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Abstract

This thesis investigates the behaviour of wave motion within inhomogeneous
plasmas and the effect of flow and transversal structuring on those waves.

We begin by outlining the basic techniques used in the analysis of waves un¬
der a variety of configurations and demonstrate how these can be applied to a

specific set of models to provide us with an understanding of the fundamental
characteristics ofmagnetoacoustic waves.

We move on to an investigation into the behaviour ofwaves within twisted mag¬
netic flux tube configurations. We present a specific model of the twisted mag¬
netic cylinder from which analytic methods may be used to obtain a dispersion
relation. We use this equation to investigate the modes of the system and com¬

pare these results with those obtained in the limit where the tube is untwisted,
pointing out new features introduced by the twisted component of the magnetic
field.

Finally we study some of the effects introduced when the linear regime is relaxed
and higher order terms are considered. A method for the analytical investigation
of non-linear resonant interactions between wave modes is outlined and applied
to a simple uniform slab configuration. We find that by a consideration of the
most important non-linear terms we are able to gain an understanding of the
processes involved in such interactions. A numerical study of the model is also
considered and the results are shown to be in good agreement with analytical
predictions.
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Chapter 1

Introduction

"I refuse to prove that I exist," says God, "for proof denies faith, and
withoutfaith I am nothing."

"But," says Man, "the Babel fish is a dead giveaway isn't is? It could
not have evolved by chance. It proves you exist, and so therefore, by
your own arguments, you don't QED."

"Oh dear," says God, "I hadn't thought of that," and promptly vanishes
in a puffof logic.

"Oh, that was easy," says Man, andfor an encore goes on to prove that
black is white and gets himself killed on the next zebra crossing.

— Douglas Adams, The Hitch Hiker's Guide to the Galaxy

1.1 Historical overview

Our Sun has long been the subject of fascination for mankind. It is the most
prominent object in the sky and even at night its light is visible in the reflection
from the Moon and other planets in the solar system. From the beginnings of
mankind the Sun has been the focus ofmyth and legend. It has been worshipped
by countless civilisations; and for good reason - it is the "bringer of life" for all
creatures on Earth.

The first serious study into the true physical nature of the Sun would appear
to have been carried out by the ancient Greeks (Wentzel, 1989, Phillips, 1992).
Around the sixth century B.C., philosophers began to question the popular belief

1
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in the Sun-god Helios and put forward alternative physical models. One of
the earliest of these ideas on record is that of Anaximenes (585-528 B.C.) who

proposed that the Sun might be a lighter than air, bright disc that was held up

by the pressure of the atmosphere. The belief that the Sun was an ordinary
physical object was reinforced by Thales of Miletus who was the first to predict
a solar eclipse as early as the mid-sixth century B.C. Further insight into the
nature of heavenly bodies was developed by the school set up by Pythagoras
(c. 582-c. 507 B.C.) in 532 B.C. Pythagoras himself held the belief that the Sun,
along with the Earth, Moon and other planets, were spherical objects. In the
mid-fifth century B.C., an astronomer from Athens named Anaxagoras (500-
428 B.C.) proposed that meteorites originated from the Sun and therefore the
Sun must be composed of iron.

In the early third century B.C. an attempt was made by Aristarchus of Samos
(310-230 B.C.) to estimate the distance of the Sun from the Earth by measuring
the angle between the Sun and the Earth at half-moon. The inaccuracies of this
measurement led to a value of about 19 times the distance between the Earth

and the Moon - about one twentieth of the true value. Aristarchus also held the

view that the Earth, along with all the other planets, revolved around the Sun.
His view was not shared by others and was not seriously considered until the
sixteenth century A.D. by Nicholas Copernicus (1473-1543). The grossly inac¬
curate estimate for the distance between the Sun and the Earth remained undis¬

puted right up until the mid-seventeenth century when detailed observations of
planets and their relative distances from the Sun began to make it clear that
it was in error. A reasonable approximation was made by Giovanni Domenico
Cassini (1625-1712) in 1672. A method for measuring the distance accurately,
however, remained a dilemma for many years until the famous astronomer Ed¬
mund Halley (1656-1742) realised that accurate measurements could be made
when Venus crossed the Sun's disc in front of our line of sight. He pointed out
that since Venus is so close to the Earth, the time taken for it to traverse the
Sun's disc would be observed differently from different locations on Earth. Ac¬
tual measurements were a long time in coming, since the next transit of Venus
was not to occur for another 53 years. Captain James Cook (1728-79) under¬
took the observations during his first voyage to New Zealand; due to the length
of this journey and the advent of the Napoleonic wars at the turn of the cen¬

tury, the actual calculations were not performed until 1824, 108 years after
Halley's suggestion! The distance between the Sun and the Earth was found to
be 153,000,000 km on comparison of the measurements, differing from current
measurements by only about 2%.
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Reverence of the Sun led Aristotle (383-322 B.C.), in the early fourth century
B.C., to expound the view that it was perfect and without blemish. Ironically his
own pupil, Theophrastus (372-287 B.C.), is the first to have noticed sunspots
on the solar surface. A large number of sunspots were observed and recorded
in the middle east during the second and third centuries B.C. Many of these
seem to be chance sightings, however, and are erratic and unreliable. The first
methodical investigation into sunspots came with the invention of the telescope
in the late sixteenth century. Galileo Galilei (1564-1642) made a detailed study
of sunspots in 1610. Aftermany careful observations he was able to deduce that
the Sun rotated with a period of about a month and that its equator was slightly
inclined with the plane of orbit of the Earth. He was also the first to notice
that the spots were composed of a dark inner region, now known as the umbra,
surrounded by a lighter ring, the penumbra, and that the spots were not evenly
scattered over the Sun's surface but confined to two bands above and below the

equator. A contemporary of Galileo's, Christoph Scheiner (1575-1650), spent 16
years observing sunspots and in 1630 published his findings in a book entitled
"Rosa Ursina sive Sol".

Following the publication of Schemer's books, sunspot observations continued
fairly consistently by many astronomers in Europe, although there was a no¬
ticeable lull in sightings between 1645 and 1715, despite the intense interest
in astronomy during this period. This was noticed by the German astronomer
Friederich Wilhelm Gustav Sporer (1822-1895) who published a paper in which
he concluded that the drop in sunspot numbers was due to an actual decrease
in solar activity (Sporer, 1874). The paper went unnoticed until Edward Walter
Maunder (1868-1947), an astronomer working in Greenwich, realised its signif¬
icance in the 1920s and brought it to the attention of the solar community at
large (Maunder, 1922). This period of inactivity, now known as the "Maunder
minimum", is widely believed to be fact, with supporting evidence from other
sources such as a corresponding drop in auroral sightings (Eddy, 1976).

The great tradition of solar physics in Scotland was put on a firm grounding by
Glaswegian physicist AlexanderWilson (1714-1786) in 1769. He noticed that the
Sun's surface appeared to be indented at the limb in the presence of sunspots,
a phenomena often referred to as the "Wilson depression", and deduced that the
spots must be funnel shaped. From this he was able to conclude that these were
burrows made by creatures living beneath the surface of the Sun!

The next major advance in solar physics came in 1843 with the discovery of the
11 year sunspot cycle by the German chemist Heinrich Schwabe (1789-1875).
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After 17 years spent making recordings of sunspots he began to notice that the
numbers alternated between a maximum and a minimum over a period of about
ten years, and he also pointed out that the spots appeared in small clusters of
at least two rather than being evenly spread across the Sun. This observation
was improved upon in 1848 by the Swiss astronomer Rudolf Wolf (1816-1893)
who set up a small collaborative effort to record sunspot numbers, and also
confirmed Schwabe's findings by scouring historical records to compile a list of
recordings taken over the previous century and a half. A further major advance¬
ment in this field was made by the amateur astronomer Richard Christopher
Carrington (1826-1875) in the nineteenth century. He made precise and fre¬
quent measurements of sunspots between 1853 and 1861, paying particular
attention to the latitudes at which they occurred. He found that the Sun rotated
faster at its equator than at higher latitudes and also that the sunspot groups
drifted from high to low latitudes as the cycle progressed. The details of this
sunspot drift were further worked upon by Sporer, after whom the theory has
been named. The phenomena was beautifully illustrated by Maunder in 1902
who plotted sunspot latitude against time to produce the now famous "Butterfly
diagram".

Of course, the most important discovery as far as magnetohydrodynamics (MHD)
is concerned is that of the magnetic field. The observations of the solar corona
during an eclipse revealed patterns very similar to those produced by iron fil¬
ings under the influence of a bar magnet and this had led many physicists to
conjecture that the structuring might be caused by such a field on the Sun. It
had also been noted that the pattern appeared to coincide with large sunspot
groupings. The idea that sunspots might contain regions of strong magnetic
field was established by George Ellery Hale (1868-1938) in 1908. Hale, an as¬
tronomer from Chicago, had made huge advances in the observation of the Sun
through his experiments with photographic methods, and in 1892 he built the
first instrument, the spectroheliograph, for observing the Sun using the Fraun-
hofer emission lines. With this instrument he was able to observe the Sun in

many different wavelengths as well as making detailed studies of faculae and
prominences in the solar corona. He was able to observe new features on the
surface of the Sun, including the mottled pattern formed by convection cells and
filament channels. The clues pointing to the presence of the magnetism came
from the splitting of emission lines in the presence of such a field. This had
been discovered in the laboratory by Pieter Zeeman (1865-1943) and had first
been observed in solar emission lines by Charles Augustus Young (1834-1908).
Hale made careful observations of sunspot groupings using his spectrohelio-
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graph from 1908 onwards and soon discovered the presence of line splitting in
these regions. He was able to infer field strengths of several thousand gauss and
also the bipolar nature of sunspot pairs. He continued his observations through
to the beginning of the next solar cycle and discovered that the sunspots pairs
reversed their polarity, implying a cycle of 22 rather than 11 years. It was soon
found that much of the structuring in the Sun appeared to be related to strong
magnetic fields, and it become apparent that changes in the Earth's magnetic
field could also be connected with intense periods of activity on the Sun. A
formulation of a number of these ideas, linking the Sun's plasma with its mag¬
netic field, was presented by the Swedish physicist Hannes Alfven (1908-1995)
in 1942; the subject of magnetohydrodynamics was born (AlfVen, 1942).

There have been many other discoveries of great importance to the development
of solar theory throughout history, such as the solar wind, prominences and
flares, coronal holes, coronal mass ejections and the high temperature of the
solar corona. A study of all these aspects, however, would fill an entire thesis in
itself and so I leave the reader to browse the extensive body of literature on the
subject, (e.g., Priest, 1982, Wentzel, 1989, Phillips, 1992).

1.2 Development ofMHD theory

The equations ofmagnetohydrodynamics are an attempt to model the behaviour
of a plasma under the influence of a magnetic field. The equations used to
describe this model are chosen, in part, for their mathematical tractability and
as such are restricted in their areas of applicability. The huge advancements
made through the use of these simple equations, however, and the surprisingly
good correspondence between theory and observation fully justifies their use.
An overview of the governing equations and the assumptions that underlie them
is outlined briefly below. More detailed discussions may be found in the books
by Roberts (1967), Cowling (1976), Parker (1979), Priest (1982) and Sturrock
(1994).

It is worth noting that the MHD equations may be derived from the simplification
of a much more thorough analysis of particle motion using the Boltzmann equa¬
tions. Possibly the most rigorous and complete treatment of this analysis may
be found in the classic work by Braginskii (1965). We will write the equations
derived from taking moments of the Boltzmann equation and then outline the
assumptions commonly made in reducing these to the equations of ideal MHD.
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To this end, we will begin by defining certain parameters used in our analysis.
We will use L0 to denote a typical length scale, to a typical time scale and B0 the
magnitude of the magnetic field. We will also need to introduce the definitions
for some of the plasmas characteristic properties. Vj = (2fcJ5Tt/mt)1/'2 is the veloc¬
ity corresponding to the ion thermal transit time Lo/Vi, where mt and Tt are the
ion mass and temperature, and can be deduced on consideration of the kinetic
energy of the plasma. The ion gyration frequency = eB0/mt (often referred to
as the ion cyclotron frequency) and the corresponding ion gyro-radius Ri = Vi/fli
indicate the frequeney and radius at which a typical ion particle rotates around
the magnetic field.

The equations used for the electromagnetic description of the plasma are the well
known Maxwell equations. These may be introduced from the outset, without
simplification, as follows

Gauss's law for electricity:

V • E — — ; (1.1)
£o

Faraday's law of induction:

VxE = -^; (1.2)at

Gauss's law for magnetism:

V-B = 0; (1.3)

and the Maxwell-Ampere law:

1
VxB = /ioj + 1¥. (1.4)cz at

The total charge density is p* = qlnl + qene, where q is the charge on a particle
and n is the number density: the subscripts i and e indicate ion and electron, re¬
spectively. The charge density p* is usually extremely small since the condition
for a singly charged plasma, —qi = qe, is almost always satisfied and the condi¬
tion for charge neutrality, rii « ne = n, holds for most plasmas. For this reason
the electric field, E, is taken to be a secondary variable in MHD and is usually
eliminated from the equations early on. Other variables introduced above are
the magnetic field B, time t, and current density j; e0 and /j0 are the permittivity
and permeability of free space respectively (the values of which can be found in
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Table 1.2, Section 1.3.2) and c is the speed of light in a vacuum (c = (poso)'1/2).
Most phenomena on the Sun occur with a characteristic velocity which is much
less than that of light and it is usually safe to neglect the second term on the
right-hand side of the Maxwell-Ampere law (1.4).

The equations governing the fluid nature of the plasma are next introduced. We
first make the assumption that the plasma continuum behaves as a single fluid
and as such the motion of individual particles may be ignored. This is often
referred to as a macroscopic model of particle motion and obviously introduces a
restriction on the length scales that can be considered. The aim of this simplifi¬
cation is to enable us to use the well established equations governing the motion
of a fluid. In order for these equations to be valid, however, we must also make
the much more restrictive assumption that the plasma is collisionally dominated
and the conditions for the plasma to be macroscopic are automatically satisfied.

A plasma can be described by a macroscopic model if there are enough inter¬
actions between particles to make the distribution function close to Maxwellian.
This will occur if the time between collisions is much smaller than the typical
timescales of interest in the problem. For MHD the typical timescale is the ion
thermal transit time Lo/Vi. It is usually safe to assume that the kinetic energy
involved in these collisions is approximately the same for both ions and electrons
and therefore we may write ree ~ {me/mi)l'2Tu, where T;,)ee are the ion-ion and
electron-electron collision times. The condition for distribution of each species
of particle to roughly Maxwellian is then

Ions: ViTa/Lo < 1, (1.5)

Electrons: (me/mi)l^ViTa/L$ <c 1. (1.6)

For a collisionally dominated description of the plasma we also must impose the
restriction that the mean free path for each species of particle be much less than
the macroscopic length scale. Such a condition is represented by the following
inequalities.

ViTa/Lo ~ VeTee/LQ < 1, (1.7)

This ensures that the collisions occur on a length scale that is negligible by
macroscopic standards and can thus be ignored in the description of such a
model. Since the mass of an ion is much larger than that of an electron, it is
clear that inequality (1.7) is the most restrictive and it is the mean free path of
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the ions that is ofmost importance here.

The first equation governing the fluid description of the plasma is mass conser¬
vation,

Here we have introduced the advective (or convective) derivative,

and we have used the single fluid approximation for me —> 0, from which we can
write the plasma density p = m,n and the velocity v = v;.

The next fluid equation to be obtained from the Boltzmann equation is the equa¬
tion ofmotion,

where we have used the pressure p — pi + pe and the anisotropic component of
the ion and electron pressure tensors , TIe, which are usually referred to as
stress tensors (see Braginskii, 1965). The stress tensors (see the Appendix at the
end of this thesis) are somewhat complex and it is reasonable to neglect them
under solar conditions. It can be shown that the leading order terms of these
tensors give rise to viscous effects and that the ion term is larger than that of
the electron by a factor (m^/me)1/2. As commented earlier, this term is large and
so the electron tensor can be neglected.

If the plasma temperature is high and B0 large, then the diagonal components
of the stress tensor IT, dominate and have the form

(1.8)

p— = —Vp + j X B - V • (II; + ne) (1.9)

(1.10)

V ~ nksTiTu , (1.11)

where v is the kinematic viscosity coefficient and vy denotes the velocity compo¬
nent in the direction of the magnetic field. Armed with this information we can
write down the ratio between the divergence of the stress tensor and the scalar
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pressure gradient

V-IB

Vp ^<<1; (1.12)
no

so the effects of viscosity may be neglected if the plasma is collisionally domi¬
nated. We may thus write the momentum equation as

Dv
p— = -Vp+jxB. (1.13)

The term distinguishing this equation from the one used to describe an ordinary
fluid is the Lorentz force j x B. It is this force that couples the fluid equations
with the electromagnetic equations via Ohm's law. It should be noted that here
we have neglected any additional external forces that may act on the plasma,
including gravity.

After taking appropriate moments of the Boltzmann equation and rewriting the
resultant two fluid equations in terms of single fluid variables (achieved by let¬
ting me, the electron mass, tend to zero) we obtain a general form for Ohm's law.
In the version written below we have already neglected electron inertia and thus
restrict our attention to time scales larger than the electron-ion collision time
rei. The general form for Ohm's law we obtain is

E + vxB = — (jxB — Vpe - V • ne) + j/a. (1.14)
ne

Here a = reine2/me is the conductivity of the plasma. The stress tensor ne may
be neglected for collisional plasmas by the same reasoning used above. The
momentum equation indicates that the larger of the two terms j x B and Vpe
must balance with the mass times acceleration term on the left hand side. Using
this information we can make an order of magnitude comparison for either of
the two terms with that of v x B in Ohm's law as follows

j x B/en
v x B

T; (1.15)
To

hence we may neglect both the magnetic force term j x B and the electron pres¬
sure gradient Vpe if typical length scales Lq are much greater than the ion gyro-
radius Ri, i.e. for Lq » Rt. Finally, the resistive term j/cr can be neglected if it is
much smaller than the v x B term, i.e. if

j/ff
v x B

(mg/mj)1/2 ( Ri
bJTH V LQ

2

-p- I < 1, (1.16)
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We are then left with the reduced form for Ohm's Law,

E + v x B = 0 . (1.17)

The last and most complicated relation to be gained from the Boltzmann equa¬
tion is the one determining the energy of the system. Most of the terms from this
equation can be eliminated based on the assumptions already used. To combine
the electron and ion components of the energy equations we must ensure that
the time scale considered is greater than the time taken for changes in energy
to be passed between species, the equilibration time req. This time is related to
the ion-ion collision time by req ~ (m;/me )1/2ru, and we obtain the condition

^Y/25S« i, (1.18,
me J L0

which is more restrictive than condition (1.5) for collisionality. The single fluid
Energy equation may now be written

Is{£} = 3^V»'[<«l1 + «x)Vllr], (119)
where /cy and are the parallel and perpendicular thermal conduction tensors
and T is the temperature. The perpendicular thermal conduction tensor is much
smaller than the parallel one and is dropped immediately. Transport theory
may be used to show that the thermal conductivity tensor contributed by the
electrons is greater than that of the ions by a factor (m;/me)1//2, and so the heat
flux may be ignored provided

Vll ' (Kl|eV||T)
dp/dt

rrii \ x/2 ViTi,

meJ Lq
«1. (1.20)

This is the same restriction as given by the energy equilibration time. If condi¬
tion (1.20) is satisfied then we are left with the adiabatic energy equation

H-fP.
Dt \p-r

= 0. (1.21)

Finally, we use an equation of state to close the system. This is usually taken to
be the ideal gas law

p=—pT. (1.22)
m
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Here p is the plasma density, p the plasma pressure, ks is Boltzmann's constant,
m is the mean atomic mass, and T is temperature.

There are more general descriptions of the plasma, commonly used by those
studying the Earth's magnetosphere, in which the ions and electrons are con¬
sidered as separate fluids giving rise to the two fluid, equations. It is found in
practise, however, that in solar applications it is reasonable to assume charge
neutrality and hence the new information derived from this approach is slight.

Before putting figures to these equations brief comment about units is needed.
We have adopted the S.I. (mks) system in which distance is measured in meters,
weight in kilogrammes, time in seconds and magnetic field in Tesla. A discussion
on units may be found in Boyd and Sanderson (1969).

1.3 Validity of solar MHD

In this section we summarise the assumptions that have gone into the derivation
of equations (1.1)-(1.22). It is important to know exactly what these assumptions
are so that we are aware of the shortcomings of any model we might wish to
implement using the equations of ideal MHD. That is not to say that we cannot
use MHD to describe plasmas whose parameters lie outside those for which
MHD is strictly valid, only that we must be aware of the places in which errors

might creep in. In order to gain some idea of the relative importance of the
various assumptions made we will list each in turn, giving typical values to be
found in the solar atmosphere. Before we can proceed, however, we must first
give a brief overview of the general characteristics of the Sun and those regions
by which it is commonly described.

1.3.1 The solar profile

On examination of the solar atmosphere it soon becomes clear that it is an

extremely complex environment. Many of the basic plasma plasma properties,
such as temperature, density and magnetic field strength vary significantly from
one region to the next and consequently the theory of MHD is likely to be more
valid in some areas than in others. The temperature profile of the Sun's at¬
mosphere is highly stratified and roughly separates it into three regions, the
photosphere, the chromosphere and the corona.
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Figure 1.1: Profiles of the electron temperature Te and electron density Ne for
increasing height above the solar limb. Approximate ranges for the photosphere,
chromosphere and corona are overlaid.

The photosphere is the "surface" of the Sun. It is a thin layer approximately
500 km deep from which most of the Sun's light is emitted. The photosphere
is the region which separates the interior of the Sun from its atmosphere and
many transitional features occur there. Clearly visible across the whole of the
photosphere is the mottled pattern formed by granulation cells. These are ap¬

proximately 1000 km in diameter and much like cobblestones in appearance.

They are formed by convection cells just below the photosphere, in which hot
gas rises to the surface in the centre of the cell, cools and falls back down at
the edges, forming dark looking channels. It is from these channels that con¬
centrated bundles ofmagnetic flux are thought to emerge, forming the loop like
structures visible in the Sun's upper atmosphere. The temperature of photo¬
sphere is 5000 K, roughly 3.5 thousand times cooler than the Sun's core (at
approximately 1.6 x 107K). Above the photosphere, the temperature continues to
fall until it reaches a minimum temperature of about 4300 K, the base of the
chromosphere at a height of approximately 500 km above the photosphere.

The chromosphere derives its name from the Greek "chromo" meaning colour. It
is deep red when seen in visible light, a consequence of the relatively low temper¬
ature of the Hydrogen plasma found there. This region is populated throughout
with plasma jets referred to as spicules. Spicules emanate from supergranule
boundaries and attain velocities of 20 to 30 km s^1. The temperature in the
chromosphere does not continue to fall, as we might expect, but instead rises
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steadily as we progress upwards from the base of the chromosphere until we
reach the "transition region". Here the temperature rises sharply from approxi¬
mately 3 x 104 K to 1 x 106 K over a distance of about 2500 km.

Ion Number Ion Magnetic Coulomb

density Temperature field logarithm
n (m~3) T (K) B (T) In A

Photosphere 1023 6 x 103 - ~ 2.9

Lower chromosphere 1017 4 x 103 - ~ 9.2

Upper chromosphere 1015 3 x 104 - ~ 14.5

Corona 1013 1 x 106 - ~ 19.8

Low loops 1016 2 x 106 0.01 ~ 17

Quiet loops 1015 2 x 106 0.001 ~ 18.2

Flare loops 1017 2 x 106 0.05 ~ 15.9

Table 1.1: Typical plasma properties of solar structures.

The region above the transition region is called the corona. It is this part of the
solar atmosphere that can be seen during an eclipse. The large, cusp-like struc¬
tures observed during such an event are evidence of the magnetic field's influ¬
ence on the structuring of the Sun's upper atmosphere. When observed in more
detail using telescopes and satellites, features such as prominences and coronal
loops are detected (Tarbell and Hurlburt, 1998). Prominences are large, long-
lived arches of cool plasma supported by the Sun's magnetic field. They are gen¬

erally about 200 000 km long, 15000 km high and 6000 km wide, lasting weeks
or even months. Coronal loops are much more dynamic features with lifetimes
ranging from 30 minutes to several days. They are commonly 100 000 km long
and 5000 km wide, containing field strengths of about 100G and plasma den¬
sity enhancements of several times that of the surrounding plasma (Bray et al.,
1991). These properties suggest that coronal loops may be effective waveguides
(e.g. Roberts et al., 1984a), enabling energy to be transferred efficiently from
the base of the corona and below, up to the outer corona. The temperature of
the Sun's atmosphere continues its slow rise up through the corona, eventually
reaching a maximum of about 2 x 106 K.

1.3.2 The collisionally dominated plasma assumption

As we have seen, the plasma properties of the Sun's atmosphere vary signifi¬
cantly from one region to the next and it is therefore necessary to consider the
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effect of these variations on the validity of the governing equations. We begin by
considering the assertion that the plasma must be collisionally dominated.

The mass of a proton
The mass of an electron
Electron charge
Electron volt
Boltzmann constant

Permeability of free space
Permittivity of free space

= 1.673 x 10~27kgmi

me= 9.109 x 10-31 kg
e= 1.602 x 10~19 coulomb

eV= 1.602 x 10"19J = 11 605 K

kB= 1.381 x 1CT23 J deg"1
Ho=4n x 10 7 henrym 1 = 1.257 x 10 b henrym
£o= 8.854 x 10~12 faradm

,-i

-l

Table 1.2: Global Plasma Properties

This was the assumption used to eliminate the viscosity from the momentum
equation along with many of the terms from the energy equation. If this condi¬
tion is satisfied then it may be reasonably assumed that the plasma evolves on a

macroscopic level, thus justifying our use of the fluid equations. The condition
that the plasma be collisionally dominated is

V'T" T"^V/2«l, (1.23)
Lq Lq \ rrii J

where we have made use of the fact that the temperature of the ions and elec¬
trons are roughly the same and thus Ti « T/2, where T is the temperature of
the plasma. Given the mass of a proton together with typical values for the
temperature and number density of a given solar region or structure, we can
then establish a minimum length scale above which the plasma is collisionally
dominant. The lower chromosphere, for instance, has a typical temperature of
about T « 4 x 103K and number density of n = 1017m~3. The ion-ion collision
time can be found using the following formulae (Wesson, 1997)

_ 127r3/2£gm./2fcg/2!Zf/2
11

l.lnje4lnA '
(1.24)

j>3/2
= 5.36 x 106 ——- ,

nm A

Here In A is the Coulomb logarithm and may be found using the following for-
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mula when temperatures are lower than 1.2 x 105 K

A 1, fU47r2£30k3BT3\
2 \ A

= 16.33 + 1 In .

2 V n

(1.25)

For temperatures higher than this quantum mechanical effects are introduced
and an alternative expression must be used,

In A = 20.97+ -In (—^ . (1.26)
2 \ n

Typical values found in solar plasmas are summarised in Table 1.1.

Substitution of density and temperature then gives us the minimum length scale
that may be used in ideal MHD to satisfy the collisionally dominant condition.
For example, in the lower chromosphere we obtain

rp2
L0 > 4.87 x 10*nlnA'

(1.27)

= 8.47 x 10~3m.

A similar procedure can be followed, making use of the plasma properties listed
in Table 1.1, to obtain the following lower bounds for Lq\

Typical length scale
To (m)

Photosphere 6.04 x 10~8m
Lower chromosphere 8.47 x 10~3 m
Upper chromosphere 30.18m
Corona 2.46 x 106m
Low loops 1.14 x 104m
Quiet loops 1.07 x 105 m
Flare loops 1.22 x 103m

The collisionality condition is easily satisfied for much of the Sun with the pos¬
sible exception of the corona and quiet loop structures. The lack of validity in
certain cases is compensated for by the Sun's magnetic field which is able to
propagate information along its length and take the place of collisions.
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1.3.3 The small ion gyro radius assumption

ion-ion ion gyro Thermal

collision time radius velocity
Tii (S) ri (m) Vi (ms_1)

Photosphere 8.59 x 10~12 - 7.04 x 103
Lower chromosphere 1.47 x 10~6 - 5.75 x 103
Upper chromosphere 1.92 x 10"3 - 1.57 x 104
Corona 2.71 x 101 - 9.09 x 104
Low loops 8.89 x l(r2 2.21 x 10"3 1.28 x 105
Quiet loops 8.33 x 1CT1 2.21 x 1CT2 1.28 x 105
Flare loops 9.53 x 1(T3 4.43 x 10"4 1.28 x 105

Table 1.3: Parameters indicating regions of validity for MHD.

The small ion gyro radius assumption was made so that we could neglect the
pressure term from the right-hand side of Ohm's law. The ions in the plasma
spiral around the magnetic field lines as they move and the radius of this spiral
is the ion gyro radius Ri. It may be written as

=

V2 eB0

As we can see, the quantity that this number takes is very much determined by
the magnetic field of the plasma and so requires a little more thought. For most
solar structures, however, the magnetic field is quite strong and so the ion gyro
radius is usually much less than the length scales under consideration. A few
typical values taken by the ion gyro radius are listed in Table 1.3.

1.4 Outline of thesis

In this chapter we have seen how the study of the Sun has progressed through¬
out history. The more our understanding has grown, the more we have become
aware of the complexity and dynamics of this fascinating star. It is clear that
the range of phenomena that demand thorough and detailed examination is vast
and that in order to achieve any real understanding of the processes that occur
it is necessary to restrict ones attention to small and much simplified models.

We have also examined the basic equations of MHD with which we will carry
out our study. We have seen that these equations have their limitations and
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that they certainly do not fully represent the processes involved in the dynamics
of the Sun. They do, however, give a remarkably good approximation within
their range of validity and are able to convey an excellent description of the
physical processes involved whilst retaining a fairly high level of simplicity and
mathematical tractability.

The focus of this thesis will be on the study of wave motion within inhomoge-
neous plasmas. As already mentioned, the scope for study is vast and to un¬
dertake a full, detailed analysis of the highly complex structures found on the
Sun would be an extremely difficult task, yielding little that would further our
understanding of the dynamics contained therein. Instead we will try to identify
general cases in which our knowledge of wave motion is lacking and build up a

picture of the behaviour ofwaves under these conditions by drawing on studies
made of similar models.

In Chapter 2 we present an overview of the fundamental properties of waves in
structured solar plasmas. We outline the basic techniques used in analysing
the properties ofwaves within a given set of boundary conditions and show how
these have been used to establish some of the fundamental characteristics of

magnetoacoustic waves. These methods will be used throughout the remainder
of the thesis in the study of specific models which aim to reflect some typical
solar plasma configurations. We end this chapter with a review of recent wave
observations and the characteristics of the waves found.

In Chapter 3 we investigate the behaviour of waves within a twisted magnetic
flux tube. The flux tube is widely regarded as one of the fundamental building
blocks in our understanding of the Sun. The immediately apparent features in
any solar observation are the myriad of loops and arcades to be seen. These
appear to be made up of many small tube like structures and closer analysis
indicates that these are due to density or magnetic field enhancements. The
magnetic cylinder is a good approximation to this phenomena, retaining most of
the relevant structure whilst providing a simple mathematical framework from
which we can gain insight and understanding. Much work has already been
done in examining the characteristics of magnetoacoustic waves within such
structures and a good understanding has been established. However, one area
of study which has clearly been neglected is the effect that twist of the magnetic
field will have on such a configuration. The main reason for the absence of such
a study has been the mathematical complexity involved in such a calculation. No
model has been found for which a fully analytical treatment can be performed.
In this chapter we present a configuration under which an analytic methodsmay



1.4 Outline of thesis 18

be used to obtain a dispersion relation with which we are then able to investigate
the modes of the system. We compare these results with those obtained in the
limit where the tube is untwisted and point out new features that arise with the
introduction of twist.

Chapter 4 deals with some of the effects introduced when the linear treatment
is extended to take into account higher order terms. It is found that waves may
interact with one another in a resonant manner within appropriate frequencies
ranges and that this can enable the generation of higher harmonics to the orig¬
inal wave mode. A method for the analytical investigation of such phenomena
is outlined and applied to the slab model commonly used in the linear treat¬
ment of a waveguide. We find that although the full non-linear equations are

prohibitively complex, by a consideration of the most important features sim¬
plifications may be made which yield useful insight into the dynamics involved.
We go on to investigate the model using numerical techniques in which the fully
non-linear equations are solved. A comparison is made between the analyti¬
cal predictions and the numerically calculated results and the merits of such a
treatment are discussed.

In Chapter 5 we consider the effects of field aligned steady flows in a transver-
sally structured, compressible plasma. A generalised dispersion relation is de¬
rived which governs the behaviour of waves in a sheared-field, Cartesian geom¬

etry. The chapter aims to provide a basic outline of the processes involved and
considers the two simplest models commonly used in the investigation of mag-
netoacoustic waves; those of the single interface and the uniform slab. Com¬
parisons are made with incompressible treatments of these models and new
features are pointed out and explained.

Finally, in Chapter 6 conclusions are drawn on the results of the work un¬
dertaken and suggestions made for further study which may be undertaken to
enhance our understanding of these models.



Chapter 2

MHD Waves

The idea was fantastically, wildly improbable. But like most fantasti¬
cally, wildly improbable ideas it was at least as worthy ofconsideration
as a more mundane one to which the facts had been strenuously bent
tofit.

— Douglas Adams, The Long Dark Teatime of the Soul

2.1 Basic wave propagation

Magnetic waves provide a means of energy propagation via the Sun's magnetic
field. This becomes particularly significant in the highly structured environ¬
ment of the solar corona since the magnetic flux tube structures found in loops,
arcades, spicules and the like, act as waveguides in which energy can be effi¬
ciently transferred from the footpoints at the photosphere up into the corona.
The turbulent solar surface induces a large amount of energy into the corona by
buffeting the footpoints of field lines and this is clearly a significant component
in the heating of the corona.

The bulk of this thesis is devoted to a detailed analysis of the wave modes that
occur in structured plasmas and the effect that these inhomogeneities have on
the propagation of such waves. To gain a better understanding of the underlying
physics of these waves, it is helpful to investigate the behaviour of one or two
simple models before looking into more complex situations.

The first stage of most wave analysis is the linearisation of the MHD equations.

19
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In this approach, we begin with an initial equilibrium configuration and then
investigate the effect of a small perturbation about this equilibrium. If the per¬
turbation is small enough then we need only consider the linear terms from the
resultant equations.

To begin with we will write out the MHD equations in a slightly simplified form in
which we combine equations (1.17), (1.4) and (1.8) with (1.2), (1.13) and (1.21),
respectively, to give the following

Dv 1
p— = -Vp+ — (VxB) xB, (2.1)
ut Po

®=Vx(vxB), (2.2)

V • B = 0 , (2.3)

g—PV.T, (2.4)

^ = -7PV-v, (2.5)

P=—PT. (2.6)
m

The second term on the right-hand side of the momentum equation (2.1) is the
Lorentz force and is often rewritten in the following form, using vector identities,

jxB = — (B-V)B-V® . (2.7)
Mo \ 2/^o /

When combined with the pressure gradient, the right-hand side of (2.1) becomes

—Vp + jxB = — (B-V)B —V fp+^-V (2.8)
Mo \ %PoJ

It is clear from this that the quantify (B2/2p0) has exactly the same effect as
the pressure in the momentum equation and is hence known as the magnetic
pressure. The plasma beta /3 is commonly used to refer to the ratio between gas
and magnetic pressures

p=wkry ,2'9)
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The (B ■ V) B//xo term in (2.8) acts in much the same way as the tension force in
a taut wire. It is non-zero only when the field lines are curved and then acts in a
direction perpendicular to the magnetic field in such a way as to straighten the
field. For this reason it is often called the magnetic tension and it is one of the
forces responsible for the generation ofmagnetic waves.

The equation deriving from Faraday's law may also be rewritten using vector
products as follows

55 = B Vv-BV v. (2.10)

We must first find a stationary steady state about which we may perturb the
field. To do this we take both the velocity and the time derivatives in the govern¬

ing equations to be zero. Equilibrium quantities are denoted by a '0' subscript.
The only equations which are not trivially satisfied are the momentum equation
and the solenoidal constraint. From these, we gain an equilibrium condition
that must always be satisfied by the model before any linearisation can be done:

P0 + 7T-) = — (B0-V)B0, (2-11)2/x0y Mo

V • B0 = 0, (2.12)

with equilibrium pressure po, plasma density po and temperature To related by

Po = —poT0. (2.13)
m

The first of these requires that the forces due to tension and pressure are bal¬
anced in the steady state. In Cartesian geometry the solenoidal constraint (2.12)
may be satisfied for a magnetic field B0 that is structured in the transversal
coordinate x, i.e.,

B0 = B0(x)ez. (2.14)

Here ez is the unit vector in the direction parallel to the unperturbed magnetic
field B0. Once the magnetic field is specified, the remaining equilibrium con¬
ditions require that the pressure, density and temperature also vary only in a
direction perpendicular to the magnetic field. Then (2.11) reduces to the follow-
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ing

l(w +S)=0' 12151

We now investigate the effect of a small perturbation about this equilibrium. We
write all quantities as their steady state value plus a small perturbation:

B = B0(a:) + b, p = p0(x) + p,

(2.16)

p = p0(x)+p, T = T0(x) + T.

When we substitute these into our governing equations, keeping only the first
order terms, we arrive at the following

„ /_ 1 B0db 1 - «9B0
PoT77 — —V f p H Bobz ) H ——I bx——, (2.17)ot \ po J po oz po Ox

f (2.18)ot oz ox

V • b = 0, (2.19)

^ = -p0A-vx^, (2.20)
dP a ~ dP° in o n- = -7P0A-„,_, (2.21)

p=~pT. (2.22)
m

In writing these we have defined A = V • v which is a measure of the com¬

pressibility of the plasma. At this point it is useful to define a new quantity
Pt = P + ~Bobz representing the total pressure perturbation. We will also now

drop the tildes for clarity.

Differentiating equation (2.17) with respect to time and eliminating b gives

d2 2 d2 \ x-jdpr dA
p0\dt2 Ca<9Z2Jv v dt p0B°dz- (2'23)

Here we have introduced the AlfVen speed, ca, which represents the character-
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istic speed of propagation along the magnetic field. It is defined as follows

cA = —= • (2.24)
VMoPo

The other characteristic speed, representing the fluid properties of the plasma,
is the sound speed cs- This is defined as follows

cs= (7 . (2.25)
Po J

The adiabatic energy equation can be rewritten as

dpT A dp0 B0 dbz—— = -7p0A - vx— + — . (2.26)
ot OX Ho ot

Substituting the value for bz from the induction equation (2.18) and making use
of the equilibrium condition (2.15) this may be written as follows

—■ = -p0 (c\ + c§) A + poc\vx^ . (2.27)

Using the momentum equation (2.23) to eliminate vz we can write the compres-
sional term A in terms of the total perturbed pressure as follows

=-A)(c^+(§p -c^) a - (2-28)
where we have introduced the tube speed ct• This speed is a result of the
balance between magnetic and fluid forces and, as we shall see, it is a natural
speed that often occurs in the wave motion of structured plasmas and it is
defined as follows (see Roberts, 1981a),

4 = cscA . (2.29)4 + c\
It is also convenient at this point to introduce the speed

Cf = 4 + c|. (2.30)

We may now eliminate A from the momentum equation (2.23). Writing out the
components of the resultant expression gives

(°2 2 d2 \ d dpT MonP0[dt2 CAdz2)Vx dx dt ' ( ]
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( °2 2 d2 \ d dPT fo qoiP0{aT*-c^) v» = -di-M' (2'321
2 (d2 2 d2 \ 2 d dpT lo QQ1

PoCf [w - CTd?) Vz - ~Csd~z~dt ■ (2,33)
where vx, vy and vz are the velocity perturbations in the directions ex, ey and ez
respectively.

Here we have three equations in four unknowns. The fourth equation required
to close the system may be obtained by substituting the definition for the com-

pressional term A = V • v into equation (2.28),

93Pt 2 ( 92 2 d2\fdvx dvy dvz \

These may be reduced to the following two differential equations in terms of the
two perturbation quantities pr and vx:

2 ( &_ 2 ( d2 2 d'2 \ 9Vx _^°Cf \dt2 CAdz2) \<9t2 °Tdz2) dx
2 &_(&__ 2 d2\ ( d2 2&L\\?Pt (9 «,

Cfdy2\dt2 CTdz2) \dt2 CAdz2)\dt2 sdz2JJ dt ' '

/ d2 2 92 \ d dpr
Po

Vdt9 ~~ °A~dz2)Vx = ~fac~dt (2.36)

We wish to investigate the waves in the system and so our next step is to perform
a Fourier analysis. We assume that the perturbed quantities are oscillatory in
time and spatially in the directions ey and ez and thus write pt and vx in the
form

ip = ip(x) exp i(ujt — kyy — kzz), (2.37)

where uj is the frequency and ky and kz are wavenumbers in the directions paral¬
lel and perpendicular to the field respectively. After a little algebra the resulting
equations may be written as a single ordinary differential equation as follows
(see Roberts, 1981a)

_d_
dx

Po(kzcA ~u2)dvx
irr h.2

ICy dx
- po{k2zc\ - cu'z)vx = 0 ,

2\„-. (2.38)
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where we have introduced the quantity m defined as

(k2c2A -u>2)(k2cl - uj2)m2 =
cf (fc24 - ^2)

(2.39)

All other components of interest may now be written in terms of the perpendic¬
ular velocity perturbation

iky dvx

vz =

(m2 + A;2) dx '

icgkz(k2c2A — uj2) di)x
c2(A24 — w2) (m2 + A2) dx '

r
_ kzB0

ox — vx.
id

ikzkyB0 dvx
w(m2 + A2) dx

bz =

Pt =

i | m2So dvx dBp „

+
uj \ m2 + A2 dx dx

ipo(kzc\ - uj2) dvx
uj (m2 + A2) dx

J Pocsu2(kzca ~ u2) dyx Bo dBo „
uj \ c2(k'^c^ — u2)(m2 + k^) dx p dx x

P =
p0uj2(k2c2A - uj2) dvx dp0

uj | c2(A24 — w2)(m2 + A2) dx dx

Equation (2.38) may be rewritten in the form

"p0cf (uj2 - u>a(x)2)(uj2 - ujt{x)2) dv,d_
dx (uj2 — wi(x)2)(w2 — wn(x)2) dx

where the resonant frequencies are given by

+ po(uj -uja(x) )vx = 0,

uj = {±ujt(x) = ±kzcT(x),±uja{x) = ±kzcA(x),

(2.40)

(2.41)

(2.42)

(2.43)

(2.44)

(2.45)

(2.46)

(2.47)

(2.48)

(2.49)
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and the cut-off frequencies are given by

uj — J ±wl(x) = ± j^/c2 (c\ + Cg) - \\J^ (c\ + Cg)2 - 4«2fc|c^Cg| , (slow)
f r 1 1/2

±wii(a:) = ± < \k2 + c§) + k4 (c\ + c|)2 - 4k2k^c2acg J> . (fast)
(2.50)

If both the equilibrium density, po, and magnetic field, Bo, are uniform in space,

Equation (2.38) may be rewritten as follows

Po(k2zc\ - u)2) - (m2 + k2)vx\ =0. (2.51)

From this representation it is plain that one of the admissible solutions can be
written as

oj = ±kzc\ . (2.52)

This solution is the AlfVen wave. The phase speed, cph, and group velocity, cg,
are

oj

Cph = — = ±cacos#, (2.53)
k

did
Cg = — = ±cAez . (2.54)

From equations (2.45) and (2.40) we see that pr and vz are both zero when (2.52)
is satisfied. With these conditions, the Alfven wave solution can easily be seen

from equations (2.33)-(2.32). The Alfven wave is driven by tension forces alone,
unlike the sound wave which owes its existence to pressure forces. Combining
this with the fact that the velocity perturbations only occur in a direction per¬

pendicular to magnetic field lines, we see that Alfven waves behave in much the
same way as those formed by plucking a taut string. Referring to the equation
for the total perturbed pressure (2.26) we see that the compressional term V • v

must also be zero. This implies that the AlfVen wave does not compress the
plasma as it propagates.
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2.2 Waves in an homogeneous environment

The case inwhich there is no structuringmay be investigated by Fourier analysing
in all three spatial directions, writing all quantities in the form

ip = ipex.p i(ut — kxx — kyy — kzz), (2.55)

where ^ is a constant. The two ordinary differential equations (2.35) and (2.36)
then imply the following dispersion relation

{w4 — k2 (c\ + eg) w2 + n2k2c\c\] vx = 0, (2.56)

where k2 = k2 + A:2 + k2z is the magnitude of the wavenumber squared. Note that
we have omitted the Alfven wave solution from this dispersion relation. This
quadratic equation admits two wave solutions which are referred to as the fast
and slow magnetoacoustic wave modes. The notation U{ and us is sometimes
used to represent these modes whose solution may be written as

wf„ = (CA + ci) ± \\J«4 (cA + cs)2 - 4«2fc|c^c|} . (2.57)
They are a hybrid of the Alfven and sound waves.

If there is no magnetic field (c\ = 0) then Equation (2.56) reduces to

u!4 (tj2 — k2c§) vx = 0, (2.58)

and we obtain the dispersion relation for the sound wave, u = ±kcs- This wave

propagates equally in all directions with phase speed

W
_L_

Cph = — = ±cs ,
K

and group velocity

_6w_ cs
Cg~ dk~±Kk'

This means that the group velocity has a magnitude of cs in the direction of
propagation. Examining the momentum equation (2.23) we see that the pres¬
sure gradient is the force driving this wave.

When a magnetic field is present, a new set of pressure and tension forces are
introduced resulting in new waves. The first thing to note is that from Equa-
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tion (2.19) we obtain the condition k • b = 0 for the homogeneous case. This
means that the perturbation in the magnetic field is always perpendicular to the
direction of propagation.

We begin by considering the two limiting cases of incompressibility and zero beta
plasma. The incompressible case is found by taking V • v = 0 in the governing
equations. This is equivalent to considering the case in which the sound speed
becomes infinitely large and corresponds to the removal of the sound speed
from the system. Clearly, any remaining wave motion owes its existence to the
magnetic field alone. If we let c| -» oo in (2.56) we obtain

Considering only the non-trivial solution, we obtain the dispersion relation for
the incompressible slow wave in an homogeneous plasma,

which gives a phase speed of

cph = ±ca cos 6 .

Since kz = k cos 6 where 6 is the angle between the magnetic field and the direc¬
tion of propagation of the wave. The group velocity is given by

cg = ±ca&z.

This wave is sometimes called the shear Alfven wave, although in reality it
has nothing to do with the Alfven wave at all but is just the slow wave in the
incompressible limit. However, the misleading description is understandable
since this wave exhibits very similar behaviour to that of the Alfven wave. The
behaviour of the wave can best be seen using a polar plot (Figure 2.1) which
shows how the phase speed changes with the direction of propagation of the
wave. The polar plot for the Alfven wave is identical.

In the opposite extreme, we take the limit of a zero beta plasma. This is often
named the cold plasma approximation since it is equivalent to setting the tem¬
perature equal to zero in the ideal gas law (2.22). The sound speed becomes zero
and equation (2.56) reduces to

k2 (k2c\ — w2) vx = 0 . (2.59)

u = ±kzcA (2.60)

u2 (w2 — K2c\) Vx = 0. (2.61)
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0 = 71/2

Figure 2.1: Polar plots of the phase velocity for the incompressible slow wave
and the zero beta fast wave. The arrow indicates the direction of the magnetic
field and theta is the angle of inclination to this field. The slow wave is given by
the solid curve and the fast wave is given by the dashed curve. The polar plot of
the Alfven wave is identical to that of the incompressible slow wave shown.
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0 = 71/2

0 = 71/2

Figure 2.2: Polar plots of the phase speed of magnetoacoustic modes in an ho¬
mogeneous plasma. Figure (a) illustrates the case for which c\ < cs, specifically
the value cs = 1.4 ca is used here. Figure (b) shows the opposite scenario in
which we have used cs = 0.4 ca-
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0 = 71/2

0 = 71/2

Figure 2.3: Polar plots of the group velocity of magnetoacoustic modes in an
homogeneous plasma. Figures (a) and (b) correspond with the values for sound
and Alfven speeds given in Figure 2.2.
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The solution u2 = 0 corresponds to the slow wave and the remaining solution is
the fast wave with phase speed and group velocity given by

cph = ±ca , cg = ±ca— • (2.62)

This is the same as the sound wave solution shown earlier with the sound speed
replaced by the Alfven speed. It propagates with equal speed in all directions
and its group velocity has amplitude ca in the direction of propagation. In this
limit the fast wave is driven purely by magnetic pressure. The polar plot for this
wave is shown in Figure 2.1.

In general, the slow wave has a phase speed in the range 0 < cph < min(cA, cs). It
has a maximum speed when propagating along the magnetic field and is unable
to propagate in a direction perpendicular to it. The fast wave has a phase speed
in the range max(cA,cs) < cph < \Jc\ + c§ • This wave achieves its maximum
speed when propagating in a direction perpendicular to the magnetic field. Polar
plots for the two wave modes are given in Figure 2.2, showing the cases in
which the Alfven speed is either less than or greater than the sound speed. The
corresponding group velocities are shown in Figure 2.3.

2.3 Waves in a stratified environment

We have seen how waves behave in an homogeneous environment, we now turn
to the case in which there is some structure to either the equilibrium magnetic
field or the equilibrium density. This structuring introduces new features into
the behaviour of the waves and it is necessary to introduce some terminology to
describe it. As soon as any interface is introduced into the plasma, such that
the properties of the plasma differ on either side of the interface, a type of wave
known as the surface wave appears. This type of wave "clings" to the interface,
that is it has its maximum amplitude at the interface wall and decays expo¬

nentially away from it (see Parker, 1964, 1974a, Wentzel, 1979). In contrast,
when more than one interface exists in the plasma configuration body modes
are supported. These occur within the cavity formed between two boundaries
and, unlike the surface wave, they do not decay away from the boundary but
oscillate throughout the cavity. Terminology has also arisen to distinguish be¬
tween modes based on their symmetry about the centre of the cavity on which
they act. When the perturbations are symmetric about the centre of the cavity,
the term sausage mode is used and when the disturbance is asymmetric the
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Figure 2.4: Behaviour of the sausage and kink modes. The wave on the left
oscillates symmetrically and is known as the sausage wave. The wave on the
right oscillates asymmetrically and is known as the kink wave.

term kink mode is employed. These two types of wave mode are illustrated in
Figure 2.4.

The next step in the study of waves in a structured environment is usually
taken by the introduction of inhomogeneities to the Cartesian model outlined in
the previous section. However, the specific model we examine here is that of the
magnetic flux tube since we will be investigating the twisted magnetic flux tube
in the next chapter. The two models often introduce very similar features into
the behaviour of the waves and we will make comparisons where appropriate.

In the flux tube model, the magnetic field is directed along the z-axis and has
infinite extent. All equilibrium quantities are structured in the radial direction
as follows

B0 = B0(r)ez, Po = Po(r), p0 = p0(r). (2.63)

Following the method used in the previous section we assume a perturbation of
the form /(r)el(wi^m6l-fczZ) obtain the following ordinary differential equations for
pt and vr

Po(r) (kz2c\(r) - w2) vr = , (2.64)
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Po(r) (k2c\(r) - u2) = -«•> (m20(r) +^
where we have defined mo(r) as follows

^, (2.65)dr

m2(r) _ (**24(0 - (*^1(0 - <»2) (o 66)mo(r)- cHr)(kz24(r)-u*) ■ (2<66)
For the flux tube it turns out to be easier to solve in terms of the total pressure

perturbation rather than the normal component of the velocity perturbation.
Combining the two ordinary differential equations above yields the following
second order differential equation in terms of the total pressure perturbation

2'

Mr) (fe24M - "2) 11L(r)(fc,4A(r)-^)ir} = (mS<r) + 5")
(2.67)

For the magnetic tube model we specify regions inside and outside a tube of ra¬
dius r = a and suppose that the equilibrium quantities are constant everywhere
else. We will subscript these quantities with i and e to distinguish between the
the regions inside and outside the tube respectively as follows

B;, pi and p\ where r < a,

Be, pe and pe where r>a. (2.68)

This type of configuration is illustrated in Figure 2.5. The second order differen¬
tial equation for pr can then be written for the two separate regions

d2px 1 dpr ( 2 m2
dr2 r dr

+ Z~^r~ (mi,e + 7TPr==0- (2-69)
Here we have used m; and me to represent the values of mo inside and outside
the tube respectively. Note that the Alfven wave decouples from the system due
to the uniform media and has been removed from this equation by cancellation
leaving only the fast and slow magnetoacoustic modes. Equation (2.69) takes
the same form as the modified Bessel equation and we can immediately write
the solution

Ci>eIn{miter) + A,e-Mmi>er) > mi,e > 0 » fo
PT = \ (2.70)

T -Fi,eFJi(7li,e7') , ^i,e = ^i,e ^ ® '

where Che, Dhe, Ei<e and Ffy are constants, Jn and Yn are the first and second
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A A A

Be> Pet Pe

AAA AAA

bp Pet Pe

Figure 2.5: Magnetic flux tube model.

ordinary Bessel functions and In and Kn are the first and second modified Bessel
functions (see Abramowitz and Stegun, 1967). The ordinary Bessel functions
represent outgoing wave solutions (see Cally, 1986) and so will not be considered
for the external region. We also require that the solution remains bounded at an
infinite distance from the tube in the radial direction, a condition which only the
second modified Bessel function Kn is able to satisfy. We, therefore, set Ce,Ee
and Fe equal to zero. We also require that the solution be finite at the centre of
the tube, leading us to set D\ and F[ to zero. We are now left with the solutions

]Ci7„(mir), m? > 0,
PT = < (2.71)

[EiJn(nir), n? =-m? > 0,
for the interior of the tube and

pT = DeKn(mer), (2.72)

outside the tube. We match these two solutions at the tube boundary r = a using
the conditions that both the radial velocity component vr and total pressure be
continuous. A detailed discussion about the reasoning behind these matching
conditions is given in the next chapter (Section 3.3.3). Applying these boundary
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conditions yields the dispersion relations

tu 2 2 2\ Kn(mea) 2 2 2n In(mi°)Pi(fcz cAi - u )me—- T = Pe{kz cAe - u )m{-- 7 '
Kn(mea) In(m\a)

(2.73)

for surface waves where mf > 0 and

(U 2 2 2x K'n(mea) _ 2 2 2xpi(kz cAi w )me , . — Pe(kz Cj±e oj )rn . \ >
Kn\jneQ>) Jnyl'iU)

(2.74)

for body waves where m? < 0 (Edwin and Roberts, 1983). The dash here denotes
the derivative of a Bessel function (e.g. /^(m;a) = (d/dx)Im(x) evaluated at a: =

m;a, etc.).

When the n subscript to the Bessel functions are zero, the mode is symmetric
(i.e., a sausage mode) and when it is equal to one it is asymmetric (a kink mode).
Higher values of n give rise to mode with a more complex radial symmetry and
are known as fluting modes.

Another frequently used model is that of the magnetic slab. This is a veiy similar
model to that of the tube, with magnetic field of infinite extent directed along the
z-axis and equilibrium quantities separated into to regions in which they are
constant. However, in the slab geometry the Cartesian coordinate system is
used and the structuring occurs in the x direction rather than the r direction.
This simplifies the mathematics somewhat but the geometry is not always a
realistic representation of solar structures. In particular, there is no means of
realistically modelling the complexity introduced by twisting the magnetic field,
which forms the topic of the next chapter. Despite its simplicity, the results
obtained by this model bear striking similarities to that of the magnetic tube
and we will draw comparisons between the two models in the discussion that
follows. The dispersion relation for the slab model is

Detailed discussions of this model have been made in Roberts (1981b), Edwin
and Roberts (1982), Spruit (1982).

Returning now to the magnetic tube, in the incompressible limit, m; and me both
become \kz\ so the only supported wave is the slow surface mode. Simplifying

(2.75)
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Figure 2.6: The dispersion relation for the slow surface wave in an incompress¬
ible medium. The left figure illustrates the case in which the Alfven speed for
the external medium is greater than that of the medium inside the tube. The
figure on the right shows the opposite regime. The sausage mode is represented
by a solid line whilst the kink mode is given by the dotted line.

equation (2.73), this mode can be written

kZ (cAe - ^CAi^)w2 = V" •" ' . (2.76)
i1 - £+»)

where </>n = In(a\kz\)K'n(a\kz\)/{I'n(a\kz\)Kn(a\kz\)). A detailed discussion of this
result can be found in Uberoi and Somasunddaram (1979). This wave mode is
illustrated in Figure 2.6 where we plot the phase speed uj/kz against the dimen-
sionless wavenumber kza. We see that for large values of kza both the kink and
sausage modes tend towards the kink speed which is defined as

Ck = fPiCAi + Pecle\ ' (2.77)
V Pi + Pe J

This is the same as the result obtained in the case of an infinite slab model for

which the medium is structured in the ^-direction alone. However, for a narrow
tube (kza -a 0) the behaviour of the kink mode is different. In the slab model the
wave mode tends towards the Alfven speed of the external medium but in the
tube model it tends towards the kink speed. Parker (1979) suggests that this
behaviour can be explained on physical grounds, since the kink mode displaces
less of the surrounding plasma for a tube than it does for a slab. It is this signif¬
icant feature of the kink mode in a magnetic tube which gives rise to the naming
of the kink speed which was first identified by Kruskal and Schwarzschild (1954)
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Figure 2.7: Phase speeds for wave modes of the compressible magnetic flux
tube. The diagram on the left illustrates a the modes present under typical
photospheric conditions. The actual parameters used are CAi = 2csi, cse = l-5csi
and CAe = 0.5csi. The diagram on the right illustrates a typical coronal case. The
parameters used for this are CAi = 2csi, cse = 0.5csi and CAe = 5csi-

in their study of a single magnetic interface. The two dimensionless wavenum-
ber extremes can easily be verified by taking the appropriate limits in the Bessel
functions.

Figure 2.7 illustrates the general compressible results for both photospheric
and coronal conditions. In the photosphere the magnetic field inside the tube
is typically much stronger than that of the external region. The high magnetic
pressure within the tube is balanced by a higher gas pressure in the surround¬
ing environment and therefore the tube typically has a lower sound speed than
that of the external medium. We see that two surface modes can occur, a slow
mode with phase speed close to the tube speed and approaching it in the limit
of zero dimensionless wavenumber, and a fast wave. The fast kink mode tends
towards the kink speed in the slender tube limit. This again is different from
the slab model in which the mode tends towards the tube speed. The slow kink
mode also differs in this limit, with speed becoming the external Alfven speed in
the slab model. Due to the oscillatory nature of the ordinary Bessel equation,
there are infinite number of body mode solutions although only two are shown
in the diagram for simplicity.
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In the corona, the plasma environment is dominated by the magnetic field and
the Alfven speed is thus much higher than the sound speed. Magnetic struc¬
tures such as coronal arcades and loops are generally at a higher temperature
than their surrounding environment and therefore the sound speed is increased
within them. The Alfven speed must therefore be lower than that of the sur¬

rounding plasma to maintain pressure balance. From Figure 2.7 we see that
there are no longer any surface modes present. This is an important point as
it implies that most of the observable oscillations in the corona are channelled
along magnetic flux tubes which act as wave guides.



Chapter 3

Waves in Twisted Magnetic Flux
Tubes

... was rather startled to discover that he had managed to create the
long sought after golden Infinite Improbability generator out of thin air.
It startled him even more whenjust after he was awarded the Galactic
Institute's Prize for Extreme Cleverness he got lynched by a rampag¬

ing mob of respectable physicists who had finally realized that the one

thing they really couldn't stand was a smartass.

— Douglas Adams, The Hitch Hiker's Guide to the Galaxy

3.1 Introduction

With the wealth ofobservational data from recent space missions such as Yohkoh,
SoHO and TRACE, we are made increasingly aware of the complex nature of the
Sun and the importance of its highly structured and stratified atmosphere in
shaping the processes observed. As the resolution and cadence of observations
improve we find that understanding the magnetic structure is essential to our

understanding of the Sun. The magnetic field has many important properties
which mould the way the Sun behaves: it brings with it new forces, the ten¬
sion and pressure forces. An important concept in the study of magnetic fields
is the magnetic flux tube. The Sun exhibits a wide range of shapes, sizes and
strengths of magnetic flux tubes. From the small intense tubes found in the
supergranular network, through sunspots and arches, to huge features such as

40
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Figure 3.1: The contrasting behaviour of the body wave and the surface wave,
as exhibited by the perturbations.

coronal loops and prominences (Bray etal., 1991).

An important aspect in the propagation of energy on the Sun is waves. As de¬
scribed in Chapter 2, oscillations ofmany types have been observed on the Sun
and much work has been done in trying to understand the processes by which
they are created. Of particular interest here are the investigations of waves
in magnetically structured media by Roberts (1981a,b) and Edwin and Roberts
(1982, 1983). They looked at the nature ofwave propagation in structures such
as the magnetic interface, the magnetic slab and the flux tube. Due to the com¬

plexity of the problem, however, their discussion did not include the influence
of magnetic twist. This chapter will consider the influence of magnetic twist on
the modes of a magnetic flux tube.

An important distinction in the classification ofwaves has been that between the
surface and body waves (Roberts, 1981a,b). The surface wave decays away from
any boundary between different plasma properties. By contrast, body waves
oscillate uniformly throughout the medium. In either case, the wave is confined
to the magnetic structure (Figure 3.1). When a region of plasma is surrounded
by regions of differently structured plasmas, waves become trapped within a

cavity (Allan and Wright, 1998). One of the notable facts about waves in an

incompressible medium which has a straight magnetic field embedded is the
absence of body waves, though there are Alfven waves that may propagate along
field lines. However, in the presence of a twisted magnetic field it turns out that
body waves may arise even for an incompressible medium. We demonstrate this
in the present chapter (see also Bennett et al, 1999).

The study of tubes involving a twist in the magnetic field is important. A flux
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tube that begins with straight field lines may have twist introduced by granular
motions in the photosphere (Brown et al., 2001) and below or by vortex motions
local to the flux tube. Erupting prominences commonly give the appearance
of having twisted field lines. In any case, it is inconceivable that every flux
tube on the Sun is entirely twist-free. As we shall see, the introduction of even
a small amount of twist has a noticeable effect on the spectrum of waves the
tube may support. Twisted tubes have been investigated by Dungey and Lough-
head (1954), Goedbloed (1971a,b,c), Goedbloed and Hagenbeuk (1972), Parker
(1974b), Bogdan (1984) and Goossens et al (1995) but these discussions have
generally concentrated on either the stability aspects or the general classifica¬
tion of the MHD spectra of a twisted tube. By contrast, a detailed study of the
specific modes of oscillation of a twisted tube has not been carried out. We begin
such a study here, examining a uniformly twisted tube embedded in an incom¬
pressible medium. Under these assumptions, it proves possible to obtain an

explicit dispersion relation (see also Dungey and Loughhead, 1954) and to ex¬
amine in detail the modes that it reveals together with a study of the associated
motions.

The assumption of incompressibility is convenient for analytical purposes, but
has restrictive implications for any general conclusions about the fully com¬

pressible problem. In the more general case it can be shown that three distinct
subspectra exist, containing the slow, Alfven and fast waves. Within each of
these subspectra, discrete eigenfrequencies may be found. In addition, the slow
and Alfven singularities, lot and loa, give rise to continuous spectra. In the
compressible case, the fast subspectrum is removed from the system since it
corresponds to eigenfrequencies of greater magnitude than that of the sound
frequency which becomes infinite in this limit. The other effect caused by the
incompressible assumption is the merging of the slow continuum with that of
the Alfven wave (the slow wave tube speed becoming the Alfven speed in an

incompressible medium); see Goedbloed and Hagenbeuk (1972) and Section 2.
This collapse in the spectra of the general compressible problem leaves a dis¬
crete spectrum of Sturmian modes below the slow continuum (and accumulat¬
ing at the minimum of the continuum) and a discrete spectrum of anti-Sturmian
modes above the slow continuum (and accumulating at the maximum of the
continuum); Goedbloed and Hagenbeuk (see 1972). In our treatment here we

present the discrete modes in detail for the special case of a uniformly twisted
tube. For a uniformly twisted tube the Alfven frequency is reduced to a constant
and the continuum to a single point.
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Figure 3.2: The eigenfrequencies of a twisted flux tube. Continuous spectra are
marked with shaded regions, occurring for the Alfven and slow waves. The first
diagram illustrates the compressible case in which the two continua are clearly
defined and the regions u>\ and m separate the range of frequencies containing
discrete spectra. The second figure shows the incompressible case in which
the slow subspectrum has merged with the Alfven subspectrum and the fast
subspectrum has been shifted to oo.

Altogether, our assumptions of uniform twist and incompressibility reduce the
complexity of the general spectra of a twisted flux tube but have the virtue of
allowing a specific analytic study of the discrete modes.

3.2 Derivation of the dispersion relation

One of the main reasons that a detailed description of wave modes in a twisted
magnetic flux tube has not previously been carried out is the difficulty in ob¬
taining an analytical dispersion relation. A dispersion relation provides us with
information on all the wave modes permitted for a given configuration and is a

necessary pre-requisite to a detailed analytical study ofwave modes in a system.
As can be seen from the derivation of the dispersion relation for the straight field
case (given in Chapter 2.1) any magnetic structuring in the model introduces
considerable complexity into the governing equations and a solution cannot al¬
ways be found. The introduction of twist brings with it further complexity since
it has an inherent structure related to the particular profile chosen. Twisting the
field also has the effect of bending field lines, causing magnetic tension forces
to be introduced into the problem. These factors, along with the difficulties in¬
volved in working with polar coordinates, make the formulation of the dispersion
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relation for this system a much more involved task. It is therefore convenient to
consider the reduction of the MHD equations for the general case of a twisted
magnetic field.

We begin with the following set of ideal MHD equations. The momentum balance
is written in the form

Dv / r2 \ i

"W = -V(!)+2^)+«(B'V>B' (3'1)
where v is the flow, B is the magnetic field (of magnitude B = |B|), and p and
p are the plasma pressure and density. The field evolves according to the ideal
induction equation,

— = V x (v x B) , (3.2)

with B satisfying the solenoidal initial condition

V • B = 0. (3.3)

The pressure p and density p satisfy

-7W = -ypV • v - v ■ Vp, (3.4)
ot

^ = -pV • v - v • Vp. (3.5)
The temperature of the plasma is considered to be a secondary variable in our

study and so the ideal gas law has not been included in this set of governing
equations. It is a straightforward task to obtain the temperature from the cal¬
culated values for density and pressure, should it be required.

3.2.1 Equilibrium

To model the disturbances we rewrite the field and pressure as the equilibrium
value plus a small perturbation. In Equations (3.1) to (3.5) we replace p, p and
B by

p = Po+P, p = p0 + p, B = B + b. (3.6)
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In equilibrium (i.e. when perturbations b, v,p, p = 0), Equation (3.1) becomes

In a cylindrical coordinate system (r,9,z), the equilibrium pressure po(r) and
magnetic field B = (0, Bg(r), Bz(r)) is assumed to vary purely with radius r, so
the magnetostatic pressure balance becomes

where B = (B^ + B^)1/2 is the strength of the equilibrium field (B = |B|). This
equation provides a constraint to be satisfied by the total pressure gradient in
the radial direction. It plays an important role in restricting the forms that the
magnetic field profile may take. In practise it implies that the radial profile for
the equilibrium pressure is prescribed by the choice of magnetic field or vice-
versa. This equation corresponds with the equilibrium condition (2.15) given in
the previous chapter. The Be term on the right-hand side of (3.8) is a result of
the tension force exerted by the magnetic field when it is bent.

3.2.2 Obtaining the ordinary differential equations

It is convenient to introduce two new variables: the total pressure perturbation
Pt = p + B • b//zo and the Lagrangian position perturbation vector £.

We take r to be the position vector of a fluid element and ro its position vector
in the equilibrium state; then r = ro + £, with the velocity v of the fluid element
being defined to be

Thus, for small (linear order) perturbations about a static equilibrium,

For the sake of simplicity, we make the assumption that disturbances are in¬
compressible (V • v = 0), so

(3.7)

(3.8)

V-£ = 0. (3.11)
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Since the equilibrium field B, density po and pressure po are not functions of
time, we may write down the linearised form of Equations (3.1) to (3.4), in the
form

<92£ 1 1
= -Vpr + — (B-V)b+ — (b-V)B, (3.12)otz Po Po

b = (B • V) £ — (£ • V) B , (3.13)

with

Pt — P + —-B-b. (3.14)
Po

Equations (3.12) and (3.13) combine to give

P0l£ = ~VpT + - (B • V)2 £ - - (B • V) (£ • V) BOtL Po Po

+ — {[(B . V) £] ■ V} B - — {[(£ • V) B] ■ V} B . (3.15)
Po Po

Equation (3.15) can now be written in component form,

^2^ (316)or por po dr \ r J

V£e = -^-— (B-V)£r, (3.17)r o9 por

= (3-18)
oz

with

d
( t x , dte , dig n fo,Q)

Here the operator £> is

V = P0(-±-(B-V)2-^) • (3-2°)\PoPo dt2 J

At this stage it is convenient to study the Fourier components of the system.
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Each variable a(r, 9, z, t) takes the form

a -> Q(r)ei(^+fc^-«0 > (3.21)

where m(= 0, ±1, ±2,...) is the azimuthal order of the mode, kz is its longitudinal
wavenumber, and u is its frequency. Equations (3.16)-(3.19) become

dpr , ,2fBBe 2Be d (Bq\ ^D£,r = -—+1 & —I — J fr , (3.22)dr /^or po ar \ r J

T^ic '^ -2fBBg qq,D^g = l-pT-l 4r, (3.23)
r por

D£z = ikzPT , (3.24)

where

772

fB = -Be + , (3.25)
r

and

D = po(<^2 - w|). (3.26)

This system of equations may be reduced to two first order ordinary differential
equations for £r and pr-

DT~ (r&) = C^r ~ CirpT , (3.27)dr

D^ (pr) = C3£r - Cipr . (3.28)
Here

Cl =-^, (3.29)
Por

C2 = - , (3.30)

^ _ n2 I n ^ dBg 2 fQ QiiCs — D + D — I — I > (3.31)
po dr V r J par2.
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where we have defined the local Alfven frequency u>A(r) as

Ib 1
uA

(poPo)1/2 (poPo)1/2 (™B0 + kzB^ . (3.32)

Equations (3.27) and (3.28) are of the same form as would be obtained by taking
the incompressible limit (7 -» 00) in the Hain-Ltist equations (Hain and Lust,
1958, Goedbloed and Hagenbeuk, 1972, Appert etal., 1974, Goossens, 1991).

The variable £r can be eliminated from equations (3.27) and (3.28) to give to a
second order ordinary differential equation in terms of pr alone:

+ 0. ,3.33,dr2 [ rD dr \ C3 / J dr \ rD dr \ C3 / D2

3.3 The model
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Figure 3.3: A twisted magnetic flux tube surrounded by a uniform magnetic field
Be.
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3.3.1 Uniform twist

As discussed in Chapter 3.2, the introduction of twist into the system brings
with it an inherent radial structure relating to the particular type of twist profile
considered. This generally makes the equations much more difficult to work
with and also introduces singularities through the continual variation of the
Alfven speed. These difficulties can be overcome by a careful choice of the profile
used. Of particular interest is the uniform twist profile (Figure 3.3). This, when
considered for a fluid of constant density, is the only profile for which the Alfven
frequency wa is constant, removing any possible Alfven singularity from the
system. In the uniform twist profile the twisted component of the magnetic
field increases linearly in the radial direction, counteracting the r"1 decrease in
field that is a natural effect of the polar geometry.

We take the equilibrium field to be of the form B = (0, A;r, Bo), so that Be = A\r
and Bz = Bq, for constants A; and B0. Then the coefficients C\, C2 and C3 become

2mfBAj
For

(3.34)

(3.35)

(3.36)

with

(3.37)
F0P0

Since A\, wa and fB are constants, Equation (3.33) reduces to

(3.38)

where

(3.39)

Equation (3.38) is a form of the modified Bessel's equation. This equation is
valid for all frequencies except u = ua- When this frequency is considered,
the equations become degenerate and it is necessary to derive a new relation
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from the governing set of MHD equations. This degenerate case arises since
the operator V used in writing Equations (3.16) to (3.18) becomes zero. The
governing set of equations then reduce to the following

= (mA. + kzB0) & , (3.40)
or hq

2A-
—imp? = i (mA\ + kzBo) rfy , (3.41)

fo

-ikzpT = 0, (3.42)

with

7T" fyfy) - - ikzr£z = 0 . (3.43)Or

From these equations it can clearly be seen that only two solutions exist for
which the total pressure perturbation is zero. One solution is found for the
straight flux tube in which 4; is zero. In this case we need only satisfy the in¬
compressible condition (3.43) and an infinite number of possible solutions exist.
Since the total pressure perturbation is zero and the solution is incompress¬
ible, these correspond to Alfven waves. Another solution is found by setting the
wavenumbers kz, m and the radial perturbation equal to zero. This is the tor¬
sional Allven wave solution. If we specify that the total pressure perturbation
is non-zero, equation (3.42) implies that kz must be zero. Equations (3.40) and
(3.41) can then be combined and the system is reduced to the following two
equations

2 A? f 3 1
im—- \ — (rfy) - im^e \ = 0 , (3.44)

Hq [ dr
r\

— (rfy) - im£e = 0. (3.45)

Clearly these are linearly dependant and so an infinite number of solutions exist.
These correspond to incompressible slow waves.
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3.3.2 Solutions

Inside the tube

Inside the twisted flux tube, where B = B; = (0, A;r, B\), r < a, we have

d2pTi , ldpn fm2 2\ ^

—7-9- H 3 —T + mi )PTi = 0 . r < a, (3.46)arz r dr \rz J

where

2
_ u 2 (■, 4^fwAimf = kz 1 -

M0Pi(w2 - W^j)2

We will consider the case when a;2 and k2 are real. Writing x — mir, so that
d/dr = rriid/dx, Equation (3.46) becomes

d2pTi 1 dpTi (i,rn2\r. fo AT)H 3 1 + —9 )PTi = 0, (3.47)da;2 a; da; \ x2 r

with solutions pn ~ Im{m\r), Km(m\r) in terms of the modified Bessel functions
Im and Km (see Abramowitz and Stegun, 1967). We require that pr\ is finite at
r = 0 and so we must have

PTi(r) = Oi{In(m\r), r < a, (3.48)

where a\ is an arbitrary constant. This is in fact the general solution, but for the
case when m2 is negative it is convenient to write

nf - —m2 > 0 , (3.49)

so that solutions of Equation (3.46) are pr\ ~ Ym(ri\r). The condition that
pn be finite at r = 0 gives the solution

PTi = 13iJm(n\r), r <a, (3.50)

where # is an arbitraxy constant.
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Outside the tube

Outside the tube, in r > a, we suppose that the magnetic field is uniform and
take B = Be = (0,0, Be). Then, in the absence of twist, the expression for me2 re¬
duces to m2 = kz2 and so Equation (3.47) has solutions pre ~ Im(\kz\r), Km(\kz\r).

We require that pre is bounded as r -> oo. Therefore we must have

pTe = aeKm(\kz\r), r>a, (3.51)

where ae is an arbitrary constant.

When either oj or kz are complex, there is the possibility of leaky waves (Cally,
1986) a discussion ofwhich is beyond the scope of our present study.

3.3.3 Boundary conditions

It is necessary to determine how the waves propagate from the inner region of
the tube to the outer region. Some care must be taken here, since the boundary
is not fixed at r = a but is perturbed by the waves moving across it. This fact
is often glossed over when dealing with straight field-line configurations, since
it has no effect on the resulting equations. Once twist is introduced, however,
the magnetic tension force brings extra terms to the problem which are more
sensitive to the exact position at which the matching conditions are derived.

There are two approaches that can be taken when finding conditions for match¬
ing two separate plasma regions across the boundary; one is based on physical
grounds and the other from an entirely mathematical viewpoint. We outline
both approaches here, beginning with the more commonly used method based
on heuristic arguments.

In this approach it is argued that the normal component of the perturbed bound¬
ary £r must remain continuous across the tube boundary r = a. This has to be
true in a collisionally dominated plasma, one of the basic assumptions made
when formulating the equations ofMHD. We also require that the total pressure
(p + Z?2/2/i0) is conserved across the perturbed boundary (r = a + £r).

The total magnetic pressure is defined to be the sum of the gas pressure p and
the magnetic pressure B2 /2po, so our first step is to write the pressure and the
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magnetic field in the form of an equilibrium value plus a small perturbation

P = Po + p, B = B0 + b. (3.52)

Expanding p and B2/2po in Taylor series about r — a gives (to first order)

dpo
p(a + £r) = Po|a + P\a + 6- dr + (3.53)

d2 td2 B0b
Mo

+ 6
d (B2
dr \2/io

+ • (3.54)

Adding these together we obtain the total magnetic pressure of the system ex¬

panded in a Taylor series about the boundary r = a

P +
B2

2/u.q
(<.+{,)= (W +A) r d ( B0+wl. + tt(p° +^ + ... (3.55)

The leading order terms may be eliminated by considering the continuity of total
pressure when the system is in equilibrium

Po +
■qI i inner

2/io.
Po +

g2 " outer
2p0_

(3.56)

On eliminating the equilibrium pressure from (3.55), we finally obtain the two
boundary conditions

inner r> 1 outerMnner = [£ (3.57)

Be ,
PT £r

Hoa

I3Q A

PT £r
Hoa

outer

(3.58)

Alternative approach

In a slightly more rigorous treatment, the two boundary conditions may also
be obtained by considering the form of the equations (3.27) and (3.28). In or¬
der for these to be mathematically correct, the terms which are differentiated
must be functions of a type which is consistent with those terms not involving
a derivative. For example, if we take the derivative of a step function we know
that the other terms in the equation must involve Dirac-delta functions to bal¬
ance the result. Armed with this knowledge, we are able to obtain parameters to
be conserved across the boundary without the use of physical arguments. The
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advantage of such an approach is that it does not rely on our understanding of
the physics governing the situation, which may be flawed.

In this method we begin by gathering together any terms involving derivatives
and combine them to give an equation of the form

£(...) = (.••)• (3.59)
The term to be differentiated may then be thought of as a new variable, the
characteristics of which must be consistent with those of the functions on the

right-hand side. Once these conditions have been established we can then inte¬
grate such an equation over a thin layer crossing the tube boundary, resulting
in an expression of the form

la+e
la—e

ra+e
= / {...)dr. (3.60)

J a—e

There are three cases to consider in this equation. The first two cases are those
in which the integrand consists of continuous functions or step functions. Un¬
der these conditions we know that the integral must tend to zero as e -» 0 and
therefore the quantity [...] on the left-hand side must be continuous across the
boundary. The third possibility is that the integrand consists of delta functions.
In this case the integral will evaluate to a constant as e -» 0 and we obtain a

"jump condition" to be satisfied across the boundary.

Our governing equations are the Hain-Lust equations (3.27) and (3.28). On
substitution of full expressions for the coefficients D, C\, C<2 and C3, we obtain

, 2 2\dKr) 2mfBBe (m2 2 \ tqpo(u) -WA)—— = £r+ [—2+kz I rpT , (3.61)dr por \ rz

p0(uj2 = {pl(u2 - w\)2
1 / 2 2\^Be d f 2 t 2mfsBg f m+Po(w - UA)—— ( — ) - PQ^K~r~2 f "• 2~PT ■ I3-62)UJ A '

i I / O f S'/' 1 9

fxo ar \ r J nor J

We begin by rewriting Equation (3.61) so that it is in the same form as (3.59). On
dividing through by rpo(uj2 - wA) and expanding the derivative of (r£r) we arrive
at the following

2mfsBo
+ 1

_po(u2 - coA)por2 r_
tr+ (3.63)

r po{u - CJA)
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Turning now to the second of the governing equations (3.62), dividing by po(u2
wa) and moving the derivative term from the right-hand side to the left gives

dr (PT) _2B,±(BA(r =
2mfBBg

Ho dr \ r J r p0(io2 - u;^)g0r:
:PT

+ p0(u2 - w\) -
4Bl

(a;2 - u\) por2
ir. (3.64)

A small amount of algebra is required to write the left-hand side of this expres¬
sion in the correct form. This can be accomplished by noting that the second
term can be derived using the following expression

d

dr Mo V r
= - —J-(—Wr) + -(— ) ~ Hr) ■Ho r dr \ r J Ho \ r / dr

(3.65)

Using this in (3.64) yields

d d

Tr(VT)~Tr .Mor
+

r2

Mo r2

'

, d£rZr + r—
dr

+

2mfBBe
po(uj2 - ujjjnor2 pt

p0(w2 - uj2a)
w 4B,2 1

(u2 - u>A) nor2
£r. (3.66)

Combining the first two derivatives on the left-hand side and using the previ¬
ously obtained expression to eliminate the remaining derivative term we finally
arrive at an equation of the required form

d B2e . "
dr

PT Zr =

Hor

2mfB Be m
2 + kz2r2 B2

_po{u2 - uj2a) nor2 po(oJ2 - uj\) Hor3
+ p0(uj2 - u2a) +

2mfB B3e

Pt

4B,2 1

po(u)2 - uj\) Ho7"3 (uj2 - u\) Hor2
Zr- (3.67)

For the purpose of clarity, it is convenient at this point to introduce a new
variable representing the term on the right-hand side of this equation,

B2
^

a = PT ~Zr ■

Mor
(3.68)

Rewriting both of the equations in terms of this new variable we now have the
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two governing equations for this system written in the form of Equation (3.59),

d
( \

(m2 + k2r2) Bq
po{u>2 - u\)hqr3 p0(u2 - u\)p,0r2

2mfBBg
tr

Po(w2 — <^A) +
4mfsBl

+
m2 + k2r2

Po(w2 u2)r2
a.

4u;2 B2

p0(u)2 - u\)fj^r3 (u2 - u2A)p0r2
(m2 + kz2r2) Bq
p0(w2 - u\)nlr4 £r +

2mfBBe (m2 + k2r2) B%
p0(u2 - coA)por2 Po(w2 - u\)por3

a.

(3.69)

(3.70)

All that now remains is to determine the nature of the variables £r and a, yield¬
ing either variables to be conserved or jump conditions. In the model under
consideration the variables Bg, Bz and po behave as step functions across the
boundary r = a. From this we see that all coefficients on the right-hand side of
the two equations above are step functions. For the equations to be mathemati¬
cally consistent, therefore, we require that the variables £r and a are continuous
functions with a discontinuous gradient at the tube boundary. We conclude that
the quantities £r and — (Bg/p,or)£r are conserved as we cross the boundary at
r = a; the same conditions found in the previous section.

It should be noted tlraL Lhe use of step functions across the boundary leads us to
ignore a potential problem with this matching condition. If, instead of changing
discontinuously between the two profiles, we introduce a small layer in which
Bg, Bz and po change smoothly from Api, B[ and p; on one side to 0, Be and pe on
the other, we find that a singularity has been introduced for frequencies lying
in the range min(<VAe,<VAi) < w < max(uAe, wat). In such circumstances a con¬
tinuous spectrum of eigenmodes is introduced which may be investigated either
by a consideration of the initial value problem or by using a series expansion
around the singular point to obtain jump conditions across the singularity. The
analytical treatment of this problem is extremely complex and a solution is un¬

likely to be forthcoming for the model under current consideration. The problem
has been tackled for many other models, however, and it has been found that
two possible cases arise. When a continuum is found, each field line has its
own Alfven mode solution. In this scenario, an initially uniform wave packet will
travel at different speeds for each field line and small length scales develop such
that eventually the ideal MHD assumptions are no longer valid. This process
is known as phase mixing and it demonstrates one of the possible methods by
which wave energy may be used to heat the solar plasma. A second possible



3.3 The model 57

range of solutions within the continuum are those of quasi-modes. It can be
shown that on the principle Riemann sheet, solutions of the linear wave sys¬
tem only occur for purely real or purely imaginary frequencies. However, in the
continuum the singularities represent branch cuts in the complex plane. From
these we may consider solutions on other Riemann sheets which may provide
discrete solutions with complex eigenfrequency. These wave modes remain the
same as those found by the normal mode analysis but become damped within
the continuous spectra (Goedbloed, 1983), a process known as resonant ab¬
sorption. The time scale for this damping depends upon the separation between
the two Alfven speeds, the thickness of the transition layer and the frequency of
the mode concerned. Rather than become involved in a numerical treatment of

this initial value problem, the regions in which continuous spectra occur have
been highlighted in the diagrams that follow. The normal modes in these regions
remain coherent oscillations of the system, but decay in time.

3.3.4 The dispersion relation

Regardless of the method used, we now have two quantities which must remain
continuous across the boundary, enabling us to match the solutions from each
side. Using Equation (3.28) and the first boundary condition (Equation (3.57)),
we may write the following relationship between solutions from either side of the
tube boundary,

£ {a t2 y 1*1.} = If y<*•»-'«} • (3-71i
where the coefficients D, C\ and C3 correspond to those given in Section (3.2.2)
with subscripts i and e used to denote the internal and external regions, respec¬
tively. Explicitly, these are:

D\ = Pi(u2 - , De = pe{u2 - u\e), (3.72)

Cli = -2mfBAi , Cie = 0, (3.73)
Hor

4A2
C3i = Df ii, C3e = Dl. (3.74)

no
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The lack of twist in the external magnetic field implies a null value for the coef¬
ficient Cie, enabling us to simplify the right-hand side of Equation (3.71)

J_/A^!Csil ' dr
+ Cli PTi\a f =

1 dpTe
De dr

(3.75)

A second identity is formulated on application of the remaining boundary con¬
dition (3.58). Writing this out explicitly for the given model gives

I A^a itPTila ~ —— fcr
Mo

= PTe I a ■ (3.76)

In the left-hand side of this expression r is replaced with a since it is evalu¬
ated at the tube boundary. The quantity representing fy evaluated at the inner
tube boundary may be exchanged with its counterpart specified on the outer
boundary since it is continuous. Upon performing this change and substituting
expressions for fy and pr obtained by the rearrangement ofEquations (3.27) and
(3.28) we obtain

PTila
Afa 1 dPTe + PTe I a
Mo As dr

Now dividing (3.75) by (3.77) gives

(3.77)

A
r dpTi
PTi dr

+ aCn
r dpTe

PTe dr
C3i A2

De-\ L
Mo

r dpre
PTe dr

(3.78)

Finally, substituting in the values for the coefficients A. C'i;, 63; and De and the
expression (3.77) forp^ we obtain

1 Al' Urn,a)
2mwAi

Ai
VMoPi

\kz\aK'm(\kz\a)
K-m (| kz\(l)

(iL)2 - wii)2 - 4wAi—2-
MoPi

Pe ( 2 _ 2 \ , Ai \kz\aK'm(\kz\a) '
Pi[ Ae> MoPi Km(\kz\a)

(3.79)

where the dash denotes the derivative of a Bessel function (e.g. I'm(rriia) =

(d/dx)Im(x) evaluated at x = m;a, etc.). We have defined the following quanti¬
ties:

^Ai
y/MoPi

(mAi + kzB\) , (3.80)
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CJAe = ^=, (3-81)yjMOPe

m2 = kz2 fl ^ "a'2 y2 ) . (3.82)V Mopi(w2 -u2Ai)2J

Equation (3.79) is the dispersion relation for waves in an incompressible mag¬
netic flux tube with uniform twist embedded within an untwisted magnetic en¬
vironment. A dispersion relation of this form was first obtained by Dungey and
Loughhead (1954) for the case of no external magnetic field. However, there is a

sign error in their dispersion relation (equivalent to a negative rather than a pos¬
itive sign on the right-hand side denominator of equation 3.79). This appears
to be a typographical error and does not affect the remainder of their paper,
concerned with a discussion of stability; they do not discuss the wave modes.

In the limit of no twist, when Bq = 0, the dispersion relation (3.79) reduces to

_ (. .2 2 \ ^md^zl0) ( 2 , .2 rc> oqi

A dispersion relation of this form was obtained previously by Edwin and Roberts
(1983) who found that surface waves only were able to propagate. We illustrate
this case in Figure 3.4 for the sausage mode m — 0 and later, in Figure 3.11, for
the kink mode m = 1.

3.4 Results

For the diagrams that follow, it is convenient to introduce the following speeds:
CAe(= Be/^ope)1/2) is the AlfVen speed outside the tube, c\z(= B-J (popi)1/2) is the
Alfven speed obtained by using the longitudinal component of the magnetic field
inside the tube, and c\e(= Be(a)/(pop\)1/2) is the Alfven speed determined by the
azimuthal component of the field (taking the value of Bq on the tube boundary).
In addition, we introduce the total Alfven speed CAi and the kink mode speed ck

through

cAi = (c2Aq + cL)1/2 , ck = (plC^ + pscte\ . (3.84)
V Pi + Pe J

Each of our figures is for the case of equal plasma densities and for an external
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CAQ
0 12 3 4

kza

Figure 3.4: Phase velocity of the m = 0 mode in an untwisted flux tube (Bg — 0),
with field strength B twice the field strength of the environment (B = 2Be). The
shaded region corresponds to the slow continuum.

field Be one half the field strength B = (A2a2 + B2)1^2 on the inner boundary:

Pe = Pi and Be = ±(B2e(a) + B2z(a))1/2 = ±{A2a2 + B?)1/2 .

In the absence of twist (see Figure 3.4), there are no body waves in a flux tube
in an incompressible medium. However, soon as twist is introduced body waves
appear. The body wave has a very different behaviour to the surface wave; the
amplitude of the surface wave decays exponentially from the tube boundary to
the centre of the tube, where the body wave's amplitude is oscillatory throughout
the interior of the tube (see Figure 3.1).

The shaded region in these figures indicate the frequency range for which the
modes are damped due to resonant absorption as discussed earlier in this chap¬
ter (see Section 3.3.3). The damping becomes more pronounced as the frequency
moves further into the region. In Figure 3.4, for example, the mode is damped at
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Surface mode

body mode
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Figure 3.5: Phase velocity of the m = 0 modes in a twisted tube with exter¬
nal magnetic field Be = 0.5B, pe = p\ and magnetic twist Be(a) = 0.15;. Note
the change of character, from body to surface wave, at kza = 1.03. The region
0.96ca2 < u>/kz < 1.04ca2 contains an infinite number of body wave harmonics.
Also shown is the envelope separating regions of body and surface waves.
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a much faster rate for short wavelengths than it is for long ones, with the mode
becoming undamped as the wavelength tends to infinity.

As twist is increased, the body modes become more distinct and cover a wider
range of phase speeds. The band of body modes moves with the Alfven phase
velocity which for the m = 0 mode occurs at c\z. Figure 3.6 displays the phase
speed for the sausage mode corresponding to m — 0 with a small amount of
magnetic twist.

The nature of the waves depends on the quantity m\. If we plot the curves

rn'f — 0 we may distinguish between regions where body (rnf < 0) or surface
(mf > 0) waves occur (Figure 3.5). Typically, long wavelength modes display
the characteristics of body waves. This can be seen from Figure 3.5 where the
distribution of the body waves becomes restricted as kza increases, reducing to
the single phase speed ca2 in the limit kza —» oo. A study of the eigenfunctions
corresponding to these solutions shows that the modes are Sturmian for the
harmonics lying below the Alfven speed r\z, so each new harmonic contains
an increasing number of radial nodes. The harmonics lying above the Alfven
speed caz are anti-Sturmian, so each new harmonic here displays a decreasing
number of radial nodes.

A significant new feature of the waves is the behaviour of the fundamental mode.
This mode changes in character, from body to surface mode, at finite kza. The
feature can be understood by considering the spatial characteristics of the wave
in the region of interest. A plot of the eigenfunction, £r, of the mode shows that
as we cross over the point at which it changes its behaviour, the only difference
is that in the body mode region the wave increases up to the tube boundary in a

convergent manner, whilst in the surface region it increases exponentially; see

Figures 3.9 and 3.10. For completeness a plot of px has been made although
this is perhaps not a sensible quantity to consider when studying the behaviour
of waves near the boundary since it is discontinuous there. The fact that the
mode behaves like a body mode for long wavelengths may be seen from the first
figure in which a node occurs at r = 0.95a. When the frequency is such that the
mode can neither be said to be body or surface mode in nature, Figure 3.10(c),
the pressure perturbation is a constant throughout the tube and the radial dis¬
placement £r is linear in r. Studies of the other harmonics reveal that they also
display a dual nature, acting like body waves for long wavelengths but displaying
surface-like attributes for small wavelengths.

Hybrid waves of the form arising in twisted flux tubes have been noted in other
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Figure 3.6: Phase velocity of the m = 0 modes in a twisted tube with external
magnetic field Be = 0.5B, pe = p; and magnetic twist Be(a) — 0.513;. Wave modes
occuring within the shaded region correspond to quasi-mode solutions in the
slow continuum. The hybrid mode changes from body to surface at kza = 3.00.
Harmonics of body waves lie in 0.79caz < w/kz < 1.21caz.
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Figure 3.7: Phase velocity of the m = 0 modes when Be/B, = 0.5 and Be/Bz = 10.
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areas of magnetohydrodynamics; Smith et al. (1997) describes such behaviour
in certain magnetoacoustic waves in current sheets. A change in character in
the behaviour of motions is common in stratified media; p-modes, for example,
are oscillatory within their cavity but evanescent outside it. However, for p-
modes the change in character occurs with depth and so is a function of position
in space, whereas here the change in character is a function of wavenumber,
making the feature distinctive.

Figures 3.7 and 3.8 illustrate the behaviour of the modes as the twist becomes
large. In Figure 3.7 we see that the fundamental mode has switched from the
outermost Sturmian mode to its anti-Sturmian counterpart. This mode picks up
the dual nature displayed by the previous fundamental mode, displaying more
of a surface mode characteristic as the twist is increased. The band of modes

surrounding the Alfven speed c\z becomes narrower and disappears altogether
as the tube becomes infinitely twisted.

We turn now to a consideration of the kink mode, m — 1. Figure 3.11 illustrates
the mode which occurs when the field is untwisted. This agrees with the results
found by Edwin and Roberts (1983) for a magnetic cylinder in an incompressible
plasma. Figure 3.12(a) displays the phase speed uj/kz of the kink mode as
twist is introduced with Be{a) = 0.1A;. It is interesting to note that the phase
velocity of the body waves tends to infinity as kza -> 0, so that waves of arbitrarily
long wavelength propagate with arbitrarily large phase speed. It is of interest
also to consider the group velocity. The group velocity du/dkz along the tube is
appropriate here, and this remains bounded; (Figure 3.12(b)). The velocity has
been calculated numerically by approximating the value as

du

dkz
u2 - co0 (uj/kz)2{kza)2 - (co/kz)0{kza)0
kz2 kzQ (kzQ^) 2 (fc2o) 0

There is also an occurrence of a maximum in the group velocity for the sur¬
face wave. A similar feature may be seen in the work of Roberts et al (1984a),
relating to a minimum in group velocity, or in the work ofWright (1994) that
exhibited a group velocity maximum. In any case, a distinctive wave signature
for impulsively excited disturbances is expected.

Figure 3.13 illustrates the behaviour of the kink modes when the magnetic en¬
vironment has a stronger field than that of the tube. Note that the fundamental
mode tends to infinity for long wavelengths, rather than approaching the kink
speed as before. An entirely different mode approaches the kink speed in the



3.4 Results 67

JAz

'Ad

I I

i;i!iii!!!i|i!!!j!!!!!!!!!!!!!!j

_i

-

-i
surface wave

body wave
-

(a) (b)
. . i . . . .

(C)
. , , , 1 , ,

(d)
1

0 12 3 4

kza
0.0

-0.5

-1.0

-1.5

-0.5

2.0

3.0

-0.5

Ms — 1 .0

-2.0 -2.0

-0.5

-1.0

Figure 3.9: Eigenfunctions for £r of the fundamental sausage mode as it
changes in character from body to surface mode. Figures (a)-(d) correspond
to the wavenumbers given in the top figure with the values: (a) kza = 0.05, (b)
kza — 0.775, (c) kza = 1.5, and (d) kza = 2.225. Here we have taken the tube
parameters to be Be = 0.5B, Bq = 0.1So and pe = pa.
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-0.2

Figure 3.10: Eigenfunctions for pt as it crosses the point at which it changes in
character from body to surface mode. Figures (a)-(d) illustrate eigenfunctions for
the corresponding wavenumbers in Figure 3.9. The jump in pT at r = a appears
as a consequence of the jump in the equilibrium twist across r = a.



3.4 Results 69

t—■—'—1—'—'—'—1—1—■—i—'—'—1—'—1—'—'—1—'—r

surface wave

body wave

y^AQ

0 12 3 4

kza
Figure 3.11: Phase velocity of the m = 1 mode when Be/B\ = 0.5 and the field has
no twist [Be = 0). This is the kink mode as found by Edwin and Roberts (1983)
for the untwisted magnetic cylinder. It corresponds to the quasi-mode identified
by Goedbloed (1975).
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Figure 3.12: The phase and group velocities for the m = 1 modes when Be = 0.5B
and Be (a) = 0.1B[. (a) Phase velocity. Note the band of modes above the Alfven
speed ca2 which have u/kz -> oo as kza -» 0. (b) Group velocity. The group velocity
follows much the same kind of pattern as the phase speeds for the m — 0 case.
Note the occurrence of a maximum in the group velocity.
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Figure 3.13: Phase velocity of the m = 1 modes when Be/B\ = 2 and Bg/Bz = 0.1.
Note the unusual behaviour of the fundamental mode for long wavelengths.

limit of infinite wavelength.

3.5 Expansions

The next step is to consider the behaviour of the twisted tube dispersion rela¬
tion (3.79) in the extremes of small and large kza. We begin by rewriting the
dispersion relation in terms of speeds as opposed to frequencies,

(cph2 - vii) Jrn - 2mVAi—
= — 5 . (3.85)

(Cph2 - tii)2 -Mi % (W - CAe) + ^2^
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We have written

kzaK^(kza)
_ xJ'm{x)

Km(kza) ' Jm Jm(x) '

where

x2 = n2a2 = Al Ad—-k — (kza)2 , (3.86)
(cPh2-4i)2

and cph = u>/kz is the phase speed of the wave; note that UAi = ^A\/kz = (m/kza)cAe+
cp^z, and we have taken kz > 0.

To describe analytically the behaviour of the various waves for large and small
kza, we restrict attention to the sausage (m = 0) modes. Modes with m > 1 are
more difficult to describe in the limit of small kza and will not be discussed here.

3.5.1 Sausage mode: Small values of kza

When m = 0, ^Ai = c\z and (3.79) may be written in the form

(cPh2-cL)Jo | Pi^-~ - (cph2 -cie) +4fl| = (^a)2(cph2-ciJ2-4c|zc|0. (3.87)
Then, as kza -» 0, Equation (3.87) yields

X.Ti(;X.)(cph CAz)

X « ±-

Mx) .

2CAzcq

~^cAz i

(cPh2-cL)'
. / 2 2 \ 2c\zC$ Jl(x) •±(cph CA2)(Cph2_c2j Jo(a;) ~4cA2,

giving

2tt4 ~ ±— • (3-88)
JlW CAz

Equation (3.88) provides a transcendental relation determining x. From (3.86)
we have

(x2 + (kza)2) (cph2 - CaJ2 = 4caz(cA0/caz)2 , (3.89)
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2CA0/CA2
1/2

Cph = CAz 1 ±
(cc2 + (A^a)2)1/2

From (3.88) we see that if cAe/^caz < 1 then x corresponds to the zeros of Jq{x)
(i.e.. x « jotS, where s = 1,2,3,... denotes the sth positive zero of Jo(z)). Similarly,
if CA0/2CA2 1 then x « ji)S, the zeros of J\{x) (see Abramowitz and Stegun,
1967).

For high harmonic numbers s, x » 1, (3.88) may be approximated by

2 cos (x - tt/4) _ ± cAe

where N = 0,1,2, These approximate relationships determine cph for the
m = 0 modes.

The approximation is compared with the full numerical solution in Figure 3.14.
This is the long wave approximation corresponding to Figure 3.5. The approx¬
imation gives an extremely good estimate for wavenumbers less than kza = 0.1.
The two outermost modes of the band diverge from their values for smaller
wavelengths, the fundamental mode in particular deviating far from the large
wavenumber expansion. The rest of the modes in the band, however, give re¬

markably good predictions right out to the point at which the expansion can no

longer be considered valid. This provides an excellent method for estimating the
frequencies of the transcendental band of modes without requiring the solution
of the full dispersion relation. It also confirms the band to be a real phenom¬
ena of the problem and not merely a numerical artifact of the method taken in
solving the dispersion relation.

3.5.2 Sausage mode: Large values of kza

COS (x — 371-/4) CAz

yielding

(3.90)

When kza is large, x2 is negative and we must replace the ordinary Bessel func¬
tion Jq in the dispersion relation (3.85) by its counterpart, the modified Bessel
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Figure 3.14: Phase velocity of the m = 0 modes when Be/B\ = 0.5 and Bg/Bz = 0.1.
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Figure 3.15: Phase velocity of the m = 0 modes when Be = 0.5B, pe = p\ and
Bg(a) = 0.5Bx, determined (a) numerically, from the full dispersion relation, and
(b) analytically from the approximate dispersion relation.
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function Iq. For large x and y, we write:

Xn = xl'0{x) JC0 =
vKo(y)

y = kza.
Io(x) ' iC0(y) '

Assuming that when kza is large, m;a is also large, we have

(3.91)

x = kza ( 1 —

Ac2 r24cAzc6

I Cokza 1 — A2 0

(cph2 - c\z)2 [kza)2

1

(cPh2 - 4J2 (kza)2

which is valid for

/ ^ V^cazQ>
U 2

_ c2 I •I ph cAzl

From (3.85) we have

XQ Pe

1/2

+ o

(3.92)

(kza)3J

(3.93)

(Cph2 - cL) (Cph2 - c\z) + ^(Cph2 - CD = (Cph2 - CZA/C0 Pi

2 \2 4c2aAz
(kza)<

Abramowitz and Stegun (1967, p. 378) give

to5} '

i| K -y (' " icy (X + V) + to^5 (Sl2 + 2XV - ^
jg « -2 I—i \-0 ^ 1

(fcza)2 A:za 2 (kza)2

and so

X0 . 1 2A - 1 1

(kza)3J

(3.94)

(3.95)

(3.96)

(3.97)

/C0
-1 + —+

/cza 2 (kza
+ 0

(kzaf)
(3.98)

1r2 c2
where A = --e

(^h2 - cL)2'

Substituting in (3.94) and dropping terms O gives

1 ^
~ (Cph2 - cie) (Cph2 - cL) + ^(Cph2 - cL) ~ (Cph2 - cL)2 • (3.99)r>' KfZd

-1 +
kza Pi
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Thus

Pe Pe

p\kza Pi
„ 2 ^ 2 , Pe 2 pe 2 c6
ph ~ CA^+ Ae

Pi Ae fc2a

So

Cph
PicL+PecL + (picg - PeC'L) A*

Pi + Pe
Pe

fc2o

which we may write in the form

„ 2 _ 2 , Pe (ck - CAe) + P'A 1cph ~ ck H fc2a

(3.100)

(3.101)

(3.102)
Pi + Pe

which is valid as kza -> oo.

These relations provide useful checks on the numerical for the various modes.

3.6 Stability

Dungey and Loughhead (1954) investigated the stability of the tube and were
able to verify Lundquist's (1951) requirement for instability to occur, namely

2p < a, (3.103)

where 2-irp is the pitch (= BJA) of the magnetic field. The presence of an exter¬
nal magnetic field — not considered by Dungey and Loughhead — introduces a

stabilising effect. This can be seen in Figure 3.17 where we plot the marginal
stability curves (gj2 = 0). In these diagrams the modes found below each curve
are stable whilst the modes above are unstable. In order to facilitate a compari¬
son with Dungey and Loughhead's results we have plotted the graphs using the
same notation and it is the gradients of the lines that are important for stability
concerns.

When uj2 = 0, the dispersion relation Equation (3.79) becomes

o „ A
uXiJm - 2m——=u>Ai

32 = .2 U 202 ' |3-104)
4-^-^ _d_Km-LA
PoPi PoPi PoPi
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Figure 3.16: Phase velocity of the m — 0 modes when Be/B[ — 0.5 and Bq/Bz = 10.
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Figure 3.17: Curves of marginal stability (uj2 = 0), plotting kza as a function of
dimensionless pitch kzp for (a) the special case of zero external (Be = 0) field as
obtained by Dungey and Loughhead (1954), and (b) the case Be — 0.5B illustrat¬
ing the stabilising effect of an external magnetic field. For each of the m = 0,
m = — 1 or m = 1 curves, the region lying below the curve is a stable zone; the
region above is an unstable zone.

where we have written

A
^Ai (m + kzp) , (m;a) = —(nia) = (kza) 1 -

V^oPi

Rearranged, Equation (3.104) gives

(m + kzp)2

[(m + kzp) Jm + 2m] 1 - (kza) 2 (Be/Aa)
21

ICr,
= 4 (m + kzp) - (m + kzp)3 . (3.105)

Now —Km > M for all m, so we may observe that

V
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Then, Equation (3.105) may be written in the form

2m
[ajm + (m;a)2(m + kzp)2] . (3.106)

m + kzp
a = —

Suppose that m2a2 is positive. Then Jm, written in terms of the modified Bessel
function Jm, may be shown to satisfy Jm > \m\ for all m. Then Equation (3.106)
gives

For m > 1 this inequality does not hold, and therefore (m;a)2 must be negative
for these mode numbers. For m — 0, the marginal dispersion relation (3.104)
reduces to the degenerate form

aJo = -(m;a)2(fczp)2 ,

which has only the solution kzp = ±2, so again (m\a)'2 must be negative. For
m < 0, inequality (3.107) gives

1 1
;—r > - •

kzp — \m\ 2

But (m;a)2 > 0 gives the contradictoiy result

1 1
^—r < - •

kzp — | m\ 4

So for the analysis of Equation (3.104) we need only consider (n;a)2 > 0, i.e.

(3.108)

leading to the conditions

(m + kzp)2 < 4,

0 < (m + kzp) <2 or 0 > (m + kzp) > —2,

— kzp <m< 2 — kzp or — kzp > m > —2 — kzp.

Since kzp is always positive, these conditions give m < 2 as the requirement for
marginal stability to occur.



3.6 Stability 81

A computational study of these modes indicates that the most important are
m — ±1. This would appear to be due to the fact that these modes displace the
axis of the tube. The m = 1 is the most unstable of the two since the helical

perturbation formed is in the same sense as the twist. This means that the
perturbation acts to increase the twist in the tube and hence makes the tube
more unstable. The m = -1 mode, on the other hand, acts to unravel the twist.

These arguments show that the analysis need only be carried out on the m = 1
mode. With m = 1, Equation (3.105) reduces to

[(1 + kzp) J\ + 2] [l- {kza)2^Be,^a)2\ =4(1 + kzP) - (1 + kzpfM

with

For small kza and small x,

« - [l + (7 - In2 + In(kza)) (kza)2 + O ((kza)4)] .

Keeping terms up to order 3, we obtain

3 + kzp - kza)2 (4(1 - kzp) - (1 + kzp)) [l + 4>2(kza)2]
3 + kzp - 3(kzp)2 - (kzp)3 , (3.109)

which can be rewritten in the form

kzp (3.110)

In the absence of an external field, Be/Aa = 0, we obtain

kza « 2kzp(l + kzp). (3.111)

When Be/Aa > 1/2, Equation (3.110) is no longer valid and we find that the tube
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is unconditionally stable for small kza and kzp. This can be seen in Figure 3.17(b)
where the line for m = 1 becomes vertical for small values of kzp.

3.7 Concluding Remarks

The behaviour of waves in a magnetic flux tube has previously been studied in
detail only in the absence of twist. In this chapter we have outlined, for the
special case of uniform twist, an extensive analytical investigation. Here, for the
first time, we have demonstrated analytically that a set of discrete eigenmodes
can be identified for the twisted tube. Moreover, these modes have been found to

extend throughout the slow continuum, classifying them as quasi-modes within
this region. The eigenmodes found exhibit new features not present in the un¬
twisted case. The most striking feature is the introduction of an infinite set of
body waves, a feature absent in the straight field case. We have also found that
the mode corresponding to that of the slow surface mode in the straight field
case changes in nature from that of a surface mode to that of a body mode when
twist is introduced. In addition to numerical solutions of the dispersion rela¬
tion, we have been able to obtain various approximate results valid for large and
small dimensionless wavenumber kza. We also extended the study of Dungey
and Loughhead (1954) to show the stabilising effect introduced by the inclusion
of a magnetic field outside the flux tube. We found that the condition for the
onset of stability changes from 2p < a to 2p < afyl - 4(Be/Aa)2 when a straight
magnetic field of strength Be -c Aa is introduced in the region external to the
flux tube. When 2Be > Aa we find that the tube becomes unconditionally stable
for small amounts of twist.

In order to obtain a tractable set of equations we have restricted our analysis
to that of the incompressible plasma limit. In this extreme the fast waves are
eliminated from the system and we also lose the distinction between the AlfVen
continuum and the slow continuum. Whilst such simplifications lead to greater
simplicity in the final analysis, it is important to note that important information
is necessarily lost. It is hoped that this work will serve as a foundation for more
sophisticated models in the future.



Chapter 4

Nonlinear Fast Magnetoacoustic
Modes of a Magnetic Slab

... they had been selected at birth as those who would witness the
answer, but even so they found themselves gasping and squirming like
excitid children.

"And you're ready to give it to us?" urged Loonquawl.
"I am."

"Now?"

"Now," said Deep Thought.

They both licked their dry lips.

'Though I don't think," added Deep Thought, 'That you're going to like
it."

— Douglas Adams, The Hitch Hiker's Guide to the Galaxy

4.1 Introduction

As we have seen throughout this thesis, plasma inhomogeneities have an impor¬
tant effect on magnetohydrodynamic wave propagation. These effects manifest
themselves as wave damping, phase mixing, resonant absorption and may lead
to ducting of waves by structures such as magnetic flux tubes. We have so
far restricted ourselves to the study of small amplitude perturbations in which
the leading order perturbation terms are sufficient in describing the nature of

83
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wave propagation. This simplification discards information which sometimes
proves essential in describing the true properties of the wave. A modification
of the linear behaviour of the wave may come about as a result of large ampli¬
tude perturbations or strong dispersion introduced by plasma inhomogeneities
in the transverse direction. For example, it has been found that the tendency
of wave broadening brought about by dispersive effects may be balanced by a

steepening of the wave due to nonlinear terms causing the propagation of soli-
tons (Roberts and Mangeney, 1982, Roberts, 1985, Merzljakov and Ruderman,
1985, Molotovshchikov and Ruderman, 1987, Roberts, 1987). In the Earth's

magnetosphere nonlinear terms may be important in explaining long period
pulsations (Allan etal., 1991). Nonlinear investigations have also been made ex¬

amining rapid pulsations in the solar corona (Roberts et al, 1984b, Nakariakov
and Oraevsky, 1995), in the generation of waves and shocks through nonlinear
wave interactions (Wentzel, 1977, Oraevsky, 1983, Nakariakov and Oraevsky,
1995, Nakariakov et al, 1997) and in examining wave motion in the solar wind
(Mann, 1995). Nonlinear effects have also been investigated in the heating of
the outer corona by resonant absorption (Ruderman and Goossens, 1993, Rud¬
erman, Hollweg and Goossens, 1997, Ruderman, Goossens and Hollweg, 1997,
Ballai and Erdelyi, 1998, Erdelyi and Ballai, 1999). In this chapter we will
study the effects of wave interactions brought about by the consideration of
weakly nonlinear terms. In this process different wave modes resonate with
each other, modifying their behaviour and sometimes leading to the generation
of other modes.

4.2 Nonlinear wave equations

The model we consider is for zero plasma-/? ideal MHD. This relates the magnetic
field B, plasma velocity U and density p through the governing equations:

+ P(U ■ V)U = —— X ( V X B) ,
Ot Po

— =Vx(UxB), V ■ B = 0, (4.1)

g+V.(,U) = 0.
We consider equation (4.1) in Cartesian coordinates (x, y, z). We assume there
are no variations in the y-direction (d/dy = 0), and we neglect perturbations of By
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and Uy associated with the Alfven wave (see the discussion in Nakariakov et al,
1997, for details). In component form, equation (4.1) with U = (Ux,0,Uz) and
B = (Bx, 0, Bz) are

P
'dUx
dt

+ ux
dUx
dx

dUx
+Uz~

dz

\dUz
dt

+ ux
dUz
dx

Bz (8BX 8BZ
Ho V dz dx J

Bx (dBx 8B
po \ dz dx J '

dJ± = -l{UzBx-uxBz),
~dt=~d~x(UzBx ~ UxBz)'

di + l^+Vz^=°-

(4.2)

(4.3)

(4.4)

(4.5)

(4.6)

Consider small but finite amplitude perturbations about the uniform equilib¬
rium magnetic field Bqz and transversally structured plasma density po(x), ex¬

panding quantities in terms of a small parameter e, taken as a dimensionless
measure of amplitude:

Bx — £bx , Bz — Bq + £bz ,

Ux — £VX , Uz = £VZ, P = po(x) + £p .

(4.7)

(4.8)

The tilde will be omitted subsequently. Retaining only quadratic nonlinear
terms, equations (4.2)-(4.6) may be written in the form

dvx Bq (dbx dbzpo{x)-dt- » VS" ~ l=£ "
dvz

Po^X'~dt = £N'2'
dbx „ dvx
~dt ~df = 3 '

db dvr
^ + Bo^=eNit
dp d ... . . .dvz
■gt+ ^ (M*M+ n(x)^ = ENs,

(4.9)

(4.10)

(4.11)

(4.12)

(4.13)
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where we have gathered quadratically nonlinear terms to the right-hand side of
the equations. The quantities Ni to N5 are as follows:

bz (dbx dbz\ dvx , . ( dvx dvx
N>= ±(■w - &) -■~I'+*—

bx (dbx
N2 = -—(~

Hq \ dz
dbz
dx

dt

dvz
P- dt

dx

dvz
Po(x) ( vx-~ +vz

dz

dvz
dz

N3 = d_
'dz (vzbx ^xbz)

-^4 — (vzbx vxbz) ,

N5 = W (PVZ) ■dx dz

Equations (4.9)-(4.13) may be grouped together to give

d2i
dt2 c\(x)X/2Vx = £ J_dNi B0 fdNz _ dN4

_p0(x) dt poPo{x) \ dz dx

where c\ = Bp/yjpppp(x) is the Alfven speed, and V2 = d2/dx2 + d2/dz

Other perturbations may be given in terms of vx and vz:

,_i dvxbx = BpDt

bz = -BpDt

dz

_i dv.X
dx

+ 0(E) ,

+ 0(e),

P = ~Dt 1 ( j- (po(x)vx) + po(x)^- ) + O(e),
d dv.
dx dz

(4.14)

(4.15)

(4.16)

(4.17)

(4.18)

(4.19)

(4.20)

(4.21)

(4.22)

where Dt 1 is the inverse differential operator associated with time t. Expressions
(4.20)-(4.22) are used in the nonlinear right-hand side of equation (4.19).

In the linear limit (e —> 0), when the amplitudes of the perturbations tend to
zero, equation (4.19) describes linear fast magnetoacoustic waves perturbing
variables vx, bx, bz and p\ there is no field aligned steady flow vz (unless vz is
non-zero at infinity), which is consistent with the driving force, j x B, for a wave
perpendicular to Bq. By contrast, a nonlinear fast magnetoacoustic wave also
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perturbs the plasma in the longitudinal direction,

vz = -ec\(x)Dt 1 ^ Dt 1^- Dt 1V2vx) + 0(e2). (4.23)
The amplitude of vz is proportional to the square of vx, so its generation is a

quadratically nonlinear effect. Since we are interested in the quadratically non¬
linear phenomena, terms containing the value vz can be neglected in expressions
(4.14)-(4.18). Note that, in the degenerate case of a plane wave, d/dx = 0, the
wave does not perturb bz and p, and the fast wave reduces to a linearly polarised
Alfven wave.

Substituting expressions (4.20)-(4.22) to equation (4.19), we finally arrive at the
self-consistent, quadratically nonlinear wave equation describing vx;

9 vx c2a(x)V2vx = e <J -c\(x)dt2

fa

I ' +
V2 ( vrD-

Equation (4.24) describes the weakly nonlinear dynamics of fast magnetoacous-
tic waves and is equivalent to that derived by Nakariakov et al. (1991). Equa¬
tion (4.24) has to be supplemented by boundary and initial conditions. We con¬
sider here the case of rigid wall boundary conditions,

vx(x = —L, z, t) = vx(x — L, z,t) = 0, (4.25)

along with appropriate initial conditions.

4.3 Linear eigenmodes

Our aim is to study the weakly nonlinear resonances produced in a rigid-walled
wave guide. Since we wish to investigate higher order corrections to the first-
order solution, we must determine the exact linear solution. In the simple case

of the rigid-walled wave guide, density is taken to be uniform and does not vary
in the transversal direction. This implies that the Alfven speed is also a constant.

We begin by considering the linear case. Equation (4.24) with e = 0 describes
linear fast magnetoacoustic modes. We take the harmonical dependence on time
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t and the longitudinal coordinate z to be

vx(x, z, t) = exp{iujt — ikzz), (4.26)

where f is a function describing the wave's transversal structure, defined by
the boundary conditions. In a zero /? plasma, the frequency tu and wave number
kz are connected with each other by the fast wave dispersion relation. This will
be derived later in this section. For the harmonical wave, the linear part of
equation (4.24) (the left-hand side) along with the boundary conditions (4.25)
gives us the eigenvalue problem

+ < = 0, tf(-L) = tf(L) = 0, (4.27)

where m2 = w2/ca ~~ can be considered to be the square of a transversal wave
number. Transversal structures of perturbations for other physical values are

expressed through 4\ using (4.20)-(4.22), as

bx = -B0— <S>(x)ei{-ut~k^ , bz = i**°^Lei(ut-k'z'>, p = i—^-e^wt~kzZ^ . (4.28)
uj u) dx oj ax

The solution of Equation (4.27) is
'

A sin(mx) + B cos(mx), m2 > 0 ,
^ K K ' (4.29)

Cenx + De~nx , n2 = -m2 > 0 ,

where A, B, C and D are constants. Application of the boundary conditions
f(-L) = tf(L) = 0 yields

, An sm(m„x), N even,
T = { N V N ' (4.30)

An cos(mNx), N odd,

where mN is given by the relation m = mN = Nn/2L, with A as an integer.
Written out, the dispersion relation is

"2=^(fe2+(f)T (4-3i)
This is illustrated in Figure 4.1. Sausage modes are represented using a solid
line and kink modes with a dotted line.
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Figure 4.1: The dispersion curves of (4.31), with JV G N. The solutions T(a:)
are oscillatory, giving body modes. Sausage modes correspond to N being even;
kink modes are for odd values of N. The diagonal dot-dashed line corresponds
to N = 0 and is not a mode.

4.4 Weakly nonlinear resonances

We now turn to a consideration of the effects introduced by the non-linear res¬
onant interactions between different wave modes. We will consider the more

general case in which density may vaiy in the transversal direction and later
simplify this to consider the specific case of the rigid-walled wave guide in which
density is uniform.

In section 4.2 we derived equation (4.24) for weakly nonlinear waves using the
zero p plasma approximation

rr2 1 d2vx f d \ f dvx ^ f 2

Vv'-^)^r=e\m [J-tedty v"-dt
/"£*))■ <4-321Po(x)cA{x) at J ox CaKx) dx J \ J ox ))

The solution to this equation may be sought in the following general form
OO

Vx = J2^a(x)Aa(ez, £t)ei{-Wat~k^ + sQa(x, ez, £t)ei^at-k"z^ + C.C., (4.33)
Ot= 1

where a is the mode number, 4'a(a:) describes the transverse structure of the
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mode of amplitude Aa(ez,et), Qa is a small nonlinear correction, oja and kza are
the frequency and longitudinal wavenumbers of the mode, and G G denotes the
complex conjugate.

We now consider modes with the following resonance:

k*a ~t" — Wc , kzi(iof) + kzrn(uib) — kzTl(cc'c) , (4.34)

where I, m and n denote mode numbers and the frequencies ua, u>b and uc satisfy
the linear eigenmode problem.

If we substitute (4.33) into (4.32) and group terms of order e, we obtain an

equation in the following form

{.. ,}e9- + {.. .}e9b + {.. .}e9c + {.. .}e~e« + {.. .}e~9b + {.. .}e~9°
= {.. .}e9a+9a + {.. .}e9a+e» + {.. ,}e9a+9c + {.. .}e9a~ea + {.. .}e9a~9b+

{.. .}e9a~9c + {.. .}e-9a~9a + {.. .}e-9a-9" + ... , (4.35)

where we have used the shorthand el^at~kzo'z'> = e9a. We are only interested in
the form of the equation and hence the terms that would appear within the curly
braces in the above equation have been omitted here for the sake of brevity.

Some of the terms on the right-hand side of (4.35) may be re-written using the
resonance condition (4.34), i.e. e9a+9b = e9c, e9c~9b = e9a, etc. Assuming that we
can equate terms that oscillate in phase with each other (i.e. to be resonant) we
can reduce the above to a set of equations of the form:

{L.H.S.} e9a = {R.H.S.} e9a , {L.H.S.} e9b = {R.H.S.} e9», etc. (4.36)

The function on the right-hand side of each of the equations (4.36) may be rep¬
resented as F(U)G(U). It is clear that to obtain a resonance with {.. ,}e9a, for
example, we need only consider the terms 4'cAce9c and i.e.

F(f>cAc)G{%A*b)e9°-eb = F{ycAc)G(%Al)ee« , (4.37)

F(%Al)G(f!cAc)e-db+e< = F{%Al)G<fHcAc)e9' (4.38)
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So our equation will be

V2(^aAa + £Qa)
1 92

C\{x) at2
d

{^a.Aa + eQa)

= £

+

dt

I A*d*b 1

Al^dt
Ac^dt J vHnA

J V2(tycAc)dt
8(«V« JA,^_{m{x)%)it
/dAc-^(po(x)yc)dt

p0(x)c|(a:) 9t
1 d(M6*)

po(®)c^(a:) dt
, 9*b* , 9T
• O / \ ^ I

c^(x) 9a; c^(a;) 9a; _

+V2 A>rA, / 9TJAt-^-dt + nA*bdx /"•SHI

(4.39)

To lowest order, e°, we recover the linear equation

*" +
Ca(®)

- k/a Ta = 0, (4.40)

where a dash denotes the derivative with respect to x. This equation, when
supplemented with boundary conditions (for example, the requirement that the
function T tend to zero at an infinite distance from a slab boundary), represents
an eigenproblem, the solutions of which are eigenfunctions. Collecting terms of
order e, we obtain

Qa + c\{x) -k/a Qa = Fa(Aa,A*b,Ac,...),

where Fa is given by

(4.41)

Fa = -$jr+ 2ikza^a~^F + AcA*b \ i(Uc~ci(x) dz
K (K kzln)
10JC -lLJb

+
K m-kz^c) iuJc*c (po(x)%Y
-lU)b Ux>r Pq(x)c\(x) -iub

-iub% (po(^)^c)' . *cn', n%
I o / \ I

po(x)c\(x) iujc c\(x) c\{x)_
+ Mll +MI

-lL0b IU,

- (kz2c - 2kzckzb + kz\) 1 *c**b
-iu>b

+
\J>* \If'* b c

iUc
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9Aa kza 9Aa
~r ^ a

c\(x) dt ua a dz
+ iAcA*b\^-y'c in"-kzl*t)

Ua ,y„ _ , 2^ \ , Vi(po(x)Vcy
LObU>c b c Zc 0Jb po(x)c2A(x) ujc po(x)c2a(x)

(nnr
+ -yta (nn'+no + (*c^rc\(x)

(-V uc

(Jb LOr

2 W
Za I ■ ,,Ub

vc*h

The condition for Qa to be non-secular is the orthogonality of the right-hand side
of equation (4.41), to the eigenfunction solution of the eigenproblem (4.40),

/ TaTadx = 0. (4.42)

This yields an equation for the amplitude of the mode Aa,

dAa/
A>2 3A kTq Hx a 4- —

c\(x) dt i0a

_ AcA*b r Ug
2ujg (ujbuic

h 2KZ b I A>aA>tndx + kz\ J Ta<
- J va(nn"+n'Od* +o ^f^-n'
- — f tfa^dxl + — f *a(n<)"dxUc J J Wc J

Trdx

'^rdx
(4.43)

- / Ta«Tc)"dx -
ub J

+
ojh r va*i(t
Uc J Po(x

(po(x)vey dx +

ojc r ^MMx]nY_
Ub J pq(x)c2a{x)

J A>a (Tc< + %%)
dx

dx
p0(x)c2A(x) ^ J c\(x)

Ve consider solutions with purely real transversal structure T(x), so T;* =

hi equation for Ab may be obtained simply by exchanging the indices a and b in
equations (4.42) and (4.43).

?o obtain an equation for Ac we must look for the following terms on the right-
land side of equation (4.35):

F(A>aAa)G(A>bAb)ee«+e», F(A>bAb)G(A>aAa)ee»+d" .

Then our governing equation for Qc (to order e) is

(4.44)

Qc +
ta(x)

kZc ) Qc — Fc(Aa, Ab} Ac,...), (4.45)
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with Fc given by

TP 9" 9AcFc = 2 iUc +
c\(x) dt uc

^ZC r

c~d7
MP K'-^6)

Wa^a (/90(^)^6)'
Ub

Vl/ VjP
p0(x)c\(x) ub

+

Wa Ub

^6^6 (po(^)^a)'
Po(®)c^(®)

(4.46)

c\(x) c\(x)_
+ ,M I

a;„
*4 ("^1

+
W„

The orthogonality condition then yields

L(z)
kzc [ V2Cdx
Uc j

AaAb f uc

*2UQ {uaub

dAc
dz

vza

J tc (« + ^;')dx
— / ^¥6¥cdx
^6 J

- [•Jb J

J ttatf^cdx - kz\ J T^b^cdx
— [ «atf^cdx
Ua J

H
^6

H
a;,

"dx + uc

Ub f VbVc(po(x)VayIf

— [ tfc«tf6)"dxJ

Wa f
Ub J

f

(4.47)

4>a4'c(p0(x)4'b)/
Po(®)c^(®)

4^(4^ + 4^)
pQ{x)c2A(x) "" ' J c\(x)

dx +

dx

dx

There is a degenerate case when resonant conditions for equation (4.34) are
fulfilled by the two eigenmodes, u\ and w2. In this case equation (4.34) reduces
to the resonance condition

kZ2 — 2kzi, U2 — 2ui + A , (4.48)

where A is some small mismatch parameter for modes where the resonance is
not exact. We look for solutions of equation (4.47) in the form

= 4q ^Aiei^Ult~kzlZ"> + J4*e_i(Wlt_fe*lZ)j
+ 4*2 (A2ei(wat-fc*az) + A^e-^-^22^ + eQ .

(4.49)

For terms in the form {...} el(Ult kzlZ"> on the left-hand side we get a resonance
on the right-hand side due to terms of the forms:

F(^1Al)G(^2A2)ei^2-UJl)t-i^kz2-kzi)z = F(^1A*l)G(^2A2)ei^lt~kzlz)eiAt (4.50)

F(^2A2)G(^lAl)ei^2''JJl)t-^kz2-kz^z = F(^2A2)G(^iA*l)ei^lt-kz^eiAt. (4.51)



4.4 Weakly nonlinear resonances 94

Then we obtain

Qi +
oo T

c\(x)
k2 ) Qi F1(A1,A*1,A2,...),

with F\ given by

dAi
F± — 2ico\

_c\(x) dt oo\

kzl dA\
+

le
iAt

A2A1 s ~(ooi + A)

dz

(*£ - kzl*2)
+

+
Po(x)c\{x)

+ ^^2
c\(x)

CO2
+

00 1 U>2 002

0>2^2 (Po(^)^l)'
CO 1

pQ(x)c\{x) CO 1

+ _ k 2 1% _ ^1^2
\ C02 COi J Zl \ 002 OOl

The orthogonality condition then gives

J dAx , k-dx ———h
c\{x) dt

kzl f t2 1 <9^1—^ / ^?dx—-
COi J dz

CO1UO2
kz\ T)V2dx

+kz 2

+ kz\

J ^i^2^ldx - J ^l(^i^2 + ^'l^2)dx
— [ ^i^2^idx - — f ^l^dx
01 J 002 J

— f ^1(^i«2)"dx + — f ^i(^'2^i)"dx
00\ J 002 J

*?(po(s)*2)'(wi + A)
wi

002 / po(x)<?Ax)

+
002 k
OOl J

^1^2(/90(®)^l)' dx +j % + ^1^2^]
c\{x)Po{x)c\{x) J oA

For A2 we need terms on the right-hand side in the form

dx

i(uj2t—kz2z)e—iAt

(4.52)

(4.53)

(4.54)

(4.55)
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This gives

F2 = 2iuj2
^2 dA2 kzl dA2

H V2
_c\(x) dt C02

te

iu\^\

-(u2 - A)

(po(^)^l)'

dz

(t'/ - kz\<a 1)
ZCJx

+
p0(z)4(x) A>x ' c^(x)

and we obtain an equation for A2,

iuj 1

+

(4.56)

fx^'xl /^x^'x
Uq

U 2
Kz2

^x^x
Wx

*1 .dx^+fea
c2a(x) dt /w2

„—iAt
= Aj-

T^dx

<V2

2W2

d42

- A

+J ^'x^x
wi

^dx

-fczx /w^dx
- — f 4'14,,14'2dx

wi J
(4.57)

+ J 4r2(4,'x4,x)"dx - (w2 - A) J
^2^i(po(x)^i)'

^^x^x
ca(x)

dx

/ po(x)c^(ar)
-dx

This equation along with equation (4.54) represents the reduced set of mag-
netohydrodynamic equations for a zero (3 plasma describing weakly nonlinear
resonant interactions between two wave modes. They may be written in the
simplified form

<T4x dA\
-jX+'B-fe =»iM.
d_M
dt

+ v,92"
dA2
dz

= C2A1 •

(4.58)

(4.59)

These two equations describe the evolution of two resonantly interacting wave
modes. The group velocities, v91 and v92, and the parameters, a\ and cr2 are
independent of t and z, so only the slowly varying wave amplitudes, Ai and 42,
evolve. The two terms on the right-hand sides represent coupling between the
equations. For the case when Ai is zero, both right-hand sides will also be zero
and the two equations become decoupled. In this situation, the evolution of the
second wave amplitude, A2, has no effect on the first, A\. On the other hand,
if A\ is non-zero and the second wave is initially absent from the system then
it will be generated through the term on the right-hand side of equation (4.59).
When A2 grows sufficiently large, itwill then have a back reaction on Ai through
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the term on the right-hand side of equation (4.58).

In the equations (4.58)-(4.59) presented above we have introduced the two group
velocities, vai and v92, and the two coefficients <t\ and a2. These are defined as
follows

Kz 1 2
V91 = —CA :

U)1

kz2 2
V92 — CA

W2

c\elAt J (wi + A) r 2
CTl =

2u2ho i W1W2

As
_ (tvi + A)

wi c\
2

+ ^Z2-^12 ~~ -^13] + ^zl

—hi H—~fi2 + hi + h2
W2 Wl

I12
_ hi

(Jj\ 0J2
+
/l4
W2

„2 = J A + /22] _ iM,21 h*ZOJ1I20 (wi J LO1 UJ1

The various integrals terms are given by:

nZL,

Iw = / *?dx ,J 0

nlL

I12 = / 4'i4'24'idx ,Jo

rlL

iu = / ,Jo

111

ho *!dx,= /Jo
p2L

I22 — / ^^i^i'dx,Jo

r2L

= / tff^dx ,Jo

/»2L

/l3= / + ^1^2)dx ,Jo

r2L

Jig = / ^l(^i^2)"dx ,Jo

p2L
hi = / ^l^^dx ,Jo

p2L
J23 = / .Jo

(4.60)

(4.61)

(4.62)

(4.63)

(4.64)

(4.65)

(4.66)

(4.67)

These integral terms are introduced by the application of the orthogonality con¬
dition (4.42).
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4.4.1 Expression for group velocity

97

We give here a proof of the equation

4-2dxhi /\
^ J

r~J CA

2

dx
A

(4.68)

where vg is the group velocity, over a general domain x\ to 22 (where 22 > 21).
The proof is in two stages. First we prove that w2 is stable to small variations
in T and then differentiate it with respect to kz. We start with the governing
equation for T, taking the leading order terms from equation (4.32)

..2

#[*] =-5-*, (4.69)
CA

where the operator H = (kz2 — jjjz)- If we pre-multiply by T and integrate over
the domain, we can rearrange to get

2 J
UJ =

rx 2

Jx1
—. (4.70)

Jx 1
7Tdx

XI CA

The task now is to show that this is a stationary expression for w2 with respect
to small variations in 4'(2). Suppose a small variation in T, from 4> to 4> + <54/,
yields a corresponding change inw2, from uj2 to uj2 + Sco2.
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We may write:

rx2 PX2

/ (V + 8V)H[<i> + 5V]dx / qH[V]d:
JXI J X1<5w2 ^ -^l

rx 2

«/ Xl

(tf2 + 2W') dx L
X2

:xdx
xi ''A

rx2

/ + 5VH[5V])dx
J Xl

rx2 ^2
/ ^~dxJxi LA

fx2 2
/ tfif^Jdx +
JXl

2 fX2 ^<5^dx
1 + 1

r2 ^dxJxi 4

/X2 tfff[tf]dx r*2

1x7 fdx L v&J^dx

J
rx2 xp2

7Fdx
X! °A

'

2/X2Wdx"
/,? fdx

(4.71)

rx2 rx2

/ [>f] + [<^])dx - 2w2 / ^J^dx
«/Xl «/Xl

rx2 ^,2
/ C2"'J xi t-A

dx

Next we require that H is self-adjoint. This will be true provided T is chosen
such that both 4 and /dx vanish at the boundaries x = £1,2:2 as shown by

/■X;

JX\
(^ifT^al-^^^iDdx

rx2

= / (A:z24'i^2-^i4',2'-A:z24'i4'2 + 4'i/4'2)dx
«/ Xl

rx2 rx2

= + / *i*2dx + - / ^i^2dx«/Xl ./XI

(4.72)

= 0.

Hence 4,ii7[4,2] = [^h]. and thus we obtain
rx2

2/ sv(H[v] -w24')dx
J X-[6u>*

L
x2 ^,2

72
xi °A

(4.73)
dx
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Now, since (4.70) is stationary for small variations in ^(x), we may differentiate
it with respect to kz whilst keeping ^(x) fixed

da;2
_ d

dkz dkz

fX2
/ (kz2<Z>2 -W")dx
JX\

fX2 vjf2
Jxx c\

dx

(4.74)

Thus,

2u>— = 2k,

rx2

J x-\

dx

/J X
x2 q,2

dx
XI

(4.75)

yielding

Vn =

h f
U J 4,2dx

/ dx

(4.76)

which concludes the proof.

The general result (4.76) can easily be confirmed for the rigid-wall wave guide
using the dispersion relation (4.31). We have

U2
, 2 jV27T2

2 k* ~ 4L2 ■

Thus,

(4.77)

2 .22 ,(NTVCA\w = k' C* + (-2T) •
(4.78)

and so

du>

2uJdkz ~ 2kz°A'
doo kz o

dkz =

(4.79)

(4.80)
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4.5 Rigid-walled waveguide.

Now consider waves in a rigid-walled waveguide (vx = 0 at the boundary). The
density is constant throughout the region and there is a uniform magnetic field
in the z-direction. The AlfVen speed ca and the density po are no longer functions
of x inside the waveguide. To linear order, equation (4.32) reduces to an equation
in terms of $(x) alone, giving the transverse structure of the waves

*a+(4-fc*a)*a=0. (4-81)

This is supplemented by the boundary conditions 4,a(—L) = \l/a(L) = 0. The
solutions of (4.81) with these boundary conditions are:

\I>jv = sin(mox), vuqL = N-k for sausage modes,
/ , r 7T „r „. - , . , (4.82)

N = cos(mox), moL = —(2N + l) for kink modes,
£

where

u
2 \ 1/2

TTLq — I 2 "tz
K

kz2 . (4.83)

It is convenient to move the slab boundaries to x = 0,2L. Then

N-K
= sin(m0x), m0L — -y , (4.84)

with sausage modes when N is even and kink modes when N is odd.

Using the methods outlined previously, we can now use these equations for the
transverse structure of the waves to investigate the nonlinear resonant interac¬
tion of wave modes using the equations (4.58)-(4.59) relating the wave ampli¬
tudes for the case when kz2 = 2kz\ and lu2 = 2aq + A. In the specific case of
the rigid-walled waveguide, it will be shown that A = 0 and the wave modes are

exactly resonant.

4.5.1 Two wave resonances

We now investigate the relationship between the size of the resonant frequency
correction term, A, and the mode numbers using the following relationships:

kz2 — 2kz\, u>2 — 2wi + A , (4.85)
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combined with the dispersion relation

( / \ 2i l/2
w« = Ukzack)2 + | , (4-86)

where Na is the mode number of ua, kza. Specifically,

"2 = j(fe2CA)2 + |

|(2fe,cfl)2 +(4+^-4) }
(4.87)

= |(2Wl)2-(4N*-N%) (^)2}
1/2

=2"1{l-(4^-^)(^)2}/ .
when N2 = 2Ni, A = 0 implying that 002 = 2uq.

When uji » 7tca/4l,

2 2

w2 ~ 2Wl - (4iV2 - . (4.88)

Now we evaluate the coefficients. When N2 / 2A] equations (4.61) and (4.62)
show that <ti = (72 = 0 and equations (4.58) and (4.59) reduce to

8£L + blc26A1 =at uj1 dz

^ +—4^=0. (4.90)at 0J2 oz

Hence, the equations relating the amplitudes of the two wave modes are decou¬
pled and no resonant excitation of either wave mode occurs. When N2 = 2Aj , on
the other hand, we find that A = 0 and there is an exact resonance between the
two wave modes. For the parameters governing the coupling between the two
equations (4.58)-(4.59) which describe the evolution of the wave amplitudes, we
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obtain

CA (i 237rAr 371"3 at3
n - + 16L2

c2
64J£, (' 1 2ttA1', /;22L2 + r!7r3A'f) (4.911

3TJV! (CA^[4^+,^2] 164b \ijOIL

and

C"2 = (127xNikzlL1 + 37r3TV3)

[4A;,2L2 + tt21V2]377^1 / CA X 2
(4.92)

^ U/U2r2 + 7r2 /v,2l .

64b \oj\L

But

and so we obtain the simple expressions

'Xht — ^7T
, <x2 = -fTV,. (4.94)lob 4b

These two parameters determine the way in which the amplitudes of two reso¬
nant wave modes are coupled, the rate at which the amplitudes will change and
the spatial scales over which this will occur.

4.6 Numerical investigation

Using the results from the previous section we can make some predictions on
the behaviour ofwave modes when resonant excitation ofwave modes occurs.

To carry out this numerical investigation, a Lagrangian scheme is used (see
Craig and Sneyd, 1986, 1990, Longbottom et al., 1998, Arber et al., 1999). This
method is ideally suited to the problem at hand since it is exactly ideal unlike
other schemes which always introduce spurious, numerically generated viscos¬
ity. The Lagrangian method ensures that the frozen in flux theorem is always
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Figure 4.2: Surface plot of the numerical simulation of a driven fast magnetoa-
coustic wave mode. The wave is driven by velocity perturbations at the lower
boundary (z = 0). The ^-coordinate is normalised with respect to the width of
the slab. Nonlinear effects are already apparent in the asymmetry of the wave.

time=2.9

Figure 4.3: Power spectra for the propagating wave after two Alfven times. Only
the fundamental mode is driven, higher harmonics are the result of resonant
excitation.
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l2r

10

Figure 4.4: Evolution of the power spectra for the driven fast wave as a function
of time. The largest set of peaks represent those of the fundamental mode, the
other sets are higher harmonics.

satisfied due to the fact that the numerical grid moves with the fluid and the
magnetic field moves with the grid. It also ensures that entropy is always con¬
served to machine precision. Analytical expressions are used for the gradients
of all the fundamental plasma parameters. This reduces errors introduced by
the process of calculating them numerically and effectively increases the reso¬
lution of the scheme. Position and velocity are the only parameters used in the
evolution of the scheme. This eases the specification of the rigid-walled bound¬
ary conditions since the position and velocity of the boundaries can be specified
and do not need to be calculated using symmetry conditions. It also greatly
simplifies the specification of the wave driving condition at the lower boundary.

The fundamental wave mode is generated by driving vx at one end of the com¬

putational domain with a frequency given by the linearly derived dispersion re¬
lation, equation (4.31). The wave is driven from the lower boundary and as it
propagates up in the z-direction, its amplitude profile along the line z = 2 is
recorded over time. This is done in order to eliminate any spurious numerical
effects introduced by being too close to the boundary and to allow the wave time
to establish itself as a normal mode of the system. Figure 4.2 shows the ampli¬
tude of vx throughout the computational domain at time t — 0.7 where time has
been normalised with respect to the time taken for an Alfven wave to traverse
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Figure 4.5: Evolution of the fundamental mode amplitude over time. The am¬
plitude of the mode is modulated over a timescale of approximately three times
that of the Alfven period.

the width of the slab. The asymmetry in the wave is due to the fact that by this
time the wave no longer consists of just the fundamental mode but also contains
resonantly generated harmonics.

The presence ofwave modes and their relative amplitudes can be determined by
performing a Fourier transform on one of these curves. Figure 4.3 illustrates the
power spectra obtained from a Fourier transform of the wave profile at time t =
2.5. Note that only the fundamental mode is driven in the numerical simulation
so the harmonics shown for kz = 2,3 and 4 are all generated as a result of
nonlinear resonant interactions. This Fourier transformation can be performed
on each of the profiles recorded to build up a picture of the way in which the
relative amplitudes of the different wave harmonics change over time. This is
illustrated in Figure 4.4 in which a series of power spectra, such as that shown
in Figure 4.3, are plotted for t = 0 — 9.

We can now take cuts along the time axis for given values of kz to see how
the amplitude of each wave harmonic evolves over time. Figure 4.5 illustrates
the case for the fundamental mode (N = 1). In this figure we can clearly see
that the wave has a slowly varying modulation of about three times the period

N= 1
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of the AlfVen wave. This may be connected with the modulational instability
investigated by Nakariakov et al. (1997).

For a rigid walled waveguide in a zero (3 plasma we have the following differential
equations relating the amplitudes of two resonant wave modes

d-^+V'"-t=^LN^' ,4'95)

^r+»4r = ir^' (4-96)
where the mode numbers of the two resonant modes satisfies the condition that

N2 = 2N[. If A\ is initially zero then the right-hand side of equation (4.96) is also
zero and there is no mechanism for coupling the two equations. This means that
driving a higher harmonic will not resonantly generate a lower harmonic in this
weakly nonlinear formulation. However, if we make the simplifying assertion
that A'x is initially uniform in z then we can write down a simple expression for
the initial growth rate of a resonantly generated wave

Q-rr
A2 = -—N1A\t. (4.97)AL

Using the method outlined above, this expression may be verified using the nu¬
merical scheme. In Figure 4.6 we show the development of the first harmonic to
the fast wave in a rigid walled waveguide. This wave mode is absent from the ini¬
tial wave so the diagram illustrates the onset of a resonantly excited harmonic.
We have over-plotted the analytically predicted initial growth rate derived above.
This prediction, which appears as a solid diagonal line on the figure, appears
to be a good approximation to the initial state of evolution as observed from the
numerically generated results.

4.7 Solution of the boundary value problem

In this section, we show that an analytical expression is possible for the bound¬
ary value problem of a driven fast wave in a rigid walled waveguide. This can be
used to verify the results given by numerical methods when the wave amplitude
is small.
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Figure 4.6: Evolution of the first harmonic mode amplitude over time. The solid
line shows the analytically predicted initial growth rate.

We wish to solve the equation

d2vx 2 fd2vx d2vx\

subject to the boundary conditions

vx(—L, z,t) = vx(L, z, t) = 0 and vx(x, z = 0,t) = VoX(x)T(t), (4.99)

supplemented by the imposed physical conditions that vx remains finite asz->
oo and that all waves travel away from the source at z — 0. We start by assuming
that the solution is separable and then we Fourier transpose in time to obtain

vx = G(u)X(x)Z(z), (4.100)

where

i r°°
G(u) = —f= / T(t)e~lU}tdt. (4.101)

v J— oo

Substituting the separable expression (4.100) into the wave equation (4.98) and
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rearranging we get the following expression in terms of X and Z,

ld2X+^ = .ifl. (4.102)
X dx2 c\ Z dz2

Now the left-hand side of this equation is dependent on x alone and similarly the
right-hand side on z alone, so each must be equal to some constant k2. Thus we
obtain the two ordinary differential equations

d2X (u
dx2 ' V c\

,2
+ ( —s— k \ X = 0, (4.103)

~ + k2Z = 0. (4.104)

The first of these ordinary differential equations we have already solved and
we can immediately write down the solution, given the boundary conditions in
equation (4.99):

X(x) = An |sin (N-z) sin(mNx) + sin ((21V + 1)^ cos(m;vx)| , (4.105)
where mN — (uj2/C\ — /c2)1/2 is supplemented by the condition mN = Ntt/2L.

The general solution to equation (4.104) may be written

, AeKZ + Be~KZ , k,2 > 0 ,

Z(z)={ (4.106)
Ccilz + De~^z , y2 = -k2 > 0 ,

where we take k and 7 to be the principle square root of k2 and -y2 respectively.
The evanescent wave condition implies that 4 = 0 for non-trivial X and G. The
outgoing wave condition implies that C — 0. We may now write

f e~KZ , k2 > 0,
Z(z) = { (4.107)

ye-*2 , 72 = —k2 > 0,
where the arbitrary constants have been absorbed into those for X. Using the
relationship between k and mN we may now write the general solution to (4.98)
as follows

nit /~i
1 r~^itUA

(x, z, t) = -= J2 / " G(uj)X(x)e™t-«zdoj+V27T n=q [7-00
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r°° r%tCA I
/ G(u)X(x)eiwt-«zduj+ G{u)X(x)etU}t~^zduj } . (4.108)
J%fCA J~i£Ca J

Notice that G(—u>) = [G(w)]*. With a little algebra, we may rearrange (4.108) into
the form

vx(x,z,t) = Jl f^Rej [ G(oV
N= 1

J 2d G(uj)X(x)eiljt-ilzdw I . (4.109)

ou)X(x)etut~K'du+
Nn /~i

All that remains now is to specify our driver, i.e.

vx(x,0,t) = V0X(x)T(t), (4.110)

where

OO

X(x) = J2 X(x) ■ (4.111)
N= 1

For the time dependent part we take

T(t) = H(t) sin(a>rft), (4.112)

where H(t) is the Heaviside function. Formally, this can be written as

T(t) = lim |-[1 + tanh(t/^o)] sin(wdt)l . (4.113)to—^0 [ 2 J

The Fourier transform yields (after some algebra)

G(u) =^
J tanh(t/to)[sin((w(i + cu)t) + sin((a>d — w)t)]dt^ . (4.114)

Now, according Gradshteyn and Ryzhik (1980, p. 504),

f°° TV 1
/ tanh(at) sm(bt)dt = —rr • (4.115)Jo 2asinh(f)
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And with this information our transform can be written

(4.116)

Evaluating the limit gives

G(oj) = -j== jz[<5(a; + ujd) - S(u - wd)] + 4Ud | (4.117)

To summarise, we have used a method of Fourier transformation to establish
an analytical solution, equation (4.109) together with equation (4.117), to the
boundary value problem specified by equations (4.98)-(4.99) and the time de¬
pendent component of the driver function equation (4.112).

4.8 Conclusion

In this chapter we have outlined a technique for analysing the weakly nonlinear
resonant interactions between the wave modes of a transversely structured zero

/3 plasma. We then turned our attention to the specific case of a rigid-walled
waveguide. From this we were able to draw conclusions about resonantly gen¬
erated wave modes in the nonlinear regime and made a prediction of the initial
growth rate for such a wave. We outlined a method for the numerical investi¬
gation of the weakly nonlinear resonances between wave modes and employed
this method in the verification of our previously derived growth rate prediction.
Finally, we presented an analytical solution to the boundary value problem of
the rigid-walled waveguide for a zero (3 plasma in the linear regime.



Chapter 5

Conclusion

"We have to have something that sounds good," said Benjy.

"Something that sounds good?" exclaimed Arthur. "An Ultimate Ques¬
tion that sounds good? From a couple ofmice?"

The mice bristled.

"Well, I mean, yes idealism, yes the dignity ofpure research, yes the
pursuit of truth in all its forms, but there comes a point I'm afraid where
you begin to suspect that if there's any real truth, it's that the entire
multi-dimensional infinity of the Universe is almost certainly being run

by a bunch ofmaniacs. And if it comes to a choice between spending
yet another ten million years finding that out, and on the other hand
just taking the money and running, then I for one could do with the
exercise," said Frankie.

— Douglas Adams, The Hitch Hiker's Guide to the Galaxy

5.1 Summary

Chapter 3

The behaviour of waves in a magnetic flux tube has previously been studied in
detail only in the absence of twist. In this chapter we have outlined, for the spe¬
cial case of uniform twist, an extensive analytical investigation. We have derived
a fully analytical dispersion relation in terms ofgeneralised Bessel functions and
performed a detailed study of the results to be gained from this representation.

Ill
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We find that waves in a twisted tube exhibit new features not present in the
untwisted case. The most striking feature is the introduction of an infinite set
of body waves, a feature absent in the straight field case. It is possible that this
could provide a unique signature in observable wave frequencies. The width of
this band ofwave modes is found to be dependent on the amount of twist within
the tube and could provide a useful means by which twist could be measured
indirectly. In addition to numerical solutions of the dispersion relation, we have
been able to obtain various approximate results valid for large and small dimen-
sionless wavenumber kza. These are particularly useful when considering the
closely packed band ofwave modes since these are difficult to compute numer¬

ically. It also provides verification to the validity of the numerically calculated
dispersion diagrams.

Chapter 4

In this chapter we outline a method for the investigation of the resonant inter¬
action between waves that is introduced when the linear regime is extended to
take into account the first order non-linear effects. We have outlined a tech¬

nique by which a useful mathematical analysis may be undertaken and have
been able to derive a pair of equations describing the relationship between two
resonant wave modes. We have applied these equations to the simple uniform
slab model and have been able to make predictions about the growth rates of
resonantly generated waves based on their frequencies. We also investigated the
fully non-linear behaviour of this model using an ideal Lagrangian numerical
code. We were able to establish a good agreement between the mathematically
predicted results and those generated by the numerical simulations. By making
this comparison between the purely analytical approach and the computation¬
ally generated solutions we are able to establish both the strengths and weak¬
nesses of the analytical technique and identify the conditions under which they
may be used effectively.

Chapter 5

In chapter 5 we have investigated the effect of steady field-aligned flows in
transversally structured plasma configurations. A generalised dispersion re¬
lation was derived for sheared magnetic field models in Cartesian geometries.
We then applied this to the magnetic interface model and noted that the effect
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of compressibility could produce a significant change in the solutions obtained,
demonstrating the need for further investigation. This work forms a basis on
which a thorough investigation could be undertaken outlining important fea¬
tures introduced into these models by the inclusion of steady flow.

5.2 Further work

Chapter 3

As has already been noted, it has been necessary to impose certain restrictions
on our twisted tube model in order for an analytical treatment to be made. The
most severe limitation of this model is that it only considers the behaviour of
waves in the incompressible plasma limit. In this extreme the fast waves are
eliminated from the system and we also lose the distinction between the Alfven
continuum and the slow continuum. The relaxation of this requirement intro¬
duces a huge amount ofmathematical complexity into the equations to be solved
and there seems to be no obvious method by which a further analytical investi¬
gation may be made. However, the two first order ordinary differential equations
can be integrated numerically with boundary conditions being imposed using
shooting methods. It would be useful to undertake a numerical investigation of
the transition from infinite to finite compressibility to determine the most im¬
portant new features that must be taken into account. It would also be useful
to repeat the investigation into the effects introduced as twist is increased, this
time when the plasma is incompressible.

Another limitation of this model is the need for a uniform magnetic field profile.
One unfortunate problem imposed by this restriction is that it becomes neces¬

sary to have a discontinuous field profile at the edge of the tube. Another result
of this profile is that the Alfven frequency is constant throughout the tube and
the Alfven resonant surface is removed. As in the incompressible assumption
outlined above, the relaxation of this restriction brings with it severe mathemat¬
ical complication. In this case analytical treatment may still be undertaken by
making use of series expansion methods. An investigation could also be per¬
formed numerically in the same manner as explained above.
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Chapter 4

This chapter introduced a method by which an analytical investigation of non¬
linear resonant interactions between wave modes may be undertaken. Some
initial results were obtained but a full investigation was not undertaken. There
is the potential for many other non-linear phenomena to be examined using
this method and useful results may arise from a more detailed investigation.
Another area which demands further study is to vary the parameters of the slab
geometry. The model was chosen for its flexibility since it is able to describe
two analytically solvable field profiles (the discontinuous uniform slab and the
Epstein field profiles) and the whole range of profiles that lie between these two
limits. In the current study we have only considered the uniform slab limit and
the Epstein profile will certainly yield some interesting results. It should also be
noticed that the uniform field profile exhibits a minimum in the group velocity
whilst the Epstein profile does not. The non-linear behaviour should be different
on either side of this minimum and so this certainly warrants further study.



"Thefirst ten million years were the worst," saidMarvin, "and the
second ten million, they were the worst too. The third ten million
I didn't enjoy at all. After that I went into a bit ofa decline."

— Douglas Adams, The Restaurant at the End of the Universe
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Appendix

A. 1 Pressure Tensors

n22 = -T]oWzz (A. 1)

nXX = —^770 (Wxx + Wyy) - ^771 (Wxx - Wyy) ~ %WXy (A. 2)
IIyy = (WXX + Wyy) — ~TJ1 {Wyy ~ WXX ) + TJ^Wxy {A.3)
IIXy = Uyx = -?7lWxy + 77773 (Wxx - Wyy) (A.4)
nxz = II2X = 772Wxz — Tj^Wyz (A. 5)
nyz = IIZy = -T)2Wyz + 774WX2 (A.6)
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