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ABSTRACT

There are several statistical tests for evaluating
the randomness of a set of numbers. however, no
one test can be considered entirely sufficient.
Therefore, the purpose of this work was to combine
the most informative of these tests to produce a
computer package for the testing of random numbers.
Four random number generating functions were
investigated using this package. They were found
to yield very good, good, poor and bad random number
sequences respectively. hence, as no single test
could give such an exact differentiation between the
generators, this package is a more effective method
for testing the randomness of a set of numbers.



CHAPTER I■ INTRODUCTION

The interest in random numbers has increased considerably in recent

years. This can be attributed to the advent of electronic computing

devices and the number of problems in which they can be used.

There are a great variety of applications for random numbers. One

of the most important is in the simulation of natural phenomena which is

used in nuclear physics, queuing theory, traffic control, organisation

of telephone systems and many others (J. Hammersley and D. Handscomb,

J. Todd and 0. Taussky). Another use concerns the subject of sampling

where it is often better to consider every case in the particular

population but frequently this is impractical due to time and cost.

Hence the cases to be selected are picked at random. Random numbers

are also of importance in solving numerical problems and in examining

the effectiveness of algorithms and hypotheses.

In most of these applications,large samples are frequently required.

As a result, there is the difficulty of obtaining a large set of random

numbers quickly and easily. Many different methods have been proposed

and used. These methods fall into two categories, the first of which

involves the production of true random numbers and the second, the

production of what are commonly called pseudo-random numbers. The first

group concerns manual and physical methods such as the tossing of a dice

for random numbers, electronic pulses, and the use of a table of random

numbers. Pseudo-random numbers are deterministic and, therefore, are

not in fact truly random. Usually each one is calculated, according

to predefined rules, from the previous one. Pseudo-random numbers are

mainly used in computing because, firstly, manual methods are time

consuming and invariably, due to storing of tables of numbers, take up

too much space, and secondly, physical methods are often not reproducible.
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If pseudo-random numbers are used instead of true random numbers, then

they must appear to be random and have the following characteristics:

short and easy generating sequences, long periods, reproducibility and

statistical acceptability. Even today, with modern techniques, it is

desirable to have easy and shorn generating sequences because the work

load on computers is for ever increasing. Long periods are essential

for most problems otherwise the sequence will start repeating after a

short time. This will bring in a bias and the numbers will not be

random. The advantages of reproducing a sequence of numbers are in

using the same data for comparisons and retesting in different ways.

This thesis is concerned with the statistical acceptability of

pseudo-random numbers. No sufficient conditions exist which can be

used to approve a pseudo-random number generator, since a statistical

test can always be found which will not be satisfied by the generator.

Pseudo-random numbers can still be used if they pass such statistical

tests as are relevant to the problem under consideration, As a result,

there are no set rules for the approval of a generator and the requirements

change from problem to problem. Thus, in theory, one should apply a

whole set of statistical tests (relevant to the application) on the

generator to be used, and this should show its acceptability for the

particular problem. However, in practice most generators have a general

use as standard routines, therefore, they have to pass a number of

standard tests. Empirical tests are applied to the numbers produced

by a generator, whereas theoretical tests are applied to the actual

generating function. The work reported here is the development of a

system of computer subroutines for the empirical standard tests most

frequently used In the statistical analysis of the randomness of a set

of numbers. The system has been designed for workers of all disciplines
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and made easy so that new procedures may be added. Every care has been

taken to avoid fixing limitations, so that the system can be employed

over as wide a range of problems as possible. However, a few concessions

have had to be made in order to keep within the boundaries of the storage

facilities of the computer. It is hoped that these will not restrict

the laser in the implementation of this package .

( A.B. Forsythe )



CHAPTER II. STATISTICAL THEORY

The set of empirical tests considered in this work fall primarily

into two groups. The first one concerns those tests which use the

Chi-squared, x2, distribution as a means of comparison. The second

group contains those tests which use the Kolmogorov-Smirnov, KS, test

for comparing the difference between the empirical and theoretical

distributions of a set of numbers. It is assumed that each empirical

test is applied to a sequence of real numbers which are uniformly

distributed between zero and one. Some tests are designed more for

integer-valued sequences. Therefore, the numbers are multiplied by a

base, say D, which can vary, and the integer parts are then taken.

The Chi-squared Test

For the x2 test, it is assumed that there are n independent

observations and that each observation falls into one of K classes.

If p^ is the probability that each observation falls into class i, and

x^ is the number of observations that fall into class i? then the
statistic, V , where

(x. - np.)2
V = i- }

l<i<k npi

is called the "chi-square" statistic. This is the most important

chi-squared statistic and is the sum of the squares of the differences

between the observed values and the expected values in each class divided

by a weighting factor, the expected frequency.

x.2 + n2p.2 - 2np.x.
v = J{_i i

l<i<k npi

x.2 + n Ep. - 2 Ex.
_ Y— 1 x

^npi
l<i<k l<i<k l<i<k
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but k -1
i

Thus,

+ n - 2n

x.
X

n

This is a better form of the x2 statistic which is easier for computation.

Theoretical values may be obtained from the x2 distribution. These values

vary according to the number of degrees of freedom. The degrees of

freedom are the number of independent variables which in this case is

one less than the number of categories, (k-l), as

Thus the probability, P, that a random variable, distributed according

to the x2 distribution and with the same number of degrees of freedom,

(k-l), as V, is less than or equal to V can be calculated.

When V is either very small or very large in comparison with the

theoretical value, it has to be viewed with suspicion as to having a

significant departure from random behaviour. Usually if P > 0.99 or

<0.01, the numbers are considered not sufficiently random and are

rejected. If 0.95 < P 0.99 or 0.01 <_ P < 0.05 the numbers are suspect

of not being random. When P is between 0.90 and 0.95 or 0,05 and 0.1,

the numbers are considered to be slightly suspect of not being random.

Otherwise the numbers are considered to be sufficiently random.

The actual calculation of theoretical x2 values is difficult.

Therefore, in most cases, approximations must be used which are only

valid if n is large. As n becomes larger, a bias in the numbers to

xi + x2 + + xk = n

thus, X! = n - x2 - x3 xk
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be tested would be detected but local non-random behaviour would probably

be smoothed out. Thus, several tests should be made for different

values of n. In the majority of cases a sufficient guide to the value

of n required is that it should be large enough so that the expected

frequencies are greater than, or equal to five. This rule is followed

for the choice of n in the subsequent tests unless otherwise stated.
(M. Fisz, B.W, Lindgren)

The Frequency Test

This test discerns whether the numbers are uniformly distributed

with an acceptable probability. The number span, D, is divided into

equal non-overlapping intervals. A tally is taken of the quantity of

numbers in each interval over n observations and then the x2 test is

applied. If there are y intervals then the number of degrees of freedom

will be (y-l) and the probability, p^, of a number falling into the ith
category is —.

y

The Serial Test

The serial test is an extension of the frequency test. It

investigates whether or not pairs of successive numbers are independently

and uniformly distributed. The occurrences for every pair of numbers

is counted over n pairs of observations and the x2 test applied, The

number of categories is D2 and the probability of a pair of numbers being
1

m a particular category is —2« This test can be generalised to test

triples, quadruples, etcetera as well as pairs of numbers but for these

cases D must be made smaller to reduce the number of intervals to a

manageable size. In practice, triples, etcetera should be investigated

using other tests such as the poker, maximum or sum tests. (I.J. Good)

The Poker Test

This test considers n groups of k successive integers and a count



is kept of the number of distinct values in each set of k numbers. A

distinct value of r signifies that in a group of k numbers, then,

regardless of order, there are r different numbers. For example when

k=5 there are five categories and a group of five numbers must belong

to one of them. These categories are as follows:

Five different =

Four different =

Three different =

Two different

One different

abcde

aabcd

"aaabc

aabbc

aaabb

aaaab

all different

one pair

three the same and the remaining
two different

two pairs and the remaining
one different

one pair and three the same

four the same

alb the same

The probability of a group of k numbers having r different is

_ d(d-l) .... (d-r+l) ^-kj

K O
where {^} are Stirling^ numbers of the second kind-. The x test can be
applied using the above probabilities and the number of degrees of

freedom is one less than the number of different categories. That is

if k=h, then the number of different categories is four since

Four different

Three different

Two different

One different

abed

aabc

-aaab

_aabb

aaaa

Thus the number of degrees of freedom is 3=
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Generally, because the probabilities are low when r=l or 2 a few

categories of low probability are combined before the x2 test is applied.

(D.E. Knuth, Vol. 1, 1968; M. Abramowitz and I.A. Stegun)

The Runs Test

A run of length r is either a monotone increasing sequence or a

monotone decreasing sequence of numbers. Thus a run up of length r is

defined as

.X. > X. < < X. < X., > X. , ,
i i+l i+r-1 l+r i+r+1

and a run down of length r is defined as

x. < x.,n > x. ^ > > x.. n > x." < x-.
l l+l i+2 i+r-1 l+r i+r+1

Since adjacent runs are not independent, a simple x2 test cannot be

applied. If the statistic V, where

V = - T {COUNT ( i) - nb.HCOUNT(j) -nb.}a..
n

l<i,j<6 1 J

is calculated, it can be used for calculations in the x2 test for n runs

up or down with six degree of freedom. The mean values of the runs of

exactly length r, where r is less than or equal to six, are the b.
J

coefficients which can be calculated comparatively easily. Calculation

of the coefficients, a^^, is more difficult and was effected using the
inverted covariance matrix of the number of runs of exactly length r.

Thus, an approximation for the a^j's has been calculated on the
assumption that n is large, that is greater than or equal to it ,000

and the coefficients used are given below.

a^. and b^ are coefficients, constant for a particular value of n .



~~\529.k 90I+I+.9 13568 18091 22615 27892
90kh.9 18097 27139 36187 1+5231+ 55789

13568 27139 1+0721 51+281 67852 83685
18091 36187 51+281 72411+ 901+70 111580
22615 I+523I+ 67852 901+70 113262 1391+76
27892 55789 83685 111580 1391+76 172860

Each time there is a run of length i one is added to COUNT(i), but if

i>T, where T is the maximum length of a run, then one is added to

COUNT(T). In this particular test, the statistic and coefficients have

been calculated for T=6. (D.E. Knuth, Vol. 2, 1969)

The Gap Tests

There are two kinds of gap test, the former being applied to real

numbers and the latter to digits.

In the first test, if a and b are two real numbers with

o <_ a < b <_ 1

Then, if

x., x. n , .... x.. are not between a and b
J J+l j+r-1

but xj+r ' "^is sequence of numbers is considered to be a gap
of length r. Whenever a gap of length i is found one is added to

COUNT(i) but if i>t, where t is the maximum length of a gap, then one

is added to COUNT(t). The values of t and n, where n is the number of

gaps to be found, are chosen so that each COUNT(i) is expected to be five

or more.

If P = prob{a_^_X£<b}
then pQ = prob{run of length 0} = p

Pl = prob{run of length 1} = (l-p)p
2

p2 = prob{run of length 2} = (l-p) p
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t-1
= prob{run of length t-1} = (l-p)

® "t
p. = prob{runs of length _>t} = l-p-p(l-p)-p(1-p) -...-p(l-p)x>

= (l-p)t
Therefore with the above probabilities, the x2 test is performed, with t

degrees of freedom. When a=0 and b=0.5, the test is usually called

"runs below the mean" and similarly, when a=0.5 and b=i.O the test is

known as "runs above the mean".

In the second test, a gap is defined as the distance to the next

occurrence of a particular digit. Thus the probability of a gap of length

r is

l,r-l 1 . 0

Pr - "fi ~ j-,} p r-1,2........ .

where D is the base of the number system or number span to be tested.

Thus for this distribution the

00

v (n l\r-l 1
mean = \ r (1 - -) -

r=l

= D

and the
~

00

- D2variance =
l,r-l 1

DI 'Mi - ±)
r=l

= D(D-l)

The length of each gap of a particular digit is noted and the mean (x)

and the variance (s2) are calculated. If the number (n) of gaps is

large, that is greater than fifty, and the numbers are random, then

by the laws of probability, the mean and the variance have the following

distributions.

D(B-l)
x A N(D, x;)

n

s2 a N(BZ1 D(D-1), 2^n"1^ D2(D-1)2)
n2
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Thus, for the mean and variance of the sample not to differ significantly

from the hypothetical values and as a result be sufficiently random

then,

x - D

/D (D-l)
n

< t

.2 _ — D(D-l)

/2(n-l) D(D-l)
n

< t
—

a

where a = level of significance.

If z n N(0,1) then

prob{izI < t } = 1-a1 1 — a

t may be chosen for a one or two sided significance test (ML Fisz) from

the tables for the normal distribution function.

These inequalities imply that the confidence limits for x and s2 are

D - t A)(D-l) < x < D + t A)(D-l)
a — — a

n n

and

Rn-l) - /2(n-l) t ! D(D-l) < n s2 < i(n-l) + /2(n-l) t j D(D-l)L ou — — Oj

The mean and the variance of the length of gaps should be calculated and

tested for each digit. (F. Gruenberger and G, Jaffrey, B. Jansson 1966)

D2 Test

This test considers the distribution of numbers over the unit

square. It is assumed that the numbers lie between nought and one.

Four consecutive numbers are taken as the coordinates of two points in

the unit square. Then the square of the distance (d2) between the two

points ((xj, yj), (x2, y2)) is calculated.
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d2 = (xj - x2)2 + (yi - y2)2

If the numbers are rectangularly distributed, then the distribution

function of d2 is as follows:

prob{d2 < B2} = ttB2 - 8§3 + B" f°r B" "
= -| + (tt-2)B2' + MB2-1)S + -| (B2-l)3//2
- ^ - 1+B2sec ^B for B2 1.0

(B. Wilson)

The n results for d2 are tabulated into twenty classes, 0.0 up to but

not including 0.1, 0.1 to 0.2, 1.9 to 2.0. Then a x2 test

is performed with these results, the above probabilities and 19 degrees

of freedom. (F. Gruenberger and G. Jaffrey)

Kolmogorov-Smirnov Test (KS)

Some random quantities can take an infinite number of values. When

this occurs, the numbers are said to form a continuous function, say X,

The distribution function of X is

F(x) = prob{X < x}

The empirical distribution function, Fn(x), of X is found from n

independent observations Xj, X2, ..... ,X as follows:

,, i \ number of X , X , ,X < xFn(x) = 12 n

n

Thus, as n gets larger, Fn(x) should be a better approximation to F(x).

The KS test is used when F(x) is continuous and it is based on the

numerical difference between F(x) and Fn(x). A bad random number generator

will give an empirical distribution function which is not sufficiently

close to F(x). To measure the proximity of Fn(x) to F(x), the statistics
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kn+ and kn should he calculated, where

kn = maximum deviation between Fn(x) and F(x) when Fn(x) > F(x)

= /n max (Fn(x) - F(x)}
—oo<x<<»

kn = maximum deviation between Fn(x) and F(x) when Fn(x) < F(x)

= /n max {F(x) - Fn(x)}
—oo<x<°°

The probability of having a larger value of kn+ and of kn can either

be calculated or looked up in a percentile table. The bounds of

acceptability for the probabilities are the same as for the x2 test,

o o o o o 4*
Therefore, if the probability is too high or too low for either kn or

kn then the numbers are not considered to be sufficiently random.

The value of n should not be too high because local non-random

behaviour could be smoothed out, but, on the other hand, it should

not be too low as then, there would not be sufficient information. A

reasonable value of n would appear to be in the region of 1,000.
+ — O

If several calculations of kn and kn are made on different parts

of the random sequence, then a KS test can again be applied to these

numbers. This gives a better idea of the behaviour of the original

numbers, and any local non-random behaviour is not smoothed out.

Similarly a KS test can be applied after a x2 test. If several x2

values have been calculated the KS test can be used to compare these

values with the actual x2 distribution function, (W, Feller)

Maximum Test

This test considers the distribution of the maximum of t numbers.

Hence the

prob{max(X}, X2, .... , X ) < x) = probiX^ < x, X2 < x, ,...,X < x}
U 0
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- X.X.X.........X

t
_

x

since the X^'s are independent and uniformly distributed. Thus t
consecutive numbers are taken and the maximum, U,, is found. This

1

is repeated n times to give U0, Uj, , U . The KS test is

now applied to compare the empirical distribution function of U0,

with the following theoretical distribution function,

F(x) = xC

Minimum Test

Similarly, the minimum test considers the distribution of the

minimum, , of t numbers. Therefore using the same procedure as

above

prob{min(X1, X2, <>... , X. ) < x} = 1 - prob{min(Xj, X2, ,,, , X )"C x-

_> x}
= 1 - prob{X1>x, X2>x, o., X >_x}
= 1 - (1 - x )t

Thus, in this case the KS test is applied to the empirical distribution

function of V0, Vls , V ty comparing it with the distribution

function given below:

Sum Test

F(x) = 1 - (l - x)

This test considers the distribution of the sum of t numbers,

Because the numbers are assumed to be uniformly distributed, their

probability density function is

fj (x) =

1 0<x<l

0 otherwise
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If Ni, N2, are independent and uniform distributed variables over

the interval (0,1), then the sum, + N is confined to

the interval (0,t). Therefore, let (x) denote the probability density

function of Ni + . .... + N , then by probability theory

fi+l ^ = J dt

x

= J" f^(t) dt
x-1

This implies that

f2(x) =

f3(x) =

and in general

x - 2(x-1)

v2

r2 - 3(x-l)2

0<x<l

I<x<2

0<x<l

l<x<2

- 3(x-l)2 + 3(x-2)2] 2<x<3

CO fj_(x) - (i_x) i
X1"1 -(J) (x-1)1"1 + (g) (x-2)1-1

The summation continues so long as the arguments x, x-1, x-2, 0® 0 0 0 0

1 1
are positive. The mean and variance of this distribution are ^ ant^ ~2

respectively. Thus the density function of the standardised sum is

12 fi ^2 + X/l2^
and as i increases this rapidly approaches the normal density function

,2
1
— e

x

2
/2tt (H. Cramer)

Therefore the sum of t numbers is calculated and this is repeated n times

to give U0, Ux, U ,. Then the KS test is applied which compares
n-i
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the empirical distribution function of Uq , Uj, , , Un_^ with the
theoretical distribution function calculated from the above density

function. The theoretical distribution varies according to the value

of to For low values of t (<_5)> the compound uniform distribution, pLj ,

should be used,but for the remaining values of t,the normal distribution

is an adequate approximation and can be used. (D.Y. Downham and F. Roberts)

Some tests may appear to be more sensitive than others. The runs

test seems to be the most sensitive, whereas the frequency and serial

tests the least since they are satisfied by most generators. This does

not imply that only the runs test should be applied since it does not

test all the aspects of a sequence of numbers. Hence the package has

been written to include all the previously mentioned tests.

(B. Jansson 1966, K.D. Tocher, A. Van Gelder, M.D. MacLaren and G. Marsaglia,

S, Gorenstein)



CHAPTER III, GENERAL APPROACH OF THE PACKAGE

The tests mentioned in the previous chapter were all written in

the form of subroutines which are called from the main program. They

were divided into groups and, when working satisfactorily, these

subroutines were stored in a library on disc. An overlay system was

then implemented which is described later, in Chapter four.

The numbers to be tested are read by default from an unformatted

sequential file, but if required, the data can be read either under

format control or obtained from a user supplied generator. If the

user wishes to read the numbers under format, then this is done either

by supplying the user's own format or using the format provided by

the system. In most cases when a generator is used to produce numbers

a starting value is required. Thus the facility to read in a starting

value is available. In Chapter 5,a user is shown how to invoke these

options, whereas in Chapter U, the methods of Implementation are described.

To use the KS test, the empirical distribution has to be compared

with a theoretical distribution, thus,there is the facility for the user

to provide his own distribution function. Also,the data control parameters

may be read under a different format than that provided by the system.

This facility is employed by supplying a user's format according to the

rules given in Chapter 5. The way in which these options are implemented

is described in Chapter 1+ along with the method used to enlarge the

package by adding more tests.



CHAPTER IV. PROGRAMMING TECHNIQUES

This chapter is split into three interrelated sections. It is

intended to explain the main theory behind the programming of this

package with the aid of the subroutines listed at the end of the

thesis in Appendix 1.

The first section is concerned with the overlay system and deals

with the setting up of the package. The second section concerns the

subroutines themselves and includes how they are stored, how new ones

are added together with some of their Interesting features. The

remaining section deals with the way in which various options have

been made available to the user. In all sections the job control

language is for an IBM 360/hb computer running under the kkPS system.

For a different computer or system the job control statements would

have to be changed according to the appropriate rules.

Overlay System

The main reason that an overlay system is used here Is to save

on space in the problem program area In main core store. All programs

to be executed under .system control must first be processed by the

linkage editor. The linkage editor program converts assembler and

compiler output modules into a form of one or more phases which are

suitable for loading and execution. A phase is that portion of a program

which can be loaded into main storage by a single LOAD call. The size

and the particular subprograms of a phase are specified by the programmer

with linkage editing control statements (diagram l), A program may

use several phases, the only limition being the size of the problem

program area. Hence, in this way the maximum size of a phase is fixed.

The phases are stored in the phase library on SDSABS by using the KEEP

option in the RLNKEDT statement (diagram 3),
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For this package a root phase overlay system is used. One of the

phases is designated the root phase and this remains in the problem

program area throughout the execution of the whole program (diagram 2),

The other phases, that is the subordinate phases, are loaded into the

problem program area when they are needed.

DIAGRAM 1

The following example illustrates the various linkage editing control

statements that define the contents of certain phases and their origins.

PHASE

INCLUDE

INCLUDE

PHASE

INCLUDE

PHASE

INCLUDE

EXAMPLE1, PAR

A1

A2

EXAMPLE2, PAR

B1

EXAMPLE3, PAR

CI

where

EXAMPLE1
EXAMPLE2

EXAMPLE3

are the phase names which can be up to eight alphameric

characters in length with the first one being alphabetic<

PAR =

ROOT specifies the origin of the root phase,

* sets the origin of the subordinate phase to the

first location following the most recently processed

phase.

'phasename' sets the origin of the current phase equal to the

origin of the phase whose name is specified.

Al, A2
B1

CI

are the subroutine names which are to be included in

a particular phase.
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DIAGRAM 2

The previous example could be written as follows

PHASE EXAMPLE1, ROOT

INCLUDE A1

INCLUDE A2

PHASE EXAMPLE2, *

INCLUDE B1

PHASE EXAMPLE3, EXAMPLE2

INCLUDE CI

which would give the following overlay system.

ROOT
A2

A1

EXAMPLE2 EXAMPLE3

B1 CI

Therefore a subordinate phase may overlay a previously loaded subordinate

phase but, in general, it must not overlay the root phase.

The loading of phases is controlled by the main or calling program

which is effected by the statement

CALL LOAD ('phasename')

However, control returns to the next statement in the main or calling

program. Once a phase has been loaded, any subprogram within that

phase may be utilised using the statement

CALL 'subprogram name'
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EXEC RLNKEDT(KEEP,SYS002,NOAUTO)
PHASE APTEST,ROOT
INCLUDE APMAIN,R,2
INCLUDE NDTR,R,2
INCLUDE APTR,R,2
INCLUDE DATA1,R,2
INCLUDE DATA2,R,2
INCLUDE GETFMT,R ,2
INCLUDE READ2,R,2
INCLUDE READ1,R,2
INCLUDE IBCOM# ,R
INCLUDE FIOCS# ,R
INCLUDE USEROPT,R
INCLUDE UNITAB# ,R
INCLUDE LOAD,R
INCLUDE EXP,R
INCLUDE FRXPI4,R
INCLUDE FRXPR#,R
INCLUDE SQRT,R
INCLUDE ARCOS,R
INCLUDE DLOG,R
INCLUDE DEXP.R
INCLUDE DSQRT,R
INCLUDE ALOG,R
INCLUDE KLOCK,R
INCLUDE ATAN ,R
INCLUDE AMAX1,R
PHASE APCHI ,*
INCLUDE FREQ,R,2
INCLUDE POKER,R,2
INCLUDE SERIAL,R,2
INCLUDE APSN,R
INCLUDE GAP,R,2
INCLUDE DSQUR,R,2
INCLUDE RUNS,R,2
INCLUDE CDTR,R,2
INCLUDE DLGAM,R,2
PHASE APKMSM,APCHI
INCLUDE SUM,R,2
INCLUDE MAX,R,2
INCLUDE MIN,R,2
INCLUDE AP2d1,R,2
INCLUDE AP262,R,2
INCLUDE AP263,R,2
INCLUDE AP26U,R,2
INCLUDE AP265,R,2
INCLUDE AP266,R,2
INCLUDE AP26T,R,2
INCLUDE USER,R,2
INCLUDE KOLMO,R,2
INCLUDE SMIRN,R,2
PHASE APOTHR,APKMSM
INCLUDE GAPRD,R,2
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APTEST (root phase) APMAIN

NDTR

APTR
1

DATA1 :

ATAN ||
{

AMAX1

APCHI APKMSM APOTHR

FREQ SUM GAPRD

SERIAL MIN

POKER MAX

APSN AP261
•

GAP
•

AP26T

DSQUR USER

RUNS KOLMO

CDTR SMIRN

DLGAM

The linkage editing control statements used in setting up the

overlay system of this package are illustrated in diagram 3. The

form of the overlay system is shown in diagram NOAUTO is specified

in the RLNKEDT statement. This causes automatic searching of the

module library of names matching unresolved external references for

the entire linkage editing job to be suppressed. For example, when a

subprogram calls another subprogram, the module library is automatically

searched for this called subprogram or external reference. The external

references may be library or system subprograms, or subprograms

provided by the user. When NOAUTO is specified,all external references
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must be included in the linkage editors control statements. Therefore,

the library subprograms FIOCS, USEROPT, SQR'T etcetera have been

included in the linkage editing control statements which are shown

in diagram 3 for this package. SYS002 is specified in the RLWEDT

statement to inform the linkage editor on which unit the user supplied

subprograms have been stored.

For further information on overlay systems refer to

IBM C28 - 6812

IBM C28 - 6813

Subroutines

The main program, which handles the loading of phases, formats,

data etcetera together with all the user's subroutines requested in

this package^are stored in a library on disc. Space was obtained by

using the following statements

//'jobname' JOB, ALLOC

// ALLOC APLIB,191=,SAU5VI',350,30

// LABEL 360,99366,RECLEN=?2

/*

/&

These statements create a library, called APLIB, on disc, SAU5VI, through

the disc drive, 191, with 350 blocks of storage and 30 entries into the

directorial set. The LABEL statement specifies, firstly, that the block

length is 360 bytes, secondly, when this data set may be deleted and

finally, the size of a logical record.

To add a new member into the library, for example a subroutine

called TEST, the following statements are used
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//'jobname' JOB, 'user's name' 'time of job'

//SYSOOO ACCESS APLIB(TEST), 191=' SA1+5VI' , NEW

// EXEC FORTRAN

subroutine's cards

/*

/&

To delete the library or a subroutine from the library the following

statements should be used

// JOB, DELETE

// ACCESS APLIB, 191='SAU5VI'

// DELETE APLIB/APLIB(TEST)

/*

/&

To condense or investigate the contents of the library, the card

// DELETE

in the previous JOB should be replaced by

// CONDENSE APLIB

and

// EXEC CLSDSREL

respectively. Thus a new subroutine may be added to the library at any

time, the only restriction being that there is enough space and there

are sufficient directorial entries. If either of these restrictions is

found to be violated, the library may be deleted and then recreated with

a larger number of blocks or directorial entries or both. This is

implemented by increasing the appropriate parameters in the ALLOC

statement.
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Since this is an overlay system with more than one phase, then if

any subroutines are changed or added into the library,the pointers for

the phasing will probably be incorrect. Therefore,the whole program has

to be relinkage edited with the changes. If any new subroutines are to

be included in the library, extra linkage editing control statements

must also be added before the linkage editing takes place. These

control statements show how the phasing of the new subroutines is

effected and include any additional library subprograms used.

At the moment, there are ten statistical tests. When a new test,

which may include several subroutines, is to be added it must be stored

in the library APLIB. Also,,various statements must be changed in the

main program (subroutine APMAIN) and several extra ones included. In

Program 1, line 39 is

16 GO T0(20,30,1+0,50,60,70,80,90,92,9*0 ,K

where K is the code given to a test. This statement branches to the

statement with label in position K within the brackets. That is, if

K=3 the control is passed to statement 1+0. Any extra tests should be

coded as eleven onwards and line 39 becomes

16 GO T0(20,30,1+0,50,60,70,80,90,92,9l+,IX,IY,. . . ) ,K

The statements labelled IX,IY,... should be inserted before the statement

labelled 180 as follows

IX IF(FLAG.EQ.'phasenumber')G0 TO IX+5

CALL LOAD ('phasename') This loads the phase required
for the test that has been requested.

IX+5 FLAG = 'phasenumber'

CALL 'name of test' This calls the test requested.

GO TO 5

iy :
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where IX is any integer, for numbering statements, which must be greater

than 95 but not equal to either 180 or 190.

An index (FLAG) is given to each phase and these are as follows:

Phase APCHI FLAG=1

Phase APKMSM FLAG=2

Phase APOTHR FLAG=3

If any more phases are to be added,then their flag numbers must be

greater than three. A test is in a particular phase, thus if the FLAG

is equal to that phasenumber, then the phase is already loaded into

store. Otherwise the phase still has to be loaded and once that has

been accomplished, the FLAG is set to that phasenumber. Thus the FLAG

shows which phase is in store.

To apply the KS test, a statistical test calls the subroutine

K0LM0. This subroutine was initially an IBM scientifc subroutine, but

it has been adapted for use in this package. K0LM0 compares an

empirical distribution with a theoretical distribution by using the

respective distribution functions. The theoretical distribution functions

provided by K0LM0 are from the following distributions.

Normal

Exponential

Cauchy

Uniform

Distribution for the maximum of t uniform random numbers

Distribution for the minimum of t uniform random numbers

Distribution for the sum of 2 uniform random numbers

Distribution for the sum of 3 uniform random numbers



27

Distribution for the sum of 1+ uniform random numbers

Distribution for the sum of 5 uniform random numbers

Distribution for the sum of 6 uniform random numbers

User supplied

The same procedure for relinkage editing, when adding more theoretical

distributions,is followed as before. This will put the subroutines in

the package permanently. The statements that must be altered and added

for the additional subroutines are as follows

In Program 3 line 181+ is

GO T0(30,32,36,38,1+2,1+1+,1+6,1+8) ,ISIN

where ISIN is the index for the particular subroutine requested in a test.

Any new subroutines must be indexed by 9-0 onwards and line 181+ becomes

GO TO( 30,32,36,38,1+2 ,1+1+, 1+6,1+8,IW,IZ,. . . ) ,ISIN

The following statements should be included immediately preceeding the

statement labelled 1+8.

IW CALL AP269(X(J),Y,IER)

GO TO 50

IZ CALL AP26lO(X(J),Y,IER)

GO TO 50

1+8 IER=1

CALL USER(X(J),Y,IER)

50 :

The number of statements depends on the number of subroutines to be added.

The USER subroutine is a dummy subroutine to enable the user to supply

his own subroutine, which is described in a later section under USER

step. Then, if a user wishes to apply a test in this package to a set



of numbers, in most cases, only two data cards have to be supplied per

test. The first card is used for changing the system's formats for

reading. The second card contains the parameters for the test which is

to be applied. These are: the number of trials, how the numbers are

obtained, etcetera and are described in the next chapter. If the user

wishes to obtain his numbers from a generator, a third card may be added

which will provide an integer starting value for the sequence. However,

the numbers may be read from cards and these must then be included after

the second data card. If the format provided by the system is not

adequate, the user may supply an appropriate one. By default the

numbers to be tested are read from an unformatted file on disc, with

82 numbers per record.

APMAIN (Program l)

APMAIN reads the first card and selects the format to read the

next card. Having read the latter card,it uses these parameters to

load the correct phase into store and then calls the requested test.

Control is always passed back to APMAIN at the end of a test after which

the next set of cards for the succeeding test are read.

Subroutine Poker (Program 9)

In applying the POKER test, M numbers are considered at one time.

These will be obtained from the subroutine, DATA1, and stored in an

array, A, of dimension, M, This array of numbers is then sorted into

descending order using a temporary array.

A( 1) _> A(2) > ..... >_ A(M-l) > A(M)

To ascertain how many different numbers are present in this group, A(M)

is compared with A(M-l). If they are not equal then there must be at

least two different numbers in this group.
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Otherwise they are equal as

A(M) <_ A(M-l)

This procedure is repeated until A(l) is compared with A(2) and a count

is kept for the total of different numbers, say r. Then one is added

to COUNT(r) and another M numbers are considered. The above process is

repeated the required number of times (N). The x2 statistic is then

calculated in the usual way with the probabilities as given in

Chapter 2, These probabilities are calculated using the subroutine

APSN to obtain Stirling's numbers for the value M. The subroutine CDTR,

which is an IBM scientific subroutine used for calculating the probability

of a worse value of the x2 statistic, is then called. Using this

probability, the randomness of the numbers which have been tested may

be deduced. The subroutine APTR does this automatically according to

the rules given in Chapter 2 for the x2 statistic.

Subroutine FREQ (Program 7)

In the subroutine, FREQ, used to apply the frequency test, one

number, which is obtained from the subroutine DATA1, is considered

at a time. A count is kept of the number of occurrences of each

integer over, say n observations. The x2 statistic is then calculated

with the probabilities as given in Chapter 2. Then the subroutine

CDTR is called for calculating the probabilities of a worse value of the

X2 statistic. The same procedure is followed as for the poker test.

Subroutine SERIAL (Program 8)

The subroutine SERIAL, used in applying the serial test, is

similar to the subroutine FREQ, The main difference is that the

numbers are considered in pairs. Again a count is kept of the number
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of occurrences of each pair of integers and the same procedure is

followed as before.

Subroutine MAX (Program lV)

When using the subroutine KOLMO, an array of numbers is passed to

it for comparison with a given distribution function. Therefore,for

the maximum test, if T numbers are required in each trial the first

of these numbers is assumed to be the maximum and it is put into an

element of an array, V, say V(l), A second number, U, is obtained and

is compared with V(l). If U is greater than V(l) then V(l) is assigned

the value of U, otherwise V(l) remains unchanged. This process is

repeated until all the remaining (T-2) numbers have been compared with

V(l) and thus the maximum value of the T numbers is in V(l). Other

sets of T numbers are considered until the value of V(N), where N is

the number of trials in the test, is found. The subroutine KOLMO is

then called to compare the empirical and theoretical distributions for

the array V using the KS test. The subroutine KOLMO calculates the

probability of a statistic, which has the given theoretical distribution,

of having a larger value than the largest value of the difference

between the empirical and theoretical distribution function. Thus,

using this probability, the randomness of the numbers tested can be

deduced. The subroutine APTR does this automatically according to the

rules given in Chapter 2 on the KS test.

The subroutine MEN, for applying the minimum test, and the

subroutine SUM, for applying the sum test, are similar in application

to that of the maximum test. The differences can be easily seen

from Program 15 and Program 16 in Appendix 1 at the end of this thesis.
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Subroutine DSQUR (Program 12)

The D2 test deals with two pairs of numbers at each trial- These

numbers are considered to be the coordinates of two points in the unit

square and thus the squared distance, D2, between them is calculated for

each trial. Every value of D2 can fall into one of the twenty catergories,

0.0 to 0.1 up to 1.9 to 2.0. Thus, a count is kept for the number of times

a value of D2 falls into each category. The x2 statistic is then

calculated in the usual way with the probabilities as given in Chapter 2=

The same procedure is then followed as for the poker test.

Subroutine RUNS (Program 11)

When applying the runs test, each number is compared with the

previous one until a run occurs according to the definition given in

Chapter 2. A count is kept of the number of occurrences of each run

length, say r, where r can vary from one up to and including six. If

any run is of length greater than six, one is added to the count for

runs of length six. A slightly different x2 statistic is used and this

statistic and the corresponding probabilities required are also given

in Chapter 2. Once the x2 statistic is calculated the procedure is the

same as that for the poker test.

Sub routin e GAP (Program 10)

In applying the gap test,a gap is calculated according to the

rules given in Chapter 2. When a gap of length R is found the COUNT(R)

is increased by one. If any gap is of length greater than T, where T

is the maximum length of a gap, then the counter for the gap of length

T is increased by one. The x2 statistic is calculated and the remainder

of the subroutine GAP is similar to that of the subroutine POKER. Again

the probabilities and the statistic used are given in Chapter 2 under

the gap test.
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DIAGRAM (10)
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Subroutine GAPRD (Program 13)

The subroutine GAPRD calculates the gap lengths for each digit

according to the rules given in Chapter 2 for the gap test for random

digits, An array is kept which contains the position at which each

digit last occurred. An occurrence of a number must end a gap for that

number. Thus, when a digit occurs the position is noted and the

gap length from whence it last occurred can be calculated. An

accumulating sum and a sum of squares are kept for the gap lengths of each

digit. Every occurring gap length is added appropriately into the

accumulating totals for that particular digit and the counters are

adjusted accordingly. Thus, for each digit, it is relatively easy to

perform significance tests on the variance and the mean of these gap

lengths according to the rules given in Chapter 2.

Subroutine AP26l (Program IT)

This subroutine provides the distribution function for the

maximum of U uniform random numbers. Thus,it calculates the probability,

Y, of a variable V, with distribution function

F(V) = VU

being less than X.

That is

Y = prob{V < X} = XU

This theoretical distribution function is used for comparison in the

maximum test and U is the total of numbers in each trial.

Subroutine AP262 (Program 18)

This subroutine provides the distribution function for the minimum

of U uniform random numbers. Thus it calculates the probability, Y, of
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a variable V, with distribution function

F(V) - 1 - (1-V)U

being less than X.

That is

Y o prob{V < X} w 1 - (1-X)U
This theoretical distribution function is used for comparison in the

minimum test and u is the total of numbers in each trial. The

remaining subroutines AP263, AP26U, ....,AP26T are similar to the above

two subroutines except they are used for comparison in the sum test.

Thus5using the formulae given ip Chapter 2, these subroutines provide
the distribution functions that are given below.

Subroutine AP263 (Program 19)

Distribution function of the sum of 2 uniform random numbers.

X2

F(x)
2 0<x<l

1 - l<x<2

Subroutine AP26k (Program 20)

Distribution function of the sum of 3 uniform random numbers.

F(x)

X3
6 0<x<l

|(|3 - (X-l)3) l<x<2

|(|3 - (X-l)3 + (X-2)3) 2<x<3

Subroutine AP265 (Program 21)

Distribution function of the sum of U uniform random numbers,
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F(x)

X4
2U

l/X4

1,X4
Z{t

IfX1*

- (x-i)-)

0<x<l

l<x<2

- (x-l)4 + | (X-2)11) 2<X<3

- (X-l)4 +| (X-2)4 - (X-3)4) 3<x<U

Subroutine AP266 (Program 22)

Distribution function of the sum of 5 uniform random numbers.

F(x)

I (i5)
2U 5 '

i<|5 - (t-D5)
- (K-l)5 + 2(X-2) 5)

1 /X

|u(| - (X-l)5 + 2(X-2)5 - 2(X-3)5)

0<x<l

l<x<2

2<x<3

3<pc<U

|u(| - (X-l)5 + 2(X-2)5 - 2(X-3)5 + (X-U)5) U<x<5

Subroutine AP267 (Program 23)

Distribution function of the sum of 6 uniform random numbers.

7(Z )

F(x) =

120 ^

1 /X
120 (f - (X-l)6)

y|q(|6 - (X-l)6 + | (X-2)6)

^|q(|6 - (X-l)6 + | (X-2)6 - (X-3)6)

r~r(|6 - (x-l)5 +1 (X-2)6 - —■ (x-3)6 + | (X-U)6)120v 6

0<x<l

l<x<2

2<x<3

3<x<U

U<x<5

^(|6 - (X-l)6 + | (X-2)6 - (X-3)6 + | (X-U)6 - (X-5)6) 5<x<6
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Subroutine GETFMI (Program 29)

Subroutine GETFMT compare^ an input and a blank array. Should

they agree, then the input arr^y is also blank, and another array is

returned with the standard format. The standard format used depends

on the value of the parameter SWITCH, Program 29, and the formats

available are given in Chapter 5 tinder the section called DATA.

Otherwise a further array is returned with the input format which is

assumed to be correct. The dimension of the input array is eight.

Therefore, as the format is read under Al+ format, the maximum number of

characters in the format is thirty-two. This includes any brackets and

all format symbols. Thus,it is undesirable to have blanks in the format

statement since they are counted as characters.

Subroutines DATA1 and DATA2 (Programs 27 and 28)

Depending on the data control parameters, subroutine DATA1 and

DATA2 obtain numbers to be tested from a file on unit 3» from cards or

from a user supplied generator. In the first two cases a check is

made to see if this is the first data call from this test. Should this

be true, the numbers are read from the file or cards into any array, one

record or card at a time. Each record must contain 82 unformatted numbers.

On the other hand, the cards have no fixed amount of numbers so long as

they do not vary in content within a test, Counters are kept as to how

many numbers in a record or card have been used and as to whether a new

record or card must be read in. Evey kth number can be used by

increasing the appropriate counter by K, AA(U), instead of one. Finally

if the numbers are to be produced by a generator, a READ subroutine is

called. This subroutine will be supplied by the user and the method

and rules to fpllow are described at the end of this chapter and in

Chapter 5 under Read step.
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Subroutine APSN (Program 30)

f K iStirling's numbers of the second kind, {•} are
Li

K\ 0 1 2 3 k 5 6

0 1 0 0 0 0 0 0.

1 0 1 0 0 0 0 0

2 0 1 1 0 0 0 0

3 0 1 3 1 0 0 0

k 0 1 7 6 1 0 0

5 0
•

f
•

1 15 25 10 1 0.

(Knuth Vol. 1)

Given that {^} =1
then for all K > 0 Stirlings numbers can be calculated using the

relationship

<L} " +

Each row in the above table can be calculated from the previous one.

Hence, the numbers in row(i) are stored in array IS. Then each number

in row(i+l) is calculated using the above recurrence relationship and

put into an array JTEMP. When all the numbers of row(i+l) have been

calculated, they are stored in the array IS and overwrite the previous

values given by row(i). Thus space is saved by keeping on],y two rows

of the above table in store at any one tim$.

The dimension of each of the arrays IS and JTEMP is twenty and

thereforejthe maximum value of K is also twenty. Hence->if the user

wishes to calculate Stirling^ numbers for K > 20 the dimensions of IS

and JTEMP must be increased.

Subroutine APTR (Program 31)

The subroutine, APTR, puts into words the meanings deduced from-
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the probabilities which are calculated by the statistical tests using

the rules given in Chanter 2 for the KS and x2 tests.

A listing of all these subroutines is given at the end of this

thesis in Appendix 1. They are listed in the order of their program

numbers.

User Step

The user is able to supply his own theoretical distribution

function for comparison purposes in the subroutine KOLMO. This is

carried out by replacing the dummy subroutine, USER, in APLIB with

the user's own subroutine in addition to the automatic deletion and

linkage editing of the phases. Thusievery time this option is used the

subroutine, USER, is changed and therefore one particular subroutine is

not a permanent feature in the package.

The above option is implemented by 'copying' the relevant control

statements into a file on disc, SA1+5V1. Thus the library AP was created

and into the member Al, the linkage editing control statements were

'copied', using a system utilities program. These control statements

are shown in diagram 12. A further member of the library, AP, is USER

which contains the job control statements for deleting and linkage

editing. These job control statements are listed in diagram 13.

To invoke the user step the following cards are inserted by the

user after the JOB card.

//SYSRBR ACCESS AP(USER), 191 = 'SA1+5V1'

/*

source statements for function USER

/*
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PHASE APTEXX,ROOT
INCLUDE APMAIN,R,2
INCLUDE NDTR,R,2
INCLUDE APTR,R,2
INCLUDE DATA1,R,2
INCLUDE DATA2,R,2
INCLUDE READ1,R,2
INCLUDE READ2 ,R,2
INCLUDE GETFMT,R,2
INCLUDE IBCOM#,R
INCLUDE FIOCS# ,R
INCLUDE USEROPT,R
INCLUDE UNITAB#,R
INCLUDE LOAD,R
INCLUDE EXP ,R
INCLUDE FRXPI#,R
INCLUDE FRXPR»,R
INCLUDE SQRT,R
INCLUDE ARCOS,R
INCLUDE DLOG,R
INCLUDE DEXP ,R
INCLUDE DSQRT,R
INCLUDE ALOG,R
INCLUDE KLOCK,R
INCLUDE ATAN,R
INCLUDE AMAXI,R
PHASE APCXX,*
INCLUpE FREQ,R,2
INCLUDE POKER,R,2
IN CLUDE SERIAL,R,2
INCLUDE APSN,R ,2
INCLUDE GAP ,R,2
INCLUDE DSQUR,R,2
INCLUDE RUNS,R,2
INCLUDE CDTR,R,2
INCLUDE DLGAM,R,2
PHASE APKMXX,APCXX
INCLUDE SUM,R,2
INCLUDE MAX,R,2
INCLUDE MIN,R,2
INCLUDE AP26l,R,2
INCLUDE AP262,R,2
INCLUDE AP263,H,2
INLCUDE AP26U,R,2
INCLUDE AP265,R,2
INCLUDE AP266,R,2
INCLUDE AP26T ,R,2
INCLUDE USER,R,2
INCLUDE K0LM0,R,2
INCLUDE SMIRN,R,2
PHASE .APOTXX,APKMXX
INCLUDE GAPRD,R,2
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//SYSLST ACCESS IGN
// ACCESS APLIB,191='SAU5V1'
// DELETE APLIB(USER)
// CONDENSE APLIB
//SYSOOO ACCESS APLIB(USER) ,191*'SAUjVl' ,NEW
//USER EXEC FORTRAN
// ACCESS SDSABS
// DELETE SDSABS(APTEXX)
// DELETE SDSABS(APTEXY)
// DELETE SDSABS(APCXX)
// DELETE SDSABS(APCXY)
// DELETE SDSABS(APKMXX)
// DELETE SDSABS'(APKMXY)
// DELETE SDSABS(APOT XX)
// DELETE SDSABS(APOTXY) _ _ (a)
// CONDENSE SDSABS
//SYS002 ACCESS APLIB ,191=' SA1+5V1'
/ /SYSIPT ACCESS AP(AI) ,191"' SA1+5V1'
//APTEXX EXEC RLNKEDT(KEEP,SYS002.NOAUTO)
//" RENAME SDSABS (APTEXX, APTEXY)
// RENAME SDSABS(APCXX,APCXY)
// RENAME SDSABS(APKMXX,APKMXY)
// RENAME SDSABS(APOTXX,APOTXY) T (b)
// DELETE SDSABS(APTEST)
// DELETE SDSABS(APCHI)
// DELETE SDSABS(APKMSM)
// DELETE SDSABS (APOTHR) .(c)
// RENAME SDSABS (APTEXY,APTEST)
// RENAME SDSABS(APCXY,APCHI)
/ / RENAJ'IE SDSABS (APKMXY, APKMSM)
// RENAME SDSABS (APOTXY,APOTHR) (d)
// RESET SYSLST
// RESET SYSOOO
// RESET SYSIPT
// RESET SYSRDR
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These cards cause SYSRDR to read and execute the job control statements

in the member USER of AP, as shown in diagram 13. Since there is no

need for the user to see these jobs control statements, they are not

printed when they are executed due to the inclusion of the statement

//SYSLST ACCESS IGN

The statement

//USER EXEC FORTRAN

causes the new subroutine to be compiled and is then stored in APLIB

under the name USER.

It is important that the phases APTEST, APCHI, APKMSM and APOTHR

of this package are not deleted. If the compilation of the new

subroutine fails, all these phases would be removed from SDSABS.

Therefore,the deleting and linkage editing is carried out by first,

using dummy names (APTEXX, APKMXX, APCHXX, APOTXX), then renaming under

new dummy names (APTEXY, etcetera), followed by deleting and renaming

under the real phase names (APTEST, etcetera). Thus,if the compilation

of the new function fails the linkage editor proceeds but also fails

and therefore the first renaming step causes the job to abort. This is

because the first renaming step will be out of sequence and an attempt to

rename the phase, APTEXX, will fail as it will not have been created by

the linkage editor. As a result,the original phases are not deleted.

The statement

//SYSIPT ACCESS AP(Al) , 191- 'SA^Vl'

in diagram 13 causes the input to come from the file A1 which contains

the linkage editing control statements. These control statements

followed by

//APTEXX EXEC RLNEDT( )

form the phases called APTEXX, APKMXX, APCHXX and APOTXX in SDSABS.
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If any new subroutine has been added permanently to the package

and the user option is to be used, the extra linkage editing control

statements for this subroutine must be added into Al. These control

statements will vary depending on the number of additional phases or,

alternatively, to which phase the new subroutine has been added. For

example, suppose a new subroutine, say TRY, is permanently added to

phase APOTHR, then Al must be enlarged with the statement

INCLUDE TRY, R, 2

which is inserted after the statement

INCLUDE GAPRD, R, 2

Similarly, if a new phase is permanently added to the package, then Al

must be enlarged with the following statements,

PHASE 'dummy name of new phase', APOTXX

INCLUDE C, R, 2

INCLUDE D, R, 2

which are inserted after the last statement of phase APOTXX. These set

the origin of this particular phase equal to the origin of the phase,

APOTXX. However, the origin of a new phase need not be this and can be

changed by altering the parameters in the PHASE statement according to

the rules given in the previous section concerning the phasing system

(diagram l).

Furthermore, if a new phase is added, extra statements have to be

inserted in the member USER of AP; they are

a) // DELETE 'dummy name 1 of new phase'

// DELETE 'dummy name 2 of new phase'

b) // RENAME SDSABS('dummy name 1 of new phasedummy name 2

of new phase')

c) // DELETE SDSABS('new phase name')
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d) // RENAME SDSABS('dummy name 2 of new phase', 'new phase
*

name')

which are included in the appropriate places as shown in diagram 13.

Read Step

A user is able to insert his own subroutine into the package to

obtain data. This subroutine will not be permanently in the package

and will frequently be written in the form of a generator. Therefore,

this option has been devised. A new member of AP was created, called

READ1. This member, shown in diagram lk, is very similar to the member

USER of AP. The main difference is that the statement

// USER EXEC FORTRAN

is replaced by

// EXEC ASSEMBLE(LINK,N0DECK)

which will compile an Assembler subroutine. The read step is invoked,

set up and used in virtually the same way as the user step. However,

the READ1 subroutine must be written in Assembler language. The rules

for adding new subroutines and phases are exactly the same as those

of the user step.

There are two read options, READ1 and READ2, the difference being

that READ1 supplies integer data and READ2 supplies real data. Thus,

there is also the member, READ2, in the library AP, This is the same

as READ1 with the exception that whenever READ1 opcurs in diagram lk,

it is replaced by READ2.

Data Set Reference Numbers

The data set reference numbers used in this package are

IPRINT which is set to 6 for writing under format control.

IRED which is set to 3 for reading and writing from an unformatted

file on unit 3.
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SYSLST ACCESS IGN
ACCESS APLIB,191='SA45V1'
DELETE APLIB(READ1)
CONDENSE APLIB

SYSOOO ACCESS APLIB(READ1)|19X=,SAU5V1' ,NEW
EXEC ASSEMBLE(LINK,NODECK)
ACCESS SDSABS
DELETE SDSABS(APTEXX)
DELETE SDSABS(APTEXY)
DELETE SDSABS(APCXX)
DELETE SDSABS(APCXY)
DELETE SDSABS(APKMXX)
DELETE SDSABS(APKMXY)
DELETE SDSABS(APOTXX)
DELETE SDSABS(APOTXY)
CONDENSE SDSABS

SYS002 ACCESS APLIB ,191=' SA1+5V1'
SYSIPT ACCESS AP(Al) ,191='SAl+5Vl'
APTEXX EXEC RLNKEDT(KEEP,SYS002,NOAUTO)

RENAME SDSABS(APTEXX,APTEXY)
RENAME SDSABS(APCXX,APCXY)
RENAME SDSABS(APKMXX, APKMXY)
RENAME SDSABS(APOTXX,APOTXY)
DELETE SDSABS(APTEST j
DELETE SDSABS(APCHI)
DELETE SDSABS(APKMSM)
DELETE SDSABS(APOTHR)
RENAME SDSABS(APTEXY,APTEST)
RENAME SDSABS(APCXY,APCHI)
RENAME SDSABS(APKMXY,APKMSM)
RENAME SDSABS(APOTXY,APOTHR)
RESET SYSLST
RESET SYSOOO
RESER SYSIPT
RESET SYSRDR
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JRED which is set to 5 for reading cards under format control.

These parameters are all placed in Common and are assigned the above

values at' the beginning of APMAIN, Program 1. Thus, if the user

wishes to alter any of these parameters the appropriate statements in

APMAIN must be altered and the phases deleted and linkage edited.

Writing of Extra Subroutines

All the data control parameters, FI, AA, NUM and FMT2, together

with a starting value for a generated sequence, if one is requred, ISTART,

and the data set reference numbers, IPRINT, IKED and JRED, are passed

into Common area. (Most of these parameters are described more fully in

Chapter 5). Therefore^if the user wishes to incorporatre these parameters

in one of his subroutines he must include the following statement.

COMMON FI(5), AA(9), NUM, FMT2(8), ISTART, IPRINT, IRED, JREE

The variable names, given in the above statement, must not be duplicated

in the subroutines but they can be assigned different names by using an

equivalence statement. If the subroutine is written in assembler

language the COM statement must be inserted instead of the COMMON statement.

This statement and its applications are described in IBM C28-6811-1.

Also, certain parameters must be passed to and from the subroutines

provided by the user, USER, READ1 and READ2, as these parameters are not

in Common.

The USER subroutine has three parameters:- USER(X, Y, IER)

where

X — is the input scalar from the subroutine KOLMO

Y is the output scalar to the subroutine KOLMO. This is the

probability that Z is less than X if Z has the distribution

function given by this subroutine.
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IER is the error code which is non-zero if there is. an error

in the input or output parameters (as shown in program 2k).

Otherwise there is no error and the error code is set

equal to zero. When the USER subroutine is used, the

error code must be set equal to zerd on entry to that

subroutine otherwise an error will be recorded.

The READ1 subroutine has three parameters:- READ1 (M,K, LL) where

M -— is the number of integers required in each data call

from a statistical test.

K is the output vector of M dimensions which returns the

requested data.

LL —- is an index which is either zero, if this is the first

data call from the test, or one in all other cases.

Subroutine READ2 has the same parameters as the subroutine READ1,

except the output vector, V, is of real numbers:- READ2 (M,V,LL)

Most statistical tests require one number per data call.

However the D2 test requires four numbers per data call and the poker

test requires M, where M can be between one and twenty. Therefore, when

a READ subroutine is written, it must provide the facility to obtain a

variable amount of numbers for each data call.

When writing a new statistical subroutine, the user must adhere

to the rules op the input parameters that are given in Chapter 5*

Format s

The number of data control parameters is fixed due to the dimensions

of the variables FI and AA which are five and nine respectively. Therefore,

if the number of parameters has to be increased, then the dimensions

of FI and AA would also have to be increased accordingly in all Common

statements. However these parameters can be read with a different format
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than that provided by the system, taking into account that FI is integer

and AA is real. The standard format is

(UlU, 110, 5F5.1, 2F9.1+, 2F5.1)

Thus, using the subroutine GETFMT, if the first half of the first card

of input parameters is blank, then the standard format is used.

However^if the first half of this card is not blank, that is, it contains
a format statement, this format is read in and used to read the succeeding

card which contains the data control parameters. The format statement

must include brackets and format symbols as shown above.

The user may wish to read the numbers to be tested from cards.

These should' be placed in the deck immediately after the card containing

the data control parameters for the test. Again, there is a format

provided by the system for reading these cards:

(5E1U.T)

On the other hand the user may wish to provide his own format to read

the cards. In this case, the last half of the first card of input

parameters is considered and the same proceedure is adopted as above.

The only difference is that the format required is read into Common

area, FMT2, and used later to read the data cards, If the cards are to

be read with a user's format, the parameter, NUM, must be assigned a

value. This parameter is the number of numbers on' each data card. The

value of NUM is placed between the two formats(described above, on the first

input parmaeter card and this is described in more detail in the next Chapter.
(Cress et al 1968)

By varying the parameter AA(8), the numbers to be tested may be

obtained from various sources. The sources, associated with the values

of AA(8), are described in the next Chapter.

The reader may wonder why the user step has not been extended to

include the adding of new tests and subprograms which would probably
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include several subroutines. One of the reasons is that there would

always be a limitation to the number of subroutines that could be

added. This is because this step depends on the number of dummy

subroutines available in the package. Since, for the subroutines to be

incorporated automatically, the relevant linkage editing control

statements must already be in a data set, of library AP. Another reason

is that the subroutines would not be in the package permanently. Hence,

with more than one user, it would be difficult to ensure the contents

of a particular dummy subroutine. Therefore,the procedure described

previously for adding subroutines permanently to the package must be

followed.
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The package is run with numbers obtained from a file on disc

using the following cards:

// 'jobname' JOB /users name' 'time of job in minutes'

// SYS003 ACCESS APOLLO, 192 = 'JHPSV3'

// bEXEC APTEST (b implies blank column)

sets of data cards

/*

/&

where the second statement accesses a data set called APOLLO on unit 3,

on disc JHPSV3 with disc drive 192. Unit 3 must always be used for a

file in this package (see data set reference numbers in Chapter U).

The names for the data set, the disc and the disc drive are those which

were employed for this work. These should be replaced by the parameters

of the user's own file which contains the numbers to be tested. This

ACCESS statement must be altered if the file is on a tape. If the

numbers to be tested are read from cards, there is no ACCESS card. These

cards are included for each test and are placed directly after the input

parameter cards for that test. Also, when cards are used, some data

control parameters have to be changed. However, if the numbers to be

tested are produced by a generator, the READ step is used and instead

of the ACCESS card, a set of Fortran and control cards to invoke this

option is included, (see READ step later) Also, certain parameters must

be changed. If an integer starting value is required for the generator,

it must be read in on a separate card. This card is placed immediately

after the last input parameter card of a test.

The third statement

// EXEC APTEST
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starts the execution of the package since APTEST is the name of the root

phase, (see Chapter U)

For further information on control cards see IBM C28 - 6812 and

IBM C28 - 6813.

If the numbers to be tested are to be stored in a file on disc, the

following statements should be used.

// 'jobname' JOB 'user's name' 'time of job'

// SYS003 ALLOC APOLLO, 192 = 'JHPSV3', 1000, FMT

// LABEL 360, 'time this data set expires'

// EXEC FORTRAN

Fortran program for producing the numbers

/.

// EXEC RLOADER

/*
I

Data cards

/. ;
/&

The second and third cards cause the data set, APOLLO to be assigned

1000 blocks of storage with each block containing 360 bytes. Since the

numbers are written unformatted into the data set, they each take up k

bytes, and thus, due to buffering, the quantity of numbers in each block

is fixed at 82. Hence, both of the DATA subroutines have been written

for 82 numbers per block.

The Numbers to be Tested

In general, the numbers to be tested are stored in a sequential

unformatted file on unit 3. This file may be on a disc or a tape. If

it is on a tape, some of the aforementioned job control statements
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concerning the allocation and accession of the data in a file on disc,

must be altered slightly. (IBM C28 - 6812, IBM C28 - 6813) The numbers

must be stored with 82 per record. These numbers may be multiplied by

the parameter AA(l) before use but this depends on the range of numbers

required in a test, (see later for definition of AA(.l.))

The numbers to be tested may be punched on cards and read under

format control. The total of numbers on a card is not fixed but must

be constant within a statistical test. Again, the numbers may be

multiplied by AA(l), before use, but this depends on the range of numbers

required in a test.

Finally, the user may provide his own way of obtaining data by

writing a subroutine. This subject is described under the Read step in

Chapters k and 5-

Format Codes

For all the three format codes I, F and E, any blanks within a field

are interpreted as zeros. A field is the number of columns on a card,

that is read positions, alloted to one variable. For the I format code

which has general form Iw, where w is the length of the field, the integer

variable should be right justified in that field. Thus if the digit 2

is read using the Ik format, its value would be assigned as follows

b b b 2 -v 2

b b 2 b 20
where b denotes a blank column

b 2 b b 200

2 b b b -v 2000

Therefore, the format UlU specifies that the first variable, say Fl(l),

is read from the first four columns, the second variable, say Fl(2), from

the next four columns, the third variable, say Fl(3), from the third four
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columns and the final variable, say Fl(U), from the columns numbered

13 - l6. Thus,to assign the values 1, 10, 2 and 5 to the above variables

respectively, the data card must be punched in the following way.

bbblbblObbb2bbb5

1 2 3 k 5 6 T 8 9 10 11 12 13 lh 15 16

The F format code, which is for real numbers, is of general form,

F w.d

where w is the length of the field and d is the number of places after

the decimal point, both of these parameters are integer variables. Thus

F5.1 indicates a field of length five with one place after the decimal

point. It should be noted that th<? decimal point can be included anywhere

in the field and it then overrides the position indicated in the format

statement. Therefore by punching the following on the data card:-

(1) b 1 0 . 0 (2) 10.0b

27 28 29 30 31 27 28 29 30 31

the variable, say AA(l), is assigned the value 10.0. Case (l) is

equivalent to the format F5.1 and case (2) is equivalent to F5.2 but

would still be accepted under the F5.1 format. There are similar rules

for the E format code which has the general form

E w.d

(IBM C28 - 6515 ~ 7)

Thus,care must be taken in punching data cards to ensure that the values

are in the correct columns.

DATA

A set of data cards must be included for each test. These cards

provide the input parameters in addition to any further information as

was described above.
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The first card in a set contains the parameters IN, NUM and JN in

that order. They are all integer variables with IN and JN arrays of

dimension eight.

IN This variable indicates which format is to be used to

read the next card. If IN contains a format this format is

used to read the next card otherwise the standard format is

used.

NUM — This variable is the total of numbers on a card if the

numbers to be tested are read from cards. It must have a

constant value within a test but may be altered for different

tests.

JN This variable indicates which format is to be used to read

the cards containing the numbers to be tested. A format

will always be assigned for this purpose even though the

numbers may not be read from cards. If JN contains a

format, this format is used, otherwise the standard format

is taken.

The values of IN and JN are read with AU format whereas the variable,

NUM, is read with ii format. Thus IN and JN each take up 32 columns of

a card and they are separated by the U columns containing the value of NUM,

This implies that 32 characters may be read into IN and JN but not more.

If a format is to be read into either IN or JN^it must contain all the

format symbols including brackets and commas but not the word FORMAT.

The first bracket of IN must be in column one of the card and the first

bracket of JN must be in column 37 of this card. If these formats, on

being used in a read or write statement, are made incorrect by the

omission of a necessary bracket or symbol, an error will occur. Also,

if these formats contain more than 32 characters an error will occur as
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the closing bracket will be missing. Thus^care must be taken to keep

within these restrictions when writing such formats.

On the other hand, if IN is blank, the systems format is used

to read the succeeding card. Similarly, if JN is blank, the same

procedure is adopted. The formats provided by the system for such

cases are listed below.

IN (UlU, 110, 5F5.1, 2F9.H, 2F5.1)

NUM 5

JN — (5E1U.7)

However, if either IN or JN contains a format statement, this is read

in and used to read the appropriate cards.

The second card in a set contains the parameters FI and AA, where

FI is an integer array of dimension five and AA is a real array of

dimension nine. When a new format is written to read these variables,

the user must remember that they are defined as integer and real

respectively, The meanings given to these parameters are listed below.

Fl(l) The test requested.

Each statistical test is coded so that the main program can

call the correct test.

The codes are as follows

0 End of run 6 Gap Test for random digits

1 Frequency Test 7 Runs Test up and down

2 Serial Test 8 Maximum Test

3 Poker Test 9 Minimum Test

b Gap Test 10 Sum Test

5 D2 Test

This parameter must be assigned a value for all tests, since

by default Fl(l)=0 and the run will be terminated.
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Fl(2) This is the number of times a test is repeated on a run-

This parameter must also be assigned a value for all tests

since by default, Fl(2)=0 and no test will be made.

FI(3) This is the sum of numbers requested in each data call by

a test. This parameter is only of importance in the Poker

test and must be assigned a value since Fl(3) is also the

total of numbers to be considered at each trial. Furthermore,

FI(3) must be less than or equal to twenty.

Fl(l+) This parameter is dependent upon the test being applied.

Sum, Maximum and Minimum Tests

For these statistical tests, which use the KS test, this

parameter is a code which shows the distribution function

to be used for comparison purposes. In this case FI(i+) must

be assigned a value and the codes are listed below.

1 Normal distribution function

2 Exponential distribution function

3 Cauchy distribution function

h Uniform distribution function

! Maximum of T numbers distribution function

Minimum of T numbers distribution function

Sum of 2 uniform random variables distribution function

Sum of 3 uniform random variables distribution function

Sum of k uniform random variables distribution function

Sum of 5 uniform random variables distribution function

Sum of 6 uniform random variables distribution function

User supplied distribution function

If one of the distribution functions with code 5 is used, a further

parameter, AA(5) must be specified. Also, if a subroutine containing
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a distribution function is permanently added to this package for using

in these statistical tests, it should have code 5.

Gap Test

For the gap test this parameter is the maximum length of a

gap. FI(U) must be assigned a value which is chosen in

conjunction with the parameters FI(5) and the probabilities

given in Chapter 2. This gives an expected number of

occurrences of each gap length which must be greater than

or equal to five.

Runs Test

For this test FI(U) must be assigned a value since this

parameter shows whether the runs are to be made up or down

(as described in Chapter 2).

FI(U) = 0 Runs up

1 Runs down

Thus^by default,if FI(U) is blank or zero^this test will be
performed for runs up.

Fl(5) This is the number of trials for each test which must be

included for all tests. Otherwise by default Fl(5)=0 and

no proper test will occur. In the gap test this is the

number of gaps to be found.

AA(l) This is the base of the number system for the numbers that

are to be used in the statistical test. AA(l) is used in

calculating the probabilities for the x2 test as well as for

bringing the numbers to be tested into the correct range.

If the numbers are not in the correct range and if AA(8)=

0.0 or 2.0 (described later) the numbers are multiplied by

AA(l) to bring them into the correct range. If the numbers
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are in the correct range and if AA(8)=1.0 or 3-0 the numbers

are left unchanged. In both cases AA(l) must be specified

to ensure a base is present if one is required.

If the numbers are not in the correct range and their base

does not bring them into the required range, then the

numbers should be adjusted. It should be remembered that

AA(l) is used in the x2 test according to the rules given

in Chapter 2. By default if AA(l) is blank or zero it is

reassigned the value 1.0, that is AA(l)=1.0.

AA(2)=1.0 implies that the file of numbers to be tested is rewound.

The user cannot assume that the file will be at its load

point (beginning) whenever a new run is applied.

5^1.0 implies that the file of numbers to be tested is not

rewound. By default AA(2)=0.0 and the file is not rewound.

AA(3) This gives the position of the record from which the numbers

to be tested are read. If it is blank or zero, then by

default the next record is used.

AA(1+) This informs the data subroutines which numbers are to be

used. That is,whether every number or every Kth number from

each record is tested. AA(k ) must have a value of less

than or equal to 82 and if it is blank or zero, then by

default every number is tested.

AA(5) This parameter is dependent upon the test being applied.

Sum, Maximum and Minimum Tests

When these statistical tests are used and Fl(^)=5,this

parameter is also a code. This code enables the user to

specify which distribution function is to be used for

comparison purposes. A list of the codes is given below.
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1.0 Distribution function for the Maximum of T numbers at

a time

2.0 Distribution function for the Minimum of T numbers at

a time

3.0 Distribution function for the Sum of 2 uniform random

numbers

k.O Distribution function for the Sum of 3 uniform random

numbers

5.0 Distribution function for the Sum of k uniform random

numbex-s

6.0 Distribution function for the Sum of 5 uniform random

numbers

7.0 Distribution function for the Sum of 6 uniform random

numbers

8.0 User supplied

If any extra distribution functions are added permanently

to the packagejthe value for this parameter should be greater

than 8.0 and AA(6) and AA(7) may be defined as required.

Gap Test

When the gap test for random numbers is applied, this parameter

is the lowest end of the gap as defined in Chapter 2.

Gap Test for random digits

When this test is applied AA(5) is the significance level

for this test which, by default, has a value of 0.05>

AA(6) This parameter is dependent on the test being applied.

Maximum, Minimum and Sum Tests

When these statistical tests are applied, AA(6) is an extra

parameter. Its meaning depends on the subroutine which is
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to be used for comparison purposes.

If

Fl(l+) = [~1 AA(6) is the mean of the normal distribution

to be considered.

! AA(6) is the mean of the exponential

distribution to be considered.

Fl(U) 88 3 AA.(6) is the median of the Cauchy distribution

to be used.

Fl(U) = U AA(6) is the left end point of the uniform

distribution to be used.

Fl(U) = 5 and AA(5)=1>0 AA(6) is the total of numbers (T)

considered in each trial for the

maximum test.

AA.(5)=2.0 AA(6) is the total of numbers (T)

considered in each trial for the

minimum test.

AA(5)-8.0 AA.(6) is user specified.

When AA(5)!=3.09 U.O, .... 7»0 then AA(6) need not be defined

as the subroutines requested by these codes require no extra

parameters.

Gap Test

When the gap test for random numbers is applied,this parameter

is the highest end of the gap.

Gap Test for random digits

When this test is appliedJAA(6) is the value of the variable
with a normal (0,1) distribution for the above level of

significance, AA(5)* By default this is 1.96 which is for

application to a two-sided test as described in Chapter 2.
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AA(7) This parameter is dependent on the test being applied.

Maximum, Minimum and Sum Tests

When these tests are applied,AA(7) is an extra parameter

which depends on the distribution function which is to be

used for comparison purposes.

For

FI(!+) = 1 then AA(7) is the standard deviation of the

normal distribution to be considered and

should be positive.

FI(1) = 2 then AA(7) is the standard deviation of the

exponential distribution to be considered

and should be positive.

Fl(1) = 3 then AA(6) minus AA(7) specifies the first

quartile of the Caqchy distribution to be

considered, again it should be positive.

Fl(l) = U then AA(7) is the right end point of the

uniform distribution and should be greater

than AA(6).

Fl(1) = 5 and AA(5)38.0 then AA(7) is user specified

otherwise when AA(5) < 8.0

then AA(7) is not defined since

these distributions require no

extra parameters.

Gap Test for random digits

When this test is applied,AA(7) is the value of a variable

with a normal (0,1) distribution for the above level of

significance, AA(5)- By default this is 1.625 which is for
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application to a one sided test as described in Chapter 2.

This parameter shows how the numbers to be tested are obtained.

0.0 The numbers are read from an unformated sequential file

on unit 3 and there are 82 numbers per record. Each

number is multiplied by AA(l) before use.

1.0 The numbers are read from an unformatted sequential file

on unit 3 and there are again 82 numbers per record.

The numbers are used without alteration.

2.0 The numbers are read from cards under format control

and NUM is the total of numbers per card. Each number

is multiplied by AA(l) before use.

3.0 The numbers are read from cards under format control

and NUM is the total of numbers per card. The numbers

are used without alteration.

U.O Optional.

The us^r may decide how the numbers are obtained by

supplying his own subroutines for READ1 and READ2.

By default, when AA(8) is blank, the data is assumed to come

from a sequential unformatted file.

This parameter shows whether a starting value, for a generator,

is required to be read in.

AA(9) = 0.0 no number is read in

^ 0.0 a number is read in

Thusjif AA(9) is blank or zero, by default no number is read

in.

If AA(8) >s= 1+.0 then AA(9) can be ^ 0*0 but

If AA(8) < k.O then AA(9) must be qqual to 0.0.
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If a starting value has to be read in, then it must be on the

third card in a set and is read in under the 110 format. If the numbers

to be tested are read from cards, then these cards should be included

immediately after the second data card. To terminate a run, one blank

card followed by a card with Fl(l) equal to zero should be inserted at

the end of all the data cards.

If a user writes a new test and includes it permanently in the

package, according to the rules given in Chapter U, then only four of

the above parameters must have the same meanings. These are Fl(l),

AA(2), AA(3) and AA(9) as they are all used in the main program, APMAIN.

However, if the DATA subroutines are called by the user's test, then

the parameters AA(l), AA(1+) and AA(8) must also have the same meanings

as given above. Furthermore, when the KS test is used in a subroutine

the parameters AA(5), AA(6) and AA(T) must have the meanings defined

above.

If any parameters are left blank, then these parameters will be

taken as zero. In some cases, as explained previously, there is a

default option whenever the parameter is zero. However*in the remaining

parameters, if they are zero and are required, an error in calculations

will be caused. In most cases*the value of FI(5) should be large

enough to ensure that the expected frequencies are greater than or equal

to five. Thus, it is advisable to follow this rule unless stated

otherwise.

The parameters required by each particular statistical test are

indicated below.

Frequency Test

The following parameters must be specified.



69

Fi(i) =

FI(2) =

FI(5) =

AA(l) —

AA(2)

AA(3)

AA{k)

AA(8)

AA(9)

The number of times that this test is repeated.

The number of trials in each test which must be greater

than 5 x AA(l).

This parameter must be specified and it is used if the

integers are not in the range of numbers required. The

maximum value of AA(l) is 1000 as the maximum number of

different integers or categories is 1000. If the numbers

to be tested are uniform random variables between zero and

one, then AA(l) must not be 0.0 or 1.0 since then, the

integers obtained would be all zero.

These may be specified but all have a default option, as

described previously. Thus, if they are all zero (or blank)

the file of numbers is not rewound, the next record is read

and all numbers are used, each number being read unformatted.

If the numbers to be tested are from a file, the user cannot

assume that the file is set at its load point. Therefore

when the first test is applied in a run, the file should be

rewound and then moved to the particular record required.

This parameter must be specified if an integer starting

value is required.

Serial Test

The parameters to be specified for the serial test are the same

as those for the frequency test except that

Fl( 1) = 2

and the maximum value AA(l) is 50.
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Poker Test

The parameters to he specified for the poker test are the same

as those for the frequency test except that

Fl(l) = 3

and the parameter Fl(3) must also he specified. The parameter supplies

the total of numbers considered in each trial and has a maximum value

of twenty.

Gap Test for real numbers

The parameters to he specified for the gap test are the same as

those for the frequency test except that

Fl(1) = k

and the parameters FI(b), AA(5) and AAI.6) must be specified. These

parameters give the end points of the gap length considered in this

test and the maximum length of a gap which must he less than 20. It

should be remembered that as a gap of length zero is possible, then

the number of categories is one more than the maximum length of a gap.

In addition, the parameter Fl(5) has a slightly different meaning in that

it is the number of gaps to be found before the test terminates.

D2 Test

The parameters to be specified for the D2 test are the same as

those for the frequency test except that

FI(1) = 5

Gap Test for digits

The parameters to be specified for the gap test for random digits

are the same as those for the frequency test except that

FI( 1) = 6

and the parameters AA(5), AA(6) and AA(7) must also be specified.
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These parameters provide the significance level of this test and the

appropriate normal values for this significance level. The maximum

value of AA(l) is 1000.

Runs Test

The parameters to "be specified for the runs test are the same as

those of the frequency test except that

FI(1) = 7

Also, Fl(l+) must be specified if runs down are required and FI(5) should

be greater than or equal to U,000.

Maximum Test

The parameters to be specified for the maximum test are the same

as those for the frequency test except that

Fl(l) = 8

and the parameters Fl(i+), AA(5)S AA(6) and AA(7) must also be specified

according to the rules given previously. These parameters indicate the

theoretical distribution which is to be compared with the empirical

distribution. The maximum value of Fl(5) is 5»000.

The Sum Test and the Minimum Test have the same parameters as the

maximum test except that

FI (1) = 9 for the minimum test

and

Fl(l) = 10 for the sum test

In the statistical tests the maximum values indicated above are

due to the limitation of storage space. Thus^if more core store is

available,these maximum values can be raised by increasing the appropriate

dimensions in the relevant subroutines.
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USER and READ Step

To invoke the user option, that is, for the user to supply his

own subroutine with a distribution function in the maximum, minimum

and sum tests, the following cards must be inserted after the JOB card.

//SYSRDR ACCESS AP(USER) ,191='SAl+5Vl'

/*

Fortran

Subroutine Cards

This operation was described in Chapter U, the resultant effect

being that this user's subroutine is compiled and stored under the name

USER in the library APLIB. Thus,if the parameters are set correctly,

the above subroutine can be employed in a test. The relevant parameters

should be set as follows.

FI(U) - 5 AA(5) = 8.0

The same control cards are used to invoke the READ1 and READ2

options. The only differences being that AP(USER) is replaced by

AP(READl) or AP(READ2) and that these subroutines must be written in

Assembler language. The subroutines READ1 and READ2 are present in order

that the user may supply his own generator to produce numbers. These

subroutines are usually written in Assembler language and the rules for

writing them are described in the last Chapter. (see Writing of

Subroutines) The relevant parameters^which must be set for the READ1
and READ2 options, are:-

AA( 8) = k.O AA(9) = 1.0 if a starting value is

required.

0.0 otherwise.
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The only difference between the READ1 and READ2 subroutines is

that they are called from different tests with READ1 providing integer

numbers and READ2 real numbers. For the USER and READ subroutines

provided by the user, the variables AA(6) and AA(7) can be used for

input of any extra parameters which may be required.

Error Codes

Most statistical tests have an associated error code, IER. For

those tests which use the KS test and thus the subroutine KOLMO, that

is the maximum, minimum and sum tests, the error code is as follows

IER — is non-zero if the input parameters violate the conventions

of the subroutine KOLMO. (For these conventions see Program 3)

— is set to zero if no violations occur.

For the remaining tests that use the x2 test, which is applied using the

subroutine CDTR, the error code is as follows

IER = 0 No Error

-1 Input parameter is invalid

_ +1 Output parameter is invalid

(For further information see Program 2)

Example

An example of the data cards employed for a run of two statistical

tests is given in Diagram 15.

The first data card is blank which means that the system formats

are used to read any subsequent cards for this test. Thus,the second

card is read with the following format

UlU, 110, 5F5,1, 2F9.1+, 2F5.1

These parameters imply that the poker test should be applied.

This test is repeated twice with 100 trials in each test and with five



numbers in each trial. Since the poker test is being executed the

numbers to be tested are integers and as AA(l) = 10.0 and AA(8) = 0.0

they are in the range zero to nine. The numbers are obtained from a

file which is rewopnd and9by default?the next record in the file (in

this case it is the first record) is read and every number is used.

Since the third data card contains the format

(klkt T5, 15, 5F5.1, 2F9.U, 2F5.1)

the fourth card is read with this format. The parameters on the fourth

card imply that the second test to be applied is the maximum test. This

test is repeated once with 200 trials and two numbers in each trial.

The maximum test uses the KS test and as Fl(ij-) = 5 and AA(5) = 8.0 the

theoretical distribution used for comparison purposes, is user supplied.

Since AA(l) = 1.0 and AA(8) = 0.0 the numbers to be tested are between

zero and one and are stored in a file which is not rewound. The next

record is read and every number is used.

The last two data cards ends this run as Fl(l) is set to the

value zero.
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CHAPTER VI. APPLICATIONS.

To demonstrate the applicability of this package for testing

numbers, several runs of statistical tests were applied to four different

generators.

1. RNDMIN

The first ?et of tests is concerned with a set of numbers produced

by an IBM random number generator which has been adapted for use on the

installation in St. Andrews. The method for obtaining data is of the

power residue type and takes the residues of the successive powers of

a given number. For example

yn (mod m) for n - 1, 2, ...f.f

(IBM GC 20-8011-0)

The numbers obtained from this generator are between zero and one

and they were stored in an unformatted file on disc. All the statistical

tests that have previously been described were applied and the results

are given on the succeeding pages. These results are then summarized in

Table 1.
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THEFREQUENCYTEST THENUMBEROFTRAILSIS1000REPEATED5TIMES

If***********

THENUMBERINEACHCATEGORYIS 93.00109.0095.00112.00111.0085.0093.CG89.0088.00120.CO
THECHI-SQUAREDVALUEIS0.1313989E02WITH9.00CEGRECSOFFREEDOM. THEPRQBILITYOFAWORSEVALUEOFCHI-SQUAREIS0.1563777 THEERRORCODEIS0 THISDATAISCONSIDEREDTOBERANDOM THENUMBERINEACHCATEGORYIS 106.0088.0099.00108.00116.0081.00109.CC97.CO101.CC95.00

THECHI-SQUAREDVALUEIS0.9779785E01WITH9.00DEGREESOFFREEDOM. THEPROBILITYOFAWORSEVALUEOFCHI-SQUAREIS0.3686053 THEERRORCODEIS0 THISDATAISCONSIDEREDTOBERANDOM THENUMBERINEACHCATEGORYIS 89.OC98.0097.00120.00107.00103.00•88.00113.0090.0095.00
THECHI-SQUAREDVALUEIS0.1029980E02WITH9.00DEGREESOFFREEDOM. THEPROBILITYOFAWORSEVALUEOFCHI-SQUAREIS0.3267640 THEERRORCODEIS0 THISDATAISCONSIDEREDTOBERANDOM THENUMBERINACHCATEGORYIS 90.0094.00108.00100.00107.00116.0090.00101.00103.0091.00
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11.07.06.012.05.08.018.012.09.012.014.07.0 11.013.014.08.08.012.07.013.08.014.08.06.0 12.09.015.010.013.09.011.013.09.06.08.09.0 9.09.06.04.09.012.013.012.07.010.07.014.0 7.06.08.08.011.010.011.015.014.09.011.011.0 13.05.09.011.05.013.013.08.012.018.05.012.0 10.010.012.09.014.012.011.011.010.010.0
THECHI-SQUAREDVALUEIS0.8929980E02WITH99.00CEGREESOFFREEDOM THEPROBABILITYOFAWORSEVALUEOFCHI-SQUARECIS0.747. WITHERRCRCODE0 ThISDATAISCONSIDEREDTOBERANDOM THENUMBERINEACHCATEGORYIS 7.011.09.06.0>.08.06.010.06.010.06.08.012.01C.010.0 8.016.011.07.011.08.014.06.013.016.010.011.012.012.016.0 14.016.011.09.010.011.08.011.017.013.07.09.07.07.013.0 14.06.015.09.07.06.012.08.012.014.015.07.08.08.013.0 13.011.09.09.011.08.08.07.07.011.013.019.06.011.06.0 8.08.012.08.012.08.08.011.010.09.08.05.015.07.016.0 6.010.08.010.012.010.06.013.06.09.0

THECHI-SQUAREDVALUEIS0.9569995E02WITH99.00DEGREESOFFREEDOM THEPROBABILITYCFAWORSEVALUEOFCHI-SQUAREDIS0.5752 WITHERRORCODE0 THISDATAISCONSIDEREDTOBERANDOM THENUMBERINEACHCATEGORYIS 7.08.012.07.010.012.07.014.07.012.09.013.012.012.05.0 7.07.07.013.07.06.013.07.08.09.011.09.09.09.014.0 14.09.08.06.016.06.06.08.011.08.07.05.014.015.013.0 8.09.015.016.09.08.015.010.013.010.09.011.03.08.05.0 10.07.012.08.010.07.09.08.012.015.08.014.011.011.09.0
8.06.012.0 5.016.011.0 9.011.09.0 5.011.010.0 8.06.06.0 12.08.013.0
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9.010.011.08.011.011.010.011.0 11.014.014.011.011.08.010.07.0
THECHI-SQUAREDVALUEIS0.8229980E02WITH99.0U THEPROBABILITYLFAWORSEVALUEOFCHI-SQUAREDIS WITHERRCPCODE0 THISDATAISCONSIDEREDTOBERANDOM

13.012.013.011.012.0 9.016.0 DEGREESOFFREEDOM 0.8874

9.010.0

?}cJjc$sj<3{;3jc£•$.%5j<sfif?J;if%ifif£s{cif.

************************

THEPOKERTEST THENUMBEROFTRIALSIS1000TAKEN5ATATIMEANDREPEATED2TIMES ***********»*«**»*****&**-»«***«**« THENUMBERINEACHCATEGORYIS 0.010.00189.00528.00273.00 STIRGLING'SNUMBERSFORTHEVALUE5ARE 11525101
THECHI-SQUAREDVALUEIS0.5404S41L01WITH3.00CEGREESOFFREEDOM THEPROBABILITYCFAWORSEVALUEOFCHI-SQUAREDISC.I445 WITHERRORCODE0 THISDATAISCONSIDEREDTOBERANDOM THENUMBERINEACHCATEGORYIS C.O7.00178.00511.00304.00 STIRGLING'SNUMBERSFORTHEVALUE5ARE 11525101_____

THECHI-SQUAREDVALUEIS0.3331299E01WITH3.00DEGREESOFFREEDOM THEPROBABILITYCFAWORSEVALUEOFCHI-SQUAREDIS0.3433 WITHERRORCODE0 THISDATAISCONSIDEREDTOBERANDOM
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THE TMP

GAPTEST MIIMRPBDPTIvTA1CIC1nnnQPDPATPP
2TIMcQ

1r1C THE

INUnDtKi)r1MALoIoLUOUKlrlAItu GAPISBETWEEN0.0AND0.50
21InuJ

THENUMBERINEACHCATEGORYIS 267.00118.0067.0027.0018.006.005.CO6.00 486.00
THECHI-SQUAREDVALUEIS0.5051758E01WITH8.0DEGREESOFFREEDOM THEPROBABILITYCFAWORSEVALUEOFCHI-SQUARFIS0.7520301E00WITHERRORCODEC THISDATAISCONSIDEREDTOBERANDOM THENUMBERINEACHCATEGORYIS 261.00116.0069.0028.0017.007.001.002.CO 499.00

THECHI-SQUAREDVALUEIS0.5445801E01WITH8.0DEGREESOFFREEDOM THEPROBABILITYCFAWORSEVALUEOFCHI-SQUAREIS0.7090371E00WITHERRORCOLEC THISDATAISCONSIDEREDTOBERANDOM THENUMBERINEACHCATEGORYIS 239.00112.0057.0032.0012.007.0012.007.00 822.00
THECHI-SQUAREDVALUEIS0.2345190E02WITH8.0DEGREESOFFREEDOM THEPROBABILITYCFAWORSEVALUEOFCHI-SQUAREIS0.2830148E-02WITHERRORCODEC THISDATACANNOTBECONSIDEREDRANDOM
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%%jf*$%«■**■»##**#««»#-»*«***&
HitU5UUAKtUItSt THEnumberOFTRAILSIS1000REPEATED

1

TIMES

thenumberineachcategoryis 221.oc175.00159.00105.0087.00 73.0067.0036.0027.0022.00 14.007.003.003.001.00 0.00.00.00.00.0
thechi-squarevalueis0.1039453e02with19.0degreesoffreedom theprobabilitycfaworsevalueofchi-squareis0.9425329e00witherrorcodec thisdataisslightysuspectofnotbeingrandom thegaptestforrandomdigits thenumberoftrailsis2000thetestisat0.0500levelofsignificance 1395.01997.01983.01986.01989.0 1978.c1399.01996.01990.02000.0 43041.c34327.037837.031360.032111.0 404g6.039997.034938.036372.046210.0 182216189219230 194189200205176

fordigit1themeanis10.96whichisnctsignificantlydifferentfromtheexpectedmean
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AT0.5C0C0G0E-01LEVELOFSIGNIFICANCE. THEVARIANCEFAILSTHETESTWITHVALUE0.1163337E03 FORDIGIT2THEMEANIS9.25WHICHISNCTSIGNIFICANTLYDIFFERENTFROMTHEEXPECTEDMEAN ATC.50CC000E-01LEVELGFSIGNIFICANCE. THEVARIANCEIS73.444WHICHISNOTSIGNIFICANT FORDIGIT3THEMEANIS10.49WHICHISNOTSIGNIFICANTLYDIFFERENTFROMTHEEXPECTEDMEAN AT0.5C0C000E-01LEVELOFSIGNIFICANCE. THEVARIANCEIS90.112WHICHISNOTSIGNIFICANT FORDIGIT4THEMEANIS9.07WHICHISNOTSIGNIFICANTLYDIFFERENTFROMTHEEXPECTEDMEAN ATG.5CCC000E-01LEVELOFSIGNIFICANCE. THEVARIANCEIS60.959WHICHISNOTSIGNIFICANT FORDIGIT5THEMEANFAILSTHETESTOFSIGNIFICANCEWITHVALUE0.8647825E01 THEVARIANCEIS64.828WHICHISNOTSIGNIFICANT FORDIGIT6THEMEANIS10.20WHICHISNOTSIGNIFICANTLYDIFFERENTFROMTHEEXPECTEDMEAN AT0.5COCOOOE-01LEVELOFSIGNIFICANCE.
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THEVARIANCEIS104.322WHICHISNOTSIGNIFICANT FURDIGIT7THEMEANIS10.58WHICHISNOTSIGNIFICANTLYDIFFERENTFROMTHEEXPECTEDMEAN AT0.5C0C000E-01LEVELCFSIGNIFICANCE. THEVARIANCEIS59.757WHICHISNOTSIGNIFICANT FORDIGIT8THEMEANIS9.98WHICHISNOTSIGNIFICANTLYDIFFERENTFROMTHEEXPECTEDMEAN AT0.500COOOE-OlLEVELOFSIGNIFICANCE. THEVARIANCEIS75.090WHICHISNOTSIGNIFICANT FuRDIGIT9THEMEANIS9.71WHICHISNCTSIGNIFICANTLYDIFFERENTFROMTHEEXPECTEDMEAN ATO.DOCCOOOE-OLLEVELCFSIGNIFICANCE. THEVARIANCEIS83.192WHICHISNOTSIGNIFICANT FORDIGIT10THEMEANIS11.36WHICHISNCTSIGNIFICANTLYDIFFERENTFROMTHEEXPECTEDMEAN ATC.5C0CO00E-01LEVELOFSIGNIFICANCE. THEVARIANCEFAILSTHETESTWITHVALUE0.1334244E03 ##̂if££ififif*:(ca}:ififififIfifififififififif^ifififififififififIfifififif%1fifififififif THERUNSTEST THENUMBEROFTRAILSIS4000REPEATED2TIMES
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RUNSUP 693.OC801.00376.0099.0030.005.00
THECHI-SQUAREDVALUEIS0.5529838E01WITH6.00DEGREESOFFREEDOM THEPROBABILITYCFAWCRSEVALUEOFCHI-SQUAREIS0.4779 WITHERRCRCODE0 THISDATAISCONSIDEREDTOBERANDOM 675.00812.00380.00104.0023.005.00

THECHI-SQUAREDVALUEIS0.2037051E01WITH6.00DEGREESCFFREEDOM THEPROBABILITYCFAWORSEVALUEOFCHI-SQUARLIS0.9163 WITHERRORCODE0 THISDATAISSLIGHTYSUSPECTOFNCTBEINGRANDOM te««<c<nnnst{i5{<n««in!«««st»»««{»»*stutsiinumttnnssnJ^
THERUNSTEST THENUMBEROFTRAILSIS4000REPEATED2TIMES RUNSDOWN 686.00T87.G0390.00108.0020.006.00

THECHI-SQUAREDVALUEIS0.6790687E01WITH6.00DEGREESOFFREEDOM THEPROBABILITYCFAWORSEVALUEOFCHI-SQUAREIS0.3406 WITHERRCRCODE0 THISDATAISCONSIDEREDTOBERANDOM
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677.0C815.00382.0098.0026.004.00
THECHI-SQUAREDVALUEIS0.2517718E01WITH6.00DEGREESOFFREEDOM THEPROBABILITYCFAWORSEVALUEOFCHI-SQUAREIS0.8665 WITHERRORCODEC THISDATAISCONSIDEREDTOBERANDOM THEMAXIMUNTEST THENUMBEROFTRAILSIS300REPEATED3TIMES.THENUMBERINEACHTRAILIS3 THEPROBABILITYCFTHESTATISTICBEINGGREATERTHANOREQUALTO0.1128179E01 IFTHEHYPOTHESISISTRUEIS0.I567805E00WITHERRORCODE0 THISDATAISCONSIDEREDTOBERANDOM THEPROBABILITYCFTHESTATISTICBEINGGREATERTHANOREQUALTO0.581L216ECO IFTHEHYPOTHESISISTRUEIS0.3882495E00WITHERRORCODE0 THISDATAISCONSIDEREDTOBERANDOM THEPROBABILITYCFTHESTATISTICBEINGGREATERTHANOREQUALTO0.60154730CO IFTHEHYPOTHESISISTRUEIS0.8622274E00WITHERRORCODE0 THISDATAISCONSIDEREDTOBERANDOM *v❖$*■.•**̂❖£❖$$*f*%££*£*̂$**£**$*̂tf❖*£❖**«■»«■asn*

«****■******»***-#***»*•*«»*•»****■***•»*
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WIMTW|!WTPQT
\nl THE

! •It>|IrUfIIOi NUMBEROFTRAILSIS
400REPEATED

4TIMES.THENUMBERINEACHTRAILIS
4

THEPROBABILITYCFTHESTATISTICBEINGGREATERTHANOREQUALTO0.6234658ECO IFTHEHYPOTHESISISTRUEIS0.8317724E00WITHERRORCODEC THISDATAISCONSIDEREDTOBERANDOM THEPROBABILITYCFTHESTATISTICBEINGGREATERTHANOREQUALTO0.1C40580E01 IFTHEHYPOTHESISISTRUEIS0.2290134E00WITHERRORCODE0 THISDATAISCONSIDEREDTOBERANDOM ***#**#*•-ft************************** THEPROBABILITYOFTHESTATISTICBEINGGREATERTHANOREQUALTO0.852L736ECO IFTHEHYPOTHESISISTRUEIS0.4620239E00WITHERRORCODE0 THISDATAISCONSIDEREDTOBERANDOM THEPROBABILITYOFTHESTATISTICBEINGGREATERTHANOREQUALTO0.5027854E00 IFTHEHYPOTHESISISTRUEIS0.9621357E00WITHERRORCODE0 THISDATAISSUSPECTUFNOTBEINGRANDCM ^^^^^^^^^5^^^^^^^^^^+^^^v3r3l!3r^43!3*3r^3!3^3:=*^*t-3r3!3^3r*4*3!-******353*3!=^*^3i5****t-3!!3!=3i!3!33!'3}:*;S!3!:3i:*34:3!=**^*3!:3(!3!33{!*4*^^***3>3«::!!***!!'3!!:«!*
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TABLE 1

TEST NUMBERS

Genera¬
tor

RNDMIN

Starting
value

1 2 3 k 5 6 7
'

UP
7

DOWN
8 9 10

971^63237 AAAAA AAAA AA
bm

AAA
B A AB AA AAA AAAC AA

9632114512 ABA CA AA
am

BAA
AA A ABA CAA AAA AD BAA

883296567 AA ACA AAAB
bm
AA

CDA A AACA A CBA ABBA ABB

79236598 AA AAAA BA
bm
CA

CAA A AACA AA AAA AAAA AAA

where the letters

'A' signifies random

'B' signifies slightly suspect of not being random

'C' signifies suspect of not being random

'D' signifies not random

and the letters

'am' signifies above the mean

'bm' signifies below the mean

The assigned 'test numbers' are the same as those described in Chanter 5

under the section called DATA.

From the above table, it is evident that the numbers produced by

this generator pass the tests well and are hence random. However, if

an application concerned a particular attribute then further testing

on this generator about this attribute would be advisable.

2. KLRAND

The second application illustrated in this work concerns a

multiplicative congruential nseudo-random number generator which is

attributed to D. H. Lehmer and is of the form:

Y^+1 = AY^ (mod p)
(J. Whiltlesey)
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This generator has also been adapted for use on the installation in

St. Andrews. The numbers obtained from this generator are integers
31

between 1 and 2 - 1. However, for the purposes of testing, they

were multiplied by a real constant to bring them into the range zero

to one. The numbers were stored on a disc and all the previously

mentioned statistical tests were applied. A summary of the results

is given in Table 2.

TABLE 2

Genera¬
tor

KLRAND

TEST NUMBERS

Starting
Value

1 2 3 1+ 5 6 7
UP

7
DOWN

8 9 10

932165W7 AA CCA AAAA
bm
AA

AAA A AAAA A AAA AABB AAA

563987231 ACA DA AA
am

AAD
AA A BAA AAA ACAA AA AAAA

21+1376785 DAACA BAAA AA
bm

AAC
A A BA AC AAA BACB AA

79321651+8 AA CAAB AA
bm
AA

AAB A AAAA AA AAA AAB AAC

From the above table, it can be seen that this generator gives

better results for some of the tests than the previous generator but

for others it is not as good. However, it seems to mass the tests

satisfactorily although there are one or two bad results. Thus for

general purposes, this generator appears adequate. Again, for tests

concerning particular attributes^this generator should be investigated

more thoroughly.

3. The SINE Function

In general the SINE function is not considered to give very

satisfactory random numbers due to its cycling property. For this

reason it was chosen as an illustration example since the statistical

tests must be able to pick out bad random number sequences as well as
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good ones.

After each sine value has been calculated it is stored as a random

number. This value is then multiplied by a hundred and the resultant

residue modulo ninety is used as the next argument for the sine function.

The numbers obtained from this generator are between zero and one. The

statistical tests are all applied to these numbers and the results are

summarized in Table 3-

TABLE 3

Genera¬
tor

SIN

From Table 3 it can be seen that in all tests this generator gives

very bad results. Thus^this form of the sine generator cannot be

considered as a random number generator.

This generator may be altered to give slightly better results but

on the whole the sine function would not -provide a satisfactory random

number generator

U. The Fibonacci Sequence

Although Fibonacci sequences are fairly easy to generate^they are

considered to give bad random numbers because of short ueriods. For

this reason, a Fibonacci generator was devised and used as an example

in this work. In general two numbers X and X , are considered at a
n n-1

TEST NUMBERS

Starting
Value

1 2 3 if 5 6 7
UP

7
DOWN

8 9 10

20.0 DD DDDD DD
bm
DD

DDD D DDDD DD DDD DDDD DDD

35-0 DDDDD DDDD DD
bm

DDD
D D DD DD DDD DDDD DD

50.0 DD DDD DDDD
bm
DD

DDD D DDDD D DDD DDDD DDD

70.0 DDD DD DD
am

DD
DD D DDD DDD DDDD DD DDDD
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time and. the generator takes the form

X
^ = (X + X .) (mod m)n+1 n n-1

In order that the generator may be used in this example, both

X and X . are double precis ion real numbers. After they have been
n n-1 - J

added together they are stored in a double register and the middle four

bytes extracted. Before this resulting number can be used, it has to

be normalised and then adjusted to lie between zero and one. This is

implemented by overwriting the exponent part of that number with the

appropriate exponent to bring it into the required range. The number

obtained is a single precission real number and is stored in a file on

disc. The remaining numbers are obtained by repeating the above process

for xn+2» ^n+3» etcetera. The results from applying all the statistical
tests in the package to these numbers are summarized in Table b.

It was found with test U, the gap test, that the quantity of

numbers in the file had to be increased greatly, or alternatively, the

number of gaps to be found reduced drastically to obtain results. Due

to the time available and storage facilities, the latter course was

adopted. However, more extensive testing could be carried out in this

region especially with the second starting value.

TABLE U

TEST NUMBERS

Genera¬
tor

Fibonacci

Starting
Value

1 2 3 5 6 7
UP

7
DOWN

8 9 10

35^321.98
799632

DDD DD DD
bm

DDD
DD D DDD DDD DDDD DD DDDD

96.321U578
55671

DD DDD DDDD
bm
AB

DDD C DDDD D DDD DDDD DDD

35^3.2198
799632

DD DDDD DD
bm

DD
DDD D DDDD DD DDD DDDD DDD

123.865^7
321883

DDDDD DDDD DD
am

DDD
D D DD DDD DDD DDDD DD
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From the above table it can be seen that in most tests, this

generator gives very bad results. Thus overall this Fibonacci generator

does not give satisfactory random number sequences. There are other

Fibonacci generators that give better overall results, however, those

tests which are concerned with periodicity still give rise to unsatisfactory

random behaviour. Thus, for most cases, the Fibonacci generators

would be best avoided in nroviding random numbers.



CHAPTER VII. FUTURE DEVELOPMENTS.

Addition of more tests

It is hoped that in the future more tests may be added to this

package. These may include further empirical tests but should also

include some theoretical ones. Theoretical tests cover a wide range

of study, for example, in the study of the periods of a generated

sequence (E. Bofinger et al 1961, S. Yamada 1961), in serial correlation

(M. Greenberger 1961), in autocorrelation (B. Jannson I96U) and in the

study of the moments of a sequence (D. Teichrpew 1965)• Another useful

theoretical test is the Fourier analysis, not only of the generator

itself, but of the autocorrelation function. This analysis may give

more insight into hidden cycling. (E.S. Page 1967, R. Conveyou et al 1967)

Improvement of Package

This package could have been improved, if more time had been

available, by the addition of certain extra techniques. These include

the facility for the user to define his own dimensions.

Another technique, for use in the saving of storage space, involves

the incorporation of as many variables as possible into common areas.

Thus arrays and indices in one test may use the same storage space as

that used in another test. A further way to save on space is to adopt

the usage of half words wherever possible.

It may be found with a wide range of users that restricting the

length of a record is impractical. In this case the input data subroutines

must be adapted.

The purpose of this thesis has been to provide a package for the

testing of random number sequences. However, although it was in no way
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intended to perfect a new generator or 'to improve existing ones during

this work, it became evident that such a course of study would offer

interesting possibilities.



APPENDIX I

LISTING OF THE SUBROUTINES IN THIS PACKAGE
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CPRCGRAM(1) C c c

PURPOSE MAINCALLINGPROGRAM--APMAIN INTEGERTLtT2,Cl,D2 T1=KLOCK{D1»D2) INTEGERFI,FLAG,FMT2 INTEGERIN(8)»JN(8),FMT(8) COMMONFI(5),AA(9)fNUM,FMT2(8),ISTART COMMONIPRINT,IREC,JREC INTEGER*^^/•S'/ IRED=3 JRED=5
IPRINT=6 FLAG=C

5READ(JREDtlC)IN»NUM»JN 1CFORMAT(8AA,14,8AA) SWITCH=0.0 CALLGETFMT(IN,SVsITCH,FMT) SWITCH=1.C CALLGETFMT(JN,SkITCH,FMT2) READ(JRED»FMT)FI»AA IF(FI(I).EC.OGGTO18C IF(AA(9).EG.C.OGCTO12 READ(JRED,II)ISTART
11FORMAT(110) 12K=FI(1) IF(AA(2)-1)1A»15»14

15REMINDIREC 1AJREC=AA{3)-1

PAGE

1
2

■a

A 5 6 7 8 5

1C 11 12 13 1A 15 16 17 18 15 2C 21 22 23 2A 25 26 27 28 25 3C 31 32 33 3A



IF(AA(3).EC.0.C.CR.AA(3).EC.1.0)G0TC DO13IREC=1»JREC READ(IRED)
13CONTINUE 16GOT0(20,3C,AC,50,60,7C,80,90,92t9A),K 2CIF(FLAG.EQ.l)GCTO25 CALLLOAD!'AFCHI•)

25FLAG=1 CALLFREQ GOTC5
3CIF(FLAG.EQ.l)GCTC35 CALLLOAD('APCHI*)

35FLAG^l CALLSERIAL GOTC5
ACIF(FLAG.EQ.l)GCTCA5 CALLLCAD('APCHI•)

A5FLAG=1 CALLPCKER GCTC5
5CIF(FLAG.EQ.l)GCTC55 CALLLOAD('APCHI•)

55FLAG=1 CALLGAP GOTC5
6CIF(FLAG.EQ.l)GCTC65 CALLLOAD('APCHI•)

65FLAG=1 CALLDSQUR GOTC5
7CIF(FLAG.EQ.3)GCTC75 CALLLOADI'APCTHR')

75FLAG=3 CALLGAPRD GOTC5

PAGE

35 36 37 38 39 AC A1 A2 A3 AA A5 A6 A7 A8 A5 5C 51 52 53 5A 55 56 57 58 55 6C 61 62 63 6A 65 66 67 68 65



8CIF(FLAG.EQ.1)GCTC85 CALLLOAD('APCHI•)
85FLAG=1 CALLRUNS GCTC5

9CIF(FLAG.EQ.2)GCTC91 CALLLOAD('APKMSM*)
91FLAG=2 CALLFAX GOTC5

92IF{FLAG.EQ.2JGCTC93 CALLLOAD{'APKMSM*)
93FLAG=2 CALLFIN GCTC5

94IF(FLAG.EQ.2)GCTC95 CALLLOAD(*APKMSN*)
95FLAG=2 CALLSUM GCTC5

18CWRITEIIPRINT»185)W 185FORMAT('*A1) T2=KLOCK(D11D2) T1={T2-T1)/5C WRITE!IPRINT»190)T1
19CFORMAT!*TFETIMETAKENINSECCNCSIS*18) STOP END

FACE

7C 71 72 73 7A 75 76 77 78 79 8C 81 82 83 84 85 86 87 88 89 9C 91 92 93 94 95 96 97
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c
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c
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90

c
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CDTR

ICC

c

CCTR

lie

c

USAGE

CDTR

12C

c

CALL

CDTR(X,G,P,C,IER)

CDTR CDTR

13C 1AO

c

DESCRIPTIONOFPARAMETERS

CDTR

15C

c

X

-INPUTSCALARFORWHICHP{X)ISCOMPUTED.
CDTR

160

c

G

-NUMBEROFDEGREESOFFREEDOMOFTHECHI-SQUARE
CDTR

17C

c

DISTRIBUTION.GISACONTINUOUSPARAMETER.
CDTR

iec

c

P

-OUTPUTPROBABILITY.

CDTR

190

c

D

-OUTPUTDENSITY.

CDTR

2CC

c

IER

-RESULTANTERRORCCCEWHERE

CDTR

210

c

IER=0NOERROR

CDTR

22C

c

IER=-1ANINPUTPARAMETERISINVALID.XISLESS
CDTR

23C

c

THANO.O,ORGISLESSTHANC.5ORGREATER
CDTR

2AC

c

THAN2*10*>M+5).PANDCARESETTO-1.E75.
CDTR

25C

c

IER=+1INVALIDOUTPUT.PISLESSTHANZEROOR
CDTR

260

c

GREATERTHANONE,ORSERIESFORT1(SEE
CDTR

27C

c

MATHEMATICALDESCRIPTION)HASFAILEDTO
CDTR

28C

c

CONVERGE.PISSETTO1.E75.
CDTR

29C

c

CDTR

3CC

c

REMARKS

CDTR

310

c

SEE

MATHEMATICALDESCRIPTION.

CDTR

320

c

CDTR

330

c

SUBROUTINESANDFUNCTIONSUBPROGRAMSREQUIRED
CDTR

3AC
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c

DLGAM

CDTR

350

c

NDTR

CDTR

360

c

CDTR

370

c

METHOD

CDTR

380

c

REFERTCR.E.BARGMANN
ANDS.P.GHOSH

,STATISTICAL

CDTR

390

c

DISTRIBUTICNPROGRAMS
FCRACCMPUTER
LANGUAGE,

CDTR

ACO

c

IBMRESEARCHREPCRTRC
-109A,1963.

CDTR

A1C

c

CDTR

A2C

c

A3C AAC A5C

c u

SU8RCUTIRECDTR{X,G,P,C,IER)

CDTR CDTR

DOUBLEPRECISIONXX,DLXX,X2,
DLX2,GG,G2,DLT3

,THETA,THP1,

CDTR

A6C

1GLG2,DD,T11,SER,CC,XI,FAC,TLCG,TERM,GTH,A2,
A,E,C,CT2,CT3,TFPI
CCTR

A7C

c

CDTR

A8C

c

TESTFCRVALIDINPUTDATA

CDTR

AGO

c

IF(G—(.5-I.E-5))590,10,10

CDTR CDTR

5CC 510

1C

IF(G-2.E+5)2C,20,590

CDTR

52C

2C

IF(X)590,30»3C

CDTR

53C

c

CDTR

5AC

c

TESTFCRXNEAR0.0

CDTR

55C

c

CDTR

56C

3C

IF(X-l.E-8)AC,AO,80

CCTR

57C

AC

P=C.0 IF(G-2•)5C,6C,70

CDTR CCTR

580 590

5C

D=1.E75 GOTO610

CDTR CDTR

6CC 610

6C

D=C.5 GOTO610

CDTR CDTR

62C 630

7C

D=C.C GOTC610

CCTR CDTR

6AG 650

c

CDTR

660

c

TESTFCRXGREATERTHANI
•E+6

CDTR CDTR

670 68C

ec

IF(X-I.E+6)ICC,100,90

CDTR

69C



90D=C.C P=1.C GOTO61G
C

SETPROGRAMPARAMETERS
C

ICCXX=DBLE{X) DLXX=DLOG(>X) X2=XX/2.DO DLX2=CLCG(X2) GG=DBLE(G) G2=GG/2.DC
C CCOMPUTEORDINATE C

CALLDLGAM{G2,GLG2,ICK) DD=(G2-1.DC)*DLXX-X2-G2*.6931471805599453-GLG2 IF(DD-1.68CC2)110,110,120
11CIF(DD+1.68CC2)130,130,140 12CD=1.E75 GOTO190

13CD=C.0 GOTO150
14CDD=DEXP(DD) D=SNGL(DD)

C

TESTFORGGREATERTHAN1C00.0
CTESTFORXGREATERTHAN2C00.0 C

15CIF(G-1C00.)160,160,180 16CIF(X-2C00.)190,190,170 17CP=1.C GOTO610
L8CA=DL0G(XX/GG)/3.DC A=DEXP(A)

CDTR

700

CDTR

71C

CDTR

72C

CDTR

73C

CDTR

74C

CDTR

750

CDTR

76C

CDTR

11C

CDTR
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CDTR

790
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CDTR

8IC

CDTR

820

CDTR

830

CDTR

840

CDTR

850

CDTR

860

CDTR

870

CDTR

880

CDTR

890

CDTR

900

CDTR

910

CDTR

920

CDTR

930

CDTR

940

CDTR

950

CDTR

960

CDTR

970

CDTR

980

CDTR

990

CDTR1CCC CDTR1C10 CDTR1020 CDTR1C3C CDTR1C4C
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XI=DFLCAT(IT1) CALLDLGAN(XI,FAC,ICK) TLCG=XI*DLX2-FAC-DLCG(XI+THETA) TERM=DEXP(TLCG) TERM=DSIGN(TERN,CCI SER=SER+TERN CC=-CC IF(DABS(TERRJ-l.D-9)280,270,270
270CONTINUE GOTO600

28CIF(SER)600,600,290 290CALLDLGAM(THP1,GTH,I0K) TLCG=THETA*DLX2+DLCG(SER)-GTH IF(TL0G+L.68D02)300,300,310
3CCT1=0.0 GOTO4CC

310T11=DEXP(TLCG) T1=SNGL(Til) GOTO400
C

CCFPUTET1FCRTHETAGREATERTHAN0.0ANC XGREATERTHAN10.0ANCLESSTHAN2000.0
C

320A2=0.DC DO340I=1,25 XI=DFLOAT(I) CALLDLGAN(THP1,GTH,ICK) T11=-(13.DC«XX)/XI+THF1*CLCG(13.DC*XX/XI)-GTH-CLCG(XI) IF(T11+1.68DC2)340,340,330
330T11=DEXP(Til) A2=A2+T11

340CONTINUE A=1.01282051+THETA/156.CO-XX/312.CO 8=CABS(A) C=-X2+THP1*CLX2+DLCG(e)-GTH-3.951243718581427
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ANDLESSTHANCREQUALTC1000.
C

46CDT3=0.DO DO480I3=2,K THPI=DFLOAT(13l+THETA CALLDLGAM(THPI,GTH,IOK) DLT3=THPI*CLX2-DLXX-X2-GTH IF(DLT3+1.68DC2)480,480,470
47CDT3=DT3+DEXP(DLT3) 48CCONTINUE T3=SNGL(DT3) P-T1-T3-T3

r

SETERRCRINDICATOR
C

49CIF(P)500,520,520 50CIF(ABS(P)-1.E-7)510,510,600 510P=C.C GOTC610
520IF(l.-P)530,550,550 530IF(ABS(l.-P)-l.E-7)540,540,600 540P=1.0 GOTC610

550IF(P-l.E-8)560,560,570 560P=C.O GOTO610
570IF{(1.0-PJ-1.E-8)580,580,610 580P=1.C GOTO610

590IER=-1 D=-1.E75 P=-1.E75 GOTO620
6CCIER=+1 P=1.E75

PAGE11

CDTR21CC CDTR211G CDTR2120 CDTR213C CDTR214C CDTR215C CDTR216C CDTR217C CDTR218C CDTR219C CDTR22CC CDTR221C CDTR2220 CDTR223C CDTR224C CDTR2250 CDTR2260 CDTR227C CDTR228C CDTR2290 CDTR230C CDTR231C CDTR232C CDTR233C CDTR234C CDTR2350 CDTR2360 CDTR237C CDTR238C CDTR239C CDTR24CC CDTR2410 CDTR242C CDTR2430 CDTR2440



GOTO620
6ICIER=C 62CRETURN END
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GPRCGRAM(3) :2 :3 :a :SUBROUTINEKCLMC5 G6 GPURPOSE7 GTESTSTHEDIFFERENCEBETWEENEMPIRICALANDTHEORETICAL8 GDISTRIBUTIONSUSINGTHEKCLMOGCRCV-SMIRNCVTEST9 :1C :USAGE11 GCALLKOLMO(X,Z,PRCB,IER)12 C13 GDESCRIPTIONOFPARAMETERS14 0X-INPUTVECTOROFNINCEPENCENTOBSERVATIONS.ON15 0RETURNFROMKCLMC,XHASBEENSORTEDINTOA16 0MCNCTCNICNON-DECREASINGSEQUENCE.17 CZOUTPUTVARIABLECONTAININGTHEGREATESTVALUEWITH18 GRESPECTTOXOFSQRT(N)*ABS(FN(X)-F(X))WHERE19 0FIX)ISATHEORETICALDISTRIBUTIONFUNCTIONANC2C 0FNIX)ANEMPIRICALDISTRIBUTIONFUNCTION.21 CPRCB-OUTPUTVARIABLECONTAININGTHEPROBABILITYOF22 CTHESTATISTICBEINGGREATERTHANOREQUALTOZIF23 CTHEHYPOTHESISTHATXISFROMTHEDENSITYUNDER24 CCONSIDERATIONISTRUE.E.G.*PROE=C.C5IMPLIES25 CTHATONECANREJECTTHENULLHYPOTHESISTHATTHESET26 CXISFROMTHEDENSITYUNDERCONSIDERATIONWITH5PER27 CCENTPROBABILITYOFBEINGINCORRECT.PRCB=1.-28 CSMIRN(Z).29 CIER-ERRORINDICATORWHICHISNON-ZEROIFSVIOLATESABOVE30 CCONVENTIONS.ONRETURNNOTESTHASBEENMADE,ANCX31 CANDYHAVEBEENSORTEDINTOMONCTCNICNON-DECREASING32 CSEQUENCES.IERISSETTOZEROONENTRYTOKOLMO.33 CIERISCURRENTLYSETTOONEIFTHEUSER-SUPPLIEDPDF34 CISREQUESTEDFORTESTING.THISSHOULDBECHANGEC35
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C(SEEREMARKS)WEENSOMEPCFISSUPPLIEDBYTEEUSER.36 C37 CEXTRAPARAMETERSUSEDINKOLMC.38 CNNUMBERCFCBSERVATICNSINX39 CIFCGD-ACCDEDENCTINGTEEPARTICULARTEECRETICAL4C CPROBABILITYDISTRIBUTIONFUNCTIONBEINGCONSIDERED.41 C=1F(X)ISTEENORMALPCF.42 C=2F{X)ISTHEEXPONENTIALPCF.43 C=3FIX)ISTEECAUCHYPCF.44 C=4FIX)ISTHEUNIFORMPCF.45 C=5--SINISASSIGNEDAVALUE,46 CSIN=1.0--F(X)ISTHEMAXIMUMCFUUNIFORMNUMBERS47 CSIN=2.C—FIX)ISTHEMINIMUMOFUUNIFORMNUMBERS48 CSIN=3.0--F(X)ISTEESUMOF2UNIFORMNUMEERS.49 CSIN=4.C--FIX)ISTEESUMCF3UNIFORMNUMBERS.5C CSIN=5.0--F-X)ISTEESUMCF4UNIFORMNUMBERS.51 CSIN=6.C--F-X)ISTEESUMOF5UNIFORMNUMBERS.52 CSIN=7.C--F-X)ISTEESUMOF6UNIFORMNUMBERS.53 CSIN=8.C--F-X)ISUSERSUPPLIEC.54 CU-WHENIFCCCISIOR2,UISTEEMEANOFTEEDENSITY55 CGIVENABOVE.56 CVvHENIFCCCIS3,UISTEEMEDIANCFTEECAUCEY57 CDENSITY.58 CWHENIFCCCIS4,UISTHELEFTENCPCINTOFTHE59 CUNIFORMDENSITY.6C CVvHENIFCOCIS5ANDSIN=1.0fUISTEETOTALOF61 CNUMBERSCONSIDEREDATEACHTRAILFCRTHEMAXIMUM62 CTEST.63 CWHENIFCCCIS5ANDSIN=2.0,UISTEETOTALOF64 CNUMBERSCONSIDEREDATEACHTRAILFORTEEMINIMUM65 CTEST.66 CS-WHENIFCGCISIOR2,SISTEESTANDARDDEVIATIONOF67 CDENSITYGIVENABOVE,ANDSHCULCBEPOSITIVE.68 CWEENIFCOCIS3,U-SSPECIFIESTEEFIRSTQUARTILE69 CCFTHECAUCHYDENSITY.SSHCULCEENON-ZERO.70



CIFIFCCCIS4,sISTHERIC-FTENCPCINTCFTHEUNIFORM71 CDENSITY.SSHOULDBEGREATERTHANU.72 CIFIFCCDIS5ANDSIN=8.0,SISUSERSPECIFIED73 C C C C c c

74 75

CREMARKS76 CNSHCULDBEGREATERTHANOREQUALTOICO.(SEETHE77 CMATHEMATICALDESCRIPTIONGIVENFCRTHEPROGRAMSMIRN,78 CCONCERNINGASYMPTOTICFORMULAE)ALSO,PROBABILITYLEVELS79 CDETERMINEDBYTHISPROGRAMWILLNOTBECORRECTIFTHE8C CSAMESAMPLESAREUSEDTOESTIMATEPARAMETERSFORTHE81 CCONTINUOUSDISTRIBUTIONSWHICHAREUSEDINTHISTEST.82 C(SEETHEMATHEMATICALDESCRIPTIONFCRTHISPROGRAM)83 CF(X)SHOULDBEACONTINUOUSFUNCTION.84 CANYUSERSUPPLIECCUMULATIVEPROEAEILITYDISTRIBUTION85 CFUNCTIONSHCULDBECODEDBEGINNINGWITHSTATEMENT26BELOW,86 CANDSHCULDRETURNTOSTATEMENT27.87
88

CDOUBLEPRECISIONUSAGEITISDOUBTFULTHATTHEUSERWILL89 CWISHTOPERFORMTHISTESTUSINGDOUBLEPRECISIONACCURACY.9C CIFONEWISHESTOCOMMUNICATEWITHKCLMOINADOUBLE91 CPRECISIONPROGRAM,HESHOULDCALLTHEFORTRANSUPPLIED92 CPROGRAMSNGL(X)PRIORTOCALLINGKCLMO,ANCCALLTHE93 CFORTRANSUPPLIEDPROGRAMDBLE(X)AFTEREXITINGFROMKOLMO.94 C(NOTETHATSUBROUTINESMIRNDOESHAVECOUBLEPRECISION95 CCAPABILITYASSUPPLIEDBYTHISPACKAGE.)96
97 98

CSUBROUTINESANCFUNCTIONSUBPROGRAMSREQUIRED99 CSMIRN,NDTR,ANDANYUSERSUPPLIECSUBROUTINESREQUIRED.ICC
1C1

CMETHOD1C2 CFORREFERENCE,SEE(1)W.FELLER--ONTHEKOLMOGCRCV-SMIRNOV1C3 CLIMITTHEOREMSFOREMPIRICALDISTRIBUTIONS--104 CANNALSOFMATH.STAT.,19,1948.177-189,1C5
PAGE15
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C(2)N.SNIRNOV--TABLEFORESTIMATINGTFEGOODNESSOFFIT1C6 COFEMPIRICALDISTRIBUTICNS—ANNALSCFMATF.STAT.,19,1C7 C1948.279-281.108 C(3)R.VONMISES--MATHEMA1ICALTHEORYCFPROBABILITYAND109 CSTATISTICS—ACADEMICPRESS,NEWYORK,1964.490-493,11C C(4)e.V.GNEDENKC--TFETHEORYCFPROBABILITY—CHELSEA111 CPUBLISHINGCOMPANY,NEWYORK,1962.384-401.112 C113 C114 C115 SUBROUTINEKCLMO(X,Z,PRCB,IER)116 INTEGERFI,FMT2117 COMMONFI(5),AA(9)»NUM,FMT2(8)118 EQUIVALENCE(N,FI(5)),(SIN,AA{5)),(IFCCD,FI(4)),(U,AA(6)),(S,AA(119 17))12C DIMENSIONX(l)121
C122 CNCNDECREASINGCRDERINGCFX{I)•S(DUEYMETHOD)123 C124 IER=C125 DO51=2,N126 IF(X(I)-X(I-I))1,5,5127

1TEMP=X(I)128 IM=I—1129 DO3J=1,IM130 L=I—J131 IF(TEMP-X(L))2,4,4132
2X(L+1)=X(L)133 3CONTINUE134 X(1)=TEMP135 GOTO5136

4X(L+l)=TEMP137 5CONTINUE138
C139 CCOMPUTESMAXIMUMDEVIATIONDNINAESCLUTEVALUEEETWEEN140



EMPIRICALANDTHECRETICALCISTRIBUTICNS
NM1=N-1 XN=N DN=0.0 FS=0.C IL=1

6DO71=1L,NM1 J=I IF(X(J)-X(J+l))9,7,9
7CONTINUE 8J=N 9IL=J+1 FJ=FS FS=FLCAT(J)/XN IF(IFC0D-2)1C,13,17

1CIF(S)II,II,12 11IER=I GOTC29
12Z=(X(J)-U)/S CALLNDTR{Z,Y>D) GOTO27

13IE(S)11,11,14 14Z={X(J)-U)/S+1.0 IF(Z)15,15,16
15Y=C.C GOTO27

16Y=1•-EXP(-Z) GOTO27
17IF(IFCOD-4)18,20,26 18IF(S)15,11,15 15Y=ATAN((X(J)-U)/S)*0.3183099+0.5 GOTO27

2CIF(S-U)11,11,21 21IF(X(J)-U)22,22,23

FAC-E

141 142 143 144 145 146 147 148 149 15C 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175



22Y=C.C GOTC27
23IF{X(J)-S)25,25,24 24Y=1.0 GOTO27

25Y=(X(J)—U)/(S-U) GOTO27
26ISIN=SIN GOTO(30,32,36,38,42,44,46,48),ISIN IER=I GOTO50

3GCALLAP261(X(J),Y,IER) GOTC50
32CALLAP262(X(J)♦Y,IER) GOTO50

36CALLAP263IX{J),Y,IER) GOTC50
36CALLAP264(X(J),Y,IER) GOTC50

42CALLAP265{XIJ),Y,IER) GOTO50
44CALLAP266{X(J),Y,IER) GOTC50

46CALLAP267(X{J),Y,IER) GOTC50
48IER=1 CALLUSER(X(J),Y,IER)

5CIF(IER.EQ.l)GOTC29 27EI=ABS(Y-FJ) ES=ABS(Y-FS) DN=AMAX1(ON,EI,ES) IF(IL-N)6,6,28
C CCOMPETESZ=CN*SCRT(N)ANDPROBABILITY C

PAGE
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28Z=CN*SQRT(>N) CALLSVIRN(Z,PROB) PRCB=1•O-PRCB
29RETURN END

PAGE
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c

PROGRAM(4)

c

NDTR

1C

C....

2C 3C

c

NDTR

c

SUBROUTINENDTR

NDTR

4C

c

NDTR

5C

c

PURPOSE

NDTR

6C

c

COMPUTESV=P(X)=PROBABILITYTEATTEERANDOMVARIABLEU
,NDTR

7C

c

DISTRIBUTEDNORMALLY(0,I),ISLESSTEANCREQUALTOX.
NDTR

£C

c

FIX),THEORDINATEOFTEENORMALDENSITYATX,ISALSO
NDTR

5C

c

COMPLTED.

NDTR

ICC

c

NDTR

1LC

c

USAGE

NDTR

12C

c

CALLNDTR(X,P,C)

NDTR

13C

c

NDTR

14C

c

DESCRIPTIONOFPARAMETERS

NDTR

15C

c

X—INPUTSCALARFORWHICHPCX)ISCOMPUTED.
NDTR

16C

c

P—OUTPUTPROBABILITY.

NDTR

I7C

c

D--OUTPUTDENSITY.

NDTR

I8C

c

NDTR

19C

c

REMARKS

NDTR

2CC

c

MAXIMUMERRORIS0.0CC0007.

NDTR

21C

c

NDTR

22C

c

SUBROUTINESANDSUBPROGRAMSREQUIRED

NDTR

23C

c

NONE

NDTR

24C

c

NDTR

25C

c

METHOD

NDTR

260

c

BASEDONAPPROXIMATIONSINC.EASTINGS,APPROXIMATIONS
FOR

NDTR

27C

c

DIGITALCOMPUTERS,PRINCETONUNIV.PRESS,PRINCETON,N
.J.,

NDTR

28C

c

1955.SEEEQUATION26.2.17,HANCBCCKOFMATHEMATICAL
NDTR

29C

c

FUNCTIONS,ABRAMCWITZANDSTEGUN,DOVERPUBLICATIONS,
INC.,
NDTR

30C

c

NEWYORK.

NDTR

31C

c

NDTR

32C

c....

330 340

c

NDTR



SUBROUTINENDTR(X,P,D) AX=ABS(X) T=1.0/(1.0+.23I64I9*AX) D=C.3989423*EXP(-X*X/2.0) P=1.0-C*T*((((1.330274*T-1.821256)*T+1.781478)*T
1C.3565636)*T+0.3193815) IF(X)1,2,2

1P=1.0-P 2RETURN END

PAGE21
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PROGRAM(5)

DLGA DLGA

1C 2C

DLGA

3C

SLBROLTIKEDLGAM

DLGA

AC

CLGA

5C

PURPOSE

DLGA

6C

COMPUTESTHEDOUBLEPRECISIONNATURALLOGARITHMOFTHE
DLGA

7C

c

GAMMAFUNCTIONOFAGIVENCCUELEPRECISIONARGUMENT.
CLGA

EC

CLGA

<3C

USAGE

DLGA

ICC

c

CALL

DLGAM(XX,DLNG,IER)

CLGA

11C

DLGA

12C

c

DESCRIPTIONOFPARAMETERS

DLGA

13C

XX

-THEDOUBLEPRECISIONARGUMENTFORTHELOGGAMMA
CLGA

1AC

c

FUNCTION.

DLGA

15C

c

DLNIG

-THERESULTANTDCUELEPRECISIONLOGGAMMAFUNCTION
CLGA

lfcC

c

VALUE.

CLGA

17C

c

IER

-RESULTANTERRORCODEWHERE

DLGA

1EC

IER=0NOERROR.

DLGA

ISC

IER=-1XXISWITHIN10**(-9)OFBEINGZEROORXX
CLGA

2CC

ISNEGATIVE.DLNC-ISSETTO-1.0075.
DLGA

21C

IER=+1XXISGREATERTHAN1C**70.DLNGISSETTO
DLGA

22C

+L.CD75.

CLGA

23C

CLGA

2AC

REMARKS

CLGA

25C

NONE

DLGA

2fcC

CLGA

27C

SUBROUTINESANDFUNCTIONSUBPROGRAMSREQUIRED
DLGA

28C

c

NONE

CLGA

2SC

CLGA

3CC

MIETHOD

CLGA

31C

THE

ELLER-MCLAURINEXPANSIONTOTHESEVENTHDERIVATIVETERM
CLGA

32C

ISUSEC,ASGIVENBYM.AERAMCWITZANDI.A.STEGUN,
DLGA

33C

c

•HANDBOOKOFMATHEMATICALFUNCTIONS',U.S.DEPARTMENTOF
DLGA

3AC



COMMERCE,NATIONALBUREAUCFSTANDARDSAPPLIEDRATHEMATICS
DLGA

35C

SERIES,1966,EQUATION6.1.41.

DLGA

36C

DLGA

370 380

DLGA

380

SUBROUTINECLGAR(XX,DLNG,IER)

DLGA

4CC

DOUBLEPRECISIONXX,ZZ,TERf,RZ2,CLNG

DLGA

410

IER=C

DLGA

420

ZZ=XX

DLGA

430

IF(XX—1.D1C)2,2,1

DLGA

440

1

IF(XX-1.D7C)8,9,9

DLGA

450

DLGA

460

SEEIFXXISNEARZEROORNEGATIVE

DLGA

470

DLGA

480

2

IF(XX-l.D-S)3,3,4

DLGA

480

3

IER=—1

CLGA

500

DLNG=-1.D75

DLGA

510

GOTO10

DLGA

520

DLGA

530

XXGREATERTHANZEROANDLESSTHANOR
EQUALTO
1.C+1C

DLGA

540

DLGA

550

4

TERM=1.D0

CLGA

560

5

IFIZZ-18.DC)6,6,7

CLGA

570

6

TERM=TERR*ZZ

DLGA

580

ZZ=ZZ+1.DO

DLGA

580

GOTO5

CLGA

600

7

RZ2=1.D0/ZZ**2

CLGA

610

DLNG=(ZZ-C.5DC)*DLOG(ZZ)-ZZ+0.9189385332046727
-DLOG(TERM)+

DLGA

620

1{l.DO/ZZ)*(.8333333333333333D-l-(RZ2*I.
2777777777777777D-2+(RZ2*DLGA
630

2(.79365079365C7936D-3-(RZ2M.5952380552
38C952D-3
)))))))

CLGA

640

GOTO10

DLGA

650

DLGA

660

XXGREATERTHANl.D+10ANDLESSTHAN
l.D+70

CLGA

670

DLGA

680

8

DLNG=ZZ*(DLCG(ZZ)-1.C0)

CLGA

680



GOTO10 XXGREATERTHANCREQUALTCl.C+70
5IER=+1 DLNG=1.D75

ICRETURN ENC

CLGA7CC DLGA71C DLGA72C OLGA730 DLGA740 DLGA75C DLGA760 DLGA770

PAGE
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PROGRAM(6)

SMIR

1C

^MIR

?C

SMIR

3C

SUBROUTINESMIRN

SMIR

AC

SMIR

5C

PURPOSE

SMIR

6C

COMPUTESVALUESCFTFELIMITINGDISTRIBUTIONFUNCTION
FOR

SMIR

7C

c

THEKCLMCGCRCV-SMIRNCVSTATISTIC.

SMIR

3C

SMIR

9C

USAGE

SMIR

ICC

c

CALLSMIRN(X,Y)

SMIR

1LC

SMIR

12C

c

DESCRIPTIONCFPARAMETERS

SMIR

13C

X-THEARGUMENTCFTHESMIRNFUNCTICN
SMIR

1AC

c

Y-THERESULTANTSMIRNFUNCTIONVALUE
SMIR

15C

SMIR

16C

REMARKS

SMIR

17C

c

YISSETTCZERCIFXISNCTGREATERTHANC.27,ANDISSET
SMIR

18C

TOONEIFXISNCTLESSTHAN3.1.ACCURACYTESTSWEREMADE
SMIR

19C

c

REFERRINGTOTHETABLEGIVENINTHEREFERENCEBELOW.
SMIR

2CC

TWOARGUMENTS»X=0.62,ANDX=1.87GAVERESULTSWHICH
SMIR

21C

c

DIFFERFROMTHESMIRNOVTABLESBY2.9AND1.9INTHE
5TH

SMIR

22C

c

DECIMALPLACE.ALLCTHERRESULTSSHOWEDSMALLERERRORS,
SMIR

230

c

ANDERRORSPECIFICATIONSAREGIVENINTHEACCURACYTABLES
SMIR

2AC

c

INTHISMANUAL.INCCUGLEPRECISIONMODE,THESESAME
SMIR

25C

ARGUMENTSRESULTEDINDIFFERENCESFROMTABLEDVALUES
BY3

SMIR

2fcC

c

AND2INTHE5THDECIMALPLACE.ITISNOTEDIN
SMIR

2"*C

r

LINDGREN(REFERENCEBELOW)THATFORHIGHSIGNIFICANCE
LEVELSSMIR
28C

c

(SAY,.01AND.05)ASYMPTOTICFORMULASGIVEVALUESWHICHARESMIR
29C

r L

TOOHIGH(BY1.5PERCENTWHENN=80).THATIS,AT
HIGH

SMIR

3C0

c

SIGNIFICANCELEVELS,THEHYPOTHESISOFNCDIFFERENCE
WILLBESMIR
31C

c

REJECTEDTCCSELDOMUSINGASYMPTOTICFORMULAS.
SMIR

32C

c

SMIR

330

c

SUBROUTINESANDFUNCTICNSUBPROGRAMSREQUIREC
SMIR

3AC
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C C c c c c c c c c

NONE METHOD
THEMETHODISDESCRIBED0YW.FELLER-CNTHEKOLMCGCROV- SMIRNOVLIMITTHEOREMSFCREMPIRICALDISTRIBUTIONS-ANNALS OFMATH.STAT.,19,1948,177-189,BYN.SMIRNOV—TABLE FORESTIMATINGTHEGCCDNESSCFFITCFEMPIRICAL DISTRIBUTICNS-ANNALSCFMATH.STAT.,19,1948,279-281, ANDGIVENINLINDGREN,STATISTICALTHEORY,THEMACMILLAN COMPANY,N.Y.,1962.

DOUBLEPRECISIONX,Q1,C2,04,Q8,Y IFADOUBLEPRECISIONVERSIONOFTHISROUTINEISDESIRED,THE INCOLUMNONECFTHEDOUBLEPRECISIONCARDABOVESHCULCBE REMOVED,ANDTHECINCOLUMNONECFTHESTATEMENTSNUMBERED
C3,C5,ANDC8SHCULCBEREMCVEC,ANDTHESECARDS SHOULDREPLACETHESTATEMENTSNUMBEREC3,5,AND8, RESPECTIVELY.ALLROUTINESCALLECBYTHISROUTINEMUSTALSO PROVIDEDOUBLEPRECISIONARGUMENTSTCTHISROUTINE. SUBROUTINESMIRN(X,Y) IF(X-.27)1,1,2

1Y=C.C GOTO9
2IF(X-1•0)3,6,6 3Q1=EXP(-1.2337C1/X**2) 3Q1=DEXP(-1.233700550136170/X**2) Q2=Q1*Q1 Q4=Q2*Q2 Q8=Q4*Q4

SMIR

35C

SMIR
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SMIR

37C

SMIR

380

SMIR
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SMIR

4CC

SMIR

41C

SMIR

42C
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43C

SMIR

44C

SMIR

45C 46C

SMIR
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SMIR

49C

SMIR

5CC

CSMIR
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SMIR

52C

SMIR

530

SMIR

54C

SMIR
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570

SMIR

580 590
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6CC
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SMIR
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PRCGRAN(7)

C1 C2
3

CSUBROUTINEFREGA
E

PURPOSE6 APPLIESTHEFREQUENCYTEST.7
C8 USAGE5 CALLFREC1C

1L

SUBROUTINEFREQ12 INTEGERFI,FMT213 COMMONFI(5),AA(9),NUM,FMT2(8),ISTART,IFRINT1A EQUIVALENCE(N,FI{5)),(M,FI(2)),(C,AA(1))»(E»AA(A))15 INTEGERY,R16 LOGICAL*1LINE(105)/105*'*•/17 DIPENSIONCOUNT(1CC0)IE kRITE(IPRINT»A)N»M15
AFORMAT('CTFEFREQUENCYTEST'/•THENUMEERCFTRAILSIS*,I7,T3A,»R2C 1EPEATED',17,T5C,'TIMES')21 VsRITE!IPRINT,6)LINE22

6FORMAT('C',1C5A1///)23
5R=D2A LL=025 DOICCI1=1,M2fc DO101=1,R27

1CCOUNT!I)=0.C28 DOAC1=1,N29 CALLDATA1(1,Y,LL)3C LL=131 IF!Y.EQ.C)GCTC3532 COUNT!Y)=CCUNT(YJ+1.033 GOTCAO3A
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35

COLNT(R)=CCUNT(R)+1.0

35

4C

CONTINUE

36

WRITE(IPRINT»43)

37

43

FORMAT('TFENUMBERINEACHCATEGORYIS')

38

WRITE(IPRINT,A5)(COUNT(J),J=I,R)

39

A5

FORMAT(ICF1C.2)

AC

P=1/D

Al

V1=0.0

A2

DO5CK=ItR

A3

5C

V1=V1+(CCUNT(K)**2)/P

AA

V=V1/N-N

45

A=R-1

46

WRITE(IPRINT,6C)V,A

47

6C

FORMAT('THECHI-SCUARECVALUEIS'E14.7,T42,•WITF'F6.2,T54,•CEGREE
48

ISOFFREEDOM.«)

49

CALLCDTR(V»A,PI»D1,IER)

5C

P2=1-P1

51

WRITE(IPRINT»85)P2»IER

52

85

FORMAT(*THEPRCBILITYOFAWORSEVALUEOFCHI-SCUAREIS,F1C«7/1T
53

1HEERRORCODEIS•I6)

54

CALLAPTR(P2)

55

WRITE(IPRINT»9C)LINE

56

9C

FORMAT(•0*»IC5A1//)

57

ICC

CONTINUE

58

RETURN

59

END

6C
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CPRCGRAN(8) C1 C2 C3 CSUBROUTINESERIAL4 C5 CPURPOSE6 CAPPLIESTHESERIALTEST.7 C8 CUSAGE<5 CCALLSERIAL1C CLI SUBROUTINESERIAL12 INTEGERFI,FMT213 COMMONFI(5),AA(9),NUN,FRT2(8)tISTARTtIPRINT14 EQUIVALENCE(N,FI(5}),(M,FII2)),(D,AA(1)),(G,AA(4))15 INTEGERX,V»A,BLfc DIMENSIONA(5),COUNT(50,50)17 L0GICAL*1LINE(105)/1C5*,={e*/18 WRITEIIPRINT»5)N,MIS
5FORMAT('CTHESERIALTEST'/*THENUMBERCFTRAILSIS•I7,T32,•REPEA2C 1TED',17,T5C,'TIMES')21 hRITElIPRINT»10)LINE22

1CFORMAT('C',12CA1///)23 13J3=024 L=125 B=C26 11=227 DOICOJJ=1»M28 DO121=1,e25 DO12J=1»E3C
12COUNT(I,J)=C.O31 I=C32

IECALLDATA1III,A,J3)33 J3=l34



FACE31

X=A!1)+L35 Y=A(2)+136 COUNT(X»Y)=CCUNT(X»Y)+ .l37 1=1+138 IF(I.LE.N)GCTC1539 VvRITECIPRINT,2C}AC
2CFORMAT(1THENUMBERINEACHCATEGORYIS')A1 WRITEtIPRINT»25}((COUNT(I»J)»I=11B)»J=1*8)A2

25FORMAT('*15F6.1)A3 P=i/(D*D)AA V1=0A5 DO30K=1,BA6 DO30L=1»BA7
3CV1=V1+(CGUNT(K»L)**2)/PA8 V=VI/N-NAS C=C*D-15C WiRITE(IPRINT,AG)V,C51

ACFORMAT{•THECHI-SQUAREDVAOUEIS'»E1A.7,TA2,*WITH•F6.2,T5A,'DEGRE52 IESOFFREEDOM')53 CALLCDTR!V,C,P1,D1,IER)5A P2=1-P155 WRITE!IPRINT»5C)P2»IER56
5CFORMAT!'THEPROBABILITYOFAWCRSEVALUEOFCHI-SQUAREDISSF8.A,57 2/,'WITHERRORCCCE'I3)58 CALLAPTR(F2)59 WRITE(IPRINT»9C)LINE6C

9CFORMAT(*C•,1C5A1//)61
ICCCONTINUE62 RETURN63 ENC6A
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C C C, C C C C c c c c c

PRCGRAN(9)

SUBROUTINEPCKER PURPOSE APPLIESTHEPCKERTEST. USAGE CALLPOKER SUBROUTINEPCKER INTEGERFI,FMT2 COMMONFI!5)»AA{9),NUM,FMT2!8)»ISTART,IPRINT EQUIVALENCE(N,FI(5)),(LL,FI!2)),(M,FI13)),(C,AA(1)),!E,AA(A)) LOGICAL*!LINE!105)/105*'*'/ INTEGERSTIRGI20)♦TENPC2C),A(20) INTEGERR»TEMPI DIMENSIONCCUNT(20) DIMENSIONP(2C) DIMENSIONJSTIRG(20) WRITE!IPRINT,1C)N»M»LL
ICFORMAT('CTHEPCKERTEST•/«THENUMEEROFTRIALSIS',I7,T33,'TAKEN 1'I7,TA7,'ATATIMEANDREPEATEC•,I7,T79,'TIMES') WRITE(IPRINT,12)LINE

12FORMAT!*C',1C5A1///) 15J3=0 DO23CI1=1,LL DO16J2=1,M
16COUNT!J2)=C.C DO95L=I,N CALLDATA1(M,A,J3) J3=1 K=1

1 2 3 A 5 6 7 8 9

1C 11 12 13 1A 15 16 17 18 15 2C 21 22 23 2A 25 26 27 28 25 30 31 32 33 3A



40I=K+1 5CIF!A(K).LT•A(I))GCTC70 6C1=1+1 IF(I.LE.M)GCTC50 K=K+1 IFIK.LT.N1)GCTC40 GOTO80
7CTENP1=A(K) A(K)=A(I) All)=TEMP1 GOTO60

8CR=1 I=M

9CIF(A(1-1).NE.A(I))R=R+1 1=1-1 IF(I»GE.2)GCTC90
95COLNT(R)=CCUNT(R)+1 V1=0.0 WRITE(IPRINT,2C0)

2CCFORMAT!'THENUMBERINEACHCATEGCRYIS') V\RITE(IPRINT»240)(COUNT(JJ),JJ=1,M)
24CFORMAT!ICF6.2) CALLAPSN!M,STIRG) WRITE!IPRINT»130)M,(STIRG!I)»1=1»M}

13CFORMAT!'S7IRGLING"SNUMBERSFORTHEVALUE' DO170L=1,M FACT=1.0 I=C

14CFACT=(D-I)*FACT/C 1=1+1 IF(I.LE.(L-l))GCTC140
170P(L)=(FACT*STIRG(L))/(C**(M-L)) IF(COUNT!1).GT.5.0)GCTC172 P(2)=P(2)+F(1) COLNT(2)=CCLNT(2)+CCUNT(1)

,T4C,'ARE',/,5I6)

PAGE

35 36 37 38 39 4C 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69
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C=f—27C GOTO17471
172V1=(COUNT(1)#*2)/P!1)72 C=M-173

174DO175L=2,N74 V1=V1+!CCUNT(L)**2)/P(L)75
175CONTINUE76 V=V1/N-N77 WRITE!IPRINT,220)V»C78

22CFORMAT(*TFECHI-SGUARECVALUEIS•.E14.7,T42♦»WITH%F6.2,T54,•CEGR79 1EESOFFREEDOM')8C CALLCDTR!V,C,P1,X1,IER)81 P2=1-P182 WRITE(IPRINT,210)P2,IER83
21CFORMAT('TFEPROBABILITYCFAWORSEVALUEOFCFI-SGUARECIS',F8.4/84 1'WITHERRORCODE'13)85 CALLAPTRIF2)86 WRITE!IPRINT,173)LINE87

173FORMAT!'0',1C5A1//)88 23CCONTINUE85 RETURN<3C END*51
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CPRCGRAM(IO) C1 C2 C3 CSUBROUTINEGAPA C5 CPURPOSE6 CAPPLIESTHEGAPTEST.7 Ce CUSAGE5 CCALLGAP1C C11 SUBROUTINEGAP12 INTEGERFI,FMT213 COMMONFI(5)»AA(9},NUM,FMT2(8),ISTART*IPRINT14 EQUIVALENCE(A,AA(5)),(B,AA(6)),(N,FI{5}),(T,FI(4)),(M,FI{2)},<G,15 1AA(4))16 INTEGERXjT117 INTEGERT»R18 LOGICAL*lLINE(105)/105*'*'/15 WRITE(IPRINT,5)N,M,A,B2C
5FORMAT('CTFEGAPTEST',/»'THENUMBERCFTRIALSIS•tI7,T33,'REPEAT21 LED•»I7»T5C»'TIMES'»/»'THEGAPISBETWEEN•F5.2.T25,•ANC•fF5.2)22 VsRITE(IPRINT,1C)LINE23

1CFORMAT{'C•,1C5A1///)24 DIMENSIONCOUNT(20)25
12J3=026 PD=B-A27 DO90JJ=1,M28 J=C25 T1=T+13C DO1511=1»T131

15COUNT(II)=C.032 20R=C33 25CALLDATA2(1»U»J3)34
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J3=135 IF{U.GE.A.AND.L.LT.BJGCTC3036 R=R+137 GOTO2538
3CJ=J+135 IF(R.EQ.C)GCTC454C IF(R.LT.T)GCTC4C41 COUNT(T)=CCUNT!T)+l42 GOTO5043

4CCOUNT(R)=CCUNT(R)+i44 GOTC5045
45COUNT(T+l)=C0UNT(T+I)+l46 5CIF(J.LT.N)GCTC2047 WRITE!IPRINT*53)48

53FORMAT!'TEENUMBERIKEACHCATEGORYIS')49 WRITE!IPRIKT,55)(COUNT!I)»1=1»T1)5C
55F0RMAT(8F8.2)51 V1=(C0UNT(T+l)**2)/PD52 L=T-I53 DO601=1,L54 P=PD*((1-PC)«*I)55

6CV1=V1+(CCUKT(I)**2)/P56 P=!1-PD)57 V1=V1+C0UNT(T)**2/P58 V=V1/N-N55 C=T6C WRITE!IPRINT,70)V,C61
7CFORMAT!'THECHI-SQUARECVAUUEIS'E14.7,T42,'WITH•F5.1,T53»'CEGREE62 ISOFFREEDOM')63 CALLCDTR!V,C,P1,D1,IER)64 P2=1-P165 WRITE!IPRINT,8C)P2,IER66

8CFORMAT!'THEPROBABILITYCFAWORSEVALUECFCHI-SQUAREIS'E14.7,T67 166,'WITHERRORC0DE'I3)68 CALLAPTR(P2)65



WRITEIIPRIM,10)LINE CONTINUE RETURN END

PAGE

7G 72 73 74
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PROGRAM(11)

1
3

SUBROUTINERUNS

4 5

PURPOSE

6

IAPPLIESTHERUNSTEST.

7 8

USAGE

9

CALLRUNS

10 11

SUBROUTINERUNS12 INTEGERFI,FMT213 COMMONFI(5),AA(9),NUM,FMT2(8),ISTART,IPRINT14 EQUIVALENCE(N,F-1(5)),(M,FI(2)),(D,AA(1)),(G,AA(4))15 DIMENSIONXCCUNT(6)»B(fc),A(6,6)»CCUNT(6)16 LOGICAL*1LINE(105)/105*»*V17 DATAA/4529.4,9044.9,13568.0,18091.0,22615.0,27892.0,9C44.9,18C97.18 10,27139.0,36187.0,45234.0,55789.0,13568.0,27139.0,40721.0,5428l.C,19 267852.0,83685.0,18091.0,36187.0,54281.0,72414.0,90470.0,111580.0,220 32615.0,45234.0,67852.0,90470.0,113262.0,139476.0,27892.0,55789.0,821 43685.0,111580.0,139476.0,172860.0/22 DATA3/0.1666667,0.2083333,0.09166667,0.02638889,0.005753968,0.23 1001190476/24 WRITE(IPRINT,2)N,M25
2FORMATCOTHERUNSTEST',/,*TFENUMEERCFTRAILSIS•,I8,T34,•REPE26 1ATED',16,T49,•TIRES')27 IF(F1(41)3,3,528

3WiRITE(IPRINT,4)29 4FORMAT(■RUNSUP')30 GOTO731
5V*RITE(IPRINT,6)32 6FORMAT(*RUNSCCWN')33 7WRITE(IPRINT,8)LINE34
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8

FORMAT<«0«»105A1///)

35

J3=0

36

DO2C0IJ=1»M

37

DO10J=l,6

38

1C

COUNT(J)=0.0

35

L=1

40

CALLDATA2(1,U,J3)

41

J3=1

42

J=2

43

L=L+1

44

KK=FI(4)+1

45

15

1=1

46

GOTO(20,210)»KK

47

2C

CALLDATA2{1,V,J3)

*8

IF(U.LT.V)GCTC30

L5

U=V

50

L=L+1

51

1=1+1

52

J=J+1

53

IF(J-N)20»21f22

54

21

CALLCATA2!1,V,J3)

55

IF(U.LT.V)GCTC31

56

1=1+1

57

22

IF(I.GE.6)GCTC25

58

COUNT(I)=CCUNT(I)+1

59

GOTO100

6C

21C

CALLDATA2(1,V,J3)

b1

IF(U.GT.V)GCTC30

62

U=V

63

L=L+I

64

1=1+1

65

J=J+L

66

IFCJ—N1210*211*22

67

211

CALLDATA2(1»V»J3)

68

IF(U.GT.V)GCTC31

69



1=1+1 GOTO22
25C0UNIT(6)=CCUNT!6)+l GOTO100

3CIF(I.GT.5)GCTC35 COUNT!I)=CCUNT(I)+1 GOTC50
31IF(I.GT.5)GCTC32 COUNTII)=CCUNT(I)+1 COUNT(1)=CCUNT(1)+l GOTC100

32C0UNT(6)=CCU'NT(6)+1 COUNT(l)=CCUNT(1)+1 GCTC100
35C0UNT!6)=CCUNT(6)+l 5CU=V J=J+1 L=U+1 IF(J-N)15,36,ICC

361=1 GCTCI21,211),KK
11CWRITE(IPRINT,120)I 12CFORMAT('ERRCR,NCRUN*16) WRITE(IPRINT,125)

125FORMAT('THENUMBERINEACHCATEGCRYIS') ICCWRITE!IPRINT,40JCCUNT 4CFORMAT(6F1C.2) V1=0.0 DO601=1,6
6CXCCUNTU)=CCUNT(I)-N*B(I) DO731=1,6 DC70J=1»6

7CV1=V1+XCCUNT(I)*XCCUNT{J)*A(I,J) 73CONTINUE FK=6.0

PAGE

70 71 72 74 75 76 77 76 75 8C 81 82 83 84 85 86 87 88 85 5C 51 52 53 94 95 56 97 98 55

ICC 101 102 1C3 104
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W=V1/N1C5 WRITE!IPRINT,140)W,FK1C6
14CFORMAT{*THECHI-SCUAREDVALUEIS*»E14.7,T42»•V*ITF',Ffc.2tT54t1CEGR1C7 1EESOFFREEDOM')108 CALLCDTR(W»FKtP»D1»IER)ICG Pl=l-Plie kRITE(IPRIM»80)PltIERHI

ECFORMAT{'THEPROBABILITYOFAWORSEVALUEOFCFI-SGUAREISSF8.4,/112 I,'WITHERRORCCDE'13)113 CALLAPTR(Fl)114 WRITE!IPRIMT*8)LINE115
2CCCONTINUE116 RETURN11"? END118
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CFRCGRAN(12) CL C2 C3 SUBROUTINEDSGUR4
5

PURPOSE6 APPUIESTHEDSQUAREDTEST.7
8

USAGE9 CALLDSGUR1C
11

SUBROUTINECSCUR12 INTEGERFI,FNT213 CONMONFI(5),AA(9),NUN,FNT2(8),ISTART,IPRINT14 EQUIVALENCE(N,FI(5)),!K,FI(2)),(G,AA(4))15 INTEGERR16 LOGICAL*lLINE!105)/105*'*'/17 DIMENSIONF{20),CCUNT(2C)18 DINENSIONU(4)19 NRITE(IPRINT,5)N,K2C
5FORMATCOTHEDSQUAREDTESTTHENUMBEROFTRAILSIS'I7,T33,'21 IREPEATED'I7,T5C,'TINES')22 WRITEIIPRINT»1C)LINE23

1CFORMAT!'0'1C5A1///)24 12J3=025 DO87M=1*K26 DO181=1,2C27
18COUNT!I)=O.C28 DO40J=1,N29 CALLDATA2(4,U,J3)3C J3=131 D2=(U(3)-U(1))**2+!U(4)-U(2))**232 Z=C.i33

1=134
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2C

IF(D2.LT.Z)GCTC30

35

Z=Z+C.1

36

1=1+1

37

IF<1.LE.20)GCTO20

38

kRITE(IPRIM,25)J

30

25

FORMAT{•02TCCBIG'I7)

AC

GOTOAO

A1

3C

COINT(I)=CCUNT(I)+1

A2

AC

CONTINUE

A3

WRITE(IPRINT,A3)

AA

A3

FORMAT('THENUMBERINEACHCATEGORYIS')

A5

V»RITE(IPRINT,A5)COUNT

A6

A5

FORMAT(5F1C.2)

A7

Z=C.1

A8

D=3.1A15026

AO

R=1

5C

Q=C.C

51

5C

P(R)=Z*D-{Z**1.5)*8.0/3.0+Z*Z/2.0-C

52

Q=C+P(R)

53

R=R+1

5A

Z=Z+C.1

55

IF(Z.LT.l.CJGOTC50

56

6C

B=1/SORT(Z)

57

P(R)=1•0/3.C+ID-2.0)*Z+A*SCRT{Z-1.0)+8*(Z-1.C)**1.5/3.C-Z*Z
58

l/2.0-A*Z*ARCCS(B)—G

50

Q=C+P(R)

6C

R=R+1

61

Z=Z+C.1

62

IF(Z.LT.2.C)GCTC60

63

P{20)=1-0

6A

Q=Q+P(20)

65

V1=0.0

66

DO70R=1,20

67

7C

V1=V1+(C0UNT(R)**2)/P(R)

68

V=VI/N-N

60



X=19.0 WRITE{IPRINT,75)V,X
75FORMAT!'THECHI-SQUAREVALUEIS'E1A.7»TA2,'WITH ISCFFREEDOM') CALLCDTR(V,X,P1,X3»IER) P2=l-P1 WRITE(IPRINT,85)P2,IER

85FORMAT!'THEPROBABILITYCFAWORSEVALUECFCHI 1T66,'WITHERRORCODE•13) CALLAPTR(F2) WRITE!IPRINT,10)LINE
87CONTINUE RETURN END

,F5.1,T53,'DEGREE SQUAREIS',E1A.7,

PAGE

70 71 72 73 7A 75 76 77 78 75 80 82 83 8A
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PRCGRAN1(13)

1

C2
3

SUBROUTINEGAPRD4
c

PURPOSE6 APPLIESTHEGAPTESTFCRRANCCMCIGITS.7
8

USAGES CALLGAFRC1C
11

SUBROUTINEGAPRD12 INTEGERFI,FNT213 COMMONFI(5),AA(9),NUM,FMT2(8),ISTART,IPRINT14 EQUIVALENCE(N,FI(5)),(C,AA(1}),(SL,AA(5)),(G,AA(4)),(P,AA[6)),(P215
1♦AA(7))16 INTEGERCOLNT(ICOC),LEN(1CC0)17 REALAVER!1CCC),VAR(1CCO)18 INTEGERXIS LOGICAL*1LINE(105)/105*'*'/2C IF(SL.EQ.Q.C)SL=0.0521 WRITE!IPRINT»5)N»SL22

5FORMAT('OThEGAPTESTFCRRANCORDIGITS',/,*THENUMBEROFTRAILS23 1IS',I8,T34,'THETESTISAT•,F6.4,T56,•LEVELCFSIGNIFICANCE')24 WRITE(IPRINT,10)LINE25
1CFORMAT(•C•,1C5A1///)26 ID=D27 IF(P.EQ.O.C)P=1.S628 IF(P2.EQ.O.G)P2=1.64525 DO12KK=1,1D3C COUNT(KK)=C31 LEN(KK)=C32 AVER(KK)=O.C33

12VAR(KK)=0.C34
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14J3=036 K=037 DO30JJ=1,N38 CALLDATA1(1,X,J3)39 X=X+140 K=K+14i
J3=142 AVER(X)=!K-COUNT!X))+AVER!X)43 VAR!X)=(K—COUNT(X))£*2+VAR(X)4^ LEN(X)=LEN(X)+l45

30COUNT(X)=K46 WRITE(IPRINT»35){AVER(I)*1=1,ID),(VAR(J),J=1»ID)47
35FORMATI5F1G.1)48 WRITE!IPRINT,40)(LEN!I),1=1,ID)49

40FORMAT{5I7)50
CTOTESTFORSIGNIFICANCECFTHEMEANANDTHEVARIANCE.51 DO130JJ=1,ID52 IF(LEN(JJ).EQ.OJGOT08653 S=D*(D-1)/LEN(JJ)54 Y1=D+P*SQRT(S)55 Y2=D-P*SQRT(S)56 AVER!JJ)=AVER(JJ)/LEN(JJ)57 VAR!JJ)=VARtJJ)/LEN!JJ)-AVER{JJ)*»258 IF!AVER!JJ).GT.Y1.0R.AVER(JJ).LT.Y2)G0TO8059 WRITE!IPRINT,70)JJ,AVER!JJ),SL60

70FORMAT!*FORDIGIT'»13,T15,*THEMEANIS',F6.2»T34,'WHICHISNOTSI61 1GNIFICANTLYDIFFERENTFROMTHEEXPECTEDMEAN*,/,*AT*,E14.7,T19,*L62 2EVELOFSIGNIFICANCE.*)63 GOTO9064
86WRITE!IPRINT,87)JJ65 87FORMAT!'THEREISNOOCCURRENCEOFDIGIT*15,/,*ANDTHUSTHEMEAN66 1ANDTHEVARIANCEFAILTHETESTOFSIGNIFICANCE')67 GOTO12268

80WRITE(IPRINT,85)JJtAVER!JJ)69 85FORMAT!'FORDIGIT',15,'THEMEANFAILSTHETESTOFSIGNIFICANCEW70
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1ITHVALUE*E14.7)71
90A=2*!LEN(JJ)-1)72 Z1=(P2*SQRT!A)+LEN(JJ)-i)*D*(D-l)73 IF(LEN(JJ)*VAR!JJJ.GT.ZDGOTO11074 WRITE!IPRINT»100)VAR(JJ)75

100FORMAT('THEVARIANCEIS*»F7.3»T25t*WHlCHISNOTSIGNIFICANT*)76 GOTO12277
110WRITE(IPRINT*120)VAR(JJ)78 120FORMAT{*THEVARIANCEFAILSTHETESTWITHVALUE*E14.7)79 122WRITE!IPRINT,10)LINE80 130CONTINUE81 RETURN82 END83
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C c
c c c

PROGRAM(14)

SUBROUTINEMAX PURPOSE APPLIESTHEMAXIMUMTEST. USAGE CALLMAX SUBROUTINEMAX INTEGERFI»FMT2 COMMONFI(5)»AA(9)fNUM»FMT2(8)»ISTART»IPRINT EQUIVALENCE(N,FI(5)),(N,FI(2)),<T,FIC3)) INTEGERT LOGICAL*lLINE(105)/105*»*'/ DIMENSIONV{5CCO) J=T-1 WRITEIIPRINT>5)NtM»T
5FORMAT('OTFEMAXINUNTESTTHENUMBERCFTRAILSIS',I7,T33,'R 1EPEATED'I7,T50,'TIMES.THENUMBERINEACHTRAILIS*17) NRITE(6t8)LINE

8FORMAT('C',1C5A1///)
11J3=0 DO60II=1»M DO101=1,N CALLDATA2(1>V(I),J3) J3=1 DO10K=1»J CALLDATA2(1,U,J3)

10IF(V(I).LT.U)V(I)=U CALLKOLMO(V,ZtPRCB,IER) ViRITEIIPRINT,3G)Z»PRCB»IER

1 2

•a

4 c

-J

6 7
e c

1C 11 12 13 1*
-c 16 17 18 IS 2C 21 22 03 24 9E L> 26 27 28 29 3C 31 32 33 34
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3CFORMAT('TFEPROBABILITYCFTHESTATISTICBEINGGREATERTHANOREG35 IUALTO*E14.7,/,'IFTHEHYPOTHESISISTRUEIS•E14.7,T45,•WITHERR36 20RCODE1I3)37 CALLAPTR(FRCB)36 VvRITElIPRINT»8)LINE39
6CCONTINUE41 RETURN42 END43
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PRCGRAN(15}

1

.2
3

SUBROUTINENIN4
5

PURPOSE6 APPLIESTHENININUNTEST.7
8

USAGE5 CALLNIN1C
11

SUBROUTINENIN12 INTEGERFI,FNT213 CONNICNFI(5),AA(5),NUN,FNT2(8),ISTART,IPRINT14 EQUIVALENCE(N,FI(5)),(N,FI(2)),(T,FI{3))15 INTEGERTIt LCGICAL*1LINE(105)/105*»*«/17 DINENSIONV(5CC0)18 J-T-115
V\RITE(IPRINT,5)N,N»T2C

5FORMAT('OTFENININUNTESTTFENUNBERCFTRAILSIS•,I7,T33,fR21 1EPEATED'17,T5C,'TINES.THENUNBERINEACHTRAILIS*17)22 WRITE!IPRINT»8)LINE23
8FORMAT!»C*.1C5A1///}24

11J3=025 DO6CII=1»N26 DO1C1=1,N27 CALLCATA2!1,V!I),J3)28 J3=125 DO1CK=1»J3C CALLDATA2!l,U,J3)31
1CIF!V(Il.GT.U)V(I)=U32 CALLKOLNO!V,ZtPROB,IER>33 WRITE!IPRINT,3C)Z»PRC8tIER34
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3CFORMAT(*THEPROEABILITYCFTHESTATISTICBEINGGREATERTHANOREQ35 1OALTO'E14.7,/,'IFTHEHYPOTHESISISTRUEIS'E14.7»T45»'WITHERR36 2CRCODE*13)37 CALLAPTR(FRCB)36 WRITE!IPRINT»8)LINE3S
6CCONTINUE41 RETURN42 END43
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C C C, C C C C C C C C C

PRCGRAN(16)

SUBROUTINESUN PURPOSE APPUIESTHESUNTEST. USAGE CAUUSUN SUBROUTINESUN INTEGERFI,FNT2 CONMONFI(5)»AA(9),NUN,FNT2(8),ISTART,IPRINT EQUIVALENCE(N,FI(5)),(N,FI(2)),(JJ,FI{3)) LOGICAU*lLINE(105)/105***'/ DINENSIONV(5CCO) WRITE!IPRINT,5)N,N,JJ
5FORMAT(*QTFESUNTEST
J

THENUMBERCFTRAIUSIS',I7,T33,«REPEA
1TED',17,T5C,'TINES.THENUNeERINEACHTRAILIS',17) WRITE!IPRINT,1C)LINE

1CFORMAT(■C*,1C5A1///) 11J3=0 DO5CL=1,N K=JJ-1 DO30J=1,N CALLDATA2(1,V(J),J3) J3=1 DC201=1,K CALLDATA2(1,U,J3)
2CV!J)=V(J)+L 3CCONTINUE CALLKOLMO(V,Z,PRCB,IER) WRITE!IPRINT,40)Z»PRCB,IER

1 2 2 A 5 6 7 6 5

IC 11 12 13 14 15 16 17 16 IS 2C 21 22 23 24 25 26 27 28 29 3C 31 32 33 34
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ACFORMAT('THEPROBABILITYCFTHESTATISTICBEINGGREATERTHANOREQ35 1UALTONEI4.7,/,•IFTHEHYPOTHESISISTRUEIS'»E1A.7,TA5,'WITHER36 2RORCODE',13)37 CALLAPTR(PRGB)36 WRITE!IPRINT,1C)LINE35
5CCONTINUEA1 RETURNA2 ENDA3
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CPRCGRAN(17) C1 C..2 C3 CSUBROUTINEAP2614 C5 CPURPOSE6 CCOMPUTESY=PROBABILITYTHATARANCCMVARIABLEVWITH7 CDISTRIBUTIONFUNCTION--(V**U)8 CISLESSTHANORECUALTOX.9 C C

IC

CUSAGE11 CCALLAP261(X,Y,IER)12
13

CDESCRIPTIONOFPARAMETERS.14 CX—INPUTSCALARFORWHICHYISCOMPUTED.15 CY—OUTPUTPRCBABILTY.16 CIER—ERRORCODETHISISNON-ZEROIFANYINPUTPARAMETERS17 CVIOLATETHERULESFORTHESUBROUTINEKCLMC.IERISSETTOZERO18 CONENTRYTOTHISSUBROUTINE.19 C C c

2C 21

SUBROUTINEAP261(X,Y,IER)23 INTEGERFI,FMT224 COMMONFI(5)»AA(9)»NUM♦FMT2(8)25 EQUIVALENCE(U»AA(6))»(S»AA(7))26 IER=C27 IF(X)3C,30,3228
3CY=C.C29 GOTO343C

32Y=X**U31 34RETURN

C.

END33
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C c c,
c c c c c c c c c c c c c

c
c c c c c,

c

PRCGRAH(18)

SUBROUTINEAP262 PURPOSE COMPUTESY=PROBABAILITYTHATARANDOMVARIABLEVWITH DISTRIBUTIONFUNCTION—(1-(1-V)**U) ISLESSTHANOREQUALTOX. USAGE CALLAP262(X,Y,IER) DESCRIPTIONOFPARAMETERS. X—INPUTSCALARFORWHICHYISCOMPUTED. Y—OUTPUTPROBABILTY. IER—ERRORCODETHISISNON-ZEROIFANYINPUTPARAMETERS VIOLATETHERULESFORTHESUBROUTINEKOLMC.IERISSETTOZERO ONENTRYTOTHISSUBROUTINE. SUBROUTINEAP262(X,Y,IER) INTEGERFI,FMT2 COMMONFI(5),AA{9),NUM,FMT2(8) EQUIVALENCE(U,AA(6))t(S,AA(7)) IER=0 IF(X)30»32»32
3CY=C.0 GOTO34

32Y=1-(1-X)**U 34RETURN END

1 2 3 A 5 6 7 8 5

IC 11 12 13 L4 L5 16 17 18 19 2C 21 22 23 24 25 26 27 28 29 3C 31 32 33
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C C C, c c c c c c c c c c c c c c c c c c c c c, c

PR0GRAMQ9 ARANDOMVARIABLEVWITH 0<V<1
I<V<2

3C 32 34

SUBROUTINEAP263 PURPOSE COMPUTESY=PRCBABAILITYTHAT THEFOLLOWINGDISTRIBUTION-- V V-2*(V-1) ISLESSTHANCREQUALTCX. USAGE CALLAP263(X,Y,IER) DESCRIPTIONOFPARAMETERS. X—INPUTSCALARFORWHICHYISCOMPUTED. Y—OUTPUTPRCBABILTY. IER—ERRCRCCDETHISISNON-ZEROIFANYINPUTPARAMETERS VIOLATETHERULESFCRTHESUBROUTINEKCLMO.IERISSETTOZERO ONENTRYTOTHISSUBROUTINE. SUBROUTINEAP263{X,Y,IER) INTEGERFI,FMT2 IF(X-1.0)3C,30,32 Y=(X**2)/2.0 GOTO34 Y=1.C-((2.C-X)**2)/2.0 RETURN END

1 2 3 A 5 6 7 8 5

1C 1I 12 13 1A 15 16 17 18 15 2C 21 22 23 2A 25 26 27 28 25 3C 31 32
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C C C, C c c c c c c c c c c c c c c c c c c c c c, c

PROGRAM(20)

SUBROUTINEAP264 PURPOSE COMPUTESY=PRCBABAILITYTHATARANDOMVARIABLEVWITH THEFOLLOWINGDISTRIBUTION— (V**2)/20<V<1 (V**2-3!HV-l)^2}/21<V<2 (V**2-3*(V-I)**2+3>MV-2)**2)2<V<3 ISLESSTHANOREQUALTCX. USAGE CALLAP264(X»Y»IER)

if

DESCRIPTIONOFPARAMETERS. X—INPITSCALARFORWHICHYISCOMPUTED. Y—OUTPUTPRCBABILTY. IER—ERRORCODETHISISNCN-ZERCIFANYINPUTPARAMETERS VIOLATETHERULESFORTHESUBROUTINEKCLMO.IERISSETTOZERO ONENTRYTOTHISSUBROUTINE. SUBROUTINEAP264(X,Y,IER) IER=0 IF(X-1.0)3C,30»32
3CY=(X**3)/6.0 GOTO38

32IF(X-2.0)34t34,36 34Y={(X**3)/3.0-(X-1.0)**3)/2.0 GOTO38
36Y=((X**3)/3.C-{X-i.0)**3+{X-2.0)**3)/2.0

1 2 3 4 5 6 7 8 5

1C LI 12 13 14 15 16 17 18 IS 2C 21 22 23 24 25 26 27 28 2S 3C 31 32 33 34



PAGE

RETURN35 END36
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C C C, C C c c c c c c c c c c c c c
c c c c c c c c, c

PRCGRAM121)

SUBROUTINEAP265 PURPOSE COMPUTESY=PROBABAILITYTHATARANDOMVARIABLEVWITH THEFOLLOWINGDISTRIBUTION— {V**3)/6CCVCI (V**3-4*(V-1)**3)/6I<V<2 (v**3-4*1V-l)**3+6*(V-2)**3)/62<V<3 (V**3-4*(V—1)**3+6*(V-2)**3-4*(V-3)**3)/63<V<4 ISLESSTHANOREQUALTCX. USAGE CALLAP265(X»Y»IER) DESCRIPTIONOFPARAMETERS. X—INPUTSCALARFORWHICHYISCOMPUTED. Y—OUTPUTPRCBABILTY. IER—ERRORCODETHISISNCN-ZERCIFANYINPUTPARAMETERS VIOLATETHERULESFCRTHESUBROUTINEKCLMC.IERISSETTOZERO ONENTRYTOTHISSUBROUTINE. SUBROUTINEAP265{X,Y,IER) IER=C IF(X-l.O)3C,30,32
3CY=({X**4)/24.0) GOTO42

32IF(X-2.0)34,34,36 34Y=((X**4)/4.0-(X-I.0)**4)/6.0 GOTO42

1 2 3 4 E 6 7 8 5

1C 11 12 13 14
1G 16 17 18 19 2C 21 22 23 24 25 26 27 28 29 3C 31 32 33 34



36IF(X-3.0)36»38,40 36Y={(X**4)/4.C-{X-1.0)**4+1.5*(X-2.0)**4)/6.0 GOTO42
4CY=((X**4)/4.0-(X-1.0)**4+1.5*{X-2.0)**4-(X-3.0}**4)/6. 42RETURN END

PAGE

35 36 37 38 39 40
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CPROGRAM(22) C1 C2
C3 CSUBROUTINEAP266A C

C G

5

CPURPOSE6 CCOMPUTESY=PRCSABAILITYTHATARANCOMVARIABLEVWITH7 CTHEFOLLOWINGDISTRIBUTION—8 C(V**4)/240<V<19 C(V**4-5*(V-1)**4)/241<V<2LC C(V**4-5*(V-l)**4+10*(V-2)**4)/242<V<311 C(V**4-5*(V-1)**4+10*(V-2)**4-10*(V-3)**4)/243<V<412 C(V**4-5*(V-l)**4+10*(V-2)**4-10>MV-3)**4+5*(V-4)**4)/244<V<513 CISLESSTHANOREQUALTOX.14
15

CUSAGE16 CCALLAP266(X,Y,IER)17
18

CDESCRIPTIONOFPARAMETERS.19 CX—INPUTSCALARFORWHICHYISCOMPUTED.2C CY—OUTPUTPRCBABILTY.21 CIER—ERRORCODETHISISNCN-ZERCIFANYINPUTPARAMETERS22 CVIOLATETHERULESFORTHESUBROUTINEKCLMO.IERISSETTOZERO23 CONENTRYTOTHISSUBROUTINE.24 C25 C26 C27 SUBROUTINEAP266(X,Y,IER)28 IER=C29 IF(X-1.0)3C,30,323C
3CY=((X**5)/5.C)/24.031 GOTO4632

32IF(X-2.0)34,34,3633 34Y=((X**5)/5.C-(X-1.0)**5)/24.034
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C C c. c c c c c c c c c c c c c c c c c c c c c c c c c c c, c

PRCGRAMJ23)

SUBROUTINEAP267 PURPOSE COMPUTESY=PROBABAILITYTHATARANDOMVARIABLEVWITH THEFOLLOWINGDISTRIBUTION— (V**5)/12CC<V<1 (V**5-6*(V-I)**5)/1201<V<2 (v**5-64{V-I)**5+15*(V-2)**5)/1202CVC3 {V**5-6*(V-l)**5+15*(V-2)**5-20*(V-3)**5)/12C3<V<A (V**5-6*(V-I)**5+15*(V-2)**5-20*(V-3)**5+15*(V-A)**5) /120A<V<5 <V**5-6*(V-l)**5+15*(V-2)**5-20*(V-3)**5+15*{V-A)**5- 6#{V-5)**5)/1205<V<6 ISLESSTHANOREQUALTOX. USAGE CALLAP267(X,Y,IER) DESCRIPTIONOFPARAMETERS. X—INPUTSCALARFORWHICHYISCOMPUTED. Y—OUTPUTPRCBABILTY. IER—ERRORCODETHISISNON-ZERCIFANYINPUTPARAMETERS VIOLATETHERULESFORTHESUBROUTINEKCLMO.IERISSETTOZERO ONENTRYTOTHISSUBROUTINE. SUBROUTINEAP267(X,Y,IER)
IER=0 IF(X-1.0)30,30,32

3DY=(IX**6)/6.0)7120.0

1 2 3 A C 6 7 8 9

1C 11 12 13 1A 15 16 17 18 19 2C 21 22 23 2A 25 26 27 28 29 30 31 32 33 3A
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CPRCGRAN(2A) C C c CSUBROUTINEUSER C CPURPOSE CTHISISADUMMYSUBROUTINE. C CUSAGE CCALLUSER(X»YfIER) C CDESCRIPTIONCFPARAMETERS. CX—INPUTSCALARFORWHICHYISCOMPUTED. CY—OUTPUTPRCBABILTY. CIER—ERRORCODETHISISNCN-ZERCIFANY CVICLATETHERULESFORTHESUBROUTINEKOLMC CBEFOREENTERINGTHISSUBROUTINE. C C
C

SUBROUTINEUSER(X,Y,IER) RETURN END

INPUTPARAMETERS IERISSETTOONE

PAGE

1 2 3 A

e;

6 7 8 9

1C LI 12 13 1A 15 16 17 18 19 2C 21 22 23



PAGE66

CPRCGRAMI25) C1 C2 C3 CSUBROUTINEREAD14 C5 CPURPOSE6 CTHISADUMMYSUBROUTINE,CALLEDFROMSUBROUTINECATA1.7 C8 CUSAGE9 CCALLREAD1IM,K,LL)IC CII CDESCRIPTIONOFPARAMETERS.12 CM—INPUTSCALAR.THENUMBERCFINTEGERSREQUESTEC.13 CK—OUTPUTARRAYORNUMBERS14 CLL—=CIFFIRSTCATACALL15 C=1OTHERWISE16 C17 C18 C19 SUBROUTINEREAO1(M,K,LL)2C RETURN21 ENC22
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CPRCGRAM(26) C1 C2 C3 CA CSUBROUTINEREAC25 C6 CPURPOSE7 CTHISACURRYSUBRCUTINE»CALLECFRCPSUBROUTINECATA2.8 C9 CUSAGEIC CCALLREAD2(M,V,LL)II C12 CDESCRIPTIONCFPARAMETERS.13 CM—INPUTSCALAR.THENUMBERCFREALNUMBERSREQUESTED.14 CV—OUTPUTARRAYORNUMBERS15 CLL—=CIFFIRSTCATACALL16 C=1OTHERWISE17 C18 C.....19 C2C SUBROUTINEREAD2(M,V,LL)21 RETURN22 END23



CPROGRAM(27) C c c CSUBROUTINECATAI C C CPURPOSE COBTAINSMINTEGERS C CUSAGE CCALLDATA1(M,K,LL) C CDESCRIPTIONOFPARAMETERS. CMl—INPUTSCALAR.THENUMBEROFINTEGERSREQUESTED. CK—OUTPUTARRAYORNUMBERS CLL—=CIFFIRSTDATACALL C=1OTHERWISE C C
c

SUBROUTINEDATA1(M,K,LL) INTEGERFI»FMT2 COMMONFI(5),AA(9),NUM,FMT2(8),ISTART COMMONIPRINT»IRED,JREC EQUIVALENCE(C,AA(1)),(E,AA(A)),(X,AA(8)) DIMENSIONL(82),K(1) IF(D.EQ.O.C)D=I.G IF(E.EQ.O.C)GCTO2 NOS=E GOTO4
2NOS=I 4IF(LL.NE.O)GCTO5 L=I N=1

PAGE

1 2 3 4 fc 7 8 5

1C 11 12 13 1A 15 16 17 18 19 2C 21 22 23 24 25 26 27 28 25 3C 31 32 33 34



5JJ=X+1 GOTO(6»20,35»65,90),JJ
6DO15J=1,N IF{N.NE.1)GOTO10 READ(IRED)(UCI),1=1,82)

1CK(J)=0*U(L) L=L+NCS IF(L.LE.82JGCTO12 L=L-82 N=1 GOTO15
12N=C 15CONTINUE GOTO100

2CDO30J=1»N IF(N.NE.1)GOTO22 READ(IRED)(U(I),1=1,82)
22K(J)=U(L) L=L+NOS IF(L.LE.82)G0TO25 L=L-82 N=1 GOTO30

25N=C 3CCONTINUE GOTO100
35DO60J=1»N IF(N.NE.1)GOTO50

ACREAD(JRED,FNT2)(U(I),1=1,NUN1) IF(L.LE.NUN)GGTO50 L=L-NUP GOTOAO
5CK(J)=D*U(L) L=L+NOS IF(L.LE.NUN)GCTC55

PAGE

35 36 37 38 39 AC A1 A2 A3 AA A5 46 A7 A8 45 5C 51 52 53 54 56 57 58 59 6C 61 62 63 64 65 66 67 68 69



L=L-NUM N=1 GOTO60
55N=C 6CCONTINUE GOTO100

650085J=1»N IF(N.NE.1)GOTO75
7CREADlJRED,FKT2)(U(I)»I=1.NUM) IF(L.LE.NUMGCTO75 L=L-NUM GOTO70

75K(J)=U(LI L=L+NCS IF(L.LE.NUP)GCTC80 L=L-NUH N=1 GOTO85
80N=C e5CONTINUE GOTC100

5CCALLREAD1(N»K»LL)
ICCRETURN END

PAGE

7C 71 72 73 74 75 76 77 78 79 8C 81 82 83 84 85 86 87 88 85 9C 91 92 93
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C1 C....2 C3 CA CSUBROUTINECATA25 C C C

6

CPURPOSE7 COBTAINSMREALNUMBERS.8
9

CUSAGE1C CCALLCATA2(M,V,LL)II
12

CDESCRIPTIONCFPARAMETERS.13 CM—INPUTSCALAR.THENUMBERCFREALNUMBERSREQUESTED.14 CV—CUTPUTARRAYCRNUMBERS15 CLL—=CIFFIRSTCATACALL16 C=1OTHERWISE17 C18 C...19 C2C SUBROUTINEDATA2(M,V,LL)21 INTEGERFItFMT222 COMMONFI(5),AA{9),NUN,FMT2(8}tISTART23 COMMONIPRINT»IREDfJREC24 EQUIVALENCE{D,AA{1)),(E,AA(4))♦(X,AA(8))25 DIMENSIONU{82),V(1)26 IF(D.EQ.0.C)D=1.C27 IF(E.EQ.O.C)GCTO228 NOS=E25 GOTO43C
2NOS=131 4IFILL.NE.03G0TO532 L=133 N=134



5JJ=X+1 GOTO{6»20,35,65,90),JJ
6DO15J=1,N IF(N.NE.1)GCTO10 READ(IRED)(0(1),1=1,82)

10V(J)=D*U(L) L=L+NCS IF(L.LE.82)GCTO12 L=L-82 N=1 GOTO15
12N=C 15CONTINUE GOTO100

20DO30J=1,N IF(N.NE.1)GCTO22 READIIRED)(0(1),1=1,82)
22V(J)=U(L) L=L+NCS IF(L.LE.82)GCTO25 L=L-82 N=1 GCTO30

25N=C 30CONTINUE GOTOICO
35DO60J=l,* IF(N.NE.1)GCTC50

80READ(JRED,FNT2)(U(I),1=1,NUN) IF(L.LE.NUN)GCTC50 L=L-NUM GOTO80
50V(J)=D*U(L) L=L+NCS IF(L.LE.NUMGCTC55
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L=L-NUN N=1 GOTO60
55N=C 6CCONTINUE GOTC100

65DO85J=1»N IF(N.NE.I)GOTC75
7CREADlJRED,FNT2)(UII)»I=L»NUM) IF(L.LE.NUN)GOTC75 L=L-NUM GOTO70

75V(J)=U(L) L=L+NCS IF(L.LE.NUN)GCTO80 L=L-NUM N=1 GOTO85
8CN=C 85CONTINUE GOTC100

9CCALLREAD2(N,V,LL)
ICCRETURN END

PAGE
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CPROGRAM(29) C1 C2 C3 CSUBROUTINEGETFMT4 C5 CPURPOSE6 CTOOBTAINTEEREQUIREDFORMATSTATEMENT.7 C C

8

CUSAGE9 CCALLGETFMT(IN,SWITCH,FMT)1C
11

CDESCRIPTIONOFPARAMETERS.12 CIN—INPUTVECTOR.ITISEITHERBLANKORCONTAINSAFORMAT13 CSTATEMENT.14 CSWITCH--STANDARDFORMAT.15 C=0.0THEN(414,110,5F5.1,2F9.4,2F5.1)lfc C=1.0THEN(5E14.7)17 C18 C...19 C20 SUBROUTINEGETFMT(IN,SWITCH,FMT)21 INTEGERF1,FMT222 COMMONFI(5),AA(9),NUM,FMT2(8)23 INTEGERSIN(1),FMT(1)24 INTEGER*46(8)/8*'*/,STAND1(7)/•(414•,•,110•,',5F5»,•.1,2•,■F925 1.4,t',2F5,»,.l)'/fSTANC2(2)/'(5El','4.7)'/26 IF(SWITCH.NE.O.OJGOTO5027 DO10J=1»828 IF(IN(J).NE.B(J))GOTO3029
10CONTINUE3C DO20JJ=1,731

20FMT(JJ)=STAND1(JJ)32 GOTO7033
30DO40J=1,S34



ACFHT(J)=1N(J) GOTO70
5CDO60J=1,S IF(IN(J).NE.BIJ))GCTC30

6CCONTINUE DO65JJ=1,2
65FMT(JJ)=STAND2(JJ) NUf=5

7CRETURN END

PAGE
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C C
CPROGRAM(30) C1 C2 C3 CSUBROUTINEAPSN C CPURPOSE4 CTCCALCULATESTIRLINGSNUMBERSFCRK.5

6

CUSAGE7 CCALLAP$N(K,IS)8
9

CDESCRIPTIONOFPARAMETERS.1C CK—INPUTSCALAR,NUMBEROFDIGITSFORWHICHSTIRLINGSNUMBERSII CAREREQUIRED.12 CIS—OUTPUTVECTORCFSTIRLINGSNUMBERS.13 C14 C15 C11 SUBROUTINEAPSN(K.IS)17 DIMENSIONIS120),JTEMP(20)»JS(20)18
IS(1)=1IS DO20J=2,2C2C

2CIS(JI=021 DO50J=2»K22 DO30L=2,J23
30JTEMP(L)=ISCL-l)+IStL)«L24 DO40M=2iJ25

4CIS(M)=JTEMP(M)26 50CONTINUE27 RETURN28 END29
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CPRCGRAN(31) C1 C2 C3 CSUBROUTINEAPTR(B)A C5 CPURPOSE6 CTESTFORDEGREEOFRANCCNNESS.7 C3 CUSAGE9 CCALLAPTR(B)1C CB1L CDESCRIPTIONCFPARAMETERS12 CB-PRCBILITYCFAWCRSEVALUECFCFI-SCUARE.13 C14 C15 CIt SUBROUTINEAPTR(B)17 COMMONFI(5),AA(9),NUN,FNT2(8),1START,IPRINT175
8CRETURN
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