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Abstract

1) Both the partially euryhaline Scyliorhinus canicula and the fully euryhaline

Carcharhinus leucas significantly modify plasma concentrations of urea and

chloride (CI") (and sodium (Na+)) in response to changes in environmental

salinity, in order to maintain overall plasma osmolality slightly hyper- or

isosmotic to the environment. C. leucas has a greater capacity for urea retention

in dilute environments. In S. canicula all of these changes occur within 12 hours

of transfer, with the notable exception of increasing plasma urea in response to

acute transfer to elevated salinity.

2) A new technique, 51Cr-labelled erythrocytes, was developed to assess blood

volume in elasmobranch fish. S. canicula displays significant haemodilution and

concentration during chronic acclimation to decreased and increased

environmental salinity respectively. Significant changes in blood volume were

seen within 6 hours of acute salinity transfer.

3) In vivo secretion rates were measured in the rectal gland of S. canicula during

both chronic and acute salinity transfer. Significant changes in Cf clearance

occur during acute transfer, as plasma Na+ and Cf levels are modified, but do

not persist in chronically acclimated animals. This is achieved through

modifications in the volume and CI" concentration of the secretory fluid.



4) C. leucas is able to significantly alter the abundance and/or recruitment of Na+,

K+-ATPase in both the rectal gland and the kidney during chronic acclimation to

salinity transfer. This is presumably in response to increased requirements for

NaCl secretion in SW and osmolyte retention in FW respectively. S. canicula do

not significantly alter abundance and/or recruitment of Na+, K+-ATPase in the

principle osmoregulatory organs following chronic acclimation to salinity

transfer.

5) Chronically SW acclimated C. leucas modify the proportion of ouabain-

sensitive oxygen consumption in the tissues of the rectal gland in response to the

secretory endocrine stimulus C-type natriuretic peptide (CNP). No such

modification occurred in the rectal glands of FW acclimated C. leucas. This

represents a change in the sensitivity and response to endocrine control factors

during chronic acclimation to salinity transfer in this species. No such

modification was seen the in the proportion of ouabain-sensitive oxygen

consumption in the rectal glands of chronically acclimated 5. canicula in

response to CNP.

These results were discussed in relation to the capacity for modification of

osmoregulatory organs in partially and fully euryhaline elasmobranchs.
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Chapter 1: General Introduction



1.1 Elasmobranch taxonomy

1.1.1 Evolution and phylogeny

Extant species of fish with jaws (Gnathostomes) are divided into two classes:

Osteichthyes, containing the bony fish in three subclasses (Acanthodii, Actinopterygii,

and Sarcopterygii); and Chondrichthyes, which is comprised of the cartilaginous fish.

Class Chondrichthyes is divided into two subclasses: Holocephali, containing the

ratfish; and Elasmobranchii, containing the sharks, skates, and rays. The extant species

of elasmobranchs are believed to have originated in the Early Triassic period (Cunny

and Benton 1999; Winchell et al. 2004), with the first appearance of sharks in the fossil

record being some 440 million years ago (Martin 2001). The vast majority of species

have been marine, and at present, only around 43 species of over 800 within the sub¬

class elasmobranchii are know to exist in freshwater (FW) environments upstream of

tidal river mouths (Compagno and Cook 1995).

There has been much debate over the phylogeny of elasmobranchs because of their

importance as a basal position in the vertebrate tree. Winchell and co-workers (2004)

highlighted four major problems associated with anatomical cladistics for

elasmobranchs: firstly, the poor preservation of cartilaginous endoskeletons; secondly,

the divergent features in the musculoskeletal system of the closest extant outgroup, the

chimeras; thirdly, the widespread possibility of convergent evolution due to similar

ecological niches; and fourthly, the conserved nature of shark morphology and the lack

of recognisable synapomorphies.

These reasons have lead to many different phylogenies being suggested for the

elasmobranchs based on both morphological and molecular data (Compagno 1973;
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Compagno 1977; Maisey 1980; Shirai 1996; Douady et al. 2003; Winchell et al. 2004).

Recent studies have suggested an early divergence of Batoids (skates and rays) and

other shark species, as well as a grouping of the Squaloid, Squatinoid, Hexanchoid, and

Pristiophoroid sharks as "Orbitostylic" sharks due to the presence of an orbital process

which projects from the upper-jaw cartilage inside the eye socket (Maisey 1980;

Douady et al. 2003; Winchell et al. 2004).

Ongoing research into this area has resulted in many different phylogenies being

published at relatively short intervals, with no definitive answer being reached. There

are some common patterns among the more compelling studies, such as the

"Orbitostylic" grouping noted above. The consensus of these studies gives strong

evidence for the following elasmobranch phylogeny (Figure 1.1.1). This represents an

amalgamation of the most convincing phylogenies available and is used as a descriptive

tool to give an evolutionary background to any comparisons which are made.

There are about 350 extant shark species, with around 55% of these comprising the

order Carcharhiniformes (Compagno 1988). These have been divided into 8 families:

Scyliorhinidae (catsharks), Proscylliidae (finback catsharks), Pseudotriakidae (false

catsharks), Leptochariidae (barbeled houndsharks), Triakidae (houndsharks),

Hemigaleidae (weasel and snaggletoothed sharks), Carcharhinidae (requiem sharks),

and Sphymidae (hammerhead sharks) (Compagno 1988).

3



Osteichthyes

Holocephalans

Batoids

Squaloids

Squatinoids

Orbitostylic

Heterodontoids

Carcharhinoids

Lamnoids

Orectoloboids

Figure 1.1.1 - Amalgamative phylogeny of the Gnathostomes and the subclass

Elasmobranchii (Compagno 1977; Maisey 1980; Douady et al. 2003; Winchell et al.

2004).
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Despite the large concentration of species within the order Carcharhiniformes it is

morphologically and biologically far less diverse than the other shark orders, with few

highly specialised sharks or unusual trophic adaptations. Notable exceptions to this are

the bowplane cephalofoils of the hammerheads, and the ability of the swell sharks to

gulp air or water to expand their bodies, similar to bony fish such as the puffers

(Tetraodontidae) (Compagno 1988). Little work has been conducted on the phylogeny

of Carcharhiniform sharks, but it has been suggested that scyliorhinids represent the

basal lineage, that triakids branched off second, and that carcharhinids and sphyrnids are

the most derived (White 1937; Compagno 1973; Winchell et al. 2004).

The relatively conserved nature of the Carcharhiniformes lends itself to comparative

studies for both morphology and physiology; the species chosen for use in this study

were taken from this order of sharks: Scyliorhinus canicula from the basal scyliorhinid

lineage, and Carcharhinus leucas from more derived carcharhinids. The two species

provided a unique possibility for the comparison of osmoregulation and the factors

affecting euryhalinity during this study. The ability to work on animals from

fundamentally different environments enabled particular osmoregulatory processes,

such as rectal gland oxygen consumption, to be measured at different salinities and

directly compared between a fully euryhaline (C. leucas) and a partially euryhaline (S.

canicula) species.
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1.1.2 Species information

1.1.2.1 The lesser-spotted dogfish

The lesser-spotted dogfish, S. canicula, is a marine elasmobranch which can tolerate

moderate changes in salinity, around 60% - 120% seawater (SW). It is found

throughout the temperate waters of Europe, reaching a maximum size of around 100cm.

S. canicula typically gorge feeds on a diet which consists largely of small fish, molluscs

and crustaceans.

The majority of physiological research on elasmobranchs has been carried out on S.

canicula and the spiny dogfish, Squalus acanthias. This is due to their manageable

average sizes, ability to be maintained in aquaria and relative abundance in the waters of

Europe and North America respectively, rather than any particular scientific

significance. S. canicula in particular is a very robust species; recent studies have shown

98% survival rates in discarded animals from beam trawl fisheries following periods of

high stress (Revill et al. 2005). This bias in the fundamental research has resulted in a

good depth of understanding concerning the mechanisms involved in the

osmoregulation of these species, compared to that of other elasmobranchs. A good

illustration of this is the species specific model for stimulation and secretion in the

rectal gland of S. acanthias suggested by Silva and co-workers (1996) (Section 1.11.1).
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1.1.2.2 The bull shark

The bull shark, C. leucas, is a fully euryhaline elasmobranch inhabiting SW, estuarine,

and FW environments. C. leucas is found along many coastlines around the world in

tropical and subtropical seas, as well as inland FW systems (Taylor 1997). This is the

only species of shark which is known to stay for extended periods in FW. An example

of this is the population found in Brisbane, Queensland, Australia: female C. leucas

give birth to live young in the estuarine reaches of the Brisbane River. The juveniles

then migrate upstream into FW for an undetermined length of time, and may then move

downstream and finally into SW at Moreton Bay.

The use of different habitats by adults and juveniles is thought to be an adaptation that

helps improve the survival of young sharks through a decreased risk of predation from

the adults. C. leucas is a large species which grows to a length of 3 - 4m. It has an

omnivorous diet which includes fishes (including other sharks), dolphins, turtles, birds,

molluscs, echinoderms and even terrestrial mammals (Taylor 1997).

Research on C. leucas has focused on distribution patterns, population studies, and basic

haematic parameters (Thorson et al. 1973; Sosa-Nishizaki et al. 1998; Wintner et al.

2002; Pillans and Franklin 2004). This is largely due to the problems associated with

capture, transport, and maintenance of the species in captivity (Sections 2.2.2 and 2.4).

Nevertheless, the species is of great scientific importance in terms of osmoregulation

due to its fully euryhaline nature.
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1.2 Elasmobranch osmoregulation

The majority of extant elasmobranch species inhabit a marine environment and maintain

body fluid osmolality slightly hyperosmotic to SW. This is achieved through a

combination of organic and inorganic osmolytes, as well as regulating fluid volume.

Sodium (Na+) and chloride (Cf) are two of the major osmolytes and in SW

elasmobranch plasma concentrations are lower than the surrounding environment,

typically around 250 mmol f1 (typical values for the water are around 500 mmol l"1).

Plasma osmolality is rendered to a hyperosmotic level via the retention of nitrogenous

compounds in the extracellular fluids, the major constituent being urea with a

concentration of around 350 mmol f1 (Table 1.2.1) (Ballantyne et al. 1987). A

ureosmotic strategy is unusual but has also been studied in other species; notably

holocephalans, coelacanths, lungfish, the killifish (Rivulus marmoratus), and the crab-

eating frog (Rana cancrivora) (Griffith 1991; Frick and Wright 2001; Wright et al.

2004).

Urea is formed by the ornithine urea cycle (OUC) (Section 1.7) and retention of such a

high concentration would ordinarily have toxic effects via protein denaturation (Yancey

and Somero 1978; Yancey and Somero 1980; Yancey et al. 1982). In elasmobranchs

some proteins function optimally in elevated urea levels (Yancey and Somero 1978),

whilst others require the toxicity of urea to be offset by the action ofmethylamines such

as trimethylamine oxide (TMAO) (Yancey and Somero 1979; Yancey and Somero

1980). TMAO is the major methylamine and the second largest constituent of

nitrogenous osmolytes in elasmobranchs.
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Fluid
Osmolality

(mOsm Kg 1)

Na+

(mmol I"1)

CI"

(mmol I"1)

Urea

(mmol I"1)

Plasma 1018 286 246 351

Urine 780 337 203 14.5

Rectal Gland 1018 540 533 ~0

Seawater 930 440 495 ~0

Table 1.2.1 - Osmotic activity and principle osmolytes in the fluids of S. acanthias

(Burger and Hess 1960).

Osmolality Na+ CI" Urea

(mOsm Kg"1) (mmol I"1) (mmol I"1) (mmol I"1)

SW 1067 289 296 370

FW 642 208 203 192

Potamotrygon 320 178 146 1.2

Table 1.2.2 - Osmotic activity and principle osmolytes in the blood plasma of C. leucas

from SW and FW environments (Pillans and Franklin 2004) and a FW Potamotrygon

stingray (Wood et al. 2002a).
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These differences in osmolyte concentrations for marine elasmobranchs result in

gradients for the following movements across the semi-permeable surfaces:

• A large efflux of urea

• Influxes of ions, notably Na+ and CF

• A small influx ofwater

The relative concentrations of these osmolytes are regulated by the gills, the gut, the

rectal gland, and the kidney. The function of these principle osmoregulatory organs is

described later (Sections 1.3, 1.4, 1.5, and 1.6). Through the action of these organs

elasmobranchs are able to selectively alter the relative concentrations of principle

osmolytes in the body fluids in relation to SW. In this way the internal concentrations of

individual osmolytes can be maintained at different levels to those in the external

environment.

Euryhaline elasmobranchs such as C. leucas and the Atlantic stingray, Dasyatis sabina,

adopt a similar osmoregulatory strategy in SW (Smith 1931b; Smith 1931a; Pillans and

Franklin 2004). Through the action of the organs noted above, elasmobranchs in FW

maintain reduced levels of urea along with a less severe reduction in Na+ and CF (Table

1.2.2) (Thorson et al. 1973; Piermarini and Evans 1998; Pillans and Franklin 2004).

These concentrations of principle osmolytes in FW lead to the following fluxes:

• A large influx ofwater

• Effluxes of ions, notably Na+ and CP

• A large efflux of urea
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There are therefore fundamental differences in the osmoregulatory requirements of SW

and FW elasmobranchs: FW elasmobranchs experience a far greater influx ofwater than

those in SW, and the gradients for Na+ and CF are directly opposite in the two

environments. Animals in both environments face a continual loss of urea, although this

is compounded in FW by the magnitude of the difference between internal and external

osmolality. These variations lead to different priorities for osmoregulation in the FW

environment, such as the retention of Na+ and CF and a greater pressure on volume

regulation.

There are also a group of stenohaline FW elasmobranchs all of which belong to the

family Potamotrygonidae. These stingrays are widespread throughout the river systems

of South America draining into the Atlantic Ocean. Some of the Dasyatidae complete

their life cycle in FW (Compagno and Roberts 1982), but the potamotrygonid stingrays

are the only obligate FW species having lost the ability to survive in waters of salinity

greater than 100 mOsm Kg"1 (Brooks et al. 1981). Key to this is the inability of the

kidneys and gills to retain urea (Thorson 1970), and the absence of salt secretion from a

degenerate rectal gland (Thorson et al. 1978). It has been reported that plasma urea

concentrations are as low as 1.2 mmol l"1, and that these elasmobranchs are

ammoniotelic as opposed to ureotelic (Table 1.2.2) (Wood et al. 2002a).

At the cellular level, free amino acids play a vital role in osmoregulation and regulating

cell volume (Forster and Goldstein 1976). In vertebrates, intracellular osmotic

parameters are typically isosmotic with those of the extracellular fluid. Changes in

environmental conditions are therefore necessarily coupled with changes in intracellular

volume and osmolyte concentrations. Urea and TMAO freely diffuse across plasma
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membranes (Fenstermacher et al. 1972), therefore the intra- and extracellular

concentrations are equivalent. This is not so with free amino acids which constitute 1 %

of extracellular fluid osmolality and 19% of that of intracellular fluid (Perlman and

Goldstein 1988). Acclimation of Batoids to decreases in salinity has been proven to

affect free amino acid concentrations. In the little skate, Raja erinacea, significant

decreases in free amino acid concentrations were measured in wing muscle and

erythrocytes upon acclimation to 50% SW, although concentrations in the heart were

unaffected (Boyd et al. 1977). Similar effects were also observed in the brain of the D.

sabina acclimated to 50% SW (Boyd et al. 1977). Clearly free amino acids play an

important role in regulating cell volume, particularly during salinity transfer in

euryhaline elasmobranchs.

It is therefore evident that osmoregulation is of fundamental importance to euryhalinity

in elasmobranchs, at both the cellular and whole animal levels. Through the action of

the gills, gut, rectal gland, and kidneys elasmobranch fish have the ability to

independently regulate the concentrations of Na+, CI" and urea in both SW and FW

environments, as part of their hyperosmoregulatory strategy. The mechanisms by which

this osmoregulatory strategy is controlled are poorly understood, particularly during

migration between FW and SW. However, the principle organs involved have been

reasonably well studied and their modes of action are well described. The principle

osmoregulatory organs named above will be described in detail, along with their modes

of action and importance in SW and FW. In addition there are a number of other organs

that are believed to play an important role in osmoregulation, such as the liver as the

main site of urea production, and the pituitary gland, the interrenal gland, and the heart

as endocrine organs effecting osmoregulatory control. These too will be discussed.
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1.3 The gills

The gills of elasmobranchs have been the subject of many anatomical studies (Wright

1973; Olson and Kent 1980; DeVries and DeJaeger 1984; Metcalfe and Butler 1986).

There are usually five pairs of gills, although six and seven are not uncommon. Each

gill arch is made up of lateral rods of cartilage (the gill filaments) supporting a sheet of

muscular and connective tissue (the interbranchial septum). The dorsal and the ventral

surfaces of each gill filament have a row of secondary lamellae; these are the principal

site of gas exchange.

Branchial vasculature is highly complex and varies greatly from species to species.

Evans and co-workers (2005) recently published a thorough review of the fish gill, in

which detailed descriptions of the vasculature are made. A general model for blood flow

through the elasmobranch gills can be drawn. The entire cardiac output enters the

afferent branchial arteries (ABAs) via the ventral aorta. Blood flowing through an ABA

feeds two hemibranchs of a gill arch where it is oxygenated at the lamellae of the

filaments (Evans et al. 2005). The vasculature which supplies the secondary epithelium

can be mediated by sphincters located on the efferent primary artery, and on both

afferent and efferent secondary arteries (Laurent and Dunel 1980). Oxygenated blood

flows into an efferent branchial artery (EBA) which in turn flows into the dorsal aorta

for systemic distribution (Evans et al. 2005). There are two distinct but interconnected

circulations within the gill filaments: the arterio-arterial pathway which is involved in

respiratory gas exchange; and the arteriovenous pathway, a nonrespiratory pathway

possibly involved in supplying nutrients to the epithelium and structural tissues (Figure

1.3.1).
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Figure 1.3.1 - Generalised blood flow through an elasmobranch gill arch and filament.

Arterio-arterial pathway: blood travels ( from the afferent branchial artery

(ABA) to an afferent filamental artery (AFA), which runs the length of the filament.

This blood is distributed to the lamellae (L) via afferent lamellar arterioles (ALA's).

Lamellar blood flows through efferent lamellar arterioles (ELA's) into an efferent

filamental artery (EFA). Oxygenated blood then flows to the efferent branchial artery

(EBA) and on to the dorsal aorta for systemic distribution. Arteriovenous pathway:

blood in the EFA can be distributed to interlamellar vessels (ILV's) via postlamellar

arteriovenous anastomoses (>) or nutrient arteries (NA). The ILV's are drained by

branchial veins (BV). The direction of water flow ("""t*) over the gills is also shown

(Evans et al. 2005).
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The elevated concentrations of urea and TMAO in the blood plasma of elasmobranchs

results in a substantial concentration gradient for the diffusive efflux of these osmolytes.

The internal concentration of Na+ and Cf result in a gradient for the diffusive influx of

these ions across epithelial membranes from the marine environment. Even though the

permeability of elasmobranch gill epithelia to urea is the lowest recorded (Boylan 1967)

the gills are still the major site of diffusive urea efflux, as well as Na+ and CI" influx in

SW. It has been suggested that rates of urea loss are reduced through a combination of

structural and active transport mechanisms. The basolateral membranes of S. acanthias

gill epithelia have the highest cholesterol to phospholipid ratios recorded for a natural

membrane (Fines et al. 2001). This could be a means of reducing the diffusion of urea

into the cell as cholesterol is know to reduce urea permeability (Mourtisen and

Jorgensen 1994). There is also evidence for Na+ dependent active urea transport by

basolateral membrane vesicles (Fines et al. 2001). These findings lead Evans and co¬

workers (2005) to suggest that the gill epithelium acts as an intermediary compartment

where the urea concentration gradient with the environment is lowered below that of

blood plasma, thereby reducing diffusive urea loss (Figure 1.3.2).
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Figure 1.3.2 - Proposed model of urea retention in the elasmobranch gill epithelia. The

basolateral membrane has a decreased permeability for urea, in part due to the high

cholesterol content (represented by the thick line for the membrane). This greatly

reduced the amount of urea in the blood which diffuses into the cell. The concentration

of urea which actually enters the cell is then further reduced by an unidentified Na+-

dependent urea transporter in the basolateral membrane. The Na+ gradient required for

the urea transporter is thought to be maintained by the action of Na+, K+-ATPase. The

relatively low intracellular concentration of urea, as compared to that of the blood

plasma, reduces the gradient for the diffusive loss of urea to the external environment

(Evans et al. 2005).
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Conversely to the situation described for urea there is active accumulation of Na+ and

Cf at the gills, despite the osmotic consequences of the salt load. This accumulation is

related to the acid-base regulatory system (Bentley et al. 1976) which is involved in the

excretion of acidic (e.g. hydrogen, H+) and basic (e.g. bicarbonate, HCO3") ions (Figure

1.3.3) (Evans 1982; Evans 1984). Studies on teleosts and elasmobranchs have shown

consistently that acid secretion is linked to Na+ absorption, and that base secretion is

linked to CI" absorption (Evans 1982; Cooper and Morris 2004b; Evans et al. 2005).

Faster and more complete compensation for hypercapnia in SW acclimated D. sabina

(Choe and Evans 2003), and a persistence in alkalosis in Heterodontus portusjacksoni

acclimated to reduced salinity (Cooper and Morris 2004b), further support the role of

Na+ in branchial acid excretion. It has been suggested that there are two acid secretion

mechanisms: an apical V-ATPase which is electrically linked to Na+ absorption, and an

electroneutral exchange ofNa+ and FI+ via the Na+/H+ exchange proteins; and two base

secretion mechanisms via two apical C17HC03" exchangers: AE1, and pendrin (Evans

et al. 2005).

Accumulation of Na+ and CF and the gills may also act as a means of decreasing the

influx of these ions from the external environment. Just as a lower intracellular urea

concentration in the gill epithelia decreases the gradient for the diffusional efflux of

urea, elevated intracellular Na+ and CF concentrations would decrease the gradient for

the diffusional influx of these ions from the marine environment. However, given the

specific evolution of the rectal gland towards secreting excess Na+ and CF (Section 1.5)

the necessity for decreasing the influxes of these ions is not as great as that for the

retention of urea.
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Figure 1.3.3 - A working model of NaCl-linked acid base extrusion in the chloride

cells of D. sabina. One type of chloride cell (A MRC) expresses Na+, K+-ATPase

(NKA) on its basolateral membrane and is hypothesized to draw in Na+ across the apical

surface in exchange for cytoplasmic H+. The other type of chloride cell (B MRC)

expresses V-H+-ATPase (V) on its basolateral membrane and draws CP into the cell via

pendrin (PDN) in exchange for HCO3". The pathway for basolateral CI" movement is

unknown (Evans et al. 2005).
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There is also substantial efflux of Na+ and CI" across the gills by the chloride cells or

mitochondria-rich cells (MRC's) (Figures 1.3.3 and 4). The rate ofNa+ and CI" efflux by

the chloride cells is still less than the rate of influx. Branchial activity of Na+, K+-

ATPase, the active protein in Na+ and CI" transport (Section 1.5), is ten to fifteen times

below that of marine teleosts, and hence there is net accumulation of Na+ and CI" at the

gills and no net efflux (Jampol and Epstein 1970; Shuttleworth 1988). Chloride cells are

pear-shaped secretory cells in the epithelia of the gills. As well as being rich in

mitochondria, there is an extensive network of smooth endoplasmic reticulum, and

copious basolateral infoldings of the plasma membrane so as to increase surface area

(Wright 1973).

Comparative studies of Raja clavata and S. canicula revealed two types of chloride

cells. In one cell type the apical membrane is buried deep in a cul-de-sac and connects

to the external milieu by a narrow opening; conversely, the other cell type has a

protruding apical membrane (Laurent and Dunel 1980). Both of these cell types lack the

tubular system which is found in teleost chloride cells. In elasmobranchs these are

functionally replaced by copious infoldings of the basolateral membrane.
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Figure 1.3.4 - Light micrograph of S. acanthias gill lamellae showing the darkly

stained chloride cells (*). Scale bar of 50 pm (Wilson et al. 2002).
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Wilson and co-workers (2002) showed strong Na+, K+-ATPase immunoreactivity

associated with the basolateral membrane in S. acanthias. High abundance of Na+, K+-

ATPase in the gills of SW elasmobranchs not only confirms their role in acid-base

regulation and possible Na+ dependent urea transport, it also presents a possible role for

the gills in excretion of Na+ and CP. Indeed, S. acanthias which had the rectal glands

(Section 1.5) removed were able to maintain ionic balance, although the chloride cells

showed no change in number, structure, or Na , K+-ATPase activity (Wilson et al.

2002). This suggests that the gills and the kidney (Section 1.6) are able to maintain ionic

balance in elasmobranchs during stable environmental conditions. However, given the

specific evolution of the rectal gland in elasmobranchs towards the secretion of excess

Na+ and CP, it is unlikely that animals undergoing acute salt loading from feeding or

salinity transfer could adequately regulate solely through the action of the gills.

It has been shown that levels and abundance of Na+, K+-ATPase change in relation to

external salinity in certain species. In experiments carried out on the euryhaline species

D. sabina the highest activity and relative abundance of Na+, K+-ATPase in the gills

was seen in long term acclimated FW animals. These animals showed a reduction in

both activity and abundance of Na+, K+-ATPase after a 7 day period at SW. Long term

acclimated SW animals had the lowest activity and abundance of Na+, K+-ATPase of all

three groups (Piermarini and Evans 2000). Na+, K+-ATPase and the effects of salinity

are discussed in detail below (Sections 5.1 and 4).

In the instance of FW elasmobranchs the gills are possibly acting like those of teleosts

and are a site of active Na+ and CP uptake. This elevation in Na+, K+-ATPase abundance

and activity in low salinities is presumably due to the fact that as external salinity
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increases the requirement for active Na+ and CI" uptake across the gills will decrease as

the ion flux gradient is reversed. These results also demonstrate the capacity for

modification of gill physiology and morphology to changing environmental conditions

in a euryhaline elasmobranch. The discrepancy between S. acanthias (SW) and D.

sabina (euryhaline) suggests that plasticity in chloride cell structure and/or abundance,

and associated branchial Na+, K+-ATPase may therefore be a key factor in

elasmobranch euryhalinity.
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1.4 The gut

The oesophagus, stomach, spiral intestine, and rectum comprise the elasmobranch gut

(Figure 1.4.1). The oesophagus ofmost elasmobranchs is relatively short and lined with

finger-like extensions which prevent food escaping from the mouth. Elasmobranch

stomachs are generally J-shaped organs, some of which have longitudinal folds (rugae)

which allow expansion to accommodate gorge feeding. The stomach is comprised of

two histologically distinct sections: the cardiac stomach and the pyloric stomach. The

cardiac stomach can be subdivided into the proximal section with a striated muscle wall,

and the distal section with a smooth muscle wall (Nilsson and Holmgren 1988).

The valvular intestine is also relatively short, having a greatly increased surface area

due to the valves. There are three basic types of intestinal valve in sharks, termed spiral,

scroll, and ring. The spiral valve is found in Squalidae and Scyliorhinidae, the scroll

valve is found in Carcharhinidae, and the ring valve is found in all extant lamnoids

(Martin 2003b). These increase nutrient absorption in the intestine not only by

increasing surface area, but also by increasing the length of time taken for material to

pass through. Despite the relative compact nature of the elasmobranch gut, absorption

efficiencies are as high as those of carnivorous teleosts: 62-83% for energy (quantifying

energy lost through non-assimilated food), 76-88% for organic matter, and 76-87% for

dry matter (Wetherbee and Gruber 1993). Gross conversion efficiency for ingested food

can be calculated by dividing annual production (growth, metabolism, excretion, and

egestion) by annual consumption. This varies greatly depending on species and dietary

composition (Wetherbee and Cortes 2004). Estimates for C. leucas range between 5 and

12% (Schmid and Murru 1994), estimates are not available for S. canicula.
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There are two major factors which influence the role of the gut in osmoregulation: diet

and drinking rate. Due to the nature of aquatic environments the surrounding media is

necessarily imbibed during a feeding event. Elasmobranchs were not thought to actively

drink their environmental media, because a hyperosmotic strategy means the osmotic

gradient is for water to enter the animal, hence there is no requirement to imbibe water.

However Hazon and co-workers (1989) demonstrated that S. canicula does indeed drink

and pharmacological manipulation of the endogenous renin angiotensin system (RAS)

resulted in an increase in drinking rate. A detailed description of the RAS is provided

below (Section 1.10). Basal drinking rates are considerably lower in SW elasmobranchs

than in teleosts, even when compared to Anguilla anguilla which has one of the lowest

recorded teleost drinking rates (Table 1.4.1). This is due to the fact that marine teleosts

are hyposmotic and face a continual loss of water to the environment across semi¬

permeable surfaces. The basal rate of drinking in S. canicula increases with

environmental salinity and the ingested Na+ does enter the blood stream (Hazon et al.

1989). Drinking rate also increases during acute transfer to increased salinity in both S.

canicula and Triakis scyllia (Anderson et al. 2002b). Drinking rate may therefore be a

key factor in elasmobranch euryhalinity, by elevating plasma osmolality during transfer

to increased salinity.
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Species
Drinking rate

(ml Kg 1 h1)
Reference

S. canicula 0.3 (Hazonetal. 1997b)

T. scyllia 0.4 (Anderson et al. 2001)

Anguilla anguilla* 1.0 (Perrott et al. 1992)

Pleuronectes platessa* 2.5 (Carroll et al. 1995)

Ammodytes lanceolatus* 3.0 (Perrott et al. 1992)

Limanda limanda* 3.6 (Perrott et al. 1992)

Myxocephalus scorpius* 7.8 (Perrott et al. 1992)

Table 1.4.1 - Drinking rates in SW elasmobranch and teleost (*) fish.

Osmolality
Captivity period

(mOsm Kg"1)

Wild 681

1-7 days 638

+ 12 days 558

Table 1.4.2 - Mean blood plasma osmolality in wild, short term, and long term captive

FW C. leucas (n = 9, 13, and 14 respectively). Captive animals were not fed whereas

wild animals had unrestricted access to natural prey species.
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When examining the role of the gut in elasmobranch osmoregulation a large

consideration must go to dietary composition. By definition the effects of this will vary

greatly between species, and also between populations. Not only will the diet itself vary,

but the requirements from that diet will vary depending on the environment in which the

elasmobranch inhabits, whether the species is an active or ambush predator, and

whether or not the species is ram ventilating. Many marine elasmobranchs, including S.

canicula, are typically gorge feeders. One of the consequences of this is that the animal

is subjected to large and infrequent salt loading during feeding events. This situation is

exaggerated if the diet is also particularly rich in salts, such as one comprised largely of

invertebrates as in S. canicula.

Dietary intake may also be a key source of salts for FW elasmobranchs. Potamotrygonid

rays experienced negative salt balance with their native ion-poor waters during periods

of starvation (Wood et al. 2002a). FW elasmobranchs may therefore require dietary salts

to maintain osmotic stasis.

Metabolic urea is also important for osmoregulation, and this is directly related to food

availability. Infrequently fed Poroderma africanum could not adequately osmoregulate

during acclimation to changes in salinity. Reduced metabolic urea production resulted

in decreases in plasma osmolality and hyposmotic regulation (Haywood 1973). Similar

effects of starvation were seen in C. leucas during captivity trials in this study (Table

1.4.2). This highly active species displayed a visible loss in body condition prior to a

sharp decrease in plasma osmolality during periods of starvation.
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Armour and co-workers (1993a) showed that S. canicula fed on a low protein diet

showed an impaired osmoregulatory ability when acclimating to hypersaline water.

Animals adopted a strategy utilising increased plasma Na+ and CI" concentrations to

compensate for the lack of metabolic urea. This further supports the idea of the gut

being an important source for elevating osmolyte levels during salinity transfer.

There is therefore large scope for the gut to be involved in the overall osmoregulatory

mechanisms in elasmobranchs given that imbibed Na+ does enter the blood, the

possibility of large salt loads entering the interstitial fluid during feeding, and the

importance of dietary derived salts and urea. Clearly more research is required into this

area to discover the specific role of the gut for both osmolyte and water exchange, and

possible humoral effects on other osmoregulatory organs.
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1.5 The rectal gland

The rectal gland is the only organ in elasmobranchs which is capable of producing a

NaCl solution more concentrated than blood plasma levels, and has evolved specifically

for this purpose. The cost of NaCl secretion by the rectal gland has been estimated at

0.5% of the standard metabolic rate (Morgan et al. 1997). The gland itself is a blind-

ending, usually bullet-shaped tube in the dorsal mesentery, which is suspended above

the valvular intestine. It is attached to the intestine postvalvularly. Rectal glands vary in

size and shape depending on the species of elasmobranch, and its life history. Glands

may be smaller in euryhaline, and particularly in freshwater, than in marine animals

(Oguri 1976). This is presumably due to the lower influxes and variations ofNa+ and CI"

in a more dilute environment. The structure and vasculature of the rectal gland are

highly complex and a detailed description is provided later (Section 4.1).

The mechanisms involved in ion transport in the tissues of the rectal gland have been

well documented (Shuttleworth 1988; Silva et al. 1997; Olson 1999). Localised on the

basolateral membrane of the epithelial cells of the secretory tubules is the protein Na+,

K+-ATPase (Dubinsky and Monti 1986). This actively pumps Na+ into the extracellular

space as well as transporting K+ into the secretory cell. Also located on the basolateral

membrane is the Na+K+-2C1" cotransporter. The action of this protein is passive as it is

driven by the inward Na+ gradient set up by the action of Na+, K+-ATPase. Along this

concentration gradient Na+ enters the cell facilitating the coupled translocation of K+

and CI" into the intracellular space. Na+, K+-ATPase then actively pumps Na+ back out

of the cell (Haas and Forbush 1998). The internal accumulation of excess K+ is

prevented by passive flow through the basolateral potassium specific channel, thereby

maintaining equilibrium (Riordan et al. 1994).
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These processes result in a high concentration of CI" in the secretory cells and a high

Na+ concentration in the intercellular space. Located on the apical membrane of the

secretory cells are chloride-selective channels. Through these channels CI" ions move

passively into the lumen of the secretory tubule so as to restore the intercellular

electrochemical equilibrium. The Na+K+-2C1" cotransporter is stimulated by a fall in

intracellular CI" concentration pursuant to increased CI" efflux across the apical

membrane. Na+ then passively moves paracellularly through the Na+-selective tight

junctions into the lumen to balance the electrical potential created by the movement of

CI" ions (Fig 1.5.1) (Olson 1999).

In contrast to the situation described in the gills (Section 1.3), activity and abundance of

Na+, K+-ATPase in the rectal gland is lowest in long term acclimated FW animals.

Levels in acclimated and wild caught SW animals are relatively constant (Piermarini

and Evans 2000; Pillans et al. 2005). This is due to a relative influx of Na+ and CI"

across semi-permeable membranes in SW and an efflux in FW. Hence there is a reduced

requirement for rectal gland secretion ofNa+ and CI" in more dilute environments.
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Figure 1.5.1 - Mechanism of Na+ and CI" ion secretion by secretory tubule cells and

their control. ADP = adenosine diphosphate; ANP = atrial natriuretic peptide; ATP =

adenosine triphosphate; cAMP = cyclic adenosine monophosphate; cGMP = cyclic

guanosine monophosphate; CP = chloride ion; K+ = potassium ion; Na+ = sodium ion;

Pi = phosphatidylinositol; VIP = vasoactive intestinal peptide (Olson 1999). Also shown

are some of the hormones affecting the mechanism: the stimulatory actions of

scyliorhinin II, VIP, and two natriuretic peptides (Section 1.11.1), and the inhibitory

action of somatostatin.
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The hormonal control of rectal gland secretion is detailed below (Sections 1.11.1 and

6.1), but secretion rates can also be affected by neurotransmitters present in the nerves

of the rectal gland. Vasoactive intestinal peptide (VIP) is found in the rectal gland

nerves of S. acanthias (Holmgren and Nilsson 1983; Chipkin et al. 1988) and stimulates

Cf secretion by activating adenylate cyclase (Stoff et al. 1979). The species specific

model of rectal gland activation involving VIP is detailed below (Section 1.11.1). The

rectal gland of S. acanthias also contains inhibitory neuropeptides including

somatostatin, bombesin, cholecystokinin and neuropeptide Y (Holmgren and Nilsson

1983; Bjenning and Holmgren 1988; Silva et al. 1993). Somatostatin has a direct

inhibitory effect on rectal gland cells both proximally and distally to the release of

cAMP (Stoff et al. 1979; Silva et al. 1985) (Figure 1.5.1), while bombesin inhibits

indirectly through the release of somatostatin (Silva et al. 1990). The method of

inhibition by cholecystokinin has yet to be defined. The inhibitory action of

neuropeptide Y does not affect adenylate cyclase activity, having a direct effect on CP

secretion at a site distal to the generation of cAMP. Neuropeptide Y also inhibits VIP-

stimulated transport related oxygen consumption by Na+, K+-ATPase (Silva et al. 1993).

There is therefore much scope for mediating the activity of the elasmobranch rectal

gland with many factors having stimulatory (Sections 1.11.1 and 6.1) and inhibitory

effects.

Given the highly specialised nature of the rectal gland as a means ofNaCl secretion, and

the depth of factors which influence its function, it must be of key osmoregulatory

importance during acclimation to salinity changes. Expectations would be for high

levels of activity and secretion during acclimation to reduced salinity in order to rapidly

decrease plasma osmolality and minimise the osmotic influx of water. This is of
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paramount importance as excess water is excreted via the kidneys (Section 1.6) and

increases in urine volume may increase the loss of urea. The importance of urea

retention is discussed in detail elsewhere (Sections 1.2, 2.1, 2.4, 7.1.2 and 3). Low

levels of activity and secretion would be expected during acclimation to increased

salinity as a means of increasing plasma osmolality.
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1.6 The Kidney:

Elasmobranch kidneys consist of a pair of elongate structures found on either side of the

dorsal aorta. In sharks they have a thread-like appearance at the anterior end, midway

along the dorsal surface of the abdominal cavity. They gradually widen posteriorly and

fuse below the cloaca (Shuttleworth 1988). Elasmobranchs posses a renal portal system

in which portal veins are formed from the bifurcation of the caudal vein. Upon entering

the kidney these divide to form a matrix of smaller vessels. Blood from the portal

system mixes freely with that from the glomerular vasa efferentia before exiting the

kidney through the renal vein (Hentschel 1988). There is also evidence of a glomerular

bypass vessel which permits blood to flow from the afferent to the efferent vessel,

thereby avoiding filtration (Brown and Green 1992).

The functional unit of the kidney, the nephron, is a complex tubular system. It has been

extensively reviewed by Lacy and Reale (1995) and Hentschel and co-workers (1993).

There is strong evidence of a counter current exchange system involving specialised

epithelial transport (Hentschel and Zierold 1993). There are two regions of renal tissue

in S. canicula: firstly, a dorsal 'bundle' region which is contained in a urea impermeable

sheath (Figure 1.6.1) and the tubules are closely packed into discrete bundles. It is

hypothesised that the counter current exchange system operates in this region (Stolte et

al. 1977). The second region of renal tissue is the ventral 'sinus' which lies outside of the

sheath but has two further loops with the potential for counter current exchange. In this

region the tubules are loosely arranged and segregated by blood sinuses (Lacy and

Reale 1995). The division between the two zones is also marked by large renal

corpuscles.
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Each individual nephron forms two loops in the bundle zone and two long convolutions

in the sinus region (Hentschel 1988). There is much diversity and specialisation of

epithelial tissue throughout the length of the nephron (Hazon et al. 1997b).

Due to the osmolyte concentrations described above, marine elasmobranchs face a slight

continual influx of water across their semi-permeable surfaces. This excess water is

excreted by the kidneys by an increase in renal clearance, primarily through increased

glomerular filtration rate (GFR) and urine flow rate (Goldstein and Forster 1971;

Forster et al. 1972). Upon exposure to reduced salinity and the associated increase in

water influx, H. portusjacksoni displays a doubling ofGFR (Cooper and Morris 2004b).

35



Figure 1.6.1 - Schematic diagram of a single nephron from S. canicula. Filtrate from

the renal corpuscle/glomerulus (RC) flows through the neck segment (NS) and into

loop 1 in the bundle region. Filtrate then passes through proximal segments I and II (PI

and PII) of loop 2 in the sinus region. Then the filtrate passes through the intermediate

segment (IS) into the early distal segment (EDT) and loop 3 in the bundle region.

Filtrate then flows into the late distal segment (LDT) and loop 4 in the sinus region

before entering the collecting tubule (CT). Filtrate then passes into the collecting duct

(CD) (Hazonetal. 1997b).
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Elasmobranch kidneys cannot produce hyperosmotic urine, typically urine is

hyposmotic relative to blood plasma (Henderson et al. 1988). This fact, coupled with

the use of urea as a plasma osmolyte means that the major roles of the elasmobranch

kidney are urea retention and volume regulation. S. canicula acclimating to reduced

salinity show a marked diuresis along with a reduction of plasma osmolality (Wells et

al. 2002). However, FW acclimated euryhaline elasmobranchs appear to be able to

selectively reduce the urinary concentration of Na+ and Cf (Shuttleworth 1988; Janech

et al. 1998). The kidney in FW is therefore also capable of regulating the concentration

of Na+ and CF in the blood plasma. Lacy and Reale (1991b; 1991a) discovered that

tubular cells in the early distal tubule (EDT) have similar characteristics to cells which

are known to actively transport Na+.

The major role of the elasmobranch kidney is urea retention. There is active urea

transport and reabsorption in the elasmobranch nephron, micropuncture studies have

implicated the second proximal segment (PII) (Figure 1.6.1) as a possible site of Na+-

linked urea reabsorption (Stolte et al. 1977). Levels of skate kidney urea transporter

(SkUT) significantly decreased in response to a decrease in salinity in the marine

elasmobranch Raja erinacea (Morgan et al. 2003). This suggests there is scope for

physiological modification within the kidney to changes in environmental salinity.

The kidney is also the site of the elasmobranch RAS, a key osmoregulatory enzyme

cascade. A detailed description of the RAS is offered below (Section 1.10).
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1.7 The liver

The Elasmobranch liver performs a number of functions for hydrodynamics and

metabolism. The liver is the main store for energy reserves in the form of fatty acids

although these do perform another function. To elaborate, elasmobranchs lack the swim

bladder of teleost species and are heavier than the surrounding environment. Dynamic

lift is generated from the pectoral fins whilst the animal is in motion. This imposes

hydrodynamic constraints on shark size as a doubling of body length equates to a square

of fin surface area but a cube of body mass. This reduction in relative lift is offset by an

increase in proportional liver size in larger animals which increases the relative amount

of body fatty acids which are less dense than SW. An example of this can be found in

the basking shark, Cetorhinus maximus: the liver from an 8.8 m, 5.9 tonne specimen

accounted for nearly 25% of total body mass yielding 2270 1 of oil (Martin 2003a).

With the exception of the FW Potamotrygonid stingrays, elasmobranch fish are

ureotelic with urea production largely occurring in the liver via the OUC (Figure 1.7.1).

This has been extensively reviewed by Goldstein (1967), Anderson (1995; 2001), and

Walsh and Mommsen (2001). A synopsis of the OUC in S. acanthias has been

produced: a mitochondrial glutamine synthase converts a CO2" group of glutamic acid

into an amide group of glutamine; a glutamine-dependent carbamoyl phosphate

synthase (CPS III) and an ornithine carbamoyl transferase make citrulline, then

arginine; and finally a mitochondrial arginase splits arginine into urea and ornithine

(Perlman and Goldstein 1988; Acher 1996).
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Figure 1.7.1 - The OUC. Numbered circles represent the following enzymes: 1)

Carbamoyl phosphate synthase, 2) Ornithine carbamoyl transferase, 3)

Argininosuccinate synthase, 4) Argininosuccinate lyase, 5) Arginase (Saunders 2002).

Elasmobranchs posses an OUC in the liver which utilises CPS III as enzyme number 1.

This is located in the mitochondria and preferentially uses glutamine (to NH3) as a

nitrogen donor (Tam et al. 2003).

L-Ornrthine Argininosuccinate

t-Arginine

l-Aspartate

Fumarate ]

ATP

+ PR,
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Potamotrygonid rays do possess an OUC, but have been demonstrated as being

ammoniotelic (Wood et al. 2002a). Marine elasmobranchs acclimating to reduced

salinity show a reduction in plasma urea levels which can be due to increased renal

clearance of urea, as seen in Negaprion brevirostris (Goldstein et al. 1968); or a

combination of increased clearance and decreased biosynthesis, as seen in R. erinacea

(Goldstein and Forster 1971), S. canicula (Hazon and Henderson 1984), and the FW

stingray Himantura signifer (Tarn et al. 2003).

Recent studies have demonstrated a functional OUC in the stomach of H. signifer, with

70% capacity of that of the liver (based on CPS III activity) (Tarn et al. 2003). This is

also found in SW Taeniura lymma, although the capacity of this was only around 1% of

that of the liver. Furthermore, ammonia excretion via this route decreases in response to

elevated salinity. It has been suggested that this localised urea production provides a

means of preventing loss of ingested nitrogen as ammonia and amino acids (Tarn et al.

2003). This could be of vital importance in FW elasmobranchs when acclimating to

increases in salinity given that they may have a reduced capacity for renal urea retention

(Section 1.6).

The liver also secretes angiotensinogen, the first protein in the RAS protein cascade.

The process and osmoregulatory effects of the RAS are detailed below (Section 1.10).

The organs described above are therefore the major sites of osmoregulatory processes in

elasmobranch fish, and it has been shown that they have modified functions and

priorities in SW and FW. It is through the control of these organs that fully euryhaline

species are able to move between these two environments and maintain their



hyperosmotic state. Therefore in order to fully assess the roles these glands have in

elasmobranch osmoregulation it is necessary to detail the endocrine systems which

influence them.
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1.8 The pituitary gland

The elasmobranch pituitary gland consists of the pars distalis (anterior), pars intermedia,

and neurohypophysis with a large pituitary cleft, similar to other vertebrates. The

elasmobranch gland differs from that of tetrapods through the presence of a partially

separated ventral lobe as opposed to the pars tuberalis seen in the pituitary gland of

other vertebrates. This unique structure contains both a gonadotropin and a thyrotropin

(Fig 1.8.1) (Young 1981).

The hypothalamus is directly linked to the pituitary gland through a portal system which

passes through the median eminence (Fig. 1.8.1). Some neurons within the

hypothalamus secrete hormones, carried via this route, which strictly control secretion

of hormones from the anterior pituitary.

The neurointermedia is permeated by numerous nerve fibres from the neurohypophysial

tract. In elasmobranchs, this contains melanophore-stimulating hormone (MSH)

whereas the teleost equivalent, melanin-concentrating hormone (MCFI) is mostly found

in the pars lateralis (Kawauchi 1992). The neurointermedia also contains some

arginine vasotocin (AVT) the action of which is described below (Section 1.8.2), as

well as various neutral octapeptides whose functions remain unknown (Young 1981).
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Very little experimental work has been carried out on the elasmobranch pituitary itself,

but the actions of many hormones which it secretes have well documented affects on

osmoregulatory systems. For ease of description these have been separated into those

emanating from the anterior pituitary and the posterior pituitary. Elasmobranch specific

studies have been utilised where possible.
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1.8.1 The anterior pituitary

De Vlaming and co-workers (1975) have investigated the effects of hypophysectomy on

D. sabina, resulting in a decrease in plasma osmolality, mostly through a decrease in

urea concentration. Removal of the rostral lobe of the pars distalis resulted in an

increase in plasma osmolality through greater concentrations of Na+ and urea, although

this could be reversed through an injection of mammalian prolactin. Injection of

adrenocorticotrophin (ACTH) alone into these animals had no effect, but when coupled

with the injection of prolactin, ACTH did negate the effects of prolactin. ACTH is

released from the anterior pituitary in response to corticotropin releasing hormone

(CRH) from the hypothalamus. ACTH stimulates the release of corticosteroids; for

example, 1 a-hydroxycorticosterone from the interrenal gland (Klesch and Sage 1975;

Hazon and Henderson 1985) (Section 1.9).

Also released from the anterior pituitary is thyroid stimulating hormone (TSH) which

acts as a stimulus for the secretion of thyroid hormones. One such hormone is thyroxine

which has been shown to reduce renal Na+, K+-ATPase activity, and the intracellular

concentrations of cAMP and cGMP in Ginglymostoma cirratum (Honn and Chavin

1976). Removal of the thyroid gland caused increases in plasma urea concentrations and

osmolality in D. sabina (De Vlaming et al. 1975). Replacement therapy with thyroxine

returned plasma urea concentrations to normal levels in these animals (De Vlaming et

al. 1975). This is illustrative of the importance of the pituitary as a means of stimulating

other organs which have important osmoregulatory roles.

Other hormones are also released from the anterior pituitary such, as growth hormone

(GH) and prolactin. Prolactin cells are located in the pars distalis and transfer from SW



to FW has been shown to activate prolactin release from these cells in teleosts

(Olivereau and Ball 1970). The role of these hormones in elasmobranch osmoregulation

is largely unknown.
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1.8.2 The posterior pituitary

The posterior pituitary is the site of neurohypophysial hormone secretion. These can be

divided into the vasotocin-vasopressin lineage and oxytocin-like hormones, both of

which have been well reviewed for elasmobranchs (Acher 1996; Acher et al. 1999).

From the former AVT is one of the key osmoregulatory hormones secreted by the

posterior section of the pituitary gland. All elasmobranchs studied thus far posses AVT,

a homologue of mammalian arginine vasopressin (AVP) (Acher 1996; Acher et al.

1999). AVT is the major neurohypophysial peptide in lower vertebrates. In teleosts,

dose-dependent decreases in urine flow rates, GFR, and tubular transport maxima for

glucose have been seen in trout, Oncorhynchus mykiss, in response to AVT (Amer and

Brown 1995). AVT was thought to have similar antidiuretic effects in elasmobranchs

and this has recently been demonstrated in S. canicula (Wells et al. 2002). In Triakis

scyllium vasotocin levels in the hypothalamus and blood plasma significantly increased

in response to elevated salinity (Hyodo et al. 2004). Clearly neurohypophysial

hormones such as AVT are important endocrine signals for osmoregulation, particularly

during salinity transfer.

Hormones from the oxytocin lineage display much structural variation within the

Chondrichthyes (Table 1.8.2.1). Examination of the effects of these hormones could

therefore become species specific. From the oxytocin lineage both asvatocin and

phasvatocin have been identified in the posterior pituitary of S. canicula (Chauvet et al.

1994). Despite high concentrations of oxytocin-like hormones in the neurohypophysis

no clear function of these peptides has been discovered (Acher et al. 1999), perhaps

because of the high degree of structural variation.
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Structure

Classification/hormone 1 2 3 4 5 6 7 8 9

Holocephali

Oxytocin Cys Tyr lie Gin Asn Cys Pro Leu Gly (NH2)

Elasmobranchii

Sharks

Aspargtocin Cys Tyr lie Asn Asn Cys Pro Leu Gly (NH2)

Valitocin Cys Tyr lie Gin Asn Cys Pro Val Gly (NH2)

Asvatocin Cys Tyr lie Asn Asn Cys Pro Val Gly (NH2)

Phasvatocin Cys Tyr Phe Asn Asn Cys Pro Val Gly (NH2)

Rays

Glumitocin Cys Tyr lie Ser Asn Cys Pro Gin Gly (NH2)

Table 1.8.2.1 - Structure of the oxytocin-like hormones of cartilaginous fish (Acher et

al. 1999).
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1.9 The interrenal gland

Separate from the kidney is the interrenal gland (Fig 1.9.1), the site of la-

hydroxycorticosterone secretion. 1 a-hydroxycorticosterone is synthesised in the tissue

from corticosterone (Kime 1987). This steroid was first isolated in the blood plasma of

Raja radiata (Idler and Truscott 1966). Plasma concentration of la-

hydroxycorticosterone increases at low salinities, corresponding to the point at which

Na+ becomes regulated at a lower level and urea concentrations continue to decrease

(Armour et al. 1993a). It is likely therefore that 1 a-hydroxycorticosterone acts to

minimise Na+ (and CI") excretion from the rectal gland, kidney, and gills (Armour et al.

1993a).

Homologous renal extract and heterologous angiotensin II (Ang II) cause in vivo

increases in the plasma concentration of 1 a-hydroxycorticosterone (Hazon and

Henderson 1985), as well as increasing secretion from isolated perfused interrenal

glands (O'Toole et al. 1990; Armour et al. 1993b). This suggests the RAS (Section 1.10)

may have a regulatory effect on the interrenal gland. However, the pituitary gland has

been proposed as a major site of regulation for 1 a-hydroxycorticosterone secretion from

the interrenal gland (Section 1.8.1) (Hazon and Henderson 1985). Secretion of la-

hydroxycorticosterone is stimulated by ACTH, through synergistic action of

intracellular Ca2+ and cAMP.
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Figure1.9.1-Ventralviewoftheaortaandpairedcirculatorybranches,kidneys,andinterrenalglandofScylliumcatulus.White-kidney; Stippled=interrenaltissue;Black=chromaffinbodies(Chester-Jones1957).
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Ang II also stimulates secretion via the action of both intracellular and extracellular

Ca2+ (Armour et al. 1993b). Alterations in Na+ concentration to perifused sections of

glands have inconsistent effects on secretion rates. An increase in urea concentration in

the perifusate increased 1 a-hydroxycorticosterone secretion, however a decrease of

urea had no affect (O'Toole et al. 1990). Therefore the factors affecting the interrenal

gland have documented effects on osmoregulation but, although clearly influential, the

exact osmoregulatory role of 1 a-hydroxycorticosterone remains to be established.

The chromaffin tissue of elasmobranchs is also discrete from the renal and interrenal

tissue, again contrasting with teleosts. Chromaffin tissue is a site of catecholamine

secretion. The physiological effects of catecholamines are detailed below (Section

1.12).
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1.10 The RAS

The RAS is a peptide cascade beginning with angiotensinogen which is released from

the liver. This is acted upon by renin which occurs in the kidneys to initiate the cascade

(Fig 1.10.1) (Hazon et al. 1999). The juxtaglomerular apparatus, the site of renin in

other vertebrate species, is located at the vascular pole of the renal corpuscle in

granulated peripolar cells and has been found in a number of elasmobranchs (Lacy et al.

1987; Lacy and Reale 1989; Lacy and Reale 1990). The macula densa, an important part

of the juxtaglomerular apparatus has also been identified (Lacy and Reale 1990). The

presence of the juxtaglomerular apparatus suggest that the RAS may be involved in the

control of GFR, as is the case in teleosts (Brown et al. 1980). In addition to a systemic

RAS, this is strong evidence for the presence of an intrarenal RAS in the elasmobranch

kidney.

There is also a possible presence of Ang II receptors in the elasmobranch kidney

(Tierney et al. 1997). Only two studies have examined the physiological actions of Ang

II in the elasmobranch kidney. Wells and co-workers (2003) demonstrated that

inhibition of angiotensin-converting enzyme resulted in a glomerular diuresis, an

increase in urea and CF clearance, and an increase in transport maxima for glucose.

Later work showed that Ang II caused a glomerular antidiuresis and decreases in

perfusion flow rate, transport maxima for glucose, and the proportion of filtering

glomeruli in S. canicula. In addition to this renal urea, Na+, and CF clearance were all

significantly reduced by Ang II (Wells et al. In Press).
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Figure 1.10.1 - The vertebrate RAS showing the action of renin and angiotensin

converting enzyme (ACE), and inhibition by captopril (X) (Hazon et al. 1999). Also

shown in detail are the structures for elasmobranch angiotensin I and II, mammalian

Ang II has Val at position 3 (Takei et al. 1993).
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The structure of elasmobranch Ang I was first deduced in T. scyllia (Takei et al. 1993).

Elasmobranch Ang II has an asparagine residue at position 1, like teleosts, an isoleucine

residue at position 5, like mammals, and a unique proline residue at position 3

(Kobayashi and Takei 1996).

Circulating levels of Ang II in S. canicula have been calculated at 100 - 150 pg/ml

(Tierney et al. 1998). Receptors for Ang II have been suggested in the heart (high and

low affinity receptors) (Cerra et al. 2001), interrenal gland, gills and intestine (Tierney

et al. 1997), as well as in the rectal gland (Masini et al. 1993; Tierney et al. 1997), with

most binding occurring in the subcapsular region (Hazon et al. 1997a).

Ang II has been shown to have a variety of effects in elasmobranchs. Homologous Ang

II causes a dose-dependent increase in drinking rate in both S. canicula and T. scyllia

(Anderson et al. 2001). Furthermore, inhibition of ACE significantly reduces the

dipsogenic effect of the smooth muscle relaxant papaverine in the same two species

(Anderson et al. 2001).

Heterologous Ang II shows vasopressor activity in S. acanthias (Opdyke and Holcombe

1976), S. canicula (Hazon et al. 1989), and T. scyllia (Hazon et al. 1995). Homologous

Ang II shows a response almost 23 times greater than heterologous peptides in T. scyllia

(Takei et al. 1993). This pressor response seems to be mediated by catecholamines

(Section 1.12) (Opdyke and Holcombe 1976; Opdyke et al. 1981). Possible receptors for

Ang II have been identified in the tissues of the rectal gland (Tierney et al. 1997),

although Ang II had no effect on the vascular perfusion of the secretory parenchyma nor

on Cf secretion rates (Anderson et al. 2002a).
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The heart of elasmobranchs (Section 1.11) may also be affected by angiotensin.

Angiotensin II binding sites have been found in tissues of the hearts of S. canicula

(Cerra et al. 2001). The action of Ang II is potentially complex with distinct receptor

subtypes, high and low affinity, each having different distributions (Cerra et al. 2001).

These findings suggest that the RAS is an important endocrine control system in

elasmobranch osmoregulation which affects many of the organs outlined above,

although its role in the control of the rectal gland remains unclear.
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1.11 The Heart

The elasmobranch cardiovascular system consists of a single circulation of a closed

circuit. The heart consists of four contractile chambers which are arranged in the order

of sinus venosus, atrium, ventricle, and conus arteriosus running posterior to anterior

(Fig 1.11.1). The walls of all four chambers contain myocardial tissue, lacking the

smooth muscle found in the heart of teleosts (Tota 1999; Ramos 2004). Venous blood

flows to the atrium via the sinus venosus. Connecting these two chambers is the

sinoatrial orifice where a sinoatrial valve prevents the back flow of blood during atrial

systole. The atrium lies ventral to the sinus venosus and dorsal to the ventricle. The

atrioventricular orifice lies on the ventral side of the boundary between the two

chambers. The opening is circular and surrounded by two ellipsoid flaps, the

atrioventricular valves. The ventricle contains the largest amount ofmyocardial tissue of

all the chambers. The ventricle is composed of two layers of tissue: the compacta and

the spongiosa (Fig 1.11.1). The compacta is a dense layer of tissue and lies exterior to

the spongiosa which is more diffuse in structure. In S. canicula which have been

acclimated to 120% SW there is a decrease in the tissue of the spongiosa and an

increase in the tissue of the compacta as compared to fish acclimated to 100% and 70%

SW. This is coupled with an increase in the amount of collagen in the tissue (Anderson

and Good, unpublished). This change in tissue ratios could be a modification to the

more viscous blood of the volume depleted animals acclimated to increased salinity.

The conus arteriosus is the most anterior chamber and is confluent with the ventral aorta

(Tota 1999).
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Changes in environmental salinity can also affect the heart in other ways. Heart

mitochondria from a variety of species of pelagic sharks have been shown to exhibit

decreased respiratory control ratios (a marker for functional integrity of the isolated

mitochondria) at osmolalities above and below 1000 mOsm (Lewiston et al. 1979).

Increases in extracellular concentrations of organic osmolytes can also have a profound

effect on the tissues of the heart. With increasing concentrations of mannitol, sucrose,

and betaine S. acanthias showed an increase in respiratory control ratio and the rate of

oxygen uptake. However at high concentrations a decrease below basal levels was

demonstrated. This pattern was not seen with increases in extracellular urea

concentration, but was also observed with increases in concentration of TMAO. Unlike

the other osmolytes tested, urea and TMAO readily permeate the mitochondria of the

heart and therefore the cellular osmotic gradient is not present (Lea and Hillman 1990).

TMAO may therefore affect respiratory control ratios by other means. These findings

illustrate the potential consequences when animals fail to completely osmoregulate or

acclimate slowly to external salinity. It is also important to note for the planning of

experimental procedures.

The heart has been shown to affect the kidneys of elasmobranchs. The action of the

heart over the kidneys appears to be in two methods: neural reflex regulation and

endocrine regulation. These two pathways combine to show an increase in renal

clearance with increased blood volume (Peterson and Benjamin 1992).
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1.11.1 Natriuretic peptides

The natriuretic peptide (NP) system in vertebrates is antagonistic to the RAS and

consists of three types of hormones (Figure 1.11.2). Atrial natriuretic peptides (ANP)

are secreted by mammalian atria in response to an increase in central venous volume or

pressure (Olson 1999). Brain or B-type natriuretic peptide is also found in most

vertebrates, although is replaced by ventricular NP in teleosts (Takei 1999). However,

in elasmobranch fish C-type natriuretic peptide (CNP) is the only circulating natriuretic

peptide (Schofield et al. 1991; Suzuki et al. 1991b; Suzuki et al. 1992; Suzuki et al.

1994). Circulating levels of CNP in T. scyllia far exceed those recorded for any other

species (1.97 pmol ml"1) (Suzuki et al. 1994). CNP is a brain peptide in most vertebrate

species and is therefore present at very low levels in the blood plasma of other species.

This circulating CNP is believed to originate from the heart. A high molecular weight

form of CNP has been isolated from both the atrium and ventricle of the heart of S.

canicula (Suzuki et al. 1991b). The highest concentration of CNP was found in the

atrium, then the ventricle, brain, and pituitary gland respectively (Suzuki et al. 1994). In

the heart the majority of CNP is the pro-hormone CNP-115, whereas in the brain the

majority is the mature peptide CNP-22 (Figure 1.11.2). Contrasting to teleost and

mammals, most CNP in elasmobranch blood is the pro-hormone, not a processed form

(Suzuki et al. 1994). This suggests that the heart is the main storage organ for pro-CNP

which is the major circulating hormone. It is only at specific sites within tissues that the

pro-hormone is processed into other forms.
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As the only natriuretic peptide in elasmobranchs CNP has wide scope for effecting

osmoregulatory processes. Recently CNP has been shown to have effects on the

elasmobranch kidney. Wells and co-workers {In Press) illustrated that CNP caused a

glomerular diuresis, an increase in transport maxima for glucose, but no change in the

proportion of filtering glomeruli. CNP did cause significant increases in renal clearance

of urea, Na+, and CP. These effects are antagonistic to those reported for Ang II (Section

1.10).

It has been proposed that CNP may also influence the vasculature of the rectal gland

(Hazon et al. 1997b). Recently it was illustrated experimentally that CNP significantly

increased blood flow to the secretory parenchyma (Anderson et al. 2002a). CNP has

also been shown to dilate the smooth muscle of the capsular region in the rectal gland of

S. acanthias (Evans and Piermarini 2001). This could affect the degree of perfusion

seen in the inner regions of the gland by reducing pressure in the capillaries, and

therefore potentially affect secretion rate.

CNP also has direct effects on the secretory tubules of the rectal gland (Solomon et al.

1992b) (Figure 1.5.1). Endogenous CNP has been shown to stimulate rectal gland

secretion 7 to 8 times above basal levels in isolated perfused glands of S. acanthias

(Solomon et al. 1992a) via guanylyl cyclase-linked receptors (Gunning et al. 1997).

Similar stimulation with CNP was also seen in S. canicula (Anderson et al. 1995b).

CNP released from the heart can therefore have a direct influence on the secretory

activity of the rectal gland.
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A slightly different model of stimulation has been suggested for the rectal gland of S.

acanthias. In response to a volume stimulus the tissues of the heart release CNP. This

circulates to the rectal gland where it stimulates the nerves to release VIP (Section 1.5).

CNP and VIP then both induce effects on the secretory tissues of the rectal gland and

activate NaCl secretion (Silva et al. 1996) (Figure 1.5.1). Experimental evidence for the

presence of a receptor mechanism in the atrial and cardiac region which triggers the

sequence to activate glandular secretion has been gathered (Erlij and Rubio 1986).

It is important to note here that VIP does not stimulate the rectal glands of all

elasmobranch species; this is a species specific model of activation although the

outlying principles on the direct effects of CNP may be extrapolated to elasmobranchs

in general. Unlike S. acanthias, the rectal glands of S. canicula and R. clavata have been

shown to be unaffected by VIP (Anderson et al. 1995a).

The rectal glands of both S. canicula and R. clavata are stimulated by an intestinal

factor which was first termed rectin, but has been identified as scyliorhinin II (Anderson

et al. 1995a) (Figure 1.5.1). Scyliorhinin II has been isolated from the intestine of S.

canicula and Torpedo marmorata (Conlon and Thim 1988; Anderson et al. 1995a).

The different intestinal peptides which stimulate the rectal glands of S. canicula and S.

acanthias are perhaps a reflection of the difference in feeding behaviour and therefore

the resulting salt loads: S. canicula is typically a gorge feeder, whereas S. acanthias

does not gorge feed.
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Regardless of which intestinal factor they react to, elasmobranch rectal glands are

stimulated to secrete NaCl by CNP, both directly and indirectly. The heart must

therefore have a role to play in the overall osmoregulatory strategy of elasmobranchs,

principally as a major source of one of the main osmoregulatory hormones, CNP, but

also exerting neural control over other organs. CNP is possibly the most important

endocrine factor with regards to the control of rectal gland secretion (Section 6.1).
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1.12 Catecholamines

Catecholamines are secreted by the chromaffin tissue in the elasmobranch interrenal

gland. They have been shown to increase blood flow to the gills of S. canicula (Davies

and Rankin 1973), and decrease blood flow to the gut of S. acanthias (Holmgren et al.

1992). The vasculature of the rectal gland has also been shown to be constricted by

catecholamines (Shuttleworth 1983).

The principle catecholamines in elasmobranchs are adrenaline and noradrenaline. Both

are known to have major effects on blood pressure: increasing dorsal aortic blood

pressure and decreasing coeliac arterial blood flow in S. acanthias (Holmgren et al.

1992). Branchial vasculature can be manipulated by the action of adrenaline and

noradrenaline. Both of these hormones appear to act via (3-adrenoceptor-mediated

vasodilation (Davies and Rankin 1973; Capra and Satchell 1977). This vasodilatory

response masks a smaller a-adrenoceptor-mediated vasoconstriction (Davies and

Rankin 1973; Capra and Satchell 1977). Adrenaline has been shown to have effects on

the kidney, reducing the proportion of filtering glomeruli but causing an overall diuresis

in S. canicula (Brown and Green 1987).

Two of the major osmoregulatory peptides have been shown to affect catecholamine

release. Circulating levels of noradrenaline increase 15-fold in S. acanthias in response

to CNP (McKendry et al. 1999). Ang II has been shown to increase plasma

concentrations of adrenaline and noradrenaline in S. acanthias (Bemier et al. 1999).

Given that two of the major osmoregulatory hormones affect catecholamine release

from chromaffin tissue, and that catecholamines affect blood flow and function of

different organs, it is likely that they play a role in mediating osmoregulatory responses.
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1.13 Objectives

Elasmobranchs require the combined actions of the gills, gut, rectal gland and kidney in

order to maintain osmotic stasis and alter osmolality during changes in salinity. There

appears to be scope for interspecific differences in the processes behind this. The aim of

this study was to examine the differences between a partially and a fully euryhaline

species in terms of their osmotic profiles at different salinities, and the processes by

which these are achieved and maintained. Specific interest was given to the rectal gland

due to its role in Na+ and CI" balance, and the difference in activity between SW and

FW. The specific aims are:

1) To produce replicable chronic salinity transfer protocols for S. canicula to 80,

100, and 120% SW; and for C. leucas to FW and SW in captivity. Also to

produce experimental protocols for the acute transfer of both species to 100%

SW from all chronic acclimation conditions.

2) To produce plasma osmotic profiles for S. canicula chronically acclimated to 80,

100, and 120% SW conditions; and for C. leucas in FW and SW. Also, to gain

equivalent data for both species during acute salinity transfer to 100% SW.

3) To assess blood volume in S. canicula during chronic and acute salinity

transfers.

4) To measure in vivo rectal gland secretion rates of S. canicula during chronic and

acute salinity transfer.
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5) To examine the histology of the rectal gland from both species chronically

acclimated to the different salinities.

6) To measure maximal Na+, K+-ATPase activity in the gills, gut, rectal gland, and

kidney of both species chronically acclimated to the different salinities.

7) To measure oxygen consumption of the rectal gland in both species chronically

acclimated to the different salinities, measure what proportion of that was

attributable to Na+, K+-ATPase, and to asses the effects of CNP on both

parameters.
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Chapter 2: Haematic parameters



2.1 Introduction '. .j

As outlined above, elasmobranch fish are able to selectively alter the concentrations of

key osmolytes in relation to the surrounding environment (Section 1.2). Therefore, in

order to accurately assess the roles of specific organs in different environments it is

necessary to produce plasma osmotic profiles of elasmobranchs from different salinities

and, importantly, during acute transfer. For only by quantifying the relative

concentrations of the plasma osmolytes and highlighting the differences between

animals from different salinities can the relative role of the osmoregulatory organs be

deduced. Hazon and Henderson (1984) published an osmotic profile for S. canicula

following 14 day acclimations to final conditions for a series of environmental salinities

(Table 2.1.1). This clearly illustrates the modifications in concentrations of the major

plasma osmolytes in response to salinity change.

As previously stated, the reduction in overall plasma osmolality associated with

acclimation to reduced salinities is principally achieved through reductions in the

concentrations of urea, Na+, and CP. Concentrations of these osmolytes are increased

during acclimation to increased salinity. Interestingly, the data presented for S. canicula

shows that the proportional content of Na+ and CF in the plasma is relatively constant

between SW and hypersaline conditions, and also at hyposaline conditions down to 50%

SW, when their relative abundance is increased. This suggests there is a critical point at

which further reductions in salinity cause a shift in the relative abundance of these ions

in the plasma. The relative abundance of urea decreases with salinity (Table 2.1.2).

Similar trends were described in the more euryhaline species H. portusjacksoni during

acclimation to 50% SW (Cooper and Morris, 1998).
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Percentage Osmolality Na+ CI Urea

SW (mOsm Kg"1) (mmol I"1) (mmol r1) (mmol I"1)

140% 1341 378 383 468

120% 1168 353 363 376

100% 970 279 298 311

90% 846 223 239 280

80% 754 211 213 209

70% 684 199 202 160

60% 600 197 199 120

50% 503 184 186 82

Table 2.1.1 - Plasma osmotic profile of S. canicula following 14 day acclimation to

final salinities. Acclimation was via 10% increments in salinity every 10 days (Hazon

and Henderson, 1984).
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Species

and

salinity

Environmental

osmolality

(mOsm Kg"1)

Plasma

osmolality

(mOsm Kg"1)

Percentage contribution

to overall osmolality (%)

Na+ CI" Urea

S. canicula

140% SW 1380 1341 28.2% 28.6% 34.9%

120% SW 1184 1168 30.2% 31.1% 32.2%

100% SW 975 939 28.7% 30.7% 32.1%

80% SW 795 754 28.0% 28.2% 27.7%

50% SW 500 503 36.6% 37.0% 16.3%

C. leucas

SW 1024 1068 27.0% 27.7% 34.6%

FW = 60 641 32.4% 31.7% 30.0%

H. signifer

= 60% SW = 600 571 40.5% 38.5% 0.1%

FW oCMH 416 40.1% 39.4% 0.1%

P. motoro

= 40% SW = 380 378 43.9% 47.6% 0.003%

FW = 20 349 45.0% 46.7% 0.002%

Table 2.1.2 - Proportional content of major plasma osmolytes in S. canicula and C.

leucas from different salinities (Hazon and Henderson, 1984; Pillans and Franklin,

2004). Also shown are equivalent values in a ureotelic (H. signifer) and an

ammoniotelic (Potamotrygon motoro) species of FW stingray (Tarn et al., 2003).
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This trend has also been reported for the fully euryhaline species C. leucas caught in the

wild (Pillans and Franklin, 2004). FW animals also show increases in the proportion of

Na+ and Cf, and a reduction in the proportion of urea in blood plasma relative to SW

animals (Table 2.1.2). These differences, particularly in the relative abundance of urea,

are smaller than those described for the marine species S. canicula. Regulation of the

levels of these osmolytes is therefore of great importance in elasmobranch euryhalinity.

The inability of FW elasmobranchs to retain elevated concentrations of urea in the

plasma is again highlighted here (Table 2.1.2), and may be the key factor which limits

their capacity for osmotic acclimation to increased salinity.

In this study osmotic profiles were produced for S. canicula chronically acclimated to

both hypo- (80% SW) and hypersaline (120% SW) conditions, as well as those of 100%

SW animals. Furthermore, profiles were produced for S. canicula from all three

environmental conditions during acute transfer to 100% SW. Profiles were also

produced for captive C. leucas acclimated to FW and SW.

Upon exposure to reduced salinities elasmobranchs necessarily encounter an increase in

the gradient for the osmotic influx ofwater across semi-permeable surfaces. Despite the

regulatory mechanisms described above (Sections 1.2 and 6) this can result in a dilution

of intra- and extracellular fluids, especially in more stenohaline species. This is well

illustrated by a doubling of plasma volume and an 11% increase in body mass within 24

hours after transfer from 100 to 75% SW in the reasonably euryhaline species H.

portusjacksoni (Cooper and Morris, 2004a). Furthermore, significant decreases in the

haematocrit and whole blood haemoglobin concentration of H. portusjacksoni
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acclimated to 100% SW were seen within 24 hours of transfer to both 50 and 75% SW,

although a return to control values was seen within 72 hours (Cooper and Morris, 1998).

Decreases in haematocrit following chronic (3/4 day) acclimation to 50% SW have also

been described in R. erinacea (Goldstein and Forster, 1971), although no decrease was

seen throughout 7 day transfer in the estuarine species Trygonoptera testacea (Cooper

and Morris, 1998). Marine S. canicula showed no changes in blood haematocrit after

long term (14 day) acclimation to reduced salinity (Hazon and Henderson, 1984).

Neither were any significant differences noted in the haematocrits of C. leucas

populations from SW and FW environments (Thorson et al., 1973). This suggests that

any persistent effect salinity transfer has on haematocrit may be highly species specific.

Furthermore any variation in blood haematocrit is likely to occur within the early stages

of acute transfer, with levels possibly returning to basal as animals fully acclimate to the

new environmental conditions. In order to assess these changes accurately it is

necessary to have an understanding of the blood volume of elasmobranchs, how it is

influenced by salinity, and over what timescale changes occur. This topic is discussed in

detail below (Section 3.1). Quantification of blood volume at different salinities would

allow an assessment of the degree of concentration and dilution of extracellular body

fluids elasmobranchs incur during salinity transfer.

Salinity transfer affects intracellular as well as extracellular fluid levels, as previously

discussed (Section 1.2). Changes in plasma and erythrocyte fluid ionic composition

during acute transfer have been found to be quite different (Table 2.1.3) (Forster and

Goldstein, 1976; Boyd et al., 1977). This is to be expected as the plasma membranes of

different cells in different species will permit varying levels of diffusion for individual
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osmolytes. The maintenance of erythrocyte osmolyte concentrations is crucial in

determining haemoglobin function and thus respiratory gas transport (Nikinmaa, 1990;

Scholnick and Magnum, 1991). For example, concentrations of urea and TMAO are

typically greater in erythrocytes than in blood plasma, and elasmobranch haemoglobin

is dependent on these high urea concentrations for optimal efficiency (Yancey and

Somero, 1979; Yancey and Somero, 1980; Nikinmaa, 1990). However in H.

portusjacksoni transferred to reduced salinities, despite the plasma dilutions described

above, there was no change in O2 consumption rate, blood O2 partial pressure, cardiac

output, or the arterial-venous O2 content difference (Cooper and Morris, 2004b). Cooper

and Morris (2004b) concluded that O2 delivery to the tissues was facilitated by

decreased blood O2 affinity that could not be simply ascribed to changes in the osmolyte

concentration, as whole blood haemoglobin concentration in vitro was unaffected by

changes in intra-erythrocyte fluid urea or TMAO level. This shows that changes in

elasmobranch haematic parameters during salinity transfer are not only due to changes

in extra- and intracellular osmolyte concentration. It also highlights the species specific

nature of response to salinity transfer and must be borne in mind when extrapolating

findings from individual species of elasmobranch.

73



Sample
Percentage

water (%)

K+

(mmol I"1)

Na+

(mmol I"1)

Amino acids

(mmol 11)

Urea

(mmol I"1)

Plasma

100% SW 92.7 4.96 299 11 361

50% SW 94.9 4.25 217 12 264

Erythrocytes

100% SW 68.1 120.8 51 280 413

50% SW 74.3 135.7 33 150 283

Table 2.1.3 - Osmolyte concentrations in the blood plasma and erythrocyte fluid of the

marine species R. erinacea acclimated to 100 and 50% SW (Forster and Goldstein,

1976).
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It is clear therefore that the effects of the haemodilution and changes in concentration

gradients associated with salinity transfer in elasmobranchs are wide reaching. The

magnitude of change in individual parameters may be highly dependent on the species

and its degree of euryhalinity. For this reason osmotic profiles of both a partially (S.

canicula) and a fully euryhaline (C. leucas) species at different salinities were produced.

Furthermore, as the early stages of salinity transfer have been shown to be the periods

where the majority of modifications occur, profiles were made during these stages,

where species characteristics permitted.

In order to achieve this, protocols were developed for maintaining both species in

captivity. S. canicula is relatively easy to keep in captivity with a large proportion of

laboratory studies on elasmobranchs being conducted on this species (Wright, 1973;

Bentley et al., 1976; Gutierrez et al., 1988; O'Toole et ah, 1990; Tort et al., 1991;

Brown and Green, 1992; Armour et al., 1993b; Hentschel and Zierold, 1993; Anderson

et al., 1995a; Bernier et al., 1999; Ramos, 2004). However, despite the relative ease of

capture and maintenance in captivity of this species few studies have been conducted on

the effects of captivity on S. canicula. Gutierrez and co-workers (1988) examined

plasma levels of insulin and some important metabolites during a 1 year period of

captivity, relating fluctuations to different periods of the breeding season. This study

also demonstrated the longevity of S. canicula in captivity.

One of the major influences of captivity on elasmobranchs is the possible effect on

feeding rates. This is of great importance for studies of osmoregulation due to the

influence of dietary intake on plasma osmolality (Section 1.4). Furthermore, the nature

of the diet can influence the morphology of (MacKenzie, 1996), and Na+, K+-ATPase



activity and expression in the rectal gland (MacKenzie et al., 2002). The nature of these

changes is discussed below (Sections 5.1 and 4). S. canicula is a gorge feeding species

and as such will endure periods of starvation as well as periods of intense feeding. The

active feeding period of the annual cycle appears to peak in September and October for

European populations, and increases in plasma insulin levels coincide with this

(Gutierrez et al., 1988). Outside of this stage of the annual cycle periods of starvation

and relative inactivity are not uncommon (Lyle, 1983). This ability to cope with periods

of starvation and gorge feeding makes the species ideal for captivity due to the low

maintenance required.

In stark contrast to S. canicula, very little is known on the biology of C. leucas and the

effects of captivity. The methods used for maintaining elasmobranchs in captivity have

evolved greatly over the last 40 years, particularly for larger species such as C. leucas.

This is reflected by the dramatic increase in the diversity of species held by major

aquaria. In 1963, Eugomphodus Taurus and G. cirratum were listed as the only large

species of elasmobranch maintained in captivity for over five years (Clark, 1963). In

1980, Sea World in Florida was successfully maintaining six large species of sharks

(Schmid et al., 1999). Today, most public aquaria house a sizeable elasmobranch

population, and in many this represents the major attraction. In 2005, 2176 individuals

from 44 different species of elasmobranch were held in public aquaria in the USA

(AES, 2005). This increase in success is largely due to improvements in clinical

treatments, advances in tank and filtration designs, and a greater depth of experience

and knowledge of elasmobranch biology. However, despite these advances some

species (notably large carcharhinids) remain difficult to maintain in captivity for

extended periods.



Although protocols for keeping S. canicula in captivity and for salinity transfer are well

established (Hazon and Henderson, 1984; Tierney et al., 1998; Anderson et al., 2002a;

Wells et al., 2002), similar protocols for C. leucas have not been produced. One of the

main objectives of this study was therefore to produce protocols for the maintenance of

C. leucas in captivity and for chronic salinity transfer from FW to SW. Once these had

been established plasma osmotic profiles could be produced for both species following

chronic acclimation to salinity transfer. In S. canicula similar profiles could also be

produced during acute transfer to salinity change. Blood haematocrit was also measured

for both species during these transfers in order to assess the volaemic effects of salinity

transfer.
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2.2 Materials and methods

All experiments on both S. canicula and C. leucas were conducted in accordance with

UK Home Office regulations on the use of animals in scientific procedures (1986). Data

for all parameters were collected from each individual within the experimental groups.

2.2.1 Protocol for S. canicula

S. canicula were captured by trawler from the English Channel, Irish Sea, and North

Sea areas off of the British coastline. Animals were held in recirculating aquaria of

varying size prior to transportation. All animals were transported in custom built water

tight transportation tanks bubbled with oxygen (O2) or 95% O2 and 5% Carbon dioxide

(CO2) (BOC Gases, Windlesham, Surrey) to the Gatty Marine Laboratory, St Andrews,

Fife.

The holding tank in St Andrews was a 2000 1 flow through tank bubbled with air. SW

was pumped from St Andrews Bay and held on site prior to flow into tanks. Flow rate

into the tank was 90 -100 1 h"1. Animals were fed with Loligo forbesi, approximately 4 g

100 g"1 body mass, twice a week. S. canicula is a largely sedentary species, particularly

in captivity, which typically gorge feeds and displays no aggression to conspecifics. For

these reasons animals can be kept at higher stocking densities and fed less frequently

than C. leucas. Animals were held in the holding tank for between 1 and 3 weeks prior

to experimentation with a maximum stocking density of 40 animals per tank.

SW from St Andrews Bay has a variable osmolality depending on local weather

conditions, more so than in Moreton Bay (QLD, Australia). This is due to the

topography of the areas, as well as the frequency of rainfall. For the purpose of this
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study the osmolalities used in all transfers were manipulated, and tanks were set up as

recirculating in order to maintain constant environmental conditions. Water of 980

mOsm Kg"1 was therefore defined as 100% SW for St Andrews, with increases in

salinity being made via the addition of Red Sea Salt (Interpet, Dorking, Surrey).

Decreases in salinity were made via the addition of tap water. In this manner absolute

values of osmolality were given to percentage dilutions of SW for the entirety of the

study (Table 2.2.1.1).

Final SW concentrations of 80 and 120% were taken to represent hypo- and hypersaline

conditions as previous work on S. canicula had shown these salinities to have

significant effects on osmoregulation without causing animal mortality (Anderson et al.,

2002a; Wells et al., 2002).

79



Percentage SW Osmolality (mOsm Kg"1)

120% 1176

110% 1078

100% 980

90% 882

80% 784

Table 2.2.1.1 - Osmolalities used for percentage dilutions of seawater during studies on

S. canicula.
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2.2.1.1 Chronic transfer

A Fluval 403 filtration pump (Rolf C. Hagen Incorporated, Montreal, Canada) filtering

at 1200 1 h"1 was attached to 300 1 tanks which had been manipulated to 110 or 90%

SW. S. canicula were then transferred to the tanks at a stocking density of 8 animals

per tank. After 7 days animals were moved to identical tanks containing 120 or 80%

SW where they were held for 14 days prior to experimentation. Animals were not fed

during transfer to avoid the endocrine effects of gorge feeding (Section 1.4), and to

avoid overloading the filtration system.

2.2.1.2 Acute transfer

A Fluval 103 (Rolf C. Hagen Incorporated) filtering at 390 1 h"1 was attached to 2 x 40 1

tanks connected in series (Figure 2.2.1.1). Both tanks were filled with water of the

appropriate salinity, with air bubbled into the top tank which housed the animal. This

produced an isolated 80 1 recirculating system for individual experimental animals.

To initiate the acute transfer the control tap was opened flowing 100% SW into the top

tank at 18 - 22 1 h"1. Excess volume was removed from the system via an overflow pipe

attached to the bottom tank. This produced an isolated 80 1 flow through system for

individual experimental animals. The time taken to turnover the entire tank volume was

therefore between 3.6 and 4.4 hours; although the environmental osmolality took

between 4 and 8 hours to reach that of 100% SW (Figure 2.3.2.1).
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Airline

Figure 2.2.1.1 - Tank setup for acute transfer experiments on S. canicula. 2 x 40 1 tanks

in series which could be used as both a recirculating and a flow through system.

Opening the control tap initiated the flow of 100% SW into the top tank thereby

converting environmental salinity to that of 100% SW throughout the system. The

osmotic profile of the flow through system during acute transfer is detailed below

(Figure 2.3.2.1).
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2.2.2 Protocol for C. leucas

Juvenile C. leucas between 60 and 90 cm total length (TL) (mean = 83.4, SE = 12.9, yi =

28) were captured with rod and line in the FW (3 mOsm Kg"1) reaches of the Brisbane

River, Queensland, Australia (Pillans et ai, 2005). Captured animals were placed in a

400 1 tank, filled with water from the site of capture, and bubbled with a mixture of 95%

oxygen (O2) and 5% carbon dioxide (CO2) (BOC Gases Australia, North Ryde, NSW,

Australia). Animals were then transferred to an identical tank in a vehicle and

immediately transported to the holding aquarium at the University ofQueensland.

The holding aquarium contained three identical recirculating 10000 1 tanks, each with a

200 1 submerged coral rubble filter, a 200 1 trickle BioBall (Polytech, Brisbane, Qld,

Australia) filter, and a venturi action foam fractionator (Aquasonic, Wauchope, NSW,

Australia) running in parallel, all powered by LZS4-6 pumps (Aquasonic). In addition

to the flow provided by the filtration, a circulating current was produced in the tanks by

a hose attached to one of the pumps (Figure 2.2.2.1). Water was filtered at a rate of

1,800 - 2,000 1 h"1, and tested daily for temperature and levels of dissolved O2 (YSI 55

DO, YSI Incorporated, Yellow Springs, OH, USA), nitrites, nitrates, and ammonia

(Aquasonic, Wauchope, NSW, Australia).
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Foam fractionator

Figure2.2.2.1-RecirculatingtanksetupforholdingC.leucas,showingtheactionofallfiltrationmechanisms.Theaquariumcomprised3x 100001holdingtanks,eachwiththeabovesetup.
co



All animals were fed ad libitum with Mugil cephalus and/or Nematalosa erebi from the

Brisbane River or Wyndham Creek (Qld, Australia) every 4 days. Animals in FW were

fed either FW M. cephalus or N. erebi; animals undergoing transfer were fed with

estuarine M. cephalus; animals in SW were fed with SW M. cephalus. C. leucas is a

ram ventilating species, as well as an active predator. Animals which were not fed ad

libitum suffered noticeable decreases in body condition and reduced plasma osmolality

(Section 1.4), and for these reasons animals were fed throughout the period of captivity.

Stocking densities were kept to a maximum of 6 animals per tank to ensure the animals

were fed ad libitum and to minimise inter-individual aggression in the tanks.

During this study comparisons are drawn between the populations of C. leucas in the

Brisbane River and that in Lake Nicaragua, Rio San Juan. The Brisbane River has a

length of approximately 70 Km which is accessible to C. leucas, with sizeable

fluctuations in salinity (113 - 231 mOsm Kg"1) occurring beyond 45 Km upstream from

the river mouth (Pillans and Franklin, 2004). At the site of capture tidal influence was

over 1.5 m during spring tides with an average salinity of 3 mOsm Kg"1. However,

given the high degree of tidal influence and relatively short length of the river system,

individual animals may have had markedly different levels of exposure to more saline

conditions. Conversely, Lake Nicaragua is over 180 Km from the mouth of the Rio San

Juan and is a body of completely FW over 165 Km in length (Thorson et al., 1973). The

two river systems therefore represent completely different FW environments for C.

leucas.
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2.2.2.1 Chronic transfer

One of the three 10000 1 tanks contained FW collected from the Brisbane River (3

mOsm Kg"1, 0.5 mmol l"1 Na+, 0.1 mmol f1 CI"), the other two contained diluted SW

(400 mOsm Kg"1). SW was collected from Moreton Bay and diluted with water from the

Brisbane River to obtain the desired salinity. All animals were left to acclimate for 2

days in FW in the aquarium prior to experimentation.

For acclimation to SW, animals were then transferred to the tanks containing dilute SW

(around 400 mOsm Kg"1) and left for 24 hours. After this period the osmolality of the

water was raised 100 mOsm Kg"1 every 24 hours via the addition of SW until the tank

water had an osmolality of 600 mOsm Kg"1. The osmolality of the tank water was then

increased by 50 mOsm Kg"1 every 24 hours until 800 mOsm Kg"1. This was believed to

be the most sensitive period of the transfer as the external media neared the iso-osmotic

point of the fish. The water was then increased to 1000 mOsm Kg"1 in increments of 100

mOsm Kg"1 every 24 hours. Animals were left to acclimate in SW (410 - 440 mmol l"1

Na+, 540 - 560 mmol l"1 CI", 7.4 mmol l"1 K+,) for a period of 7 days prior to sampling

(Pillans et al., 2005).

For FW acclimation, C. leucas were held in the FW tank, under identical conditions for

the same period of 16 days. Records of dates of capture and transfer for individual

animals were kept, with animals distinguished by individual tags (Suntag, Department

of Primary Industries and Fisheries, Qld, Australia) at the base of the dorsal fin.
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2.2.3 Chemicals and equipment

Unless otherwise stated all chemicals were obtained from Sigma (Sigma Chemical

Company, Poole, Dorset) and all solutions and buffers were made using deionised water

(Milli Q reagent water system, Millipore (UK) Ltd., Watford, Herefordshire). Ringer

solution for S. canicula at 100% SW contained (in mM): 240 NaCl, 7 KC1, 4.9 MgCl2,

0.5 Na2HP04 (BDH Chemicals (UK) Ltd., Poole, Dorset), 0.5 Na2S04, 360 urea, 60

TMAO, 10 CaCl2, and 2.3 NaHC03; pH 7.6. Ringer for S. canicula at 80 and 120% SW

was adjusted through the following alterations (in mM): 212 NaCl and 210 urea for

80% SW; 358 NaCl and 376 urea for 120% SW (Hazon and Henderson, 1984). Body

mass was measured accurate to 0.5 g on a QBW-1500 digital balance (Adam Equipment

Co. Ltd., Bletchley, Milton Keynes), rectal gland mass was measured accurate to 0.001

g on a B154 digital balance (Mettler Toledo UK, Beaumont Leys, Leicester).

Ringer solution for FW C. leucas contained (in mM): 213 NaCl, 3 KC1, 2.5 MgCl2, 1

Na2HP04, 0.5 Na2S04, 181.1 urea, 30 TMAO, 2.5 CaCl2, 10 NaHC03, and 55.5

glucose; pH 7.6. Ringer for SW C. leucas was adjusted through the following

alterations (in mM): 279.9 NaCl, 6 KC1, 350 urea, and 58.8 TMAO (Pillans and

Franklin, 2004). Body mass was recorded accurate to lOOg on a 235 6S mechanical

scale (Salter Brecknell, Fairmont, MN, USA), rectal gland mass was not recorded due to

a lack of suitable equipment on site (subsequent measurement of slices for respirometry

was conducted accurate to 0.001 g on a SA 210 digital balance (Scientech Inc. Boulder,

CO, USA).
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2.2.4 Surgical procedures

S. canicula were anaesthetised in a 5 1 induction bath containing 120 ppm (by mass)

ethyl 3-aminobenzoate methanesulphonate salt (MS-222) with an equal mass of

NaHCCb dissolved in the appropriate salinity of SW. Upon induction, opercular rate

slowed, equilibrium was lost, and a surgical level of anaesthesia was deemed to have

been reached when there was no reflex to a firm pinch on the dorsal fin. The animals

were then placed on a surgical tray with a 5 1 recirculating volume of anaesthetic (50

ppm MS-222 and 50 ppm NaHCCL dissolved in the appropriate salinity SW) washing

over the gills.

An incision was made in the flank of the animal from posterior of the pectoral fin to the

pelvic girdle. This incision was cauterised (RB 708, Rimmer Brothers, London) to

prevent blood loss during the experiment. The stomach and valvular intestine were

retracted from the body cavity and the coeliac artery was then located, this runs parallel

to the splenic vein along the stomach wall to the spleen. A Mersilk tie (Genusxpress,

Bridge of Don, Aberdeen) was placed around the artery, as close as possible to the

stomach wall, and fastened with three alternating half-hitches. A second tie was placed

around the artery close to the gonad tissue and left unfastened. An incision was then

made between the two ties and a 60cm cannula with an obliquely cut tip was passed into

the artery. All cannulae were Portex polythene tubing of 0.96 mm outer diameter (SIMS

Portex Ltd, Hythe, Kent) and had been filled with Ringer solution of the appropriate

salinity and 200 IU ml"1 of heparin. The cannula was fed into the artery until the tip was

in the dorsal aorta, or close to it. The second tie was then fastened in a similar fashion to

the first, with a third tie fastened around the cannula as close to the dorsal aorta as
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possible. Once pressure was established within the cannula the protruding end was

sealed with a coloured pin.

The mesenteric artery was then located and cannulated in a similar fashion to the

coeliac, using a different coloured pin to block the protruding end. The mesenteric

artery branches from the dorsal aorta posteriorly to the coeliac, and supplies the valvular

intestine.

Animals used in haematic parameter studies were also used to assess rectal gland

secretion rate (Chapter 4). The surgical procedure for this is outlined below (Section

4.2.2). After all cannulations animals were sutured with polyamide thread

(Genusxpress) using an appropriate number of stitches and left in the salinity transfer

tanks (Figure 2.2.1.1) for 24 hours after surgery under a 12 hour photoperiod.
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2.2.5 Analysis and collection

For S. canicula, 200 pi of blood was withdrawn via the coeliac arterial cannula

(mesenteric was used if no sample could be obtained) for osmolyte analysis. Blood and

water samples were collected after 0, 2, 6, 8, and 24 hours for basal levels and 0, 2, 4, 6,

8, 10, and 12 hours for acute transfer; the 24 hour basal and 0 hour transfer samples

being the same sample. An equivalent volume of the appropriate salinity Ringer

solution was then injected via the same cannula. Blood samples were centrifuged at

10490 g for 3 minutes and the plasma portion was retained. Osmolality and Cf

concentration were assessed immediately, samples were then stored at -70 °C until

subsequent urea analysis. Osmolalities were measured via a freezing point osmometer

(Roebling, Messtechnik, Berlin, Germany), Cf concentration via titration (Corning 925

Chloride Analyser, Halstead, Essex), and urea concentration via assay kit UR107

(Randox, Crumlin, Co. Antrim). Haematocrit was measured as the proportional volume

of erythrocytes within a blood sample via centrifugation for 3 minutes (Micro

Haematocrit MK IV, Hawksley and Sons Ltd, Sussex).

For C. leucas, blood samples (approximately 10 ml) were taken from the caudal vein

and haematocrit was immediately determined. Blood was then centrifuged at 9000 g for

3 minutes with the plasma portion being retained and stored at -80 °C until subsequent

osmolyte analysis. Osmolalities were measured via a semi-micro freezing point

osmometer (Knauer AD1, Berlin, Germany), whilst concentrations of Na", CF, and urea

were measured via a modular multiple biochemistry analyser (Roche Diagnostics

Australia Pty. Ltd., Castle Hill, NSW, Australia). Haematocrit was measured in an

identical manner to S. canicula.
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2.2.6 Statistical analysis

All data are presented as means ± the standard error of the mean (SEM). For the

osmotic data gathered on S. canicula statistical analysis was performed via one-way

analysis of variance (ANOVA) and a Tukey-Kramer multiple comparisons (Tukey) post

hoc test for basal levels (InStat, GraphPad Software, San Diego, CA) (significance was

denoted as * P < 0.05, ** P < 0.01, and *** P < 0.005). Data gathered during the acute

transfer studies was analysed in two ways: differences between the two experimental

groups and the control group were analysed via one-way ANOVA and a Tukey post hoc

test (significance was denoted as * P < 0.05, ** P < 0.01, and *** P < 0.005);

differences between values during transfer and at time 0 within each group were

analysed via a one-tailed unpaired students t-test with a Welch standard deviation

(Welch) correction factor (significance was denoted as + P < 0.05, ^ P < 0.01, and +++ P

< 0.005) (InStat). Once differences had occurred they persisted throughout the transfer,

although for clarity differences are only noted at the first and last instances.

Osmotic data on C. leucas was statistically analysed via a two-tailed student's t-test

with Welch correction factor (InStat). Significance was denoted as P < 0.05, ** P <

0.01, and *** P < 0.005.
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2.3 Results 1

The results for haematic parameters are presented in two sections: a comparison of basal

levels in both S. canicula and C. leucas acclimated to different salinities; and a

comparison of acute transfer in S. canicula from all salinities to 100% SW.

2.3.1 Basal levels

Haematic parameters of S. canicula acclimated to 80, 100, and 120% SW are presented

below (Table 2.3.1.1). Blood plasma osmolality was found to be highly significantly

decreased upon acclimation to 80% SW, and highly significantly increased upon

acclimation to 120% SW. Similar trends are seen in the values for plasma CI" and urea

concentrations at the three salinities Acclimation to 80% SW resulted in a highly

significant decrease in blood haematocrit, acclimation to 120% SW resulted in an

extremely significant increase in blood haematocrit.

Haematic parameters of captive C. leucas acclimated to FW and SW are presented

below (Table 2.3.1.2). Captive animals acclimated to SW show a significant increase in

blood plasma osmolality as compared to those in FW. Plasma concentrations ofNa+ and

CF are both significantly higher in SW acclimated animals. Plasma urea levels were

also significantly higher in SW acclimated animals when compared to those in FW. No

significant difference was seen between the blood haematocrit of animals from FW and

SW.

The percentage contribution of major osmolytes to overall osmotic pressure was then

calculated for both species and compared to previously reported values (Table 2.3.1.3).
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Salinity Osmolality CI" Urea Haematocrit

(SW) (mOsm Kg-1) (mmol I"1) (mmol I"1) (RBC %)

80% 776 ± 2 *** 231 ± 2 *** 212 ±4 *** 13.1 ±0.5**

100% 1003 ±5 308 ±2 302 ±7 16.6 ±0.5

120% 1137 ± 11 *** 338 ± 5 *** 357 ± 9 *** 21.5 ±1.2 ***

Table 2.3.1.1 - Haematic parameters of S. canicula after >14 day acclimations to 80,

100, and 120% SW. All values are presented as means ± SEM (n - 42, 22, and 22

respectively for osmolality, CI", urea, and haematocrit). Haematocrit was deduced as

percentage red blood cells (RBC %). Statistical analysis was performed via one-way

ANOVA and a Tukey post hoc test. Significant differences from values for 100% SW

were denoted as * (P < 0.05), ** (P < 0.01), and *** (P < 0.005).
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Osmolality Na+ CI Urea Haematocrit

Salinity
(mOsm Kg"1) (mmol I"1) (mmol I"1) (mmol I"1) (RBC %)

FW 588 ± 13 192 ±5 216 ±5 151 ±6 20.7 ±1.0

SW 940 ± 10 *** 304 ± 4 *** 315 ±3*** 293 ± 9 *** 18.3± 1.2

Table 2.3.1.2 - Haematic parameters of captive C. leucas acclimated to FW and SW.

All values are presented as means ± SEM (n = 13 and 11 respectively, with the

exception of SW haematocrit, n = 9). Haematocrit was deduced as percentage red blood

cells (RBC %). Statistical analysis was performed via a two tailed unpaired student's t-

test with Welch correction factor. Significant differences from values for FW were

denoted as * (P < 0.05), ** (P < 0.01), and *** (P < 0.005).
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Species

and

salinity

Environmental

osmolality

(mOsm Kg"1)

Plasma

osmolality

(mOsm Kg"1)

Percentage contribution

to overall osmolality (%)

Na+ CI" Urea

S. canicula

80% SW 784 776 29.8 27.3

100% SW 980 1003 30.7 30.1

120% SW 1176 1137
—

29.7 31.4

C. leucas

FW « 0 588 32.6 36.8 25.7

SW 980 940 32.4 33.5 31.2

Table 2.3.1.3 - Percentage contributions of major plasma osmolytes in chronically

acclimated captive S. canicula and C. leucas from different salinities. Acclimation

periods were 14 and 7 days respectively at the final salinities.
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2.3.2 Acute transfer levels

All figures for acute transfer have had the values for animals acclimating from 80 and

120% offset on the time axis for clarity; the measurements are all taken at equivalent

time periods. It was necessary to analyse the environmental conditions associated with

the acute transfer studies in order to put the results for haematic parameters into context

(Figures 2.3.2.1 and 2). During acute transfer the environmental osmolality increased

for animals acclimating from 80% SW and decreased for those acclimating from 120%

SW. Environmental osmolality for animals acclimating from 100% SW did not vary

significantly throughout acute transfer. Environmental osmolality had significantly

changed for both experimental groups during the first 2 hours of transfer. The

osmolality of the 120% SW environment was not significantly different to 100% SW

after 4 hours, and the 80% SW environment was of a similar osmolality after 8 hours.

For 120% SW a similar trend was recorded for CF concentration as for overall

osmolality. However, the 80% SW environment remained significantly lower in CF

concentration than the 100% SW until 12 hours into the transfer. Therefore the

environment starting at 120% SW was altered to 100% SW in a shorter time than that

starting at 80% SW, despite having similar flows of SW into the tanks.
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Environmental osmolality during acute transfers
of S. canicula to 100% SW
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Figure 2.3.2.1 - Osmolality of the 80, 100, and 120% SW environments during acute

transfer to 100% SW. Values are presented as means ± SEM (n = 14, 7, and 12

respectively). Statistically significant differences from the control transfer were assessed

via one-way ANOVA and a Tukey post hoc test (significance was denoted as * (P <

0.05), ** (P < 0.01), and *** (P < 0.005)); statistically significant differences from

values at time 0 were assessed via a one tailed unpaired students t-tests with Welch

correction factor (significance was denoted as * (P < 0.05), ^ (P < 0.01), and +t+ (P <

0.005)). Once differences had occurred they persisted throughout the transfer, although

for clarity differences are only noted at the first and last instances.
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Environmental CI" concentration during acute transfers
of S. canicula to 100% SW
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Figure 2.3.2.2 - CI" concentration of the 80, 100, and 120% SW environments during

acute transfer to 100% SW. Values are presented as means ± SEM (n = 14, 7, and 12

respectively). Statistically significant differences from the control transfer were assessed

via one-way ANOVA and a Tukey post hoc test (significance was denoted as * (P <

0.05), **(/>< 0.01), and *** (P < 0.005)); statistically significant differences from

values at time 0 were assessed via a one tailed unpaired students t-tests with Welch

correction factor (significance was denoted as + (P < 0.05), n (P < 0.01), and (P <

0.005)). Once differences had occurred they persisted throughout the transfer, although

for clarity differences are only noted at the first and last instances.
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The osmotic parameters of S. canicula measured during acute transfer to 100% SW

showed the trends expected for the changing environmental conditions (Figures 2.3.2.3

- 6). Overall plasma osmolality was significantly different from starting values 4 hours

into the transfer, and remained so for the rest of the transfer, in both experimental

groups. Plasma osmolality increased in animals undergoing acute transfer from 80%

SW, and decreased in animals undergoing acute transfer from 120% SW. Plasma

osmolality in the control transfer group did not change significantly over the time

period. At the end of the transfer the plasma osmolality of animals from 120% SW was

not significantly different from the control animals, whilst animals from 80% SW had

plasma osmolalities which remained lower than the control animals throughout the

transfer period.

Plasma CI" concentration followed a similar pattern to overall osmolality in the three

groups. After 6 hours CP concentrations were significantly different from values at the

start of the transfer, and remained so for the rest of the transfer, in both experimental

groups. Plasma CF concentration did not vary significantly in the control group during

the transfer. Plasma CF levels in animals from 80% SW remained significantly lower

than those of the control animals throughout the transfer period. After 6 hours plasma

CF concentration in animals from 120% SW was not significantly different to that of the

control animals.
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Blood plasma osmolality of S. canicula from different
salinities during acute transfer to 100% SW
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Figure 2.3.2.3 - Plasma osmolality of S. canicula acclimated to 80, 100, and 120% SW

during acute transfer to 100% SW. Values are presented as means ± SEM (n = 11,4,

and 4 respectively). Statistically significant differences from the control transfer were

assessed via one-way ANOVA and a Tukey post hoc test (significance was denoted as *

(P < 0.05), ** (P < 0.01), and *** (P < 0.005)); statistically significant differences from

values at time 0 were assessed via a one tailed unpaired students t-tests with Welch

correction factor (significance was denoted as ^ (P < 0.05), tf (P < 0.01), and ^ (P <

0.005)). Once differences had occurred they persisted throughout the transfer, although

for clarity differences are only noted at the first and last instances.
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Plasma CI" concentration of S. canicula from different
salinities during acute transfer to 100% SW
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Figure 2.3.2.4 - Plasma CI" concentrations of S. canicula acclimated to 80, 100, and

120% SW during acute transfer to 100% SW. Values are presented as means ± SEM (n

= 11,4, and 4 respectively). Statistically significant differences from the control transfer

were assessed via one-way ANOVA and a Tukey post hoc test (significance was

denoted as * (P < 0.05), ** (P < 0.01), and *** (P < 0.005)); statistically significant

differences from values at time 0 were assessed via a one tailed unpaired students t-tests

with Welch correction factor (significance was denoted as t (P < 0.05), n (P < 0.01),

and +tt {P < 0.005)). Once differences had occurred they persisted throughout the

transfer, although for clarity differences are only noted at the first and last instances.
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Plasma urea levels in both the control group and that from 80% SW remained

unchanged throughout the transfer, whilst concentration was significantly reduced after

12 hours in animals from 120% SW. Plasma urea concentration in animals from 120%

SW was not significantly different from that in the control group after 2 hours of acute

transfer. With the exception of the 4 hour sample, plasma urea levels in animals from

80% SW remained significantly lower than those in the control group.

At the start of the acute transfer to 100% SW, only animals from 120% SW had a blood

haematocrit which was significantly different from the control group. This difference

did not persist after the first 2 hours of the transfer. Blood haematocrit did not change

significantly during acute transfer in the group from 80% SW. Blood haematocrit in the

group from 120% SW was significantly reduced after 4 hours of the acute transfer, and

remained so for the rest of the study period. Blood haematocrit was significantly

reduced in the control group after 10 and 12 hours of the transfer.
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Plasma urea concentration of S. canicula from different
salinities during acute transfer to 100% SW
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Figure 2.3.2.5 - Plasma urea concentrations of S. canicula acclimated to 80, 100, and

120% SW during acute transfer to 100% SW. Values are presented as means ± SEM (n

= 11,4, and 4 respectively). Statistically significant differences from the control transfer

were assessed via one-way ANOVA and a Tukey post hoc test (significance was

denoted as * (P < 0.05), **(/>< 0.01), and *** (JP < 0.005)); statistically significant

differences from values at time 0 were assessed via a one tailed unpaired students t-tests

with Welch correction factor (significance was denoted as ^ (P < 0.05), tf (P < 0.01),

and tt+ (P < 0.005)). Once differences had occurred they persisted throughout the

transfer, although for clarity differences are only noted at the first and last instances.
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Blood haematocrit of S. canicula from different salinities
during acute transfer to 100% SW
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Figure 2.3.2.6 - Blood haematocrit of S. canicula acclimated to 80, 100, and 120% SW

during acute transfer to 100% SW. Values are presented as means ± SEM (n = 11, 4,

and 4 respectively). Statistically significant differences from the control transfer were

assessed via one-way ANOVA and a Tukey post hoc test (significance was denoted as *

(P < 0.05), ** (P < 0.01), and *** (P < 0.005)); statistically significant differences from

values at time 0 were assessed via a one tailed unpaired students t-tests with Welch

correction factor (significance was denoted as + (P < 0.05), ft (P < 0.01), and (P <

0.005)). Once differences had occurred they persisted throughout the transfer, although

for clarity differences are only noted at the first and last instances.
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2.4 Discussion

Osmotic profiles for captive S. canicula and C. leucas acclimated to different salinities

were successfully produced. Despite the previous reporting of an osmotic profile for

wild C. leucas along a salinity gradient by Pillans and Franklin (2004), because of the

effects of captivity on the species osmotic state (Table 1.4.2) it was necessary to

produce osmotic profiles for both SW and FW acclimated animals in captivity. Osmotic

profiles for S. canicula from 80, 100, and 120% SW environments during acute transfer

to 100% SW were also produced. No acute transfer studies were conducted on C. leucas

for a number of reasons. Firstly, because the species is ram ventilating and active,

attempting to confine individuals in small tanks would have been highly stressful for the

animals with an increase in breaching. Acute transfers using the 10000 1 tanks would

not have been cost effective and would have logistical problems regarding the volume

of water required to turnover 10000 1 in a flow through system. Serial sampling of C.

leucas is also highly problematic as the species did not react well with attempted

anaesthesia using MS-222, thus prohibiting cannulation of major arteries. Alternative

means were not used on C. leucas, as despite being well reviewed by Dunn and Koester

(1990), little is known about the physiological effects of different anaesthetics on

elasmobranchs. Obtaining serial samples without cannulation would have required

netting and removal of the animals, restraint, and blood sampling via syringe and

needle. The stress associated with this, and the resultant handling to return the animals

to the tank, would have affected plasma osmolality, blood glucose and lactate

concentrations, as well as blood pH (Hoffmayer and Parsons, 2001).

Both the partially euryhaline S. canicula and the fully euryhaline C. leucas are able to

significantly alter the plasma concentrations of Na+, CF, and urea in response to salinity

105



change (Tables 2.3.1.1 and 2). Values for S. canicula acclimated to 100% SW were

comparable to those reported by Hazon and Henderson (1984), considering the different

osmolalities of 100% SW. Interestingly, the values recorded for 80 and 120% SW were

higher and lower respectively than the values previously reported; even though the

environmental osmolalities were lower and higher respectively. Similar trends were

seen in plasma Cf concentration (Tables 2.2.1.1 and 2.1.2). Plasma urea levels were

consistent between the two studies. These differences are discussed below as percentage

contributions to overall osmotic pressure.

Captive C. leucas had significantly lower plasma osmolyte concentrations and overall

osmolalities as compared to wild caught animals (Tables 2.2.1.2 and 2.1.2) (Pillans and

Franklin, 2004). These are discussed below as percentage contributions to overall

osmotic pressure.

The percentage contribution of Na+, CI", and urea to overall osmotic pressure can vary

with salinity (Table 2.3.1.3), suggesting modifications in their rates of influx and efflux.

For example, the percentage contribution of CF to overall osmotic pressure in S.

canicula is relatively consistent between 80, 100, and 120% SW conditions; whereas

the percentage contribution of urea increases with salinity. This suggests that there are

modifications in the relative rates of urea production and/or retention between animals

from the three environments which result in this. The consistency in the percentage

contribution of CF to overall osmotic pressure in S. canicula suggests either that the rate

of influx is the same from all three environments (this is unlikely given that the increase

in environmental osmolality is largely due to increases in the concentrations of Na+ and

CF), or that any change in influx is balanced by a corresponding change in efflux. Given
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that animals from 100% SW were hyperosmotic and those from 80 and 120% were

slightly hyposmotic to their environments there are changes in the concentration

gradients and relative rates of influx for CI" (and Na+) between the three salinities. As

the percentage contributions of CI" are relatively consistent despite this relative change

in influx, there must be modifications in the rate of efflux to achieve this.

Elasmobranchs have evolved a rectal gland which is the only organ capable of secreting

a NaCl solution which is hyperionic to blood plasma. Changes in the rate of efflux of

Na+ and CI" are therefore almost certain to be the result of changes in the activity of the

rectal gland. This highlights the importance of the gland in maintaining homeostatic

balance in marine elasmobranchs.

The osmolyte data collected for captive C. leucas shows similar trends to that reported

for wild individuals, although there are some noticeable differences (Pillans and

Franklin, 2004). Captive FW C. leucas have a lower concentration of urea in the blood

plasma, by around 40 mmol l"1, whilst concentrations of Na+ and CI" are relatively

consistent with those caught in the wild. This is the primary source of the reduced

plasma osmolality recorded in captive animals. In response to SW acclimation captive

C. leucas do increase plasma urea levels, although these are again much lower than

values reported for wild SW animals (around 65 mmol l"1 less urea). This relatively low

concentration of urea in both FW and SW captive animals results in lower plasma

osmolalities as compared to wild animals. This increases the percentage contribution of

Na+ and CI" in the overall osmolalities of captive C. leucas.

The low urea levels in captive animals from both salinities are most likely a reflection in

dietary intake of protein. Related studies on S. canicula have demonstrated that low
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dietary protein intake significantly decreases urea production, and there is an associated

decrease in urea clearance in an attempt to compensate for this. Furthermore, upon

acclimation to 130% SW low protein fed fish were unable to increase plasma urea

concentrations and elevated plasma Na+ and CI" levels to compensate for this (Armour

etal., 1993a).

Despite being fed ad libitum every 4 days captive C. leucas were still unable to

synthesise and/or retain urea as well as wild individuals. Being a ram ventilating species

C. leucas requires a much larger amount of energy per day than a similarly sized

sedentary species. This energy demand may therefore reduce the proportion of energy

which can be utilised to convert ammonia (NH3) into urea via the OUC (Section 1.7)

during periods of reduced feeding. It therefore appears that wild C. leucas have a higher

dietary intake than can be match by gorge feeding every 4 days in captivity, particularly

in FW acclimated animals. This is important to note for future studies on the species.

These results not only show the importance of dietary protein intake for elevating

plasma urea concentrations, but also the capacity of elasmobranchs to acclimate to

increased environmental salinity through increasing plasma Na+ and CI" concentrations.

This is a reflection of the availability of these three plasma osmolytes to elasmobranchs

in a saline environment.

Due to the large size and aggressive nature of adult C. leucas it was only feasible to

hold juvenile animals in the aquarium. This may have had consequences for the

developmental state of the osmoregulatory organs, although work on other species

suggests early development of osmoregulatory mechanisms (Kormanik, 1992;

Kormanik, 1993; Steele et al., 2004).
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The partially euryhaline S. canicula showed significant differences in blood haematocrit

upon acclimation to both 80 and 120% SW (Table 2.2.1.1). It is likely that these reflect

the differences in the osmotic influx of water which is associated with the three

environmental salinities. The increased influx of water associated with acclimation to

more dilute environments leads to an associated degree of haemodilution within S1.

canicula. Conversely, during acclimation to elevated environmental salinity there is

likely to be an osmotic efflux of water and an associated degree of haemoconcentration.

These significant changes in blood haematocrit are suggestive of, but not evidence for,

changes in blood volume of the same animals. Unlike S. canicula the blood haematocrit

of C. leucas was unaffected by acclimation to salinity change (Table 2.2.1.2). This is

highly suggestive of a greater degree of control over osmotic water fluxes in the latter

species.

Therefore the degree of haemodilution and concentration associated with acclimating to

salinity change may be considerably less in the fully euryhaline C. leucas than in the

partially euryhaline S. canicula. This would in turn have effects on plasma osmolyte

concentration and therefore on the actions of the principle osmoregulatory organs.

Practical assessment of blood volume in both a partially and a fully euryhaline

elasmobranch would therefore give key insight into the volaemic changes experienced

during salinity transfer. Given the central stimulatory role of blood volume change on

osmoregulatory organs such as the rectal gland (Solomon et al., 1984; Silva et al., 1996;

Silva et al., 1999; Anderson et al., 2002a), insight into elasmobranch blood volume is of

pivotal importance in understanding euryhalinity in elasmobranch fish. Blood volume in

elasmobranchs is discussed in detail below (Chapter 3).
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The acute transfer studies on S. canicula showed some interesting results, not only for

the haematic parameters, but also for the environmental conditions. Converting a 120%

SW environment into 100% SW took less time than converting an 80% SW

environment, particularly with regard to CI" concentration. This is probably a reflection

of changes in rainfall between the study periods on the two experimental groups. The

salinity of SW in St Andrews bay is highly dependent on the degree of rainfall due to

the topography of the shore line, and the currents of SW in the bay. The amount of run

off from the crescent of land around the bay, and the inlet from the Kiness Burn and

Eden rivers, coupled with the low flow of fresh SW into the bay all lead to large

changes in the osmolality of SW drawn into the aquarium. Such a fall in salinity of SW

would account for the longer turnover time for the 80% SW environment. This

difference in environmental conditions must be borne in mind when comparing the

acute transfer results for the two experimental groups. In terms of environmental

osmolality the 120% SW environment was converted to 100% SW after 4 hours, whilst

the 80% SW environment took 8 hours.

For S. canicula acclimating from 80% SW a significant increase in plasma osmolality

was recorded after 4 hours of acute transfer to 100% SW (Figure 2.3.2.3). These

animals did not increase plasma osmolality to levels equivalent to animals acclimated to

100% SW. At least in part this may be a reflection of the greater length of time taken to

change the 80% SW environment to that of the control animals at 100% SW.

Nevertheless plasma osmolality was significantly increased, primarily through an

increase in plasma CI" (and Na+) concentration (Figure 2.3.2.4). Plasma CI"

concentration was significantly increased after 6 hours of the acute transfer. There was

no significant increase in plasma urea concentration associated with acute transfer from
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80 to 100% SW (Figure 2.3.2.5). The disparity between the ability of these animals to

increase plasma CI" (and Na+) and urea levels is largely due to the availability of these

osmolytes in the environment. Na+ and CI" are readily available in a marine environment

and increasing drinking rate will facilitate increases in the intake of these ions. Indeed,

both S. canicula and T. scyllia increase drinking rate during acclimation to increased

salinity (Anderson et al., 2002b). Conversely, increasing plasma urea levels requires not

only an increase in urea synthesis and a decrease in urea clearance, but also an increase

in substrate for urea synthesis. This would require the breakdown of protein within the

tissues of these animals during transfer. As such any increase in plasma urea

concentration is liable to take longer than 12 hours due to the availability of substrate

for, and the metabolic costs associated with the increased synthesis of urea. This lack of

increase in plasma urea during the first 12 hours of acute transfer to elevated salinities

also gives further evidence for the importance of dietary protein intake in elevating

plasma urea levels.

Blood haematocrit was not significantly altered during transfer from 80 to 100% SW

(Figure 2.3.2.6). The fact that there was a significant decrease in the blood haematocrit

of the control group during the transfer suggests that repeated sampling over the basal

and transfer studies may well have the effect of decreasing blood haematocrit.

Therefore, whilst a decrease was seen in the control group, the lack of any effect in the

group acclimating from 80% SW may reflect the fact that any decrease caused by

repeated sampling was offset by the increase expected with haemoconcentration. This

could also be a reflection of the technique used to analyse haematocrit in this study.

Haematocrit was measured as the volume taken up by erythrocytes within a blood

sample and given the increase in blood plasma osmolality in these animals (Figure
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2.3.2.3) there may be a decrease in erythrocyte cell volume during acute transfer from

80% to 100% SW. It is possible therefore that any increase in the concentration of

erythrocytes resulting from the haemoconcentration associated with acute transfer to

increased salinity is offset by a decrease in erythrocyte cell volume. Hence their

proportional volume within a blood sample is not significantly altered during the

transfer. However, these two factors also oppose each other in animals undergoing acute

transfer from 120% to 100% SW, although their affects on proportional erythrocyte

volume in the blood are reversed as compared to animals acutely transferring from 80%

to 100% SW. The fact that there is a significant change in the haematocrit of animals

undergoing acute salinity transfer from 120% to 100% SW, but not in those from 80%

to 100% SW, suggests that changes in erythrocyte cell volume are not the cause for this

discrepancy.

One final explanation of the unchanged haematocrit in S. canicula undergoing acute

transfer from 80% to 100% SW is the formation of blood clots due to internal bleeding

following the surgical procedures conducted on these animals (Section 2.2.4). Post

mortem analysis of the animals used in this group revealed that the incidence of clot

formation was greater in this experimental group, due to a lack of refinement in surgical

technique. Animals chronically acclimated to 100% and 120% SW were studied after

those from 80% SW and surgical techniques had been refined from experience. The

formation of blood clots would remove erythrocytes from the blood circulation and

thereby artificially reduce the haematocrit as measured in this study. This could also

negate any haemoconcentration associated with acute transfer to increased salinity.

Analysis of haemoglobin concentration and actual cell counts via light microscopy

would have been highly beneficial in interpretation of the haematocrit data.
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For S. canicula acclimated to 120% SW a significant decrease in plasma osmolality was

recorded after 4 hours of the acute transfer to 100% SW (Figure 2.3.2.3). Unlike

animals acclimating from 80% SW, during the acute transfer these animals did render

plasma osmolality to a level equivalent to that of the control animals. This was the

result of decreases in plasma urea and CI" (and Na+) concentration (Figures 2.3.2.4 and

5). A major source of these decreases in osmolyte concentration may be a rapid increase

in blood volume during the early stages of transfer. Such an increase in blood volume

would account for the rapid decrease in blood haematocrit over the first 4 hours of the

acute transfer (Figure 2.3.2.6). However, the decrease in urea occurs after 12 hours,

whereas that in CF occurs after 6 hours. The fact that plasma urea and CF concentrations

decrease at markedly different rates is illustrative of the different rates of efflux of these

osmolytes. Plasma levels of urea and CF are not significantly different to the control

animals after 2 and 6 hours respectively. Clearly then the output of the kidney and rectal

gland must be mediated throughout periods of acute transfer to hyposaline conditions so

as to lower plasma concentrations of these osmolytes to levels equivalent to those of

animals long term acclimated to 100% SW. Indeed, urine flow rate is significantly

increased in S. canicula after acclimation to hyposaline conditions (Wells et al., 2002).

Further investigation into the activity of the rectal gland during these acute transfer

periods would be of great importance in understanding the osmoregulatory response of

elasmobranchs to salinity change. Rectal gland activity is discussed in detail below

(Chapters 4, 5, and 6)

It is therefore evident that a multitude of osmoregulatory actions occur in S. canicula in

response to acute salinity transfer. There is a change in blood haematocrit associated

with acute salinity transfer which is suggestive of changes in blood volume. Plasma
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concentrations of CI" and Na+ are altered relatively quickly in response to acute transfer.

This is most probably achieved through alterations in the fluxes of these ions with the

environment through modifications in the activity of the rectal gland and the gut, and

possibly the gills (Sections 5.1 and 4). Slightly more delayed than this change in CI" and

Na+ is a change in plasma urea concentration. Urea levels are likely decreased through

an increase in urine flow rate, but the mechanisms for increasing plasma urea

concentration do not show any effect in the first 12 hours of transfer. It is likely that the

elevated plasma urea levels seen in long term acclimation to increased salinity are

achieved through a decrease in urine flow rate and/or an increase in the activity of the

OUC and urea synthesis. The differences between urea levels in captive and wild C.

leucas give further support to the concept that dietary intake may be crucial for

elevating plasma urea levels (Armour et al., 1993a).

The magnitude of these changes in haematic parameters and the rates at which they

occur during salinity transfer may well vary between different species of elasmobranch.

The degree of these differences and the duration which they persist may be

representative of the different capacity for euryhalinity. For S. canicula alterations in the

plasma concentrations of CI" and Na+ occur early on during salinity transfer and persist

into long term acclimation. This is likely to be a reflection of the availability of these

ions in the marine environment. Importantly, changes in the concentrations of these ions

do not appear to be dependent on dietary intake. Changes in urea concentration occur on

a larger time scale and may be highly dependent on dietary protein intake. The changes

in plasma osmolyte concentrations, and more importantly those in blood haematocrit

could be descriptive of changes in the blood volume of elasmobranchs during salinity

transfer. The importance of changes in blood volume as a stimulus for osmoregulatory
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organs has been highlighted above. Therefore practical assessment of elasmobranch

blood volume would not only give a more complete picture of the changes in haematic

parameters during salinity transfer, but also give further insight into the stimulation and

control of elasmobranch osmoregulation. Surgical procedures and acute salinity

transfers were possible in S. canicula but not in C. leucas. For these reasons blood

volume was investigated only in S. canicula.
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Chapter 3: Blood volume



3.1 Introduction

Assessment of blood volume is of key importance in fully understanding

osmoregulation in elasmobranchs, as has been previously discussed (Section 2.4).

Changes in blood volume are associated with changes in blood haematocrit, as variation

in plasma volume alters the relative concentration of erythrocytes. Within the literature

there are numerous examples of haematocrit studies on elasmobranchs (Table 3.1.1),

some of which show changes with acclimation to salinity change and some ofwhich do

not. Changes in haematocrit are important because they are suggestive of, but not

evidence for, changes in blood volume associated with chronic salinity transfer.

Similarly, a more constant blood haematocrit during chronic acclimation to salinity

change suggests a lesser affect on blood volume. A smaller degree of haemodilution

may therefore be encountered by fully euryhaline species, such as C. leucas, as

compared to partially euryhaline species, such as S. canicula. Given the probable central

role played by changes in blood volume in the cascade of osmoregulatory processes

during acute salinity transfer, smaller changes in blood volume are descriptive of tighter

regulation of osmotic and diffusional fluxes. This is intuitive, greater ability to maintain

haematic parameters at different salinities are naturally associated with more euryhaline

elasmobranchs. Whereas, salinity transfers of high magnitude conducted on S. canicula

tend to result in increased mortality over a period of days, suggesting that partially

euryhaline elasmobranchs fail to regulate haematic parameters completely under such

conditions.
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Altered blood haematocrit Stable blood haematocrit

Species Reference Species Reference

S. canicula (Table 2.3.1.1) S. canicula
(Hazon and

Henderson 1984)

R. erinacea
(Goldstein and

Forster 1971)
C. leucas (Table 2.3.1.2)

C. leucas
(Thorson et al.

1973)

H. portusjacksoni
(Cooper and

Morris 1998)

T. testacea
(Cooper and

Morris 1998)

Table 3.1.1 - State of blood haematocrit of different species of elasmobranchs in

response to chronic transfer (> 72 hours) to altered environmental salinity.
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Interestingly, there are conflicting records for the haematocrit of S. canicula at different

salinities. Hazon and Henderson (1984) recorded no significant differences in the

haematocrit of animals after 14 day acclimation to a range of salinities (50 - 140%

SW). However, results from this study have demonstrated significant differences after

14 day acclimations between 80, 100, and 120% SW in the same species (Table

2.3.1.1). This is probably due to the larger sample size utilised in this study.

Although numerous attempts have been made to investigate blood volume in a variety

of species (Hazon, pers. comm.), few studies have quantitatively assessed the blood

volume of elasmobranchs (Table 3.1.2). Practical assessment of blood volume typically

involves the introduction of a marker substance into the subject. This then mixes within

the vascular space and becomes diluted. Sampling of the blood and subsequent

measurement of the marker then permits a dilution factor to be calculated. However, the

nature of the chosen marker is of vital importance, particularly in elasmobranchs.
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Species
Blood volume

(ml 100 g_1 BM)
Reference

Raja binoculata 8.0 (Thorson 1958)

Raja rhina 7.2 (Thorson 1958)

N. brevirostris 7.0 (Thorson 1958)

Carcharhinus nicaraguensis 6.8 (Thorson 1958)

G. cirratum 6.8 (Thorson 1958)

S. acanthias 6.8 (Thorson 1958)

6.6 (Opdyke et al. 1975)

Hydrolagus colliei 5.2 (Thorson 1958)

S. canicula 6.8/4.1 * (Tort et al. 1991)

Table 3.1.2 - Blood volume of elasmobranchs obtained using dye dilution techniques.

Volumes are expressed as ml per 100 gram of body mass. (*) denotes corrected value

for binding affinity ofEvans blue.
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All of the studies on elasmobranch blood volume to date have used a dye dilution

method utilising T-1824 (Evans blue) and back-extrapolation of the concentration/time

curve. This has lead to a possible overestimation of blood volume due to the binding

affinity of the dye. Tort and co-workers (1991) described the possible sources of this

overestimation. Once injected into the blood Evans blue binds to the protein fraction,

mostly to albumin proteins (Freedman and Johnson 1969). It is well accepted that the

albumin concentration in elasmobranch blood is low (Irisawa and Irisawa 1952),

although Evans blue does bind to elasmobranch globulins to a greater extent than others

(Tort et al. 1991). Elowever, overall binding of Evans blue is lower than in other

vertebrates with high blood serum albumin levels, with around 40% of injected die

failing to bind to the protein fraction (Tort et al. 1991). Values for blood volume

obtained via this method may therefore be unreliable, as protein binding of Evans blue

may differ from species to species. For example, a protein fraction with some albumin

properties has been recorded in some species of carcharhinids but not in others

(Yanagisawa and Hashimoto 1984).

Other dye dilution experiments have utilised fluorescent-labelled hydroxyethyl starch

(HES), typically with fluorescein isothiocyanate (Thomas et al. 2000; Massey et al.

2004). In general values obtained using these markers are lower than those from

albumin dyes. Such studies have been limited to human clinical trials and the behaviour

of the marker in elasmobranch systems is unknown.

There are inherent dangers with introducing substances into the vascular space without a

complete understanding of their natural occurrence. Marker dilution assessment of

blood volume depends on a uniform distribution of that marker and a predictable and
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quantifiable mixing within the vascular space. Any breakdown of the marker or

movement from the vascular space must be accounted for. Therefore utilising protein

bound dyes and labelled starch in elasmobranch species are not robust methods of

assessing blood volume, unless species and salinity specific concentrations of those

substances have been recorded.

Other, non-invasive techniques have also been developed in human clinical trials, such

as impedance cardiography (Von Rueden and Turner 1999), and the oesophageal

Doppler (Gan 2000). Whilst these hold possibility for future assessment in non-

mammalian vertebrates, current technology and costs restrict their application. Further

investigation and advances in such technologies do hold great promise for assessment of

blood volume in species which react adversely to anaesthesia or are difficult to confine,

such as C. leucas.

Other than dye dilution, the other common methods of assessing blood volume in fish

involve the use of radioactive markers. This can be through isotopically labelled

microspheres (Kent and Olsen 1982), 125Iodine (I) bovine serum albumin (BSA)

(Gingerich and Pityer 1989), or 51Chromium (Cr) labelled erythrocytes (Conte et al.

1963; Duff et al. 1987; Gingerich et al. 1987; Gingerich and Pityer 1989; Gingerich et

al. 1990). Microspheres by their nature become trapped in the fine capillaries of tissues

and as such are useful for assessing blood flow to specific organs. However, their use as

• 125
a means of assessing total body blood volume is limited by this feature. Use of I-

labelled BSA in elasmobranchs raises questions similar to those outlined for Evans blue,

concerning the behaviour of a substance which may naturally occur in variable

quantities in the blood. The level of natural occurrence for the carrier medium greatly
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influences the dynamics of the label and its degree of mixing within the vascular space.

Gingerich and Pityer (1989) illustrated that assessment of blood volume in the teleost

Salmo gairdneri via both l25I-labelled BSA and 51Cr-labelled erythrocytes yielded

different results. Whole body blood volume was significantly lower when calculated

from 51Cr-labelled erythrocytes than when l25I-labelled BSA or both markers were used.

They concluded that it was not clear whether this disparity was due to the distribution of

erythrocyte poor blood into the secondary circulation, or the result of extravascular

exchange of plasma proteins. Protein permeability is high in teleost capillary

membranes, and plasma protein retention in the blood has been shown to correlate

directly with blood hydrostatic pressure (Hargens et al. 1974). There is therefore large

scope for error when assessing blood volume using albumin bound labels, particularly

in elasmobranchs which may have highly variable amounts of albumin proteins in the

blood serum.

For the reasons detailed above blood assessment in this study was conducted via the use

of 5lCr-labelled erythrocytes. Not only do erythrocytes occur naturally in elasmobranch

blood, but their concentration can be easily quantified by haematocrit. From a practical

viewpoint 51Cr is an ideal marker to use as it has a high energy y emission which

facilitates accurate and rapid measurements. Furthermore, the use of 5,Cr-labelled

erythrocytes and their relative stability in the vascular space as compared to albumin

bound dyes, presents the possibility of prolonged assessment over acute salinity

transfer. Once fully mixed in the vascular space any changes in marker concentration

would be due to either the break down of erythrocytes or the radioactive decay of the

marker, both of which remain reasonably constant over the time period. Therefore upon

acute salinity transfer any variation recorded in the experimental groups which is not

123



recorded in the control group can be assumed to represent a tangible change in the

dilution of the marker resulting from a change in blood volume. Assessment of blood

volume during both chronic and acute transfer was of key importance to the study as it

allowed a quantification of the concentration and dilution of body fluids associated with

acclimation to salinity change. As such this would give great insight into the osmotic

stress and response of S. canicula during both chronic and acute salinity transfer. This is

the fundamental factor in elasmobranch osmoregulation at different salinities.
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3.2 Materials and methods

Animals used were identical to those outlined above (Sections 2.2, 2.2.1, and 2.2.2).

3.2.1 Chemicals and equipment

Chemicals and equipment used were identical to those outlined above (Section 2.2.3).

3.2.2 Surgical procedures

The coeliac and mesenteric arteries of S. canicula were cannulated in an identical

manner as outlined above (Section 2.2.4). The size of incision was smaller

(approximately 4 cm) due to the fact that no procedures were carried out on the rectal

gland during this study.
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3.2.3 Analysis and collection

Blood volume was assessed via modification of the 51Cr-labelled erythrocyte method

detailed by Gingerich and co-workers (1987). 2 ml of blood was drawn from the caudal

vein of the designated donor animal and centrifuged for 5 minutes at 100 g and 10 °C.

The plasma portion was removed and the erythrocytes were washed 3 times in volumes

of 4 °C Ringer solution equivalent to that of the removed plasma, centrifuging under the

same conditions. The erythrocytes were then resuspended in 4 °C Ringer solution to

give a final volume of 2 ml. Then 51Cr (Sodium chromate (360 - 600 mCi mg"1 Cr),

Amersham pic, Little Chalfont, Buckinghamshire) was added to give an activity of 1.0 x
O

# 1

10 counts per minute (CPM) mf . The erythrocytes were then left overnight in a

refrigerator at 10 °C.

The erythrocytes were then centrifuged and washed as described above 4 times in 4 °C

Ringer, each time retaining a 200 pi sample of the supernatant to measure three 50 pi

replicates in a y-counter (Minaxi auto-gamma 5000 series, Packard Instrument

Company, Downers Grove, II, USA) to check for haemolysis. Finally the cells were

resuspended in 4 °C Ringer to give a final haematocrit of 17% for 100% SW, 13% for

80% SW, and 22% for 120% SW. Triplicate 50 pi samples were then measured in the y-

counter to accurately assess the activity of the final erythrocyte suspension before

loading into a 1 ml syringe approximately 1 ml Kg"1 body mass for each animal. The

mass of the syringes were recorded before and after discharge to accurately calculate the

volumes delivered. The specific gravity of blood from donor animals acclimated to each

salinity was measured to gain salinity specific mass to volume conversion factors (Table

3.3.1.1).
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400 pi of blood was drawn from the mesenteric arterial cannula for osmolyte analysis

prior to injection of the labelled erythrocytes. The cannula was then flushed with 320 pi

ofRinger solution and 200 IU ml"1 heparin and the stopper pin replaced. 200 pi of blood

was removed via the coeliac arterial cannula after 0.5, 1, 2, 3, and 24 hours for basal

levels and after 0, 2, 4, 6, 8, and 10 hours for acute transfer; the 24 hour basal and 0

hour transfer samples being the same sample. An equivalent volume of the appropriate

salinity Ringer solution was then injected via the same cannula to replace the lost

volume. In order to assess blood volume triplicate 50 pi samples of whole blood were

measured for radioactivity in the y-counter. Blood volume was then calculated via the

method detailed below.
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3.2.4 Calculation of blood volume

For assessment of basal blood volume in S. canicula the mean number ofCPM from the

triplicate samples was plotted against time after injection of the 51Cr-labelled

erythrocytes, and a linear regression was performed (Curve Expert 1.3, Daniel Hyams,

Hixson, TN, USA) (Figure 3.2.4.1). This regression line could be described by the

following equation:

y — mx + c

Where m represents the slope of the line, c the point of intercept with the y axis, y the

mean CPM, and x the time after injection. The value of c therefore represents the

theoretical CPM at time 0 assuming instantaneous mixing of the labelled erythrocytes.

From this value and the known activity injected into the animal a dilution factor, and

therefore blood volume, could be calculated:

Vol - [ [ a / c ] / Mass ] * 100 (ml 100 g"1 body mass)

Where Vol represents blood volume, a represents the activity injected, and Mass being

body mass.
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Linear regression of marker activity measured in the
blood of S. canicula acclimated to 120% SW
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Figure 3.2.4.1 - Typical regression line drawn to calculate the theoretical marker

concentration at time zero assuming instantaneous mixing and the slope value

associated with marker decay during blood volume assessment in S. canicula.
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Given that major variations in activity are removed once the labelled cells have

thoroughly mixed with the systemic blood, and that the rate of decay is constant, the

calculated value of the linear slope (m) can also be applied to later time points to

extrapolate back to time 0. Therefore once acute transfer had begun and values for

activity in the blood were calculated for each serially taken blood sample, values for the

resultant changes in blood volume could be calculated individually for each time point

by modifying the equation of the linear regression:

c =y — mx

This gave new values of the intercept for each time period and hence a different value

for activity in the blood at time 0 assuming instantaneous mixing of the labelled

erythrocytes. Given that the amount of activity injected into the animal remained

constant, the same equation used to calculate blood volume from basal levels remained

applicable.

130



3.2.5 Statistical analysis

All data are presented as means ± SEM. For basal blood volumes statistical analysis was

performed via one-way ANOVA and a Tukey post hoc test (InStat) (significance was

denoted as * P < 0.05, ** P < 0.01, and *** P < 0.005). Data gathered during the acute

transfer studies was analysed in two ways: differences between the two experimental

groups and the control group were analysed via one-way ANOVA and a Tukey post hoc

test (significance was denoted as * P < 0.05, ** P < 0.01, and *** P < 0.005);

differences between values during transfer and at time 0 within each group were

analysed via a one-tailed unpaired students t-test with a Welch correction factor

(significance was denoted as 1 P < 0.05, P < 0.01, and 11+ P < 0.005) (InStat). Once

differences had occurred they persisted throughout the transfer, although for clarity

differences are only noted at the first and last instances.
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3.3 Results

The results for blood volume in S. canicula are presented in two sections: a comparison

of basal levels in animals acclimated to 80, 100, and 120% SW; and a comparison

during acute transfer from all salinities to 100% SW.

3.3.1 Basal levels

Blood specific gravity and volume of S. canicula acclimated to 80, 100, and 120% SW

are presented below (Table 3.3.1.1). No significant differences were seen in the specific

gravity of blood taken from animals acclimated to the three salinities. Animals

acclimated to 80% SW had a significantly larger blood volume than those from 100%

SW. Animals acclimated to 120% SW had a highly significantly smaller blood volume

than those from 100% SW.
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Salinity

(SW)

Blood specific

gravity

(9 ml-1)

Blood Volume

(ml 100g"1)

80% 0.99 ±0.00 6.3 ±0.2 *

100% 1.02 ±0.01 5.6 ±0.2

120% 1.02 ±0.01 4.6 ±0.2 **

Table 3.3.1.1 - Blood specific gravity and volume of S. canicula after >14 day

acclimations to 80, 100, and 120% SW. All values are presented as means ± SEM (n =

9, 9, and 9 respectively for blood specific gravity; n = 7, 7, and 7 respectively for blood

volume). Statistical analysis was performed via one-way ANOVA and a Tukey post hoc

test. Significant differences from values for 100% SW were denoted as * (P < 0.05), **

(P < 0.01), and *** (P < 0.005).
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3.3.2 Acute transfer levels

The data gathered on the blood volume of S. canicula acclimated to the three salinities

during acute transfer to 100% SW are presented below (Figure 3.3.2.1). The blood

volume of animals from 80% SW was significantly different from that at time 0 after 6

hours of acute transfer to 100% SW, and remained so thereafter. The blood volume of

animals from 120% SW was significantly different from that at time 0 after 2 hours of

acute transfer to 100% SW, and remained so thereafter. The blood volume of the control

group did not change significantly during the transfer period. Blood volume in animals

from 80% SW started significantly higher than, and after 8 hours was significantly

lower than that of the control animals. After 2 hours of the transfer the blood volume of

animals from 120% SW was no longer significantly different from that of the control

group, and this remained so for the rest of the transfer period. Interestingly, the blood

volume of all three groups increased after 2 hours of the transfer, although not always

significantly so. At least in part, this can be attributed to the high slope values calculated

for the linear regression and the method of calculation used.

The slope values for the linear regressions performed on individual animals are

presented below (Table 3.3.2.1).
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Blood volume of S. canicula from different salinities
during acute transfer to 100% SW

D From 80% SW
-O- From 100% SW
-a- From 120% SW

2 4 6 8 10 12

Time into transfer (h)

Figure 3.3.2.1 - Blood volume of S. canicula acclimated to 80, 100, and 120% SW

during acute transfer to 100% SW. Values are presented as means ± SEM (n = 6, 7, and

8 respectively). Statistically significant differences from the control transfer were

assessed via one-way ANOVA and a Tukey post hoc test (significance was denoted as *

(P < 0.05), ** (P < 0.01), and *** (P < 0.005)); statistically significant differences from

values at time 0 were assessed via a one tailed unpaired students t-tests with Welch

correction factor (significance was denoted as ^ (P < 0.05), t+ (P < 0.01), and tft (P <

0.005)). Once differences had occurred they persisted throughout the transfer, although

for clarity differences are only noted at the first and last instances.
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Sample
Salinity (% SW)

80 100 120

1
-16.2 -11.0 -87.6

2
-68.2 -8.8 -113.9

3
-113.1 -22.7 -11.0

4
-190.2 -191.1 -53.7

5
-121.4 -139.2 -34.6

6
-7.6 -103.9 -67.5

7
-6.1 -6.3 -71.3

8
-3.1 — -27.3

Mean ± SEM -65.8 ± 24.7 -69.0 ±28.5 -58.4 ± 11.9

Table 3.3.2.1 - Slope values for linear regression of blood radioactivity during basal

periods.
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3.4 Discussion

The specific gravities of blood from S. canicula acclimated to 80, 100, and 120% SW

were not significantly different. This was not expected given the differences in

haematocrit previously recorded for similarly acclimated animals (Table 2.3.1.1). These

two sets of results suggest that the difference in mass between the erythrocyte and

plasma portions of elasmobranch blood is not sufficient to result in any significant

change in blood specific gravity following acclimation to altered salinity. However, this

data is still important as it provided salinity specific mass to volume conversion factors

for the blood volume studies on S. canicula.

The blood volume of 100% SW S. canicula was calculated as 5.6 ± 0.2 ml lOOg"1 body

mass (Table 3.3.1.1). This is consistent with those reported for other elasmobranchs

(Table 3.1.2). It also supports the suggestion that the Evans blue method can lead to an

overestimation of blood volume in elasmobranchs, although the allowance made for this

may be too great. This value is slightly below the standard value (6.8 ml 100 g"1 body

mass), and slightly above the corrected value (4.1 ml 100 g"1 body mass) reported for

the species using Evans blue (Tort et al. 1991). The reasons for these differences are not

clear. It is possible that they reflect the extravascular exchange of plasma proteins, as

suggested by Gingerich and Pityer (1989). However, given the highly variable portion

of albumin proteins in the blood of elasmobranchs and the lack of understanding of the

in vivo behaviour of markers bound to such proteins (Section 3.1), the value reported

here from a marker associated with naturally occurring, species specific erythrocytes

can be considered the more accurate measurement.
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It has also been shown that acclimation of S. canicula to 80% SW resulted in an

increase in blood volume and an associated decrease in blood haematocrit. Conversely,

acclimation to 120% SW resulted in a decrease in blood volume and an associated

increase in blood haematocrit. This is the first ever measurement of the effects of

salinity acclimation on elasmobranch blood volume. Given the central role which is

believed to be played by changes in blood volume in elasmobranch osmoregulation

(Shuttleworth 1983; Solomon et al. 1984; Solomon et al. 1985; Shuttleworth and

Thompson 1986; Silva et al. 1996; Cooper and Morris 1998; Olson 1999; Silva et al.

1999; Anderson et al. 2002a; Anderson et al. 2002b) these findings are of great

importance.

These results provide quantifiable evidence that the partially euryhaline species S.

canicula experiences appreciable haemodilution and concentration during acclimation

to salinity change. This is consistent with the changes in haematocrit which have been

previously reported (Table 2.3.1.1). However, such changes in blood haematocrit have

been shown to be species specific (Table 3.1.1), and possibly a reflection of life history.

Therefore caution must be used when extrapolating the results of salinity transfer on the

blood volume of S. canicula to elasmobranchs in general. It is possible that species with

a greater degree of euryhalinity would show a reduction or even a lack of changes in

blood volume upon chronic acclimation to different salinities. Clearly more species of

elasmobranch need to be assessed for the affects of salinity on blood volume.

The blood volume of S. canicula was also assessed during acute salinity transfers from

80, 100, and 120% to 100% SW (Figure 3.3.2.1). The fact that there were no significant

changes in the blood volume of animals undergoing the control transfer from 100% to



100% SW was as expected given the constant environmental conditions (Figures 2.3.2.1

and 2). This is also suggestive that the marker used to assess blood volume in this study

is stable in vivo since there was no significant decrease in recorded activity in the blood

of the control animals once complete mixing had occurred.

Animals acclimating from 80% to 100% SW started with a significantly increased blood

volume and had significantly reduced this after 6 hours of the transfer. Furthermore,

there appears to be overcompensation in regulatory volume decrease in these animals as

blood volume was significantly lower than that of animals long term acclimated to

100% SW after 8 and 10 hours. Upon initiation of transfer these animals are in a

hyposmotic state and will therefore osmotically lose water across the semi-permeable

surfaces. Furthermore, these animals also have a significantly increased basal urine flow

rate resulting from chronic acclimation to reduced salinity (Wells et al. 2002). These

animals will continue to lose water, even after urine flow rates have returned to levels

equivalent to those of chronically acclimated 100% SW animals, whilst plasma

osmolality remains hyposmotic to the environment. This overcompensatory loss of

blood volume then provides the stimulus for a drinking response. Indeed, the time

period of this overcompensatory decrease in blood volume coincides with that in which

a drinking response is typically recorded in similarly transferred S. canicula (Anderson

et al. 2002b). The drinking response is of vital importance in increasing plasma Na+ and

CF concentrations, and therefore overall plasma osmolality.

This overcompensatory decrease in blood volume in S. canicula undergoing acute

transfer from 80% to 100% SW is not consistent with an unaltered blood haematocrit in

similarly transferred animals (Figure 2.3.2.6). Such decreases in blood volume should
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result in an increased blood haematocrit if the number of erythrocytes in the blood

remains constant. The lack of any significant variation in the haematocrit of these

animals can be explained in a number of ways. Haematocrit in this study was measured

as the volume taken up by erythrocytes within a blood sample (Section 2.2.5). Given the

increase in blood plasma osmolality in these animals (Figure 2.3.2.3) there may be a

decrease in erythrocyte cell volume during acute transfer from 80% to 100% SW. It is

possible therefore that any increase in the concentration of erythrocytes resulting from

decreased blood volume is offset by a decrease in erythrocyte cell volume, and hence

their proportional volume within a blood sample. In this way these two opposing factors

may negate each other and thereby result in no net change in haematocrit, as measured

in this study. However, these two factors also oppose each other in animals undergoing

acute transfer from 120% to 100% SW, although their affects on proportional

erythrocyte volume in the blood are reversed as compared to animals acutely

transferring from 80% to 100% SW. The fact that there is a significant change in the

haematocrit of animals undergoing acute salinity transfer from 120% to 100% SW, but

not in those from 80% to 100% SW, suggests that changes in erythrocyte cell volume

are not the cause for this discrepancy.

The lack of any significant changes in the haematocrit of S. canicula undergoing acute

transfer from 80% to 100% SW is more likely due to the nature of surgical procedures

performed on each group of animals and the ongoing refinement in surgical technique

throughout the study. Animals used for the measurement of blood haematocrit

underwent a longer period of surgery and the cannulation of 4 separate vessels: the

coeliac and mesenteric arteries (Section 2.2.4), as well as the rectal gland vein and duct

(Section 4.2.2). Animals used for the measurement of blood volume underwent a shorter
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period of surgery, had a smaller size of initial incision, and had only the coeliac and

mesenteric arteries cannulated (Section 3.2.2). Furthermore, animals used to measure

haematic parameters following acute transfer from 80% to 100% SW were the first

experimental group for the entire study (January 2002). Whereas animals used to

measure blood volume following the same acute transfer were the penultimate

experimental group for the entire study (December 2004). There was a high level of

refinement in surgical techniques over this time period and the proportion of animals

with visible blood clotting upon post mortem analysis was reduced. The formation of

blood clots will necessarily reduce the measured haematocrit by removing erythrocytes

from the circulating blood volume. This would account for the discrepancy between the

haematocrit (Figure 2.3.2.6) and blood volume (Figure 3.3.2.1) of S. canicula

undergoing acute transfer from 80% to 100% SW.

Animals acclimating from 120% to 100% SW started with significantly decreased blood

volume and had significantly increased this after the first 2 hours of transfer. The nature

of this increase in blood volume was such that after 2 hours the blood volume of these

animals was not significantly different to that of animals long term acclimated to 100%

SW. These results show that regulatory increases in blood volume occur very rapidly

upon transfer to reduced salinity, and support the concept of this playing a stimulatory

role for subsequent osmoregulatory responses. This increase in blood volume is likely a

reflection of the increased gradient for the osmotic influx of water across the semi¬

permeable surfaces.

There were some problems with assessing the blood volume of S. canicula in this

manner. Repeated sampling of animals and the removal of blood could have effects on
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blood volume. This was minimised by replacing the blood lost during sampling with an

equivalent volume of Ringer solution. It can be seen that this does affect the blood

haematocrit of S. canicula due to the associated loss of erythrocytes (Figure 2.3.2.6).

This removal of plasma erythrocytes may have artificially increased the concentration

of 51Cr-labelled erythrocytes in the vascular space, and hence influenced blood volume

calculations. However, the quantity of erythrocytes in a 200 pi blood sample is minimal

when compared to that in a blood volume of 5.6 ml 100 g"1. Furthermore, no significant

differences were seen in the blood volume of animals undergoing the control transfer

from 100% to 100% SW.

This suggests that this factor did not influence the results. The erythrocytes lost during

sampling could have been replaced by resuspended cells taken from the donor animals.

However, the injection of Ringer solution after the removal of blood samples not only

replaced the lost volume but also cleared the cannula of blood and prevented the

formation of blood clots. Replacing the lost erythrocytes with cells resuspended in

Ringer solution would have increased the risk of clot formation and therefore

jeopardised the experiment.

There were also some problems with the calculation of blood volume during the acute

transfer periods. The linear regression was calculated from blood samples taken after

0.5, 1, 2, 3, and 24 hours of injecting the labelled erythrocytes. CPM values for samples

taken in the first 3 hours proved to be highly variable, due to mixing of the marker in

the blood system of a predominantly sedentary animal. This early variation translated

into a wide variation in the calculated slope values for the linear regression lines (Table

3.3.2.1). Due to the nature of the calculation for blood volume this variation becomes
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more prevalent as time (and therefore distance from time 0) increases. Therefore whilst

calculations for basal blood volume are accurate, exact values expressed for the period

of acute transfer may be overestimated. This problem could be removed by replacing

intensive sampling in the first three hours with single samples taken further apart during

the basal study period. This would lead to a more accurate calculation of the linear

regression and greater confidence in later time points. However, whilst exact values

during acute transfer may have been overestimated the trends in the results are accurate,

as are the values calculated for basal blood volumes in chronically acclimated animals.

Assessment of blood volume in S. canicula has therefore given great insight into the

changes in volaemic parameters associated with both chronic and acute transfer to

changes in environmental salinity. This insight is of fundamental importance in

understanding the osmoregulatory responses of elasmobranchs during variations in

salinity. Only through quantification of the haemodilution and concentration

experienced by elasmobranchs during salinity transfer in vivo can the influence of

volaemic change on osmoregulatory mechanism in vitro be validated. In particular

these results have provided further evidence to support the concept of increases in blood

volume occurring rapidly during acute transfer and therefore coinciding with expected

periods of increased rectal gland secretion. The volaemic affects on rectal gland

secretion in vitro have been well documented (Solomon et al. 1984; Solomon et al.

1985; Olson 1999). Furthermore, it has already been shown that variations in plasma CF

(and Na+) levels also occur early during acute salinity transfer (Figure 2.3.2.4). Given

these two factors it is clear than an assessment of in vivo rectal gland activity would

give a greater level of understanding in elasmobranch euryhalinity.
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Chapter 4: In vivo rectal gland secretion



4.1 Introduction

The rectal gland is the only organ in elasmobranchs which is capable of producing a

solution with levels of Na+ and CI" which are more concentrated than those of the blood

plasma. Therefore it is the only means of net Na+ and CI" excretion in marine

elasmobranchs. As such the gland must play a pivotal role in ionic regulation,

particularly during salinity transfers. The cost of NaCl secretion by the rectal gland has

been estimated at just 0.5% of the standard metabolic rate (Morgan et al., 1997)

although this makes no account for the intermittent nature of gland activity. The

metabolic cost during periods of active secretion is likely to be considerably greater.

Given the changes in plasma CI" concentration which occur during acute transfer in S.

canicula (Figure 2.3.2.4), the importance of the glands function cannot be overlooked.

The gland itself is a blind-ending, usually bullet-shaped tube in the dorsal mesentery,

which is suspended above the valvular intestine. It is attached to the intestine

postvalvularly. Rectal glands vary in size and shape depending on the species of

elasmobranch, and its life history. It has been reported that glands are smaller in

euryhaline, and particularly in freshwater animals, than in marine species (Oguri, 1976).

Recent work has shown that in shorter FW systems where animals are more likely to be

exposed to salinity gradients, there is no significant difference in rectal gland size

between FW and SW individuals (Pillans and Franklin, 2004). If animals in a large and

stable FW system do have proportionally smaller rectal glands, this is presumably due

to the lower influxes and variations ofNa+ and CI" in a more dilute environment.

The rectal gland is comprised of a complex mixture of connective, nerve, and smooth

muscle tissue, and at least three types of epithelia: secretory tubule, central duct and
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endothelium (Valentich et al., 1996). The adult rectal gland is comprised of three

concentric tissue layers arranged around the lumen of the central canal (Figure 4.1.1).

The outer capsule is covered by a visceral peritoneum and is permeated with blood

vessels, smooth muscle, connective tissue, and a network of nerves (Bulger, 1963).

The middle secretory parenchyma consists of radially orientated tubules and an extra

tubular matrix of connective tissue interspersed with capillaries and nerve fibres

(Bulger, 1963). Occasionally a single tubule may transverse the entire region, but more

commonly a single tubule will diverge into three to five branches as it radiates from the

central canal.

This results in tubules being tightly packed in the peripheral portion of the parenchyma

(Bulger, 1963). The tubules are lined with a single type of columnar cell and have a

narrow lumen in this region of the secretory tissue (Eveloff et al., 1979). In these dense

areas there is a highly ordered radial arrangement, although some tubules may turn

parallel to the lumen of the central canal (Bulger, 1963). The extra tubular matrix is

compact with capillaries closely associated with, and running parallel to the tubules.
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Figure 4.1.1 - Diagram of the rectal gland from S. canicula. Cross section showing 4

concentric zones: (1) capsular and subcapsular zone, (2) outer layer of radial tubules, (3)

inner layer of branching tubules, and (4) the central canal (Masini et al., 1993).
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In the central region of the parenchyma, tubules are more randomly orientated and have

larger tubular lumens. In this area the capillaries are often replaced by venous sinuses,

and the matrix is less compact (Bulger, 1963). Nerve fibres with VIP (Section 1.11.1)

immunoreactivity are closely associated with the tubular cells in S. acanthias (Stoff et

al., 1988). These nerve fibres are well ordered in the peripheral parenchyma, and ramify

extensively in the venous sinusoids of the inner parenchyma (Bulger, 1963). This

suggests a greater degree of neural influence, and hence an increased potential for the

subsequent modification of rectal gland secretory output in this region. In the caudal

end of the gland, where it is embedded in the postvalvular intestine, the secretory

parenchyma is reduced and ductal epithelium predominates (Bulger, 1963).

The secretory tubules of the rectal gland generally consist of a single type, and a single

layer of columnar epithelium (Eveloff et al., 1979). Two varieties of cells have been

categorised: 'light' and 'dark' cells, based on the density of the cytoplasmic matrix

(Bulger, 1963). It remains unclear whether these are different types of cell, or if they

represent different states of activity. The secretory cells have two distinctive features:

numerous mitochondria and extensive basolateral membrane infoldings (Ernst et al.,

1981).

There are generally between one and five parallel strands of tight (occluding) junctions

which separate adjacent cells. These junctions are relatively shallow but have a very

high length density. The values vary according to species and life history but a typical

value is seen in S. acanthias of 86 ± 5.7 m cm" (Forrest et al., 1982). The network of

junctions provide an extensive, selective paracellular diffusional pathway which is

important in Na+ secretion, as well as restricting the diffusion of other ions into the
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lumen of the tubule (Section 1.5) (Forrest et al., 1982). The length density of the

junctions in S. acanthias is greater in the inner secretory parenchyma (102 ± 4.7 m cm"2)

than in the outer region (80 ± 6.7 m cm" ), which was thought to indicate differences in

regional secretory activity (Forrest et al., 1982). The anatomy of the junctions remains

unchanged in 68% SW acclimated S. acanthias as well as during maximal stimulation

of perfused glands (Forrest et al., 1982). Secretion rate is therefore independent of

junction morphology.

The vasculature of the rectal gland has been studied using a variety of methods: vinyl

acetate (Bulger, 1963), latex infusion (Hayslett et al., 1974), and using scanning

electron microscopy and methyl methocrylate corrosion (Kent and Olsen, 1982). The

gland is supplied by the posterior-mesenteric or rectal gland artery which branches from

the dorsal aorta. The artery enters the anterior (distal) third of the gland and splits into

the anterior and posterior rami which travel the length of the dorsal aspect of the gland

(Kent and Olsen, 1982). The exterior of the gland is encompassed by a network of

paired circumferential arteries which branch off from the rami every 3 mm. These

arteries in turn give rise to smaller branches, thus forming an arteriolar plexus in the

outer capsule (Kent and Olsen, 1982). The large posterior ramus continues into the

postvalvular intestine (Figure 4.1.2).
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Figure 4.1.2 - Schematic diagram of the vascularisation of the rectal gland of S.

acanthias. Vessels with boxed labels were cannulated during surgery (modified from

Hazon et al., 1997b).
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The capsular arterioles perfuse two distinct circulations: either to the capillaries in the

secretory parenchyma, or directly to the capsular venules through arteriovenous

anastomoses (AVA's), thereby greatly reducing blood supply to the secretory tubules

(Kent and Olsen, 1982) (Figure 4.1.3). Constrictions have been noticed in the AVA's

which supports the idea that blood flow to and around the rectal gland is tightly

regulated (Kent and Olsen, 1982).

The capsular venules are commonly paired on either side of the corresponding arteries

and arterioles. Numerous small vessels arise from these venules and form a vascular

mesh over the arterial vasculature (Kent and Olsen, 1982). These venules give rise to

larger veins forming a dense venous plexus in the capsule beneath the circumferential

arteries. This is drained by a series of larger veins which travel back along the structure

of the rectal gland artery to posterior cardial veins, or with the posterior arterial ramus

into the postvalvular intestine (Kent and Olsen, 1982).
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Figure 4.1.3 - Arteriovenous anastomoses in the rectal gland of S. acanthias. The

AVA's (►) are situated between capsular arterioles (A) and venules (V), which

encompass the posterior ramus (P) of the rectal gland artery. Scale bar of 700 pm (Kent

and Olsen, 1982).
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The fine vasculature of the secretory parenchyma consists almost exclusively of

capillaries or post capillary venules. These originate in the capsular arteriolar plexus and

are orientated radially through the extra tubular matrix. Anastomotic branches

interconnect adjacent capillaries and these are more prevalent in the inner secretory

parenchyma where the vasculature is more sinusoidal (Kent and Olsen, 1982). The

secretory capillaries have a fenestrated endothelium and lie in close proximity to the

basal membranes of the secretory epithelial cells (Ernst et al., 1981). It has been

reported that blood flow in this region is parallel with secretory flow and there is

therefore no counter current multiplication of electrolytes in the rectal gland (Kent and

Olsen, 1982). However, Newbound and O'Shea (2001) recently reported that flow in

secretory tubules is in the opposite direction to that of the capillaries in the rectal gland

of H. portusjacksoni, a partially euryhaline species which ventures from SW into the

estuarine environment. This could therefore represent a morphological difference

between euryhaline and stenohaline species permitting counter current multiplication in

the secretory tubules. However, this could also be a unique feature ofH. portusjacksoni;

clearly other species with varying degrees of euryhalinity must be studied.

The innermost sinusoids coalesce into one of several main veins which boarder the

rectal gland central duct. These eventually ramify into a single vein which exits the

posterior of the gland in the tissue of the excretory duct (Kent and Olsen, 1982).

In summary, blood which flows along the rectal gland artery can flow in three possible

routes: it can flow directly into the postvalvular intestine via the posterior ramus and

effectively bypass the gland altogether. Secondly, the blood can enter the capsular

sinusoids via the AVA's, resulting in partial blood flow to the secretory tissues of the
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gland. Thirdly, the blood can perfuse the capillaries of the secretory parenchyma and

flow out through the central vein, resulting in maximal blood supply to the secretory

tissues. With such large scope for variation in blood flow to the gland it is possible that

variation in blood flow is at least partly responsible for changes in rectal gland secretion

rate.

Blood flow in the rectal gland has been illustrated as capable of sizeable fluctuations:

out of 33 free-swimming fish, 21 showed less then 1% of total blood volume entering

the gland, and 12 had between 2% and 7% (Kent and Olsen, 1982). This suggests a

pattern of intermittent blood flow and highlights the role of the gland in osmotic

homeostasis. It is concurrent with the intermittent nature of rectal gland activity

(Burger, 1967), suggesting minimal blood flow to the gland during periods of inactivity.

This theory was proven experimentally using microsphere studies of blood flow and

relating them to in vivo rates of rectal gland secretion (Kent and Olsen, 1982).

It has been theorised that rectal gland secretion rate correlates to the concentration of CI"

ions in the arteriovenous blood and/or changes in the degree of perfusion of blood

through the rectal gland (Burger, 1962). This was questioned by the findings of

laboratory work on perfused rectal glands of S. canicula which showed no change in

blood flow even after a twenty-fold increase in Na+ secretion (Solomon et al., 1984;

Shuttleworth and Thompson, 1986). Little work has been carried out regarding the

possible role of vascular perfusion on rectal gland secretion rate; the majority has been

carried out at the level of ion transport (Section 1.5). Recent work has shown that blood

flow to the secretory epithelia of the rectal gland is greater in fish acclimating to

reduced salinities than those seen in fish acclimating to increased salinities or long term
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acclimated to SW (Anderson et al., 2002a). It has also been shown that intravascular

volume expansion is a potent, and possibly the primary stimulus for rectal gland

secretion (Erlij and Rubio, 1986). This is suggestive of increased blood supply during

periods of secretory activity however a direct relationship remains to be established.

Rectal gland cell volume expansion has been illustrated as a major stimulus of rectal

gland secretion (Solomon et al., 1985). Cell volume in the epithelial cells of the

secretory tubules is regulated by the structural organisation of actin within the cell

(Henson et al., 1997). Transient loss of cytoskeletal (F-actin) organisation at the

basolateral cell face, induced by hypotonicity, brings about the selective efflux of

organic osmolytes. This produces a regulatory volume decrease in the rectal gland cells

of S. acanthias (Ziyadeh and Kleinzeller, 1991). The cytoskeleton may also be

important in mediating the response of the rectal gland to CNP (Sections 1.11 and 6.1).

Silva and Epstein (2002) showed that CNP stimulation of the rectal gland in S.

acanthias was highly dependent on the action of the actin cytoskeleton and myosin light

chains. Disruption of the actin cytoskeleton or inhibition of myosin light chain kinase

strongly inhibited CNP stimulated Cf secretion, although stimulation with VIP (via the

cAMP cascade) was virtually unaffected by similar cytoskeletal effects (Silva and

Epstein, 2002). Not only do these studies show the effect of volume expansion on rectal

gland secretion rate, but also the complex action of hormonal and neural control factors.

These are discussed in detail elsewhere (Sections 1.5, 1.8 - 12, and 6.4).

The secretion rate of the rectal gland is often unaffected by blockage of nerves, although

stimulation of isolated perfused glands with veratrine was prevented by the nerve

channel blockers tetrodotoxin and procaine, and this was not seen in preparations of
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dispersed cells (Sloff et al., 1988). The fact that the rectal gland is often unaffected by

nerve blockage suggests that stimuli affecting the rectal gland are typically carried in

the blood, such as hormonal cues or ion concentrations. A hormonal signal is consistent

with the constant lag time between external stimuli and increases in rectal gland

secretion rates which have been seen in a variety of experiments (Erlij and Rubio, 1986;

Anderson et al., 1995a; Anderson et al., 2002a). However, given the extensive

ramification of nerve fibres in the inner secretory parenchyma of the rectal gland of S.

acanthias (Kent and Olsen, 1982), the recorded release of VIP from nerves within the

rectal gland of S. acanthias (Silva et al., 1987; Chipkin et al., 1988), and the stimulatory

effect of VIP on the rectal gland of S. acanthias (Stoff et al., 1977a; Silva et al., 1987),

neural influences may be more prevalent in some species.

This may also represent a difference in the nature of hormonal and neural influences:

hormonal signals have an associated lag time and may be involved with chronic changes

in rectal gland secretion, whereas neural signals are faster acting and may be more

important in acute responses. Endocrine factors which affect the rectal gland have been

described elsewhere along with a model for stimulation (Sections 1.5, 1.8 - 1.12, and

6.4).

The rate of cellular secretion is controlled by regulating the permeability of the

chloride-selective channel in the apical membrane of the secretory tubule cells (Riordan

et al., 1994). This is achieved through alterations in the intracellular concentrations of

cAMP which is stimulated by hormones such as VIP and Scyliorhinin II (Sections 1.11

and 6.4) (Forrest, 1996). As has been previously stated, the activity of the Na+K+-2Cf

cotransporter is mediated by intracellular CF concentration (Section 1.5). Elevating
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intracellular CI concentration or preventing it from decreasing (i.e. not permitting CI

secretion into the lumen) blocks the activation of the cotransporter in response to

secretory stimuli. Cellular CI" therefore regulates its own rate of entry via the Na+K+-

2C1" cotransporter (Lytle and Forbush III, 1996).

One final influence on rectal gland secretions has been proposed. Elasmobranch rectal

glands are surrounded by a band of smooth muscle fibres just below the capsule

(Bulger, 1963; Evans and Piermarini, 2001) and, although not localised to this band,

rectal glands are responsive to smooth muscle signalling agents (Evans and Piermarini,

2001). Therefore there is scope for smooth muscle contractions having an effect on the

activity of the rectal gland, although no direct studies have been conducted.

Given the fundamental role of the rectal gland in osmoregulation there is a disparate

amount known on secretion rates in vivo. It is reasonable to assume that the gland is of

paramount importance for regulating Na+ and CP levels during salinity transfer.

However, since the early work of J. W. Burger this area has been devoid of new insight.

Rectal gland activity in S. acanthias has been described as variable but persistent on a

day-to-day basis (Burger, 1967). The average secretion rate from SW acclimated

animals was 0.47 ml Kg"1 h"1 (Burger, 1962). Acclimation to dilute SW (approximately

80%) caused an increase in rectal gland secretory rate which was measured at 1.4 ml

Kg"1 h"1 on the eighth day of transfer (Burger, 1965). In order to ascertain the role of the

rectal gland and how its action relates to blood volume and osmolyte concentrations

during changes in salinity, secretion rates in vivo must be investigated. This will give

further insight into the factors affecting euryhalinity in elasmobranch fish.



4.2 Materials and methods

Experiments on rectal gland secretion rate in S. canicula were run concurrently with

those for haematic parameters (Chapter 2).

4.2.1 Chemicals and equipment

Chemicals and equipment used were identical to those outlined above (Section 2.2.3).

4.2.2 Surgical procedures

In addition to the procedures outlined for haematic parameters (Section 2.2.4) the rectal

gland duct and vein were cannulated as follows. A Mersilk tie was passed between the

valvular intestine and the rectal gland vein using a needle, taking care not to rupture the

intestine. An incision was made in the vein anterior (downstream) of the tie. Portex

polythene tubing of 0.61 mm outer diameter with an obliquely cut tip was passed into

the vein until the tip was adjacent to the gland. The tie was then tightened to hold the

cannula in position. The cannula was then cut at an oblique angle leaving approximately

25 mm protruding from vein. A second incision was made in the rectal gland vein

slightly anterior to the first. The other end of the cannula was then passed into this and

held by another tie. This procedure created a bridge in the rectal gland vein which

ensured that blood flow from the gland was unaffected by cannulation of the duct, as

well as providing a means of purchase during duct cannulation.

A tie was passed through the connective tissue between the rectal gland and the

postvalvular intestine. An incision was then made in the rectal gland duct, which passes

through this tissue, anterior to the tie. A 60 cm length of Portex polythene tubing of 0.61

mm outer diameter was passed into the duct until the obliquely cut tip just entered the
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gland. The Mersilk tie was then tightened around both cannulae, fixing the duct cannula

against that in the vein. In this manner the rectal gland duct was cannulated without

disrupting blood flow from the rectal gland vein (Figure 4.1.2). Animals were then

sutured as previously described (Section 2.2.4) and left in the salinity transfer tanks

(Figure 2.2.1.1) for 24 hours after surgery.
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4.2.3 Analysis and collection

Fingertips were removed from powder free, nitrile gloves and inverted. These were used

as collection balloons for the rectal gland duct cannula, being affixed with Mersilk ties.

Collection periods lasted for 2 hours during both basal and transfer experiments, with

new balloons used for each time period. Basal collections were taken after 2, 4, 6, 8, and

24 hours; transfer collections were taken after 2, 4, 6, 8, 10, and 12 hours. After each

time period the balloons had the ties removed and were placed vertically in a freezer

overnight. Rectal gland fluid (RGF) was assessed gravimetrically assuming a specific

gravity of 1 g ml"1. Chloride concentration was measured as previously outlined

(Section 2.2.5) using a 4-fold dilution in Milli Q water. After the terminal transfer

collections rectal glands were removed, dried on tissue paper, and the wet weights were

recorded.

Activity of the rectal gland in S. canicula was examined through three parameters:

volume of RGF, CF concentration in the RGF, and from these two the corresponding

rate of Cl" clearance from the gland. All rates have been normalised for values per gram

rectal gland wet mass per hour.
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4.2.4 Statistical analysis

All averages are presented as means ± SEM. Statistical analysis of basal parameters was

performed via one-way ANOVA and a Tukey post hoc test. Significant differences from

values for 100% SW animals were denoted as * (P < 0.05), ** (P < 0.01), and *** (P <

0.005).

Data gathered during the acute transfer studies were analysed in two ways: differences

between the two experimental groups and the control group were analysed via one-way

ANOVA and a Tukey post hoc test (significance was denoted as * P < 0.05, ** P <

0.01, and *** P < 0.005); differences between values during transfer and at time 0

within each group were analysed via a one-tailed unpaired student's t-test with a Welch

correction factor (significance was denoted as + P < 0.05, t1 P < 0.01, and 11 P < 0.005)

(InStat). Unlike the analysis for haematic parameters, any significance is always shown.

Where data has been manipulated to exclude periods of inactivity non-parametric

analysis was used. Differences between the two experimental groups and the control

group were analysed via a Kruskal-Wallis test and Dunn's multiple comparisons post

test (significance was denoted as * P < 0.05, ** P < 0.01, and *** P < 0.005); for acute

transfers differences between values during transfer and at time 0 within each group

were analysed via a one-tailed Mann-Whitney test (significance was denoted as f P <

0.05, n P < 0.01, and tn P < 0.005) (InStat).
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4.3 Results ,

The results for in vivo rectal gland parameters are presented in two sections: a

comparison of basal levels in S. canicula acclimated to different salinities; and a

comparison of levels from S. canicula acclimated to the three salinities during acute

transfer to 100% SW.

4.3.1 Basal secretion rates

Rectal glands from S. canicula which had been long term acclimated to hypo- and

hypersaline conditions were not significantly different in size to control animals from

SW (Table 4.3.1.1). RGF volume from 100% SW S. canicula was highly variable

between time periods and between animals. Similar trends were observed in long

termed acclimated animals from both 80% and 120% SW

The concentration of CI" in the RGF was significantly different between the three

salinities. CI" concentration in the RGF is altered proportionately with environmental

salinity. Despite this difference in CI" concentration no differences were seen in either

basal RGF volume or CI" clearance between chronically acclimated S. canicula from the

three salinities. Similarly, no differences were seen when analysis was conducted on

periods of active secretion.
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Salinity

Proportional RGmass
(mg100g"1)

Basaldata

Activesecretiondata

RGFvolume (mlg"1h"1)

CI" concentration (mmolI'1)

CI' clearance (mmolg"1h'1)
RGFvolume (mlg1h"1)

CI' clearance (mmolg'1h'1)

80%SW

1.83±0.19

0.62±0.23

375±7***

0.23±0.08

0.66±0.22

0.24±0.08

100%SW

1.75±0.10

0.34±0.12

480±14

0.16±0.05

0.36±0.11

0.17±0.05

120%SW

2.01±0.22

0.45±0.14

589±8***

0.27±0.08

0.56±0.15

0.34±0.09

Table4.3.1.1-RectalglandparametersfromS.caniculaacclimatedtodifferentsalinities.Rectalglandmassvalueshavebeennormalisedand areexpressedasmgper100gbodymass.Allvaluesarepresentedasmeans±SEM(n=8,7,and8respectively).Statisticalanalysiswas performedviaone-wayANOVAandaTukeyposthoctestforCI" concentration,two-tailedMann-WhitneytestsforbasalRGFvolumeandCI clearancerates,andaKruskal-WallistestandDunn'smultiplecomparisonsposttestforperiodsofactivesecretion.Significantdifferencesfrom valuesfor100%SWweredenotedas*(P<0.05),**(P<0.01),and***(P<0.005).
CT>
w



4.3.2 Acute transfer secretion rates

All figures for acute transfer have had the values for animals from 80 and 120% SW

offset on the time axis for clarity, although the measurements are all taken at equivalent

time periods. Rectal gland secretion volume remained highly variable during acute

transfer to 100% SW from 80, 100, and 120% SW environments (Figure 4.3.2.1). RGF

volume was significantly reduced in the control animals after 2, 6, and 8 hours of the

transfer as compared to basal levels. RGF volume remained unchanged in animals

acclimating to 100% SW from 80% SW. RGF volume was significantly increased in

animals acclimating from 120% SW after 8 hours of the transfer. Counter intuitively,

secretion rates in the early stages of transfer were significantly higher in animals

acclimating to 100% SW from 80% SW as compared to the control 100% SW animals.

Both experimental groups showed significant increases in RGF output between 6-8

hours into the transfer.

Animals acclimating to 100% SW from 80% SW significantly increased CF

concentration in the RGF after 2 hours of the transfer, and it remained so thereafter

(Figure 4.3.2.2). S. canicula acclimating to 100% SW from 120% SW showed

significantly decreased CF concentration in the RGF after 4 hours, and it remained

decreased throughout the rest of the transfer. RGF CF concentration in the control

animals remained unchanged throughout the transfer. CF concentration in the RGF

increased in animals acclimating from 80% SW and was not significantly different to

that of the control 100% SW group after 6 hours. Conversely, CF concentration in the

RGF decreased in animals acclimating from 120% SW and was not significantly

different to that of the control 100% SW group after 6 hours.
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S. canicula RGF secretion volumes during acute
transfer to 100% SW

Time into transfer (h)

Figure 4.3.2.1 - RGF secretion rates during acute transfer to 100% SW. Values are

means ± SEM (n = 8, 6, and 6 respectively). Statistically significant differences from

the control transfer were assessed via one-way ANOVA and a Tukey post hoc test

(significance was denoted as * (P < 0.05), **(/>< 0.01), and *** (P < 0.005));

statistically significant differences from basal values at time 0 were assessed via one

tailed unpaired students t-tests with Welch correction factor (significance was denoted

as f (P < 0.05),tf (P < 0.01), and tn (P < 0.005)).
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S. canicula RGF CI" concentration during
acute transfer to 100% SW
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Figure 4.3.2.2 - CI" concentration in RGF during acute transfer. Values are means ±

SEM (n = 8, 6, and 6 respectively). Statistically significant differences from the control

transfer were assessed via one-way ANOVA and a Tukey post hoc test (significance

was denoted as * (JP < 0.05), ** (P < 0.01), and *** (P < 0.005)); statistically significant

differences from basal values at time 0 were assessed via one tailed unpaired students t-

tests with Welch correction factor (significance was denoted as f (P < 0.05), n (P <

0.01), and t+t (P< 0.005)).

***
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CI" clearance rales from the rectal gland of S. canicula were not significantly different

from basal levels during acclimation to 100% SW from 80 and 120% SW environments

(Figure 4.3.2.3). CI" clearance rate from the rectal gland of control animals was

significantly reduced during transfer when compared to basal levels. Counter

intuitively, CF clearance was significantly higher in animals acclimating to 100% SW

from 80% SW, but only after 2 and 8 hours when compared to the control 100% SW

animals. CI" clearance was also significantly higher in animals acclimating to 100% SW

from 120% SW after 8 hours when compared to the control 100% SW animals.

Accurate assessment of rectal gland CI" clearance in vivo is hindered greatly by the

intermittent nature of gland activity. Therefore CI" clearance was also assessed

discarding data collected during periods of inactivity (Figure 4.3.2.4). On average this

resulted in assessing 5 of the possible 8 animals from 80% SW, 3 of the 6 from 100%

SW, and 4 of the 6 from 120% SW. This should provide a better representation of CI"

clearance during periods of secretion. During periods of activity CI" clearance from the

glands of animals acclimating to 100% SW from 80% SW did not change significantly

from basal levels. Clearance from the rectal glands of animals acclimating to 100%

SW from 120% SW was significantly increased from basal levels after 8 and 12 hours

of acute transfer. CI" clearance during periods of activity in the control 100% SW group

was significantly reduced from basal levels after 2, 6, and 8 hours of the transfer. After

8 hours of acute transfer animals acclimating to 100% SW from 120% SW had a

significantly higher rate of CI" clearance from the rectal gland than the control animals.
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S. canicula rectal gland CI" clearance during acute
transfer to 100% SW

Time into transfer (h)

Figure 4.3.2.3 - CI" clearance rates from the rectal glands of S. canicula during acute

transfer to SW. Values are means ± SEM (n = 8, 6, and 6 respectively). Statistically

significant differences from the control transfer were assessed via one-way ANOVA

and a Tukey post hoc test (significance was denoted as * (P < 0.05), **(/>< 0.01), and

*** {p < 0.005)); statistically significant differences from basal values at time 0 were

assessed via one tailed unpaired students t-tests with Welch correction factor

(significance was denoted as ^ {P < 0.05), ^ (P < 0.01), and (P < 0.005)).
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CI" clearance during periods of activity in the rectal glands
of S. canicula during acute transfer to 100% SW

2.0

1.5

O)

□ From 80%
-O— From 100%
-A— From 120%

4 6 8

Time into transfer (h)

Figure 4.3.2.4 - CI" clearance rates during periods of activity from the rectal glands of

S. canicula during acute transfer to SW. Values are means ± SEM (n = 8, 6, and 6

respectively). Statistically significant differences from the control transfer were assessed

via a Kruskal-Wallis test with Dunn's multiple comparisons post test (significance was

denoted as * (P < 0.05), ** (P < 0.01), and *** (P < 0.005)); statistically significant

differences from basal values at time 0 were assessed via a one tailed Mann-Whitney

test (significance was denoted as * (P < 0.05), ft (P < 0.01), and w (P < 0.005)).
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4.4 Discussion

Chronic acclimation to altered environmental salinity had no effect on the relative size

of the rectal gland in S. canicula (Table 4.3.1.1). Previous work has found that rectal

glands from species inhabiting reduced salinities can be proportionally smaller than

those of marine species, depending on the nature of the FW system (Oguri, 1976;

Pillans and Franklin, 2004). This suggests that whilst there may be interspecies, and

possible interpopulation variation in rectal gland size due to salinity, there is no

intraspecific modification in this marine species. It is possible that the 3 week

acclimation to salinity change used in this study is not sufficient to elicit any change in

the proportional rectal gland mass of S. canicula. However, this is a marine species

which experiences minor changes in salinity in the wild and it is therefore probable that

the species would not show any change in proportional rectal gland mass even during a

longer period of acclimation. The affects of long term salinity acclimation on the

structure of the rectal gland are discussed below (Section 5.4).

The results presented above show that in vivo rectal gland activity in S. canicula is

extremely intermittent, as has been previously reported for S. acanthias (Burger, 1967).

This is true in all three of the salinities studied. Maximal rectal gland secretion

throughout the study peaked at around 2% of total blood CF levels (Tables 2.3.1.1,

3.3.1.1, 4.3.1.1, and 5.3.1.1 and Figure 4.3.2.4). These findings further support the

concept of the rectal gland being of fundamental importance in maintaining ionic

homeostasis. The concentration of CF in the RGF is significantly increased at a higher

salinity, and significantly reduced at a salinity below SW (Table 4.3.1.1). This is

consistent with the concept of the rectal gland secreting a fluid around isosmotic with

blood plasma and consisting largely of CF and Na+.
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However, despite this increase in the concentration of CI" in the RGF, the rate of CI"

clearance from the rectal gland is not different at elevated or reduced environmental

salinities. This is largely due to the fact that RGF secretory volume is not consistently

altered by acclimation to different salinities (Table 4.3.1.1). These findings in vivo are

contrary to those from studies on the isolated perfused rectal glands of S. canicula

which showed that CI" clearance was affected by salinity change: CI" clearance was

decreased at elevated salinities, and increased at reduced salinities (Anderson et al.,

2002a). This discrepancy suggests that there are methods of mediating rectal gland

secretion, exogenous to the gland, which are important during salinity change. Given

that the isolated glands were perfused with Ringer solution of the appropriate salinity it

is unlikely that this method of control stems from osmolyte concentrations in the

perfusate/blood. It is more likely that the control of rectal gland CI" clearance is

achieved through hormonal signals carried in the blood, as outlined elsewhere (Sections

1.5, 1.8 - 12, and 6.4). This discrepancy also highlights the importance of in vivo

studies: for whilst the mechanics of the gland may suggest one mode of action under

certain environmental conditions, actual rectal gland function may be quite different.

The fact that there were no significant differences in S. canicula chronically acclimated

to 80%, 100%, and 120% SW for either RGF secretion or CI" clearance rates, and given

that the rectal gland is the main source of secretion for Na+ and CI", suggest that there

are proportionally similar amounts of these ions entering the animals at each of the

salinities. That is to say, S. canicula is capable of complete osmotic acclimation to both

80 and 120% SW and experiences no changes in the relative influxes of Na+ and CI"

once fully acclimated. S. canicula is able to sustain altered levels of plasma osmolytes

(such as CI" and Na+) as a means ofmaintaining an iso/hyperosmotic state. This further
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supports the findings discussed above concerning basal haematic parameters in animals

which are long term acclimated to 80, 100, and 120% SW conditions (Section 2.4).

During acute transfer to 100% SW S. canicula modifies the concentration of CI" in the

RGF. The concentration of CF in the RGF was no longer significantly different to that

of the control group in both of the experimental groups after 6 hours (Figure 4.3.2.2).

This coincides with the point at which blood plasma osmolality was no longer

significantly different between animals transferring from 120% SW and the control

animals (Figure 2.3.2.3). However, the plasma osmolality of animals transferring from

80% SW continued to be significantly below that of the control animals throughout the

transfer (Figure 2.3.2.3), and yet CF concentration in the RGF of the same animals was

altered to levels similar to those in the control group. This does not support the idea of

the RGF being altered to be isosmotic to blood plasma.

Whilst rectal gland secretory volume was unchanged in animals acclimating from 80%

SW, it was significantly increased after 8 hours in animals acclimating from 120% SW

(Figure 4.3.2.1). However, this did not translate into a significant increase in CF

clearance, due to the large amount of variation stemming from intermittent gland

activity (Figure 4.3.2.3). The significant decreases in RGF volume and CF clearance

seen in the control group during acute transfer are illustrative of the intermittent nature

of rectal gland function.

Rectal gland secretory volume was significantly higher in the two experimental groups

after 8 hours of transfer than in the control group. This did result in an associated higher

rate of CF clearance. Animals undergoing acute transfer from 80% SW have the
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requirement to increase plasma CI" concentrations and so an increased frequency of

secretion, and therefore an increase in CI" clearance, from the rectal gland is counter

intuitive. Given the specific evolution of the rectal gland for the secretion ofNa+ and CI"

it is likely that the influences over its secretory activity are highly refined. The

immediate requirement to increase plasma osmolality during acute transfer to 100% SW

from 80% SW is met by a series of discrete drinking events in order to increase intake

of readily available Na+ and CI" (Anderson et al., 2002b; Hazon, pers. comm.). Once the

initial disparity between environmental and plasma osmolalities has been reduced,

internal concentrations of Na+ and CI" are regulated through the action of the rectal

gland. This could explain the increased frequency of rectal gland activity in these

animals.

Animals undergoing acute transfer from 120% SW also increase CI" clearance from the

rectal gland. This was expected as a means to reduce plasma CI" concentrations as part

of the process to lower overall plasma osmolality. Results of in vivo rectal gland

secretion from the acute transfer studies further support the findings that rapid

modifications to blood plasma osmolality are largely achieved through changes in

plasma Na+ and CI" concentrations (Section 2.3.2). The rectal gland is of vital

importance to this as both a means of regulating the influx of Na+ and CI" from a

drinking response, and as a means of reducing plasma concentrations of these ions to

reduce overall plasma osmolality.

In order to gain further insight into the effects of salinity transfer on rectal gland

secretion the results were reanalysed removing the periods of inactivity and only

assessing the gland during periods of secretion (Figure 4.3.2.4). The results of the
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control group showed that rectal gland CI" clearance is modified during constant

environmental conditions. That is to say that rectal gland secretion is not purely

modified by changing periods of activity and inactivity, but also by changing CI"

clearance rates during the periods of activity. This is most likely a reflection of

variations in plasma osmolality over time and the role of the gland in plasma osmotic

homeostasis. Periods of inactivity were fewer in animals acclimating to salinity change

than they were in the control group (Section 4.3.2), and CI" clearance rates during

periods of activity are more variable in these groups as a result of that. Whilst there

were no significant changes in CI" clearance in animals acclimating to 100% SW from

80% SW, animals acclimating to 100% SW from 120% SW did significantly increase

rectal gland CI" clearance during periods of activity (Figure 4.3.2.4).

This difference between overall CI" clearance and that during periods of activity in the

rectal glands of these animals illustrates the response of the gland throughout acute

transfer to reduced salinities. The rectal gland is not necessarily active for greater

periods of time during these salinity transfers, but CI" clearance is increased during the

periods of activity. This increase acts as a means of reducing plasma CI" (and Na+)

concentration so as to reduced overall plasma osmolality to levels which are

iso/hyperosmotic to the environment.

These findings illustrate the importance of mediating the secretion of Na+ and CI" in

elasmobranch osmoregulation, particularly during acclimation to changes in salinity.

They also illustrate importance of in vivo studies in describing the overall

osmoregulatory response of the rectal gland during salinity transfer. However, the wide

variety of factors which influence rectal gland activity in vivo (which have previously
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been discussed (Sections 1.5 and 1.8 - 12)) make specific analysis of individual aspects

of glandular function highly complex. For this reason it becomes evident that the use of

in vitro techniques is of great importance; allowing isolation of the rectal gland from

these control factors, therefore permitting a more precise analysis of the individual

processes involved in regulating active secretion. In this manner the structural changes

within the rectal gland following chronic acclimation to salinity transfer were assessed.
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Chapter 5: Structural changes in the rectal gland

See Pillans, R. P., Good, J. P., Anderson, W. G., Hazon, N. and Franklin, C. E. (2005).

"Freshwater to seawater acclimation of juvenile bull sharks (Carcharhinus leucas): plasma

osmolytes and Na+/K+-ATPase activity in gill, rectal gland, kidney and intestine." J Comp

Physiol B 175: 37-44 (Appendix 2) for details on C. leucas.



5.1 Introduction

Elasmobranchs modify their blood plasma osmolality, through altering the

concentrations of key osmolytes, in response to changes in salinity. It has been

demonstrated that CI" and Na+ are two of these key osmolytes (Chapter 2), and that the

action of the rectal gland is of paramount importance to altering the plasma

concentrations of these ions (Chapter 4). It is therefore important to investigate potential

changes in the tissues of the rectal gland which permit these changes in CI"

concentration and secretory volume of the RGF.

As previously stated, marine elasmobranchs may face a large salt load during feeding

events from the ingested food and also the imbibed SW (Section 1.4). MacKenzie

(1996) investigated the effects of this salt load on the structure of the rectal gland

through a comparison of histological sections from starved and recently fed (12 hours

after feeding) S. canicula. Feeding, and the associated salt load, resulted in a 40%

increase in the diameter of the central collecting duct, a 47% increase in the diameter of

the central vein, and a 47% increase in the visible number of blood vessels in the

capsular layer. These results suggest that there are changes in rectal gland structure

associated with increased blood flow to, and blood and secretory flow from, the rectal

gland during periods of high salt loading. This was further supported by more recent

work conducted on blood flow to the rectal gland in S. canicula acclimated to different

salinities. Blood perfusion of the secretory epithelia was significantly increased in the

rectal glands of animals acclimated to 70% SW, as compared to that in animals from

100 and 120% SW environments. Blood perfusion in the 120% SW group did not

significantly differ from that in the 100% SW group (Anderson et al. 2002a). Isolated

perfused rectal glands from animals similarly acclimated to reduced salinity also show
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an increase in CI" clearance rates (Anderson et al. 2002a). Furthermore, this study has

demonstrated previously that rectal gland CI" clearance in vivo is increased during

periods of activity in animals acclimating to reduced salinity (Figure 4.3.2.4). These

findings support the idea of increased blood flow to the secretory epithelia of the rectal

gland during conditions which induce increases in rectal gland output. It is therefore

important to ascertain whether or not acclimation to salinity change, and the associated

fluxes in CI" and Na+, invokes similar changes in rectal gland structure as produced in

response to dietary salt loading. Histological analysis of the rectal glands from C. leucas

captured in Lake Nicaragua and the FW system of the Rio San Juan demonstrated a

thicker connective tissue, an enlarged central duct, an irregular capillary network, and a

decrease in the number of glandular tubules when compared to SW captured animals

(Oguri 1964; Gerzeli et al. 1976). This river system is very different to the Brisbane

River which has tidal effects and a salinity gradient throughout. The population of C.

leucas in Lake Nicaragua are therefore likely to spend a greater amount of time in a

fully FW environment. Analysis of rectal gland structure in C. leucas from the Brisbane

River acclimated to both FW and SW will therefore give further insight into the effects

of salinity transfer on the structure of the rectal gland in this fully euryhaline species.

Studies by MacKenzie (1996) demonstrated changes in structural aspects of the rectal

gland associated with periods of acute salt loading. In this study structural analysis was

performed on the rectal glands of both a fully and a partially euryhaline elasmobranch

species acclimated to different environmental salinities. This enabled investigation into

the specific effects of salinity acclimation and variations in secretory output on rectal

gland structure. If any effects were recorded a comparison of a fully and a partially

euryhaline species could be analysed.
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Changes in rectal gland structure may therefore be descriptive of changes in secretory

output. Variations in secretory output are most likely to be associated with changes in

Na+, K+-ATPase activity and/or abundance. Although the rate of cellular secretion is

controlled by regulating the permeability of the chloride selective channel in the apical

membrane of the secretory cells (Riordan et al. 1994), Na+, K+-ATPase is of vital

importance to cellular secretion. This is due to the fact that the action of Na+, K+-

ATPase is the only active process in the movement of Na+ and CI" across cell

membranes (Figure 1.5.1). Rosenberg (1948) states that only a transport against the

combined effects of electrochemical potential and concentration gradients should be

considered active. As such Na+, K+-ATPase can be considered as the most important

protein in NaCl secretion as all subsequent processes are driven by its action.

Na+, K+-ATPase is an enzyme which is composed of two heterologous subunits: a

catalytic a-subunit and a glycosylated p-subunit. The p-subunit spans the cell membrane

once whereas the a-subunit spans up to 10 times, with both subunits exposing the N-

terminal into the cytoplasm. Most of the mass of the a-subunit is on the cytoplasmic

surface of the membrane whilst most of the mass of the P-subunit is on the extracellular

surface and contains several glycosylation sites (Geering 1988). The subunits are

encoded for by two independent mRNA sequences, with their synthesis being strictly

coordinated (Geering et al. 1985).

The Na+, K+-ATPase purified from elasmobranch rectal glands has been shown to be

heterogeneous, in contrast to similar methods utilised on the enzyme isolated from

mammalian kidneys. Examples of this heterogeneity include biphasic spontaneous

phosphorylation (Cornelius 1995a; Cornelius 1995b), inactivation by iV-ethylmaleimide
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(Esmann 1982; Esmann and Norby 1985), and the existence of high and low binding

affinities for ouabain (a Na+, K+-ATPase specific inhibitor) associated with the a-

subunit (Silva et al. 1983; Hansen 1999). In all cases monophasic reactions are seen

with Na+, K+-ATPase purified from mammalian kidney, but not with enzyme isolated

from mammalian brain tissue which is composed of different isoforms of the a-subunit

(Hansen 1976; Hansen 1986; Hansen et al. 1991). Contrastingly, the heterogeneity in

ouabain binding affinity seen in the rectal gland of S. acanthias is not due to different

isoforms of the a-subunit (Hansen 1999). The cause for this heterogeneity in Na+, K+-

ATPase in the elasmobranch rectal gland remains unclear.

In work related to this present study analysis of rectal glands from C. leucas chronically

acclimated to both FW and SW showed no significant differences in either mRNA

levels or enzyme abundance for Na+, K+-ATPase (Meischke, pers. comm.).

Furthermore, the amount of enzyme present in the tissues of the rectal gland proved so

high as to be a hinderence to quantitative analysis. No differences were recorded for

either mRNA levels or enzyme abundance in the intestinal tissue of the same animals.

Differences were recorded in the branchial tissue regarding the localisation of the Na+,

K+-ATPase al subunit with high levels on the gill filament and lamellae of FW C.

leucas but only on the filaments of SW acclimated animals (Meischke, pers. comm.)',

patterns identical to those recorded for D. sabina (Piermarini and Evans 2000).

Differences were also seen in Na+, K+-ATPase enzyme abundance in the kidney of C.

leucas where FW acclimated animals consistently showed greater levels of immuno¬

fluorescence than SW acclimated animals (Meischke,pers. comm.).
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Na+, K+-ATPase is responsible for maintaining the basic monovalent cation homeostasis

in all vertebrate cells, and in epithelia is basolaterally located (Riordan et al. 1994). In

the secretory epithelia of the rectal gland Na+, K+-ATPase uses the energy derived from

ATP to actively pump K+ into and Na+ out of the cell against both electric potential and

concentration gradients (Figure 1.5.1). The action of Na+, K+-ATPase is essential to

rectal gland function as its specific inhibition by ouabain stops secretion completely

(Silva et al. 1977). Secretion can be stimulated by cyclic adenosine monophosphate

(cAMP) (Stoff et al. 1977b), and there is indirect evidence that this is accompanied by

enhanced activity of Na+, K+-ATPase. For example, stimulation by cAMP is associated

with an increase in ouabain-sensitive oxygen consumption by the whole gland (Silva et

al. 1979), as well as increasing the rate and amount of ouabain binding (Silva et al.

1983). Furthermore, in cultured cells from the rectal gland of S. acanthias intracellular

Na+ concentration has been shown to decrease in response to cAMP (Lear et al. 1992).

Intracellular concentrations of cAMP are also of key importance in regulating the

permeability of the chloride-selective channel (Forrest 1996), the major factor

controlling the rate of cellular secretion.

Due to the action of Na+, K+-ATPase in pumping cations against electrochemical and

concentration gradients it is also of key importance in other elasmobranch

osmoregulatory organs. It is of paramount importance in acid base extrusion at the

surface of the gills (Figure 1.3.2) (Evans et al. 2005), and there is growing evidence for

the gills of FW elasmobranchs being involved in active ion uptake (Hirose et al. 2003).

In the kidney, tubular cells in the EDT have been shown to have similar characteristics

to cells which actively transport Na+ (Lacy and Reale 1991b; Lacy and Reale 1991a).

Intestinal Na+, K+-ATPase has been shown to be of importance in teleosts during
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salinity transfer (Jampol and Epstein 1970; Finstad et al. 1989), and in elasmobranchs

due to the effects of dietary sodium intake illustrated in S. canicula (MacKenzie 1996;

MacKenzie et al. 2002). It is therefore intuitive that it plays a similar role in

elasmobranchs.

The response of Na+, K+-ATPase to salinity transfer has been investigated in other

studies. Piermarini and Evans (2000) investigated changes in the activity and abundance

of Na+, K+-ATPase in the gills and rectal gland of D. sabina associated with

acclimation to different salinities. Activity and abundance of branchial Na+, K+-ATPase

decreased when FW animals were acclimated to SW, levels in SW animals were lower

still. Na+, K+-ATPase rich cells were found on both the filament and lamellae of the

branchial epithelium in FW stingrays, but only on the filament of SW animals. This

reflects the decrease in requirement for active ion uptake at the gills in increased

salinity. Conversely, the activity and abundance of rectal gland Na+, K+-ATPase

increased when FW animals were acclimated to SW, to levels equivalent to those found

in SW animals. This reflects the increase in requirement for NaCl secretion by the rectal

gland at increased salinities.

Quantitative histochemical studies on FW C. leucas from Lake Nicaragua have found

Na+, K+-ATPase activity in the rectal gland to be below accurately measurable levels

(Gerzeli et al. 1976). This data conflicts with that gathered on the same species from the

Brisbane River where Na+, K+-ATPase activity was prohibitively high for quantitative

analysis in FW individuals (Meischke, pers. comm.). This could be the result of an

extended period of the life cycle in a wholly FW system such as Lake Nicaragua, or

indicate that C. leucas is capable of greatly reducing rectal gland activity in FW as part
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of its euryhaline strategy. However, it is also possible that these results reflect

incomplete inhibition of Na+, K+-ATPase by lower concentrations of ouabain used by

Gerzeli and co-workers (1976). Clearly the activity of Na+, K+-ATPase is of

fundamental importance to the activity of osmoregulatory organs, and elasmobranchs

seem able to modify either the abundance and/or activity of the enzyme in response to

salinity change.

In this study the Na+, K+-ATPase maximal activity in key osmoregulatory organs were

assessed in both a fully and partially euryhaline species. This allowed a quantitative

analysis of the total amount of enzyme activity possible by each of the organs.

Furthermore, comparative analysis between salinity acclimations showed any

modifications in maximal Na+, K+-ATPase activity within the principle osmoregulatory

organs. This also permitted a comparison of the degree of modification seen in a

partially and a fully euryhaline elasmobranch species.
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5.2 Materials and methods

Tissue modifications in S. canicula and C. leucas in response to salinity changes were

assessed by two methods. Rectal gland structure was assessed by histological staining

and analysis. Na+, K+-ATPase activity was assessed in the gills, the gut, the rectal gland,

and the kidney via a maximal activity assay. The protocols for these are outlined below

(Sections 5.2.2 and 3).

5.2.1 Chemical and equipment

Unless otherwise stated all chemicals used were obtained from Sigma and were

identical to those described previously (Section 2.2.3). Histological sections were cut at

6pm on a microtome (rotary microtome, Leica UK, Milton Keynes, UK).
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5.2.2 Histological staining and analysis

Transverse sections (approximately 2 mm) were taken from the middle of the rectal

gland and tissue samples were prepared following the protocol outlined by MacKenzie

(1996) using Masson's trichrome staining method (Masson 1929) (Appendix 1).

Slides were analysed following similar methods to those outlined previously (Anderson

et al. 2002a). Images of each slide were captured using an M3Z binocular microscope

(Wild, Heerbrugg, Switzerland) attached to a CV-255C video camera (MVD, Tokyo,

Japan) and a computer running Analysis 2.11 (Norfolk Analytical, Hilgay, Norfolk).

Prior to image analysis, images of all slides were isolated from the background using a

6 pixel brush tool and pure white colour (this was chosen as it did not occur naturally in

the tissues of the rectal gland), with the central duct and vein being similarly isolated

using a 4 pixel brush. Images were then analysed on a visual range excluding pure white

with data gathered for area and mean diameter on the whole gland section, the central

duct, and the central vein (Figure 5.2.2.1)

A total of 30 images were selected at random and analysed for each rectal gland, with

mean values being calculated for each of the parameters. This was taken to represent the

mean values of each parameter for each gland. From these values it was then possible to

calculate the percentage of the cross-sectional area relating to the central duct and vein.
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Figure 5.2.2.1 - Measurements taken for structural analysis. T-bars encompass the

areas measured for the cross section of the whole gland (1), the central duct (2), and the

central vein (3) (Masini et al. 1993).
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5.2.3 Maximal Na+, K+-ATPase activity

Maximal enzyme activity was measured following the methods of MacKenzie and co¬

workers (2002) (Appendix 1). Tissue samples were taken in the following ways: Gill

tissue was taken by scraping the anterior and posterior surfaces of the third right side

gill hemibranch with a scalpel blade, removing approximately 200 mg of tissue.

Intestinal mucosa was taken by removing and opening the valvular intestine and

scraping the first 1 cm of the anterior section with a scalpel blade. The rectal gland was

sampled using the posterior half for C. leucas, and the whole gland minus sections taken

for respirometry studies (Chapter 6) for S. canicula. Approximately 200 mg of kidney

tissue was taken by cross-section from the nephrogenic region. After homogenisation,

tissues were filtered through 4 layers of sterile gauze and stored at -80 °C prior to assay,

with a maximum of 7 days allowed prior to measurement ofNa+, K+-ATPase activity.

Prior to measurement of maximal Na+, K+-ATPase activity, samples were assessed for

protein concentration. For S. canicula this was achieved following the method outlined

by Bradford (1976) (Appendix 1). For C. leucas protein was determined using a Micro

Lowry protein kit, Peterson's modification (TP0300, Sigma) based on the method

outlined by Lowry and co-workers (1951).

From preliminary results tissue homogenates were diluted in the following ratios to give

values which were included in the range of standards: gill (1:5), gut (1:15), rectal gland

(1:5), kidney (1:15). Upon calculation of protein concentration the homogenates were

diluted to give final concentrations of between 0.2 and 0.4 mg ml"1 before measurement

of enzyme activity.
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Maximal Na+, K+-ATPase activity was defined as the ouabain-sensitive component of

the hydrolysis of ATP in the presence of Na+, K+, and Mg2+ (MacKenzie 1996;

MacKenzie et al. 2002) (Appendix 1). Ouabain sensitive phosphate release was

determined as the difference between values in the presence and absence of 2 mM

ouabain. This concentration was chosen based on the complete inhibition of Na+, K+-

ATPase activity (MacKenzie 1996).

From the results of the protein assay and the Na+, K+-ATPase assay, maximal activity of

the enzyme could be calculated:

Activity = Ouabain sensitive phosphate release (mmol ml"1 h"1)

(pmol Pi mg"1 Protein h"1)

Concentration of protein in assay (mg ml"1)
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5.2.4 Statistical analysis

All data are presented as means ± the standard error of the mean (SEM). For the data

gathered on S. canicula statistical analysis was performed via one-way ANOVA and a

Tukey post hoc test (InStat). Data gathered on C. leucas was analysed using a two-tailed

unpaired student's t-test with Welch correction factor (InStat). Significance was

denoted as * (P < 0.05), ** (P < 0.01), and *** (P < 0.005).
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5.3 Results

The results for structural changes are presented in two sections: rectal gland structure

and maximal Na+, K+-ATPase activity. Due to the differences in equipment at the two

laboratories, different parameters of body and rectal gland size were taken for S.

canicula and C. leucas.

5.3.1 Rectal gland structure

The body mass of S. canicula was not significantly different between groups of animals

acclimated to 80, 100, and 120% SW (Table 5.3.1.1). Rectal glands from S. canicula

acclimated to 80% SW were highly significantly heavier than those acclimated to 100%

SW. This corresponded to a significantly larger proportion of body mass being

attributable to these rectal glands, and a significantly larger cross-sectional area, as

compared to glands from 100% SW acclimated animals. Rectal glands from animals

acclimated to 120% SW had a highly significantly smaller proportion of body mass

attributable to them than glands from 100% SW acclimated animals. There was no

significant difference in cross-sectional area between glands from animals acclimated to

120 and 100% SW. There were no significant differences in mean area of either the

central duct or vein of S. canicula acclimated to the three salinities.

C. leucas acclimated to SW had significantly smaller body masses than those

acclimated to FW (Table 5.3.1.2). This was not due to any significant difference in total

body length of the animals. This corresponded to a highly significantly smaller

proportional body mass of the SW acclimated animals. The rectal gland of C. leucas

was not significantly different in any measured parameters between FW and SW

acclimated animals.
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Salinity

Bodymass (9)

RGmass (mg)

Proportional
rectalglandmass (%bodymass)

Cross sectional area (mm2)

Ductarea (Mm2)

Veinarea (Mm2)

80%SW

559.0±38.0
131±12**

0.022±0.001*
56.99±7.88*
88.2±2.1

16.1±4.5

100%SW

442.0±46.0

64±9

0.019±0.001

33.78±3.94
47.816.2

9.9±1.3

120%SW

406.5±45.0

56±9

0.01310.000**
34.96±3.59
115.7124.4
10.5±1.7

Table5.3.1.1-MorphologicalparametersofS.caniculaacclimatedto80,100,and120%SW.Allvaluesarepresentedasmeans±SEM(n=8, 16,and8formass;and6,5,and6forarearespectively).Statisticalanalysiswasperformedviaone-wayANOVAandaTukeyposthoctest. Significantdifferencesfromvaluesfor100%SWweredenotedas*(P<0.05),**(P<0.01),and***(P<0.005).



Salinity

Bodymass (Kg)

Totallength (cm)

Proportional bodymass (9cm1)

Crosssectional area (mm2)

Ductarea (Mm2)

Veinarea (Mm2)

FW

3.6±0.2

84.6±2.0

42.1±1.5

50.18±4.59

243.5±48.9

20.2±6.0

SW

2.9±0.2*

80.1±1.7

36.0±1.4**

54.64±4.64

260.6±52.8

31.8±8.5

Table5.3.1.2-MorphologicalparametersofC.leucasacclimatedtoFWandSW.Allvaluesarepresentedasmeans±SEM(n=12and10for wholebody;and4and5forrectalglandrespectively).Statisticalanalysiswasperformedviaatwo-tailedunpairedstudent'st-testandWelch correctionfactor.SignificantdifferencesfromvaluesforFWweredenotedas*(P<0.05),**(P<0.01),and***(P<0.005).
CD
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Due to the observed effects of the intracellular and blood volumes on rectal gland size

in S. canicula at the different salinities, and those anticipated for C. leucas in FW and

SW, rectal gland structure was further analysed normalising for cross-sectional area and

investigating the relative sizes of the central duct and vein (Figures 5.3.1.1 and 2). In

this manner the sizeable interindividual variations in rectal gland size were removed

permitting a more accurate analysis of rectal gland structure. In S. canicula the

proportional area of the central duct as compared to total gland cross sectional area was

highly significantly larger in animals acclimated to 120% SW than those acclimated to

100% SW, there was no difference in the proportional size of the central vein. No

significantly differences were seen in the proportion of either feature between animals

acclimated to 80 and 100% SW. In the rectal glands of C. leucas there were no

significant differences in the proportion of either feature between FW and SW

acclimated animals.
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Cross-sectional proportion of central duct and vein in
S. canicula rectal glands from different salinities

Duct Vein

Figure 5.3.1.1 - Proportional area of the central duct and vein from rectal glands of S.

canicula acclimated to 80, 100, and 120% SW. All values are presented as means ±

SEM {n = 6, 5, and 6 respectively). Statistical analysis was performed via one-way

ANOVA and a Tukey post hoc test. Significant differences from values for 100% SW

were denoted as * (P < 0.05), **(/>< 0.01), and *** (P < 0.005).
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Cross-sectional proportion of central duct and vein in
C. leucas rectal glands from different salinities

6

Duct Vein

Figure 5.3.1.2 - Proportional area of the central duct and vein from rectal glands of C.

leucas acclimated to FW and SW. All values are presented as means ± SEM (n = 4 and

5 respectively). Statistical analysis was performed via a two-tailed unpaired student's t-

test and Welch correction factor. Significant differences from values for FW were

denoted as * (P < 0.05), **(/>< 0.01), and *** (P < 0.005). No significant differences

were recorded.
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5.3.2 Maximal Na+, K+-ATPase activity

Maximal enzyme activity in the osmoregulatory tissues of S. canicula was lowest in the

gills and in the intestine, and higher in the kidney and rectal gland respectively (Figure

5.3.2.1). Variation in maximal activity was low in the gill tissues from all salinities, and

greater in the other three tissues. There were no significant differences in tissue

maximal Na+, K+-ATPase activity between the different environmental salinities.

In C. leucas the gills and the intestine showed the lowest maximal activities ofNa+, K+-

ATPase for both FW and SW acclimated animals, with no significant differences

between the two salinities (Figure 5.3.2.2). Maximal activity in FW acclimated animals

was highest in the kidney, whereas the highest values for SW animals were in the rectal

gland. Maximal enzyme activity was extremely significantly increased in the rectal

glands of SW acclimated animals as compared to that of FW C. leucas. Conversely,

maximal activity of Na+, K+-ATPase was highly significantly decreased in the kidneys

of SW acclimated animals as compared to that of FW C. leucas.
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Maximal Na+K+ATPase activity in tissues of S. canicula
acclimated to different salinities
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Figure 5.3.2.1 - Maximal Na+, K+-ATPase activity in the osmoregulatory tissues of S.

canicula acclimated to 80, 100, and 120% SW. All values are presented as means ±

SEM (n = 7, 5, and 7 for gill; 5, 8, and 5 for intestine; 4, 8, and 5 for rectal gland; and 4,

10, and 5 for kidney respectively). Statistical analysis was performed via one-way

ANOVA and a Tukey post hoc test. Significant differences from values for 100% SW

were denoted as * (P < 0.05), ** (P < 0.01), and *** (P < 0.005). No significant

differences were recorded.
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Maximal Na+K+ATPase activity in tissues of C. leucas
acclimated to different salinities
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Figure 5.3.2.2 - Maximal Na+, K+-ATPase activity in the osmoregulatory tissues of C.

leucas acclimated to FW and SW. All values are presented as means ± SEM {n = 6 and

4 for gill; 5 and 4 for intestine; 9 and 8 for rectal gland; and 5 and 6 for kidney

respectively). Statistical analysis was performed via a two-tailed unpaired student's t-

test and Welch correction factor. Significant differences from values for FW were

denoted as * (P < 0.05), ** (P < 0.01), and *** (P < 0.005).
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5.4 Discussion

The body mass of elasmobranchs is altered as a result of acclimation to changes in

salinity (Table 5.3.1.2). The proportional body mass of C. leucas is significantly lower

in SW than in FW acclimated animals. This is in part due to the haemoconcentration

associated with acclimation to increased salinity which has been previously described

(Chapter 3) in which a reduction of intra- and extracellular volumes results in a decrease

of total body mass. This reduction in proportional body mass in SW acclimated C.

leucas may also due to the metabolic breakdown of muscle tissue as a substrate for urea

synthesis as animals undergoing acute transfer from FW to SW must increase urea

concentration in the blood plasma. This could lead to a greater degree of muscle

catabolism than is seen in captive FW C. leucas. The effect of captive salinity transfer

on urea levels in C. leucas is described in depth below (Section 7.1.3).

Total length data should have been gathered for S. canicula in order to analyse any

variation in proportional change in body mass associated with salinity acclimation in

this species. However, there is no significant difference in the haematocrit of C. leucas

acclimated to FW and SW (Table 2.3.1.2) and chronic acclimation to salinity transfer

does affect body mass in this species; S. canicula does show changes in haematocrit

associated with salinity change (Table 2.3.1.1) and therefore experiences a greater

degree of concentration/dilution of body fluids associated with salinity change, as

compared to C. leucas. Furthermore, given that rectal gland mass (Table. 5.3.1.1) and

blood volume (Table 3.3.1.1) are both increased through acclimation to reduced salinity,

it seems reasonable to assume that proportional body mass would also increase. Earlier

studies have indeed demonstrated salinity acclimation having similar effects on body

mass in this species (Hazon 1982). No significant differences were seen in the body
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mass of 5. canicula acclimated to the different salinities because the animals were of a

wide range of age and size; unlike C. leucas which were all juveniles and showed very

little variation in total length.

Interestingly, as elasmobranchs become proportionally heavier with acclimation to

reduced salinities, the relative mass of the rectal gland increases disproportionately to

whole body mass (Table 5.3.1.1). This could be a reflection of the highly vascular

nature of the rectal gland, and given that blood flow to the secretory epithelia is

increased in animals acclimated to reduced salinity (Anderson et al. 2002a), this most

likely accounts for some of the increase in the proportional mass. Some of this increase

in mass may also be due to intracellular volume expansion, but given that any such

increase would likely occur in most cells of the body this would not account for the

disproportionate increase in rectal gland mass relative to body mass. Increases in

intracellular volume and blood volume and flow to the gland would explain the increase

in cross-sectional area seen at reduced salinities in S. canicula. However, it is also

possible that these represent natural variation in rectal gland size within S. canicula. It is

impossible to know the exact effects of salinity transfer on rectal gland cross sectional

area as measurements can only be taken post mortem, thereby preventing any before and

after measurements. The fact that no such variation is seen in the cross-sectional area of

rectal glands from C. leucas chronically acclimated to FW and SW suggests that the

degree of dilution and concentration experienced by this species, in both intracellular

and blood volumes, is less than that in S. canicula. This is further supported by the fact

that the blood haematocrit of S. canicula is affected by acclimation to salinity change

(Table 2.3.1.1), whilst that of C. leucas is unaffected by acclimation to a larger change

in salinity (Table 2.3.1.2).
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The analysis of rectal gland histology also shows variations between salinities and

species. Although there was much variation in the cross-sectional area of the central

duct in the rectal gland of S. canicula, there were no significant differences between the

three salinities. It must be borne in mind that changes in the area of the central duct may

not represent actual structural changes; they may reflect the secretory state of the glands

at the time of excision. For example, a gland that was actively secreting upon excision

may have a larger central duct due to the volume of RGF being passed through it and

the elasticity of the duct. Although rectal glands of both species had similar cross-

sectional areas, the glands from C. leucas had significantly larger central ducts than

those of S. canicula. Furthermore, there was no significant difference in the proportional

area of the central duct in C. leucas rectal glands from FW and SW (Figure 5.3.1.2).

The fact that there was no difference in duct area between a rectal gland with no

requirement to secrete Na+ and CF (FW acclimated C. leucas) and one with a

requirement for intermittent active secretion (SW acclimated C. leucas), suggests that

differences in duct area are due to changes in structure and not due to changes in

secretion rate and duct elasticity. However, this cannot be taken as the case for all

species of elasmobranchs; the different orientation of blood flow recorded in the rectal

glands of S. acanthias (Kent and Olsen 1982) and H. portusjacksoni (Newbound and

O'Shea 2001) are illustrative of how rectal gland structure can vary between species.

In rectal glands of S. canicula acclimated to 120% SW the central duct encompassed

significantly more of the cross-sectional area when compared to glands from 80 and

100% SW (Figure 5.3.1.1). No changes were seen in the proportional area of the central

vein in either species upon acclimation to changes in salinity. This demonstrates that the
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partially euryhaline S. canicula may modify the structure of the rectal gland in response

to elevated salinity, but no modification is made in the rectal gland of the fully

euryhaline C. leucas in response to a greater increase in salinity.

MacKenzie (1996) found that the maximum diameter of both the central duct and vein

were increased in S. canicula 12 hours after feeding when compared to starved animals.

This indicates that rectal gland structure changes in response to an increased salt load,

presumably to accommodate the resulting increase in rectal gland secretory output, and

that these changes in structure persist 12 hours after the feeding event. The results of

this study also suggest that the rectal gland structure of S. canicula changes in response

to a requirement to increase Na+ and CI" clearance. There is a significant increase in the

proportional size of the central duct, presumably as a result of increased RGF secretion,

and this change in structure persists for at least 14 days after salinity transfer. The

increase in blood flow to the secretory epithelia of the rectal gland 4 days after transfer

to reduced salinity illustrated previously (Anderson et al. 2002a), does not result in a

persistent increase in the proportional size of the central vein 14 days after salinity

transfer.

The lack ofmodification in rectal gland structure seen in C. leucas can be explained by

a number of reasons. It is possible that any changes in structure associated with an

increased requirement for the clearance of Na+ and CF do not persist after 7 days.

Certainly a more rapid ability to respond to changes in salinity would seem intuitive for

a fully euryhaline species which may move from FW to SW in a matter of hours. Also,

because the central duct is proportionally larger in the fully euryhaline C. leucas as

compared to the partially euryhaline S. canicula, increases in the relative size of the duct
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in response to acclimation to higher salinities may not be necessary to increase Na+ and

CI" clearance in this species. Lacking any need to change structure in order to increase

rectal gland secretion rate would also decrease the time taken to acclimate to changes in

salinity in a fully euryhaline species; more so than an increased rate of structural

change. The fact that the proportional area of the central duct in FW C. leucas (which

have little requirement for rectal gland secretion to maintain osmotic homeostasis) is

over double that of SW S. canicula (which do require rectal gland secretion (Chapter

4)), and that removing the requirement for structural change would give the largest

decrease in rectal gland response time to salinity change, are compelling reasons to

conclude that C. leucas does not change rectal gland structure in response to salinity

transfer, unlike S. canicula. This may be a crucial difference with regard to the degree

of euryhalinity in the two species.

The changes seen in the rectal gland structure of S. canicula are not coupled with any

significant change in the maximal activity of Na+, K+-ATPase in rectal gland

homogenates (Figure 5.3.2.1). It is important to state that this study assessed maximal

enzyme activity and not the level of actual activity in vivo. Therefore any differences in

maximal activity reflect an increased capacity for the movement ofNa+ and K+, and not

necessarily an increase in the rate of movement of these ions in vivo. Changes in

maximal activity can therefore be explained by two reasons: either the abundance of

Na+, K+-ATPase in the tissues remains constant and there is a change in the amount of

pumps able to be recruited in the assay, or there has been a change in the level of

genetic expression for the pumps and this has translated to an actual change in the

abundance of the Na+, K+-ATPase protein. Given that values for the mRNA expression

and abundance of Na+, K+-ATPase were found to be high in both FW and SW



acclimated C. leucas with levels of fluorescence hindering accurate quantification

(Meischke pers. comm.), it is most likely that the differences in Na+, K+-ATPase

maximal activity represent variation in the recruitment of available pumps. This is

discussed further below.

For S. canicula acclimated to all salinities maximal enzyme activity was highest in the

rectal gland (Figure 5.3.2.1). This is illustrative of the role the enzyme plays in the

active movement of Na+ and CF, as well as the importance of the rectal gland as a

means of secreting these ions. No significant differences were seen in the maximal

activity of Na+, K+-ATPase in any of the osmoregulatory tissues of S. canicula

acclimated to the three salinities. This is probably a reflection of the salinity changes

which are naturally experienced by the species. S. canicula faces moderate salinity

changes in the wild and the results of this study suggest that the osmotic responses to

those changes are achieved without modifying either the abundance or recruitment of

Na+, K+-ATPase. It is also possible that modifications in S. canicula may not persist

after 14 days at altered salinity and therefore no differences in enzyme maximal activity

were recorded. Alternatively the changes in salinity used in this study may not have

been sufficient to elicit any modification Na+, K+-ATPase recruitment or abundance.

Certainly the salinity transfers employed would not have resulted in a persistent reversal

of the fluxes of Na+ and Cf between the animals and the environment, as was the case

for C. leucas. Given that S. canicula cannot survive in full FW, and mortality rates are

high with salinity transfers below 60% SW, clearly the species is unable to modify the

action of the osmoregulatory organs as completely as fully euryhaline elasmobranchs.

This would support the idea that S. canicula is unable to modify Na+, K+-ATPase

abundance or recruitment due to the natural salinity range of the species, rather than the
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salinity changes not being great enough to elicit changes in activity. Further studies on

the species should investigate a wider range of environmental salinities over a time

course of acclimation periods in order to accurately assess the limitations ofmodifying

Na+, K+-ATPase maximal activity in S. canicula.

Given that S. canicula does not alter the abundance and/or recruitment of Na+, K+-

ATPase, controlling the activity of active ion transport in the osmoregulatory tissues

must therefore be achieved by some other means. In the case of the rectal gland this can

be through greater periods of activity/inactivity and changes in the vascular perfusion of

the secretory epithelia (Anderson et al. 2002a) which result in modifications in CI"

concentration and clearance via the RGF (Section 4.3).

Modifications in the maximal activity of Na+, K+-ATPase were seen in the

osmoregulatory tissues of C. leucas acclimated to FW and SW (Figure 5.3.2.2).

Although no significant differences were seen in rectal gland structure, there was a

significant increase in enzyme maximal activity in the rectal gland of animals

acclimated to SW. This increase in rectal gland Na+, K+-ATPase maximal activity

reflects the requirement for active secretion of excess Na+ and CP in the SW

environment. This increased requirement is, in part, met by an increase in either the

recruitment or expression ofNa+, K+-ATPase in the tissues of the rectal gland.

Acclimation from FW to SW results in a reversal of the concentration gradients for Na+

and Cf between the environment and the internal fluids of C. leucas. FW animals face a

continual loss of these ions across the semi-permeable surfaces and there is therefore no

requirement for their active secretion from the rectal gland. Such high levels ofmaximal
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activity in a possibly inactive gland may provide an important degree of plasticity in the

osmoregulatory mechanisms of a fully euryhaline elasmobranch. If the enzymes

responsible for active rectal gland secretion are functional in FW this would

dramatically decrease the time taken for glandular secretion to commence/increase in

response to salinity transfer. It is therefore likely that regulation of secretion by the

rectal glands of FW C. leucas is achieved through mechanisms such as reduced blood

flow (Shuttleworth and Thompson 1986; Anderson et al. 2002a) and controlling the

permeability of the apical chloride channel (Riordan et al. 1994), as a means of reducing

the loss ofNa+ and CF in FW.

Conversely in SW, there is a continual influx of Na+ and CF across the semi-permeable

surfaces and the rectal gland actively secretes in order to maintain plasma concentration

levels of these ions. This active secretion is facilitated in part by a significant increase in

the recruitment and/or abundance of Na+, K+-ATPase in the secretory epithelia of the

rectal gland. These findings are consistent with those for the fully euryhaline D. sabina

which showed elevated activity and expression of Na+, K+-ATPase in the rectal glands

of SW acclimated and SW captured animals as compared to those from FW (Piermarini

and Evans 2000). The levels ofmRNA expression and enzyme abundance for Na+, K+-

ATPase in the rectal glands of C. leucas utilised for this study were investigated in a

related study (Meischke, pers. comm.). When taken in conjunction with the results

presented here for maximal Na+, K+-ATPase activity in the rectal glands of C. leucas

acclimated to FW and SW they suggest that alterations in rectal gland activity are

primarily achieved through post-translational mechanisms. Furthermore such

mechanisms permit FW acclimated C. leucas to maintain high levels of Na+, K -

ATPase in the rectal gland without the energetic costs associated with their activity.
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When compared to the results ofD. sabina this may well represent separate evolution of

different methods which permit full euryhalinity in elasmobranch fish.

There was no significant difference in the maximal activity of Na+, K+-ATPase in the

gills of FW and SW acclimated C. leucas. This is surprising given that recent

investigations into the localisation and activity of transport enzymes have shown

significant increases in branchial tissue of FW, as opposed to SW acclimated D. sabina

(Piermarini and Evans 2000; Piermarini and Evans 2001; Piermarini et al. 2002). The

implications of this are discussed below (Sections 7.1.1 and 2).

Maximal activity of Na+, K+-ATPase in the intestine of C. leucas was unaffected by

acclimation to SW (Figure 5.3.2.2), suggesting no modification in the intestinal tissues

as a result of salinity transfer. This is surprising given that elasmobranchs increase

drinking rate as a means of elevating plasma osmolality during acclimation to increased

salinity (Anderson et al. 2002b), particularly given the magnitude of change from FW to

full SW. No other studies have investigated intestinal Na+, K+-ATPase activity in

elasmobranchs during salinity change, although activity is generally higher in SW

acclimated teleosts (Jampol and Epstein 1970; Nielsen et al. 1999). The implications for

this finding in fully euryhaline elasmobranchs are discussed below (Section 7.1.3).

There were significant differences in maximal Na+, K+-ATPase activity in the kidney

tissue of C. leucas acclimated to FW and SW (Figure 5.3.2.2). Maximal activity ofNa+,

K+-ATPase was significantly reduced in C. leucas after 7 day acclimation to SW,

reflecting the different roles of the kidney in FW and SW environments. The ability to

reduce urinary loss of osmolytes is an important factor in the maintenance of ion
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balance in FW elasmobranchs, particularly given the magnitude of the gradient for the

influx ofwater. Exposure of other fully euryhaline elasmobranchs to decreased salinities

has increased urine flow rates and decreased urine osmolality, resulting in an increase in

absolute free-water clearance (Payan et al. 1973; Janech et al. 1998; Janech and

Piermarini 2002).

The decreased maximal activity of Na+, K+-ATPase seen in the kidneys of SW

acclimated C. leucas suggests that the enzyme has a more important role in active ion

reabsorption in FW, than in ion secretion in SW when the rectal gland is active.

Furthermore, plasma Na+ and CF concentrations in FW C. leucas are in part dependent

on active renal reabsorption rates, maintained by high Na+, K+-ATPase maximal

activity. This high rate of maximal activity is also likely to increase Na+ linked urea

reabsorption (Section 1.6).

The fact that the partially euryhaline S. canicula does not significantly alter the maximal

activity ofNa+, K+-ATPase in the osmoregulatory organs in response to salinity change,

and that the fully euryhaline C. leucas does, gives great insight into the mechanisms

which determine the osmoregulatory capacity of elasmobranchs at different salinities.

Given the differences in rectal gland structure and maximal Na+, K+-ATPase activity

between the two species further investigation into the rectal gland was conducted in

order to gain a greater understanding of the modifications within the tissue following

chronic acclimation of both partially and fully euryhaline elasmobranchs.
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Chapter 6: Rectal gland respirometry



6.1 Introduction

The secretory activity of the rectal gland has already been investigated in S. canicula

(Chapter 4), but the nature of C. leucas and its reaction to anaesthetic prevented similar

studies to be conducted. Also, the intermittent nature of the gland proved a major

limitation during in vivo assessment. Furthermore, in vivo experiments are not ideal for

studying individual endocrine control factors as it is impossible to isolate the effects of

introduced substances. Therefore an in vitro technique was required.

Another method of assessing rectal gland activity is through respirometry studies and

investigating the O2 consumption of the gland. Such studies have been conducted on

both S. canicula (Shuttleworth and Thompson 1980) and S. acanthias (Morgan et al.

1997). Shuttleworth and Thompson (1980) conducted respirometry studies on tissue

from the rectal gland, spleen, and kidney of SW S. canicula. They discovered that

whole tissue O2 consumption in the spleen (94 ± 25 pi O2 g"1 h"1) was significantly

lower than that in the rectal gland (234 ± 59 pi O2 g"1 IT1) and the kidney (248 ± 61 pi

O2 g 1 h"1). This compares to a value of 27.9 pi O2 g"1 h"1 for whole animal O2 uptake

measured by Butler and Taylor (1975). The rate of O2 uptake in these tissues was higher

than that of the whole animal; this is due to the fact that a large proportion of body mass

is associated with tissues with low O2 consumption, such as skeletal elements and body

fluids.

The markedly higher O2 consumption rates of the rectal gland and the kidney reflect a

higher metabolic rate in these tissues which is largely due to active osmolyte transport

in these osmoregulatory tissues (Sections 1.5 and 6). These tissues also have higher

maximal activities of Na+, K+-ATPase, even compared to other osmoregulatory tissues
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(Figure 5.3.2.1). Conversely the low O2 consumption seen in tissue from the spleen

indicates a lower metabolic activity, reflecting its role in the storage and release of red

blood cells.

Morgan and co-workers (1997) investigated the O2 consumption in the rectal gland and

gills of S. acanthias. It was found that O2 consumption in the rectal gland (14.2 ± 1.2

pmol O2 g"1 If1) was significantly higher than that in the gill (9.6 ± 1.4 pmol O2 g"1 h"1).

Again this is consistent with the maximal activity of Na+, K+-ATPase in these tissues in

S. canicula (Figure 5.3.2.1). The addition of 0.5 mM ouabain and the resulting

inhibition ofNa+, K+-ATPase were associated with a 54.9 and 21.8% reduction in rectal

gland and gill O2 consumption respectively. Furthermore, the residual levels of O2

consumption in the two tissues did not differ (Morgan et al. 1997). This suggests that

different levels of Na+, K+-ATPase activity or abundance are the cause of higher O2

consumption in the rectal gland of S. acanthias.

Shuttleworth and Thompson (1980) also investigated the effects of 10"4 M ouabain on

basal O2 consumption in tissue from the rectal gland, spleen, and kidney. The inhibition

ofNa+, K+-ATPase with ouabain significantly reduced O2 consumption rates in all three

tissues. The proportion of whole tissue O2 consumption associated with Na+, K+-

ATPase was calculated as 22.1, 20.2, and 41.1% in the rectal gland, spleen, and kidney

respectively. Given that maximal activity of the enzyme is higher in the rectal gland

than in the kidney (Figure 5.3.2.1) these findings suggest that a large proportion of O2

consumption in the rectal gland is associated with other metabolic processes. The

differences in ouabain-sensitive O2 consumption during basal secretion in the rectal

glands of S. acanthias and S. canicula (54.9 and 22.1% respectively) either reflect a
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difference in rectal gland structure between the two species, differences in the degree of

ouabain inhibition of Na+, K+-ATPase, or differences in the secretory activity of the

glands sampled between the two species. It has been demonstrated in S. canicula that

10"4 M ouabain does not completely inhibit Na+, K+-ATPase, unlike concentrations

above 1 mM (MacKenzie 1996). This may have lead to an underestimation of the

relative O2 consumption by Na+, K+-ATPase in the rectal gland of S. canicula.

Supporting the finding of high maximal Na+, K+-ATPase activity in the rectal gland is

the increase in rectal gland O2 consumption following administration of cAMP (0.05

mmol l"1) and theophylline (0.25 mmol 1"'). A 5-fold increase in O2 consumption was

associated with these substances, and this was entirely abolished by the coupled

administration of ouabain. Interestingly, the same administration of cAMP and

theophylline had no effect on O2 consumption in either the spleen or the kidney

(Shuttleworth and Thompson 1980). Similar concentrations of these substances have

been shown to increase secretory activity in isolated perfused rectal glands (Silva et al.

1977; Stoff et al. 1977b), as well as increase ouabain binding (Shuttleworth and

Thompson 1978). These findings suggest that cAMP and theophylline specifically

stimulate the activity of Na+, K+-ATPase in the tissues of the rectal gland. This is

consistent with other studies which have suggested that cAMP activates Na+, K+-

ATPase thereby reducing cellular concentrations of Na+ in cultured rectal gland cells

(Lear et al. 1992). Furthermore, O2 consumption in the rectal gland is increased by the

addition of theophylline alone, to levels equivalent to those associated with the coupled

administration of cAMP (Shuttleworth and Thompson 1980). Theophylline inhibits the

breakdown of cAMP by phosphodiesterases. This illustrates the stimulatory effect of

endogenous cAMP on Na+, K+-ATPase in the rectal gland, as well as suggesting the
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continued production of this cAMP in incubated tissue slices. These findings are

contrary to those of Stoff and co-workers (1977b) who reported a synergistic effect of

cAMP and theophylline on CP secretion rates during coupled administration on isolated

perfused rectal glands. Theophylline may therefore also have effects on other proteins

involved in ion transport which do not require increased O2 consumption during periods

of active secretion.

The results presented by Shuttleworth and Thompson (1980) are not only illustrative of

the intermittent nature of rectal gland activity, but also of the large scope for increased

activity ofNa+, K+-ATPase during stimulated periods of active secretion. The hormonal

regulation of Na+, K+-ATPase has been reviewed by Gick and co-workers (1988) and

they drew a distinction between factors which act in minutes (through altering ion

permeability or direct activation of the enzyme), and those which act over hours

(through changes in pump abundance). Due to the nature of respirometry studies on

sections of isolated glands the action of fast acting factors on Na+, K+-ATPase activity

are of greater importance.

One such group of fast acting factors are vasopressins (such as AVT in elasmobranchs

(Section 1.8.2)) which regulate urine flow rate, GFR, and tubular transport maxima for

glucose in the kidney (Amer and Brown 1995; Wells et al. 2002). Similar antidiuretic

hormones have been shown to increase Na+ entry into cells via the number of functional

Na+ channels, and hence stimulate the action of Na+, K+-ATPase in a variety of

vertebrates (Mendoza et al. 1980; Li et al. 1982; Reznik et al. 1985).



Another group of fast acting factors are catecholamines (Section 1.12) which have been

shown to induce cAMP-mediated stimulation of Na+, K+-ATPase activity in skeletal

muscle which were independent of changes in Na+, K+-ATPase abundance (Clausen and

Hansen 1977). Studies on vertebrate cerebral cell cultures have shown that

catecholamine stimulation of Na+, K+-ATPase activity can also be independent of

cAMP levels (Wu and Phillips 1980). Clearly more research is required into the effects

of catecholamines on Na+, K+-ATPase, particularly in elasmobranchs.

Thyroid hormones, such as thyroxine and triiodothyronine, have also been shown to

stimulate O2 consumption and active Na+ and K+ transport in number of vertebrate

tissues (Gick et al. 1988).

CNP is the only natriuretic peptide in elasmobranchs (Sections 1.11.1 and 4.1) and it

has been shown to bind with high affinity to two different receptors in the plasma

membranes of rectal gland cells: a clearance receptor and a guanylate cyclase-linked

GC-B type receptor (Gunning et al. 1993). CNP is a potent stimulant of the enzyme

guanylate cyclase increasing its intracellular activity in the rectal gland of S. acanthias

(Gunning et al. 1993). Guanylate cyclase converts guanosine triphosphate (GTP) into

cyclic guanosine monophosphate (cGMP). However, perfusion of isolated rectal glands

with cGMP does not stimulate chloride secretion (Silva et al. 1987). Silva and co¬

workers (1996) noted that exogenous cGMP had an inconsistent effect of stimulating

short-circuit current in cultured rectal gland cells. Later work showed that CNP

significantly increased short-circuit current in cultured rectal gland cells (Silva et al.

1999). It would appear therefore that intracellular cGMP is important in mediating the

effects of CNP, although the precise action of this is unclear.
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The mode of stimulation for rectal gland secretion by CNP is highly complex, although

a generalised model can be drawn (Figure 6.1.1). In S. acanthias CNP acts as a stimulus

for the release ofVIP from rectal gland nerves, although CNP also has well documented

direct effects on both isolated tubules (Solomon et al. 1993; Solomon et al. 1995a;

Solomon et al. 1995b), and cultured rectal gland cells (Karnaky et al. 1992; Karnaky et

al. 1993; Silva et al. 1999). In the same species, CNP can also act through increased

activity of guanylate cyclase, as detailed above; although the actions of other natriuretic

peptides have also been isolated from any increase in intracellular cGMP (Budzik et al.

1987; Barrett and Isales 1988; Lear et al. 1990). This raises the possibility of CNP

acting on rectal gland cells via a pathway independent of cGMP.

One pathway via which this may occur is the inositol phosphate pathway, as work by

Ecay and Valentich (1990) demonstrated that VIP increased inositol phosphate

formation. Investigation conducted by Silva and co-workers (1999) suggested that at

least part of the stimulatory action of CNP may occur via a similar route. Specific

inhibition of protein kinase C (PKC) completely removed the cGMP-independent

stimulatory effect of CNP in isolated perfused rectal glands of S. acanthias. However,

pharmacological activation of PKc did not stimulate CI" secretion in similar preparations

(Silva et al. 1999). It is possible therefore that the synergistic action of cGMP and PKC

are required for increasing CF secretion in response to CNP in the tissues of the rectal

gland.
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Secretory epithelial cell

Figure 6.1.1 - Generalised model of stimulation by CNP on rectal gland secretory cells.

Volume expansion causes the release of CNP from the heart. CNP binds to a guanylate

cyclase B-type receptor stimulating the production of cGMP. This causes a rise in the

2~b "b
release of intracellular stores ofCa which increases basolateral K conductance, which

in turn stimulates CP secretion. cGMP also acts via an undetermined route to cause an

increase in CP secretion, possibly via protein kinase G (PKG). CNP also has a parallel

stimulatory action on protein kinase C (PKC). In the case of S. acanthias CNP also

stimulates release of VIP which increases cAMP levels which stimulates protein kinase

A (PKA). This causes a separate increase in Ca2+ influx as well as having direct effects

on CP secretion (Warth et al. 1998; Silva et al. 1999).
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CNP may also affect CI" secretion rate through alterations in intracellular Ca2+ as

outlined above (Warth et al. 1998) (Figure 6.1.1). It has been demonstrated that Ca2+

can stimulate NaCl secretion from isolated rectal gland tubules of S. acanthias.

94-
Intracellular Ca concentration can be elevated by carbachol stimulated store release.

2~F • • •This release of Ca from intracellular stores is independent of cAMP and acts to

increase basolateral K+ conductance, thereby stimulating CI" secretion. Intracellular Ca2+

concentration can also be elevated in response to cAMP, by increasing the rate of

transmembrane influx via protein kinase A (Warth et al. 1998). Intracellular Ca2+ may

therefore also be important in mediating the response of the rectal gland to CNP. This
9+ • ...

also suggests that Ca may be important in two distinct methods of stimulating rectal

gland secretion (Figure 6.1.1).

9 .

Furthermore, Ca has been found to directly reduce rectal gland secretion. This can

occur via two distinct modes of action: constriction of the rectal gland artery and a

reduction in blood perfusion, and also through a reduction in intracellular Ca2+
2+

concentration by reduced influx (Fellner and Parker 2002). Ca could play a major role

in controlling the activity of the rectal gland through a combination of modifying blood

flow and tubular secretion.

Despite the lack of a definitive mode of action, CNP has well documented effects of the

osmoregulatory tissues of elasmobranchs (Sections 1.11.1, 4.1). There is also wide

scope for the modulation of these effects. For these reasons CNP was the chosen

stimulant for this study which investigated the effects of salinity acclimation on the

respiratory parameters of rectal glands from the partially euryhaline S. curricula and the

fully euryhaline C. leucas.
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In this study the O2 consumption by rectal glands was measured in a partially (S.

canicula) and a fully (C. leucas) euryhaline species of elasmobranch in order to assess

any differences associated with acclimation to salinity change. Furthermore, following

from the study of maximal Na+, K+-ATPase activity in the rectal glands of both species

(Chapter 5), the O2 consumption associated with this enzyme was also measured. The

effect of CNP on both parameters was also measured in order to gain further

understanding of the role of this hormone in the endocrine control of rectal gland

function in different elasmobranch species.
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6.2 Materials and methods

6.2.1 Chemicals and equipment

Unless otherwise stated all chemicals used were obtained from Sigma. Recipes for

Ringer solutions used on both species were identical to those detailed previously

(Section 2.2.3).

Respirometry experiments on S. canicula were conducted at 11 °C using 1302 O2

electrodes and a 928 6-channel measurement system (Strathkelvin Instruments Ltd.,

Glasgow). The data was analysed using 928 O2 system version 2.2 (Strathkelvin

Instruments Ltd.). Respirometry chambers were kept at a constant temperature via a

model LTD6 refridgerated bath (Grant Instruments Ltd., Cambridge). All solutions were

also kept at a constant temperature via this method and bubbled with air for 10 minutes

before use.

Respirometry experiments on C. leucas were conducted at 23 °C using a 781 O2

electrode and metre (Strathkelvin Instruments Ltd.), and a microrespirometer sampling

at 4 Hz (Strathkelvin Instruments Ltd.). The analogue signal was sent to a PowerLab

4/20 (AD Instruments Pty. Ltd., Castle Hill, NSW, Australia) running Chart 5.0

software (AD Instruments Pty. Ltd.). The microelectrode was inserted into a glass

respiration chamber which was water-cooled to a constant temperature via a model

LTD6 refridgerated bath (Grant Instruments Ltd.). All solutions were also kept at a

constant temperature via this method and bubbled with air for 10 minutes before use.
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6.2.2 Tissue sampling

Sampling protocols for both species were as follows: 4 transverse sections were cut

from the middle portion of the rectal gland, approximately 1 mm in thickness. For

studies on S. canicula all slices were placed in Ringer solution of the appropriate

salinity and kept in the water bath. For experiments on C. leucas where slices were

analysed individually, all slices were placed in Ringer and stored at 4 °C in a fridge

until 15 minutes before use, at which time they were placed into Ringer solution in the

water bath to acclimate.

After respirometry experiments all tissue slices were blotted dry on tissue paper and had

the wet mass recorded.
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6.2.3 Data collection

Upon setup all electrodes were calibrated for daily atmospheric pressure: for S. canicula

data was obtained from Leuchars weather station (BBC 2003); for C. leucas data was

obtained from the University ofQueensland weather station (Geography 2003). Use of a

multi-channel system allowed all 4 slices from the rectal glands of S. canicula to be

studied at the same time; for C. leucas slices were analysed individually. For simplicity

the protocol used for one chamber of the study on S. canicula is described below, with

changes in protocol for C. leucas being noted.

660 pi of Ringer solution of the appropriate salinity was added to the respirometry

chamber (200 pi for C. leucas), and the O2 consumption of the electrode was measured

for 15 minutes in order to compensate for this during tissue studies. The respirometry

chamber was then thoroughly rinsed with Milli Q before being refilled with Ringer and

the tissue introduced. O2 consumption was again measured for a 15 minutes period. The

tissue was then removed and placed in Ringer whilst the respirometry chamber was

rinsed again. The chamber was then filled with one of the following solutions: 10"8 M

CNP in Ringer solution, 10"10 M CNP, 10"12 M CNP, or just Ringer solution. The CNP

used was homologous for S. canicula and was kindly donated by Prof. Y. Takei.

Subsequent analysis of CNP in C. leucas demonstrated an identical amino acid

sequence (Takei, pers. comm.). The tissue was then replaced in the chamber and O2

consumption was again measured for 15 minutes. The tissue was then removed, the

chamber rinsed, and then refilled with the same solution as before plus 2mM ouabain.

The tissue was replaced in the chamber and O2 consumption was measured for a final

15 minutes.
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The concentration of CNP used in any particular electrode was rotated to avoid bias in

the results (with C. leucas the order in which the CNP concentrations were used was

rotated as a single electrode was used). The concentrations of CNP used were chosen

based on previous work investigating affects on the rectal gland (Anderson et al.

2002a). The concentration of ouabain was chosen based on previous work on Na+, K+-

ATPase in the rectal gland (Pillans et al. 2005) (Chapter 5).

O2 consumption was calculated via linear regression on the final 10 minutes of each 15

minute period of observation as consumption was most consistent during this period

(Figure 6.2.3.1). Rates were then normalised per gram of rectal gland wet mass.

222



Typical oxygen trace for rectal gland slice from
100% SW acclimated S. canicula
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Figure 6.2.3.1 - Typical trace for O2 partial pressure in respirometry chamber showing

the section utilised for analysis (right of dotted line).

223



6.2.4 Statistical analysis

All data are presented as means ± the standard error of the mean (SEM). For the tissue

controls analysis was performed via repeated measures ANOVA and a Tukey post hoc

test. For analysis between salinities, data gathered on S. canicula was analysed via one¬

way ANOVA and a Tukey post hoc test, data gathered on C. leucas was analysed using

a two-tailed unpaired student's t-test with Welch correction factor (InStat). Significance

was denoted as * (P < 0.05), ** (P < 0.01), and *** (P < 0.005). For analysis on the

effects of CNP data on both species were compared with basal levels using a one-tailed

paired student's t-test (InStat). Significance was denoted as t (P < 0.05), ^ (P < 0.01),

and (P < 0.005). For the section specific results and proportional increases, data

gathered on S. canicula was analysed via one-way ANOVA and a Tukey post hoc test.

Data gathered on C. leucas was analysed using a two-tailed unpaired student's t-test

with Welch correction factor (InStat). Significance was denoted as * (P < 0.05), ** (P

<0.01), and*** (P < 0.005).

224



6.3 Results

For ease of presentation the results for S. canicula and C. leucas are described

separately.

6.3.1 S. canicula

O2 consumption by the rectal gland of 100% SW acclimated animals remained constant

for the first 2 hours after excision (Figure 6.3.1.1). This time represents double that

taken to measure consumption experimentally.

Whole tissue O2 consumption was not significantly different between rectal glands from

animals acclimated to the three environmental salinities (Figure 6.3.1.2). O2

consumption was unaffected by all three concentrations of CNP in rectal glands from S.

canicula acclimated to all three salinities.

O2 consumption by Na+, K+-ATPase was defined as the ouabain sensitive portion of

whole tissue O2 consumption. Na+, K+-ATPase O2 consumption was not significantly

different between rectal glands from animals acclimated to the three environmental

salinities (Figure 6.3.1.3). O2 consumption by Na+, K+-ATPase was unaffected by all

three concentrations of CNP in the rectal glands from S. canicula acclimated to all three

salinities.
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Oxygen consumption of 100% SW acclimated S. canicula rectal glands

Time (h)

Figure 6.3.1.1 - Whole tissue O2 consumption in S. canicula rectal gland slices from

100% SW acclimated animals. Values are presented as means ± SEM (n = 10).

Statistical analysis was performed via repeated measures ANOVA and a Tukey post hoc

test (significance was denoted as * (P < 0.05), **(/»< 0.01), and *** (P < 0.005)). No

significant differences were recorded.
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Whole tissue oxygen consumption in rectal glands of
S. canicula acclimated to different salinities

35 "t

Treatment

Figure 6.3.1.2 - O2 consumption in rectal glands from S. canicula acclimated to 80,

100, and 120% SW. Values are presented as means ± SEM (n = 8, 14, and 8

respectively). Statistically significant differences between salinities were assessed via

one-way ANOVA and a Tukey post hoc test (significance was denoted as * (P < 0.05),

** (P < 0.01), and *** (P < 0.005)); within groups, statistically significant differences

from basal values were assessed via one tailed paired students t-tests with Welch

correction factor (significance was denoted as ^ (P < 0.05), +t (P < 0.01), and t^t (P <

0.005)). No significant differences were recorded.
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Ouabain sensitive oxygen consumption in rectal glands of
S. canicula acclimated to different salinities

20

Treatment

Figure 6.3.1.3 - O2 consumption ofNa+, K+-ATPase in the rectal glands of S. canicula

acclimated to 80, 100, and 120% SW. Values are presented as means ± SEM (n = 7, 7,

and 5 respectively). Statistically significant differences between salinities were assessed

via one-way ANOVA and a Tukey post hoc test (significance was denoted as * (P <

0.05), **(/>< 0.01), and *** (P < 0.005)); within groups, statistically significant

differences from basal values were assessed via one tailed paired students t-tests with

Welch correction factor (significance was denoted as ^ (P < 0.05),t+ (P< 0.01), and nt

(P < 0.005)). No significant differences were recorded.
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Variance within groups was high for both whole tissue O2 consumption and that

associated with Na+, K+-ATPase. In an effort to reduce the effects of this the slice

specific effects of CNP were analysed as a percentage change between basal and CNP

stimulate O2 consumption on each slice from each rectal gland (Figure 6.3.1.4). This

removed possible sources of variation such as secretory states of glands upon excision

and natural variation between individuals. CNP significantly increased whole tissue O2

consumption in the rectal glands of S. canicula from all three salinities above basal

levels. This was the case for all concentrations of CNP studied although no dose

dependent effect was seen.

The proportion of whole tissue O2 consumption which was ouabain sensitive was

calculated, thereby giving a percentage of O2 consumption associated with Na+, K+-

ATPase which was specific to each slice (Figure 6.3.1.5). This was not significantly

different between rectal glands from animals acclimated to the three environmental

salinities. The proportion of O2 consumed by Na+, K+-ATPase was unaffected by all

three concentrations of CNP in the rectal glands from S. canicula acclimated to all three

salinities.
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Change in whole tissue oxygen consumption in rectal glands
of S. canicula acclimated to different salinities

in response to CNP

I I 80%

Treatment

Figure 6.3.1.4 - The effect of CNP on O2 consumption in individual sections of rectal

glands from S. canicula acclimated to 80, 100, and 120% SW. Values are presented as

means ± SEM (n = 7, 7, and 5 respectively). Statistically significant differences from

the control transfer were assessed via one-way ANOVA and a Tukey post hoc test

(significance was denoted as * (P < 0.05), ** (P < 0.01), and *** (P < 0.005)); within

groups, statistically significant differences from basal values were assessed via one

tailed unpaired students t-tests with Welch correction factor (significance was denoted

as 1 (P < 0.05), ft (P < 0.01), and nt (P < 0.005)).
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Relative ouabain sensitive oxygen consumption in rectal
glands of S. canicula acclimated to different salinities
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Figure 6.3.1.5 - Relative O2 consumption of Na+, K+-ATPase in the rectal glands of S.

canicula acclimated to 80, 100, and 120% SW. Values are presented as means ± SEM

(n = 7, 7, and 5 respectively). Statistically significant differences from the control

transfer were assessed via one-way ANOVA and a Tukey post hoc test (significance

was denoted as * (P < 0.05), **(/>< 0.01), and *** (P < 0.005)); within groups,

statistically significant differences from basal values were assessed via one tailed paired

students t-tests with Welch correction factor (significance was denoted as + (P < 0.05),

t+ (P< 0.01), and t++ (P < 0.005)). No significant differences were recorded.
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6.3.2 C. Icucas

O2 consumption in the rectal glands of both FW and SW acclimated animals remained

constant for up to 4 hours after excision (Figure 6.3.2.1). This represents a greater

amount of time than that taken to perform all experiments on excised tissue.

Consumption of O2 in glands from FW acclimated animals was significantly higher than

that of SW (Figure 6.3.2.2), and remained so for up to 4 hours (Figure 6.3.2.1). The

three concentrations of CNP had no significant effects on the O2 consumed by rectal

glands of FW and SW acclimated animals. However, the variation in consumption

within each salinity group was increased sufficiently to remove any significant

differences between FW and SW glands.

The O2 consumption associated with Na+, K+-ATPase was not significantly different

between FW and SW acclimated animals (Figure 6.3.2.3). The O2 consumed by Na+,

K+-ATPase was unaffected by all three concentrations of CNP in both FW and SW

acclimated C. leucas. Variance within salinity groups was again increased with the

addition ofCNP to the respirometry chamber.

232



Oxygen consumption of FW and SW C. leucas
rectal glands
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Figure 6.3.2.1 - Whole tissue O2 consumption in C. leucas rectal gland slices from FW

and SW acclimated animals. Values are presented as means ± SEM (n = 6). Statistical

analysis within groups was performed via repeated measures ANOVA and a Tukey post

hoc test (significance was denoted as ^ (P < 0.05),++ (P < 0.01), andw (P < 0.005)). No

significant differences were recorded. Statistical analysis between FW and SW values

was performed via a two-tailed unpaired student's t-test with Welch correction factor

(significance was denoted as * (P < 0.05), ** (P < 0.01), and *** (P < 0.005)).
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Whole tissue oxygen consumption in rectal glands of
C. leucas acclimated to different salinities
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Figure 6.3.2.2 - O2 consumption in the rectal glands of C. leucas acclimated to FW and

SW. Values are presented as means ± SEM (n = 6). Statistically significant differences

between salinities were assessed via two-tailed unpaired student's t-tests with Welch

correction factor (significance was denoted as * (P < 0.05), ** (P < 0.01), and *** (P <

0.005)); within groups, statistically significant differences from basal values were

assessed via one tailed paired students t-tests with Welch correction factor (significance

was denoted as \P < 0.05), n (P < 0.01), and ttf (P < 0.005)).
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Ouabain sensitive oxygen consumption in rectal glands of
C. leucas acclimated to different salinities
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Figure 6.3.2.3 - O2 consumption of Na+, K+-ATPase in the rectal glands of C. leucas

acclimated to FW and SW. Values are presented as means ± SEM (n = 6). Statistically

significant differences between salinities were assessed via two-tailed unpaired

student's t-tests with Welch correction factor (significance was denoted as * (P < 0.05),

**(/>< 0.01), and *** (P < 0.005)); within groups, statistically significant differences

from basal values were assessed via one tailed paired students t-tests with Welch

correction factor (significance was denoted as ^ (P < 0.05), (P < 0.01), and (P <

0.005)). No significant differences were recorded.
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So as to minimise the effects of variance between individual glands, the data was again

analysed for specific effects of CNP on each slice in each gland (Figure 6.3.2.4). CNP

caused significant increases in whole tissue O2 consumption in the rectal glands of both

FW and SW acclimated C. leucas. This was seen after administration of all

concentrations ofCNP, although no dose dependent response was recorded.

The O2 consumed by Na+, K+-ATPase was again analysed as a proportion of that

consumed by the whole gland (Figure 6.3.2.5). The relative O2 consumption of Na+,

K+-ATPase in the rectal glands of FW acclimated C. leucas was not significantly

different to that in SW acclimated animals. In FW acclimated animals the relative O2

consumption of Na+, K+-ATPase was unaffected by the three concentrations of CNP.

However, significant increases were seen in the relative O2 consumption of Na+, K+-

ATPase in the rectal glands of SW acclimated C. leucas in response to CNP.
o

Administration of 10" M CNP resulted in a near 3-fold increase in the percentage of O2

being consumed by Na+, K+-ATPase; whilst 10"'° M CNP produced a near doubling of

the same parameter. These concentrations of CNP also increased the relative O2

consumption of Na+, K+-ATPase in the rectal glands of SW acclimated C. leucas to

significantly higher levels than those of SW acclimated glands under the same

conditions. It can therefore be stated that CNP has a significant effect on the

proportional O2 consumption in the rectal glands of SW acclimated C. leucas, but has

no effect on FW animals.
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Change in whole tissue oxygen consumption in rectal glands
of C. leucas acclimated to different salinities

in response to CNP

160
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Figure 6.3.2.4 - The effect of CNP on O2 consumption in individual sections of rectal

glands from C. leucas acclimated to FW and SW. Values are presented as means ± SEM

(n = 6). Statistically significant differences between salinities were assessed via two-

tailed unpaired student's t-tests with Welch correction factor (significance was denoted

as * (P < 0.05), ** (P < 0.01), and *** (P < 0.005)); within groups, statistically

significant differences from basal values were assessed via one tailed unpaired students

t-tests with Welch correction factor (significance was denoted as + (P < 0.05), ^ (P <

0.01), and ++t (P< 0.005)).
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Relative ouabain sensitive oxygen consumption in rectal
glands of C. leucas acclimated to different salinities

80

Treatment

Figure 6.3.2.5 - Relative O2 consumption ofNa+, K+-ATPase in the rectal glands of C.

leucas acclimated to FW and SW. Values are presented as means ± SEM (n = 6).

Statistically significant differences between salinities were assessed via two-tailed

unpaired student's t-tests with Welch correction factor (significance was denoted as * (P

< 0.05), **(/»< 0.01), and *** (P < 0.005)); within groups, statistically significant

differences from basal values were assessed via one tailed paired students t-tests with

Welch correction factor (significance was denoted as f (P < 0.05), n (P < 0.01), and ^

(P < 0.005)).
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6.4 Discussion

The recorded values for O2 consumption in the rectal glands of S. canicula and C.

leucas were comparable to those published previously for S. canicula and S. acanthias

(Shuttleworth and Thompson 1980; Morgan et al. 1997). Ouabain sensitive O2

consumption was significantly lower than that of the whole tissue for both species in all

salinities. This is also consistent with previous respirometry experiments on

elasmobranch rectal glands (Shuttleworth and Thompson 1980; Morgan et al. 1997).

The lower concentration of ouabain used by Shuttleworth and Thompson (1980) as

compared to the present study did not lead to any large scale changes in the estimation

of the ouabain sensitive proportion of O2 consumption by the rectal gland of S.

canicula.

Whole tissue O2 consumption in the rectal gland of S. canicula was unchanged by

acclimation to 80 and 120% SW (Figure 6.3.1.2). This is consistent with previous

results which have demonstrated that both RGF volume and CF clearance rate from the

rectal gland are also unchanged by similar salinity acclimations (Table 4.3.1). This is

again suggestive that there is no increase in rectal gland activity in vivo associated with

long term acclimation to salinity transfer in S. canicula. It is possible that the magnitude

of these salinity changes are not sufficient to elicit any long term changes in rectal gland

O2 consumption. However, it must again be stated that salinity transfers of larger

magnitude increase animal mortality and this is highly suggestive that changes in rectal

gland O2 consumption are unlikely to be recorded with such transfers.

The ouabain-sensitive portion of rectal gland O2 consumption in S. canicula was also

unaffected by acclimation to hypo- or hypersaline conditions (Figures 6.3.1.3 and 5).
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This is consistent with previous results which have shown that the maximal activity of

Na+, K+-ATPase is not significantly different between the three environments (Figure

5.3.2.1).

Whole tissue O2 consumption in the rectal glands of C. leucas acclimated to FW was

significantly higher than that of SW acclimated animals (Figure 6.3.2.2). This seems

counter intuitive due to the reversal of the concentration gradients for Na+ and CF

between C. leucas and the environment as the animals acclimate from FW to SW. In

FW the gradient is for the efflux of these ions and so there is an associated requirement

for the retention ofNa+ and Cf in the body fluids. Conversely, in SW the gradient is for

the influx of these ions and so there is an associated requirement for the active secretion

of Na+ and CF from the rectal gland. The rectal glands of SW animals also have

significantly higher maximal activity of Na+, K+-ATPase (Figure 5.3.2.2) (Pillans et al.

2005), and presumably higher rates of RGF secretion and CF clearance, in order to

facilitate this need for active rectal gland secretion. The fact that whole tissue O2

consumption is higher in the rectal glands of FW acclimated animals could therefore be

the result of higher activity of some other metabolic process or processes in the tissue. It

could be explained by a higher overall metabolic rate in FW acclimated animals due to

the requirement to maintain a larger disparity between internal osmolality and that of

the surrounding environment. Indeed, the maintenance of such large concentration

gradients for Na+, CF, urea, TMAO, and other plasma osmolytes must result in a

substantial energy demand. This energy demand may be met by a higher basal

metabolic rate in FW acclimated C. leucas.
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Similar studies on teleost species have shown varied results. Some species show a

decrease in whole animal O2 consumption associated with acclimation to decreased

salinities (Wood et al. 2002b; Sardella et al. 2004), whilst others show no change in

either whole animal O2 consumption (Morgan and Iwama 1998) or that of the gills

(Stagg and Shuttleworth 1982). This is illustrative of the interspecies variation that can

occur when measuring salinity induced changes in biological parameters.

However, it is more likely that higher O2 consumption in rectal glands from FW

acclimated C. leucas reflect the methods of regulating glandular secretion in this

environment. Juvenile C. leucas require the plasticity in osmoregulatory organs to move

freely between hypo- and hyperionic environments. This is particularly true of animals

in the Brisbane River system which has a high tidal influence and a relatively short

length of completely FW which is accessible to elasmobranchs, as compared to other

areas of study for the species (Thorson et al. 1973; Sosa-Nishizaki et al. 1998; Taniuchi

et al. 2003; Pillans and Franklin 2004).

One source of high O2 consumption could be the constriction of rectal gland blood

vessels, so as to minimise secretory output from the gland in FW. Attempts at isolated

perfused rectal gland studies in FW C. leucas proved difficult due to

constriction/blockage of the rectal gland artery and erratic pressure and activity within

the gland (unpublished finding). Blood flow to the rectal gland of S. canicula has been

shown to be modified during periods of active secretion (Anderson et al. 2002a). It is

possible therefore that the higher O2 consumption in rectal glands of FW acclimated C.

leucas is at least in part due to constriction of blood vessels.
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Another possible cause of higher rectal gland O2 consumption in FW is the smooth

muscle layer surrounding the gland. Work conducted by Evans and Piermarini (2001)

demonstrated that this layer is responsive to contractile stimuli. It is also possible

therefore that the increased O2 consumption in rectal glands of FW acclimated C. leucas

is at least in part due to contraction of this smooth muscle layer as a means of further

restricting blood supply to the gland.

The ouabain-sensitive portion of rectal gland O2 consumption was not significantly

different between FW and SW acclimated C. leucas (Figures 6.3.2.3 and 5). This may

appear to be inconsistent with previous studies which have shown that maximal activity

of Na+, K+-ATPase in the rectal gland is significantly higher in SW acclimated animals

(Figure 5.3.2.2) (Pillans et al. 2005). However, such studies represent maximal activities

and it is possible that Na+, K+-ATPase activity, and hence ouabain-sensitive O2

consumption, only differ between rectal glands of FW and SW acclimated C. leucas

during periods of active secretion.

Natriuretic peptides such as CNP have been shown to have stimulatory effects on the

secretory action of the elasmobranch rectal gland (Sections 1.11.1 and 6.1). However,

whilst whole tissue O2 consumption was significantly increased by CNP (Figure

6.3.1.4), the ouabain-sensitive portion of this in the rectal gland of S. canicula was

unaffected by administration of three concentrations of CNP (Figures 6.3.1.5).

Therefore it can be stated that any increase in O2 consumption upon administration of

CNP is not associated with a proportional increase in the activity ofNa+, K+-ATPase. If

indeed there is any increase in the activity of Na+, K+-ATPase, is also coupled with a

proportional increase in other metabolic processes.

242



I" ' ;V « 1 •:•" ■ . ■ " ''' ■ ' I

The effects of pharmacological agents on the tissues of the rectal gland have been

shown to be highly dependent on the preparations used. Equimolar concentrations of

CNP and VIP have roughly similar effects on CI" secretion in intact glands (Solomon et

al. 1992a), but in dispersed tubules CNP produces less than half the respiratory

stimulation of VIP (Solomon et al. 1993; Solomon et al. 1995a; Solomon et al. 1995b).

Also, elevated intracellular concentrations of cGMP result in a slow increase in short-

circuit current in isolated cells (Karnaky et al. 1991), but perfusion of isolated glands

with high concentrations of cGMP showed no such increase (Silva et al. 1999).

Furthermore, Stoff and co-workers (1977b) reported a synergistic effect on active CI"

transport with administration of theophylline and cAMP in isolated perfused glands,

where as treatment with cAMP caused no further increase in O2 consumption of rectal

gland sections after administration of theophylline (Shuttleworth and Thompson 1980).

In light of such discrepancies the results for ouabain-sensitive O2 consumption in the

rectal gland of S. canicula following administration of CNP do not seem extraordinary.

It has already been suggested that the stimulatory effect of CNP via guanylate cyclase

may require the coupled activation of PKC (Section 6.1). It is possible that the mode of

administration of CNP in these studies effects glandular response. Introducing CNP into

the surrounding medium of an isolated tissue section is not equivalent to perfusing an

isolated gland. It is possible that administered CNP must pass through the circulatory

system in order to have a stimulatory action on active secretion. However, this is

unlikely given the documented stimulatory action of CNP on cultured rectal gland cells

from S. acanthias (Karnaky et al. 1992; Karnaky et al. 1993). Therefore, although these

results for S. canicula are not extraordinary, they are unexpected and unclear.
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As well as being a potent stimulus for rectal gland secretion, CNP also has proven

vasodilatory effects (Bjenning et al. 1992; Anderson et al. 2002a). Therefore, if the high

O2 consumption recorded in the rectal glands of FW acclimated C. leucas is in part due

to vasoconstriction, administration of CNP could be expected to reverse this effect.

However, CNP significantly increased the O2 consumption of rectal glands from FW

acclimated animals (Figure 6.3.2.4). It is possible that any decrease in O2 consumption

resulting from vasodilation was masked by a larger increase in consumption due to the

stimulatory effect of CNP on the secretory tubules of the rectal gland. However,

administration of CNP did not significantly alter ouabain-sensitive O2 consumption

(Figure 6.3.2.3), or its proportion in whole tissue consumption (Figure 6.3.2.5). If

therefore, the high O2 consumption of rectal glands from FW acclimated C. leucas is the

result of vasoconstriction, either such constrictions are non-responsive to CNP, or they

are coupled with an increase in O2 consumption from another aspect of rectal gland

function.

Not only did CNP affect whole tissue O2 consumption in the rectal gland of SW

acclimated C. leucas (Figure 6.3.2.4), it also had effects on the proportion of ouabain-

sensitive O2 consumption (Figure 6.3.2.5). This is consistent with the increased

maximal activity of Na+, K+-ATPase in the rectal glands of these animals (Figure

5.3.2.2) (Pillans et al. 2005). It is also consistent with the increase in the abundance and

activity of Na+, K+-ATPase in the rectal glands of SW acclimated D. sabina (Piermarini

and Evans 2000).

The fact that administration of CNP results in an increase in the proportion of whole

tissue O2 consumption associated with Na+, K+-ATPase, but does not result in any
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significant increase in the ouabain-sensitive O2 consumption of SW rectal glands is

intriguing. This is a reflection of the amount of variation in these parameters between

individual animals acclimated to SW upon administration of CNP. Only through a

proportional analysis do any trends appear. This variation could be explained by

different states of activity in the glands upon excision, as well as natural variation in the

species. It could be that a gland excised during a period of active secretion shows a

greater response to CNP than a gland excised during a quiescent period. If this is the

case it would also explain the relative lack of response in glands from FW acclimated C.

leucas which are presumably quiescent for a much larger amount of time.

The fact that the O2 consumption associated with Na+, K+-ATPase increases

disproportionately to whole tissue consumption in SW acclimated C. leucas but not in

FW animals, and that both animals have similar basal values, suggests a modification in

the response of the rectal gland to CNP during acclimation to increased salinity. This

could be achieved through alterations in the abundance and/or sensitivity of CNP

receptors in the membranes of rectal gland secretory cells. There is no requirement for

active rectal gland secretion in FW C. leucas and so increasing the number of receptors

for this stimulatory hormone during SW acclimation seems plausible. An increased

abundance of hormone receptors in response to changes in salinity has been reported in

teleosts. SW acclimated A. anguilla have a three-fold higher Ang II receptor

concentration than those acclimated to FW (Marsigliante et al. 1997). Furthermore,

Katafuchi and co-workers (1994) showed that CNP-specific receptor expression was

enhanced in FW A. japonica. Increased CNP receptor expression can therefore be

induced by changes in environmental salinity in teleosts. Given that CNP is the most

highly conserved of all the natriuretic peptides (Takei 1999), and is the only one
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recorded in elasmobranchs (Schofield et al. 1991; Suzuki et al. 1991a; Suzuki et al.

1994), elasmobranchs may well increase receptor expression during long term

acclimation to different salinities.

It is also possible that whilst the rectal gland of SW acclimated C. leucas respond to

CNP via both cGMP and PKC pathways (thereby facilitating a synergistic action on CI"

secretion), rectal glands of FW acclimated C. leucas, and those of S. canicula

acclimated to the three environmental salinities do not respond via one of these. The

fact that whole tissue O2 consumption is still increased in this latter group suggests that

these glands are responsive to CNP and that one of the pathways is probably functional.

However, the lack of a disproportionate increase in Na+, K -ATPase O2 consumption

suggests that either there is no increase in CI" secretion associated with administration of

CNP in these glands, or that any increase is directly proportional to the stimulatory

effects of CNP on other active metabolic processes. However, this variation in response

to CNP seen in C. leucas represents a tangible difference in the endocrine physiology of

fully euryhaline elasmobranchs when compared to a partially euryhaline species. The

significance of this finding cannot be underestimated when assessing the nature of

euryhalinity in elasmobranch fish.
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Chapter 7: General discussion
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7.1 General discussion

Marine elasmobranch fish typically maintain a blood plasma osmolality slightly

hyperosmotic to the environment, in captivity it may be iso- or slightly hyposmotic.

This strategy typically involves plasma concentrations of Na+ and CI" below that of the

surrounding environment, and the retention of urea and methylamines in the body fluids

(Ballantyne et al. 1987). The result of this is an osmoregulatory strategy focussed on the

retention of urea and methylamines and regulation of the influx and efflux of Na+, CI",

and water.

One of the key objectives of this study has been to investigate the scope for

modifications in this osmoregulatory strategy in both a partially and a fully euryhaline

species. A comparison of the two was conducted by analysing the responses of partially

euryhaline species to salinity change, evaluating the limitations of these responses, and

highlighting the modifications in fully euryhaline species.
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7.1.1 Partially euryhaline elasmobranchs

It has been shown that partially euryhaline elasmobranchs acclimate acutely to changes

in environmental salinity with significant changes occurring in all major blood plasma

parameters during the first 12 hours (Figures 2.3.2.3 - 6 and 3.3.2.1) , with the notable

exception of elevating plasma urea concentration during acclimation to increased

salinity. All of the alterations in plasma osmolyte concentration (Table 2.3.1.1), blood

volume (Table 3.3.1.1), and blood haematocrit (Table 2.3.1.1) persist in chronically

acclimated animals. These occur through altered concentration and osmotic gradients

with the environment and the resultant fluxes across semi-permeable membranes. These

fluxes are regulated by the principle osmoregulatory organs.

In order to assess the roles of the principle osmoregulatory organs during both acute and

chronic acclimation to salinity change, it is necessary to have an understanding of the

general response of partially euryhaline elasmobranchs to both decreases and increases

in environmental salinity. The generalised response of a partially euryhaline

elasmobranch (such as S. canicula) to a decrease in environmental salinity is described

below (Figure 7.1.1.1). Immediately following the commencement of transfer to

reduced salinity the animal encounters an increase in the gradient for the osmotic influx

of water, resulting in an increased influx of water. This osmotic water influx leads to a

haemodilution and an increase in blood volume (Figure 3.3.2.1). This increase in blood

volume may be the initial stimulus for the osmoregulatory response of elasmobranchs to

reduced salinity. Also associated with this haemodilution is a decrease in blood

haematocrit (Figure 2.3.2.6).
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Figure 7.1.1.1 - Generalised acute response of S. canicula to decreased environmental

salinity, showing putative negative feedback effects (-ve), see text for details.
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In response to an increase in blood volume CNP is released from the heart and

stimulates active secretion of NaCl from the rectal gland (Solomon et al. 1992b;

Anderson et al. 2002a) (Figure 4.3.2.4). This results in the significant reduction of

plasma Na+ and CI" concentrations (Figure 2.3.2.4) as part of the homeostatic process to

lower overall plasma osmolality (Figure 2.3.2.3) to around isosmotic to the

environment.

Urine flow rates are also elevated during the early stages of salinity transfer to facilitate

a decrease in plasma urea concentration and regulate the increased influx of water. Such

changes in urine flow rates persist after 3 days at reduced salinity (Wells et al. 2002). In

S. canicula this increase in urine flow rate results in a decrease in plasma urea levels

(Figure 2.3.2.5) although this is not as rapid as the decrease seen in plasma Na+ and CI"

levels resulting from the additional action of the rectal gland on total salt excretion.

Increased urine flow rate also acts to re-establish volaemic stasis in a reduced salinity

environment. The actions of the rectal gland and kidney therefore regulate the osmotic

consequences of transfer to reduced salinity.

The generalised response of a partially euryhaline elasmobranch (such as S. canicula) to

an increase in environmental salinity is described below (Figure 7.1.2). Immediately

following the commencement of transfer to elevated salinity the animal will encounter

an increase in the gradient for the osmotic efflux of water, resulting in a decreased body

fluid levels. This osmotic efflux leads to a haemoconcentration and a decrease in blood

volume (Figure 3.3.2.1). A decrease in blood volume is a potent stimulus for the

initiation of a drinking response (Anderson et al. 2002b) and has a negative impact on

rectal gland activity. Furthermore, blood volume starts to decrease after 2-3 hours in S.
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canicula acclimating to these conditions (Figure 3.3.2.1); this is within the same time

frame at which a drinking response is typically recorded (Anderson et al. 2002b). This

drinking response acts to increase plasma Na+ and CF levels, as well as counter act the

loss of body fluids. The consequences of the drinking response may then be moderated

through the action of the rectal gland and the kidney to establish an increase in plasma

osmolality (Figure 2.3.2.3), eventually rendering it to a level around isosmotic to the

environment. Any initial increase in plasma osmolality may be achieved primarily

through imbibed Na+ and CF, with increased plasma urea concentrations occurring

somewhat later after the initial salinity transfer. This delayed increase in plasma urea

concentration reflects the requirement for increased hepatic urea production (Hazon and

Henderson 1984).
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Figure 7.1.1.2 - Generalised acute response of S. canicula to increased environmental

salinity, showing putative negative feedback effects (-ve), see text for details.
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From the general response of a partially euryhaline elasmobranch to both increases and

decreases in environmental salinity the central importance of changes in blood volume

can readily be surmised. Not only as a means of stimulation for osmoregulatory

responses, but also as a means of assessing a species capacity for chronic volaemic

regulation. Salinity transfers of high magnitude conducted on S. canicula may result in

mortality over a period of days, suggesting that partially euryhaline elasmobranchs fail

to regulate haematic parameters completely to such conditions. This would be

associated with larger scale changes in blood volume than those demonstrated in this

study which utilised smaller changes in salinity (Table 3.3.1.1).
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7.1.2 Limitations in partially euryhaline elasmobranchs

The failure of partially euryhaline elasmobranchs to adequately regulate haematic

parameters in low salinity and FW must be a function of the principle osmoregulatory

organs. The possibility of active ion uptake by the gills of elasmobranchs has already

been discussed (Section 1.3). There was no modification in the maximal activity ofNa+,

K+-ATPase in the gills of S. canicula following chronic acclimation to 80 or 120% SW

environments (Figure 5.3.2.1). This suggests that partially euryhaline species may not

have the capacity to alter the abundance and/or recruitment ofNa+, K+-ATPase, and any

changes in active branchial ion transport occur within the capacity of the enzyme levels

present in SW acclimated animals. The intake and retention of Na+ and CF and the

retention of urea becomes increasingly important as environmental salinity decreases.

As the availability ofNa+ and CF in the environment decreases so does the gradient for

their diffusional influx into elasmobranchs across the semi-permeable surfaces. Indeed,

continued decreases in environmental salinity result in elasmobranchs becoming

hyperionic to the environment. Under these environmental conditions elasmobranchs

face a continual efflux ofNa+ and CF (and urea) across the semi-permeable surfaces and

active branchial uptake of these ions may form a critical part of an elasmobranch

osmoregulatory strategy (Section 7.1.3). Given this reversal of Na+ and CF

concentration gradients, a lack of modification in the branchial abundance and/or

recruitment of Na+, K+-ATPase are unlikely to facilitate active ion uptake. Any

increased intake ofNa+ and CF must therefore be achieved by some other mechanism.

The other possible source of Na+ and CF intake is via the intestine. The importance of

the intestine has already been highlighted with regard to a drinking response and

increasing plasma Na+ and CF concentrations following transfer to increased salinity
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(Figure 7.1.1.2). However, once salinity has decreased to the point where chronically

acclimated elasmobranchs are hyperionic to the environment these animals are also

faced with a requirement for Na+ and CI" intake to regulate the loss of these ions across

the semi-permeable surfaces. A drinking response in this scenario would not achieve a

net increase in the intake of Na+ and CI" as the imbibed water is hypoionic to blood

plasma; it would however compound the influx of water. Animals in this environment

would already face a sizable influx of water due to their hyperosmotic and hyperionic

states. In the light of this any increase in drinking rate must be regulated by the action of

the kidneys; this is discussed in detail below. Once the environmental salinity is reduced

to that of FW and plasma Na+ and CI" levels cannot be increased through drinking,

dietary intake of these ions becomes of vital importance; particularly if there is no active

uptake of Na+ and CI" at the gills. There was also no modification in the maximal

activity ofNa+, K+-ATPase in the intestine of S. canicula following chronic acclimation

to 80 or 120% SW environments (Figure 5.3.2.1). This is suggestive that partially

euryhaline elasmobranchs are unable to modify the abundance and/or recruitment of

Na+, K+-ATPase in response to changes in environmental salinity. It is possible that

these ions are taken up via other reabsorptive mechanisms in the intestine (Section

7.1.3); however a large dietary intake and active predatory behaviour, or a selective diet

high in Na+ and CI" levels would be required to achieve this.

One of the primary focuses of this study has been the role of the rectal gland in

elasmobranch euryhalinity. In SW, elasmobranchs are hypoionic and face a continual

influx of Na+ and CI" from the marine environment. At reduced salinities this gradient is

reversed as the animals become hyperionic to the environment and face a continual

efflux of Na* and CI". It is therefore apparent that increasing rectal gland activity in
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response to a requirement for excretion of Na+ and CI", and decreasing rectal gland

activity in response to a requirement for retention ofNa+ and CI" are of key importance.

The relatively small scale changes in environmental salinity and the associated changes

in NaCl secretion rates experienced by partially euryhaline species such as S. canicula

may be facilitated by relatively crude changes within the rectal gland. Rectal gland

secretion rate in such species appears to be modified by changes in blood perfusion

(Anderson et al. 2002a), secretory volume (Figure 4.3.2.1) (Anderson et al. 1995a;

Anderson et al. 2002a), CI" concentration (Figure 4.3.2.2), and structure (Figure

5.3.1.1). Partially euryhaline elasmobranchs may not be capable of altering Na+, K+-

ATPase abundance and/or recruitment within the rectal gland (Figure 5.3.2.1), nor

modifying its response to endocrine control factors such as CNP (Figures 6.3.1.5)

following acclimation to salinity change.

Regulation of rectal gland activity is of vital importance at lower salinities. The reversal

of the concentration gradients for Na+ and CI" associated with elasmobranchs in low

salinities, and the requirement for retention of these ions, necessarily imposes a

requirement to modify rectal gland secretory activity. S. canicula acclimating to reduced

environmental salinity do not significantly alter rectal gland secretory activity in vivo

(Section 4.3.2). This may reflect little capacity for the modification of Na+, K+-ATPase

at the cellular level (Chapters 5 and 6). If partially euryhaline elasmobranchs do have a

lower capacity for large scale decreases in rectal gland activity than fully euryhaline

species, this would significantly limit the range of salinities they could inhabit.

The presence of a specialised NaCl secreting rectal gland in elasmobranchs removes the

need for the production of concentrated urine from the kidney. This is crucial in
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understanding euryhalinity in elasmobranchs as it permits renal function to focus on the

retention of plasma osmolytes and volaemic regulation. In SW elasmobranchs the major

role of the kidney is urea retention, however, Na+ may be actively retained via Na+-

linked urea reabsorption (Section 1.6) (Stolte et al. 1977; Hentschel et al. 1998). As

such the kidney of partially euryhaline species has evolved towards this with

approximately 70 - 99% of filtered urea being reabsorbed (Kempton 1953; Boylan

1967). It has been shown that for S. canicula the relative level of urea in blood plasma

decreases disproportionately at reduced salinities, more so than for fully euryhaline

species such as C. leucas (Figure 7.1.2.1 and Table 2.3.1.3). This may well reflect an

inability of partially euryhaline elasmobranchs to increase urea retention whilst

simultaneously increasing urine flow rates in order to maintain volaemic stasis during

acclimation to reduced salinities.
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Blood plasma osmolality along a salinity gradient
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Figure 7.1.2.1 - Descriptive comparison of plasma osmolalities. Values for C. leucas

are from wild sampled animals in the Brisbane River (Pillans and Franklin 2004).

Values for S. canicula are cumulative results from St Andrews University (Hazon, pers.

comm.).
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As environmental salinity decreases the major requirement of renal function changes. In

FW elasmobranchs there is also a need for urea retention, but the major function of the

kidney is the regulation of the massive influx of water which the animals face. This

must be countered by high urine flow rates from the kidney in order to maintain

volaemic homeostasis. This results in a somewhat paradoxical situation in FW where

the kidneys must produce urine to regulate blood volume, but increasing urine flow will

necessarily increase the excretion of urea, Na+, and CF. Acclimation to FW

environments therefore requires a decrease in the fractional excretion of plasma

osmolytes from the kidney in order to maintain elevated plasma osmolality during

periods of increased urine flow rate (Smith 1931a; Janech and Piermarini 2002).

Partially euryhaline elasmobranchs may be limited by a comparatively small capacity

for this, as compared to truly euryhaline species.

In this light, the evolution of the stenohaline FW potamotrygonid rays towards a

strategy which does not require the retention of urea, and hence avoids the two

somewhat opposing requirements on kidney function, seems highly efficient

considering the large influx of water continually faced by these FW elasmobranchs.

However, the inability of stenohaline FW elasmobranchs to retain elevated levels of

urea in the blood plasma appears to be the key factor dictating their range of salinity

tolerance (Thorson 1970; Thorson et al. 1978; Brooks et al. 1981; Wood et al. 2002a).

It is evident therefore that there are two main requirements of the elasmobranch kidney,

osmolyte retention and volume regulation; although both are important in SW and FW,

their relative importance changes during acclimation from one environment to the other.

It has been demonstrated that there are no significant changes in the maximal activity of
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Na+, K+-ATPase in the kidney of S. canicula as a result of chronic acclimation to

salinity change (Figure 5.3.2.1). This suggests that partially euryhaline elasmobranchs

may be unable to modify the abundance and/or recruitment of Na+, K+-ATPase during

salinity transfer. This could be descriptive of an inability to adequately retain plasma

osmolytes whilst simultaneously regulate the volaemic influx associated with transfer to

FW.
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7.1.3 Fully euryhaline elasmobranchs i

One notable difference between different species of elasmobranchs is the presence or

absence of variation in blood haematocrit (Table 3.1.1). This is important as significant

changes in blood haematocrit are suggestive of, but not evidence for, changes in blood

volume associated with chronic salinity transfer. A smaller degree of haemodilution

may therefore be encountered by fully euryhaline as compared to partially euryhaline

species during chronic transfer to reduced salinity. This is suggestive of a more

complete regulation of haematic parameters during acclimation to altered environmental

salinity. It is intuitive that a more rapid and complete modification in haematic

parameters would be a response associated with fully euryhaline elasmobranch species.

The reduction or lack of change in blood volume which may be experienced by fully

euryhaline species is highly suggestive of tighter control over water fluxes with the

environment. This is also suggestive of a greater scope for the modification of function

in principle osmoregulatory organs.

However, there was no modification in the abundance and/or recruitment of Na+, K+-

ATPase in the gills of C. leucas between FW and SW acclimations (Figure 5.3.2.2).

Recent investigations into the localisation and activity of Na+, K+-ATPase have shown

significant increases in branchial tissue of FW, as opposed to SW acclimated D. sabina

(Piermarini and Evans 2000; Piermarini and Evans 2001; Piermarini et al. 2002).

Indeed, these findings prompted Piermarini and co-workers (2002) to suggest that the

location and abundance of transport enzymes in chloride cells of the gill epithelia

favoured the active uptake of Na+ and CP from FW. These findings in the fully

euryhaline D. sabina are not consistent with the data presented in this study for the fully

euryhaline C. leucas (Figure 5.3.2.2).
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Given that the protocols for acclimation from FW to SW were similar in the studies on

D. sabina (Piermarini and Evans 2000) and C. leucas (Section 2.2.2.1), this can be

taken to represent a physiological difference between these two fully euryhaline species.

Either C. leucas does not alter maximal branchial activity of Na+, K+-ATPase in

response to acclimation to SW, or changes occur after 7 days of transfer, or they occur

earlier and have returned to basal levels by the 7 day sampling period. Discerning which

of these scenarios is the case is not possible from the current study, but the fact that the

two species display these differences may have implications for the evolution of

different strategies which allow an elasmobranch to be fully euryhaline. The

evolutionary distance between the Batoids and Carcharhinids is certainly adequate for

the separate evolution of a fully euryhaline physiology (Figure 1.1.1).

These different strategies may be a reflection of the different ecological niches filled by

C. leucas and D. sabina. The highly active predatory behaviour of C. leucas may result

in sufficient intake of Na+ and CF through the diet and therefore changes in branchial

abundance and/or recruitment of Na+, K+-ATPase in order to obtain these ions from the

environment are not required. This is in contrast to the less active D. sabina which may

have a far lower dietary requirement, being a non ram ventilating species, and therefore

augments dietary salt uptake with branchial reabsorption of Na+ and CF from the FW

environment. The importance of dietary intake for euryhaline elasmobranchs is

discussed below.

Given the importance of urea retention in the FW environment (Section 7.1.2) and the

fact that despite having the lowest permeability for urea the gills are the major site of

efflux (Boylan 1967; Wood et al. 1995), it seems intuitive that fully euryhaline
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elasmobranch species may have evolved mechanisms to further reduced branchial urea

loss in FW. Branchial urea permeability has not been measured in fully euryhaline

species although research on partially euryhaline species has consistently demonstrated

no significant alterations in branchial urea fluxes upon acclimation to reduced salinity

(Goldstein et al. 1968; Goldstein and Forster 1971; Payan et al. 1973). Evidently

comparative studies on fully euryhaline species would be of great importance in this

area.

As stated above, fully euryhaline elasmobranchs have evolved means to increase the

intake of Na+ and CF in a FW environment. For certain species, modifications in the

abundance, activity, and orientation of Na+, K+-ATPase upon acclimation may be of

great importance for this. Partially euryhaline elasmobranchs may not have the capacity

for such alterations in their branchial structure. Therefore, an increased ability for the

branchial intake of Na+ and CF may be a fundamental difference between partially and

euryhaline elasmobranchs, particularly when other means of ionic intake are minimal.

The importance of the intestine during elasmobranch salinity transfer has already been

highlighted with regards to drinking rate (Section 7.1.1). However, there was no

modification in the abundance and/or recruitment of Na+, K+-ATPase in the intestine of

either a partially or fully euryhaline species (Figures 5.3.2.1 and 2). Elasmobranch

drinking rates are considerably lower than those of teleosts (Table 1.4.1) and it is

possible that the uptake of Na+ and CF from these volumes can be achieved without

increasing the abundance and/or recruitment ofNa+, K+-ATPase. However, there are no

measurements for the drinking rates of fully euryhaline elasmobranchs during transfer

from FW to SW. In the current study the difficulties associated with anaesthesia,
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surgery, and confinement of C. leucas have previously been discussed (Section 2.4),

and these prevented studies of drinking rates in these animals. However, the rate of

drinking in FW acclimated euryhaline elasmobranchs undergoing salinity transfer is

expected to be high considering the increase in plasma CI" concentration which is seen

after 7 days in SW (around 90 mmol 1"1 in C. leucas). If fully euryhaline elasmobranchs

do have a greater drinking response than partially euryhaline species, there does not

appear to be any modification in Na+, K+-ATPase associated with this.

As previously discussed (Section 7.1.2), dietary intake may also be a key source of

osmolytes for some euryhaline species. Ingested food not only provides a source of Na+

and CF but also provides protein, the substrate for urea synthesis. The negative effects

of reduced feeding on C. leucas have already been discussed (Section 1.4); similar,

though less dramatic effects have also been recorded in S. canicula (Armour et al.

1993a). The lack of increase in abundance and/or recruitment of Na+, K+-ATPase may

not necessarily demonstrate a lack of modification within the tissues of the intestine to

the increased dietary intake of FW C. leucas. Inorganic ions can also be absorbed via

coupled transport with other nutrients. Although elasmobranch specific research in this

area is non-existent, inorganic ions such as Na+ are known to be important in the

coupled transport of nutrients such as amino acids (Smith and Lane 1971) and

carbohydrates (Farmanfarmaian et al. 1972) in teleost species. Furthermore, many such

transporters in the gastrointestinal tract of vertebrates are induced or repressed by

changes in substrate concentrations (Diamond 1991). It is therefore possible that

increased dietary intake may lead to increased uptake of Na+ and CF without the

requirement for alterations in the abundance or activity of Na+, K+-ATPase. If Na+-
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linked absorption of other nutrients is indeed important for ion uptake from the intestine

the detrimental effects of low food intake could be compounded in FW.

Another method of analysing the effects of dietary intake is to examine growth rates. It

has been reported that growth has the lowest priority of energy requirements in

elasmobranchs, whilst basal metabolism has the highest (Gruber 1984). Therefore, by

analysing growth rates of captive elasmobranchs and comparing them to values from

wild populations an assessment of feeding regimes and dietary intake becomes possible.

Gruber (1984) found that N. brevirostris fed 12-15% of body mass per week (BM wk"1)

gained weight and those fed 10% BM wk"1 lost weight. From this it was estimated that a

feeding rate of around 11.5% BM wk"1 was required to maintain body mass. Such

estimates are highly species specific due to the variable growth rates between species

(Table 7.1.3.1).
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Species Environment
Growth rate

(cm yr"1)
Reference

E. taurus Captive 17.5 (Gruber 1980)

Captive 24.4 (Gilmore et al. 1983)

C. leucas Wild 12-18 (Thorson and Lacy 1982)

Wild 15-20 (Branstetter and Stiles 1987)

Captive 28-42 (Schmid et al. 1999)

Table 7.1.3.1 - Growth estimates in different populations of elasmobranch species.
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This problem is compounded further by the fact that growth rates can vary greatly

during different stages of the life cycle. This is well illustrated in C. leucas where

growth rates are around 18 and 16 cm yr"1 in the first two years respectively, but then

subsequently reduce to 12 cm yr"1 (Thorson and Lacy 1982). However, C. leucas used in

this study were taken from a juvenile population and work conducted by Schmid and

co-workers (1999) showed that feeding rates of 3.5% BM wk~' did not significantly

decrease growth rates of captive SW animals. Although exact calculations of feeding

rates were not taken in this study, the dietary regime used would have been around 15-

25% BM wk"1, far exceeding the minimum rate required for long term SW acclimated

animals. Despite this, captive FW acclimated C. leucas had around 40 mmol l"1 less urea

in the blood plasma than wild sampled FW animals, and captive SW acclimated

animals had around 65 mmol l"1 less than wild sampled SW animals (Tables 1.2.2 and

2.3.1.2). The possible reasons for this disparity have been previously discussed (Section

2.4).

The metabolic requirements of a ureotelic hyperosmotic strategy in FW may well result

in a significantly higher energy demand than in SW (Figures 6.3.2.1 and 2). If this is

indeed the case, the fact that C. leucas displays higher growth rates in the first 2 years of

the life cycle (Thorson and Lacy 1982; Schmid et al. 1990), and that this period is

usually spent in FW (Thorson 1972; Thorson et al. 1973; Taniuchi et al. 2003), may

result in a sizeable energy demand and dietary intake.

In FW, fully euryhaline elasmobranchs therefore require the active intake of osmolytes

from an ion poor environment. Without the possible modification of branchial tissue for

active ion uptake, this demand must be met by an increased intake via the intestine. In



ion poor FW this translates to a high requirement of dietary intake and the associated

levels of active predatory behaviour. Furthermore, this increased dietary intake also

requires digestive processing and absorption from the intestine. The three types of

intestinal valves in elasmobranchs have already been described (Section 1.4), but no

research has been conducted on the prevalence of particular types in euryhaline species.

Each type of valve has a set of associated digestive parameters, such as time of passage

and absorption rate. Although comparative research between the parameters of each

valve type is sparse, the ring valve has the most absorptive surface area for unit length

(Martin 2003b). Given that different types of intestinal valve have different

consequences for digestive and absorption rates, there is scope for morphological

adaptation within the gut of fully euryhaline species which require high dietary intakes

as a source ofNa+ and CF. Similarly to the case with branchial tissue, differences in the

ability to increase ion and protein intake via the intestine may also be of crucial

importance in determining the degree of euryhalinity in elasmobranch species. Clearly

more research is required into this area.

Given the importance of the retention ofNa' and CF in low salinity environments, there

must be modifications in the rectal gland of fully euryhaline species which restrict

secretory activity during these periods. Stenohaline FW elasmobranchs have evolved a

degenerate rectal gland which does not secrete Na+ and CF (Thorson et al. 1978). This

removes part of the energetic cost of osmoregulation in FW, but necessarily prohibits

inhabitation of hyperionic environments because of an inability to secrete excess Na+

and CF. Fully euryhaline elasmobranchs, such as C. leucas, have therefore presumably

evolved means ofminimising the energetic costs of retaining Na+ and CF in FW, whilst



maintaining the osmoregulatory plasticity to enable the excretion of these ions in

hyperionic environments.

It has already been described how the evolution of the rectal gland permitted

specialisation in the renal tissue through removing the requirement for concentrated

urine in order to achieve net NaCl secretion (Section 7.1.1). Although this evolution has

permitted refinements in kidney function which have facilitated changes in urea

retention and free water clearance, it has also allowed radiation in the physiology and

endocrine control of the rectal gland which have facilitated changes in Na+ and CI"

secretion rates in different environments.

The larger scale salinity changes tolerated by fully euryhaline elasmobranchs are a

reflection of a capacity for more fundamental changes rectal gland physiology. As with

the kidney, fully euryhaline elasmobranchs are able to significantly alter the abundance

and/or recruitment of Na+, K+-ATPase in the rectal gland during chronic acclimation to

salinity changes (Figure 5.3.2.2). Given the increased concentration gradients

experienced by ureotelic elasmobranchs in FW and the associated increased energetic

cost of osmoregulation, the ability to significantly reduce the metabolic cost associated

with active transport mechanisms utilising Na+, K+-ATPase could be a deciding factor

in meeting these energetic requirements. Whilst such reductions do occur in the rectal

glands of FW euryhaline elasmobranchs, they do not affect the plasticity of the gland as

enzyme maximal activity levels are significantly elevated after 7 days in full SW

(Figure 5.3.2.2). This again emphasises the importance of maintaining plasticity in the

rectal gland for euryhaline elasmobranchs.
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As previously stated, this up regulation in enzyme activity may be achieved by changes

in pump abundance or changes in pump recruitment, or a combination of both. The

work conducted by Piermarini and Evans (2000) on D. sabina demonstrated that

euryhaline species can achieve this plasticity by modifications in the abundance of Na+,

K+-ATPase during acclimation to SW. Increased enzyme activity could also be brought

about by increased recruitment of previously inactive units ofNa+, K+-ATPase. The fact

that the rectal glands of FW acclimated C. leucas did not increase the relative O2

consumption of Na+, K+-ATPase in response to the known stimulant CNP whilst those

of SW acclimated animals did (Figure 6.3.2.5) could be suggestive of a component of

total Na+, K+-ATPase activity being inactive in FW. Indeed, the fact that Na+, K+-

ATPase abundance was so high in FW acclimated C. leucas that it prevented accurate

quantification via Western blotting supports the idea of post-transcriptional regulation

of Na+, K+~ATPase activity in these animals (Meischke, pers. comm.). This contrast

with Na+, K+-ATPase levels in the rectal glands of C. leucas and D. sabina upon

chronic acclimation to FW and SW again suggests separate evolution of different

mechanisms which permit full euryhalinity in elasmobranch fish, as does the situation in

the gills of these two species described above.

The results presented in this study demonstrate the latent plasticity of the rectal gland of

C. leucas in FW and that through modification of the glands reaction to endocrine

signals during acclimation to SW secretory rate can be increased. This is suggestive that

chronic acclimation to salinity change in fully euryhaline elasmobranchs may result in

modifications of enzyme abundance and activity, and subtle variation in the response of

secretory tubules to endocrine control factors; rather than simply modifying the relative
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periods of activity and inactivity as may be the case with partially euryhaline species

(Section 4.3.2).

The greater sophistication of potential modifications for rectal gland function, and the

specificity of their nature seen in fully euryhaline elasmobranchs are of fundamental

importance for Na+ and Cf balance in both FW and SW. More importantly they permit

regulation of function whilst maintaining the necessary plasticity for a fully euryhaline

degree of salinity tolerance. Elasmobranchs which do not possess the capacity for these

modifications in rectal gland function are necessarily more limited to a smaller range of

environmental salinities.

It has already been demonstrated that the fully euryhaline species C. leucas is capable of

modifying the abundance and/or recruitment of Na+, K+-ATPase in the kidney during

acclimation to different salinities (Figure 5.3.2.2), the consequences of this for active

ion and urea reabsorption have also been discussed (Sections 1.6, 5.4 and 7.1.1). If fully

euryhaline species are able to alter the activity of Na+, K+-ATPase in response to

salinity change, it is possible that they are able to make similar changes in the activity of

facilitated urea transporters. Evidence of such transporters has been gathered in both a

marine (R. erinacea) (Smith and Wright 1999; Morgan et al. 2003) and a euryhaline

species (D. sabina) (Janech et al. 2003). Furthermore, levels of SkUT have been shown

to decrease in the kidney of R. erinacea in response to decreased salinity (Morgan et al.

2003). It is possible that less euryhaline species are unable to upgrade the required

transporters to facilitate active urea retention in FW. Interestingly, there was 71%

sequence identity between the two urea transporters which raises the possibility of

functional changes in protein structure within the kidney of different elasmobranch
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species. It is possible that these permit different amounts of osmolyte reabsorption in

the kidney during periods of increased urine flow rate. Clearly more comparative

analysis is required to understand the differences in renal structure between partially and

fully euryhaline species which permit the latter to survive in FW.

Physiological modifications in the renal tissue are undoubtedly an important factor in

the salinity tolerance of elasmobranchs. The ability of the kidney to regulate the

increased influx of water and its greater capacity for active urea and osmolyte

reabsorption are a defining feature of fully euryhaline elasmobranchs.
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7.1.4 Suiuuiaiy

Comparison of the plasma osmotic profiles of the partially euryhaline S. canicula and

the fully euryhaline C. leucas highlights the differences in their response to salinity

transfer (Figure 7.1.2.1). The major difference during acclimation to FW environments

is the ability of fully euryhaline species to retain elevated levels of urea, Na+ and Cf in

the blood plasma. This is the result of key differences in the major osmoregulatory

tissues of partially and fully euryhaline elasmobranch species. These differences are

summarised below (Table 7.1.4.1).

Furthermore, the differences seen in the modifications of osmoregulatory tissues in C.

leucas and D. sabina in response to chronic salinity acclimation are suggestive of

alternative evolutionary adaptations which permit true euryhalinity. If this is indeed the

case a comparative study of these two species could give further insight into the

underlying mechanisms which define the degree of euryhalinity in elasmobranch

species. Future assessment of blood volume in both of these species, and the magnitude

of changes which occur during salinity transfer would also provide much needed insight

into the osmoregulatory strategy of fully euryhaline elasmobranchs. Future work

focussing on comparative studies of different fully euryhaline species would be of great

importance in expanding understanding of the osmoregulatory modifications which

facilitate euryhalinity in elasmobranch fish.
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Partially euryhaline Fully euryhaline

Blood
Altered blood volume and

haematocrit

Regulated haematocrit (and

possibly blood volume)

Little modification for active Na+ Possible modification for branchial

Gills and CI" uptake reabsorption of Na+ and CI"

No change in urea efflux Possible decrease in urea efflux

Intestine
Little modification in Na+, K+-

ATPase

Possible specialisation of dietary

intake

Rectal

gland

Modification of RGF volume, CI

concentration, and duct structure.

Plasticity of secretory activity

Modifications in Na+, K+-ATPase

and response to CNP

Changed renal dynamics Modifications in Na+, K+-ATPase

Kidney Little modification in Na+, K+- Decrease in fractional osmolyte

ATPase excretion at higher urine flow rates

Table 7.1.4.1 - Summary of modifications to chronic salinity transfer in partially and

fully euryhaline elasmobranchs.
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This study has therefore given insight into the underlying osmoregulatory mechanisms

which dictate the degree of salinity change tolerated by individual elasmobranch

species. In particular the variations of protein activity and endocrine control of the rectal

gland between species of different levels of euryhalinity have been highlighted. This

increases understanding of the energetics of elasmobranchs during both acute and

chronic acclimations to salinity change. Increased understanding of these processes is of

vital importance in explaining the ecophysiology of elasmobranch fish. An increased

level of understanding in elasmobranch physiology is of great importance given the

financial impact they have on both eco-tourism and public aquaria, and the rapidly

declining populations of elasmobranchs in the wild, due to overexploitation by man.
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Appendix 1: Protocols



Blood volume

Anaesthetic

For induction use 120 ppm MS-222 with an equal amount of NaHC03 to buffer, lppm
is 0.00 lg in 1L, so for a 5L induction bath use 0.6g of each.

For maintenance dose use 50 ppm, or 0.25g of each in a 5L volume.

Upon induction opercular rate will slow, the fish will lose equilibrium, and surgical
level of anaesthesia is reached when there is no reaction to a firm pinch on the dorsal
fin.

Surgery
Cut 60cm lengths of cannula, stretch out the ends, and then cut with a scalpel blade to

give an oblique end. Ensure all cannulae are filled with heparinised ringer (200IU ml"1)
prior to surgery (cannula volume ~ 0.16ml).

Obtain a body mass for each animal prior to surgery for calculation of irradiated cell

injection later.

Make an incision in the flank of the animal, starting just posterior to the pectoral fin,

around 5cm in length. Cauterise the incision to prevent internal bleeding during the

experiment. Retract the stomach and part of the intestine to expose the coeliac and
mesenteric arteries.

The coeliac artery runs parallel to the splenic vein, along the stomach wall to the

spleen. Place a tie around the artery and pull tight. This fills the artery and gives

purchase to put tension in the artery prior to incision.

Place another tie around the artery, upstream of the first, do not tighten.

Make the incision between the two ties, feed in the cannula as far as possible (try to feed

through into the dorsal aorta), and pull the second tie tight to trap the cannula.
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Ensure there is pressure in the cannula from the blood vessel and then secure the
cannula with a third tie and another knot with the first tie. Clear the cannula of blood

using heparinised ringer and place ayellow pin in the end.

The mesenteric artery lies at the top of the intestine, posterior to the junction of the
coeliac artery and the dorsal aorta.

Cannulate in the same manner as described above, use black pin for cannula.

Suture up the animal and place in tank for 24 hours to recover, ensuring filters are

running and air hose is turned on.

Preparation of blood cells (after Gingerich et al, 1987)
Draw 2ml of blood from donor animal and put in 0.6ml pony vial, centrifuge at 300rpm
for 5 minutes in the Mistral. Remove the plasma portion and retain in a separate tube for

osmolyte analysis.

Wash the blood cells three times in volumes of 4°C ringer solution equivalent to that of
the plasma. Take care when resuspending the cells, they are delicate. Then resuspend to

give a final volume of 2ml. Add 51Cr to give activity of 1.0 x 108 CPM ml"1 (1.67MBq ~
1.0 x 108 CPM); mix for 1 minute in a vortex at 1000 rpm, then place in fridge

overnight.

Wash the blood cells three times as before in volumes of 4°C ringer, each time retaining
a 200pl sample of the supernatant to check in the gamma counter for haemolysis

(Program 5). Then resuspend the cells in 4°C ringer to give a final haematocrit of 17%
for 100%SW, 13% for 80% SW, and 22% for 120% SW.

Using the mesenteric cannula, draw a 400pl blood sample from experimental fish to

give initial osmolyte and haematocrit data. Then inject 1.0ml Kg"1 of irradiated cell

suspension and flush the cannula with 320pl of ringer + heparin (200IU ml"1) solution.
Weigh the syringe containing the cell suspension before and afterwards to get exact

volume delivered.

313



Basal

Using the coeliac cannula withdraw 200pl of blood and replace with equivalent volume
of ringer + heparin solution after 0.5, 1, 2, and 3 hours. Gently shake the sample to mix
before allequoting three replicates of 50pl into 0.6ml pony vials, then measure activity
in the gamma counter. Theoretical blood volume at time zero can be measured by

extrapolating a linear regression from all four time points. Take water samples at the
start and end of the basal run.

Acute transfer

Start the flow of 100% SW into the tanks. Take a water sample and a blood sample after

0,2,4,6,8, and 10 hours. Replace the lost volume as described above. Measure three 50pl

replicates of the blood samples as before in the gamma counter. Plot the actual counts
for the time periods against those expected assuming constant decay from the basal
values. Any variation between the two must be due to changes in the dilution factor of
the radiolabel.

Chemicals and solutions

51Chromium

Sodium chromate (Amersham CJS1 -1mCi)

350 - 600 mCi/mg Cr; available in 37, 74 and 185MBq amounts (37MBq ml"1).

Ringer solution
NaCl 240 mM (Sigma S-9625)
KC1 7 mM (Sigma P-9333)

MgCl2.6H20 4.9 mM (Sigma M-2670)

Na2HP04.2H20 0.5 mM (££>//301574J)

Na2S04 0.5 mM (Sigma S-6264)
Urea 360 mM (Aldrich 20,888-4)
TMAO 60 mM (Sigma T-0514)

CaCl2 10 mM (Sigma C-4901)

NaHC03 2.3 mM (Sigma S-6014)
Glucose lg/100ml (Sigma G-7528)

314



Add CaCl2 penultimately and NaHC03 last. Add the glucose on the day of

experimentation.

Heparin

Monoparin (CP Pharmaceuticals Ltd, Wrexham)

Ampoules contain 1ml of heparin solution, 5000IU ml"1. For experiments the
concentration in the ringer is 200IU ml"1. Therefore add 400p.l to 9.6ml of ringer
solution.

Anaesthetic

Ethyl 3-aminobenzoate methanesulfonate salt (Sigma A-5040)

NaHCCh (Sigma S-6014)

For induction use 0.6g of each in 51 of SW; use 0.25g of each in the same volume for
maintenance.

Conversion factors:

1.67MBq= 1 x 108 CPM

lmCi = 37MBq

Monthly limit for the lab of 51Cr is 200MBq
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Rectal gland fixation for histology

Stage one

1) Take a thin, complete cross section of the rectal gland and immediately place in
Bouins. This is left overnight.

2) This is then transferred to 75% ethanol.

Samples can be stored like this until return to St Andrews.

Stage two

3) Tissue samples are dehydrated using two changes of 96% and two of absolute

ethanol, followed by two of chloroform, each for 30 minutes. This is then stored

overnight.

4) Tissues are then impregnated with three changes of paraffin over a period of 4 hours
and embedded in moulds in Gurrs Paramat (paraffin wax mixed with synthetic

polymers). Blocks were cooled in the fridge before trimming away the excess wax.

5) Sections are cut at 6pm on a microtome (rotary microtome, Leica UK, Milton

Keynes, UK) and mounted on acid cleaned slides by floating out of a water bath (46°C)

ofpreviously boiled distilled water.

6) Dry the slides in an incubator at 45°C for at least 24 hours after which they are de-
waxed in two 3 minute changes of xylene. Rinse with absolute ethanol and rehydrate to

distilled water through a descending series of alcohol washes (96%, 75%, and 35%

ethanol).

7) Stain using Masson's trichrome method (Masson, 1929): filtered celestine blue for 10

minutes, rinsed in distilled water, then stained a further 10 minutes in Mayer's
haemalum.
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8) After a 5 minute wash under running water slides are stained in a yellow mordant for
3 minutes. This is washed off under running tap water for between 1-5 minutes: the time
off washing is controlled by checking the slide under the microscope for clear nuclear

staining.

9) Red blood cells and cytoplasm are stained by a 5 minute immersion in acid fuchsin
and ponceau 2R. After a brief wash under tap water place the slides in 1%

Phosphomolybdic acid to remove the red dye from the connective tissue.

10) Connective tissue is stained with 1% Aniline blue for 10 minutes and then washed
in 1% acetic acid for 1-2 minutes.

11) Briefly rinse the slides with 96% ethanol, and then dehydrate with absolute ethanol.
The slides are then cleared in xylene and cover slipped.

Chemicals and Reagents

Bouins solution

Piric acid

Formaldehyde (Sigma F-8775)

Glacial acetic acid (Sigma A-0808)

75% Picric acid v/v, 20% formaldehyde v/v, 5% glacial acetic acid v/v

Celestine blue

Celestine blue dye (Sigma C-7143)
5% Iron alum (Sigma F-3629)

Glycerine (Sigma S362158)

0.5g Celestine blue dye in 100ml 5% Iron alum, warmed to dissolve, filtered when
cooled. Add 14ml glycerine.
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Mayer's Haemalum

Haematoxylin (BDH 26\ 103G)
Absolute ethanol

Distilled water

Aluminium potassium sulphate (AI3KSO4) (BDH 100093E)

Sodium iodate (Nal) (Sigma S-8379)

Chloral hydrate (Sigma C-8383)
Citric acid (Sigma C-0759)

lg Haematoxylin dissolved in 10ml absolute ethanol, added to 1 litre of distilled water

containing 50g aluminium potassium sulphate and 200g sodium iodate. Allow to stand

overnight and add 50g chloral hydrate and lg citric acid. Boil for 5 minutes, cool, and
filter.

Yellow mordant

Lissamine Fast Yellow dye (Sigma L-5382)

Orange G dye (Sigma 86008)
Picric acid

Distilled water

Absolute ethanol

75% ethanol

400mg of Lissamine fast yellow dye and 400mg Orange G dye added to 160ml
saturated Picric acid and 40ml distilled water, mixed and stirred at room temperature.

For a working solution add 30ml of this stock to 70ml 75% ethanol.

Ponceau acid fuchsin

Ponceau 2R (Sigma 199761)
Acid fuchsin (Sigma F-8129)
Distilled water

Glacial acetic acid (Sigma A-0808)

2g Ponceau 2R and lg Acid fuchsin added to 200ml distilled water. Add 3ml of glacial
acid and mix, store at room temperature.
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Aniline blue

Aniline blue dye (Aldrich 415049)
Acetic acid (Sigma A-0808)

1% Aniline blue dye in 1% acetic acid.
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Na+K+ATPase Assay

Day One

1) Make up homogenisation buffer and keep on ice.

2) Kill fish by blow to head and subsequent severing of the spinal column.

3) Remove 3rd gill arch on RHS of animal.

4) Place gill on foil over an ice-cold petri dish and scrape the cells off of the afferent
surface using a scalpel blade. Weigh the scrapings.

5) Homogenise the cells in 1ml homogenisation buffer with a glass homogeniser using
30 double strokes. Use another 1ml to rinse the plunger.

6) Filter the homogenate through four layers of gauze loaded into a sterile 5ml syringe.

Depress the plunger to expel as much homogenate as possible into a clean ice-cold

microcentrifuge tube.

7) Repeat process for efferent gill surface, rectal gland, Intestine, and Kidney. Freeze

overnight in the -70°C freezer.

Day Two - Maximum of 4 fish per run (space in centrifuge)

1) When defrosted, centrifuge the filtered homogenate at 4°C for 30 min at 16,000rpm.
Make up protein standards.

2) After centrifugation, keep tubes on ice, draw off the supernatant and discard. Add
lml homogenisation buffer to the pellet and resuspend using the action of the pipette,
followed by 30 double strokes of the micropestle.
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Bradford protein assay - Rational Function curve

3) Set up 9 LP4 tubes labelled 2-10

4) Remove an aliquot of 2mg/ml BSA from the freezer. This is the first standard.

5) Add 400ul Milli Q to tubes 2-10

6) Take 600ul of stock, add to tube 2 and vortex mix. Next take 600ul of standard 2 and
add to tube 3 etc. This gives the following standards.

Tube No. 12 34 567 8 9 10

BSA (mg/ml) 2 1.2 0.72 0.432 0.259 0.155 0.093 0.056 0.034 0.02

7) Add 50ul standard or diluted homogenate* to 1.6ml cuvettes in duplicate.

8) Prepare a further 2 cuvettes containing 50ul Milli Q to use as blanks.

9) Add 1ml Bradford reagent and shake the cuvettes for 15 min (Luckham Shaker).

10) Read colour change at 595nm on spectrophotometer in the Fish Lab. (15342)

The homogenate must be diluted in order that all samples contain between 0.2 and 0.4

mg/ml protein. A dilution of approximately 1 in 5 appears to be ideal for gills and rectal

gland, use 1 in 10 for kidney and intestine; but this should be checked before each

assay. 2ml diluted homogenate is required for the assay and this should be frozen at -

20°C overnight.
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Day Three - Maximum 4 fish per run of assay (space in water bath & centrifuge)

1) Set up duplicate assay tubes (LP4) on ice for three separate groups: zero time, [+

ouabain] and [- ouabain].

2) Add 50ul Milli Q to the zero time and [-ouabain] tubes, and 50ul ouabain to the

[+ouabain] tubes.

3) Add 500ul ice-cold 10% TCA to the zero time tubes.

4) Add 50ul assay buffer to all tubes followed by 300ul diluted membrane homogenate.

5) Add 50ul 200mM KCL and 50ul 30mM ATP to all tubes to start the enzyme

reaction.

6) Incubate tubes in a water bath at 24°C for 1 hour.

7) Make up phosphate standards using lOmM K2P04 as the stock. Label 3 sets of LP4
tubes 1-15. Add 400ul stock to 1600ul 5% TCA to make the first standard (2mM). Then
make a 6:4 serial dilution transferring 1200ul to the subsequent tube, with each tube

containing 800ul 5% TCA. Pipette 200ul of each standard into the 2 remaining sets of
LP4's to make a duplicate standard curve. Prepare 2 blank tubes by using 200ul 5%
TCA.

No. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

[P] uM 2000 1333 889 593 395 263 176 117 78 52 35 23 15 10 7

8) Place the tubes back on ice, add 500ul ice cold 10% TCA to the +ouabain and -

ouabain tubes to stop the reaction.

9) Vortex mix all tubes and place on ice for 25 minutes.

10) Centrifuge the tubes at 2400rpm for 5 min at 4°C, to spin down the precipitate.
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11) Dispense 200ul samples from the supernatant of each tube into LP4 tubes alongside
the phosphate standards.

12) Add 750ul Milli Q to all tubes including the phosphate standards followed by 200ul

molybdate reagent. Finally add 50ul DILUTED stannous chloride and vortex mix.
Transfer the contents of each tube into 1.6ml cuvettes and shake for 25 min before

reading at 690nm.

Quadratic Fit curve

13) The protein standard curve should be repeated alongside the phosphate curve to

check the protein content of each sample.

Chemicals and Reagents

Homogenisation Buffer

N-[2- hydroxythyl]piperazine-N-[2-etyhlanesulfonic acid] (Sigma H-3375)

Ethylenediamine-Tetraacetic acid (Sigma - EDS)
Dithiothreitol {Sigma D-5545)

Phenylmethylsulphonyl Fluoride {Sigma P-7626)
Ethanol

First a 50mM Hepes and ImM EDTA solution was made by dissolving 4.766g Hepes
and 0.146g EDTA in 400ml Milli Q. This was brought up to pH 7.4 with the drop wise
addition of 5M NaOH. The volume was then made up to 500ml with Milli Q and then
stored in the fridge.

On the day of homogenisation 0.015g dithiothreitol was dissolved in 10ml Milli Q to

make a lOmM DTT solution and 0.024g PMSF was also dissolved in 4ml absolute
ethanol resulting in a 34mM solution. Prior to homogenisation 0.5ml DTT and 1.5ml
PMSF solutions were added to 48ml of the 50mM HEPES/EDTA stock to make the

homogenisation buffer. The components and the final buffer should be kept on ice

throughout.
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BSA Stock Solution

Bovine Serum Albumin (Sigma - A-2153)

0.08g BSA dissolved in 40ml Milli Q and then split into 1ml aliquots, stored at -20°C
before being defrosted as required.

Bradford Reagent

Coomassie Brilliant Blue (Brilliant Blue G) (Sigma B-131)
Ethanol

Orthophosphoric acid {Sigma P-6560)

O.lg Coomassie Brilliant Blue was dissolved in 50ml 95% ethanol, before the addition
of 100ml 85% orthophosphoric acid, and the solution made up to 1L with Milli Q. The
solution was then filtered using Whatman No. 1 filter circles and stored protected from

light.

Phosphate Stock
Potassium Phosphate (KH2PO4) {Sigma P-5379)

0.027g KH2PO4 dissolved in 20ml Milli Q.

TCA

Trichloroacetic acid {Sigma T-4885)

lOg in 100ml Milli Q= 10%

5g in 100ml Milli Q = 5%

Ouabain

Ouabain {Sigma 0-3125)

0.1169g ouabain dissolved in 100ml Milli Q (2mM). Caution coshh 5 - face-mask and

gloves to be worn at all times.
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Na+K+ATPase Assay Buffer
Histidine (Sigma H-8000)
NaCl (Sigma S-9625)

NaN3 (Sigma S-8032)

MgCl2 (Sigma M-2670)

1.162g Histidine was first dissolved in 20ml Milli Q. This requires stirring with heat.

1.75g NaCl and 0.203g MgCf were then added, the pH checked (pH 7.2) and then
made up to 25ml with Milli Q. Once cooled to room temperature 0.016g NaN3 was

added was added. It is important to allow to cool to avoid the production of noxious

gas. The assay buffer was stored for 1-2 weeks protected from light at room

temperature.

Potassium Chloride

Potassium Chloride (Sigma P-9333)

1.491 g dissolved in 100ml Milli Q.

ATP

Adenosine Triphosphate (Sigma A-5394)

0.165g ATP dissolved in 10ml Milli Q. pH 6.8-7.0 with tris base.

Tris Base

Trizma (Sigma A-5394)

1.21 lg Trizma dissolved in 100ml Milli Q

Molybdate Reagent
Ammonium Molybdate (Sigma A-7302)

Sulphuric acid (Sigma S-1526)

2g Ammonium Molybdate was dissolved in 100ml Milli Q. In a fume hood, on ice,
22.2ml conc. sulphuric acid was carefully added drop-wise, and then made up to 200ml.
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Stannous Chloride

Stannous Chloride (Sigma S-2752)

Hydrochloric Acid (Sigma H-7020)

Stock 1M SnCL2 solution was made by dissolving 2g stannous chloride in 10ml conc.

hydrochloric acid. This was stored at -20°C. On the day of the assay add 50ul of the
main stock is added to 2.5ml Milli Q - ADD ACID TO WATER!

Analysis
• Subtract [Pi] values for +Ouabain from -Ouabain giving pM Pi produced by

200pl of supernatant.
• Multiply by 4.5 (have only sampled 200pl of total 900pl) to give value for total

volume of supernatant, i.e. for 300pi of homogenate.
• Multiply by 3.333 to convert value for 300pi of homogenate to value per ml.
• Divide by concentration of protein (mg ml"1) in diluted homogenate as derived

from Bradford's assay.

• This gives Na'K'ATPase activity in pmol Pi mg"1 protein hour" (divide by 1000
to give mmol Pi mg"1 h"1).
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Rectal gland respirometry

1) Ensure electrodes are turned on at least 1 hour before calibration, turn on water bath
at 11°C.

2) Change PTFE tape on electrode holders to ensure good seal with chambers.

3) Make up ringer solution, ringer with ouabain, and also put 200ml Milli Q in a

conical flask. Bubble all with air for 10 minutes.

4) Set experimental parameters on software: oxygen solubility factor at 11°C is 2.1900

pmol l"1 torr"1; measure O2 in torr; calculate rate in pmol O2 h"1. Check air pressure
(1013 mB = 760.0 torr).

5) Set up electrodes (remember to check electrolyte) and calibrate (High point for
saturated O2 water (Torr) = [atmospheric pressure (Torr) - 9.8] x 0.2096) (NB: 1013
Pascals = 760.0 Torr). When calibrating, overfill the perspex chambers and turn in
the electrodes 1800°, this will leave no air bubbles in the respirometry chamber and
result in a final volume of 660pl.

6) Sacrifice animal, weigh it, take blood and obtain plasma; remove, blot, and weigh
rectal gland.

7) Cut transverse sections of rectal gland using scalpel (approximately 1 mm),

discarding extreme anterior and posterior sections. Place slices in ringer and store in
water bath.

8) Fill the perspex chambers with ringer as for calibration and screw in electrodes.
Measure oxygen consumption in pmol O2 h"1 for 15 minutes. Prepare peptide
concentrations whilst this is going on.

9) Rinse out the chambers with distilled water, then refill with ringer and place tissue
slice in ringer. Repeat recordings for another 15 minutes.

10) Remove slices and store in ringer whilst rinsing out chambers. Fill chambers with
next solution and replace tissue slices in correct chambers. Repeat until all solutions
have been tested.

11) The following solutions should be used for each of the 4 chambers:
#1 - Just ringer/ringer + tissue/ringer + tissue/ringer + ouabain
#2 - Just ringer/ringer + tissue/ringer + 10"8/ringer, 10"8 + ouabain
#3 - Just ringer/ringer + tissue/ringer + 10"10/ringer, 10"'° + ouabain
#4 - Just ringer/ringer + tissue/ringer + 10"l2/ringer, 10"12 + ouabain
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12) Tissue respiration remains constantfor at least 1 hour (Morgan et al, 1997).

13) Tissue respiration remains constantfor at least 9 hours (Shuttleworth et al, 1980).

14) At the end of all trials blot and weigh rectal gland slices.

Analysis

Oxygen consumption rates are estimated using linear regressions of the final 10 minutes
of each trace. Values are expressed in pmol O2 g wet mass"1 h"1 (pi O? g wet mass"1 h"1
for C. leucas).

Chemicals and solutions

Zero oxygen solution
Sodium sulphite (BDH 103574F)
Milli water

On day of experiment, add 15ml ofMilli Q to 0.03g of Sodium sulphite.

Dogfish ringer solution
See chart on lab wall.

lg of Glucose (Sigma G-7528) per 100ml of ringer

Ringer with ouabain
Ouabain (Sigma 0-3125)

Add 0.1169g of ouabain per 100ml of ringer
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Electrode electrolyte
Disodium hydrogen phosphate dihydrate (Na2HP04.2H20) (5D//301574J)
Potassium dihydrogen phosphate (KH2PO4) (BDH 102034B)

Potassium chloride (KC1) (Sigma P-9333)

Thymol (C,0H,4O) (Sigma T-0501)
Milli Q Water

Weigh out 5.3 lg Na2HP04.2H20, 2.6g KH2PO4, and 1.04g KC1. Make the volume up to

100ml with Milli Q. Add a small crystal of Thymol (to inhibit bacterial growth), shake

vigorously and leave for 12 hours to allow Thymol to enter solution. Filter into an

airtight container.
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Appendix 2: Publication arising from study




