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Abstract

In this thesis a method for the enumeration of generators of modules
over ordered Euclidean domains is presented. This method is based on the
ideas of the coset enumeration algorithm for subgroups of finitely presented
groups. The coset enumeration algorithm has first been described by J. Todd
and H. Coxeter in [43] as a method for hand calculation.

G. Labonté [18] and S. Linton [25] independently developed a linear ver-
sion of the coset enumeration algorithm, the so-called wvector enumeration
algorithm. There a finitely presented module M over a finitely presented
k-algebra is required, where k& denotes a field. The vector enumeration pro-
cedure computes a basis B of M considered as module over k, together with
a matrix representation that describes the action of the algebra generators
on the elements of the basis B.

We shall present a generalisation of the vector enumeration procedure.
This procedure is called the module generator enumeration procedure or,
abbreviated, the MGE-procedure. We extend here to the case where we are
not given a field & but a Euclidean domain instead. This case is more com-
plicated since the elements of a domain that is not a field do not necessarily
have inverses. Moreover, a module over a domain does not generally have
a basis: such a module can have torsion. As a consequence of this, the
MGE-procedure must possibly handle exceedingly large numbers, but also
vectors of large size.

In this thesis we present a result for certain submodules of modules which
are part of the input of the MGE-procedure. This result corresponds to a
theorem by O. Schreier [40] on presentations of subgroups of finite index
of finitely presented groups. We shall prove that for a submodule N of a
finitely generated and free module in a certain situation a finite generating
set exists. This result will be applied to modules that are connected to the
input of the MGE-procedure in order to prove termination of the MGE-
procedure.

Moreover, we link subroutines of the MGE-procedure to concepts of
Grébner bases and prefix Grobner bases of modules over Euclidean domains.



These connections shall be used in order to show correctness and termination
of the procedure.

We also demonstrate how a finite set of generators for a submodule NV,
that satisfies the preconditions of the equivalent of the Schreier-Theorem,
can be extracted from the output when the MGE-procedure has terminated.
We construct relations on these generators which yields a presentation of A
in terms of the generators given. This construction forms a linear analogue
of the modified Todd-Coxeter procedure as it has been described in [2] or
[41].

The MGE-procedure as well as the extended version for the construction
of a submodule presentation have been implemented in GAP [15] as part of
this thesis. We will give an outline of the strategy of the MGE-procedure as
it has been implemented and we give a description of the main subroutines in
pseudo-code. We discuss results and runtimes of some examples of the MGE-
procedure and we give a conclusion and an outlook of the MGE-procedure

as it has been implemented in GAP.
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Chapter 0

Introduction

In this thesis we shall describe a method for enumerating the generators
of modules over ordered Euclidean domains. It is based on the ideas of the
coset enumeration algorithm for subgroups of finitely presented groups. The
coset enumeration algorithm was first described by J. Todd and H. Coxeter
in [43] as a method for hand calculation; it is also known as the Todd-
Coxeter Algorithm. Since it was first introduced, different approaches and
methods of complete automation of the Todd-Coxeter algorithm have been
developed; further descriptions, amongst many other places, can be found
in [16, 32, 41].

G. Labonté [18] and S. Linton [25] independently developed a linear
version of the coset enumeration algorithm, the so-called vector enumeration
algorithm; here we suppose that we are given a finitely presented module
M over a finitely presented k-algebra where k denotes a field. The vector
enumeration procedure computes a basis of M considered as module over k,
together with a matrix representation describing the action of the algebra
generators on the basis of M. Another approach working with left Kan
extensions in category theory has been developed by S. Carmody et. al. in
[10].

We shall present a generalisation of the vector enumeration procedure
on the basis of the vector enumeration algorithm as it was developed by
S. Linton. We extend to the case where we are not given a field k& but
instead a Euclidean domain that allows a total ordering of its elements.

il
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We call this procedure the module generator enumeration procedure which
is abbreviated by “MGE-procedure”. Such an algorithm is applicable in
the setting of representation theory (compare for instance J. Miiller, [31]);
another application is also the computation of polycyclic quotients of finitely
presented groups as has been pointed out by C. Leedham-Green in [21].
Recent work by B. Eick, A. Niemeyer and O. Panaia on the computation of
polycyclic presentations using vector enumeration methods can be found in

13].

Additional Conventions

In the following we will generally denote the Euclidean domain by S, the
finitely presented algebra by P. We assume that P is the quotient algebra
of a free and finitely generated algebra A by a two-sided ideal generated
by a finite set of relations R C A. In the course of the MGE-procedure
we aim to construct, for a given finitely presented P-module M, a finitely
generated S-module © that is P-module isomorphic to M. The elements of
the domain S are not necessarily invertible, so it is possible that © contains
torsion-elements; these are elements v € ©,v # 0, such that there exists
A € S, where A # Og, with A-v = 0. An index of notation can be found on
p. 179.

0.1 Overview

Chapter 1

In the course of the procedure we consider M mainly as A-module (we show
in Lemma 1.1.5 that a P-module is an A-module as well). If we suppose
that M is generated by n elements then there exists a free, n-generated
A-module F of which M is a quotient-module. However, the finite number
of algebra-relations R of the algebra P gives rise to an infinite number of
module-relations for M as an A-module. We call this infinite set Rels, and

M can be written as the quotient-module

M=FIN
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where N is the A-submodule of F generated by the set Rels C F.

As in the Todd-Coxeter procedure we aim to obtain information about
the S-module we wish to construct by investigating the relations of M. This
can also be interpreted as a step-by-step construction of a generating set of
the module NV In order for this to terminate it is however necessary that N/
is finitely generated.

In the case of groups, O. Schreier [40] showed that subgroups of finite
index of finitely generated groups must be finitely generated themselves. For
a detailed discussion of this see for instance [40, 41]. We translate this result
into the setting of modules over a principal ideal domain S and a finitely
generated S-algebra, respectively, which leads to the following theorem:
Theorem 1.2.1 Let A = (X)) be a free algebra over a principal ideal domain
S. We assume that A is generated by the finitely generated free monoid X*
and we let P be a finitely presented quotient-algebra of A. Moreover, let F
be a free module over A, generated by a finite set Y with a submodule N and
let M be a P-module such that M = F/N. If M is P-module isomorphic
to a finitely generated S-module, then N has a finite set of generators as an
A-module.

In the proof of the theorem we describe a finite generating set of N.
These generators correspond to the Schreier-generators of subgroups of finite
index of finitely presented groups but here the situation is more complex.
We distinguish between three different types of generators: those caused
by the action of the algebra generators # € X; those caused by torsion
in the finitely generated S-module and those which are caused by S-linear

dependencies among the A-module generators y € Y of M.

Chapter 2

In this chapter we shall give an outline of the motivation for the MGE-
procedure. Since we aim to extract information about an S-module gener-
ating set of M from a finite subset of the set of relations Rels, the existence
of a finite generating set for N' = (Rels) 4 is a prerequisite for the termina-
tion of the MGE-procedure. When we investigate r € Rels then we know

that r naturally lies in AV; every proper prefix of 7, an element of the form
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y.w € F, is however possibly contained in a congruence class of F modulo
N different from the class of elements of . Such congruence classes are of
special interest to us as they possibly correspond to elements contained in
the S-module generating set of ©.

Whenever a relation r(,) € Rels\{r(),...,7(_1)} has been investigated
and the information we gained from r(,) has been processed we can interpret
this as forming an A-module N,),

Ny = Ni-1) + (r)as

to gradually approximate the A-module N and therefore a set of S-module
generators for M = F/N as well.

The result of Theorem 1.2.1 gives the justification for the MGE-procedure
as it ensures, in the case that M is P-module isomorphic to a P-module ©
that has a finite generating set as S-module, that any ascending sequence

of A-modules

Ny CNy €Ny - TNy =N,
where N,y = N_1) + (r())a for a relation r(,) € Rels\{rq),...,7(-1)};

terminates.

We aim to formalise the process of enumerating the S-module gener-
ating set of M. For bookkeeping reasons we first define a set of alpha-
bets B(q),---,B),---,B() where a set B(,y = {b1,...,bn(y} denotes an
S-module generating set for a certain S-module. For all 0 < ¢ < v the set
By, is a finite ordered set with elements that are taken from an infinite pool
of elements B in bijection to N.

The set B(g) can be understood as a first approximation of the generating
set for the S-module © = M, but normally many further adjustments must
take place. The examination of a relation r(,) € Rels might make it necessary
to add further elements to the set of S-module generators, namely whenever
a prefix of r(,) has been found which is not contained in the S-linear span
of any previously investigated prefixes. We will assign b’ € B\B(,)_; to this
prefix. Moreover we might discover that an element b € By, is contained
in the S-linear span of other b;,,...b;, € B(,) which would imply that b is

redundant as a further S-module generator. In this case we shall remove b
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from the set of possible S-module generators and we also say that b has been
deleted. We distinguish between the subset Bﬁ) C By, of deleted S-module
generators and the subset of undeleted S-module generators BE)'

Extending the S-module generating set B(,) by a further element ¥’ €
B\By,) is called a definition step. As different generating sets B,y can ac-
company a relation r(,1) we distinguish between these which gives sets
Bor By -+ By
then set

Vit If we are given an S-module generating set By,), we

By, 1 = By, U {bm}
where b,,, corresponds to the prefix which has been found last and where we
ensure that b, > maz{b € By,, }.

We form the free S-module ¥(,) := (B(,)X*)s and an S-submodule A,
which is generated by elements b.xz — b’ induced by definition steps in the
following way. Suppose that b = p(y.w) but p(y.wz) ¢ (B). We make the
definition ¥’ := p(y.wz). Then b’ and b.z both correspond to the element
y.wz, although in different stages, such a stage is specified by the index
“(¢);”, of the computation. Then we define A(,); as that S-module which is
generated by the elements of the form b.z—b'. It follows from the construction
of A(,, that F = ¥/(A)4 for all (¢);, where (A)4 denotes the A-closure of
A. We aim to construct S-modules X(,), A(,) and Y,y such that the following

diagram commutes:

F__ %0, M, ELONY

Yy |~ '
)
IR LR T e— o5 B
Rl
B Lo
/T

and eventually we wish to obtain modules ¥,y and T,y accompanying the
A-module N,y = N such that O, := ¥,)/Y(,) is isomorphic to © = Mg
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by a P-module isomorphism «,).

Since we aim to keep the number of S-module generators for ©,) as small
as possible, an important part of the procedure is the active search for those
generators which are redundant as they are contained in the S-linear span of
generators with smaller indices. We aim to obtain such linear dependencies
by mapping r —— v, € (B) for r € Rels. As r € N it follows that o/(v,)
must be zero in ©, so we can deduce that o/ (HT (v,)) = o/ (RED(v,)) must
hold for the head term HT(v,) and the reduct of v, which is defined as
RED(v,) := HT (v;) — v,. We will call such an element v, a coincidence.

Let v, = Y %1 A; - b;. If the head coefficient A, is a unit of S we say that
v, is an applicable coincidence. We can deduce that b, ~ A\l - RED(v,)
and it follows that b,, is redundant as S-module generator for © and can be
deleted. In order to conclude that a generator b,, is S-linear dependent to
other generators it is however essential that the head coefficient A, is a unit
of S which is not necessarily the case if S is not a field. It follows that we
might encounter coincidences which we cannot process in the described way.
In this case we say that such a coincidence is an inapplicable coincidence
and it is stored in a separate list with elements which are ordered by their
head monomials. This list is called the torsion sequence and denoted by L.

The S-modules Y, which we introduced above satisfying ¥(,)/Y,) =
M, are defined as the A-module closure of that S-module that is generated
by the elements induced by the definition steps together with elements in
¥ induced by coincidences. To be precise, let 7 : ¥ — X/(A(,))a; we
set K C X to be the set such that for all k¥ € K we have 7(k) = ¢ where
¢ is a coincidence which has been found up to that stage of the MGE-
procedure. Moreover we denote by H the generating set of A. We then
define T = (H, K) 4, and we denote the product on X/Y by the generators
zeX by (b+7T)x*z.

In Chapter 2 we also give a description of the tools which are used to
formalise the process of processing the relations and thus enumerating the S-
module generators. The action of the generators € X of the algebra A on
the S-module generators b € B is presented by the entries of a multiplica-
tion table T{,) : this table corresponds to the table used in the Todd-Coxeter
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Enumeration. The table T{,) takes into account possibly found coincidences
up to the stage (+) and the rows of 7{, are in a one-one relation to the ele-
ments of By,). Furthermore, coincidences that have been detected but which
could not be processed immediately are stored in the coincidence stack Cp;
coincidences that have already been processed but which have been found
to be inapplicable are stored in the torsion sequence L,). We define A(,) as
the free S-module that is generated by | € L(,). We will show in Chapter 5
that

O =p (B())s/(Aw)) a-

when the MGE-procedure terminates.

Chapter 3

We introduce Grobner bases for free S-modules and the respective A-module
closures. B. Reinert et. al. [36, 37] have studied interpretations of the
Todd-Coxeter procedure in terms of prefic Grobner bases. We will use the
terminology of Grébner basis theory such as ordering and reduction in order
to describe and interpret certain processes of the MGE-procedure. Moreover,
in subsequent chapters properties of certain kinds of Grobner bases will be
used to prove correctness and termination of the MGE-procedure.

We assume that S is an ordered Euclidean domain. We describe the
concept of ordering and reduction for the elements of finitely generated and
free S-modules = and the respective A-module closures Y. In the latter case
we will order elements v € T by the maximal length of words w € X* of
summands y.w of v; we call this ordering by weight and we denote that v,

is greater than vy by
V1 > wei V2 for vy, vy € %.

We describe critical pairs. These are a phenomenon caused if the reduction
by a set of elements does not lead to a canonical irreducible (or minimal)
element. B. Buchberger described in [6, 7] the effect of critical pairs on
reduction and the close connection to Grébner bases. His computational

approach includes the so-called s-polynomial which is defined in order to
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detect critical pairs. We shall apply terms such as the s-polynomial or a
Grobner basis to the setting of free S-modules and we shall describe certain
properties of such S-module Grébner bases. In particular if we are given a
submodule Z of the free S-module X such that = is generated by a finite S-
module Grobner basis then we can show that reduction of an element v € =
by H leads to the minimal element 7 = 0 (Corollary 3.1.14, p. 59).

We then present in Theorem 3.1.17 Buchberger’s Theorem in the case of
finitely generated submodules of free S-modules. In Theorem 3.1.21 (p. 65)
we show that there exists a finite S-module Grobner basis for a given finitely
generated S-module from which we can moreover construct an S-module
Grobner basis containing elements that are in minimal form with respect to
each other.

In Section 3.2 we introduce prefix-reduction on free A-modules and pre-
fix Grobner bases. Detailed descriptions of prefix Grobner bases for ideals
of monoid and group rings can be found for instance in [35]. We shall dis-
cuss connections between prefix-reduction and prefix Grobner-bases which
provide similar results to the case of S-modules. Next we introduce the
concept of prefiz-closure (Definition 3.2.16, p. 77): if we are given elements
vy, v € ¥ and w € X* such that HM (v1).w = HM (v2) we then denote the
element vj.w as the prefix-closure of v; and vs and we say that a set H is
prefiz-closed if the prefix-closure for every such pair is already contained in
H.

We show in Lemma 3.2.17 that the process of prefix-closing a finite set
H c ¥ is finite, leading to a finite prefix-closed set H. When H has been
formed as the prefix-closure of a set H then we show in Lemma 3.2.18 that

the respective A-modules generated by those sets are equal,

(H)a = (H)a.
As the process of constructing a prefix-closed S-module Grébner basis for
a finitely generated A-module is finite (Proposition 3.2.19) we can show in
Theorem 3.2.20 that, given a finitely generated S-module Z, a prefix-closed
S-module Grébner basis for Z also is a prefix Grobner basis for the A-
module closure (£)4. From this theorem we can deduce in particular that
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there exists a finite prefix Grobner basis for the A-module closure T of a

finitely generated S-module =.

Chapter 4

We present the main routines of the MGE-procedure in pseudo-code and we
prove correctness of the respective procedures. We aim to apply the Grobner
basis methods which have been developed in the previous chapter to the
setting of the MGE-procedure. Let H denote the generating set of A, the
S-module which is induced by the definition steps of the MGE-procedure.
We show in Lemma 4.2.1 (p. 94) that H is a prefix Grobner basis for (A) 4. It
follows that a representative T of a class (v+ (A)4) € £/(A)4 can be chosen
in a canonical way and therefore we can define a map ¢ : £/(A)4 — X,
mapping a class (v + (A)4) to its canonical representative 7. We show that
¢ indeed forms an S-module homomorphism.

From now onwards we distinguish between applicable coincidences which
have already been processed, the set of these is denoted Ca, and the set of
pending coincidences C'p. We form an S-module IT which is generated by the
set HUCaUCpUL and the respective A-module closure ¥. We demonstrate
how this module represents the information stored in the tools of the MGE-
procedure (Lemma 4.2.5, p. 96), so for instance the set H U Ca corresponds
to the information contained in the multiplication table. Accordingly we
abbreviate T := H U Ca.

We then show the correctness of the procedure HANDLING INAPPLI-
CABLE COINCIDENCES. We prove that applicable coincidences cannot be
contained in the S-linear span of elements of L in the case that two prereq-
uisites are satisfied: firstly we demand that HM(l;) > HM(l;) whenever
j > i for all | € L (we call this pivot-form), moreover we demand that
only inapplicable coincidences are contained in L. In this case we say that
L is reduced. We can relate the procedure PROCESSING A COINCIDENCE to
prefix-reduction and prefix-closure (Proposition 4.2.11) which proves that
this procedure is finite.

Next we introduce the notion of an MGE-basis. This is a certain type of
prefix Grobner basis (Definition 4.2.14) and we can show that the module ¥,
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as defined above, is generated by an MGE-basis in the case that Cp = () and
where it is also verified that L is reduced and in pivot-form (Lemma 4.2.15).
For the partial converse of this statement we need a constraint on the multi-
plication table. We demand that T is connected (Definition 4.2.17, p. 104):
this constraint essentially implies that every b € B" is contained as a sum
or a prefix of at least one element of the set P,

So if T is connected and the generating set of ¥ is an MGE-basis then we
show in Lemma 4.2.19 that (Cp)s C (TUL) 4. It follows that in this case the
coincidences stored in C'p do not lead to any further reductions of elements
of the table and the torsion sequence. Thereafter we prove termination and
correctness of the procedure CLEARING COINCIDENCES where we show that
CLEARING COINCIDENCES constructs from a given generating set TULUCp
for ¥ c ¥ an MGE-basis G which is a finite set of elements of ¥’ such that
¥ C (G) but where it is ensured that £/¥ =24 ¥'/(G) 4.

We define & as the A-module closure of the free S-module which is
generated by that subset of T which corresponds to the undeleted rows of
T, together with the elements of L. We show in Proposition 4.2.22 that
Y/¥ =, E¥/® if the generating set of ¥ is an MGE-basis. We complete
this chapter with Theorem 4.2.23. Suppose we are given at stage (i) of
the computation a connected multiplication table T and a coincidence stack
Cp = 0. The theorem states that then those rows of T which correspond
to the undeleted S-module generators b € B" together with the elements
of the torsion sequence L encode a set of generators for the submodule @,
such that

F/Ney = 5 /200,

This theorem in particular verifies that the main procedure, in the case it

terminates, returns the correct result.

Chapter 5

We introduce the image-induced ordering “ >;; 7 on the elements of 7 which
is an ordering determined by the MGE-procedure. More accurately, this
ordering is fixed by the image of the homomorphism x : 7 — ¥ which is
Y/(A)a with ¢ : Z/(A)4y — Z.

defined as the composition of v : F
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So if f1, fo € F, then

f1>ii fo if and only if x(f1) =wei X(f2).

Furthermore we define prefix-reduction rules on the elements of F, using the
ordering >;; . These reduction-rules resemble the computing of the undeleted
image u(v) of an element v € X. Thus we reduce f € F with x(f) = v
by certain elements ¢ € F with x(¢) € (B) where moreover HM((x(q))
is a prefix of a summand of v and where we have that A > HC(q) for
the coefficient A at this summand of v. The ordering “>;;” provides a well-
founded ordering for the elements of F in the sense that the prefix-reduction
as described above does not lead to any cycles or infinite reduction-sequences
(Lemma 5.1.8, p. 117).

Connections between the generating sets of the S-modules X, T and cer-
tain sets of congruence classes of F modulo a submodule N are investigated.
If we can choose a representative f € |f|y of a congruence classes |f|x such
that f is prefix-minimal with respect to the generating set of N by  »=;; ”
then we call | f|xr an important class (Definition 5.2.1, p. 119). In the course
of an MGE-procedure we construct a generating set for A as the preimage
of those elements which are contained in the generating set of Y. We show
in Lemma 5.2.3 that a congruence class |f|x is important if and only if a
representative f € |f|x can be chosen such that x(f) = b € B*. Moreover,
if both F as well as the submodule N are finitely generated then we can
show in Lemma 5.2.6 that the number of important classes is finite. Let
M = F/N.If M is isomorphic to a finitely generated S-module then a con-
gruence class of F modulo N is either important or it has a representative
which is contained in the S-linear span of the representatives of a finite set
of important classes (Lemma 5.2.7). We can conclude that in this case there
must exist a representative f such that x(f) € (B")s for every congruence
class |f|n-

In Section 5.3 we describe the properties that must be satisfied by the
multiplication table, the coincidence stack and the torsion sequence accom-
panying an A-module N, in order for the MGE-procedure to terminate.

u

We demand five properties, firstly that we have bx z € (B(u))s for every
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pair b € B* and = € X. This property applies to the entries of the multipli-
cation table and if this condition is satisfied by the entries of a table T we
say that T is closed. Secondly we demand that Cp = ), and moreover we
demand that for every | € L the A-module closure is contained in L as well.
From this it follows in particular that (A)4 = A for the S-linear span A of
L. The last two of these five conditions apply to the relations of M. Here
we demand that for all algebra-relations »r € R and b € B* we have that
b.r € X,y can be prefix-reduced by generators of Y(,y to 0. Similarly we
require that for every module relation w € U C F the element x(w) € X,
can be prefix-reduced by generators of T, to 0.

If these conditions are satisfied we can show that M is P-module iso-
morphic to the quotient-module of a free S-module with finite generating
set B* by the S-module A (Proposition 5.3.5, p. 126). In the course of
the MGE-procedure we have constructed an infinitely generated S-module
Y = (BX™) such that M is A-module isomorphic to the quotient-module of
Y by the A-module closure T of a finitely generated S-module. As the table
T is closed, the conditions of Proposition 4.2.22 are satisfied and we can
deduce that M is A-module isomorphic to the S-module X*/®. Moreover
we can even conclude, again since T is closed, that v ~y , ¥ € (B")s for
every v € ¥. Therefore

M=E"/® = (BY)s/(A)a = (B)s/A,

and since all algebra-relations r € R hold, these isomorphisms must even
be P-module isomorphisms. From this proposition it follows that every
congruence class of F modulo N'(,,) = N is important or has a representa-
tive which lies in the S-linear span of representatives of important classes
(Corollary 5.3.6 ). We complete Chapter 5 with the main theorem.

Theorem 5.3.8 Let F be a finitely generated and free A-module. If Mp
is isomorphic to a finitely generated S-module ©(, then the computation of
the MGE-procedure reaches a final state where the given torsion sequence is
reduced and in piot-form, provided that we are following a fair strategy.
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Chapter 6

We describe how a finite presentation for a certain A-module can be con-
structed. The presented algorithm follows closely the idea of extended coset
enumeration which is also known as the modified Todd-Coxeter algorithm
(see for instance [2, 41]). We shall translate this into the following. Let
D denote the free P-module that is generated by a set Y’ in bijection to
the generating set of F and let N denote the submodule of D such that
Mp = ?D/_/Q' We shall show how an A-module presentation for N can be
constructed in the case that M is P-module isomorphic to a finitely gen-
erated S-module. Since there exists a canonical A-module epimorphism
¢ : F — D we can consider D as an A-module where every d € D is of
the form d = f + (YX*R) 4.

We have proved in Theorem 1.2.1 that A is a finitely generated A-module
if M = F/N is isomorphic to a finitely generated S-module. We show in
Lemma 6.1.1 that then A has a finite generating set as A-module as well.
We follow the ideas of C. Sims in the description of the construction of this
presentation as presented in [41].

As has been discussed in Chapter 4, the multiplication table together
with the torsion sequence gives rise to a set of elements of X. If there are no
coincidences pending in Cp, this set forms a generating set for the module
T from which, after termination of the MGE-procedure, we obtain a finite
generating set for Ny.

By assumption the MGE-procedure has already terminated, and so the
multiplication table must be closed and it follows that every v € X is con-
gruent modulo T to an element 7 € (B")g. An element of M corresponds to
a congruence class of 7 modulo NV, and as M 2 X /T we can assign to every
v € ¥ a representative f, € F of a class |f|xr, and correspondingly we can
assign a representative ﬁ, := ¢(f,). We choose f, as the preimage v~ (7 (7))
of the unique minimal element v € (B*)g where m : ¥ —» ¥ /(A)4 denotes
the canonical quotient-map. We choose fo = 0 as the representative of N.

Since the table is closed this implies in particular that there exists 7 €
(B")s such that b.x ~y ¥ for every pair b € B*,z € X. It follows that



CHAPTER 0. INTRODUCTION XV

v~ (m(b)).x ~x v~ 1(7(v)) and therefore in particular
v (#w(b)x — vy (7(D)) € N.

Moreover in the case that b.z £(a), 7 then fp.z ~n fz but fy.oz # fy and we
obtain a nonzero element fy.z — fy € N. In a similar way we can construct
elements which are induced by the torsion-elements of ©. If b € B“ but
A-b e T then it follows that

A-fo # fre = fo.

If M is not cyclic a third type of generator is possible. In the case that an A-
module generator y; € Y is congruent modulo A to an S-linear combination
Ef; 1 A - y; then it follows that

for ~N Fshog i

where we have set b; := 7v(y;) in the course of the MGE-procedure. We
denote by E the generating set of A induced by the MGE-basis G of T such
that £ = {7y~ (n(G))}. We show in Lemma 6.1.2 that then each e € E is of
the form either e = fy.z — fy,e=A-fy,ore=yr — fo, = yr — Ef;l Ay

If we set K ;= (E)4 we can define a homomorphism « : X — A and
since E generates N this morphism a must be surjective. Furthermore we
define g : K —— N as the composition of a and ¢ which implies that 3
must be surjective as well. We however cannot assume that 3 is injective.
In particular if the algebra P is not free then N cannot be a free A-module
and accordingly # cannot be injective. We introduce a congruence relation

“z~" on the elements of K such that
kl ~ kg if ﬁ(kl) = ﬁ(k2);
similarly we define a congruence relation “ =" on the elements of F, namely

fi=fo if ¢(f1) = o(f2).

In order to specify notation we introduce certain elements Q(v,a) € K.
We set Q(v, a) such that

a(Q(v,a)) = fo.a — foa
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furthermore we set Q(y;) such that
a(Q(y,;)) = Yi — fo,-

Here we suppose that we have set b; := v(y;) in the MGE-procedure. In
Lemma 6.1.7 up to Corollary 6.1.15 we shall develop a constructive way
of expressing elements (v,a) modulo “ = ” as A-linear combination of
elements Q(b, ) together with elements of the form Q(b, A).

Thereafter we have the means to describe relations on the elements of
K in order to construct an A-module presentation for N in terms of the
generating set E. We describe two sets of relations which must be satisfied
for the elements of K. The first set is induced by the set of algebra relations
R of the algebra P : we define Z; C K as the following set

Zy = {Q(b,a1) — Q(b,a2) | b € B, a3 = aj + r for r € R}.

The second set of relations is induced by the choice of the representatives
fo- We set fp := v~ !(m(v)) where ¥ is minimal with respect to the MGE-
basis of T C X. Since an image b € B under + is assigned whenever it
becomes necessary to trace a relation, we might encounter elements of F
such that y;, .wj, i ¥i,.wj, but where y;, .w;, ¢ <ii yip.wi, . In particular it
is possible that an element f, = y.wz € F is minimal whereas it has a non-
minimal prefix y.w. However, if y.w is non-minimal then this implies that
yaw = a(HM(e)). In this case the tracing of f, might lead to linear combi-
nations of e € F with respect to the image under a. We set Q(f) € K such
that a(Q(f)) = Y0, a(Qyi)).ai + Yy a(Qbiya:)) for [ = 30, yia;.
In particular for ¢ € E we have that a(e) € N and we can show that
afe) = a(Q(a(e))) must hold. Accordingly we define Z; C K as

Zy = {e—Q(afe)) | e € E}.

We show in Lemma 6.2.3 that Q(v,a1) ~z, (v, az) holds for all v € ¥ and
all a;,as with as = a; + g where ¢ is contained in the ideal generated by
the algebra relations R. We show in Lemma 6.2.4 that k ~z, Q(a(k)) for
all k € K. From this we can deduce in Corollary 6.2.5 that we obtain a
presentation

J(«?=(E|21UZ2)A.
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We conclude Chapter 6 with Theorem 6.2.6 which gives upper bounds on the
numbers of generators and relations which are needed for the presentation
for N4 that is constructed from a given MGE-procedure.

Chapter 7

In Section 7.1 we describe those parts of the implementation of the MGE-
procedure where routines might slightly differ from the general description
of the routines presented in Chapter 4 or where a description of closer detail
is indicated. For instnace we describe here how elements are stored in the
course of the procedure and we specify the lookahead method which is used
by the MGE-procedure. In Section 7.2 we give a set of examples together
with the respective runtimes. Here we state how many definition steps
have been necessary, the length of the output and also how many S-module
generators have been deleted in the normal mode compared to the lookahead

mode.



Chapter 1

Preliminaries

In this chapter we shall introduce terminology used for the module generator
procedure. We describe the setting in a wider sense as well as showing some
of the results which will be needed for the procedure.

Section 1.1: We introduce algebraic systems such as rings, principal ideal
domains, algebras, modules and describe ideas used for the module generator
procedure such as presentations of algebras and modules or the greatest
common divisor of elements of a principal ideal domain.

Section 1.2: O. Schreier [40] has shown that for a finitely generated group
G with subgroup H and index [G : H] < oo a finite set of generators for H
can be constructed. These generators are known as Schreier-generators. We
shall translate the Schreier-generator Theorem into the setting of modules

over principal ideal domains and the corresponding result shall be shown.

1.1 Basic Definitions and Notation

We shall describe a linear version of the algorithm for coset enumeration. For
a detailed description of this algorithm, which is also known as the Todd-
Coxeter algorithm see, for instance, [43, 32, 41]. We call this algorithm
the module generator enumeration procedure and we shall normally
use “MGE-procedure” as an abbreviation for this. The input of the MGE-
procedure includes a certain ring S. We demand that S is a Fuclidean

domain. Given a ring S we write the multiplication of elements s;,s9 € S
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by s; - s5. Moreover given maps f: M — N and g : N — P, we write
the composition of the maps f and g by

gof: M —P.

Definition 1.1.1 We call a ring a domain if it has the following prop-
erties: S is a commutative ring with 1g # Og, so the ring S itself is non-
trivial. A domain S does not have any zero-divisors, so that if s; - so = Og

for s1,89 € S it then follows that s; = Og or sy = Og or that s; = s = 0g.

Definition 1.1.2 Let F = {eg,e1,€2,...} be a set. Let “ = " denote a
binary relation on E that satisfies the following two properties:

1. Ife=¢ and e = e fore,e’ € E thene=¢';
2. Ifex=¢€ and e = €" fore,e',e’ € X thene > €".

Then we call = an ordering on E. We say that a given ordering = is a
total ordering if we have either e = €' or €' > e for every pair of elements
(e,€') € E.

Definition 1.1.3 We call a ring S an ordered ring if S has a total or-
dering > such that for s1,89,s3 € S the following holds:

1. if s;1 > so then s + s3 > s9 + 835

2. if s1 >0 and s9 > 0 then s; - s9 > 0.

Example 1.1.4 Ezamples of ordered Euclidean domains are 7Z and also
Z[V?2] and Z[VT7]. An ezample of a Euclidean domain that is not ordered
is the ring of Gaussian integers Z[\/—1| as it is a subring of the complex

numbers.

Let I be the ideal of S generated by a set of elements {s1, s9,...,s,} € S.
We shall write
Fi= (s 8o wanBings
If S is a principal ideal domain, or PID, then for each ideal I in S there
exists a single element 5 € S such that I = (5). A domain S is called a
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Euclidean domain if there exists a norm on the elements of S which is a
function v : S\ {0s} — ZTU{0}. Additionally, the Eulidean algorithm
can be applied to every pair of elements of a Euclidean domain S. This means
that for a given pair sy, s there exist elements A,k € S with so = A-s1+ &
where moreover v(x) < v(s1) or k = Og holds.

The Euclidean algorithm can be used to compute the greatest common
divisor, which we call y, of elements x1,k9 € S. The extended Euclidean

algorithm moreover provides elements sq, so € S such that
L= 81+ K]+ 82 Ka.

We usually denote the greatest common divisor of k1 and kg by GCD(k1, k2)
and similarly we denote the least common multiple by LCM (k1, k2). As can
be found in the literature, see for instance M. Artin, [3] Section 11.2, every
Eulidean domain is a PID; the converse, however, is not true.

As the next piece of input we introduce a free monoid-algebra over S
which we call A. For this, let X denote a finite set and X* the free monoid
generated by X. We define the binary operation on elements w,w’ € X*
as multiplication which we shall write as concatenation ww’. We call an
element w € X*,

W-=:T1L % Ty
a word of X*. We denote by £ the empty word in the monoid X*.

Such an algebra over a ring S can be considered as an S-module which
has a compatible ring-structure. We shall work with algebras over commu-
tative rings. We choose to describe the scalar-multiplication as an action on
the module from the left which gives a function S x A —— A such that

(s,a) — s-a.

An element a € A has the form

where we have s,, # 0 only for finitely many coefficients. The elements of

X* act on the right on elements of A, which we write as:

(@, w) — a.w € A.
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Since the algebra A is free, we can consider it as the free S-module with
basis X* and we denote this by A = (X)g. Since the set X is finite, we say
that A is finitely generated as an algebra.

Now let R denote a finite set of elements of A and let I = (R) denote
the two-sided ideal in A generated by the set R. We define an S-algebra,
which we call P, together with a canonical quotient homomorphism

mi:A—= P

as the universal quotient algebra of A for which 7(I) = 0. Hence for every S-
algebra P’ which is a quotient of A such that the elements of R get mapped
to 0, there exists a surjective S-algebra homomorphism p : P — P’ making
the following diagram commutative:

Such a universal quotient algebra P is called the finitely presented alge-
bra which is generated by a set X and which has relations R. We present
such an algebra P in terms of its generators and relations as follows:

P=(X|R)s.

The next part of input for the MGE-procedure consists of the description
of a certain module over the algebra P which we call M. We suppose here
that M is a right P-module. Then multiplication of elements m € M by
elements p € P shall be denoted by m.p. It forms a mapping M x P — M
with (m,p) —— m.p.

We suppose that M has a finite set of n generators as a right P-module.
Generally, every module generated by a set of certain cardinality, say t, is
the quotient-module of a free module (over the same ring) generated by a
set also of cardinality t. Therefore there exists an n-generated, free module

D:=P"
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with generating set Y’/ = {v},...,y,} (We might also write D = (Y')p)
together with a P-module epimorphism 1:!; : D — M. The kernel of the
map (,Z is a P-submodule of D which we call A/. We suppose that N is
generated by a finite set of elements U € D (as a P-module). Then M is
the universal P-module for which the module-relations U hold and M is

the finitely presented P-module which can be written as
M= {Y"|U)p.

Moreover we introduce the free module over the free algebra A for the further
description of the procedure. This free module is generated by the finite set
Y with Y 2 Y’ and we will denote it by

Fi=(Y)a

Since the algebra P is a quotient-ring of A, every P-module “inherits” the

A-module structure and hence can be considered as an A-module itself:

Lemma 1.1.5 Let R be a ring and P an R-algebra that is quotient of
the free R-algebra A by an ideal I C A. Let M denote a (right) P-module.
Then M is a (right) A-module as well.

Proof. Let m: A —» P denote again the canonical quotient-homomorphism
which maps an element a € A to a + I € P. We can define the action of

a € A on elements of m € M by
m.a := m.7(a).

Let p1,p2 € P be such that p; = w(a;) for i € {1,2}. Then m.(a; + a2) =
m.(m(a; + ag)) = m.(w(a1) + 7(az)) = m.(p1 + p2), since M is a P-module
this must be equal to m.p; + m.ps = m.m(a1) + m.m(ag) which again is the
definition of the multiplication of elements of A, namely m.a; + m.as.
Similarly we obtain that (m; + mg).a = mj.a + ma.a for my,mg €
M and a € A. Moreover m.(ajas) := m.(w(ajaz)) = m.(n(aj)m(as)) =
(m.m(a1))m(az) which is the definition of (m.aj)ag, also m.14 = m.w(14) =
m.lp = m and it follows that M is an A-module. O
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Therefore, the P-module D is an A-module also and there is a canonical

A-module homomorphism
¢:F —D

which maps the generators y; € Y to ¢(y;) = y!, the set of generators
y; € Y' of D. Considered as A-module, the module D is not free and in fact
the finite set of algebra-relations now gives rise to an infinite set of module-
relations: each of the relations r € R has to be applied to every (one-term)
element of the form y.w € F for y € Y,w € X*. Hence the finite set R gives
rise to an infinite set of elements of F,

YX*'R:={ywr|yeY,we X" reR};
and therefore, as an A-module, D satisfies the presentation
Da=(Y |YX*R).

Remark 1.1.6 In the following we shall use curly letters such as F, D, M ...
in order to denote modules over an algebra. In general, when we use mod-
ules over the domain S we want to use Greek letters such as £,T,=....
Howewver, in times of heavy usage of S-modules we may use curly letters as
well. Whenever ambiguities might appear we shall use an index as in Ng or
N4 in order to emphasize that we refer to the module N as module over the

rings S or A, respectively.

The technique of the MGE-procedure is based on the vector enumeration
procedure [25] which computes a matrix representation for a finite dimen-
sional and finitely generated module over a k-algebra where k is a field. For
the MGE-procedure we shall generalise this to the case of modules over a
Euclidean domain.

This makes the situation more complicated since, when working with
modules over a Euclidean domain, torsion elements might occur. If we
denote by I' a module over a Euclidean domain S, then a torsion element of
I' is a non-zero element v € I for which there exists s € S, s # 0, such that

s-v = 0. In this case s is called an exponent of v. It follows that, unlike a
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vector-space which is a module over a field, a module over a ring does not
generally have a basis. If I' however is a finitely generated module over a
PID (so in particular this holds for a Euclidean domain as well) I' can be

written as the direct sum
I'=®, ® ds

of a free submodule ®; and a submodule ®5 which is generated by the
torsion generators of I'; the dimension of ®; is uniquely determined. See
for instance S. Lang, in [19] Theorem 7.1 of Chapter 3, for this result. We
call @5 the torsion-submodule of I' and the rank of I" is defined as the

dimension of the free submodule ®;.

The input of the MGE-procedure consists of the finite description of the
algebra P by its set of generators X and its finite set of relations R, and
moreover of a finite presentation of the module M. However, in the whole
course of the procedure we want to consider M as A-module and in that
sense, M is generated by the set Y. Furthermore, instead of the set of P-
module relations U we choose a set of elements U € F for which ¢(U) = U.
The elements of M4 are expressed in terms of the module-generators Y,
words made up from elements of the monoid X* and coefficients which are
elements of S. There is again a canonical epimorphism of Dyg — M 4; we
denote by N the submodule which is generated by the (possibly infinite) set
UUYX*R C F and accordingly My = F/N. It follows that M satisfies
the presentation

My = (Y |UUYX*R).

Example 1.1.7 Let A = (X) be the free Z-algebra generated by X =
{z1,22} and let F4 = (y) denote the free A-module which is generated by
the single element y. We set P to be the finitely presented algebra which is
quotient of A by the ideal generated by the element r = 23 — 14 € A and we
choose elements uy,us € F such that u; = y.?:f and uy = Y.r1T9 — Y.T2T
as module-relations of a P-module M. Then, considered as P-module, M

satisfies the finite presentation

Mp = (y |y .23,y z120 — y.zox1 ) p.
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However, as module over the algebra A, we obtain the corresponding presen-

tation
My = (y | y.ﬂ?%, Y.y — Y.Ialr, y(l‘% = 1)1 y'l‘l(‘r% = 1)! y'm%(mg = 1)’ L ')A
and this presentation clearly is not finite at all.

In the case where we apply the MGE-procedure to a P-module M the
input consists of a finite description of the algebra A, the set of algebra-
relations R, the set of module-generators Y’ and of the set of module-
relations U, these considered as elements of the free A-module F. The pro-
cedure then works with the elements of F. It aims to obtain information of
a module ©g = M by applying the relations of M to the elements of F
considered as a free module over S.

We shall show that the MGE-procedure terminates if the input of the
MGE-procedure specifies a P-module M which is P-module isomorphic to
a P-module ©. In the given situation a P-module certainly is an S-module
as well. We demand the additional condition on the module © which we
construct, that © is generated by a finite set of elements as module over the
ring S. In the construction we will consider © mainly as module over 5. We
will however ensure at every point of the construction that © is a P-module
as well.

To process torsion-elements which occur in the MGE-procedure, we will
use the Euclidean algorithm in order to obtain the greatest common divisor
s of a pair sj, sy of elements of S. The extended version of the Euclidean
algorithm provides elements Ay, Ao, 1,22 € S, such that A\ and A\ are rela-
tively prime with respect to each other and A;-s;+A2-89 =38, and £;-5 = s;
for i € {1,2}, so that A\; - t; + Ag - t2 = 1g.

The procedure aims to construct from the given input the action of the
generators x € X of the algebra P on the generators of ©. If the procedure
terminates it will have constructed the generating set of a finitely generated
and free S-module I'. Possibly occurring torsion-elements are stored in an
ordered list which we shall call the torsion sequence and which is contained
in the output. We will obtain © as the quotient-module of I' by a submodule
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that is generated by those elements contained in the torsion sequence. The
action of the algebra generators € X on the elements of © will be described
by a set of S-module endomorphisms. Each algebra-generator = is mapped
to a matrix m,, the entries of which are elements of the ring S. Every
such matrix m, then describes an S-module endomorphism on the set of
generators of the S-module © which fixes the submodule generators by the

torsion sequence.

Lemma 1.1.8 Let S be a principal ideal domain, P a finitely presented
S-algebra and let Mp be a P-module which is P-module isomorphic to a
P-module © which is finitely generated as S-module. We can construct a
set of matrices m,, presenting S-module endomorphisms, that describe the
action of each of the generators x € X of P on the generators of ©. In
the case where © is not torsion-free, a torsion sequence can be constructed
containing a finite set of elements describing the torsion in ©.

Proof. Let ¢ : M —— © denote a P-module isomorphism of M to ©. As
© is finitely generated as module over S there must exist a free P-module
I' with finite S-module generating set such that © is a quotient-module of
I'. Then there exists a canonical S-module projection 7 : I' —» ©.

Moreover, since © is a finitely generated module over a PID, © can be
decomposed into a free submodule =, suppose of rank m, and a torsion-
submodule T :

0=EaT7.
Then Y is finitely generated as well, say by vy, ...,v;. Hence there are non-
zero elements ¢p,...,q; € S such that g; -v; = -+ = ¢ - v; = 0. We choose

the g; in such a way that there do not exist A, g; € S, where A is not a unit,
with ¢; = A - q;.

We can choose the free module I such that it is a module of minimal
rank, accordingly we choose I' with rank m + ¢t. We order the generators
of I' in such a way that, with respect to the projection m, we have that
bisiq — v; for 1 < i < t. We define ® = (@1 - bm+1, .-Gt - b)) and thus
ker(m) = ®. The torsion sequence which we will construct then is just such

a list of generators of &.
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Let w € M. Weset p(w) = 37 \;-b;+® and p(w.z) = S+ N b+ ®.
We do not demand here that Ai, A; € S are necessarily non-zero. As ¢ is a
P-module isomorphism we certainly have that p(w).z = ¢p(w.z) for z € X.

Thence
m-+t m-+t

O Nibi+®) =) N -bi+®
i=1 i=1

and this can be expressed as a square matrix m, with m + ¢ rows that has

as entries elements x; € S. O

If the MGE-procedure terminates then the output will consist of a finite
set of generators {by,...,bm4¢} of the free S-module I' together with the
respective pre-image of b; + ® in M. Moreover a set of matrices m, in one-
one correspondence to the set of algebra generators z € X is given and an
ordered list L, the torsion sequence, describes the torsion in © : the list L
contains elements Z;’;l Aj-bj € ®. Depending on the generating set B which
will be constructed by the procedure, the elements of L are not necessarily in
the form A-b where ) is the exponent (thence A-b = 0in ©). By application
of a Smith Normal Form computation on the generating set B this could be
achieved. Then however information about which elements of F gave rise
to which of the respective S-module generators of © might get lost.

1.2 Schreier Generators for Submodules

Let M = F/N, where F is a finitely generated A-module and we suppose
that M is P-module isomorphic to a P-module that is finitely generated
as S-module. We shall prove that then a finite generating set for A exists.
O. Schreier introduced in [40] a method for constructing a finite generating
set for a subgroup of finite index in a finitely generated group; we translate
this method to the setting of modules as above. The result of this theorem
will be an important part of the proof of termination of the MGE-procedure.

Theorem 1.2.1 Let A = (X) be a free algebra over a principal ideal do-
main S. We assume that A is generated by the finitely generated free monoid

X* and we let P be a finitely presented quotient-algebra of A. Moreover, let
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F be a free module over A, generated by a finite set Y with a submodule N
and let M be a P-module such that M = F/N. If M is P-module isomor-
phic to a P-module that is finitely generated as S-module, then N considered

as A-module has a finite set of generators.

Proof. Let r be an arbitrary element in A'. When considered as element of

F, r is of the following form:

T

™
r=2 vai=3 v ) dow)
i=1 i=1  weX*
where a; € A, A\, € S. Since for an element a € A, a = ) c x+ Aw - W, We
have that A,, # 0 only for a finite number of the coefficients A,,, the element

r can be written as:

n m n m
= Zyi-(z Aij ot Wwij) = Z Z)\i,j “Yi Wi 5.
i=1  j=1 i=1 j=1

Let 7 denote the canonical A-module epimorphism 7 : F —> My
which maps an element f € F to the class (f + N). So an element v €
M corresponds to a congruence class f + N for f € F. By assumption,
the module M is P-module isomorphic to a P-module © which is finitely
generated as S-module. We denote the isomorphism by ¢ : M —— O.
Since the ring S is a PID, © can be decomposed as

0=V,0 ¥,

where ¥, denotes the free submodule of ©, and ¥y the torsion-submodule
of ©. Both these modules are again finitely generated as S-modules, and
we denote by {81,...,8,} and by {Bu+1,...,5:} the generating sets of ¥,
and W9 respectively. This yields a set of generators {3i,...,06;} of ©. If we
set by := ¢ 1(B) for 1 < k < t, we then obtain a finite set of elements
B = {by,...,b} which generates M. Again we can decompose the module
M into a free submodule ®; and a torsion-submodule ®3, M = ®; & ®,.
Since ¢ is an P-module isomorphism we must have in particular that ®; =
o 1(¥;) for i € {1,2}. It follows that each of the generators by € B must
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either be a generator of ®; or of ®,. Every b, corresponds to a coset fi + N
for 1 < k < t and for each such coset we choose a representative in F which
we denote by fj.

Next, consider the free S-module of rank t. We define a morphism ¢ :
St —— M which maps

s o] =8 ot o 2. 3058,

for an element (\1,..., ;) € S. The map % then is surjective and it gener-
ates an equivalence relation “ ~ ” on the elements of S* : we say that tuples

are equivalent, denoted by
(/\1)“- 3)\‘!) ! (A;.! 1/\;)3

if P(A1,..., ) = ¥(A], ..., A}), i.e. if for the corresponding classes of F we
have that S/ Ai - (fi + N) = i1 Xo - (fi + NV). From these equivalence

” we choose representatives, and we will call

classes in S* generated by “ ~
the set of all those representatives Z. Given (A1,...,At) ~ (A}, ..., A}), if we
have chosen the element (Aj,...,A;) as the representative lying in the set
Z, then E§=1 A - f; is the representative of the cosets Z:zl Ai-(fi+N) and
C_ AL (fi + N). We choose the t-tuple (0,...,0) as the representative of
the coset of /. The set Z then is a subset of S* and, by construction, it is
in a one-one bijection to the elements of M.
Now, every element f € F can be decomposed as f = f + r, where f
is a representative of a coset implied by the map m, and an element r € N.

Since for all f € F we have that 7(f) = 7(f), therefore
FT+N =(F2) = n(fa) = n(Ha=r(Da=F+ Mo =Fa+ N

for f € F and z € X and it follows that f.z — f.ox € N. We set Q(f,z) € N
such that
Qf,z) == fx— fx

More generally we can define for f € F and a € A an element §(f,a) with

Q(f: G’) = T'a - ﬁa
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which then also must be an element of /. Additionally we define elements
Q(yi) := y; — ¥ for module generators y; € Y of F in the case that y; # 7;.
Moreover, in the case that M has a non-trivial torsion-submodule, there are
generators b € B of M and A € S such that b # 0 but where A-b =0 in M.
Accordingly there exist f € F such that A - f # X- f and we define

Qf,A) =x-f=X-f.

As a coefficient, A € S can be considered as an element A-¢ € A, an element
Q(f,A) is a special case of Q(f,a) for a € A. However, in order to be able
to distinguish between elements 2 which are caused specifically by torsion
and those which are not, we will use the terminology of (f, \) as well. We
will show now that every element r € N is in fact contained in the A-linear

span of such elements 2 :

Proposition 1.2.2 If r € N then r is contained in the A-linear span of
elements Q(f,z), Q(f,A) and Q(y;).

Proof. Letr € N. Thenr =3 "  yi.ai=) 1y ;-’;l Aij * Yi-wi j. Suppose
that w; j = x1,, ... 2y, ; € X is a word of length [. We will write for abbrevia-
tion wgz} =y, ... Tk, ; and also [k]wi‘j =Ty, ;... 2y, ; for 1 < k < I. Accord-
ingly w = w*~Vkly for all w € X*. Furthermore we set w(™ = My = ¢ for
all n < 1 and all m > [. Then each of the summands A - y.w := A; ; - yi.w; 5,

for 1 <i<nand1l<j<m,isequal to

Ay — Ay wDBw+ Xy w®By 4+ p Ay w@Dly — Ny T+ X y.w.
We denote again by [ the length of w; ; and we also set fi(f;_l) = yi.wgf;*l) ;
Therefore a summand A; j - y.w; j of r can be expressed as

)
Xij e Qi) wii+ > i (&, 2 ) By + Ay - T
k=1

We denote by (Q(F, X))4 the A-submodule of F which is generated by
the infinite set of elements Q(f,z) for f € F and =z € X. Moreover, we
abbreviate ¢ := >t | 37" Ai j - Giwq; for an element r € M. Then

(r—q) € (1), -, yn)) 4 + (QUF, X)) 4.
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In order to proceed with the proof of this proposition we now need the
following lemma:

Lemma 1.2.3 The elements q can be expressed using a finite number of
elements Q(f,\) where f € F and A € S.

Proof. We have that ¢ = }1, 370" Aij - iy ;, and a summand ¥, ;
of ¢ is a representative of a coset f + N and for every such representative
there then exists a tuple in Z corresponding to it, suppose the corresponding
tuple if of the form (Ay,...,A:). Hence, every \;; - 7i-w;; can be written
in terms of representatives of the generators b, € B of the module M with

coefficients from the corresponding tuple in Z. We obtain

t
Nj TG =N DN, T
p=1

As ¢ is an element of N, we abbreviate by X,-J-,“ i= Aij - Ay, SO that

T m

t
a=23_2 > N Furn0.
i=1 j=1 p=1
Let, as before, ®; denote the free submodule of Mg and ®, the torsion-
submodule of Mg. We distinguish between the following two cases:

In the first case the torsion submodule ®5 is trivial, so M is a free S-
module and the generators b, € B form a basis for M. We can conclude
that each of the coefficients ‘Xi,jd_( must be zero. It follows that A- f = X f
for all A € S and f € F and accordingly Q(f,A) = 0.

In the second case the torsion-submodule ®5 is not trivial. By assump-
tion, M is finitely generated as module over the PID S. It follows that ®,
must be finitely generated itself. Therefore we can choose a finite number
of elements x € S such that for a subset {vy,...vs} of the set of indices
{1,...,t} we have that
n m

Y A= #0

1 =1

1
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and &, - b, = 0 in M and where moreover all exponents of elements of the
torsion-submodule can be obtained as multiples of those elements. These k,

are elements of the form

Q(fvu"iz) = Ky - Ty,' T fvc-

Since the torsion-submodule is finitely generated we can choose a finite num-
ber of non-zero elements of this form as generators. So we add all such
elements Q(f,,,51),...,9(fy,, Ks) to the generating set for N. O

This completes the proof of Proposition 1.2.2 as it now follows that
e (Q(yl)a ceey Q(yn)s Q(fvla Kl)? sceiny Q(f,,s,.-‘is))A 1 (Q(}_, X))A g

For the proof of Theorem 1.2.1 it remains to show that the A-module
(QUF, X))a has a finite generating set:

Lemma 1.2.4 There exists a finite set which generates (QU(F, X)) 4.
Proof. As above, we again decompose an element f € F as
f=F+r,

where f has been chosen as a representative of a congruence class f + N.
Accordingly we can insert this into Q(f, z) which yields

Af,z) =Uf+r2)=(F+r)a-(F+r)z
Let v € M such that v = 7(f). Then v = EL:I
b, € B there exists a representative ?“ € F with fp € fu+N such that b, =

w(f ). Moreover, we can choose a tuple (&1, ...,#t) € Z which corresponds

ot
tov=73"_1 A" by
Hence, modulo NV, we can write f as

_f_ = Z Ku '?p,-
pn=1

Ay - by, and for every
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The elements r and r.z respectively are contained in AV : on the one hand we

can write f = f+7 = EL=1 Ku -T‘u but we also have that f.z +r.z +N =

fx+N,so fx+r.ae= f.z It follows that

t
Q(f,z) = fx—fa:—Zﬁ# T =03 wuT o).
p=1

=1

As before we must have that

+t %
an -?F.x +N = (z K fu)x+ N,
p=1

p=1
so there must be a tuple (A\},...,A}) € Z which corresponds to the image
of 375 i - fy-x under 7, such that “(E:;:l wp Fpm) = ‘u_l Ay by It

follows that
t B t t
=D N Tz =2 X T =3 N, (Fuw = Fuc).
=1 p=1 p=1

Since Zp_l Gy I((F = fum) = u—l Al - fu, ) we can conclude that an
element Q(f,z), for arbltrary f € F and algebra generators x € X, lies in
the A-linear span of the set elements of the form Q(f,,z). This set is finite
and it follows that the module (Q(F, X)) 4 then is finitely generated. O

We can conclude that every r € N lies in the A-linear span of the finite

set

{Qwi) | yi € YIU{QUSor, 51)s -, Qs 66)}U{QU(fp, 2) 1 S p Stz € X}

Thus we have found a finite generating set for the A-module N. O



Chapter 2

The M GE-Procedure

This chapter will deal with the mathematical interpretation of and the mo-
tivation for different sub-procedures of the MGE-procedure. The data con-
tained at each stage in the MGE-procedure formalises certain modules over
the ring .S. We will highlight the connections between the different steps the
procedure takes and those S-modules.

Section 2.1: We will give an outline of the input of the MGE-procedure
and explain the motivation for the procedure. Similarly to the Todd-Coxeter
procedure, we aim to draw conclusions about the S-module, that we want
to construct, from the given set of relations of the module M.

Section 2.2: We will introduce a new alphabet which will be used as a
generating set for certain S-modules. We will introduce free S-modules ¥
and give an outline how ¥ and certain submodules of ¥ will accompany the
procedure.

Section 2.3: We will describe the definition step which is needed in order
to bring relations of M into computable form. Moreover, we will explain
the effects of such definition steps on the S-modules which are formalised at
each stage by the procedure.

Section 2.4: Similarly to the Todd-Coxeter procedure, relations of the
module M will lead to elements which must be zero in ©g = M, the so-
called coincidences. We will introduce certain S-modules which are induced
by the coincidences of the procedure. Moreover, we will describe the effect

of possible torsion elements on the method of processing the coincidences in

17
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the MGE-procedure in the case where the ring S is not a field.
Section 2.5 : We give a brief overview of the data which is stored in the
MGE-procedure and which holds a description of the S-modules accompa-

nying the procedure.

2.1 Mathematical Outline of the procedure

We again denote by F = (Y) 4 the free module over the free algebra A =
(X)s generated by a finite set of symbols Y = {y1,...,y,}, and by D =
(Y") p the free n-generated module over the finitely presented S-algebra P =
( X | R). We assume that the Euclidean domain S is an ordered ring.

From this point onwards, the input of the MGE procedure consists of
a fixed P-module M, given by the finite presentation M = (Y’ | U)p. A
further part of the input consists of the finite description of the algebra P
by its set of generators X and its finite set of relators R.

We denote by U the set of pre-images in F of the set of module-relations
U € D under the epimorphism ¢ : F —— D. The set of algebra-relations R
are elements of the algebra A and they act on the free module F4. Instead
of treating the relations » € R as algebra-relations we will consider them
as elements of the module F. Then the finite set R gives rise to a set of

elements
YX*R={ywr|yeY,we X" r € R},
and as there are infinitely many words w € X* the set Y X*R must be
infinite if R # 0.
As we have seen in Lemma 1.1.5, the finitely presented P-module M can

be considered as module over the free algebra A where it has a presentation
Ma=(Y |UUYX*R).

The set {U UY X*R} generates an A-submodule of F : we set N' = (U U
Y X*R) and therefore
My =F/N.

In the description of the MGE-procedure we will consider M mainly as
module over A. Since the set of all of the relations of M4 will be used
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often, we will abbreviate it by

Rels .= {UUYX"R}.

The module N is a submodule of the finitely generated A-module F.
Using an argument similar to the Schreier-Generator Theorem for groups,
we showed in Section 1.2 that there must exist a finite generating set for the
module N in the case that the quotient-module M is P-module isomorphic
to a P-module which is finitely generated as S-module. We will show now
that in this case there exists a finite subset R of Rels such that N = (E)A

Lemma 2.1.1 Let N' = (Rels) be a free A-module generated by the infinite
set Rels and suppose that N is finitely generated. Then there exists a finite
subset R of Rels that generates N .

Proof. Let G = {g1,...,9:} denote the finite generating set of N. Since
G generates N’ we have that g; € N and therefore g; = 3,.; 7:a;;, where
r; € Rels and a;; € A, for all g; € G. We define a set I; C I by the rule

Ij ={i€I]ai #0}.

The set I; must be a finite set and g; is obtained as sum over this set. Now

let
K = Uigj<edj,

this is a finite union of finite sets, so K is a finite subset of I. Then the set
R :={ry | k € K} generates N. Let N = (R')s denote the submodule of
N generated by R'. Then N’ contains g; for each g; € G. It follows that N/
must contain the submodule which is generated by G which by assumption
is the module N'. We can conclude that N/ = N. O

Therefore, if a module © = M exists as described above then we will
be able to find a finite set of elements {r(;),...,r)} C F such that N =
(T(1)s---7T(w))a. This will lead to a finite ascending sequence of A-submodules

Noy TNy € CNyy =N
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where N{q) is the zero A-module and N,y = N and where we obtain the
module with index (¢) from the one with index (¢ — 1) by

Ny = N-1) + (r)) a-

We can form the quotient A-module M,y := F/N{,), and if N,y = N then
certainly M) = M.

We intend to find a finitely presented S-module © with the MGE-
procedure and we demand that, after termination, all the relations of M4
hold when they are applied to elements of ©. So if a finite generating set
for N' = (Rels) exists we can actually find a finite subset of the originally
infinite generating set Rels such that this finite subset has the same A-linear
span as the infinite set of all those relations of M.

Since the algebra A itself is a module over S — although one with infinite
generating set X* — the A-module F is an S-module as well. As an A-
module, F is generated by the set Y = {y1,...,yn}, so an element f € F is

of the following form:
n ™y

f= Z Z i Yiw;

i=1 j
with A;; € S and w; ; € X*. A summand of f is a term A; ; - yi.w; ; which
lies in the A-linear span of the generator y;. However, when considered
as elements of an S-module, elements such as y; and y;.w; ; are linearly
independent. In a free module there cannot exist an S-linear combination
such that an element y;.w; ; can be expressed in terms of elements y;.w; € F
if either y; # y;, or w; # w;; or both are different.

Therefore, F considered as S-module is generated by the infinite set
{yiw | yi € Y,w € X*} and so is M when considered as quotient-module of
Fs by Ns. We however aim to construct a finitely generated S-module © :

© =T1/d,

where I' denotes a free S-module, finitely generated by a set by, ..., b, and
where we factor out a submodule ® C I" which is generated by the finite set

of elements A; - b; for torsion-elements b;,,...,b;,, of © with the respective

tm

exponents Ajj,..., A

tm*
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Remark 2.1.2 In the MGE-computation as it has been implemented in
GAP we do not necessarily obtain elements of the form \;-b; but instead we
might obtain elements such as v = Z?:l Aj -b; where the coefficients are not
units of S and where b; for 1 < j < k are torsion-elements of ©. By applying
a Smith normal form computation a generating set could be obtained such
that all generators of ® are of the form A; - b;. Then however we would lose

information about which elements of F gave rise to generators b € B of ©.

Since the MGE-procedure follows the idea of the Todd-Coxeter procedure
we intend to derive information about the S-module © by examining a finite
subset of the relations r € Rels. We construct the basis of the free module
I' progressively as we consider the relations and we also want to deduce
information about torsion possibly arising from these relations. To see when
a new basis element is needed we need some terminology and introduce the

following:

Definition 2.1.3 Let w = z;...z; denote a word in the free and finitely
generated monoid X*. We call a word w' = z;...2;_; € X* a prefix of w
if there ezists w"” € X* such that w'w"” = w. The word w" is called a suffix
of w if w has a prefiz w' and w'w" = w.

In a similar way we define a prefiz of an element g of a module G. Let

an element g be of the form:

kil m
g=ZZAik-yi.wik with A\ € S,y; € Y and w;, € X™.
i=1 k=1
Then for every summand A;i. - y;.w; of g we call an element y;.w' a prefix
of g at \ji - y;.wi  if there exists a word w" € X* such that w'w" = wy
from which

I
Yiww =Y Wik

follows. When we want to emphasize that a prefix p is a prefiz of an element
g € G we will denote this by plg. We define the suffix of g € G similarly. A
prefiz will be called a proper prefix if w” # ¢ both in the case of elements
of a monoid as well as for the elements of a module.
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The relations in Rels give rise to congruence classes of elements of Fg
and there may (or may not) be a finite subset in the set Rels which will give
rise to a finite set of S-module generators for a module I'. Such a finitely
generated module I' does not necessarily exist as can be seen for instance in

the following example:

Example 2.1.4 Let P = (z),29 | z12021 + x1)s and let M = (y | y'z:% -
y)p. Since there are no relations involving the algebra-generator zo acting
on y there is an infinite set y.xg,y.x%,y.xgmlxg,y.mg ... of elements of M
which are S-linear independent with respect to each other. It follows that
there cannot ezist a finitely generated S-module I' of which an S-module ©g
isomorphic to M could be a quotient-module.

If a nonzero finite subset of the set of relations however exists which S-
linearly spans all relations we can conclude that M is P-module isomorphic
to a finitely presented S-module © as for instance in the next example:

Example 2.1.5 Let P = (z1,29 | 212271 + 21,23 — 1) and let M =
(y | y.x? —y)p. Then the relations give rise to the infinite set of congruence
classes \-y+N, X-y.z1+N, A-y.z1zo+ N, A-y.2o+ N and \-y.xo.21 + N,
where A € S. Only these five different types of infinite sets of congruence
classes are necessary.

From these five infinite sets of classes it suffices to choose the set of
classes {1-y+N,1-yx1 +N,1-yzizo+ N,1-yzo+ N, 1-y.zoz) + N}
since the elements of classes with coefficients A # 1 lie in the S-linear span
of this set.

The motivation for the MGE-procedure comes from the following: Let
y; and y;.w,w # £, denote elements of F. Then y;.w does not lie in the
S-linear span of y;. For elements r € Rels C F, such an element r naturally
lies in NV = (Rels) 4, but its proper prefixes may lie in congruence classes
outside N. These classes will be of special interest to us. In order to deal
with them we introduce a series of alphabets By,), with 0 < ¢ < v, and also

a set of S-modules, denoted X,)., which we will describe now.
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2.2 S-modules X,

Following the idea of Todd and Coxeter we want to draw conclusions about
the set of generators of the S-module © from the set of relations Rels of
M. As module over the free algebra A we have that M4 = F/N, where
N = (Rels) 4, and we have seen that there exists a finite generating set for
N4 if M is isomorphic to a finitely generated S-module. In this case there
exists a finite subset {r(y),...,7(,)} C Rels generating N which gives rise

to an ascending, finite chain of A-modules
Noy € cNy =N

such that M,y = (rqy),...,7(,)) for 1 < < v. To each such module N,y we
will assign a sequence of free S-modules X(,), C --- X, C ---E(,,)m). The
generating set of a module X, for 0 < j < ¢(¢), depends in particular on
the set of generators of the module ./V(L) and also on the prefixes of these
generators. Moreover we will construct certain submodules Z(,); and T,
of E(L)j which are induced by the generators r(y),...,7(,) of N'(L). We will
also explain the technique with which we bring relations r(),...,7(, into a
computable form. We will now explain in detail how the S-modules X,

are found and how they are connected to a module N,.

We will start by introducing a new alphabet which will be used for
bookkeeping reasons: Let B = {b;,bs,...} denote an infinite, countable set
in bijection to the set of natural numbers N. We can consider B as the pool
from which we draw possible S-module generators for the construction of ©.
The elements of B are ordered by their indices. In the first step, we assign
to every module generator y; € Y of F an element b; € B. Compared to
the Todd-Coxeter procedure this corresponds to allocating the coset with
the number 1 to the coset of the subgroup whose index we will want to
compute. However, since M is not necessarily a quotient-module of a cyclic
module we might have to allocate more than one S-module generator from
the set B, namely n, the number of generators of M.

We shall describe this process of allocating an element from B to cer-
tain elements of F of the form y;.w by defining a set of maps p(,, for
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0<:¢:<vandke€{0,...,t,}. These maps have as domain a certain (fi-
nite) subset of elements of F and as codomain a (finite) subset of B. The
first step in which we allocate a subset of {b;,...,b,} C B to each of the
generators y; € Y leads to the set B(g) := {b; € B | b; := p(0),(vi)}. Hence
P(0) : {¥1:--+Yn} — Bg) provides a bijection between the set of module

generators of M4 and the set Bg).

Notation 2.2.1 We will use indices enclosed in brackets in order to de-
scribe to which submodule J\f(b) a “tool” (such as for instance a mapping
such as p(g),) belongs to. Moreover, to each N\, there will be a set of tools
such as modules L), %), +--. and mappings p()., (), --- belonging
to it which will be denoted by an additional index for the index (). Since
the tools with index (1)o, for all 1 < + < v have a distinguished role in the

procedure, we will omit this index 0. Whereas a module ¥, corresponds

t)o
directly to N{,), modules ¥,y with j # 0 which are also associated to N
can be understood as “stepping stones” towards obtaining a module Xy,

which then will be a tool corresponding to N 1)

We will use the set B(g) as generating set for the free S-module (B(g))s

and we moreover define
Z(0) = (BoX7)s;

as the free and infinitely generated S-module with generating set
BpyX* = {bw | b € B, w € X*}. It follows from the construction of
2(0) that it can be provided with an A-module structure: the multiplication
of generators of A on elements of ¥ is given by the free concatenation
(v,x) —— v.x of v € L) and = € X. We extend p(q) to all generators of
Fs where we set

p(0) (¥i-w) == po) (¥i)-w-

Moreover we define 7y : F — X(q) as the S-linear extension of p(g) which
indeed yields an A-module isomorphism of F and X ).

Remark 2.2.2 The S-modules we are working with are induced by A-
modules, therefore situations occur where we have to consider the A-module



CHAPTER 2. THE MGE-PROCEDURE 25

closure instead of the S-module itself. We will not provide every such mod-
ule with a new name although we will make an exception with the module
Y,y which will be introduced in the next section. Instead, we will generally

denote the A-module closure of for instance a module Qg by (2) 4.

So far we have described in detail only the module X but generally for
all 0 < ¢ < v we aim to construct S-modules X(,), A(,) and Y(,) such that
they give rise to a commutative diagram:

(18 :
:F. ( ) L M(&} &.' M
N ~ |70 ~ |0
!
T() 0
E(L—])/(A(L—l))A = E(L)/(A(L))A ................ o O
. J
Bw R0
Zw/Tw

where M,y = F/N(, and where accordingly ¢y : F —= M|, and
Y + M) —> M are the canonical quotient maps with kernels J\f(,,) and
N/.N'(L) respectively. We will show that, in the case when M is P-module
isomorphic to a finitely generated S-module ©, there exists (v) such that
O := L)/ Y () is isomorphic as P-module to M and the MGE-procedure
will reach termination.

With this in mind we aim to progressively build up certain submodules
T(, such that Y,y C T(,4+1). We want to ensure, at all stages of the MGE-
procedure, that there exist A-module-homomorphisms «a, : ¥(,)/T () — ©
and a’EL) : 8()/Aq) — © such that the diagram above commutes. Then
if M is P-module-isomorphic to a finitely generated S-module ©,) we will
show that a(,) gives a P-module isomorphism between ©(,) = X(,)/T(,)
and M. If () = 0 then the modules Vg, and Y g, are trivial, and we define

a’(o) = a(g) = 00 o P(g) © ’Y(B}-
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Remark 2.2.3 From now on we will say that (v); < (V); if either
1. (¢) < (¢), or
2 ()= (/) and j < §'

holds.

In the following section we will explain how to obtain maps and S-
modules for (¢); # (0)p and we will introduce the required terminology.

2.3 Definition Step and S-modules A(,), C %

t)j

Let N,y = (ra),---,7())s and suppose that we are investigating a re-
lation 7 € Rels\{r(,...,7(,)} at the current stage of the MGE-procedure.
In order to be able to draw conclusions about the S-module ©® we want to
form a map p(,), which maps all the prefixes of 7 to elements of a module
(B().)s:t = 0. Note that here the second index t depends on the rela-
tion r, its set of prefixes, and also on the prefixes of the previously inves-
tigated relations r(y),...,7(,). Suppose we are given at this stage the set
B,,,0 £ j <t—1, as a set of generators such that there is at least one
prefix p of r that is not mapped to (B(,,)s by the mapping p(,,. Then
when we detect p]r we will extend the given generating set and we obtain a

set B(,),,, D B,- Accordingly, we define a mapping py extending the

)j+1

range of those elements y.w € F which get mapped to the (new ) set B, ,
of possible S-module generators.

Definition 2.3.1 Let f; € F and suppose that there exists fo € F such
that f is congruent modulo N{, to fa and that fa gets mapped by p,, to
an element v = p(,).(f2) such that v € (By,,). We then say that fy is
reachable modulo N, with p(,

o
Example 2.3.2 Let (v); = (0)o. Each of the A-module generators in'Y =
{y1,--.,yn} of F is reachable by p(o),. Every element of F of the form y;.w,
where w # £, however gets mapped to p(g), (yi-w) = bi.w € Xy, \(B(0)) and,
since N{g) is zero, cannot be reachable with p(g),.
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We assume now that each of the prefixes of the relation r is reachable
modulo N'(L) with p(,),,,, so that j +1 =t for ¢ as above. We also assume
that we have stored all possibly occurring congruences of prefixes of r to
S-linear combinations of prefixes of relations which have been examined at
an earlier point. If these conditions are satisfied we will use the relation

r € Rels as an additional generator and we form
Nty =Ny U ().

Let r € Rels\{r(),...,7(,)}. Whenever we find that a prefix p|r is not known
to be reachable with p(,), modulo N,y we conclude, from the knowledge we
have at that point of the computation, that p|r may give rise to a new S-
module generator for ©. If, in the process of examining the relation r, we
have encountered prefixes p;,, . .., p;, such that p; |r,1 < j < ¢, had not been

reachable with the given maps p( we have to add ¢ elements to the set

L)1
B,), in order to make each of the prefixes reachable: every time an element
b € B\B,,_, is assigned to an element p;;|r € F weset B(,), := By,),_,U{V'}
and accordingly

L = (B, X")s-
This process of allocating an S-module generator from the set B\By,), is

called a Definition Step. We can embed ¥, into X¥,.,, and, more

generally, we can define an embedding

embgf)); - E(L)J_ — E(n);

for (¢); < (k);. Whenever we pursue a definition step for a prefix p|r, we
define a mapping p(,),,, by pw);,,(p) := b'. We set p(,).., (y-w) = p(y, (y-w)
for all y.w € F which were reachable already by p(,),. We again A-linearly
extend the domain whenever it is necessary: this again yields a mapping
which has as domain the module F. Therefore every f € F which is con-
gruent modulo N, to the prefix p]r now becomes reachable by the new
mapping (), ., -

Now suppose that, for elements of F, py.x = p and moreover that
P); (Pk) = b". Then

)i+

embﬁi) " pw, () = embﬁjijﬁ“ (P, (pr)).z ="z
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but on the other hand p (Pk-z) = py, (P) = b'. We obtain a congruence

L)j+1

relation of elements of v',v" € T namely that v/ ~ v”, if the followin
( g

t)j+1?
two conditions are satisfied:

1. there exist elements b',b" € (By,,,,) and a word w € X* such that

v/ = b .w and V' = b w;

L)j41

2. There exists an index “(¢);” such that embﬁgj“(p(&)j (pr.x)) = bz

but where also p,).., (pr.z) =V for pp € F and z € X.

L)j+1

This leads to the definition of a submodule of ¥,). : We denote by

i
Ay, = (br.x—by,...,bj.x —b))s

that S-submodule of X(,). that is generated by the set of all the elements

(b.x—b') € E(,), where a Definition Step became necessary in order to make

an element y.wxz € F reachable by some map p. Note that the generating

set of A(,); also includes all those elements (b.z — b') which are induced by

definition steps for prefixes of r(,y with & < ¢. Then whenever p,),(y.w) = b

and p(.), (y-wz) = b.x and where a definition step then leads to the p(,),,, =

b for (k); < (t)x an element b.z — b’ had been added to the generating set
of A(L)j‘

Example 2.3.3 Let P = (z1,20 | 17271 + 21,23 — 1)z and let M =
(1,92 | y2.23 — ya)p. Then By = {b1,b2}. If we choose Yo.T3 — Yo as
the first relation to investigate then this leads to by = p(),(y2.71) and
by = p(o)g(yg.:r%) and accordingly B(1y = {b1,ba,b3,bs}. By p(o), we have
P(0) (Y2-T1) = b2.x1, by p(o), we however have P(); (y2.x1) = b3. Similarly
we have ,o(g)l(yg.xf) = bs.z1 and p(g)z(yg.;r;%) = by. Accordingly we define
Aoy, = (ba.x1 — b3)z and Ay, = (ba.x1 — b3, b3.71 — ba)z.

Since we always consider the effect of such a definition step for an
A-module we are mainly interested in this case in the congruence of ele-
ments generated by the A-closure of A,).. Accordingly, we will define by
7 B); — E(),;/(A@);)a the canonical quotient-map mapping to the
quotient-module by the A-module closure of A,

5t
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It follows that a definition step for a pair b € B,z € X corresponds

to an A-module isomorphism

Twss1 * By = Ty /(b =4

Tey s
where b.z |L+1_ b’ and where all those elements v € X(,), of which b.z is

not a prefix get mapped to embE:;j *1(v) and accordingly concatenation of

maps yields an isomorphism

Lo T () )

?(,’),
E(t.)j_l/(A(L)j_l)A _E‘L E(b}j/(A(t)j)A?

E(C')o

where o(,,,, : E();/(Aw),;)a — E),4,/(A(),,,)A s induced by o, , ;.

Again we denote by Y0); the S-linear extension of p(,).; the homomor-
phism 7y, : F — E(L}j/(A(L)j)A is equal to the composition (), =
O(); © " ©0(0), ©Y0) and it follows that (). provides an A-module iso-
morphism of F and ¥(,),/(A(,,)a for all (0)o < (¢); < (¥)o-

i

Remark 2.3.4 In order to ensure termination of the MGE-procedure we
will follow the following rule: we want to make sure that whenever we make

a new assignment at a stage (t); with an element V' € B\B,); that then
b > maz{be B}

Hence we demand that the index of b’ is greater than the index of each of the
earlier defined S-generators. In particular if we are given prefizes pp and
Prt1 such that pr.x = py1 and where p(,y, (pi]r) = and p), (pr1]r) = 0"
it then follows that b’ < b".

Definition 2.3.5 Letv € E(,_)J_ and suppose there is at least one prefix plv
such that p & (B,),)s. We will call the gradual procedure of assigning an
element b' =75, (p) to every prefiz of v the tracing of the element v.

Remark 2.3.6 By abuse of notation we will speak of the tracing of ele-
ments of £/(A)a as well as of elements of v € X.
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The S-module (B, )s denotes a finitely generated submodule of ).
for all 0 < ¢ < v and 0 < j < t(r). When we assign S-module generators
from the infinite set B to the prefixes of a relation r, we aim for all prefixes,
and in particular for the element r itself, to become reachable with a map
p(u),; for some j < t(r). After enough definition steps have taken place we

will eventually obtain an image under 7, for » which is contained in

(B(L)m)
must be contained in the kernel of a mapping of £(,)/(A(,)) 4 mapping to an

e(e)
)s. Since r € F is a relation for M we can deduce that ’Y(L),(,)(T‘)

S-module © isomorphic to M. We aim to form an S-module T,y which has
a generating set containing elements which are induced by elements such
as 'y(b)m}(r). We aim to construct © as the quotient-module of some %,
by some Y(,). We will introduce the terminology needed in the following

section.

2.4 Coincidences
2.4.1 Coincidences as Generators of S-modules

Let » € Rels denote the relation that gets examined at the current stage
of the procedure and suppose that we have examined relations r(y,...,r(,)
beforehand which gave rise to the module N,y C F. We aim to set N(,41) :=
Ny U (r)4 and in order to do so we have to ensure that all prefixes of r
have been made reachable. We can achieve this by the definition procedure
of the previous section which yields a generating set By, "

In order to extend the submodule by adding r to the set of generators
for constructing a module N, ), certain conditions are needed. Firstly we
demand that enough definition steps have been made such that all prefixes

of r, including r itself, are reachable with p(,), = so that the image of r under

t(e)
V@)oo 18 contained in <B(L)¢(l)>5-
r). Thenv, = Y7, Ai-b;, for \; € Sand b; € Bmm.

Supposing that the map ah)

Now let v, := 'y(,_)m)(

iy | e/ (D()yy)a —= © exists as de-
scribed in the commutative diagram on page 25, then as the element r acts
trivially on M, we can conclude that v, must lie in the kernel of the map
aEL)t( - We will call an element such as v, a coincidence. Additionally to
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Ve, ) € (B, )s We demand that the knowledge about every coinci-
dence gets stored in order for it to get applied to other reachable elements.
When these two conditions are met then we may add the relation r to the
set of generators and we define NV, 41y = N,y + (r)a. Furthermore we set
Y1) = E(L):m and, if 7 is not contained in the S-linear span of the pre-
vious relations 7(y),...,7(,), then the coincidence will lead to a non-trivial
additional generator of a certain submodule of ¥(,,1),, extending the sub-
module that we will need to factor out in order to obtain an S-module
isomorphic to M.

In the following, we will distinguish between two kinds of coincidences.
Depending on the type, the MGE-procedure will handle them in different
ways. In order to describe the way we distinguish between these we need

the following definition:

Definition 2.4.1 Let B be a finite ordered set with elements by,...b, or-
dered by their index and let (B)s denote the free S-module generated by the
set B. An element v € (B) then is of the form v = S5, A; - b; where k < m
where we suppose that A\; # 0 for all1 < i < k.

e We define the head monomial of v as the generator by, € B and we
will denote the head monomial by HM (v).

e We define the term A -by. as the head term of v which we will denote
by HT (v).

o We will call the coefficient A\, of by in v the head coefficient of v
and we will denote this by HC(v).

Correspondingly, we want to denote by RED(v) the reduct of v where
RED(v) := HT (v) — v.

Remark 2.4.2 Since the head monomial of an element v € (By,),) only
consists of a single generator b € By,), it actually would be more appropriate
to call this specific element a “head generator”. However, since we will

extend the ordering on elements of (B(,,) to an ordering of the elements
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v € X, we will then also have to deal with elements of the form b.w,
where w € X*\e, as possible head monomials of an element v. In order to
remain consistent with the used terminology we will therefore call an element

b € By, withb= HM(v) of v € (By,,) a “head monomial” as well.

Lk

Mathematically, coincidences can be seen as generating a submodule of
Ly /(A))a. We will denote this module by ,), and since 7,y provides an
A-module isomorphism of F and X,)/(A,))a4 it follows that

w)a= @) 1wTe)): -7 (e a

is isomorphic to Ny = (rqy...,7())a. Note that, as v (r()) € (B)s for
all 1 < k <4, it follows that ) (7)) = V() (7(x))-

In order to obtain a P-module that is finitely generated as S-module
and that is P-module isomorphic to M we would have to factor out the
A-closure of Q(,) from X(,)/(A(,))a. Taking the A-closure of (2 is necessary
as the coincidences are induced by the relations of an A-module. We will
show now that instead of factoring out the submodule ()4 from ¥/(A)4,
we can form a quotient-module of ¥ by a certain submodule T instead:

Lemma 2.4.3 There is an S-module T C ¥ such that
Z/T = (Z/(A)a)/ ().

Proof. By the Correspondence Theorem there is a bijection between the
submodules of ¥/(A)a and those submodules of ¥ which contain (A)a4.
Thus there exists

T:={veX|v+(A)s € (Q)al},

and therefore T/(A)4 = (2) 4. It follows then from the Isomorphism Theo-
rem that (X/(A)a)/(Q)a = (Z/(A)a)/(T/(A)a) =Z/Y.

Now let {e1,...,cn} denote the generating set of (Q)4. Then for every
c¢; there is k; € ¥ such that ¢; = k; + (A)a; we furthermore denote by
{h1,...,h} the generating set of (A) 4. Then the set {k1,...,km,h1,..., e}
generates T :as ki+(A)a = ¢; € (Q)4 and also h;+(A)s =0+ (A)4 € (V)4
it follows that (ki,...,kn,h1,..., ) C T.
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On the other hand let v € T, then v + (A)4 € (2)4 and accord-
ingly v+ (A)a = % ciai = 2 (ki + (A)a)-ai = 32 kicai + (A)a
where a; € A. It follows that v — ", kj.a; € (A)4 and v — 31", kj.a; =
Z;:I hj.a);. Therefore, v = 37" k;.a; + Zf,,-:] hj.a; and we can conclude
that v € (ki,...,km,h1,...,h)a which shows the demanded equality of

modules. O

Therefore, instead of working with a coincidence ¢ € X /(A)4, we can
choose an element & € ¥ such that k + (A)4 = ¢. Such a choice is not
unique, but we will see later that there are certain conditions which will
enable us to make a choice in a unique way.

If we denote by K the set of elements of ¥ induced by the set of co-
incidences in ¥/(A)4 then the elements of K, together with the elements
b.x — b’ which are induced by the definition steps, give rise to a submodule
T. We will form the quotient-module ©,) := ¥,)/T(,) in order to eventually
obtain some stage (v) such that ©(,) = M.

By assumption, a finitely generated S-module ©, which is isomorphic to
M, exists, so there must exist an index (v) such that N' = N(v). We will

show that ©(,, is isomorphic to ©.

Proposition 2.4.4 Let v such that N(,y = N. Then the module N, gives
rise to A-modules ¥(,), Ay, 2(v) and T,y such that

203/ Te) = ©.

Proof. By construction, ¥y = F. Each further definition step gives rise to
an isomorphism )., : L), /(Aw;)a — L), /(Aw);4,)a- The mor-
phism 7(,), forms an A-module isomorphism for all (0)o < (¢); < (¥)o, thus
we obtain ((,))a = v) (M) = Ny and it follows from Lemma 2.4.3 that
(£/(A)a)/(2)a = £/ for all indices (1);. Since A,y = N we can deduce
that

O =M= F/No) = Ew)/Te)-
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2.4.2 Coincidences in the Procedure

Let v € (B(,) denote a coincidence and suppose that v = Y " X; - b; so
that HT'(v) = A - by Since v = y(r) where r = 0 € M it follows that the
head term HT(v) and the reduct RED(v) must have the same image in an
S-module © which is isomorphic to M under a map cx’(b) 1 X/(A)g — O.
We can conclude that the elements HT'(v) and RED(v) must be congruent
as elements of ©,).

Practically, in terms of the procedure, we aim to replace, whenever that
is possible, the S-module generator HM (v) = b,, by the linear combination
HC(v)~!- RED(v). However, in order to ensure termination of the proce-
dure, we always define the head term as that non-trivial summand b, of an
element v, such that

m = max{7 | b; summand of v with \; # 0}

and as the coefficients \; in our case come from a ring they are not necessarily
units. So the inverse HC(v)~! does not need to exist. Because of this we

will distinguish between the following two cases:
1. the applicable coincidences,

2. the inapplicable coincidences.

Applicable Coincidences and Consequences

We will begin with the case where HC(v) is a unit of S for a given co-
incidence v. Let b, = HM(v). Since HM(v) and (A7} - S50 A - )
must have the same image when mapped to © we can conclude that b,,
becomes redundant as an S-module generator for ©(,) as it is contained
in the S-linear span of those generators which have a non-zero coefficient
as summands of RED(v). In this case we will call v an applicable co-
incidence. We aim to keep the list of S-module generators as small as
possible, so we will remove the element b, from the generating set for
©(,) and we then say that we replace b,, = HM (v) by the replacement
HC(v)™' - RED(v) = (\;} - 77 A - b;). In order to emphasize that we

replace an element b,, we will denote its replacement by r,_ .
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Example 2.4.5 Let M = (y1,y2 | y1.2% — y2,2 - y2, Y2.% + y2) the module
over the free Z-algebra A generated by one element x. We begin by setting
b1 := poy(y1) and by := p)(y2). One possible way of assigning S-module
generators (in the way of choosing which element y.w gets assigned to which

S-module generator) leads to the following:

o Induced by the relation y,.2% — yo we pursue definition steps resulting
in by = p(o), (y1.x) and by := p(),(y.z?). Therefore we obtain the
coincidence ¢ = (), (y1.22 — y2) = Y0), (Y1 22 — yp) = by — by. Since
HC(c) =1 the coincidence is applicable and we can replace HM (c) =
by by the reduct RED(c) = bs.

e The next relation we will examine is 2 - yo from which we can deduce
that 7(1)“1)(2-3;2) = Y1)0(2-y2) = 2-by lies in the kernel of a surjective
map P, to some O,y = ©. In this case the head coefficient 2 is not a
unit in Z and therefore we cannot conclude that the element by itself
is redundant as generator for the S-module we want to construct.

The second case stated in the example above shows a coincidence ¢ which
has a head coefficient which is not invertible; we will call such coincidences
inapplicable coincidences. For reasons of termination, inapplicable co-
incidences will be dealt with in a different way from the applicable coinci-
dences. This will be explained in greater detail in the following section.

Remark 2.4.6 Note that, to ensure termination of the M GE-procedure, we
have to make sure that the head generator of the replacement r, = RED(c)
of an element b = HM (c) has smaller indez than the element b itself. This
is necessary since the set B, from which we draw the S-module generators,
s bounded below but not above. We achieve this by our choice of the head
monomials above. Moreover, the choice of head monomials will also prevent
an inapplicable coincidence, such as “2-ba—by,” being treated as an applicable
coincidence by deleting by and replacing it by 2 - b.

From now onwards we want to be able to distinguish between elements
b € B that have been found to be redundant as S-module generators for ©(,)



CHAPTER 2. THE MGE-PROCEDURE 36

and which we have replaced by an S-linear combination of other elements
of B, and those elements which are still found to be necessary as generators
for ©(,). This leads to the following definition:

Definition 2.4.7 Let B(,), denote the set of possible S-module generators
of ©(,) found at a certain stage of the MGE-procedure. We will call those
elements of By,). which were found to be redundant as generators of ©,) the
deleted generators and we will denote the subset of these by B(L) We
will call the set By, \B(:,)_,- the set of undeleted generators and we will
denote it by Ba)j.

Letv=) " )b € (B(y;)s- We define the undeleted image u(,(v)
of v, after having obtained the information of the set of relations {r(yy,...,r()},
as follows:

u() (T;), othemése.

wo(®) —Z’\ { bi if b € BY,)

Remark 2.4.8 Since the undeleted image u(,),(v) of an element v € (B(,.)J)
depends on the relations {r(yy,...,r()} it follows that

u(y,;, (V) = ug),, (v)

for all (1) < () < (v) and all 31,72 € {0,...,t()}.

Notation 2.4.9 We will use an exponent “u” as for instance in E}i) for
the S-modules of the MGE-procedure in order to indicate that instead of a

generating set By, the respective S-module is generated by a set Bﬁ).

Lemma 2.4.10 The S-module ¥,)./T(,, can be provided with the struc-
ture of an A-module where we define the product by the A-module generators
z € X as follows: Let b € By,,, then

b+ T) {u()(b)zf(ba:)w,:.() b € (By,)s C S,

b.z, the free product in ¥, A otherwise.

Proof. 1If the product “ *” corresponds to the free concatenation then it
is clear that it admits the A-module structure. In the other case the claim
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follows as the undeleted image u(,)(v) is additive. The undeleted image only
depends on the generators b € B,y that have been deleted and that are con-
tained as summands in an element v € (B(,))s, but not on the coefficients
A# lg. O

We suppose again that ¢ € (By,), ,)s is an applicable coincidence which
implies that HM (c) ~ HC(c)~!- RED(c). Since coincidences are caused by
A-module relations coincidences imply the following congruences

HM(c) % w ~ HC(c)™ - RED(c) % w

in £(,)/Y, for all w € X*. In particular when we aim to replace HM(c) =
bm but where by, x x € (B,))s for any x € X, say by, xx = v € (B(,)s, we
will consider the congruence

v~ HC(c)™' - RED(c) » z.

as possibly leading to a new coincidence in order to capture possible con-
gruences of S-module generators as quickly as possible. If in this situation
the product by « z for any generators by in RED(c) is not contained in
(B(L)J.) we will make the appropriate definition steps until it is for each of
the generators which are summands of the reduct.

Eventually we will obtain cxz = ¢ € (B,,,,)s and we know that ¢
must be contained in the kernel of o, : ¥(,)/T(,) —= © as well. We will
call a coincidence ¢ which has been induced by another coincidence a con-
sequence. We will show in Chapter 4 that the procedure of collecting the
consequences of a coincidence and moreover the processing of coincidences
is strictly terminating.

Suppose we have assigned possible S-module generators to the prefixes
of r(1),...,7(,). We obtain a generating set for N'(,_) and we moreover suppose
that we are in a state (¢);. We introduce a new set of mappings 7(,), : F —
/Y, such that a map 7(,),, which is defined on the generators of Fg, takes
into account the information gained from the set of relations 7r(y),...,7(,),
in particular the coincidences and consequences. We define 7(,). by

(0, Ww) = g, (Y, (Y-w))
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for yw € F. Accordingly whenever we have to replace a generator b €
B(,+1), by its undeleted image u(,;1)(b) at some stage of the procedure we
will then want to adjust the map 7. Suppose b = 7(,). (y.w) and that we have
detected an applicable coincidence ¢ with HM (c) = b. At that point when
we apply the coincidence which leads to deleting the generator b, we will
apply this information to the maps 7 as well and we set 7(,41),(y.w) =1 =
HC(c)™' - RED(c). We denote the S-linear extension of the map T(); bY
Ji

));» giving an A-module epimorphism

Oy : F — T,/ Ly,

Inapplicable Coincidences

So far we described the way in which the MGE-procedure handles applicable
coincidences where we can replace the HM (¢) of a coincidence ¢ by HC(c)™!-
RED(c). If HC(c) however is not a unit of S then we certainly cannot
conclude that the head monomial HM (c) itself lies in the S-linear span of
the generators in the reduct of c. We will call a coincidence ¢ where HC(c)
is not a unit in S an inapplicable coincidence.

The MGE-procedure will deal with the inapplicable coincidences sepa-
rately from the applicable coincidences (from which we can draw immediate
conclusions). Whenever an inapplicable coincidence is detected, it will be
stored in an ordered list. We will call this list the torsion sequence and
we will denote it, depending on the stage (¢) of the procedure, by L(,. The
letter “L” is induced by the fact that this list corresponds to a lattice as it is
a list with ordered elements. In the same manner as in the case of applicable
coincidences we consider the elements of L as elements of X,.

The form of L,y depends on the relations r(;), ..., () which have already
been investigated. The elements of the torsion sequence are ordered by the
indices of their head monomials: let l;,[; be entries in Ly = {l1,...,k}.
For correctness of the MGE-purpose we will always ensure that HM(l;) >
HM(l;) when i < j.

The elements of L, at a stage () generate an S-submodule of ¥ which
we will denote by A(,). We will show in Chapter 4 that an arbitrary element
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l € A(,) must be inapplicable itself. Also in Chapter 4 we will describe in
detail the handling of inapplicable coincidences: for instance the procedure
of inserting inapplicable elements into the torsion sequence.

If at the point of termination L,y # @ then the elements of L, cor-
respond to the generators of the torsion-submodule of ©,), multiplied by
their respective exponents. We will obtain ©,) as the quotient-module of a
certain finitely generated and free S-module I' with generating set BE‘V) such
that

© =T/(A)a.

2.5 Data accompanying the Computation

For the description of the MGE-procedure we will assign certain quadruples
of data to every stage of the procedure. As described earlier, we have a series
of stages accompanying the construction of a generating set of a module
N(.+1) and these stages depend on the relation » € Rels\{r(,,...,7()} which
gets investigated at that current state of the procedure, and on the prefixes
of that relation. In order to describe these stages we introduced a further
index, thus we have a set {(¢)o,...,(t)j,-.- ()4} of indices, used in order
to distinguish between the different forms of tools accompanying N,y such
as for instance the modules Y(,y., T(,.,, "‘T(a)m)'

We assume that relations r(),...,7(,) have been examined so far and
that we have already traced j prefixes of the currently investigated relation
r and we will describe the quadruple for this case. For the remaining part of
the description of the quadruple we will omit the index (¢); whenever there

is no ambiguity.

2.5.1 The S-Module Generating Set

The first part of the a tuple consists of the set B which is an approximation
of the set of S-module generators for a finitely generated and free S-module

I of which © is a quotient-module.
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2.5.2 The Multiplication Table

We define the Multiplication Table, which will be denoted 7', accompany-
ing a submodule N, (or in other words accompanying the construction of
a generating set for J\Q,,,_l y) as a table in which we store certain information
about the elements b € B contained in the set of possible generators of the
S-module ©,). The rows are indexed by an ordered set B = {b,,... brn(e) }
and each row corresponds to a generator b € B. We let the symbol L de-
note “empty” or unknown. A row “b” of the table T" contains the following

information about a generator b € B :

e A column del;,, which contains a flag which is either set to “true” or
“false”. If the flag in a row is set to “true”, then this indicates that
the accompanying generator b has been deleted; “false” that it has
not been deleted.

e A column r, which, in the case that the generator b corresponding to
the row has been deleted, contains the possible replacement r}. In case
that b € B* then 7, has not been defined and the entry in that column
reads L.

e For every algebra generator z € X we have a column prod(b,z). A
box in such a column either contains the product bxz, or, in case that
the free product b.z is not congruent modulo A to an element of (B)g,
the entry will read L.

e A column which, only if del;, = false, contains the pre-image of b € B*
under the mapping p : f —— b € B%; otherwise the entry is “1”.

Therefore, a table T},) provides a description of the multiplication in an
S-module which is isomorphic to M) = F/N,). At the beginning of the
procedure we will initialise the multiplication table T(p which has rows
corresponding to the set of S-module generators By = {b1,...,b,} which
is in one-one relation to the set of module generators Y of M. All rows
of T{gy correspond to undeleted S-module generators and no boxes for the
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action of z € X on b € B(g) have been filled. Thus T(q) represents the free
S-module (B(gyX™) = ¥(o) which is isomorphic to F.

From the pre-image contained in the table for b € B together with the
undeleted image of b € B the mapping § : F — (B%)s C £/(A)4/(Q)a
can be reconstructed.

By abuse of notation we will from now onwards not distinguish between
the i-th row of the table and the S-module generator b; € B corresponding

to it.

Example 2.5.1 Suppose that we have traced relations {r(y,...,r)} €

Rels. A row in a multiplication table possibly describing such a situation is

given by:
dely, | 7 prod(b,z1) | ... | prod(b,z;) | p~1(b)
by, T 1 1 ven | y.w
bpi1 |2 by —3-b4 | L | Al
bh+2 f 1 'U’ vk 'U” y.’fﬁ

In the table above, the row by, corresponds to the undeleted S-module
generator with index h. The fact, that the generator b, has not been deleted
1s indicated by the entry “f” in the column “dely”.

The table describes the action of the algebra A, which in this case has gen-
erators 1, ..., The product by *x, is contained in (B)s and its undeleted
image is a vector v =3 -, \; - b;. Since the generator by, is undeleted, the
box with the replacement “r,” has been filled with the symbol “L”. Moreover,
at this stage of the procedure there is no element of (B) known to be equal
to by x x1, therefore the table-entry for the bozx of the product prod(bp,z1)
has been filled with the symbol “L” as well. All the information which is
contained in the table has been obtained by tracing the prefizes of the finite
subset {r(1y,...7(y} C Rels.

By the Schreier Theorem in Chapter 1 we know that, in the case that M
is isomorphic to a finitely generated S-module, a finite subset of the set Rels
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should suffice as generating set for the submodule A of F. The multiplication
table, or to be accurate, the choice of the S-module generators corresponding
to its rows, has an impact on the choice of this subset of Rels : if we are
investigating coincidences caused by an algebra-relation r € A then r will
lead to an infinite number of module-relations {y.wr |y € Y,w € X*}. We
will however confine to those elements y.w € F such that vy(y.w) = b € B".
We will ensure that we will apply every algebra-relation at a generator b €
B™ : this might also be called pushing at b.

2.5.3 The Coincidence Stack

In theory we interpret coincidences as generators of a certain S-submodule;
the coincidences together with the set of generators of A gives rise to the S-
module Y. The product “x” in the quotient-module /T uses the undeleted
image. Thus if an element v € (¥)g contains a summand or the prefix of a
summand with b = HM/(c) of an applicable coincidence ¢, then v € (£%)s
and in fact there exists an element v which is congruent to » modulo T such
that v € (¥%)s.

Here however we demand that all applicable coincidences have been pro-
cessed and the so-obtained undeleted image has been applied to all elements
or, in other words, that for all head terms b, of applicable coincidences we
have that b, € BY. In practical terms this is not the case at every stage of
the procedure. The next part of the tuple accompanying N,y consists of a
tool used in the procedure in order to handle those coincidences of which
the procedure has already become aware but which it was not able yet to
examine and apply any further.

We call this the coincidence stack and we will denote it by Cp. The
elements stored in Cp are ordered by the point of when they have been
added to the stack: so elements which have been added last will be dealt
with first. The coincidences contained in Cp are considered to be pending:
when a coincidence ¢ is found, it might not be dealt with immediately, for
instance in the situation where the MGE-procedure is currently processing
a different coincidence ¢, which might lead, amongst other things, to the
computation of the consequences of ¢. Then ¢ will first be added to the



CHAPTER 2. THE MGE-PROCEDURE 43

stack: we set Cp(.41), := Cp(y),,, U {c}, where it is stored until the MGE-
procedure, possibly at a later stage, will process c¢. Only then will the
procedure evaluate if ¢ is an applicable coincidence of not. If it is applicable
then in the course of processing ¢ all consequences ¢, ..., ¢; which are caused
by ¢ will be traced and added to the stack. Therefore the coincidence stack
might contain coincidences which are non-applicable.

Moreover, since coincidences might be stored in Cp(,,)j over a few stages
of the procedure there might be coincidences ¢ € Cp,),; such that ¢ #
u(,, (¢). The reason for this is that the MGE-procedure will not update or
check the coincidences while they are in the stack. Only at the point when
¢ € Cp is chosen for processing will we replace ¢ by the undeleted image u(c)
at that stage of the computation. This in means in particular that when a
coincidence ¢ is processed we will trace ¢ completely, now as element of ¥ /T

and therefore using the product “«”.

2.5.4 The Torsion Sequence

If S is a domain but not a field we have seen before that the S-module
© we wish to construct possibly contains torsion elements. If it does then
we have to distinguish between applicable and inapplicable coincidences in
the MGE-procedure. When the procedure has terminated the inapplicable
coincidences, which are stored in the torsion sequence L, can be seen as
generating set of a certain S-module A which is a submodule of a finitely
generated and free S-module I, such that ® = I'/A. In order to handle
inapplicable coincidences we mainly need two procedures:

1. We must ensure at all times that no applicable coincidences are con-
tained in the S-linear span of the inapplicable coincidences. Therefore
we will store the inapplicable coincidences in a sequence L with ele-
ments which are strictly ordered by their head monomials. Therefore
whenever an element gets inserted into L we must make sure that this

ordering is maintained.

2. As the inapplicable coincidences [ € L have also been obtained from
A-module relations we must ensure that the S-module A generated by
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the | € L equals its own A-module closure. We aim to close L with

respect to action by the A-module generators = € X.

In practical terms of the procedure, two separate lists will be used to
store and handle the inapplicable coincidences:

1. The Torsion Sequence L.
2. The List of inapplicable Coincidences I.

These lists have identical elements. The elements of these lists are ordered
in two different ways. We order the elements of the Torsion Sequence L by
the index of their head monomial, thus we will always strictly ensure that
for i1 < i we have that HM (l;;) > HM (l;,) for l;,,l;, € L. The sequence I
is used for the computation of the A-module closure of the elements which
are stored in L. The elements of I are ordered on a “first in — first out”
basis: the A-module closure of elements which have been inserted into I at

an earlier point will be computed first.

Remark 2.5.2 Contrary to the elements of Cp we will ensure that alll € L
will be checked if they are affected whenever an applicable coincidence is
processed that leads to the deletion of some b € B". In the case that b is
summand of | € L we will then replace I by its undeleted image. Moreover,
if b is even the head monomial of some | € L then this | will be removed
from the torsion sequence and we will add | to the coincidence stack where
eventually it will be processed again. In this way we ensure that at every stage
of the procedure only inapplicable coincidences are contained in a torsion
sequence L and furthermore that all elements of L are contained in (B%)g.

We will complete this chapter with a short example of an MGE-procedure
in terms of the data such as multiplication table, coincidence stack and
torsion sequence used. Note that in this example we will use the technique
of inserting inapplicable coincidences which will be described in detail in
Chapter 4.

Example 2.5.3 Let M = (y1,92 | v1.2° — ¥2,2 - y1.2 — 6 - y1)p and let
P = (x |22 -2-xz)z. We begin with the generating set Bg) = {b1,b2} and
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accordingly initialise the multiplication table T' as follows

dely, | prod(b,z) | p~'(b) | 7
by | f il Y1 uE
by | f L Y2 ok

We moreover set Cp = 0 and L = . We first ezamine the module rela-

tion y1.x® — yo which leads to the definition steps by = p(g, (y1.z), by =
p(g)ﬁ(y1.$2) and bs := p(o),(y1.2*). The so-obtained applicable coincidence
bs — by does not have to be stored in Cp but can be processed immediately.

Applying this information to the table gives

dely | prod(b,z) | p~1(b) | 74
by [ f |03 Y1 u
bo|f |1 Y2 &
by |f |ba vz | L
bq f bg Y1 .$2 A
bs | t A, i by

The coincidence induced by second module-relation 2-y;.x — 6 -y is without
any further definition steps already contained in the S-linear span of the
generators BE"I) = {b1,bo,b3,bs} and in fact it is an inapplicable coincidence
2 -bg — 6 - by which we add to the torsion sequence: L := [2-bg — 6 - by].

Next we begin examining the relations that are implied by the relation
x2 —2-x. Application of it at by gives by x> —2-by xx = by — 2-bs; however,
as by x x € (B) this coincidence gives rise to a consequence and before we
can delete by and replace it by the replacement 2 - b3 we have compute the
consequence ¢ = cxx. We obtain ¢ = byxx — 2 -bgxx = by — 2 - by and
since ¢ cannot be processed immediately we add it to the coincidence stack:
Cp:={by —2-bs}, and now by can be deleted.

Then we can process ¢, as now by € B% we have to replace € by its
undeleted tmage, we obtain an inapplicable coincidence u(c) = u(by—2-by) =
by —4 - bg which we insert into L. We have that HM (u(c)) = HM(l) for the
element | € L. As we must ensure that HM (l;) # HM (l;), we replace u(c)
byv:=2-l4+u(c)=2-(2-b3—6-by)—4-byg+by=by—12-b;.

Since v is an applicable coincidence it will not be inserted into L. More-

over as boxx € B no further consequences are induced and it can be processed
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immediately. We will describe the general approach for the inserting of el-
ements into the torsion sequence closely in Chapter 4. We now obtain the
table:

dely | prod(b,z) | p~1(b) |

bi|f |bs Y1 1

byt |L 1 12 b

b3 | f |2-b3 e | L

by |t L L 2:b3

bs | t i 1 by
and Cp=0 and L = [2- b3 — 6 - by]. The A-module closure of l; € L gives
Lhrxz=2-bgxx—6:-by*xx = —2-b3 and we replace l; and l; x = by the
elements vi ==l xx+1; = —6-by and ve := Iy + vy = 2 - bg and we obtain

the torsion sequence L = [2 - b3, —6 - by].

Since the application of an algebra relation at a generator which has
already been deleted would not provide new information we will apply > —2-x
at the next generator contained in B*. We obtain the trivial coincidence
baxax?2—2-bsxxz=4-bg—4-bs.

Therefore we obtain an S-module © which is a quotient-module of the
free module (by,bs)s. These generators correspond to the elements y; and
y1.«¢ € F. The free rank of © is zero as both by and by are torsion elements,
b1 has the exponent —6 and by has the exponent 2. The action of the generator
x of A is described by the matriz

= 2)



Chapter 3

Grobner Bases and
MGE-Procedure

In the following chapter we shall introduce Grobner bases for S-modules and
also prefix Grobner bases in the case of A-modules which are given as the S-
module closure of certain finitely generated S-modules. These methods shall
be applied in subsequent chapters to the modules constructed in the course
of an MGE-procedure and we shall use certain properties of such Grébner
bases in order to show correctness and termination of the MGE-procedure.
Section 3.1: We describe terminology such as ordering and reduction in
the case of the S-modules for a Euclidean domain S and we specify S-
module Grobner bases. Certain properties of S-module Grobner bases shall
be established with regard to the reduction by elements which are contained
in an S-module Grébner basis.

Section 3.2: We describe prefix-reduction of elements of a free A-module.
Prefix Grobner bases are introduced and we shall discuss properties of mod-
ules which are generated by a prefix Grébner basis. Thereafter we shall
introduce the concept of prefix-closure. We show how prefix-closure can be
used in certain cases in order to obtain a finite prefix Grobner basis from a

given S-module Grobner basis.

47
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3.1 Grobner Bases of S-Modules
3.1.1 Ordering and Reduction on S-Modules

We introduce now the appropriate notation and language of ordering and
reduction on elements of a module and we will explain the reduction tech-

niques which we will use to simulate the MGE-procedure.

Definition 3.1.1 Let E = {eg,€e1,e€9,...} be a set. We call a partial order-
ing > on the elements of E a well-founded ordering if the corresponding
strict ordering = allows no infinite descending chain e;; = e;, ~ ... for
e, € B.

A reduction rule with respect to an ordering > on E is an ir-
reflexive relation of a pair of elements (e1,ea) where e; > e3 and a reduction
rule is written as

ey — €9.

We will call a reduction rule with respect to an ordering > on E Noethe-

rian, if no infinitely descending sequences of reductions

€g s eq s €9 v ... withie N

ezist for the elements e; € E where e; # €;4+1.

Definition 3.1.2 Let H denote a module with h,h' € H and let K denote
a submodule of H. The module K defines a congruence relation ” ~ 7 on
the elements of H : we say that h and h' are congruent if h—h' € K. We
define congruence classes on H: the congruence class of h € H by the
(congruence) relation ~, which we denote by |h|~, is the set consisting of
those elements h € H such that h ~ h. We may also write ~ and h ~x k'
if we want to stress that the congruence is generated by K.

Let |h|~ denote a congruence class of elements of a module H and let
" »= 7 denote an ordering on the elements of H. We will call an element
h € ‘H minimal in its class |h|~ if there is no k' € |h|., k' # h, such that
h=h.
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We will now discuss the terms of ordering and reduction in the case of S-
modules. Thus let S be an ordered Euclidean domain. It should be stressed
at this point that not every Euclidean domain is ordered. For instance the
Gaussian integers, as a subring of the complex numbers, form a domain that
cannot be ordered: there does not exist a total ordering for the elements of
the Gaussian integers.

We furthermore assume that the algebra A is a finitely generated monoid-
algebra over S that is generated by the finite set X. We will denote by
F = (Y)a a free and finitely generated A-module. Moreover, we define ¥
as the A-module closure of a finitely generated S-module (B)g, where B is
an ordered set B = {b1,...,bn,}; thus £ = (BX*)gs.

Definition 3.1.3 We denote by B C S a subset of elements of S such that
the following holds:

1. If M, Ao € B, then A1 + Ay € P and also A\ - \g € B;
2. for A€ S one of A\ € P, —A € P, or A =0 holds.

The set P is called the set of positive elements of S.
We obtain a total ordering >g on elements of S: Let A\, A2 € S, we set
Al >s A<= A — A €.

For A € S we set

A = A ifAePor A=0;
h — A, otherwise.

We can extend the ordering on S in order to obtain a total ordering “>"
on the elements of (B)g. Let v; = E;’gl Aj - bj, with HM (vy) = by, and
vy = 3 7% Kj - by with HM (vg) = by, We set

my > Mg, Or
vy = vy = { my =mg and Ky >5 Apy, OF
mi = mg and Ky, = Ay, and RED(vy) = RED(vs).
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An element v € X is of the form

m ()

v= Z Ajk - bj.wjk, where w;;, € X* and Aj € S.
=1 k=1

g

Since X, as the A-module closure of a free S-module, is free itself, this linear
combination of the elements b.w, where b € B and w € X*, is unique for
every v € ¥. We extend the given ordering on (B) by defining an ordering
on the elements of ¥. This ordering is induced by the maximal length of
words of the monoid X* occurring as summands of the module element:

Definition 3.1.4 Let w = x;, 24, - - - z;, € X*, we define the length of w
as

lw| =1
For v € ¥ where v = ;"“:1 Zz(i)l Ajk - bj.wjk, we then define the weight of
v, denoted by Wei(v) as

Wei(v) :== maz{|wji| : A\jk - bj.wj, summand of v with \ji # 0}.
Let bs.w and by.w' be generators of Xg, then

!
bs.w >'wgi b;.w’ — |w| > |w |, o
|lw| = |w'| and s > t.
Accordingly, we define an ordering by weight “ »,.;” on the elements
of ¥ as follows: let vi,va € X with head terms HT (v1) = kK - bs.w and

HT(v3) = A-bp.w', then

Wei(vy) > Wei(vg), or
V1 >wei V2 <= { Wei(v)) = Wei(ve) and s > t,or
Wei(vy) = Wei(vz) and s =1t and & >g A.

The set B is bounded below in the given situation and the weight of
elements of ¥ is bounded below by 0 as well. If we assume that there does
not exist an infinite descending sequence of elements of the ring S then we

can conclude that there cannot exist any infinite sequences

|'Ul| ~wei IU2| ~wei |U3| ~wei """
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of elements of ¥ in the case of ordering by weight in the setting given. In
the further procedure we shall assume that there are no infinite sequences
of elements of S. We will now introduce reduction on the elements of X.

Definition 3.1.5 Let vi,v € ¥ and let H = {hy,...,h} C . We say
that H S-module reduces v; to vy in one step, denoted by vy %\ Vg,

if

U2=U1—(J‘il-h1+"'+ﬁ?t'ht)
where k; € S such that k; # 0 for at least one i € {1,...,t}. For h € H
with k; # 0 the following conditions have to hold:

1. HM(h;) = bw for a summand X - b.w of vy.

2. Let A denote the coefficient of the summand bw. We demand that
there are k, k' € S with A = k- HC(h;) + &' where

(a) |x- HCO(hy)| <s |l; and
(b) || <s [HC(h;)|-

*

We say that H S-module reduces v; to vy, denoted by vy —‘:—\ vo, if

there erists a sequence of S-module reductions

with v; € ¥ for 1 < i < k. We call an element v € ¥ minimal with
respect to H if it cannot be S-module reduced by H C X.. We call a set H
inter-reduced tf every h; € H is minimal with respect to H\{h;}.

3.1.2 S-Module Grobner Bases

Let H denote a finite set of elements of ¥, generating a submodule = C X.
We are interested to see that the reduction by elements of H leads to a
minimal element which is canonical up to multiplication by a unit of S. Let
hi,he € H such that HM (hy) = HM (hy) and |[HC(hy)| >s |HC(h2)| and
let v € ¥ be S-module reducible by h; and hg, suppose with the respective
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coefficients A1, Ao € 5. We have

hi
v S U1 v 1 1

ho|S

vy i =0 — Ay - ho
Suppose that v; # vy and that v; cannot be obtained from vo by multiplica-
tion with a unit of S. Then if there is no element 7 € ¥ with accompanying
sequences of reduction v; —g-—\ *ﬁ and v9 —I;—\ *ﬁ, then the S-module reduc-
tion by elements of H does not lead to a canonical result. In the literature
of Grobner bases a set H which does lead to a canonical minimal element is
called confluent.

Moreover we want to be able to determine if an element v is in minimal
form with respect to a set H, or if it is further reducible, by comparing HT'(v)
with the head terms of elements of H. We want to obtain a generating set
H' such that all elements contained in the S-linear span (H’)s have as their
minimal form 0.

For hy,hy € H as above, as HC(h;) and HC(hy) are elements of the Eu-
clidean domain S, the extended greatest common divisor provides elements
K1, K9 € S such that

K1+ HC(hI) = K9 HC(hQ),

namely where x; - HC(h;) is the least common multiple of HC(hy) and
HC(ho) for i € {1,2}.

If we set ¥ := Kk1-hy —ka-ho, then v lies in the S-linear span of hy and hs.
In the case that there is no element b’ € H\{h1, ho} with HM (v) = HM (h')
such that also |HC(h')| <s |HC(?)|, the element ¥ is minimal with respect
to H despite the fact that it is contained in the S-linear span of H.

In literature on Grobner bases a pair of elements such as hi,ho € H
is called a critical pair. It can be shown that there is a close connection
between the property of a set H being confluent and that all elements con-
tained in the S-linear span have minimal form zero, respectively, with the

property that there are no critical pairs contained in H.
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Let H = {hy,...,h:} be a set of elements of ¥. For the set of head

monomials of a set H we define
HM(H) == {HM(h;) | h; € H};

and in the same way for the head terms, HT'(h) = HC(h) - HM (h), we set
HT(H) :={HT(h;) | h; € H}.

In order to obtain a confluent set G C = such that for all v in the S-
linear span of G we have that HT' (v) € (HT'(G)), B. Buchberger developed
the theory of Grobner bases for the generating sets of ideals in polynomial
rings k[zy,...,x,], where k is a field, see for instance [6, 7]. Buchberger
proved that the property of a set G being confluent can be traced back to
certain properties of so-called s-polynomials constructed from the elements
of G. This can be seen as the motivation of the algorithm developed by
Buchberger for the construction of Grébner bases. The theory of Grobner
bases can be translated into the setting of modules over certain types of rings,
see for instance [1]. We will now give the definition of an s-polynomial for
elements of a free S-module and also the definition of an S-module Grébner

basis.

Definition 3.1.6 Let hi,hy € ¥ such that HM(h1) = HM(hs2) and let
A1, A2 € S such that A\ - HC(hy) = Ay- HC(hg). We define an s-polynomial
of hy and hy as follows:

s-pol(hy, ha) := A1 - hy — Ag - ha.

So the s-polynomial is a tool in order to construct an element which
is contained in the linear span of elements hq,hs but which has a head
monomial that is smaller than the head monomials of h; and hg. This is
achieved by multiplying h; and hs respectively by coefficients Ay, A such
that A\; - HC(h;) for ¢ € {1,2} is equal to, or a multiple of the least common
multiple of HC(hy) and HC(hs).

In the case where head coefficients are elements of a field, an s-polynomial
can be obtained by multiplying with the respective multiplicative inverses
of the head coefficients. Also in the case of fields, Buchberger proved that
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reduction by a set H must be confluent if each s-polynomial of elements
of H can be reduced to 0 by H. However, in the case where the head
coefficients are elements of a ring and thus are not necessarily invertible, we
must take the head coefficients themselves into account as well when we are
investigating if reduction by a set is confluent.

Suppose for instance the case where hy,ho € H such that HM(h,) =
HM(hs) but where the set H does not contain an element A’ such that
HM(h') = HM(hy) and HC(K) = p :== GCD(HC(h1), HC(h2)). There
exist Ky, kg € S such that p = k1 - HC(hy) + ko - HC(hs). If p <g HC(hy)
and p <g HC(hg) then v = K1 - h1 + K2 - ho is contained in the linear span
of H although it is not guaranteed that ¥ can be S-module reduced any
further by elements of H. In order to handle this situation, a further tool
has been introduced in the setting of Grobner bases where the coefficients
are elements of a ring. We shall follow the notation used in [5] by T. Becker
and V. Weispfenning:

Definition 3.1.7 Let hy,hy € ¥ such that HM(h1) = HM((ha) and let
K1,k € S such that GCD(HC(hy), HC(hg)) = k1 - HC(h1) + k2 - HC(h3).
We define a g-polynomial of h; and hy as follows:

g-pof(hhhﬂ ‘=K1 -hy + Ko - ha.
Lemma 3.1.8 Let v € ¥ and let H C ¥ denote a finite set such that

g-pol(h, 1) =20

for allh,h' € H. Ifv —g\ ' 0 then there exist h"" € H and k € S such that
HM(Kh'") = HM(v) and HC(v) = k- HC(h").

Proof. If v —1;-—\ *D then v = Z::’f Ai - hi, where we suppose that we have
chosen the h; in such a way that HM (v) = HM (h;) for exactly i € {1,...,t}
and where moreover |HC(hy)| >g |HC(hg)| =5 -+ =25 |HC(hy)| for all
1<i<t.

We certainly have that HT(v) = Y)i_, A - HT'(h;) and |HC(h;)| <s
|[HC(v)| for all 1 <7 < t. Furthermore we assume that we have chosen this
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reduction of v such that the respective norms of the head coefficients of the h;
fori € {1,...,t} are as small as possible. In particular we demand that there
is no other representation of v which contains an b’ with HM (k') = HM (h;)
and |[HC(R')| <g |[HC(h¢)|.

The claim is certainly satisfied if ¢t = 1. Also if ¢t > 1 and HC(h;) =
HC(hy) it follows that HC'(v) must be a multiple of HC(h;). So we assume
that ¢ > 1 and |HC(h1)| >s |[HC(ht)|. By assumption on the set H we
know that g-pol(hi, h¢) —g—\ " 0 for all such g-polynomials. So there must

exist El, - Em € H such that

g = g-pol(h1, he) = Y v - h;
j=1
We have formed g = s; - by + s2 - hy, where 51,89 € S such that s; -
HC(h1) + so - HC(hy) = GCD(HC(hy),HC(ht)), so g is contained in the
S-module (hy,hy)s.
However, v = Z::i‘ A; - h; can also be written as

t—1 t+k m
v=A1=s1) hi+ Y Airhi+(Ai—s2) het D Ajhi+ > vh
i=2 Jj=t+1 =1

The summands on the right hand side of this equation provide a valid re-
duction sequence of v to 0 as well.

Now suppose that |HC(g)| <s |HC(h:)|. It follows that |HC('ﬁj)| <s
|HC (hy)| for all ;i;j which reduce g. However, this is a contradiction to the
assumption that the reduction had been chosen in a way such that the norms
of the head coefficients of the h; with 1 < ¢ <t are as small as possible with
respect to the ordering <g.

Therefore we can conclude that HC(g) = HC(h;) and this implies that
HC(hy) is a multiple of HC(h;). This argument can be applied to all h;
with i € {1,...,t — 1}, and it follows that HC(v) must be a multiple of
HC (hy). a

Lemma 3.1.9 Let H C £ be a finite set such thc;,t for every pair of ele-
ments h,h' € H it is ensured that g-pol(h,h’) %\ 0. Letve X,v#0, if
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v 1s minimal with respect to H then no summand A - bow of v is contained
in the S-module (HT(H))s.

Proof. Suppose there is a summand A - b.w # 0 of v which is contained in
(HT(H))s. Then

A-baw = A - HT(hy) + -+ A - HT(hy).

We shall prove the claim by induction on the number ¢ of summands of the
sum above. Suppose t = 1, then A-b.w = A; - HT'(h;) and the claim follows.

Let t = 2, then A - baw = Ay - HT(h1) + A2 - HT'(hg). We know that
every g-polynomial of h; and hs must be S-module reducible to 0. Let
g = g-pol(hy,he) = K1 - hy + K2 - hg with K1,k € S. Since HC(g) =
GCD(HC(hy), HC(hg)) there exist ui,pe € S with HC(h;) = p; - HC(9)
for i € {1,2}. Accordingly A -bw = (A1 - g1 + A2+ p2) - HT(g). Since g
is S-module reducible to 0 by H it follows that A - b.w must be S-module
reducible by H as well.

So suppose that the assumption has been shown for ¢t = n — 1; we set
t = n. Therefore A -bw = Y"1, \;i - HT'(h;). Without loss of generality we
form a g-polynomial of h; and hs:

g := g-pol(hy, hp) = 51 - h1 + 53 - hy;

s U - o
By assumption, g — 0 and we can conclude that h € H and k € S

exist such that HC(g) = & - HC’(};) Moreover there are pi, pus € S with
HC(h;) = p;- HC(g) = pi - &'HC(E) for i € {1,2}.
So

n—1

A bw= Zn:A,- ‘HT(hi) =Y o - HT ()

i=1 i=1

where
e ay:= (A1 p1+ Ao p)-kforie {1,2}
e ;= N\y1for2<i<n-—1;

° ;‘"11 :=}-za.nd?;i:=hi+1 for2<i<n-—1;
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and so the claim follows by induction. O

The converse of the Lemma above is only true in a modified form. By
definition, an element v; € ¥ can be S-module reduced by an element A if
two conditions are satisfied: firstly we demand that there is a summand \-b.w
of vy such that HM (h) = b.w; secondly we must have that |[HC(h)| <s |A|.
This second condition does not necessarily require that the coefficient A at
the summand of v; is a multiple of HC(h). Therefore if h S-module reduces
v; to an element vy then it is possible that the term b.w is a summand of
ve as well, then with a coefficient |&’| <s |A| such that A = x- HC(h) + &
where |K'| <g |HC(h)|.

Corollary 3.1.10 Let H C ¥ be a finite set such that g-pol(h, h') —I;—> *0
for all h,h' € H. Let v € X, v # 0; suppose that for any summand X - bw
of v for which b.w € HM(H) there exists no X' € S with |N| <g |A| and
N -bw e (HT(H))g. Then v is minimal with respect to H.

We now give the definition of an S-module Grébner basis and we shall

proceed by investigating certain properties of such Grobner bases.

Definition 3.1.11 Let = be a submodule of the S-module ¥. We call a set
of elements G = {g1,...,9:} C E an S-module Grobner basis of E if for
every v € Z,v # 0, there exists an element g; € G such that:

1. HM(v) = HM(g;), and

2. |[HC(v)| >s |HC(gi)| such that there are k,k' € S with HC(v) =
k- HC(g;) + k' such that

(a) |k HC(g;)| <s |[HC(v)|, and
(b) || <s |[HC(g:)l.

Lemma 3.1.12 Let G = {g1,...,9:} C E be an S-module Grébner basis

of Zs. Then G generates =.



CHAPTER 3. GROBNER BASES AND MGE-PROCEDURE 58

Proof. Let v € Z,v # 0, there exists a sequence of reductions

8. . @. G ~ G _
I G e T e

such that ¥ is minimal with respect to G. Then v — 7 is contained in the
S-linear span of G and, as G C =, also ¥ € Z. The set G is an S-module
Grobner basis for Zg, it follows that 7 = 0 and therefore v must be contained

in the S-linear span of G. O

Lemma 3.1.13 Let Z be a submodule of ¥ and let H = {hy,...,ht} be a
set of elements of ¥ which generates =. Then the following are equivalent:

1. The set H is an S-module Gréobner basis for Z.
*
2. Letve S andv#0, then v € E if and only if v —— 0.

Proof. “ 1. => 2. ”: Suppose that v € Z such that v # 0. Then v can
be reduced by H to an element 7 that is minimal with respect to H. Since
v—=T= A hy + -+ An-hi, €E it follows that T € E as well. Then T
cannot be further reduced by the S-module Grébner basis H and it follows
that 7 = 0. .

Now suppose that v —# {70. Then there exists a sequence of reductions

S
s ‘17§ s k7§

and therefore v must lie in the S-linear span of H. It follows that v € =.
—_ A H %o
“2.=1.7: Let v € E and v # 0. By assumption v — 0, induced
by this reduction sequence there exist A1,..., A\ € S such that

v=A1-hy 4+ A e

where we must have |HM (h;)| <s [HM (v)| for all h; with A; # 0. As v gets
reduced to 0 there must exist a non-empty subset {h;,, ..., h;,, } C H which
reduces HT'(v). Therefore HM(h;;) = HM(v) for h;; with 1 < j < m.
Again it follows from the argument that the h;; are S-module reducing
v that [HC(hi;)| <s |[HC(v)|. We can conclude that H is an S-module
Groébner basis. i
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Corollary 3.1.14 Let = be a submodule of a free S-module ¥ which is
generated by a finite S-module Grébner basis G and let v € = which can be
S-module reduced by G to an element U that is minimal with respect to G.
Then v = 0.

Corollary 3.1.15 Let E be a submodule of a free S-module ¥ which is
generated by the finite set G. If G is an S-module Grobner basis then for all
s-polynomials s-pol (g1, g2) of elements g1,92 € G we have that

G *
s-pol(g1, 92) —— 0.

Proof. Suppose there is v := s-pol (g1,92) # 0 which cannot be S-module
reduced to 0 by G. Then v is an element of = which is minimal with respect
to G. It follows that there is no g € G such that HM(v) = HM/(g) and also
|HC(v)| 25 |HC(g)|. This is a contradiction to the assumption that G is a
Grobner basis and therefore we must have v = 0. O

Corollary 3.1.16 Let Z be a submodule of a free S-module ¥ which is
generated by the finite set G. If G is an S-module Gréobner basis then for
all g-polynomials g-pol (g1, g2) of elements g1, 92 € G we have that

*

G
g-pol(g1,92) —— 0.

We shall now present a theorem which, in a different setting, was proved
by Buchberger in the case of polynomial rings k[zi,...,z,] where k is a
field. We translate this theorem to the setting of finitely generated mod-
ules over a Euclidean domain S and the proof here follows the ideas of the
proof of the Buchberger Theorem as it has been presented by T. Becker and
V. Weispfenning in [5]. This theorem shows that it can be seen directly if
a set H is an S-module Grobner basis from the property of s-polynomials
and g-polynomials of h, k' € H of being S-module reducible by H.

Theorem 3.1.17 [Buchberger’s Theorem in [5], p. 457] Let = be
a submodule of the free S-module ¥ and let H be a finite generating set
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of 2 such that for all h,h' € H we have s-pol(h,h) —g—‘- 0 and also g-
*
pol(h, k') —}S[—\ 0. Then H forms an S-module Grébner basis of =.

Proof. Let v € Z,v # 0, since H generates =, v can be written as a linear
combination of elements of H. We shall assume that v cannot be S-module
reduced to 0. We shall divide the proof into two parts. In the first part we
shall suppose that v = 3 1%, A; - h; where HM (v) = maxi<i<:e{ HM (h;)}
but that |[HC(v)| <g |HC(h;)| for all i € {1,...,t}. In the second part we
shall assume that the head monomials of the summands h; cancel so that
HM (v) < max{HM/(h;)}.

(1) : We proceed by induction on the number of summands h; of v with
HM((h;) = HM (v). There is nothing to show if n = 1, so we begin with the
case n = 2 and without loss of generality we suppose that the summands are
ordered such that HM (v) = HM (hy) = HM (hs). By assumption, g := g-
pol(hihs) ;;\ " 0. It follows from Lemma 3.1.8 that there exist 2 € H and
K, pi1, 2 € S such that HM (k) = HM(3) and s - HC(h) = HC(g), and
i HC(h) HC(h;) for 7 € {1,2}.

It follows that HM (p1;-h—h;) < HM (h;) and the element (u;-h—h;) for
i € {1,2} is of the form of an s-polynomial of h with hq and hs respectively.
By assumption we have that all such s-polynomials must reduce to 0,

o *
s-pol(h, h;) —‘g—* 0,

and as HM (pi; - h — h;) < HM(h;) for i € {1,2} we also must have that

H \{hl ha} *

s-pol(h, h;) 0.

Therefore we can write puy-h—hy = 22&1 vj-h); and iy h—hg = E?*:] vi-hj
where HM (h}) < HM(h1) and HM(h},) < HM(hs) for all summands h’
and h7,. We obtain

v=2Ar- (uy-h— Zuj RE) 4+ Ao+ (2 - h— Zu h”)+ZA he=

=1 =3

()«1-,&1-{—)\2-,&2 h AL ZUJ 2'(ZV;f'h;!)+ZAi'hi‘
ji=1 i=3
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So the only summand which has a head monomial equal to HM (v) remaining
on the right hand side is h. It follows that HC(v) = (A1-p1+e-pg)-HC(h).
Therefore HM (v) = HM(h) and [HC(h)| <s |HC(v)| and it follows that v
is S-module reducible by H.

By induction hypothesis, the assumption holds for n = t—1, so if we have
hi,...,h4—1, where t—1 < m, such that HM (h;) = HM(v) for1 <i <t—1
then there is h with HM(h) = HM(v) and |[HC(h)| <g |[HC(v)|.

So let n = t: we set v = Y v, A; - h; and without loss of generality
we order the sum such that HM(h) = HM(v) for i € {1,...,t} where
t < m. Again, g-pol(h;, hi) ——\ 0 for all respective g- polynomlals of all
hj,hi € H. We set g := g- pol(hl,hg) since g can be S-module reduced to
0 by H it follows from Lemma 3.1.8 that an element h € H exists such that
HC(g) = E-HC(?L) with £ € S. We can proceed similar to the case of n = 2
and obtain p1, g € S with pu1- HC(h) = HC(hy) and pg- HC(h) = HC(hs).
So again we have v = ZE=1 Ai - hi + 370 Ai - hi. This is equal to

(1-h— Zuj h5)+ Ao+ (pg-h— Zu, h”)+ZA h+Z,\ hi;

t+1

and the last expression can be written as follows

(Ar-p1+Ag- o) h+ZA hi= A1 ( Zu, Rj) = Ag- (Zu, ) +ZA h.

t+1

Accordingly we obtain a sum with ¢ — 1 summands which have HM (v) as
their respective head monomial, namely h and the summands of E§=3 A hi.
Therefore we can apply the induction hypothesis and the assumption follows.

(2) : We shall now construct a contradiction by assuming that head

monomials of the summands h; € H cancel. So let again

m
—_—z-’\i'hi;

i=1

and we suppose that HM (v) # max{HM (h;) | 1 <i < m}. We set

bnaz = max{HM(h;) | 1 <i < m}
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as minimal among the maximal head monomials of all such representations
of v, we have HM (v) < bynaz. In order to construct a contradiction we shall

produce a representation

such that b, = max{HM(A.-‘;_?) | 1 £ 5 <t} < b

We proceed by induction on the number n of indices ¢ with b =
HM(h;). The case n = 1 is not possible in the case that the head monomials
cancel. So let n = 2, without loss of generality we assume that HM (h;) =
HM(h3) = bmaz- Then we must have x; - HC(hy) = —kg - HC(hg) with
K1, k2 € S and so there must exist p € S such that

i - LOM((HC(hy), HC(ho)) = K1 - HC(h1) = —ky - HC(hs).

It follows that
K1 hi+ Ko -ha=p- 5-p0](h,1, hg)

for some s-polynomial s-pol(hj, ho) of h; and hs.
By assumption on the set H, every s-polynomial can be S-module re-

duced to 0 by H and so we must have

I
s-pol(hy, hy) = ZZ\] - h,.

=1

Accordingly we can write v as follows:

m I
U=ZAi-hi+,{L- (th-hb).
i=3 =1
The maximum of the head monomials occuring in the first sum is smaller
than bz, this follows from the assumption that n = 2. The maximum
gmax of the head monomials in the second sum satisfies Emax e T |
we see that the maximum b],,, of the summands of both sums must satisfy
s

Now let n > 2. We assume without loss of generality that HM (h;) =

< bmazx, therefore this is the representation of v we were looking for.

HM (h3) = bjaz- We set g := g-pol(hy, ha) for some g-polynomial of h; and
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hs. Since g % *{}, there exists h € H such that HM(h) = HM (hy) =

HM (hy) and HC(G) is a multiple of HC(h).

Since by = HM(hy) = HM(hs) we also have that HM(TL) = Ginazs
moreover there must exist vi,vy € S such that HT'(hy) = vy - HT(TL) and
HT(hy) = vo - HT(E). We can modify the representation of v as follows:

m
v=A (b —vi-h)+ X (ha—va-h)+ (A -vi+ Ao v2) h+ Y A ha
i=3
The head monomials of i and h cancel, and so do the head monomials of hy
and ﬁ, so in these terms the maximal head monomial must be smaller than
bmaz. In the remaining m — 1 summands, the highest head monomial b,,42
occurs at most n—1 times: there are exactly n—2 occurances in Y. 5 A; - by,
and the summand (A; - v + Ao - 1) -} contributes at most one occurance. So
we can apply the induction hypothesis and we have a representation of v,
such as v = Ej‘:l K; - hj, where b, = max{HM (h;) | 1 < j < t} < bmaz-
O

Lemma 3.1.18 Let E be a submodule of the free S-module ¥ and let H =
{h1,...,h} be an S-module Grobner basis of Z. Then there is an equality
of S-modules

(HT(H))s = (HT(E))s-

Proof. The set H generates Z, therefore for v € = with v # 0 we have
v = Z:zl Ai - by, then v %\ ’ 0. Therefore we can apply Lemma 3.1.8 and
it follows that there is h € H and & € S such that HM (h) = HM(v) and
HC(v) = k- HC(h). Therefore HT'(v) € HT(H).

On the other hand, the set H generates the module =, thus H C =.
Hence we can conclude that HT(H) C HT'(E) and the equality of the re-

spective S-modules follows. O

Corollary 3.1.19 Let H = {hy,...,h} be an inter-reduced-set generating
the S-module = C ¥. Then H is an S-module Grobner basis of Z.
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Proof. Let v € Z with v # 0, then v = ZLI Ai - h;. As the head
monomials of the elements of H cannot cancel each other we must have
HM(v) = max{HM(h;) | A\; # 0}. Set hy € H such that HM(h;) =
max{HM(h;) | A\; # 0}. Then HC(v) = A; - HC(h) and by Defini-
tion 3.1.11 H is an S-module Grébner basis of =. ]

Proposition 3.1.20 If there exists an S-module Gréobner basis for a sub-
module = of the free S-module ¥ then there also ezists an S-module Grobner

basis of Z that is inter-reduced.

Proof. Let G denote the S-module Grobner basis, suppose that b, €
HM(G) and let n denote the greatest number of g € G with HM(g) = by,
for all g € G.

In the case that n = 1 there is nothing to show; so let n = 2. Let
91,92 € G with HM(g;) = HM(g3) = by, without loss of generality we
suppose that |HC(g1)| <s |HC(g2)|. Since G is an S-module Grébner
basis we know for all g-polynomials of g; and g2 that g-pol(g1, g2) i\ i 0.
We abbreviate g := g-pol(gi, g2) for one such g-polynomial.- Then H C (9) =
GCD(HC(g1),HC(g2)), and as g ——\ 0 there exist ¢’ € G and k € S such
that HM((g') = HM(g) and HC(") = k-HC(g'). Since there are exactly two
elements g1,90 € G with HM(g1) = HM (g2) = by, it follows that ¢’ = ¢;
and k = 1. Therefore HC(g2) must be a multiple of HC(g;), so there exists
pw € S with p- HC(g91) = HC(g2). It follows that HM(go — p - g1) <
HM/(gs) and since G is a Grobner basis, go — g+ g1 %\ *0 and accordingly

go — - g1 M 0. Therefore go — i - g1 is contained in the S-module

(G\{g2})s, smce g1 € (G\{g2}) as well it follows that

92 € (G\{g2})s

Moreover, go —=— gy — 1+ g A2 4 this implies that G\{gs} is an
S-module Grobner basis of Z as well.

We suppose that an inter-reduced S-module Grobner basis can be ob-
tained from an S-module Grobner basis where there are at most n =t — 1
elements g; € G with HM(g;) = --- = HM(g1—1) = bp.
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So let n = t, there are g1,...9: € G with HM(g;) = b,, for all i €
{1,...,t} and b,, € HM(G). Without loss of generality we assume again
that |HC(g1)| <s |HC(g2)|, again we set g := g-pol(g1, g2). Since g %\ ) 0
there exists ¢’ € G,k € S with HM(¢') = HM(g) and HC(3) = k- HC(¢').
Since HC(g2) is a multiple of HC(g) there must then also exist a p € S

such that HC(g2) = p- HC(g'). Again, HM(g2 — p - g1) < HM (g2) and
G\{g2} * :
0.

g-p g —3

Again we can conclude that g, is contained in the S-module (G\{g2})s
and from go — p- ¢ Eilesl ;0 it follows go SMaa ;0 as well. So we obtain
a set G'\{g2} which has the same S-linear span as G and which is an S-
module Grébner basis where there are only n =t — 1 elements g; € G with

HM(g;) = b, and so the claim follows. O

Theorem 3.1.21 Let = be a finitely generated submodule of the free S-
module X. Then there exists a finite S-module Grobner basis for =.

Proof. By assumption the ring S is a Euclidean domain and therefore in
particular it is a principal ideal domain (PID). It is a general theorem (see
for instance [19]) that a finitely generated and torsion-free S-module is a
free S-module if S is a PID.

Since Z is a submodule of a free S-module ¥ it follows that = must be
torsion-free and therefore, as = is finitely generated by assumption, Z is free.
Let b = {b1,...,b,} be a basis of E and let H = {h;}icr be a basis of 3.
Then b; = } .c;Aij - hi where A\j; € S and where we have A;; # 0 only
for finitely many A;;. We take all h; € H which are a summand of some
b; € B such that A;; # 0. This gives a finite set {hy,...,h} and we set
® := (hy,...,h)s as the S-module generated by this set.

Since b; € ® for all b; € B we have that = is a submodule of ®. Also,
the set HT(Z) is contained in ® and therefore the S-module (HT(Z))s
is a submodule of ®. Being a submodule of a finitely generated module
over a Euclidean domain, (HT'(ZE))s is finitely generated itself, so there
exists a finite set of elements of ®, E = {ej,...,en} C HT(E) such that

(E)s = (HT(8))s-
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As S-module reduction of an element e € E by elements e; € E\{e}
does not change the S-linear span of the set E, we can choose instead an
inter-reduced set E' = {e},...,€,}. Then for ¢ € E’ we have that ¢ =
e—(AM-e1+...Anen) = HT(v) — (M - HT(v1) + ... Am - HT(vy,)) for
v,v; € Z. Since ® is free, ¢/ = HT(v') for some element v’ € = and we can
choose a set G = {g1,...,gu} of elements of = such that HT'(¢g;) = e for all
gi € G.

Let v € E,v # 0, then HT(v) € (HT(G))s and since G is inter-
reduced there must exist ¢ € G and A € S such that HM(v) = HM(g)
and HC(v) = A+ HC(g). It follows from Definition 3.1.11 that the set G

forms a finite S-module Grobner basis for =. O

3.2 Prefix Grobner Bases of A-Modules

We shall describe prefix Grobner bases for free A-modules. Eventually we
shall establish relatiohships between these kinds of prefix Grobner bases and
certain routines of the MGE-procedure. Connections between Grobner bases
and the Todd-Coxeter algorithm have been described by B. Reinert in [36]
and by B. Reinert, T. Mora, and K. Madlener in [37, 38]. Prefix Grébner
bases in the case of monoid and groups rings have been extensively studied
by B. Reinert et. al. in [34, 35].

3.2.1 Prefix Reduction

As before we denote by A a finitely generated and free S-algebra. Therefore
A, regarded as S-module, is generated by the elements of a finitely generated
and free monoid X*. The free S-module ¥ = (BX*) can be considered as
the A-module closure of the finitely generated S-module (B), so it has an
A-module structure as well. We will again use ordering by weight on the

elements of X.

Definition 3.2.1 Let vi,vs € ¥ and let H = {hy,...,ht} C . We say
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- H :
that H prefix-reduces v; to vy in one step, denoted by v; T ve, if
v =v1 — (K1 - hpawy + -+ + K¢ - hyawy),

where w; € X*,k; € S and k; # 0 for at least onei € {1,...,t}. Forh; € H
with kj # 0 the following conditions have to hold:

1. HM (hjw;) = b.w for a summand A - b.w of vy.

2. Let A\ denote the coefficient of the summand b.w. We demand that
there are K,k € S with A = k- HC(h;) + &' where
(a) |k- HC(hj.w;)| <s |A|; and
(b) |K'| <s [HC(hy)|.

H * ’
We say that H prefix-reduces v; to vy, denoted by vi —— v, if there
P

erists a sequence of reductions

N H H H
v — U — .. — VY — VU2
p p p p

with v; € . We call an element v prefix-minimal with respect to the set
H if v cannot be prefiz-reduced by H. We call a set H prefix inter-reduced
if every h; € H is prefiz-minimal with respect to H \ {h;}.

Lemma 3.2.2 Let v1,v9,h € X. If vy can be prefiz-reduced by h to vy then

V] ™wei U2-

Proof. Certainly HT'(h) >wei RED(h) and, as ¥ is free, HT (h.w) =
HT(h).w =yei RED(h).w = RED(h.w). Therefore

vy =v; — K -hw=v) —k-HT(hw) + &+ RED(h.w)

and it follows that vy > e V2. O
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3.2.2 Prefix Grobner Bases

Definition 3.2.3 Let h1,hs € ¥ and wy,wy € X* such that HM (hy).w; =
HM(hg).we and Ay - HC(hy) = A9 - HC(hg) for A\1,Ay € S. We define a
prefix s-polynomial of h; and hs as follows:

s-pol(hl, hg, wl,wg) = /\]_ - hl.wl = }\2 . hg.'u)g.

Definition 3.2.4 Let hy, hs € ¥ and wy,ws € X* such that HM (h;).w; =
HM (hy).ws and let ky, k2 € S such that GCD(HC(hy), HC(h3)) = k1-h1 +
ko + ho. We define a prefix g-polynomial of hy and hy as follows:

g-po.-f(hl, hg, wl,wg) =K1 h;.wl + Ko - hg.’tﬂg.

Remark 3.2.5 Since we are working with modules that are free we only

need to consider those cases where w; = € for at least one i € {1,2}.

Lemma 3.2.6 Let v € ¥ and let H C ¥ denote a finite set such that

*

g-pol(h, i wr,we) == 0

*
for all respective g-polynomials of all h,h' € H. Ifv —):—\ 0 then there exist
h" € H and k € S such that HM (h") = plum(w) and HC(v) = k- HC(h").

Proof. The proof of this lemma gssentially follows the proof of Lemma 3.1.8.
Let v € T and v # 0. If'v%\ 0 then

m k(i)

v= Z h - Z Aji-Wiji
i=1  j=1

and HM (v) = max{HM (h;.wj;) |1 <i<m,1 < j; < k(7)}. Since v can be
prefix reduced to 0 by H there must be a subset of all summands h;.wj; for
which we have that HM (v) = HM(h;.wj;). We denote these elements by
¢ = {ey,...,¢e}; so HM(e,) = HM(v) for all ¢, € €. Note, since ¥ is a free
module, that each h; can appear at most once as the prefix of some element
¢, in the set €.
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We can write

m’ k(")
v = Z K, € - Z h Z /\j'i"wj"i"
i'=1 i'=1
where the &, are equal to the respective coefficients A;; in the representation
of v further above, and where we have removed those summands Aj; - h;.w;;
that are equal to some ¢,. Without loss of generality we suppose that the e,

have been arranged such that
|HC(e1)| 25 [HC(e2)| 25 -~ 25 [HC(e1)]-

Furthermore we assume that this representation of v in terms of elements
of H has been chosen in a way that the norms of the head coefficients
of ¢, € & are minimal. In particular we demand that there is no other
representation of v which contains b’ € H with HM (h'.w;;) = HM (v) and
[HC(W)| <s |HC(e,)].

We suppose again that ¢ > 1 and |[HC(e1)| >s |HC(e;)|; let

g = g-pol(ey, ez, w, w’)

for some prefix g-polynomial of e; and ¢;. Since HM(e;) = HM(e;) we
can choose g such that w = w’ = ¢. The assumption on H implies that

M * .~ ~ N
g —p—\ 0, so there must exist hy,...,h € H with

@
I
M.._
=
Ng
=
2
g
2

The g-polynomial g has been formed as s; -¢; + s2-¢; where s;- HC(e1) +
s9-HC(e;) = GCD(HC(e1), HC(e;)). Accordigly, v is equal to the following
sum:

m k) 7(d)

(&1‘_31) €1+ZRL e+ "‘"t_SQ) Eﬁ-Zh Z )‘-_; il wj’z'+zhd Ziu'ad Wed

=2 #'=1

Similar to the proof of Lemma 3.1.8 we can now conclude that HC(g) =
HC(e;) and that we must have HC(g;) = HC(¢,;) for all such g-polynomials
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g: = g-pol(e;, e;, w,w'). Therefore it follows that HC(v) must be a multiple
of HC(ey). O

Lemma 3.2.7 Let H C ¥ be a finite set such that for every pair of el-
ements h,h’ € H it is ensured that g-pol(h,h’,wy, ws) .%o, Letw <
X,v # 0, if v is prefiz-minimal with respect to H then no iummand of v is
contained in the A-module closure ((HT(H)))a of the S-module generated
by the head terms of H.

The proof of this lemma follows the same concept as the proof of Lemma 3.1.9
where we replace S-module reduction by prefix reduction.

Corollary 3.2.8 Let v € ¥ and let H C X. If v is prefiz--minimal with
respect to the set H then it is minimal with respect to H as well.

Definition 3.2.9 Let G = {g1,...,9:} be a set of elements of ¥ and let

T C X denote the A- module closure of a finitely generated submodule =g
of ¥. We call G a prefix Groébner basis of T if for everyv € T, v # 0,
there exists a prefiz p|gy(w) of HM(v), and an element g; € G such that

1. plumw) = HM(g:), and
2. |HC(v)| > |HC(g;)| such there are k,k' € S with HC(v) = & -
HC(g;) + &' such that
(a) |s-HC(g:)| <s |[HC(v)|, and
(b) |s'] <s |[HC(g)]-

Lemma 3.2.10 Let G = {g1,...,9:} C T := (E)4 be a prefizx Gribner
basis of the A-module closure T of an S-module Z. Then G generates Y.

The proof of this Lemma follows the proof of Lemma 3.1.12. We now choose
an element v € T,v # 0, and we replace S-module reduction by prefix
reduction.
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Lemma 3.2.11 Let =g be a finitely generated submodule of ¥, generated
by the set H = {hy,...,h}, and let T denote the A-module closure of Z.

Then the following are equivalent:
1. The set H is a prefiz Grobner basis for T.

*
2. LetveY and v # 0, thenv € T if and only z‘fv—f—* 0.

The proof of this lemma follows the same idea as the proof of Lemma 3.1.13.
Again we replace the terminology of S-module reduction and S-module
Grobner bases with that of prefix reduction and prefix Grobner bases.

Corollary 3.2.12 Let T denote the A-module closure of Z2¢ C . We
suppose that Y is generated by a finite prefir Grobner basis G. Let v €
T,v # 0, if v can be prefiz reduced by G to an element T that is prefix

minimal with respect to G then v = 0.

Corollary 3.2.13 Let Zg be a submodule of ¥ that is generated by a finite
set G. If the A-linear span of G forms a prefic Grobner basis of Y := (£) 4,
then .

s-pol (g1, g2, w1, ws) —(;4 0.

for all s-polynomials of g1,92 € G and words wy, wy € X*.

Corollary 3.2.14 Let Zg be a submodule of ¥ that is generated by a finite
set G. If the A-linear span of G forms a prefiz Grobner basis of T := ()4,
then

i *
g'pog (91)921 Wi, ?UQ) T 0.

for all g-polynomials of 91,92 € G and words wy,we € X*.

Theorem 3.2.15 [Buchberger’s Theorem] Let ZEg be a submodule of £
that is generated by a finite set H and let T denote the A-linear span of = Es-
We suppose that s-pol(h, h', wy, ws) —p—\ 0 and g-pol(h, k', wy, ws) —::—\ 0
for all h,h' € H and wy,ws € X*. Then the set H forms a prefiz Grobner
basis of Y.
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Proof. The proof of this Theorem is similar to the proof of Theorem 3.1.17,
we follow again the proof given by T. Becker and V. Weispfenning in [5].
Let v € T, v # 0, as H is an A-module generating set of T, we have

m (i)

v= Z : Z Aji-Wiji.

i=1 j=1

We shall assume that v cannot be prefix reduced to 0 by elements of

H. We again divide the proof into two parts, in the first part we assume

that HM(v) = max{HM (h;)w;; | 1 < i < m,1 < j; < z(z)} but that

|[HC(v)| <s |HC(h;.wj;)| for all such h;.wj;. In the second part we shall
assume that the head monomials cancel so that

HM('U) s max{HM(hs)wﬁ I 1<e<m,1<5; < Z(i)}

Note that if two head monomials cancel as summands of v than one head
monomial must have been a prefix of the other.

(1) : We use induction on the number n of those h;.wj; that are non-zero
as summand of v such that HM (h;.w;;) = HM (v). Let n = 2; without loss
of generality we assume that HM (hy).wy,1 = HM (hg). w12 = HM(v). We
set e := hy.wy and e := ho.wy 2. Let §:= g-pol(ey, e2, €, €) for some prefix
g-polynomial of e; and es. Since g = g-pol(hy, ho, w1 1,ws 1) for some prefix
g-polynomial of h; and hs, it follows from the assumption on the set H that
7] %\ *0. Therefore there exist & € H and Ky jt1, 2 € S and w € X* such
that HM(%)?’B = HM(g)( where certainly HM(g) = HM (e1) = HM (e3));
and moreover k- HC(h) = HC(3), p1- HC(h) = HC(ey), and py- HC(h) =
HC(e9).

Accordingly, HM (p;-h.@—e;) < HM (¢;) for i € {1,2}, and (p;-h.w—e¢;)
is of the form of a prefix s-polynomial of h with ¢1 and eg, respectively. Again
by assumption on H, all prefix s-polynomials of elements of H must be prefix
reducible to 0 by H. Therefore we can write the respective elements as sums

~ . k{d
® pyp-hw—e = Efi:l hy - E;,j:i Vipd- Wed, and

T~ I / K'(d')
® [i9 - haw — ey = Zd':l h’d’ * E,‘pr=1 Vptd W' dr -
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We can insert the above into the representations of v, thus

~ ! k(d) 2(1)
v=2A1- (1 -hw— Zd:l hl; - qu:l Vipd-Wed + Ry Zj1=2 Aji Wy

= I k'(d") 2(2)
+ A2« (po - how — Zd’:l Rl - Z(p"=l Vo'd Werd + Mo ng=g Aja Wiy )

z(1)

—+ E:J h; - ; )\ji.wﬁ
k(d)

" !
= (A1 p1+ A2 p2) haw — Ap - (Zd=1 hy - Z{FI Vpd Wepd)

% k' (d') @
. - (Zw=1 Rl -szl VgarWoar) + A1 - I 2:;2 Aj1 Wy

m(2) m z(1)
+ Ao - o Zj2=2 Ajz.w_:_.‘z - Zi:S h; ij] /\ji.wﬁ

So h.w must be the only summand such that HM(E.w) = HM(v), ac-
cordingly we have found h € H with HM(h) = Plamw) and |HC(R)| <s
[HC(v)].

By induction there are t — 1 summands in the representation of v with
HM(U) = HM(h].wl']) = HM(hg.wljg) = . = HM(h;_l.wl,t._l) and
there does exist h € H with HM (h) = PlHM(v) and |HC(R)| <s |HC(v)|.

So let n = t: we have

m z(i)

v= E i'Z/\ji-wjia
J=1

i=1
and without loss of generality we suppose that the sum is ordered such
that HM (hy.wy1) = HM (hs.wy2) = --+ = HM (hy.wy ) = HM (v); again
we set ¢; := h;w;;. We choose hj.w;; and hp.wi and we set g := g-
pol(hy, ho,w; 1, w1 2) for a prefix g-polynomial of h; and hy. As g %\ *0
there exist h € H and x € S with HM(h) = plyu () and HC(3) = & -
HC(h).
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We proceed similar to the case n = 2, thus we let uj, us € S such that
pi - HC(h) = HC(h;) for i € {1,2}. We can write

z(i) z(i)
vzzz— Z A“" w”+zz~t+l 'i’zz-—&lhi.zj 1/\ji'wﬁ
= A1 (o1 hoaw — Zd:l hl; - Z;(ii Vpd Weuq + hy Zjl(l} i Wis)

- l k'(d") (2
+ A2+ (2 - haw — Zd’ hly - Z¢*=1 Vptd -Werar + Mo Zn Ajp-Wj5)
z(1)

¥ Zz g Z At Wge Z?:H-l L Z} Aji-Wji
=

! k(d)
= (A1-p1+ Ag- pg) - hav — ) - (Zd=1 hy - Zwl Vipd - Wipd )

v k'(d) "
— g (Zd’=l hly 'Z@e Vg Werar) + A1+ by Zjllzg Ajr Wiy

ma z(i)
+ Ao - ho Zj2=2 /\jQ.tsz + Zi=3 h; Zj:l )\jg.'wji

Since ¥ is free, we can have at most one j in a sum h;. EJ =1 Ajs W5,
such that HM(h;.w;;) = HM(v) for each 1 < i < t It follows that
therefore no such summands can be contained in h;. E
h,g. Ej2=2 )\jz.wjz.

Moreover, the representation of v has been chosen such that no sum-

e 2)\3-1.1,03-1 and in

mand of 7", h;. Ez(i) Nige 1;1{Tt contains such a head monomial, and as
Y A Z‘p(_) VpdWed and E 1 W Zk,(dl) Vyid Wy @ are representations
of prefix s-polynomials of h.aw with e; and e9, respectively, it follows that
the maximal head monomials of any summands of these two sums must be
smaller that HM (v).

We can conclude that exactly ¢ — 1 summands remain in this represen-
tation of v which are equal to HM (v), and therefore the assumption follows
by induction.

(2): We shall now construct a contradiction by assuming that some of
the head monomials of summands of v cancel, such that we then obtain
HM(v) < max{HM (h;.wi;) |1 <i<m,1<j < z(i)}. Sosuppose that
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HM (v) # max{HM (h;.wj;)} and we set
Cmaz = max{HM (h;.wj;)}.

We choose ¢nqa: as the minimal element among the maximal head mono-
mials of all possible representations of v in terms of h;, and we assume
that HM (v) < ¢maez. We aim to construct a contradiction by producing a

representation

U—Zh’ Z/\,;w”
so that ¢/

maz = max{HM (hy . w})} < tmaz-

We again proceed by inducmon on the number n of summands h;.wj;
with HM (hi.wji) = Cmax; s0 let n = 2. Without loss of generality we
assume HM (hy.wy,) = HM(ha.w1,) = ¢maee. It follows that we must have
A1, - HC(hy) = —Ay, - HC(hg) and also HM (hy.wy,) = HM (ha.wy,).

Accordingly, Ay, - HC(hy) and Ay, - HC(hg) must be multiples of the
least common multiple of HC(h;) and HC(hsy), say by a coefficient p € S.
We obtain a prefix s-polynomial s of hj.w;, and hy.w,:

&= )\11 . hl-wll 5 )\12 ’ h;_).‘wh =M 5-})01(1'?,1.’6011 , ho.wy,, €, E).

Certainly we can choose a prefix s-polynomial of h; and hs such that 5 =
- s-pol(hy, ho,w1,,w;,), and by assumption on the set H we can prefix-
reduce s to 0 by H, thus

k(d)

Z hy - Z Vod - Wed-

Accordingly, we can write
m z(1)
v= Z:‘=1 h; Zj:l Aji-Wyji
z(1) 2(2)
= by Z;a:z At + g - ijzz Aja Wiz

m z(1) l k(d)
+ Zi:B h; - Zj:l Aji-Wji + - Zd:l R Zso:l VpdWopd
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Since hy.wi, = ho.wi, = Cmar We must have that the maximal head
monomials of the first two sums (so where i = 1 and i = 2) must be smaller
than ¢;q.. Also we did assume that there were exactly two such maximal
head monomials and it follows that

max{HM (h;.w;,) [ 3<i<m,1 < ji < 2(i)} < Cmaz-

There only remains p - Zfi:l R Z::@l

been constructed as the multiple of a prefix s-polynomial of h;.w;, and

Vyd-Wyq, however, since this term has

ha.wy,, it follows that the maximal head monomial of all summands of this
sum must be smaller than ¢;q,. We can conclude that we have found a
representation of v which has a maximal head monomial ¢/,,, smaller than
Crmaz 8S Was intended.

Now let n > 2, again we assume without loss of generality that ¢ =
HM(hy.wy,) = HM(hg.w1,). We set g := g-pol(hy.wy,, ha.wy,,e,€) as a
prefix g-polynomial of hj.wi, and hg.wi,. As g is equal to a prefix g-
polynomal g-pol(hi, hg, wi,,w1,), we know that 5%\ *0, and therefore
there exist » € H, w € X* and k € S such that HM (h.w) = HM (hy.wy,) =
HM (hy.wy,) and HC(§) = & - HC(h).

Since ¢mar = HM (hy.wy,) = HM (hy.w;,) we also have that HM (h.w) =
Cmaz, MoOTEOVeEr there must exist p1, ug € S with HT' (h;.wy,) = p; - HT(;‘;w)
for i € {1,2}. We again modify the representation of v:

m z(1)
v= Zi—_—l hi Zj__:1 Aji-Wji
z(1)
= hy Ay wy, + hadg,.wn, + by Z_ﬁ:z Ajyw;,
z(2) m z(1)
+ ho Zj2=2 Ajz Wiy + Zz‘:S hi Zj:l Aji-Wji
= A1, - (hrwyy — p - haw) + Ay, - (he.wy, — p2 - how)

- m z(i)
- (/\]1 - H1 + /\12 ' Ju‘?) - haw + Zi=3 hi Zj:l /\ji'wji

As HT'(h;.wy,) = HT(pi-:‘;.w) fori =1 and ¢ = 2, the head monomials of the
first two terms, and the head monomials of the third and fourth summands
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respectively, cancel each other. In the remaining sum 3 " 4 h; Zjﬁ{ Aji - Wji
the maximal head monomial ¢4, can occur at most n — 2 times, and the
term (A1, - 41 + A, - p12) - haw provides at most one summand equal t0 Cimaz-
It follows that we can apply the induction hypothesis, and we can write v

as

where we have a maximal head monomial

— ma.x{HM(Ei:.w},y) |12 < mli1 <95 £ 2 1-€ s

C‘rrm T

3.2.3 Generator Prefix-Closure

Definition 3.2.16 Let H = {hy,...,ht} C T be a finite set, suppose that
there are hy,,hy, € H and w € X* such that for their head monomials
HM(hy,)w = HM(hi,) holds. We call the element hy,.w the prefix-
closure of h;, and h,. We say that a set H is prefix-closed if for
every pair hy,, hi, € H the prefiz-closure is already contained in H.

Lemma 3.2.17 Let H be a finite set of the free S-module £. The process
of prefiz-closing H ends after a finite number of steps and the so obtained

prefiz-closed set must be finite as well.

Proof. We suppose that for all h € H we have that Wei(h) < n. We will
denote by H; := {hj,,...,h;,} those subsets of H such that Wei(h;,) =i
for all h;, € H;.

We begin by adding the prefix-closure for all h € H with Wei(h) < 1.
Suppose that there is a set {hj,,...h;} C Ho such that HM(h;, ).z =
HM(h) for some h € H; and =z € X. Accordingly, we will add elements
Ff;jk .z to H. By assumption on the given ordering, and since ¥ is free, we
have HM (h;,).x = HM/(hj,.z). Therefore the newly added elements do
not lead to any further prefix-closures with elements of Hy. As H is finite



CHAPTER 3. GROBNER BASES AND MGE-PROCEDURE 78

by assumption there can only be a finite number of such closures. After
adding a finite number of elements we obtain a prefix-closed and finite set
Hy := HyU H,.

Suppose we are given a prefix-closed finite set H,_i = HyUH, ---UH,_,.
Let {hj,,...,h;,.} C Hy be the subset ( not necessarily proper) of elements
of H, such that for hj, there exist elements h € I;’n_l with HM (h).w =
HM(hj,). As ¥ is a free module such a word w is unique, so again we add
a finite number of elements h.w which yields a finite and prefix-closed set

H,. O

Suppose that H is the finite generating set of a submodule Z of ¥ and
let H denote the set obtained by prefix-closing H. Generally, the S-modules
generated by H and H are not equal. We can however show that the A-
module closures of the respective S-modules are the same:

Lemma 3.2.18 Let H be a finite set of elements of ¥ and let H denote
the set we obtain by prefiz-closing H. Then (H) 4 = (H) 4.

Proof. Since H C H it follows that (H)a C (I;')A. On the other hand,
let h € H\ H. Then h = hg.w for some hx € H and w € X*, therefore
he (H) a- O

Proposition 3.2.19 Let = be a finitely generated S-submodule of ¥. Then
an S-module Gréobner basis which is also prefiz-closed for the S-module =’
with (E)a = (E')a can be obtained by a finite number of steps.

Proof. Let H denote the generating set of = and we set h € H as that
element of H such that

HM (h) := max{HM(h) | h € H}.

Constructing an s-polynomial of elements hy, hs € H possibly leads to ex-
tending the set H by an element h'. However, such an element h’ has a
head monomial which is always smaller than the respective head monomials
of hy and hg, but never greater. Thus at no point of adding elements in
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order to obtain an S-module Grébner basis will we add an element A’ with
HM(h') > HM (}"L) Therefore we never exceed the given upper bound and
it follows from Lemma 3.2.17 that the respective adding of prefix-closure
elements must all be finite.

Certainly, the computing of an S-module Grébner basis does not change
the A-linear span of the given set; similarly, prefix-closure does not change
the A-linear span. Therefore after a finite number of steps we will obtain a
prefix closed S-module Grébner basis H such that ((H))4 = (2) 4. O

Theorem 3.2.20 Let H be a finite set of elements of £ generating a
submodule = C ¥X. If H is an S-module Gréobner basis for = which is

prefiz-closed then H also is a prefiz Grobner basis for (2) 4.

Proof. Suppose that H is a prefix-closed S-module Grébner basis which is
not a prefix Grobner basis for (=) 4. It follows from Theorem 3.2.15 that there
is either at least one prefix s-polynomial A’ or at least one g-polynomial h of
elements of H such that k' or h cannot be prefix-reduced to 0 by elements
of H.

We shall first assume that there is such an s-polynomial and we set
h' = s-pol(hy, ho, w1, wsy) for hi,he €. As (E)4 is free, we can choose the
s-polynomial so that at least one of the w; is the empty word . Moreover,
from the assumption that H is a prefix-closed set it even follows that w; =
wy = €. Otherwise, since HM (h;.w) = HM (h;).w for all h; € H and w €
X*, the head monomial of one element must have been the prefix of the
head monomial of the other. However, if w; = wy = &, then the prefix
s-polynomial above is in fact an S-module s-polynomial.

The same argument holds for a prefix g-polynomial h that cannot be
prefix-reduced to 0. In both cases we obtain a contradiction to the assump-
tion that H is an S-module Grébner basis of =. O

Corollary 3.2.21 Let = be a submodule of ¥ and suppose that = is finitely
generated by an inter-reduced and prefiz-closed set H C ¥. Then H s a
prefic Grobner basis of () 4.



Chapter 4

Correctness of the
Procedures

In this chapter we will show the correctness of the MGE-procedure and
of all the respective sub-routines needed. The chapter is divided into the
following two sections.

Section 4.1: We give a brief outline of the procedure putting the emphasis
on the technical side of the MGE-procedure. Thereafter we give descrip-
tions in pseudo-code of the main procedures and routines used. We first
give a description of those procedures which lead to definitions of S-module
generators, then we explain those procedures which are concerned with the
processing of the different cases of coincidences and finally we give a descrip-
tion of the main procedure.

Section 4.2: We show correctness of the respective procedures. We demon-
strate how the multiplication table and the coincidences can be interpreted
as generating sets of certain S-modules; to these generating sets, Grobner
basis techniques, as were introduced in Chapter 3, can be applied and we

can deduce from these the correctness of the routines used.

4.1 Description of the Procedure

We shall describe the MGE-procedure again for a finitely generated P-
module M, generated by Y’ = {y{,...,y,} with relations U C F4 and

80
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where P = (X | R) is a finitely presented S-algebra with generating set
X = {8 scas Bl

Recall that we wish to construct a concrete finitely generated S-module
© = ©(,) which is compatible with the action of elements of X such that it
is a P-module which is isomorphic to M. As the MGE-procedure follows the
ideas of the Todd-Coxeter procedure we aim to obtain information about
the module © from the relations of M.

The information about the action of the algebra-generators on the mod-
ule generators b € B" of © then will be stored in a multiplication table
T. In the course of the procedure we will form a set of finitely generated
free S-modules (B")g together with mappings v : F —— X/(A)4 and
d : F — /Y. We shall assume in the following that B = {b1,...,bn}.
We construct © as a quotient-module of ¥ by the submodule Y. As before
we will denote the product on © by the elements of X by “x”.

We will consider M as an A-module throughout the procedure, so the
relations Rels of M are elements of F. The image §(r) € (B") of an element
r € Rels, which must certainly be 0 as element of M, provides the informa-
tion that ¢(r) must be 0 in ©. Such elements () will be called coincidences
and in the MGE-procedure we will store these in a stack. If however the
ring S is not a field then the elements of S are not generally invertible. This
possibly leads to coincidences which cannot be applied in the usual way. We
shall store these so-called inapplicable coincidences in a sequence L, separate
from the applicable coincidences which can be applied to the entries of the
multiplication table immediately. We will use two different orderings on the
elements of L. These specific orderings are needed for certain sub-routines
of the MGE-procedure. We shall now give a description of the different
routines in pseudo-code.

Before we describe the main-routine in pseudo-code we shall introduce
subroutines needed and we shall give their respective descriptions in pseudo-

code.
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4.1.1 Definition Procedures

In the following procedure we are computing the image of an element f.a
for f € F and a € A under § : F —» /T such that é(f.a) = §(f) ra
is contained in the finitely generated submodule (B)g of ¥. We refer to an
assignment of a new S-module-generator & ¢ B to a product b+ z as a
definition step and, in terms of the actual procedure, such a step leads to
an additional entry in the multiplication table 7.

IMAGE]L

We will begin with the simplest case, namely where 6(f) = b € B* and
a = z € X. In the case that bx = ¢ (B)gs this will lead to the definition
of a new S-module generator b’ ¢ B. The input of the procedure includes
a boolean variable flag. This variable indicates if we are allowed to deduce
from v = bxz that b = vxz’ and vice versa in the case that algebra-relations
zz’ — 1 and 2’z — 1 are contained in the set R of algebra relations.

Imagel corresponds to an actual definition step of an S-module gener-
ator b € B"* with the algebra generator z € X. As Imagel manipulates a
multiplication table T, we will present the product “bxz”, when considered
as an entry of the table, by prod(b, z). We suppose that the table is of length
m at the begin of the routine Imagel.

Input: b€ BY z € X, flag € {true, false};
Output: prod(b,z) =v € (B%)g;

Begin

If prod(b,z) =v € (B) then * prod(b, z) has been defined already *
Return u(v) € (BY)s; * Replace v by its undeleted image

Else x Extend the table by row m+ 1
U= Bl * B:=BU{bpn+1} *

T[m + 1] ;== Record(deleted = false, images = [],
define := vy }(bmt1));
prod(b, z) := v;
If flag then
prod(bmy1,z7Y) :=b;
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Return v;
Fi;
Fi;
End.

Remark 4.1.1 A component of the record T which represents the table is
the entry denoted by “ define”. This entry gives the preimage of the newly
defined S-module generator by, under the homomorphism ~. This preimage
is an element of F. We assume here that elements of the A-module F can
be stored and represented by the computer. We will describe the handling of
elements of F in the case of the implementation in GAP in greater detail in
Chapter 7.

IMAGE2

The routine Image2 has as input an element v = 3" ; A;-b; where we assume
that \; # 0 only if b; € B" such that v € (B")g. We want to identify the
product of v with z € X and Image2 can therefore lead to definition steps
for more than one summand.
Input: v=3 ", \-b € (B%),z € X, flag € {true, false};
Output: v =v*ux;
Begin
ol =10
For ¢ such that b; is summand of v with A; # 0 do

v; = IMAGEL(b;, z, flag);

v =0 4 v
0d;
Return v';
End.

Remark 4.1.2 Note that in certain situations the procedure IMAGE2 for
v+ will be called where “flag” is set to “false” even if x is invertible in
the sense that there is ' € X together with algebra-relations .z’ — 1 and
z'.x — 1. We suppose that a consequence ¢ of a coincidence ¢ € (B") is

being traced where ¢ = ¢ z. In this situation we already must have for all
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summands b of ¢ that bx z' € (B*) and in fact ¢ * 2’ must be equal to the
coincidence c. Therefore in this case the deduction ¢ x ' would not provide

any new information.

IMAGE MODULE RELATION

The following routine computes the image under ¢ in ¥/Y for a module
relationw € U C F. Sincew = Y 14 ;=1 Aij¥i-wij, we do not compute the
product by z € X but by sums of words w € X*. As elements are replaced
by the respective undeleted images, the output will consist of v € (B") such
that v = §(w).
Input: w e U,
Output: v € (BY);
Begin
For we U do Kl = Yo 22:1 Aij  Yi - Wij*
2=0;
For summand Aij  YiWij, )\ij -‘/= 0 do
v; = u(b;); *b; =v(y;) for y; €Y
For ke[l...,l] do * Suppose wij =xy...x*
v; := IMAGE2(v;, zk, flag);
0d;
V=04 v;;
0d;
Return v;
End.

4.1.2 Coincidence Procedure

Coincidences represent relations of M in the terminology of S-modules.
When a coincidence is being processed this means that information of pos-
sible S-linear dependencies of elements of ¥ will be applied to the entries
of the multiplication table 7" and possibly to the entries of the torsion se-
quence L as well. Since in the course of the procedure it might not be
possible to process a coincidence immediately, coincidences, irrespective of
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whether they are applicable or inapplicable, are stored in the coincidence
stack Cp.

CLEARING COINCIDENCES

At certain stages of the main routine, CLEARING COINCIDENCES will be
called: this procedure will process the coincidences pending in Cp and it
will return when Cp = 0.
Input: Cp;
Begin
While Cp # 0 do

Choose ¢ from Cp;

Cp = Cp\{c};

¢ ="1ufc);

If ¢# 0 then

PROCESSING A COINCIDENCE(c);

Fi;
0d;
End

Remark 4.1.3 Contrary to the elements contained in the torsion sequence

L (if L has been initialised and is not empty) which are ordered by their
respective head monomials, the elements of Cp are ordered only by the point
of when they have been added to Cp. The elements of Cp are stored and
processed by a “last—in, first-out” principle.

In fact, the elements of L are coincidences which have already been pro-
cessed and which have been found to be inapplicable. If a coincidence c
cannot be processed by the MGE-procedure immediately after it has been
detected then it is inserted into Cp directly without being investigated any
further. While a coincidence is stored in Cp it will not be replaced by its
undeleted image and as a consequence the list C'p possibly contains elements
c & (B") or might also contain ci,co such that u(ci) = u(cp). Accordingly
it is possible that the undeleted image of a coincidence, while it is stored in

Cp, actually becomes 0.
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PROCESSING A COINCIDENCE (PRC)

A coincidence ¢ € Cp has been chosen for processing. Depending on whether
¢ is applicable or not, the procedure will either collect all possible conse-
quences, which will be added to Cp, and apply the information contained in
¢ to the elements of L (with APPLY COINCIDENCE TO TORSION SEQUENCE),
or it will call the sub-procedure HANDLE INAPPLICABLE COINCIDENCE in
order to deal with the inapplicable coincidence ¢ and possibly insert it into
L.
Input: A coincidence ¢, the table T, the torsion sequence L;
Begin
Let by = HM(c); *e=Y™ XN-bi € (BY) %
If HC(c) is not unit of Ring S then

HANDLE INAPPLICABLE COINCIDENCE(c);
Fi;
For z € X do

If prod(bm,z) € (B) then

v := u(prod(bm, z));

v :=IMAGE2(RED(c), z, false);

Ci=v—71;

If ¢#0 then * A consequence ¢ of ¢ has been found
Cp:=Cp U{c};

Fi;

Fi;
0d;
Bt o= BRU {0} BY = B\ {byr}s
Replace by by 7, = HC(c)™'- RED(c);
AppLY COINCIDENCE TO TORSION SEQUENCE(c);
Return;
End.

Remark 4.1.4 The presented routines resemble the routines as they are
implemented in GAP. The procedure PROCESSING A COINCIDENCE does not

search the table T' for entries v = prod(b, x) which contain by, as a summand
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in order to replace these immediately by their undeleted image. Instead, only
if an entry v is subsequently used in the course of the computation will v be
traced again and only then will it be replaced by its undeleted image u(v).
Towards the end of an MGE-computation when all necessary coincidences
have been processed the table will be checked and every element which is not
in its undeleted form will be updated. Therefore, whenever the procedure

uses elements in a computation these will be in the desired minimal form.

HANDLE INAPPLICABLE COINCIDENCES (HIC)

This procedure is called when an inapplicable coincidence ¢ has been found
by the procedure PROCESSING A COINCIDENCE. With respect to the process
of inserting inapplicable coincidences we order the elements of L by the index
of their head monomials. In order to avoid oversights of any applicable
coincidences possibly contained in the S-linear span of elements of L =
{l1,...,lt}, we shall maintain the elements of L in strict pivot form such
that HM (l;) > HM(l;) if j > 4.

Therefore, if an inapplicable coincidence ¢ has to get inserted into L,
where HM (¢) = HM(l;), we replace ¢ and [; by elements v;, vg such that the
S-linear span of ¢ and [; is the same as that of v; and vy but where HM (v;) #
HM (vg). For this we use the extended greatest common divisor which pro-
vides, in addition to the greatest common divisor u = GCD(HC(l;), HC(c)),
elements sy, so and t1, to such that s1-HC(l;)+s2-HC(c) = pand t1-HC(l;)+
to - HC(c) = 0. We set

vy =81 l; + 89 - c.
If HC(v1) is not a unit it will replace the entry /; of L. Otherwise we will
add vy to Cp and remove [; from L. We set

vg =1t -l +1ta-c.

Note that HM (vy) < HM(c). If HC(v2) is a unit then we will add vy to
C'p, otherwise we will insert v into L using the same procedure as before.
Certainly vi,vy € (B") and we shall show in Lemma 4.2.8 that for the

modules generated by the respective elements we have that

(vi,v2)s = (li, ¢)s.
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Input: An inapplicable coincidence v, L and Chp;
Output: L and Cp such that (L,Cp,v)s = (L,Cp)s:
Begin
v:=u(v); « Let v=3 "1 A\ b; *
bm = HM(v);
Am = HC(v);
5;} = Cp;
If A, <0 then
V= —v;
Fi;
Fa=1:
While j < Length(L) do * Begin of Main-routine of HIC
If HM(L[j]) < by, then
Insert v into L at position j;
Return;
Elif HM(L[j]) = by, then
p:= GCD (HC(L[]); Am);
vy =81 L[j] +s2-v; * 8;: 81 - HC(L[j]) + s2- Am = *
vg =1ty - L[j] + t2 - v; *x t;: t1- HC(L[j]) +t2- A =0
If HC(v;) is unit of S then
Cp:=Cp U{n};
L= D\{L[j]};
Else
L[j] :== v1;
j=j+1
Fi;
vi=vy; * Begin routine for vy x*
If v=0 then
Return;
Fi;
by := HM(v);
If HC(v) is unit of S then
Cp:=Cp U{v};

*
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Return;
Fi;
0d; x FEnd of Main-routine *
Append v to L;
L= L
End.

Remark 4.1.5 For the handling of the inapplicable coincidences, so firstly
the insertion of new inapplicable elements into L and secondly, to close L
with respect to the action of algebra-generators x € X, we use two separate
orderings on the elements of L. The ordering by head monomials of elements
becomes necessary for the inserting of elements into L, as described above.

For the procedure CLOSE TORSION SEQUENCE, which ensures the A-
module closure of elements of L, we need a seperate ordering. It has been
found that applying CLOSE TORSION SEQUENCE to L using the ordering
given by the head monomials might lead to infinite loops. The reason for
this is that necessary information might be overseen since new entries with
greater head monomials are added to the beginning of the list. This then
might lead to the procedure dealing only with entries of L which are A-
linearly dependent.

This situation corresponds to a violation of the Mendelsohn Condition
in Coset Enumeration; for a discussion on this condition see for instance
[30] or [32]. Another discussion of this will be given in Section 7.1.

CLOSE TORSION SEQUENCE

Since the torsion elements are induced by A-module relations we know that
under the action of A-module generators we must again obtain a torsion
element. This procedure therefore adds for every | € L which has been
contained in L at the beginning of the routine the A-module closure [ x z to
the coincidence stack Cp. In order to ensure correctness we apply this routine
to the sequence I. This sequence contains exactly the same elements as L,
however the elements of I are ordered by the point of when they have been
inserted and will be dealt with by CLOSE TORSION SEQUENCE in a “first in
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— first out” way.
Input: I;
Begin
n := Length(]);
For je[l,...n] do
If not I[j] closed with respect to “x” for all z € X then

For z€ X do
v := IMAGE2(I[j], z, false);
Cp:=CpU {v};
0d;
CLEAR COINCIDENCES(Cp);
Fi;
0d;
End.

CLEAN TORSION SEQUENCE

The following procedure uses the information on the torsion of elements of a
module ©,) in order to bring elements of L into a minimal form. Elements
of L possibly consist of more than one summand. If j > i then HM(L[i]) >
HM(L[j]). If RED(L[i]) contains a summand A - b such that b = HM(L[j])
where moreover A > HC(L[j]) then we can replace the summand A - b by
the Euclidean remainder by HT'(L[j]). In the case that RED(L[j]) # 0 this
implies corresponding adjustments to other summands of RED(L[]).

Input: L;

Begin

n := Length(L);

For i:=n—1 to 1 do x Clean by cleaned elements x

For j:=i+1 to n do
q :=EucLIDEAN QUOTIENT(HC(LIi]), HC(L[j]));
If ¢# 0 then
L[i] := Lli] — q- L[j];
Fi;
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0d;
0d;
End.

ArprLY COINCIDENCE TO TORSION SEQUENCE

The following routine is being called by PROCESSING A COINCIDENCE: when
a coincidence ¢ € Cp is processed it will be removed from Cp. We sup-
pose that ¢ is an applicable coincidence such that ¢ := u(c) # 0 and let
b, = HM/(c); then c leads to deletion of b,, € B". In order to ensure that
we maintain the condition that [ € (B") for all | € L we check if b, is
contained as a summand of any [ € L and then possibly replace such a [ by

its undeleted image u(l).

Input: An applicable coincidence ¢, Cp and L;
L and Cp are produced such that L C (B*)s and (L,Cp)s = {E,ép)_g;
Begin
For l€ L do
If HM(c) is summand of [ then
If HM(l) = HM(c) then

Li=L\{1};
Cp:=Cp U{l};
Else
L= (L\{1}) U {u(®)};
Fi;
Fi;
0d;
End.

4.1.3 Main Procedure

The input of the main routine consists of finite descriptions of the module
Mp and the algebra P and of an empty multiplication table T(gy which is
of length n, the number of module generators of Mp. At every stage of the
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procedure the multiplication table gives a description of the S-module ©,
which has been constructed so far and of its product “+”. The initial table
corresponds to the free S-module with n generators.

Suppose that this main procedure terminates, say in a state (¢), and that
the table has been closed. Then the output will consist of a finite number
of generators b € BE‘V) together with a multiplication table T(,), containing
the product bxxz € (B")s for every pair b € B(“U), x € X. The multiplication
table then describes the action of the algebra-generators € X on the
S-module generators of the S-module ©(,) = M. Moreover, the sequence
L,y describes the torsion of ©(,) and we shall see that the elements of L,
can be considered as a generating set of a submodule A C (B") and that

O = (B")s/(A)a-

MAIN ROUTINE

Input: M, Ps, a table T(g), Cp) = 0, if S not a field then L) := [];
Output: A table T{,), if S not a field then also a torsion sequence L,);
Begin
For module-relations w € U do
v := IMAGE MODULE RELATIONS(w, flag);
Cp:=CpU {v};
CLEAR COINCIDENCES(Cp);
0d;
= 1;
While 7 < Length(T) do
If T'[i].deleted = true then % indicates that b; € BY
i:=1+1;
Else
For r€ R do
¢:= IMAGE2(b;,r, flag);
Cp = CpU {c};
0d;
CLEAR COINCIDENCES;
If L#0 then
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CLOSE TORSION SEQUENCE(L);
CLEAN TORSION SEQUENCE(L);
Fi;
i:=21+1;
Fi;
0d;
If L is not empty then
While L# 0 do
CLOSE TORSION SEQUENCE(L);
0d;
CLEAN TORSION SEQUENCE(L);
Return T and L;
End.

4.2 Correctness of the Procedures

We will show correctness of the MGE-procedures by applying the Grébner
basis techniques which we developed in Chapter 3 to the S-modules and
their A-module closures that will be constructed in the course of an MGE-
procedure. We remind ourselves that we want to construct a P-module O,
that is finitely generated as S-module and that is P-module isomorphic to
the given module Mp. We aim to construct ©,) as the quotient-module of
the free module ¥,y by a certain submodule Y(,y. As before, we denote by
A the submodule of ¥ that is generated by those elements b.z — b’ which
are induced by the definition steps of an MGE-procedure.

In the procedures themselves we are interested in coincidences ¢ € /T
such that we can be certain that ¢ = u(c). In order to relate the coincidences
process in the theoretical description to reduction as it has been described
in Chapter 3, we will consider coincidences as elements of ¥/(A)4. Thus
we have that ¢ = 7(r) for some r € Rels C F and c € (B") does not have
to hold necessarily. To such an element ¢ € ¥/(A)4 we assign an element
k € X that is contained in the preimage of ¢ under the canonical map
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m: X —= X/(A)4. Generally the choice of such a k € £ is not canonical.
We will now describe how we can in fact choose a mapping from £/(A) 4 to

Y in a canonical way in the given situation.

Lemma 4.2.1 Let H denote the finite generating set of A. The set H is a
prefiz inter-reduced prefix Grobner basis of (A) 4.

Proof. By construction, the set H consists only of elements h = b.x —
where b,b' € B, so HT (h) = b.z, RED(h) = V' and therefore Wei(HT (h)) =
1 and Wei(RED(h)) = 0. The head monomials of the elements of H are
pair-wise different. It follows from the definition of elements contained in
H that the head monomial of one element h € H cannot be a prefix of the
head monomial or the reduct of another element h € H\{h} as this, in the
first case, would imply that Wei(HT(Tz)) > 1, and in the second case that
Wez‘(RED(}i)) > 0. Thus the set H is prefix inter-reduced and in particular
inter-reduced.

It follows from Corollary 3.1.19 that H is an S-module Grébner basis
for A which, for trivial reasons, is also prefix-closed. We can deduce from
Theorem 3.2.20 that H is a prefix Grobner basis for (A) 4. O

As prefix-reduction of v € ¥ by the elements of a prefix Grobner basis
leads to a canonical minimal element 7, we can assign to every congruence
class |v| modulo (A)4 in ¥ a canonical representative minimal with respect
to the ordering “ >..; 7. Accordingly, we can map every element v+ (A)4 €
£/(A) 4 to the canonical representative 7 € ¥. This yields a map

¢:Z/(A)a — %,
‘U+(A)AI—C>§.

Lemma 4.2.2 The map ( : £/(A)q —— X is an S-module monomor-

phism.

Proof. Since HC(h;) = 1 for all h; € H, we have that (A (v+ (A)4)) =
AT = )\-C(U+ (A)A). For the same reason it follows that 7, +7s = v + v,
therefore ¢ (vi+va+(A)4) = v1 + v2 = T1+T2 = ((v1+(A) ) +( (v2+(A)a).
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The homomorphism ( is injective: if the canonical representative of a class
is 0 then this class must consist of elements contained in (A) 4. O

At any given stage of the procedure, the generating set of A is of the
stated form and therefore is an S-module Grobner basis, so we can define
a homomorphism (), for all stages (t);. We will furthermore define x as
the composition of the maps v : F —— ¥/(A)4 and ¢ : ¥/(A)q — X,
providing an S-module monomorphism

x:F—%.

Notation 4.2.3 We introduced in Chapter 2 the stack of pending coin-
cidences Cp. Accordingly we will denote the set of applicable coincidences
which have been already processed by Ca. Thus the information obtained
from ¢ € Ca has already been applied to the elements stored in the multipli-
cation table T' and the torsion sequence L. Note that the set Ca only has
a theoretical meaning. The elements of Ca have already been processed and
information evaluated; therefore the MGE-procedure does not need to access

the elements of Ca again.

Remark 4.2.4 Whereas in the description of the MGE-procedure in prac-
tical terms in Chapter 2 we gave a description of the effect of coincidences
¢ = 0(r) € L/Y, we will investigate the effect of the relations r € Rels
when they are considered as elements of ¥. We will interpret the image of
relations under x as elements contained in the generating set of the mod-
ule Y. By abuse of notation we will refer from now onwards to the images
under ¢ of the applicable coincidences Ca (inapplicable coincidences Cp) as

applicable (or inapplicable) coincidences as well.

In Section 2.4.1 we introduced T as the A-module closure of the S-
module that is generated by elements induced by the definition steps and
also by elements k € ¥ which have been induced by the coincidences of an
MGE-procedure. We also defined a product “x” in the quotient-module
/Y which takes into consideration the undeleted image of elements with
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respect to the coincidences contained in Ca. In Section 2.5.3, the stack of
pending coincidences C'p was introduced.

As the undeleted image can only take into consideration those coinci-
dences which have already been processed, and so are contained in Ca,
there will be a discrepancy between the set B and that subset of S-module
generators which should actually be deleted when the A-linear span of Cp
is not zero. Moreover, in the case that S is not a field we possibly have
a non-trivial the set of inapplicable coincidences L. These and the pending
coincidences have to be factored out from ¥ as well in order to eventually
obtain a module that is P-module isomorphic to M.

We define a set of S-modules I, , for (0); < (¢); < (v)o, together with
the respective A-module closure ¥,).. The generating set of II(,). consists
of the following elements of (). :

e The set h € H induced by the definition steps of the MGE-procedure,
so h = b.x — b’ and in particular HC(h) = 1, Wei(HM(h)) = 1 and
Wei(RED(h)) =0 for all h € H.

e The following elements which all are of weight 0 :

— The set {{(c1),...,¢(ct)} of coincidences in Ca € ¥;

— the set of elements L € ¥ which are induced by the inapplicable

coincidences;

— the set of elements which are induced by the coincidences Cp
pending in the coincidence stack.

We will now show how certain properties of the generating set of such
a module IT can be interpreted in terms of the MGE-procedure and for
instance its setting of the multiplication table and the coincidence stack.

Lemma 4.2.5 Let T denote the multiplication table of an MGE-procedure
in stage (v), where we are given the torsion sequence L and the coincidence
stack Cp. Then the information stored in T, Cp and L defines the S-module

IT and the multiplication “x".



CHAPTER 4. CORRECTNESS OF THE PROCEDURES 97

Proof. It is clear that the elements of C'p and L correspond to the respective
generators of II. Every row b of the table T' corresponds to an element b € B,
where B is the set of all possible S-module generators at the stage (¢).

For every undeleted generator b € B* and every € X there exists a box
prod(b, z). If the box has been filled it contains an element bxz = v € (B%).
Otherwise, if the entry reads “L”, no definition step for the action of = on
b has taken place and the product “+” of b and z is the free product b.z If

prod(b, x) has a non-trivial entry, then it contains either

e b € B* and the entry of prod(b, z) has, since the point of definition,

not been altered; or
e vE (B gsuchthat v=u®)=b—A1-c; —...\t- ¢ for ¢; € Ca.

In the first case, the entry prod(b, z) of the row b corresponds to a generator
h = bz — b of A. The second case can be translated into a generator
h = b.x — b' of A such that ¥ = RED(h) = HM(c) for ¢ € Ca. As c € Ca,
¢ must is an applicable coincidence and therefore HC(c) must be a unit.
Then in the course of the procedure b’ has been replaced by the respective
undeleted images (which are the reducts of ¢;; € Ca ) leading to a sequence

of S-module reductions
¥ g —— ... 2 prod(b, z)
by {¢i;,...,¢i,, } C Ca.
For every deleted generator b € B? we have that b = HM(c) for some
applicable coincidence ¢ € Ca, and b has been replaced by r, = HC(c)™! -
RED(c), so that ¢ = b — r. In this sense we can consider the elements

contained in T as a generating set and we have
(T)s c (HUCa)s.

On the other hand, whenever a new definition h = b.z—b has taken place,
leading to II(,).,, = II,), + (h)s, the table T' is extended by another row
b € BY, where at first prod(V/,z) = L for all z € X. Also, if a coincidence
¢ with HM (c) = b € B* is added to Ca this implies that B := B U {b}.
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All possible consequences are added to Cp and we delete the row “b” in the
table and replace it by r, = RED(c), hence (H U Ca)s C (T)s. O

Accordingly, a multiplication table T induces a set, which we shall denote

by f, containing the following elements of X :
e b.x — v for all rows b € B* of T' and every entry prod(b, z) = v;
e b—r, for all rows b € B? of T with replacement 7.

We will now proceed to show that the procedure HANDLING INAPPLI-
CABLE COINCIDENCES (HIC) computes the correct results. We need the

following definition for torsion sequences:

Definition 4.2.6 Let L = {ly,...,l:}. We say that a torsion sequence L
is in pivot form, if HM(l;) > HM(li+1) for all 1 < i <t — 1. Moreover,
we will call a torsion sequence reduced if HC(l;) is not a unit of S for all
l; € L.

Lemma 4.2.7 [26] Let L be a torsion sequence which is in pivot form and
reduced. The S-linear span A of the elements of L does not contain any

applicable coincidences.

Proof. Let L = {ly,...,l;} and HM(l;) > HM(l;41) forall 1 <i<t—1
and let ¢ € A such that ¢ = 3i_, \;+l; with HM(c) = b € B. In fact, as it is
ensured that an element of L is replaced by its undeleted image immediately
we must have I; = u(l;) and it follows that b € B“.

Let k be the maximal index of entries of L such that HM(l;) > b. As
L is in pivot form, the entries of L are ordered by their head monomials
and we conclude that A; = 0 for all 7 < k. If these coefficients were unequal
to zero then there would be an entry [; such that HM(l;) was a non-trivial
summand of {. This would imply that HM(l;) > b= HM/(c).

On the other hand we have that b > HM (lp41) > HM (lp42) > -+ >
HM(l;). Therefore for all ¢ > k, the S-module generator b cannot be con-
tained as a summand with coefficient \; # 0 in any of the entries ;. It
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follows that b can be contained as a non-zero summand only in the sum-
mand l;. Therefore HC(c) must be a multiple of HC(l;) and therefore
HC(c) = M\ - HC(l). By assumption, the torsion sequence is reduced
which implies that HC(l) is not a unit of S. It follows that HC(c) cannot
be a unit of S either. a

Lemma 4.2.8 Suppose we are given a reduced torsion sequence L in pivot
form into which we insert an inapplicable coincidence ¢ with the procedure
HIC. Let L' denote the torsion sequence returned by the procedure and let
{e1,...,¢cn} denote the set of those coincidences which were added to the

coincidence stack Cp in the course of the procedure. Then

(L}'}Cla ; '-1cn)3 = (L!C)S-

Proof. Suppose that L = {l;,...,l;} and let ¢ = Y ", A; - b;. Suppose
that HM(c) # HM(l;) for all 1 < j < t and suppose that HM(l;) >
HM(c) > HM(lg4+1). Then we will insert ¢ into L at position k + 1 and
obtain L' = 31,‘..,1;;,21.“,...,3;.,.1 where E;:.H = ¢ and E;+j+1 = lg4; for
1 < 7 < t—k. Clearly, no further coincidences are produced in this case and
(LUC)s = (L')s.

Therefore we suppose there is I € L such that HM (ly) = HM (c). We
set = GCD(HC(c), HC(l})) as the greatest common divisor of HC(c)
and HC(l). Then there exist elements s, s3 € S such that

s1-HC(c) +s9- HC(l) = p.

and also t1,to € S with s1 -t; + s9 -ty = 1, namely t; = HC(c)/p and
to = HC(ly)/pe and therefore

to HC(C) -1t HC(Ik) =,

In the procedure HIC, ¢ and [ get replaced by v; and vy such that v; :=
Sy ¢+ so -l and vg :=1to-c— ty - l.
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By definition, v; and v are contained in the S-linear span of ¢ and .
On the other hand,

c=(s1-t1+s2-ty)-c=s1-t1-c+sp-t1-lx+s2:ta-c—s3:t1-lp =

t1-(sy-c+sa-lp)+sa-(ta-c—t1-lx)=1t1-v1+s2-v2

and similarly I, = t9 - vy — s1 - v3. It follows that we obtain an equality of
the S-modules generated by the respective elements:

(vi,v9)s = (¢, lk)s.

Depending on whether v; and vy are applicable or not they will either
be inserted into L (starting a new loop with the element vy which has
HM (v9) < HM(v)) or, if they are applicable, into the coincidence stack.
As every coincidence added to Cp in the procedure HIC has been produced

as either v; and vy, the claim follows. O

Remark 4.2.9 Let l; € L and suppose we aim to insert an inapplicable
coincidence v such that HM(l;) = HM (v) into L. Then the element v;
which is formed in the course of the HIC-procedure resembles the S-module

g-polynomaial of l; and v and vy corresponds the s-polynomial of l; and v.

Lemma 4.2.10 [26] Let L be a torsion sequence which is reduced and in
pivot form. If we insert an inapplicable coincidence c into L, then the torsion

sequence L' produced by HIC will be reduced and in pivot form as well.

Proof. Suppose that we have entered the main loop of HIC for the j-th
time with an element v and let L = {ly,...,l;}. Then for all 1 < i < j we
have that HM(l;) > HM(v). Before having entered for the j-th time, the
following can have happened:

1. The element v is the coincidence with which we intially entered the
procedure HIC. In this case the torsion sequence L has not been altered

and nothing needs to be shown.
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2. There has been an element v # v which was supposed to be inserted
into L. An element ; € L was found with HM (v') = HM (1;) for ; € L
where i < j. Then v has been defined as v := vy where v = to-v'—1;-1;.
We set vy := s1 - v’ + 83 - [; and remove the entry [; from L.

(a) If vy is applicable we set l; := Il for all : < k < t. We add
vy to the coincidence stack and we will pursue in the procedure
HIC with inserting the element v = vy. The head monomial of v
is strictly smaller than the head monomial of v;. We pursue the
insertion of v at position 7 in order to compare HM (v) with the
head monomial of the new -th entry of L := L\{l;}.

(b) If v; is inapplicable, then it will get inserted into L\{l;}, namely
at position i. Since HM (v;) = HM (l;) and L had been reduced
and in pivot form, it follows that L := (L\{L}) U {v1} must be

reduced and in pivot form as well.

Thus in both cases we aim to insert v = ws into a reduced torsion
sequence in pivot form. As we are entering the loop for the j-th time
it follows that HM(l;) > HM (v) for all i < j. a

We will now show that the procedure PROCESSING A COINCIDENCE
(PRC) is terminating. For this we will show that PRC essentially resembles
prefix reduction of elements of T and L by the coincidence which is be-
ing processed and that the possible computation of consequences resembles

prefix-closure.

Proposition 4.2.11 Let ¢ € Cp be an applicable coincidence c¢. The pro-
cedure PRC applied to c corresponds to prefiz reduction of the entries off“'
and L by the element c. The computation of consequences, if there are any,
corresponds to the prefiz-closure of ¢ with b.x — V' for the affected xz € X.

Proof. Let b, = HM(c). As HC(c) is a unit of S, the procedure PRC
replaces the row by in the table T by r,, = HC(c)~™' - RED(c), and the
respective row by, of T gets deleted. Accordingly, for every v = prod(b;, ;)
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in the table which contains b, as a summand, suppose with coefficient A,

the computing of the new undeleted image of v resembles a reduction by c:
v—v—-XM-HC) =7

where v is an element which is minimal with respect to the other entries of
T, thus elements of the form b.z — v’ with b € B* and v’ € (B")g. Similarly,
the subprocedure ApPLY COINCIDENCE TO TORSION SEQUENCE leads to
reductions of elements [ € L.

Now suppose that a consequence needs to be computed. Thus the prod-
uct by, * z with at least one z € X has been defined, so there is at least one
entry prod(bp,x) contained in the row by, of T" which has been filled with
v = by * x. However, in order to compute such a consequence ¢ := ¢ % z,
PRC possibly leads to a finite number of definition steps, namely for each
summand by of RED(c) for which by x z € (B)s so the box prod(bg, x) has
not been filled. These definition steps can be interpreted as enlarging the
generating set of the module A by elements hy = bi.z —bj,. The element c.x
is the prefix-closure of ¢ = by, — RED(c) and h' = by.x — v. In the case that
the product by » 2 has been defined for all summands b of RED(c), there

exists an S-module reduction-sequence
R iy
cx — v+ RED(¢c)x — ... /¢

reducing the prefix-closure c.z to the element ¢ € (B")s which is a conse-

quence of c. O

Corollary 4.2.12 The procedure PRC terminates.

Proof. There are a finite number of elements contained in T and L, accord-
ingly reduction of these elements by a coincidence ¢ must be a finite process.
Moreover it follows from Lemma 3.2.17 that prefix-closing a finite set is a
finite process. Therefore we can conclude that the computation of potential
consequences must be finite and it follows that PRC must terminate. O
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Remark 4.2.13 Since the tracing of a coincidence ¢ in the MGE-procedure
uses the undeleted image (as defined in Definition 2.4.7), it follows that a
coincidence must be minimal with respect to the coincidences contained in

Ca at the point when it gets applied.

Definition 4.2.14 We will call a generating set G of a submodule V of ¥
an MGE-basis if G is a prefiz inter-reduced prefic Grobner basis such that
for all g € G either

e Wei(HM(g)) =1,HC(g) =1 and Wei(RED(g)) =0, or
e Wei(g) =0.

Lemma 4.2.15 Let Cp = 0 and suppose that L is a torsion sequence
in pivot form and reduced. Then the set T U L is an MGE-basis of ¥ =

(T, L)s)a.

Proof. The elements contained in T are either elements b’ = b.x — v € &
such that Wei(HM(h')) = 1 and Wei(RED(h')) = 0, or they correspond
to coincidences ¢ € Ca for which RED(c) € (B*). The set T U L is prefix-
closed. Indeed the procedure PROCESSING A COINCIDENCE ensures that all
possible consequences of the coincidence which is being processed have been
captured. Since Cp = 0 it follows that every such consequence must now
be contained in either T or L. Moreover, the procedure TORSION CLOSURE
leads to adding [ x z to Cp for every pair of l € L and x € X. Such an
element [ x z is obtained from the prefix-closure element l.z by S-module
reduction of elements of weight 1 contained in T Again, as Cp = 0, we
must have [z € TU L.

By assumption on L there are no applicable coincidences contained in L.
As it is ensured that we have [ = u(l) for | € L it follows that the elements
of L, which itself is an inter-reduced set, must be minimal with respect to
Ca. On the other hand, the set Ca must be inter-reduced: this follows from
using its undeleted image when a coincidence is being processed. Also, as
there are no applicable coincidences contained in L, the head terms of the
elements of C'a are minimal with respect to L. A finite number of reductions
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of reducts of elements of Ca by elements of L leads to an inter-reduced set
T U L and it follows from Corollary 3.1.19 that T U L forms an S-module
Grobner basis for the S-module it generates. As the set is prefix-closed as
well, Theorem 3.2.20 implies that 7 U L must be a prefix Grobner basis for
the A-module closure ¥. Certainly, all the elements of T and L are of the

demanded form and the claim follows. O

Corollary 4.2.16 Suppose that (Cp)a C (CaU L)4 and suppose that the
torsion sequence L is in pivot form and reduced. Then TUL is an MGE-basis
of U = (IT) 4.

Proof. We described in Lemma 4.2.5 how the elements of C'a can be found
as entries of T, thus Ca C T. In Lemma 4.2.15 it was explained that the set
CaU L is inter-reduced and, since Wei(v) = 0 for all v € CaU L, it is prefix
inter-reduced for trivial reasons. Therefore, every element v € (Ca U L) 4
can be prefix-reduced to 0. It follows in particular that for every ¢ € Cp,

c EGEU—L\ 0
and this implies that u(c) = 0 or u(c) € A = (L)g. Since, whenever a pend-
ing coincidence ¢ gets processed its undeleted image is being computed,
it follows that the coincidences ¢ € Cp cannot lead to any further prefix-
reductions of elements of 7' U L. O

We will now introduce a property for the table T" which is needed in order
to be able to draw conclusions from a given generating set G = TucC pUL

to the elements contained in the set of pending coincidences Cp.

Definition 4.2.17 We will call a multiplication table T connected if we
have for every row b € B* one of the following:

o At least one of the bozes prod(b,z) for x € X has been filled, or

e b is contained as summand of at least one prod(b',z) = v € (B")g for
z € X and a generator b/ € B".
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Example 4.2.18 Suppose we are given the P-module M = (y1,y2 | y1.23—
Y1,y2 — 2 - y1)p where P = (x1, 29 | 2122 — xo11)7. After computing of the
coincidence obtained from the first module-relation we obtain the table:

pTOd(b: 11?1) pTOd(ba x?) Tb 'T—I (ﬂ-(b))
by | b 1 N
by | L s L |y
63 b4 L 1 Y1.1y
by | bs 1 L |y1.2?
bs | L 1 b | L

Suppose now that we have added the coincidence by —2-by to the coincidence
stack but that it has not been processed yet. Then Cp = {by — 2 -b1}. No
definitions have taken place for the S-submodule generator by, nor can it be
found in the replacement of a coincidence, therefore the table above is not
connected.

The generating set G = Tu CpU L which we obtain at this point of the
computation then consists of the following elements: G = {by.x; —bs, bz.x1 —
by, bg.x1 —b1,bs — by, ba —2-b1 } and since G is prefiz inter-reduced it follows
that G is an MGE-basis. This however can only be the case if the pending
coincidence does not lead to prefiz-reductions for any elements of G as its

head monomial by is not contained in any entry of the multiplication table.

The condition on the multiplication table to be connected is necessary in

order for the assertion of the following Lemma to be true:

Lemma 4.2.19 Let I be a finitely generated S-module with generating set
G=TuU CpU L where we suppose that the set T corresponds to a connected
multiplication table T. If G is an MGE-basis, then (Cp)4 C (T UL)4.

Proof. Suppose that the A-linear span of Cp is not contained in the A-linear
span of TU L. Then there exists v € (Cp) 4 such that v # 0. Without loss of
generality we can choose v prefix-minimal with respect to the set Tu L; then
in particular u(v) # 0. It follows that v € (Cp)4NX* and v = Z;’=1 AjCjaw;
for ¢; € Cp. We will distinguish between the following two cases:

1. There exists ¢ € Cp such that HM(c) = p|gn(v) and HC(c) < HC(v).
Since v = u(v) it follows that HM(c) € B*.
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By assumption, T corresponds to a connected table, therefore HM (c)
can be found in the multiplication table as a summand of a prod(b, )
or as a row b € B%. It follows that HM (c) is a summand or a prefix of
an element of T which is a contradiction to the assumption that the
set G is prefix inter-reduced.

2. There exists no ¢ € Cp such that both HM (c) = p]gps(v) and HC(c) <
HC(v) hold. Therefore v # 0 must be prefix-minimal with respect to
the elements of Cp. Since v however was chosen to be prefix-minimal
with respect to Tu L, it follows that v must be prefix-minimal with re-
spect to G. As v # 0 it follows that G cannot be a prefix Grébner basis
of ¥ = (II) 4 and in particular it cannot be an MGE-basis either. O

Proposition 4.2.20 Suppose that the S-submodule 11 of ¥ is finitely gen-
erated by the finite set T U L U Cp. A finite MGE-basis G = T'UL' C %
can be computed such that ¥ C ¥/, ¥V C (G)4 and Z/(I1)4 = ¥'/(G) 4.

Proof. 1t follows from Lemma 3.1.21 and Lemma 3.2.17 that we can obtain
an S-module Grobner basis and a prefix-closed set from a finite generating
set. Thus we can compute a finite set G with (G)4 = (T'U L U Cp) 4 such
that G is inter-reduced, prefix-closed and an S-module Grobner basis. For
achieving this we need to compute a finite number of s-polynomials, we
need to add a finite number of prefix-closures and need to carry out a finite
number of S-module reductions. However, the elements added for prefix-
closure might not be in the appropriate form for G to be an MGE-basis: for
each c.z added for prefix-closure we know that Wei(c.z) = 1. In the case

that every c.z can be reduced by T such that c.z iy q with Wei(q) = 0,
the assumption follows immediately.

Now suppose that there is a set of elements c.z, caused by prefix-closure,
which cannot be reduced by elements of T to an element of weight 0. Then we

*

s . T : w % ;
obtain by reduction c.z —— pan element p that is minimal with respect to

T but where Wei(p) = 1. In this situation we need to make definition steps
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and therefore have to add for each summand b.x of p with b.x € HM (f) an
element b’ = b.x — b = b.x—prod(b, z) to the set T'.

A finite number of such elements k' := b.xz — b’ is being added such that
the respective b’ have greater index than the elements that have already been
contained in the set of S-module generators B of ¥. We set ¥/ = (B'X*)g,
where B = B U {b),...b.,}. Moreover, we set T/ := T U {h}...,h’,} and

g, > .
now for all c.z we can reduce c.z == g such that Wei(q) = 0.

Suppose that we have to add a prefix-closure element for such an element
q € (B')s. Then there is h} € T’ and an element z € X such that

HM/(q).x = HM(R).

Since we were only able to obtain ¢ by reduction by T , but not by 'f', it
follows that HM(q) = b € B’\B where b’ must be the reduct of some
WeT\T.

Now if ¥ = RED(h}) is the prefix of HM(h]) then there must have
been a summand of one of the elements which we did obtain by reducing
the elements of the form c.z, and this summand is just b'.z. Since A} with
RED(h}) = b’ had only been added to T in that course of reduction of some
element c.z it follows that we must have started initially with an element
c.xz with Wei(c.z) > 1. However, this is a contradiction as c.z is the prefix-
closure of an element of weight 0 with an element that has weight 1. So
Wei(c.x) < 1. We conclude that h; must have already been contained in T

Therefore, after adding a finite number of prefix-closure elements c.x
and possibly a finite number of elements k' = b.z — b, which then will lead
to a finite number of S-module reductions in order to obtain elements ¢ of
weight 0, we will obtain a prefix-closed set G of the demanded form. An
element g € G then has to be minimal with respect to G \ {g}. Therefore
G is inter-reduced and it follows that G is an S-module Grobner basis such

that for every g € G we either have that
e g€ G with HC(g9) = 1,Wei(HM(g)) = 1 and Wei(RED(g)) = 0; or

e g € G such that Wei(g) = 0.
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Certainly, as the elements added are of the form b.z—prod(b, z), which
is just an element b.z — b’ € A, we must have that £/¥ = ¥'/(G) 4. O

Lemma 4.2.21 The procedure CLEARING COINCIDENCES terminates.

Proof. The procedure CLEARING COINCIDENCES chooses a coincidence
¢ € Cp, and if the undeleted image of ¢ is unequal to 0, then the procedure
PRC is called for ¢. In the case that ¢ is inapplicable, the subroutine HIC
is called. The routine HIC essentially computes an inter-reduced Grébner
basis from the set L U {c¢} (L denotes the torsion sequence).

If HM (c) is different to the head monomials of elements contained in
L, ¢ can be inserted immediately into L. In the case that there isan [ € L
with HM(l) = HM (c), an element v; replaces the entry ! of L; v; is equal
to a g-polynomial of [ and e¢. We then aim to insert an element vy into
L; vy has been formed as an s-polynomial of [ and ¢ and therefore has a
strictly smaller head monomial than ¢ and [. It follows that this routine
must terminate.

If ¢ is applicable it has been shown in Lemma 4.2.11 that the procedure
PRC applied to a coincidence ¢ corresponds to prefix-reduction of T and L
by c¢. Moreover, in the case that consequences need to be computed, the
computation of these consequences corresponds to adding the prefix-closure
c.z of ¢ with an element b.x — V' € ’f’, where b’ is a summand of the reduct
of c.

In order to obtain a consequence ¢ = ¢ % x, thus an element of weight
0, it is possible that a finite number of definitions need to be made. This
corresponds to adding a finite number of elements to the set T and it follows
from Proposition 4.2.20 that these newly added b’ € B’\ B cannot themselves
cause consequences in this invocation of CLEARING COINCIDENCES.

Accordingly the procedure CLEARING COINCIDENCES must terminate
after a finite number of steps, having cleared all coincidences from the coin-

cidence stack Cp. O
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Proposition 4.2.22 Let ® denote the A-module closure of the S-submodule
of X% at a stage (1) which is generated by a set consisting of the following:

e the elements | € L contained in the torsion sequence at the stage (1);

e the elements of a set T which is the subset off induced by the entries
of those rows corresponding to b € B" of a connected multiplication
table T{L).

IfG = TUuLuU Cp is an MGE-basis of U, then
/U =4 8Y/P.

Proof. If G is an MGE-basis of ¥ then we know that the set G generates W.
As the set of pending coincidences Cp must be contained in the generating
set of ¥ it must follow that (Cp)s C (f UL)sa. Thus ¥ = & + (Ca)a
and we can form congruence classes |v + ®|¢, of £/® modulo (® + Ca) 4.
We define a mapping 3 : £/¥ —— £*/® which maps a congruence class
v+ V¥ = (v+ (Ca) + ®) € /¥ to a representative v + ® of the congruence
class |v + ®|cq.

Since the generating set G is an MGE-basis we can conclude that G is
prefix inter-reduced. This implies that the elements of T* and L must be
prefix-minimal with respect to Ca and accordingly T“U L C £*. Moreover,
for every v € ¥ there exists 7 € X* which is prefix-minimal with respect

", ¢i-a; =T where ¢; € Ca. As an MGE-basis is also a

to Ca and v —
prefix Grobner basis, we can choose representatives in a canonical way, so
in particular we can choose the representative v + @ of |v + ®|¢, such that
U is prefix-minimal with respect to C'a. This implies that 7+ ® € £*/®.
The map 3 is well-defined: let vy,vy € ¥ such that vy + ¥ = vg + U,
SO0 v = vy + Z:’zl ¢ a; + E?:llj « @it Z}:f:lhk -ap, with a € A,¢; €
Ca,l; € L, hy € T, and therefore, |v; + ®|ca = |v2 + ®|cq. The mapping 5
is an A-module homomorphism. Indeed let A € S. As the head coefficients
of elements of Ca are units it follows that A - T = - v for the canonical

representatives T with respect to Ca. Therefore

A Bu+¥)=B\-v+T).
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For the same reason it follows that B(v1 + ) + B(ve + V) = B(v1 +vo + V).
Now let a € A, then B(v + ¥).a = T.a + ¢ from which we conclude that
v.a € ¥*. This, however, implies that 7.a = T.a and therefore

Bv+¥)a=va+d=v"a+d=p5(v+¥).a).

Moreover, 3 is injective. If (v + ¥) =7+ ® = 0+ ®, then v certainly
must have been element of . Since the generating set of ¥ is prefix inter-
reduced, it follows that v & £* and accordingly v must have been an element
of Ca.

Also, [ is surjective. Let 7+ ® € £%/® and we suppose that 7 + & #
B(v + ¥). Therefore, T € X" cannot be a canonical representative of a class

|v|ca and there must exist ¢;,,...,¢;, € Ca with
t
5= ZC’*}' ra; ="
i=1

such that v” is prefix-minimal with respect to Ca. Since Ca is an inter-
reduced set this implies that HM((c;;) # HM(c;,) for all i; # i;. However,
this is a contradiction to the assumption that v € X", O

Theorem 4.2.23 Suppose that MAIN ROUTINE is at a stage (1) of the
computation such that Cp = 0, where the given multiplication table T is
connected and where the given torsion sequence L is reduced and in pivot
form. Then those rows T of T' which correspond to the undeleted S-module
generators b € B" together with the elements of L encode a set of generators
for the submodule ®(,y such that

FINw =X/,

Proof. We remind ourselves that the P-module M can also be considered

as an A-module. Then it has the form

My =FIN
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where N denotes the submodule of the free A-module F that is generated
by the set Rels which, in the case that Mp has relations induced by the
finitely presented algebra P, must be infinite.

In the case that M is P-module isomorphic to a P-module with finite
generated as S-module it follows from Theorem 1.2.1 that there exists a
finite set of generators for . In the MGE-procedure we aim to build up
stepwise the module N by adding relations r € Rels which were chosen for

the computation of coincidences. This gives us an ascending sequence
N(o) s .N(L) C JV‘(,,_H) =J\Jr(,,) + (T‘m)A "

By construction of the procedure in Section 2.4.1 we have S-modules ¥, A
and €2, the submodule of ¥/(A)4 which is generated by the processed coin-

cidences, such that

FINw = Zwy/(Aw)/(Qw)a

In Lemma 2.4.3 we showed that the right hand side is isomorphic to the
quotient-module ¥,)/Y(,) and since Cp = @ we have that T,y = ¥(,. We
can therefore conclude, also using the result of Proposition 4.2.22, that

My = F/Nyy = E,/2 -

Corollary 4.2.24 If the MAIN ROUTINE terminates at a state (v) where
the given multiplication table T is connected and where the given torsion
sequence L is reduced and in pivot form then MAIN ROUTINE returns a
correct result. Thus MAIN ROUTINE will have computed sets T* and L
which encode a set of generators of the submdodule @,y such that F/N(,) =

Ez‘y) /@)

Proof. We can deduce from Theorem 4.2.23 that MAIN ROUTINE is in fact
computing, for those (¢) which satisfy the conditions of Theorem 4.2.23, a

finitely generated S-module with additional A-module structure which is
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A-module isomorphic to the given module M. O

‘We will introduce in Chapter 5 certain conditions on the tools used in
the procedure subject to which we can show the termination of the MGE-
procedure. We will show that, in the case of termination, the module
EE‘L)/ ®(,) will in fact induce a finitely generated S-module which is isomor-
phic as P-module to M.



Chapter 5

Termination of the
MGE-Procedure

In this chapter we show termination of the MGE-procedure. In order to
do so we again relate the MGE-procedure to the setting of reduction and
Grobner bases as described in Chapter 3 and Chapter 4.

Section 5.1: We introduce an ordering on the elements of the free module
Fa which is induced by the ordering on ¥ and the image under the iso-
morphism 7 : F — X /(A)4. Moreover we describe how coincidences lead
to reduction-rules on F. We then proceed by showing that all reduction-
rules which have been induced by coincidences applied in the course of an
MGE-procedure do not lead to infinite sequences of reduction.

Section 5.2: We introduce so-called important congruence classes in F
modulo N; certain properties of these important classes are investigated.
Moreover we describe the connection between these classes and the MGE-
procedure.

Section 5.3: We describe the prerequisites that are needed for the MGE-
procedure in order to terminate in terms of the tools accompanying an MGE-
procedure. We interpret the effect of those prerequisites on the S-modules
which are constructed in the course of the computation and prove that,
in the case that M is isomorphic to a finitely generated S-module, these

prerequisites will eventually be satisfied by the procedure.

113
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5.1 Induced Ordering on F

We will again denote by (, as defined in Section 4.2, the right-inverse of
the canonical quotient-map 7 : ¥ —» X/(A)4, and by x : F —— X the
composition of v : F —— X /(A)4 with . As has been described earlier,
since we are given a prefix Grobner basis for (A) 4 we are able to define ¢ in
a unique way. We define ¢ such that a class v+ (A)4 € £/(A) 4 is mapped
to its canonical representative T € L.

Definition 5.1.1 Let fi, fo € F such that x(f1) = vi and x(f2) = vo. We
define the ordering induced by image on the elements of F, which will
be denoted by >=i;, by:

f1 =i f2 = v1 e V2.
Moreover, we define the weight of f, denoted Wei(f), as

Wei(f) := Wei(x(f))-

Lemma 5.1.2 Let f1, fo € F such that fy is a prefiz of a summand of f,
then
Wei( f1) > Wei(fa).

Proof. Let fdenote the summand of f; such that fo.w = f Since y is
an S-module homomorphism, the weight of elements of F is additive, ac-
cordingly Wei(f1) > Wei(f). Therefore Wei(f1) > Wei(f) = Wei(x(f)) =
Wei(x(f2-w)) =2 Wei(x(f2)) = Wei(fz). O

Remark 5.1.3 By definition, the image-induced ordering on F depends
on the maps v and (. As the homomorphisms 7)., as well as (), for
(0)o < (v); £ (¥)o, might change significantly during the course of the pro-
cedure, the image-induced ordering on the elements of F will change accord-
ingly. However, we will only compare elements f1, fo € F at one stage (1);,

therefore using only one ordering depending on one morphism x(,); .
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Coincidences of the MGE-procedure induce prefix reduction-rules on the
elements of X, but they can also be seen as leading to reduction-rules on
the elements of F : let fi, fo € F with x(f1) >wei X(f2), and suppose that
there exists a coincidence ¢ € £/(A)4 such that HM ({(c)) is a prefix of a
summand X - b.w of x(f1) with HC((C)) < X and also x(f1) — K- cw ~),
x(f2) for some suffix w € X* and coefficient x € S. Then by the image-
induced ordering we have that f; >;; fo. We will now define prefix-reduction
on elements of F and we will show that this simulates the reduction-process
of the MGE-procedure.

Definition 5.1.4 Let fi, fo € F and let Q be a finite set of elements of

F. Then Q prefix-reduces f; to fo in one step, denoted by fi 2 fo,
if there exist ¢ € Q with x(q) = ¢ € (B) and vi,vy € ¥ with v; = x(]j‘f) for
i = {1,2} such that

1. HM(c) = b and b € B is prefiz of a summand X - b.w of vi = x(f1),
2. there exist k,&" € S such that A\ = k- HC(c) + &' where &' <g HC(c).
3. vy =v1 —K-cuw.

We say that a set of elements () prefix-reduces f; to fo, denoted f; . fo,
P

if there exists a sequence of one-step prefiz-reductions

Q.7 Q.. .5 Q.
fi 5 1 > It 5 f2

with ﬁ € F. The definition of the terms prefix-minimal and prefix inter-
reduced corresponds to the one given in Definition 3.2.1.

Example 5.1.5 Let A = (z1,22)z, P = (z1,22 | 23 — 1)z, F = (y)a and
M = (y | y.z12971 —y.T2, Y. 2221 T2 —y.71) p. We set by := 7(g)(y). A possible
MGE-procedure might have the following definition steps

b2 = Y(0), (¥-21), b3 1= Y(0), (¥-122), bs = ¥(0); (y-212271), b5 := Y(0), (¥-72)-

These definition-steps lead to the coincidence ¢ = bs — by. If we are using
the ordering induced by image, then y.z3 € F can be prefiz-reduced by the
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module-relation r = y.z1x9x) — y.x2 and accordingly
y.zh —— 212971 7,
as HM (y(r)) = bs is a prefiz of x(y.x3) = bs.za.

Remark 5.1.6 Prefiz-reduction rules on elements v € ¥ which are in-
duced by definition steps in order to bring an element of F into reach can-
not lead to reductions on elements of F. These are rules which are induced
by the generators H of the submodule A. Since F = ¥,y /(A,;)a for all
(0)o £ (); < (¥)o, an element f € F corresponds to an element of 3/(A) 4,
therefore reduction rules by elements of H do not affect elements f € F.

The image-induced ordering on the elements of 7 depends on the order in
which the generating elements by, . .., b,, are assigned to prefixes of relations.
The assignment of an element y.w depends on its position as a prefix of a
relation and on where this relation appears for the first time in the set of
relations Rels. Because of this, reduction induced by image might possibly
lead to reductions on elements of F in an unexpected way. For instance
in Example 5.1.5, if we were given an ordering by length of words then
we would certainly have that y.zjzoxixo is greater than y.z3. We will now
show that prefix-reduction, using image-induced ordering on the elements
of F, does not lead to infinite sequences of reduction in the context of an
MGE-procedure.

In order to ensure that the reduction process induced by an ordering is
Noetherian, W. Adams and P. Loustaunau in [1] introduce the concept of a

”

term ordering on the elements of a module. An ordering “ >; 7 is called

a term ordering if the following two conditions are satisfied:
1. Let v € &, then v.w »; v for all w € X*\ ¢;
2. Let vy,v9 € I, if vg >4 vg then vo.w »; vi.w for all w € X*.

However, as we will see in the following example, the second condition on
an ordering to be a term ordering does not necessarily need to hold for the

image-induced ordering on F during an MGE-procedure:
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Example 5.1.7 Let M = (y | y.:r% — y.x9x1,2 - y.x?)p and let P =
(z1,22)z. We begin the procedure by setting by = v(0),(y) and Bg), = {b1}.
We suppose that we will trace the relations in the order they are written in

the presentation of M. Tracing of the relation y.x? — y.zox; leads to

b2 = (o), (¥-71), b3 = Y(0), (-23), Y(0) (¥-z2) and by = (g, (y.z221),

and the next relation 2 - y.:c:f leads to

be = V(1) (yx:]?)

Since by <yei by as elements of X, it follows that y.mf <ii Y.ra, however,

y.:r%z:l =i Y.ToT] as X(y.:r:%:c]) = bg and x(y.zox1) = bs.

Since it cannot be shown in general that the ordering induced by im-
age on the elements of F is Noetherian, we have to check that in the
case of prefix-reduction following the MGE-procedure no infinite descending
reduction-sequences or any cycles in a reduction-sequence of elements of F
are possible.

Recall that the reduction-rules are of two kinds. Those rules which come
from the submodule A, which reduce the weight of elements of X, do not lead
to reduction-rules on elements of F. Moreover, since the weight of elements
is bounded below by 0, neither descending sequences of reduction of infinite
length on elements of ¥, nor cycles of reduction are possible if the reduction
rule is strictly reducing the weight of elements.

Both the cases of reduction sequences as described above must be in-
duced by reduction rules on elements of ¥\(B)s. Therefore, it remains to
investigate reduction-rules which are induced by coincidences. Since the
sets of generators B = {by,...,b;,} are bounded below, infinite descending
sequences of reduction are not possible on elements of (B) and we conclude
that they must be impossible for the induced prefix-reduction on elements
of F. We now have to show that cycles in a reduction sequence of elements

of F are not possible either.

Lemma 5.1.8 If G is an MGE-basis of ¥, then prefiz-reduction of ele-
ments of F ordered by image-induced ordering by elements of R, where
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R = {v " }n(g1)),...,v  (7(ge))} for gi € G, does not lead to cycles in
the reduction sequences.

Proof. Suppose there are elements f1, fo € F with

fi —p—“*fQ T"fl

and let x(fi) =v; € Efori e {1,2}. If f — * fa then there are ry,, ..., 7,
in R such that

X(f1) =01 =2, ((w(@) = B, ((7(Fno1)) = T,
where ¢ (7(9m)) = x(f2). Whenever there is v; such that ¥; is not contained
in the image of the map x, we have that v; # C(ﬁ(ﬁj)). In this case there
is at least one summand of ¢ (ﬂ(i}})) which has strictly smaller weight than

the corresponding summand of v;, because

n
C(ﬂ(aj')) - E‘Tj - Zhjk'ajm
k=1
where a;, € A and h;, = b.x — b’ € H, the generating set of the module A
induced by the definition process.
Since the set G is an MGE-basis it follows that for v1, v and g € G with
v %\ vy we must always have that Wei(v;) > Wei(vy). In order to obtain

a cycle fj —— fo —— f;, we then must have that Wei(f1) = Wei(fs)
and in particular v; = ¢ (?r(ﬁ)) for all v; in the prefix reduction sequences
fi— fyand fo — fi.

The reduction-sequence

vy — iy — Gy —A G — 0

P P P

must therefore be induced by a set of coincidences, {c1,...¢;} € G. We
will denote this set by C; and analogously the set leading to the reduction
sequence x(f2) = vg T\ *v1 by Cy. Amongst the head monomials of the

coincidences there is one which has the greatest index. We set

bmaz = maz{HM(c;) | ¢; € C1},
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and let ¢ denote the coincidence with bpe. = HM (ck). Since byqa, is the
maximal element amongst the head monomials of the coincidences involved
in this situation, it cannot have been added as a reduct of some other coin-
cidence. Therefore b,,,, must have been a (not necessarily proper) prefix of
a summand of v;.

Therefore, in order to obtain the element v; = x(f1) again by the sec-
ond sequence of reductions, we need that b4, is contained in the reduct of
a coincidence ¢; € C5, leading to one of the prefix reductions-rules of the
sequence v T\ *v1. This, however, is a contradiction to the assumption

that the set G is prefix inter-reduced. O

Corollary 5.1.9 Prefiz reduction on elements of F induced by a set of
coincidences C1 = {ci,...,ct} which have already been processed cannot

lead to cycles in the reduction-sequences in an MGE-procedure.

Proof. Whenever a new relation is traced in order to find a further coin-
cidence the tracing uses the undeleted image. Tracing gives rise to a coin-
cidence ¢ which is minimal with respect to the set of previously computed
coincidences Cj. In particular, RED(c) cannot contain the head monomial
of an earlier processed coincidence. We can conclude that we cannot obtain
cycles of reduction on the elements of F in the MGE-procedure. O

5.2 Important Classes

Definition 5.2.1 Let | — | denote the congruence classes in F modulo the
submodule N with generating set R C F. We call a class |f| important
with respect to R if we can choose a representative f € |f| which is a
prefiz of an element of R and which moreover is prefiz-minimal with respect

to R by the image-induced ordering.

Example 5.2.2 Let M = (y | y.2? —y)p and P = (z1, 22 | 25 — 21)z and
suppose that we have processed the relations y.z3 —y and by.(z5 —z1) giving
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rise to the multiplication table

dely | prod(b,z1) | prod(b, z2) | v~ 1(b) | 7
by | f | b2 by Yy i1
62 f b] 1 Y.y 1
by | t il 1 y.x% by
by | f o= by Y.T2 oz
bs | t i 1 y.x3 | ba

Then F = (y)a and we are given a set R = {y.z} — y,y.o3 — y.z1} and
N = (y.2? —y,y.x3 — y.x1) 4. The congruence classes of y,y.z1 and y.za of
F modulo N are important with respect to R. There are however infinitely
many congruence classes which are not important, for instance those classes

containing the elements y.x1x9 or y.xrox].

In the following we will assume that A is a finitely generated A-submodule
of the free A-module F = (Y) 4 where Y = {yi,...,yn} and we are comput-
ing an S-module presentation for the module M.

Lemma 5.2.3 Let N be generated by a set R where for every r € R we
have that r := v~ 1(n(g)) for the elements g of an MGE-basis G of V. Then
a congruence class |f|x is important if and only if it has a representative f
such that x(f) = b € B%.

Proof. “ =:7” We suppose that |f|s is important. Then it has a rep-
resentative f which is the prefix of an element r where r = v~ !(n(g)) for
g € G. Such an element g is either an element of weight 0 or it is congruent
modulo (A)4 to an element of weight 0. It follows from Lemma 5.1.2 that
we must have that Wei(r) > Wei(f) and therefore x(r) € (B)g implies that
x(f) € (B)s as well. Moreover, the map y is injective and its image is not
affected by coincidences, so it follows that x(f) € B. As f is prefix-minimal
with respect to R we must have that x(f) € B

“ &= " : Suppose there exists a representative f of a class |f|y with
x(f) € B*. Since Wei (X("f')) = 0, an image for f under the map v must
have been defined at an earlier point and this must have happened in order
to bring a relation into reach. Thus f is a prefix of a relation. As x(f) € B*
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it follows that there is no g € GG, where g corresponds to an applicable co-
incidence which prefix-reduces x(f). Moreover, as x(f) € B%, x(f) cannot
be prefix-reducible by an element of L since the elements of L have head
coefficients which are not units of S. Therefore f must be prefix-minimal

with respect to R and the class |f|x is important. O

Corollary 5.2.4 Let N be generated by the set R where for every r € R
we have that v := y~(n(g)) for all g € G where G is an MGE-basis of V.
Let |f|x be a congruence class in F. Then a representative f of |f|x which
is prefiz-minimal with respect to R is unique.

Proof. Suppose we are given a class |f|x with representatives fi, fo which
are prefix-minimal with respect to R and f; # fo. Since fi + N = fo+ N
we have that x(f1 — f2) = x(f1) — x(f2) € V. However, as f; # fs it follows
that v(f1) # v(f2), therefore x(f1) — x(f2) € ¥\(A)a. We conclude that
x(f1) and x(f2) must differ by an element v € ¥\(A)4, and without loss of
generality we can assume that x(f1) — v = x(f2).

As G is an MGE-basis of ¥ there must be g € G such that HT (v) =
A+ HT(g).w. This however implies that x(f;) is prefix-reducible by ¢ and,
as there is r € R with r = y~1(n(g)), it follows that the elements f; cannot
be prefix-minimal with respect to R. O

Example 5.2.5 In the case that a generating set R of the module N is
not induced by an MGE-basis, a representative of | — |n is not necessarily
unique. Indeed let R = {y.z1z921 — y.2%, y.2122 — y} and suppose that these
elements are used in order to construct coincidences. Then these can lead

to the following definitions for an MGE-procedure

bi.xy — by, bo.xq1 — b3, bo.xo — by and by.zy — bs.
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This corresponds to the multiplication table

dely | prod(b, 1) | prod(b,z2) | 771(b) |7
by | f | be 1 y 1
52 f 53 64 Y. 1
b3 [t |L L Y13 1
b4 f 65 i Y.r1Ix2 il
bs | t L L y.x1xoxy | L

Then the relation y.xi1z9T1 — y.:r% gives rise to the coincidence ¢y =
bs — bz, from y.x1x0 — y we obtain ¢y = by — by. If we would now omit
the consequence by — by which is caused by the prefiz-closure of by — by and
by.x1 — bs S B by.x1 — ba, and would only perform S-module reductions
such as by —— by and by —— b;. We would obtain the generating set
G = {by.x1—ba, by.x1—b3, ba.xo—by, by.w1—bs, bs—bs, by—b1 }. The generating
set obtained from vy~ 1(m(g)) for g € G is equal to R and accordingly the
element y.x? is prefiz--minimal with respect to R. However, following an
MGE-procedure further would reveal that y.x? is not prefiz-minimal at all
and moreover that y.x? is in fact congruent to y.xq modulo N'. The prefiz-

closure would lead to a consequence,
by.z1 — by.x; —— b3 — by,

and therefore v~ 1(m(b3)) = y.x? ~n y.x1y " H(m(b2)). This gives a new gen-

erating set
G = {b1.¢1 — ba, ba.x1 — ba, ba.x2 — by, bg.x1 — ba, bs — ba, by — by, b3 — ba}
which is an MGE-basis. The set G also leads to a generating set R for N,
R= {y.z12021 — Y21,y 2172 — Y, yxf —y.21}.

We can conclude that there are only two congruence classes modulo N* which
are important with respect to fé, namely those classes for which we can choose
the respective representatives y and y.zi.

Lemma 5.2.6 Let F be a finitely generated A-module with a finitely gener-
ated submodule N'. Then there are a finite number of important congruence

classes of elements of F modulo N.
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Proof. Let Y = {y1,...,yn} denote the generating set of F and let R
denote the generating set of N. Then for all » € R we have that r =
Y i1 Dowexe Migw * Yi-w with X, € S,y; € Y and w € X*, where A, # 0
only for a finite number of summands and where each w € X* is a word
of finite length. Therefore there can only exist a finite number of prefixes
of elements of R, so in particular there is a finite number of such prefixes
which are also prefix-minimal with respect to R. We conclude that only a

finite number of congruence classes can be important. O

Lemma 5.2.7 If M = F/N is P-module isomorphic to a P-module ©,)
that is finitely generated as S-module then every congruence class |f|n of
f € F is either important with respect to some generating set R of N, or it
has a representative f which lies in the S-linear span of the representatives

of such important congruence classes.

Proof. Since M = F/N is isomorphic to a module with finite generating
set as S-module it follows from Theorem 1.2.1 that A is finitely generated
as an A-module, say by a finite set R. Then, by Lemma 5.2.6, the number
of important congruence classes with respect to R must be finite.

Let |f|n denote a congruence class where we suppose that it has a rep-
resentative f which is prefix-minimal with respect to R but which is not
a prefix of any r € R. Then for all w € X*\{e}, f will be S-linearly in-
dependent of f.w, which also must be prefix-minimal with respect to R.
Moreover, f.w cannot be a prefix of a r € R either. We therefore obtain an
infinite number of congruence classes of F modulo N with elements that are
S-linearly independent. This, however, is a contradiction to the assumption

that M is isomorphic to a finitely generated S-module. O

Corollary 5.2.8 Let N be generated by the set R := {y~(n(g)) | g € G}
where G is an MGE-basis G of ¥ and suppose that M = F /N is P-module
isomorphic to a P-module that is finitely generated as S-module. Then for
all congruence classes |f|x for f € F we have that x(f) € (BY)s.
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Proof. 1t follows from Lemma 5.2.6 that there are a finite number of im-
portant congruence classes. Suppose there are m, and let f;, ..., f,, denote
the prefix-minimal representatives of these. Now let |f|y» denote a congru-
ence class in F which is not important with prefix-minimal representative
f. Then, by Lemma 5.2.7, we have that f = 3.7 \; - f;. As x is an S-
module homomorphism it follows immediately that x(f) = 31" i - x(f3).

and therefore x(f) € (B")s follows. O

5.3 The Final State of an M GE-procedure

Definition 5.3.1 We say that the multiplication table T, belonging to an
MGE-procedure at a certain stage (1), is closed if for all b € B* and for all
x € X the product “x” of £/(¥)4 satisfies that (b+ ¥)xz € (B*)g + V.

Lemma 5.3.2 Suppose we are at stage (¢) of an MGE-procedure, with
multiplication table T and where Cp = 0. We denote by G = T U L the
generating set of ¥ and we denote by R the generating set of N, with
R:={y"(n(9)) | g € G}.

Then T is closed if and only if for all f € F a congruence class || in F
modulo N\, is either important or it has a representative f, prefiz-minimal
with respect to R, such that f lies in the S-linear span of the representatives

of the important congruence classes.

Proof. We have seen in Lemma 4.2.5 that the entries of T correspond to
a certain subset of the generating set G of W. Since the coincidence stack
Cp is empty, it follows from Lemma 4.2.15 that the set G in fact forms an
MGE-basis of V.

“ = " : Suppose that T is closed. Then for all b € B* and =z € X
we have that (b + ¥) »z € (B")g, so the free product is congruent to an
element v € (B*)s modulo ¥. Hence there is a g € G such that g = b.x —v.
Therefore for all z € X* with Wei(z) > 0 there is Z € (B")g such that z is
congruent modulo ¥ to Z.

Now suppose we are given a congruence class [f|,) of f € F and we
choose a representative f which is prefix-minimal with respect to R. Then,
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as f is prefix-minimal, x(f) € £%, and as T is closed, x(f) € (B%)s; oth-
erwise x(f) would not be prefix-minimal with respect to G which would be
a contradiction to the choice of f. From the definition of the module ¥ it
follows that for all b; € B* we have that b; = x(f;) for some element f; € F.
Thus f; must in fact be a prefix-minimal representative f, of its congru-
ence class modulo N,), which then has to be an important class. Therefore
¥(F) = S b for b € B and so F = S, Ay~ (n(b) = Sy M T

“ &=":Let f be the prefix-minimal representative of a class |f () in F.
Then f = Y%, \; - f; where the f; are the prefix-minimal representatives
of some important congruence classes. Therefore x(f) = 1A - by with
b; € B*. Since Cp = 0 it follows from Lemma 2.4.3 that F/N = £/¥ and
therefore (b + V) xz € (B*)s + W for all b € B* and = € X. We conclude
that the multiplication table T is closed. O

Definition 5.3.3 Let G denote the generating set of . We say that a
torsion sequence L C G is closed if for alll € L,z € X the element |l  x
has been considered as a coincidence and at some stage of the procedure has

been added to the coincidence stack Cp.

We will now introduce certain conditions on a state (¢) of an MGE-
procedure. We will show, in the case that these conditions are satisfied for
the module

O =T/ ¥
which is constructed by the MGE-procedure, that ©(, is isomorphic as a
P-module to M.

Definition 5.3.4 Let G denote the generating set of V(). We call a state
(¢) of an MGE-procedure a final state, if the following conditions for the

tools accompanying the state (1), are satisfied:
1. The multiplication table T is closed.

2. The stack C'p containing the pending coincidences is empty.
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3. The torsion sequence L is closed, therefore (A)a = A for the S-linear
span A of L.

4. For all b € B* and all algebra-relations r € R C A we have that b.r
can be prefiz-reduced to 0 by G.

5. For each of the module-relations w € U C F we have that x(w) can be
prefiz-reduced to 0 by G.

When the MGE-procedure has reached a final state, since all of the
algebra- and module relations must hold on the respective generators b €
By,), we can conclude that we have obtained an A-submodule

Ny = {r@)ys--+s7Tw))

such that N,y = N4 for M = F/Ny. If we additionally assume that we are
given a reduced torsion sequence which is in pivot-form then the condition on
Cp ensures that the generating set G of ¥,y forms an MGE-basis. Moreover,

we can show the following:

Proposition 5.3.5 If the MGE-procedure is in a final state (v) where the
given torsion sequence L, is reduced and in pivot form, then the following

P-module isomorphisms hold:

Proof. We aim to construct ©,) as the quotient-module ¥,)/¥,). In a
final state of an MGE-procedure it is ensured that Cp = (), so the module
V(. is actually of the form of the module T(,) as stated in Lemma 2.4.3.
From this Lemma it then follows that

Ou) =Z0)/¥) = (Z)/(Awy)a)/( Q) a-

In the following we shall omit the index “(v)” for the S-modules concerned.
The S-module A is the submodule of ¥ generated by elements b.z — V', ob-
tained from definition steps, and the module € is that submodule of X /(A) 4
which is generated by the coincidences Ca U L.
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The construction of the modules ¥, A and 2 implies that
(2/(A)a)/(Q)a = F/Ny,

where the latter is just M.

Conditions 4 and 5 of the definition of a final state imply that every
relation r € Rels of M is contained in the A-linear span of the relations
which have been chosen for the generating of coincidences so far. Thus for
all » € Rels we have

i = {Fl,...,ﬁ}A =JV(,,),

and we can conclude that M(,) = M. This confirms the isomorphism on
the right hand side of the assumption.

Let G denote the generating set of V. By condition 2 of the definition of
a final state we know that C'p = ). As the given torsion sequence is reduced
and in pivot-form it follows from Lemma 4.2.15 that G is an MGE-basis of
¥. Condition 1 of a final state states that the multiplication table 7" must be
closed. Therefore T, in particular, is connected and it follows from Proposi-
tion 4.2.22 that © =4 ¥ /¥ =4 X" /® where ® is the A-module as defined in
Proposition 4.2.22 Because of condition 4 of a final state we know that all
algebra-relations 7 € R are satisfied in these quotient-modules and we can
conclude that the given isomorphism must be a P-module isomorphism.

Since T is closed we have (b+ V) xz € (B")s for all b€ B* and z € X.
Thus for every z € L% with Wei(z) > 0 there exists Z € (B")s which is
minimal with respect to the generators of weight 1 of ®. These generators
are just all those generators which are not elements of the torsion sequence
L and we can conclude that ¥£*/® =p (B*)s/A. Condition 3 of a final state
implies that the S-linear span of the torsion sequence is closed with respect
to the product “%” in £/¥, so A = (A)4 and

© = B/ =p (B*)g/A.
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Corollary 5.3.6 If the MGE-procedure is in a final state (v) then there
exists a finite number of important congruence classes |f1(,), - .., | filw) with
x(f;) = bj € B* for all 1 < j < t. Moreover, every congruence class in F
modulo N,y then has a prefiz-minimal representative f such that x(f) €

(B")s.

Proof. 1f the MGE-procedure is in a final state, all relations r € Rels of M 4
are satisfied in the constructed module ©(,) and it follows that there exists
a finite generating set for the module N' = (Rels) 4, namely the one of the
module A\, constructed by the MGE-procedure. As N is finitely generated
we can deduce from Lemma 5.2.6 that there are finitely many important
congruence classes |f;| of 7 modulo N for which, by Lemma 5.2.3, there
exists a representative fj such that x(fj) =be B*C L.

Moreover, it follows from Proposition 5.3.5 that M is P-module iso-
morphic to (). We can conclude from Corollary 5.2.8 that for all con-
gruence classes of F modulo N there exists a representative f such that
x(f) € (B%)s, and since x(f) is contained in the S-linear span of the un-
deleted S-module generators and is of weight 0 it follows that f must be

prefix-minimal as well. O

The following definition of a fair strategy is necessary in order to prove
the termination of the MGE-procedure. The condition that the strategy
of an MGE-procedure is fair corresponds to the condition formulated by
N. Mendelsohn [30] in the case of the Todd-Coxeter procedure for coset

enumeration.

Definition 5.3.7 We call a strategy of an MGE-procedure fair if it is guar-
anteed for every b € Ba)k at each stage (1) of the MGE-procedure that we
reach after a finite number of steps a stage (") such that either b € Bﬁ,,)w
or where for every x € X an S-module generator b’ € B’ has been defined
such that b.x — b’ has been contained in the generating set of Ay, for some

(ke < (-
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Theorem 5.3.8 Let F be a finitely generated and free A-module. If Mp
is P-module isomorphic to a P-module ©,) that is finitely generated as S-
module, then the computation of the MGE-procedure reaches a final state
where the given torsion sequence is reduced and in pivot-form, provided that

we are following a fair strategy.

Proof. We can consider M again as A-module, where M is the quotient-
module of F by the submodule N’ = (Rels). Thus the submodule N' C F is
generated by an infinite set of module-relations of M 4. In the case that M
is isomorphic to a module with finite S-module generating set, we showed in
Theorem 1.2.1 that a finite A-module generating set for A exists. Therefore,
if a finitely generated S-module ©(,) exists, then there is a finite ascending

sequence of A-modules
Nay € C Ny =N.

where N,y = (rqy,...,7()). To each of these modules NV, we assign S-
modules Xy, A(,), I,y and ¥(,y as described in Chapter 2 and Chapter 4.
We have seen in Lemma 4.2.10 that the routine HANDLE INAPPLICABLE
COINCIDENCES maintains the properties of a torsion sequence being reduced
and in pivot-form. Since CLEAN TORSION SEQUENCE only modifies the
reducts of elements of the torsion sequence, the same holds for this routine
and it follows that we can obtain a reduced torsion sequence in pivot-form.
Let r € Rels\{rq),...,7(—1)}- Then in the case that r is not contained
in the module NV,_yy it will lead to a new coincidence ¢ of elements of
Y(-1)/(A@-1))a- The coincidence ¢ will be added to Cp, and we showed
in Proposition 4.2.20 that the procedure CLEARING COINCIDENCES is a
terminating procedure which will compute an MGE-basis G of a module ¥

such that, by Proposition 4.2.22, we have that
FINy =24 )0 =24 59/,

We set J'C’(L) = (E(L))A where for 7 € ﬁ(b) we have that 7; := y~!(m(g)) for

—

g € G, so it follows that NV, = N(,. If the strategy used by the MGE-
procedure is fair in the sense that not only relations which are linearly
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dependent will be investigated then we will find after a finite number of
steps a relation r(,) € Rels such that (ﬁ(u_l), r)4 = N. Following the usual
procedure we can obtain an MGE-basis for ¥,; thus Lemma 4.2.19 implies
that (Cp)a C (f U L) 4. Therefore the coincidences contained in Cp will
not lead to any further reductions of the elements of T UL Accordingly
they will not give rise to any further consequences which might lead to
any further definition steps either. Then after a finite number of steps all
pending coincidences will have been processed and we obtain Cp = {).

For every r € Rels we must have that r € ﬁ(v), and accordingly we have
X(r) € ¥, for all 7 € Rels. From this the conditions 4. and 5. of Definition
5.3.4 follow.

We will now suppose that the multiplication table T" is not closed. By
assumption, M is isomorphic to a P-module with finite S-module generating
set, and since J'Cf(,,) = N we can conclude that T' must become closed after a
finite number of steps. Every further coincidence must be trivial, so cannot
lead to deletion of an S-module generator b € BE‘;), and each definition
step of a new S-module generator must lead to a coincidence, removing
the newly defined row again. Since ﬁf(,,) = N, those coincidences can only
affect the newly defined S-module generators. Therefore, we will obtain a
multiplication table T" that is closed after a finite number of steps if it is
ensured that we follow a fair strategy.

Since T is closed we have that bxx € (B*) for all b € B* and z € X.
Therefore the A-module closure of A(,) with respect to the product “x”
must be contained as a submodule in (B*)gs. The submodule of a finitely
generated module is finitely generated itself, so (A)4 must be finitely gener-
ated itself and so after adding a finite number of generators we will obtain
a torsion sequence L such that for A = (L)g we have that (A)4 = A. Then,
all conditions of a final state are satisfied. O

Remark 5.3.9 It is possible that an actual MGE-procedure terminates
even if the table is not closed. Suppose we have been computing an S-module
© for a finitely presented P-module M where P = (X | R)s. This situa-

tion is only possible if there are algebra generators {zi,...,z;} C X which



CHAPTER 5. TERMINATION OF THE MGE-PROCEDURE 131

are not contained in any relations r € Rels. Therefore these generators
act freely on the S-module generators b € B* of © and so the module M
is not P-module isomorphic to a P-module with finite S-module generating
set. The output provides a description of a module over a finitely generated
algebra P' with strictly smaller generating set. We can interpret the output
as a finitely generated S-module © that has been obtained from a module
M'p, where P' = (X' | R)s and X' = X\{z1,...,x:}. Situations like this
can be circumuvented if it is ensured that each x € X is contained in at least
one relation v € Rels.



Chapter 6

A Schreier Presentation

In this chapter we will describe a method to obtain an A-module presentation
of a certain P-module va. The module ./G'p is the submodule of the free P-
module D such that Mp = D/N. This construction in particular uses the
results obtained from a terminated MGE-computation for the module M.
In our description we follow the ideas presented by C. Sims in [41].
Section 6.1 We will explain how, from a given MGE-procedure, we can
obtain a set of Schreier-generators, denoted F, for N'. Moreover certain
linear dependencies between elements contained in the A-linear span of these
Schreier-generators will be described.

Section 6.2 We will introduce relations on the set of Schreier generators
E, which must be satisfied in order to obtain a module with generating set
FE which is isomorphic to N'. Moreover we will provide an upper bound for
the size of the set of generators and for the set of the needed relations.

6.1 Generators for a Submodule

The MGE procedure aims to compute a generating set for an S-module ©
which is isomorphic to a finitely presented P-module M where P denotes
the finitely presented algebra P = (X | R)s. The algebra P is the quotient
of the free algebra A = (X)s by the two-sided ideal I = (ARA) which
is generated by the finite set R. We can consider M as an A-module as

well, as has been described in Section 2.1, and as an A-module it is the

132
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quotient-module

My =FIN

of the finitely generated and free A-module F = (Y)4 by the submodule
which is defined as Ny = (Rels) 4 where Rels := U UY X*R is the infinite
set of relations formed from the set R and the set U C F of module-relations
of M.

We showed in Theorem 1.2.1 that there must exist a finite generating set
of the A-module A in the case that M is isomorphic to a finitely generated
S-module. In that theorem an argument was used which follows the idea of
the argument used in the Theorem of Schreier-generators for subgroups of
finite index of finitely generated groups (see for instance [40, 41, 17]).

As a P-module, M is of the following form

M =D/N,

where D is the free P-module generated by a set Y’ which is in bijection to
the generating set Y of F and where N is a P-submodule of D.

Lemma 6.1.1 If M is P-module isomorphic to a finitely generated S-
module then there erists a finite generating set for N.

Proof. We can consider D as an A-module as well: an element d € D
is of the form d = Y, yi.a; + (Y X*R) 4. Accordingly we can define the
canonical quotient map

¢:F —+D

which is an A-module homomorphism, and the image of the submodule N4
under ¢ is the module JC’A. In the case that N is finitely generated we can
conclude that A/ must be finitely generated as A-module, and so also as
P-module, since ¢ is an A-module homomorphism. O

We will describe how we can construct a presentation of the module
N C D, considered as module over the free algebra A, from a given MGE-
procedure which has terminated. In doing this, we follow the ideas of C. Sims

as presented in [41], Chapter 6. Therefore our approach corresponds to
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the Reidemeister-Schreier procedure for subgroups of finite index of finitely
presented groups.

We suppose that we have applied an MGE-procedure to a module M
which, as an S-module, has a finite generating set and moreover that the
procedure has terminated, having successfully constructed a finitely gener-
ated S-module © which is isomorphic to M. In accordance with previous
chapters we will denote the resulting generating set of © again by B".

We assume that the MGE-procedure has terminated with an accompa-
nying closed multiplication table T. For all b € B* and all z € X we have
that b.x ~y v where v € (B")s. As Cp = 0, the module ¥ constructed by
the MGE-procedure has the form of the module T described in Chapter 2.
As has been described in the previous chapters, the generating set G of T
(or W) is given by the following elements of ¥ :

e Entries of rows b € B* of the multiplication table correspond to gen-

erators g = b.x — v of weight 1;

e Rows b € B? together with the replacement r, in the multiplication
table correspond to applicable coincidences which give generators g =

b—ry;
e The inapplicable coincidences stored in L.

We will construct from the elements of G a generating set for N as follows.

By using Lemma 2.4.3 we have that
M=F/N2E/XT=Z/V.

An element of M corresponds to a congruence class of elements of 7 mod-
ulo N, so we can assign to every generator b € B" a representative f, =
> i—1 ¥i-a; € F and accordingly we can set Fy := &(f) € D. We will choose
the representative f; for b € B* as fj, := v~ !(n(b)). In the case of the MGE-
procedure where we obtain elements b € B from the process of tracing
prefixes of relations of M, a representative corresponding to b € B* will be
of the form f;, = y.w with w € X*.
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An element b € B" is certainly (prefix-)minimal with respect to the
MGE-basis G of T which implies that f;, is minimal with respect to the
image-induced ordering. Accordingly we define the representative f, for an
element v € ¥ as the element corresponding to the unique minimal element
U € (B")g contained in the congruence class of v modulo T, and we therefore
set

fo =7 (@),
It follows that f7 = fo = 0 is the representative of the class of those elements
which are contained in T.

In the case that v —f-A T € (BY) it is implied that y~!(m(v)) ~n
4~ (7(®)). In particular, for an element b.z, since the table is closed, there
exists U € (B")s with b.z ~y ¥ and therefore v~ (7(b.z)) ~a v~ 1(7(?)). It
follows that

foz—fgeEN

and accordingly ¢(fp.z— fz) € N. Moreover, if b.z #(a), T, then fo.z ~N fz.
However fy.x # fy =~ !(7(7)) which yields an element f,.z — fy # 0.

Similarly if we are given an S-module generator b € B" which is a
torsion-element of © = X /T then there exists a coefficient A € § such that
A-b=0¢€ O. Accordingly A-b € T, which implies that

A fo # Fab

As fap = fowesee X f, € N and A-¢(fy) € N. Furthermore, in the case that
for an A-module generator y; € Y of M we have that y ~as Ef;f A; -y this
leads to fi, ~n fZi-:f Aob; where we have set b; ;== v(y;) forall1 <i < kin
the course of an MGE-procedure.

Lemma 6.1.2 Let E := {y~}(n(G))} where G is an MGE-basis of Y. The
set E' consists of elements of e € F such that e = fy.x — f,,e = Z;’;l Aj - Iy
where \; are non-units of S, ore = yr — fo, = Yk — Ef;ll A+ Ui

Proof. The set G consists of elements of T, the set obtained from the
multiplication table T, together with the elements of the torsion sequence
L. Thus the elements of T are either of the form b.z — v, with b € B* and
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v € (B%)g, or b—ry, where b € B and ry € (B%)s; the elements [ € L are
of the form } 7, A; - b; € (B")s where HT(l) ~y RED(l) and b; € B* for
all summands b; of [ € L.

We conclude that those elements of G which are induced by T give rise
to e € E such that e = fy.z — fr, or e = yp — fo, = Yk — z:‘;ll Ai - yi, for
A-module generators y € Y, and that the elements of L lead to elements
e € E with e = E;n:l Aj + fp;- As all g € G are minimal with respect to
G\{g} the assumption follows. a

By the construction of the modules A and T we know that A/ is A-module
isomorphic to T/(A) 4, and therefore the so-defined set E is a generating set
for N. We denote by K := (E) 4 the free A-module generated by E. Thus
we obtain a homomorphism a : K — F which maps onto Ny C F. Fur-
thermore, composition with ¢ : F —» D yields an A-module epimorphism

B:K —= AN,
2 s N
€] IQ5
Pt

Remark 6.1.3 In order to emphasise that an entry of the multiplication

K

table leads to a generator g € G where g = b.x — prod(b, ), we can insert
the respective generators into the multiplication table.

We will now show in the following example how to obtain a set F from

a given MGE-procedure.

Example 6.1.4 Let P = (z1,22 | 2221 — 7122, T2 — T122)7 and let M =
(1,92 | y1.23 — y1.2179 — Y1, 41.71 — 1,2 - Yo.2122,y2 — 2 y1) p. A possible
way of assigning S-module generators to the prefizes of the relations leads to
the table on p. 137. At this stage, we have already computed the following
relations: the module relation yl.xg—yl.a:lxg—yl has lead to the coincidence
by — by — by, the module relation y;.x3 — y; to bg — by. The module-relation
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2 - ys.x170 gives rise to the inapplicable coincidence 2 - byg, so this element
gets added to the torsion sequence: L = [2 - big]. The relation 2 - yo — y1
leads to by — 2 - by and accordingly to bg — 2 - bs, the element contained in the
torsion sequence reduces to 4 - by.

Application of the algebra-relations at by led to by.xox1—by.x129 — b11—
by and by.xy — by.x129 — bs — by. The latter coincidence then gave rise to
the consequences by — by and bg — by3.

Application of the algebra relations at by only led to the trivial coincidence
by — by; application at by however has lead to by.xoxy —by.x129 — b1g — b
The relation by.xo — by.z129 only led to the trivial coincidence bg — bg.

prod(b,x1) | prod(b,z2) | delp | T 7~ (b))
bi | b3 bs I =k Y1
by | L L t 2-by Y2
bz | bs by I 2 Y1.21
by | bi2 b3 F | Y1.21T2
bs | L L t by Y1.22
bs | b14 bz F 4L Y123
b | L Al t by + by yl.a:g
bg | L L t by yl.x%
bg | L = t 2-by Y2.T1
bl[) /s AL t 2- 54 Y2.21T2
b1y | L 1 t b4 Y1-222]
bia | L L t b4 Y1.L1T2T1
513 L 1 t bs U1 .xlx%
b14 1 L t bﬁ yl.:r%:c]

Since the generator bs has been deleted we will now apply the algebra-
relations to bg. We obtain bg.xox1 — bg.x129 —— b3 — by. This coincidence
does not lead to new consequences. The relation xo — 129 again only leads
to a trivial coincidence.

Computing the torsion sequence closure of 4-by yields the elements 4 - bg
and 4 - by + 4 - by. Insertion of the latter element into the torsion sequence
leads to 4 - by + 4 - by Ll 4 -by and we obtain L = {4 - bg,4 - by, 4 - b1 }.

At the point of termination, the MGE-computation has produced a mod-
ule T with generating set G :
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e by.xy — by, by.xy — by, by.x — by, by.x2 — bs, bg.x1 — bg, bg.T2 — by — by,

® by —2:by,b3 —by,bs — by, by —by —by,bg —b1,bg—2-by, bjo—2-by, b1 —
by, b1g — by, b13 — bg, b14 — bg,

ol b Ay A by,

We will insert the generators g; € G which correspond to table entries,
namely where g; = bj.xy — prod(b;, x), into the multiplication table at their

respective places:

b.z; b.zo v~ 1(w (b))
by | b1 +9g1 | bat+g2 Y1
by [ by + g3 | be + 94 Y1-2122
be | be + g5 | ba + b1 + g6 | y1.73

Moreover, L = [g7 := 4-bg, gg := 4-bg, g9 :=4-b1] and g10 := by —2-b;. We
obtain the set E consisting of {ei1,...,e10} such that:

e a(er) = y1.71 — y1; e a(e2) = y1.22 — y1.71T2;

e a(e3) = y1.21T2T1 — Y1.2122; eafey) =y .:rlzc% - yl.z%;

e a(es) = y1.7321 — y1.23; * afeg) = y1.23 — y1.2172 — ¥
o a(er) =4-y1.2%; e aeg) =4 y1.7129;

o afeg) =4-yy; e alep) = y2 — 2 y1;

Every element of A is contained in the image of the A-linear span of
the set E under the homomorphism g; in order to construct an A-module
presentation of N in terms of the generating set £ we however need to
introduce relations on the elements of K. The image of the homomorphism
3 induces a congruence relation on the elements of K. Let k1, kg € K, if (and
only if ) B(k1) = B(kz) then we will denote this by

Moreover we will from now onwards denote by “=” the congruence re-
lation on the elements of F which is generated by the image under ¢ :
F — D in N; therefore if ¢(f1) = ¢(f2) for f1, fo € F we will denote this
by

Li=fe
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Since the homomorphism g3 : K — N is surjective there must exist k €
K such that 8(k) = ¢(fy.a) —¢(fv) for v.a ~y U, so in particular there exists
an A-linear combination of e; € E with B(}°11, ej.a;) = ¢(fv.a) — ¢(f7).
In order to specify the notation we set Q(v,a) € K to be an element that
depends on the representative f, € F corresponding to v € ¥, and a € A,
such that
a(Qv,a)) = fo.a— f5

and accordingly Q(v,a) ~ 77", ej.a;. It follows from the definition of
Q(v,a) that the choice of an element Q(v,a) is not necessarily unique. In
a similar way to Q(v,a) we define elements (y;) for the A-module gener-
ators y; € Y of M such that a(Q(y,;)) = i — fp;, where initially in the
MGE-procedure the assignment b; = v(y;) had been made.

Example 6.1.5 In the case of the FExample 6.1.4 we obtain elements ()
induced by the generating set E as follows. The generators ey,...eg are
all of the form Q(bi,z;) as a(QUbi,z;)) = fo,.@j — fo,z;- The generators
er,eg and eg are of the form Q(b;, \) since aex) = a(Q(bi,A) = A - fi,, the
generator ey is of the form Q(y;).

In Chapter 1.2 we have described elements similar to the elements (v, a)
introduced here. Those elements of Chapter 1.2 were considered as elements
of N and they were used to construct a finite generating set for the A-
module N C F. Here the (v, a) are elements of K. We will now develop a
constructive way to express elements §2(v, a), modulo the congruence relation
“~ 7, as an A-linear combination of elements Q(b, x) together with elements
Q(b,A), for b € B¥,z € X and where A € S is contained in the finite set of
the exponents of the torsion-generators of ©.

Similar to the process of prefix-reducing an element v € ¥ modulo gen-
erators of T we can describe the process of expressing §}(v,a) in terms of
Q(b,z) and Q(b,\). As we are given a closed multiplication table after the
termination of the MGE-procedure there exists 7 € (B") such that v.a ~y ¥
for all pairs v € ¥ and a € A and, as the generating set G of T is an MGE-

basis, we have that

*

il ——>

P
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which induces reduction on the respective representatives f, € F by the
image-induced ordering. We give an example where we aim to express an
element f € N as A-linear combination of the images of generators e € F
under « such that f = E;:] a(ej).a;.

Example 6.1.6 Suppose we are given the setting of Example 6.1.4 where
we are given 6 - yl.:r:g —y2.x1 — 2 y1.22 € N. Mapping this to X by x yields
6 x(y1).73 — x(y2).21 —2-x(y1).x2 = 6 -by.x3 — bp.x; — 2 - by.xp € ¥ and by
prefiz-reduction of the respective terms by generators g € G of T we obtain

a3 2.q9.12 A i
6 brad A9 . by ol 28R 9. p 02 29T o pe gy 2980 by + 2By

As moreover bg.:rl Mﬂ 2. bl.ﬁ?l isl‘ 2- b] and 2 - 61.332 ﬁ\ 2. b4 we

can deduce that
6-by.23 —bo.x) —2-b1.72 = go.75 — g10.71 +2- (g6 + 94.72 +g2.(23—1)—g1).

Translating this term-wise into the setting of the representatives f, € N,
where we use that fy, = fop, = 2 f, and where, for example,

e 6 fi,.23 =2 fi,.23 + (b1, 4)).23 =2 fo,.23 + a(eg).z3;

e 2 fr .23 =2 (fo, + (b1, x2))) .23 =2 fo,.23 + 2 a(ez).a3;
we obtain 6 - fbl.a:% — fopt1 — 2 fr,. 2 =

a(eg).z3 — alern).z1 +2 - (a(es) + ales).z2 + ales).(25 — 1) — aler))
and accordingly we have that 6 - y; :1:% —yo.x1 — 2 Y119 =

a(eg).z3 — aern).z1 + 2 - (ales) + ale).z2 + alez).(z3 — 1) — a(er)).

If we obtain the generating set B" of © from the computation of an
MGE-procedure it is possible that the set of generators of © is not clearly
divided into a set of generators of the torsion-free submodule and the torsion-
submodule. Instead we are given the free S-module (B*)s of which © is a
quotient by the S-module A, generated by the elements contained in the tor-
sion sequence L. The output of the torsion sequence of an MGE-computation
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possibly contains elements | € L such that I = 37", \; - b; € (B*) instead
of a torsion element of the form A - b for a single generator b € B*. A Smith
Normal Form computation could be used in order to avoid this situation
and obtain © as the direct sum of a torsion-free and a torsion-submodule.
In that case however we will lose the generating set B* obtained from the
MGE-computation. We will show that we can express an elements a(Q((, 1),
which corresponds to an element [ € L, as the sum of a(2(b;, A;)) for the

summands A; - b; of [. First we note the following:

Lemma 6.1.7 Let v € ¥ such that v ~y T where v = Zfll Ai - b; and
bj # by for all j # k. Then the choice of a canonical representative fz =
fo ~n v (v)) is additive in the sense that Ism ab = Yoirs Foe

Proof. The element f, is chosen as v~ !(m(v)) where ¥ is minimal with
respect to elements of an MGE-basis G of T, then if ¥ is minimal then
certainly each of its summands must be minimal also. On the other hand
suppose that an element 7 is not minimal but each of its summands A; - b; is.
Then fz # 3 iy fa-b:, by assumption we have that b; # by whenever j # k,
thence there cannot be any summands which add up to a (multiple of a )
torsion element. This however implies that at least one of the A; - b; must
be head term of an element of G which is a contradiction to the assump-
tion that each of the summands \;-b; of T is minimal with respect to G. O

In order to provide the setting for showing that an element (v, a) with
a(Q('u, a)) = fy.a— fy.q is contained in the A-linear span of the subset of the
Schreier-generators consisting of elements of the form Q(b,z) and (b, A),

we will first prove a set of lemmata.

Lemma 6.1.8 Let b € B, then Q(k-b,A) =~ Q(b,k - A) — A - Q(b, k) for
KA ES.

Proof. The element Q(k b, A) is defined such that a(Q(k-b,\)) = A+ fep—
Sawb; for abbreviation we set p := A- k. Then A- fop — fup = p- fo — 1+
fb+)"f&-bﬁfp-b = #"fb_’\'a(ﬂ(b: -“8)) —'f,u-b = a(Q(b,,u)) _’\Q(Q(ba K’))
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from which it follows that

Q- b, A) = Q(b, ) — A Q(b, k).

Lemma 6.1.9 Let v € ¥ such that v ~y T =) i ;- b; € (B") and let
k € S, then Qv,Kk) = > 1%, Ubi, k- Xi) — k- Qbi, As).

Proof. The element §2(v, k) is defined such that a(Q(v, n)) =K fo— fow=
k- fo — few; we will again abbreviate p; := k- A;. We insert 7= 7", A - b;
into the equation above. From Lemma 6.1.7, together with the definition of
an element €, it then follows that

K- fsm ot — FE™ b Zﬂ Frichs = Zf,u,b_z QN - b, K)).

i=1
The Lemma 6.1.8 implies that

a(Qv, k) Eia Q(bs, pi)) Zﬁc a(Q(bi, Ai))

i=1

and therefore

Qv, k) ~ > Qbi, i) Zn Q(bs, \i).

O

The last lemma in particular specifies the handling of torsion elements
which are caused by inapplicable coincidence in the MGE-procedure. A
torsion-element [ € L C T, where [ = Ei’i] Ai-bi and HT(I) = Ay, - by, then
gives rise to an element Q(1, 1) € K such that a(Q(,1)) = (Z;”:ll i+ fo,) +
frepwy + HC() - fumq) — furq)- Since HT(l) ~y RED(l) we certainly
have that fyrq) = fRED(I)-

Proposition 6.1.10 For all v € ¥ and a € A an element Q(v, a) is equiv-

alent by “ =~ 7 to an element which is contained in the A-linear span of
elements of the form Q(b,x) and Q(b, \).
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Proof. We will show that for every Q(v,a) with v € ¥ and a € A we
have that a(Q(v,a)) is equivalent by “=” to an element which is contained
in the A-linear span of elements o(Q(b, z)) and a(2(b, A)). From this then
will follow the assumption for the respective elements of X and the relation
“~”. We will regularly use in the following calculations that for every pair
v € ¥ and a € A there exists T € (B%)g such that v.a ~y T as we are in the
situation that a given MGE-procedure has already terminated and produced
a closed multiplication table. In order to prove the claim we will first show

different cases in the following Lemmata:
Lemma 6.1.11 Q(X-b,z) =~ A-Q(b, 2)—Q(b, A).2+Q(7, \) where b.x ~y T.

Proof. The element Q(X - b,z) has been defined such that a(Q(A-b,z)) =
Iao-® = fxba = fap-T — faz. Then

hoz—faa=A-foxz—A-frz+ Hoz—A-fo+A-fo— oo =
- a(Qb,2)) — a(Qb, V) + a(QF, V)

from which the relationship follows. O

Lemma 6.1.12 Q(b,\-z) = X - Q(b,z) 4+ (T, \) where T € (B") such that

b.x ~v 7.

Proof. By the definition of £2(b, A - =) we have that a(Q(b, A-:::)) = A fyx—
fab.z; therefore

a(QB,A-2) =A-frz— A fs+ A fo— fro = A- a(Q(b, 7)) + a(Q(T, \))

and again the relationship follows immediately. O

Lemma 6.1.13 An element Q(b,w), where w € X*\{c}, ts equivalent by

W o B
~

to an element which is contained in the A-linear span of elements

Q(v,z) of elements v € (B")s and z € X.
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Proof. The element Q(b,w) is defined such that a(Q(b,w)) = fow — fow
for w = z1... 2z, € X*. We will use the abbreviations w¥ = z; ...z,, and
v(;y for an element v(;y € (B") such that v(;) ~y b.xy...x; for 1 < i < m,
furthermore we set v(q) := b and wmtl) = ¢

Then fyw = foy = fre10® — fo ) = (fu + (@b, 1)) w® = £,
which again is equivalent to (f”(z} + a(Q(vq) ,272))).’&}(3 + (b, z1)).w® —
fv(my- Pursuing this in an inductive way we eventually obtain that

fb'w - fv(m) = fv(m) + Z Q(Q(v(i—l)! :Ifi ) (+1) _ fv(m)

i=1

and it therefore follows that

m

a(Qb,w)) =) a(Qvgy), z:)) wHY.

i=1

Thus for the respective elements of K we can conclude that Q(b,w) =~
2t vy, 2i)-wlHY. O

Lemma 6.1.14 Let b € B* and E;Il zj. Then

Q(b, Z ‘Tj) - Z Q(b, Ij)
=1 5=1

is equivalent by “~” to an element which is contained in the S-module gen-
erated by the finite number of elements of the form Q(b, k) for b € B* and
KES.

Proof. The element (b, Z L ;) is defined such that o(Q(b, ZJ 1 Z5)) =

ZFI Jo.xi — [ >tz For every pair b € B* and z; € X we know that
%

bxj ~y > Kij- b where B* = {by,... by} and possibly &; ; = 0. There-

fore E;:l ba; ~ ;=1 > ity Kij - bi, and we set X; such that )\ - b; ~v

( j‘:l f‘i',,"j) . bi. Thus

t m
Zb.zj ~ ZA, b
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Using this we obtain that

t t t
aQb, Y &) =D foxi—fust_ o =D o= fym 5.4, =
Jj=1

j=1 i=1
m

t m L m
Z fb.Ij = Z fxi_bi — Z fb..’L’j + Z O:(Q(b.g,i,;)) = Z:\Vg fb
j=1 1=1 Jj=1 i=1 i

Since fy~e . 4 = f5.4, We have that 3 Ia(Q(bs,/\ ) — >, X+ fo, =
>im Q’(Q(bh Ej:l Kij)) — 2ie1 Zj:l Kij * fv;- Moreover,

t t t t
> a(Qb) =3 (fos = fory) = D Fots = D o wugn =
F=1 j=1 =1 =1
t t m
> fomi— Z Z Fogget= Z Frxp = Y (Kig - fo, — a(Qbi, Ki))) =
i=1 7=11=1 j=1 i=1
Zfb T — ZZNU v —I—ZZQ(Q(E}Z,&U)).
i=1 j=1 i=]1 j=1

Therefore it follows that
t m t t
(b, ij =3 a(Q(b,z;) + D («Qbi, Y ki) — D a(Q(bis ki)
j=1 j=1 i=1 i=1 i=1
t m
= Za(ﬂ(b, z;)) — Z (fX,--b;- - Zfﬂi,j-bs)‘
j=1 i=1 j=1

0

We proceed with the proof of Proposition 6.1.10. First we consider the
case of Q(b, a) where b € B* and a € A. By the definition of (b, a) we have
that a(Q(b,a)) = fp.a — fo.o Where a = Y wex+ Aw - w. Since only finitely
many A, are unequal to 0, the element a can be written as a = fo:] Ajrwj.
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Therefore

t
Jo-a — foa = Z/\j +fo-wj — fZ§=1 Ajrbaws =

j=1

Z/\ fbwj ZA fwa+ZA fbwj fZﬂA,bw,E

4=1
ZA - a(Q(b, w;))+2a(nv_?,f\))+zf“,wj st apbang
=1

where we set v; € (B") such that b.w; ~y v;. We also set 7; = 37", K;; - b;
such that ¥; ~y A;j - baw; and moreover v = Y ", A; - b; such that ¥ ~y
Z;’:l > Kij - bi. Thus again A; - b ~y Z:;-:l Ki j - bi. It follows that

Z Aj - a($2(b, wj)) + Z a(Q(vj, A7) + Z Prjboo; = Fst_ ajbw; =

Jj=1 Jj=1
ZA a(nbwj))+2a(n(uj,n +szn,b —Zfz; Y —
_11—

ST (- a(®(b,w)))+

j=1

i
o(2(15, 7)) +z:( namzm -3 (@b i)

and the assumption for (b, a) follows.

We suppose we are given v € ¥ and a € A. Then we have that a(Q(v,a)) =
fv-@— fu.q. As before we know that there exists 7 =Y ;= A;-b; € (B*) such
that v ~+ ©. Therefore

m
fv'a' - fv.a = fE:L. A,;-b" a = fz:’;l )\g-bi.a = Z fa\i'bi'a‘ - fz:?_:l a\,“b@(} =
i=1

ZA  foa— Fxm .\M+ZA ca(Q(bi,a) = Y a(Qbi, N))-a

i=1 i=1 i=1
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We denote by v; the element of (B*) such that v; ~y b;.a. Then v; =
zj 1"{'31 b.?? S0
Z Ai* fora — ST Aibia =

Z/\ fEJ 185 fE:_.l Aie( Ej:l"}'i‘bi}'
i=1

We set 7; € S such that 7; := Y1, A; - ;,. This gives

Z’\ fz Ty Kby fE:J 1T5+b; _Z/\ (an',‘ -b; Zf'fj'bj =
i=1
Z f"'.i bJ Z Z .?tbe +Zf"3, =

Jj=1 j=1

i}“ i~ ZA $ 25, 0)

j=1
and it follows that

Qv,a) ~ Z,\ - Q(b;, a) — Zﬂ(b;,,\)a&

Z( (bj, 75) — Z)‘ Q(b.‘??ﬁ‘i}))
j=1

which confirms the assumption. O

Corollary 6.1.15 Let aj,as € A and v € X. Then
Q('U, al.ag) ] Q(U, al).ag + Q(v.al, ag).

Proof. By the definition of (v, ajas) we have that a(Q(v, a1a2)) = fy.a1a2—

fv.alazu and then f,.a1as — fv,alaz = fy.a1ag — fv.al-ﬂ& + fv.m .ag — fu,alag =
o(Q(v,a1)).a2 + a(Q(v.a1, a2)). Therefore it follows that

Q(v, a1a2) = Q(v,a1).a2 + Q(v.a1,a2).
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6.2 Relations on the Generators of the Submodule

In the previous section we described the generators of K and how the ele-
ments 5(2(v,a)) are contained in the A-linear span of elements (b, ) and
Q(b, A). We will now explain the relations on the elements of X which are
needed in order to obtain a module with generating set E which is isomor-
phic to N e

The first set of relations on the elements of K is induced by the set of
algebra relations of the quotient-algebra P. As before we denote by R the
set of elements of the free algebra A which give the algebra-relations of P.
Since N is a P-module as well, the algebra-relations R must certainly hold
for all elements of a module which is isomorphic to N.

Let b € B* and suppose we are given aj,as € A and r € R such that
as = ay + r. By the definition of the elements 2 we have that «(Q2(b,a1)) =
fo-a1 — fo.a, and a(Q(b,a2)) = fy.a2 — fr.a, respectively, and furthermore
fo-a2 = foay, = fo-a1 + for — fi(ay4+r)- Since r € R we must have that
&(fp.r) = 0 for the respective image under ¢ in D and also that f;,, =
fo.(ay+r) @s certainly b.ay ~y b.(a; + 7). It follows that

Q(Q(bs a?)) = fb-aQ - fb.az = fb‘al - fb.a1 = Q(Q(b, al))
and therefore Q(b, az) ~ (b, a;). We will define a set of relations Z; on the
elements of K such that

Z1 ={Q(b,a1) — Q(b,a2) | b€ B",as = a; +r for r € R}

Example 6.2.1 We will compute the relations of type Z; for the module
stated in Example 6.1.4. At the point of termination of the MGE-procedure

we are given the multiplication table

b.xy b.xo ’}’_l(ﬂ(b))
b1 |bi+91|bs+ g2 Y1
by | by + g3 | be + g4 Y1-T1T2
be | be + g5 | ba + b1 + g6 | y1.23

and L = [4 -bg,4 - bg,4 - by] where g7 =4-bg, 98 =4-by and gg =4 -by and
moreover gio = by — 2 - by. We are given the representatives fy,, = y1, fp, =
y1.7122 and fy, = y1.23 for which we will construct the relations of type Zi.
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In this example we have the two algebra-relations roxy — x129 and xo —
x1x9. These then give rise to the following siz relations on the elements of
X

1. Q(by, zom1 — T122) ~z Qb1,0) = 0 : we have that a(Q(by,zoz1 —

2122)) = f-(T2x1 — T122) = (fo + ale2)).1 — (fi, + afe1)).x2 =
foq + a(e3) + alez).z1 — fo, — a(ea) — a(ey).z2, and it follows that

e3 +ea.(xy — 1) —e.xg ~z 0;

2. Q(bq,:l?g.l‘l = 3:1&,"2) ~Z 0, since 0(9(54,3:22?1 = :1?1;!72)) = fb4.(£{:2$1 ==
z172) = (fos + aleq)).z1 — (fo, + ale3)).z2 = fo, + ales) + afeq).x1 —
fos — a(eq) — a(es).zg it follows that

es + 84.(221 — 1) —e3.z9 ~z, 0;

3. Q(bg, zox1 — T1T2) ~z, 0 = €1 + €3+ €6.(x1 — 1) —e5.22 ~z, 0;
4. Qb1 22 — 122) ~z, 0 = 1.2 ~7, 0;
5. Q(by, x93 — x122) ~z, 0 => e3.x3 ~7z, 0;
6. Qbg, xp — z1x2) ~7z, 0 => e5.29 ~z, 0.

The next set of relations on the elements of K is induced from the follow-
ing. The representative f, of an element v € ¥ is chosen as f, := v~ (7 (7))
where 7T is the element in the congruence class of v which is minimal with
respect to the MGE-basis G of Y. The ordering given on the elements of
JF is the image-induced ordering obtained from an MGE-procedure. As has
been described in previous chapters, it is actually possible that an element
fv = y.wz € F is minimal with respect to the image-induced ordering where
at the same time there is a prefix y.w of y.wz and an element g € G such
that HM (g) = x(y.w) (where x : F —— X). In this case there is a prefix
of f, which itself is not a minimal element.

An example of this is given by a coincidence ¢ which leads to a conse-
quence ¢ such that ¢ ~a c.z. If now for summands b of RED(c) we have
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that b.z is not congruent modulo (A)4 to any element v € (B")s then this
implies that HM (¢).x 4a HM(c).

In such a situation the tracing of a representative f, = y.wz might lead
to linear combinations of generators in E. For f = E:‘_l yi.a; € F we define
an element Q(f) such that a(Q(f)) = 30, a(Qwi)).ai + > iy @(Q(b;, a;)).

Now let e € E, then a(e) € N, suppose that a(e) = > ", y;.@;. Then

a(e) = Za(n yi))-i +Zfb, 4.

i=1
Since )i, :.a; € N it follows that fywn .5 = fsn 4.5 = fo, which also
implies " | fy.a = fo. Accordingly

n mn n n n
a(e) = Zyi-?if = Zyi-ai - Zfb,--ai + Zfb,--?ia: - Zfb,-.a‘- =
n

D aQw)a@i + ) (b, @) = a(Qale)))

i=1 i=1
and it follows that e ~ Q(a(e)). We define a set of relations Z, C K on the
elements of E such that

Zy = {e—Q(a(e)) | e € E}.

We proceed with an example where we compute the relations of type Z; for
the setting given in Example 6.1.4.

Example 6.2.2 We are given the multiplication table

b.zq b.zy ’y_l(?r(b))
by b1+ g1 | ba+ g2 Y1
by [ by + g3 | bs + g4 Y1-T1T2
be | b + g5 | ba + b1 + g6 | y1.23

and the torsion sequence L = [g = 4 - bg,gs = 4 - by, g9 = 4 - by] and
gio = by — 2 - by. Computing relations of type Zy for generators e € E leads

to the following relations:

1. a(e1) = fo,-21— fo, = y1.21—y1; therefore a(Q(a(e1))) = fio, +aler) -
fv,- We obtain the trivial relation ey ~z, ej.
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2. Similarly, a(e3) = fp,.w2 — fi, leads to the trivial relation ez ~z, es.

3. ofes) = fo,-x1 — fo, = V1. T122%1 — Y1.21T2, SO

y1.212071 — y1.2122 = (fi, + aler)).zoz1 — (fi, + aler)) 22
(fo, + ale2)).z1 + a(er).zaz1 — fi, — afe2) — afer).z2 =
Joa + a(e3) + afez).z1 + afer).z221 — fo, — ale2) — aler).z2 = a(Q(a(es)))-

We can conclude that es ~z, es + es.(x1 — 1) + e1.(zoz; — z2) and
therefore that es.(x1 — 1) + eq.(z2z1 — x2) ~z, 0.

4. a(eq) = fo,- T2 — fog = y1.2123 — y1.25 and accordingly

a(eq) = (fo, + aler)) 23 — (fo, + (e2)).z2 =

aleq) + alez).zo + aler).x3 — ales) — aler).z2 = a(Qa(es)))
from which it follows that eq ~z, €;.73.
5. From a(es) we obtain eq.(z1 — 1) + es.(zox1 — x2) ~z, 0.
6. From a(eg) we obtain eq.x9 + eg.(x% —1) —ej.zg ~z, 0.

7. For the first element contained in the torsion sequence we have that

aler) =4 fos =4- yl.x%, thence
aler) =4 (fio, +ale2)).x2 =4 - (afe2).z2 + fos + ales)) = a(Q(a(er)))

from which it follows that e; ~z, 4 - ea.xzg +4 - fo, +4 - e4. By the
definition of e; we have that a(e7) = 4 - fi, and we can deduce that
4. (ez.a:g + 84) ~z, 0.

8. From a(eg) we obtain that 4 - (e + e1.x2) ~z, 0.

9. aleg) =4- fp, =4-y1 : since y; is a module generator it follows that

we only obtain a trivial relation aleg) = y1 = a(Q(a(eg))).

10. a(ep) = y2 — 2 -y only leads to the trivial equivalence

a(e10) = fy, — foy = a(Ua(ew)))-
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We set Z := Z; U Zs. We will now show that we obtain an A-module
presentation for N if the relations Z; and Zs are satisfied for the generators
e € E, namely that

N =(E| Z)4.
By construction of the set Z we know that 2’ = 2” for all 2/ ~z 2" where
2 — 2" € Z. We need to show the other implication, namely if for given
ki, ke € K we have that k; = ko that it then follows that k; ~z ks. We will
show that

1. Qv,a;1) ~z, Qv,as) holds for all v € T if ay = a1 + ¢ where q € I;
2. a(k) ~z, a(Q(a(k))) holds for all k € K.

Lemma 6.2.3 Letv € . Then Q(v,a;1) ~z, Q(v,az2) for allas =a;+q €
A with g € I = (ARA).

Proof: If ¢ € I then g = E e rj.a ! and accordingly a(Q(v,a2)) = fy.as—

.? 19
fvas = fv a1 + fo- (EJ 1 JTJ I) = fo.aq ‘*‘ZJ 1(f1;ﬂ- WL aj fua" ?Ja +
fv_ag.r_,_. i — fualr, .a + foar; @5 = fo.ay- Since a(Q(v, d; )) 0 and also

fm;_,.j = fo =0 for al] 1<:3 5 t we have that

a(v,a2)) = a(Q(v,a1)) + Z Q(vj,75)).a]

where we have set 7; = ) i A, - b; such that vj.a; ~r Uj.
It follows from Proposition 6.1.10 that

m

a(QTj,m5)) = Y (N - a(Qbi, 7)) — a(Qbi, Aij).75)).

i=1
We note here that v.r ~y 0 so it follows that the coefficients £ and 7, and
also the corresponding terms stated in Proposition 6.1.10, all must be zero.
Again we have that o(Q(b;, Ai;).7;) =0, so a(Q(v,a2)) = a(Q(v,a1)) +
Z:-‘:l Yoty Aij - Q(biyj).af. The definition of the relation Z; implies that
Q(bi,rj) ~z 0 for all b; € B* and r; € R and we can conclude that
Qv, a2) ~z, (v, a1). O
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Lemma 6.2.4 Let k € K. Then k ~z, Q(a(k)).

Proof. If k € K then k = EJ 1€j-a; with e; € E. We will show that
a(Q(a(k))) = a(k) from which then will follow that k ~z, Q(a(k)).

We have that a(k) = C'-’(Ej=1
so that a(k) = Y5, (X vi-Gij)-a; = Y7, yi.aj where we set af :=
E;ZI a; j.a;. We have that

ej.aj). We suppose that a(e;) = >0 ; y;i.ai j,

t

a(k) =) ale;).a; = Za(ﬂ(a(ej))).aj =
=1

j=1

Z(ZQ(Q Yi )013 +ZQ(Q(bha.&j )) a; =

J:]_ 1.:]_ 'i"'l

o ‘Q(ya)) Z a;ja; + Z Z b,,?i,;,j)).aj =

i=1 = i=lig=1

n

mn

> a(Qy:).af + Z a(Q(bi, a)) — Z Z o(Q(bi-aij, aj))-

i=1 i=1 i=1 j=1
Since Y, 3 a(Qbidigya) = Yoy a(Xin, Q(bidij,a;) and
ale;) = Y vi-ai; € N it follows for the corresponding elements of ¥
that

n

ZX(yi)-ai,j = Zbi.&}‘j 8 G

i=1 i=1
and therefore fy-n by = fo. We can deduce that

n

a(k) =) a(Qy)-a; + ) a(Q(bi,a))) = a(Qa(k)))

i=1 i=1
and therefore in particular

k ~ Q(a(k)).

Corollary 6.2.5 We are given an A-module presentation
N =(E| 2)a.

with generating set E and the set of relations Z.
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Proof. It has been shown before that E generates N. It follows from Lemma
6.2.3 and Lemma 6.2.4 that for given ki, ks € K with ky = ks it follows that

k1 ~z ko which confirms the assumption. O

We will now give an upper bound for the size of the sets E and Z.

Theorem 6.2.6 Let N be such that My = FIN = D/J'Cf We suppose
that F has a generating set Y of cardinality n and that the set of generators
X of the algebra A has k elements. Moreover we assume that there are
q elements in the set of algebra-relations R, that the set B* of S-module
generators of M has cardinality m, that there are t elements contained in
the torsion sequence L and that we have obtained i < n relations of the
module-generators {y1,dots,yn} =Y. Then N= (E'| Z)a where

e for the generating set E we have that |E| <m - (k+1)+n—1;

e for the set of relations Z we have that |Z| < m - (¢ + k) +t.

Proof. 1f a generator y, € Y is equal to the head term of a relation of Mg,
then y,, depends linearly on the generators y,...y;, where j < u, or it is in
fact trivial all together. In the case that we have obtained 7 = n relations of
this kind we obtain trivial modules D and F, so we can assume that i < n
which leads to i < n generators of the type Q(y) for y € Y.

The multiplication table of the MGE-procedure has m rows correspond-
ing to b € B". Therefore it must have m — n + i rows such that b = y(y.w)
and w € X*\{e}. From the multiplication table we obtain generators Q(b, z)
such that a(Q(b,z)) = fy.x — f, of which there are m - k. If v = b’ ~x bz
then fy.z = f, and Q(b,z) = 0. In the case that the representative f; for
b € B" has been chosen in a minimal way we can therefore conclude that
for m — n + i many b’ € B* we have that fi.z = fy.

However, since we set f, := 7~ !(m(v)) where v is minimal with respect
to the generating set G of T and where we use image-induced ordering on
the elements of F, we cannot necessarily assume that a representative is
minimal (compare for instance Example 6.1.4). Therefore it is possible that
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none of the generators (b, ) is zero, in this case there are at most m - k
generators of the form Q(b, z).

Together with ¢t < m generators (b, A) induced by L and ¢ < n gen-
erators of the form (y;) we then obtain that at most m -k + ¢+t <
m - (k+ 1)+ n — 1 elements are contained in E.

For the set of relations Z; we apply each of the g relations contained in
R to every representative corresponding to b € B*, from which we obtain
that |Zi| = m - ¢, but trivial relations might included.

The set Z; contains elements of the form e — Q(a(e)). Since a module
generator y; € Y does not have any prefixes, and so in particular no pre-
fixes which are non-minimal, it follows that for generators e = Q(y)) we
must always have that e = Q(a(e)) and in this case the obtained relation is
trivial. Depending on the cardinality of the set E we remain with at most
m-k+t<m-(k+ 1) relations of type Zs. O

Example 6.2.7 The module N such that M = D/ﬁ/ for M in Ezample
6.1.4 has the A-module generating set E = {e1,...e10}; the set of relations
Z1 from Example 6.2.1 has size 6 and, as was shown in Ezample 6.2.2, there
are 6 non-trivial relations of type Za. Therefore we obtain a presentation

N=(E|Z1UZ)a
where Z1 = {63+62.($1—1)—61.2¢2, 65+e4.($1—1)—63.ﬂ?2, e1+es+eg.(r1—1)—
€5.19, €1.T9, €3.272, 65.172} Gnd where Z2 = {82.(:121 = 1) -4 €1 .(:1:235'1 — .732), €4 —
e1.23, eq.(x1 — 1)+ eg.(zoz) — T2), e4.$2—+—62.($% —1)—e1.x9,4-(e2.22+€4),4-
(82 - 81.:!22)}.

Remark 6.2.8 Let H be the subgroup of finite index of a finitely presented
group G. C. Sims describes in [41], Chapter 6.1 p.275, the size of a presen-
tation of H in terms of Schreier generators of H. If G has a presentation
with n generators and r relations and where H is a subgroup of indez k in G
then H has a presentation with 1+ k- (n — 1) generators and k - r relations.
Note that for the stated upper bound of both the set of generators as of the
relations the presumption has been used that the representatives of the cosets
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have been chosen in a minimal and therefore irreducible way. In that case,

relations corresponding to relations of type Zs for instance can be omitted.



Chapter 7

Implementation and
Examples

In this chapter we shall discuss the thoughts which went into the planning
and the implementation of the MGE-procedure and we will also present
examples of computations with the MGE-procedure as it is installed in GAP.
Section 7.1: We introduce the strategy of the MGE-procedure imple-
mented in GAP. The procedure handles modules over Euclidean domains.
Since elements of a Euclidean domain S are not necessary invertible, torsion
in a module over S can arise and methods have to be developed in order
to handle such torsion elements. Moreover, also in parts caused by the fact
that elements are not necessarily units, vectors of great length with only few
nonzero entries that can become exceedingly large can occur as part of the
computation.

Section 7.2: We present a few examples of the results of MGE-procedure.
Moreover from these terminated MGE-procedure we construct submodule
presentations with a procedure as described in Chapter 6.

Section 7.3: We complete the chapter with a conclusion.

7.1 Implementation of the MGE-procedure in GAP

In this section we describe the MGE-procedure as it is implemented in GAP.

This implementation mainly uses the procedures as they were presented in

157
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Chapter 4; we highlight where it deviates. Moreover we also specify and
explain in closer detail certain features of the procedure which were not
mentioned in Chapter 4. We shall now describe the strategy of the MGE-
procedure in GAP.

7.1.1 Strategy

When we consider M as a P-module, then by assumption M and P are
finitely presented and therefore M has a finite set of module-relations which
we denote by U, and moreover a finite set of relations R of the algebra P.
We assume that M is isomorphic to a finitely generated S-module. The
MGE-procedure works in the following order:

1. A table with rows by,...,b, is initialised. Each row corresponds to a
possible S-module generator b € B(g) and By is a set in bijection to
the set of P-module generators Y’ of M.

2. An empty coincidence stack Cp is initialised.

3. If not all elements of the ring S are invertible, then an empty torsion

sequence L is initialised.

4. By tracing their image in 3, the coincidences caused by the module-
relations U C F of M will be computed and processed.

o

. We now interleave the following two types of steps until “L” no longer
appears as entry of the table.

(a) Certain coincidences caused by the finite set of algebra-relations
R will be traced, computed and processed: we will compute the
coincidences obtained from b.r for all b € B* and r € R. These
correspond to a certain finite subset of the set Rels, namely the
set of those elements y.wr with vy(y.w) € B™.

(b) For every I € L we will compute [ x z for all z € X and these

elements will be added to the coincidence stack.

6. We finally check for closure of the torsion sequence by completing any

remaining steps of type 5.(b).
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7.1.2 Storing Elements

Storing Elements of (B)g

At all times we work with elements of the free module F in order to obtain
S-linear dependencies between these. Whenever an element f € F is needed
in the course of the procedure, for instance if it is a relation or the prefix of a
relation, we aim to express it in terms of the free module (B)gs. The elements
of this are called vectors. Whenever necessary, an element b € B\B is
assigned to a prefix y.w of a summand of f. If the MGE-procedure terminates
then a finite number of such assignments have become necessary. This leads
to a finitely generated free module (B) and every b; € B = {by,...b,}, with
b; := y(y.w), is a vector of length n with b; = [0,...,1,0...0] where the
entry 1 can be found at the i-th position.

The vector-form is used to store the elements of Cp, L and the entries
of the table T If it is expected that a module M will lead to phases in the
procedure where big generating sets B become necessary and therefore large
vectors have to be handled, an option to handle specially vectors that are

sparse is available.

Elements of T

Whenever a box prod(b,z) or r, of T' has been filled it contains a vector
v € (B) (not necessarily (B*)g). If a box has not been filled it contains
as entry “L” which is a symbol for empty or unknown. This symbol is
represented by the GAP object fail.

Storing elements of F

In the MGE-procedure we consider the P-module M as a module over the
free algebra A where it is a quotient-module of the free module F with
generating set Y. We store preimages of b € B* in the multiplication table.
Each b € B" either corresponds to a module generator y € Y or has been
defined as the image of a prefix p]r under the map p. Since every such prefix
p|r is of the form p]r = y.w for y € Y and w € X* we can present v~ (b) as



CHAPTER 7. IMPLEMENTATION AND EXAMPLES 160

a list
[ya [Ih i rmy xt]]

stating the module generator y and the word w = z1...z;.

7.1.3 Root Procedure

While tracing the image of a relation, the MGE-procedure accesses certain
entries of the multiplication table. For reasons of performance those entries,
which are vectors v € (B) are not adjusted immediately after a generator
b € B" has been deleted. Therefore when a prefix v = prod(b, ) has been
found such that v # u(v), we have to replace v by its undeleted image. This
so-called Root procedure is a recursive process as we define the undeleted
image as
= b; if b; € BY,.
wow =3on{ el
Whenever we find in this process 7, # u(rp,), the entry 7, in the table will
be replaced by u(rp,) immediately.

7.1.4 The Handling of Torsion Elements

As has been described before, possibly arising torsion elements lead to in-
applicable coincidences. Whenever a coincidence ¢ with b = HM(c) is
found, we aim eventually to replace the S-module generator b € B" by
HC(c)™! - RED(c). This however is only feasible if HC(c) is an invert-
ible element of S. We therefore distinguish between applicable coincidence
(HC(c) is invertible) and inapplicable coincidence (HC(c) is not invertible).

When coincidences are first detected they are stored in a stack Cp, irre-
spective of the fact that they are applicable or inapplicable. Only when the
coincidences stored in Cp are inspected, using CLEARING COINCIDENCES,
will the handling differ and inapplicable coincidences will be inserted into
the torsion sequence L. This sequence is an ordered list and for the handling

of the elements of L we need mainly two routines:

1. The inserting of new inapplicable coincidences into L;
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2. Ensuring that the A-module closure of an element [ € L, with respect
to all algebra-generators = € X, has been taken into consideration as

a possible further coincidence.

For a detailed description of the procedure of inserting inapplicable co-
incidences into L compare Section 4.1.2, p. 87.

The ordering on the elements of L is not necessarily compatible with the
second routine of A-linear closure of elements of L. As was pointed out by
J. Miiller in private conversation, if we follow the given ordering by head
terms for computing the A-module closure, the closure of the elements at
the first position of L will be computed and information which should be
obtained from linearly closing inapplicable coincidences with smaller head
monomials possibly omitted. Computing the A-module closure of [ € L
possibly involves new definition steps, the resulting elements ¢, ..., ¢, will
be stored in Cp and be processed. In the case that a ¢; is an inapplicable
coincidence, ¢; will again be inserted into L. If HC(¢;) > HC(I;) for all [; €
L then ¢; will be inserted at the first position of L. This might subsequently
lead to a loop if the procedure for A-module closure computes with those
elements stored at the beginning of the sequence. Instead we will introduce
a second ordering on the elements of L. This ordering shall depend on
the point of insertion of elements, and the A-module closure of L shall be
computed using this ordering.

Since the ordering by head monomials of elements of L plays an im-
portant role in the handling of the inapplicable vectors we will ensure that
the information of the deleting of an S-module generator will be applied
to the elements contained in L immediately, in contrast to the elements of
Cp. It is an essential part of the proof of correctness that we are only given
elements in L which are contained in (B*). Moreover we must ensure that
only coincidences which are inapplicable are contained in L. Therefore, when
an applicable coincidence ¢ with HM(c) = b occurs we will then scan the
elements of L to see if they contain a summand generated by b. If so the
respective element will be replaced by its undeleted image.

To be precise, if we apply an applicable coincidence ¢ we will check

the elements of L to see if the vector b = HM/(c) generates a non-trivial
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summand of an entry [ € L. If so, and if this summand is not HM(l) itself
we then will replace I := u,(l). If, however, HM(c) = HM(l), then we
will remove [ from the list L altogether. We will add [ to C'p where it will
be processed as a coincidence at a later stage again. Only then will the
procedure be able to decide if u(l) is an applicable coincidence or not.

The Euclidean algorithm

An algorithm for computing the extended Euclidean algorithm can be found
in GAP. This algorithm is used in the routine HANDLING INAPPLICABLE
COINCIDENCES. For an entry [ € L and inapplicable coincidence ¢ with
HM(l) = HM(c) it computes the greatest common divisor p := s1- HC(1)+
s9- HC(c), the coefficients s; and sp and moreover coefficients ¢; and t5 such
that ¢; - HC(l) + t2- HC(c) = 0.

7.1.5 Lookahead

Different strategies have been developed for coset enumeration. The MGE-
procedure is based on the HLT-strategy, developed by Haselgrove, Leech
and Trotter, see [20, 44, 9]. The HLT-strategy for coset enumeration can
be interpreted in the sense that the main objective is to obtain coincidences
as quickly as possible, even if it is to the cost of having to make many
definitions in order to assign names to new cosets. Other strategies in coset-
enumeration try to avoid new definitions when possible and deduce possible
coincidences of cosets by using the two-sided search. For instance in the
Felsch-strategy [14, 9] every new definition is followed by a scan of the whole
multiplication table in order to check if further coincidences can be deduced.

In the case of the MGE-procedure we handle right modules, that is the
action of the algebra on the elements of M is from the right hand side, so
the search for coincidences in an MGE-procedure can only be a one-sided
approach. Moreover, as the generators = € X of the algebra P are elements
of a monoid X*, a generator x can only be considered to be invertible when
there are elements r;, = z.2’ = 1 and r;, = 2’.z contained in the set of
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algebra relations R; a deduction of the form
bjxx = bj — bj*x_l =b;

can only be made if relations as above are given. It follows that coincidences
in the MGE-procedure must mainly be obtained by a full search, similarly to
the HLT-strategy. This implies that generally many more definition steps
take place compared to, for instance, a Felsch strategy and consequently
a HLT-strategy can lead to a fast increase in the use of memory-space.
In the case of coset-enumeration, the so-called lookahead method has been
developed (described for instance in [9]). Lookahead methods mainly aim
to combine periods of HLT-strategy with periods of intensive search of the
multiplication table for possible deductions.

A version of the lookahead method is used in the MGE-procedure in
order to detect those coincidences which already lie in the S-linear span of
the so-far defined generators but which otherwise might have been found
only at a later stage after many further definitions might have taken place.
Phases where many definitions take place and where the table grows quickly,
possibly followed by phases of many collapses when coincidences are found,
are avoided this way.

The MGE-procedure, as it is implemented in GAP, begins by examining
all the module-relations which then are added to C'p and eventually are
processed. Then, for each b € B, beginning with b; and following the
ordering given by the indices, every algebra-relation » € R will be applied
to b. After a certain number of definitions (the definite number has been
decided on a priori) the lookahead mode is called.

This leads to scanning the remaining rows of the table for possible co-
incidences without any further definitions in order to obtain coincidences.
Accordingly, such a search is not necessarily full and only in some cases
will new coincidences be obtained. If however coincidences have been found
then this means that memory space has been saved. In particular in the
case where a coincidence is caused by an algebra-relation applied to be B
with comparatively big index it is likely that unnecessary definitions have

been avoided.
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Subsequent to this call of lookahead the normal search for coincidences
will proceed, applied at that generator b € B* (in the case that b has not been
deleted in the meantime) and that relation where lookahead had initially
been invoked.

Note that there is an important difference between lookahead in coset
enumeration and that in the MGE-procedure. If in a coset enumeration a
coincidence is found this leads to setting cosets g;; and g;, equal. Suppose
that g;, is the one which is going to get deleted (gi, > ¢i;). Only in the
case that cosets g;; have been assigned to both the products g;;.x for j €
{1,2} and a group generator z, does such a coincidence above lead to a
consequence. If only g;, := gi,.x has been assigned then we can simply
deduce that g;, ~ g;;.z. Then the process of computing a coincidence does
not lead to a new definition step.

This is substantially different to the way coincidences are handled in
the MGE-procedure. Here, whenever we find an applicable coincidence ¢ =
i1 Ai - b, we have b,, = HM(c), if b, xz € (B) and then computing
the according consequence c x x might lead to many new definition steps.
Therefore in order to handle the consequences of applicable coincidences we
must allow that further definition steps can be made in the lookahead mode
of the MGE-procedure.

In the current implementation of the MGE-procedure in GAP the looka-
head procedure is called for the first time after 10 definitions have been
made, thereafter every time the length of the table doubles. If the length of
the table exceeds 500 then it will be invoked again after 500 definition steps
have taken place.

7.2 Examples and Runtimes

We present the results and runtimes of some examples the presentations of
which can be found in the appendix. The main problem has been found to
be exceedingly large entries of the torsion sequence but also large entries of
the multiplication table.

The second column of Table 7.1 on p.165 states the length of the multipli-
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Table 7.1: Examples of Performance of the MGE-procedure
module total “rank” of | Length | del. del. runtime
length of T' Mg of L lookahead

My 13 (39) 2 1 11 0 0:00:00.020
M 321 (2121) 0 0 265 56 0:00:00.990
Mo 14 (40) 3 3 8 3 0:00:00.020
M 177 (1684) 2 0 160 15 0:00:00.340
Mj T ? ? ?

M3 11 (35) 2 0 9 0 0:00:00.010
My ? ? ? ?

My 18 (40) 2 0 12 4 0:00:00.020
M) 177 (1051) 0 0 51 126 0:00:00.370
Ms 17 (55) 4 0 13 0 0:00:00.020
Mg 14 (45) 3 0 11 0 0:00:00.020
My ? ? ? ?

My 26 (109) 2 0 15 9 0:00:00.040
M, 388 (1153) 0 0 58 330 0:00:00.600
Mg 16 (47) 3 0 13 0 0:00:00.010
Mg 122 ( error) 4 4 42 76 0:00:00.940
Mg 2060 660 0 710 690 0:00:30.630
Mo 3022 720 60 748 1554 0:01:57.910
My 7083 720 0 2778 3585 0:04:42.140
Mis 1703 163 103 39 1501 0:06:44.470
Mis 617 70 0 250 297 0:00:04.860
My 10369 826 0 951 8592 5:59:25.060
Mais 2687 289 109 584 1814 0:20:09.280
Mg 2381 272 272 72 2037 0:01:17.860
Mz 166 1 1 20 145 0:50:54.630
Mg 7527 2448 0 2956 2123 0:09:18.290
Mg 2984 544 544 34 2406 0:18:25.810
Mg 2125 264 0 1288 573 0:10:48.220




CHAPTER 7. IMPLEMENTATION AND EXAMPLES 166

cation table. This corresponds to the total number of definitions which were
necessary in order to compute the S-module generating set of the respective
module. The numbers enclosed in brackets are the numbers of definitions
necessary in an earlier version of the procedure.

The third column, titled with “rank” of Mg gives the number of gen-
erators which were found to be necessary at the point of termination. This
number differs from the usual definition of the rank of a module: in this
case we mean the number of the generators of the free submodule together
with the generators of the torsion submodule.

The fourth column gives the length of the torsion sequence and therefore
the number of torsion generators of the respective module. The columns
five and six state the number of generators which have been deleted in the
course of the procedure: the column “del. lookahead” gives the number of
generators which have been deleted in the Lookahead mode, the column
“del.” the ones which have been deleted in the normal mode. The last
column states the time needed in order for the procedure to terminate which
is measured in “hours: minutes: seconds. milliseconds”.

The rows where as results question marks are given have been obtained
from computations of modules of derived sequences of polycyclic groups. In
the given cases the MGE-procedure had not terminated after 10 hours. As
the numbers produced by the respective computations had been large the

procedures had then been interrupted.

Large Entries

From the above we can see that some of the procedures take much longer
for the computation where the respective sets of generators do not appear
overly large. The reason for this are often the numbers the procedure has
to handle. These large numbers can be found in the torsion sequences but
also in the matrices that describe the action of the generators z € X on the
S-module generators. We have chosen only some of the modules above to
show entries of the respective sequences and matrices. In Table 7.2 we give
examples of largest entries found in the respective torsion sequences of some
of the modules of Table 7.1.
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In Table 7.3 we state the largest entries found in the matrices of some of
the modules of Table 7.1. Since Mj7 is a P-module, where P is generated
by four elements, we state in Table 7.3 the entry of each of the matrices
describing the action of the respective generator. As can be seen in Table
7.1 the computation of the generating set of M7 took comparatively long.

Table 7.2: Torsion sequence entries

module | Length | maximal
of L Element
Mo 60 177146
Mis 103 3
Mis 109 3
Mg 272 19682
Mz 1 2
Mg 0 -
Mg 544 2

Table 7.3: Matrix entries

module | “rank” of | largest
Mg element !

My 4 104

M 17 1 10 158324
M 17 1 1060744
M 17 1 10167945
M 17 1 10171342
Mg 544 -280348

Computing Submodule-Presentations

In Table 7.4 we show the result of the computation of presentations of sub-
modules N; which belong to some of the modules M; from Table 7.1. The

IThe largest element by absclute value
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second column gives the number of generators of the module N; and the
third column states the time necessary for computing these generators. In
columns four and five we state the size of the sets Z; and Zy respectively.
In the last column we state the runtime of the computation of the relations
Z1 U Zs.

Table 7.4: Submodule Presentations

quotient | no. of submodule | runtime | size of | size of | runtime
module generators Z1 Zo
Mis 728 0:00:01.510 | 2601 460 | 0:00:25.280
Mg 499 0:00:01.860 | 918 466 00:14.890
Moo 1322 0:00:07.370 | 8976 10 0:23:40.660

7.3 Conclusion

The main bottle-neck in the MGE-procedure seems to be the exceedingly
large numbers which are possibly produced in the course of the compu-
tation as entries of the multiplication table and of the torsion sequence.
With respect to the torsion sequence, tests have been made using the LLL-
algorithm (for a description of this algorithm see [22]). Unfortunately it has
been found that this algorithm does not necessarily improve the performance
as part of the HANDLE INAPPLICABLE COINCIDENCES procedure consists of
ordering the entries in a certain order which then negates the effect of the
LLL-algorithm.

It is very likely that the MGE-procedure can be extended to the case of
modules over general Euclidean domains and even principal ideal domains.
Theorem 1.2.1 has been proved for such modules. Moreover, in the case
of ideals of a principal ideal S the greatest common divisor of elements
K, A € S is that element u € S such that (k,A) = (u) for the respective
ideals generated by these elements.

So in the case that certain computability conditions are satisfied by the
PID, for instance that the GCD not only exists but can be computed as

well, inapplicable coincidences could possibly be handled in a similar way.
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The MGE-procedure however has been implemented in GAP only for mod-
ules over Euclidean domains, therefore this has not been thought through

completely.



Appendix A

Presentations

Presentation M; up to Mgy

The example M; corresponds to the FpExamples(2, 4) from the IPCQ-
package of GAP;

M corresponds to FpExamples(2, 10);
M3 corresponds to FpExamples(2, 11);
M4 corresponds to FpExamples(2, 12);
M5 corresponds to FpExamples(2, 13);
Mg corresponds to FpExamples(2, 14);
M7 corresponds to FpExamples(2, 15);
Mg corresponds to FpExamples(2, 16);

Mg corresponds to FpExamples(3, 4);

If modules have been denoted M. and M/ then they have been obtained
from the first step, or respectively the second, of the derived series.

Presentation Mg

This example has been translated into the setting of modules and has been
obtained from the presentation of PSLy(11) | E as in [39]. It has the

170
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module-presentation:
Mo =(y)p, P=(z1,22,23| R)z

where
R= {I1.1r3 — 1,:1?3.:1?1 — l,ﬂf%l o 1? (221.:122)3 = 1,

(x}.z0.23.20)% — 1,23 — 1}.
Moreover we set
Mio = (y1,92 | 3-y2.21 — Y1) P-
Presentation Mi;

This is a presentation of La(8) (see the Atlas [11]) translated into the setting
of algebras with an additional module-relation:

My = (y|yxz1—y)p, P :=(z1,v2,23,24,25,%6 | R)z;

where R := {z1.24 — 1,24.01 — 1,20.25 — 1, z5.20 — 1,
. 11 5 4 4 2\3 2\2 3
z3.xe—1, vg.23—1, 27 —1, 251,251, (27.25)° -1, (z2.25)*—1, (z1.22.23)° -1,

:65.:121.332.3:3 — 1,2?5.:1:2.:1?3.22% — 1}

Presentation M,

This is a presentation of As translated into the setting of modules. The

module M is of rank 3 and has further module-relations:

Miz == (y1, 92,93 | y1.21 +2-y2,3 - y3)p, P := (z1,%2,3,24,5,%6 | R)z;

with algebra-relations R := {((ziz;)? —1V1<i#j <3,

3 -1, 5 — 1,25 —1}.



APPENDIX A. PRESENTATIONS 172

Presentation M3
A presentation obtained from S. Linton:
Mis=(y)p, P =(z1,72,23,74,75 | R)z
which is a standard example for tests for commutative Grobner bases.
R := {ziz; —z;z;V1 < %,j < 5,21 + 2o + 23 + T4 + 5, T172 + ToT3 + T3T4+
THT5 + T5T1, T1T2T3 + ToXT3T4 + T3T4X5 + T4T52) + T5Z1X9,

T1T2T3T4 + ToT3T4T5 + T3T4T5T] + T4T5T1T2 + T5T1T2XT3L4, T1T2T3T4TE — 1}
Presentation Mjy
A presentation obtained from S. Linton:
My = (y)p, P ={(x1,22,3,%4,%5,%6,27 | R)z
which is a standard example for tests for commutative Grébner bases.

R=A{ziz; —z;2;V1 <i,j £, 21 + 29 + 23+ 24 + 25 + T + 27,

6 5
Z TiTiy+1 + T2y, Z TiTiy1Ti42 + TeT7T1 + T7T1T2,
4

Z TiTi+1Ti4+2%i+3 + T5T6L7T1 + TeT7Z1T2 + T7T122T3,
i=1
3
Z TiTi4+1Ti+2Ti+3Ti44HT4T5T6L7T1HT5TETTTI T2+ TeT7T1T2T3+T7T1T2T3T g,
i=1
T1T2T3T4T5Le+HTT3TL4T5TELTHTZTAT5LELTL] HLAL5T6L7T1L2+HT5T6T7L1T2L3+

TeT7T1T2TIT + T7T1TRTITLTS, T1T2TIT4L5T6L7 — 1}
Presentation M5

This is a presentation of Az translated into the setting of algebras, the
module M is of rank 5 and has further module-relations:

Mis = (y1,92, 93, Y4, Y5 | y1.21+2-92,3y3)p, P = (21,22, 23,24, 25,76 | R)z;

R:={((ziz;)* — V1 <i#j<3,a} - 1,23 - 1,23 - 1}.
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Presentation Mg

This is a presentation of L2(17) translated into the setting of algebras. The
module M is a module of rank 1 over this algebra and has additional module-
relations:

Mg = (y | y.zoz122 — 3 - y)p

P =lay, x5 | x? -1, 9:% —1,(z129)* — 1, (:r%xg)S - 1)z;
Presentation M7

The given algebra-presentation is a presentation of L3) translated into the

setting of algebras.
Miz=(y|U)p, P =(x1,29,23,24|R)z

The module M is a module of rank 1 over this algebra and has additional

module-relations:
U = {y.(z17971)*—y.2om1, y.21+y.2i+y. 23 +y. 2 —y.20—y.23, 29, y.(2172)*—y.2321 }
R:=z;xiy9—1forie {1,2},z;.xi_0—1forie {3,4},25 — 1,23 — 1,

(z122)! — 1, (@222)* — 1, (2320)® — 1, 22 (x02220) 2day2d 23220y — 1

Presentation Mg

The given algebra-presentation is a presentation of Lo(17) translated into

the setting of algebras.
Mig = (y1,92 | U)p P =(z1,22| R)z

The module My is a module of rank 2 over this algebra. The algebra has

relations
R= {.’.'Cg = 11 (.1’1222)4 =t 1) (x%:r?)?: = 1$ x? = 1}!

the module has the additional module-relations

U={p22—mn+3-u1 -33%, Y1.21 + Y1.21%2 + Y1.21Z2T1 + Y.T2Z1 + Y1.21 }.
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Presentation Mjg

The given algebra-presentation is a presentation of Ly(17) translated into
the setting of algebras. The given module is of rank 1 over this algebra,

Mg =(y |U)p P=(z1,22 | R)z
The algebra has relations
R= {23 —1,(z125)* — 1, (x222)® — 1,23 — 1},
the module has the additional module-relations
U:= {y.(:::g:c%)3 -3-y;yx1—y+3- y:r:rf’}
Presentation My

Mao == (y1)p, P = (21,22, 73,24, 25,76 | R)z(17);3

R = {x 24,2471, T2 T5, T5 - T2, T3 T, T6- L3, 1621 + 2121, 16 - 24 + 74 - 24,

16 - 29 + 29+ 29,16 - x5 + x5 - 5,16 - 3 + 23 - T3,
16-z6+xg - xg, 1 -6+ 1626 21, 3-T4+16-4-23, £1-3+16-23-71, 16-24- 26+ 26 T4,
9-214+8 29+ 112446254+ 7 21 244+ 10- 20 - 25+ 7 x4 - 21+ 10 - 25 - T2+
2-z1-z90-21+15 212924+ 15 2125 21+ 231 - T5 - T4+
15- 2921 - 29+2- 2021 T5+2 20240+ 1520 - 24 25+ 1514 - T2 - T1+
2Ty Ty Tyg+2 14251 +15 24 25 T4 +2 -5 2120+ 15 25 - 21 - 5+
15-25-24 - 20+2 25 -24-25,5-214+12- 20 +9- 24+ 8- 25+ 15 21 - 24+
13 29 x4 +15- 2925 +2 - 2471 +4-25- 21 +2 25 - 20+ 321 - 29 - 21+
3.2y 29 24+ 14 21 -25-21 + 14 - 21 - T5 - T4+
14-z9 -1 - 29+3 2921 25+ 3 2924 -T9+ 14 -39 - 24 - T5+

14 -z4 29 21+ 1424 20 T4 +3 3425 21+ 3-24 -5 - T4+
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14-z5-z1-xo+3-25¢1-x5+3 5240+ 14-x5- 245, 31+ 14-20+14-24+3-25+12-21 x4+
4-29-c4+9 29 25+8 x4 21+13-25-c1+5 25 20+12- 12921 +16- 2129 - 24+
511251421 T5T4+5 T2 x1T2+12- 921 25+12- 20 24 T2+5-29-T4-T5+5 Ty T2 T 1+
Ty o xy+12- 2452141624524+ T5-T1 20+ 162521 -5+ 16-25-24 -0+ x5 T4 5,
5214122949 2448 254+ 2. 21 24 +4 21 25+ 2 2925+ 15-24 - 21+ 13- 24 -T2+
15-25-20+3 212921+ 14 27 - 29 - 24+
142125 - 21+3 27 2524 + 14 - 29 - 1 - T2+
14 2921 25+3 29024 - 20+3 2224 -T5+3 x4 2221+
14 -z4 29 24+ 1424 - T5 - T1+
3-xy -5 24+3-25 T1 294+ 3-75 71 - TH+

14 -25-24-20+14-25-24- 25,4 21+ 13- 20+4- 24+ 13 - x5+ 11 - 21 - 24+
4z 25+ 13 29 24 +6 29254+ 1124 21+ 13 - 24 - 290 +4 - 25 - 21+
6-25-20+16-z1-20-21+10-21 2924+ 7 21 x5 21 + 21 25 -4 + T2 T To+
T-zo-21-25+10-20-24- 29+ 16-29 - 24 - 25+ 10-24 - 29 - 21 + 1624 - T2 - T4+
T4 Ts5T1+ 7Ty T5 T4+ 7 2521 T2+ 2521 T5+16-T5-T4 -T2+ 10 25 -24 - T5,
1221 +5 - 290+8 x4 +9 25+14 21 24 +4- 21 25 +8 29 - 24+ 8- 22 - x5+
924 21 +13 24 -294+9 2521 +3 25 - 20+ 14 -1 - 29-21 + 3 21 -T2 - T4+

12-2y-25-214+6 -1 25 - 24 +3 2921290+ 12- 29 - 21 - T5+

5.9 xq-x9+14 -39 24 -T5+5-Tg-20 71+ 11 -24 79 - TY4+

3-zy-z5-21+14- 2425 24+ 14 25 21 20+ 625 -1 - TH+

11 - 25-24 -9+ 32524 - T5, |
3z +14-29+14-24+4+3-25+8 2124+ 13 21 - 25+
S5.x9-x5+12- 24 -1 4+4 24 -T2+ 9 25 - 20+ 1221 - 29 - 21+

5.2y 2o 24 +5-z1-x521+12-21-25 24+ 522 21 - T2+
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To Ty T5+ 12202429+ 16-To-24 - T5+ 16 T4 - To -1 + 34 - T2 - T4+
T4-T5-x1+16-z4-25-24+12 2521 20+ 16 25 01 - T5+ 525 24 - To+ 25 T4 - T5,
12- 2145 29+4+8 - 24+9 - 254+9 21 - 24+9 21 - z5 + 13 - 29 - 24+
3-xz9-x5+14 24 71 +8 2420+ 4 25 T1+
8. x5 29+
142129 21+ 5 21 -T2 - T4+
1221 25 21 4+3-21 0524 +3 2921 - T2+
14-2z9-z1 -5+ 5 2024 20+ 11 - 29 - 74 - T5+
3:xqg-xo-x1+ 1124 T9 - T4+
6-z4-x5-x1+14-24-25-24+12 251 -T2+ 6-25 -1 x5+ 14 2524 - T2+ 3 2524 75,
11-21+6-20+3-24+14-254+2-21-24+9-21 - 25+ 8 2024+ 152054+ 2 x4 -1 +8 24 0+
92521+ 1525294+ 10- 212921+ 1021 29 - 24 +6 -1 - T5-T1 + 21 - T5 - T4+
T-zo-x1xo+T-x9-x1-T5+11-T2-24-20+16-29- 24 -x5+10-24 -T2 -21+15-24-To-T4+
2425 %1+ Xq T5 x4+ 72521 - T2+

2-x5-x1-25+16-25 -4 -T2+ 16 - 25 - 74 - T5,
9-294+8-z3+11-254+6-26+7 20 -25+10-23-26+7 2500+ 1026 23+ 2-20-x3-To+ 1520 13- 15+
15 x9 - xg -:rg+2-m2-ms-ms+15-:z:3-:::2-$3+2-$3-x2-3:5+2-m3-ms-x;ﬁ-

15 - x3 - x5 - T+

15:-z5-z3-20+2- x5 23 -5+ 2 25 -6 To+ 155 26 - 5+2 76 -T2 T3+ 15 -5 T2 - T+
15z x5 x3+2 26 x5 16, 5 x2+12-23+9 2548 2+ 1520 x5+ 13- 23 x5+ 15-13- 6 +2- 25 -T2+
4-xg-c9+2-x6-23+3 x93 T+ 3-x0-23 25+ 14 29 26 -T2+ 14 -9 - T6 - T5+

14-z3-290-23+4+3 23 - 29 26+ 323 - 5 - T3+

14-z3-z5- 26+ 14 25 23 - 29+ 1425 - 23 - 25 + 3 - 5 - Tg - T+

3-x5-26 -5+ 14 -26-20-23+3-26-T9-26+3-26-25 -3+ 14 - 26 - 75 - TG,
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3xo+1d-z3+14-2543-w6+12-29-x5+4-3-25+9 2306 +8 x5 29+13-26-22+5-26-T3+
12-z9-23- 20416 -9 -23-25+5-29-26-To+ 2o - T6-T5+5-23-T9-x3+12- 23 29 -T6+
12-23- 25 -23+5 23 25 26 +5- 25 23 -0+ 2523 -5+ 12-25-26- 29+ 1625 76 -5+
Tg-xo-x3+ 16 - 26 -T2 26+ 16 - 26 - 5 - T3 + X6 * T5 * T,
519412234 9-25+8 26+ 2-x9-25+4-x9-x6+2-23-26+15-25-x9+13-25-23+15-2¢- 23+
32023 20+ 14- 2923 25+ 142976 -T2+ 3 - To-Tg -5+ 14 - 23 - T9 - T3+
14-z3- 2926 +3 23 25 -3+ 3 23 25 26+ 3 25 -3 -2+ 14 -5 - T3 - T5+
14-25 -2 20+ 3 2576 T5+3 26 -T2 T3+ 3 -6 T3 w6+ 14 26 x5 23+ 14 -2 - 75 26,
4-T9+13-23+4-25+13-26+11-29-x5+4-20-26+13-23-25+6 23 26+ 1125 - 20+13-25 w3+
4-26-294+6-26- 23+ 16 29 23 -9+ 10 29 23 -5+ 7 29 - Tg -T2+ T2 -Tp T5+
T3+ To - T3+
T-x3-xo-x+10-x3-T5-x3+16-253-25-26+10-T5 T3 -9+ 16-T5 305+ T5 - T6 T2+ 7 T5 T T5+
T-x¢ T2 T3+x6 To Te+16-26-25-23+10-26 75 76, 12:29+5-234+8-25+9-26+14 -9 -z5+4-T9-T6+
8-x3-x5+8-x3-w6+9 x5 x0+13- 2523+ x5 220+3-26-x3+14-29-73-20+3-29-73-T5+
12-z9-xg-x9+6-29 26 x5+3 23 -9 -x3+12-03-29-26+5 23 -T5-x3+14-x3 -5 -6 +5-T5-T3-To+
11-z5-x3-x5+3- 25 2629+ 14-25 26 x5+ 14-26- T 23+ 6-26-xo -2+ 11-26 x5 -23+3 2625 26,
3xo+14-23+14-25+3-26+8 20 25+ 13- 2926+ 5 23 - 26+ 12 - 5 - T0+
4-z5-23+4+9 26 23+ 12 29023 -9 +5-29 23 -5+ 5 T2 6 T2+
12z -zg- x5+ 53 To -3+ T3 -To T+ 12 23 -5 T3+ 16-23- 526+ 16 2523 -T2+
T5 T3 Ts5+ 25 -Tg-To+ 16 x5 26 - 25 + 12 26 - T2 - T3+
16-zg-29-T6+5 w6 T5 T3+ T x5 6, 12:00+5-23+8 2549 -2+9-x9-25+9 29 26+
13-z3-254+3-z3-26+14-25-29+4+ 8- x5 -x3+4 -x6- 22+ 8-x¢-x3+ 14-29- 23 -T2+
5-ro-x3-w5+12-x9-6-T9+3- 29 T6-T5+3 23 x2-T3+14-23-T0-T6+5-T3-25- 23+

11 23 25 -26+4+3 x5 - 23 - 20+ 1125 -23 25+ 6 25 - 26 - T2+ 14 - 25 - T - T5+
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12-x6 29 -23+6-x6-22-Te+14-26-T5-23+3 -6+ 25 26,11 -T2+ 6- T3+
3-25+14-26+2- 20 -25+9 29 -6 +8-x3-25+ 15 23 - T6+
2.x5 79+ 8-25-23+9-26 -9+ 15 26 - T3+
10-z9-23-72+10-T9-23-25+6-T2-T¢ T2+ T2 -6 x5+ 73T x3+T-23-T2-Te+11 w3 75 T3+
16 - 23 2526+ 10 2523 - T2+ 15 - x5 - T3 - T5 + T5 - Tg - T2+

T5-2g-Ts+ T -Te-To-T3+2-T6-To-Te+16-26-25-23+ 1626 - 25 T¢
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S, (p- 1)
X, (p- 3)
XA (p. 3)
A= (X)s, (p- 3)
RCA, (p. 4)
P = (X | R)s, (p- 4)
D = (V). (v 4)
UcD, (p- 5)
N=(O)p, (p- 5)
M= {Y'|U)p, (p- 5)
F=(Y)a, (p- 5)
¢: F — D, (p. 6)
e FE; (p- 7)
N =(UUYX*R),, (p- 7)
O, (p. 8)
Q(f,x), UL A, Uwi),  (p- 12)
Rels = {UUY X*R}, (p. 19)
plr, (p- 21)
0)y.uy(£)y.n., (v), (p. 23)
Bi={bj; 584 Fy (p. 23)
Nws (p. 23)
By, (pp- 24, 27)
My = FINw, (p- 25)
(=)a, (p. 24)
Pw)s (pp. 24, 26)
L = (BuyX*)s, (pp- 24, 27)
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