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Abstract

A review of the work on extinction, mainly Zachariasen's theory,

criticism and some applications of this theory, is given.

Extinction effects in large single crystals of D(+) tartaric

acid are studied from measurements of integrated intensities using

copper and molybdenum radiations. Extinction parameters are deduced

from these measurements and the variation of extinction with path

length is examined,

An estimate of the average mosaic block size of the crystals used

is obtained from measurements of the dislocation density of the material

by the x-ray topographic method using a Lang camera and the average

mosaic spread of the crystals is obtained from the measurements of

diffraction profiles using a two-crystal spectrometer, Zachariasen's

parameters are compared with these physically observed values.

It is shown that the measured integrated intensities could be

affected by type I secondary extinction in which extinction is governed

by the mosaic spread. The possibility of the presence of primary

extinction is suggested.
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Introduction

The essential aim of crystal structure analysis by x-ray

diffraction is to obtain a detailed picture of the contents of the

crystal at the atomic level in the form of a three-dimensional

electron density map. This map is usually obtained by the following

steps:-

1. Measurement of the integrated intensities from the crystal from

which the structure factors, which are dependent on the nature of the

atoms present and their relative positions within the unit cell, may

be deduced.

2. Deduction of the atomic arrangement and calculation of the

structure factors corresponding to this arrangement.

3. Refinement of this arrangement until the agreement between the

calculated and observed structure factors is within the limits of

experimental error.

Therefore, the measurement of accurate structure factors is

obviously of very great importance in obtaining electron density maps.

The electron density at a point r in unit cell is given by

p(r) = 2 F(E) exp(-2irih.r)
h

where F(h) is the structure factor and h is the diffraction vector.

In the refinement process mentioned above, the position of atoms

can be obtained from a least-squares process which involves minimising

a function of the difference between observed structure factors and

those obtained from the model of the crystal, and any inaccuracies in

the observed structure factors would affect the resulting atomic

parameters.

In most of the experiments, the structure factors are obtained by

measuring the integrated intensities diffracted from a small crystal

placed in a monochromatic x-ray beam. The structure factors are

obtained from these measurements using the equation:
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R = C i F ]2 Lp. A

where

R = Integrated intensity

C = Scale factor

F = Structure factor

Lp = Lorentz polarization factor

A = Absorption correction.

The derivation of this equation is from the kinematic theory

which is based on the assumption that the intensity of the incident

beam is constant at all points within the crystal. No account is

taken of the exchange of energy between the incident and diffracted

beams and rescattering processes are ignored.

These assumptions are incorrect since the existence of a

diffracted beam means that energy has been removed from the incident

beam and one should take the rescattering processes and exchange of

energy between the incident and diffracted beams inside the crystal,

into account. It follows that the values of the structure factors

extracted must be incorrect.

In many cases, for many reflections, however, the energy in the

diffracted beam is very much less than the main beam and kinematical

approximation works quite well. However, when a significant amount

of energy is diffracted, the measured structure factors are inevitably

smaller than they should be. This effect is referred to as extinction.

This term was first used by Darwin (191M-). Using the mosaic

block model of a crystal which he proposed and is still used today,

it is possible to see how this extinction comes about.

In Darwin's mosaic block model of the crystal, it is assumed that

the crystals are composed of large numbers of small domains which are

called mosaic blocks. These blocks are assumed to be slightly

misoriented from an average orientation, each block being a perfect
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crystal region in which coherent scattering takes place, there being

no coherence between the beams diffracted from various blocks.

The diffracting planes within each block are well aligned and

each part of the block will scatter a fraction of the energy incident

upon it into the diffracted beam. Therefore the planes lying deep

inside the block receive less energy by the amount diffracted by the

preceding atomic planes. Also, the rays which are reflected at the

Bragg angle by the planes are directed at the correct angle to be

reflected back again into the incident beam by the other planes.

Thus, each plane of the crystal rescatters a small fraction of the

reflected rays into the incident beam. In every scattering process

the phase difference between diffracted and incident beams is it/2 and,

therefore, the twice reflected beams have a phase difference of tt from

the primary beam, so they weaken the primary beam by destructive inter¬

ference and the same thing applies to any two beams which have been

reflected n and n-2 times respectively. When this phenomenon continues

through a large series of planes, the primary beam becomes attenuated.

This effect which is taking place inside a single mosaic block was

called "primary extinction" by Darwin, fig. (1).

On the other hand, if the diffracting planes of more than one

mosaic block are parallel, these blocks will diffract simultaneously

and each one of them will scatter a fraction of the incident energy

into the diffracted beam. Owing to the energy loss in the incident

beam by diffraction at the blocks near the surface, the blocks further

inside the crystal having the same orientation are partially shielded

by the surface blocks and the energy scattered by these blocks will be

less than expected. This phenomenon was called "secondary extinction"

by Darwin, fig. (2).

Darwin's model of mosaic structure is an idealized description of

the crystal perfection. This model was suggested for the ease of

mathematical handling of the problem. A, more realistic model for the
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problem would give the exact description of the type and geometrical

arrangement of imperfections in the crystal but this detailed

information is generally not available. Thus the common way is to

accept that a real crystal is adequately described by Darwin's model.

As has been mentioned previously, structure factors can be easily

determined from the measurements of integrated intensities provided

that the diffraction process is kinematic. If a significant amount

of energy is being removed by the diffraction process, the kinematic

theory no longer applies. Under these circumstances, it is impossible

to determine the structure factors from the integrated intensities

except in a few examples, e.g. perfect crystal of regular shape.

Any least-squares refinement process applied to this data will be

invalid since the observed structure factors will be subject to

systematic errors although a good agreement may be achieved between

the observed and calculated structure factors at the end of the

refinement process.

In 1967, an attempt was made by Zachariasen to derive equations

based on the mosaic model of Darwin, relating the structure factors

to the integrated intensities for real crystals of arbitrary shape

when extinction is present. Zachariasen's formulation was widely

used and adopted. The first part of this thesis is devoted to a

review of the work on extinction, mainly a description and critical

analysis of Zachariasen's theory and some of its applications.

In his theory Zachariasen defines two parameters which describe

the mosaic block model of a crystal. These are "r" and "g" para¬

meters which are the measures of the mosaic block size and the distri¬

bution of the misorientations of mosaic blocks with respect to an

average orientation. In the course of extinction corrections, the

values of these parameters are deduced and corrections are applied

using them.
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A necessary condition for the application of Zachariasen's

equations must be that these deduced physical parameters should have

physically reasonable values. Although mosaic block size can not be

very realistic it must at least be an approximate measure of the size

of the perfect regions in a real crystal.

In the second part of this thesis, extinction corrections were

obtained experimentally on large crystals of tartaric acid, and,

following Zachariasen's procedure, the parameters r and g were deduced.

Experimental tests were then undertaken to measure these parameters and

then to determine whether or not the quantities obtained using

Zachariasen's equations have a physical meaning.



4
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CHAPTER I

Zachariasen's paper (1967) entitled "A general theory of x-ray

diffraction in crystals" was mainly responsible for the renewal of

interest, in extinction and the dynamical theory. Previously most of

the investigation into extinction had been confined to infinite

parallel plates, e.g. Zachariasen (1945), Bacon and Lowde (1948),

James (1950).

However, Hamilton (1957) had devised a numerical method of

estimating secondary extinction in small, finite crystals which have

a uniform cross-section in planes parallel to the plane defined by the

incident and diffracted beams. He generalized a pair of differential

equations, first given by Darwin (1922) to describe secondary extinction

in infinite parallel plates, which described the flow of energy through

a crystal.

The power relations between the incident and diffracted beams were

expressed as

(3P /9m) = xP + oPH H o
(1)

(9P /3n) = xP + aPIT
o o H

where Pq and P^ are the powers of the incident and diffracted beams
respectively and x = -(y+o), where y is the absorption coefficient and

a is the diffracting power per unit volume and intensity. n and m

are the directions of the incident and diffracted beams respectively.

Hamilton solved the coupled differential equations, eqs. (1),

numerically for a convex crystal shown in fig. (3). To obtain this

numerical solution, eqs. (1) were replaced by the following difference

equations:

PTI(n,m) = PIT(n,m-l)[l t xAm] + P (n,m-l)aAmH H o

P (n,m) = P (n-l,m)[l t xAn] + PIT(n-l,m)aAn .
o o H
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Starting from the boundary and using the boundary conditions

P = P° along ACB
o o 6

P„ = 0 along DAC ,ri

where P° is the power of the incident beam outside the crystal, the

values of P^ and Pq can be calculated at all of the points of a grid
having a mesh size of An x Am. The integrated intensity is given by

00 00

R = h / R(A0) d(A6)// W(A6) d(A6)
— 00 —00

where h is the height of the crystal. If P (a)...P (k) are theH H

values of Pu calculated by the above numerical method, correspondingri

to the grid points lying on the exit surface, then R(A0) is given by

P (a) + P (k) k-1
R(A0) = [— — + 2 P (i) ] An sin20 .

2 . , H
i=b

W(A0) is the distribution function for mosaic block alignment.

Assuming a distribution function, such that

l/2n/3 | A© I < p/3
W(A0) = { } (2)

0 | A0 ! > t)/3

where n is the mosaic spread parameter, Hamilton obtained the inte¬

grated intensity as:

R = h2n/3[R(A0)]Ae_o .

The secondary extinction correction yg was obtained as

ys = R/Q'VA
e2 2 F2 K2 A3

where Q' = Q.y = ( ) . — . y is the primary extinction
p mo' V' 311,26 p

correction and the other symbols have their usual meanings. The

desired accuracy in P^ can be obtained by choosing a sufficiently
small mesh size. The couple of differential equations (eqs. 1) can

be solved exactly for the limiting cases of 20 = 0 and 20 = 180°.
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Hamilton calculated the secondary extinction corrections y , for

cylindrical crystals, having diameter D, for 20 = 0, 45, 90, 135 and

180° cases, The grid size was so chosen that the error in the

calculation of y was less than 3%. The results of these calculationsJ
s

were presented by means of curves shown in fig. (4) which are a plot of

y versus oD, From these curves, Hamilton noted that there was anJs

angle dependence, which was negligible for only small extinction

(y > 0.7), and this angle dependence became very important for severe

extinction.

Hamilton carried out the same calculations for crystals having a

rectangular cross-section in planes parallel to the plane defined by

the incident and diffracted beams and concluded that the extinction

effects became much more complicated because in this case extinction

is a function of the crystal setting as well as of the Bragg angle.

Further, Hamilton noted that the intensities for intense

reflections reach a limit as aD increases. The intensity is then no

longer dependent on the value of |F|2 but on the size of the crystal

and the Bragg angle. It was suggested that this saturation phenomena

be used in the determination of n if this limiting value is observed.

The limiting values of the integrated intensities were given as

For 26 = 180° R,. = 2/3 hDnlim

For 26 = 0° R,. = /3 hDn .lim

Therefore, the method for extinction correction in cylindrical

crystals, suggested by Hamilton consists of:

1. Determination of n in the region yg > 0.7 using the approximation

yg - exp(-8aD/3ir) or using the limiting values mentioned above if they
are observed.

2. Using this value of n, determination of yg curve for any reflection
in the intermediate range, using numerical integration over a grid as

described above.
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Hamilton applied this method of extinction correction to the

observed values of yg in a neutron diffraction experiment for a

single crystal of Fe 0 and obtained very good agreement between the
O lt

calculated and observed values of y .
s

Later, Hamilton (1963) improved the calculation of Pu valuesH

introducing a modified Euler integration scheme instead of previous

rectangular grid and the tables of secondary extinction corrections

for equatorial reflections from cylindrical crystals were presented.

Zachariasen (1967) developed a general theory of x-ray diffraction

for real finite crystals of arbitrary shape and this theory is based on

Darwin's mosaic block model of a crystal. He considered first

diffraction from a small, perfect crystal, and then from a real crystal,

assuming the real crystal to be a distribution of small, independent

perfect crystal regions which were slightly misaligned to each other.

It was assumed that the normals to the diffracting planes of the

individual perfect crystals obeyed an isotropic Gaussian distribution

given by

W(A) = /2 g exp(-2Trg2 A2 ) (3)

where A is the angular deviation from the mean orientation and g is

the mosaic spread parameter.

The extinction factor y is defined as being the ratio between the

integrated intensity from the real crystal, R, to that obtained by the

kinematic theory, R^..

i.e. y = R/R],.

and is given by

R, = J v A(y)Q (5)
k o



Fig. 5

Fig. 6
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where Jq = Incident beam intensity
v = Volume of the crystal

A(p) = Absorption factor

ro F K 2 A3
Q = ( ——) —:—T-T~ for x-ray diffractionV sm20 J

e2
r = ( ) = radius of the electron

o 2
mc

F = Kinematic structure factor

K = Polarization factor

V - Volume of the unit cell

A = Wavelength of the radiation

0 = Bragg angle.

Zachariasen used a pair of differential equations similar to

those used by Hamilton, and solved these equations for crystals of

various shapes. Assuming negligible absorption, he used the equations

in the form -

91
-al + aI (6a)

9t^ o

81
= -al + al (6b)

3t2 o

I and I are the values of the incident and the diffracted intensities
o

inside the crystal, t and t^ are lengths in the incident and diffracted
beams and a is the diffracting power of the diffracting planes, (fig. 5).

Eq. (6a) represents the variation in intensity of the main beam as

it passes through the crystal. Energy is removed from the beam by the

diffraction process, (-al ), and the second term (al) represents the

rescattering of the diffracted beam back into the main beam. Eq. (6b)

represents the variation in intensity of the diffracted beam and the

summation of the two equations expresses the energy conservation for the

process, i.e.,
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The boundary conditions are:

I = J at t, = 0
o o 1

1=0 at t^ = 0 .

From these equations, the power of the diffracted beam, P(e ),

at some angular deviation e^ from the ideal Bragg angle, can be
obtained from:

P(e, ) = # I u.ds = I dv
_L o"t

2

where u is the diffracting direction and ds is a surface element of

the crystalo A function <j>(c0 was introduced such that:

P(e, ) = J va<f>(a)1 o

and, since the total integrated intensity is given by

R = / P(e ) de1 ,

the extinction factor y can, in principle, be obtained from

y = Q-1 / a<p(a) de . (7)

The problem is then to find <f>(o) as the solution of eqs„ (6a) and

(6b), and to find y using eq. (7).

When all extinction effects are neglected, the solution to eqs„

(6a) and (6b) gives the kinematic approximation

y = =1 •

Neglecting the "feedback" term aI in eq. (6a) gives an exponential

solution
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I = J exp(-at,)
o o 1

I = Jq[1 - exp(-at2)]exp(-at1)
and P = J voA(a)

o

where A(a) = 1 - at + Ja2 t2 - -g- a313 +

and tn = v"1 / (t + "t2)n dv .

This particular solution is very similar to the exponential

solution suggested by Bragg, James and Bosanquet (1921), where the

extinction can be considered as an increase in the absorption term of

the form exp -(y + gQ)t.

For arbitrary shape, Zachariasen obtained the power series
81

solution of eqs. (6a) and (6b) as an expression for
3t2

% = ° Jo st<n> (8)2 n

where t^n^ = 2 (n) t..n ^ t^ „
• 3 1 2

3

Zachariasen used this general result in eq. (8) to find the function

cp(o) for different shapes. For a parallelopiped, having three equal

edges, two of them being parallel to the incident and diffracted beams

and the third, being perpendicular to the plane of incidence, fig, (6).

he obtained <j>(a) as

c|>(a) = 1 - oto+(5/6)(ato)2-(7/12)(atQ)3 + . .. (9)

where t is the length of the edge of the parallelopiped.

The same procedure was carried out for a sphere of radius r, for

small scattering angles, giving the results:

Forward direction:

<j)(o) = 1 - ot+(16/15)(ot)2 ~(80/81)(ot)3 (10)

Backward direction:

<f>(o) = 1 - at+(64/45)(crt)2 ... (11)

where t = (3/2)r.



-13-

Eq„ (10) was derived for small scattering angles. However, since

at << 1 at large scattering angles, Zachariasen suggested that eq. (10)

can be used as a general expression for a sphere.

Eqs. (9), (10) and (11) show that (j>(a) depends on the shape of

the crystal. Further, comparison of eqs. (10) and (11) indicates that

<t>(o) may have a significant angle dependence. However, from the form

of these results Zachariasen, suggested an approximation for any

arbitrary shape as

<j>(a) = —• (12)
1+at

According to Zachariasen, eq. (12) is exact for infinite parallel plate

for symmetrical Bragg case and a very good approximation for a sphere,

but a poor approximation for a parallel plate in the symmetrical Laue

case, because in this case the power is equally divided between trans¬

mitted and diffracted beams.

In obtaining the diffracting power, Zachariasen assumed that it

may be correctly obtained from kinematic theory i.e.

a(e. ) = J"1 v-1 P. (e. ) . (13)
1 o k 1

The geometry of diffraction is shown in fig. (7). The direction of

incidence, u , is given by

o
u = u - e,x,

o o 11

where u° is the ideal Bragg direction and t Is a unit vector in the

plane of incidence perpendicular to u°. The direction of diffraction,

u, is given by

u = u° + e2^2 + £3^3

where u° is the ideal diffraction direction and
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where H is the reciprocal lattice vector associated with the diffracted

beam- The diffraction vector S is then

S = — (u - u )
A o

= 2ttH + As

, . 2TT , - - ,
where As = — (•E1T1 + e2T2 + £3T3

The intensity in the direction (e ,e ,e ) is given by
X Z. o

2 2

I,(e..,e ,e ) = J I6 F Kj |S exp(iAs.L)|2 (14)k 1 2 3 ° mc2R

where L is a lattice vector and R is the distance from the crystal to

the counter. Then, P (e ) becomes:
K X

Pk(e ) = R2 // IR de2 de . (15)

In general, depends on the shape of the crystal and one

should solve the summations and integrations in eq. (14) and eq. (15)

for the particular shape. Then a(e^) can be calculated from eq. (13).
Zachariasen calculated o(e^) for a particular case of the

parallelopiped of fig. (6) again assuming all of the edges t°, t°, t°
are equal to t and obtained the result as a delta function i.e.

o

sin2 irae

a(e ) = Qa (16)
X f \2

(ire^a)
where a = —f and t = |t° x u | = t sin26.

A X Z O O

As mentioned above, a(e^) is dependent on the shape of the crystal
and may be very complicated for an arbitrary shape. However

Zachariasen assumed that eq. (16) is reasonable for any symmetrical

shape, especially for a spherical crystal. In eq, (16) the only shape

dependent factor is t . For infinite parallel plate t is given as

D sin0 for the Laue case and D cos0 for the Bragg case, where D is
o o o

the thickness of the crystal. For a sphere of radius r, t is equal

to (-|)r.
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In the evaluation of the integral in eq. (7), it is convenient

to replace the delta function form of eq. (16) by an equivalent

expression of Poisson form. Zachariasen assumed that

1+b2 e 2

and

/ a de = Q ,

/ a2 de^ = -| Q2 a

and so obtained the approximate expression for aCe^), for arbitrary
symmetrical shapes, as

a(e1) =
4/3Qa
/1+Tr \21 + <— "d

(17)

Then, substituting eq. (17) and eq. (12) in eq. (7), the expression

for y becomes

y = (1 + 2x) 2 - 1 - x +(3/2)x2-(5/2)x3 + (18)

where x = — Qat and t is the mean path length through the crystal.
O

For various crystal shapes, Zachariasen listed the x values as

e2F K A D 2

Symmetrical Laue case:

Symmetrical Bragg case:

x
mc2 V

3 cos 0

e2F K A D t2

mo? V r

3 sin 0

(19a)

(19b)

Parallelepiped of fig. (6): x =

e2F K A t 2

mc2 V
(19c)

Sphere of radius r: x

!e_F_K_A_r|
mc2 V

2 sin20
(19d)
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For infinite parallel plate case, the exact results of the

dynamical theory are available„ They are given as:

For symmetrical Laue case: y = 1 - x + (3/20)x2 -(3/2£)x3 +

For symmetrical Bragg case: y = 1 - x +(o/5)x2 -( 31/35).<3 +

where x values are given by eqs. (19a) and (19b) respectively.

For symmetrical Laue case Zachariasen's theory does not agree

with the findings of the dynamical theory. According to Zachariasen,

this is a natural consequence of the approximation, eq. (12), which

is a pocr approximation for Laue case. But when the Bragg case is

considered, if the delta function form, eq. (16) is used,

y = 1 - x + (5/4 )x2 - (13/8)x3 +

which agrees very well with the dynamical results. According to

Zachariasen, this satisfactory agreement suggests that the findings

of the theory are acceptable approximations.

Eq. (18) can be used to determine the lower limit of crystal size

for negligible primary extinction. If the integrated intensity can

be measured to an accuracy of two per cent then the applicability of

the kinematical approximation (y-1) for primary extinction is

restricted to a range x < 0.02 and this requires a spherical crystal

of radius r < 0.5 x 10"4 cm for most of the specimen crystals, for

strong reflections.

The theory relating extinction in a single perfect crystal was

then extended by Zachariasen to deal with real crystals of the Darwin

mosaic block model. The domains are assumed to be all of the same

size and nearly spherical in shape. The mean path length of the

x-rays through each domain Is t = 3/2 r where r is the mean domain

radius. The crystal is assumed to contain a large number of these

domains and their orientations are governed by eq. (3).

The half width of the distribution function is given by

l

Wx = g"1 [log(2/2iT)]2 = 0.332 g"1 . (20)
2
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From the eq. (16) or eq. (17) the half width of the diffraction pattern

is given as

(e )-, = 0.29 5 X r""1 = 0.443/a-1- 2.

or (21)

(e )t = (1/2tr) X r"1 = (3/4tt) a"1 .
1 2

The diffraction in real crystal is treated in the same manner as

in the perfect crystal. The basic equations eq. (6a) and eq. (6b)

are the same, except the use of convoluted value o instead of c and

the use of T which is the. mean path length through the crystal, instead

of t, which is the mean path length through a mosaic block.a(e) is

defined as

cKe^) = / W(A) a(e1+ A)dA

Assuming

and

o(e ) = Q a exp(~tra2 )

sin2 Tret' e

a(e.) = Q a' (22)1 '(to

where a' = /2 a//a2 + 2g'

and., using the approximation

3g/2 = /2 g ,

it follows that

.2
9

q(e ) a (4/3) Q a (23)
r4lT ' i21 + [-J a

where a' = a//l + (2a/3g)2 .

Eq. (22) and eq. (23) are precisely analogous to eq. (16) and

eq. (17) respectively which were derived for the parallelopiped of

fig. (6) for the perfect crystal case. In eq. (23) when a >> g, a'
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is given by (3/2)g and, when a << g, a' = a.

Solution of the basic equations in the case of real crystal is

very similar to the perfect crystal case, giving the result

<f,(c) = (24)
1+aT

which is precisely analogous to eq. (12) and leads to

y = (l+2x) 2
o _

where x = — Q a'T
o

if t is small compared with T,

In order to include the effect of absorption, Zachariasen rewrote

the basic equations as:

31 '
o

(y+cr)I ' + al'
3T

r\ T '
-rrr- = - (y+a)I' + al ' .

3T2 o

Solution for severe absorption is complicated. According to

Zachariasen, the solution to these equations, in the case of small

absorption, can be expressed In terms of the solution of eq. (6)

I' — I exp[- y(T + T2)] = I e~yT = I A(y)

where A(y) is the transmission factor. Then

T = - A-1 • (25)
dy

Therefore, according to Zachariasen, if the effective mean path length,

which is generally given by

f = Si', "l + T2> eXP(" "<T1 + T2))dT •

is calculated from eq. (25), the effects of absorption on extinction

will be accounted for automatically.
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Effects of polarization are included in the theory as well.

If the incident radiation is unpolarized, k=l for vertical component

and k = cos20 for parallel component of polarization.

Therefore, for parallel component

x,. = x cos2 20 and Q , . = Q cos2 20// o x// xo

where xq and Qq are the values of x and Q respectively, without any

polarization effect. For the integrated intensity

R, , - J v Q cos2 20 y . .// o xo JII

and R = J v Q y
i o o Jl

On the other hand

R = \ y

where R. = J v Q p,k o o rl

and p^ is given by

P1
1 + cos2 20

r,T n t rt (1 + COS 20 )R - J vQ p,y = J vQ r y
o o *1 J o o 2

The average value of R is then

R|, + R (y + y / / cos2 20 )
R = JL_ = Jo V Qo U.

From this

,1 + cos2 20 N . 2 ™ j(
2 -*y yi + y// cos 20 and

yi + Y// C°s2 26
y =

1 + cos2 20

where y = (1 + 2x )
l o

and yii - (1 + 2k2 xq)
.1
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Therefore,

(1 + 2x )"^ + (1 + 2k2x )~^ k2
o o

y = .

1 + k2

According to Zachariasen, for xq >> 1, the above equation can be
approximated as

1 + k
y = ——

(l+k2 )
o

and for x^ < 5, without introducing important error,
Po -1

y = (1 + 2 —— x ) 2 (26)
px o

P9
where — = (1 + k4)/(l + k2) „

Pi

When t is not negligible compared to T, Xq should be replaced by
its mean value x^ which is given by

x - (2/3) Q a[t + (T-t)//l + (2a/3g)2]
o o

2 2 — —
where — Q at and — Q a(T-t)//l + (2a/3g)2 corresponds to primary

d O o O

and secondary extinction respectively.

For the general case, the findings of Zachariasen's theory can

be summarised as

R = RR y = jq Qq p2 v A(u) y
P2 _ _1

y = (1 + 2 — x ) 2 (27)
pl o

where xq = 3 Q0^t + (T-t)//l + (6/g)2 ] ,

3 = 2ty/3A ,

and t = (3/2)r for a spherical crystal.

As mentioned before, primary extinction can be neglected for

xq < 0.02 corresponding to a mosaic block radius of r < 0.5 x 10"4 cm.
When primary extinction is neglected, xq reduces to
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x = rA"1 Q T//l+(r/Ag)2 (28)
o o

representing only secondary extinction and according to Zachariasen,

this is the case in most experiments.

Zachariasen introduced two important limiting types of crystals.

In one of them, r/Ag >>1, which means that the distribution function

is much wider than the diffraction pattern from a single mosaic block.

In this case, secondary extinction is dependent on the parameter g.

This type is called a type I crystal. For this type, x^ is given as

xo = 8 Q0 ? ■

The other type, in which (r/Ag) << 1, is called a type II crystal.

In this type, the diffraction pattern from a single mosaic block is

greater than the width of the distribution function W. In this case

the size of the mosaic blocks govern the amount of secondary extinction

and xq Is given by

x = rA"1 Q T .
o o

If data from two wavelengths are available, the extinction para¬

meters obtained from each wavelength data set can be compared and the

crystal categorized into either type I or type II or an intermediate

type. In the case of the intermediate type, rA"1 and g are of the

same magnitude and xq is given by eq. (28),
Zachariasen noted that in the previous work on extinction and on

the determination of the parameter g, many authors assumed that the

crystals are of type I, Zachariasen suggested that In some, and

maybe in most of the cases, the crystals are of type II,

In this theory, Zachariasen made some approximations. For

example, it is assumed that the basic equations are correct in

describing the flow of energy inside the crystal, that equations (12),

(24), (17) and (23) are approximate forms, that the Laue form of the

peak profile function can be replaced by the Poisson function, and
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that the effects of absorption are taken into account by using an

effective path length T defined by eq. (25),

Because of the approximations involved, Zachariasen suggested

the functions

y - tanh /3x//3x

y = tan"1/3x"//3x (29)

as alternatives to eq. (18) for the form of y. All these suggested

functions cannot be distinguished theoretically, they cannot be

distinguished when x is small, but for x >> 1 there are significant

differences between them.

Therefore this attempt of Zachariasen to cover the entire range

of crystalline perfection by his general formulas for extinction in

real crystals needs to be tested experimentally, Zachariasen (1968)

tested the validity of the general formulas experimentally for two

crystals namely for hambergite and a-quartz crystals,

In Zachariasen's procedure, eq. (27) is rewritten as xq = ^-1Q0 ^ r*
where rA = r//l+(rAg)2 and therefore

x = (PAPA Q A"1 T r* . (30)
2 1 o

The extinction correction may be applied either to the calculated

structure factors |F i or to the observed structure factors |F i„
c o

Then one has;

If ! = c If ! [1 + 2x]~^ (31)
o c

or

IF I - C"1 |F I /x* + A + x*2 (32)'

c. o

where

x3« - x,//l+2x o
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Then, Zachariasen's suggestion for extinction correction is to

find the scale factor C from weak reflections (zero or small extinction)

and then using eq. (30) to obtain r3'4 for strong and extinguished

reflections. If the structure parameters of the crystal are not known

with sufficient accuracy, it is necessary to carry out a least squares

refinement based on eq. (31) or eq. (32) with r3'4 as an additional para¬

meter in the refinement.

If the measurements of the integrated intensities are carried out

by using two different wavelengths, it is possible to find out both

parameters r and g, which are characteristics of the crystal specimen.

If r^3'4 and are two values corresponding to different wavelengths

A^ and A^, then r and g are given as

r = r1"r2" AA22- A^2 Y/i\*T2#- x22ri"2)
(33)

g = (r1*r2"'/AlX2^ A Ap2 - A22 )/(r1',{2 - r2*2 ) .

In this way, the type of the crystal can be determined. In type I,

since rA"1 >> g, r3'4 ^ Ag and in type II; rA"1 << g, so r3'4 553 r.

Zachariasen calculated r3'4 values for samples of hambergite and of

a-quartz crystals, using both and radiations and worked out

the parameters r and g, finding in both cases that the crystals were

of type II.

Further, he found out that the formula y = (lt2x) 2 gives more

consistent results (i.e. r3'4 is not dependent on the amount of extinction)

compared to the other two suggested functions given in eq. (29).

In the analysis of the fluctuations of individual r3'4 values from

the mean in both crystals, Zachariasen noted that fluctuations have the

same sign, suggesting the discrepancies in eq. (31) are not due to

experimental errors, but due to departures from the spherical symmetry

of electron distribution due to band formation.



-24-

From the results of the experiments, Zachariasen deduced that the

assumed isotropy in the shape and orientation of the domain is justi¬

fied for both hambergite and a-quartz, since there was no systematic

variation of r* with the orientation of the reflecting planes.

Zachariasen (1967) has also studied extinction in calcium fluoride.

Here, he found that the applied extinction corrections were not

sufficient to bring about a good agreement between the calculated and

corrected structure factors and he assumed the differences were due to

anomalous transmission (Borrmann, 1941).

Since this theory was published, many other tests, applications

and extensions of the formulae have been undertaken. Extinction

correction parameters have been introduced into many least squares

refinement programmes, e.g. Larson (1969), and such parameters are

often refined during the structure determination. There is no doubt

that Zachariasen's work has lea to a significant increase in interest

in diffraction theory and accuracy of the structure factors.

Since the publication of the theory, however, many authors have

cast doubts on the validity of the basic equations used and of the

correctness of the mathematical derivations of the final formulae and

have questioned the assumptions often used in its applications.

As stated before, when an x-ray beam is diffracted by a perfect

crystal, a phase change of tt/2 occurs during the scattering process.

Any diffracted beam which is rescattered back into the main beam will

therefore be out of phase with the main beam by it. How the main beam

recombines with a many times scattered beam will depend on the number

of times the beam has been scattered. The diffracted beam will also

contain beams scattered many times. The intensity of the main beam

and the diffracted beam can only be determined by taking into account

these rescattering processes. In other words, the scattering process

in a perfect crystal is a coherent process.



Fig. 8
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Zachariasen's equations, however, are equations involving intensity

only; the "feedback" term is added to the main beam as an intensity,,

Since the equations do not take coherence into account, it is unlikely

that they will be able to correct for significant quantities of primary

extinctiono This was first pointed out by Werner (1969).

Another mathematical error, pointed out by Werner (1974) and

Becker and Coppens (1974) relates to the coordinate system used by

Zachariaseno Zachariasen's theory does not specify an origin of the

direction of the incident and diffracted beams t^ and t^ respectively,
figo (5). Werner used a coordinate system where x specifies the

direction of the incident beam and S specifies the direction of the

diffracted beam, fig. (8). The relation between the two coordinate

systems is:

t, - x - x,
1 b

*2 = S " Sa

where x^ and are the equations of the boundary. Werner- showed
that the basic equations should be

31 31
_3So o

8tl dt2 3x

31 31 3x

3t„ 3t, 3S
2 1

crl + cl
o

- ol + crl
o

Comparison of these equations with those of Zachariasen (eq. 6), shows

that the second terms on the left hand side of these equations were

neglected by Zachariasen.

It is of interest to note that Brown and Fatemi (1973) also

pointed out that the coordinate system used in Zachariasen's theory is

an unusual one, does not have a unique origin, and the use of this

coordinate system is not consistent with the basic differential

equations. But they also noted that the use of a correct procedure

changes very few of the results of Zachariasen because the. error does
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not affect most of the special cases treated and because Zachariasen

selects his final form from several forms on the basis of their

correspondence with experimental data.

For the primary extinction corrections, Werner suggested that

the results of dynamical theory for slab geometry can be used as a

reasonable approximation.

One very important limitation of Zachariasen's equations is

introduced by defining the function <f (a) as given in eq. (12). For

a crystal of unknown shape, <j)(a) cannot be described by a single

equation. In general, <t>(o) can be written as a polynomial in at,

the coefficients of which are functions of the shape of the crystal

and the scattering angle. Zachariasen took this mosaic block to be a

parallel plate diffracting in the symmetrical Bragg condition and he

stated that it will be a good approximation for a sphere. However,

since the mosaic block shapes of a real crystal are unknown and since

the closed form of cf>(a) may not describe the angle dependence

sufficiently, this approximation may be quite invalid in certain cases.

Cooper & Rouse (1969) investigated the problem of the angle

dependence of the coefficients of the series for cj>(a) using a single

crystal of Ca F^ and neutron diffraction data which appeared to be
suffering from severe extinction. They found marked angle dependence

in the extinction coefficients for extinguished reflections and devised

an empirical equation to give a better agreement between their

calculated and corrected structure factors.

The shortcomings of Zachariasen's theory can be summarized as:

1. The basic equations do not express the flow of energy in a

perfect crystal region, but they may be valid for real crystal case

in the case of only secondary extinction.

2. Zachariasen's coordinate system does not have a unique origin,

the coordinates used in the theory are only mutually independent if

the crystal is a parallelepiped with faces parallel to the incident
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and diffracted beams.

3. The approximations in eq. (12) and eq. (17) may not be valid

in most of the cases.

4. The use of only a Gaussian distribution of the orientation of

the mosaic blocks may not be valid.

5. Absorption effects cannot be treated separately from extinction

unless extinction is small.

Becker & Coppens (1973) reconsidered the theory of extinction in

a very similar way to Zachariasen's approach, They assumed that the

basic transfer equations express the flow of energy inside a perfect

crystal reasonably, using independent coordinates x^ and x2 based on
an external coordinate system. Further, they pointed out that the

reversal of the direction of the diffracted ray as was used by

Zachariasen was wrong and one should use the true direction.

They solved the basic transfer equations obtaining the same

solution for the function <f>(cr) which was obtained by Zachariasen for

the parallelopiped of fig. (6).

In the calculation of o(e^), the result of Becker & Coppens
differs from the result of Zachariasen by the occurence of an additional

term sin26. The result for a(e ) is given as

sin3 ire a

o ( e. ) = Q v"1 / dva1 v , \2

(iTe^a)
where a = & srn26 ^ ^ being the thickness of the crystal parallel to

the diffracted beam and the other symbols having their usual meaning,

This theory was applied to the parallel plate and spherical

crystal cases. The result was in poor agreement with the result of

dynamical theory in the parallel plate case, From this Coppens &

Becker concluded that the basic transfer equations do not express the

flow of energy inside a parallel plate shaped perfect crystal. The

theory gave reasonable agreement with the 1st order approximation
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results of dynamical theory in the case of spherical crystal, y^ was
calculated by numerical integration over a gaussian grid and using

the expression

/•, o A(e)xJ-,-5r
y = {1 + 2x + —tt-t-t }Jp 1+B(6)x

the 9 dependence A(8) and B(0) were found by means of least squares

fit. The generalization of the theory for real crystal case was done

in the same manner as Zachariasen, but because of the additional sin26

dependence in cr(e ), the type of the crystals defined by Zachariasen

became less defined and it was suggested that crystal type varies with

Bragg angle„ On the other hand it was suggested that in type I

crystals one should include the effect of primary extinction using the

approximation:

y - y • y
p

which has been used by various authors„

In the generalization of the theory for secondary extinction it

is necessary to use the convoluted value a instead of o„ In the

calculation of a Zachariasen used a Gaussian distribution function

which governs the distribution of the orientation of the mosaic blocks,

eq. (3)„ Coppens & Becker used both this function and a Lorentzian

distribution which is given by

= 2g/(l + 4tt2 e^ g2 ) .

From the comparison of the results and from the measurements using

y-ray resonance (Maier Leibnitz, 1972), they suggested that the actual

distribution is more closely Lorentzian than Gaussain,

As described before in his theory, Zachariasen states that

primary extinction will be generally negligible for the large structure

factors when the block size is less than 10"4 cm and secondary extinction

will be dominant and this is the case for most of the experiments.
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However, in some of the experiments, the block sizes deduced from

various materials were greater than 10"4 cm implying primary extinction

is taking part, e.g. hambergite (Zachariasen, 1968), calcium fluoride

(Zachariasen, 1968),

Denne (1972), using cc-glycine crystals of different sizes showed

that the amount of extinction in these crystals was independent of

their shape and size, suggesting primary extinction is dominant.

Lawrence (1972, 1973), investigated extinction on large parallel

plates of lithium fluoride and magnesium oxide whose cross-sectional

areas were much larger than that of the incident beam. It was noted

that the intensities of symmetry equivalent reflections, after the

application of transmission factors which take into account absorption

and the different volumes of the crystal irradiated, were the same,

regardless of the path length through the crystal, implying that the

extinction was of the primary type. Therefore, only one mosaic block

was diffracting a parallel monochromatic beam at one time. Using

Zachariasen's primary extinction correction, a mosaic block size of

3 x 10"3 cm was deduced for lithium fluoride which corresponds to a

dislocation density of 10s cm"2 which well agreed with the value given

by manufacturers of the material. For MgO, Lawrence deduced a mosaic

block size of 3.56 x 10"3 cm which is again far larger than the

minimum size of block required to ensure that only primary extinction

was taking place.

Killean, Lawrence and Sharma (.1972) investigated extinction using

a small spherical LiF crystal which was from the same batch of material

as used by Lawrence. Assuming only secondary extinction, a mean

radius of mosaic block of 1.5 x 10"6cm was obtained. Comparing this

value with the value obtained from a strain equation and the value

obtained by Lawrence, it was deduced that Zachariasen's procedure gave

a physically unreasonable value for r*.
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As stated before, primary extinction is a coherent process and in

secondary extinction no coherence is assumed between the rays diffracted

from various macroscopic regions of the crystal„ As can be seen from

eqSo (18) and (27) the mathematical form of the primary and secondary

extinction corrections are very similar„ If a particular data set

which was affected by extinction was corrected assuming only primary

extinction, a mosaic block size r would be obtained where
P

2 _ _2x
rp ~ 3A

where A is a constant for a particular reflection. If the data set

was then corrected assuming secondary extinction (type II crystal), a

mosaic block size r would be obtained where
s

x
r = — o

S
AT

Due to the similarity of eqs, (18) and (27), the correction would be

equally applicable for both types of extinction and the mosaic block

sizes would be approximately related by

r 2 = (f)T r .p 3 s

According to this relation, if a block size of 10"4cm is obtained

assuming secondary extinction only, for a crystal of T = 0.02 cm a

block size of 2 x 10"3cm would be obtained assuming primary extinction

only. Therefore, in this case, the block size deduced cannot be used

as a justification of the assumption that only secondary extinction Is

taking part. Identification of the type of extinction can only be

done by testing the variation of extinction with path length, Lawrence

(1974).



CHAPTER 2

Introduction:

Although Zachariasen's equations have been generally

applied in many cases, doubts still exist as to their

validity. These doubts can only be resolved experimentally

and there still remain two fundamental questions regarding

the applicability of the equations. These questions

are:

1) Is it possible experimentally to differentiate

between the two types of extinction, primary and secondary?

2) Do Zachariasen's equationsyield physically signifi-

can parameters?

In an attempt to answer 1 these ouestions, a study of

the large crystals of D(+) tartaric acid was undertaken.

An attempt was made to determine the type of extinction

present and to investigate the physical parameters obtained

from the application of Zachariasen's equations.

An intensity measurment project to test the accuracy

of structure factors measured by different laboratories

had been designed by the International Union of Crystallo¬

graphy, (Abrahams, Hamilton and Mathieson, 1970). In this

project, seventeen sets of measurnents of structure factors

of D( + ) tartaric acid, within the range (Sine Wn.R A"1,
A

were provided by the participants. Each participant used



a different crystal, all being derived from a single

crystallization batch. In the report of the project,

all data had been put . on the same scale by the method

of Hamilton, Rollett and Sparks (33965), and the differences

between the sets in relation to a number of variables,

such as intensity, Braggangle, indices of reflections,

were examined and the report arrived at certain general

c onclusions.

Later, Mackenzie (1974) reduced theapriori assumptions

to a minimum, worked out the differences between sets of

structure factors again, and came to the following conclusions-

1) There were systematic structure factor dependent

differences in the structure factors derived from different

single crystals. These differences were beginning to be

apparent at medium values of structure factors and were

increasing to be about 15$ of the structure factor for the

largest structure factors.

2) These differences were not due to improper scaling

or other errors in data reduction and the angle

dependence of these differences was minor.

3) The differences were probably wavelength dependen't

but there was not enough data to check this.

4) They were not due to differences between the

apparatus or measuring techniques used.

It was therefore concluded that the differences

were consistent with extinction. The very large variation

in the intensities obtained by different participants

emphasised the importance of extinction in the measurment

of accurate structure factors and, in view of the results

obtained in the project, it was decided that D(+) tartaric
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acid would be an excellent material on which to investigate

extinction.

Recent investigations into extinction in many materials

have been carried out e.g. hambergite, oC-quartz, lithium-

fluoride, calciumfluoride (Zachariasen 1968a, 1968b,1968c ),

calciumfluoride (Cooper, 1970), bariumfluoride (Cooper,

House and Willis, 1968), strontiumfluoride and calcium

fluoride (Cooper and Rouse, 1971) and many other materials.

In these studies, the integrated intensities were measured

from small crystals, completely bathed in the X-ray beam,

and a least squares, routine which included extinction

parameter as an additional parameter, was applied to the

data. This method was thought to be unsatisfactory for

the following reasons:

l) V/ith small crystals, it is not usually possible tro

test the variation of extinction with pathlength satisfactorily.

The variation of the pathlengths of different reflections

is usually quite small unless one of the dimensions is

large. Without a test of the variation of extinction with

path length, primary and secondary extinction cannot be

distinguish ed.

2. If the crystal is of irregular shape, absorption

corrections cannot be accurately apnlied.

3) The use of a least-squares routine implies an

established mathematical relationship between extinction

and intensity. Since the experiments are being done to

establish this relationship, some other method of analysis

should be used.

The fir3texperimental observations on extinction

were carried out on large plates of. sodium chloride,
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(Bragg, James and Bosanquet, 1921). The object of these

experiments was to find accurate structure factors from

rocksalt and to (Shock the intensity formulae which were

suggested by Darwin (1914). Large parallel plates of sodium

chloride of various thicknesses with cross-sectional areas

larger than the incident X-ray beam were used in the

experiments. Accurate intensity measurnents were obtained

and absorption corrections applied. Extinction was

regarded as an increase in the effective absorption

coefficient and, analysing the variation of absorption

coefficient with the thickness of the crystals, extinction

coefficients were obtained for strong reflections. It

was assujned that the integrated intensity, R, for a

reflection was given by

R = QT e~^+5^T
where Q is the reflectivity and T is the pathlength of the

rays through the crystal. As can be seen, the normal

absorption coefficient has been replaced by an effective

absorption coefficient, /<' , given by

/<' = /c + gQ
*

and it was found that the amount of extinction was

proportional to the reflectivity. By repeating the

measurments for different thicknesses and for different

degrees of perfection (which was obtained by different

amounts of grinding) of the crystals, the variation of

extinction with thickness and perfection was investigated.

The use of large crystals of regular shape having a

cross-scctional area larger than the X-ray beam has the

foil owing advantages:

l) The variation of extinction with pathlength



through, the crystal can be adequately investigated and this

is the only v/ay to determine the type of extinction i.e.

whether it is primary or secondary, e.g. Lawrence "(1972,

1973).

2) Absorption corrections are exact apart from any

errors in the absorption coefficient/1. In the case of

small, arbitrary shapes, it is very difficult to measure

precisely the dimensions of the crystals which are very

important in the calculation of the corrections. The

usual way is to evaluate absorption integrals approximately,

using numerical methods for the arbitrary shapes, which

may contain significant errors in most of the cases. In

large plate shape crystals one does not need to deal with

these complications. Absorption corrections are given by

simple formulae and as long as the thickness of the crystal

is known accurately, absorption corrections can be calculated

in a straight forward manner.

3) The results are not dependent on the uniformity of

the incident beam.

4) Intensities can be measured on any conventional

diffractometer and, since the diffracted intensities are

much larger compared to the diffracted intensities from

small crystals, the accuracy in measurment is greater.

5) Grinding the crystals to special small shapes can

affect the perfection of the crystals in an irregular

manner.

An attempt was therefore made to grow large, parallel-

plate shaped crystals of D( + ) tartaric acid having uniform

thickness.



Fig. 9

Schematic diagram! of 4-circle diffractomer



Growth of the crystals:

In order to obtain large, plate shaped D(+) tartaric

acid crystals different solutions were tried and the best

results were obtained from an aqueous solution. ■ Crystals

of D(+) tartaric acid were grown from saturated aqueous

solutions by evaporation and many crystals of various

thickness with a large cross-sectional area compared to

X-ray beam and which were considerably more uniform than

the others were chosen.

Prom the oscillation photographs and measurments by

microscope it was found that all- of the crystals were

grown in the same way having thicknesses between 0.2 mm

to 0.5 mm along the a axis.
\

Apparatus:

Quantitative intensity measurments were carried out

on a Siemens four-circle diffractometer which has four

setting circles, 0 , X»w and 20 circles, w and 20 circles
are coupled together with a ratio 1:2, reducing the number

of setting circles to three. This diffractometer has a

quarter X circle, fig (9). The detector is controlled

by 20 circle which is mounted such that it lies in the

equatorial plane. The crystal is mounted on to a shaft

perpendicular to this plane with an adjustable goniometer

head, whose rotation is controlled by the 0 circle.

The apparatus has a normal beam equatorial geometry,

both the incident and diffracted beams lying on the

equatorial plane. In order to bring any reflection (hkl)

into diffracting position, the reciprocal lattice point

should be moved to a corresponding point on the Ewald

sphere by 0 rotation and then this point can bo moved to

the equatorial plane by X" rotation.
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ft, X? and w circles are driven by three stepping

motors, step size is 0.01°, and this corresponds to a'

0.02 stop size on 20 circle. Settings arc checked by

means of digitizer drums.

The diffracted intensity is received by a scintilla¬

tion counter. In order to prevent lost counts in the case

of large - intensities which can exceed the capacity of the

counter, an attenuator system is placed in the path of

the main beam. This system consists of a disc,attached to

the X-ray tube, which can revolve nrouhd its axis. This

disc has six holes, five of them containing different

attenuators for the progressive attenuation of the main

beam. In the path of the main beam there is also a

second disc containing the Kp filter and the shutter. In
the experiments the beam was monochromatised by a graphite

monochromator.

The coupling of W and 20circles together with the

ratio 1:2 is called "moving crystal - moving detector

scan" or "e-29" scan. During the experiments this scan

was employed. In this method, as crystal*rotates through

an angle (e-AO) to (e + AO) about the exact Bragg angle,

the detector moves through an angle (2O-2A0) to (29+2A0).

All of the input and output channels of the Siemens

four-circle diffractometer are connected to an IBM-1130

computer with an interface and it is controlled by this

computer executing automatic data collection programs.

The programs are stored in core image on the computer

disc.



Data collection programmes:

DSET4:

The programme DSET4 is mainly used to facilitate the

crystal setting. Using this programme, many operations

which are required for automatic' data collection can be

performed singly,, , e.g. setting the circles to their zero

positions, setting the circles to a given angle, inserting

any of the sik attenuators in the path of the main beam,

determination of the orientation matrix, measuring the

integrated intensity of a given reflection. Each one of

th'ese operations can be called using the switches on the

keyboard of the computer in any sequence.

One of the most important functions of DSET4 is the

determination of orientation matrix. Orientation matrix

is the relation between the original position of the crystal

on the diffractometer and the diffracting positions. In

automatic data collection, the ft, X> an<3- Q values for a

certain reflection are calculated from the orientation

matrix. DSET4 contains two versions of orientation matrix

determination. In one of them, orientation matrix is

determined from the manual determination of the ft, X s-nd

9 values of any three non co.-planar reflections while in

the other one, orientation matrix is determined using the

ft and X values of only two non co-linear reflections and

the cell parameters. After orientation matrix determina¬

tion ft, X and 9 values for any reflection and the reciprocal

and the real cell parameters can be extracted.

Using DSET4, the measurment of integrated intensities-

can also be done for any of the reflections. A five-point

measurment cycle, which will be described later, is used
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in the ineasurments of integrated, intensities. The ohly

difference under DSET4 is the step size and time required

for each step is not flexible and lias to bo given as input

data initially. It is also possible to obt.ain line profiles

for any of the reflections.

DIFF8:

Programme DIFF8 controls the diffractometer during

automatic data collection. In this programme from the

orientation matrix, from the information about the segments

of reciprocal space to be measured from the minimum and

maximum values of 20 required, from the order in which the

indices are to be taken and from the specification of

systematic absences, reciprocal space is explored in a

systematic manner. The "X and 0 circles are driven

automatically to the angles calculated from orientation

matrix which is given as input data. By counting for

0.5 sec. at the peak of the reflection with the thickest

attenuator in use, the correct attenuator setting is made,

in order to make sure that the maximum counting rate of

the detector is not exceeded, so lost counts are prevented.

If the maximum count rate is exceeded the measurment will

be done the thickest attenuator in use, but this will be

indicated in the output data. In these reflections lost

count corrections will be necessary.

The integrated intensities are measured using a five-

point measurment cycle about the exact Bragg angle. The

range of scan is

(+A9) = P + Q tan 6

where P and Q are specified in the input data. The scan

is in steps of 0.01°. Counting time for steps is related

to the counting statistics and accuracy of measurment.

Calculation of the time per step is as follows:



Fig. 10 Five-point measuring scan

Fig. 11 Symmetrical Laue reflection



A trial time per step q, a maximum time Tm per

step, a pre-stated percentage accuracy p and a percentage

accuracy Fc for the weak reflection criterion arc

specified in the input data. Times are expressed as \

integers, where integer 1 corresponds to 5.4x1(5^ sec.

First, the reflection is measured using the trial time

per step q and a time per step T is calculated ensuring

the required accuracy p. If T is less than Tm, the

reflection is then measured using this time per step. If

T is greater than Tm, an accuracy p' for the reflection

is calculated if it to be measured for Tm. If p' is less

than the weak reflection criterion Pc, the reflection is

measured using Tm as time per step. If p^ is less than, p'
then reflection is not measured and is considered to be

absent.

Then, in five-point measurement cycle (fig. 10), the

detector measures the half peak 1^, measures the background
B| then measures the full peak 1^, then measures again
background and half peak in steps of 0.01°, using

the range and time per step described above. The time

spent for measuring the background counts is half the time

for measuring the peak. Therefore the integrated intensity

for the reflections on the same scale will be given by

I = [(I1+ l2+ l3) - 2( B1 + B2)]x
v/here X is the attenuator factor and T is time per step.

In using DIFF8, repeating the measurments of some

standard reflections after each set of n reflections

where n is specified in the input data, it is possible

to check the overall stability of the system.
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Data Collection:

Data was collected for all seven crystals using

CuEX" radiation and, for four of them, data collection

was repeated using I.IoKoc radiation.

Experimental Conditions for CuKo< data:

Applied voltage = 35 KV

Current = 20raA
2

Trial time per step = 0.54.x 10 sec.

Maximum time per step = 0.54 sec.

Percentage accuracy = 2$

Weak reflection accuracy = 20$

For MoKc* data applied voltage was 40 KV and the current

was 18 mA and the other conditions were the same as in

CuBx data.

The crystals were first set on goniometer heads using

glass fibres. Oscillation photographs ensured that all

of them have b axis as the oscillation axis. By taking

oscillation photographs successively, the required correc¬

tions were done in the setting of the crystals on the

goniometer heads.

When the automatic data collection was being carried

out for the first crystal, it was noticed that the back¬

grounds and halfpeaks on both sides of the diffraction

peaks were highly asymmetric. It was concluded that the

diffraction peaks were not centered because of a fault

in diffractometer circles. The scan was covering the

whole peak, therefore it was possible to measure the

integrated intensities, but because the peaks were not

centered, automatic setting of attenuators in some of the

reflections were incorrect, leading to lost counts. It
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was decided to centre the peaks manually and to carry out

integrated intensity measurnents using the programme DSET4

instead of automatic data collection programme DIFF8.

Using CuKot radiation, for all seven crystals, data

was collected by centering the diffraction peaks manually.

All of the integrated intensities of(Okl) and( Okl) reflections
were measured up to a 9 value of 70° using the programme

DSET4.

During the data collection using MoKoc radiation, the

automatic data collection programme DIFF8 was employed,

the fault in the diffractometer arcs having been corrected.

The checks on the diffraction peak shapes showed that the

peaks were symmetric and properly centered. For four of

the crystals, for the same reflections as in the CuKbc data

collection, the integrated intensities were measured.

Data reduction:

The attenuation factors were measured in a seperate

experiment. In this experiment, one weak and one strong

reflection having the attenuator 1 and attenuator 3

respectively during the data collection, were chosen.

Using a long time per step the integrated intensities

were measured, setting attenuators 1,2,3,4 for the weak

reflection. From the ratios of these integrated intensities

to the integrated intensiies obtained using attenuator 1,

attenuation coefficient were found as

1:2.062:4.0189:7628:25.877:36.837

These attenuation coefficients were applied to the raw data.

2
The square of the observed structure factors, |Fo.| ,

were obtained from the integrated intensities, R, from

the equation

R = clFo)2 A (Lp)~1
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where A is the absorption correction and (Lp) ^ is the

Lorentz polarization correction.

All of the rofl ec ti 0113 usod were symmetrical Ln.no

reflections i.e. the diffracted beam ernmcrged from the

crystal at the opposite face from the incident beam and all

path lengths through the crystal were the same for each

reflection, (Fig.ll). For this geometry the absorption

factors are given as

A = (t/Cos0)exp(-/vt/CosQ)

where M is the absorption coefficient and t is the thickness

of the crystal.

To apply the absorption corrections one needs to know

the thickness of the crystals accurately. The measurements

of the thicknesses of the crystals were difficult and a

method of measuring t was therefore devised. In this

method crystals were placed normal to the incident beam

and the transmitted intensities I through the crystal

were measured. The incident intensities Io with crystal

removed were also measured in each case to eliminate the

possibility of long term, variations in the incident beam

intensity. Then the values of /<• t were calculated from

= ln(lo/l)
The value ofwas determined from the International

Tables of Crystallography vol IV (1974).

For CuKce radiation = 14.82 cm

For MoKbc radiation = 1.619 cm-

Even with the thick attenuator in use, the intensities

were very large in these measurrnents. There fore a copper

foil was introduced in front of the detector aperture in

order to prevent lost counts. Measurments were carried out



-44-

using CuKcr radiation for all of the crystals. For four of

them again, the measurments were repeated using I'ToI&r

radiation. In order to get rid of the (A/2) radiation,

the power of the X-ray tube was cut down reducing the

applied voltage to 34 XV which does not excite ( A/P)

radiation for 1 :oKcc radiation. This was not possible in

the case of CuKbc radiation.

For six of the crystals, the thicknesses obtained

using CuKor radiation were

for Crystal ] : t. - 0.0455 cm
for Crystal 2 : t„ = O.O406 cm
for Crystal 3 : ti = 0.023. cm
for Crystal 4 : t^ = 0.0217 cm
for Crystal 5 : tt = 0.0204 cm
and for Crystal 6 : tg = 0.01923 cm
In the same way, using MoKoc radiation the thicknesses

obtained were:

for Crystal 1 : t-, = 0.0458 cm
for Crystal 2 : tp = 0.04028 cm
for Crystal 4 : t^ = 0.0223 cm
and for Crystal 5 - tt = 0.01966 cm

After the comparison of above results with each other and

with the values measured through the telescope of the

diffractometer, thicknesses of the crystals were taken as:

t, = O.O46 cm

tp = 0.040 cm
t^ = 0.023 cm
tI = 0.022 cm
t ' = 0.0197 cm

tg = 0.0192 cm
with a maximum percentage error of ¥/° on each.

Using these values, the transmission factors were

calculated for each reflection and the absorption corrections

were applied to the raw data for all of the crystals.

The structure of D(+) tartaric acid had been refined

by Okaya and Stemple (1966) and although the calculated

structure factors may not have been correct because ofextinction in



the observed data and possible inaccuracies in the least- squares

process , it was assumed that they were approximately on an

absolute scale.

On the other Hand, it war thought that, if the average

value of the structure factors obtained in different experi¬

ments using MoKcx" radiation, in the project of International

Union of Crystallography is taken, it will provide a bettor

set of structure factors since the data v/ill be less affected

by extinction. Therefore it was decided to scale these

average values of structure factors to those refined by

Okaya and Stemple and then to scale the raw data to these

structure factors which are now assumed to be on an absolute

scale. Scale factors were found using small structure

factors which may be affected by small extinction only

and the data sets were put into absolute scale applying

these scale factors.

After these corrections and scaling, the symmetry

equivalent reflections were compared in each set, calculat¬

ing the reliability factors betwcen( Okl) and( eiicl) sets.

Reliability factor for the nth data set was

Rn =^F(Okl)1 2 " lF(0ki)\ 2) /£ lF(0kl)l ^
In one of the seven crystals, the differences between

symmetry equivalents were large in most of the reflections,

suggesting that this crystal was not uniform. This data

set was therefore rejected. The differences between the

symmetry equivalents were large in the (002) and (Oil)

reflections in all of the crystals. These reflections

were omitted from the data. Apart from these, the reliab¬

ility factor Rn were



hkl

001
002

003
004
005
006
012

013
014
013
016
021
022

023
024
025
031
032
035
034
035
041
042
045
044
051
052
055

!'ob. (Cul° ■* < F^. (MoK*) >

crysl crys2 crys3 crys4 crys5 crys6 crysl crys2 crys4 crys5 Pk
0.8 1 . 0.8 0.71 0.91 0.84 2.3 2.3 2.3 1.76 0.76
163.6 218.2 197.5 261.3 345.2 261.2 637.9 538.5 701.9 787.8 911 .2
9.5 9-5 9. 9-9 11 . 10.4 11.7 11.6 11.7 11.4 12.3
172. 226.6 206.8 228.8 265.1 249.7 400.9 379.3 412.6 427. 439
9.6 9.8 9.6 9.7 9.6 9. 11.6 11.6 11.3 11.7 11.2
52.5 52.4 55.4 33.9 35.3 36.6 39.5 39.5 39.9 40.1 40.3
60.7 66.5 70.2 71.2 78.6 78.9 101.5 97.8 101.5 104.6 108.3
154.6 164.1 169. 175.4 204. 202.3 275.3 263. 280.4 291.3 310.1
18. 18.5 18.1 18.4 19. 20.6 22.9 22.1 22.0 23. 22.0
22.9 23.2 23.5 25. 24.2 26.5 28. 20.3 28.7 28.5 29.4
31.6 35.8 35.4 36. 33.8 35.4 37.4 38.5 38.2 58. 38.2
25.8 27.1 28. 28.8 29.5 32. 38.3 37.7 37.2 37.7 34.6
15.7 15.5 13.6 13.7 13.9 15.4 17.6 17. 17.3 17.4 24.1
108.8 129.6 138.7 132.7 150.9 149.1 193.4 188.8 193.2 199.3 188.2
12.1 79.5 82.2 79.7 86.9 91.4 109. 108.4 109.3 110.4 114.6
20.2 20.9 21.2 21.3 21.4 22. 24.9 25.1 24.9 25.3 26.8
166. 195. 226.3 209.6 236.1 244.6 330.5 330.7 347.6 350.2 364.4
55.1 54.5 35- 35.6 36.2 40.2 46.9 46.4 45.9 46. 46.2
58.0 05.8 67.9 65.5 70.8 76.4 91.8 89. 88.8 90.3 90.5
11.6 11.6 11.9 12. 12. 13.2 14.4 14.2 13.9 14.2 13.
5.5 4. 3.9 4. 3.7 4. 4. 4. 4.1 4. 3.5
26.8 21.1 27.1 21.1 27.8 31.2 37.5 37.9 37.4 36.9 37.9
15.2 13.6 13.6 14.2 13.6 16. 18.1 17.7 17.8 18. 20.
29.1 50. 30.9 31.5 32.2 34.7 38.3 38.2 37.8 38.8 38.3
51.4 56.1 59.4 58.6 59-6 63.7 16.6 74.8 74.4 75.5 76.8
140.4 157.7 165.9 163.8 173.9 182.9 247. 257.4 255.2 255.3 266.3
15.9 14. 14.3 14.8 14.2 16.1 17.6 17.4 18.4 17.9 19'. 2
49.4 54.9 55.6 54.5 56.7 59. 12.1 71.8 70.7 12. 73.8

Table 1
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For CuKbf radiation:

R, = 0.0247
Rp = 0.0644
R, = 0.0748
R-J = 0.0 384
rJ = 0.0 32 3
r2 = 0.0726

o

And for IVioKoc radiation

id = 0.0247
R-R = 0.0603
Rf = 0.0417

R^ = 0.0311
These values were thought to be satisfactory in view

2
of the 2'/' counting statistic accuracy. The [FobJ values

of the symmetry equivalent reflections were averaged and,

therefore, the )Fob|. values of okl reflections for six

crystals of different thicknesses, using CuKcc radiation

for all of them, and using I'ToKcc radiation for four of them,

were obtained. These values are shown in table (l).

To compare the consistency of the experiments the Rj_j
values were calculated between the sets of data, for small

intensities only, since these reflections will have small

extinction.

The Rj_j values for intensities are given by;

Rij =^lFil 2 " 2
From this R. . values- were obtained for CuVoc sots as:

R12 = 0.0274
R.15 = 0.0 399
R14 = 0.0420
R-J5 = 0.06 30
R16 - 0.0964

The R -] j values increase slightly with decreasing
thicknesses of the crystal, suggesting that, although

the intensities used in the calculation of R-jj were low,
there was still a thickness dependent effect which could

have been caused by secondary extinction, even at these

low intensities.
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The R-jj values obtained for lloKbr sets were snail or;
V")

1 1 2
K 14
13

Any thickness dependence is not detectable but when

r (imp.'i red l,(i. I,lie li jj v.'ilucs in OtiKof esse, i I. strongly

si.i,";,";es ta that the differences between I he sets of dnta

arc wave length. dependent. The R-jj values obtained were

thought to be reasonable. With an average 21 error in

|Pob|, the data sets were consistent with each other.

Inspection of the scaled data showed that, at least

for CuKoe radiation, the strong reflections seemed, to be

fairly strongly extinguished. Investigation war. carried

out to determine the following points:

1) How did the thickness of the crystal affect the

amount of extinction?

2) Was it possible to determine whether the extinction

was secondary or primary?

3) Could a mathematical equation describing extinc¬

tion be found?

In the investigation, Zachariasen*s procedure was

initially assumed to be valid, that is;

where Pic is the kin ematic structure factor. The average

values of the observed values of the structure factor |Fob\,

<f the PoKoc data, which was obtained from the international

Union of Crystallography project and had been put into

an approximate absolute scale, were taken as Pic values.

Assuming only secondary extinction, for intermediate type,

x is given by en. (30), for type I x is given by

y = (Fob/Fk)2 =( 1 + 2x )"1/2

x = gQT , (34)
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h k 1 Q x 106 crystal 1 crystal 2 crystal 3 crystal 4 crystal 5 crystal 6

1/y2 QT 1/y2 QT 1/y2 Of 1/y2 QT 1/y2 Q.T 1/y2 QT

0 0 4 1557.8 6.51 82.5 3.75 72.6 4.50 41.5 3.60 40.2 2.74 35.5 3.09 34.6

0 5 1 1477.9 4.81 74.0 3-49 65.1 4.40 37.2 3.02 36.0 2.38 31.8 2.22 31.0

0 1 3 1277.1 5.30 63.8 3.57 56.1 3.36 32.0 3.12 31.0 2.31 27.4 2.35 26.7

0 5 1 954.9 3.60 57.9 2.85 50.9 2.57 29.0 2.64 28.2 2.34 24.9 2.12 24.2

0 2 3 699.4 2.99 36.0 2.11 31.6 1.84 18.0 2.01 17.5 1.56 15.5 1.59 15.1

0 1 2 636.8 3.18 30.4 2.65 26.7 2.38 15.3 2.31 14.8 1.90 13.1 1.88 12.7

0 2 4 400.2 2.48 22.2 2.08 19.5 1.94 11.1 2.07 10.8 1.73 9.5 1.57 9.3

0 4 4 278.0 2.23 18.3 1.87 16.1 1.67 9.2 1.71 8.9 1.66 7-9 1.45 7.7

0 3 3 316.3 2.36 17.2 1.88 15.1 1.77 8.6 1.90 8.4 1.63 7.4' 1.40 7.2

0 0 6 144.6 1.53 10.1 1.54 8.9 1.45 5.1 1.41 4.9 1.30 4.3 1.21 4.2

Table 2
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and, for tyre II,

x=A~1. rQT (55)

Assuming only primary extinction, x is given by

x = (5/2)(r2/A) Q. (36)
For secondary extinction, since

„ (1/y)2 = 1 + 2x >

_1_)
y will be linearly dependent on (QT), while for primary

extinction, it will be linearly dependent only on Q and

there will be no dependence on T.

For all of the data sets the(i /y|val u c s were calculated
from

(1/y)2 - (p/Pb'4
CuKcc data:

1
The Q,.QT and —gvalues of the ten most extinguished

y

reflections are shown in Table (2)

(a) Assuming only secondary extinction:
2

For each crystal, the values of (l/y ) were "clotted

against QT. These are shown in fig. (12). It can be

seen that there are significant departures from linearity

but the pattern of the points was very similar for each

graph. If, strictly foliowing Z achariasen's thcory, a

straight line is drawn passing though the origin (1 /yA= 1)

and best fitting the points plotted, the pattern of the

points above and below this line is very similar for each

crystal. In each graph, the points representing (03I),

(051) and (023) reflections lie below the line, the points

representing (006) and (044) lie close to the line and

the points representing (033) and (012) lie above the

lino. If Zachariasen's theory is correct, this would

strongly suggest that the points are being affected, by



J "

1

2

3

4

5

6

rsl

1

2

3

4

5

6

Gradient (x 10^)
0.062

0.040

0.068

0.065

0.050

0.050

Table 5

Thickness( cm.)

0.046

0.040

0.023

0.022

0.0197

0.0192

Possible variation of

individual gradients

( x 106 )

0.0123

0.0051

0.0125

0.0112

0.0105

0.0079

Absolute deviation from

the mean gradient

( x106 )

0.0060

0.0160

0.0120

0.090

0.060

0.060

Table 4
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systematic errors, almost certainly in the calculated

structure factor values, which were used to calculate the

Q and y values. Obviously, another alternative is that

Zachariasen's theory nay not describe extinction properly

and the distribution of the points nay be a curve, instead

of a straight line passing through the or:i.p:in or ouch

reflection is affected by a large angle dependent factor.

Due to these systematic errors, it was thought that a

least-squares solution for the best straight line night

not be appropriate and therefore the best straight line,
r

passing through the origin, was drawn about which the

points seemed to be best distributed.

If the mosaic character of the crystals wen identical

and if only secondary extinction was taking place, then

gradients of the graphs should be the same. The gradients

of the graohs were measured and are shown in Table (3)«

The average gradient and standard deviation were

calculated and found to be

<ms> = 0.05b x 106
g = 0.0043 x 106

An estimate of the possible variations of the gradients

of each individual graph and the absolute deviation of

each gradient from the mean are shown in Tabic (4). The

possible variations in the individual gradients are of

the same order or greater than the absolute deviations

from the mean. The only exception was crystal 2. This

suggests that deviations from the mean gradient may be

mainly because of the systematic errors in the calculated

structure factors but not because of different mosaic

characters. This may not be true in the case of crystal 2

which has a gradient considerably lower than the others.
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Exc-'luding crystal 2, the average value of the gradients and
r c

standard deviation were found to be 0.059x10 and 0.0038x10°

respectively, which dees not differ r.uch fror. the values

calculated including crystal 2.

Oilier I.he r ry : '■ I.e. 1 :• v. ere grown in i.lie . snne way, it wan

thought reasonable to assure all of the crystals have the

same mosaic character, and it was decided to use tlie average

value of the gradients <ms> = (0.0560 + 0.0043) x 10° in

the calculation of extinction parameters.

Assuring the crystals are of type I, from cq. (34)

<ms> = 2 g

g = 2.8 x 104
Assuring that crystals are of type II, from eq. (35)

<m> = (2 rs/* )
rs = 4»3 x 10~4 cm.

b) Assuring only primary extinction:

The values of (l/y^) were plotted against Q for each

crystal. These are shown in fig. (13)* Again there were

significant departures from linearity, but the pattern of

the points were very similar in each graoh, the eoints

corresponding (023), (051) and (031 ) being below any

possible best fitted line passing through the origin. Once

more, Zachariasen's theory was assumed to be correct and

these deviations were regarded as the systematic errors•in

the calculated structure faci;ors as in the secondary

extinction case.

Therefore the 1 east-squares fitted lines were not used

and the lines causing through the origin and. best fitting

the data were drawn about which the points seemed to be

best distributed. The gradients of the graph were measured.



—2
Graphs of y against Q for Cu radiation



Crystal Gradient (x 104 ) Thickness (cm.)

1 0.328 0.046

2 0.206 0.040

3 0.202 0.023

4 0.187 0.022

5 0.134 0.0197

6 0.126 0.0192

Table 5

h k 1 Condition for r Condition for g

0 0 4 rc3»63 x 10~4 cm. g <'2.36 x 104
0 3 1 rC 3-73 x 10 4 cm. g<<2.42 x 104
0 1 3 rc 4 x 10~4 cm. g<?2.6 x 104
0 5 1 r^4«63 x 10-4 cm. g<<3 x 104
0 2 3 r<5»4 x 10 4 cm. g<53.5 x 104

Table 6
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They are shown in Table (5)- Average gradient and

standard deviation f>t> were calculated and found to be

< m 9 = 0.197 x 104
P

and

<5- = 0.027 x 10 4
from co. (36)

< mp> = 3 r2/A
r = (3.2 + 0.5) x 10~5cm.

p '

The standard deviation in the average gradient assum¬

ing secondary extinction was 7.5$ while, for primary

extinction, the standard deviation in the average gradient

was 13.7?" and this clearly shows that the assumption that

only secondary extinction is present yields more consistent

results, also, inspection of Table (5) shows that the grad¬

ients are thickness dependent. Thickness dependence of

the gradients in Table (5) is almost linear, the only

exception being the gradient of crystal 2 again, which does

not fit the pattern, having a considerably small gradient

for its thicknes s.

As stated before, the integrated intensities of the

strong reflections were measured to an accuracy of two

percent. Therefore the limiting measurable value of y can

be obtained from

AF2/F2 = [(F2 - F2b)/ F2}= 1 - y =0.02
from this

1 - 1/J 1 + ~~2x = 0.02
x = 0.02

This means that two percent accuracy restricts the value of

x such that x <0.02 in order to be able to neglect primary

extinction. From this, for negligible primary extinction

the limits of r, and, using these limits and definition
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Q x 106
Fig. 14 b =*
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Graphs of y against Q for Mo radiation



h k 1 QxlO^cm. crystal 1 crystal 2 crystal 4 crystal 5

1/y2 QT 1/y2 QT 1/y2 QT 1/y2 QT

0 3 1 531.13 1 .216 15.44 1.214 13.6 1.158 7.7 1 .120 7.5

0 0 4 438.96 1.199 14.8 1.339 13.0 1.131 7.4 1.057 7.2

0 1 3 310.13 1.269 13.4 1.390 11.8 C\lCM•r— 6.7 1.133 6.5

0 5 1 266.3 1.162 6.8 1.070 6.0 1.089 3.4 1.088 3.3

0 1 2 108.3 1.139 6.7 1.225 5.9 1.137 3.3 1.072 3.2

0 2 4 114.57 1.104 3.4 1.116 3.0 1.100 1.7 1.080 1.6

0 4 4 76.83 1.005 1.8 1.054 1.6 1.066 0.9 1.037 0.88

Table 7

Assuming secondary extinction Assuming primary extinction

Crystal Gradient(x104) Crystal Gradient

1 2. 1 375

2 2.75 2 541

4 2.62 4 875

5 1.75 5 541

Average gradient <m >
=2.28x10

Average gradient <m >0
p mo

=583

Standard deviation (tj )
s mo

Standard deviation )
p mo

=0.242 X 104 =105

Assuming type I (r )
p mo

= 1.17 x 10 ^ cm.

(s) = 1
mo

.14 x 104
Assuming type II

(r ) =
s mo

0.81 x 10 4 cm.

Table 8
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of type I crystal (r/g ;£> 1), the limits of g. were calculated

for strong reflections. Results are shown in table (6).

Comparison of the values in table (6) with the values

obtained assuming secondary extinction only, either type I

or type II, shows that at least for strong reflections

primary extinction is not negligible if Zachariasen's

parameter have physical meaning.

MoKcC data:

2
The most extinguished seven reflections, their (l/y ),

Q and QT values are shown in Table (7). As in CuKcc data,
2 —

the values of l/y were plotted against QT assuming only

secondary extinction is taking part and were plotted

against Q assuming only primary extinction is taking part,

fig. (14). Again assuming Zachariasen's theory is correct,

the departures from linearity were regarded as the system¬

atic errors in the calculated structure factors and the

best fitted lines were drawn as in CuEbC data. The results

from these graphs are shown in Table (8). The standard

deviations (c5*s)mo and (<5"p)mo lead to 10.6/ and 18/ errors

in the mean respectively, implying the lines drawn assum¬

ing secondary extinction only fit the data better.

If the crystals are of type I or type II, the values

obtained should be consistent for both Cu and )"'o radiations.

Comparison of the results in table (8) with the results

in tables (3) and (5) shows that this is not the case,

possibly suggesting the material is of an intermediate

type. Therefore, using ^rs1cu and (rs) mo as rrx' and r£
in eq. (33) respectively, the parametersr int. ands int.

were calculated assuming the material is of intermediate

type

rint = (1.7 + 0.3 ) x 10 cm.

£>int. = (1-03 + 0.15 ) x 104
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However, the discrepancies in the g values are less than

those for ther values suggesting that the crystal may

tend more towards typet 'than type II.

It can therefore be concluded that the extinction in

the data sets is probably predominantly secondary since a

path length dependence has been detected. By studying

the extinction at two wavelengths, it has been shown that

the crystal is neither a type I nor a type II crystal but

conforms to an intermedi.ate type and therefore values of

block size and of mosaic spread have both been estimated.

This mosaic block size, determined assuming only

secondary extinction, istoolarge to permit this assump¬

tion and it must be concluded that some primary extinction

must be present.

These conclusions arc based on the premise that

Zachariasen's equations are correct and a possible indica¬

tion as to the reliability of these equations may be

obtained from a comparison of the parameter obtained from

the analysis with these from experimental observations.

As stated before, the mosaic crystal model is the

common way in. .extinction studies to describe the geometrical

array of imperfections which leads to incoherence of the

waves from different regions of the crystal since the

detailed information on the imperfection structures of the

materials is not available. Although the idea of mosaic

blocks is unrealistic, an estimate of the size of the blocks

should in some way provide a consistent reasure of the

density of imperfections in the crystal.
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In some of the work on extinction, the r* parameters

obtained following Zachariasen's procedure had been found

to be physically unreasonable (Lawrence, Killean and

Sharna (1972), Becker and Coppens (1974))

Zachariasen's theory cannot be regarded as a realistic

theory if it does not lead to physically reasonable para¬

meters which will be consistent with the real imperfection

structure of the raterial. In most of the work on the

subject, these parameters were obtained from least squares

refinement. Obviously, these least squares analysis in

which extinction parameters are included can have very

little validity unless Zachariasen's theory give physically

reasonable r* values, although this procedure may improve

the fit between the observed and calculated structure factors.

It was decided to check whether the parameters obtained

using Zachariasen's theory agree with the physically observed

values or not. It was thought that the parameter r can be

obtained from the disl ocation densities of the material

assuming a one to one correspondence between the mosaic

domain size and the dislocation density, while the parameter

g can be obtained from the mcasurr.onis of the mosaic spread

of the crystal.

Dislocationsin the materials can be observed directly

by means of X-ray transmission topography, Lang (1957).

Dislocations induce strains around the core of the

dislocation line which is a very highly distorted region

of the crystal. This core may have a diameter of a few

angstroms and since it is very highly distorted, docs not

contribute the diffraction phonemena, but the strains

induced are important a few microns from the core, giving
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risc tc a distorted region around the core to bring about

important perturbations in the diffraction of X-rays by

the perfect crystal.

These deformed regions around the dislocation lines

give rise to the images of dislocations, diffracting the

X-rays kincmat ically. The perfect regions of the crystal

will diffract the X-rays dynamically, therefore the

integrated intensities from thekin einatically diffracting

regions of the crystal will be higher than the integrated

intensities from perfect regions because of extinction

effects and will form the direct images of dislocations

when they are recorded on a photographic plate, because

of those "extinction contrasts".

Further, it is possible to distinguish the regions

which are misoriented with respect to each other from

their "orientation contrasts" on the topographs. In a

region containing local mis orientations, the integrated

intensity will vary from point to point depending upon

the deviation from the ideal Bragg angle at the point.

The topographic method of recording the imperfection

contents of the material, using well collimated character¬

istic radiation and laue type reflections only is called

transmission topography which was improved by Lang (1959).

The apparatus used is called Lang Camera, Fig (15). It

has a circular base which is marked in degrees. The

height of this base can be adjusted by means of three

levelling screws. The platform carrying the goniometer

head on which the specimen crystal is mounted, is at the

centre of this circular base. A detector arm is mounted

concentrically which can move to a given 20 value around



-56-

thiscircular banc, carrying a detector to detect the

peak raxima of the diffracted beam. The crystal orienta¬

tion is so arranged that the diffracted beam is received

in this h or i s ontal p1 ane.

The rain diffraction geometry is simple. A narrow

bear- of characteristic radiation, coming from the X-ray

source which is a fine-focus X-ray tube having focal spot

dimensions of 0.3 x 0.8 mm, is obtained by means of a long

collimator having a narrow slit at its end. This narrow

boom cuts through the crystal along the path AB. The

crystal setting on the platform is such that this ray is

Bragg-reflected by diffracting planes which are normal to

the X-ray entrance and exit surfaces. Then, the diffracted

ribbon of X-rays passes through the slits where the main

beam is stopped, and is recorded as a strip of black¬

ening of width A'B' on the photgraphic plate giving rise

to the image of any dislocation in the triangle ABC, the

direct image coming from the intersection point I of the

main beam and the dislocation dynamic images which accom¬

pany the direct images as a shadow come from the inter¬

section points of v/ave-fields and dislocation in the triangle

ABC. If the specimen crystal is a plate of thickness t,

width of the topograph A'B' is simply given by

A'B' = 2tSinG

This type of topography in which the crystal and the

photographic plate are kept stationary is called a "section

topograph". In the case of section topographs only a

very narrow portion of the crystal diffracts X-rays, so the

images of imperfections can be obtained only for this

narrow region. In order to scan a larger area of the



specir en crystal, the crystal and the photographic plate

are driven bach and forth across the X-ray bear while the

slit S stays stationary. This motion is achieved by

pushing forward the platform which carries the crystal,

by a micrometer screw head driven by a d.c. motor against

a spring. The range of the scan can be adjusted by the

limit switches which reverse the motion of the platform at

a certain point. When the micrometer head moves back the

platform, is pushed back by the soring, thus the crystal

is moved back and forth across the X-ray bear between two

limits r. any times and the diffraction topograph from a large

volume of the crystal so obtained ia called a "projection

topograph". In section topographs a dislocation is revealed

only by the direct image I* coming from the point I where

the ribbon of X-rays A3, cuts the dislocation, as a

relatively intense black spot while in the projection

topographs, the full length of the dislocation can be seen.

Thus the projection topograph is a super imposition of many

successive section topographs. The complete outline of

features of mosaic domains can be seen either by their

orientation or extinction contrasts in the projection

topographs.

The width of the slit S can be arranged so that some

certain parts of the diffracted ribbon of X-rays can bo

stopped and therefore, elimination of the images coming

from surface damage which arc blackening the tooogrs.phs ,

end the images of the imperfections lying in the depths

of the crystal can be observed.

The vertical resolution, Rv, i.e. resolution in the
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direction perpendicular to the plane of incident and

diffracted beans is purely geometricaiand is given by

Rv = h (b/a)

where h is the apparent height of the focal spot of the X-ray

source, b is the distance fror. the specimen crystal to

photographic plate and a is the distance from the focal

spot to the crystal.

Horizontal resolution i.e. the topographic resolution

in the plane of incident and diffracted beans is limited

by the angular seperation of Koc.( - Kcc^ doublet. This

doublet gives rise to double images on the photographic

plate each corresponding to Keg and tog, lines seperately.

Generally X-ray tooograohs are classified as "low - resol¬

ution" if these Keg , Koc^ images simultaneously appear on

the topograph and "high-resolution" when such superinposi-

tion is eliminated by suppressing Kcc^, line.

Reducing the horizontal divergence of the X-rays, KbSj.

line can be suppressed. The angular seperation of the

doublet can be obtained as

A 0 = A.A / 2 d Cos0

where A"X is the wavelength difference between Kbc., and Kcc^

lines. Therefore, the horizontal divergence of the main

beam should be smaller than this angular seperation in

order to suooress Xjdcz line. Horizontal divergence of the

main beam is given by

*41 = ( ( + x ) / a

where I is the width of the focal spot of the X-ray source

x is the width of the collimator slit and a is the distance

between the focal spot and the specimen crystal.
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yyhen the Koc^ line is eliminated, the horizontal

resolution is determined by the wave length spread. If

,dA is the wavelength range corresponding to the full width

at half maximum intensity of the X-ray emission line profile,

the range of the corresponding Bragg angles dQ is given by

d0 = Tan6 ( d* /*)

This corresponds to the image of a point on the crystal

being spread horizontally into a length of

ds = b d0

By setting the photographic plate as near as possible to

the crystal and choosing the reflections having small Bragg

angles this resolution can be of the order of a few micro¬

meters .

On the photographic plates, thick nuclear emulsions

can absorp a large portion of the X-rays, so most of the

diffracted rays can be recorded efficiently, also, thick

nuclear emulsions are preferable to thin emulsions from

the statistical limitations point of view. Although they

need long developing and washing times, thick nuclear

emulsions are usually used in X-ray topography.

From the topographs, one gets the projection of the

imperfection contents of the crystal in two dimensions.

By taking stereo pairs of projection topographs, (being (1959),
Haruta (1965 )) three - dimensional information can be

obtained.

In the present experiments, the distance a from the

focal snot to the specimen was 70 cm. Focal spot width

was 0.4 mm and the width of the collimator slit was 0.2 mm.

With these conditions, the Kcc^ component of the radiation



 



Fig. 16 b (x3Q)
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could not be eliminated for the (002) reflection used.

The distance a was the maximum distance since for larger

distances the diffracted intensity was very weak. The

photographic plates used were thick IlfordL4 nuclea.r

plates. Topographs for (002) reflection are shown in

Pig (16). Although there is a lot of blackening on the

topographs due to the surface of the crystals, dislocations

can clearly be observed in all of the topographs. Most

of the observed dislocations start from a point and lie

parallel to the faces of the crystal.

The direct observation of dislocations with this

method suggests that the dislocation density can not be
6 — 2

larger than 10 cm since in larger dislocation density,

topograph will be completely black. The lines observed

were counted under a microscope and at various points of

various topographs, these average dislocation densities

were found

2.3 x loj? cm"p
3.0 x 10 H cm_^
i.3 x 10H cm_p
3.6 x 10H cm_?
5.0 x 10"5 cm

5 -2
average = 3*0 x 10 cm

It should be noted that these are maximum values,

since the topograph is a projection cf a volume on the

photographic plate. The above values are the s.quare of

the number of dislocations per cm. If we assume an

approximate relationship between the dislocation density,

D, and the block size, r, is

D = 1 /TTr2

then the average block size in the crystal will be of
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-4
10.3 x 10 cm. This can be compared with the values of r

from Zachariasen's equations.

This value can be seen to be between the values for

Gu radiation -

(r *\ = 4.3 x 10~^ cm.^ s' cu

and (r \ = 3.18 x 10~^ cm.^ cu

For the Ho radiation, the value of r obtained assuming

type II secondary extinction is jnore than an order of

magnitude smaller than the experimental value. Blocks of

this size would be so small that no contrast would have

been visible on the tonograoh and it must be concluded that

the crystal cannot be of tyre II (For the Cu data, the

dislocation density corresponding to the block size from

Zachariasen's equation is also too small to be measured

topographically) This conclusion is supnorted by the

better agreement between the g values for the two radiation

than between the r values.

The block sizes determined assuming primary extinction

for both radiations,

(rp]cu = ( 3.2 + 0.5 ) x 10~5 cm.
and (r > _ = ( 1.2 + 0.2 ) x 10~^ cm.p'mo —

are large enough to be measurable topographically and the

value for the Mo radiation agrees very well with the

experimental value. The discrepancies between the two

values could be due to errors in the angle dependence of

extinction in Zachariasen*s theory, these errors being

more important for the Gu radiation since, for this

radiation, the scattering angles are greater.

Measurement of diffraction profilcs

In principle, the measurement of the diffraction
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profile of a crystal is simple. If the crystal is placed

in the path of a monochromatic, parallel beam of X-rays

and set at the correct Bragg angle and slowly rotated

through this position, the reflection will occur over a

range of crystal settings about the exact Bragg angle

giving the diffraction profile. The mosaic spread of the

crystal can be obtained from the width of this diffraction

peak at intensities which are half the maximum intensity.

The difficulties in the measurments of this kind are -

1. The divergence of the beam from the source.

If the incident radiation is divergent, various mosaic

blocks of the crystal having different alignments will

diffract the beams falling upon them at the correct Bragg

angle, at every setting of the crystal. Obviously, in

order to be able to measure mosaic spread, strictly parallel

incident radiation is required.

2. Finite width of the incident radiation:

Although, one can cope with' the divergence of the

incident .radiation, e.g. using a strong reflection from a

perfect crystal as the incident beam, it is not practica.lly

possible to obtain a strictly parallel and monochromatic

X-ray beam because of dispersion due to lack.of homogeneity

of the beam from the source. A beam of wave length A

which is falling on the perfect crystal at a glancing

angle 9 and a beam of wave 1 ength A + a with a glancing

angle ©+A9 will satisfy Bragg law and will be diffracted

by the same diffracting planes of the perfect crystal,

fig (17). The resulting divergence of the diffracted beam

because of the natural width of the wavelength used can

bo calculated from Bragg's law:
2 d sin© = nA

2 d Cos© d© = n dA

d0 = ( d A / ^ ) tan©
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For example, even from a perfect crystal, for a scattering

angle of about 15° and copper radiation

( d A/*) = 4 x 10"4
d9 = 20" of arc.

These difficulties have been largely overcome by the

construction of a two crystal spectrometer.

Two crystal spectrometer;

The main geometry is shown in fig (18). Crystal A

is a perfect crystal. Divergent radiation from a point

focus falls up on this crystal and is diffracted as a ribbon

of X-rays which has a small divergence in horizontal

direction due to the finite width of the wavelength used.

Vertical divergence is not important since the measurrnents

are carried out in the equatorial plane only. Specimen

crystal, B, is placed in the path of this diffracted beam
the.

at diffracting position ahd can be rotated by means of a

stepping motor, in steps of 3" of arc about this diffract¬

ing position. The diffraction profile from crystal B can

then be measured by a scintillation coiuiter in the

horizontal plane.

In the present experiments, CuKx radiation from a

point focus used. Crystal A was a perfect silicon crystal

reflecting in (ill) position and having zero dislocation

density as quoted by the manufacturers. Crystal B was

the D(+) tartaric acid crystal. There are two possible

different ways of setting specimen crystal B. In one,

illustration by fig (19), the incident ray POi and the
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reflected ray from crystal B, lie on the same side of the

ray passing between two crystals while in the second

case which is illustrated by fig (20 ) they lie on opposite

sides of * These two types of settings are referred

to as (m, n) setting and ( m, -n) setting respectively.

In fig (19) rePresen"ts a beam of wavelength * ,

diffracted by crystal A with a Bragg angle of Q-^. This
beam is diffracted by crystal B with a Bragg angle of ©£•
Since the incident radiation upon crystal A is divergent,

a beam of wavelength (*+A*), v/ill also be diffracted if

it falls on crystal A at an angle of (©-^+A©-^). 02^2
represents such a beam. If we calculate the rotation ^

which is required for °2°2 "fco diffracted by crystal B,
with a Bragg angle ©^

y = 9^ - 02 + A01 = A02 + A61
which shows that dispersion is more than tw single reflec¬

tion case in (m,n) setting.

In fig (20), rotation V required for the beam 02 0 2

to be reflected can be found as:

y = 05 - e2 - A61 = AG2 - A91
which shows that in (m,-n) setting overall dispersion is

equal to the difference of dispersions due to single

reflections from each crystal..

When the reflecting planes of crystals A and B are

parallel

02= 61
A02 =A01
^ = o

This is a very important property of double crystal

spectrometer. Dispersion is absent in parallel setting.



Therefore, the width of the reflection curve will ftive a

measure of mosaic spread of the specimen crystal if the

first crystal is perfect.

If we assume that first crystal is not ideally perfect,

but has a mosaic spread as well, assuming a Gaussian

distribution of block orientation for both of the crystals,

the effects on the overall reflection curve can be calculated

as follows:

Let the incident radiation be given by

1(A) = I0(/0 expC-a^A - Ao)2]
and the block orientation distribution given by

N(e) = N(eo) exp[ -a2( 9 - 0Q)2]
Since

dS = (d A /A) tanG

0 — 0q = (tanG/ A ) (A - Ao)
therefore

N(e) = N(0O) expt-a2(0 - 0q)2J
1(0) = I(0Q) exp[-a1(A2/tan20)(0 - 0q)2J .

U.sing a transformation

0 - e - eo ,
then

N(0) = Nq exp[ -a2/2]
1(0) = Iq exp [-b 02]

where

b = (a1 A2)/ ton20
Then, since the reflection curve is given by the convolu¬

tion
oo

R(y) = J N(0) I(r- 0) d0
- oo

R(¥) = constant x exp [ -( a2bV"'2)/(a2 + b)j
can be found. According to this result, the resultant



h k 1 tanO -w d 0
K«^-K<x2 separation

Obs. Calc.

0 0 2 0.2605 24" 0"

-10 2 0.2623 24" O.15"
0 0 3 0.4060 30" 12" 74.4" 73"

-2 0 3 0.4307 33" 14" 87 " 84"

-3 0 3 0.4921 42" A ^
' J 118" 120"

0 0 4 0.5820 54" 24" 160" 168"

Table 9
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reflection curve has a parameter B which in given by

B = (a2 b)/(a2 + b)
and has a width w at half intensity which is given by

v = (1.66)//B

which is related to the widths x and y of the component

distributions as

2 2 2
w = x + y

where

x = (1.66)/J~a2
y - (1.66)/JT)

Therefore, in two crystal spectrometer, in parallel setting

one has

w' = J (37)
and

where;

v' = overall divergence of the relected beam, from the first

crystal

w = divergence of the reflected beam from the first crystal
o

due to dispersion in this crystal

= mosaic spread of the first cyrstal

w2 = mosaic spread of the specimen crystal
w = width of the resultant reflection curve from the

specimen crystal at half intensity.

In the present experiment, the divergence of the beam

from silicon crystal was measured by a photographic method.

From the comparison of the widths of the beam on photo¬

graphs which were taken at distances of 10 cm. and 298 cm.
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from the silicon cyrstal, the divergence W was found s.s

v' = (25 + 4)"
During: the experiment, tho (111) reflection fron the

silicon crystal was used which has a divergence WQ of

(21.34)" due to dispersion. Then, from eq (37), value

for the nosaic spread w-| of silicon crystal was found as

w1 = (9 + 6)»
For the D(+) tartaric acid crystal used, the diffrac¬

tion profiles were obtained for (002), (-102), (003),

(-203), (-303) and (004) reflections. These arc shown

in Figs (21) and the information obtained from these

graphs is shown in Table (9)« The width of the diffraction

profiles and K(cxr^ - oc^) seperation were increasing with
increasing 9 as was expected, since dispersion increases

with increasing 9. The values found for (002) and (-102)

reflections are free from dispersion, since these reflections

correspond to nearly parallel setting of two crystal

spectrometer. In these cases, the width of the diffraction

profiles wf was found to be same for both (002) and (-102)

reflections and K(oc1 - 0c^) seperation was zero, again as
was expected. The value of w was found to be:

v = ( 24 - 2)"
This value can be taken as the upper limit for mosaic

spread of D(+) tartaric acid, assuming that silicon crystal

is ideally perfect. Assuming silicon crystal has a mosaic

spread, using eq. (38) and the value obtained for w1, the
lower limit for the mosaic spread of D(+) tartaric acid

was f ound as

v2 = ( 22 + 6)"
As stated before, silicon crystal used has zero
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dislocation density as quoted by the manufacturers and i't

is reasonable to accept it as ideally perfect crystal.

The reasurnent of divergence of the beam from, this cyrstal

was very difficult because the photographs of the beam

did not have sharp outlines due to air scattering. Under

these circumstances it is unlikely that the mosaic spread

of D(+) tartaric acid would be less than 26" of arc 0r

more than 22" of arc.

We can now compare this result with the value obtained

from Zachariasen's equation assuming type I extinction

Scu = ( 2*8 i 0.002)x 104
giving a half-width, wcu, of

w = ( 5 +0.01)»
cu v y - '

and

gMo = ^ 1•14 + 0.12) x 104
WKo = ( 12 ± 2.5)"

The half-width from the different radiations are

significantly different which may again reflect the lack

of angle dependence in Zachariasen's equations. These

values are of less than the experimental widths, by at

least a factor of two but, taking into account the possible

errors in Zachariasen's equations and the effect of any

primary extinction present, it must be conclu ded that

the extinction could be of type I.

Conclusions

Prom a comparison of the agreements between the

extinction parameters obtained using the two radiations,

it appears that the extinction was mainly' of the secondary

type, the standard deviations in the parameters being 8$

for secondary extinction and 14$ for primary extinction,

although those deviations must in part be due to the errors
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in the assumedkinenatic structure factors. The increase

in the extinction as the thickness of the crystals increases

also strongly suggests that the extinction is, at least

partly, path dependent, i.e. secondary extinction.

The block sizes obtained assuming only type II secondary

extinction to be present have been shown to be incomputable

with the measured dislocation density, showing the crystal

can not be of this type. The block sizes obtained assuming

primary extinction is close to the experimental value.

The mosaic spreads of the crystal obtained assuming

a type I crystal were of the same order of magnitude as

the experimental value. It is therefore likely that the

extinction is mainly type I secondary extinction but some

primary extinction may be present.
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