*? can be expressed in terms of the > after noting
\

that the representation (j,k) of S0(3,l) is the tensor product of

reoresentations (j) and (k) oc S0(3), We have

•€*,, - y (jk/ti? / X (34)

where ( jkJUiO/Jt m) are the Clebsch-Gordan coefficients. The inverse
relation also exists:

■ l*k)- ■ ^ (,>k)
= / (^ypiid/X m) -Z-yiLJ (35)

An analysis of the solutions of (30) is needed to find a relation

between j and k (usuaM.lv, the condition of square-intejrrabi lity is

necessarv).

From (31) and (3'!), we have

^ V (36)

which, from (25), gives

m = /A - 0 . (37)

Since X. is an integer, j+k is an integer and so /A, + 0 is an

integer, showing that the eigenvalues of C?J are all multiples of
A in the range -(jtk) ,-(j+k)tl,...,j+k.

The foregoing arguments depend upon the assumption that the
/ / X

classical B. exists and that either B • or B . defined by (1.70) is
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real. When these requirements are satisfied, the quantum observable
/ x ^

corresponding to the classical lb or B (whichever is real) is ,

since is self-adjoint. In practice, when considering a particular

form of V(r), having obtained the eigenvalues £ of , a consid-
f

erat.ion of the corresponding classical expression for (with E

replaced hv ^ ) should be sufficient to indicate the existence, or

otherwise, of its quantum counterpart.

3.2 The Hydrogen Atom and Oscillator

With V = - the eigenvalues of are

£ = - JEll , (-n= '^3...) (3fi)

for ?f/vj , with

X = 0,1,2,...,n-l. (39)

Since the maximum value of X is j+k, we must have j+k=n-l; its

minimum value is /j-k/, so that /j-k/ =0. Thus

j=k, v n=2j+l. (40)
... , . *

Since E is negative, we see from (I.67) that B. exists and is real;

moreover, (40) shows that the representation of S0(4) on the energy

eigenstates is the tensor product of the same representation of

S0(3); a further fact is that j can be integral or half-integral:

j=0,i,l,|,.... (41)
The eigenvalues of Az are

-(n-l)X ,-(n-2)X ,...,(n-l)X". (42)

The eigenvalues of are 4j(j+l)X = (n2-l)X and we see that

the quantum number n is in fact related to the eigenvalue of this

operator.
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With V=kr , the eigenvalues of are

r = (N+|)/|r^ (N=0,1,2,...) (43)
"or y e , with

/= / N ,N-2 ,. . . ,
^ N ,N-2,...,

0 if N is even

1 if N is odd. (44)

It is easy to see that the representations (j,k) that are
\

relevant are those that are also irreducible with respect to the

rotation groun, i.e. we must have

j+k=/j-k/,
which is

c

j=0 or k=0. (45)

Writing k=0, we have

j=i, (46)

and, from (34),

The eigenvalues of are

-It 9-{ /-D7(",..., H , (48)

and those of 1)t ^ • being real and finite for
a x

1 .

■t

all energies (see (1.68)).

From (47), we see that

cT €/«?=ci - a {a +i)^
so that

= i( i + 1)£^ ;

thus & has the same eigenvalues as«£ .

It remains to remark that, while for the hydrogen atom the

group S0(4) explains completely all the degeneracies present, the
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same grouD fails to do so in the c.asc of the oscillator: a

degeneracy of magnitude ^-(N+l)(N+?) remains unaccounted for. The
problem of relating the quantum number N to the eigenvalue of some

Casimir onerator is still unsolved at this stage. The complete

solution will be forthcoming in Part III,

I
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THE OSCILLATOR

1. The Constants of Motion
\ '

It was shown in Part II that the vector B_ is of no great

significance in the case of the oscillator. Accordingly, we are led

to seek new constants of motion, whose existence depends upon the

explicit form of the oscillator potential.

With V = k ( q * + q^ + q*), (1.22) becomes

&)= o (1)1
dp, Z J '

the analogue of (1.26) then being

dn, = d^,1
II II -dn?= -dj> (?)

r
D
'■ 2 \ Dj ?wkq, 2nrkq, PnrkOj

: ions
\

A„ = P/* + 277rkn/,, Ij 7. - P, C, P_j >

A a? = p? + 2rrkq2% V •
(3)

A
3) = pj + ?7rrka ,

J '

These are the five constants of motion; from them we can get

other constants (dependent on these). In fact, we can introduce the

components of a second rank tensor:

A<v = Ri'P; + -q-, (i,j=i,2,3) (4)V 0 * 1

with

^ = y/2 wrk(5)

The following commutation relations can be derived from the

35
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definitions (3) and (4) (Fradkin, 1165):

CA<V , L • ] = A (i,j,k all different if i^j)
A> 6^.1 - €*.jk (A^^- - A^y ), \

' ^Jt" ^ ~ £-ik A</f >

r\-« » av> ] = it<ik vjla,
TA^y , Ay^] = Cjki^ i'*- »

fXv , Ay/,. 1 = 0,

[A,v i Ayy ] = 0. (all i,j)

/i,j,k all\
^different/ (6)



37

2. The Symmetry Group SU(3)

2.1 Derivation of the Generators

We attempt to define an eight-dimensional subalgebra "CL of the

nine-dimensional algebra CL spanned by , LH- (i,j=l,2,3) and such

that D = A/; + h7X + Ajj A.2, (in other words, we try to eliminate
the Hamiltonian). Define

A0 = 9/A„ + a^A^ + 3jAJ3 ,

A/ = b, Aw t ba Aaa + bj A^j , (7)
D = A„ t An + AJ3 ,

with

a/ '"V^S / /

MV'a / -T 0 • (R)
ill'

Then

where

A/, = x,A„ + xa A/ + x3D,

A« = y, Ao\+ V, A/ + Y3D> (9)

A
37

= z, A. + z,l o i A/ + z^D,

x, = ba - b3 , xa :- -(a, - a j), X3 = a*b3 - a, b ,

Y/ =

A

b3 ~ b/ » ya :

A

= -(a3 - a,), Y3 a3 b/
A
- a/ b3 , (10)

z/ =

A

b/ _ ba > 7'a :

A

= -(a, - aa ) » Z? = a/ba
A

" 3,b/ •
A A A

A direct application of (6) gives

rA„ , ',1 = -2(ay - a^)Ay/f 4
',k) in cyclic order

jk » h
y C i ,□ ,>

•»> » *[A, , ] = -2(by - bA)A?>

\ (i,i) anrf
;aT J in cyclic order

[An , L,] = (x, - y, )A0 + (xa - y, )A, + (x3 - y3 )D,

CA , A • • 1 = 2(a ■ — a • )V Li , , . .. , <0 ' * * * V("L»l) ("L)l,k)

[A/ , A^-] = 20v - by)V\,
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%

[A2, , L,] = (y, - ?.,)Ae + (y, - za)A, + (y, - z3)D,

[A?/ , I.a] = (z, - x,)h0 + (z, - Xj )A/ + (z3 - xJ)D,

CA0, A,] = 0. (11)
Obviously, for D , we must have

x3 = y3 = z3 ,

or, from (10) arid (0),

a*b3 " a3V a3b/ * a,bJ = a/b* " aab/ = °2)
Anticipating the maximal Abelian subalgebra Q of -CL to contain

A0 and L, as elements, we put

a, = a,, (13)
so that A„ will commute with L„, ando J >

' x/ = y,»

or, from (10),

b2 - bj = b3 - b/ , (l'O
so that [A/j( , L3] <<ZS •

(12), with the conditions (13) and (l'O, gives

a/b3 = a^b^ (15)
and

a/(b, - b2) = a^(b2 - b3). (16)
Since we must have a/ j (for A = 0 if a, = aj), (15) now gives

b? =0, (17)
(14) then becoming

•'2 = ~Vi/ > (10)
and consequently (16) shows that

a b = -2a/b/. (19)
Since we must have b, ^ 0 (for A = 0 if b, = 0), (19) gives
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a3 = -2a,, (20)
and (12)

4 = -6a, b, . (21)

The numbers a, and b, are arbitrary, excent that they must each be
non-zero. It is convenient to write

*/=-/■> b> ' i<
whence a2 , a^ , ba , b^ are calculated from (13), (20), (19), (17),
respectively.

The definitions (7) and (9) pivo

Ao = 3 " A// - A22), A// := -A0+A, + D,

A, = j (A- Aaj ), Aj? :~ -A0 - A, + —j D,
D = A„ + Aa? + Ajj , A33 ■■» 2A0 + yD,

the relations (11) becoming

[Ae, Lf] = , [A, , L,1 = A*? »

TA0, L,] =\-A, [A, , La] = A
-ji »

cv V = 0, CA,, L?] = ~-A/? ,

^Ao ' A/.? ^ = 0» [A, , A,, ] := 2 t\,
rAo' Ax3 = L/» [A, , Aa? J := -/L, ,

[A,, A3/] = Y%, [A, , A3! ^ ''=

CA/^ , Ijj 1 = 2A, ,

TAa3, L,] = -3A0 - A / '

[Aj, , L2] = 3A0 - A, 9

[Ac, A,] = 0.

We have now constructed the eight-dimensiopal algebra

by L/ » ba , Lj , A/? , A33 , A?/ , A0 » A,. It is easily shown that

(24)

-j

dimension two. The choice of.its basic elements is arbitrary — we
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take them to be h0 and .

We note that -a. is semi-simple (Cartan's criterion, Racah, 1951)

and attempt to define a new basis such that the commutation relations

between its elements are in the standard form.

Define

Hv = c,-v+ d«V (i=1>2) (25)
with

c/ d* - sd/ i °- (26)
We have to solve the equation

[H4*, Kt Lf + Ay L2 + ffj A/a + Aa? + IVJ- A?/ + hf ]
= t^( K, L, + /fjLj + f(s A/? + Aa? + A?/ + ff( A,)

(27)

for t^ and the constants «, , Kx , f<3 , Ay , Ay > Ay

Using (6) and (24), (27) reduces to

c< A-/ + dv Ay = t„- ,

~ d-t = ty Ay ,

d+ V*cyAy = t,-Ay ,

-d„-tf2 - tfVay. = tytf, ,

»

-2dV^ = t^ .

For a non-trivial solution, we must have

(28)

0 c* dt- -t* 0 0

c< 0 t« d< 0 0

-t* d< i'c. 0 0 0

d< t • 0
-t

0 0

0 0 0 0 2d<, -ty

0 0 0 0 V 2d-.-

= 0, (29)
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giving the following six solutions for tj :
t- = ©i(dy*Vc,-), ^ 2 i , (?0)

whence (28) gives the relations

*3 = ** = 0, = ©i, (*£ = y^i , = .*1, (31)
*»

. X K, X

for ty = ©i( d^ Jt" V" cy); and
ff, = ^ x= ^r= 0, = ?i, (32)

for t^ = •? 2ic^ .

Write

= ( W, , af2 ) , /? = ( ^ , ), (33)
where

o<3 = i(d,- + *Cj), /£ = i(d; - / c;-), (34)
with the inverse

c7 = ?7V( ^ ^ }' dy = ^~( + ^ >• (35)
The theory of semi-simple Lie algebras shows that

can be chosen to be real numbers, c/ , ft , then, are elements of 7^ .

Since / £ 0 (from (34) and (26)), we can define

<✓', rlK,x /V..9/A *\±z«y'(°',.oM
ft' ("'-A-»"»//) v" fi* e,a-•>'./?,)v' *'1

Further, the non-vanishing of °St~ /?/ shows that o( and /?

arc linearly independent and hence they may be taken as basic

elements of "7ix .

Define the bilinear functional in ^2 by

O : (x,y)—> <> (x,y) = <x,y> £ /£ ,

for all x,y /x2 , where
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4.o( , o(> = °(o(l + of = -16 ? ,

Kft >/?) ~ + ftZftz ~ -16a;? , (37)

<o< , ft? = + * V? =8 *>\
7, ■

kft * °(y = ftc(i + ft = 8i^,
the equalities on the R.H.S. following from (36). The last two

members of (37) show>that O is symmetric, and hence from the first

two we see that by choosing fC, to be pure imaginary O niay be made

into a real inner product.

(31) and (32) enable us to define six functions

(33)

tj.
f

^±(o(i-0) 9 A .

(27) and (30) now show that

f £&ft~®1if©jf , I(39)

where

C^lftz - °<z ft,) i^/fti - <*2 /?J
and we have used (35). We note that <T^ = cC1 + iff ^ ^ = 2(f)

Define

^ = -v/5"1 *>» en
v

enabling (39) and other relations to be written

[H, , H^] = 0,

(f0)

,2^ i 2
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f > E*t*ffi)i ~ ±^'1 f/^v) E±(**/t>,

*'<".♦ *X
[ Eet-t/i, U'f p')H, + («d+/?VW2 ,

\

[ft<,Etp] = AU^tpEt^, >

[Et},ET(<m}= N,*«+/?)Er£ . (A3)

Hr- i(<;+*)L,.
* <2(L,<BiLz =F®S jt _f /?S/) f

E±(u+/i) - (/?, * < /?/2) , ^

where

N±«, */i = - Nin^fa+p) - N±fri-ptfi)- iA ; (*+14)
JJ

X = -Hi*-, . (45)

Choosing A", to be pure imaginary and non-zero, we have, from

(37),

<*,*> = </*,/?> =-2 <*,/?> = 3*, (4R)

where !X is real. / ^ / is the length of each of the vectors o/ , /3 .

The angle, |9 a , between and (& is defined by°0P

cos ^ = - _i, (47)
from (46).

Our new basis of-(£, is now £ ft , ^ *£±(*+/!)} • The
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vectors ±o( , <x! + /? ) are called the roots of the algebra,

o( , fi being the simple roots. The root diagram is

O O ,

enabling -& to be identified with A* or the Lie algebra of SU(3)

(Behrends, Dreitlein, Fronsdal, Lee, 1962; Dynkin,1957 a, b;

Kleima, 1965; Racah, 1951).

Henceforward we shall simplify matters by defining values

for <* , . Tefine

0( = (1,0), /9 = (0,1); (48)

and

A = J?, (49)

or (V, = /S", = 1, o(x - ft, = 0,
(50)

o(' = = -2 /3' = -2* = 2,

from (33), (36), (45).

For ease of reference, we shall rewrite equations (42) and (43)

(together with its inverse), using the values (49), (50):

CK, , V = 0,
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H'jEt«]*

Hi, Et/}] - [ H7j E ±ot ] - o t*

^±(<V^)]= ± £ ±l<*-+fi) ,

- ZH,-H2j

E^]- -H, + 1HZ>

Et0() E±pl - ± E±(ou-/g),
^±Ct,Erf(utfi)J- ^ E ^

^*6 ETfoi-t-pj] = ± E?ot; rJ ft,)

/// = *Y A ^ Jf / j)
a v y

£»*» +(L,@<12 ¥®+ ft ±_i ft3\/?v * ' r ''
f.

(tt)X o

A0 = i* (H, - Ha),

Lj = i(H, + H*),
L, = li (E« + E_cx + E/? + E-^)*»/? r P

EX = JL- ~ E_« + rW ~ E-/? ^ »*
J? ' (53)

A„ = 1(E^ - + E^),
Aj/ = (E« + E-« ~ r-y? ~ E-^ )»
A/ (E<XA/ + E-<*^/S) )' A/2 = (E*^ - E-fw^j ).
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2.2 Determination of the Representations

Much of the discussion in this and subsequent sections is

concerned with the formal theory of SU(3) and many of the results

thereof will be stated without proof, the interested reader beinn

referred to Behrends, Dreitlein, Fronsdal, Lee, (1962); Dynkin, (1957

Racah, (1951); Weyl, (1925).

We assume the following facts:

(i) The eigenvectors of the oscillator Hamiltonian, for a

given eigenvalue , span a vector space •0-n of dimension

jg(N+l)(N+2) (N=0 ,1,2,...), (54)
(.ii) v/2/y decomposes into spaces Cvfy t each of dimension

(2X+1) and irreducible with respect to S0(3), where

J _ f N,N-2,...,0 if N is even
\N,N-2,...,1 if N is odd . ,J (55)

We require an irreducible representation

/\ : 5 f C l( {lN . ) . (56)
for convenience, A f will also be denoted by f.

THEOREM 1

The dimensions, s, of the irreducible representations of

SU( 3) are given by

S = J"^+D(l<+l)(j+k+2) ( j »k = 0 ,1,2 ,... ) . (57)
THEOREM 2

3 a set P of linearly independent simultaneous

eigenvectors of H/, H-j such that

(i) the eigenvalue of each v 6 r is real,

(ii) r is a basis of V2/v .
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DEFINITION

1. Let v^T9 and H•v = Pf•v (i=1.2). Then v is said to be

a vector of weight

% = ( % , pra) . (SB)

2. PC is said to be positive if either

-X, > o ,

or

X, = °» > 0. (59)
A, ^00 ^ fo -.ow

3. /( is said to be greater than A if A - A is

positive,

THEOREM 3

ypA <r 1% is the greatest weight of the irreducible

representation (j,k) of SU(3) iff

2 <^N> = j, 2 = k. (60)
<«<,*> </*>/*>

Using (46), (60) gives

^ ' - y(2j+k)°d + -j-(j+2k)/3 (61)
as the greatest weight of the irreducible representation (j,k).

THEOREM 4

If a is a weight, then

X - * , X -/?
are weights iff

2 <z , + Q( X , * ) >0,

2 <*,/?> + Q( ?r , /? ) >0,
<&/!>

•where P( + Q(?f , )o( , X + Q(2( , /? )/^ are weights, while

A + [Q(?( , ) + !]<*, Pf + CQ(2f >/?) + l^/ffare not, respectively.
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With the values (50), Theorem 4 shows that, if X is an

arbitrary weight, then
✓Y (0,0) -Y 'Y -y
A ^ Ao Aa Ag . (62)

For any vector v £ T7 , of weight , we have

(H, + Ha)v = <T v, (63)
where

Of "V sy(0jC^ -vV = A + ^ A, + A* = D + k,

from (61) and (50). Hence, from (53),

LjV=i<7"v, (64)
where

0~ ^ j + k. (65)

Now any v € T7 can be written

V = 2 (66)
-Cj -m

where 'fy (m=-^ ,-i+l,...,/ ) are the basic elements of , and
the summation over ^ is given by (55). A representation of the

subalgebra S0(3) spanned by L/ , can be defined in which

LA„ = -imA, , <67)
and therefore

L?v = 2
= irĵ

At
from (66) and (64). Thus < is non-zero only if m = - T. Consequently,

max(<T) = -min(m) = N, from (55). (65) now gives

j + k = N, (63)

and, together with (57) and (54), we deduce that.

j = 0, k = N (69)

or
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j = N, k = 0. (70)

The next section will be concerned with the calculation of the

irreducible representations of type (N,0).

2.3 Calculation of the Representations

When j=N,k = 0, the weights can be calculated from

Theorem 4. They are

>

y<»,0) ry (O,0)a - * A - <y -p t

, ry - 0 ryCOtO)A -/40( , A ~/A.0( Ofs, ^

A - /|/<*, JC . A/e(-/S . .A ~/Jo(-A//S' " )

or

y ^ ry (0, O)A- ~A -yOLO(~0^ J (71)
(/* = 0,1,2,. ..,N; I? = 0,1,2,... ,//■).

\

It is easily seen that there are •— (N+l)(N+2) of these, there

consequently being no multiplicity of weights and hence a 1-1

correspondence between the set of weights and 7°. The element of

' of weight ^ will be denoted by V//.t , the operators H/ , tl^ ,

£t^ being defined by
r'/ 0/.-.0 = y(2U - 3/4. ) ,

= /(N - 3^ )V^a ,

^_oc ~ tyt>
(72)

^-0 = V/L, d+l '

^oiO/A.0 - R/ti?,
=

Q-f •
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R^co? arises and is calculated as follows:
Assume E^!^ = • Then

= ^ > E-c*l + ^Lo

= (2H, - H2 + E^E^V^
= [|(2N - 3(yu-l)) - ~(N-3i')+ R^plT^-/^J J

where we have used (72) and (51). Thus

V= + N - 2^ + o + 2. (73)
(73) gives a difference equation whereby may be calculated if

Rpj is known. Iteration gives

V = RW + ~ i7 )(N -/* + 1). (7'P)
Since, from (71), yt°'0)- ( i? -l)cx - is not a weight, we must

have E^l/^ = 0: hence = 0. Thus

V = (A " 0 )<N -/*- + !)• (75)
An analogous argument^ gives

= t? (/t - Q + i). (76)

To effect normalization of the basic vectors, we make use of

the fact that

£ u ~ fc & (77)
/J ~ (3 >

where X^ is the adjoint of X with respect to the inner product O
defined in 72/v ,and proceed as follows:

Let

'y N
_ ^ n>-

L-JjUlV " (78)
-/

be normalized; then is real ( is just the length of ).

We have
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<£o<- < y^o / jy>
j

i.e. <c ^-/^/yK-s^y . < v^/y^^y
j

from (77) and (72).. Thus

/ ~ / i?/ (79)

"J '
Similarly,

rx^ti*' /y, *-/! . (80)

With respect to this normalized basis, the operators are

defined, from (72), by

J. (Z M~3^) y

,\

A/

? + /1

u z JIII '~xV "J ' ,

H, ' t & .

^ 2y^»,

£-fi •=# - /v+oti-t)' ~

-V-' -- yvo^y^/)

(/<-=0,1,2 ,... ,N ; i7 =0,1,2 ,...,/<-), and we have used (75), (75) and

V/e shall see that (81) contains all we need to construct

/y A/
explicitly the square-integrable functions 0

2.4 A Casimir Operator

A direct application of (81) shows that
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/y M xy /v
J = 2N(N + 3) , (82)

J

where

,J = Rc« E-<* + E-tf £* + zp E-f! + + EAt £-fc< r/>V

* <W E„^ * 2H,* + 2h "2H,H,- <83>
Using the defining relations (52), we obtain

J = -1 C(3A* + A* + k + A * + A J, ) + V*(L* + L* + L* )]. (84)

From (23), we find that

+ A/ = — D - (k/f kzz + A^ A?3 + A^j A „ ). (85)

The quantities Ayy , (i,j=l,2,3) may be expressed as
differential operators:

We have, from (I1.4),

= ^ * -h VVv • (i,j=l,2,3) (86)
C? Xj

The expressions for (i = l,2,3) may be obtained by means of the

second procedure of quantization given in II.1. The result is

/.* = 2^, _ -XTy d ((i,j,k) in cyclic order) (87)
<2 -Cj

A ■ • , L^- are defined on the space of differentiable functions of the

complex variables xy , x^ , x^.

With (86) and (87), the following identities result:

X -) * -v <f- s f

<^;C/ ^

i- t3T,SL7 )c2Z,Xt &?x2x3 cPx3x, J
+ 2i X(x,£ +x£ + x£ \ + Xz,xxS + x2 X* / x* x,2)jx, cJXz 2X3! 3 (88)

+ 3*x
j
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$Z2 + $13 + $3S ft« = y. ft y ^ J
c?xS*3* Jr/~x,Z

+ ^*Y/\+£\+£*\ '<*(*?£* +*?£? **■/*>'

+ i *(*,**z2 + *?*? + -*/*? 7)
J

(89)

-('■-//^V//.- ^rO2 *£>2^1)
e?*,2 °)a>2/

- + *3*-*?) -2 fax*^ + XZ Zjft* + XjX,ftZJx, Jxz <Z*3 J ^Zt ^Zzx3 JX3j.

~ Z (x,£ ■+■ zxc? + x3^ )
3 Xf £pz? /

\\

(90)

The last three equations and (85) give, from (84),

J = "A D* - J? > (91)
,*Ya Z

or \
2 /I

D = -3* (2J + 3). (92)

We may now write our fundamental differential equation (82) as

* * >2 ^-t *
[D + (2N + 3) » ] = 0. (93)

Using the first two equations of (53) and (81) and the expression

for A0, we have

6A0= (2A33 - A" - A«>^ = 2i(N -3^+3^ )V> Zj ,

(94)

snd

^y /V ✓y /V

LJ ^ = i(N -/t - i? ) . (95)
At this stage, it is interesting to note that, since
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D = 2777-H, (96)

the square of the Hamiltonian is directly related to the Casirnir

operator J of SU(3), the equation being (92),

The analysis below is concerned with finding the simultaneous
1 /V

solutions of equations (93), (94) and (95) above.

2.5 The Wave Functions

Write

sy/V /T} ^ r *
3 ) ~ C) • (97)

(94) becomes

{W2 +*w)-f I21 y*/ ' lc)x* J
- -t (A/ ~ i/A. + 3 I?) V I)

h/yUi)

or

A/

3 '■y^>a
^ r v

S/A\) '/4.V

(98)

Fhe last equation, (98), can be separated to give

(£>Y'X*H'°'in&. <95)
ix + ^ -t- tzfa*+**Vl ^ * ©1
> ^ * j ^ >

(100)

with

2b - a = 2(N - 3^ + 3 0 ). (101)
Since
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D = ~ 5A„.

from (23), (93) can be written

[(3AJ3 - 6Ao)J + (2N + 3)'^ ] = 0,
which becomes, on observing that

- = ibV ZJ^O »

from (99), and that

A
o

'"v aj . _ \ i) ^
= _i (N - 3yU + 3 <? )t ^ ,

from (94),

9b* - 12(N-3/«+3i? )b + 4(N-3/t+3* )* - (2N+3)* = 0, (102)

i.e.

/

(2 v? - ?yu - 2) = b
■ ( 4N - 3yU. + 6 Q

giving for the respective values oc a, from (101),

(4N - 6/a. + 6 v? + 3) = b"
J

(103)

2(/t _ v? _ N - 1) = a '
a = { h (104)

*(N + 3/< - 3i? + 3) = a."
We thus have two linearly independent solutions which we shall

denote by
Vp a/ /r
NJ r . ,

■/ti' /«(' , with b = b, a = a,
... "

U. ,* ,1 {—vv tJf

and C7 * - fjt\ ^ f ^ , with b = b, a = a.'
When we do not wish to specify the solution with which we are

dealing, we shall simply omit all primes, as in (97).

Write

<& - rj(f),

where

Xt C<n ft (106)

(105)
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Now ,2

£ ^ J* „

so that (100) gives

( 2P + J. 27 + J.P + -^P"&" do?)^Z7* P <2f ) *** Sj* a .

We have >

/.j = 3Ta ^ ~ ^

so that (95) reads

- t (/*.+?- w) z f

cJf

or
„/^ r V^ ^ pi- J- /VJ

elf > (108)

with this, (107) becomes

f/\-2?V/ = [*<? *
V °Lf ' N

(109)

the solution of (108) being
7- /V

r^o c3 *
^ (no

being a constant.

Our equations have now been reduced to (99), (109) and (110),

We shall first solve (99):

Write

z = iV x* (111)

:o give

(Jt ~b d ^ -L *7 d -» 1
^ / (112)(**«?! -*)£? -

ol j? <^2?

i
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which, with the substitution

/>t<? = ^ UyHl? (%) j (113)

becomes

I J ^ .ft rJ / fTk -L. t)l ^ T

>i> ~ ° . (114)\ i cL* + (± - i) d - - (h+t)\ u. *L U 'J* 9- J 'di * u '^
\

(114) is recognized as hummer's equation, whose general solution is

given in terms of confluent hypergeometrie functions as

(H.M.F.,1965,504)

= 4?,^/" /; ?7 * U[{; *] . (us)
p ^

We require /^i; to be square-integrable along some infinite

curve in the complex plane. Consequently, we investigate the

behaviour of as /■?/ ^ ^ .

For /z/ large,
±<7Tc(

~ r / \ )

£ P(fi) 2 [ / + 0 (J7j)\
Pf/S-x)

, fifl) e*2"~/'[ / 2 of-L\]
(116)

<U(u,pi)- *"*[

f -t/z < arg z "< 3 \

^ -3v/2 -< arg z ^ -7r/2

so that

4/ "^a/2 -tf'/a
-> ^ ■€ € fy+dyj
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I *fUa^/,
+ i__chl e * fy,'<]?*)'

('-*>]

/ hi) e
^ [£(&+/)]

^yx/2 "3'/z
e

f(t-')

(117)

where z —> y, + iya and y and ya are real, as / z / —^ oc

We take the two cases separately:
/ / -

(i) b = b ; then b ^ -1.

If y. = 0, we must have
* *jt(6h) a, ,

- r " c,"£* 2 =

fuo-t)]
in order to make the offending terms vanish. Further,

for b = -1, F* F^P, varies as y for / z/ large and

its integral therefore diverges. Hence we must have O

If y■ K 0, we must have

-c 2. - 2' -c

If y. > 0, the only offending term is that which has

P [^-(b+l)] in its denominator. From (103) we see that f
in general, r [-'(b+D] is not infinite and hence the

offending term can be made to vanish only by making c, zero.

n

(i i) b = b .

rr

If y =0, then since b can take arbitrary large

positive and negative values, it is impossible for f q to
a

remain finite at infinity for all b .
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If y. < 0> we must have
*«jr(6+/)

•r, ■ - e " fHjj -c,
f(t ('-*)]

If y, y 0, we must have c, - 0.

For / z/ small,

M(ttf ,/!? ;0) = 1; (fi not equal to a negative integer
, or zero)

(118)

5K«,Jsz>= Clil+o(n/'/l)
/V + j)

r *
Hence r ^ remains finite as /z/ 0 for all

p #
From the preceding argument we conclude that for to be

square-integrable along some infinite curve in the complex plane,

it is necessary that R(z) ^ 0 as / z/ —> oo and that

fll*/), j; i] - € JP (j[^b+ 'I £; *] J
A/

(7?(2) < o) } (7/fj

t:z Ui-tt-t-/), /; 2_/ Z' (2) > 0

To obtain a single functional element for all z, we must

restrict both end points of the curve (when at infinity) to be in

either the positive or negative half-planes. The latter is ruled

out by the fact that the first solution of (119) continually
/ //

vanishes when b = -1, this value being taken by both b and b

C cannot then be taken as a basis of sfl# . The acceptable
curve may be of the form of any of those shown below:
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The simplest is that which coincides with the non-negative real

axis. Hence write

Z = A ,

where q is real; i.e., from (111),
J

x3 = (1 - q3

Finally,

C(*>- < e (/[{(*»), i.' Wt].'s«i/y

We next solve (109):

Write

\x- V\
to give

(120)

(121)

(122)

(123)

(124)
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which, with the substitution

7% - *
5"= <'lx t

becomes

" - ' -
- —

„OfV * ( /-(^+o-A/)x-dS - y*]\
ots2

Write

// r- I/? r "
* T e ^(Fj,

to

to give

[V 4* + [tot + t - t) ct - s] f "
otj J ^

wnere

i.e., from (129) and (104),

, f - ^ if m ^ 0
\
\ -(N-/x) if m ^ 0

H / (2N - 3 i? + 3) if in ^ 0

* - \

S

•j ( 3/a. - N + 3) if m 0.

(125)

(126)

yU\> - 0 . (127)

(128)

where

m = /t + 0 - N, (129)

" O (130)
/

s = —' (/m/ + 1 + b_ ), (131)Z
Z

(132)

The general solution of (130) is

■Jyui/(T) = tr, M(s,/m/+l; f ) + u(s ,/m/ + l; y ) . (133)

Writing

z,= fr-t'j 2,, 3-, ^ fr—7 /, J 1'\//k 1/3*)
/It /IF r
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in analogy with (121), we require

to be finite. We are thus led to question the convergence of

as f 0 and > 00 .

A procedure analogous to that which led to (119) can be
//

carried out for the upper limit for s = s to give c/ = 0. For

s = s', we note that the offending term in M(s',/m/+l; ^px/t) as

does not appear: it vanishes because of an infinite denom¬

inator. Thus both -c, and are arbitrary in this case as far as

convergence at infinity is concerned. With regard to the lower limit,

let us make the following expansion:

For J small, / m/ 1,

\
, o(Tlm/~') , (136)

/• (s)

while

M(s,/m/+l;y) -> 1 as J —? 0.

'(135) shows that

as /O —> 0.
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Immediately we deduce that the integral exists iff s = s ,

for only then is '/w zero.

For 5" small and /m/ = 1,

U(s',2; J ) = 0( l<6n f/ )

and hence is not well defined as 5"—> 0; the same apDlies for /m/=0,

Hence we write = ,0.
/y H

Summarizing, then, the only functions iiyuO (/*> f 3j ft) such
that

00 o° ZfT

A/ r~t W

^ df
O -eo o

exists are given by
/y A/ , . ^ r~ W T M

Af),
where

7b ^ w /•*>!/
u//>; = p €

-fy/z-A
V e M(-4l, b*l+l; Yf'/t) /

-^Z^/zt

/J/ *'m

F^A23) - d7 e

&(f>- <f,e'
j

m - /L + 0 - N,

n = min( i? , N-yM. ) ^

(137)

(138)

(139)

(140)

with

(141)

(142)

where we have used (125), (128), (133), (126), (134), (132), (122),(103),
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Henceforth we shall drop the primes and write M(-n,/m/+1;

and U[- - (/c - f ) , — ; »?//£] in terms of more familiar functions:
2 Z

Ittll,
/Vj (- "fl-j Iml+l; ) <= -Ti/ hvll ^ m.

C/onj +m)/ "ft
(143)

where

72 / ^ 71

is the Generalized Laguerre polynomial.

W/t]'

(144)

(145)

where

-n *z
Hjz) = C-/J e ^ (146)

is the Hermite polynomial. The normalized functions are now

^ Jfaml.+il / ^ \ . , ~Wzt, Im/
ZUs^m' KL±L/^ a.7,' ^ / J(I'm I -t n)/

. stS„>> t *mf <»«
Iff-rr

l .e.

y/v /<w/ J, (ff \
£/*•>- ^z/° € L* (y jH/i-olJ* yf ; dsn)

with
*v *y 7i/

2 T (151)
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where 5,, St9 5s,S are phase factors of unit modulus; they

can, in principle, be determined from (81).

We give below the explicit form of the functions for N = 0,

/V - / y \3/*
' (ft) € ; "n)
, Hs f -»"/**Uj

~ " \*Tfi
C1' p/ V/<" -Y+Vz*

/

f
/ .f . y/tf. -Y*Vzt

t/

'

• (XI )'■{v-n*)
0 p ■* 'ff * ; on)j

■**
_

"• ' € *
,

r/ V \'/f -**V« _,y
= T+y} eV77"^A / 3

r / \ f t \/ n\ ~ ^
lZ t/ =

^ 2o

r-7 2

2./

" 1.1

(A) <' - r>'
t >

/7 'A -Y+x/2i

'A -r+V2t ay
ft I ^r .) />a ^ €■ . On)
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3. The Oscillator and U(3)

The Lie algebra of IJ(3) is the space of skew-adjoint

3x3 matrices over the real field. A representation of the algebra

2? spanned by A- , L* (i,:5=1 9
» 3) may be taken as :

I, -
0

0

0

0

o5

-.1
Zz -

t

0

0

0

0

ll
0 2

to

1

-1

0

O1

0

lo 1 0
\

-1 0 0 lo 0 0/

i

i

0

o'

0

In

0

0

0

°1
i

^ fly*
0

0

0

0

i\

0

0 0 0^ 0 i 0 u 0 0 J

i 0 o' * 0 0 o' 1° 0 0\

/?//= 0 0 0 0 i 0 fa-*2* \ 0 0 0

\° 0 0 lo 0 o.
'

lo 0 i|
We thus identify # with the Lie algebra of U(3).

The development of 2.1 was concerned with finding a new

basis of 'Ci that contained a basis of 22 as a subset. The new basis

was \

£ L , L , L,, A . A _ .A, . A , A _ D \1 /' x ' y ' n 25 J/' ' / * y

with the subset

/ L. , L , L , A , A , A, , A , A 71 / ' 2 ' 7 ' IX ' 23 ■?/ o ' ' J

as a basis of *22 .

It is a theorem that a representation of U is irreducible

iff the induced representation of tZ is irreducible. A representation
j t f
A of 2c determines a unique representation /f of '<52 . However, the

converse is not true. We shall see that the space •/}/y of functions
defined by (150), realizing the representation (N,0) of SU(3),

also realizes a definite representation of U(3).
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(23) gives

D = 3Aj3 - 6A0. (155)
Hence, from (99), (94) and (.103),

D aZ = i^3b' " 2(N - Z/4. + 31? )] V
= -i(2N + 3) V

, (156)

(156) defines the representation /?' of U(3) that is realized by

•

As a differential operator, D is written

^ •+ t- —^ + ){ 2 (xtz + Xi3-+ rjz)

- i'A( I2 + ^ - <1±A(z,x+2z2+2S)

by the definitions (134), (121). Thus

1* J- -A"y2r/>' =
2nr 3<frr '

from (5), where jA is the Hamiltonian. (156) now gives

(157)

- (#+ vJ~m ^iZ-s<aO . ( 15 8 )

(158) is the Schrodinger e'quation for the oscillator and (150) is

recognized as its solution in cylindrical polar coordinates.

As regards pure representation theory, the solutions with
//

b = b are infinite series and are not square-integrable over M.

However, they are of interest in their own right and determine a

representation of U(3) defined by

D "ZZ = i<2N + 3)^ . (159)
It remains to remark that, had we considered the second
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solution (69), i.e. representations of type (0,N), we would have

been led along a parallel path to two sets of functions neither of

which would have been square-integrable over M. Perhaps a closer

perusal of the theory will explain the apparently singular features

of the representation (N,0) in this respect.

To conclude: the oscillator energy eigenstates transform

according to an irreducible representation of type (N,0) of SU(3),

with the Hamiltonian proportional to the ninth infinitesimal

generator D of U(3) and its square a function of the Casimir

operator J of SU(3).

S

\



SOME IDENTITIES

rrv = p, q, + pa + i>3 q?» 1
q^P4 - P<rP/- = PyLA - ?kLj ' in cyclic order)
T*z,ai\ qL =r(p -p^)» d

rCn^.p^. - p^. r) = q• - q^Ly ; ((i,j,k) in cyclic order) 4
Expression of confluent hypergeometric functions as

Parabolic Cylinder functions, Hermite and Generalized Laguerre

polynomials:
<. 2/2

U(c, j- ;z) = 2 ■€ U(2c- ) 5
= 2*/%^ ( /2? ),

An integral:

^ CWtVK J-*-?
xjaxx f -tfx - /1 U/7W7

The angle G in four special cases:

-rrrf^-l7-
If V = ^ , <7 - -

n / >

6

'Z^ ~ ^ > (n a non-negative
H(-n.«+l:z) = «■'«/ T*(z); int0i!Cr) 8

9

(X +n)!

<£ H„(x) = 2nHfl_/ (x),
f L* (x) = ~Tj-n-/' (x); 10olx.

11

; 9

if v = ^ , £?= - ) 13'
t J

If V = V/- , (5-- " 1™+-+17- ^ 14

if v ^r/TTTxa.x+- 2vr£L%
6=-~L 15

(/2~nrE "* ■
69
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c

NOTATION

space of complex numbers over complex field
J?

Hilbert space of square-summable complex function,':

on M

infinitely different!able

H Kamiltonian (classical observable or A H)
%

Hamiltonian (self-adjoint quantum observable)

$ unit matrix

iff if and only if

L(S;S) space of linear mappings of S into S

M configuration space

Wy phase space

oscillator three-dimensional isotropic harmonic oscillator

q point of M

(q>p) point of My
space of real numbers over real field

■^2 space of all ordered pairs of real numbers over real field

SO(n) n-dimensional rotation group

S0(3,l) Lorentz group

X/ S X (a mapping) restricted to S (a vector subspace)

fl\ ) if i,j are(^t in cyclic order
Vo if i = j

if (i»j>k) is an ^ odd*1 permutation of (12 3)
I 0 if any two of i,j,k are equal

is an element of

70



is a subset of

there exists
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