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Abstract

A review of the work on extinction, mainly Zachariasen's theory,
criticism and some applications of this theory, is given.

Extinction effects in large single crystals of D(+) tartaric
acid are studied from measurements of integrated intensities using
copper and molybdenum radiations. Extinction parameters are deduced
from these measurements and the variation of extinction with path
length is examined.

An estimate of the average mosaic block size of the crystals used
is obtained from measurements of the dislocation density of the material
by the x-ray topographic method using a Lang camera and the average
mosaic spread of the crystals is obtained from the measurements of
diffraction profiles using a two-crystal spectrometer. Zachariasen's
parameters are compared with these physically observed values.

It is shown that the measured integrated intensities could be
affected by type I secondary extinction in which extinction 1s governed
by the mosaic spread. The possibility of the presence of primary

extinction is suggested.



Introduction

The essential aim of crystal structure analysis by x-ray
diffraction is to obtain a detailed picture of the contents of the

crystal at the atomic level in the form of a three-dimensional

electron density map. This map is usually obtained by the following
steps:-
1 Measurement of the integrated intensities from the crystal from

which the structure factors, which are dependent on the nature of the
atoms present and their relative positions within the unit cell, may
be deduced.

2a Deduction of the atomic arrangement and calculation of the
structure factors corresponding to this arrangement.

3o Refinement of this arrangement until the agreement between the
calculated and observed structure factors is within the limits of
experimental error.

Therefore, the measurement of accurate structure factors is
obviously of very great importance in obtaining electron density maps.
The electron density at a point r in unit cell is given by

p(r) = Z F(Rh) exp(-2mih.r)
h
where F(h) is the structure factor and h is the diffraction vector.

In the refinement process mentioned above, the position of atoms
can be obtained from a least-squares process which involves minimising
a function of the difference between observed structure factors and
those obtained from the model of the crystal, and any inaccuracies in
the observed structure factors would affect the resulting atomic
parameters.

In most of the experiments, the structure factors are obtained by
measuring the integrated intensities diffracted from a small crystal
placed in a monochromatic x-ray beam. The structure factors are

obtained from these measurements using the equation:



/

FETTT

/
:

Fig. 2 Mosaic blocks and secondary

extinction

TAVAL /2 _

ERVAVAVA

Fig. 1

Primary extinction



-

R = C|F|*Lp.A

where
R = Integrated intensity
C = Scale factor
F = Structure factor
Lp = Lorentz polarization factor
A = Absorption correction.

The derivation of this equation is from the kinematic theory
which is based on the assumption that the intensity of the incident
beam is constant at all points within the crystal. No account is
taken of the exchange of energy between the incident and diffracted
beams and rescattering processes are ignored.

These assumptions are incorrect since the existence of a
diffracted beam means that energy has been removed from the incident
beam and one should take the rescattering processes and exchange of
energy between the incident and diffracted beams inside the crystal,
into account. It follows that the values of the structure factors
extracted must be incorrect.

In many cases, for many reflections, however, the energy in the
diffracted beam is very much less than the main beam and kinematical
approximation works quite well. However, when a significant amount
of energy is diffracted, the measured structure factors are inevitably
smaller than they should be. This effect is referred to as extinction.

This term was first used by Darwin (1914). Using the mosaic
block medel of a crystal which he proposed and is still used today,
it is possible to see how this extinction comes about.

In Darwin's mosaic block model of the crystal, it is assumed that
the crystals are composed of large numbers of small domains which are
called mosaic blocks. These blocks are assumed to be slightly

misoriented from an average orientation, each block being a perfect
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crystal region in which coherent scattering takes place, there being
no coherence between the beams diffracted from various blocks.

The diffracting planes within each block are well aligned and
each part of the block will scatter a fraction of the energy incident
upon it into the diffracted beam. Therefore the planes lying deep
inside the block receive less energy by the amount diffracted by the
preceding atomic planes. Also, the rays which are reflected at the
Bragg angle by the planes are directed at the correct angle to be
reflected back again into the incident beam by the other planes.

Thus, each plane of the crystal rescatters a small fraction of the
reflected rays into the incident beam. In every scattering process

the phase difference between diffracted and incident beams is 7/2 and,
therefore, the twice reflected beams have a phase difference of m from
the primary beam, so they weaken the primary beam by destructive inter-
ference and the same thing applies to any two beams which have been
reflected n and n-2 times respectively. When this phenomenon continues
through a large series of planes, the primary beam becomes attenuated.
This effect which is taking place inside a single mosaic block was
called "primary extinction" by Darwin, fig. (1).

On the other hand, if the diffracting planes of more than one
mosaic.block are parallel, these blocks will diffract simultaneously
and each one of them will scatter a fraction of the incident energy
into the diffracted beam. Owing to the energy loss in the incident
beam by diffraction at the blocks near the surface, the blocks further
inside the crystal having the same orientation are partially shielded
by the surface blocks and the energy scattered by these blocks will be
less than expected. This phenomenon was called '"secondary extinction'
by Darwin, fig. (2).

Darwin's model of mosaic structure is an idealized description of
the crystal perfection. This model was suggested for the ease of

mathematical handling of the problem. A more realistic model for the
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problem would give the exact description of the type and geometrical
arrangement of imperfections in the crystal but this detailed
information is generally not available. Thus the common way is to
accept that a real crystal is adequately described by Darwin's model.

As has been mentioned previously, structure factors can be easily
determined from the measurements of integrated intensities provided
that the diffraction preocess is kinematic. If a significant amount
of energy is being removed by the diffraction process, the kinenatic
theory no longer applies. Under these circumstances, it is impossible
to determine the structure factors from the integrated intensities
except in a few examples, e.g. perfect crystal of regular shape.

Any least-squares refinement process applied to this data will be
invalid since the observed structure factors will be subject to
systematic errors although a good agreement may be achieved between
the observed and calculated structure factors at the end of the
refinement process.

In 1967, an attempt was made by Zachariasen to derive equations
based on the mosaic model of Darwin, relating the structure factors
to the integrated intensities for real crystals of arbitrary shape
when extinction is present. Zachariasen's formulation was widely
used and adopted. The first part of this thesis is devoted to a
review of the work on extinction, mainly a description and critical
analysis of Zachariasen's theory and some of its applications.

In his theory Zachariasen defines two parameters which describe
the mosaic block model of a crystal. These are "r'" and "g" para-
meters which are the measures of the mosaic block size and the distri-
bution of the misorientations of mosaic blocks with respect to an
average orientation. In the course of extinction corrections, the
values of these parameters are deduced and corrections are applied

using them.



A necessary condition for the application of Zachariasen's
equations must be that these deduced physical parameters should have
physically reasonable values. Although mosaic block size can not be
very realistic it must at least be an approximate measure of the size
of the perfect regions in a real crystal.

In the second part of this thesis, extinction corrections were
obtained experimentally on large crystals of tartaric acid, and,
following Zachariasen's procedure, the parameters r and g were deduced.
Experimental tests were then undertaken to measure these parameters and
then to determine whether or not the quantities obtained using

Zachariasen's equations have a physical meaning.
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CHAPTER I

Zachariasen's paper (1967) entitled "A general theory of x-ray
diffraction in crystals'" was mainly responsible for the renewal of
interest in extinction and the dynamical theory. Previously most of
the investigation into extinction had been confined to infinite
parallel plates, e.g. Zachariasen (1945), Bacon and Lowde (1948),

James (1950).

However, Hamilton (1957) had devised a numerical method of
estimating secondary extinction in small, finite crystals which have
a uniform cross-section in planes parallel to the plane defined by the
incident and diffracted beams. He generalized a pair of differential
equations, first given by Darwin (1922) to describe secondary extinction
in infinite parallel plates, which described the flow of energy through
a crystal.

The power relations between the incident and diffracted beams were

expressed as

(BPH/Bm) TP + oPo

H

TPO + GPH

(1)

(3P /dn)
o

where PO and PH are the powers of the incident and diffracted beams
respectively and T = -(u+0), where pu is the absorption coefficient and
o is the diffracting power per unit volume and intensity. ﬁ and é
are the directions of the incident and diffracted beams respectively.
Hamilton solved the coupled differential equations, egs. (1),
numerically for a convex crystal shown in fig. (3). To obtain this

numerical solution, egs. (1) were replaced by the following difference

equations:

PH(n,m) PH(n,m-l)[l + TAm] + Po(n,m—l)cﬁm

Po(n,m) Po(n—l,m)[l + TAn] + PH(n—l,m)UAn g



Starting from the boundary and using the boundary conditions

P

p° along ACB
o o

Py

0 along DAC ,

o . o .
where P0 is the power of the incident beam outside the crystal, the

values of PH and PO can be calculated at all of the points of a grid

having a mesh size of An X Am. The integrated intensity is given by
R = h /. R(A®) d(48)/S W(A8) d(AB)

where h is the height of the crystal. 1f PH(a)...PH(k) are the

values of PH calculated by the above numerical method, corresponding

to the grid points lying on the exit surface, then R(A8) is given by

PH(a) + PH(k) k-1
+ Z P _(i)] An sin26 .
2 i

R(AB) = [

W(A6) is the distribution function for mosaic block alignment.

Assuming a distribution function, such that

1/2n/3 lag| < nv/3
w(ae) = { } (2)
0 lagl > nv/3

where n is the mosaic spread parameter, Hamilton obtained the inte-

grated intensity as:
= v
R = h2n 3[R(66)]:e_0

The secondary extinction correction yg was obtained as

Yy = R/Q'VA
2 2 2 12 3
where Q' = Q.y_ = (5—) EX .l y_ is the primary extinction
P 2 2 sin26 p
mc )
correction and the other symbols have their usual meanings. The

desired accuracy in PH can be obtained by choosing a sufficiently
small mesh size. The couple of differential equations (eqs. 1) can

be solved exactly for the limiting cases of 26 = 0 and 26 = 180°.
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Hamilton calculated the secondary extinction corrections Yoo for
cylindrical crystals, having diameter D, for 26 = O, 45, 90, 135 and
180° cases. The grid size was so chosen that the error in the
calculatiocn of Y, was less than 3%. The results of these calculations
were presented by means of curves shown in fig. (4) which are a plot of
yg versus oD. From these curves, Hamilton noted that there was an
angle dependence, which was negligible for only small extinction
(ys > 0.7), and this angle dependence became very important for severe
extinction.

Hamilton carried out the same calculations for crystals having a
rectangular cross-section in planes parallel to the plane defined by
the incident and diffracted beams and concluded that the extinction
effects became much more complicated because in this case extinction
is a function of the crystal setting as well as of the Bragg angle.

Further, Hamilton noted that the intensities for intense
reflections reach a limit as oD increases. The intensity is then no
longer dependent on the value of |F|* but on the size of the crystal
and the Bragg angle. It was suggested that this saturation phenomena
be used in the determination of n if this limiting value is observed.

The 1limiting values of the integrated intensities were given as

For 26 = 180 R 2Y3 hDn

1lim

Y3 hDn

1
o

For 20 R

1lim
Therefore, the method for extinction correction in cylindrical

crystals, suggested by Hamilton consists of:

L Determination of n in the region Vi 0.7 using the approximation

Y, = exp(-80D/37) or using the limiting values mentioned above if they

are observed.

2. Using this value of n, determination of yg curve for any reflection

in the intermediate range, using numerical integration over a grid as

described above,



Hamilton applied this method of extinction correction to the
observed values of ¥y in a neutron diffraction experiment for a
single crystal of Fe304 and obtained very good agreement between the
calculated and observed values of Y8

Later, Hamilton (1963) improved the calculation of PH values
introducing a modified Euler integration scheme instead of previous
rectangular grid and the tables of secondary extinction corrections
for equatorial reflections from cylindrical crystals were presented.

Zachariasen (1967) developed a general theory of x-ray diffraction
for real finite crystals of arbitrary shape and this theory is based on
Darwin's mosaic block model of a crystal. He considered first
diffraction from a small, perfect crystal, and then from a real crystal,
assuming the real crystal to be a distribution of small, independent
perfect crystal regions which were slightly misaligned to each other.
It was assumed that the normals to the diffracting planes of the

individual perfect crystals obeyed an isotropic Gaussian distribution

given by
W(A) = V2 g exp(-2mg? A?) (3)

where A is the angular deviation from the mean orientation and g is
the mosaic spread parameter.

The extinction factor y is defined as being the ratio between the
integrated intensity from the real crystal, R, to that obtained by the

kinematic theory, Ry
i.e. y = R/Rk (%)
and Rk is given by

R, =J v A(u)Q (5)



diffraction

p\une.
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where J = Incident beam intensity

v = Volume of the crystal

A(p) = Absorption factor

POFKZ 23

Q = ( 7 ) T for x-ray diffraction

2
r = (e ) = radius of the electron
o 2

me

F = Kinematic structure factor

K = Polarization factor

V = Volume of the unit cell
A = Wavelength of the radiation

6 = Bragg angle.

Zachariasen used a pailr of differential equations similar to
those used by Hamilton, and solved these equations for crystals of
various shapes. Assuming negligible absorption, he used the equations

in the form -

310

Y = —GIO + ol (6a)
1

ol _ .

';at—z = -0l + O'IO (Gb)

IO and I are the values of the incident and the diffracted intensities

inside the crystal, tl and t2 are lengths in the incident and diffracted
beams and o is the diffracting power of the diffracting planes, (fig. 5).
Eq. (6a) represents the variation in intensity of the main beam as
it passes through the crystal. Energy is removed from the beam by the
diffraction process, (—cIO), and the second term (0I) represents the
rescattering of the diffracted beam back into the main beam. Eq. (6b)
represents the variation in intensity of the diffracted beam and the

summation of the two equations expresses the energy conservation for the

process, i.e.,

EEE. L -
9t ot,. :
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The boundary conditions are:

From these equations, the power of the diffracted beam, P(el),
at some angular deviation € from the ideal Bragg angle, can be
obtained from:

Laf

ol

31:2

P(el) =¢ I u.ds = J dv

where u is the diffracting direction and ds is a surface element of

the crystal. A function ¢(o) was introduced such that:
P(el) = JO vod(a)
and, since the total integrated intensity is given by
R=/[ P(El) dsl 3
the extinction factor y can, in principle, be obtained from
y = Q" S o¢(o) dey . (7)

The proﬁlem is then to find ¢(o) as the solution of eqs. (6a) and
(6b), and to find y using eq. (7).
When all extinction effects are neglected, the solution to egs.
(6a) and (6b) gives the kinematic approximation
g,
k
Neglecting the "feedback'" term oI in eq. (6a) gives an exponential

solution
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|
1]

Jo exp(-ctl)

T = Jo[l - exp(-ot2)]exp(—ctl)

and P = J0 voA(o)
where A(g) = 1 - ot + 3c*t* - % gt + ...
and 2= vt o (tl + 't2)n dv .

This particular solution is very similar to the exponential
solution suggested by Bragg, James and Bosanquet (1921), where the
extinction can be considered as an increase in the absorption term of
the form exp -(u + gQ)t.

For arbitrary shape, Zachariasen obtained the power series

solution of eqs. (6a) and (6b) as an expression for %%ﬂ
2
9T _ (-9)" . (n)
il R il (8)
2 n
where t(n) =2 ()t n=] tj
P 1 2

J

Zachariasen used this general result in eq. (8) to find the function
¢(o) for different shapes. For a parallelopiped, having three equal
edges, two of them being parallel to the incident and diffracted beams
and the third, being perpendicular to the plane of incidence, fig. (8),

he obtained ¢(c) as
¢(o) = 1 - ct0+(5/5)(ct0)’—(7/12)(ot0)3 F g (9)

where t, is the length of the edge of the parallelopiped.
The same procedure was carried out for a sphere of radius r, for
small scattering angles, giving the results:
Forward direction:
$(0) = 1 - ot+(16/15)(ot)’-(80/81)(ot)’ (10)
Backward direction:
¢(o) = 1 - ot+(64/u5)(0t)? ... (11)

where t = (3/2)r.
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Eq. (10) was derived for small scattering angles. However, since
ot << 1 at large scattering angles, Zachariasen suggested that eq. (10)
can be used as a general expression for a sphere.

Egs. (9), (10) and (11) show that ¢(c) depends on the shape of
the crystal. Further, comparison of eqs. (10) and (11) indicates that
¢(0) may have a significant angle dependence. However, from the form
of these results Zachariasen, suggested an approximation for any
arbitrary shape as

1
140t

(12)

$(o) =

According to Zachariasen, eq. (12) is exact for infinite parallel plate
for symmetrical Bragg case and a very good approximation for a sphere,
but a poor approximation for a parallel plate in the symmetrical Laue
case, because in this case the power is equally divided between trans-
mitted and diffracted beams.

In obtaining the diffracting power, Zachariasen assumed that it

may be correctly obtained from kinematic theory i.e.
= -1 -1
a(el) = JO v Pk(el) . (13)

The geometry of diffraction is shown in fig. (7). The direction of

incidence, ugs is given by

[o 0 : ; = P :

where u, is the ideal Bragg direction and T, is a unit vector in the
6 ; ) S5 : i ;

plane of incidence perpendicular to u_. The direction of diffraction,

u, is given by

where ﬁo is the ideal diffraction direction and
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where H is the reciprocal lattice vector associated with the diffracted

beam. The diffraction vector S is then

& on - =
X (u uo)

2mH + As

wn
1

1]

2w - -
where As = 5 (sltl tE,T, t 5313).
The intensity in the direction (31,52,53) is given by
_ e’F K,? g— \
Ik(el,e 2€,) = J  |=——| |2 exp(iAs.L)| (14)
&8 2 me® R

where L is a lattice vector and R is the distance from the crystal to

the counter. Then, Pk(el) becomes:
- 2
Pk(el) =R Il I d52 de, . (15)

In general, c(el) depends on the shape of the crystal and one
should solve the summations and integrations in eq. (14) and eq. (15)
for the particular shape. Then U(El) can be calculated from eq. (13).

Zachariasen calculated c(el) for a particular case of the

parallelopiped of fig. (6) again assuming all of the edges ti, tg, tg
are equal to tO and obtained the result as a delta function 1.e.
sinznael
o(e,) = Qu (16)
X 2
(nela)
t —_—
= ._i = O u = i
where o = — and t, [t2 x uol t, sin26.

As mentioned above, U(El) is dependent on the shape of the crystal
and may be very complicated for an arbitrary shape. However
Zachariasen assumed that eq. (16) is reasonable for any symmetrical
shape, especially for a spherical crystal. In eq. (16) the only shape
dependent factor is t- For infinite parallel plate t, is given as
Do sin® for the Laue case and Do cosB for the Bragg case, where D0 is
the thickness of the crystal. For a sphere of radius r, t is equal

o (-g-)r,
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In the evaluation of the integral in eq. (7), it is convenient
to replace the delta function form of eq. (16) by an equivalent

expression of Poisson form. Zachariasen assumed that

a
0 = —,

2 2
1+b El
S o dsl =Q,

2 _ 3 a2
and J o del = Q o

and so obtained the approximate expression for o(el), for arbitrary
symmetrical shapes, as

4/3Qa

4 L B
Lar 2
1+ (—a-ael)

c(el) =

Then, substituting eq. (17) and eq. (12) in eq. (7), the expression

for y becomes

B
y = (1L+2x) 2 =1-x+(3/2)8-(5/2)x> + ... (18)

where x =-% Qut and t is the mean path length through the crystal.
For various crystal shapes, Zachariasen listed the x values as
e’F KA D ?
! =
mec2 V

Symmetrical Laue case: X = (19a)
3 cos®®

e’F K A D_¥
. - ! mc? V r
Symmetrical Bragg case: x = (19b)
3 sin’®

e?F KAt 2
IR °

2| = i
Parallelopiped of fig. (6): x = e (18¢)
3
e’F K A r,?
I————:-"—I
Sphere of radius r: -k (. (194)

2 =in28
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For infinite parallel plate case, the exact results of the

dynamical theory are available. They are given as:

For symmetrical Laue case: vy 1 =% +(9/20)x2 —(3/25)x3 T
For symmetrical Bragg case: y = 1 - x +(0/5)%> -(51/35)% + ...
where x values are given by egs. (19a) and (19b) respectively.

For symmetrical Laue case Zachariasen's theory does not agree
with the findings of the dynamical theory. According to Zachariasen,
this is a natural consequence of the approximation, eq. (12), which
is a poor approximation for Laue case. But when the Bragg case is
considered, if the delta function form, eq. (16) is used,

y = 1-x+ (5/4)x* - (13/8)x° + ...
which agrees very well with the dynamical results. According to
Zachariasen, this satisfactory agreement suggests that the findings
of the theory are acceptable approximations.

Eq. (18) can be used to determine the lower limit of crystal size
for negligible primary extinction. If the integrated intensity can
be measured to an accuracy of two per cent then the applicability of
the kinematical approximation (y=1) for primary extinction is
restricted to a range x < 0.02 and this requires a spherical crystal
of radius r < 0.5 x 10”*cm for most of the specimen crystals, for
strong reflections.

The theory relating extinction in a single perfect crystal was
then extended by Zachariasen to deal with real crystals of the Darwin
mosaic block model. The domains are assumed to be all of the same
size and nearly spherical in shape. The mean path length of the
x=-rays through each domain is t = 3/2 r where r is the mean domain
radius. The crystal is assumed to contain a large number of these
domains and their orientations are govermed by eq. (3).

The half width of the distribution function is given by

1
W, = g-'[1log(2/2m)]% = 0.332 g™'. (20)

1
2
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From the eq. (16) or eq. (17) the half width of the diffraction pattern

is given as

0.295 A r ! = 0.443/a

(al)%

or (21)

(e)); = (1/2m) A r! = (3/um) o7t .
2

The diffraction in real crystal is treated in the same manner as
in the perfect crystal. The basic equations eq. (6a) and eq. (6b)
are the same, except the use of convoluted value o instead of ¢ and
the use of T which is the mean path length through the crystal, instead
of %, which is the mean path length through a mosaic block.a(el) is

defined as

o(el) = [ W(a) 0(el+ A)da .

Assuming
~ 2 2 2
U(el) = Q a exp(-ma € )
and
_ sinzwa'el
o(e,) =Q o’ (22)
1 (ma'e. )?

i i
where ol = V2 a/Vo? + 2g*
and, using the approximation

3g/2 = V2 g 5
it follows that
- !

4 Il =
1+ [ 3 el]

where o = a//1 + (20/3g)* .

Eq. (22) and eq. (23) are precisely analogous to eq. (16) and

eq. (17) respectively which were derived for the parallelopiped of

fig. (6) for the perfect crystal case. In eq. (23) when a >> g, a
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is given by (3/2)g and, when a << g, o' = a.

Sclution of the basic equations in the case of real crystal is

very similar to the perfect crystal case, giving the result

WG =t

= (24)
1+0T

which is precisely analogous to eq. (12) and leads to

nj-

«
1]

(1+2x)

where X =~% Q a!T

if t is small compared with T.

In order to include the effect of absorption, Zachariasen rewrote
the basic equations as:

310'

37— % = ()1 ! + ol’
1

gt _ " "

3T2 = (u+o)I’ + UIO .

Solution for severe absorption is complicated. According to

Zachariasen, the solution to these equations, in the case of small

absorption, can be expressed in terms of the solution of eq. (6)

I’ = I expl- u(Tl + T2)] T LT A(n)

where A(u) is the transmission factor. Then

Toza-apt 84 (25)
du
Therefore, according to Zachariasen, if the effective mean path length,

which is generally given by

1l

L IXen) IT (Tl + T2) exp(- u(Tl + T2))d1 "

is calculated from eq. (25), the effects of absorption on extinction

will be accounted for automatically.
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Effects of polarization are included in the theory as well.
If the incident radiation is unpolarized, k=1 for vertical component
and k = cos26 for parallel component of polarization.

Therefore, for parallel component

o 2 0 2
X = xo cos” 26 and Q = QO cos” 26

// 1/

where X and Qo are the values of x and Q respectively, without any

polarization effect. For the integrated intensity
— 3 | 2
R// 5 v QO cos” 20 y//
and R_L = Jo v Q0 yl .

On the other hand

R = Rk y
where Rk = JO v Qo Py
and Py is given by

_ 1+ cos?26
P; © 2 :

" - (1 + cos®20)
RET, VR, By X =, ¥R 2 y -

The average value of R is then

2
» %l + RL P (yl + y// cos” 20)
2 o o 2
From this
1 + cos?26 _ 2
( > )y = ¥ + y// cos” 26 and
2
y, +y,, cos 26
y = i
1 + cos?26
-3
where ¥; B (1 + 2x0)
=3
and ¥yj = (1 + 2k’xo) 2 %
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Therefore,

-1 =1
(1 + 2x0) 2+ (1 + 2k2x0) 2 ¥
y = .
1+ K

According to Zachariasen, for X >> 1, the above. equation can be

approximated as

yE___i_t_k._
/2xo (1+k*)

and for X < 5, without introducing important error,

p2 -k
y=(l+2—x)°2 (26)
Pl o
Py 4 2
where Ty = (1 + Xk )/(1 + k*)
H:z

When t is not negligible compared to T, X should be replaced by

its mean value ;o which is given by
x, = (2/3) Qualt + (T-t)/V1 + (20/3g)*]

where -% QOaE and <% Qoa(f—E)//l + (2a/3g)®> corresponds to primary

and secondary extinction respectively.
For the general case, the findings of Zachariasen's theory can

be summarised as

R=R, ¥y= Jo Qo Py V A(w) vy
P2_. 1

= -2 -z
y = (1 + 2 5 x,) (27)
i
where §O = 8 QOEE + (T-t)/V/1 + (B/g)* 1,
B =2t /31,
and %1 = (3/2)r for a spherical crystal.

As mentioned before, primary extinction can be neglected for
X < 0.02 corresponding to a mosaic block radius of r < 0.5 x 10" * em.

When primary extinction is neglected, io reduces to
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x = rA”! Q, T/V1+(r/)g)? (28)

representing only secondary extinction and according to Zachariasen,
this is the case in most experiments.

Zachariasen introduced two important limiting types of crystals.
In one of them, r/Ag >> 1, which means that the distribution function
is much wider than the diffraction pattern from a single mosaic block.
In this case, secondary extinction is dependent on the parameter g.
This type is called a type I crystal. For this type, X is given as

X, 8 Qo T

The other type, in which (r/Ag) << 1, is called a type II crystal.
In this type, the diffraction pattern from a single mosaic block is
greater than the width of the distribution function W. In this case
the size of the mosaic blocks govern the amount of secondary extinction

and X, is given by
- =1 e
X, = rA Qo T

1f data from two wavelengths are available, the extinction para-
meters cbtained from each wavelength data set can be compared and the
crystal categorized into either type I or type II or an intermediate
type. In the case of the intermediate type, rA~' and g are of the
same magnitude and X is given by eq. (28).

Zachariasen noted that in the previous work on extinction and on
the determination of the parameter g, many authors assumed that the
crystals are of type I. Zachariasen suggested that in some, and
maybe in most of the cases, the crystals are of type I1I.

In this theory, Zachariasen made some approximations. For
example, 1t is assumed that the basic equations are correct in
describing the flow of energy inside the crystal, that equations (12),
(24), (17) and (23) are approximate forms, that the Laue form of the

peak profile function can be replaced by the Poisson function, and
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that the effects of absorption are taken into account by using an
effective path length T defined by eq. (25).
Because of the approximations involved, Zachariasen suggested

the functions

tanh /5;?/55
tan™! V3x/V3x (29)

=
i

<
il

as alternatives to eq. (18) for the form of y. All these suggested
functions cannot be distinguished theoretically, they cannot be
distinguished when x is small, but for x >> 1 there are significant
differences between them.

Therefore this attempt of Zachariasen to cover the entire range
of crystalline perfection by his general formulas for extinction in
real crystals needs to be tested experimentally. Zachariasen (1968)
tested the validity of the general formulas experimentally for two

crystals namely for hambergite and a-quartz crystals.

In Zachariasen's procedure, eq. (27) is rewritten as % = l"QO T

where r* = »/V1+(r/Ag)*? and therefore
= =1 T L%
x = (P, /P;) Q A7 T r¥ . (30)

The extinction correction may be applied either to the calculated
structure factors ]Fcl or to the observed structure factors iFoio

Then one has;

—e
c |FC! L1 & 2%1 ™ (31)

_'_.‘;
il

or

1Fct = ¢! IFOI Y% o+ V1 o+ x¥ (32)

where

X% = x/V142x .

o,

r*
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Then, Zachariasen's suggestion for extinction correction is to
find the scale factor C from weak reflections (zero or small extinction)
and then using eq. (30) to obtain r* for strong and extinguished
reflections. If the structure parameters of the crystal are not known
with sufficient accuracy, it is necessary to carry out a least squares
refinement based on eq. (31) or eq. (82) with r* as an additional para-
meter in the refinement.

If the measurements of the integrated intensities are carried out
by using two different wavelengths, it is possible to find out both
parameters r and g, which are characteristics of the crystal specimen.
If r.* and rg* are two values corresponding to different wavelengths

1

A, and A

1 2 then r and g are given as

- o v/ S 2. % 2N/(y 2 82 ____ 2 2
r rl‘r2" {Al A2 )/(Al r AQ r )

2 il

(33)

= S /) YA % 2 % 2 )
g = (r % %/A 1) YO = A7)/ (e # - 1, #)

In this way, the type of the crystal can be determined. In type I,
since rA”' >> g, r®* & Ag and in type II; rA~' << g, so r* = p,

Zachariasen calculated r® values for samples of hambergite and of
a-quartz crystals, using both MoKa and CuKa radiations and worked out
the parameters r and g, finding in both cases that the crystals were
of type II.

Further, he found out that the formula y = (l+2x)—% gives more
consistent results (i.e. r* is not dependent on the amount of extinction)
compared to the other two suggested functions given in eq. (29).

In the analysis of the fluctuations of individual r® values from
the mean in both erystals, Zachariasen noted that fluctuations have the
same sign, suggesting the discrepancies in eq. (31) are not due to

experimental errors, but due to departures from the spherical symmetry

of electron distribution due to band formation.
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From the results of the experiments, Zachariasen deduced that the
assumed isotropy in the shape and orientation of the domain is Jjusti-
fied for both hambergite and a-quartz, since there was no systematic
variation of r# with the orientation of the reflecting planes.

Zachariasen (1967) has also studied extinction in calcium fluoride.
Here, he found that the applied extinction corrections were not
sufficient to bring about a good agreement between the calculated and
corrected structure factors and he assumed the differences were due to
anomalous transmission (Borrmann, 1941).

Since this theory was published, many other tests, applications
and extensions of the formulae have been undertaken. Extinction
correction parameters have been introduced into many least squares
refinement programmes, e.g. Larson (1969), and such parameters are
often refined during the structure determination. There is no doubt
that Zachariasen's work has led to a significant increase in interest
in diffraction theory and accuracy of the structure factors.

Since the publication of the theory, however, many authors have
cast doubts on the validity of the basic equations used and of the
correctness of the mathematical derivations of the final formulae and
have questioned the assumptions often used in its applications.

As stated before, when an x-ray beam is diffracted by a perfect
crystal, a phase change of n/2 occurs during the scattering process,
Any diffracted beam which is rescattered back into the main beam will
therefore be out of phase with the main beam by . How the main beam
recombines with a many times scattered beam will depend on the number
of times the beam has been scattered. The diffracted beam will also
contain beams scattered many times. The intensity of the main beam
and the diffracted beam can only be determined by taking into account
these rescattering processes. In other words, the scattering prccess

in a perfect crystal is a coherent process.
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Zachariasen's equations, however, are equations involving intensity
only; the '"feedback" term is added to the main beam as an intensity.
Since the equations do not take coherence into account, it 1s unlikely
that they will be able to correct for significant quantities of primary
extinction. This was first pointed out by Werner (1969).

Another mathematical error, pointed out by Wernmer (1974) and
Becker and Coppens (1974) relates to the coordinate system used by
Zachariasen. Zachariasen's theory does not specify an origin of the
direction of the incident and diffracted beams tl and t2 respectively,
fig. (5). Werner used a coordinate system where x specifies the
direction of the incident beam and S specifies the direction of the

diffracted beam, fig. (8). The relation between the two ccordinate

systems is:

where Xy and Sa are the equations of the boundary. Werner showed

that the basic equations should be

i-.IE-.aI_O a_s_:-...UI + ol
atl 8t2 ax o]

ol ol X

3t2 Btl as

- ol + ol
o}

Comparison of these equations with those of Zachariasen (eq. 6), shows
that the second terms on the left hand side of these equations were
neglected by Zachariasen.,

It is of interest to note that Brown and Fatemi (1973) also
pointed out that the coordinate system used in Zachariasen's theory is
an unusual one, does not have a unique origin, and the use of this
coordinate system is not consistent with the basic differential
equations. But they also noted that the use of a correct procedure

changes very few of the results of Zachariasen because the error does
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not affect most of the special cases treated and because Zachariasen
selects his final form from several forms on the basis of their
correspondence with experimental data.

For the primary extinction corrections, Werner suggested that
the results of dynamical theory for slab geometry can be used as a
reasonable approximation.

One very important limitation of Zachariasen's equations is
introduced by defining the function ¢(c) as given in eq. (12). For
a crystal of unknown shape, ¢(c) cannot be described by a single
equation, In general, ¢(o) can be written as a polynomial in ot,
the coefficients of which are functions of the shape of the crystal
and the scattering angle. Zachariasen took this mosaic block to be a
parallel plate diffracting in the symmetrical Bragg condition and he
stated that it will be a good approximation for a sphere. However,
since the mosaic block shapes of a real crystal are unknown and since
the closed form of ¢(o) may not describe the angle dependence
sufficiently, this approximation may be quite invalid in certain cases.

Cooper & Rouse (1969) investigated the problem of the angle
dependence of the coefficients of the series for ¢(o) using a single

crystal of Ca F,_ and neutron diffraction data which appeared to be

2
suffering from severe extinction. They found marked angle dependence
in the extincticn coefficients for extinguished reflections and devised
an empirical equation to give a better agreement between their
calculated and corrected structure factors.

The shortcomings of Zachariasen's theory can be summarized as:

1. The basic equations dec not express the flow of energy in a
perfect crystal region, but they may be valid for real crystal case
in the case of only secondary extinction.

2. Zachariasen's coordinate system does not have a unique origin,

the coordinates used in the theory are only mutually independent if

the crystal is a parallelopiped with faces parallel to the incident
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and diffracted beams.

3. The approximations in eq. (12) and eq. (17) may not be valid
in most of the cases.

4. The use of only a Gaussian distribution of the orientation of
the mosaic blocks may not be valid.

5. Absorption effects cannot be treated separately from extinction
unless extinction is small.

Becker & Coppens (1973) reconsidered the theory of extinction in
a very similar way to Zachariasen's approach. They assumed that the
basic transfer equations express the flow of energy inside a perfect

crystal reasonably, using independent coordinates x. and X, based on

1
an external coordinate system. Further, they pointed out that the
reversal of the direction of the diffracted ray as was used by
Zachariasen was wrong and one should use the true direction.

They solved the basic transfer equations obtaining the same
solution for the function ¢(o) which was cbtained by Zachariasen for
the parallelopiped of fig. (6).

In the calculation of c(el), the result of Becker & Coppens

differs from the result of Zachariasen by the occurence of an additional

term sin26. The result for c(el) is given as

sin’ﬂsla
a(e.) =Q v! f dva
1 v 2
(me.a)
1
where o = &.E%EZQ » % being the thickness of the crystal parallel to

the diffracted beam and the other symbols having their usual meaning.
This theory was applied to the parallel plate and spherical
crystal cases. The result was in poor agreement with the result of
dynamical theory in the parallel plate case. From this Coppens &
Becker concluded that the basic transfer equations do not express the
flow of energy inside a parallel plate shaped perfect crystal. The

thecry gave reasonable agreement with the lst order approximation
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results of dynamical theory in the case of spherical crystal. yp was
calculated by numerical integration over a gaussian grid and using

the expression

2
A(0)x* -2

yp =1+ 2x4 1+B(8)x

the 6 dependence A(68) and B(8) were found by means of least squares
1%, The generalization of the theory for real crystal case was done
in the same manner as Zachariasen, but because of the additional sin26
dependence in c(el), the type of the crystals defined by Zachariasen
became less defined and it was suggested that crystal type varies with
Bragg angle. On the other hand it was suggested that in type I
crystals one should include the effect of primary extinction using the

approximation:

which has been used by various authors.

In the generalization of the theory for secondary extinction it
is necessary toc use the convoluted value o instead of o. In the
calculation of o Zachariasen used a Gaussian distribution function
which governs the distribution of the orientation of the mosaic blocks,
eq. (3). Coppens & Becker used both this function and a Lorentzian

distribution which is given by

= 1 A 2 2
Wy 2g/(1 + Y €, 8 )

From the comparison of the results and from the measurements using
y-ray resonance (Maier Leibnitz, 1972), they suggested that the actual
distribution is more closely Lorentzian than Gaussain.

As described before in his theory, Zachariasen states that
primary extincticn will be generally negligible for the large structure
factors when the block size is less than 10"*cm and secondary extinction

will be dominant and this is the case for most of the experiments.
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However, in some of the experiments, the block sizes deduced from
various materials were greater than 10™*cm implying primary extinction
is taking part, e.g. hambergite (Zachariasen, 1968), calcium fluoride
(Zachariasen, 1968).

Denne (1972), using a-glycine crystals of different sizes showed
that the amount of extinction in these crystals was independent of
their shape and size, suggesting primary extinction is dominant.

Lawrence (1972, 1973), investigated extinction on large parallel
plates of 1ithium fluoride and magnesium oxide whose cross-sectional
areas were much larger than that of the incident beam. It was noted
that the intensities of symmetry equivalent reflections, after the
application of transmission factors which take into account abscrption
and the different volumes of the crystal irradiated, were the same,
regardless of the path length through the crystal, implying that the
extinction was of the primary type. Therefore, only one mosaic block
was diffracting a parallel monochromatic beam at one time. Using
Zachariasen's primary extincticn correction, a mosaic block size of
3 x 10”°cm was deduced for lithium fluoride which corresponds to a

* which well agreed with the value given

dislocation density of 10° em™
by manufacturers of the material. For Mg0, Lawrence deduced a mosaic
block size of 3.56 x 10"%cm which is again far larger than the
minimum size of block required to ensure that only primary extinction
was taking place.

Killean, Lawrence and Sharma (1972) investigated extinction using
a small spherical LiF crystal which was from the same batch of material
as used by Lawrence. Assuming only secondary extinction, a mean
radius of mosaic block of 1.5 x 10"%cm was obtained. Comparing this
value with the value obtained from a strain equation and the value

obtained by Lawrence, it was deduced that Zachariasen's procedure gave

a physically unreasonable value for r¥.
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As stated before, primary extinction is a coherent process and in
secondary extinction no coherence is assumed between the rays diffracted
from various macroscopic regions of the crystal. As can be seen from
egs. (18) and (27) the mathematical form of the primary and secondary
extinction corrections are very similar. If a particular data set
which was affected by extinction was corrected assuming only primary

extinction, a mosaic block size r would be obtained where

where A is a constant for a particular reflecticn. If the data set
was then corrected assuming secondary extinction (type II crystal), a

mosaic block size v would be obtained where

Due to the similarity of eqs. (18) and (27), the correction would be
equally applicable for both types of extinction and the mosaic block

sizes would be approximately related by

2 i
2 = ol
rp = (3)'[' 2,

According to this relation, if a block size of 107*cm is cbtained
assuming secondary extinction only, for a crystal of T = 0.02 cm a
block size of 2 x 107%cm would be obtained assuming primary extinction
only. Therefore, in this case, the block size deduced cannot be used
as a justification of the assumption that only secondary extinction 1is
taking part. Identification of the type of extinction can only be
done by testing the variation of extinction with path length, Lawrence

(1974).
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CHAPTER 2
Introduction:

Al though Zachariasen's equations have been generally
applied in many cases, doubts still exist as to their
validity. These doubts can only be resolved experimentally
and there still remain two fundamental acuestions regarding
the applicability of the equations. These questions
are:

1) Is it possible experimentally to differentiate
between the two types of extinction, primary and secondary?

2) Do Zachariasen's equationsyield physically signifi-
can parameters?

In an atterpt to answer : these cuestions, a study of
the large crystals of D(+) tartaric acid was undertaken.

An attenpt was made to determine the type of extinction -
‘present Qnd to investigate the physical parareters obtained
from the application of Zachariasen's equations.

An intensity measurment project to test the accuracy
of structure factors measured by different laboratories
had been designed by the International Union of Crystallo-
graphy, (Abrahams, Hamilton and llathieson, 1970). In this
project, seventeen sets of measurments of structure factors
of D(+) tartaric acid, within the range Gﬁ%@.)(O.S A3,

were provided by the participants. Each participant used
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a different crystal, all being derived from a single
crystallization bateh. In the report of the project,

all data had been put . on the same scale by the method

of Hamilton, Rollett and Sparks (2965), and the differences
between the sets in relation to a number of variables,

such as intensity, Braggengle, indices of reflections,

were examined and the report arrived at certain general
conclusions.

Later, liackenzie (1974) reduced theanriori assumptions
to a minimum, worked out the differences between sets of
structure factors again, and came to the following conclusions-

1) There were systematic structure factor dependent
differences in the structure factors derived from different
single crystals. Thése differences were beginning to be
apnarent at medium values of structure factors and were
increascing to be about 15% of the structure factor for the
largest structure factors.

2) These differences were not due to improper scaling
or other errors in data reduction and the angle
dependence of these differences was minor.

3) The differecnces were probably wavelength dependent
but there was not encugh data to check this.

4) They were not due to differences betwecen the
apparatus or measuring technigues used.

It was therefore concluded that the differences
were consistent with extinction. The very large variation
in the intensities obtained by different participants
emphesised the importance of extinction in the measurment
of accurate structure factors and, in view of the results

obtained in the project, it was decided that D(+) tartaric
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acid would be an excellent material on which to investigate
extinction.

Recent investigations into extinction in many materials
have been carried out e.g. hambergite, ol~quartz, lithium:
fluoride, calciumfluoride (Zachariasen 1968a, 1968b,1968c),
calciumfluoride (Cooper, 1970), bariumfluoride (Cooper,
Rouse ahd Willis, 1968), strontiumfluoride ond calcium
fluoride (Cooper and Rouse, 1971) and many other materials.
In these studies, the integrated intensities were measured
from small crystals, completely bathed in the X-ray beanm,
and a least squares. routine which included extinction
parameter as an additional parameter, was applied to the
data. This method was thought to be unsatisfactory for
the following reasons:

1) With small crystals, it is not usually possgible to
test the variation of extinction with pathlength satisfactorily.
The variation of the pathlengths of different reflections
is usually quite small unless one of the dimensions is
large. Without atest of the variation of extinction with
path length, primary and secondary extinction cannot be
distinguished.

2. If the crystal is of irregular shape, absorption
corrections cannot be accurately apnlied.

3) The use of a least-squares rouvtine implies an
established mathematical relationship between extinction
and intensity. Since the experiments are being done to
establish this relationship, some other method of analysis
should be used.

The firstexperimental obscrvations on extinction

were carried out on large plates of sodium chloride,
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(Bragg, James and Bosanquet, 1921). The object of these
experiments was to find accurate structure faétors from
rocksnlt and to ¢check the intensity formulae which were
succrested by Darwin (1914). Large parallel plates of sodium
chloride of various thicknesses with cross-sectional areas
larger than the incident X-ray beam were used in the
experiments. Accurate intensity meagurwents were obtained
and absorption corrections apvlied. Extinction was
regarded as an increase in the effective absorption
coefficient and, analysing the variation of absorption
coefficient with the thickness of the crystals, extinction
coefficients were obtained for strong reflections. It
was assumed that the integrated intensity, R, for a
reflection was given by

R = qp o~ K+eQ)T
where Q is the reflectivity and T is the pathlength of the
rays through the crystal. As can be seen, the normal
absorption coefficient has been replaced by an effective
absorption coefficient, ', given by

M= J+ 6Q

and it was found that the amount of extinction was

bl

proportional to the reflectivity. By repeating the
measurments for different thicknesses and for different
degrees of perfection (which was obtained by different
amounts of grinding) of the crystals, the variation of
extinction with thickness and perfection was investigated.
The use of large crystals of regular shape having a

cross=sectional area larger than the X-ray beam has the

following advantages:

1) The variation of extinction with pathlength
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through the crystal can be adequately investigated and this
is the only way to determine the type of extinction i.e.
whether it is primary or secondary, e.g. Lawrence (1972,
1873 )s

2) Absorption corrections are exact apart from any
errors in the absorption coefficient M. In the case of
small, arbitrary shapes, it is very difficult to measure
precisely the dimensions of the crystals which are very
important in the calculation of the corrections. The
usual way is to evaluate absorption integrals approximately,
using numerical methods for the arbitrary shapes, which
may contain significant errors in most of the cases. In
large plate shape crystals one does not need to deal with
these complications. Absorption corrections are given by
simple formulae and as long as the thickness of the crystal
is known accurately, absorption corrections can be calculated
in a straight forward manner.

3) The results are not dependent on the uniformity of
the incident beam.

4) Intensities can be measured on any conventional
diffractometer and, since the diffracted intensities are
much larger compared to the diffracted intensities from
small crystals, the accuracy in measurment is greater.

5) Grinding the crystals to special small shapes can
affect the perfection of the crystals in an irregular
manner.

An attempt was therefore made to grow large, parallel-
plate shaped crystals of D(+) tartaric acid having uniform

thickness.
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Growth of the crystals:

In order to obtain large, plate shaped D(+) tartaric
acid crystals different solutions were tried and the best
results were obtained from an agueous solution. - Crystals
of D(+) taftaric acid were grown from saturated aqueoﬁs
solutions by evaporation and many crystals of various
thickness with a large cross-sectional area compared to
X-ray beam and which were considerably more uniform than
the others were chosen.

From the oscillation photographs and measurments by
microscope it was found that all' of the crystals were
grown in the same way having thicknesses between 0.2 mm
to 0.5 mm along the a axis.
Apparatus:

Quantitative intensity measurments were carried out
on a Siemens four-circle diffractometer which has four
setting circles, ¢ , Xyw and 26 circles. w and 20 circles
are coupled together with a ratio 1:2, reducing the number
of setting circles to three. This diffractometer has a
quarter X circle, fig (9). The detector is controlled
by 2¢ circle which i1s mounted such that it lies in the
equatorial plane. The crystal is mounted on to a shaft
perpendicular to this plane with an adjustable goniometer
head, whose rotation is controlled by the @ circle.

The apparatus has a normal beam equatorial geometry,
both the incident and diffracted beams lying on the
equatorial plane. In order to bring any reflection(hkl)
into diffracting position, thereciproaml lattice point
should be moved to a corresponding point on the Ewald
sphere by & rotation and then this point can be moved to

the equatorial plane by X rotation.
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#, X, and W circles aredriven by three stepping
motors, step size is O.qu and this corresponds to a-
0,029 atep size on 20 circle. Settings are checked by
means of digitizer drums.

The diffracted intensity is received by a scintilla-
tion counter. In order to prevent lost counts in the case
of large-intensities which can exceed the capacity of the
counter, an attenuator system is placed in the path of
the main beam. This system consists of a disc,attached to
the X-ray tube,which can revolve arowid its axis. This
disc has six holes, five of them containing different
attenuators for the progressive attenuation of the main
beam. In the path of the main beam there is also a
second disc containing the Kp filter and the shutter. 1In
the experiments the beam was monochromatised by a graphite
monochromator.

The coupling of W and 26-circles together with the
‘ratio 1:2 is called "moving crystal - moving detector
scan" or "¢ -20" scan. During the experiments this scan
was employed. In this method, as crystal:rotates through
an angle (B—Aé) to (6+09) about the exact Bragg angle,
the detector meves through an angle (26-200) to (26+288).

All of the input and output channels of the Siemens
four-circle diffractometer are connected to an IBI-1130
computer with an interface and it is controlled by this
computer executing automatic data collection programs.

The programs are stored in core image on the computer

disc.



Data collection programmes:

DSET4:

The programme DSET4 is mainly used to facilitate the
crystal setting. Using this programme, many operations
which are required for automatic data collection can be
performed singly, .e.g. setting the circles to their zero
positions, setting the circles to a given angle, inserting
any of the six attenuators in the path of the main beam,
determination of the orientation matrix, measuring the
integrated intensity of a given reflection. Each one of
these operations can be called using the switches on the
keyboard of the computer in any sequence. ‘

One of the most important functions of DSET4 is the
determination of orientation matrix. Orientation matrix
is the relation between the original position of the crystal
on the diffractometer and the diffracting positions. 1In
automatic data collection, the @, X, and & values for a
certain reflection are calculated from the orientation
matrix. DSET4 contains two versions of orientation matrix
determination. In one of them, orientation matrix is
determined from the manual determination -of the &, X and
© values of any three non co-planar reflections while in
the other one, orientation matrix is determined using the
g and K values of only two non co-linear reflections and
the cell parameters. After orientation matrix determina-
tion ¥, X and 6 values for any reflection and the reciprocal
and the reallcell parameters can be extracted.

'Using DSET4, the measurment of integrated intensities
can also be done for any of the reflections. A five-point

measurment cycle, which will be described later, is used



=39
in the measurments of integrated intensities. The ohly
difference under DSET4 is the step size and time required
for each step is not flexible and has to be given as input
data initially. It is also possible to obtain line profiles-
for any of the reflections.
DIFFS:

Programme DIFF8 controls the diffractometer during
automatic data collection. In this programme from the
orientation matrix, from the information about the segments
of reciprocal space to be measured from the minimum and
maximum values of 20 required, from the order in which the
indices are to be taken and from the specification of
systematic absences, reciprocal space is explored in a
systematic’ manner. The @, X and © circles are driven
automatically to the angles calculated from orientation
matrix which is given as input data. By counting for
0.5 sec. at the peak of the reflection with the thickest
attenuator in use, the correct attenuator setting is made,
in order to make sure that the maximum counting rate of
the detector is not exceeded, sb lost counts are prevented.
If the rmeximum count rate is exceeded the measurment will
be done the thickest attenuator in use, but this will be
indicated in the output data. In these reflections lost
count corrections will be necessary.

The integrated intensities are measured using a five-
point measurment cycle about the exact Bragg angle. The
range of scan is

(i&8)=P+Qtan8
where Piand Q are specified in the input data. The scan
is in steps of 0,009, Counting time for stevs is related
to the counting statistics and accuracy of measurment.

Calculation of the time per step isas follows:
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A trial time per step q, a maximum time Tm per
step, a pre-stated percentage accuracy p and a percentage
accuracy Pe for the weak reflection criterion are
specified in the input data. Times are expressed as
integers, where integer 1 corresponds to 5.4x153 sec.
First, the reflection is measured using the trial time
per step q and a time per step T is calculated ensuring
the required accuracy p. If T is less than Tm, the
reflection is then measured.using this time per step. If
T is greater than-Tm, an accﬁracy p’ for the reflection
is calculated if it to be measured for Tm. If p’ is less
. than the weak reflection criterion Pc, the reflection is
measured using Tm as time per step. If g‘is less than P
then reflection is not measured and is considered to be
absent.

Then, in five-point measurement cycle (fig. iO), the
detector measures the helf pezk Il’ meesures the background
j% then measures the full peak I3, then measures again
background B2 and half peak 12 in steps of 0.010, using
the range and time per step described above. The time
spent for measuring the background counts is half the fime
for measuring the peak. Therefore the integrated intensity

for the reflections on the same scale will be given by

¥
o* 13) - 2( B, + Ba)}x -

where ¥ is the attenuator factor and T is time per step.

I= [(I1+ 5

In using DIFF8, repeating the measurments of some
standard reflections after each set of n reflections
where n is specified in the input data, it is possible

to check the overall stability of the system.
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Data Collection:
Data was collected for all seven crystais using
CuKer radiation and, for four of them, data collection
was repeated using MoKec radiation.
Experimental Conditions for CuK« data:
Applied voltage = ‘35 KV

Current = 20 A

]

Trial time per step 0.54 x 10° sec.
Maximum time per step = 0.54 sec.
Percentage accuracy = 2%

Weak reflection accuracy = 20%

For MoK« data apvlied voltagewas 490 KV and the current

was 18 mAa and the other conditions were the same as in

CuKx data.

The crystals were first set on goniometer heads using
glass fibres. Oscillation photographs ensured that all
of them have b axis as the oscillation axis. By taking
oscillation photographs successi#ely, the required cor}ec-
tions were done in the setting of the crystals on the
goniometer heads.

Vhen the automatic data collection was being carried
out for the Tirst crystal, it was noticed that the back-
grounds and halfpeaks on both sides of the diffraction
peaks were highly asymmetric. It was concluded that the
diffraction peaks were not centered because of a fault
in diffractometer circles. The scan was covering the
whole peak, therefore it was possible to measure the
‘integrated intensities, but because the peaks were not
centered, automatic setting of attenuators in some of the

reflections were incorrect, leading to lost counts. It
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was decided to centre the peaks manually and to carry out
integrated intensity measurments using the programme DSET4
instead of automatic data collection procsramme DIFIFS.

Using Cukx radiation, for all seven crystals, data
was collected by centering the diffraction peaks manually.
All of the integrated intensities of(0kxl1) and 0Okl) reflections
were measured up to a © value of 700 using the programme
DSET4.

During the data collection using MoKx radiation, the
automatic data collection programme DIFFG was employed,
the fault in the diffractometer arcs having been corrected.
The checks on the diffraction peak shapes showed that the
peaks were symmetric and properly centered. For four of
the crystals, for the same reflections as in the CuKx data
collection, the integrated intensities were measured.

Data reduction:

The attenuation factors were measured in a seperate
experiment. In this experiment, one weak and one strong
reflection having the attenuator 1 and attenuator 3
respectively during the data collection, were chosen.

Using a long time per step the integrated intensities

were measured, setting attenuators 1,2,3,4 for the weak

reflection. From the ratios of these integrated intensities

to the integrated intensiies obtained using attenuator 1,

attenuation coefficient were found as
1:2.062:4.0189:7628:25.877:36.837

These attenuation coefficients were applied to the raw data.

The square of_theobserved structure factors, IF012,
were obtained from the integrated intensities, R, from
the equation

R = ciFo|? 4 (1p)~1
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where A is the dbsorption correction and (Lp)_l is the
Lorentz nolarization correction. .

All of the reflectionsused were symmetrical Laue
reflections i.e. the diffracted beam emmerged from the
cryatal at the opponite face [rom the incident beam and all
path lengths through the crystal were the same for each
reflection, (Fig.ll). For this geometry the absorption
factors are given as

A = (t/Cos8)exp(-pt/Cosb)
where 4is the absorptioncoefficient and t is the thickness
of the crystal.

To apply the absorption corrections one nceds to.know
the thickness of the crystals accurately. The meaguremmﬂm
of the thicknesses of the crystals were difficult and a
method of measuring +t was therefore devised. In this
nethod crystals were placed normal 1o the incident beam
and the transmitted intensities I through the crystal
were measured. The incident intensities Io with crystal
removed were also measured in each case to eliminate the
nossibility of long term variations in the incident beam
intensity. Then the values of #t were calculated from

At = 1n(Io/I)

The value of mwas determined from the International

Tebles of Crystallography vol IV (1974).
1

Il

For Cuk« radiation 14.82 em
For ok« radiation = 1.619 cm +
Even with the thick attenuator in use, the intensities
were very large in these measurments. There fOre a copper
foil was introduced in front of the detector aperture in

order to prevent lost counts. Ieasurments were carried out
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using CuK« roadiation for all of the crystals. For four of
them again, the measurments were repeated using IioKer

B

radiation. In order to get rid of the (%/2) radiation,
the power of the X-ray tube was cut dowvm reducing the
applied voltare to 34 KV which does not excite (/\/f‘)
radiation for lioke radiation. This was not possible in
the case of CuXer radiation.

FPor six of the crystals, the thicknesses obtained

using CuK« radiation were

for Cryotal ) o= .0455 em
for Cryotal 2 s t? = 00406 cm
for Crystal 3 : té = 0.023 em
for Crystal 4 - t4 = 0.,0217 cnm
for Crystal 5 % t5 = 0.0204 cm
and for Crystal 6 : ts = 0.01923 cm

In the same way, using MoK« radiation the thicknesses

obtained were:

for Crystal 1 : tl = 0.0458 em
for Crystal 2 2t = 0.04028 cm
for Crystal 4 3 td = DL0223 en
and for Crystal 5 : té = 0.01966 cm

After the comparison of above results with each other and
with the values measured through the telescope of the
diffractometer, thicknesses of the crystals were taken as:

0.046 em
0.040 em
0.023 em
0.022 cm
0.0197 em
0.0192 cm

[ I [ 1

1l

ct ot o cf cF
O\ w o

I

with a maximum percentage error of 3% on each.

Using these values, the transmission factors were
calculated for each reflection and the absorption corrections
were applied to the raw data for all of the crystals.

The structure of D(+) tartaric acid had been refined

by Okaya and Sterple (1966) and a2lthough the calculated

structure factors may not have been correct because ofextinction in
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the observed data and possible inaccuracies in tne least- squares
process , i1 was assumed that they were approximately on an
absolute scale.

M the other hand, it was thought that, if the average
value of the structure Lactors obtained in different experi-
rents using IloKx radiation, in the project of International
Union of Crystallography is taken, it will provide a better
set of structure factors since the data will be less affected
by extinction. Therefore it was decided to scale these
average values of structure factors to those refined by
Okaya and Stemple and then to scale the raw data to these
structure factors which are now assumed to be on an absolute
scale. Scale factors were found using small structure
factors which may be affected by small extinction only

and the data sets were put into absolute scale applying

After these corrections and scaling, the symmetry
eguivalent reflections were compared in each set, calculat-
ing the reliability factors between{ oxl) and( ekl) sets.
Reliability factor for the nth data set was

R =ZFgn)! ¢ - IF(ox1)) ?) /5 1F (o1 *

In one of the seven crystals, the differences between
symmetry equivalents were large in most of the reflections,
suggesting that this crystal was not uniform. This data
set was therefore rejected. The differences between the
symmetry equivalents were large in the (002) and (011)
reflections in all of the crystals. These reflections
were omitted from the data. Apart fror these, the reliab-

ility factor Rn were



‘ bib. (Cuky) » < bﬁb. (MoK ) ——>

hkl crysl|crys2| crys3| crysd |crys5 cry36!crys1 crys2|crysd |cryshH Fi
001 [0.8 |1. 0.8 |0.71 |0.91 [0.84 [2.3 |2.3 [2.3 [1.76 |0.76
002 [163.6[218.2| 197.5]261.3(345.2]|261.2|[637.9]538.5[701.9|787.8[911.2
003 9.3 (9.5 |9. 9.9 |11, 104 1T Pt 10T 114 1 12,3
004 |[172. |226.6|206.8|228,8|265.1 249.? 400.9(379.31412.61427. | 439
005 (9.6 (9.8 |9.6 (9.7 [9.6 |9, Mab {716 113 (1147 [11.2
006 |32.5 [32.4 |33.4 |33.9 |35.3 [36.6 [39.5 |39.5 [39.9 |40.1 [40.3
012 | 60.7 |66.5 [70.2 [71.2 |78.6 |78.9 ||101.5/97.8 [101.5]|104.6|108.3
013 [ 134.6[164.1|169. |175.4|204. [202.3]|275.3|263. |280.4{291.3| 310.1
014 | 18. 16.%3 [18.1 |18.4 |19. 20.6 [22.9 [22.7 |22.8 |23. |22.8
019 | 22.9 [23.2 [23.3 [|2%. [24.2 |26.5 (|26, |28.5 [28.7 [28.5 |29.4
016 | 31.6 [3%.8 |55.4 [56. |35.8 [35.4 [37.4 |38.5 |38.2 |%8. |36.2
021 | 25.8 [27.1 |28. |28.8 [29.3 [32. [38¢3 |3TT |37.2 |37.7 |34.6
022 | 13,7 [13.5 [13.6 [13.T [13.9 [|15.4 [[17.6 |17« [17.3 [17.4 |24.1
023 |108.8(129.6[138.7|132.7 |150.9/149.1/153.4|168.8{193.2 [199.3|188.2
024 |72.7 |79.3 [82.2 |79.7 |86.9 [91.4 |[109. [108.4(/109.3|110.4|114.6
025 |20.2 [20.9 [21.2 |21.3 [21.4 |22. {|24.9 |25.1 |24.9 |25.3 |26.8
031 | 166. [195. [226.3]|209.6(236.1(|244.6[330.5|3%0.7(347.6|350.2|364.4
032 | 33.1 [34.5 [35. [35.6 [36.2 |40.2 [46.9 |46.4 |45.9 |46. [46.2
033 | 58.8 |05.8 |6T.9 |65.5 |70.8 [76.4 |91.8 |[89. |88.8 [90.3 |90.5
034 |11.6 |11.6 |11.9 [12. [12. [13.2 [[14.4 |14.2 |13.9 [14.2 |13,
035 (3.5 |4. 3.9 4. 3T |4 4. 4. 4.1 4. 3.5
041 |26.8 |27.7 |27.1 |27.7 |27.8 |31.2 [137.5 |37.9 [37.4 [36.9 |37.9
042 | 15.2 |13.6 |13.6 [14.2 |13.6 [16. |[18.1 |17.7 |17.8 [18. |20.
043 |[29.1 |30. [30.9 |31.5 [32.2 |34.T (|38.3 |38.2 |37.8 [38.8 |38.3
044 | 51.4 [56.1 |59¢4 [58.6 |59.6 [63.7 [76.6 |74.8 |T4.4 [15.5 |76.8
051 | 140.4 |157.7[165.9]163.8 |173.9(182.9(1247. [257.4(255.2 |255.3|26€.3
052 | 13.9 [14. [14.3 |14.8 [14.2 [16.1 [[17.6 |[17.4 |18.4 [17.9 |19.2
053 | 494 [54.9 |55.6 |54.5 [56.7 [59. [72.7 [71.8 [70.T [T2. |73.8

Table 1
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Por Cullet radiation:

h‘1 0.0247
Ry, = 0.0544
it'2 = 0.0248
Ra = 0.0384
R = 0.0323
RZ = 0.0726

adiation

—

And Tor ok

ltl = 0.0247
R2 = 0.0603
R4 = 0.0417
R5 = 0.0311

‘These values were thought to be satisfactory in view
of the 2% counting statistic accuracy. The lFobj2 values
of the symmetry equivalent reflections were averaged and,
therefore, the }Fob].2 values of okl reflections for six
crystals of different thicknesses, using CuKot radiation
Tor a2ll of them and using l'oKs radiation for four of then,
were obtained. These velues are shovn in table (1).

To compare the consistency of the experiments the Rjj
values were calculated between the sets of data, for small
intensities only, since these reflections will have small
cextinction.

The %J values for intensities are pgiven by;

2 2 2
= - ]
R 5 =ZNF) - \F\ V)
Prom this R1j valiies were obtained for Culx

4}
o}
ct
@]
£
4]

R13 = Cr.O'%Q(J
Ry = 0.0530
R4 = 0.0964

thicknesses of the erystal, sugzesting that, although

n the calculation of Rqj were low,

i-]i

1]

the intencities used
there was still a thickness devnendent effect which could
have been caused by sccondery extinction, even at these

low intensities.
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The Ry values obtaincd Tor MoKer sets were sraller;

= 030163

AT A Te T B EA
« £ 5

e .

ML.0243

-— ed
s rg

Any thickness dependence ic not detectable but when
cowprored Lo Lhie By valuen in Culer eoce, iL othrongly
aueceats that Lhe diillerences belween Lhe scelba ol dola
are wave lengsth devendent. The R13 valuegs cobtained were
thought to be reasonable. With an average 2% cerror in
|Fob) , the data sets were consistent with each other.

Insvecticn of the scaled deta showed that, at least
for CuKee radiation, the strong reflections seemed to be
Tairly strongly extinguiched. Investigation was corried
cout to determine the [ollowing pointo:

1) How did the thickness of the crystal affect the
amount of extinction?

2) Vias it vossible to determine whether the extinection
was secondary or nrimary?

3) Could a metheratical ecuation describing extinc-
tion be found?

In the investigation, Zachariasen's vrocedure was
initially assumed to be wvalid, that is;

y= (B /802 =( 1+ 2x )72

where Fk is the kin emztic structure factor. The &average
values of the observed values of the structure factor |Fobl,
«f the oK« dnta, which was obtained froir the inter:utionai
Union of Crystallograshy srojeet and had been nut into

an apvrroxirate abcolute secale, were taken as Flk values.

Assumineg only sccondary extinction, for interiediate type
3 N, . r LI
x is =iven by ea. (390), Tor tyve I x is given by

x = gqT , (34)
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Q x 10

crystal 1

crystal 2

crystal3

crystal 4

crystal 5

crystal 6

2
1/y

QT

1/y°| QT

2
1/y

QT

1/y°

QT

1/y°

QT

2
1/y

QT

o w

[SATEEER S N - S -9

1557.8
1477.9
12771
954.9
699.4
636.8
400,2
278.0
316.3
144.6

6.51
4.81
530
3.60
2.99
3.18
2.48
2.23
2.36
1.53

82.5
74.0
63.8
57.9
36.0
30.4
2242
18.3
17.2

10.1

5.75]72.6
544916541
3¢57 (5641
2.85(50.9
2,11(31.6
2.6526.7
2,08 (1945
1.87 [16.1

1.88 [15.1

1.54 | 8.9

4.50
4.40
3.36
2.57
1.84
2.38
1.94
1.67

415
37.2
32.0
29.0
18.0
15.3
1141

9.2

8.6

5.1

5.68
3.02
3.12
2.64
2.01
2.31
2.07
1.71
1.90

1.41

40.2
36.0
31.0
28.2
17.5
14.8
10.8

8.9

8.4

4.9

2.74
2.38
231
2.34
1.56
1.90
1.73
1.66
1.63

1.30

355
31.8
27.4
2449
1545
1371
945
(s
Te4
4.3

3.09
Ze22
2.35
2,12
1.59
1.88
1.57
1.45
1.40

1.21

54,6
31.0
26.7
24.2
151
12,7
9.3
T.7
7.2

4.2

Table 2
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and, for tyve II,
x =7\-1. rQT (35)
Assuming only n»nrimary extinection, X is given by
x = (3/2)(x°/3) @ (36)
For ceccndary extinction, since
(1/y)% =1+ 2x ,

2
will be linearly dependent on (QT), while for primery

]
(*;?)
extinction, it will be linearly devendent only on Q and

there will be no dependence on T.
For allof the data sets thch/ﬁbﬂlucs were calculated
from
(1/9)% = (¥ /7))
ukKe data:

1
The @Q,.QT and —svalues of the ten most extinguished
¥

reflections are shovm in Table (2)

(a) Assuming only secondary extinction:

FPor each crystal, the values of (1/?)2were plotted
against QT. These are shown in fig. (12). It can be
seen that there are significént depertures from linearity
but the nattern of the points was very similer for each
graph. 1If, strietly following Zachariaaen's theory, &
ctrairght line is drawn passing thoush the origin (ZL/_y2: iR
and best fitting the points vlotted, the pattern of the

points above and below this line is very seimilar for each

1
(=]

crystal. In each graph, the points representing (031),
(051) and (023) reflections lie below the line, the points
representing (006) and (044) lie close to the line and

the noints representing (033) and (012) lie above tﬁe
line. If Zachariasen's theory is correct, this would

strongly sugeest that the points ere being affected by



Crystal Gradient (x 106) Thickness( cm.)
1 0.062 0.046
2 0.040 0.040
3 0.068 0.023
4 0.065 0.022
5 0.050 0.0197
6 0.050 0.0192
Table 3
Possible variation of Absolute deviation from
individual gradients the mean gradient
Crystal (= 106 ) ( x106 )
1 0.0123 0.0060
2 0.0051 0.0160
0.0125 0.0120
0.0112 0.090
5 0.0105 0.060
6 0.0079 0.060

Table 4
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o

systematic errors, alrost certainly in the calculated
t

structure factor volues, which were used to calculate the
Q and y vealues. Obviously, ancther alternative is that
Zaocharincen's theory rmay not deseribe extinction properly
and the distribution of the points may be a ewrve, instead
ol n shvaisht line pagcing throush the origin or onclh
reflection is affected by a large angle dependent factor.
Hue to these systematic errors, it was thought that a
least~-squares solution for the best straight line might

not be cpprooriate and therefore the best straight line,

B

passing through the origin, was dravm about which the
points seemed to be best distributed.

If the mosaic character of the ecryctals wes identical

and if only secondary extinction was taking vlace, then

3

gradients of the graphs should be the sane. he gradients

of the granhs were neasured and are shovm in Table (3).

The average gradient and standard deviztion were

calculated and found to be ¢
(ms‘/ = 0.056 x 10

& = 0.0043 x 10°

An estimate of the possible variations of the gradients

of each individual graph and the absolute deviation of

each gradient from the mean are shovm in Table (4). The

possible variations in the individuel gradients are of

v}
o]
]
4]

the same order or greater than the gbsolute devieati
from the mean. The only exception was crystal 2. This
sugcests that deviations from the mean gradient may be
mainly because of the systematic errors in the calculated
structure factors but not because of different rosaic
characters. This may not be true in the case of crystal 2
1

which hags a gradient considerebly lower than the others.
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Excluding ecrystal 2, the average value of the gradients and

atondard deviation were found to be 0.059x106 and C. OO38¥10

reapectively, which dces not differ rmuch from the values

calculated inecluding crystal 2.
\SURR N

vinee the cerynlols vere grown in bhe  come vy, il

thought reasonable to acsume all of the erystols have the

same mosaic character, and it was decided to use

value of the gradients mg) = (0.0560 * 0.0043) x 10~ in
the calculation of extinction parameters.

Asowring the cryotals are of type I, from ca. (234)

28

{my

g

248 X 104

Assuming that crystels are of type II, from eq. (35)
(2 /)

{(mo
Ts = 4.3 x 1074 en.
b) Assuming only primary extinction:

The values of (l/y ) were plotted against
crystal. These are shovm in fig. (13). Again there were
significant departures from linearity, but the pattern
the roints were very sinilar in each gravh, the noints
corresponding (023), (051) and (031) being below any

possible best fitted line passing through the origin. Once
more, Jachariasen's theory was assumed to be correct and
these deviations were regarded as the gsysteratic errors-in
the calculated structure factors as in the secondary
extinction case.

Therefore the least-souares fitted lines were not used

end. the lineg nesaing through the orizgin and best fitting

he data were dravn zboutl which the points seered to be

¥

3 PO L T ot 7 - 3 a Pl . = oy oy
pest distributed. The hzad ents of the graph were measure
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Fig.13

Graphs of y_2 against Q for Cu radiation




Crystal Gradient (x 10% ) Thickness (cm.)

1 0.528 0.046

2 0.206 0.040

3 0.202 0.023

4 0.187 0.022

5 0.134 0.0197 ° .

6 0.126 0.0192

Table 5
hk1l Condition for r Condition for g
004 r<3.635 x 1074 cn. g <«2.36 x 104
031 r<3.95 x 1074 e, e42.42 x 10
013 re 4 x 1074 o, g«2.6 x 10t
05 1 r<d.63 x 1074 cm. g<3 x 104
‘023 re5.4 x 1074 e, g<3.5 x 10°

Table 6
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They are shovm in Table (5). Average gradient (myy and

standard deviation 6vp were calculated and found to be

(my = 0.197 x 10%
and
&. =0.027 x 104
p
from ca. (36)
(my =3x°/x
r, = (3.2 * 0.5) x 10 %cm.

The standard deviation in the averase gradient assum-
ing secondary extinction was 7.5% while, for primary
extinction, the standard deviation in the averase gradient
was 13.7% and this clearly shows that the assumption that
only secondary extinction is present yields more consistent
results. Also, inspection of Table (5) shows that the grad-
ients are thickness dependent. Thickness devendence of
the gradients in Table (5) is zlmost linear, the only
exception being the gradient of crystal 2 again, which does
not fit the pattern, having a considerably srall gradient
fbr its thickness.

As stated before, the integrated intensities of the
strong reflections were measured to an accuracy of two
vercent. Therefore the limiting measurable value of y can
be obtained fronm

8,0 a8 . 8wg By _
AF¢/FS _[__(rc-Fob)/‘c]_ 1 = y =0.02

from this

1~ L1 4 2x & 0,02

x = 0.02
This means that two vercent accuracy restricts the value of

x such that x <0.02 in order to be able to neglect primary
extinction. From this, for negligible primary extinction

the limits of r, and, using these limits and definition
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Graphs of y‘2 against QT for Mo radiation
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Graphs of y-2 against Q for Mo radiation
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hkl Qx106cm. crystal 1 |crystal 2 crystal 4 crystal 5
2 e P | @ 12| Q@ 1y® | ar
03 1| 3%1.13 1.216(15.44] 1.214|13.6[1.158| 7.7 1.120|T7.5
00 4|438.96 1.199|14.8 | 1.339(13.0|1.131| 7.4 1.057(7.2
01 3] 3%10.13 1.269(13.4 | 1.390(11.8(1.223| 6.7 1.133(6.5
05 1] 266.3 1.162(6.8 1.070 (6.0 [1.089] 3.4 1.088 (3.3
01 2]108.3 1.139 6.7 122%15:9 (1937 .35 1.072 (3.2
02 4 |114.57 1.104 [ 3.4 1.116 |3.0 [1.100]|1.7 1.080 (1.6
04 4 |76.83 1.005 (1.8 1.054 [1.6 [1.066|0.9 1.037 [0.88

Table 7

Assuming secondary extinction

Assuming primary extinction

Crystal Gradient(x104) Crystal | Gradient
1 2. 1 375
2 2.75 2 541
4 2.62 4 875
5 175 5 541

Average gradient <ms}mo
=2.28x10

Standard deviation (6_)
s’mo

=0.242 x 104

Assuming type I

- 4
(g)mo = 1.14 x 10

Assuming type II

b

0,81 x 407F ems
S5°mo

Average gradient (mg“

=583

10

Standard deviation (s~ )
p’mo

=10

5

_ -3
(rp)m0 = 1.17 x 10 | cm.

Table 8
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of tyve I crystal (FAg » 1), the limits of g. were calculated

for strong reflections. Results are shown in table (6).

Comparison c¢f the values in table (6) with the valuesl
obtcined assuming secondary extinction only, either type I
or type II, shows that at least for strongreflections
primary extinection is not negligible if Zachariasen's
parameter have physical meaning.

MoK data:

The most extinguished seven reflections, their (l/&g),
Q and QT values are shown in Table (7). As in Culx data,
the values of lﬁy2 were plotted against QT assuming only
secondary extinction is taking part and were plotted
against Q assuming only primary extinction is taking part,
fig. (14). Again assuming Zachariasen's theory is correct,
the departures from linearity were regarded as the system-
atic errors in the calculated structure factors aond the

best fitted lines were dravn as in Culkx data. The results

0
cl
0
i3
®
H
O

e graphs are shown in Table (8). The

y
m

rom the
deviations (6s)mo and (6p)mo lead to 10.6% and 18% errors

in the mean respectively, implying the lines dravm assum—
ing secondary extinction only fit the data bvetter.

If the crystals are of type I or type II, the values
obtained should be connistent Tor both Cu and i'o radiationc.
Comparison of the results in table (8) with the results
in tables (3) and (5) shows that this is not the case,

possibly sugresting the material is of an intermediate
type. Therefore, using (rs)cu and (Ts) mo as *1* and x5
in eg. (33) respectively, the varareters® int. and € in

were calculated assuming the materizl is of intermediate

type

rint. = (1.? 1' 003 ) X 10 -4 cm.

-

8int. = (1.03 + 0.15 ) x 10
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However, the discrepancics in the g values are iess than
those for ther wvalues suggesting that the crystal may
tend mare towards typd ‘than type II.

It can therefore be concluded that the extinetion in
the data sets is probably predominantly secondary since a
path length dependence has been detceceted. By studying
the extinction at two wavelengths, it has been shown that
the crystal is neither a type I nor a type II crystal but
conforms to an intermedi.ate type and therefore values of
block size and of mosaic spread have both been estimated.

This mosaic block size, determined assuming only
secondary extinction, is toolarge to permit this assunp-
tion and it must be concluded that some primary extinction
must be present.

These conclusions are baced on the premise_that
Zachariasen's equationsare correct and a posecible indica-
tion as to the reliability of these equations may be
obtained from a comparison of the parameter obtained from
the analysis with these from experimental observations.

As stated before, the mosaic crystal model is the
common way in extinction studies to describe the geometrical
arrzy of imperfections which leads to incoherence oi the
waves from different regions of the crystal since the
detailed information on the imperfection structures of the
materials is not available. Although the idea of mosaic
blocks is unrealistic, an estimate of the size of the blocks
should in some way provide a consistent reasure of the

density of imperfections in the crystal.
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In some of the wiork on extinction, the r¥ paraneters
obtained followins Zachariasen's procedure had been found

to be nhysically unreasonable (Lawrence, Killean and

Sharre (1972), Becker and Coppens (1974))

Zachariasen's theory cannot be regarded as a realistic

theory if it does not lead to nhysically reascnable para-

meters which will be consistent with the real imperfection

structure of the raterial. In most of the work on the

subject, these parameters were obtained from least scuares

réfineﬁent. Ooviously, these least sqguares analysis in

which extinction parameters are included can have very

little validity unless Zachariasen's theory give physically

reasonable r* values, although this procedure may improve

the fit betwéen the observedand calculated structure factors.
It was decided to check whether the parameters obtained

using Zachariasen's theory agree with the physically observed
values or not. It was thought that the paraneter r can be
obtained from thedislocation densities of the material
assuming a one to one correspondence between the mosaic

domain Size &nd the dislocation density, while the parameter

can he obtained from the mreacurrents of the rocaoic conrend

g
of the crystal.

Dislocationsin the materials can be obscrved directly
by means of X-rey transmission tovograrhy, Lanz (1957).

Dislocations induce strains around the core of the

]
£

dislocation line which i very highly distorted region
of the crystal. This core ray have a diameter of a few

rery highly distorted, does not

0
}_J
ct
1
W

angesTtroms a2nd sinece

b | a4t 4 -
N -1 ) -
! cLrains

contrioute the diffraction phonemena, but the c

L

induced are important a few ricrons from the core, giving
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rise to a distorted region around the core to bring about
important perturbations in the diffraction of X-rays by
the perfect crystzal.

These deformed regions around the dislocation lines
give rice to the images of dislocations, diffracting the
X-rays kinemetically. The nperfect regions of the crystal
will diffract the X-rays dynamically, therefore the
integrated intensities from thekinematically diffracting
recgions of the crystal will be higher than the integrated
intensities from verfect regions because of extinction
effects and will form the direct images of dislocations
when they are recorded on a photogranhic plate, because
of thege "extinction contrasts'.

Further, it is possible to distinguish the regions
which are misoriented with respect to each other from
their "orientation contrasts" on the topographs. 1In a
region containing local misorientations, the integrated
intencity will vary from point to point depending vnon
the deviation [rom theigeal Brages ongle at the noint.

The topographic method of recording the imperfection
contents of the raterial, using well collimated chearacter-
istic radietion and Lave type reflections only is called
transmission topography which was improved by Lang (1959).
The apparatus used is called Lang Camera, Fig (15). It
has a circuler base which is marked in desrees. The

ase can be adjusted by means of three

1]
o

height of thi
levelling serews. ‘The platform carrying the goniometer
head on which the syecimen crystal is nounted, is at the

centre of this eircular nace. A detector arm is mounted

concentrically which can move to a given 260 value arocund



thiscirecular base, carrying a detector to detect the

neak raxima of the diffracted beam. "'The crys tpl orienta-
tion is so arrancved that the diffracted bean is received
in this horizontal nlane.

n diffraction geometry is simnle A narrow
bear of characteristic radiation, coning from the X-ray
source which is & fine-focus X-ray tube having focal spot
dirensione of 0.3 x 0.8 mm, is obtained by means of a long
collimator having a narrow slit at its end. This narrow
beam cuts throush the crystal along the path AB.  The
cryst setting on the platform is such that this ray is
Bragg-reflected by diffracting planes wvhich are normal to
the X-rey entrance and exit surfaces. Then, the diffracted
riboon of X-rays vasses through the slits where the main
beam is stoprned, and is recorded as a sirip of black-
ening of width A'B' on the photgraphic plate giving rise
to the image of any dislocation in the triangle ABC, the
direct imase coming from the intersection point I of the
main beam and the dislocatirn dynamic inmazes which accom=

nany the direet imagen as a shadow come Irom the inter-

section voints of wave-fields and dizlocation in the trisnsle

ABC. If the speciren crystel is a vlate of thickness 1,
e da-}-, £ - . 5 1 4+ rrmemaaly A TTIR ey e e P e |
wi of the topogravh A 18 sinmply gziven by
A'BY = 2%5ing
This type of topography in which the crystal and the

photogrephic plate are kept stationary is called a “"section
tovomravh". In the case of secetion tonopravpiiac only a

w

very narrow vortion of the crystal diffmets X-rays, so the

imases of imverfeetions con be obtained only for thls
nerrow region. In order to scan o larzer area ol the



anceiren crystal, the crystel and the vhotographic plate
arc driven bael: and forth zcross the X-ray bear while the
elit S stays stationary. This motion is achieved by
pushing forward the platform which carries the cryﬂfal,

by & ricreneter screw head driven by a d.c. riotor against
2 opring. The rance of the scan can be adjusted by the
limit switches which reverse the motion of the nlatferm at
a certain point. ‘then the micrometer head moves back the
platform is nushed back by the coring, thus the crystal

ie gmoved back and Tforth across the X-ray bear between two
linmite Inny_tirhﬁ and the diffraction tovosraph fror a lorge

al so obtained is called a "projection

'}
c+

!

volume of the cry

topogravh”. In section torographs a dislocation is revealed
only by the direct imaze I' coming fror the point I where

thé ribbon of X-rays AB, cuts the disloceiion, as a
relatively intence black spot while in the vrojcetion
tonogranhs, the full length of the dislocation can be seen.
Thus the nrojecction topeograph is 2 suner imnosition of many
cuccessive section topogranhs. The complete outline of
features of nosaic domains cen be seen either by their
orientation or extinction contrasts in the vrojection
topogranhs.

The width of the slit S can be arranged so that sore
certain parts of the diffracted ribbon of A-raoys con he
stopned and therefore, elimrination of the imases coming

ror surface darnace vhich are blackenines the tono-roshs ,

Y

43 N— I | L T e - . Sy 74 e Ty e
end the inas es o0¢ the Ampertfections l.lf'l in the dentnc

of the eryctal can ve obeerved.

The vertiecal resolution, Rv, i.c. resolution in the
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direction perpendicular to the plane of incident and
diffracted beams is purely geometrigzijand is given by
Rv = H (b/a)
where h is the apparent height of the focal spot of the A-ray

source, b is the distance from the specimen crystal to

ct
o
£
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ISh
e}
j.J
w
ot
'
o]
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ct
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o
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2]
o
(-l
'
o
H
o]
Q

photographic pla
spot to the crystal.

Horizontal resolution i.e. the topographic resolution
in the plane of incident and diffracted beams is limited
by the angular severation of Kx; - Ko, doublet. This
doublet givesrise to double imases on the photcgraphic
vlate each corresponding to K&, and kx, lines seperately.
Generally X-ray tovogravhs are classified as "low - resol-
ution" if these Ky , Ko, images simul toneously apnear on
the topograph and "high-resolution" when such superimposi-
tion is eliminated by supvressing Ko, line.

Reducing the horizontal divergence of the X-rays, Ko
line can be suppressed. The angular seperation of ‘the
doublet can be obtzined as

66 = OA/ 2 d Cos®
where AMN is the wavelength difference between K, and Keg,
lines. “Thercefore, the horizontal divergence of the :ﬁin
beam should be smaller thap this angular scperction in
order to supvress Kx, line. Horizontal divergence of the

main beam is given by

Y= (l+x)/a

vhere { is the width of the focesl spot of the X-ray source

X 1s the width of the collimator slit and 2 is the distance

between the focal spot and the speciren crystal.
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yhen the XK« line is eliminated, the horizontal
resclution is determined by the wave length Spfead. I s
d A is the wavelength renge corresvyonding to the full width
at half raximum intensity of the X-ray erission line profile,
the range of the corresponding Bragg angles d6 is given by
d6 = Tand ( dAa/A)

This corresponds to the image of a point on the crystal

being spread horizontally into a length of

ds = b db
By setting the photographic plate as near as possible to
the crystal and choosing the reflections having small Bragg

angles this resolution can be of the order of a few micro-

meters.

[63]

On the photographic plates, thick nuclear erulsion

[¢]

can absorp a large portion of the X-rays, so most of th
diffracted rays can be recorded efficiently, alsoc, thick
nuclear emulsions are preferable to thin emulsions from
the statistical limitations point of view. Although they
need long developing and washing times, thick nuclear
emulsions are usually used in X-ray topography.

Prom the topographs, one gets the projection of the
imperfection contents of the crystal in two dimensiions.
By taking stereo pairs of projection tonogranhs, (Langz (1959),
Haruta (1965)) three — dimensional information can be
obtalined.

In the present experiments, the distance a froem the
focal snot to the specimen was 70 em. TFocal spot width

vwas 0.4 mm and the width ¢f the collirmator slit was 0.2 mm.

With these conditions, the Koz comoonent of the radiation






Fig.16 b (x30)
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could not be eliminated for the (002) reflection used.

The dictance a was the maximum distance since for larger
distoances the diffracted intensity was very weak. The
photogravhic vlates used were thick I1lford L 4 nuclear
plates. Topographs for (002) reflection are shown in

Fig (16). Although there is a lot of blackening on the
topographs due to the surface of the crystals, dislocations
can clearly be observed in all of the topographs. 'Host

of the observed dislocations start from a point and lie
parallel to the faces of the ecrystal.

The direct observation of dislocations with this
method suggests that the dislocation density can not be
larger than 106 c:m_2 since in larger dislocation density,
topograph will be completely black. The lines observed
were counted under a microscope and at various points of

various topogravhs, these average dislocation densities

were found

2.3 ¥ 102 cng
3.0 x 105 cm_ o
1.3 o0 10Z OB o
3.6 x 102 cng
5.0 % 10° com

average = 3.0 x 10° em™2

It should be noted that these are maximum values,
since the topogravh is a vrojection of a volume on the
photographic vlate. The above values are the souare of
the number of dislocations per ecm. If we assume an
approximate relationship between the dislocation density,
D, and the block size, r, is

D ¥ 1 /Mm% ,

then the average block size in the crystal will be of
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10.3 x 10 ecm. This can be compared with the values of r
from Zachariasen's equations.
This value can be seen to be between the values for
Cu radiation =

4.3 x 10°4 em.

Fs) cu

and (7, 3.18 x 1077 cm.

I

cu
For the lio radiztion, the value of r obtained assuming

type II secondary extinction 1S more than an order of
magnitude smaller than the experimental value. Blocks of
this size would be so small that no contrast would have
been visible on the tovogramh and it must be concluded that
the crystal cannot be of tyve II (For the Cu data, the
dislocation density corresponding to the block size from
Zachariasen's equation is also too small to be nreasured
topographically) This conclusion is supnorted by the
better agreerent between the g values for the two radiation
than between the r values.

The block sizes determined assuming primery extinction

for beth radiations,

. =3
(rp}cu = ( 3.2+ 0.5) x 1077 cm.
and Fpimo = (1622 0.2) x 10 cm.

are large enough to be measurable topographically and the
value for the lMo radiation agrees very well with the
experimental value. The discrepancies between the two
values could be due to errors in the angle dependence of
extinetion in Zachariasen's theory, these errors being
more important for the Cu radiation since, for this
radiation, the scattering angles are greater.

NMeasurement of diffraction profiles

In principle, the mecasurement of the diffraction
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profile of 2 erystal is simple. If the cryustal is placed
in the path of a monochromatic, parallel beam of X-rays
and set at the corrcct Bragg angle and slowly rotated
through this position, the reflection will occur over a
range of crystal settings about the exact Bragg angle
giving the diffraction profile. The mosaic spread of the
crystal can be obtained from the width of this diffraction
pcak at intensities which are half the maximum intensity.

The difficul.ties in the measurments of this kind are -

l. The divergence of the beam from the source.

If the incident radiation is divergent, various mosaic
blocks of the crystal having different alignmentes will
diffract the beams falling upon them at the correct Bragg
angle, at every setting of the crystal. Obviously, in
order to be able to measure mosaic spread, strictly parallel
incident radiation is recuired.

2. IFinite width of the incident radiation:

Although, one can cope with the divergence of the
incident radiation, e.g. using a strong reflection from a
perfect crystal as the incident beam, it is not practically
possible to obtain a strictly parallel and monochrometic
X-ray bean because of dispersion due to lack of homogeneity
of the beam from the source. A beam of wave length A
which is falling on the perfect crystal at a glancing
ansle © and a beam of wave length A+4aA with 2 glancing
angle 6+49 will satisfy Bragg law and will be diffracted
by the same diffracting planes of the perfect crystal,
fig (17). The resulting divergence of the diffracted beam
because of the natural width of the wavelength used can

be calculated from Bracss's law:
2d sind = nA
2 d CosB dO6 = n da

S de=(da/a) tans
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For example, even from a perfect crystal, for a scattering

angle of about 159 and copper radiation

(aa/a)

doe

4 x 1074

20" of arc.

-" .

These difficulties have been largely overcocme by the
construction of a two crystal spectrometer.

Two crystal spectrometer:

The main geometry is shown in fig (18). OCrystal A
is a perfect crystal. Divergent radiation from 2 point
focus fallsupon this crystal and is diffractedas a ribbon
of X-rays which has a small divergence in horizontal
direction due 1o the finite width of the wavelength used.
Vertical divergence is not important since the measurments
are carried out in the equatorial plane only. Specimen
crystal, B, is placed in the path of this diffracted beam
afmaiffracting position and can be rotated by means of a
stepping notor, in steps of 3" of arc about this diffract-
ing position. The diffraction profile from crystal B can
then be measured by a scintillation counter in the
horizontal planc.

In the present experiments, CuKe« radiation from a
point focus used. Crystal A was a perfect silicon crystal
reflecting in (111) position and having zero dislocztion
density as quoted by the manufacturers. Crystal B was
the D(+) tartaric acid crystal. There are two noséible
different ways of setting specimen crystal B. In one,

illustration by fig (19), the incident ray P01 and the
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reflected ray from crystal B, lie on the same side of the
ray OlO£ vacsing between two crystals while in the second
case which is illustrated by fig (20 ) they lie on opposite
sides of oloi . These two types of settings are referred
to as (m, n) setting .and ( m, -n) setting respectively.

In fig (19) olo£5 represents a beam of wavelength?,
diffracted by crystal A with a Bragg angle of Gl. This
beam is diffracted bycrystal B with a Bragg angle of 92.
Since the incident radiation upon crystal A is divergent,
a beam of wavelength (A+A2), will also be diffracted if
it falls on crystal A at an angle of (6;+46, ). ozoé
represents such a beam. If we calculate the rotation'¥
which is required for 0205' to be diffracted by crystal B,
with a Bragg angle 93

V= 8; - 8, + 06, = 10, + A6,
which shows that dispersion is more than th single reflec-
tion case in (m,n) setting.

In fig (20), rotation ¥ reouired for the beam 0,0
to be reflected can be found as:

Y =985 - 8, -048, =06, - D6,
which shows that in (m,-n) setting overall dispersion is
equal to the difference of dispersions due to single
reflections from each crystal.

When the reflecting planes of crystals A and B are

parallel

692 =l'-‘-91
Y=0
This is a2 very important property of double crystal

spectrometer. Disversion is absent in varallel setting.
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Therefore, the width of the reflection curve will give a
measure of mosaic spread of the svecimen crystﬁl if the
first crystal is perfect.

If we assume that first crystal is not ideally perfect,
but has a nosaic spread as well, assuming a Gaussian
distribution of block orientation for both of the crystals,
the effects on the overall reflection curve can be calculated
as follows:

Let the incident radiation be given by

I(A) = IO(?\J exp[ -a1(}\ -?‘.)2.]
and the block orientation distribution given by

n(e) = N(6,) exp[ -a,( 6 - )]

Since

de = (daa/2) tané .

6 -8, = (tan8/A ) (A =)
therefore

N(o_) exp[ -a,(6 - 8,)°]

1(6,) exp[ -a,(*/tan®6)(6 - 0_)°] .

N(8)
1(8)

Using a transformation

¢=9—90 F]

then

N(#)
1(#)

B exp [ —3.2552]

I, exp [ =b 9'52]

where
b = (a, A%)/ tane
Then, since the reflection curve is given by the convolu-

tion
[=_-]

R(Y) = | N(@) (¥~ @) af

R(Y) = constant x exp [ =( asb ‘Pz)/(az + b)]
can be found. According to this result, the resultant



Koc1—Ko< scparation
2k tans L Obs. Calc.
002 0.2605 24"

-3 0 2 0.2623 24"

003 0.4060 30" 74.4" 73"
-203 0.4307 33" 87" 84"
303 0.4921 42" 118" 120"

004 0.5820 54" 160" 168"

Table 9
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reflection curve has a varancter B which is given by
B = (a2 b)/(a2 + b)

and has a width w at half intensity which is given by
w= (1.66)/NB

which is related to the widths X and y of the component

distributions as

of w o g
vhere
= (1.66)/\[32
= (1.66)/{ 1
Therefore, in two crystal spectrometer, in parallel setting
one has
’ 2 2
W= woo+ W (37)
and
W= (Wl el (38)
where;
w/ = overall divergence of the relected beam from the first
crystal
L divergence of the reflected beam from the first crystal .

due to disversion in this crystal

v, = mosaic spread of the first cyrstal
Wy = mosaic spread of the specimen crystal
w = width of the resultant reflection curve from the

specimen c¢rystal at half intensity.

In the present experiment, the divergence of the beam
from silicon crystal was measured by a photographic method.
From the comparison of the widths of the beanm oﬁ photo-

graphs which were taken at distances of 10 cm. and 298 cnm
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from the silicon cyrstal, the diverzence w/ was found as
wo= (25 +4)"
Miring the exporiment, the (]_'I]_) reflection from the
silicon crystal was used which has a divergerice W, of
(21.34)" due to dispersion. Then, from eq (37), value
for the mosaic spread wqy of silicon crystal was found as
w, = (9 +6)"

For the D(+) tartaric acid crystal used, the diffrac-—
tion profiles were obtained for (002), (-102), (003),
(=203), (=303) and (004) reflections. These arc sﬂowh
in Figs (21) and the information obtained from these
graphs is shown in Table (9). The width of the diffraction
profiles and KGxi - me seperation were increasing with
increasing © as was expected, since dispersion increases
with increasing 6. The values found for (002) and (-102)
reflections are free from dispersion, since these reflections
correspond to nearly parallel setting of two crystal
spectrometer. In these cases, the width of the diffraction
profiles w, was found to be same for both (002) and (-102)
reflections and Kimi - “é) seperation was zero, again as
was expected. The value of w was found to be:

w= (272"

This value can be taken as the upver limit for mosaic
spread of D(+) tartaric acid, assuming that silicon crystal
is ideally perfect. Assuming silicon crystal has & mosaic
spread, using eg. (38) and the value obtained for 1+ the
lower limit for the mosaic spread of D(+) tartaric acid
was found as

W, = (22+6)"

4

As stated before, silicon crystal used has zero
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dislocation density as guoted by the manufacturers and it
is reasonable to accept it as ideally perfect cfystal.
The reasurrient of divergence of the beam from this cyrstal
wae very difficult because the photographs of the beam
did not have sharp outlines due to air scattering. Under
these circumstances it is unlikely that the mosaic spread
of D(+) tartaric acid would be less than 26" of arc or
more than 22" of arc.
\fe can now compare this result with the value obfained

from Zachariasen's equation assuming type I extinction

oy = ( 248 £0.002)x 104

giving a half-width, w,, of

W, = (5 +0.01)w

(1.14 +0.12) x 10%

&4
B
]

Mo = (12 £ 2.5)"

The half-vidth from the different radisticns are

sipgnificantly different which may again reflect the lack

of ansle denendence in Zachariasen's equations. These
values are of less than the experimentel widths, by at
least a factor of two but, taking into account the possible
errors in Zachariasen's eguations and the effect of any
primary extinction present, it must be conclu ded th
the extinction could be of typve I. B

Conclusions

From a comparison of the agreenents between the

extinction parameters obtained using the two radiations,

it appears that the extinction was mainly: of the secondary
type, the standard deviations in the parameters being 8
for secondary extinction and 14% for primary extinction,

although those deviations must in part be due to the errors
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in the agsunedkine motic structure factors. The increase

! . 3

in the extinction as the thickness of the crystals increases

¥

[

elso strongly suggests that the extinction is, at least
partly, vath dependent, i.e. secondary extinction.

The block sizes obtained assuming only type II secondary
extinction to be vnrecent have been showm to be incompatable
with the measured dislocation density, showing the crystal
cen not be of this type. The block sizesobtained assuming
primary extinction is close to the experimental value.

The nosaic spreads of the crystal obtained assuming

a tyve I crystal were of the same order of magnitude as
the experimentel value. It is therefore likely that the
extinction is meinly type I secondary extinction but sonme

primary extinction ray be vresent.
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