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Abstract

Unification is one of the most important notions in computational
science and artificial intelligence. Martin-Lof's type theory provides a
framework for the specification, implementation and execution of
provably correct algorithms. In this thesis we use Martin-Lof's type the¬
ory to specify, implement and prove correct a unification algorithm. We
represent the terms to be unified using mutually recursive types. Our
unification algorithm uses we l-founded recursion. We address the is¬
sues that arise from using well-founded induction to prove the total
correctness of a collection of mutually recursive functions in Martin-
Lof's type theory.



/Vei/ //ed/e, /ere/y certi/ t/at t/id t/edid /ad /een comyiodee/ /y mydei/
t/at it id a reave/ o/my own wor/, one/ t/at it /ad net /een aocyitee/ in
yiartia/or conyiiete ////rient o/any ot/er e/eyree or yiro/eddiona/punt///cation.

■J/n die/nutting t/id t/edid to t/e //nioerdity of/// S/ne/eu/d J/ unc/erdtane/ t/at
// am yioiny ylermiddion /or it to /e mae/e aoaita/te /or ude in accorc/aace
wit/ t/e reyu/ationd o/ t/e //nioerdity //i/raey /r t/e time /einy in /rce.
du-$eet to any ayiyriy/t oedtee/ in t/e war/ not /tiny a//ectee/ t/ere/y. J/ a/do
une/erdtaae/ t/at t/e tit/ one/ a/dtract wit/ /e /la/Zd/ee/, anc/ t/at a cc/iy o/
t/e war/ may /e made one/ diyyi/ee/ to any Zona /e/e //rary or redearcZ
wor/er.



Acknowledgments

Notwithstanding the preceding declaration this thesis would not have
been produced without Roy Dyckhoff and Mhairi McHugh. Roy intro¬duced me to (as he would nave it) Martin-Lof type theory. Without him
this thesis would not have been started. Mhairi gave me support and
encouragement throughout. Without her this thesis would never have
been finished.



Contents

Chapter 1 Introduction 1
1.1 Overview of this thesis 2
1.2 Typesetting 2

Chapter 2 Unification 4
2.1 Introduction 4
2.2 Terms 4
2.3 Substitutions 5
2.4 Initial observations 5
2.5 The history and importance of unification 6

Chapter 3 Martin-Lof's Type Theory 8
3.1 Introduction 8
3.2 A theory of expressions 8

3.2.1 Informal motivation 8
3.2.2 Formal development 9

3.2.2.1 Arities 9
3.2.2.2 Expressions 9
3.2.2.3 Definitions 9

3.2.3 Computation rules 10
3.2.4 Concrete syntax 10

3.3 A theory of judgements 11
3.3.1 Semantics and proof theory 11
3.3.2 Hypothetical and categorical judgements 12

3.4 The judgements of type theory 13
3.4.1 The meaning of the judgement that A is a type 13
3.4.2 The meaning of the judgement that A and 8

are equal types 13
3.4.3 The meaning of the judgement that a is

an object of the type A 13
3.4.4 The meaning of the judgement that a and b

are equal objects of type A 14
3.5 On the computation rules and the elimination rules 14
3.6 Examples: some useful types 15

3.6.1 Cartesian product of a family of types 15
3.6.2 Disjoint union of a family of types 17



3.6.3 Sum of two types 18
3.6.4 Equality 20
3.6.5 Other types 20

3.7 Logic and the "propositions as types" analogy 20
3.8 M-LTT and computer programming 22

Chapter 4 Related Work 23
4.1 Manna and Waldinger 23
4.2 Eriksson 24
4.3 Paulson 26
4.4 Nardi 26

Chapter 5 Representing Terms 27
5.1 Diversion on mutually recursive types 27

5.1.1 Example 27
5.2 The type of terms 28

5.2.1 Formation rules 28
5.2.2 Introduction rules 29
5.2.3 Computation rules 29
5.2.4 A single non-canonical constant for a

group of mutually recursive types 30
5.2.5 Elimination rules 30
5.2.6 Termrec and termsrec equality 31
5.2.7 Remarks 32

5.3 The type of general trees 32
5.3.1 Tree formation 33
5.3.2 Tree introduction 33
5.3.3 Computation rules 33
5.3.4 Tree elimination 34
5.3.5 Treerec equality 34

5.4 Using the type of general trees to encode terms 34
5.4.1 Some preliminary definitions 34
5.4.2 Justifying the introduction rules 35

5.4.2.1 Justifying the first TERM introduction
rule 35

5.4.2.2 Justifying the second TERM
introduction rule 36

5.4.2.3 Justifying the first TERMS introduction
rule 37

5.4.2.4 Justifying the second TERMS
introduction rule 37

5.4.3 Justifying the rules for the introduction of
equal canonical elements 38

5.4.4 Justifying the elimination rules 38

ii



5.4.4.1 Justifying TERM elimination 38
5.4.4.2 Justifying TERMS elimination 43

5.5 Conclusions 43

Chapter 6 Well-founded Recursion in Martin-Lof's Type Theory 47
6.1 Describing Well-foundedness 47

6.1.1 Defining well-foundedness using
well-orderings 48

6.1.2 Nordstrom's rule 49
6.2 Lemmas about well-founded orderings 50

6.2.1 Lemma 6.1 50
6.2.2 Lemma 6.2 50

6.3 A particular well-founded ordering 50
6.4 Using the general recursion operator 51

6.4.1 Listrec in terms of listcases and rec 52
6.4.2 Example 53
6.4.3 Termsrec and termrec in terms of a

case operator and rec 54
6.5 Summary 56

Chapter 7 Formalising The Problem 59
7.1 The type of substitutions 59
7.2 Definitions 59
7.3 Putative specifications 61

Chapter 8 Different Possible Algorithms 63
8.1 Chang and Lee's unification algorithm 63
8.2 Apt's algorithm 64
8.3 A poor function and a better one 65
8.4 A function that unifies Paulson's terms 68
8.5 Expressing our algorithm in M-LTT 69

8.5.1 First step in the definition of our mgiu function 69
8.5.2 Second step in the definition of

our mgiu function 71
8.5.3 Final step in the definition of our mgiu function 72

8.6 Summary 73

Chapter 9 A Proof By Well-founded Induction 74
9.1 Instantiating Nordstrom's rule 74
9.2 Proof of the total correctness of mgiu 74
9.3 Some lemmas 75

9.3.1 Lemma 9.1 75
9.3.2 Lemma 9.2 75
9.3.3 Lemma 9.3 75

iii



9.3.4 Lemma 9.4 76
9.3.5 Lemma 9.5 76

9.3.6 Lemma 9.6 76
9.3.7 Lemma 9.7 77

9.3.8 Lemma 9.8 77
9.4 Proof of termination 77

9.4.1 Justification of 9.1 78
9.4.2 Justification of 9.2 78
9.4.3 Justification of 9.3 78

9.5 Conclusion 79

Chapter 10 Proof of Correctness 81

10.1 Base cases 81
10.1.1 Justification of 10.1 83
10.1.2 Justification of 10.2 83
10.1.3 Justification of 10.3 and 10.3' 84
10.1.4 Justification of 10.4 and 10.4' 84
10.1.5 Justification of 10.5 85
10.1.6 Justification of 10.6 and 10.6' 85

10.2 Induction 85
10.2.1 Justification of 10.7 87
10.2.2 Justification of 10.8 87
10.2.3 Justification of 10.9 88
10.2.4 Justification of 10.10 89
10.2.5 JustificationoflO.il 89

10.3 Comments on the proof 89

Chapter 11 Comments 91

11.1 Representing terms 91
11.2 Mutual recursion 91
11.3 Well-founded recursion 92
11.4 Automation 92
11.5 On specifications 92
11.6 Disjunctive specifications 93

Chapter 12 Conclusions 94

References 95

IV



Chapter 1
Introduction

The software engineer is faced with a variety of criteria to meet when
asked to produce a piece of software. Of paramount importance is that
the software does what it is supposed to do. Concerns about speed,
portability, re-usability and so on are secondary to this concern. This
thesis investigates the construction of a correct unification algorithm.
Unification concerns answering the question of under what circum¬
stances two terms are the same, and is one of the most important no¬
tions in computational science. It lies at the heart of many automated
reasoning systems and is the core of many mechanical natural lan¬
guage systems. The unification algorithm for simple terms has technical
interest as it is not naturally expressed in structurally recursive form.
Hence we can expect the task of proving that the algorithm terminates
to be non-trivial.

Formally we say that a program is correct if it meets its specification.
For software development we see that we need a language to write
programs in, a language to write specifications in and a logical system
which will allow us to prove that programs meet their specifications (or,
alternatively, that some specification can be met). There are a number
of formal systems in which we might choose to do this. Most of them
use three separate languages to express the algorithm, the specifica¬
tion and the correctness proof.
Martin-Lof's Type Theory (M-LTT) was developed as a contribution to
the foundations of mathematics. The theory has been developed over a
period of time and there are several variations which differ in small
Dut important ways. We shall be using the theory as presented in
Mar84] which uses an extensional equality and lazy evaluation. The
usual semantics for M-LTT is an operational one based on our under¬
standing of the notion of a method. Because of this, and because the
theory nas been very carefully developed, we can use it to express
functions, specifications and correctness proofs. These correspond to
elements, types and proofs in the purely mathematical interpretation of
the theory.
M-LTT ds a theory in the intuitionistic (or constructive) tradition.
Although we believe that constructivism has a privileged status amongst
the differing philosophies of mathematics the utility of M-LTT for tne
computational scientist is not dependent on any such beliefs.
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1.1 Overview of this thesis

This thesis develops in the following way.

Chapter 2 introduces the notion of unification and explains why it is of
such great importance in computational science. Some basic notions
relating to substitutions are introduced and some observations made
about tnese.

Chapter 3 introduces M-LTT in more depth. We present the theory of
expressions and the related notion of computation rules, the theory of
judgements and the forms of judgement that are required in type the¬
ory. We present rules for some useful types and explain the relation¬
ship between M-LTT and computer programming.

In Chapter 4 we review work done by others on proving the correct¬
ness of unification algorithms.
In Chapter 5 we show how to represent terms in M-LTT. We do this in
two ways: directly using two mutually recursive types and indirectly us¬
ing tree types. We show that these are equiva ent and make some
comments about mutually recursive functions in M-LTT.

In Chapter 6 we investigate the use of well-founded recursion in
M-LTT. In particular we investigate how to express mutually recursive
functions using well-founded recursion. We present an ordering on the
type of pairs of terms that we introduced in Chapter 5 and prove that it
is a well-founded ordering.
In Chapter 7 we investigate different possible specifications for the al¬
gorithm. We investigate how specifications for mutually recursive func¬
tions must be written.

In Chapter 8 we investigate different unification algorithms. We look
both at algorithms which have been presented elsewhere and at our
own suggestions.

In Chapters 9 and 10 we use well-founded induction to prove that one
of the algorithms presented in Chapter 8 meets one of the specifica¬
tions presented in Chapter 7. In Cnapter 9 we present some useful
lemmas and prove that the algorithm terminates. In Chapter 10 we
prove that the algorithm is correct.

Chapter 11 presents some comments on the work, with suggestions for
how to improve and extend it.

Chapter 12 presents our conclusions.

1.2 Typesetting
We have attempted to place rules, proofs and functions in the text
where they are referred to. Due to the size of some of the figures this
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has not always been possible, and they have been placed at the end of
the appropriate chapter. Some of the figures proved to be of a com¬
plexity which required that some details be suppressed.

3



Chapter 2
Unification

2.1 Introduction

Unification theory is concerned with solving the following problem:
Suppose s and t to be a pair of terms. Under what circumstances are s and t
the same term?

For example, suppose that a, b, c and d are constants, x and y vari¬
ables. As we take the constants to be distinct we see that there are no

circumstances under which a and b will be the same term. Suppose s
and t are a(x, b(d, x)) and a(c, y). We see that if we replace x by c
and y by b(d, c) in s and t then tney both become a(c, b(d, c)). We
call a substitution which makes two terms the same a unifier and we

say that the terms are unifiable. We now start to think of the proper¬
ties that a unifier might have: 'Is the unifier of two terms unique?', 'If
unifiers are not unique, then is there a special unifier for unifiable
terms?' Before we can start to answer these questions we must make
clearer our notions of terms and of substitutions, which we do in this
chapter. In Chapter 7 we will reformulate these notions in type theory,
but for our current purposes we will leave some details unspecified.
We also explain why answering the above question is so important to
computer science, recap some history and see why the simple question
that we started with is such an interesting one to answer.

2.2 Terms

A term is either a variable or the application of a functor to a (possibly
empty) list of arguments, which are themselves terms. The variables
and the functors are distinct. We will use the letters x, y, z and so on
for variables, f, g, h and so on for the functors.
We think that two terms are the same if they are the same variable or
if they are the same functor applied to the same list of terms. If we had
a different notion of equality between terms we would have a different
notion of unification. [Sie89J discusses unification in situations where
various additions to the notion of equality are allowed. In unification
based approaches to natural language, such as that presented in
[Shi86] and [GM89], unification is thought of as being over open-
ended directed, acyclic graphs (called 'feature structures') and hencethe terms f and f(x) are considered unifiable. Neither of the two men¬
tioned texts makes clear the notion of substitution involved.
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2.3 Substitutions

A substitution is a function from variables to terms. We will use the
lower-case Greek letters a, x, v and so on for substitutions. If x is a
variable and t a term then we may write x —> t for the substitution
which replaces x by t and leaves all other variables unchanged.
The support (or domain) of substitution is the set of variables that arechanged by the substitution. All the substitutions that we shall be con¬
cerned with shall have finite support. The range variables of a substi¬
tution is the set of variables which occur in the set of terms generated
by applying the substitution to its support.

If a is a substitution then its extension a* is the function from terms to

terms which replaces each occurrence of a variable in a term by a
applied to that variable.

The composition of two substitutions o and t a • r, is (x)(t* (a x)).

One substitution x is an instance of another o if there is a substitution v

such than x = o * v. In this case a is said to be more general than x.
Notice that, as two substitutions may be instances of each other, the
phrase 'more general than' is slightly misleading.

A unifier of two terms s and t is a substitution crsuch that o* s = ci* t.

A most general unifier of two terms s and t is a unifier of s and t, of
which all other unifiers are instances.

An idempotent substitution o is one such that a= o • o. We will show
later that the domain and range variables of an idempotent substitution
are disjoint.

2.4 Initial observations

Clearly there is not a unique unifier for any pair of unifiable terms s
and t. If a is a unifier of s and t then so is any instance of o .

Nor need there be a unique most general unifier. Any pair of
variables, x and y, will be unified by the two substitutions x --> y and
y—> x. These substitutions are instances of each other and are both
most general unifiers of x and y.

We shall see later that the property of idempotence of unifiers is cru¬
cial. We point out here that a most general unifier need not be idem-
potent. Manna and Waldinaer (fMWBl]) give the example of the pairof terms g(x, z) and g(y, ffy)). A most general unifier tor these terms
is z -->f(z) • x —> z • y —> z, which is not idempotent.
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We now see that the oriqinal question can be reformulated as 'If a pair
of terms is unifiable is there a most general unifier?' In fact when we
come to try to answer this question we see that we are forced to an¬
swer the question 'If a pair of terms is unifiable is there a most general
idempotent unifier?' Later we shall consider whether it is best to an¬
swer this question directly as stated or to answer some logically equiva¬
lent question.

2.5 The history and importance of unification
Robinson ([Rob92]) and Siekmann ([Sie89]) provide surveys of the his¬
tory and importance of unification. The landmark paper in the field is
Rooinson's [Rob65]. Work before this paper may be called the pre¬
history of unification. The main contributions are those of Herbrand
([Her71]) and Prawitz ([Pra60]). The word 'unification' was coined by
Robinson in [Rob65] for the procedure described in [Pra60].
In his thesis ([Her71], originally published in 1930) Herbrand presents
an algorithm to find a proof of a proposition in first-order logic (in the
case that such a proof exists, of course). In the course of this he intro¬
duces the notion of unification, as [Rob92] states "albeit only in a
rather brief and obscure passage".
Prawitz ([Pra60]) discusses a mechanisable proof procedure for first
order logic. Again as a part of this procedure the notion of unification
is introduced. Unification allows us to reduce the number of possible
cases of instantiation of variables that we must deal with, and therefore
is a step towards making the problem tractable. Prawitz' algorithm was
implemented on an electronic digital computer.
Davis and Putnam ([DP60]) drew attention to a clausal predicate logic.
Robinson ([Rob65]j combined the ideas in [DP60] and [Pra60] and in¬troduced a clausal logic with a single inference schema which com¬
bines the Prawitz procedure with Gentzen's Cut rule. This was called
resolution.

Chang and Lee ([CL73]) discuss some of these procedures in more
detail.

We see that the pre-history of unification was concerned with mecha¬
nisable theorem proving, the purpose of using unification was to im¬
prove the efficiency of proof procedures for first-order logic.Unification has continued to lie at the heart of mechanical theorem
proving and has been described as 'the addition and subtraction of
automated reasoning'. Unification is, however, important in many other
contexts. Siekmann f[Sie89j) gives a listing of areas of computing
science and artificial intelligence where unification problems arise
which includes databases, natural language processing (NLP), expert
systems, knowledge representation, logic programming and automateddeduction systems. Much work on NLP (see, for example, [Shi86]) re¬
lies on unification as the sole information combining mechanism.
Unification is also importai ' 1 ' '* ' 11 1
Resolution theorem proving _ ,

gramming language Prolog (see, for example, [SS86]) which has, in

used in modern functional
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turn, been used as a vehicle to implement many other systems which
exploit unification.
Given that unification is such an important procedure it is important
that it be implemented correctly. It is worth noting that most Prolog im¬
plementations deliberately implement unification incorrectly for reasons
of efficiency, specifically, the 'occurs check' is omitted. Many textbooks
present a unification algorithm. Norvig ([Nor91]) points out that in atleast seven LISP textbooks the presentation given is incorrect, failing to
unify f(x, y) and f(y, x). The errors usually occur for reasons of effi¬
ciency (not connected with the omission of the 'occurs check') con¬
nected with the way that terms and substitutions are represented.
Norvig points out that:

Curiously, this note shows that for unification, the functional approach is
error-prone, whereas the procedural state-modification approach tends to
lead to a correct solution.

We agree that this is indeed a curiosity.
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Chapter 3
Martin-Lof's Type Theory

3.1 Introduction

In this thesis Martin-Lof's theory of types (M-LTT) will be used as a
framework for the specification, derivation and execution of algo¬
rithms. The theory was originally developed as a formalization of con¬
structive mathematics. It is built from a number of components which
are, more or less, independent of each other. The development of the
theory, as presented in, for example, [NPS90], [BCMS88] and [Mar84]
takes the following pattern. Firstly we must have a sensible theory or
what a mathematical expression is. Then we introduce the related no¬
tions of judgement and rule of inference. Finally we present the judge¬
ments that are needed in the theory of types. When we have devel¬
oped the theory to this stage we can then see how it is relevant to
computer science.
The aim is to build a theory that naturally reflects the actual activities of
mathematicians. As we develop the theory we will first give the motiva¬
tion and then give a more formal account of what we are doing.

3.2 A theory of expressions

3.2.1 Informal motivation

From an inspection of common mathematical expressions we see that
the primitive notions that we must try to capture are those of
applicati on and abstraction. (Later we will see how to handle
combination and selection.)
We must take care as we do not want to allow expressions to be ap¬
plied to each other unrestrictedly. For instance we ao not want to think
that sin sin is an expression, nor do we want to be faced with expres¬
sions like (Ax.xx)(Ajc.xx) a.k.a. Q from the untyped lambda calculus.
(See [Bar84], Q is not in normal form but it p-reduces to itself.) We
avoid this problem by associating an arity with each expression. The
arities tell us how we may combine expressions and, like the types of
the simply-typed lambda calculus, allow us to define a normal form for
expressions, and hence a decidable equality for expressions (The
proof of this is analogous to the proof that normal forms exist for terms
of the simply typed X-calculus. See, for example, [Bar84].). This is cru-
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cial. For example, we will want to be able to recognise when an infer¬
ence rule is applicable. If we did not have such an eauality on the ex¬
pressions of our language we could not be certain ot this, in general.
We shall also need to nave a mechanism to deal with abbreviatory
definitions, as these are very useful for the ordering and presentation
of our thoughts.

3.2.2 Formal development

Having seen what we desire from a theory of expressions we shall now
give a formal presentation of Martin-Lof's theory of aritied expressions.
3.2.2.1 Arities

Arities are inductively defined as follows:

1) o is an arity, the arity of saturated expressions;

2) if a and J3 are arities then a -> (3 is an arity, the arity of
unsaturated expressions.

The notation is similar to that which we will later use for function types.
These two should not be confused.

We build up expressions from variables and constants and by the ac¬
tions of abstraction and application. Each expression will have an arity
associated with it.

3.2.2.2 Expressions
We can now inductively define expressions and their arities:

1) if x is a variable of arity athen x is an expression of arity a;

2) if c is a constant of arity athen c is an expression of arity a;

3) if x is a variable of arity a and e is an expression of arity (3
then (xje is an expression of arity a -> (3;

4) if e is an expression of arity a —> (3 and f is an expression of
arity a then e f is an expression of arity p.

3.2.2.3 Definitions

We now introduce a mechanism for making abbreviatory definitions. If
e is an expression without free variables and c is a new constant then
we may make an abbreviatory definition:

c "ifpp ^ •

9



We call c the definiendum and e the definiens. We are now free to
use c in exactly the same way as we could have used e. Hence we add
a fifth clause to the definition of an aritied expression:

5) if e is an expression of arity a and c =dEF e then c is an

expression of arity a.

By taking such care with the introduction of definitions we can be sure
that all instances of the definiendum can be replaced by instances of
the definiens without changing the meaning of the expression. This is
an essential property.

3.2.3 Computation rules
We shall now explain the form of the computation rules. We shall later
use computation rules to give us an operational semantics for the type
theory. For the moment, however, we are only treating these rules syn¬
tactically. The rules will look like this:

S1 -> a1 sn -> an
t —> e

and may be read as "if sj computes to aj, and ... and sn computes to
an then t computes to e". The term t will, in practice, depend on the Sj.
Notice that this tells us nothing about what to do if the s, evaluate to
anything other than the values mentioned.
For reasons which will become apparent later we call a constant
which, when it is the outermost part of a term, permits the term to be
further evaluated a non-canonical constant

3.2.4 Concrete syntax

We have defined what we may call the abstract syntax. We shall now
introduce what we will call the concrete syntax, that is the syntax that
we will actually use when displaying expressions.
The first thing that we will do is introduce a notion of fixity of an op¬
erator. An operator is prefix if it occurs before its operandfs), infix if it
occurs between its operands, postfix if it occurs after its operand(s)
and distfix if it is distributed around its operands.
We shall also introduce the notion of the associativity of an operator.
This allows us to dispense with brackets on many occasions. An opera¬
tor * is right associative if A*B*C is to be read as A*(B*C) and left as¬
sociative if A*B*C is to be read as (A*B)*C.
We introduce an ordering on the operators, priority. Again this is to
allow us to dispense with some parentheses. If one operator * has a

10



higher priority than another % then A * B % C is to be read as
(A*B) % C.
We shall also overload some symbols in the concrete syntax so that
they have two or more meanings, depending on the context they ap¬
pear in.

For convenience, if f has arity o -> (o -> (o —> o)), and x, y, z have arity
owe shall write f(x, y, z) for (((f x) y )z), f(x, y) for ((f x) y), and so
on. In this way we can deal with combination and selection.
Further we shall also relax our rules on making definitions to allow
variables in the definiendum to be bound by those in the definiens.
These rules for the concrete syntax allow us to replace, for example,

~ =dEF (A)(B)(& (-» A B) (- B A))
by

A ** B =dEF (A -> B) & (B A).

3.3 A theory of judgements

3.3.1 Semantics and proof theory
To grasp this material we need to leave the development of type the¬
ory and look at the semantic justifications for intuitionistic logic that
have been presented by Dummett ([Dum75], [Dum77], [Dum911),
Prawitz ([Pra77]), and Martin-Lof himself ([Mar84], [Mar83], [Mar87j.
Notice that the intuitionists do not consider logic to be a separate field
from mathematics, and so this is distinction is rather artificial. Brouwer,
in particular, had little interest in logic as such, and simply tries to justify
intuitionistic mathematics (see, for example, [Bro81]). the intuitionist
view is that mathematics consists of mental constructions that we (can,
in principle) carry out ourselves. The meaning of a proposition is the
mental construction that goes along with it, so to understand a proposi¬
tion is to know which construction would go with it. Then we say tnat a
proposition is true if we can make the construction. So in intuitionisticmathematics proof is a notion prior to truth and the theory of meaning
is based on the idea that to know the meaning of a proposition is to
know what a canonical proof of it would be. [Dum91] in particular
covers this material.
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In logic we deal with propositions, and traditionally, the judgement
that we make is that we nave a proof of a proposition, i.e. tnat the
proposition is true. We need to make clear the distinction between
propositions and judgements. Martin-Lof [Mar84] explains it thus:

What we combine by means of the logical operators (A, D, &, v, V, 3)
and hold to be true are propositions. When we hold a proposition to be
true we make a judgement:

Proposition j ^ 1T*LJ0)* -^Clement

In particular, the premisses and conclusion of a logical inference are
judgements.

3.3.2 Hypothetical and categorical judgements
In general the judgements that we will make will be hypothetical, i.e.
they will be made in the context of some assumptions. Tne meanings of
hypothetical judgements can be easily induced from the meanings of
the categorical judgements. When we are being formal we shall write
judgements with a turnstile like this:

h C

The hypothetical judgements are then written:

Ai ... An i- C

However we shall often suppress the turnstile.
We explain how we may manipulate judgements by presenting a sys¬
tem of natural deduction (see [Gen36] and [Pra65]) rules. Tne rules
will look like those of [Mar84], In general they will look like:

[Ai...An] ... [Bi ...Bn]

P - Q
c

The premisses are written above the line and the conclusion below.
Notice that, although we have suppressed the turnstiles, the conclusion
and the premisses are judgements. The rule may discharge a num¬
ber of the assumptions that the premisses rest on. We indicate this by
enclosing these assumptions in square brackets. We may also have
hypothetical assumptions, that is assumptions which are themselves
dependent on some further assumptions. This notion is explained by
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Schroeder-Heister in [Sc-H84]. We explain a rule by justifying the
conclusion on the basis that the premisses are justified.

3.4 The judgements of type theory
We stated above that logic has traditionally dealt with the judgement
that a proposition has a proof. We shall now show which forms of
judgement we need to have for the theory of types and then show how
we explain these judgements. The judgements that we need (following
[Mar84]) are:
A is a type;

A and 8 are equal types;
a is an object of type A;
a and b are equal objects of type A.

3.4.1 The meaning of the judgement that A is a type

The meaning of the judgement that A is a type is that we know how to
form the canonical ob/ects of A and when two such are equal. The
canonical objects are those which are directly introduced by the intro¬
duction rules. To justify the judgement that A is a type we must explain
how to form the canonical objects of A and explain when they are
equal.
Later we shall see that it is a property of the elimination and computa¬
tion rules that any object of tne type can be evaluated to a canonical
object of the type.

3.4.2 The meaning of the judgement that A and 6 are equal
types

The meaning of the judgement that A and 8 are equal types is that we
know how to show tnat the canonical objects of A are (canonical) ob¬
jects of 8 and vice versa. To justify the judgement that A and 8 are
equal types we must explain how to show that the canonical objects of
A are (canonical) objects of 8 and vice versa.

3.4.3 The meaning of the judgement that a is an object of the
type A

For this judgement to make sense we must first know that A is a type.
So we must know how to form the canonical elements of A. The
meaning of the judgement that a is an object of A is that we know how
to show that it evaluates to a canonical element of A. We can tell from
its outermost form whether an object is canonical or not. To justify the
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judgement that a is an object of A we must explain how to evaluate it
to canonical form.

3.4.4 The meaning of the judgement that a and b are equal
objects of type A

Again for this judgement to make sense we must know that A is a type,
and hence how to introduce equal canonical objects. The meaning of
this judgement is that a and b evaluate to equal canonical objects. Tojustify the judgement that a and b are equal objects of type A we must
show that a and b evaluate to equal canonical objects of A.

3.5 On the computation rules and the
elimination rules

As we introduce new types we associate with each type one non-
canonical constant. The non-canonical constant for each type has an
arity which depends on the number of clauses in the introduction rules
for the type. For the enumerated types and the inductively defined
types the non-canonical constant takes one more argument than there
are introduction rules for the type. The choice of the non-canonical
constant is justified by considering what it was that we must have
known to obtain a canonical object of the type. For the enumerated
types the non-canonical constants are case operators, for the induc¬
tively defined types they are the structural recursion operators and for
mutually inductive types they are mutually, structurally recursive opera¬
tors.

The non-canonical constant associated with a type allows us to com¬
pute with (i.e. to make use of) an object of that type. Hence it allows us
to define the elimination rule for objects of the type. As there is only
one non-canonical constant associated with each type there is strictly
only one elimination rule for each type. The elimination rule for a type
can be seen as a type-checking rule for the non-canonical constant.
For the enumerated types and the inductively defined types there will
be two more premisses to the elimination rule than there are introduc¬
tion rules for the type, for n mutually inductive types, with a total of m
introduction rules, the elimination rule for each type will have a total of
n + m + 1 premisses. Because we have structural recursion operators
as non-canonical constants the functions we construct are guaranteed
to terminate.

The non-canonical constant associated with a type is a structural re¬
cursion operator. There is, however, no reason why we cannot give
computation rules for other operators which act on values of the type.
These operators will not, of course, have the special place in the type
theory that the structural recursion operators have. For the inductively
defined types we can define case operators which select cases of val¬
ues of the type but do not involve recursion. The case operator is
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weaker than the structural recursion operator for the type and the lat¬
ter can be used to mimic the former.

3.6 Examples: some useful types
We shall now present some types which will be of use to us. These
types are well-known (they are presented in, for example, IMar84],
[BCMS88], [NPS90], ITho91J) and so we will not give full justifications.These types are neeaed before we can interpret (constructive) logic in
Martin-Lof's type theory, and thereby draw the "propositions as types"
analogy. We will appeal to this when we assert that M-LTT can be used
as a specification language. The types that we present in this section
shoula not be thought of as 'base types. Because M-LTT is an open-
ended theory we are free to add any types which we want (provided
we can justify them, of course).
The following table presents some constants which will be used in the
useful types presented below.

Constant Arity
n o —^ (o —> o) —> o

L o —> (o —> o) —> o
+ o -> o —> o

EQ o —> o —> o —> o

X (o —» o) —» o
X o —» o —> o

Inl o -> o

Inr o —> o

apply o —> o —> o

funsplit o —»((o —» o) —> o)-» 0

e o

split (o—>0—>o)—>o—>0
when (o —» o) —»(o —» o) —> o —» o

3.6.1 Cartesian product of a family of types

When we present the type of general trees later in this thesis we will
need to make use of hypothetical assumptions. Therefore we shall
illustrate the use of hypothetical assumptions when presenting the rules
for the /7 types.
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The rule for the formation of the f[ types is:

[x : A]

A type B(x) type

TT(y : A, B(y)) type

We also have a rule for forming equal f] types. The rule simply says
that from equal arguments we get equal values. We do not present this
rule, nor will we ever present the equivalent rules for the other types
that we define.

We justify the above formation rule by presenting the rule for introduc¬
ing values of a /7type and the rule for introducing equal values.

[x: A]

b(x) : B(x)
Xb : n(y: A, B(y))

[x: A]

b(x) = d(x) : B(x)
Xb = Xd: TT(y: A, B(y))

We have the usual restriction on x not appearing free in any of the
other assumptions.
We are now at the staae where we may construct the non-canonical
constant associated with the [] types. It is called funsplit, and has the
following computation rule:

f —> Xb a(b) —> b'

funsplit(f, a) -> b'

Now that we have the introduction rule and the computation rule we
can form the elimination rule. This can be seen as a type-checking
rule for funsplit. It is:

[c : [T(z : A, B(z))] £y(x) : B(x) [x : A] j

f : f](z : A, B(z)) C(c) type d(y) : C(X(y))
funsplit(f, d) : C(f)

This rule is justified directly from a consideration of the introduction
rule and the computation rule for funsplit.
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We have the following rule for funsplit equality, again justified from
consideration of the introduction and computation rules:

[x : A] [c : f[(z : A, B(z))] £y(x) : B(x) [x : A] j

b(x) : B(x) C(c) type d(y) : C(X(y))
funsplit(X(b), d) = b(d) : C(X(b))

Using funsplit as the non-canonical constant associated with the J~]
types allows us, by using hypothetical assumptions, to cast the elimina¬
tion rule in the same form as those for all the other types, however we
will find it more convenient to use the constant apply, as defined be¬
low, in the remainder of the thesis.

apply(f, a) ~dEF funsplit(f, (y)(y(a)))

If A is a type and B(x) is not dependent on x we can define:
A -> B =dEF TT(x : A, B(x))

3.6.2 Disjoint union of a family of types
We repeat the above treatment for the £ types. We give no justification
for the rules.

The rule for forming £(y : A, B(y)) is:

[x: A]

A type B(x) type

I(y : A, B(y)) type

The rule for the introduction of a value of £(y : A, B(y)) is:

[X : A]

a : A B(x) type b : B(a)
Pair(a, b) : £(y : A, B(y))

The rule for the introduction of equal values of £(y : A, B(y)) is:

a = c : A b = d : B(a)
Pair(a, b) = Pair(c, d) : £(y : A, B(y))
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The computation rule for split is:

p —> Pair(a, b) f(a, b) —> f
split(f, p) -> f

Notice that the argument which we expect to be in the associated type
is the last argument. We do this with most of the non-canonical con¬
stants (apply is one exception) because it makes definitions using them
shorter and clearer.

The elimination rule is:

[c : I(z : A, B(z))] [ y* B*x)]
p : I(z : A, B(z)) C(c) type f(x, y) : C(Pair(x, y))

split(f, p) : C(p)

The rule for split equality is:

[c : Hz : A, B(z»] [ y* / BOO

a : A b : B(a) C(c) type f(x, y) : C(Pair(x, y))
split(f, Pair(a, b)) = f(a, b) : C(Pair(a, b))

We shall make some useful definitions:

fst(p) -Jer split((a, b)a, p)
snd(p) =JBF split((a, b)b, p)

If A is a type and B(x) is not dependent on x we can define:
A x B =dBF X(x : A, B(x))
A PAIR =dBF A x A

3.6.3 Sum of two types

The rules for the + types are as follows.
The rule for forming a + type is:

A type B type
A + B type
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The rules for the introduction of values of a + type are:

a : A

lnl(a) : A + B

b : B

lnr(b) : A + B

The rules for the introduction of equal values of a + type are:

a = c : A

lnl(a) = lnl(c) : A + B

b = d : B

lnr(b) = lnr(d) : A + B

The computation rules for when are:

c --> lnl(a) d(a) -> d'
when(d, e, c) -> d'

c —> lnr(b) e(b) -> e'
when(d, e, c) -> e'

The rule for + elimination is:

[c : A + B] [a : A] Jb : BJ

w : A + B C(c) type d(a) : C(lnl(a)) e(b) : C(lnr(b))
when(d, e, w) : C(w)

The rules for when equality are:

[c : A + B] [x : A] [b : B]

a : A C(c) type d(x) : C(lnl(x)) e(b) : C(lnr(b))
when(d, e, lnl(a)) = d(a) : C(lnl(a))

[c : A + B] [a : A] [x : BJ

b : B C(c) type d(a) : C(lnl(a)) e(x) : C(lnr(x))
when(d, e, lnr(a)) = e(b): C(lnr(b))
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3.6.4 Equality
There are a number of informal notions of equality which should not
be confused. So far we have encountered identity (sometimes called
definitional equality) and the two judgements of equality. Following
[Mar84] we introduce an equality type.
The rule for EQ formation is:

A type a : A b : A
EQ(A, a, b) type

The rule for EQ introduction is:

a = b : A

e : EQ(A, a, b)

A rule for EQ elimination is:

d : EQ(A, a, b)
a = b : A

We shall reason using equality informally later in the thesis.
We observe after [Mar84] and [Tho91] that we can use the equality
type to define non-trivial dependent types, without reference to uni¬
verses. Jn section 5.4.4.1 we will abuse a case operator to define a de¬
pendent type. We observe here that we could ao this using EQ types,
without mentioning universes. We choose not to do this as it only adds
needless complexity.

3.6.5 Other types

We will assume that the types of lists, of booleans and of the natural
numbers are well-known.

3.7 Logic and the "propositions as types"
analogy
The constructive notion of a proposition is that it is something of which
we would recognise a proof. Informally we may say that we under¬
stand a proposition by understanding what would count as a proof of it.
Correctly we should say that to understand a proposition we must un¬
derstand what would count as a direct or canonical proof of it. This
brings to mind an analogy with types, noted by Curry ([How80]) and
often called the Curry-Howard analogy. Part of the understanding that
A is a type is to understand what a canonical object of A is. We shall
show how to use the type forming constants to represent the proposi-
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tion forming constants. The following table presents the proposition
forming constants and states what count as canonical proofs of propo¬
sitions so formed, following [Hey71].
Constant Arity Proposition formed Canonical proof

A o The absurd proposi¬
tion.

There are none.

& o —> (o —> o) A & B, if A, 8 are
propositions.

A pair consisting of
a proof of A ana a
proof of 8.

o —> (o —> o) A v 8, if A, 8 are

propositions.
Either a proof of A
or a proof of 8, with
an indication of
which.

o —^ (o —y o) A -* B, if A, 8 are
propositions.

A method which
takes any proof of
A and returns a

proof of 8.

3 o —> (o —» o) —» o 3(x : A, B(x)), if x is
a variable from
some domain A and
8 is a propositional
function over A

A pair consisting of
a term a from the
domain A and a

proof of B(a).

V o —»(o —> o) —> o V(x : A, B(x)), if x is
a variable from
some domain A and
8 is a propositional
function over A.

A method which
takes any term a
from the domain A
and returns a proof
of B(a).

Notice the similarity between & and 3 and between and V. For the
analogy to be good the following correspondences must hold:

1) A corresponds to the type of which there are no values. Hence we

identify A with the empty type.

2) A & B corresponds to some type *(A, B), whose values are formed
by pairing the values of A and B. B is independent of A. So we identify
the proposition A & B with the type A * B.

3) A v B corresponds to some type *(A, B), whose values are formed
by marking the values of A and of 8. So we identify the proposition
A^ B with the type A + B.

4) A -* B corresponds to some type *(A, B), whose values are func¬
tions from values of A to values of 8. 8 is independent of A. So we
identify the proposition A -> B with the type A -* 8.
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5) 3(x : A, B(x)) corresponds to some type *(A, B). Notice that B may
be dependent on the particular value of A involved. Values of *(A, B)
are formed by pairing values of a of A and b of the corresponding
B(a). So we identify the proposition 3(x : A, B(x)) with the type
L(x:A,B(x)).

6) V(x : A, B) corresponds to some type *(A, B). B may be dependent
on the particular value of A involved. Values of *(A, B) are functions
from values a of A to values of the corresponding B(a). So we identify
the proposition V(x : A, B(x)) with the type [](x : A, B(x)).

3.8 M-LTT and computer programming

Constructive mathematics has an algorithmic content absent from clas¬
sical mathematics. For advocacy of constructive mathematics and ex¬
amples of its practice see, for example, [BB85], [Bro81], [Tro69] and
[TD88]. For discussion of the philosophical basis of constructive math¬
ematics, and a justification of the constructive view of mathematics is to
be preferred over other views see, for example, [Dum75], [Dum77],
[Dum90], [Dum9lj, [Hey71], [Mar83], [Mar87], [Pra77] and [Sun86b].

Although we agree that mathematics in general should have an algo¬
rithmic content which is often absent this belief is not important to the
utility of M-LTT for the computer scientist. The relationship between
constructive mathematics, particularly M-LTT, and coniputer program¬
ming has been explored in, for example, [BCMS88], [Chi88], [Mar82],
[NPS90], [NS84], [Pet86], [SM87], [Smi83] and [Tho91J. A specification
states that there is some relationship between tne program s input and
its output. As a program specification is a proposition then, by the
"propositions as types" analogy it is a type. An object of this type is then
a program which satisfies the specification. For example a specification
for a program which sorts lists might be:
fl(as : a list, l~f(°rd : a -> (a -> bool), £(bs : a list, perm(as, bs) & ordered(bs, ord))))

Where perm(as, bs) is the proposition that as and bs are permutations
of each other and ordered(hs, ord) is the proposition that bs is
ordered by ord. An object of this type is then a function which takes an
a list, a function of type a -> (a -> bool) and constructs a pair
consisting of an a list and a proof that this list is an ordered
permutation of the first list. We are interested in the list that is
constructed, but will rarely, if ever, be interested in the proof that this
list is an ordered permutation of the input list. Techniques, such as
exploiting laziness, as described in [ThoVl], for resolving this tension
are beyond the scope of this thesis.
The remainder of this thesis is concerned with using M-LTT as a
framework for the specification and implementation of a unification al¬
gorithm and with the problems that arise therefrom, particularly the use
of mutually recursive types and well-founded induction in M-LTT.
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Chapter 4
Related Work

In this chapter we review some previous work in this area, specifically
that of Manna and Waldinger ([MW81], also in [MW90]), Eriksson
([Eri84]), Paulson ([Pau85b]) and Nardi ([Nar89]). A number of differ¬
ent approaches are taken in these papers. Manna and Waldinger are
historically prior and all other authors in this area draw heavily on
their work. They present a constructive proof of a theorem which ex¬
presses a specification. Eriksson synthesises a logic program. Paulson
reports on his experiences of adapting and checking Manna and
Waldinger's proof using the Cambridge LCF. Nardi presents a synthe¬
sis of a program using a deductive tableau method.

4.1 Manna and Waldinger
In [MW811 Manna and Waldinger present an informal (but rigourous)
proof of the correctness of a unification algorithm. They view the con¬
structing of a program which meets a specification as the task of prov¬
ing (sufficiently constructively) a theorem of the form:
(Va)(3z)(if P(a) then R(a, z))

where a is the input to the program, z the output, P the input
condition and R describes the intended relation between the input and
the output. The input condition 'expresses the class of legal inputs to
which tne program is expected to apply'. From the proof of the theo¬
rem a program can be extracted, which is presented in an informal
applicative language.
They use the principle of well-founded induction, so the corresponding
program will use general recursion.
They express terms by using expressions and /-expressions. There is
an alphabet, S, of symbols, formed from three (disjoint) sets, represent¬
ing constants, variables and functors. Each functor has an associated
integer called its arity.
The expressions of S are:

constants;

variables;
functors of arity n applied to lists of expressions of length n.
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The /-expressions of S are:

the expressions of S;
lists of /-expressions.

It is two /-expressions that are to be unified. A well-founded order is
defined on /-expressions, and this is used to show that the algorithm
terminates. The proof of termination relies on the most generalunifier
being constructed being idempotent.
Substitutions are represented by sets of replacements. A replacement
consists of a variable and the /-expression which replaces it.
Furthermore it is required that in a substitution all the variables are
distinct and none of the /-expressions is one of the variables. The re¬
placements are to be performed simultaneously.
The theorem that they prove (in their notation) is:

(Vs)(Vs')(30)

6 is most-general, idempotent unifier of s and s'
and e * nil

or

s and s' are not unifiable and e = nil

where s and s' are /-expressions and nil is a special symbol, distinct
from any substitution.

4.2 Eriksson

In [Eri84] Eriksson works in an untyped logic programming calculus.
The logic that he uses to reason about the specification and the pro¬
gram is intuitionistic and is presented in a natural deduction style.

Datatypes are represented by predicates, e.g. lists are defined as:

Vw(list(w) ** w = 0 v 3x3y(w = x.y & element(x) & list(y))).

Eriksson also changes the representation of the terms to be unified. He
has a language of terms built from variables and from functors and
predicates applied to term lists. He calls variables and functors applied
to their arguments terms and predicate symbols applied to their argu¬
ments predicates. The program that he constructs unifies pairs of terms,
pairs of term lists, or pairs of predicates.
Substitutions are represented as unambiguous lists of replacements.
He uses a separate induction schema for each type. The induction
schema presented for terms is:

Vv(variable(v) -» P(v)) &
VfVtl(symbol(f) & termlist(tl) & Vt(t e tl -» P(t)) -» P(termfun(f, tl))) -»

Vz(term(z) -» P(z))
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This is a schema for structural induction. No schema for induction on

predicates is presented. Such an induction schema is needed if a func¬
tion which unifies pairs of predicates is to be defined.
The algorithm that Eriksson presents (with a minor change in syntax
and our comments) is:

mgu(a, b, u) <- variable(a) & variable(b) &a = b& u = 0
mgu(a, b, u) variable(a) & variable(b) & -(a = b) & u = (a,b).0
mgu(a, b, u) <- variable(a) & variable(b) & -.(a = b) & u = (b,a).0
mgu(a, b, u) «- variable(a) & function(b) &

-iOccurs_in(a, b) & u = (a, b).0
mgu(a, b, u) «- function(a) & variable(b) &

-.occurs_in(b, a) & u = (b, a).0
mgu(a, b, u) <- function(a) & function(b) &

a = termfun(s, as) & b = termfun(s, bs) & mgu(as, bs, u)

mgu(a, b, u) <- termlist(a) & termlist(b) &
a = 0& b = 0& u = 0

mgu(a, b, u) <- termlist(a) & termlist(b) &
a = ah.at & (* a has a head and a tail *)
b = bh.bt & C* b has a head and a tail *)
mgu(at, bt, ut) & (* the unifier of the tails is ut*)
aprime = subst(ah, ut) & (* apply ut to the head of a *)
bprime = substCbh, ut) & C* apply ut to the head of b *)
mguCaprime, bprime, uh) & (* unify these terms*)
u = substconc(ut, uh) (* compose the separate unifiers *)

mgu(a, b, u) <r- predicate(a) & predicate(b) & a = predfun(s, as) &
b = predfun(s, bs) & mgu(as, bs, u)

In a typed programming system we would expect to see three functions
defined: one pair of mutually recursive functions for unifying term or
term list pairs and one function to unify predicates. In the case of fail¬
ure to unify two terms, term lists or predicates this algorithm merely
fails, rather than explicitly reporting failure.
Notice that although the term induction schema presented is a struc¬
tural induction schema the algorithm uses well founded recursion. In
the case when two term lists are to be unified their tails are unified and
then the terms constructed by applying the unifier of the tails to the
heads are unified. Hence this program could not be derived using the
induction schema described.

Eriksson only claims to prove partial correctness. He does not specify
that the most general unifier constructed by his program is also idem-
potent. We wul later see that we require this property to prove both
that our algorithm terminates and that it is correct. We tnink that a
proof of the termination of Eriksson's algorithm would also rely on the
idempotence of the constructed unifier. As we have stated Eriksson
needs to provide a schema for well founded induction on his terms in
order correctly to derive the algorithm that he presents. It is our expe¬
rience that the idempotence of the constructed unifier will be required
to prove that the recursive calls are made on values which are in the
required well founded order.
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4.3 Paulson

In [Pau85b] Paulson describes his experiences checking Manna and
Waldinger's proof using the Cambridge LCF ([Pau85a], [Pau87]), an
interactive theorem prover for reasoning about computable functions.
Notice that the meta-language of LCF (ML) uses Milner's polymorphic
type system ([Mil78]), the correctness of which depends on the correct¬
ness of a unification algorithm. In the course of attempting to check
Manna and Waldinger's proof Paulson finds that he must make some
changes. A significant change is made to the language of terms. He
uses variables, constants ana terms applied to terms. He states that this
simplifies the proof 'without sacrificing generality'. There remains a
burden of proof here however. There are terms (e.g. the application of
the variable x to the variable y) in Paulson's language that are not
terms under our intuitive notion. We shall call such terms
unacceptable and terms that accord with out intuitive notion
acceptable. We can expect the unification algorithm to unify unac¬
ceptable terms. We may fear that it will produce unifiers that, when
applied to acceptable terms produce unacceptable terms. We may also
fear that two acceptable terms may unify to an unacceptable term. We
may also fear that two acceptable terms may have as their most gen¬
eral unifier an unacceptable substitution. A proof that this unification
algorithm is safe is required for us to be convinced that Paulson's proof
applies to the case of interest to us.

4.4 Nardi

Nardi [Nar89] presents the work of Manna and Waldinger, providing
a formal proof using the deductive tableau method. Deductive tableaux
are described in [MW90] and are a variant of the semantic tableaux
described in [Sun86a]. It is to be noted that one of the rules used is a
resolution rule which allows the derivation of a new line of a tableau
'if it is possible to unify two subsentences of two rows of the tableau'.
Nardi adopts exactly Manna and Waldinger's notion of what a specifi¬
cation is and aims to synthesise an algorithm from the proof that the
specification can be met. The logic used in the tableaux is classical:

The distinction between assertions and goals reflects the usual distinction
between hypothesis and theses; any goal can be moved into the assertion
column by simply negating it (and vice versa), without affecting the meaning
of the tableau.

It is therefore not clear exactly what the status of the proof is. On one
hand it may be considered as a classical proof that a given algorithm
meets a given specification. However, to assert that an algorithm can
be synthesised (or extracted) from the classical proof requires further
justification, even if this simply consists of asserting that none of the
rules used was non-constructive.

Again, well-founded induction is used.
Nardi deviates from Manna and Waldinger by choosing to use
Paulson's terms. The caveat above remains valid here too.
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Chapter 5
Representing Terms

In this chapter we present two ways to represent our intuitive notion of
a term using type theory. The first way is to use two mutually depen¬
dent types. The second way is to use the general trees that are pre-
sentea in [NPS90].

5.1 Diversion on mutually recursive types

Recall that with the ordinary inductively defined types we must explain
the conditions under which the type is well-formed, the conditions un¬
der which canonical and equal canonical elements of the type are
formed, present the rules that will allow us to perform structurally re¬
cursive computations with the values of the type, state the conse¬
quences of knowing that we have a value of the type and finally pre¬
sent equality rules involving non-canonical elements formed using the
recursion operator. In [BCMS88] Backhouse et al state that:

Mutual recursion adds nothing substantially new to type theory. What inno¬
vations there are, reside in the elimination and computation rules.

We should like to add that the use of mutually recursive types forces us
to take great care in the framing of specifications ana of the well-
founded order that we will later present for the type of terms. If we
have a family of mutually recursive types Tj...Tn then we cannot, in
general, define a function on any one of them without simultaneously
defining analogous functions on all the others. It should therefore be
clear that we cannot specify a function on any one of them without, in
general, providing an analogous specification for all the others.

5.1.1 Example

As an informal example we discuss the two mutually recursive types
ODD and EVEN.

The rules for the introduction of canonical elements of the types ODD
and EVEN are:

e : EVEN

So(e) : ODD
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o : ODD

Se(o) : EVEN

Zero : EVEN

We carf define another type:

EOSUM =dBF ODD + EVEN
EOSUM is, of course, just another representation of the natural num¬
bers. For any family of mutually recursive types we can always define
a new type which contains all of them in this way.
We now start to consider what we must do to define functions over the
types ODD and EVEN. There are a few functions, like the predecessor
function, which we can define, in M-LTT, on the type ODD, without
defining any function on the type EVEN. However, most functions that
we will oe interested in will reauire that we define two functions simul¬
taneously. For example to ada an odd number to an odd number we
can expect to have to explain how to add an odd number to an even
number. Defining the function over the type EOSUM implicitly reauires
the we define it over ODD and EVEN. For any family of mutually re¬
cursive types we can decide to work with their sum. Functions and
specifications can be written for this, and the appropriate functions and
specifications for the individual type extracted. We can view the type of
general trees as a way of encoding this observation.

5.2 The type of terms
In this section we will give formal rules for the types TERM and TERMS.
These types are mutually dependent. We can give a direct semantics
for them in precisely the same way that we provide a semantics for
ordinary types. We must make some changes to reflect the fact that we
are defining two types simultaneously, but the justification of the rules
concerning these types follows exactly the same pattern as the justifica¬
tion of the rules for any other types.
The types VAR and CONST are presumed to be known. They must
each nave a decidable equality.
We will often use the word 'term'to indicate informally an object either
of type TERM or of type TERMS.

5.2.1 Formation rules

The formation rules for TERM and TERMS are:

TERM type TERMS type
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We could have chosen to parameterise the types TERM and TERMS by
the types of the variables and constants that we use. We would then
have these formation rules:

V type C type V type C type
TERM(V, C) type TERMS(V, C) type

This however would simply add needless complexity.

5.2.2 Introduction rules

The rules for the introduction of canonical elements of the types TERM
and TERMS are:

v : VAR

Var(v) : TERM

c : CONST ts : TERMS

App(c, ts) : TERM

None : TERMS

t : TERM ts : TERMS

Some(t, ts) : TERMS

The rules for the introduction of equal canonical elements of TERM
and TERMS are:

w = v : VAR

Var(w) = Var(v) : TERM

d = c : CONST ss = ts : TERMS

App(d, ss) = App(c, ts) : TERM

None = None : TERMS

s = t : TERM ss = ts : TERMS

Some(s, ss) = Some(t, ts) : TERMS

5.2.3 Computation rules
From these introduction rules we can construct the computation rules
for the non-canonical constants associated with these types. The non-
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canonical constant associated with a type allows us to perform struc¬
turally recursive computation on values of the type.

t --> Var(x) d(x) --> d'
termrec(d, e, f, g, t) —> d'

t —> App(c, ts) e(c, ts, termsrec(d, e, f, g, ts)) -> e'
termrec(d, e, f, g, t) --> e'

ts -> None f —> f

termsrec(d, e, f, g, ts) —> f'

ts -> Some(s, ss) g(s, ss, termrec(d, e, f, g, s), termsrec(d, e, f, g, ss)) -> g'
termsrec(d, e, f, g, ts) ~> g'

Notice that the computation rules for termrec and termsrec are mu¬
tually dependent. To evaluate expressions formed using termrec we
can expect to evaluate expressions formed using termsrec and vice
versa.

5.2.4 A single non-canonical constant for a group of mutually
recursive types

At this point we would be free to define a new non-canonical constant
term_or_termsrec, whose computation rules are as above, but with
every occurrence of termrec and termsrec replaced with
term_or_termsrec. This non-canonical constant can be used in place
of the other two in the elimination rules and so on. We will return to
this point later in this chapter after we have shown that we can repre¬
sent our types TERM and TERMS using tree types and that we can de¬
fine termsrec and termrec using treerec.

5.2.5 Elimination rules

Figure 5.5 is the rule for using an element of TERM.

Figure 5.6 is the rule for using an element of TERMS.
We have two mutually dependent elimination rules, which coincide on
their minor premisses. As stated previously, for m mutually defined
types, with a total of n introduction rules the elimination rules require n
+ m minor premisses: m well-formedness conditions and n premisses
corresponding to the introduction rules. The elimination rules for TERM
and TERMS must be justified together and their justification follows the
usual pattern of carefully explaining what we could do if we had a
value of each of the types.

Suppose we have an object t of type TERM. We wish to justify thejudgement that termrec(a, e, f, g, t) has a value of some type, P(t),
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depending on t, so we must have as a premiss to the rule that P(x) is a
type if x has type TERM.
t must take either Var(v) or App(c, ts) as its value.

Suppose t takes value Var(v). From the computation rules we know
that termrec(d,e,f ,g,Var(v)) has the same value as d(v), so if
d(v) :P(Var(v)) when v : VAR then termrec(d,e,f,g,t):P(t).
Therefore we need the third minor premiss.

Suppose t takes value App(c,ts). From the computation rules we
' ' /if

App(c,ts)) has the same value as

, , „ ,, , , r this to be sensible Q(ts) must be a type
if ts .-TERMS, hence we need the second minor premiss. If
e(c,ts,q):P(App(c,ts)) then termrec(d,e,f,g,t):P(t).
We are still required to explain the conditions under which
termsrec(d, e, f, g, ts) can take a value of type Q(ts), given that ts is
of type TERMS. Notice that this is precisely what we will be asked to
do to explain the TERMS elimination rule.
ts must have either None or Some(h, tl) as its value.

Suppose ts takes value None. From the computation rules we know
that termsrec(d, e, f, g, None) has the same value as f, so if
f :Q(None) then termsrec(d, e, f, g, None) : Q(None) . Therefore
we require the fifth minor premiss.

Suppose ts takes value Some(hd, tl) . From the computation rules we
know that termsrec(d,e,f,g,Some(hd,tl)) has the same value as

g(hd, tl, termrec(d, e, f, g, hd), termrec(d, e, f, g, tl)).

termrec(d,e,f,g,hd) and termrec(d,e,f,g,tl) will take values,
say r and s, of types P(hd) and Q(tl) respectively. Hence if
g(nd,tl,r,s):Q(Some(ha,tl) then

termsrec(d, e, f, g, Some(hd, tl)) : Q(Some(hd, tl)

Hence we require the sixth minor premiss.
We have now explained how we justify the conclusion of the TERM
elimination rule on the basis of its premisses. The justification of the
TERMS elimination rule follows a similar pattern, except that because
the major premiss is that ts : TERMS, we first see the need for the sec¬
ond, fifth and sixth minor premisses and need to add the first, third and
fourth when we explain now termsrec(d, e, f, g, t), where t:TERM
has a value of type P(t) as we explain the sixth minor premiss.

5.2.6 Termrec and termsrec equality

Figures 5.7, 5.8, 5.9 and 5.10 are the equality rules.
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We justify figure 5.7 by observing that from the computation rules
termrec(a, e, f, g, Var(p)) takes tne same value as d(p). The minor
premisses of the rule are required to ensure that this value is of an
appropriate type, using an argument identical to that presented above
for the elimination rules.

We justify figure 5.8 by observing that from the computation rules
t e r mr ec (d, e, f, g, App (a, bj) takes the same value as
e(a,b,termsrec(d, e, f, g, b)). Tne minor premisses of the rule are
required to ensure that this value is of an appropriate type, using an
argument identical to that presented above for the elimination rules.
We justify figure 5.9 by observing that from the computation rules
termsrecfd, e, f, g, None) takes the same value as f. The premisses
of the rule are required to ensure that this value is of an appropriate
type, using an argument identical to that presented above for the
elimination rules.

We justify figure 5.10 by observing that from the computation rules
termsrec(d,e,f ,g,Some(a,b)) takes the same value as
g(a,b,termrec(d, e, f, g, a), termsrec(d, e, f, g, b)). The minor
premisses of the rules are required to ensure that this value is of an
appropriate type, using an argument identical to that presented above
for the elimination rules.

5.2.7 Remarks

We have now presented the two types TERM and TERMS, and justified
the rules for dealing with them in a direct fashion. In the next two sec¬
tions we introduce these types and justify these rules in a different way,
by utilising the general trees that are presented in [NPS90]. This is,
strictly, unnecessary, but serves to underline the correctness of the ap¬
proach taken above to the definition and use of mutually recursive
types. M-LTT is an open-ended theory: we are free to ada new types
and forms of types (e.g. enumerated types, inductively defined types,
mutually inductively defined types) provided we can justify them. We
are not forced to define everything in terms of some special 'base'
types. We should, however, be wary of adding new apparatus to the
tneory, as this provides us with an opportunity to make absurd exten¬
sions.

5.3 The type of general trees
We recap the section on general trees from [NPS90]. We do not give
any justification of the rules here.
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5.3.1 Tree formation

The rule for the formation of the tree type is:

[*:A1 [,7B£>]
x : A

y : B(X)
z : C(x, y)

A type B(x) type C(x, y) type d(x,y,z) : A a : A
Tree Form

Tree(A, B, C, d)(a) type

We write 1(a) to abbreviate Tree(A, B, C, d)(a). A is the index set for
the trees, and is used to allow us to pick out definitions relating to a
particular one of the mutually recursive types that we are encoding as
trees. We re-iterate that we cannot in general do anything for one 1(a)
without explaining how to do something analogous for the other 1(a).

5.3.2 Tree introduction

The rule for the introduction of a value of 1(a) is:

5.3.3 Computation rules

The non-canonical constant associated with the type of general trees is
treerec, which has the following computation rule:

[z : C(a, b)]

a : A b : B(a) c(z) : 7(d(a, b, z))
tree(a, b, c) : 7(a)

Tree Intro

t --> tree(a, b, c) f(a, b, c, (x)treerec(f, c(x))) --> f'
treerec(f, t) -> f'
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5.3.4 Tree elimination

The tree elimination rule is:

x : A

y : B(x)
z(v) : i^cKx, y, v)) [v : C(x, y)]

u(v) : D(d(x, y, v), z(v)) [v : C(x, y)]

D(x, s) : type a : A t : cz(a) f(x, y, z, u) : D(x, tree(x, y, z))
treerec(f, t) : D(a, t)

Tree Elim

5.3.5 Treerec equality

Figure 5.11 is the rule for treerec equality.

5.4 Using the type of general trees to encode
terms

Having presented the rules for the type of general trees we shall now
show now to define the type of terms using the type of trees and pro¬
ceed to justify the rules for terms on the basis of the rules for trees.

5.4.1 Some preliminary definitions

We make the following definitions, with A, 8, C, d as above:
A =dEF {TM, TMS}

B(TM) =dEF VAR + CONST
B(TMS) =dEF {N, S}
i.e B =dEF case|jMi TMS}(^AR + CONST, {N, S})

C(TM, lnl(v)) =dEF {}
C(TM, lnr(c)) =dEF {args}
C(TMS, N) =dEF {}
C(TMS, S) =dEF {hd, tl}
i.e. C =dEf-(y) case{TMi TMS}(when((v){}, (c){args}, y),

case{N, s}W, lhd> t'f.y)
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d(TM, lnl(v), f) =dBF case{}(f)
d(TM, lnr(c), args) =dBF TMS
d(TMS, N, f) =dBF case{j(f)
d(TMS, S, hd) =dBF TM
d(TMS, S, tl) =dBF TMS

i.e. d =dBF (y)(z) case{TMi TMS}(when((v)case {}(z),
(c)case{args}(TMS, z), (*= (c) TMS*)
y

),
case{N, S}(case{}(z)>

case{hd, tl}(™. ™S- z)>
y)

)

5.4.2 Justifying the introduction rules
Now we shall present instances of the Tree introduction rule which,
with appropriate definitions, can be used to justify the TERM and
TERMS introduction rules.

5.4.2.1 Justifying the first TERM introduction rule

[f : »]
v : VAR

TM : {TM, TMS} lnl(v) : VAR + CONST Casejj(f) : i(casejj(f))
tree(TM, lnl(v), casejp : i(TM)

justifies (because the judgements of the first and third premisses are
immediate):

V : VAR

tree(TM, lnl(v), casejp : i(TM)

which, given the definitions:
TERM =dEF l(TM)
Var(v) =dBF tree(TM, lnl(v), case|j)

justifies:

V : VAR

Var(v) : TERM

which is the first TERM introduction rule.
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5.4.2.2 . Justifying the second TERM introduction rule

[z : {args}]
c : CONST

TM : fTM, TMS} lnr(c) : VAR + CONST ts . ^jms)
tree(TM, lnr(c), (z)ts) : t(TM)

justifies (because the judgement of the first is immediate):

c : CONST ts : i(TMS)
tree(TM, lnr(c), (z)ts) : i(TM)

which, with the following definitions:
TERMS =def 1(TMS)
App(c, ts) =deF tree(TM, lnr(c), (z)ts)

justifies:

c : CONST ts : TERMS

App(c, ts) : TERM

which is the second TERM introduction rule.
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5.4.2.3 Justifying the first TERMS introduction rule

[f : {}]

TMS : {TM, TMS} N : {N, S} case{j(f) : i(case{}(f))
tree(TMS, N, casejp : 7(TMS)

justifies (because the judgements of all the premisses are immediate):

tree(TMS, N, casejj) : o(TMS)

which, with the following definition:
None =yBF tree(TMS, N, case^j)

justifies:

None : TERMS

which is the first TERMS introduction rule.

5.4.2.4 Justifying the second TERMS introduction rule

Figure 5.12 justifies (because the judgements of the final three pre¬
misses are immediate):

t : l(TM) ts : t(TMS)
tree(TMS, S, case^dj t(j.(t, ts)) : i(TMS)

which, with the following definition:
Some(t, ts) =dBF tree(TMS, S, case{hd) t|}(t, ts))

justifies:

t : TERM ts : TERMS

Some(t, ts) : TERMS

which is the second TERMS Introduction rule.
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We have now added the following definitions:
TERM =dBF Tree({TM, TMS}, B, C, d, TM) =dBF l{TM)
TERMS =dBF Tree({TM, TMS}, B, C, d, TMS) =dBF l(TMS)
Var(x) =dBF tree(TM, lnl(x), case^)
App(c, ts) =dBF tree(TM, lnr(c), (z)ts)
None =deF tree(TMS, N, case^)
Some(t, ts) =dBF tree(TMS, S, case|hdi t)}(t, ts)).

We have now justified the introduction rules for the types TERM and
TERMS on the basis of the introduction rules for TREE and some suit¬
able definitions.

5.4.3 Justifying the rules for the introduction of equal canonical
elements

We shall not present justifications of the rules for the introduction of
equal canonical elements of TERM and TERMS, but these can be justi¬
fied in the same way as the introduction rules were justified from the
rules for the introduction of equal canonical elements of TREE and the
above definitions.

5.4.4 Justifying the elimination rules
Next we need to justify the elimination rules and define termrec and
termsrec in terms of treerec. We justify the elimination rule for TERM
by showing that, if the premisses of this rule are valid judgements then
we may justify the conclusion of this rule by using the TREE elimination
rule. We may then do the same for the elimination rule for TERMS.
5.4.4.1 Justifying TERM elimination
We shall justify the TERM elimination rule from the tree elimination
rule. For convenience we shall recap the rule for TERM elimination in
Figure 5.13, using new symbols to avoid clashing with those used in the
TREE elimination rule.

The rule for using a value of type 1{TM) is:

[x : {TM, TMS}"]s : i(x) J

x : {TM, TMS}
y : B(x)

z(v) : i(d(x, y, v)) [v : C(x, y)]
u(v) : D(d(x, y, v), z(v)) [v : C(x, y)]

D(x, s) : type TM : [TM, TMS} t : i(TM) f(x, y, z, u) : D(x, tree(x, y, z))
treerec(t, f) : D(TM, t)
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We shall treat the first premiss of the 1{TM) elimination rule as the
following pair of judgements:

[t : i(TM)]

D(TM, t) type

and

[s : tzfTMS)]

D(TMS, s) type

The definitions:

D(z, x) =deF case{TMj TMS}(p(x)> Q(x). z)
TERMS =deF t(TMS)
TERM =deF l(TM)

where P and Q are as before, justify the first and second minor
premisses of the TERM elimination rule.
In section 3.6.4 we observed that we could avoid this abuse of case by
using EQ types, but choose not to do this as it only adds needless
complexity.
The second premiss of the l(TA4) elimination rule may be ignored, as
the judgement of it is immediate.

The third premiss, given the definition TERM =deF ifTM), is justified by
the major premiss of the TERM elimination rule.
The fourth premiss of the 1{TM) elimination rule will be justified from
the final four premisses of the TERM elimination rule. We shall treat
the fourth premiss as the following four judgements:
Figure 5.1)

v : VAR -|
z(w) : i(d(TM, lnl(v), w)) £w : C(TM, Inl(v))]

u(w) : D(d(TM, lnl(v), w), z(w)) Jw : C(TM, lnl(v))^

f(TM, lnl(v), z, u) : D(TM, tree(TM, lnl(v), z))
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Figure 5.2)
c : CONST

z(w) : itdfTM, lnr(c), w)) £w : C(TM, lnr(c))]
u(w) : D(d(TM, lnr(c), w), z(w)) JW : C(TM, lnr(c))]^

Figure 5.3)

f(TM, lnr(c), z, u) : D(TM, tree(TM, lnr(c), z))

z(w) : 2(d(TMS, N, w)) [w : C(TMS, N)] "1
u(w) : D(d(TMS, N, w), z(w)) [w : C(TMS, N)]J

Figure 5.4)

f(TMS, N, z, u) : D(TMS, tree(TMS, N, z))

z(w) : a(d(TMS, S, w)) [w : C(TMS, S)]
u(w) : D(d(TMS, S, w), z(w)) Jw : C(TMS,

J 1
- S)]J

f(TMS, S, z, u) : D(TMS, tree(TMS, S, z))

Now we can use the definitions above to reduce these judgements
further.

Figure 5.1 becomes

v : VAR

z(w) : <z(casej}(f)) [w : {}]
u(w) : D(casejj(f), z(w)) [w : {}]^

f(TM, lnl(v), z, u) : D(TM, tree(TM, lnl(v), z))

If we take z to be case^j and f(TM, lnl(v), z, u) to be a(v), where a is
the function mentioned in the TERM elimination rule then we get the
following:

[v : VAR]

a(v) : P(Var(v))

which is justified by the third minor premiss of TERM elimination.
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Figure 5.2 becomes

r c : CONST 1
z(w) : o(TMS) [w : {args}J

u(w) : D(TMS, z(w)) Jw : {args}]^

f(TM, lnr(c), z, u) : D(TM, tree(TM, lnr(c), z))

If we assume TS : TERMS, take z to be (x)TS and f(TM, lnr(c), z, u) to
be f3(c, z, u) this becomes:

r c : CONST -j
z(w) : t(TMS) Jw : {args}]
u(w) : Q(z(w)) Jw : {args}]^

P(C, z, u): P(App(c, TS))

which is justified by the fourth minor premiss of TERM elimination.

Figure 5.3 becomes:

z(w) : g(case{}(f)) [w : {}] -1
u(w) : D(casejj(f), z(w)) Jw : {}]J

f(TMS, N, z, u) : D(TMS, tree(TMS, N, z))

If we take f(TMS, N, z, u) to be x and z to be case^ this becomes:

z(w) : -z(case{}(f)) Jw : {}] -|
u(w) : D(casejj(f), z(w)) Jw : {}]J

X : Q(None)

which is justified by the fifth minor premiss of TERM elimination.

Figure 5.4 becomes:

z(w) : i(d(TMS, S, w)) Jw : {hd, tl}J "|
u(w) : D(d(TMS, S, w), z(w)) J w : {hd, tljjj

f(TMS, S, z, u) : D(TMS, tree(TMS, S, z))
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If we expand the hypothetical assumptions we get:

r z(hd) : i(TM) -

z(tl) : ^TMS)
u(hd) : P(z(hd))
u(tl) : Q(z(tl))

f(TMS, S, z, u) : D(TMS, tree(TMS, S, z))

which is justified by the last minor premiss of the TERM elimination
rule, if we assume:

T : TERM

TS : TERMS

and take z to be:

case{hd, tl}(T, TS)

and f(TMS, S, z, u) to be:
6(z(hd), z(tl), u(hd), u(tl))

In this section we have justified the elimination rule for the type TERM.
Much of the work has been done by expanding the final premiss of the
rule for using a value of type 1{TM). We now reverse this process to
allow us to define termrec in terms of treerec.

We have now taken:

f(TM, lnl(v), z, u) to be a(v)
f(TM, lnr(c), z, u) to be p(c, z, u)
f(TMS, N, z, u) to be x

f(TMS, S, z, u) to be 6(z(hd), z(tl), u(hd), u(tl))

The assumptions used in Figures 5.1 to 5.5 respectively ensure that
these expressions are correctly typed.
Hence we have taken:

f(TM, v_or_c, z, u) to be when(a, (c)p(c, z(args), u(args)), v_or_c)
f(TMS, ns, z, u) to be case{N) SJ(X> 8(z(hd), z(tl), u(hd), u(tl)), ns)

Again, the types of these expressions are determined by the
assumptions that we have made.
Hence we have taken:

f(x, y, z, u) to be
case{TM, TMS}(when(a> (c) P(c> z(args), u(args)), y),

case{N, S}(x, 6(z(hd), z(tl), u(hd), u(tl)), y), x)
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On the assumptions made in the fourth premiss of the T(TM)
elimination rule and given our earlier definition of D this expression is
of type Dfajreetx.y,!)).
So we may now make the definition:

termrec(a, p, x, 5, t) =,„
treerec((b, z, u)case{TMj TMS}(when(a, (c) p(c, z(args), u(args)), b),

case{N, s}(x. 6(z(hd), z(tl), u(hd), u(tl)), b))
),

t).

5.4.4.2 Justifying TERMS elimination
The above justification goes through mutatis mutandis to justify the
TERMS elimination rule, we make tne definition:

termsrec(a, p, x, 5, ts) =deF

treerec((b, z, u)case{TMi TMS}(when(a, (c) p(c, z(args), u(args)), b),
case{N, S}(x. 8(z(hd), z(tl), u(hd), u(tl)), b))

),
ts).

5.5 Conclusions

In this chapter we have shown that we may represent our terms in two
ways in M-LTT. Firstly by extending the theory with mutually recursive
types and using these, and secondly by using the type of trees. We
have justified the rules that we gave for the mutually recursive types
using the rules that we gave when using trees.

We notice that the definitions of termsrec and termrec that we gave
using treerec are identical. This should not be a surprise: in general to
define a function over the type TERM we must define a function over
TERMS and vice versa. However we may expect there to be one non-
canonical constant for each type. If our understanding of mutually re¬
cursive types is correct, or if our interpretation of our mutually recur¬
sive types as trees is correct then we have one non-canonical constant
for every group of mutually recursive types. We may say that every
type has only one non-canonical constant but one constant may be the
non-canonical constant associated with a number of types. At a num¬
ber of places later in the thesis we will use the identity of termsrec and
termrec.
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Figure5.5)TERMElim

rc:CONST- u:TERMS q:Q(u)

rw:TERMn z:TERMS r:P(w) s:Q(z)

c:CONST■ u:TERMS q:Q(u)

[x:TERM][y:TERMS][v:VAR]
t:TERMP(x)typeQ(y)typed(v):P(Var(v))e(c,u,q):P(App(c,u))f:Q(None)g(w,z,r,s):Q(Some(w,z)) termrec(d,e,f,g,t):P(t)

Figure5.6)TERMSElim
[x:TERM][y:TERMS][v:VAR]

ts:TERMSP(x)typeQ(y)typed(v):P(Var(v))e(c,u,q):P(App(c,u))f:Q(None)g(w,z,r,s):Q(Some(w,z)) termsrec(d,e,f,g,ts):Q(ts)

Figure5.7)Atermrec=rule
[x:TERM][y:TERMS][v:VAR]

p:VARP(x)typeQ(y)typed(v):P(Var(v))e(c,u,q):P(App(c,u))f:Q(None)g(w,z,r,s):Q(Some(w,z))
rw:TERM z:TERMS r:P(w) s:Q(z)

c:CONST- u:TERMS q:Q(u)

rw:TERMn z:TERMS r:P(w) s:Q(z)

termrec(d,e,f,g,Var(p))=d(p):P(Var(p)) 44



Figure5.8)Theothertermrec=rule

rc:CONSTn u:TERMS q:Q(u)

[x:TERM][y:TERMS][v:VAR]
a:CONSTb:TERMSP(x)typeQ(y)typed(v):P(Var(v))e(c,u,q):P(App(c,u))f:Q(None)g(w,z,r,s):Q(Some(w,z))

rw:TERMq z:TERMS r:P(w) s:Q(z)

termrec(d,e,f,g,App(a,b))=e(a,b,termsrec(d,e,f,g,b)):P(App(a,b))
Figure5.9)Atermsrec=rule [x:TERM][y:TERMS][v:VAR] P(x)typeQ(y)typed(v):P(Var(v))e(c,u,q):P(App(c,u))f:Q(None)g(w,z,r,s):Q(Some(w,z))rc:CONST• u:TERMS q:Q(u)

w:TERM- z:TERMS r:P(w) s:Q(z)

termsrec(d,e,f,g,None)=f:Q(None)
Figure5.10)Theothertermsrec=rule fx:TERM][y:TERMS][v:VAR]

c:CONST u:TERMS q:Q(u)

rw:TERM z:TERMS r:P(w) s:Q(z)

a:TERMb:TERMSP(x)typeQ(y)typed(v):P(Var(v))e(c,u,q):P(App(c,u))f:Q(None)g(w,z,r,s):Q(Some(w,z)) termsrec(d,e,f,g,Some(a,b))=g(a,b,termrec(d,e,f,g,a),termsrec(d,e,f,g,b)):Q(Some(a,b)). 45



Figure5.11)Thetreerec=rule
FxaiL.t=*x)J

[z:C(a,b)]

x:A
y:B(x)

z(v):<z(d(x,y,v))[v:C(x,y)]
u(v):D(d(x,y,v),z(v))[v:C(x,y)]

Figure5.12) Figure5.13)

D(x,t):typea:Ab:B(a)c(z):i(cl(a,b,z))
f(x,y,z,u):D(x,tree(x,y,z))

treerec(f,tree(a,b,c))=f(a,b,c,(x)treerec(f,c(x))):D(a,tree(a,b,c))
[z:{hd,tl}]

t:ifTM)ts:i(TMS)TMS:{TM,TMS}S:{N,S}casejhdits,z):-j(casejhdit|j(TM,TMS,z)) tree(TMS,S,case^ts)):t(TMS)
[x:TERM][y:TERMS][v:VAR]

rc:CONST- d:TERMS q:Q(d)

rw:TERM■ z:TERMS r:P(w) s:Q(z)

t:TERMP(x)typeQ(y)typeg(v):P(Var(v))p(c,d,q):P(App(c,d))x=Q(None)6(w,z,r,s):Q(Some(w,z)) termrec(a,p,x,8,t):P(t) 46



Chapter 6
Well-founded Recursion In
Martin-Lof's Type Theory

In this chapter we discuss the use of well-founded recursion in M-LTT.
The non-canonical constant for an inductively defined type is a struc¬
tural recursion operator. Functions over the type are defined in terms
of this constant. There is one outstanding feature of using the structural
recursion operators: every well-typed expression strongly normalises,
i.e. evaluation of well-typed expressions always terminates. Functions
are total.

There are, however, many algorithms which are not most naturally ex¬
pressed using structural recursion. In particular there are many func¬
tions that are naturally expressed using well-founded recursion. The
unification algorithm that we shall present later is such an algorithm.

6.1 Describing Well-foundedness
There are several definitions in the literature of the well-foundedness
of an ordering. The classical version is in terms of the non-existence of
infinite descending sequences. We ignore this as not allowing
constructive proofs by (well-founded) induction or constructions by
(well-foundea) recursion. There are several constructive versions:

i) Thompson presents one in 57.9 of [Tho91J, formalising the
usual idea of proof by well-founded induction;

ii) Paulson [Pau84] defines well-foundedness in terms of
various rules 'holding' and gives an alternative which uses
subsets (which we assume can be replaced by £ types);

iii) Thompson states (Theorem 7.16) and Paulson states and
proves the theorem that an ordering on a type is well-
founded iff it is the inverse image of the canonical well-
founded ordering on a well-ordering, where the definition of
the canonical well-founded ordering on a well-ordering is as
on page 36 of [Pau84j;

iv) Nordstrom, in [Nor88], presents the type Acc(A,<), the
accessible elements of < in A and defines well-foundedness
in terms of this;

v) Saaman and Malcolm, in [SM87], extend the work of
[Nor88] by internalising the membership relation and hence
deriving new versions of the elimination rules.
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The two which are of most interest to us are Paulson's characterisation
of well-foundedness using well-orderings and Nordstrom's using Acc
types. Nordstrom's use of Acc types is criticised both by Thompson and
by Saaman and Malcolm. It is beyond the scope of this thesis to
investigate these criticisms in detail. The rules that Nordstrom presents
allow a relatively natural expression of an algorithm and are
convenient to work with. We shall assume that Nordstrom and Paulson
are describing the same concept and that we may make use of
Nordstrom's rules even if we use what is essentially Paulson's
characterisation of well-foundedness.

6.1.1 Defining well-foundedness using well-orderings
A partial ordering on a small type, A, is a small-type-valued binary
function, <A, on A for which the following types are inhabited:

TT(x : A, -(x <A x))
TT(x : A, ff(y : A, n(z : A, x <A y & y <A z x <A z)))

Well-orderinqs are described in [Mar84]. Paulson [Pau84] defines the
canonical well-founded ordering on a well-ordering as:

v' <w sup(a, f) =dEF {y € B(a) I v' =w f(y)}

We replace the use of the subset type with a £ type and make use of
wrec to define the canonical well-founded ordering <w on a well-
ordering W(A, B) as follows:

<w(v'> v) wrec((x, y, z)I(u : B(x), Eq(W(A, B), v', y(u))), v).

We can now proceed to use Paulson's characterisation of an ordering
on a type as well-founded iff it is the inverse image of the canonical
well-founded ordering on a well-ordering:
WF(A, <A) =dEF Order(A, <A) &

X(C : U0,
X(B : C -* U0,

X(f:A->W(C, B),
TT(a : A,

TT(a': A,
(a <A a') «• (f(a) <w f(a'))

)
)
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6.1.2 Nordstrom's rule

In [Nor88] Nordstrom presents the type Acc(A,<), the accessible
elements of < in A, with introduction ana elimination rules as follows:

[-A,]
a : A y : Acc(A, <)

a : Acc(A, <)
- Acc Introduction

x : Acc(A, <)

y(z) : C(z)

p : Acc(A, <) e(x, y) : C(x)
rec(e, p) : C(p)

The computation rule for rec is:

■ Acc Elimination

e(p, rec(e)) —> e'
rec(e, p) —> e'

In |Nor88] Nordstrom works in a type theory with propositions. In
oraer to follow his presentation we nave used the propositions y<a
and z<x in the above rules.

Nordstrom states that a partial ordering <on a type A is well-founded
if A is the same asAcc(A,<).

[Nor88] derives the following rule:

x : A

y(z) : C(z)

CO : Wellfnd(A, <) p : A e(x, y) : C(x)
rec(e, p) : C(p)

This is the rule which we shall make use of in Chapters 9 and 10.
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6.2 Lemmas about well-founded orderings
We require some lemmas about well-founded orderings.

6.2.1 Lemma 6.1

The lexicographic product <3.2 °f two partial orderings <?/ <2 on A,
Aj resp. is defined as follows:

a <1*2 b =deF fst(a) <1 fst(b) v (fst(a) = fst(b) & snd(a) <2 snd(b))

The lexicographic product of two well-founded orderings is itself a
well-founded ordering.
Proof:

See [Pau84]. ■

6.2.2 Lemma 6.2

If <A is a well-founded ordering on A and we have a function norm of
type B -> A then the relation <B on B defined as

b <B b' =dEF norm(b) <A norm(b')

is a well-founded ordering called the inverse image of <A under
norm.

Proof

See [Tho91] or [Pau84], ■

6.3 A particular well-founded ordering
In the following sections we will present a binary relation on 1(a) PAIR
and prove that it is a well-founded ordering. We will use this well-
founded ordering to prove the termination of our implementation of
the unification algorithm. The particular well-founded ordering that we
use was chosen after contemplation of the algorithm that we will pre¬
sent in Chapter 8 and the orderings used in [MW81] and [Pau85bj.
We presume that the type of natural numbers has been defined and
that 0, 1, and + have their usual meanings.
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We begin by defining a function, norm:
norm(ts) =dBF

Pair(num_vars_occing(fst(ts)) + num_vars_occing(snd(ts)), size(fst(ts)))

Where:

num_vars_occing =dBF

(t)(listrec(0, (hd, tl, r)(if in(hd, tl) then r else r + 1), varsin(t))
size =dBF termsrec((v)1, (f, ts, a)(1 + a), 0, (h, tl, a, b)(a + b))
varsin =dBF termrec((v)[v], (f, ts, r)r, [], (t, ts, r, s)(r @ s))
in(x, I) =dBF listrec(false, (hd, tl, r)(if x = hd then true else r), I)
II @ 12 =dBF Iistrec(l2, (h, tl, r)(h :: r), 11)
if boolean then t else e =dBF boolrec(t, e, boolean)

Listrec is the non-canonical constant associated with the type of lists.
We define listrec so that its third argument is a list. We present the
computation rules for listrec in section 6.2.2 below. Boolrec is the non-
canonical constant associated with the type of booleans. We define
boolrec so that its third argument is a boolean.
num_vars_occing counts the number of variables which occur in a
term, size is a measure of the size of term, varsin returns a list
(including duplicates) of the variables which occur in a term. @ is the
usual append operator. Notice that the definition of in relies on the
fact that we have a decidable equality for the type involved, in this
case VAR.

We define a well-founded ordering on N, the type of the natural num¬
bers.

n <n m =dBF Hp : N, m = n + Succ(p)).

By lemma 6.1 the lexicographic product of <N and <N is a well-
founded ordering on N * N.

By lemma 6.2 <, the inverse image under norm of the lexicographic
product of <h and <^ is a well-founded-ordering on 7(a) PAIR.

6.4 Using the general recursion operator

[Nor88] states (Theorem 1):
All iterating constructs in type theory can be reduced to pattern matching
and the general recursion operator rec.

He proves this by illustrating it in the case of natrec, leaving listrec as
an exercise for tne reader, we shall show that this theorem holds for
listrec and for the types of TERM and TERMS that we introduced in
Chapter 5.
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6.4.1 Listrec in terms of listcases and rec

The computation rules for listcases are:

I --> [] d --> d'
listcases(d, e, I) -> d'

I --> h::t e(h, t) -> e'
listcases(d, e, I) —> e'

The computation rules for listrec are:

I ~> [] d --> d'
listrec(d, e, I) —> d'

I -> h::t e(h, t, listrec(t, d, e)) -> e'
listrec(d, e, I) -> e'

We define a new constant listrec' using rec and listcases and show
that it has the same computational behaviour as listrec.

Iistrec'(p, q, I) =JBF rec((x, y)listcases(p, (z, w)q(z, w, y(w)), x), I)

In the following let e be (x, y)listcases(p, [z, w)q(z, w, y(w)), x).
We can use the computation rules for rec and listcases and the defi¬
nitions e and of listrec' to show the following:

i --> [] p --> p'

listcases(p, (z, w)q(z, w, rec(e, w)), I) —> p'

e(l, rec(e)) --> p'

rec((x, y)listcases(p,(z, w)q(z,w,y(w),x)), I) ->p"

listrec'(p, q, I) -> p'

I —> h :: t q(h, t, listrec'(p, q, t)) —> q'

q(h, t, rec(e, t)) -> q'

(z, w)q(z, w, rec(e, w))(h, t) -> q'

listcases(p, (z, w)q(z, w, rec(e, w)), I) —> q'

e(l, rec(e)) --> q'

rec((x, y)listcases(p,(z, w)q(z,w,y(w),x)), I) -> q'

listrec'(p, q, I) -> q'
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Thus we have shown that listrec' has the same computational be¬
haviour as listrec. Notice that we cannot show, as we might like to,
that listrec(p, a, I) = listrec'(p, q, I) using only the computation rules.
To show that this is the case we need to have available to us the
judgements which are the premisses of the elimination rules.

6.4.2 Example

[Nor88] presents a version of quicksort. We may express this in ML
as:

(*
quick : ('a -> ('a -> boot)) -> (('a list) -> ('a list))
*)
fun quick anorder [] = []

I quick anorder (hd :: tl) =

(quick (less hd anorder tl))
® [hd]
@ (quick (gteqs hd anorder tl));

Where:

less a < bs returns those elements of bs less than a under the
ordering < ;
gteqs a < bs returns those elements of bs greater than or
equal to a under the ordering < .

The function quick is not expressed in structurally recursive form as
the recursive calls are not on the (structural) sub-parts of the list that
the initial call is made on. These calls are, however, made on lists
which are certain to be shorter than the initial list. The ordering of
length on lists is well-founded and so we can be certain that evaluation
of quick theorder thelist will terminate. The other functions used can
easily be written in structurally recursive form.
We can now handle quicksort by defining (again in ML syntax for
clarity) r

(*
listcases : 'b -> (('a -> (('a list) ->'b)) -> (('a list) -> 'b))
*)
fun listcases d e [] = d

I listcases d e (h::tl) = e h tl;

(*
nordrec : (('a * ('a -> 'b)) -> 'b) -> ('a -> 'b)
Name avoids clash with ML's own rec.

*)
fun nordrec e p = e(p, fn q => nordrec e q);
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(*
wfquick : ('a -> C'a -> bool)) -> (('a list) -> ('a list))
*)
val wfquick =

fn anorder =>

nordrec
fn q =>

listcases
□
(fn hd =>
fn tl =>

(q (less hd anorder tl))
© [hd]
© (q (gteqs hd anorder tl)));

We shall later use the same technique to handle the well-founded re¬
cursion in the unification algorithm.

6.4.3 Termsrec and termrec in terms of a case operator and rec

To define termrec and termsrec in terms of rec and a case operator
we must be a little bit more subtle.

The computation rules for termrec and termsrec are:

t --> Var(x) d(x) --> d'

termrec(d, e, f, g, t) —> d'

t —> App(c, ts) e(c, ts, termsrec(d, e, f, g, ts)) -> e'
termrec(d, e, f, g, t) —> e'

ts -> None f —> f'

termsrec(d, e, f, g, ts) —> f

ts -> Some(s, ss) g(s, ss, termrec(d, e, f, g, s), termsrec(d, e, f, g, ss)) —> g'
termsrec(d, e, f, g, ts) —> g'

The obvious computation rules for termcases and termscases are:

t —> Var(x) d(x) —> d'
termcases(d, e, t) —> d'

t —> App(c, ts) e(c, ts) —> e'
termcases(d, e, t) —> e'

ts -> None f --> f

termscases(f, g, ts) --> f'
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ts -> Some(s, ss) g(s, ss) --> g'
termscases(f, g, ts) —> g'

However if we follow the above work on listrec and define:

putative_termrec'(p, q, t) =dEf rec((x, y)termcases(p, (z, w)q(z, w, y(w)), x), t)

then work as before, letting e stand for
(x, y)termcases(p, (z, w)q(z, w, y(w)), x)

we find that for the case that t has the value App(f,ts) the value of
p u t a t i v e _t e r m r e c ' (p, q, t) depends on the value of
q(f,ts,rec(e,ts)). This is unfortunate as we do not know how to
evaluate rec(e,ts). We must instead define a case operator
term_or_termscases which has the following computation rules:

t -> Var(x) d(x) -> d'
term_or_termscases(d, e, f, g, t) ~> d'

t -> App(c, ts) e(c, ts) —> e'
term_or_termscases(d, e, f, g, t) ~> e'

ts —> None f -> f'

term_or_termscases(d, e, f, g, ts) ~> f

ts -> Some(s, ss) g(s, ss) ~> g'
term_or_termscases(d, e, f, g, ts) ~> g'

We now make the following definitions:
termrec'(p, q, r, s, t) =dEF

rec((x, y)term_or_termscases(
P.

(v, w)q(v, w, y(w)),
r,

(z, n)s(z, n, y(z), y(n)),
x),

t)
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termsrec'(p, q, r, s, ts) =d„

rec((x, y)term_or_termscases(
P.

(v, w)q(v, w, y(w)),
r,

(z, n)s(z, n, y(z), y(n)),
x),

ts)

Again, notice that termrec' and termsrec' are definitionaIly equal.
We can now show that termrec' and termsrec' have the same compu¬
tational behaviour as termrec and termsrec, respectively. Figures 6.1,
6.2, 6.3 and 6.4 are the proofs.
We have shown that termrec' and termsrec' have the same computa¬
tional behaviour as termrec and termsrec respectively and hence any
function that we can express using termrec and termsrec can be ex¬
pressed using rec and term__or_termscases.

6.5 Summary
In this chapter we have presented some approaches to the use of well-
founded recursion in Martin-Lof's type theory, in particular Nordstrom's
rule for well-founded induction ana his rec operator. We have shown
that a particular ordering on l{a) PAIR is well-founded. Therefore we
can define functions on 1(a) PAIR using well-founded recursion. We
have also shown how to use rec and a case operator to define the
structural recursion operator on terms, thus allowing us to use only rec
and the case operator to define functions, as we will do in Chapter 8.
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Inthefollowingproofsletebe(x,y)term_or_termscases(p,(v,w)q(v,w,y(w)),r,(z,n)s(z,n,y(z),y(n)),x).Intheinterestsofclaritywehavesuppressedsomeoftheterms,replacingthemwithellipsis. Figure6.1)

t ->Var(v)p(v)->p'
term_or_terms_casescomputation

term_or_terms_cases(p.....t)—>p'
defnofe

e(t,rec(e))—>p'
reccomputation

rec((x,y)term_or_termscases(p,...,...,...,x),t)->p'
defnoftermrec'

termrec'(p,q,r,s,t)—>p'

Thestepsinthisproofailconsistofre-writingexpressionsbasedontheappropriatedefinitionsortheuseofthe computationrulesforrecorterm_or_terms_cases.Theotherproofsthatwepresentfollowthesamepattern,butwe willsuppressthenamesoftherulesusedateachstep. Figure6.2)

t ~>App(f,ts)q(f,ts,termsrec'(p,q,r,s,ts))-->q' term_or_termscases(...,(v,w)q(v,w,termsrec'(p,q,r,s)(w)),...,...,t)—>q' e(t,rec(e))->q'
rec((x,y)term_or_termscases(...,(v,w)q(v,w,y(w)),.......,x),t)-->q' termrec'(p,q,r,s,t)->q' 57



Figure6.3) Figure6.4)

ts ->Noner—>r' term_or_termscases(...pr,...,...,ts)-->r' e(ts,rec(e))->r'
rec((x,y)term_or_termscases(rx),ts)-->r' termsrec'(p,q,r,s,ts)—>r'

t ->Some(h,ts)s(h,ts,termsrec'(p,q,r,s,h),termsrec'(p,q,r,s,ts))->s* term_or_termscases(X,t)->p' e(t,rec(e))—>s'

rec((x,y)term_or_termscases((v,w)s(v,w,y(v),y(w)),x),t)->s' termrec'(p,q,r,s,t)—>s'

WhereXistheexpression(v,w)s(v,w,termrec'(p,q,r,s)(v),termsrec'(p,q,r,s)(w)). 58



Chapter 7
Formalization Of The Problem

In this chapter we formalise the notion of substitution and some of the
other notions discussed informally above. We discuss some propositions
which may be a suitable specification for the unification algorithm. We
shall select one of these to be treated as the specification tnat we sub¬
sequently work with.

7.1 The type of substitutions
We can now formalise some material from Chapter 2. As we stated
before a substitution is a function from variables to terms. Therefore
we make the definition:

SUBST =dBF VAR -> TERM

7.2 Definitions

We can now make some definitions.

The extension of a substitution is defined as:

a *tm =dBF

termrec((v)apply(a, v), (f, ts, u)App(f, u), None, (t, ts, r, u)Some(r, u))

a *tms =dBF

termsrec((v)apply(a, v) ,(f, ts, u)App(f, u), None, (t, ts, r, u)Some(r, u))

Notice that, because termrec and termsrec are definitionally equal, so
are *tm and *tms. We will use * when we are free to choose either.

The composition of two substitutions is defined as:

a • t =def (x)(t* (apply(a, x)))

A substitution may be an instance of another:
t INSTANCE g =deF I(v : SUBST, EQ(SUBST, t, a • v))
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This allows us to define the notion of generality for substitutions:
MORE_GENERAL(a, t) =dbf t INSTANCE a

Idempotence is defined as usual:
IDEMPOTENT_SUBST(ct) =dBF EQ(SUBST, a, a • a)

We say what it means to be a unifier of either a TERM PAIR or of a
TERMS PAIR:

UNIFIERTM(tmpr, a) =dBF

EQ(TERM, a*tm fst(tmpr), cj*tm snd(tmpr))

UNIFIERTMS(tmspr, a) =dBF

EQ(TERMS, a *tms fst(tmspr), a *tms snd(tmspr))

We can generalise this definition:
UNIFIES(p, a, a) =deF EQ(i(a), o * fst(p), a* snd(p))

We can how define:

UNIFIER(p, a) =dBF Z(a : {TM, TMS}, UNIFIES(p, a, a))

We say what it means to be a most general unifier of either a TERM
PAIR or of a TERMS PAIR:

MGUTM(tmpr, a) =dBF

UNIFIERTM(tmpr, a) &
TT(t : SUBST, UNIFIERTM(tmpr, t) -> MORE_GENERAL(cx, t))

MGUTMS(tmspr, a) =dBF

UNIFIERTMS(tmspr, a) &
TT(t : SUBST, UNIFIERTMS(tmspr, t) -> MORE_GENERAL(a, t))

And again this definition is generalisable:
MGUA(tpr, a, a) =dBF

UNIFIES(tpr, a, a) &
T](t : SUBST, UNIFIES(tpr, %, a) -> MORE_GENERAL(a, -t))

And we can define:

MGU(tpr, a) =dBF I(a : {TM, TMS}, MGUA(p, o, a))

We define the notion of most general, idempotent unifier of a TERM
PAIR or a TERMS PAIR:

MGIU(tpr, a) =dBF MGU(tpr, a) & IDEMPOTENT_SUBST(a)
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We define the notion that a TERM PAIR or a TERMS PAIR has a most

general idempotent unifier:
HASMGIU(tpr) =dEF Ra : SUBST, MGIU(tpr, a))

Finally we define the notion of a TERM PAIR or a TERMS PAIR not
being unifiable:

NU(tpr) ==,„ -Rt : SUBST, UNIFIER(tpr, t))

7.3 Putative specifications
There are two informal specifications that appear intuitively to be suit¬
able. For convenience we use 'term' to refer to a value either of the
type TERM or of the type TERMS. They are:

Specification 1
Two terms either have a unifier or else they don't and if two terms
have a unifier then they have a most general unifier;

Specification 2
Either two terms have a most general unifier or they are not unifiable.
If we treat these two specifications as propositions then we see that
they are constructively equivalent (remembering that if two terms have
a most general unifier then they have a unifier). Their canonical proofs
are different. A canonical proof of the first specification would be a
function which when presented with two terms produced a pair consist¬
ing of a proof of whether they were unifiable or not, ana a function
which took a unifier of the terms and produced a most-general unifier.
A canonical proof of the second would be a function which, when pre¬
sented with two terms, either produced a most general unifier or a
proof that no unifier exists. Our work is divided up in different ways
with these different specifications. Whether it is easier to find whether
a unifier exists and then to construct a most-general unifier or simply to
attempt to construct a most general unifier is not a priori obvious.

Compare with the task of finding a normal proof. We may find it easier
to attempt to find a non-normal proof and then apply some mechanical
normalisation procedure than to attempt to find a normal proof directly.
It has been our experience that searching for most-general unifiers is
no worse than searching for unifiers, and furthermore we know of no
technique for converting an arbitrary unifier of two terms into a most
general unifier, barring the trivial one of simply calculating a most
general unifier in the usual fashion. So we choose to work with the
second specification, both because we think that it is a type of which
we wish to construct an inhabitant and because we think that its inhabi¬
tants are the sort of objects that we will find easier to construct.

Notice that both of these specifications will produce positive evidence
in the case that that the two terms are not unifiable. We claim not
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merely that there is no most-general unifier, but there is no unifier
whatsoever.

The type that this specification corresponds to is:

TT(a : {TM, TMS}, ff(tpr: 7(a) PAIR, HASMGIU(tpr) + NU(tpr)))

The (canonical) proof term that we will construct will then be a function
whicn takes a pair of terms and returns either a substitution, together
with a proof that it is a most general idempotent unifier of the pair of
terms or else a method which will show that the existence of any substi¬
tution which unifies the two terms is absurd.
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Chapter 8
Different Possible Algorithms

In this chapter we look at some different possible algorithms for com¬
puting most general unifiers. These algorithms have been chosen ei¬
ther because they illustrate classic approaches or because there is
some interesting feature about them which relates to proving proper¬
ties of them. Each of these algorithms makes different assumptions
about the representation of terms and of substitutions. We leave these
assumptions unstated unless they are of interest. We shall combine one
of the algorithms in this chapter with the specification discussed in the
previous chapter.

8.1 Chang and Lee's unification algorithm
The first algorithm that we will inspect is that which is presented in
[CL73], This algorithm unifies sets (not pairs) of terms or declares them
not to be unifiable. The process operates by explicitly finding where
the terms disagree and attempting to eliminate this aisagreement. In
the case that the terms are unifiable a most general unifier is found
(and the term of which the others are instances), in the case that they
are not unifiable a set of terms that cannot be unified is explicitly con¬
structed. The presentation in [CL73] is in an informal imperative style.
We follow this.

The algorithm unifies a set of terms W. Note that W must have at least
two members for the algorithm to make sense. The algorithm is pre¬
sented as follows:

Step 1 Set k = 0, Wk = W and ak = e (* the empty substitution *).

Step 2 If Wk is a singleton (* impossible for k = 0 *) then crk
is a most general unifier of W. Stop. Otherwise find Dk,
the disagreement set of Wk.

Step 3 If there is a term tk in Dk and a variable vk in Dk such
that vk does not occur in tk then go to Step 4. Otherwise
stop as W is not unifiable.

Step 4 Let ak+1 = ak • (vk --> tk) and Wk+1 = (vk —> tk) * Wk.

Step 5 Set k = k + 1 and go to Step 2.
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The disagreement set of Wj, is found by

locating the first symbol (counting from the left) a* which not all the
expressions in have exactly the same symbol, and then extracting from
each expression in W^ the subexpression that begins with the symbol
occupying that position.

Notice that this algorithm is non-deterministic: we have a free choice at
Step 3 if there is more than one suitable variable and term.
Constructing the whole disagreement set in Step 2 will lead to failure
quickly but may produce unnecessary effort in the case that the two
terms do unify, the structure of the algorithm does not reflect the
structure of terms and so is unlikely to be easy express or prove cor¬
rect in Martin-Lof's type theory.

8.2 Apt's algorithm
The following algorithm is presented in |Apt90], and is based on that
appearing in [Her71]. This algorithm unities sets of equations between
terms. We may think of these as sets of pairs of terms. A set of equa¬
tions of the form [xj = fj, ..., xn = tn] is called a solved set if all the x,
are distinct and none of the x, occurs in any of the f;-. We see that a
solved set of equations determines a substitution. The algorithm pro¬
ceeds by transforming the existing equations into simpler ones until ei¬
ther a solved set is found or no more transformations are possible. In
the case of success the most general unifier is then read ofl the solved
set. The algorithm is as follows:
Pick an equation from the set. In each of the following cases of
the equation perform the action stated:

1) f(si, sn) = f(ti, tn). Replace this equation by s^ = t1#

2) f(s1} ..., sn) = g(ti, tm) where f * g. Halt with failure.

3) x = x. Delete the equation.

4) t = x where t is not a variable. Replace with x = t.

5) x = t where x * t and x has another occurrence in the set of
equations. If x occurs in t then halt with failure otherwise per¬
form the substitution x --> t in every other equation.

The algorithm halts either when failure is detected or when no further
steps can be performed.
It is presumed that each functor is applied to the same number of ar¬
guments where ever it is used
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Clause 5 needs to be treated with care. We must read 'x has another
occurrence in the set of equations' to include the possibility that the oc¬
currence is in the term t.

An informal proof of termination is given based on the observation that
either the number of variables appearing in the problem is reduced at
each step, or this number stays constant and that the number of occur¬
rences of functor symbols is reduced.
This algorithm is also unsuitable for a functional presentation and is
therefore not of further interest to us.

8.3 A poor function and a better one
Now we shall look at some variants of unification algorithms written in
a way which will be more suitable for our purposes. We shall unify
pairs of terms. We shall construct substitutions directly. The algorithms
will be written using case analysis on the structure of pairs of terms.
For convenience we will initially express the algorithms in ML ([Wik871,
[Pau91 ])
We make the following type declarations:
type VAR = string;
type CONST = string;

datatype TERM = Var of VAR I App of CONST * TERMS
and TERMS = None I Some of TERM * TERMS;

type SUBST = VAR -> TERM;
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We can now (given definitions of some auxiliary functions) define the
following function:

(*
mgul : TERM -> (TERM -> SUBST)
*)
fun mgul (Var x) (Var y) =

x --> Var y
I mgul (Var x) (App(g, ss)) =

if occurs x ss (* the occurs check *)
then raise occurs_l
else x --> App(g, ss)

I mgul (App(f, ts)) (Var y) =
if occurs y ts

then raise occurs_2
else y --> App(f, ts)

I mgul (App(f, None)) (App(g, None)) =
if f = g

then empty (* the empty substitution *)
else raise functors

I mgul (App(f, None)) (App(g, Some(s, ss))) =
raise arities_l

I mgul (App(f, Some(t, ts))) (App(g, None)) =
raise arities_2

I mgul (App(f, Some(t, ts))) (App(g, Some(s, ss))) =
if f - g
then let sigma = (mgul t s)

in
sigma
composed_with (* composing substitutions*)
(mgul

App("dummy", mapterms (sigma * ) ts)
App("dummy", mapterms (sigma * ) ss)

)
end

else raise functors;

The auxiliary functions that we presume to be defined are as follows:
(*
mapterms : (TERM -> TERM) -> (TERMS -> TERMS) maps a function over
TERMs over TERMSs

--> is an infix operator.
--> : (VAR * TERM) -> SUBST.

* is an infix operator.
* : (SUBST * TERM) -> TERM) is the extension of a substitution.

composed_with : (SUBST * SUBST) -> SUBST composes two
substitutions.

The exceptions functors, arities_l, arities_2, occurs_l and
occurs_2 have been declared.
*)
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This function is rather odd as we start to deal with pseudo-terms
(formed with the pseudo-functor "dummy": we could, of course, have
chosen to use one of the functors already in the problem as a pseudo-
functor) in the middle of it. These pseudo-terms are only being used as
holders for lists of terms and seem absurd. We also seem to perform a
lot of un-needed checks on whether two functors are the same. The
solution to both these problems is, of course, the same. We have writ¬
ten the wrong function.
As we saw in Chapter 6 we need to consider the two types of TERM
and TERMS simultaneously. So we should expect to define mutually
recursive functions.

The functions that we should have defined are:

(*
mgu2 : TERM -> (TERM -> SUBST)
and

mguZall : TERMS -> (TERMS -> SUBST)
*)
fun mgu2 (Var x) (Var y) =

x —> Var y
I mguZ (Var x) (App(g, ss)) =

if occurs x ss (* the occurs check *)
then raise occurs_l
else x --> App(g, ss)

I mgu2 (App(f, ts)) (Var y) =
if occurs y ts

then raise occurs_2
else y --> App(f, ts)

I mgu2 (App(f, ts)) (App(g, ss)) =
if f = g

then mguZall ts ss
else raise functors

and mgu2all None None = empty
I mgu2all (Some(t, ts)) None = raise arities_l
I mgu2all None (Some(s, ss)) = raise arities_2
I mgu2all (Some(t, ts)) (Some(s, ss)) =

let val sigma = (mgu2 t s)
in

sigma
composed_with
(mgu2all

(mapterms (sigma * ) ts)
(mapterms (sigma * ) ss)

)
end;

Now we have a pair of mutually recursive functions which reflect
clearly the structure of the terms that we are unifying. Notice that there
is no sleight of hand using a convenient constructor to 'coerce' some
structure into the type that we wished it had been in. Notice also that
this pair of functions allows us to view ourselves as unifying either a
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pair of terms or a list of pairs of terms as we fancy. This algorithm will
form the basis for that wnich we shall implement in M-LTT.

8.4 A function that unifies Paulson's terms

For comparison we present a function that is suggested to construct
most general unifiers for terms like those of [Pau8oo].
We define the following types:

datatype PAUTERM = Varp of VAR I
Constp of CONST I
Appp of PAUTERM * PAUTERM;

type PAUSUBST = VAR -> PAUTERM;

We take the liberty of reusing some of the symbols used above for
functions involving TERM, TERMS and SUBST for the analogues using
PAUTERM and PAUSUBST.

C*
mgupau : PAUTERM -> (PAUTERM -> PAUSUBST)
*)
fun mgupau (Varp x) (Varp y) = x --> Varp y

I mgupau (Varp x) (Constp g) = x --> Constp g
I mgupau (Varp x) (Appp(t, s)) =

if occurs x Appp(t, s)
then raise occurs_l
else x --> Appp(t, s)

I mgupau (Constp f) (Varp x) = x --> Constp f
I mgupau (Constp f) (Constp g) =

if f = g
then empty
else raise functors

I mgupau (Constp f) (Appp(t, s)) = raise arities_l
I mgupau (Appp(t, s)) (Varp x) =

if occurs x Appp(t, s)
then raise occurs_2
else x --> Appp(t, s)

I mgupau (Appp(t, s)) (Constp g) = raise arities_l
I mgupau (Appp(t, s)) (Appp(v, w)) =

let sigma = (mgupau t v)
in sigma

composed_with
mgupau (sigma * s) (sigma * w)

end;

We reiterate the comment that there is a certain burden of proof that
this algorithm and these terms are an acceptable substitute for our in¬
tuitive notions. We also suggest that this algorithm does not look a
priori substantially simpler to reason about than the pair of mutually
recursive functions that we presented above.
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8.5 Expressing our algorithm in M-LTT

We shall now explain how to express our preferred algorithm in M-
LTT. We shall use the types of TERM and TERMS that we discussed in
Chapter 5. We use the technique described in Chapter 6 which allows
us to use pattern matching ana well-founded recursion.
The functions which we have discussed above present us with only a
substitution or failure. The function which we define now must present
us with both a substitution and a proof that the substitution is a most
general idempotent unifier of the terms concerned or with a proof that
the terms are not unifiable. In the following definitions we will use
lower case Greek letters a, f5, x, <5 to represent the formal proof terms
that witness the most general and idempotent property of the substitu¬
tion. The proof that we present in Chapter 9 will provide us with theinformation required to construct these, but we will in fact never pre¬
sent these formal proof terms.
As the function in which we are interested is a large expression we
shall define it in a number of stages. Firstly we shall assume that we
are allowed to split the definition up into parts and that we can use re¬
cursive definitions. Then we shall put the parts together and finally use
the rec operator to remove the recursion from the definition. We call
the function mgiu. It should not be confused with the type MGIU.

8.5.1 First step in the definition of our mgiu function
We define some auxiliary functions:
si •' s2 =dBF when((g)lnl(Pair(fst(s1) • fst(g), 5(snd(s1), snd(g))), (b)lnr(b), s2)
v —> t =dBF \x.(if x = v then t else x)
occs(x, tms) =dBF termsrec((v)(x = v), (f, ts, r)r, false, (t, ts, r, s)(r or s), tms)

We have seen that termrec and termsrec are definitionally equal.
Hence we could have defined occs as:

occs(x, tm) =dBF termrec((v)(x = v), (f, ts, r)r, false, (t, ts, r, s)(r or s), tm)

We will use occs(x, tms) to define a type OCCURS(x, tms) in Chapter
10.

We are attempting to construct an inhabitant of a type of the form
A+-<B. All elements of a type of form ->B can be shown to be equal.
(See, for example, [Kha86]). We call the value inhabiting this type
Abort. For our purpose we may be interested in why there is no uni¬
fier of the terms we are interested in. We therfore make the following
definitions:

occurs =dBF Abort functors =dBF Abort
type_error =dBF Abort arities =dBF Abort.
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First we define mgiuO. Empty is the empty substitution.
mgiu0(t1, t2) =d„ (* preliminary defn. yet to use rec, and splitting the defn. *)

term_or_terms_cases(A(t2), B(t2), C(t2), D(t2), t1)
where

A(t2, v) =deF

term_or_terms_cases(
(w)(lnl(Pair(v -> w, a))),
(f2, ts2)(if occs(v, ts2)

then Inr(occurs)
else lnl(Pair(v -> App(f2, ts2), p))),

lnr(type_error)
(hd2, tl2)lnr(type_error),

t2)

B(t2, f, ts) =deF

term_or_terms_cases(
(w)(if occs(w, ts)

then Inr(occurs)
else lnl(Pair(v —> App(f, ts), 6))),

(f2, ts2)(if f2 = f then mgiuO(ts, ts2) else Inr(functors)),
lnr(type_error),
(hd2, tl2)lnr(type_error),

t2)

C(t2) =deF

term_or_terms_cases(
(w)lnr(type_error),
(f2, ts2)lnr(type_error),
lnl(Pair(Empty, x)),
(hd2, tl2)lnr(arities),

t2)

D(t2, hd, tl) =deF

term_or_terms_cases(
(w)lnr(type_error),
(f2, ts2)lnr(type_error),
Inr(arities),
(hd2, tl2)(when(

(g)(g •' mgiuO(tl, tl2)),
(b)lnr(b),

mgiuO(hd, hd2))),
t2)

70



8.5.2 Second step in the definition of our mgiu function
Now we put A, 8, C and D in place:
mgiul (t1, t2) =JeF (* preliminary defn. yet to use rec. *)

term_or_terms_cases (
(v) (term_or_terms_cases(

(w)(lnl(Pair(v —> w, a))),
(f2)(ts2)(if occs(v, ts2)

then Inr(occurs)
else lnl(Pair(v -> App(f2, ts2), p))),

lnr(type_error)
(hd2)(tl2)lnr(type_error),
t2)),

(f)(ts)(term_or_terms_cases(
(w)(if occs(w, ts)

then Inr(occurs)
else lnl(Pair(v -> App(f, ts), 5))),

(f2)(ts2)(if f2 = f then mgiul (ts, ts2) else Inr(functors)),
lnr(type_error),
(hd2)(tl2)lnr(type_error),
t2)),

(term_or_terms_cases(
(w)lnr(type_error),
(f2)(ts2)lnr(type_error),
lnl(Pair(Empty, x)),
(hd2)(tl2)lnr(arities) ,

t2)),
(hd)(tl)(term_or_terms_cases(

(w)lnr(type_error),
(f2)(ts2)lnr(type_error),
Inr(arities),
(hd2)(tl2)(when(

(g)(g •' mgiul (tl, tl2)),
(b)lnr(b),

mgiul (hd, hd2))),
t2)),

71



8.5.3 Final step in the definition of our mgiu function

Finally we use the rec operator:

mgiu(t1, t2) =JBF

rec((p)(m)term_or_terms_cases(
(v)(term_or_terms_cases(

(w)(lnl(Pair(v -> w, a))),
(f2)(ts2)(if occs(v, ts2)

then Inr(occurs)
else lnl(Pair(v -> App(f2, ts2), p))),

lnr(type_error),
(hd2)(tl2)lnr(type_error),
snd(p))),

(f)(ts)(term_or_terms_cases(
(w)(if occs(w, ts)

then Inr(occurs)
else lnl(Pair(v -> App(f, ts), 6))),

(f2)(ts2)(if f2 = f then m(ts, ts2) else Inr(functors)),
lnr(type_error),
(hd2)(tl2)lnr(type_error),
snd(p))),

(term_or_terms_cases(
(w)lnr(type_error),
(f2)(ts2)lnr(type_error),
lnl(Pair(Empty, x)),
(hd2)(tl2)lnr(arities) ,

snd(p))),
(hd)(tl)(term_or_terms_cases(

(w)lnr(type_error),
(f2)(ts2)lnr(type_error),
Inr(arities),
(hd2)(tl2)(when(

(g)(g •' m(tl, tl2)),
(b)lnr(b),

m(hd, hd2))),
snd(p))),

fst(p)),
Pair(t1, t2))
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8.6 Summary
In this chapter we have looked at a number of different unification al¬
gorithms. We have presented an expression which we shall show in
Chapter 9 to be an inhabitant of the desired type. We should make it
clear that the expression which we presented above was, in fact,
derived partly as we performed the proof presented in the next chap¬
ter and partly from reflection on the other unification algorithms dis¬
cussed above.
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Chapter 9
A Proof By Well-founded Induction

In this chapter and Chapter 10 we use Nordstrom's rule for well-
founded induction, presented in Chapter 6, to show that the function
that we presented at the end of Chapter 8 is an inhabitant of the type
that we presented in Chapter 7. We split this task into three parts: first
we present some lemmas, then we prove that the algorithm terminates
and in Chapter 10 we show that the algorithm terminates correctly.

9.1 Instantiating Nordstrom's rule
Recall that mgiu(p), as defined at the end of Chapter 8, has the form
rec(e, p). If we take C(p) to be HASMGIU(p) + NU(p) and use the
ordering < which we presented in Chapter 6 we can instantiate
Nordstrom's rule for well-founded induction as shown in Figure 9.4.
We have left implicit a certain amount of type information in this rule.

9.2 Proof of the total correctness of mgiu
To find a function which meets our specification we see that we should
justify the following judgement:

ta : {TM, TMS} "jp : 1(a) PAIR J

mgiu(p) : HASMGIU(p)+ NU(p)

We use. the rule presented in Figure 9.4.
We observe that the judgement:

[a : {TM, TMS}]

(o : Wellfnd(i(a) PAIR, <)

was established in Chapter 6.
We use the technique outlined in [Nor88]. This means that we separate
the proofs of termination and of correctness. We will prove termination
in this chapter and correctness in Chapter 10.
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9.3 Some lemmas

In this section we present, sometimes without proof, some lemmas
which will prove useful in the proof.

9.3.1 Lemma 9.1

Let a be a substitution. Then a is idempotent iff there is no variable
which occurs in both its range and its domain.
Proof:

Suppose o is idempotent. Then for any term t, a * t = (a * a) * t. So
a has no effect on o * t, i.e. no variable occurs in o * t and in the
domain of a. The variables which may occur in a * t are those which
occur in f, but not in the domain of o, and those which occur in the
range of a. Hence if a is idempotent then no variable may occur in
both its domain and its range.

Suppose no variable occurs in both the domain and the range of a.
Then, for any term f, no variable occurs in o * t which occurs in the
domain of a. Hence o = o • o. ■

9.3.2 Lemma 9.2

If o is a most general idempotent unifier of Pair(tj, t2) then every vari¬
able in its domain occurs in Pair(t7, t2).

Proof:

If there were a variable in the domain of a which did not occur in

Pair(tj, t2) then a could not be both idempotent and most general. ■

9.3.3 Lemma 9.3

If a is a most general idempotent unifier of Pair(tj, t2) then every vari¬
able in its range occurs in Pair(tj, t2).

Proof:

If there were a variable in the range of o which did not occur in
Pa/rftj, t2) then a could not be both idempotent and most general. ■
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9.3.4 Lemma 9.4

The composition of substitutions is associative:

a : SUBST P : SUBST x = SUBST
5 : EQ(SUBST, a • (p • x). (a • P) • x)

Proof:

The proof proceeds by induction, exploiting the fact that we are using
a theory with an extensional equality. We suppress the informal prooT
here. ■

9.3.5 Lemma 9.5

a is a unifier of Pair(Some(t, ts), Some(s, ss)) iff

1) a is a unifier of Pair(t, s) and

2) a is a unifier of Pair(ts, ss).

Proof:

From the definition of the notion of a unifier a * Some(t, ts) is the
same TERMS as a * Some(s, ss). From the definition of * we see that
Some(a * t, a * s) is the same TERMS as Some(a * s, a * ss). From
the rules for equality of values of type TERMS we see that this means
that a * t and a * s are the same TERM and that a * ts and a * ss

are the same TERMS. From the definition of unifier we see that this
means that a is a unifier of Pair(t, s) and also of Pair(ts, ss).

If a is a unifier of Pair(t, s) and a is a unifier of Pair(ts, ss) then it is
apparent for the rules for the equality of TERMS that it is also a unifier
of Pair(Some(t, ts), Some(s, ss)). ■

9.3.6 Lemma 9.6

This lemma is crucial. It is stated without proof in [MW81] and [MW90].

If a is a unifier of p then a is a most general idempotent unifier of p iff
for every unifier rof p t = a • r.
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9.3.7 Lemma 9.7

If a is a most general idempotent unifier of Pair(s, t) then it is also a
most general idempotent unifier of Pair(t, s).
Proof:

Any unifier of Pair(s, t) is also a unifier of Pair(t, s) and vice versa.
Hence the unifiers of Pair(t, s) are the same as those of Pair(s, t). a is
a most general member of these, o is idempotent by assumption.
Hence cr is a most general idempotent unifier of Pair(t, s). ■

Notice that if a is a formal proof that a is a most general idempotent
unifier of Pair(s, t) then it is not (in general) a proof that cris a most
general idempotent unifier of Pair(t, s).

9.3.8 Lemma 9.8

If no unifier of Pair(s, t) exists then no unifier of Pair(t, s) exists.
Proof:

If it is absurd that a substitution which makes s and t the same exists,
then by the symmetry of equality, it is absurd that a substitution that
makes t and s the same exists. ■

9.4 Proof of termination

To prove termination we must show that the recursive calls are made
on values which lie below the current one in the order which we pre¬
sented before. From an inspection of the algorithm we see that we
have the task of justifying the following judgements (we have left some
of the witnesses uninstantiated):

Figure 9.1)
rts : TERMS -i

ss : TERMS

f : CONST

g : CONST
_

a : Pair(ts, ss) < Pair(App(f, ts), App(g, ss))
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Figure 9.2)
~

t, : TERM "
t2 : TERM
ts1: TERMS
ts2 : TERMS

p : Pair(t,, t2) < Pair(Some(t,, ts,), Some(t2, ts2))

Figure 9.3)

*1 TERM

l2 TERM

ts, TERMS

ts2 TERMS

a : HASMGIU(s, Pair(tn, t2))

x(a) : Pair(fst(a) * ts,, fst(a) * ts2) < Pair(Some(t,, ts,), Some(t2, ts2))

We will not construct the witnesses explicitly. As we have stated before
their details are of little interest. We will, however, present informal
proofs which would allow us, if we took sufficient care, to construct
these witnesses. We will adopt the same policy when we come to prove
correctness.

9.4.1 Justification of 9.1

We observe that Pair(ts, ss) contains precisely those occurrences of
variables which Pair(App(f, ts), App(g, ss)) does and that ts is smaller
than App(f, ts). Hence Pair(ts, ss) < Pair(App(f, ts), App(g, ss)). ■

9.4.2 Justification of 9.2

It is decidable whether any variables occur in Pair(tsj, ts2) which do
not occur in Pa/rftj, t2). If any do then there are more variables in
Pair(Some(t], ts-j), Some(t2, ts2)) than in Pair(tj, t2) and hence
Pair(tj, t2) < Pair(Some(t], tsj), Some(t2, ts2)). If there are no such
variables then Pair(tlf t2) < Pair(Some(t1, ts]), Some(t2, ts2)) because
tj is smaller than Some(tj, tsj). Hence Pair(tj, t2) < Pair(Some(tj, tsj),
Some(t2, ts2). ■

9.4.3 Justification of 9.3

Informally, if a is a most general idempotent unifier of Pair(ti, t2) then
Pair(a * tsj, o * ts2) < Pair(Some(tj, tS]), Some(t2, ts2).
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It is decidable whether Pair(cr * tsp a * ts2) is the same pair of terms
as Pair(tsp ts2).

If they are the same then either there is some variable which occurs in
Pair(t], t2) but not in Pair(ts7 ts2) or there is no such variable. In ei¬
ther case, tsj is smaller than Some(t j, ts j). Hence, if
Pair(a*tsj,a*ts2) is the same pair of terms as Pair(ts 7, ts2) then
Pair(a * ts7, a * ts2) < Pair(Some(t1/ tsj), Some(t2, ts2)).

If Pair(a * tsj, a * ts2) and Pair(ts j, ts 2) differ then all the
occurrences of some variable x in one or both of ts 7 and ts2 have
been replaced by some term. Lemmas 9.2 and 9.3 tell us that x must
also occur in Pair(t7, t2). The only variables which may occur in the
replacing term must also occur in Pair(tp t2) and, by lemma 9.1, differ
from x. Hence x does not occur in a * tsj or in a * ts2. Hence fewer
variables occur in P ai r (0 * t s j, a * t s 2) than occur in
Pair(SQme(t1,tS]),Some(t2,ts2)).

Hence Pair(a*tsj/ats2)<Pair(Some(t1/ ts-j), Some(t2, ts2)).

Hence, whether or not Pair (a* ts j,a* ts2) is the same as

Pair(ts pts2),

Pair(a * ts-], o * ts2) < Pair(Some(t-|, ts-|), Some(t2, ts2))

and hence the judgement is justified. ■

9.5 Conclusion

We have now shown that evaluation of our mgiu algorithm terminates.
In the next chapter we will show that it terminates correctly, that is that
it terminates with a value of the type which is the specification.
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ure9.4) [b:{TM,TMS}]
:Wellfnd(7(b)PAIR,<)a:{TM,TMS}p:7(a)PAIR

rec(e,p)

x:7(c)PAIR[c:{TM,TMS}]
y(z):HASMGIU(z)+NU(z)

z:7(d)PAIR[d:{TM,TMS}] z<x

e(x,y):HASMGIU(x)+NU(x)
HASMGIU(p)+NU(p) 80



Chapter 10
Proof of Correctness

In this chapter we complete the proof started in Chapter 9.
Our task is now to justify the final premiss of figure 9.4. We recall our
definition of mgiu(p) in the form rec(e,p) from Chapter 8 and expand
e(x,y) where it occurs in the premiss. We also expand the hypothetical
assumptions. We then have a number of judgements to justify. These
fall into a group of base cases and some induction steps. Justifying
these judgements shows us how, in principle, to construct the proof wit¬
nesses that we left unspecified when we presented the mgiu algorithm
in Chapter 8.

10.1 Base cases

We left the proof terms which witness the correctness of the algorithm
in Chapter 8 unspecified. In this section we provide informal proofs
which would allow us, if we took sufficient care, to construct these wit¬
nesses. In figures 10.1 to 10.6' a, f3, x> 5, functors, occurs and arities
are as in the definition of mgiu in §8.5.3. We must show:

Figure 10.1)
Pair(EMPTY, x) ■ HASMGIU(Pair(None, None))

Figure 10.2)

[x : VAR"|y : VARJ

Pair(x --> Var(y), a) : HASMGIU(Pair(Var(x), Var(y)))

Figure 10.3)
r x : VAR -i

f : CONST

ts : TERMS

k : -OCCURS(x, ts)

Pair(x -> App(f, ts), p) : HASMGIU(Pair(Var(x), App(f, ts)))
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Figure 10.3')
y : VAR
f : CONST

ts : TERMS

jc : --OCCURS(x, ts)_

Pair(y —> App(f, ts), 6) : HASMGIU(Pair(App(f, ts),Var(y)))

Figure 10.4)
r y : VAR

f : CONST

ts : TERMS

tc : OCCURS(x, ts)

occurs : NU(Pair(Var(x), App(f, ts)))

Figure 10.4')
r y : VAR -i

f : CONST

ts : TERMS

_k : OCCURS(x, ts)_

occurs : NU(Pair(App(f, ts),Var(x)))

Figure 10.5)
f : CONST

ts : TERMS

g : CONST
ss : TERMS

k : -EQ(CONST, f, g)

arities : NU(Pair(App(f, ts), App(g, ss)))

Figure 10.6)

[t : TERM "Its : TERMS J

arities : NU(None, Some(t, ts))
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Figure 10.6')

[t : TERM "Its : TERMS J

arities : NU(Some(t, ts), None)

Where, given the definition of occs(x,tms) in §8.5.1:
0CCURS(x, tms) =deF EQ(BOOL, occs(x, tms), true)

10.1.1 Justification of 10.1

Any substitution cr is a unifier of Pair(None,None). As every substitu -

tion is an instance of the empty substitution the empty substitution is the
most general unifier of Pair(None,None). The empty substitution is
idempotent. Hence it is the most general idempotent unifier of
Pair(None,None). ■

10.1.2 Justification of 10.2

The substitution x —> Var(y) is a unifier of Pair(Var(x),Var(y)). We
show that for any unifier a of Pair(Var(x),Var(y)),

a - (x -> Var(y)) • a

and hence by lemma 9.6 that x --> Var(y) is a most general idempo¬
tent unifier of Pair (Var (x),Var (y)). Suppose a is a unifier of
Pai r (V ar (x),V ar (y)). Consider, for an arbitrary variable z,
apply(((x—> Var(y)) • <j),z). From the definition of • this term is the
same as <r*((x —> (Var(y)) z). If z differs from x then this is the same
term as o * Var(z), which is the same term as apply[a,z). If z is the
same variable as x then o * (apply((x —> Var(y)),z)) is the same term
as a* Var(y), which, from the definition of *, is the same terms as

apply(a,y). But cr is a unifier of Pair(Var(x),Var(y)), so this is the
same term as apply[a, x). We assumed that x = z so this is the same
term as apply(a, x). So:

apply(a, z) = apply((x —> Var(y)) • a), z), for all variables z.

Hence by lemma 9.6, x --> Var(y) is a most general idempotent unifier
of Pair(Var(x),Var(y)). ■
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10.1.3 Justification of 10.3 and 10.3'

Lemmas 9.7 and 9.8 allow us to deal with 10.3 and 10.3' simultane¬
ously. We choose to deal with 10.3. This proof follows much the same
pattern as the proof above.
Because x does not occur in ts, the substitution x —> App(f,ts) is a
unifier of Pair(Var(x),App(f,ts)). We show that for any unifier a of
Pair(Var(x),App(f,ts)) a = (x --> App(fjs) ) • a, and hence by
lemma 9.6 that x --> App(f,ts) is a most general idempotent unifier of
Pair(Var(x)^pp(f,ts)).

Consider the term apply((x —> App(f,ts)) • a), z), for an arbitrary
variable z. From the definition of • we see that this is the same as

o*apply(x —> App(f,ts),z).

Suppose z differs from x. Then apply(x --> App(f,ts),z) is just z and
so a * apply(x —> App(f,ts),z) is a * z, which is, by definition,
apply(a,Var(z)).

Suppose z = x. Then apply(x —> App(f,ts),z) is App(f,ts) and so
a* apply(x --> App(f,ts),z) is a * App(f,ts) . If z = x then
apply(a,z) = apply(a,x) which is, by definition, a * Var(x). By as¬

sumption, a is a unifier of Pai r (V ar (x),App(f ,ts)) and so

o*Var(x)~ o * App(f,ts).

Hence, whether z is the same as x or not,

apply(a, z) = apply((x -> App(f, ts)) • a, z).
As we have an extensional equality a = (x —> App(f,ts)) • a, for any
unifier of Pair(Var(x),App(f,ts)), and hence, by lemma 9.6 the
substitution x —> App(f,ts) is a most general idempotent unifier of
Pair(Var(x),App(f,ts)). ■
Notice that the 'occurs check' was necessary to show the correctness
of the algorithm. We normally think of the 'occurs check' in connection
with the termination of the algorithm.

10.1.4 Justification of 10.4 and 10.4'

Lemmas 9.7 and 9.8 allow us to deal with 10.4 and 10.4' simultane¬
ously. We deal with 10.4. As x occurs in ts it is absurd that there
should be a substitution which makes Var(x) and App(f,ts) the same
term. ■
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10.1.5 Justification of 10.5

As f and g differ there is no substitution which can make App(f,ts)
and App(g,ss) the same, irrespective of what ts and ss are. ■

10.1.6 Justification of 10.6 and 10.6'

There is no substitution which can make Some(t,ts) the same as
None. ■

10.2 Induction

We must justify the judgements (recalling the definitions of TERM and
TERMS, and taking mgiu(p) to be rec(e,p) and C(p) to be
HASMGIU(p) + NUfp), as above):

-

tp : TERM PAIR

_ y(z) : C(z) [z < tp]

e(tp, y) : C(tp)

and

-

tsp : TERMS PAIR -|
_ y(z) : C(z) f < tsp]J

e(tsp, y) : C(tsp)
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We have a number of cases to consider, depending on the canonical
form that tp or tsp may have. In each of the above judgements the
second assumption tells us that we may assume that y(z) meets the
specification for every z below the current tp or tsp. We use this as¬
sumption for those z on which the function is recursively called. From
an inspection of e and C we see that for the above judgements to be
valid we require to justify the following, where the terms T) and I have
been left uninstantiated in figures 10.7 and 10.8, respectively:

Figure 10.7)
f : CONST

g : CONST
? : EQ(CONST, f, g)

ts : TERMS

ss : TERMS

V : HASMGIU(Pair(ts, ss))

Pair(fst(y), -n(snd(n/))) : HASMGIU(Pair(App(f, ts), App(g, ss)))

Figure 10.8)

t, : TERM
t2 : TERM
ts, : TERMS
ts2 : TERMS

? : HASMGIU(Pair(t,, t2))
y : HASMGIU(Pair(fst(5) * ts,, fst(ij) * ts2))

Pair(fst(§) • fst(\y), i(snd(^), snd(>|/))) : HASMGIU(Pair(Some(t,, ts,), Some(t2, ts2)))

Figure 10.9)
ss : TERMS

ts : TERMS

f : CONST

g : CONST
£ : NU(Pair(ts, ss))

5 : NU(Pair(App(f, ts), App(g, ss)))
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Figure 10.10)
TERM

x2 TERM

ts1 TERMS

ts2 TERMS

? : NU(Pair(ti, t2))

£ : NU(Pair(Some(t-|, ts-j), Some(t2, tS2)))

Figure 10.11)

t, : TERM
t2 : TERM
ts, : TERMS
ts2 : TERMS

5 : HASMGIU(Pair(t,, t2))
y : NU(Pair(fst(?) * ts,, fst(^) * ts2))

y : NU(Pair(Some(t,, ts,), Some(t2, ts,)))

10.2.1 Justification of 10.7

Informally, we are asked to show that a most general idempotent uni¬
fier a of Pair(ts,ss) is a most general idempotent unifier of
Pair(App(f,ts)/App(g,ss)), where f and g are equal.
Proof:

Suppose a is a most general idempotent unifier of Pair(ts,ss) and that
f and g are equal. We show that a is a most general unifier of
Pair(App(f,ts),App(g,ss)). Suppose r is a unifier of
Pair(App(f,ts),App(g,ss)). Then t is also a unifier of Pair(ts,ss). As
a is a most general unifier of Pair(ts,ss) a is more general than r.
Hence a is a most general unifier of Pair(App(f,ts),App(g,ss)). By
assumption a is idempotent. Hence a is a most general idempotent
unifier of Pair(App(f,ts),App(g,ss)). ■

10.2.2 Justification of 10.8

Informally this judgement tells us that if a is a most general idempotent
unifier of Pair(t1,t2) anc' t is a most general idempotent unifier of
Pair (a * tsj,a * ts 2) then <j*t is a most general idempotent unifier
of Pair(Some(tpts j),Some(t2,ts2)).
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Proof:

We show that for an arbitrary unifier 5 of
Pair(Some(tj/tS])/Some(t2/tS2))l 5 = (a • r) • 5. Lemma 9.6 then
shows that o • r is a most general idempotent unifier of
Pair(Some(t1,tS]),Some(t2/ts2)).

Lemma 9.5 tells us that 5 is a unifier of Pair(t1,t2). From the assump¬

tion that a is a most general unifier of Pair(t1/t2) and lemma 9.6 we

conclude that 5 = a • 6.

Lemma 9.5 tells us that 6 is a unifier of Pair(ts 1JS2). We have just
shown that 5 = a * 5. Hence (a • 8) is a unifier of Pair(tspts2)-
Hence, from the definition of •, 5 is a unifier of Pair(a * fsj,cr * ts2).
From the assumption that t is a most general idempotent unifier of
Pair(a * tS],a * ts2) and lemma 9.6 we conclude 5 = t • 5. As
8=cr* 5 , 5 = o • (t • 5). By the associativity of the composition of
substitutions we see that 5 = (a • t) • 5. We now appeal to lemma 9.6
and conclude that (a • r) is a most general idempotent unifier of
Pair(Some(t]/tS]),Some(t2,tS2)). ■

Figures 10.7 and 10.8 constitute the 'positive' part of the proof, that is
they tell us that the substitution that we construct is, indeed, a most
general idempotent unifier of the terms concerned. Figures 10.9, 10.10
and 10.11 constitute the 'negative' part of the proof, that is they tell us
that there is no unifier of the terms concerned. We have arranged the
algorithm so that we are told part of the reason why there is no unifier:
we chose to be told that either the functors of some application terms
to be unified differed or that the arities of some application terms to be
unified differed or that unification was not possible because some vari¬
able occurred in a term that it was to be unified with. We have sup¬
pressed a certain amount of information here: strictly we should say
that it is absurd that two terms unify because if they were to unify then
two differing constants would be the same or two terms of differing
sizes should be the same. We have appealed to our experience of us¬
ing unification algorithms here as to what information should be in¬
cluded and what suppressed.

10.2.3 Justification of 10.9

We now justify the judgement that if there is no unifier of Pair(ts,ss)
then there is no unifier of Pair(App(f,ts),App(g,ss).
Proof:

Lemma 9.5 tells us that if we have a unifier of
Pair(App(f,ts)/App(g,ss)) then we have a unifier of Pair(ts,ss).
The premiss is that it is absurd to have have a unifier of Pair(ts,ss).
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Hence it is also absurd to have a unifier of
Pair(App(f,ts)App(g,ss)). U

10.2.4 ' Justification of 10.10

We must now justify the judgement that if there is no unifier of
Pair(tut2) then there is no unifier of Pair(Some(tt ,ts, ), Some(t2,ts2)).

Proof:

Lemma 9.5 tells us that if we have a unifier of
Pai r (S ome (t ],ts j), S ome (t2,tS2)) then we have a unifier of
Pair(ti,t2)- The premiss is that it is absurd to have have a unifier of
P ai r (t 7, f 2^ • Hence it is also absurd to have a unifier of
Pair(Some(t1/ts1),Some(t2,tS2))- ■

10.2.5 JustificationoflO.il

Finally we wish to justify the judgement that if a is a most general uni¬
fier of Pair(t„t2), and there is no unifier of Pair(a * ts„cr * ts 2) then
there is no unifier of Pair(Some(t,,ts} ),Some(t2,ts2)).
Proof:

Suppose a is a most general unifier of Pair(tvt2). Suppose we have a
unifier t of Pair(Some(t],tS])/Some(t2,tS2))- We show that this is ab -

surd, a 0 t is also a unifier of Pair(Some(t],ts ]),Some(t2,tS2)), so r

is a unifier of Pair (Some(a*tj,a*ts j),S ome(a*t2,<y*tS2))-
Lemma 9.5 then tells us that t is a unifier of Pair(a*ts),a*tS2)- But
this contradicts the second premiss and hence it is absurd that i is a
unifier of Pair(Some(t],tsj),Some(t2,ts2))- ■

Hence we have proved total correctness for mgiu. ■

10.3 Comments on the proof
When proving both termination and correctness we relied heavily on
the idempotence of the substitutions involved. We knew that we should
have to specify that the most general unifier should also be idempotent
because Manna and Waldinger made this observation in [MW81]. Had
this not been the case we should have certainly not mentioned this in
the specification, and would have proceeded through the proof to this
stage and realised (perhaps) that an extra condition was needed.
There is an important lesson to be learned here about the relationship
between the specification and the proof. It should also be noted that we
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tried hard, without success, when attempting this proof to drop the
idempotence condition.
We believe that it is worth discussing whether we derived an object
which met a specification or showed that some object that we had pre¬
pared earlier, so to speak, met the specification. As the proof is pre¬
sented in this thesis it would appear that the latter is the case. We
should point out that the function presented in Chapter 8 was con¬
structed after contemplation of this proof and of the unification algo¬
rithms that we discussed in Chapter 8. We should not like to claim tnat
it was immediately apparent to us that the algorithm that we presented
met its specification, and that the only task left was to check this. We
should, however, point out that there is a point in any such proof
where an object of a required type must simply be produced. In this
case this step would be at the level of observing that the empty substi¬
tution is a most general idempotent unifier of rair(None,None), that
the substitution x —> Var(y) is a most general idempotent unifier of
Pair(Var(x),Var(y)), and so on.
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Chapter 11
Comments

In this chapter we present some comments on the work presented in
the thesis.

11.1 Representing terms

The representation of terms, as presented in Chapter 5, was more
problematical than might at first have been expected. To represent
terms as we wished we were forced to use mutually recursive types.
Other approaches tried included using terms like tnose of [Pau85b]
and using TERM lists rather than the type TERMS. We have pointed out
elsewhere that we found Paulson's terms, although convenient, rather
unsatisfactory. The use of TERM lists is, initially, attractive because lists
are a well-known type. However the problems of saying what the
computation rules for the associated non-canonical constant were,
were just as tricky as those associated with stating the computation
rules for the non-canonical constant that we used. Furthermore we felt
that there was more technical interest in the use of mutually recursive
types, and that any techniques that we used would have more chance
of generalisability.

11.2 Mutual recursion

We suggest that Backhouse ef al ([BCMS88]) are rather too dismissive
of the interest of mutual recursion. Although the introduction rules are
important it is with the computation and elimination rules that the hard
work is to be done by the computer scientist.

Contemplation of the mutually recursive types illuminates the relation¬
ship between the introduction rules, the computation rules and the
elimination rules for all types. We agree that there are very deep rea¬
sons (see, for example, [Dum91]) why the introduction rules are to be
considered primary. We contend that from an understanding of the
form of the introduction rules the computation rules for the non-
canonical constant for the type (or group of types) can be inferred. We
notice that we have to have some informal understanding of the notion
of computation. Then, and only then, can the elimination rule for the
type be constructed. The usual emphasis is that the elimination rules
can be inferred from the introduction rules, and then the computation
rules for the non-canonical constants inferred from the elimination
rules. (See, for example, [BCMS881, [NPS90] and [Tho91j. [Mar84
makes little or no comment about the computation rules.) The usua

91



presentations of intuitionistic logic (e.g. [Gen36], JPra65], [TD88]) em¬
phasise that the elimination rules can oe derived from the introduction
rules by appealing to some more-or-less formalised principle of
'harmony'. [Dum91] discusses this issue further. Very informally we
may say that we must not get any more or less out of a proposition
from elimination rule than we put in with the introduction rules. The
use of proof objects, and the computation rules for the non-canonical
constants allows us to capture exactly the notion of harmony. If we had
different informal notions of computation then we should expect to
have different elimination rules for the same group of introduction
rules.

11.3 Well-founded recursion

Another feature of the proof that we presented was the use of well-
founded recursion. This technique proved to be very powerful, and
although the justification of the induction was without aoubt the hardest
part of the thesis it would have been ever harder to write out a struc¬
turally recursive function to unify two terms.

11.4 Automation

One way that might be suggested to improve the proof would be to use
some automated proof-assistant, such as GTTS [Pet82|, Nuprl [Con86],
ELF [HHP87], Oyster [Hor88], Isabelle [Pau90] or PICT [Ham90]. The
reasons that this was not done were mainly practical. Firstly, none of
these systems was available on suitable hardware. A port to such
hardware may have been possible. However there was no certainty
that any port would be successful and there was a certainty that any
attempt at such a port would be time consuming. It was also not clear
that any of the systems that were available woufa be able conveniently
to represent mutually recursive types and well-founded induction. The
task of adapting an existing proof-assistant to cope specifically with the
rules of the 1*84 theory with mutually recursive types and well-
founded induction was thought to be outwith the scope of this thesis.
It is certainly the case that the use of an automated proof assistant
would have eased the tedium of some of the finer parts of the proof
and a fully formal proof could have been presented.
It is also worth noting that most of the automated proof-assistants avail¬
able depend for their correctness on the correctness of some
unification algorithm.

11.5 On specifications
We return to the problem of the idempotence of the most general uni¬
fier that we construct. As we saw iaempotence was crucial, yet we
contend that it was impossible for this to be foreseen when we first
wrote the specification. For instance, we have never seen a Prolog
textbook which mentioned that Prolog's unification algorithm constructs
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idempotent unifiers. Our original specification was too weak and, for
the induction proof to work, we needed to prove a stronger proposi¬
tion. Of course, our proof of the stronger proposition contains a proof
of the weaker proposition. We suggest that this sort of problem will
arise more often as larger problems are tried using M-LTT. We note
that the problem of idempotence would not have been noticed (had we
not had [MW81] available) until the proof was very nearly complete.
This problem would, of course, have arisen whatever language had
been used to write the specification.

11.6 Disjunctive specifications
The specification that we used contained a disjunction in which one of
the disiuncts was essentially negative in that it asserted that there was
no unifier of the terms that we were interested in. When evaluating the
function we usually have little or no interest in why there is no unifier
of the pair of terms. We used a rather ad hoc technique to suppress
this information.

The specification was almost an instance of the 'law of the excluded
middle'. There is, of course, a classical proof of this proposition which
has no algorithmic content. As we have pointed out we have little in¬
terest in the algorithmic content of the proof of the negative part of the
specification. We could see no way to exploit this observation as a
means to structure the proof or suppress the uninteresting parts.
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Chapter 12
Conclusion

We have used Martin-Lof's type theory to specify and express a unifi¬
cation algorithm. We have utilised an extension of the 1984 extensional
theory with mutually recursive types, justified both directly and via an
encoding using the type of general trees. We used well-founded in¬
duction over a group of mutually recursive types to prove the correct¬
ness of the algorithm that we presented.
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