University of St Andrews

Full metadata for this thesis is available in
St Andrews Research Repository
at:
http.//research-repository.st-andrews.ac.uk/

This thesis is protected by original copyright

http://research-repository.st-andrews.ac.uk/

AN EXPERIMENT 1IN MACHINE LEARNTING

USING THE GAME OF THREE DIMENSTONAL

NOUGHTS AND CROSSES

Thesis presented for the Degree of M.Sc.

by M. J. Doake, M.A.(Hons.), St. Andrews, 1972

DECLARATION

I hereby declare that this thesis has been composed by myself;
that the work of which it is a record has been done by myself; and,
that it has ﬁot been accepted in any previous application for any
higher degree. This research concerning machine learning was
undertaken from October 1969, the date of my admission as a

research student for the degree of Master of Science (M.Se.).

CERTIFICATE

I hereby declare that the conditions of the Ordinance and
Regulations for the degree of Master of Science (M.Sc.) at the
University of St. Andrews have been fulfilled by the candidate,

M. J. Doake.

A. J. T. Davie

SUMMARY

A program vias written to play the game of three dimensional
noughts and crosses on a computer. The program was written in such
a way that it would "learn from experience'. The emprhasis therefore
was not on producing an unbeatable program, but one which would
improve its own play. This is achieved by using a backtrack analysis,
which is called every time a game is won or lost. It works by
starting from the winning board position and backtracking, i.e.,
unplaying the last move played, then the second last ete., until
it reaches the boeard position where it thinks the critical move was
made. This board position is analysed and stored in a gencralised
form, so that next time that board position, or one essentially similar,
is found, the program will recognise it. The analysis is dore in terms
of the pattern formed by the.counters on the board. Tt is important
that the generalised descripntion of the pattern should cawviure the
essential. and only the essential elements of a pattern, and this the
program is only partially successful in doing. Alternative methods of
backtracking are discussed, and suggestions made as to heow the program

might be developed.

The program also has a selective look-azhead procedure which is
heuristic in method. The look-ahead uses the list of patierns produczd
by the backtrack analysis. Initially. therelfore, it will only look for
those patterns given in the rule-book, viz., four in a row, which
constitutes a win. The list of patterns will be built up with experience.

The program looks ahead at several different levels. Tt locks to see :

a) if a pattern exists in the actual board position
b) if a pattern can be formed by either side in one move
¢) if a pattern still exists if (b) is true (a pattern car be formed

in one move) and the oppcnent does his best to stop this pattern.

Only one square is selected as the best one to stop a particular
pattern, and this square will be dictated by the nature of the pattern
found. The original analysis of a pattern during the backtrack

analysis indicates which square this is.

The program has the facility to play both sides in a game, or to
play against a human opponent. Games of both kinds are listed and

discussed.

ITT.

V.

Introduction

INDEX

Brief History of Game Playing Programs

(1)
(i1)
(111)
(iv)
(v)
(vi)

(vii)

Claude Shannon

A.M, Turing

A. Bernstein

Newall, Shaw and Simon
A.L. Samuel

D. Michie and J.E. Doran

E.W. Elcock and A.M. Murray

The Game of Three-Dimensional Noughts and Crosses

Informal Description of Program

(1)
(11)

(iii)

(iv)
(v)

Descriptions
Backtrack Analysis

Limitations of Backtrack Analysis and
Dezeription

Look Ahead

Scoring

The Program (Formal Desecription)

(1)

(i1)

(iii)
Flowcharts
(1)

(i1)

(ii1)

(iv)

(v)

(vi)

Nomenclature
Input Data

Program Listing

Qutline Flowchart of Wnole Program
Flowchart of Cemputer Tocii-Ahead Loop
Flowchart of Backtrack Analysis
Flowchart of Listing of Patterns
Flowchart of Ovponent Backirack Loop

M owchart of Subroutine SLARCH

86/87
w1
F2
6

g

111

VIT.

VILIT.

IX.

Comments on Play and Suggested Improvements
Appendix. A Few Games Played by the Computer

References

87

101

T INTRODUCTION Why play games?

Machines which play games have a long and varied history.
Amongst the first was the "chess playing automaton" constructed by
Baron Kempelen in 1796 which "computed" its moves thanks to the efforts
of a dwarf inside it, gaining its inventor considerable ill-gotten fame
and fortune. More recently the motives for mechanising game-playing
have become, we hope, less suspect. Interest is now focussed not on
machines specially constructed to play a game, but on programming

already existing digital computers to do so.

Programming computers to play games seems to provide a special
sort of challenge to those who do it, especially where the game
involved is an "intellectual" game such as chess or draughts. A game
like chess is @hought of as involving real intellectual effort., the use
of intelligence. If a machine could be successfully programmed to play
this sort of game it would prove that machines could be used for work
other than the dull slavish routine which is thought of as "mechanical".
This seems to have been sufficient motivation for scme; to prove that
a machine could be said to be displaying "intelligence". For others a
successful game-playing program would mean "one would seem to have
penetrated to the core of human intellectual endeavour" (NEW 58).
Similarly "man can solve problems without knowing how he solves them";
a successful game-playing program would capture and mechanize human
decision making and problem solving and so "add to his kit of tools for

controlling and manipulating his environment" (NEW 58).

A more straightforward motive is that of improving programming
techniques and learning new ones. Games provide complicated problems,

but have a certain regularity because of their rules, which one would

not find in a problem taken from "real 1life". Hopefully the

techniques learnt in the solving of a complicated game problem can
later be used to solve an economics or business problem. Games it is
thought, retain many of the characteristics of real life problems while
eliminating many of the worrisome complications; thus providing an
opportunity to isolate in pure form the logical structure underlying

real-life problems.

A specific example of this is the technique of "learning from
experience." A program which could learn could be used to do a lot
of trivial and detailed work which otherwise would have to be done by

hand, and would be very time-consuming.

IT BRIEF HISTORY OF GAME PLAYING PROGRAMS

We are concerned here only with programming computers to play games
for which there exists no known algorithm which can guarantee a win,
as can be very successfully done with such games as Nim or the normal
game of noughts and crosses. However, programming a computer to play
such‘games is essentially trivial, unless the game is played without

reference to the algorithm.

The names mentioned below are only those of pioneers in the field
of game-playing programs, or those whose work is directly connected

with our own research.

(i) Claude Shannon

One of the first important names in the history of mechanized game
playing is that of Claude Shannon (SHAN 5Ca, SHAN 50b). Although he did
not actually write a program for a digital computer, he discussed the
problems involved in doing so. The answers he gave built up 2 Frame-work

on which almost all subsequent chess playing programs have been based.

The rules of chess (and most other games), ensure that it is a
finite game, which must end in a win., loss or draw. Tt can therefore
be completely described as a branching tree, the nodes corresponding to

the positions and the branches to the alternative moves from each

A
j{l /O\
d d ¢ 2 2

This simplified diagram illustrates the point. A is the starting

position.

Figure 1

board position. White has 3 alternative moves, 1, 2, or 3. White's
move will be followed by RBlack's, and for the purposes of this example
1t is assumed that all of Black's moves lead to board positions with

known results.

Move 1 will lead to a draw, no matter what Black does. Move 2
can only lead to a loss for White. Move 3 could lead to a win or a
loss, and the outcome will depend on what Black does. So far as White
is concerned Move 1 is his best move as it ensuresz a draw, whereas ‘

Move 2 ensures a loss, and Move 3%, since the opponent has the issue of

the game in his power, is almost certain to result in a loss for White.

In a game of chess one could in principle examine the whole tree
comprising all the altermative moves and Utheir continuations, until one
had worked out all the possible endings to the game. It would Lthen be
relatively simple to work oul the best move. The procedure would be to
work backwards from the terminal positions, as we did in the above
example, and at each branching point decicde whien was the best branch

the move. If White

to take from the voint of view of the sid

is looking ahead. he will choose the best branch for himself when it is his
turn. and assume that Black will choose the branch which is worst for White
when it is his turn. That is, looking back up the tree, White choses his
path by alternatively maximising and minimising. This procedure is known,

for obvious reasons, as minimaxing.

However from any given board position there are, in chess, about 30
possible alternative moves and this means that the number of alternatives
to be considered looking ahead to the end of the game would be astronomical,
and could not be contemplated, even with the use of the fastest modern

computers.

Shannon's suggestion was that one should look ahead to a certain depth
examining all alternative moves. At this depth all the resulting board
positions should be evaluated in some way. Then one could minimax back from

the beoard positions reached in the look ahead to find the best move.

To evaluate a board position Shannon suggested a numerical measure
formed by assigning values and weights to various factors which are considered
important by chess experts, e.g.. the number and nature of the pieces on the

board.

Shannon also pointed out the importance of evaluating a beoard position
only if it had a certain amount of stability. If in the next move something
is going to happen which will drastically alter the value of a board position

an evaluation at this peint will be misleading.

He also suggested that instead of examining all possible alternative
legal moves to a fixed depth, one should only examine promising moves and

not exnlore the other at all.

(ii) A. M. Turing

Turing (TUR 50, 53) is the next important name. He too was
concerned with chess playing. He wrote a program which was not
implemented on a computer but which could be simulated by hand. The
program fitted into the Shannon framework. His main contribution was
a clear definition of what he called a "dead position". He would
only evaluate a board position if it was dead. A dead position was
one which was more than 2 moves ahead of the actual board position,
and from which the next move was not a capture, recapture, or mate.
The lst condition of course was arbitrary - Turing chose to consider
all alternatives to a depth or ply of two, (a ply being a move by 1
person, 2 plys 1 move by each side), then evaluate those which were

dead. The rest of the alternatives were explored until they were dead.

(iii) A. Bernstein

Bernstein's (BER 58a, BER 58b) program made another major
contribution to game playing technique. Incstead of examining all
legal alternatives to a certain depth, Bernstein's program used
drastic selection and only explored a fraction of the possible paths
in the tree. A series of subroutines suggested which moves were worth
considering. Each subroutine corresponded to some feature of the game
e.g., king safety, development, defending own men ete. The subroutines
functioned in order of priority., each one in turn suggesting plausible
meoves until 7 moves had been suggested. These subroutines were used
at every stage of the look ahead, so never more than 7 moves were
considered from any one board position. The program looked ahead to
a depth of 2 moves. This meant that out of a possible 800,000
(approximately) alternative board positions the program evaluated only

2400.

This selection was too drastic in that the program tended to
overlook simple moves which had important consequences and it made bad

blunders. This was hardly surprising with so much selectivity. What

i3

was surprising was that in spite of this drastic cut in the number of

moves evaluated, the program played a reasonable game at all.

The introduction of selectivity made the program more complicated
and it took longer to examine each position than earlier programs.
However, if seleetion could be properly implemented it was obviously

more profitable to consider fewer moves to a greater depth.

(iv) Newall, Shaw and Simon (NEW 58)

The aim of this team in writing a chess program is not only to
play good chess, but to analyse chess situations in mach the same
way as human beings. They are interested in mechanical simulation of
human thought processes and feel that in any case the best chess
program will be the one which most closely simulates human chess
player's analysis. The complex nature of a human chess player's
thought processes is dictated by the game. and a good chess program

should have a similar complexity. -

Newall, Shaw and Simon (NSS) are convinced that careful but
drastic selectivity is essential, and this is the dominant theme in
their program. They use Bennstein's idea of a move generator, but

take it a stage further and are rather more careful.

Given a board position, the first thing the NSS program does is
to decide which goals are appropriate to this board position. These
goals represent different featurcs of chess, such as King safely.,

material balance, centre control, denying stalemate etc. It can easily

be appreciated that all these goals are not relevant to every stage
ol the game - the last, for example., will only be relevant towards
the end. This list of goals is important because the goals which the
program decides are relevant to a particular board position then
control the rest of the process of choosing the next move - i.e.,
which moves lo examine, which continuations to explore, the
evaluation when a dead position is found, ete. This is an important
new step which recognises and allows for the fact that a different
sort of game 1s played at the beginning, middle and end, requiring

different techniques and different emphases.

Fach goal in the selected list proposes alternative next moves
each selecting only moves which further its own purposes. E.g., only
Lhe material halance goal will propose preventing a piéce being

ecaptured, only king safety protecting king, etc.

Having selected a list of preposed alternative moves, separate
analysis generators decide which continuations should be explored to
glve a correct analysis of each move. The exploration of continuations
is based on Turing's definition of a dead position. A position has-
to be considered dead or static before it is evaluated, but NSS
introduce an extention of Turing's idea. Before a position is
considered dead it is examined from the point of view of each of the
goals relevant, and judged to be dead by all of them before it is
evaluated. T1f a goal judges the position in question to be static,
it pgives the position a provisional value. However, this value is
only valid if all the otﬁer goals find the position static too.
Otherwise the program generates the moves which will drastically effect
the position, i.e., the moves which prevented the position from being
stotie, and lhe process is repeated until a position is found which is
considered static from all points of view. Thus the selection of

continuations is dictated by the search for a dead position.

(v) A. L. Samuel

Samuel (SAM 59, SAM 60, SAM 67) chooses the game of checkers for
his experiments. His main interest in writing this program is the
development of new programming techniques, especially those involved

in programming a machine to learn from experience.

Samiel's program looks ahead in a normal way with no selection
up to a ply of three, at which point all positions are evaluated 1if
they are dead. Otherwise the program looks ahead until the positions
are dead. Since.the positions which are not dead are usually the most
profitable, this is a useful form of selection - it is the one used by

N3S. The best move is then found by minimaxing.

Samuel's program learns by two quite different methods, although
they can be combined. The simplest is what he calls the "rote learning
method". The program stores ali the board positions it encounters with
the score they were given by the look ahead procedure. 1In most cases
these scores will represent a look ahead of three plys. When the
program, while, for example, looking ahead 3 plys, comes across a board
position which is already stored with its backed up score, it can give the
board position it is currently evaluating a score based on a look ahead of
effectively 6 plys. If this process is repeated often enough, the score
should eventually become quite accurate since the further one loocks
ahead the more accurately one can assess a position. Because of the
enormous number of possible board positions the program also has a
facility for forgetting board positions. It forgets those which it

uses least.

Samuel's other learning process involves "generalization on the

basis of experience". This works best when the program is playing both

sides, i.e., selecting both Black's and White's moves.

The score of any given board position is worked out by using an
evaluaticn polynemial, i.e., an equation whose terms represent the
various features of checkers, such as the material balance, etc. Each
term is given a numeric value which represents its current state in
the board position, and this is multiplied by a coefficient which
represents the importance of that term (i.e., feature) to the game as
a whole. The program learns by experimenting with different terms in
its evaluation polynomial and by varying the sign and magnitude of

the coefficients for these terms. One side, Black, plays with a fixed
evaluation function. The other side gxperiments continually. After
every move White generalizes on the basis of experience and adjusts
the terms and their coefficients accordingly. If White wins, Black is
given its latest evaluation polynomial. If Black consistently wins a

drastic change is made in White's evaluation polynomial.

To Jjudge its evaluation polynomial, White compares the score
it gives a certain board position with the score given to it by the rote
learning method. The difference between the 2 scores is reflected in a
variable, Delta, which is then used to make appropriate adjustments to
the coefficients. A term in the evaluation polynomial will be replaced

if it consistently has the lowest coefficient.

(vi) D. Michie and J. E. Doran

Doran and Michie's (DOR €6) work with the Graph Traverser program
provides a more general method for the solution of a whole family of
problems. Tt can be used to solve any problem which can be translated
into terms of graph theory, as that of finding a path between two

specified nodes of a specified graph. The approach used initially is

that of "state evaluation". A problem state is given a value which
reflects the extent to which it has features in common with the goal

. . I Moae] v . o .
state, or which is related to its distance’ from the goal state.

10

The program is general in that it can he applied te different problems
if it is provided with a rule book 2and an evaluation function. The rule
book must enable the program to generate from an initial state all
neighbouring states. The evaluation function will be used to discover to

what extent a state approaches the goal state.

A quantity, described as "penetrance", is discovered to be a useful
measure of the efficiency of an evaluation function. Penetrance is defined

as length of the path produced ., or more informally as "the degree to which
total number of nodes developed

the search tree is 'elongated' rather than 'bushy'." Using this quantity the
program can improve its own evaluation function in the midst of atiempting to

solve a problem, and thus be said to be learning.

(vii) E. W. Elcock and A. M. Murray

Elcock and Murray (ELC 68, MUR 67, MUR €8) are primarily interested in
the problems involved in writing a learning program. The game they choose for

their experiment is Go-Moku - a '

'simple but not trivial game'". They choose a
simple game so that they can study their particular learning technique in some

depth.

The aim in Go-Moku is to make up a straight line of five of one's own
counters while preventing the opponent from doing so first. The essence of the
game is to recognise and try to make up certain patterns which are unbeatable.
Elcock and Murray's program is like Samuel's in that it learns from experience,
but the learning process is completely different from either of Samuel's
methods. The Go-Moku program learns by using a "deductive backtrack analysis”.
When a game has been won the program looks back to the point where il thinks
a win was inevitable. The backtrack analysis. like the rest of the program,
works in terms of pattern recognition, so that when the critical board

position has been found it is described in terms of the pattern it forms, and if

11

the deseriptive language is good enough, that pattern will be
recognised next time it occurs, and mapked as a winning one. The
descriptive language is such that when a board position is desecribed
it is automatically generalised, so as to capture the essential and
only the essential elements of the pattern. This is much more

economic than storing all the board positions.

Move selection is governed by a list of subgoals, each
deseribing a pattern from which a win should be inevitable. These
subgoals are listed in order of the number of moves away from a win.
The list of subgoals is added to every time the program loses. When
this happens the program unplays each move in turn starting with the.
last move and working backwards. As soon as it comes acress a
board position which is not described in the current list of
subgoals, a generalised description of that board position 1s added
to the list, on the assumption that this position is a necessary and
sufficient step in the formation of the board position which
immediately succeeded it in the game, which the program did
recognise. For example, 4 counters in a row is a necessary and

sufficient step to making up 5 in a row.

This assumption is only Jjustifiable if the descriptive
language has attained the ideal of capturing the essential, and only
the essential elements of a pattern. Elcock and Murray had a certain
amount of difficulty with their language because it tended to pick up
some superfluocus information which meant that the achievement of a
listed subgoal did not necessarily lead to the subgeoal above 1it, or
bring about a win. Tt also meant that what was essentially the same
pattern would be listed several different times in slightly different

forms.

12

Elcock and Murray also found that their language was ﬁot
powerful enough to describe certain situations. The opponent would
win by a pattern which was listed, but whose description had missed
some vital factor, had not been flexible enough to capture all the

essential features of this pattern.

IIT THE GAME OF THREE-DIMENSTONAL NOUGHTS AND CROSSES

The game of % dimensional noughts and crosses was chosen for
our own experiment. The object of the game is to place four
counters in a straight line. The board has four layers, each of
which is four squares by four: i.e., there are sixteen squares on

each layer (or plane) and therefore sixty four squares in all:-

i |\‘

Figurg 2
A line of four can go in any direction provided it is straight. That
is, instead of making up lines on one plane as in ordinary noughts _
and crosses one can make up a line which has a square on each plane,
e.g., going straight down from a square on the top plane, or
diagonally from the top near corner to the bottom far corner. This

can be more easily demonstrated if we represent the board thus:-

11234 17(18119/20 335|541 35| 26 49150(51 {52
516178 21 (22 |23 |2k 37138139 40 53|54 (55|56
911011 [12 25 (26 |27128 W (a2 43| 4 é:(_J'58 59 6_0_
1311415116 29(30(31|32 Ul e b7l 48 61(62{6% 61L

Figure 3

13

A line could be made up by playing in squares 1,2,3,4 or

1,17,3%,49, or 1,18,35,52, or 1,22,4%,6., The opponent of course
does his best to prevent one from getting 4 in a row. This is done,
as In ordinary noughts and crosses by placing one of his own counters
in the line you are trying to make up. The skill in this game
consishs in recognising certain patterms. There is no point in
merely forming lines of three which the opponent can stop with one
counter. One must try to form a pattern where by placing a counter
in a particular souare, one can simultaneously make up two different

lines of three,

Qe ~
X X
X 1X
1

3|2

FPigure 4

Play in square 1 makes up a. forecing pattern - the opponent must defend
(unless he ean win in one move himself), by stopping one of the lines
of 3, but whether he plays in square 2 or square 3, he cannot stop
both lines: whichever square he plays in the attacking side will win

by playing in the other.

There are several of these foreing patterns which a player must
try and form and at the same time prevent his opponent from forming.

This is in fact the essence of the game.

It is worth noting that from the point of view of forming patterns,

certain squares on the board have more potential value than others.

There are altogether 76 straight lines on the board - 10 on each plane,
16 vertical lines, 16 semi-diagonal lines, contained in planes parallel

to an edge of the board, and I true diagonals passing from one corner

14

of the board at the top level to the diagonally opposite corner of
the board at the bottom level. Some sguares apoear on more of these
lines than do other squares. The 8 corner squares on the top and
bottom layers have 7 lines passing through them, and so do the 8
squares in the very centre of tﬂe board. All the other squares have
only %4 lines passing through them. Squares with 7 lines passing
through them are referred to as "strong" squares, and the rest as

n

"weak" squares.

IV TINFORMAL DESCRIPTION OF PROGRAM

The current version of our program, "Score 4", is similar in many
respects to the Go-Moku program of Elcock and Murray. Like the
Go-Moku program, "Score 4" plays to a win, then backtracks and
analyses the board position at the stage where it thinks the critical
move was made. The analysis is made in terms of the pattern formed by
the winning combination of counters. This analysis is then stored and
used to recognise that pattern if it occurs again. The analysis is
generalised so that its description applies to both sides and to any
board position which has essentially the same features. The program
also has a selective look-ahead procedure which looks for any of the
patterns analysed by the backtrack analysis. Move selection is, for

the most part, governed by this look ahead procedure.

In the course of writing the program, several different
techniques were bried and discarded and new lechniques adopted as a
direct result of some of the program's deficiencies as demonstrated
by the sort of game it played. In order to understand the present
form of the program, and the nature of the problem itself it is worth

discussing briefly some of the techniques which were tried and rejected.

The first technique tried was a look ahead which examined
every possible alternative and continuation to a ply of 3. The
resulting boafd positions were evaluated simply in terms of how many
counters had been played. However, as has been explained, the
important thing in this game is not how many counters there are in
any one line, but what patterns there are. Therefore this look
ahead proved to be singulariy unhelpful, mainly because of its

evaluation function. It was also rather slow.

Various different forms of look aheads were tried, but it
soon became evident that some form of pattern recognition would have

to be used to evaluate board positions.

(i) Descriptions

As Elcock and Murray (MUR 67, MUR 68) realised, the method of
deseribing a pattern in a board.position is the most essential thing
in this sort of program. TIf a pattern is a winning one, the
description must capture those features which make it a winning one.
A good description must not miss out any essential feature, nor must it
ineclude any inessential feature. At the same time, the description
mist be general enough to apply to any board pvosition which has
essentially the same features, even though it is not exactly the same
board position. These specifications are very difficult to meet, and
in fact our program is not entirely successful in doing so, nor was
the Go-Moku program discussed in "Machine Intelligence 1" (1967).

(MUR 67).

16

To illustrate these points:-

X |0 |
0 0
%1% 1% |3
Figure 5

The essential thing about this board position is that there are
four counters in a row - this is all the description of this beoard
position should be concerned with. The other counters on the board are
irrelevant to the pattern, and should be ignored in the description.
The actual position of the counters on the board is also irrelevant,
i.e., that they are (for example) in the front four squares of the top
plane. The only relevant fact in the positioning is that they are in
a straight line. All that the description need include is "a line

(by which we always mean a straight line) with 4 (red) counters in it."

In fact, from a programming point of view, we found the simplest
method of desecribing board positions was in terms of what the
relevant lines add up to. The computer's move is always indicated by
a 5, the opponent's by 1 and an empty square by O. This means tha£ by
summing a line we always know exactly what counters have been played in
it. A sum of 10 for example means 2 computer counters and 2 blank

squares, 11 means 2 computer counters and an opponent one ete.

Therefore the actual description of the above board position would

be:- "a line which adds up to 20".

L

"A line which adds up to 3", would describe the board position below,

Figure 6 ‘

Figure 7

making it quite clear that it is the
opponents line, that he can win in one
move because there is a blank square in

the row.

This board position can be converted
into a forcing pattern by playing in the
square marked (i). This square is
referred to as the "key" square in the
pattern, as is a blank square in any
pattern if by playing in it, one can

create a forcing pattern.

The essential features here are that there are "two lines, both adding

up to 10, which have a blank square (i) in common". This description

captures the essential features and is generalenough to apply to the board

positions:

5

Figure 8

which are essentially the same.

Appendix 1 as Pattern 1.)

'Referred to

as Pattern 2.

forces the opponent

5 5 1ii
5
5
i
Figure 9

(This pattern is referred to in

The description of this pattern
involves 3 lines and there are 2
"key" squares. In this instance it
does not matter in what order they

are played. Play in either one

to defend by stopping a row of 3. Play in the

18

second "key" square then makes up 2 separate rows of 3, only one of
which the opponent can stop. The essential features are covered by

the description:-

"a line adding up to 10 with a blank square in common with
a line which adds up to 5, such that the line of 5 has a blank

square in common with a different line adding up to 10."

This description captures the essential elements and is general

enough to describe also the board positions:-

il 541 7
5] Figure 10
51 Bl 1 i1
5 5
The board position:-
)
'\;,_‘5 5’
1 A I B X Figure 11
a
? 5
i 1
involves 4 lines. Here there are 3 "key" squares and the order they

are played in is more important than in the last example. However

the order of (i) and (ii) could be interchanged. Play in square (i)
makes up 3 in a row and forces the opponent to defend. Play in square
(ii) makes up another 3 and the pattern is now the same as that in
Figure 7, and therefore play in square (iii) makes up 2 scparate lines

of 3. The description of this pattern is:-

19

1 . -] 4 . . .
"a row adding up to 10 with a blank square (i) in common with

a line adding up to O which has a blank square in common with another
line adding up to 10 and also has a blank square in common with a

3rd line adding up to 10."

i.e., 3 rows of 2 are involved in such a way that by making up 2 of
them into rows of 3, one at the same time makes up another row of 2

which converges with the 3rd row of 2.

The description also fits this board position:-

i Big ii
545 Figure 12
515

Thus the program describes a pattern in terms of the lines which are

invelved in playing out the pattern and what they add up to, and the

intersections of the lines which take place on the "key" squares.

The lines are carefully listed in the right order. so that the square
which must be played in I1st is in the line which is mentioned first,

and so on.

The more lines mentioned in the description of a pattern, the

more moves have to be made before a win is made.

This method of descript;on has the advantage over Elcock and
Murray's 1st method, that only the lines which are actually involved
in a win are described. By "involved", we mean lines which are built up
to have 3 in a row and thus force the opponent to defend. A win almost
always involves 2 lines being simultaneously built up to have 3 in a

row, and both these are "involved".

20

Elcock and Murray describe a pattern in terms of the line which

has the most counters in it and the line crossing it which has the
most counters in it. This is arbitrary in that the 2nd line mentioned
is sometimes irrelevant. The result was that more than the essential
features were scometimes described, which meant that the description
would not fit another board position which had the same essential

features, but not the irrelevant ones which were also picked up in

the description. The description is not what they call a minimal one.

(1i) Backtrack analysis

Like the Go-Moku program, the "Score Four" program generales
its own list of patterns by using a backtrack analysis to find and
analyse the board position which made a win inevitable. A game is
played to a win, then the program backtracks until it finds the

critical board position which is then analysed in terms of its pattern

and listed.

The backtrack analysis (b.t.a.) is called whenever a game is
won or lost, as it has the facility to analyse either a computer or
an opponent win. The b.t.a. unplays in turn each of the winner's
moves and the corresponding loser's moves, taking the moves in reverse

order, l.e., unplaying the last move 1st and working backwards.

The backtrack analysis first takes a note of the winning line
and then unplays the winner's last move. Let us assumethat the
computer playing Red, won. The opponent (White)'s last move is also
unplayed, so that we recreate the board position two plys before the
end of the game. The b.t.a. then tests to see if Red could still have
won in one move had White played his last move where Red did. 1f so,

a note is taken of the relevant line (i.e., the line in which Red

21

could have won had White not played his last move in it) and the next
pair of moves is unplayed and the process repeated until Red can no

longer win in one move.

e.2..,
2 note is taken of this (winning) line
s
g
5 57 If this is the winning board
Figure 13 5 2 position, the last pair of moves
115
57 will be unplayed to give the
board position:-
5 5
e The opponent's move is then
Figure 14 =
nlayed where the winner's
. L]
] last move was:-
note teken of this line
1l
Vg
= = It is obvious that Red can still
e, -
I-‘ Q- TS 1“. - T -
Pigure 15 Hf 5 win in one move, by playing
|
[]) where White's original last

move was. *

The object of this c¢xercise i1s bto discover at what stage the
pattern started to be a forcing one. By the time the pattern in
Figure 14 has been formed, ﬁ;i is virtually unbeatable. The program
must be able to recognise pabierns before they become foreing, so one

more pair of moves iz unplayved to give the position:-

1
i
i

po7

l

Figure 16

22

This beoard position is then analysed by simply adding up the counters

in the 3 noted during the b.t.a. and listing them as one pattern.
'n the above example two lines were noted; these lines are summed as
they are in the final position reached by the b.t.a., i.e., at the

were the position is one move away from being forcing. In this

case, as they are in Figure 16.

The pattern would be listed simply as 10, 10. A winning pattern
always invelves lines intersecting at some stage and it is important to
know and record, Fhen analysing a board position, which lines intersect
with which. In this program the order in which the lines of a pattern
are listed, reflects which lines intersect with which. In the above
example the order does not matter, because only 2 lines are involved
and they mast intersect with each other. However in a more

complicated example:-

5 5

Figure 17 51515 the order in which the lines
? 1 are listed is very important.
5 5

The sequence of ‘the backtracking is as follows:-

5 5 5 5
R e e 11515
11111 1
5 5 5 5
Figure 18
5] 5 5 5
5 | 1
A and finally
N
= ™
5 5 5 5

The lines with arrows are the ones noted during the course of the

backtrack. Four lines are noted including the winning one, which add

up in the final position, to 10,0,10,10. Tt is important to know

that the 1st line interseets with the 2nd, the 2nd with the 3rd and

the 4th also with the 2nd.

The b.t.a. is also used to compile a list of the patterns as

they were one move previously, i.e., two moves before they are forcing.

This list is used for move selection in certain cases (see page 27)

(iii) Limitations of backtrack analysis and description

This method of backtracking unfortunately has certain limitations.

For one thing it is limited in the amount of learning it can do, and j

this limitation leads to a limitation in recognising the potential of

certain board situations. This can be quite simply illustrated.

Given the board position:-

Figure 19 1
11
a 1
1
5114
b 1
-
1iii
51
c 1 pii

the program will recognise this

pattern (see Figure 9) and will

play:-

which stops one pattern. However
the strength of this position is
that playing in square (i) makes

up 2 separate patterns

and the opponent can go on to win
by playing in square (ii) which
forces the computer to defend, then
square (iii) which makes up 2 rous

of 3.

24

In fact the board position:-

Figure 20

should be listed as a forcing pattern, but because of the way the
b.t.a. works, it never will be.. If the b.t.a. worked like the

Go-Moku one, i.e., by working backwards from the winning board
position until it finds a board position which is not listed as a
pattern; and then adding the new board position to the list, then this
position would be added. The difference between these two methods of
backtracking lies in the criteria used to find the board position to be
analysed - the board position which made the win inevitable. Our
criterion is whether the side attacking can win in one move if his
opponent does not defend. As soon as a position is reached by
backtracking where the attacker can no longer win in one move, this
position is analysed. The position in Figure 19a satisfies this
criterion. The Go-Moku program builds up its list of patterns by
backtracking until it finds a position it has not yet listed, analysing
| this position and adding it to the list - the b.t.a. is only used when
the program loses. This method may take several games to completely
analyse a fairly complicated pattern, but in theory it should get there
in the end. In fact Elcock and ﬁurray complain in their 1967 article
(MUR 67) that their program was limited in the amount it could learn
and that it could not realise the potential danger of some positions -
which is precisely what we are complaining of. However, their method
of backtracking seems to be a much stronger one and would have been

used but for certain programming difficulties - see Chapter VII.

(1v) Look ahead

The limitation deseribed above makes the program vulnerable to
certain opponent attacks, and also means that it does not realise
the strength of certain patterns it forms, or could form, itself. For
this reason there are two separate look ahead procedures, one which
checks on the strength of the opponent's position, and one for the
computer. The results of both look aheads are then compared and the

decision made whether to defend or attack, due allowance being made

for the fact that it is the computer's turn to play.

The program starts the lcok ahead by playing one of its own
moves in the 1st blank square on the board. It then looks to see if
this makes up any oif the listed patterns. If no pattern is formed by
playing in that square, the move is unplayed and the next blank square
is tried and so on until each blank square in turn has been tried. When
a pattern is formed, the square played in to form it 1s given a score
which will'depend on how good that pattern is considered to be. An
opponent's move is then played in the "key" square, and the program
locks to see if a pattern still exists and also to see if forcing the
opponent to play there makes up a pattern for him; i.e., forces him to
Help himself. If so, i.e., if an opponent pattemdoes exist, then the
criginal square played in during the look ahead is given no score.
However, if a pattern still exists for the computer, after playing an
opponent move in the "key" square, then the rest of the look ahead is
skipped and the program automatically plays in the original square being
tested by the look ahcad. This is because i1if this situation does exist
it means that playing in one square has made up simultaneously 2
patterns, only one of which can be stopped by the opponent. This

situation is referred to as a double pattern. This forms a highly

N
6N

selective look ahead precedure. Unless a double pattern is found,

all legal next moves are tried in turn, the look ahead continuing with

a square only if playing in that square forms oné of the listed patterns.
If not, the square being tried is given a score but the look ahead goes
no further with it and the next square is tried. The program plays

an opponent move in what it reckons to be the worst possible place for
the computer, i.e., in the "key" square of the pattern found by the

lock ahead, taking each pattern in turn. Having done this the look
ahead continues by looking to see what patterns, if any, are left. If
it finds ne pattern, it means that the computer cannot create a forcing
pattern in one move. Tf there is a computer pattern, the program knows
that by playing in a certain square (and it knows exactly which one) it
can create a foreing pattern and almost certainly win. Thus the program
can be said to look ahead to a depth of % plys - it has worked out what
will happen if Red plays there, White there and then Red there. In a
sense, if a pattern does exist after the opponent's move has been

played (in the look ahead), the program can be said to look ahead to

the end of the game because once it looks ahead to a forecing pattern

the course of the game is predictable -~ the opponent will be forced to
keep defending until the computer wins. This at least is what ideally
should happen. However, as in most selective look aheads, the computer's
prediction of where the cpporient will play may easily be wrong.
Sometimes playing the opponent's move in the "key" square is not the
best place for him. The "key" square is where the attacking side would
need to play to muake his patbern foreing, but sometimes the opponent can
stop 2 patterns by playing in one vlace, bub only one by playing in the
"key" square. Tf the look ahead procedure tried playing the opponent's
move in every possible square, it would inevitably discover the most
effective place for the opponent to play, but this would be too time

consuming.

The look ahead for the opponent is exactly the same, except that
if the program realises that it will not be able to stcp the opponent
winning, because he has a double pattern, the "key" square in the
forming of the double pattern is given a large enough score to ensure

that it will be the one selected for the machine to play in unless it

finds a double pattern for itself.

Tf no pattern can be formed in one move, the program looks to see
if by playing in any of the blank squares, it can make up a pattern which
can be converted in one move into cne of the listed patterns; 1i1.e., it
looks to see if there is any pattern of counters in the board position
which in 3 moves can become a forcing pattern. This is very often

the case as soon as there are 2 counters on the board.

However, someltimes even this situation does not exist - e.g., when
there is only one counter on the board. In this case another method of
selection mist be used. The method used is simply that of choosing a
"strong" square in a line which (preferably) already has a counter in it.
One point is added to the score of each square in a line with 1 (computer)
counter in it, or 2 points if there are 2 counters. These points are
added to the initial (see below) score of the relevant squares. The
highest scoring square is then chosen - strong sguares are given more

peoints than weak ones.

(v) Scoring

A detailed account of the scoring system.

At the begimning of a game, each square is given an initial score
which supposedly reflects its positional strength. There are 2 categories

N i " &
of squares, as we have seen 16 "strong" squares and the rest "weak" squares.

The initial score of a strong square is 7, corresponding exactly to
the number of lines which pass through it. A weak square accordingly

has an initial score of 4.

In an earlier version of the program, each square was then
subjected to various tests (such as what pattern, if any, would be
formed if the computer played in it, and i1f the opponent played in it
ete.). The séore of the square was added to, or subtracted from, as it
passed through each test, so that its final score reflected its worth
from all points of view. However, it was not carefully enough balanced,
and what tended to happen was that a mediocre attacking square which was
also a mediocre defensive square would score more highly than a good
attacking square. The result was that the program played a dull game
with no good attacking moves. A good attacking move does not need to

worry about defending.

It was found to be simpler to decide first whether to defend or
attack, and once that decision had been made, to find the best attacking

move, or the best defending move if the decision was to defend.

To do this, each sqguare is given a score which reflects its value
to the opponent, and its value as an atbacking square is separately
assessed. If the highest scoring attacking square scores less than the

highest scoring square for the opponent, then the computer defends.

The first scoring test is the look ahead for the opponent. The
program looks to see whether any of the listed patterns will be lormed
if the opponent plays in a certain square. If so, the square has points
added to its score - the exact number of points will depend on which

pattern is formed. TFour points are added if the pattern is "three in

29

a row", and usually 9 points for any other pattern. There is a
mechanism for raising the number of peints given for any pattern to
which the computer consistently leses. If the compﬁter consistently
loses to a particular pattern, it 1s because it has not fully
realised the strength of this pattern. This is a fault in the
description of the pattern. One way of compensating for this fault
is to simply allot more points to this pattern, so that it is more

likely to be stopped if spotted during the look ahead.

Having discovered an opponent pattern, the look ahead proceeds
to play a computer move in it's key square, and looks to see what
pattern, if any, is left. If no pattern is left, then no more points
are added to the score of the square being assessed, and none are
subtracted. If the original opponent pattern is stopped, and instead
a computer pattern has been formed, then the square has all its points
taken away. If despite the computer's defensive move, there still
exists an opponent pattern, then 30 points are added to the score of

the original square heing tested by the lock ahead. The assumption is

that if the opponent plays in that particular square, then the computer
will not be able to stop him making up a forcing patlern. The points

given are sufficient to ensure that unless the compubter can make up a

similar pattern, it will play in that square.

A note is taken of the highest scoring opponent square and the score

of each square is then set back to its original score, i.e., either

4 or 7, and the look ahead for the computer is done. This works in
exactly the same way as the opponent look ahead, except that 5 points

are allotted to a "three in a row" pattern and 10 to any other pattern.
Also as has been mentioned, if a pattern is found which the opponent
cannot stop in one move, then the computer immediztely plays in the
appropriate square and skips the rest of the lock zheazd procedure and

asscssment.

Tf after these two look aheads, the highest scoring square has

less than 15 points, which would mean in faet that 1o pattern other
than "three in a row" had been found for the computer during the look
ahead, then the next test is applied. This is another lock ahead to
see if any of the listed patterns (other than three in a row) can be
formed in two moves, i.e., whether by playing in a certain square the
computer can create a board position which can be converted into one
of the listed board patterns in one move. Tf so, the square has 8

points added to its initial score.

However, if no square satisfies this test there will still be no
way of discriminating between squares, apart from their initial

positional strength.

The final test discriminates between squares on the basis of how
many counters have been played. One point is added to the initial
score of every square in a line in which there is a computer counter
(and no opponent one). Two points are added if there ars 2 counters.
If this leaves several sguares with the same score, the 1st one found

is chosen. This is referred to as the "counter scoring method" (C33).

v THE PROGRAM (formal description)

(i) Nomenclature

MOVE(64) The board is represented by the array MOVE(64), which contains

an integer variable for each of the 64 squares on the board.
SUM(?G) is an array used to hold the sums of each of the 76 lines.

ROW(%04) is an array used to keep an account of wnich squares are
contained in each line, i.e., the first 4 values of ROW are the squares

which make up line 1. The squares are numbered in the order shown in

Figure 3, and the 1st line is made up of the sguares 1,2,3,4 and these

four numbers are therefore the first four values of ROW. Tn the same
F B i i r i F i o

way line (O, which is one of the main diagonals, is made up of

squares 14,23,42,61 and these numbers arve the last four values of ROW.

ROWDY (304) is a similar array which keeps account of the various lines
passing through each square. The first 7 values of ROWDY are therefore
the 7 lines which pass through square 1, the next four values are the

four lines which pass through square 2 ete.

ROWCNT(65) is an’array used for referencing ROWDY. It holds an account
of where in RCWDY to find which lines pass through any square. Thus
ROWCNT(1) is 1, ROWCNT(2) is 8 - the beginning in ROWDY of the lines
for square 2. The number of the subscript corresponds to the number of

the square.

TEST(B,}Q) is a 2 dimensional array which describes the patterns which

have been found and analysed by the program.

SUTEST(3.20) performs a similar function to TEST but describes the same
patterns as they were one move bhefore the stage they are described in

TEST.

SUB(64) is an array used for scoring. Tts values correspond to the
initinl value of the squares, which depends on how many lines go

through it.

SUB1(64) and SU1(64) are also used for scoring.

LAST(%2) is used to list the moves made by the computer.

NEXT(32) is used to list the moves made by the opponent.

5

START(16) is used for the initial move: it holds the 16
initially "strong" (v.P.14) squares from which the computer's first

move is selected at random.

M11(2,16) is a 2 dimensional array used during the look aheads to
hold the different patterns found in the current board position with

the appreopriate square to play in.

ROWNO(5) is used during the backtrack analysis to hold the numbers of

the lines which go into the making up of a pattern.

MOST(3) is used during the backtrack analysils for putting the lines

into the right order in a pabtern.
X(3) is used for the same thing as MOST.

AJUST(32) is used in a self adjusting scoring system which adjusts the

value given to any pattern.

WIN(4) is an array used to hold the ¥ squares which are in the winning

line. These are printed out at the end of a game.

PCOUNT is a variable used to keep track of how many patterns are listed

in TEST. It must be updated each time a new pattern is found.
SUCNT keeps count of the number of patterns in SUTEST, as PCOUNT does
for TEST.

GCNT is used as a switeh which is off when a pattern is to be listed in
TEST and on when it 1s to be listed in SUTEST. It is switched on the

2nd time the program goes through the b.t.a.

BIG is a variable used to hold the highest score of the squares

examined during the opponent look ahead.

22

NOCNT keeps count of how many times subroutine TESTT is called during
the backtrack analysis, and is used as a test to ensure that a new

pattern is listed both as a computer and an copponent pattern.

Before each new game the following are set to zero:-
MOVE i.e. the board
SUM - the sums of the lines
LAST and NEXT - the lists of moves
COUNT and SCOUNT which are used to keep count of the

number of moves made by each side.

(ii) Tnput data
ROWDY ., ROW, ROWCNT, TEST, SUTEST, SUB, START, ADRJUST are

read in as data. A complete list of the input data follows on the

next page.

Had there been time to tidy up thils program, the data statement

would have been used, as a more efficient method of inputing this data.

TEST and SUTEST are shown here with several patterns listed.
Originally they would be input with SUTEST completely set to zero,

and only 20 and 4 (i.e., four in a row for both sides) in TEST.

ROWDY

ROWCNT

ADJUST

ROW

TEST

SUB

SUTEST

START

34

1173349576973 1183470 1193571 120 36 50 68 72 74 2 17 37 58
21838 49 2193950 220 4067 317 4159 318 4250 3 19 43 49 3 20
4h 66 4 17 45 50 60 61 76 4 18 46 62 4 19 47 63 4 20 48 49 64 65 75 5 21
3351 5223457 5233568 524 3 52 621 37 69 6 22 38 51 58 70 73 6
2339526771 T4 624 4o T2 T 21 W1 61 T 22 4252596276 T 234351 63
66 75 T 24 44 64 8 21 4552 822 46 60 823 4765 824 48 51 9 25 33 53
926 34 68 927 35 57 928 3% 54 10 25 37 61 10 26 38 53 62 67 75 10 27 39
54 58 63 76 10 28 40 64 11 25 41 69 11 26 42 54 66 70 74 11 27 43 53 59 71 73
11 28 44 72 12 25 45 54 12 26 46 65 12 27 47 60 12 28 48 53 13 29 33 55 61 68
75 13 30 34 62 13 31 35 63 13 32 36 56 57 64 76 14 29 37 67 14 30 38 55 14 31
30 56 14 %2 40 58 15 29 41 66 15 30 42 56 15 31 43 55 15 32 44 59 16 29 45 56
65 69 T4 16 30 46 70 16 31 47 71 16 32 48 55 60 72 T3
1 81216 23 27 31 35 39 43 47 51 55 62 66 70 77 81 85 89 93 97104111115119
126133137141145149153157161165169173180187191195202209213217221225229236240244
25125525926326727127527928%2902942983%05
O 00 0O0O0OO0OOOOOOOOOOOOOO0OO0OTO0OTO0OO0OO0 O
0O 0O0OOOOOO OO OO OOOOO0OO0OO0OOOO0OOTO0OTO OO
1 2 3 4 5 6 7 8 91011 1213 141516 17 18 19 20 21 22 23 24
25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 4h4 45 46 47 48
49 50 51 52 53 54 55 56 57 58 59 60 61 62 6364 1 5 913 2 6 10 14
3 71115 4 81216 17 21 25 29 18 22 26 30 19 23 27 31 20 24 28 32
3% 37 41 45 34 38 42 46 35 39 43 47 36 4o 44 48 49 53 57 61 50 54 58 62
51 55 59 63 52 56 60 64 1 17 33 49 218 34 50 3 19 35 51 4 20 %6 52
521 37 53 62238354 7233955 824 4056 925 41 57 10 26 42 58
11 27 43 59 12 28 44 60 13 29 45 61 14 30 46 62 15 31 47 63 16 32 48 64
1 61116 4 7101317 22 27 32 20 23 26 29 33 38 43 48 36 39 42 45
49 54 59 64 52 55 58 61 1 18 35 52 5 22 39 56 9 26 43 60 13 30 47 64
13 25 37 49 14 26 38 50 15 27 39 51 16 28 40 52 16 31 46 61 12 27 42 57
8233353 419 34 49 121 41 61 2224262 3234363 4 24 44 64
1 22 43 64 4 23 42 61 16 27 38 49 13 26 39 52
20 415 310 210 210 2 =1 =1 =1 =1 =1 =1 =1 =1 =1 =1 =1 =1 =1 -1 -1 -1
=] =1 w1 =1 =1 =1 =1 =1 =1 <110 2 5 1 0 0=1=1 =1 =1 =1 «] =] =1 =1 =1
1w 21 =1 2l =T =l =1 S st el w1 e 2 S el = =1 0 210 2 =1 =1 =1 -
=1 =1
10 2 =1 =1 =1 =1 =1 «1 =1 =1 =1 =1 =1 =1 =1 =1 =1 =1 =1 =1 =1 =1 =1 =1 =1 =1
B, P G, QR (O T T T i T e - (., (e (R QP [(P N [, QR .

I [, G, QS (. (NG [T R, G (P, NS, [QRN I T O (R N, [, (R [i N, (RN (e (N,
T4 47440884087 447
Ly 4 4 b 77447744040
Ly hh7744 77444014
T4 474 4454448480874 Y47
10 5 =1 =1 =1 =1 =1 =1 =1 =1 =1 =1 =1 =1 =1 =1 =1 =1 =1 =1 § 5 =1 =1 =1 =1

-1 =1 =1 =1 =1 =1 =1 =1 =1 =1 =1 =1 =1 =1 =1 10 =1 =1 =1 =1 =1 =1 =1 -1 =1 -1
=1 =1 «1 =1 -1
T 41316 22 23 26 27 38 39 42 43 49 52 61 64

(iii)

«

L]

o2

\e,
U

Program listing

JILL DOAKE
4SCORE

IMPLICIT INTEGER(A-Z)
LOGICAL M4

DIMENSTON MOVE(6L4),SuM(76) ,ROW(304) ,ROWDY (304) ,ROWCNT(65) ,TEST(5,32),
1SUTEST(%,20) .SUB(64) ,SUBL(6M4) ,8U1(64) ,LAST(32) ,NEXT(32) ,START(16),
2M11(2,16) ,ROWNO(5) ,MOST(3) ,X(3) LAJUST(Z2) ,WIN(4)

COMMON ROW,TEST,M1.M2,M3,M4,M11,SN,CNT,ROWDY ,ROWCNT ,XYZ

READ ALL DATA

READ(5,101)ROW

READ(5,114)ROWCNT

READ(5,11%4)ROWDY

READ(5,114) ((TEST(I.J),J=1,32).1=1,5)

READ(5,114) ((SUTEST(I,J),J=1,20),T=1,3)

READ(5,104)SUB

READ(5,114)START

READ(5,114)AJUST

SET COUNTS

PCOUNT TS SET TO THE NUMEER OF PATTERNS CURRENTLY LISTED IN TEST
PCOUNT=0

SUCNT TS SET TO THE NUMBER OF PATTERNS IN SUTEST

SUCNT=0 |

CNT=0

COUNT=0

SCOUNT=0

¥Y=0

c CLEAR TIE BOARD
1 DO 2 T=1.64
2 MOVE(I)=0
DO 933 T=1,76
923 SUM(I)=0
c SET LIST OF COMPUTER AND OPPONENT' MOVES TO ZERO
M2=0 |
DO 16 I=1,32
TAST(TI)=0
16 NEXT(IL)=0
C READ OPPONENT'S MOVE, CHECK TOR NO MOVE(O), OR END OF GAME(-)
4 READ(5,100)NEXT1

WRITE(6.,100)NEXTL

Read in the opponent's move and write it out (simply for the
opponent to cheéck that he has typed in the move correctly).
The move is now tested Lo see if it is any of a series of conventional
signals - a minus number indicates the end of the game and start of a
new one, 0 is the conventional sign that the opponent wants to skip his
move and let the computer have the lst move, 99 is the signal to end the

whole session.

IF(NEXT1)14,12,6
6 TF(NEXT1-99)8,7,10
7 CALL EXIT
& IS IT A BLANK SQUARE
8 IF(MOVE(NEXT1))11,11,10

C II" NOT' WRITE ERROR MESSAGE AND TRY AGAIN

10 WRITE(6.105)

GO TO U
c OTHERWISE MOVE ARRAY IS UPDATED TO TAKE ACCOUNT OF NEW MOVE, AND
¢ S0 IS COUNT

11 MOVE(NEXT1)=l
Y=NEXT'.
WRITE (6,109)MOVE
COUNT=COUNT+1
NEXT (COUNT)=NEXT1
WRITE(6 ,102) NEXT

IF(COUNT.EQ.32.AND.SCOUNT.EQ.32)G0O TO 14

This last test ensures that if all the squares on the board are
filled, the game is automatically terminated.

M4 is a logical variable used by Search to distinguish between a
real board position and a look ahead procedure - it is set tc TRUE for

a real board position.

12 Mh=.TRUE.
CALL SEARCH(MOVE,SUM,Y)
IF(M3.EQ.100)GO TO 15
IF(M3.EQ.98)G0 TO 13

IF(M1.GT.0)GO TO 13

This is the start of the calculation of the computer's move.
Search is a subroutine which has a note of the sums of the 76 lines,
which 1t updates with each new move made. The new move is noted in
the variable Y. Using these sums, Search looks to see if there exists

anywhere on the board a situation which forms one of the patterns

38

listed in TEST. M3 will be 100 if someone has 4 in a row, in which
case a wimning message 1s printed and the backtrack analysis starts.
M3 will be 98 if someone has 3 in a row in which case the computer
must immediately play in the blank square left, (either to make up

4 or to stop the opponent's %4) and the number of the square will be
the value of M1. If any other pattern exists, ML will be set to the
number of the "key" square (v.P.17) in this pattern, and the computer

will automatically play there.

IF(SCOUNT.GT.0)GO TO 40
L=KLOCK(J,K)

130 L=KLRAND(L)
M=L* . 465661 28TE-9% 1641
M1=START (M)
IF(MOVE(ML1) .GT.0)GO TO 130

GO TO 13

This part of the program is only used for the very lst move - it
is skipped as soon as SCOUNT, which keeps count of the number of -
computer moves played, is greater than 0. The values of START are the
numbers of the 16 "strong" (v.P.l}) squares on the board. The
computer's lst move is taken from amongst these at random.

"L=KLOCK(J,K)" is the calliﬁg sequence of a program which sets I. to

the time of day in 50ths of a second. "L=KLRAND" is the calling

sequence for a program which, given a number (here the time of day., i.e.L).
generates a new pseudo random number in the range 1 - 251_1.

Mulbtiplying by .N65661287TE-9 produces numbers between O and 1,

multiplying again by 16 and adding one produces numbers between 1 and 16.

The next section is a look ahead for the opponent, i.e.. the
program looks to see if the opponent has any dangerous situations
coming up. The board situation is assessed in terms of the potential
danger from the opponent, and this is reflected in a score for each
square, held in SUBL. The score of the most dangerous (i.e.. highest
scoring) square is compared with the computer's after its own look

ahead.

M4 is set to false to indicate that this is a look ahead. This is
important because it means that instead of returning from Search as soon
as any pattern is discovered, all the patterns found when testing a
particular square during the look ahead, are stored in the array MI11
together with their respective "key" squares. Sometimes two or three

different patterns will be formed by playing in one square.

4o MY=.FALSE.
BIL(:=0
DO 91 T1=1,64

91 SUBL(I1)=SUB(IL1)

This stops the score from accumulating. A single move can make
such a difference to the score that it is worth while recomputing the
whole lot rather than just updating the squares affected.

The score always starts from SUB., not zero. The SUB scores
correspond to the initial wvalues (v.P.ET) of the squares which are
based on the positional value cf the squares. This means that patterns
formed by playing in one of the 16 "strong" squares are automatically

given a better score than the others.

4o

DO 90 I=1.64
TF(MOVE(T).GT.0)GO TO 90
MOVE(T)=1

CATIL SEARCH(MOVE,SUM.T)

The opponent look ahead works by playing an opponent move in every

blank square in turn and then examining the beard position.

DO 954 11=1,16
IF(M11(2,I1).IE.0)GO TO 920
IFP(ML1(2,T1).NE.98)GO TO 911
SUBL(T)=SUBL(T)+4
TF(M11(2,T1+1))954,954,905

911 IF(I1.EQ.1)GO TO 310
IP(M11(1,T1).EQ.M11(1,I1-1))GO TO 905

310 SUBL(TI)=SUBL(I)+9+AJUST(ML1(2,T1))

For each blank square played in during the opponent look ahead,
Search is called and the patterns found in this board position (if any)
listed in M1l. The contents of M1l are examined. M1l lists both the
number of the pattern and the number of the "key" square - the 1lst
column listing the square number and the 2nd the pattern number. If
there are no patterns at all M11(2.,1), i.e., the place for the lst pattern
number, will be 0, in which case control is transferred to statement 920
where the move is unplayed and SUM iz readjusted to take account of this.
The next square will then be tested in the same way, i.e., an opponent

move played in it Sszarch called ete.

If there is a pattern listed in M1l, tests are made to find which
pattern it is. A distinction is made between a pattern of 3-in-a-row
(in which sase M11(2,1) will be 98) and the rest of the patterns.
Because J-in-a-row is not a very valuable pattern., it has a low score
attached to 1t. The score of the square being tested is adjusted
according to which pattern is found, 4 for 3-in-a-row, 9 for any other.
The score in AJUST (V.P.58} for this particular pattern is also added to
the score of the square. Normally this will be zero, but if the pattern
is one to which the computer has lost more than once, the score of the

pattern is raised.

Tf the pattern is 3-in-a-row. a test is made to see if any other
pattern exists. This is done simply by looking to see if the next value
of M1l is greater than zero; pattern 98 will always be listed first.
Statement 911 and the one immediately after it are to stop the score of
a square being added to in certain circumstances. Tt sometimes happens
that althcugh playing in one square forms 2 different patterns, they
can both be stopped by playing in one square. If this is the case, the
"key" square for both patterns will usually be the same‘one. In this
case, statement 310, which adds to the score of the square will be
skipped, and the square will score points for only one pattern. Normally
if more than one pattern is formed., the square scores points for each
pattern, i.e., if 3 patterns are found, 3 lots of points will be added

to the square's original score.

905 Z=M11(1.T1)
MOVE(Z)=5
Mi=.TRUE.
CALL SEARCH(MOVE,SUM.Z)
Mhi=.FALSE.

J=ROWCNT(Z)

"2

JJ=ROWCNT (7+1)-1
DO 906 YZ=J.JJ *
R=ROWDY (YZ)
906 SUM(R)=SUM(R)-MOVE(Z)
MOVE(Z)=0
IF(M1)95%,954,925
925 IF(M2.NE.98)GO TO 934
908 SUBL(I)=0
GO TO 920
934 TF(M3.ME.98)GO TO 907
SUBL (I)=SUBL(L)+30
GO TO 920
907 IF(TEST(1,M3).CT.4.0R.TEST(2,M3).GT.4)G0 TO 908
910 Ml=T
SUB(T)=SUR1(I)+30
GO TO 920

954 CONTINUE

This section looks ahead c¢ne staze further. Once a pattern has
been found during the look ahead, the program looks to see what happens
if the computer tries to stop it - whether another pattern still exists,
or whether forcing the computer to play there actually helps 1t by making
it form a pattern.

Z is set to the no. of the "key" square for the pattern, and
MOVE(Z) set to 5 - i.e., to a computer move. Search is then called,
this time with M4 set to TRUE because it is enough to know if any one
pattern exists without knowing how many.

SUM is adjusted in Search, and readjusted on return from Search

when the computer move is unplayed. 1T there is no pattern ML will be

zero and the next pattern in M1l undergoes the same process.

If there is a pattern we must know whether it is a computer or
an opponent one.

M2 will be 98 only if the computer has 3-in-a-row, which would
mean that forcing the computer to stop that particular pattern has made
up a 3 for it. The score of the sauare being played in to form the 1lst
pattern is therefore given no points at all - playing there forces the
computer to defend by playing in a square which in fact is advantageous
to it. The trial move (opponent) is unplayed, SUM readjusted and the
next square tried.

If M3 is 98 (but M2 is not) then the opponent has 3-in-a-row,
i.e., playing in the trial square forms at least 2 patterns, one of
which is J-in-a-row and the computer cannot stop them both. This is
obviously a very strong position and %0 points are added to the score
of that square.

If the pattern is other than 98, it is o simple matter to
discover whether or not it is a ccmputer one, since the number of the
pattern will be in M3 and this corresvonds to the position of the pattern
in the TEST array. If the lst or 2nd part of the pattern in TEST is
greater than 4, then it must be a compuler pattern. In this case the
score of the trial square is set to zero, otherwise 1t must be an
opponent pattern and the situation is the same as if M3 is 98, i.e.,

30 points are added to the séore of the square. This is the end of

the loop which examines M11l.

920 J=ROWCNT(T)
JJ=ROWCNT(I+1)-1
DO 912 YZ=J,JJ

R=ROWDY (Y7)

hh

912 SUM(R)=SUM(R)-MOVE(I)

MOVE(T)=0

This unplays the trial move and sets SUM back to what it was before the

move was made.

TF(SUBL(I).LE.BIG)GO TO 90
BIG=SUBL(1)
BLGOPP=I

Q0 CONTINUE

This section is used to find which sguare has the biggest score.
This is stored in BIG and the number of the square in BIGOPP. The
score of each square is examined after SEARCH has been called and M1l
examined. This score is compafed with the current value of BIG and if
it is bigger., then BIG takes this value and BIGOPP the number of the
square. This ends the opponent look ahead loop.

- The computer now looks ahead for itself.

LARGE=0
DO 50 I=1,64

50 SUBL(I)=SUB(T)
DO 52 I=1,64
IF(MOVE(I).GT.0)GO TO 52
MOVE(TI)=5
CALL SEARCH(MOVE,SUM,T)
DO 54 T1=1,16
IF(M11(2,I1).IE.0)GO TO 720

TF(M11(2,I1).NE.98)G0 TO 811

SUBL(T)=SUBL(T)+5

L5

IF(M1L(2,11+1))54.54,805

811 IF(I1.EQ.1)G0 TO 801
IF(M11(1,I1)-M11(1.T1-1))801,805,801

801 SUBL(I)=SUB1(I)+10

805 Z=M11(1.T1)

MOVE(Z)=1

Ml=.TRUE .

CALL SEARCH(MOVE,SUM,Z)
Mi=.FALSE.

J=ROWCNT(Z)
JJ=ROWCNT(Z+1)-1

DO 806 YZ=J,JJ

R=ROWDY (YZ)

806 SUM(R)=SUM(R)-MOVE(Z)
MOVE(Z)=0
TR(ML)5%4,54,825

825 IF(M2.EQ.98)a0 TO 810
IF(M3.NE.98)G0 TO 807

808 SUBL(I)=0
GO TO 720

807 IF(TEST(1,M3).IT.5.0R.TEST(2.M3).LT.5)G0 TO 808

810 M1=T
J=ROWCNT(T)
JJ=ROWCNT(T+1)-1
DO 809 YZ=J.JJ
R=ROWDY (YZ)

809 SUM(R)=SUM(R)-MOVE(T)
MOVE(I)=0

GO TO 13

46

54 CONTINUE

720 J=ROWCNT(T)
JI=ROWCNT(T+1) -1
DO 812 Y7=J,JJ
R=ROWDY (Y%)

812 SUM(R)=SUM(R)-MOVE(T)
MOVE(T)=0
TF(SUBL(T).LE.IARGE)GO TO 52
LARGE=SUB1(T)

Q=T

'
n

> CONTINUE

This works in almost exactly the same way as the opponent lock
ahead, appropriate adjustiments being made to allow for it being the
computer look ahead. The main difference 1is, that instead of adding 30
to the score of a square which forms a pattern which camnnot be stopped.
that square is automatically played in. Thus no matter how large the
opponent's best score is, if the computer thinks it can win, it does not

.defend. This is Jjustifiable because the computer is one move ahead.

IF(LARGE.GE.14)G0 TO 715

TR(BIC.GT.15)G0 TO 715

I either of these situations occur it means that a pattern other
than % in a row has been discovered during the look ahead. In this case
the section of programming which follows is skipped because it is
redundant. Also if BIG is greater than 15 it will be bigger than
CHARGE (v.P.%3) can ever e, therefore there is no point in working

out CHARGE.

1|.7

The next section is a look ahead procedure which locks for the
patterns listed in TEST as they would be one move before, i.e., it
locks for a situation which in one move could form a pattern listed in
TEST. For example, instead of looking for two converging twos, it will

lock for a row of two converging with a row of one.

500 CHARGE=0
DO 5555 T=1,64

5555 SUBL(T)=SUB(T)

DO 502 1=1,64
IF(MOVE(T).GT.0)GO TO 502
MOVE(T)=5
CALL SUGOAL(MOVE,SUM,SUTEST,T)
J=ROWCNT(T)
JJ=ROWCNT(I+1)-1
DO 18 TI=J.JJ
R=FOWDY(II)

18 SUM{R)=SUM(R)-MOVE(T)

5301 MOVE(1)=0 2
TH(M1.GT.0)SUBL(T)=SUBL(I)+8
TF({SUBL(T) .LE.CHARGE)GO TO 502
CHARGE=SUBL(T)

Q=T
502 CONTINUE

TF(CHARGE .GT .JARGE)GO TO 510

Thnis look ahead is basiecally a simplified version of the other two.
The scoring starts from the SUB values. FEach blank square is played in
in turn - it is used only as a computer loock ahead. The subroutine SUGOAL

is then called. This subroutine is basically similar to SEARCH.

43

The patterns are generated in the same way as those in TEST by simply
unplaying one move more in the backlrack analysis. SUM is then
readjusted and the move unplayed. If a pattern has been found M1 will
be greater than 0. In that case a score of 8 is added to the score
of the trial square. The last section finds the largest scoring square
whiech is stored in QQ while its score is keplt in CHARGE. If there is a
pattern at all, the next part of the program will be redundant and is
skipped.

What follows is a very simple method of scoring, based on how
many counters have been played (known as the "counter scoring system" - CSS).
It is a simple way of selecting a square to play in when no patterns can be

found during the look aheads.

DO 27 I=1.64
27 SUL(I)=SUB(I)

DO 17 I=1,T76
IF(SUM(I).NE.5)G0 TO 820
G=l*T
H=G-3 -
DO 779 T1=H.G
R=ROW(T1)

779 SUL(R)=SUL(R)+1
GO TO 17

820 IF(SUM(I).NE.10)GO TO 17
G=l*T
H=G-3
DO 778 Il=H.G
R=ROW(T1)

778 SUI(R)=SU1(R)+2

17 CONTINUE

49

As with the other scoring systems, the counter scoring system
starts with the initial values of the squares. Each line is then
tested in turn to see if its sum adds up to 5 or 10. If it is 5 one
point is added to each square in the row, if it is 10 two points are
added.

To find which squares are in a certain row, we multiply the
number of the line by 4 and set G equal to the result. We then subtract
5 and set H equal to that number. The ROW array is so arranged that
these two subseripts of ROW - i.e., ROW(H) and ROW(G) have as their
values the beginning and end squares of the line in question, and the

ROW subscripts in between have as their values the squares in between.

k7 MARGE=0
DO 42 T1=1,64
TF(SUL(I1).IE.MARGE)GO TO 42
IF(MOVE(T1).GT.0)GO TO 42
MARGE=SUL1(I1)
TL=I1

42 CONTINUE

This loop finds the square which, using the above system, has
the highest score. checking that the square has not been played In

already. The method used is the same as for finding BIG.

510 IF(CHARGE.LT.BIG)GO TO 56
TF(CHARGE .LE.MARGE)GO TO 57
LARGE=CHARGE

M1=QQ

GO TC 13
715 IF(BIG.GT.LARGE)GO TO 56
57 IF(LARGE.GT.MARGE)GO TO 53
58 LARGE=MARGE
M1=L1,
GO TO 13
53 M1=Q
GO TO 13
56 IF(MARGE.GE.BIG)GO TO 58
TARGE=BIG

M1=BIGOPP

The scores of the squares selected by different methods are compared.

M1l is set to the square with the highest score.

1% SCOUNT=SCOUNT+1
MOVE (i1l)=5
"LAST(SCOUNT)=M1

c WRITE OUT COMPUTER'S MOVE
WRITE (6,108)M1

WRITE (6,112)LAST

The selected square is played, i.e., MOVE(MI) is set to 5. The move is

added to the list of computer moves in LAST and SCOUNT updated.

51

XY Z=1
V=M1

Ml=.TRUE.

CALL SEARCH (MOVE,SUM.Y)
XYZ=0

IP(M3.EQ.1C0)GO TO 15

GO TO 4

SEARCH is called to update SUM. At this stage a check is
made only to see if the compuber has 4 in a row. XYZ is used as a
switch to limit the searching in the subroutine. Control is then

passed to statement 4, where the opponent's next move is read in.

14 WRITE(6,107)

O TO 1

This starts a new game. Cecntrol iz passed to this statement if a minus

number is read in as the opponent's move.

15 H=SN*4
G=H-3%
J=0
DO 134 T=G.H
J=J+1

134 WIN(J)=ROW(I)
TIF(M2.NE.100)G0 TO 135
WRITE(G,106 JWIN

GO TO 64

135 WRITE(6,231)WIN

This simply writes ocult a winning message and the numbers of
the squares in the winning line. 3N hnolds the number of the winning
line. To find which squares are in this line the same method is used
as in the CS5. These four squares are put in the array WIN which is
then written out with an appropriate message - if M2 is 100 it is a
computer win.

The rest of the main program forms the backtrack analysis.
ROWNO is used to keep track of which rows (or lines) were involved

in the winning pattern.

¢ BACKTRACK ANALYSIS
64 DO 77 I=1,5

77 ROWNO (I)=-1

NOCNT=0

GCNT=0

PATT 1=-1
PATT 2=-1
PATT 3=-1
PATT l4=-1
PATT 5=-1

All these varlables have to be set before each new backtrack.

IF(M2.EQ.100)G0 TO 220

There is a separate analysis for computer and opponent wins. The first
is for an opponent win - if M2 is 100 the computer has won and the

first bit is skipped.

o

76

5

=
12

GCNT=GCNT+1
DO 72 Il=J,N

MOVE (NEXT (COUNT))=5

MOVE (LAST(SCOUNT))=0

DO 73 12=1,64
TR(MOVE(T2).GT.0)G0 TO 73
MOVE (T2)=1

DO 75 T4=1,76

SUM(T4)=0

H=l*T 4

G=H-3

DO 76 I3=G.H

R=ROW(T3)
SUM(T4)=SUM(T4)+MOVE(R)
TF(SUM(I4).NE.4)GO TO 75
MOVE (NEXT(COUNT))=0

MOVE (I2)=0

ROWNO(N)=T4
COUNT=COUNT-1
SOUNT=SCOUNT-1

N=N+1

GO TO 72

CONTINUE

MOVE(I2)=0

CONTINUE

CONTINUE

MOVE (NEXT (COUNT'))=0

GO TO 200

The actual backtracking is done in this loop. The program unplays

the last computer move by setting it to zZero. ard sels the last opponent
move to a computer move by setting it to 5, i.e.. the program locks to
see 1f the opponent would still have won 1f the computer had played its
last move where the opponent did instead of playing where it did. To

do this an opponent move is played in each vacant square in turn and the
lines added up to see if one comes to four. If such a line is found this
means that even if the computer had played its last move where the
opponent did, the opponent could still have won, i.e.., the opponent's
second last move made up at least two separate lines of three and the

computer could not stop them both: its last move stopped one line of

three but left another one for the opponent tc make up to four.

The object of the backtrack analysis is to analyse a board
position one move before it is unbeatable (or foreing). There is no
point in recognising an unbeatable board position once 1t has been
formed, the program must recognise it before it is flormed. With this
aim in mind the program unplays the moves on a winning board position until

the opponent can no longer win in one move.

Let us suppose the opponent has won by forming this board position.

no
—

Figure

The program has a list of the opponent's and computer's moves in the
order they were played in the arrays NEXT and TAST. SCOUNT and COUNT are

counts of how many opponent and computer moves have been played so that

NEXT(COUNT) contains the latest opponent move. Tf the last opponent

move 1s set to a computer move, and the last computer move to zero,

this gives the position:

Figure 22

0

Obviously the opponent still can win by playing in the square which
originally contained the computer's last move. Therefore the board

position

Figure 23

is unbeatable - wherever the computer plays the opponent can still win.
The program must therefore unplay another move to achieve its geoal of
storing a board position one move before it is unbeatable. The program
sets fo zero the square it has just set to 5, i.e.. the sguare which was
the opponent's last move, and similarly with the square which contained

the computer's original last move.

A note has already been taken of the number of the winning line in
the variable SN. ROWNO takes note of the other lines involved in the
winning pattern. 1In the above example this is the line in wihiich the
opponent could still win after the computer's last move was clinzed.
This will nearly always be the line the computer stopped with its last
move. In this case there are only two lines involved in the winning
pattern. Tf there are more lines involved they are stored cne at a time

in ROWNO, each time a move is unplayed.

To get the second last moves, we subtract one from SCOUNT and
COUNT, and In order to go through the loop conce more we add 1 to N.
The length of the loop depends on N,which is set to 1 initially and
added to each time it is found necessary to unplay another move.
After going through the loop again (unplaying another move) the board

position will be as in Figure 24.

1 1 1 1
111 i 1 |
5

igure 24 Figure 25

In this case the opponent can no longer win in one move and the beard
position in FMigure 25 is considered unbeatable in one move, i.e.. unless

it is stopped by playing where the five is in Figure 24.

Let us take a more complicated example and look at the sequence of

board posiiions during the backtracking analysis

; rh sl

i T e fe—— the arrows indicate the latest

% 1 two moves, i.e., the ones which

E 1 ? will be unplayed if necessary.
ﬁ\ =

Figure 26

B

¢

Figure 28

Figure 29

The same process with appropriate

the computer wins, i.e., the opponent's

last move was, and tests made to see if

This section is

skipped if the opponent

The altered move is ringed.

The computer's last move is

played where the opponent's last
move was, its original last move
being left blank. The opponent

can still win in one move so the
next two moves are unplayed and the

altered move set to zero.

The opponent can still win in
one, so another set of moves

must be unplayed.

The computer's last move did not
influence this pattern and so is
not shown. The opponent can no
longer win in one, therefore this
board position without the five is
the one that will be analysed and
stored as one move before being

unbeatable (or forcing).

adjustments is gone through if
move is played where the computer's

the computer can still win in cne.

won.

220

95

226

225

203%

222

58

N=1
J=1

GCNT=GCNT+1

DO 222 T=J,N

MOVE (LAST (SCOUNT) =1

MOVE (NEXT(COUNT) =0

DO 223 T1=1,64
TF(MOVE(TI1).GT.0)GO TO 223
MOVE(T1)=5

DO 225 12=1,76

SUM(T12)=0

H=l*12

G=li-3

DO 226 T3=,H

R=ROW(I3)

SUM(T2)=SUM(I2)+MOVE(R)
Ir(SUM(I2).NE.20)GO TO 225
MOVE(LAST (SCOUNT))=0
MOVE(T1)=0

ROWNO(N)=T2

COUNT=COUNT-1
SCOUNT=SCOUNT-1

N=N+1

CONTINUE

MOVE(I1)=0

CONTTINUE

CONTINUE

MOVE(LAST(SCOUNT))=0

The next section of the program forms the analysis of the board
position to find the winning pattern. Firstly the lines of the Tinal
board position reached during the backtrack analysis are summed, i.e.,
the lines of the board position which is one move before being

unbeatable.

200 DO 4% 1=1,76
SUM(T)=0
H=l*T
G=l1-3
DO 43 11=G,H
R=ROW(T1)
SUM(I)=SUM(I)+MOVE(R)

4% CONTINUE

The sums of the lines involved in the winning pattern, i.e..
SUM(SN) and the sums of the lines stored in ROWNO, will be the numbers
listed in the TEST array as a new pattern. IHowever, it i1s very important
that tﬁe lines are listed in TEST in the right order. This is because of
the way SEARCH works. SEARCH takes the sums of the lines of a given
board position and locks for esach of the patterns in TEST in a specific
way. It looks first for a line adding up to the first number of the
pattern in TEST, then for a line adding up to the second number. which
has a blank square in common with the first line, ete. What is important
about the ordering of the lines, is that SEARCH looks for the right line
intersection. With two lines it does not matter which line it finds
first. However, with any greater number it is important; e.g., for the

board position:-

60

Figure 30

it is important to leook for a line of two with a blank square in
common with a line of one, which has a blank square in common with
another line of two, i.e., it is the line of one which must have a
blank square in common with the other two. Similarly with the board
position in TFigure 31, line 1 must have a blank square with three

separate rows adding up to two.

= iELine i

Migure 31

In the analysis of a new board positicn it is important to
find which line it is that must intersect with the others. This
line is one which is built up by making up threes in the other lines
and is always either the winning line or the last line stopped by the
opponent before a win. Recause of the way SEARCH works it must always
be listed as the second line in TEST, i.e., it must always be the
second line SEARCH looks for. This is the only thing that matters in
the ordering, the rest of the lines can be in any order.

To find this line it is necessary simply to know which line
has most blank squares in common with all the other lines involved,

e.g.t

61

1 Line 1 has one blank square in common

S with any other line involved; similarly

o
1/] with line 2. However line 3 has two
d " ; +
2 3 blank squares in common with the other
lines involved, one in common with line 1
i and one in common with line 2. This
Figure 32

therefore is the line which must go

second in the pattern.

IF(N.LT.3.0R.GCNT.GT.1)C0O TO 88

i.e.. if less than three lines are involved skip the next sectlon which

does the ordering.

G=4*3N

H=(i~%

G1 =l ROWNO (1)

H1=G1-3

G2=lx ROWNO(2) <

H2=(2-3

This takes the three lines to be ordered, the winning line and the
first two found in the backtrack analysis and sets the variables
G, H, G1, H1, G2, H2 to the ROW subscripts which will contain the first

and last squares making up these lines.

DO 403% 1=1,3

ho3 x(1)=0

62

The array X is used to count the intersecting squares in each line.
X(1) keeps count for SN, the winning line.

X(2) for ROWNO(I)

and X(3) for ROWNO(2)

This array is set to zero.

All three lines are now compared with each other in respect of

intersecting blank squares.

DO 80 I=H,G
R=ROW(T)

TF(MOVE(R) .GT.0)GO TO 80

R1=ROW(I1)
I(MOVE(RT) .GT.0)GO TO 81
IF(R.NE.R1)GO TO 81
X(1)=x(1)+
X(2)=x(2)+1

81 CONI'INUE

80 CONTINUE

The ©first loop takes each square in SN in turn checks that it is a
blank srquare, as played in squares do not count, and each square is
compared with all of the blank squares in ROWNO(I). TIf any square in SN
is also in ROWNO(TI) then one is added to the counters of both lines,
i.e., %(1) and X(2). This process is repcated until every line has been

compared with all the others.

63

DO 82 T=H,G
R=ROW(I)
IF(MOVE(R) .GT.0)GO TO 82
DO 83 T1=H2,G2
R1=ROW(T1)
TF(MOVE(R1).GT.0)GO TO 83
IF(R.NE.R1)GO TO 83
X(1)=x(1)+1 -
X(3)=X(3)+1

8% CONTTINUE

82 CONTINUE
DO 84 T=H1,G1
R = ROW(TI)
IF(MOVE(R) .GT.0)GO TO 84
DO 85 112,62
R1=ROW(T1)
TF(MOVE(R1).GT.0)GO TO 85
TF(R.NE.R1)GO TO 85
x(2)=x(2)+1
X(3)=X(3)+1

85 CONTINUE

34 CONTINUE

Now X(1), X(2) and X(3) are compared and put in MOST in descending
order so that MOST(1) contains the subscript of X which held the score

of the line with the most intersecting squares.

64

'

Tn the above example (Figure 32) let us suppose line 2 is the
winning line (SN), ROWNO(I) is line 3 and ROWNO(2) is line 1. 1In this
case X(T), keeping count of the intersecting lines in SN will be 1: X(2)
for ROWNO(I) will be 2, and X(3) will be 1. When these scores are
compared MOST(1) will be 2 as X(2) has the biggest score and since the
other two are equal they will be put in MOST in the order ﬁhis bit of

the program comes to them.

DO 400 I=1,3
TARGE=0
DO 201 11=1,3
TR(X(L1).18 . LARGE)GO TO 401
LARGE=X(11)
Q=I1
401 CONTINUE
X(Q)=0
MOST(1)=0

LOO CONTINUE

Having found the row with the most intersecting squares it only
remains to put it and the other rows in the right order in the pattern.
The variables, PATT 1-5, are set to the sums of the lines involved, in
the order they will be in thé TEST array. Each pattern in the TEST array
has five elements which allows room for a pattern involving up to five
lines. each element of the pattern containing the sum of one line. If a

patitern involves less than five lines the remaining elements are set to -1.

TF(MOST(1).NE.1)G0 TO #10
PATT 2=SUM{SN)
TR(MOST(2) .NE.2)G0 TO M1
PATT 1=SUM(ROWNO(1))
PATT 2=SUM(ROWNO(2))
GO TO 87

411 PATT 1=SUM(ROWNO(2))
PATT 3=SUM(ROWNO(1))
GO TO 87

410 IF(MOST(1).NE.2)GO TO 420
PATT 2=SUM(ROWNO(1))
IP(MOST{2).NE.1)GC TO 412
PATT 1=SUM(SN)
PATT 3=SUM{ROWNO(2))
GO TO 87

B2 PATT 1=SUM(ROWNO(2))
PATT 3=SUM(SN)
Go 10 87

420 PATT 2=SUM(ROWNO(2)
TE(MOST(2).NE.1)G0 TO 13
PATT 1=SUM(SN)
PATT 3=SUM(ROWNO(1))
G0 TO 87

413 PATT 1=SUM(ROWNO(1))

PATT 3=SUM(SN)

The program tests to see which of the three lines is the one which
must go second in the pattern,i.e., which line has the most blank squares

in Common with the other two lines.

66

If MOST(1) is 1 then the winning line (SN) is the line which must go
second. PATT 2, i.e., the second element in the pattern, is set to SN.
The program ﬁhen tests to see which line has the next most intersecting
squares. This line will be in MOST(2). It is not really important in
what order the rest of the lines are put in the pattern so long as the
first element of the pattern is set to the sum of one and the third
element to the sum of the other (and not the first and third elements set
to the sum of the same line).

If MOST(1) is not 1 the program tests to see if it is 2. If so the
same process is éone through with PATT 2 set to sum of ROWNO(2). If not,
MOST(1) must be 3 and the process is gone through with PATT 2 as the sum

of ROWNO(2).

87 IF(N.GT.2)GO TO 89

88 PATT 1=SUM(SN)
TF(N.EQ.1)GO TO 44
PATT 2=SUM(ROWNO(1))
TF(N.EQ.2)GO TO 44
PATT 3=SUM(ROWNO(2))

'89 TR(N.EQ.3)GO TO 44
PATT U4=SUM(ROWNO(3))
TF(N.EQ.4)G0 TO 44

PATT 5=SUM(ROWNO(4))

The programming between statement 88 and instruction before statement
89 are relevant only if the analysed board position involved less than
three lines (in which case N will be less than 3) because this part of
the program sets PATT 1 and PATT 2, which are already set if more than

two lines are involved.

Every time an element of the pattern is set, a test is made to see how
many lines are involved in this particular pattern. As many elements
of the patterns are set as there are lines involved, the rest are left

as -1.
44 TF(GCNT.GT.1)GO0 TO 97

GCNT is a count used to skip those sections of the backtrack analysis
not relevant to the setting of SUTEST. To work out the pattern to be
put in SUTEST thﬁ relevant backtracking loop has to be gone through once
more, so that one more move is unplayed. When this has been done it is
inappllecable Lo call subrouilne TESTT, and lhe new paltern must be
listed in SUTEST not TEST. To skip the relevant part of the program

the count GCNT is used. T+t is set to 0 at the beginning of the backtrack
analysis. FEach time the prograﬁ comes Lo the beginning of one of the
backtracking loops, one is added to GCNT. This will happen once during
the original backtracking and cnce when werking out the pattern for
SUTEST. At this stage GCNT will be 1 and the following program

instructions are not skipped.

c CALL SUBROUTINE TESTT T0 SHE IF THIS PATTERN HAS ALREADY BEEN LISTED
IF NOT ADD IT TO THE TLST ARRAY

45 CALL TESTT (PATT 1, PATT 2. PATT 3, PATT 4, PATT 5, ANS, SAME)

TESTT is a subroutine which checks whether the pattern worked out by
backtrack analysis is already listed in TEST. AN3S will be sel to -1 if
this is the case. T1Ff a pattern is found to be already listed in TIEST,
the varisble SAME is set to the number of the pattern, i.e., to the

relevant subscript of TEST. This is used to update AJUST.

68
NOCNT=NOCNT+1

NOCNT keeps count of how many times TESTT is called during the

backtrack analysis.

TF(M2.EQ.100)GO TO 251

IF(SAME.GT.0)AJUST (SAME) =AJUST(SAME)+1

The array AJUST is used to adjust the scoring system. Tt has as many
subscripts as thére are patterns in TEST and every pattern has a score.
Originally they all score zero but every time Lhe computer loses to a
pattern already listed, the relevanrt subscript in AJUST has one point
added to it. During the lookaheads the score of a batﬁevn in AJUST is

added to the marks allotted to that particular pattern (V.P.H1).

251 TF(ANS.EQ.-1)GO TO 46
PCOUNT=PCOUNT+1
TEST (1,PCOUNT)=PATT 1
TEST (2,PCOUNT)=PATT 2
TEST (3,PCOUNT)=PATT 3
TEST (4,PCOUNT)=PATT 4

TEST (5,PCOUNT)=PATT 5

This adds the new patlern to the TEST array. I[1f the pattern is already
listed this section is skipped. A new pattern is always listed both as an
attacking and as a defending pattern; i.e., it is listed as multiples of
5 and multiples of 1. TIf the new pattern was derived from an opponent win,
the elements of the pattern are multiplied by 5 to make it a computler
pattern, and if it was a computer win the elements are divided by 5.

= AT | S P pi =g
When the second version of the pattern is generated subroutine TESTT

69

is called again and the pattern added to the TEST array. Therefore once
TEST has been called twice and NOCNT is greater than 1, the new

pattern is adequately represented in TEST.

IF(NOCNT.GT.1)GO TO 33

IF(MC.EQ.100)GO TO 254

The next section is relevant only if the new pattern came from an
opponent win and is first listed in terms of an opponent board position,

i.e., as multiples of 1.

IF(PATT 1.GT.O)PATT 1=PATT 1%5
IF(PATT 2.GT.0)PATT 2=PATT 2%5
IF(PATT 3.GT.O)PATT 3=PATT %*5
IF(PATT 4.GT.0)PATT 4=PATT 4%5
IF(PATT 5.GT.0)PATT 5=PATT 5*5

GO TO 45

This multiplies the elements of the pattern by 5 to list it in terms of

a computer board position, and goes back to call TESTT.

245 IF(NOCNT.GT.1)GO TO 33
PATT 1=PATT 1/5
IF(PATT 2.GT.0)PATT 2=PA1. 2/5
IF(PATT 3.GT.0)PATT 3=PATT 3/5
IF(PATT 4.GT.0)PATT 4=PATT 4/5
IF(PATT 5.GT.0)PATT 5=PATT 5/5

GO TO 45

70

This does the reverse procedure if the pattern came from a computer win.
-1 = 7
97 TF(PATT 4.GE.0)GO TO 96

TF(PATT 2.LT.0)GO TO 96

The next section further analyses the winning board position for
inclusion in SUTEST. SUTEST only lists patterns involving less than 4
and more than 1 lines as these are generally the most useful. Therefore
if PATT 4 is set, i.e., greater than -1, the pattern is not listed.

Similarly if PATT 2 is not set.

IF(M2.EQ.100)GO TO 250
PATT 1=PATT 1%5
PATT 2=PATT 2%5
PATT 3=PATT 3*5

250 SUCNT=SUCNT+1
SUTEST (1,SUCNT)=PATT 1
SUTEST (2,3UCNT)=PATT 2

SUTEST (3,SUCNT)=PATT 3

SUTEST lists only computer patterns therefore if the new pattern came
from a computer win it is immediately listed, otherwise the elements
are multiplied by 5 and listed.

In fact this part of the program is not reached until the
follewing section of the program has been completed. The section
following goes back to the appropriate computer or opponent backtracking
loop, unplays one more move, analyses the resulting beard position to form

a pattern which is then processed by the above section of program.

7
3% TF(GCND.NE.1)GO T0 96

The next scetion is only relevant if the appropriate backtracking
loop has only been used once. Once the computer has gone through the
loop again to analyse the board position for SUTEST, GCNT will be 2 and

when this statement is reached the computer will skip to the end of the

whole backbrack analysis.

N=hH1

J =N

These two variables control the number of times the backtracking loop

is gone through (v.P.53). To unplay 1 move il need only be done once.

COUNT=COUNT-1
SCOUNT=8COUNT-1
IF(M2.EQ.100)G0 TO 95

Go 1O 94

1 is subtracted from SCOUNT and COUNT to point to the move before the

last one unplayed.

The bepinning of the computer backtrack loop is at statement 95 and

the opponent one at statement 94.

06 GO TO 1

This begins a new game.

109

112

T2

FORMAT(T3)

FORMAT(2473)

2 FORMAT(' NEXT ARRAY IS',1X,413,/.3(15X,413./).4(15X,413,/))

FORMAT(1612)

FORMAT(' ILIEGAL MOVE,TRY AGATIN')

FORMAT(' COMPUTER WINS ON',414)

FORMAT(' RESTART GAME')

FORMAT(' COMPUTER'S MOVE IS SQUARE NUMBER',I3)
FORMAT(412)

FORMAT(' LAST ARRAY IS',1X,413,/,3(15X,413,/),4(15X,413,/))
FORMAT(2613)

FORMAT(' THIS PATTERN IS ALREADY LISTED')
FORMAT(' YOU WIN ON',414)

FORMAT(' M1',I3)

END

SUBROUTTNE TESTT is used to check that the pattern found by the analysis

of a

winning board position is not already listed. TIf the pattern is

listed the variable ANS is set to -1 and the variable SAME to the number

of the pattern in the TEST array. If not they are both left as 0.

SUBROUTINE TESTT(A,B,C,D,E,ANS,SAME)

IMPLICIT INTEGER(A-Z)

DIMENSION ROW(304) ,ROWDY (304) ,ROWCNT(65)
TEST(5,32),SUB(64),1AST(32),NEXT(32),M11(2,16)
COMMON ROW,TEST,M1,M2,M3,M4,M11,SN,CNT ,ROWDY , RONCNT
SAVME=0

ANS=0

IF(A.LT.0)GO TO 16

TEST1=A

2 TEST2=B
TEST3=C
TESTU4=D

TESTH=E

The dummy variables A,B.C,D.E hold the values of the 5 elements
of the pattern, e.g., for the pattern 2,1,2; A would be 2, B would be 1,

C would be 2, and D and E would be -1.

DO 22 11=1,32
IF(TEST(1,T1).EQ.~1)G0 TO 16
TF(TEST(1,I1).NE.TEST1)GO TO 22
TR(TEST(2,11) .NE.TEST2)GO TO 22
TR(TEST3,T1) .NE.TEST3)GO TO 22
TPR(TEST(4,T1) . NE.TEST4)G0 TO 22
IF(TEST(5.11) .NE.TEST5)G0O TO 22
ANS=-1
SAME=I1

22 CONTINUE

16 RETURN

END

If the program finds thé first element in one of the patterns
listed in TEST to be equal to the [irst element of this new pattern,
it looks to see if the second elemecnt of the same pattern in THEST is equal
to the sccond element of the new patbtern. TIf so it checks the third,
fourth and fifth elements and if they all tally, then ANS is set to -1,
and SAME is set to the number reached in the first loop, which corresponds

to the number of the pattern as it is listed in the TEST array.

Tf at any stage of the search an element in the new pattern
differs from the corresponding element in the TEST array, tnen the next
pattern in the TEST array is tried.

If the first element of a TEST pattern equals -1 this means that
all the patterns listed in TEST have been tried and the new pattern is
not amongst them and control is returned to the main program with

ANS set to O.

SUBROUTINE SEARCH

This subroutine does the bulk of the work in the selection of a
move. Basically. given a board position it looks to see if it
contains any of the patterns listed in TEST. The patterns are all
listed as combinations of sums of the lines, therefore the SUBROUTINE
must keep an up to date account of these sums. SEARCH is only called
after a new move has been made either in reality or in a look-ahead.
Therefore the first thing it does is to update the relevant line
sums to take account of the new move.

It then takes each pattern in turn and checks if any pattern can
be formed by any combination of the sums of the existing lines. Tt is
not enough that the appropriate lines should exist, e.g., thal three
lines should exist which add up to the three elements of a pattern.
These three lines must have a certain relationship to each other. The
relationship is always the séme. The first line (which corresponds to
the first element of the pattern) must have a blank square in common
with a line adding up to the second element in the pattern and (if a
third line is involved) the second line must have a blank square in

common with the third line ete.

™

SUBROUTINE SEARCH(MOVE,SUM,Y)

IMPLICIT INTEGER(A-Z)

LOGICAL M4

DIMENSION MOVE(6M4),SuM(T76),ROW(304) ,ROVDY(304),
1 ROWCNT(65),TEST(5,%2) ,SUTEST(3,20) ,SUB(64) ,LAST(32) ,NEXT(32) ,
2 M11(2,16)

COMMON ﬁOW, TEST ,M1,M2,M3,M4,M11,SN,CNT, ROWDY , ROWCNT,

M3 and M2 are set if a pattern is found, and must always be set back to
zero for a new board position, as there may be no pattern in the new

board position. The same aspplies to MIICNI and Mil.

68 M11CNT=0
DO 4% 1=1,2
DO 43 11=1,16
43 M11(1,11)=0

IF(Y.EQ.0)G0 TO Th

Y will only ever be zero it the opponent lets the computer move first
by setting his move to 0. Tn this case there is no updating of the

sums of the lines and the following section is skipped.

J=ROWCNT(Y)
JI=ROWCNT (Y+1)-1
Do 80 I=J,J3J
R=ROWDY ()

80 SUM(R)=SUM(R)+MOVE(Y)

.—(6

The dummy variable Y is always sel Lo the number of the new move in
the MOVE array. The updating of the lines is done in exactly the same
way as in the main program. For the sake of clarity the first four
patterns in TEST are tested for separately. The first 4 patterns are
h-in-a-row, for both sides, and %-in-a-row for both sides, i.e..
20,4,15,3. These situations are treated in a different way from other
patterns. Locking for these four patterns in any case is very quickly
done as each pattern involves only one line. Tf any of these patterns
exist (unless it is during a look ahead) there is no point in looking

for any other pattern as the game is either finished or about to be

finished, unless the computer can stop the opponent making a 4, in which

case it must do this immediately.

T4 DO 20 I=1,4
DO 20 I1=1,76
IF(SUM(I1).NE.TEST(1.,1I))GO TO 20
SN=I1
IF(I.GT.2)GO TO 15
M3=100 :
TF(SUM(T1).EQ.20)M2=100
RETURN

15 M3=98
IF(SUM(T1).EQ.15)M2=98"
GO TO 19

20 CONTINUE

Each pattern in turn is compared to all the sums of the lines.
The first two patterns are 20 and %. If one of these exists M3 is set

to 100. SN takes note of the number of the line with the pattern in it.

11

A separate besh is made to see if in fact it 1s a computer win, in which
case the line will add up to 20.

If so M2 is set to 100. Control is returned to the main program.
Tf the third or fourth pattern exists M3 is set to 98, and M2 is set to

98 if it is a computer pattern., and the rest of the loop is skipped.

19 TF(M3.1'E.98)60 TO 32
G=4*3N
H=(i-3
DO 30 T=H,G
R=ROW(T)
TF(MOVE(R))31.31,30
30 CONTINUE

31 M1=R

The familiar process is used to find out which squares are in this line
and which one is blank. When the blank square is found M1 takes a note

of 4k.

IF (1%)RETURN
M11CNT=1
M11(2,M11CNT) =08

M11(1,M11CNT) =37

M4 is a logical variable which is TRUE if all that is wanted is
to know if a pattern exiéts dt all. T% is FALSE if a list of all the
patterns existing is reguired. Tn most cases this will be the
distinetion between a real beoard position and a loock ahead. If M4 is TRUE,

control is returncd to the main program. Otherwise M11CNT is set to 1

78

(this will always be the first pattern) and M11 takes note of the
pattern number (98) and the key square (M1). The program then tests
for any other patterns.
32 IF(XYZ.EQ.1)RETURN
DO 21 I=5,32
M3=I
TEST1=TEST(1,I)
IF(TEST1)29,2,2
2 TEST2<TEST(2,I)
71 TEST3=TEST(3.,I)
TEST4=TEST (4,I)

TEST5=TEST(5,I)

As the first four patterns have been dealt with, the loop starts
at 5. If TEST! is ever less than 0 it means that all the listed
patterns have been tried and the computer skips to the end of the

subroutine. The program now looks for a line whose SUM=TEST1.

DO 22 T1=1,76

IF(SUM(I1)-TEST1)22,4,22

Having found it, it looks for a blank square on that line.

4 G=b*11
H=G-3
DO 23 I2=H,G
M1=ROW(T2)

TF(MOVE(M1))23,10,23

9

C M1 TAKES NOTE OFF THE BLANK SQUARE
c PROGRAM LOCKS FOR A LINE WHOSE SUM EQUALS TESTZ2

10 DO 24 I3=1,76

IF(SUM(T3)-TESTS)24,6,24

Having found it, the program locks to see if the blank square in the
first line is also in this line and checks that this line is not the

same line as the first line.

6 IF(I3-I1)7,24,7
7 G1=U*13
H1=G1-3
DO 25 Tl=H1,G1

IF(M1 ROW(T4))25.8,25

If this condition is satisfied the program tests whether the patiern

involves any more lines. Tf not TESTS will be -1.

8 IF(TEST3)18.9.,9

18 1T8(M4)RETURN
M11CNT=M11CNT+H1
M11(1,M11CNT)=1
M11(2,M11CNT)=M3

GO TO 21

If all the conditions of the pattern are satisfied either control is
returned to the main program (if M4 is TRUE), or the pattern is listed
in M11 and the program goes on to test whether the next pattern listed

in TEST also exists in the given board position. Hewever if another line

is involved there are more conditions to fulfill.

11

12

15

14

4o

b

80

PROGRAM FINDS ANY BLANK SQUARE,M2,0N THE LINE WITH SUM=TEST2
DO 26 15=H1,G1

MP=ROW(I5)

IFR(MOVE(M2))26,11,26

FIND A ROW WHOSE SUM EQUALS TEST3

DO 27 T6=1,76
IF(SUM(I6)~TEST3)27,12,27

CHECK THAT IT IS A NEW LINE
TF(16-11)13.,27,13

IR(I6-13)14,27,14

FIND THE BLANK SQUARE M2 ON THE ROW WITH SUM=TEST3
G2=U*T6

Ho=(G2-7%

DO 28 I7=H2,G2

IF(M2-ROW(IT))28,42,28

ARE ANY MORE LINES INVOLVED
TF(TESTY)45, 47,47

IF SO RETURN OR LIST PATTERN
TR(M4)RETURN

M11CNT=M11CNT+1

M11(1,M11CNT)=M1

M11(2,M11CNT) =3

GO TO 21

IF NOT LOOK FOR A LINE WITH SUM=TEST4
DO 50 K3=1,76

IF(SUM(K3) ~TEST4)50,51,50

CHECK IT IS A DIFFERENT LINE
IF(K3.EQ.I6)GO TO 50

TF(K3.EQ.I3)G0 TO 50

IF(K3.EQ.I1)G0 TO 50

81

FIND A BIANK SQUARE ON THIS ROW WHICH IS ALSO IN THE LINE
WITH SUM=TEST2
G3=U*K3,
H3=G3-3
DO 60 18=H3,G3
RU=ROW(I8)
TF(MOVE(RY))60,69.,60
69 DO 61 T9=H1,01
R5=ROW(T19)
IF(R4-R5)61,70,61
70 IR(TESTS)49,65,65
IF ANOTHER LINE IS INVOLVED,FIND IT OTHERWISE RETURN OR LIST PATTERN
49 TF(M4)RETURN
M1 1CNT=M11CNT+1
M11(1,M11CNT)=M1
M11(2,M11CNT)=M3
GO TO 21
65 DO 52 K4=1,76
TR(SUM(KY)-TESTS)52,53,52
5% IF(K4.EQ.K3)GO TO 52
TR(K4.EQ.I6)G0 TO 52
IF(K4.EQ.I3)G0 TO 52
IP(XK4.EQ.T1)GO TO 52
IF (M4)RETURN
M11CNT=M11CNT+1
M11(1,M11CNT)=M1
M11(2,M11CNT) =3

GO TO 21

22

21

29

- These

&2

2 CONTINUE

CONTINUE
CONTINUE

CONTINUE

CONT'TNUE

CONTINUE

CONTINUE

CONTINUE

CONTINUE

CONTTNUE

CONTINUE

CONTINUE

IF THIS POINT IS REACHED NO PATTERN EXISTS
M1==0

M2=0

M3=0

three variables (M1, M2 and M3) are all set at some stage in

the subroutine, but if they are set on return to main program it is

taken

to mean that a pattern exists, therefore they must he selt back

to O here, to indicate that no pattern exists.

16

RETURN

END

SUBRCUTTINE SUGOAL

The subroutine SUGCAL performs more or less the same function for
SUTEST as subroutine SEARCH does for TEST:; 1i.e., given a board position
it looks to see if there exists in it any of the patterns listed in

SUGOAL. (v.P.46)

SUBROUTTNE SUGOAL (MOVE,SUM,SUTEST,Y)

IMPLICIT INTEGER(A-Z)

DIMENSION MOVE(64),5UM(76),ROW(304) . ROWDY (304) ,ROWCNT(65) ,TEST(5,32).,
1 SUTEST(3,20),M11(2,16)

COMMON ROW,TEST,M1,M2,M3,M4,M11 ,SN,CNT,ROWDY , ROWCNT .

M1=0

J=ROWCNT(Y)

JI=ROWCNT(Y+1)-1

DO 1 I=J,JJ

R=ROWDY(T)

1 SUM(R)=SUM(R)+MOVE(Y)

Using exactly the same method as in subroutine SEARCH, the sums
of the lines affected by the new move are updated by the addition

of the new move Y.

523 DO 50T I=1,20
M3=T
GOAL1=SUTEST(1,T)
IF(GOAL1)3,502,502I
502 GOAL2=SUTEST(2,T)

GOAL3=SUTEST(3,T)

GOAL1, 2 and 7 are set in turn to the three elements of the patterns

in SUTEST. If GOALY is ever -1 it means that all the listed patterns

have been tried.

Using

loocks

504

506

508

DO 503 11=1,76

IF(SUM(I1)-GOAL1)503,504,503

exactly the same method as in subroutine SEARCH, the program

for a line whose sum equals GOALI.

G=U*T1

H=G-3

DO 505 T2<1,G

M1=ROW(T12)

IF(MOVE(M1))505.506,505

LOOKS FOR A BIANK SQUARE (M1) TN THAT LINE
DO 507 I3=1,76

IF(SUM(I3)-GOAL2)507 ,508,507
IF(I3-11)509.,507.509

LOOKS FOR A LINE WHOSE SUM EQUALS GOAL?2 AND CH
LINE IS A DIFFERENT ONE FROM THE FIRST ONE.
G1=4%T3

H1=G1-3

DO 510 T4=H1,G1

IF(M1-ROW(I4))510.511,510

ECKS THAT THIS

Q

85

FINDS THE BIANK SQUARE M1 IN THTS ROW
511 IF(GOAL3)512,513,513
512 RETURN
IF GOAL3 IS -1 THEN NO MORE LINES ARE INVOLVED IN THE PATTERN AND
CONTROL RETURNS TO MAIN PROGRAM.
513 DO 514 I5=H1,G1
MP=ROW(I5)
IF(MOVE(M2))514,515,514
OTHERWISE LOOK FOR THE BLANK SQUARE (M2) ON THE LINE WITH SUM EQUAL
TO GOAL2
515 DO 516 I6=1,76
IF(SUM(TI6)-GOAL3)516,517,516
517 IP(16-11)518,516,518
518 IF(16-13)519,516,519

PFIND LINE WITH SUM EQUAL TO GOAL3> AND CHECK IT IS A DIFFERENT LINE

FROM EITHER OF THE TWO ALREADY FOUND
519 (2=4xT16

H2=G2-3

DO 520 IT7=H2,02

TF(M2-ROW(T7))520,521,520
521 RETURN

LOOK FOR M2 ON THE LINE WITH SUM EQUAL TO GOAL3 AND RETURN
520 CONTINUE

516 CONTINUE

86

514 CONTINUE
510 CONTINUE
507 CONTTNUE
505 CONTINUE
503 CONTINUE

501 CONIINUE

If this point is reached no pattern exists and to indicate this

M1 and M3 are set to zero hefore returning to the main program.

3 M1=0
M2=0
RETURN

END

FLOWCHARTS

NOTATION.
Label@means 'go to box labelled 3 on the same flowchart'.

Label@means 'co to box labelled 33 on flowchart F5'.

FLOWCHRARTS
A. OUTKINE OF PRCGARAM

1

Set Move
(Naxt1) = 4
I "L
TDedore vam AN rew Move
ko lisk of oppurenkt
or loss P
I
Raektroak oe
RLEATLEY
0
T -
@ Landom Selection
T ok Nk e
.’/ -
ol R ; I
Opponent @
look ohead
3
Compubar look
olxad
AN 2
Seleck Square
wth beadt Scare
I
"

nmﬂ Cormpukar
LA T B ﬂm\

Square |, e Bak
Moug (_m.) 5

-[21

Scb Lawes

= O

™M oue(]'.) 7O

Sek Move (I)

Call %u.\brc.u}c e

Leorch

Rdd 5 bo Seeove

O-’? E‘:.qum-e 12,
ko suk (T)

o L0 5 ’
L Comeuree. Lanx Ruznao Loc

pl()._‘j O Corn = l.!.‘tﬁ.\' ™Mole
in cochh klonk squere in
buse & exarune the Q{’{’ed‘_

MU Seb ke FrRwse ko
mdicoke ks ccave thok
thas s o ek m\\'eacl, &

i_L\n_‘C' rq_""_._rﬁ_ "-f,\r;,n\rx l".l;‘i'_, ‘-_v,ﬂ_
mode wnbd ol co-(:‘!a'('nﬂ

i‘::'{'&éms hove bean sted,

Evamine W¥ of patterns 4o
dee how Py SEARCH
hag found .

'!-:;\' 't-Dlncimg 1+ 5} po&em o-?

D owm e row

[s there amdther pdtem

m*,ID

= M (2,T)

Add 1o ko Sceve
of mmrc_ 12, ta
=SICT| C,—_j

|

1

Seb 2= mMmu Q‘,‘_{_‘O

Set Move (=)

M2 Set

o TTRUE

Call Sulscadtine

- 1
Searah

|

Uﬁp‘-mﬁ R\Q

Qp(bonev\k‘ mewg. ¥
Suhack ¥ Lo Suwm

ls the M1 squase of the
podler the same as the
M1 squase of the last

potbem . £ s0 ik doss

net scee,

2 mere than |\ polierm
15 Pound the Isf 'T;mq
seoredh 1 colled | o
oppenemt wmoot s planed
v e ki‘.ﬂl square

Cthe M0 Sqmit) & sSeosch
12 colled Yo teiexamavne
the sdeitien~ 5

M Seb Yo TTRue Ioacsuse
(LIRS ﬁﬂ\:b necesaary s

Baoes '1?— ran t:m.“qm Qu.\é.\!,

Set M =
Unp]ub the waove &
SUB'(‘W}.-;._\' LJC Prbm ~=dm

iq

Gm:»q “\I$ ‘:'?q\mrc 3

z2ero Score @,
Set Sun CJ_'_‘) 0N

\E MO, Searcdh Lound
no Ealterm. W M2 .93,
b Pound = l’n o vowa &a the
cormpuker. T ma = qg it
Pound 3w & roes L the
oppontat | i WWAidh cuse the
TUATE 13 Qe R Sare
al all.

Uﬁpl':\k\'. [ataiv il
12, Sk
Move (T) = O

Sl bradk mses .{?
Winbracd mMods Ty

-

tho gums of the roas

12, Lo D[om

28

29

-/m@:v

el LR

i >‘ ’._.a‘-\‘-l’.(ﬁ

Sebk lareas
= Som (T)

3t

best Scere
Stored 1 Lacge

nuraser of hesk

Semeiag, Squore
=¥oved v Q

¢, Whos

Aaccmack Anacas

s
opporent
bnr.‘.'*-t'c-t’t}f_k
loop
Ct::mi::l.\he..r
backkrack i
‘mp
=
N T
Sum
lines
I k-1
Cevreck
Ordenng
of lines
Ite)
La
t s
G ONT o hiak pallem
> 4 I [oTest
X
. u
lat Dew
p::sktern 0
Tegy

F,

L2
LY

udd o mew potkern To
(TesT array . 12, Set
lesT (J 5 'pqouNT)

= Fierri gha.

!pﬁrrr"l - Per 8

Md|hp1n0:i h;'_‘k 5

D

e

, lisring o Mew Parreens

N TesT

Tf GCNT 15 greaker thom 1,

the Program hos heen Tupee
ﬂ\rou._lj‘lr\ 1he bo.:_H’mr."‘:mb loop and
the poliern 15 veady to be
Lhlad w Sumest

NOCNT 13 uvsed ag o Swideh
o evsur a new Follem i
liated: once W campuker amd

enee wa oppm\@w‘f kerms,

A&S ml‘« 10& -1 |F ﬁm.
poltem 1= alwsdy hsted. 3k s
et w Subrabnie TESTT

.Sp H\Q 0ppon€,v\'(' wian H\Q gcx,me‘
tha new F-o,l'ﬁém. 15 Converted fo
o compules palfem omd ve-versa
PBoth forms o} the pallamw oux

lemlod wa Tlest,

s L

o
%

\\

M2 - oo

\ -

Jes

7

Pare |l - Pav S

‘.Y\\J“'\ P‘.let.l 'C:L\ -3

Sokkrock \

Lrom ScounT

d 159".0:3 mMessoqe
‘pattern already

licked)

SRR BEN

wrik out Test

a TR

el
3

E. Licune of New BPrresa
W SuresT

DuvesTt of‘-\s Vishs etterns

1!\\19\‘:}‘1&\ leas, than 2 L.m:a,

Comoert pallern o

C:;MF: \d:eJ i'?.T'MS. .

SuresT only lisks
Puh'e.vns :.r\ campu\'&:r
‘fu‘_l‘ﬂ\s .

New padiev added 1o

SucresT

Fq

Moue Qdex.r (_c.oum-))
Selr W ©
Mouve (LasT @oum‘)}
vl g Jomn N
s
b
Yes
No
.
Move (T2)
Ser b |
|
£

S\W\ oMl 'I‘V\Q.'b

Move (nexr (_cnum)}

Ser o ©

Mouve (:\-.‘1) Set v O

F. Orconent Raccerex Looe

Cmmpu.k?e{ PMOUe p"o;‘ty:d
whew o Pp@n\?w\ e aued las
lask move . Comgp uhers losk

Mmoot wng a.y,c\ "

On opponevt wowe thean
\9\&5‘21\. W‘\ Q_:.\c‘r\ "'e-""“’.““h““i
lomala Squu.b-t te seec
opraar\m'r cowld st waon

wa | wacue .

Jc‘ So, U.Mp\{‘.h.s el lmm ak
moves (1 compules amd)
al’bpoanl‘) ownd W (‘_ﬂ(}.t'

(oeess

l'll ‘.J' t\ AL \QL\\ c_\-\ \\\.\(ln:\ \\ll:»

W Y vy, Rowwo

-~]
—— Omvanest BRamack

{E-U‘C":ltt s kr‘_]

Ceonr)

fremn Dcatsnr

Q:_-_\ 1 ke N

Moue C_‘EQ)
Setr kb O

Add | 1 T2

Move (NeExT (j.m.u-ﬂ))

Set e O

Lo

G. SuGRoufINE SEARCH

MUCNT,
™Ml Seb
te ©

Uedote sums of lines
e wdude new move

B

<i &]

Add |V KB°E

?\rwl\ 'n\m&z ‘\SQ' n .\-\-\ k:r\“:

a4
[t "My Z

no. of 1his sq

s

L My ‘A!kl'— |\(_'l_ Lo % e \h-,.

MueNT Search has Been collod

. e
d\\.kw\t& A L‘io&i odagudh - -5(' =0
Go‘_\’ L"‘:«:-L'll-'\:\'\\ Pavmd ek, e
H‘-xl“-ré in B oveagoans
C.rsv\\;.mvr_'-, G ‘l.l‘:o.vi: '\‘}... VAT

“3‘:";*-;‘ Vg,

pan (1 maent)

*?J\e"' 3 w\l

Fl5
/'_—I_'_ 29
/'j: 2k ke B
f.. il e S

Qa set = T

DO |

TesT1 seb =

31

est {“';1>

Ba

Find b]m\';z 5::1 mMi
orm lne wuth

Sum = 1est |

TR =k =1

w tus line

I
Find o blank squae |

M2 en ling with

o ling wnth

Sum:Test3
\I/‘/
s b
e No @
A N o |
4+ IR

1S M2,

o thiz line

H’\El‘{ s} lu\e
L~.!IH\ %l.im s
dest Y-

hE]

new l e

e io‘mu\z W @
SC\. I CORAHASEN
wilh 2nd 1\«‘/
S

there o liaw
with suwa =

: 7
No 57
/\f\ti
— sk
Add 1t T3
&7
=3

Add s T

87

VII COMVENTS ON PLAY AND SUGGESTED TMPROVEMENTS

The standard of play could be considerably improved if the backtrack
analysis were altered so that the criterion of when to stop the backing
was to call SHEARCH until it no longer recognised a pattern, instead of
looking to see if either side could make up four in a row in one move.
This (the former) is the eriterion used by Elcock and Murray, and
although it has certain disadvantages it is potentially a much stronger
method for a learning program than the one we use. If it were implemented
the backtracking would be carried out in the normal way, unplaying cne
move at a time, only each time it unplayed a pair of moves it would call
ZFEARCH. 1f SHARCH recognised a pattern in this board position another
pair of moves would be unplayed until a board position was reached where

SEARCH recognised. no pattern. A generalised description of this board

88

position would then be listed in TEST on the assumption that this
position was a necessary and sufficient gtep in the formation of the
board position immediately succeeding it, which the program did
recognigse. The description of the new pattern would be formed by
taking note (in ROWNO) of the lines involved in the patterns seen by

SEARCH at each stage of the backtracking, e.g.,

(i) X ! the indicated (ii) x|o X| the rest of
X |X LX) 0l line will go SEH &N . the lines with
0 ,K/ into SN iguil N arrows will be
X X stored in ROWNO
(1ii) % 0 X (iv) ——ax—;i- . -/!this pattern
i X10 #6?'% involves 3 lines,
__J(I one of which is
X X@ already listed
73 : Figure 33
(v) eexeh e this 1s the board position which will be
b 2 analysed with the lines adding up to
A 2, 0, 2, 2, 0, which is the exact order
X they would be listed in TEST

The drawback to this is that it does not capture the essential
feature of the situation, which is that even if the opponent stops one
pattern by playing where he does, another pattern can still be made up.
As it stands, SEARCH would not even recognise this pattern because it
would look for a lIth line of 2 with a blank square in common with the

2nd line and in fact this 1s not the case.

The ordering part of the program could be altered to adapt to this
by dealing with all five lines, not just the first three. It would find

that the other line adding up to O in fact has a blank square in common

89

with three of the other lines involved, as does the first line adding
up to zero. If the two lines adding up to zero, i.e., the two with most
intersecting squares, were put in the 2nd and %rd positions and a
stipulation were made that the 5th line must have a blank square in
common with the Zrd, this would go some way towards fitting the bill,
and would not throw out any of the other patterns. The pattern would
then go into TEST as 2.0,0,2,2. The procedure would then be to find a
row of 2 with a blank square in common with a row of O which has a blank
square in common with another row of zero; find a row of 2 which has a

blank square in common with the 2nd row, and anotner row of 2 which has

a blank square in common with the 3rd row.

e

-‘_l
| >4
= B
i

.
H

1
l

Figure 34

N
1

i b s

1
|

SRCCS] (I F S——

1
-
i
¥

I

8 9 10

Ul
O
-3

Cre could even specify that the last row had to have a blank square
in common with the 2nd row of 2. However, although this would describe
the sitvation it would not be specific enocugh to avoid confusion; =e.g..
the sequence of lines 6,2,8,1,5 would fit the description as well as the
seguence 6,2,7,5,1 wniech it was meant to describe. MNor, as the program
étandu, would SEARCH indiecate the right square to play in. With this
battern the first 'key! squafe in fact is the square on which lines 2 and
T interzect. However as the pattern is listed above (2,0,0,2,2): SEARCH
would indicate that the 'key' square was where the first two lines
intersect, i.e., where lincs 6 and 2 intersect. In fact continuing with

this line of approazch seemed more trouble than it was worth, and seemed to

require major adjustments to the program before it could be made to work.

90

Tn any case the method of generating patterns which is actually
used ensures that when a patbtern is found it always means that when MI
is played, a forecing game will begin, i.e., whoever has made the
pattern will start making up threes, forcing his opponent to defend until
he makes up a winning line of 4. Unless in defending, the opponent
accidentally makes up a three for himself, he is bound to lose once the
'key' square in a pattern has been played in by the attacker. This
would not be the case if the alternative method of generating patterns

discussed above were implemented.

The selectivity of the look ahead procedure means that some of
the predictions made during the look ahead are not always true. It
assumes that the opponent will play in a certain square which is not
necessarily the case, and since the evaluations made by the computer
are based on this assumption, if the opponent plays elsewhere, it

throws out the computer's calculations.

For example:-

'key'sqsm—~——nl

'??fg"iﬁﬁwg' Tf the computer has this
;—?MGEﬁi pattern it will assume that
T the opponent will play in one
Figure 35 _;E}:j:{—_ﬁ_’ of the 'key' squares, and

whichever he plays in
will assume that it can still make up a foreing pattern by playing
in the other. 1In fact if the loock shead procedure were less selective
it would find that if the opponent played in sq. (i) he could stop both

patterns at once. As it is the computer thinks it is bound to win.

VIIT Appendix
A Tew games played by the computer. The squares arc numbered
as in Figure). The patlerns referred to as 1, 2, 3 are described on

page 17 v. figures 9, 10, 11, 12.

Game I The computer is playing both sides in this game.

Red starts :-

RED WHITE

14 %9 1
2 1% 26
3 4 42
4, 2% 7
5. 16 27
6. 43 15
T 48 3
8. ¥ 35
9, 64 32
10. 30 (wins)

1. 39 (rad), 1 (white)
The 1st moves on both sides are 'randomly' chosen from amongst

the 16 strong squares.

2. 13 (red), 26 (white)

At this stage no pattern can be formed by Red in 1 or even 2 moves,
so the Counter Scoring Method (v.P.30) of selection is used to choose
Red's next move. Square 13 is a strong square in the same line as Red's
1lst move in square 7%9.

White cannot form a pattern either, but decides to play defensively.

Tt chooses a square which is in the same line as Red's 2 counters and at

the same time is a strong square. This ensures that he makes no

sacrifice by delending - the situation is not dangerous enough to demand
this - gquare 206 is more or less as good a square as any for White to

play in.

3. 4 (red), % (white)

fled has still not played enough moves to make up one of the patterns
listed in TEST, in 1 move. However he can make up 1 of the patterns listed
in SUTEST, which he does by playing in square 4 - this pattern can be
converted into Pattern 1 (2 converging twos) in one move, using either
square 23 or square 55. White realises this board position is potentially
more dangerous than Jjust the forming of Pattern 1. Red can make up
Pattern 1 by playing in either 23 or 55, or Pattern 2 by playing in
square 45. These patterns can be stopped in one move. However if Red
plays in square 12, two separate realisations of Pattern 2 are formed,
with separate 'key' squares - 7 and 45 respectively. This means that
Wnite ecould only stop one of these patterns. The same situation would be
created 1f Red played in square 61. Wnite stops this happening by playing

in square 42. Although this is a defensive move, White loses nothing by

Ho
cr

as it is a strong square. It is only when he is forced to defend in

weak cguares while Red monopolises the strong squares that White starts

-

to lose strength. This in fact is what happens after Red's next attack.

h. 23 (red), 7 (white)

Red can mnow make up a 3-in-a-row by playing in squares T or 10, or
form Pattern 1 by playing in squares 2% or 55. Since 23 is also a strong
square this is what he does.

This pattern is easily stopped by White playing in square 7 but Red
has pained a slisht advantage in that he is now in occupation of 4 strong

squarcs to White's 3.

5. 16 (red), 27 (white)

alge

Red is now unable to form any TEST patbern in 1 move, so he uses
the SUGOAL list to choose his next move in square 16. By playing in
square 27 next move he will be able to make up Pattern.i.

However he is forestalled by White. White realises that again
this is a potentially dangerous position. If Red plays in square 27
next move he will not only form Pattern 1 on square 15, but will
simultaneously form Pattern 2 on square 8 (then square 38). White will
not be able to stop both.

Apart from this, Red can form two patterns by playing in square 19
or square 38 or square 49 and can form various other single patterns.
White plays in square 27, a shrong square, and by so doing both stops a

dangerous position and puts himself in a very strong position.

6. 43 (red). 15 (white)

Red is forced to worry about defense for the first time.
White can form a double pattern (i.e., 2 patterns simultaneously which
have different 'key' squares) by playing in square 9; i.e., by playing
in square 9 forms Pattern 2 on =square 25 (then square 57) and another
realisation of the same pattern on squarc 10 (then square 12). White
can also form a double pattern by playing in square 43 - pattern 3 on
both square 25 and square 10. Play in square 60 will also give White a
double pattern - Pattern 2 on square 28 and on square 58. Also various
single patferns. Red must defend and does so by playing in square 43,
which in fact is a streong square anyway.

As it happens this makes up a pattern for Red - this is something
that Red realises, but the reason for playing there was purely defensive -
at one stage the program did take this sort of thing into account when

choosing a square - i.e., a square's value both as an attacking and a

defensive move, but this played a very weak game. (See chapter on Scoring).

9l

The pattern formed is an instance of Pattern 3 on square 15. White is

foreced to play there.

7. 48 (red), 8 (white)

Despite this White is still in quite a strong position. Playing
in square 9 would still form a double pattern - Pattern 2 on squares 25
and 11. Playing in square 10 would make up 3-in-a-row and form
Pattern 2 on square 11. Playing in square 12 makes up 3-in-a-row and
forms Pattern 2 on square 11. Playing in square 60 makes up a double
pattern - Pattern 2 on square 28 and on square 58. There are also various
single patterns.

Red would be forced to defend if he could not form a double
pattern of his own. However if he plays on square 48 he forms one
instance of Pattern 2 on square 8 (then square 38) and another instance
of Pattern 2 on square 47. White will only be able to stop one of these
patterns. So Red plays on 48.

White defends by playing in square 8 to stop one of the paiterns.

8. 47 (red), 35 (white)

Red plays in square 47, making up a forecing pattern. -

9. 64 (red), 32 (white)

Red plays in square 6} making up 2 separate rows of three.

White stops one of thgm by playing in square 32.

10. 30 (red)

Red completes the other (makes it up to a row of 4) by playing

in square 30, and so wins.

95

Game 2 Computer playing both sides.

White sterts :-

WHITE RED
1 2% 13
2. h ho
3. 1 22
I % 3
5 16 27
6. 38 8
e 49 23
8 26 52
S 2 6
10. 50 P4
15 34 18
12, 19 (wins)

s 2% (white), 13 (red)

The 1st move on both sides is picked 'randomly'.

20 4 (white), 42 (red) X

White's 2nd move is seleccted by the Counter Scoring Method, as
there are no patterns.

Red's 2nd move is vaguely defensive as was White's 2nd move in

the last geme. However square 42 is also a strong square.

4. 1 (white), 22 (red)

White's third move is selccted by the SUGOAL subroutine which
applies the list of patterns in SUTEST to the current board position to
see if any cof the patterns on the list can be made up in one move,
preferably on a 'strong square'. The pattern is one that can be
converted into Pattern | in one move, by playing in square 43 or

square 63.

06

Red realises this and also that Patiern 2 can be formed by
playing in square 24%. However Red also realises that by playing in
square 22, Wnite can form simultancously two realisations of Pattern 2
with different 'key' squares, viz. square 3 and square 24. If this
happens Red will only be able to stop one of the patterns - or at least

that is the conclusion the computer comes to. So Red plays in square 22.

4, 43 (white), 3 (red)

White then goes on to form the pattern started in the last move
by playing in square 43.

This forces Red to stop this pattern by playing in square 3.

5. 16 (white), 27 (red)

White can make up no patterns in one move so it uses SUGCAL Gto
chocse its next move which is square 16. By playing there he starts
building up Pattern 1 (with square 38 in mind as its next move).

Red realises that White can now make up several different patterns.
The most dangerous squares are 27, 3%, 38 and 49. If White plays in
square 27 he simultaneously forms 2 patterns, Patterm 1 converging on
square 11, and pattern 2 with 'key' square as 8, followed by 38.

Play in square %3 forms Pattern 2 on square 8 (then 38) and
Pattern 2 on square 49 (then 38).

Play in square 38 forms Pattern 1 on square 8 and Pattern 2 on
square 11 (then square 27). :

Play in square 49 forms Pattern 2 on square 8 (then 38) and
Pattern 2 on square 33 (then 38).

In fact Red plays in square 27 as this is the first of the

dangerous squares - they are all judged to be equally dangerous.

97

6. 38 (white). 8 (red)

White can now make up :-
Pattern 2 by playing in sq. 5
Pattern 2 by playing in sq. T
Pattern 2 by playing in sq. 9 (this proposed move is
immediately rejected as it would force Red to play in
sq. 12 which would make up 3-in-a-row for Red.)
The same thing would happen if YWhite played in sq. 10.

Pattern 2 by playing in sq. 353

' " 1 n 1 38
n 3 mn " 59
n 2 i it bite]
n 1 n n 53
n 3 " " 55

In no case are two patterns simﬁltaneously formed, so White chooses
square 38 which forms a pattern and is a 'strong' square.

This forces Red to play in square 8. (It is worth noticing that
although all the patterns formed by White have been easily stopped, it
usually happens that White choses 'strong' squares to build up its
pétterns and forces Red to play in weak squares, so White is steadily
taking possession of all the strong squares on the board and building
up a very strong general position for himself.)

It can be seen from play so far that there are always a
considerable list of patterns which could be formed in the next move.
In the remainder of the description of this game, only the important

possible patterns are mentioned.

T 49 (white), 33 (red)

White now plays in square 49 which makes up Paticrn 1 on zguare 33.

Red plays in square 3J.

98

8. 26 (white), 52 (red)

White ecan now make up Pattern 3 by vlaying in square 52, but

le up to % in a row the opponent could

before this pattern could be

make up 3 in a row and force White to defend; it is therefore

abandoned. SUGOAL is used to select the next move which is square 26.

o}

This starts building up Pattern 1 on square 20.
Red realises that White is now in a very dangerous position and
can form 2 patterns simultaneously by playving on square 2 or 18, 20,

28, 35. 40, 50. 52. 1Ile defends by playing in square 52 which scores

more than the other squares as it is also a 'strong' square.

9. 2 (white), 6 (red)

White now sees the pattern which eventually leads him to a win
four moves later. By playing in square 2 it will simultanecusly Torm
2 patterns:- Pattern 2 on square 6 and Pattern 2 on square 50. Red
will only be able to stop 1 of {hezf patterns. So White plays on

square 2. Red, recognising one realisation of Pattern 2 stops it by

playing in sq. 6.

10. 50 (white), 14 (red)

White then plays in sqguare 50 - the key square in the 2nd
realisation of Pattern 2 - and so makes up 3 in a row forcing Red on to

square 14,

11. 34 (white), 18 (red)

Playing in square 34 White then makes up 2 separate lines of 3

and Red can only stop 1, which he does by playing in square 18.

12. 19 (Wnhite)

"4 by playing in square 19.

&
o
ot
e
o]
5]
o
=

White completer

Comnent

Having the ceomputer playing both.sides has a certalin weakness

(=1

'key' square of a pattern

in that the computer will always play in the
whercas sometimes it could stop 2 patterns by playing elsewhere. This
is notv discovered by the computer because of the selective nature of

the lock ahead procedure. TIf it checked every square it would find out

if there was one which would stop 2 patterns at once.

Game 3 This game was played ageinst a human opponent. White (the

human) started, and the whole game was as follows :-

WHITE RED
22 49
27 1
29 38
23 26
42 1%
5 56
29 21
32 17
33 31
6 ¢
16 12
1 .4
10 2
> 50
14 3h

18 19 (wins)

100

White's last meve, 8, is played because the subroutine which detects
a win, or any other patbtern, is only called after an opponent's move. fThis
saves a great deal of time although it does create the anomalous situation

that the opponent has to play a move after a line of 4 has been made up by

the computer.

Came 4 Computer playing both sides again.
42]
I 23
1 22

13 16

7 8
10 (wins)

Game 5

RED WHITE

I 1
1% 16
23 26

64 b3

54 6

1 5

8 5% (wins)

BEL 68

BER 58a

DOR 66

ELC 68

LOU 67

MAY 61

MIC 67

101

RN F‘

IX REFERE]

Nl .JS
Bell A.G. (1968) "Kalah on Atlas". Machine Tntelligence TIT,

(ed. Michie D.)

Bernstein A. et al. (1958) "A Chess Playing Program for
the TBM 704 Computer". Proceedings of the Western Joint

Computer Conference.

Bernstein A. and Roberts (1958) "Computer versus Chess

Player". Scientific American, June.

Doran J.E. and Michie D. (1966) "Experiments with the Graph

Traverser Program". Proc. R. Soc. (A), 294, 235 - 259.

Doran J.E. (1967) "Graph Traverser". Machine Intelligence T,

(ed. Collins N.T,. and Michie D.)

Elcock E.W. (1968) "Descriptions". Machine Tntelligence TTI,

(ed. Michie D.)

Good I.J. (1968) "A Five Year Plan for Automatic Chess".

Machine Tntelligence II, (ed. Dale E. and Michie D.)
Louden R.K. (1967) Programming the IBM 1130 and 18C0.

Maynard Smith J. and Michie D. (1961) "Machines that Play

Games", New Scientist, Vol. 12, %67 - 369.

Michie D. (1966) "Game Playing and Game Learning Autcmata'.

Advances in Programming and Non-Numerical Computation, Chap. 8,

(ed. Fox L.)

Michie D. (1967) "Strategy-Building with the Graph Traverser".

Machine Tntelligence I (ed. Collins N.L. and Michie D.)

MIC 70

N

MUR

75

MUR 68

NEW 58

SAM 59

SAM 60

SCO 69

SHAN 50a

102

Michie D. (1970) "The Tntelligent Machine". Secience Journal,

Sent.

Murray A.M. and Elecock E.W. (1967) "Experiments with a
Learning Component in a Go-Moku Playing Program". Machine

Intelligence I, (ed. Collins N.L. and Michie D.)

Murray A.M and Elcock E.W. (1968) "Automatic Description
and Recognition of Board Patterns in Go-Moku". Machine

Intelligence IT, (ed. Dale E. and Michie D.)

Newall A., Shaw J.C. and Simon H.A. (1958) "Chess Playing
Programs and the Problem of Complexity". Computers and

Thought, (ed. Feigenbaum E.A. and Feldman J.)

Samuel A.L. (1959) "Some Studies in Machine Learning using the
tame of Checkers". Computers and Thought, (ed. Feigenbaum E.A.

and Feldman J.)

Samuel A.L. (1960) '"Programming Computers to Play Games".

Advances in Computers, Vol. 1, (ed. ALt . F.)

Samuel A.L. (1967) "Some Studies in Machine Learning using the
Game of Checkors, IT - Recent Progress". IEM Journal of

Research and Development, Nov. pp 601 - 617.

Scott J.J. (1969) "A Chess Playing Program". Machine

Tntelligence IV, (ed. Meltzer B. and Michie D.)

Shannon C.E. (1950) "Automatic Chess Player". Scientific

American, Feb.

SHAN 50b Shannon C.E. (1950) "Programming a Digital Computer

for Playing Chess". Philosephy Magazine., March.

TUR 50 Turing A.M. (1950) "Computing Machinery and Intelligence".

Mind, Cct.

TUR 53 Turing A.M. (1953) "Digital Computers Applied to

Games". Faster than Thought, (ed. Bowden B.V.)

TUR 58 Turing A.M. (1958) "Can a Machine Think". Computers

and Thought, (ed. Feigenbaum E.A. and Feldman J.)

ACKNOWIEDGEMENTS

I should like fo record my gratitude to Professor Cole and
Mr. A.J.T. Davie for their help and encouragement in all aspects

of this work.

I am indebted to the Science Research Council for the award

of a Research Scholarship 1969-1970.

My thanks are also due to Dr. Robert Erskine and his staff
for their invaluable assistance and to Mrs. Susan Weaver who typed

this thesis.

Considerable use was made of a program written by R.K. Louden

to play noughts and crosses.

