

University of St Andrews

Full metadata for this thesis is available in

St Andrews Research Repository
at:

http://research-repository.st-andrews.ac.uk/

This thesis is protected by original copyright

http://research-repository.st-andrews.ac.uk/

ABSTRACT

Simulation of a Paged Computer System

A Teaching Tool

This thesis describes the design and implementation of a

simulator (written in IBM Fortran IV (Level G)) of a paged,

multi-programming, single-processor, computer system.

A general justification of such a simulation is made,

followed by details of the particular model chosen and imple¬

mentation details.

Validation of the simulator is discussed, and followed

by details of a number of experiment using various simulated

job streams and configurations. Finally the response of a

simulated system to two different paging algorithms is discussed
and compared to known experimental data.

Finally, the use of the simulator as a teaching tool is
described with details of the paging algorithm interface with
the rest of the model.

A

SIMULATION OF A PAGED COMPUTER SYSTEM

A TEACHING TOOL

SaoiP<P

I hereby declare that the conditions of the Ordinance

and Regulations for the degree of Master of Science (M.Sc)

at the University of St. Andrews have been fulfilled by the

candidate, Linda A. Macaulay.

JV Morven tfiison

I hereby declare that this thesis is a record done by myself,

not accepted in any previous applications for a higher degree

in the University of St,. Andrews or elsewhere.

(Mrs.) Linda A. Macaulay

ACKNOWLEDGEMENTS

I would like to take this opportunity to thank ray

supervisor, J. KORVEN WILSON, for the exceptional guidance

and practical assistance which he has given me«

I am also grateful for the generous co-operation given

hy PROFESSOR A.J. COLE and the kind help lent by the

computer staff in his department.

Further, I wish to thank MRS. J. BROWN for the excellent

and speedy manner in which she typed this thesis.

OBJECT

The object of the thesis is to illustrate the

development and validation of a simulation of a paged

computer system with a view to that simulation being

used as a teaching tool.

The teaching tool takes the form of a computer

program written in FORTRAN. Its objective is to help

computer science students see the effects of paging

algorithms (written by themselves) on various time¬

sharing system configurations and consequently to help

them produce an effective algorithm.

CONTENTS

PART I INTRODUCTION

II. Introduction to Computer System Simulation

a. What is Simulation?

b. Why Simulation?

c. Simulation Throughout the Generations.

I 2. The Construction of a basic simulation
model - BASYS.

PART II THE SIMULATOR

II 1. Description of the system to be simulated
a. General features of the system

b. Basic queueing and progress of a job
through the system.

II 2. The Simulation Model

a. Requirements
b. Level of Detail

c. Language Selection
d. Representation of Jobs
e. Structure of the Model.

VALIDATION and EXPERIMENTATION

Validation Methodology

A Question of Balance

Validation of the Model

a. Response to different job parameters

b. Response to different machine configurations
c. Response to a Paging Algorithm.

A Comparison of Two Paging Algorithms.

PART III

III 1.

Ill 2.

Ill 3.

Ill 4.

PABT IV THE TEACHING TOOL

IV 1. How to us© the Simulator Introduction

a. The System Configuration
b. The Joh Stream

o. The Interface with the Paging Algorithm
d. Output from the Simulator.

PART V " CONCLUSIONS and FUTURE DEVELOPMENTS

PAST I

INTRODUCTION

i

I. 1. INTRODUCTION TO COMPUTER SYSTEM SIMULATION

a. WHAT 15 SIMULATION?

Simulation is a technique for obtaining information

about the performance of a system without actually putting

that system into operation. A model of the system is

constructed so that the results obtained by operating the

model indicate the results to be expected when the corres¬

ponding real system is operated. The model may then be

modified and operated to Indicate the behaviour of the real

system if it was also so changed.

Basically, the simulation technique is to create a

model of the system by keeping lists of items at each stage

in the process and transferring items from one list to

another in the correct chronological order. The transferring

of an item from one list to another usually represents a

transition through some stage in a process and is accompanied

by appropriate updating of a timing device.

b. WHY SIMULATION?

The thesis is concerned mainly with the investigation

into the performance of a paged time-sharing system under a

given set of conditions.

The two basic approaches that have been used for the

investigation of existing time-sharing systems have

utilized either analytic or simulation techniques.

A

a

In certain instances analytic techniques have proved

quite satisfactory, for example, Scherr (l) was able to

design a very simple model of the Project MAC system at

MIT and Smith (2) was able to construct a model reflecting

a paged time-sharing system. Analytic techniques, however,

require a large number of simplifying approximations and

assumptions whereas simulations require relatively few.

This enables the simulation of more complex computer systems

thus giving the method a great applicability.

In general, analytic models lack sufficient flexibility

to allow a number of different systems or algorithms to be

investigated without a great deal of extra effort. However

as Nielsen has demonstrated in his 'Simulation of time¬

sharing systems' (3) simulations do exhibit the necessary

degree of flexibility.

The disadvantages of simulation arise in the debugging

of the simulation program ana in deciding to what extent the

simulation results are valid. The latter problem can be

considerably eased if statistical measurements from a real

system are available with which to compare the results from

the simulation.

Paged computer systems are generally considered to be

too complex and non-deterministic in nature for analytical

methods of study. Thus the alternative chosen is simulation,

validated by subsequent comparison with a real system.

3

o. SIMULATION THROUGHOUT THE GENERATIONS

The first generation of computers employed relatively

simple hardware configurations which could be "investigated"

without the use of a simulation model. The need for

simulation developed with the advent of the second generation

of machines when configurations became more complex.

Simulations helped to give a general picture of overall

system performance and provided an inexpensive and relatively

easy way of investigating new design ideas.

Hardware performance was one of the first areas of the

computer to which computer simulation techniques were applied.

In 1957 W.E. Smith (4) developed a simulator for the internal

logic of computer hardware components. This program was used

for testing actual designs and also as a training device for

designers. At a higher level, in 19^4, M.S. Zucker (5)

developed a simulator called LOCS (logic and control

simulator) which simulated the components collectively, thu3

giving an overall view of the performance of the circuitry.

Simulations have been further developed to investigate

the performance of the computer under various combinations of

variables. One of the earlier programs of this type was

published in 1964 hy Statland (6) who considered such

variables as equipment capabilities and I/O block sizes.

As software increased in importance it was realised that

simulations were less likely to be reliable unless software

and hardware-software interactions were taken into account.

4

Many simulations were constructed after the software system

in question and were used to help evaluate proposed changes

to that system, e.g. Katz (7) study of the IBM 7090/7040

Direct Coupled Operating System. Others were developed

before the system in question had been built or programmed

and were used in the construction of the system as well as

subsequent modification, for example, IBM's 7090 time-sharing

system.

With the appearance of the third generation of computer

systems more comprehensive simulators were developed. For

example, in 19^7* Nielsen (3) published a simulation model

with a general purpose design which can be used to study a

variety of time-sharing systems. It can analyse performance

characteristics for such varied purposes as hardware con¬

figuration, software modification and parameter adjustment,

algorithm design and system development. In 19&9 Seaman and

Soucy (8) developed a Computer System Simulator (CSS) model

package. CSS provides the user with a language arid structure

with which he can model a large variety of computer systems

at differing levels of detail.

A recent test (9) (1970) was done on the validity of

the simulation technique using the ATLAS computer at

Manchester University. The operation of the ATLAS was

simulated using a next-event type of simulation model and

good agreement was found between the simulated results and

those of the real system.

It can be seen that computer system simulations have

developed hand in hand with the development of the computer,

modelling proposed hardware and software architectures and

configurations quickly and cheaply "before any full scale

commitment to their implementation. They continue to be a

vital and valid tool in the investigations into the design

of to-day's complex systems.

6

!• 2. THE CONSTRUCTION OF A BASIC SIMULATION MODEL - BASYS

BASYS, as formulated by Macdougall (10), helps to

establish the basic notions of a simulation model and to

illustrate how even a simple simulator can be used to see

the effects of varying certain system parameters.

BASYS is a basic simulation model for a disk-based

multiprogrammed computer system, whose configuration is shown

in fig.l.

When a job arrives at the system it requests central

memory space. If sufficient space is available then it is

assigned to the job, otherwise the job is entered into a queue

(the central memory queue) until enough space becomes

available. Once it has been assigned central memory space

(note that the entire program is in core) it can then begin

execution. It requests the central processor. If the

processor is free it is assigned to the job otherwise the job

is entered in the central processor queue. When the job has

been assigned the processor and starts executing it may issue

I/O requests. At the point of issuing a request the job loses

control of the processor and requests the use of the disk. If

the disk is free it is assigned to the job otherwise the job

is entered into the disk queue. Once the job has completed

the I/O request it will probably require more CPU time. On

regaining control of the CPU it may issue other I/O requests

or continue executing until completion. On completion the

job releases the processor, frees the central memory and

leaves the system. ITote that several jobs are in the system

at the same time i.e. it is multiprogrammed.

FIG 1 HARDWARE CQHFIGURATIOH OF BASYS

MOVABLE-HEAD DISK

7

The simulation model

BASYS is a 'next-event' type simulator i.e. the simulated

time clock is advanced to the time of the predicted next event.

The events represent transition points "between activities.

Seven events are simulated (shown in fig.2) and four queues are

dealt with, namely, the queue for central memory space, the

queue for central processor attention, the queue for execution

of drum transfers, and the event list. The job mix may either

be read in directly by the simulator or generated within the

simulator program using various known probability distributions.

The flowchart of the simulator is shown in fig 2.

The Simulator Structure

The structure of the simulator is as shown in fig.3»

In the simulator, a job is represented by an entry in a

job table. This entry contains characteristics established

for the job as well as various counters for accumulating job

related statistics. As the job moves through the system —

enters queues, is assigned to the central processor, etc -

its movement is reflected by moving a pointer to this job table

entry, rather than by moving the entry itself.

The progress of the job through the system is marked by

the occurrence of a series of events. Each event routine

essentially does two thingst it simulates the operations

whose initiation corresponds to the occurrence of this event

and it predicts, for the job for which the operation was

performed, which event is to occur next and at what time it is

to occur.

fig 2 the simulation model for basys

start

event 1

v

arrival

v

V

initialization

e event controller

advance clock

>

i jump to event
1 routine at head of i
i event list i

\/

print
statistics

V

event 2 event 3 l even.t 4 event 5 event 6 event 7

Vv

request cpu

request
central memory request disk

J \ ' L-

(e '
v y

v
\/

release disk

release cpu

y
job

complete

\ f

e

e 1
ZJ

v

release cpu
release cm

v
e

e ;

V

e

e)

FIG 3 THE SIMULATOR STRUCTURE

ENTRY

El to E7 ABE THE EVENTS

8

An event list facilitates the ordering of events. This

is a linked list ordered with respect to the clock time at

which the next event is to occur. Thus the head of the list

is the job whose next event is to occur at the earliest point

in simulated (clock) time. A typical snapshot of the list

at some point in time might appear as follows:

JOB

20 HEAD OP LIST

18

22

All event routines in the BASYS simulator make entries

in the event list, but only one routine (the Event Controller)

removes entries from this list. The structure of the event

list is shown in fig. 4»

The event controller controls the occurrence of all events

in the simulator and always transfers control to the event

routine specified by the head of the event list. When the

corresponding event has been completed and the job returned to

the event list or entered into a queue, then control is always

returned to the event controller.

The basic steps in the event scheduling are:

1) The event controller removes the entry at the head

of the event list. This entry specifies an event

time T, an event identifier E, and a job table pointer J.

2) The clock is updated to time T.

CLOCK TIME = 100

NEXT EVENT EVE17T TIME

RELEASE DISK 101

REQUEST CPU 109

JOB ARRIVAL 117

FIG 4 THE EVENT LIST

CZZ]
E~2~lL

E 7 i

CPU
J. J 111 Pi -SPACE

RECORD
COUNT

JOB DESCRIPTION TABLE

KEY

E -

T -

J -

L -

EVENT IDENTIFIER

THE PREDICTED TEAS AT WHICH EVENT E IS TO OCCUR

THE JOB TABLE ENTRY POINTER

LINK 'TO NEXT ENTRY IN EVENT LIST

9

3) The event controller transfers control to the

event routine E.

4) The event routine E performs the required processing

for the job, and if possible determines its next event

(and inserts the event identifier e\ event time T* and

a job table pointer J into the event list). If such a

determination is not possible the event routine E enters

the job into a queue.

5) Control is then returned to the event controller.

If, as is sometimes the case, the next event for the job

cannot be predicted, no entry for the job can appear in the

event list. This situation arises when the job has to be

entered into a queue, for example, when the disk is busy or

when there is a shortage of central memory space. Once the

facility becomes available, and the job reaches the head of

the queue, an entry is inserted into the event list to make the

'next event' a request for the facility which was previously

unavailable, for example, request disk, request central memory

space etc.

All queues in BASYS are represented in the form of linked

lists. BASYS lends itself to a straightforward implementation

in GPSS and SIMSCRIPT, and with the addition of a few elementary

list processing routines can be effectively implemented in

FORTRAN.

The main advantage of BASYS is that it allows for

extensions and additions to the basic model. Thus it can be

used as a basis for more extensive simulations of computer

systems with greater complexity.

EXPERIMENTS AND RESULTS from implementation of BASYS in

FORTRAN. Two main experiments were carried out. Both were

to measure the utilization of the central processor in respect

of

1) increasing the amount of central memory available

2) replaoing the disk with a faster model

Results are shown in figs 5A an^ 5B.

CONCLUSIONS

Experiments show that after a certain point increasing

the amount of core memory available has no effect on the

percentage usage of the CPU. This point is reached when the

total core memory requirements of all the jobs can be

satisfied simultaneously. Results further 3how that increasing

the disk speed by a factor of two gives a proportional increase

in the usage of the CPU. This can be seen by comparison of the

curves given in fig.5A.

The BASIS simulation model has thus shown how even a simple

model can be used to investigate the effects of varying certain

parameters on the simulated computer system.

From the point of view of the thesis the implementation

of BASYS was an exercise to aid familiarization with the

principles of a simple computer system and some basic simulation

techniques. The BASYS model is still available as a teaching

tool if required, but the thesis now progresses to the more

challenging problem of simulating a paged multiprogramming

computer system.

FIG 5A RESULTS FROM BASYS EXPERIMENTS

GENERAL TRENDS FROM RESULTS

ONE DISK REV. IN 25 MILLISECS

A
I
i

5*0 ►

j
l

£ CPU ^° ;

USAGE 3o:

So lao ISo 2o0 15b 3oo 3 So ^.oo U.So Soo

CORE SPACE AVAILABLE IS K-BYTES
ONE DISK REV. IN 12 MILLISECS

$ CPU io
USAGE

3o / 1

lo
■

lo
/

. // j

So loo Ifo loo 25o 3aa 35"0 iao (^so 5oo^
CORE SPACE AVAILABLE IN K-BYTES

THE MAXIMUM CORE SPACE REQUIRED BY THE 20 JOBS

WAS 356 K-BYTES

FIG 5B RESULTS FROM BASYS EXPERIMENTS

K SIZE $ CPU

25 16

50 26

100 34

275 44

510 ! 44

ByTIM =12

K SIZE f> CPU1

25 ! »
50

i
i

21
!

100

I

28
i

275 ! 30 !
\ »
i l

510 ! 30

RVTIM = 25

RVTIM -

KSIZE

% CPU -

TIME TAKE FOR ONE DRUM REVOLUTION

SIZE OF CORE MEMORY IN K-BYTES, K = 210
io CPU USAGE

Figure 5C

JOB DESCRIPTION OF 20 JOBS RUN THROUGH BASYS

Job Central Memory CPU Time Number of Mean Inter- Recorc

No. Space Required Required I/O Requests Request Interval Size

1 75 20 50 io 5 360
2 6480 30 10 3 360
3 10100 60 20 3 360
4 15210 70 io 7 360
5 6110 30 io 3 360
6 20360 100 20 5 360
7 12220 80 20 4 360
8 4140 10 10 1 360
9 17770 70 lo 7 360

10 9080 30 10 3 360
11 20200 60 10 6 360
12 10000 40 lo 4 360
13 12100 50 10 5 360
14 8800 30 io 3 360
15 6070 10 lo 1 360
16 51610 140 20 7 360
17 72130 200 40 5 360
18 7120 30 lo 3 360
19 31010 90 10 9 360
20 36700 HO 20 5 360

Inter-Arrival Time of Jobs

All jobs arrived at the system at fixed equally spaced intervals.

PART II

THE SIMULATOR

11 1• description op the system to be simulated

a. GENERAL FEATURES OF THE SYSTEM

The system under investigation consists of a paging

memory, paging auxiliary storage (drums) and one central

processing unit. The complete configuration is shown in

fig.6.

Basically, the simulator implements a time-sharing,

multiprogramming system with provision for logical-to-physical

address mapping by either simple paging or demand paging. It

has several special features which are discussed in some detail

below.

These are:- 1. Paging and demand paging
2. Working Set strategy

3. Ready List

1. paging and demand paging

The object of the study is to produce a simulator which

will be sensitive to changes in the paging algorithm; thu3

it is essential that a paging core memory and a paging drum

are included in the system.

Systems which incorporate paging are troublesome from a

simulation point of view (as Boote et al. remark in their

simulation (9))since the page turning events take place much

more frequently than program-swapping events on a non-paged

oomputer. The real time necessary to complete a simulation

is therefore longer. Scherr's simulation (l) of a non-paged

IBM 7094 had a simulated-time to real-time ratio of

PIG 6 THE SYSTEM

AUXILIARY

STORAGE

\/
A

CR

CARD
READER

I/P

INPUT
NELL

CENTRAL

MEMORY

V A

O/P

<
OUTPUT
WELL

LP

LINE
PRIN'TER

CPU

approximately 24> whereas Nielsen's simulation (3) of the

paged IBM 360/67 on an IBM 360/50 had a ratio close to 2.

APPROACH TO PAGING

Paging is a set 'of techniques whereby programs and main

memory are broken into small units and the program pieces are

located in corresponding sized blocks anywhere in main memory.

The paging techniques incoi-porated in our system allow a

straightforward implementation of a logical-address space larger

than the physical-address space.

In our paged system, physical memory is considered to be

broken up into "blocks" of a fixed size. The term "page" refers

to units of logical space, while equal-sized units of physical

space are called blocks. The programs are also considered to be

split into "pages" of a size equal to the block size of physical

memory. Thus the address is such a system is considered to be

represented by two numbers*

(i) a page address or number

and (2) a word-within-page address.

A paging mechanism requires a table, called a -page-table,

or map with one entry for each page in order to perform address

translation from logical to physical space. The complete

memory map used in our system is shown in fig.8 and the page

table in fig.7*

One page table exists for each process. The physical-block

number corresponding to a given page is found by a table lookr-up

FIG 7 A PAGE TABLE

LOGICAL ADDRESS

PAGE TABLE BASE POINTER PAGE NUMBER WORD-IN-PAGE NUMBER

"IN—CORE" BLOCK - .

BITS ! NUMBER

f !

M (sgg te)BLO CK No

I

-v—

PHYSICAL ADDRESS

note

IF M-l THE PAGE IS IN CORE*
THUS BLOCK No ENTRY GIVES
ACTUAL PHYSICAL ADDRESS OF
THE PAGE.

IF M=Q THE PAGE IS NOT IN CORE*
THUS BLOCK No GIVES ADDRESS ON
AUXILIARY STORAGE. THE PAGE
MUST BE BROUGHT INTO CORE BEFORE
THE PHYSICAL ADDRESS CAN BE
CALCULATED

FIG 8 THE MEMORY MAP

PAGED PHYSICAL MEMORY

i

PROCESS 1

(

PROCESS 3

PROCESS 1

| PROCESS 2

PROCESS 2

! PROCESS 3

PAGE TABLES

TO.BACKING
STORE

TO BACKIITG
STORE

TO BACKING
STORE

PROCESS
1

PTBP - PAGE TABLE BASE POINTER

in this page table using the page number as index. The

control bits ("in-core" bits) in each table entry ere used

to indicate whether the page represented by that entry resides

in memory or on an auxiliary storage device. The page number

from the logical address when added to the contents of the

page-table base register indicates which word in the page

table contains the block number where the page resides. The

figure in the block number portion of the table indicates an

actual starting address for the page in main memory or a

location on auxiliary storage where the page can be found. If

the control bits indicate that the latter case holds, a call to

the system, referred to as a page fault, is generated to fetch

the page to memory before resuming computation. Using this

approach, the logical-address space can be smaller, equal to,

or larger than the physical-address space.

At the start of computation only a sirjie "starter" page

is loaded into main memory, not the entire process. Then as

references are made to pages not currently in main memory, the

page-table would indicate the fact by generating a page fault

which causes the supervisor, to bring in the page. This approach

is known as demand paging.

Thus paging and demand paging are incorporated in the

system by means of the page table and memory map. It should be

stressed, however, that no attempt has been made to introduce

the segmentation concept into the system.

2. THE WORKING-SET STRATEGY

Several recent studies on the behaviour of programs in

a paging environment (11,12,13,14»15) lead to the conclusion

that over short periods of time instruction and operand

references are confined to a subset of the set of pages

comprising the logical address space, and that once this

subset is established its content varies only slowly. Thus

it seemed desirable to include some method by which information

about the behaviour of programs could be made available to the

students paging algorithm.

Denning (11) defines this subset of pages as the 'working-

set*. He shows how the working set can be detected and suggests

an algorithm which makes use of this information. Our simulation

model detects the working set but the paging algorithm supplied

by the user may use or ignore the information gathered. (see

•The Simulation Model*).

Description of the Working Set

The working set of information is the smallest collection

of information that must be present in main memory, at any instant,

to ensure efficient execution of a program.

The operating system is responsible for determining on the

basis of page reference patterns, which pages constitute the

working set at any instant and for detecting those that leave

the working set. In practice the operating system considers

the working set of information, associated with a process, to be

the set of most recently referenced pages within some arbitrary

period of time.

To initiate a process on the processor a "starter page"

is loaded, and subsequent pages are demanded until the working

set of pages is built up. ¥hen a page has not been referenced

for a measured period (see later) then it leaves the working

set and may be rolled out of core.

Formal definition of the Working Set

The working set w(t,t) of a process at time t is the

collection of information referenced by the process during the

process time interval (t-Y,t).

Thus the information a process has referenced during the

last t seconds of its execution constitutes its working set,

see fig.9»

The working set consists of information referenced during

the last t seconds; however, in our system we are usually

interested in the pages which contain this information. Thus

the pages themselves constitute our measure of the working

set since the information required is only accessible in page

sized blocks.

Properties of the Working Set

1. size

The size of the working set^(t,T) is the number of pages

referenced in this interval

i.e. £>(t,~) = number of pages in w(t,t).

On consideration of the working set size it is obvious that in

an interval of zero length, no pages will have been referenced.

It is further clear that in longer intervals of time more pages

will be referenced. Thus the general curve suggested by^(t,t)

is monotonically increasing as shown in fig.10. (See (11) for

further details)

2. prediction

We would expect intuitively that the immediate past page

reference behaviour of a program constitutes a good pi>ediction

of its immediate future page reference behaviour. That is to

say, that for small time separations , the set W(t,~t) is a

good predictor for the set W(t+^,i).

To see this more clearly, suppose .

Then w(t+<,"c) = W(t,"£-x) U w(t+*,ot). Since references to

the same page tend to cluster in time, the probability

Pr (W(t+x,cx) ^ W(t,~t)) tends to be small.
Therefore some pages of w(t,H) will still be in use after

time t i.e. pages in w(t+^,x), since also

w (t, ¥-«*) ^ w(t,i) ^ w(t+°Vb)
w(t,t) is a good predictor for w(t+^,b).

On the other hand, for large time separations ^ (say

control will have passed through a great many program modules

during the interval (t,t + =*), and W(t,t) is not a gocd predictor

for W(t+«Vt)»

3,^ -sensitivity and re-entry rate

It can be seen from fig.10, that as X is reduced, ^(t,X)

decreases. If the number of pages in W(t,"£) decreases, the

probability that there are useful pages still in W(t also

decreases. Consequently the rate at which pages are recalled

to W(t,?) increases. This means that if ~ is decreased then

the re-entry rate of pages will increase.

FIG 9 THE WORKING SET OF INFORMATION

< -T—>i

/ / / /// r f7'//,
WTiTJTiTi

\:-X

PROCESSOR TIME

(i.e. UNINTERRUPTED EXECUTION
TIME OF PROCESS)

PAGES REFERENCED IN THIS INTERVAL

CONSTITUTE THE WORKING SET

FIG 10 VARIATION OF i>(t,-Q WITH CHANGES IN "t

LENGTH OF INTERVAL

The value ultimately selected for X will thus he of great

importance to the effectiveness of using the working set

strategy. Shouldhe too small, pages may he removed from

main memory while still useful, resulting in a high traffic of

returning pages. Should f he too large, pages may remain in

main memory long after they were last referenced, resulting in

wasted memory. Thus X must he carefully chosen to strike a

balance between excess page traffic and too much wasted memory.

In the system which we are simulating, a page is not rolled

out of main memory immediately it leaves the working set. Instead

it is 'marked' as a candidate for removal from core and will only

he removed if the space it occupies has been demanded by a page

of some other process. (Should the paging algorithm so decide).

Note however that in the case of a read-only page (where a valid

copy already exists on hacking store) the page is still marked

as a candidate for removal. Thu3 the space it occupies may be

taken over by some other process in the usual way, however the

page is not rolled out to hacking store. The page table entries

and other relevant information about the page is simply updated.

Detection of the Working Set

Detection procedures similar to those suggested by

Denning (11) are implemented in the system. As detailed above,

each process has a related page table which provides a map from

the logical address space to the physical address space of each

page belonging to that process. Along with the 'in-core' bits

and the 'block number' entry there is a further entry which

contains a string of 'use-bits' Uq, U^, UK. (see fig.ll)
The sampling interval cr is defined to be t/k where K is

an integer constant chosen to make the sampling intervals as

•fine grain' as desired. On the basis of page references during

each of the last K sampling intervals, the working set F(t,Kcr)

can be determined.

Each time a page reference occurs, is set to 1

(whether 0 or 1 already). At the end of each sampling interval o

the bit pattern contained in U^,, is shifted one

position to the right, a 0 enters II., and UT. is discarded: seeU K

fig.1^.

The logical sum U of the use-bits is computed:

U = uQo ux o u2«U
so that U = 1 if and only if the page has been referenced during

the last K sampling intervals. Of all the pages associated with

a process, those with U = 1 constitute the working set w(t,Kcr).

If U = 0 and H = 1 (i.e. the page is in core), then the page is

no longer in the working set and is marked as a candidate for

removal from main memory.

PIG 11 TYPICAL PAGE TABLE ENTRY

"IN-CORE"
BITS

"USE-BITS"
y_

BLOCK No,

(k_ IS THE No. OP SAMPLING INTERVALS)

PIG 12 SHIFT AT END OP SAMPLING INTERVAL

J*

VW'
\

1

'1 1

UK-i UK

K-2 i? U.K—1

U0 —Ul

<f> uc

3. The Ready List

The Ready List is a list of processes ready to run on

the central processor when it becomes available.

The Ready List has two quantum levels, a short quantum

level (SQL) and a long- quantum level (LQL) (see fig.13). A

process is always allowed to run for a short quantum, a.nd if

at the end of this time no other process is ready to run, it

can continue. The purpose of the short quantum is to assure

that some useful computation takes place, in order to justify

the expense of swapping the process in. This scheme also allows

higher priority processes to pre-empt the processor if they

appear on the SQL during or after a short quantum. When a

process is dismissed after a short quantum or because a higher

priority process has become ready, it is placed on the short-

quantum level.

Each time a process completes a short quantum, a number,

called the long quantum count is decremented. Once this count

is reduced to aero the process is moved to the lowest-priority

level, the long quantum level.

This method ensures that all processes will run with a

reasonable response to each and it limits the number of times

a process can appear on the high-priority level of the ready

list.

PRE-EMPTION

A higher priority job may arrive on the ready list while

a lower priority job has control of the processor. At that

point pre-emption occurs and the pre-empted job is returned to

FIG 13 the ready list

ready list
start cell

s/q "kid

short quantum level

l/q start

long quantum level

job
13

7>-
jgb

2 i

1 —=4.
l/q end

21

the short quantum level of the ready list. However this

pre-empted job is not assigned a fresh short quantum but on

regaining control of the processor will complete the remainder

of its previously assigned quantum.

IZ0_ REQUESTS

A similar situation arises when an executing job issues

an I/O request. A record is kept of the time quantum still to

be completed when the I/O request is issued. The job is placed

on the SQL of the ready list until the request is serviced and

the job reaches the head of the list. On regaining control of

the processor the job does not begin a fresh quantum but completes

the remainder of its previously assigned quantum.

b. BASIC QUEUEITTG AND PROGRESS OF A JOB THROUGH THE SYSTEM

The basic queueing incorporated in the system is illustrated

in fig.l4»

When a job arrives at the system it is assigned a priority

and proceeds to be loaded page by page onto auxiliary storage

from the input device. Compiling, assembling and linkage editing

phases are ignored for simplicity in our model. Unit record i/O

(e.g. card reader, line printer) are assumed to have little

system overhead and to be spooled in any case.

If there is enough room in core for the job's working set

of pages (see Ch. on "the Simulation Model" for an explanation of

how this is decided) then a 'starter* page is loaded into core

and the job is ready to begin execution.

The number of blocks necessary to contain the job's working

set are reserved. This is a basic requirement of the working set

strategy, since it insures that there will be enough space in

core for the working sets of all jobs currently in the execution

phase. Thus no job need demand blocks previously assigned to a

page of another job's working set, thus minimising page traffic.

Thus a 'starter' page is loaded and the job is ready for

execution. The job is placed on the short quantum level of the

ready list. When it reaches the head of the list the central

processor is assigned to the job and begins execution.

The job executes until one of four possible events arise.

1. it issues an l/O request

2. it references a page not in core, i.e. a page
fault occurs

3. it completes the time quantum allocated

4. the job completes

r
j
y-
i

3
k

A

%

o

7:
<r

i3

v

s *
U
J

co A
0
Y>

to i- <u
z
3

;/> T;
lr

<5i (0

CO
0 ,p VI

y> iL 'J

ui
o«r

o

u

<r
u.

V!
•jr
<X
C.

U
3
Vj
•3
v*

x
1
v
a

U|
b
U
J

<5.

r
0
o

v

X
3
U
r
£

3

_i
a
-j

u 0
•J" w

7
Q-

y

sf. V-
u I

vr

c
V-
VI

;>
0

re

:?A

r Iff
f *.2 ui .

3 5
*

V-
o- ;

3 3

>-
b

u
0

*5

fc
UI

X
U"

1

_>

J.

sT-
yj

Al¬
to

1

A & a A

■o'
a X

.0 5
'i J
^ >-

i i
•/> V.
<r u

VJ
1
V
~i

r
3
a
|Q

<-

U
3
'J
3

Wj
W(

]
H
J

1
a;
0;

i
j

ui
£

y~
3
ui
3:
Hi
3
Cf

7-
c
ffi

.4
CP3

A A

•vj
U

S«£ *

3
Of
n

In all four cases the job loses control of the processor

to the job now at the head of the ready list.

In cases 1 and 2 the job enters the queue for drum

attention. In case 1 the required i/O processing takes place

and the job is returned to the ready list. In case 2 the

paging algorithm is consulted and makes the decision as to

which block of physical memory is to be allocated to the page

being brought into core. Once the page is in core the job is

returned to the ready list.

When the job completes the time quantum allocated (case 3)

the long quantum count for that job is decreased by one. If

this count is positive the job is placed back onto the short

quantum level queue; if it is zero or below then the job is

placed on the long quantum level queue. If there are no other

jobs on the ready list the job is simply allowed to continue

processing for a further quantum.

If the job completes it relinquishes all core memory space

and auxiliary storage space, all related tables are cleared and

all references to the job in the system are removed, and

appropriate statistics compiled.

II 2. THE SIMULATION KODEL

a. REQUIREMENTS

In order to allow the user to observe the effect of paging

algorithms which he niay have written for this reasonably complex

time-sharing system, the model had to fulfil three requirements.

First, the model was to serve as a test vehicle for very

diverse paging algorithms. It had, therefore, to be responsive

to changes in these routines. Further, the paging algorithm

had to be relatively isolated from the rest of the model so that

changes could readily be programmed and incorporated. An

efficient interface had to be developed.

Second, the model had to be responsive to changes in the

configuration of the system, for example, to changes in core size,

drum size and drum speed. Such changes would help determine the

efficiency of the paging algorithm under differing conditions.

Further, the configuration had to be easily adjustable, such as

by appropriate modification of parameter values.

Third, the model was to serve as a means of determining the

effect of various job mixs and loads upon the performance of the

paging algorithm, the performance of the system and throughput

of jobs. Thus it had to be responsive to adjustments in the

requirements of particular jobs. Further, the job stream had to

be easily adjustable, such as by the change of a few parameters.

b. LEYSL OF DETAIL

Since the paging algorithm was to he of such great

importance the model had to keep track of every page in the

system at all times. • The identity and current state of jobs

had to be retained over time slices, i/O waits and page fault

waits.

Care had to be taken not to include disproportionately

scaled activities in the model, since this would lead to an

inefficient model, for example, all i/O for user programs is

assumed spooled onto the drum. Activities, such as delays due

to dynamic address relocation, the effects of associative

memory operation, compilation, linkage editing were ignored.

Compilation and linkage editing are assumed to be merely the

processor and i/O operations of another job, (i.e. the

compiler and the linkage editor). Those activities with a

level of detail finer than the activities at the paging level

were not included. Similarly, activities with a level of

detail more gross than these at the paging level were excluded.

Thus, for example, the amounts of drum storage space

required for job's pages are to he specified as parameter

values, and the presumption is made that enough blocks will

be available on drums. A simple pencil and paper calculation

will enable the user to ensure that this is so.

Consequently, the basic unit of time was chosen to be

100 psec and of storage to be the page, the size of the page

being a variable parameter.

When including information about the working set in the

paging algorithm, results will be affected by the values of the

sampling interval, a7 and the number of sampling intervals,

Thu3 at the level of detail catered for here, it was decided

to include CandK as variable parameters.

O. LANGUAGE SELECTION

Since this simulation model is to be used as a

teaching tool, it is important that the program implementing

the model should be readily understood. Thus it was decided

to write the program in a language that is commonly known and

which has a high degree of portability. PORTRAIT appeared the

best choice to fit the requirements.

Since the program is a simulation, it might normally be

expected that it be written in a simulation language. However

these languages generally have a poor execution speed relative

to general purpose languages and often utilize memory space

rather inefficiently. Speed and efficient memory utilization

were relevant to the simulation since it has to be within the

range of time and space allowed to students' everyday jobs.

Although simulation languages have built-in aueueing facilities,

these can be easily implemented in FORTRAN subroutines. Further

FORTRAN enables a closer approximation to the actual workings

of the system than would be possible using the simulation

languages generally available to computer users, since

different types of queuing techniques may be used at different

points throughout the model. The queuing techniques may be

readily created to satisfy the particular requirements of this

model.

d. REPRESENTATION OF JOBS

As with many simulation models (e.g. Nielsen (3),(l6)
and simulations used for design purposes) we are dealing here

with a model of a computex* system which does not yet exist.

Consequently there is the immediate disadvantage of not knowing

exactly what the job mix will be and how the jobs will behave

during execution.

Nielsen's simulation of time-sharing systems acts as a

simulator both for existing time-sharing systems and for the

design of such systems. Thus the job mix will vary from system

to system and in some cases may be entirely unknown. Ee has

developed a job description language in which eight instruction

types are used to indicate the desix-ea behaviour of a job

during its simulated execution. Description sequences for a

particular job are constructed from a set of master sequences

which represent a prototype for each different job type.

Katz's (17) simulation for System /36O machines used a

Job Generator. Frequency distributions and tables of

information giving the overall statistical properties of the

user's job population were used as input to the Job Generator.

The latter was designed so that the set of jobs produced

reflected the actual jobs of a particular user's installation.

In a simulation 3tudy of the optimization of performance

of tirae-3haring systems (18) the job-stream is generated using

Monte-Carlo techniques. This method was adopted in an attempt

to reduce the number of parameters required to describe the

job mix.

The approach used in our simulation model is based on

characteristic equations for the paging behaviour of jobs and

random number generators and frequency distributions for other

aspects of the jobs' behaviour. All the information used is

based on results of various studies on the behaviour of

programs in a paging environment (18, 12, 13, 14, 15)•

Following is a description of how this simulation handles

the job-description parameters and the justifications for the

methods chosen.

prediction of I/O requests

I.F. Freiberg, in a paper entitled 'Dynamic Behaviour of

Programs' (15) presents results obtained from an instruction by

instruction interpretive execution of different classes of

programs on an IBM 7044. He claims that the data obtained can

be used as realistic input to simulation models of multi-

programmed and fixed page size computer systems. Part of the

data showed that most of the supervisor calls occurred for l/O

operations ana further that a program does not execute very

many instructions between successive supervisor calls. From

this it was concluded that it would be desirable to include the

time taken between successive I/O requests as a parameter for

individual jobs. It appears that the value of this parameter

should generally be small relative to the total execution time

of a job. Being a parameter however it may be varied from job

to job so as to make some jobs virtually i/O bound and others

relatively free from i/o activity.

30

The actual parameter of the interarrival time of

successive I/O requests is expressed in terms of a maximum

i.e. the parameter represents the maximum interval between

successive requests. The time between individual requests

is generated by means of a random number generator which

generates values between 1 and the parameter specified.

prediction of page faults

Pine, Jackson and Kclsaac (12) did an empirical study

in which programs were executed in an interpretive manner

on an A1T/FSQ~32 computer. Their results illustrate, among

other things, a page demand as a function of time as shown

in fig.15.

The number of pages accessed initially is extremely high.

On average, the first 10 pages were required in less than 5.6 ms;

in half of the cases, these first 10 pages were required in

less than .8 ms. In this paper five rather large programs

were studied, namely LISP, 44 pages; META5, 14 pages;

GPDS, 41 pages; TINT, 23 pages; 3UHE, 30 pages. The page

size was taken to be lk words. The programs were not in any

way designed for a paged machine. Even with the difference

in the functions of the programs considered, the over-all

pattern of page demands was shown to be fairly consistent.

The conclusions of the study express three basic points:

1. In general programs demand pages at very rapid

rates until they have 'sufficient1 pages in core.

2. Frequently programs do not run for very long even

after having acquired a sufficiency of pages.

FIG 15 PAGE DEMAND
DYNAMIC PROGRAM BEHAVIOR UNDER PAGING, FINE et al (See Ref. 12)

TIME (MILLISECS. LOG SCALE)

TIME (MILLISEC5)

3. For those programs which do run for a time

after acquiring a sufficient number of pages,

this number is usually a considerable proportion

of the total number of pages associated with the

program.

In an empirical interpretive study of programs on the

IBM 36O/5O computer, Varisn and Coffman, in 19^7» produced

similar results concerning page faulting activities. In 1968

they published a further study which included an experiment

in which they varied the number of pages of a job allowed to

remain in core during execution. This concluded that programs

operating with substantially less than half their pages in

core caused excessive page turning.

The studies of Freiberg and Varian and Coffman show that

once a process begins execution, the page—access characteristic

tends to that given in fig.15* They further agree with Fine

et al in the evidence that excessive page turning takes place

when programs are made to operate while substantially less than

core-resident. This implies that the subset of information

necessary for efficient execution of a program must be relatively

largs. Consequently the 'working-set' of pages (as defined

earlier) must consist of a large proportion of the program's

total pages.

Thus it was decided to develop equations which would

predict the page fault rates using the empirical evidence

discussed so far. It was seen to be desirable to have different

equations for differing points in the job's execution. The

curve in fig.15 was thus approximated by two straight lines

whose point of intersection was taken to be the point where

the working set had been reached, see fig.l6. JTote, however,

that we are concerned only with the number of pages in the

working set and not their individual identity.

Since demand paging is operable in this system it is

possible that the paging algorithm will permit active pages

of one process to be removed from core to make room for those

of another process which is currently in control of the central

processoi*.

In the simulation model the equations are such that at

any point in time they can always predict when the next page

fault is going to occur for a particular process. The rate of

the page faulting for that process will be affected by the

number of its active pages which have been removed since it

last had control of the processor. Thus the rate of page

faulting of a process at any point in time can be any of the

five possible conditions following!

let the current set of pages in core = CS

let the working set of pages for the process = HS *

let the number of active pages removed = 1TPR

* as discussed on P31 the working set size should be a large
proportion of the process's pages. We fix this proportion
at -§- rds. (Though this may be altered)

FIG 16 APPROXIMATION OF PAGE D5MAITD CURVE

of job

(1) CS WS-1 and NPR = 0 (fig.17)

(2) CS WS-1 and NPR = 0 (fig.l8)

(3) CS WS-1 and NPR 0 (fig.19)

(4) CS WS-1 and NPR (CS-WS) (fig.20)

(5) CS WS-1 and NPR (CS-WS) (fig.21)

The point in time that is of most interest is that point

at which the process regains control of the processor, since

the equations must be able to predict when the next page

fault is going to occur.

The actual rates at which the page faults are to occur

are given by the slopes of the lines, i.e. g^ before the
working set is in core and g^ after the working set has become
core-resident. The values of g^ and g^ will be parameters of
a particular process, as is the value for WS, thus enabling

different job types to be assembled.

The values of the constants c^, c^, c^in the equations
are found by simple geometric and arithmetic calculations.

details of the equations

Case (l) CS< WS-1 and NPR ■ 0 see fig.17

On regaining control of the central processor the current

set of pages is less than the working set and no active pages

have been removed. Thus the process continues to issue page

faults at the initial rate for that process i.e. y - g^x.

Consequently if the process regains control at some point

(PROTIM) in the uninterrupted processor time of the job and tha

job currently has CS pages in cere, the next page fault will

occur at x = (CS+l)/g,.

34

Case (2) CS ? WS-1 and NPR = 0 see fig.18

In this case the current set of pages in core is greater

than the working set. No active pages have been removed and

the page-demand rate continues at the second rate i.e.

according to y = g^x + c^ where c^ = WS(l - g^/g-^)
(c^ is calculated from the fact that the lines y - g^x -t- c^ and y = g^:

intersect at WS).

Thus if the process regains control at PROTIM the next

page fault will occur at ((CS+1) - 0]L) /g2.
Case (3) C5 < WS-1 and NPR > 0 see fig.19

The current set of pages is less than the working set

but some active pages have been removed. Thus the process will

continue to issue page faults at the first rate i.e. according

to g^, until the working set number of pages are in core.
There is however a displacement from y = g^x to consider, thus
the page fault rate will be according to y = g^x - c^*
(see fig.22 for calculation of c^) If the job regains control
of the processor at. PROTUi then c2 = g^ x PROTIM + NPH - CS
and the next page fault will occur at x = (CS - NPR+l+c2) /g^*
Case (4) CS ^ WS-1 and NPR<(CS-WS) see fig.20

The job regains control at a point (PROTIM) where the

number of pages in core is greater than the working set of

pages, some active pages have been removed but these do not

interfere with the working set. Thus the rate of page faulting

will now follow the line given by y = g^x - c^ i.e. will be at
the second rate. c.. = g (PROTIM + - Lu.u__i—L) _ ^3

J k gj
see fig. 22 for calculation. The next page fault will occur

at x = (CS-NPR + c3) /g 2.

FIG 17 CASE 111

*

No. of pages j
in core

processor time of job -—

JOB REGAINS CONTROL OF
PROCESSOR

FIG 18 CASE (2)

No. of pages

in core CS

processor time
of job

->

jrC-\

T
JOB REGAINS CONTROL OF

PROCESSOR

FIG 19 CASE (3)

t M

t
JOB REGAINS CONTROL

OF PROCESSOR
■— processor time >

of job

FIG 20 CASE (4)

r
JOB REGAINS CONTROL

OF PROCESSOR

processor time >
of job

Case (5) CS >, ¥5-1 and NFR> (CS-¥S) see fig.21

The job lost control of the processor when the number

of pages in core was greater than the number in the working

set. On regaining control the job finds that so many of its

active pages have been removed that there has been inter¬

ference with the working set. Thus the job now page-faults

at the initial rate g^ until the working set is restored i.e.
along the line y = g^x - c^ where c^ = g^ x PROTIM + NPR - CS.

Thus if the job regains control at PROTIH the next page

fault will occur at x » (CS-NPR +1 + c^) /s-^»

Other aspects of job description

So far we have discussed the methods by which the model

handles prediction of i/O requests and page faults. The

remaining job description variables arej

Priority

Core size requirements

Long quantum count (for working set strategy)

CPU time required

Record size of job.

These may be specified by any method the user of the model

requires. The subroutine which generates pseudo-random numbers

is made available to the user at the time of specification.

Further details about job parameter specification may be

obtained in Part IV Ch 1, pages 70 -77.

FIG 21 CASE (5)

T
JOB REGAINS
CONTROL OF PROCESSOR

processor time
of jo"b

FIG 22 CALCULATION OF C2,C3
It is clear from fig.21 that the lines y^g^x-o^ and y=g^x-
intersect at y = WS, x unknown. A closer look at fig.21 shows

the following*

CS _

T
ws.

A NPR
NPR-(CS-WS)

CS—NPR_ _\£

PROTIM
processor time

of job

In the triangle ABC, les ^xbe the unknown side AB

then x = PROTIM + 6x

from the diagram*
the gradient of CB ■

AC
AB

i.e. g. NPR - (cs—ws)
ox

thus = NPR - (CS-WS)
Si

Thus the lines y = g^x-c^, y = ggX-c^ intersect at
y = WS j oc = PROTIM + NPR - (CS-WS)

S-,

to find c^c^
y = g1x-c2

WS = g, (PROTIM + NPR - (CS-WS)) - c,
J. *:

e,

/. c2 = g1xPROTIM + NPR—CS
^ =* ^x~ Cs

WS = g2 (PROTIM + NPR - (CS-NS)) - c.
S-,

. ' . c^ = g9 (PROTIM + NPR - (CS-NS)) - WS
Si

e. STRUCTU3B OF THE MODEL

The model is similar to that used for BASYS since it

is a next event type simulation model and simulates seven

events. The events contain considerably more detail and are

more closely interrelated than in BASYS but the basic

structure is the same as fig.3. see fig.23

These seven events are ordered by means of an event

controller which is basically a linked list ordering events

with respect to the time at which they are due to occur. Each

event simulates some process which a job may go through whilst

in the computer system and predicts when the next event for

that job will occur. It is sometimes necessary for a job to

enter a queue e.g. awaiting central memory space, awaiting use

of the drum to complete an I/O transfer or to wait on the

ready list. The event list does not contain an entry for a

job while it is in a queue but once the job reaches the head

of the queue it is removed from that queue and placed on the

event list.

The events which are simulated are described belowj

Event 1 Simulation of Job Arrival

The event 1 routine samples the job mix distributions for

job N for which the event is taking place. It has the

following functions

1. determines maximum interarrival times of i/O

requests for the job IT

2. determines the page fault rates g^, g^ for the
job IT

3. assigns a priority to the job

4. generates the central memory requirements

for the job

5. generates a long quantum count associated

with the job

6. predicts the approximate central processor

time required by the job

7. predicts the approximate size of the working

set of pages for that job

8. generates the record size for the job.

The routine then calculates the number of pages in the

job (this will vary according to the current page size in the

system), and determines the size of the working set (for

prediction of page faults). Event 2 is then scheduled for

job N and the arrival time of job N + 1 is predicted. Event 1

is scheduled for job N + 1 and control is returned to the

event controller.

An event is "scheduled" by linking up the associated job

entry on the event list. That is, the event number and the

time at which the event is due to occur are entered into the

event list along with the job number with which they are

associated. The event then occurs when this entry reaches

the head of the event list i.e. when it is the first event in

time due to occur. When this entry reaches the head of the

list the time associated with the event is closest to the

time on the simulation clock. The simulation clock is then

advanced to the time associated with this event.

The clock i3 initially set to time zero at the start

of the simulation and is advanced only when an event takes

place. The clock allows for several events to occur at the

same time since it is only advanced when the time associated

with an event is greater than that of the clock. The time

at which an event is "scheduled" to occur is always greater

than or equal to the clock time.

Event 2 Page Loaded onto Drum

The Event 2 Routine simulates the loading of a page of

job N onto the drum from an external device. If the drum is

busy then the request is entered into a drum queue. If the

drum is free it is assigned to job N for a time that is a

function of the drum speed, read/write rate, number of

records associated with job IT and traverse time. If, however,

all the pages of job N have been loaded onto the drum then job

N is assigned to the queue for central memory space and event

7 the internal scheduler is scheduled for it. If pages are

still being loaded event 3 routine is scheduled, representing

the delay time in completing the loading of a page.

Event 3 Completion of Loading

Event 3 represents the completion of the loading of a

page. The drum is freed and the entry at the head of the drum

queue for job H is examined. If it was in the drum queue to

to load another page onto the drum then event 2 is scheduled

for job E. However if it was in the queue to carry out an

I/O transfer or deal with a page fault then event 4 is

scheduled for job H.

Job N has completed the loading of a page so the page

table for job N is updated to keep account of the position on

the drum that th9 page is stored. The list of free pages

available on the drum is also updated. Event 2 is scheduled

for job II.

Event 4 Drum Request

The Event 4 routine simulates the use of the drum for

I/O transfers and page faults. If the drum is busy job N is

entered into a queue otherwise the drum is assigned to job N

and event 5 is scheduled.

Event 5 Drum Completion

Event 5 signifies the completion of a drum transfer for

I/O or a page fault for job R. Job K is then placed on the

Ready List since it is once more ready to run cn the CPU and

event 7 is scheduled for this job. The drum is now free and if

there is anything in the drum queue then the head of the queue

is assigned to the drum and event 2 or event 4 scheduled as

appropriate for job H.

Event 6 CPU Execution

The event 6 routine simulates the actual running of a job

on the central processor.

The processor is reserved and pointers set up indicating

40

which job has control of the processor (CPUJOB) and what time

it gained control (CPUST). The job now in control of the

processor continues executing as if it had never lost control

and all its counters and associated statistics are continued

and updated. Firstly, if the job has completed a multiple

of (zigma) (the sampling interval) units of time in execution

then the use-bits of the job are shifted one place to the right.

A) Secondly, if the job has completed its estimated CPU

time then event 7 is scheduled for the job and control

returned to the event controller.

Thirdly, if an I/O request has not already been

predicted to occur at a certain time then one is predicted and

a flag set up to say that this I/O request is waiting to be

carried out. Similarly if a page fault has not already been

predicted then one is predicted and a further flag set up to

say that this page fault has still to be satisfied.

A test is done to see whether the l/O request or the page

fault is to occur first. Suppose it is the page fault then a

further test is done to see if this page fault is to occur

within the next burst of zigma on the CPU. If it is then

event 7 is scheduled to deal with the page fault and control

is returned to the event controller. Similarly with the l/O

request.

If neither the page fault nor the I/O request is to occur

within the current burst of zigma then the job completes zigma.

The use-hits are shifted and the -whole process (from a) above)

is repeated provided the job still has some of its time quantum

left. If the job has oompleted the time quantum allocated to it

then event 7 is scheduled where the job will be put onto the

ready list. Control is then returned to the event controller.

Event 7 Internal Scheduler

The Event 7 is a simulated combination of a high level and

low-level scheduler. This routine selects the next "suitable"

job to put onto the ready list and also decides which job is to

run next on the CPU. Thus it replenishes the ready list and

keeps the CPU busy.

Assume Event 7 has been called to deal with job N.

If job N is in the central memory queue then all its pages

have been loaded onto drums and it is now requesting that its

first ("starter") page be loaded into core so that it might

begin execution. Suppose the working set strategy is being

adopted, then the "starter" page is loaded into core provided

that there is enough room for its working set (the size of

which has been predicted in the event 1 routine). The working

set number of pages are reserved out of those available in core.

Thus event 7 initiates the loading of the "starter" page into

oore, event 4 is scheduled for job N and control returns to the

event controller. If the scheduler decides not to load the

initial page then control is simply returned to the event

controller.

If job N is not in the central memory queue and it is on

the ready list then it is requesting use of the CPU. If the

CPU is free then it is assigned to job N and job N removed

from the ready list. Event 6 is scheduled and control is

returned to the event controller.

If, however, thb CPU is not free then the scheduler must

test if the priority of job N is greater than that of CPUJOB

(i.e. the job currently in control of the CPU). If its

priority is greater then pre-emption occurs, job N is removed

from the ready list and is scheduled for event 6. CPUJOB

releases the CPU and the appropriate statistics are updated.

If CPUJOB is complete all its table references are

deleted and blocks occupied by it on the dmim and in core are

freed. The central memory queue may now be advanced if it is

possible (same argument as earlier).

If CPUJOB is not complete then in the current

implementation a random bit pattern is put into the "use-bits"

to simulate the page reference patterns during its last run

on the processor (the bit pattern is put into "working set"
K

number of pages only, the random numbers lying between 1 and 2

where K is the number of sampling intervals). The pages which

have been written to or updated during the last run on the

processor are also generated randomly and their page tables

updated accordingly. The pre-empted job CPUJOB is then placed

on the ready list and control returned to the event controller.

If, however, the priority of job N is not greater than

CPUJOB but the CPU is still busy then job N is placed on the

ready list, and control returned to the event controller,

Suppose now that job N has just been executing on the

CPU and has been blocked for some reason.

If the job is complete all references to the job are

deleted and the sequence of instructions carried out as

when CPUJOB completed (see earlier).

If the job is not complete "use-bits" are updated, pages

"written-to" ere indicated and page tables updated as before.

Now the reason for blocking must be determined.

If the job has blocked for an I/O request to be carried

out, related statistics are updated, the CPU is released and

event 4 scheduled for job N.

B) If K sampling intervals of processing have been

completed by job N, each page in job N is tested to see if it

is still in the working set (i.e, logical sum of "use—bits"

equals 1 when the page is in core). If it is found that the

page is no longer in the working set then it is marked as a

candidate for removal from main memory, as an aid to the

paging algorithm. Then the scheduler selects the head B of

the ready list to run next. If its quantum has run out then

it is assigned a further quantum according to the level of the

ready list from which it is taken. If it is taken from the

short quantum level, it is assigned a short quantum and its

long quantum count is decreased by one. Event 6 is scheduled

for job H and control is returned to the event controller.

If the job N has not blocked for an i/O request it may

have blocked for a page fault. If so related statistics are

updated and the CPU is released. The paging algorithm is

consulted to determine which block in core is to be allocated

for the demanded page. Related statistics are updated and

event 4 is scheduled for job N. The sequence of decisions

are then the same as if it had blocked for an i/O request

(i.e. from B)) and the head of the ready list is run next.

A further possibility is that the job has blocked because

it has completed the time quantum allocated to it. In this

case the long quantum count is decreased by one and the job

returned to the appropriate level of the ready list. If there

is no other job on the ready list this job continues with

control of the CPU, otherwise the head of the ready list is

selected to run next.

PART III

VALIDATION AND EXPERIMENTATION

Ill 1. VALIDATION OF THE MODEL

INTRODUCTION

The question posed in this chapter ist

Is the model a valid representation of the type of system

we are trying to model?

In some ways this is a philosophical question and a

problem common to all modeling and simulation experiments.

There are several accepted approaches to this problem

discussed in (19>20). The approach employed here assumes

that the model is valid if it satisfies the following three

conditions!

(1) That the logical and mathematical relations

employed in the frame-work of the model

closely approximate those in the system.

(2) That the input parameters and variables compare

favourably with known historical data.

(3) That the simulation model's predictions of

the behaviour of' the real system correspond

closely with that actually observed.

INVESTIGATION

The model under consideration was built to simulate paged,

multiprogramming computer systems. It is impossible to prove

the validity of the model for all such systems. However, we

choose one typical machine for which known historical data is

available. Further, for the machine we have chosen empirical

output data is also available with which to compare the results

from the simulation model.

By experimentation with a model of this particular system

we can see whether or not the three conditions are satisfied.

If they are then we have made some progress towards proving

that this is a valid model.

Ko attempt is made to provide conclusive evidence of the

validity of the model; however, the experiment to follow and

the general trends indicated in subsequent chapters should

provide strong indications that the model does fulfil its

purpose.

METHOD

The system chosen for comparison is the ATLAS computer

once located at Manchester University since statistics are

available concerning its operation in (9>2l).

We first consider condition (l).

A brief description of the ATLAS system is given here and

indications of how the logical and mathematical relations in

the system are approximated by the model.

The basic queueing in the system is shown in fig.24 and

by comparison with fig.14 can be seen to have the same basic

structure as that of the system represented by our model.

However, the model doe3 not cater for user tapes and a

discussion on the approximations used follows later.

<to~
z

r

f
r

t
\to ^

U.
o

lL
0

z
r

F

f
>•
V5

4\
\̂jj
P

s_ 'O
■S3

t
to
/)
/>
£

V)
U)

r
3

P

o? /TO
V to

J
to

<a.

O

-<r

J
T J

!•
^ a

V)

.° 2

V)
J
«
>

fi
7"

h

<to
I
o
0
V
<r

\to
T

v=

v

2
\to
3
vil
3
G

v?
<n

<T6
o«

-4*

Once jobs leave the input well they are assembled,

according to a priority scheme which tries to maintain a

tape job and a non-tape job in the execution phase at the

same time. This is implemented in the model. Jobs queue

to enter into the execution phase and the number of jobs

simultaneously in the execution phase is limited to two.

In our model jobs queue on the ready list to await execution

and the number of jobs simultaneously in the execution phase

is variable according to the length of the ready list. Thus,

we set this at two.

In the execution phase pages are transferred to or from

the drum, tape transfers may be made to one or more magnetic

tapes assigned to a job, and output may be created on the

output well located on disk. In the simulator transfer of

pages and creation of output information all takes place as

if on drums with appropriate timing considerations. This

does not have a detrimental effect on the balance of the

model of the ATLAS operations since no queueing takes place

for transfers to or from user tapes, (each tape is connected

to core via a separate channel).

The queue discipline for drum transfers and for the use

of the output well is first-in-first-out. In the queue for

CPU attention, however, tape jobs are given priority over

non-tape jobs. These queue disciplines are mirrored in the

simulation model.

49

Thus the logical structures in ATLAS are reflected

in the model without any major adjustments.

The mathematical relations in the system are mainly

represented by the parameters given for ATLAS, including

core size = 32 pages of information

mean tape transfer time = 0.062 sees/page
mean drum transfer time = 0.014 sees/page
drum size =133 pages

supervisor overhead to transfer control to a job = 0.002 sees

supervisor overhead to locate a page on the drum = 0.006 sees

The paging algorithm is described as a "one level store

learning program" which is based on information held in

"use digits". For each page of core store there is a use digit

which is set when the page is accessed. All the use digits are

scanned and reset at regular intervals by the central executive

and a pattern of use is established. The selection of the page

to be rolled out of core is made with respect to this pattern

of use. This learning program is very similar to the one

described in our original system. The "use-bits"1 in the original

system being the "use digits" described here. Thus to give the

paging algorithm in our model the degree of efficiency experienced

by the one in ATLAS, the selection of the page for removal from

oore is based on the condition of the use-bits. Further, the

page whose use-bits are furthest to the right will be the one

selected. This is effectively a Least Recently Used paging

algorithm.

50A

Thus the logical and mathematical relations employed in the

frame-work of the model closely approximate those in the system

and condition (l) is therefore satisfied.

We now consider condition (2). Here a set of input

parameters is described. These are based on historical data

given in (9).

The parameters together with variables described earlier-

are used as input to the model, the final proof of the validity

of the model lies in the results obtained as output. These are

discussed later, (see pageSni)

input parameters

class 2 is considered from (9)j with compute time range 1-8.

class 2

maximum processor requirements = 8 sees

maximum byte requirements 208000 (page size 4K)
mean no. of tape transfers mean no. of i/o requests

= 344

max. inter I/O request interval = 8/344 sees for tape jobs
0.23 x 10 1 sees

page size = 4K

The input parameters actually used in the simulation are as

follows:

GENERAL

a) core size = KSIZE = 32 pages = 128K in subroutine SYSTEM

b) page size = KPAGE 4K in subroutine SYSTEM

c) 2 levels of priority were given to jobs to account for tape
jobs and non-tape jobs:

IF (PJ.EQ. (PJ/2) *2) J03DES(PJ,1) = 1
IF (PJ.NE. (PJ/2) *2) J0BLES(PJ,2) = 2

in subroutine JOBSIM

d) traverse time for drum transfers

TRAVT = mean tape transfer time + mean drum transfer time
2

(1 time units = 1 sec)
100

= 0.062 + 01014
2

= 0*038 sees

— 4 time units

in subroutine SYSTEM

503

e) NJOB = 2 in subroutine J03SIM so that not more than two

jobs may be in the execution phase at the same time.

The supervisor overheads mentioned earlier are considered

small enough to be neglected and the drum size of the system is

maintained at its maximum value (KSIZE = 744)since there will

thus be sufficient pages for both tape and non- tape jobs.

FOR CLASS 2 JOBS

f) maximum processor requirements = 8 sees
MAXCPU = 800 time units

g) maximum byte requirements = 208000
MAXBYT = 208000

h) maximum inter 1/0 request interval = 0.023 sees
I0MAX (PJ) = 2 time units

The Least Recently Used paging algorithm was used in both

cases. NSvVLIM was set to 10000.

R3SULTS

Comparison of Observations from ATLAS and Results from Simulator

ATLAS Simulator

mean compute time ■estimated CPU time of 2 jobs
=380 units =269 and 564 units

mean elapsed time response time of 2 jobs
=3770 units = 1 879 and 431 3 units

CONCLUSION
The results obtained show that the simulation model's predictions

of the behaviour of the real system correspond closely with that

actually observed. Thus, the model satisfies condition (3) and

proves that the simulator is capable of modelling a particular

system.

51

III 2. A QUESTION OF BALANCE

Our model has been shown to be valid for a particular

system configuration, but we require it to be valid for all

systems with the properties of the system described in

Part II Ch.l.

Care has been taken to ensure that the frame-work of the

model reflects the logic of such systems. The user of the

model, however, is responsible for the choice of input

variables and parameters describing the system. His choice

of system must be made carefully since it will have considerable

effect on the performance of the model and consequently on the

predicted performance of his chosen system.

It is possible that the user may choose "unreasonable"

input parameters which will result in an unbalanced computer

system. Such an unbalanced system may produce distorted

simulated results and could render the system and consequently

the model completely insensitive to a change in paging algorithm.

In this section, we propose some simple tests, inspired

by J.H. Saltzer (22) which will help the user determine whether

or not he is working with a balanced system.

The balance problem we shall consider is whether or not

the core memory and processor are balanced relative to each

other and to the presented job load.

THRASHING

Before meaningful conclusions can be drawn about system

balance it is necessary to convince ourselves that balance

measurements are not distorted by "thrashing", that is,

excessive overhead caused by quantum runout or page swapping.

Consider first the case of QUANTUM RUI'OUT. This concerns

the values of the two, parameters QAKTUM (l) and QANTUM (2)

which upperbound the amounts of continuous processor time

allocated to a job when it leaves the short quantum and long

quantum levels of the Heady List respectively. These quanta of

CPU time may be given values which are too small, in which case

the prime cause of processor switching will be quantum runout

rather than the job blocking itself.

In addition to causing extra overheads in the system,

excessive processor switching may also reduce the average

response times of jobs in the system. For an intuitive notion

why this is true, consider 10 jobs each of which need 5 sees of

processor time. If each is to run to completion, followed by

the next, the first job will be served after 5 sees, the second

after 10 etc... and the last after $0 sees. On the other hand,

suppose that each job is served for only 1 sec, then the

processor is switched to the next, etc. in a round robin. In

this case, the first job to enter the system will not leave

until 46 sees have passed, the last still leaving at 50*

(Since processor switching causes some overheads delay times

would probably be even greater).

It is difficult to decide conclusively that processor-

thrashing is being caused by quantum runout but a reliable

53

guideline may be obtained through a comparison of the response

time of jobs to their respective CPU requirements. If their

response times are very great compared with their CPU

requirements then if is likely that processor-thrashing has

occurred and that the parameters QANTUM (l) and QANTUM (2)

need adjusting to increase the processor time quanta allocated

to the jobs. '

Consider next, thrashing caused by excessive PAGE 5UAPPXTTG.

This situation arises when pages of a job are being rolled

out of core before the job has finished with them. That is,

pages of other jobs are demanding core space and are getting it

at the expense of removing pages which are still in use (i.e.

still in some job's working set). In such circumstances pages

are rolled out of core only to be rolled in again almost

immediately upon a page fault.

Excessive page swapping has three possible causes

1) the paging algorithm

2) the size of core

3) the size of jobs in the system

The paging algorithm determines which block of core and

under what conditions that block of core is to be allocated to

a "demanded" page. Its decision-making policy could cause a

page to be removed from core when still in use. Thus a page

may be rolled out of core only to be referenced again almost

immediately necessitating another page replacement decision

and further roll-out/roll-in hence core thrashing will occur.

The number of pages of memory available may be

insufficient for the total number of job pages in the

system.

When the competition for physical memory becomes very

high due to over commitment vigorous page-swapping will take

place i.e. thrashing will occur. Hence either the size of core

or number and hence total storage demand of active jobs in

the system must be altered.

Thus if thrashing caused by excessive page swapping is

detected then alteration to one or more of the above three

factors may be necessary.

In the simulator KSIZE represents the size of core in K

bytes, KPAGE the page size in K bytes. The paging algorithm

is the SUBROUTINE ALGORI and the size of jobs in the system is

governed by a maximum job size MAXBYT which is the maximum

total storage requirement in bytes in any one job.

Finally, how are we to decide when core-thrashing is

occurring and in fact being caused by excessive page swapping?

No hard and fast answer can be given but a good guide line

is a comparison of the total number of pages in the system (a)*

to the total number of page faults (B) that have occurred when

all the jobs have completed. If (B) is very large in comparison

to (a) then thrashing must have occurred during that run.

* The total number of pages in the system is the sum of all the
pages belonging to the jobs run through the system.

55

Thus we must assure ourselves that thrashing is not

occurring in our system.

It is suggested that the system is adjusted using a

"good" paging algorithm, ideally the BOR algorithm (23) "but

possibly the LRU (see Part VI Ch.l) will be quite satisfactory.

(Different types of paging algorithms will be discussed briefly

in the next chapter).

BALANCE

Once we are convinced that "thrashing" is not occurring

then we can consider the question of system balance. The

measurements of prime importance here is that of processor

idle time.

The processor may be idle for one of two reasons

1. There is actually no work to do

2. The Ready List contains work but the low-level
**

scheduler refuses to allow any more processes

to be loaded.

When the processor is idle for the first reason, there is

a potential case of processor overcapacity. If however the

processor is idle for the second reason, then we have evidence

that the allowable load is being limited by the amount of core

memory available. Reducing processor capacity will have very

little effect on total system capacity or service quality under

these conditions. On the other hand increasing only memory size

will increase total system capacity.

** The low-level scheduler decides whether or not a process will
be loaded. It is loaded if there are enough free blocks in core
to hold the process' working-set.

The user has the option within the simulator program to
remove or exchange the statements which carry out this test,
should he so desire. (They are clearly marked by FORTRAN COMMENT
statements).

The related problem of detecting core memory overcapacity

provides more difficulties since a paged core memory tends to

use up all available memory, no matter how much there is. On

the other hand, the fact that the memory is paged is of

considerable assistance in the problem. He can reduce the size

of core memory by removing a block of memory at a time from

consideration in the system. As the appropriate memory size

reached, processor idle time will begin to mount and the

desired information of where memory "undercapacity" begins

will have been found.

We thus have several simple tools available for detecting

whether or not the resources of the system are well matched for

the job they are trying to do. First, simple measurements

indicate whether or not thrashing is being caused either by

quantum runout or by excessive page swapping. Second, once we

are sure that thrashing is not occurring then we may consider

whether or not the system is in a state of balance.

The user may then proceed with any experiments on the

system which he may require to carry out.

ONE JOB MO I/O (FIXED SYSTEM AND PAGING ALGORITHM)

fig.25A

DRUM USAGE/CLOCK TIKE

A

cut-tui-fYUN/e

"Yc7>i?u«i

e CPU

U-bPC,^

A

Icc

'ic

Sc

"7c

bo

5c

K-C

3o

ao

jc

C g*g Li2t- * 5~1 PPc;E'-3>

tb"~cr U P

T»Vle 3 b

IbO 5%1 CtT/c
3tic 3t% U7c
#t-7<s 3c 7t 577c
I1+.0 i5^> 637c
SOO i2% 537c
""{bo lG% 537t ;
ii a.® |

U3fc 1%

ToG >Cotft5 S-w

(j^cj ffr^\ & •>)

kfic t^o Tco 7fco i<5o
t ±_

(.2 6" <WC(g *3

• 6 i HUurtr£T> clock TiME
• To*J c-crta.fcrTbf

CPU USAGS/GIfOCK TIME Ccrfgg St~2it= - 32P/H' cSOj

K -cf lot* frtc EY.

<^—* To G < c <j<? g t» 1 2 t."

T*(me 35" 4-r1
il,O ,,irrt ym,
sao nYc 5t7c
4y<i -S71 a7%

L-b-c 7c% 2fc7,
TO m 25/*
°ibo <ni asi

((So %.'/«
k 2b

*c

4, «£r* "Sod > C_ot(l£ Y i 2. fc
Ct+f f'a^EV)

feL
IbCj 'ii« Vf® b^o see 'ibo tlSc^ -Toft Co iAd-grB.

-SiHwcaT^T) CLDCK "fiM £

57

111 3. INVESTIGATION OF PAGING BEHAVIOUR

In this section we illustrate that the general trends

of the results obtained from the simulation are of the type

expected from the system we are simulating.

Several runs were made initially to establish "reasonable"

input parameters. For example, it was found that when the

maximum processor requirements of a job were equal to 1000

simulated time units (MAXCPU= 1000), processor time quanta

allocated to any job of 40 and 100 time units (QANTUM(l) = 40

and QAMTOI(2) = 100) avoided excessive overheads due to

processor switching at quantum runout.

a) Response to different job -parameters

Consider first, two runs in which only one job is run

through the simulator using a fixed system configuration and

paging algorithm. In the first run we allow the job to be

greater than core size (job size = 49 pages, core size = 32 pages)

and on the second to be less than core size (job size = 25 pages,

core size = 32 pages). No l/O requests are issued in either

case. A comparison of the percentage drum usage during the

two runs is given in fig.25A and a comparison of the percentage

CPU usage in fig.25B.

It can be seen from the graphs that a job which is greater

than core size causes a great deal of drum activity and allows

very little actual processing to occur. The job with 25 pages

had a total of 24 page faults and had no pages removed from

its active working set. Whereas the job with 49 pages had a

total of 209 page faults and had 51 pages removed from its

active working set over an equal period of simulated clock time.

Both jobs had a predicted execution time of 1000

units and after 95& units of simulated clock time the job

of 25 pages had been in the execution phase for 826 units

and the job of 49 pages for only 212 units. It seems

evident therefore that a great deal of page faulting

activity is occurring when the job is greater than core size.

(In fact, the job with 49 pages had not completed in

30 mins of actual execution time on the IBM 360/44» whereas

the job with 25 pages completed in 7 mins of actual CPU time).

Consider, next, a comparison of two runs in which the

execution of four jobs is simulated. The sum total of the

pages of these four jobs adds up to less than core size,

(29 pages in the 4 jobs, 32 pages in core). In the first run

none of the jobs issue I/O requests, but in the second all

jobs are i/O bound, (I0KAX(FJ)=2 and MAXCPU = 500).

Pig.26a shows the comparison of the percentage drum usage

and fig.26b a comparison of the percentage CPU usage. Jobs

not issuing i/o requests finish executing in a shorter time

than those which do. Fig.26c shows a comparison of the response

times of the jobs with and without i/O. The jobs are identical

in all other respects, for example, the actual time spent on

the CPU is identical in both cases. For instance, although

job 2 is only executing for 32 time units, when I/O requests are

issued it takes 137 units to complete in comparison with only

73 units when no i/O is issued.

4 jobs kith total pages less than core

A

°[o IXU H

fig.26a
drum usage/clock time

core size = 32 pages, total pages « 29

fGo

kt\i IL x/o

— Uo~) -^v»c?v~fc —/O

J| crirS c^o-wvpuk
3ao 4-go bcto Sxsb ?fcQ

fig.263
cpu usage/clock time

core size = 32 pages, total -pages = 29

JzVV^J |x/o jaa-i/o
I to

3S.O

4-St)

&4-C

^1%
%yj 4-452
stYo !
"54-%

A

cLceu
us ftcje: UTJ -tk-CVv.t ZjQ

al j_/c?
4- -j cjiti. Cow\ jAoto

3.2O 5tr&

yv^JLaJLcjJ ■—lo ciC -tXVv-ii!

X-Ac j U-/0 | *yolb
/4o X(% j C,~l%
3Ao |33% ! 77%

i53;« !
35% !

4-So

b<4- O

fig.26C

RESPONSE TIMES FOR 4 JOBS LESS THAU CORE SIZE

No I/O I/O
actual

CPU time used

Job 1 45 65 10

Job 2 73 137 32

Job 3 134 330 97

Job 4 61 118 29

It can be seen from fig.26A that when the jobs are

issuing I/O requests there is a high degree of drum activity

throughout their execution. Whereas when no i/o requests are

issued there is high drum activity while the initial pages of

the jobs are loaded onto drums which falls off rapidly once

jobs start executing. Fig.2bB shows that the percentage CPU

usage remains very low throughout the jobs' execution when the

jobs are issuing i/O requests. This illustrates the fact that

I/O bound jobs have a low computing demand on the system, thus

creating a situation in which the CPU is idle for a large amount

of the time.

Next we investigate two runs in which the total number

of pages required by jobs is greater than the number of pages

available in core. One set of jobs issue i/O requests and the

other does not.

Fig.27A illustrates that the percentage drum usage for

jobs issuing i/O requests is always higher than when they do not.

However, drum activity is high in both cases, due to the

excessive paging which is taking place. For the 4 jobs with no

I/O 40 page faults have occurred after 240 units of simulated

time with 20 pages having been removed from active working sets

and 3 jobs completed. When i/o requests are being issued, the

same jobs under the same conditions have issued only 22 page

faults with 5 pages being removed from active working sets and

only 1 job completed after the same 240 units of simulated clock

time. The percentage CPU usage is consistently less (see fig.27B)

for jobs whose total pages are greater than core size than for

4 joes with total pages greate3 thau core size

fiff.27a

phum usage/clock tbie

core size » 16 pages, total no. of rages = 29

A

uh

usrt cjt^r

f\ jfck, "x/o
eayw|3.utc-3

i* jxc/tx -l/o

i to 3o c

-o2mj^lcjtxj dc die

fig.27b

cpu usage/clock time

core size = 16 pages, total .job pages = 29

x/o ^ l/c
so 77"/

1 to ?x/„ 7?y0
2.4,0 ^3% 4o;£
s7 3 ba %

/a

7oc pl/

USf^Cj^

so ifeo

~ x r^vlojta-j

jiXivxt 1/0 rvc ~l/0
so ix/o 3 7%

t Lq "37
3.<to 4> 2 c/o
37 3 4gy.

— ips-i/vsjr

i civs

-""itk. _i_/o
<2(5-5 ilxs-fc cxj.^p7_s_x' ^

=2.4.0 3«"o

jti? .urvm. ~>

those jobs whose total pages are less than core size (see fig.26B).

It can also be seen from fig.27B that job3 which issue I/O

requests and have total pages greater than core size have a

very low CPU usage. (< 30^)

b. Response to different machine configurations

Lastly, figs. 28a and 28b show a comparison of 2 runs in

which no I/O requests are issued and all conditions are

identical except core size. In both cases there are a total of

29 pages in the system, one run has 16 pages of core and the

second has 32 pages of core. As one would expect the run with

only 16 pages has a high percentage drum usage (see fig.28a)

and a lower percentage cpu usage (see fig.2sb) throughout the

whole run, since vigorous page-swapping is occurring. The

comparison further illustrates the fact that when jobs fit

comfortably into core their response times are lower than

when they do not (see fig.28c). In the case with 32 pages of

core the 4 jobs completed in 243 units of simulated clock time

whereas with only 16 pages it took 273 units to complete

the same 4 jobs. Further with 32 pages of core 22 page

faults occurred and no pages were removed from active working

sets whereas with 16 pages 40 page faults occurred and 20 pages

were removed from active working sets.

4 JOBS run with different core sizes

drum usage/clock time

fig.28a

total pages in 4 .jobs « 29, no I/O issued

CCTLC.

CXTL£_

.(ctL

So IbO Aq-O 3 2o

Cu rvu_JL&Jx_d etc ct? ~+i ituz_ x>

fig.28B
CPU usage/clock tike

Cofle

"tirxl | 1 lo i 3^
To "7 |

I to | -7?70: 65"°/
34.0 4o7,| 44%
37 3 527*;

>

4

®/oCPU
us a Cpf=r

/ft
CO^£= S(Z.^S

.

Jz^ /g 3^

B"Q 371
t«0 U-2'4 g~t/

6370 7 7%
7U 3 tgva

/60 &h-°
s-4 fVXjz r_0j

fig.28C

4 JOBS RUN WITH DIFFERENT CORE SIZES

RESPONSE TIKES

16 pages 32 pages of core

Job 1 45 45

Job 2 91 73

Job 3 155 134
1

I Job 4 77 61

61

c. Response to a paging algorithm

The paging algorithm used in the examples in fig.25A

to fig.28B was the Random Selection Algorithm described in

Part IV I.e. By considering the effects of altering core

size on page traffic and CPU utilization we can see that

the algorithm is having the expected effect. By reducing

core size on the same job stream it has been shown that

drum traffic is increased and CPU utilization reduced.

Further, the number of page faults and the number of pages

removed from active working sets increase as core memory

size is reduced.

62

III 4. A Comparison of Two Paging Algorithms

Here we consider a comparison of two runs which differ

only in the paging algorithm used. These are the Least

Recently Used (LRU) algorithm and the Random Selection

algorithm. Both these algorithms are described and listed in

Part IV 1.(0).

It has been shown that the LRU algorithm reduces drum

activity. This appears to be caused by the reduction in page

traffic since only 13 pages were removed from active working

sets when the LRU algorithm was used compared with 20 pages

using the Random Selection algorithm. The LRU algorithm does

not cause as great a demand on the system facilities as does

the Random Selection paging algorithm.

The system under consideration did not issue I/O requests,

it had only 16 pages of core memory and had a total of 29 pages

belonging to jobs. The execution time on the IBM 360/44 for

the LRU run was 6,23 mins compared with 9*23 mine for the

Random Selection run.

It appears, therefore, from the runs described in this

chapter that the simulation is, in fact, sensitive to changes

in system parameters, job types and paging algorithms.

Further the results obtained from these changes are consistent

with those expected from a paged multiprogramming computer

system when subjected to similar changes.

PAST IV

THE TEACHING TOOL

IV 1. HOW TO USE THE SIMULATOR

INTRODUCTION

The simulator was seen from the very beginning of its

development as a teaching tool. One of its basic requirements

was therefore that it should be easy to use. This chapter will

illustrate the fact that the simulator is straightforward to

use, and define the method of use.

The system was developed using punched cards, the

subroutines and main program were then precompiled and stored

in a private library of object modules, (on a disk). The user

is presented with a set of Job Control Language (JCL) cards

for linking his subroutines with the main program.

In order to test the user's system it is sufficient to

slot the FORTRAN subroutines into the JCL, which will then

compile it, link it to the private library to get the rest of

the program, load the whole system and start execution.

There are three subroutines required from the user. These

are i

1. ALGORI - the paging algorithm
2. SYSTEM — the system configuration parameters

3. JOBSIM - the job description parameters.

Details and examples of these subroutines may be found later in

the chapter.

A factor contributing towards the ease of use of the

simulator is that it is written in the high level langauge

PORTRAIT which is generally known among students of computer

systems and is generally supported on a wide range of

commercially available computer systems. Thus it is

expected that anyone with a working knowledge of FORTRAN

will be able to use the simulator.

The teaching tool endeavours to fulfil the needs of

a user who requires one or more of the following:-

1. to test a paging algorithm on various configurations

of a paged time-sharing system, with a fixed job

stream

2. to test a paging algorithm on a fixed configuration

but with a varying job stream

3. to test the effects of various paging algorithms

on a fixed system configuration with a fixed

job stream.

Thus there are three sets of information available to the

user so that he has the facility to do any of the above, these

are i -

1. the system configuration parameters

2. the job stream parameters

3. the data necessary to write his own paging

algorithm.

A variable parameter which does not fall into any of the

above sets of information is the length for which the

simulation is run. The relevant parameter NEWLIM is the

number of units of time after which the simulation will cease

and the program terminate. This may be set to any value but

it is usual to set it sufficiently high so that all the

jobs in the system can run to completion. Further

discussion on the use of NEWLIM is given later in this

chapter under the heading of OUTPUT.

A discussion on the type of computer system configurabl

in the simulator has already been held in chapter 3« The

remainder of this chapter will therefore be devoted to the

description of the three sets of information available to

the user.

a. THE SYSTEM CONFIGURATION

There are 10 parameters concerned with the system

configuration! these are specified in the subroutine SYSTEM.

These parameters are

1. KSIZE - this is the size of main/core memory in

K-bytes where K = 1024. see note 1

2. KPAGE - is the size of a page and consequently

of a block of memory within the system. This is

also in K-bytes, K = 1024. see note 1

3. KSTORE - this is the actual number of blocks

of store available on auxiliary storage,

(i.e. on drums), see note 2

4. KSAKP - is the number of sampling intervals allowed

to pass before the use-bits are shifted (see

discussion on the working set in chapter 3 for

further details).

5» ZIGMA - is the length of the sampling interval

(see chapter 3 discussion on working set).

6. KVTIM - this is the time taken for one drum

revolution and is used to help calculate the time

taken to complete a drum transfer.

7. RT4RATE - is the read/write rate of the drum in

bytes/unit of time.

8. TRAVT - is the traverse time of the drum i.e. the

time taken to transfer the page from the drum (once

it has been located) into main memory. Although

it sometimes takes less time to store into

auxiliary memory, using a "first-free-block"

algorithm only, than to read from it, TRAVT is

regarded to be the same no matter in which

direction the page is moved.

9. QANTUM (l) - is the short quantum length which

is assigned to a job when it leaves the short

quantum level of the ready list. (see chapter 3

on ready list for further details)

10. QANTUM (2) - is the long quantum length which is

assigned to a job when it leaves the long quantum

level of the ready list. (see chapter 3 on ready-

list for details)

Note that the parameters involving length of time (namely ZIGMA,

RVTXM, TRAVT, QANTUM (l), QANTUM (2))are all standardised to

multiples of ^/lOOth sec. That is, the unit of time is chosen

to be 1/l00th sec.

The above parameters may thus be changed by the user within

the restrictions indicated in the notes.

note 1 Because of the limitations of fixed length declarations

in FORTRAN, the size of the page tables and memory map

must be fixed. Consequently the total number of blocks

of main/core memory allowed in the system at any one

instant had to be fixed. The maximum number of blocks

is fixed at 256. Thus the result of the division of

KSIZE by KPAGE must not be greater than 256.

note 2 KSTORE is limited to a maximum of '744 owing to the

restrictions of fixed length declarations.

69

An example of the system subroutine SYSTEM followss

The declaration and common statements must appear in

the subroutine.

SUBROUTINE SYSTEM (NEWLIM)

REAL G0NE(8), GTW0(8)
INTEGER NOPF(8), BYTREQ(8), N0PAG(8), I0MAX(8)

COMMON GONE, GTWO, NOPF, NBLOC, KSTORE, NJOB, MAXINT,

1 MAXBYT, MAXCPU, MAXREC, BYTREQ, NOPAG, IOMAX, TT, ACTIVE,' CURRST,
2 NOPR, PTAB, PTBP, WORKST, KSIZE, KPAGE, RVTIM, RWRATE, QANTUM,
3 KSAEP, ZIGMA, MMAP, JOBDES, NFB, FBLST, FBLEND, TRAVT

INTEGER*2 NEWLIM, TT(8), ACTIVE, CURRST(8), N0?R(8),
1 PTAB (1024,4), PTBP(8), W0RKST(8), KSIZE, KPAGE, RVTIM, RWRATE,
2 QANTUM(2), KSAMP, ZIGMA, MMAP(1280), J0BDES(8,5), NFB,
3 FBLST, FBLEND, TRAVT

C KSIZE is the size of core memory in K-BYTES (K=1024)
KSIZE = 128

C KPAGE is the size of a page in K-BYTES
KPAGE » 4

C KSTORE is the no. of blocks of auxiliary memory (£=■ 744)
KSTORE = 744

C KSAMP is no. of sampling intervals before sampling of use-bits
KSAMP = 10

C ZIGMA is length of sampling interval
ZIGMA = 2

C RVTIM is time taken for one drum revolution
RVTIM = 1

C RWRATE is read/write rate of drum, bytes/millisec
RWRATE =156

C TRAVT is traverse time of drum
TRAVT - 1

C QANTUM (l) is length of a short time quantum
QANTUM(l) = 40

C QANTUM(2) is length of a long time quantum
QANTUM(2) =100

C NEWLIM is no. of unit3 of simulation time required
NEWLIM = 2000

RETURN
END

b. THE JOB STREAM

The job stream description parameters are divided into

two types. Namely, those which are specified as maximum

values for the whole job stream and those which may be specified

as individual values for each job. The subroutine J0BS1M

incorporating the complete set of job description parameters is

called from EVENT 1 in the simulator.

First, the parameter which specifies the total number of

jobs to be simulated is NJOB. The number of jobs capable of being

held in the present version of the simulator is limited to 8.

Thus NJOB may have any value from 1 to 8 inclusive.

Now, the job description parameters which are specified as

a maximum value arex-

1. KAXINT - this is the predicted maximum inter-arrival
time of jobs to the system.

2. MAXBYT - this is the maximum number of bytes required

by the largest job i.e. the predicted maximum size of

jobs.

(The number of pages required by the job is calculated
within the program according to the value of KPAGE)

3. MAXCPU - this is the maximum number of units of time

required by the longest job i.e. the predicted
maximum length of jobs.

4. MAXREC - this is the maximum record size of a job.
This is used when calculating the total time taken for
a drum transfer. Drum transfers are often of fixed

length records and the option is available to the user

to make the records of variable or fixed length.

The individual byte requirements and CFU times of a job may

also be specified, details are given in the examples later in

the chapter.

The inter-arrival time to the next job is uniformly distributed
between 1 and MAXINT.

71

The following parameters must be specified as

individual values for each job:-

1. lOMAX(PJ) where PJ is the number of the job
(see note l)

IOMAX(PJ) represents the maximum interval between

which i/O (input/output) requests axe

made by a job, i.e. this is used to

predict how much I/O a job is to do whilst

in the system. Thus if IOMM(PJ) is small

then a lot of l/O is done, whereas if it is

large compared with the total GPU time

required by the job then very little i/O is

done.

This does not mean, however, that the i/O requests will

occur at evenly spaced intervals since IOMAX(PJ) is a maximum

value for job PJ and the actual intervals between i/O requests

will vary. This is possible since every time an i/O request

is predicted within the model, its predicted time of

occurrence is taken to be the present value of the processor

time (see note 2) of the job PJ plus a random number generated

between 1 and IOMAX(PJ).

Note that if the user wants all jobs to do roughly the

same e.mount of i/O and 50 units of time is a suitable interval,

then simply specify

IOMAX(PJ) = 50

(IOMAX(PJ) may have any non-zero integer value).

2. GOITE(PJ), GTHO(PJ)
0 ^ value -<"1 - These specify the rates at

which page faults will occur for the job PJ. They

represent the gradients of the two lines along which

page faulting is predicted to occur as described in Part II

chapter 2 section (d).

For example

GONE(PJ) - 1

GTWO(PJ) = 0.25

gives a page faulting rate along the line whose gradient

is 1 until the working set of job PJ is fully core

resident then a page faulting rate along the line whose

gradient is 0.25 after the working set is in core.

3. J0BDES(PJ,1) - This variable holds the priority of the

job, which is such that 1 is the highest priority

and larger integer values represent lower priorities.

J0BDES(PJ,l) indicates the priority of job PJ in the

central memory queue and within each level of the ready

list.

If all the jobs are given equal priority then the

queues are ordered in a first-in-first-out basis.

See later for example of subroutine JOBSIM.

Thus the user has intimate control over the l/O, page

faulting and priority of individual jobs giving him the ability

to model various types of job stream.

Now that we have seen how to vary the system

configuration and the job stream the next topic to consider

is the paging algorithm.

note 1 Each job is allocated a number from 1 to NJOB

according to its order of arrival to the system

i.e. JOB(l) arrived first, J0B(2) arrived second,

and so on.

note 2 The processor time of a job is the time of the

job on the processor seen without any

interruptions i.e. CPU time actually used by the

job.

SUBROUTINE JOBSIM(PJ)
REAL G0NE(8), GTW0(8)
INTEGER N0PF(8), BYTREQ(8), N0PAG(8), I0MAX(8), PJ
INTEGER JM(lOl)
INTEGER*2 TT(8), ACTIVE, CURR3T(8), N0PR(8), PTAB(1024j4),
1 PTBP(8), ¥0RK3T(8), K3IZE, KPAGE, RVTIM, HWRATE, QMTUM(2),
2 KSAMP, ZIGMA, KMAP(l280), JOBDES(8,5), NFB, FBL3T, FBLEND,
3 TRAVT

COMMON GONE, GWO, NOPFNBLOC, PSTORE, NJOB, MAXINT, MAXBYT,
1 MAXCPU, MAXREC, BYTREQ, NOPAG, IOMAX, TT, ACTIVE, CURRST, NOPE,
2 PTAB, PTBP, WORKST, KSIZE, EPAGE, RVTBI, RWRATE, QANTUM,

3 KSAKP, ZIGMA, MMAP, JOBDES, NFB, FBLST, FBLEND, TRAVT

C NJOB is number of jobs to be simulated in 1 run of program

NJOB = 1

C MAXINT is maximum interarrival time of jobs
MAXINT = 250

C MAXBYT is maximum byte size of any job in the system

C BYTREQ(PJ) is byte requirements of a particular job
MAXBYT = 100000
MAX - MAXBYT (+ r \ \
CALL RANN2 (JM jMAX) ^ '
BYTREQ(PJ) = JM(PJ*2+10)

C MAXCPU is maximum processor requirements of any job in the
system

C J0BDES(PJ,4) is processor requirements of a particular job
MAXCPU = 1000
MAX = MAXCPU , . ,.s *

CALL RANN2(JM,MAX) * e '' *
J0BDES(PJ,4) = JM (PJ+5)

C MAXREC is maximum record size of any job
C J0BDES (PJ,5) is individual record size of a particular job

MAXREC = 200
MAX = MAXREC , + r \ \
CALL RANN2(JM,MAX) ' 6 ' '
J0BDES (PJ,5) - JM(PJ+7)

C IOMAX(PJ) is maximum time interval between i/O requests for
a particular job

I0MAX (PJ) = 1000 (note (d))
C GOITE(PJ) is page fault rate upto the working set

(0 ~ GONE(PJ) 1)
GONE(PJ) = 1

C GTWO(PJ) is page fault rate after working set is reached

GTNO(PJ) = 0.25
C J0BDES(PJ,l) is the priority of a particular job (integer 1-

JOBDES (PJ,1) = 1 (note (e))
C J0BDES(PJ,3) is the long quantum count of a particular

job (integer 1-9)
CALL RANN2(JM,10)
JOBDES(PJ>3) = JM(PJ*2) (note (f))

RETURN

END

75

note (a)

MAXBYT must be specified. The individual byte requirements

in the above example for a particular job will be some random

number between 1 and'MAXBYT.

Further examplest

1. Suppose the user wishes all jobs to be the same

size then the instructions

MAXBYT = 10000 say

BYTREQ(PJ) = 10000 will have this effect.

2. For half the jobs to be large and half to be small

MAXBYT = 10000

IF (PJ.EQ.(PJ/2)*2)BYTREQ(PJ) = 100C0
IF (PJ.NE.(PJ/2)*2)BYTREQ(PJ) = 500

note (b)

MAXCPU must be specified. The individual processor

requirements in the above example for a particular job will be

some number between 1 and MAXCPU.

Further examples:

1. Suppose the user wishes one job in the system to

be very long and the rest to be short jobs;
e.g. job 1 is to be long

then

MAXCPU 10000

IF (PJ.EQ.1)J0BDES(PJ,4) = 10000
IF (PJ.EE.1)J0BDES(PJ,4) = 50-

2. For all the jobs to be the same length
MAXCPU « 1000

J0BDES(PJ,4) - 1000

note (cj

MAXR3C must be specified. The example shown gives

individual record size of some number between 1 and MAXREC,

to a particular job.

Further example:

Often drum transfers are of fixed length records,
this situation is catered for by the statements

MAXREC = 200

JOBDES(PJ,5) - 200

This will make all job3 have record lengths of 200.

note (d)

the statement IOMAX(PJ) = 1000 means that every job in

the system will have the same maximum time interval between

I/O requests. Two further examples followt-

example 1

Suppose the user wishes half the jobs to be I/O bound
and the other half relatively free from I/O, then for
MAXCPU of say 1000 the statements

IF (PJ.EQ.(PJ/2)*2)I0MAX(PJ) = 20
IF (PJ.NE.(PJ/2)*2)I0KAX(PJ) = 500

will have this effect.

example 2

Suppose the user wishes the maximum time interval between

I/O requests to be some random interval between 1 and the
MAXCPU requirements then the statements

MAX - MAXCPU

CALL RAM2 (JM, MAX)
IOMAX(PJ) - TM(PJ*4)

would have this effect.

note (e)

The statement J0L<BES(PJ,1) = 1 gives all the job

the same priority. Two further examples follows—

example 1

Half the jobs have high priority end the other half
with low priority. This could be required in a

system where the program is simulating tape jobs
and disk jobs.

IF(PJ.EQ.(PJ/2)*2)J0BDES(PJ,1) = 2

IF(PJ.NE.(PJ/2)*2)J0BDES(PJ,l) - 8

example 2

Assigning random priority to jobs may be done by the
statements

CALL RAITN2(JM,10)
J0BDES(PJ,1) = JM(PJ*3)

note (f)

Hie long quantum count in the given example will be

random number between 1 and 9» for a particular job.

further examples

For all jobs to have the same long quantum count,
the statement

JOBDES(PJ,l) = 4, say, will have this effect.

78

c. THE INTERFACE fflTH TIIE PAGING ALGORITHM

The principle consideration of this interface is that the

user should he able to write his own paging algorithm with a

minimum of programming effort.

First of all, we must make clear what, in fact, the

function of the paging algorithm iss-

The paging algorithm is invoked when a process makes a

reference to a datum in a part of its logical address space that

does not immediately map onto the physical main memory of the

machine. The task of the paging algorithm is then to find

some "unused" physical space, load the appropriate section of

logical address space into the freed physical area and specify

the mapping (i.e. cause the page tables to be suitably modified

to show the mapping).

It may be that there are some free (unused) blocks still

in core, in which case the page is allocated to the first free

block without reference to the paging algox'iihra. However, if

there are no free blocks then the paging algorithm must be

referenced. The function of the paging algorithm is to decide

which block in core may be overwritten or must be rolled out

onto arum in order that space may be allocated to the demanding

page.

The user decides on the strategy upon which the paging

algorithm will base its decisions. The paging algorithm is in

the form of a subroutine and various sets of information may be

accessed by it. Thus, the strategy within the paging algorithm

may be based upon information about individual processes or

of the general condition of the system. Although much

information is available to the user via the subroutine none

of it should be altered by him. The only value that the user

is free to change is that of the variable BLCKNO which

represents the positioning of a block in core. That is, the

block which has been chosen to be rolled out to drum (if it

has been written to) to make way for the incoming page.

Next follows a list of all the information available to

the paging algorithm and consequently to the user. Later

follow two examples of typical paging algorithms.

The subroutine has the following information available

to its-

AC'TIV - is a count of the total number of pages

removed from active working sets upto the

present time.

(i.e. the total for all jobs in the system)
NOPAGR(j) - is a count of the number of pages removed

(j=l,8) from job J's working set upto the present
time

CURSET(j) - is a count of the number of pages of

(j=l,8) job J which are presently resident in core.
(CURRENT SET)

W0K3ET(J) - is a count of the number of pages

(j=l,8) presently in job J's working set.
(WORKING SET)

NBLOCK - is the maximum number of blocks of core

available

80

PAGTAB(l,g) K = 1
"IN-CORE"

(I=1,1024,K=1,4)
(PAGE TABLE)

BITS "USE-BITS" BLOCKNO DRUMNO

1024

The table has one set of entries for each page of

a job.

"IN-CORE" BITS -- 0 or 1, 1 if page is in core
0 otherwise

"USE-BITS" - this is an ageing mechanism for pages
resident in core.

(see notes on working set for details)
B10CKN0 - location of the block in core in which the

page is held

DRUMNO - location of the block on auxiliary
storage on which the page is held.

PTABBP(j) - represents the page table base pointer for
CJ~"*l 0}' job J. This points to the base address of

information concerning job J in the page table.

For example, to find the information about page 4
of job 3

calculate I = 4+PTABBp(3)
then PAGTAB(I,K) ,K = 1,4 contains the information
about this page.

MYMAP(I)
I = 1,1280 BLOCKNO No.OF JOB DRUKNO 0"or 1 NEXT POUTTER
(MEMORY MAP)v this is this is the this is this for free-

the number of the indicates blocks list
block in the job to position whether
which which the on the or not a also used to
the page page drum from page has indicate if
is held belongs which the been the block is

page was "written a candidate
taken to" sincefor removal

it was from core,

taken (set to -10
from the if it is)
drum.
1 if it

has
0 other¬

wise

81

The memory map table contains a set of 5 entries

for each block of core. This set of entries,

though presently at 5> is variable and is held in
a parameter called WIDTH.

In the' current model, the memory map has a maximum
dimension of 1280 which represents the product of

the maximum number of blocks of core available and

the WIDTH of the memory map.

WIDTH - is also given as a parameter in case it is

required to hold more information in the memory

map, (this is also a parameter of the main

simulation)
(at present WIDTH = 5 so maximum no. of
blocks « 256)

BLCKWO - this is the variable most essential to the user

since it is used to pass back to the main
simulation the location (number) of the block
chosen by the paging algorithm i.e. the block
which will be rolled out to make way for a

demanding page.

EXAMPLE PAGING ALGORITHMS

1. RANDOM SELECTION STRATEGY WITH WORKING SET CONSIDERED

The general philosophy of this strategy is that if there is
*

a candidate for removal from core (i.e. an entry in column 5

the memory map whose value is -10) then this block is chosen to be

rolled out. If such a candidate does not exist then a block is

simply selected at random from all the blocks of core.

*(see notes on working set for further details)

The next page contains the FORTRAN code necessary to

implement this paging algorithm. Statements marked must appear

in all paging algorithm subroutines.

82

** SUBROUTINE ALGORI (BLCKNO, ACTIV, PAGTAB, PTABBP, WOKSET,
CUhSET, NOPAGR, MYMAP,NBLOCK, WIDTH)

** INTEGER*4 PAGTAB(1024,4), ACTIV, PTABBP(8), W0KSET(8),
CUR3ET(8), N0PAGrR(8), MYMAP(1280)

** INTEGER WIDTH

C additional declarations

INTEGER*4 ADR

C scan column 5 of memory map to 3ee if there is a candidate
for removal

C i.e. find the first entry which equals -10.

DO 1 I = 1,NBLOCK

ADR = WIDTH *(I-1)+1

BLCKNO = I

IF(MYMAP(ADR).EQ.-10)GO TO 3

1 CONTINUE

C if there is no candidate for removal then select a block
at random

C SUBALG chooses a random number between 1 and NBLOCK and
places it's value in BLCKNO

CALL SUBALG(BLCKNO, NBLOCK)

3 CONTINUE

** RETURN

** END

83

2. THE LEAST RECENTLY USED STRATEGY (LRU)

The LRU algorithm uses the information gathered through

the implementation of the working set philosophy. First of all,

if a page has been marked as a candidate for removal from core,

i.e. if it has left the working set but is still in core, then

this page is rolled out of core to make way for the demanding

page. If no such page exists then the "use-bits" of each page

in core are examined and the page whose "use-bits" are most

right-justified is chosen. This is the page which has been

in core for the longest time without being referenced, although

it is still in the working set. Thus the least recently used

page is selected to be rolled out of core to accommodate the

demanding page.

The following page lists the code necessary to implement

this paging algorithm.

64

2. THE LBAST RECENTLY USED STRATEGY

** SUBROUTINE ALGORI (BLCKNO, ACTIV, PAGTAB, PTABBP, WOKSET,
CURSET, ITOPAGR, MYMAP, NBLOCK, WIDTH)

** INTEGER*4 PAGTAB(1024,4), ACTIV, PTABBP(8), W0KSET(8),
CURSET(8), N0PAGR(8), MYMAP(1280)

** INTEGER 'WIDTH

C additional declarations

INTEGER *4 ADR

C scan column 5 of memory map to see if there is a candidate
for removal

C i.e. find the first entry which equals -10
DO L I = 1,NBLOCK

ADR = WIDTH*(I-1)+l
BLCKNO = I

IP (MYMAP(ADR).EQ.—10) TO TO 3
1 CONTINUE

C if there is no candidate for removal then remove the page
that was least recently used

C This is the page whose "use-bits" are most right justified
i.e. numerically smallest

C If the page is in core then compare its use-bits
K = 0

6 K = K + 1
IP(PAGTAB(K,1). NE.l) GO TO 6
IF(PAGTAB(K,2).L5 . 0) GO TO 6
DO 4 J - 1,1024
IP (PAGTAB (j,l).NEcl) TO TO 4
IP (PAGTAB (J,?).LE.0) GO TO 4
IP (PAGTAB (J,2).LT.PAGTAB (K,2)) K - J

4 CONTINUE
BLCKNO = PAGTAB (K,3)

3 CONTINUE

RETURN

END

**

**

3. THE RANDOM SELECTION STRATEGY

This paging algorithm works simply on the philosophy

that if there is no block of core available for the

demanding page, then a page is simply rolled out of core

at random arid the corresponding block allocated to the

demanding page. The following code has this effecti

** SUBROUTINE ALGOHI (BLCKNO, ACTIV, PAGTAB, PTABBP, WOKSET,
CURSET, NOPAGR, IffHAP, NBLOCK, WIDTH)

** INTEGER*4 PAGTAB(1024> 4), AGTIV, PTABBP(8), W0KSET(8),
CURSET(8), N0PAGR(8), NYMAP(128O)

** INTEGER WIDTH

C completely random strategy

C SUBALG selects a random number between 1 and NBLOCK
and places its value in BLCKMO

CALL SUBALG (BLCKNO, NBLOCX)
** RETURN

** END

66

d. THE OUTPUT FROM THE SIMULATOR

Output from the simulator takes on three different forms

namely, descriptive, histogram and tabular.

The output endeavours to give a step by step picture of

the state of the system being simulated. Statistical information

is collected at evenly spaced intervals based on the value of

NEWLIM, where NEWLIM is the maximum number of units of time for

which the simulator will run. NEWLIM is chosen by the user.

The first set of output is descriptive. It describes the

system configuration and the job stream as specified by the user.

This is output once only.

The output which is described below is output at intervals

of ^/lOth of NEWLIM. Thus if the simulation runs until NEWLIM
*

is reached then 10 sets of output will have been given.

These 10 sets of output each consist of 4 histograms,
**** **

NJOB tables and a descriptive summary. Suppose NEWLIM = 9600

units of time then these sets of information are given at

intervals of 960 units.

Let this interval of 960 be called LIMIT, then

LIMIT = NEWLIM/lO.

* Note that a simulation may be terminated before NEWLIM is
reached since all the jobs in the system may have completed.
The simulation and the program terminate either at NEWLIM or
when all the jobs are complete, whichever occurs first.

** Note that NEWLIM needs to be a multiple of 80 so that the
sampling can be done at evenly spaced intervals. However
any value may be given by the user for NEWLIM and it is
rounded to the nearest multiple of 80 within the program.

**** NJOB is the number of job3 in the system. NJ03 is chosen by the
UC 02?

i.e. maximum no. of jobs active simultaneously i.e.degree
of multiprogramming.

The first three histograms given at LIMIT represent

the state of queues in the system over the last LIMIT units

(i.e. 960 units). The queues are sampled at 80 evenly spaced

intervals within LIMIT (i.e. at 0, 12, 24, ...960). The

queues represented by the histograms arej

1. the queue for central memory space

2. the queue for drum attention

3. the ready list.

The height of the histogram at any one point represents

the number of jobs in the queue at the end of the interval

(LIMIT/80).

The fourth histogram represents the number of free blocks

of central memory still available. This histogram is scaled

down so that it conforms with the other histograms in general

appearance. While it does not give an exact account of the

actual number of freeblocks, it does show the general trend of

the iree blocks still available.

The NJOB tables given at LIMIT are such that each table

represents the state of one particular job during the last LIMIT

units of time. There is one table per job. This table is built

up from the statistics about a job gathered at 20 evenly spaced

intervals within LIMIT. (The statistics are sampled at the end

of each interval).

*** The method of scaling is that the height of the histogram (H)
at any one point = number of free blocks (IIFB) divided by
(the integer result of NFB/20) plus 1

i.e. H - KPB/l(MPB/20)+ 1

Each table contains the following information about a job:-

1) its arrival time to the system

2) the time at which its first page was loaded into core.

Then at each interval, of LIMIT/20 it gives1-

1) the clock time

2) the time the job has been in the system, (this timing

starts after the job's first page has been loaded into

core)

3) the processor time of the job (this is the number of

units of time the job has had control of the processor

excluding any interruptions)

4) the number of pages of the job loaded onto drums

i.e. the total logical address space demand

5) the current set of pages in core (i.e. the number

of pages currently loaded)

6) the number of active pages removed (i.e. the number of

pages removed from core while still in the job's

working set)

7) present number of i/O requests that have been issued

by the job

8) present number of page faults issued by the job

9) the time quantum still left to run on the processor,

(this quantum was the one allocated to the job when

it left the ready list)

10) the current value of the long quantum count.

Then at the end of each table, the following 3 pieces

of information are given. These indicate the stats of the

job at the end of the interval i.e. _at LIMIT. These are:-

1) whether the job is complete - if it is
then the response time for the job is given

2) number of units of time for which the job was

blocked for l/O

3) number of units of time for which the job was

blocked for page faults.

Finally after the histograms and tables a descriptive

summary is given of the state of the jobs and the system at

the end of LIMIT units of simulated time.

This contains:-

1. The processor idle time upto the present time

(i.e. a cumulative value)
2. The total number of units of time simulated so far

3. The total number of pages removed from active

working sets (a cumulative count)
4. The number of jobs put through the system i.e. ITJOS

5. The number of jobs completed so far
(a cumulative value)

6. The current number of page faults issued by all jobs
(i.e. a cumulative count)

7. The percentage CPU usage and percentage drum usage

over past LIMIT units of time

8. The overall CPU usage and average drum usage. (This
is a cumulative percentage).

These histograms, tables and descriptions are produced

every ITEWLIM/lO units of time. Except where indicated the

statistics given are not cumulative, but are pseudo-continuous.

This means that, for instance, each histogram of the drum queue

placed side by side in the order in which they are output

would produce a continuous picture of the condition of the

drum queue throughout the simulation. The same may be said

of all the histograms and the job tables for a particular

job.

(Note that all values given are those of a sample taken

at the end of the interval in question).

PART V

CONCLUSIONS and FUTURE DEVELOPMENTS

92

V. CONCLUSIONS AND FUTURE DEVELOPMENTS

The development of the simulation was greatly assisted

"by the implementation of a simple model (BASYS) which

established the basic structure and notions involved in

the final model.

A straight forward expansion of this simple model has

however caused several problems, although on the whole, it

is felt that this was a good approach.

The main problem arose from the development of the much

larger FORTRAN main program which represents the model of our

paged multiprogramming computer system. The program

development stages could, retrospectively, have been improved.

Most of the subroutines used (there are 14 subroutines in all,

with an average of 44 FORTRAN statements) were debugged

independently using the on-line VDU terminals available under

the RAX system on the IBM 360/44. The main program, however,

was written in one continuous piece of code. This was a largo

main program (726 FORTRAN statements) and contained the

seven-event structure of the simulator, and was consequently

difficult to debug. It is now felt that some way of breaking

down this main program into independent modules for testing

should have been developed. Perhaps, event one should have

been written and tested then event two added on and tested then

event three and so on. It could be argued that FORTRAN

subroutines could be used to simulate each event, but since

there is a great deal of interaction between the seven events

the overhead involved in the subroutine parameter passing would

make the program even bigger and execution time slower than

at present. Alternatively, all parameters could be passed in

COMMON but this raises its own problems of clarity of design

and security.

The program was originally oompiled under the F-level

compiler which requires less storage space than the G-level

but this did not contain the debugging aids required by the

program. Further, to reduce the storage requirements of the

program INTEGER 2 (half-words) variables were used wherever

possible.

Eventually, however, the program needed to be run under

the G-level compiler so that array subscript checking could be

carried out. The DEBUG option SUBCHK was used to ensure that

no array subscript overflow occurred during the program which

rectified itself later giving apparently good results in the

simulation. This compiler uses too much storage when compiling

the large main program that it must run in full-core i.e. 200K,

resulting in a slow turnaround of jobs. Further, it was not

discovered until after nearly six months debugging the program

that the FORTRAN G-level compiler contained a bug (generally

unknown) which is related to the use of half-words in DO LOOPS.

This caused intermittent errors and array subscript overflow

errors which varied from run to run, and considerable delay was

experienced in pursuing this apparent simulator error.

Therefore, we ran the program under the F-level compiler

whereupon it ran to completion free from subscript overflow

errors but without the added confidence provided by the DEBUG

SUECHK option. At this point all half-words were removed from

the program and it vrns again compiled under the G-level

compiler, and debugging of the program could recommence.

Despite the problems encountered in debugging the program

it is still felt that PORTRAIT was a reasonable choice of

language since it has allowed different queueing techniques

to be used at differing points in the model, and it is

generally known among students. In general, the simulation

model satisfies the requirements for which it was originally

written.

Although no attempt has been made to provide conclusive

evidence of the validity of the model, it should be clear from

the arguments and results in Part III Ch.l and the general

trends of the results in Part III Ch.3 that the model provides

3. realistic - representation of paged multiprogramming computer

systems. The model has been shown to be valid for one

particular system since on the basis of known input data, the

results from the simulation compared favourably with known

output data. Further the model has been shown to be sensitive

to changes in system configuration and job description

parameters and to various paging algorithms. It must be

realised however that the simulation is only valid to a

certain level of detail, for example, a job with references

scattered throughout its pages and only a small CPU time cannot

be accurately represented, (see Part II, 2.b. LEVEL OF DETAIL)

The simulator has exact reproducibility since using the

same parameters always gives the same results. The

IBM 360/44 CPU time necessary to run to simulation varies

directly with the amount of drum activity within the

simulation, for example, on two runs where jobs total pages

fit into core in the,run where jobs are free from i/O requests

the execution time was 6 mins whereas in the run with I/O the

execution time was 24 mins. The real execution time also

varies directly with the length of the jobs within the simulation.

The present state of the simulation gives the user a means

of developing and testing new paging algorithms under varying

conditions of system configuration and job stream.

FUTURE DEVELOPMENTS

It was not possible within the time available for

development of this simulation to include all the facilities

that one would wish to include. However in the future it is

hoped to make improvements in terms of the size and execution

speed of the program. Those subroutines which are called most

frequently should be rewritten in IBM PL36O, the random number

generator which was originally written in FORTRAIT has already

been replaced by one in PL360 resulting in a better execution

speed.

Several of the output statistics from the simulator could

be improved, histograms should be presented in percentages,

and maximum and minimum values of variables could be taken as

well as the present sampling which takes place at the end of

sampling intervals. Further a user defined sampling interval

could be created.

It is intended that the simulator should be available

for general student use in the session 1974-75> with possible

modifications and enhancements performed by undergraduates as

part of their normal project work.

97

LIST OF REFERENCES

(1) SCHERR A.L. An Analysis of Time-Shared. Computer Systems
MAC-TR—18 HIT Project MAC

Cambridge, Mass; 19^5

(2) SMITH Jnr. E.C. Simulation in Systems Engineering
IBM Systems Journal
Vol.1, Sept 1962 pp30-50

(3) NIELSEN N.R. The Simulation of

Communications of
Vol.10 No.7, July

Time Sharing Systems
the ACM
1967

(4) SMITH W.E. A digital
Proc 1957
New York

System Simulator

WJCC Institute of Radio Engineers
PP31-36

(5) ZUCKER M.S. LOCS: An EDP Machine Logic And Control
Simulator.

IEEE Transactions on Electronic Computers
Vol.14, June 1964 PP403-422

(6) STATLAND N. Methods of Evaluating Computer Systems
Performance

Computers and Automation
Vol.13 No.2, Feb 1964 ppl8-23

(7) KATZ J.H. Simulation of a Multiprocessor Computer
System

Proc 1966 SJCC Spartan Books
Washington B.C< ppl27-139

(8) SEAMAN & SOUCY Simulating Operating Systems

(9) BOOTE W.P., CLARK S.R., ROURKE T.A.
Simulation of a Paging Computer System
The Computer Journal. Vol.lp No.l

(10) MacDOUGALL M.H. . Computer System Simulation:
An Introduction

Computing Surveys Vol.2 Uo.3, Sept 1970

(11) DENNING P.J. The Working Set Model for Program Behavior
Comms of the ACM Vol.11 No.5» May 1968

(12) FINE G.H., JACKSON C.W., McISAAC P.V.

Bynamic Program Behavior under Paging
Proc ACM National Meeting 1966

(13) VARIAN L.C. & COFFMAN E.G.
An Empirical study of the behavior of
programs in a paging environment
Proc. ACM Symposium on Operating Systs.
Oct 1967

(14) COFFMAN E.G. & VARIAN L.C.
Further Experimental Data on the Behavior
of Programs in a Paging Environment

Comma of ACM Vol.11 No.7» July 1968

(15) FRIEBERGS I.F. The Dynamic Behavior of Programs
Fall Joint Computer Conference 1968

(16) Personal Communication

(17) KATZ J.H. An Experimental Model of System/360
Comms of ACM Vol.10 No.11, Nov 1967

(18) BLATNY J., CLARK S.R., ROURKE T.A.
On the Optimization of Performance of
Time-Sharing Systems by Simulation
Comms of ACM Vol.15 No. 6, June 1972

(19) KAYLOR, BAL3NTFY, BURDICK, CHU

Chapter 8
Computer Simulation Techniques
Wiley & Sons Publication

(20) MARTIN F.F. Computer Modeling & Simulation
Wiley & Sons Publications

(21) MORRIS D., SUMNER F.H., WYLD M.T.
An Appraisal of the Atlas Supervisor

Procs of ACM National Meeting 19^7

(22) SALI2ER J.H. Traffic Control in a Multiplexed
Computer System

Thesis. July 1966
Massachusetts Institute of Technology
Cambridge, Massachusetts

(23) BELADY L.A. A Study of Replacement Algorithms for
a Virtual-Storage Computer

IBM SYSTEMS JOURNAL Vol.5 No.2, .1966.

