

University of St Andrews

Full metadata for this thesis is available in

St Andrews Research Repository
at:

http://research-repository.st-andrews.ac.uk/

This thesis is protected by original copyright

http://research-repository.st-andrews.ac.uk/

AN EXPERIMENT IN MACHINE LEARNING

USING THE GAME OF THREE DIMENSIONAL

NOUGHTS AND CROSSES

Thesis presented for the Degree of M.Sc.

by M. J. Doake, M.A.(Hons.), St. Andrews,, 1972

DECLARATION

I hereby declare that this thesis has been composed by myself;

that the work of which it is a record has been done by myself; and.,

that it has not been accepted in any previous application for any

higher degree. This research concerning machine learning was

undertaken from October 19^9-. the date of my admission as a

research student for the degree of Master of Science (M.Sc.).

CERTIFICATE

I hereby declare that the conditions of the Ordinance and

Regulations for the degree of Master of Science (M.Se.) at the

University of St. Andrews have been fulfilled by the candidate,

M. J■ Doake.

A. J. T. Davie

SUMMARY

A program was written to play the game of three dimensional

noughts and crosses on a computer. The program was written in such

a way that it would 'learn from experience'. The emphasis therefore

was not on producing an unbeatable program, but one which would,

improve its own play. This is achieved by using a backtrack analysis,

which is called every time a game is won or lost. It works by

starting from the winning board position and backtracking, i.e.,

unplaying the last move played, then the second last etc., until

it reaches the board position where it thinks the critical move was

made. This board position is analysed and stored in a generalised

form, so that next time that board position, or one essentially similar,

is found, the program will recognise it. The analysis is done in terms

of the pattern formed by the counters on the board. It is important

that the generalised description of the pattern should capture the

essential, and only the essential elements of a pattern, and this the

program is only partially successful in doing. Alternative methods of

backtracking are discussed, and suggestions made as to how the program

might be developed.

The program also has a selective look-ahead procedure which is

heuristic in method. The look-ahead uses the list of patterns produced

by the backtrack analysis. Initially, therefore, it will only look for

those patterns given in the rule-book, viz., fotir in a row, which

constitutes a win. The list of patterns will be built up with experience.

The program looks ahead at several different levels. It looks to see :

a) if a pattern exists in the actual board position

b) if a pattern can be formed by either side in one move

c) if a pattern still exists if (b) is true (a pattern can be formed

in one move) and the opponent does his best to stop this pattern.

Only one square is selected as the best one to stop a particular

pattern* and this square will be dictated by the nature of the pattern

found. The original analysis of a pattern during the backtrack

analysis indicates which square this is.

The program has the facility to play both sides in a game* or to

play against a human opponent. Games of both kinds are listed and

discussed.

INDEX

Page

I. Introduction 1

II. Brief History of Game Playing Programs 2

(i) Claude Shannon 2

(ii) A.M. Turing 5

(iii) A. Bernstein 5

(iv) Newallj. Shaw and Simon 6

(v) A.L. Samuel 8

(vi) . D. Michie and J.E. Doran 9

(vii) E.W. Elcock and A.M. Murray 10

III. The Game of Three-Dimensional Noughts and Crosses 12

TV. Informal Description of Program 14

(i) Descriptions 15

(ii) Backtrack Analysis 20

(iii) Limitations of Backtrack Analysis and
Description 23

(iv) Look Ahead 25

(v) Scoring 27

V. The Program (Formal Description) 30

(i) Nomenclature 30

(ii) Input Data 33

(iii) Program Listing 35

"VI. Flowcharts 86/87

(i) Outline Flowchart of Whole Program F1

(ii) Flowchart of Computer Look-Ahead Loop F2

(iii) Flowchart of Backtrack Analysis f6

(iv) Flowchart of Listing of Patterns F7

(v) Flowchart of Opponent Backtrack Loop F9

(vi) Flowchart of Subroutine SEARCH F11

Comments on Play and Suggested Improvements

Appendix. A Pew Games Played by the Computer

References

1

I INTRODUCTION Why play games?

Machines which play games have a long and varied history.

Amongst the first was the "chess playing automaton" constructed by

Baron Kempelen in 179& which "computed" its moves thanks to the efforts

of a dwarf inside it, gaining its inventor considerable ill-gotten fame

and fortune. More recently the motives for mechanising game-playing

have becomej we hope,, less suspect. Interest is now focussed not on

machines specially constructed to play a game, but on programming

already existing digital computers to do so.

Programming computers to play games seems to provide a special

sort of challenge to those who do it, especially where the game

involved is an "intellectual" game such as chess or draughts. A game

like chess is thought of as involving real intellectual effort, the use

of intelligence. If a machine could be successfully programmed to play

this sort of game it would prove that machines could be used for work

other than the dull slavish routine which is thought of as "mechanical".

This seems to have been sufficient motivation for some; to prove that

a machine could be said to be displaying "intelligence". For others a

successful game-playing program would mean "one would seem to have

penetrated to the core of human intellectual endeavour" (NEW 58).

Similarly "man can solve problems without knowing how he solves them";

a successful game-playing program would capture and mechanize human

decision making and problem solving and so "add to his kit of tools for

controlling and manipulating his environment" (NEW 58) .

A more straightforward motive is that of improving programming

techniques and learning new ones. Games provide complicated problems,

but have a certain regularity because of their rules, which one would

2

not find in a problem taken from "real life". Hopefully the

techniques learnt in the solving of a complicated game problem can

later be used to solve an economics or business problem. Games it is

thought., retain many of the characteristics of real life problems while

eliminating many of the worrisome complications; thus providing an

opportunity to isolate in pure form the logical structure underlying

real-life problems.

A specific example of this is the technique of "learning from

experience." A program which could learn could be used to do a lot

of trivial and detailed work which otherwise would have to be done by

hand, and would be very time-consuming.

II BRIEF HISTORY OF GAME PLAYING PROGRAMS

We are concerned here only with programming computers to play games

for which there exists no known algorithm which can guarantee a win,

as can be very successfully done with such games as Nim or the normal

game of noughts and crosses. However, programming a computer to play

such games is essentially trivial, unless the game is played, without

reference to the algorithm.

The names mentioned below are only those of pioneers in the field

of game-playing programs, or those whose work is directly connected

with our own research.

(i) Claude Shannon

One of the first important names in the history of mechanized game

playing is that of Claude Shannon (SHAN 50a, SHAN 50b). Although he did

not actually write a program for a digital computer, he discussed the

problems Involved in doing so. The answers he gave built up a frame-work

on which almost all subsequent chess playing programs have been based.

The rules of chess (and most other games), ensure that it is a

finite game., which must end in a win, loss or draw. It can therefore

be completely described as a branching tree, the nodes corresponding to

the positions and the branches to the alternative moves from each

position.

This simplified diagram illustrates the point. A is the starting

board position. White has 3 alternative moves, 1, 2, or 3> White's

move will be followed by Black's, and for the purposes of this example

it is assumed that all of Black's moves lead to board positions with

known results.

Move 1 will lead to a draw, no matter what Black does. Move 2

can only lead to a loss for White. Move 3 could lead to a win or a

loss, and the outcome will depend on what Black does. So far as White

is concerned Move 1 is his best move as it ensures a draw, whereas

Move 2 ensures a loss, and Move 3^ since the opponent has the issue of

the game in his power, is almost certain to result in a loss for White.

In a game of chess one could in principle examine the whole tree

comprising all the alternative moves and their continuations, until one

had worked out all the possible endings to the game. It would then be

relatively simple to work out the best move. The procedure would be to

work backwards from the terminal positions, as we did in the above

example, and at each branching point decide which was the best branch

to take from the point of view of the side making the move. If White

d el ! "£
Figure 1

4

is looking ahead, he will choose the best branch for himself when it is his

turn, and assume that Black will choose the branch which is worst for White

when it is his turn. That is, looking back up the tree., White choses his

path by alternatively maximising and minimising. This procedure is known,

for obvious reasons, as minimaxing.

However from any given board position there are, in chess, about JO

possible alternative moves and this means that the number of alternatives

to be considered looking ahead to the end of the game would be astronomical,

and could not be contemplated, even with the use of the fastest modern

computers.

Shannon's suggestion was that one should look ahead to a certain depth

examining all alternative moves. At this depth all the resulting board

positions should be evaluated in some way. Then one could minimax back from

the board positions reached in the look ahead to find the best move.

To evaluate a board position Shannon suggested a numerical measure

formed by assigning values and weights to various factors which are considered

important by chess experts, e.g., the number and nature of the pieces on the

board.

Shannon also pointed out the importance of evaluating a board position

only if it had a certain amount of stability. If in the next move something

is going to happen which will drastically alter the value of a board position

an evaluation at this point will be misleading.

Pie also suggested that instead of examining all possible alternative

legal moves to a fixed depth, one should only examine promising moves and

not explore the other at all.

5

(i i) A.M. Turing

Turing (TUR 50, 55) is the next important name. He too was

concerned with chess playing. He wrote a program which was not

implemented on a computer but which could be simulated by hand. The

program fitted into the Shannon framework. His main contribution was

a clear definition of what he called a "dead position". He would

only evaluate a board position if it was dead. A dead position was

one which was more than 2 moves ahead of the actual board position.,

and from which the next move was not a capture, recapture, or mate.

The 1st condition of course was arbitrary - Turing chose to consider

all alternatives to a depth or ply of two, (a ply being a move by 1

person, 2 plys 1 move by each side), then evaluate those which were

dead. The rest of the alternatives were explored until they were dead.

(iii) A. Bernstein

Bernstein's (BER 58a, BER 58b) program made another major

contribution to game playing technique. Instead of examining all

legal alternatives to a certain depth, Bernstein's program used

drastic selection and only explored a fraction of the possible paths

in the tree. A series of subroutines suggested which moves were worth

considering. Each subroutine corresponded to some feature of the game

e.g., king safety, development, defending own men etc. The subroutines

functioned in order of priority, each one in turn suggesting plausible

moves until 7 moves had been suggested. These subroutines were used

at every stage of the look ahead, so never more than 7 moves were

considered from any one board position. The program looked ahead to

a depth of 2 moves. This meant that out of a possible 800,000

(approximately) alternative board positions the program evaluated only

2400.

6

This selection was too drastic in that the program tended to

overlook simple moves which had important consequences and it made bad

blunders. This was hardly surprising with so much selectivity. What

was surprising was that in spite of this drastic cut in the number of

moves evaluated, the program played a reasonable game at all.

The introduction of selectivity made the program more complicated

and it took longer to examine each position than earlier programs.

However, if selection could be properly implemented it was obviously

more profitable to consider fewer moves to a greater depth.

(iv) Newall, Shaw and Simon (NEW 58)

The aim of this team in writing a chess program is not only to

play good chess, but to analyse chess situations in much the same

way as human beings. They are interested in mechanical simulation of

human thought processes and feel that in any case the best chess

program will be the one which most closely simulates human chess

player's analysis. The complex nature of a human chess player's

thought processes is dictated by the game, and a good chess program

should have a similar complexity.

Newall, Shaw and Simon (NSS) are convinced that careful but

drastic selectivity is essential, and this is the dominant theme in

their program. They use Bernstein's idea of a move generator, but

take it a stage further and are rather more careful.

Given a board position, the first thing the NSS program does is

to decide which goals are appropriate to this board position. These

goals represent different features of chess, such as King safety,

material balance, centre control, denying stalemate etc. It can easily

7

be appreciated that all these goals are not relevant to every stage

of the game - the last., for example., will only be relevant towards

the end. This list of goals is important because the goals which the

program decides are relevant to a particular board position then

control the rest of the process of choosing the next move - i.e.,

which moves to examine, which continuations to explore, the

evaluation when a dead position is found, etc. This is an important

new step which recognises and allows for the fact that a different

sort of game is played at the beginning, middle and end, requiring

different techniques and different emphases..

Each goal in the selected list proposes alternative next moves

each selecting only moves which further its own purposes. E.g., only .

the material balance goal will propose preventing a piece being

captured, only king safety protecting king, etc.

Having selected a list of proposed alternative moves, separate

analysis generators decide which continuations should be explored to

give a correct analysis of each move. The exploration of continuations

is based on Turing's definition of a dead position. A position has-

to be considered dead or static before it is evaluated, but NSS

introduce an extention of Turing's idea. Before a position is

considered dead it is examined from the point of view of each of the

goals relevant, and judged to be dead by all of them before it is

evaluated. If a goal judges the position in question to be static,

it gives the position a provisional value. However, this value is

only valid if all the other goals find the position static too.

Otherwise the program generates the moves which will drastically effect

the position, i.e., the moves which prevented the position from being

static, and the process is repeated until a position is found which is

considered static from all points of view. Thus the selection of

continuations is dictated by the search for a dead position.

8

(v) A. L. Samuel

Samuel (SAM 59.. SAM 60, SAM 67) chooses the game of checkers for

his experiments. His main interest in writing this program is the

development of new programming techniques, especially those involved

in programming a machine to learn from experience.

Samuel's program looks ahead in a normal way with no selection

up to a ply of three., at which point all positions are evaluated if

they are dead. Otherwise the program looks ahead until the positions

are dead. Since .the positions which are not dead are usually the most

profitable, this is a useful form of selection - it is the one used by

NSS. The best move is then found by minimaxing.

Samuel's program learns by two quite different methods, although

they can be combined. The simplest is what he calls the "rote learning

method". The program stores all the board positions it encounters with

the score they were given by the look ahead procedure. In most cases

these scores will represent a look ahead of three plys . When the

program, while, for example, looking ahead 3 plys, comes across a board

position which is already stored with its backed up score, it can give the

board position it is currently evaluating a score based on a look ahead of

effectively 6 plys. If this process is repeated often enough, the score

should eventually become quite accurate since the further one looks

ahead the more accurately one can assess a position. Because of the

enormous number of possible board positions the program also has a

facility for forgetting board positions. It forgets those which it

uses least.

Samuel's other learning process involves "generalization on the

basis of experience". This works best when the program is playing both

sides, i.e., selecting both Black's and White's moves.

9

The score of any given board position is worked out by using an

evaluation polynomial;, i.e., an equation whose terms represent the

various features of checkers, such as the material balance, etc. Each

term is given a numeric value which represents its current state in

the board position, and this is multiplied by a coefficient which

represents the importance of that term (i.e., feature) to the game as

a whole. The program learns by experimenting with different terms in

its evaluation polynomial and by varying the sign and magnitude of

the coefficients for these terms. One side, Black, plays with a fixed

evaluation function. The other side experiments continually. After

every move White generalizes on the basis of experience and adjusts

the terms and their coefficients accordingly. If White wins, Black is

given its latest evaluation polynomial. If Black consistently wins a

drastic change is made in White's evaluation polynomial.

To judge its evaluation polynomial, White compares the score

it gives a certain board position with the score given to it by the rote

learning method. The difference between the 2 scores is reflected in a

variable. Delta, which is then used to make appropriate adjustments, to

the coefficients. A term in the evaluation polynomial will be replaced

if it consistently has the lowest coefficient.

(vi) D. Mlchie and J. E. Doran

Doran and Michie's (DOR 66) work with the Graph Traverser program

provides a more general method for the solution of a whole family of

problems. It can be used to solve any problem which can be translated

into terms of graph theory, as that of finding a path between two

specified nodes of a specified graph. The approach used initially is

that of "state evaluation". A problem state is given a value which

reflects the extent to which it has features in common with the goal

state, or which is related to its "distance" from the goal state.

10

The program is general in that it can be applied to different problems

if it is provided with a rule book and an evaluation function. The rule

book must enable the program to generate from an initial state all

neighbouring states. The evaluation function will be used to discover to

what extent a state approaches the goal state.

A quantity, described as "penetrance", is discovered to be a useful

measure of the efficiency of an evaluation function. Penetrance is defined

as length of the path produced , or more informally as "the degree to which
total number of nodes developed

the search tree is 'elongated' rather than 'bushy'-." Using this quantity the

program can improve its own evaluation function in the midst of attempting to

solve a problem, and thus be said to be learning.

(vii) E. W. Elcock and A . M ■ Murray

Elcock a.nd Murray (ELC 68, MUR 67, MUR 68) are primarily interested in

the problems involved in writing a learning program. The game they choose for

their experiment is Go-Moku - a "simple but not trivial game ". They choose a

simple game so that they can study their particular learning technique in some

depth.

The aim in Go-Moku is to make up a straight line of five of one's own

counters while preventing the opponent from doing so first. The essence of the

game is to recognise and try to make up certain patterns which are unbeatable.

Elcock and Murray's program is like Samuel's in that it learns from experience,

but the learning process is completely different from either of Samuel's

methods. The Go-Moku program learns by using a "deductive backtrack analysis".

When a game has been won the program looks back to the point where it thinks

a win was inevitable. The backtrack analysis, like the rest of the program,

works in terms of pattern recognition, so that when the critical board

position has been found it is described in terras of the pattern it forms, and if

11

the descriptive language is good enough, that pattern will be

recognised next time it occurs., and marked as a winning one. The

descriptive language is such that when a board position is described

it is automatically generalised, so as to capture the essential and

only the essential elements of the pattern. This is much more

economic than storing all the board positions.

Move selection is governed by a list of subgoals, each

describing a pattern from which a win should be inevitable. These

subgoals are listed in order of the number of moves away from a win.

The list of subgoals is added to every time the program loses. When

this happens the program unplays each move in turn starting with the.

last move and working backwards. As soon as it comes across a

board position which is not described in the current list of

subgoals, a generalised description of that board position is added

to the list, on the assumption that this position is a necessary and

sufficient step in the formation of the board position which

immediately succeeded it in the game, which the program did

recognise. For example, 4 counters in a row is a necessary and

sufficient step to making up 5 in a row.

This assumption is only justifiable if the descriptive

language has attained the ideal of capturing the essential, and only

the essential elements of a pattern. Elcock and Murray had a certain

amount of difficulty with their language because it tended to pick up

some superfluous information which meant that the achievement of a

listed subgoal did not necessarily lead to the subgoal above it, or

bring about a win. It also meant that what was essentially the same

pattern would be listed several different times in slightly different

forms.

12

Elcock and Murray also found that their language was not

powerful enough to describe certain situations. The opponent would

win by a pattern which was listed., but whose description had missed

some vital factor, had not been flexible enough to capture all the

essential features of this pattern.

111 THE GAME OF THREE-DIMENSIONAL NOUGHTS AND CROSSES

The game of 9 dimensional noughts and crosses was chosen for

our own experiment. The object of the game is to place four

counters in a straight line. The board has four layers, each of

which is four squares by four: i.e., there are sixteen squares on

each layer (or plane) and therefore sixty four squares in all:-

Figure 2

A line of four can go in any direction provided it is straight. That

is, instead of making up lines on one plane as in ordinary noughts .

and crosses one can make up a line which has a square on each plane,

e.g., going straight down from a square on the top plane, or

diagonally from the top near corner to the bottom far corner. This

can be more easily demonstrated if we represent the board thus:-

1 2 9 4

5 6 7 8

9 10 11 12

19 14 15 16

17 18 19 20

21 22 29 24

25 26 27 28

29 90 91 92

99 94 95 96

97 98 CT\ 40

41 42 49 44

45 ^6 47
11j

49 50 51 52

59 54 55 56

57 58 59 60

61 62 65 64
i

Figure 9

13

A line could be made up by playing in squares 1,2,3*4 or

1 ,17,33*49* or 1,18,35*52j or 1 ,22,43,.64. The opponent of course

does his best to prevent one from getting 4 in a row. This is done,

as in ordinary noughts and crosses by placing one of his own counters

in the line you are trying to make up. The skill in this game

consists in recognising certain patterns. There is no point in

merely forming lines of three which the opponent can stop with one

counter. One must try to form a pattern where by placing a counter

in a particular square, one can simultaneously make up two different

lines of three,

e.g.,

X X

X X

1

3 2

Figure 4

Play in square 1 makes up a.forcing pattern - the opponent must defend

(unless he can win in one move himself), by stopping one of the lines

of 3* but whether he plays in square 2 or square 3* he cannot stop

both lines: whichever square he plays in the attacking side will win

by playing in the other.

There are several of these forcing patterns which a player must

try and form and at the same time prevent his opponent from forming.

This is in fact the essence of the game.

It is worth noting that from the point of view of forming patterns,

certain squares on the board have more potential value than others.

There are altogether 'jG straight lines on the board ~ 10 on each plane,

16 vertical lines, 16 semi-diagonal lines, contained in planes parallel

to an edge of the board., and 4 true diagonals passing from one corner

14

of the board at the top level to the diagonally opposite corner of

the board at the bottom level. Some squares appear on more of these

lines than do other squares. The 8 corner squares on the top and

bottom layers have 7 lines passing through them., and so do the 8

squares in the very centre of the board. All the other squares have

only 4 lines passing through them. Squares with 7 lines passing

through them are referred to as "strong" squares, and the rest as

"weak" squares.

IV INFORMAL DESCRIPTION OF PROGRAM

The current version of our program, "Score 4", is similar in many

respects to the Go-Moku program of Elcock and Murray. Like the

Go-Moku program, "Score 4" plays to a win, then backtracks and

analyses the board position at the stage where it thinks the critical

move was made. The analysis is made in terms of the pattern formed by

the winning combination of counters. This analysis is then stored and

used to recognise that pattern if it occurs again. The analysis is

generalised so that its description applies to both sides and to any

board position which has essentially the same features. The program

also has a selective look-ahead procedure which looks for any of the

patterns analysed by the backtrack analysis. Move selection is, for

the most part, governed by this look ahead procedure.

In the course of writing the program, several different

techniques were tried and discarded and new techniques adopted as a

direct result of some of the program's deficiencies as demonstrated

by the sort of game it played. In order to understand the present

form of the program, and the nature of the problem itself it is worth

discussing briefly some of the techniques which were tried and rejected.

15

The first technique tried was a look ahead which examined

every possible alternative and continuation to a ply of 5- The

resulting board positions were evaluated simply in terms of how many

counters had been played. However, as has been explained., the

important thing in this game is not how many counters there are in

any one line., but what patterns there are. Therefore this look

ahead proved to be singularly unhelpful, mainly because of its

evaluation function. It was also rather slow.

Various different forms of look aheads were tried, but it

soon became evident that some form of pattern recognition would have

to be used to evaluate board positions.

(i) Descriptions

As Elcock and Murray (MUR 67, MUR 68) realised, the method of

describing a pattern in a board position is the most essential thing

in this sort of program. If a pattern is a winning one, the

description must capture those features which make it a winning one.

A good description must not miss out any essential feature, nor must it

include any inessential feature. At the same time, the description

must be general enough to apply to any board position which has

essentially the same features, even though it is not exactly the same

board position. These specifications are very difficult to meet, and

in fact our program is not entirely successful in doing so, nor was

the Go-Moku program discussed in "Machine Intelligence 1" (1967).

(MUR 67).

16

To illustrate these points:-

X

X 0

0 0

X X X X

Figure 5

The essential thing about this board position is that there are

four counters in a row - this is all the description of this board

position should be concerned with. The other counters on the board are

irrelevant to the pattern., and should be ignored in the description.

The actual position of the coianters on the board is also irrelevant.,

i.e.., that they are (for example) in the front four squares of the top

plane. The only relevant fact in the positioning is that they are in

a straight line. All that the description need include is "a "line

(by which we always mean a straight line) with 4 (red) counters in it."

In fact., from a programming point of view, we found the simplest

method of describing board positions was in terms of what the

relevant lines add up to. The computer's move is always indicated by

a 5j the opponent's by 1 and an empty square by 0. This means that by

summing a line we always know exactly what counters have been played in

it. A sum of 10 for example means 2 computer counters and 2 blank

squares., 11 means 2 computer counters and an opponent one etc.

Therefore the actual description of the above board position would

be:- "a line which adds up to 20".

17

Figure 6

"A line which adds up to 3"> would describe the board position below,

making it quite clear that it is the

opponents line, that he can win in one

move because there is a blank square in

the row.

1

1

1

Figure 7

This board position can be converted

into a forcing pattern by playing in the

square marked (i). This square is

referred to as the "key" square in the

pattern, as is a blank square in any

pattern if by playing in it, one can

create a forcing pattern.

The essential features here are that there are "two lines, both adding

up to 10, which have a blank square (i) in common". This description

captures the essential features and is generalenough to apply to the board

positions:

5 5

5 5

i

5 i 5

5

5

Figure 8

which are essentially the same. (This pattern is referred to in

Appendix 1 as Pattern 1.)

Referred to

as Pattern 2.

5 5 ii

5

3

i

The description of this pattern

involves 3 lines and there are 2

"key" squares. In this instance it

does not matter in what order they

Figure 9 are played. Play in either one

forces the opponent to defend by stopping a row of 3- Play in the

18

second "key" square then makes up 2 separate rows of j5.» only one of

which the opponent can stop. The essential features are covered by

the description:-

"a line adding up to 10 with a blank square in common with

a line which adds up to 5.» such that the line of 5 has a blank

square in common with a different line adding up to 10."

This description captures the essential elements and is general

enough to describe also the board positions

ii

5

5 5 i

5

5 i 5

5

Li

5 !

Figure 10

The board position

involves 4 lines. Here there are 3 "key" squares and the order they

are played in is more important than in the last example. However

the order of (i) and (ii) could be interchanged. Play in square (i)

makes up 3 in a now and forces the opponent to defend. Play in square

(ii) makes up another 3 and the pattern is now the same as that in

Figure r(, and therefore play in square (iii) makes up 2 separate lines

of 3- The description of this pattern is:-

19

"a row adding up to 10 with a blank square (i) in common with

a line adding up to 0 which has a blank square in common with another

line adding up to 10 and also has a blank square in common with a

3rd line adding up to 10."

i.e., J rows of 2 are involved in such a way that by making up 2 of

them into rows of 3* one at the same time makes up another row of 2

which converges with the 3rd row of 2.

The description also fits this board position

i iii ii

I5 5

! 5 5

!

Figure 12

Thus the program describes a pattern in terms of the lines which are

involved in playing out the pattern and what they add up to, and the

intersections of the lines which take place on the "key" squares.

The lines are carefully listed in the right order, so that the square

which must be played in 1st is in the line which is mentioned first,

and so on.

The more lines mentioned in the description of a pattern, the

more moves have to be made before a win is made.

This method of description has the advantage over Elcock and.

Murray's 1st method, that only the lines which are actually involved

in a win are described. By "involved", we mean lines which are built up

to have 3 in a row and thus force the opponent to defend. A win almost

always involves 2 lines being simultaneously built up to have 3 in a

row, and both these are "involved".

20

Eleock and Murray describe a pattern in terms of the line which

has the most counters in it and the line crossing it which has the

most counters in it. This is arbitrary in that the 2nd line mentioned

is sometimes irrelevant. The result was that more than the essential

features were sometimes described, which meant that the description

would not fit another board position which had the same essential

features,, but not the irrelevant ones which were also picked up in

the description. The description is not what they call a minimal one.

(ii) Backtrack analysis

Like the Go-Moku program., the "Score Four" program generates

its own list of patterns by using a backtrack analysis to find and

analyse the board position which made a win inevitable. A game is

played to a win, then the program backtracks until it finds the

critical board position which is then analysed in terms of its pattern

and listed.

The backtrack analysis (b.t.a.) is called whenever a game is

won or lost, as it has the facility to analyse either a computer or

an opponent win. The b.t.a. unplays in turn each of the winner's

moves and the corresponding loser's moves, taking the moves in reverse

order, i.e., unplaying the last move 1st and working backwards.

The backtrack analysis first takes a note of the winning line

and then unplays the winner's last move. Let us assumethat the

computer playing Red, won. The opponent (White)'s last move is also

unplayed, so that we recreate the board position two plys before the

end of the game. The b.t.a. then tests to see if-Red could still have

won in one move had White played his last move where Red did. if so,

a note is taken of the relevant line (i.e., the line in which Red

21

could have won had White not played his last move in it) and the next

pair of moves is unplayed and the process repeated until Red can no

longer win in one move.

e.g.,

a note is taken of this (winning) line

If this is the winning board

5 5'l~
Figure 1^ j_ position., the last pair of moves

will be unplayed to give the

board position

5 5'
5 X
1 5''
r- /

,5

Figure 1 4

5 jm
5 H

. |

5
1

1

1

The opponent's move is then

played where the winner's

last move was:-

Figure 1 5

note taken of this line

5
_L.

5

5 5
i
I

1

1,5

It is obvious that Red can still

win in one move, by playing

where White's original last

move was.

The object of this exercise is to discover at what stage the

pattern started to be a forcing one. By the time the pattern in

Figure 14 has been formed, Red is virtually unbeatable. The program

must be able to recognise patterns before they become forcing, so one

more pair of moves is unplayed. to give the position

Figure 16

5

5 5)1
i

j

22

This board position is then analysed by simply adding up the counters

in the lines noted during the b.t.a. and listing them as one pattern.

In the above example two lines were noted; these lines are summed as

they are in the final position reached by the b.t.a.., i.e., at the

stage where the position is one move away from being forcing. In this

case, as they are in Figure 16.

The pattern would be listed simply as 10, 10. A winning pattern

always involves lines intersecting at some stage and it is important to

know and record, when analysing a board position, which lines intersect

with which. In this program the order in which the lines of a pattern

are listed, reflects which lines intersect with which. In the above

example the order does not matter, because only 2 lines are involved

and they must intersect with each other. However in a more

complicated example

\|y

Figure 17

r i
5

I? 5 5 1

R
J 1 1

,

I 5 5

the order in which the lines

are listed is very important.

The sequence of the backtracking is as follows:-

5 I
i

5 5 ,5
~5~ 1 5 ,5

1 11 / 1

5 | 5
/

p 5

'5
\

5

and finally

5 5

^5
\

1

\

\
5 5 5

23

The lines with arrows are the ones noted during the course of the

backtrack. Four lines are noted including the winning one, which add

up in the final position, to 10,0,10,10. It is important to know

that the 1st line intersects with the 2nd, the 2nd with the 3rd and

the 4th also with the 2nd.

The b.t.a. is also used to compile a list of the patterns as

they were one move previously, i.e., two moves before they are forcing.

This list is used for move selection in certain cases (see page 27).

(iii) Limitations of backtrack analysis and description

This method of backtracking unfortunately has certain limitations.
i

For one thing it is limited in the amount of learning it can do, and

this limitation leads to a limitation in recognising the potential of

certain board situations. This can be quite simply illustrated.

the program will recognise this

pattern (see Figure 9) and will

play

which stops one pattern. However

the strength of this position is

that playing in square (i) makes

up 2 separate patterns

and the opponent can go on to win

by playing in square (ii) which

forces the computer to defend, then

square (iii) which makes up 2 rows

of 3.

Given the board position

Figure 1 9 1

1 i

1 1

1

5 1 i

1 1

1

1 iii

5 1

1 1 ii 5 1

24

In fact the board position

Figure 20

1

1 1

should be listed as a forcing pattern., but because of the way the

b.t.a. works, it never will be. If the b.t.a. worked like the

Go-Moku one, i.e., by working backwards from the winning board

position until It finds a board position which is not listed as a

pattern; and then adding the new board position to the list, then this

position would be added. The difference between these two methods of

backtracking lies in the criteria used to find the board position to be

analysed - the board position which made the win inevitable. Our

criterion is whether the side attacking can win in one move if his

opponent does not defend. As soon as a position is reached by

backtracking where the attacker can no longer win in one move, this

position is analysed. The position in Figure 19a satisfies this

criterion. The Go-Moku program builds up its list of patterns by

backtracking until it finds a position it has not yet listed, analysing

this position and adding it to the list - the b.t.a. is only used when

the program loses. This method may take several games to completely

analyse a fairly complicated pattern, but in theory it should get there

in the end. In fact Elcock and Murray complain in their 19^7 article

(MUR 67) that their program was limited in the amount it could learn

and that It could not realise the potential danger of some positions -

which is precisely what we are complaining of. However, their method

of backtracking seems to be a much stronger one and would have been

used but for certain programming difficulties - see Chapter VII.

25

(iv) Look ahead

The limitation described above makes the program vulnerable to

certain opponent attacks* and also means that it does not realise

the strength of certain patterns it forms* or could form* itself. For

this reason there are two separate look ahead procedures* one which

checks on the strength of the opponent's position* and one for the

computer. The results of both look aheads are then compared and the

decision made whether to defend or attack* due allowance being made

for the fact that it is the computer's turn to play.

The program starts the look ahead by playing one of its own

moves in the 1st blank square on the board. It then looks to see if

this makes up any of the listed patterns. If no pattern is formed by

playing in that square* the move is unplayed and the next blank square

is tried and so on until each blank square in turn has been tried. When

a pattern is formed* the square played in to form it is given a score

which will depend on how good that pattern is considered to be. An

opponent's move is then played in the "key" square* and the program

looks to see if a pattern still exists and also to see if forcing the

opponent to play there makes up a pattern for him; i.e.* forces him to

help himself. If so* i.e.* if an opponent pattemdoes exist* then the

original square played in during the look ahead is given no score.

However* if a pattern still exists for the computer* after playing an

opponent move in the "key" square* then the rest of the look ahead is

skipped and the program automatically plays in the original square being

tested by the look ahead. This is because if this situation does exist

it means that playing in one square has made up simultaneously 2

patterns* only one of which can be stopped by the opponent. This

situation is referred to as a double pattern. This forms a highly

26

selective look ahead procedure. Unless a double pattern is found.,

all legal next moves are tried in turn., the look ahead continuing with

a square only if playing in that square forms one of the listed patterns.

If not, the square being tried is given a score but the look ahead goes

no further with it and the next square is tried. The program plays

an opponent move in what it reckons to be the worst possible place for

the computer,. i.e., in the "key" square of the pattern found by the

look aheadtaking each pattern in turn. Having done this the look

ahead continues by looking to see what patterns, if any, are left. If

it finds no pattern, it means that the computer cannot create a forcing

pattern in one move. If there is a computer pattern, the program knows

that by playing in a certain square (and it knows exactly which one) it

can create a forcing pattern and almost certainly win. Thus the program

can be said to look ahead to a depth of 3 plys - it has worked out what

will happen if Red plays there, White there and. then Red there. In a

sense, if a pattern does exist after the opponent's move has been

played (in the look ahead), the program can be said to look ahead to

the end of the game because once it looks ahead to a forcing pattern

the course of the game is predictable - the opponent will be foreed_ to

keep defending until the computer wins. This at least is what ideally

should happen. However, as in most selective look aheads, the computer's

prediction of where the opponent will play may easily be wrong.

Sometimes playing the opponent's move in the "key" square is not the

best place for him. The "key" square is where the attacking side would

need to play to make his pattern forcing, but sometimes the opponent car-

stop 2 patterns by playing in one place, but only one by playing in the

"key" square. If the look ahead procedure tried playing the opponent's

move in every possible square, it would inevitably discover the most

effective place for the opponent to play, but this would be too time

consuming.

27

The look ahead for the opponent is exactly the same,, except that

if the program realises that it will not be able to stop the opponent

winning, because he has a double pattern, the "key" square in the

forming of the double pattern is given a large enough score to ensure

that it will be the one selected for the machine to play in unless it

finds a double pattern for itself.

If no pattern can be formed in one move, the program looks to see

if by playing in any of the blank squares, it can make up a pattern which

can be converted in one move into one of the listed patterns; i.e., it

looks to see if there is any pattern of counters in the board position

which in 3 moves can become a forcing pattern. This is very often

the case as soon as there are 2 counters on the board.

However, sometimes even this situation does not exist - e.g., when

there is only one counter on the board. In this case another method of

selection must be used. The method used is simply that of choosing a

"strong" square in a line which (preferably) already has a counter in it.

One point is added to the score of each square in a line with 1 (computer)

counter in it, or 2 points if there are 2 counters. These points are

added to the initial (see below) score of the relevant squares. The

highest scoring square is then chosen - strong squares are given more

points than weak ones.

(v) Scoring

A detailed account of the scoring system.

At the beginning of a game, each square is given an initial score

which supposedly reflects its positional, strength. There are 2 categories

of squares, as we have seen 16 "strong" squares and the rest "weak" squares.

28

The initial score of a strong square is "J, corresponding exactly to

the number of lines which pass through it. A weak square accordingly

has an initial score of 4.

In an earlier version of the program, each square was then

subjected to various tests (such as what pattern, if any, would be

formed if the computer played in it, and if the opponent played in it

etc.). The score of the square was added to, or subtracted from, as it

passed through each test, so that its final score reflected its worth

from all points of view. However, it was not carefully enough balanced,

and what tended to happen was that a mediocre attacking square which was

also a mediocre defensive square would score more highly than a good

attacking square. The result was that the program played a dull game

with no good attacking moves. A good attacking move does not need to

worry about defending.

It was found to be simpler to decide first whether to defend or

attack, and once that decision had been made, to find the best attacking

move, or the best defending move if the decision was to defend.

To do this, each square is given a score which reflects its value

to the opponent, and its value as an attacking square is separately

assessed. If the highest scoring attacking square scores less than the

highest scoring square for the opponent, then the computer defends.

The first scoring test is the look ahead for the opponent. The

program looks to see whether any of the listed patterns will be formed

if the opponent plays in a certain square. If so, the square has points

added to its score - the exact number of points will depend on which

pattern is formed. Pour points are added if the pattern is "three in

29

a row"j and usually 9 points for any other pattern. There is a

mechanism for raising the number of points given for any pattern to

which the computer consistently loses. If the computer consistently

loses to a particular pattern., it is because it has not fully

realised the strength of this pattern. This is a fault in the

description of the pattern. One way of compensating for this fault

is to simply allot more points to this pattern, so that it is more

likely to be stopped if spotted during the look ahead.

Having discovered an opponent pattern, the look ahead proceeds

to play a computer move in it's key square, and looks to see what

pattern, if a.ny, is left. If no pattern is left, then no more points

are added to the score of the square being assessed, and none are

subtracted. If the original opponent pattern is stopped, and instead

a computer pattern has been foimied, then the square has all its points

taken away. If despite the computer's defensive move, there still

exists an opponent pattern, then 30 points are added to the score of

the original square being tested by the look ahead. The assumption is

that if the opponent plays in that particular square, then the computer

will not be able to stop him making up a forcing pattern. The points

given are sufficient to ensure that unless the computer can make up a

similar pattern, it 'will play in that square.

A note is taken of the highest scoring opponent square and the score

of each square is then set back to its original score, i.e., either

4 or 7^ and the look ahead for the computer is done. This works in

exactly the same way as the opponent look ahead, except that 3 points

are a.llotted to a "three in a row" pattern and 10 to any other pattern.

Also as has been mentioned, if a pattern is found which the opponent

cannot stop in one move, then the computer immediately plays in the

appropriate square and skips the rest of the look ahead procedure and

assessment.

30

If after these two look aheads, the highest scoring square has

less than 15 points, which would mean in fact that no pattern other

than "three in a row" had been found for the computer during the look

ahead, then the next test is applied. This is another look ahead to

see if any of the listed patterns (other than three in a row) can be

formed in two moves, i.e., whether by playing in a certain square the

computer can create a board position which can be converted into one

of the listed board patterns in one move. If so, the square has 8

points added to its initial score.

However, if no square satisfies this test there will still be no

way of discriminating between squares, apart from their initial

positional strength.

The final test discriminates between squares on the basis of how

many counters have been played. One point is added to the initial

score of every square in a line in which there is a computer counter

(and no opponent one). Two points are added if there are 2 counters.

If this leaves several squares with the same score, the 1st one found

is chosen. This is referred to as the "counter scoring method" (CSS).

V THE PROGRAM (formal description)

(i) Nomenclature

MOVE(64) The board is represented by the array M0VE(64), which contains

an integer variable for each of the 64 squares on the board.

SUM(76) is an array used to hold the sums of each of the "j6 lines.

R0W(304) is an array used to keep an account of which squares are

contained in each line, i.e., the first 4 values of ROW are the squares

which make up line 1. The squares are numbered in the order shown in

31

Figure 3.» and the 1st line is made up of the squares 1,2,3,4 and these

four numbers are therefore the first four values of ROW. In the same

way line "\G, which is one of the main diagonals * is made up of

squares 4,23,42,61 and these numbers are the last four values of ROW.

ROWDY(304) is a similar array which keeps account of the various lines

passing through each square. The first 7 values of ROWDY are therefore

the 7 lines which pass through square 1, the next four values are the

four lines which pass through square 2 etc.

ROWCNT(65) is an'array used for referencing ROWDY. It holds an account

of where in ROWDY to find which lines pass through any square. Thus

R0WCNT(1) is 1j R0WCNT(2) is 8 - the beginning in ROWDY of the lines

for square 2. The number of the subscript corresponds to the number of

the square.

TEST(5.132) is a 2 dimensional array which describes the patterns which

have been found and analysed by the program.

SUTEST(3j20) performs a similar function to TEST but describes the same

patterns as they were one move before the stage they are described in

TEST.

SUB(64) is an array used for scoring. Its values correspond to the

initial value of the squares, which depends on how many lines go

through it.

SUB1(64) and SU1(64) are also used for scoring.

LAST(32) is used to list the moves made by the computer.

NEXT(32) is used to list the moves made by the opponent.

32

STAKT(16) is used for the initial move; it holds the 16

initially "strong" (v.P. 14) squares from which the computer's first

move is selected at random.

M11(2j16) is a 2 dimensional array used during the look aheads to

hold the different patterns found in the current board position with

the appropriate square to play in.

R0WN0(5) is used during the backtrack analysis to hold the numbers of

the lines which go into the making up of a pattern.

MOST(3) is used during the backtrack analysis for putting the lines

into the right order in a pattern.

X(3) is used for the same thing as MOST.

AJUST(32) is used in a self adjusting scoring system which adjusts the

value given to any pattern.

WIN(4) is an array used to hold the 4 squares which are in the winning

line. These are printed out at the end of a game.

PCOUMT is a variable used to keep track of how many patterns are listed

in TEST. It must be updated each, time a new pattern is found.

SUCNT keeps count of the number of patterns in SUTE5T., as PCOUNT does

for TEST.

GCNT is used as a switch which is off when a pattern is to be listed in

TEST and on when it is to be listed in SUTEST. It is switched on the

2nd time the program goes through the b.t.a.

BIG is a Variable used to hold the highest score of the squares

examined during the opponent look ahead.

BIC-OPP holds the number of this square.

NOCNT keeps count of how many times subroutine TESTT is called during

the backtrack analysis* and is used as a test to ensure that a new

pattern is listed both as a computer and an opponent pattern.

Before each new game the following are set to zero:-

MOVE i.e. the board

SUM - the sums of the lines

LAST and NEXT - the lists of moves

COUNT and SCOUNT which are used to keep count of the

number of moves made by each side.

(ii) Input data

ROWDY* ROW* ROWCNT* TEST* SUTEST* SUB* START* ADJUST are

read in as data. A complete list of the input data follows on the

next page.

Had there been time to tidy up this program* the data statement

would have been used* as a more efficient method of inputing this data.

TEST and SUTEST are shown here with several patterns listed.

Originally they would be input with SUTEST completely set to zero*

and only 20 and 4 (i.e.* four in a row for both sides) in TEST.

ROWDY 1 17 33 49 57 69 73 1 18 34 70 1 19 35 71 1 ft0CM 50 68 72 74 2 17 37 58
2 18 38 49 2 19 39 50 2 20 4o 67 3 17 41 59 3 18 42 50 3 19 43 49 3 20

44 66 4 17 45 50 60 61 76 4 18 46 62 4 19 47 63 4 20 48 49 64 65 75 5 21
33 51 5 22 34 57 5 23 35 68 5 24 36 52 6 21 37 69 6 22 38 51 58 70 73 6
23 39 52 67 71 74 6 24 40 72 7 21 41 61 7 22 42 52 59 62 76 7 23 43 51 63
66 75 7 24 44 64 8 21 45 52 8 22 46 60 8 23 47 65 8 24 48 51 9 25 33 53

9 26 34 68 9 27 35 57 9 28 36 54 10 25 37 61 10 26 38 53 62 67 75 10 27 39
54 58 63 76 10 28 40 64 11 25 41 69 11 26 42 54 66 70 74 11 27 43 53 59 71 73
11 28 44 72 12 25 45 54 12 26 46 65 12 27 47 60 12 28 48 53 13 29 33 55 61 68
75 13 30 34 62 13 31 35 63 13 32 36 56 57 64 76 14 29 37 67 14 30 38 55 14 31
39 56 14 32 4o 58 15 29 41 66 15 30 42 56 15 31 43 55 15 32 44 59 16 29 45 56
65 69 74 16 30 46 70 16 31 47 71 16 32 48 55 60 72 73

ROWCNT 1 8 12 16 23 27 31 35 39 43 47 51 55 62 66 70 77 81 85 89 93 97104111115119
12615313714114514915315716n 65169175180187191195202209215217221225229236240244
251255259263267271275279283290294298305

ADJUST 0

0 0

ROW 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48
49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 1 5 9 13 2 6 10 14

3 7 11 15 4 8 12 16 17 21 25 29 18 22 26 30 19 23 27 31 20 24 28 32
33 37 41 45 34 38 42 46 35 39 43 47 36 40 44 48 49 53 57 61 50 54 58 62
51 55 59 65 52 56 60 64 1 17 33 49 2 18 34 50 3 19 35 51 4 20 36 52

5 21 37 53 6 22 38 54 7 23 39 55 8 24 4o 56 9 25 41 57 10 26 42 58
11 27 43 59 12 28 44 60 13 29 45 61 14 30 46 62 15 31 47 63 16 32 48 64

1 6 11 16 4 7 10 13 17 22 27 32 20 23 26 29 33 38 43 48 36 39 42 45
49 54 59 64 52 55 58 61 1 18 35 52 5 22 39 56 9 26 43 60 13 30 47 64
13 25 37 49 14 26 38 50 15 27 39 51 16 28 40 52 16 31 46 6i 12 27 42 57

8 23 38 53 4 19 34 49 1 21 41 61 2 22 42 62 3 23 43 63 4 24 44 64
1 22 43 64 4 23 42 61 16 27 38 49 13 26 39 52

TEST 20 4 15 3 10 2 10 2 10 2 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1

-1 -1 -1 -1 -1 -1 -1 -1 -1 -1 10 2 5 1 0 0 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1

-1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 10 2 10 2 -1 -1 -1 -1

-1 1

10 2 -1 1 -1

-1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 1 -1 -1 -1 1 -1 -1 -1 -1 1 -1

-1 1 -1 -1 -1 -1 1

SUB 7 4 4 7 4 4 4 4 4 4 4 4 744 7
4 4 4 4 4 7 7 4 4 7 7 4 4 4 4 4
4 4 4 4 4 7 7 4 4 7 7 4 4 4 4 4
7 4 4 7 4 4 4 4 4 4 4 4 7 4 4 7

SUTEST 10 5 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 5 5 -1 -1 -1 -1

-1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 10 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1

-1 -i

START 1 4 13 16 22 23-26 27 CO 39 42 43 49 52 61 64

35

(iii) Program listing

c jill doake

g iscore

implicit integer(a-z)

logical m4

dimension m0ve(64),sum(76),r0w(304),rowdy(304),rowcnt(65),test(5,32),

1sutest (3.20), sub(64) ,sub1 (64), su1 (64), last (32),next (32),start (l6),

2m11 (2,16), rowno (5) . most (3),x(3), ajust (32),win(4)

common row,test,m1,M2,M3,M4,M11,SN,cnt,rowdy,rowcnt,XYZ

c read all data

read (5-.101) row

read(5,ll4)rowcnt

read(5,h4)rowdy

read(5,h4)((test(i,j),j=i,32),i=i,5)

read (5 -11 4) ((sutest (i, j), j=1,2.0), i=1,3)

read(5,104)sub

read(5,u4)start

read(5,114)ajust

c set counts

c pcount is set to the number of patterns currently listed in test

pc0unt=0

c sijcnt is set to the number of patterns in sutest

sucnt=0

cnt=0

count—0

sc0unt=0

y=0

36

C CLEAR THE BOARD

1 DO 2 1=1,64

2 M0VE(l)=0

DO 933 1=1,76

933 SUM(I)=0

C SET LIST OF COMPUTER AND OPPONENT MOVES TO ZERO

M2=0

DO 16 1=1,32

LAST(I)=0

16 NEXT(I)=0

C READ OPPONENT'S MOVE, CHECK FOR NO MOVE(O), OR END OF GAME(-)

4 READ(5,100)NEXT1

WRITE(6,100)NEXT1

Read in the opponent's move and write it out (simply for the

opponent to cheek that he has typed in the move correctly).

The move Is now tested to see if it is any of a series of conventional

signals - a minus number indicates the end of the game and start of a

new one, 0 is the conventional sign that the opponent wants to skip his

move and let the computer have the 1st move, 99 is the signal to end the

whole session.

IF(NEXTl)14,12,6

6 IF(NEXT1-99)8,7,10

7 CALL EXIT

C IS IT A BLANK SQUARE

8 IF(M0VE(NEXT1))ll,ll,10

C IF NOT WRITE ERR.0R MESSAGE AND TRY AGAIN

10 WRITE(6,105)

37

go TO 4

C OTHERWISE MOVE ARRAY IS UPDATED TO TAKE ACCOUNT OF NEW MOVE, AND

C SO IS COUNT

11 MOVE(NEXT1)=1

Y=NEXT1

write(6,io9)move

C OUNT=COUNT+1

NEXT(COUNT)=NEXT1

WRITE(6,102)NEXT

IF(C0UNrT.EQ.32.AND.SC0UNT.EQ,O2)G0 TO l4

This last test ensures that if all the squares on the board are

filled, the game is automatically terminated.

m4 is a logical variable used by Search to distinguish between a

real board position and a look ahead procedure - it is set to TRUE for

a real board position.

12 M4=.TRUE.

CALL SEARCH(MOVE,SUM,Y)

IF(M3-EQ.100)G0 TO 15

IF(M3.EQ.98)G0 TO 13

IF(M1.GT.0)G0 TO 13

This is the start of the calculation of the computer's move.

Search is a subroutine which has a note of the sums of the 76 lines,

which it updates with each new move made. The new move is noted in

the variable Y. Using these sums, Search looks to see if there exists

anywhere on the board a situation which forms one of the patterns

38

listed in TEST. M3 will be 100 if someone has 4 in a row, in which

case a winning message is printed and the backtrack analysis starts.

M3 will be 98 if someone has 3 in a row in which case the computer

must immediately play in the blank square left, (either to make up

4 or to stop the opponent's 4) and the number of the square will be

the value of Ml. If any other pattern exists, Ml will be set to the

number of the "key" square (v.P.17) in this pattern, and the computer

will automatically play there.

if(sc0unt.GT.0)G0 to 4o

l=klock(j,k)

130 l=klrand(l)

M=L*.465661287E-9*16+1

M1=START(M)

IF(M0VE(M1).GT.0)G0 TO 130

GO TO 13

This part of the program is only used for the very 1st move - it

is skipped as soon as SCOUNT, which keeps count of the number of '

computer moves played, is greater than 0. The values of START are the

numbers of the l6 "strong" (v.P.14) squares on the board. The

computer's 1st move is taken from amongst these at random.

"L=KL0CK(J,k)" is the calling sequence of a program which sets L to

the time of day in 50ths of a second. "L=KLRAND" is the calling

sequence for a program which, given a number (here the time of day, i.e."

31-1
generates a new pseudo random number in the range 1-2

Multiplying by .465661287E-9 produces numbers between 0 and 1,

multiplying again by 16 and adding one produces numbers between 1 and 16

39

The next section is a look ahead for the opponents i.e. , the

program looks to see if the opponent has any dangerous situations

coming up. The board situation is assessed in terms of the potential

danger from the opponent, and this is reflected in a score for each

square, held in SUB1. The score of the most dangerous (i.e.,, highest

scoring) square is compared with the computer's after its own look

ahead.

m4 is set to false to indicate that this is a look ahead. This is

important because it means that instead of returning from Search as soon

as any pattern is discovered., all the patterns found when testing a

particular square during the look ahead, are stored in the array Mil

together with their respective "key" squares. Sometimes two or three

different patterns will be formed by playing in one square.

40 M4=.FALSE.

BIG=0

DO 91 11=1,64

91 SUB1(II)=SUB(II)

This stops the score from accumulating. A single move can make

such a difference to the score that it is worth while recomputing the

whole lot rather than just updating the squares affected.

The score always starts from SUB, not zero. The SUB scores

correspond to the initial values (v.P.27) of the squares which are

based on the positional value of the squares. This means that patterns

formed by playing in one of the l6 "strong" squares are automatically

given a better score than the others.

40

DO 90 1=1,64

IP(M0VE(I).GT.O)GO TO 90

MOVE(I)=1

CALL SEARCH(MOVE,SUM,I)

The opponent look ahead works by playing an opponent move in every

blank square in turn and then examining the board position.

DO 954 11=1,16

IF(M11(2,I1).LE.0)G0 TO 920

IF(M11(2,I1).NE.98)G0 TO 911

SUBl(l)=SUBl(l)+4

IF(MII(2,II+I))954,954,905

911 IP(I1.EQ.1)G0 TO 310

IF(M11(1,I1).EQ.Mll(l,Il-l))GO TO 905

310 SUB1(I)=SUB1(I)+9+AJUST(Ml1(2,I1))

For each blank square played in during the opponent look ahead,

Search is called and the patterns found in this board position (if any)

listed in Mil. The contents of Mil are examined. Mil lists both the

number of the pattern and the number of the "key" square - the 1st

column listing the square number and the 2nd the pattern number. If

there are no patterns at all Mll(2,l). i.e., the place for the 1st pattern

number, will be 0, in which ease control is transferred to statement 920

where the move is unplayed and SUM is readjusted to take account of this.

The next square will then be tested in the same way, i.e., an opponent

move played in it Search called etc.

41

If there is a pattern listed in Mil, tests are made to find which

pattern it is. A distinction is made between a pattern of 3-in-a-row

(in which case Mll(2,l) will be 98) and the rest of the patterns.

Because 3-in-a-row is not a very valuable pattern., it has a low score

attached to it. The score of the square being tested is adjusted

according to which pattern is found., 4 for 3-in-a-row, 9 for any other.

The score in AJUST (v.P.68) for this particular pattern is also added to

the score of the square. Normally this will be zero, but if the pattern

is one to which the computer has lost more than once, the score of the

pattern is raised.

If the pattern is 3-in-a-row, a test is made to see if any other

pattern exists. This is done simply by looking to see if the next value

of Mil is greater than zero; pattern 98 will always be listed first.

Statement 911 and the one immediately after it are to stop the score of

a square being added to in certain circumstances . It sometimes happens

that although playing in one square forms 2 different patterns, they

can both be stopped by playing in one square. If this is the case, the

"key" square for both patterns will usually be the same one. In this

case, statement 310, which adds to the score of the square will be

skipped, and the square will score points for only one pattern. Normally

if more than one pattern is formed, the square scores points for each

pattern, i.e., if 3 patterns are found, 3 lots of points will be added

to the square's original score.

905 Z=Mll(l,Il)

M0VE(Z)=5

m4=.true.

CALL SEARCH (MOW.. SUM, Z)

M4=. FALSE.

,j=rowcnt(z)

jj=r0wcnt(z+1)-1

do 906 yz=j,jj

r=rowdy(yz)

906 sum(r)=sum(r)-move(z)

MOVE(Z)=0

IP(Ml)954, 95^,925

925 IP(M2.NE.98)G0 TO 934

908 SUB1(I)=0

GO TO 920

934 IF(M3.NE.98)GO TO 907

SUB1 (I) =SUB1 (I)+30

GO TO 920

907 IP(TEST(1JM3) •GT.4.0R.TEST(2JM3)-GT.''4)G0 TO 908

910 Ml—I

SUB(l)=SUBl(l)+30

go to 920

954 continue

This section looks ahead one stage further. Once a pattern has

been found during the look ahead, the program looks to see what happens

if the computer tries to stop it - whether another pattern still exists,

or whether forcing the computer to play there actually helps it by making

it form a pattern.

Z is set to the no. of the "key" square for the pattern, and

MOVE(Z) set to 5 - i.e., to a computer move. Search is then called,

this time with M4 set to TRUE because it is enough to know if any one

pattern exists without knowing how many.

SUM is adjusted in Search, and readjusted on return from Search

when the computer move is unplayed. If there is no pattern Ml will be

;+3

zero and the next pattern in Mil undergoes the same process.

If there is a pattern we must know whether it is a computer or

an opponent one.

M2 will be 98 only if the computer has 3-in-a-row, which would

mean that forcing the computer to stop that particular pattern has made

up a 9 for it. The score of the square being played in to form the 1st

pattern is therefore given no points at all - playing there forces the

computer to defend by playing in a square which in fact is advantageous

to it. The trial move (opponent) is unplayed, SUM readjusted and the

next square tried.

If Mj5 is 98 (but M2 is not) then the opponent has 3-in-a-row,

i.e., playing in the trial square forms at least 2 patterns, one of

which is 3-in-a-row and the computer cannot stop them both. This is

obviously a very strong position and 30 points are added to the score

of that square.

If the pattern is other than 98, it is a simple matter to

discover whether or not it is a computer one, since the number of the

pattern will be in M3 and this corresponds to the position of the pattern

in the TEST array. If the 1st or 2nd part of the pattern in TEST is

greater than 4, then it must be a computer pattern. In this case the

score of the trial square is set to zero, otherwise it must be an

opponent pattern and the situation is the same as if M3 is 98, i.e.,

30 points are added to the score of the square. This is the end of

the loop which examines Mil.

920 J=R0WCNT(l)

JJ=R0WCNT(1+1)-1

DO 9-12 YZ=J,J-J

R=R0WDY(YZ)

¥4

912 SUM(R)=SUM(R)-MOVE(l)

MOVE (I)=0

This unplays the trial move and sets SUM back to what it was before the

move was made.

IF(SUB1(I).LE.BIG)G0 TO 90

BIG—SUBl(l)

BIG0PP=I

90 CONTINUE

This section is used to find which square has the biggest score.

This is stored in BIG and the number of the square in BIGOPP. The

score of each square is examined after SEARCH has been called and Mil

examined. This score is compared with the current value of BIG and if

it is bigger, then BIG takes this value and BIGOPP the number of the

square. This ends the opponent look ahead loop.

The computer now looks ahead for itself.

LARGE=0

DO 50 1=1,64

50 SUB1 (I)=SUB(I)

DO 52 1=1,64

IF(MOVE(I).GT.0)GO TO 52

MOVE(I)=5

CALL SEA RCH(MOVE,SUM,I)

DO 54 Il=l,l6

IF(M11(2,I1).LE.O)GO TO 720

IF(M11(2,I1).NE.98)GO TO 811

SUB1(I)=SUB1(I)+5

45

IF(Ml 1 (211+1)) 54.54,805

811 IF(I1.EQ.1)G0 TO 80.1

if(mii(ijii)-mii(ijii-i))8oi,805^801

801 sub1(i)=sub1(i)+10

805 Z=Mll(l,Il)

move(z)=1

m4=.true.

call search(move,sum,z)

m4=.false.

j=rowcnt(z)

jj=rowcnt(z+1) -1

do 806 yz=j„jj

r=rowdy(yz)

806 sum(r)=sum(r)-move(z)

move(z)=0

if(m1)54,54,825

825 if(m2.eq.98)g0 to 810

if(m3.ne.98)go to 807

808 sub1(i)=0

go to 720

807 if(test(1jm3).lt.5-0r.test(2,m3)-lt.5)g0 to 808

810 m1=i

j=rowcnt(i)

jj=rowcnt(1+1)-1

do 809 yz=j„jj

r=r0wdy(yz)

809 sum(r)=sum(r)-M0VE(i)

move(i)=0

go to 13

46

54 CONTINUE

720 J=ROWCNT(l)

JJ=ROWCNT(1+1)-1

DO 812 YZ=J,JJ

R=R0WDY(YZ)

812 SUM(R)=SUM(R) -MOVE (I)

M0VE(l)=0■

IF(SUB1(I).LE.LARGE)GO TO 52

IARGE=SUB1(I)

Q=I

52 CONTINUE

This works in almost exactly the same way as the opponent look

ahead.,, appropriate adjustments being made to allow for it being the

computer look ahead. The main difference is, that instead of adding 50

to the score of a square which forms a pattern which cannot be stopped,

that square is automatically played in. Thus no matter how large the

opponent's best score is, if the computer thinks it can win, it d.oes not

defend. This is justifiable because the computer is one move ahead.

IF(LARGE.GE.14)GO TO 715

IF(BIG.0T.15)G0 TO 715

If either of these situations occur it means that a pattern other

than in a row has been discovered during the look ahead. In this case

the section of programming which follows is skipped because it is

redundant. Also if BIG is greater than 15 it. will be bigger than

CHARGE (v.P.48) can ever be, therefore there is no point in working

out CHARGE.

47

The next section is a look ahead procedure which looks for the

patterns listed in TEST as they would be one move before, i.e., it

looks for a situation which in one move could form a pattern listed in

TEST. For example, instead of looking for two converging twos, it will

.look for a row of two converging with a row of one.

500 CHARGE=0

DO 5555 1=1,64

5555 SUBl(I)=SUB(I)

DO 502 1=1,64

IF(MOVE(I).GT.O)GO TO 502

MOVE(I)=5

CALL SUGOAL(MOVE,SUM,SUTEST, I)

J=R0WCNT(l)

JJ=R0WCNT(1+1)-1

DO .18 II=J,JJ

R--R0WDY(II)

18 SUM(R)=SUM(R)-MOVE(I)

5301 MOVE(I)=0

IF(Ml. GT. 0)SUB]. (I) =SUB1 (I) +8

IF (SUBl (I).LE.CHARGE)GO TO 502

CHARGE=SUB1(I)

0,0=1

502 CONTINUE

IF(CHARGE.GT.LARGE)GO TO 510

This look ahead is basically a simplified version of the other two.

The scoring starts from the SUB values. Each blank square is played in

In turn - it is used only as a computer look ahead. The subroutine SUGOAL

is then called. This subroutine is basically similar to SEARCH-

48

The patterns are generated in the same way as those in TEST by simply

unplaying one move more in the backtrack analysis. SUM is then

readjusted and the move unplayed. If a pattern has been found Ml will

be greater than 0. In that case a score of 8 is added to the score

of the trial square. The last section finds the largest scoring square

which is stored in QQ, while its score is kept in CHARGE. If there is a

pattern at all, the next part of the program will be redundant and is

skipped.

What follows is a very simple method of scoring., based on how

many counters have been played (known as the "counter scoring system" - CSS).

It is a simple way of selecting a square to play in when no patterns can be

found during the look aheads.

DO 27 1=1,64

27 SU1(I)=SUB(I)

DO 17 1=1,76

IF(SUM(l).NE.5)G0 TO 820

G=4*I

h=g-3

DO 779 I1=H,g

R=R0W(I1)

779 sui(r)=sui(r)+i

GO TO 17

820 if(sum(i).ne.io)go to 17

g=4*i

h=g-3

DO 778 I1=H,G

R=R0W(ll)

778 SUl(R)=SUl(R)+2

17 CONTINUE

49

As with the other scoring systems, the counter scoring system

starts with the initial values of the squares. Each line is then

tested in turn to see if its sum adds up to 5 or 10. If it is 5 one

point is added to each square in the row, if it is 10 two points are

added.

To find which squares are in a certain row, we multiply the

number of the line by 4 and set G equal to the result. We then subtract

3 and set H equal to that number. The ROW array is so arranged that

these two subscripts of ROW - i.e., ROW(ll) and ROW(G) have as their

values the beginning and end squares of the line in question, and the

ROW subscripts in between have as their values the squares in between.

47 marge=0

do 42 11=1,64

if(su1(i1).ie.marge)go to 42

if(move(ti).gt.o)go to 42

marge=su1(i1)

LL=I1

42 CONTINUE

This loop finds the square which, using the above system, has

the highest score, checking that the square has not been played in

already. The method used is the same as for finding BIG.

510 ip(charge.lt.big)go to 56

if(charge.le.marge)go to 57

large=charge

m1=qq,

50

GO TO 13

715 IF(BIG.GT.LARGE)G0 TO 56

57 IF(LARGE.GT.MARGE)GO TO 55

58 LARGE=MARGE

M1=LL

GO TO 13

53 M1=Q

GO TO 13

56 IF(MARGE.GE.BIG)GO TO 58

LARGE=BIG

M1=BIG0PP

The scores of the squares selected by different methods are compared.

Ml is set to the square with the highest score.

13 SC0UNT=SC0UNT+1

MOVE(Ml)=5

LAST(SCOUNT) =M1

C WRITE OUT COMPUTER'S MOVE

WRITE (6,108)M1

WRITE (6J112)LAST

The selected square is played„ i.e., MOVE(Ml) is set to 5- The move is

added to the list of computer moves in LAST and SCOUNT updated.

51

XYZ=1

Y=M1

m4=.TRUE.

CALL SEARCH (MOVE,SUM,Y)

XYZ=0

if(m3.eq.100)G0 to 15

GO TO 4

SEARCH is called to update SUM. At this stage a check is

made only to see if the computer has A in a row. XYZ is used as a

switch to limit the searching, in the subroutine. Control is then

passed to statement 4, where the opponent's next move is read in.

14 write(6,107)

GO TO 1

This starts a new game. Control is passed to this statement if a minus

number is read in as the opponent's move.

15 h=sn*4

g=h-3

J=0

do 154 i=g,h

J=J+1

134 win(j)=r0w(i)

if(m2.ne.100)g0 to 135

write(6,io6)win

go TO 64

135 write(6,231)win

This simply writes out a winning message and the numbers of

the squares in the winning line. SN holds the number of the winning

line. To find which squares are in this line the same method is used

as in the CSS. These four squares are put in the array WIN which is

then written out with an appropriate message - if M2 is 100 it is a

computer van.

The rest of the main program forms the backtrack analysis.

R0WN0 is used to keep track of which rows (or lines) were involved

in the winning pattern.

C BACKTRACK ANALYSIS

64 DO 77 1=1,5

77 R0WN0 (l)=-l

NOCNT—0

GCNT=0

PATT 1=-1

PATT 2=-l

PATT 3="1

PATT 4=-l

PATT 5=-l

All these variables have to be set before each new backtrack.

IF(M2.EQ.100)G0 TO 220

There is a separate analysis for computer and opponent wins. The first

is for an opponent win - if M2 is 100 the computer has won and the

first bit is skipped.

53

j=i

n=1

94 gcnt=gcnt+1

do 72 i1=j,n

move(next(count))=5

move(last(scount))=0

do 73 12=1,64

ip(m0ve(i2).gt.o)go to 73

move (12)=1

do 75 14=1,76

sum(l4)=0

h=4*i4

g=h-3

do 76 i3=g,h

r=row(13)

76 sum(l4)=sum(l4)+move(r)

if(sum(i4).ne.4)go to 75

move (next(count))=0

move(12)=0

r0wn0(n)=l4

c0unt=c0unt-1

s0unt=sc0unt-1

n=n+1

go to 72

75 continue

move(12)=0

73 continue

72 continue

move (next (count1)) =0

go to 200

54

The actual backtracking is done in this loop. The program unplays

the last computer move by setting it to zero, and sets the last opponent

move to a computer move by setting it to 5* i.e., the program looks to

see if the opponent would still have won if the computer had played its

last move where the opponent did instead of playing where it did. To

do this an opponent move is played in each vacant square in turn and the

lines added up to see if one comes to four. If such a line is found this

means that even if the computer had played its last move where the

opponent did, the opponent could still have won, i.e., the opponent's

second last move made up at least two separate lines of three and the

computer could not stop them both; its last move stopped one line of

three but left another one for the opponent to make up to four.

The object of the backtrack analysis is to analyse a board

position one move before it is unbeatable (or forcing). There is no

point in recognising an unbeatable board position once It has been

formed, the program must recognise it before it is formed. With this

aim in mind the program unplays the moves on a winning board position until

the opponent can no longer win in one move.

Let us suppose the opponent has won by forming this board position.

1 1

1 1

1

1 5

Figure 21

The program has a list of the opponent's and computer's moves in the

order they were played in the arrays NEXT and LAST. SCOUNT and COUNT are

counts of how many opponent and computer moves have been played so that

55

NEXT(COUNT) contains the latest opponent move. If the last opponent

move is set to a computer move., and the last computer move to zero,

this gives the position:

1

1 1

1

5

Figure 22

Obviously the opponent still can win by playing in the square which

originally contained the computer's last move. Therefore the board

position

1 1

1 1

1
Figure 25

is unbeatable - wherever the computer plays the opponent can still win.

The program must therefore unplay another move to achieve its goal of

storing a board position one move before it is unbeatable. The program

sets to zero the square it has just set to 5.. i.e.,. the square which was

the opponent's last move,, and similarly with the square which contained

the computer's original last move.

A note has already been taken of the number of the winning line in

the variable SN. ROWNO tehees note of the other lines involved in the

winning pattern. In the above example this is the line in which the

opponent could still win after the computer's last move was changed.

This will nearly always be the line the computer stopped with its last

move. In this case there are only two lines involved in the winning

pattern. If there are more lines involved they are stored one at a time

in ROWNO., each time a move is unplayed.

56

To get the second last moves, we subtract one from SCOUNT and

COUNT, and in order to go through the loop once more we add 1 to N.

The length of the loop depends on N,which is set to 1 initially and

added to each time it is found necessary to unplay another move.

After going through the loop again (unplaying another move) the board

position will be as in Figure 24.

1 1

1 1

5

1 1

1 1

Figure 24 Figure 25

In this case the opponent can no longer win in one move and the board

position in Figure 25 is considered unbeatable in one move, i.e., unless

it is stopped by playing where the five is in Figure 24.

Let us take a more complicated example and look at the sequence of

board positions during the backtracking analysis

rr 1 5 1

i
\ 1 1«

-

i
i 1

f
I -i ?

the arrows indicate the latest

two moves, i.e., the ones which

will be unplayed if necessary.

Figure 2o

57

\f
1 1

- -r~

5 1

1 0
)H-

%

1
■i

Figure 27

The altered move is ringed.

The computer's last move is

played where the opponent's last

move was^ its original last move

being left blank. The opponent

can still win in one move so the

next two moves are unplayed and the

altered move set to zero.

©
« a£...

The opponent can still win in

one, so another set of moves

must be unplayed.

Figure 28

The computer's last move did not

influence this pattern and so is

not shown. The opponent can no

longer win in one, therefore this

board position without the five is

the one that will be analysed and

stored as one move before being

unbeatable (or forcing).

The same process with appropriate adjustments is gone through if

the computer wins., i.e., the opponent's move is played where the computer's

last move was, and tests made to see if the computer can still win in one.

This section is skipped if the opponent won.

58

220 N=1

J=1

95 GCNT=GCNT+1

DO 222 I=J,N

MOVE(LAST(SCOUNT)=1

MOVE(NEXT(COUNT)=0

DO 225 11=1,64

IF(M0VE(I1).GT.O)GO TO 225

M0VE(I1)=5

DO 225 12=1,76

SUM(I2)=0

H=4*I2

G=H-5

DO 226 I5=G,H

R=ROW(15)

226 SUM(I2)=SUM(I2)+M0VE(R)

IP(SUM(I2).NE.20)G0 TO 225

MOVE(LAST(SCOUNT))=0

M0VE(I1)=O

R0WN0(N)=I2

COUNT=COUNT-1

SCOUNT=SCOUNT-1

N=N+1

225 CONTINUE

M0VE(I1)=0

225 CONTINUE

222 CONTINUE

MOVE(LAST(SCOUNT))=0

59

The next section of the program forms the analysis of the board

position to find the winning pattern. Firstly the lines of the final

board position reached during the backtrack analysis are summed, i.e.,

the lines of the board position which is one move before being

unbeatable.

200 DO 49 1=1,76

SUM(I)=0

H=4*I

G=H-3

DO 43 11=G,H

R=R0W(11)

SUM(I)=SUM(I)+M0VE(R)

43 CONTINUE

The sums of the lines involved in the winning pattern, i.e.,

SUM(SN) and the sums of the lines stored in R0WN0, will be the numbers

listed in the TEST array as a new pattern. However, it is very important

that the lines are listed in TEST in the right order. This is because of

the way SEARCH works. SEARCH takes the sums of the lines of a given

board position and looks for each of the patterns in TEST in a specific

way. It looks first for a line adding up to the first number of the

pattern in TEST, then for a line adding up to the second number, which

has a blank square in common with the first line, etc. What is important

about the ordering of the lines, is that SEARCH looks for the right line

intersection. With two lines it does not matter which line it finds

first. However, with any greater number it is important; e.g., for the

board position:-

6o

1

1 !
Figure 30

it is important to look for a line of two with a blank square in

common with a line of one, which has a blank square in common with

another line of two, i.e., it is the line of one which must have a

blank square in common with the other two. Similarly with the board

position in Figure 31 line 1 must have a blank square with three

separate rows adding up to two.

•<~line 1

Figure 31

In the analysis of a new board position it is important to

find which line it is that must intersect with the others. This

line is one which is built up by making up threes in the other lines

and is always either the winning line or the last line stopped by the

opponent before a win. Because of the way SEARCH works it must always

be listed as the second line in TEST, i.e., it must always be the

second line SEARCH looks for. This is the only thing that matters in

the ordering, the rest of the lines can be in any order.

To find this line It is necessary simply to know which line

has most blank squares in common 'with all the other lines involved,

e . p*. iCO

61

—_j~
-***»«• I 1 i ■■■ J* i

Line 1 has one blank square in common

with any other line involved; similarly

with line 2. However line 3 has two

2 blank squares in common with the other

lines involved, one in common with line 1

Figure 32
and one in common with line 2. This

therefore is the line which must go

second in the pattern.

IF(N.LT.3-0R.GCNT.GT.1)G0 TO 88

i.e.. if less than three lines are involved skip the next section which

does the ordering.

G=4*3N

H=G-3

G1=4*R0WN0(l)

HI =G1-3

G2=4* ROWNO (2)

H2=G2-3

This takes the three lines to be ordered, the winning line and the

first two found in the backtrack analysis and sets the variables

G, H, G1, HI, G2, H2 to the ROW subscripts which will contain the first

and last squares making up these lines.

DO 403 1=1,3

403 X(l)=0

62

The array X is used to count the intersecting squares in each line.

X(1) keeps count for SN, the winning line.

X(2) for ROWNO(l)

and X(3) for R0WN0(2)

This array is set to zero.

All three lines are now compared with each other in respect of

intersecting blank squares.

DO 80 1=11,0

R=R0W(l)

if(move(r).gt.o)go to 80

do 81 11=111 ,g1

r1 =R0V.r (11)

IF(M0VE(R1).GT.O)GO TO 81

IF(R.NE.R1)G0 to 81

X(1)=X(1)+1

X(2)=X(2)+1

81 continue

80 continue

The first loop takes each square in SN in turn checks that it is a

blank square, as played in squares do not count, and each square is

compared with all of the blank squares in ROWNO(l). If any square in SN

is also in ROWNO(l) then one is added to the counters of both lines,

i.e., x(1) and X(2). This process is repeated until every line has been

compared with all the others.

63

DO 82 I=H,G

R=ROW(I)

IP(MOVE(R).GT.O)GO TO 82

DO 83 I1=H2,G2

R1 =ROW(II)

IF(MOVE(R1).GT.O)GO TO 83

IF(R.NE.R1)GO TO 83

X(1)=X(1)+1

X(3)=x(3)+1

83 CONTINUE

82 CONTINUE

DO 84 I=H1,G1

R = ROW(I)

IF(MOVE(R).GT.O)GO TO 84

DO 85 11=H2 ^ G2

R1=R0W(I1)

IF(MOVE(R1).GT.O)GO TO 85

IF(R.NE.R1)GO TO 85

X(2)=X(2)+1

X(3)=X(3)+1

85 CONTINUE

84 CONTINUE

Now X(1), X(2) and X(3) are compared and put in MOST in descending

order so that M0ST(1) contains the subscript of X which held the score

of the line with the most intersecting squares.

64-

In the above example (Figure 32) let us suppose line 2 is the

winning line (SN), ROWNO(l) -is line 5 and R0WN0(2) is line 1 . In this

case X(1)j keeping count of the intersecting lines in SN will be 1; X(2)

for ROWNO(l) will be 2, and X(3) will be 1 . When these scores are

compared MOST(l) will be 2 as X(2) has the biggest score and since the

other two are equal they will be put in MOST in the order this bit of

the program comes to them.

DO 400 1=1 ,3

LARGE=0

DO 401 11=1,3

IF(X(l1) .LE .LARGE)GO TO 4-01

LARGE=X(11)

Q=I1

401 CONTINUE

X(Q)=0

MOST(I)=Q

400 CONTINUE

Having found the row with the most intersecting squares it only

remains to put it and the other rows in the right order in the pattern.

The variables„ PATT 1-5, are set to the sums of the lines involved., in

the order they will be in the TEST array. Each pattern in the TEST array

has five elements which allows room for a pattern involving up to five

lines,, each element of the pattern containing the sum of one line. If a

pattern involves less than five lines the remaining elements are set to -1.

65

IF(M0ST(1) .NE.1)G0 TO]HO

PATT 2=SUT-l(SN)

IF(MOST(2).NE.2)GO TO 411

PATT 1=SUM(ROWNO(1))

PATT 3=SUM(ROWNO(2))

GO TO 8?

411 PATT 1=SUM(ROWNO(2))

PATT 3=SUM(ROWNO(1))

GO TO 87

410 IF(M0ST(1) .NE;2)G0 TO 4-20

PATT 2=SUM(ROWNO (1))

IF(M0ST(2) .NE.1)G0 TO 4-12

PATT 1=SUM(SN)

PATT 5=S-UM (ROWNO (2))

GO TO 87

412 PATT 1 =SUM (ROWNO (2))

PATT >=SUM(SN)

GO TO 87

420 PATT 2=-SUM (ROWNO(2)

IF(MOST(2).NE.1)G0 TO 415

PATT 1=SUM(SN)

PATT 5=SUM(ROWNO(1))

GO TO 87

415 PATT 1=SUM(ROWNO(1))

PATT 5=SUF'1(SN)

The program tests to see which of the three lines is the one which

must go second in the pattern, i.e., which line has the most blank squares

in common with the other two lines.

66

If M0ST(1) is 1 then the winning line (SN) is the line which must go

second. PATT 2, i.e., the second element in the pattern., is set to SN.

The program then tests to see which line has the next most intersecting

squares. This line will be in M0ST(2). It is not really important in

what order the rest of the lines are put in the pattern so long as the

first element of the pattern is set to the sum of one and the third

element to the sum of the other (and not the first and third elements set

to the sum of the same line).

If M0ST(1) is not 1 the program tests to see if it is 2. If so the

same process is gone through with PATT 2 set to sum of R0WN0(2). If not.,

M0ST(1) must be 3 and the process is gone through with PATT 2 as the sum

of R0WN0(2).

87 if(n.gt.2)g0 to 89

88 patt 1=£um(sn)

if(n.eq.1)g0 TO 44

patt 2=sum(rowno(1))

if(n.eq.2)g0 TO 44

patt 3=sum(rowno(2))

89 if(n.eq.3)g0 to 44

patt 4=sum(rowno(3))

if(n.eq.4)go to 44

patt 5=sum(rowno(4))

The programming between statement 88 and instruction before statement

89 are relevant only if the analysed board position involved less than

three lines (in which case n will be less than 3) because this part of

the program sets PATT 1 and PATT 2, which are already set if more than

two lines are involved.

Every time an element of the pattern is set, a test is made to see how

many lines are involved in this particular pattern. As many elements

of the patterns are set as there are lines involved, the rest are left

as -1 .

44 IP(GCNT.GT.1)GO TO 97

GCNT is a count used to skip those sections of the backtrack analysis

not relevant to the setting of SUTEST. To work out the pattern to be

put in SUTEST the relevant backtracking loop has to be gone through once

more, so that one more move is unplayed. When this has been done it is

inapplicable to call subroutine TESTT, and the new pattern must be

listed in SUTEST not TEST. To skip the relevant part of the program

the count GCNT is used. It is set to 0 at the beginning of the backtrack

analysis. Each time the program comes to the beginning of one of the

backtracking loops, one is added to GCNT. This will happen once during

the original backtracking and once when working out the pattern for

SUTEST. At this stage GCNT will be 1 and the following program

instructions are not skipped.

C CALL SUBROUTINE TESTT TO SEE IF THIS PATTERN HAS ALREADY BEEN LISTED

IF NOT ADD IT TO THE TEST ARRAY

45 CALL TESTT (PATT 1, PATT 2, PATT 3, PATT 4, PATT 5* ANS, SAME)

TESTT is a subroutine which checks whether the pattern worked out by

backtrack analysis is already listed in TEST. ANS will be set to -1 if

this is the case. If a pattern is found to be already listed in TEST,

the variable SAME is set to the number of the pattern, i.e., to the

relevant subscript of TEST. This is used to update AJUST.

68

NOCKT=NOCNT+1

NOCNT keeps count of how many times TESTT is called diiring the

backtrack analysis.

IF(M2.EQ.100)G0 TO 251

IF(SAME.GT.0)AJUST(SAME)=AJUST(SAME) +1

The array AJUST is used to adjust the scoring system. It has as many

subscripts as there are patterns in TEST and every pattern has a score.

Originally they all score zero but every time the computer loses to a

pattern already listed., the relevant subscript in AJUST has one point

added to it. During the lookaheads the score of a pattern in AJUST is

added to the marks allotted to that particular pattern (v.P.41)•

251 IF(ANS.EQ.-1)G0 TO 46

PCOUNT=PCOUNT+1

TEST (1,PCOUNT)=PATT 1

TEST (2,PCOUNT)=PATT 2

TEST (3j PCOUNT)=PATT 3

TEST (4,PCOUNT)=PATT 4

TEST (5,PCOUNT)=PATT 5

This adds the new pattern to the TEST array. If the pattern is already

listed this section is skipped. A new pattern is always listed both as an

attacking and as a defending pattern; i.e.,, it is listed as multiples of

5 and multiples of 1. If the new pattern was derived from an opponent win,

the elements of the pattern are multiplied by 5 to make it a computer

pattern, and if it was a computer win the elements are divided by 5*

When the second version of the pattern is generated subroutine TESTT

69

is called again and the pattern added to the TEST array. Therefore once

TEST has been called twice and NOCNT is greater than 1, the new

pattern is adequately represented in TEST.

IF(NOCNT.GT.1)G0 TO 33

IF(MC.EQ.100)G0 TO 254

The next section is relevant only if the new pattern came from an

opponent win and is first listed in terms of an opponent board position,

i.e., as multiples of 1.

IF(PATT 1.GT.0)PATT 1=PATT 1*5

IF(PATT 2.GT.0)PATT 2=PATT 2*5

IF(PATT 3-GT.0)PATT 3=PATT 3*5

IF(PATT 4.GT.0)PATT 4=PATT 4*5

IF(PATT 5-GT.0)PATT 5=PATT 5*5

GO TO 45

This multiplies the elements of the pattern by 5 to list it in terms of

a computer board position, and goes back to call TESTT.

245 IF(N0CNT.GT.1)G0 TO 33

PATT 1=PATT 1/5

IF(PATT 2.GT.0)PATT 2=PA1^,2/5

IF(PATT 3-GT.0)PATT 3=PATT 3/5

IF(PATT 4.GT.0)PATT 4=PATT 4/5

IF(PATT 5-GT.0)PATT 5=PATT 5/5

GO TO 45

70

This does the reverse procedure if the pattern carne from a- computer win.

97 IF(PATT 4.GE.0)G0 TO 96

IF(PATT 2.LT.0)GO TO 96

The next section further analyses the winning board position for

inclusion in SUTEST. SUTEST only lists patterns involving less than 4

and more than 1 lines as these are generally the most useful- Therefore

if PATT 4 is set, i.e., greater than -h the pattern is not listed.

Similarly if PATT 2 is not set.

IF(M2.EQ.100)G0 TO 250

PATT I=PATT 1*5

PATT 2=PATT 2*5

PATT 3-PATT 5*5

250 SUCNT=SUCNT+1

SUTEST (1,SUCNT)=PATT 1

SUTEST (2 3 8UCNT)=PATT 2

SUTEST (5,SUCNT)=PATT 5

SUTEST lists only computer patterns therefore if the new pattern came

from a computer win it is immediately listed, otherwise the elements

are multiplied by 5 and listed.

In fact this part of the program is not reached until the

following section of the program has been completed. The section

following goes back to the appropriate computer or opponent backtracking

loop, unplays one more move, analyses the resulting board position to form

a pattern which is then processed by the above section of program.

71

33 IF(GCNT•NE.1)GO TO 96

The next section is only relevant if the appropriate backtracking

loop has only been used once. Once the computer has gone through the

loop again to analyse the board position for SUTEST., GCNT will be 2 and

when this statement is reached the computer will skip to the end of the

whole backtrack analysis.

N=N+1

J=N

These two variables control the number of times the backtracking loop

is gone through (v.P.53)» To unplay 1 move it need only be done once.

COUNT=COUNT--1

SCOUNT=S COUNT-1

IF(M2.EQ.100)G0 TO 95

GO TO 94

1 is subtracted from SCOUNT and COUNT to point to the move before the

last one unplayed.

The beginning of the computer backtrack loop is at statement 95 and

the opponent one at statement 9^-

b6 WRITE(6,213)

96 GO TO 1

This begins a new game.

72

100 FORMAT

101 FORMAT

102 FORMAT

104 FORMAT

105 FORMAT

106 FORMAT

10? FORMAT

108 FORMAT

109 FORMAT

112 FORMAT

114 FORMAT

215 FORMAT

251 FORMAT

850 FORMAT

END

15)

2413)
'

NEXT ARRAY IS ',1 X,4l3,/,3(1 5X,4l3,/) 15X,4i3,/))

1612)
' ILLEGAL MOVEjTRY AGAIN')
' COMPUTER WINS 0N',4l4)
' RESTART GAME')
' COMPUTER'S MOVE IS SQUARE NUMBER',13)

412)
' LAST. ARRAY IS',1X,4l3,/,3(15X,4l3,/),4(1 5X,4l3,/))

2613)
'

THIS PATTERN IS ALREADY LISTED')
'

YOU WIN ON',4l4)
' M1',13)

SUBROUTINE TESTT is used to check that the pattern found by the analysis

of a winning board position is not already listed. If the pattern is

listed the variable ANS is set to -1 and the variable SAME to the number

of the pattern in the TEST array. If not they are both left as 0.

SUBROUTINE TESTT(A,B,C,D,E,ANS,SAME)

IMPLICIT INTEGER(A-Z)

DIMENSION ROW(304),ROWDY(304),ROWCNT(65)

1 TEST(5,32),SUB(64),LAST(32),NEXT(32),M11(2,16)

COMMON ROW,TEST,Ml,M2,M3,M4,M11,SN,CNT,ROWDY,ROWCNT

SAME=0

ANS=0

IF(A.LT.O)GO TO 16

TEST1=A

73

2 TEST2=B

TEST>=C

TEST4=D

TEST5=E

The dummy variables A,B,C,D,E hold the values of the 5 elements

.of the pattern., e.g., for the pattern 2,1,2; A would be 2, B would be 1,

C would be 2, and D and E would be -1.

DO 22 11=1,J2

IF(TEST(1,11).EQ.-1)G0 TO 16

IF(TEST(1,11).NE.TEST1)G0 TO 22

IF(TEST(2,I1).NE.TEST2)G0 TO 22

IF(TEST3,11)• NE.TEST3)GO TO 22

IF(TEST(4,11) .NE.TEST4)G0 TO 22

IF(TEST(5,H).NE.TE3T5)G0 TO 22

ANS=-1

8AME=11

22 CONTINUE

16 RETURN

END

If the program finds the first element in one of the patterns

listed in TEST to be equal to the first element of this new pattern,

it looks to see if the second element of the same pattern in TEST is equal

to the second element of the new pattern. If so it checks the third,

fourth and fifth elements and if they all tally, then ANS is set to -1,

and SAME is set to the number reached in the first loop, which corresponds

to the number of the pattern as it is listed in the TEST array.

74

If at any stage of the search an element in the new pattern

differs from the corresponding element in the TEST array., then the next

pattern in the TEST array is tried.

If the first element of a TEST pattern equals -1 this means that

all the patterns listed in TEST have been tried and the new pattern is

not amongst them and control is returned to the main program with

ANS set to 0.

SUBROUTINE SEARCH

This subroutine does the bulk of the work in the selection of a

move. Basically, given a board position it looks to see If it

contains any of the patterns listed in TEST. The patterns are all

listed as combinations of sums of the lines, therefore the SUBROUTINE

must keep an up to date account of these sums. SEARCH is only called

after a new move has been made either in reality or in a look-ahead.

Therefore the first thing it does is to update the relevant line

suras to take account of the new move.

It then takes each pattern in turn and checks if any pattern can

be formed by any combination of the sums of the existing lines. It is

not enough that the appropriate lines should exist, e.g., that three

lines should exist which add up to the three elements of a pattern.

These three lines must have a certain relationship to each other. The

relationship is always the same. The first line (which corresponds to

the first element of the pattern) must have a blank square in common

with a line adding up to the second element in the pattern and (if a

third line is involved) the second line must have a blank square in

common with the third line etc.

75

SUBROUTINE SEARCII (MOVE,SUM,Y)

IMPLICIT INTEGER(A-Z)

LOGICAL M4

DIMENSION M0VE(64) ,SUM(76) ,R0W(304) , ROWDY(304),

1 ROWCNT(65),TEST(5,32),SUTEST(3* 20),SUB(64),LAST(32),NEXT(32),

2 Ml 1(2,16)

COMMON ROW, TEST,M1,M2,M3,M4,M11, S N , C NT,ROWDY,ROWCNT,

1 XYZ

M3=0

M2=0

M3 and M2 are set if a pattern is found, and must always be set back to

zero for a new board position, as there may be no pattern in the new

board position. The same applies to M11CNT and Ml 1•

68 Ml 1CNT=0

DO 43 1=1,2

DO 43 11=1,16

43 M11(1,11)=0

IF(Y.EQ.0)G0 TO 74

Y will only ever be zero if the opponent lets the computer move first

by setting his move to 0. Tn this case there is no updating of the

sums of the lines and the following section is skipped.

J=R0WCNT(Y)

JJ=R0WCNT(Y+1)~1

DO 80 I=J,J<J

R=ROWDY(I)

80 SUM(R) =SUM(R)• (-MOVE (Y)

76

The dummy variable Y is always set to the number of the new move in

the MOVE array. The updating of the lines is done in exactly the same

way as in the main program. For the sake of clarity the first four

patterns in TEST are tested for separately. The first 4 patterns are

4-in-a-row, for both sides,, and 3~in-a-row for both sides, i.e.,

20,4,15*3* These situations are treated in a different way from other

patterns. Looking for these four patterns in any case is very quickly

done as each pattern involves only one line. If any of these patterns

exist (unless it is during a look ahead) there is no point in looking

for any other pattern as the game is either finished or about to be

finished, unless the computer can stop the opponent making a 4, in which

case it must do this immediately.

74 DO 20 1=1,4

DO 20 11=1,76

IF(SUM(I1).NE.TEST(1,I))G0 TO 20

SN=I1

IF(I.GT.2)G0 TO 15

M>1 00

IF(SUM(I1) .EQ,. 20 >12=1 00

RETURN

15 M>98

TF(SUM(I1).EQ.15)M2=98'

GO TO 19

20 CONTINUE

Each pattern in turn is compared to all the sums of the lines.

The first two patterns are 20 and 4. If one of these exists M3 is set

to 100. SN takes note of the number of the line with the pattern in it.

77

A separate test is made to see if in fact it is a computer win, in which

case the line will add up to 20.

If so M2 Is set to 100. Control is returned to the main program.

If the third or fourth pattern exists M3 is set to 98, and M2 is set to

98 if it is a computer pattern, and the rest of the loop is skipped.

19 IF(M5-ME.98)G0 TO 32

G=4*SN

H=G-3

DO 30 I=H,G

R—ROW(I)

IF(MOVE(R))31 ,31 .30

30 CONTINUE

31 M1=R

The familiar process is used to find out which squares are in this line

and which one is blank. When the blank square is found Ml takes a note

of it.

IF(M4)RETURN

Ml 1CNT=1

M11(2,M11CNT)=98

Ml 1(1 ,M11CNT)=M1

M4 is a logical variable which is TRUE if all that is wanted is

to know if a pattern exists at all. It Is FALSE if a list of all the

patterns existing is required. In most cases this will be the

distinction between a real board position and a look ahead. If m4 is TRUE,

control is returned to the main program. Otherwise M11CNT is set to 1

78

(this will always be the first pattern) and Ml 1 takes note of the

pattern number (98) and the key square (Ml). The program then tests

for any other patterns.

32 IF(XYZ.EQ.1)RETURN
DO 21 1=5.32

M3=I

TEST1=TEST(1.1)

IF(TEST1)29,2.2

2 TEST2=TEST(2,l)

71 TEST3=TEST(3.I)

TEST4=TEST(4,l) j
TEST5=TEST(5.l)

As the first four patterns have been dealt with, the loop starts

at 5* If TEST1 is ever less than 0 it means that all the listed

patterns have been tried and the computer skips to the end of the

subroutine. The program now looks for a line whose SUM=TEST1.

DO 22 11=1,76

IF(SUM(I1)-TEST1)22,4,22

Having found it, it looks for a blank square on that line.

4 0=4*11

H=G-3

DO 23 I2=H,G

M1=R0W(I2)

TF(M0VE(M1))23,10,23

79

C M1 TAKES NOTE OF THE BLANK SQUARE-

C PROGRAM LOOKS FOR A LINE WHOSE SUM EQUALS TEST2

10 DO 24 13=1,76

IF(SUM(13)-TEST3)24,6,2k

Having found it, the program looks to see if the blank square in the

first line is also in this line and checks that this line is not the

same line as the first line.

6 IF(13-11)7,24,7

7 G1 =14*13

H1=G1-3

DO 25 l4=H1,G1

IF(Ml R0W(l4))25,8,25

If this condition is satisfied the program tests whether the pattern

involves an:/ more lines. If not TEST3 will be -1 .

8 IF(TEST3) 18,9,9

18 IF(M4)RETURN

M11GNT=M11CNT+1

Ml 1 (1 ,M11 CNT)=M1

M1 1(2,M11CNT)=M3

GO TO 21

If all the conditions of the pattern are satisfied either control is

returned to the main program (if M4 is TRUE), or the pattern is listed

in M11 and the program goes on to test whether the next pattern listed

in TEST also exists in the given board position. However if another line

is involved there are more conditions to fulfill.

80

PROGRAM FINDS ANY BLANK SQUARE,M2,ON THE LINE WITH SUM=TEST2

9 DO 26 I5=H1,G1

M2=R0W(15)

IF(M0VE(M2))26,11,26

FIND A ROW WHOSE SUM EQUALS TEST3

11 DO 27 16=1,76

IF(SUM(l6)-TEST3)27,12,27

CHECK THAT IT IS A NEW LINE

12 IF(l6-I1)13,27,13

13 IF(I6-I3)14,27,14

FIND THE BLANK SQUARE M2 ON THE ROW WITH SUM=TEST3

14 G2=4*I6

H2=G2-3

DO 28 I7=H2,G2

IF(M2-ROW(17))28,42,28

ARE ANY MORE LINES INVOLVED

42 IF(TEST4)45,47,47

IF SO RETURN OR LIST PATTERN

45 IF(M4)RETURN

M1 1 CNT=M11 CNT-M

M11(1,M11CNT)=M1

M11(2,M11CNT)=M3

GO TO 21

IF NOT LOOK FOR A LINE WITH SUM=rEST4

47 DO 50 K3=1 ,76

IF(SUM (K3)-TEST4)50,51 .50

CHECK IT IS A DIFFERENT LINE

51 IF(K3.EQ.l6)G0 to 50

if(k3-eq.i3)go to 50

IF(K3-EQ.I1)G0 TO 50

81

c find a blank square on this row which is also in the line

c with sum=te3t2

g3=4*k3.

h3=g3-3

do 60 i8=h3,g3

r4=row(i8)

if(move(r4))6oj69,6o

69 do 61 i9=h1 .,01

r5=r0w(19)

if(r4-r5)6i ,70,61

70 if(test5)49,65,65

c if another line is involved,find it otherwise return or list pattern

49 if(m4)return

m11 cnt=m11 cnt'+1

m11(1,m11cnt)=m1

m1 1 (2,ml 1 cnt)==m3

go to 21

65 do 52 k4=1 ,76

if(sum(k4)-test5)52,53,52

53 if(k4.eq.k3)g0 to 52

if(k4.eq.i6)go to 52

if(k4.eq.i3)g0 to 52

if(k4.eq.i1)go to 52

if(m4)return

m11 cnt=m1 1 cnt'+1

ml 1(1,m11cnt)=m1

m11(2,m11cnt)=m3

go to 21

82

52 CONTINUE

61 CONTINUE

60 CONTINUE

50 CONTINUE

28 CONTINUE

27 CONTINUE

2b CONTINUE

25 CONTINUE

24 CONTINUE

23 CONTINUE

22 CONTINUE

21 CONTINUE

C IP THIS POINT IS REACHED NO PATTERN EXISTS

29 M1=0

M2=0

M3=0

These three variables (M1, M2 and M3) are all set at some stage in

the subroutine,, but if they are set on return to main program it is

taken to mean that a pattern exists, therefore they must be set back

to 0 here, to indicate that no pattern exists.

16 RETURN

END

83

SUBROUTINE SUGOAL

The subroutine SUGOAL performs more or less the same function for

SUTEST as subroutine SEARCH does for TEST; i.e., given a board position

it looks to see if there exists in it any of the patterns listed in

SUGOAL. (v.P.46)

SUBROUTINE SUGOAL (MOVE,SUM,SUTEST,Y)

IMPLICIT INTEGER(A-Z)

DIMENSION MOVE (64),SUM(76),ROW(304),ROWDY(304),ROWCNT(65),TEST(5,32),
1 SUTEST(3,20),M11(2,16)

COMMON ROW,TEST,Ml,M2,M3,M4,M11,SN,COT,ROWDY,ROWCNT.

M1=0

j=rowcnt(y)

JJ=ROWCNT(Y+1)-1

DO 1 I=J,JJ

R=ROWDY(I)

1 sum(r)=sum(r)+move(y)

Using exactly the same method as in subroutine SEARCH, the sums

of the lines affected by the new move are updated by the addition

of the new move Y.

523 DO 501 1=1,20

M3=I

G0AL1=SUTEST(1,l)

IF(GOAL1)3,502,502

502 G0AL2=SUTEST(2,I)

G0AL3=SUTEST(3,l)

84

G0AL1, 2 and 3 are set in turn to the three elements of the patterns

in SUTEST. If G0AL1 is ever -1 it means that all the listed patterns

have been tried.

DO 503 11=1 /76

IF(SUM(I1)-G0AL1)503,504,503

Using exactly the same method as in subroutine SEARCH, the program

looks for a line whose sum equals G0AL1.

504 G=4*I1

H=G-3

DO 505 I2=H,G

M1=R0W(I2)

IF(M0VE(M1))505,506,505

C LOOKS FOR A BLANK SQUARE (M1) IN THAT LINE

506 DO 50'7 13=1 ,76

IF(SUM(13)-G0AL2)507,508,507

508 IF(I3-H)509,507,509

C LOOKS FOR A LINE WHOSE SUM EQUALS G0AL2 AND CHECKS THAT THIS

C LINE IS A DIFFERENT OKIE FROM THE FIRST ONE.

509 G1=4*13

H1 =G1-3

DO 510 l4=H1,G1

IF(M1-ROW(14))51 0.51 U 51 0

85

c finds the blank square ml in this row

511 if(g0al3)512,513,513

512 return

c if goal? is -1 then no more lines are involved in the pattern and

c control returns to main program.

513 do 514 i5=h1,g1

m2=r0w(i5)

if(move(m2))514j515j514

c otherwise look for the blank square (m2) on the line with sum equal

c to g0al2

515 do 516 l6=1 ,76

if(sum(i6)-goal3)5i6,517,5i6

517 if(i6-h)518,516,518

518 if(16-13)519,516,519

c find line with sum equal to goal3 and check it is a different line

c from either of the two already found

519 g2=4*l6

h2=g2-3

do 520 i7=h2,g2

if(m2-r0w(l7))520,521 ,520

521 return

c look for m2 on the line with sum equal to goal3 and return

520 continue

516 continue

86

514 CONTINUE

510 CONTINUE

507 CONTINUE

505 CONTINUE

503 CONTINUE

501 CONTINUE

If this point is reached no pattern exists and to indicate this

M1 and M3 are set to zero before returning to the main program.

3 M1=0

M3=0

RETURN

END

FLOWCHARTS

NOTATION.

Label © means 'go to box labelled 3 on the same flowchart*.

Label^^-^means 'go to box labelled 33 on flowchart F5'.

FU

PA.

0, LdbWi<=>urns.e_

Set MM-

= F"AU=£

CcxU Su-troutine

Se<x.rc-Vs

•Set XI '

t!o

>>o

Odd S to Score

of Scjuars >?.
to SoJt> I

Yt«

Ploi\ (X COfApO-teV TvloOS
\fs ScxcK fjcmt UN

fc_ui-n <4- iWa. a^-fecl".

H •+ &et to PausS. to

rnXvco-ts to &eo.vJK tV\o.t
I'-V.'s IS O- \c/oW CcWjOci.

! &
tWaJr t^.V'or^ i\A r>ot»

fsAo vayJc-nA oil oxv-^V'/t^A,
hssoWrAS. ^(u>? be^<A U s>VetA.

£*AlrV\'t(\4. tir of pcxl-tefAS b
vies. Hovo SC\v\y -SEARCH
HsXg .|5UA<i •

for -ftrici\(ACj Oc p aftero of
S \o> o. rocO

13 ~t ket-<i a.Aotke C poXtera

- M

Oj<)
u (3,xi)

Iff
Is Hv? Ml s^ukcu-«. -tV\«.
poSXetw. VIA^ so.w\^ CkS

Ml Usi~

pc\.tterr\ . so it ckots
nc<V s<jm<t.

\? V'ACi*-^- TInxva. \

IS -poV>,A<Jl I si- "Vvwi^
sexxvcix \s c„oAl<jxi , <X-A.

Oc-px-AC/wt vAoot. vs p\oM«ui
VVN. -VVj?. WC^ S<^lXOJ-^
{ vi*.<t Ml 4- SQ&*t.\s
IS C_X\AW<\ llo t^--e6C0uVSAV>A^

tUn. s vtw>Jr\ •SYs .

V\ L,r S«8L1' to IftoG

r>r\Vv^ neces^CVT ^ VQ
?• CVv\i\ J=XX,UQ.TW. siotvsll,

it \"b

fe.rv.ovO

p k.

1^0

Ml = I

On^ie^ wvoo« 4-
S<jV>tro.t,V A -prtTA "SivMA

■2i+

\$ f^l:0; S^XTxd^ found
no ^podWvn . 1-P ,

it" 4"o^n<A 3 \n cn touu

cor^pd'jr . ~X~i~ *v"\'5) z iV
-fou.v\d 3 WN 0v tf1?
OpposewvV , vw v/sWcXn "\W^?
&C^KXf\X. \ > O^wiCw Ac :ScoVi

odr cdV .

£|tO^ lV\t& Sr^XCXTC a
2<^TO 3cor^ «..«?.

SeV S>OQ> \ (jf) r o

r5

b.ett Stc.ie

horr-fecr of h>«s>\j

*sVovec\ vvn (^.

C, Vs!hol£ Brcktrfick Auhims\2>

ndd i +o

PiorsOST (SRHAts)

cxdcl 1

"to PcouMT

Uclcl <k new pattern to
"Ve-ST cmtojij t ig. Set
TeST Q , ntooNT^)

- Rrrrt aVc.

Pprrr 1 - PlTTT S
/ Vr.$.

dioided toe. S

PptTT 4 - PpfTT S

lv\olhplied S

I). Listing cr Vle.iAl BrrrEttNiS
lM Test

I-f Co CUT IS grecoWr tWw ^ ,

+We. pvoojTOvA V-,o.i Ho-en. "tViiic,?.
1\\tou.<^Ia t'rvs t<xcWttoC.Vvloop oo\d
4\<? pcilVcrA is ve-iA^ to
UPtsucl vy\ "SiOTresTT

MOCNST is exs^d aa a S>vAi.VtVx

to eissuK Ok rievxi \=oCt\a^v\ li.
I ISted ©\ac^ i v\ Co *v\ poker o-.vvi
Since m ©ppoAeiA.tr terrAS.

Aus wiU \se. —'] if- 1Ki
'[©atterA is oAvwA^ listeel. Jt is
Set w\ SoJoAAxtivCe i£st i .

if Hv* Gppory^rJr u3or\ h\<2 .

vWtj. neto pc\AWn\ |*> Co~rv<J Cft^.«rA To
(X Cxrvv\puA~e« pcviWrA cxmcA vhc/?. - ue*£cv

SofU (4 rvAS p>oAXetYv 0-v<

\sfi.l^.ci vvn ~T^-rr.

pFfTT I - Pf-TTT 5

•)Y\o\V>, p\l£ci S"

Rdd I to

SutMT

"£><£>

(_I, ?io«>!rr—

R=rrr ! ciVt.

S«-x.\stro.c,\: \

"Sc&UrJT/

ti, Lismhi& or Mehk] IPrtterm
im Sut&st

Svrrt-::,T \isVs pc*,\\?TftS
Inootamo, \eas. Hvclvx 3> Kftev

Cor-lOert y.;\Wv\ n fe
ccstv\povk«-(NLTTVIS.

oJixresrr orA^ >id"s
patterns s»R c»rv\p>t\.Ver
■ferrAg ,

tl xa cuAcWct "to
Surre^T

dis>p\cv^ iv\ess<xc^5

poAV<4T<V oAwoA^
\i-s.texd

1~

v/^nh? oukfesr
a. Tro^

P. Orx^<s>tsitE>vrT B^cxrvCPCJC LOO'?3

C<r> w\pu«.W\ rwoO^. <Xv^C<l\
V x<? vC. © pfXbr\«wV ^>\ UO\«e.cV

\asV" mooe . Co»v\pOkVet-s I o^r
fV\oV^ wv> CXV^CcV .

(\v\. o-p^crrN^vJr WV0\3^ vs V\n^,v\
» CVJ^g cV. w\ <2XxcVv reVVYXVWw\c^

VsAo^wV* sc^ucxv^ *tr< sec i£
o^pfi© rv<l*Nv" Cjctvv) c) sV~ v^A vOvv\
VVN. \ w\<voC .

& So , VWN P^OkA^ »"W X V" |p<jkM <5 J
VYY©CXLi> <Lfirw\pvjk_W* CV/vac\ \
Cr^>p> e»v>«v\V* ^ CV.VNCV Y^^o.cvt
p» .

»«-sV" Vv/W Vf^VwcVx (Vc\<\r. Vcp»
\\j H- Vv» o.

F l&

AAL t tMil . i\ol" be VK»c vV
Secvvci-, \ \<xr» b?ev\ ccdAed
<J w.vw\^ a. 1 oob oJucwd . a
(W,U^ pcvV'erw Pou/wci VfJ dA b«

t r\ \ \ 4- p>rco^Tvw\
Cov^vvw-cs. tva)l&OW \V< VAotT^.

pcd^e\ vxS.

C!£

?IL

Find a Hank statue

M2 <M\ lm« ujiik

Su.w\ - "Test 2

Uvh <+•5.

I til" p«Men\ Mil

8?

VII COMMENTS ON PLAY AND SUGGESTED IMPROVEMENTS

The standard of play could be considerably improved if the backtrack

analysis were altered so that the criterion of when to stop the backing

was to call SEARCH until it no longer recognised a pattern., instead of

looking to see if either side could make up four in a row in one move.

This (the former) is the criterion used by Elcock and Murray, and

although it has certain disadvantages it is potentially a much stronger

method for a learning program than the one we use. If it were implemented

the backtracking would be carried out in the normal way, unpiaying one

move at a time, only each time it unplayed a pair of moves it would call

SEARCH. If SEARCH recognised a pattern in this board position another

pair of moves would be unplayed until a board position was reached where

SEARCH recognised, no pattern. A generalised description of this board

88

position would then be listed in TEST on the assumption that this

position was a necessary and sufficient" step in the formation of the

board position immediately succeeding it, which the program did

recognise. The description of the new pattern would be formed by

taking note (in ROWNO) of the lines involved in the patterns seen by

SEARCH at each stage of the backtracking, e.g.,

(i)

(iii)

X 0 /
X X x/ 0

0

vXl
. .

}c 0 1 X

} X 1 0

-4-
1)c

3 5
S

? " i 'i ? s

i i__? ■ «

l-H-
« /

1 1/rl
M i i

the indicated

line will go

into SN

(ii)

(iv)

I x 0 I I X|
J—i—|—|-
j-X-j-X-HX-j-

o i o r i
X

the rest of

the lines with

arrows will be

stored in ROWNO

X- this pattern

involves 3 lines,

one of which is

already listed

Figure 33

this is the board position which will be

analysed with the lines adding up to

2, 0, 2, 2, 0, which is the exact order

they would be listed in TEST

The drawback to this is that it does not capture the essential

feature of the situation, which is that even if the opponent stops one

pattern by playing where he does, another pattern can still be made up.

As it stands, SEARCH would not even recognise this pattern because it

would look for a 4th line of 2 with a blank square in common with the

2nd line and in fact this is not the case.

The ordering part of the program could be altered to adapt to this

by dealing with all five lines, not just the first three. It would find

that the other line adding up to 0 in fact has a blank square in common

89

with three of the other lines involved, as does the first line adding

up to zero. If the two lines adding up to zero, i.e., the two with most

intersecting squares, were put in the 2nd and 3ud positions and a

stipulation were made that the 5th line must have a blank square in

common with the 3rd, this would go some way towards fitting the bill,

and would not throw out any of the other patterns. The pattern would

then go into TEST as 2,0,0,2,2. The procedure would then be to find a

row of 2 with a blank square in common with a row of 0 which has a blank

square in common with another row of zero; find a row of 2 which has a

blank square in common with the 2nd row, and another row of 2 which has

a blank square in common with the 3rd row.

Figure 3^

—

(, i N

5 6 7 8 9 "10

One could even specify that the last row had to have a blank square

in common with the 2nd row of 2. However, although this would describe

the situation it would not be specific enough to avoid confusion; -e.g.,

the sequence of lines 6,2,8,1,5 would fit the description as well as the

sequence 6,2,7,5,1 which it was meant to describe. Nor, as the program

stands, would SEARCH indicate the right square to play in. With this

pattern the first 'key' square in fact is the square on which lines 2 and

7 Intersect. However as the pattern is listed above (2,0,0,2,2), SEARCH

would indicate that the 'key' square was where the first two lines

intersect, i.e., where lines 6 and 2 intersect. In fact continuing with

this line of approach seemed more trouble than it was worth, and seemed to

require major adjustments to the program before it could be made to work.

1iZC X

2d„! l
H L
4-1 X

- _

90

In any case the method of generating patterns which is actually

used.ensures that when a pattern is found it always means that when M1

is played, a forcing game will begin, i.e., whoever has made the

pattern will start making up threes, forcing his opponent to defend until

he makes up a winning line of 4. Unless in defending, the opponent

accidentally makes up a three for himself, he is bound to lose once the

'key' square in a pattern has been played in by the attacker. This

would not be the case if the alternative method of generating patterns

discussed above wore implemented.

The selectivity of the look ahead procedure means that some of

the predictions made during the look ahead are not always true. It

assumes that the opponent will play in a certain square which is not

necessarily the case, and since the evaluations made by the computer

are based on this assumption, if the opponent plays elsewhere, it

throws out the computer's calculations.

For example:-

'key' sqs- >

will assume that it can still make up a forcing pattern by playing

in the other. In fact if the look ahead procedure were less selective

it would find that if the opponent played in sq. (i) he could stop both

patterns at once. As it is the computer thinks it is bound to win.

LljT 1 If the computer has this

pattern it will assume that
the opponent will play in one

of the 'key' squares, and

whichever he plays in
Figure 35 5j

91

VT11 Appendix

A few games played by the computer. The squares are numbered

as in Figure 9- The patterns referred to as 1, 2, 3 are

page 17 v. figures 10, 11, 12.

Game I The computer is playing both sides in this game.

Red starts :-

RED WHITE

1 . 39 1

2. 13 26

3- 4 42

4. 23 7

5- 16 2.7

6. 43 15

7- 48 8

8, 47 35

9- 64 32

10. 30 (wins)

1. ^9 (red), 1 (white)

The 1st moves on both sides are 'randomly1 chosen from amongst

the 16 strong squares.

2. 13 (red),. 26 (white)

At this stage no pattern can be formed by Red in 1 or even 2 moves,

so the Counter Scoring Method (v.P.30) of selection is used to choose

Red's next move. Square 13 is a strong square in the same line as Red's

1st move in square 39-

White cannot form a pattern either, but decides to play defensively.

It chooses a square which is in the same line as Red's 2 counters and at

the same time is a strong square. This ensures that he makes no

92

sacrifice by defending - the situation is not dangerous enough to demand

this - square 26 is more or less as good a square as any for White to

play in.

3. 4 (red), 42 (white)

Red has still not played enough moves to make up one of the patterns

listed in TEST, in 1 move. However he can make up 1 of the patterns listed

in SUTE3T, which he does by playing in square 4 - this pattern can be

converted into Pattern 1 (2 converging twos) in one move, using either

square 23 or square 55- White realises this board position is potentially

more dangerous than just the forming of Pattern 1. Red can make up

Pattern 1 by playing in either 23 or 55* or Pattern 2 by playing in

square 45- These patterns can be stopped in one move. However if Red

plays in square 42, two separate realisations of Pattern 2 are formed,

with separate 'key' squares - 7 and 4-5 respectively. This means that

White could only stop one of these patterns. The same situation would be

created if Red played in square 61. White stops this happening by playing

in. square 42. Although this is a defensive move, White loses nothing by

it as it is a strong square. It is only when he is forced to defend in

weak squares while Red monopolises the strong squares that White starts

to lose strength. This in fact is what happens after Red's next attack.

4. 23 (red), 7 (white)

Red can now make up a '3-in-a-row by playing in squares 7 or 10, or

form Pattern 1 by playing in squares 23 or 55* Since 23 is also a strong

square this is what he does.

This pattern is easily stopped by White playing in square 7 but Red

has gained a slight advantage in that he is now in occupation of 4 strong

squares to White's 3-

93

5. 16 (red)., 27 (white)

Red is now unable to form any TEST pattern in 1 move, so he uses

the SUGOAL list to choose his next move in square 16. By playing in

square 27 next move he will be able to make up Pattern,1.

However he is forestalled by White. White realises that again

this is a potentially dangerous position. If Red plays in square 2T(

next move he will not only form Pattern 1 on square 15* but will

simultaneously form Pattern 2 on square 8 (then square 38). White will

not be able to stop both.

Apart from this, Red can form two patterns by playing in square 19

or square 38 or square 49 and can form various other single patterns.

White plays in square 27, a. strong square, and by so doing both stops a

dangerous position and puts himself in a very strong position.

6. 45 (red), 15 (white)

Red is forced to worry about defense for the first time.

White can form a double pattern (i.e., 2 patterns simultaneously which

have different 'key' squares) by playing in square 9; i.e., by playing

in square 9 forms Pattern 2 on square 25 (then square 57) and another

realisation of the same pattern on square 10 (then square 12). White

can also form a double pattern by playing in square 4-3 - pattern 3 on

both square 25 and square 10. Play in square 60 will also give White a

double pattern - Pattern 2 on square 28 and on square 58. Also various

single patterns. Red must defend and does so by playing in square 43*

which in fact is a strong square anyway.

As it happens this makes up a pattern for Red - this is something

that Red realises, but the reason for playing there was purely defensive -

at one stage the program did take this sort of thing into account when

choosing a square - i.e., a square's value both as an attacking and a

defensive move, but this played a very weak game. (See chapter on Scoring).

94

The pattern formed is an instance of Pattern 3 on square 15* White is

forced to play there.

7. 48 (red), 8 (white)

Despite this White is still in quite a strong position. Playing

in square 9 would still form a double pattern - Pattern 2 on squares 25

and 11. Playing in square 10 would make up 3-in-a-row and form

Pattern 2 on square 11. Playing in square 12 makes up 3-in-a-row and

forms Pattern 2 on square 11 . Playing in square 60 makes up a double

pattern - Pattern 2 on square 28 and on square 58. 'There are also various

single patterns.

Red would be forced to defend if he could not form a double

pattern of his own. However if he plays on square 48 he forms one

instance of Pattern 2 on square 8 (then square 38) and another instance

of Pattern 2 on square 47- White will only be able to stop one of these

patterns. So Red plays on 48.

White defends by playing in square 8 to stop one of the patterns.

8. 47 (red)^ 35 (white)

Red plays in square 47* making up a forcing pattern.

9. 64 (red)., 38 (white)

Red plays in square 64 making up 2 separate rows of three.

White stops one of them by playing in square 32.

10. 30 (red)

Red completes the other (makes it up to a row of 4) by playing

in square 30, and so wins.

95

Game 2 Computer playing both sides.

White starts

WHITE RED

1 . 25 15

2. 4 42

5. 1 22

4. 45 5

5. 16 27

6. 58 8

7. 49 55

8. 26 52

5.26

10. 50 14

11. 54 18

12. 19 (wins)

1 . 25 (white)j 15 (red)

The 1st move on both sides is picked 'randomly'.

2/ 4 (white)j 42 (red)

White's 2nd move is selected by the Counter Scoring Method, as

there are no patterns.

Red's 2nd move is vaguely defensive as was White's 2nd move in

the last game. However square 42 is also a strong square.

5- 1 (white), 22 (red)

White's third move is selected by the SUGOAL subroutine which

applies the list of patterns in SUTEST to the current board position to

see if any of the patterns on the list can be made up in one move,

preferably on a 'strong square'. The pattern is one that can be

converted into Pattern 1 in one move, by playing in square 45 or

square 65.

96

Red realises this and also that Pattern 2 can be formed by

playing in square 24. However Red also realises that by playing in

square 22, White can form simultaneously two realisations of Pattern 2

with different 'key' squares, viz. square 3 and square 24. If this

happens Red will only be able to stop one of the patterns - or at least

that is the conclusion the computer comes to. So Red plays in square 22.4. 43 (white), 3 (red)

White then goes on to form the pattern started in the last move

by playing in square 43-

This forces Red to stop this pattern by playing in square 3-5. 16 _(white), 27 (red)
White can make up no patterns in one move so it uses SUGOAL bo

choose its next move which is square 16. Ey playing there he starts

building up Pattern 1 (with square 38 in mind as its next move).

Red realises that White can now make up several different patterns.

The most dangerous squares are 27, 33* 38 and 49- If White plays in

square 27 he simultaneously forms 2 patterns, Pattern 1 converging on

square 11, and pattern 2 with 'key' square as 8, followed by 38.

Play in square 33 forms Pattern 2 on square 8 (then 38) and

Pattern 2 on square 49 (then 38).

Play in square 38 forms Pattern 1 on square 8 and Pattern 2 on

square 11 (then square 27). '

Play in square 49 forms Pattern 2 on square 8 (then 38) and

Pattern 2 on square 33 (then 38).

In fact Red plays in square 27 as this is the first of the

dangerous squares - they are all judged to be equally dangerous.

976. 78 (white)., 8 (red)

White can now make up :-

Pattern 2 by playing in sq. 5

Pattern 2 by playing in sq. 7

Pattern 2 by playing in sq. 9 (this proposed move is

immediately rejected as it would force Red to play in

sq. 12 which would make up 3-in-a-row for Red.)

The same thing would happen if White played in sq. 10.

Pattern 2 by playing in sq. 33

" 1

3

" 2

" 1

3

In no case are two patterns simultaneously formed.* so White chooses

square 38 which forms a pattern and is a 'strong' square.

This forces Red to play in square 8. (it is worth noticing that

although all the patterns formed by White have been easily stopped* it

usually happens that White choses 'strong' squares to build up its

patterns and forces Red to play in weak squares* so White is steadily

taking possession of all the strong squares on the board, and building

up a very strong general position for himself.)

It can be seen from play so far that there are always a

considerable list of patterns which could be formed in the next move.

In the remainder of the description of this game* only the important

possible patterns are mentioned.

7. 49 (white)* 33 (red)

White now plays in square 49 which makes up Pattern 1 on square 33-

Red plays in square 33-

38

39

48

53

55

988. 26 (white), 92 (red)

White can now make up Pattern 3 by playing in square 52, but

before this pattern could be made up to 4 in a row the opponent could

make up 3 in a row and force White to defend; it is therefore

abandoned. SUGOAL is used to select the next move which is square 26.

This starts building up Pattern 1 on square 20.

Red realises that White is now in a very dangerous position and

can form 2 patterns simultaneously by playing on square 2 or 18., 20,

28, 35. 40, 50, 52. He defends by playing in square 52 which scores

more than the other squares as it is also a 'strong* square.

9. 2 (white), 6 (red)

White now sees the pattern which eventually leads him to a win

four moves later. By playing in square 2 it will simultaneously form

2 patterns:- Pattern 2 on square 6 and Pattern 2 on square 50. Red

will only be able to stop 1 of these patterns. So White plays on

square 2. Red, recognising one realisation of Pattern 2 stops it by

playing in sq. 6.

10. 50 (white), 14 (red)

White then plays in square 50 - the key square in the 2nd

realisation of Pattern 2 - and so makes up 3 in a row forcing Red on to

square 14.

11 . 34 (white), 18 (red)

Playing in square 34 White then makes up 2 separate lines of 3

and Red can only stop 1, which he does by playing in square 18.

12. 19 (White)

White completes a line of 4 by playing in square 19-

99

Comment

Having the computer playing both.sides has a certain weakness

in that the computer will always play in the 'key' square of a pattern

whereas sometimes it could stop 2 patterns by playing elsewhere. This

is not discovered by the computer because of the selective nature of

the look ahead procedure. If it checked every square it would find out

if there was one which would stop 2 patterns at once.

C-ame 3 This game was played against a human opponent. White (the

human) started., and the whole game was as follows

WHITE RED

22 49

2? 1

39 38

23 26

42 13

c; 56

29 21

32 17

33 31

6 7

16 12

6i . 4

10 2

3 50

14 34

18 19

8

100

White's last move, 8, is played because the subroutine which detects

a win, or any other pattern, is only called after an opponent's move. This

saves a great deal of time although it does create the anomalous situation

that the opponent has to play a move after a line of 4 has been made up by

the computer.

Game 4 Computer playing both sides again.

WHITE RED

42 43

4 23

1 22

13 16

6 2

5 9

7 8

10 (wins)

RED WHITE

4 1

13 16

23 26

39 7

52 36

29 61

22 30

38 21

41 56

64 43

19 97

54 6

11 5

8 59 (wins)

Game 5

101

IX REFERENCES

BEL 68 Bell A.G. (1968) "Kalah on Atlas". Machine Intelligence III,

(ed. Michie D.)

BER 58a Bernstein A. et al. (1958) "A Chess Playing Program for

the IBM 704 Computer". Proceedings of the Western Joint

Computer Conference.

BER 58b Bernstein A. and Roberts (1958) "Computer versus Chess

Player". Scientific American, June.

DOR 66 Doran J.E. and Michie D. (1966) "Experiments with the Graph

Traverser Program". Proc. R. Soc. (A), 294, 255 - 259-

DOR 67 Doran J.E. (1967) "Graph Traverser". Machine Intelligence I,

(ed. Collins N.L. and Michie D.)

ELC 68 Elcock E.W. (1968) "Descriptions". Machine Intelligence III,

(ed. Michie D.)

GOO 68 Good I.J. (1968) "A Five Year Plan for Automatic Chess".

Machine Intelligence II, (ed. Dale E. and Michie D.)

LOU 67 Louden R.K. (1967) Programming the IBM 1150 and 1800.

MAY 61 Maynard Smith J. and Michie D. (1961) "Machines that Play

Games", New Scientist, Vol. 12, 567 - 569•

MIC 66 Michie D. (1966) "Game Playing and Game Learning Automata".

Advances in Programming and Non-Numerical Computation, Chap. 8,

(ed. Fox L.)

MIC 67 Michie D. (1967) "Strategy-Building with the Graph Traverser".

Machine Tntelligence I (ed. Collins N.L. and. Michie D.)

102

MIC 70 Michie D. (1970) "The Intelligent Machine". Science Journal,

Sept.

MUR 67 Murray A.M. and Elcock E.W. (1967) "Experiments with a

Learning Component in a Co-Moku Playing Program". Machine

Intelligence I, (ed. Collins N.L. and Michie D.)

MUR 68 Murray A.M and Elcock E.W. (1968) "Automatic Description

and Recognition of Board Patterns in Go-Moku". Machine

Intelligence II, (ed. Dale E. and Michie D.)

NEW 58 Newa.ll A., Shaw J,C. and Simon H.A. (1958) "Chess Playing

Programs and the Problem of Complexity". Computers and

Thought, (ed. Feigenbaum E.A. and Feldman J.)

SAM 59 Samuel A.L. (1959) "Some Studies in Machine Learning using the

Game of Checkers". Computers and Thought,(ed. Feigenbaum E.A.

and Feldman J.)

SAM 60 Samuel A.L. (i960) "Programming Computers to Play Games".

Advances in Computers, Vol. 1, (ed. AltF.)

SAM 67 Samuel A.L. (1967) "Some Studies in Machine Learning using the

Game of Checkers, II - Recent Progress". IBM Journal of

Research and Development, Nov. pp 601 - 617-

SCO 69 Scott J.J. (1969) "A Chess Playing Program". Machine

Intelligence IV, (ed. Meltzer B. and Michie D.)

SHAN 50a Shannon C.E. (1950) "Automatic Chess Player". Scientific

American, Feb.

103

SHAN 50b Shannon C.E. (1950) "Programming a Digital Computer

for Playing Chess". Philosophy Magazine, March.

TUR 50 Turing A.M. (1950) "Computing Machinery and Intelligence"

Mind, Oct.

TUR 53 Turing A.M. (1953) "Digital Computers Applied to

Games". Faster than Thought, (ed. Bowden B.V.)

TUR 58 Turing A.M. (1958) "Can a Machine Think". Computers

and Thought, (ed. Feigenbaum E.A. and Feldman J.)

A CKNOVffJTOGENENTS

I should like to record my gratitude to Professor Cole and

Mr. A.J.T. Davie for their help and encouragement in all aspects

of this work.

I am indebted to the Science Research Council for the award

of a Research Scholarship 1969-1970.

My thanks are also due to Dr. Robert Erskine and his staff

for their invaluable assistance and to Mrs. Susan Weaver who typed

this thesis.

Considerable use was made of a program written by R.K. Louden

to play noughts and crosses.

