University of St Andrews

Full metadata for this thesis is available in
St Andrews Research Repository
at:
http.//research-repository.st-andrews.ac.uk/

This thesis is protected by original copyright

http://research-repository.st-andrews.ac.uk/

ABSTRACT

Simulation of a Paged Computer System

A Teaching Tool

This thesis describes the design and implementation of a
simulator (written‘in IBM Fortran IV (Level G)) of a paged,

multi-programming, single-processor, computer system.

A general justification of such a simulation is made,
followed by details of the particular model chosen and imple-

mentation details.

Validation of the simulator is discussed, and followed
by details of a number of experiment using various simulated
job streams and configurations. Finally the response of a
simulated system to two different paging algorithms is discussed

and compared to known experimental data.

Finally, the use of the simulator as a teaching tool is
described with details of the paging algorithm interface with
the rest of the model.

SIMULATION OF A PAGED COMPUTER SYSTEM

A TEACHING TOOL

W

%406

I hereby declare that the conditions of the Ordinance
and Regulations for ?he degree of Master of Science (M.Sc)
at the University of St. Andrews have been fulfilled by the

candidate, Linda A. Macaulay.

J% Morven Wilson

I hereby declare that this thesis is a record done by myself,
not accepted in any previous applications for a higher degree

in the University of St. Andrews or elsewhere.

(Mrs.) Linda A. Macaulay

ACKNOWLEDGEMENTS

I would like to tazke this opportunity to thank my
supervisor, J. MORVEN WILSON, for the exceptional guidance

and practical assistance which he has given me.

I am alsco grateful for the generous co-operztion given
by PROFESSOR A.J. COLE and the kind help lent by the

computer staff in his department.

Further, I wish to thank MRS. J. BROWN for the excellent

and speedy manner in which she typed this thesis.

OBJECT

The object of the thesis is to illustrate the
development and validation of a simulztion of a paged
computer system with & view to that simulation being

used as a teaching tool.

The teaching tool takes the form of a computer
program written in FORTRAN. Its objective is to help
computer science students see the effects of paging
algorithms (written by themselves) on various time-
sharing system configurations and consequently to help

them produce an effective algorithm.

PART I

CONTENTS

INTRODUCTION

I 1, Introduction to Computer System Simulation

I 2.

PART II

as What is Simulztion?
b. Why Simulation?

c. Simulation Throughout the Generations.

The Construction of a basic simulation
model - BASYS.

THE SIMULATOR

II 1. Description of the system to be simulated

II 2.

PART III
III 1.
IIT 2.
III 3.

IIT 4.

a. General features of the system

b. Basic queueing and progress of a Jjob
through the system.

The Simulation Model
a. Requirements
b. Level of Detail
¢. Language Selection
d. Representation of Jobs
e. Structure of the Model.

VALIDATION and EXPERIMENTATION
Validation Methodology
A Question of Balance
Validation of the Model
a. Response to different job parameters
b. Response to different machine configurztions
c. Response to a Paging Algorithm.
A Comperison of Two Paging Algorithms.

PART IV THE TEACHING TOOL

IV 1. How to use the Simulator Introduction
a. The System Configuration
b. The Job Stream
c. The Interface with the Paging Algorithm
d. Output from the Simulator.

PART V -~ CONCLUSIONS and FUTURE DEVELOPMENTS

PART I

INTRODUCTION

I. 1. INTRODUCTION TO COMPUTER SYSTEM SIMULATION

a. WHAT IS SIMULATION?

Simulation is a technique for obtaining information
about the performance of a system without actually putting
that system into operation. A model of the system is
constructed so that the results obtained by operating the
model indicate the results to be expected when the corres-—
ponding real system is operated. The model may then be
modified and operated to indicate the behaviour of the rezl
system if it was also so changed.

Basically, the simulation technique is to create a
model of the system by keeping lists of items at each stage
in the process and transferring items from one list to
another in the correct chronological order. The transferring
of an item from one list to another usually represents a
transition through some stage in a process and is accompanied

by appropriate updating of a timing device.

b. WHY SIMULATION?

The thesis is concerned mainly with the investigation
into the performance of a paged time-sharing systam under a
given set of conditions.

The two basic approaches that have been used for the
investigation of existing time--sharing systems have

utilized either analytic or simulation techniques.

In certain instances analytic techniques have proved
quite satisfactory, for example, Scherr (1) was able to
design a very éimple model of the Project MAC sysiem at
MIT and Smith (2) was able to construct a model reflecting
a paged time-sharing system. Analytic techniques, however,
require a large number of simplifying approximations and
assumptions whereas simulations require relatively few.

This enables the simulstion of more complex computer systems
thus giving the method a great applicability.

In general, analytic models lack sufficient flexibility
to allow a number of different systems or algorithms to be
investigated without a great deal of extra effort. However
as Nielsen has demonstrated in his 'Simulation of time-
sharing systems' (3) simulations do exhibit the necessary
degree of flexibility.

The disadvanteges of simulation arise in the debugging
of the simulation program and in deciding to what extent the
simulation results are valide The lutter problem canm be
considerably eased if statistical measurements from a reszl
systen are available with which to compare the results from
the simulation.

Paged conmputer systems are generally considered to be
too complex and non-deterministic in nature for analytical
methods of study. Thus the alternative chosen is simulation,

validated by subsequent comparison with a real system.

N

ce SIMULATION THRQUGHOUT THE GENERATICONS

The first generation of computers employed relatively
simple hardware configurations which could be "investigated”
without the use of a simulation model. The need for
simulation developed with the advent of the second generation
of machines when configurations became more complex.
Simulations helped to give a general picture of overall
system performance and provided an inexpensive and relatively
easy way of investigating new design ideas.

Hardware performance was one of the first aﬁeas of the
computer to which computer simulation techniques were applied.
In 1957 W.E. Smith (4) developed a simulator for the internal
logic of computer hardware components. This program was used
for testing actual designs and also as a training device for
designers. At a higher level, in 1964, M.S. Zucker (5)
developed a simulator called LOCS (logic and control
simulator) which simulated the components collectively, thus
giving an overall view of the performance of the circuitry.

Simulations have been further developed to investigate
the performance of the computer under various combinations of
variables. One of the earlier programs of this type was
published in 1964 by Statland (6) who considered such
variables as equipment capabilities and I/0 block sizes.

As software increased in importance it was realised that
simulations were less likely to_be reliable unless software

and hardware-software interactions were taken into account.

Many simulations were constructed after the software system
in question end were used to help evaluate proposed changes
to that system, e.g. Katz (7) study of the IBM 7090/7040
Direct Coupled Operating System. Others were developed
before the system in question had been built or programmed
and were used in the construction of the system as well as
subsequent modification, for example, IBM's 7090 time-sharing
system.

With the appearance of the third generation of computer
systems more comprehensive simulators were developed. For
example, in 1967, Nielsen (3) published a simulation model
with a general purpose design which can be used to study a
variety of time-sharing systems. It can analyse performance
characteristics for such varied purpcses as hardware con-
figuration, software modification and parameter adjustment,
algorithm design and system development. In 1969 Seaman and
Soucy {8) developed 2 Computer System Simulator (£SS) model
package. CSS provides the user with a lenguage and structure
with which he can model a large variety of computer systenms
et differing levels of detail.

A recent test (9) (1970) was done on the validity of
the simulation technigue using the ATLAS computer at
Manchester University. The operation of the ATLAS was .
simulated using 2 next-event type of simulation model and
good agreement was found between the simulated results and

those of the real system.

It can be seen that computer system simulations have
developed hand in hand with the development of the computer,
modelling proposed hardware and software architectures and
configurations quickly and cheaply before any full scale
comnitment to their implementation. They continue to be a
vital and valid tool in the investigations into the design

of to-day's complex systems.

v

I. 2. THE CONSTRUCTION OF A BASIC SIMULATION MODEL - BASYS

BASYS, as formulated by Macdougall (10), helps to
establish the basic notions of a simulation model and to
illustrate how even a simple simulator can be used to see
the effects of varying certain system parameters.

BASYS is a basic simulation model for a disk-based
mul tiprogrammed computer system, whose configuration is showm
in fig.l.

When a job arrives at the system it requests central
memory space. 1f sufficient space is available then it is
gssigned to the job,otherwise the job is entered into a queue
(the central memory queue) until enough space becomes
available. Once it has been assigned central memory space
(note that the entire program is in core) it can then hegin
execution. It requests the central processor. If the
processor is free it is assigned to the job otherwise the job
is entered in the central processor queue. When the job has
been assigned the processor and starts executing it may issue
I/0 requests. At the point of issuing a request the job loses
control of the processor and requests the use of the disk. If
the disk is free it is assigned to the job otherwise the job
is entered into the disk queuve. Once the job has completed
the I/O request it will probably require more CPU time. On
regaining control of the CPU it may issue other I/0 requests
or continue executing until completion. On completicn the
Job releases the processor, frees the central memory and
leaves the system. Note that several jobs are in the systen

at the same time i.e. it is multiprogrammed.

FIG 1 HARDWARE COKFIGURATION OF BASYS

CENTRAL
MEMORY
p 4

< Y I
-
CENTRAL b |
PROCESSOR (CPU) _;_.__1 i
|

MOVABLE-HEAD DISK

The simulation model

BASYS is al'next—event' type simulator i.e. thé simulated
time clock is advanced to the time of the predicted next event.
The events represent transition points between activities.

Seven events are simulated (shown in fig.2) and four gueues are
dealt with, namely, the queue for central memory space, the
queue for central processor attention, the queue for execution
of drum transfers, and the event list. The job mix may either
be read in directly by the simulator or generated within the
simulator program using various known probability distributions.

The flowchart of the simulator is shown in fig 2.

The Simulator Structure

The structure of the simulator is as shown in fig.3.

In the simulator, a job is represented by an entry in =z
job table. This entry contzins characteristics established
for the job as well as various counters for accumulating job
related statistics. As the job moves through the syétem -
enters queues, is assigned to the central processor, etc -
its movement is reflected by moving a pointer to this job table
entry, rather than by moving the entry itself.

The progress of the job through the system is m=rked by
the occurrence of a series of events. Each event routine
essentially does two things:s it simuletes the operations
whose initiation corresponds to the occurrence of this event
and it predicts, for the job for which the operation was
performed, which event is to occur next and at what time it is

to occur.

FIG 2 TIE STMULATION MODEL FOR BASYS
START
II INITIALIZATION
E/\:‘\ EVENT CONTROLLER
\/’
| aDvancE crock
OF SIMULATION? PRINT !
STATISTICS i
|
+ NO
I .
JUMP TO EVENT r
ROUTINE AT HEAD OF |
| EVENT LIST i
EVENT 1 EVENT 2 EVENT 3 |, EVENT 4 EVENT 5 EVENT 6____ EVENT 7
V
WV Y
T Pu— - V¥ = 7 """JO0B
[ARRIVAL v [REQUEST cPU _RELEASE DISK | ., -
| REGUEST | | RELEASE CPU | RELEASE CPU |
CENTRAL MEMORY | . | REQUEST DISK | RELEASE CM .
VY L . Y L 4 Vi, /
TN . P -
(B) (E Y -f ; \ E
S ¢ N g o / Nk
E e (B

FIG 3

THE SINMULATOR STRUCTURE

ENTRY

M

INITIALISATION

Y

El

EVENT
CONTROLLER

A\

UPDATE THE CLOCK

EXIT

E7

El to E7 ARE THE EVERTS

An event list facilitates the ordering of events. This

is a linked list ordered with respect to the clock time at
which the next event is to occur. Thus the head of the list
is the job whose next event is to occur at the earliest point
in simulated (clock) time. A typical snapshot of the list

at some point in time might appear as follows:

CLOCK TIME = 100

NEXT EVENT EVENT TIME JOB
RELEASE DISK 101 20 ¢ HEAD OF LIST
REQUEST CPU 109 18
JOB ARRIVAL 117 22

All event routines in the BASYS simulator make entries
in the event list, but only one routine (the Event Controller)
removes entries from this list. The structure of the eveni
list is shown in fig. 4.

The event controller controls the occurrence of all events

in the simulator and always transfers control to the event
routine specified by the hezd of the event list. When the
corresponding eveni has been completed and the job returned to
the event list or entered into a queue, then control is always
returned to the event controller.

The basic steps in the event scheduling are:

1) The event controller removes the entry at the head

of the event list. This entry specifies an event

time Ty an event identifier E, and a job table pointer J.

2) The clock is updated to time T.

FIG 4 THE EVENT LIST

CPU CcM

S] m&IE
]

| RECORD
TIME SPACE | COUNTD__

il JOB DESCRIF1ION TABLE
| CLOCK TIME |

EVENT IDENTIFIER

THE PREDICTED TIME AT WHICH EVENT E IS TO OCCUR
THE JOB TABLE ENTRY POINTER

LINK TO NEXT ENTRY IN EVENT LIST

3) The event controller transfers control to the

event routine E.

4) The event routine E performs the required processing
for the joby and if possible determines its next event
(and inserts the event identifier El, event time Tl and
a job table pointer J into the event list). If such a
determination is not possible the event routine E enters
the job into a queue. |

5) Control is then returned to the event controller.

If, as is sometimes the case, the next event for the job
cannot be predicted, no entry for the job can appear in the
event list. This situation arises when the job has to be
entered into a queue, for example, when the disk is busy or
when there is a shortage of central memory space. Once the
facility becomes available, and the job reaches the head of
the queue, an entry is inserted into the event list to mzke the
inext event! a requecst for the facility which was previously
unavailavle, for examplie, reguest disk, request central memory
space etc.

All queues in BASYS are represented in the form of linked
lists. BASYS lends itself to a straightforward implementation
in GPSS and SIMSCRIPT, and with the addition of a few elementary
list processing routines can be effectively iﬁplemented in
FOR TRAN.

The main advantage of BASYS is that it allows for
extensions and additions to the basic model. Thus it Ean be
used as a basis for more extensive simulations of computer

systems with greater complexity.

10

EXPERIMENTS AND RESULTS from implementation of BASYS in

FORTRAN. Two main exreriments were carried out. Both were

to measure the utilization of the central processor in respect

of
1) increasing the amount of central memory available
2) replacing the disk with a faster model
Results are shovn in figs 5A and 5B.

CONCLUSIONS

Experiments show that after a certain point increasing
the amount of core memory availaeble has no effect on the
percentage usage of the CPU. This point is reached when the
total core memory requirements of all the jobs can be
satisfied simultaneously. Results further show that increasing
the disk speed by a factor of two gives a proportional increase
in the usage of the CPU. This can be seen by comparison of the
curves given in fig.5A.

The BASYS simulation model has thus shown how even a simple
model can be used to investigate the effects of varvingz certain
parameters on the simulated computer system.

From the point of view of tﬁe thesis the implementation
of BASYS was an exercise to aid familiarizaticn with the
principles of a simple computer system and some basic simulation
techniques. The BASYS model is still evailable as a teaching
tool if required, but the thesis now progresses to the more
challenging problem of simulating a paged multiprogramming

computer system,

FIG 5A RESULTS FROM BASYS EXPERIMENTS

GENERAL TRENDS FROM RESULTS

ONE DISK REV. IN 25 MILLISECS

y
1
o ‘. |
i
% CPU ko
!
USAGE ., &
20
lo
— =
- S0 Jeo IS0 200 250 300 350 400 4SO S00
CORE SPACE AVAILABLE IN K-BYTES
ONE DISK REV., IN 12 MILLISECS
AN
|
}
So b '
% CPU

USAGE

S

i & &

I 1 -

[% la Iso 200 250 3as 35 iéo 452 500/
CORE SPACE AVAILABLE I K-BYTES

THE MAXIMUM CORE SPACE REQUIRED BY THE 20 JOBS
WAS 356 K-BYTES

FIG 5B RESULTS FROM BASYS EXPERIMENTS
K SIZE 4% CPU K SIZE : % CPU
25 16 25 | 14
|
50 26 50 | 21
8 J
100 34 100 l 28
|
|
275 44 2715 . 30
510 44 510 | 30
RVTIM = 12 RVTIM = 25
RVTIM - TIME TAKE FOR ONE DRUM REVOLUTION
KSIZE - SIZE OF CORE MEMORY IN K-BYTES, K = 210
% CPU - ¢ CPU USAGE

Figure 5C

JOB DESCRIPTION OF 20 JOBS RUN THROUGH BASYS

Job Central Memory CPU Time Number of Mean Inter- Record
No. Space Required Required I/O0 Requests Request Interval Size
1 7520 50 10 5 360
2 6480 30 10 3 360
3 10100 60 20 3 360
4 15210 70 10 7 360
5 6110 30 10 3 360
6 20360 100 20 5 360
7 12220 80 20 4 360
8 4140 10 10 1 360
9 17770 70 10 7 360
10 9080 30 10 3 360
11 20200 60 10 6 360
12 10000 40 10 4 360
13 12100 50 10 5 360
14 8800 30 10 3 360
15 6070 10 10 1 360
16 51610 140 20 7 360
17 72130 200 40 5 360
18 7120 30 10 3 360
19 31010 90 10 9 360
20 36700 11@ 20 5 360

Inter-Arrival Time of Jobs

All jobs arrived at the system at fixed equally spaced intervals.

PART IIX

THE SIMULATOR

11

JI 1. DESCRIPTION OF THE SYSTEM TO BE SIMULATED

a. GENERAL FEATURES OF THE SYSTEM

The system under investigation consists of a paging
memory, paging auxiliary storage (drums) and one central
processing unit. The complete configuration is shown in
£1g.65

Basically, the simulator implements a time-sharing,
mul tiprogramming system with provision for logical-to-physical
address mapping by either simple paging or demand paging. It
has several special features which are discussed in some detail
below.

These ares— 1. Paging and demand paging
2. Working Set strategy
3. Ready List

1. PAGING AND DEMAND PAGING

The object of the study is to produce a simulator which
will be sensitive to changes in the paging algorithm; thus
it is essential that a paging core memory and a paging drum
are included in the system.

Systems which incorporate paging are troublesome from a
simulation point of view (as Boote et al. remark in their
simulation (9))since the page turning events take place much
more frequently than program-swapping events on a non-paged
computer. The real time necessary to complete a simulation
is therefore longer. Scherr's simulation (1) of a non-paged

IFY 7094 had a simulated-time to real-time ratio of

"

FIG 6

CR

CARD

READER WELL

THE SYSTEM

AUXILIARY ‘

STORAGE

|

i
|

CENTRAL
MEMORY

CPU

o/P

OUTPUT
WELL

LINE
PRINTER

13

approximately 24, whereas Nielsen's simulation (3) of the

paged IBM 360/67 on an IBM 360/50 had a ratio close to 2.

APPROACH TO PAGING

Paging is a set of techniques whereby programs and main
memory are broken into small units and the program pieces are
located in corresponding sized blocks anywhere in main memory.
The paging techniques incorporated in ourlsystem allow a
straightforward implementation of a logical-address space larger
than the physical—address space.

In our paged system, physical memory is considered to be
broken up into "blocks" of a fixed size. The term "page" refers
to units of logical space, while equal-sized units of physical
space are called blocks. The programs are also considered to be
split into "pages" of a size equal to the block size of physical
memory. Thus the address is such a system is considered to be
represented by two numberss

(1) a page a2ddress or number
end (2) a word-within-peso address.

A paging mechonism requires a table, caelled a page—table,
or map with one entry for each page in order to perform address
translation from logical to physical space. The complete
memory map used in our system is shown in fig.8 and the page
table in fig.7.

One page table exists for each process. The physical-block

number corresponding to a given page is found by a table look-up

FIG 7 A PAGE TABLE

IOGICAL ADDRESS

PAGE TABLE BASE POINTER PAGE NUMBER WORD-IN-PAGE NUMBER

i i |

| |
. —C :\._; S R . —~ —

"IN-CORE" BLOCK ™.

e

| BITS j_}_ NUMBER _ >@

I'(sgaﬁé)BLOCK_Ndvﬁk’

.........__ ————— e \ﬁ | q7

]
f i

l PHYSICAL ADDRESS

note

IF M=1 THE PAGE IS IN COREs
THUS BLOCK No ENTRY GIVES
ACTUAL PHYSICAL ADDRESS OF
THE PAGE.

IF M=0 THE PAGE IS NOT IN CORE:
THUS BLOCK No GIVES ADDRESS ON
AUXILIARY STORAGE. THE PAGE
MUST BE BROUGHT INTO CORE BEFORE
THE PHYSICAL ADDRESS CAN BE
CALCULATED

FIG

PAGED PHYSICAL

8

MENORY

THE MEMORY MAP

PAGE TABLES

PROCESS
1

\"I

3
T

PTBP

PROCESS
. "PROCESS _2_ PTBP
E’ 1
1
PROCESS //'b"' ,
ik "O T _'_'_______)
e
]
] PROCESS 0 _J‘; 5)
—— (PP
PROCESS _ |
5 3 N o
PROCESS ' 0 .
< = 1!
! o L
o 5
0 - -

- PAGE TABLE BASE POINTER

STORE

STORE

STORE

in this page table using the page number as index. The
control bits ("in-core" bits) in each table entry are used
to indicate whether the page represented by that entry residss
in memory or on an auxiliary storage device. The page number
from the logical address when added to the contents of the
page—-table base register indicates which word in the page
table contains the block number where the page resides. The
figure in the block number portion of the table indicates an
actual starting address for the page in main memory or a
location on auxiliary storage where the page can be found. If
the control bits indicate that the latter case holds, a call to
the system, referred to as a page fault, is generated to fetch
the page to memory before resuming computation. Using this
approach, the logical-address space can be smaller, equal to,
or larger than the physical-address space.

At the start of computation only a sinle "starter" page
is loaded into main memory, not the entire process. Then as
references are made to pages not currently in main memory, the

page—-table would indicate the fact by generating a page fault

14

which causes the suvervisor, to bring in the page. This approach

is known as demand paging.

Thus paging and demand paging are incorporated in the
system by means of the page table and memory map. It should be
stressed, however, that no attempt has been made to introduce

the segmentation concept into the system.

15

2. THE WORKING-SET STRATEGY

Several recent studies on the behaviour of programs in
a paging environment (11,12,13,14,15) lead to the conclusion
that over short periods of time instruction and operand
references are confined to a subset of the set of pages
comprising the logical address space, and that once this
subset is established its content varies only slowly. Thus
it seemed desirable to include some method by which information
about the behaviour of programs could be made available to the
students paging algorithm.

Denning (11) defines this subset of pages as the 'working-
set'. He shows how the working set czn be detected and suggests
an algorithm which makes use of this information. Our simulation
model detects the working set but the paging algorithm supplied
by the user may use or ignore the informztion gathered. (see
'The Simulation Model!).

Description of the Working Set

The working set of information is the smallest colisction

of information that must be present in main memory, at any instant,
to ensure efficient execution of a progranm.

The operating system is responsible for determining on the
basis of page reference patterns, which pages constitute the
working set at any instant and for detecting those that leave
the working set. In practice the operating system considers
the working set of information, associated with a process, to be
the set of most recently referenced pages within some arbitrary

period of time.

To initiate a process on the processor a "starter page"
is loaded and subsequent pages are demanded until the working
set of pages is built up. When a page has not been referenced
for a measured period (see later) then it leaves the working
set and may be rolled out of core.

Formal definition of the Working Set

The working set W(t,7) of a process at time t is the
collection of information referenced by the process during the
process time interval (t-v,t).

Thus the informetion a process has referenced during the
last 7 seconds of its execution constitutes its working set,
see £ig.9.

The working set consists of informestion referenced during
the last T secondss however, in our system we are usually
interested in the pages which contain this information. Thus
the pages themselves constitute our measure of the working
set since the information required is only accessible in page
sized blocks.

Properties of the Working Set

l, size

The size of the working set ®(t,z) is the number of pages
referenced in this interval

i.e. ©(t,T) = number of pages in W(t,zr).
On consideration of the working set size it is obvious that in
an interval of zero length, no pages will have been referenced.
It is further clear that in longer intervals of time more pages

will be referenced. Thus the general curve suggested byt (t,T)

(8

is monotonically increasing as shown in fig.10. (See (11) for
further details)

2. prediction

We would expect intuitively that the immediate past page
reference behaviour of a program constitutes a good prediction
of its immediate future page reference behaviour. That is to
say, that for small time separations * , the set W(t,¢) is a
good predictor for the set W(t++,%).

To see this more clearly, suppose %<7T ,

Then W(t+4,%) = W(t,7=x) U W(t+«,x). Since references to
the same page tend to cluster in time, the probability

Pr (H(t+x,1jf\ W(t,Y)) tends to be small.

Therefore some pages of W(t,Z) will still be in use after
time t i.e. pages in W(t++,%), since also

W (tyT=-a) < u(t,Y) N W(t+4)
W(t,T) is a good predictor for W(t+i,%).

On the other hand; for large time separations % (szy *x>7=r)
control will have passed through a great many progrzm modules
during the interval (t,t+<), and W(t,7) is not a gocd predictor
for W(t+<y7).

3.7 -sengitivity and re-entry rate

It can be seen from fig.10, that asZ is reduced; & (t,%)
decreases. If the number of pszges in W(t,Z) decreases, the
probability that there are useful pages still in W(t,t) also
decreases. Consequently the rate at which pages are recalled
to W(t,?) increases. This means that if ¥ is decreased then

the re-entry rate of pages will increase.

17

oo’

-

FIG. 9 THE WORKING SET OF INFCRMATION

l
e——T —8
. ,; LL / / /;/: ///.‘ >
i //}’/ /117 /': PROCESSOR TIME
_, (i.e. UNINTERRUPTED EXECUTION
1 TIME OF PROCESS)
k-t ¢

PAGES REFERENCED IN THIS INTERVAL
CONSTITUTE THE WORKING SET

FIG 10 VARIATION OF «(t,Y) WITH CHANGES IN ¥

No. OF PAGES

ta(k,%) oy
N

REFERENCED

i R —"

v

LENGTH OF INTERVAL

The value ultimately selected for T will thus be of great
importance to the effectiveness of using the working set
strategy. Should ™ be too small, pages may be removed from
main memory while still useful, resulting in a high traffic of
returning pages. Should T be too large, pages may remeain in
main memory long after they were last referenced, resulting in
wasted memory. Thus 7 must be carefully chosen to strike a
balance between excess page traffic and too much wasted memory.

In the system which we are simulating, a page is not rolled
out of main memory immediately it leaves the working set. Instead
it is 'marked' as a candidate for removal from core and will only.
be removed if the space it occupies has been demanded by a page
of some other process. (Should the paging algorithm so decide).
Note however that in the case of a read-only page (where a valid
copy already exists on backing store) the page is still marked
as a candidate for removal. Thus the space it occupies may be
taken over by some other process in the usual way, however the
page is not rolled out to backing store. The page table entries

and other relevant information about the page is simply updated.

Detection of the Working Set

Detection procedures similar to those suggested by
Denning (11) are implemented in the system. As detailed above,
each process has a related page table which provides a map from
the logical address space to the physicel address space of each
rage belonging to that process. Along with the 'in-core' bits

and the 'block number' entry there is a further entry which

19

contains a string of ‘'use-bits' Uy, Ujy «eey Upe (see fig.1l)
The sampling interval o is defined to be ¥ /K where K is

an integer constant chosen to make the sampling intervals as

'fine grain' as desired. On the basis of page references during

each of the last K sampling intervals, the working set W(t,Ko)

can be determined.

Each time & page reference occurs, Ub is set to 1

(whether O or 1 already). At the end of each sampling interval o

the bit pattern contained in U,, Ul essey U is shifted one

0 K
position to the right, a O enters Ub, and UK is discardeds: see
fig.12.

The logical sum U of the use-bits is computeds

U=T,0 U,v 0,UUK

so that U = 1 if and only if the psge has been referenced during
the last K sampling intervals. Of all the pages associated with
a process, those with U = 1 constitute the working set W(t,Ko).
If U=0and M =1 (i.e. the page is in core), then the page is

no longer in the working set and is marked as a candidate for

removal from main memory.

FIG 11 TYPICAL PAGE TABLE ENTRY

"IN-CORE" "USE-BITS" BLOCK No.
BITS l -
Z_,f, s

Zilnanl

(K IS THE No. OF SAMPLING INTERVALS)

FIG 12 SHIFT AT END OF SAMPLING INTERVAL
%
4 e T '
Y/ W
/ . '] . . . » /_////
Ukél.h_? UK

U o =7 Uga

L}

3. The Ready List

The Ready List is a list of processes ready to run on
the central processor when it beccmes available.

The Ready List has two quantum levels, a short gquantum

level (SQL) and a long quantum level (LQL) (see fig.l3). A

process is always allowed to run for a short quantum, and if
at the end of this time no other process is ready to run, it
can continue. The purpose of the short quantum is to assure
that some useful computation takes place, in order to Jjustify
the expense of swapping the process in. This scheme also allows
higher priority processes to pre—empt the processor if they
appear on the SQL during or after a short quantum. When a
process is dismissed after a short quantum or because & higher
priority process has become ready, it is plzced on the short-
qﬁantum level.

Each time a process completes a short guantum, a nunber,

called the long quantum count is decremented. Once this count

is reduced to zero the process is moved to the iowest-priority
level, the long quantum level.

This method ensures that all processes will run with a
Treasonable resvonse to each and it limits the number of times
& process can appear on the high-priority level of the ready
list.

PRE~-EMPTICN

A higher priority job may arrive on the ready list while
a lower priority job has control of the processor. At that

point pre-emption occurs and the pre-empted job is returned to

FIG 13

READY LIST
START CELL

THE READY LIST

SHORT QUANTUM LEVEL

g

JOB

LONG QUANTUM LEVEL

? Q START

]

[aom | [30|
|

s e
| S
J0B

|

L/Q END

2l

the short quantum level of the ready list. However this
pre—empted job is not assigned a fresh short quantum but on
regaining control of the processor will complete the remainder
of its previously assigned quantum.

I/0 REQUESTS

A similar situation arises when an executing job issues
an I/D request. A record is kept of the time quantum still to
be completed when the I/0 request is issued. The job is placed
on the SQL of the ready list until the request is serviced and
the job reaches the head of the list. On regaining control of
the processor the job does not begin a fresh gquantum but completes

the remainder of its previously assigned quantum,

b. BASIC QUEUEING AND PROGRESS OF A JOB THROUGH THE SYSTEM

The basic queueing incorporated in the system is illustrated
in fig.14.

When a job arrives at the system it is assigned a priority
and proceeds to be loaded page by page onto auxiliary storage
from the input device. Compiling, assembling and linkage editing
phases are ignored for simplicity in our model. Unit record I/0
. (e.g. card reader, line printer) are assumed to have little
system overhead and to be spooled in any case.

If there is enough room in core for the job's working set
of pages (see Ch. on "the Simulation Model"™ for an explznation of
how this is decided) then a 'starter' page is loaded into core
end the job is ready to begin execution.

The number of blocks necessary to contain the job's working
set are reserved. This is a basic requirement of the working set
strategy, since it insures that there will be enough space in
core for the working sets of all jobs currently in the execution
phase. Thus no job need demand blocks previously assigned to a
page of another job's working set, thus minimising page traffic.

Thus a 'starter' page is loaded and the job is ready for
execution. The job is placed on the short quantum level of the
ready list. When it reaches the head of the list the central
processor is assigned to the job and begins execution.

The job executes until one of four possible esvents arise.

1. it issues an I/0 request

2« it references a page not in ccre, i.e. a page
feult occurs

3. it completes the time quantum allocated

4. the job completes

22

| ol o

e 7 a5 i e T S e 1 R R XY e T _,NJ;I
2IN2NYD Knyg LiniiG: 2eanth wnva -
> - - SR
N
sant3y off [rnba abvg v A)
_Mn..z......(..,.n Ll
L . — qQaaE0T AN
~ LS A=y SEOR QDIPHISS Y TITIMA AT AN
prb'z oo e — M <
e .
4 i ASPNg WOy < & < d SIMNYVYU |
2AATGNOD @IS " QoL
SNNY gog 4 ASIT MOYI NoMUY gog B
ALIIoyad asadbiy o3z
N N
Cd v
G——S>13W ANTod
VI E Lt heom
N 7 IM'GJ
Ad=2M0 ¢t_—.v..w; AN O
Nt anbroyg
11 AT GHODINY ., ot N D6y wawuis,
SR NEEL b S TUTRN &5 ~ Ty A gRoO>7

AN

IR0

In all four cases the job loses conirol of the processor
to the job now at the head of the ready list.

In cases 1 and 2 the job enters the queue for drum
attention. In case 1 the required I/O processing takes place
and the job is returned to the ready list. In case 2 the
paging algorithm is consﬁlted and mekes the decision as to
which block of physical memory is to be allocated to the page
being brought into core. Once the page is in core the job is
returned to the ready list.

When the job completes the time quantum alloczted (case 3)
the long quantum count for that job is decrezsed by one., If
this count is positive the job is placed back onto the short
quantum level queue; if it is zero or below then the Jjob is
placed on the long quentum level queue. If there are no other
jobs on the ready list the job is simply allowed to continue
processing for a further gquantum.

If the Jjob completes it relinquishes all core memory cpace
and suxiliary storage space, all related tables are cleared and
ell references to the job in the system are removed, and

appropriate statistics compiled.

II 2. THE SIMULATION HODEL

a. REQUIREMENTS

In order to allow the user to observe the effect of paging
algorithms which he may have written for this reasonably complex
time-sharing system, the model had to fulfil three requirements.

First, the model was to serve as a test vehicle for very
diverse paging algorithms. It had, therefore, to be responsive
to changes in these routines. Further, the paging algorithm
had to be relatively isolated from the rest of the model so that
changes could readily be programmed and incorporated. An
efficient interface had to be developed.

Second, the model had to be responsive to changes in the
configuration of the system, for example, to changes in core siz
drum size and drum sveed. Such changes would help determine the
efficiency of the paging algorithm under differing conditions.
Further, the configuration had to be easily adjustable, such as
by appropriate modification of parameter values.

Third, the mcdzl wss iv serve as a means of determining the
effect of various Jjob mixs and loads upon the performance of the
paging algorithm, the performance of the system and throughput
of jobs. Thus it had to be responsive to adjustments in the
requirements of particular jobs. Further, the job stream had to

be easily adjustable, such as by the change of & few parameters.

24

€y

25

b. LEVEL OF DETAIL

Since the paging algorithm was to be of such great
importance the model had to keep track of every page in the
system at all times. : The identity and current state of jobs
had to be retained over time slices, I/O waits and page fault
waits.

Care had to be taken not to include disproportionately
scaled activities in the model, since thié would lead to an
inefficient model, for example, all I/O for user programs is
assumed spooled onto the drum. Activities, such as delays due
to dynamic address relocation, the effects of associative
memory operation, compilation, linkage editing were ignored.
Compilation and linkage editing are assumed to be merely the
processor and I/O operations of another job, (i.e. the
compiler and the linkage editor). Those activities with a
level of detail finer than the activities at the paging level
were not included. Similarly, activities witih 2z level of
detail more gross than thcsc at the paging level were excluded.
Thus, for example, the amounts of drum storage space
required for job's pages are to be specified as parameter
values, and the presumption is made that enough blocks will
be available on drums. A simple pencil and paper calculation
will enable the user to ensure that this is so.

Consequently, the besic unit of time was chosen to be
100 psec and of storage to be the page, the size of the page
being a varisble parameter.

When including information about the working set in the

paging algorithm, results will be affected by the values of the

sampling interval, o, and the number of sampling intervals, .
Thus at the level of detail catered for here, it was decided

to include o and KX as variable parameters.

27

c. LANGUAGE SELECTION

Since this simulation model is to be used as &
teaching tool, it is important that the program implementing
the model should be readily understood. Thus it was decided
to write the program in a language that is commonly known and
which has a high degree of portability. FKFORTRAN appeared the
best choice to fit the requirements.

Since the program is a simulation, it might normally be
expected that it be written in a simuletion language. However
these languages generally have a poor execution speed relztive
to general purpose languages and often utilize memory space
rather inefficiently. Speed and efficient memory utilization
were relevant to the simulation since it has to be within the
range of time and space allowed to students' everyday jobs.
Although simulation languages have built-in queueing facilities,
these can be easily implemented in FORTRAN subroutines. Further
FORTRAN enables a closer approximation to the actuval workinzs
of the system than would be possible using the simulation
languages generally availeble to computer users, since
different types of queuing techniques may be used at different
points throughout the model. The gueuing techniques may be
readily created to satisfy the particular requirements of this

model.

d. REPRESENTATION OF JOBS

As with many simulation models (e.g. Nielsen (3),(16)
and simulations used for design purposes) we are dealing here

with & model of a computer system which does not yet exist.

Consequently there is the immediate disadvantage of not knowing

exactly what the Jjob mix will be and how the Jobs will behave
during execution.

Nielsen's simulation of time-sharing systems acts as a
gimulator both for existing time-sharing systems and for the
design of such systems. Thus the job mix will wvary from systenm
to system and in some cases may be entirely unknown. He has
developed a job description languzge in which eight instruction
types are used to indicate the desired behaviour of a job
during its simulated execution. Description sequences for a
particular job are constructed from a set of master sequences
which represent a prototype for each different job type.

Katz's (17) simulation for System /360 machines used a
Job Generator. Frequency distributions and tables of
information giving the overall statistical properities of the
user'’s job population were used as input to the Job Genserator.
The latter was designed so that the set of jobs produced
reflected the actual jobs of a particular user's ingtallation.

In a simulation study of the optimization of performance
of time—sﬁaring systems (18) the job-stream is generated using
Monte-Carlo technigues. This method was adopted in an attempt
to reduce the number of parameters required to describe the

Jjob mix.

28

29

The approach used in our simulation model is based on
characteristic equatiors for the paging behaviour of jobs and
random number generators and frequency distributions for other
aspects of the jobs' behaviour. All the‘information used is
based on results of various studies on the behaviour of
programs in a paging environment (18, 12, 13, 14, 15).

Following is a description of how this simulation handles
the job-description parameters and the justifications for the
methods chosen.

prediction of I/0 requests

I.F. Freiberg, in a paper entitled 'Dynamic Behaviour of
Progrems' (15) presents results obtained from an instruction by
instruction interpretive execution of different classes of
programs on an IBM 7044, He claims that the data obtained can
be used as realistic input to simulztion models of multi-
programmed and fixed page size computer systems. Part of the
data showed that most of the supervigor cells occurred for I/C
operations and further that a program does not sxscnte wvery
many instructions between successive supervisor callz:. From
this it was concluded that it would be desirable to include the
time taken between successive I/O requests as & parameter for
individual jobs. It appears that the value of this parameter
should generzlly be small relative to the total execution time
of a job. Being a parameter however it may be varied from job
to job so as to make some jobs virtually I/0 bound and others

relatively free from I/0 activity.

30

The actual parameter of the interarrival time of
successive I/0 requests is expressed in terms of a maximum
i.e. the parameter represents the maximum interval between
successive requests.‘ The time between individual requests
is generated by means of a random number generator which
generates values between 1 and the parameter specified.

prediction of page faults

Fine, Jackson and McIsaac (12) did an empirical study
in which programs were executed in an interpretive manner
on an AH/FSQ~32 computer. Their results illustrate, among
other things, a page demand as a function of time as shown
in fig.l15.
The number of pages accessed initially is extremely high.
On average, the first 10 pages were regquired in less than 5.6 ms;
in half of the cases, these first 10 pages were required in
less than .8 ms. In this paper five rather large programs
were studied, namely LISP, 44 pages; METAS, 14 vpages;
GPDS, 41 pages; TINT, 23 pagesy; SURE, 30 pages. The page
size was taken to be 1k words. The programs were not in any
way designed for a yaged machine. Even with the difference
in the functions of the programs considered, the over-all
pattern of page demands was shown to be fairly consistent.
The conclusions of the study express three basic pointss
l. In general programs demand pages at very rapid
rates until they have 'sufficient' pages in core.
2. Frequently programs do not run for very long even

after having acquired a sufficiency of pages.

FIG 15 PAGE DEMAND
DYNAMIC PROGRAM BEHAVIOR UNDER PAGING, FINE et al (See Ref. 12)

a;T as given in reference

&
T

Jlat+

wEQkPY
)

G- 0O

o

W

0-00lb GOl o160 [+bo 160 160'0
TIME (MILLISECS. LOG SCALE)

converted to decima2l scale

g [lo [i [t lis |2
372 | (37 mmtl TR TR TS ;\ﬁ',ﬁ"i@g

nEQed

| B S S _— PR = I}

8 2 12 6 2a A 2% 32 36 4o ke 4%

TIME (MILLISECS)

X0
i
']---.-.
(S

3. For those programs which do run for a time
after acquiring a sufficient number of tages,
this number is usually a considerable proportion
of the total number of pages associated with the
program.
In an empirical interpretive study of programs on the
IBM 360/50 computer, Varian and Coffmen, in 1967, produced
similar results concerning page faulting activities. In 1968
they published a further study which included an experiment
in which they varied the number of pages of a job allowed to
remzin in core during execution. This concluded that programs
operating with substantially less than half their pages in
core caused excessive page turning.
The studies of Freiberg and Varian and Coffman show that
once a process begins execution, the page—access characteristic
tends to that given in fig.l5. They further agree with Fine

et a1l in the evidence that excessive page turning tckes placs

L¢)

when programs are made to operate while substantielly less than

core-resident. This implies that the subset of information

31

necessary for efficient execution of a program must be relatively

large. Consequently the 'working-set' of pages (as defined
earlier) must consist of a large proportion of the prograu's
total pages.

Thus it was decided to develop equations which would

predict the page fault rates using the empirical evidence

discussed so far. It was scen to be desirzble to have different

32

equations for differing points in the job's execution. The
curve in fig.l5 was thus approximated by two straight lines
vhose point of intersection was taken to be the point where
the working set had been reached, see fig.l6. Note, however,
that we are concerned only with the number of pages in the
working set and not their individual identity.

Since demand paging is operable in this system it is
possible that the paging algorithm will permit active pages
of one process to be removed from core to make room for those
of another process which is currently in contrel of the central
processors.

In the simulation model the equations are such that at
any point in time they can always predict when the next page
fault is going to occur for a particular process. The rate of
the page faulting for that process will be affected by the
number of its active pages which have been removed since it
last had control of the processor. Thus the rate of psze
faulting of a process at any point in time czi be any <€ the
five possible conditions following:

let the current set of pages in core = CS

let the working set of pages for the process = WS *

let the number of active pages removed = NPR

% ag discussed on P31 the working set size should be a large
proportion of the process's pages. We fix this proportion
at £ rds. (Though this may be altered)

FIG 16

|

No. of pages :

accessed

APPROXIMATION OF PAGE DEMAND CURVE

——— processor timg ————>
of job

\'4

e, e

33

(1) ¢S WS-l and ¥PR = O (fig.l7)
(2) ¢S WS-l and NFR = 0 (£fig.18)
(3) ¢S WS-l and NPFR O (£ig.19)
(4) CS WS-1 and NPR (CS-WS) (fig.20)

(5) €S WS-1 and KPR (CS-WS) (fig.21)

The point in time that is of most interest is that point
at which the process regains control of the processor, since
the equations must be able to predict when the next page
fault is going to occur.

The actual rates at which the page faults are to ocour
are given by the slopes of the lines, i.e. & before the
working set is in core and 20N after the working set has becoms
core-resident. The values of & and €5 will be parameters of
a particular process, as is the value for WS, thus enabling
different job types to be assembled.

The values of the constants Cys Coy © in the equations

3

are found by simple geometric and arithmetic caiculaticnse.

details of the equations

Case (1) CS< WS-l and NPR = 0 see fig.17

On regaining control of the central processor the current
set of pages is less than the working set and no active pages
have been removed. Thus the process continues to issue page
faults at the initial rate for that process i.e. y = gy Xe
Consequgntly if the process regazins control at some point
(PROTIM) in the uninterrupted processor time of the job and that
job currently has CS pages in ccre, the next page fezult will

occur at x = (CS+1)/gl. .

34

Cese (2) CS 2 WS-1 and NPR = 0 see fig.18

In this case the current set of pages in core is greater
than the working set. No active pages have been removed and
the page-demand rate continues at the second rate i.e.
according to y = g,x + ¢, where ¢, = WS(1 - gg/gl)
(cl is calculated from the fact that the lines ¥y = 8, + ©; and y=gy
intersect at WS).
Thus if the process regains control.at PROTIM the next

page fault will occur at ((CS+l) - cl) /gz.

Case (3) ©€S< WS-1 and KPR > O see fig.19

The current set of pages is less than the working set
but some active pages have been removed. Thus the process will
continue to issue page faults at the first rate i.e. according
to 81 until the working set number of pages are in core.
There is however a displacement from y = g% to consider, thus
the page fault rate will be according to y = €)X = C,e
(see fig.22 for calculation of 02) If the job regains control

of the processor atv PRCTIM then c x PROTIM + NPR - CS

g~ &
and the next page fault will occur at x = (CS - NPR+1+02) /gl.

Case (4) CS > WS-l and NPR < (CS-WS) see fiz.20

The job regains control at a point (PROTIM) where the
number of pages in core is greater than the gorking set of
pages, some active pages have been removed but these do not
interfere with the working set. Thus the rate of page faulting

will now follow the line given by y = g% = 03 i.e. will be at
NPR - (CS-WS)) - WS
&

see fig. 22 for calculation. The next page fault will occur

the second rate. = & (PROTIM +

°3

at x = (CS-NPR + 03) /g o°

FIG 17 CASE (1)

No. of pages

in core

cs

= >x

4P —— processor time of job —>
JOB REGAINS CONTROL OF
PROCESSOR
FIG 18 CASE (2)
J¢
No. of pages ! j%ijﬁﬂ
in core : _ L OEN
X
—— processor time——-> T
of job

JOB REGAINS CONTROL OF
PROCESSOR

-#3]7}fg

FIG 19 CASE (3)

T

No. of pages

44
|

in core WS __

BX

JOB REGAINS CONTROL
OF PROCESSOR
— processor time —————— >
of job

FIG 20 CASE (4)

14
|
|

1\

No. of-paggg“" T

] -
in core ! X

HS‘

JOB REGAINS CONTROL
OF PROCESSOR
s

—— processor time
of job

Case (5) CS > WS-1 and NPR> (CS-WS) see fig.21

The Jjob lost control of the processor when the number
of pages in core was greater than the number in the working
set. On regaining control the job finds that so many of its
active pages have been removed that there has been inter-
ference with the working set. Thus the job now page-faulis
at the initial rate & until the working set is restored i.e.
where c

along the line y = gx = ¢ =g X PROTIM + NPR - CS.

2 2
Thus if the job regains control at PROTIM the next page

fault will occur at x = (CS-NPR + 1 + 02) /gl.

Other aspects of job description

So far we have discussed the methods by which the model
handles prediction of I/0 requests and page faults. The
remaining job description variables are:

Priority

Core size requirements

Long quantum count (for working set strategy)
CPU time required

Record size of jJob.

These may be specified by any method the user of the model
requires. The subroutine which generates pseudo-random numbers
is made available to the user at the time of specification.
Further details about job parameter specification may be

obtzined in Part IV Ch 1, nages 70 -77.

FIG 21 CASE (5)

1

Ko. of !

pages .
in core C

W

JOB REGAINS
CONTROL OF PROCESSOR

__ processor time - >
of job

FIG 22 CALCULATION OF 02,03

It is clear from fig.21 that the lines y=8,%=C, and y=géx—c3
intersect at y = WS, x unknown. A closer look at fig.2l shows

the followings

|
e R
/|\ | ! m,.c:a
] Pﬁ%"""
|
WS_ _ _ . _ __ I o
~ NPR- —lg~ : 5
NPR—(CS—HS)l - .
mmm_m____i_ﬂP o
i | .
PROTIM i .
processor time
of job

In the trizngle ABC, les £ be the unknown side AB
then x = PROTIM + &x
from the diagrams

the gredient of CB = 4C

i.e. gl = NPR - (CS-WS)
Sx

thus &x = XNPR - (CS-HS)
&1

Thus the lines y = 81X~y ¥ = gzx—c3 intersect at

X = PROTIM + XPR - (CS-1uS)
&

Yy = WS

3

to find 0293

y = gx=c,

. WS =g (PROTIM + NPR — (CS-WS)) - ¢
g
1

ey Wy W gleROTIM + NPR=-CS

'H = a;_?C— C3
.'.W5=g2(HmﬂM+EmR—(C&qM) -
.)

Q

Q
]

g, (PROTIM + NPR - (CS=4WS)) - WS
&

e. STRUCTURE OF THE MODEL

The model is similar to that used for BASYS since it
is a next event type simulation model and simulates seven
events. The events contain considerably more detail and are
more closely interrelated than in BASYS but the basic
structure is the same as fig.3. see fig.23

These seven events are ordered by means of an event
controller which is basiczally a linked list ordering events
with respect to the time at which they are due to occur. Each
event simulates some process which a job may go through whilst
in the computer system and predicts when the next event for
that job will occur. It is sometimes necessary for a job to
enter 2 queue e.g. awaiting central memory space, awaiting use
of the drum to complete an I/0 transfer or to wait on the
ready list. The event list does not contain an entry for a
job while it is in a queue but once the job reaches the head
of the queue it is removed from that queue and placed on the
event list.

The events which are simulated are descrivec Telow;

Event 1 Simulation of Job Arrival

The event 1 routine samples the job mix distributions for
job N for which the event is taking place. It has the
following functions:-

1. determines maximum interarrivel times of I/0

requests for the job N
2+« determines the page fault rates 811 &5 for the

job N

1o

0
F PN nNnag MDYV TNHIC ERW oo 9%

/.f
g | /
A . L Ofx YNIALXT ANy o bSO
5 14 10
TYNUGINT | SNy goe 20 20__.r.m..¢rod_ @SN HNYQ NOILITIIHDD Wwavor Fhyy _.!t.rwc. MY GOP_
[InoNS 5 INgRs SUNINT e € o3 gIeE = ganes
!n...r-a.:..r. //,..f /_ \\
/I.! /;/.r! / \\ \\
/ l i
\
. \\.-\\.\

.\ —

.:.W,.!L.Zﬂ&.-.“w.....qmm_.w_.wmm.wﬁ......ﬂ.ux..u..i
Y sousiLbus 3dHYS

%

vV

3. assigns a priority to the job

4. generates the central memory requirements
for the job

5. generates a long quantum count associated
with the job

6. predicts the approximate central processor
time required by the job

T. predicts the approximate size of the working
set of pages for that job

8. generates the record size for the job.

The routine then calculates the number of pages in the
job (this will vary according to the current page size in the
system), and determines the size of the working set (for
prediction of page faults). Event 2 is then scheduled for
Job N and the arrival time of job N + 1 is predicted. BEvent 1
is scheduled for job N + 1 and control is returned to the

event controller.

An event is "scheduled" by linking up the associated job
entry on the event list. That is, the event number and the
time at which the event is due to occur are entered into the
event list along with the job number with which they are
agsociated. The event then occurs when this entry reaches
the head of the event list i.e. when it is the first event in
time due to occur. When this entry reaches the head of the

list the time associated with the event is closest to the

37

38

time on the simulation clock. The simulation clock is then
advanced to the time sssociated with this event.

The clock is initially set to time zero at the start
of the simulation and is advanced only when an event takes
place. The clock allows for several events to occur at the
same time since it is only advanced when the time associated
with an event is greater than that of the clocke. The time
at which an event is "scheduled" to occur is always greater

than or equal to the clock time.

Event 2 Page loaded onto Drum

The Event 2 Routine simulstes the lozading of a page of
job N onto the drum from an externzl device. If the drum is
busy then the request is entered into a drum queue. If the
drum is free it is assigned to job N for a time that is a
function of the drum speed, read/write rate, number of
records associated with job W and traverss time., If, however,
all the pages of job N have been loaded ontc the drum then job
N is assigned to the queue for central memory spacc znd event
T the internal scheduler is scheduled for it. If pages are
still being loaded event 3 routine is scheduled, representing
the delay time in completing the loading of a page.

Event 3 Comvletion of ILoading

Event 3 represents the completion of the loading of a
page. The drum is freed and the entry at the head of the drum

queue for job H is examined. If it was in the drum queue to

to load enother page onto the drum then event 2 is scheduled
for job H. However if it was in the queue to carry out an
I/O transfer or deal with a page fault then event 4 is
scheduled for job H.

Job N has completed the loading of a page so the page
table for job N is updated to keep account of the position on
the drum that the page is stored. The list of free pages
available on the drum is also updated. Event 2 is scheduled
for job N.

Event 4 Drum Request

The Event 4 routine simulates the use of the drum for
I/0 transfers and page faults. If the drum is busy job X is
entered into a queue otherwise the drum is assigned to job N
and event 5 is scheduled.

Event 5 Drum Completion

Event 5 signifies the completion of a drum transfer for
I/0 or a page fault for job N. Job N is then placed on the
Ready List since it is once more ready to run cin the CPU and
event 7 is scheduled for this job. The drum is now frce and if
there is anything in the drum queue then the head of the queuse
is assigned to the drum and event 2 or event 4 scheduled as
appropriate for job H.

Event 6 CPU Execution

The event 6 routine simulates the actual running of a job
on the central processor.

The processor is reserved and pointers set up indicating

40

which job has control of the processor (CPUJOB) and what time
it gained contfol (CPUST). The job now in control of the
processor continues executing as if it had never lost control
and all its counters and associated statistics are continued
and updated. Firstly, if the job has completed a multiple
ofcr‘(zigma) (the sampling interval) units of time in execution
then the use-bits of the job are shifted one place to the right.

A) Secondly, if the job has completed its estimated CPU
time then event 7 is scheduled for the job and control
returned to the event controller.

Thirdly, if an I/O request has not alrezdy been
predicted to occur at a certain time then one is predicted and
a flag set up to say that this I/O request is waiting to be
carried out. Similarly if a page fault has not already been
predicted then one is predicted and a further flag set up to
say that this page fault has still to be satisfied.

A test is done to sce whether the I/O request or the pege
fault is to occur first. Suppose it is the page fault then a
further test is done to see if this page fault is to occur
within the next burst of zigma on the CPU. If it is then
event T is scheduled to deal with the page fault and control
is returned to the event controller. Similarly with the I/0
requeste.

If neither the page fault nor the I/0 request is to occur

within the current burst of zigma then the Jjob completes zigma.

The use-bits are shifted and the whole process (from A) above)
is repeated provided the job still has some of its itime quantum
left. If the job has completed the time quantum allocated to it
then event 7 is scheduled where the job will be put onto the
ready list. Control is then returned to the event conircller.

EBvent 7 Internal Scheduler

The Event 7 is a simulated combination of a high level and
low-level scheduler. This routine selects the next "suitable™
Jjob to put onto the ready list and also decides which job is to
run next on the CPU. Thus it replenishes the ready list and
keeps the CPU busy.

Assume Event 7 has been called to deal with job N.

If job N is in the central memory queue then all its pages
have been loaded onto drums and it is now requesting that its
first (“starter") page be loaded into core so that it might
begin execution. Suppose the working set strategy is being
adopted, then the "starter" page is loaded into core provided
that there is enough room for its working set (the size of
which has been predicted in the event 1 routine). The working
set number of pages are reserved out of those available in core.
Thus event 7 initiates the loading of the "starter” page into
corey event 4 is scheduled for job N and control returns tc the
event controller. If the scheduler decides not to load the
initial page then control is simply returned to tﬁe event
controller.

If job N is not in the central memory queue and it is on

the ready list then it is requesting use of the CPU. If the

CPU is free then it is assigned to job N and job N removed
from the ready list. Event 6 is scheduled and control is
returned to the event controller.

If, however, thé CPU is not free then the scheduler must
test if the priority of job N is greater than that of CPUJOB
(i.e. the job currently in control of the CPU). If its
priority is greater then pre-emption occurs, job N is removed
from the ready list and is scheduled for event 6. CPUJOB
releases the CPU and the appropriate statistics are updated;

If CPUJOB is complete gll its table references are
deleted and blocks occupied by it on the drum and in core are
frecd. The central memory queue may now be advanced if it is
possible (sazme argument as earlier).

If CPUJOB is not complete then in the current
implementation a random bit pattern is put into the "use=bits”
to simulate the page reference patterns during its last run
on the processor (the bit pattern is put into "working set”
number of pages culy, the random numbers lying between 1 and 2K
where K is the number of sampling intervals). The pages which
have been written to or updated during the last run on the
processor are also generated randomly and their page tables
updated accordingly. The pre-empted job CPUJOB is then placed

on the ready list and control returned to the event controller.

If, however, the priority of job N is not greater than
CPUJOB but the CPU is still busy then job N is placed on the
ready list, and control returned to the event controller.

Suppose now that job N has just been executing on the
CPU and has been blocked for some reason.

If the job is complete all references to the job are
deleted and the seguence of instructions carried out as
when CPUJOB completed (see earlier).

If the job is not complete "use-bits" are updated, pages
"written—to" cre indicated and page tables updated &s before.
Now the reason for blocking must be determined.

If the job has blocked for en I/0 request to be carried
out, related statistics are updated, the CPU is released and
event 4 scheduled for job N.

B) If K sampling intervals of processing have been
completed by job N, each page in job N is tested to see if it
is still in the working set (i.e. logical sum of "use-hits"
equals 1 when the page is in core). If it iz found that the
page is no longer in the working set then it is marlked as a
candidate for removal from main memory, as an aid to the
paging algorithm. Then the scheduler selects the head H of
the ready list to run next. ZIf its quantum has run out then
it is assigned a further quantum according to the level of the
ready list from which it is taken. If it is teken from the
short quantum level, it is assigned a short quantum and its
long quentum count is decreased by one. Event 6 is scheduled

for job H and ccntrol is returned to the event controller.

43

If the job N has not blocked for an I/0 request it may
have blocked for a page fzult. If so related statistics are
updated and the CPU is released. The paging algorithm is
consulted to determine which bleck in core is to be allocated
for the demanded pzge. Related statistics are updated and
event 4 is scheduled for job N. The sequence of decisions
are then the same as if it had blocked for an I/O request
(i.e. from B)) and the head of the ready list is run next.

A further possibility is that the job has blocked because
it has completed the time quantum allocated to it. In this
case the long quantum count is decreased by one and the Jjob
returned to the appropriate level of the ready list. If there
is no other job on the ready list this job continues with
control of the CPU, otherwise the head of the ready list is

selected to run next.

PART III

VALIDATION AND EXPERIMENTATION

45

III 1. VALIDATION OF THE MODEL

INTRODUCTION

The question posed in this chapter iss
Is the model a valid‘representation of the type of system
we are trying to model?

In some ways this is a philosophical question and a
problem common to all modeling and simulation experiments.
There are severzl accepted approaches to this problem
discussed in (19,20). The approach employed here assumes
that the model is valid if it satisfies the following three
conditionss

(1) That the logical and mathematical relations

enployed in the frame-work of the model
closely approximate those in the system.

(2) That the input parameters and variables compare

favourably with known historical data.

(3) That the siiulation model's predictions of

the behavicus of the real system correspond

closely with that actually observed.

INVESTIGATION

The model under consideration was built to simulate paged,
mul tiprogramming computer systems. It is impossible to prove
the validity of the model for all such systems. However, we

chcose one typical machine for which known historical data is

46

47

available. Further, for the machine we have chosen empirical
output data is also awvailable with which to compare the results
from the simulation model.

By experimentation with a model of this particular systenm
we can see whether or not the three conditions are satisfied.
If they are then we have made some progress towards proving
that this is a valid model.

No attempt is made to provide conclusive evidence of the
validity of the model; however, the experiment to follow and
the general trends indicated in subsequent chapters should
provide strong indications that the model does fulfil its
purpose.

METHOD

The system chosen for comparison is the ATLAS computer
once located at Manchester University since statistics are
available concerning its operation in (9,21).

We first consider condition (1).

A brief description of the ATLAS system is given »ore and
indications of how the logical and mathematical relations in
the system are approximated by the model.

The basic queueing in the system is eﬁown in fig.24 and
by comparison with fig.l4 can be seen to have the same basic
structure as that of the system represented by our model.
However, the model does not cater for user tapes and a

discussion on the approximations used follows later.

HIBAS 951ingwo> S Uy IHL N| wzumsmjmu SCUR e W.WW»
T3 M m—o
; J L
N \A
Saayl 42SN
N TIRCILI PR,
P \@
N
Y
. HNnJa
Y
N\
spog —ma M dlr ~
Ng>
SIINLIMIG TV 2 9Ny bvaium seos
< — < o« _ P

STIYMYa

bnip mansks

40 QNI : L Hzlsks
- 40 12u8

48

Once jobs leave the input well they are assembled

according to a priority scheme which tries to maintain a
tape job and a non-tape job in the execution phase at the
same time. This is implemented in the model. Jobs queue
to enter into the execution phase and the number of jobs
simul taneously in the execution phase is limited to two.
In our model jobs gueue on the ready list to await execution
and the number of jobs simultaneously in the execution phase
is variable according to the length of the ready list. Thus,
we set this at two.

In the execution phase pages are transferred to or from
the drum, tape transfers may be made to one or more magnetic
tapes assigned to a job, and output may be created on the
output well located on disk. In the simulator transfer of
pages and creation of output information all tzkes place as
if on drums with appropriate timing considerations. This
does not have a detrimental effect on the balance of the
model of the ATLAS operations since no queueing tekes nlace
for transfers to or from user tapes, (each tape is connected
to core via a separate channel).

The queue discipline for drum transfers and for the use
of the output well is first-in-first-out. In the queue for
CPU attention, however, tape Jjobs are given priority over
non-tape jobs. These queue diséiplines are mirrored in the

gimulation model.

49

Thus the logical structures in ATLAS are reflected
in the model without any major adjustments.

The mathematical relations in the system are meinly
represented by the parameters given for ATLAS, including

COore size = 32 pages of information

mean tape transfer time = 0,062 secs/page

mean drum transfer time = 0,014 secs/page

drum size = 133 pages

supervisor overhead to transfer control to a job = 0,002 secs

supervisor overhead to locate a page on the drum = 0.006 secs
The paging algorithm is described as a "one level store

learning program" which is based on information held in
"use digits". For each page of core store there is a use digit
which is set when the page is accessed. All the use digits are
scanned and reset at regular intervals by the central executive
and a pattern of use is established. The selection of the page
to be rolled out of core is made with respect to this pattern
of use. This learning program is very similar to the one
described in our original system. The "use-bits"™ in the original
system being the "use digits" descrited here. Thus to give the
paging a2lgorithm in our model the degree of effisciency experienced
by the one in ATLAS, the selection of the page for removal from
core is based on the condition of the use-bits. Further, the
page whose use-bits are furthest to the right will be the one
selected. This is effectively a Least Recently Used paging

algorithm,

504

Thus the logical and mathematical relations employed in the
frame-work of the model closely approximate those in the system
and condition (1) is therefore satisfied.

We now consider condition (2). Here a set of input
perameters is describéd. These are based on historical data
given in (9).

The parameters together with variables described earlier
are used as input to the model, the final proof of the validity
of the model lies in the results obtzined as output. These are
discussed later, (see pageXd)

input parameters

class 2 is considered from (9), with compute time range 1-8.

class 2
maximum processor requirements = 8 secs
maximum byte requirements 208000 (page size 4K)

mean no. of tape transfers mean no. of I/O requests

= 344
max. inter I/O request interval = 8/344 secs for tape jobs
0.23 x 10—1 secs
page size = 4K

The input parameters actually used in the simulatica are as

followss
GENERAL

a) core size

KSIZE = 32 pages = 128K in subroutine SYSTEM
KPAGE = 4K in subroutine SYSTEM

b) page size

c) 2 levels of priority were given to jobs to account for tape
jobs and non-tape jobss :

IF (PJ.EQ. (PJ/2) *2) JOBDES(PJ,1)
IF (PJ.NE. (PJ/2) *2) JOBDES(PJ,2)
in subroutine JOBSIM

d) traverse time for drum transfers

TRAVT = mecsn tape transfer time 4+ mean drum transfer time

2
= 0,062 + 01014
2
= 0.038 secs
=~ 4 time units (1 time units = _1_sec)

.) 100
in subroutine SY3STHAM

50B

e) NJOB = 2 in subroutine JOBSIM so that not more than two
jobs may be in the execution phase at the same time,

The supervisor overheads msniionzd earlier are considered
small emough to be neglected and the drum size of the system is
maintained at its maximum value (KSIZE = 744)since there will
thus be sufficient pages for both tape and non- tape jobs,

FOR CLASS 2 J0OBS

f) maximum processor requirements 8 secs

nu

MAXCFU 800 time units
g) maximum byte requirements = 208000
MAXBYT = 206000

h) maximum inter I/0 request interval = 0,023 secs
IOMAX (PJ) = 2 time units

The Least Recently Used paging algorithm was used in both
cases, NEJLIM was set to 10000,
RESULTS

Comparison of Observations from ATLAS and Results from Simulator

ATLAS Simulator
mean compute time .estimated CFU time of 2 jobs
=380 units =269 and 564 units
mean elapsed time response time of 2 jobs
=3770 units = 1679 and 4313 units

CONCLUSICN
The results obtained show that the simulation model's predictions

of the behaviour of the real system correspond closely with that
actually observed, Thus, the model satisfies condition (3) and
proves that the simulator is capable of modelling a particular

system,

51

IITI 2. A QUESTION OF BALANCE

Our modellhas been shown to be valid for a particular
system configuration, but we require it to be valid for all
systems with the properties of the system described in
Part II Ch.l.

Care has been ®ken to ensure that the frame-work of the
model reflects the logic of such systems. The user of the
model, however, is responsible for the choice of input
variables and parameters describing the system. His choice
of system must be made carefully since it will have considerable
effect on the performance of the model and consequently on the
predicted performence of his chosen system.

It is possible that the user may choose "unreasonable"
input parameters which will result in an unbalanced computer
system. Such an unbzlanced system may produce distorted
simulated results and could render the system and consequently
the model completely insensitive to a change in pagiﬁg algorithm.

In this section, we propose some simple tests, inspired
by J.H. Saltzer (22) which will help the user determine whether
or not he is working with a balanced system.

The balance problem we shall consider is whether or not
the core memory and processor are balanced relative to each
other and to the presented job load.

THRASHING
Before meaningful conclusions can be drawn zbout system

balance it is necessary to convince ourselves that balance

measurements are not distorted by "thrashing", that is,
excessive overhead caused by quantum runout or page swapping.

Consider first the case of QUANTUM RUXOUT. This concerns

the values of the two, parameters QANTUM (1) and QANTUH (2)
which upperbound the amounts of continuous processor time
allocated to a job when it leaves the short quantum and long
quantum levels of the Ready List respectively. These quanta of
CPU time may be given values which are too small, in which case
the prime cause of processor switching will be quantum runout
rather than the job blocking itself.

In addition to causing extra overhezads in the systemn,
excessive processor switching may also reduce the average
response times of jobs in the system. For an intuitive notion
why this is true, consider 10 jobs each of which need 5 secs of
processor time. If each is to run to completion, followed by
the next, the first job will be served after 5 secs, the second
after 10 etc... and the last after 50 secs. On the other hand.
suppose that each job is served for only 1 sec, then the
processor is switched tc the next, etc. in a round robin. In
this case, the first job tc enter the system will not leave
until 46 secs have passed, the last still leaving at 50.

(Since processor switching causes some overheads delay times
would probably be even greater).

It is difficult to decide conclusively that processor—

thrashing is being caused by quantum runout but a reliable

53

guideline may be obtained through a comparison of the response
time of jobs to their respective CPU requirements. If their
response times are very great compared with their CPU
requirements then it is likely that processor-thrashing has
occurred and that the parameters QANTUM (1) and QANTUM (2)
need adjusting to increasg the processor time quanta allocated
to the jobs. -

Consider next, thrashing caused by excessive PAGE SWAPPING.

This situation arises when pages of a job are being rolled
out of core before the job has finished with them. That is,
pages of other jobs are demanding core space and are getting it
at the expense of removing pages which are still in use (i.e.
still in some job's working set). In such circumstances pages
are rolled out of core only to be rolled in again almost
immediately upon a page fault.

Excessive page swapping has three possible causes

1) the paging algorithm
2) the size of cors
3) the size of jobs in the system

The paging algorithm determines which block of core and
under what conditions that block of core is to be alloczted to
a "demanded" page. Its decision—makihg policy could cause a
page to be removed from core when still in ﬁse. Thus a page
may be rolled out of core only to be referenced again almost
immediately necessitating another page replacement decision

and further roll-out/rcll-in hence core thrashing will occur.

54

The number of pages of memory available may be
insufficient for the total number of Jjob pages in the
system.

WHhen the competition for physical menory becomes very
high due to over commitment vigorous page-swapping will take
plece i.e. thrashing will occur. Hence either the size of core
or number and hence total storage demand of active jobs in
the system must be altered. |

Thug if thrashing caused by excessive page swapping is
detected then alteration to one or more of the above three
factors may be necessary.

In the simulator KSIZE represents the size of core in K
bytes, KPAGE the page size in K bytes. The paging algorithm
is the SUBROUTINE ALGORI and the size of jobs in the system is
governed by a maximum job size MAXBYT which is the maximum
total storage requirement in bytes in any one jobe.

Pinally, how eare we to decide whon core~thrashing is
occurring and in fTact being caused by excessive page swapping?

No hard and fast answer can be given but a good guide line
is a comparison of the total number of pages in the system (A)¥
to the total number of page faults (B) that have occurred when
all the jobs have completed. If (B) is very large in comparison

to (4A) then thrashing must have occurred during that run.

¥ The total number of pages in the system is the sum of all the
pages belonging to the jobs run through the systems

55

Thus we must assure ourselves that thrashing is not
occurring in our system.

It is suggested that the system is adjusted using a
ngood" paging algorithm, ideally the BOR algorithm (23) but
possibly the LRU (see Part VI Ch.l) will be quite satisfactory.
(Different types of paging algorithms will be discussed briefly
in the next chapter).
BALANCE

Once we are convinced that "thrashing" is not occurring
then we can consider the question of system balance. The
measurements of prime importance here is that of processcr
idle time.

The processor mey be idle for one of two reasons

l. There is actually no work to do
2. The Ready List contzins work but the low-level
Bcheduler** refuses to allow any more processes
to be loaded.

When the processor is idle for the first reason, there is
a potential case of processor overcapacity. If however the
processor is idle for the second reason, then we have evidence
that the allowable load is being limited by the amount of core
memory available. Reducing processor capacity will have very
little effect on total system capacity or service quality under
these conditions. On the other hand increasing only memory size
will increase total system capacity.
**IThe low-level scheduler decides whether or not a process will

be loaded. It is loaded if there are enougn free blocks in core
to hold the process' working-set.

The user has the option within the simulator program to
remove or exchange the statements which carry out this test,
should he so desire. (They are clearly marked by FORTRAN COMMENT
statements).

The related problem of detecting core memory overcapacity
provides more difficulties since a paged core memory tends to
use up all available memory, no matter how much there is. On
the other hand, the fact that the memory is paged is of
considerable assistance in the problem. We can reduce the size
of core memory by removing a block of memory at a time from
consideration in the system. As the appropriate memory size
reached, processor idle time will begin to mount and the
desired information of where memory "“undercapacity" begins
will have been found.

We thus have several simple tools available for detecting
whether or not the resources of the system are well matched for
the job they are trying to do. First, simple measurements
indicate whether or not thrashing is being caused either by
quantum runout or by excessive page swapping. Second, once we
are sure that thrashing is not occurring then we may consider
whether o> not the system is in a ciate ¢of balancs.

The user may then proceed with any experiments on the

system which he may require to carry out.

56

ONE JOB NO I/0O (FIXED SYSTEM AND PAGING ALGORITHM)

fig.25A
DRUM USAGE/CLOCK TIME

_CORE SizEe = 32 PAGES

N oF Wb PES

TWE 26 49

® - iIbe 5% 5%
320 | 3i% Li%e
ke | e BT |
bo | 15% 537, |

. oo %00 | i2% 53%
q0 o | leTe 537 |

‘ T gc | i2e | 3% "

To ¢ W26 $%

CUAMULATINE o J" > ; . R L

“ledRut X » « ,1-.{--'&38 >coRE 30
usage ¥ L (uq PAQES)
1-0 i |
%! > |
‘ 21 e i
= io i 2 ” ras—JoB<cokE S\ Z2E

(25 maes)
i >

ibe 32c ASC 4o Teo Yo H20 3
4 4 Jod <otLETE

SIMULATED CiLocik TME—>
fig.25B

CPU USAGE/CIOCK TTi

TWNE.
Lo
320
'S _ kye STE 2T%
loo ot BB LCRE IR o | Wk Wt
Yo y o &1y AGES) : FOL 2% 35"?0;
3 §0 + = - o | 93¢ 959,
Goa™E 1o | 120wl
L::ﬁ g W2 | U
o s0. | |
| ¥ - L
[H .
= » % we— JuB > cuolE S12F
= (Wq raqes)
jo !
ke %1s &S0 btho Sco G u20p | 2
- Tan confeETE
D

Si_l-tut.ﬁ'l"é"b cLocK TME —

57

ITI 3. INVESTIGATION OF PAGING BEHAVIOUR

In this section we illustrate that the general trends
of the results obtained from the simulation are of the type
expected from the system we are simulating.

Several runsg were made initially to establish "reasonable"
input parameters. For example, it was found that when the
maximum processor requirements of a job were equal to 1000
simulated time units (MAXCPU= 1000), processor time quanta
allocated to any job of 40 and 100 time units (QENTUM(I) = 40
end QANTUM(2) = 100) avoided excessive overheads due to

processor switching at guantum runocut.

a) Response to different job varameters

Consider first, two runs in which only one job is run
through the simulator using a fixed system configuration and
paging algorithm. In the first run we allow the job to be
greater than core size (job size = 49 pages, core size = 32 pages)
end on the second to ve less than core size (job size = 25 pages,
core size = 32 pagez). No I/O requests are issued in either
case. A comparison of the percentage drum usage during the
two runs is given in fig.25A and a2 comparison of the percentage
CPU usaze in fig.25B.

It caﬁ be seen from the graphs that a job which is greater
than core size causes a great dezl of drum activity and allows
very little actual processing to occur. The job with 25 pages
had a totzl of 24 page faults and had no pages removed from
its active working set. Whereas the job with 49 pages had a
total of 209 page faults and had 51 pages removed from its

active working set over an equal period of simulated clock time.

56

Both jobs had a predicted execution time of 1000
units znd after 958 units of simulated clock time “he job
of 25 pages hzd been in the execution phase for 826 units
apd the job of 49 pages for only 212 units. It seems
evident thercfore that a great deal of page faulting
activity is occurring when the job is greater than core size.
(In fact, the job with 49 pages had not completed in
30 mins of azctual execution time on the IBM 360/44, whereas
the job with 25 pages completed in 7 mins of actual CPU time).
Consider, next, a comparison of iwo runs in which the
execution of four jobs is simuleted. . The sum total of the
pages of these four jobs adds up to less than core size,
(29 pages in the 4 jobs, 32 pages in core). In the first run
none of the jobs issue I/0 requests, but in the second all
jobs are I/0 bound, (IOMAX(PJ)=2 and MAXCPU = 5C0).
Fig.26A shows the comparison of the percentage drum usage

end fig.26B a comparison

b

£ the percentage CPU usage. Jodbs

not issuing I/0 requests finish executing in a shorter time

than those which do. Fig.26C shows a comparison of the response
times of the jobs with and without I/O. The jobs are identical
in all other respects, for example, the actuzl time spent on

the CPU is identical in both cases. For instance, although

job 2 is only executing for 32 time units, when I/0 reques*s are
issued it takes 137 units to complete in comparison with only

73 units when no I/O is issued.

4 JOBS WITH TOTAL PAGES LESS THAN CORE

fig.264A
DRUM USAGE/CLOCK TIME

core size = 32 pages, total paces = 29

A ‘ fovs, 1Tlo e Tfo
|]
2 l o i:m%. 5%
| | 320 |%€l° 4-4%,
l . 7844 ‘E‘(;‘-/O
% DR e : il
o U { 1
9o * e oo . i
usage g /ﬁ/\r\“(< wsi Uk I/O

Z / G— b Hhout I/O
J : :
3ct I |
ob-s &
-%% | -F"';:}:f l+1 UM\PL:
los
‘ i . i _,___.._..:.,...__-. D B AR 5 - TP ——
[bo 320 4F0 kLo B Fa =
fig.ZGB

CPU USAGE/CLOCK TIME

core size = 32 pages, totazl pazces = 29

e | Tfo [0 T/
leo 2%, | <79
320 155‘3%{, 179
40 337,
J tyo 33Z i
| !
“ceu ;ﬁ. |
usage gb! dl_---—*—w"!.d‘_\c"\n.t :L/Q
7o |'
éo |
. / gt 3— sk T/0
e !
(o L/ 'd____—______?__é_:;/___--—/l{— ‘]Q’L'E (.o-rv\rzv{.:':&

leo 3Jo (3D ko Fop 6o

fig.26C
RESPONSE TIMES FOR 4 JOBS LESS THAN CORE SIZE

actual
No I/0 I/0 CPU time used

~Job 1 45 65 10
Job 2 73 137 32
Job 3 134 330 91

Job 4 61 118 29

59

It can be seen from fig.26A that when the jobs are
issuing I/O reqﬁests there is a high degree of drum activity
throughout their execution. Whereas when no I/O requests are
issued there is high drum activity while the initial pages of
the jobs are loaded onto drums which falls off rapidly once
jobs start executing. Fig.26B shows that the vercentazge CPU
usage remains very low thrcughout the jobs!' execution when the
jobs are issuing I/0 requests. This illustrates the fact that
I/0 bound jobs have a low computing demand on the system, thus
creating a situation in which the CPU is idle for a large amount
of the time.

Next we investigate two runs in which the total number
of pages required by jobs is greater than the number of pages
available in core. One set of jobs issue I/0 requests and the
other does not.

Fig.2TA illustrates that the percentage drum usage for

1

jobs issuing I/O requests is alwyays higher than when they do not.

(

However, drum activity is high in both cases, due to the
excessive paging which is taking place. For the 4 jobs with no
I/O 40 page faults have occurred after 240 units of simulated
time with 20 pages having been removed from active working sets
and 3 jobs completed. When I/O requests are being issued, the
same jobs under the same conditions have issued only 22 page
faults with 5 pages being remcved from active working sets and
only 1 job completed after the same 240 units of simulated clock
time. The percentege CPU usage is consistently less (see fig.27B)

for jobs whose total pages eare greater than core size than for

4 JOBS WITH TOTAL PAGES GREATER THAN CORE SIZE

fig.27A
DRUM USAGE/CLOCK TIME

core size = 16 pages, totzal no. of pages = 29

A
bime, pele !m Il
A ; 8“{1 ch/e ”?Ci OJ{‘
it _I/C’ ;ic !:I;-‘?L;ZE/Q
(av /ﬁ/""-f .) dgo |37 | bo¥
_ (s nst WL"&) & 1 F=m
c/o‘bf?uﬁ P */ : u\ 873 ' 1| 5“37‘
uSﬁL’.}E 50 : | i
o |
to] 1 e ﬁ:.c?\»t I/O
§o) |
4o) o
30 { |
2l [A .
| I ‘Q-"" 16{;_; Q?Yv\.‘ﬂiﬁ-t:_
1 - + ; L | . -
k1) IGo 240 300 Cal
aimuletsd elode ot — o
fig.27B
CPU USACE/CLOCK TIME
core size = 16 pages, total job pages = 29
A iy [Tl e Tlo
l 80 V@% a7y
l i ‘ [¢o iﬁﬂ% | 529,
| Ao [33%|62%
o pu leo- o
° 0 : 273 667,
usAGE £ |
_ il

7! 4— witked To
5o - i ‘
| | 1&«‘6 vav.‘aj-bb.
' |
3'01 > (.' '::(3‘5 et oy ".‘)
fo {‘// : 1 wplats.
. . L - s
g0 l6o 2406 3co
— Siondadzd doce L . 1

60

those jobs whose total pzges are less than core size (see figl.26B).
It can also be seen from fig.27B that jobs which issue I/0
requests and have total pages greater than core size have a

very low CPU usage.(< 30%)

b. Response to different machine configurztions

lastly, figs. 28A and 28B show a comparison of 2 runs in
which no I/0 requests are issued and all conditions are
identical except core size. In both cases there are a total of
29 pages in the system, one run has 16 vages of core and the
second hes 32 pzges of core. As one would expect the run with
only 16 pages has a high percentage drum usage (see fig.284)
and a lower percentage CPU usage (see fig.26B) throughout the
whole run, since vigorous page-swapping is occurring. The
comparison further illustrates the fact that when Jjobs fit
comfortably into core their response times are lower than
when they do not (see fig.28C). In the case with 32 pages of
core the 4 jobs completed in 243 units of simulaied clock tiie
whereas with only 14 pages it tcok 273 units to complete
the same 4 jobs., Further with 32 pages of core 22 pagzge
faults occurred and no pages were removed from active working
sets whereas with 16 pages 40 page faults occurred and 20 vages

were removed from active working sets.

4 JOBS RUN WITH DIFFERENT CORE SIZES
DRUM USAGE/CLOCK TIME
fig,284
total paces in 4 jobs = 29, no I/0 issued

CoRe 525
————

1\ e { 6 ? 3
5 Yo :l —;?ZE
| leo r '1?%1' 2% 4
240 Gote! b4’
| ' 273 52%%,
? I ;
°fa‘t>s?uH e i
usage \
v ol b
| : Pogee :.L cone_
']
I I
| —=x 1(‘.“:*-3 ccm_f),'.zt'_
lso L0 320 B M
aincdetxd o 2 Hopg ——m---7>
fig.?SB
CPU USAGE/CLOCK TIME
caRkReE SIZES
/s) r YL TR i
Lvg | 16 | 32
¥Q 3772.
6o 5_3‘(1 (,‘T‘Z
/I A0 IGQ‘Z | i A
N> 66, |
‘/aCT’U fcbi ! |
usa CIE' ?a{ 4‘—' 32 011_3’\:.9 céw
&0 - :
Tot #”H’¥}f,#ffﬂ¥<f—“ Hopanﬂ ogqrw
bt |
Sb r]
40 | i
ot ' |
3ap s covrm &3
to b &’/57‘ 1 Ffj
= PR S >

o Simidobid lacle Fag e

fig.28C
4 JOBS RUN WITH DIFFERENT CORE SIZES

RESPONSE TINES

16 pages 32 pages of core

Job 1 45 45
Job 2 91 73
Job 3 | 155 134
Job 4 | 17 61

c. Response to a pazing algorithm

The paging algorithm used in the examples in fig.25A
to fig.28B was the Random Selection Algorithm described in
Part IV l.c. By considering the effects of altering core
size on page traffic and CPU utilization we can see that
the élgorithm is having the expected effect. By reducing
core size on the same job stream it has been shown that
drum traffic is increased and CPU utilization reduced.
Further, the number of page faults and.the number of pages
removed from active working sets increase as core memory

gize is reduced.

61

III 4. A Comparison of Two Paging Algorithms

Here we consider a comparison of two runs which differ
only in the paging algorithm used. These are the Least
Recently Used (LRU) algorithm and the Random Selection
algorithm., Both these algorithms are described and listed in
Part IV 1 (c).

It has been shown that the LRU algorithm reduces drum
activity. This appears to be caused by tﬁe reduction in page
traffic since only 13 pages were removed from active working
sots when the IRU algorithm was used compared with 20 pages
using the Random Selection azlgorithm. The LRU algorithm does
not cause as great a demand on the system facilities as does
the Random Selection paging algorithm.

The system under consideration did not issﬁe I/0 requests,
it had only 16 pages of core memory and had a total of 29 pages
belonging to jobs. The execution time on the IBM 360/44 for
the IRU run was 8.23 mins compared with 9.23 minc for the
Random Selection run,

It appears, therefore, from the runs described in this
chapter that the simulation is, in fact, sensitive to changes
in system parameters, job types and paging algorithms.

Further the results obtained from these changes are consistent
with those expected from a péged mul tiprogramming computer

system when subjected to similar changes.

62

PART IV

THE TEACHING TOOL

63

IV 1. HOW TO USE THE SIMULATOR

JINTRODUCTION

The simulator was seen from the very beginning of ite
development as a teaching tool. One of its basic requirements
was therefore that it should be easy to use. This chapter will
illustrate the fact that the simulator is straightforward to
use, and define the method of use.

The system was developed using punched cards, the
subroutines and main program were then precompiled and stored
in a privafe library of object modules, (on a disk). The user
is presented with a set of Job Control Language (JCL) cards
for linking his subroutines with the main program.

In order to test the user's system it is sufficient to
slot the FORTRAN subroutines into the JCL, which will then
compile it, link it to the private library to get the rest of
the program, load the whole system and start execution.

There are three subroutines required from the user. These
ares

l. ALGORI - the paging algorithm
2. SYSTEM - the system configuration parameters
3. JOBSIM - the job description parameters.

Details and examples of these subroutines may be found later in
the chapter.

A factor contributing towards the ease of use of the
simulator is that it is written in the high level langauge

FORTRAN which is generally known among students of computer

64

65

systems and is generally supported on a wide range of
commercially available computer systems. Thus it is
expected that anyone with a working knowledge of FORTRAN
will be able to use the simulator.

The teaching tool endeavours to fulfil the needs of
a user who requires one or more of the following:-—

l. to test a paging algorithm on various configurations
of a paged time-sharing system, with a fixed job
stream

2. to test a paging algorithm on a fixed configuration
but with a varying job stream

3. to test the effects of various paging algorithms
on a fixed system configuration with a fixed
job stream.

Thus there are three sets of informetion available to the
user so that he has the facility to do any of the zbove, these
are:-

l. the system configuration parameters

2. the job stream parameters

3. the data necessary to write his own paging
algorithm.

A variable parameter which does not fall into any of the
above sets of information is the length for which the
simulation is run. The relevant parameter NEWLIM is the
number of units of time after which the simulation will cease

and the program terminate. This mey be set tc any value but

it is usual to set it sufficiently high so that all the
jobs in the system can run to completion. Further
discussion on the use of NEWLIM is glven later in this
chapter under the heading of OUTPUT.

A discussion on the type of computer system configureble
in the simulator has already been held in chapter 3. The
remainder of this chapter will therefore be devoted to the
description of the three sets of information available to

the user.

67

a. THE SYSTEM CONFIGURATION

There are 10 parameters concerned with the syztem

configurations these are specified in the subroutine SYSTEM.

These parameters are

1.

2.

3.

4.

5s

6.

8.

KSIZE - this is the size of main/core memory in
K-bytes where K = 1024. see note 1

KPAGE - is the size of a page and consequently

of a block of memory within the system. This is
also in K-bytes, K = 1024. see note 1

KSTORE - this is the actual number of blocks

of store available on auxiliary storage,

(i.e. on drums). see note 2

KSAMP - is the number of sampling intervals allowed
to pass before the use-bits are shifted (see
discussion on the working set in chapter 3 for
further details).

ZIGMA - is the length of the sampling intervel
(see chapter 3 discussion on working set).

RVTIM - this is the time taken for one drum
revolution and is used to help calculate the time
taken to complete a drum transfer.

RWRATE - is the read/write rate of the drum in
bytes/unit of time.

TRAVT = is the traverse time of the drum i.e. the
time taken to transfer the page from the drum (once
it has been located) into main memory. Although

it sometimes takes less time to store into

9.

10.

auxiliary memory, using a "first-free-block"
algorithm only, than to read from it, TRAVT is
regarded to be the same no matter in which
direction the pzge is moved.

QANTUM (1) - is the short quantum length which

is assigned to a job when it leaves the short
quantum level of the ready list. (see chapter 3
on ready list for further details)

QANTUM (2) - is the long quantum length which is
assigned to a job when it leaves the iong guantum
level of the ready list. (see chapter 3 on rezdy

list for details)

Note that the parameters involving length of time (namely ZIGMZ,

RVTIM, TRAVT, QANTUM (1), QANTUM (2))are all standardised to

multiples of 1/100th sec. That is, the unit of time is chosen

to be 1/1001;11 sec.

The szbove parameiers may thus be chang=d by the user within

the restrictions indicated in the notes.

note 1

note 2

Because of the limitations of fixed length declarations
in FORTRAN, the size of the pzge tables and memory map
must be fixed. Consequently the total number of blocks
of main/bore memory allowed in the system a2t any one
instant had to be fixed. The maximum number of blocks
is fixed at 256. Thus the result of the division of
KSIZE by KPAGE must not be greater than 256.

KSTORE is limited to a2 maximum of 744 owing to the

restrictions of fixed length declarations.

69

An example of the system subroutine SYSTEM followss
The declaration and common statements must appear in

the subroutine.

SUBROUTINE SYSTEM (NEWLIM)

REAL GONE(8), GTWO(8)
INTEGER NOPF(8), BYTREQ(8), NOPAG(8), IOMAX(8)

CONMMON GONE, GTWC, NOPF, NBLOC, KSTbRE, NJOB, MAXINT,

1 MAXBYT, MAXCPU, MAXREC, BYTREQ, NOPAG, IOMAX, TT, ACTIVE, CURRST,
2 NOPR, PTAB, PTRP, WORKST, KSIZE, KPAGE, RVTIM, RWRATE, QANTUM,
3 KSAMP, ZIGMA, MMAP, JOBDES, NFB, FBLST, FBLEND, TRAVT

INTEGER*2 NEWLIM, TT(8), ACTIVE, CURRST(8), NOPR(E),

1 PTAB (1024,4), PTBP(8), WORKST(8), KSIZE, KPAGE, RVTIM, RWRATE,
2 QANTUN(2), KSAMP, ZIGMA, MMAP(1280), JOBDES(8,5), NFB,

3 FBLST, FBLEND, TRAVT

C KSIZE is the size of core memory in K-BYTES (K=1024)

KSIZE = 128
C KPAGE is the size of a page in K~BYTES
KPAGE = 4
C KSTORE is the no. of blocks of asuxiliary memory { == T744)
KSTORE = T44
C KSAMP is no. of szmpling intervals before sampling of use-bits
KSAMP = 10
C ZIGMA is length o? sampling interval
ZIGMA = 2
C RVTIM is time taken for one drum revolution
RVTIM = 1
C RWRATE is read/write rate of drum, bytes/millisec
' RWRATE = 156
C TRAVT is traverse time of drum
TRAVT = 1

C QANTUM (1) is length of a short time quantum
QANTUM(1) = 40

C QANTUM(2) is length of a long time guantum
QANTUN(2) = 100

© C NEWLIM is no. of units of simulation time required

NEWLIM = 2000

RETURN
END

b. THE JOB STREAM

The job stream description parameters are divided into
two types. Namely, those which are specified as maximum
values for the whole job stream and those which may be specified
as individual values for each job. The subroutine JOBS1M
incorporating the complete set of job description parameters is
called from EVENT 1 in the simulator.

First, the parameter which specifies the total number of
jobs to be simulated is NJOB. The number of jobs capable of being
held in the present version of the simulator is limited to 8.
Thus NJOB may have any value from 1 to 8 inclusive.

Now, the job description parameters which are specified as
a maximum value are:—

1., MAXINT - this is the predicted maximum inter-arrival
time of jobs to the system.x

2. MAXBYT = this is the meaximum number of bytes required
by the largest job i.e. the predicted maximum size of
Jjobs.

(The number of pages required by the job is calculated
within the program according to the value of KPAGE)

3. MAXCPU - this is the maximum number of units of time
required by the longest job i.e. the predicted

maximum length of jobs.

4. MAXREC = this is the maximum record size of a job.
This is used when calculating the total time taken for
a drum transfer. Drum transfers are often of fixed
length records and the option is available to the user

to make the records of variable or fixed length.
The indiwviduzal byte requirements and CPU times of a job may
also be specified, details are given in the examples later in

the chapter.

The inter-arrival time to the next job is uniformly distributed
between 1 and MAXINT,

The following parameters must be specified as
individual values for each jobs-—

1. IOMAX(PJ) where PJ is the number of the job
(see note 1)

TOMAX(PJ) reéresents the maximum interval between
which I/0 (input/output) requests are
made by a job, i.e. this is used to
predict how much I/0 a2 job is to do whilst
in the system. Thus if IOMAX(PJ) is small
then a lot of I/0 is done, whereas if it is
large compared with the total CPU time
required by the job then very little I/0 is
done.

This does not mean, however, that the I/O requests will
occur at evenly spaced intervals since IOMAX(PJ) is a maximum
value for job PJ and the actual intervals between I/0 requests
will vary. This is possible since every time an I/O request
is predicted within ‘he model, its predicted time of
occurrence is taken to be the present wvalue of the processor
time (see note 2) of the job PJ plus a random number generated
between 1 and IOMAX(PJ).

Note that if the user wants all jJjobs to do roughly the
same emount of I/O and 50 units of time is a suitable interval,
then simply specify

IOMAX(PJ) = 50
(IOMAX(PJ) may have any non-zero intezer value).

71

72

2. GONE(PJ), GTWO(PJ)
O0< value £ 1 — These specify the rates at

which pége faults will occur for the job FJ. They
represent the gradients of the two lines along which

page faulting is predicted to occur as described in part II
chapter 2 section (d).

For example

GONE(PJ) = 1
GTWO(PJ) = 0.25

gives a page feulting rate along the line whose gradient
iz 1 until the working set of job PJ is fully core
regident then a page faulting rate along the line whose

gradient is 0.25 after the woriking set is in core.

3. JOBDES(PJ,1) - This variable holds the priority of the
job, which is such that 1 is the highest priority
and larger integer values represent lower priorities.
JOBDES(PJ,1) indicates the priority of job PJ in the
central memory queue and within each level oflthe ready
list.

If all the jobs are given equal priority then the

queues are ordered in a first-in-first-out basis.

See later for example of subroutine JOBSIM.

Thus the user has intimate control over the I/O, page
faulting and priority of individual jobs giving him the ability

to model verious types of job stream.

73

Now that we have seen how to vary the system
configuration and the job stream the next topic to consider

is the paging algorithm.

note 1 Each job is allocated a number from 1 to NJOB
according to its order of arrival to the system
i.e. JOB(1) arrived first, JOB(2) arrived second,
and SO on.

note 2 The processor time of a job is the time of the
job on the processor seen without any
interruptions i.e. CPU time sctually used by the

jobe.

SUBROUTINE JOBSIM(PJ)

REAL GONE(8), GTWO(8)

INTEGER NOPF(8), BYTREQ(8), NOPAG(8), IOMAX(8), PJ

INTEGFR JM(101) '

INTEGER*2 TT(8), ACTIVE, CURRST(8), NOPR(8), PTAB(1024.4),

1 PTBP(8), WORKST(8), KSIZE, KPAGE, RVTIM, RWRATE, QANTUM(2),
2 KSAMP, ZIGMA, MMAP(1280), JOBDES(8,5), NFB, FBLST, FBLEND,
3 TRAVT

COMHON GONE, GTWO, NOPFJBLOG, ZSTORE, NJOB, MAXINT, MAXBYT,

1 MAXCPU, MAXREC, BYTREQ, NOPAG, IOMAX, TT, ACTIVE, CURRST, NOFR,
2 PTAB, PTBP, WORKST, KSIZE, KPAGE, RVTIM, RWRATE, QANTUM,

3 KSAMP, ZIGMA, MMAP, JOBDES, NFB, FBLST, FBLEND, TRAVT

74

NJOB is number of jobs to be simulated in 1 run of program
NJOB = 1

MAXINT is maximum interarrival time of jobs

MAXINT = 250
MAXBYT is meximum byte size of any job in the system
BYTREQ(PJ) is byte requirements of a particular job

MAXBYT = 100000
MAX = MAXBYT

CALL RANN2(JM,MAX) (note (a))
BYTREQ(PJ) = JM(PJ*2+10)

MAXCPU is maximum processor requirements of any Jjob in the
system

> JOBDES(PJ,4) is processor requirements of a particular job

MAXCPU = 1000
MAX = MAXCPU

CALL RANN2(JM,HAX) (note (b))
JOBDES(PJ,4) = JM (PJ+5)

MAXREC is maximum record size of any Jjob
JOBDES (PJ,5) is individual record size of a particular job

MAXREC = 200
MAX = MAXREC

CALL RANN2(JM,MAX) (note (c))
JOBDES (PJ,5) = JM(PJ+T)

IOMAX(PJ) is maximum time interval between I/O requests for
& particular job

IOMAX (PJ) = 1000 (note (d))

GONE(PJ) is page fault rate upto the working set
(0 GONE(PJ) 1)

GONE(PJ) = 1

GTHO(PJ) is page fault rate after working set is reached
GTWO(PJ) = 0.25

JOBDES(PJ,I) is the priority of a particular job (integer 1-9)
JOBDES (PJ,1) =1 (note (e))

JOBDES(PJ,3) is the long gquantum count of a particular
job (integer 1-9)

CALL RANN2(JM,10)
JOBDES(PJ,3) = JM(PI*2) (note (f))

RETURN
END

15

note !a!

MAXBYT must be specified. The individual byte requirements
in the above example for a particular job will be some random
number between 1 and'MAXBYT.

Further exampless
l. Suppose the user wishes all jobs to be the same
size thén the instructions
MAXBYT = 10000 say :
BYTREQ(PJ) = 10000 will have this effect.

2. For half the jobs to be large and half to be small
MAXBYT = 10000

IF (PJ.EQ.(PJ/2)*2)BYTREQ(PJ) = 10000
IF (PJ.NE.(PJ/2)%2)BYTREQ(PJ) = 500

note !b!

MAXCPU must be specified. The individual processor
requirements in the above example for a particular job will be
some number between 1 and MAXCPU.

Further examples:

l. Suppose the user wishes one job in the system to
be very long and the rest to be short jobs;

€.8+ Jjob 1l is to be long

then

MAXCPU = 10000
IF (PJ.EQ.1)JOBDES(PJ,4) = 10000
IF (PJ.NE.1)JOBRDES(PJ,4) = 50.

2. For all the jobs to be the same length
MAXCPU = 1000
JOBDES(PJ,4) = 1000

76

note !c!

MAXREC must be specified. The example shown gives
individual record size of some number betweén 1 and MAZXREC,
to a particular job.

Further examples:

Often drum transfers are of fixed length records,
this situation is catered for by the statements
MAXREC = 200
JOBDES(PJ,5) = 200

This will make all jobs have record lengths of 200,

note [dz

the stetement IOMAX(PJ) = 1000 means that every job in
the system will have the same maximum time interval between
I/0 requests. Two further examples follows—

example 1
Suppose the user wishes half the jobs to be I/0 bound
and the other half reletively free from I/O, then for
MAXCPU of say 1000 the statements

IF (PJ.EQ.(PJ/2)%2)10MAX(PT) = 20

IF (PJ.NE.(PJ/2)%2)IOMAX(PT) = 500
will have this effect.

example 2
Suppose the user wishes the maximum time interval between
1/0 requests to be some random interval between 1 and the
MAXCPU requirements then the statements

MAX = MAXCPU

CALL RANN2(JM,MAX)

TOMAX(PJT) = TM(PJI*4)

would have this effect.

note (e!
The statement JOKDES(PJ,1) = 1 gives all the job

the same priority. Two further examples follows—

example 1
Half the jobs have high priority and the other half
with low priority. Thic could be required in a
system where the program is simulating tape jobs
and disk jobs.
IF(PJ.EQ.(PJ/2)*2)JOBDES(PJ,1) = 2
IF(PJ.NE.(PJ/2)*2)JOBDES(PJ,1) = 8

example 2
Assigning random priority to jobs may be done by the
statements

CALL RANN2(JM,10)
JOBDES(PJ,1) = JM(PJ*3)

note !f!

The long quantum count in the given example will be some
random number between 1 and 9, for a particulesr job.

further examvles

For all jobs to have the same long quantum count,
the statement

JOBDES(PJ,1) = 4, say, will have this effect.

i

78

c. THE INTERFACE WITH THE PAGING ALGORITHM

The princible consideration of this interface is that the
user should be able to write his own paging algorithm with a
minimum of programming effort.

First of 211, we must make clear what, in fact, the
function of the paging algorithm iss-—

The paging algorithm is invoked when & process mekes a
reference to a datum in a part of its logical address space that
does not immediately map onto the physical main memory of the
machine, The task of the paging algorithm is then to find
some "unused" physical space, load the appropriate section of
logical address space into the freed physical area and specify
the mapping (i.e. cause the page tables to be suitably modified
to show the mapping).

It may be that there are some free (unused) blocks still
in core,; in which case the page is allocated to the first free
block without reference to the paging algoriihbm. However, if
there are no free blocks then the paging algorithm must be
referenced. The function of the paging algorithm is to decide
which block in core may be overwritten or must be rolled out
onto drum in order that space may be allocated to the demanding
page.

The user decides on the strategy upon which the paging
algorithm will base its decisions. The paging algorithm is in
the form of a subroutine and various sets of information may be

accessed by it. Thus, the sirategy within the paging algorithm

mzy be based upon information about individual processes or
of the general condition of the system. Although much

information is available to the user via the subroutine none

of it should be altered by him. The only value that the user

is free to change is that of the variable BLCKNO which
represents the positioning ef a block in core., That is, the
block which has been chosen to be rolled out to drum (if it
has been written to) to make way for the incoming page.

Next follows a iist of all the informstion aveilable to
the paging algeorithm and consegquently tc the user., Later
follow two examples of typical paging algorithms.

The subroutine has the following information available
to it:-

ACTIV - is a count of the total number of pages
removed from active working sets upto the
present time.

(i.e. the total for all jobs in the system)

NOPAGR(J) - is a count of the number of pages removed

(3=1,8) from job J's working set upto the vresent
time

CURSET(J) - is a count of the number of pages of

(3=1,8) job J which are presently resident in core.
(CURRENT SET)

WOKSET(J) - is a count of the number of pages

(7=1,8) presently in job J's working set.
(WORKING SET)

NBLOCK - is the maximum number of blocks of core

available

19

60

PAGTAB(1,K) K= 1 2 3 4
"IN-CORE"
(I=1,1024,K=1,4) BITS "USE-BITS" BLOCKNO DRUMEC

(PAGE TABLE)

1024

The table has one set of entries for each page of

a job.
"IN-CORE" BITS = O or 1, 1 if page is in core
O otherwise

"USE-BITS" = this is an ageing mechanism for pages
resident in core.
(see notes on working set for details)

BLOCKNQO = location of the block in core in which the
page is held

DRUMNO = 1location of the block on auxiliary
storage on which the page is held.

PTABBP(J) - represents the page table base pointer for

(3-1,8) job J« This points to the base address of
information concerning job J in the page table.
For example, to find the information abouit page 4
of job 3
calculate I = 4+PTABBP(3)
then PAGTAB(I,K) sK = 1,4 contains the information
about this page.
MYMAP(I)
I=1,1280 BLOCKNO No.CF JOB DRUINV O or 1 NEXT POINTIR
(MEMORY MAP) 41i. i5 this is the this is this for free-
the number of the indicatez blocks list
block in the job to position whether
which which the on the or not a z31so0 used to
the page page drum from page has indicate if
is held Dbelengs which the been the block is
page was "writlen g candidate
taken ton SinCEfor removal

it was from core.
teken (set to ~10
from the if it is)
drum,
1:4f 4t

has
0 other-

wise

81

The memory map table conteins a set of 5 entries
for each block of core. This set of entries,
though presently at 5, is variable and is held in
a parameter called WIDTH.

In the' current model, the memory map has a maximum
dimension of 1280 which represents the product of
the maximum number of blocks of core available and
the WIDTH of the memory map.

WIDTH - is also given as a parameter in case it is
required to hold more information in the menory
map, (this is also a parameter of the main
simulation)

(at present WIDTH = 5 so maximum no. of
blocks = 256)

BLCKNO - this is the variable most essential to the user
since it is used to pass back to the main
simulation the location (number) of the block
chosen by the paging algorithm i.e. the block
which will be rolled out to make way for a

demanding page.

EXAMPLE PAGING ALGORITHMS

1. BRANDO SELECTION STRATEGY WITH WORKING SET CONSIDERED

The general philosophy of this strategy is that if there is
a candidate for removal* from core (i.e. an entry in column 5 of
the memory map whose value is =10) then this block is chosen to be
rolled out. If such a candidate does not exist then a block is
simply selected at random from all the blocks of core.

*(see notes on working set for further details)

The next page contains the FORTRAN code necessary to

implement this paging algorithm., Statements marked ** must appeasr

in 811 paging algorithm subroutines.

#¥

*¥

x*%

82

SUBROUTINE ALGORI (BLCKNO, ACTIV, PAGTAB, PTABBP, WOKSET,
CUKSET, NOPAGR, MYMAP,NBLOCK, WIDTH)

INTEGER*; PAGTAB(1024,4), ACTIV, PTABBP(8), WOKSET(8),
CURSET(8), NOPAGR{8), MYMAP(1280)

INTEGER WIDTH
C additional declarations
INTEGER*4 ADR

C scan column 5 of memory map to see if there is a candidate
for removal

C i.e. find the first eniry which equals -=10.
DO 1 I = 1,NBLOCK

ADR = WIDTH *(I-1)+1

BLCKNO = I

IF(MYMAP(ADR).EQ.-10)GO TO 3

CONTINUE

C if there is no candidate for removal then select a block
at random

C SUBALG chooses a random number between 1 and NBLOCK and
places it's value in BLCKNO

CALL SUBALG(BLCKNO, NBLOCK)
CONTINUE
RETURN

END

83

2. THE LEAST RECENTLY USED STRATEGY (LRU)

The LRU algorithm uses the information gathered through
the implementation of the working set philosophy. First of all,
if a page has been marked as a candidate for removal from core,
i.e. if it has left the working set but is still in core, then
this page is rolled out of cors to make way for the demanding
page. If no such page exists then the "use-bits" of each page
in core are examined and the page whose "use~bits" are most
right-justified is chosen. This is the page which has been
in core for the longest time without being referenced, although
it is still in the working sst. Thus the least recently used
page 1is selected to be rolled out of core to accommodate the
demanding page.

The following page lists the code necessary to implement

this paging algorithm.

2

*¥

¥

84

THE LEAST RECENTLY USED STRATEGY

SUBROUTINE ALGORI (BLCKNO, ACTIV, PAGTAB, PTABBP, WOKSET,
CURSET, NOPAGR, MYMAP, NBLOCK, WIDTH)

INTEGER*4 PAGTAB(1024,4), ACTIV, PTABBP(8), WOKSET(8),
CURSET(8), NOPAGR(8), IMYMAP(1280)

INTEGER WIDTH

.C additional declarations

INTEGER *4 ADR

C scan column 5 of memory map to see if there is a candidate
for removal

C i.e. find the first entry which equals -10
DOL I =1,NBLOCK
ADR = WIDTH*(I-1)+1
BLCKNO = I
IF (MYMAP(ADR).EQ.-10) TO TO 3
CONTINUE

C if there is no candidate for removal then remove the page
that was least recently used

C This is the page whose "use-bits" are most right justified
i.es numericzlly smallest

C If the page is in core then compare its use-bits

K=0
K=K +1

JF(PAGTAB(K,1). NE.1) GO TO 6
IF(PAGTAB(K,2).L% .0) GO TO 6

DO 4 J =13,1024

IF (PAGTAB (J,1).NE.1) TO TO 4

IF (pacTaB (J,2).LE.O) GO TO 4

IF (PAGTAB (J,2).LT.PAGTAB (K,2)) K=J

4 CONTINUE
BLCKNO = PAGTAB (K,3)

) CONTINUE

RETURN
END

85

3. THE RANDOM SELECTION STRATEGY

" This paging algorithm works simply on the philosophy
that if there is no block of core available for the
demanding page, then a page is simply rolled out of core
at random and the corresponding block allocated to the

demanding page. The following code has this effect:

%% SUBROUTINE ALGORI (BLCKNO, ACTIV, PAGTAB, PTABBP, WOKSET,
CURSET, NOPAGR, MYMAP, NBLOCK, WIDTH)

*% TNTEGER*4 PAGTAB(1024,4), ACTIV, PTABBP(8), WOXKSET(8),
CURSET(8), NOPAGR(8), ¥YMaP(1280)

** INTEGER WIDTH
C completely random strategy

C SUBALG selects a random number between 1 and NBLOCK
and places its value in BLCXNO

CALL SUBALG (BLCKINO, NBLOCX)
#% RETURN

*¥% END

66

d. THE OUTPUT FROM THE SIMULATOR

Output from the simulator takes on three different forms
namely, descriptive, histogram and tabular.

The output endeavours to give & step by step picture of
the state of the systém being simulated. Statistical information
is collected at evenly spaced intervals based on the value of
NEWLIM, where NEWLIM is the maximum number of units of time for
which the simulator will run. NEWLIM is chosen by the user.

The first set of output is descriptive. It describes the
system configuration and the job stream as specified by the user.
This is output once only.

The output which is described below is cutput at intervals
of 1/IOth of NEWLIM. Thus if the simulstion runs until NEWLIM
is reached* then 10 sets of output will have been given.

These 10 sets of output each consist of 4 histograms,
NJOB**** tables and a descriptive sumnery. Surpose NEWLIM = 9600**
units of time then these sets of information are given at
intervals of 960 unitis.

Let this interval of 960 be called LIMIT, then

LINIT = NEWLIM/10.

¥ Note that a simulation mey be terminated before NVEWLIM is
reached since all the jobs in the system may have completed.
The simulation and the vprogram terminate either at NEWLIM or
when 211 the jobs are complete, whichever occurs first.

*¥% Note that NEWLIM needs to be a multiple of 80 so that the
sampling can be done at evenly spaced intervals. However
any value may be given by the user for NEWLIM and it is
rounded to the nearest multiple of 80 within the program.

*%%% NJOB is the number of jobs in the system. NJOB is chosen by the

ucer, "
i.e. maximum no. of jobs wctive simultaneously i.e.degree

of multiprogramming.

87

The first three histograms given at LIMIT represent
the state of queues in the system over the last LIMIT units
(i.e. 960 units). The queues are sampled at 80 evenly spaced
intervals within LIMIT (i.e. at O, 12, 24, +..960). The
queues represented by the histograms ares

1. the queue for centiral memory space

2. the queue for drum attention

3. the ready list.

The height of the histogram at any one point representis
the number of jobs in the queue at the end of the interval
(LINIT/80).

The fourth histogram represents the number of free blocks
of central memory still aveilable. This histogram is scaled***
down so that it conforms with the other histograms in general
appearance. While it does not give an exact account of the
actual number of freeblocks, it does show the general trend of
the free blocks still available.

The NJOB tables given ot LIMIT are such that each table
represents the stzte of one particular job during the last LIMIT
units of time. There is one table per job. This table is built
up from the Staﬁistics about a job gathered at 20 evenly spaced

intervals within LIMIT. (The statistics are sampled at the end

of each intervel).

*%¥ The method of scaling is that the height of the histogram (H)
at any one point = number of free blocks (NFB) divided by
(the integer result of NFB/20) plus 1

i.e. H = NFB/I(¥FB/20)+ 1

Each table contains the following information about a jobs-

Then

1)
2)
at
1)

2)

3)

4)

5)

6)

7)

8)

9)

10)

its arrival tiae to the system

the time at which its first page was loaded into core.
each interval of LIMIT/20 it givess-

the clock time

the time the job has been in the system. (this timing
starts after the Jjob's first page has been lozded into
core)

the processor time of the job (this is the number of
units of time the job has had control of the processor
excluding any interruptions)

the number of pages of the job loaded onto drums

i.e. the total logical address space demand

the current set of pages in core (i.e. the number

of pages currently loaded)

the number of active pages removed (i.e. the number of
pages removed from core while =till in the job's
working set)

present number of I/0 requests that have besn issued
by the job

present number of page faults issued by the job

the time quantum still left to run on the processor,
(this quantum was the one allocated to the job when

it left the ready list)

the current value of the long quantum count.

Then at the end of each table, the following 3 pieces
of information are given. These indicate the statz of the
job at the end of the interval i.e. at LIMIT. These ares—

1) whether the job is complete — if it is

then the response time for the Jjob is given

2) number of units of time for which the job was
blocked for I/O

3) number of units of time for which the job was

blocked for page faults.

Finally after the histograms and tables & descriptive
summary is given of the state of the jobs and the system at
the end of LIMIT units of simulated time.

This containss—

1. The processor idle time upto the present time
(i.e. & cumuletive value)
2. The total number of units of time simulated so far
3. The total number of pages removed from active
working sets (a cumulative count)
4. The number of joba put through the system i.e. NJCB

5 The number of jobs completed so far
(a cumulative value)

6. The current number of page faults issued by all jobs

(i.e. 2 cumulative count)

T« The percentage CPU usage and percentzge drum usage
over past LIHIT units of time

8. The overzll CPU usage and average drum usage. (This

is a cumulative percentage).
These histograms, tables and descriptions are produced

every NEWLIM/10 units of time. Except where indicated the

statistics given are not cumulative, but are pseudo-continuous.

This means that, for instance, each histogram of the drum queue

89

90

placed side by side in the order in which they are output
would produce a.continuous picture of the conditicn of the
drum queue throughout the simulation. The same may be said
of all the histograms and the job tables for a particular
Jjobe

(Note that all values given are those of a sample taken

at the end of the interval in question).

PART V

CONCLUSIONS and FUTURE DEVELOPMENTS

91

22

V. CONCLUSIONS AND FUTURE DEVELOPMENTS

The development of the simulation was greatly assisted
by the implementation of a simple model (BASYS) which
established the basic structure and notions involved in
the final model.

A straight forward expansion of this simple model has
however caused several problems, although on the whole, it
ig felt that this was a good approach.

The main problem arose from the development of the much
larger FORTRAN main program which represents the model of our
paged multiprogramﬁing computer system. The program
development stages could, retrospectively, have been improved.
Most of the subroutines used (there are 14 subroutines in all,
with an average of 44 FORTRAN statements) were debugged
independently using the on-line VDU terminals available under
the RAX system on the IBM 360/44. The main program, however,
was written in one continuous piece of code. Thias was a large
main program (726 FORTRAN statements) and contained the
seven-event structure of the simulator, and was consequently
difficult to debug. It is now felt that some wey of breaking
down this main program into independent modules for testing
should have been developed. Perhaps, event one should have
been writien and tested then event two added on and tested then
event three and so on. It could be argued that FORTRAN
subroutines could be used to simulate each event, but since
there is a greaf deal of interaction between the seven events

the overhead involved in the subroutine parameter passing would

mzke the program even bigger and execution time slower than
at present. Alternatively, all parameters could be passed in
COMMON but this raises its own problems of clarity of design
and security.

The program was originally compiled under the P-level
compiler which requires less storage space than the G-level
but this did not contain the debugging aids required by the
program. Further, to reduce the storage requirements of the
program INTEGER 2 (half-words) variables were used wherever
possible.

Eventually, however, the program needed to be run under
the G-level compiler so that array subscript checking could be
carried out. The DEBUG option SUBCHK was used to ensure that

no array subscript overflow occurred during the program which
rectified itself later giving apparently good results in the
simulation. This compiler uses too much storage when compiling
the large main program that it must run in full-core i.e. 200K,
resulting in a slow turnzround of jobs. Further, it was not
discovered until after nearly six months debugging the program
that the FORTRAN G-level compiler contained a bug (generally
unknown) which is related to the use of half-words in DO LOOPS.
This caused intermittant errors and array subscript overflow
errors which varied from run to run, and considerable delay was
experienced in pursuing this apparent simulator error.
Therefore, we ran the program under the F-level compiler
whereupon it ran to completion free from subscript overflow
errors but without the added confidence provided by the DEBUG

SUBCHK option. At this point all half-words were removed from

75

the program and it was again compiled under the G-level
compiler, and debugging of the program could recommence.

Despite the problems encountered in debugging the progranm
it is still felt that FORTRAN was a reasonable choice of
language since it has allowed different queueing techniques
to be used at differing points in the model, and it is
generally known among students. In general, the simulation
model satisfies the requirements for which it was originally
written.

Although no attempt has been made to provide conclusive
evidence of the validity of the model, it should be clear from
the arguments and results in Part III Ch.l and the general
trends of the results in Part III Ch.3 that the model provides
@& realistic - representation of paged multiprogramming computer
systems. The model has been shown to be valid for one
particular system since on the basis of known input dataz, the
results from the simuletion compzred favourably with known
output data. Further the model has been shown to be sensitive
to changes in system configuration and job description
parameters and to various paging algorithms. It must be
realised however that the simulation is only valid to a
certain level of detail, for example, a job with references
scattered throughout its pages and only a small CPU time cannot
be accurztely represented. (see Part II, 2.b. LEVEL OF DETAIL)

The simulator has exact reproducibility since using the

same parameters always gives the same results. The

95

IBM 360/44 CPU time necessary to run to simulation wvaries

directly with the amount of drum activity within the

simuletion, for example, on two runs where jobs total pages

£14 $ito: obwe 15 “the i Whste jobs are free from I/O requests

the execution time was 6 mins whereas in the run with I/0 the

execution time was 24 mins. The real execution time also

varies directly with the length of the jobs within the simulation.
The present state of the simulation éives the user a means

of developing and testing new paging algorithms under varying

conditions of system configuration and job stream.

FUTURE DEVELOPMENTS

It was not possible within the time available for
development of this simuletion to include all the facilities
that one would wish to include. However in the future it is
hoped to mzke improvements in terms of the size and execution
apeed of the program. Those subroutines which are called mest
frequently shouléd be rewritten in IBM PL360, the random number
generator which was origzinally written in FORTRAN has already
been replaced by one in PL360 resu}ting in a better execution
speed.

Several of the output statistics from the simulztor could
be improved, histograms should be presented in percentages,
and maximum and minimum values of variables could be taken as
well as the present sampling which takes place at the end of
sampling intervals. Further a user defined sampling interval

could be created.

It is intended that the simulator should be available
for general student uss in the session 1974-75, with possible
modifications and enhancements performed by undergraduates as

part of their normal project worke.

LIST OF REFERENCES

(1) SCHERR Kol

(2) SMITH Jnr. E.C.

(3) NIELSEN N.R.

(4) SMITH W.E.

(5) ZUCKER M.S.

(6) STATLAND N.

(7) KATZ J.H.

(8) SEAMAN & SOUCY

97

An Analysis of Time-Shared Computer Systems

MAC-TR-18 MIT Project MAC
‘ Cambridge, Mass; 1965

Simulation in Systems Engineering

IBM Systems Journal
Vol.l, Sept 1962 pp30-50

The Simulation of Time Sharing Systems

Communicstions of the A C M
Vol.10 No.7, July 1967

A digital System Sinmulator

Proc 1957 WJCC Institute of Radio Engineers
New York pp3l-36

LOCS: An EDP Machine Logic And Control
Simulator.

IEEE Transactions on Electronic Computers

Methods of Evaluating Computer Systems
Performance

Computers and Automation
Vol.l3 No.2, Feb 1964 ppl8-23

Simulation of a Multiprocessor Computer
System

Proc 1966 SJCC Spartan Books
Washington D.C. ppl27-139

Simulating Operating Systems

(9)

(10)

(11)

(12)

(13)

(14)

(15)

(16)

(1

(

)

9o

BOOTE W.P., CLARK S.R., ROURKE T.A.

MacDOUGALL M.H. .

DENNING P.Jde.

Simulation of a Paging Computer System
The Computer Journal. Vol.l5 No.l

Computer System Simulation:
An Introduction

Computing Surveys Vol.2 No.3, Sept 1970

The Working Set Model for Program Behavior
Comms of the ACM Veol.ll No.5, May 1968

FPINE GOHC’ JACKSON an-o, McISAAC P.V.

Dynamic Program Behavior under Paging
Proc ACM National Meeting 1966

VARIAN L.C. & COFFMAN E.G.

An Empiriczl study of the behavior of
programs in a paging environment

Proc. ACM Symposium on Operzting Systs.
Oct 1967

COFFMAN E.Ge. & VARIAN L.C.

FRIEBERGS I.F.

Further Experimental Data on the Behavior
of Programs in a Paging Environment

Comms of ACM Vol.ll No.7, July 1968

The Dynamic Behavior of Programs

Fall Joint Computer Conference 1968

Personal Communication

KATZ J.H.

An Experimental Model of System/360
Comms of ACM Vol.1l0 No.ll, Nov 1967

(18) BLATNY J., CLARK S.R., ROURKE T.A.

On the Optimization of Performence of
Time-Sharing Systems by Simulation

Comms of ACM Vol.l5 No.6, June 1972

(19) NAYLOR, BALINTFY, BURDICK, CHU

Chapter 8
Computer Simulation Technigues
Wiley & Sons Publication

(20) MARTIN F.F. Computer Modeling & Simulation
Wiley & Sons Publications

(21) MORRIS D., SUMNER F.H., WYLD M.T.
An Appraisal of the Atlas Supervisor
Procs of ACM National Meeting 1967

(22) SALTZER J.H. Traffic Control in a Multiplexed
Computer System

Thesis. July 1966
Massachusetts Institute of Technology
Cambridge, Massachusetts

(23) BELADY L.A. A Study of Replacement Algorithms for
a Virtual-Storage Computer

IBM SYSTEMS JOURVAL Vol.5 No.2, 1966.

