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ABSTRACT

In this thesis there is a discussion of some of the wave modes which can

occur in cold plasmas, first in the absence of magnetic fields, and then in their

presence. This is followed by short discussions of Landau damping and the

origin of Alfven waves.

The next chapter discusses the general principle of toroidal confinement

devices, and then looks in more detail at relaxation theory as it applies to RFPs.

The last section gives brief theoretical and experimental details of current drive

in tokamaks using Alfven and ion cyclotron waves and heating using lower

hybrid and electron cyclotron waves.

In the conditions obtaining in a reversed field pinch only whistler waves,

which have high momentum parallel to the magnetic field will propagate. An

investigation was carried out to see if whistlers could be used to drive a

poloidal current near the field reversal point and so sustain the toroidal

reversal. A numerical experiment was carried out, in slab geometry, for waves

with discrete values of the wave number in a plane perpendicular to the

direction of propagation. The results suggest that the position where the bulk

of the wave energy is deposited can be controlled by altering the magnitude of

the wave number, and changing the angle that it makes with a fixed direction

and by altering the frequency of the waves.

The final chapter suggests how the work could be made more accurate by

either making changes to the model, or by solving Maxwell's equations as a set

of coupled ODEs.
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CHAPTER 1 INTRODUCTION

A plasma is a gas which has been heated to such a high temperature that

its molecules begin to ionise so that the gas is made up of a mixture of ions

and electrons but remains electrically neutral overall. If the temperature is not

too high the plasma will also contain neutral particles.

Much of the early work on plasmas was motivated by the need to

understand the behaviour of radio signals, which are affected by the presence

of ionised layers in the upper atmosphere. The basis of much of this work is

the Appleton-Hartree dispersion relation, which is one form of the solution of

the cold plasma dispersion relation.

The word plasma as a name for an ionised gas was introduced by

Langmuir, who thought that the behaviour of gaseous plasmas was similar to

that of blood plasma. Although he was mistaken the name has stuck.

Nowadays, the main motivation for much plasma physics research is to

produce plentiful supplies of energy from the fusion of light elements. This

requires temperatures of the order of 107 K, similar to that at the centre of the

sun.

At temperatures of this magnitude it is not possible to confine plasmas

using ordinary materials. The most successful method to date uses the fact

that charged particles in magnetic fields gyrate about the field lines, so if the

field lines are bent into a closed shape the particles can be trapped. However,

in the presence of electric and magnetic fields the behaviour of the plasma

becomes much more complicated, and some aspects of its behaviour are still
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not fully understood.

The basis of fusion research is the well known Lawson criterion, which

gives an estimate of the conditions necessary for a self sustaining fusion

reaction to occur. This states that the plasma density multiplied by the time the

energy is confined in the plasma must reach a certain value. One way to

achieve this is to use comparatively low densities with long confinement times.

This approach is the one described above which uses magnetic fields to

confine the plasma for a long time.

The second method uses high densities which are achieved by

illuminating a small pellet containing deuterium-tritium fuel with very intense

laser light. This produces very dense plasmas and the confinement is supplied

by the inertia of the plasma as it begins to fly apart.

Fusion research really took off with the success of the ZETA reversed field

pinch at Harwell in the 1950s. (One of the reasons why work on ZETA was not

continued was that several kinds of instability were found.)

In the 1960s there was great excitement when high temperatures were

produced on Russian tokamaks. (The word tokamak is a Russian acronym for

toroidalnaya kamara i magnitnaya katushka which means toroidal chamber

and magnetic coil.) As a result of the success of these devices most of the

world effort in fusion research has been concentrated on tokamaks.

Large strides have been made in raising the temperature and density of

confined plasmas towards the levels required for fusion using tokamaks. This

has required the development of new techniques to heat plasmas using the

interactions of different forms of electromagnetic radiation with the plasma and
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the injection of energetic beams of neutral particles.

Despite the success of tokamak experiments several other confinement

devices are under investigation, such as the reversed field pinch, spheromak

and stellarator. This is partly to provide knowledge of the behaviour of

plasmas under different conditions and partly to provide alternatives if the

tokamak approach to fusion should prove to be impracticable.

Chapter 2 mentions two models which are used to describe the behaviour

of plasmas. The first model looks at the behaviour of a single particle in the

plasma and how this information can be combined with Maxwell's equations to

derive the dielectric tensor which describes the behaviour of the whole plasma

in the cold plasma approximation. This means that the effects of temperature

and pressure are neglected. This approximation is useful because when the

behaviour of the dielectric tensor is investigated it shows what the basic wave

motions in the plasma are, so the chapter goes on to investigate some of these

modes and to find out under what conditions the wave can propagate. This

leads on to a discussion of the CMA diagram, which is a useful way to classify

the multitude of wave modes.

The consideration of the plasma temperature introduces new modes, but

the basic wave modes are still those found in the cold plasma case. The main

effect of temperature is to damp the wave modes, by a mechanism known as

Landau damping. This is discussed in the next section of chapter 2.

The final section has a very brief introduction to magnetohydrodynamics

(MHD). In this theory a plasma is treated as a fluid, but one which is electrically

conducting, and so couples Maxwell's equations with the equations of fluid
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dynamics. This introduces the Alfven wave modes of the plasma.

Chapter 3 discusses in more detail the way in which plasmas are

confined in toroidal systems. The two systems discussed are the tokamak and

the reversed field pinch.

After this general introduction the second section gives an introduction to

Taylor's theory of the reversed field pinch, which assumes that the plasma

relaxes to a near minimum energy state subject to the constraint that the total

helicity remains constant. The theory is shown to agree with experimental

results. Although it is not a complete explanation for the behaviour of the RFP

it does provide a general mechanism to explain the results.

The last section describes the principles of current drive, and how some of

the waves described in chapter 2 have been used for this purpose. Heating

and current drive using radio waves have been demonstrated on several

tokamaks.

Chapter 4 considers how current drive could be applied to RFPs. In the

present experiments the toroidal reversal decays after a while, but if a poloidal

current could be driven this would continue the toroidal reversal necessary for

plasma confinement.

After the introduction the second section of the chapter considers the

solution of the cold plasma dispersion relation in a cold plasma for the

component of the refractive index which changes going into the plasma, the

x-direction.

The first subsection describes the approximations made to find this

refractive index component included using slab geometry, but with the
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magnetic fields assumed to be Bessel functions. The plasma density was

assumed to have a parabolic profile, in the x-direction, with maximum density at

the centre of the plasma. It was also assumed that the component of the wave

vector in the plane of the magnetic field was constant, but that its angle to the

magnetic field could be varied.

The next subsection discusses the variation of the refractive index in the

x-direction with various parameters, while the next subsection attempts to make

simplifications to the expression for the x-component of the refractive index

which would explain these results.

The fourth subsection discusses in more detail the positions where the

square of the refractive index either passes through zero, or where the two

branches of the square of the refractive index meet, which are important in

determining where energy is absorbed in the plasma.

The third major section looks at where energy is deposited in the plasma.

The first subsection examines the behaviour at the edge region of the plasma,

where the waves are evanescent. The wave's behaviour here can be

described by Airy's equation.

The second subsection reintroduces the warm plasma corrections to the

cold plasma theory to determine the amount of absorption and the third

subsection describes where the energy is deposited in the plasma. It also

shows that the position of maximum absorption can bo changed by changing

the parameters the wave is launched with.

The fifth chapter then considers ways in which this work could be

continued. One way would be to try and make the model more accurate so that
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the effects of variations in the magnetic field could be considered more

carefully. This would mean using cylindrical geometry instead of the the slab

geometry used so far, and introducing more realistic density and especially

temperature profiles. Another refinement is to look at methods of producing the

waves which would be fired into the plasma. This would also mean

considering a spectrum of waves, rather than the single value assumed in

chapter 4. This is discussed in section 5.1.

A totally different approach is to reduce Maxwell's equations to a set of

coupled ordinary differential equations and then solve them in the vacuum

outside the plasma and in the plasma itself.

The appendix gives the program used to produce the results and a brief

explanation of some of the major modules in the program.
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CHAPTER 2 WAVES IN PLASMAS AND PLASMA HEATING

2.1 INTRODUCTION

One of the main requirements to understand the behaviour of a plasma is

to know how electromagnetic waves interact with the plasma. The properties

of these interactions can be used to devise schemes to transfer energy from the

wave to the plasma to drive a current or to heat the plasma.

This chapter will consider some aspects of wave-plasma interactions and

how these properties have been applied in various heating schemes.

2.2 WAVES IN COLD PLASMAS

Consider a fully ionised plasma, made up of electrons and singly charged

ions. The electrons and ions will be identified by the subscripts e and i. The

subscript s will be used to imply a sum over the electrons and ions. However,

the rest of this section will deal with the properties of a single type of particle,

but can be easily applied to the other kinds of particles and to behaviour of both

kinds together.

The equation of motion for an electron in an electric field E. and a

magnetic field B is

= -e(E + vxB) (2.1)
ot

If the time dependence of the variables is given by exp(-icot) the previous
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equation becomes

icomv = e ( E + vxB) (2.2)

Writing equation (2) in Cartesian coordinates with the magnetic field in

the z direction gives

icomvx = eEx + evyB

icomvy = eEy - evxB (2.3)

icomvz = eEz

The electron cyclotron frequency, Q, is given by Q = eB / m, and the

ratio of the electron cyclotron frequency to the applied frequency is denoted by

Y. Making this substitution and solving (3) for v gives

e (EX - iYEy)
V = -

icom (1 - Y2)

e (E + iYE )
vy = 1 j- (2.4)

icom (1 - Y )

'

icom

Now, the current density, J, is related to the velocity of the electrons by

J = -nev. But, since v is known in terms of E we can relate J to E via the

conductivity tensor q and J = 2-E.
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s = -
ne

icom (1 - Y )

1

iY

-iY 0

1 0

0 0 1 - Y

(2.5)

Now consider Maxwell's equation relating the curl of B to the time

derivative of E; making the substitution 3 /9t = -icot gives

n r-i , iwEVx B = a J —
r0 2 (2-6)

Substituting 1 / e0 c2 for (j.Q and -ne$.E for J gives

V x B = -
iro_£. E

(2.7)

£ is the cold plasma dielectric tensor, for electrons only, but the ion terms

can easily be added.

e =

e± iexy 0

■% e± 0

. 0 0 h .

(2.8)

with e± = 1 - X / (1 - Y2); exy = XY/(1 - Y2); e„ = 1-X. Xisgiven

by ne2 / e0 m co2 = to 2 / co2 and is proportional to the density of the plasma.



To find a solution to equation (7), use the equation V x E = -9B /9t to

find B in terms of E and then solve the equation by assuming spatial

dependence of the form exp( i k.r), ie replace V by (ikx, iky, ikz). Then instead
of solving in terms of the propagation vector k solve the equation in terms of the

refractive index vector n. So, (7) becomes

g.E + nx(nxE) = 0 (2.9)

To proceed assume that the x-direction is given by the component of n

perpendicular to B, and that the angle between B and n is given by 9. This

means that n = (n sin 0, 0, n cos 9 ). Writing this out in Cartesian coordinates

implies that there is only a solution when

e, -n2cos20 is n2 sin 0 cos 0
_l xy

-ie.
xy e± - m 0

n2 sin 0 cos 0 0 6,1 - n2 sin2 0

= 0 (2.10)

2.2.1 B = 0

To see some of the waves which are possible in a plasma it is simplest to

look at the case where there is no magnetic field. This means that there is no

preferred direction in the plasma, so letting waves propagate in the z-direction

does not result in any loss of generality.

With B = 0 and the waves propagating in the z-direction the dielectric
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tensor components become

e± - e,, = e = 1 - co2/®2 e = 0
xy (2.11) and

equation (10) becomes

e - n2 0 0

0 e - n2 0 = 0 (2.12)

0 0

There are two distinct solutions to this equation. In the first Ez * 0, which

implies that

2
co P

e = 1 —1 = 0 => co2 = cOp (2.13)
co

Looking again at equation (12), since Ez^0 (and Ex = Ey = 0), k is

parallel to E giving a longitudinal wave. However co * co(k) so the group

velocity is zero, and hence the wave does not travel through the plasma, but

any disturbance remains localised. This type of oscillation occurs when some

electrons are displaced and then oscillate about their equilibrium position at the

electron plasma frequency.

The second type of solution has Ex or Ey * 0. This gives two mutually

perpendicular solutions which have the same characteristics, given by the

dispersion relation
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e - n2 = 0 => co2 = cop2 + (kc)2 (2.14)
This is similar to the dispersion relation for an electromagnetic wave in vacuum,

but it is modified by the factor top2 which is caused by the plasma. Equation

(14) implies that this wave cannot propagate unless w > cop. As a

consequence of this it can also be seen that the wave will only propagate in the

plasma if the plasma density is below a critical value. When the density

exceeds this value the wave is reflected and the plasma is said to be

overdense.

2.2.2 B * 0

The addition of a magnetic field introduces a preferred direction to the

plasma. Going back to the previous coordinate system shows that equation

(10) is the correct one to describe wave propagation. (10) only has a solution

if the determinant of the matrix is zero, ie if

An4 - B n2 + C = 0 (2.15)

with

A = cos2 0 + e± sin2 0

B = £|| e± (1 + cos2 0 ) + RLsin20 (2.16)

C = e„RL

where R and L stand for right and left circular polarisation and are also

introduced to simplify some later expressions. They are given by
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CO

R = 1
to co + Q

L = 1 -

CO,

CO

CO

i2 co - Q
(2.17)

and e
i

R + L
®ii =

R - L
(2.18)

Making these substitutions shows that the solution of (15) is

, B ± {(e.e, - RL)2 sin"6 + 4e?e2 cos20)"2
n = A

2A (2'19)

When n2 = 0 the wave is said to have a cutoff. Going back to equation

(16) this is true when £|, =0, R = 0 orL = 0.

Resonances

A resonance occurs when n2 -» <«, which is true when A = 0. From (16)

this is true when

2 ^i|
tan 0 = — (2.20)

e
i

At 0 = Q this implies that e± -» «», or alternatively that R + L -> <». R

13



tends to infinity when co = Qj, so there is a resonance at the ion cyclotron

frequency. Similarly L °° at the electron cyclotron frequency.

At 9 = 71/2 resonance occurs for e = 0, or explicitly when

2 2
CO CO •

1 -
2 ~ ~ 2 = 0 <2-21)

co - H2 co2 - Q
e i

Equating the first two terms to zero and substituting into the third term

shows that this is very small, so

CO2 = 10^2 + £2/ (2.22)
is a good approximation to one of the roots.

Rewriting (21) to give an explicit equation for co4 gives

<%"f+ % nl*+ % nl <2-23>

as the constant in the equation, which is the product of the roots. Using this

gives the second root of equation (21) as (approximately)

„2 „2 2 „2

2 Q ^ + CO • Q
© = -i-j (2.24)

% + a.

The first root is greater than the electron cyclotron and electron plasma

frequencies and is called the upper hybrid frequency. The second root lies
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between the ion and electron cyclotron frequencies and is called the lower

hybrid frequency.

If instead of looking for infinities of the refractive index we look for the

zeros, using the determinant of equation (10), the condition for n2 to equal 0 is

e„ (e±2 -1 ) = 0 (2.25)

Solving this equation for co gives two approximate solutions

Q.
co.

a: 2
- + %

1 / 2

(2.26)

ft.
C02 -

e 2

T + C°p

1/2

(2.27)

Plotting the dispersion curve in this case gives a mode with two branches

- the extraordinary or X mode, see figure 2.1.

Going back to equation (10) there is also a solution when Ez * 0, ie when

e|( - n2 = 0 which gives the dispersion relation co2 = cop2 + k2c2. Since this
wave propagates in the x-direction and has its electric vector in the z-direction it

is a transverse wave. The particle motions caused by the electric field are also

in the z-direction, so the particles gyrate about the magnetic field, but are

otherwise unaffected by it. This is called the ordinary or O mode.
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Cutoffs and resonances

At a cutoff the refractive index of the plasma equals zero. The behaviour

of the wave depends on whether it approaches the cutoff from the evanescent

side or from the side with n > 0.

If the wave approaches from the evanescent side it passes through the

cutoff into the region where it can propagate. If the wave approaches the cutoff

from the propagating side it is reflected from the cutoff. The exception is if there

is a very thin evanescent layer followed by another propagating region. In this

case some of the wave energy can tunnel through to the second propagating

region.

At a resonance the refractive index goes to infinity and the phase velocity

falls to zero. Resonances can be found by examining the cold plasma

dispersion relation and occur at the ion and electron cyclotron frequencies and

their harmonics and at the various hybrid frequencies.

Whether a wave is absorbed or reflected at a refractive index infinity

depends on the strength of the damping mechanism in the surrounding region.

The weaker the damping mechanism the thinner the absorbing layer becomes.

However, if the damping mechanism becomes too weak the wave becomes

evanescent at the refractive index maximum and is reflected.

Evanescence arises because the finite temperature of the plasma means

that there is a minimum wavelength which in turn means that the refractive

index cannot go to infinity. Damping can only occur when the refractive index

is bounded if there is a large imaginary refractive index component.
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The results of the previous sections can be summarised in the

Clemmow-Mullaly-Allis (CMA) diagram. For a plasma composed of electrons

and one ion species the diagram maps a two dimensional parameter space.

The axes of the graphs in figure 2.2 are plotted in units of (32 = | Q Qj | / co2

and a2 = (oope2 + copj2 ) / co2 . B increases with increasing p2 , or for fixed B
O

the frequency decreases, or is a measure of increasing density, or for fixed

p
density the frequency decreases as or increases.

The CMA diagram can also include information about the wave-normal

surfaces of waves in the plasma. The wave-normal surface is a plot of the

phase velocity of a wave against 0, so the shape of the surface is determined by

the anisotropy of the plasma. The surface sketched out is given by the tip of a

vector in the same direction as the propagation vector, but whose magnitude is

given by the phase velocity of the wave.

The topological properties of the wave-normal surfaces remain constant

within each bounded region of parameter space in the CMA diagram. This

provides a good way to label the various wave modes.
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Fig 2.1 CMA diagram for a cold plasma, with one ion species,
showing the wave-normal surfaces.



perturbations in the electric and magnetic fields in the plasma.

(i) No Magnetic Field

Initially consider the case where there is no magnetic field and assume

that the electric field is zero in the unperturbed case, so that when E appears it

is a first order quantity. Making these substitutions in (28) and linearising gives

3fi 3f e 3f_L + v . -1 - — E . 3^ = 0 (2.29)3t 3r m 3v

Then use the fact that the charge density in the plasma is given by the first

moment of the distribution function to get an expression for the electric field in

the plasma from Poisson's equation, using the perturbation of the electron

distribution function.

V2<> = --e- = — f f (V)d3v (2.30)
0 0

Again assume that quantities vary as expi(k.r - cot), so that with E = - V<j>

equations (29) and (30) become

e afo
-icof1 + ik.vf1 + — i(J>k.^- = 0 (2.31)

k2<}> = ff d3v (2.32)
e J
o
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Using (31) to substitute for f1 in (32) and cancelling the potential, b, on both

sides gives

The singularity at (o = ky. means that the integral in equation (33) is

undefined and so it is not possible to proceed with this method. Instead go

back to the original differential equation and treat it as an initial value problem,

where the value of f1 is given at time t = 0, but its behaviour is not assumed to

vary as exp(-i cot) but has to be found. This means that equation (28) has to be

Laplace transformed in time. However, it is still assumed that the spatial

variation is harmonic, so f1 can be Fourier transformed and rewritten as

Also, it is only the component of velocity parallel to the propagation vector

which contributes to Landau damping. Call this velocity u = k.v/k. Let F0(u)

and F^u.t) be the integrals of f0(v) and ^(v.t) over the two velocity components

perpendicular to k. Then, integrating (31) and (32) wrt the perpendicular

components of velocity and using E = - V<j> in (32) gives

(2.33)
o

f1 (r,v,t) = f-,(v,t) expik.r (2.34)
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ikE =

eo-
J F^u) du (2.36)

To solve (35) and (36) as an initial value problem use the Laplace

transform method. The Laplace transform of a function is defined by

oo

F^u.p) = J F^u.t) e"pt dt (2.37)

and the inverse Laplace transform is defined by

F (u,t) = — f F (u,p) ept dp (2.38)
27ti J

The contour C will be described later. The Laplace transform of the derivative

of a function is given by

dF^u.t) r dF^u.t) .p,

dt
f Ur^U,lj _p(

= J —^— e dt = pF^u.t) - Fo(u,0) (2.39)

Applying (37) and (38) to (35) and (36) gives
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e 3F0
pF1 + ikuF1 = - — E— + Fi(t = 0) (2.40)

ikE = "ml Fi(u)du (2-41)

Substituing for F1 from (40) into (41) gives

ikE = fit
- — E
m

P +

3Fr

9u F^u, t = 0)
iku p + iku } du (2.42)

and solving for E gives

E =

eQ k e(k,p)
f F1(t = 0)
J p + iku

du (2.43)

£(k,p) is the plasma dielectric constant and is given by

o

e2 3po/3u
e(k,p) = 1 + J du (2.44)e m k J ip - ku

-oo

Comparing (44) and the previous expression (33) shows that if p is
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replaced by -ico the two formulations are equivalent. ((44) does not have a

singularity because the real part of p is positive.)

Now substitute the value of E found in equation (43) back into equation

(40) to find an expression for the Laplace transform of the distribution function.

oo

- ie2 f F,(t = °) „ F,(t-0)F — — du + — (2.45)
(p + iku) e mke(k.p) 3u J p + iku p + iku

0 -oo

Any poles in equations (43) and (45) occur when the dispersion relationship

equals zero.

To find the values of the electric field and the perturbations in the

distribution function equations (43) and (45) have to be inverted using

equation (38). The contour of integration to invert a Laplace transform is an

infinite vertical line on the complex p-plane, lying to the right of all singularities

in the plane. This is shown in the first part of figure 2.

Now deform the original contour C to C' as shown in the second part of

the diagram. The value of a is chosen so that all the poles lie to the left of the

vertical dashed line passing through a. If C' is sufficiently close to a the

integral along that part of the contour behaves as exp(- at) and tends to zero for

large enough time. Similarly the contribution from the pole furthest to the right

will be the largest for sufficient large values for t. This means that it is possible

to find an asymptotic value for the integral.

However, to be able to deform contour C into C' in the complex p-plane
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implies that there have to be conditions on the integrals of the form

<> - J irnkdu (2-46)

which are part of the expressions for E, F1 and e(k,p).

These integrals are integrated from -»to » along the real axis. However,

there is a singularity at u = ip/k which has to be treated correctly. Looking

again at figure 2.2 the contour of integration runs to the right of all the

singularities, so since u is proportional to i times p the contour of integration has

to pass below the pole, as shown in figure 2.3, which shows the complex

u-plane. But to be able to deform this contour in this way implies additional

constraints on the function G(u). The constraints are that the initial velocity

distribution and the perturbed velocity distribution functions have to be

sufficiently smooth.

The work which will be described in chapter 4 only deals with the

magnitude of the Landau damping, and is not concerned to find the velocity

perturbation or the electric field, so here solve the plasma dispersion relation,

equation (44), to find the Landau damping decrement.

Solve this equation asymptotically for large values of t in terms of the

wave frequency co rather than the Laplace transform variable p, ie solve
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e(k,co) = 1 + J
fo
3u

du = 0
b mk J co - ku
0 -oo

(2.47)

with a Maxwellian distribution function

no - mu2/2KT
Fo(u) = a (2.48)

(2KKT/m)

If (o is assumed to be real to a first approximation there is a pole at to = ku,

ie on the contour of integration. But from the argument above the imaginary

part of co must be greater than zero if the contour is always to lie below the

poles. So the imaginary part of co has to tend to zero from above. The correct

way to treat integrals of this form is to use the Plemelj formula, and in this case

the answer is

-I j. 9F0/9u •) 3FP — du - —
^ (2.49)

2rrik J u - cok 2k 5u u=ovk

The principal value of an integral is found by removing a region of width r on

each side of the point where the integrand is singular and then letting r tend to

zero. If the contour had been above the pole the sign of the second term would

have been positive.

If k is then assumed to be small in the region where the value of 3F0/3u is
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significant go » ku then ( go - ku)"1 can be expanded in a Taylor series and the

integrand integrated term by term. For a Maxwellian plasma 3F0/9u is odd,

thus 'knocking out' some of the terms in the Taylor series. Integrating gives

. ®P „,.2kT% e2 in £||o
2 4 " m 2 3u u - «yk ' 'go mco eQ m k

and equating the real parts gives

go2 = cop (1 + 3k\2) (2.51)

XD (= [KT/moop2]1/2 ) is the Debye length and the further assumption that

k>.D « 1 is made. Then, in line with the assumptions made so far, the imaginary

part of the frequency is assumed to introduce a small perturbation. Letting go =

goq + 5go where co0 is the solution of equation (51) gives

Sa, - i _2L_ JL_ £!» (2-52)
2 Opk! E,™ a™ '■

and, using equation (51), for a Maxwellian plasma this becomes
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8© » -4" /$- co — exp ( \ )2 v 2 k A,q V 2k\p 27 (2.53)

This is true for electrostatic waves in a plasma with no applied magnetic

field. The result used in chapter 4 is for a plasma in a magnetic field. This

introduces some changes, but these will be discussed after the next section on

the physical mechanism of Landau damping.

(ii) Physical Mechanism for Landau Damping

From equation (52) the amount of Landau damping is proportional to the

slope of the distribution function at u = co / k, ie where the parallel thermal

velocity of the electrons equals the group velocity of the plasma. This suggests

that the damping is caused by some sort of resonant interaction.

In a Maxwellian plasma the slope of the distribution function at the phase

velocity is negative, so there are more particles with velocities a little lower than

the group velocity than there are particles with velocities a little higher than the

group velocity. Exactly how a particle interacts with the wave depends on its

phase wrt the wave as well as its velocity. Particles which are not nearly in

resonance with the wave oscillate in the field and so are not relevant for

Landau damping.

When the particles with velocity slightly lower than the wave gain energy

their velocity increases and so they approach the resonant velocity more

closely and hence can gain more energy from the wave. Conversely, if a

particle gives energy to the wave its velocity decreases and so it interacts less
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efficiently with the wave.

The opposite is true for particles which start with velocities slightly higher

than the phase velocity. If they lose energy they interact more efficiently with

the wave and if they gain energy they move out of resonance.

Since in a Maxwellian plasma there are more slightly slower particles

than slightly warmer particles on balance the wave gives energy to the plasma

and is damped.

(in) Landau Damping in a Magnetic Field

The addition of a magnetic field to a plasma does not change the

mechanism of Landau damping. The spiralling of the electrons round the

magnetic field lines does not change their energy, but their motion parallel to

the magnetic field does allow for the possibility of Landau damping in this

direction.

The magnetic field is eliminated in the Vlasov equation by using

Maxwell's equation

r)R
VxE = - y (2.54)

The calculation then follows through in a similar way to the previous case with

only an electric field present. For waves propagating purely along the

magnetic field the only component of the wave vector present is k„, and the

imaginary part of the dielectric tensor is given by

28



2
CD CD
P

.3 3k,,u
exp (-^t).. 2 2

2k, ,u
(2.55)

29



2.4 ALFVEN WAVES

Another set of waves arise from consideration of magnetohydrodynamics

(MHD). The MHD approach to plasmas arises from consideration of the

equations of fluid dynamics with the additional assumption that the fluid is

electrically conducting. The conductivity of the fluid is assumed to be high

enough that any electric charge is dissipated in a shorter time than the time

scale being considered. This means that the fluid is electrically neutral and

any electric fields present are only caused by changing magnetic fields.

The Alfven waves can be found by considering the linearised MHD

equations

3p
+ V. (pVl) = 0 (2.56)

3vi
p + Vp1 = J x B1 + J1 x B (2.57)

+ (v,.V) p + YpV.v, = 0 (2.58)

3B,
at

= V x ( V, X B ) (2.59)

The unsubscripted quantities are the equilibrium states and the subscript

1 on a quantity means that it is a perturbation. B is the magnetic field, J the
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current density, p the plasma pressure, p the plasma density and ythe ratio of

specific heats.

In equilibrium assume that p and B are uniform and that the current is

zero. Letting £, = £(r,t) be the displacement of the plasma from equilibrium

gives

2

P^f = VhpV.Q + —(VxB,)xB (2.60)
St

with

B1 = Vx(^xB) (2.61)

Continue to use the coordinate system with B along the z-axis and the

angle between B and k being 0. Then taking the scalar product of ( k x z )

with equation (60) gives

( go2 - cA k2 cos20 ) ( k x z ). £ = 0 (5.62)

which shows that there is a mode with the dispersion relation

? 2 2 2 2 2co2 = c*k cos 0 = cAkz (5.63)

The mode is known as the Alfven mode and cA2 = B2 / p0 p is the square

of the Alfven speed. In this mode % is along k x z and so is perpendicular to
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both the magnetic field and the wave vector. But, equation (63) shows that co

only depends on kz, so the group velocity and hence the wave energy are

parallel to the magnetic field.

Taking the scalar product of equation (60) with k and z and making the

substitution cs2 = yp / p (where cs is the speed of sound in the gas) gives the

two coupled equations

co2 (tk) = c2 k2 (£.k) - c2 cosG ^z k3 + c2 k2 (£.k) (2.64)

co2 = c2 k cosG (£.k) (2.65)

Eliminating kz and (k.£) between (64) and (65) gives the dispersion

relation

co4 - k2 co2 (c2 + c2) + k4 c2 c2 cos20 = 0 (2.66)

with solution

CO2 1 / 2 2 , „ 2 2 X2 „ 2 2 2A!1/2X /0 0-7X

2 = 2 (Cs + CA 1 «Cs + CA) " 4cs CAC0S ) <2-67)
k

The two solutions to equation (66) given in (67) are known as the fast (+ sign)

and slow (- sign) magnetosonic waves. In general both waves have kz and k.£

non-zero.
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CHAPTER 3 TOKAMAKS AND RFPS

3.1 TOROIDAL CONFINEMENT SYSTEMS

One way to confine plasmas is to use the fact that charged particles spiral

round magnetic field lines. If the magnetic field lines are closed the particles

will then be trapped. The simplest way to close the field lines is to bend them

into a circle. This is the basis of toroidal confinement systems, in which the

magnetic field lines form closed loops which are enclosed in a torus (ring

doughnut).

The two main directions in a torus are the toroidal and the poloidal

directions. The toroidal direction corresponds to travelling along the major

circumference of the torus and the poloidal direction to going along the minor

circumference. Figure 3.1 illustrates this geometry.

To see how a plasma is confined in a torus first consider setting up a

toroidal field in the torus using a set of poloidal field coils. The particles are

then constrained to travel round the torus following the field lines. However,

the coils produce a field which is higher at the inner sided of the torus (the hole)

than the outside. This field gradient produces a transverse drift of electrons in

one direction and a drift of ions in the opposite direction. The separation of

ions and electrons produces an electric field, which then interacts with the

toroidal magnetic field to produce an E x B drift of ions and electrons radially

outwards.

However, the drifting will not occur if the electric field can be neutralised

or short circuited. This is achieved by passing an electric current through the
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3.1 Toroidal and poloidal directions in a torus.



plasma. The effect of this toroidal current is to produce a poloidal magnetic

field. The combination of the toroidal and poloidal magnetic fields produces

field lines which spiral round the torus. This twisting means that the particles

which spiral round the field lines pass through opposite polarities of the electric

field and hence short it out.

The poloidal field is important in determining the stability of the system -

leading to q, rotational transform.

The toroidal current also tends to make the plasma expand radially. To

counteract this it is possible to surround the plasma with a conducting shell, or

to use more coils to apply a vertical magnetic field, Bz. Some toroidal devices

have no conducting shell, which means that an additional quadrupole magnetic

field has to be applied vertically to avoid an instability which arises when

3B/9r < 0.

The basic method of confining a plasma is the same in the two main

classes of toroidal confinement device, the tokamak and the reversed field

pinch. The main differences between the two arise in the magnetic field

structure, which is shown schematically in figure 2. In the tokamak the toroidal

field is greater on the inside than the outside and decreases approximately as

1/r. The toroidal field is also considerably greater than the poloidal field.

In the RFP, as the name suggests, the toroidal field is reversed in the

outside of the plasma. The toroidal and poloidal fields have approximately the

same magnitude. One of the other differences between the tokamak and the

RFP is that the fields are usually much lower in RFPs than in tokamaks.
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Magnetic pressure. Consideration of the equations of motion of a

charged particle in a magnetic field or of the MHD equations in a plasma show

that the magnetic field in a plasma behaves as if it exerts a pressure B2 / 2p0.

This magnetic pressure plays an important role in the physics of tokamaks and

RFPs.

The ratio of the plasma pressure to the magnetic pressure p (=p / [B2/2jj.0])
is an important parameter in determining the stability of any particular

discharge, p is also a measure of the amount of magnetic energy stored in the

plasma. Typical values for p in RFPs lie in the range 5-10 %, which is higher

than in tokamaks.

3.2 RELAXATION THEORY AND RFPS

One of the most interesting features of RFPs is how the toroidal field

reversal arises. Initially, when experiments are set up to generate a reversed

field configuration, once the plasma has been formed it becomes

spontaneously unstable and very turbulent. After this turbulent phase the

plasma enters a stable state which is independent of the initial conditions of the

experiment.

This state can be described by two parameters; the field reversal ratio F =

B<t>waii1 B(j)ave and the Plasma pinch ratio 0 = 21 / aB^. The main features of the
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F- 0 diagram shown in fig 3 are that the field reversal (F<0) does not occur until

some critical value of 0 (-1.2) is exceeded and that there is a change in

behaviour for values of 0 greater than = 1.6. For values of 0 greater than this in

some experiments the field reversal disappears while on others the plasma

becomes more turbulent..

An explanation for this behaviour was put forward by J.B. Taylor, who

suggested that the behaviour of RFPs could be explained by saying that they

relax to a state which is a near minimum of magnetic energy subject to the

constraint that the total helicity of the plasma remains constant.

The initial assumptions made are that the plasma is a perfectly

conducting, viscous fluid surrounded by a perfectly conducting toroidal shell.

In this case Maxwell's equations for a perfectly conducting fluid with velocity v

can be reduced to

y = Vx(vxB) (3.1)

which implies that the magnetic field moves along with the fluid, ie it is 'frozen

in.' This means that the topological properties of the magnetic field are

determined by the fluid behaviour. Since the velocity of the fluid is continuous

the magnetic field lines cannot break and rejoin, so in a perfectly conducting

fluid the topological properties of the magnetic field are conserved. These

constraints can be expressed through the magnetic vector potential A, where B

= VxA.
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Fig 3.3 Schematic F-0 diagram showing two theoretical curves
derived from relaxation theory. BFM stands for Bessel function
model and HBM for high beta model. The experimental results
lie between the two curves.



Rewriting equation (1) and integrating gives

3A
„

= v x B + Vx (3.2)

where x is an arbitrary gauge. Since x is arbitrary equation (2) does not

impose any condition on the component of 9A/3t perpendicular to B. However,

multiplying (3.2) by B. gives an equation for Vx

B.VX = B.^- (3.3)

which in turn imposes conditions on 9A/9t if Vx is to be single valued. These

constraints are given below, where is the toroidal flux.

f B 9A o f B 9A /0JB -irdl = 0 J-^r-irdS = 0 <a4)

In any volume V these constraints can be summarised by the equation

K = J"v A.B dV = constant (3.5)

where K is the helicity.

In a perfectly conducting plasma there is a value of K for each infinitesimal

flux tube in the plasma. However, in the turbulent setting up phase of the RFP

it is not possible to assume that the plasma is perfectly conducting. This

means that flux tubes are free to break and rejoin, but although helicity is no

longer conserved for each individual flux tube it is possible to assume that it is a
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conserved quantity in the whole volume of the plasma.

To investigate what is happening in the RFP minimise the magnetic

energy of the plasma, given by Wm = Jb2/2 dV subject to the constraint that the

total helicity remains constant.

Going back to equation (2) and choosing a gauge such that V% = 0 we

find that

5A

B.-^ = 0 (3.6)

Using this to determine the next integral gives

Jp J A . V x A dV = J A . V x dV (3.7)
V V

Integrating the RHS of equation (7) by parts gives

jA.Vx^-dV = J V x A dV + J A x dS = 0 (3.8)
v v s

In a closed system the surface integral vanishes. Integrating the LHS of

equation (7) wrt time implies that the helicity remains constant, so minimising

the magnetic energy subject to that constraint using a Lagrange multiplier p.

gives

Jv [2 V x A . V x 5A - p( 6A . V x A + A . V x 5A )] dV = 0 (3.9)
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When equation (9) is integrated by parts, using the fact that 5A equals zero on

the surface gives

Jv [V x V x A - p. V x A] ,5A dV = 0 (3.10)

and since 5A is arbitrary

VxVxA-(iVxA = 0 (3.11) or

V x B = pB (3.12)

where ji is constant. This shows that the minimum energy state subject to the

constraint that the total helicity is constant is the force-free configuration given

in equation (12).

If equation (12) is solved in cylindrical coordinates (r,9,z), which implies

that the solutions neglect the toroidal effects and is axisymmetric, the magnetic

field components are given by

Bz =: B0 J0(pr) B0 = B0 J^pr) Br = 0 (3.13)

where J0 and J1 are Bessel functions.

Consideration of the Bz component shows that field reversal will occur

when pa > 2.404, or when 0 > 1.202. Experimental results show that field

reversal occurs when 0 = 1.4, so the theory is in fair agreement, especially

since the plasma is not in a fully relaxed state. However, the axisymmetric

state ceases to be the lowest energy state when jia = 3.11, or 0 « 1.6, and
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becomes a helically deformed state. Experimentally, when 0 = 1.6 the

axisymmetric state becomes unstable to the resistive instability, which again

suggests that the theory is on the right lines.

The simple picture presented above which results in a Bessel function

model for the magnetic fields is not complete because it predicts that p., which is

the ratio of the current density to the magnetic field, will remain constant across

the plasma. In practice it is found that the current density falls smoothly in the

outer regions of the plasma to zero at the wall. It is thought that this is because

the plasma resistivity is higher in the outer regions of the plasma and that the

reversal mechanism is not strong enough to overcome this.

One way to get round this problem is to include the effects of the finite

plasma pressure in the model. Figure 3 is based on figure 17 from Robinson's

chapter in Plasma Physics and Nuclear Fusion Research. Experimentally it is

found that the results from different RFP experiments do lie on a universal F-0

curve, but that the curve lies between that predicted by Taylor's theory and the

high beta model, which does include the effects of pressure.

Experimental Results

Section 3.3 deals with current drive experiments on tokamaks. A

considerable amount of work has also been carried out on ways to heat

tokamaks noninductively. However, in the case of RFPs experimental work is

still at the stage of exploring the properties of the plasma rather than carrying

out experiments on current drive or heating per se. As a result this section will



give a brief view of some results in this field.

In the discussion on the generation of the reversed field configuration by

self-reversal it was mentioned that the plasma is turbulent and has large

fluctuations in the values of various parameters. This is particularly true in the

case of magnetic fluctuations, measured as 8B / B.

The behaviour of the plasma torus can be described by using the poloidal

and toroidal mode numbers m and n, where x = x0 exp i(m0 + n<t>).

Experiments to measure these fluctuations show that they are caused by

the presence of large scale MHD modes in the plasma. Analysis of data for

HBTX1A by Hutchinson et al and Brotherton-Ratcliffe et al using statistical

methods to separate out the various components of the fluctuations show that

many of the fluctuations are due to low poloidal mode number, m=0 and m=1

modes with a mixture of toroidal mode numbers.

By contrast in a RFP without a conducting shell Robertson and Schmid

find that the length of the discharge is limited by the presence of n=1 and n=2

toroidal kink modes. The reason for considering a RFP without using a

stabilising conducting shell is that in many experiments the discharge lasts for

longer that the magnetic diffusion time of the shell and so the shell is effectively

not present. In addition the absence of a conducting shell means that stability

has to be ensured by means of a vertical electric field, which would allow

greater control over the position and shape of the plasma. Although since the

length of the discharge is reduced by the toroidal kink modes sets of external

coils would be needed to guard against them.
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3.3 CURRENT DRIVE IN TOKAMAKS

Most of the effort in plasma fusion research is expended on tokamaks, so

this section will discuss plasma heating mainly with respect to tokamaks,

although the techniques mentioned could be applied more widely.

The ultimate aim of auxiliary heating schemes is to enable a fusion

reactor to operate in a steady state, which will increase the lifetime of the

reactor by reducing the stress caused by continued heating and cooling of the

structure. Another advantage of continuous operation is that there will not be

frequent changes in the parameter regime, which means that the plasma will

spend less time in regimes where disruptions are likely.

On JET it is not possible to heat a plasma using ohmic heating above

about 4 keV. Similar results are true for other devices, so ignition temperatures

cannot be reached using ohmic heating alone. This is because the resistivity of

a plasma goes as T"3/2, and so falls steeply as the temperature increases.

The two main ways to heat the plasma further are to inject energetic beams of

neutral particles or radio frequency waves which exploit the resonances in the

plasma.

In neutral beam injection molecules are first ionised and accelerated to

high energies before being neutralised by passing through a gas cell. The

beam of neutral particles can then pass through the magnetic fields

surrounding the plasma, before being ionised and giving its energy to the

plasma by collisional processes. The matter is more complicated but further

discussion is beyond the scope of this thesis.
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To maintain steady state operation in a tokamak current drive is used to

sustain a toroidal current, which then produces the poloidal magnetic field

which is necessary for stability. The current is produced by injecting waves

with a toroidal asymmetry. Alfven and lower hybrid waves transfer parallel

momentum from the wave to the plasma, while schemes using the cyclotron

waves decrease the collisionality of the plasma in the perpendicular direction to

decrease the plasma resistivity.

The two main kinds of resonance are the Landau resonance, where co =

k.v; and the cyclotron resonance in the presence of a magnetic field, which

occurs when co - k||V„ -nQ = 0.

Low and high phase velocity electrons

Current drive is most efficient when momentum is transferred to low or

high parallel velocity electrons. (Parallel means parallel to the direction of the

magnetic field and high and low velocities are referred to the thermal velocity of

the electrons.)

To see this find the ratio of current produced to energy absorbed.

Consider an electron of mass m and charge q and let i be a unit vector parallel

to the magnetic field. If the electron is accelerated from a velocity v = v1(i + v±

to a velocity v + Av,|i it gains energy Ae = m V|, Av,, and carries an extra current Aj

= q AVj|. So the ratio Ae / Aj is proportional to vN, so it is more energetically

favourable to accelerate slow electrons than fast electrons. This is the basis of

neutral beam heating which accelerates slow electrons and of Alfven heating,
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where the waves have a low phase velocity.

However, an electron with parallel velocity much greater than the thermal

velocity collides less often than electrons with the thermal phase velocity so if

energy is given to fast electrons the current that is produced will last longer than

the current carried by slow electrons. This may mean that the energy required

to drive a given current may be smaller for the fast electrons than the slow

electrons.

To see how this can happen use the expressions for the incremental

current and energy to get the relation

Aj = Ae—<3-14>
mv,p

If the collision frequency of the electrons is v, the power required to drive

the current is P = v Ae. Assuming that the current is due to this power alone,

Aj can be replaced by J and the steady state efficiency is given by

_ q (3.15)
P mvnv(v)

This can be maximised if V|| v(v) is minimised. First consider the case vM

-> 0 and v± = vtherma, and v ~ constant, which corresponds to using Alfven

waves. The efficiency is high because J / P «*= 1 / vtl and v(| is small.

For high parallel velocity waves, ie vM » vthermal, v « 1 / vn3 the efficiency is
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therefore proportional to v,(2 and since v,, is large this gives large efficiency.

This suggests the use of lower hybrid (or even whistler) waves which have a

high parallel velocity.

Four main scheme?

There are four types of scheme utilising the properties of electromagnetic

radiation. At the lowest frequencies Alfven waves are used. The next class of

scheme is ion cyclotron resonance heating (ICRH) which exploits the properties

of the ion resonances in a plasma with at least two species of ion and their

harmonics in the frequency range 20 - 100 MHz. The waves are excited by

arrays of antenna loops in the poloidal direction which are excited with different

phases.

The lower hybrid resonance occurs near the centre of the plasma in the

frequency range 1 - 5 GHz. The required wave spectrum is excited by an

array of phased waveguides called the 'grill'. The highest frequency waves

exploit the properties of waves at the electron cyclotron frequency between 100

- 200 GHz in tokamaks. The difficulty of producing high power at these high

frequencies has only been overcome recently with the development of the

gyrotron.

3.3.1 Alfven waves

It has been shown in an earlier section that the Alfven wave could be

used to accelerate low parallel velocity electrons efficiently. However, this

expectation overlooks the phenomenon of trapped particles in a magnetic field.
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In a tokamak particles with a low parallel velocity and a high perpendicular

velocity can be trapped in magnetic wells, which means that they are not free to

carry current.

In a large aspect ratio tokamak Wort (1971) showed that it was possible to

drive current using Alfven waves, but it was later found that this was not the

case in plasmas with realistic aspect ratios.

However, Alfven waves could drive current in regimes without trapped

electrons, such as occur near the magnetic axis of a tokamak.

Alfven wave current drive was first proposed by Wort and further

theoretical work was carried out by Hasegawa. A description of experiments

using Alfven waves on the TCA tokamak is given by Behn et al. The results of

these experiments were that it was possible to inject up to 206 kW of Alfven

wave power into the tokamak, which is roughly comparable with the ohmic

heating supplied. The power went into raising the temperature of the ions and

electrons in the plasma. However the electron density was found to increase

and the radiated power loss increased, both of which limit the amount of power

which can be supplied before the plasma becomes unstable and there is a

disruption.

3.3.2 Ion cyclotron waves and minority ion heating schemes.

As the frequency of the Alfven wave increases and tends towards S^tho

phase velocity decreases and the wave is renamed the ion cyclotron wave.

This wave has two branches named the fast and the slow and a resonance at
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(0 = Qj.

In a deuterium plasma at 3T the resonance frequency is » 25 MHz, which

corresponds to a vacuum wavelength of 10m. As a result the wave has to be

launched using large coils wrapped around the tokamak in the poloidal

direction.

The slow wave (ion cyclotron wave) is evanescent for co > and is mode

converted at the edge of the plasma to an outbound warm plasma wave so it

cannot be used for ICRH. The fast wave can propagate across the magnetic

field, if the density is greater than the cutoff density.

The propagation of the wave can be described by the cold plasma

dispersion relation using the fact that en » n±2. This means that E(| is negligible

compared to E± which is true provided cope » co.

In a single ion species plasma the absorption is very small at the

fundamental frequency because the wave electric field vector rotates in the

opposite sense to the ions. This is no longer true at the second harmonic

resonance co = 2 CI or when there is a second ion species because the electric

field then has the necessary perpendicular electric field to couple to the ions.

Minority heating schemes

Minority ion heating schemes rely on having two species of ion with

different charge states in a plasma. This could be achieved by using a D - 3He

plasma or in a D-T plasma with some of the 4He produced by the reaction left to
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provide minority ion concentration.

For minority ion concentrations of less than 5% energy is absorbed by the

cyclotron damping of the minority species. Cyclotron damping is most efficient

with higher velocity particles so a high energy tail of ions is produced.

At larger minority ion concentrations tho energy is absorbed at the ion- ion

hybrid resonance frequency. The incident wave mode converts to a slow wave

which is damped by the bulk of the ions.

It is also possible to use lower hybrid waves in a current drive scheme by

accelerating minority ions preferentially in one direction. To see what is

happening consider a uniform distribution of minority ions and heat those

moving to the right (say) using the perpendicular momentum in the waves.

Because these ions are moving faster than the ions moving to the left they

collide less often with the majority ions than the minority ions moving left. The

net result is that the majority ions are on average dragged to the left.

To ensure this happy outcome, the effect of minority-majority ion collisions

and electron-minority ion collisions must be approximately equal.

The velocity difference between the minority ions and the electrons is so

great that there is not much difference between the left and right moving ion

collision rates with the electrons, so if there are too many minority ion-electron

collisions there would not be an asymmetric slowing down of electrons.

If the two kinds of ions collide more frequently than the minority ions

collide with the electrons more energy is given to the majority ions than to the

electrons which carry the current, so again there is not efficient current drive.

There are two regimes of minority heating scheme depending on the
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concentration of minority ions.

Heating experiments on JET using ICRH antennae have successfully

delivered 6 MW of power to the plasma (Bickerton et al 1986). As far as current

drive is concerned, there have been many theoretical studies to investigate

how to couple ion cyclotron waves to the plasma and some coupling

experiments have been carried out, but no current has yet been driven.

3.3.3 Lower Hybrid Resonance Heating (LHRH)

The next frequency range for heating tokamak plasmas is in the low GHz

range. Lower hybrid resonance heating is one of the schemes which heats

high velocity electrons to exploit the persistence of this current. (See the

earlier section where it was shown that the efficiency is proportional to vM2.)

[To trace the effect of LH waves on the plasma it is necessary to balance

the effects of collisions, which tend to drive the electrons to thermal equilibrium,

and the effect of the waves, which is to inject toroidal momentum. This is done

by solving the Fokker-Planck equation. Unfortunately, this equation is so

complicated that this is difficult, and various approximations have to be made.

The equation includes so many effects that it is difficult to be unambiguously

sure what the results of injecting a wave into the system are. It is also difficult to

solve this equation numerically, partly because of its complication and partly

because it is not easy to investigate a large enough parameter regime

numerically.]

One advantage of the LH range of frequencies is that powerful sources
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are already available and power can be easily delivered to the tokamak via

waveguides. One convenient method of doing this is to used an array of

phased waveguides, called the grill (Brambilla 1976), which allows control over

the kn spectrum of the waves.

Plotting the square of the perpendicular refractive index of the wave

against the density (which is proportional to the square of the plasma

frequency) shows that there are two regimes for the wave - see figure 4.

For n(| below a critical value given by the Stix-Golant accessibility criterion
2

2 . %e I
nil > + ^2 ' res

e

there is an evanescent layer before the LH resonance is reached.

This means that n,, > 1 when the wave is launched and hence that it is

evanescent at the edge of the plasma.

It can also be seen that it is necessary to excite the slow LH wave in the

plasma because the fast wave does not have a resonance at the LH frequency.

To do this it is only necessary to align the grill with the short side of the wave

guides along the magnetic field and to excite a TE mode.

As the slow wave approaches the LH resonance its perpendicular wave

number increases and it mode converts to the ion Bernstein mode, which then

heats the ions. Both modes are evanescent on the high density side of the

resonance. This evanescent region can be moved closer to the edge of the

plasma by increasing the value of nN or increasing the ion or electron

temperatures.

In addition, because the slow wave has a large component of its electric
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Fig 3.4 Plot of perpendicular refractive index against
plasma density, (a) shows the evanescent layer which
is present when the Stix-Golant condition is not met,
while (b) shows that the lower hybrid resonance is
accessible when this condition is met.



field parallel to the magnetic field it can also heat electrons by Landau

damping. The disadvantage of this is that the heating is not confined to any

particular region and so can heat the edge of the plasma.

At low enough densities, and with a suitable kN spectrum, achieved by

adjusting the phase of the wave guide elements, Landau damping provides an

efficient current drive mechanism.

At high enough plasma density the LH waves interact with ions rather

than electrons. Numerically the lower hybrid frequency corresponds to high

harmonics of the ion cyclotron frequency and the region where damping occurs

can span several of the ion harmonics which results in effective stochastic

heating of the ions.

Jobes et al describe an experiment on the PLT tokamak which

demonstrated current drive using LH waves alone. With the ohmic heating

reduced or not applied the current in the tokamak was first sustained and then

ramped up using LH waves alone.

3.3.4 Electron Cyclotron Resonance Heating (ECRH)

Electron cyclotron resonance heating operates at the highest frequency

range of the heating schemes. Despite the drawbacks of high frequency its

advantage over other radio frequency schemes is that the waves launched are

not evanescent and there is no matching problem so the waveguide can be set

back from the plasma to avoid damage to itself and contamination of the

plasma.
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In the cold plasma approximation only the X-mode has a resonance in the

plasma at the upper hybrid frequency. However, this resonance cannot be

approached from the outside of the torus because the wave is reflected at the

low density cutoff. This means that the wave has to be launched from the

inside of the plasma to reach the upper hybrid resonance, which means that the

antennae have to be put in the inside of the torus. This is in turn assumes that

the conditions in the torus are such that the upper density cutoff is not present.

This is illustrated in figure 5, which is the high frequency part of the CMA

diagram. If the wave is launched along the path 1 it is reflected at the cutoff,

but if it follows path 2 on the high magnetic field side it can penetrate to the UH

resonance.

Figure 5 also shows that in the cold plasma approximation the O-mode

propagates into the plasma until it reaches its cutoff at co = cope where it is
reflected.

Consideration of the warm plasma terms shows that both modes are

absorbed at the electron cyclotron frequency and its harmonics, le when

This means that in a tokamak where B depends on the major radius waves can

be absorbed over a width

In addition the position of the absorption layer can be changed by

controlling the density of the plasma.

0 (3.16)

(3.17)
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Fig 3.5 The high frequency part of the CMA diagram, showing
upper hybrid resonance and the high and low cyclotron cutoffs.
An X-mode wave launched along path 1 is reflected at the low
density cutoff before it reaches the UH resonance. When
launched along path 2 the X-mode can reach the UH resonance.



Only the fundamental and the first harmonic are likely to be used since the

fraction of energy absorbed is less at the higher harmonics and more

development of higher frequency sources would have to be carried out.

More details of the physics of the electron cyclotron resonance, although

in the weakly relativistic case are given by Bornatici.

Experiments carried out on the WT-2 tokamak (Ando et al) show that it is

possible to drive a current using electron cyclotron waves in tokamaks. The

experiments showed that EC waves could sustain and ramp up the current in

the tokamak when the ohmic heating had been switched off. These

experiments were similar to the LH experiments reported in an earlier section.

The EC waves gave their energy to a tail of high velocity electrons which had

been formed during the ohmic heating phase of the discharge.

In addition experiments were carried out when EC waves were fed into

the plasma after it had been heated using LH waves. In this case it was found

that the rate of current ramp up was increased because the LH heating had

produced a tail of weakly relativistic electrons which interact more efficiently

with the EC waves.
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CHAPTER 4 ABSORPTION OF WHISTLER WAVES IN A RFP

4.1 INTRODUCTION

As described in a previous chapter the reversed field pinch configuration

persists as long as the reversal of the toroidal field in the the outer part of the

plasma is sustained. This chapter investigates whether or not it is possible to

extend the life of the configuration by using a poloidal current to increase the

time the toroidal reversal exists.

The poloidal current is to be driven using radio frequency waves. The

high frequencies used and the various plasma parameters show that the only

wave which can propagate in an RFP is the whistler.

The RFP is modelled in slab geometry, using the cold plasma

approximation, which is described in section 2.2. The damping of the waves is

accounted for by the addition of the warm plasma corrections and the resultant

Landau damping (section 2.3).

If the toroidal reversal is to be sustained successfully it would be best if

the energy could be deposited only near the field reversal point. The results

show that it is possible to deposit energy in a well defined region of the plasma,

which can be varied by changing the plasma parameters.
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4.2 SOLUTION OF COLD PLASMA DISPERSION RELATION

4.2.1 The model used and details of the parameters

The aim of this work is to see if it possible to sustain the toroidal field

reversal in a reversed field pinch by driving a current in the poloidal direction

and hence increase the length of the discharge.

To do this means solving the cold plasma dispersion relation, which has

already been done in chapter 2, but it is easier to use a different notation.

Solve the equation

nx4 " nx2 ( A " 2 ny2 ) + ny4 • ny2 A + B = 0 (4.1)

where

[(£. ■ nf) (e + g - 41
A =—±±(4.2a)

2 2 2

B = ± 2L_ (4.2b)
Si

The other symbols have the same meaning as in chapter 2.

With this combination of variables in A and B the solution to the

biquadratic (1) is the simple form

nx2 = 0.5 A - ny2 ± 0.5V( A2 - 4B ) (4.3)
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To discover what the solutions of equation (3) look like in this context it

helps to make some simplifying assumptions about the system. Consider the

RFP in slab geometry rather than cylindrical geometry, with the x axis pointing

towards the centre of the torus, y along what would be the toroidal direction and

z along the poloidal direction as shown.

Fig 4.1 Coordinate system applied to RFP.

However, in an RFP the magnetic field is not purely along the z-axis, but

in the coordinate system used here is in the y-z plane. In addition the relative

sizes of the toroidal and poloidal components of the magnetic field vary with x,

which means that the magnetic field rotates in the y-z plane. Assume that the

toroidal and poloidal fields are given by the J0 and the J1 Bessel functions.

The diagram shows across section through
part of atorus. Superimposed on this is the
Cartesian coordinaJte system used when the
torus is model in slab geometry.
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(J0 and J1 Bessel functions of the first kind.)

The arguments of the Bessel functions can be changed to produce fields

similar to those on a particular RFP. In this case the toroidal field is given by

J0(3.8*(1-x/R)) and the poloidal field by J1(2.4*(1-x/R)). J0 and J1 are then

multiplied by a scaling factor B, which gives the magnitude of the magnetic field

at the centre of the plasma where the J1 Bessel function (the poloidal field) is

zero. (Typical values of B in an RFP are of the order of 0.15 tesla. However,

many of the graphs shown later were plotted with a multiplying factor of 0.3 T,

because at the time the program was being written it could only be made to

work with this larger value of the magnetic field.)

Figure 2 shows how the magnetic field behaves. It rotates in the y-z

plane and makes a varying angle 0(x) = arctan(J1 / J0 ) with the z-axis. Figure

3 shows explicitly how the magnetic field components and 0(x) vary with

distance, before they have been scaled by the factor B.

Equation (3) gives the behaviour of nx2 as a function of the other

components of the refractive index and the plasma parameters. The behaviour

of the ny and nz components is calculated using the parameters n and 0Q. n

is the magnitude of the refractive index in the y-z plane, ie n2 = ny 2 + nz2; and

0O is the fixed angle n makes with the z-axis. The value of n is fixed by the

antenna, but 0Q can be varied by changing the angle the axis of the antenna
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z - poloidaI direction

Fig 4.2 Coordinate system and variables to model RFP.

Fig 4.3 The magnetic fields in an RFP before they are
scaled. The outer edge of the plasma is at x=0.



makes with the vertical. 0Q is an important parameter in determining where

wave energy will be deposited in the plasma, and will be discussed later.

When equation (3) was solved numerically on a computer n and 0O were

treated as parameters which could be varied, along with the external frequency

CO.

Finally, to solve equation (3) it is also necessary to specify the density

profile of the plasma. This was taken to be parabolic, with its maximum at the

centre of the plasma. In all the cases considered below the maximum density

is 3 x 1019 m"3.

4.2.2 Discussion of results

Parameters used in figures 4,1 to 6.7.

This section gives details of parameters used in the production of figures

4.1 to 6.7 by program CUTOFFS.

The radius of the torus is taken to be 0.26m, which is the minor radius of

the HBTX1A RFP at Culham. The plasma is therefore treated as a slab of

double this thickness. However, in any run of the program the x coordinate

extend from the edge of the plasma to its centre at 0.26m because the aim of

the program is to find parameters which allow energy to be deposited near the

field reversal point, instead of 'bouncing' around the plasma.

In the graphs displayed here the values of x extend from 0 to the number

called 'max x' at the bottom of each figure. Similarly the number 'max nx2 '
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shows the maximum value of nx2 on each graph in a figure.

All the graphs show how the square of the refractive index in the

x-direction varies with distance into the plasma. The full line is a plot of nx2

from equation (3) using the upper V sign and the dashed line the same plot

using the lower sign. The two branches meet where the argument of the

square root becomes zero, and for higher values of x, nx2 becomes complex.

In program CUTOFFS the value of x calculated for the second cutoff (ie where

the two branches meet) is very slightly less than the true value to avoid trying to

take the square root of a negative number. As a result the two branches of nx2

do not meet in the graphs shown here.

In any run of the program 0(x) and B(x) vary with position but are not

affected by the values chosen for the other parameters. The scaling factor B

has the constant value 0.3T in these diagrams.

Both 90and 0 are measured in radians. All the frequencies associated

with the plasma are measured in units of gigaradians per second (G rad s"1),

as is co, the angular frequency of the wave sent into the plasma.

Figures 4.1 and 4.2 show the effect of changing the frequency of the

applied waves on the values of nx2 for a fixed value of n and varying values of

0Q. Comparison of the two sets of graphs shows that they are very similar apart

from the nx2 scale. Changing the frequency from 0.5 G rad /s to 3.5 G rad /s
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max nx2 = 2 200 000 max x = 0.16

Fig 4.5.1 Graph of nx2 y x for ro = 0.5 and 0O= 0.0

n= 12 n = 14 n=16 n=18

max nx =44 000 max x = 0.16

Fig 4.5.2 Graph of r»x2 y x for a> = 3.5 and 0O= 0.0



reduces the scale by a factor of about 50, which suggests that nx2 scales as

1/co2.

Now considering either set of graphs, we can see that 0O has a

considerable effect on the shape of the graphs. As 0Q increases the size of

the graphs decreases and the second cutoff occurs nearer to the origin.

Figures 5.1 and 5.2 are complementary to 4.1 and 4.2. They again show

the effects of changing the frequency of the waves, but they show how nx2

changes with n for a fixed value of 0Q. Again nx2 scales as 1/co2. The effect of

increasing n is to increase the maximum value of nx2 and the distance of the

second cutoff from the edge of the plasma.

Figures 6.1 to 6.7 follow on from figure 5.2 In all these figures the value

of co is 3.5 G rad s"1. Within each set of graphs n increases from 12 to 26 in

steps of 2. But each set of graphs has a higher value of 0O than the one before.

It can be seen that 0O has a complicated effect on the behaviour of nx2.

Increasing 0Q pushes the second cutoff further from the edge of the

plasma, but at a certain value of 0Q this changes and the second cutoff, instead

of being at the centre of the plasma suddenly moves to within a few centimetres

of the edge.
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Fig 4.6.3 Graph of nx' y x for co = 3.5 and 0^ = 0.3
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Fig 4.6.4 Graph of n * y x for a> = 3.5 and 0q = 0.4
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Fig 4.6.5 Graphs of r>x y x with co = 3.5 and 0Q = 0.5
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Fig 4.6.6 Graphs of nx2 y x with «> = 3.5 and 0Q =0.6
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Fig 4.6.7 Graphs of n y x for cd = 3.5 and 0 = 0.7
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Fig 4.7 Graph of nx y x for m= 3.5 and 0o=O.1#
but with B = 0.15T.



4.2.3 Explanation of the results

The exact equation for nx2 is:- nx2 = 0.5 A - ny2 ± 0.5V( A2 - 4B ).

The expressions for A and B are given after equation (3). This section makes

approximations for the values of the cold plasma dielectric tensor elements to

try and explain the behaviour of the graphs discussed in the previous section.

One of the assumptions made in deriving equation (3) from cold plasma

theory is that co « Q0. To be able to make approximations in equation (3) it

is also necessary to know the relative magnitude of the plasma frequency, cop.

The number density of electrons in the slab of plasma is given by

nn x (2R - x)
n(x) = ^ (4.4)

R

and n0 = 3.1019 rrr3 is the maximum density. With R = 0.26m the plasma

frequency one centimetre from the edge of the plasma is 85 G rad s"1, and at

the centre of the plasma is 1 187 G rad s"1. By comparison, the maximum

value of the electron cyclotron frequency is 53 G rad s"1 at the centre of the

plasma and less elsewhere.

Therefore it is assumed that go « ft0 « cop is the correct ordering of
these three frequencies. Using this to find approximations for the dielectric

tensor elements gives
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e, - 1 - X - -X - -f
CO

X ®-
ex - 1 - —~ -7 (4.5)

1 - Y2 if

XY XY %
£xy =

1 - Y2 " " Y2 = " coQ

The last equation also implies that, in this approximation

exy 2 " ' e« ei <4-6)
The previous equations give the ordering of the tensor elements as

I e,t I » I I » e± (4.7)

This means that e± can be neglected compared to eH and exy.

Using these approximations in the expression for A gives

e± A ® e„ (e± * nz2) - exy 2 = 2 e„ e±- e,, nz2 which

finally gives

Ql (nz - 2e±)A - % 1 (4.8)
CO

It is difficult to proceed further than this because the relative sizes of nz2

and e± vary as x increases.
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Now consider an approximation for A2 -4B, using the exact expression for

A, not the approximation in equation (8).

Then

e± 2 (A2 - 4B) = (- nz2 )2 (e^e,,)2 - 3 (e± e„ )2 +

2eLell(e1-n!2)(e1 + ell)

Neglecting e± in the terms of the form ( e±± ) gives finally

rA2 , 2 .1/2
2 £2 n (n - 4e

(A - 4B) = z— (4.9)
CO

Assuming that the ny term is also small compared to the terms kept, the

approximation for n 2 is

2 Q [nz - 2e ± n (n - 4e ) ]
n = J. A (4.10)

2co

This does show a one over co2 dependence as predicted earlier, because

the terms in the square bracket are independent of co. Equation (10) also

appears to show that nx2 is proportional to Q2. This is not the case because

e± is inversely proportional to Q2, so nx2 does not change as quickly with

changes in the magnetic field as would appear at first sight. Figure 7 is drawn
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with the same parameters as figure 6.1 except that the scaling factor for the

magnetic field is 0.15T not 0.3T. Comparison of the two does show a decrease

in the values of nx2 when the magnetic field is decreased, but not by a factor of

4.

Again it would be difficult to simplify (10) because of the relative sizes of

nz2 and e . It is not possible to use (10) to see if nx2 is proportional to a power

of 0Q because the only dependence on 0O left is in the nz terms.

4.2.4 The position of the Cutoffs

Figures 4.8.1-5 show how the position of the first cutoff varies as a

function of 0Q, for B = 0.3T. (At x1 the wave begins to propagate in the plasma.)

In the graphs each dashed line uses to, the frequency of the wave, as a

parameter. In going from 4.8.1 to 4.8.5 the value of n changes from 20 to 28.

These high values of n were used because they are the ones which give

substantial (> 30%) absorption of the incident wave.

From the graphs we see that the position of the first cutoff changes by a

small amount as n increases, but depends strongly on 0O and the frequency of

the wave. The thickness of the evanescent layer can be minimised by using

low frequency waves and keeping the angle the perpendicular component of

the wave makes with the z-axis small.

Figure 4.9 is the corresponding diagram for the second cutoff, the point
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where nx2 becomes complex and the wave is strongly damped. The main

difference between the two diagrams is that the frequency plays a less

important part in determining the frequency of the second cutoff. The variation

in the position of x2 is comparable to that of x1( but is swamped by the greater

size of x2.

The value of the perpendicular component of the refractive index, n, plays

an important part in determining the position of the second cutoff.

The flat part at the top of the graph when n changes from 22 to 28

indicates that the second cutoff had not been reached when the program

stopped calculating at the centre of the plasma.

The abrupt change in x2 for large values of 0Q can be seen by comparing

figures 6.6 and 6.7. For the values of n comparable with those in figure 4.9 the

second cutoff suddenly moves almost to the edge of the plasma as 0Q changes

from 0.6 rad to 0.7 rad.
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4.3 ABSORPTION OF WAVES IN PLASMA

4.3.1 Behaviour near the edge of the plasma

Examination of the graphs in the previous section shows that at the edge

of the plasma the upper branch of the square of the refractive index in the x

direction changes rapidly from the value 1-n2 < 0 to a large positive value.

This means that the waves are evanescent in a small region at the edge of the

plasma. The change in nx2 is so rapid near the edge of the plasma that its

behaviour can be approximated by a straight line.

The change in intensity of the wave in the edge region can be found by

calculating the slope of the upper branch of nx2 (\i ) at x=0 and using the

fact that near the edge kx2 = X(x - x.,) in the equation

d2 E 2
— + kxE = 0 (4.11)
dx

x1 is the point where the wave stops being evanescent and begins to

propagate, ie the first cutoff. The value of X is given by the first derivative of kx2

at x = 0.

In equation (12) R is the radius of the torus and X = d kx2 / dx at x=0.

(4.12)dx x =0
e mc2R (1 - Y2)
o v '
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Although R stands for the radius of the torus it is still relevant here because it is

the half width of the slab, and is used to calculate the values of X (the square of

the ratio of the plasma and external frequencies.) The relevant solution of

equation (11) is the Bi Airy function because this is the one that decays in the

plasma.

4.3.2 Warm Plasma Corrections

In the cold plasma approximation there is no absorption of energy in the

plasma. One way to see how much energy is absorbed in the plasma is to use

the warm plasma corrections to the cold plasma dispersion relation. This

means that the wave looses energy by Landau damping. (It is shown in

chapter 2 that the effect of Landau damping is to introduce a small imaginary

component in the frequency of the wave.) At sufficiently low temperatures the

only change is in the e|( term which becomes

e1| => e„ + i5eu (4.13)

with fen = 2 Vrc X u03 exp(- u02) (4.14a)

and

"o - <4-14t»
2 nz v.e

where vte is the electron thermal velocity and u0 is the ratio of the phase

velocity of the wave to the thermal velocity of the electrons.
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Substituting ey + i5en into equation (3), with the assumption that nx can

be replaced by nx + iSnx gives

i8e {(n2 + n2 - e ) (e - n2) + e2 }
8nx = — —^ V — (4-15)

£! nx t 4 nx + 2 ( 2n2 - A )}

assuming that terms 0( 52) are neglected.

Equation (15) then gives an expression for 5kx, which is used to find

where the energy is deposited in the plasma.

Substituting ^ + i 8kx for in the expression exp i ( kx x - cot) gives the

attenuating factor as exp (-J 8 kx dx ). However, the group velocity of the wave

is negative, so the attenuation of the wave is given by exp (\8dx ).

4,3.3 Absorption of the wave in the plasma

In program CUTOFFS the integral J 8kx dx was calculated using the

trapezium rule. The range of integration was from the first cutoff to the second.

The range was divided into one hundred steps, each of which could be

subdivided into NINC substeps. The intensity of the wave is still plotted at the

end of the larger steps, not at the substeps within them. In addition the intensity

of the wave is normalised to one at the edge of the plasma.

In figures 10.1 to 12 NINC was set to one and the value of B is 0.3T.

The diagrams in figures 10.1 to 10.5 show how the amount of energy left

in the wave at the first cutoff varies for different values of twist. The most
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obvious point is that the higher the frequency the less energy penetrates to the

bulk of the plasma, so this suggests choosing low values for the frequency of

the wave. This is partly explained by looking at figs 8.1 - 8.5 which show how

the width of the evanescent layer increases as to increases.

The second point is that the fraction of energy in the wave tunnelling into

the plasma is reduced as the twist increases. This means that more energy is

reflected by the evanescent layer as the angle the perpendicular component of

the propagation vector makes with the magnetic field at the edge of the plasma

increases. There is little change in the amount of energy transmitted to the

plasma as n increases.

Figures 11.1 - 3 show how the amount of energy reaching the second

cutoff varies as n increases. The graphs for n = 26 and n = 28 are not present

because all the energy has been absorbed by the second cutoff. Once again

the amount of energy left in the wave at the second cutoff decreases as co

increases. The higher absorption of energy is desirable in this case because it

means that more of the energy has been deposited in the plasma. As n

increases more of the energy is absorbed.

Figure 12 plots the fraction of energy transmitted through the first cutoff

which has been absorbed by the second cutoff. Figure 12 is plotted for co =

3.5, but the results are similar for all the values of co.

Figures 13.1 - 6 show how the fraction of energy left in the wave is

reduced as it propagates into the plasma. The full line shows the fraction of

energy left in the wave and the dashed line shows where the energy has been
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absorbed. These graphs were based on those in figure 11 which show the

fraction of energy left in the wave at the second cutoff. The results from figure

11 were used to determine which sets of parameters should be plotted in figure

13.

Again the graphs show that for the lower values of co most of the energy

gets through the evanescent layer. In addition all this energy is absorbed in

the plasma for n > 26, while most of the energy is absorbed for n = 24.

The position of the maxima of the dashed curves show where most

energy is absorbed. This position can be changed by adjusting the

parameters. One thing which may affect the choice of parameters is the width

of the area energy is absorbed over.
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CHAPTER 5 FURTHER DEVELOPMENTS

There are two ways that the work in chapter 4 could be taken further. The

first is to refine the model, for example by changing to cylindrical polar

coordinates, or introducing changes in the way some variables are handled.

For example, it would be good to introduce a temperature profile instead of

assuming a constant temperature, since the temperature near the edge is less

than at the centre for RFPs, which would probably change the position where

the wave is absorbed; and to introduce the effects of pressure.

Less major changes would include investigating changes in the

magnitude and profile of the magnetic field and the density. One of the major

characteristics of RFPs is that there are large ( ~ 2% ) fluctuations in the

magnetic field, and these could also be significant.

Another change in the way the program operates would be to use a

spectrum of wave numbers in the y-z plane, instead of only considering a

monochromatic wave. This is discussed in section 5.1.

The second way forward is to solve Maxwell's equations directly in two

regions. The first region is the vacuum at the edge of the plasma, which can be

treated in a straightforward way; while the second region is the plasma itself.

The presence of the plasma means that Maxwell's equations have to be

modified. This is potentially very complicated, but section 5.2 gives a method

for reducing the full Maxwell equations in the plasma to a set of coupled

ordinary differential equations, and suggests how this work could be carried on.
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SECTION 5.1 THE WAVE SPECTRUM

The previous chapter looked at the behaviour of whistler waves in a

reversed field pinch. It was assumed that the waves could be generated with

parameters such that they would be absorbed in the wave, but no account was

taken of the wave spectrum.

One way to produce a spectrum of waves is to consider an antenna

consisting of N parallel conductors, each of width 2w, separated by a distance

s -2w, see figure 1. The current in each is assumed to be uniform across and

along the strip, and to oscillate with frequency co. There is also a constant

phase difference <\> between each strip in the antenna. The wave spectrum in

the plane of the antenna is then found by Fourier transforming the antenna in

the y-direction, ie along the direction in which the structure is periodic.

The amplitude of the contribution from the mth element is given by

ms + w

a im<t> f S z ^
Am - e J e d<> (5.1)

ms-w

and so the amplitude due to all N elements is

m = N -1 ms + w ..

A - eirTVt> f e d<|> (5.2)
m = 0

ms-w
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Working out the integral gives

ms + w

1 ik, 7 § imsl
e d<(> = 2 e

ky z

ms - w

sin kyzw
(5.3)

which means that

2w sin k w m^"1 im (<}> + sk )
A - —nr \ e <5-4'yz m = 0

The summation in equation (4) is the sum to N terms of a geometric series, so

finally

• ■ iN (<j> + sk )2w sin k w 1 p *z
A oc ZL 1 ® (5.5)

yzw i (<t> + sK,z )
1 - e y

The intensity of the wave spectrum is the square of the amplitude, so

2

4 w2 sin2k w s'n N
yz

( <{> + sky2

w2 k2
. 2 ($ + sky2yz sin 1 1

(5.6)

(<M_SV)

This has the same form as the intensity of light falling on a screen after
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passing through a diffraction grating. Treating the intensity as a function of kyZ

means that the kyz spectrum can be controlled by changing the phase

difference between each element. More control is possible the higher the

number of strips there are.

In terms of chapter 4 this means that the k-spectrum is fixed in the y-z

plane by the width of the strips, their spacing and phasing, while the

propagation properties perpendicular to this plane are fixed by the frequency at

which the current oscillates.

In the frequency range considered in the previous chapter, 0.5 - 3.5 G rad

s"1, the vacuum wavelength of the waves varies from 54 cm to 3.77m.

However, because the wavenumber perpendicular to the direction of

propagation has to have values greater than 20 to absorb the wave, the

wavelength in the plasma is reduced to a few centimeters even at the lower

frequencies. This means that it is feasible to launch whistler waves using the

strip antenna system described above.x

One way to generalise this result would be to consider the wave spectrum

produced by a 2-D array of rectangles, which would involve Fourier

transforming in two directions instead of one, and possibly calculating the

self-consistent current distribution in each element.

There is a considerable literature describing various methods for

calculating the behaviour of different kinds of antennae and how they couple to

plasmas for ion cyclotron, lower hybrid and electron cyclotron waves. This

would provide a good starting place for further work.
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5.2 SOLUTION OF MAXWELL'S EQUATIONS IN PLASMA AS A

SET OF COUPLED ODES.

Figure 2 shows how an antenna and a toroidal confinement system can

be modelled in slab geometry. (See for example Adam's paper.) The wall of

the torus is assumed to be perfectly conducting, and is situated at x=-a.

Moving towards the centre regions 1 and 2 are assumed to be vacua separated

by the antenna at x=0. The antenna itself is assumed to be a current sheet.

The plasma edge is at x=b. Region 3 is the evanescent layer at the edge of the

plasma. The wave can propagate in the plasma for x>c, so region 4 is the bulk

of the plasma.

To proceed transform Maxwell's equations by changing the variables from

E and B to

L = kg E and P = co B (5.7)

to get

V x L = i kn P and V x P = - i kn £. L (5.8)

1 -a iaY, -iaY„

-iaYz 1-a(1-Y 2) aY Y.y-z

iaYy aYyYz 1-a(1-Yz2)

(5.9)

£ is the cold plasma dielectric tensor in the case when B = (0, By , Bz ). The

Y:S are the electron cyclotron frequency for the corresponding components of B.
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a = X / (1-Yy2 -Yz2) , where X is the square of the plasma frequency divided by

the square of the applied frequency. [Also let Y2 = Yy2 + Yz2.]

Now, if V can be replaced by ( d /dx, i ky, i kz) this gives

ikyPz - ikzPy = -iko [ (1-a)!^ + i aYzLy - iaYyL, ] (5.10.1)

ikzPx - dP^dx = -ik0 [ - iaYzLx + (1 -a(1 -Yy2)) + aYyYz lJ (5.10.2)

dP/dx - ikyPx = -iko [ iaYyLx + aYyYz Ly + 0 -a(1 "Yz2))] (5-10.3)

ikyLz-ikzLy= ikg Px (5.11.1)

ik^ - dL/dx = py (5.11.2)

dLy/dx - ikyLx = i^ Pz (5.11.3)

Solving the set of simultaneous equations 10.1 - 11.3 gives

Px = (kyL.-k.Ly)/^ (5.12.1)

Lx = ( kzPy - kyPz - iaYzk0Ly + iaYykoL, ) (5.12.2)
and the matrix equation

dA/dx = d-A (5.12.3)

with A = ( Ly, Pz, Lz, Py) (5.13)

and equation (14) for £ and equation (15) giving expressions for some of the

matrix compoments of d:-
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d= -iak0kyYz (k02 (1-a) - ky2) iak^Yy kyk2 (5.14)

d2,i 'akokyYz d2,3

-iak^ ky^ iako^Yy ( kz2 - k02 (1-a))

iakokyYy d43 -iak^Yy

where d21 = (1 - a ) [ ko2 (1 - a (1-Yy2 )) -l^2 ] - a2 l^2 Yz2 (5.15)

d23 = (1 - a ) ( kyk, + a k02 Yy Yz )+a2 k02 Yy Yz

d4,i = -[(1-a) ( kyk, + a k02 Yy Yz)+ a2 kg2 Yy Yz ]

d4,3 = (1 " a) [ ky2 -k02(1 -a(1-Yz2))] + a2 k^ Yz2

In the plasma equation (13) has to be solved numerically. This can be

done by using NAG routines which provide the solutions of ordinary differential

equations, which involves splitting the equation into its real and imaginary

parts.

One way to check that the encoding has been done correctly is to solve

the equations in the case of a current sheet in a vacuum. The system is

assumed to be infinite in the y- and z-directions and only to vary in the

x-direction. In this case with an infinite current sheet and assuming that the

boundary conditions are given by perfectly conducting walls the solution is

known to be that the normal components of the electric field are zero at the wall,

while the x-component falls to zero. The normal component of the magnetic

field is zero at the walls and the other two components are arbitrary.

The solution in the presence of the plasma probably has to be divided up
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into four regions illustrated in figure 2. In region 1 the fields should behave as

decribed in the previous paragraph. In the region between the current sheet

and the plasma there will be a mixture of incoming and reflected waves. In the

evanescent layer, region 3, there will again be an incoming and a reflected

wave. To deal with the bulk of the plasma, region 4, the first approximation

would be assume that the wave is absorbed or propagates to infinity, before

considering the more complicated case in which energy would be reflected

from cutoffs in the plasma.
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APPENDIX PROGRAM CUTOFFS

A.1 PRINT OUT OF PROGRAM CUTOFFS

The following long program, CUTOFFS, is the main program used to

produce the results discussed in this thesis. CUTOFFS is the name of the file

containing the entire program and also the name of the main program within

the file. The rest of the program is written as several subroutines and functions

which can be called by changing the main part of the program within do loops

1-3. These do loops are important because they give the values of n (called nz

in this program), co (called EXFREQ) and 0Q (called TWIST).

The most fundamental part of the program is the function NXP2. This

function calculates X and Y and from them the dielectic tensor elements.

NXP2 is basic to the operation of the program and is called by many of the

subroutines.

PROGRAM CUTOFFS
C Changed values of tworpi, cdevel and magsize 14/1/88.
C PROGram calculates the intensity of a wave at xpCUT2

IMPLICIT NONE
DOUBLE PRECISION XPOS,XINC,NINC,NZMIN,NZMAX,NZINC,MINFRQ,

1 MAXFRQ,INCFRQ,MINTWT,MAXTWT,INCTWT,NZ,EXFREQ,TWIST,YTEST,
2XPCUT1 ,XPCUT2,NXP2,XMAX,RADIUS,DUMMY1 ,DUMMY2,DELKX,
3DELNX,TWORPI,DEVEL,U0,NX2,INTENS
WRITE(6,1001)

1001 FORMATC ENTER XPOS AS F6.3 AND NO INCREMENTS AS F7.1',/,
1'XX.XXX YYYY.Y')
read(5,1002) XMAX,NINC

1002 FORMAT(F6.3,F7.1)
read(7,1003) NZMIN,NZMAX,NZINC,MINFRQ,MAXFRQ,INCFRQ,MINTWT,

1 MAXTWT.INCTWT
1003 FORMAT(3F7.3,/,3F7.3,/,2f7.3,f7.3)
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WRITE(5,1111) NZMIN,NZMAX,NZINC,MINFRQ,MAXFRQ,INCFRQ,MINTWT,
1 MAXTWT.INCTWT

1111 FORMAT(3F6.2,/,3F6.2,/,2f6.2,f7.3)
RADIUS=0.26D0
IF (XMAX.EQ.RADIUS) THEN
XMAX=XMAX-1,0D-5*RADIUS
END IF

WRITE(10,999) NINC,XMAX
999 FORMATC PROGRAM CUTOFFS B0=0.15T NINC=\F8.1XMAX='

1.F8.4)
WRITE(10,997)

997 FORMAT(6X,'NZ EXFREQ TWIST'.gX.'XPCUT 1 ,,9X,,XPCUT2')
c l.^x/MAX'^X/INTENS1)

DO 1 NZ=NZMIN,NZMAX,NZINC
DO 2 EXFREQ=MINFRQ,MAXFRQ,INCFRQ
DO 3 TWIST=MINTWT,MAXTWT,INCTWT

c CALL CUTOFF(NZ,EXFREQ,TWIST,XMAX.XPCUT1 .XPCUT2)
c caLL ABSORB(NZ,EXFREQ,TWIST,NINC,XPCUT1 ,XPCUT2,INTENS)
C CALL ABSOUT(NZ,EXFREQ,TWIST,XMAX,NINC)
C CALL CUTOUT(NZ,EXFREQ,TWIST,XMAX)

CALL REFRAC(NZ,EXFREQ,TWIST,XMAX)
C CALL TRIAL(NZ,EXFREQ,TWIST,XMAX,NINC)

3 CONTINUE
2 CONTINUE
1 CONTINUE

STOP
END

FUNCTION NXP2(NZ,EXFREQ,TWIST,XPOS,YTEST,DELKX,
NXM2,U0,A2M4B)

IMPLICIT NONE
C CALCULATE THE BASIC QUANTITIES

DOUBLE PRECISION NXP2.NZ,EXFREQ,TWIST,XPOS,XMAX,XINC.X.Y,
1ANGLE,BETA,COS2,SlN2,A,B,EXY2,EPERP,EPAR,
2 A2M4B,S17AEF.S17AFF.J0Z.J1 W,XCONST,YCONST,bfield,RADIUS,M,
3 ARG,YTEST,DELKX,TWORPI,CDEVEL,UO,DEPAR,DELNX,NXM2,magsize

C magsize is a factor to multiply the basic magnetic field strength
C of 0.3T. le bfield=magsize*0.3T*(form factor)

M=1 DO
RADIUS=0.26D0
tworpi=2.5066283d0
magsize=1.0D0

C CDEVEL = c/(sqrt(2) * Vth)
C m*Vth**2 = kT = 10OeV

cdevel=71.537d0
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C YCONST=e*BO/(Me*1 E9*EXFREQ)
C B0=0.3T e=1.6E-19 Me=9.11E-31 PERM=8.85E-12
C RHOMAX=3E19 TW0RPI=SQRT(2*P!)

CDEVEL=C/(VTHERMAL*SQRT(2))
C VTHERMAL=ELECTRON VELOCITY= 100 eV
C XCONST=NO*E*E/(PERM*ME*(EXFREQ*1E9*RADIUS)**2)

YCONST=magsize*52.689352DO/EXFREQ
XCONST=95257.586DO/(RADIUS*RADIUS*EXFREQ*EXFREQ)
ARG=1 .ODO-XPOS/RADIUS

J0Z=S17AEF((3.8*ARG),M)
J1W=S17AFF((2.4*ARG),M)
bfield=DSQRT(J0Z*J0Z+J1 W*J 1W)
ANGLE=DATAN(J0Z/J1 W)
Y=bfield*YCONST
X=XCONST*XPOS*(2.0DO*RADIUS-XPOS)
BETA=ANGLE-TWIST

YTEST=Y*DCOS(BETA)
SIN2=(NZ*DSIN(BETA))**2.0D0
COS2=(NZ*DCOS(BETA))**2,ODO
EPAR=1 .ODO-X

EPERP=1.0D0-X/(1 .ODO-Y*Y)
EXY2=(X*Y/(1,0D0-Y*Y))**2.0D0
A=((EPERP-COS2)*(EPERP+EPAR)-EXY2)/EPERP
B=((EPERP-COS2)**2.0D0-EXY2)*EPAR/EPERP
A2M4B=A*A-4.0D0*B
IF (A2M4B.GE.0.0D0) THEN
NXP2=0.5D0*A-SIN2+0.5D0*DSQRT(A2M4B)
NXM2=NXP2-DSQRT(A2M4B)
ELSE
NXP2=-1 .ODO
NXM2=-1 .ODO
END IF

CALCULATION OF delKx
IF (NXP2.GE.0.0) THEN
UO=CDEVEL/(NZ*DCOS(BETA))
DEPAR=X*TWORPI*U0*U0*U0*DEXP(-1.0D0*U0*U0)
DELNX=DEPAR*((EPERP-COS2)*(NXP2+NZ*NZ-EPERP)+EXY2)/

1 (2.0D0*EPERP*DSQRT(NXP2)*(2.0D0*NXP2-A+2.0D0*SIN2))
DELKX=DELNX*3.335557D0*EXFREQ
ELSE
U0=-1 .ODO
DELKX=-1.0D0

END IF

return
END
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SUBROUTINE CUTOFF(NZ,EXFREQ,TWIST,XMAX,XPCUT1 .XPCUT2)
C Calculates the value of the CUTOFFs INDEPENDENTLY of nine.

IMPLICIT NONE
C CALCULATES THE CUTOFFS

DOUBLE PRECISION NZ.EXFREQ,TWIST,XMAX,XPCUT1 .XPCUT2,
1 MAX,XPOS,XINC,PREV,NX2,NXP2,EST2,YTEST,DELKX,XMIN)NXM2,UO,
2CUT.A2M4B

C CALCULATION OF XPCUT1
MAX=6.5D-3

CCCCC Change the value of XINC from 10-5 to 10-6
XINC=1 .OD-6

C nx*nx=1-nz*nz at x=0, but when nz=0 prev=0
PREV=1.0d0-nz*nz
XPCUT1=-1.0D0
DO 200 XPOS=0.0.MAX,XINC
NX2=NXP2(NZ,EXFREQ,TWIST,XPOS,YTEST,DELKX,NXM2,UO,A2M4B)
IF ((PREV.LE.0.0).AND.(NX2.GT.0.0)) THEN
XPCUT1=XPOS
GO TO 201
ELSE
PREV=NX2
END IF

200 CONTINUE
201 CONTINUE

IF (XPCUT1 .le.O.ODO) THEN
XPCUT2=-1.0D0
RETURN
END IF

C New method to estimate xpCUT2, independent of nine.
XINC=(XMAX-XPCUT 1 )/1.0D2

C Changed 15/1 /88. Accounts for case when xpcutl =0
DO 202 XPOS=(XPCUT1 +xinc),XMAX,XINC

C Take the previous value of xpos
CUT=XPOS-XINC
NX2=NXP2(NZ,EXFREQ,TWIST,XPOS ,YTEST,DELKX,NXM2,U0,A2M4B)
IF ((A2M4B.LE.O.ODO).OR.(NX2.LT.0.0D0)) THEN
GO TO 203
END IF

202 CONTINUE
203 CONTINUE

IF (CUT.GT.(XMAX-1,5D0*XINC)) THEN
C ie reached end of region considered, so xpCUT2= this value

XPCUT2=CUT
ELSE

C estimate xpCUT2 more accurately
MAX=CUT+XINC
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XINC=XINC/1.0D3
DO 204 XPOS=CUT,MAX,XINC
XPCUT2=XPOS-XINC
NX2=NXP2(NZ,EXFREQ,TWIST,XPOS,YTEST,DELKX,NXM2,UO,A2M4B)
IF ((A2M4B.LE.O.ODO).OR.(NX2.LT.O.ODO)) THEN
RETURN
END IF

204 CONTINUE
END IF

END

SUBROUTINE CUTOUT(NZ,EXFREQ,TWIST,XMAX)
C This SUBROUTINE only WRITES out the values of the CUTOFFs.

IMPLICIT NONE
DOUBLE PRECISION NZ,EXFREQ,TWIST,XMAX,NINC,XPCUT1 ,XPCUT2
CALL CUTOFF(NZ,EXFREQ,TWIST,XMAX,XPCUT1 ,XPCUT2)
WRITE(10,4000) NZ,EXFREQ,TWIST,XPCUT1 ,XPCUT2

4000 FORMAT(3F8.2,2F15.6)
END

SUBROUTINE
ABSORB(NZ,EXFREQ,TWIST,NINC,XPCUT1,XPCUT2,INTENS)
C CALCULATES THE AMOUNT OF ABSORPTION BETWEEN CUTOFFS

IMPLICIT NONE
DOUBLE PRECISION NZ,EXFREQ,TWIST,NINC,XPCUT1 ,XPCUT2,XPOS,
1 XINC,NXP2,NX2,YTEST,DELKX,SUM,PREV,INTENS,DEPOST,NXM2,UO,
2WEEMIN,WEEMAX,WEEINC,WEEXPS,MAX,PREVII,A2M4B,REDUCE,M,N
3,THIRD,LAMBDA,LTHIRD,BIZERO,BIX1 ,S17AHF.NEXTX,ZERO,ONE,
4R75,R50,R25,N75,N50,N25,U075,U050,U025,X75,X50,X25,NX
5,u0atmax,prevdepost,xdepost,idepost

C DEPOST IS THE ENERGY DEPOSITED BY THE WAVE IN AN INTERVAL

C If XPCUT1 is less than ZERO DO not procede.
IF (XPCUT1 .LE.0.0D0) THEN
RETURN
END IF

C C
C Now calculate the reduction in intensity in evanescent region.
C Solving Airy's equn. in terms of xi = Ithird*(x-x1). When
C x=0, xi=-x1*lthird; but this gives evanescent region on the
C right, so for Bi(0) the arg. is -xi. At x=x1, xi=0 exactly.

ZERO=0.0D0
ONE=1.0D0
M=1 DO
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THIRD=1.0D0/3.0D0

LTHIRD=(LAMBDA(NZ,EXFREQ,TWIST))**THIRD
B1ZER0=S17AHF((LTHIRD*XPCUT1 ),M)
BIX1 =S17AHF(0.0D0,M)
REDUCE=(BIX1/BIZERO)**2.0D0

c Rate at which energy deposited between 0 and xpcutl
R75=0.75D0*REDUCE
R50=0.5D0*REDUCE
R25=0.25D0*REDUCE

C le points at which intensity in plasma falls below f*REDUCE
C write(10,3001) ZERO.ONE.ZERO.XPCUH .REDUCE,ZERO
C3001 FORMAT(3F20.6,/,3F20.6)
C C

XINC=(XPCUT2-XPCUT 1 )/1.0D2
WEEINC=XINC/NINC

C See energy.for for the change in the next IINE.
MAX=(XPCUT2-XINC)+0.5D0*WEEINC

C Makes sure point XPCUT2 is included, but points beyond excluded.
X75=ZERO
X50=ZERO
X25=ZERO
U075=ZERO
U050=ZERO
U025=ZERO
N75=ZERO
N50=ZERO
N25=ZERO
PREVII=REDUCE

C Set up initial conditions for trapezium rule.

NX2=NXP2(NZ,EXFREQ,TWIST,XPCUT1 ,YTEST,DELKX,NXM2,U0,A2M4B)
SUM=-1.0D0*DELKX
PREV=0.0D0

c This value of n is the one used in the FORMula x=x1 +n*XINC
N=-1 DO

prevdepost=0.0d0
xdepost=0.0d0
u0atmax=0.0d0
idepost=0.0d0
DO 300 XPOS=XPCUT1 ,MAX,XINC
N=N+1DO
WEEMIN=XPOS
WEEMAX=XPOS+XINC+0.1 DO'WEEINC

C Again makes sure that xpos+XINC is included.
IF (WEEMAX.GT.XPCUT2) THEN

G Imaginary square root.
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GO TO 300
END IF

DO 301 WEEXPS=WEEMIN,WEEMAX,WEEINC

NX2=NXP2(NZ,EXFREQ,TWIST,WEEXPS,YTEST,DELKX,NXM2IU0,A2M4B)
C Trapezium Rule

SUM=SUM+PREV+DELKX
PREV=DELKX

INTENS=REDUCE*DEXP(SUM*WEEINC)
301 CONTINUE

C C
C Points where intensity falls below 75%, 50%, 25% with
C associated parameters.

IF ((PREVII.GT.R75).AND.(INTENS.LE.R75)) THEN
X75=NEXTX
N75=N
U075=U0
ELSE IF ((PREVII.GT.R50).AND.(INTENS.LE.R50)) THEN
X50=NEXTX
N50=N
U050=U0
ELSE IF ((PREVII.GT.R25).AND.(INTENS.LE.R25)) THEN
X25=NEXTX
N25=N
U025=U0
END IF

C C

CCCCCCCCCC Changed d-6 to d-4. This might produce results more
CCCCCCCCCC quickly.

IF (INTENS.LT.1 .OD-4) THEN
GO TO 333
ELSE

c DEPOST is the amount of energy in an interval per unit length
c and in fact is the derivitive of the intensity.

depost=2.0D-2*(previi-intens)/XINC
c DEPOST=1.0D-2*(PREVII-INTENS)/XINC

PREVII=INTENS
c Plot results at end of interval not at the beginning.

NEXTX=XPOS+XINC
if (depost.gt.prevdepost) then
prevdepost=depost
u0atmax=u0

xdepost=nextx
idepost=intens
nx=dsqrt(nx2)
end if
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C write(10,3000) N,NEXTX,INTENS,DEPOST
C write(10,3000) NEXTX,INTENS,DEPOST
C3000 FORMAT(4F20.6)

END IF

300 CONTINUE

333 CONTINUE
c write(10,2345) NZ.EXFREQ,TWIST,X75,X50,X25,N75,N50,N25,
c 1 U075,U050,U025
C2345 FORMAT(3F8.2,3F10.6,3F8.2,3F10.4)
C write(10,2346) nz,exfreq,twist,xdepost,idepost,prevdepost,
C 1u0atmax,intens
C write(10,2346) nz.exfreq,twist,xdepost.intens
C2346 FORMat(3f7.3,5f11.6)

C Print out intensity at x1 and x2, or max x to show how changes overall.
write(10,3003) NZ.exfreq,twist,xpcutl,REDUCE,xpcut2,xpos,

1 intens
3003 FORMat(3f6.2,5f10.6)

END

SUBROUTINE ABSOUT(NZ,EXFREQ,TWIST,XMAX.NINC)
IMPLICIT NONE

C This SUBROUTINE prints out the contents of SUBROUTINE absorb.
DOUBLE PRECISION

NZ.EXFREQ/TWIST,XMAX.NINC,XPCUT1 ,XPCUT2,TEMP
1,INTENS
CALL CUTOFF(NZ,EXFREQ,TWIST,XMAX.XPCUT1 .XPCUT2)
IF (XPCUT1 .LT.0.0D0) THEN
RETURN
ELSE
write(10,5002) NZ.EXFREQ,TWIST,XPCUT1 .XPCUT2,XMAX.NINC

5002 FORMAT(' NZ'.SX.FIS^,/,' EXFREQ '.F13.2,/,' TWIST '.F13.2,/,
1 1 XPCUT1 '.FlS.e,/,' XPCUT2 '.F13.6,/,' XMAX \F13.6,/,
2'NINC ',F13.1)
CALL ABSORB(NZ,EXFREQ,TWIST,NINC.XPCUT1 .XPCUT2,INTENS)
TEMP=-1.0D0
write(10,5003) TEMP

5003 FORMAT(F20.6)
END IF
END

FUNCTION LAMBDA(NZ,EXFREQ,TWIST)
C Calculates lambda:- kx2=lambda*(x-xpcut1) near xpcufl.

IMPLICIT NONE
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DOUBLE PRECISION NZ,EXFREQ,TWIST,LAMBDA,M,JOZ,J1 W,S17AEF,
1S17AFF,ANGLE,NPAR02,XCONST,YCONST,ARG,Y2,magsize

C C
C Analytic expression for the gradient at x=0

M=1 DO

magsize=1.0D0
YCONST=magsize*2.7761679D3/(EXFREQ*EXFREQ)

C YCONST= (e*B0/m*1e9)**2, B=0.3T, freqency in GHz.
XCONST=1.4091359D6/(EXFREQ*EXFREQ)

C XCONST=nO*e*e/(epsilonO*m*R*R*1e18) n0=3e19
ARG=1.0D0-0.0D0/0.26D0
J0Z=S17AEF((3.8D0*ARG),M)
J1W=S17AFF((2.4D0*ARG),M)
ANGLE=DATAN(J0Z/J1W)
NPAR02=(NZ*DCOS(ANGLE-TWIST))**2.0D0
Y2=YCONST*(JOZ*JOZ+J1W*J1 W)
LAMBDA=4.076D6*(Y2*(1,0D0-NPAR02)-2.0D0-
1 Y2*DSQRT((NPAR02-1.0D0)"2.0D0+4.0D0*NPAR02/Y2))/(1.0D0-Y2)

C 4.076d0=(n0*e*e/epsilon0*m*w*w*R)*(w*w/c*c) Lambda is
C d(kx2)/dx and the w*w/c*c converts d(nx2)/dx to this. See
C notes.
C NB NB NB Lambda is the gradient of kx2.
C C

RETURN
END

SUBROUTINE REFRAC(NZ,EXFREQ,TWIST,XMAX)
C Prints out values of nx2.

IMPLICIT NONE
DOUBLE PRECISION

NZ,EXFREQ,TWIST,XMAX,NXP2,XPOS,YTEST,DELKX,
1 NXM2,U0,A2M4B,XINC,NX2,XPCUT1 ,XPCUT2,NINC,TEMP

XPCUT1=0.0D0
XPCUT2=1.0D0
NINC=1.0D0
write(10,6000) NZ.EXFREQ,TWIST,XPCUT1 ,XPCUT2,XMAX,NINC

6000 FORMATC NZ',5X,F13.2,/,' EXFREQ ',F13.2,/,' TWIST \F13.2,/,
1' XPCUT1 ',F13.6,/,' XPCUT2 \F13.6,/,' XMAX ',F13.6,/,
2'NINC *,F13.1)
XINC=XMAX/100.0D0
TEMP=-1.0D0
DO 600 XPOS=0.0D0,XMAX,XINC
NX2=NXP2(NZ,EXFREQ,TWIST,XPOS,YTEST,DELKX,NXM2,UO,A2M4B)
IF (NX2.NE.-1.0D0) THEN
write(10,6001) XPOS.NX2.NXM2

6001 FORMAT(3F20.6)
ELSE
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GO TO 6003
END IF

600 CONTINUE
6003 CONTINUE

write(10,6002) TEMP
6002 FORMAT(F20.6)

RETURN
END

SUBROUTINE TRIAL(NZ,EXFREQ,TWIST,XMAX,NINC)
IMPLICIT NONE

C This SUBROUTINE prints out the contents of SUBROUTINE absorb.
DOUBLE PRECISION

NZ.EXFREQ,TWIST,XMAX,NINC,XPCUT1 ,XPCUT2,TEMP
1JNTENS
CALL CUTOFF(NZ,EXFREQ,TWIST,XMAX.XPCUT1 ,XPCUT2)
IF (XPCUT1 .LT.0.0D0) THEN
RETURN
ELSE
CALL ABSORB(NZ,EXFREQ,TWIST,NINC.XPCUT1 ,XPCUT2,INTENS)
END IF
END
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A.2 COMMENTS ABOUT PROGRAM CUTOFFS

A.2.1 The Main Program

The main part of the program is straighforward. It reads in the range and

the step size of the parameters to be investigated: the value of the component

of the refractive index vector in the plane of the magnetic field, called NZ; the

angular frequency of the wave co, measured in units of G rad s"1, which is the

variable EXFREQ; and lastly the range which the angle the refractive index

vector makes with the magnetic field at the edge of the plasma; this

corresponds to 90 in chapter 4, and is called TWIST in the program.

At this stage the distance the wave propagation will be followed into the

plasma, XMAX, is also input, along with the number of increments to be used

in other parts of the program, NINC.

The main part of the program is then contained in three do-loops,

controlled by the values of NZ, EXFREQ and TWIST. Various subroutines are

called within these do-loops depending on the information required.

A.2.2 Function NXP2

This function is the calculational heart of the program, since it calculates

the values of the two branches of the square of the refractive index in the

x-direction in slab geometry, as given in equation (4.3).

As explained in chapter 4 the plasma density varies in the x-direction

and the magnetic field is in the y-z plane. The magnetic field components are

found using NAG routines S17AEF and S17AFF to calculate the values of the
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J0 and Jg Bessel functions. The factors 3.8 and 2.4 in the Bessel function

arguments make them a better fit to published data on the magnetic fields.

The last section of the function calculates the imaginary part of the

propagation vector, so that it can be used to calculate the amount of damping.

A.2.3 Subroutine CUTOFF

This subroutine uses information on the value of NXP2 and the point

where the two branches of the refractive index coincide to calculate the point

where nx2 changes from negative to positive and the wave can propagate in the

plasma. This value is called XPCUT1. It is usually small and determines the

width of the evanescent layer. If the value of XPCUT1 is too large the program

stops at this point.

If the two branches of the refractive index are not coincident when the

maximum distance into the plasma is reached this is the value given to the

variable XPCUT2. If the two branches are concident before this point the last

incremental step in the x-direction is subdivided into one thousand substeps

and the value of XPCUT2 is then calculated.

The subsiduary subroutine CUTOUT prints out the values of XPCUT1 and

XPCUT2 along with the values of NZ, EXFREQ and TWIST.

A.2.4 Function LAMBDA

At the edge of the plasma the upper branch of nx2 changes very rapidly

from being negative to positive, so it is possible to approximate nx2 as a straight
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line in this region. The slope of this line can be found at x = 0 and converted to

give the slope of kx2 at this point, which is then called X, LAMBDA. (See

equation (4.12).) This value of LAMBDA is then used in Airy's equation in

subroutine ABSORB to calculate the attenuation.

A.2.5 Subroutine ABSORB

As the name suggests this subroutine calculatos tho amount of absorption

of the wave in the plasma.

First it uses the value XPCUT1 previously established to see if the

evansecent region is too large to continue. If it is not it calculates the amount of

energy which tunnels through by solving Airy's equation, with I given by the

function LAMBDA. The amount of energy tunnelling through is given by the

square of the ratio of the Bi Airy function at XPCUT1 to that of the Bi function at

the edge of the plasma, assuming that the wave intensity is normalised to 1 at

the edge of the plasma.

It then uses the trapezium rule and the value of 8kx calculated by CUTOFF

to calculate the amount of absorption. The interval between XPCUT1 and

XPCUT2 is divided into 100 intervals, each of which can be further subdivided

into NINC further subintervals.

Subroutine ABSOUT is used to group subroutines CUTOFF and

ABSORB and then to print out the results, so that only one subroutine needs to

be called in the main program. Subroutine TRIAL also has this function.

Subroutine REFRAC is used to print out the values of the two branches of

the square of the refractive index if this is required.

91



BIBLIOGRAPHY

Abramowitz M. & I.A. Stegun Handbook of Mathematical Functions. Dover
Publications, Inc. New York (1972)

Adam J. Chauffage Cyclotronique Impedace d'Antenne en Presence d'un
Mecanisme de Forte Absorption. EUR-CEA-FC-1004 (1979)

Ando A. et al Physical Review Letters 56, 2180 (1986) Plasma Current
Generation and Sustainment by Electron Cyclotron Waves in the WT-2
Tokamak.

Arfken G. Mathematical Methods for Physicists (2nd ed.) Academic Press, Inc.
New York (1970)

Balfour A. & D.H. Marwick Programming in Standard FORTRAN 77.
Heinemann Educational Books. London (1979)

Behn R. et al Plasma Physics and Controlled Fusion 26, 173 (1984) Recent
Alfven Wave Heating Results on the TCA Tokamak.

Bekefei G. Radiation Processes in Plasmas. John Wiley and Sons, Inc. New
York (1966)

Bickerton R.J. et al Plasma Physics and Controlled Fusion 28, 1943 (1986)
Confinement and Heating of Plasmas in the JET Tokamak.

Bodin H.A.B. Nuclear Instruments and Methods 207, 1 (1983) Reversed
Field Pinches.

Bodin H.A.B. and Newton Nuclear Fusion 20, (1980) Reversed-field-pinch
Research.

Bornatici M. Plasma Physics 24, 629 (1982) Theory of Electron Cyclotron
Absorption of Magnetised Plasmas.

Bornatici M et al. Nuclear Fusion 23, 1153 (1983) Electron Cyclotron
Emission and Absorption in Fusion Plasmas.

Boyd T.J.M. and J.J. Sanderson Plasma Dynamics. Nelson. London (1969)

Brambilla M. Nuclear Fusion 16, 47 (1976) Slow-wave Launching at the
Lower Hybrid Frequency using a Phased Waveguide Array.

Budden K.G. The Propagation of Radio Waves. Cambridge University Press.
Cambridge (1985)

Cairns R.A. Plasma Physics. Blackie & Son Ltd. Glasgow (1985)

92



Clemmow P.C. & J.P. Dougherty Electrodyamics of Particles and Plasmas.
Addison-Wesley Publishing Company, Inc. Reading (Mass) (1969)

Cowling T.G. Magnetohydrodynamics. Adam Hilger Ltd. Bristol (1976)

Dawson J. Physics of Fluids 4,869 (1961) On Landau Damping.

Fisch N.J. Physical Review Letters 41, 873 (1978) Confining a Tokamak
Plasma with rf-driven Currents.

Fisch N.J. Reviews of Modern Physics 59, 175 (1987) Theory of Current
Drive in Plasmas.

Fisch N.J. & A.H. Boozer Physical Review Letters 45, 720 (1980) Creating
an Asymmetric Plasma Resisitivity with Waves.

Gill R.D. (ed) Plasma Physics and Nuclear Fusion Research. Academic
Press. London (1981)

Golant V.E. Soviet Physics - Technical Physics 16, 1980 (1972) Plasma
Penetration near the Lower Hybrid Frequency.

Hasegawa A. Nuclear Fusion 20, 1158 (1980) Toroidal Current Production
by Kinetic Alfven Waves.

Hooke W. Plasma Physics and Controlled Fusion 26,133 (1984) Review of
Experiments on Current Drive in Tokamaks by Means of RF Waves.

Jobes F.C. et al Physical Review Letters 55, 1295 (1985) Current Rampup
by Lower-Hybrid Waves in the PLT Tokamak.

Lashmore-Davies C.N. 5th International Workshop on Electron Cyclotron
Emission and Electron Cyclotron Heating. San Diego, November 1985, p264.
On the Application of Whistler Waves to Toroidal Discharges.

Muskhelishvili N.I. Singular Integral Equations. P. Noordhoff Ltd. Holland
(1953)

Robertson S. and p Schmid Nuclear Fusion 27, 267 (1987) Instability of a
Reversed Field Pinch Without a Conducting Shell.

StixT.H. Physics of Fluids 3,19 (1960) Absorption of Plasma Waves.

Stix T.H. The Theory of Plasma Waves. McGraw-Hill Book Company Inc.
New York (1962)

StixT.H. Physical Review Letters 15, 878 (1965) Radiation and Absorption
via Mode Conversion in an Inhomogeneous Collision-free Plasma.

93



Taylor J.B. Physical Review Letters 33, 1139 (1974) Relaxation of Toroidal
Plasma and Generation of Reverse Magnetic Fields.

Taylor J.B. Reviews of Modern Physics 58, 741 (1986) Relaxation and
Magnetic Reconnection in Plasmas.

Wesson J. Tokamaks. Clarendon Press. Oxford (1987)

Weynants R.R. et at. ICRH Antenna Design and Coupling Optimization
Studies. Proceedings of the 2nd Joint Grenoble-Varenna International
Symposium (1980)

Whittaker E.T. & G.N. Watson A Course of Modern Analysis, (4th ed.)
Cambridge University Press (1927)

Woltjer L. Proceedings of the National Academy of Sciences 44, 489 (1958)
A Theorem on Force-free Magnetic Fields.

Wort D.J.H. Plasma Physics 13,258 (1971) The peristaltic Tokamak.

94


