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Abstract
In this thesis we study the interaction between monochromatic electromagnetic waves

and multilayer structures. The optical properties of this structure axe described by its

reflection and transmission coefficients. We introduce a combination operator giving the

optical properties of two such structures together. More complex structures can be built

by "adding" further layers or structures. We also define a simple "multiplication" oper¬

ator which is useful for calculating the optical effects of periodic multilayer structures.

These two operators axe used to study the effects of the interface roughness in these struc¬

tures. Further, this method is used to treat the case of nonlinear intensity-dependent

propagation. Within the same formalism we treat the continuous refractive index vari¬

ation present in interdiffused layers. A direct comparison between the roughness and

interdiffusion effects is then possible. One-dimensional photonic bandgap structures are

studied using the multiplication operator which calculates the band structure. The for¬
malism is applied to the experimental determination of the roughness of GaAs/AlGaAs
multiple quantum well structures.

Using this same formalism one can calculate the energy level in quantum wells and

generally in multiple quantum well structures. These energy levels correspond to n-level

quantum systems. We study the interaction of a monochromatic wave with this system

and show that the classical treatment of this interaction breaks down in the case of high

intensity excitations. We introduce a method to describe these high intensity effects
which is based on a combination of the continuous fraction and the Floquet method.

Within this unique formalism we can treat different nonlinear effects such as the Stark

shift, the abnormal high harmonic generation and multi-photon resonance and explain
their links. Further, this method is generalised to the case of two beam excitations such
as pump-probe and non-degenerate four-wave mixing.



Contents

1 Introduction 6

2 LTR Method 11

2.1 Introduction 11

2.2 Background 12
2.2.1 Matrix method 13

2.2.2 Recursive method 16

2.3 LTR Method 18

2.3.1 Multiplication (polynomial method) 21
2.3.2 Multiplication 24

2.4 Discussion 27

2.5 Summary 31

3 Roughness and other effects 34
3.1 Introduction 34

3.2 Roughness effects 35

3.2.1 Model 36

3.2.2 Application to a monolayer 39

3.2.3 The roughness in the LTR formalism 42

3.3 Continuous refractive index variation 44

3.3.1 The LTR integral 44

3.3.2 Application to a linear refractive index change 45

3.4 Intensity dependent propagation in multilayered structures 47
3.5 Summary 50

3



CONTENTS 4

4 Waveguides and photonic structures 52

4.1 Introduction 52

4.2 Waveguides 53

4.3 Photonic bandstructures in one dimension 55

4.4 Photonic bandstructures in 2 and 3 dimensions 60

4.4.1 Propagation in periodic structures 60

4.4.2 Matrix LTR 61

4.5 Summary 63

5 Applications: LTR formalism 65

5.1 Introduction 65

5.2 Roughness in an LED 66

5.3 Roughness measure for a monolayer 71

5.3.1 Samples 71

5.3.2 Results 72

5.4 Roughness measurement in multilayered structures 73

5.4.1 Samples 74

5.4.2 Experimental Setup 74

5.4.3 Results 77

5.5 Summary 80

6 Multiple quantum well n-level systems 81

6.1 Introduction 81

6.2 Definitions 81

6.3 Evolution equations in n-level systems 82

6.4 Multiple quantum well n-level systems 88

6.5 Summary 92

7 Breakdown in n-level systems 93

7.1 Introduction 93

7.2 Numerical integration 95

7.2.1 Transient solution 96

7.2.2 Stationary solution 98

7.3 Perturbation expansion 103



CONTENTS 5

7.4 Rotating wave approximation 110

7.5 Continuous fraction method 114

7.6 Floquet expansion 118

7.7 Summary 120

8 Stationary excitation 122

8.1 Introduction 122

8.2 Monochromatic excitation 123

8.2.1 Description of the quantum system 124

8.2.2 Fourier transformation 128

8.2.3 The truncated solution 132

8.2.4 Convergence of the truncated solution 138

8.2.5 The recursive solution method 141

8.3 Bichromatic excitation 143

8.3.1 The Fourier transformation 144

8.4 Summary 149

9 Applications: Chromatic excitation 150

9.1 Introduction 150

9.2 One wave excitation 151

9.2.1 Monochromatic excitation of an excitonic system 162

9.3 Pump-probe configuration 164

9.3.1 Two level system 165

9.3.2 Three level system 168

9.4 Non-degenerate four-wave mixing 171

9.4.1 N-level system 179

9.5 Summary 181

10 Conclusion and future work 182

Bibliography 186

Publications 196

List of figures with parameters 197



Chapter 1

Introduction

The optical properties of thin films have their origin in the similarity of the wavelength

of the light and the thickness of the thin layer. The interference colours of thin films
were first observed by R. Hooke and R. Boyle in the 17th century. Hooke concluded

that light consists of vibrations propagated at great speed. Later, the wave nature of

light was established and described accurately by Maxwell's equations. Considering
this description of light we can understand the optical properties of thin films as the
interference between the different reflections in the thin layer.

This same effect can be observed in thin layers of semiconductors. In this case

we have the wavelength of the electronic quantum wave which is comparable to the
thickness of the quantum well. Schrodinger's wave equation describes this phenomenon
and leads to the introduction of discrete localised quantum states in quantum wells.

These electronic states correspond to stable stationary waves trapped between the two

interfaces of the thin layer.

The interaction between these two effects is an optoelectronic effect. This field of

study is very important nowadays because of the increase in telecommunication traffic

and the increased use in daily life of optoelectronic devices. The design and development

of these devices demands a good understanding of the different effects and interactions

between the different components of the device and the electrical and optical waves.

One of the practical problems arising in the manufacturing of these thin layer devices is

their surface roughness. This roughness affects the optical properties of the device and
its electronic performance. Another interesting aspect of thin layers and the electronic

systems associated with them is their behaviour when subject to high intensities of light.

6



CHAPTER 1. INTRODUCTION 7

In this work we address these two problems from a theoretical point of view. In

a first step, we consider only problems in one spatial dimension, that is, the waves

are homogeneous in the direction transverse to the direction of propagation and the

thin layers are plane. In the time domain the waves are taken as being monochromatic.

Within this model, the effects of the interface roughness are treated as a loss of coherence

of the monochromatic light wave. Our next step is to generalise our method in order

to handle more complex structures. Therefore, we introduce a new method (which we

call LTR) to calculate the optical properties of multilayered structures which allows the

study of distributed roughness effects. This method also allows us to treat various other
effects such as the intensity dependent non-linear propagation of light in multilayered

structures and the continuous refractive index variation in these same structures. This

method can be generalised to handle plane waveguides and one-dimensional photonic
structures such as distributed Bragg reflectors.

In the second part we concentrate our research on the electronic states of matter and

its interaction with one or two monochromatic waves. Using the equivalence between
Maxwell's and Schrddinger's equations we used the LTR method to calculate the energy

levels in multiple quantum wells. The behaviour of this quantum system under electro¬

magnetic excitation is treated in the density matrix formalism with which we study the

systems response to high intensity excitations. This study leads to the definition of a

precise method for solving the evolution equations.

The first chapter corresponds to this brief introduction.

In the second chapter, we develop a formalism allowing a study of the optical prop¬

erties of multilayered structures. This formalism is equivalent to other methods, such

as the matrix method or the recursive method. The advantage of our method is the

simplicity with which each layer is described. We use directly the Left reflection, the

Transmission and the Right reflection coefficients as the definition of the characteristics

of a single layer. In order to treat more complex structures we introduce a combina¬

tion law which takes two layers defined respectively by their LTR elements combined

to a new total LTR element. Further, we define a multiplication operator which is

particularly suited to the study of periodic multilayered structures.

In the third chapter, we introduce in the LTR formalism three different effects. We

start by treating within the LTR formalism the cumulative effects of interface roughness

in multilayered structures. This is facilitated by the direct physical meaning of the LTR
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elements. We can thus introduce a special LTR element which takes into account the

interface roughness. This element can then be combined with any other LTR elemen-
t to calculate the optical coefficients of a multilayered structure including roughness.
The roughness itself is described by a statistical distribution of the interface position

which for simplicity we take to be Gaussian. We further apply the LTR formalism to

continuous refractive index variation where we define a combination integral operator

which can be used to study any variation in the index with depth. Finally, we treat

in this chapter the optical properties of these structures when subject to high intensity

monochromatic light. In this case, we assume the dependence of refractive index 011 the
incident light intensity. This study presents a problem because this intensity depends
on the number of reflections taken into account. We solve this problem by a physically

based method. After defining an intensity dependent combination law we proceed by

slowly "turning" up the light intensity. This makes possible the definition of a sequence

of LTR elements converging towards the LTR element at the required intensity.

In the fourth chapter, we show that it is possible to apply the LTR formalism to

other optical devices. We start with the study of plane waveguides where we use the
LTR formalism to define the guided modes. This can be achieved by considering an

exponentially decreasing wave solution of Maxwell's equations alongside propagating

wave solutions. A second interesting study using the LTR formalism is the treatment

of periodic photonic structures. In the one dimensional case we can directly apply the

multiplication operator to one period of the structure. For a better understanding of the
effects of this operator we break it into two parts: one takes into account the effective
interface of the considered period and the other the effective propagation through the

period. Combining n such periods is equivalent to a n-times greater propagation length.
This allows the direct introduction of the bandstructure in one dimensional periodic

structuies. Finally, we show how it is possible to expand the LTR formalism to three
dimensional photonic structures.

In the fifth chapter, we apply the LTR formalism to three different practical cases.

We start by considering the dependence of an LED emission as a function of the rough¬
ness of its surface semi-transparent mirror. In this case we generalise our formalism to

take into account the angular dependence of the wave when its propagation direction is

not perpendicular to the multilayered structures. Further, in the case of the LED we

take into account the emission of the light from inside the structure. The other two cases
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correspond to the experimental determination of the surface and interface roughness in

multilayered structures. We start by considering a monolayer of CdZnSe. This case is

of special interest because it allows a comparison with the directly measured surface

roughness by atomic force microscopy. Another application is GaAs/AlGaAs multiple

quantum well structures. In this case we are particularly interested in the roughness
introduced by the selective oxidation of the layers.

In the sixth chapter, we study the behaviour of a quantum system interacting with

an electromagnetic excitation. We start by defining the Schrodinger equation and its

stationary solutions. Any solution can be decomposed into stationary solutions and one

can then treat the evolution of the system with the help of the density matrix equation.

The stationary solutions themselves correspond to the eigenfunctions of the Hamiltonian

operator. In the case of multiple quantum wells we use a variation of the optical LTR

formalism to search for these eigenfunctions.
In the seventh chapter, we use different methods to find solutions to the density

matrix eqautions when subject to a stationary excitation. We start by defining a nu¬

merical solution where we use a stationary excitation to simplify the procedure. We

show the existence of two distinct solutions: the transient and the stationary solutions.

A comparison is then made between this numerical solution and different approximating

analytical solutions. These solutions are found by using the perturbation expansion, the

rotating wave approximation, the continuous fraction method and the Floquet expan¬

sion. All of these methods exhibit a breakdown in the solution when the intensity of the

excitation is increased. This breakdown occurs regardless of the order of the expansion.

In the eighth chapter, we introduce a new method for solving the density matrix equa¬

tion for any intensity. This method is based on a combination between the continuous

fraction method and the Floquet method. Using this method we define an approximated

recursive solution for which we show the convergence towards the exact solution. This
method is then generalised to treat the case of a high intensity bichromatic excitation.

In the nineth chapter, we apply the method to solve the density matrix equation for

different excitation configurations. These different configurations correspond to single

beam, pump probe and non-degenerate four wave mixing. In all of these cases we

determine simple analytical expressions for the optical response of the systems which

remains valid in different excitation configurations (high or low intensity, resonant or

non-resonant excitation). Further, these recursive solutions are used to show different
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non-linear phenomena in optics such as the dynamical Stark shift, the abnormal high

harmonic generation and multi-photon resonance. As all of these effects can be modelled
in a unique framework, we can explain their link and thus gain a better understanding
of the dynamics of an n-level system under high intensity excitation. We proceed in the
same way for the pump probe and the non-degenerate four wave mixing configurations.



Chapter 2

LTR Method: Monochromatic light

propagation in multi-layered systems

2.1 Introduction

In this chapter we start with Maxwell's equations and deduce the scalar wave equation

describing the electric field propagation. Using the continuity conditions of the electrical

field and the fundamental solution of the scalar equation we study the behaviour of the

electromagnetic field at the interface between two media of different refractive indices.

This treatment leads to the definition of the reflection and transmission coefficients for

a monochromatic plane wave propagating through the interface.
A monolayer consists of two such interfaces. Because of the multiple reflections

between the two interfaces the total reflection and transmission coefficients of such a

monolayer is not simply the multiplication of the transmission and reflection coefficients.

In order to treat a monolayer and more generally a multilayered structure we introduce
two calculation methods.

In the matrix method [1-4] each layer is characterised by a matrix whose elements are

derived from the thickness and the refractive index. This matrix defines a linear system

of equations which links the transmission and reflection coefficients to the starting and

ending indices of refraction. Solving this system leads to the two coefficients. For the

calculation of the reflection and transmission coefficients when the monochromatic wave

comes from the other direction this equation system has to be redefined and solved

again.

11



CHAPTER 2. LTR METHOD 12

The second method treated in this chapter is the recursive method [5,6] . This is
based on the assumption that once the reflection and transmission coefficients are known

for one layer it can actually be treated as being a single interface described by these

coefficients. In consequence, when adding a single monolayer to the initial layer one has

to calculate the transmission and reflection coefficients for only one layer whose initial

interface is defined by the transmission and reflection coefficients of the first layer. Thus,

one is able to take into account all of the layers in a multilayer structure step by step.

In this chapter, we generalise and simplify this method by defining an LTR element

consisting of three coefficients: reflection from the left, transmission, and reflection from
the right. Thus, our method, simplifies the effective interfaces method [7] which con¬

siders the transmission from the right and from the left. This LTR element completely
defines a multilayered structure. Further, we define a composition law which calculates

the global LTR element of any two LTR elements put together. Thus any multilayered
structure can be treated within this framework by combining the different LTRs of the

monolayers constituting the multilayered structure.

To simplify the calculations of periodical structures in the LTR framework we define

a multiplication operator. This operator allows the direct calculation of the LTR for n

periods of a structure when the LTR is known for one period.

The starting point of our study of the propagation of light through multi-layered systems

is the Maxwell equations [8]

2.2 Background

(2.1a)

- -» (JID
V A E + -jr- = 0,at

(2.1b)

(2.1c)

VB= 0. (2.1d)

—A -♦

These equations describe the time evolution of the vector fields E and B. The constant

c = 1/^//i0£o corresponds to the speed of light in vacuum while p and j correspond to the
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free charge density and current flow. In the following we consider Maxwell's equations

in the absence of free charges.
—*

The quantities P and M are the electrical and magnetic polarisation respectively.

These polarisations can have two origins in the materials. They can be permanent as in

an electret or a permanent magnet or they can be induced by the external electromag¬

netic field. It is this second case which interests us. We consider non-magnetic (M = 0)
and dielectric materials (P = e0xE). This second assumption implies a linear response

of the material whose polarisation is proportional to the electric field.

Using all this simplification and eliminating the magnetic field in equations (2.1) we

can write the wave equation for the electrical vector field

2 1 d2E Xd2E , ,VP = — . (2.2)
c2 dt2 c2 dt2 K '

For multilayer structures we will use scalar versions of this equation, one for each
—*

component of the electrical field E, in the form

v^ = °- <2-3>

where n = y/l + x is the refractive index of the material. To come back to the vectorial
wave equation (2.2) one has to consider three equations (2.3), one for each component

of the electrical field E.

The monochromatic travelling wave solution of this equation is

U(z,t) =U0eik{ct~nz\ (2.4)

where we consider the z—axis as the travelling direction. The wave vector is given by
k = 27t/A where A is the wavelength. The electrical field is the real part of the complex
solution (2.4).

2.2.1 Matrix method

We describe in the following the propagation of monochromatic light through multi-

layered structures. In this case the propagation can be characterised by the transmis¬

sion and reflection coefficients. To find these coefficients one considers an incoming
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Figure 2.1: Decomposition of the monochromatic field at an interface.

monochromatic wave, U\{z,t), on to an interface between two layers having different
refractive indices ni and n2. At normal incidence this wave splits into two waves: one

transmitted, Ut(z,t), and one reflected, Ur(z,t), (see figure 2.1). The scalar fields for
these waves are

U1(z,t) = U0eikict~niZ\ (2.5a)

Ut(z,t)=tl2U0eik^-n2Z\ (2.5b)

Ur(z,t)=rl2U0eik{ct+niz\ (2.5c)

where ti2 and r\2 correspond to the transmission and reflection coefficients. At the

interface we have the continuity condition of the field and its normal derivative (i.e. Jj)

Ul + Ur = Ut, (2.6a)
du, dur dut
a7+a7=a7' (2'6b)

By substituting equations (2.5) into these continuity conditions one finds the following
two linear equations

1 + I'll — t\2,

ni - n\r& = n2ti2,

(2.7a)

(2.7b)
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M M

z, z,
< ►« - s

I IS

Figure 2.2: Example of a multilayered structure.

which when solved give us the transmission and reflection coefficients

r12

112

ni - n2

rii + n2'
2ni

nt + n2'

(2.8a)

(2.8b)

Using the same continuity condition (2.6) one can define the reflection and transmis¬
sion coefficients, r and t, for a layer of refractive index, n1; and thickness, Z\. To do this

one can introduce the characteristic matrix (for the deduction of this matrix see [9])

M =
cos(kniZi) —^sm(kniZi)

—iriy sm(kniZi) cos(kniZi)
(2.9)

Using the characteristic matrix (2.9) the coefficients are defined by the following relation

1 + r

n0(l - r)
= M

t

n2t
(2.10)

where no and n2 are respectively the refractive indices on the left and right side of
the layer. This matrix method takes into account the multiple reflections inside the

monolayer and also the interference of the multiple transmitted and reflected electrical

fields.

In the case of multiple layers (see figure 2.2) each layer is characterised by a matrix

Mj =
cos(krijZj) s'm(knjZj)

-irij sin(krijZj) cos(krijZj)
(2.11)
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and the total mnltilayered system is characterised by the matrix product of all the

characteristic matrices

M = (2.12)

Further, the reflection and transmission coefficients are calculated by using the fol¬

lowing relation

C 1+r ] =M ( 1
y n0(l - r) J y nnt

where we consider different refractive indices on each side of the multilayered system.

An important property of the matrix M is that its determinant is equal to 1. This

property can be used in the case of a periodical multilayered system. Indeed, the

characteristic matrix of such a system is given by Mn which can be evaluated in this

case using the Chebyshev polynomials of the second kind [9,10].
Altogether the characteristic matrix method permits us to calculate the transmis¬

sion and reflection coefficient of a multilayered system by solving the linear system of

equations (2.13). Each time a new layer is added to an already existing structure a new

characteristic matrix has to be calculated and the relations (2.13) have to be solved a-

gain. The transmission and reflection coefficients of the old structure cannot be re-used.

This disadvantage is overcome by using the recursive method which we introduce in the
next section.

2.2.2 Recursive method

An alternative method for describing the propagation of a monochromatic wave in a

multilayered structure is based on the actual transmission and reflection coefficients for

a monolayer of width z\ index of refraction n\. To the left of this monolayer we have
the refractive index no and to the right the refractive index n2 (see figure 2.2). Using
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the characteristic matrix method we get

roi + r12exp(2z/cn1z1)
r02 = r ttttt r 2.14a)1 — noH2 exp(2ikniZi)

r2i + no exp(2iA;ni;zi)
no = 7 txtt 7 (2.14b)1 — ^10^12 exp(2ikriiZi)

t0itl2 exp(i/cni;zi)
^02 = 7 77X7 x 2.14c)1 — r10r12 exp(2z/cni^i)

, *21*12 exp(ifcni^)
20 ^ (c\'i \1 — ^10^12 exp(2zA;ni2:i)

where r^- and tij are the reflection and transmission coefficients at the interfaces between

layer i and layer j.

The recurrent method [11] uses the already calculated transmission and reflection
coefficients when adding another layer to the structure. Indeed, for n + 1 layers these
coefficients read

_ rQn + rnn+1 exp(2iknnzn)
r°n+1

i _ rnirnn+i exp(2i/crzn2n) ' &
_ rn+ln + rn0 exp(2iknnzn)

r"+1° 1 -rnlrnn+lexp{2ikrinzn)
, *0rc*7m+l 6Xp(i/u77.nZTl) , .

071+1 1 - rnlrnn+l exp(2iknnzn) ' °
, *7i+ln*7iO €Xp{iknnZn) . .

71+10 1 - rnirnn+iexp(2ikrinzn)

where the coefficients r\n, rni, t\n and tni correspond to the first n layers.

The advantage of this method is the direct use of the propagation coefficients to

define the effects of a multilayered system. On the other hand this method has no

advantage in the case of periodical multilayered structures. Further, a single monolayer

is not defined as an independent element having some characteristic properties as in the
case of the matrix method where each layer is defined by its characteristic matrix. In the

following paragraph we solve this problem by introducing an algebra which combines

the advantages of the recurrent method with those of the characteristic matrix method.
We wish to mention here another variant of the recursive method which is based on

the treatment of transmission lines in the network theory [12-14] as there is an analogy
between the two phenomena [15]. Within this method, the results can be graphically
evaluated using Smith charts.
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2.3 LTR Method

18

The principal idea of this method is to characterise each element or ensemble of elements

of a stratified medium by its transmission and reflection coefficients. First of all we need

to count the number of parameters characterising one multilayered structure. In the case

of the characteristic matrix method a two by two matrix describes one monolayer or a

system of monolayers, which means four parameters are needed for the characterisation

of such a system. The determinant of this matrix is always equal to one, thus the four

parameters identified are not independent but have to fulfill a condition. This reduces

the number of parameters needed for the characterisation of a multilayered structure to

three.

Indeed there are three different reflection and transmission coefficients for a given

multilayered structure. The field reflection coefficients for an incident wave propagating

from the right, rR, or from the left, rL, are generally not the same. This counts for two

parameters. On the other hand, the transmission coefficient is the same for any stratified

medium when coming from the right or from the left. Thus, the field transmission

coefficient t is the third parameter needed.

A convenient way of writing the three parameters characterising a multilayered sys¬

tem is to write them in column form. Further we replace the reflection coefficient from

the left by L, the transmission coefficient by T and the reflection coefficient from the

right by R. As an example of these new definitions we can take a look at the LTR
element for a single monolayer, £, of refractive index n and width 2

£(n, k, z) — T

\ R /

n N
t

\ r« )

( r-^' l-p2r2

p {l~r)F (1—p2r2)

\ r l~P2
1—p2r2 /

(2.16)

with

r =
1—n
1-f-n

p = exp (iknz)
(2.17)

In this example we consider a monolayer surrounded by a vacuum of refractive index

1. This points out a further difference between our LTR method and the two methods

introduced above. Indeed a monolayer is intrinsically described by the LTR element
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which does not depend on the neighbouring layers. This is not the case for the above

mentioned methods. To achieve this, all the layers are characterised with respect to

the vacuum even when they are embedded in a multilayered structure. This method

corresponds to inserting infinitely small layers of vacuum between the different layers

which does not affect the reflectivity and transmission of a multilayer structure [16].
This can also be shown by considering the continuity conditions (2.6).

The LTR element C(n,k,z) defined by (2.16) constitutes the fundamental element
of a multilayered structure. To calculate the reflection and transmission coefficients for

such a structure from C(rii,k,Zi) we need to define the combination law for any two
LTR elements. Using the definitions of L, T, R and the recurrent method, one can

define the effect of combining two LTR elements

Ti

\ Rx )

® T2

\Ri )

( T I LzT' \
t,T2

(1-R1L2)
D | RlT2

(2.18)

This composition of the two LTR elements corresponds to calculating the propagation

coefficients of a infinitely narrow vacuum gap limited on the left by (Li,Ti, i?i) and on

the right by (L2,T2, R2). We thus can define a new LTR element which can further be
combined with another one. The reflection and transmission coefficients of the structure

represented in figure 2.2 is given by

£(ni, k, zi) ® C{n2, k,z2)@---@ £(rcn-i, k, z„_i), (2-19)

where the starting and ending media are considered to be vacuum (no = nn = 1).
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As a first example of the composition law we can consider the case of the composition

of two layers with identical index of refraction but of different width

£(n, k, Z\) © C(n, k, z2)

/ r l~pj
l-pjr2
(l-r2)

\

V ' 1—pfr

(

©

/

/ i-(pip2)2
l-(piP2)2r2

(l-r2)
PlP2(1_(pip2)2r2

1~(P1P2)2
\ l-(piP2)2r2 /

= £(n, /c, 21 + 22).

r i-p1
i-pfr®
(1_r2)

V\ 1—PjT2
\

\

/

(2.20)

where pi — exp(iknzi) and p2 = exp(iknz2).
To define a group using the "additive" composition (2.18) we need to define a neutral

LTR element that does not change anything when combined with any other LTR
element. In our case this corresponds to an infinitely narrow vacuum layer

N =

\° /

(2.21)

which has no reflectivity from either side and a transmission coefficient of one. Further,

we need to show that there is always an inverse LTR element for every given LTR.

This inverse element is defined by

T

\ R j

( -L/{T2 - LR) ^
T/ (T2 - LR)

\ —R/(T'1 - LR) J
(2.22)

where with the minus sign we indicate the inverse. In the discussion we will see what

happens when T2 — LR = 0. When combining a LTR element with its inverse one finds
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as expected the neutral element

(L) f°)
T © - T = 1

K R ) \ R ) V0/

Thus the set of LTR elements forms a group with respect to the composition law (2.18).
This group is non-abelian because it does not commute (i.e. the result depends on the
order of the composition). Indeed one can easily think of two different layers that would
show a difference in the optical properties displayed depending on the order in which

they are put together.

2.3.1 Multiplication (polynomial method)

In the case of a periodic structure we are interested in calculating the optical effects of a

sequence of n identical layered structures. This can be determined by the composition

of n LTR elements which defines a multiplication law in the LTR group

( E\ M u\
T © T ®... e T — n T

\ R ) \ R )
y

\ R J
n times

(2.24)

To define an operator that acts like a multiplication we need to show first that the

LTR element 'multiplied' by an integer number is of the form

n T

\R )

f Lf- ^dn

\RZ )

(2.25)

where the quantities sn, tn and dn are polynomials of L, T and R. Further, we consider
the following property of these polynomials

~h (T2 — RL — T)sndn + RLs2n, (2.26)
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to hold. As we will see this property is necessary in order for the polynomials sn, tn and

dn to exist.

In the following we show that this property and the polynomial form is true for any

integer multiplication factor n. To do this we use the recursive theorem which states

that if a relation holds for n = 1 and the assumption of being true for n implies it to

be true for n + 1, then this relation holds for all neff. In the case of n — 1 (neutral
element for the multiplication) we have indeed sx = di = 1 and ti = T. Further, we

can verify that the relation (2.26) is fulfilled for si, t\ and d\. Let us presume that the
relations (2.25) and (2.26) are true for the integer n and show that they imply these
relations to be valid for n + 1

(n + 1)

' O
T

R I

— n © T

\ R j
(

\R j
( L^_ \dn

dn

\ Rt )
( i snd„-RLsl+t% \

^
dl-RLsndn

\R J

- RLsn

T^dn — RT-,sn+T2sn\ dn-RLsn )

(2.27)

We have to use the property (2.26) on (2.28) to show that we can define a unique set of
polynomials sn, tn and dn. We have then

(n + I)

\R /

( j^dn — RLsn+T2sn '
dn RLsn

dn R^jSn

r>dn-RLsn+T2sn
dn — RLsn

(2.28)
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Using the recursive theorem this shows that the polynomial property is true for all
n 6 N. Further we can identify the link between the polynomials of different order

Sn+i - dn- RLsn + T2sn, (2.29a)

tn+1 = Ttn, (2.29b)

dn+1 = dn — RLsn. (2.29c)

To finish our deduction we have to show also that the property (2.28) holds for the order
n + 1. Indeed using the above definitions one can show after simplification that

tn+i — d2n+1 + (T2 — RL — T)sn+ldn+\ + RLs2n+l. (2.30)

In the following we study the series sn, tn and dn which are defined in a recursive

manner. In the case of the polynomial dn we have the following five terms which we use

to define the general form of the sequence

dx = 1, (2.31a)

d2 = 1 - RL, (2.31b)

d3 = (1 - RL + T2)2 — T2(2 + T2 — RL), (2.31c)

d4 = (1 - RL + T2)3 - T2(l - RL + T2)(3 + T2 - RL) + T\ (2.31d)

d5 = (1 - RL + T2)4 - T2(l -RL + T2)2(4 + T2 - RL)

+ T4(3 + 2(T2 — RL)), (2.31e)

dn = (l-RL + T2)n~l - r2(l -RL + T2)n~3(n - 1 + T2 - RL)

(2.31f)

Indeed, after searching a little one finds that the coefficients in this polynomial can be

expressed as factors of binomial coefficients. The general expression of the series dn is

dn = ^(-T2)f(l - RL + J2)""2*-1 ( ^ ~ + (r2 ~ RV> (n ~ \ ~ ^ ) • (2*32)
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In the same way we can find the general expression of the sn series

£(-T)'(l -RL + T) (2.33)

where the binomial coefficient is defined by

(n\ n\ . „( ) — T7 \T' (2.34)\m) m\{n — m)\

and where we consider the binomial coefficient to be zero if m > n. The series tn turns

out to be a simple geometrical sequence that can be expressed by

We have thus defined the integer multiplication operator which has the form of a

rational fraction (2.25) with the numerators given by the series (2.33) and (2.35) and the
denominator by the series (2.32). This rational fraction can be generalised to take into
account the multiplication with non-integer numbers by using the following generalised
binomial coefficient

where T(n) is the Euler gamma function.

2.3.2 Multiplication

Although the multiplication formalism is easy to understand and apply, the operator

that defines the multiplication as a rational expression of the parameters L, T and R is

rather complicated. To simplify this operator we have to introduce the parameters a, b

and c which we define later as functions of L, T and R.

tn = TT (2.35)

(2.36)
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Indeed, inspired by the composition of two monolayer LTR elements as defined by

equation (2.20) we find that for any parameters a, b and c the LTR element

( r \
*-*71

Tn

\ ^ )

( 1 -b2n \Ca l—a2b2n

bn(l-a2)
1—a262n

a 1—62"
\ c 1—q262™ /

(2.37)

has a very interesting property. The composition of two such LTR elements gives

( L ^71

\ Rn J

( L ^^m

Y R-rn J

( l_f,2(n+m) Y
CCl L—a262("+m)

6"+TO(l-a2)
1 —a262("+m)

a i_fr2(n+m)
\ c 1—a262(n+m' /
( L Xm+n

Tm+n

^ Rm+n J

(2.38a)

(2.38b)

This means that for the LTR elements defined by (2.37) the composition law simplifies
to a simple normal addition. Further, a given set of LTR elements based on the same

parameters a, b and c forms a subgroup where each element is defined by its order
number n. Within this subgroup the multiplication operator simplifies to a simple

multiplication of the order number by the multiplication factor

m

( L ^^71

\ Rn )

/ 1_(,2 (""»)
ca-1—a262(nm)

6"m(l-a2)
l_a2(,2(nm)

a l-j|2("">)
\ c l-o262(nmJ

\ / \

^ Rm*n J

(2.39)

In order to use this subgroup to define the general multiplication operator we must

make the first order element of the subgroup equal to any given LTR element. We have
to chose the parameters a, b and c so that the following relation is true

<z,\
T\

\Rx j

\

6(1—a2)
1—a262

a 1—62
\ c 1—a262 /

^ L ^

V R /

(2.40)
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This relation implies that the composition of any integral number of layers can be

calculated using the relation (2.38). This relation implies the following equation for the

parameter a

s/RLa? - (1 +RL-+ VM = 0. (2.41)

We can thus deduce the parameters a, b and c to be equal to

1 + RL — T2 + yj{ 1 + RL - T2)2 - ARL

b =

2VRL
1 - RL + T2 + y/(l — RL + T2)2 - 4T2

2T

T2 — RL + y/RLa

c =
L

R'

(2.42a)

(2.42b)

(2.42c)

(2.42d)

The root of (2.41) is chosen so that in the case of a monolayer the parameter a corre¬

sponds to r in (2.17). The other possible solution gives a — \jr and b = 1/p.
Using the property (2.38) with the parameters (2.42) we can define, with the help

of (2.37), a multiplication operator. This operator reads

n

\R /

(
rn N

l—a2b2n

bn(l—a2)
1—a2b2n

a 1 -b2n
\ c 1—a2b2n J

(2.43)

which is much simpler than the preceding definition of this operator (2.25) using the
rational functions.

The definition of the multiplication operator by (2.43) implies other interesting prop¬

erties. The multiplication by zero gives the neutral element for the composition law,
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while the multiplication by minus one gives the inverse element as follows

-1

' O
T

\ R J
t L\

T

\ R /

<0^

\0/

(2.44a)

( -L/(T - LR) ^
T/(T - LR)

\ —R/(T - LR) J
(2.44b)

Another benefit of this definition of the multiplication operator is its direct appli¬

cability to the multiplication by non-integer numbers without the use of complicated

functions such as the Euler gamma function. One use of the multiplication operator in

its non-integer form is the possibility of easily modelling the reflectivity coefficient of a

multilayered structure during growth. For example, the LTR element for n and a half

layers is given by the composition of the LTR element of n layers and one last layer

multiplied by one half. Another possible use of the multiplication with a non-integral

number is the backwards calculation of the reflectivity coefficient of one period from the

measure of the optical properties of n periods of multilayered structures. In this case

the measured LTR element is simply multiplied by 1/n. We must note here that this

multiplication operator is based on the parameter b to the power of n. If n is not an

integer, bn is not uniquely defined and special care must be taken because the power

function is multi-valued.

2.4 Discussion

We start our discussion with the study of the domain of definition of the LTR method.

This is important in that it gives insight into the different special cases that can be en¬

countered while using this method and thus a better understanding of the method itself
can be gained. Further, we can deduce some general conclusions about the behaviour
of multilayered systems. Indeed, in the preceding section we have five cases whereby,
for the calculation of the LTR element, we use a division by a denominator that can in

some cases be zero. Consequently, in the following we will study the definition of the

LTR element for a single monolayer (2.16), the composition law (2.18), the definition
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Figure 2.3: Decomposition into multiple reflections for a monolayer and for the compo¬
sition of two multilayered structures.

of the inverse element (2.22), the multiplication operator using the binomial coefficients

(2.25) and finally the multiplication as defined by equation (2.43).
In the case of a single monolayer (2.16) the LTR element is not defined when we

have

1 - rV- (2-45)

If we consider only absorbing materials (i.e. whose imaginary part of the index is positive

Im(n) > 0) then this can never be the case. We then have \p2\ <1 and thus 1 > \r2p2\.
On the other hand, the treatment of materials exhibiting gain with the LTR method

must be carried out with some caution. To better understand the implications of this

statement let us take a closer look at the transmission and reflection of a monochromatic

wave by a single monolayer. The total field reflected and transmitted can be decomposed
into a sequence of multiple waves travelling back and forth in the layer reflected by its

two interfaces (see figure 2.3). It is the sum of all these fields coming out of the layer
that gives the resultant reflected and transmitted wave. As an example we consider the
reflected wave and calculate this sum for an incident field of amplitude one. This gives

us the reflection coefficient to the left

L = r - tl2t21p2r - tl2t2lp4r3 - tut2lp6r3
= r - ti2t2ip2r(l + p2r2 + p4r4 + p6r6 -I ).

(2.46a)

(2.46b)
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We can now see directly that the reflection coefficient is not defined when the above

geometric series is not converging. This is the case for 1 < |r2p2|. Physically this would
mean that during the multiple reflection in the monolayer the amplitude of the wave is

increasing. For this to occur, not only has the material to amplify the wave but also the

losses due to the reflection at the interface must be small. Whereas for an absorbing

layer we can always calculate the LTR element.

The second case that we consider is the actual composition law (2.18). Indeed the

composition of two LTR elements is not defined when 1 = R\L2. This case can be easily

dismissed when considering only absorbing material. Their reflection coefficients have
a modulus less than one and thus the denominator of (2.18) can not physically be zero.

To understand why this problem arises let us consider the two reflection coefficients

with a modulus equal to one (1 = Ri = L2). This would correspond to a case where the

composition law is not defined and would arise when the light wave is trapped between

two totally reflecting interfaces.

An alternative approach would consider the multiple reflection picture (see figure

2.3), similar to the case of a monolayer. We have then

Again this coefficient is defined by a geometric series which converges only if 1 > \RyL2\.
To be complete we have to show next that any two LTR elements whose coefficients

have a modulus less than one will, when combined, give a LTR element of the same

kind. The actual mathematical demonstration of this property is beyond the scope of

this chapter.

The study of the case where the LTR elements have no inverse, leads to an interesting

observation. Indeed the inverse (2.22) is not defined when T2 — LR = 0. Let us consider
therefore a multilayered structure defined by an LTR element. We can then calculate the

reflected light to the left and to the right of this structure while it is monochromatically
illuminated from the left and from the right (see figure 2.4). We have then

L = Lx + T2RXL2 + T2XR\L\ + T2R\L\ + • • •

— L\ + T2RiL2(l + R\L2 + R^L2 + •••).

(2.47a)

(2.47b)

E[ — TEi + RE2,

E!2 — LEi + TE2.

(2.48a)

(2.48b)
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Figure 2.4: Decomposition into multiple reflections in the case of total absorption. To
calculate the total outgoing field on the right side of the monolayer we considered the
total absorption conditions rio = —roi = p and Ei = E2. By symmetry the left hand
side of the monolayer leads to the same results.

This corresponds to a linear system of equations linking the incident field amplitudes

with the amplitudes of the field leaving the multilayered structure. When the above

mentioned condition T2 — LR = 0 is fulfilled there exists a family of fields £i and E2

such that no light comes out of the structure. One can say that the transmitted wave

from the left is destructively interfering with the reflected wave from the right and vice

versa. This can be seen also in the decomposition of the fields into the multiple reflection

scheme (see figure 2.4).
Further using (2.16) the definition of the LTR element for one monolayer, one can

deduce the conditions imposed on the coefficients r and p by the condition T2 — LR — 0.

We then have the simple relation r = p which states that the losses through reflection are

equal to the losses due to the absorption while propagating through the material. Using
this derived condition we can graphically illustrate the index of refraction, absorption
coefficients and length of such a monolayer. Figure 2.5 shows that there is a complete

family of complex indices for which a monolayer of a certain length would be totally

absorptive. The optical length indicated corresponds to 2nz/\ where 2 is the actual
thickness of the monolayer. Further, one can easily imagine more complicated structures

where the condition of total absorption is fulfilled.

The intuitive explanation of the impossibility of defining an inverse element for a

total absorptive structure is as follows. Having an inverse element means that one can

mathematically conceive an inverse structure that, combined with the first real structure,

will give something that has no effect (neutral element). If the initial structure has the
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property of total absorption then the light going through the inverse structure would be

totally absorbed by the real structure and thus cannot go through. It is then impossible

to conceive a structure that would allow the light to be transmitted.

We now consider the case of the multiplication operator for a positive integer. This
can be treated using the rather heavy formalism (2.25) of the sequence of polynomials

sn, tn and dn. For the operator to be defined, the denominator sequence dn has to be
different from zero. We can split the multiplication by n into the multiplication by

(n — 1) and the combination with one further LTR element. We have already treated
this last combination at the beginning of this section and showed that it is defined when
the multilayered structures are absorptive.

Finally, we discuss the multiplication operator as defined by (2.43). From this defi¬
nition of the multiplication the following property holds

m n

R /

— (m*n)

V R /

(2.49)

Thus if the multiplication (2.43) is not defined for ni(LTRi) then it will not be defined
for the inverse of — nj"1 (LTRi). This brings us to the case already studied beforehand
where we showed that the LTR elements corresponding to the total absorption cannot

be multiplied by minus one.

2.5 Summary

In this chapter we started with the Maxwell equations to show the effects of an interface

between two materials with different refractive indices. These effects are considered for a

monochromatic wave and can be represented in the simplest case by the reflectivity and

transmission coefficients. The determination of these coefficients becomes more difficult

when considering a multilayered structure. To illustrate this, we showed two different
methods normally used to calculate these coefficients. While the matrix method is

easy to apply, the parameters employed to calculate this matrix are not straightforward

physical parameters. This property also implies a complicated definition of the optical
transmission and reflection coefficients in the case of a periodic multilayered system (use
of the Chebyshev polynomials of the second kind). The second method considered is the
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Refractive index (n')

Figure 2.5: Graphical representation of the total absorption condition (only some possi¬
ble conditions are considered). As an example the lower graph includes also the complex
index of GaAs as a function of wavelength from 600nm to 900nm [17] (900nm is at the
bottom of the figure).
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iterative method. This method, while using only physical parameters (transmission and
reflection coefficients), is difficult to generalise directly to consider periodic structures,

that is, the periodicity does not simplify the problem.

We thus introduced a formalism that allows a very simple calculation of the reflec¬

tivity and transmission coefficients in the case of periodic multilayered structures and at

the same time it uses only physical parameters. This formalism consists of a combination

law which enables us to calculate the optical properties of two successive multilayered

structures when the optical properties of each of them is individually known. Further

the formalism comprises a multiplicative operator which allows the direct calculation of

the optical properties of a periodic structure when they are known for one period.

We finished this chapter by reviewing the different special cases which can arise
when using this formalism. We showed that all of these cases have a physical meaning.

Using these special cases we deduced the existence of total absorption in multilayered
structures under certain conditions.



Chapter 3

Roughness, continuous refractive index

variation and non-linear propagation
in multilayered structures

3.1 Introduction

In this chapter we show how to include three different effects into the LTR (Left re¬

flection, Transmission and Right reflection) formalism. We begin by defining an LTR
element which corresponds to interface roughness. This element can be used between
two layers in order to model the effects of interface roughness on the transmission and
reflection coefficients. Further we generalise the LTR formalism to treat continuous

refractive index variation. This is the case when the layers interdiffuse for example.

Another phenomenon that we study in this chapter is the response of a multilayered

structure to a high intensity monochromatic wave. In this case the refractive index and
the absorption coefficient depend on the intensity of the light and thus the transmission

and reflection coefficients change with intensity.

The roughness of an interface influences greatly the optical properties of a multilay¬
ered structure [18]. Its quantitative measure is very important for assessing the quality
of such a structure. Too much roughness implies a large amount of scattered light which

is no longer available for transmission, reflection or absorption. This can be seen on an

unpolished surface where the interface becomes opaque because of the roughness of the
surface. This opacity is due to the large amount of scattered light but also to the phase

34
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change of the reflected or transmitted light. In its turn, the phase change is induced by
the passage of the light through this uneven surface. In this chapter we model statisti¬

cally, in one dimension, the effects of an uneven surface on the phase of a monochromatic
wave. This phase change leads to the interference between the light interacting with the
different parts of the surface which in turn changes its reflection and transmission.

Another application of the LTR formalism is the easy calculation of the continuous

refractive index variation in multilayered structures (for a similar study see [19]). This
variation can be achieved by induced partial disorder through annealing. In this case

two adjacent layers interdiffuse implying a gradual change of refractive index between
the two layers. In order to treat this continuous refractive index variation we use the

multiplication operator discussed in the preceding chapter.

In the third part of this chapter we study the effects of a high intensity monochro¬
matic wave on a multilayered structure [20,21]. By high intensity we mean the intensity
needed to induce a change in the refractive index of the material. The problem in

modelling such an interaction arises from the change of intensity during the light prop¬

agation through the structure. Thus, as it propagates it will change the refractive index

by different amounts and consequently more or less light propagates. This effect couples
the reflection and transmission coefficients to the light intensity and vice-versa. In a

multilayered structure the major problem has its source in the multiple reflections be¬

tween the different layers. Thus, knowing the transmission and reflection coefficients for
the incident intensity is useless because after multiple reflections the incident intensity

might change and induce a different amount of transmission. Due to this change, the

multiple reflections have to be recalculated because of the different intensity and so on.

We solve this problem by not using specific transmission and reflection coefficients dur¬

ing the calculation but by defining a dependence for each layer. This dependence is then
used to define a composition law for the dependence in the LTR frame-work. Using this

generalised composition law we can calculate, for example, the effects of combining two

non-linear elements to determine a new intensity dependence for the combined element.

3.2 Roughness effects

This section starts with the theoretical treatment of the surface roughness as a statistical
distribution of the depth of the interface. To simplify the calculations we take this
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distribution to be a normalised Gaussian function centred 011 the mean position of the

interface. The width of the Gaussian corresponds to the measure of the roughness. At
the same time this uneven interface induces different optical path lengths to a perfect
monochromatic wave transmitted or reflected by it. Knowing the roughness distribution

we are then able to calculate the distribution of the phase and amplitude after such

an interaction. When this beam interacts with a second rough surface its phase and

amplitude distributions change again. The resulting distribution turns out to be the
convolution between the phase-amplitude distribution of the wave and the distribution

characterising the second rough surface. After some mathematical treatment we are then
able to characterise the propagation through a rough monolayer including the effects

of the multiple reflections on the boundaries of the monolayer. The transmission and
reflection coefficients deduced by this method are then used to define the fundamental

LTR element for one monolayer including roughness.

To a first approximation, the roughness is modeled by a succession of parallel planes

(see figure 3.1) which are located at different positions. The effects of the different

slopes of the planes are neglected here. The positions of the planes are characterised by
the distribution function s(Q which corresponds to the proportion of the surface at the

position £. This distribution function is normalised

The origin of the position variable £ is chosen so that the distribution is centered. This
means that the average position of the surface is at £ = 0, that is, the first order
momentum of the distribution is

The parallel planes are distributed around this mean position. The roughness is then
characterised by the width of this distribution which corresponds to the second order

3.2.1 Model

/ s(C)dC = 1. (3.1)

(3.2)
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Figure 3.1: Interface roughness distribution and its effects,
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(3.3)

On the other hand the monochromatic wave is characterised by a complex amplitude

distribution A(£). This distribution gives the amplitude and phase of the wave which
has travelled the distance £ with respect to the the centre of the distribution. For

example, a coherent and monochromatic wave corresponds in this description to an

amplitude distribution function given by the Dirac delta function A05(C) since the wave

is composed of only one amplitude and phase. When such a wave meets with a rough

surface it loses its coherence and consequently the amplitude distribution gets wider.

Indeed, after passing through the interface the beam is made up of different parts each

having passed through a different portion of the interface and thus having acquired
different amplitudes and phases. This process repeats itself on each passage through an

interface. We must note here that this is an empirical model and the propagation of the
wave treated in this manner is not a solution of Maxwell's equations because it does not

take into account tfie light scattered off-axis.

In order to calculate the effects of the roughness on a monochromatic wave with a

general amplitude distribution we determine its effects on a normalised Dirac amplitude
distribution (coherent wave Aj(£) = 6(C))- We start with a study of the reflection from
an interface characterised by the roughness distribution s(£).

The amplitude of the wave reflected from the interface at the position £ is

Areflection(C) ?~s(£)e (3.4)
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where k is the wave vector of the monochromatic wave. The first coefficient r = (1 —

n)/( 1 + n) corresponds to the normal reflection coefficient which is independent of the
actual position of the interface. The last two terms correspond to the ratio of the

interface at the position C and to the phase change undergone by the wave when reflected
from this position. If the refractive index n is complex then the last coefficient gives the

phase and amplitude change of the reflected wave.

In the same manner, the phase distribution for the transmitted wave can be deter¬

mined

where n is the index of refraction on the other side of the interface and t — 2/(1 + n)
the transmission coefficient. The difference between the two refractive indices appears

here because we defined the phase with respect to the mean position of the interface.

When the incident wave has an initial amplitude distribution then the amplitude

distribution of the reflected wave is given by the convolution between (3.4) and the
initial amplitude distribution

where * corresponds to the convolution operator. To handle the transmission, one simply

replaces Areflection(C) by Atransmission (C).
After several reflections and transmissions through the optical system, the final wave

is defined by a final amplitude distribution A((). To determine from this distribution
the received intensity, we suppose that all parts of the beam interfere in a point (i.e.
focal point of a lens). At this point, the intensity is given by

■transmission (C) = fa(C)ci(1-")s<, (3.5)

(3.6)

—oc

i2

(3.7)

= U(0) (3.8)

where A(i/) corresponds to the Fourier transform of A(£). In the next section we use

this property to find the transmission and reflection coefficients for a rough monolayer.
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3.2.2 Application to a monolayer

In the following we apply this model to the case of a single monolayer. This gives us a

better insight into the influence of the roughness on the optical properties. Further it

will show us the usefulness of the above mentioned property namely the writing of the
measured intensity as a Fourier transformation. The results of this subsection will give

us the starting point for the generalisation of the LTR formalism to include roughness.
As already shown in the preceding chapter, in a monolayer we have multiple reflec¬

tions inside the layer (see figure 2.3). The transfer function for the transmission of this

monolayer is given by the sum of convolutions of the multiple reflections between the
two interfaces

A/ma«(C) = Uknz(At0i * Ano) + e3lknz(At0i * Arl0 ★ Arl0 * Atw) + • • ■ .

where z corresponds to the thickness of the monolayer and n to its index of refraction.

The distributions Am, Ati0 and Arl0 correspond to the transmission from the medium

0 to 1, from 1 to 0 and to the reflection when going from medium 1 to 0.
To evaluate this series of convolutions we use the properties of the Fourier trans¬

formation which transforms a convolution into a multiplication. This is further very

convenient because the actual measurement of the resulting intensity (3.7) is defined

using the Fourier transformation. After the transformation, the transfer function reads

-A final (u) = eiknzAm(u)A£10 (y)

+ e3tfcn2!Aioi(^)Ario(^)Ario(i')Aao(l/) H (3-9)

eiknzAt0Av)Am(v) . (3.10)£0H ; not \_e2iknzA2M y >w riuv /

hing but a normal geometrical series that can be easily evaluated,
isider the roughness to be characterised by a Gaussian distribution
3 intensity transmission coefficient

one can

s(z)=(3-n)

The width of the distribution Az gives the amount of roughness for the interface and

corresponds to the second order momentum of this distribution (root mean square). The
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Fourier transformation of this distribution is

s(u) = e
—27T2Az2i/2 (3.12)

and thus the different transformed transfer functions read:

-2k2 Az2 (3.13a)

(3.13b)

(3.13c)

(3.13d)

Considering the above definitions the intensity transmission and reflection coefficients

are:

Interpreting these coefficients is easy if one notes the resemblance to the transmission

and reflection coefficients in the absence of roughness. The effects of the roughness can

be seen here as a change of the internal transmission and reflection coefficients. The
amount by which these coefficients change is linked to the ratio between the optical

length of the roughness, nAz, and the wavelength of the incident wave, A = 2n/k. For

example, given a roughness of 2nm in a monolayer of 1/im thickness having a refractive
index of 3 at a wavelength of 600nm, the transmission coefficient will change by 2%. For
a roughness twice as large the change is about 6%. This small example also shows the
non linearity of the response. In the case of reflectivity, the sensitivity of this method
is much greater. Under the same conditions as above, but this time at a wavelength of
570nm and for a roughness of lnm, the change in reflectivity coefficient is 4% whereas
for a roughness of 2nm the change is 15%.

An important characteristic of a monolayer is its finesse, T. This can be defined by

calculating the transmission coefficient as the thickness of the monolayer is increased.
One then observes selective transmission of the monochromatic light when the thickness

t0itl0e-^-n^k2Az2einzk 2
(3.14a)T^q£~4n2k2Az2 ^2inzk '

+ + r e—(l—2n+3n2)k2Az2/2„2inzk
<1? - r p—2n2k2Az2 , goigloOog ' ' eX

^ j-2 g—in2k2Az2g2inzk (3.14b)



CHAPTER 3. ROUGHNESS AND OTHER EFFECTS 41

1.0

0.8 -

c
o 0.6 -

u>

c

,2 0.4 -

0.2 -

0.0

0.02 0.04 0.06

Thickness (jxm)

0.08 0.10

Figure 3.2: Transmission coefficient as function of the monolayer thickness for different

of the monolayer leads to constructive interference of the wave (see figure 3.2). The
finesse is defined as the ratio between the separation of the fringes and their half-width.
From the definition of the transmission (3.14a) we can determine the finesse

where r = |r0i| is the reflectivity coefficient. The expression for the finesse simplifies
to the normal definition when there is no roughness, that is T =7rr/(l — r2). In figure
3.2 we also remark that increasing the roughness of the monolayer decreases the finesse.
This relation links the finesse coefficient not only to the optical properties of a monolayer

but also to its optical quality.

Finally, we remark that the equations (3.14) giving the intensity and transmission
coefficients are not conserving the energy of the field. Indeed, in presence of roughness
their sum is not unity. This is due to the treatment of the problem in one dimension,

neglecting the diffraction of the wave in other directions at the edges of the roughness

steps. Our model is a first order approximation which takes into account only the

directionality non-scattered light. The directional scattered light makes up the intensity

lost due to the roughness.

roughness.

^
2sinh(A:2A2:2(l + n2) + ln(r))' (3.15)



CHAPTER 3. ROUGHNESS AND OTHER EFFECTS 42

3.2.3 The roughness in the LTR formalism

The LTR formalism is based on the combination law acting on two LTR elements. In

the case of the roughness we introduce a statistical distribution of these elements, that

is, they depend on the optical path length. In order to include the roughness effects in
the LTR calculations we have to deduce the combination law for two LTR elements

that each have a different distribution. Let us consider two layers defined by

ii(Ci) N
Ti(Ci)

fli(Ci) )

and

^ T2(C2) ^
T2(C.)
Rl (C2)V

(3.16)

The combination law for the left reflection in its expanded form reads

L(C) — Li + T\ * L2 ★ Ti + T\ -k L2 * R\ L2 ★ T\ + (3.17)

This expression can be simplified when using the Fourier transformation

L(u) — Li(u) +
1 - R\{y)Li(v)

(3.18)

In the same manner one can deduce the transmission and the second reflection coeffi¬

cient. Consequently in the LTR formalism the combination law including a roughness

distribution is

£(") X
2>)

V R(u) J

L,M ^
Ti(")

\ Riiy) )

© Ti(")

^ R2W) )

(3.19)

The second step necessary to include the interface roughness effects in the LTR

calculations is to define the roughness in this formalism. One can use the transmission

and reflection coefficients calculated in the preceding section in the case of a rough

monolayer. This approach has the disadvantage that when two such rough monolayers
are combined by the LTR method the roughness between them is taken into account

twice. Indeed, each layer has at its common interface a roughness variation independent

of the other layer. These two roughness are not correlated. This implies that the
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Figure 3.3: Schematic representation of the rough element.

straight forward method of combining two rough monolayers leads automatically to

considering small vacuum layers of random thickness between the two layers which

implies an overestimation of the roughness effects.

To avoid the above mentioned problem, we introduce a new LTR element which

corresponds to a "rough" element. This element placed between two adjacent perfect

layers takes into account their common roughness. It is formed by the materials of the

two layers separated by an internal rough interface (see figure 3.3) with no vacuum layer
between them. In a first approximation the interface is represented as an ensemble of

parallel steps, neglecting the effects of different step slopes as already defined for the
case of the monolayer treated above. The depth of the steps are statistically distributed

with a distribution function s((). This distribution is normalised and its mean value,
which corresponds to the position of the ideally flat interface, is chosen for the origin of
the £-axis. The standard deviation of s(() is a measure of the roughness.

Using the combination law described in equation (3.19) together with a Gaussian in¬
terface distribution (3.11) and a monochromatic incident wave, the rough LTR element
can be written

trough —

?"01

\AihUU

V ri°

\ (

©

V

r^e~2n\k2Az2
v/£^e-(n1-n2)^A*V2

j~2lg~ "Zn\k2Az2

\

©

/

V

r2o

\/*02^20

r02

\

(3.20)

where the subscripts 1 and 2 stand for the two adjacent media split by the rough

interface. Further, for the sake of simplicity, we have written this rough element as

the combination of three elements. We remark here also that the LTR element has no

width as it begins and ends at the same place. This property makes the insertion of the

rough element between any two layers possible.
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3.3 Continuous refractive index variation
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In this section we apply the LTR formalism to continuous refractive index variations.

This case is a generalisation of the multilayered structures which treats only the case

of constant refractive index with a discontinuity at the interface between two layers.

The continuous refractive index variation consists in the dependence of the refractive

index with depth in a layer. This is obtained by many growth techniques or post growth
treatments.

In order to treat the refractive index variation we define by "quadrature" a LTR

integral. This integral is based on the LTR composition law and on the multiplication

operator. With its help one can formally calculate the LTR of a layer with refractive

index variations. This LTR integration is then used in the case of a linearly varying
refractive index where the result is graphically compared to the direct analytical solution
of Maxwell's equations.

3.3.1 The LTR integral

In the case of the combination of n layers (see figure 2.2) we can introduce a combination

operator which combines all the layers

n

( \ / l\ \ f l>2 \ / ln
\

© tj — t, © t2 © ■ .© tn
1=1

\ rj J V ri / V r2 / V Rn /

We then use this notation to define the LTR integral

n rz i

lim ©Az£(n (z0 + jAx)) = ® dzC(n(z)) (3.22)Az^°
j=l Jz0

where C{n) is the LTR element for a monolayer of unit thickness as defined by equation

(2.16) and n = (z\ — zq)/nz. The refractive index is given by the function n{z). This

integral gives the transmission and reflection coefficients for a layer whose refractive
index is changing with depth. In order to calculate this integral the layer is decomposed
into thin layers each having a constant refractive index (see figure 3.4). These layers are
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Depth (z)

Figure 3.4: Decomposition of a linear varying index into small layers of constant refrac¬
tive index.

then combined using the combination operator (3.21). In the following application we

show that as the thickness of the thin layers decreases, this integral operator gives the
same results as the analytical solution of Maxwell's equations.

3.3.2 Application to a linear refractive index change

We can apply the integral defined above to the case of a layer with linear refractive index

change. The transmission and reflection coefficients of such a layer can be deduced by

considering the solution of Maxwell's equation

d2E(z,t)
_ (n0 + niz) 2 d2E(z, t) = Q

dz2 c2 dt2

where n0 is the starting index of refraction and nx is the rate of change of the refractive
index of the layer with depth. The solution of this equation is

E{z,t) = \Mo +niz ^CiI1/4 ^ iu (n0 + n\z) 2
2n\c

+C2Ki/4(M^))e„, (3.24)
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Thickness (z

Figure 3.5: Transmission and reflection coefficients for a layer with a linear varying index
(see figure 3.4) as a function of the layer thickness. The continuous line corresponds to
the exact solution of Maxwell's equation and the dots to the LTR method.

where 11/4(2) and K1/4(2) are the modified Bessel functions of the first and second kind.
The integration constants C\ and C2 correspond to the two waves travelling in opposite

directions and can be determined by considering the continuity relations (2.6) of the field
at the layer interface. The fields outside the layer can then be decomposed into incident,

transmitted and reflected parts defining the transmission and reflection coefficients.

On the other hand one can treat the problem of a layer with continuously varying

refractive index by using the integral formalism already introduced. This formalism
leads directly to the transmission and reflection coefficients

® dzC(riQ + niz) —
J zo

T

\R /

(3.25)

In figure 3.5 we have represented the transmission and reflection coefficients for a

layer with a constant refractive index gradient as a function of its thickness. These

coefficients are calculated using the two methods described above, that is, the exact

solution of Maxwell's equations and the LTR integral. One notes the good agreement.

Beyond the graphical verification of the LTR integral it is possible to show the con¬

vergence of equation (3.22) towards the exact solution but this is beyond the scope of
this work. A possible procedure to show this convergence could use the LTR formalism
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:0

Figure 3.6: Field definitions when combining two intensity dependent LTR elements.

to define the exact solutions to Maxwell's equation for a step-function refractive index.

One can show that as the step-function tends towards the continuously varying refrac¬

tive index function, the solution defined by the LTR method tends towards the exact

solution.

3.4 Intensity dependent propagation in multilayered

structures

When the index of refraction depends on light intensity the simple LTR method does

not work directly. The normal LTR method is built on the assumption that the system

is linear with respect to the incident fields. If the refractive index depends on the inten¬

sity, the reflection and transmission coefficients depend also on the incident intensity.

This has no further consequence in the case of a single layer if the dependence of the
coefficients is known. The problem arises when one combines two or more intensity

dependent LTR elements. Indeed, one has to know in this case the intensity of the

fields between the layers (see figure 3.6).
The composition law can then be written

1 Li(E0, Ei) X
Ti(£0,£i)

y Ri(Eo, Ei) y

( l2(e2,e3) \
t2(e2, e3)

y R2(E2, E3) j

( L'(E0,EuE2,E3) ^
T'(Eq, EI, E2, E3)

y R'(E0,El,E2,E3) y

(3.26)
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where e0, ei, e2 and e3 are the fields incident on the two layers. On the other hand

the inter-layer field can be calculated with the help of the LTR coefficients of each of

the layers

el

e2

t\(eq, ei)l2(e2, e3)e3 + t2(e2, e3)e3
1 — l2(e2, e3)ri(eo, ei)

ti(e0, ei)eq + t2(e2, e3)ri(e0, ex)e3
1 — l2(e2, e3)r\ (eq, ei)

(3.27a)

(3.27b)

This system of equations links the four incident fields. Solving leads to two solutions

Ei(E0,E3) and E2(E0,E3). Substituting these solutions into equation (3.26) gives the
final LTR coefficients depending only on the external incident fields

( lx(e0,ei) ^
ti(e0, ei)

^ ri(eo, el) y

©

( l2(e2,e3) x
t2(e2, e3)

y Rz(E2,e3) j

( l(e0,e3) ^
t(e0, e3)

y r(eo, e3) j

(3.28)

Thus the number of parameters does not increase as one combines more and more

nonlinear LTR elements. At each combination one can eliminate the internal fields by

the use of the equations (3.27). This combination law is again self-consistent as its result
has the same form as the individual elements of the combination.

The difficulty of this method consists of finding the solution of (3.27). Indeed, this

system of equations is nonlinear and there is no general method for finding solutions.
An analytical solution can only be found in special cases for nonlinear LTR elements.

In the following we show a practical method which can be used to solve this problem.
As for the LTR method itself, the solution of this problem has a physical meaning.

Indeed the principal idea is to increase the amplitude of the incident field slowly thus

going gradually from the linear state to the non-linear state. This approach is based on

a knowledge of the linear response of the multilayered structure. This can be calculated

by the normal LTR method. We then use the internal fields found in the linear case to

deduce the LTR elements for the same incident intensity. This step is repeated until

the LTR element converge. This self-consistent method ensures the correct result in the
case of bistability where a small change in the incident intensity induces a jump in the

transmission coefficient. We use this self-consistent LTR elements to start the whole
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process with a slightly higher incident intensity. We can thus increase the intensity to

the desired level step by step.

Practically, the effects of the slow increase of the incident power can be expressed

with the help of a sequence of LTR combinations. We consider here an increasing

sequence, Em, of incident fields

for Er,

( j^m—l ^
T[im—1

nm— 1

V/

©

( tm—1 ^
^2

Tim—12

Dm—1
V y

©•••©

( rm-1 ^
n

rpm—l
n (3.29)

Dm—1
n f

where the LTR coefficients for the Em input field are calculated with the interlayer fields

resulting from the 2?m_i input field. The sequence Ern can be an algebraic sequence

or one could change the step size of the sequence depending on how rapid the LTR

coefficients are varying with E. The first element of this sequence is given by the linear
LTR coefficients

CO
rpOi

\ R* )

' Li(0,0) ^
71 (0,0)

^ Ri(0,0)
(3.30)

In figure 3.7 we are comparing the solution of the nonlinear Maxwell equation with
the solution defined by the nonlinear LTR method. The Maxwell equation in this case

reads

d2E(z,t) (ni + n2\E(z,t)\2)2 d2E(z,t)
3z2 dt2

= 0, (3.31)

and for the LTR method we use £(rq + n2(|£'i|2 + l-E^I2)) as defined by equation

(2.16). This figure shows that the two methods give the same resulting transmission
and reflection field as a function of input intensity. We remark here that in order to find
the solution of the nonlinear Maxwell equation one has to use a backwards calculation

method, that is, to presume that the output field is known. This is not the case for the
LTR method where one gets directly the transmission and reflection coefficients for a

given input intensity.
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Figure 3.7: Transmission and reflection coefficients as a function of the incident power
calculated by the two methods. The continuous line corresponds to the solution to
Maxwell's equations and the dots to the LTR method.

3.5 Summary

In this chapter we have generalised the LTR method to be able to treat three other
cases. We started by considering the effects of the roughness on the optical properties of
a monolayer. In this case the transmission and reflection coefficients must be generalised
to distributions which take into account the roughness distribution. Their effect can be
described by the convolution of their distribution with the phase-amplitude distribution
of the wave. By using the properties of the Fourier transformation one can evaluate
this convolution while taking into account the multiple reflections inside the monolayer.
The resulting distribution gives the final phase-amplitude distribution of the wave after
the interaction. The experimental measure of the intensity integrates the interference

of all parts of the wave. We can define an LTR element which models the roughness
when combined between two successive perfect layers. This rough LTR element takes

the correlated roughness at the interface of the two layers into account. Once this

rough element is introduced, one can build more complex multilayered structures having

roughness at internal as well external interfaces.
The second application of the LTR method treated the case of a continuously varying

refractive index. Compared to the multilayered structures composed of layers with
constant refractive index, the continuously varying case corresponds to a refractive index
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which varies with depth. Its treatment consists of introducing an LTR integral which
can be evaluated by quadrature. Effectively, this integral considers the refractive index
variation as a succession of infinitesimal thin layers of constant refractive index. As the

thickness of these layers tends toward zero, the integral defined by quadrature converges

towards the solution of Maxwell's equations with varying refractive index as a function
of depth. We showed this graphically in the case of a linear refractive index variation.

Finally, the LTR formalism was generalised to include the change of refractive index
with the intensity of the monochromatic wave. In this case we have to introduce the

dependence of the LTR elements on the two incident fields (from the right and from
the left). When combining two or more of such intensity dependent LTR elements,
one has to know the internal fields "trapped" between the layers. The next step was

to consider a slow variation of the intensity of the incident wave thus passing from the
linear to the non-linear case and stopping at the desired intensity. In the linear case,

we could calculate the internal fields as the LTR elements are not actually intensity

dependent in this case. Knowing these fields, we use them to calculate LTR elements
for the next higher incident intensity. In this way, we can reach the desired intensity

step by step. Physically, this method corresponds to slowly turning up the power. We

showed graphically that the solution found by this method gives the same result as the
solution to the nonlinear Maxwell equation.

With these three examples of generalisation of the LTR method we have shown the

versatility of our formalism and the ease with which one can apply it to very different

cases.



Chapter 4

LTR formalism for waveguides and

photonic structures

4.1 Introduction

In this chapter we generalise the LTR formalism in order to treat wave propagation in

more complex situations. Originally the LTR approach treats the case of plane waves

propagating through plane multi-layered structures. These plane waves are solutions

of Maxwell's equations in homogeneous and isotropic media. In this case, the LTR

formalism links through the transmission and reflection coefficients these solutions at

the interface between two such media.

Without changing anything in the LTR formalism we can generalise it by considering
other solutions of Maxwell's equations. This is the case of plane waveguides. In a

waveguide mode the field outside the guide is described by an evanescent wave and not

by a plane wave of constant amplitude [22], The LTR method gives the coefficients

linking these evanescent waves and the plane waves inside the waveguide. A particular

solution corresponding to a waveguide mode is achieved when the divergent evanescent

field has zero amplitude. Another possible generalisation is based on the change of
the considered solutions to cylindrical waves. This is the case for cylindrical symmetry

waveguides such as optical fibres.
In the case of periodic structures we can distinguish between the one dimensional

case [23] and the two [24,25] and three dimensional cases [26-28]. The one dimensional
case can be treated by the normal LTR formalism. We use this case to show some of the

52
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features present in periodic structures. The generalisation to two and three dimensional

periodic structures leads to the consideration of more complex solutions of Maxwell's

equations (i.e. more than one plane wave corresponding to the different diffraction

orders). The "link" at an interface between two such solutions can no longer be described

by simple transmission and reflection coefficients. We have to use matrices in order to

ensure the continuity of the solutions at the interface. These matrices link two families

of solutions on either side of the interface. We can continue using the LTR formalism

after generalising it by changing the transmission and reflection scalar coefficients to

matrices. Special care must then be taken because of the non-commutativity of the
matrix multiplication.

4.2 Waveguides

We can generalise the LTR method to treat the case of plane waveguides. Our approach
is based on classical methods for calculating the waveguide modes [22,29]. In order to

take these modes into account we must consider a different solution of Maxwell's wave

equation (2.2). Contrary to the plane waves (2.4) this solution has to depend on more

then one spatial coordinate. The general solution has the form

U(x, y, z, t) = U0 exp(i(u)t — kr) + ar), (4.1)

where r is the position vector and the vector pair k and a are the real and imaginary

part of the wave vector. In order for this function to be a solution of the wave equation,

the wave vector must comply with the following dispersion relations

2 2
n uj ,92 /,

—t. k + ol =0, (4-2)
e

ka = 0. (4.3)

In the following we consider a specific case of this dispersion relation i.e. the real part

k of the wave vector is parallel to the waveguide and the imaginary part a is perpendic¬
ular to it (see figure 4.1). In this case, the second dispersion relation is automatically
fulfilled.
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Figure 4.1: The waveguide configuration.

As for travelling waves we can define the reflection and transmission coefficients

connecting the solutions on either side of the interface

Ui(x, y, z, t) = U0 exp(i(uA — ky) + ax),

Ut(x, y, z, t) = ti2U0 exp(i(ujt - ky) + a2x),

Ur(x, y, z, t) = ri2Uo exp(z(tut — ky) — ax),

(4.4a)

(4.4b)

(4.4c)

where a2 is so chosen that the dispersion relation is fulfilled in the second medium

having the refractive index n2. In order to satisfy the continuity condition co and k
must be the same on both sides of the interface. We remark here that a2 can also be

purely imaginary without affecting the form of the solutions. This can be the case when

t~ < k2.

Further, the continuity condition implies the following transmission and reflection

coefficients

^12

ri2

a — a2

a-\- a2
2a

a + a2

(4.5a)

(4.5b)

We can now define the LTR element corresponding to a layer of thickness Ax

r —

*-"wg —

' l\
T

R /

CO
t

\rR J

(
l—p2r2
(i-r2)

P(l-p2r2)
1 —O2

\ ^ 1—p2r2 /

(4.6)
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with

p = exp(a2Ax)

Having obtained the definition of the LTR for one layer we can calculate the general

transmission and reflection coefficients for any composite waveguide. In order to ascer¬

tain whether the structure is waveguiding or not we must define a waveguide condition.
This condition is the same as the totally absorbing condition described in the preced¬

ing chapter i.e. T2 — LR = 0. This implies that there is no wave emerging from the

waveguide. In our definitions of the solution these emerging waves diverge at infinity.
The remaining incoming waves correspond to the evanescent waves on either side of the

waveguide. Further, we remark that all of the above treatment can be generalised to

the case where the vectors k and a are not in this specific configuration.

Practicaly speaking, in order to find the guided modes in such a multilayered struc¬

ture one starts with the dispersion relation (4.2). Knowing the pulsation frequency u

and choosing the exponential decay coefficient a one can determine the wave vector k.
As the frequency and the wave vector must be the same inside and outside the structure

one can use the dispersion relation inside each layer with the corresponding index of
refraction to calculate the internal exponential coefficient a2. This coefficient can also

be imaginary in which case we have a stationary wave inside the layer. Once the coeffi¬

cients a and a2 are known one can calculate the transmission and reflection coefficient

for each interface. Using these coefficients in (4.6) one can define the LTR element for
one layer. The whole structure can then be calculated using the addition and multipli¬
cation algebra. Finally, this structure is wave guiding at this frequency and wavelength
if the total LTR elements fulfils the total absorbsion condition T2 — LR = 0. In order

to find all guiding modes of a fibre one has to scan the exponential decay coefficient a.

4.3 Photonic bandstructures in one dimension

Another application of the LTR formalism is the study of periodic multilayered struc¬

tures. These kinds of structures are very useful for the control of the propagation of

optical beams [30,31]. A good example is the Distributed Bragg Reflectors (DBR) used
as high reflectance mirrors. These mirrors are usually fabricated out of non-absorbing
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dielectric films. One can engineer a periodic structure made of such films so that it is

highly reflective at a given wavelength. This reflection is only due to the constructive

and destructive interference of the multiple reflections from the different interfaces of

the periodic structures. The origin of this high reflection explains also its dependence

with respect to the wavelength.
In this section we will use the already introduced LTR multiplication operator in

order to show the different properties of the periodic multilayered structures such as

DBRs. Our first step consists in redefining the operator in a form more suitable for this

study.

In order to find an analytical form of the multiplication operator we have used the

LTR elements of a monolayer as a starting point. Applied to a monolayer the mul¬

tiplication operator should only give the LTR element of the same monolayer having
a different thickness. The new thickness of the layer is given by the original thickness

multiplied by the multiplication factor. This corresponds to the change of the propa¬

gation length of the layer by this factor without changing the interface transmission or

reflection. This can be observed in the LTR formalism when the LTR element of one

monolayer (2.16) is expressed in a different form

C(n, k, z) -

\

Vi1 -r2)
—r

©

/

P

\0/

e

—r

V(l -r2)
r

(4.8)

where r and p are defined by (2.17). We can now distinguish the different parts compris¬

ing the LTR element for one monolayer. The left and right elements in (4.8) stand for
the transmission and reflection coefficients at the interface of the monolayer. The middle

part corresponds to the propagation through the monolayer. Applying the multiplica¬
tion operator to equation (4.8) is equivalent to changing the power of the propagation
coefficient p.
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Using the decomposed definition of the LTR element for a monolayer we can define
a decomposed operator for the multiplication

n

' l\
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0 ^
bn

\ 0 /

©
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-ac ^

V

%/(! - °2)
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(4.9)

where the factors a, b and c are defined by the equations (2.42). As for the decomposed

monolayer operator we notice here two distinct elements: the free propagation through
the medium described by the middle term (0, bn, 0) and the interface effects described

by the outer elements.

In the following we discuss the properties implied by the propagation term. This
is equivalent to treating an infinite periodic structure where the interfaces are at in¬

finity and have no effect on the propagation through the structure. One can interpret

the properties of this propagation without the interfaces as the bulk properties of the
structure.

There are several possibilities for the propagation coefficient b. This complex number

can have an absolute value smaller than, greater than or equal to one. The first two

cases correspond to an exponentially increasing or decreasing wave. These solutions
are divergent in the case of a perfect periodic structure. In the presence of a local
breakdown of the periodicity this solution can represent a non-diverging solution, as we

will see below.

In the case where the modulus of the propagation factor is unity the only useful
information is conveyed by its phase. This phase is equivalent to the phase acquired by
the wave while propagating through one period of the structure. Simple multiplication

by n gives the phase of the wave after n periods.
In order to study the different possibilities of the propagation factor b in more detail

we can rewrite it in the following form

b = q + y/q2 - 1 (4-10)

where q = (1 — RL + T2)/2T. Here we consider only non absorbing refractive indices. In
this case the coefficient q is real. Indeed, for real refractive indices we have the following
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1 n1
n2

- imaginary phase
- real phase

Figure 4.2: Periodic structure constructed with layers of different refractive indices.
Real and imaginary phase of the wave while propagating over one period.

relation

1 = |T2 - LR\ = \T2\ + \H2\ = \T'2\ + |L2 (4.11)

This implies directly the following properties for the transmission and reflection coeffi¬
cients

T = i\T\ei{a+f}\
R = \R\eia,
L= \R\ei0.

(4.12a)

(4.12b)

(4.12c)

Using these relations we can show that the coefficient q must be a real number. We
then have the following three cases:

q > 1 then b > 1,
< q= 1 then 6=1, (4.13)

q < 1
V

then 1*1 = 1.

The first case corresponds to the divergent solutions of the wave equation whereas the
last two cases give periodic solutions. In the more general case of complex refractive
indices we have complex coefficients implying a complex propagation coefficient. The

divergent solution, for example, is then defined by an exponentially growing solution

having a changing phase at the same time.
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To illustrate this, let us consider a periodic succession of two layers of different refrac¬

tive indices in the absence of absorption. In figure 4.2 we represented such a structure

where we judiciously choose the basic period so that the LTR for one period is sym¬

metric. This does not influence the bulk propagation coefficient but does influence the
interface LTR element (c = 1 in this case). In this configuration one can easily calculate
the propagation coefficient and its phase. Figure 4.2 shows the phase introduced while

propagating over one period as a function of the wave vector of the pulse.

One observes in figure 4.2 the succession of regions where the introduced phase
is real and where it is imaginary. The latter correspond to the divergent solutions.
The imaginary phase gives the characteristic exponential coefficient with which the

solution increases or decreases. These domains are the so called band gaps. Light cannot

propagate through the structure at this wavelength. The domain in which the phase
is real corresponds to the cases where light can propagate through the structure. The

phase change over one period corresponds to the associated wave vector in the structure.

Therefore, figure 4.2 gives the photonic band structure of the periodic multilayers. From

the study of this structure one can introduce the effective index (equivalent to the
effective mass in the electronic band structures) and the group velocity. It is also

possible to define a k -p approach [32],
In the case of absorbing media the phase over one period is no longer either real

or imaginary but has a complex value. Its real part gives the phase change over one

period, and the imaginary part its decrease or increase (there are always two solutions;
one increasing and one decreasing). These solutions can be seen as damped oscillations.

When composing two different periodic structures one has to include in the compo¬

sition the interface LTR elements. Further, depending on the frequency of the light,
one can be led to consider the divergent solutions. For example, one can have localised
solutions when considering a structure having n periods embedded in another periodic
structure. If for a given wavelength the interior structure allows propagating solutions
whereas the exterior structure has a forbidden gap at this wavelength then we can have
a localised solution [33,34]. These solutions have an exponential decay in the exterior
structure (evanescent wave) and would correspond to a waveguide mode of the structure.
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4.4 Photonic bandstructures in 2 and 3 dimensions

4.4.1 Propagation in periodic structures

In order to treat more than one spatial dimension we have to take into account the

transverse direction in the complete Maxwell wave equation. As a first step we consider

only one transverse direction

d2U n(x, z)2 dPU
Ox' dz2 c2 at2 ' '

where z is the principal propagation direction and x the transverse direction. We remark
here that the refractive index depends on the transverse direction. In this section we

study the effects of periodic structures. In the case of two spatial dimensions we take

into account the transverse periodicity of the structure

n(x + Ax, z)2 = n(x, z)2 (4-15)

where Ax is the period in the transverse direction. Further we search sinusoidal oscil¬

lating fields of the form

U(x, z, t) = u(x, z)eluJt. (4-16)

Inserting this function in equation (4.14) we can obtain a differential equation for
the amplitude u(x,z)

d2u d2u n(x,z)2u2 , .

a* + w+-L*'-= o.

To simplify this differential equation further we can take advantage of the periodicity in

the transverse direction of the refractive index. This can be done by taking the Fourier

transform of the equation in this direction

-k'2u(kx, z) + d UQkJ,'^ + Y. Nj(z)u(kx - jk', z) = 0 (4.18)

where kx and k' = 2n/Ax are the wave vectors of the field and of the periodic refractive
( \2 2

index. The sequence Nj(z) corresponds to the coefficients of the Fourier series of n[x'zci u
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and the summation corresponds to the convolution between this series and the Fourier

transform of the amplitude. This convolution couples the different Fourier components

of the amplitude. More precisely the Fourier component with a wave vector kx is linked

through this differential equation to the Fourier components having the wave vectors

kx ~ jk' where j is an integer. We see here that we have to take into account only the

starting wave vectors kx lying between —k'/2 and +k'/2. All other wavevectors can be
defined in this domain by adding or substracting multiples of k'.

Further, for every starting wave vector kx we can introduce a Fourier series defined

by Uj(z) = u(kx — jk', z). The propagation equation can then be written

ffiqi • (z]

0^l+rnik(z)mkj(z)Uj(z) = 0 (4.19)

where the matrix mik(z)mkj(z) = NJ(z)—Sij(kx—jk' j2. Here we have used the convention
of the summation over the repeating subscript. This gives us a system of differential

equations which is a generalisation of the scalar equation valid for one spatial dimension.
One can also use an alternative approach to the Fourier transformation in order

to take into account the periodicity in the transverse direction. This can be done by

decomposing the amplitude in the transverse direction into the one-dimensional eigen

solutions in this direction. These solutions form a base and can be found by using

the one-dimensional periodic multilayer approach. The matrix equation has the same

form in this alternative decomposition except that the matrix (z) can have a simpler
form. The results expressed in the two bases are equivalent and there is always a

transformation between the different representations. In the following we will use the
Fourier space representation.

This method can be generalised to the three dimensional case by taking into account

the Fourier series terms in the two transverse directions. The amplitude of the field is

then described by two series having two indices. The convolution thus corresponds to a

summation over the two indices of the two dimensional series.

4.4.2 Matrix LTR

The first step in the study of the propagation through this three dimensional medium is

to find the solution of equation (4.19) when the matrix rriij(z) is constant with respect to

z. Once the solution is established we can determine the effects of an interface between
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two regions of constant rriij. This will give us the transmitted and reflected solution at a

discontinuity between two different media. We can then implement the LTR formalism

step by step and this can then be used to find the optical response of more complicated
structures.

Equation (4.19) is a first order differential equation which can be solved in an ana¬

lytical manner by using the exponential function of matrices. Indeed, in the case of a

constant rriij we have

Ui(z) = exp (irriijz)u0A + exp(—imijz)u®~ (4.20)

where ud+ and u®~ correspond to the initial conditions. We recognise here the two

solutions propagating in the two directions. At the interface we have two such solutions
with different propagation matrices

1st medium : e~xj)(im.kjz)u(j + rki exp(—irriijz)v?j (4.21a)
2nd medium : tki exp(—im'ijz)vfj (4.21b)

where m'^ is the propagation matrix in the second medium. The matrices rki and tki
are the reflection and transmission matrices.

The continuity equations give us the relations between the transmitted and reflect¬
ed waves. Placing the interface at z = 0 simplifies the equations and the continuity

equations lead to

^ki + 1~ki — (4.22a)

mki - rkjmji = tymU. (4.22b)

The first equation corresponds to the field continuity whereas the second equation cor¬

responds to the derivatives continuity. Solving this system of equations gives the two

matrices

rkj = (mki - rri)(my + mf) \

tkj — 2?7i£j (rriij -j- )

(4.23a)

(4.23b)
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The determinant of the matrix (ra^ + rrC) must be non-zero for the reflection and
transmission matrices to exist.

This matrix approach of the propagation through periodic media can be used as a

starting point for the definition of a three dimensional LTR formalism. This generalised
formalism is very similar to the one dimensional case except that one has to take special
care of the different operations permitted as the matrices are generally not commutating.

This implies the introduction of two transmission matrices, that is one from the left and

one from the right.
The advantage of the LTR formalism for three dimensional photonic structures is

that it gives the possibility of introducing concepts from plane multilayer systems. The

roughness for example can be used to simulate the uneven boundary of a photonic

crystal. One can also introduce an effective index of refraction variation. This would

model the lattice displacements in the photonic crystal.

4.5 Summary

In this chapter we have shown two interesting generalisations of the LTR formalism
to different optical structures. We started with the treatment of plane waveguides.

By using the definition of general evanescent waves we determined their transmission

and reflection coefficients and thus the LTR element for one layer of the waveguide.

The normal addition and multiplication operator can then be used with such layers to

give a total LTR element. If the LTR element of the waveguide structure fulfils the

totally absorbing condition for one particular wavelength than it is waveguiding for this

wavelength.

Further, in this chapter we treated the case of periodic structures in one, two and
three spatial dimensions. In one dimension we could define the conditions in which

a wave can propagate through the structure. This is made possible by rewriting the

multiplication operator and splitting it into two parts: the surface or interface and
the propagation part. Using the latter we could determine the phase added to the

propagating wave when travelling one period of the structure. The plot of this phase as

a function of wave vector gives the optical band structure. When this phase is imaginary

we have an evanescent wave which can only exist at the interface. This property can be

used when combining two or more periodic structures.
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Finally we showed how to generalise the LTR formalism in order to treat periodic

structures in two or three dimensions. This generalisation is based on the decomposition

of the solution into propagating modes. When a wave is incident onto such a periodic

structure there is more than one transmission and reflection coefficient. Each of the

transmission and reflection coefficients shows the amount the wave is "reflected and

transmitted" (generally speaking diffracted) in the different modes. As the incident wave

can itself be composed into more than one mode, it is necessary to introduce transmission

and reflection matrices which show the coupling between them while interacting with

the periodic structure. These matrices could be used to define a new kind of LTR

elements. In the same way as for the multilayered structures one can introduce addition

and multiplication operators for these elements. This will be treated in future work.



Chapter 5

Applications: LTR formalism

5.1 Introduction

In this chapter, we apply the LTR formalism to three practical cases. In each of them
we concentrate 011 the effects of interface roughness. We begin by treating the effects of
the roughness of one interface, followed by a study of the interaction of the roughness
of the two interfaces of a monolayer. We finish by treating the cumulative effects of a

distributed roughness in a periodic structure.

In the first case, we analyse the effects of the roughness in a Light Emitting Diode

(LED). The roughness is assumed to be situated at the interface between the top electric
contact and the actual LED device. Further, we change the LTR formalism in order to

take into account the emission of light from inside the device (active region of the LED).
Another interesting study in the case of an LED is the angular dependence of the light
emission. We therefore generalise the LTR formalism to include the angle of incidence
of the incoming or emitted electromagnetic wave. The roughness effects are then studied
either in the emission spectrum or in the angular dependence of the emission at a given

wavelength.
In the second section of this chapter, we treat the effects of the roughness of a thin

layer of zinc cadmium telluride. This example is interesting because using this sample
we can compare two different methods of measuring the surface roughness. One is the
determination of the roughness by optical means where we measure the transmission

spectrum of the sample. Knowing the thickness and refractive index of the sample

65
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we could fit the spectrum by varying the roughness. The second method is the direct

measurement of the roughness by Atomic Force Microscopy (AFM).

Finally, we study the roughness effects introduced in selectively oxidised multilay-

ered semiconductor structures. The samples studied are GaAs/AlGaAs multiple quan¬

tum wells containing oxidised AlGaAs as barrier layers around each quantum well. The
incentive for this study was to determine the roughness introduced by the oxidation

process which is important for the operation of VCSEL and other optoelectronic de¬

vices. Another aspect of this study is the utilisation of the multiplication operator in

combination with the roughness because the sample is made up of 35 identical periods.

5.2 Roughness in an LED

In the following we study the effects of roughness on the angular dependence and the

cavity mode of a Light Emitting Diode (LED) in the framework of the LTR formalism.
In order to treat the case of an LED with the LTR formalism we have to generalise it
to include the emission of the light in the active region inside the LED device. Further,
it is necessary to be able to treat the case of angled propagating light waves in the LTR

formalism.

Generally, an LED is constructed out of a highly reflecting substrate, an active layer
and a low reflection top layer (see figure 5.1). This structure ensures a directional
emission of the light. Light emitted from the active layer is transmitted by the semi-

transparent top layer and reflected back from the highly reflecting substrate. One of
the problems in LEDs is the electrical contact on the top. This contact can introduce
extra roughness in the structure and thus diminishes its performance. Once the LTR

formalism is generalised to treat the new aspects of the LED we study the effects of this

roughness on the emission of the LED.

The major difference from the normal LTR procedure is in the position of the light

source. In the case of the LED, the light source is between two multi layered structures.

In order to calculate the response of the LED to the emission of the light we need to

consider the multiple reflections between the two LTR structures. This can be done by

using the same method applied for defining the combination law for the LTR elements.
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(a)

cavity

(b)

emitting plane

Figure 5.1: (a) Structure of an LED and (b) its corresponding LTR structure.

The emitted field coefficients to the left and right are:

El — T2 + L2R1T2 +

T2(1 + Ri)

+ R1T2 + L2RXR1T2 +

Er —

1 — L2R\
Ti(1 + L2)

1 — L2RI

(5.1)

(5.2)

This method takes into account the multiple reflections between the right and the left

layers in the case of normal incidence. We remark here that the maximum emission

coefficient is two in field and four in intensity. This takes into account the case where
we have total reflection on one of the sides and constructive interference 011 the other.

In a second step, we generalise the LTR method to include the angular dependence.
This can be done by using Snell's law (law of refraction) linking the angle of incidence
to the angle of transmission (see figure 5.2)

sin(flj)
sin(0t)

n2

Tli ' (5.3)
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The origin of this relationship is the continuity equations for the vector field. In the
case of absorption, these angles are complex and a geometrical representation is more

complicated.

Figure 5.2: Refraction and reflection for a non-normal incident plane wave.

Further, we have to consider the Fresnel formulae for the parallel (denoted by sub¬

script ||) and perpendicular (denoted by subscript _L) components of the vector field
with respect to the plane of incidence

*11 =

t± =

r\| =

r±

2ni cos(0j)
n2 cos(0j) + ni cos(0j)'

2ni cos(9i)
rii cos(6t) + n2cos(6>4)'
n2 cos(9i) — n\ cos(0t)
n2 cos(6>j) + n\ cos(6*t)'
rix cos(^j) — n2 cos(6t)
nxcos(di) + n2 cos(0t)'

(5.4a)

(5.4b)

(5.4c)

(5.4d)

Using equations (5.3) and (5.4) we can deduce the LTR element £ for a single layer for
a plane wave with an angle of incidence, 9. For the TE wave we have

£_i_(n, k, z, 9) —

( _L=£l \
l_p2r2

^ (1—p2r2)
1—»2

T1 )

(5.5)



CHAPTER 5. APPLICATIONS: LTR FORMALISM 69

with

cos(0)—y/n2 —sin2(0)
COS (0)+y/n2-sin2(0)

p = exp (ikzy/n2 — sin2(0))
(5.6)

Taking a closer look at £±(n,k, z,6) we see that it is equal to £(n,k,z) as defined in

equation (2.16) with a small change. The refractive index of vacuum has been replaced

by cos(0) and the material index n by y/n2 — sin2(0). In the same manner, one can

deduce the LTR coefficients for the perpendicular component of the field. In this case,

we have to replace the material index n by y/n2 — sin2(0) and the vacuum refractive
index by n2 cos (9).

GaAs

<1)
(0
v.

(0 Hi t§
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CD
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AlAs

Figure 5.3: (a) Multi layered structure of the LED under consideration, (b) Angular
emission coefficient at 900nm in a polar representation. The Az coefficient corresponds
to the effective roughness of the Au contact as defined by equation (3.11).

Using relations (5.2) and (5.1) we can calculate the angular emission of an LED.
In figure 5.3 we show emission rates for perfect interfaces and for different levels of

roughness. In order to take into account the roughness element with an angle of incidence
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we consider the generalisation of the roughness element

with

Nroughl.{$) —

/

r0 \
©Vl~ro

V ~r° /
ri exp (—2(n2 — sm2(9))k2Az2)

y/1 - rf exp
(\/nf —sin2 (0) — ^/n§ —sin2 (0)) k2Az2

©

—n exp (—2(712 — sin2(6l))A:2A2;2)
\

Tl

v ~r2 /

_ cos(0)—-y/nf —sin2 (0)

rl -

cos(0)+^/nf —sin2(0)
•y/—sin2(0) —-^n|—sin2(0)
■^/ —sin2(0)-|--^/n.| —sin2(0)

cos(0) — -^/ra| — sin2(0)
2

cos(0)+-y/«1—sin2(0)

(5.7)

(5.8)

This is equivalent to the normal incidence roughness element (3.20) where all the re¬

fractive indices have been replaced in the same manner as for (5.5).

Figure 5.4: Emission spectra for different effective roughness of the metallic contact.
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Figure 5.3 shows also the limitation of the roughness model in the case of the angular

dependence of the emitted light. As remarked in the third chapter the roughness model
loses energy due to the directional scattered light which is no longer in the direction

of propagation of the plane wave. In the case of the LED, the emitted light is not a

plane wave but has an angular distribution. When the light is scattered this angular
distribution changes. This effect cannot be modelled considering only a one-dimensional

structure. Figure 5.3 shows only the part of the light which has not changed direction

while going through the rough interfaces.
Another interesting feature of an LED is the emission spectra as a function of the

roughness. This gives insight on the cavity modes and their change with the introduc¬

tion of roughness. In figure 5.4 we showed that with increasing roughness the mode

corresponding to the resonance of the cavity diminishes in amplitude and broadens.

This is similar to the effects measured in high-speed resonant cavity enhanced Schottky

photodiodes [35]. It also corresponds to the results from the preceding chapter where
we showed the link between the roughness and the finesse coefficient of a Fabry-Perot

cavity.

5.3 Roughness measure for a monolayer

5.3.1 Samples

The samples studied in this section are thin layers of zinc cadmium telluride

(Zn^Cdi-^Te). This material shows large nonlinear optical properties [36,37]. Fur¬

thermore, its band gap can be adjusted between 1.49eV and 2.26eV (830nm and 550nm)
by changing the relative Zn/Cd ratio [38,39]. At the same time, varying this ratio in the

alloy allows the lattice constants to be matched to a variety of other II-VI compounds

e.g. HgCdTe and HgZnTe. It is thus a material with good potential for optoelectronic
devices.

Here we consider optical quality thin films. These can be prepared by many sophisti¬
cated methods such as molecular beam epitaxy, electrodeposition, liquid phase epitaxy

etc.. The sample characterised in this section is prepared as a polycrystalline thin film in

a simple evaporation chamber, using the ternary compound as source. Its zinc telluride
content is 85% so that the final thin layer is Zn0.85Cd0.i5Te. In order to characterise the
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optical quality of the samples prepared by this method we use its transmission spectra

to determine the optical roughness of the surface of the thin layer.

5.3.2 Results

The optical transmission spectra of the films are measured in the range of 550nm to

800nm using a Beckman spectrophotometer. The measured transmission spectrum (fig¬
ure 5.5) show the position of the band gap and Fabry-Perot fringes in the transparent

region. It is mostly these fringes which give information about the optical properties
of the thin layer. Indeed, their absolute value and the difference between maxima and

minima can be used to determine the absorption coefficient and the roughness of the
thin layer. Further, the spectral position of the fringes is linked to the refractive index
and the thickness of the sample.
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Figure 5.5: Transmission spectrum of Z1io.85Cdo.15Te. The dots correspond to measured
data and the continuous line to the fit.

Using the above mentioned parameters we are able to fit the transmission spectra in

figure 5.5 to a remarkable degree. Further, it is possible to compare the roughness mea¬

sured by the optical method with the roughness measured by atomic force microscopy

for this same sample [40]. Measurements over a distance of 1/im with the AFM indicate
a roughness of 13nm and the optical transmission measurement gives the best fit for
a value of 18nm. The overestimation of the roughness by the optical method can be

Photon energy (ev)
2 1.8 1.6
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explained by the size of the light beam on the sample which is of the order of 1mm2.
In this example we determined that we can distiguish between the roughness and ab-
sorbtion effects. Increasing the roughness diminishes the contrast of the Fabry-Perot

fringes. Whereas, increasing the absorbtion coefficient diminishes the contrast of the

fringes and the overall transmission coefficient.

5.4 Roughness measurement in multilayered struc¬

tures

The interface between different materials in multilayered semiconductor structures has

received considerable attention recently. The interface roughness in such structures is an

important parameter limiting both the optical and the electrical performance of devices

[41-46]. In particular, this problem is crucial to selectively oxidised Al(Ga)As/GaAs
multilayers, which are now becoming widely used to form high reflectivity and wide-

bandgap distributed Bragg reflectors (DBRs) in vertical cavity optoelectronics devices,
such as lasers, LEDs, modulators and detectors. The scattering loss by interface rough¬
ness decreases the maximum reflectivity of DBRs, thus deteriorating the device perfor¬

mance.

Several authors have studied the A1 (oxide) layers and the interface quality of
A1 (oxide)/AlGaAs structures [46 51]. Transmission electron microscopy (TEM) has
revealed a granular structure of the Al(oxide) [47,48] and the grain size has been es¬

timated to be about 8nm [48]. A porous interface between A1 (oxide) and AlGaAs has
been observed [48,49] and an interface transition width of 2nm has been reported in [47].

The reflectance method used in our measurement is a simple, non-destructive and

direct way to study the optical properties of selectively oxidised Al(Ga)As/GaAs mul¬

tilayers [46,50,51]. In this work we measure the reflectivity spectra of GaAs/AlGaAs
multiple quantum well structures with and without oxidation of the barrier layers. The
LTR method is then used for calculating the reflectivity and transmission spectra of
these multilayer optical structures. The simple statistical roughness model introduced
in the preceding chapter is used to describe the effect of interface roughness. By fitting
the experimental reflectivity spectrum using this model we have assessed the interface
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roughness of the oxidised layers, as well as the A1 (oxide) parameters (refractive index
and thickness) [52-54].

5.4.1 Samples

The samples were grown by molecular beam epitaxy on (100) semi-insulating GaAs
substrates with 2° misorientation towards (110). A GaAs (400nm) buffer layer was fol¬
lowed by 35 periods with each period containing an Al0.98Ga0.02As (50nm) barrier layer,
an Al0.4Ga0.0As (7.5nm) spacer, a GaAs (7nm) quantum well and another Al0.4Ga0.0As

(7.5nm) spacer. An Al0.9sGa0.02As (50nm) barrier layer and a GaAs (30nm) cap layer

completed the structure. Three samples were used. The first (2408uu) is as-grown. The
other two (2408e and 2408c) were patterned and etched (RIE, 36 min) to obtain 20/rm

strips spaced by 2/rm grooves (see figure 5.6). The Alo.9sGao.02As layers in sample 2408c
have been laterally oxidised at 398°C for 70 minutes. Scanning electron microscopy has
shown that these conditions ensure a complete oxidation of the Alo.9sGao.02As layers.

cap layer (30nm) Top view of the oxidised sample
barrier (50 nm) (SEM picture)

2 |rm 2Cpm
—> < >

buffer (400 nm)

GaAs AI04Gq, gAs AI0gepq,02As
or Al(oxide)

Etched stripes
(RIE, 36mins)

SDacer (2.5, 5.0 or 7.5 nm)
1 quantum well (7 nm)

Figure 5.6: Structures of the selectively oxidised Al(Ga)As/GaAs multilayers

5.4.2 Experimental Setup

Measurement of the optical properties of materials must be corrected for spectral de¬

pendencies of the light source, any optical elements and the detector sensitivity. Dark
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current and parasitic, light, must also be taken into account. In single beam configura¬
tions this is achieved by measuring two successive spectra. To overcome the necessity

of spectral calibration and to improve the signal to noise ratio, dual beam techniques

are commonly used where the same detector samples alternately a reference beam and

a beam from the sample [55]. Using a lock-in amplifier eliminates the parasitic noise. A
simultaneous measurement of both beams by using a double frequency optical chopper
and two lock-in amplifiers achieves both corrections.

In our set-up for reflectivity measurements we used a simple technique for simultane¬

ous recording of two optical beams using a single optical chopper, detector and lock-in

amplifier [56]. The new feature of our method is based on chopping the two beams with
the same frequency but with a phase shift of 7r/2 or 37t/2. The corresponding electrical

signals from the detector are measured as the in-phase and the quadrature signal by the
lock-in amplifier.

monochromator

+ detector

reference mirror

lock-in amplifier

Figure 5.7: The setup used to measure simultaneously the reference and reflectivity
signal. The inset in the upper right corner shows the relative position of the beams and
the optical chopper, which corresponds to a relative phase shift of 37r/2.

Figure 5.7 illustrates schematically our technique, applied to the case of reflectivity
measurements. The collimated beam from the lamp is split into two beams, which are

reflected from the sample (beam X) and from the reference mirror (beam Y), respective¬

ly. The beams are recombined and focused on the entrance slit of the monochromator,

coupled to a Si photodetector. By moving the optical chopper in a direction perpen¬

dicular to the plane of rotation it is possible to tune the phase shift between the two



CHAPTER 5. APPLICATIONS: LTR FORMALISM 76

beams until it becomes 7r/2 or 37r/2 The ratio between the X and Y outputs of the lock-
in amplifier gives the relative reflectivity of the sample with respect to the reference
mirror.

The simultaneous detection of X and Y beams reduces considerably the noise com¬

pared to a successive detection of the two beams. To illustrate this, we have measured

two time dependencies of the signal using the same sample (GaAs/AlGaAs multiple

quantum wells with oxidised AlAs layers) under identical conditions recording twice
8000 (X,Y) pairs at 4Hz. The light source was a tungsten lamp with a stabilised power

supply.

Figure 5.8: Normalised frequency distributions ((p) of a: X and b: X/Yl and X/Y2.
The relative deviation is calculated with respect to the mean value.

Let X be the X signal obtained during the first run and Y1 and Y2 be the corre¬

sponding signals from the first and the second run, respectively. The single recording
of X does not take into account any spectral or noise corrections. The ratio X/Yl is
the reflectivity measured by our technique, while X/Y2 corresponds to the case of suc¬

cessive detection of the sample and the reference beams, as in a single beam set-up.

The frequency distributions of X, X/Yl and X/Y2 around their mean values are shown
on Fig. 5.8. It may be observed that the standard deviation is the largest for X/Y2
and smallest for X/Yl. This implies that in the case of a single beam configuration
the spectral corrections introduce noise, while in our technique they decrease the noise.

This improvement is a result of the simultaneous detection of the X and Y beams.
This simple dual optical beam measurement technique with simultaneous detection of

the two beams significantly reduces the noise compared to the single beam configurations
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while having many of the advantages of using a double frequency optical chopper and two

lock-in amplifiers. Applications could be in spectral measurements such as reflectivity,

transmission and excitation spectroscopies. Further, our technique can be generalised

to a three-beam configuration in laser pump-probe experiments using a dual frequency

chopper.

5.4.3 Results

In the calculations we have used the Afromowitz model [57] for the refractive index of
GaAs and Alo.4Gao.6As, while for Alo.98Gao.02As the model of Fern and Onton [58] has
been applied. No excitonic effects have been considered. The reflectivity spectrum of

the as-grown sample (2408uu) is shown in Fig.5.9. A series of interference fringes is
observed with a period of 30-40nm, which increases with wavelength as expected. In
order to achieve optimal matching in the simulation we have assumed a small deviation of

the refractive indices over the whole spectral range considered. This is +1.5% for GaAs
and Alo.4Gao.6As and +0.3% for Alo.98Gao.02As. We fix these values in the analysis of

the other samples. No roughness has been considered in this case. For multilayers with

close refractive indices such as in the GaAs/AlGaAs system, the effect of the roughness
in our model becomes noticeable for <r>4-5nm.

Wavelength [nm]

Figure 5.9: Measured and calculated reflectivity spectrum of the as-grown
GaAs/AlGaAs multiple quantum well sample.
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When simulating the reflectivity of a single layer with the thickness of the whole
of the structure (2600nm without the buffer layer) and a refractive index averaged in

proportion to the thicknesses of the different materials we obtain fringes which are

shifted along the Y-axis, but have the same wavelength positions. This means that

the observed fringe pattern is determined predominantly by the interference of the light
reflected from the front surface and from the last interface (Alo.98Gao.02As/GaAs).

In the case of etched samples the contribution of the layers at the bottom of the

grooves has been added into the simulations in proportion to their area. Unlike the
work of MacDougal [50] we have not been able to fit the experimental curves without

considering these layers. Their effect is revealed as a modulation of the whole of the

spectrum with a period of about lOOnm, which corresponds to a groove depth dgT. The
extent of the modulation depends 011 the roughness agr of their surfaces. The reflectivity

spectrum of the etched, but non-oxidised sample (2408e) is displayed in Fig.5.10. The

fringes are at the same positions as for the as-grown sample, but their amplitudes and
the mean reflectivity value are modulated, because of the groove layers. Optimal fitting
is obtained for d9r=3335nm and crgr—80nm.

The oxidation of AlGaAs layers changes their parameters considerably [47-51].
Shrinkage of layer thickness is commonly observed. TEM [47,49] and reflectance [51]
studies have found different values for the extent of this shrinkage, which range be¬
tween 3% and 13%. The refractive index decreases by approximately a factor of 2.

Values in the range 1.5-1.65 have been obtained by ellipsometric and reflectance mea¬

surements [50,51]. It is usually assumed to be wavelength independent in the visible
and the near-infrared regions.

Figure 5.11 represents the reflectivity spectrum of the oxidised sample (2408c). In

comparison with the two previous cases the period of the fringes is increased by about 1.5

times, which corresponds to the decrease of the effective refractive index and thickness

of the structure after oxidation. Besides, the fringe amplitude is smaller and the mean

reflectivity value is lower. This is attributed to light scattering by interface roughness
of the oxidised layers. The modulation of the spectrum due to the groove layers has a

similar extent as in Fig.5.10, but is more clearly observed, because of the smaller fringe

amplitude.

In the simulations we have varied the index and the thickness of the oxidised layers

and the roughness of their interfaces. An optimal fit is obtained with an oxide index of
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1.54, oxide thickness of 44.5nm, or 89 % of the initial value and a roughness of 8.4nm.

The groove parameters in this case are slightly different: dgr=3247nm and crgr=70nm,
which can be explained by changes due to the oxidation. The values obtained for the
refractive index and the shrinkage extent are in good agreement with the findings of

other authors [47,49-51]. The interface roughness of Al(oxide) layers is larger than the
result obtained in [46], but corresponds to the reported grain size of the oxide granular
structure [48].

Wavelength [nm]

Figure 5.10: Measured and calculated reflectivity spectrum of the GaAs/AlGaAs mul¬
tiple quantum well sample which has been patterned, but not oxidised.

Wavelength [nm]

Figure 5.11: Measured and calculated reflectivity spectrum of the GaAs/AlGaAs mul¬
tiple quantum well sample, which has been patterned and oxidised.
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In conclusion the effects of interface roughness can be easily included in the LTR

calculations of multi-layered structures by introducing a "rough" element between adja¬
cent layers. The model is applied to GaAs/AlGaAs multiple quantum well structures

with and without oxidation of the barrier layers. The fits to the reflectivity spectra have

given important parameters for the oxidised layers such as the interface roughness, the
refractive index and the thickness.

5.5 Summary

In this chapter, we have applied the LTR formalism in three different cases. We studied

the effects of the electric contact roughness on the light emission of a LED. The introduc¬
tion of the roughness showed a deterioration of the emission efficiency and a broadening
of the emission mode. In the second case we treated the effects of the surface roughness
in transmission experiments measured on a thin layer of zinc cadmium telluride. The

comparison with the roughness measured by AFM showed that the optical method gives

a good estimation of the surface roughness. Finally, we studied the changes in the reflec¬

tivity spectra when selectively oxidising layers in GaAs/AlGaAs multiple quantum well
structures. We could assess in this case the effective roughness of the oxidised layers.

Further, the LTR method could be used to evaluate the shrinkage factor of these same

layers.



Chapter 6

Multiple quantum well n-level systems

6.1 Introduction

In this chapter, we introduce the quantum n-level system and its theoretical treatment

in the framework of the density matrix equation. As an example of an n-level system we

use multiple quantum well structures. Taking advantage of the similarities of Maxwell's

electromagnetic wave equation and Schrodinger's quantum wave equation we can change
the LTR formalism (Left reflection, Transmission and Right reflection) and apply it to

the multiple quantum well case. Using this formalism we determine the eigen-levels of
such a system which can then be used in the density matrix formalism to study the

system evolution under excitation.

6.2 Definitions

In the first section, we consider Schrodinger's equation [59,60] and its eigen-states to de¬
fine an n-level system. Based on these definitions, we introduce the different relaxation

times leading towards thermodynamical equilibrium of the n-level system in the density
matrix formalism [61]. In this formalism, the relaxation has its origins in the coupling
between the quantum system and its environment that can be treated using the Marko-
vian approximation [62] which we use as a working hypothesis. Finally, we show briefly
the link between the n-level systems and the optical properties of semiconductors [63,64],

81
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6.3 Evolution equations in n-level systems

In quantum mechanics, the evolution of any system is determined if one knows its wave

function ip(t,r) as a function of time (where f represents the generalised coordinates).
The equation of evolution of this wave function is Schrodinger's equation [60,61,65]

The linear and Hermitian operator H is associated with the total energy of the system

and is called the Hamiltonian operator. The constant H is Planck's reduced constant

linking the energy to the frequency.
The eigen-functions of the Hamiltonian operator H can be used to solve equation

(6.1) for a time-independent Hamiltonian. The equation giving the eigen-values and
functions of the Hamiltonian is

where Ej are the eigen-values which correspond to the energy of the system in the state

tpj(r). The set of eigen-values of H can be seen as the spectra of the Hamiltonian.

They can be degenerate (several eigen-functions having only one eigen-value) or non-

degenerate (one to one relation) and the spectrum can be continuous or discrete. In this

work, we study the case of a discrete set of eigen-values.

The complete solution of (6.1) can be found by separation of time and space variables.

Then, to each eigen-function is associated a solution of (6.1) having the form

The general solution is represented by a linear combination of all the eigen-functions
of the Hamiltonian

jfe——— = (6.1)

Ej'htr) = H (6.2)

(6.3)

oo

= £c*(Wi(0.
t=i

(6.4)
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where Cj{t) are the probability amplitudes for each of the states. Introducing (6.4) in

(6.1) one obtains the evolution equations of the probability amplitudes

ihLA- = H-cM, (6.5)

where

H]= S'Ej, (6.6)

which corresponds to the projection of the Hamiltonian operator on its eigen-function
base. The square of the modulus of the probability amplitude gives the probability
of finding the system in the associated eigen-state. In the case of a discrete, finite and

non-degenerate set of eigen-values the Hamiltonian operator defines n eigen-states. This

system is an n-level system.

Another equivalent description of quantum mechanics uses the density matrix for¬

malism. This approach is very useful for the phenomenological introduction of the
relaxation because the density matrix describing the state of the system gives the prob¬

ability of each state directly as well as its coherence. Thus we have direct access to the

global probability of the system and so we are able to keep this probability constant

in time when introducing the relaxation phenomena. Besides, this formalism allows
the treatment of statistically mixed states in a simple manner. In the following, this
formalism is defined and we introduce the operator corresponding to the relaxation of
the system.

Above, the general solution of Schrodinger's equation is projected on an eigen-
function base of the Hamiltonian. After this decomposition (6.4), the population pnn of
state n is defined by

Pnn{t) = c* (t)Cn(t). (6.7a)

These terms are the diagonal elements of the density matrix and represent the proba¬
bilities for the system to be in the state n. The sum of these probabilities over all states

is equal to 'Yhnpnn — 1) which is the normalisation condition of the wave function.



CHAPTER 6. MULTIPLE QUANTUM WELL N-LEVEL SYSTEMS 84

Another important quantity in the study of the evolution of a quantum system is

the coherence pmn between the different states

Pmnit) = c*n(t)cm(t), (6.7b)

which gives the phase between the populations of the two states. These terms are the

non diagonal elements of the density matrix. The derivative with respect to time of the

argument of the coherence corresponds to the energy difference between the two states.

The definitions of the population (6.7a) and coherence (6.7b) are given in the "pure
case" where the initial state is known perfectly. Mathematically, this implies a knowledge
of the initial conditions of the Schrodinger equation. In the case of an incomplete

knowledge of the initial conditions, this state is described by the probabilities pk of the

different initial conditions. This case is a statistical mixture and its populations and

coherence can be defined from the probabilities of the mixture and the definitions of the

pure case

Pmn{t) ~ Cn(t^Crn(t)
= (6-8)

k

With the help of the density matrix, Schrodinger's equation (6.1) can be cast into
the form

ihd^ = Ukipkj-pikUkj, (6.9)

where the summations are done using Einstein's convention. The Hamiltonian operator

PL, considered here, includes the states of the studied system as well as those of the

surrounding thermal bath. The right hand side corresponds to the commutator between
the Hamiltonian and the density matrix.

The Hamiltonian in (6.9) can be decomposed into two parts: a part giving the
internal energy of the studied system and another taking into account the interactions
with the surrounding thermal bath. This last part induces an energy dissipation [66]
and generally is described by a random interaction adding a supplementary term to
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equation (6.9)

in^ = Htpv-pikH} + in(?jg-) . (6.io)01 \ 01 / relaxation

This relaxation term is written with the help of the relaxation coefficients T describing
the relaxation of the different populations and coherence towards their thermodynamical

equilibrium1 p^ [67]. Thus, the relaxation of the populations, is given by

(%) = -nr (ft- - A). (sua)
a / relaxation

where (r^)-1 is the longitudinal relaxation time and corresponds to the dissipation
of energy to the thermal bath (inelastic collisions). The relaxation of the coherence is

given by

% ) = -r (6.iib)
/ relaxation

which defines the transverse relaxation time (r^) 1 constituted from energy dissipa¬
tion (inelastic collisions) as well as losses due to the interaction between the different

populations (elastic collisions).

Considering the two relaxation terms (6.11a) and (6.11b), the density matrix equa¬

tion can be written as

ihi^ = Hi pkj - PitH* - rg (ft, - pg1) . (6.12)

In this work, we study the stationary and dynamical response of n-level quantum

systems in the framework of this relaxation model.

As the energy dissipation is towards the thermal bath, the different relaxation coef¬
ficients T as well as the balance state p^ depend on the temperature. The populations
at thermodynamical equilibrium p^ are given by the Boltzmann distribution [68]

Pnn ~ ce~H"^kT\ (6.13)

1 The phenomenological introduction of the relaxation times can also be achieved by starting from
the causality and inertia principles. In this case, the deduced relaxation coefficients matrix T generalises
the one in equation (6.12)
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where k is the Boltzmann constant. The proportionality coefficient c can be determined

from the normalisation condition ~ 1-

Once the density matrix evolution is known we can deduce the polarisation of the

system. Indeed, knowing the electronic wave function, the microscopic polarisation can

be determined by calculating the first order momentum of the wave function

p(t) — q J J J (6-14)
The matrix corresponding to the dipolar momentum of the system can be introduced,

using the eigen-functions tpi and ipj in the case of the dipolar approximation [69],

Fj = qf J J ipi(r)fipj(r)d3r. (6.15)
Symmetry considerations simplify the general form of this matrix. For example, if the

eigen-states ipi and ipj have the same parity, the corresponding matrix element is zero.

With the help of the dipolar momentum matrix, the interaction Hamiltonian between

the system and the field can be written as

I Vj(t)= ft■ (6.16)

In the density matrix representation, the evolution equation is

ih^ = Hop - pH0+w(t)p - pW(*)-r (P - p(0)), (6.17)

and the macroscopic polarisation is given by the trace of the dipolar momentum applied
to the density matrix including the statistical distribution (6.8)

P(t) = yTr(ftpkj),(6.18)
where N and V are respectively the number of n-level systems and their total volume.

From the polarisation and excitation field, a new quantity corresponding to the

amplitude of the response of the system can be introduced. This is the dielectric sus¬

ceptibility that is composed of a linear and non-linear part. The linear susceptibility x

is defined as the proportionality factor between the macroscopic polarisation P and the
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excitation field E at the same wavelength
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P(u) = x(u)E{u)- (6.19)

The susceptibility is in general a second order tensor, which means that the polarisation

and the external field are not necessarily colinear.

The dielectric susceptibility as a function of time is given by a convolution between
the transfer function x(t) and the field E(t)

/OO x(t - r)E(r)dT. (6.20)
•OO

In order to fulfil the causality condition [67] (no polarisation induced before the

excitation), the transfer function x(t') must be zero for all t' — t — r negative. This
condition is written in real time as

X(t') = x(t')Q(t'), (6.21)

where Q(t') is the Heaviside distribution2. Using the Fourier transformation of the
Heaviside distribution one finds

/OO 11e~lut Q(t')dt' = — ip.v. b -^(k>)
■oo u 2

where p.v. is Cauchy's principal value. Therefore, the causality condition (6.21) can be
written in reciprocal space as

X(w) = x(w) * f-ip.v.i + ^<J(w)^
= —ip.v. f X^ duii + \x{u),

o u-u 1 2

where f *g represents the convolution between functions / and g. This equality links up

through a Hilbert transformation the real x' and imaginary x" parts of the susceptibility

2The Heaviside distribution is defined as O(t') = 0 for t' < 0, 0(0) = 1/2 and 0(f') = 1 for t' > 0.
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in the following manner

(6.22b)

(6.22a)

These two equations are called Kramers-Kronig relations. The transfer function of all

causal systems must fulfill these conditions.

The Kramers-Kronig relations can be generalised to include the non-linear responses

of matter. In this case, the polarisation is written as

where x1 and x2 are respectively the linear and the lowest order non-linear susceptibility.

The generalisation of the Kramers-Kronig condition for the non-linear susceptibilities
of higher orders can be found in the literature [70,71].

6.4 Multiple quantum well n-level systems

In this section we use the LTR formalism (Left reflection, Transmission and Right

reflection) to calculate the energy levels in semiconductor multiple quantum wells. In
order to do this we have to write the quantum wave function in the same form as the

electromagnetic wave used in the optical LTR formalism.

This can be achieved by using the effective mass approximation which treats the
carriers as free particles (i.e. particles in a constant potential) having an effective mass

determined by the k • p method at the band edge [72,73]. In this approximation the
band structure at the band edge is given by a parabola whose quadratic coefficient is

inversely proportional to the effective mass. The band gap energy itself corresponds to

the constant potential in which the free carriers are moving.

In the case of multiple quantum wells, we have a succession of different semiconductor

layers each having different effective masses and band gaps. The stationary Schrodinger

P{u) = )^(u)E(u)

+ duj\ I du)2X*(^i? — UJ2) H~ * • • (6.23)
J —00 J—00
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Figure 6.1: Interface between two crystals.

equations for the quantum wave function in each crystal is

h2 dP
2m* dz2 tj) + Vi/J = Eil> (6.24)

where m* is the effective mass, E the eigen-energy and V the potential of the crystal.
This stationary equation has two fundamental solutions which lead to the following

wave solutions

ip+(z,t) = exp 2m*
E-V .E

. , . , E-V E
ip-{z,t) = exp j —i\/2m*———^ - i—t

(6.25a)

(6.25b)

These solutions correspond to a travelling wave to the left and to the right.
In order to define the equivalent wave vector and refractive index we have to consider

the continuity conditions of the quantum wave in the envelope approximation at the
interface between two different media (see figure 6.1)

il>^zo,t) - ^(2u,0>

m* dz 77^2 dz

(6.26a)

(6.26b)

We see here a slight difference with the continuity conditions of the electromagnetic
wave. In this case the relation giving the continuity of the derivative is a function of
the effective mass.



CHAPTER 6. MULTIPLE QUANTUM WELL N-LEVEL SYSTEMS 90

10000 -

1000 -

100 -

10 -

0.1

0.01

0.001

-1.0 -0.6 -0.4

Energy (E)

Figure 6.2: The "total absorbing condition" (T2 — LR = 0) as a function of the energy
for three coupled quantum wells for the following parameters: width 4 units, separation
0.5 units, effective mass 1, h = 1 and crystal potential inside the wells -1.

We consider at the interface an incident, a transmitted and a reflected wave

E - Vi E
ipi(z,t) = exp [ i\/ 2m*———z - i—t

y jjj
+ri2 exp ( -i\j2m\—^-z-i—t ] ,

E - V2 E
iJj2(z, t) = tl2 exp ( i\/2m*2———z - i—t 1 .

(6.27a)

(6.27b)

where the coefficients r\2 and correspond to the reflection and transmission coeffi¬

cients of the quantum wave function. Inserting the solutions (6.27) into the continuity
conditions (6.26) we get two equations giving us the relative amplitudes of the reflected
and transmitted waves.

1+^12 — ^12)

lE-Vl
mT

— T12 \
lE-Vi

mT
— h2*

lE-Vo
rrin

(6.28a)

(6.28b)



CHAPTER 6. MULTIPLE QUANTUM WELL N-LEVEL SYSTEMS 91

We can now define an effective refractive index by comparing this equation to (2.7).
This effective refractive index in defined up to a multiplicative coefficient. We choose

this coefficient so as to have an effective refractive index of unity in the absence of the

crystal potential

n„ 'TIT,n

E-Vic 1

m\E
(6.29)

where m*0 corresponds to the electronic mass in vacuum. Further we can now define the
effective quantum wave vector

(6.30)

We can see here the difference between the electromagnetic wave and the quantum

wave in the envelope function approximation. The wave vector and the refractive index

changes in each material. This is due to the dependence of the continuity relation of
the derivative on the effective mass.

Using the definition of the effective quantum refractive index we can define the
reflection and transmission coefficients

r12

112 —

Tllq Tl2q

Tl\q Tl2q
2nlq

Tl\q T 77-2g

(6.31a)

(6.31b)

Finally, we can define the LTR element for a quantum well of effective refractive
index n and width z

£q(n,k,z) =

R I

< rU
t

\TR J

( r l~p2l_p2r2

d i11)"

(l-p2r2)
„ 1—p2

\ 1—p2r2 )

(6.32)

with

1—n„
r — 2-

l+ 7lg

P = exp (ikqUgZ)
(6.33)
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Using this definition of the LTR element Cq we can now construct more complicated
structures such as multiple quantum wells. Once the total LTR element is known for the

structure we have a localised solution of the stationary Schrodinger equations when the
"total absorbing condition" is fulfilled as defined in the second chapter (T2 — LR — 0).
Further, one can use all the properties of the optical LTR formalism in the case of

multiple quantum wells. A good example is the treatment of intentionally disordered

quantum wells [74,75].
Figure 6.2 shows graphically the eigen-energies of a multiple quantum well structure

having three wells. The eigen-energies correspond to the positions of the minima in the

logarithmic plot.

6.5 Summary

In this chapter we described the interaction between an electromagnetic wave and a

quantum system. We started with the general Schrodinger equation which treats the
evolution of the wave function. The solution of this equation can be written as the

superposition of the eigen-functions of the Hamiltonian operator. This standard pro¬

cedure leads directly to the density matrix formalism treating the population and the

coherence of each eigen-state.

In the second part, we expanded the optical LTR formalism in order to treat the

stationary Schrodinger equation in the case of multiple quantum wells. Using this for¬
malism one can easily determine the eigen-energies of these structures. They correspond
to the energies where the total LTR fulfils the "total absorbing condition".



Chapter 7

Solution breakdown in n-level systems

at high intensities

7.1 Introduction

The study of the evolution of a n-level system under excitation is interesting because

it shows in a straightforward manner the quantum behaviour of such a system. In
the case of the interaction between a monochromatic electromagnetic field and an n-

level system we observe resonance phenomena when the photonic energy equals the

energy levels of the systems. Further, when the amplitude of the field is increased
we observe again resonance phenomena when the interaction energy equals the energy

levels of the n-level system or their multiples. It is the treatment of these cases where

approximating approaches breakdown. After showing the limitation of the different
methods we continue by developing an analytical method that gives the exact solution
to the density matrix equations when the excitation is monochromatic. This solution is

valid for any excitation amplitude. A possible application of the high intensity part of
the exact solution is treating the response of noble gases under high intensity. This kind
of excitation is not possible in the case of semiconductors because the absorbed light
would melt them before reaching this high intensity region. Further, this monochromatic

approach can not be applied in the case where the pulse duration is too short compared
to different time constants of the n-level system.

In this chapter, we show the problems that arise when searching for solutions of the

density matrix equation describing the evolution of the 11-level system under excitation.

93
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Several methods that can be used for solving this equation are presented for the case of

monochromatic excitations and we discuss the limits of these methods. The methods

treated include perturbation expansion, the rotating wave approximation, the continu¬

ous fraction method and the Floquet expansion. These different methods are compared

to the numerical solutions that we develop in the case of periodic excitations.

Here we present different methods for the solution of the evolution equation of an

n-level system. The advantages and disadvantages of each of the methods are discussed
as well as compared to the results obtained with the help of a numerical integration.

We start by describing this numerical method which we use to treat a two level system

in the density matrix framework. The other approximating techniques, widely used in

the literature, can be classified in two categories, following the evolution equations that

they solve.

In the first category are those that can be applied to Schrodinger's equation as well as

to the density matrix equation. In the following paragraphs, we introduce two of them,

that is the perturbation expansion and the rotating wave approximation. The first one

consists of a power expansion of the excitation field. We show that this expansion has a

finite convergence radius and that, for an excitation amplitude higher than the amplitude

corresponding to this radius the method does not converge. In the case of the rotating

wave approximation, the result is valid for a greater domain but not for all intensities.

Nevertheless, these two methods taken together are able to explain a great number of

phenomena experienced at low intensities of excitation [76]. In the case of the density
matrix equations, we compare graphically the solutions found using these methods to

the solution found by numerical integration. The comparison for Schrodinger's equation
without relaxation can be found in [77] in the case of the rotating wave approximation.

The other two methods presented here are only applicable to Schrodinger's equation

without relaxation terms. The first method is based on the continuous traction deter¬

mined for a two level system. It shows a good correlation with the exact solution of
the equations of the density matrix, but it is not applicable in the case of resonance

with the system. This is due to the absence of relaxation terms in Schrodinger's equa¬

tion. Furthermore, it cannot be used to determine the response of the system at the
fundamental harmonic of the excitation. This response must be determined by anoth¬

er procedure. Finally, we introduce the method based on a Floquet expansion. This
has the same disadvantage as the continuous fraction method, namely it gives correct
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results only away from resonance. On the other hand, the Floquet expansion, shows

the stationary Schrodinger equation of the complete system, composed of the excitation

wave in interaction with the n-level system. The Floquet method can also be used in

conjunction with the perturbation expansion [78].

7.2 Numerical integration of the density matrix equa¬

tion for a two-level system

In order to be able to compare the different resolution methods of the dynamical equa¬

tions of the n-level systems we develop a numerical resolution method of the density

matrix equations for a two level system. This method takes into account the periodic

character of the excitation and thus allows us to distinguish between the transient part

of the solution and its periodic part. This is an advantage when compared with a com¬

plete numerical integration as one can see in the case of the two level system [79] but also
in the case of the more complex atomic models [80,81]. In fact, in these two cases, the
rate of increase of the excitation amplitude is important because the calculated solution

depends on this parameter. Our method is independent of such a parameter. Further¬

more, the Fourier transformation of the periodic solution corresponds to the solution

found directly in the frequency space and described in the next chapter of this work.

First the temporal evolution of a two-level system is studied in a numerical approach.

More precisely, the solution of the Bloch equations [67] for a two-level system is treated

by decomposing it into a homogeneous part and a non-homogeneous part. The solutions
of these two parts are calculated numerically by the [82] Runge-Kutta method for one

excitation period. From there, the general solution is constructed using the periodic

properties of the excitation. We also deduce the necessary initial conditions so that the
evolution is periodic. We show that this particular solution is an attractive solution
towards which all other solutions converge in an exponential manner. Besides, we show
that this attractive and periodic solution does not exist in the absence of the relaxation
terms in the density matrix equation. Thus, this method is not valid without relaxation.
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7.2.1 Transient solution

In this section, we use the Runge-Kutta [82] integration method to describe the temporal
evolution of a two-level system while subject to an excitation E(t)

0 for t < 0
m = < (7.i)

f(t) for t > 0

with f(t) = f(t + T) being a periodic function of period T.
The density matrix equation for a two-level system in Bloch space representation

can be written as follows

dx
— =-r2rv + n0y, (7.2a)

^ = -D0x - r2y+ 2E^z, (7.2b)
dz 2E(t)yji*-*<*-*>■ (7'2c)

where x and y are respectively the real and imaginary parts of the coherence pa\,. The
variable z is the population inversion z — p^ — paa, and z0 the same but at thermody-
namical equilibrium. Using vectorial notation the system of equations (7.2) becomes

= W(t)XR<$ -r(5(j5 - i?), (7.3)

where R, W and represent respectively (x, y, z), (2yE{t)/?i, 0,00) and (0,0, z0), while
the operator T is the relaxation matrix

r =

( r2 0 0 ^
o r2 o

V o o r\ j

With the help of the Bloch equation, the evolution of the state of the system can be

followed in three dimensional space. The coordinates (x,y,z) of the vector R describe
in time a trajectory in this Bloch space.

In the following, we study the solution of the Bloch equations (7.3) while considering
a periodic excitation. This solution can be decomposed into two parts. The first part

of the solution is the solution of the homogeneous equation, which means that = 0.
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The second part is a particular solution. The sum of these two gives us the general
solution.

Before the numerical integration of the homogeneous equation, it is necessary to

introduce the solution in a matrix form

R(fj = C(t)R^>, (7.4)

where R(t) is determined by a certain matrix C(t) and by its initial conditions Rt=o-
The matrix C (t) corresponds then to the homogeneous evolution operator of the state

of the system. Considering the periodicity of the excitation, we do not need to know the
evolution operator for more than one period. The differential equation for this operator

can be written

= M(7.5)

where the matrix M containing both the excitation and the relaxation term is

/

M(t) =

—T2 Oq 0
_ q0 -r2

Y o -p,

For R(t) defined by the equation (7.4) to be a solution of (7.3) it is necessary that the
matrix C (t) fulfils the following initial condition

C(t = 0) — I

where I represents the identity matrix.
The particular solution Sp(t) is determined numerically for one period from the Bloch

equation (7.3). The initial condition for this special solution is the zero vector.

To construct the general solution of Bloch's equations, we have at our disposal the

following functions known over one period

C(t), for 0 < t <T,

Sp(t), for 0 < t < T.
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The general solution can be written as a sequence of vector solutions in Bloch space

each valid over one period

Rn(t) = C(At)Rn_i(nT) + Sp(At), for nT <t<(n + 1 )T, (7.6)

with

At = t [T],

-R-i(o) = Rt=o-

In figure 7.1a, the evolution of the solution is represented in the Bloch space during
the first periods of the excitation. For initial conditions, the thermodynamic equilibrium
state is used.

7.2.2 Stationary solution

Figure 7.1 shows that the general solution of Bloch's equation is not necessarily periodic
when the excitation is periodic. Nevertheless, there exists a special initial condition that

implies a periodic solution. We determine this initial condition using expression (7.6).
The solution found with the help of this initial condition is the asymptotic solution to¬

wards which all other solutions converge. The "speed" with which a solution approaches
the asymptotic solution depends on the relaxation times.

To determine the initial conditions corresponding to the periodic solution we specify
the relation (7.6) at the end of each period

Rn((n + 1)T) = C(T^-ifar) + Rjf). (7.7)

This relation, between the states of the system at times nT and (n + 1)T, corresponds
to a recursive sequence. Figure 7.2 shows the series Rn((n + 1)t) in Bloch space. The

periodical initial condition is solution of the linear equation

it = C{T)lt+ Rp(T). (7.8)

This implies that the initial condition is self-consistent. The iteration over one period

of the solution starting with this initial state leaves the system in this same state.
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Figure 7.1: Evolution of the state of the system in the Bloch space for the three first
periods of the excitation (f(t) = Asin(6Jit)). The figures (b), (c) and (d) are used for
the determination of this evolution with the help of the equation (7.6) (b) particular
solution Rp(At) for one period (c) homogeneous solutions with the initial conditions
(x — l,y = 0,z = 0) and (x = 0, y = 1, z = 0). These two solutions form two lines of
the matrix C. (d) Homogeneous solution with the initial condition (x = 0, y = 0, z = 1).
This solution forms the last line of the matrix C.
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0.06

Figure 7.2: Poisson [83] section, (the state of the system after one excitation period) for
a two-level system under excitation (f(t) — Asin(uit)).

We remark that usually the relation (7.8) does not have any non-zero solution ^ if

Rp(T) = 0. This corresponds to the absence of the thermodynamical equilibrium term
1$ in equation (7.3) and thus also in the case of Schrodinger's equation (relaxation
terms are empirically introduced into the density matrix formalism). Consequently,

Schrodinger's equation for an n-level system, under periodic excitation, generally does
not have any periodic solution. In the case where it has one (matrix C(T) accepts unity
as eigen-value), it is not attractive.

Figure 7.2 shows graphically the convergence of the iterative sequence (7.7) towards
the solution of (7.8). In fact, the convergence can be shown mathematically when

returning to the Bloch equation (7.3). Let P(t) be the periodic solution and AR(t) —

R(t) — P{t) . Then AR(t) is a solution of

dA- W$ x AR(t) - TAR(t). (7.9)at

When multiplying equation (7.9) by AR(t), the behaviour of the difference between any

given solution and the periodical solution can be studied

^jtjdAR(t) = 1 dAR2(t) = (7.10)
dt 2 dt



Figure 7.3: The evolution of the system is represented in Bloch space for one period of
excitation. The initial condition is the one giving a periodic solution ^ calculated with
the help of equation (7.8). Three typical intensities for the excitation are considered: (a)
linear domain of excitation, (b) saturation of the system, (c) domain of the characteristic
oscillations.
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This differential equation shows the behaviour of the norm of this difference. As the

matrix T is diagonal and the smallest element is Ti, the norm has an upper limit given

by the solution of the equation

= (7.n)

with the initial condition /(0) = |Ai?(o)|2. The solution of the equation (7.11) decreases

exponentially. Consequently, the limit

(7.12)

implies the convergence of any solution towards the periodic solution. This means that
after a large number of excitation periods the solution approaches asymptotically the

periodic solution. Figure 7.3 shows the periodic solution for different intensities of ex¬

citation. For weak intensities, the cycle done by the system is very nearly circular.

This response of the system corresponds to a linear behaviour where the different ap¬

proximate resolution methods give satisfactory results. When excitation intensity is

increased saturation effects appear. We observe then in Bloch space a deformation of

the cycle in the 2 direction corresponding to an oscillation of the population. For even

higher intensities, the energy received by the system cannot any more be stored in the
excitated population. The cycle described then by the system shows higher harmonic

components that are visible in Bloch space as supplementary circular movements.

By comparison, the evolution of a two-level system in Bloch space in the absence

of relaxation terms implies that the trajectories are located on the unity sphere [84].
Consequently we observe important differences in Bloch space between the trajectories

in absence and in presence of the relaxation terms.

To summarise, we deduced a numerical integration method for the density matrix

equation including the relaxation terms for a two level system. Such a study is necessary

in order to have a reference solution of these equations so that we are able to compare the

different resolution methods. Finally, this method is also necessary for the verification
of the properties determined in the next chapter when we will solve the equation in an

analytical manner.

lim |Ai2(f)| = 0,
t->oo
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The philosophical question of the "why" if one has a numerical solution one should

continue searching for an analytical solution, can be replied to as follows. The deduced

property of a numerical solution cannot be general for they are only the property of a

special case. More precisely, the numerical solution of these equations shows a complex
behaviour of these systems when periodically excited. This behaviour was not treated

in the literature to its correct value and consequently a deeper study of these equations

is necessary. The advantage of an analytical study in comparison to a numerical study is

its ability to determine the limiting cases of this behaviour. Furthermore, once the exact

and general solution is known it is possible to particularise it for the problem treated.

This particularisation can take into account justified approximations and consequently

leads to simple and easy formulas for use in practice. Finally, the analytical methods

allow us to find the solution in the more general case of an n-level system in the presence

of two monochromatic fields.

7.3 Perturbation expansion

There is no general solution of Schrodinger's equation if the Hamiltonian operator is time

dependent. In the case when the Hamiltonian operator can be divided into a constant

part and a relatively small time dependent part we can use the perturbation approach

which uses a Taylor expansion with respect to the excitation. For Taylor expansion,

there exists around each point of expansion a convergence radius. This is the same

in the case of the perturbation expansion. In this section, we introduce this method

without worrying about the convergence radius. In the next section, we will return to

this problem to show the importance of this convergence radius when the amplitude of
the time dependent part increases.

The Starting point for the perturbation expansion is the general density matrix

equation

= H0p - pH0+AW(t)p-ApW(t)-r (p - p<°>), (7.13)

where AW(t) corresponds to the part of the Hamiltonian depending on time. This part

can be seen as a perturbation of the Hamiltonian H0 corresponding to the system at
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rest. The solution then is searched in the form of the sum of powers of A

p(t) = pa(t) + Api(t) + X2p2(t) + • • • . (7-14)

When inserting this sum (7.14) into the density matrix equation, we can identify one

equation for each power of A. The constant part corresponds to the solution in absence

of excitation

in^ = HoPo - PoHo-T (po - P(0)), n = 0. (7.15a)

For the 11th order density matrix the equation is

ih^ = HoPn - p„H0+W(t)pn_i - pn_1W(t)-Tpn n > 1. (7.15b)

This system of differential equations can be solved in a recursive manner. Each of

these equations (7.15) is simpler to solve than the general equation (7.13) because the
excitation term appears in the equation as a free term and not as a time dependent

coefficient (7.13).
In order to be able to compare the solution (7.14) defined by the system of equations

(7.15) and the one calculated by the numerical method, we develop in more detail this
solution for a two level system. More particularly, the system considered is symmetric

with respect to its origin. Then, the interaction between the system and the field is

given by the matrix

W (t) = pE(t)

0 ^ 1 m (7.i6)
Pba b J

where p is the matrix corresponding to the dipole momentum of the system (6.15) and

E(t) with excitation held

■ 0 for t < 0
E(t) = { (7.17)

sin(6Uit) for t > 0.
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The Hamiltonian operator of the system is

105

(7.18)

where HD0 corresponds to the energy difference between the eigen-states of the two

levels. The equilibrium state of the system is given by the relation (6.13 )

i. ™

As the initial condition for equation (7.13) at the instant t = 0 we consider the

system in its thermodynamical equilibrium state p{t = 0) = Starting with this

general initial condition it is necessary to define the initial conditions for all equations

(7.15). In order for this sequence of initial conditions to be valid for any amplitude

parameter A, we choose the following initial conditions

p0(t = 0) = p(0) (7.20a)

pn{t = 0) = 0 for n > 0. (7.20b)

The zero and first order solutions of equations (7.15) are

Po{t) = P(0)

Pi {t)aa — 0

P\(t)ab = -/>i?^(*wie(~r2+!no)t - iuJi cos(wit) + + ^o) sin(wit))
pi(t)ba = -p^DT^i-iuie(_r2_,no)t + iuji cos(tdii) - (272 - Do)sin(u>it))L)

pi(t)bb = 0

where p$ represents the difference of populations p$ and p£d at thermodynamical equi¬
librium. The coefficient r2 corresponds to the inverse of the transverse relaxation time

(6.11b) of the two level system and the coefficient T2 to the inverse of the longitudinal
one (6.11a). The denominator D is

D = H{T22 - 2iT2DQ - Qq + cu2))
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and D* is its complex conjugate.

We notice that the first order solution is composed of two parts. A transient part

defined by an exponentially decreasing term and a stationary part whose amplitude

remains constant as a function of time. These two parts are also observed when searching

the numerical solution of the density matrix equations where we have a unique periodic
and "attractive" solution. All other solutions are approaching this in a exponential
manner. Consequently, the transient term can be neglected when searching for the

stationary solution. Besides, we can easily verify that the solution, in the absence of

the exponential term, remains a solution of equation (7.15b) for n = 1. The difference
between the stationary solutions and the transient ones resides in the initial conditions

(cf. discussion of the numerical solution).
Before calculating the solution for the higher order perturbation, we verify that the

defined susceptibility at the first order verifies the Kramers-Kronig conditions (6.22).
For that, the polarisation is determined with the help of relation (6.18)

Px{t) = 2A5£e {HabPi{t)ba)
(°) f D2 sinM) - r2o;i cosfat) - u2 smfat)

= ZAUabflbailoPH h{T2 + D2 _ 2^! + W?)(r| + D2 + 2Q0u;i + u/f)

From the polarisation, we can define the linear susceptibility at the frequency of exci¬

tation

/ \ ~iPabpbaCppp /_ ^^
^(F2 + i(Oo + w))(r2 — i(Do — Ld))

We notice that the linear Kramers-Kronig relation is fulfilled by this susceptibility. This
can be easily verified by looking for the poles of the susceptibility in the complex plane

(the frequency uo is treated as a complex variable). In fact, these two first order poles are

located in the inferior half of the complex plane divided by the real axis. Consequently,

the perturbation expansion to the first order fulfils the Kramers-Kronig condition [67]
and therefore the causality principle.
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The formal dependency between the density matrix elements at the different orders

of the expansion are:

P2n—\if)aa P2n—l(^)i>6 0j (7.22a)

P2n-l{t)ab = P*2n-l(t)ba = dre-(ra-»no)(t-r)

(/hi&P'in—2 (^)(j6 PabP2n—2{t) aa) •> (7.22b)
—i f*P2n(t)aa = ~p2n(t)bb= Y J dTe~ri^~T) sm(u>lT)

{PabP2n—l(tyba PbaP2n—1 (^)ah)j (7.22c)

P2n(t)ab = p2n{t)ba ~ 0, (7.22d)

for n > 0. With the help of these relations, it is possible to describe the solution at

any order. These solutions can all be divided into a transient part and a stationary one

exactly as the first order solution. The stationary parts are:

P2n—l(t)aa — P2n—\if)bb = 0, (7.23a)
— 7 f't+T

P2n~l(t)ab = Pln-li^ba = ^ J dre-(r2-in0)(t+r-T) gin(WlT)
{PabP2n—2(t}bb PabP2n—2 (l)aa) j (7.23b)

P2nit)aa = ~p2n{t)bb = ^ J dTe~ri(t+T~r) sin (c^r)
(PabP2n—l{t^ba PbaP2n—1 (^)aft) > (7.23c)

P2n(t)ab = ~P2n(t)ba = 0, (7.23d)

where T = 2n/u)i, d\ = 1 — exp(—(r2 — iD0)T) and d2 = 1 — exp(—TiT). The stationary
solution at the order n is defined in an iterative manner with the help of the solution at

the order n — 1. If the solution at order n — 1 is periodic then the solution to the order

n is also periodic.

Figure 7.4 shows graphically the behaviour of the solution found with the help of the

perturbation expansion for a two level system. For this graphical study, we represent

the solution in different manners in order to show the differences when comparing the

perturbation solution with the solution obtained numerically. First, the two solutions

are compared in Bloch space in figures 7.4a and 7.4b. In this representation, we observe
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Figure 7.4: Comparison between the solutions found by the perturbation method and
the numerical solution for a two level system. The evolution of the two solutions in the
Bloch space is represented for a weak excitation intensity in figure (a) and for a strong
excitation intensity in figure (b). Figure (c) shows the behaviour of the polarisation at
the fundamental frequency according to the excitation amplitude.
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Figure 7.5: Comparison between the solutions found by the perturbation method and
the numerical solution for a two level system. The figure shows the amplitude of the
response at the harmonic frequencies for a weak (a) and a strong (b) amplitude of
excitation.

that for weak excitation intensities, figures 7.4a, the two solutions are in very good

agreement. This corresponds to the linear domain of excitation. On the other hand,

for high intensity excitations, figures 7.4b, this is not the case. While the numerical
solution remains inside the unity sphere where it makes complicated cycles during an

excitation period; the one determined with the help of the perturbation expansion is

divergent. The cycle described by this last remains circular even for high intensities but

it increases in radius beyond the unity sphere.

In order to understand the basic differences between these two solutions we show in

figure 7.4c the amplitude of the polarisation at the fundamental harmonic when the ex¬

citation amplitude varies. The amplitude of the polarisation gives the energy absorbed

by the two level system while excited. The log-log representation is useful because one

can visualise more easily the transition from the linear behaviour to the non-linear one.

Further, this representation is equivalent to the linear one [77]. In this figure we ob¬
serve that for excitation amplitudes smaller than the saturation amplitude Esat the two

solutions are equal. From the amplitude of saturation Esat onwards, the perturbation

expansion is no longer valid. This amplitude corresponds to the convergence radius of
the Taylor expansion meaning that the series (7.14) does not converge towards the exact

solution for excitation amplitudes greater than Esat. This divergent behaviour explains
the abnormal increase of the radius in the Bloch space. We determine in an analytical
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manner this convergence radius in the following section with the help of the rotating
wave approximation.

Finally, to explain the absence of oscillations (see figures 7.3) in Bloch space, we

represent in figure 7.5 the amplitudes at the harmonic frequencies of the polarisation

for a weak excitation and a strong one. For the weak excitation intensity, the amplitude

of the harmonic response decreases as the power of the order of the harmonic. This

behaviour is visible in the case of the perturbation expansion as well as for the numerical

solution. When the excitation amplitude corresponds to a non-linear domain of the

system this is no longer the case. The perturbation expansion continues to show the
same decrease as for the weak intensities while the numerical solution shows a saturation

of this response for the small harmonic orders followed by a decrease of the response

for the higher harmonics. This explains the characteristic oscillations of the system in

Bloch space for the numerical solution and their absence in the case of the perturbation

expansion.

In conclusion, the perturbation expansion is not usable for stronger excitation am¬

plitudes than the convergence radius of this expansion. This is not astonishing, because

strong excitation intensities can no longer be treated as a perturbation of the Hamiltoni-
an of the system at rest. On the other hand, in the considered example, this convergence

radius of the expansion corresponds to the saturation amplitude of the system namely

the intensities where the non-linear effects appear.

7.4 Rotating wave approximation

The rotating wave approximation neglects the fast varying terms in the density matrix

equation. The starting point of this approximation is the density matrix equation (6.17)
for a two level system in the form of the Bloch equations (7.2). Originally this approxi-
amtion was used when describing the evolution of a 1/2 spin subject to the superposition
of two magnetic fields composed of a constant and an oscillating part. The first part of
the field corresponds to the Hamiltonian of the system at rest while the oscillating part

corresponds to the excitation field. The excitation in this case is monochromatic

E{t) — Ei sin(tJit).
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Once excited, the spin 1/2 shows a precession movement. It is by placing oneself in the

rotating reference frame of the spin that the evolution equations of the spin are resolved
when neglecting the oscillation terms.

In the case of the density matrix equation, the change in frame of reference corre¬

sponds to the following changes

Pab = (?abelUlt,

pba = (7bae~luJlt,

PD — Pbb — Paa-

These changes of variables allow us to show the "slowly" varying terms (that rotate with

the reference frame) and the "fast" varying terms (that rotate with a harmonic frequency
of u>i).

The density matrix equation (6.17) for a two level system in the rotating reference
frame are

— +-7jE\ (Pab&ba ~ &abPba) ~ ^l{pD ~ P/^)> (7.24a)
= *(w 1 - Do)aba + P'baPD ~ r206a, (7.24b)

where the fast varying terms exp(2iu>it) and exp(—are neglected. Prom these

equations we can find the exact analytical solution in the stationary case by solving the

system of linear equations (7.24) when the derivatives are zero. The real and imaginary

part of the dielectric susceptibility at the excitation frequency can be determined:

frjtpW 1
x n r.ri + r^ -o0)2 + 4a'fr2' 1 ' '
„

= /x2ripg} (go - aq)x n riTl + r^wi -n0)2 + 4a?r2' 1 ;
where ax = pE/h represents the "precession" frequency. The rotating wave approxima¬
tion is valid for a greater range of excitation intensity than the perturbation expansion,
but it does not take into account effects that appear at higher excitation intensity.

Further, the susceptibility determined with the help of the rotating wave approxima¬
tion does not fulfil the Kramers-Kronig condition. This condition is fulfilled only if the
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Figure 7.6: Comparison between the solutions found by the rotating wave approximation
and the numerical solution for a two level system. The amplitude of the polarisation of
the system at the fundamental frequency is represented as a function of the excitation
amplitude.

terms containing the excitation amplitude are neglected in the denominator in equations

(7.25). The origin of this problem lies in the non-linear aspect of the density matrix

equations implying a non-linear solution. In fact, the susceptibility (7.25) is not only

composed of the linear susceptibility x1(w) but also of the higher order susceptibility

(see definition 6.23) as x3(u>,u;, —u) (there is no polarisation at the second order for
a centro-symmetric system). The linear part of the susceptibility satisfies the linear

Kramers-Kronig relations. Besides, a direct verification of the differential equations

(7.24) generalised to any excitation field shows their causal character; thus it is during
the approximation that the causality is lost.

In figure 7.6, we represent the amplitude of the response at the fundamental frequen¬

cy as a function of the excitation amplitude. This figure shows that the rotating wave

approximation remains valid for excitation intensities where the perturbation approach

diverges. We also observe the amplitude where the rotating wave approximation is no

longer valid

al cutoff = 8\/4w?rl+ (^0
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This cutoff amplitude is due to the relative increase of the anti-resonant terms (the
fast varying terms) in comparison with the resonant terms. To determine this cutoff

amplitude we use the solution methods presented in the next chapter.

Contrary to the perturbation expansion, the rotating wave approximation cannot

model the high harmonic generation as in figure 7.4d. Further, the Bloch space repre¬

sentation of the solution shows only a perfect circle without any special point. From this

remark, we can conclude that the complicated cycles shown by the numerical solution

in Bloch space have their origin in the high harmonic generation. This hypothesis is

reinforced by the observation of the perturbation solution behaviour in Bloch space. In

this case, the cycles are more or less circles with small deviations. Besides, the high

harmonic generation for the perturbation expansion is much smaller for high intensities
than for the numerical solution.

One of the advantages of the rotating wave approximation is its compatibility with
the perturbation expansion, that is to say the result found when using these two approx¬

imations successively, does not depend on the order in which they are done. In fact, we

can use this property to calculate the convergence radius of the perturbation expansion.

For that, the solution of equation (7.24) is written as a Taylor expansion with respect
to the excitation amplitude (7.14). The polarisation of the system can be determined
with the help of relation (6.18) and of the solutions to the different orders of equations

(7.24)

P — X + X2E2 + X3E3 + ■■■ (7.26)

with

_ /xVd 1
Xi — h T2 + i (to1 — Q0)

X2 = 0,

r2/i2 1
X3 = ~Xl

n2rl v2 + (oq - n0)2'

The convergence radius (7.26) of this series can be calculated from the ratio between
two consecutive odd terms of this series. Indeed, the convergence radius thus found
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corresponds to the excitation amplitude giving the maximum of polarisation

convergence — (7.27)

In conclusion, the combination of the perturbation expansion with the rotating wave

approximation allows the definition of the linear and non-linear susceptibility in a very

simple manner. On the other hand, this expansion is no longer valid for excitation

amplitudes higher than the convergence radius.

7.5 Continuous fraction method

In the following we describe briefly the continuous fraction method as proposed by

Plaja et al. [85]. This method applies particularly to the two level systems without
relaxation terms. They are treated in the framework of Schrodinger's equation and thus

they do not take into account the relaxation terms. A monochromatic wave is used as

excitation. The equations of the probability amplitudes of the two states deduced from

Schrodinger's equation are:

The quantum state of the system is determined by the two complex functions a0(t) and

ai(f). The wave function is given by 4>(t) = aoityipa + aifyipi,. This quantum system has
an eigen-frequency Further, uj\ is the excitation wave frequency and V the coupling

between the two level quantum system and this wave.

The dipole moments of the system normalised to the excitation amplitude and the

population inversion are defined by:

—do — —iVa\ coscoit,
at (7.28a)

—ai = — iD0ai — iFao cosuqt.
at (7.28b)

p(t) = V[aJ(i)ai(i) + a0(f)a*(f)]

pD(t) = |ai(t)|2 - |a0(f)|2.

(7.29a)

(7.29b)

With the help of these two definitions, the system of complex differential equations can

be written in the form of a purely real system where only the inversion population and
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the polarisation intervene:

+ Oqp(t) = 2O0V2pD(t) cos(cdit), (7.30a)dt2
dpott) 2 . ,p(t) . .-^ri = -?sC0S(w'i)^r- (7-30b»

The Fourier transformation transforms equations (7.30) into a system of equations

linking the dipole moment at the qth harmonic to the dipole moments at the (q + 2)th
and (q — 2)th harmonics

( 2q2 — q2u? \ q — 2 q + 2-P«(^tzt+ —) =J,»-2^T+J,«+27Ti' ' (7'31)
with

p(t) = Ep»e"""- <7-32)
q

The solution of this relation implies a continuous fraction, that is to say a fraction whose

denominator is a fraction whose denominator is also a fraction and so on

„ = -(g-2)/(g-l)
9 2?/(? - 1) + (^ - qWx)/V2 + [(g + 2)/{q + 1 )]zq+2'

with zq = pq/pq_2- In order to evaluate this continuous fraction (7.33), it is necessary to

begin with a high index, qrnax while neglecting pq in comparison with p9_2 that is to say

that zqmax = 0. The continuous fraction method gives the ratios between the different
odd harmonic dipole moments.

To determine completely the values of these harmonics, it is necessary to calculate

the response at the fundamental frequency with another method. For that, the difference

of populations is evaluated at the moment t0 where the excitation field V cos (edit) is zero

(7.33)

Pv(to) — —1

= £Ae**/2
q

~ P°D ~ ^Pr>i
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where pqD is the population difference at the frequency quii. Using this relation, the

polarisation of the fundamental harmonic can be written

This polarisation corresponds to the one determined with the help of the rotating wave

approximation applied to the differential equation system (7.28). Consequently, the

comparison of the response of the system with the response calculated numerically gives

the same result as the one presented in figure 7.6.

In figure 7.7, the response of the system at odd harmonics is represented and com¬

pared to the one calculated with the help of the numerical solution. The differences

appear when the amplitude of the excitation occurs in resonance with one of the har¬

monic responses. In this case, the continuous fraction method shows more pronounced

resonance effects. This is due to the fact that this method does not include the relaxation

phenomena implying that the complex poles of the polarisation are closer to the real

axis1 and therefore more pronounced. Generally, the method of the continuous fraction

gives good results for centro-symmetric two level systems. Its defect resides in the im¬

possibility of treating the n-level systems and the relaxation phenomena. Furthermore,
the solution found is as good as the term giving the polarisation at the fundamental

harmonic (7.34). The response of the system at this harmonic can be very complicated
for strong excitation amplitudes as we noticed in the numerical solution (see figures 7.6

and 7.4c). The continuous fraction method does not take into account these effects.

Figure 7.7c shows that the behaviour in Bloch space of the continuous fraction solu¬
tion differs with respect to the numerical solution (figures 7.7d) for resonant excitation

amplitudes. This behaviour difference has its origin in the use of the rotating wave

approximation at the time of the determination of the response at the fundamental

frequency.

Another interesting detail in figure 7.7c is the periodicity of the solution in Bloch

space. When determining the numerical solution we showed that the solutions of equa¬

tion (7.28) are not periodic generally. By constructing the solution with the help of
definition (7.32) and the continuous fraction (7.33), we notice that it is periodic for any

1A polarisation of the type P(ui) = 1/(F — i(uo — ui)) is resonant when u = uio- Its pole is at
uj — iT + uio- The closer the pole is to the real axis, the smaller is the relaxation coefficient and
consequently the maximum of the polarisation is larger.

,1 v2n0
(7.34)P

(f!o — uf) + (3/2)V2'
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Harmonic Harmonic

Re(pJ Re(pab)

Figure 7.7: Polarisation intensity at the odd harmonics calculated with the continuous
fraction method and with the numerical solution, (a) Resonant excitation (V = 10,
O0 = ui = 1) and (b) non resonant excitation (V = 1, f20 = IOoji = 1). At the top, the
ratio between the polarisations calculated by the two methods is represented.
A comparison of the two solutions in Bloch space is given by: (c) Solution obtained by
the continous fraction method and (d) numerical solution.
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excitation amplitude. This contradiction is due to the neglecting in the Fourier series of

the terms having a different frequency from the harmonics of the excitation frequency
that is to say the polarisations defined by

p(t) = eiAut ^pfwe<9Wlt, (7.35)
i

with Aw between 0 and the excitation frequency w,.

At this point, we are brought to consider a generalisation of the continuous fraction

method (7.33) in order to include the terms (7.35) neglected in the literature. With
these terms, the relation (7.31) can be written

_ Aw ( 2(go;i + Aw)2 fig - (qux + Aw)2\^9
\ (qui + Aw)2 — w2 V2 J

_ Aw QUI + Aw - 2wi Au] qu>i + Aw + 2wx
9-2

qu>i + Aw — lwi 9+2 qu>i + Aw + lwi'

Introducing the non integer coefficient

r = + A" (7.37)
W1

at the place of the harmonic order q in the Fourier series we have the new continuous

fraction

Aw
= —(r-2)/(r- 1)

2r2/(r2 - 1) + (fig - r2w2)/W2 + [(r + 2)/(r + 1 )]z^+2'

Finally, the complete solution can be constructed from all the terms defined for Aw

varying between 0 and wi.

7.6 Floquet expansion

As in the case of the continuous fraction, the Floquet expansion is applicable only in

the case of Schrodinger's equations (for example (7.28)) and not for the density matrix

equations. Thus, this method cannot explain the relaxation phenomena but has the

advantage of introducing the notion of the dynamic state or the Floquet state. This
kind of state is shown in the first part of this section when the numerical solution is

searched for a two level system. The states correspond to the periodic solution. Here,
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the Floquet expansion brings them forward in the general case of the n-level systems

and for a monochromatic excitation (for bichromatic excitations see [86,87]).
The goal of the Floquet expansion is to transform the time dependent Schrodinger's

equation

dc
= Ha0ca + 2 cos(o;i t)Wa0ca (7.39)

to a time independent equation. For this, it is necessary to use Floquet's theorem [88]
that shows the existence of a solution of equation (7.39) in the form

(7.40)

where en is the quasi-energy of the state. The Floquet state can also be introduced with
the help of SU(2) symmetry [89].

Substituting (7.40) in equation (7.39), we find for each quasi-energy en a modified

Schrodinger equation

dcn
tnC + ih-f- = Ha0cna + 2cosMWa0cna. (7.41)at

Finally, the wave vector c" is decomposed in a Fourier series with the fundamental

frequency equal to the excitation one

c = j2e~irnwitcn°m- (7-42)
m

This Fourier transformation gives the time independent equation

€„C = (H*f - Smwj) <5™ + (cr_1 + c+1) • (7.43)

Defining the Hamiltonian operator

77 = (Ha0 hmuji) Snm T Wa0 (5nm—i 4- 5nm+1) (7.44)

and the wave vector associated with the Floquet state

Cry 6 -ient/h n

(7.45)
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Schrodinger's equation (7.39) can be written as a stationary equation

eTlC = HC, (7.46)

whose solution is composed of the eigen-vectors of TL. The eigen-values of H are the

quasi-energies of Floquet states. One interesting property of these quasi-energies is

their periodicity. Indeed, the Floquet Hamiltonian is invariant when adding a multiple
of the energy of excitation

% = TL + nfiio i,

and consequently the eigen-values (quasi-energies) are also periodic.
The Floquet expansion method is based on the determination of the eigen-values of

the Floquet Hamiltonian. The states associated with these eigen-values can be seen as

forming a new quantum system composed of an n-level system and the excitation wave.

These new states are indexed with the help of two quantum numbers, namely the state of

the n-level system (a in equation (7.45)) and by the harmonic number of the excitation
field (n in equation (7.45)). As this method is based on the search of eigen-values, it
cannot directly be generalised to the case of density matrix equations which include the
relaxation terms. This impossibility is due to the appearance in equation (7.46) of the
free term associated with the thermodynamic equilibrium of the density matrix.

7.7 Summary

In this chapter, we studied, using the density matrix equations, the interaction between
an n-level system and a monochromatic electromagnetic excitation. In order to define

the evolution of the n-level system we used several methods for solving the equations.

We started with a numerical solution method, where, taking advantage of the periodicity

of the excitation, we could introduce a matrix operator linking the state of the system

before and after one period of excitation. Using this matrix one can find the stationary

and transient solutions of the density matrix equations. This numerical solution was

then used as a reference against which we compared four other methods: perturbation

expansion, rotating wave approximation, continuous fraction method and the Floquet
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expansion. In this way we could show the limits of these methods as one increases the
excitation amplitude.



Chapter 8

Stationary excitation of an n-level

system

8.1 Introduction

In this chapter, we describe the behaviour of an n-level system in interaction with one

or several monochromatic fields. In the preceding chapter, we illustrated the problems
that arise when one searches for analytical solutions of the density matrix equations

describing such systems. Usually, only a solution by quadrature can be found. Never¬

theless, for special time dependent excitation fields one can find an analytical solution.

This is the case of the Dirac excitation, meaning an infinitely brief excitation. Besides,
the Fourier transformation of a real monochromatic wave is composed of two Dirac

functions. Following these remarks, we develop a method for finding the solution of the

density matrix equation of an n-level system under monochromatic excitation in this

chapter. In order to do this, we use the Fourier transformation.

This chapter starts with a general introduction to our method. First, we treat the
behaviour of a two level system as well as more generally of an n-level system interacting

with only one monochromatic field. After the Fourier transformation, the density matrix

equation becomes an infinite system of linear equations linking the density matrices at

the different harmonic frequencies of the excitation. This system of equations can be

written in a matrix form where the characteristic matrix has non-zero terms only on the

principal and secondary diagonals. We show that the solution found from this truncated
matrix at the Nth order, converges towards the solution of the infinite matrix as 1/N.

122
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We also give a recursive method for solving the truncated linear system. In the case

of the n-level system this recursive solution takes the form of a generalised continuous

fraction.

In the second section, the method used for the monochromatic excitation is gener¬

alised for the bichromatic excitation, namely the excitation by two beams of different

wavelength and intensity. The bichromatic excitation presents, not only an interest in

optoelectronic systems (for example [90,91]) but also in nuclear magnetic resonances [92]
where the same kind of n-level quantum systems are considered. A fourth order tensor

relation must be taken into account in order to treat the bichromatic excitation. Oth¬

erwise the method is the same as for the monochromatic excitation. The fourth order

tensor relation links the density matrices at the harmonic frequencies obtained from the

linear combinations of the two excitation frequencies.

8.2 The n-level system under monochromatic excita¬

tion

In this section, we deduce the stationary response of an n-level system under monochro¬

matic excitation in the framework of the density matrix equation. In order to facilitate

this study, we deduce the response of a two level system and of a more general n-level

system in parallel. The difference between the two approaches resides in the order of

the applied operators after the Fourier transformation. For the two level system, the

calculation is made with the help of matrices, while for the n-level systems we need to

use fourth order tensors. The following subsections are consequently divided into two

parts. First the behaviour of a two level system is established and next the results are

generalised for the n-level system.

In the first subsection, we start with the density matrix equation (6.9) including
the relaxation terms (6.11). This equation is transformed with the help of the Fourier
transformation and the resulting system of equations is solved after being truncated.

Further, we show that this solution converges towards the exact solution. Finally, a

recursive method of solution is developed.



CHAPTER 8. STATIONARY EXCITATION 124

Figure 8.1: The elements considered in our model.

8.2.1 Description of the quantum system

The description of the quantum system in the density matrix formalism is presented in

the preceding chapter. We remark here that at a given instant, the state of the system

is characterised by the density matrix, that is to say by the populations and coherence

of the eigen states of the Hamiltonian operator. The evolution of the density matrix is

determined by equation (6.12) which links the different populations whilst keeping their
sum constant.

Acting on the quantum system is the electromagnetic field. It intervenes in the

evolution equation through the dipolar operator Hij. In this section, the considered
excitation field is monochromatic

E(t) — Ei cos{iOit), (8.1)

where u>i and E\ are respectively its frequency and amplitude.

When the quantum system is excited, it absorbs energy. A part of this energy is

dissipated by exchanges with the surrounding environment. This dissipation is modelled

by the relaxation coefficients in the density matrix equation

df= ~ PikH')+ kEico8M)(*<f0«-»d)-r"M'-4A (8.2)
In the following, we are interested in the stationary response of the quantum system

that is to say the equilibrium state between the incoming energy from the electromag¬
netic field and the loss of energy due to the relaxation phenomena (see figure 8.1). This

equilibrium state is determined by the density matrix equation (8.2) and is characterised

by a periodic solution at the fundamental excitation frequency. This type of behaviour
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is known in classical mechanics as a forced oscillation. The external force corresponds

to the electromagnetic field and the dissipating force of the oscillator to the relaxation
coefficients. This analogy, although very limited, can be used for a better comprehension

of the behaviour of the quantum system at the time of the excitation.

For the two level system, equation (8.2) can be written in an explicit manner for the
four elements of the density matrix

= +JhEl C0S^UJlt^fJ,abPba ~ Po-bVba) ~ ri(paa ~ Paa), (8.3a)
^ Hbb)Pab T COs(tcl\t)Pab^Pbb Paa) ^2Pabi (8.3b)
^ — ~T^j<Hbb Haa^Pf,a T -^E\ COs(tJit)P<ba(Paa Pbb) f^Phaj (8.3c)
^ = +^^1 COs(o;it)(/.Ibapab ~ PbaPab) ~ (pbb ~ pjf), (8.3d)

where a and b are the basic and excited states of the system respectively. The longi¬

tudinal relaxation coefficient Ti implies, in the absence of excitation, the relaxation of

populations paa and pbb towards their equilibrium state pio* and p'^. In this case, the
solutions of equations (8.3a) and (8.3b) correspond to an exponential relaxation with
the characteristic time 7\ = 1/T\. The transverse relaxation coefficient T2 has in ef¬
fect the exponential relaxation of the coherence towards zero with a characteristic time

T2 = l/r2. Finally, the considered two level system is by hypothesis centro-symmetric
and consequently the elements paa and Pbb of the dipolar interaction matrix are zero.

The only allowed transitions are from state a to b and vice-versa. This implies also

that all even-order susceptibilities are zero (%2n = 0) because the polarisation is an odd
function with respect to the field P(—E) = —P(E). The dipolar momentum of these
transitions is given by the non diagonal terms of the dipolar operator pab = p*ba.
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Equation (8.3) can also be written using a simpler matrix form as follows

-ri

^

0

0

(o)
V P»t )

m
ih 0

Pba

+

( 0

Pab

Pba

K 0
r, o

o id0 — r2

0 0

0 0

Pba Pab

0 0

0

Pab

0 Pba

Pab 0

0

0

—ido — r2

0

Pab

Pba

\ Pbb
\ (0

0

0

-r.

Paa

Pab

Pba

\ Pbb )

^
Paa

£
dt ts. t)

Pa>

Pba

\ Pbb )

where the resonance frequency f20/(27r) is defined by

fido — Hbb H(la •

The n-level system

In the case of the n-level system, it is more convenient to use Liouville notation for the

density matrix equation

L"pti - - r%Pk, + 2 cos(W| t)E?jPu = (8.5)

where the Liouville operator L = [H, •] is a fourth order tensor defined by

Lfi = | (W " ) ■ (8-6)
The interaction with the electromagnetic field in the Liouville notation is described

by the following tensor

E'i = i) - S< "5) (8.7)
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Figure 8.2: Example of the population relaxation (longitudinal relaxation) in the case
of four levels (n=4) and in absence of thermalisation effects. The relaxation coefficient
7 corresponds to the global relaxation time of the populations while the different r?.
govern the relaxation between the different states of the quantum system.

The conservation of the total population

j

implies the following condition on the relaxation tensor T, more precisely on the longi¬
tudinal relaxation coefficients

for all j = 1 ,n (for an example see figure (8.2)). From a mathematical point of

view, there is no special condition to be fulfilled by the transverse relaxation times.

In order to determine this relation we took only transverse and longitudinal relaxation

times into account(6.11) whilst the mixed terms (for example Tf|) are neglected here.

Physically, they would imply, for example, a relaxation from a stationary excited pop¬

ulation towards the coherence of two states (in classical physics this would mean the
relaxation of potential energy to give kinetic energy).

0

(8.8)
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8.2.2 Fourier transformation

In the preceding chapter, we showed the difficulties to be overcome when searching for
the solution of the density matrix equation in the case of the time dependent excitation.

This equation (8.4) with a periodic excitation is a special case of time dependent exci¬
tation. The advantage of a periodic excitation in comparison with any other excitation

is its simple representation in the frequency domain, that is to say after Fourier trans¬

formation. Consequently, the Fourier transformation is suitable for use in simplifying
the density matrix equations

/OO e~lutf (t)dt.
OO

In the following, we use some properties of this transformation

.F(cos(a/i t)f(t)) ■-

Hfo)

iujf(u),

S(u)f0.

(8.9)

(8.10a)

(8.10b)

(8.10c)

With the help of the Fourier transformation (8.9) and of its properties (8.10), the
evolution equation (8.4) can be written as

Eh
2 ih

( 0 pba Pab 0

Pab 0 0 Pab

Pba 0 0 Pba

0 Pba ~ Pab 0

\ ^
Paa (N ~ ^
pab(iO - Ui)

pba(UJ - Ui)

y pbb(u-u)i))

+

^
Paa + wl) ^
Pab(u + ^i)

Pba{u + k>i)

^ Pbb{u + ^l) )

r i + iuj o

0 F2 + i (co — Qo)
0 0

0 0

0 0

0 0

r2 + i(u> + Qo) 0
0 ri + iu)

Paa (p))

Pab{u)

Pba(w)

y Pbb{u) )
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1
p(0)

Figure 8.3: Relation between the different frequency components of the density matrix.

(8.11)

The Fourier transformation has changed the differential equation to an algebraic equa¬

tion that links the different frequency components of the density matrix. Indeed, the

density matrix at the frequency lo is coupled to the density matrix at the frequency

lo — u>i and at the frequency lo + uq (see figure 8.3). This "coupling" is more or less

important according to the amplitude of the excitation field.
One can distinguish two different types of solution of equation (8.11) depending on

whether the starting frequency lo is or isn't a multiple of the excitation frequency uq. In

the first case, the solution of equation (8.11) corresponds to the Fourier transformation
of the periodic special solution of the differential equation (8.4). In the second case, the
solution corresponds to the homogeneous solution of the differential equation (8.4). This

homogeneous solution is transient and corresponds to an exponential relaxation towards
the thermodynamic equilibrium density matrix with the relaxation times 7\ and T2. As
we are interested in the stationary state of the system we discard this transient solution

and study the solution corresponding to the special periodic solution. We remark that
for this solution, in equation (8.11), only the harmonic frequencies of the excitation

= -TxSiu)

ny'yaa

0

0

„(°)
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intervene. Further this algebraic equation can be simplified if one defines

OO

p(u) = ^2 Pn$(nuJi - w)

= E

( pn \raa

Pab

Pba

V & J

5{nuoi — LJ)

for the density matrix and

■Fi

( a(») A
\Jaa

o

o

n(°)V pbb

for the thermodynamical equilibrium state.

The interaction matrices between the different harmonics of the density matrix are:

^ Ti + inui 0 0 0 ^
0 r2 + — f^o) o o
0 0 T2 + i(nuji + flo) 0
0 0 0 fx + inuji y

H71 =

and

E = E\_
2 ih

0 Pba Pab 0

Pab 0 0 Pab

Pba 0 0 Pba

0 Pab Pba 0

Considering these notations, equation (8.11) can be written

W(0) = E/i"+1 + Ef/-' + (8.12)
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or in a matrix form

131

; \ : H"+2 E 0 0 0 0 0 0 0 0

0 : E H"+' E 0 0 0 0 0 0 0

0
: 0 E Hn E 0 0 0 0 0 0

0

0
0 0 E H""1 E 0 0 0 0 0

0 : 0 0 0 E jjn-2 0 0 0 0 0

0
: o 0 0 0 0 H2 E 0 0 0

0

(0) : o 0 0 0 0 E H1 E 0 0

0 : 0 0 0 0 0 0 E H° E 0

0
: 0 0 0 0 0 0 0 E H-1 E

:
: o 0 0 0 0 0 0 0 E H-

/ : \

p"+2
xn+l

pn 2

P '

(8.13)

The n-level system

In the general case of the n-level systems, the Fourier transformation gives the differential

equation the following tensor form

(£g -iu- rg) pt,(u) + EgMu -U,)+ EgMW + ujt), = -s(L,)r$fi£>.

As for the two level system, we are interested in the periodic solutions of the dif-
*

ferential equation (8.5 ). In this case, the solution of the equivalent equation (8.12) is

composed only of the harmonic frequencies of the excitation frequency. We can thus

decompose the density matrix with these harmonic frequencies

OO

(Pij(uj))= pn6(nuj1-u}).
n=—oo

Defining the two interaction tensors between the different harmonics of the density
matrix

Ln = (Lg - inujJ% - rg)
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and

E = (4)

implies the following infinite system of linear equations

EpN+2 + EpN + jjN+lpN+l _ 0

EpN+l + EpN~x + tr1 ts> II 0

EpN + EpN~2 + LN-lpN-l = 0

Ep2 + Ep° + L V1 0

Ep1 + Ep-1 + L°p° = -rp(°)
Ep° + Ep-2 + L^p-1 0

This system of equations can be written under a "matrix" form where each element

is a fourth order tensor

MJp" = ,5jr><0>, (8.15a)

with

= <S£L» + CiE + C,E. (8.15b)

8.2.3 The truncated solution

The method of solution for this infinite system of equations (8.13) that we adopt trun¬

cates the dependences between the higher harmonics. Indeed, from a certain harmonic

order, the norm of the diagonal elements of the matrix is bigger than that of the

secondary diagonal (see figures 8.4). From this harmonic onward, we can neglect the

"coupling" between the density matrix at one harmonic frequency and the following har¬
monic. This special truncation is described later. The error due to this approximation

is established in the following subsection.
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Harmonic order

Figure 8.4: The norm of the principal and secondary diagonal of the matrix ||M£||2
(equation (8.15b )) as a function of the harmonic order n.

When truncating at a given harmonic order N, the matrices E (due to the excitation)
are neglected in comparison with the matrix (8.13). For that, the matrix (8.13) is

decomposed into nine parts
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Hn+2E

e
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e
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/

\

0

e 0

e

e h^-1
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h-iv+1e
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o e
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\

( :

0

0

0

e

H

e

-N-1 e

h-N-2

\ \

\

\

'

/ /



CHAPTER 8. STATIONARY EXCITATION 134

M^x°° oox(2AT+l)
12 Mooxoo

M (21V+l)xoo j^j(2AT+1)x(2AT+1)

V

21

M£xo°

22 M (21V+l)xoo
23

Moox(21V+l)
32 M~xo°

These nine parts are themselves matrices of different orders. The matrices Mn and

M33 are almost diagonal while the matrix M22 is tri-diagonal. The link between these
three parts is made with the help of the matrices M12, M21, M32 and M23. In the

same manner as for the matrix M£, the solution is divided into three parts

I \

SiV+l

V *
zN-l

z-N+1

V P~N !
\-N-1

fa

\ fa )

and also the free term of the algebraic equation

I o N

;(»)

0 /

\

40)
~(o)

V f
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Considering this segmentation, the equation (8.13) is written

135

( \Pi Mil M12 Ml3 M iCC
A — M21 M22 M23 P2 - M P2

~(0)
^ M31 M32 M33 y \ h ) \ h j

(8.16)

In order to be able to neglect the dependencies between the higher harmonics, the
matrices Mu and M33 are also divided into a diagonal and a non-diagonal part. This

second part can be seen as being a perturbation on the diagonal part

(

Mu = nN+2 o

0 H^+1

\ ( ■

+

: \

V

0 E

E 0

— Dn +

and

/ h-"-1

M., — 0 H—N—2

\ I

+

V /

0 E

E 0

\ :

— D33 + J33.

/

Using all of the above notations, the exact solution of the infinite system is a solution
of equation

pf \
pf
5(0)V ^

(

\

Dn + M12 0

M21 M22 M23

0 M32 D33 + S33 j

P2

\P3 )

(8.17)

The approximate solution obtained neglecting the perturbations and 533 can be
written

^ —Dj^J1 Mi2<T2 ^
02

\ — D73 M32(T2 y

(8.18)

with

— (M22 — MaiD^Miz — M23D331M32) 0*2. (8.19)
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The two matrices M2iD111Mi2 and M23D331M32 link the superior and inferior diag¬
onal parts of M£ in the solution <r2. These two matrices can be evaluated as

(2AT+1)

(

M21D111MI2 —

E (H^1) 1E 0
0 0

> (2N+1)

U/

(8.20)

and

m23d331m32 —

0

0

(2AT+1)
✓s,

0 E (H_iV_1) 1 E )

> (2N + 1). (8.21)

Defining thus

5n = E(Hn+1) *E

and

5~n = E (H-Ar_1) XE
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the equation (8.19) giving the approximate solution 02, can be written as

' 0 ^

p{o)

0

V 0 /

( HN_SN

E

0

0

0

0

E

hn-i

E

0

0

0

0

E

H"-2

0

0

0

0

0

0

0

0

0

0

0

0

H-n+2 e o

E H~N+l E

0 E H~n - S~N / V

aN

7n- 1

^N-2

a-N+2

a-N+1

a~N

(8.22)

Finally using equation (8.18) we can deduce the approximate density matrices at the
different harmonic orders valid for the two level system. This can be generalised for the

n-level system.

The n-level system

In the case of the n-level system, we define the approximate solution, namely the solution

where the dependences between the higher harmonic order are neglected, as follows

a =

aN+2 _= 0

crN+1 =-(LN+l)~1EaN
a

N

(8.23)
r-AT

<7

a

-N-l
= -(L-N~1) 1 E(j" ■N

-N—2 _
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where a~N ■ ■ - aN are the solutions of the finite linear system of equations:

138

*+1) LEaN + Ea^-1 + II
a

b
S:J 0

EaN + EaN-2 + LN-laS-l = 0

Ea2 + E<r° + L'cr1 0

Ecr1 + Eo-"1 + C1 O
q

o
II -rp(°)

E<7° + E<t~2 + L-V-1 = 0

Ea~N+2 + Ea~N + L~N+laN = 0

Ecr_Ar+1 - E (L_Ar_1)_1 Ecr_JV + L~Na~N = 0.

This solution is a generalisation of the solution valid for a two level system. In the

following we show that these two solutions have the same properties.

8.2.4 Convergence of the truncated solution

In this subsection, we estimate the error due to the truncation of the algebraic system. A

preliminary graphical study of the approximate solution for different truncation orders
as a function of the excitation amplitude shows that the solution found by truncation

is valid up to a given amplitude (see figure 8.5). From this excitation amplitude, the

approximate solution truncated at the order N shows a different behaviour from the

approximated solutions at a higher order. In this graphical study, we plot the population
of the excited state at zero frequency.

Figure 8.5 shows a series of oscillations. These oscillations are better displayed
when the order of the truncation is greater. In other words, for a given excitation

amplitude, the result obtained is almost the same for all truncation orders greater than
a certain given truncation order. In the following, this hypothesis is demonstrated from
a mathematical point of view. Therefore the induced error by truncation of the matrices

Mu and M33 is evaluated by calculating the difference between the exact solution p
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Normalised interaction amplitude

Figure 8.5: Population of the excited state at zero frequency for different excitation
amplitudes and for different truncation orders.

and the approximated one a

Dn + M12 0

M21 M22 M23

0 M32 D33 + 6'33 /

P2

\P3 )

(
— D, j1 Mi202

\
'11

02

k-1
^ —^33 M32CT2

\
— 5llDii1Mi2<T2

0

^ — ^33D331M320'2 y

(8.24)

Let Am be the smallest eigen value of matrix M and m the biggest element of the
matrices J33D33M32 and (JuD^M^. Then we can find the upper value for the difference
between the exact solution p and the approximate solution a

11P2 0211 <

OA
P2

VPs)

^ —Di11Mi20'2 ^
0"2

K-lT
^ —-^33 M32<72 )

m |, .

< 2- rl 0"2
|AM

(8.25)
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The factor m can be calculated from the matrix 5iiD111Mi2, which means from

(2W+1)

<^hD111M2I —

(

0 0

E (H^+1)_1 E 0
0 0

oo. (8.26)

For a two level system, this implies

m =
Hab^baEl/(47i2)

r2 + i({N + l)uq + f20)

Consequently, the relative error induced by the approximate solution decreases as 1/N,
that is to say inversely proportional to the truncation order

n 0(1/N)
I\p2 ~ c2|| < —p;—j—||cr211.|A M

(8.27)

The n-level system

In the case of the n-level system the difference between the approximate and the exact

solutions can be evaluated from

M£ (pn - an) = -<%+2E (L*+1) 1 Ea^ - ^^E (L_7V_1) 1 Ea~N. (8.28)

Let us define, as for the two level system, the smallest eigen value Am of and the

biggest element m of E (Ln+1) *E and E (L_iV_1) 1 E. Then the difference between
the two solutions has an upper value given by the inequality

\\p-°\\ < 2
m

|AM\

where m is proportional to 1/N. Consequently, the relative error diminishes with the
truncation order.
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8.2.5 The recursive solution method

The recursive resolution method consists of the triangularisation of matrix M after the

above discussed truncated approximation. We define a recursion sequence giving the

terms of the diagonal of M after subtraction of the influence of the following harmon¬
ic. With this method we generalise the continuous fraction method described in the

preceding chapter.

Let the initial term of diagonal be

— SN, (8.29a)

the general recursive term be

Dn = Hn — E (Dn+1)_1 E, (8.29b)

and the last term of this sequence be

D_Ar = H_iV — 5~n — E (D_iV+1)_1 E. (8.29c)

During the triangularisation of the matrix M, the free term changes also, giving a

sequence of terms with the first term given by

V° = PW, (8.30a)

and the general recursive term by

rjn = —E (Dn+1) 1 fjn+1. (8.30b)
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With the help of these two sequences, equation (8.22) can be written as

142

/ 0 \ ( E)N E 0 0 0 0

0 0 D^-1 E 0 0 0

0 0 Bn~2 0 0 0

v° =

0 0 0 D-"+2 E 0

rj~N+1 0 0 0 0 B~n+1 E

V V-N / V 0 0 0 0 0 D"

\

/

aN

tn-i

-rn-2

a-lv+2

a~N+1

\ °~N )
(8.31)

Consequently, the approximate solution can be defined as a sequence with the first

term given by

a
—iV

= (D-")-V",

and the general recursive term by

an = (D")_1 (rf1 — Ecr"-1).

(8.32a)

(8.32b)

With the help of these three recursive sequences we define the solution of equation

(8.22). This method can be generalised to the case of the n-level system.

The n-level system

In the case of the n-level system, we can again define two sequences. The first sequence

gives the diagonal terms D" with the first term

Bn = Ln - E (Ln+1) XE, (8.33a)

the general recursive term

Bn = Ln - E (D"+1) 1 E, (8.33b)
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and the last term

D-/v _ l-n _ E E _ E (d-^+i)"1 e (8.33c)

The free member sequence is defined by the first term

7/° = r>(0), (8.34a)

and the general recursive term

rf1 = -E (Dn+1)~V+1. (8.34b)

From these two recursive sequences, the solution can be determined in a recursive

manner with the initial term

a~N = (D_n)_1 rj'N (8.35a)

and the general recursive term

an = (Dn)_1 {rf1 - E<rn_1). (8.35b)

In this section, we rigorously deduced the solution of the density matrix equations

in the frequency domain. This solution can be defined as the limit of a convergent

sequence. The terms of this sequence are the approximate solutions, calculated from
the interaction matrices between the different harmonics, truncated at the order N. We

showed that this sequence converges as l/N as well for the two level system as for the

general case of a n-level system. Finally, a recursive resolution method is described for

determining the solutions at the order N.

8.3 The n-level system under bichromatic excitation

In the preceding section, we treated the case of an n-level system under monochromat¬
ic excitation. We established that such an excitation at high intensity induces high
harmonic generation of the electromagnetic field (the response of the system is at fre¬

quencies which are multiples of the excitation field). Likewise a bichromatic excitation
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induces the response of the system at the frequencies corresponding to the linear combi¬
nations of the two excitation frequencies uq and u>2 with whole number coefficients (see
also [93,94])

wresponse = n<^l + ml^>2 With Tl, TTl 6 N.

This response of the system, at new frequencies, can be used in the characterisation of

materials presenting non-linear optical effects. Prom an experimental point of view, the
creation of new frequencies allows the spectral filtering of the response of the system and
thus the measurement of a background free measure. Furthermore, when the difference
between the two excitation frequencies is the same order of magnitude as the inverse

of one of the relaxation times of the system, the response of the system presents a

phenomena of "resonances". From these phenomena, the relaxation times can be deduced

even if the length of the impulse is longer than the relaxation time. For this reason we

have generalised the monochromatic solution method to the case of the bichromatic
excitations.

The solution of the density matrix equation is more complex in the case of a bichro¬
matic excitation. Contrary to monochromatic excitation, bichromatic excitation is gen¬

erally non periodic. This is the case if the two frequencies are not commensurable [95].
This non periodicity induces, after the Fourier transformation of the density matrix

equation, an algebraic equation that can no longer be written under the simple form of
a matrix relation between the density matrices at different harmonic frequencies. In the

following, we generalise the method form monochromatic excitation to the bichromatic
case. This generalisation consists of a change of a matrix relation (second order tensor)
to a relation using a fourth order tensor. Finally, the result is verified for the case where
the two frequencies are commensurable and therefore the periodic excitation for this
case can be treated as a generalised monochromatic excitation.

8.3.1 The Fourier transformation

A bichromatic excitation is characterised by the two amplitudes Ei and E2 and the two

frequencies ui and uj2 of two sinusoidal fields. The sum of these two fields forms the
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excitation

E(t) = Ei cos(uiit) + E2 cos(u2t). (8.36)

The density matrix equation (6.12) with this excitation field is written

= ^<4/% - - 4(w< - 4?)
+ ^jE\ cos(uJit)(rfpkj - pikp])
+ ^E2cos(uj2t)(pipkj - pikp))- (8.37)

Its Fourier transformation has the following tensor form

US = (L?i 4) + E?pu(u - Ul)
+ E^pkt(uj + aq) + F*j pki(u) — uj2) + Fjj pki(ui + u>2) (8.38)

with

ES = E (6X- i?g) (8.39a)

4' = (44 - 44) • (8.39b)

Equation (8.38) shows the links between the composing frequencies of the density
matrix. This dependence is similar to the one outlined in figure 8.3 for the monochromat¬

ic excitation. In this case the dependence makes the system respond at the frequencies
lo — coi, lo + wi, lo — lo2 and lo + lo2.

As for the monochromatic excitation, we are interested in the stationary solutions

of the differential equation (8.37 ). The Fourier transformation of the density matrix

equation implies a decomposition of the spectral response following the two frequencies
of excitation. In other words, a non zero solution of equation (8.38) can only be found
for

^nm — + rnuj2 with n, m G N. (8.40)
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This decomposition of the spectrum into frequencies indexed by two whole numbers is

unique only if the two frequencies are not commensurable. In the case where the two

frequencies are commensurable, an infinity of pairs (n, m) give the same frequency conm.

In the following, we decompose the response of the system onto these two frequencies.

Therefore, a unique decomposition is useful. We show at the end of this section that

this decomposition remains valid for the dichromatic excitations with commensurable

frequencies.

In the case of a non commensurable bichromatic excitation, the solution of the

density matrix equation is composed only of terms at the frequency unm corresponding
to the mixed harmonic of the two excitation frequencies

OO

(P«(w))= X Pnm5(Nnm - w). (8.41)
71,774= — OO

The interaction between the harmonics of the two frequencies occurs through the

following three tensors:

= (Lg-iawfg-Tg), (8.42a)
E, = (Eg), (8.42b)
E2 = (fg1). (8.42c)

With the help of these tensors, equation (8.38) can be put into the form of a infinite

system of linear equations that can be written in a tensor form

Mrmp"ro = «rp<0), (8.43a)

with

= S>„51L„m + ^+IE, + + C+1E2 + C-,E2. (8.43b)

In these relations, we notice the similarity between the equations found while treating

the monochromatic case (8.15). The bichromatic excitation is simply the generalisation
of the monochromatic one by transforming a second order tensor relation (matrix rela¬

tion) into a fourth order tensor relation for the two level system and by transforming
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a fourth order tensor relation into a sixth order tensor relation for the general n-level

system.

The generalisation of this procedure to any number of monochromatic excitations r

adds to the equation (8.43b) the supplementary terms E; (with i = 3...r) and changes
the order of the tensor M to 2r (the order tensor relation is then 2r + 2).

In the case where the two frequencies are commensurable, their ratio is a rational
number. This property implies that the frequencies unm for different indices n and m

correspond to the same frequency. Let the ratio between the two frequencies be defined

by the denominator q and the numerator p

^ = P- (8.44)
w2 q

where p and q have no common factor. Then the frequencies

uj(n+jg)(m-jp) = (n + jq)ui + (m - jp)u2 with n, m, j <F N. (8.45)

are the same frequency.

Using this property, equation (8.38) can be written in a matrix form as in the case of
the monochromatic excitation. Physically, this form is possible because the bichromatic
excitation is periodic in the case of commensurable sinusoidal fields. Consequently, this

case can be treated in the same manner as the monochromatic case. The basic frequency

of this commensurable excitation is given by

Aw = — = — (8.46)
P Q

which allows us to introduce the decomposition of the spectrum following the multiple

frequencies of Aw. The new decomposition of the frequency is

cun = nAuj with n£ff. (8.47)
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Between this new decomposition and the one with two indices we have the following
relation

^nm — P^n A Q^m

= Mp*n+g*m

which implies that all the mixed harmonics of the two frequencies are in reality the simple

harmonics of the fundamental frequency given by Aw. Defining the new Lagrangian

operator

l„ = (Lg - iujtj - rg),

and using the interaction tensors ei and e2 defined in equations (8.42b) and (8.42c)
the infinite system of linear equations can be written

M£p" = ^r>(0), (8.48a)

with

= 5pn Ln + %+pex + 6pn_pex + sqn+qe2 + 8qn_qe2 (8.48b)

where

OO

(pij(uj)) = ^2 pn5(ujn-u). (8.49)
Tl=— OO

This relation between the harmonic frequencies of Aui written in a matrix form (see

equation (8.13)) is composed of a diagonal part originating in the tensors l„ and of
two secondary diagonals offset with respect to the principal diagonal by p and of q and

originating respectively from the tensors ex and e2.

The system of equations (8.43) is equivalent to the system of equations (8.48). To
show this equivalence it is necessary to define the relation between the density matrices

pn and pnm. For this, the solutions (n^TOj) of the Diophantine equation must be used

Pni + qrrii = j. (8.50)
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Then the density matrix defined in the equation (8.49) is

pi = J2pnimi- (8-51)
i

Using this same summation rule on the system of equations (8.43), we can verify that
it transforms into the system of equations (8.48).

A direct application of this property follows from the demonstration itself. The

equivalence between these two representations makes possible the usage of our general

non-commensurable resolution method for the commensurable bichromatic excitations.

This is the case for experiments where the pump and the probe are degenerate (oil = UJ2)
or at another harmonic frequency (cui = 2u>2 for example).

8.4 Summary

In this chapter, we obtained a method for finding the solution of the density matrix

equations for an n-level system. This method is based on the joint employment of the

continuous fraction method and the Fourier transformation. The method is illustrated

in the case of a two level system and more generally n-levels excited by monochromatic
and bichromatic excitations.
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Applications: Chromatic excitation

9.1 Introduction

We review in this chapter some effects that can be explained by the n-level density matrix

equations solved using our method. These effects include the saturation of the response

of the system at the fundamental frequency when it is submitted to high intensity

excitation. During the saturation phenomena the energy received by the system is

redistributed to the higher harmonics. Thus, we show the observed plateau in the

generation of the high harmonics. With our method, we deduce, from the polarisations
at the fundamental and at the third harmonic, the saturation intensity and the dynamic

Stark shift. We also show, the multiple photon resonances as well as their reciprocal

Stark shift as a function of the excitation intensity. This last effect helps to understand

the oscillation effects of the system response as a function of the excitation amplitude.

Further, we apply this method to two concrete cases of bichromatic excitations. First,

we study the "noil degenerate pump-probe" configuration which is modelled with the

help of the general relations obtained in the second section. The considered bichromatic
excitation is composed of a low and a high intensity beam. The first can be treated as

a first order perturbation (method similar to [95]), whereas, the second beam is treated
with our method and is valid also for high intensities. The second configuration studied

corresponds to the "non-degenerate four-wave mixing" setup. In this case the two beams
are of high intensity [96,97] and must be treated using the fourth order tensor formalism.

For quantum systems we use an ideal two level system and an excitonic system (n-
level system). Further, from the general solution, we deduce a simplified version taking

150
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into account the properties of the physical system (for example u\ « O0 ^ r2 Ti)-
This facilitates the comparison with experimental results.

9.2 One wave excitation

In the following, the recursive resolution method is applied to the two level system. To

simplify the solution in the form of a continuous fraction, we use a centro-symmetric

system (//aa = fibb — 0). Considering this symmetry, the interaction between two

adjacent harmonics in the sequence (8.29), characterised by the matrix E (D)-1 E, has
a special form where only two terms Av and Bp can be distinguished

(

E (Dp+1) XE =

0 0 -A
0 BP ~BP 0

0 ~BP Bp 0

—Ap 0 0 Ap

\

p }

(9.1)

Introducing the following notation:

1
Oirt, —

Pn =

a =

+r2+j(wo+n^i)

i(r\ +maq),
E\\i
2h '

T2-\-i(TlLJl —Ho)
(9.2a)

(9.2b)

(9.2c)

the expressions of the density matrices at the different harmonics can be simplified.
When using the point symmetry property (9.1) and the above notation (9.2 ), one can

write the recurrent sequence (8.29) as

ATl j-\
Un-fl ®n+l

(9.3a)

and

Bn =
An+1 — ^71+ 1

(9.3b)
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where only the two distinct elements of the matrix (9.1) are treated. This sequence can

also be written in the form of a continuous fraction

a2
An = -2 (9.4a)

^2 ~ t^n+l
-2 Pn+2

"n+3

and

a2
Bn — a2 . (9.4b)

^ Pn+l
^Sn+Z a"+2

With the help of these matrix elements, we can specify the solution of the density

matrix at zero frequency

*S0=ij)rfr-('4I-IV0)) (9-5)

with

A — A0 + c.c. (9.6)

and where c.c. designates the complex conjugate and I the unity matrix.

From the density matrix at zero frequency, we can deduce the response at the funda¬
mental frequency, that is to say the response having the same frequency as the excitation.
For that, it is necessary to use the triangular matrix of equation (8.31 ). With the help
of this matrix and putting

7n — r2 + n + nuj\) (9-7)

the populations and the coherences at the first harmonic are respectively

Paa = Pbb = 0, (9.8a)

n1 rp8WiP«' o(2A-r,)(7i+<£,)' (' '
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103 108
Excitation field E; (V/m)

Figure 9.1: Polarisation response of the two level system at the first harmonic as a
function of the excitation amplitude on a logarithmic scale.

p) = 7-IA> ,g g sPba a(2A — Ti) (71 + 7I1)' }
The point symmetry of the two level system gives no population at this frequency while
the coherences give the induced polarisation

P (E lu)- r1Q0pg)AoPm(EltUi)-a(2A_ri)(7i+7*x)
that is represented in figure 9.1. In this figure we observe several distinct domains
of the polarisation response. For the weak excitation amplitudes, the response of the

system is linear. In this domain, the solution found corresponds to the one calculated
with the help of the perturbation theory. From a certain amplitude of excitation E[at,
a saturation of the response becomes visible. For higher excitation, the amplitude of
the polarisation response diminishes. This last amplitude domain can no longer be
treated by the perturbation theory. It corresponds to the instant when the amplitude
of the exciting field implies that the terms of the secondary diagonal in equation (8.15a)
become greater than the term (first diagonal term). In order to find a solution
that demonstrates this saturation behaviour, it is necessary to take into account the

dependence between the different harmonics at least to first order.
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When introducing the different definitions in equation (9.9) and in the case where

u>i ~ fio r2 ^ (9.10)

the polarisation at the first and at the third harmonic can be written

P ( F 1 ~ ihllgbHioptQY\ [EfHabflba + 2/t27l7_i] , .11 i' u ~ 2r1^7_l7i7*1 + 4^1W6ar2^(^ + ^)' 1 j

P,(EU<*) « (9.11b)

We remark here that the dielectric susceptibility xi (wi) defined from this polarisation
fulfils the Kramers-Kronig relation (see §I.C) in the case where the terms in E\ are

neglected. Moreover, in this case, the dielectric susceptibility fulfils the condition

x(-wi) = X*(wi)

which corresponds to a real polarisation after Fourier transformation.

In the case where the terms in E\ are no longer negligible (high excitation intensity),
the Kramers-Kronig relation is no longer fulfilled because the system is becoming non¬

linear. The response of the system cannot then be described by the convolution of the

Dirac response and excitation field. This is the case for excitation amplitudes greater

than

_ /r1^K-siy + 2r1rjsn^ + "g)
v 2/Wfc.iyn ■

With the help of the measurement of this saturation amplitude as a function of the

excitation frequency, we can determine the product of relaxation times (transverse and

longitudinal). In fact, by virtue of (9.12), this product is proportional to the minimal
saturation amplitude (see figure 9.2). Further, their ratio is proportional to the slope of
the asymptote of this saturation graph.
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Figure 9.2: The saturation amplitude of a two level system as a function of the excitation
frequency. From this graph, the ratio and the product of the two relaxation times
(transverse T2 = l/r2 and longitudinal 7\ = 1 /Tx) can be determined.

With the help of equation (9.11a), we determine the amplitude from which the

response of the system begins to grow again

-*-'777,7.77,

\/PabPba
+ (9.13)

For excitation amplitudes greater than Emin, the response at the fundamental har¬
monic exhibits a succession of periodic peaks (see figure 9.3). The excitation amplitude
for the nth saturation peak is given by

v? — 1

Mathematically, this periodicity can be explained by the almost periodic structure of
the interaction matrix between the different harmonics of the density matrix. This

periodicity appears also in the expression for the different elements (9.4).
This periodicity of response at the fundamental frequency can be explained by con¬

sidering the behaviour of the system as a function of the excitation frequency for different
excitation amplitudes. Figure 9.4 shows such a spectrum. For weak excitation ampli-
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Excitation Field E, (GV/m)

Figure 9.3: The response of the system at the fundamental harmonic as a function of
the excitation amplitude for an excitation much greater than the saturation amplitude
(9.12).

Figure 9.4: The response of a two level system at the fundamental frequency as a
function of the excitation frequency for different excitation amplitudes.
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Figure 9.5: Shift towards the blue of the saturation frequency of the fundamental har¬
monic (figures 9.4) as a function of the excitation amplitude.

tudes, corresponding to a linear regime, the response of the system has a Lorentzian
behaviour where the maximal response is given when the excitation frequency is in

resonance with the system eigen-frequency Q0/(27r). Increasing the amplitude of the
excitation, a saturation phenomenon appears first at resonance and next when an odd
number of photons are in resonance (u = O0/3, u = O0/5, ...). This saturation corre¬

sponds to the absorption of several photons.

To the multi-photon absorption phenomenon one has to add the optical Stark shift
which corresponds to a shift towards the blue of the fundamental resonance (figures 9.5)

fy-^stark ~ + 2E2^abnba, (9.15)

which is also present in the multi-photon resonances.

With the help of these two effects (the multi-photon resonances fig. 9.4 and the
shift towards the blue fig. 9.5) we can explain the periodic amplitude oscillations of
the response of the system when the excitation amplitude increases (9.3). To show
the link between these two phenomena, let us look at the behaviour of the saturation
of the three photon absorption (a; = £7o/3). When the amplitude of the excitation

increases, this saturation undergoes a movement towards the blue. For sufficiently large
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Figure 9.6: Response of a two level system at the fundamental frequency, at the third
harmonic (u = 3tdi) and at the fifth harmonic (a; = 5u;i) as a function of the excitation
amplitude.

amplitudes, this shift makes the three photon saturation correspond to the fundamental

resonance of the system. We notice then a new saturation of the fundamental resonance

of the system (lo = fi0)- This corresponds in reality to the saturation of the shifted
three photon resonance towards the blue. This effect repeats itself for all the multi-

photon resonances. Whenever such a resonance crosses the fundamental resonance, a

fast decrease of the response can be observed.

So far, we were interested in the response of the system at the fundamental harmonic.
In order to evaluate the polarisations for other harmonics, it is necessary to employ the
recurrent sequence (8.32). Considering the new notation, the elements of the density
matrix for the odd harmonics (centro-symmetrical system) can be written:

BnJn+2(Pab ~ Pba)An+'2
(lfn+2 + 7-n-2)°2

(9.16a)

and

-„+2
= Bn7-n-2(Pab ~ Pba)An+2

ba (7n+2 + 7-n-2)«2
(9.16b)
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Figure 9.7: Response of a two level system at the fundamental frequency, at the third
harmonic (cu = 3u>i) and at the fifth harminic (lo = 5uq) as a function of the excitation
amplitude which is largely above the saturation amplitude (9.12).

The populations and p^2 are zero for these harmonics. From these expressions,
the response at the fundamental harmonic as well as at the third (lj = 3u>i) and at the
fifth (u> = 5uji) are represented in the case of weak excitations (figure 9.6) and of strong
excitation (figure 9.7).

As for the fundamental frequency, the responses at higher harmonics show several

regimes of the system depending on the excitation amplitude. For weak excitations, the
behaviour is linear for the first harmonic, cubic for the third harmonic and generally at

the power n for the nth harmonic. For amplitudes higher than the saturation amplitude

(9.2), all the polarisation responses change as the amplitude to the power n — 2. For

example the third harmonic is proportional to the excitation amplitude. When the
excitation increases even more in amplitude, the different harmonics undergo periodic

oscillations similar to the fundamental harmonic..

In order to better understand these periodic oscillations, we represent in figure (9.8)
the behaviour of the response up to the 21st harmonic for two different excitation am¬

plitudes. Two possible responses appear: a "plateau" followed by a fast decrease of the

response as a function of the harmonic order. The harmonics being part of this plateau
are those that are saturated and that present an identical oscillating behaviour. As the
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Figure 9.8: The relative amplitudes of the response of a two level system at different
harmonics as a function of the harmonic number for two excitation amplitudes.

Harmonic order

Figure 9.9: The relative amplitudes of the high harmonics generated in argon with the
help of a Nd:YAG laser [98].
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excitation amplitude increases, this plateau includes more and more harmonic order-

s. This phenomenon is observed experimentally in gases such as xenon, krypton and

argon (density between 1017 and 1018 atoms/cm3), excited at a wavelength of 1064nm

(intensity between 1013 and 1014 W/cm2). In this case, a very effective high harmonic

generation can be measured (see figures 9.9 and [99]) reaching the 31st order. This
result completes those obtained for an excitation at a smaller wavelength in these same

systems [100]. More recently, this generation of high harmonic orders has been observed

up to order 135 in neon and 57 in argon [98,101]).
Several [102] theoretical approaches are used to model this phenomenon. They can

be divided into several groups. On one side we have the research of the direct solution to

Schrodinger's time dependent equation. This is solved numerically for a one dimensional
atom [103,104] but also for the more elaborate case of three dimensions [105-107]. This
numerical solution in three dimensions is used in the case of a semiconductor [108] where

high harmonic generation can be observed. As an alternative to the direct solution

of Schrodinger's time dependent equation, this phenomenon can be treated using the

Floquet states [109,110]. Yet, another possible approach is the classical treatment of an

electron in the field of a proton subject [109,111] to a monochromatic excitation. This
method uses the classical trajectory of the electron and the Monte-Carlo solution to show

a plateau in the high harmonic generation. Finally, alternative models are proposed in

the literature which approximate the atomic potential by a short range interaction [112]
or the numerical solution of Bloch's equation (without taking relaxation terms into

account) for a two level system [79].
Our result, shown in figure 9.8, corresponds to this last approach, generalised to

include relaxation phenomena and solved in an analytical manner. The advantage of
such a solution is the possibility of determining the harmonic order "cut off'. This cut

off corresponds to the order N at which one can truncate the dependence between the

different harmonics. It can be evaluated as

(9.17)
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9.2.1 Monochromatic excitation of an excitonic system

Excitonic systems in semiconductors give a good example of n-level systems. These

correspond principally to an electron-hole pair created in our case by optical means

(absorption of a photon) and held together by Coulomb interaction. The energy levels

En of such an electron-hole pair can be calculated in the same manner as those of a

hydrogen atom [63]

where p is the reduced effective mass of the electron and hole, e the charge of the

electron, e the dielectric constant and Eg the energy gap of the semiconductor. For low
dimensional semiconductors such as quantum dots, the excitonic energy levels change
in comparison with those of hydrogen due to the confinement of the exciton [113,114].
These excitonic systems can be modelled, to a first approximation, by a two level system,

made out of a ground level (no exciton) and the first excitonic level E\ (n = 1).
When these quantum systems interact with the electromagnetic wave the exciton ap¬

pears. Further, this corresponds to the induced polarisation that represents the response

of the system to the applied external field. Usually, the excitonic levels reveal themselves

by a series of resonance peaks (in transmission or reflection) when the photonic energy

of the excitation equals the energy of the excitonic levels (9.18).
In order to show the differences between the response of a two level system and an

n-level system, we take a look at the response of a four level system at the excitation

frequency (figures 9.10). The four considered levels correspond, in energy and dipole
moment, to the first three levels of an exciton [113].

In this case we use the same procedure as for the two level system treated previously.
The solution for an n-level system is determined with the help of recursive relations
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Figure 9.10: Response of an excitonic system at the excitation frequency as a function
of the excitation amplitude. The three first excitonic levels are taken into account.

(8.33). In the case of the truncation at the first order, the different terms are:

D1 = Lx-E(L2)_1E
D° = L° — E (D1)-1 E

D1 = L-1 — E (L~2)-1 E - E (D0)-1 E

tf = Tpm

tT1 = -E(D°)_1rp(0)

Consequently, the solution is

cr-1 = — (D_1)_1 E (D°)_1 T. (9.19)

We notice (figures 9.10) that for weak excitation amplitudes, we have, as for the two

level system, a linear response of the system followed by saturation and by characteristic
oscillations. This phenomenon is comparable [115] to the suppression of ionisation in
atoms when excited at high intensities [116 119]. In conclusion, the general phenomena
shown in the two level system remain valid for the n-level system where other phenomena

superpose.
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9.3 Pump-probe configuration
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In the following, we consider a bichromatic excitation. The solution in the case of these

kinds of excitation is the generalised Fourier-Floquet matrix in a tensor relation (8.43).
We apply this formalism in the case where the amplitude of one of the two exciting beams
is in the linear regime. This corresponds to a "pump-probe configuration". Practically,
a high intensity beam is exciting the sample while a second weak beam is used to

measure the refractive index changes induced in the sample. This can be seen as an

interaction between the two beams. The magnitude of this interaction depends on the
non-linear part of the response of the sample which itself depends on the intensity of

the pump beam. During such an interaction, several effects can appear such as the

dynamic Stark shift, induced absorption or transmission. These effects are explained by

the saturation of the system under the high intensity pump beam. In this subsection,
we study these effects in the framework of the Fourier-Floquet transformation for a

bichromatic excitation.

In order to solve the system of equations (8.43) in the case of a pump-probe config¬

uration, we take into account only the terms pnU and pnl of the density matrix. This

means that the pump is treated to the order N (as its high intensity implies a non

linear response) while the probe is treated at the zero*'1 order. This approximation is
in agreement with the amplitudes of the two beams and implies for its description two

systems of equations each similar to the monochromatic excitation equations

In the tensor defined by (8.43b ), the terms Ej and E2 correspond respectively to

the pump and to the probe excitations. The first equation (9.20a) describes the effects
of the pump on the system. It can be resolved by the recursive method described in the

preceding section. The second equation (9.20b) takes into account the linear interaction
of the probe with the system in equilibrium with the pump excitation. With the help
of these two equations, the saturation effects, induced by the pump, can be studied.

= ,5jryo>,
M»i jrl = -E2/°.

(9.20a)

(9.20b)
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Pump amplitude (arb. u.) Probe frequency co, (fs/rad)

Figure 9.11: (a) The susceptibility due to the pump as a function of the pump amplitude,
(b) The polarisation due to the probe for the amplitudes Ea and EB of the pump. The
frequency of the pump is = 2.7rad/fs. The resonance frequency of the system is
fl0 = 3rad/fs in the absence of excitation and ujs in the presence of the dynamic Stark
shift.

9.3.1 Two level system

In the following, we develop the behaviour of a two level system in the pump-probe

configuration. As in the preceding section, the approximation conditions (9.10) are

taken into account. Further, the solution developed to first order shows the effects of
the dynamical Stark shift.

In order to simplify the notation we use the following definitions:

7i = ra + ifio + iwi,

7-i = r2 + iLlo ~~ 1

9\ = T1 — iuJi + iu>2 >

g2 = r2 - icoi + iw2,

93 — r2 - zO0 + iUJ2,

9i — r2 + iflo — + iuj2,

.95 = (2r2fl0Xio + T2X_IO,94 + fIoX-io.94 — f^oXio^)-
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Pump frequency co, (rad/fs) Pump frequency co] (rad/fs)
2.0 2.5 3.0 3.5 4.0 2.0 2.5 3.0 3.5 4.0

Probe frequency k>2 (fs/rad) Probe frequency ce>2 (fs/rad)

Figure 9.12: Susceptibility (real part x'io and imaginary part Xio 03)) induced by the
pump, as a function to its frequency, for different pump intensities. These intensities
are defined in figure 9.11. The susceptibility (real part x!q\ (c) and imaginary part x'oi
(d)) induced by the probe for different pump intensities. In the figures (c) and (d)
the frequency of the pump is u\ = 2.7rad/fs and the frequency of the resonance of the
system is O0 = 3rad/fs
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The susceptibility induced by the pump can be determined with the help of the first

equation in the system of equations (9.20). This susceptibility depends not only on the

frequency of the pump but also on its amplitude

xi«(Euu>0 2Rsr1|7l|a|7-ilJ + 4ftE?M*ra(n8+w?) <9'21a)
, r1|/1|2n0/)g)(2ft27:171 + BfW2)X-io(Bi.wi) 2fi3r1|71|2|7_1[2+4ftB2|/i|2r2(S)S+u2)- ( )

Figure 9.11a represents the norm of the susceptibility as a function of the intensity of
the pump. This figure allows the definition of the two pump intensities used in the
calculation of the induced polarisation by the probe (figure 9.11b). The polarisation
due to the probe shows a resonance at the eigen-frequency of the system (f10 for low

pump intensities and cos for high pump intensities due to the dynamical Stark shift),
at the pump frequency and at the sum and difference frequencies 2uj\ + O0 — 2ujs and

2uj\ — us. These last resonances are of Fano type [120] while the resonance at the pump

frequency (cu — uq) was also found in a similar theoretical treatment [121,122].
The susceptibilities (9.21) are used to define the right hand term of equation (9.20b).

From this last equation the susceptibility of the probe is found (9.22) to be

^ 4ft2r2fioXioX-io040i + ^[//|2X-io55 (n no^Xm{El,Ul,U2) = ~~zr~( wTn ~ f2[ 12 V V9"22)2^o(Xio - X-w)vP9^9\ + Ef\n\2g2)

Figure (9.12) summarises these results while representing the induced susceptibility

by a high intensity beam (pump) and one induced by the probe in the pump-probe

configuration.
When increasing the intensity of the pump, we observe two effects. On the one hand

we have the appearance of virtual resonances induced by the pump and on the other the

dynamical Stark shift of the principal resonance as well as the other induced resonances.

These effects are represented in figure 9.13. We notice in this figure the behaviour of
resonances described in figure 9.11, namely the shifts of the induced absorption 2aq — us

and induced transmission 2u\ + fio — 2
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Figure 9.13: Stark shift of the different resonances as a function of the pump amplitude.
The frequency of the pump is cux = 2.7rad/fs and the resonance frequency of the system
is Slo = 3rad/fs

9.3.2 Three level system

In the following we explain the induced absorption in a three level system. In order to

model such a system it is necessary to use the tensor notations introduced in the above
sections. The two equations (9.20) are:

'
0

\ /
L10 Ei 0 \ f P10 \

r p(°) — Ej Loo Ex poo (9.23a)

V 0 / V 0 Ei L_io / \ p-10

(P10 \ / Lu Ex 0 \ / pn \

E2 pQQ = Ei L01 Ex p<01 (9.23b)

,P"10 \ 0 Ex L_n \ p~u /

Introducing the first recursive term of the diagonal

Dqo = Loo ~ eil^ei — EiL_^0EI, (9.23c)



CHAPTER 9. APPLICATIONS: CHROMATIC EXCITATION 169

Figure 9.14: Theoretical simulation of the saturation of the intermediate level of a three
level system. This saturation implies an apparent shift of the absorption edge.

we can deduce the other harmonics of the density matrix for the frequencies u>i, 0 and
-uji

pm = -L^D^r><">, (9.24a)

pm= D^r/»,(9.24b)
P~m = -LI^D^r/"- (9.24c)

Finally, it is necessary to determine the diagonal term D0i. For this we use the

density matrices defined above (9.24) as well as the diagonal recursive term defined by

(9.23b)

D01 = Loi - EjL^E! - EjLI^EL (9.25)

The density matrix, corresponding to the response induced by the probe is then

p01 = -Do,1 (E2p00 - E1Lr11E2p10 - E1L:},E2p~10) (9.26)
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Figure 9.15: Measure in pump-probe configuration of the absorption edge shift in
CdxZrii-xTe [123,124]. (a) Absorption edge shift as a function of the pump frequency
of the pump and probe, (b) Contour plot of the induced transmission allowing us to
deduce the energy of the pump inducing a maximum absorption of the probe.
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With the help of this density matrix, the polarisation, the susceptibility and finally

the absorption can be calculated easily. Figure 9.14 represents the theoretical result of

our approach where the three considered levels model an excitonic level and a trapped

biexcitonic level in a CdxZrii-xTe [123,124] compound. This figure can be compared to

figure 9.15 which summarises the experimental results obtained in CdxZni^xTe. These

experiments were done with the help of a variable wavelengh dye laser for the pump and

of a spectrally large probe. The amplitude of the pump is maintained constant while its

wavelength is varied. With the help of this experiment, we show the existence of this

trapped biexcitonic third level. In fact, in a system having only two levels (9.22) the
induced absorption by the pump in such a configuration does not show such a behaviour.
On the other hand, the experimental results are comparable with the simulation of a

three level system.

9.4 Non-degenerate four-wave mixing

In this subsection we treat the excitation of an n-level with two beams having different

frequencies. This kind of excitation generalises the pump-probe configuration as the
second beam can have any amplitude. Such a configuration corresponds to the non-

degenerate four-wave mixing and is useful in order to measure the transverse relaxation

time [125,126]. The theoretical treatment of this configuration must take into account
the higher harmonic orders of the density matrix for both beams. On the other hand,

the use of a higher harmonic order implies more difficulties in the determination of

approximated analytical solutions valid for the n-level system. Consequently, we deduce,

as a first step, the analytical formulas for a two level system while the study of the more

general n-level system remains numerical.

For the two level system, its evolution equations (8.3) can be simplified. This sim¬

plification transforms the system into a new system of equations whose treatment no

longer resembles that of the n-level system of the preceding section. Furthermore, the
treated two level system is point symmetric which implies further simplification. The

excitation is bichromatic, and corresponds to the sum of two monochromatic waves

E(t) = -(Eie~imt + E\eiuit + E2e~iU2t + E*eiW2t).2 (9.27)
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Each of the two excitation fields is decomposed into two complex conjugated amplitudes.
This allows a study of the effects induced by the relative phase of the two fields. The

system of equations giving the evolution of the elements of the density matrix is

2

iupD(uj) = -(Ei/j,abpba(u>+ ui) + Elpabpba(u - ui)

~E\pbapab(u + uq) — Elpbapab(u> — uq))
2

+ -(E2PabPba(u + ^2) + E2pabpba{iO ~ ^2)

-E2pbapab{u + W2) - E%pbapab{u ~ W2))

-r.O9d(lj) - 6{uj)p^) (9.28a)
2

iupba(u) = —pba[EipD(u + uq) + E\pD{u - tJi)]
2

Jr-^pba[E2pD{io + U2) + E2pD(u ~ w2)]
— (T2 + ?flo)P6a (9.28b)

2

iujpah{uj) = -—pab[EipD{u + Ui) + ElpD(u - Wi)]
2

— ■^Pab[E2PD(u + w2) + E2PD{U — W2)]
— (r2 — ifio) Pab, (9.28c)

with pD = pbb — paa and p$ = pbb — paa. Algebraic manipulation of this system
transforms it into a new system of equations depending only on the polarisation at

different frequencies. In fact, in adding (9.28b) and (9.28c) we obtain the following
relation between the two coherences pab and pba

~ ( \ - t \ r2 + z(fio + w) . oq\PbaPab(u) = -PabPba{u) . (9.29)1 2 + 1{—Ho + <*>)

After Fourier transformation, the polarisation of the system can be written as a

function of the matrix element pba

p(u) = PbaPab(u) + PabPbaiu)
= PabPba(u) 2^° , (9.30)r2 + i(-u0 + u)

and the difference between pab and pba as a function of the polarisation

PbaPabi^0 PabPba^N) E{fE) • (9.31)
—1\ 6Q
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Using these two relations and equation (9.28a), we can determine the relation be¬
tween the population difference po and the polarisation

Pd(u)(Pi + iw) = —j^-[EiP(uj + u>i)(r2 + i(u + Ui))
E{P{u — uq)(r2 + i(uj — uq))]
— ——[E2P(u> + Wa)(r2 + i(uj + uj2))

hi Zq

E^PpJ — £U2) (1^2 + ~~ ^2))]

+S(u)piS)Ti.

The substitution of this relation in equation (9.28b) simplifies the evolution equation
so as to depend only on the polarisation

~( .r2 + i(-9o+w) , Vn ^F(lj) -»2S20„atl (r2 + ,(n° + w))
iPba 1
2 n no0

+EIE\P{uj - 2uq)

E1ElP(u+2uM2 + i{'J + 2U"))(T! + i(ui + uq))
(T2 + i(cu — 2uq))
(r11 + pu — wi))

. F ( (r2 + it*)) (r2 + iu) \1 1 (' {(r, + i(u + uP) + (T, + i(u - up))
+EzE2P(u+ + E-2E-P(u - f* ~ 2"2>)(11+ i{uj + a;2)) (r1 + I{LU — nq))

+E2E'2P(u) ( Oi+M + <r* +(Ti + i(w + uq)) (Ti + i{uj — uq)),
, TP T? fit f (r2 + i(uj + UJI + w2)) , (r2 + i(u + uq + uq)) \+E1E2P(u1+ Wl + a,2) ( (r,+ ;(*+*,)) + (r1+.(a,+a,2)) j
, p p*nc . , ,. N Ar2 + + ^1 - W2)) (r2 + i(u> + Uq - Uq))\+ a» - W2) ( (ri + j(u + Ul)) + (r, + i(^ " ^)) j
, EP* TP fx ^ ((T2 + i{u) - Ui+ uq)) (r2 + t(w - uq + uq)) \

-<* + a,2) ^ (ri+j(w_wi)) + (r1 + i(w+W2)) J
+E;E;P(u -ut-w2) f(r'; +i(" ~ """ "2)) + (r'+

\ (r\ + i(w — uq)) (Ti + i(u> — uq)) J
(0)

ipbaPo + E*S(U + Ul)S(u2)
Zl lb

-\-E28pj — uq)d(uq) -(- E^S^ou + uq)d(uq)). (9.32)

As we already mentioned in the preceding sections, in the system of equations (9.32)
only the polarisation at the harmonic frequencies of the excitation interact. In this case,

the polarisation of the frequency cj is coupled to the polarisations with the frequency
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uj + juji + ku>2 (where j + k = 0, ±2, ±4,...). The free term is proportional to (.E\8{u; —

iOi) + ElS(ui + LJi + E25(ui— W2)+ -E,|^(a; + a;2))- This implies that the polarisation can be
written as a sum of Dirac functions corresponding to the harmonics of the frequencies

of lo 1 and oo2,

OO OO

P(u)= E PnmS(u-nui-mw2), (9.33)
Tl= — OC 771= — OO

with = 0 for n + m = 2/c. This allows the determination of a system of equations

for the polarisation. This system corresponds to the relation (8.43) in its general case

5 r2 + i(—O0 + ionm) .. ..Pfim
i2Q fJL H^O "I" ^nm)j

iEba 1
2n no0 *

p p 5 (^2 ^^n+2m) . I-T* pt pj (^2 d" '^n-2m)^1-^1^71+2771 TP——: V +-e'l-c'lin-2m7p;— V(1 1 H~ (1 1 + ^^71—1771)
, . (r2 + IbOnm ) (I+2 + iconm)

1 •T,77i I Tp; j : r i(r 1 + iun+im) (r 1 + iuin —1771)
, x? rr f> ^"771+2) , E1* 771* o (^2

-+£/2£727'nm+2-T——— r + ^2-^2 -'71771-277; —: T(r 1 T ^U2nm_(-i) (Ti + liOnm-i)
_ „ ~ / (r2 + ztuTim ) (1^2 + WUTim)

*2* *2, mm ( TP j • \ «(r 1 + iuJnm+l) (Fl + IWTim— l) y

! p p 5 Z' (r2 + ^7i+i77i+i) , (r2 + iiun_)_im_i_i)^+ElE2Pn+lm+l ^ (r1+io;n+lm) + (r1 + «w) J
1 r z7*d /(r2 + iw„+im_i) i (r2 + 2un+lm_i)

-+is1is2ryi+lm_i 1 —— r 1-(r 1 + iun+im) (Ti + iuurn—l)
1 TP* IP D I I1"2 + iuJn-lm+l) (r2 + iuJn-lm+l)

-T-C/i 1 -7F— \ r(r\ + iujn —1771 ) (rx + iuinm-i-i)
, ptp»p / (^2 + ^7l-l77l-l) (r2 + iu;n_lm_l)

T-&1 £<2 n—1771—i I —:—: n r(r 1 + iuJn-im) (Ti + ILOTim— 1)
(0)

tJ^-(El6ln60m + El8-lnS0m + E250n6lm + E;60n6^m). (9.34)
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From the system of equations (9.34) developed to first order and using the following

notation, we can deduce the polarisation at the frequency of one of the two beams:

r2 "F

Qnm — cnm)'

7nm iu>nm,
Ei /x

ai = liT'
E2n

n>i — ~2i9-io9o-i9io7-ii7i-i>

n2 = 8%0(c_10g0-i7i-i ~ c0_i9_io7-ii),

n3 = -8zg0-i (cio?-io7-ii + c_io?io7i-i);

d\ = 9-io9o-i9oi9io7-n7oo7i-i)

d2 = 4(c0_i9_io9oi9io7-ii7oo + c109-io9o-i9oi7-h7i-i

+C-io9o-i9oi9io7-n7i-i + coi9-io9o-i9io7oo7i-i))

dz = 4(cio9-io9o-i9oi7-ii7oo + Coi9-io9o-i9io7-n7i-i

+co-i9-io9oi9io7-ii7i-i + c_io9o-i9oi9io7oo7i-i);

di — 16(c_iocio9o-i?oi7-ii ~~ 2co_icio9-io9oi7-ii

+Co-iCoi9-io9io7-n + coicio9-io9o-i7oo

+c_xoCo-i^oi?io7oo + C-ioCio9o-i9oi7i-i

+co-iCoi9-io9io7I-i — 2C_ioCoi9o-i9io7i-I)>

da — 16(00-10109-109017-11 + c-ioco-i9oi9io7-ii

+Co_ic0i9_io9io7oo + coicio9-io9o-i7i-i + c-iocoi9o-i9io7i-i))

da — 16(coiCio9-io9o-i7-h + C0-iCio9-io9oi7-n

+c_ioCio9o-i9oi7oo + c-iocoi9o-i9io7i-i + c-ioCo-i9oi9io7i-0-

The polarisation is then

p _ Ti (q2ni + a\a2n2 + a2n3)
d\ T a\d2 -(- aj^dz + txfo,2d/i -t~ ci\d^, + a2ds
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This analytical formula is a generalisation of the monochromatic case as well as of

the pump-probe configuration. Indeed, if the amplitude ax is zero then this equation

describes the polarisation induced by one excitation beam (9.11a). In the case where
the intensity of the second beam is small we can neglect a\ and the susceptibility found

corresponds to the pump-probe configuration (9.22).
Another easily measurable quantity in the case of the non-degenerate four-wave

mixing is the response at the frequency (2aq — cj2). The advantage of such a measure

resides in the spectral resolution of the response with respect to the excitations. Further,

in the case where the two beams are not collinear we also have a spatial separation

between the excitation beams and the response at the frequency (2uq — u>2).
In order to determine the polarisation P2-i to a first approximation, it is necessary

to use the relation (9.34) as well as the polarisation at the fundamental harmonic (9.35
). From the relation (9.34), we find the following relations between P2-i and Px_2.
The higher orders of polarisation P2i, P30, P4_i, P3_2, P2-3, A-4, P0-3 and P_i_2 are
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Figure 9.16: Simulation of the response of a two level system excited (a) in resonance
or (b) out of resonance in the four-wave mixing configuration.
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neglected in the following relations:

A-1 <r> + •("» +^-0)

r

+ A1-2

^Eba 1
2n no.0

Pba 1 g f 2 (fj + iLQ2-l) (r2 + 2CJ2-l)\
2h HLIq 1 y (Ti + ia;3_i) (T] + J
" 1

E E* ^2~1) + ^2-1) A2
V (r*i + io;2_2) (rx + iu>2o) )

1 / 2 (r\ + ia;i_2) (r2 + ^i_2) \
Mo y (fx + zu;2_2) (Fx + zwx_x) /

P1-2

i/J'ba 1
2 h nO0

E*E* a
2h fidQ \ 11 ^ X &(*l/2_2 ( » JL X I- bu

d rr*rr I 2 (rx + lOJio) (r2 + ioJio) ^Pl°E^ l(r1 + iW2„)(r1 +

+p„-,srsr|^H'(Fx + zwx-i).

r2 + «(—^0 + ^1-2) ,r ./n »(r2 + i(n0 + wi_2))

Vlba 1 g g* f 2 (Fx + IW1-2) (F<2 + itOi-2)
2h HLIq y (Fx + iuJo—2) (Tx "I- zcu2 2)

1 _ ™ (2 (Tx + icJx-2) (F2 + zcux-2)

(9.36a)

+ P.2-1

iPba 1
2h no0

'A^oa jy, I ^ yj- 1 ~r ^1-2; ^ 2 ^ "^1-2;
2n no0 2 y (rx + zwx_3) (rx + zwx-i)

ipba 1 / 2 (Fx + icjjj-i) (r2 + 21^2-1A
2n nO0 y (Tx + zw2_2) (Fx + zcjx-i) /

7 2 (Fx + iuj0-1) (r2 + za>o-x)\
(rx + zwo-2) (rx + zwx_x) )Po-iE{E2

+PwE2E2p±^A>(rx + luji-i)
(9.36b)

In figure 9.16 we have represented the response of a two level system excited by
two beams in the non-degenerate four-wave mixing configuration. This response of the

system can be described by simple formulae each valid over a frequency domain. These
formulae are represented on the graphs.

Furthei, figure 9.16a shows the response at the frequency (2tux — cj2) of a two level

system when the first beam is in resonance with the two level system. Three different
domains can be distinguished when varying the difference in frequency between the two

beams. The transition between these regimes occurs when the difference in frequency

implies a beating with a frequency comparable to the relaxation coefficients Tx and T2.
In the same manner, several regimes can be observed in figure 9.16b where the

theoretical simulation shows the case where the first beam is off resonance with respect

to the two level system. When the detuning of the two beams is varied (see also [127,128])
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Figure 9.17: Reponse of an excitonic system to a bichromatic excitation out of resonance.

two different slopes can be observed. In addition to the two slope changes, there is a

"resonance" effect between the detuning (u>i — cj2) and the relaxation coefficients Ti and

r2. Further, we have a resonance at the moment where the detuning of the two beams

corresponds to the difference in frequency between the first beam and the resonace of

the two level system.

9.4.1 N-level system

In the case of an n-level system, the analytical formulae giving the polarisation in the

non-degenerate four-wave mixing configuration become more complicated. We then
need to use the general equations and tensors in order to describe the relation between
the different harmonics of the density matrix. Figure 9.17 represents the response of an

excitonic system where we took into account the first three levels with their energy and

dipolar moment [113]. In comparison with the two level system excited out of resonance,

the excitonic system shows additional resonances corresponding to the different excitonic
levels. With the help of such a configuration, we can determine in this case the transverse

and longitudinal relaxation times as well as to spectrally resolve energy levels.

Figure 9.18a shows the experimentally measured non-degenerate four-wave mixing

signal for CdSe [129] quantum dots. Experimentally, we observe a resonance when
the difference between the two frequencies is 26meV. The numerical simulation of this
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Figure 9.18: (a) Response of the dispersed CdSe quantum dots in glass to a bichromatic
excitation in the non-degenerate four-wave mixing configuration. The measured signal
is at the frequency (2ui — cu2) [129]. (b) Numerical simulation of the response at the
frequency (2uq — w2) of a four level system excited with two frequencies.
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experiment is represented in figure 9.18b where we considered a four level system in

which the three superior levels are equidistant in energy and their difference is 26meV

(phonon energy). The theoretical simulation shows a resonance when the detuning of the
two frequencies is 26meV but it cannot explain the difference between the two possible

cases (u;2 — aq) > 0 and (o>2 - coi) <0 . Further experiments are necessary to confirm
this difference.

9.5 Summary

The application to two level systems show several phenomena that appear in the presence

of high intensity excitations. The pump-probe configuration is considered as a special
case of a bichromatic excitation where one of the beams is of weak intensity and treated

to zeroth order. In non-degenerate four-wave mixing, the two excitation beams are

treated in the same manner, namely with the help of the truncated matrix obtained in

the bichromatic case. In all these cases, simplified forms of the solution are deduced of

which some are compared to the experimental results.
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Conclusion and future work

In this work we have dealt with the propagation of plane waves through multilayer
structures and their interaction with electronic systems in these multilayers.

We started by deducing a novel method for the calculation of the optical properties

of multilayer structures. This method (LTR) is solely based on physically meaningful

quantities such as the transmission and reflection coefficients. The method is based

on an addition operator that allows the formal combination of two multilayer elements

resulting in the determination of the overall optical response of the structure. Further,

we defined a multiplication operator suited to the treatment of periodic structures.

An important conclusion deduced from the properties of the multiplication operator

is that a periodic structure can be treated as a single period and then the results can

be broken up into surface and bulk properties. As one considers more and more periods

of the structure the importance of the bulk properties increases whereas the surfaces

are less and less important. In the case of optoelectronic structures the bulk properties

give rise to band structures. When combining two different structures, the properties of
the surface become important and greatly influences its immediate environment. One
can thus introduce a surface band structure. This property can be applied to photonic

crystals and in future work we plan to expand the formalism to be able to treat electronic
structures in the same unique formalism.

Another important expansion of our LTR method is the inclusion of interface rough¬
ness effects. These roughness effects are treated as a statistical distribution of the po¬

sition of the interface. Optically, our model of the roughness can be observed in the
transmission and reflection spectra as a decrease in the contrast of Fabry-Perot fringes.

182
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In the case of high finesse cavities such as LEDs or VCSELs the roughness changes
the emission mode through broadening and decreased intensity. Applied to selectively

oxidised structures we could deduce the effective roughness introduced by the oxidation.

Further, comparing, for a monolayer sample, the roughness model with the roughness
measured by atomic force microscopy we showed that these were in good agreement.

Our optical method overestimates the roughness effects which are due to the greater

sampling domain of the structure.

Another use of the LTR formalism is the treatment of continuous refractive index

variations and non linear propagation. In the latter case we arrived at the conclusion that

one can find the solutions to non-linear intensity-dependent propagation equations by

defining a sequence of solutions as a function of the intensity. This sequence corresponds
to the evolution of the system when slowly increasing the intensity.

We showed that our LTR formalism is in reality a more general formalism by ap¬

plying it to various different cases. Indeed, the formalism always works when we are in

the presence of an interface at which we have continuity conditions of two functions on

one side and of one function on the other side of the interface. This configuration leads
to the consideration of reflection and transmission coefficients of these functions. Using
this general approach we demonstrate the use of our formalism to find the propagation

modes in plane waveguides and the eigen states in multiple quantum wells.

Starting from the eigen states in multiple quantum wells we used the density ma¬

trix formalism to study the interaction between light and a quantum n-level system.

We showed that using standard procedures to solve the density matrix equations the

solution breaks down when treating high intensity excitations. In order to address this

problem we developed a recursive solution method based on a combination between the

continuous fraction method and the Floquet expansion. This method can be used to

treat monochromatic as well as bichromatic excitations in or out of resonance with the

quantum system.

We applied our recursive solution method to different configurations such as the s-

ingle beam excitation, the pump-probe configuration and the non-degenerate four wave

mixing case. In conclusion we showed that many of the non-linear effects present at

high intensity can be understood in the framework of a single and unique model. This
allowed the explanation of the link between the plateau observed in the generation of

high harmonic frequencies and the saturation of the population inversion of the system.
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In short this effect originates in the impossibility of the system to store the energy

received at high intensities in the population inversion. The energy is then mostly
converted into the higher harmonics. This induces abnormally high harmonic genera¬

tion at high intensities. Further, using our recursive solution method we could show a

quantum behaviour as a function of the excitation intensity. Indeed, as one increases

the intensity oscillations appear in the response of the system. These oscillations take

place when the electromagnetic energy of the interaction is a multiple of the resonance

frequency and correspond to the successive saturation of the multi-photon absorption.

In the pump probe configuration we showed the appearance of pump induced virtual
resonance. Finally, we showed the possibility of measuring coherence relaxation times

using the frequency detuning between the two beams in the nondegenerate four-wave

mixing configuration. The spectra obtained in this setup shows that resonance effects
become observable when the beating period between the two beams is comparable to

the coherence relaxation times. It is thus possible to measure relaxation times which

are smaller than the pulse duration of the pulse.

In future work, we plan to combine in a unique framework the LTR formalism
and the quantum n-level systems. With this model we hope to study more complex

periodic and non periodic devices where we have an intrinsic coupling between the

electromagnetic wave and the electronic wave. Another promising direction of study
is the generalisation of our methods to three dimensional structures such as photonic

crystals and induced gratings. Finally, we wish to expand our results to treat the

propagation of short pulses through these structures.
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