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Abstract

Inspired by the results of D. McAlister ([25]), we consider transformation semi¬

groups generated by an n-cycle and a transformation of rank 2. We give structural

properties of the generator of rank 2 which determine if the semigroup is regular
or completely regular. We also show that there are no inverse semigroups of the

type considered.

Using similar techniques, we determine all possible sizes for a given semigroup
of this type. This is done via a complete description of the Green's relations of
the semigroup.

In the next stage of this thesis we are concerned with the study of the isomor¬

phism between two members of this class of semigroups. We give conditions in
order to decide if two given semigroups are isomorphic. In the process of answer¬

ing this question, we study presentations for these semigroups, which are then
used as another tool for the study of isomorphisms.

Due to the combinatorial and algorithmic character of the properties defined
in this thesis, the computer algebra system GAP ([12]) played an important role
in our studies both as a tool for testing examples and as a tool for making

conjectures. All the formal algorithms resulting from our work are also given.

In the last part of our thesis we study a different kind of problem. Having as

a starting point the famously known "Sierpiiiski's Lemma" ([30]) and the proof
of this lemma given by Banach ([4]), we give a generalisation of this result. We
prove that every countable set of endomorphisms of an algebra A which has an

x



infinite basis in contained in a 2-generated subsemigroup of the semigroup of all

endomorphisms of A. Several corollaries of this result follow, among them the
case where A is an independence algebra. This result was first obtained by K. D.

Magill ([23]), using a very complicated and complex proof that makes no use of
Banach's proof.
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Chapter 1

Introduction

A semigroup is a non-empty set S endowed with a binary operation
which is associative.

Maybe the beauty of the study of semigroup theory lies in the simplicity of
its definition. And this simplicity implies that we are surrounded by obvious

examples of semigroups, perhaps the most obvious being the set of the natural
numbers N = {1, 2, 3,... } with the usual addition which, for most of us, is
the first contact with mathematics.

In the beginning of their history, semigroups were a mere generalisation of

groups. The least that can be said is that things have changed quite radically in
the last 50 years or so. In the present day, semigroup theory is a very broad and
fertile area of mathematics, as one can deduce just from the number of results
obtained by typing the word "semigroup" on any internet search engine. This is

far from being a "formal proof" for the previous statement but it is nevertheless
a persuasive non-mathematical argument.

In this chapter we present the definitions, notation and results necessary for
a complete understanding of the work presented in this thesis. In the last section
and with some detail, we outline the work presented in this thesis.

1



1 Introduction 2

1 Definitions and known results

We ought to state some definitions so that the definition of a semigroup presented
above makes sense.

One of the simplest algebraic structures is a groupoid or magma. A groupoid

(5, o) is a non-empty set S with "o", a binary operation. A binary operation is
just a well defined map

o : S x S —♦ S.

A semigroup (S, o) is a groupoid where the binary operation o is associative.
More formally, for all x, y, z E S the following holds

(x O y) o Z = X O (y o z).

It is standard to write xoy as the usual multiplication xy (or sometimes, but less
frequently, x.y). Hence associativity is represented by the equality

(xy)z = x(yz).

Associativity can be generalised to any finite product of elements from S. We
write xx as x2 and more generally xx .. . x = xk.

k times

An element e in S is called an idempotent if e2 = e.

If there is an element u E S such that for all x E S we have ux = xu = x then

u is the identity of S (it is easy to prove that u, if it exists, is unique). In this
case, S" is a semigroup with identity or a monoid and the element u is usually
denoted by 1. Trivially, the identity of a semigroup is an idempotent.

In the case that a semigroup S does not have an identity, we can just simply

adjoin an extra element 1 to A and impose the conditions 11 = 1 and Ix — xl — x,

for every element x E S. It is trivial to prove that S U {1} is a monoid. We can

then define

x I iS if S has an identity
1 S U {1} otherwise.
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The monoid S1 is often used as a tool to prove results for semigroups from known
results for monoids.

Let T be a non-empty subset of S. Then T is a subsemigroup of S if for all

x,y E T, xy E T. We write T < S to denote that T is a subsemigroup of S.
In the case that T is a subsemigroup of S but T ^ S, we say that T is a proper

subsemigroup of S and write T < S. Note that, in both cases, T inherits the

multiplication of S, i.e. xy = xy .

in t in s

As in most areas of Mathematics, the notion of homomorphism is a very

important concept. Let S and T be semigroups, and let <f> : S —» T be a map.

Then 0 is a homomorphism if (xy)<p — (x<p)(y^i), for all x,y E S. If A and T are

monoids with identities lg and 1t, respectively, then 0 is a homomorphism if for
all x,y E S we have (xy)f> — (x<p)(yq!>) and ls<f> = 1t-

If 4> is an injective homomorphism then (f) is set to be a monomorphism. If

0 is a surjective homomorphism then cj) is called an epimorphism. If 4> is both
a monomorphism and an epimorphism then <j> is an isomorphism. If there is an

isomorphism cj): S —> T then we say that S is isomorphic to T or that S and T
are isomorphic and we write S = T.

Let A and B be non-empty subsets of S. We define

AB = {ab : a € A, b E b}.

It is clear that AB is a subset of S. In the particular case that A — {a} it is
traditional to write AB as aB, rather than {a}B.
If/ is a non-empty subset of S such that IS C I then we say that I is a right

ideal of S. We define left ideal in a similar way. If I is both a left and right ideal
of S then we say that I is a (two-sided) ideal of S. It is clear that, by definition,
every (left, right or two-sided) ideal of A is a subsemigroup of S. It is a standard
exercise to prove that aSl is the smallest right ideal of S which contains a. This
ideal is called the principal right ideal generated by a. Analogously, we have the
notion of principal left ideal generated by a. Also we can prove that the set S1aS1
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is the smallest ideal which contains a. This is called the principal ideal generated

by a.

It is not very hard to verify that the intersection of two subsemigroups of a

semigroup is a subsemigroup, provided that this intersection is non-empty. More

generally, we have the following result.

Proposition 1.1 Let W be a non-empty set and S be a semigroup . Let Tj be
a subsemigroup of S, for each i E W. Then T — n t, is a semigroup, provided

iew
that T is non-empty.

Given a semigroup S and a non-empty subset X of S we have that the in¬

tersection of all subsemigroups T of S which contain X (formally, Q T) is a
T<S
XCT

subsemigroup of S, called the subsemigroup generated by X and it is denoted by

(X).
The following result is given without proof.

Proposition 1.2 Let S be a semigroup and X a non-empty set of S. The sub-

semigroup generated by X is the set of all products of one or more elements of
X. Formally, (X) = {x\x2 ... xn : n E N, Xj E X, i E {1,..., n}}.

2 Green's relations

We shall now define Green's relations. We use [16] as the main guide for the

following definitions.

Let S be a semigroup and take a,b E S. We say that a is L-related to b and
we write aLb if a and b generate the same principal left ideal. In other words,
aCb if and only if S1a — S1b.

Similarly, we say that a is IZ-related to b and we write alZb if a and b generate
the same principal right ideal, i.e. alZb if and only if aS1 = bS1.

The following result is a standard exercise.
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Proposition 1.3 Let S be a semigroup and a,b E S. Then aCb if and only if
there exist x,y E S1 such that xa = b and yb = a. Similarly, alZb if and only if
there exist x,y E S1 such that ax = b and by = a

We define V as the smallest equivalence relation which contains both C and
TZ. Since C and TZ commute (i.e. C o TZ = 1Z o C), we have that V = C o 1Z. The
intersection of C with TZ is the relation Ti.

The following holds.

Proposition 1.4 The relations T>,C,TZ and Tt are equivalence relations. Fur¬

thermore, C is a right congruence and TZ is a left congruence.

We normally refer to the £-, TZ-, V- and Ti-class of an element a E S as La,

Ra, Da and ITa, respectively.

As described in [16], it is convenient to visualise a P-class as an "eggbox",
where each row represents an Al-class, each column represents an T-class and
each cell represents an 7d-class. Note that we can have the case that there is only
one C- or Al-class or, in the case of infinite semigroups, we can have an "infinite

eggbox".

£

n

Figure 1.1: Illustration of a D-class

The next proposition is a very important structural result, commonly known
as "Green's Lemma".

Proposition 1.5 Let S be a semigroup and let a, b E S.
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(i) If alZb and u,v 6 S1 are such that au — b and bv = a then the right
translations

pu : La —> Lb, x xu and

pv '■ Lb —■> La,y h-> yv

are mutually inverse IZ-class preserving bisections.

(ii) If aCb and u,v £ S1 are such that ua = b and vb = a then the left
translations

Xu : Ra —» Rb, x i—> ux and

Av: Rb —* Ra,y >-»• vy

are mutually inverse C-class preserving bisections.

Two important consequences of this result follow.

Proposition 1.6 Let S be a semigroup and let a,b € S. IfaVb then \Ha\ — \Hb\.

Proposition 1.7 Let S be a semigroup and let H be an Li-class of S. Then
either H2 n H = 0 or H2 = H and, in this case, H is a group.

Hence, if e G S is an idempotent then He is a group.

The next result describes the relation between the group 7d-classes which lie
in the same P-class.

Proposition 1.8 Let S be a semigroup. Take a,b g S. If Ha and Hb are groups

then Ha is isomorphic to Hb.

The proof for this result can be found in [16] and uses a "clever choice" of the
translations referred to in Proposition 1.5. Alternatively, the proof of this result

(actually, of a more general result) can be found in [14] and uses the notion of
the Schutzenberger group of an Li-class, a notion which is not directly related to

our work.
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The next result we present in this section enables us to have some control of
the multiplication within a certain P-class of S.

Proposition 1.9 Let S be a semigroup and let a,b E S be such that aVb. Then
ab E Ra D Lb if and only if La D Rb contains an idempotent.

Again, the proof for the above proposition can be found in [16].

3 Regular and inverse semigroups

An element a of the semigroup S is regular if there exists x E S such that axa = a.

A semigroup is regular if all its elements are regular.

Let a E S. We say that a' is an inverse of a if aa'a = a and a'aa' = a!. It
is clear that if a E S has an inverse than a is regular. The converse is also true

because if a is regular then there is x E S such that a = axa. Therefore a' = xax

is an inverse of a. Note that an element may have more than one inverse (for
example, in a rectangular band). If S is such that every element of S has one

and only one inverse then S is called an inverse semigroup.

As a consequence of the above definitions one can easily remark that every
inverse semigroup is a regular semigroup.

Regular semigroups can be looked at as being "one step closer" to groups.

Next, we state a relation between groups and regular semigroups.

Proposition 1.10 Let S be a regular semigroup. Then S is a group if and only

if S contains exactly one idempotent.

The following two results are used to decide if a certain semigroup is regular.

Proposition 1.11 Let S be a semigroup. If a is regular then every element in
the V-class of a is regular.
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Proposition 1.12 A semigroup S is regular if and only if every C-class and

every TZ-class of S contain at least one idempotent.

A semigroup is completely regular if every 7d-class in S1 is a group, i.e. if for

every a € S, Ha is a group. It is easy to see that if S is completely regular then
S is regular.

There are many equivalent ways of characterising inverse semigroups as one

can observe in [16] or in [18], a much more specialised book on the theory of
inverse semigroups. For our work we shall use the following characterisation.

Proposition 1.13 The semigroup S is inverse if and only if every C-class and

every IZ-class of S contains exactly one idempotent.

There are some comments to make about Green's relations and regular semi¬

groups.

Let S1 be a semigroup and T a subsemigroup of S. It is clear that if two
elements a, b in T are C, 71, V or 7d-related in T then they are also C, 7Z, V or

7-f-related in S. The converse is, in general, not true.

We do have the following useful result.

Proposition 1.14 Let S be a semigroup. Let T < S and a,b gT. IfT is regular

then;

(i) aTlb in T if and only if alZb in S,

(ii) aCb in T if and only if aCb in S,

(iii) ahib in T if and only if ahib in S.

The proofs for the results in this section can be found in [16].
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4 Transformation semigroups

Unavoidably, we shall probably repeat the statements made in the introduction
of numerous manuals, books or theses on semigroup theory when we say that
transformation semigroups are of utmost importance in this area of Mathematics.

The full transformation semigroup on a set X, which is normally denoted

by Tx, arises very naturally as the set of all maps from the set X into itself.
We ought to say that the somehow trivial fact that the composition of functions
is associative is an essential detail that makes the set of all selfmaps of X a

semigroup.

In Tx, as in the case of an abstract semigroup, we shall write the composition
of maps as multiplication and the maps act on the right,

x(t o P) = x(t/3) (x e X] t,P eTx).

In the case that X = {1,2,,n} then we shall write Tn rather than Tx.
The full transformation semigroup Tx plays a role, in Semigroup Theory,

equivalent to that of the symmetric group Sx in Group Theory, since every

semigroup is isomorphic to a subsemigroup of Tx.

At this point we will define some notation which will be used throughout this
thesis.

Let a be a transformation in Tx. The kernel of a is the equivalence relation
ker (cr) defined by

ker (a) = {(x, y) G X x X : xa = ya}.

Whenever there is no risk of ambiguity we also denote the partition associated
to the kernel of a by ker (a). The image of a is the set

im (a) = {xa : x € X}.

The rank of a (which we denote by rank (a)) is the cardinal of the set im (a).
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Green's relations for the full transformation semigroup are described in the
next result. This result emphasises the nice relationship between the theoretical
and algebraic nature of the Green's relations for the particular case of Tx.

Proposition 1.15 Let a, (3 G TX- The following hold:

(i) aIZ/3 if and only if ker (a) = ker (/?);

(ii) a£/3 if and only if im (a) = im (/3);

(iii) aTip if and only if ker (cr) = ker (/3) and im (a) = im (/3);

(iv) aT>P if and only if rank (a) = rank (/?).

Proposition 1.16 Let a, (3 € S < Tx. Then the following hold:

(i) IfaV/3 in S then rank (a) = rank(/3);

(ii) If aTZ/3 in S then ker (a) = ker (/3);

(iii) If aC(3 in S then im (a) = im (/3);

(iv) If aH/3 in S then ker (a) = ker (/?) and im (a) = im (/3).

The next result follows taking S = Tx and T = S in Proposition 1.14 and

applying Proposition 1.15.

Proposition 1.17 Let a, (3 € S < Tx. If S is regular then the following hold:

(i) aIZ/3 in S if and only if ker (a) = ker (/?);

(ii) aC/3 in S if and only if im (a) = im {(3);

(iii) aHfd in S if and only if ker (a) = ker (/?) and im (a) = im (/?).
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Sometimes we refer explicitly to these results but there are cases where they
are simply implicitly assumed.

The next definition is maybe not the most standard but we find it to be

appropriate in the context of this thesis. If r G Tx is a transformation of rank

two, we define the conjugate of r as the only element a in Tx such that ker (r) =
ker (ct) and im (r) = im (a) but r^a. We denote this element by r. The fact
that this is element is unique follows from having tTLt in Tx (from Proposition

1.15) and \HT\ = 2. The element r can also be looked at as the product r(a b),
where a, b are such that im (r) = {a, 6}.

We ought to introduce some notation regarding transformations which we

sometimes use in this thesis. Given a transformation

T = ( 1 2 3 4 ••• 6)\ a a b a ... b I

we write r as [a, a, b, a,..., bj. For example, if

r=f 1 2 3 4 5V13 1113 I

we also write r = [3,1,1,1, 3].

In the case where X is finite, we have a result which gives us more information
about the multiplication within a semigroup than Proposition 1.9.

Proposition 1.18 Let S < Tn. If a, (3 g S are such that a, (3 and af3 are

V-related then a/3 G Ra fl Lp and La D Rp is a group.

5 Presentations

Let A be a non-empty set. The set of all non-empty words aia2-..an, with

ai, a2,. • •, an G A is denoted by A+. Denoting by e the empty word, then we
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define A* = A+ U {e}. Both sets A+ and A* are semigroups, where the binary

operation is the concatenation of words. To be more accurate, A* is a monoid
since the concatenation of any word w with the empty word e is w.

The semigroup A+ is generated by A and it is called the free semigroup on A.

A semigroup presentation is an ordered pair (A\ R), where R C A+ x A+. A
semigroup S is defined by the presentation (A \ R) if S = A+/p, where p is the
smallest congruence on A+ which contains R. This means, loosely speaking, that
each word of A+ represents an element of S.

Throughout this thesis we generally identify words w of A+ with the corre¬

sponding element w/p of S. Sometimes we wish to distinguish these and then,

given Wi,W2 £ A+, we write w\ = w2 if ttq and w2 are identical words in A+, and
Wi = w2 if they represent the same element in S (i.e. W\/p — w2/p), in which
case we say that S satisfies the relation w\ = w2.

Given two words W\,w2 £ A+, we say that w2 is obtained from w\ by one

application of one relation from R if there exist a, (3 £ A* and (u, v) £ R such
that wi = aufi and w2 = avfi. We say that w2 is a consequence of w\ if there
is a sequence w\ = or, a2,..., a^-i, ak = w2 of words from A+ such that al+1 is

obtained from cq by one application of one relation from R.

The next result can be found in [28] and it is frequently used in Chapter 4.

Proposition 1.19 Let S be a finite semigroup, let A be a generating set for S,
let R C A+ x A+ be a set of relations, and let W C. A+. Assume that the following
conditions are satisfied:

(i) the generators A of S satisfy all the relations from R;

(ii) for each word w € A+ there exists a word w £ W such that w = w

is a consequence of R;

(hi) \W\ < |S|.

Then (A \ R) is a presentation for S.
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In the definitions above, if we replace A+ by A*, we obtain the notion of a
monoid presentation and the consequent results.

6 Set theory

This section and the following one contain some definitions required in the last

chapter of this thesis. In this section we give some definitions and results of set

theory which can be found in [6] or [31].
Let A be a nonempty set. We say that A is finite if there is a bijection

/ : {1,2,..., 77.} —» A, for some n £ N. In this case we say that the size of A is
n and we write |A| — n.

A set A is countable if there is a bijection between the set of all natural
numbers and the set A, f : N —* A.

We say that A is uncountable if A is neither finite nor countable. The set

of all real numbers R is an uncountable set. Another interesting example of an
uncountable set is the set of all subsets of N, denoted by T'(N). This is proved

by showing that

/ : P(N) —> 2N
A i—► XA ■ A -> {0,1}

f 1, if x € A
X I—► <

0, otherwise

is a bijection, knowing that the set 2N of all maps from N into {0,1} is in bijection
with the set of all real numbers R.

7 Universal algebra

For this section we shall use [5] as our main guide. Let A be a nonempty set. We
define A0 — {0}. Let n G N. We define An as the set of n-tuples of elements from



1 Introduction 14

A. It is also standard to refer to An as the Cartesian product Ax Ax Ax ■ ■ • x A
with n terms. An element a E An is represented as (ai, a2,..., an), with ai G

for each i G {1,..., n}.
An n-ary operation on A is any mapping from An to A. A nullary operation

(or constant) is a mapping from A0 to A. A nullary operation is thought as an

element of A.

These operations are referred to as finitary operations.

There is also the notion of infinitary operation, which is a mapping from A1
to A, where I is infinite. More precisely, an infinitary operation is a mapping
a : A1 —> A where A1 = {(a,)ie/ : G A, for each i £ I}. Note that A1 is just
the set of all sequences of elements of A, indexed on I. Nevertheless, we shall
not give any further details about these kind of operations, since these are not

directly related to the work in this thesis.

An algebra A is a pair (A, 12), where A is a non-empty set and 12 is a set of

(finitary or infinitary) operations on A. The operations in 12 are called funda¬
mental operations of A.

A semigroup (A, o) is an example of a binary algebra, i.e. an algebra with
a binary operation. We can find more interesting examples of algebras in the

bibliography mentioned.

Let A = (A, 12) be an algebra. A map ip : A —■> A is an endomorphism if ip
is a selfmap of A which preserves the operations of A. More formally, for every

operation a £ 12, a : A1 —> A (/ finite or infinite), we have that

a{a)if = a(aif), (for a £ A1).

Note that we write operations on the left and mappings on the right.

Remark 1.20 We are omitting the formal definition of homomorphism between
two algebras A = (A, fl) and B = (B, A), although this concept is similar to the

above, with the extra assumption that 12 and A must have the same type. The type
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of an algebra (loosely speaking) is the description of the arity of the fundamental
operations of the algebra. As examples, semigroups (S,.) and groupoids (G,-),
and inverse semigroups (S, .,-1) and groups (G, .,_1) are algebras of the same

type, their type being (2) and (2,1), respectively. For more details, see [5].

It is clear that the composition of endomorphisms is an endomorphism and
that the composition of endomorphisms is associative. Therefore, the set of all

endomorphisms of A is a semigroup, which we denote by End(A).
An algebra B = (B, A) is a subalgebra of A = (A, S"2) if B C A and every

fundamental operation aB of B is the restriction of the corresponding operation
of A, i.e. aB : B1 —» B is the restriction of aA : A1 —» A. Again, it is implicit
in this argument that A and B have the same type.

Given 0 ^ B C A, we write (B) to denote the shbalgebra generated by B.
This is the smallest subalgebra of A (with respect to inclusion) that contains B.
Note that when A has constants we may wish to consider the subalgebra (0),
which will be the subalgebra generated by the constants of A.

Let A = (A, n) be an algebra with universe A and fundamental operations Q.
Let X C A. We say that X is independent if every mapping / : X —> A can be
extended to a homomorphism ipf : (X) —> A such that the restriction of tpf to
X coincides with /, i.e. xipf = xf, for every x G X.

For a mapping / from an independent set X to A we shall write iff to denote
the extension of / from (X) to A. Note that there are several different definitions
of an independent set on an algebra A. In this section we shall use the one found
in [24].

Let W be a class of algebras of the same type. We say that U is a variety of

algebras if,

(i) U is closed under subalgebras (if A € U and B is a subalgebra of A
then B EU),
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(ii) U is closed under homomorphic images (if A G U and B — Af, for
some homomorphism <f>, then B EU),

(iii) U is closed under direct products (finite or infinite).

Let U be a class of algebras of the same type (not necessarily a variety) and let
X be a set such that the algebra generated by X is in U. We say that T is a free

algebra on the set X if for any mapping / : X —> A there is a homomorphism

<f : (X) —> A which extends / (i.e. xf = xf, for every x E X. We denote this
algebra by Xx(lA). For each mapping /, the extension <f is unique and we shall
denote it by iff. One can verify that if (Xi) and (Xf) are algebras in a class U
and |Xi| = \X2\ then (Xf = (Xf). For details about these definitions and results
see Chapter 10 in [5].

8 Motivation and overview

In [25] the author studies subsemigroups T of the full transformation semigroup

Tn, generated by a group of units G and any idempotent of rank n — 1. In

particular, the author studies the case where G is a permutation group on a set

X of order n, the case where G is cyclic and the case where G is dihedral. The
work developed in this thesis deals with what is perhaps, the next simplest case.

In this thesis we shall consider semigroups of transformations generated by
the permutation a — (1 2 ... n) and any transformation r E Tn of rank two.

In Chapter 2 we study the general structure of such semigroups. This is done

by determining the number of D-classes and by describing the "normal forms" of
such semigroups, that is a canonical decomposition of every element in S into a

product of the generators a and r. We also give necessary and sufficient conditions
on the generator of rank two for the semigroup to be regular and completely

regular. Finally, we completely determine the number of C- and ^-classes and
also the size of the 7d-classes of rank two of these semigroups. Again, we achieve
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this by giving some necessary and sufficient conditions on the generator of rank
two. An immediate consequence of these results is a complete description of all

possible sizes of the semigroup.

In Chapter 3 we study the isomorphism of two semigroups of the type under
consideration. More accurately, we study the isomorphism in the case where
these semigroups contain the constant maps. We give some properties which are

invariant within the elements of rank two of the semigroup. We then conclude
that these properties are also preserved by isomorphism, this implying that these

properties are necessary conditions for the isomorphism of two such semigroups.
In the final section of this chapter we give a necessary and sufficient condition for
the isomorphism of two semigroups and an algorithm that explicitly determines
an isomorphism. We also give an example which shows that these results do not

hold in the case where the semigroups contain the constant maps.

In Chapter 4 we give general presentations for a semigroup with a certain type

of generator of rank two. The aim of this chapter is to build a list of examples
which will lead us to a method of finding a presentation for a semigroup, just by

analysing its generator of rank two.

GAP being (see [12]) such a useful tool for the work presented in this thesis,
we decided that it is only fair to give a short insight in Chapter 5 of the history of
this computational tool. In this chapter we also present a very short note of the
tools available in GAP for semigroup theory, where we look into some of the more

relevant results and papers on this subject. In the last section of this chapter
we implement the algorithms resulting from the theory developed in the previous

chapters.

In Chapter 6 we study several particular cases. For each case, we compute

all the semigroups generated by a and r G Tn. a transformation of rank two.

Then, for each semigroup and using the theory from the previous chapters, we
deduce properties like the size, Green's structure and regularity. Also, we find a

presentation for each of these semigroups. We then find all possible isomorphisms
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within the set of all these semigroups (for each n). This chapter constitutes an

important database of examples that were thoroughly studied using the results
found previously in this thesis.

In the last chapter of this thesis we generalise a famous result of Sierpinski for

subsemigroups of the full transformation semigroup of a countable set (see [30]).
We attain this by looking at the full transformation semigroup of a countable
set X as the set of all endomorphisms of X. We then prove a similar result to

Sierpinski's, where we replace the full transformation semigroup of a countable
set by the set of all endomorphisms of a infinitely generated algebra. We use

a similar proof to that of Banach in [4], making all the necessary adaptations.
Examples of some known results that follow as an easy application of this result
are given. The work in this chapter was motivated by the work of J. D. Mitchell
in [26] and it has been published in [1],

A list of open problems can be found in Appendix A and all the GAP functions

resulting from the algorithms found in Chapter 5 are in Appendix B.



Chapter 2

Structure

The main goal of this chapter is to find tools that allow us to study any semigroup

generated by a = (1 2 ... n) and a transformation r 6 Tn of rank two, without
having to compute all its elements. In the process of achieving this we shall find
some rather interesting combinatorial properties of this kind of semigroup.

Throughout this chapter we consider S to be (er, r), the transformation semi¬

group generated by the permutation a = (1 2 ... n) and a transformation r 6 Tn
of rank two, with im (r) = {a, b}. We denote by Ka the kernel class of r whose
elements are mapped into a under r. Similarly, we define K&. Formally we have

Ka = ar~l and Kb — 6r_1. We often denote by X the set {1,..., n}.
In Section 1, we give some introductory results, the main ones being the

description of the Green's structure and of the normal forms of the semigroups
of this type. In particular, we prove that a semigroup S = (a, r) has exactly one

P-class of rank two. This result allows us to reduce and focus our study on the
P-class of rank two, since it determines all the properties of the semigroup.

In Section 2, we give a necessary and sufficient condition on the generator of
rank two for the semigroup to be regular. In this section we also prove that any
element of rank two in the semigroup S generates S (together with a). In the

following section we analogously give a necessary and sufficient condition for a

19



2 Structure 20

semigroup to be completely regular.

In Section 4 we determine the number of each of the Green's classes, namely

the number of C- and 7£-classes and the size of the 7d-classes of rank two. More

precisely, we give necessary and sufficient conditions on the generator of rank two
which completely determine the number of £-classes, the number of 7h-classes
and the size of the 7d-classes of rank two.

As a consequence of Section 4, in the last section we give a full description
of the all possible sizes of S. In particular, we give necessary and sufficient
conditions for each case to occur.

The results produced in this chapter are the basis for the later chapters and
are used very often throughout this thesis.

1 Preliminary results

In this section we give some structural results of S which are frequently used
in this thesis, explicitly or implicitly. These include the Green's structure, the
normal forms and the type of the elements of S with rank two.

Lemma 2.1 Let a, (3 £ Tn be such that rank (a) = rank(/?) = 2. If oiH(3 then
either (3 = a or (3 = a.

Proof. Prom Proposition 1.15 we know that al3/3 if and only if ker (a) = kerGQ)
and im (ct) = im (/3). Because rank (cm) = 2 then there are only two elements in

Tn with the same image and kernel as a, which are a and its conjugate. □

Based on the last result, we can describe the normal forms of the elements of
rank two in S, that is a canonical decomposition of every element of rank two in
S into a product of the generators <7 and r.
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Lemma 2.2 If a G S is an element of rank 2, then a has one of the following
two forms:

(i) edrcd;

(ii) cbrcdrcdb

where i,j,kE {1,..., n).

Proof. Every element of S with rank 2 is of the form

GnTGnTG13 .. . ralm, with m G N and ij > 0, for every j G {1,...,m}.

It is sufficient to show that

crnrex12rod3red4 G {cdrcr-7 : i,j E {1,..., n}} U {cdrcdrak : i,j,k G {1,. . ., n}},

for all ii, i-2, h, i\ G N such that ed1 red2red3red4 has rank 2, since longer products
are reduced to one of these in a similar way.

Note that we can have the case where rcdr = r, for all j G {l,...,n}
such that rank (rcdr) = 2. In this case the two sets above are the same and
cdircd2rcd3TCd4 — anT<jl3Tau = allrau and our result holds.

Suppose that there is j0 G {1,..., n} such that Tcd0r ^ t and rank (rajo) = 2.
Then we have that rajoT = r, the conjugate of r. It is clear that Tal2ral3r has
rank 2 an therefore this element has the same kernel and the same image as r.

Thus we either have rcd2rcd3r = r and therefore allral2ral3TaH = allrai4 or

tg12tg13t = t — tg^°t and in this case cd1 red2red3red4 = edi:rcd4 = g^tg^tg14.

In both cases our result holds. □

Without further thought, one would expect a semigroup of this form to have
a rank n 2Tclass, several D-classes of rank two and possibly a D-class of rank
one. This is due to the fact that the product of elements of rank two has rank
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two or one. Obviously, since transformations of rank n are permutations we have
that "rank n x rank 2 = rank 2 and rank n x rank 1 = rank 1". The next figure
illustrates this fact.

rank 2

(constant maps) rank 1 (possibly)

Figure 2.1: General structure

The next result tells us what exactly happens.

Lemma 2.3 There is exactly one V-class of elements of rank 2 in S.

Proof. It is clear that there is at least one D-class of elements of rank 2, the one

which contains r. We will prove that every element a G S of rank 2 is P-related
to r. From Lemma 2.2, we just need to study two different cases.

Case 1: a = aVcP, with i,j e {1,... ,n}.
To prove that aVr, we need to find (3 G S such that aTZ/3Cr. Let (3 = alr.

Then if we take lu = an~3, v = cP £ S, we have acu = (3 and /5u = a. Hence alZ(3.

Similarly, if we take u> = crn~l, u = a1 6 S, we have ca/3 = r and ur = /3. Hence

/3Ct and the result holds.

Case 2: a = crVaWafc, with i,j, k e {1,..., n}.
Note that we are assuming that rePr ^ r, otherwise we are again in Case 1.

Therefore we have r = to3t. Similarly to Case 1, replacing r by r, it follows that
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aVr. So we are only left to prove that tVt- For this we shall prove that tTZt.
We have im (ra3) = {aa3, ba3}. The elements aa3 and ba3 must be in different
kernel classes of r, otherwise we would have (aa3)r = (ba3)r and rank(r) = 1.
Because f ^rwe must have ba3 g Ka and aa3 g Kb- Define r' — ra3r g S.
Then Kar' = (Ka)To3T = (ba3)r = a. Similarly, f^r' = b. Hence rank(r') = 2.
Moreover, r' = r. Let u>, v — a3r g S. Then tu = t, tlu = r, which proves our

result. □

rank n

rank 2

rank 1 (possibly)

Figure 2.2: Illustration of Lemma 2.3

The following is a consequence of the last lemma.

Corollary 2.4 Let S = (a,r). Then for all a, (3 g S we have aV(3 if and only

if rank (a) = rank (/?).

Notation: In the sequel of this thesis, we shall use the following notation:

• Dn is the D-class of rank n of S.

• D2 is the D-class of rank 2 of S.

Di is the P-class of rank 1."
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2 Regular semigroups

In this section we give a necessary and sufficient condition on r such that the

semigroup (a, r) is regular.

The following definition is fundamental to fulfil this task. As considered at

the beginning of this chapter, let r G Tn be a transformation of rank two such
that im (r) = {a, b}.

Definition 2.5 We say that r has periodic image if the following holds for all
x G X,

x G Ka if and only if xab~a G Ka.

( 1 2 3 4 \
Example 2.6 Let r = G T4. It is easy to check that this trans-

y 1 3 1 3 y
formation has periodic image.

The following result shows us that in the definition of periodic image (Defini¬
tion 2.5) we can take Kb instead of Ka.

Lemma 2.7 The transformation r has periodic image if and only if the following
holds for all x G X,

x G Kb if and only if xab~a G K^.

Proof. We know that

x G Ka if and only if xcrb~a G Ka

is equivalent to
x ^ Ka if and only if xab~a ^ Ka,

and, as X = Ka U Kb, with Ka fl Kb = $, we have the required result. □

A consequence of this definition is the following.
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Lemma 2.8 If t has periodic image then gcd (n, b — a) > 1.

Proof. Let X = {1,2,..., n}. Take x = n and assume, without loss of gener¬
ality, that n G Ka. Then xab~a = b — a G Ka, by definition of periodic image.

Similarly (b — a)ab~a = 2(6 — a) G Ka. Inductively we have that (6 —a), the cyclic
subgroup of (X, +), is contained in Ka. But since rank (r) = 2 then Ka C X and
Ka 7^ X. Note that (Zn, +) = (X, +). Therefore (6 — a) Zn which is equivalent
to having gcd (n, 6 — a) > 1. □

This last lemma can be seen as a first test in the process of identification of
a transformation which may have periodic image.

Definition 2.9 We say that the semigroup S — (a, r) has periodic image if r
has periodic image.

We shall see later that this last definition is consistent, i.e. this definition is

independent of the choice of the generator of rank two.

We state now the main theorem of this section.

Theorem 2.10 The semigroup S is a regular semigroup if and only if S does
not have periodic image.

Throughout this section we shall gather all the auxiliary results in order to

prove the above theorem.

Firstly, we give some alternative characterisations of the property of periodic

image.

Lemma 2.11 The transformation t has periodic image if and only, for all x G

x G Ka if and only if xau(-b~a^ e Ka, for all «eN.
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Proof. This result is proved by induction on u.

If u = 1, then the equivalence holds, by definition.

Take u g n. Suppose that for x g X, we have x g Ka if and only if
X(Ju{b-a) £ ^ Le|. y = xau(b af Because r has periodic image we have that

y g Ka if and only if yob~a g Ka. Replacing y by xcru(b~a^ we have xau{-b~a"1 g Ka
if and only if xcr(u+1^b~a^ g Ka. Using the inductive hypothesis we have x g Ka
if and only if xo-(u+1^6~a) g Ka. □

Remark 2.12 Let r g Tn be as before. Then the following are equivalent:

(i) For all x g X, x g Ka if and only if xa~(b~a^ g Ka\

(ii) for all x g X, x g Ka if and only if x<x"W~a^ ^ FTa, for all ugN.

This is proved exactly as the previous lemma, just replacing b — a by — (b — a).

Corollary 2.13 The transformation r has periodic image if and only if, for all
x e x,

x g Ka if and only if xa~^a"> g Ka.

proof. Note that for all x g X, we have x = xcrb~acr~(b~af

Suppose that r has periodic image. We have that x g Ka if and only if
X(T-{b-a)ab-i £ ky assumption we have xcr_^~aV)_a g Ka if and only
if xa~^b~°^ g Ka. Therefore we have x g Ka if and only if xa~^b~aS> g Ka.

The converse follows using the same reasoning. □

This last corollary leads to a further generalisation of Lemma 2.11.

Corollary 2.14 The transformation r has periodic image if and only if, for all
x g X,

x g Ka if and only if xcru(b~a^ g Ka, with u gl
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Proof. It follows from the previous corollary, the remark that precedes it and
Lemma 2.11. □

Remark 2.15 Let r £ Tn be a transformation of rank 2 and let p £ N. It is

easy to observe that the following are also equivalent:

(i) For all x £ X, x £ Ka if and only if xap £ Ka;

(ii) for all x £ X, x £ Ka if and only if xaup £ Ka, for all u £ Z.

This is proved using the same process as in the previous corollary.

A further generalisation of Definition 2.5 is presented in the next result.

Lemma 2.16 Let r £ Tn such that rank (r) = 2 and consider d = gcd (n, b — a).
Then the following are equivalent:

(i) r has periodic image;

(ii) for all x £ X, x £ Ka if and only if xod £ Ka.

(iii) for all x £ X, x £ Ka if and only if xaud £ Ka, for all u £ Z.

Proof. Because of the previous remark we are only going to prove that (i) implies
(ii) and (iii) implies (i). This is done as follows.

(i) => (ii) Let x £ Ka. Then xau^b~a^ £ Ka, for every u £ Z.

As d = gcd (n, b — a), using the Euclidean algorithm (see, for example, [22])
we can find zi, Z2 £ Z such that d = Z\{b — a) + z^n. Hence xad = X(Jzih>-a)+z2n _
xazi(b-a)aZ2n = xcrZl(b~a\ Therefore, taking u = Zi, we conclude that xad =

xau(b-a) e Ka

Conversely, let x £ X such that xad £ Ka. Using the same argument as

before we have xad = xaZl^b~a^ and therefore, by the assumption with u = Zi, we

get x £ Ka.
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(iii) =>- (i) Let x G Ka. By the assumption, with u = we have xa^b a^d">d =
xab'a G Ka.

Conversely, let x G X such that xcrb~a G Ka. Since xab~a = xa^a^d^d we can

conclude (by the assumption with u = that x G Ka. □

The first step towards the proof of Theorem 2.10 is to show that a transfor¬
mation of rank two is not an idempotent if and only if it has periodic image. We
need some preliminary results.

Lemma 2.17 If t has periodic image then r is not an idempotent.

Proof. Note that, because rank (r) = 2, we have that r is an idempotent if and

only if ar = a and br = b.

Suppose, without loss of generality, that a G Ka. Then b = a+ b—a = aab~a G

Ka, because r has periodic image. Hence a,b G Ka, which implies that r is not

an idempotent. □

The next result states that the property periodic image is an invariant within
the elements of rank two in S.

Lemma 2.18 If r has periodic image then every element in S of rank 2 has

periodic image.

Proof. Let a G S = (cr,r) be an element of rank 2. Suppose that r has periodic

image. From Lemma 2.2 we only need to prove that this result holds for two
different cases.

Let us take a — aVcr7, for some i,j G {l,...,n}. We have im (crVcN) =
{a', 6'}, where a1 = acr-7 and b' — ba^. Note that b' — a' = b — a. Also ker (crVcF) =
{K'a,,K'b,} with K'a, = (a'^crVcP)-1 = (aaj)(alra:i)~1 = (a<7-7)(a~'JT~1cr~l) =
{a)r~la~l = Kaa~\ Similarly, K'b, = Ki,a~l.
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Take x G K'a,. Then there is y £ Ka such that x = ya~\ Because b' — a' =
b — a, our aim is to prove that xab~a G K'a,, i.e. (xa6~a)a"Va*-7 = a'. For this,

(xab~a)olTa:> = (x)o"v6-atcrj = (t/a~l)crV6_atcrj = {yab~a)raf But because r
has periodic image, y G Ka O- yab~a G Ka, i.e. yob~ar = a . Hence {yab'a)ra^ =
acF = a'.

On the other hand, take xGl such that xab~a G K'a,. Then there is y G Ka
such that xcrb~a = ya~l x = (y)cr~(b~a^(j~l. Our aim is to prove that x G

K'a,. For this, = {y)a~('b~a">a~lalra^ = (2/)<j-(b_aVcF. Because r has
periodic image and using Lemma 2.16, if ya-(6-a) g Ka then y G iFa. Hence

y(cr-(b-aVcrJ) = acr-7 = a'. Therefore aVcr-7 has periodic image.

Let a = azTajrak, for some i, j, k G {1,..., n}. Let us suppose that tcFt ^ r
(otherwise we are in Case 1 again). We know that ker (ra^r) = ker (r) and
im (tct^t) = im (r). So it is obvious that r has periodic image if and only if tcFt
has periodic image. Hence, using Case 1, our result holds. □

A consequence of the last result is the following one.

Corollary 2.19 Let S = (cr,r), where r has periodic image. Then S has no

idempotents of rank 2.

Proof. Let a G S be an element of rank 2. Then a has periodic image (Lemma
2.18). It follows from Lemma 2.17 that a is not an idempotent. □

One of the main results follows.

Theorem 2.20 The semigroup S = (cr, r) has no idempotents of rank 2 if and
only if t has periodic image.

Proof. Suppose that r does not have periodic image. Let us fix and element
x G X such that x G Ka and xab~a G K&. We claim that there is a number rGZ
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such that aor = x and bar = xab~a. If we take r = x — a, these two equalities
hold. Therefore the element crrr G S is an idempotent, because a(arr) — xr = a

and baTr — x(ab~aT) = b.

The converse is just Corollary 2.19. □

This last result allows us to further describe the normal forms of a semigroup
with periodic image.

Corollary 2.21 Let S = (cr, r) be such that r has periodic image. Then every

element a G S of rank 2 is of the form crVcF, for some i,j G {1,..., n}.

Proof. Let us take an element a = alrakraG S, for some i, k,j G {1,..., n}.
We shall see that rank (a) = 1. This is equivalent to proving that a is not

D-related to r.

Define an = crVcrfc and ol<2 = rcP. It is clear that both these elements are in

S and that rank (an) = rank(a;2) = 2. From Lemma 2.3, we know that aiVct2.
But, because r has periodic image, the previous theorem allows us to conclude

that there are no idempotents of rank 2 in S. By Proposition 1.18, this implies
that a = aia2 is not V-related to r. □

Another important consequence of this result is the fact that any element of
rank two of S, together with the n-cycle cr, generates S.

Corollary 2.22 Let S = (cr, r). For every element a G S of rank 2 we have
S = (cr, a).

Proof. Take a G S and define S' = (a, a). Clearly S' < S. We can divide this

study into two different cases:

Case 1: Suppose that a has periodic image. From the previous corollary, a =

crVcr-7, for some i,j G {1,..., n}. Then an~laan~j = r G S'. Hence S' = S.
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Case 2: Suppose that a does not have periodic image. From Lemma 2.2, a can

only take two possible different forms. If a = crVcF, for some i,j E {1,... ,n}
then the result follows using the same argument as in Case 1. Suppose a =

crVeFYcrfc, for some i,j,k E {l,...,n} and let tcUt r (otherwise we are in
the case already considered). Then we have r = tcUt. Using the same reason¬

ing as in Case 1, it is clear that S' = (ct,t). Because a does not have peri¬
odic image then neither does r (follows from Lemma 2.18). As in the proof of
Theorem 2.20, there is x E X such that x E Ka and xcrb~a E Kb. Note that
im (r) = im (r) = {a, b} and ker (r) = ker (r) = {Ka, Kb). In the same way as

in the proof of Theorem 2.20, it is easy to confirm that there is an integer r
such that aar = x and bar — xob~a. Consequently, Tarr = r. To prove this

equality, (iCa)rcrrr = (b)arT — (x)ab~ar = a. Analogously, (Kb)rarr = b. Hence
rank (rarr) = 2 and consequently rarT = r. Thus r E S' and therefore we get

S' = S. □

Remark 2.23 From the last result and Lemma 2.18, we have that Definition 2.9

is consistent.

From Proposition 1.12 we know that a semigroup S is regular if and only
if each T-class and each 7b-class of S contains at least one idempotent. From
Theorem 2.20 we know that there are no idempotents of rank two which implies
that each £-class and each 7b-class in the D-class of rank two does not have any

idempotents and therefore S is not regular. In the next result we prove that the
converse also holds.

Thenrem 2 24 If S does not have periodic image then S is a regular semigroup.

Proof. From Lemma 2.3, we know that S has, at most, three D-classes;

(i) Dn, the D-class of rank n which is the group (a). Hence Dn is regular.
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(ii) D2, the P-class of rank 2.

(iii) Di, if it exists, the D-class of rank 1, where every element is an

idempotent. Hence Di is regular.

Hence, to prove our result we just need to prove that D2 is regular. As S does
not have periodic image, S has some idempotents of rank 2, by Theorem 2.20.

Using Proposition 1.11 we conclude that D2 is regular and we deduce that S is

regular. □

Proof, (of Theorem 2.10) It follows as a straightforward consequence of the
previous theorem and the note that precedes it.

3 Completely regular semigroups

In this section we shall give several necessary and sufficient conditions for a semi¬

group to be completely regular. As mentioned in Section 3 of Chapter 1, a

semigroup is completely regular if and only if every 7d-class is a group if and only
if every TAclass has an idempotent. By Proposition 1.18, it follows that a finite

semigroup is completely regular if every multiplication within a certain D-class
remains in that P-class.

Proposition 2.25 A semigroup T < Tn is completely regular if and only if
rank (a2) = rank (a), for every a £ T.

Proof. Suppose that T is completely regular. Take a £ T. Then Ha. the H-
class of a, is a group. Therefore, a2 £ Ha which implies that aVa2 and therefore
rank (a) = rank (a2).

Conversely, suppose that rank (a) = rank (a2). Therefore, since im (a2) C
im (a) and ker (a) C ker (a2), we can conclude the equality of these sets. This
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means that im (ct) is a transversal of ker (a), i.e. im (a) contains exactly one el¬
ement from each of the kernel classes of a. Hence there exists p e N such that

ap+1 = a. If p = 1 then a2 — a and a is an idempotent. If p > 1 then ap is

an idempotent, since apap = ap+lap~l = aap~l = ap. Thus aHaP and so Ha
contains an idempotent. Because a is arbitrary we have that T is completely

regular. □

For further details about completely regular semigroups, see [16].
For the semigroups we have been studying we shall use the following charac¬

terisation of completely regular semigroup.

Lemma 2.26 Let S = (a, r). Then S is completely regular if and only if S does
not contain constant maps.

Proof. Suppose that S is completely regular. Then there are three different
cases.

(i) If a, P e Dn then aP e Dn (obvious). Hence rank (a/?) = n.

(ii) If a e Dn and (3 € D2 or a E D2 and (3 € Dn then ap e D2 (obvious). Hence
rank (aP) = 2.

(iii) If a, P £ D2 then aP € D2. This holds because every 7d-class in D2 has an

idempotent. Therefore aP £ Ra n Lp, because La D Rp contains an idempotent
(see Proposition 1.9). Hence ap e D2 and consequently rank(ap) - 2.

Having in mind the normal forms of S, we conclude that every product in S
has rank greater or equal than 2, that is, for all a £ S, rank (cc) 7^ 1, i.e. S does
not contain constant maps.

Conversely, suppose that S does not have any constant maps. Then we must

have that for all a, P e S, rank (ap) 7^ 1. Therefore rank (a2) = rank (a) and S is
completely regular. □
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The following definition is essential for the process of finding a necessary

and sufficient condition (on the generator of rank two) for a semigroup to be
completely regular.

As before r G T„ is a transformation of rank two such that im (r) = {a, b]
and ker (r) = {Ka, Kb}, with Ka = ar~l and Kb = 6r-1.

Definition 2.27 We say that r has conjugate periodic image if the following
holds for all x G X,

x G Ka if and only if xcrb~a G Kb.

Remark 2.28 It is easy to verify that this definition is equivalent to its "dual":

The transformation r has conjugate periodic image if and only if the following
holds for all x G X,

x G Kb if and only if xcrb~a G Ka.

( 1 2 3 4 \
Example 2.29 The transformation r = I G T4 and the transfor-

l 1 2 1 2 /

( 1 2 3 4 5 6 \mation A = G T6 have conjugate periodic image.
\l 11444/

Definition 2.30 We say that the semigroup S = (cr, r) has conjugate periodic
image if r has conjugate periodic image.

In this section we shall prove the following:

Theorem 2.31 S is a completely regular semigroup if and only ifS has conjugate

periodic image.

Let us see some equivalent formulations of the definition of conjugate periodic

image.
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Remark 2.32 It is straightforward to check that if r has conjugate periodic

image then, for all x G X,

x G Ka if and only if xav^b~°^ G Ka,

for all even.

Lemma 2.33 The transformation t has conjugate periodic image if and only if,

for all x G X,
x G Ka if and only if xau^b~a^ G Kb,

for all u G N, u odd.

Proof. Suppose that r has conjugate periodic image. This will be done by
induction on u G N, with u odd.

If it = 1 then we have that the equivalence x G X, x G Ka if and only if
xcrb~a G Kb holds, by definition of conjugate periodic image.

Suppose that x G Ka if and only if xau^b~a^ G Kb, for a fixed u odd. We shall

prove that this equivalence holds for u + 2 (the next odd number). Let x G X be
such that x G Ka. By induction hypothesis, we have that x G Ka if and only if
X(Ju{b-a) £ Because T conjugate periodic image we have that xau{-b~a"> G

Kb if and only if xcru(b~a^ob~a G Ka. By the same reason, xau^b~a^ab~a G Ka if
and only if xau^b~a^ab~aob~a G Kb- Since £<ju(6-a)+(6-a)+(fc-a) — xa(u+2)(b-a) ^ we

have that x G Ka if and only if xa^u+2^b~a^ G Kb.

The converse of the lemma is clear. □

Remark 2.34 Let r G Tn be as before. Then the following are equivalent:

(i) For all x G X,

x G Ka if and only if xa~^b~a^ G Kb',
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(ii) for all x E X,

x E Ka if and only if xau^~^a^ E Kb,

for all u, v E N, u odd.

This is proved exactly as the previous lemma, just replacing b — a by —(b — a).

Similarly to the previous remark, one can check that if r satisfies (i) then for
all x E X we have

x E Ka if and only if xorv(~(b-a)) (= j{a,

for all v E N, v even.

Lemma 2.35 The transformation r has conjugate periodic image if and only if,

for all x E X,
x E Ka if and only if xa~^b~a^ E Kb-

Proof. Suppose that r has conjugate periodic image. By definition, we have
that for all x E X, x E Ka if and only if xab~a E Kb. This is equivalent to having
for all x E X, x E Kb if and only if xab~a E Ka. Thus x — (xcr~(-b~a^)<jb~a E Ka
if and only if xa~^b~a^ E Kb-

The converse is analogous. □

Before proving the next corollary we need an auxiliary result.

Lemma 2.36 Let r E Tn be a transformation of rank 2 as before and let d =

gcd (n,-b — a). If r has conjugate periodic image then n/d is even. Furthermore,
n is even and ^ is odd.

Proof. Let x E Ka. We have that x = xank^r = xa^b~a\ From Remark 2.32,
we can conclude that n/d is even and so n is also even.
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Suppose that ^ is even. Then there is q E N such that ^ = 2q. Therefore
b — a = 2qd. As n = 2Id, for some I E N, we get that 2d is a common divisor of
n and b — a. Since d < 2d, this contradicts the fact that d = gcd (n, b — a). Thus

^ is odd. * □

Using Lemma 2.35, we can generalise Lemma 2.33.

Corollary 2.37 The transformation t has conjugate periodic image if and only

if, for all x E X,
x E Ka if and only if x<ju{*b~a"> E Kb,

for all u E Z, u odd.

Proof. To prove this, we ought to observe the following. Let w E Z. If w E N,
we have that aw^b~a^ = <jw'(b~a\ where w' E {0,..., n — 1}. Furthermore, w is
odd (even) if and only if w' is odd (even), because n is even. If w E Z \ N then
we have that —w E N and we have that w is odd (even) if and only if —w is odd

(even), because n is even. Therefore we can make the same statement as above,
with w replaced by —w.

Concluding, if we take w E Z then there exists w' E {0,..., n — 1} such that
aw(b-a) _ aw'(b-a) an(j w ancj w> ]-iave same parity.

Bearing in mind this observation and Lemma 2.35, this result is proved us¬

ing Lemma 2.33, when u E N (or v E N) or Remark 2.34, when u E Z \ N (or
ueZ\N). □

Note that if r has conjugate periodic image then for all x E X,

x E Ka if and only if xav^b~a^ E Ka,

for all v E Z, v even.
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Remark 2.38

(a) Using the same process that lead us to the previous corollary, one can prove

the following:

Let t G Tn be a transformation of rank 2 and let p G N. The following are

equivalent:

(i) For all x G X, x G Ka if and only if xap G Kb]

(ii) for all x G X,

x G Ka if and only if xaup G Kb,

for all u G Z, u odd.

(b) We also have that if r satisfies (i) then for all x G X,

x G Ka if and only if xavp G Ka,

for all v G Z, v even.

Lemma 2.39 Let t G Tn such that rank (r) = 2 and consider d = gcd (n, b — a).
The following are equivalent:

(i) r has conjugate periodic image;

(ii) for all x G X, x G Ka if and only if xad G Kb;

(iii) for all x G X,

x G Ka if and only if xaud G Kb,

for all ueZ,u odd.

Proof. In view of of Remark 2.38 we shall only prove that (i) implies (ii) and
that (iii) implies (i).
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(i) => (ii) Let x G Ka. By Corollary 2.37, we have that xau^b a) G Kb, for all u
odd. We shall find u odd, such that xad = xau^b~a\ which will prove our result.

From d = gcd (n, b— a) and using the Euclidean algorithm, there are z\, z-i G Z
such that d = zi(b — a) + z%n. Thus 1 = z\ + z^. From Lemma 2.36, we
know that n/d is even. Therefore z^^ is even and so is odd. Because
is odd (Lemma 2.36) we have that z\ is odd.

It is clear that xad = XaZl^b~a^+Z2n = xaZl^a">aZ2n = xaZl^b~a\ Defining
u = zi, which is odd, our result follows.

Conversely, if x G X is such that xad G Kb then, using the same argument

we show that there is u odd such that xad = xau^b~aS). Hence, by Corollary 2.37,
x G Ka.

(iii) => (i) Let x G Ka. Then xad G Kb. It is clear that x = xa^d. Because
r satisfies (iii) (and therefore it satisfies (i) as well) and using Remark 2.38, we
have that ^ is even. Therefore, as in the proof of Lemma 2.36, we can conclude
that ^ is odd. Hence, by the assumption, xa^d = xab~a G Kb.

Conversely, let x G X such that xcrb~a G Kb. We can write xa^d. By the

assumption and again because ^ is odd, we have that x G Ka. □

A consequence of this lemma is the following.

Remark 2.40 If r has conjugate periodic image then the elements of the image
of r are in different kernel classes. For this, suppose, without loss of generality,
that a G Ka. Then b = aab~a G Kb.

Similarly to the previous section, we shall prove that this property is an in¬

variant within the elements of rank two in S.

Lemma 2.41 If r has conjugate periodic image then every element in S of rank
2 has conjugate periodic image.
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Proof. Let a E S such that rank (a) = 2. Suppose that r has conjugate periodic
image. There are only two different cases to study, due to Lemma 2.2.

Let us take a = aVcr7, for some i,j E {1,..., n}. We have that im (crVcP) =
{a', b'}, where a' = aa\ b' = baK Note that b' — a' = b — a. Also ker (crVcP) =
{K'a,, K'b,} with K'a, = (a')(crlt<7j')-1 = (a)cP= (a)r_1a_l = Kacr~l. In
the same way we have K'b, = Kba~l.

Take x G A)),. Then there is y G Aa such that x = ycr~l. Our aim is
to prove that xab~a G K'b,, i.e. (xvb~a)alT(j:> = b'. For this, (xcr6-a)crVcF =

(x)alab~ara:' = (y)a~lalab~ara-? = (j/cr6_a)rcrJ'. But because r has conjugate

periodic image y G Aa if and only if yab~a G Af,. Therefore (yab~a)r = b and

consequently (yab~a)raJ = 6crJ = 6'.
On the other hand, take x E X such that xab~a E K'b,. Then there is y E Kb

such that xab~a = ya~\ so x = {y)a~^b~a'a~l. Our aim is to prove that x E

K'a,. For this, (x)crVcr-7 = (y)<7-(6-a)<T-W<7J' = (y)a~^b~aS>raK Because r has
conjugate periodic image and using Lemma 2.35 we know that if y E Kb then

ya-(b-a) £ xa. Hence (y)a~^b~a^ra^ = acF = a'.
Therefore ctVcP has conjugate periodic image.

Let a = alTa^rak, for some i,j, k E {1,..., n} and suppose that ruV 7^ r

(otherwise we are in Case 1 again). We know that ker (tcPt) = ker (r) and
im (tcPt) = im (r). Thus rcPr = r, the conjugate of r. So it is obvious that r
has conjugate periodic image if and only if rePr has conjugate periodic image.

Hence, using Case 1, our result holds. □

Remark 2.42 From Lemma 2.41 and Corollary 2.22, we have that Definition
2.30 is consistent.

We can now prove the main result of this section, which gives us a neces¬

sary and sufficient condition on the generator of rank two for a semigroup to be
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completely regular.

Proof, (of Theorem 2.31) From Proposition 2.26, it suffices to prove that S has

conjugate periodic image if and only if it has no constant maps.

Suppose that S has conjugate periodic image and that there are elements
of rank 1 in S. Then there must exist a,/3 £ S, with rank (a) = rank (/3) = 2
such that rank (cr/3) = 1. Based on Lemma 2.2, we know that a = crVcPr<Tfc and
P = altaptaq, with i, j, k,l,p,q e {1,..., n}. Note that we assume the possibility
of having tcPt = r or tgpt = r (or both or none). In any of these cases, tcPt
and tgvt are 7d-related with r (in T„), because

im (tcFt) = im (rapr) = im (r) = {a, 6} and

ker (tcPt) = ker (rapr) = ker (r) = {Ka, K^}.

It is easy to observe that rank (a/3) = 1 if and only if rank (rcd'rcr'YcdY) = 1,
where r is such that ar = ak+l. Also, rank {ra^rarTapT) = 1 if and only if aar
and bar are in the same kernel class. But because ra3rar 6 S and it has rank 2,

by Lemma 2.41, Ta^ra1" has conjugate periodic image and therefore, as referred
to in Remark 2.40, aar and bar must be in different kernel classes, which is a

contradiction.

Conversely, suppose that r does not have conjugate periodic image. Then
there must exist x £ X such that x e Ka and xcrb~a G Ka. Because a is an

n-cycle, there is r E N such that aar = x. Furthermore, bar = (acrb~a)ar =
(acrr)cr6-a = xab~a. This implies that rcdr has rank 1 because

(Ka)ratt = (a)art = xt = a and

(kb)rart = (b)art = (xab~a)r — a,

which proves our result. □
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4 Counting Green's classes

In this section we study the number of £-classes and 7£-classes, and the size of
the 7d-classes within D2, the D-class of rank two of the semigroup S = (a, r).

Our aim is to find structural properties of r that allow us to count the number

of C and 7?.-classes and the size of the 7-f-classes which compose D2. The ultimate

goal is to compute the possible size of S.

Notation:

• £ = {£-classes in D2}, |£| = size of £.

• — {7?.-classes in D2}, |91| = size of 9T

• Sj = {7d-classes in D2}, |[i^]| = size of an 7d-class in D2. Note that this size
is invariant within the set of all 7-f-classes in the same P-class (see Lemma

1.6).

The following result gives us some insight on the Green's relations for this

type of semigroups.

Lemma 2.43 Let a £ S be an element of rank 2. Ifa = crVo"-7 or a = crlTcrkT<7:>,
for some i,j,k£ {1,,n}, then aCra^ and aIZalT.

Proof. Let a — aWaf Choose u = an~\v = ol £ S. Then ua = reP and
ut<tj = a. Thus aCraL For the case where a — alTakraJ we can choose the

same elements u and v.

Similarly we prove that aIZalr, by choosing s = and t = cP and noting
that as = alr and alrt = a. □
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4.1 Number of ^-classes

We start our study by evaluating the number of £-classes, i.e. the size of £.

We need an auxiliary result.

Lemma 2.44 We have that r = ral, for some I G N if and only if b — a = n/2.
Furthermore, I = n/2 (modn).

Proof. We ought to remember that the element r is such that and

ker (r) = ker (r) = {Ka, Kb}, im (r) = im (r) = {a, b}.

Suppose that r = rah Then KaT — b if and only if (Ka)ral = b. This
is equivalent to writing aal = b. In a similar way we deduce bal = a. Hence
a = bal — aa21. Because a is an n-cycle we can conclude that 21 = n(modn).
So, we either have I = n/2 (modn) or I = n(modn). If the latter holds then
aa1 = aan = a, which contradicts our assumption. Hence I = n/2 (modn). So
aan/2 = b. We also have that aab~a — b and therefore b — a = n/2 (modn). Thus
b — a = n/2.

Conversely, suppose that b—a = n/2. Then aan/2 = b, ban/2 = a, im (ran^2) —

im (r), and ker (ran/2) = ker (r). Because (Ka)ran/2 = aan/2 = b and {Kb)Tan^2 =
a, we deduce that r = tcW2 . □

The next result describes all the possible sizes of |£|.

Theorem 2.45 Let S = (cr,r). Then the number of C-classes of rank 2 in S is

n/2 if and only if b — a — n/2 and the size of the Tt-classes of rank 2 in S is 2.

Otherwise, the number of C-classes of rank 2 in S is n.

Proof. Let us denote by £ the set of all £-classes of rank 2 in S. We first prove
that the only possible sizes for |£| are n and n/2.
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From Lemma 2.43 we have that £ = {Lr, LT(7, LT(J2,..., Lr(7i-i}, with I £

{1,nj, such that tCto1. Then im (r) = im (red). Also ker (r) = ker (red). As
we have pointed out previously, there are two different elements of rank 2 which
have the same kernel and the same image.

If t = Tcr1 then this means that a = aal and b — bal. Hence I — n, because a

is an n-cycle, and therefore |£| = n.

If r ^ red then we have r = red. This means that a = feed and b = aal.
Analogously to the proof of the previous lemma, we can conclude that 21 =

n (modn) and therefore I = n/2 (modn). So I = n/2 (n is even) and consequently
|£| = n/2.

We shall prove the necessary and sufficient condition stated in our theorem.

Suppose that |£| = n/2. There exists I < n such that tjCtct1. Because I < n we

have r ^ ral. Trivially rTZra1. Hence rTira1 and |[£)]| = 2. Because r ^ ral we
can conclude that r = red. Therefore, using Lemma 2.44, we have b—a = n/2 = I.

Conversely, suppose that b — a = n/2 and |[fj]| = 2. Then r £ S. We have
that im r = im ran/.2, because b — a = n/2. Also ker r = ker to11/2. Note that
r 7^ r(jn'2, because a is an n-cycle. Since there are only two such elements with
the same kernel and the same image, we conclude that r = ran^. Consequently,
rTrcr"/2. Because £ is a right congruence we have ral£ra"n/2crl, for all i £

{1,..., n}. Therefore, LTai = LTan/2ai, for all z 6 {1,..., n}. This implies that

|£| < n/2.
We have that im red ^ im raj, for all i,j £ {1,..., n/2}, i ^ j. For this,

suppose that there is I £ {1,..., | — 1} such that im r = im red. Then a = bal
and b = aal, because r 7^ red. Similarly to the previous proof, this implies that
21 = n(modn) which is impossible because I £ {1,..., - — 1}. Thus, for all
i,j £ {l,...,n},i 7^ j we have that red is not C-related with red, or equiv-

alently, for all i,j £ {1,..., n/2}, i 7^ j, we have that LTtJi 7^ Lra]. Hence
£ {> LTCr, LTcr2,..., TT(J 5—1} • n
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Observation 2.46 Let us enumerate the possible cases described in the previous

theorem:

(i) If |[55] | = 1 then we have |£| = n (regardless of the value of b — a).

(ii) If |[ft]| = 2 and b — a — n/2 then |£| = n/2.

(iii) If b — a ^ n/2 then for all i, j G {1,..., n}, i ^ j, we have red ^
tgK Hence im red ^ im red. Therefore |£| = n.

We should remark that in this last case we cannot have t = rcr1, for some

I G {1,... ,n} (see Lemma 2.44), although it can happen that r G S. The next

figure illustrates these three possibilities.

t ra tct"-1

Case (ii)

Case (iii)

Figure 2.3: Description of the possible cases for the size of T-classes

There is another interesting consequence of Theorem 2.45.

Corollary 2.47 Let S = (cr,r), where a = (1 2 ... n) and r G Tn is a trans¬

formation of rank 2. If n > 2 then S is not an inverse semigroup.

Proof. Observe that if n = 2 then there is only one semigroup of this kind,
S = {[1, 2], [2,1]} which is a group isomorphic to C2 and therefore S is inverse.

Suppose that n > 2 and take S = (cr, r). From the previous result we know
that |£| = n/2 or |£| = n. Therefore |£| > 1.

--1
r TO" ra 2

- --1f fa TCT2

t ra ran-1

f fa t<7n_1
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Suppose that S is inverse. Then S cannot have any idempotent elements of
rank 1. Otherwise D\ ^ 0 and Dx has only one 7£-class which contains |£| = n > 2

idempotents. Therefore S cannot be inverse (by Proposition 1.13).

Thus, S must have only two P-classes: the D-class Dn of all elements of rank
n and the P-class D2 of all elements of rank 2. But then we have that for all

a G S, rank (a2) = rank (a) which means that S is completely regular and con¬

sequently each 7£-class in D2 has |£| idempotents. Hence S cannot be inverse

(again by Proposition 1.13). □

4.2 Number of 7£-classes

In this section we shall study the number of 7£-classes in D2■ This is a more

complex task than in the case of the £-classes.

We need some essential definitions.

Definition 2.48 Let wo e N. Then r is w0-block conjugate if for every x E X,

x G Ka if and only if xaw° G K^.

( I 2 3 4 5 6 \
Example 2.49 The transformation r = G T6 is 3-block con-

y 1 3 1 3 1 3 J
jugate. Nevertheless, this transformation is also 1-block conjugate.

Remark 2.50 Some relevant and straightforward consequences of this definition
are:

(i) If r G Tn is u>0-block conjugate then \Ka\ = \Kb\. Hence n is even.

(ii) If t has conjugate periodic image then r is wo-block conjugate,
for some w0 (we can take w0 = d). The converse does not hold (see
Example 2.49).
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Analogously to the previous section (just replacing b — a by w0), one can check
the following two results:

Lemma 2.51 The following are equivalent:

(i) the transformation r is w0-block conjugate;

(ii) for every x E X, x E Kb if and only if xaw° € Ka.

(iii) for every x E X, x E Ka if and only if xa~w° E Kb.

Lemma 2.52 A transformation r is w0-block conjugate if and only if for every
x E X,

x E Ka if and only if xaUWo E Kb)

for all uEl,u odd.

Remark 2.53 It follows that if r is w0-block conjugate then for all x E X,

x E Ka if and only if xaSWo E Ka,

for all s E Z, s even.

Another alternative characterisation of this property is presented in the next

result.

Lemma 2.54 A transformation t is WQ-block conjugate if and only iff = <jw°t.

Proof. We clearly have that r = aw°r if and only if Kaa~Wo = Kb, Kba~Wo = Ka
and im (ow°t) — im (r). This is equivalent to writing that, for all x E X, x E Ka
if and only if xa~w° E Kb which means that r is two-block conjugate (by Lemma
2.51 (iii)). □

As in the case of the properties studied in the previous sections, the block con-

jugacy property is an invariant within the elements of rank two of the semigroup
under consideration.
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Lemma 2.55 If r is wo-block conjugate then every element in S of rank 2 is

Wo-block conjugate.

Proof. Let a E S be an element of rank 2. Suppose that r is Wo-block conjugate.
Prom Lemma 2.2 we only need to prove that this property holds for two different
cases.

If a — crVcP, for some i,j E {1,... ,n} then we have im (crVcP) = {a', b'},
where a' = acP, b' = bo3. Also, ker (o1to3) = {K'a,, K'b,} with K'a, = (a'^crVcr7)-1 =
(a)o3o'^t^o'1 = (a)r-1<j~l = Kao~l. Similarly, K'b, = Kbo~l.

Take x E K'a,. Then there is y E Ka such that x = yo~l. Our aim is to prove

that xaw° E K'b,, i.e. (xow°)o1to3 = b'. For this, {xow°)o1to3 = (x)alaWoraJ =
(y)a~Wu,°rcr-7 = (ya^ra^. But because r is iy0-block conjugate then y E Ka
if and only if yaw° E K^, i.e. (yaWo)r = b. Hence (;yaWo)raJ = boJ = b'.

On the other hand, take x E X such that xow° E K'b,. Then there is y E Kb
such that xow° = yo~l, and so x = (y)o~w°o~l. Our aim is to prove that
x E K'a,. For this, (x)o1to:> = (y)o~W0o~lolTo:> = {y)o~W0To^. Because r is wq-

block conjugate and using Lemma 2.51 we know that if y E Kb then yo~w° E Ka.
Hence (y)o~W0roi = aa-7 = a'.

Therefore o1to7 is wo-block conjugate.

Conversely, suppose that crVcr7 is uio-block conjugate, for all i, j E {1,..., n}.
Then, from the implication already proved, we have that o~1o1to^a--7 = r is also

wo-block conjugate.

Suppose now that a = olToHok, for some i,j,k E {1,..., n}. Assume that
tcPt ^ r (otherwise we are again in Case 1). We know that ker (tcPt) = ker (r)
and im (to3t) = im (r). So it is obvious that r is wo-block conjugate if and only
if to3t is Wo-block conjugate. Hence, again using Case 1, our result holds. □

From the last result and Corollary 2.22, the following definition is consistent.

Definition 2.56 We say that S = (a, r) is wo-block conjugate if r is wo-block
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conjugate.

Another definition is required for the forthcoming study.

Definition 2.57 Let vq G N. We say that r has Vq-block structure if for every
x G X,

x G Ka if and only if xaVo G Ka.

Example 2.58 The transformation

/ 1 2 3 4 5 6 \
)e r61113 113/

has 3-block structure. A more striking example is the transformation

( 1 2 3 4 5 6 \
A = U r6,

113 13 13/

which has 2-block structure and, as seen in Example 2.49, also is 1- and 3-block

conjugate.

Remark 2.59 We ought to mention two important facts:

(i) For every r G Tn we have that r has n-block structure.

(ii) If r has u0-block structure, for some u0 G N then v0 > 2. This is
true because rank (r) = 2.

Note that this definition is very similar to the property "periodic image" (see
Definition 2.5). In fact, if r has periodic image then it has u0-block structure, for
some vq < n.

Analogously to the case of the periodic image property (replacing b — a by
v0), one can prove the following results.

Lemma 2.60 The following are equivalent:
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(i) the transformation r has vo-block structure;

(ii) for every x £ X, x £ Kb if and only if xavo £ Kb-

(iii) for every x £ X, x £ Ka if and only if xcr~vo £ Ka.

Lemma 2.61 A transformation t has Vo-block structure if and only if for every
x £ X,

x £ Ka if and only if xauv° £ Ka, for all u £ Z

Another alternative characterisation of this property.

Lemma 2.62 A transformation r has v^-block structure if and only if r = aVor.

proof. We have that r = av°r if and only if Kacr~Vo = Ka, Kbcr~v° = Kb and
im (av°r) = im (r). This is equivalent to saying that for all x £ X, x £ Ka if and
only if xa~Vo £ Ka. Hence r has u0-block structure. □

There is a relation between the block conjugate (Definition 2.48) and the block
structure (Definition 2.57) properties, which is made obvious in Example 2.58.
The next result clarifies this question.

Corollary 2.63 Ifr is Wo-block conjugate, for some wq £ N then r has a Vo-block

structure, where Vq = 2wq.

Proof. This is a consequence of the previous result, Lemma 2.54 and the fact
that r = r. □

The property of block structure is invariant within the elements of rank two

of the semigroup we are considering.
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Lemma 2.64 If r has v0-block structure then every element in S of rank 2 has

VQ-hlock structure.

Proof. Let us take a £ S a transformation of rank 2. Suppose that r has vq-

block structure. By Lemma 2.2 we only need to prove that this property holds
for two cases.

Assume that a = uVeF, for some fixed i,j £ {1,... ,n}. We have im (erVcP) =
{a', b'}, where a' = acP, b' = baf Also, ker (crVeP) = {K'a,,K'b,}, with K'a, =
Kaa~l and K'b, = Kb<j~l.

Take x £ K'a,. Then there is y £ Ka such that x = ya~l. Our aim is to prove

that xaVo £ K'a,, i.e. (xav°)alraJ = a!. For this, (xcrVo)alTcr:> = (x)alav°Taj =
(■y)<7~lcrlcrV0T(T:> = (yav°)Taf But because r has u0-block structure then y £

Ka yaVo £ Ka (yaVo)r = a. Hence (yaVo)raJ = acr-7 = a'.

On the other hand, take x £ X such that xaVo £ K'a,. Then there is y £ Ka
such that xav° = ya~l and so x = (y)a~voa~l. Our aim is to prove that x £ K'a,.
For this, (x)crVcP = (y)a~voa~lalTa:> = {y)a'Voraf Because r has u0-block
structure and using Lemma 2.61 we know that y £ Ka if and only if ya~v° £ Ka.
Hence (y)a~v°ra7 = acP = a!.

Therefore crVcP has Uo-block structure.

Conversely, suppose that crVcP has u0-block structure, for all i) j £ {1,..., n}.
Then, from the implication already proved, we have that o~lolT<ji= r also
has u0-block structure.

Suppose that a = olToHok, with i,j,k £ {l,...,n}. Let us suppose that
tcFt ^ r (otherwise we are in Case 1 again). We know that ker (rcr-'r) = ker (r)
and im (rcrW) = im (r). So it is obvious that r has u0-block structure if and only
if tcFt has uo-block structure. Hence, again using Case 1, our result holds. □

From the last result and Corollary 2.22, the following definition is consistent.

Definition 2.65 We say that S = (a, r) has vo-block structure if r has fQ-block
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structure.

As underlined in Examples 2.49 and 2.58, the values Wq and v0 for the def¬
initions of block conjugate and block structure are not unique. The following
definition will clarify this issue.

Definition 2.66 Let r G Tn. We define the following values:

• w — min-fwo : r is rco-hlock conjugate}.

If r is not block conjugate, we say that w is not defined.

• v = min{uo : r has Uo-block structure}.

The value of v is always defined since r has n-block structure.

The next two results show us an algorithm to determine the values of w and
v described above.

Lemma 2.67 Suppose that r is w0 and w^-block conjugate, for some wo, w\ G N,

wo -f- W\. Let W2 = gcd (wo, uq). Then r is w2-block conjugate.

Proof. By the definition of greatest common divisor, there are r, k G Z, gcd (k, r) =
1 such that wo = kw2 and w\ = rw2.

We have that k, r are both odd. To prove this, suppose first that k, r are both
even numbers. Then gcd (k, r) > 2, a contradiction.

The other case is if k is even and r is odd. Take x G Ka. Then xakrW2 =

xakw 1 g Ka, because k is even and r is uq-block conjugate (see Remark 2.53).
On the other hand, xarkW2 = xarw° G Kb, because r is odd and r is Wo-block

conjugate (see Lemma 2.52). We then have that xakrw2 G Ka and xakrw2 G Kb
which is again a contradiction. Thus k and r are both odd numbers.

By the Euclidean algorithm, there are zq, z\ G Z such that w2 = z0w0 + z\w\.

We have that zq and z\ have different parity, that is, Zq is even (odd) if and only
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if z\ is odd (even). To prove this, suppose first that z0 and z\ are both even. If
x G Ka we have that xaw° G Kb, because r is w0-block conjugate. But w0 = kw2,

with k odd. Then w0 = k(z0w0 + Z\W\) = (kz0)w0 + (kz\)wi and kz0, kzi are
both even. Hence xaWo = xa^kz°^w°a^kzi^Wl and so xaWo G Ka (by Remark 2.53),
which is a contradiction. Suppose now that Zq and Zi are both odd. Using the
same argument, we can conclude that xaw° G Kb and xaw° G Ka. Thus z0 and

Zi must have different parity.

Suppose that z0 is even and zi is odd. Let us prove now that r is u>2-block con¬

jugate. Let x G Ka. Then xaW2 = XaZoWo+ZlWl. By Lemma 2.52, xaZoW° G Ka and

(xaZ0W°)aZlWl = xaW2 G Kb- Conversely, suppose that x is such that xaW2 G Kb-
Because xaw2 = XaZoWo+ZlWl and since z0 is even and z\ is odd (using Lemma 2.52
and Remark 2.53) we conclude that x G Ka. The case where z0 is odd and zx is
even is similar. □

Analogously, we have the following result.

Lemma 2.68 Suppose that r has v0 and V\-block structure, for some vq,v\ G N,

vo V\. Take u2 = gcd (Vq, Ui). Then r has V2-block structure.

Proof. By the Euclidean algorithm, there are r, k G Z such that u2 = rvo + kvi.
From Lemma 2.61, we have that for all x G X, x G Ka if and only if xarv° G Ka
and also x G Ka if and only if xakvi G Ka. Therefore, for all x G X, x G Ka if
and only if Xarvo+kvi G Ka, i.e. x G Ka if and only if xaV2 G Ka. Hence r has

u2-block structure. □

Observation 2.69 From this point onwards, when we say that r is w-block

conjugate or has u-block structure, the numbers w and v are the values referred
to in Definition 2.66.

The next result gives us a nice relation between the values w and v.
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Lemma 2.70 Suppose that r is w-block conjugate for some w. Then r has v-

block structure with v = 2w.

Proof. Prom Corollary 2.63, we know that r has 2w-block structure.

Suppose that v ^ 2w. Then, by definition of v, we must have v < 2w. We
have that v divides 2w. For this, suppose that 2w is not divisible by v. Then

gcd (2w,v) = r, for some r £ N where r < v (because v 2w). But, according
to Lemma 2.68, r has r-block structure, which contradicts the fact that v is

minimum.

We also have that w is not divisible by v. To prove this, suppose otherwise.
Then w = kv, for some k £ N. But for all x £ X, x £ Ka if and only if xaw £ Kb,
because r is w-block conjugate. On the other hand for all x £ X, x £ Ka if and

only if xakv £ Ka, because r has u-block structure. Since we have xaw = xakv,
we get a contradiction.

We have that 2w = kv, because v divides 2w. Since » / to (obviously) we

have k ^ 2.

Prom v 7^ 2w we have that k ^ 1. Hence k > 3. Furthermore, k is odd
because if it was even and from 2w = kv, we would have that w = \v, where
| g N. This would mean that v divides w which, as we already proved, is not
true.

Concluding, we have 2w = kv, with k > 3, k odd. This implies that v < w

and that v must be even.

Suppose that k = 2k! + 1, for some k! £ N. Then w — k'v = v/2, because

w — k'v = v/2 45 2w — 2k'v = v 45 2w — (k — l)v — v 45 2w — kv = 0.

Let x £ Ka. Then xaw £ K5, because r is w-block conjugate and also

(xcrw)<7~k'v £ Kb, because r has u-block structure. Thus xaw~k'v = xav^2 £ Kb-

Conversely, if xav/2 £ Kb then we can conclude that x £ Ka, because r is w-block

conjugate and has u-block structure and also xav1/2 = xaw~kv.
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This means that r is u/2-block conjugate, which contradicts the fact that w
is minimum. □

Corollary 2.71 Suppose that r has v-block structure. If v is odd then, for all
w EN, r is not w-block conjugate.

Proof. Suppose that v is odd and that t is w-block conjugate, for some w £ N.
From the previous result, v = 2w. But this is not possible, because v is odd. □

We are now able to characterise all the possible sizes of |£H|, for a given

semigroup S = (c, r). We ought to remember that for any given r 6 Tn, r is
either block conjugate or has block structure. Based on this fact, we deal with
the next problem in two different stages.

Theorem 2.72 Let S = (a, t). Suppose that r is w-block conjugate. Then:

(i) If |(f)]| = 2 then |9t| = w.

(ii) //|[i!)]| = 1 then |9T| = 2w.

Proof. Consider w as referred to in Definition 2.66.

(i) If |[fj]| = 2, then r £ S. In particular, tTZt. We know, because r is
w-block conjugate, that r = awr (see Lemma 2.54).

We shall prove that 91 = {RT, Rar, Ra2r,..., Raw-ir}. Note that for all i,j £

{1,..., w}, with i j, we have that ker (crV) ^ ker (cPr). To prove this, suppose
that there are i, j £ {1,..., w}, with i < j, such that ker (crV) = ker (cPt). It is
clear that im (crV) = im (crJV). Therefore we either have crV = cPr or <j1t = (Pr.

If crV = crW then r = cP_V and therefore r has (jf — i)-block structure, with
0 < j — i < w. This is a contradiction to the fact that 2w is the minimum value

vq such that r has u0-block structure.
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If cUr = cHr then r = cH~V and therefore r is j — z-block conjugate, with
0 < j — i < w. This is a contradiction to the fact that w is the minimum value
Wo such that r is wo-block conjugate.

Therefore for all i,j £ {1,..., wj, i ^ j we have that crV is not 77.-related with
cr^r, because ker (crV) ^ ker (cHr). Hence \{RT, RaT, R^t, ■ ■ ■ > R^-It}\ — w.

To prove that C {Rr, Rar, Ra2r,..., RawT} we just need to prove that for
all i £ {w + 1,..., n} we have RaiT £ {i?r, Rar, Ra2T,..., Note that
awr = r and tTZt. This is equivalent to proving that for all? £ {1,,n — w}
we have RaiW £ {RT, Rot, R<t2t, ■ ■ ■ > But this is obvious, because t77t
and IZ is a left congruence. Hence |9t| = w.

(ii) Suppose that |[io]| = 1. Prom Lemma 2.54 and because r is unblock

conjugate, we know that r = a2wr, because r has 2w-block structure. But

t = awr and r is not 77-related with r, because |[^]| = 1 and tCt. Thus we have
HI C- jHt) H(J7" , ) ■ . . J — 1 y }. Hence |*K| = 2w. □

Case (i)

Case (iii)

T ar aw~1r

T af (jw-if

T ar aw~1r T ar aw 1t

Figure 2.4: Description of Theorem 2.72

The remaining case is slightly more complicated.

Theorem 2.73 Let S — (ct,t). Suppose that r has v-block structure. Then:

(i) If | [fj] | = 2 then there are two subcases:

(a) J/f ^ av/2r then |Tt| = v.

(b) Ifr = gvRt then |9f| = v/2.

(ii) If | [9j\ | = 1 then |94| = v.
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Proof. Consider v as referred in Definition 2.66.

(i) Suppose that |[f)]| = 2.

(a) We shall prove that 94 = {RT, RaT, Ra2T,..., Rav-ir}. From Lemma
2.62 we know that r = avr. Because |[f)]| = 2 we know that r E S. We
ought to remark that there is no u G N such that aur = f. If there was

such number u, because of the definition of v, we would have u = v/2, which
goes against our assumption. Therefore, for alii G {1,... ,v — 1}, r is not 1Z-
related to crlr. Hence |{PT, Rar, R<t2t, ■ ■ ■ > #<r«-ir}| = To prove that ffi C

{Rt, R<tt, Ra2ti ■ ■ ■ > Rav-^r}, we only need to note that r = avr which implies
that Rt = RavT. Thus the result holds.

(b) Because r = av^2r, by Lemma 2.54, we have that r is u/2-block conjugate.
Also, we have that w = v/2 (consequence of Lemma 2.70). Hence, by Theorem
2.72 (i), we have that |£H| = w = v/2.

(ii) From Lemma 2.62 we know that r = avr.

Because |[F)]| = 1 we have that for all i G {1,... ,v — 1}, r is not 77.-related
with alr. Therefore 94 = {Rr, RCT> Ra2ri ■ ■ ■ > R<jv-1t}- D

Case (i)(a)

Case (i)(b)

Case (ii)

r ar av-\T

f af GV~Xf

T err
--1

a 2 t

f af --1-
a 2 r

r ar ay-lr

Figure 2.5: Description of Theorem 2.73

4.3 Size of 7-f-classes

The only information missing to complete this description regards the size of [ij].
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We start with a sufficient condition for each 7i-class in ft to have size two.

Lemma 2.74 Let S = (a, t). If S does not have periodic image then |[ft]| = 2.

Consequently, if a E S and rank a = 2 then a E S.

proof. If S = (a, r) does not have periodic image then, by Theorem 2.10, S is

regular. Then there is £ E S with rank (£) = 2 such that £2 — £. We have that
S = (a, £), according to Corollary 2.22.

Take £ E Tn to be the conjugate of £ and define S' = (a, £).
Note that, because S is regular, we have that H in S is the same as 7i in Tn

— —2

(see Proposition 1.17). Because we have £ = £. Therefore £ G S'. Then
Corollary 2.22 implies that S' = S. In particular, f E S and because £7d£ we

have | [.ft] | = 2. □

Observation 2.75 The converse of the previous lemma does not hold. Take,
for example, S = {a, r), where r = [1,3,1,3] (n = 4). In this example, S is not

regular and |[ft]| = 2.

The following theorem describes all the possible sizes of [ft].

Theorem 2.76 Consider S = (a, r) as before.

(i) If t does not have periodic image then |[ft]| = 2.

(ii) If r has periodic image then |[ft]| =2 if and only if b — a = nf2
and t is w0-block conjugate, for some u>0.

Proof, (i) This is just Lemma 2.74.

(ii) Because S has periodic image, every element a E S of rank 2 can be written
as g1to\ for some i,j E {l,...,n} (see Corollary 2.21). Also, there are no

idempotents of rank 2 in S (see Corollary 2.19).
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Suppose that |[fj]| = 2. Hence f G S. This implies that tTZt which is

equivalent to writing that there exist /?, ( G S such that t = t/3 and r = r(.
But S has periodic image and therefore we have that (3 = ak, £ = cd, for some
k, I G — 1}, from the considerations about the normal forms of the rank 2
elements of S and from the fact that there are no idempotents of rank 2. From the

equality r = r( = raq and using Lemma 2.44, we can conclude that b — a = n/2.
Since tTCt, we have tCt and this is equivalent to saying that there are rj, p G S

such that t — rjf and T = pr. As before, we can conclude that p = ar, p = as,
for some r,s € {1,..., n — 1}. From the equality r = gst and using Lemma 2.54
we conclude that r is .s-block conjugate.

The converse of this statement is obvious. If b — a = n/2 then T = red,
for some I G N (see Lemma 2.44) and so tTZt. If r is u>0-block conjugate then
r = aWor (see Lemma 2.54). Therefore tCt. Hence tHt and |[ijj]| = 2. □

5 Possible sizes

The next obvious question to ask is what are the possible sizes of S = (a, r),
where a = ^1 2 3 ... n^j and r G Tn is a rank two transformation, for a
given n G N.

In this section we shall answer this question.

We need a preliminary technical result.

Lemma 2.77 Let S = (a, r) such that S is v/2-block conjugate and satisfies
b — a = n/2. Then S either has periodic image or conjugate periodic image.

Proof. Let d = gcd(n, b — a). Then d = n/2 and so d > 1, if we take n > 3

(which are the interesting cases, as we point out in the beginning of Chapter 6).
We have that v divides n. For this, note that r has u-block structure and n-

block structure. Therefore, by Lemma 2.68, it also has gcd (n, u)-block structure.
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But by definition of v, we have gcd (n, v) — v which means that v divides n. By
assumption, n is even (because we assume that b — a = n/2). We also assume

that r is u/2-block conjugate and consequently v is even. Because v divides n,

there is k G N such that n = kv. Therefore, from the previous considerations

about v and n, we can conclude that v/2 divides n/2, since n/2 = k(v/2).
If k is even and because r is u/2-block conjugate we have that x G Ka if and

only if xcrk% G Ka (see Remark 2.53). Hence x G Ka if and only if xan/2 = xad G

Ka, which means that r has periodic image (see Lemma 2.16).
If k is odd and because r is u/2-block conjugate we have that x G Ka

if and only if xcrk% G Kb (see Lemma 2.52). Hence x G Ka if and only if
xonl2 = xad G Kb, which means that r has conjugate periodic image (see Lemma

2.39). □

We should recall that every semigroup S = (a, r) has u-block structure, for
some v.

Theorem 2.78 Let S — (a, t) be such that S has v-block structure. Then we

have |S| G {2n(v + 1),n(v + 2),n(| + 2),n(2v + 1),n{y + 1),n(| + 1)}.

Proof. Prom Lemma 2.3, we know that S has, at most, three D-classes;

• Dn, the P-class of rank n which is the group (a).

• D2, the D-class of rank 2.

• D\, the D-class of rank 1, where every element is an idempotent (if it exists).

We know that \Dn\ = |Di| = n. Therefore, to compute the size of S, we only
need to decide if Tfi ^ 0 and to compute the size of D2.

We shall divide our study in three main cases.
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(i) S has neither periodic image nor conjugate periodic image (so S is regular
but not completely regular). Because S does not have periodic image, |[£j]| = 2

(Lemma 2.74). Because S is not completely regular, D\ ^ 0 (Lemma 2.26).

Suppose that S is not u/2-block conjugate. Then we have two subcases.

(a) If b — a n/2 then \D2\ = |£| x |9T| x |[5j]| = n x u x 2 = 2nv (Theorems
2.76 (i), 2.45 and 2.73 (i)(a)). Therefore |Sj = \Dn\ + \D2\ + \Di\ = n+ 2nv + n =
2n(v + 1).

(b) If b— a = n/2 then \D2\ = |£| x |DT| x |[£j]| = | xvx2 = nv (Theorems 2.76
(i), 2.45 and 2.73 (i)(a)). Therefore [Sj = |Dn|+ |Z)2|+ |I?i| = n+nv-\-n — n(v+2).

Suppose now that S is u/2-block conjugate. Then:

(a) If b — a 7^ n/2 then \D2\ = |£| x |93| x |[ij]| = nx|x2 = nu (Theorems
2.76 (i), 2.45 and 2.72 (i)). Hence |<Sj = |Dn| + |J92| + |-Di| = n+nv+ n = n(v+ 2).

(b) If b — a = n/2 then, using Lemma 2.77, we conclude that our premise is

false, because if S is u/2-block conjugate and satisfies b — a — n/2 then S either
has periodic image or conjugate periodic image.

(ii) S has conjugate periodic image. So S is completely regular. This implies
that S is regular and this implies that S does not have periodic image. Therefore

\\H]\ = 2 (Lemma 2.74). Also, we have Di = 0 (Lemma 2.26).
If S has conjugate periodic image then S is u;-block conjugate, for some w.

But S has u-block structure. Prom Lemma 2.70, we know that v — 2w and this

implies w = v/2.

(a) If b — a 7^ n/2 then \D2\ = |£| x |93| x |[f)]| = n x | x 2 = nv (Theorems
2.76 (i), 2.45 and 2.72 (i)). Therefore |<Sj = \Dn\ + \D2\ = n + nv = n(v + 1).

(b) If b — a = n/2 then \D2\ — |£| x |93| x |[£j]| = |x|x2 = n| (Theorems
2.76 (i), 2.45 and 2.72 (i)). Therefore |Sj = \Dn\ + \D2\ = n + n| = n(| + 1).

(iii) S has periodic image (equivalently, S is not regular). Because S is not

regular then surely is not completely regular. Thus Di ^ 0 (Lemma 2.26). Note
that, because S has periodic image we have that |[£j]| = 2 if and only if r is
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w-block conjugate and b — a = n/2 (Theorem 2.76 (ii)).

(a) Suppose that either S is not u;-block conjugate or b — a ^ n/2. There are

two possibilities to consider.

(al) If S is not w-block conjugate then \D2\ = |£| x |9T| x = nxrxl — nv

(Theorems 2.45 and 2.73 (ii)). Hence |Sj = \Dn\ + \D2\ + \Di\ — n + nv + n =

n(v + 2).

(a2) S is w-block conjugate and b— a ^ n/2. Then, as we saw in (ii), w = v/2.
Hence \D2\ = |£| x |93| x |[ij]| = n x 2w x 1 = nv (Theorems 2.45, 2.72 (ii)).
Therefore |5j = \Dn\ + |T>2| + l-Dil = n + nv + n = n(v + 2).

(b) If S is w-block conjugate and b — a = n/2 then \D2\ = |£| x |9T| x |[ij]| =
| x | x 2 = n| (Theorems 2.45 and 2.72 (i)). Therefore |Sj = \Dn\ + \D2\ + |£>i| =
n + n| + n = n(| + 2). □

Some consequences of the previous proof.

Corollary 2.79 Let S = (cr, t) be such that S has v-block structure. If S has
neither periodic image nor conjugate periodic image then

|S| =

2n(v + 1) if S is not v/2-block conjugate and b — a / n/2

n{v + 2) if (S is not v/2-block conjugate and b — a = n/2) or

if (S is v/2-block conjugate and b — a ^ n/2)

Corollary 2.80 Let S = (a,r) be such that S has v-block structure. If S has
conjugate periodic image then

n(y + 1) if b — a n/2

n(| + 1) ifb — a — n/2

Corollary 2.81 Let S = {cr,r) be such that S has v-block structure. If S has
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periodic image then

{n[v + 2) if S is not v/2-block conjugate or b — a ^ n/2n(| + 2) if S is v/2-block conjugate and b — a = n/2

Next we give a set of examples that illustrate each of the corollaries above.
We consider S = (a, r), where a = (1 2 3 ... n) and r, a transformation of rank
two.

Example 2.82 Let us see some examples that satisfy each of the cases in Corol¬

lary 2.79.

For each of the following examples, the transformation r has neither periodic

image nor conjugate periodic image.

(i) Let r = [1,2,1,1] (with n = 4). We have that r has 4-block
structure, it is not 2-block conjugate and b — a — 2 — 1 = 1^2 =

4/2 = n/2. Thus |S| = 2.4(4 + 1) = 40.

Another example; take r = [1,1, 3,1,1, 3,1,1, 3] (with n = 9). Here
we have that r has 3-block structure and therefore r is not block

conjugate (because 3 is odd). It does not satisfy b — a = n/2 either.
Thus \S\ = 2.9(3 + 1) = 72.

(ii) Let r = [1,1,1,4,1,1] (with n = 6). This transformation has
6-block structure. It is not block conjugate because 2r = 1 and

(2<t3)t = 1. It satisfies b — a — 4—1 = 3 = 6/2 = n/2. Therefore

|Sj = 6(6+ 2) = 48.

Let us see a different example. Take
t = [1,1,1,10,1,1,1,1,1,10,1,1,1,1,1,10,1,1] (with n = 18). In
this case r has 6-block structure and it is not block conjugate. It
satisfies b — a = n/2 (10 — 1 = 9= 18/2). Therefore |Sj = 18(6 + 2) =
144.
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(iii) The transformation r = [1, 2, 2,1] (with n = 4) has 4-block struc¬

ture, it is 2-block conjugate and it does not satisfy the condition
b — a — n/2. In this case |Sj = 4(4 + 2) = 24.

Example 2.83 Here we present some examples where we can apply Corollary
2.80.

Let us consider transformations which have conjugate periodic image. This

implies that these transformations are u/2-block conjugate (see Remark 2.50 and
Lemma 2.70).

(i) Let r = [1,2,1,2] (with n = 4). This transformation has 2-block
structure and b — a ^ n/2. Therefore |<Sj = 4(2 + 1) = 12.

(ii) Let r = [1,4,1,4,1, 4] (with n = 6). Then r has 2-block structure
and b — a = 4—1 = 3 = 6/2 = n/2. Therefore |Sj = 6(1 + 1) = 12.

Example 2.84 The last set of examples illustrates Corollary 2.81.

For the next examples, all the transformations have periodic image.

(i) Take r = [1,1,4,1,1,4,1,1,4] (with n = 9). This transformation
has 3-block structure and it does not satisfy b — a = n/2, because n

is odd. Then |<Sj = 9(3 + 2) = 45.

Another example for this case is the following: let r = [1,1, 4,1,1, 4]
(with n = 6). Then r has 3-block structure, satisfies b—a = n/2 but it
is not block conjugate (because 3/2 N). Therefore |<Sj = 6(3 + 2) =
30.

A last example in this case is r = [1, 3,1, 3,1, 3] (with n = 6). Here
r has 2-block structure and it is 1-block conjugate, but it does not

satisfy b — a = n/2. Hence |Sj = 6(2 + 2) = 24.

(ii) Let r = [1,3,1,3] (with n = 4). The transformation r has 2-
block structure (and it is 1-block conjugate) and satisfies b — a = n/2.
Therefore |<Sj = 4(1 + 2) = 12.



Chapter 3

Isomorphisms

The isomorphism of two algebraic structures is a well known and widely used con¬

cept. The study of isomorphisms between two structures is of great importance,
since if two algebraic structures are isomorphic then they are "essentially" a copy

of each other. Hence, when one studies a certain class of algebraic structures, it
is possible to reduce this study, by finding all the subsets of this class, where in
each of these subsets all the elements are isomorphic. Each of these subsets is

called an isomorphism class.

The concept of isomorphism occurs and is studied in a great variety of contexts
such as Numerical Functional Analysis, Differential Geometry, Group Theory,

Semigroup, Graph and Finite Automata Theory.

Determining if two algebraic structures are isomorphic is generally a very

difficult problem and the isomorphism of semigroups is no exception.

In the case of the semigroups we are considering, and based on Chapter 2, we
know something more about their sets of possible generators. More precisely, we
know that any element of rank two in S together with a power k of a, where k is

coprime to n, generates S (see Corollary 2.22). But even with all this information,
supposing that we have p elements of rank two in S and that there are q powers

k of a where k is coprime to n, we still have p x q possible generators which is

65
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still quite a "big" number. For example, if S = (cr, r), where cr = (1 2 3 4 5)
and r = [1,1, 3, 3,1], then there are 20 idempotents of rank two. Therefore we

have that p = 20 and q = 4 which gives us 80 possibilities for generators of S.
And this is only with n = 5... The large number of possible generators is one of
the reasons why the study of the isomorphism classes of the set of all semigroups

generated by a = (1 2 ... n) and a transformation of rank two from Tn, for a
given n £ N, is a very hard problem.

In this chapter we shall find some methods which allow us to study the iso¬

morphism classes of the set of all semigroups of this type. Although this study
does not cover all possible cases, we study the semigroups which appear "more

frequently" and hopefully these methods will be the launching platform for future
work that will include the remaining semigroups of this type.

In the first section we present some properties on the generator r of rank
two of a given semigroup S = (cr, r), which in fact, are invariant within the set
of all elements of rank two within the semigroup. As a consequence, we have a

necessary condition for the membership of elements of rank two.

In the second section, we give some necessary conditions for the isomorphism
between two such non-completely regular semigroups (semigroups that contain
constant maps).

In the third section we present a necessary and sufficient condition for the

isomorphism of two such non-completely regular semigroups. Furthermore, we

give a method of specifying this isomorphism and show that this condition does
not hold in the completely regular case.

1 Invariants

We start by studying some properties which are invariant within the elements of
rank two of a semigroup S = (cr, r).
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Definition 3.1 Let r G Tn be such that rank (r) = 2 and ker (r) = {Ka, Kb}. If
\Ka\ < \Kb\ then we say that r has kernel type p1 qL if \Ka\ = p and \Kb\ = q. If

\Ka\ — \Kb\ then the kernel type of r is denoted by p2.

In the next result we see that the kernel type is invariant within the semigroup,

meaning that it is invariant for the elements of rank two of the semigroup.

Lemma 3.2 Let S = (a,r). For all a G S such that rank (cr) = 2 we have that
the kernel type of a equals that of t .

Proof. By Lemma 2.2, as in many of the proofs before, we only need to study
two different cases:

Case 1: a = crVcP, with i, j G {1,... , n}.
It is easy to observe that ker (p) = ker (per-7), for any p G Tn. Therefore we

only need to prove that <rV has the same kernel type as r. For this, note that
ker (r) = {Ka, Kb} and therefore ker (crV) = {Kacr~l, Kba~1}. Since cr G Sn it is
clear that \Ka\ = \Ka<j~l\ and \Kb\ = \Kba~l\ which proves our result.

Case 2: a = alTa^rak, with i, j) k G {1,..., n}.
If we have tcPt = r then we fall into the previous case. Let us suppose that

tcPt 7^ r. Then we have that tcPt = r, which is the conjugate of r. Since r has
the same kernel (and image) as r then we just use Case 1 to conclude our result. □

Based on the last result and Corollary 2.22, the following definition is consis¬
tent.

Definition 3.3 Let S = We say that S has kernel type pxqx if r has
kernel type p1q1.

Another property which will be important for the forthcoming study is the

following.
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Definition 3.4 We write na(r) to denote the least natural number I such that
aal = b or bal = a. Formally, /iCT(r) = min{/ £ N : aal = b or bal = a}.

Remark 3.5 The value of /ic{t) is always defined. Supposing that a < b then

/v(i~) < b — a.

We prove next that the value is an invariant within the elements of rank
two of S.

Lemma 3.6 For all a £ S such that rank (cr) = 2 we have that ca= d,
where im (a) = {c,d}.

Proof. As before, we only need to study two possible cases:

Case 1: a = alra\ with i,j £ {1,... ,n}.
We have that c = acP and d — ba^. Consequently — (a)a-7 =

{a)a^a^ cP = bcri = d.

Case 2: a — alra^Tak, with i,j,k£ {1,..., n}.
The interesting case is when rcrfi ^ r. Then tcPt = r, the conjugate of r,

which has the same image (and kernel) as r. Therefore the result trivially holds

by using Case 1. □

Example 3.7 Consider the case when n = 5. Let r = [1,3,3,1,1] and S =

(a, t). Take a = [4,1,1,4,4]. We can easily check that a £ S. We have that

/^(t) = 2, because ler2 = 3 and 3<r3 = 1. Let us denote c = 4 and d — 1. Then
C(JMr) = 4a2 = 1 = d

Another element of rank 2 in S is (3 = [5, 5, 3, 3, 3]. Denote u = 3 and v = 5.
Then ua= 3a2 = 5 = v.

The next definition is therefore consistent.
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Definition 3.8 Let S = (a, r). We write p>a(S) to denote the least natural
number I such that aal = b or bal = a. Formally, p.a(S) = min{Z G N : aal =
b or bal = a}.

Note that both this property and the kernel type are necessary conditions for
the membership of an element of rank two in a semigroup S. More precisely, let
S = (a, t) be a semigroup and let a G Tn be a transformation of rank two. Then
if either the kernel type of r is not the same as that of a or if ^(t) ^ p>a(r)
then, using Lemma 3.2 or Lemma 3.6, respectively, we can conclude that a ^ S.

2 Isomorphisms - necessary conditions

In this section we give some necessary conditions for the isomorphism of two

semigroups. For this we shall look at some concrete examples which give us some

indications on these necessary conditions.

Lemma 3.9 Let S,T be semigroups generated by a and a transformation of rank
2. Suppose that f : S —» T is an isomorphism. Then for every v G S we have
rank (v) = rank ((v)<f).

PROOF. Let C = {q : i G {l,...,n}}, where Cj = [i,«,...,i], for each i G

{1,..., n}, i.e. C is the set of constant maps of Tn. We shall prove that (C)<f> = C.
For this, let p G Tn be a right zero. Then CiP = p implies that rank(Qp) =
rank(p) = 1, since ker (cip) = ker (cj) and rank (cj) = 1, for any i G {l,...,n}.
Hence every right zero element in S is a constant map Cj, for some i G {1,..., n}.
Because <f is an homomorphism we then have (C)<f C C. Because 0 is a bijection
the equality holds.

Let Is and 1t be the identity maps of S and T, respectively. We shall see
that ((cr})0 = (a). We have (1s)f = 1t (because S and T are monoids and
4> is a isomorphism). Then = 1T and, because <f is a homomorphism,
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(<jl)0(cr z)(j) = 1t- Therefore is a permutation. Thus {(cr))(j) C (<j) and the
equality follows from the fact that 0 is a bijection and (a) is finite.

Finally by exclusion, we have that every element of rank 2 in S is mapped
into an element of rank 2 in T. □

Let us look at some concrete examples. We write Q5 to denote the set of all

semigroups generated by o = (1 2 3 4 5) and a transformation r € T5 of rank
two. Some quite simple computations in GAP (see [12]) allow us to conclude that

^5 = {Si = {a, Ti) : a = (1 2 3 4 5), with i G {1,..., 6}},

where

• Ti = [1,2,1,1,1],

• r2 = [1,2,2,1,1],

• T3 = [1,2,1,2,1],

• T4 = [1,1,3,1,1],

• r5 = [1,1, 3, 3,1] and

• T6 = [1,1,3,1,3].

Using our previous results (namely Corollary 2.79) we can deduce that |Si\ =
60, for every i 6 {1,... ,6} (this is explained thoroughly in Chapter 6, Section

3). Using GAP we can conclude that S3 and S5 have 20 idempotents of rank two

and the remaining ones have 10 idempotents of rank two. Using a "brute force"
method in GAP we can conclude that S\ = S4, S2 = S6 and S3 = S5, where all
these isomorphisms are conjugations by an element of Sn.

An argument based on the number of idempotents of rank two allows us to

conclude that S3 ^ Si and S3 ¥ S2. The remaining question is if Si = S2. If the
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answer is affirmative then this isomorphism cannot be a conjugation since these

two semigroups have different kernel type.

The following figure shows the right Cayley graphs of the semigroups Si and

S2 over the generators a and T;, i = 1,2, restricted to the set C of the constant

maps.

Figure 3.1: Right Cayley graphs of ,Si and S2

Although this is not a formal proof, these graphs give us some fairly good
hint that these two semigroups are not isomorphic. Since we know that within a

semigroup every element of rank two has the same kernel type (Lemma 3.2), no
matter which generator of rank two we take for the Cayley graph of S2, we shall

always have that the degrees of some vertices will be different from those of Si.
Let us formalise these ideas.

Suppose there is an isomorphism

<t>: Si - S2
a /3

pi i-> a,

where (/3) = (a) and rank (at) = 2 (see Lemma 3.9).
From Lemma 3.9 we also know that (C)4> = C. Consider I C {1,..., n) such

that im (cjTi) = {1} (since \KX\ > |iF2|), for all i G I. Note that this set I is
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actually Ki, but seen as a set of indexes. Then |({cj : i G I}ri)cj)\ = |(ci7i)0| = 1.
On the other hand, |({cj : i G I}ri)(j)\ = |{(q)0 : i G I}a\.

Prom Lemma 3.2 we have that a has the same kernel type as r2 which is

different from that of T\. By the Pigeonhole Principle (see for example [22]) we

must have some j,k G I such that im ((Cj)4>) and im ((c^)0) are in different kernel
classes of cr, i.e. {{cj)4>)ot ((ck)^>)a.

Therefore |{{c^f : i G 7}a| = (ck)4>}a\ = |{((cj)^), ((ck)<j>)\ = 2. But
this is a contradiction to the fact that (j> is an homomorphism.

The general result follows quite easily and the proof is very similar to the
above.

Lemma 3.10 Let S and T be semigroups generated by o and a rank 2 transfor¬
mation ofTn. Suppose that S and T contain the constant maps. If S and T are

isomorphic then S and T have the same kernel type.

Proof. Let S = (c,t) and let us assume that S is isomorphic to T. Then there
is an isomorphism f : S —» T, a /3,t i—> a, where (/3) = (a) and rank (a) = 2.

Suppose that S and T have different kernel types. Then we can choose a G

im (r) such that the size of Ka is maximum within the kernel classes of r. We
can also suppose, without loss of generality, that this size is greater than that
of any of the kernel classes of a. Let us then consider I = {i G {1,..., n} :

im (cj-r) = {«}}• Then |({cj : i G I}r)<j>\ = |(cj-r)0| = 1. On the other hand,

|({ci : i G I}r)(j)\ = |{(q)0 : i G I}a|.
As in the previous proof, because S and T have different kernel types and

using the pigeonhole principle (see [22]) we have some elements j,k G I such that
im (((cj)^)a) ^ im (((cfc)</')Q0- Therefore |{(q)0 : i G I}a\ = |{{cf)<j>, (ck)f}a\ =
l{((0)^)'((cfc)^)l = 2-

This contradicts the fact that is an homomorphism. □
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We now have a necessary condition for two semigroups to be isomorphic. Next
we illustrate with two examples the use of this condition and the fact that the
converse of the previous lemma does not hold.

Example 3.11 (i) Let r = [1, 2,1,1,1] and a = [1,1, 3,1, 3] and let S = (a, r),
T = (a, a), with cr = (1 2 3 4 5). Both these semigroups have the same size 60,
the same Green's structure and the same number of idempotents (details on how
these are determined can be found in Chapter 6, Section 3).

But S has kernel type H41 and T has kernel type 2131. By the previous result,
S ¥T.

(ii) Let r = [1,2,1,1,1,1] and a = [1,1,3,1,1,1] and let S = (<r, r), T =

(a, a), with a = (1 2 3 4 5 6).
These semigroups have the same size 84, the same Green's structure, the same

number of idempotents and the same kernel type (details in Chapter 6, Section

4).

Nevertheless, S ¥ T, because S is isomorphic to the semigroup with presen¬

tation

(s, t | s6 = 1, t2 = t, (tst)2 = t, sts2t = ts2t, ts2tst = ts2ts,
tslt = ts2t (i = 3,..., 6))

and this is not a presentation for T, since none of the possible generators of T
satisfies all the relations in this presentation. We prove this fact using the GAP

implementation of Algorithm 14 found in Chapter 5 (see Appendix B).

Having as motivation the last example, we are going to investigate semigroups
like the above, which have the same kernel type and Proposition 3.10 does not

apply. Let /io-(r) denote the least natural number I such that aal = b, where
im (r) = {a, b} (see Definition 3.8).

Definition 3.12 The number fi(S) = min{np(S) : (3 £ (a), (/3) = (cr)} is called
the image distance of S.
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Remark 3.13 We can state that n(S) is always defined since /a(S) < fra(S) <
b — a. Also, the previous definition is consistent because of Lemma 3.6.

The next result gives us a further necessary condition for the isomorphism of
two semigroups.

Lemma 3.14 Let S and T be semigroups generated by a and a rank 2 trans¬

formation of Tn. Suppose that S and T contain the constant maps. If S is

isomorphic to T then p,(S) = p,{T).

Proof. Let us choose g G (a) and r G S, where (g) — (a) and rank(r) = 2
such that /a(S) = aa(t). Because S is isomorphic to T, we have <fi : S —> T,
g i—> P, r a, where (/?) = (a), rank (a) = 2 and T = (/?,«). Therefore

KT) ^ ^ Vq(t) = »(s)-
The other inequality follows taking <f~l : T —> S. □

3 Isomorphisms - a necessary and sufficient con¬

dition

In this section we shall give a necessary and sufficient condition for the isomor¬

phism of two semigroups, which contain the set C of all constant maps.

Definition 3.15 Let n G N and S,T < Tn. We say that S and T are conjugate
if there exists 7r G Sn such that -K~lSit = T.

A necessary and sufficient condition for the isomorphism of two semigroups
which contain the constant maps follows.

Theorem 3.16 Let S and T be semigroups generated by a and a rank 2 trans¬

formation of Tn. Suppose that S and T contain the constant maps. Then S is

isomorphic to T if and only if S is conjugate to T.
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Proof. Suppose that S = T. Let p : S —> T be an isomorphism. From Lemma

3.9, we know that Cp = C. Therefore p induces a permutation n G Sn, given by

in = j <=> (a)<f> = Cj, for all i, j G {1,. .., n}.

Take v G T and Cj G C, for some j G {1,... , n}. Then there is uj G S and
Cj G C such that (co)<p = v and (cj)</> = Cj. Therefore CjV = (cj)0(<u)0 = (ciu)<p =
CiUn = (cj)(/)_1o;7r = (cj)7r_1o;7r.

Hence (j)u = (j)7r_1a;7r, for all j G {1,... ,n}. Thus u G n~lSn and conse¬

quently, because v G T is arbitrary, T C 7r_1S,7r.

But, because S = T we have that 15*1 = |T| and then |T| = |7r_1S,7r|. It then
follows that T = n~^Sn. □

As we can easily observe, Lemma 3.10 is an obvious consequence of this last
result.

What is also very interesting, from a computational point of view, is that we
can actually determine the element n G Sn that conjugates S into T.

There are some relevant facts to state before we undertake this task.

Remark 3.17 Let S and T be semigroups generated by a = (1 2 3 ... n) and
a transformation of rank 2 in Tn.

(i) We can always choose r G S of rank 2 such that lr = 1 and
S — (ct,t). For this suppose that S = (a, r'}, where r' is such that
lr' = a. Then (l)r'crfc = 1, where k is such that aak = 1, and we can

choose r = r'ak.

(ii) Let S = (cr, r) be such such that lr = 1. Suppose that there is
n G Sn such that n~lSn = T. Take i G {1,..., n} such that In = i.
Then (i)n~1rn = (l)rn = In = i. Hence 7r-1r7r fixes i.
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We need a further technical result, which allows us to have an extra assump¬

tion over the permutation which conjugates the two semigroups.

Lemma 3.18 Let S and T be semigroups generated by a = (1 2 3 ... n) and a

transformation of rank 2 of Tn. Take S = (c, r), where r is such that lr = 1.

Suppose that there is ix £ Sn such that = T. Then there is 7 £ Sn such
that 7~1<S'7 = T, (1)7_1T7 = 1 and 7_1<77 = 7r-1cr7r.

Proof. It is easy to see that -K~la-K = ak, where k £ N and gcd (n,k) = 1.
because conjugation is an isomorphism. Suppose im (7r-1T7r) = {a,b}, with l7r =
a. Then (a)7r-1T7r = a, by (ii) of the previous remark. Take I £ N such that
aal = 1 and define 7 = nal.

Let us take v £ 7~1S'7. Then v = 7_1u;7, for some u> £ S. Hence v £ T
because v = = a~l-K~ltjOir<jl and 7r-1o;7r £ T.

Conversely, take v £ T. Then there is u £ S such that v = Hence v £

because v = 7-177r-1u;7r7-:l7 = 7_17rcrZ7r_1u;7ra"_'7r_:L7, where £ T.
Hence a^^umcr'1 £ T and so 7ralTT~1ujTra~lir~1 £ S.

Also (1)7_1T7 = (I)c7_'7r_1r7r(7i = (a)n^1T'/Tal = aal = 1.

The remaining equality from the lemma also holds: 7_1cr7 = a_;7r_1(77rcrz =
a~lakal — ok = 7r_1c77r. □

We now have all the requirements necessary to compute an element of Sn
which conjugates S into T.

Theorem 3.19 Let S and T be semigroups generated by a — (1 2 3 ... n) and
a transformation of rank 2 of Tn. Suppose that S = (cr,r), with lr = 1. Let
£r = {i £ {1,..., n} : ir = i}. If S conjugates into T then there exists k £ N,
with gcd (n, k) = 1, such that 7r defined as (ecrl)ir = 1olk, for some e £ Er and
for all i £ {1,,n}, conjugates S into T.
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Proof. Since S conjugates into T and using the previous lemma, we have that
there is 7 E Sn such that 7~1<S'7 = T and (1)7_1T7 = 1. Let k E N be such
that 7-1<T7 = ak. Obviously gcd (n, k) = 1 and therefore the map ir is defined on

every element of {1,... ,n}. Also, we have that 7r is injective, because |(cr}| = n.

Hence it E Sn.

We shall prove that 7 = n. First note that if we define e = l7_1 then we have
e E £r, since (1)7_1T7 = 1 and so (l7-1)r = I7-1.

Let i E {1,..., n). Then 1alk = (1)(7-1<77)* = (1)7~V*7 = (e)<rl7.
Hence (ea*)7 = (eal)n, for alH E {1,..., n}. Thus 7 = 7r. □

Remark 3.20 Given S = (a, r), we know that we can always choose r E S such
that |£t| > 1. It is also obvious, since rank (r) = 2, that |£T| < 2 (Remark 3.17

(i))-

The last theorem is of utmost importance for the study of the isomorphism
of two semigroups. Given two semigroups S, T generated by a = (1 2 3 ... n)
and a transformation of rank two of Tn, such that C c S, T, we can decide if S
is isomorphic to T. Furthermore, we can find an element of Sn which conjugates
S into T.

The next example illustrates the fact that Theorem 3.16 does not apply when
C <£_ S,T, or equivalently, when S and T are completely regular (see Lemma 2.26).

Example 3.21 Let n = 12. Consider r = [1, 2,1, 2,1, 2,1, 2,1, 2,1, 2] and a =

[1, 4,1, 4,1, 4,1, 4,1, 4,1, 4]. Both these maps have conjugate periodic image (see
Definition 2.27). Define S = (cr,r) and T = (a, a). From Theorem 2.31, the
semigroups S and T are completely regular. We shall prove that S is not conjugate
to T. For each case, we use the implementation in GAP of Theorem 3.19 to

compute 7r (see Appendix B).
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In this example we shall use the notation of the previous theorem. We clearly
have ET = {1,2}.

Because /^(t) = 1^3 = //CT(a:) we conclude that a £ S (Lemma 3.6) and
therefore S ^ T, since a E T. Hence we do not consider the case k = 1.

• Let k = 5.

Take e = 1. We have 7r = (2, 6)(3,11)(5, 9)(8,12). By construction,
7r_1cr7r = a5. We then have 7r_1T7r = [1,6,1,6,1,6,1,6,1,6,1,6] ^ T,
because /r(T(7r_1r7r) = 5.

Take e = 2. Then 7r = (1, 8, 7, 2) (3,6, 9,12) (4,11,10, 5) and =

[1,8,1,8,1,8,1,8,1,8,1,8]. We have that /icr(7r_1r7r) = 5 and therefore
7r-1T7r ^ T.

• Let k = 7.

Take e = 1. Then we have that n — (2,8)(4,10)(6,12) and —

[1, 8,1, 8,1, 8,1, 8,1, 8,1, 8]. Hence, as before, 7r-1T7r ^ T.

Take e = 2. Then 7T = (1, 6, 5,10, 9, 2) (3, 8, 7,12,11,4) and thus we have
TT-VTT = [1, 6,1, 6,1, 6,1, 6,1, 6,1, 6] £ T.

• Let k = 11.

Take e — 1. Then 7r — (2,12) (3,11) (4,10) (5, 9) (6, 8) and therefore 7r_1r7r =
[1,12,1,12,1,12,1,12,1,12,1,12]. We have that 7r_1T7r £ S and obviously
is not in T.

Take e = 2. Then 7r = (1, 2)(3,12)(4,11)(5,10)(6, 9)(7, 8) and 7r_1T7r =
[1,2,1,2,1,2,1,2,1,2,1,2] = r £T

Therefore, there is no 7r e <Si2 such that = T.

But we actually have that S is isomorphic to T, since they are both represented

by the following presentation

V — (s, 11 s12 = 1, t2 = t, (st)2 = t).
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Again, we used GAP to check that both S and T are represented by V (see
Appendix B).

It is easy to check that both transformations r and a from the previous exam¬

ple have conjugate periodic image (see Definition 2.27) and therefore, by Theorem
2.31, we have that S and T are completely regular semigroups, so C ^ S, T. Con¬

sequently, this example proves that Theorem 3.16 does not apply to completely

regular semigroups, meaning that there are completely regular semigroups S, T
which are isomorphic but not conjugate.

Another interesting point is that this example proves that Proposition 3.14

does not hold for semigroups that do not contain the set of constant maps, be¬

cause, as seen in the example, S = T but /x(S') = 1 ^ 3 = p(T).

Nevertheless, the example above illustrates the algorithm to check whether
two semigroups that contain constant maps (equivalently, that do not have con¬

jugate periodic image) are isomorphic or otherwise. The GAP implementation of
this algorithm can be found in Appendix B.



Chapter 4

Presentations

In this chapter we give presentations for semigroups generated by the ra-cycle a

and a specific kind of transformation of rank two. In order to find these presen¬

tations we use with frequency some results mentioned in Chapter 2.

The study of presentations arises quite frequently in different areas of group

theory and, with more interest for us, in semigroup theory. Methods to find

semigroup presentations and to study semigroups defined by presentations can

be found for example in [7], [8], [10] and [28].

Clearly r is an idempotent, because lr = 1 and (| + l)r = | + 1.
Is is easy to verify that r has conjugate periodic image (see Definition 2.39).

Therefore S = (c,r) is a completely regular semigroup (see Theorem 2.27). The
transformation r is n/2-block conjugate (see Definition 2.48). Thus, using Lemma

1 Generalisation of some cases

Consider the following transformation, for n even,

80
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2.54, we know that r = crn/2r. We also have that r satisfies the condition b — a —

n/2. Consequently, using Lemma 2.44, we have r = rtW2. With these two facts,
we have the equality crn/2r = r<7™/2. Furthermore, using Corollary 2.80, we have
that 151 = n(| + 1), since v = n.

Let i £ {1, 2,..., | — 1} and take x £ X such that xt — 1. We then have that
led G {2,..., |}, because i £ {1, 2,..., | — 1}. Therefore (x)ralr — (1 )crV =

1 = xr. The same holds if we take x £ X such that xt = | + 1. Hence, for all
x £ X, (x)rcrV = r, i.e. t<t®t = r (for all i £ {1, 2,..., | — 1}).

This is part of the proof of the following result.

Lemma 4.1 Let t £ Tn be as above. A presentation for S = (a,r) is the
following

V=(s,t | sn = 1, t2 = t, tsn'2 = sn'2t,
tslt = t,i £ {1,2, — 1}).

Proof. Let us associate s with a and t with r. Clearly sn = 1 holds, be¬
cause a has order n. The equalities t2 = t, tsn^2 — sn^2t, tslt = t, for every

i £ {1, 2,..., | — 1} hold, from the discussion above.
Consider the set W = {s! : i G {0,..., n — 1}; sHsk : j £ {0,..., n — 1}, k £

{0,..., | — 1}} and let A = {s, t}. We shall prove that for every word u £ A*
there is a word u' £ W, such that u = v! is a consequence of the relations in V.
This will be done by induction on the length of u (denoted by |w|).

• If |u| = 0 then u = 1 = s° G W.
• Suppose that for every to G N, if we take u £ A* such that |u| < to then

u can be reduced to some v! £ W, by means of the relations of V. Take v £ A*
such that |u| = to. Then v = uw, where |w| = to — 1 and w £ A. By assumption,
there is u' £ W such that u = v! is a consequence of the relations of V. We
aim to prove that u'w £ W, using the relations of V. There are several different

possibilities:

(a) Suppose that u' = s\ for some i £ {0,..., n — 1}.
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(1) If w = s then u'w = sls = sl+1 G W.

(2) If w = t then u'w — slt = slts° G W.

(b) Suppose that u' — sHsk, for some j G {0,..., n — 1}, k G {0,..., | — 1}.
(1) If w = s then u'w = sHsk+1. If k ^ | — 1 then u'w = sJtsfc+1 G IP

because H 1 G — 1}. If /c = f — 1 then fc + 1 = | and therefore
u'w = sHsn/2 = sisn/2t = g IP (using fs^2 = sni2t).

(2) If w = t then u'w = sitskt. If k — 0 then u'w — s^t2 — s^t G IP (using
t2 = t). If k 7^ 0 then = s^t G IP (using tslt = t, for all i G {1,..., | — 1}).

We have that |IP| < n + n| = n(| + 1) = |5|. Thus, using Proposition 1.19,
we conclude that V is a presentation for the semigroup S. □

A further generalisation of the previous result is possible.

Lemma 4.2 For n even, let

where a, b G N are such that b — a = n/2. Then

V = (s,t | sn = 1, t2 = t, tsn/2 = sn//2t,
tsH = t,i G {1,2, ...,f - 1})n

is a presentation for S = {a, a).

Proof. All we need to prove is that (a, r) = (cr, a).
For this, we ought to note that a = raa~1 G (a, r) and r — aaa', where a' G N

is such that aaa' = 1. Therefore r G (cr, a) and the result holds. □

Another interesting case is the following one.
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Lemma 4.3 For n even, let

f 12 3 4
T_ [l f + 1 1 2 + 1

and consider S = (a, r).

(i) If n = 4k, for some k G N, then

V = (s,t\ sn — l,t3 = t2, fs™/2 = st)

is a presentation for S.

(ii) If n — 4k + 2, for some k G N, then

V = (s, 11 sn = 1, t2 = t, tsn/2 — st)

is a presentation for S.

Proof. There are a few facts that are relevant to state at this point. The first
is that if n G N, with n > 2, is even then either n = 4k or n = 4k + 2, for
some k G N. Secondly, we have that, by construction, the kernel classes of r are

Kx = It-1 = {ler2m : m > 1} and Kri+l = (| + 1)t_1 = {2cr2m : m > 1}.
(i) Suppose that n = 4k, for some k € N. We associate s with a and t

with r. The transformation r has periodic image. To prove this, let x € K\.
Then x = lcr2m, for some m > 1. We also have that lcr2m G ZTl if and only if
lcr2(m+fc) ^ by definition of Ky. Therefore

rGifj^ lcr2m Glfitt la2(m+fc) G ifi O

l(72mc72/£ G Kx & la2man'2 ^ 1a2rnab~a Gifi« ra1"" G Kx,

which is the required condition in Definition 2.5. Consequently, there are no

idempotents of rank 2^5 (see Corollary 2.19) and therefore rank (r2) = 1 (see
Proposition 1.18). Thus r3 = r2 and then the relation t3 = t2 holds.

n — 1

1

n

- + 12
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Clearly r satisfies the condition b — a = n/2 and therefore r = ran^2 (see
Lemma 2.44). The transformation r is 1-block conjugate and therefore r = ar

(see Lemma 2.54). These two facts allow us to conclude that the condition tsn/2 =
st holds. It is clear that sn = 1 holds.

There are some relevant consequences that follow from these relations. From

tsn/2 = st it follows that, for every peNwe have

Let W — {sl : i E {0,..., n — 1}; sHsk : j E {0,1}, k E {0,..., | — 1}; t2sl :
I E {0,..., n — 1}} and consider A — {s, t}. We shall prove that for every word
u E A* there exists a word v! E W such that u — v! is a consequence of the
relations in V.

• If |u| = 0 then u = 1 = s° E W.
• Suppose that for every m E N, if u E A* is such that |u| < m then u can

be reduced to u' E W, by means of the relations of V. Take v E A* such that

|u| = m. Then v = uw, where \u\ = m — 1 and w E A. By assumption, there is
v! E W such that u — v! is a consequence of the relations of V. We shall prove
that there is v' E W such that u'w = v' is a consequence of the relations of V.
There are several different possibilities:

(a) Suppose that u' = s\ for some i E {0,..., n — 1}.

(1) If w = s then u'w — sl+1 E W.

(2) If w = t then (using the relations in (2))

spt = tsp%. (1)

Furthermore, tsp 2 = tsn = t, if p is even or tsp 2 = tsn^2 — st, if p is odd.

Resuming,
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t, if i is even.

£sn/2 _ sf^ otherwise.
u'w = slt =

In either case we have that u'w G VP.

sHsn^2 — s-^sf = sJ+1f =

(b) Suppose that u' — sHsk, for some j G {0,1}, A: G {0,..., | — 1}.
(1) If w = s then u'w = sHsk+1. If k ^ | — 1 then u'w = sHsk+1 G VP,

because k + 1 G {1,..., | — 1}. If k = | — 1 then k + 1 = n/2. Thus u'w =

st (G VP), if j = 0.

s2t = t (g VP), if j = 1.

(2) If w = t then u'w = sHskt = sHtsk% = ts^tsk^ — for
some I G {0,..., n — 1}, using the relation (1). Therefore u'w G IP.

(c) Suppose that u' = f2s', for some I G {0,..., n — 1}.

(1) If w = s then u'w = f2s'+1 G bP.

(2) If w — t then u'w = t2slt — t2tsl% = t2sl% G bP.

As seen above, S has periodic image, satisfies b — a — nj2 and is 1-block
conjugate. Hence |S| = u(| + 2) = 3n (see Corollary 2.81). Because |bP| <
n + 2(n/2) + n — 3n = IS1] we can deduce that S is represented by V (using
Proposition 1.19).

(ii) Let n — Ak + 2, for some k G N. If we take x G K\ then, as before, we have
xa2m G Ki, for any m G N. But for any /c, m G N we have 2k + I ^ 2m. Hence
xab~a = xan/2 = xu2fc+1 ^ Ki, so xab~a G -Afn+i. This allows us to conclude that
r has conjugate periodic image and therefore S = (cr, r) is completely regular
(see Theorem 2.31). As in (i), we have that r is 1-block conjugate and it satisfies
b — a = n/2. Hence |.Sj — u(| + 1) = 2n (see Corollary 2.80).

Let us associate a with s and r with t. We have that r is an idempotent since
lr = 1 and = |. Thus t2 = t must hold.

Similarly to (i), we can prove that the relation tsn/2 = st holds.
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Trivially s11 = 1 must hold too.

In the same way as in (i), we can deduce the following relations, for every
p e N,

spt = tsp% (3)

and

t, if p is even.
spt = { (4)

st, otherwise.

Let us define W = {sl : i e {0,..., n— 1}; sHsk : j G {0,1}, k G {0,..., ^—1}}
and A = {s, t}. As before, we shall prove that every word u G A* can be reduced
to a word in W by means of the relations in V.

• If \u\ — 0 then u = 1 = 5° G W.
• Suppose that for every m G N, if u G A* is such that \u\ < m then u can

be reduced to u' G W, by means of the relations of V. Take v G A* such that

|u| = m. Then v = uw, where \u\ = m — 1 and w G A. By assumption, there is
u' G W such that u = u' is a consequence of the relations of V. We shall prove
that there is v' G W such that u'w = v' is a consequence of the relations of V.
There are several different possibilities:

(a) Suppose that u' = sz, for some i G {0,..., n — 1}.

(1) If w = s then u'w = sl+1 G W.

(2) Suppose that w = t. Then, using the relations in (4), we have that
t (G W), if i is even.

tsn/2 = st (G W), otherwise.
u'w = sH =

(b) Suppose that u' — sHsk, for some j G {0,1}, k G {0,..., | — 1}.
(1) If w = s then u'w = sHsk+l. If k ^ | — 1 then u'w = sHsk+1 G W,
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sHsn^2 = st = sJ+1f

because k + 1 G {1,..., f — 1}. If k = | — 1 then + 1 = n/2. Thus u'u; =
sf(GVP), if j — 0.

SH = t (g VP), otherwise.

(2) If w = t then u'w = sHskt = sHtsk% = sHsk§ = sJsfcf, using the relation
s-T (G VP), if A; is even.

in (3) and t2 = f. Then we have u'w

If k is odd then we have u'w — sjst =

s^st, otherwise.

st (g VP), if j = 0.

s2t = t (g VP), if jf = 1.

Because l^l — 2n, we only need to prove that |VP| < |S'l. But this holds
because |VP| < n + 2{n/2) = 2n— |5|. Thus V is a presentation for S. □

A further generalisation of this result is possible.

Lemma 4.4 For n even, let

/l 2 3 4 ... n — 1 n
a -

\ a b a b ... a b

where b — a — n/2 and consider S = (a, a).

(i) If n = 4k, for some fcGN then

V = (s, 11 sn = 1, t3 = t2, tsn/2 = st)

is a presentation for S.

(ii) If n = 4k + 2, for some k e N then

V = (s, 11 sn = 1, t2 = t, tsn/2 = st)

is a presentation for S.
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Proof. As in Lemma 4.2, we only need to prove that a £ (a, r) and r £ (a, a).
For this, it suffices to note that ker (r) = ker (a) and that lcra_1 = a and that
there is a' £ N such that acra' = 1. □

Let us look now at a different kind of semigroup.

Lemma 4.5 Let

I 1 2 3 4... n\
t = G Tn, where n > 4.

\ 1 2 1 1 ... I

The semigroup S = (a, r) is represented by

V = (s,t | sn = 1, t2 = f, (tsf)2 = t, sts2t = ts2t, ts2tst = ts2ts,
tsH = ts2t,i G {3,...,n — 1}).

proof. This semigroup is regular, since r is an idempotent but has neither

conjugate periodic image (since r has n-block structure) nor periodic image (be¬
cause t is an idempotent). It is also obvious that r does not satisfy b — a = n/2.
Therefore, by Corollary 2.79, we have that |Sj = 2n{n + 1).

We associate a with s and r with t. The relations sn = 1 and t2 = t clearly
must hold. Also, err = [2,1,1,1,1,..., 1] and therefore tot = [2,1, 2, 2, 2,..., 2] =
r, which is the conjugate of r. Since S is regular we have that |[fj]| = 2

(see Lemma 2.74) and therefore tHt. Because r is an idempotent we have
that r2 = r, hence the relation (tst)2 = t must hold. We have that to2 =

[3, 4, 3, 3, 3,..., 3] and then ra2r = [1,1,1,1,1,..., 1] = ara2r. Therefore the
relation sts2t = ts2t hold. We also have that rcr2rcr = [2, 2, 2, 2, 2,..., 2] and
Tcr2rcrr = [2, 2, 2, 2, 2,..., 2] which implies that ts2tst = ts2ts holds. We have
that t<j1 = [a, 6, a, a, a,..., a] with a,b 2, for all i € {3,..., n — 1}. Then
ar = br = 1 and consequently rcrV = [1,1,1,1,1,..., 1], This implies that the
relation tslt = ts2t holds, for alH g {3,..., n — 1}.

Let W — {sJ : j G {0,..., n — 1}; sktsl : k, I G {0,..., n — 1}; smtstsp : m,p £

{0,..., n — 1 }\ts2tsq : q £ {0,..., n — 1}}. Let A = {s, t}. We shall prove by
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induction over the length of words that every word of A* can be reduced to one

of W, by means of the relations of V.

Take u g A*.

• If |w| = 0 then u = 1 = s° G W.
• Suppose that for every r G N, if u G A* is such that |u| < r then u can

be reduced to v! G W, by means of the relations of V. Take v G A* such that

|u| = r. Then v — uw, where |u| = r — 1 and w £ A. By assumption, there is
u' eW such that u = u' is a consequence of the relations of V. We shall prove
that there is v' G W such that u'w — v' is a consequence of the relations of V.
There are several different possibilities:

(a) Suppose that u' = s\ for some j € {0,..., n — 1}.

(1) If w = s then u'w = s-7"1"1 G W.

(2) If w = t then u'w = sH = sHs° € W.

(b) Suppose that u! = sktsl, for some k, I G {0,..., n — 1}.

(1) If w = s then u'w — sktsl+1 G W.

(2) If w = t then
skt2 = skt (eW), if 1 = 0.

sktst (G W), if I = 1.

skts2t = ts2t (eW), if I = 2.

skts2t = ts2t (g IT), otherwise.

(c) Suppose that u' = smtstsp, for some m,p G {0,..., n — 1}.

(1) If w = s then u'w = smtstsp+1 G W.

(2) If w — t then

u'w = sktslt =
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smtst2 = smtst (g VP), if p = 0.

smtstst = smtsttst = smt (G VP), if p = 1.
li'to = smtstspt — <

smtsts2t = smt2s2t = smts2t (G VP), if p = 2.

smtsts2t — smtts2t — ts2t (G VP), otherwise.

(d) Suppose that u' = ts2tsq, for some q G {0,..., n — 1}.

(1) If w = s then u'ru = ts2tsq+1 G IP.

(2) If w = t then
ts2t2 = ts2t (eW), if q = 0.

ts2tst = ts2ts (g VP), if g = 1.

ts2ts2t = tts2t = ts2t (g VP), if q — 2.

ts2ts2t = fs2f (G VP), otherwise.

u'w = ts2tsqt — <

Because |VP| <n + n2 + n2 + n = 2n(n + 1) = l^l, we can conclude that V is
a presentation for S. □

A case similar to the previous is the following one.

Lemma 4.6 Let

1 2 3 4 5

113 11

n
G Tn, where n > 5.

The semigroup S = (a, r) is represented by

V = (s,t | sn = 1, t2 — t, (ts2t)2 = t, stst - tst, tsts2t = tsts2,
tsH = tst, i G {3,4,..., n — 1} ).

Proof. In an analogous way to the previous proof, we can verify that |5| —

2n(n + 1).
Note that ker (r) = {K\, K3}, where K3 = {3} and Kx = X \ K3.
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Associating a with s and r with t we can easily check that the relations sn — 1

and t2 = t must hold. We have that ra — [2, 2, 4, 2,2,, 2] and therefore tot =

[1,1,1,1,1,..., 1]. Hence stst = tst also holds. Also, ra2 = [3, 3, 5, 3, 3,..., 3]
which implies that t<j2t = [3, 3,1, 3, 3,..., 3] = r, the conjugate of r. Thus, the
relation (ts2t)2 = t holds. To prove that the relation tsts2t = tsts2 holds, note
that rara2T — [3, 3, 3, 3,..., 3] = rarer2. Taking i E {3,..., n — 1}, we have that
im {ra1) — {lcd,3cd} C K\. Therefore (lcd)r = (2crl)r = 1 which implies that
ralr = [1,1,1,1,..., 1]. This implies that the relation tslt = tst must hold, for
alH E {3,..., n — 1}.

Define W = -{V : j E {0,..., n — 1}; sktsl : k, I E {0,..., n — 1}; smts2tsp :

m,p E {0,..., n — 1}; tstsq : q E {0,..., n — 1}} and let A — {s, t}.
As before, we shall prove that for every word u E A* there is a word v! E W

such that u = v! is a consequence of the relations of V. This will be done by
induction over the length of u.

Take u E A*.

• If |u| = 0 then u = 1 = s° E W.

• Suppose that for every r E N, if u E A* is such that |u| < r then u can

be reduced to v! E W, by means of the relations of V. Take v E A* such that

|u| = r. Then v = uw, where \u\ = r — 1 and w E A. By assumption, there is
u' E W such that u — v! is a consequence of the relations of V. We shall prove
that there is v' E W such that u'w = v' is a consequence of the relations of V.
There are several different possibilities:

(a) Suppose that u' = sJ, for some j E {0,..., n — 1}.

(1) If w = s then u'w = sJ+1 E W.

(2) If w = t then u'w = sH = sHs° E W.

(b) Suppose that u' = sktsl, for some k, I E {0,..., n — 1}.

(1) If w = s then u'w = sktsl+1 E W.
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u'w = s ts tk+cl+ _

u'w = smts2tspt -----

(2) If w — t then
'
skt2 = skt (g IP), if 1 = 0.

sktst = tst (g IP), if I = 1.

sfcts2t (g IP), if I = 2.

sktst = tst (g IP), otherwise.

(c) Suppose that u' = smts2tsp, for some m,p E {0,..., n — 1}.

(1) If w = s then u'w = smts2tsp+1 e W.

(2) If w = t then
smts2t2 = smts2t (e IP), if p = 0.

smts2tst -- smttst = smtst = tst (g IP), if p = 1.

smts2ts2t = smts2tts2t = smt (e IP), if p = 2.

smts2tst = tst (G IP), otherwise.

(d) Suppose that u' = tstsq, for some q G {0,..., n — 1}.

(1) If w = s then u'w = tstsg+1 G IP.

(2) If w = t then
tstt — tst (g IP), if q = 0.

tstst = ttst = tst (g IP), if q = 1.

tsts2t = tsts2 (g IP), if q = 2.

tstst = tst (g IP), otherwise.

Clearly | IP | <n + n2 + n2 + n = 2n(n + l) = l^l and therefore V is a presen¬

tation for S. □

u'w = tstsqt = <

It is relevant to make an informal remark at this stage. When n = 4, the
last transformation r satisfies b — a = n/2. Therefore, the presentation from the
previous lemma does not work for this specific value of n.
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Let us study another example.

Lemma 4.7 Let

1234... n — In
T = £ Tn, with n > 4.

1212... 1 2

Then S = (a, r) has the following presentation

V = (s, 11 sn = 1, t2 = t, (st)2 = t).

Proof. The transformation r has conjugate periodic image (i.e. for each x £ X,
the following equivalence holds,

Therefore S is completely regular. We do not have b — a = n/2 and S is 1-block
conjugate. Consequently we have |Sj = n(2 + 1) = 3n.

Let us associate a with s and r with t. The relations sn = 1 and t2~t clearly
must hold. Because t is 1-block conjugate we have r = err (see Lemma 2.54) and
since r2 = r, we have that the relation (st)2 = t holds.

We can deduce some further relations which we shall use in this proof. Prom

(st)2 — t we can deduce that tst = s_1t (because s is invertible). Multiplying by £
on the right side and having in mind that t2 = t we get tst = ts~1t. On the other

hand, (s_1t)2 = (tst)2 = tstst = t(st)2 = ££ = £, that is s_1ts""1t = t. Multiplying
by s2 on the right we get s2s_1£s_1t = s2t, which is equivalent to sts_1t = s2t.
From the second relation deduced we get stst = s2t, which is (st)2 = s2t and
therefore we conclude that t = s2t.

We can generalise this relation.

x £ Ki if and only if xa £ K2.

t, if p is even.

st, otherwise.
(1)
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Define W = {sl : i G {0,..., n — 1}; sjtsk : j G {0,1}, A: G {0,..., n — 1}} and
A = {s,t}. As in the previous proofs, we shall see that for every u G A* there is
v! G W such that u = ul is a consequence of V.

Let u G A*.

• If |ti| = 0 then u = 1 = s° G W.
• Suppose that for every m G N, if u G A* is such that \u\ < m then u can

be reduced to v! G W, by means of the relations of V. Take v G A* such that

|u| = m. Then v = uw, where \u\ = m — 1 and w G A. By assumption, there is
v! G W such that u — v! is a consequence of the relations of V. We will prove
that there is v' G W such that u'w — v' is a consequence of V. There are several
different possibilities:

(a) Suppose that v! = s\ for some i G {0,..., n — 1}.

(1) If w = s then u'w = sl+1 G W.

(2) If w = t then u'w = slt = slts° G W.

(b) Suppose that v! = sHsk, for some j, k G {0,..., n — 1}.

(1) If w = s then u'w = sHsk+1 G W.

(2) If w = t then, using the relations in (1),
sHt = sH (G W), if k is even.

sHst, otherwise.

tst = sn~1t, if j is 0.

stst = t (g W), if j is 1.
Because n is even we have that n — 1 is odd. Using the relations in (1), we deduce
that sn~H = st G W.

Clearly \W\ < n + 2n = 3n = |5| and therefore V is a presentation for S. □

u'w — sHskt —

If k is odd, u'w = sHst =

The next example follows.
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Lemma 4.8 For n even, let

( 1 2 3 ... f + 1 |+2 | + 3 ... n\ ^

r = 222 g Tn, with n > 4,
\l 2 2 ... 2 1 1 ... 1 I

and consider S = (a, t) . We have that

V — (s,t | sn = 1, t2 = t, (s?f)2 = t, stst = tst, ts%+1ts = tst,
tslt — tst, i G {2, 3,..., | — 1} }

zs a presentation for S.

Proof. The element r is an idempotent (It = 1,2r = 2) and therefore r does not
have periodic image and consequently S is regular. We have ker (r) = {Kx, K2},
where K2 = {2am,me {0,..., f — 1} and Kx = X \ K2. This transformation
clearly does not have periodic image (2 e K2 but 3 = 2a2'1 £ Kx). Thus S is not

completely regular. S is n/2-block conjugate and it does not satisfy h — a = n/2.
Se we can conclude that |>Sj = n{n + 2) = n2 + 2n.

Associating the generators a and r with s and t, respectively, we have that
sn = 1 and t2 = t clearly must hold. Also, because r is n/2-block conjugate,
we have an^2r — r, which is the conjugate of r. Thus (sn^2t)2 = t holds. We
have im (rcr) = {2, 3} and this implies that rar = [2, 2, 2,..., 2], Consequently
stst = tst holds. For the last relations, we have that im (red) = {la\2a1} =
{2crl_1, 2a1}, for i e {2, 3,..., | — 1} and 2al~1, 2a1 G K2, for any i G {2,..., | —

1}. Thus ralr = [2, 2, 2,..., n] which means that tslt = tst holds, for all i G

{2,.,.,2 — 1}.
Let us deduce some more relations which we will use during this proof. We

shall prove that tslt = tstsn_1, for all i G {f+ 1, • • •, n—1}. Note that sn/2tsn/2t =
t is equivalent to tsn^2t = sn/2t.

If i — f+ 1 then ts%+1t — tsts_1 = tstsn_1. Let i be such that f+2 <i< n—1.
We have that i — (f + 1) + j with 1 < j < f — 1. Then tslt = ts^+1sn^2t =
tsi+1tsn/2t = tstsn/2t = tssn!2t = ts^+1t = tsts11'1.
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Hence we have the relations tslt = tstsn \ fori G {f + 1,,n — 1}.
Let W = {s-7 : j G {0,..., n — 1}; sktsl : k,l G {0,..., n — 1}; tstsm : to G

{0,..., n — 1}} and A = {s, t}.
Take u G A*.

• If |u| — 0 then u = 1 = s° G W.
• Suppose that for all r G N, if u G A* is such that |u| < r then there is

u! G W such that u = v! follows from the relations of V. Take v G A* such that

|u| = r. Then v = uw, where |ii| = r — 1 and w G A. By assumption, there is
v! G W such that u — v! is a consequence of the relations of V. We shall prove
that there is v' G W such that u'w = v' is a consequence of the relations of V.
There are several different possibilities:

(a) Suppose that u' — sJ, for some j G {0,..., n — 1}.

(1) If w — s then u'w = sJ+1 G W.

(2) If w — t then u'w = sH = sHs° G W.

(b) Suppose that u' = sktsl, for some k, I G {0,..., n — 1}.

(1) If w = s then u'w = sktsl+1 G W.

(2) If w = t then
sktt = sH (G W),

sktst = tst (G W),

sktst (G W),u'w — sktslt =

if I = 0.

if I = 1.

if / G {2, 1}.
sktsn'H = sksn'H = sk+^t (G W), if I = n/2.

s tstsn—1 tstsn— 1 (€W) if / G {? + !,... ,n — 1}.

(c) Suppose that v! = tstsm, for some to G {0,..., n — 1}.

(1) If w = s then u'w = tstsm+1 G W.

(2) If w — t then u'w =
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tstt = tst (g VP),

tstst — ttst — tst (g VP)
tstsmt = tstst (g VP),

if 771 = 0.

if to = 1.

if to G {2,.. n

tstsn/2t = tssn/2t = tstsn 1 (G W), if to = n/2.

tststsn_1 = itsisn-1 = tstsn~l (G VP) if to G {| + 1,..., n — 1}.

Because |VP| < n + 2n = 3n = |Sj we have that P is a presentation for P. □

Next we have the last case of this section.

Lemma 4.9 For n even, let

Proof. The semigroup S is regular but not completely regular because r has
neither periodic image nor conjugate periodic image. S satisfies b — a — n/2.
Therefore |5j = n(n + 2).

Let us associate a with s and r with t. The relations sn = 1 and t2 = t

hold. We have that r satisfies b — a = n/2. Thus ran^2 = r (see Lemma 2.44)
and then (tsnZ2)2 = t holds. Because im (rcr) = {2, | + 2} we have rar =

[1,1.1,..., 1] and therefore stst = tst holds. Let i G {2, — 1}. Then
im (red) = {led, (| + l)ed} c K\. Thus rcrV = [1,1,1,..., 1] and this implies
that tslt = tst holds.

Note that tsn^2tsn^2 = t is equivalent to tsn^2t = tsn/2.
Let i G {| + 1,..., n — 1}. Then i = | + j, with j G {1,..., | — 1}. Therefore

12 3... f f + 1 | + 2 f + 3 ... n
111... 1 f + 1 1 1 ... 1

The semigroup S = (a, r) is represented by

V = (s,t | sn = 1, t2 = i, (is 2 )2 - i, sisi = tst,
tslt = tst, t G {2,3,..., | — 1} ).n
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tslt — tsn/2sH = tsn/2tsH = tsn/2tst = ttst = tst. Thus tslt — tst holds, for all

i G {1,..., n — 1} \ {|}.
Let VP = js7 : j G {0,..., n — 1}; sktsl : k,l G {0,..., n — 1}; tstsm : m G

{0,..., n — 1}} and A = {s, t}.
Take u G A*.

• If |w| = 0 then u = 1 = s° G W.
• Suppose that for all r G N, if u G A* is such that |«| < r then there is

v! £ W such that u — v! follows from the relations of V. Take v G A* such that

|u| = r. Then v = uw, where |u| = r — 1 and w G A. By assumption, there is
u' G W such that u = u' is a consequence of the relations of V. We shall prove
that there is v' G W such that u'w = v' is a consequence of the relations of V.
There are several different possibilities:

(a) Suppose that v! = sJ, for some j G {0,..., n — 1}.

(1) If w = s then u'w = s7+1 G W.

(2) If iu = t then u'w = sH = sHs° G W.

(b) Suppose that u' = sktsl, for some k, I G {0,..., n — 1}.

(1) If w = s then u'w = sktsl+1 G W.

(2) If w = t then
sktt = skt (G VP), if I = 0.

u'w — sktslt = < sktst = tst (G VP), if I G {l,...,n — 1}\{§}
sktsn'H = sktsn'2 (G VP), if I = \.

(c) Suppose that u! = tstsm, for some m G {0,..., n — 1}.

(1) If w = s then u'w = tstsm+1 G VP.

(2) If w = t then
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u'w - tstsmt = <

tstt = tst (G IP), if m = 0.

tstst = ttst = tst (g W), if m g {1,..., n — 1} \ {f }.
tstsn/2t = tstsn/2 (G IP), if m = n/2.

From |IP| < n + n2 + n = n(n + 2) = |<Sj we conclude that P is a presentation
for S. □

2 Future work

The set of cases/examples of the previous section constitute some sort of database
which will allow us to answer the obvious question: "Given S = (a, r), can we

provide, immediately and in an algorithmic way, a presentation for S ?"

It is clear that, at this stage, given S, we can decide if it has periodic image, if
it has conjugate periodic image, if it is block conjugate, if it has block structure
and we can also determine its kernel type and its image distance. With all this
information and possibly a further description of its kernel, we would like to find
an algorithm that gives us a presentation for S.

For example, if S is regular (in which case S does not have periodic image)
then we can take its generator of rank two to be an idempotent and therefore
t2 = t holds. If S contains the constant maps (in which case S does not have

conjugate periodic image) then we must have the relation stsut = tsut, for some
u g {0,..., n— 1}. If S has u-block structure, for some v, then the relation svt — t
holds. If we have taken the generator of rank two to be an idempotent and if S is
w-block conjugate,then we have that the relation (swt)2 = t. These are just some

examples of relations that must hold in a presentation for S, if this semigroup

satisfies certain properties that we have described throughout this document.

Nonetheless, we still need to further describe and understand certain (still to
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be defined) properties in order to achieve this goal.



Chapter 5

GAP and applications

Maybe the most common description of GAP (which stands for "Groups, Al¬
gorithms and Programing") is that it is a computer algebra system for com¬

putational discrete algebra with particular emphasis on, but not restricted to,

computational group theory.

GAP was originally designed to be a computational tool that dealt with groups

and group theory. Consequently, it was only later that theory from other areas

of algebra was implemented in GAP and semigroup theory was no exception. Up
to the present day, the most efficient functions that deal with semigroups can be
found in the share package MONOID (see [29]) which is only available in an older
version of GAP , more precisely, GAP 3, release 4 (see [19]).

Lallement and McFadden in [17] give computational methods for studying
transformation semigroups. These algorithms compute structural properties,

through the computation of all Green's relations and a natural partial order
on the set of the D-classes. This document is still a reference for the structural

study of finite semigroups and its implications.

Linton, Pfeiffer, Robertson and Ruskuc in [20] and [21] give the theory and
the algorithms, respectively, which lead to the GAP 3 package MONOID.

In this chapter we shall describe some of the existing GAP facilities for semi-

101
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group theory which we used in the research described in this thesis. We also
describe the algorithms that we implemented to increase GAP functionality and
are a consequence of our research. The GAP code for these algorithms is given in
the Appendix B.

1 Historical note

The GAP system was developed at the Lehrstuhl D fur Mathematik (LDFM),
in RWTH Aachen, Germany from 1986 until the year of 1997. On the 31st of

July, 1997, Prof J. Neubiiser retired from the LDFM and the development and
maintenance of GAP was transferred to the (what was then called) School of
Mathematical and Computational Sciences at the University of St Andrews.

In March, 2005, with the agreement of the GAP council, chaired then by Prof
E. F. Robertson, and the GAP developers, the status and responsibilities of the
"GAP headquarters" was passed to an equal collaboration of four different "GAP

centres"; Aachen, Braunschweig, Fort Collins and St Andrews.

2 General semigroup theory and GAP

"Semigroups and, even more, monoids are not far away from being
like groups. But, surprisingly, they have not received much attention

yet in the form of GAP programs."

We can find this statement at the beginning of the first chapter of the on-line
manual of MONOID ([19]). Just from looking at the (on-line) reference manual of
GAP ([12]), one will quite easily realise the vast difference between the resources

available for semigroup theory and for group theory.

It is unquestionable that [20] is, in the study of structure of semigroup theory,
one of the most relevant documents today. This document is also the basis for
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[21], where we find all the formal algorithms which are implemented in the GAP
3 share package, MONOID.

In this section we shall briefly describe these documents [20] and [21].
It is known that, within a H-class, all 7£-classes have the same size, all £-

classes have the same size (Proposition 1.5), all 7£classes have the same size

(Proposition 1.6) and that the intersection of any £-class with any 7\l-class is an

7-£class. These results are described in detail in [16].

Maybe one of the most surprising results in [20] is the following: "Let S < Tn
be a transformation semigroup. If we take two Al-classes (resp., £-classes) in S
which have the same set of images (resp., set of kernels) then these Al-classes

(resp. £-classes) have the same size."

In these two papers the authors developed a new paradigm for effective compu¬

tation with finite transformation semigroups. As is standard, the building blocks
of semigroups are its P-classes. In this work, the authors take the building blocks
to be the Al-classes of the semigroup. The basic idea is to represent an TZ-class

by a data structure which is composed by a representative of the class, the list of

images of each of the elements of the class, a list of multipliers (which are partial

bijections) that allow us to go from the set of images of a transformation to any

other and a group (which is represented as a permutation group) called the right

generalised Sciitzenberger group. This data structure allows us to compute the
size of the Al-class and all its elements.

There is also an analogous data structure for £-classes.

As a consequence, an 7£class has a data structure composed of a representa¬

tive of the class and a permutation group, which is the intersection of the right
and the left generalised Schutzenberger groups (from the data structure of the
1Z- and £-class, respectively).

A data structure for a T-class is composed of a representative and the data
structures of the 7Z- and £-classes which contain this element.
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These data structures allow us to answer all the usual questions, for example,

the size of an or P-class, compute their elements, test for membership,

regularity of a D-class, etc.

The efficiency of these algorithms when implemented in GAP is due to the

already existing and very efficient machinery for dealing with permutation groups

and also to the efficiency of the algorithms for semigroup actions introduced in

[21]. The study of semigroups with GAP using these data structures is much more

efficient than any other method known to this date.

3 Algorithms

3.1 GAP and structural study

In this section we present the formal algorithms which result from the theory

developed in Chapter 2.

Throughout this section we have that S — (a, r), where a = (1 2 ... n) and
t G Tn, such that im (r) = {a, b} (with a < b).

Algorithm 1 (v-block structure): Given r and a non-zero integer v which divides
n, we determine if r has u-block structure (See Definition 2.57).

1.1 [Initialise I.] Set x 1 and q <— n/v.

1.2 [Initialise II.] Set y <— xt and i <— 1.

1.3 [Evaluate.] If (xald)r ^ y then return false.

1.4 [Loop I.] Set i <— % + 1. If i < q then go to 1.3.

1.5 [Loop II.] Set x *r- x + 1. If x < d then go to 1.2.

1.6 [Terminate.] Otherwise, return true.
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Remark 5.1 Note that we are choosing v such that v divides n, because, ulti¬

mately, we are only interested in the minimum v such that r has u-block structure.
In the case where v is this minimum, we have that v divides n. For this, note
that t has u-block structure and n-block structure. Therefore, by Lemma 2.68, it
also has gcd (n, u)-block structure. But by definition of v, we have gcd (n, v) = v

which means that v divides n.

Therefore we can just test natural numbers greater than 1 (because rank (r) =
2) which divide n.

Algorithm 2 (w-block conjugate): Given r and a non-zero integer w which
divides n such that n/w is even, we determine if r is w-block conjugate (See
Definition 2.48).

2.1 [Initialise I.] Set x <— 1 and q <— n/w.

2.2 [Initialise II.] Set y <— xr and i <— 1.

2.3 [Evaluate.] If (x<j^2i-1^w)t = y or (xa2lw)r ^ y then return false.

2.4 [Loop I] Set i <— i + 1. li 2i < q then go to 2.3.

2.5 [Loop II.] Set x <— x + 1. li x < w then go to 2.2.

2.6 [Terminate.] Otherwise, return true.

Remark 5.2 Similarly to the previous remark, we ought to note that we are

only choosing w such that w divides n and n/w is even, because, ultimately, we
are only interested in the minimum w such that r is w-block conjugate. In the
case where w is this minimum, we have that t has 2u;-block structure (by Lemma
2.70). By the previous remark, we have that 2w divides n and consequently w

divides n. Because r is rc-block conjugate and noting that x = xcr^n, we can

conclude that n/w is even, by Remark 2.53.
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Therefore we can just test natural numbers which divide n, where this quotient
is even.

Algorithm 3 (Periodic image): Given a transformation r, we determine if it
has periodic image (See Definition 2.5).

3.1 [Trivial cases.] If n is prime then return false.

Set d <— gcd (n,b — a). If d = 1 then return false.

If ar = a and br = b (and so r is idempotent) then return false.

3.2 [Delegate.] Using Algorithm 1, with v = d, return the result.

Algorithm 4 (Conjugate periodic image): Given r, we determine if r has con¬

jugate periodic image.

4.1 [Trivial cases.] If n is odd then return false.

Set d <— gcd (n, b — a). If n/d is odd then return false.

4.2 [Delegate.] Using Algorithm 2, with w = d, return the result.

In the next algorithm we shall determine if a transformation has u-block struc¬

ture (see Definition 2.57). More precisely, since any transformation r G Tn of
rank two has n-block structure, we determine (if it exists) the minimum v such
that 1 < v < n and r has u-block structure (see Definition 2.66 and Remark

2.59).

Algorithm 5 (Block structure): Given r, we determine the minimum number
v such that r has u-block structure.

5.1 [Trivial cases.] If n is prime then return true and v = n.
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5.2 [Definitions.] Set D = {di,d2,..., dr} \ {1} <— "all divisors of n excluding 1".
Note that D is ordered with the usual order of natural numbers.

5.3 [Delegate.] Loop over each element d £ D, using Algorithm 1 (with v = d).
When true, return d.

The next algorithm investigates if a transformation is w-block conjugate and
finds the minimum value of re. As referred before, there is a relation between the
value v (from the previous algorithm ) and w. If a transformation has n-block
structure and it is w-block conjugate then v — 2w (see Lemma 2.70).

Algorithm 6 (Block conjugate): Given r, we determine if this transformation
is w-block conjugate and if so, we determine the minimum number w such that
r has w-block structure.

6.1 [Trivial cases.] If n is odd then return false.

If Algorithm 5 has been computed then return the output of Algorithm 2,
with w = v/2.

6.2 [Definitions.] Set D — {di,d2,... ,dr} \ {n} <— "all divisors of n/2". Note
that D is ordered with the usual order of natural numbers.

6.3 [Delegate.] Loop over each element d £ D, using Algorithm 2 (with w = d).
If this algorithm returns true, then also return d.

The next algorithm is just the application of Theorem 2.76. We ought to
remember that the size of the 77-classes of rank two in S is either 1 or 2. Also,
this size is invariant within the set of all 77-classes of rank two in S.

Algorithm 7 (Size of H-classes): Given r, we determine the size of the 77-
classes of rank 2 in the semigroup S = {c,t).
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7.1 [Delegate.] If Algorithm 3 returns false, then return 2. If Algorithm 3 returns
true then, if Algorithm 6 returns true and b — a = n/2, return 2. Otherwise,
return 1.

The next algorithm is based on Theorem 2.45.

Algorithm 8 (Number of C-classes): Given S = (a,r), we determine the num¬

ber of £-classes of rank 2 in S.

8.1 [Trivial cases.] If n is odd then return n.

8.2 [Delegate.] If Algorithm 7 returns 2 and b — a = nf2, then return n/2.
Otherwise return n.

The next procedure makes use of Theorems 2.72 and 2.73.

Algorithm 9 (Number of 1Z-classes): Given S = (<r, r), we determine the num¬

ber of 77.-classes of rank 2 in S.

9.1 [Trivial cases.] If n is prime then return n.

9.2 [Delegate.] If Algorithm 6 returns true (and consequently w) and Algorithm
7 returns 2 then return w. If Algorithm 6 returns true (and consequently w)
and Algorithm 7 returns 1 then return 2w.

If Algorithm 6 returns false then, using Algorithm 5, return v.

The next algorithm allows us to compute the size of the semigroup S, making
use of the previous algorithms. We implicitly use Corollaries 2.79, 2.80 and 2.81.

Algorithm 10 (Size): Given S = we determine its size.

10.1 [Trivial cases.] If n is prime then return 2n(n + 1).
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10.2 [Delegate.] If Algorithms 3 and 4 return false and Algorithm 5 returns v

then,

(i) if Algorithm 2 returns false for w = v/2 and b — a ^ n/2 then
return 2n(y + 1);

(ii) if Algorithm 2 returns false for w = v/2 and b — a — n/2 or if
Algorithm 2 returns true for w = v/2 and b — a = n/2 then return
n{v + 2).

If Algorithm 4 returns true and Algorithm 5 returns v then return n{v + 1),
if b — a ^ n/2 or return n(| + 1), if b — a = n/2.
If Algorithm 3 returns true and Algorithm 5 returns v then,

(i) if Algorithm 2 returns false for w = v/2 or b— a ^ n/2 then return

n(v + 2);

(ii) if Algorithm 2 returns true for w — v/2 and b — a = n/2 then
return n(| + 2).

Using Theorem 2.10, we describe the process of determining if a semigroup is

regular.

Algorithm 11 (Regular semigroup): Given S = (a, r), we determine if S is

regular.

11.1 [Delegate.] If Algorithm 3 returns true then return false. Otherwise, return
true.

Based on Theorem 2.31, we specify the algorithm to verify if a semigroup is

completely regular.

Algorithm 12 (Completely regular semigroup): Given S = (a, r), we determine
if S is completely regular.
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12.1 [Delegate.] For r, return the result of Algorithm 4.

3.2 GAP and isomorphism study

In this section we look at the applications in GAP resulting from the theory

developed in Chapter 3 and the methods used in Chapter 6.

As described in Theorem 3.16, if S and T are semigroups generated by the

permutation a = (1 2 3 ... n) and a transformation of rank two in Tn such that S
and T contain constant maps (so they are not completely regular, or equivalently,
do not have conjugate periodic image) then S is isomorphic to T if and only if
S is conjugate to T. Furthermore, Theorem 3.19 gives us a way of finding that

conjugating element (if it exists).
The next algorithm allows us to decide if two given semigroups S and T (as

above) are isomorphic.

In order to have a non-trivial problem, we take S and T such that these semi¬

groups have the same size, same Green's structure, same number of idempotents,
same kernel type and same image distance (see Definition 3.12).

Algorithm 13 (Conjugator): Given two semigroups S and T as described above,
we determine if S is isomorphic to T and, if so, we provide an element 7r £ 5„
such that 7r~1Sn = T. We assume that the transformation r G S of rank 2 is

such that It = 1.

13.1 [Initialise I.] Set Er <— {x G {1,..., n} : xr = x} and P <— {k G N : k <

n, gcd (n,k) = 1}. Define k <— "the first element in P".

13.2 [Initialise II.] Define x <— "the first element in Er".

13.3 [Evaluate] Define 7r e Sn as follows,

(xal)n = 1alk, for all i G {1,..., n).

If 7r_1T7r G T then return true.
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13.4 [Loop I] Set x <— "the next element of £r". Go to 13.3.

13.5 [Loop II] Set k <— "the next element of P". Go to 13.2.

13.6 [Terminate.] Otherwise, return false.

The next algorithm describes the process of deciding if a (given) presentation
represents a (given) semigroup. This algorithm is based on Corollary 2.22 and it
will be heavily used to analyse the examples in Chapter 6.

Algorithm 14 (Presentation): Given a semigroup S = (a, r) and a presentation
V = {A | R), we determine if V is a presentation for S.

14.1 [Initialise I.] Set I <— "the list of all elements of rank 2 in S" and P <— {A; €
N : k < n, gcd (n,k) = 1}. Set k <— "the first element in P".

14.2 [Initialise II.] Set a <— "the first element in 7".

14.3 [Evaluate.] If the pair (<rfc, a) satisfies all the relations in R then return true
and return the pair (crk,at).

14.4 [Loop I.] Set a <— "the next element in 7". Go to 14.3.

14.5 [Loop II] Set k <— "the next element in P". Go to 14.2.

14.6 [Terminate.] Otherwise, return false.

We ought to note that all these algorithms were implemented in GAP and these

implementations can be found in Appendix B. It is obvious that these algorithms
are only applicable to these very specific semigroups. Still, there is a remarkable
difference of efficiency in GAP between the general methods for semigroups and
these methods.



Chapter 6

Description of cases of small

degree

In this chapter we describe some of the particular cases which we have studied

very thoroughly. This study was done in a very early stage of our work and
therefore it used some "brute force" methods, which implied the computation of
all the elements of the semigroups in question.

Our aim is to make use of the theory developed so far in a way that illustrates
the potential of the results presented up to this stage. The study of these cases

of small degree was the starting point for conjecturing and proving most of the
results in our work.

We shall use some results of Chapter 2 very frequently. More precisely, we

will use Theorems 2.10, 2.31, 2.45, 2.72, 2.73, 2.76 and 2.78 (and its corollaries).
We shall also use some of the results from Chapter 2, namely Lemmas 3.10 and

3.14, Theorem 3.16 and the GAP implementation of Theorem 3.19 (described in

Appendix B). We also provide presentations for each of these semigroups. As an

informal note, we ought to remark that some of these presentations are not the
most efficient ones, but are written in a way such that each of the relations from
a presentation tries to be as "informative" as possible. Although we do not dive

112
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into any considerations about this information, these redundant presentations

gave us some insight on how to generalise onto some presentations presented in

Chapter 4.

We need to introduce some notation for this chapter. For a given n g n,
we write Qn as the set of all semigroups generated by a = (1 2 ... n) and a

transformation r £ Tn of rank two. When picturing an eggbox diagram (see
Section 2 in Chapter 1) we write a 1 (one) in a cell if the associated 7d-class
contains an idempotent and we write a 0 (zero) otherwise.

1 Study of Q3

In this section we describe the simplest non-trivial case. When computing all the

semigroups of D3 in GAP we conclude that

^3 = {Si = (c, [1, 2,1]), with a = (1 2 3)}.

This semigroup has neither periodic image nor conjugate periodic image, so, it

is regular but not completely regular. It has 3-block structure and it does not

satisfy the condition b — a = n/2. We can then conclude that |Si| = 24 and the
Green's structure of Si is shown in Figure 6.1.

3 elements

18 elements

3 elements

Figure 6.1: Green's structure of Si

1

1 1 0

1 0 1

0 1 1

1 1 1
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A presentation for Si is

"Pi = {s, 11 s3 = 1, t2 = t, (tst)2 = £, sts2t = ts2t, bs2fsf = fs2fs ).

As mentioned before, this is a very simple case and the only interesting fact
about this case is that this semigroup is regular but is neither completely regular
nor inverse.

2 Study of

Doing some straightforward computations with GAP , we get

D4 = {Si — (a, Tj), where cr = (1 2 3 4) and i e {1,..., 6}},

where

• Tl = [1,2,1,1],

• 7*2 = [1,2,2,1],

• T3 = [1,2,1,2],

• T4 = [1,1,3,1],

• T5 = [1,1, 3, 3] and

• T"6 = [1,3,1,3].

We consider each of these semigroups in turn.

Take Si = (a,Ti). This semigroup has neither periodic image nor conjugate

periodic image. Thus it is regular but not completely regular. It has 4-block
structure and b — a ^ n/2. We can then deduce that l^il = 2.4(4 + 1) = 40. In
Figure 6.2 we can find the Green's structure of 5i.
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4 elements

1 1 0 0

1 0 0 1

0 0 1 1

0 1 1 0

32 elements

1 1 1 1

Figure 6.2: Green's structure of Si

A possible presentation for this semigroup is

Vi = (s, 11 s4 = 1, t2 — t, sts2t = ts2t, ts3t = ts2t, ts2tst = ts2ts).

Take S2 = (<T l2). The semigroup 5*2 has neither periodic image nor conjugate

periodic image. Therefore it is regular but not completely regular. It is 2-block

conjugate and b — a 7^ n/2. Hence IS2I = 4(4 + 2) = 24. Its Green's structure is
in the next figure.

1 4 elements

1 0 1 0

0 1 0 1

1 1 1 1

16 elements

4 elements

Figure 6.3: Green's structure of S2
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This semigroup has the following presentation

p2 = (s, 11 s4 = 1, t2 = t, (s2t)2 = f, sts3t = ts3t, ts3tst = }.

Take 5,3 = (a, r3). This semigroup does not have periodic image but it has
conjugate periodic image. Hence S3 is completely regular. It is 1-block conjugate

(hence it has 2-block structure) and b — a ^ n/2. Therefore we have IS3I =
4(2 + 1) = 12. The Green's structure of S3 is below.

\ 4 elements

1 1 1 1

Figure 6.4: Green's structure of S3

A presentation for S3 is

V3 = (s, 11 s4 = 1, t2 = t, (st)2 = t).

Take S4 = (a, r4). S4 has neither periodic image nor conjugate periodic image

(it is regular but not completely regular). It has 4-block structure and b—a = n/2.
Thus |S41 = 4(4 + 2) = 24 and its Green's structure is represented in Figure 6.5.
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1 0

0 1

1 0

0 1

1 4 elements

16 elements

1 1 1 1 4 elements

Figure 6.5: Green's structure of S4

This semigroup has the following presentation

V4 = (s, 11 s4 — 1, t2 = t, (ts2)2 - t, stst = tst, ts3t = tst, tsts2t = tsts2 }.

Take S5 = {cr, r5). This semigroup does not have periodic image but it has
conjugate periodic image. It is 2-block conjugate (hence it has a 4-block structure)
and b—a = n/2. Consequently, 15*51 = 4(2+1) = 12. Figure 6.6 shows the Green's
structure of S$.

1 4 elements

1 1

1 1

8 elements

Figure 6.6: Green's structure of S5

The semigroup S5 is represented by

V5 = (s,t | s4 = l,t2 = t, (s2t)2 = t, (st)2 = st,ts2 — s2t).

Take S6 = (a, r6). It has periodic image and therefore it is not regular. It is 1-
block conjugate (thus is has 2-block structure) and b— a = n/2. As a consequence
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we have IS^I = 4(1 + 2) = 12. The Green's structure of S& is shown in Figure 6.7.

4 elements1

0 0

1 1 1 1

4 elements

4 elements

Figure 6.7: Green's structure of Sq

A presentation for S6 is

Vq = (s, 11 s4 = 1, t = s2t, sts2t = ts2t, st = ts2).

Just based on the size, the display of the Green's structure and the regularity
of each of the previous semigroups, it is easy to conclude that there are no iso¬

morphic semigroups in fi4. The next table sums up all the information we have

got about the semigroups in fl4.

Size Number of P-classes |£| |JR| Regular Completely Regular

Si 40 3 4 4 yes no

S2 24 3 4 2 yes no

S3 12 3 4 1 yes yes

S4 24 3 2 4 yes no

S5 12 2 2 2 yes yes

s6 12 3 2 1 no no

3 Study of Q5

Using GAP we deduce that

^5 = {Si = (a, Tj) : cr = (1, 2, 3, 4, 5),i € {1,..., 6}},

where
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n = [1,2,1,1,1],

. 7-2 = [1,2,2,1,1],

. 7-3 = [1,2,1,2, 1],

. 74 = [1, 1,3,1,1],

• t5 = [1,1, 3, 3,1] and

• 7-6 = [1,1, 3,1,3].

We can easily observe that none of these semigroups has periodic image nor

conjugate periodic image. This means that all the semigroups of fl5 are regular
but not completely regular. All these semigroups have 5-block structure. Also,
since n = 5, the condition b — a = n/2 does not hold. Consequently, all the
semigroups in Q5 have size 60.

It is not hard to check that the semigroups S1, S2, S4 and S$ have the Green's
structure shown in Figure 6.8 (for a "convenient rearrangement" of C and 7Z-

classes).

5 elements

1 1 0 0 0

1 0 0 0 1

0 0 0 1 1

0 0 1 1 0

0 1 1 0 0

1 1 1 1 1

50 elements

5 elements

Figure 6.8: Green's structure of S1, S2, S4 and S$
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The Green's structure of the semigroups S3 and S5 is pictured in Figure 6.9.

E
1 1 1 1 0

1 1 1 0 1

1 1 1 1

1 0 1 1 1

0 1 1 1 1

1 1 1 1 1

5 elements

50 elements

5 elements

Figure 6.9: Green's structure of S3 and S5

The following are presentations for Si, S2, S3, S5 and Se.

(i) V\ = (s, 11 s5 = 1 , t2 = t, (ts2t)2 = t,sts2t = fs2t,fs3t = ts2t, ts4t =
ts2t, ts2tst = ts2ts);

(ii) V2 = (s,t\s5 = 1 ,t2 = t,(ts2t)2 = t, sts3t = tszt,tst = ts3ts,ts4t =
ts3t, ts3tst = ts3ts };

(iii) V3 -- (s,t | s5 = l,t2 = t, (ts2)2 = ts2, (tst)2 = t,sts4t = ts4t,ts3t =
tst, tsAtst = tsAts};

(iv) T4 = (s,f|s5 = l,f2 = t,{ts2t)2 — t,stst = tst,ts3t = tst,ts4t =
tst, tsts2t = tsts2 );

(v) V5 = (s,t | s5 = l,t2 = t, (ts4)2 = ts4, (ts2t)2 = t, sts3t = ts3t, ts2t =
tst,ts3ts2t = ts3ts2 );

(vi) P6 = (s, 11 s5 = 1, t2 = t, (ts4t)2 = t, stst = tst, ts2t = tsts2,ts3t =
tst, tsts2t = tsts2).

With these presentations we could prove which of these semigroups are iso¬

morphic, but our aim is to use the theory developed.
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The next table shows us all the relevant data about the semigroups of fl5.

Recall we know that all these semigroups have size 60, have 3 P-classes and are

regular but not completely regular.

Kernel type #{idemp of rank 2} Possibly isomorphic to...

Si 1141 10 s4

s2 2131 10 s6

S3 2131 20 s5

S4 1141 10 Si

s5 2131 20 S3

s6 2131 10 s2

We used Lemma 3.10 to conclude that the only possible isomorphisms are

between Si and S4, S2 and Sg, S3 and S5.

The GAP implementation of the method illustrated in Example 3.21 (see Ap¬
pendix B) allows us to conclude that Si = S4, S2 = S4 and S3 = S5, all these
isomorphisms being conjugations by 7r = (2 3 5 4) e <S5.

4 Study of Qq

Using GAP we can conclude that fig has 21 semigroups. We shall describe each of
these semigroups individually so that some of the results from previous chapters
become clearer. Throughout this section we have <7 = (1 2345 6).

Let Si = (a, [1, 4,1, 4,1, 4]). This semigroup has conjugate periodic image,
hence it is completely regular. It is 1-block conjugate (thus it has 2-block struc¬

ture) and it satisfies b — a = n/2. Hence |Si| = 6(1 + 1) = 12. The Green's
structure for this semigroup is represented in Figure 6.10.
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1 6 elements

1 1 1 6 elements

Figure 6.10: Green's structure of Si

A presentation for Si is

V\ = (s, 11 s6 = 1, t2 = t, (st)2 = t, ts3 = st).

Let S2 = (<j, [1, 2,1, 2,1, 2]}. The semigroup S2 has conjugate periodic image

(it is completely regular), it is 1-block conjugate and b — a ^ n/2. Hence IS2I =
6(2 + 3) = 18. The Green's structure figure for S2 follows.

1 1 1 1 1 1

6 elements

12 elements

Figure 6.11: Green's structure of S2

A presentation for this semigroup is

V2 = (s, 11 s6 = 1, t2 = t, (st)2 = t).

Let S3 = (a, [1, 3,1, 3,1, 3]). This semigroup has periodic image (it is not

regular) and it is 1-block conjugate. This semigroup does not satisfy the condition
b — a = n/2. Hence IS3I = 6(2 + 2) = 24. Note that this semigroup has \[H]\ = 1

(see Theorem 2.76). Figure 6.12 shows the Green's structure of S3.
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0 0 0 0 0 0

0 0 0 0 0 0

1 1 1 1 1 1

6 elements

12 elements

6 elements

Figure 6.12: Green's structure of S3

A presentation for S3 is

V3 = (s,t\s6 = 1, s2t = t, st2 = f2, tst = f2s2 ).

Let 1S4 = (cr, [1,1,1,4,4,4]). The semigroup S4 has conjugate periodic image

(it is completely regular), it is 3-block conjugate and it satisfies b — a = n/2.
Then we can conclude that IS4I = 6(3 + 1) = 24.

6 elements

1 1 1

1 1 1

1 1 1

18 elements

Figure 6.13: Green's structure of 54

A presentation for this semigroup is

V4 = (s, 11 s6 = 1, t1 = t, (s3t)2 = t, (st)2 = st, (s2t)2 = s2t, ts3 = s3t).

Let S5 = (a, [1,1, 4,1,1, 4]). This semigroup has periodic image and therefore
it is not regular. It has a 3-block structure and it satisfies b — a = n/2. Hence
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\S5\ = 6(3 + 2) = 30. Note that \[H\\ = 1. The Green's structure for S5 is in
Figure 6.14.

6 elements

18 elements

6 elements

Figure 6.14: Green's structure of S5

The following is a presentation for this semigroup:

V5 — (s, 11 s6 = 1, st2 — t2, s3t = t, tst = t2, ts2t = t2s3, t2s2t = t2s3 ).

The next table resumes all the information we have about G6, up to this stage.

Size Number of 22-classes |£| |JH| Regular Completely Regular

Si 12 2 3 1 yes yes

s2 18 2 6 1 yes yes

S3 24 3 6 2 no no

S4 24 2 3 3 yes yes

s5 30 3 6 3 no no

It is clear from the information on this table that, so far, there are 110 isomor¬

phic semigroups.

Let Se = (a, [1, 2, 2, 2,1,1]). This semigroup has neither periodic image nor

conjugate periodic image (it is regular but not completely regular). It is 3-block
conjugate (hence it has a 6-block structure) and b — a 7^ n/2. Thus |S*6| =
6(6 -|- 2) = 48 and its Green's structure is represented in Figure 6.15.

1

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

1 1 1 1 1 1
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6 elements

36 elements

6 elements

Figure 6.15: Green's structure of Sq

A possible presentation for S$ is

V§ = (s, 11 s6 = 1, t2 = t, (s3t)2 — t, stsAt = ts4, ts2t = ts4ts, ts4tst = ts4ts).

Let 1S7 = (a, [1, 2,1,1, 2,1]). The semigroup S7 has neither periodic image
nor conjugate periodic image. It has a 3-block structure and b — a ^ n/2. As a

consequence we have |57| = 2.6(3 + 1) = 48. In Figure 6.16 we have the Green's
structure for S7.

6 elements

36 elements

6 elements

Figure 6.16: Green's structure of SV

1

1 0 0 0 1 0

0 0 0 1 0 1

0 0 1 0 1 0

111111

1

1 1 0 1 1 0

1 0 1 1 0 1

0 1 1 0 1 1

llllll

A presentation for £7 is

V7 — (s, 11 s6 = 1, t2 = t, (tst)2 = t, s3t = t, sts2t — ts2t, ts2tst - ts2ts ).
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Let S$ = (cr, [1,1, 3, 3, 3,1]). This semigroup has neither periodic image nor

conjugate periodic image. It is 3-block conjugate and b — a ^ n/2. Consequently,

|S8| = 2.6(3 + 1) = 48.

6 elements

36 elements

6 elements

Figure 6.17: Green's structure of S&

The following is a presentation for this semigroup;

Vs = (s, 11 s6 = 1, t2 = t, (s3t)2 = t, tst = t, sts2t = ts2t, ts5ts2 = ts2t).

Let Sg — (cr, [1,1, 3,1,1, 3]). Sg has neither periodic image nor conjugate
periodic image. It has 3-block structure and b — a =/=■ n/2. As before, 15*91 = 48.
The Green's structure of semigroup Sg is shown in Figure 6.18.

1

1 1 0 1 1 0

1 0 1 1 0 1

0 1 1 0 1 1

1 1 1 1 1 1
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1

1 0 1 1 0 1

0 1 1 0 1 1

1 1 0 1 1 0

1 1 1 1 1 1

6 elements

36 elements

6 elements

Figure 6.18: Green's structure of Sg

A presentation for Sg is

Vg = (s, t I s6 = 1, t2 = t, (ts2t)2 = t, stst = tst, s3t = t, tsts2t = tsts2 }.

Let 5io = (cr, [1,1,1, 4,1,1]). This semigroup has neither periodic image nor

conjugate periodic image. It has 6-block structure and it satisfies the condition
b — a = n/2. Thus |5io| = 6(6 + 2) = 48. The Green's structure of Sio is different
than that of the last four examples, as illustrated in Figure 6.19.

□
1 0 0

0 0 1

0 1 0

1 0 0

0 0 1

0 1 0

6 elements

36 elements

1 1 1 1 1 1 6 elements

Figure 6.19: Green's structure of Sio
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A presentation for this semigroup is

'Pio = {s, t | s6 — 1, t2 — t, (ts3)2 = t, stst = tst, tsH = tst,
ts3t = ts3, tsH = tst, ts5t = tst).

Let Sn — (c, [1,1,4,4,1,1]). This semigroup has neither periodic image nor

conjugate periodic image. It has 6-block structure and it satisfies the condition
b — a — nf2. Thus |5n| = 6(6 + 2) = 48. Its Green's structure can be found in

Figure 6.20.

□
1 0 1

0 1 1

1 1 0

1 0 1

0 1 1

1 1 0

6 elements

36 elements

1 1 1 1 1 1 6 elements

Figure 6.20: Green's structure of Sn

A presentation for 5n is

Vix = (s,t \ se = 1, t2 = t, (ts3)2 = t, stst = tst, ts2t = ts3,
ts3t = ts3, tsH = tst, ts5t — t}.

Let Si2 = (a, [1,1,1,4,1,4]). This semigroup has neither periodic image nor

conjugate periodic image. It has 6-block structure and it satisfies the condition
b — a = n/2. Therefore |Si2| = 6(6 + 2) = 48. Figure 6.21 represents the Green's
structure of this semigroup.
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6 elements

1 0 1

0 1 1

1 1 0

1 0 1

0 1 1

1 1 0

36 elements

1 1 1 1 1 1 6 elements

Figure 6.21: Green's structure of Si2

A presentation for this semigroup is

7^12 = (s, 11 s6 = 1, t2 = t, (ts3)2 = t, stst = tst, (ts2)2 = ts2 ).

Let 5i3 = (a, [1,4,1,4,4,1]). This semigroup has neither periodic image nor

conjugate periodic image. It has 6-block structure and it satisfies the condition
b — a = n/2. Then we have |Si3| = 6(6 + 2) = 48. The Green's structure of this
semigroup is pictured in Figure 6.22.
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□
1 0 0

0 0 1

0 1 0

1 0 0

0 0 1

0 1 0

6 elements

36 elements

1 1 1 1 1 1 1 elements

Figure 6.22: Green's structure of S13

This semigroup is represented by

7-\3 = (s,t\ s6 = 1, t2 = t, (ts3)2 = t, stst — tst, ts2ts3 = tst).

We summarise all the information we have gathered so far in the next ta¬

ble. Note that all the semigroups Se,..., S13 have size 48, are regular but not

completely regular. Therefore they all have 3 D-classes.

Also, because all these semigroups have size 48 we can conclude that none of
these is isomorphic to Si,..., S5.

|£| 1*1 #{idemp of rank 2} Kernel type fJ-(Si)
s6 6 3 6 32 1

S7 6 3 12 2141 1

S8 6 3 12 32 2

S9 6 3 12 2141 2

S10 3 6 6 f51 3

S11 3 6 12 2141 3

SI2 3 6 12 2141 3

<Sl3 3 6 6 32 3

The information in the table above allows us to exclude the existence of any
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possible isomorphism between Sq, ..., A13, just based on the display of D2, the
kernel type (using Lemma 3.10) and the image distance // (using Lemma 3.14).
The only exception is the pair An and 5i2. Both these semigroups have the same

main properties and, so far, we have not developed any condition similar to the

properties in Definitions 3.1 and 3.8. Using the notation of Theorem 3.19, we

have Er = {1,4}, where r = [1,1,4,4,1,1] is the generator of rank two of An-
We also have that k = 5 is the only number 1 < k < n, coprime to n, where
n = 6. Therefore, according to Theorem 3.19, or more precisely, to its GAP

implementation (see Appendix B), we have that the permutations (2 6) (3 5) and
(1 4)(2 3)(5 6) of S6 are the only possible n g Sq such that 7r_1An7r = Si2. If
7r — (2 6)(3 5) then 7r_1T7r = [1,1,1, 4, 4,1]. Since a5r = [1,1,1, 4,4,1] G An we

conclude that this permutation n conjugates An into itself. If n = (1 4) (2 3) (5 6)
then 7r-1r7r = [1,1, 4, 4, 4,4], But we also have (err)2 = [1,1, 4, 4, 4,4] g An and
therefore n also conjugates An into itself. Since these two semigroups do not have

conjugate periodic images, they both contain the constant maps. Hence we can

apply Theorem 3.16 to conclude that An — An if and only if they are conjugate.
However we have proved that there is no -jt g Sq which conjugates An into A12
and therefore An ^ An-

In summary, up to this point, there are no isomorphic semigroups in fie.

The next eight semigroups have neither periodic image nor conjugate periodic

image. Consequently, they are regular but not completely regular. They all have
6-block structure and satisfy b — a ^ n/2. Therefore they all have 84 elements.

We shall describe the Green's structure and give a presentation for each indi¬
vidual case.

Let A14 = (cr, [1, 2,1,1,1,1]). The Green's structure of this semigroup is shown
in Figure 6.23.
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□ 6 elements

1 i 0 0 0 0

1 0 0 0 0 1

0 0 0 0 i 1

0 0 0 1 1 0

0 0 1 1 0 0

0 1 1 0 0 0

1 1 1 i 1 i

72 elements

6 elements

Figure 6.23: Green's structure of Su

A presentation for this semigroup is

7*14 = (s, t | s6 = 1, t2 = t, (tst)2 = t, sts2t = ts2t, ts3t = ts2t,
ts4t = ts2t, ts5t = ts2t, ts2tst = ts2ts).

Let /S*xs

6.24.

(a, [1, 2, 2,1,1,1]}. This semigroup's Green's structure is in Figure

□ 6 elements

1 1 1 1 0 0

1 1 1 0 0 1

1 1 0 0 1 1

1 0 0 1 1 1

0 0 1 1 1 1

0 1 1 1 1 0

1 1 1 1 1 1

72 elements

6 elements

Figure 6.24: Green's structure of S15
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A possible presentation for S15 is

Pi5 = (s, t | s6 = 1, t2 = t, (ts2t)2 — ts2t, stst = tst, ts3ts = tst,
ts4t = ts3t, hs5t = ts3t, ts3tst = ts3ts).

Let Si6 = (a, [1, 2,1, 2,1,1]}. This semigroup's Green's structure is illustrated
Figure 6.25.

6 elements

72 elements

6 elements

Figure 6.25: Green's structure of Sm

The semigroup S16 is represented by

pig = (s, t i s6 = 1, t2 = t, (tst)2 = t, (ts2)2 = ts2, sfs4f = ts4t,
ts3t — tst, fs5t = fs4t, tsHst — ts4ts).

Let P17 = (a, [1, 2,1, 2, 2,1]). We represent in Figure 6.26 the Green's struc¬
ture of this semigroup.

□
1 1 1 1 0 0

1 1 1 0 0 1

t 1 0 0 1 1

1 0 0 i 1 1

0 0 1 1 i 1

0 1 1 1 1 0

1 1 1 1 1 1
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6 elements

72 elements

6 elements

Figure 6.26: Green's structure of Sn

□
1 1 1 0 i 0

1 1 0 1 0 1

1 0 i 0 1 1

0 1 0 1 i 1

1 0 1 1 1 0

0 1 1 i 0 1

1 1 1 1 1 1

A presentation for Sn is

*Pi7 = (SG I s6 — 1) = ti (ts2)2 = ts2, stsH = ts5t,
ts3t = ts5ts, ts4t = tst).

Let Sis = (cr, [1,1, 3,1,1,1])- The Green's structure for this semigroup is
shown in Figure 6.27.

□ 6 elements

1 0 1 0 0 0

0 1 0 0 0 1

i 0 0 0 1 0

0 0 0 1 0 1

0 0 1 0 1 0

0 1 0 1 0 0

1 1 1 1 1 1

Figure 6.27: Green's structure of Sis
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This semigroup is represented by

V\s = {s,t | s6 = 1, t2 = t, (ts2t)2 = t, stst = tst, ts3t = tst,
ts4t = tst, ts5t = tst, tsts2t = tsts2).

Let Sig — (cr, [1,1,3,3,1,1]}.

6 elements

72 elements

6 elements

Figure 6.28: Green's structure of Siq

A presentation for S\g is

^19 = (si ^ I s6 — 1) t2 = L (ts2t)2 = t, (ts)2 = ts, sts4t = ts4t,
ts3t = ts2t, ts5t = ts4t, ts4ts2t = tsHs2 ).

□
1 i 1 1 0 0

1 1 1 0 0 1

1 1 0 0 1 1

1 0 0 1 1 1

0 0 1 1 1 1

0 1 1 1 1 0

1 1 1 1 1 1

Let 52o = (c, [1,1, 3,1, 3,1]). Its Green's structure is in Figure 6.29.
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6 elements

72 elements

6 elements

Figure 6.29: Green's structure of S20

□
1 0 0 0 1 0

0 0 0 1 0 1

0 0 1 0 1 0

0 1 0 1 0 0

1 0 1 0 0 0

0 1 0 0 0 1

1 1 i i 1 1

A possible presentation for S20 is

V20 ~ (s> M s6 = 1) = (ts4t)2 = t, stst = tst, tsH = tsts2,
ts3t = tst, ts5t = tst).

Let S2i = (cr, [1,1,3,1,3,3]).

□ 6 elements
1 0 0 1 ] 1

0 0 1 1 1 1

0 1 i 1 1 0

i 1 i 1 0 0

i 1 1 0 0 1

1 1 0 0 1 1

i 1 1 1 1 i

72 elements

6 elements

Figure 6.30: Green's structure of S21

A presentation for 52i is

V21 = (s, t | s6 = 1, t2 = t, (tsH)2 = t, (ts3)2 = ts3, stsf = tst,
ts2t = tsts2, ts5t = ts4t).



6 Description of cases of small degree 137

The next table shows us all the relevant details about S14,..., S21, keeping in

mind that all these semigroups are regular but not completely regular, have size
84 and have three 27-classes.

#{idemp of rank 2} Kernel type M(S»)
SI4 12 T51 1

Sis 12 2141 1

516 24 2X4X 1

Si7 24 32 1

Sis 12 l^1 2

Sl9 24 2X4X 2

S20 12 2X4X 2

S2I 24 32 2

Similarly to the previous cases, it is easy to check, from the information in this

table, that there are no isomorphic semigroups within S14,..., S21. Consequently
we can deduce that there are no isomorphic semigroups in Qg.



Chapter 7

On embedding countable sets of

endomorphisms

In this chapter we delve into the domain of universal algebra, although motivated

by some results from semigroup theory.

Having as a starting point the known result of Sierpinski (see [30]), which
we state and prove, we will generalise it to a broader range of algebras. In the
last section we give some examples of algebras to which we can apply this result.
We also give an example which shows that some conditions in our generalisation
cannot be dropped.

1 Sierpinski's Lemma

We start this section by stating and proving a famous lemma of Sierpinski. The

proof we present is the one given by Banach in [4], almost immediately after
Sierpinski published his result. This proofwill be the model we follow to generalise

Sierpinski's Lemma.

Let X be an infinite set and let Tx be the set of all selfmaps of the infinite
set X.

138
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Lemma 7.1 Any countable subset S of the semigroup Tx of all transformations
on X is contained in a 2-generated subsemigroup ofTx.

Proof. Let S = {61, d2,03,... } be a countable set of elements of Tx- Our aim
is to find two maps a, (3 £ Tx such that S C (a, (3).

We first partition X into a countable disjoint union of infinitely many sets

such that each of these sets has the same cardinality as X. Formally,

X = X0UXiU---U Xn U • • • , such that |W| = |-X"|> for all i.

In a similar way, we partition X0 into a countable disjoint union of infinitely many
sets such that each of these sets has the same cardinality as Xo (and therefore,
as X). That is,

X0 = X0)i U Xot2 U • • • U X0>n U • • • , such that 1I = |-X"|, for all i.

We then define a € Tx to be such that a\Xi is a bijection between Xi and Xi+i,
for all « G N U {0}

ex. \ X{ —> -W+1, i G NU {0}-

The second mapping /3 e Tx is defined for X \ X0 as any mapping which maps

Xi bijectively onto X0ti, for all i > 1

/3 : Xi —* X0ti, i > 1.

It is clear that Si = afdodfd, for i > 1, is a well defined bijection from X onto

X0 l. We have

Si\xk ■ Xk Xfc+1 X0ife+1 Xi X0ti, for some ke NU {0}.

Let us now complete the definition of /?, since we have not done so for X0. Be¬

cause Si is a bijection, every element of X0ti is the image of a unique element of
x G X. Thus, for each i G N and xSi £ X0ii, we define xdi/3 = xQi- Since 0i = Si/3,
we have 6i = a/3cxl/32 and consequently 9i £ (a, /?}, which proves our result. □
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Figure 7.1: Description of Lemma 7.1

In [15], the authors, using a slightly modified version of the proof above,
proved that any countable subset of the semigroup of all partial bijections Xx
can be embedded in a two-generated subsemigroup of Xx-

As one would expect, the case of Sx, the set of all bijections over an infinite
set X, is more complicated. Nevertheless, the analogue of Sierpihski's result for

Sx was proved to hold in [11].
Some important corollaries of Sierpihski's Lemma appeared later, one of these

being the fact that every countable semigroup can be embedded in a two-generated

semigroup. This was proved by Evans in [9], although without using the lemma
above.

Looking at the full transformation semigroup as the set of endomorphisms of
the unstructured set X, the obvious question arises: what happens in the case

where X is endowed with some structure?
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In [23] it is proved that every countable set of endomorphisms of an infinite
dimensional vector space V, over an arbitrary field, is contained in a two-generated

subsemigroup of the semigroup of all endomorphisms of V.

The analogous result holds if we take the semigroup of all continuous selfmaps
of a topological space X. Namely, when X is the rationals, the irrationals, the
countable discrete space, an m-dimensional closed unit cube or the Cantor set.

For more details, see [32].

2 Generalising Sierpinski's Lemma

In this section we prove a result analogous to Sierpihski's Lemma for the semi¬

group of endomorphisms of a wider class of algebras. The notation and definitions
used can be found in Section 7 of Chapter 1.

Let A = (A, fl) be an algebra with universe S and set of fundamental opera¬
tions O and let End(A) be the semigroup of all endomorphisms over the algebra
A.

Let B C A. We say that B is a basis for ^4 if T? is an independent set which

generates A. If B is a basis for A then it is clear that for any a, (3 G End(A) we

have that

a = (3 if and only if fd\B = ol\b-

There is a broad range of algebraic structures which have a basis, among them
vector spaces. Nonetheless, not all algebraic structures have a basis, as we show
in the next example.

Example 7.2 Let p G N be a prime and let Zp be the cyclic group of order p.
Inductively, let Zpi be the cyclic group of order pl. Note that Zp<-i is a subgroup
of Zpi. Let Zoo be the countable union of this ascending chain of groups, IXiV

Let us see that the group Z^ is not finitely generated. Suppose that the
set {xx, X2, • • •, xn} generates Z^. Then, because we have an ascending chain of
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groups, there must bo i € N such that {x^, x2, • • •, %n} ^ Zp». Take y G Zp<+1 \Zpi.
Then it is not possible to generate y by means of the elements {xi, x2,..., xn}.

The maximum size of an independent set of Z^ is 1. For this, let {x, y} C Z^
be an independent set. As before, there must be an i G N such that {x, y} C Zpi.
Since Zp» is 1-generated (for any i G N) we have that x = y and our statement
holds. These two facts allow us to conclude that Z^ does not have a basis.

Let A = (A, Q) be an algebra with an infinite basis B. Let us partition
this basis B in an analogous way to the one used to partition X in the proof of
Lemma 7.1. Take countably many disjoint sets B0, Bi, B2,... such that each of
these has the same cardinality as B and their union equals B. In the same way,

we partition B0 in countably many disjoint sets £?o,i, -So,2, -So,3,... such that each

Bo,i has cardinality equal to that of B0 (and therefore, of B).
At this point, we need to make a slightly technical remark. Let a G End(A),

let i be a natural number and let / be any bijection from B into Bq^. Then the
mapping

• B0ti * A
x 1—> (x)f~1a\B

satisfies fSi — ol\b- Therefore (pf$x = a, since B is a basis of A.
Let us then state and prove the main result of this chapter.

Theorem 7.3 Let A be an algebra which has an infinite basis. Then any count¬

able subset of End(A) is contained in a 2-generated subsemigroup of End(A).

Proof. Let {aq, a2, 03,... } be a countable set of elements of End(A). We aim
to find two elements of End(A) such that the subsemigroup of End(A) generated
by those two elements contains the above set.

Let g be any mapping from B to B \ B0 which maps Bt to Bi+y bijectively,
for each i G N U {0}. Because B is independent, g is uniquely extended to an

endomorphism ipg of A. We define the other mapping h from B to A in two steps.
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Firstly, let us define h on B \ B0 to be any mapping from B \ B0 to B0 which
takes Bi to B0i bijectively, for i > 1. Note that <pi — ghglh is a well defined

bijection from B to Bq^. We have

(j)i\Bk : Bk Bk+1 B0tk+1^ Bi-^ B0ti, for some k E N U {0}.

Using the technical remark stated before this theorem, with f = 4>i and a = c^,

it follows that for each i G N there is a mapping 5i such that Ai = oti\g.
The second step of the definition of h consists of defining this map on B0. For

each x E B0i we define xh = x§i. Thus, for each i E N we have = <t>i&i =
4>ih = ghglh2. Therefore (and again, because B is a basis) we have o?j = (pgtph(plg<p2h
and this implies that {au, <22, <^3) • • • } Q {(fig, Vh)- D

3 Examples

In this section we give some examples, under the form of corollaries, of algebraic
structures to which we can apply Theorem 7.3. We also give an example of a

finitely generated algebra for which it is not true that every countable subset of
the semigroup of all endomorphisms of this algebra is contained in a two-generated

subsemigroup of this semigroup.

For the next result we use the notion of free algebra (see Section 7, Chapter

!)•

Corollary 7.4 Let A be a non-finitely generated free U-algebra. Then every

countable subset ofEnd(A) is contained in a 2-generated subsemigroup ofEnd(A).

Proof. Suppose that A = IFxipt), where X is an infinite basis of Fx {Id). By
definition of basis, X generates A and it is independent. Thus we can apply
Theorem 7.3 to conclude the result. □
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Some examples of such algebras are non-finitely generated free algebras of any

variety.

Let A be an algebra with universe A and let X be a subset of A. We say that
X is T-independent if for each x E X, x £ (X \ {x}).

Definition 7.5 Let A be an algebra with universe A. Then A is an independence

algebra if it satisfies the following properties:

(i) for every X c A and every u € A, if X is T-independent and
u ^ (X), then X u {u} is T-independent;

(ii) for any basis X of A and any function / : X —> A there is an

endomorphism ipf : A —» A such that <Pf\x = f ■

The cardinality of a basis of an independence algebra A is called the dimension
of A. That this value is well defined is a consequence of the first axiom of the

previous definition.

Some examples of independence algebras are (finite and infinite dimensional)
vector spaces.

Remark 7.6 The notions of independence and T-independence are not equiv¬
alent (in general). But in the case of independence algebras these two notions
coincide.

The concept of independence algebra has been introduced in [27]. Later,
the basic structure of the endomorphism semigroup of an independence algebra
was given in [13]. Some more examples of the study of both finite and infinite
independence algebras can be found in [2] and [11]. A good historical overview
of independence algebras can be found in [3].

The next case where we can apply Theorem 7.3 follows.
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Corollary 7.7 Let A be an infinite dimensional independence algebra. Then

any countable subset of End(A) is contained in a 2-generated subsemigroup of

End(A).

Proof. This result is a trivial application of our theorem, bearing in mind the
definition of independence algebra. □

Since every vector space is an independence algebra, we have given a shorter

proof of Theorem 3.1 in [23].
To end this section and chapter, we give an example of a finitely generated

free-algebra A for which it is not true that every countable subset of End(A) is
contained in a two-generated subsemigroup of End(A). This example allows us

to conclude that, in Theorem 7.3, the condition of A being non-finitely generated
cannot be dropped.

To provide this example, we return to the world of transformation semigroups.
Let X be a non-empty set and let be the full transformation semigroup on

X. Let a be an element of Tx- The element a is called a proper idempotent if a
is an idempotent and a lx, the identity map on X.

Let T be a subsemigroup of Tx and let Y be a subset of X. We say that X
is T-isomorphic to Y if there exist transformations <5,7 6 T such that X5 C Y,

Yj C. X, Sj = lx and 7<5|y = 1y, where lx and 1y are the identity maps on X
and Y, respectively.

We need two auxiliary results.

Lemma 7.8 Let X be an infinite set and let T be a subsemigroup of Tx which

satisfies the following conditions;

(i) the transformation lx is in T;

(ii) there exists a e T such that a is not injective;
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(iii) there exists (3 £ T such that (3 is not surjective but it is injective.

If every countable subset ofT can be embedded in a 2-generated subsemigroup

ofT then X is T-isomorphic to the image of a proper idempotent in T.

For a proof of this result, see Theorem 2.4 in [23].
Let A = {a, b} be a two element alphabet and let A+ be the free semigroup

on A (see Section 5).

Lemma 7.9 Let a £ End(A+). If a is a proper idempotent then the image of a
is either {a}+ or {fr}+.

PROOF. Let u £ A+ be an element of im (a). Then because a is an idempotent we
have ua = u. Suppose that u = XiX2 ■ ■ ■ xn, where Xj £ A, for alH £ {1,..., n}.
Then we have (x\X2 ■ ■ ■ xn)a = XiX2 ... xn, Since a is a homomorphism, this is

equivalent to (xia)(x2a)... (xna) = xix2 ... xn, where each aqa £ A+, and there¬
fore we have that XiQ. = Xj, for every i £ {1,... n}, because |xjO:| > 1. Suppose
that there are i,j £ {1,..., n} such that x$ ^ Xj. Then this implies that XjQ; = Xj

and XjOc = Xj (since the mapping defined as aa = b and ba = a is not an idempo¬
tent). Therefore a = id,4+, which contradicts the assumption that a is a proper

idempotent. Thus u = ee... e, where e £ {a, b}, i.e. either u £ {o}+ or u £ {6}+.
□

Next we give an example of a finitely generated free-algebra A for which it is
not true that every countable subset of End(A) is contained in a two-generated
subsemigroup of End(A).

Proposition 7.10 Let A = {a, b} be a two letter alphabet and let A+ be the free
semigroup on A. It is not possible to embed every countable set of endomorphisms

of A+ in a 2-generated subsemigroup of End(A).
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Proof. It is clear that End(A) is a proper subsemigroup of 7"^+, since not every

map / : A+ —» A+ is a homomorphism. For example, the map uf = ab, for

every u E A+, is not a homomorphism.

Let us see that End(A+) satisfies the three conditions of Lemma 7.8.

(i) Trivially the map 1A+ : A+ —> A+, x i—» x is an element of End(A+).

(ii) Let a E End(A+) defined as act = b and ba — b. Then a is not injective.

(iii) Let (3 E End(A+) be defined as a/3 = ab and b(3 = ab2. Suppose that u,v E
A+ are such that u(3 = v(3, where u = X\... xn, with x, E A, for alii E {1,..., n},
and v = yi... ym, with yj E A, for all j E {1,..., m}, for some m, n E N. Because
/3 is an homomorphism, we have u(3 = (x\(3)... (xn(3) and vj3 = (yi/3)... (ym(3).
By definition of (3, we have that u(3 and v(3 both finish in ab or ab2, so u and v

both finish in a or b, respectively. Thus xn = ym. Similarly, because u(3 — v(3
and xn/3 = ym(3, we get (xi... xn_x)f3 = (yx... ym-i)(3- Repeating the process,

we conclude that n = m and Xj = yt, for each i E {1,..., n}. Hence u = v and (3
is injective.

Also, (3 is not surjective since every element of im {(3) has occurrences of o's
and b's. Therefore {a}+, {6}+ % im (/?).

We now use Lemma 7.9 to note that every proper idempotent of End(A+)
has image {a}+ or {6}+.

Suppose that every countable subset of End(A+) can be embedded in a

2-generated subsemigroup of End(A+). Using Lemma 7.8, there exist <5,7 E

End(A+) such that A+5 C {a}+, {a}+7 Q A+, = 1A+ and T<5|{a.}+ = l{a}+-
Since no subset of {a}+ can have A+ has a homomorphic image, we have a

contradiction. □



Appendix A

Open problems

In this appendix we can find some of the open questions that arise from each of
the chapters in this thesis.

As before, we consider S to be a semigroup (a, r), where a = (1 2 ... n) and
r G Tn has rank two. Also, r is such that im (r) = {a, 6}.

Prom the results in Chapter 2, we are able to determine when a given semi¬

group S = (a, r) has no idempotents of rank two or it has p x q idempotents
of rank two (where p ="the number of A-classes of rank 2" and q ="the num¬

ber of Al-classes of rank 2". These two cases correspond to the case where S is

non-regular (see Theorem 2.10) and S is completely regular (see Theorem 2.31),
respectively.

The next step is to completely determine the number of idempotents of rank
two for any semigroup S = (a, r).

Question A.l Given a transformation r G Tn of rank 2, find a necessary and
sufficient condition on r such that the semigroup (a, r) has k idempotents of rank
2 {k G N).

As one can observe, this condition will also be used to decide if two given

semigroups are isomorphic.
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The next question follows from Chapter 3.

Question A.2 Given two completely regular semigroups find a necessary and
sufficient condition to decide if these two semigroups are isomorphic.

An answer to this problem is given in the next conjecture which involves a

presentation for S = (a, r), when S is completely regular.

Conjecture A.3 Let S = (<r, r) be such that r £ Tn has conjugate periodic

image. Suppose that w E N is such that t is w-block conjugate (see Definition

2.66).

(i) Ifb — a n/2 then

V — (s,t | sn = 1, t2 = t, (swt)2 = t,

(sH)2 = s% i G {1,..., w — 1} )

is a presentation for S.

(ii) If b — a = n/2 then

V = (s,t | sn = 1, f2 = t, (tsn/2)2 = t, (swt)2 = t,

(slt)2 — sH, i £ {1,..., w — 1} )

is a presentation for S.

If this conjecture proves to be true then the following (pseudo)theorem follows.

Theorem A.4 Let S = (a, r) and T = (a, r) be completely regular semigroups.
Suppose that im (r) = {a, b} and im (a) = {a',b'} and S and T are w-block
conjugate. Then S is isomorphic to T if and only if b — a, b' — a' n/2 or

b — a = b' — a' — n/2.

There are some more modest conjectures which give us necessary conditions
for the isomorphism of ANY two semigroups of the given type.
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Conjecture A.5 Let S and T be semigroups generated by a and a transforma¬
tion of rank 2. If S is isomorphic to T then S and T have the same kernel

type.

For the next conjecture we use the value defined in Definition 3.8.

Conjecture A.6 Let S and T be semigroups generated by a and a transforma¬
tion of rank 2. If S is isomorphic to T then ti(S) = yu(T).

As we noticed in the last section of Chapter 4, our aim is to find a systematic
method of determining presentations for this type of semigroup. More precisely,

Question A.7 Given a semigroup S = (a, r) which has u-block structure (and
possibly is ru-block conjugate) and im (r) = {a, b}, determine a presentation V
for S.

As an example, we state the following conjecture.

Conjecture A.8 Let S be a semigroup such that its kernel type is l1(n — l)1 and
/a(S) = 1. Then

V = (s, t | sn = 1, t2 = t, (tst)2 = t, sts2t = ts2t, ts2tst — ts2ts,
tsH = ts2t, i G {3,..., n — 1} )

is a presentation for S.

The work in Chapter 6 is done with the aim of building a set of examples
which hopefully will lead to finding such a method of computing presentations.

Question A.9 What happens when we replace the cyclic group generated by a

by an arbitrary subgroup G of the symmetric group Sn and consider semigroups
S — (G, r), where r € Tn has rank two?
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This is perhaps the next obvious case to study...

The final question we shall pose is related to the work done in Chapter 7.

After Sierpinski proved that every countable subset of the semigroup Tx of all
transformations on an infinite set X is contained in a two-generated subsemigroup
of Txi if was proved in [11] that a similar result for the symmetric group of
an infinite set X also holds. Following this line of results and having in mind
Theorem 7.3, the obvious question follows.

Question A.10 Find algebras A for which every countable subset of the group of

automorphisms Aut(A) of A is contained in a two-generated subgroup of Aut(A).



Appendix B

GAP programs

In Chapter 5, Section 3 we presented the algorithms resulting from the theory
contained in the previous chapters. Here we give the GAP code associated to these

algorithms. These functions are listed in the same order as the corresponding

algorithms.

In some of these functions we call some other different functions (correspond¬
ing to the step "Delegate" in the respective algorithm). These calls are made via
the command

Read("<filename.g>");

where < filename.g > self-explains the function used.

We ought to note that we are aware that some of these functions are maybe
not the most efficient. There is definitely still room for improvement and it is

part of our future work to refine this code.

Algorithm 1 (v-block structure)

###############################################################

#

# Given a transformation <t> and a non-zero integer <v>
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# which divides <n>, we check if <t> has <v>-block structure.

#

###############################################################

hasXBlockStructure:= function (t,v)

local bol, n, temp, s, x, q, i, y;

bol:=true;

n:=DegreeOfTransformation(t);

temp:=[2..n];

Add(temp,1);

s:=PermList(temp);
if n=v then

return true; # Every transformation has n-block structure.

fi;

if Islnt(n/v)=false then

return false;

fi;

x: =0;

q:=n/v;
while bol=true and x<v do

x:=x+l;

i:=l;

y:=x~t;

while bol=true and i<q do

bol: = (x~(s~(i*v)))~t=y;

i:=i+l;

od;

od;
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return bol;

end;

Algorithm 2 (w-block conjugate)

######################################################

#

# Given a transformation <t> and a non-zero integer
# <w> such that n/w is even, we check if <t> is

# <w>-block conjugate.
#

######################################################

isXBlockConjugate:= function (t,w)

local bol, n, temp, s, x, y, i, q;

# To avoid some problems later

if not Islnt(w) then

return false;

fi;

bol:=true;

n:=DegreeOfTransformation(t);

temp:=[2..n];

Add(temp,1);

s:=PermList(temp);
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q:=n/w;
# This condition is required if <t> is block conjugate
if IsEvenlnt(q)=false then

return false;

fi;

x:=0;

while x<w and bol=true do

x:=x+l;

y:=x~t; #y is the image of x under t

i:=0; #i is the exponent of sigma
while 2*i<q and bol=true do

i:=i+l;

bol:=not((x~(s~((2*i-l)*w)))~t=y or

not((x~(s~((2*i)*w)))~t=y));
od;

od;

return bol;

end;

The next function calls a slightly modified version of the GAP function in

Algorithm 1 ("hasXblockstructure").

Algorithm 3 (Periodic image)

##########################################

#

# Given a transformation <t> we check

# if it has periodic image.
#
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##########################################

# to get rid of the warning message

hasXblockstructure:= "2Bdefined";

DeclareGlobalVariableO's");

MakeReadWriteGlobalC's");

DeclareGlobalVariableO'n");

MakeReadWriteGlobalC'n");

hasPeriodicImage:= function (t)

local temp, a, b, d;

n:=DegreeOfTransformation(t);

temp:=[2..n];

Add(temp,1);

s:=PermList(temp);

if IsPrimelnt(n)=true then

return false;

fi;

a:=ImageSetOfTransformation(t)[1];

b:=ImageSetOfTransformation(t)[2];

if a~t=a and b~t=b then

return false;
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fi;

d:=GcdInt(n,b-a);

if d=l then

return false;

fi;

ReadC'hasXblockstructure.g");

return hasXblockstructure(t,d);

end;

UnbindGlobal("s");

UnbindGlobal("n");

The function in the file called "hasXblockstructure.g" follows.

##############################################

#

# Given a transformation <t> and a non-zero

# integer <v>, which divides <n>

# we check if <t> has <v>-block structure.

#

##############################################

hasXblockstructure:= function (t,v)

local bol, x, q, i, y;
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bol:=true;

x: =0;

q:=n/v;
while bol=true and x<v do

x:=x+l;

i:—1;

y:=x~t;

while bol=true and i<q do

bol:=(x~(s~(i*v)))~t=y;

i:=i+l;

od;

od;

return bol;

end;

The next function calls a slightly modified version of the GAP function in

Algorithm 2 ("isXblockconjugate.g").

Algorithm 4 (Conjugate periodic image)

########################################

#

# Given a transformation <t> we check

# if it has conjugate periodic image.
#

#########################################
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# to get rid of the warning message

isXblockconjugate:= "2Bdefined";

DeclareGlobalVariableC's");

MakeReadWriteGlobalC's");

DeclareGlobalVariableC'n");

MakeReadWriteGlobalC'n");

hasConjugatePeriodicImage:=function(t)

local temp, d, a, b;

n:=DegreeOfTransformation(t);

temp:=[2..n];

Add(temp,1);

s:=PermList(temp);

# If <t> has CPI then <n> is even

if IsEvenlnt(n)=false then

return false;

fi;

a:=ImageSetOfTransformation(t)[1];

b:=ImageSetOfTransformation(t)[2] ;

# If <t> has CPI then <n/d> is even

d:=GcdInt(n,b-a);
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if IsEvenlnt(n/d)=false then

return false;

fi;

ReadC'isXblockconjugate.g");

return isXblockconjugate(t,d);

end;

UnbindGlobal("s");

UnbindGlobal("n");

The function in the file called "isXblockconjugate.g" follows.

#####################################################

#

# Given a transformation <t> and a non-zero integer
# <w> such that n/w is even, we check if <t> is

# <w>-block conjugate.
#

######################################################

isXblockconjugate:= function (t,w)

local bol, x, y, i, q;

bol:=true;

x: =0;
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q:=n/w;
while x<w and bol=true do

x:=x+l;

y:=x~t; #y is the image of x under t

i:=0; #i is the exponent of sigma

while 2*i<q and bol=true do

i:=i+l;

bol:=not((x~(s~((2*i-l)*w)))~t=y or

not((x"(s~((2*i)*w)))"t=y));
od;

od;

return bol;

end;

For the next function we also need to call the function from the file "hasXblock-

structure.g".

Algorithm 5 (Block structure)

######################################################

#

# Given a transformation <t> we determine the

# minimum <v> such that <t> has <v>-block structure.

#

# NOTE: Any transformation of degree <n>

# has <n>-block structure!

######################################################

#to get rid of the warning message
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hasXblockstructure:= "2Bdefined";

DeclareGlobalVariableC's");

MakeReadWriteGlobal("s");

DeclareGlobalVariableO'n");

MakeReadWriteGlobal("n");

minimumBlockStructure:= function (t)

local temp, bol, divisors, numberdivisors, i;

n:=DegreeOfTransformation(t);

temp:=[2..n];

Add(temp,1);

s:=PermList(temp);

# If n is prime then it is obvious

if IsPrimelnt(n) then

return n;

fi;

bol:=false;

divisors:=DivisorsInt(n);

numberdivisors:=Length(divisors);

ReadC'hasXblockstructure.g");

i:=l;
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while bol=false and Knumberdivisors do

i:=i+l;

bol:=hasXblockstructure(t,divisors[i]);

od;

return divisors [i];

end;

UnbindGlobal("s");

UnbindGlobalO'n");

For the next function we also need to call the function from the file "isXblock-

conjugate.g".

Algorithm 6 (Block conjugate)

#########################################################

#

# Given a transformation <t> we determine

# the minimum <w> such that <t> is <w>-block conjugate.
#

#########################################################

#to get rid of the warning message

isXblockconjugate:= "2Bdefined";

DeclareGlobalVariableC's");
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MakeReadWriteGlobal("s");

DeclareGlobalVariable("n");

MakeReadWriteGlobalC'n");

minimumBlockConjugate:= function (t)

local temp, bol, divisors, nicedivisors, i,

numbernicedivisors;

n:=DegreeOfTransformation(t);

temp:=[2..n];

Add(temp,1);

s:=PermList(temp);

# If n is odd then it is not block conjugate
if IsOddlnt(n) then

return false;

fi;

bol:=false;

divisors:=DivisorsInt(n);

#We only want divisors d s.t. n/d is even

nicedivisors:=Filtered( divisors, x->IsEvenInt(n/x) );

numbernicedivisors:=Length(nicedivisors);
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ReadC'isXblockconjugate.g");

i:=0;

while bol=false and i<numbernicedivisors do

i:=i+l;

bol:=isXblockconjugate(t,divisors[i]);
od;

if bol=false then

return bol;

else

return divisors [i];

fi;

end;

UnbindGlobal (11 s ");

UnbindGlobal("n");
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Algorithm 7 (Size of H-classes)

##############################################

#

# Given a transformation <t> we determine

# the size of the H-classes of rank 2

# in the semigroup generated by <s> and <t>.

#

##############################################

#to get rid of the warning message

hasPeriodicImage:= "2Bdefined";

minimumBlockConjugate:= "2Bdefined";

DeclareGlobalVariableO's");

MakeReadWriteGlobalC's");

DeclareGlobalVariable("n");

MakeReadWriteGlobal("n");

sizeRank2HClasses:=function(t)

local temp, a, b;

n:=DegreeOfTransformation(t);

temp:=[2..n];

Add(temp,i);

s:=PermList(temp);

a:=ImageSetOfTransformation(t)[1];
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b:=ImageSetOfTransformation(t)[2];

ReadC'hasPeriodicImage.g");

Read("minimumBlockConjugate.g");
if hasPeriodicImage(t)=false then

return 2;

elif IsPosInt(minimumBlockConjugate(t)) and b-a=n/2 then
return 2;

else

return 1;

fi;

end;

UnbindGlobal("s");

UnbindGlobal("n");

Algorithm 8 (Number of C-classes)

#############################################

#

# Given a transformation <t> we determine

# the number of L-classes of rank 2 in the

# semigroup generated by <s> and <t>.

#

#############################################

#to get rid of the warning message
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sizeRank2HClasses:= "2Bdefined";

DeclareGlobalVariableC's");

MakeReadWriteGlobalC's");

DeclareGlobalVariable("n");

MakeReadWriteGlobalC'n");

numberRank2LClasses:=function(t)

local temp, a, b;

Read("sizeRank2HClasses.g");

n:=DegreeOfTransformation(t);

# The trivial case

if IsOddlnt(n) then

return n;

fi;

a:=ImageSetOfTransformation(t)[1];

b:=ImageSetOfTransformation(t)[2] ;

if b-a=n/2 and sizeRank2HClasses=2 then

return n/2;

else

return n;
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end;

UnbindGlobal("s");

UnbindGlobalC'n");

Algorithm 9 (Number of TZ-classes)

#############################################

#

# Given a transformation <t> we determine

# the number of R-classes of rank 2 in the

# semigroup generated by <s> and <t>.

#

#############################################

#to get rid of the warning message

sizeRank2HClasses:= "2Bdefined";

minimumBlockConjugate:= "2Bdefined";

minimumBlockStructure:= "2Bdefined";

numberRank2RClasses:=function(t)

local n;

# Trivial case
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n:=DegreeOfTransformation(t);
if IsPrimelnt(n) then

return n;

fi;

Read("sizeRank2HClasses.g");

ReadC'minimumBlockConjugate.g");

ReadC'minimumBlockStructure.g");

if Islnt(minimumBlockConjugate(t)) then
if sizeRank2HClasses(t)=2 then

return minimumBlockConjugate(t);
else

return 2*minimumBlockConjugate(t);
fi;

else

return minimumBlockStructure(t);

fi;

end;
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Algorithm 10 (Size)

###################################################

#

# Given a transformation <t> we determine the

# size of the semigroup generated by <s> and <t>.

#

###################################################

#to get rid of the warning message

hasConjugatePeriodicImage:= "2Bdefined";

hasPeriodicImage:= "2Bdefined";
minimumBlockStructure:= "2Bdefined";

isXBlockConjugate:= "2Bdefined";

mySize:=function(t)

local n, a, b, v;

# Trivial case

n:=Degree0fTransformation(t);
if IsPrimelnt(n) then

return n;

fi;

ReadO'hasConjugatePeriodicImage.g");

ReadC'hasPeriodicImage.g");
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Read("minimumBlockStructure.g");

Read("isXBlockConjugate.g");

# Trivial case

n:=DegreeOfTransformation(t);
if IsPrimelnt(n) then

return n;

fi;

a:=ImageSetOfTransformation(t)[1];

b:=ImageSetOfTransformation(t)[2] ;

v:=minimumBlockStructure(t);

if not hasPeriodicImage(t) and not hasConjugatePeriodicImage(t) then

if not isXBlockConjugate(t,v/2) and not b-a=n/2 then

return 2*n*(v+l);

elif (not isXBlockConjugate(t,v/2) and b-a=n/2) or

(isXBlockConjugate(t,v/2) and not b-a=n/2) then

return n*(v+2);

f i;

elif hasConjugatePeriodicImage(t) then
if b-a=n/2 then

return n*(v/2+l);

else

return n*(v+1);

fi;

elif hasPeriodicImage(t)
then

if IsInt(v/2) and isXBlockConjugate(t,v/2) and b-a=n/2 then
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return n*(v/2+2);

else

return n*(v+2);

fi;

fi;

end;

Algorithm 11 (Regular semigroup)

###################################################

#

# Given a transformation <t> we determine if the

# semigroup generated by <s> and <t> is regular.
#

###################################################

#to get rid of the warning message

hasPeriodicImage:= "2Bdefined";

isRegular:=function(t)

Read("hasPeriodicImage.g");

return not hasPeriodicImage(t);

end;
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Algorithm 12 (Completely regular semigroup)

#############################################

#

# Given a transformation <t> we determine

# if the semigroup generated by
# <s> and <t> is completely regular.
#

#############################################

#to get rid of the warning message

hasConjugatePeriodicImage:= "2Bdefined";

isCompletelyRegular:=function(t)

Read("hasConjugatePeriodicImage.g");

return hasConjugatePeriodicImage(t);

end;
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Algorithm 13 (Conjugator)

#####################################################

#

# Finds a permutation which conjugates
# <transfl> into <transf2> and <sigma>

# into <sigma~k>, for some k such
# <k> is coprime with <n>

# The transformations to input shoud have image={l,c}
#

# NOTE: n=DegreeOfTransformation(<transf*>)
#

######################################################

#

#Auxiliary function

candidates function( n, k, x)

local temp, list, i;

list: = [] ;

for i in [1..n] do

list[x~(sigma"i)]:=1~(sigma"(i*k));

od;

return PermList(list);

end;



B GAP PROGRAMS 176

conjugator:= function( transfl, transf2)

local n, temp, sigma, T, coprimes, image,

bol, k, i, x, coprime;

n:=DegreeOfTransformation(transf1);

temp:=[2..n];

Add(temp,1);

sigma:=PermList(temp); # define the n-cycle

T:=Monoid(AsTransformation(sigma), transf2);

#list of numbers that are coprime with n

coprimes:=PrimeResidues(n);

#image of transfl

image:=ImageSetOfTransformation(transf1);

bol:=false;

k:=0;

while bol = false and k < Length(coprimes) do

k:=k+l;

i:=0;

while bol = false and i < 2 do

i:=i+l;

x:=image[i];

coprime:=coprimes [k];

bol:=(candidate(n, coprime, x))~-l*transf1*

(candidate(n, coprime, x)) in T;
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od;

od;

if bol=true then

Print(bol,"\n");

return candidate(n, k, x);

else

return bol;

f i;

end;
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Algorithm 14 (Presentation)

##################################################

#

# Given a finitely presented semigroup <fp_semi>
# and a "concrete" semigroup <semi> (input
# must be in this order), we check

# if the two semigroups are isomorphic
#

# NOTE: This function relies on the ordering of

# the generators of both semigroups

#

##################################################

isPresentation := function (fp_semi, semi)

local rels, one, idemp, n, p, s, t,

powers, bol, i, power, j,

trans, k, boll, perm, transf;

rels:=RelationsOfFpMonoid(fp_semi);

one:=Identity(semi);
#this element must be a transf of rank 2

transf:=GeneratorsOfMonoid(semi)[1];

n:=DegreeOfTransformation(transf);

#check if the semigroup is regular

Read("isRegular.g");
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if isRegular then

idemp:=Filtered(Idempotents(semi),
x->RankOfTransformation(x)=2);

else

idemp:=Filtered(Elements(semi),
x->RankOfTransformation(x)=2);

fi;

p:=GeneratorsOfMonoid(semi)[1];

s:=FreeGeneratorsOfFpMonoid(fp_semi)[1];

t:=FreeGeneratorsOfFpMonoid(fp_semi)[2];

powers : = [] ;

bol:=false;

#loop over the powers of the permutation

#that can be taken as generators of the semigroup

powers:=PrimeResidues(n);

i:=0;

while bol=false and KLength(powers) do

i:=i+l;

power:=powers[i];

j :=0;
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# loop over the idempotents that can be taken
# as generators of the semigroup

while bol=false and j<Length(idemp) do

j:=j+i;

trans:=idemp[j];

k:=0;

boll:=true;

#bol all the relations of the fp semigroup

while boll=true and k<Length(rels) do

k:=k+l;

perm:=p~power;

boll:=MappedWord(rels[k][1], [s,t],[perm,trans]) =

MappedWordCrels[k][2], [s,t] ,[perm,trans]);

od;

#are all the relations satisfied?

if boll=true then

bol:=boll;

Print(perm,trans,"\n");
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od;

od;

return bol;

end;
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