

University of St Andrews

Full metadata for this thesis is available in

St Andrews Research Repository
at:

http://research-repository.st-andrews.ac.uk/

This thesis is protected by original copyright

http://research-repository.st-andrews.ac.uk/

s-alqol and the Commercial 3rd & 4th Generations

by

JOHN NORMAN SUTHERLAND, B.Sc.

Thesis submitted for the degree of

Master of Science

of the

University of St Andrews

October 1986

Abstract

s-alqol and the Commercial 3rd & 4th Generations

This study compares s-algol with the commercial third and fourth

generation languages and tools.

It divides into:

1) s-algol compared to COBOL and BASIC with reference to the relevant

manuals with no actual coding.

2) recoding an existing BASIC system in s-algol which was abandoned

due to lack of random access by key.

3) coding a new theatre bookings system in s-algol.

4) a fourth generation, interactive, code producer, written in

s-algol, producing pseudo-ps-algol code was produced to write file

maintenance programs. It was transcribed into COBOL and a batch data

entry producer added. They were tested in parallel with a fourth

generation language, VISTA.

5) A study of fourth generation tools was made and the opportunity

shown to exist for algol in the fourth generation.

s-algol and the Commercial 3rd & 4th Generations

DECLARATION

I declare that the following thesis

is a record of research work carried

out by me, that the thesis is my own

composition and that it has not been

previously presented in application

for a higher degree.

ii

s-algol and the Commercial 3rd & 4th Generations

CERTIFICATE

I certify that John N. Sutherland

has satisfied the conditions of the

Ordinance and Regulations and is thus

gualified to submit the accompanying

thesis in application for the degree of

Master of Science.

A.J. COLE

iii

s-algol and the Commercial 3rd & 4th Generations

DEDICATION

I dedicate this work to commercial computer programmers

everywhere. As King Solomon said, "someone who holds back truth

causes trouble, but one who openly criticizes works for Peace"

(Proverbs 11.10).

iv

s-algol and the Commercial 3rd & 4th Generations

ACKNOWLEDGEMENTS

My grateful thanks to Professor A.J. Cole for initiating this

study, persevering with me and seeing it through to the end. Without

his invaluable help and advice I never would have made it. To take a

commercial analyst/programmer and produce an academic/commercial

thesis on the direction and pros and cons of computer language design

is a sign of the breadth of Professor Cole's horizons and the depth of

his concern and understanding of Computing, its issues and problems.

With more men of learning such as Professor Cole in universities and

commerce there would be fewer misunderstandings between the users and

designers of languages.

My grateful thanks also to my wife, Hazel. For seeing me through

heights and depths. For listening to computer jargon. For allowing

me out at night to write these programs.

My special thanks to the non-academic help of John Reavy,

Mary-Claire McCabe, Karol Wojtyla and Joshua Judah.

My thanks also to John Kelly, Kath McPartland, Craig Dewar, Alex

Scott, Michael Quine, Jon Watson, Jim Bone and Eilleen Dow for the

help they provided in the Charles Letts (Scotland) Ltd. warehousing

and Byre Theatre booking systems.

v

s-algol and the Commercial 3rd & 4th Generations

References - please note that for the purpose of this thesis

references are implied using either

[m/n] or [m] or [m/n-p]

where

m = document number in the references section

n = start (or only) page number (inclusive)

p = end page number (inclusive) (except those publications where the pages

are numbered a-b, where 'a' refers to the chapter and 'b' to the page

within that chapter)

this covers documents with an author, editor or neither.

vi

s-algol and the Commercial 3rd & 4th Generations

CONTENTS

Introduction

Chapter 1 : s-algol, COBOL and BASIC

1. selection of languages

2. s-algol in relation to COBOL ...

3. s-algol in relation to BASIC ...

4. recommendations

Chapter 2 : Charles Letts Warehousing System

1. system selection

2. problems

3. conclusions

3

6

7

9

13

15

19

Chapter 3 : Byre Theatre Booking System

1. system selection

2. seme external procedures

3. program skeleton

4. seme programs, screens and outputs

5. conclusions

21

22

37

40

65

Chapter 4 : The Fourth Generation

1. study of existing market 73

2. ps-algol file maintenance generator 103

3. COBOL file maintenance generator 128

4. COBOL transaction processing generator ... 196

5. COBOL subroutines 268

vii

s-algol and the Commercial 3rd & 4th Generations

Conclusions 276

Appendices

A IFS mailshot

B Charles Letts final correspondence

C 4gl mailshot

Bibliography

References

viii

s-algol and the Commercial 3rd & 4th Generations

Introduction

s-algol and its successor ps-algol are designed as genuine

solutions to programming problems.

How do they compare with the standard commercial languages?

How do they apply to commerce?

How do they compare with the new fourth generation languages?

Have these algols any future in commercial data processing?

This thesis attempts to answer these questions in the following

chapters by investigating what commercial languages are and whether

the algols, for long the Cinderellas of programming languages, can

seriously be considered commercial contenders.

1

s-algol and the Commercial 3rd & 4th Generations

Chapter 1

s-algol, COBOL and BASIC

2

s-algol and the Commercial 3rd & 4th Generations

1. Selection of Languages

This thesis considers s-algol as implemented on the DEC VAX under

VMS.

Before any program design or coding could begin it was first

necessary to find out what, if anything, the present s-algol lacks.

It would be pointless to be in the process of coding a program only to

find that the next command required was not present in the language.

Also it would be incorrect and dishonest to give a language a stamp of

approval knowing (or not) that it lacked the completeness required for

commercial programming.

For these reasons the first task was that of evaluating what

options are present in existing commercial languages that are not

present in s-algol and deciding how useful and/or necessary these

omissions are.

Many languages now used in commerce have arrived from various

sources, by different routes and in various conditions. These

languages should exhibit the facets which are necessary to enable the

programmer to write for the business community.

There is no implication that these languages are perfect. But

they should show the extensions that are absolutely necessary to add

to s-algol to give it any extra facilities required without destroying

its guiding tenet of "power through simplicity ... through

generality" [22], as it is the lack of such a raison d'etre that has

helped produce dialects of languages where the structure is obscured

by the plethora of extensions.

3

s-algol and the Commercial 3rd & 4th Generations

The leading commercial language is COBOL [12/257-260]. This

language is characterized by "file handling, manipulation of textual

items, decimal arithmetic and very little numerical computational

ability" [12/258]. COBOL will therefore be taken as a benchmark

against which to measure s-algol.

However, despite the work of CODASYL (Conference on Data Systems

Languages) to produce a standard COBOL their "standard" (my quotes)

includes so many options for the compiler writer that there are

several hundred similar versions. Each version relevant to the

machine or machine range on which it is implemented. "Despite the

attempts at standardization, variations from one computer's COBOL to

another's still exist" [9/15] and "the manufacturer may select these

features of the COBOL language which he considers most useful ... "

[28/47]. This is especially true of some compilers which use only a

small subset of the features of the language e.g. ICL 1900 COBOL.

To provide as complete a comparison as possible it is necessary

to select a version of COBOL that uses as much of the CODASYL standard

as can be found. I will at this point express a personal preference

for IBM COBOL [14] as implemented on the System 360 range of machines

as I have experience of coding commercial programs in this dialect.

This may restrict the field so Honeywell COBOL [3] will also be

selected for a comparison. Both versions use a great deal of the

CODASYL standard.

This will not provide all the facilities necessary for a full

comparison with s-algol as COBOL does not possess (by ANS (American

National Standard)) any facilities for interactive processing,

although there are aberrant strains such as Data General Interactive

COBOL [16] which have imposed their own incomplete solution.

4

s-algol and the Commercial 3rd & 4th Generations

BASIC and APL are the leading languages in 'conversational' use

[12/258-259] and the main language in use on microcomputers is BASIC.

APL requires the user to have an extended and unusual character set on

the terminal, printer and screen and has many unusual characteristics

encouraging an "involuted style of programming" which is "complex ...

esoteric ... terse ..." [12/258-259]. Not exactly s-algol's

'simplicity'. On balance I took BASIC as the better comparator.

BASIC dialects abound. Some manufacturers have more than one

version of this "spaghetti style" programming language. I will here

opt for Data General Business BASIC [6,7] (DGBB) as another language

that will be used for the comparison. Once again this is a dialect

that I have personal experience of using in commercial programming.

It has powerful screen control facilities and is implemented on both

micro and mini computers. As before, another manufacturer's dialect

will expand the comparison. This is even more necessary with BASIC

than with COBOL as it has no standard. A market leader in the mini

computer market is DEC (Digital Equipment Corporation) and VAX-11

BASIC [34] (VIIB) should provide a suitable fourth language for

comparison purposes.

The following sections only extract the facilities available in

COBOL and BASIC that are not present in s-algol and necessary for

commercial programming.

5

s-algol and the Commercial 3rd & 4th Generations

2. s-algol in Relation to COBOL

error traps - through the USE verb fatal errors can be trapped

within the program to allow an elegant exit. This is an option that

is rarely used in COBOL due to its general batch usage. For on-line

work it is almost essential as it allows an error to be caught without

dropping the user into the command line interpreter (or equivalent).

It also allows a neat message e.g. "File full - call programmer

before continuing" as opposed to "ERR @f7, core dump follows...".

This is an essential option for any serious on-line work.

data file accessing - ACCESS, ACTUAL KEY, RELATIVE KEY, NOMINAL

KEY, RECORD KEY, OPEN, START, READ, WRITE, SEEK, REWRITE, CLOSE and

DELETE when used in an indexed sequential processing environment have

no equivalent in s-algol. Indexed sequential files are the core of

commercial processing. Without an IFS (Indexed Filing System) - or

other random access by key - commercial data processing would be

almost impossible in any language, certainly more prone to errors from

home brewed filing routines and slower to code. The ability to type

in a code and get a specific record of details from a file relevant to

the code or write details regardless of the uniqueness, size, content

or index number (there may be more than one per file) with the same

basic coding rules is, in a nutshell, exactly what commercial data

processing is about.

6

s-algol and the Commercial 3rd & 4th Generations

3. s-algol in Relation to BASIC

error traps - BASIC provides an option which is probably the best

part of the language: the error trap. ON ERR, RESUME and ON ERROR GO

BACK allow an error to be trapped within the program; AERM$ and ERM$

provide the string arrays that hold the system error messages; SYS(20)

the line number of the source code of the last error; ERN$ the

subroutine in which the last error occurred; SYS(7) the number of the

last error. A system has a professional polish if errors are

elegantly trapped, also providing security from the crashed program

dumping the operator in the CLI where various dangerous commands may

be typed.

Indexed sequential files - CLOSE, EOF, OPEN FILE, READ FILE,

DELETE (record) and WRITE FILE are undefined in s-algol for IS

(indexed sequential) files as are KFIND, KADD, KNEXT and KDEL. This

is essential as mentioned for COBOL above.

character input - INPUT, INPUT FILE, INPUT USING and INPUT FILE

USING provide the basic character input commands whether off a file or

the vdu. (In practice used only for screen input.) (i) the ability to

limit the maximum size of an input field is necessary to protect the

screen layout and background. Neat .i/o involves strict layout of

fields so as not to overflow onto the background. S-algol should also

provide this option (ii) the ability to position the cursor before an

input should also be available (iii) there should be routines to

handle all data types input which handle errors neatly within the

program e.g. entering 'A' to a type real input statement should

provide a neat error at the base of the screen, acknowledge by

receiving a carriage return, clear the error message, re-input the

value and also check whether the input is in the required range.

7

s-algol and the Commercial 3rd & 4th Generations

character output - PRINT, PRINT USING, PRINT FILE and PRINT FILE

USING perform the character output functions for file and vdu

processing in DGBB. Although there appear to be many screen control

functions available they translate into a code or sequence of codes

which are relevant to the VDU used. (i) VDU type handling should be

transparent to the program (ii) s-algol should have access to as many

vdu facilities as are relevant to commercial processing through

standard calls (iii) the other options are akin to the formatting

options provided by the COBOL PICTURE clause, allowing neat output of

all data types and formats.

dates - STMA 11 and 12 provide a method of changing a date from

day-month-year format to a julian integer value (total days from a

base date). Apart from providing a simple format for comparing dates

(standard DDMMYY format does not allow comparison of 'greater than' or

'less than' between dates) it also provides an excellent date validity

test. Passing a date through the DDMMYY to integer conversion and

back through the integer to DDMMYY conversion will validate a date

e.g. 290283 will return as 310383. This is a must in s-algol for all

date handling.

randomising - The pseudo randomiser RND and RANDOMISE are useful

for spot checking of records in e.g. an audit. This option is

popular with accountants and auditors and also those involved with

stock control to check the computer record does reflect the real

world. This would be a bit of icing on the cake if available in the

DEC VAX VMS version of the language (it is present under CP/M).

8

s-algol and the Ccmmercial 3rd & 4th Generations

4. Reccmmeridations

In examining the COBOL" s and BASIC'S there is a warning to anyone

wishing to add their favourite routines to a language. Firstly, the

language soon becomes engulfed with a plethora of additions that may

even duplicate part of another extension. These extensions also,

paradoxically, restrict the power of the language as each extension

often has restrictions on use which are then added to the existing

restrictions. In use Business BASIC can only be used effectively, in

my experience, by a programmer with at least six months experience of

programming in the language. If not, there are many pitfalls in

randcm disk accessing, system calls and others that will trip up the

unsuspecting user. The language is ccmplex allowing run time deletion

of source code, alteration of specific memory locations, shutting down

of the peripherals multiplexor and other horrors, seme of which are

actually necessary due to the design of the run time environment.

In addition there is the temptation to add a facility in a format

that does not fit into the general language design. This makes a

program ugly and difficult to use. An example of this is COBOL's

usage of booleans by using level 88. Thus a part of the PROCEDURE

DIVISION is relegated to the DATA DIVISION. There are many examples

of this use of run time code being scattered around the various parts

of a COBOL program. Another example of this is the COBOL verb, ALTER.

It reallocates the destination of GO TO calls dynamically in the

program run making the source code difficult to dry run and debug. In

these I speak frcm experience of maintaining such programs in my full

time post with the University of St. Andrews Administrative and

Library Ccmputer Unit (ALCU) and previous posts. Those programs with

the ALTER verb are approached with trepidation.

9

s-algol and the Commercial 3rd & 4th Generations

These are the major caveats to be considered before making any

recommendations: is the addition really necessary? how do I add it?

s-algol was not designed as a commercial programming language.

Any commercial programming additions are not so much parts that the

designers left out but ones that were not considered necessary in the

production of a general purpose language that could be tuned to fit

most computing tasks.

Thus the designer has the advantage of beginning with a compact

and tidy language to which he can add his requirements. With

carefully thought out additions the language should remain compact and

tidy.

The gaps are nearly all i/o functions. This is not surprising

when other algol variants e.g. Algol-W [11] are considered which are

also deficient in the same i/o routines. Most can be coded as

external procedures (see chapter 3) or as additions to the compiler

options.

Specifically, the requirements for addition are:

(i) indexed sequential file processing or other random access by key.

(ii) function to input and output fields with type and range (for

numeric fields) checking.

(iii) availability for character i/o (as relevant) of input field size

control, vdu functions (cursor positioning, home, bell, new line, form

feed, clear line/screen, brightness control, etc.).

(iv) error trapping.

(v) julian date conversion.

10

s-algol and the Commercial 3rd & 4th Generations

(vi) pseudo randomiser (but not essential).

In pointing out these deficiencies no evaluation has been

performed on s-algol at this stage. Later (see chapter 3 section 5)

there is an appraisal of s-algol after a complete system has been

coded in the language.

11

s-algol and the Commercial 3rd & 4th Generations

Chapter 2

Charles Letts Warehousing System

12

s-algol and the Commercial 3rd & 4th Generations

1. System Selection

With s-algol viewed on paper in relation to the leading

commercial languages and dialects the next step selected was to test

the language in coding a practical commercial system. This would

provide (i) a view from the programmer's angle of the language's

facilities (ii) a view from the analyst's angle of the language's

facilities.

Rather than tackle a new system in s-algol it was suggested that

a system already implemented in another language should be used;

perhaps one coded in one of the benchmark dialects. This would

provide a more objective test of the language.

Any commercial computing personnel approached with a view to

purchasing the language would want to know how it compares practically

with the once ubiquitous COBOL and BASIC. To compare two identical

systems would be a positive advantage.

BASIC, with its powerful screen control facilities is a broader

language than COBOL in relation to the facilities available to the

commercial programmer. My first approach was therefore for a system

coded in BASIC.

The last system I implemented in Scotland for my previous

employers, Fraser Williams (Scotland), a software house/consultancy,

was in DGBB. This warehouse stock control system [40] would be

suitable as (i) it was written recently (1981) (ii) it is coded in one

of the previously used benchmark dialects (iii) my role was

programming team leader, on-site implementation, technical author and

user training (iv) it is a modern style menu driven system with no

recourse to the CLI except to power up and down (v) it is currently

13

s-algol and the Commercial 3rd & 4th Generations

being used (vi) and, it works.

Since being employed by the University of St Andrews

Administrative and Library Computer Unit (ALCU) the warehouse site

systems controller, Mr Craig Dewar (Data Processing Manager, Charles

Letts (Scotland) Ltd.) has kept in contact as regards the system for

any operating system upgrades or queries. The staff of Fraser

Williams have also kept in contact.

Accordingly I travelled to Glasgow to get the agreement of Fraser

Williams (who hold exclusive distribution rights) and telephoned

Charles Letts (who hold copyright). Mr D. Christie of the

University's Quaestor and Factor's Department was also involved.

Letters followed allowing the conversion along with a complete copy of

the system documentation [18,19,20]

14

s-algol and the Commercial 3rd & 4th Generations

2. Problems

A problem was met very early on after the agreement on the

recoding was reached. The principal file of the system is the

stock/location file. This has two purposes (i) it identifies a pallet

location in the warehouse (ii) it identifies the stock on a pallet

within the location. However, for each location there may be more

than one stock item. The pallet may hold, for example, glue and

leather, if the containers are small. This is installed under DGBB

using the language's duplicate key facility in its IFS.

As a second problem each item on a pallet has up to five other

keys: stock, product, litho order, works order and/or purchase

number.

15

s-algol and the Commercial 3rd & 4th Generations

figure 1.1 - Charles Letts Dalkeith warehouse

part of plan view:

a be de f g h i etc.

1
2
3
4
,5
6
7

etc.

rcw

access

"aisles

bay part of row ' a' :

4 5 6 7

xxxxx

pallet
locations

-height

-pallet

A

Thus a pallet could be located in row a, bay 4, height B.

As I made minor changes to the DGBB IFS routines during the

initial DGBB coding to make them less prone to programmer error, I am

aware of this problem and how it was tackled in DGBB. s-algol does

not have the facilities available to the DGBB programmer. Thus

facilities vvould be reguired to (i) access a location via its unigue

code (ii) access other records via the same location code (iii) access

all records via other non-unigue keys. As the facility exists in

DGBB, then s-algol - a ccmpact yet powerful language - could no doubt

have such facilities added.

16

s-algol and the Commercial 3rd & 4th Generations

Despite my reluctance to tackle anything outside IFS, as by such

I was straying far from my field of expertise, commercial data

processing, three different tacks altogether were tried in attempting

to get round this 6-indices problem within the scope of the direct

file accessing facilities available in s-algol.

textbooks - these proved to be of little use, only describing

what an IFS is and why use it [13/204, 13/271-280, 32/21-22, 32/30,

32/60-69].

software vendors - 105 compiler writing software vendors, as

culled from the Computer User's Year Book [12] were mail shot to

ascertain their help (see appendix A).

Only eight companies replied, perhaps due to the lucrative nature

of the CP/M market at the time. Five could not provide help directly.

One sent an application form for supply of electricity from the Irish

Electricity Board!

OSW sent details of an ISAM package written in PASCAL and

implemented under CP/M; but again no specific advice.

The last reply was from Beta Systems with, perhaps, a salutary

comment "Binary tree (we did not think this worth implementing in our

commercial programs after testing)".

manuals - finally, there is one place where commercial suppliers

write down details of their products - in their manuals.

The DGBB IFS is a mix of separate index and data files. Thus,

for the Charles Letts warehouse system there are physically s.ix index

files and one data file which together define the logical

stock/location file. Index handling is primitive. There is the

17

s-algol and the Commercial 3rd & 4th Generations

standard binary tree structure with two problems (i) deleted index

keys that leave an index block empty cannot have the block reused,

thus the index must be tidied periodically (ii) block overflow causes

a chain reaction along the blocks e.g. if a block has 4 keys present

and 4 maximum then the addition of another key to this block causes

the block to repack to two keys and the three remaining overflow onto

the next block, and so on until the overflow stops; this also requires

the resetting of upper levels of the tree to allow for the new block

contents.

RMS, the IFS in VIIB, is more complex than the DGBB IFS as (i)

the indices and data are incorporated into one physical file (ii) the

data file is in primary key order (iii) index blocks do not overflow

sequentially. The consequence of (ii) and (iii) above is that

overflow blocks are used extensively for data records and index

entries.

In addition there are other complexities in RMS. Duplicate keys

are not held physically as such in the index block and there is a

facility to pack data, physically decreasing the file size.

18

s-algol and the Commercial 3rd & 4th Generations

3. Conclusions

At this paint I was evaluating fourth generation computer

languages for the ALCU central computer facility replacement and it

was clear that COBOL was being dropped in favour of a better language.

Rather than spend a considerable time applying an IFS to s-algol, the

Charles Letts warehouse system implementation was discontinued on the

grounds of lack of the necessary file i/o facilities.

Such facilities could certainly be coded into s-algol. But any

IFS utilities added would be reguired to (i) work (ii) fit into the

general language design. As a commercial analyst/programmer I could

guarantee the latter but not the farmer in a reasonable amount of

time.

Also, the s-algol compiler writers had produced a new variant,

ps-algol, which does possess random access by key into a database.

There was nothing to be proved by either pointing out again that

s-algol lacked IFS when the compiler writers recognized this, or was

there any point in adding IFS to s-algol when events had passed this

necessity.

S-algol and ps-algol differ basically in the extensive and unique

disk data storage facilities available in ps-algol. With a system

selected that avoids the i/o problems that the warehouse system

encountered then the implementation of such a system would also be a

valid test for much of ps-algol.

19

s-algol and the Commercial 3rd & 4th Generations

Chapter 3

Byre Theatre Booking System

20

s-algol and the Commercial 3rd & 4th Generations

1. System Selection

The Byre Theatre, St. Andrews approached me through Mr. J.

Bone to find a suitable booking system pre-written and available on

the market. The full and proper course was followed with a market

analysis. This aroused considerable interest from other theatres and

bodies. The results were circulated around them: nine Scottish

Theatres, Scottish Arts Council, Arts Council of Great Britain, City

University Department of Arts Administration, City of Glasgow District

Council Halls Department, Scottish Opera and the Calouste Gulbenkan

Arts Foundation of Lisbon. With the conclusion that no system was

available it was decided to attempt an s-algol implementation.

The system was capable, with a bit of juggling of files, of being

coded in s-algol. A full system analysis was performed and produced

followed by program specifications, external routines to fill

identified commercial gaps in the language and finally the programs

themselves.

21

s-algol and the Commercial 3rd & 4th Generations

2. Some External Procedures

Overview

I have attempted to produce routines that are easily used by the

programmer, satisfy the user requirements and fit in with the general

language design as well as other additions e.g. fformat, read.a.line.

The 42 added routines fall into five categories. They were bound

into all programs as standard due to the considerable amount of common

usage of code to avoid unnecessary overhead and code duplication:

(i) data processing

(ii) program sequencing

(iii) screen output

(iv) screen input

(v) file accessing

These are not all the possible externals that could have been

coded into the system. There is a degree of duplicate code that

showed up during program coding of similar programs which could be

extracted and put in external routines. These were left in the

programs to avoid confusion with the standard external routines which

evidence the commercial additions to s-algol.

All programs were coded around a basic program skeleton which had

all the necessary structures for file accessing, all the external

procedure calls, and provided a standard format of program design for

tidiness. The programs were compiled and bound by a command procedure

to include all external procedures.

22

s-algol and the Commercial 3rd & 4th Generations

This chapter and the following one contain only examples of the

work done. There follows only a few external procedures, the program

skeleton and two complete programs with their associated

documentation. A complete list and tape (where relevant) of external

procedures, the program skeleton, programs, screens and outputs

relevant to this chapter are all held at the Department of

Computational Science at the University of St. Andrews, Scotland, as

are the complete parts of the work referred to in the next chapter.

A considerable period of time was spent researching and reporting

on the market for computerized box office systems and in later

discussions with the Byre Theatre staff in analysing the existing

manual system before specifying a proposed computer system.

With the system analysis completed the vdu routines were produced

to allow all the required facilities. Then the filing system was

designed. As can be seen below (see 'file access') this involved

background work to grasp the use of the direct file type ,assessing

how this file type is used in the RMS filing system and how it could

be applied to the Byre Theatre.

23

s-algol and the Commercial 3rd & 4th Generations

Data Processing

The two procedures selected show how s-algol tackles two

different problems: evaluating an integer and unpacking a string.

24

s-algol and the Commercial 3rd & 4th Generations

An integer is supplied to the following procedure that

corresponds to a number of days from a base date, first of January,

1982 (produced by the routine julian.out - please refer to unbound

appendix for this and other routines).

This routine outputs an integer that corresponds to the actual

date referred to in the format DDMMYY. The two routines, julian.in

and julian.out are used to (i) hold dates on disk in the number of

days from a base date format (ii) compare dates without being limited

by the non-arithmetic structure of standard UK DDMMYY usage (iii)

verify dates - for example, pass 29/02/85 through julian.out and then

julian.in and the reply will be 1/03/85; the inequality of input and

output implies an invalid date.

!sk3
procedure julian.in(int julian->int)
begin
external days.in.year(int->int)
external days.in.month(int->int)
let date:=84
while julian>=days.in.year(date) do
begin
julian:=julian-days.in.year(date)
date:=date+l

end
if julian=0 then date:=date+311199 else
begin
date:=date rem 100 + 100
while julian>=days.in.month(date) do
begin
julian:=julian-days.in.month(date)
date:=date+100

end
if julian=0 then date:=date-100+days.in.month(date-100)*10000
else date:=date+julian*10000

end
date

end

25

s-algol and the Commercial 3rd & 4th Generations

The following routine unpacks and verifies a string into a real

number. It is used to allow all real numbers to be input as strings

with data format errors being neatly handled within the program.

!sk5
procedure unpackr(string inp->real)
begin
let outp:=0.0
let zer:=48
let negative:=1.0
let point:=length(inp)
if length(inp)>0 do
begin
for i=l to length(inp) do if outp~=maxreal do
case(inp(i|1)) of
:if point=length(inp) then point:=i else outp:=maxreal
:if negative=1.0 then negative:=-l. else outp:=maxreal

default:if "digit(inp(i|1)) then outp:=maxreal else
outp:=outp*10+decode(inp(i11))-zer
if outp~=maxreal do
begin
for j=l to length(inp)-point do outp:=outp*0.1
outp:=outp*negative

end
end

outp
end

26

s-algol and the Commercial 3rd & 4th Generations

Screen Output

These procedures were specified for the Citoh Electronics

CIT-101e [33] which emulates a DEC VT101. The codes are applicable on

the DEC VT100 [39].

The vdu lines are numbered 1-24 and the columns 1-80. Line 1

carries the standard heading "Byre Theatre Line 2 is blank.

Line 3 carries the program and screen functions. Line 4 is left

blank. Lines 5 to 21 inclusive are used by the program. Line 22 is

left blank. Line 23 carries general input prompts. Line 24 carries

error messages. (This is with the exception of the floor plan for

booking as this requires 23 lines).

The following procedures show how s-algol handles a vdu

transparently.

27

s-algol and the Commercial 3rd & 4th Generations

The first procedure below sends the standard code sequence to the

vdu with the required option of the calling procedure. The second

procedure performs various functions, for example, move the cursor

relative to the present position, ring the vdu bell.

!skl4

procedure cursor.sub(string option)
begin
let esc:=27
write code (esc)++" ["-H-option

end

! skl5
procedure cursor(string option)
begin
external cursor.to(int,int)
external fail(string)
external cursor.sub(string)
case option of
"up":cursor.sub("A")
"down":cursor.sub("B")
"right":cursor.sub("C")
"left"rcursor.sub("D")
"reverse"rcursor.sub("7m")
"blink"rcursor.sub("5m")
"uline"rcursor.sub("4m")
"bold"rcursor.sub("lm")
"reset"rcursor.sub("0m")
"erase"rcursor.sub("2K")
"clear":{cursor.to(1,1);cursor.sub("0J")}
"bell":write code (7)
defaultrfail("invalid cursor option "++option)

end

28

s-algol and the Commercial 3rd & 4th Generations

Screen Input

structure of common calls:

inputs.sub

inputi.sub inputs inputr.sub inputt

inputb.23 input r

inputi inputd

inputi.23

The procedures all redisplay the data for neatness on screen and

verification of input, e.g. input of "1" and "12.30am" will be both

redisplayed by the procedure inputt with the same format " 1.00pm" and

"12.30am".

All input routines, except inputb.23, will return a valid reply

when no data is input (i.e. return only is hit). They will respond

with the corresponding null value of the empty string or zero (integer

or real equivalent) as relevant. This allows the operator to step

through input routines using only the return key for defaults without

having to constantly input values.

The selected procedure shows how a complex logical task appears

neat and compact in s-algol.

29

s-algol and the Commercial 3rd & 4th Generations

The following procedure accepted and verified a time from the

screen. It's complexity lies in that 12 noon is 12 p.m. and 12

midnight is 12 a.m., not vice versa as would be logically expected.

!sk30

procedure inputt(int row,column;real lower,upper->real)
begin
external unpacki(string->int)
external unpackr(string->real)
external cursor.to(int,int)
external printt(int,int,real)
external inperr(int,int,int,string)
external inputs.sub(int,int,int->string)
let finished:=false
let outp:=0.0
while "finished do

begin
finished:=true
let inp:=inputs.sub(row,column,7)
let fsize:=length(inp)
if fsize>0 do
if inp(fsize|l)="m" then if fsize=l then finished:=false
else

begin
outp:=unpackr(inp(l|fsize-2))
if outp=maxreal then finished:=false else
if outp<-0.001 or outp>12.001 then finished:=false else
case inp(fsize-l|2) of
"am":if outp>11.59 and outp<12.01 do outp:=0
"pm":if outp<12 do outp:=outp+12
default:finished:=false

end
else

begin
outp:=unpack r(inp)
if outp=maxreal then finished:=false else if outp<12 do
outp:=outp+12

end
if finished do if outp<-0.001 or outp>23.59 then
finished:=false else

begin
let x:=fformat(outp,3,2)
if unpacki(x(length(x)-1|2))>59 do finished :=false

end
if "finished then

inperr(row,column,7,
"that"'s not a valid time use e.g. 8.30am")

else
if fsize~=0 and (outp<lower or outp>upper+0.001) do
begin
finished:=false
let low.err:=(if lower<13 then lower else lower-12)
let low.am.pm:=(if lower<12 then "a" else "p")++"m"
let up.err:=(if upper<13 then upper else upper-12)
let up.am.pm:=(if upper<12 then "a" else "p")++"m"
inperr(row,column,7,"please enter between"++
fformat(low.err,3,2)++

30

s-algol and the Commercial 3rd & 4th Generations

low.am.pitf-+" and"++fformat(up.err,3,2)++up.airi.pm)
end

end
if outp<0.01 then
begin
cursor .to(row, colimn)
write "

end
else printt(row, colimn-1,outp)
outp

end

31

s-algol and the Commercial 3rd & 4th Generations

File Access

In the absence of IFS another method of random file accessing was

required to implement the Byre Theatre system. Relative files, which

are alien to the commercial programmer, are the only building block

available to s-algol.

On top of this was placed a simple file structure. The following

procedures were designed and coded to allow precoded and tested

routines to be used by programs to take the low-level i/o away from

the coding.

The Byre Theatre consists of 145 fixed seats. The basic file

could be designed around this fixed structure to allow a routine where

the key was the seat number available transparently via a seek. This

is where the Byre system differs from the majority of commercial

systems which require similar random read/write but neither the number

of the records nor their absolute file positions are known beforehand.

Only strings, integers and reals were used for i/o. Booleans

wrote "true" and "false" which perhaps wasted disk space where a

string "Y" or "N" (or "T" and "F" more logically with hindsight) would

suffice.

To simplify the coding required to perform the reading and

writing two decisions were made to limit complexity:

(i) All files were pre-set-up with empty fields

(ii) All writes had to preceded by a read.

32

s-algol and the Commercial 3rd & 4th Generations

These two combined to remove the necessity of creating new

records or deleting records. Instead the records were flagged as used

or unused. This also allowed the routines to verify each write

command was valid by checking that it was preceded by a corresponding

read.

The files designed were:

(i) System file - holds (a) system date (b) details of shows on the

system.

(ii) Show file - one per show; holds (a) common show heading details

(one per show file) (b) performance details (n per show) (c) seat

details (145 per performance) (d) waiting list (10 per performance).

(iii) movements file - holds (a) number of last record used (first

record) (b) first record number for a given date (set up with 20

dates, in practical terms would require many more) to allow fast

access for a specific date (c) sequential records of bookings made

(from record 22 onwards). This acts as a second index to the show

files by date and time as it is a sequential record of all bookings

made.

To open a file a procedure is called by:

let rec := set.file (rec.structure)

where rec is the pointer to the data ; rec.structure is the

corresponding structure.

To read or write a file a procedure is called by:

access.file (key , io , rec , rec.structure)

Where key is the record identifier, io is one of "i" (for input) or

"o" (for output), rec and rec.structure as above.

33

s-algol and the Commercial 3rd & 4th Generations

On top of the pseudo-IFS routines for open, read and write two

more routines were added to read numbers off a file. Strings,

Integers and reals are written in one operation. Strings are read in

one operation. However, integers and reals require a second string

dummy read to move the data pointer to the next available field. Two

short procedures were coded to do this, freadi and freadr.

The other routines (i) produced a file name from a show name

using the first (up to) nine valid characters (used for opening files)

(ii) produced a performance key from a date and time (used for

accessing show files)

The following routines show how structures and pointers are used

by procedures as parameters allowing a flexibility not available in

other commercial languages (see COBOL in chapter 4 section 5 below).

34

s-algol and the Commercial 3rd & 4th Generations

The following opened and accessed the systeam file

!sk37

procedure set.system(structure sy.str(int sy.d.date;string
sy.s.name; *int sy.s.date;int sy.block;file sy.file)->pntr)

begin
sy.str(0,"",vector 1::2 of 0,9999,open("system.dat","b",2))

end

! sk36

procedure access.system(string key,io;pntr sy.rec;structure
sy.str(int
sy.d.date;string sy.s.name;*int sy.s.date;int sy.block;
file sy.file))

i

!key is one of:
1"date" - today's date
!"" or "<alpha>" - show record by name
1numeric - shew record by number
i

begin
external unpacki(string->int)
external fail(string)
external freadi(file->int)
i.w:=l;r.w:=l;s.w:=0
let f:=sy.rec(sy.file)
let cr :=" ' n"

!access date record
if key="date" then
begin
seek(f,0,1)
case io of
"o" : if sy.rec(sy.block)~=0 then
key:="not found" else
output(f),sy.rec(sy.d.date),cr
"i":

begin
sy.rec(sy.d.date):=freadi(f)
sy. rec (sy .block): =0

end
default: key:="not found"

end
1access show record by name
else if length(key)=0 or ~digit(key(l,1)) then
case io of
"o" : if sy. rec(sy.block) <1 or sy. rec (sy .block) >50 then
key:="not found" else

begin
seek (f, sy. rec (sy .block), 1)
output(f),sy.rec(sy.s.name),cr
for i=l to 2 do output(f),sy.rec(sy.s.date)(i),cr

end
"i":
begin
seek(f,l,l)
let reply:=0
for i=l to 50 do if reply=0 do
begin
sy.rec(sy.s.name):=read.a.line(f)

35

s-algol and the Ccinmercial 3rd & 4th Generations

for j=l to 2 do sy.rec(sy.s.date)(j):=freadi(f)
if sy.rec(sy.s.name)=key then reply:=i else
if sy.rec(sy.s.name)="" then reply:=99
else seek(f,l,0)

end
if reply>0 and reply<99 then sy. rec(sy.block) :=reply
else key:="not found"

end

default:key:="not found"
Iread show record via record number
else

begin
let key.i:=unpacki(key)
sy. rec (sy .block):=key. i
seek(f,sy.rec(sy.block) ,1)
sy.rec(sy.s.name):=read.a.line(f)
for i=l to 2 do sy.rec(sy.s.date)(i):=freadi(f)

end
end

36

s-algol and the Commercial 3rd & 4th Generations

3. Program Skeleton

All programs are built around this skeleton ensuring all external

procedures are defined and called correctly and allowing the use of a

standard ccmmand procedure for compiling and linking all programs.

i

! program:
i -

i

!function:
i

!structures
i

i

1 system file
i

structure sy.str(int sy.d.date;string sy.s.name;*int sy.s.date;
int sy.block;file sy.file)

i

Ishow file
i

structure sh.str(pntr sh.header,sh.performance,sh.seat,
sh. seat .block, sh .waiting; int sh. sub, sh .block; string
sh.key;file sh.file)

structure sh.h.str(string sh.h.name,sh.h.management;*real
sh.h.prices;*int sh.h.date;string sh.h.dedreas;real
sh .h.dedtot, sh .h.estimated, sh .h. actual; *string sh .h. terms)

structure sh.p.str(int sh.p.date;real sh.p.time;string
sh.p.matinee;int sh.p.sold; *string sh.p.reports)

structure sh.s.str(int sh.s.seat,sh.s.date;string sh.s.staff;
int sh.s.price;string sh.s.cancel,sh.s.cancelst,sh.s.ccmment)

structure sh.sb.str(*int sh.sb.seat,sh.sb.date;*string
sh.sb.staff;*int sh.sb.price;*string sh.sb.cancel,
sh.sb.cancelst,sh.sb.ccmment)

structure sh.w.str(int sh.w.entry;string sh.w.name, sh.w.phone,
sh.w.reguired,sh.w.obtained,sh.w.ccmment;*string sh.w.address)

i

I all shows
i

structure as.str(*string as.name,as.filename;*int as.date)
i

1working storage
i

structure st.str()

procedures doing data processing and program sequencing

external days.in.year (int->int)
external days.in .month(int->int)
external julian.in(int->int)

37

s-algol and the Commercial 3rd & 4th Generations

external unpacki(string->int)
external unpackr(string-> real)
external julian•out(int->int)
external real.size(real->*int)
external day(int->string)
external chain (string)
external tformat(real-> string)
external dformat(int-> string)
i

!procedures to control screen output
i

i

external cursor.to(int,int)
external clear.area(int,int,int)
external message(string)
external fail(string)
external cursor(string)
external error(string)
external display.screen(string)
external prints(int,int,string,int)
external printi(int,int,int,int)
external printr(int,int,real,int)
external printd(int,int,int)
external printt(int,int,real)
external inperr(int,int,int,string)
j

1procedures to control screen input

external inputs(int,int,int->string)
external inputi(int,int,int,int->int)
external inputr.sub(int,int,real,real->real)
external inputr(int,int,real,real->real)
external inputt(int,int,real,real-> real)
external inputd(int,int,int,int->int)
external inputi.23(string,int,int->int)
external inputb.23(string,string->bool)
i

!procedures to access files
i

i

external freadi(file->int)
external access.system(string,str ing,pntr,structure (int,string,
*int,int,file))

1where structure is sy
external set.systam(structure (int,string,*int,int,file)->pntr)
1where structure is sy
external access.show(string,string,pntr,structure (pntr,pntr,pntr,
pntr,pntr,int,int,string,file),structure (string,string,*real,
*int,string,real,real,real,*string),structure(int,real,string,int,
*string),structure(int,int,string,int,string,string,string),
structure(*int,*int,*string,*int,*string,*string,*string),
structure(int,string,string,string,string,string,*string))

!where structures are sh,sh.h,sh.p,sh.s,sh.sb,sh.w
external set.show(string,structure (pntr,pntr,pntr,pntr,pntr,int,
int,string,file)->pntr)

1where structure is sh
external show.filename(string->string)
external show.key(int,real-> string)

38

s-algol and the Commercial 3rd & 4th Generations

external get.all.shows(structure (*string ,*string,*int)->pntr)
iwhere structure is as
i

i

!procedures unigue to

mainflow

39

s-algol and the Commercial 3rd & 4th Generations

4. Some Programs

Overview

The programs were designed with the user independent from the

command line interpreter, DCL. The most common method I have used in

the past, and one which is neat, is to use menus.

The user would log in using the standard account number and

password. The login procedure would automatically call up the command

procedure running the system. The first program is the one to set the

date into the system file. Then the menu program is selected. Both

are done automatically.

The user can now select the program he wishes to use. He selects

by entering the relevant number (as per the menu screen) and pressing

return. The program is run and after it is finished any further

operations relating to the program are performed by the command

procedure. These are (i) resetting the files after a new show has

been created (ii) printing (in operation displaying is used for

testing purposes) any output report or tickets (iii) ending the run

gracefully if the program has crashed.

After the program and associated functions are completed the menu

is redisplayed and a new selection can take place.

When the user wishes to finish using the system the logout option

is selected. This sets the next program to the 'set date' program and

logs out the user.

For brevity the programs have sections of repetitive skeleton

code indicated by

40

s-algol and the Commercial 3rd & 4th Generations

As before, the following only represent a sample of the complete

system. There are 17 programs in total performing menu control,

ticket production, enquiry/update, reports and file set up. For the

complete system there is an unbound appendix and tape available from

the department which has the full requirement to set up the files and

run the system on a DEC VAX under VMS with s-algol installed.

The two programs selected show how s-algol handles printouts,

screens and files and the general structure of complete s-algol

programs.

41

s-algol and the Commercial 3rd & 4th Generations

book a seat

name - b010

resume - to book seat(s) for a specific performance of a show, produce

tickets and update the log and show files with the details.

procedure -

Display screen b010a. Open the system file and display show

details name, date from and date to. Accept a show number. If the

show number is 0 and there are no more shows chain to b000; if there

are more than one screen full of shows on the system file clear the

screen and display the next batch of shows and return to input a show

number again.

If a valid show number has been input open the relevant show file

and display screen b010b. Display the performances' details of date,

time, matinee and seats open (not sold). As for the show selection

above input a performance number or display the next screen full of

performances. If no performance was selected return to input a show

again.

If a performance was selected display screen b010c. Do not use

the standard procedure 'display,screen" as the whole screen is

required. Display the seats in unpacked format (al-zl7) with open

seats in reverse video and booked seats in normal video.

Display screen b010d. Allow input of a seat or seats. The

format should be of the form 'x' or 'x-x' where 'x' is an unpacked

seat number e.g. 'b5'. Check the combination is valid if a range is

input. Check all the seats in the range are open. If not display an

42

s-algol and the Commercial 3rd & 4th Generations

error and reinput the seat selection. If no seats are selected return

to select another performance.

Print the ticket into the file bOlO.pri.

Read the date off the system file. Update the show file: (i)

write details to the seat(s) concerned (ii) update the number of seats

sold on the performance record (iii) update the total value of seats

sold on the header record.

Write a new bookings record to the file log.dat: (i) read the

first record and rewrite with field value one higher (ii) position to

the value read (iii) output a bookings record.

Chain to program pOlO.

43

s-algol and the Commercial 3rd & 4th Generations

source
"T

!program: bOlO

function:to book,cancel or wait on a seat

!working storage area
i

structure st.str(*int st.seats;real st.tot;string st.staff,
st.comment;int st.price;pntr st.sh)

Iprocedures unigue to bOlO
i —

i

i

i

procedure unpack.seat(string seat.s->int)
begin
let out:=146
case length(seat.s) of
0:out:=0

1:0
default:

begin
let ascii:=decode(seat.s(1j1))
let row:=(if seat.s(l|1)>="a" and seat.s(l]1)<="h"
then ascii-decode("a") else
if seat.s(l|1)>="A" and seat.s(ljl)<="H"
then ascii-decode("A") else
if seat.s(ljl)="z" or seat.s(l'l)="Z" then 8 else 99)
if row < 99 do

begin
let column:=unpacki(seat.s(2|length(seat.s)-1))
if column>0 and column<(if row=8 then 18 else 17) do
out:=row*16+column

end
end
out

end
i

procedure format.seat(int seat->string)
begin
let temp:=(if seat<145 then seat rem 16 else 17)
code(decode("a")+(if seat<129 then(seat-1)div 16 else 2.5))++
iformat(if temp = 0 then 16 else temp)

end
i

procedure format.seats(*int seats->string)
begin
let start:=0
let ends:=0
let done:=false
for i=l to 145 do if ~done do
case seats(i) of
2:if start=0 then start:=i else ends:=i

44

s-algol and the Commercial 3rd & 4th Generations

default:if start>0 do done:=true
format.seat(start)++(if ends>0 then "-"++format,seat(ends) else

II II ^
end
i

procedure select.show(pntr st.rec->bool)
begin
display.screen("bOlOa")
let sub:=0
let sh.rec:=nil
let as.rec:=get.all. shows(as.str)
if as.rec(as.name)(1)="" then error("no shows on system") else
begin
for i=l to 51 do if sub=0 do

begin
if i=17 or i=34 or i=51 do

begin
let top:=0
for j=i-16 to i-1 do if top=0 do if as.rec(as.name)(j)=""
do top:=j-l
if top=0 do top:=i-l
sub:=inputi.23("please select a show",1,top)
if sub=0 do if as.rec(as.name)(i)="" then
begin
error("no more shows on system")
sub:=51

end
else for i=5 to 22 do clear.area(i,1,68)

end
if as.rec(as.name)(i)~="M and sub=0 do
begin
let line:=i rem 17+4 +(if i>16 then 1 else 0)
cursor("reverse")
printi(line,1,i,1)

cursor("reset")
printd(line,4,as.rec(as.date)((i-1)*2+1))
prints(line,13,,0)
printd(line,15,as.rec(as.date)(i*2))
prints(line,25,as.rec(as.name)(i),0)

end
end

end
if sub>0 and sub<51 do

begin
sh.rec:=set. show(as.rec(as.filename)(sub)++".dat",sh.str)
if sh.rec(sh.file)=nullfile do fail("failed to open "++
shcw.filename(as.rec(as.name)(sub))++".dat")
access.show("h","i",sh.rec,sh.str,sh.h.str,sh.p.str,sh.s.str,
sh. sb. str, sh ,w. str)

st.rec(st.sh):=sh.rec
end
if sh.rec=nil then false else true

end
i

procedure select.performance(pntr st.rec->bool)
begin
display.screen("bOlOb")
let sh.rec:=st.rec(st.sh)
let record:=0

45

s-algol and the Cctnmercial 3rd & 4th Generations

let opt:=0
while opt=0 do
begin
record:=record+l

access.show("p"++iformat(record),"i",sh.rec,sh.str,sh.h.str,
sh .p. str, sh. s. str, sh. sb. str, sh .w. str)

let sh.p.rec:=sh.rec(sh.performance)
if (record ram 16 = 1 or sh.p.rec(sh.p.date)=99999) and
record~=l do

begin
opt:=inputi.23("please select a performance",1,record-1)
if opt=0 do if sh.p.rec(sh.p.date)=99999 then
begin
error("no more performances in show")
opt:=1000

end

else for i=7 to 22 do clear.area(i,1,45)
end
if opt=0 do
begin
let line:=record ram 16+6 +(if record ram 16=0 then 16
else 0)

cursor("reverse")
printi(line,1,record,1)
cursor("reset")
printd(line,4,sh.p.rec(sh.p.date))
prints(line,14,day(sh.p.rec(sh.p.date)),0)
printt(line, 24, sh.p.rec(sh.p.time))
prints(line,33,(if sh.p.rec(sh.p.matinee)="y" then "matinee"
else ""),0)

printi(line,42,145-sh.p.rec(sh.p.sold),3)
end

end
if opt<1000 do
begin
access. show("p"++ifonmat(opt)," i", sh.rec, sh. str, sh .h. str,
sh .p. str, sh. s. str, sh. sb.str, sh .w. str)

st.rec(st.sh):=sh.rec
let seats:=st.rec(st.seats)
for i=l to 145 do

begin
access.show("s"++iformat(i),"i",sh.rec,sh.str,sh.h.str,
sh.p. str, sh. s. str, sh. sb. str, sh.w. str)

let sh.s.rec:=sh.rec(sh.seat)
if sh.s.rec(sh.s.date)>0 do seats(i):=l

end

st.rec(st.seats):=seats
end
if opt=1000 then false else true

end
i

procedure display.stage(pntr st.rec)
begin
let f:=open("bOlOc.vdu","s",0)
if f=nullfile do fail("failed to open bOlOc.vdu")
cursor("clear")
let field:=""
for i=l to 4 do field:=read.a.line(f)
prints(2,l,"on at",0)

46

s-algol and the Ccmmercial 3rd & 4th Generations

let row:=3
while ~eof(f) do
begin
field:=read.a.line(f)
if ~eof(f) do
begin
prints(row,1,field,0)
row:=rcw+l

end
end
close (f)
prints(21,1,"row Z",0)
cursor("uline")
prints(21,41,"EXIT",0)
cursor("reset")
let seats:=st.rec(st.seats)
let sh.rec:=st.rec(st.sh)
let sh.h.rec:=sh.rec(sh.header)
let sh.p.rec:=sh.rec(sh.performance)
prints(1,1,sh.h.rec(sh .h.name),0)
prints(2,4,day(sh.p.rec(sh.p.date)),0)
printd(2,13,sh.p.rec(sh.p.date))
printt(2,26,sh.p.rec(sh.p.time))
for i=l to 145 do

begin
let row:=((i-l) div 16)*2+5-(if i=145 then 2 else 0)
let column:=case i<129 of

true:(i ran 16 +(if i ran 16 = 0 then 16 else 0))*4+5
defaulticase i<139 of
true:(i-128)*3+6
default:(i-138)*3+49
if seats(i)=0 do cursor("reverse")
let temp:=i ran 16 +(if i rem .16 = 0 then 16 else if i=145
then 16 else 0)

prints(row,column,(if i<l29 then
format.seat(i)(1'(if tanp<10 then 2 else 3)) else
(if i<138 then " "else "")++iformat(temp)),0)
if seats(i)=0 do cursor("reset")

end

message("press return when ready to select seats")
end
i

procedure select.seats(pntr st.rec->bool)
begin
display.screen("bOlOd")
let sh.rec:=st.rec(st.sh)
let sh.h.rec:=sh.rec(sh .header)
let sh.p.rec:=sh.rec(sh.performance)
prints(5,l,sh.h.rec(sh.h.name),0)
prints(6,4,day(sh.p.rec(sh.p.date)),0)
printd(6,13,sh.p.rec(sh.p.date))
printt(6,26,sh.p.rec(sh.p.time))
for i=l to 10 do
begin
let temp:=fformat(sh.h.rec(sh.h.prices)(i),3,2)
prints(15,i*6+4,temp(2|length(temp)-l),0)

end
let start.seat:=146
let end.seat:=146

47

s-algol arid the Commercial 3rd & 4th Generations

While start.seat=146 do
begin
let start:=inputs(8,31,3)
start.seat:=unpack.seat(start)
case start.seat of
0: { }
146:error("please enter e.g. bl7")
defaultrwhile end.seat=146 do

begin
let ends:=inputs(8,3R,3)
end.seat:=unpack.seat(ends)
case end.seat of

146:error("please enter e.g. bl7")
0:

begin
end.seat:=start.seat

clear.area(8,35,2)
end
default:if start.seat>end.seat do
begin
error("this must be on fran the first seat")
end.seat:=146

end
end
if start.seat>0 and start.seat < 146 do

begin
let seats:=st.rec(st.seats)
let ok:=true
for i=start.seat to end.seat do if ok do if seats(i)>0 do
ok:=false
if ~ok then

begin
start.seat:=146
end.seat:=146

error("seat(s) already booked")
end
else

begin
st.rec(st.staff):=""
while st.rec(st.staff)="" do
begin
st.rec(st.staff):=inputs(9,31,2)
if st.rec(st.staff)="" do error("you must be scmeone!")

end
if sh.p.rec(sh.p.matinee)="y" then
begin
st.rec(st.price):=7
printi(10,31,7,l)
prints(10,34,"matinee",0)

end
else

begin
st.rec(st.price):=0
while st.rec(st.price)=0 do
begin
st.rec(st.price):=inputi(10,31,1,10)
if st.rec(st.price)=0 then
error("you must select a price")

else

48

s-alqol and the Commercial 3rd & 4th Generations

prints(10,34,(case st.rec(st.price) of
1:"full"
2:"concession"
3:"student"

4:"oap"
5:"child"

6:"quantity discount"
7:"matinee"

8:"unspecified 8"
9:"unspecified 9"
default:"unspecified 10"),0)

end
end
let tot.seats:=end.seat-start.seat+1
st.rec(st•tot):=tot.seats*
sh.h.rec(sh.h.prices)(st.rec(st.price))

let temp:=fformat(st.rec(st.tot),4,2)
prints(11,31,temp(2ilenqth(temp)-l),0)
st.rec(st.ccmment):=inputs(12,31,15)
if ~inputb.23("bookinq correct","y") do
beqin
start.seat:=146
end.seat:=146

clear.area(8,31,3)
prints(8,35,"to",0)
clear.area(8,38,3)
clear.area(9,31,2)
clear.area(10,31,22)
clear.area(11,31,7)
clear.area(12,31,15)

end
end

end
end
if start.seat>0 do

beqin
let seats:=st.rec(st.seats)
for i=start.seat to end.seat do seats(i):=2
st.rec(st.seats):=seats

end
if start.seat>0 then true else false

end
i

procedure print.ticket(pntr st.rec)
beqin
let f:=open("bOlO.pri","a",1)
if f=nullfile do fail("failed to open bOlO.pri")
let sh.rec:=st.rec(st.sh)
let seats:=st.rec(st.seats)
let sh.p.rec:=sh.rec(sh.performance)
let dmy:=julian._in(sh.p.rec(sh.p.date))
let dd:=dmy div 10000
let dd.s:=iformat(dd)-H-(case dd of
1:"st"
2:"nd"
3:"rd"
21:"st"
22:"nd"
23:"rd"

49

s-algol and the Commercial 3rd & 4th Generations

31 • "<3t"
default:"th")
let date:=dformat(sh.p.rec(sh.p.date))
let time:=tformat(sh.p.rec(sh.p.time))
let opt:=format.seats(seats)
let tot:=" £"++fformat(st.rec(st.tot) ,4,2.)
output(f) ," 1 pfThe Byre Theatre, St. Andrews'n(0334) 76288'n' n"++
day(sh.p.rec(sh.p.date))++" "++dd.s-H-" "++(case dmy div

100 rem 100 of

1:"January"
2:"February"
3:"March"

4:"April"
5:"May"
6:"June"

7:"July"
8:"August"
9:"September"
10:"October"
11: "Novarber"
default: "December")++", "++i format (dmy ran 100 + 1900)++
'"n'nat "++time++"'n'nseat"++(if length(opt) >3 then "s"
else " ")++" "++opt++tot++
"1n'n(tickets cannot be exchanged'nfor other performances"++
"

or1nmoney refunded)'n'n'n'n"++date++", "++time++
STUB 1'n'n"++opt++tot++"'n'n'n'n'n'n"++date++", "++time++
STUB 2'n1n"++opt++tot

close(f)
end
i

procedure update.show.file(pntr st.rec)
begin
let sh.rec:=st.rec(st.sh)
let seats:=st.rec(st.seats)
let tot.amount:=0.0
let tot.seats:=0
let sy.rec:=set.system(sy.str)
if sy.rec(sy.file)=nullfile do fail("failed to open system.dat")
access.system("date","i",sy.rec,sy.str)
close(sy.rec(sy.file))
access.show("h","i",sh.rec,sh.str,sh.h.str,sh.p.str,sh.s.str,
sh. sb. str, sh .w. str)

let sh.h.rec:=sh.rec(sh.header)
let sh.p.rec:=sh.rec(sh.performance)
let perf.key:=show.key(sh.p.rec(sh.p.date),sh.p.rec(sh.p.time))
for i=l to 145 do if seats(i)=2 do
begin
access.show(perf.key,"i",sh.rec,sh.str,sh.h.str, sh.p.str,
sh. s. str, sh. sb. str, sh .w. str)

access.show("s"++iformat(i),"i",sh.rec,sh.str,sh.h.str,sh.p.str,
sh.s.str,sh.sb.str,sh.w. str)

let sh.s.rec:=sh.rec(sh.seat)
sh.s.rec(sh.s.date):=sy.rec(sy.d.date)
sh.s.rec(sh.s.staff):=st.rec(st.staff)
sh.s.rec(sh.s.price):=st.rec(st.price)
sh.s.rec(sh.s.comment):=st.rec(st.comment)
tot.seats:=tot.seats+1

tot.amount:=tot.amount+sh.h.rec(sh.h.prices)(st.rec(st.price))
sh.rec(sh.seat):=sh.s.rec

50

s-algol and the Commercial 3rd & 4th Generations

access.show("s"++iformat(i),"o",sh.rec,sh.str,sh.h.str,sh.p.str,
sh. s. str, sh. sb. str, sh .w. str)

end

access.show("h","i",sh.rec,sh.str,sh.h.str,sh.p.str,sh.s.str,
sh.sb.str,sh.w.str)

sh.h.rec:=sh.rec(sh.header)
sh.h.rec(sh.h.actual):=sh.h.rec(sh .h.actual)+tot. amount
sh.rec(sh.header):=sh.h.rec
access. show("h","o",sh.rec,sh.str,sh.h.str,sh.p.str,sh.s.str,
sh. sb. str, sh .w. str)

sh.p.rec:=sh.rec(sh.performance)
access.show(perf .key, "i" , sh.rec,
sh. str, sh .h. str, sh .p. str, sh. s. str, sh. sb. str, sh ,w. str)

sh.p.rec:=sh.rec(sh.performance)
sh.p.rec(sh.p.sold):=sh.p.rec(sh.p.sold)+tot.seats
sh.rec(sh.performance):=sh.p.rec
access.show(perf.key, "o" ,sh.rec,
sh. str, sh .h. str, sh .p. str, sh. s. str, sh. sb. str, sh.w. str)

close(sh.rec(sh.file))
end
i

procedure write.log(pntr st.rec)
begin
let f:=open("log.dat","r",2)
if f=nullfile do fail("failed to open log.dat")
let cr="'n"
let sh.rec:=st.rec(st.sh)
let sh.h.rec:=sh.rec(sh.header)
let sh.p.rec:=sh.rec(sh.performance)
seek(f,0,l)
let pointer:=freadi(f)+l
seek(f,0,1)
output(f),pointer,cr
seek(f,pointer,1)
let sy.rec:=set.system(sy.str)
if sy.rec(sy.file)=nullfile do fail("failed to open system.dat")
access.system("date","i",sy.rec,sy.str)
output(f),sy.rec(sy.d.date),cr, sh.p.rec(sh.p.date),cr,
sh.p.rec(sh.p.time) ,cr, show, filename (sh.h. rec (sh.h.name)) ,cr,
format.seats(st.rec(st.seats)),cr

close (f)
close(sy.rec(sy.file))

end

mainflow

let st.rec:=st.str(vector 1::145 of 0,0.0,,0,nil)
let printit:=false
while select.show(st.rec) do
begin
if select.performance(st.rec) do
begin

51

s-algol and the Commercial 3rd & 4th Generations

display.stage(st.rec)
if select.seats(st.rec) do
begin
printit:=true
print.ticket(st.rec)
update, show. fi.le(st.rec)
write.log(st.rec)

end
end
let sh.rec:=st.rec(st.sh)
close (sh.rec(sh.file))

end
chain((if printit then "p010" else "bOOO"))

52

s-algol and the Commercial 3rd & 4th Generations

screens

screen A for program bOlO (book seats): select a show

The Byre Theatre, St Andrews

Book a seat - please select a show

XXXXXX X xxxxxx xx

screen B for program bOlO (book seats): select a performance

The Byre Theatre, St Andrews

Book a seat - please select a performance

date day time open

XXXXXXXX XXXXXXXX XXXXXXX XXX XXX

screen C for program bOlO (book seats): stage

xx
on XXXXXXXX XXXXXXXXX at XXXXXX

STAGE

G

A

N

G

W
A

Y

G

A
N

G

W
A

Y

GANGWAY GANGWAY

row Z EXIT

53

s-algol and the Commercial 3rd & 4th Generations

screen D for program b010 (book seats): select a seats

The Byre Theatre, St Andrews

Rook a seat - please select seats

XX
on XXXXXXXX XXXXXXXXX at XXXXXX

seat(s) reguired XXX to XXX
member of staff XX

price X
total cost XXXXXXX
comment XXXXXXXXXXXXXXX

Prices:
12 3 456789 10

XXXXX XXXXX XXXXX XXXXX XXXXX XXXXX XXXXX XXXXX XXXXX XXXXX
full cone stud oap child gnty mat

54

s-algol and the Commercial 3rd & 4th Generations

printout

The Byre Theatre, St. Andrews
(0334) 76288

Friday 5th October, 1984

at 1.30pm

seats b7-bl0 £ 8.00

(tickets cannot be exchanged
for other performances or
money refunded)

5/10/84, 1.30pm STUB 1

b7-bl0 £ 8.00

5/10/84, 1.30pm STUB 2

b7-bl0 £ 8.00

55

s-algol and the Commercial 3rd & 4th Generations

change or inquire on a show

name - b040

resume - This allows the user to inspect the details for a specific

show. It allows you to inspect the details as input when the show was

set up and gives details of how many seats are open (i.e. not sold)

for the associated performances. The details can be amended for the

show header record but not for the performance times. A performance

may only be amended if no seats have been sold for this performance.

procedure -

Display screen b040c. Open the system file and display show

details name, date from and date to. Accept a show number. If the

show number is 0 and there are no more shows chain to b000; if there

are more than one screen full of shows on the system file clear the

screen and display the next batch of shows and return to input a show

number again.

Display screen b040a with relevant fields from the show header

file. Allow amendment of management, deduction reason, deduction

total, estimated income, and terms.

If requested display screen b040b and input a performance date.

If the date is valid i.e. there are performances on that date then

display these performances. A performance can be amended only if no

seats have been sold. Allow amendment of the time and matinee flag

only. Performances may not be deleted.

56

s-algol and the Commercial 3rd & 4th Generations

If required allow amendment of the show details again as above.

If amendments have been made then update them onto the show file.

Chain to b000.

57

s-algol and the Commercial 3rd & 4th Generations

source

program: b040

function:to amend or inguire on a show

!working storage area
i

structure st.str(string st ."h. name, st.h .management ;*real
st.h.prices;*int st.h.date;string st.h.dedreas;real st.h.dedtot,
st .h.estimated,st.h.actual;*string st.h.terms;*int st.p.date;
*real st.p.time;*string st.p.matinee;*int st.p.sold;
bool st.change)

1procedures unique to b040
i

i

i

procedure display.options
begin
cursor("reverse")
for i=l to 5 do

begin
cursor.to((case i of
1:6
2:9
3:10
4:10

default:15),(case i of
4:37

default:2))
write iformat(i)

end

cursor("reset")
end
i

i

i

procedure screen.b040a(pntr st.rec)
begin
let field:=0
display.screen("b040a")
cursor.to(5,22);write st.rec(st.h.name)
cursor.to(6,22) ;write st.rec(st.h.management)
printd(7,22,st.rec(st.h.date)(1))
printd(7,56,st.rec(st.h.date)(2))
printr(9,22,st.rec(st.h.estimated) , 8)
printr(9,56,st.rec(st.h.actual),8)
printr(10,22,st.rec(st.h.dedtot),8)
cursor.to(10,56);write st.rec(st.h.dedreas)
for i=l to 10 do

begin
let temp:=fformat(st.rec(st.h.prices)(i),3,2)
prints(13,i*7+4,temp(2!length (temp)-1),0)

58

s-algol and the Commercial 3rd & 4th Generations

end
for i=l to 6 do fcursor.to(i+15,2) ;write(st.rec(st.h.terms)(i))}
display.options
while field<6 do

begin
field:=inputi.23("please select field to amend",1,5)
if field=0 then field:=6 else

begin
st.rec(st.change):=true
case field of
1: 1 management
begin
clear.area(6,22,length(st.rec(st .h .management)))
st.rec(st.h.management):=inputs(6,22,50)

end
2: ! estimated income

begin
clear.area(9,22,8)
st.rec(st.h.estimated):=inputr(9,22,0.00,99999.99)

end
3: ! deduction amount

begin
clear.area(10,22,9)
st.rec(st.h.dedtot):=inputr(10,22,0.00,99999.99)

end
4: 1 deduction reason

begin
clear.area(10,56,length(st.recf st.h.dedreas)))
st.rec(st.h.dedreas):=inputs(10,56,15)

end
default: 1 terms

begin
for i=16 to 21 do

clear.area(i,2,length(st.rec(st.h.terms)(i-15)))
for i=l to 6 do st.rec(st.h.terms)(i):=inputs(i+15,2,78)

end
end

end
end
i

i

i

procedure screen.b040b(pntr st.rec)
begin
display.screen("b040b")
let finished:=false
while ~finished do

begin
let opt:=inputd(7,4,st.rec(st.h.date)(l),st.rec(st.h.date)(2))
if opt=0 then finished:=true else
begin
pr intd (7,4,opt)
prints(7,14,day(opt),0)
let started:=0
let ended:=0
for i=l to 50 do if ended=0 do
if st.rec(st•p.date)(i)=opt then if started=0 do started:=i
else if st.rec(st.p.date)(i)>opt do if ended=0 do ended:=i-l
if started=0 then

59

s-algol and the Commercial 3rd & 4th Generations

begin
prints(7,26,"no performances",0)
message("press return to continue")
clear.area(7,4,40)

end
else

begin I print the current day's details
let line:=7
let amendable:=false
for i=started to ended do

begin
printt(line,26,st.rec(st.p.time)(i))
prints(l_ine,38,if st.rec(st.p.matinee) (i)="y" then "yes"
else "no",0)

printi(line,47,st.rec(st.p.sold)(i),3)
if st.rec(st.p.sold)(i)=0 do amendable:=true
line:=line+l

end
if ~amendable then

begin
message("no performances can be amended")
for i=7 to line-1 do clear.area(i,3,52)

end
else if ~inputh.23("change details","n") then
for i=7 to line-1 do clear.area(i,3,52) else
begin
st.rec(st.change):=true
printd(13,4,opt)
prints(13,14,day(opt),0)
let line:=13
let last:=12
for i=started to ended do if st.rec(st.p.sold)(i)>0 then
begin
printt(i-started+13,26,st.rec(st.p.time)(i))
prints(i-started+13,35,if st.rec(st.p.matinee)(i)="y"
then "yes" else "no",0)

end
else

begin
let ntime:=inputt(i-started+13,27,0,23.59)
if ntime>0 do st.rec(st.p.time)(i):=ntime
let nmat:=inputs(i-started+13,38,3)
if nmat~="" do st.rec(st.p.matinee)(i):=(if
length(nmat)=0 then "n" else if nmat(l'1)="y" or
nmat(1|1)="Y" then "y" else "n")
prints(i-started+13,38,if st.rec(st.p.matinee)(i)="y"
then "yes" else "no ",0)

end

message ("press return to continue")
for i=7 to 18 do clear.area(i,4,52)

end
end-

end
end

end
i

i

i

procedure update.show.file(pntr st.rec)

60

s-algol and the Commercial 3rd & 4th Generations

begin
let sh. rec:=set. show(shcw.filename(st.rec(st.h.name))++".dat",
sh.str)
if sh.rec(sh.file)=nullfile do
fail("failed to open "-H-st. rec (st.h. name))

access.show("h","i",sh•rec,sh.str,sh.h.str,sh.p.str,sh.s.str,
sh. sb. str, sh .w. str)

let sh.h.rec:=sh.rec(sh .header)
sh.h.rec (sh .h .management):=st. rec(st .h .management)
sh.h.rec(sh.h.estimated):=st.rec(st.h.estimated)
sh.h.rec(sh.h.dedreas):=st.rec(st.h.dedreas)
sh.h.rec(sh.h.dedtot):=st.rec(st.h.dedtot)
for i=l to 6 do sh.h.rec(sh.h.terms)(i):=st.rec(st.h.terms)(i)
sh.rec(sh.header):=sh.h.rec
access.show("h","o",sh.rec,sh.str,sh.h.str,sh.p.str,sh.s.str,
sh. sb. str, sh .w. str)

for i=l to 100 do if st.rec(st.p.time)(i)>0.001 do
begin
access.show("p"-H-iformat(i) , "i" , sh.rec, sh. str, sh.h.str, sh.p.str,
sh. s. str, sh. sb. str, sh .w. str)

let sh.p.rec:=sh.rec(sh.performance)
sh.p.rec(sh.p.time):=st.rec(st.p.time)(i)
sh.p.rec(sh.p.matinee):=st.rec(st.p.matinee)(i)
sh.rec(sh.performance):=sh.p.rec
access.show("p"++iformat(i),"o",sh.rec,sh.str,sh.h.str,sh.p.str,
sh.s.str,sh.sb.str,sh.w. str)

end

close(sh.rec(sh.file))
end
i

i

i

procedure select.show(->pntr)
begin
display.screen("b040c")
let sub:=0
let st.rec:=st.str,vector 1::10 of 0.0,vector 1::2 of 0,"",
0.0,0.0,0.0,vector 1::6 of vector 1::100 of 0,vector 1::100 of
0.0,vector 1::100 of vector 1::100 of 0,false)
let as.rec:=get.all.shows (as.str)
if as.rec(as.name)(1)="" then error("no shows on system") else
begin
for i=l to 50 do if sub=0 do

begin
if i=17 or i=34 do

begin
let top:=0
for j=i-16 to i-1 do if top=0 do if as.rec(as.name)(i)=""
do top:=j-l
if top=0 do top:=i-l
sub:=inputi.23("please select a show",1,top)
if sub=0 do if as.rec(as.name)(i)="M then

begin
error("no more shows on system")
sub:=51

end

else for i=5 to 22 do clear.area(i,1,68)
end
if as.rec(as.name)(i)~="" do

61

s-algol and the Commercial 3rd & 4th Generations

begin
let line:=i rem 17+4 +(if i>16 then 1 else 0)
cursor("reverse")
printi(line,1,i,1)

cursor("reset")
printd(line,4,as.rec(as.date)((i-l)*2+l))
prints(line,13,,0)
printd(line,15,as.rec(as.date)(i*2))
prints(line,25,as.rec(as.name)(i),0)

end
end

end
if sub>0 and sub<51 do

begin
let sh.rec:=set.shcw(as.rec(as.filename)(sub)++".dat",sh.str)
if sh.rec(sh.file)=nullfile do fail("failed to open "++
shew, filename (as. rec (as.name)(sub))++".dat")
access.show("h","i",sh.rec,sh.str,sh.h.str,sh.p.str,sh.s.str,
sh. sb. str, sh .w. str)

let sh.h.rec:=sh.rec(sh.header)
st.rec(st.h.name) :=sh.h.rec(sh.h.name)
st.rec(st."h.management) :=sh.h.rec(sh.h.management)
st.rec(st.h.estimated):=sh .h.rec(sh.h.estimated)
st.rec(st.h.actual):=sh .h.rec(sh .h.actual)
st.rec(st.h.dedreas):=sh.h.rec(sh.h.dedreas)
st.rec(st.h.dedtot):=sh.h.rec(sh.h.dedtot)
for i=l to 10 do

st.rec(st.h.prices)(i):=sh.h.rec(sh.h.prices)(i)
for i=l to 2 do
st.rec(st.h.date)(i):=sh.h.rec(sh.h.date)(i)

for i=l to 6 do

st.rec(st.h.terms)(i):=sh.h.rec(sh.h.terms)(i)
let last.date:=st.rec(st.h.date)(l)
let upper:=5
let done:=false
for i=l to 50 do if ~done do

begin
access.show("p"++iformat(i),"i",sh.rec,sh.str,sh.h.str,
sh.p.str,sh.s.str,sh.sb.str,sh.w.str)

let sh.p.rec:=sh.rec(sh.performance)
st.rec(st.p.date)(i):=sh.p.rec(sh.p.date)
st.rec(st.p.time)(i):=sh.p.rec(sh.p.time)
st.recfst.p.matinee)(i):=sh.p.rec(sh.p.matinee)
st.rec(st.p.sold)(i):=sh.p.rec(sh.p.sold)
if st.rec(st.p.date)(i)=99909 do done:=true

end

close(sh.rec(sh.file))
end
st.rec

end

62

s-algol and the Commercial 3rd & 4th Generations

mainflow

!get show
i

let st.rec:=select. show
if st.rec(st.h.name)="" do chain("bOOO")
i

!amend details
i

let done:=false
while ~done do

begin
screen.b040a(st.rec)
if inputb.23("view performance details","y") do
screen.b040b(st.rec)

done:=~inputb.23("view show details","y")
end
i

!update files
i

if st.rec(st.change) then update.show.file(st.rec)
else message("no amendments made, press return to continue")
chain("bOOO")
?

63

s-algol and the Commercial 3rd & 4th Generations

screens

screen A for program b040 (view/amend show): view/amend header details

The Byre Theatre, St Andrews

View/amend a show -

Name

Management
Date frcm.

xx
xx
xxxxxxxx Date to XXXXXXXX

Estimated inccme.XXXXXXXX
Deduction amount.XXXXXXXX

Actual income....XXXXXXXX
Deduction reason.XXXXXXXXXXXXXXX

Prices:
full concess student oap child qty matinee (8) (9) (10)
XXXXX XXXXX XXXXX XXXXX XXXXX XXXXX XXXXX XXXXX XXXXX XXXXX

Terms:

XX

XX
XX
XX

xx
xx

screen B for program b040 (view/amend show): view/amend performance details

The Byre Theatre, St Andrews

View/amend a show - please enter date

date day times matinee? sold

XXXXXXXX XXXXXXXX XXXXXXX XXX XXX

screen C for program b040 (view/amend show): select a show

The Byre Theatre, St Andrews

View/amend a show - please select a show

XXXXXX X xxxxxx xx

64

s-algol and the Commercial 3rd & 4th Generations

7. Conclusions

To gain a true appreciation of s-algol it must be used. On paper

it has few facilities. However, these provide all the requirements

present in the morass of COBOL and BASIC, but in a neat, compact

fashion.

The language has the full beauty of all algols, reduced to a

minimum, with any extras providing real extra power (e.g. case and

structure)

In the following paragraphs I have summarized the most noteable

pros and cons from the commercial data processing viewpoint.

commercial or non-commercial? - when viewed from the commercial

viewpoint s-algol comes across in use as a non-commercial language,

similar to PASCAL in some respects. It is certainly not designed as a

commercial language as CDBOL is. Peek, readi, read, readr, readb,

read, read.byte, sqrt, In, sin, cos, atan, truncate, line.nunber,

rabs, abs, eformat, gformat, shift.1, shift.r, b.and, b.or, epsilon,

pi, r.w, flush and seek all exhibit this leaning towards low-level i/o

and mathematical or some other non-commercial processing. This would

be expected as the language was designed principally for this purpose,

a design principle that does not prohibit its use for other forms of

programming as the Byre Theatre suite evidences.

file structure - the lack of random access by key is the major

limitation on s-algol in commercial use. The existing file access

facilities together with recursive procedures could have such

facilities coded. ps-algol does have random access by key into a

database with more power than any commercial languages I have used or

studied.

65

s-algol and the Commercial 3rd & 4th Generations

manuals - these are also aimed at a different market than

commercial programming. With the simple addition of an index (as I

made to the reference manual [22]) and commercial examples s-algol

would be diown off to greater advantage.

real numbers - s-algol's real numbers are a different type of

number from that used in, for example, COBOL. This is true of other

languages not specifically designed for the commercial market. VAX-11

BASIC uses string arithmetic to avoid the rounding errors that

scientific language real numbers - such as are used in s-algol - are

prone to in large quantity calculations. Data General Business BASIC

awkwardly sidesteps this problem by removing reals entirely from the

language; the programmer is forced to use integers and 'ranember' the

actual number of decimal places.

This is not in itself a problem as string arithmetic procedures

could be simply written in s-algol. The commercial programmer not

brought up with real numbers as used in scientific languages would

not, however, be au fait with the problems in testing for equality or

the rarer problem of cumulative errors in adding very large quentities

of real numbers which could be met in, for example, finance systems.

Thus for commercial processing, much of which is financial,

string arithmetic procedures should be added before any further

commercial systems are coded. But, this would not be a difficult task

in s-algol.

constants - an interesting point is the use of constants in

s-algol. Although not in the American National Standard COBOL

[3/5-57], Honeywell and ICL provide this option while IBM, Data

General, DEC and others do not. Thus constants are little used,

although there is a school of thought that still backs their usage as

66

s-algol and the Commercial 3rd & 4th Generations

a separate data type. For example, most programmers have made the

elementary mistake of building a print page maximum line number into a

program instead of defining it at the top of the program only once.

Changing the value for a subsequent different length page is more

difficult if the line number is scattered around the program, s-algol

does not force the programmer to use constants, but good programming

practice should encourage it.

program structure - the design of the language is its strength as

many errors that will pass a COBOL compiler or BASIC interpreter will

not compile. Every variable must be initialized; every comparison

must be of the correct type; every assignment of the correct type;

every block must be complete; every procedure must be called properly;

etc. One of the programs written for the bookings system ran

correctly first time after it's first clean compilation.

Once compiled, any logic errors are more easily traced back to

the code.

The most difficult part of debugging was getting used to errors

often being flagged after the actual mistake, and with odd looking

error messages ('type bool and void are incompatable in this

context'!). But anyone using a COBOL reserved word in the wrong place

in a COBOL program will be well aware of how easy it is to confuse a

compiler when a piece of code is incorrect. What may therefore appear

a disadvantage soon becomes apparent as an advantage as a clean

compiled s-algol program contains signficantly less bugs than a

correspondingly complex COBOL or BASIC program.

67

s-algol and the Commercial 3rd & 4th Generations

structures and pointers - the structure, structure class and

pointers have a power that is quite amazing to the commercial

programmer used to COBOL and BASIC. The ways in which data can be

structured encourages the programmer to think of simpler, but at the

same time, more powerful solutions to problems. They provide complete

flexibility of core usage, allowing different data to be related and

grouped together and cross-related with other groups of data. COBOL's

usage of a maximum core map of fixed size is far excelled by this

flexibility. Rather than explain it further on paper, perhaps the

reader should look at the use made of structures, for example the show

file structure, sh.str, in the programs above even though these only

scratch the surface of this facility's power and flexibility.

These are not an exhaustive list of the differences between, say,

COBOL and s-algol. They are what I found the most noticeable points

of difference in comparison to existing commercial third generation

languages, viewed as a whole. Given the lack of random access by key

the language's small core of facilities all proved effective

providing, in co-ordination with the externals coded, a commercial

third generation programming environment.

final comments

It has been said already that commercial programming overlaps

only partly with s-algol as provided:

68

s-algol and the Commercial 3rd & 4th Generations

scientific commerce

and this is evidenced by programming in the language or reading the

manuals.

Yet the language is a joy to use in many ways. Once the

programmer grasps the structure of coding, he enters a different world

from COBOL or BASIC. In s-algol the program is an entity, each block

is an entity and each line also. In BASIC only the line counts, not

its context. Thus, in s-algol the vast bulk of logic errors

disappear. If the programmer writes a really bad program in COBOL or

BASIC it will eventually compile and then prove to be a nightmare to

run clean and thereafter to maintain. Give s-algol such a program and

it will never even clean-compile.

But, s-algol is not prepared to enter commercial data processing.

If s-algol (or any new language) had all the required facilities it

would enter a harsh world. There are many commercial languages

available, each with its own lobby who view it myopically and usially

illogically as The Only language For Coding Anything In. I have met

programmers who will defend RPG assiduously despite its resemblance to

a football coupon. However, the recent experience of the ALCU

(University of St Andrews, Administrative and Library Computer Unit)

69

s-algol and the Commercial 3rd & 4th Generations

has proved that where there is a will to escape from the confines of

an old (or very old) language it can be done.

It ^lould be of interest that the ALCU did not drop COBOL from

new systems for reasons of language design but because COBOL could not

handle screens and VISTA (a fourth generation language (4GL)) could -

and much more. DEC COBOL struggles manfully with ACCEPT and DISPLAY

statements for screen input and output; DG COBOL introduces a SCREEN

SECTION that does allow partial scrolling, etc. But, there is no

screen handling solution for COBOL yet.

As VISTA managed a foot in the door it became clear that it was a

true 4GL and streets ahead in its facilities of any other tools then

available on the DEC VAX under VMS. However, for data type

definition, object code, compilation, linking, etc. s-algol is far

superior; and that is not said as false praise for s-algol. Seme of

VISTA's anomalies are frightening e.g. (i) it often forgets what type

and size a variable is (ii) source code anomalies - such as

disallowing printing globally in a program but allowing it locally on

a line causing the program to hang - are common.

The demand for a new type of commercial language is certainly

here. But the limitations of COBOL are being exploited by completely

different approaches to program design than the third generation

languages.

The talk of the commercial world is the 4GL. These languages

have arrived (but like COBOL, etc. are often in a pretty poor state

of repair) and will continue to push out the old 3GL's.

70

s-algol and the Commercial 3rd & 4th Generations

This is perhaps the biggest problem for s-algol in its present

form as a 3GL. The commercial market has powerful new tools that are

more contemporary. Even with the above noted changes s-algol would be

competing against more advanced tools. In the right circumstances

s-algol could carve a niche for itself in the commercial third

generation market. But, perhaps it could do better in the fourth

generation market. This is the subject of the next chapter.

s-algol and the Commercial 3rd & 4th Generations

Chapter 4

The Fourth Generation

71

s-algol and the Commercial 3rd & 4th Generations

The following section, 'study of the existing market' has aroused

interest in ccmmercial circles as little independent work has been

done in any depth on the fourth generation. Cognos Incorporated of

Canada, manufacturers of the PCMERHOUSE fourth generation suite, have

reguested and received a copy of this section of the study at their

Livingston, West Lothian offices.

72

s-algol and the Commercial 3rd & 4th Generations

1. Study of the Existing Market

Early Attempts to Overtake the 3gl's

The idea of the 4GL has been present in commercial computing for

quite some time.

Some earlier attempts were made, mostly scratching the surface,

between the advent of COBOL (in many respects the commercial 3GL) and

today's 4GL's.

The report generators were the most common. From fairly simple

generators like ICL's FIND-2 package to the amazing RPG (Report

Program Generator) [15]. Amazing only as to why it ever gained

popularity.

Early commercial systems that the 3GL's and the early generators

were written for were all batch systems. The vdu had not yet arrived.

For this reason the most commonly met routines were (i) a master file

update/transaction file merge and match:

figure 4.1 - batch merge and match

cards or tape

I
old master transaction

merge &
match

new

master

73

s-algol and the Commercial 3rd & 4th Generations

all file updating was of necessity of this type. (ii) report

production.

Modern Problems

With the proliferation of vdu's the problems have changed and the

3GL's have notably failed to grasp this. COBOL has as yet no American

National Standard screen control and subsequently some manufacturers

have jumped the gun and added their own (e.g. Data General

Interactive COBOL has a SCREEN SECTION [16/40ff]). BASIC varies with

each compiler version. RPG's built-in program cycle cannot handle

vdu's so extra, and again unique, routines are added to handle vdu's

(IBM S/34 RPG2 has in effect a separate screen control program that

handles all screen i/o and communicates with the actual program via

screens of information at a time [15/12-1ff,15/13-lff].)

The problem of printing is still a common one. This subdivides

into standard reports (headings, detail lines, trailer lines) and

statements (e.g. statement plus cheque stationery as used by the ALCU

where a cheque statement may overflow onto separate pages [29/C11).

File updating with data from outside the computer system still

takes place in batch for a very few applications, notably inter-site

data transfer, but data entry internal to an organization now takes

place almost exclusively via the vdu. This subdivides into (i) master

file updating e.g. adding new name and address details (ii)

transaction processing e.g. adding items to a financial ledger.

To consider a real life system, the programs types written for

finance work in 1984 at the ALCU were:

74

s-algol and the Commercial 3rd & 4th Generations

figure 4.2 - VISTA coding times

coded coding,testing & documenting
in 1984 days per program (%age of effort)

3GL 4GL

Data entry
Document Update
File Maintenance
File print
Others

6 (11%)
12 (21%)
15 (27%)
12 2

app 4

15 (29%)
3 (11%)
8 (38%)

8 (32%)
1.5 (12%)
2 (20%)
0.5

11 app 4

total 314 146

As can be seen the workload has diminished by over half (54%).

Although this frees the programmer for other duties, screen handling

has only reduced relatively from 67% to 52% of all tasks. There is an

overall considerable drop but the programmer is still left relying

heavily upon the screen handling facilities present in the language.

What is the structure of these repetitive programming tasks:

file maintenance and batch data entry?

File Maintenance

Master file updating is usually through a file maintenance

program. This allows insertion, amendment, viewing and deletion of

one specific record. The key is entered and on (i) entry - data

fields are entered, verified by the program, optionally amended and

verified again; finally the record is either applied to the file or

the insertion can be abandoned. (ii) amendment - the fields are

displayed, amended, verified by the program and finally the changes

are either applied or the amendment can be abandoned (iii) viewing -

the details are displayed (iv) deletion - the details are displayed

then they are either removed from the file or the deletion is

75

s-algol and the Commercial 3rd & 4th Generations

This type of program is also used for single record immediate

updating onto a system. For example hotel room booking is of this

type, while changing hotel room characteristics is file maintenance in

the normal sense.

It can be seen that there are common routines. Figure 4.3 shows

these routines and their relation to the four record handling options:

figure 4.3 - file maintenance cross-logic

input amend show delete

get option X X X X
read record XXX

display fields XXX
input fields X X
verify fields X X
update fields XX X

the routines call each other as follows:

input calls amend
amend calls show
delete calls show

The result is that FM programs are very difficult to code, in

particular as more fields are used. This is due to the complex nature

of the screen handling as well as the tedium of coding 3GL repetitive

routines with small differences.

FM programs become more complex, almost uncodable, when multiple

screens are involved.

Data Entry / Transaction Processing

The data entry suite is a variation on the old batch cycle:

76

s-algol and the Commercial 3rd & 4th Generations

The data entry suite is a variation on the old batch cycle:

figure 4.4 - data entry

VDU
i
i
i
i

!data !
! entry! < >WORK
! ! FILE

I
I

! updater | < >MASTER
! | FILE

i
i
i
i

AUDIT
TRAIL

The data entry program is probably the most ccmplex program met

in commerce. Like all screen programs it must be completely

'idiot-proof to the data entry clerk(ess).

The program involves entering batches of data with header, detail

and trailer options and optional control totals. Each record occupies

1 or 2 (or possibly more) vdu lines which scroll in the data entry

area (usually lines 5 to 22). For example the University processes

about 20,000 residence fees transactions every year [25]. The Cash

Office divide these into batches for entry classified with conmon

transaction type (e.g. invoice, credit note), term/guarter, date

received. These details constitute the header record and each detail

line is an individual transaction, e.g. a student paying his term 2

residence fee. At the end of a batch the computer checks whether the

total value of the transactions add up and there are the correct

number of lines in the batch. Batches can be viewed, amended or

deleted also, as they must be if their totals do not balance.

77

s-algol and the Commercial 3rd & 4th Generations

The batches of data are applied to the database at a later time,

usually overnight. Unlike FM, data entry is delayed updating of the

type preferred on, for example, accounting systems.

The data entry program has all the facets of the file maintenance

program with the additional problem of handling multiple records,

multiple record types, variable screen positioning (the data entry

scrolling area), control totalling and usually special function keys.

The system of data entry is often referred to as transaction

processing (an admittedly ambiguous name) and various tools have been

available since the advent of the vdu to tackle this.

Whilst FM varies little from application to application and

usually then at the whim of the programmer or analyst, TP is more

flexible and complex yet also repetitive.

The Fourth Generation

It is with these specific problems and others in mind that the

d.p. department turns to a 4GL. A considerable amount of time is

spent in producing screen based programs (see figure 4.2 above) and

printouts (4GL's are characteristically excellent screen handling

tools). File maintenance, data entry, standard printouts and

statement printouts are all faster to code, with fewer lines of source

code and hence fewer bugs in the source code.

The 4GL compiler writers have taken further steps and added

security features (logins, etc.), data dictionaries (see below for an

example data dictionary) subroutine libraries and other facilities.

It is here that problems often arise with the current 4GL's. To

encompass all these a language/tool becomes rather complex. Some,

like SYSTEL [4], are a real sledgehammer to crack a nut. There is so

78

s-algol and the Commercial 3rd & 4th Generations

much in them that the language/tool is unwieldy to use in programming

and also expensive to purchase, although the user end-product is

excellent. Systel has 19 manuals [4/3-3] and a variety of overlapping

utilities and languages with cryptic names such as MLG, TCL, FRM, TCB

and DDS. For example, the peripherals in a SYSTEL environment are

required to be defined using the following format:

figure 4.5 - part of SYSTEL Configuration source file

LOCATION LOCNA
TERMINAL TTA1
DEVICE TTA1
TERMINAL TTA2
ON FEC ALPHA
DEVICE TTA2
PRINTER PRTA

DEVICE PRTA
TYPE MATRIX

LOCATION LOCNB

TERMINAL TTB1
DEVICE TTB1
AUTO ATTACH

LOCKED TRANSACTION JMSCON
WITH USERNAME FRED
AND PASSWORD 1
TERMINAL TTB2
DEVICE TTB2
AUTO ATTACH
TERMINAL TTB3
DEVICE TTB3
ON FEC ALPHA
TERMINAL TTB4
DEVICE TTB4
ON FEC BETA

TYPE VT52
PRINTER PRTB

DEVICE PRTB
TYPE MATRIX

The full file, held in SYSTEL.TBL, is processed by TBL producing

SYSTEL.TCB and SYSTEL.PCB. These are subsequently used by TMC and DDS

to control FEC and other devices [4/2-38,2-39]. Thus the programmer

has a whole new area of complexity and jargon to contend with in using

the tool.

79

s-algol and the Commercial 3rd & 4th Generations

Perhaps to the D.P. Manager the most obvious constraint on the

4GL is that its complexity often makes it environment dependant. The

ALCU recently took COBOL from an English, non-ANSI compiler (3

versions, actually) to an ANSI compiler. This was relatively

straightforward. VISTA would require a complete rewrite if removed

from the DEC VMS or RSX environments. 'Cul-de-sac computing may

appear an easy option in the short term, but the strategic importance

of portability across supplier - and for that matter up and down a

range of host systems - will sooner or later become apparent. In a

world of mergers and takeovers ... be one step ahead by settling on a

product that sees no bounds to either operating system or hardware.'

[42/3]. This is borne out by the recent takeovers of two bidders for

the ALCU's central computer replacement: ICL by STC and Systime by

CDC (hardware) and DEC (maintenance), with the discontinuation of

support for some months of the Systime 4GL product, Systel.

So the current 4GL's are a series of swings and roundabouts. I

would never contemplate writing a screen or print program in a 3GL

again as the 4GL does all the repetitive bits for you. However, the

4GL is one step further from the machine, as the 3GL was from the 2GL

(assembler) and the 1GL (machine code). As there is so little source

code the programmer is not always sure what the object code will do!

VISTA

Chris Wimlett, a colleague in the University's Administrative and

Library Computer Unit (ALCU), and myself surveyed the language market

for the ALCU when the ALCU's central computing resource, the CTL 8050,

was planned for replacement. We were advised particularly to view the

DEC VAX VMS market.

80

s-algol and the Commercial 3rd & 4th Generations

VISTA F35,36,37] was chosen on price, simplicity and after

visiting several reference sites. It was written for seme printing

and publishing houses in South East England and is now available

through VISTA pic as a general tool on both PDP under RSX (the

original environment) and VAX under VMS.

VISTA consists of 6 programs:

figure 4.6 - VISTA programs

data entry, data update:

VDU

BDI = screen input

BDU = apply updates

file maintenance:

VDU

BFM < >MASTER
FILE

file update:

OTHER SUITE

WORK

FILE

BFU < >MASTER
FILE

81

s-algol and the Commercial 3rd & 4th Generations

file print:

MASTER FILE

BFP

LISTING

statement print:

MASTER FILE

BSP

STATEMENTS

The various sites use different combinations of these. The ALCU

uses BDI, BEU, BFM and BFP. It should be noted that BDU is only

necessary as a separate option from BFU as the BDI work file is so

appallingly designed.

VISTA also supplies a menu processor and tackles data dictionary

and data security.

R2

s-algol and the Commercial 3rd & 4th Generations

figure 4.7 - example VISTA menu

*QFOPS
*

i

fQFOPSCH
i

fQFOPSFE
I

fQFOPSNO
I

fQFOPSCR
!

fQFOPSXE
I

fQFOPSRL
I

fOPSBOR
I

0DCLQ
i

@mail
i

0CHECKNITE

ccmmand

procedure

ALCU Operations Staff Q & F Menu

1 - Chegue reconciliation

2 - Academic Fees

3 - Nominal ledgers

4 - Creditors

5 - Xeroxing and Printing

6 - Residences Fees Ledger

7 - Bursar of Residences

R - DCL

9 - Check the mail

10 - CHECK THE OVERNIGHT RUNS

/
menu screen

display

R3

s-algol and the Commercial 3rd & 4th Generations

figure 4.8 - example VISTA file maintenance program

VISTA MAINTAIN "Xerox Codes", "XC", "XC.LOG", "XC.RAT", DISPIAY-STEMSFO
*FMXE01
•FNAME (T=30A)
•FNAM2 (T=30A)
LET U. FNAME = "SY5: [XEROX.DATAlXCODES.IDX"
LET U.FNAM2 = "SY5:l~NOM.DATA]NOMACC.IDX"
FILE XCODES "l,U.FNAME,"IM"
FILE NOMACC ~2,U.FNAM2,"IR"
INIT:
DISPLAY "Xeroxing and Printing Codes Maintenance"(@=P0000)
DISPLAY "U.St.A. Q & F"(@=P0066)
DOC-START:
DISPLAY "File Code"(@=P0200)
INPUT ZK.MASTER(@=P0215,T=3C)
DISPLAY ZK.MASTER(@=P0215,T=3C)
CLE.AR XC.NAME

INSERT-DEFAULT:
CLEAR XC.RECORD
CLEAR XC.ACCOUNT(00)
LET XC.FILECODE(T=3C) = ZK.MASTER(T=3C)
FIELD:
DISPLAY XC.FILECODE(0=PO215)
CALL SET-DELETE XC.REC-STA
CALL SET-MANDATORY "0,1,2"
CALL FIELD 00 XC.ACCOUNT "Ledger a/c" P0400 NOMACC
CALL FIELD 01 XC.NAME "Name" P0500
SUBROUTINE: NOMACC
LET ZK.MASTER(T=7A) = XC.ACCOUNT
FILE-READ NOMACC

IF A

;CALL ERROR "E>Not on accounts file"
LET ZK.MASTER(T=3C) = XC.FILECODE(T=3C)

Each program contains entry points. These are places where code

is inserted by the programmer. For example, in file maintenance,

there are entry points at (i) DOC-START - input record key frcm screen

(ii) FIELD - handle i/o to record fields on the vdu.

VISTA has quite a few bugs. If a program fails it crashes the

next one run through the processor and a VISTA program will lock out

any other language program attempting to use any files used by the

VISTA program, regardless of the mode opened. There are others.

84

s-algol and the Commercial 3rd & 4th Generations

Despite these, the simplicity in particular of FM and FP makes

VISTA a valuable tool that leaves all existing 3GL's standing as

regards speed of coding, maintenance and debugging of source code.

ps-algol

I have not tackled anything in ps-algol [5] on a live basis.

However, the presence of a powerful random access by key into a

database system fills the most obvious 3GL gap in s-algol.

ps-algol lacks none of the facets of the 3GL's originally

considered (COBOL and BASIC). The question to be posed is however,

how does ps-algol compare with the 4GL's, which have only arrived

recently on the d.p. scene.

ps-algol is a 3GL. It does not possess the prewritten routines

for screen handling, printouts, etc. Neither does it have the

security features and higher level facilities that make the 4GL's so

environment specific and often unwieldy to use.

Subroutine libraries as used by the 4GL's are also present in

ps-algol through its data base handling. Ps-algol's consistent

approach to storing information does not show up in the approach of

the 4GL writers to data, routines and data dictionaries; they are not

held consistently with respect to each other.

The 4GL's use of data dictionaries and auto-documentation are

powerful facilities which ps-algol lacks.

Auto-documentation covers up to three areas: (i) system

documentation - this aids the analyst in defining files/database

structures and programs (ii) program documentation - a programming aid

used to define programs to aid maintenance (iiI) operating

85

s-algol and the Commercial 3rd & 4th Generations

documentation - user aid to define how the program works and what to

use it for. Documentation is only produced by suites with a

considerable amount of central logic predefined. Thus VISTA does not

produce any program or operating documentation as much is left to the

whim of the analyst, but VISTA could provide system documentation if

necessary. A true 3GL is too flexible to provide any

auto-documentation, except possibly system documentation if it uses a

database.

A data dictionary is very much a fourth generation concept. No

field may be accessed from a database from within any program unless

that field is defined on the data dictionary by name. The data

dictionary entries define files, records and fields. In particular

fields are defined into type, size, name, range, values, etc. At

field level the principal advantage is that a field is only so defined

once and can then be used in many programs and files in the knowledge

that the suite is completely consistent in its use of database fields.

Programs in turn extract from the data dictionary the relevant details

of fields required; a data entry program would require all details,

while a print program would only require size and type. At a more

powerful level (e.g. PRO-IV) the data dictionary can be altered and

all programs' references to this field are correspondingly adjusted.

Ps-algol or s-algol could have field verification routines written

into external procedures and bound in at run time. In addition it may

be possible to include other data dictionary concepts into ps-algol

but, as will be seen later, this would be akin to adding IFS to

s-algol (see chapter 2 section 3 above), quite unnecessary as a better

solution is available. As ps-algol has a considerably more powerful

database accessing and storage method so the design philosophy of the

fourth generation will be seen to be applicable to ps-algol,

86

s-algol and the Commercial 3rd & 4th Generations

encompassing comfortably the data dictionary concept. I would suggest

leaving the data dictionary to a fourth generation ps-algol (see

example of a data dictionary and the consideration of ps-algol in the

fourth generation below in this section).

The 4GL's also have commands that cannot be expanded to a simple

routine. FIELD [35/43-441, as used by VISTA, defines where a record

field is to appear on the screen. From this command comes the code to

input, verify, display, etc. this field. But this also interacts

with the code for handling other FIELD commands. Therefore, VISTA

sorts the 3GL source code produced by it and puts it into the order it

prefers; hence why I said above that the programmer is not always

guite sure what the object program is doing; the compiler has a

modicum of intelligence built in.

figure 4.9 - VISTA FIELD call

CALL FIELD 01 XC.NAME "Name" P0500 NOMACC

{ a } fb} { c } [d } f e } { f }

a - command

b - number of field on screen if amending is required

c - file identifier and field name together defining

the field in the program

d - literal to be displayed on the screen

e - absolute position of field; row 5, column zero

(numbering both row and column from zero). This

is the position at which the 'b' is displayed,

'd' is displayed four columns on. Then the field

is input 16 characters on from the initial

given position,

f - name of subroutine to perform input verification

checking.

87

s-algol and the Commercial 3rd & 4th Generations

As with s-algol, a ps-algol file maintenance program would

require to be painstakingly written over a considerably longer period

of time than a 4GL FM program. The algol structure will, however,

ensure that the object program will be far freer from bugs than an

equivalent in the generally used on-line language, BASIC. This is

also true in relation to the true 4GL's to an extent as the source

code provided by the programmer is written in a 3GL-like language with

GOTO's that go nowhere, uninitialized variables, and all the

concomitant problems carried over from the old 3GL's.

Conversational Tools

It therefore follows that the true 4GL's are ahead of ps-algol in

speed of coding. But the 4GL market does not only consist of new

languages. What ps-algol could do is tackle the 4GL's by going one

better. This may appear presumptuous as it took the 4GL's 20 years to

appear after the 3GL's. However, the aim of the 4GL is to increase

programmer productivity, not of necessity to produce a new language,

after all, the language is only a means to an end. That end being the

removal of actual coding.

With this in mind I wrote a file maintenance program generator

(see section 2 below in this chapter). This interacted by asking file

and fields details. For each field it asked name, whether it was a

key, type, occurrences, display name, valid values, valid range of

values and maximum size. The interactive session was very simple and

the actual code produced may not have been bug-free ps-algol and

certainly was not good ps-algol but that was not the point being made.

The aim was to prove and produce a program that would produce a file

maintenance program (already noted as being a difficult and recurrent

88

s-algol and the Commercial 3rd & 4th Generations

commercial program) that worked, was neat, well documented and

logically structured, in no more than a few minutes. Normally one of

these programs would take several days to write in s-algol (as they

did for the Byre Theatre system (see b040 in chapter 3.4 above)) and

the resulting code would not be as exact and neat as produced by the

fm generator. Also the humanly produced program could have hidden

bugs; once such a fm generator was proved it would produce exact

working programs every time. In addition the generated program could

produce an audit of all actions performed by the user and could handle

multiple screens of information.

The tool certainly worked in that it produced a logically correct

program from a short question and answer session as it was designed to

do.

Similar tools could be written to handle data entry in particular

and with further design the option to produce standard print producers

and statement producers could also be tackled. All are reducable to a

body of logical repetitive sections from which a good generator can

produce a working program consistently.

The proof of the pudding is certainly in the eating in commercial

data processing. With this in mind I made the decision to move the

tool from possibly ps-algol under UNIX to ANSI COBOL under VMS. In

addition the tool was implemented on the University's Administrative

and Library Computer Unit DEC VAX 751.

In use it soon became obvious that the central core of logic was

correct but the tool (given the name, FMG (file maintenance

generator)) was too primitive. The tool was further enhanced as

89

s-algol and the Commercial 3rd & 4th Generations

(i) the question and answer session was divided from the actual

generator, with the information stored on disk.

(ii) the generator was then used to produce an interactive

version of itself.

(iii) the documentation generator was added

(iv) the common routines were extracted into COBOL subroutines

and bound into a library in the same manner as the Byre Theatre

project s-algol routines were held and compiled separately as external

routines (see chapter 3 above).

In addition a transaction processing generator (named TPG

(transaction processing generator)) was produced. This emulates the

VISTA BDI and BDU programs (see figures 4.4 and 4.6 above) in that it

handles multiple record types and batch totalling. It produces two

programs with the relevant operating documentation.

Finally a standard print program generator was added.

(Incomplete at this stage and certainly not the final possible

addition).

There arose a consistent and logical method for producing a

generator: (i) write a very neat program that performs everything you

would require at a maximum (e.g. in fm multiple screens, multiple

keys) and ensure it works (ii) extract and compile all possible

repetitive subroutines (e.g. input a string, position cursor) (iii)

compile and prove program with these routines as external subroutines

(iv) extract other static pieces of code (e.g. COBOL DIVISION

headers) into a separate file as a skeleton program with code

insertion points for the remaining variable codings (v) identify the

minimum parameters required to produce the variable codings. (vi)

90

s-algol and the Commercial 3rd & 4th Generations

write and prove the generator to produce these variable codings in

co-ordination with the static details held separately, outputting the

fm program (vii) in the case of fm use the generator to produce an fm

program to input the parameters (see (v) above); this program is then

used to front the generator.

This method of reduction was used to produce the COBOL generators

as it was not fully identified until after the algol generator was

completed. Full time equivalent the algol generator took about four

weeks to produce, the COBOL fm generator about 2 months and the COBOL

tp generator about two months also. Once again, the ease of coding in

s-algol is apparent. The difficulties met in returning to programming

in COBOL (despite the fact that this is the principal language I use

in my full time position) were apparent as logic bugs reappeared,

convoluted codings were added (for example the ADD-FIELD SECTION in

FMIWO.COB), etc.

The above method could also be used to reduce other repetitive

data processing program types to a simple generator using the minimum

parameters, for example, statement production (forms with header,

detail and trailer areas with possible multiple page overflow).

The COBOL utilities were used to produce programs for the

University's Works Department system (which is still under

development) and to replace the VISTA BDI and BDU (transaction

processing) programs within the nominal, residences and creditors

ledgers posting systems which do not fully work as required

[2/16ff,2/42ff,8/2ff]. This produced the following interesting chart

of speed of use:

91

s-algol and the Commercial 3rd & 4th Generations

figure 4.10 - FMG/TPG coding times

coded coding,testing & documenting
days per program->total time
3GL 4GL FMG/TPG

Data entry
Document Update
File Maintenance

3 15->45 8->24 l->3
12 3->36 1.5->18 1.5->18
17 8->136 2->34 1->17

total "2T7 76

Again the increase in productivity of the 4GL over the 3GL is

noted in screen handling program production. But the speed of FMG/TPG

over both, an increase in productivity of a factor of 5.7 over the 3GL

and 2 over VISTA was unexpected. In particular the problems

previously encountered using VISTA's data entry suite are evidenced by

the increase in productivity of 15 over the 3GL and 8 of TPG over BDI.

Ongoing maintenance is the second consideration when programming.

On the CTL 8050 minicomputer that preceded the A.L.C.U.'s VAX 751

until 1984, all transaction processing (meaning data entry, data

enguiry and file maintenance) was via the language/suite TAD T211. No

further maintenance was possible after one of the Unit's staff left.

The TAD system reguired complete rewriting in VISTA BDI, BDU, BFM and

BFP when the systems transferred to the VAX. However, the accounts

data entry system reguires batch control totalling not available in

BDI. Attempting to code this option in has proved only partly

successful, conseguently the BDI programs have never worked

completely. This evidences further problems that can often be

encountered. No matter how rapidly a system can be developed using a

tool (i) in time a non-standard coding will be reguired that may prove

impractical (ii) the tool's complexity could make it difficult to

maintain or (iii) changing machine may prove difficult. Hence why FMG

92

s-algol and the Commercial 3rd & 4th Generations

and TPG have replaced VISTA for the latest ALCU system.

The fm generator in particular could be further enhanced with

major alterations to allow:

(i) cross-file checking of fields allowing data validation, data

description display and most usefully would inhibit record deletion of

related data items.

(ii) field subdivision to allow entry of a field that subdivides

into different entities for checking purposes.

(iii) data dictionary of field commonality

(iv) dynamic field input, only enter field A if field B contains

C.

(v) multiple programs per file.

Such a generator falls directly into the sharp end of commercial

language/tools design.

Existing Tools

Since 1983, when the ALCU selected VISTA, there has been a major

expansion of the commercial tools market. This can lead to confusion

as products are often marketed under unsuitable labels with

extravagant claims.

NOMAD/2 claims, "If the package required ... the needs of a dp

professional, the overall objectives will not be attained" [24], Yet,

"
... don't believe the standard myth that 4GL's are true end user

tools. In fact, fourth generation languages can only be used as

end-user aids in simple, non-integrated systems that are relatively
small" (Whiteside, [42]). Whiteside is correct as the N0MAD2 writer

93

s-algol and the Commercial 3rd & 4th Generations

has forgotten that the 4GL tools are aimed at replacing 3GL

programming, not the related but different and far more complex

discipline of systems analysis.

The question often asked is 'what is a 4GL?'. Consequently

marketers rubbish the opposition and promote their particular

solution. I would turn it around to 'why is the 4GL?'. The market is

for tools that increase and enhance programmer productivity. The

market would perhaps be better described as 4th generation tools as

the concept of the language has often been discarded completely.

To give an overview, but no more than that, of the currently

available products I mailshot a number of identified marketers of such

tools (see appendix C). A good number responded allowing the

following view of the central themes to these tools:

(i) new language - VISTA, ADR, SPEEDWARE, INFO, POWERHOUSE,

ADS/ONLINE, SYSTEL, NOMAD/2, NATURAL.

(ii) database (relational or otherwise) - ADR, USER-11,

ADS/ONLINE, NOMAD/2, ADABAS, PRO-IV, MICS, FOCUS, ULTRA, SPEEDWARE,

INFO, MIMER, INFORMATION, DATAFLEX.

(iii) data dictionary - ADR, USER-11, ADS/ONLINE, SYSTEL,

NOMAD/2, PREDICT, PRO-IV, MICS, ULTRA, INFO, POWERHOUSE, INFORMATION.

(iv) auto-documentation - ADR, ADS/ONLINE,

NATURAL/ADABAS/PREDICT, DELTA, PRO-IV, MICS, SPEEDWARE.

(v) run-time help - ADR, ADS/ONLINE, PRO-IV.

94

s-algol and the Commercial 3rd & 4th Generations

(vi) 3GL code producer - DELTA (COBOL and PL/l), USER-11

(BASIC+2).

(vii) database query languages - MIMER, INFORMATION, DATAMASTER,

ULTRA, DATAPLEX.

(viii) collection of tools - FOCUS/FIDEL, DATAPLEX

The variability of the products is thus immense and many claim an

impressive list of clients: VISTA (ICI, Coca Cola), INTERCOM (Bell

Telephone, Midland Bank) or ADABAS (1000+ installations).

There are some tools that claim the misleading tag 'fourth

generation' which cannot claim to be anything new despite part of a

new generation. The data base query languages are one group. These

provide extra facilities to existing systems allowing rapid enquiry on

a database. They do not replace the need for another language or tool

to produce cheques, input batch data (transaction processing) or other

general data processing requirements. The packages of tools are

another. These are a group of tools that together provide all the

facilities required but by using at least two separate approaches to

the general problem. They do not show thought leading to an

integrated design to provide a genuine fourth generation solution.

Thus, of the 65 requests made for information 21 replied. Of

these 5 were query languages (not fourth generation contrary to

frequent claims), 2 were sets of tools, 1 was an expert system and 1

was a hardware/software performance and tuning package. The remaining

three fifths provided 9 4GL's, 2 3GL generators and 1 tool that is

almost entirely compilation free.

95

s-algol and the Commercial 3rd & 4th Generations

new language - VISTA is an example of this and has already been

discussed above. This is a true fourth generation language. Those at

the top of the heap come with database, data dictionary and

auto-documentation e.g. ADS/ONLINE.

For example, a POWERHOUSE data dictionary field:

figure 4.11 - Example POWERHOUSE record definition

MODE:F ACTION:ITEM RECORD Screen

01 Record ORDERS Auto Defn: M
02 File ORDERS Organization INDEXED Type RMS

Open ORDERS

MODE:F ACTION: Element Attributes | Item Attributes

Element Usage Type Siz Dc |Datatype Size Occ Key Seq.No
01 ORDER-NUMBER NUMERIC--ID N 6 IINTEGER-S 4 1 U 1.000
02 DEPT ID C 4 I CHARACTER 4 1 R 2.000
03 SUPP-CODE ID C 4 | CHARACTER 4 1 3.000
04 GOODS NAME C 20 I CHARACTER 20 1 4.000
05 COST MONEY N 9 2 |INTEGER-S 4 1 5.000
06 DATE-ORDERED D 6 IPHDATE 2 1 6.000
07 DELIVERY-DATE D 6 IPHDATE 6 1 7.000
08
09
10

Interestingly, the data dictionary identifies a substantial

subset of the parameters used to produce a file maintenance program.

producing 3GL code - DELTA [31] is a 3GL code producer. As such

it is the nearest to FMG/TPG (the generators produced as part of this

study) identified.

DELTA'S credo is built into its end product 'DELTA generates

portable source COBOL and PL/1 programs' [31/46]. This is backed up

by two reasons, (i) outward/forward compatible ' ... expand existing

systems ... no-risk long-term software' [31/46] (ii) inward/backward

compatible 'existing knowledge of dp staff ... 80% of existing

96

s-algol and the Cctnmercial 3rd & 4th Generations

software is written in COBOL' (31/46)

This is an argument that no doubt the writers of s-algol and

ps-algol will be well aware of, powerful despite the ugliness of the

product:

figure 4.12 - DELTA, screen definition [31/111]

.LAYOOT-KW36

Address-Number: &

Company name &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

Credit Limit

Hard/Soft—Codes ScScScSc ScScScSc ScScScSc ScScScSc

ScScScSc ScScScSc ScScScSc ScScScSc

ScScScSc ScScScSc ScScScSc ScScScSc

ScScScSc ScScScSc

Next Address Number : & Next Page : / &

.VARIABLES, PREFIX ITS
-PROGID , DEFAULT PROGID, PROTECTED, NOPAD, NORMAL
-DATE, DEFAULT RUN-EDATE, PROTECTED, NOPAD, NORMAL
-ACTPAGE , PROTECTED, NOPAD, NORMAL, JUSTIFY LEFT
-FUNCTION

—C0MP-NR1, FROM, PROTECTED
-C0MP-NR2, FROM, PROTECTED, PIC 9(5)
-NAME. FROM, PROTECTED, NOPAD, REVERSE, NORMAL
-CREDIT-LIMIT, FROM, TO, PIC Z(5).99., MUST, JUSTIFY LEFT
TABLE-EQUPMT, TIMES 5
-TYPE-HARD, FROM, TO
-TYPE-SOFT, FROM, TO, MUST
TABLE-EQUPMT-END
-KEY-CQMP-NR1
-KEY-COMP-NR2 , PIC 9(5)
-NEXTPAGE
-TOTPAGES , PROTECTED, NOPAD, NORMAL, .JUSTIFY LEFT
-LASTPOS, MUST, DEFAULT '*'
.END

97

s-algol and the Commercial 3rd & 4th Generations

Nonetheless, the actual basic commands isolated in FMG are also

present, as are many other unnecessary ones.

in-core, no compilation - perhaps the ultimate tool is one that

involves no coding. Although PRO-IV [26] appears to claim this, it

requires unique codings to be produced using a "BASIC-like code' [27].

Despite this, PRO-IV is as far from a language as currently

exists according to the survey. Applications are divided into menu,

screen, update and report (similar to VISTA's divisions).

PRO-IV has identified the parameters required to produce a file

maintenance program as was done for FMG. For example, to define the

file maintenance program [27/28ffl requires: mode

(update,inquire,etc.), file name, key length, description (file

title), sequence number, data type, variable name, maximum length,

fill code (space/zero fill alphanumerics), display code (print mask),

special check and help message. For example:

98

s-algol and the Commercial 3rd & 4th Generations

figure 4.13 - Part of a PRO-IV Screen Field Definition [27/66]

08/16/85 SCREEN FIELD DEFINITION PCS/SYS/01

FUNCTION NAME: TRAN-ENT TRANSACTION ENTRY SCREEN
MODE:

FIL SPECIAL GEN M N D A 0
FLD NAME—— LN COL LEN CDE DISPLAY-CODE CHECK CHK I C 0 R V

001 BANK-ACCT 8 35 10 Y
BANK ACCOUNT NUMBER

002 BANK-NAME 8 50 30 Y
NAME OF BANK

003 BANK-BRANCH 9 50 30 Y

004 @PSEQ 1 1 4 4.0 Y Y Y

005 BANK-TYPE 1 10 1 1 Y Y Y
TRANSACTION TYPE ('C'heck , 'D'eposit, 'A'djustment)

006 BANK-REF 1 15 6 RFB Y Y

TRANSACTION REFERENCE NUMBER (CHECK, DEPOSIT, ADJUSTMENT NOS..)
007 BANK-DATE 1 22 8 DATE DATE Y Y

TRANSACTION DATE
008 BANK-PAY 1 32 30

REFERENCE NAME (PAYEE FOR CHECKS, FROM WHOM FOR DEPOSITS)
009 BANK-AMT 1 64 15 9,2-

TRANSACTION AMOUNT
010 BANK-WHAT 2 32 30

PURPOSE OF TRANSACTION
011 BANK-RECON 2 65 8 DATE DATE

DATE OF STATEMENT

Again, the minimal set has not been identified as the tool

requires input of row and column number amongst others. Superfluous

details which can be calculated more logically by a good tool. But

PRO-IV uses approximately the same approach as FMG and TPG.

"Commercial programming consists largely of the repititious use of a

limited number of routines and ... these routines could all be

written efficiently in a parameterized manner". [26]

PRO-IV produces auto documentation as does FMG.

99

s-algol and the Commercial 3rd & 4th Generations

Aiming Forward

This variability shows that none of these products can really

claim to be what COBOL is relative to the 2GL's. None is as well

designed as s-algol or as universal as COBOL (although all are

immensely more complex). None show the facets of being properly

thought through to avoid (i) the asking of unnecessary questions such

as where a field should be shown on a data entry screen, as FMG avoids

asking, or (ii) if a new language is required, should it not be as

well designed and structured as the best 3GL's, such as the algols?

But the reason the 4GL tools are at least partially succeeding in

the extremely conservative commercial language market place is because

they are far more powerful than any 3GL and are doing the job commerce

requires of them. Even if with less than complete success. Perhaps,

herein lies an opportunity? ps-algol, s-algol and FMG evidence what

can be done with careful design.

An algol could not take my personal preferred route as used by

FMG and TPG. This relies on the present strength and universality of

the COBOL market-place. I prefer this as the most fitting short term

solution, having used a true fourth generation language, experienced

its limitations and having tapped its power into COBOL.

Neither does algol compare with the radically different

philosophy of the true fourth generation languages.

But, there is one route left - that taken currently solely in the

survey by PRO-IV. This is a tool written in a 3gl that requires any

extra facilities to be coded in a 3gl ('BASIC-like'). This tool

requires little compilation as the central facility is parameter

driven performing file maintenance or printouts as required by the

100

s-algol and the Commercial 3rd & 4th Generations

user and as already defined on a question and answer session.

S-algol has already been noted for its clean object code and its

ease of coding. With careful thought such a tool could be coded

efficiently in s-algol. In addition the extra routines that may be

required by the programmer could be coded in the standard format of

external procedures and linked into the full suite, as the externals

were similarly used in the Byre Theatre bookings system.

Such a task would require a considerable grounding and knowledge

in both algol and commercial systems and programming, but would

potentially place an algol at the front of the market as a

non-compilation-bound facility that is system-consistent and easily

expanded and maintained without the recourse to recompilation. It

could provide the most advanced product currently envisaged.

Could algol lead the pack in commercial use as clearly as it does

in design?

As a final thought, consider figure 4.14

101

s-algol and the Commercial 3rd & 4th Generations

figure 4.14 - 'voyage of discovery' [38,421

102

s-algol and the Commercial 3rd & 4th Generations

2. ps-algQl file maintenance generator

This is a very simple suite that served to prove the concept of

s-algol and ps-algol in the commercial fourth generation,

figure 4.15 - ps-algol fmg suite overview

vdu
/K

I

V

generator
i
i

v

program

Thus the generator asks each field to be defined. Then the

generator produces the fm source program.

This is the very simplest form of generator performing no input

checks for correct type and allowing no backtracking to correct

errors.

The parameters used are:

(i) file - name, password

(ii) field - name, key, type, occurs, occurs depending on field

name, display name, valid values, range, size.

103

s-algol and the Commercial 3rd & 4th Generations

FM Generator

Note that there are 15-16 pages relevant to the generator. The

COBOL equivalent (see section 3 below) is 35 pages, 125% longer.

Apart from the ease of s-algol over COBOL as a coding tool, s-algol

thus requires less code.

Jthis is the ps-algol file maintenance program producer

!
!
i

!
!
structure st.fd(string file, name,key, passwordjpntr file.fields)
I
structure st field(string code.name, type, depending, short.name;
int line, page, occurrs; pntr values, size, range, first.field,
next.field)

j
structure st.s value(string s.value; pntr first.s.value, next.s.value)
structure st.i.value(int i.value; pntr first.i.value, next.i.value)
structure st.r. value(real r.value; pntr first, r. value, next. r. val ue)
i

structure st.i.range(int i.low, i.high)
structure st.r.range(real r.low, r.high)
!
structure st.i.size(int i.size)
structure st.r.size(real r.size.1, r.size.2)
!

procedure get.file.details(->pntr)
begin
write "file name"
let fn:=read.a.line
write "file password"
let ps:=read.a.line
let f iel d: =st. f ield("", "", " ", " ", 0,0,0, nil, nil, nil, nil, nil)
let n.page:=1
let n.line:=5
let f.pg:=0
let f.ln:=0
let f.ke:=""
let done:=false
while "done do

begin
write "field name (c/r to end fields)"
let f.fn:=read.a.line
if f.fn="" then done:=true else

begin
if f.ke="" do

begin
write "key? (y=yes)"

104

s-algol and the Commercial 3rd & 4th Generations

if read.a.line="y" then f.ke:=f.fn
end
write "type (i/r/s/t/d) (upper case only)"
let f.ty:=read.a.line
write "occurs (1 if norm else >1)"
let f.oc:=readi
let f.de:=""
if f.oc>1 do

begin
write "depending on field"
f.de:=read.a.line

end
if f.ke=f.fn then

begin
f•Pg:=1
f.ln:=3

end
else

begin
if n.line+f. oc>23 then
begin
n.page:=n.page+1
f.pg:=n.page
f.In:=5
n.line:=4:f,oc

end
else

begin
f.ln:=n.line
n.line:=n.line+f.oc

f.pg:=n.page
end
if n.line=23 do
begin
n.line:=5

n.page:=n.page+1
end

end
write "short name (for displaying on the vdu)"
let f.sh:=read.a.line
let value:=(case f.ty of
"i ": st. i. val ue (0, nil, nil)
" r ", "t": st. r. val ue (0.0, nil,nil)
"s":st.s.value("",nil,nil))
default:nil
let a.value:=false
let f.done:=false
if f.ty~="d" do while "f.done do
begin
write "enter a valid value? (n=no more)"
if (read.a.line)="n" then f.done:=true else
begin
a.value:=true
value:= (case f.ty of
"i":st.i.value(readi,(if value(first.i.value)=nil then
value else value(first.i. value)),nil)

"r","t":st.r.value(readr,(if value(first.r.value)=nil then
value else value (first.r. value)), nil)

defaul t: st. s. val ue (r ead. a. line, (if val ue (first. s. val ue) =nil

105

s-algol and the Commercial 3rd & 4th Generations

then value else value(first. s. value),nil))
value:=(case f.ty of
"i","d":value(next.i.value)
"r","tvalue(next.r.value)
defaul t rvalue (next. s. value))

end
end
value: = (if a.value then (case f.ty of
"i":value(first.i.value)
"r", "t":value(first.r. value)
default value(first.s.value)) else nil)
if f.ty~="s" do if f.ty~="d" do write "range (lower and upper)"
let range:=(case f.ty of
"i", "d":st.i.range(readi,readi)
"r", "t":st.r.range(readr,readr)
defaultmil)
if f.ty="s" or f.ty="i" do write "size"
if f.ty="r" do write "size (before and after the point)"
let size:=(case f.ty of
"i","s":st.i.size(readi)
"r":st.r.size(readr,readr)
"t":st.r.size(2,2)
defaultrst.i.size(6))
field: =st.field(f. fn, f.ty,f.de,f.sh,f.pg,f.ln,f. oc,value, size,
range, (if field(first.field)=nil then field else
field(first.field),nil)

field: =field(next, field)
end

end
f ield:=field(first, field)
st.fd(fn,key,password,field)

end
!

procedure new.page.code(pntr fds;file program)
begin
let n.page:=0
output(program),"let new.page=proc(int page)

begin
for i=5 to 22 do
begin
cursor.to(i,1)
cursor("erase")

end
case page of

tf

let field:=fds(file.fields)
while field~=nil do

begin
if field(page)~=n. page do
begin
n.page:=field(page)
output(program),

" "++iformat(n.page)++
":

begin
n

end

output(program),
" display. "++

106

s-algol and the Commercial 3rd & 4th Generations

f ield(code, name) ++"("++field(file, name)++"("++
f ield(code, name)++

"))
If

field:=field(next.field)
if field=nil or n.page~=field(page) do output(program),

" end
tr

end

output(program),
" default:fail("'invalid page number at new.page='"++iformat(page))
end
i

ii

end
i

procedure check.code(pntr fdsjfile program)
begin
output(program)," !

!input checking
I

ii

let next:=fds(file.fields)
while next~=nil do

begin
output(program),"let check.n++next(code.name)++"=proc("++
(case next(type) of
"i","d":"int "
"r","t":"real "
default:"string ")++next(code.name)++" -> bool)

begin
ft

let xvalues:=next(values)
let xrange:=next(range)
let xsize:=next(size)
if xvalues=nil and xrange=nil then output(program),

" true
ii

else

begin
if xvalues~=nil do

begin
output(program),

" case "++
next(code.name)++

" of
it

while xvalues~=nil do

begin
output(program),(if next(type)="s" then

ii t ii ii

el se
"")++

(case next(type) of
"i","d":xvalues(i.value)
"r", "t":xvalues(r.value)
default:xvalues(s.value))++(if next(type)="s" then

ii i ii ii

el se

107

s-algol and the Commercial 3rd & 4th Generations

"")++
xvalues:=xvalues(next.value)
if xvalues~=nil do output(program),

ii ii
»

end

output(program),
" :true

default:"
end

output(program),(if xrange=nil then
"false
ii

el se
" if "++

next(code.name)++
" >= "++

(ease next(type) of
"i","d":iformat(xrange(i.lew))
default:fformat(xrange(r.low),xsize(r.size.1),
xsize(r.siz e. 2))++

" and "++

next(code.name)++
" <= "++

(case next(type) of
"iI*, "d":iformat(xrange(i.high))
default:fformat(xrange(r.high),xsize(r.size.1),
xsize(r.size.2))++

ii

then true else false
ii

end

output(program),
"end
!
it

next:=next(next.field)
end

end
!

procedure input.code(pntr fds;file program)
begin
output(program),

"!

!input and verify
;
tf

let next:=fds(file.fields)
while next~=nil do

begin
let xsize:=next(size)
let size:=(case next(type) of
"r","t":xsize(r.size.1)+xsize(r.size.2)+2
default:xsize(i.size))
let xrange:=next(range)
output(program),

"let input."++
next(code.name)++

"=proc(-> "++
(if next(occurs) > 1 then

108

s-algol and the Commercial 3rd & 4th Generations

it* it

el se
"")++

(case next(type) of
"i", "d":"int"
"r","t":"real"
default:"string")++

")
begin
let ok:=false
let "++

next(code.name)++
":="++

(if next(occurs)>1 then
"vector 1::"++

iformat(next(occurs))++
" of "

else
"")++

(case next(type) of
"i","d":"0"
"r","t":"0.0"
default:'" "'"")++

i»

"++

(if next(occurs)>1 then
" for i=1 to "++

iformat(next(occurs))++
" do

begin
it

else
"")++
" while "ok do

begin
prints("++
(if next(occurs)>1 then iformat(next(line)-1)++"+i" else

iformat(next(line))++
",20,'""

for i=1 to size do output(program),
If II

output(program),
it i it)

"++

next(code.name)++
(if next(occurs)>1 then

"(i)"
el se

"")++
":=input"++

(case next(type) of
"i", "d": "i"
tfrM, flt": "r"
default:"s")++

"("++
(if next(occurs)>1 then iformat(next(line)-1)++"+i" else

iforma t(next(1ine))++
n,20,»""

(case next (type) of

109

s-algol and the Commercial 3rd & 4th Generations

"i","d":iformat(xrange(i.low))++
","++

iformat(xrange(i.high))
"r","t":fformat(xrange(r.low),xsize(r.size.1),xsize(r.size.2))++

", "++
fformat(xrange(r.high), xsize(r. size. 1) ,xsize(r. size.2))

default:iformat(size))++
")

ok:=check."++
next(code.name)++

"("++
next(code.name)++
(if next(occurs)>1 then

"(i))
end
ok:=false

M

el se
"")++
" end
"++

next(code.name)++
n

end
!
tt

next:=next(next.field)
end

end
!

procedure display.code(pntr fds;file program)
begin
output(program),

"!
! display
!"
let next:=fds(next.field)
while next~=nil do

begin
output(program),

"let display. "++
next(code.name)++

"=proc("++
(if next(occurs)>1 then

11*11

else
"")++

(case next(type) of
"i«*, "d":"int "
"r", "t", "real "
default:"string ")++

next(code.nam e)++
")
begin
"++

(if next(occurs)>1 then
"for i = 1 to "++

iformat(next(occurs))++
" do

110

s-algol and the Commercial 3rd & 4th Generations

begin

else
«)++
" print"++

(case next(type) of
"i","d":"i"
flptf fl£ H • ftp ft

default:"s")++
"("++
","++

(if next(occurs)>1 then iformat(next(line)-1)++"+i" el
iformat(next(line)))++

",20,"++
next(code.nam e)++
(if next(occurs)>1 then

" (i)"
else

"")++
")
"++

(if next(occurs)>1 then
" end

n

el se

"")++
"end
!
If

next:=next(next.field)
end

end
!

procedure audit.code(pntr fdsjfile program)
begin
output(program),

"!
!audit the record
!
let audit.print=proc(pntr "++

fds(file.name)++
";file audit)
begin

ft

let next:=fds(next.field)
while next~=nil do

begin
let offset:=iformat(20-length(next(short.name)))

output(program),
(if next(occurs)>1 then

" for ir1 to "++

iformat(next(occurs))++
" do

begin
output(audit),(if i=1 then

• ""++

next(short.name)++
"»" else *"'"),

"++

111

s-algol and the Commercial 3rd & 4th Generations

next(code.name)++
"(i):(if i=1 then "++

offset++
" else 20),'"
t tt

end
tt

el se
" output(audit)

next(short.name)++
"*","++

fds(f ile.name)++
"("++

fds(file.name)++

next(code.name)++
"):"++

offset++
tt i tt

>

t tt tt)
next:=next(next.field)

end

output(program),
"end
!
tt

end
!

procedure screen.background.code(pntr fdsjfile program)
begin
output(program),

"!

Idisplay screen background
!
let screen.background=proc()
begin
cursor('"erase'")
prints(1,1"University of St. Andrews'")
prints(1,70,'""++
fds(program.name)++

n t n)
end
!
tt

end
1

procedure get.function.code(pntr fds;file program)
begin
output(program),

"!

!get.function
!
let get.function=proc(->string)
begin
let ok:=false
let function: = """

prints(23,1),'"amend, show, insert or delete (a/s/i/d)'"
while "ok do

4 begin

112

s-algol and the Commercial 3rd & 4th Generations

function:=inputs(23,42,1)
ok:=(case function of

»ii tit
f • "a' ",'"s'",' "i,'"d'":true

default: false
end

cursor.to(2,70)
cursor("'erase'")
prints((case function of

' "a: "'amend'"
•"s"': "'show'"
' "i"';' "insert'"
««d'":*"delete*"
default:2,70)

cursor.to(23,1)
cursor('"erase'")
function

end
!"
end
!

procedure get.key.code(pntr fdsjfile program)
begin
let n.key:=fds(key)
let next:=fds(next.field)
let ok:=0
while next~=nil do
if next(code.name)=n.key then ok:=1
else next:=next(next.field)
if ok=0 do fail("get.key.code - key not found")
output(program),

w j

!get key and record details

let get.key=proc(pntr "++
fds(f ile.name)++

","++
fds(file.name)++

".list -> int)
begin
let ok:=0
let record:=nil
let key:="++
(case next(type) of
"i","d":"0"
"r","t":"0.0"
default:"""" ")++

while ok=0 do

begin
key:=input."++
next(code.name)++

"0
if key="++
(case next(type) of
"i","d":"0"
"r","r": "0.0"
default: """"")++

" then ok: =2 else

begin
record:="++

113

s-algol and the Commercial 3rd & 4th Generations

(case next(type) of
"i", "d": "i"
Hp II . lip II

default:"s")++".lookup(key,"++
fds(file.name)++

".list)
ok: =(if fd.list=nil then (if functions'"i"' then 1 else 0)
else (if function~='"i'" then 1 else 0))
if ok=0 do call error("'record does'"++(if functions"'i
then """ else "• not "')++ '"exist"')

end

end
ok

end
!
end
j

procedure show.function.code(pntr fds;file program)
begin
let n.page:s0
output(program),

"!
!show.function
i

procedure show.function(pntr "++
fds (fil e. name) ++

")
begin

ff

let next:sfds(next.field)
while next~snil do

begin
if n.page~snext(page) do
begin
if n.page>0 do output(program),

" message('"press return for next page"')
tl

n. pages next(n.page)
output(program),

" new.page("++
iformat(n.page)++

")
fl

end

output(program),
" display."++

next(code.name)++
"("++

fds(file. name)++
"(»++

fds(file.name)++

next(code.name)++
"))
II

next:snext(next.field)
end

output(program),
"end

114

s-algol and the Commercial 3rd & 4th Generations

I

ti

end
i

procedure amend.function.code(pntr fds;file program)
begin
let n.page:=0
output(program),

"!
!amend function
I

procedure amend.function (pntr "++
fds(f ile. name)++

")
begin
let x:=1
while x~=0 do

begin
x:=inputi.23(1,200)
case x of "

let count:=1
let next:=fds(next.field)
while next~=nil do

begin
if n.page~=next(page) do
begin
output(program),
iforma t(count)++

n. ii++
" begin

new.page("++
iformat(next(page))++

")
n

end

output(program),
n n++

fds(file.name)++
"("++

fds(file.name)++

next(field.name)++
"):=input."++

next(f ield.name)++
tf

»t

if n.page~=next(page) do
begin
n.page:=next(page)
if n.page~=0 do output(program),

" end
ii

end
count:=count+1
next: =next (next. f iel d)

end

output(program),
" default:{}
end

115

s-algol and the Commercial 3rd & 4th Generations

end
!
n

end
!

procedure input.function.code(pntr fds;file program)
begin
let n.page=0
output(program),

"!

!input function
!

procedure input.function (pntr "++
fds(file.name)++

")
begin
ft

let next:=fds(next.field)
while next~=nil do

begin
if n.page"=next(page) do
begin
n.page=next(n.page)
output(program),

" new.page("++
iformat(n.page)++

")
ti

end

output(program),
" "++

fds (file. name)++
"("++

fds (file. name)++
". "++

next(code.name)++
"):=input."++

next(code.name)++
it

ii

end

output(program),
" amend.function("++

fds(f ile. name)++
")
end
!
ii

end
!

procedure main.code.code(pntr fds;file program)
begin
let n.key:=fds(key)
let next:=fds(next.field)
let ok:=0
while next~=nil do
if next(code.name)=n.key then ok:=1
else next:=next(next.field)
if ok=0 do fail("get.key.code - key not found")

116

s-algol and the Commercial 3rd & 4th Generations

output(program),
"!
!main program

screen.background()
let function:='"a'"
let "++

fds(f ile. name)++
":=open.database(

fds(file.name)++
".db, ""•++

password++
"'w, i "write*")
if "++

fds(file.name)++
" is error.record do fail('"failed to open "++

fds(f ile. name)++
" database'")
let "++

fds(file, name)++
".list:=s.lookup(•""++

fds(file.name)++
"++
fds(f ile. name)++

")
if "++

fds(file.name)++
".list=nil do

begin
"++
fds(f ile. name)++

".list=table()
s.enter("'"++
fds(file.name)++
"++
fds(f ile. name)++

fds(file, name)++
".list)
end
let audit:=create('""++

fds(file. name)++
".log"',493)
if audit=nullfile do fail('"failed to create log'")
audit:=open('""++

fds(file.name)++
".log"',1)
if audit=nvillfile do fail('"failed to open log'")
!
laudit headings
!

output(audit),'"University of St Andrews'",'""++
fds(file, name)++

":70, "'"++

i H

!
while function~=""" do

117

s-algol and the Commercial 3rd & 4th Generations

begin
function:=get.function()
if function~= """ do

begin
let key:="++
(case next(type) of
"i","d":"1"
"r","t":"1.0"
default:"'""•")++

n

while key~="++
(case next(type) of
"i", "d": "maxint"
"r", "t": "maxreal"
default:""""")++

?i

do

begin
let flag:=get.key("++
fds(file, name)++

","++
fds(file.name)++

".list,function)
if flag<2 do case function of
"i'": Jinput a new record
begin
output(audit),'"insert a new record

IT

input.function("++
fds(file.name)++

")
if inputb.23('"all details correct"y'") then
begin
"++

(case next(type) of
"i", "d": "i"
flptf . lip II
default:"s")++

".enter(key,"++
fds(file.name)++

fds(file, name)++
".list)

audit.print("++
fds (fil e. nam e)++

",audit)
end
else output(audit,'"abandoned

11?

end
"'s'": ! show an existing record
begin
output(audit),'"show a record

I If

show.function("++

118

s-algol and the Commercial 3rd & 4th Generations

fds(file, name)++
")

audit.print("++
fds(f ile.name)++

audit)
end
"'a'": ! amend an existing record
begin
output(audit),'"amend an existing record

»ii

audit.print("++
fds(f ile.name)++

",audit)
show.function("++

fds(f ile.name)++
")

amend.function("++
fds(f ile.name)++

")
if inputb.23('"all details correct"y'") then
begin
"++

(case next(type) of
"i","d":"i"
iirii. tij.ii
default:"sn)++

".enter(key,"
fds(file, name)++

fds(file.name)++
".list)

audit.print("++
fds(f ile. name)++

audit)
end
else output (audit)"abandoned

t it

end
default: ! delete an existing record
begin
output(audit)"delete a record

» If

show.function("++
fds(file.name)++

")
audit.print("++

fds(file.name)++
",audit)

if inputb.23('"delete this record'"y"') then
begin
"++

fds(f ile. name)++
".list:=nil

"++

(case next(type) of

119

s-algol and the Commercial 3rd & 4th Generations

"i","d":"i"
ftp ft . ftp ft
default:"s")++

".enter(key,"
fds(file, name)++

fds(file. name)++
".list)

end
else output (audit)"abandoned

i it

end
end

end
end

output(audit),'"end of audit report''p'"
close(audit)
let committed = commit()
if committed is error.record do fail('"failed to cimmit "++

fds(file.name)++
" database'")
?
ti

end
i

procedure start.code(pntr fds;file program)
begin
output(program),

"! "++

fds(program.name)++
" file maintenance program
!
i

!==
!
!
ft

output(program),
"structure st."++

fds(f ile.name)++
ii (ii
let fields:=fds(file.fields)
let count: =2
let n.type:=""
while fields~=nil do

begin
output(program),
(if field(occurs)>1 then

ii*ii

else
"")++

(if n.type~=fields(type) then (case fields(type) of
"i","d":"int "
"r","t":"real "

default:"string ") else "")++
fields(code.name)
if count=4 then

120

s-algol and the Commercial 3rd & 4th Generations

begin
output(program),

ii

it

count:=1
end
else count:=count+1
fields:=fields(next.field)
if fields~=nil then

begin
output(program),(if fields(type)~=n.type then

ti. n
9

el se

I!,")
n. type:=fields(type)

end
else output(program),

")
I
it

end

output(program),
"!
!===
!
it

end
!
Imain program code for the file maintenance producer
!========r================ssr=======================
!
let fds:=get.file.details
if fds~=nil do

begin
let program:=create(fds(file.name)++".s","s","a","v",133)
if program=nullfile do fail("couldn''t create program file")
program:=open(fds(file.name)++".s","a",1)
if program=nullfile do failC'couldn''t open program file")
new.page.code(fds,program)
start.code(fds,program)
check.code(fds,program)
input, code(fds,program)
display.code(fds,program)
audit.code(fds,program)
screen.background.code(fds, program)
get.function.code(fds,program)
ge t.key.code(fds,program)
show.function.code(fds,program)
amend.function.code(fds,program)
input.function.code(fds,program)
main.code(fds,program)
close(program)

end

121

s-algol and the Commercial 3rd & 4th Generations

Pg-algol Output Source

Although the s-algol fm generator differs slightly from the COBOL

fm generator (see section 3 below) the complete fm program below is

less than 6 pages. An equivalent COBOL program is 15 pages, 150?

longer.

Inomacc file maintenance program
j
!
!===
!
!
structure st.ncmacc(string nomacc.status; int nomacc.account;
•string nomacc.address)
!
!
!===
!
!

linput checking
i

let check.status=proc(string status -> bool)
begin

case status of
" "X":true
default: false

end
!
let check.account=proc(int account -> bool)
begin
if account >= 000010 and account <= 999999
then true else false

end
!
let check.address=proc(string address -> bool)
begin
true

end
!
!

linput and verify
j
let input.status=proc(-> string)
begin
let ok: =false
let status:=""
while ~ok do

begin
status:=inputs(5,20,1)
ok:=cheek.status(status)

end

122

s-algol and the Commercial 3rd & 4th Generations

status
end
!
let input.accountsproc(-> int)
begin
let ok:=false
let account:=0
while ~ok do

begin
account:=inputi(3,20,6,0)
ok:=check.account(account)

end
account

end
!
let input.address=proc(-> *string)
begin
let ok: =false
let address: =vector 1::5 of ""
for i=1 to 5 do

begin
while ~ok do

begin
address(i):=inputs(5+i,20,30)
ok: =check.address(address(i))

end
ok:=false
end
address

end
!
!
!display
j
let display.status=proe(string status)
begin

prints(5|20,status)
end
!
let display.account=proc(int account)
begin

printi(3,20,account)
end
!
let display,address=proc(*string address)
begin
for i = 1 to 5 do
begin

prints(5+i,20,address(i))
end

end
!
!
let new.pagesproc(int pagejpntr nomacc)
begin
for is5 to 22 do

begin
cursor.to(i,1)
cursor("erase")

123

s-algol and the Commercial 3rd & 4th Generations

end

case page of
1:

begin
printi(5,1,1)
prints(5,5,"record status")
display. status(nanacc(ncmacc. status))
printi(6,1,2)
prints(6,5,"name and address")
display .address(ncmacc(nanacc.address))
end

default:fail("invalid page number at new.page="++iformat(page))
end
!
Jaudit the record
!
let audit.print=proc(pntr nomaccjfile audit)
begin

output(audit),"record status", nomacc(naiiacc(naiiacc. status)) :7, "
" output(audit),"ledger account",ncmacc(nomacc(nomacc.account)):6,"
" for i=1 to 5 do

begin
output(audit),(if i=1 then "name and address" else ""),
ncmacc(ncmacc.address) (i): (if i=1 then 4 else 20),"

end
end
i

Idisplay screen background
i

let screen.background=proc()
begin
cursor("erase")
prints(1,1,"university of St. Andrews")
prints(1,70,"nomacc")

end
!
!

!get.function
;
let get.function=proc(->string)
begin
let ok: = false
let function:=""

prints(23,1,"amend, show, insert or delete (a/s/i/d)")
while "ok do

begin
function:=inputs(23,42,1)
ok:=(case function of
" ", "a ", "s ", "i ", "d ": true
defaul t:false

end

cursor.to(2,70)
cursor("erase")
prints(2,70,(case function of
"a":"amend"
"s": "show"
"i":"insert"
"d":"delete"

124

s-algol and the Commercial 3rd & 4th Generations

default:""))
cursor.to(23,1)
cursor("erase")
function

end
!
!

!get key and record details
i

let get.key=proc(pntr nomacc,naiiacc.list -> int)
begin
let ok:=0
let record:=nil
let key:=0
while ok=0 do

begin
key:=input.account()
if account=0 then ok:=2 else

begin
record:=i.lookup(key,nomacc.list)
ok:=(if fd.list=nil then (if function="i" then 1 else 0)
else (if function~="i" then 1 else 0))
if ok=0 do call error("record does"++(if function="i" then ""
else " not ")++"exist")

end
end
if ok=1 do nomacc(nanacc.account):=key
ok

end
i

!
!show.function
I
let show.function=proc(pntr nomacc)
begin
new.page(1,nomacc)
display. status(ncmacc(ncmacc.status))
display.account(ncmacc(ncmacc.account))
display .address(ncmacc(naiiacc.address))

end
!
!
.'amend function
!
let amend.function=proc(pntr nanacc)
begin
let x:=1
while x~=0 do

begin
x:=inputi.23(1,200)
case x of

1:begin
new.page(1,ncmacc)
nomacc(nanacc.status):=input.status()

end
2: nomacc(nanacc.account):=input.account()
3: nomacc(nanacc.address):=input.address()
default:{}
end

125

s-algol and the Commercial 3rd & 4th Generations

end
i

!input function
j
let input.functionsproc(pntr nomacc)
begin

new. page(1, ncmacc)
ncmacc(nomacc.status):=input.status()
nomacc(nomacc.account) :=input.account()
ncmacc (ncmacc. address): =input .address()
amend.function(ncmacc)

end
i

!main program
!============

screen.background()
let function:= "a"
let nomacc:=open.database("ncmacc.db,"resurgam","write")
if db is error.record do fail("failed to open ncmacc database")
let nomacc.list:=s.lookup("nomacc",nanacc)
if ncmacc.list=nil do

begin
nomacc.list:=table()
s.enter("nomacc",ncmacc,ncmacc.list)

end
let audit:=create("nomacc.log",493)
if audit=nullfile do fail("failed to create log")
audit: =open("nomacc. log, 1)
if audit=nullfile do fail("failed to open log")
!
!audit headings
!

output(audit),"university of St. Andrews","nomacc":70,"

it

i

while function~="" do

begin
function:=get.function()
if function~="" do

begin
let key:=1
while key~=maxint
do

begin
let flag:=get.key(nomacc,nomacc.list,function)
if flag<2 do case function of
"i": !input a new record
begin
output (audit), "insert a new record

t?

input.function(nomacc)
if inputb.23("all details correct","y") then
begin
i.enter(key,ncmacc,ncmacc.list)
audit.print(nomacc,audit)

end

126

s-algol and the Commercial 3rd & 4th Generations

else out put (audit, "abandoned

ii

end
"s": ! show an existing record
begin
output(audit),"show a record

II

show.function(nomacc)
audi t. print (nomacc, audit)

end
"a": ! amend an existing record
begin
output(audit),"amend an existing record

ii

audit, print (ncmacc,audit)
show.function(nomacc)
amend.function(ncmacc)
if inputb.23("all details correct","y") then
begin
i.enter(key,ncmacc,ncmacc.list)
audit.print(nomacc,audit)

end
else output (audit), "abandoned

it

end
default: ! delete an existing record
begin
output(audit),"delete a record

If

show.function(ncmacc)
audit.print(nomacc,audit)
if inputb.23("delete this record","y") then
begin
nomacc.list:=nil

i.enter(key,ncmacc,ncmacc.list)
end
else output(audit), "abandoned

it

end
end

end
end

output (audit), "end of audit report'p"
close(audit)
let committed=commit()
if committed is error.record do fail(" failed to commit ncmacc database")

127

s-algol and the Commercial 3rd & 4th Generations

3. The COBOL File Maintenance Generator

This represents only the program producing section of the

generator and an example of the program output from the generator.

Full details of the VAX IDCL command procedure to run the generator,

f.m. program definition program, f.m. program producer,

documentation producer, documentation and associated files are held in

an unbound appendix and tape at the department,

figure 4.16 - COBOL fmg suite overview

vdu

v

define

parameters
program

skeleton parameters skeleton
program file documentation

1 v

* fm

generator
documentation

generator

I
* fm

program

unformatted
documentation

I
DSR text processor

i
* formatted
documentation

* indicates these are included as examples below.

The generator:

(i) asks for the program name. It checks whether there is

already a parameter file set up for this program from a previous run

and notifies the operator whether it already exists.

128

s-algol and the Commercial 3rd & 4th Generations

(ii) the parameter program asks for the details of the program to

be produced. As this is a fin program the operator can alter the fin

parameters.

(iii) the generator then produces the fin program defined by the

parameters.

(.iv) the command procedure then optionally compiles the output

program (a useful test on first producing a program from a set of

parameters as reserved names, duplicate field names or seme other

error may be produced from the parameters. This is a range of tests

too considerable to put into the generator at this stage).

(v) the the generator produces the system and operating

documentation and optionally formats it using DSR (RUNOFF) the DEC VAX

VMS text processing package (the documentation is produced in a format

to be input to DSR).

At each stage the operator may abandon the run or emit an option.

The parameters are:

(i) file - name, title

(ii) field - name, type, display name, key, duplicates (if field

is the primary key), amendable, occurrences, valid values, size,

range.

129

s-algol and the Commercial 3rd & 4th Generations

Produce FM program

This is an example that shows how the generator produced the

COBOL code. Note that it is far more complex than the s-algol

equivalent (see section 2 above). This is partly due to the more

rigid structure of the COBOL language making variable positioning of

output fields difficult.

IDENTIFICATION DIVISION.
PROGRAM-ID. FMTWO.
*

* This program is a tool written that
* given a file defining a file's field
* definitions it produces a
* complete working ANSI COBOL
* program to run on a DEC VAX under VMS on
* VT100 terminal. The object program will allow
* full screen file maintenance with audit
* of actions produced automatically.
*

* Screen layouts, print layouts and user operating
* instructions are produced by another
* program.
*

ENVIRONMENT DIVISION.
CONFIGURATION SECTION.
SOURCE-COMPUTER. VAX-11.
OBJECT-COMPUTER. VAX-11.
INPUT-OUTPUT SECTION.
FILE-CONTROL.

SELECT PROG-FILE ASSIGN TO PROG.
SELECT SKELETON ASSIGN TO SKEL.
SELECT FM ASSIGN TO FMF

ORGANIZATION IS INDEXED
ACCESS IS DYNAMIC
RECORD KEY IS FM-KEY
ALTERNATE RECORD KEY IS FM-FIELD.

DATA DIVISION.
FILE SECTION.
FD FM.
01 FM-RECORD.

03 FM-KEY PIC 9(3).
03 FM-FILE PIC X(9).
03 FM-TITLE PIC X(50).
03 FM-FIELD PIC X(9).
03 FM-TYPE PIC X.
03 FM-DISPLAY-N PIC X(20).
03 EM-KEY-FLAG PIC 9.
03 FM-KEY-DUPS PIC X.
03 FM-AMEND PIC X.
03 FM-OCCURS PIC 99.
03 FM-NUM-VALS PIC 99.

130

s-algol and the Commercial 3rd & 4th Generations

03 FM-TYPE-VARIABLE.
05 FM-VALUES-S
05 FM—SIZE—S
05 FILLER

PIC X(20) OCCURS 15.
PIC 9(2) .

PIC X(6) .

03 FILLER REDEFINES FM-TYPE-VARIABLE
05 FM—VALUES—I
05 FM-SIZE—I
05 FM-RANGE-I

PIC S9(1S) OCCURS 15.
PIC 9(2) .

PIC S9(18) OCCURS 2.
03 FILLER REDEFINES FM-TYPE-VARIABLE.

05 FM-VALUES-R
05 FM—SIZE—RB
05 FM-SIZE-R4
05 FM-RANGF.-R
05 FILLER

PIC S9(13)V9(5) OCCURS 14.
PIC 9(2).
PIC 9(2) .

03 FILLER REDEFINES
05 FM-VALUES-D

05 FM-SIZE-D
05 FM-RANGE-D
05 FILLER

PIC S9(13)V9(5) OCCURS 2.
PIC X(16).

FM-TYPE-VARIABLE.

PIC 9(6) OCCURS 15.
PIC 9(2) .

PIC 9(6) OCCURS 2.
PIC X(204) .

03 FM-SCREEN-NU
03 FM-LINE
03 FM-PAGE

PIC 9(3).
PIC 9(2).
PIC 9(2) .

FD PROG-FILE
RECORD VARYING FROM 7 TO 79 CHARACTERS
DEPENDING ON RECORD-LENGTH.

01 OUT-REC.
03 ORR PIC X OCCURS 79.

FD SKELETON.
01 SKEL-LONG-REC.

03 FILLER PIC XXX.
SB END-OF-DATA VALUE "***".
03 FILLER PIC X(100).

01 SKEL-REC PIC X(72).
WORKING-STORAGE SECTION.

01 ST-INTEGER PIC -(17)9.
01 FILLER.

03 ST-REAL PIC -(12)9.9(5).
03 STR REDEFINES ST-REAL PIC X OCCURS 19.

01 PAST-ZERO PIC 9 COMP.
01 ST-FM-CLOSED PIC 9 CCMP.
01 WORK-1 PIC 99 COMP.
01 WORK-2 PIC 99 COMP.
01 EOF-REPLY PIC X.

88 END-OF-FILE VALUE "1".
01 RECORD-LENGTH PIC 99 CCMP.
01 W-QUOTE PTC X VALUE QUOTE.
01 WORK-A PIC 9999.
01 WORK-B PIC 9999.
01 WORK-C PIC 9999.
01 WORK-D PIC 9999.
01 WORK-E PIC 9999.
01 WORK-F PIC 9999.
01 WORK-G PIC 9999.
01 WORK-K PIC 9999.
01 PPAGE PIC 9999 VALUE 1.
01 KEY-NAME PIC X(9) VALUE SPACES.
01 KEY-TYPE PIC X VALUE SPACE.
01 INDENT PIC 9.

88 COMMENT VALUE 1.

131

s-algol and the Commercial 3rd & 4th Generations

SB AREA-A VALUE 2.
BB AEEA-B VALUE 3.
BB INDENTED VALUE 4.
BB GAME-LINE VALUE 5.
BB NO-INDENT VALUE 6.

01 CURR PIC 99 VALUE 7.
01 FIELD.

03 FI1 PIC X(60) VALUE SPACES.
03 FI REDEFINES FI1 PIC X OCCURS 60.

01 FILE-NAME.
03 FN3 PIC XXX.
03 FILLER PIC X(6).

01 ST-VALUES.
03 VIN PIC X OCCURS 20.

01 FILE-TITLE PTC X(60).
PROCEDURE DIVISION.
START-X SECTION.
A00.

PERFORM INITIALX.
PERFORM MAINFLOW.
PERFORM CLOSEDOWN.

A99.
STOP RUN.

*

*

TNITTALX SECTION.
*

*
open the files

*

100.
OPEN INPUT FM.
MOVE 0 TO ST-FM-CLOSED.
OPEN INPUT SKELETON.
OPEN OUTPUT PROG-FILE.

199.
EXIT.

*

* produce the program
*

MATNFLCM SECTION.
MOO.

PERFORM FIRST-DETAILS.
PERFORM STATIC-DETAILS.
PERFORM XINPUT-FIELDS.
PERFORM XAMEND-FIELDS.
PERFORM XSHCW—FIELDS.
PERFORM DISPLAY-STATICS.
PERFORM XINPUT—FIELD.
PERFORM XDISPIAY—FIELD.
PERFORM XNEW-PAGE.
PERFORM XAUDIT-MASTER.

M99.
EXIT.

*

* close files
*

CLOSEDOWN SECTION.
COO.

PERFORM CLOSE-FM.

132

s-algol and the Commercial 3rd & 4th Generations

CLOSE PROG-FILE.
CLOSE SKELETON.

C99.
EXIT.

*

CLOSE-FM SECTION.
CEVIOO.

IF ST-FM—CLOSED = ZERO
CLOSE FM

MOVE 1 TO ST-FM-CLOSED.
CFM99.

EXIT.
*

* this forces the program to fail with an error being
* returned to the operating system.
*

FAIL-END SECTION.
FAOO.

DISPLAY "PROGRAM RUN ABANDONED" WITH NO ADVANCING.
MOVE ZERO TO WORK-1.
DIVIDE 2 BY WORK—1 GIVING WORK-2.
PERFORM CLOSEDOWN.
STOP "PROGRAM RUN ABANDONED".

FA99.
EXIT.

*

MAS-HYPHEN SECTION.
MASOO.

MOVE FILE-NAME TO FIELD.
MOVE 5 TO INDENT.

PERFORM ADD-FIELD.

SUBTRACT 1 FROM CURR.
MOVE "-" TO FIELD.
PERFORM ADD-FIELD.
SUBTRACT 1 FROM CURR.

MAS99.
EXIT.

*

STATIC-DETAILS SECTION.
IDOO.

PERFORM IO-SKEL.
MOVE " PROGRAM-ID. FM" TO OUT-REC.
MOVE 22 TO CURR.
MOVE FILE-NAME TO FIELD.
MOVE 6 TO INDENT.

PERFORM ADD-FIELD.
SUBTRACT 1 FROM CURR.
MOVE "." TO FIELD.

PERFORM ADD-FIELD.

PERFORM IO-SKEL.
MOVE " SELECT" TO OUT-REC.

MOVE 19 TO CURR.

MOVE FILE-NAME TO FIELD.
MOVE 5 TO INDENT.
PERFORM ADD-FIELD.
MOVE "ASSIGN TO" TO FIELD.

PERFORM ADD-FIELD.
MOW FILE-NAME TO FIELD.
PERFORM ADD-FIELD.

133

s-algol and the Commercial 3rd & 4th Generations

SUBTRACT 1 FROM CURR.
MOVE "F" TO ORR (CURR).
PERFORM WRITEIT.
PERFOFM IO-SKEL.
MOVE " RECORD KEY IS" TO OUT-REC.
MOW 30 TO CURR.
PERFORM MAS-HYPHEN.
MOW KEY-NAME TO FIELD.
PERFORM ADD-FIELD.

PERFORM START-DETAILS.
ID01.

IF FM-KEY-FLAG = 2
PERFORM WRITEIT
MOW " ALTERNATE RECORD KEY IS" TO OUT-REC
MOW 40 TO CURR

PERFORM MAS-HYPHEN
MOW FM-FIELD TO FIELD
PERFORM ADD-FIELD.

PERFORM READ-DETAILS.
IF NOT END-OF-FILE

GO TO ID01.
SUBTRACT 1 FRCM CURR.
MOW TO FIELD.
PERFORM ADD-FIELD.
PERFORM IO-SKEL.
MOW " FD" TO OUT-REC.
MOW 11 TO CURR.
MOW 5 TO INDENT.
MOW FILE-NAME TO FIELD.
PERFORM ADD-FIELD.
SUBTRACT 1 FRCM CURR.
MOW TO FIELD.
PERFORM ADD-FIELD.
MOW " 01" TO OUT-REC.
MOW 11 TO CURR.
PERFORM MAS-HYPHEN.
MOW "RECORD." TO FIELD.
PERFORM ADD-FIELD.
PERFORM START-DETAILS.

ID05.
MOW " 03" TO OUT-REC.
MOW 15 TO CURR.
PERFORM MAS-HYPHEN.
MOW FM-FIELD TO FIELD.
MOW 5 TO INDENT.
PERFORM ADD-FIELD.
IF CURR < 40

MOW 40 TO CURR .

MOW "PIC" TO FIELD.
PERFORM ADD-FIELD.
IF FM-TYPE = "A"

MOW "X" TO FIELD
GO TO ID06.

IF FM-TYPE = "D"
MOW "9(6)" TO FIELD
PERFORM ADD-FIELD
GO TO ID10.

MOW ZERO TO WORK-G.
IF FM-TYPE = "I"

134

s-algol and the Commercial 3rd & 4th Generations

IF FM-RANGE-I (l) < ZERO
MOVE "S" TO FIELD
PERFORM ADD-FIELD
SUBTRACT 1 FROM CIJRR.

IF FM-TYPE = MR"
IF FM-RANGE-R (1) < ZERO

MOVE MS" TO FIELD
PERFORM ADD-FIELD
SUBTRACT 1 FRCM CURR.

MOVE "9" TO FIELD.
ID06.

PERFORM ADD-FIELD.
MOVE "(" TO FIELD.
SUBTRACT 1 FRCM CURR.
PERFORM ADD-FIELD.
IF FM-TYPE = "A"

MOVE FM—SIZE—S TO FIELD
ELSE
IF FM-TYPE = "I"

MOVE FM—SIZE—I TO FIELD
ELSE

MOVE FM—SIZE-RB TO FIELD.
SUBTRACT 1 FRCM CURR.
PERFORM ADD-FIELD.
MOVE ")" TO FIELD.
SUBTRACT 1 FRCM CURR.
PERFORM ADD-FIELD
IF FM-TrTE NOT = "R"

GO TO ID10.
SUBTRACT 1 FRCM CURR.
MOW "V9" TO FIELD.
PERFORM ADD-FIELD.
MOW "(" TO FIELD.
SUBTRACT 1 FROM CURR.
PERFORM ADD-FIELD.
MOW FM—SIZE-RA TO FIELD.
SUBTRACT 1 FRCM CURR.
PERFORM ADD-FIELD.
MOW ")" TO FIELD.
SUBTRACT 1 FRCM CURR.
PERFORM ADD-FIELD.

ID10.
IF FM-OCCURS > 1

MOW "OCCURS" TO FIELD
PERFORM ADD-FIELD
MOW FM-OCCURS TO FIELD
PERFORM ADD-FIELD.

SUBTRACT 1 FROM CURR.
MOW "." TO FIELD.

ID11.
PERFORM ADD-FIELD.
PERFORM READ-DETAILS.
IF NOT END-OF-FILE

GO TO ID05.
PERFORM IO-SKEL.
PERFORM START-DETAILS.

ID20.
IF FM-KEY-FLAG NOT = 1

PERFORM READ-DETAILS

135

s-algol and the Commercial 3rd & 4th Generations

GO TO ID20.
MOVE " 01 THIS-KEY PIC X(20) VALUE"
TO OUT-REC.
MOVE 48 TO CURR.

MOVE FM-DISPLAY-N TO FIELD.
PERFORM ADD-FIELD.
SUBTRACT 1 FROM CURR.
MOVE QUOTE TO ORR (47) ORR (CURR).
ADD 1 TO CURR.
MOVE TO ORR (CURR).
PERFORM WRITEIT.
PERFORM IO-SKEL.

MOVE " OPEN I-O" TO OUT-REC.
MOVE 21 TO CURR.
MOVE FILE-NAME TO FIELD.

MOVE 5 TO INDENT.

PERFORM ADD-FIELD.
MOVE TO FIELD.
SUBTRACT 1 FROM CURR.
PERFORM ADD-FIELD.
PERFORM IO-SKEL.
MOVE " MOVE" TO OUT-REC.
MOVE 17 TO CURR.
MOVE W-QUOTE TO FIELD.
MOVE 5 TO INDENT.

PERFORM ADD-FIELD.
MOVE FILE-TITLE TO FIELD.
SUBTRACT 1 FROM CURR.
PERFORM ADD-FIELD.
SUBTRACT 1 FROM CURR.
MOVE QUOTE TO ORR (CURR).
PERFORM WRITEIT.
PERFORM IO-SKEL.
PERFORM START-DETAILS.

ID25.
IF FM-KEY-FLAG NOT = 1

PERFORM READ-DETAILS
GO TO ID25.

MOVE " IF THIS-KEY NOT ="
TO OUT-REC.

MOVE 30 TO CURR.

MOVE FM-DISPLAY-N TO FIELD.
PERFORM ADD-FIELD.
SUBTRACT 1 FROM CURR.
MOVE QUOTE TO ORR (29) ORR (CURR).
PERFORM WRITEIT.
PERFORM IO-SKEL.
MOVE " CLOSE" TO OUT-REC.
MOVE 18 TO CURR.
MOVE FILE-NAME TO FIELD.
MOVE 5 TO INDENT.
PERFORM ADD-FIELD.
SUBTRACT 1 FROM CURR.
MOVE "." TO FIELD.
PERFORM ADD-FIELD.
PERFORM IO-SKEL.
PERFORM START-DETAILS.

ID30.
IF FM-KEY-FLAG NOT = ZERO

136

s-algol and the Commercial 3rd & 4th Generations

MOVE " IF THIS-KEY =" TO OUT-REC
MOVE 27 TO CURR

MOVE FM-DISPLAY-N TO FIELD
PERFORM ADD-FIELD
SUBTRACT 1 FRCM CURR
MOVE QUOTE TO ORR (26) ORR (CURR)
PERFORM WRITEIT
MOVE " PERFORM DISPLAY-STATICS-" TO OUT-REC
MOVE 40 TO CURR

MOVE FM-FIELD TO FIELD
PERFORM ADD-FIELD
PERFORM WRITEIT
MOVE " ELSE" TO OUT-REC
PERFORM WRITEIT.

PERFORM READ-DETAILS.
IF NOT END-OF-FILE

GO TO ID30.
PERFORM IO-SKEL.
PERFORM START-DETAILS.

ID35.
IF FM-KEY-FLAG NOT = ZERO

MOVE " IF THIS-KEY =" TO OUT-REC

MOVE 27 TO CURR
MOVE FM-DISPLAY-N TO FIELD
PERFORM ADD-FIELD

SUBTRACT 1 FROM CURR
MOVE QUOTE TO ORR (26) ORR (CURR)
PERFORM WRITEIT
MOVE " PERFORM INPUT-" TO OUT-REC
MOVE 30 TO CURR
MOVE FM-FIELD TO FIELD
PERFORM ADD-FIELD
PERFORM WRITEIT
MOVE " ELSE" TO OUT-REC
PERFORM WRITEIT.

PERFORM READ-DETAILS.
IF NOT END-OF-FILE

GO TO ID35.
PERFORM IO-SKEL.
MOVE " READ" TO OUT-REC.
MOVE 5 TO INDENT.
MOVE 17 TO CURR.

MOVE FILE-NAME TO FIELD.
PERFORM ADD-FIELD.
MOVE "NEXT AT END" TO FIELD.

PERFORM ADD-FIELD.
PERFORM WRITEIT.
PERFORM IO-SKEL.
MOVE " PERFORM DISPLAY-" TO OUT-REC.

MOVE 28 TO CURR.
MOVE KEY-NAME TO FIELD.

PERFORM ADD-FIELD.
SUBTRACT 1 FRCM CURR.
MOVE "." TO ORR (CURR).
PERFORM WRITEIT.
PERFORM IO-SKEL.

PERFORM START-DETAILS.
ID50.

IF FM-KEY-FLAG NOT = 1

137

s-algol and the Commercial 3rd & 4th Generations

PERFORM READ-DETAILS
GO TO ID50.

IF FM-KEY-DUPS = "Y"
MOVE "
PERFORM WRITEIT

GO TO GE99." TO OUT-REC

ELSE

MOVE "
PERFORM WRITEIT
MOVE "

IF NO-RECORD" TO OUT-REC

GO TO GE99" TO OUT-REC
PERFORM WRITEIT
MOVE " ELSE" TO OUT-REC
PERFORM WRITEIT

MOW " GO TO GE30." TO OUT-REC
PERFORM WRITEIT.

PERFORM IO-SKEL.
IF FM-KEY-DUPS = "N"

MOVE "
PERFORM WRITEIT

GO TO GE35." TO OUT-REC

MOVE II GE30." TO OUT-REC
PERFORM WRITEIT
MOVE

"

MOVE Record already exists TO ERROR-MESSAGE."
TO OUT-REC
MOVE QUOTE TO ORR (17) ORR (39)
PERFORM WRITEIT

MOW " GE35 . " TO OUT-REC
PERFORM WRITEIT.

PERFORM IO-SKEL.

PERFORM START-DETAILS.
MOVE " IF INPUT-S =" TO OUT-REC.
MOVE 25 TO CTJRR.

IF FM-KEY-FLAG = ZERO
GO TO ID60.

IF CURR > 50
PERFORM WRITEIT
MOVE 15 TO CURR.

IF CURR NOT = 25
MOVE "OR" TO FIELD

PERFORM ADD-FIELD.
MOVE QUOTE TO ORR (CURR).
ADD 1 TO CURR.
MOW FM-DISPLAY-N TO FIELD.
PERFORM ADD-FIELD.
SUBTRACT 1 FRCM CURR.
MOW QUOTE TO ORR (CURR) .

ADD 2 TO CURR.

PERFORM READ-DETAILS.
IF NOT END-OF-FILE

GO TO ID55.
PERFORM WRITEIT.
PERFORM IO-SKEL.
PERFORM START-DETAILS.
MOW " MOW One of:" TO OUT-REC.
MOW QUOTE TO ORR (17) .

MOW 26 TO CURR.
ID65.

IF FM-KEY-FLAG = ZERO

ID55

ID60

138

s-algol and the Commercial 3rd & 4th Generations

GO TO ID70.
IF CURR > 50

SUBTRACT 1 FROM CURR
MOVE QUOTE TO ORR (CURR)
ADD 2 TO CURR
MOVE "TO ERROR-MESSAGE." TO FIELD
PERFORM ADD—FTET,P

MOVE

CALL ERRORVDU USING RCW, COLUMN,"
TO OUT-REC

MOVE QUOTE TO ORR (17) ORR (26)
PERFORM WRITEIT
MOVE " ST-SIZE, ERROR-MESSAGE, TNPUT-S."
TO OUT-REC
PERFOFM WRITEIT

MOVE " MOVE " TO OUT-REC
PERFORM WRITEIT
MOVE QUOTE TO ORR (17)
MOVE 18 TO CURR.

IF CURR > 26
SUBTRACT 1 FRCM CURR
MOVE TO ORR (CURR)
ADD 2 TO CURR.

MOVE FM-DISPLAY-N TO FIELD.
PERFORM ADD-FIELD.

ID70.
PERFORM READ-DETAILS.
IF NOT END-OF-FILE

GO TO ID65.
SUBTRACT 1 FRCM CURR.
MOVE QUOTE TO ORR (CURR).
ADD 2 TO CURR.
MOVE "TO ERROR-MESSAGE." TO FIELD.
PERFORM ADD-FIELD.

PERFORM IO-SKEL.
PERFORM START-DETATLS.

ID71.
IF FM-KEY-FLAG NOT = ZERO

MOW " IF THIS-KEY =" TO OUT-REC
MOVE 27 TO CURR

MOVE FM-DISPLAY-N TO FIELD
PERFORM ADD—FTETD

SUBTRACT .1 FRCM CURR
MOVE QUOTE TO ORR (26) ORR (CURR)
PERFORM WRITEIT
MOVE " GO TO RV-" TO OUT-REC
MOW 25 TO CURR
MOW FM-FIELD TO FIELD
PERFORM ADD-FIELD
SUBTRACT 1 FROM CURR
MOW TO ORR (CURR)
PERFORM WRITEIT.

PERFORM READ-DETAILS.
IF NOT END-OF-FILE

GO TO ID71.
PERFORM IO-SKEL.

PERFORM START-DETAILS.
ID72.

IF FM-KEY-FLAG NOT = ZERO

139

s-algol and the Commercial 3rd & 4th Generations

MOVE " RV-" TO OUT-REC
MOVE 11 TO CTJRR
MOVE FM-FIELD TO FIELD
PERFORM ADD-FIELD
SUBTRACT 1 FROM CURR
MOVE TO ORR (CURR)
PERFORM WRITETT
MOVE " READ" TO OUT-REC
MOVE 17 TO CURR
MOVE FILE-NAME TO FIELD
PERFORM ADD-FIELD
MOVE "KEY IS" TO FIELD
PERFORM ADD-FIELD
PERFORM MAS-HYPHEN
MOVE FM-FIELD TO FIELD
PERFORM ADD-FIELD
MOVE "INVALID KEY" TO FIELD
PERFORM ADD-FIELD
PERFORM WRITEIT
MOVE " MOVE 2 TO REPLY." TO OUT-REC
PERFORM WRITETT
MOVE " GO TO RV99." TO OUT-REC
PERFORM WRITEIT.

PERFORM READ-DETAILS.
IF NOT END-OF-FILE

GO TO ID72.
PERFORM IO-SKEL.
PERFORM PERFORM-AUDIT.
MOVE " WRITE" TO OUT-REC.
MOVE IS TO CURR.
PERFORM MAS-HYPHEN.
MOVE "RECORD INVALID KEY" TO FIELD.
PERFORM ADD-FIELD.
PERFORM WRITEIT.
PERFORM IO-SKEL.
PERFORM PERFORM-AUDIT.
PERFORM IO-SKEL.
PERFORM PERFORM-AUDIT.
MOVE " REWRITE" TO OUT-REC.
MOVE 20 TO CURR.
PERFORM MAS-HYPHEN.
MOVE "RECORD INVALID KEY" TO FIELD.
PERFORM ADD-FIELD.
PERFORM WRITEIT.
PERFORM IO-SKEL.
PERFORM PERFORM-AUDIT.
PERFORM IO-SKEL.
PERFORM PERFORM-AUDIT.
PERFORM IO-SKEL.
MOVE " DELETE" TO OUT-REC.
MOVE 19 TO CURR.
MOVE FILE-NAME TO FIELD.
MOVE 5 TO INDENT.
PERFORM ADD-FIELD.
MOVE "INVALID KEY" TO FIELD.
PERFORM ADD-FIELD.
PERFORM WRITEIT.
PERFORM IO-SKEL.
PERFORM START-DETAILS.

140

s-algol and the Commercial 3rd & 4th Generations

ID75.
IF FM-KEY-FLAG NOT = 1

PERFORM READ-DETAILS
GO TO ID75.

MOVE " MOVE" TO OUT-REC.
MOVE 22 TO CURR.
MOVE FM-DTSPLAY-N TO FIELD.
PERFORM ADD-FIELD.
SUBTRACT 1 FROM CURR.
MOVE QUOTE TO ORR (21) ORR (CURR).
ADD 2 TO CURR.
MOVE "TO THIS-KEY" TO FIELD.
PERFORM ADD-FIELD.
PERFORM WRITEIT.

ID99.
EXIT.

PERFORM-AUDIT SECTION.
PEAOO.

MOW " PERFORM AUDIT-" TO OIT-REC.
MOW 26 TO CURR.
MOW FILE-NAME TO FIELD.

MOW 5 TO INDENT.
PERFORM ADD-FIELD.
SUBTRACT 1 FROM CURR.
MOW "." TO FIELD.
PERFORM ADD-FIELD.

PEA99.
EXIT.

XINPUT-FIELDS SECTION.

XINOO.
PERFORM IO-SKEL.
MOW ZERO TO WORK-B.
PERFORM START-DETAILS.

XIN05.
IF WORK-B = FM-PAGE

GO TO XIN15.
IF WORK-B = 0

GO TO XIN10.
MOW " MOW 23 TO ROW." TO OUT-REC.
PERFORM WRITEIT.
MOW " MOW 1 TO COLUMN." TO OUT-REC.
PERFORM WRITEIT.
MOW " CALL CURSORED USING RCW, COLUMN."

TO OUT-REC.
MOW QUOTE TO ORR (17) ORR (26).
PERFORM WRTTEIT.
MOW " DISPLAY" TO OUT-REC.
MOW 20 TO CURR.
MOW W-QUOTE TO FIELD.
MOW 5 TO INDENT.

PERFORM ADD-FIELD.
SUBTRACT 1 FROM CURR.
MOW "Next Page" TO FIELD.
PERFORM ADD-FIELD.
SUBTRACT 1 FROM CURR.
MOW W-QUOTE TO FIELD.
PERFORM ADD-FIELD.

141

s-algol and the Commercial 3rd & 4th Generations

MOVE "WITH NO ADVANCING." TO FIELD.
PERFORM ADD-FIELD.
MOVE " ACCEPT INPUT-S." TO OUT-REC.
PERFORM WRITEIT.

XIN10.
MOVE FM-PAGE TO WORK-B.
MOVE " MOVE" TO OUT-REC.
MOVE 17 TO CURR.
IF WORK-B = ZERO

MOVE "ZERO" TO FIELD
ELSE

MOVE WORK-B TO FIELD.
MOVE 5 TO INDENT.

PERFORM ADD-FIELD.
MOVE "TO SCREEN-PAGE." TO FIELD.

PERFORM ADD-FIELD.

MOVE " PERFORM NEW-PAGE." TO OtTT-REC.
PERFORM WRITEIT.

XIN15.
IF FM-KEY-FLAG = 1

GO TO XIN20.
IF FM-SCREEN-NU > ZERO

GO TO XIN16.
IF FM-OCCURS > 1

MOVE " MOVE 1 TO SUBSCRIPT." TO OUT-REC
PERFORM WRITEIT
MOVE " INP-" TO OUT-REC
MOVE 12 TO CURR
MOVE 5 TO INDENT
MOVE FM-FIELD TO FIELD
PERFORM ADD-FIELD

MOVE TO FIELD

SUBTRACT 1 FROM CURB
PERFORM ADD-FIELD.

MOVE " MOVE" TO OUT-REC.
MOW 17 TO CURR.

IF FM-TYPE = "A"
MOW "SPACES" TO FIELD

ELSE

MOW "ZEROES" TO FIELD.
MOW 5 TO INDENT.
PERFORM ADD-FIELD.
MOW "TO" TO FIELD.

PERFORM ADD-FIELD.
PERFORM MAS-HYPHEN.
MOW FM-FIELD TO FIELD.
PERFORM ADD-FIELD.
TF FM-OCCURS > 1

MOW "(SUBSCRIPT)" TO FIELD
PERFORM ADD-FIELD.

SUBTRACT 1 FROM CURR.
MOW TO FIELD.
PERFORM ADD-FIELD.
IF FM-OCCURS > 1

MOW " IF SUBSCRIPT <" TO OUT-REC
MOW 27 TO CURR
MOW FM-OCCURS TO FIELD
PERFORM ADD-FIELD
PERFORM WRITEIT

142

s-algol and the Commercial 3rd & 4th Generations

MOVE " ADD 1 TO SUBSCRIPT" TO OUT-REC
PERFORM WRITEIT
MOVE " GO TO IMP-" TO OUT-REC
MOVE 26 TO CURR
MOVE FM-FIELD TO FIELD
PERFORM ADD-FIELD

SUBTRACT 1 FROM CURR
MOVE TO FIELD
PERFORM ADD-FTELD.

GO TO XIN20.
XIN16.

MOVE " PERFORM INPUT-" TO OUT-REC.
MOVE 26 TO CURR.
MOVE FM-FIELD TO FIELD.
MOVE 5 TO INDENT.
PERFORM ADD-FIELD.

SUBTRACT 1 FROM CURR.
MOW TO FIELD.

PERFORM ADD-FIELD.
XIN20.

PERFORM READ-DETAILS.
IF NOT END-OF-FILE

GO TO XIN05.
XIN99.

EXIT.

XAMEND—FIELDS SECTION.
XAMOO.

PERFORM IO-SKEL.
MOVE " MOVE" TO OUT-REC.
MOVE 17 TO CURR.
PERFORM START-DETAILS.

XAM05.
IF FM-SCREEN-NU > ZERO

MOVE FM-SCREEN-NU TO FIELD.
PERFORM READ-DETAILS.
IF NOT END-OF-FILE

GO TO XAM05.
MOVE 5 TO INDENT.
PERFORM ADD-FIELD.
MOVE "TO UPPER-I." TO FIELD.
PERFORM ADD-FIELD.
PERFORM IO-SKEL.
MOVE 1 TO WORK-B WORK-A.
PERFORM START-DETAILS.

XAMlf).
IF FM-SCREEN-NU > ZERO AND FM-PAGE NOT = WORK-B

GO TO XAM12.
IF FM-SCREEN-NU > ZERO

MOVE FM-SCREEN-NU TO WORK-A.
PERFORM READ-DETAILS.
IF END-OF-FILE

GO TO XAM12.
GO TO XAM10.

XAM12.
MOVE " IF INPUT-I NOT >" TO OUT-REC.

MOVE 29 TO CURR.
MOVE WORK-A TO FIELD.
MOVE 5 TO INDENT.

143

s-algol and the Commercial 3rd & 4th Generations

PERFORM ADD-FJELD.
PERFORM WRITEIT.
MOVE "MOVE" TO FIELD.
MOVE 4 TO INDENT.
PERFORM ADD-FIELD.
MOVE WORK-B TO FIELD.

MOVE 5 TO INDENT.

PERFORM ADD-FIELD.
MOW "TO WORK-1" TO FIELD.
PERFORM ADD-FIELD.
IF END-OF-FILE

GO TO XAM15.
PERFORM WRITEIT.
MOVE FM-PAGE TO WORK-B.

MOVE " ELSE" TO OUT-REC.

PERFORM WRITEIT.
GO TO XAM10.

XAM15.
SUBTRACT 1 FROM CURR.
MOW "." TO FIELD.

PERFORM ADD-FIELD.

MOW " IF WORK-1 NOT = SCREEN-PAGE" TO OUT-REC.
PERFORM WRITEIT.
MOW " MOW WORK-1 TO SCREEN-PAGE" TO OUT-REC.
PERFORM WRITEIT.

MOW " PERFORM SHOW-FIELDS" TO OUT-REC.
PERFORM WRITEIT.
MOW " GO TO AMEOO." TO OUT-REC.
PERFORM WRITEIT.
PERFORM START-DETAILS.
IF FM-AMEND = "N" OR FM-KEY-FLAG = 1
IF FM-SCREEN-NU = 0

GO TO XAM25.
XAM20.

MOW " IF INPUT-1 =" TO OUT-REC.
MOW 25 TO CURR.

MOW FM-SCREEN-NU TO FIELD.
MOW 5 TO INDENT.

PERFORM ADD-FIELD.
PERFORM WRITEIT.
MOW "PERFORM INPUT-" TO FIELD.
MOW 4 TO INDENT.
PERFORM ADD-FIELD.
MOW FM-FIELD TO FIELD.
SUBTRACT 1 FRCM CURR.
MOW 5 TO INDENT.
PERFORM ADD-FIELD.

XAM25.
PERFORM READ-DETAILS.
IF END-OF-FILE

GO TO XAM30.
IF FM-SCREEN-NU = 0

GO TO XAM25.
PERFORM WRITEIT.
IF FM-SCREEN-NU > 1

MOW " ELSE" TO OUT-REC
PERFORM WRITEIT.

GO TO XAM20.
XAM30.

144

s-algol and the Commercial 3rd & 4th Generations

SUBTRACT 1 FRCM CURR.
MOVE TO FIELD.
PERFORM ADD-FIELD.

XAM99.
EXIT.

XSHCW—FIELDS SECTION.
XSHOO.

PERFORM IO-SKEL.
MOVE 1 TO WORK-B.
MOVE " IF SCREEN-PAGE = 1" TO OUT-REC.
PERFORM WRITEIT.
PERFORM START-DETAILS.

XSH05.
IF END-OF-FILE

MOVE "." TO FIELD

PERFORM ADD-FIELD
GO TO XSH90.

IF FM-DISPLAY-N = SPACES OR FM-KEY-FLAG = 1
PERFORM READ-DETAILS
GO TO XSH05.

IF FM-PAGE > WORK-B
MOVE "." TO FIELD
PERFORM ADD-FIELD
MOVE " IF SCREEN-PAGE =" TO OUT-REC

MOVE 29 TO CURR

MOVE FM-PAGE TO FIELD WORK-B

MOVE 5 TO INDENT
PERFORM ADD-FIELD.

PERFORM WRITEIT.

MOVE " PERFORM DISPLAY-" TO OUT-REC.
MOVE 32 TO CURR.
MOVE FM-FIELD TO FIELD.
MOVE 5 TO INDENT.
PERFORM ADD-FIELD.
PERFORM READ-DETAILS.
GO TO XSH05.

XSH90.
PERFORM IO-SKEL.
MOVE " OR SCREEN-PAGE =" TO OUT-REC.
MOVE 29 TO CURR.
MOVE WORK-B TO FIELD.

MOW 5 TO INDENT.
PERFORM ADD-FIELD.
PERFORM WRITEIT.

XSH99.
EXIT.

XAUDIT-MASTER SECTION.

XATJOO.
PERFORM IO-SKEL.

MOVE " AUDIT-" TO OUT-REC.
MOVE 14 TO CURR.
MOVE FILE-NAME TO FIELD.
MOVE 5 TO INDENT.
PERFORM ADD-FIELD.

MOVE "SECTION." TO FIELD.
PERFORM ADD-FIELD.
PERFORM IO-SKEL.

145

s-algol and the Commercial 3rd & 4th Generations

PERFORM START-DETAILS.
XAU05.

MOVE " MOVE" TO OUT-REC.
MOVE 17 TO CURR.
MOVE W-QUOTE TO FIELD.
MOVE 5 TO INDENT.
PERFORM ADD-FIELD.

SUBTRACT 1 FRCM CURR.
IF FM-DISPLAY-N = SPACES

MOVE FM-FIELD TO FIELD
ELSE

MOVE FM-DISPLAY-N TO FIELD.
PERFORM ADD-FIELD.

MOVE W-QUOTE TO FIELD.
SUBTRACT 1 FRCM CURR.

PERFORM ADD-FIELD.
MOVE "TO AUDIT-NAME." TO FIELD.
PERFORM ADD-FIELD.
IF FM-OCCURS > 1

MOVE " MOVE 1 TO SUBSCRIPT." TO OUT-REC
PERFORM WRITE1^
MOVE "AUDIT-" TO FIELD
MOVE 2 TO INDENT
PERFORM ADD-FIELD
SUBTRACT 1 FROM CURR

MOVE FM-FIELD TO FIELD
MOVE 5 TO INDENT
PERFORM ADD-FIELD
SUBTRACT 1 FRCM CURR
MOVE "." TO FIELD
PERFORM ADD-FIELD.

IF FM-TYPE = "A"
GO TO XAU06.

MOVE " IF" TO OUT-REC.
MOVE 15 TO CURR.
PERFORM MAS-HYPHEN.
MOVE FM-FIELD TO FIELD.
MOVE 5 TO INDENT.
PERFORM ADD-FIELD.
IF FM-OCCURS > 1

MOVE "(SUBSCRIPT)" TO FIELD
PERFORM ADD-FIELD.

MOVE "NUMERIC" TO FIELD.
PERFORM ADD-FIELD
PERFORM WRITFIT.
MOVE " MOVE" TO OUT-REC.
MOVE 21 TO CURR.
PERFORM MAS-HYPHEN.
MOVE FM-FIELD TO FIELD.
MOVE 5 TO INDENT.
PERFORM ADD-FIELD.
IF FM-OCCURS > 1

MOVE "(SUBSCRIPT)" TO FIELD
PERFORM ADD-FIELD.

MOVE "TO AUDIT-VALUE-" TO FIELD.
PERFORM ADD-FIELD.
SUBTRACT 1 FRCM CURR.
IF FM-TYPE NOT = "R"

MOVE "9" TO FIELD

146

s-algol and the Commercial 3rd & 4th Generations

ELSE

MOVE "R" TO FIELD.
PERFORM ADD—FTFTD.

PERFORM WRITEIT.
MOVE " ELSE" TO OUT-REC.
PERFORM WRITEIT.
IF FM-TYPE = "R"

MOVE
"

MOVE contents undefined" TO OUT-REC
MOVE QUOTE TO ORR (21) ORR (40)
MOVE 42 TO CURR
GO TO XAU05A.

MOVE " MOVE" TO OUT-REC.
MOVE 21 TO CURR.
PERFORM MAS-HYPHEN.
MOVE FM-FIELD TO FIELD.

MOW 3 TO INDENT.
PERFORM ADD-FIELD.
IF FM-OCCURS > 1

MOW "(SUBSCRIPT)" TO FIELD
PERFORM ADD-FIELD.

XAU05A.
MOW "TO AUDIT-VALUE-X." TO FIELD.
PERFORM ADD-FIELD.
GO TO XAU07.

XAU06.
MOW " MOW" TO OUT-REC.
MOW 17 TO CURR.

PERFORM MAS-HYPHEN.
MOW FM-FIELD TO FIELD.
MOW 5 TO INDENT1.
PERFORM ADD-FIELD.
IF FM-OCCURS > 1

MOW "(SUBSCRIPT)" TO FIELD
PERFORM ADD-FIELD.

MOW "TO AUDIT-VALUE-X." TO FTELD.
PERFORM ADD-FIELD.

XAU07.
MOW " PERFORM AUDIT-PRINT." TO OUT-REC.
PERFORM WRITEIT.
IF FM-OCCURS > 1

MOW " IF SUBSCRIPT NOT =" TO OUT-REC
MOW 31 TO CURR
MOW FM-OCCURS TO FIELD
MOW 5 TO INDENT
PERFORM ADD-FIELD
PERFORM WRITEIT
MOW " ADD 1 TO SUBSCRIPT" TO OUT-REC
PERFORM WRITEIT

MOW "GO TO AUDIT-" TO FIELD
MOW 4 TO INDENT
PERFORM ADD-FIELD

SUBTRACT 1 FROM CURR
MOW FM-FIELD TO FIELD
MOW 5 TO INDENT
PERFORM ADD-FIELD

MOW " . " TO FIELD
PERFORM ADD-FIELD.

XAU10.

147

s-algol and the Commercial 3rd & 4th Generations

PERFORM READ-DERAILS.
IF NOT END-OF-FILE

GO TO XAU05.
PERFORM IO-SKEL.

XAU99.
EXIT.

COMMENT-LINE SECTION.
COLOO.

MOVE " *" TO OUT-REC.
PERFORM WRITEIT.

COL99.
EXIT.

XDISPIAY-FIELD SECTION.

XDIOO.
PERFORM IO-SKEL.
PERFORM START-DETAILS.

XDI05.
IF FM-DISPLAY-N = SPACES

GO TO XDI20.
PERFORM COMMENT—LINE.
MOVE "DISPLAY-" TO FIELD.
MOVE 2 TO INDENT.
PERFORM ADD-FIELD.
SUBTRACT 1 FRCM CURR.
MOVE FM-FIELD TO FIELD.
MOVE 5 TO INDENT.

PERFORM ADD-FIELD.
MOVE "SECTION." TO FIELD.
PERFORM ADD-FIELD.
MOVE "D-" TO FIELD.

MOW 2 TO INDENT.
PERFORM ADD-FIELD.
SUBTRACT 1 FRCM CURR.
MOVE FM-FIELD TO FIELD.
MOVE 5 TO INDENT.

PERFORM ADD-FTELD.
SUBTRACT 1 FRCM CURR.
MOVE "-00." TO FIELD.
PERFORM ADD-FIELD.
MOVE " MOVE" TO OUT-REC.
MOVE 17 TO CURR.
MOVE FM-LINE TO FIELD.
MOVE 5 TO INDENT.
PERFORM ADD-FIELD.
MOVE "TO ROT." TO FIELD.
PERFORM ADD-FIELD.
MOW " MOW 30 TO COLUMN." TO OUT-REC.
PERFORM WRITEIT.
IF FM-OCCURS > 1

MOW " MOW 1 TO SUBSCRIPT." TO OUT-REC
PERFORM WRITEIT
MOW "D-" TO FIELD
MOW 2 TO INDENT

PERFORM ADD-FIELD
SUBTRACT 1 FRCM CURR
MOW FM-FIELD TO FIELD
MOW 5 TO INDENT

14S

s-algol and the Commercial 3rd & 4th Generations

PERFORM ADD-FIELD
SUBTRACT 1 FROM CURR
MOVE "-05." TO FIELD

PERFORM ADD-FIELD.
IF FM-TYPE = "A"

GO TO XDI10.
MOVE " IF" TO OUT-REC.
MOVE 15 TO CURR.
MOW 5 TO INDENT.
PERFORM MAS-HYPHEN.
MOVE FM-FIELD TO FIELD.
PERFORM ADD-FIELD.
IF FM-OCCURS > 1

MOVE "(SUBSCRIPT)" TO FIELD
PERFORM ADD-FIELD.

MOVE "NUMERIC" TO FIELD.
PERFORM ADD-FIELD.
PERFORM WRITEIT.
MOVE " MOVE" TO OUT-REC.
MOVE 21 TO CURR.
PERFORM MAS-HYPHEN.
MOVE FM-FIELD TO FIELD.

MOVE 5 TO INDENT.
PERFORM ADD-FIELD.
IF FM-OCCURS > 1

MOVE "(SUBSCRIPT)" TO FIELD
PERFORM ADD-FIELD.

MOVE "TO OUTPUT-" TO FIELD.
PERFORM ADD-FIELD.
SUBTRACT 1 FROM CURR.
IF FM-TYPE NOT = "R"

MOVE "I" TO FTELD
ELSE

MOVE "R" TO FIELD.
PERFORM ADD-FIELD.
PERFORM WRITEIT.

MOVE " CALL OUTPUT" TO OUT-REC.
MOVE 2R TO CURR.
IF FM-TYPE NOT = "R"

MOVE "I" TO ORR (CURR)
ELSE

MOVE "R" TO ORR (CURR).
MOW QUOTE TO ORR (21), ORR (29).
MOW 5 TO INDENT.
MOW 31 TO CURR.
MOW "USING ROW, COLUMN, OUTPUT-" TO FIELD.
PERFORM ADD-FIELD.
SUBTRACT 1 FROM CURR.
IF FM-TYPE NOT = "R"

MOW "I" TO ORR (CURR)
ELSE

MOW "R" TO ORR (CURR).
PERFORM WRITEIT.
MOW " ELSE" TO OUT-REC.
PERFORM WRITEIT.
MOW

CALL CURSORTO USING RCW, COLUMN"
TO OUT-REC.

MOW QUOTE TO ORR (21) ORR (30).

149

s-algol and the Ccmmercia.1 3rd & 4th Generations

PERFORM WRITETT.
MOVE " DISPLAY" TO OOT-REC.
MOVE 24 TO CURR.
MOVE 5 TO INDENT.
PERFORM MAS-HYPHEN.
MOVE FM-FIELD TO FIELD.
PERFORM ADD-FIELD.

IF FM-OCCURS > 1
MOVE "(SUBSCRIPT)" TO FIELD
PERFORM ADD-FIELD.

MOVE "WITH NO ADVANCING." TO FIELD.

PERFORM ADD-FIELD.
GO TO XDI15.

XDI10.
MOVE

CALL CURSORTO USING RCM, COLUMN."
TO OUT-REC.

MOVE OUOTE TO ORR (17) ORR (26).
PERFORM WRITEIT.
MOW " DISPLAY" TO OUT-REC.
MOVE 20 TO CURR.
PERFORM MAS-HYPHEN.
MOVE FM-FIELD TO FIELD.
MOW 5 TO INDENT.
PERFORM ADD-FIELD.
IF FM-OCCURS > 1

MOW "(SUBSCRIPT)" TO FIELD
PERFORM ADD-FIELD.

MOW "WITH NO ADVANCING." TO FIELD.
PERFORM ADD-FIELD.

XDI15.
IF FM-OCCURS > 1

MOW " IF SUBSCRIPT <" TO OUT-REC
MOW 27 TO CURR
MOW FM-OCCURS TO FIELD
MOW 5 TO INDENT

PERFORM ADD-FIELD
PERFORM WRITEIT
MOW " ADD 1 TO SUBSCRIPT" TO OUT-REC
PERFORM WRITEIT
MOW " ADD 1 TO RCW" TO OUT-REC
PERFORM WRITEIT
MOW "GO TO D-" TO FIELD
MOW 4 TO INDENT
PERFORM ADD-FIELD
SUBTRACT 1 FROM CURR
MOW FM-FIELD TO FIELD
MOW 5 TO INDENT

PERFORM ADD-FIELD

SUBTRACT 1 FROM CURR
MOW "-05." TO FIELD
PERFORM ADD-FIELD.

MOW "D-" TO FIELD.
MOW 2 TO INDENT.
PERFORM ADD—FIELD.

SUBTRACT 1 FROM CURR.
MOW FM-FIELD TO FIELD.
MOW 5 TO INDENT.
PERFORM ADD-FIELD.

150

s-algol and the Commercial 3rd & 4th Generations

SUBTRACT 1 FROM CURR.
MOVE "-99." TO FIELD.
PERFORM ADD—FTF.T ,D.

MOW " EXIT." TO OUT-REC.
PERFORM WRITEIT.

XDI20.
PERFORM READ-DETAILS.
IF NOT END-OF-FILE

GO TO XDI05.
XDI99.

EXIT.

XINPUT—FIELD SECTION.
XINPOO.

PERFORM IO-SKEL.

PERFORM START-DETAILS.

XINP05.
IF FM-AMEND = "N"

GO TO XINP4D.
PERFORM COMMENT-LINE.
MOW "INPUT-" TO FIELD.
MOW 2 TO INDENT.
PERFORM ADD-FIELD.
SUBTRACT 1 FROM CURR.
MOW FM-FIELD TO FIELD.
MOW 5 TO INDENT-.
PERFORM ADD-FIELD.

MOW "SECTION." TO FIELD.
PERFORM ADD-FIELD.
MOW "I-" TO FIELD.
MOW 2 TO INDENT.

PERFORM ADD-FIELD.
SUBTRACT 1 FROM CURR.
MOW FM-FIELD TO FIELD.
MOW 5 TO INDENT.
PERFORM ADD-FIELD.
SUBTRACT 1 FROM CURR.
MOW "-00." TO FIELD.
PERFORM ADD-FIELD.
MOW " MOW" TO OUT-REC.
MOW 17 TO CURR.
MOW FM-LTNE TO FIELD.
MOW 5 TO INDENT.
PERFORM ADD-FIELD.
MOW "TO ROW." TO FIELD.
PERFORM ADD-FIELD.

MOW " MOW 30 TO COLUMN." TO OUT-REC.
PERFORM WRITEIT.
IF FM-TYPE = "A"

GO TO XINP10.
MOW " MOW" TO OUT-REC.
MOW 17 TO CURR.

IF FM-TYPE = "I"
IF FM-RANGE-I (1) = ZERO

MOW "ZERO" TO FIELD
ELSE

MOW FM-RANGE-I (l) TO ST-INTEGER
MOW ST-INTEGER TO FIELD

ELSE

151

s-algol and the Commercial 3rd & 4th Generations

IF EM—TYPE = "D"
IF EM-RANGE-D (1) = ZERO

MOVE "ZERO" TO FIELD
ELSE

MOVE FM-RANGE-D (l) TO FIELD
ELSE

IF FM-RANGE-R (1) = ZERO
MOVE "ZERO" TO FIELD

ELSE

MOVE FM-RANGE-R (l) TO ST-REAL
PERFORM BLANK-REAL
MOVE ST-REAL TO FIELD.

MOVE 5 TO INDENT.
PERFORM ADD-FIELD.
MOVE "TO LOWER-" TO FIELD.

PERFORM ADD-FIELD.

SUBTRACT 1 FRCM CURR.
IF FM-TYPE = "D"

MOVE "D" TO FIELD
ELSE
IF FM-TYPE = "I"

MOVE "I" TO FIELD
ELSE

MOVE "R" TO FIELD.
PERFORM ADD-FIELD.
MOVE TO FIELD.
PERFORM ADD-FIELD.
MOVE " MOVE" TO OlD-REC.
MOVE 17 TO CURR.
IF FM-TYPE = "I"

IF FM-RANGE-I (2) = ZERO
MOVE "ZERO" TO FIELD

ELSE
MOVE FM-RANGE-I (2) TO ST-INTEGER
MOVE ST-INTEGER TO FIELD

ELSE
IF FM-TYPE = "D"

IF FM-RANGE-D (2) = ZERO
MOVE "ZERO" TO FIELD

ELSE

MOVE FM-RANGE-D (2) TO FIELD
ELSE

IF FM-RANGE-R (2) = ZERO
MOVE "ZERO" TO FIELD

ELSE

MOVE FM-RANGE-R (2) TO ST-REAL
PERFORM BLANK-REAL
MOW, ST-REAL TO FIELD.

MOW 5 TO INDENT.
PERFORM ADD-FIELD.
MOW "TO UPPER-" TO FIELD.
PERFORM ADD-FIELD.
SUBTRACT 1 FRCM CURR.
IF FM-TYPE = "D"

MOW "D" TO FIELD
ELSE
IF FM-TYPE = "I"

MOW "I" TO FIELD
ELSE

152

s-algol and the Commercial 3rd & 4th Generations

MOVE "R" TO FIELD.
PERFORM ADD-FIELD.
MOVE TO FIELD.
PERFORM ADD-FIELD.
IF FM-TYPE = "R"

MOVE " MOVE" TO OUT-REC
MOVE 17 TO CURR
MOVE FM—SIZE—RA TO FIELD
MOVE 5 TO INDENT
PERFORM ADD-FIELD
MOVE "TO DECIMALS." TO FIELD
PERFORM ADD-FIELD.

XINP10.
IF FM-OCCURS > 1

MOVE " MOVE 1 TO SUBSCRIPT." TO OUT-REC
PERFORM WRITEIT.

MOVE "I-" TO FIELD.
MOVE 2 TO INDENT.
PERFORM ADD-FIELD.

SUBTRACT 1 FROM CURR.
MOVE FM-FIELD TO FIELD.
MOW 5 TO INDENT.

PERFORM ADD-FIELD.
SUBTRACT 1 FROM CURR.
MOVE "-05." TO FIELD.
PERFORM ADD-FIELD.
IF FM-TYPE = "A"

MOW " MOW" TO OUT-REC

MOW 17 TO CURR
MOW FM—SIZE—S TO FIELD
MOW 5 TO INDENT

PERFORM ADD-FIELD
MOW "TO ST—SIZE." TO FIELD

PERFORM ADD-FIELD

MOW " CALL INPUTS USING ROT, COLUMN, "
TO OUT-REC
MOW QUOTE TO ORR (17) ORR (24)
PERFORM WRITEIT
MOW " INPOT-S, ST—SIZE. " TO OUT-REC
PERFORM WRITEIT

ELSE
IF FM-KEY-FIAG = ZERO
IF FM-TYPE = "D"

MOW " CALL INPUTD USING ROT, COLUMN,"
TO OUT-REC
MOW QUOTE TO ORR (17) ORR (24)
PERFORM WRITEIT
MOW " LOTER-D, UPPER-D, INPUT-D."
TO OUT-REC

PERFORM WRITEIT
ELSE

IF FM-TYPE = "I"
MOW " CALL INPUTI USING ROT, COLUMN, "
TO OUT-REC
MOW QUOTE TO ORR (17) ORR (24)
PERFORM WRITEIT
MOW " LOWER-I, UPPER—I, INPUT-I. "
TO OUT-REC
PERFORM WRITEIT

153

s-algol and the Commercial 3rd & 4th Generations

ELSE
MOVE " CALL INPUTR USING RCW, COLUMN,"
TO OUT-REC
MOVE QUOTE TO ORR (17) ORR (24)
PERFORM WRITEIT
MOVE " LOWER-R, UPPER-R, INPUT-R,"
TO OUT-REC

PERFORM WRTTEIT
MOVE " DECIMALS." TO OUT-REC
PERFORM WRITEIT

ELSE
IF FM-TYPE = "D"

MOVE " CALL INPUTDK USING RCW, COLUMN,"
TO OUT-REC
MOVE QUOTE TO ORR (17) ORR (25)
PERFORM WRITEIT

MOVE " LOWER-D, UPPER-D, INPUT-D, INPUT-S."
TO OUT-REC
PERFORM WRITEIT

ELSE
IF FM-TYPE = "I"

MOVE " CALL INPUTIK USING RCW, COLUMN,"
TO OUT-REC
MOVE QUOTE TO ORR (17) ORR (25)
PERFORM WRITEIT
MOVE " LOWER-I, UPPER-I, INPUT-I, INPUT-S."
TO OUT-REC
PERFORM WRITEIT

ELSE
MOVE " CALL INPUTRK USING RCW, COLUMN,"
TO OUT-REC
MOW QUOTE TO ORR (17) ORR (25)
PERFORM WRITEIT
MOW " LOWER-R, UPPER-R, INPUT-R,"
TO OUT-REC
PERFORM WRITEIT
MOW " INPUT-S, DECIMALS." TO OUT-REC
PERFORM WRITEIT.

MOW 5 TO INDENT.

IF FM-KEY-FLAG > ZERO

MOW " IF THIS-KEY =" TO OUT-REC
MOW 27 TO CURR

MOW FM-DISPLAY-N TO FIELD
PERFORM ADD-FIELD
SUBTRACT 1 FRCM CURR
MOW QUOTE TO ORR (26) ORR (CURR)
PERFORM WRITEIT
MOW " AND (INPUT-S = + OR SPACES)"
TO OUT-REC
MOW QUOTE TO ORR (27) ORR (29)
PERFORM WRITEIT
MOW " GO TO I—" TO OUT-REC
MOW 24 TO CURR
MOW FM-FIELD TO FIELD
PERFORM ADD-FIELD

SUBTRACT 1 FROM CURR
MOW "-99." TO FIELD
PERFORM ADD-FIELD.

MOW " MOW INPUT-" TO OUT-REC.

154

s-algol and the Commercial 3rd & 4th Generations

MOVE 23 TO CURR.
IF FM-TYPE = "A"

MOVE "S" TO FIELD

ELSE
IF FM-TYPE = "D"

MOVE "D" TO FIELD
ELSE

IF FM-TYPE = "I"
MOVE "I" TO FIELD

ELSE

MOVE "R" TO FIELD.
MOVE 5 TO INDENT.

XTNP14.
PERFORM ADD-FIELD.
MOVE "TO" TO FIELD.
PERFORM ADD-FIELD.

PERFORM MAS-HYPHEN.
MOVE FM-FIELD TO FIELD.
PERFORM ADD-FIELD.

IF FM-OCCTJRS > 1
MOVE "(SUBSCRIPT)" TO FIELD
PERFORM ADD-FIELD.

MOVE "." TO FIELD.
PERFORM ADD-FIELD.
IF FM-NUM-VALS = ZERO

GO TO XINP35.
MOVE " IF" TO OUT'-REC.
MOVE 15 TO CURR.

PERFORM MAS-HYPHEN.
MOVE FM-FIELD TO FIELD.
PERFORM ADD-FIELD.
IF FM-OCCURS > 1

MOVE "(SUBSCRIPT)" TO FIELD
PERFORM ADD-FIELD.

MOVE "=" TO FIELD.
PERFORM ADD-FIELD.
MOVE 1 TO WORK-B.

XINP15.
IF FM-TYPE = "I"
OR FM-TYPE = "R"
OR FM-TYPE = "D"
OR FM-VALUES-S (WORK-B) = SPACES

GO TO XINP25.
MOVE W-QUOTE TO FIELD.
MOVE FM-VALUES-S (WORK-B) TO ST-VALUES.
MOVE 1 TO WORK-C.
MOVE 2 TO WORK-D.

XINP20.
IF VIN (WORK-C) < " " OR VIN (WORK-C) >

GO TO XTNP21.
MOVE VIN (WORK-C) TO FT. (WORK-D) .

XINP21.

ADD 1 TO WORK-C.
ADD 1 TO WORK-D.
IF VIN (WORK-C) NOT = SPACE

GO TO XINP20.

MOVE W-QUOTE TO FT (WORK-D) .

GO TO XINP30.
XINP25.

155

s-algol and the Commercial 3rd & 4th Generati

IF FM-TYPE = "A"
IF FM-VALUES-S (WORK-B) = SPACER

MOVE "SPACES" TO FIELD
ELSE

MOVE FM-VALUES-S (WORK-B) TO FIELD
ELSE

IF FM-TYPE = "I"
IF FM—VALUES—I (WORK-B) = ZERO

MOVE "ZERO" TO FIELD
ELSE

MOVE FM—VALUES-I (WORK-B) TO ST-INTEGER
MOVE ST-INTEGER TO FIELD

ELSE
IF FM-^YPE = "R"

IF FM-VALUES-R (WORK-B) = ZERO
MOVE "ZERO" TO FIELD

ELSE
MOVE FM-VALUES-R (WORK-B) TO ST-REAL
PERFORM BLANK-REAL
MOVE ST-REAL TO FIELD

ELSE

IF FM-TYPE = "D"
IF FM-VALUES-D (WORK-B) = ZERO

MOVE "ZERO" TO FIELD
ELSE

MOVE FM-VALUES-D (WORK-B) TO FIELD.
XINP30.

PERFORM ADD-FIELD.
IF FM-NUM-VALS > WORK-B

ADD 1 TO WORK-B

MOVE "OR" TO FIELD

PERFORM ADD-FIELD
GO TO XINP15.

PERFORM WRITEIT.
MOVE "GO TO I-" TO FIELD.
MOVE 4 TO INDENT.

PERFORM ADD-FIELD.
SUBTRACT 1 FRCM CURR.
MOVE FM-FIELD TO FIELD.
MOVE 5 TO INDENT.
PERFORM ADD-FIELD.
SUBTRACT 1 FRCM CURR.
IF FM-OCCURS > 1

MOVE "-10." TO FIELD
ELSE

MOVE "-99." TO FIELD.
PERFORM ADD-FIELD.

build up the value error message lines

MOVE " MOVE" TO OUT-REC.
MOVE QUOTE TO ORR (17).
MOVE "One of" TO FIELD.
MOVE 5 TO INDENT.
MOVE 18 TO CURR.

PERFORM ADD-FIELD.
ADD 1 TO CURR.
MOVE 1 TO WORK-B.

XINP31.

156

s-algol and the Commercial 3rd & 4th Generations

IF FM-NUM-VALS < WORK-B
MOVE QUOTE TO ORR (CURR)
ADD 2 TO CURR
MOVE "TO ERROR-MESSAGE." TO FIELD
MOW 5 TO INDENT
PERFORM ADD-FIELD
MOVE

CALL ERRORVDU USING ROW, COLUMN,"
TO OUT-REC
MOVE QUOTE TO ORR (17) ORR (26)
PERFORM WRITEIT
MOVE " ST-SIZE, ERROR-MESSAGE, INPUT-S."
TO OUT-REC
PERFORM WRITEIT
GO TO XINP32.

IF FM-TYPE = "A"
IF FM-VALUES-S (WORK-B) = SPACES

MOVE "or spaces" TO FIELD
PERFORM ADD-FIELD

ADD 1 TO WORK-B
GO TO XINP31.

IF FM-TYPE = "I"
IF FM—VALUES-I (WORK-B) = ZERO

MOVE "or zero" TO FIELD
PERFORM ADD-FIELD
ADD 1 TO WORK-B
GO TO XINP31.

IF FM-TYPE = "D"
IF FM-VALUES-D (WORK-B) = ZERO

MOVE "or zero" TO FIELD
PERFORM ADD-FIELD

ADD 1 TO WORK-B
GO TO XINP31.

IF FM-TYPE = "R"
IF FM-VALUES-R (WORK-B) = ZERO

MOVE "or zero" TO FIELD

PERFORM ADD-FIELD

ADD 1 TO WORK-B
GO TO XINP31.

PERFORM TEST-LINE.
IF WORK-B > 1

MOVE "or" TO FIELD
PERFORM ADD-FIELD.

IF FM-TYPE = "A"
MOVE FM-VALUES-S (WORK-B) TO FIELD

ELSE

IF FM-TYPE = "I"
MOVE FM-VALUES—I (WORK-B) TO ST-INTEGER
MOVE ST-INTEGER TO FIELD

ELSE
IF FM-TYPE = "D"

MOVE FM-VALUES-D (WORK-B) TO FIELD
ELSE

MOW FM-VALUES-R (WORK-B) TO ST-REAL
PERFORM BLANK-REAL
MOW ST-REAL TO FIELD.

PERFORM ADD-FIELD.
ADD 1 TO WORK-B.
GO TO XINP31.

157

s-algol and the Commercial 3rd & 4th Generations

XINP32.
MOVE " GO TO I-" TO OUT-REC.
MOVE 20 TO CURR.
MOVE FM-FIELD TO FIELD.
MOVE 5 TO INDENT.

PERFORM ADD-FTELD.
SUBTRACT 1 FROM CURR.
MOVE "-05." TO FIELD.
PERFORM ADD-FIELD.

XINP35.
IF FM-OCCURS > 1

MOVE "I-" TO FIELD

MOVE 2 TO INDENT
PERFORM ADD-FIELD
SUBTRACT 1 FRCM CURR

MOVE FM-FIELD TO FIELD

MOVE 5 TO INDENT

PERFORM ADD-FIELD
SUBTRACT 1 FRCM CURR
MOVE "-10." TO FIELD
PERFORM ADD-FIELD
MOVE " IF SUBSCRIPT <" TO OUT-REC

MOVE 27 TO CURR
MOVE FM-OCCURS TO FIELD

MOVE 5 TO INDENT

PERFORM ADD-FIELD
PERFORM WRITEIT

MOVE " ADD 1 TO SUBSCRIPT" TO OUT-REC
PERFORM WRITEIT
MOW, " ADD 1 TO RCW" TO OUT-REC
PERFORM WRITEIT
MOW "GO TO I-" TO FIELD

MOW 4 TO INDENT
PERFORM ADD-FIELD
SUBTRACT 1 FRCM CURR
MOW FM-FIELD TO FIELD
MOW 5 TO INDENT

PERFORM ADD-FIELD
SUBTRACT 1 FRCM CURR
MOW "-05." TO FIELD
PERFORM ADD-FIELD.

MOW "I-" TO FIELD.
MOW 2 TO INDENT.
PERFORM ADD-FIELD.
SUBTRACT 1 FRCM CURR.
MOW FM-FIELD TO FIELD.
MOW 5 TO INDENT.
PERFORM ADD-FIELD.
SUBTRACT 1 FROM CURR.
MOW "-99." TO FIELD.

PERFORM ADD-FIELD.
MOW " EXIT." TO OUT-REC.
PERFORM WRITEIT.

XINP40.
PERFORM READ-DETAILS.
IF NOT END-OF—FTT.E

GO TO XINP05.
XINP99.

EXIT.

158

s-algol and the Commercial 3rd & 4th Generations

*

BLANK-REAL SECTION.
RLOO.

MOVE 19 TO WORK-K.
BL05.

IF STR (WORK-K) NOT = "0"
GO TO BL99.

MOVE SPACE TO STR (WORK-K).
IF WORK-K >16

SUBTRACT 1 FROM WORK-K
GO TO BL05.

BL99.
EXIT.

*

*

TEST-LINE SECTION.
TE00.

IF CURR < 50
GO TO TE99.

MOVE "o" TO ORR (70).
MOVE "r" TO ORR (71).
MOVE QUOTE TO ORR (72).
PERFORM WRITEIT.
MOVE " TO ERROR-MESSAGE." TO OUT-REC.
PERFORM WRITEIT.
MOVE

CALL ERRORVDU USING RCW, COLUMN,"
TO OUT-REC.

MOVE QUOTE TO ORR (17) ORR (26).
PERFORM WRITEIT.
MOVE " ST-SIZE, ERROR-MESSAGE, INPUT-S."
TO OUT-REG.
PERFORM WRITEIT.
MOVE " MOVE" TO OUT-REC.
MOW QUOTE TO ORR (17).
MOVE 18 TO CURR.

TE99.
EXIT.

*

XNEW-PAGE SECTION.
XNPOO.

PERFORM IO-SKEL.
PERFORM START-DETAILS.
MOVE 1 TO WORK-B.
MOVE " IF SCREEN-PAGE = 1" TO OUT-REC
PERFORM WRITEIT.

XNP05.
IF END-OF-FILE

MOW " . " TO FIELD

MOW 5 TO INDENT
PERFORM ADD-FIELD

GO TO XNP99.

IF FM-KEY-FLAG = 1 OR FM-DTSPLAY-N = SPACES
PERFORM READ-DETAILS
GO TO XNP05.

IF WORK-B < FM-PAGE

MOW TO FIELD
MOW 5 TO INDENT
PERFORM ADD-FIELD

159

s-algol and the Commercial 3rd & 4th Generations

MOVE FM-PAGE TO WORK-B
MOVE " IF SCREEN-PAGE =" TO OUT-REC
MOVE 29 TO CURR
MOVE WORK-B TO FIELD
MOVE 5 TO INDENT
PERFORM ADD-FIELD.

PERFORM WRITEIT.
MOVE " PERFORM DISPLAY-STATICS-" TO OUT-REC.
MOW 40 TO CURR.
MOW 5 TO INDENT.
MOW FM-FIELD TO FIELD.
PERFORM ADD-FIELD.
PERFORM READ-DETAILS.
GO TO XNP05.

XNP99.

EXIT.
*

DISPLAY-STATICS SECTION.
DISOO.

PERFORM IO-SKEL.
PERFORM START-DETAILS.

DIS05.
IF FM-DISPLAY-N = SPACES

» GO TO DIS10.
PERFORM COMMENT-LINE.
MOW " DISPLAY-STATICS-" TO OUT-REC.
MOW 24 TO CURR.
MOW 5 TO INDENT.
MOW FM-FIELD TO FIELD.
PERFORM ADD-FIELD.
MOW "SECTION." TO FIELD.

PERFORM ADD-FIELD.
MOW " DS-" TO OUT-REC.
MOW 11 TO CURR.
MOW 5 TO INDENT.
MOW FM-FIELD TO FIELD.
PERFORM ADD-FIELD.
SUBTRACT 1 FROM CURR.
MOW "-00." TO FIELD.
PERFORM ADD-FIELD.
MOW " MOW" TO OUT-REC.
MOW 17 TO CURR.
MOW FM-LINE TO FIELD.
MOW 5 TO INDENT.
PERFORM ADD-FIELD.
MOW "TO RCW." TO FIELD.
PERFORM ADD-FIELD.
IF FM-SCREEN-NU = ZERO

GO TO DIS06.
MOW " MOW 1 TO COLUMN." TO OUT-REC.
PERFORM WRITEIT.
MOW

CALL CURSORTO USING RCW, COLUMN."
TO OUT-REC.

MOW QUOTE TO ORR (17) ORR (26).
PERFORM WRITEIT.
MOW " DISPLAY" TO OUT-REC.
MOW 20 TO CURR.
MOW 5 TO INDENT.

160

s-algol and the Commercial 3rd & 4th Generations

MOVE FM-SCREEN-NU TO FIELD.
PERFORM ADD-FIELD.
MOVE "WITH NO ADVANCING." TO FIELD.
PERFORM ADD-FIELD.

DIS06.
MOVE " MOVE 3 TO COLUMN." TO OUT-REC.
PERFORM WRITEIT.
MOVE

CALL CURSORTO USING RCW, COLUMN."
TO OUT-REC.

MOVE QUOTE TO ORR (17) ORR (26).
PERFORM WRITEIT.
MOVE " DISPLAY" TO OUT-REC.
MOVE QUOTE TO ORR (20).
IF FM-SCREEN-NU > ZERO

MOVE ":" TO ORR(21).
MOVE 22 TO CURR.
MOVE 5 TO INDENT.

MOVE FM-DISPLAY-N TO FIELD.

PERFORM ADD-FIELD.
SUBTRACT 1 FROM CURR.
MOVE QUOTE TO ORR (CURR).
ADD 2 TO CURR.
MOVE "WITH NO ADVANCING." TO FIELD.
PERFORM ADD-FIELD.
IF FM-OCCURS > 1

MOVE " MOVE 1 TO SUBSCRIPT." TO OUT-REC
PERFORM WRITEIT
MOVE " DS-" TO OUT-REC
MOVE 11 TO CURR
MOVE 5 TO INDENT
MOVE FM-FIELD TO FIELD
PERFORM ADD-FIELD
SUBTRACT 1 FROM CURR
MOVE "-05." TO FIELD
PERFORM ADD-FIELD.

IF FM-SCREEN-NU = ZERO AND FM-KEY-FLAG NOT = 1
GO TO DIS07.

MOVE " MOVE 29 TO COLUMN." TO OIJT-REC.
PERFORM WRITEIT.
MOW

CALL CURSORTO USING RCW, COLUMN."
TO OUT-REC.

MOW OUOTE TO ORR (17) ORR (26).
PERFORM WRITEIT.
MOW " DISPLAY : WITH NO ADVANCING."
TO OUT-REC.
MOW QUOTE TO ORR (20) ORR (22).
PERFORM WRITEIT.
IF FM-TYPE = "A"

ADD 30 FM-SIZE-S GIVING WORK-A
ELSE

IF FM-TYPE = "D"
MOW 36 TO WORK-A

ELSE
IF FM-TYPE = "I"

ADD 30 FM-SIZE-I GIVING WORK-A
ELSE
IF FM-TYPE = "R"

161

s-algol and the Commercial 3rd & 4th Generations

ADD 30 FM—SIZE—RB FM-STZE-RA GIVING WORK-A.
MOVE ZERO TO WORK-B.
IF FM-TYPE = "I" AND FM-RANGE-I (l) < ZERO

ADD 1 TO WORK-A.
IF FM-TYPE = "R" AND FM-RANGE-R (l) < ZERO

ADD 1 TO WORK-A.
IF FM-TYPE = "R"

ADD 1 TO WORK-A.
IF WORK-A > R0

GO TO DIS07.
MOVE " MOVE" TO OOT-REC.
MOVE 17 TO CURR.

MOVE WORK-A TO FIELD.
MOVE 5 TO INDENT.
PERFORM ADD-FIELD.
MOVE "TO COLUMN." TO FIELD.
PERFORM ADD-FIELD.
MOVE

CALL CURSORTO USING ROW, COLUMN."
TO OUT-REC.

MOVE QUOTE TO ORR (17) ORR (26).
PERFORM WRITEIT.
MOVE " DISPLAY : WTTH NO ADVANCING."
TO OUT-REC.
MOVE QUOTE TO ORR (20) ORR (22).
PERFORM WRTTEIT.

DIS07.
IF FM-OCCURS > 1

MOVE " IF SUBSCRIPT <" TO OOT-REC
MOVE 26 TO CURR
MOVE 5 TO INDENT

MOVE FM-OCCURS TO FIELD
PERFORM ADD-FIELD
PERFORM WRTTEIT
MOVE "

TO OOT-REC

PERFORM WRITEIT
MOVE "

TO OOT-REC

PERFORM WRITEIT
MOVE "
MOW, 25 TO CURR
MOW 5 TO INDENT

MOW FM-FIELD TO FIELD
PERFORM ADD-FIELD

SUBTRACT 1 FRCM CURR
MOW "-05." TO FIELD
PERFORM ADD-FIELD.

MOW " DS-" TO OOT-REC.
MOW 11 TO CURR.
MOW 5 TO INDENT.
MOW FM-FIELD TO FIELD.

PERFORM ADD-FIELD.
SUBTRACT 1 FROM CURR.
MOW "-99." TO FIELD.
PERFORM ADD-FIELD.
MOW " EXIT." TO OOT-REC.
PERFORM WRITEIT.

DIS10.

ADD 1 TO RCW"

ADD 1 TO SUBSCRIPT"

GO TO DS-" TO OOT-REC

162

s-algol and the Commercial 3rd & 4th Generations

PERFORM READ-DETAILS.
IF NOT END-OF-FILE

GO TO DIS05.
DIS99.

EXIT.

ADD-FIELD SECTION.
AFOO.

IF FIELD = SPACES
GO TO AF99.

IF NO-INDENT
GO TO AF05.

IF NOT SAME-LINE AND OUT-REC NOT = SPACES
PERFORM WRITEIT.

IF INDENT = 1
MOVE "*" TO ORR (7)
ADD 2 TO CURR
GO TO AF05.

IF INDENT NOT = 1 AND CURR = 7
MOVE 8 TO CURR.

IF AREA-A
MOVE 8 TO CURR.

IF AREA-B
MOVE 12 TO CURR.

IF INDENTED
MOVE 16 TO CURR.

AF05.
MOVE 60 TO WORK-F.

AF10.
IF FI (WORK-F) = SPACE

SUBTRACT 1 FROM WORK-F
GO TO AF10.

IF NOT SAME-LINE
GO TO AF15.

ADD WORK-F CURR GIVING WORK-E.
IF WORK-E > 72

PERFORM WRITEIT
MOW 16 TO CURR.

AF15.
MOVE 1 TO WORK-E.
MOVE ZERO TO PAST-ZERO.

AF20.
IF INDENT = 5

IF (FI (WORK-E) = "0" AND PAST-ZERO = ZERO)
OR (FI (1) = " " AND FI (WORK-E) = " ")

GO TO AF30.
MOVE 1 TO PAST-ZERO.
MOW FI (WORK-E) TO ORR (CURR).

AF25.
IF WORK-E < WORK-F

ADD 1 TO WORK-E
ADD 1 TO CURR

GO TO AF20.
GO TO AF35.

AF30.
IF WORK-E < WORK-F

ADD 1 TO WORK-E
GO TO AF20.

AF35.

163

s-algol and the Commercial 3rd & 4th Generations

IF FI (WORK-F) =
PERFORM WRITEIT

ELSE
ADD 2 TO CURR.

MOW, SPACES TO FIELD.
AF99.

EXIT.

WRITEIT SECTION.
WROO.

IF OUT-REC = SPACES
GO TO WR10.

MOW 72 TO RECORD-LENGTH.
WR05.

TF ORR (RECORD-LENGTH) = SPACE
SUBTRACT 1 FRCM RECORD-LENGTH
GO TO WR05.

WRITE OUT-EEC.
MOW SPACES TO OUT-REC.

WR10.
MOW 7 TO CURR.

WR99.

EXIT.

IO-SKEL SECTION.
IOOO.

MOW SPACES TO SKEL-REC.
READ SKELETON AT END

DISPLAY "END OF SKELETON FILE"
GO TO 1099.

IF NOT END-OF-DATA
MOW SKEL-REC TO OUT-REC
PERFORM WRITEIT
GO TO IOOO.

1099.
EXIT.

START-DETAILS SECTION.
SDOO.

PERFORM CLOSE-FM.
OPEN INPUT FM.
MOW ZERO TO ST—FM—CLOSED.
MOW ZERO TO EOF-REPLY.
PERFORM READ-DETAILS.

SD99.
EXIT.

READ-DETAILS SECTION.
RDOO.

READ FM NEXT AT END
MOW 1 TO EOF-REPLY
PERFORM CLOSE-FM.

RD99.
EXIT.

FIRST-DETAILS SECTION.
FDOO.

PERFORM START-DETAILS.
MOW FM-FILE TO FILE-NAME.

164

s-algol and the Ccmrnercial 3rd & 4th Generations

MOVE FM-TITLE TO FILE-TITLE.
MOVE 1 TO PPAGE.

FD05.
IF FM-KEY-FLAG = 1

MOVE FM-FIELD TO KEY-NAME.
IF FM-PAGE NUMERIC

IF FM-PAGE > PPAGE
MOVE FM-PAGE TO PPAGE.

PERFORM READ-DETAILS.
IF NOT END-OF-FILE

GO TO FD05.
PERFORM CLORE-FM.

FD99.

EXIT.

165

s-algol and the Commercial 3rd & 4th Generations

Produced FM Program

This is produced by the above program from a combination of the

skeleton program and codings applied from the parameter file. The

lines obtained from the skeleton are, of course, not noticeable as

such in the actual program but have been prefixed by a vertical bar

(I) in the following listing.

| IDENTIFICATION DIVISION.
PROGRAM-ID. FMCREDIT.

I*
I ENVIRONMENT DIVISION.
I CONFIGURATION SECTION.
I SOURCE-COMPUTER. VAX-11.
I OBJECT-COMPUTER. VAX-11.
| SPECIAL-NAMES.
I SWITCH 1 ON IS DELETE-OK
I SWITCH 2 ON IS INSERT-OK

I SWITCH 3 ON IS AMEND-OK.
I*
I INPUT-OUTPUT SECTION.
I FILE-CONTROL.
I*
I* the file MASTER is the indexed sequential
I* file to be maintained. The file PRINTER
I* is an audit trail of all actions on the file
I*

SELECT CREDIT ASSIGN TO CREDITF
ORGANIZATION IS INDEXED
ACCESS IS DYNAMIC
RECORD KEY IS CREDIT-JOB
ALTERNATE RECORD KEY IS CREDIT-NOTE.

I SELECT AUDIT ASSIGN TO PRINTER.
I DATA DIVISION.
I FILE SECTION.
FD CREDIT.
01 CREDIT-RECORD.

03 CREDIT-JOB
03 CREDIT-DESC
03 CREDIT-AMOUNT
03 CREDIT-NOTE
03 CREDIT-FILLER

FD AUDIT.
01 AUDIT-RECORD.

03 AUDIT-NAME PIC X(30).
03 AUDIT-VALUE-X PIC X(50).
03 FILLER REDEFINES AUDIT-VALUE-X.

05 AUDIT-VALUE—9 PIC -(17)9.
05 FILLER PIC X(32).

03 FILLER REDEFINES AUDIT-VALUE-X.
05 AUDIT-VALUE-R PIC - (12)9.9 (5).
05 FILLER PIC X(31).

PIC X(12).
PIC X(50) OCCURS 3.
PIC 9(7)V9(2).
PIC 9(6) .

PIC X(10).

166

s-algol and the Commercial 3rd & 4th Generations

03 FILLER REDEFINES AUDIT-VAIIJE-X.
05 FILLER PIC X(20).
05 AUDTT-HEAD.
07 AUDIT-DAY PIC 99.
07 FILLER PIC X.
07 AUDIT-MONTH PIC 99.
07 FILLER PIC X.

07 AUDIT-YEAR PIC 99.
07 FILLER PIC XXX.

07 AUDIT-HOUR PIC 99.
07 FTLLER PIC X.
07 AUDIT-MINUTE PIC 99.
07 FILLER PIC X.
07 AUDIT-SECOND PIC 99.
07 FILLER PIC XXX.

07 AUDIT-PAGE-LITERAL PIC XXXX

07 AUDIT-PAGE PIC ZZ9.
WORKING-STORAGE SECTION.
01 THIS-KEY PIC X(20) VALUE "iob".
01 DECIMALS PIC 9.
01 RCW PIC 99.
01 COLUMN PIC 99.
01 ST--AUDIT-RECORD PIC X(80).
01 ST--TITLE PIC X(40) VALUE SPACES
01 LTNE-COUNT PIC 99 COMP VALUE 100.
01 PAGE-COUNT PIC 999 COMP VALUE 1.
01 ST--DATE-TIME.

03 ST-DATE PIC 9(6).
03 FILLER REDEFINES ST-DATE.

05 ST-YEAR PIC 99.
05 ST-MONTH PIC 99.
05 ST-DAY PTC 99.

03 ST-TTME PIC 9(8).
03 FILLER REDEFINES ST-TIME.

05 ST-HOUR PIC 99.
05 ST-MINUTE PIC 99.
05 ST-SECOND PIC 99.
05 FILLER PIC XX.

01 AUDIT-ADVANCE PIC 9999 COMP.
01 FUNCTION PIC X(6).

88 INSERT-RECORD VALUE " Insert" .

88 SHCW-RECORD VALUE "Show ".
88 AMEND-RECORD VALUE "Amend ".
88 DELETE-RECORD VALUE "Delete".
88 NO-FUNCTION VALUE SPACES.

01 REPLY PIC X.

88 NO-KEY VALUE "'1".
SB NO-RECORD VALUE "2".
88 YES-RECORD ^TALUE "3".
88 APPLY-CHANGE VALUE "4".

01 KEY-STATUS PIC X VALUE SPACE.
88 NEW-KEY \7ALUE SPACE.

01 SCREEN-PAGE PIC 9 COMP.
01 ST—SIZE PIC 99 COMP.
01 INPUT-S.

88 NO-INPUT VALUE SPACES.
03 IXX PIC X OCCURS 00.

01 OUTPUT—I PIC -(17)9.
01 OUTPUT-R PIC -(12)9.9(5).

167

s-algol and the Commercial 3rd & 4th Generations

01 LOTER-I PIC 9(18)-.
01 UPPER-I PIC 9(18)-.
01 LOWER-R PIC S9(13)V9(5) COMP.
01 UPPER-R PIC S9(13)V9(5) COMP.
01 W-JULIAN-DATE-WORK-AREA.

03 W-JD-DATE PIC 9(6) .

03 FILLER REDEFINES W-JD-DATE.
05 W-J-DAY PIC 99.
05 W-J-MONTH PIC 99.
05 W-J-YEAR PIC 99.

03 W-J—JULIAN PIC 9(6) COMP.
01 input-d pic 9(6) comp.
01 lowek-d pic 9(6) comp.
01 upper-d pic 9(6) ccmp.
01 subscript pic 999 cqmp.

01 work—1 pic 99 comp.

01 work-2 pic 99 comp.
01 error-message pic x(78).
01 input—i pic s9(18) comp.
01 input-r pic s9(13)v9(5) comp

PROCEDURE DIVISION.
CONTROLX SECTION.
COO.

PERFORM INITIAL*.
PERFORM MAINFLOW.
PERFORM CLOSEDOWN.

C99.
STOP RUN.

*

INITIAL* SECTION.
*

*
open the files; clear the screen;

* display the program title on
* the vdu; print the audit headings
*

100.
OPEN 1-0 CREDIT.
OPEN EXTEND AUDIT.

MOVE 1 TO ROW.
CALL "CLEARVDU" USING ROT.
MOVE "Credit Notes"

TO ST-TITLE.
DISPLAY ST-TITLE WITH NO ADVANCING.

IN99.
EXIT.

*

* get the function option
* I = insert a new record
* A = amend an existing record
* S = look at (shew) a record
* D = delete an existing record
*

* then perform the relevant screen control
*

MAINFLOW SECTION.
MOO.

PERFORM GET-FUNCTION.
IF NO-FUNCTION

168

s-algol and the Commercial 3rd & 4th Generations

GO TO M99.
M05 •

PERFORM GET-KEY.

IF NO-KEY
GO TO MOO.

MOVE 0 TO SCREEN-PAGE.
IF INSERT-RECORD

PERFORM INSERT-R
ELSE

IF AMEND-RECORD

PERFORM AMEND-R
ELSE
IF SHOW-RECORD

PERFORM SHOW-R
ELSE

PERFORM DELETE-R.

IF THIS-KEY NOT ="job"
MOVE 23 TO RCW
MOVE 1 TO COLUMN
CALL "CURSORTO" USING RCW, COLUMN
DISPLAY "Press return to continue" WITH NO ADVANCING
MOVE 1 TO ST-SIZE
CALL "INPUTS" USING RCW, COLUMN, INPUT-S, ST-SIZE
MOVE 4 TO RCW
CALL "CLEARVDU" USING RCW.

GO TO M05.
M99.

EXIT.
*

* end the audit report and close files before the end of the
* run
*

CLOSEDCWN SECTION.
cno.

MOVE "End of Audit Report" TO AUDIT-RECORD.
MOVE 2 TO AUDIT-ADVANCE.
PERFORM AUDIT-PRINT.

CLOSE CREDIT.

CLOSE AUDIT.
C99.

EXIT.
*

* caramon routine for writing a record to the audit file
*

AUDIT-PRINT SECTION.
AUOO.

IF LINE-COUNT >55
PERFORM AUDIT-HEADINGS.

WRITE AUDIT-RECORD AFTER ADVANCING AUDIT-ADVANCE LINES.
MOVE SPACES TO AUDIT-RECORD.
ADD AUDIT-ADVANCE TO LINE-COUNT.
MOVE 1 TO AUDIT-ADVANCE.

AU99.
EXIT •

*

* accept the key frcm the screen then check the
* file that the record is absent (for insert)
* or present (for amend, show and delete).
*

169

s-algol and the Commercial 3rd & 4th Generations

! GET-KEY SECTION.
! GEOO.

IF THIS-KEY = "job"
PERFORM DISPLAY—STATICS-JOB

ELSE
IF THIS-KEY = "note number"

PERFORM DISPLAY—STATICS-NOTE
ELSE

! GO TO GE90.
! GEO5.
! MOVE ZERO TO REPLY.

IF THIS-KEY = "job"
PERFORM INPUT-JOB

ELSE
IF THIS-KEY = "note number"

PERFORM INPUT-NOTE

ELSE

GO TO GE90.
IF NO-INPUT

IF INSERT-RECORD
MOVE 1 TO REPLY
GO TO GE99

ELSE
GO TO GE40.

IF INPUT-S NOT = "+"
PERFORM READ-VTA-INDEX
GO TO GE20.

IF INSERT-RECORD
GO TO GE25.

IF NEW-KEY

PERFORM RFAD-VIA-INDEX.

REAL CREDIT NEXT AT END
GO TO GE25.

MOVE 3 TO REPLY.
GE20.

PERFORM DISPLAY-JOB.
IF INSERT-RECORD

GO TO GE99.
IF YES-RECORD

GO TO GE99.
GE25.

MOVE "No such record" TO ERROR-MESSAGE.
CALL "ERRORVDU" USING RCW, COLUMN, ST-SIZE, ERROR-MESSAGE,

INPUT—S.
GO TO GE05.

GE40.
MOVE 23 TO ROW.
MOVE 1 TO COLUMN.
CALL "CURSORTO" USING RCW, COLUMN.
DISPLAY "Which key" WITH NO ADVANCING.
MOVE 20 TO ST-SIZE.
MOVE 12 TO COLUMN.
MOVE ZERO TO REPLY.
CALL "INPUTS" USING RCW, COLUMN, INPUT-S, ST-SIZE.
IF NO-INPUT

MOVE 1 TO REPLY
GO TO GE99.

IF INPUT-S = "job" OR "note number"
NEXT SENTENCE

170

s-algol and the Commercial 3rd & 4th Generations

ELSE
GO TO GE45.

IF INPUT-S NOT = THIS-KEY
MOVE INPUT—S TO THIS-KEY
MOVE SPACE TO KEY-STATUS.

MOVE 4 TO ROW.
CALL "CLEARVDU" USING ROW.

GO TO GEOO.
GE45.

MOVE "One of: job, note number" TO ERROR-MESSAGE.
CALL "ERRORVDU" USING RCW, COLUMN, ST-STZE, ERROR-MESSAGE,

INPUT-S.

GO TO GE40.
GE90.

MOVE "Invalid "key selection contents" TO ERROR-MESSAGE.
CALL "ERRORVDU" USING RCW, COLUMN, ST-SIZE, ERROR-MESSAGE,

INPUT—S.
GO TO FAIL-END.

GE99.
*

* this reads a file via one if its indices
*

READ-VIA—INDEX SECTION.
RVOO.

MOVE "X" TO KEY-STATUS.
MOVE 3 TO REPLY.
IF THIS-KEY = "job"

GO TO RV-JOB.

IF THIS-KEY = "note number"
GO TO RV-NOTE.

GO TO RV90.
RV-JOB.

READ CREDIT KEY IS CREDIT-JOB INVALID KEY
MOVE 2 TO REPLY.

GO TO RV99.
RV-NOTE.

READ CREDIT KEY IS CREDIT-NOTE INVALID KEY
MOVE 2 TO REPLY.

GO TO RV99.
RV90.

MOVE "Invalid "key selection contents" TO ERROR-MESSAGE.
CALL "ERRORVDU" USING RCW, COLUMN, ST-SIZE, ERROR-MESSAGE,

INPUT-S.
GO TO FAIL-END.

RV99.
EXIT.

*

* this controls inputting a new record onto the file. It
* allows initial input of fields, amending of any errors,
* the option to abandon the insertion, writing of the
* record to the file and auditing the new record's contents.
*

INSERT-R SECTION.
INOO.

MOVE "Insert a new record" TO AUDIT-RECORD.
MOW, 3 TO AUDIT-ADVANCE.

PERFORM AUDIT-PRINT.
PERFORM INPUT-FIELDS.
PERFORM AMEND-FIELDS.

171

s-algol and the Commercial 3rd & 4th Generations

PERFORM INQUIRE—OK.
IF NOT APPLY-CHANGE

GO TO IN90.
PERFORM AUDIT-CREDIT.
WRITE CREDIT-RECORD INVALID KEY

MOVE "WRITE FAIL" TO AUDIT-RECORD
PERFORM AUDIT-PRINT
GO TO FAIL-END.

MOVE "Details inserted" TO ERROR-MESSAGE.
GO TO IN95.

IN90.
PERFORM AUDIT-ABANDONED.
MOVE "Details not inserted" TO ERROR-MESSAGE.

IN95.
CALL "ERRORVDU" USING RCW, COLUMN, ST-SIZE, ERROR-MESSAGE,

INPUT-S.

IN99.
*

* this controls the amending of an existing record. It
* displays the first page, allows amending of
* specific field values on this or any subsequent
*

pages, gives the option to abandon the amendments,
* writes the new record values and audits the new
* record values.
*

AMEND-R SECTION.
AMOO.

MOVE "Amend an existing record" TO AUDIT-RECORD.
MOVE 3 TO AUDIT-ADVANCE.

PERFORM AUDIT-PRINT.

PERFORM AUDIT-CREDIT.
MOVE 1 TO SCREEN-PAGE.
PERFORM SHOW-FIELDS.
PERFORM AMEND—FTET iDS.

PERFORM INOUIRE-OK.
IF NOT APPLY-CHANGE

GO TO AM90.
PERFORM AUDIT-CREDIT.
REWRITE CREDIT-RECORD INVALID KEY

MOVE "REWRITE FAIL" TO AUDI^-RECORD
PERFORM AUDIT-PRINT
GO TO FAIL-END.

MOVE "Details updated" TO ERROR-MESSAGE.
GO TO AM95.

AM90.
PERFORM AUDIT-ABANDONED.
MOVE "Details retained" TO ERROR-MESSAGE.

AM95.
CALL "ERRORVDU" USING ROW, COLUMN, ST-SIZE, ERROR-MESSAGE,

INPUT-S.
AM99.

EXIT.
*

* this section steps through, one at a time, the various pages
* of the record's values and audits the record's contents
*

SHCW-R SECTION.

SHOO.
MOVE "Show an existing record" TO AUDIT-RECORD.

172

s-algol and the Commercial 3rd & 4th Generations

MOVE 3 TO AUDIT-ADVANCE.
PERFORM AUDIT-PRINT.
PERFORM SHOW-FIELDS.
PERFORM AUDIT-CREDIT.

SH99.
EXIT.

*

* this section shows each page of information on the
* record to be deleted, allows the abandonment of the
* deletion, deletes the record and audits the late
* record's contents
*

DELETE-R SECTION.
DE00.

MOVE "Delete an existing record" TO AUDIT-RECORD.
MOVE 3 TO AUDIT-ADVANCE.
PERFORM AUDIT-PRINT.
PERFORM SHOW-FIELDS.
PERFORM AUDIT-CREDIT.
PERFORM INQUIRE-OK.
IF NOT APPLY-CHANGE

GO TO DE90.
DELETE CREDIT INVALID KEY

MOVE "DELETE FAIL" TO AUDIT-RECORD
PERFORM AUDIT-PRINT
GO TO FAIL-END.

MOVE "Details deleted" TO ERROR-MESSAGE.
GO TO DE95.

DE90.
PERFORM AUDIT-ABANDONED.
MOVE "Details retained" TO ERROR-MESSAGE.

DE95.
CALL "ERRORVDU" USING ROW, COLUMN, ST-SIZE, ERROR-MESSAGE,

INPUT-S.
DE99.

EXIT.
*

* this asks on the 23rd line whether the change is to be
* applied to the file. It is asked (i) after amendment of
* the fields in the insert function (ii) after amendment
* of the fields in the amend function (iii) after viewing
* all the contents of the record in the delete function.
* It sets the variable REPLY.
*

INQUIRE-OK SECTION.
IQ00.

MOVE 23 TO ROW.
MOVE 1 TO COLUMN.
CALL "CURSORTO" USING ROW, COLUMN.
DISPLAY "Apply the change (Y=Yes)" WITH NO ADVANCING.
MOVE 28 TO COLUMN.
CALL "INPUTS" USING ROW, COLUMN, INPUT-S, ST-SIZE.
CALL "CLEARVDU" USING ROW.
IF IXX (1) = "Y" OR IXX (1) = "y"

MOVE 4 TO REPLY
ELSE

MOVE ZERO TO REPLY.
IQ99.

EXIT.

173

s-algol and the Commercial 3rd & 4th Generations

*

* this inputs and verifies the function selected and prints
* the function selected on the screen
*

GET-FUNCTION SECTION.
GF00.

MOVE 23 TO ROW.
GF05.

MOVE 1 TO COLUMN.
CALL "CURSORTO" USING ROW, COLUMN.
IF DELETE-OK

DISPLAY "I,A,S or D - which one" WITH NO ADVANCING
ELSE
IF INSERT-OK

DISPLAY "I,A or S - which one" WITH NO ADVANCING
ELSE
IF AMEND-OK

DISPLAY "A or S - which one" WITH NO ADVANCING
ELSE

DISPLAY "S or return - which one" WITH NO ADVANCING.
MOVE 25 TO COLUMN.
MOVE 1 TO ST-SIZE.
CALL "INPUTS" USING ROW, COLUMN, INPUT-S, ST-SIZE.
IF IXX (1) = " "

MOVE SPACES TO FUNCTION
GO TO GF99.

IF (IXX (1) = "I" OR "i") AND (DELETE-OK OR INSERT-OK)
MOVE "Insert" TO FUNCTION
MOVE "job" TO THIS-KEY
GO TO GF10.

IF (IXX (1) = "A" OR "a") AND (DELETE-OK OR INSERT-OK OR
AMEND-OK)

MOVE "Amend " TO FUNCTION
GO TO GF10.

IF IXX (1) = "S" OR "s"
MOVE "Show " TO FUNCTION
GO TO GF10.

IF (IXX (1) = "D" OR "d") AND DELETE-OK
MOVE "Delete" TO FUNCTION
GO TO GF10.

IF DELETE-OK
MOVE "I=insert, A=amend, S=Show, D=delete"
TO ERROR-MESSAGE

ELSE
IF INSERT-OK

MOVE "I=insert, A=amend, S=Show"
TO ERROR-MESSAGE

ELSE

IF AMEND-OK
MOVE "A=amend, S=Show"
TO ERROR-MESSAGE

ELSE

MOVE "S=Show"
TO ERROR-MESSAGE.

CALL "ERRORVDU" USING ROW, COLUMN, ST-SIZE, ERROR-MESSAGE,
INPUT-S.

GO TO GF05.
GF10.

MOVE 23 TO ROW.

174

s-algol and the Commercial 3rd & 4th Generations

CALL "CLEARVDU" USING ROW.
MOVE 2 TO ROW.
MOVE 70 TO COLUMN.
CALL "CURSORTO" USING ROW, COLUMN.
DISPLAY FUNCTION WITH NO ADVANCING.

GF99.
EXIT.

*

* This prints a message on the audit trail to signal the
* last option (insert, amend or delete) was abandoned
* with no change to the file.
*

AUDIT-ABANDONED SECTION.
AUDI00.

MOVE "** function abandoned **" TO AUDIT-RECORD.
MOVE 2 TO AUDIT-ADVANCE.

PERFORM AUDIT-PRINT.
AUDI99.

EXIT.
*

* head the audit print and reset the line and page
* counters
AUDIT-HEADINGS SECTION.

AH00.
MOVE AUDIT-RECORD TO ST-AUDTT-RECORD.

MOVE SPACES TO AUDIT-RECORD.
MOVE ST-TITLE TO AUDIT-RECORD.
MOVE " / / ! : : Page" TO AUDIT-HEAD.
MOVE PAGE-COUNT TO AUDIT-PAGE.
ACCEPT ST-DATE FROM DATE.
ACCEPT ST-TIME FROM TIME.

MOVE ST-YEAR TO AUDIT-YEAR.
MOVE ST-MONTH TO AUDIT-MONTH.
MOVE ST—DAY TO AUDIT-DAY.
MOVE ST-HOUR TO AUDIT-HOUR.
MOVE ST-MINUTE TO AUDIT-MINUTE.
MOVE ST-SECOND TO AUDIT-SECOND.
WRITE AUDIT-RECORD AFTER ADVANCING PAGE.
MOVE SPACES TO AUDIT-RECORD.
WRITE AUDIT-RECORD AFTER ADVANCING 2 LINES.
MOVE 1 TO LINE-COUNT.
ADD 1 TO PAGE-COUNT.
MOVE ST-AUDIT-RECORD TO AUDIT-RECORD.

*

* this forces the program to fail with an error being
* returned to the operating system.
*

FAIL-END SECTION.
FA00.

MOVE ERROR-MESSAGE TO AUDIT-RECORD.
PERFORM AUDIT-PRINT.
MOVE "PROGRAM RUN ABANDONED" TO AUDIT-RECORD, ERROR-MESSAGE.
CALL "ERRORVDIJ" USING ROW, COLUMN, ST-SIZE, ERROR-MESSAGE,

INPUT—S.
PERFORM AUDIT-PRINT.
MOVE ZERO TO WORK-1.

DIVIDE 2 BY WORK-1 GIVING WORK-2.
PERFORM CLOSEDOWN.
STOP "PROGRAM RUN ABANDONED".

175

s-algol and the Commercial 3rd & 4th Generations

I FA99.
| EXIT.
I*
I* this function controls global inputting of
I* all fields
| INPUT-FIELDS SECTION.
I INP00.

MOVE 1 TO SCREEN-PAGE.
PERFORM NEW-PAGE.
PERFORM INPUT-DESC.
PERFORM INPUT-AMOUNT.
PERFORM INPUT-NOTE.
MOVE SPACES TO CREDIT-FILLER.

I INP99.
I EXIT.
I *
I* this function controls selection of amendment
I* of an individual field
I *
I AMEND-FIELDS SECTION.
I AME00.
I MOVE 23 TO ROW.
I MOVE 1 TO COLUMN.
I CALL "CURSORTO" USING ROW, COLUMN.
I DISPLAY "Which Field" WITH NO ADVANCING,
j MOVE 14 TO COLUMN.

MOVE ZERO TO LOWER-I.
MOVE 3 TO UPPER-I.

I CALL "INPUTI" USING ROW, COLUMN, LOWER-I, UPPER-I,
I INPUT-I.
I MOVE 23 TO ROW.
I CALL "CLEARVDU" USING ROW.
I IF INPUT-I = ZERO
I GO TO AME99.

IF INPUT-I NOT > 3
MOVE 1 TO WORK-1.

IF WORK-1 NOT = SCREEN-PAGE
MOVE WORK-1 TO SCREEN-PAGE
PERFORM SHOW-FIELDS
GO TO AME00.

IF INPUT-I = 1
PERFORM INPUT-DESC

ELSE
IF INPUT-I = 2

PERFORM INPUT-AMOUNT
ELSE
IF INPUT-I = 3

PERFORM INPUT-NOTE.
GO TO AME00.

AME99.
EXIT.

*

* this function allows the display of either
* the first page only (for amend and delete)
* or all screens (for show).
*

SHOW-FIELDS SECTION.
SHO00.

IF SHOW-RECORD OR DELETE-RECORD

176

s-algol and the Commercial 3rd & 4th Generations

I MOVE 1 TO SCREEN-PAGE.
I SHO05.
I PERFORM NEW-PAGE.

IF SCREEN-PAGE = 1
PERFORM DISPLAY-DESC
PERFORM DISPLAY-AMOUNT
PERFORM DISPLAY-NOTE .

IF NOT (SHOW-RECORD
OR DELETE-RECORD)
OR SCREEN-PAGE = 1

GO TO SH099.
MOVE 23 TO ROW.
MOVE 1 TO COLUMN.
CALL "CURSORTO" USING ROW, COLUMN.
DISPLAY "Next Page" WITH NO ADVANCING.
ACCEPT INPUT-S.
CALL "CLEARVDU" USING ROW.
ADD 1 TO SCREEN-PAGE.
GO TO SHO05.

SH099.
EXIT.

*

* the following sections control the displaying of
* background screen information relating to
* the master file fields. The following are
* displayed: (i) the field amending number
* (if the field is amendable) (ii) a colon
* between the field number and the name
* (iii) the field display name (iii) the
* colon between the name and input/display
* area and a colon immediately below this
* for every line the input/display area involves
*

*

*

*

*

DISPLAY-STATICS-JOB SECTION.
DS-JOB-00.

MOVE 2 TO ROW.
MOVE 3 TO COLUMN.
CALL "CURSORTO" USING ROW, COLUMN.
DISPLAY " job" WITH NO ADVANCING.
MOVE 29 TO COLUMN.
CALL "CURSORTO" USING ROW, COLUMN.
DISPLAY ":" WITH NO ADVANCING.
MOVE 42 TO COLUMN.
CALL "CURSORTO" USING ROW, COLUMN.
DISPLAY ":" WITH NO ADVANCING.

DS-JOB-99.
EXIT.

*

DISPLAY-STATICS—DESC SECTION.
DS-DESC-00.

MOVE 4 TO ROW.
MOVE 1 TO COLUMN.
CALL "CURSORTO" USING ROW, COLUMN.
DISPLAY 1 WITH NO ADVANCING.
MOVE 3 TO COLUMN.

177

s-algol and the Commercial 3rd & 4th Generations

CALL "CURSORTO" USING ROW, COLUMN.
DISPLAY " description" WITH NO ADVANCING.
MOVE 1 TO SUBSCRIPT.

DS-DESC-05.
MOVE 29 TO COLUMN.
CALL "CURSORTO" USING ROW, COLUMN.
DISPLAY ":" WITH NO ADVANCING.
MOVE 80 TO COLUMN.
CALL "CURSORTO" USING ROW, COLUMN.
DISPLAY ":" WITH NO ADVANCING.
IF SUBSCRIPT <3

ADD 1 TO ROW
ADD 1 TO SUBSCRIPT
GO TO DS-DESC-05.

DS-DESC-99.
EXIT.

DISPLAY-STATICS-AMOUNT SECTION.
DS-AMOUNT-00.

MOVE 7 TO ROW.
MOVE 1 TO COLUMN.
CALL "CURSORTO" USING ROW, COLUMN.
DISPLAY 2 WITH NO ADVANCING.
MOVE 3 TO COLUMN.
CALL "CURSORTO" USING ROW, COLUMN.
DISPLAY " amount" WITH NO ADVANCING.
MOVE 29 TO COLUMN.
CALL "CURSORTO" USING ROW, COLUMN.
DISPLAY ":" WITH NO ADVANCING.
MOVE 40 TO COLUMN.
CALL "CURSORTO" USING ROW, COLUMN.
DISPLAY WITH NO ADVANCING.

DS-AMOUNT-99.
EXIT.

DISPLAY-STATICS-NOTE SECTION.
DS-NOTE-00.

MOVE 8 TO ROW.
MOVE 1 TO COLUMN.
CALL "CURSORTO" USING ROW, COLUMN.
DISPLAY 3 WITH NO ADVANCING.
MOVE 3 TO COLUMN.
CALL "CURSORTO" USING ROW, COLUMN.
DISPLAY " note number" WITH NO ADVANCING.
MOVE 29 TO COLUMN.
CALL "CURSORTO" USING RCW, COLUMN.
DISPLAY ":" WITH NO ADVANCING.
MOVE 35 TO COLUMN.
CALL "CURSORTO" USING ROW, COLUMN.
DISPLAY ":" WITH NO ADVANCING.

DS-NOTE-99.
EXIT.

the following sections control the inputting
and verification of the individual fields
on the master file.

178

s-algol and the Commercial 3rd & 4th Generations

INPUT-JOB SECTION.
I-JOB-00.

MOVE 2 TO ROW.
MOVE 30 TO COLUMN.

I-JOB-05.
MOVE 12 TO ST-SIZE.
CALL "INPUTS" USING ROW, COLUMN,
INPUT-S, ST-SIZE.
IF THIS-KEY = "job"
AND (INPUT-S = "+" OR SPACES)

GO TO I-JOB-99.
MOVE INPUT-S TO CREDIT-JOB .

I-JOB-99.
EXIT.

INPUT-DESC SECTION.
I-DESC-00.

MOVE 4 TO ROW.
MOVE 30 TO COLUMN.
MOVE 1 TO SUBSCRIPT.

I-DESC-05.
MOVE 50 TO ST-SIZE.
CALL "INPUTS" USING ROW, COLUMN,
INPUT-S, ST-SIZE.
MOVE INPUT-S TO CREDIT-DESC (SUBSCRIPT) .

I-DESC-10.
IF SUBSCRIPT < 3

ADD 1 TO SUBSCRIPT
ADD 1 TO ROW

GO TO I-DESC-05.
I-DESC-99.

EXIT.

INPUT-AMOUNT SECTION.
I-AMOUNT-00.

MOVE 7 TO ROW.
MOVE 30 TO COLUMN.
MOVE .01 TO LOWER-R .

MOVE 9999999.99 TO UPPER-R .

MOVE 2 TO DECIMALS.
I-AMOUNT-05.

CALL "INPUTR" USING ROW, COLUMN,
LOWER-R, UPPER-R, INPUT-R,
DECIMALS.
MOVE INPUT-R TO CREDIT-AMOUNT .

I-AMOUNT-99.
EXIT.

INPUT-NOTE SECTION.
I-NOTE—00.

MOVE 8 TO ROW.
MOVE 30 TO COLUMN.
MOVE 1 TO LOWER-I .

MOVE 999999 TO UPPER-I .

I-NOTE-05.
CALL "INPUTIK" USING ROW, COLUMN,
LOWER-I, UPPER-I, INPUT-I, INPUT-S.

179

s-algol and the Commercial 3rd & 4th Generations

IF THIS-KEY = "note number"
AND (INPUT—S = "+" OR SPACES)

GO TO I—NOTE—99.
MOVE INPUT—I TO CREDIT-NOTE .

I-NOTE-99.
EXIT.

*

* the following sections allow the display of the
* contents of individual fields on the master
* file.
*

*

*

*

*

DISPLAY-JOB SECTION.
D-JOB-OO.

MOVE 2 TO RCW.

MOVE 30 TO COLUMN.
CALL "CURSORTO" USING RCW, COLUMN.
DISPLAY CREDIT-JOB WITH NO ADVANCING.

D-JOB-99.
EXIT.

*

DISPLAY—DESC SECTION.

D-DESC-00.
MOVE 4 TO RCW.

MOVE 30 TO COLUMN.
MOVE 1 TO SUBSCRIPT.

D-DESC-05.
CALL "CURSORTO" USING RCW, COLUMN.
DISPLAY CREDIT-DESC (SUBSCRIPT) WITH NO ADVANCING.
IF SUBSCRIPT < 3

ADD 1 TO SUBSCRIPT
ADD 1 TO RCW

GO TO D-DESC-05.
D-DESC-99.

EXIT.
*

DISPLAY-AMOUNT SECTION.
D-AMOUNT-OO.

MOVE 7 TO RCW.

MOW 30 TO COLUMN.
IF CREDIT-AMOUNT NUMERIC

MOW CREDIT-AMOUNT TO OUTPUT-R
CALL "OUTPUTR" USING RCW, COLUMN, OUTPUT-R

ELSE
CALL "CURSORTO" USING ROW, COLUMN
DISPLAY CREDIT-AMOUNT WITH NO ADVANCING.

D-AMOUNT-99.
EXIT.

*

DISPLAY-NOTE SECTION.
D-NOTE-OO.

MOW 8 TO RCW.

MOW 30 TO COLUMN.

IF CREDIT-NOTE NUMERIC

MOW CREDIT-NOTE TO OUTPUT-I
CALL "OUTPUTI" USING RCW, COLUMN, OUTPUT-I

180

s-algol and the Commercial 3rd & 4th Generations

ELSE

CALL "CURSORTO" USING RCW, COLUMN
DISPLAY CREDIT-NOTE WITH NO ADVANCING.

D-NOTE-99.
EXIT.

i *

I * this controls the displaying of the background
!* details on a selected screen page.
i *

! NEW-PAGE SECTION.
| NPOO.
! MOVE 4 TO RCW.

! CALL "CLEARVDU" USING ROW.
IF SCREEN-PAGE = 1

PERFORM DISPLAY—STATICS—DESC

PERFORM DISPLAY-STATICS-AMOUNT

PERFORM DISPLAY-STATICS-NOTE .

! NP99.
! EXIT,
i *

!* this prints the contents of the MASTER file
!* fields and is used by the functions selected
!* to show the record as it stands (show, amend,
I * delete), show the changed record (amend),
!* show the new record (input) .

i *

AUDIT-CREDIT SECTION.

! AUDOO.
! MOVE 2 TO AUDIT-ADVANCE.

MOVE "job" TO AUDIT-NAME.
MOVE CREDIT-JOB TO AUDIT-VALUE-X.
PERFORM AUDIT-PRINT.
MOVE "description" TO AUDIT-NAME.
MOVE 1 TO SUBSCRIPT.

AUDIT—DESC.
MOVE CREDIT-DESC (SUBSCRIPT) TO AUDIT-VALUE-X.
PERFORM AUDIT-PRINT.
IF SUBSCRIPT NOT = 3

ADD 1 TO SUBSCRIPT

GO TO AUDIT—DESC .

MOVE "amount" TO AUDIT-NAME.
IF CREDIT-AMOUNT NUMERIC

MOVE CREDIT-AMOUNT TO AUDI^-VALUE-R
ELSE

MOVE "contents undefined" TO AUDTT-VALUE-X.

PERFORM AUDIT-PRINT.

MOVE "note number" TO AUDIT-NAME.
IF CREDIT-NOTE NUMERIC

MOVE CREDIT-NOTE TO AUDIT-VALUE-9
ELSE

MOVE CREDIT-NOTE TO AUDIT-VALUE-X.
PERFORM AUDIT-PRINT.

MOVE "FILLER" TO AUDIT-NAME.
MOVE CREDIT-FILLER TO AUDIT-VALUE-X.
PERFORM AUDIT-PRINT.

| AUD99.
! EXIT.

181

s-algol and the Commercial 3rd & 4th Generations

Produced Documentation

This is not included in the s-algol generator (above) but could

be if required. It produces audit print layouts, vdu layouts and

operating instructions.

For an example of unformatted documentation see the tpg suite in

the next section of this chapter.

182

s-algol and the Commercial 3rd & 4th Generations

Program Documentation

program: FMCREDTT.COB Audit Print Layout

183

s-algol and the Cctnmercial 3rd & 4th Generations

Credit Notes File Maintenance DD/MM/YY HH/MM/SS Page Z9

Insert a new record

job XXXXXXXXXXXX
description XX

xx
xx

amount 9999999.99999
note number 999999
FILLER XXXXXXXXXX

Amend an existing record

job
description

amount
note number
FILLER

XXXXXXXXXXXX
xx
xx

xx

9999999.99999
999999

XXXXXXXXXX

job
description

amount
note number
FILLER

XXXXXXXXXXXX
XX

XX
XX

9999999.99999
999999

XXXXXXXXXX

Show an existing record

job XXXXXXXXXXXX
description XX

XX
xx

amount 9999999.99999
note number 999999
FILLER XXXXXXXXXX

Delete an existing record

job
description

amount

note number
FILLER

XXXXXXXXXXXX

XX
xx
xx

9999999.99999
999999

XXXXXXXXXX

Insert a new record

184

s-algol and the Commercial 3rd & 4th Generations

** function abandoned **

Amend an existing record

job
description

amount

note number
FILLER

XXXXXXXXXXXX

xx
xx
xx

9999999.99999
999999

xxxxxxxxxx

** function abandoned **

Delete an existing record

job
description

amount

note number
FILLER

XXXXXXXXXXXX
xx
xx
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXKXXXXXXXXXXXXXXXXXXX

9999999.99999
999999

XXXXXXXXXX

** function abandoned **

End of Audit Report

185

s-algol and the Commercial 3rd & 4th Generations

Program Documentation

program: FMCREDIT.COB Screen Layouts

186

s-algol and the Commercial 3rd & 4th Generations

Credit Notes File Maintenance
job rXXXXXXXXXXXX: XXXXXX

1 description

2 amount

3 note number

xx
xx
xx
9999999.99:
999999:

<line 23 - prcmpts>
<line 24 - errors>

1R7

s-algol and the Commercial 3rd & 4th Generations

File Maintenance Operating Instructions Page 1
Credit Notes

This program allows you to add new details, view (show)

present details, amend present details and remove old details frcm

the Credit Notes file. The program automatically produces a print

of all actions which is accumulated and printed later as an audit

of all activity on the file.

Records of information are identified by the job (primary

key) , note number . Amendments, deletions and viewing can take

place via any key, but insertions only via the primary key.

188

s-algol and the Commercial 3rd & 4th Generations

File Maintenance Operating Instructions Page 2
Credit Notes

Function

Frcm this prcmpt at the bottcm of the screen you select

whether to insert new records (i), amend existing records (A),

view (S) existing records or delete records (D). If you do not

enter one of these the program will (i) signal an error and give

an explanation of the entry reguired, returning you to enter the

function again (ii) if you supply no entry the program run will

end.

The function selected is displayed on the top right corner of

the screen as insert, amend, show or delete appropriately.

On starting the program the key being used is the job .

1R9

s-algol and the Commercial 3rd & 4th Generations

File Maintenance Operating Instructions Paqe 3
Credit Notes

job

At this prcmpt you enter the record "key. One of the

following actions can occur here (i) if the key is not on the file

already and the option to insert has been selected, or if the key

is on the file and amend, show or delete has been selected the

program will continue as indicated below (ii) if the record does

not exist and the option to amend, show or delete is selected then

an error is displayed and you must re-enter the key (iii) if no

entry is given the program asks you to select 'Which key' . The

options are job (primary key) , note number . If you make no

selection here then the current key is still used and you return

to the 'function' prcmpt above.

190

s-algol and the Commercial 3rd & 4th Generations

File Maintenance Operating Instructions Page 4
Credit Notes

Insert a new record

The field names are displayed. You enter the correct values

(see 'Fields and their Values' below). If any of the fields are

incorrect then an explanatory error is displayed and you must

re-enter the field's value.

Once all the fields are in, the program will prcmpt you on

the bottom line with Which field. Enter the number (left of field

name on screen) of the field with an incorrect value. Fields with

no number cannot be amended.

Once all the details are correct you press return at the

Which Field prcmpt. The program replaces this with Apply the

Change (Y=Yes). Enter 'Y' (upper or lower case) and the new

record is added, otherwise the details are rejected.

The program returns you to the key entry above for a new

record.

191

s-algol and the Commercial 3rd & 4th Generations

File Maintenance Operating Instructions Paae 3
Credit Notes ~

Amend an existing record

The screen is displayed complete with all details. The

program prompts with Which Field on the bottom line. To amend a

field enter the number (far left of field) . Fields with no number

cannot be amended.

Once all the details have been corrected as reauired you can

either apply the changes to the file or abandon the amendment.

Enter return to the Which Field prompt and the program asks Apply

the Change (Y=Yes) Enter 'Y' (upper or lower case) to change the

file. Any other entry abandons the changes.

If the key being used not is the job the program prompts

"Press return to continue". Press Return.

The program returns you to the key entry above for another

record.

192

s-algol and the Ccrrmercial 3rd & 4th Generations

File Maintenance Operating Instructions Page 6
Credit Notes

Show an existing record

The screen is displayed. Once all the detail lines have been

viewed the program returns to key entry to allow viewing of

another record.

If the key being used is not the job the program prcmpts

"Press return to continue". Press Return.

193

s-algol and the Commercial 3rd & 4th Generations

File Maintenance Operating Instructions Page 7
Credit Notes

Delete an existing record

The screen is displayed. Once all the details have been

viewed you can opt to delete the record or not. The program

prompts Apply the Change (Y=Yes) on the bottom line. Enter 'Y'

(in upper or lower case) to delete the record, otherwise the

deletion is abandoned.

If the key being used is not the job the program prompts

"Press return to continue". Press Return.

The program returns you to enter another key.

194

s-algol and the Canmercial 3rd & 4th Generations

File Maintenance Operating Instructions Page B
Credit Notes

Fields and their Values

job (this is the primary key) : up to 12 characters , on 1 line

of the screen.

description : up to 50 characters , on 3 lines of the screen.

amount : up to 7 numerics before the decimal point 2 nunerics

after the decimal point , ranging frcm .01 to 9999999.99 , on 1

line of the screen.

note number (this is a key) : up to 6 numerics , ranging frcm 1

to 999999 , on 1 line of the screen.

195

s-algol and the Commercial 3rd & 4th Generations

4. The COBOL Transaction Processing Generator

This represents only the output frcm the generator. Full details

of the VAX DCL ccmmand procedure to run the generator, t.p. suite

definition program, record definition program, field definition

program, totalizers definition program, t.p. input program producer,

t.p. output program producer, documentation producer, documentation

and associated files are held in an unbound appendix and tape at the

department.

Although this generator is much more complex than the fin

generator, the logic is basically the same. I have not included it to

relieve the reader having to plough his way through 300+ pages of

COBOL code.

106

s-algol and the Commercial 3rd & 4th Generations

figure 4.17 - COBOL tpg suite overview

vdu

v

define suite
title

v

suite title vdu
file

•v v

define records

v

record defs. vdu
file

define fields

i r

field defs. vdu
file f

define totalizers

v

totalizers
file

197

s-algol and the Commercial 3rd & 4th Generations

suite,
records,
fields,

totalizers

skeleton

program

skeleton

program

skeleton
documentation

I V 1 1
data entry
generator

data format

generator
documentation
generator

1 I I
* data entry

program

* data format * unformatted

program documentation

1
DSR text processor

I
* formatted
documentation

* indicates these are included as examples below.

The generator:

(i) Asks for the suite name. It then checks whether a suite

already exists with this name and notifies the operator.

(ii) then asks the suite parameters.

(ii) asks the record parameters.

(iii) asks the fields' parameters.

(iv) asks any total checking parameters.

(v) produces the batch input program and optionally compiles it.

(vi) produces the batch output and formatting program and

optionally compiles it.

198

s-algol and the Commercial 3rd & 4th Generations

(vii) produces the system and operating documentation and

optionally formats it.

The batch totalling, if present, will not allow the operator to

leave a batch on input until it balances or is deleted; the option

notably missing from BDI (see section 1 of this chapter above).

The parameters are:

(i) file - name, title

(ii) record - name, maximum number of records, fixed or variable

maximum

(iii) field - record name, field name, type, size, display name,

range, valid values

(iv) record totalizers - record to be accumulated, record and

field to check against

(v) field totalizers - field and record to be accumulated, add or

subtract values, field and record to be checked against

199

s-algol and the Commercial 3rd & 4th Generations

Produced Batch Data Entry Program

This is a more ccmplex version of the fin program. Note in

particular the fewer lines of fixed code (again denoted by a vertical

bar), about 50% less, and the individual record handling codings (the

fin generator has only one record type and so the equivalent codings

are static).

IDENTIFICATION DIVISION.
PROGRAM-ID. TIJOURNAL.
*

* TPBDI - VER 2.0
*

ENVIRONMENT DIVISION.

CONFIGURATION SECTION.
SOURCE-COMPUTER. VAX-11.
OBJECT-COMPUTER. VAX-11.

•k

INPUT-OUTPUT SECTION.

FIDE—CONTROL.
*

* the file TP-FILE is the data entry file
*

SELECT TP-FILE ASSIGN TO TPFILE
ORGANIZATION IS INDEXED
ACCESS IS DYNAMIC
RECORD KEY IS TP-KEY.

DATA DIVISION.
FILE SECTION.
FD TP-FILE.
01 TP-KEY.

03 TP-BATCH-NUMBER PIC 9999.
03 TP-RECORD-NUMBER PIC 99.
03 TP-RECORD-TYPE PIC X(10).
03 TP-LINE-NUMBER PIC 9999.
TP--HEADER-RECORD.
03 FILLER PIC X(20).
03 TP-HEADER-YEAR PIC X.

03 TP-HEADER-DATE PIC 9(6) .

03 TP-HEADER-CREDIT PIC P(9)V9(2)
03 TP-HEADER-DEBIT PIC 9(9)V9(2)
03 TP-HEADER-TYPE PIC X.

TP--CREDIT-RECORD.
03 FILLER PIC X(20).
03 TP-CREDIT-AMOUNT PIC 9(9)V9(2)
03 TP-CREDIT-ACCOUNT PIC X(7) .

03 TP-CREDIT-ANALYSIS PIC 9(2) .

03 TP-CREDIT-NARR PIC X(50).
TP--DEBIT-RECORD.
03 FTTI iER PIC X(20).
03 TP-DEBIT-AMOUNT PIC 9(9)V9(2)

200

s-algol. and the Commercial 3rd & 4th Generations

03 TP-DEBIT—ACCOUNT PIC X(7) .

03 TP-DEBIT-ANALYSIS PIC 9(2).
03 TP-DEBIT-NARR PIC X(50).

WORKING-STORAGE SECTION.
01 FLAG-RECORD PIC X.
01 CHANGE-FLAG PIC X.

SB RECORD-CHANGED VALUE "C".
01
01
01
01
01

HYPHENS
LAST-KEY-READ
ROW

COLUMN
REPLY
BB NO-KEY VALUE

PIC X(B0) VALUE SPACES.
PIC X(20) .

PIC 99.
PIC 99.
PIC X.

"1".

01

BB NO-RECORD VALUE "2".
BB YES-RECORD VALUE "3".
B8 APPLY-CHANGE VALUE "4".
B8 TOTAL-FAIL VALUE "9".
ERROR—CI.
03 ECI-LIT

01

01
01

01
01
01
01
01

PIC X(20) .

PIC Z(17)9.
PIC X(6) VALUE
PIC Z(17)9.
PIC X(12) VALUE "

PTC X(20) .

PIC -(12)9.9(5) .

PIC X(6) VALUE "
PIC -(12)9.9(5).
PIC X(12) VALUE "
PIC 99.
PIC 99.
PIC 99.
PIC 99.

PIC 99 COMP.

PTC 99 COMP.

03 ECI—STORE
03 FILLER
03 ECI—COUNT
03 FILLER
ERROR-CR.
03 ECR-LIT
03 ECR-STORE
03 FILLER
03 ECR-COUNT
03 FILLER
ST-FROM
ST-TO

SCROLL-FROM
SCROLL-TO
CURRENT-LINE
ST-SIZE
FILTER.

03 INPUT-S PIC X(60).
BB NO-INPUT VALUE SPACES.
03 IXX REDEFINES INPUT-S PIC X OCCURS 60.

given

accumulated".

given

accumulated"

03 OUTPUT-I

03 LOWER-I

03 OUTPUT-R

PIC -(17)9.

PIC 9(18)-.

PIC -(12)9.9(5).

03 UPPER—I PIC 9(18)-.
01 W-JULIAN-DATE-WORK-AREA.

03 W-JD-DATE PIC 9(6)
03 FILLER REDEFINES W-vTD-DATE.

05 W-J-DAY PIC 99.
05 W-J-MONTH PIC 99.
05 W-J-YEAR PIC 99.

03 W-J—JULIAN PIC 9(6)
01 INPUT-D PIC 9(6) COMP.
01 LOWER-D PIC 9(6) COMP.
01 UPPER-D PIC 9(6) COMP.
01 SUBSCRIPT PIC 999 COMP.
01 WORK-1 PIC 99 COMP.

COMP.

201

s-algol and the Commercial 3rd & 4th Generations

01 WORK-2 PIC 99 COMP.
01 ERROR-MESSAGE PIC X(7R).
01 INPUT—I PIC S9(18) COMP
01 LCWER-R PIC S9(13)V9(5) COMP
01 UPPER-R PIC S9(13)V9(5) COMP
01 INPUT-R PIC S9(13)V9(5) COMP
01 DECIMALS PIC 9.
01 W-STORE-KEY.

03 W-STORE-BATCH
03 W-STORE-NUMBER
03 W-STORE-TYPE
03 W—STORE—LINE

*

01 W-COUNT-HEADER-CREDIT
01 W-STORE-HEADER-CREDIT
01 W-COUNT-HEADER-DEBIT
01 W-STORE-HEADER-DEBIT
01 W-HEADER
01 W-CREDIT
01 W-DEBIT
*

PROCEDURE DIVISION.
COSITROLX SECTION.
COO.

PERFORM INITIALX.
PERFORM MAINFLDW.
PERFORM CLOSEDCWN.

C99.
STOP RUN.

*

INITIALX SECTION.
■k

*
open the files; clear the screen;

* display the program title on
* the vdu
*

100.
OPEN I-O TP-FILE.
MOVE 1 TO RCW.
CALL "CLEARVDU" USING RCW.
DISPLAY

"Journal, Salary, Wage"
WITH NO ADVANCING.

MOVE 2 TO ROW.
MOVE 1 TO COLUMN.
CALL "CURSORED" USING RCW, COLUMN.
DISPLAY "Batch number" WITH NO ADVANCING.
INSPECT HYPHENS REPLACING ALL SPACES BY
MOVE 3 TO ROW.
CALL "CURSORED" USING ROW, COLUMN.
DISPLAY HYPHENS WITH NO ADVANCING.

IN99.
EXIT.

*

*

MAINFLOW SECTION.
MOO.

PERFORM GET-BATCH-NUMBER.
IF NO-KEY

PIC 9999.
PIC 99.
PIC X(10) .

PIC 9999.

PIC 9(9)V9(2) COMP.
PIC 9(9)V9f2) COMP.
PIC 9(9)V9(2) COMP.
PIC 9(9)V9(2) COMP.
PIC 9 COMP.
PIC 9(4) COMP.
PIC 9(4) COMP.

202

s-algol and the Commercial 3rd & 4th Generations

GO TO M99.
MOVE 23 TO RCW.
MOVE 1 TO COLUMN.
CALL "CURSOKTO" USING ROW, COLUMN.
IF YES-RECORD

DISPLAY "Batch exists - continue? (Y=Yes)"
WITH NO ADVANCING
MOVE 34 TO COLUMN

ELSE

DISPLAY "Batch does not exist - continue? (Y=Yes)"
WITH NO ADVANCING
MOVE 42 TO COLUMN.

MOVE 1 TO ST-SIZE.

CALL "INPUTS" USING RCW, COLUMN, INPUT-S, ST-SIZE.
CALL "CLEARVDU" USING RCW.

IF INPUT-S = "Y" OR INPUT—S = "y"
IF YES-RECORD

GO TO MOB
ELSE

GO TO M02.
GO TO MOO.

M02.
PERFORM ZEROIZE-TOTALS.
MOVE W-STORE-BATCH TO TP-BATCH-NUMBER.
MOVE SPACES TO TP-RECORD-TYPE.
MOVE ZERO TO TP-LTNE-NUMBER TP-RECORD-NUMBER.
WRITE TP-KEY INVALID KEY

MOVE "FAILED TO WRITE FIRST RECORD" TO ERROR-MESSAGE
GO TO FAIL-END.

PERFORM INSERT-HEADER-R.
PERFORM INSERT-CREDIT-R.
PERFORM INSERT-DEBIT-R.
GO TO M15.

MOB.
MOVE 23 TO RCW.

MOVE 1 TO COLUMN.

CALL "CURSORTO" USING RCW, COLUMN.
DISPLAY "Amend or Delete this batch (D=Delete)"

WITH NO ADVANCING.
MOVE 1 TO ST-SIZE.

MOVE 40 TO COLUMN.
CALL "INPUTS" USING RCW, COLUMN, INPUT-S, ST-SIZE.
CALL "CLEARVDU" USING RCW.
IF INPUT-S NOT = "D"

GO TO M10.
PERFORM INQUIRE-OK.
IF APPLY-CHANGE

PERFORM DELETE-BATCH
GO TO MOO.

GO TO MOB.
M10.

PERFORM READ-START-BATCH.
IF NO-RECORD

MOVE "FAILED TO READ FIRST RECORD" TO ERROR-MESSAGE
GO TO FAIL-END.

PERFORM ZEROIZE-TOTALS.
PERFORM READ-NEXT-TP.
PERFORM AMEND-HEADER-R.
PERFORM AMEND-CREDIT-R.

203

s-algol and the Ccmmercia1 3rd & 4th Generations

PERFORM AMEND-DEBTT-R.
M15.

MOVE ZERO TO REPLY.
IF W-STORE-HEADER-CREDIT NOT = W-COUNT-HEADER-CREDIT

MOVE "credit count wrong" TO ECR-LIT
MOVE W-STORE-HEADER-CREDIT TO ECR-STORE
MOVE W-COUNT-HEADER-CREDIT TO ECR-COUNT
MOVE ERROR-CR TO ERROR-MESSAGE
MOVE 9 TO REPLY

CALL "ERRORVDU" USING RCW, COLUMN,
ST-SIZE, ERROR-MESSAGE, INPUT-S.

IF W-STORE-HEADER-DEBIT NOT = W-COUNT-HEADER-DEBIT
MOVE "debit count wrong" TO ECR-LIT
MOVE W-STORE-HEADER-DEBTT TO ECR-STORE
MOVE W-COUNT-HEADER-DEBIT TO ECR-COUNT
MOVE ERROR-CR TO ERROR-MESSAGE
MOVE 9 TO REPLY
CALL "ERRORVDU" USING RCW, COLUMN,
ST-SIZE, ERROR-MESSAGE, INPUT-S.

IF TOTAL-FAIL
GO TO M05.

MOVE "Batch totals correct" TO ERROR-MESSAGE.

CALL "ERRORVDU" USING ROW, COLUMN,
ST-SIZE, ERROR-MESSAGE, INPUT-S.

GO TO MOO.
M99.

EXIT.
*

* close files before the end of the
*
run; set scrolling back to lines 1 to 24

*

CLOSEDOWN SECTION.
COO.

MOVE 1 TO SCROLL-FRCM.
MOVE 24 TO SCROLL-TO.
CALL "SCROLL" USING SCROLL-FRCM, SCROLL-TO.
CLOSE TP-FILE.

C99.
EXIT.

*

* read the first record in a batch
*

READ-START-BATCH SECTION.

RSBOO.
MOVE W-STORE-BATCH TO TP-BATCH-NUMBER.
MOVE ZERO TO TP-LINE-NUMBER TP-RECORD-NUMBER.
MOVE SPACES TO TP-RECORD-TYPE.
PERFORM READ-TP.

RSB99.
EXIT.

*

* read the (next) record on the work file
*

READ-TP SECTION.

RWOO.
MOVE 3 TO REPLY.
READ TP-FILE INVALID KEY

MOVE 2 TO REPLY.
RW99.

204

s-algol and the Commercial 3rd & 4th Generations

EXIT.
i *

! READ-NEXT-TP SECTION.
! RNOO.

MOVE 3 TO REPLY.
READ TP-FILE NEXT AT END

! MOVE 2 TO REPLY.
! RN99.
! EXIT.
t *

! * accept the batch number frcm the screen then check the
!* file that the record is absent (for insert)
!* or present (for amend).
I *

! GET-BATCH-NUMBER SECTION.
! GEOO.
! MOVE 4 TO ROW.
! CALL "CLEARVDU" USING RCW.

MOVE ZERO TO LOWER-I.
1

MOVE 9999 TO UPPER-I.

! MOVE 2 TO ROtf.
I MOVE 14 TO COLUMN.

MOVE 44 TO ST—SIZE.
CALL "CTEARAREA" USING ROW, COLUMN, ST-SIZE.
CALL "INPUTI" USING RCW, COLUMN, LCWER-I, UPPER-I,

INPUT—I.

! IF INPUT-I = ZERO
! MOVE 1 TO REPLY

GO TO GE99.
MOVE INPUT-I TO W-STORE-BATCH.

! PERFORM READ-START-BATCH.
! MOVE 21 TO COLUMN.
^ CALL "CURSORTO" USING RCW, COLUMN.
! IF NO-RECORD

DISPLAY "Insert batch" WITH NO ADVANCING
ELSE

DISPLAY "Amend batch " WITH NO ADVANCING.

! GE99.
! EXIT.
*

* zeroize totals accumulators
*

ZEROIZE—TOTALS SECTION.
ZEOO.

MOVE ZERO TO W-COUNT-HEADER-CREDIT.
MOVE ZERO TO W-COUNT-HEADER-DEBIT.

ZE99.
EXIT.

i *
i

j* these control inputting new records onto the file. They
!* allows initial input of fields, amending of any errors,
!* the option to abandon the insertion, writing of the
!* record to the file.
i *
i
i *
i
i *
i

INSERT-HEADER-R SECTION.
IN-HEADER-00.

MOVE "HEADER " TO TP-RECORD-TYPE.

205

s-algol and the Commercial 3rd & 4th Generations

MOVE 1 TO TP-RECOED-NUMBER.
MOVE 41 TO COLUMN.
MOVE 2 TO RCW.
CALL "CURSORTO" USING RCW, COLUMN.
DISPLAY "Insert header " WITH NO ADVANCING.
MOVE 1 TO TP-LINE-NUMBER.
MOVE ZERO TO W-HEADER.
PERFORM NEW-HEADER-PAGE.

IN-HEADER-05.
PERFORM INPUT-HEADER-FIELDS.

PERFORM AMEND-HEADER-FIELDS.
WRITE TP-HEADER-RECORD INVALID KEY

MOVE "Write FAIL" TO ERROR-MESSAGE
GO TO FAIL-END.

ADD 1 TO W-HEADER.
MOVE TP-HEADER-CREDIT TO W-STORE-HEADER-CREDIT.

MOVE TP-HEADER-DEBIT TO W-STORE-HEADER-DEBIT.
IF W-HEADER < 1

ADD 1 TO TP-LINE-NUMBER
GO TO IN-HEADER-05.

IN-HEADER-99.
EXIT.

INSERT-CREDIT-R SECTION.
IN-CREDIT—00.

MOVE "CREDIT " TO TP-RECORD-TYPE.
MOVE 2 TO TP-RECORD-NUMBER.
MOVE 41 TO COLUMN.
MOVE 2 TO RCW.

CALL "CURSORTO" USING RCW, COLUMN.
DISPLAY "Insert credit " WITH NO ADVANCING.
MOVE 1 TO TP-LINE-NUMBER.
MOVE ZERO TO W-CREDIT.
PERFORM NEW-CREDIT-PAGE.

IN-CREDIT-05.
PERFORM INPUT-CREDIT-FIELDS.
IF FLAG-RECORD = "N"

GO TO IN-CREDIT—99.
PERFORM AMEND-CREDIT-FIELDS.
IF FLAG-RECORD = "N"

GO TO IN-CREDIT—99.
WRITE TP-CREDIT-RECORD INVALID KEY

MOVE "Write FAIL" TO ERROR-MESSAGE
GO TO FAIL-END.

ADD 1 TO W-CREDIT.
ADD TP-CREDIT-AMOUNT TO W-COUNT-HEADER-CREDIT.
IF W-CREDIT < 9999

ADD 1 TO TP-LINE-NUMBER
GO TO IN-CREDIT-05.

IN-CREDIT-99.
EXIT.

INSERT-DEBIT-R SECTION.
IN-DEBIT-00.

MOVE "DEBIT " TO TP-RECORD-TYPE.
MOVE 3 TO TP-RECORD-NUMBER.
MOVE 41 TO COLUMN.

MOVE 2 TO RCW.
CALL "CURSORTO" USING RCW, COLUMN.

206

s-algol and the Commercial 3rd & 4th Generations

DISPLAY "Insert debit " WITH NO ADVANCING.
MOVE 1 TO TP-LINE-NUMBER.
MOVE ZERO TO W-DEBIT.
PERFORM NEW-DEBIT-PAGE.

IN-DEBIT-05.
PERFORM INPUT-DEBIT-FIELDR.
IF FLAG-RECORD = "N"

GO TO TN-DEBIT-99.
PERFORM AMEND—DF.BTT-FTET iPR.

IF FLAG-RECORD = "N"
GO TO IN—DEBIT—99.

WRITE TP-DEBIT-RECORD INVALID KEY
MOVE "Write FAIL" TO ERROR-MESSAGE
GO TO FAIL-END.

ADD 1 TO W-DEBIT.
ADD TP-DEBIT-AMOUNT TO W-COUNT-HEADER-DEBIT.
IF W-DEBIT < 9999

ADD 1 TO TP-LINE-NUMBER
GO TO IN-DEBIT-05.

IN—DEBIT-99.
EXIT.

*

* these control the amending of existing records. They
* displays the details, allow amending of
* specific field values, give the option to abandon
* the amendments, give the option to delete the record
* or write the new record values.
*

*

*

AMEND-HEADER-R SECTION.

AM-HEADER-00.
MOVE 41 TO COLUMN.
MOVE 2 TO ROW.

CALL "CURSORTO" USING RCW, COLUMN.
DISPLAY "Amend header " WTTH NO ADVANCING.
PERFORM NEW-HEADER-PAGE.
MOVE ZERO TO W-HEADER.

AM-HEADER-05.
PERFORM SHOW-HEADER-FIELDS.
MOVE SPACE TO CHANGE-FLAG.
PERFORM AMEND-HEADER-FIELDS.
IF NOT RECORD-CHANGED

GO TO AM-HEADER-15.
PERFORM INQUIRE-OK.
IF APPLY-CHANGE

GO TO AM-HEADER-10.
GO TO AM-HEADER-15.

AM-HEADER-10.
REWRITE TP-PIEADER-RECORD INVALID KEY

MOVE "Rewrite fail" TO ERROR-MESSAGE
GO TO FAIL-END.

AM-HEADER-15.
ADD 1 TO W-HEADER.
MOVE TP-HEADER-CREDIT TO W-STORE-HEADER-CREDIT.
MOVE TP-HEADER-DEBIT TO W-STORE-HEADER-DEBIT.
MOVE TP-KEY TO W-STORE-KEY.
PERFORM READ-NEXT-TP.
IF YES-RECORD

207

s-algol and the Ccmmercial 3rd & 4th Generations

AND TP-BATCH-NUMBER = W-STORE-BATCH
AND TP-RECORD-TYPE = W-STORE-TYPE

GO TO AM-HEADER-05.
AM-HEADER-99.

EXIT.

AMEND-CREDIT-R SECTION.

AM-CREDIT-00.
MOVE 41 TO COLUMN.

MOVE 2 TO RCW.
CALL "CURSORTO" USING RCW, COLUMN.
DISPLAY "Amend credit " WITH NO ADVANCING.
PERFORM NEW-CREDIT-PAGE.
MOVE ZERO TO W-CREDIT.
IF TP-RECORD-TYPE NOT = "CREDIT

MOVE ZERO TO W-STORE-LINE
GO TO AM-CREDIT-20.

AM-CREDIT-05.
PERFORM SHOW—CREDIT—FIELDS.
MOW SPACE TO CHANGE-FLAG.
PERFORM AMEND-CREDIT-FIELDS.
IF NOT RECORD-CHANGED

GO TO AM-CREDIT—06.
PERFORM INQUIRE-OK.
IF APPLY-CHANGE

GO TO AM-CREDIT-10.
AM—CREDIT—06.

MOVE 23 TO ROW.

MOVE 1 TO COLUMN.
CALL "CURSORTO" USING RCW, COLUMN.
DISPLAY "Retain or Delete this record (D=Delete)"

WITH NO ADVANCING.
MOVE 1 TO ST-SIZE.

MOVE 41 TO COLUMN.

CALL "INPUTS" USING RCW, COLUMN,
INPUT-S, ST-SIZE.
CALL "CLEARVDU" USING RCW.
IF INPUT-S NOT = "D"

GO TO AM—CREDIT-11.
DELETE TP-FILE RECORD INVALID KEY

MOVE "Delete record fail" TO ERROR-MESSAGE
GO TO FAIL-END.

MOVE 1 TO COLUMN.

SUBTRACT 1 FROM CURRENT-LINE GIVING RCW.
MOVE 79 TO ST-SIZE.

AM-CREDIT-09.
CALL "CLEARAREA" USING RCW, COLUMN, ST-SIZE.
IF RCW NOT > CURRENT-LINE

ADD 1 TO RCW
GO TO AM-CREDIT-09.

SUBTRACT 2 FRCM CURRENT-LINE.
GO TO AM-CREDIT-15.

AM-CREDIT-10.
REWRITE TP-CREDIT-RECORD INVALID KEY

MOVE "Rewrite fail" TO ERROR-MESSAGE
GO TO FAIL-END.

AM-CREDIT—11.
ADD 1 TO W-CREDIT.
ADD TP-CREDIT-AMOCJNT TO W-COUNT-HEADER-CREDIT.

208

s-algol and the Commercial 3rd & 4th Generations

AM-CREDIT—15.
MOVE TP-KEY TO W-STORE-KEY.
PERFORM READ-NEXT-TP.
IF YES-RECORD
AND TP-BATCH-NUMBER = W-STORE-BATCH
AND TP-RECORD-TYPE = W-STORE-TYPE

GO TO AM—CREDIT—05.
IF YES-RECORD

MOVE TP-KEY TO LAST-KEY-READ
ELSE

MOVE SPACES TO LAST-KEY-READ.
IF W-CREDIT = 9909

GO TO AM-CREDIT-25.
AM-CREDIT-20.

MOW, 23 TO RCW.
MOW 1 TO COLUMN.

CALL "CURSORTO" USING RCW, COLUMN.
DISPLAY "Add more records (N=No)" WITH NO ADVANCING.
MOW 27 TO COLUMN.

MOW 1 TO ST—SIZE.
CALL "INPUTS" USING RCW, COLUMN,
INPUT-S, ST-SIZE.
CALL "CLEARVDU" USING RCW.
IF INPUT-S = "N"

GO TO AM-CREDIT-25.
AM—CREDIT—21.

ADD 1 W-STORE-LINE GIVING TP-LTNE-NUMBER.
MOW "CREDIT " TO TP-RECORD-TYPE.
MOW 2 TO TP-RECORD-NUMBER.
MOW W-STORE-BATCH TO TP-BATCH-NUMBER.
PERFORM INPUT-CREDIT-FIELDS.
IF FLAG-RECORD = "N"

SUBTRACT 1 FRCM CURRENT-LINE
GO TO AM—CREDIT—20.

PERFORM AMEND-CREDIT-FIELDS.
IF FLAG-RECORD = "N"

SUBTRACT 1 FRCM CURRENT-LINE
GO TO AM—CREDIT—20.

MOW SPACE TO CHANGE-FLAG.

WRITE TP-CREDIT-RECORD INVALID KEY

MOW "Write FAIL" TO ERROR-MESSAGE
GO TO FAIL-END.

AM—CREDIT—22.
ADD 1 TO W-STORE-LINE.
ADD 1 TO W-CREDIT.
ADD TP-CREDIT-AMOUNT TO W-COUNT-HEADER-CREDIT.
IF W-CREDIT NOT = 9999

GO TO AM-CREDIT-21.
AM-CREDIT-25.

MOW LAST-KEY-READ TO TP-KEY.
IF LAST-KEY-READ = SPACES

GO TO AM-CREDIT—99.

PERFORM READ-TP.
IF NO-RECORD

MOW "Reread FAIL" TO ERROR-MESSAGE
GO TO FAIL-END.

AM-CREDIT-99.
EXIT.

209

s-algol and the Commercial 3rd & 4th Generations

AMEND-DEBIT-R SECTION.
AM-DEBIT-00.

MOVE 41 TO COLUMN.
MOVE 2 TO RCW.
CALL "CURSORTO" USING ROW, COLUMN.
DISPLAY "Amend debit " WITH NO ADVANCING.
PERFORM NEW-DEBIT-PAGE.
MOVE ZERO TO W-DF.BIT.
IF TP-RECORD-TYPE NOT = "DEBIT

MOVE ZERO TO W-STORE-LINE
GO TO AM-DEBIT-20.

AM-DEBIT-05.
PERFORM SHOW-DEBIT-FIELDS.
MOVE SPACE TO CHANGE-FLAG.
PERFORM AMEND-DEBIT-FIELDS.

IF NOT RECORD-CHANGED
GO TO AM-DEBIT-06.

PERFORM INQUIRE-OK.
IF APPLY-CHANGE

GO TO AM-DEBIT-10.
AM-DEBIT-06.

MOVE 23 TO RCW.

MOVE 1 TO COLUMN.
CALL "CURSORTO" USING RCW, COLUMN.
DISPLAY "Retain or Delete this record (D=Delete)"

WITH NO ADVANCING.
MOVE 1 TO ST—SIZE.
MOVE 41 TO COLUMN.

CALL "INPUTS" USING RCW, COLUMN,
TNPUT-S, ST—SIZE.
CALL "CLEAEVDU" USING RCW.

IF INPUT-S NOT = "D"
GO TO AM-DEBIT-11.

DELETE TP-FILE RECORD INVALID KEY
MOVE "Delete record fail" TO ERROR-MESSAGE
GO TO FAIL-END.

MOVE 1 TO COLUMN.
SUBTRACT 1 FROM CURRENT-LINE GIVING RCW.
MOVE 79 TO ST-SIZE.

AM-DEBIT-09.
CALL "CLEARAREA" USING RCW, COLUMN, ST-SIZE.
IF RCW NOT > CURRENT-LINE

ADD 1 TO RCW
GO TO AM-DEBIT-09.

SUBTRACT 2 FRCM CURRENT-LINE.
GO TO AM-DEBIT-15.

AM-DEBIT-10.
REWRITE TP-DEBIT-RECORD INVALID KEY

MOVE "Rewrite fail" TO ERROR-MESSAGE
GO TO FAIL-END.

AM-DEBIT-11.
ADD 1 TO W-DEBIT.
ADD TP-DEBIT-AMOUNT TO W-COUNT-HEADER-DEBIT.

AM-DEBIT-15.
MOVE TP-KEY TO W-STORE-KEY.
PERFORM READ-NEXT-TP.
IF YES-RECORD
AND TP-BATCH-NUMBER = W-STORE-BATCH
AND TP-RECORD-TYPE = W-STORE-'TYPE

210

s-algol and the Commercial 3rd & 4th Generations

GO TO AM-DEBIT-05.
IF YES-RECORD

MOVE TP-KEY TO LAST-KEY-READ
ELSE

MOVE SPACES TO LAST-KEY-READ.
IF W-DEBIT = 9999

GO TO AM-DEBIT-25.
AM-DEBIT-20.

MOVE 23 TO ROW.

MOVE 1 TO COLUMN.

CALL "CURSORTO" USING RCW, COLUMN.
DISPLAY "Add more records (N=No)" WITH NO ADVANCING.
MOVE 27 TO COLUMN.

MOVE .1 TO ST-SIZE.
CALL "INPUTS" USING RCW, COLUMN,
INPUT-S, ST-SIZE.
CALL "CLEARVDU" USING ROW.
IF INPUT-S = "N"

GO TO AM-DEBIT-25.
AM-DEBIT-21.

ADD 1 W—STORE—LINE GIVING TP-LINE-NUMBER.
MOVE "DEBIT " TO TP-RECORD-TYPE.
MOVE 3 TO TP-RECORD-NUMBER.

MOVE W-STORE-BATCH TO TP-BATCH-NUMBER.
PERFORM INPUT-DEBIT-FIELDS.

IF FLAG-RECORD = "N"
SUBTRACT 1 FROM CURRENT-LINE
GO TO AM-DEBIT-20.

PERFORM AMEND-DEBIT-FIELDS.
IF FLAG-RECORD = "N"

SUBTRACT 1 FROM CURRENT-LINE
GO TO AM-DEBIT-20.

MOVE SPACE TO CHANGE-FLAG.
WRITE TP-DEBIT-RECORD INVALID KEY

MOVE "Write FAIL" TO ERROR-MESSAGE
GO TO FAIL-END.

AM-DEBIT-22.
ADD 1 TO W—STORE-LINE.
ADD 1 TO W-DEBIT.

ADD TP-DEBIT-AMOUNT TO W-COUNT-HEADER-DEBIT.
IF W-DEBIT NOT = 9999

GO TO AM-DEBIT-21.
AM-DEBIT-25.

MOVE LAST-KEY-READ TO TP-KEY.

IF LAST-KEY-READ = SPACES

GO TO AM-DEBIT-99.
PERFORM READ-TP.

IF NO-RECORD
MOVE "Reread FAIL" TO ERROR-MESSAGE

GO TO FAIL-END.
AM-DEBIT-99.

EXIT.
*

* this section deletes a whole batch
"k

DELETE-BATCH SECTION.

DBOO.
MOVE W-STORE-BATCH TO TP-BATCH-NUMBER.
MOVE SPACES TO TP-RECORD-TYPE.

211

s-algol and the Commercial 3rd & 4th Generations

MOVE ZERO TO TP-LINE-NUMBER ^-RECORD-NUMBER.
PERFORM READ-TP.

DB05.
IF NO-RECORD OR W-STORE-BATCH NOT = TP-BATCH-NUMBER

GO TO DB10.
DELETE TP-FILE RECORD INVALID KEY

MOVE "DELETE FAIL" TO ERROR-MESSAGE
GO TO FAIL-END.

PERFORM READ-NEXT-TP.
GO TO DB05.

DB10.
MOVE "Batch Deleted" TO ERROR-MESSAGE.
MOVE 23 TO ROW.

CALL "ERRORVDU" USING RCW, COLUMN, ST-SIZE,
ERROR-MESSAGE, INPUT-S.

DB99.
EXIT.

*

* these sections control global inputting of
* all fields
*

*

*

INPUT-HEADER-FIELDS SECTION.
INP-HEADER-00.

IF CURRENT-LINE <21
ADD 1 TO CURRENT-LINE

ELSE

PERFORM SCROLL-AREA.
MOVE CURRENT-LINE TO RCW.

PERFORM INPUT-HEADER-YEAR.
PERFORM INPUT-HEADER-DATE.

PERFORM INPUT-HEADER-CREDIT.
PERFORM INPUT-HEADER-DEBIT.
PERFORM INPUT-HEADER-'TYPE.

INP-HEADER-99.
EXIT.

*

INPUT-CREDIT-FIELDS SECTION.
INP-CREDIT-00.

IF CURRENT-LINE <21
ADD 1 TO CURRENT-LINE

ELSE
PERFORM SCROLL-AREA.

MOVE CURRENT-LINE TO RCW.
PERFORM INPUT-CREDIT-AMOUMT.

IF NO-INPUT
GO TO INP—CREDIT-99.

PERFORM INPUT—CREDIT—ACCOUNT.

PERFORM INPUT-CREDIT-ANALYSIS.
IF CURRENT-LINE <21

ADD 1 TO CURRENT-LINE
ELSE

PERFORM SCROLL-AREA.
MOVE CURRENT-LINE TO ROW.
PERFORM INPUT-CREDIT-NARR.

INP-CREDIT-99.
EXIT.

212

s-algol and the Commercial 3rd & 4th Generations

INPUT-DEBIT-FIELDS SECTION.
INP-DEBIT-00.

IF CURRENT-LINE <21
ADD 1 TO CURRENT-LINE

ELSE
PERFORM SCROLL-AREA.

MOVE CURRENT-LINE TO ROW.
PERFORM INPUT-DEBIT-AMOUNT.
IF NO-INPUT

GO TO INP-DEBIT-99.
PERFORM INPUT-DEBIT-AGCOUNT.
PERFORM INPUT-DEBIT-ANALYSIS.
IF CURRENT-LINE <21

ADD 1 TO CURRENT-LINE
ELSE

PERFORM SCROLL-AREA.

MOVE CURRENT-LINE TO ROW.
PERFORM INPUT-DEBIT-NARR.

INP-DEBIT-99.
EXIT.

k

* these functions control selection of amendment
* of an individual field
*

*

*

AMEND-HEADER-FIELDS SECTION.

AME-HEADER-00.
MOVE 23 TO RCW.
MOVE 1 TO COLUMN.
CALL "CURSORTO" USING ROW, COLUMN.
DISPLAY "Which field" WITH NO ADVANCING.
MOVE 14 TO COLUMN.
MOVE 10 TO ST—SIZE.

CALL "INPUTS" USING RCW, COLUMN,
INPUT-S, ST-SIZE.
CALL "CLEARVDU" USING RCW.

IF INPUT-S = SPACES
GO TO AME-HEADER-99.

IF INPUT-S = "year"
MOVE "C" TO CHANGE-FLAG
MOVE CURRENT-LINE TO RCW
PERFORM INPUT-HEADER-YEAR

ELSE
IF INPUT-S = "date"

MOVE "C" TO CHANGE-FLAG
MOVE CURRENT-LINE TO RCW
PERFORM INPUT-HEADER-DATE

ELSE

IF INPUT-S = "credit"
MOVE "C" TO CHANGE-FLAG
MOVE CURRENT-LINE TO ROW

PERFORM INPUT-HEADER-CREDIT
ELSE
IF INPUT-S = "debit"

MOVE "C" TO CHANGE-FLAG
MOVE CURRENT-LINE TO RCW
PERFORM INPUT-HEADER-DEBTT

ELSE

213

s-algol and the Commercial 3rd & 4th Generations

IF INPUT-S = "type"
MOVE "C" TO CHANGE-FLAG
MOVE CURRENT-LINE TO RCW
PERFORM INPUT-HEADER-TYPE

ELSE
MOVE

"One of: year, date, credit, debit, type"
TO ERROR-MESSAGE
CALL "EERORVDU" USING RCW, COLUMN,
ST-SIZE, ERROR-MESSAGE, INPUT-S.

GO TO AME-HEADER-00.
AME-HEADER-99.

EXIT.
t

AMEND-CREDIT-FIELDS SECTION.

AME-CREDIT-00.
MOVE 23 TO RCW.

MOVE 1 TO COLUMN.
CALL "CURSORTO" USING RCW, COLUMN.
DISPLAY "Which field" WITH NO ADVANCING.
MOVE 14 TO COLUMN.

MOVE 10 TO ST—SIZE.
CALL "INPUTS" USING ROW, COLUMN,
INPUT-S, ST-SIZE.
CALL "CLEARVDU" USING RCW.
IF INPUT-S = SPACES

GO TO AME-CREDIT-99.
IF INPUT-S = "amount"

MOVE "C" TO CHANGE-FLAG
SUBTRACT 1 FROM CURRENT-LINE GIVING ROW
PERFORM INPUT-CREDIT-AMOUNT

ELSE

IF INPUT-S = "account"
MOVE "C" TO CHANGE-FLAG
SUBTRACT 1 FROM CURRENT-LINE GIVING RCW
PERFORM INPUT-CREDIT-ACCOUNT

ELSE
IF INPUT-S = "analysis"

MOVE "C" TO CHANGE-FLAG
SUBTRACT 1 FRCM CURRENT-LINE GIVING RCW
PERFORM INPUT-CREDIT-ANALYSIS

ELSE

IF INPUT-S = "narrative"
MOVE "C" TO CHANGE-FLAG
MOVE CURRENT-LINE TO RCW

PERFORM INPUT-CREDIT-NARR
ELSE

MOVE
"One of: amount, account, analysis, narrative"

TO ERROR-MESSAGE
CALL "ERRORVDU" USING RCW, COLUMN,
ST-SIZE, ERROR-MESSAGE, INPUT-S.

GO TO AME-CREDIT-00.
AME-CREDIT-99.

EXIT.

AMEND-DEBIT-FIELDS SECTION.
AME-DEBIT-00.

MOVE 23 TO ROW.

214

s-algol and the Commercial 3rd & 4th Generations

MOVE 1 TO COLUMN.
CALL "CURSORTO" USING ROW, COLUMN.
DISPLAY "Which field" WITH NO ADVANCING.
MOVE 14 TO COLUMN.
MOVE 10 TO ST-SIZE.
CALL "INPUTS" USING ROW, COLUMN,
TNPUT-S, ST-SIZE.
CALL "CLEARVDU" USING ROW.
IF INPUT-S = SPACKS

GO TO AME-DEBIT-99.
IF INPUT-S = "amount"

MOVE "C" TO CHANGE-FLAG

SUBTRACT 1 FRCM CURRENT-LINE GIVING ROW

PERFORM INPUT-DEBIT-AMOUNT
ELSE

IF INPUT-S = "account"
MOVE "C" TO CHANGE-FLAG
SUBTRACT 1 FRCM CURRENT-LINE GIVING RCW
PERFORM INPUT-DEBIT-ACCOUNT

ELSE
IF INPUT-S = "analysis"

MOVE "C" TO CHANGE-FLAG
SUBTRACT 1 FROM CURRENT-LINE GIVING ROW
PERFORM INPUT-DEBIT-ANALYSIS

ELSE
IF INPUT-S = "narrative"

MOVE "C" TO CHANGE-FLAG

MOVE CURRENT-LINE TO ROW

PERFORM INPUT-DEBIT-NARR
ELSE

MOW

"One of: amount, account, analysis, narrative"
TO ERROR-MESSAGE
CALL "ERRORVDU" USING RCW, COLUMN,
ST-SIZE, ERROR-MESSAGE, INPUT-S.

GO TO AME-DEBIT-00.
AME-DEBIT-99.

EXIT.
*

* these functions allow the display of the
* fields on a record
*

*

*

SHCW-HEADER-FIELDS SECTION.
SHO-HEADER-OO.

IF CURRENT-LINE <21
ADD 1 TO CURRENT-LINE

ELSE

PERFORM SCROLL-AREA.
MOVE CURRENT-LINE TO RCW.

PERFORM DISPLAY-HEADER-YEAR.
PERFORM DISPLAY-HEADER-DATE.
PERFORM DISPLAY-HEADER-CREDIT.
PERFORM DISPLAY-HEADER-DEBIT.
PERFORM DISPLAY-HEADER-TYPE.

SHO-HEADER-99.
EXIT.

215

s-algol and the Commercial 3rd & 4th Generations

SHCW-CREDIT-FIELDR SECTION.
SHO-CREDIT-OO.

IF CURRENT-LINE <21
ADD 1 TO CURRENT-LINE

ELSE
PERFORM SCROLL-AREA.

MOVE CURRENT-LINE TO RCW.
PERFORM DISPLAY-CREDIT-AMOUNT.
PERFORM DISPLAY-CREDIT—ACCOUNT.
PERFORM DISPLAY-CREDIT-ANALYSIS.
IF CURRENT-LINE <21

ADD 1 TO CURRENT-LINE
ELSE

PERFORM SCROLL-AREA.
MOVE CURRENT-LINE TO ROW.
PERFORM DISPLAY-CREDIT-NARR.

SHO—CREDIT—99.
EXIT.

*

SHOW-DEBIT-FIELDS SECTION.
SHO—DEBIT—00.

IF CURRENT-LINE <21
ADD 1 TO CURRENT-LINE

ELSE
PERFORM SCROLL-AREA.

MOVE CURRENT-LINE TO ROW.
PERFORM DISPLAY-DEBIT-AMOUNT.
PERFORM DISPLAY-DEBIT-ACCOUNT.
PERFORM DISPLAY-DEBIT-ANALYSIS.
IF CURRENT-LINE <21

ADD 1 TO CURRENT-LINE
ELSE

PERFORM SCROLL-AREA.
MOVE CURRENT-LINE TO ROW.
PERFORM DISPLAY-DEBIT-NARR.

SHO-DEBIT-99.
EXIT.

i *
i

j * the following sections control the inputting
i* and verification of the individual fields
!* on the TP work file.
i *
i
i *
i
i *
i

INPOT-HEADER-YEAR SECTION.
I-HEADER-YEAR-00.

MOVE 1 TO COLUMN.
I-HEADER-YEAR-05.

MOVE 1 TO ST—SIZE.
CALL "INPUTS" USING RCW, COLUMN,
INPUT-S, ST—SIZE.
MOVE INPUT-S TO TP-HEADER-YEAR.
IF TP-HEADER-YEAR = "O" OR "C"

GO TO I-HEADER-YEAR-99.
MOVE "One of O C "TO ERROR-MESSAGE.

CALL "ERRORVDU" USING RCW, COLUMN,
ST-SIZE, ERROR-MESSAGE, INPUT-S.

GO TO I-HEADER-YEAR-OS.
I-HEADER-YEAR-99.

216

s-algol and the Commercial 3rd & 4th Generations

EXIT.

INPUT-HEADER-DATE SECTION.
I-HEADER-DATE-00.

MOVE 6 TO COLUMN.
MOVE ZERO TO LOWER-D.
MOVE 311249 TO UPPER-D .

I-HEADER-DATE-05.
CALL " INPUTD" USING ROT, COLLIN,
LOTER-D, UPPER-D, INPUT-D.
MOVE INPUT-D TO TP-HEADER-DATE.

I-HEADER-DATE-99.
EXIT.

INPUT-HEADER-CREDIT SECTION.

I-HEADER-CREDIT-00.

MOVE 13 TO COLUMN.
MOVE ZERO TO LOWER-R.
MOVE 999999999.99 TO UPPER-R .

MOVE 2 TO DECIMALS.
I-HEADER-CREDIT-05.

CALL " INPUTR" USING ROT, COLUMN,
LOWER-R, UPPER-R, INPUT-R, DECIMALS.
MOVE INPUT-R TO TP-HEADER-CREDIT.

I-HEADER-CREDIT-99.
EXIT.

INPUT-HEADER-DEBIT SECTION.

I-HEADER-DEBIT-00.
MOVE 26 TO COLUMN.
MOVE ZERO TO LOWER-R.

MOVE 999999999.99 TO UPPER-R .

MOVE 2 TO DECIMALS.
I-HEADER-DEBIT-05.

CALL "INPUTR" USING RCW, COLUMN,
LOWER-R, UPPER-R, INPUT-R, DECIMALS.
MOVE INPUT-R TO TP-HEADER-DEBIT.

I-HEADER-DEBIT-99.
EXIT.

INPUT-HEADER-TYPE SECTION.
I-HEADER-TYPE-00.

MOVE 39 TO COLUMN.
I-HEADER-TYPE-05.

MOVE 1 TO vST—SIZE.

CALL "INPUTS" USING RCW, COLUMN,
INPUT-S, ST—SIZE.
MOVE INPUT-S TO TP-HEADER-TYPE.
IF TP-HEADER-TYPE = "J" OR "S" OR "W"

GO TO I-HEADER-TYPE-99.
MOVE "One of J S W " TO ERROR-MESSAGE.

CALL "ERRORVDU" USING ROT, COLUMN,
ST-SIZE, ERROR-MESSAGE, INPUT-S.

GO TO I-HEADER-TYPE-05.
I-HEADER-TYPE-99.

EXIT.

INPUT-CREDIT-AMOUNT SECTION.
I-CREDIT—AMOUNT-OO.

217

s-algol and the Commercial 3rd & 4th Generations

MOVE 1 TO COLUMN.
MOVE ZERO TO LOWER-R.
MOVE 999999999.99 TO UPPER-R .

MOVE 2 TO DECIMALS.
I-CREDIT—AMOUNT—05.

CALL "INPUTRT" USING RCW, COLUMN,
LCWER-R, UPPER-R, INPUT-R, INPUT-S, DECIMALS.
IF INPUT-S = SPACE

MOVE "N" TO FLAG-RECORD
GO TO I-CREDIT—AMOUNT-99.

MOVE SPACE TO FLAG-RECORD.
MOVE INPUT-R TO TP-CREDIT-AMOUNT.

I-CREDIT-AMOUNT-99.
EXIT.

INPUT-CREDIT-ACCOUNT SECTION.

I-CREDIT—ACCOUNT—00.
MOVE 14 TO COLUMN.

I-CREDIT—ACCOUNT—05.
MOVE 7 TO ST-SIZE.
CALL "INPUTS" USING RCW, COLUMN,
INPUT-S, ST-SIZE.
MOVE INPUT-S TO TP-CREDIT-ACCOUNT.

I-CREDIT-ACCOUNT-99.
EXIT.

INPUT-CREDIT-ANALYSIS SECTION.

I-CREDIT—ANALYSIS—00.
MOVE 22 TO COLUMN.
MOVE ZERO TO LOWER-I.
MOVE 99 TO UPPER—I .

I-CREDIT—ANALYSIS—05.
CALL "INPUTI" USING RCW, COLUMN,
KWER-T, UPPER—I, INPUT-I.
MOVE INPUT-I TO TP-CREDIT-ANALYSIS.

I-CREDIT-ANALYSIS-99.
EXIT.

INPUT-CREDIT-NARR SECTION.
I-CREDIT-NARR-00.

MOVE 1 TO COLUMN.
I-CREDIT-NARR-05.

MOVE 50 TO ST-SIZE.
CALL "INPUTS" USING ROW, COLUMN,
INPUT-S, ST-SIZE.
MOVE INPUT-S TO TP-CREDIT-NARR.

I-CREDIT-NARR-9Q.
EXIT.

INPUT-DEBIT-AMOUNT SECTION.
I-DERIT-AMOUNT-OO.

MOVE 1 TO COLUMN.

MOVE ZERO TO LOWER-R.

MOVE 999999999.99 TO UPPER-R .

MOVE 2 TO DECIMALS.

I-DEBIT-AMOUNT—05.
CALL "INPUTRT" USING RCW, COLUMN,
LCWER-R, UPPER-R, INPUT-R, INPUT-S, DECIMALS.
IF INPUT-S = SPACE

218

s-algol and the Commercial 3rd & 4th Generations

MOVE "N" TO FLAG-RECORD
GO TO I-DEBIT-AMOUNT-99-

MOVE SPACE TO FLAG-RECORD.
MOVE INPUT-R TO TP-DEBIT-AMOUNT.

I-DEBIT-AMOUNT-99.
EXIT.

*

INPUT-DEBIT-ACCOUNT SECTION.

I-DEBIT—ACCOUNT—00.
MOVE 14 TO COLUMN.

I—DEBIT—ACCOUNT-05.
MOVE 7 TO ST—SIZE.
CALL "INPUTS" USING RCW, COLUMN,
INPUT—S, ST—SIZE.
MOVE INPUT—S TO TP-DEBIT-ACCOUNT.

I—DEBIT—ACCOUNT—99.
EXIT.

*

INPUT-DEBIT-ANALYSIS SECTION.
I-DEBIT-ANALYSIS-00.

MOVE 22 TO COLUMN.
MOVE ZERO TO LOWER-I.
MOVE 99 TO UPPER—I .

I—DEBIT—ANALYSIS—05.
CALL "INPUTI" USING RCW, COLUMN,
LCWER-I, UPPER—I, INPUT-I.
MOVE INPUT—I TO TP-DEBIT-ANALYSIS.

I-DEBIT-ANALYSIS-99.
EXIT.

*

INPUT-DEBIT-NARR SECTION.

I-DEBIT-NARR-00.
MOVE 1 TO COLUMN.

I-DEBIT-NARR-05.
MOVE 50 TO ST—SIZE.
CALL "INPUTS" USING RCW, COLUMN,
INPUT-S, ST—SIZE.
MOVE INPUT-S TO TP-DEBIT-NARR.

I-DEBIT-NARR-99.
EXIT.

! * the following sections allow the display of the
!* contents of individual fields on the TP work
!* file.
i *
i
i *
i
i *
i

DISPLAY-HEADER-YEAR SECTION.
D-HEADER-YEAR-00.

MOVE 1 TO COLUMN.

CALL "CURSORTO" USING RCW, COLUMN.
DISPLAY TP-HEADER-YEAR WITH NO ADVANCING.

D-HEADER-YFAR-99.
EXIT.

*

DISPLAY-HEADER-DATE SECTION.
D-HEADER-DATE-00.

MOVE 6 TO COLUMN.
IF TP-HEADER-DATE NUMERIC

MOVE TP-HEADER-DATE TO OUTPUT-I

219

s-algol and the Commercial 3rd & 4th Generations

CALL "OUTPUTI" USING RCW, COLUMN, OUTPUT-I
ELSE

MOVE "Field not numeric" TO ERROR-MESSAGE
GO TO FAIL-END.

D-HEADER-DATE-99.
EXIT.

*

DISPLAY-HEADER-CREDIT SECTION.
D-HEADER-CREDIT-00.

MOVE 13 TO COLUMN.
IF TP-HEADER-CREDIT NUMERIC

MOVE TP-HEADER-CREDIT TO OUTPUT-R
CALL "OUTPUTR" USING RCW, COLUMN, OUTPUT-R

ELSE

MOVE "Field not numeric" TO ERROR-MESSAGE
GO TO FAIL-END.

D-HEADER-CREDTT-99.
EXIT.

*

DISPLAY-HEADER-DEBIT SECTION.
D-HEADER-DEBIT-00.

MOVE 26 TO COLUMN.

IF TP-HEADER-DEBIT NUMERIC
MOVE TP-HEADER-DEBIT TO OUTPUT-R
CALL "OUTPUTR" USING ROW, COLUMN, OUTPUT-R

ELSE

MOVE "Field not numeric" TO ERROR-MESSAGE
GO TO FAIL-END.

D-HEADER-DEBIT-99.
EXIT.

*

DISPLAY-HEADER-TYPE SECTION.
D-HEADER-TYPE-00.

MOVE 39 TO COLUMN.

CALL "CURSORTO" USING RCW, COLUMN.
DISPLAY TP-HEADER-TYPE WITH NO ADVANCING.

D-HEADER-TYPE-99.
EXIT.

*

DISPLAY-CREDIT-AMOUNT SECTION.
D-CREDIT—AMOUNT—00.

MOW, 1 TO COLUMN.
IF TP-CREDIT-AMOUNT NUMERIC

MOW TP-CREDIT-AMOUNT TO OUTPUT-R
CALL "OUTPUTR" USING RCW, COLUMN, OUTPUT-R

ELSE

MOW "Field not numeric" TO ERROR-MESSAGE
GO TO FAIL-END.

D-CREDIT-AMOUNT-99.
EXIT.

*

DISPLAY-CREDIT-ACCOUNT SECTION.
D-CREDIT—ACCOUNT—00.

MOW 14 TO COLUMN.

CALL "CURSORTO" USING RCW, COLUMN.
DISPLAY TP-CREDIT-ACCOUNT WITH NO ADVANCING.

D-CREDIT-ACCOUNT-99.

EXIT.

220

s-algol and the Commercial 3rd & 4th Generations

DISPLAY-CREDIT—ANALYSIS SECTION.
D-CREDIT-ANALYSIS-00.

MOVE 22 TO COLUMN.
IF TP-CREDIT-ANALYSIS NUMERIC

MOVE TP-CREDIT-ANALYSIS TO OUTPUT-I
CALL "OUTPUTI" USING RCW, COLUMN, OUTPUT-I

ELSE
MOVE "Field not numeric" TO ERROR-MESSAGE
GO TO FAIL-END.

D-CREDIT-ANALYSIS—99.
EXIT.

DISPLAY-CREDIT-NARR SECTION.
D-CREDIT-NARR-00.

MOVE 1 TO COLUMN.

CALL "CURSORTO" USING RCW, COLUMN.
DISPLAY TP-CREDI^-NARR WITH NO ADVANCING.

D-CREDTT-NARR-99.
EXIT.

DISPLAY-DEBIT-AMOUNT SECTION.
D-DEBIT-AMOUNT-OO.

MOVE 1 TO COLUMN.
IF TP-DEBIT-AMOUNT NUMERIC

MOVE TP-DEBIT-AMOtJNT TO OUTPUT-R
CALL "OUTPUTR" USING RCW, COLUMN, OUTPUT-R

ELSE

MOW "Field not numeric" TO ERROR-MESSAGE
GO TO FAIL-END.

D-DEBIT-AMOUNT-99.
EXIT.

DISPLAY-DEBIT-ACCOUNT SECTION.
D-DEBIT-ACCOUNT-OO.

MOVE 14 TO COLUMN.
CALL "CURSORTO" USING ROW, COLUMN.
DISPLAY TP-DEBIT-ACCOUNT WITH NO ADVANCING.

D-DEBIT-ACCOUNT-99.
EXIT.

DISPLAY-DEBIT-ANALYSIS SECTION.
D-DEBIT-ANALYSIS-00.

MOVE 22 TO COLUMN.

IF TP-DEBIT-ANALYSIS NUMERIC
MOVE TP—DEBIT-ANALYSIS TO OUTPUT-I
CALL "OUTPUTI" USING ROW, COLUMN, OUTPUT-I

ELSE
MOVE, "Field not numeric" TO ERROR-MESSAGE
GO TO FAIL-END.

D-DEBIT-ANALYSIS-99.
EXIT.

DISPLAY-DEBIT-NARR SECTION.
D-DEBIT-NARR-00.

MOVE 1 TO COLUMN.
CALL "CURSORTO" USING ROW, COLUMN.
DISPLAY TP-DEBIT-NARR WITH NO ADVANCING.

D-DEBIT-NARR-9P.
EXIT.

221

s-algol and the Commercial 3rd & 4th Generations

* this controls the displaying of the background
* details on a selected screen page.
*

*

*

NEW-HEADER-PAGE SECTION.
NP-HEADER-00.

MOVE 5 TO CURRENT-LINE.
MOVE 6 TO SCROLL-FRCM.
MOVE 21 TO SCROLL-TO.
MOVE 4 TO ROT.
CALL "CLEARVDU" USING ROT, COLUMN.
DISPLAY "year" WITH NO ADVANCING.
MOVE 6 TO COLUMN.

CALL "CURSORTO" USING RCW, COLUMN.
DISPLAY "date" WITH NO ADVANCING.
MOVE 13 TO COLUMN.
CALL "CURSORTO" USING RCW, COLUMN.
DISPLAY "credit" WITH NO ADVANCING.
MOVE 26 TO COLUMN.
CALL "CURSORTO" USING RCW, COLUMN.
DISPLAY "debit" WITH NO ADVANCING.
MOVE 39 TO COLUMN.
CALL "CURSORTO" USING RCW, COLUMN.
DISPLAY "type" WITH NO ADVANCING.

NP-HEADER-99.
EXIT.

*

NEW-CREDIT-PAGE SECTION.
NP-CREDIT-00.

MOVE 6 TO CURRENT-LINE.
MOVE 7 TO SCROLL-FRCM.
MOVE 21 TO SCROLL-TO.
MOVE 4 TO ROT.
CALL "CLEARVDU" USING ROT, COLUMN.
DISPLAY "amount" WITH NO ADVANCING.
MOVE 14 TO COLUMN.
CALL "CURSORTO" USING ROT, COLUMN.
DISPLAY "account" WITH NO ADVANCING.
MOVE 22 TO COLUMN.
CALL "CURSORTO" USING ROT, COLUMN.
DISPLAY "analysis" WITH NO ADVANCING.
MOVE 5 TO ROT.
MOVE 1 TO COLUMN.
CALL "CURSORTO" USING ROT, COLUMN.
DISPLAY "narrative" WITH NO ADVANCING.

NP-CREDIT-99.
EXIT.

*

NEW-DEBIT-PAGE SECTION.
NP-DEBIT—00.

MOVE 6 TO CURRENT-LINE.
MOVE 7 TO SCROLL-FROM.
MOVE 21 TO SCROLL-TO.
MOVE 4 TO ROT.

CALL "CLEARVDU" USING ROT, COLUMN.
DISPLAY "amount" WITH NO ADVANCING.
MOVE 14 TO COLUMN.

222

s-algol and the Commercial 3rd & 4th Generations

CALL "CURSORTO" USING ROW, COLUMN.
DISPLAY "account" WITH NO ADVANCING.
MOVE 22 TO COLUMN.
CALL "CURSORTO" USING RCW, COLUMN.
DISPLAY "analysis" WITH NO ADVANCING.
MOVE 5 TO RCM.

MOVE 1 TO COLUMN.
CALL "CURSORTO" USING RCW, COLUMN.
DISPLAY "narrative" WITH NO ADVANCING.

NP-DEBIT-99.
EXIT.

*

* scroll the input area
*

SCROLL-AREA SECTION.
SCROO.

CALL "SCROLL" USING SCROLL-FRCM, SCROLL-TO.
MOVE SCROLL-TO TO RCW.
MOVE 80 TO COLUMN.

CALL "CURSORTO" USING RCW, COLUMN.
DISPLAY " ".
MOVE SCROLL-FRCM TO ST-FRQM.
MOVE SCROLL-TO TO ST-TO.

MOVE 1 TO SCROLL-FRCM.
MOVE 24 TO SCROLL-TO.
CALL "SCROLL" USING SCROLL-FRCM, SCROLL-TO.
MOVE ST-FROM TO SCROLL-FRCM.

MOVE ST-TO TO SCROLL-TO.
SCR99.

EXIT.
*

* this asks on the 23rd line whether the change is to be
* applied to the file. It is asked (i) after amendment of
* the fields in the insert function (ii) after amendment
* of the fields in the amend function (iii) after viewing
* all the contents of the record in the delete function.
* It sets the variable REPLY.
*

INQUTRE-OK SECTION.
IQ00.

MOVE 23 TO RCW.
MOVE 1 TO COLUMN.
CALL "CURSORTO" USING RCW, COLUMN.
DISPLAY "Apply the change (Y=Yes) " WITH NO ADVANCING.
MOVE 28 TO COLUMN.
CALL "INPUTS" USING RCW, COLUMN, INPUT-S, ST-SIZE.
CALL "CLEARVDU" USING RCW.
IF IXX (1) = "Y" OR IXX (1) = "y"

MOVE 4 TO REPLY

ELSE
MOVE ZERO TO REPLY.

IQ99.
EXIT.

*

* this forces the program to fail with an error being
* returned to the operating system.
*

FAIL-END SECTION.
FA00.

223

s-algol and the Ccmmercial 3rd & 4th Generations

CALL "ERRORVDU" USING ROW, COLUMN, ST-SIZE,
ERROR-MESSAGE, INPUT-S.

MOVE "PROGRAM RUN ABANDONED" TO ERROR-MESSAGE
CALL "ERRORVDU" USING RCW, COLUMN, ST-SIZE,

ERROR-MESSAGE, INPUT-S.
MOVE ZERO TO WORK-1.
DIVIDE 2 BY WORK-1 GIVING WORK-2.
PERFORM CLOSEDOWN.
STOP "PROGRAM RUN ABANDONED".

FA99.
EXIT.

224

s-algol and the Commercial 3rd & 4-th Generations

Batch Data Output/Format Program

This program produced by the generator is not the final product.

It processes and audits the data in the batches, checking for format

and total errors but does not do any updating onto the system with the

data. This coding is reguired to be added by the programmer. The

relevant codings are inserted into the sections PROCESS-<record>

SECTION.

IDENTIFICATION DIVISION.
PROGRAM-ID. TOJOURNAL.
*

* This program was produced by a tool written
* as part of a Master of Science
* postgraduate thesis by John N Sutherland
* under the supervision of Professor A.J. Cole
* at the Department of Computational Science,
* The University of St. Andrews, Scotland.
*

* This program processes the tp file and prints
* the contents.
*

* Screen layouts, print layouts, user operating
* instructions are also produced along with
* the program to handle the data entry
*

ENVIRONMENT1 DIVISION.
CONFIGURATION SECTION.

SOURCE-COMPUTER. VAX-11.
OBJECT-COMPUTER. VAX-11.
*

INPUT-OUTPUT SECTION.

FILE-CONTROL.
*

* the file TP-FILE is the data entry file
*

SELECT TP-FILE ASSIGN TO TPFILE
ORGANIZATION IS INDEXED

ACCESS IS DYNAMIC
RECORD KEY IS TP-KEY.

SELECT AUDIT ASSIGN TO PRINTER.
DATA DIVISION.
FILE SECTION.

FD TP-FILE.
01 TP-KEY.

03 TP-BATCH-NUMBER PIC 9999.
03 TP-RECORD-NUMBER PIC 99.
03 TP-RECORD-TYPE PIC X(10)
03 TP-LINE-NUMBER PIC 9999.
TP--HEADER-RECORD.
03 FILLER PIC X(20)

225

s-algol and the Commercial 3rd & 4th Generations

01

01

FD
01

01

01

03 TP-HEADER-YEAR PIC X.
03 TP-HEADER-DATE PIC 9(6).
03 TP-HEADER-CREDIT PIC 9(9)V9(2)
03 TP-HEADER-DEBIT PIC 9(9)V9(2)
03 TP-HEADER-TYPE PIC X.
TP--CREDIT-RECORD.
03 FILLER PIC X(20) .

03 TP-CREDIT-AMOUNT PIC 9(9)V9(2)
03 TP-CREDIT-ACCOUNT PIC X(7) .

03 TP-CREDIT-ANALYSIS PIC 9(2).
03 TP-CREDIT-NARR PIC X(50).
TP--DEBIT-RECORD.
03 FILLER PIC X(20).
03 TP-DEBIT-AMOUNT PIC 9(9)V9(2)
03 TP-DEBIT-ACCOUNT PIC X(7) .

03 TP-DEBIT-ANALYSIS PIC 9(2).
03 TP-DEBIT-NARR PIC X(50).
AUDIT.

AUDIT-RECORD.
03 AUDIT-NAME PIC X(50).
03 AUDIT-VALUE-X PIC X(30).
03 FILLER REDEFINES AUDIT--VALUE-X.

05 AUDIT-VALUE-9 PIC -(17)9.
05 FTLTER PIC X(12).

03 FILLER REDEFINES AUDIT--VALUE-X.
05 AUDIT-VALUE-R PIC -(12)9.9(
05 FILLER PIC X(ll).

03 FILLER REDEFINES AUDIT--VALUE-X.
05 AUDIT-DAY PIC 99.
05 FILLER PIC X.

05 AUDIT-MONTH PIC 99.
05 FILLER PIC X.
05 AUDIT-YEAR PIC 99.
05 FILLER PIC XXX.
05 AUDIT-HOUR PIC 99.
05 FILLER PIC X.

05 AUDIT-MINUTE PIC 99.
05 FILTER PIC X.
05 AUDIT—SECOND PIC 99.
05 FILLER PIC XXX.
05 AUDIT-PAGE-LITERAL PIC XXXX.

05 AUDIT-PAGE PIC ZZ9.
AUDIT-BATCH.
03 AB-LITERAL PIC X(5) .

03 FILLER PIC XX.

03 AB-BATCH PIC ZZZ9.
FILLER.
03 AH-HEADER-YEAR PIC X(4).
03 FILLER PIC X.
03 AH-HEADER-DATE PIC X(4) .

03 FILLER PIC X(3).
03 AH-HEADER-CREDIT PIC X(6).
03 FILLER PIC X(7).
03 AH-HEADER-DEBIT PIC X(5).
03 FILLER PIC X.(8) .

03 AH-HEADER-TYPE PIC X(4).
01 FILLER.

03 AR-HEADER-YEAR PIC X.

03 FILLER PIC X(4).

226

s-algol and the Commercial 3rd & 4th Generations

03 AR-HEADER-DATE
03 FILLER
03 AR-HEADER-CREDIT
03 FILLER
03 AR-HEADER-DEBIT
03 FILLER
03 AR-HEADER-TYPE

01 FILLER.
03 AH-CREDIT-AMOUNT
03 FILLER
03 AH—CREDIT—ACCOUNT
03 FILLER
03 AH-CREDIT-ANALYSIS

01 FILLER.
03 AH-CREDIT-NARR

01 FILLER.
03 AR-CREDIT-AMOUNT
03 FILLER
03 AR-CREDIT—ACCOUNT
03 FILLER
03 AR-CREDIT-ANALYSIS

01 FILLER.
03 AR-CREDIT-NARR

01 FILLER.
03 AH-DEBIT-AMOUNT
03 FILLER
03 AH—DEBIT—ACCOUNT

03 FILLER

03 AH-DEBIT-ANALYSIS
01 FILLER.

03 AH-DEBIT-NARR
01 FILLER.

03 AH-DEBIT-AMOUNT
03 FILLER
03 AR-DEBIT-ACCOUNT
03 FILLER
03 AR-DEBIT-ANALYSIS

01 FILLER.
03 AR-DEBIT-NARR

! WORKING-STORAGE SECTION.
01 W-COUNT-HEADER-CREDIT
01 W-STORE-HEADER-CREDIT
01 W-COUNT-HEADER-DEBIT
01 W-STORE-HEADER-DEBIT

! 01 WORK—1 PIC
! 01 WORK-2 PIC
! 01 ST-BATCH-NUMBER PIC
' 01 ST-AUDIT-RECORD PIC

i 01 LINE-COUNT PIC
! 01 PAGE-COUNT PIC
! 01 ST-DATE-TIME.
! 03 ST-DATE PIC

! 03 FILLER REDEFINES ST-
I 05 ST-YEAR PIC

j 05 ST-MONTH PIC
| 05 ST-DAY PIC
! 03 ST-TIME PIC
! 03 FILLER REDEFINES ST1-
:

05 ST-HOUR PIC

PIC 9(6).
PIC X.
PIC Z(R)9.9(2).
PIC X.

PIC Z(R)9.9(2).
PIC X.
PIC X.

PIC X(6) .

PIC X(7) .

PIC X(7) .

PIC X.

PIC X(R) .

PIC X(P) .

PIC Z(R)9.9(2).
PIC X.
PIC X(7) .

PIC X.

PIC Z9.

PIC X(50) .

PIC X(6) .

PIC X(7^ .

PIC X(7) .

PIC X.

PIC X(R) .

PIC X(9) .

PIC Z(R)9.9(2).
PIC X.

PIC X(7) .

PIC X.
PIC Z9.

PIC X(50).

PIC 9(9)V9(2) COMP.
PIC 9(9)V9(2) COMP.
PIC 9(9)V9(2) CCMP.
PIC 9(9)V9(2) COMP.

9 COMP.
9 CCMP.

9999 VALUE ZERO.

X(R0) .

99 COMP VALUE 100.
999 CCMP VALUE 1.

9(6) .

■DATE.
99.
09.
99.

P(R) .

-TIME.
99.

227

s-algol and the Commercial 3rd & 4th Generations

05 ST-MINUTE PIC 99.
05 ST-SECOND PIC 99.
05 FILLER PIC XX.

01 AUDIT-ADVANCE PIC 9999 COMP.

01 END-FLAG PIC 9 COMP VALUE ZERO.
01 ST-RECORD-TYPE PIC X(10) VALUE SPACES.
*

PROCEDURE DIVISION.
CONTROEX SECTION.
COO.

PERFORM INITIALX.
PERFORM MAINFLOW.
PERFORM CLOSEDOWN.

C99.
STOP RUN.

*

INITIALX SECTION.
*

*
open the files; store the program title

*

100.
OPEN INPUT TP-FILE.

OPEN OUTPUT AUDIT.
MOVE SPACES TO AUDIT-RECORD.

199.
EXIT.

*

*

MAINFLOW SECTION.
MOO.

READ TP-FILE NEXT AT END
MOVE "NO RECORDS ON FILE" TO AUDIT-RECORD

MOVE 1 TO AUDIT-ADVANCE
PERFORM AUDIT-PRINT
GO TO M99.

M05.
IF TP-BATCH-NUMBER NOT = ZERO

AND TP-BATCH-NUMBER NOT = ST-BATCH-NUMBER
MOVE TP-BATCH-NUMBER TO ST-BATCH-NUMBER
MOVE "Batch" TO AB-LITERAL
MOVE TP-BATCH-NUMBER TO AB-BATCH
MOVE 2 TO AUDIT-ADVANCE
PERFORM AUDIT-PRINT
MOVE 2 TO AUDIT-ADVANCE.

READ TP-FILE NEXT AT END
MOVE "EMPTY LAST BATCH" TO AUDIT-RECORD
MOVE 1 TO AUDIT-ADVANCE
PERFORM AUDIT-PRINT
GO TO FAIL-END.

M10.
IF TP-RECORD-TYPE NOT = ST-RECORD-TYPE

IF TP-RECORD-TYPE = "HEADER
PERFORM TYPE-HEADER

ELSE
IF TP-RECORD-TYPE = "CREDIT

PERFORM TYPE-CREDIT
ELSE
IF TP-RECORD-TYPE = "DEBIT

PERFORM TYPE-DEBIT

22R

s-algol and the Commercial 3rd & 4th Generations

ELSE
MOVE "INVALID RECORD TYPE" TO AUDIT-RECORD
MOVE 3 TO AUDIT—ADVANCE
PERFORM AUDIT-PRINT
MOVE TP-KEY TO AUDIT-RECORD
PERFORM AUDIT-PRINT

GO TO FAIL-END.
MOVE TP-RECORD-TYPE TO ST-RECORD-TYPE.
IF TP-RECORD-TYPE = "HEADER

PERFORM PROCESS-HEADER
ELSE

IF TP-RECORD-TYPE = "CREDIT
PERFORM PROCESS-CREDIT

ELSE
IF TP-RECORD-TYPE = "DEBIT

PERFORM PROCESS-DEBIT

ELSE
MOVE "INVALID RECORD TYPE" TO AUDIT-RECORD
MOVE 3 TO AUDIT-ADVANCE
PERFORM AUDIT-PRINT

MOVE TP-KEY TO AUDIT-RECORD
PERFORM AUDIT-PRINT
GO TO FAIL-END.

READ TP-FILE NEXT AT END
MOVE 1 TO END-FLAG
GO TO M15.

IF ST-BATCH-NUMBER = TP-BATCH-NUMBER

GO TO M10.
M15.

IF W-STORE-HEADER-CREDIT NOT = W-COUNT-HEADER-CREDIT
MOVE "CONTROL FAILURE" TO AUDIT-VALUE-X
MOVE 5 TO AUDIT-ADVANCE
PERFORM AUDIT-PRINT

MOVE "credit count incorrect" TO AUDIT-VALUE-X
PERFORM AUDIT-PRINT
MOVE W-STORE-HEADER-CREDIT TO AUDIT-VALUE-R
PERFORM AUDIT-PRINT
MOVE W-COUNT-HEADER-CREDIT TO AUDIT-VALUE-R
PERFORM AUDIT-PRINT
GO TO FAIL-END.

IF W-STORE-HFADER-DEBIT NOT = W-COUNT-HEADER-DEBIT
MOVE "CONTROL FAILURE" TO AUDIT-VALUE-X
MOVE 5 TO AUDIT-ADVANCE
PERFORM AUDIT-PRINT
MOVE "debit count incorrect" TO AUDIT-VALUE-X
PERFORM AUDIT-PRINT

MOVE W-STORE-HEADER-DEBIT TO AUDIT-VALUE-R
PERFORM AUDIT-PRINT
MOVE W-COUNT-HEADER-DEBIT TO AUDIT-VALUE-R

PERFORM AUDIT-PRINT
GO TO FAIL-END.

IF END-FLAG = ZERO

INSPECT AUDIT-RECORD REPLACING ALL SPACES BY "-"
MOVE 2 TO AUDIT-ADVANCE
PERFORM AUDIT-PRINT
GO TO M05.

M99.
EXIT.

229

s-algol and the Commercial 3rd & 4th Generations

!* close files before the end of the
I * run
i *

! CLOSEDOWN SECTION.
! COO.
! MOVE "End of Input Report" TO AUDIT-RECORD.
! MOVE 2 TO AUDIT-ADVANCE.
1 PERFORM AUDIT-PRINT.

! CLOSE AUDIT.
! CLOSE TP-FILE.
! C99.
! EXIT,
i *

!* these control processing of record types

PROCESS-HEADER SECTION.
PR-HEADER-00.

PERFORM AUDIT-HEADER.
MOVE TP-HEADER-CREDTT TO W-STORE-HEADER-CREDIT.
MOVE ZERO TO W-COUNT-HEADER-CREDIT.
MOVE TP-HEADER-DEBIT TO W-STORE-HEADER-DEBIT.
MOVE ZERO TO W-COUNT-HEADER-DEBIT.

PR-HEADER-99.
EXIT.

*

PROCESS-CREDIT SECTION.

PR-CREDIT-00.
PERFORM AUDIT-CREDIT.
ADD TP-CREDIT-AMOTJNT TO W-COUNT-HEADER-CREDIT.

PR-CREDIT-99.
EXIT.

*

PROCESS-DEBIT SECTION.
PR-DEBIT-00.

PERFORM AUDIT-DEBIT.
ADD TP-DEBIT-AMOUNT TO W-COUNT-HEADER-DEBIT.

PR-DEBIT-99.
EXIT.

*

* this forces the program to fail with an error being
* returned to the operating system.
*

FAIL-END SECTION.
FAOO.

MOVE "PROGRAM RUN ABANDONED" TO AUDIT-RECORD.
MOVE 2 TO AUDIT-ADVANCE.
PERFORM AUDIT-PRINT.
MOVE ZERO TO WORK-1.
DIVIDE 2 BY WORK-1 GIVING WORK-2.
PERFORM CLOSEDOWN.
STOP "PROGRAM RUN ABANDONED".

FA99.
EXIT.

*

* ccmmon routine for writing a record to the audit file
*

AUDIT-PRINT SECTION.
AUOO.

230

s-algol and the Commercial 3rd & 4th Generations

IF LINE-COUNT >55
PERFORM AUDIT-HEADINGS.

WRITE AUDIT-RECORD AFTER ADVANCING AUDIT-AD^/ANCE LINES.
MOVE SPACES TO AUDIT-RECORD.
ADD AUDIT-ADVANCE TO LINE-COUNT.
MOVE 1 TO AUDIT-ADVANCE.

AUTO.
EXIT.

*

* head the audit print and reset the line and page
* counters
*

AUDIT-HEADINGS SECTION.

AHOO.
MOVE AUDIT-RECORD TO ST-AUDIT-RECORD.
MOVE SPACES TO AUDIT-RECORD.

MOVE "Journal, Salary, Wage"
TO AUDIT-NAME.

MOVE "II ! : : Page" TO AUDIT-VALUE-X.
MOW PAGE-COUNT TO AUDIT-PAGE.
ACCEPT ST-DATE FROM DATE.
ACCEPT ST-TIME FROM TIME.
MOVE ST-YEAR TO AUDIT-YEAR.
MOVE ST-MCNTH TO AUDIT-MONTH.
MOVE ST-DAY TO AUDIT-DAY.
MOVE ST-HOUR TO AUDIT-HOUR.
MOVE ST-MINUTE TO AUDIT-MINUTE.
MOVE ST-SECOND TO AUDIT-SECOND.

WRITE AUDIT-RECORD AFTER ADVANCING PAGE.
MOVE SPACES TO AUDIT-RECORD.

WRITE AUDIT-RECORD AFTER ADVANCING 2 LINES.
MOW 1 TO LINE-COUNT.
ADD 1 TO PAGE-COUNT.
MOW ST-AUDIT-RECORD TO AUDIT-RECORD.
MOW SPACES TO ST-RECORD-TYPE.

AH99.
EXIT.

*

* these print the contents of the record fields
*

*

AUDIT-HEADER SECTION.
AUD-HEADER-00.

MOW TP-HEADER-YEAR TO AR-HEADER-YEAR.
IF TP-HEADER-DATE NUMERIC

MOW TP-HEADER-DATE TO AR-HEADER-DATE
ELSE

GO TO AUD-HEADER-90.
IF TP-HEADER-CREDIT NUMERIC

MOW TP-HEADER-CREDIT TO AR-HEADER-CREDIT
ELSE

GO TO AUD-HEADER-90.
IF TP-HEADER-DEBIT NUMERIC

MOW TP-HEADER-DERIT TO AR-HEADER-DEBIT
ELSE

GO TO AUD-HEADER-90.

MOW TP-HEADER-TYPE TO AR-HEADER-TYPE.
PERFORM AUDIT-PRINT.
GO TO AUD-HEADER-99.

231

s-algol and the Commercial 3rd & 4th Generations

AUD-HEADER-90.
MOVE "Invalid data" TO AUDIT-NAME.
PERFORM AUDIT-PRINT.
GO TO FAIL-END.

AUD-HEADER-99.
EXIT.

k

AUDIT-CREDIT SECTION.
AUD-CREDIT—00.

IF TP-CREDIT-AMOUNT NUMERIC
MOVE TP-CREDIT-AMOUNT TO AR—CREDIT—AMOUNT

ELSE
GO TO AUD—CREDIT-90.

MOVE TP-CREDIT-ACCOUNT TO AR-CREDIT-ACCOUNT.
IF TP-CREDIT-ANALYSIS NUMERIC

MOVE TP-CREDIT-ANALYSIS TO AR-CREDIT-ANALYSIS
ELSE

GO TO AUD-CREDIT—90.
PERFORM AUDIT-PRINT.
MOVE TP-CREDIT-NARR TO AR-CREDIT-NARR.
PERFORM AUDIT-PRINT.
GO TO AUD—CREDIT-99.

AUD-CREDIT—90.
MOVE "Invalid data" TO AUDIT-NAME.
PERFORM AUDIT-PRINT.
GO TO FAIL-END.

AUD-CREDIT—99.
EXIT.

t

AUDIT-DEBIT SECTION.
AUD-DEBIT-00.

IF TP-DEBIT-AMOUNT NUMERIC

MOVE TP-DEBIT-AMOUNT TO AR-DEBIT-AMOUNT
ELSE

GO TO AUD-DEBIT-90.
MOVE TP-DEBIT-ACCOUNT TO AR-DEBIT-ACCOUNT.
IF TP-DEBIT-ANALYSIS NUMERIC

MOW TP-DEBIT-ANALYSIS TO AR-DEBIT-ANALYSIS
ELSE

GO TO AUD-DEBIT-90.
PERFORM AUDIT-PRINT.
MOW TP-DEBIT-NARR TO AR-DEBIT-NARR.

PERFORM AUDIT-PRINT.
GO TO AUD—DEBIT-99.

AUD-DEBIT-90.
MOW "Invalid data" TO AUDIT-NAME.
PERFORM AUDIT-PRINT.
GO TO FAIL-END.

AUD-DEBIT-99.
EXIT.

TYPE-HEADER SECTION.

T-HEADER-00.
MOW 2 TO AUDIT-ADVANCE.
MOW "HEADER:" TO AUDIT-RECORD.
PERFORM AUDIT-PRINT.
MOW "year" TO AH-HEADER-YEAR.
MOW "date" TO AH-HEADER-DATE.
MOW "credit" TO AH-HEADER-CREDIT.

232

s-algol and the Commercial 3rd & 4th Generations

MOVE "debit" TO AH-HEADER-DEBIT.
MOVE "type" TO AH-HEADER-TYPE.
PERFORM AUDIT-PRINT.
MOVE 2 TO AUDIT-ADVANCE.

T-HEADER-99.
EXIT.

*

TYPE-CREDIT SECTION.
T-CREDIT—00.

MOVE 2 TO AUDIT-ADVANCE.
MOVE "CREDIT:" TO AUDIT-RECORD.
PERFORM AUDIT-PRINT.
MOVE "amount" TO AH-CREDIT-AMOUNT.

MOVE "account" TO AH-CREDIT-ACCOUNT.
MOVE "analysis" TO AH-CREDIT-ANALYSIS.
PERFORM AUDIT-PRINT.

MOVE "narrative" TO AH-CREDIT-NARR.
PERFORM AUDIT-PRINT.
MOW 2 TO AUDIT-ADVANCE.

T-CREDIT-99.
EXIT.

*

TYPE-DEBIT SECTION.
T—DEBIT-00.

MOW 2 TO AUDIT-ADVANCE.
MOW "DEBIT:" TO AUDIT-RECORD.
PERFORM AUDIT-PRINT.

MOW "amount" TO AH-DEBIT-AMCUNT.
MOW "account" TO AH-DEBIT-ACCOUNT.
MOW "analysis" TO AH-DEBIT-ANALYSIS.
PERFORM AUDIT-PRINT.
MOW "narrative" TO AH-DEBIT-NARR.
PERFORM AUDIT-PRINT.

MOW 2 TO AUDIT-ADVANCE.
T-DEBIT-99.

EXIT.

233

s-algol and the Commercial 3rd & 4th Generations

Documentation

The documentation is produced from the skeleton and parameters.

It is produced in a format for input to the Digital Standard Runoff

(DSR) text processing package. Below are two listings. The first is

the documentation as produced by the documentation generator, the

second the formatted documentation as produced by DSR.

Note (i) the print, vdu and operating documentation are in one

file and can be subsequently separated if required (ii) the static

lines are indicated by a vertical bar as before (only indicated on the

unformatted documentation below).

The use of DSR format allows (i) the generator to be concerned

only with outputting the correct text without concerning itself with

the equally difficult task of formatting (ii) the documentation to be

amended if required without loss of formatting.

234

s-algol and the Commercial 3rd & 4th Generations

Unformatted documentation

.nnm.page size 58,66

.It

Program Documentation

program: TOJOURNAL.COB Input Print Layout

•el.pg.lt

Journal, Salary, Wage DD/MM/YY HH:MM:SS Page Z9

Batch ZZZ9

HEADER:

year date credit debit type

X 999999 999999999.99 999999999.99 X

<exactly 1 of this record>

CREDIT:
amount account analysis
narrative

999999999.99 XXXXXXX 99
XX

<up to 9999 of these records>

DEBIT:
amount account analysis
narrative

999999999.99 XXXXXXX 99

XX
<up to 9999 of these records>

Batch ZZZ9

<etc.>

End of Input Report
.el.pg.lt

Program Documentation

program: TIJOURNAL.COR Screen Layouts

235

s-algol and the Commercial 3rd & 4th Generations

.el.pg.lt

Journal, Salary, Wage Transaction Processing
Batch number 9999 <1> batch <1> header

year date credit debit type

X 99999P 999999999.99 9999P99B9.99 X

<exactly 1 of this record>

dine 23 - prompts>
dine 24 - errors>

<1> = one of 'Insert' or 'Amend'

.el.pg.lt

Journal, Salary, Wage Transaction Processing
Batch number 9999 <1> batch <1> credit

amount account analysis
narrative

999999999.99 XXXXXXX 99
XX

<up to 9999 of these records>

dine 23 - prcmpts>
dine 24 - errors>

236

s-algol and the Commercial 3rd & 4th Generations

<1> = one of 'Insert' or 'Amend'

•el.pg.lt

Journal, Salary, Wage Transaction Processing
Batch number 9999 <1> batch <1> debit

amount account analysis
narrative

999999999.99 XXXXXXX 99
XX

<up to 9999 of these records>

<line 23 - prcmpts>
<line 24 - errors>

<1> = one of 'Insert' or 'Amend'

.el.sp 2.1m 4.nmpg l.FT
•T Journal, Salary and Wage Transaction Processing
•st Introduction
•pg.c;"&Introduction!&
.p;This suite allows you to add, amend, view or delete batches of
Journal, Salary and Wage information
for later processing.
The suite checks
the credit and debit totals automatically.
Another part of the suite
produces an audit of all data entered (but not all amendment and
deletions of batches).
.b2;'&The Screen\&
•p;The top line of the screen always displays the suite title.
.p;The second line tells the batch status: current batch number,
whether the batch is being entered for the first time or being amended,
what the current record type is and whether the current record is being
entered or amended.
•p;The next line just delimits these details frcm the details
being entered.
.p;Next are the heading lines that define the fields being entered.
.p;Frcm here to the base of the screen is the area where data is
entered.
For details of the fields see 'Fields and their values' below. If any

entry involves more than one screen of data then this area of the screen
scrolls so that after you reach the last line, all subseguent entry is
frcm this line.

237

s-algol and the Commercial 3rd & 4th Generations

i.p;The second last line is used to notify any messages or errors.
!.p;The last line is used to ash any questions and receive replies.
'.st Starting the run
j .pg.c;Starting the run\&
! .p;Each batch number must be unique. This determines whether you are
]amending or inserting a batch. If a batch with the number you enter
[exists then you are amending, otherwise entering.
!.p;The program prcmpts for the batch number. Enter 'return' to end the
'run. Otherwise enter the batch number required.
!-p;If the batch exists then 'Amend batch' is displayed on the second
'line. Follow the procedures for amending a batch as detailed below.
!.p; If the batch does not exist then 'Insert batch' is displayed on the
'second line. Follow the procedures for inserting a batch as detailed
' in below.
!.st Inserting a batch
!.pg.c;~&Inserting a batch\&

. pg.c;"ScHeader record\&
•p;'Insert header' is displayed on the second line.
.p;Enter the details of year, date, credit, debit and type (see 'Fields
and their values' below for details of field contents).
.p;'Which field' is prompted on the last line of the screen. To change
a field's value enter its name as per the screen heading, e.g. enter
'year' to amend the year. Once or if all details are correct press
'return' to this prompt.
.p;There is one record of this type.
.pg.c;^&Credit record\&
.p;'Insert credit' is displayed on the second line.
•p;Enter the details of account, amount, analysis and narrative (see
'Fields and their values' below for details of field contents).
•p;'Which field' is prompted on the last line of the screen. To change
a field's value enter its name as per the screen heading, e.g. enter
'account' to amend the account. Once or if all details are correct press
'return' to this prompt.
.p;You may now enter another record.
.p;To end entry of records enter 'return' only to the 'account' prompt
at either initial entry or on amending.
.p;There are up to 9999 of these records.
.pg .c; ^ScDebit record\&
.p;'Insert debit' is displayed on the second line.
.p;Enter the details of account, amount, analysis and narrative (see
'Fields and their values' below for details of field contents).
.p;'Which field' is prompted on the last line of the screen. To change
a field's value enter its name as per the screen heading, e.g. enter
'account' to amend the account. Once or if all details are correct

press 'return' to this prompt.
•p;You may now enter another record.
.p;To end entry of records enter 'return' only to the 'account' prompt
at either initial entry or on amending.
•p;There are up to 9999 of these records.
. pg.c; *ScCheck totals\&
•p;The program now checks the totals are correct.
•p;If they are correct the program displays 'Batch totals correct' on
the second last line. Press return to acknowledge this. The program
returns to selecting another batch number (see above).
•p;If the totals are not correct then the second last line displays
details of the total name, entered amount and accumulated amount. Press
return to acknowledge this error. You must now amend the batch as per
below.

I.st Amend/Delete an existing batch

238

s-algol and the Commercial 3rd & 4th Generations

•pg.c;~&Amend/Delete an existing batch\&
.pg.p;'Amend or Delete this batch (D=Delete)' is displayed on the last
line.
.p;To delete the batch enter capital 'D'. There is one last check
before the batch is deleted. The program prcmpts 'Apply the Change
(Y=Yes)'. Reply 'Y' or 'y' to delete the batch. 'Batch deleted' is
displayed. Press 'return' to acknowledge this. The program returns to
select another batch number.

•p;To amend (or view) the batch press anything else.
.pg.c;'StHeader record\&
•p;'Amend header' is displayed on the second line.
.p;The details of year, date, debit, credit and type are displayed,
.p;'Which field' is prompted on the last line of the screen.
•p;If you do not wish to amend this record then enter 'return' here.
.p;To change a field's value enter its name as per the screen heading,
e.g. enter 'year'to amend the year. Once all details are correct press
'return' to this prompt. The program prompts 'Apply the Change (Y=Yes)'.
Enter 'Y' or 'y' to apply the changes made; anything else to retain
the record as before the changes.
•pg.c;~&Credit record\&
• p;'Amend credit' is displayed on the second line.
•p;~&Existing records\&
.p;The details of amount, account, analysis and narrative are displayed,
.p;'Which field' is prompted on the last line of the screen.
•p;If you do not wish to amend this record then enter 'return' here.
If this is done then the program prompts 'Retain or Delete this
record'. Enter capital 'D' to delete the record; it is removed from
the screen. Enter anything else to continue with the next record.
.p;To change a field's value enter its name as per the screen heading,
e.g. enter 'amount' amend the amount. Once all details are correct
press 'return' to this prompt. The program prompts 'Apply the Change
(Y=Yes)'. Enter 'Y' or 'y' to apply the changes made; anything else to
retain the record as before the changes.
.p;If there are more records then their details are displayed for
possible amending.
.p;~&Additional records\&
•p;Once all existing records of this type have been viewed, amended or
deleted then the program prompts for entry of more records of this
type, if there are under 9999 of this type already.
•p;The program prompts 'Add more records (N=No)'. To end entry of this
record type enter capital 'N'.
.p;Any other entry to this prompt positions the cursor for entry of a
new record. Enter the details of amount, account, analysis and
narrative.

.p;To the 'Which field' prompt the name of any field to be amended can
be entered as before e.g. enter 'amount' to amend the amount.
.p;The program then reprampts for another record.
.p;To end the addition of new records either enter 'return' to
'account' at initial entry or on subsecruent amending.
.p;The program asks again 'Add more records (N=No)' if there are less
than 9999 of this type now on the batch.
.pg.c;"ScDebit record\&
.p;'Amend debit' is displayed on the second line.
.p;"&Existing records\&
.p;The details of amount, account, analysis and narrative are displayed,
.p;'Which field' is prompted on the last line of the screen.

.p;If you do not wish to amend this record then enter 'return' here.
If this is done then the program prompts 'Retain or Delete this
record'. Enter capital 'D' to delete the record; it is removed from

239

s-algol and the Commercial 3rd & 4th Generations

the screen. Enter anything else to continue with the next record.
•p;To change a field s value enter its name as per the screen heading,
e.g. enter 'amount' amend the amount. Once all details are correct
press 'return' to this prcmpt. The program prcmpts 'Apply the Change
(Y=Yes) ' . Enter 'Y' or 'y' to apply the changes made; anything else
to retain the record as before the changes.
.p;If there are more records then their details are displayed for
possible amending.
•p;"&Additional records\&
•p;Once all existing records of this type have been viewed, amended or
deleted then the program prcmpts for entry of more records of this
type, if there are under 9999 of this type already.
•p;The program prcmpts 'Add more records (N=No)'. To end entry of this
record type enter capital 'N'.
.p;Any other entry to this prcmpt positions the cursor for entry of a
new record. Enter the details of amount, account, analysis and
narrative.

.p;To the 'Which field1 prcmpt the name of any field to be amended can
be entered as before e.g. enter 'amount' to amend the amount.
.p;The program then reprcmpts for another record.
.p;To end the addition of new records either enter 'return' to
'account' at initial entry or on subseguent amending.
•p;The program asks again 'Add more records (N=No)' if there are less
than 9999 of this type now on the batch.
.pg.c;~&Check totals\&
•p;The program now checks the totals are correct.
.p;If they are correct the program displays 'Batch totals correct' on
the second last line. Press return to acknowledge this. The program
returns to selecting another batch number (see above).
.p;If the totals are not correct then the second last line displays
details of the total name, entered amount and accumulated amount.
Press return to acknowledge this error. You must now amend the batch
as per above.
!.st Fields and their values
[.pg.c;^ScFields and their Values\&
.pg.c;^&Header record\&
.b2;~&year\& : up to 2 numerics, ranging frcm ZERO to 99.
.b2;~&date\& : 6 numerics in DDMMYY format, ranging frcm 010150 to
311249.

.b2;~&credit\& : up to 7 numerics before the decimal point 2 numerics
after the decimal point, ranging frcm -9999999.99 to 9999999.99. This
field is total checked.

.b2;~&debit\& : up to 7 numerics before the decimal point 2 numerics
after the decimal point, ranging frcm -9999999.99 to 9999099.99. This
field is total checked.

.pg.c;~&Credit record\&

.b2;~&amount\& : up to 7 numerics before the decimal point 2 numerics
after the decimal point, ranging frcm -9999999.99 to 9999999.99. This
field is total checked.
•b2;~&account\& : up to 7 characters.
.b2;"&analysis\& : up to two numerics, ranging frcm ZERO to 99.
•b2;~&narrative\& : up to 50 characters.
.pg.c;~&Debit record\&
•b2;~&amount\& : up to 7 numerics before the decimal point 2 numerics
after the decimal point, ranging frcm -9999999.99 to 9999999.99. This
field is total checked.

.b2;~&account\& : up to 7 characters.
•b2;"&analysis\& : up to two numerics, ranging frcm ZERO to 99.
.b2;"&narrative\& : up to 50 characters.

240

s-algol and the Commercial 3rd & 4th Generations

Formatted documentation

241

s-algol and the Ccnmercial 3rd & 4th Generations

Program Documentation

program: TOJOURNAL.COB Input Print Layout

242

s-algol and the Commercial 3rd & 4th Generations

Journal, Salary, Wage DD/MM/YY HH:MM:SS Page Z9

Batch ZZZ9

HEADER:

year date credit debit type

X 999999 999999999.99 999999999.99 X

<exactly 1 of this record>

CREDIT:
amount account analysis
narrative

999999999.99 XXXXXXX 99
XXXXXXXKXX
<up to 9999 of these records>

DEBIT:
amount account analysis
narrative

999999999.99 XXXXXXX 99
XX
<up to 9999 of these records>

Batch ZZZ9

<etc.>

End of Input Report

243

s-algol and the Commercial 3rd & 4th Generations

Program Documentation

program: TIJOURNAL.COR Screen Layouts

244

s-algol and the Commercial 3rd & 4t"h Generations

Journal, Salary, Wage Transaction Processing
Batch number 9999 <1> batch <1> header

year date credit debit type

X 999999 999999999.99 999999999.99 X

<exactly 1 of this record>

<line 23 - prcmpts>
<line 24 - errors>

<1> = one of 'Insert' or 'Amend'

245

s-algol and the Commercial 3rd & 4th Generations

Journal, Salary, Wage Transaction Processing
Batch number 9999 <1> batch <1> credit

amount account analysis
narrative

999999999.99 XXXXXXX 99
XX

<up to 9999 of these records>

<line 23 - prcmpts>
<line 24 - errors>

<1> = one of 'Insert' or 'Amend'

246

s-algol and the Commercial 3rd & 4th Generations

Journal, Salary, Wage Transaction Processing
Batch number 9999 <1> batch <1> debit

amount account analysis
narrative

999999999,99 XXXXXXX 99
XX
<up to 9999 of these records>

<line 23 - prcmpts>
<line 24 - errors>

<1> = one of 'Insert' or 'Amend'

247

s-algol and the Commercial 3rd & 4th Generations

Journal, Salary and Wage Transaction Processing Page 1
Introduction

Introduction

This suite allows you to add, amend, view or delete batches

of Journal, Salary and Wage information for later processing. The

suite checks the credit and debit totals automatically. Another

part of the suite produces an audit of all data entered (but not

all amendment and deletions of batches).

The Screen

The top line of the screen always displays the suite title.

The second line tells the batch status: current batch

number, whether the batch is being entered for the first time or

being amended, what the current record type is and whether the

current record is being entered or amended.

The next line just delimits these details from the details

being entered.

Next are the heading lines that define the fields being

entered.

From here to the base of the screen is the area where data is

entered. For details of the fields see 'Fields and their values'

below. If any entry involves more than one screen of data then

this area of the screen scrolls so that after you reach the last

line, all subsequent entry is from this line.

248

s-algol and the Commercial 3rd & 4th Generations

Journal, Salary and Wage Transaction Processing Page 2
Introduction

The second last line is used to notify any messages or

errors.

The last line is used to ash any questions and receive

replies.

249

s-algol and the Commercial 3rd & 4th Generations

Journal, Salary and Wage Transaction Processing Page 3
Starting the run

Starting the run

Each batch number must be unique. This determines whether

you are amending or inserting a batch. If a batch with the number

you enter exists then you are amending, otherwise entering.

The program prompts for the batch number. Enter 'return' to

end the run. Otherwise enter the batch number required.

If the batch exists then 'Amend batch' is displayed on the

second line. Follow the procedures for amending a batch as

detailed below.

If the batch does not exist then 'Insert batch' is displayed

on the second line. Follow the procedures for inserting a batch

as detailed in below.

250

s-algol and the Commercial 3rd & 4th Generations

Journal, Salary and Wage Transaction Processing Page 4
Inserting a batch

Inserting a batch

251

s-algol and the Commercial 3rd & 4th Generations

Journal, Salary and Wage Transaction Processing Page 5
Inserting a batch

Header record

'Insert header' is displayed on the second line.

Enter the details of year, date, credit, debit and type (see

'Fields and their values' below for details of field contents).

'Which field' is prompted on the last line of the screen. To

change a field's value enter its name as per the screen heading,

e.g. enter 'year' to amend the year. Once or if all details are

correct press 'return' to this prompt.

There is one record of this type.

252

s-algol and the Commercial 3rd & 4th Generations

Journal, Salary and Wage Transaction Processing Page 6
Inserting a batch

Credit record

'Insert credit' is displayed on the second line.

Enter the details of account, amount, analysis and narrative

(see 'Fields and their values' below for details of field

contents).

'Which field' is prompted on the last line of the screen. To

change a field's value enter its name as per the screen heading,

e.g. enter 'account' to amend the account. Once or if all

details are correct press 'return' to this prompt.

You may now enter another record.

To end entry of records enter 'return' only to the 'account'

prompt at either initial entry or on amending.

There are up to 9999 of these records.

253

s-algol and the Commercial 3rd & 4th Generations

Journal, Salary and Wage Transaction Processing Page 7
Inserting a batch

Debit record

'Insert debit' is displayed on the second line.

Enter the details of account, amount, analysis and narrative

(see 'Fields and their values' below for details of field

contents).

'Which field' is prompted on the last line of the screen. To

change a field's value enter its name as per the screen heading,

e.g. enter 'account' to amend the account. Once or if all

details are correct press 'return' to this prompt.

You may now enter another record.

To end entry of records enter 'return' only to the 'account'

prompt at either initial entry or on amending.

There are up to 9999 of these records.

254

s-algol and the Commercial 3rd & 4th Generations

Journal, Salary and Wage Transaction Processing Page 8
Inserting a batch

Check totals

The program now checks the totals are correct.

If they are correct the program displays 'Batch totals

correct' on the second last line. Press return to acknowledge

this. The program returns to selecting another batch number (see

above).

If the totals are not correct then the second last line

displays details of the total name, entered amount and accumulated

amount. Press return to acknowledge this error. You must now

amend the batch as per below.

255

s-algol and the Commercial 3rd & 4th Generations

Journal, Salary and Wage Transaction Processing Page 9
Amend/Delete an existing batch

Amend/Delete an existing batch

2S6

s-algol and the Commercial 3rd & 4th Generations

Journal, Salary and Wage Transaction Processing Page 10
Amend/Delete an existing batch

'Amend or Delete this batch (D=Delete)' is displayed on the

last line.

To delete the batch enter capital 'D". There is one last

check before the batch is deleted. The program prompts ' Apply the

Change (Y=Yes) ' . Reply 'Y' or 'y' to delete the batch. 'Batch

deleted' is displayed. Press 'return' to acknowledge this. The

program returns to select another batch number.

To amend (or view) the batch press anything else.

257

s-algol and the Commercial 3rd & 4th Generations

Journal, Salary and Wage Transaction Processing Page 11Amend/Delete an existing batch

Header record

'Amend header' is displayed on the second line.

The details of year, date, debit, credit and type are

displayed.

'Which field' is prompted on the last line of the screen.

If you do not wish to amend this record then enter 'return'

here.

To change a field's value enter its name as per the screen

heading, e.g. enter 'year'to amend the year. Once all details

are correct press 'return' to this prcmpt. The program prompts

'Apply the Change (Y=Yes) ' . Enter 'Y' or 'y' to apply the changes

made; anything else to retain the record as before the changes.

25R

s-algol and the Commercial 3rd & 4th Generations

Journal, Salary and Wage Transaction Processing Page 12
Amend/Delete an existing batch

Credit record

'Amend credit' is displayed on the second line.

Existing records

The details of amount, account, analysis and narrative are

displayed.

'Which field' is prompted on the last line of the screen.

If you do not wish to amend this record then enter 'return'

here. If this is done then the program prcmpts 'Retain or Delete

this record'. Enter capital 'D' to delete the record; it is

ranoved frcm the screen. Enter anything else to continue with the

next record.

To change a field's value enter its name as per the screen

heading, e.g. enter 'amount' amend the amount. Once all details

are correct press 'return' to this prcmpt. The program prcmpts

'Apply the Change (Y=Yes)'. Enter 'Y' or 'y' to apply the changes

made; anything else to retain the record as before the changes.

If there are more records then their details are displayed

for possible amending.

Additional records

Once all existing records of this type have been viewed,

amended or deleted then the program prcmpts for entry of more

records of this type, if there are under 9999 of this type

already.

259

s-algol and the Commercial 3rd & 4th Generations

Journal, Salary and Wage Transaction Processing Page 13
Amend/Delete an existing batch

The program prompts 'Add more records (N=No) '. To end entry

of this record type enter capital 'N'.

Any other entry to this prompt positions the cursor for entry

of a new record. Enter the details of amount, account, analysis

and narrative.

To the 'Which field' prompt the name of any field to be

amended can be entered as before e.g. enter 'amount' to amend the

amount.

The program then reprompts for another record.

To end the addition of new records either enter 'return' to

'account' at initial entry or on subsequent amending.

The program asks again 'Add more records (N=No)' if there are

less than 9999 of this type now on the batch.

260

s-algol and the Commercial 3rd & 4th Generations

Journal, Salary and Wage Transaction Processing Page 14
Amend/Delete an existing batch

Debit record

'Amend debit' is displayed on the second line.

Existing records

The details of amount, account, analysis and narrative are

displayed.

'Which field' is prompted on the last line of the screen.

If you do not wish to amend this record then enter 'return'

here. If this is done then the program prompts 'Retain or Delete

this record'. Enter capital 'D' to delete the record; it is

removed from the screen. Enter anything else to continue with the

next record.

To change a field's value enter its name as per the screen

heading, e.g. enter 'amount' amend the amount. Once all details

are correct press 'return' to this prcmpt. The program prompts

'Apply the Change (Y=Yes) '. Enter 'Y' or 'y' to apply the changes

made; anything else to retain the record as before the changes.

If there are more records then their details are displayed

for possible amending.

Additional records

Once all existing records of this type have been viewed,
amended or deleted then the program prompts for entry of more

records of this type, if there are under 9999 of this type

already.

261

s-algol and the Commercial 3rd & 4th Generations

Journal, Salary and Wage Transaction Processing Page 15
Amend/Delete an existing batch

The program prompts 'Add more records (N=No)'. To end entry

of this record type enter capital 'N'.

Any other entry to this prompt positions the cursor for entry

of a new record. Enter the details of amount, account, analysis

and narrative.

To the 'Which field' prompt the name of any field to be

amended can be entered as before e.g. enter 'amount' to amend the

amount.

The program then reprcmpts for another record.

To end the addition of new records either enter 'return' to

'account' at initial entry or on subseguent amending.

The program asks again 'Add more records (N=No)' if there are

less than 9999 of this type now on the batch.

262

s-algol and the Commercial 3rd & 4th Generations

Journal, Salary and Wage Transaction Processing Page 16
Amend/Delete an existing batch

Check totals

The program now checks the totals are correct.

If they are correct the program displays 'Batch totals

correct' on the second last line. Press return to acknowledge

this. The program returns to selecting another batch number (see

above).

If the totals are not correct then the second last line

displays details of the total name, entered amount and accumulated

amount. Press return to acknowledge this error. You must now

amend the batch as per above.

263

s-algol and the Commercial 3rd & 4th Generations

Journal, Salary and Wage Transaction Processing Page 17
Fields and their values

Fields and their Values

264

s-algol and the Ccrimercial 3rd & 4th Generations

Journal, Salary and Wage Transaction Processing Page 18
Fields and their values

Header record

year : up to 2 numerics, ranging frcm ZERO to 98.

date : 6 numerics in DDMMYY format, ranging frcm 010150 to

311249.

credit : up to 7 numerics before the decimal point 2 numerics

after the decimal point, ranging frcm -9999999.99 to 9999999.99.

This field is total checked.

debit : up to 7 numerics before the decimal point 2 numerics

after the decimal point, ranging frcm -9999999.99 to 9999999.99.

This field is total checked.

265

s-algol and the Commercial 3rd & 4th Generations

Journal, Salary and Wage Transaction Processing Page 19Fields and their values

Credit record

amount : up to 7 numerics before the decimal point 2 numerics

after the decimal point, ranging frcm -9999999.99 to 9999999.99.

This field is total checked.

account : up to 7 characters.

analysis : up to two numerics, ranging frcm ZERO to 99.

narrative : up to 50 characters.

266

s-algol and the Commercial 3rd & 4th Generations

Journal, Salary and Wage Transaction Processing Page 20
Fields and their values

Debit record

amount : up to 7 numerics before the decimal point 2 numerics

after the decimal point, ranging frcm -9999999.99 to 9999999.99.

This field is total checked.

account : up to 7 characters.

analysis : up to two numerics, ranging frcm ZERO to 99.

narrative : up to 50 characters.

267

s-algol and the Commercial 3rd & 4th Generations

Seme of the COBOL Subroutines

As before the full details are held in an unbound appendix and

tape available from the department. Tn general they emulate the

facilities already added to s-algol.

There are 23 subroutines in total arranged in a hierarchy to

avoid duplication as before far the s-algol external procedures. They

are CLEARAREA, CLEARVDU, CURSORTO, ERRORVDU, IDSUB, IISUB, INPUTD,

INPUTDK, INPUTDT, INPUTI, INPUTIK, INPUTIT, INPUTR, INPUTRK, INPUTRT,

INPUTS, IRSUB, ISSUB, JULIN, JULOUT, OUTPUTI, OUTPUTR, SCROLL.

26S

s-algol and the Commercial 3rd & 4th Generations

The first subroutine listed below (CLEARVDU) positions the cursor

at a specific row (rows and columns numbered frcm 1) and clears from

there to the end (row 24 column 80) of the vdu. The second subroutine

(CURSORTO) positions the cursor at a specific row and column.

IDENTIFICATION DIVISION.
PROGRAM-ID. CLEARVDU.
*

ENVIRONMENT DIVISION.
CONFIGURATION SECTION.
SOURCE-COMPUTER. VAX-11.
OBJECT-COMPUTER. VAX-11.
SPECIAL-NAMES.

SYMBOLIC CHARACTERS ASCII-ESCAPE IS 28.
*

* define the escape character to allow ANSI
* standard cursor and screen addressing as
* implemented on a VT100.
*

DATA DIVISION.

WORKING-STORAGE
01 CLEAR-VDU.

03 FILLER

03 FILLER
01 COLUMN
*

LINKAGE SECTION.
01 ROW PIC 99.
PROCEDURE DIVISION USING ROW.
CONTROLX SECTION.
COO.

CALL "CURSORTO" USING ROW, COLUMN.
DISPLAY CLEAR-VDU WITH NO ADVANCING.

C99.
EXIT PROGRAM.

IDENTIFICATION DIVISION.

PROGRAM-ID. CURSORTO.
*

ENVIRONMENT DIVISION.
CONFIGURATION SECTION.
SOURCE-COMPUTER. VAX-11.
OBJECT-COMPUTER. VAX-11.
SPECIAL-NAMES.

SYMBOLIC CHARACTERS ASCII-ESCAPE IS 28.
*

* define the escape character to allow ANSI
* standard cursor and screen addressing as
* implemented on a VT100.
*

DATA DIVISION.

WORKING-STORAGE SECTION.
01 RCW-COL.

03 FILLER PIC X VALUE ASCII-ESCAPE.

SECTION.

PIC X VALUE ASCII-ESCAPE.
PIC XXX VALUE "[OJ".
PIC 99 VALUE 1.

269

s-algol and the Commercial 3rd & 4th Generations

03 FILLER
03 ROW

PIC X VALUE 'T"
PIC 99.

03 FILLER
03 COLUMN
03 FILLER

PIC X VALUE ";"
PIC 99.
PIC X VALUE "H"

LINKAGE SECTION
01 L-ROW
01 L-COL

PIC 99
PIC 99

PROCEDURE DIVISION USING L-ROW, L-COL.
CONTROLX SECTION.
COO.

MOVE L-ROW TO ROW.
MOVE L-COL TO COLUMN.
DISPLAY ROW-COL WITH NO ADVANCING.

C99.
EXIT PROGRAM.

s-algol and the Commercial 3rd & 4th Generations

This siibroutine is used to input and verify a date at a specific

row and column and within a specified range. It is used by three

routines (i) INPUTD - to input a date (ii) INPUTDK - to input a date

as a key (allowing '+' and c/r) (iii) INPUTDT - to input a date as the

first field in a data entry detail line if there are a variable number

of this record type in the data entry batch (allows c/r).

IDENTIFICATION DIVISION.

PROGRAM-ID. ID5UB.

ENVIRONMENT DIVISION.
CONFIGURATION SECTION.
SOURCE-COMPUTER. VAX-11.
OBJECT-COMPUTER. VAX-11.

DATA DIVISION.

WORKING-STORAGE SECTION.
01 ST-SIZE PIC 99 COMP VALUE 6.
01 LOWER-I PIC 9(18)-.
01 UPPER—I PIC 9(18)-.
01 W-JULIAN-DATE-WORK-AREA.

03 W-JD-DATE PIC 9(6).
03 FILLER REDEFINES W-JD-DATE.

05 W-J-DAY PIC 99.
05 W-J-MONTH PIC 99.
05 W-J-YEAR PIC 99.

03 W-J-.JULIAN PIC 9(6).
01 ERROR-D.

03 FILLER PIC X(28) VALUE
"Please enter a date between ".

03 ED-LOWER PIC 9(6).
03 FILLER PIC X(5) VALUE
03 ED-UPPER PIC 9(6).

01 ERROR-MESSAGE PIC X(78).
01 INPUT—I PIC S9(18) COMP.
01 LCWER-J PIC 9(6) CCMP.
01 UPPER-J PIC 9(6) CCMP.
LINKAGE SECTION.
01 INPUT-D PIC 9(6) CCMP.
01 LOWER—D PIC 9(6) CCMP.
01 UPPER-D PIC 9(6) COMP.
01 KEY-INPUT PIC X.
01 ROW PIC 99.

01 COLUMN PIC 99.
01 INPUT-S PIC X(60).

PROCEDURE DIVISION USING ROW, COLUMN, LOWER-D, UPPER-D,
INPUT-D, INPUT-S, KEY-INPUT.

CONTROLX SECTION.

IND00.
MOVE LOWER-D TO ED-LOWER.
MOVE UPPER-D TO ED-UPPER.

271

s-algol and the Cctnmercial 3rd & 4th Generations

IF LOWER-D > ZERO
MOVE LOWER-D TO W-JD-DATE
CALL "JULOUT" USING W-J-JULIAN, W-J-DAY, W-J-MONTH,
W-J-YEAR
MOVE W-J-JULIAN TO LOWER-J

ELSE
MOVE ZERO TO LOWER-J.

MOVE UPPER-D TO W-JD-DATE.
CALL "JULOUT" USING W-J-JULIAN, W-J-DAY, W-J-MONTH, V7-J-YEAR.
MOVE W-J-JULIAN TO UPPER-J.
MOVE ZERO TO LOWER-I.
MOVE 999999 TO UPPER-I.

IND05.
CALL "IISUB" USING RCW, COLUMN, LCWER-I, UPPER-I,

INPUT—I, INPUT-S, KEY-INPUT.
IF KEY-INPUT = "Y" AND (INPUT-S = "+" OR SPACES)

GO TO IND99.
IF KEY-INPUT = "T" AND INPUT-S = SPACES

GO TO IND99.
MOVE INPUT-1 TO W-JD-DATE INPUT-D.
IF INPUT—I = ZERO AND LOWER-D = ZERO

MOVE ZERO TO W-J-JULIAN
GO TO IND99.

CALL "JULOUT"' USING W-J-JULIAN, W-J-DAY, W-J-MONTH, W-J-YEAR.
CALL "JULIN" USING W-J-JULIAN, W-J-DAY, W-J-MONTH, W-J-YEAR.
IF W-J-JULIAN = ZERO OR W-JD-DATE NOT = INPIJT-I

MOVE "That's not a valid date" TO ERROR-MESSAGE
GO TO IND90.

IF W-J-JULIAN < LOWER-J OR W-J-JULIAN > UPPER-J
MOVE ERROR-D TO ERROR-MESSAGE
GO TO IND90.

GO TO IND99.
IND90.

CALL "ERRORVDU" USING RCW, COLUMN, ST-SIZE, ERROR-MESSAGE,
INPUT-S.

GO TO IND05.
IND99.

EXIT PROGRAM.

272

s-algol and the Commercial 3rd & 4th Generations

This is the reciprocal of the s-algol external julian.in (see

chapter 3.2 above). Given a date in DDMMYY format this routine will

convert it into an integer number of days frcm 1/1/1950.

IDENTIFICATION DIVISION.
PROGRAM-ID. JULOUT.

ENVIRONMENT DIVISION.

CONFIGURATION SECTION.

SOURCE-COMPUTER. VAX-11.
OBJECT-COMPUTER. VAX-11.
DATA DIVISION.

WORKING-STORAGE SECTION.
01 FILLER.

03 W-JD-DATE PIC 9(6).
03 FILLER REDEFINES W-JD-DATE.

05 W-J-DAY PIC 99.
R8 VALID—DAY VALUES 1 THRU 31.
05 W-J—MONTH PIC 99.
88 VALID-MONTH VALUES 1 THRU 12.
88 DAYS—31 VALUES 1 3 5 7 8 10 12.
88 DAYS-30 VALUES 4 6 9 11.
05 W-J-YEAR PIC 99.
88 VALID-YEAR VALUES 00 THRU 99.

01 W-J-MCNTH-WORK PIC 999 COMP.
88 DAYSW-31 VALUES 1 3 5 7 8 10 12
88 DAYSW-30 VALUES 4 6 9 11.

01 W-J-YEAR-WORK PIC 999 COMP.
01 W-J-WORK PIC 9(6) COMP.
01 W-J-DAY-WORK PIC 9(6) COMP.
01 W-J-REM1 PIC 99 COMP.
01 W-J-REM2 PIC 999 COMP.
01 W-J—FEB PIC 999 COMP.
LINKAGE SECTION.
01 W-J—JULIAN PIC 9(6) .

01 W-J-D PIC 99.
01 W-J-M PIC 99.
01 W-J-Y PIC 99.

PROCEDURE DIVISION USING W-J-JULIAN, W-J-D, W-J-M, W-J-Y.
CONTROLX SECTION.
*

**

* *

* W-J-DAY, W-J—MONTH, W-J-YEAR are converted to a julian date *
* in W-J-JULIAN frcm a base of l/l/l950. *
* *

**

JOOO.
MOVE W-J-D TO W—J—DAY.
MOVE W-J-M TO W-J-MONTH.
MOVE W-J-Y TO W-J-YEAR.

IF VALID-YEAR AND VALID-MONTH AND VALID-DAY AND W-JD-DATE
NUMERIC
NEXT SENTENCE

273

s-algol and the Commercial 3rd & 4th Generations

ELSE
MOVE ZERO TO W-J-JULIAN
GO TO J099.

IF W-J-YEAR < 50
MOVE 19262 TO W-J-JULIAN
MOVE ZERO TO W-J-YEAR-WORK

ELSE
MO\7E 50 TO W-J-YEAR-WORK
MOVE ZERO TO W-J-JULIAN.

J005.
IF W-J-YEAR = W-J-YEAR-WORK

GO TO JO10.
DIVIDE W-J-YEAR-WORK BY 4 GIVING W-J-WORK.
MULTIPLY 4 BY W-J-WORK.
SUBTRACT W-J-WORK FROM W-J-YEAR-WORK GIVING W-J-REM1.
IF W-J-REM1 = ZERO AND W-J-YEAR-WORK NOT = ZERO

ADD 366 TO W-J-JULIAN
ELSE

ADD 365 TO W-J-JULIAN.
ADD 1 TO W-J-YEAR-WORK.
GO TO J005.

JOIO.
DIVIDE W-J-YEAR BY 4 GIVING W-J-WORK.
MULTIPLY 4 BY W-J-WORK.
SUBTRACT W-J-WORK FROM W-J-YEAR GIVING W-J-REM1.
IF W-J-REM1 = ZERO AND W-J-YEAR-WORK NOT = ZERO

MOVE 29 TO W-J-FEB

ELSE
MOVE 29 TO W-J-FEB.

MOVE 1 TO W-J-MONTH-WORK.
J015.

IF W—J—MONTH = W-J-MONTH-WORK
GO TO J020.

IF DAYSW-31
ADD 31 TO W-J-JULIAN

ELSE
IF DAYSW-30

ADD 30 TO W-J-,JULIAN
ELSE

ADD W-J-FEB TO W-J-JULIAN.

ADD 1 TO W-J-MONTH-WORK.
GO TO J015.

JO20.
ADD W-J-DAY TO W-J-JULIAN.

J099.
EXIT PROGRAM.

274

s-algol and the Commercial

This sets the scrolling area on

is also used to set it off after the

3rd & 4th Generations

the vdu for batch data entry and

end of a data entry program run.

IDENTIFICATION DIVISION.

PROGRAM-ID. SCROLL.
*

ENVIRONMENT DIVISION.
CONFIGURATION SECTION.

SOURCE-COMPUTER. VAX-11.
OBJECT-COMPUTER. VAX-11.
SPECIAL-NAMES.

SYMBOLIC CHARACTERS ASCII-ESCAPE IS 28.
*

* define the escape character to allow ANSI
* standard cursor and screen addressing as
* implemented on a VT100
*

DATA DIVISION.
WORKING-STORAGE SECTION.
01 SCROLL-ON.

03 FTTIER PIC X VALUE ASCII
03 FILLER PIC X VALUE
03 SCROLL-FROM PIC 99.
03 FILLER PIC X VALUE ii. ii

/ •

03 SCROLL-TO PIC 99.
03 FILLER PIC X VALUE l»£.»

LINKAGE SECTION.
01 RCW--FROM PIC 99.
01 RCW--TO PIC 99.

PROCEDURE DIVISION USING RCW-FROM, RCW-TO.
CONTROLX SECTION.
COO.

MOVE RCW-FROM TO SCROLL-FROM.
MOVE RCW-TO TO SCROLL-TO.
DISPLAY SCROLL-ON WITH NO ADVANCING.

C99.
EXIT PROGRAM.

275

algol and the Commercial 3rd & 4th Generations

Conclusions

276

s-algol and the Commercial 3rd & 4th Generations

No-one has ever doubted the beauty of the algols. To extend the

metaphor of the introduction (page 1 above) they are truly the

Cinder^llas compared to the ugly sisters and commercial bastions of

COBOL and BASIC.

s-algol exhibits all that is good in language design.

Principally, the program structure is so complete that few logic

errors find their way into the code. Most errors that bedevil

standard languages are excluded by the necessity of completeness of

logic. This is inextricably bound in with the flexibility of the

language's facilities; for each piece of code of the same type to be

interchangeable the program is composed of interchangeable logical

units.

The resulting lack of rules removes major restrictions, giving

the programmer a power that is both simple to use and difficult to

misuse.

Secondly, the facilities supplied represent a clean sweep with a

new broom, including what is good in old languages (e.g. 'if ...

then ... else ...' - of course, an algol concept) and facilities new

to most commercial programmers (e.g. 'case ...').

In particular a very honourable mention must be made of the

structure and pointer facilities. These allow the programmer to build

up core data structures at run time without the necessity of defining

all possible types at their maximum sizes. In addition these can be

linked together thus reducing the requirement for duplicate data in

core.

277

s-algol and the Commercial 3rd & 4th Generations

It should be noted that these are very powerful facilities that

take time to grasp initially and prove more powerful and useful as the

programmer continues in the language. In addition these are the

points that the programmer quickly loses his cutting edge on when he

resorts to the hammer and chisel of COBOL or BASIC and subsequently

returns to s-algol.

But s-algol would be dismissed in commerce as, despite its

obvious power, it lacks some of the basic requirements of commercial

programming. However, this is not the end of the story, a successor,

ps-algol, has extended and improved on s-algol to provide all the

facilities required by the commercial programmer.

I do not doubt that ps-algol could outperform the extant

commercial third generation languages for speed of coding, correctness

of code and ease of subsequent maintenance. The language uses less

code than COBOL, is more readable and subsequently faster to code in

with far fewer logic errors being accepted by the compiler.

Usually with an algol a dose of what commercial people such as

myself call 'reality' would now take over. The illogical but

one-sided story of portability of COBOL/BASIC/FORTRAN code,

programming knowledge of these languages, etc. Even here the limiting

factor on s-algol and ps-algol is the lack of a broad machine base as

the language is almost 100% portable across its implemented machine

base. COBOL is portable across a much larger machine base but with

far less ease. BASIC is not really portable, requiring almost

complete rewrites on system conversion. But these languages are well

known and used.

278

s-algol and the Commercial 3rd & 4th Generations

COBOL is no longer the end of the commercial language story. For

some time newer concept languages, the fourth generation, have been

gradually consolidating their position in the commercial programming

market. These languages and tools do much of the repetitive coding

for the programmer, producing documentation and generally speeding up

systems development by hundreds of percentage points. Thus commerce

is accepting gradually that Emperor COBOL has no clothes on. However,

any advantages ps-algol and s-algol have proved over the third

generation languages are rapidly lost in the fourth generation.

The fourth generation is a different market than the third

generation. The third generation consists principally of COBOL and

BASIC (in commerce) and FORTRAN (in industry). The rest come a long

way down the field as also-rans, with the algols. However, the fourth

generation lacks a single approach to the market, some facilities are

languages, some are generators and some have almost no compilation

requirement. Much of the fourth generation is also badly designed and

tested.

If the fourth generation as it stands did everything that the

marketers claim then there would be no requirement for the third

generation or for that matter for further development. Of course the

claims are at best exaggerated. The fourth generation tools provide

some of the facilities that could be automated but lack an overall

philosophy to provide a 'better mousetrap'. Thus each tool has good

points and bad points that its opposition will quickly leap on.

There is still a large gap for a better tool that has the

flexibility to generally tackle the various aspects of commercial

programming.

279

s-algol and the Commercial 3rd & 4th Generations

The algol and COBOL generators produced above (chapter 4)

exhibited the possibility of producing complete logic structures and

documentation from a very few parameters. A possibility identified by

surprisingly few fourth generation products, most only making the

elementary deduction that commercial data processing consists of data

in and data out.

But there is far to go, much of which is identifiable. The

fourth generation is an open-ended one as regards the possibility of

acceptance of new and better products.

There are three identified and related stages of correlation that

together define a consistent system:

1: field consistency - the data dictionaries exhibit the need of

keeping data type definitions consistent. Thus the database manager

can be assured that each field will have the same characteristics no

matter where it occurs on the database.

2: record consistency - this could be taken a step further by

linking the separate occurrences of this named field to its associated

records in a deletion/addition chain: do not add a record of type 'A'

unless a record of type 'B' already exists and do not delete a record

of type 'B' if a record of type 'A' exists.

This expands the concept of automatic field consistency to

automatic record consistency, hitherto approached, if at all, from the

entirely separate database design angle alone.

3: file consistency - further, the COBOL data entry generator

(tpg) produced above exhibited the need to go one step further to file

consistency. The generator's data processing program only produced an

audit of the data without actually processing it. With the files

280

s-algol and the Commercial 3rd & 4th Generations

defined (in stages 1 and 2 above) and data flows from these files in

terms of records and fields defined within the system then the

parameters required to input and process data should then also have

been defined.

This was partially exhibited by combining the parameters required

to produce both a batch data entry program and the corresponding data

processing program into a single file (the data processing parameters

were a subset of the data entry parameters). Thus two very different

programs were produced from an associated set of parameters and were

therefore consistent with each other and within the system.

The possibility exists for a complete suite to be defined

entirely at parameter level with complete consistency of data storage.

Doubtless unique codings may well be required, but many of these

may prove to be figments of the analyst's imagination as others proved

to be in the file maintenance suite. This is probably the reason that

no current fourth generation tools have tackled this 'ideal' solution.

The commercial data processing market is short-sighted in terms of the

time it is willing to wait before profits appear. Hence the fourth

generation facilities have a limited amount of thought and testing

before they are marketed and subsequently enhanced. The above

outlined facility would require a long term commitment before anything

saleable may occur.

As mentioned above (chapter 4 section 1) the

non-compilation-bound facility could certainly lead the market. But

with a logical system design core identified as outlined above, such a

tool could produce COBOL or even algol, as some parts of the market

may prefer.

281

s-algol and the Commercial 3rd & 4th Generations

In use, the St Andrews family of algols produced general rules in

relation to the extant commercial languages I have used (COBOL, BASIC,

RPG and VISTA): (i) their compiled code is cleaner (ii) they can be

clean compiled quicker (iii) they are more readable (iv) they require

less source code (except in comparison to the 4gl VISTA). With the

advent of the fourth generation with no preconceptions against the

algol family, there is an opportunity for ps-algol. With its coding

benefits and uniquely powerful database handling the opportunity

exists to produce a genuine commercial programming market leader.

I cannot see an algol, even such as s-algol or ps-algol, making a

great impact on the ageing third generation. However, there are real

areas for improvement in the fourth generation with an open-minded

approach being evidenced by the commercial community. This is an area

where the language could be heading.

282

APPENDIX A

IFS MAILSHOT

s-algol and the Commercial 3rd & 4th Generations
IFS Mailshot

Abtech Business Systems Ltd

BIS Applied Systems Ltd.

Background Ccmputer Systems Ltd.

Beta Systems

Buick Ccmputer Services

CAP Group Ltd.

CSC OK Ccmputer Services Co. Ltd.

Calapine Ltd.

Cambridge Consultants Ltd.

Cocking and Drury Ltd.

Compiler and Language Consultancy Ltd.

Ccmputer Systems International Ltd.

D.M. England and Partners Ltd.

DP Support Services Ltd.

Dacris Ccmputer Consultants

Data Highways Ltd.

Datex Micros

David Livingstone Consultants Ltd.

Dillon Computing Management Ltd.

Dyadic Systems Ltd.

Dynamic .Software Services

Erlebach Engineering Ltd.

Eurolirik Ccmputer Services Ltd.

Evets Consultancy Ltd.

F International Ltd.

Ferranti Ccmputer Systems (Cwmbran Software)

Fleet Electronics Consultancy

Gareth Morgan Ccmputer Services

Graffccm .Systems Ltd.

A-2

s-algol and the Commercial 3rd & 4th Generations
IFS Mailshot

H Programming & Systems Ltd.

HLW Computer Services Ltd.

HSOP Text Processing Sera/ices Ltd.

Haverley Systems Europe Ltd.

Heritage Computer Services Ltd.

High Integrity Systems Ltd.

Hill, Price, Davison Ltd.

Holland Automatic International

IPL Information Processing Ltd.

Impax Computer Services Ltd.

Inbucon Ltd.

Industrial and Commercial

Informatics Consulting Ltd.

Informex-London Ltd.

Intelligence (IRL) Ltd.

Inter-City Programming Support Ltd.

John Bell Computer Services Limited

KPG Computer Systems Ltd.

Knight CCmputer Services Ltd.

Leasco Software Ltd.

M R Dataflow

MMT Computing Ltd.

MSS Computer and Business Consultancy

Manex Managanent Ltd.

Mapp Computer Facilities Ltd.

Marcol Computer Services Ltd.

Martin Brampton Software Ltd.

Michael Johnston & Co.

Microware Computer Systems Ltd.

A—3

s-algol and the Commercial 3rd & 4th Generations
IFS Mailshot

Micronology Ltd.

Micro Automation Computing Ltd.

Micro Scope Ltd.

Millenium Professional and Technical

Mills and Allen Communications Ltd.

Milspec Systems Ltd.

Montreal Associates (Systems) Ltd.

Mountfond & Laxon Co. Ltd.

National Data Processing Service

Nine Tiles Information Handling Ltd.

OCR Systems

Oestreicher, Strauss and Warwick

Open computer Services

PACTEL

PIM/lniccm Ltd.

Pioneer Computer Systems Ltd.

Prestedge Consultants Ltd.

Quantum Science Corporation

RAS Systems Design Ltd.

Real Time Developments Ltd.

Riverside Consultants Ltd.

SPC Systems Ltd.

SPL International

Science Systems Ltd.

Servelec Computer Systems Ltd.

Shade (Computer Services) Ltd.

Software Expertise Ltd.

Software Ireland Ltd.

Software and Programming Consultants

A—4

s-algol and the Commercial 3rd & 4th Generations
IFS Mailshot

South Eastern Computer Services

Spectronics Microsystems Ltd.

Synchro Systems Ltd.

Systems Consultancy

Systems Designers Ltd.

Systems Consultants Ltd.

T & ACS

Total Systems Ltd.

Triad Computing Systems Ltd.

Twenty First Computer Systems Ltd.

Tygoze Ltd.

United Gcmputer Resources

Venture Computing Ltd.

Warren Point Ltd.

Wintec Ltd.

Wooton, Jeffreys & Partners

Xoren Computing Ltd.

Y-Ard Ltd.

A-5

APPENDIX B

CHARLES LETTS FINAL CORRESPONDENCE

B—1

s-algol and the Commercial 3rd & 4th Generations
Charles Letts final correspondence

Letts

Charles Letts (Scotland) Ltd.

Registered Office:
Thornybank Industrial Estate
Dalkeith, Midlothian EH22 2NE

Telephone 031663 1971
Telegrams: 'Diarists' Dalkeith
Telex: 72348
Registered No. 7315 Edinburgh

Mr J Sutherland
Admin./Library Computer Unit
Old Union
North Street

University of St Andrews
St Andrews
KY16 9AN

Dare 30 August 1983

Dear John

Thank you for your letter dated 25th August 1983.
Naturally I was disappointed to learn of your difficulty
in converting our Warehouse Distribution System from
Business Basic to S-Algol. I am sure my colleagues and
indeed our mutual friends from Fraser Williams would
share my disappointment.

I would, however, stress that although the outcome of
your project proved fruitless, the experience, knowledge
and understanding gained will be of significant benefit -
at the very least both Fraser Williams and Charles Letts
are aware of these difficulties if approached by a
potential S-Algol customer.

Our success with the Business Basic version of the Ware¬
house Distribution System can be directly attributed to
the efficient method of file access, that of Index
Sequential access where data can be written to or read
from a data record given one or more index keys. Since
the file organisation is based on the data record rather
than the data block, Index Sequential file access offers
substantial flexibility.

This technique is critical with the Stock Location File
where six different indexes are required to access the
data - Indeed without this method of file organisation

Chairman: J.M. Letts; Directors: W.J. Swords; A.A. Letts; D.F. Denby FCIS

mm

B-2

s-algol and the Commercial 3rd & 4th Generations
Charles Letts final correspondence

Charles Letts (Scotland) Ltd
Page Two

Mr J. Sutherland 30 August 1983

I would question the efficiency, the flexibility and the
commercial acceptability of the system. In view of the
fact that the language S-Algol does not support this method
of file organisation I would agree with your decision to
drop the project.

In closing I offer my appreciation of your efforts over
the last few months and wish you every success for your
future plans.

Yours sincerelv
FOR CHARLES LETTS (SCOTLAND) LTD.

C. S. DEWAR

Systems Analyst

B—3

s-algol and the Commercial 3rd & ,4th Generations
Charles Letts final Correspondence

KMMcP/IH

Fraser
Williams
(Scotland)
Limited

Mr J N Sutherland
Administrative & Library Computer Unit
The University
Old Union
North Street
ST ANDREWS .

uw oi. vjeviye » nooc

Glasgow G2 1QY
Telephone 041-226 3864

COMPUTER SERVICES

Stock Exchange House
69 St. George s Place

21st September 1983

Dear John,

Charles Letts Warehousing System

I was sorry to hear of your failure to convert the above system into
S-Algol. I also agree that it would be impossible without the use of our
indexed-sequential filing system. As you know we would never contemplate
purchasing a language or developing a system in a language that did not
provide this facility, for the very obvious reasons of lack of flexibility,
and escalation of development times and therefore costs.

However, I would like to wish you all the best in your new project for the
Byre Theatre.

Do keep in touch.

Yours sincerely,

K M McPartland
General Manager

Director*
T McCafterrv LIB MBCS (Chairman)
K. M McPartland
E R WUIiams FClS FBCS

offices also at Birmingham Bristol leeds Liverpool lonoon Manchester poynton st albans
sheffield new jersev. usa toronto. canada
registered no 1jas322 englano regisiereooffice port of liverpool building pierheao liverpool l3 i by

Fraser
Williams
Grouo

B-4

APPENDIX C

4GL MAILEHOT

C-l

s-algol and the Commercial 3rd & 4th Generations
4gl Mailshot

ADR Limited

Access Technology Limited

Adds (UK) Ltd.

Adran Systems pic

Amethyst Computer Resources

Ashton Tate

Assyst (UK) Computer Services Ltd.

Burroughs Machines Limited

Cinccm Systems (UK) Ltd.

Clasma Systems Limited

Gognos

Ccmpsoft pic

Computer Modelling Limited

Control Data Limited

Cullinet Software Ltd.

BMW Group Europe

Data Design Computer Services

Delta Software Tools

Doric Computer Systems

E.S.I.

Eguinox Computers

Expert Systems International

Fee .Software Products Ltd.

Hammond Software UK

Honeywell Information Systems

Hoskyns Group Limited

ICL

Information Builders (UK) Ltd.

Informatics General (UK) Ltd.

C-2

s-algol and the Commercial 3rd & 4th Generations
4gl Mailshot

Infosys Ltd.

Interccm Data Systems Limited

Interactive Computer Systems Ltd.

J.P.Y Associates Ltd.

Jenson Computer Systems Limited

Ki Computer Services Ltd.

Logica UK Ltd.

MEN (PRO-IV) Limited

MS Associates Ltd.

MSA (Management Science America) Ltd.

Majic Software (C.C. Limited)

Mathanatica Products Group

Microdata Information Systems Ltd.

Micro Focus Ltd.

Morino Associates

NCR Ltd.

Oracle UK

Pansophic Systems (UK) Ltd.

Pioneer Computer Systems

Prime Computer (UK) Ltd.

SAS Software Limited

SIA Computer Services

Sapphire Systems Limited

Savant Enterprises

Savant Enterprises

Software AG of the United Kingdom ltd

Software Marketing International Ltd.

Sperry Limited

Sphinx Limited

C-3

s-algol and the Ccmmercial 3rd & 4th Generations
4gl Mailshot

Systime Limited

Tamsys Limited

Telesystems

Tetra Business Systems Ltd.

The Bristol Software Factory

Thorn EMI COnputer Software

Tubs Software Limited

Unit-C

C-4

s-algol and the Commercial 3rd & 4th Generations

Bibliography

"1 2 3 4th Generation Language Software"; Business Software Review UK

Edition; International Computer Programs, Inc., 6-B Cole Street,

London SE1 4YH; pp28-32; february 1986.

Accounts Department Data Entry Computer Manual; 1.1; Sutherland, J.N.;

University of St. Andrews, Administrative and Library Computer Unit,

Old Union Building, North Street, St. Andrews; February 1985

ADABAS (VMS) Introduction; ADV-100-010; Software AG, Darmstadt, W.

Germany; May 11, 1984.

ADR/lDEAL; SI1G-00-30; Applied Data Research, INC., Route 206 and

Orchard Road, CN-8, Princeton, NJ 08540-9936, U.S.A.; July 1985

ADR/DATACOM/DB; DB1G-00-20; Applied Data Research, INC., Route 206 and

Orchard Road, CN-8, Princeton, NJ 08540-9936, U.S.A.; July 1985

ADR/DATADICTTONAKY; DD1G-00-20; Applied Data Research, INC., Route 206

and Orchard Road, CN-8, Princeton, NJ 08540-9936, U.S.A.; January 1986

ADS/ONLINE summary description; Cullinet Software Inc., 400 Blue Hill

Drive, Westwood, MA, U.S.A.; 1985

American National Standard COBOL Compiler ; AH30, Rev 1 ; Honeywell

Corporation ; Minneapolis, U.S.A. ; December, 1973

An Introduction to SY5TEL; 007-2202/C; Systime Limited, Concours

Ccmputer Centre, 432 Dewsbury Road, Leeds; 1982

Atkinson, M.P., et al; 1984; ps-algol Reference Manual ; University of

Edinburgh Department of Computing Science and University of St.

Andrews Department of Computational Science; The University of St.

Andrews, Department of Computational Science ; 17/1/84

s-algol and the Commercial 3rd & 4th Generations

Business BASIC Directory (AOS/RDOS/DOS) ; 093-000226 ; Data General

Corporation ; Westboro, Massachusetts, U.S.A.

Business BASIC Reference Manual ; 093-000137-03 ; Data General

Corporation ; Westboro, Massachusetts, U.S.A. ; 197R

Cash Office Data Entry Manual; 1.0; Sutherland, J.N.; University of

St. Andrews, Administrative and Library Computer Unit, Old Union

Building, North Street, St. Andrews; July 1985

Chai W.A. and Chai W.H. ; Programming Standard COBOL ; Academic

Press (London) Inc. ; 24/28 Oval Road, London NW1, England ; 1976

Cole A.J. and Morrison R.; An introduction to s-algol programming;

CS/80/l ; University of St. Andrews, Department of Computational

Science ; 1980

DATA FLEX; DATAPLEX (information Management) Services Ltd., 16 Arming

Street, New Inn Yard, London EC2A 3HB

Data Master, an introduction; Sapphire .Systems Limited, 180 Cranbrook

Road, I1ford, Essex.

Draft Proposed American Standard Database Language, SQL; American

National Standards Institute, Inc.; February 1985.

Eve J. ; Algol W Programming Manual ; 01JULY72 ; University of

Newcastle Upon Tyne ; Claremont Tower, Newcastle Upon Tyne, England

NE1 7RU ; 1st July , 1972

FIDEL; DN40008.0582; Information Builders, Inc.,1250 Broadway, New

York, N.Y. 100001, U.S.A.

FOCUS the total English language software resource; DN40005.0582;

Information Builders, Inc.,1250 Broadway, New York, N.Y. 100001,

s-algol and the Commercial 3rd & 4th Generations

U.S.A.

Grant ; The Computer Users' Yearbook ; C.U.Y.B. Publications Ltd. ;

430-432 Holderihurst Road, Bournmouth BHB 9AA, Fngland ; 1982

Hanson, CWen; Design of Gcmputer Data Files; Pitman Books Ltd., 128

Long Avenue, London WC2 9AN; 1982.

I.B.M. O.S. Full American National Standard COBOL ; Rev 4,

GC28-6396-4 ; I.B.M. World Trade Corporation ; 821 United Nations

Plaza, New York 10017, U.S.A.

IBM System/34 RPG II Reference Manual ; SC21-7667-1 ; International

Business Machines Corporation ; General Business Group/international,

44 South Broadway, White Plains, New York 10601, U.S.A. ; 1978

INFO for greater productivity; Doric Computer Systems, Doric House, 23

Woodford Road, Watford WD1 1PB.

Interactive COBOL Programmer's Reference ; 045-011-00 ; Data General

Corporation ; Westboro, Massachusetts 01581 , U.S.A. ; 1977

Introduction to INFO-Text; Henco Software, Inc., 100 Fifth Avenue,

Walthamn Mass 02154, U.S.A.;1984

Introduction to VAX-11 Record Management Services; AA-D024D-TE;

Digital Eguipnent Corporation, Maynard, Massachusetts; May 1982

Jones, Russell; 'PRO-IV: aming to kick dp staff into the eighties';

IBM Computer Today; 9/11/85

Kelly, J. & Sutherland J.N.; Computer Operating Instruction Manual

for the Warehouse Distribution system; Fraser Williams (Scotland)

Ltd., Stock Exchange House, 69 St. George's Place, Glasgow G2 1QY;

1981

s-algol and the Commercial 3rd & 4th Generations

Kelly, J. & Sutherland, J.N.; Program Specifications for the

Warehouse Distribution system; Fraser Williams (Scotland) Ltd., Stock

Exchange House, 69 St. George's Place, Glasgow G2 1QY; 19R1

Kelly, John; System Specification for the Warehouse Distribution

system; Fraser Williams (Scotland) Ltd., Stock Exchange House, 69 St.

George's Place, Glasgow G2 10Y; 1980

MICS Evaluation Series; Morino Associates, Inc., 8615 Westwood Centre

Drive, Vienna, Virginia 22180-2215, U.S.A.; 1985

MIMER the software machine; Savant, 2 New Street, Carnforth, Lanes.

LA5 9RX, England

MODUS Transaction Processing; Ccmputer Technology Limited; 30/000015B;

CTL Limited, Eason Road, Hemel Hempstead, Hertfordshire HP2 71B; July

1978

Morrison R.; S-algol Reference Manual; CS/79/l; University of St.

Andrews, Department of Computational Science ; 1979

NATURAL the proven 4th generation technology, concepts and facilities;

NAT-210-005; Software AG, Darmstadt, Federal Republic of Germany;

August 1985.

N0MAD2 an overview; D-2B10K; The Dun & Bradstreet Corporation, 187

Dahbury Road, Wilton, CT 06897, U.S.A.; 10/1984

N0MAD2 the software; V/N 100071;The Dion & Bradstreet Corporation, 187

Danbury Road, Wilton, CP 06897, U.S.A.; 11/1984

Prime INFORMATION Made SIMPLE; Prime Ccmputer, Inc., Natick,

Massachusetts, U.S.A.

Print Invoices for Residence Fees; Staddle, J.; University of St.

s-algol and the Commercial 3rd & 4th Generations

Andrews, Administrative and Library Computer Unit, Old Union Ruilding,

North Street, St. Andrews; April 1981

PRO—IV an overview; PRO Computer Sciences, Inc., 23181 Verdugo Drive,

Suite 103A, Laguna Hills, Calif 93653, U.S.A.; August 1985

PRO—IV User's Guide; version 1.30; PRO Computer Sciences, Inc., 23181

Verdugo Drive, Suite 103A, Laguna Hills, Calif 93653, U.S.A.; August

1985

Programming the 1900 Series in COBOL ; International Computers Limited

; ICL Training, ICL Beaumont, Old Windsor, Berkshire, England ; 1977

Proposals for Payment of Creditors System; Staddle, J. & Christie,

A.D.G.; FS402; University of St. Andrews, Administrative and Library

Computer Unit, Old Union Building, North Street, St. Andrews;

December 1977

Powerhouse Primer 1; PHVXP01; Cognos Incorporated, 275 Slater Street,

10th Floor, Ottowa, Canada KIP 5H9; April 1984

Robinson, Barry; 'SQL is not enough"; SIR Incorporated, 5215 Old

Orchard Road, Suite 800, Skokie, IL 60077, U.S.A.; October 1985

Software Development with DELTA; MA 216; Delta Software Technologie

AG, Bahnstrasse 5, CH-8603 Scherzenbach, Switzerland; June 1985

Speedware high-performance fourth-generation productivity software;

Infocentre, 9 Vine Lane, Tower Bridge, London, England DEI 2JQ.

Ullman, Jeffrey D.; Principles of Database Systems; 1980; Computer

Science Press; 11 Taft Ct., Rockville, Maryland 20850, U.S.A.

ULTRA; MB-00410M-11/83; Cinccm Systems, 2300 Montana Avenue,

Cincinnati, OH 45211, U.S.A.

s-algol and the Commercial 3rd & 4th Generations

User 11; Fact Sheet No. 8; Jenson Computer Systems Limited, 30 Queen

Square, Bristol BS1 4ND.

User 11 Software Data Sheet; Pioneer Computer Systems Ltd., 4 Albion

Place, Northampton NN1 1UD, UK

User's Manual for Video Terminal CIT-lOle; preliminary edition; CIE

Terminals, Citoh Electronics; October 1983.

VAX-11 BASIC Language Reference Manual ; AA-H867A-TE ; Digital

Equipment Corporation ; Maynard, Massachusetts, U.S.A.; 1980

VAX—11 Record Managanient Services Reference Manual; AA-D031D-TE;

Digital Equipment Corporation ; Maynard, Massachusetts, U.S.A.; May

1982

VAX COBOL Language Reference Manual; AA-H631C-TE; Digital Equipment

Corporation ; Maynard, Massachusetts, U.S.A.; October 1984

VTSTA Base Module Details; Vista Computer Services Ltd., 35 Soho

•Square, London Wl; 1st October 1982

VISTA Specification Language Commands; Vista Computer Services Ltd.,

35 Soho Square, London Wl; 1st October 1982

VISTA Specification Language Verbs; Vista Computer Services Ltd., 35

Soho Square, London Wl; 1st October 1982

'Voyage of Discovery'; Computing Futures Limited

VT100 User's Guide; EK-VT100-UG-002; Digital Equipment Corporation ;

Maynard, Massachusetts, U.S.A.; Jan 1979.

'What changing to a computer can mean'; Storage Handling Distribution;

May 1982; pp30-31.

s-algol and the Ccrnmercial 3rd & 4th Generations

Whiteside, David; 'Coping with the shortage'; Datamation Magazine, Dun

and Bradstreet; 1985

Whiteside, David; 'Selection starts for true fourth generation'; DEC

User, EMAP Business & Computer Publications Ltd., 67 Clerkenwell Road,

London EC1R 5BH; May 1985

s-algol and the Commercial 3rd & 4th Generations

References

1. "123 4th Generation Language Software"; Business Software Review

UK Edition; International Computer Programs, Inc., 6-8 Cole Street,

London SE1 4YH; pp28-32; February 1986.

2. Accounts Department Data Entry Computer Manual; 1.1; Sutherland,

J.N.; University of St. Andrews, Administrative and Library Ccmputer

Unit, Old Union Building, North Street, St. Andrews; February 1985

3. American National Standard COBOL Compiler ; AH30, Rev 1 ;

Honeywell Corporation ; Minneapolis, U.S.A. ; December, 1973

4. An Introduction to SYSTEL; 007-2202/C; Systime Limited, Concours

Ccmputer Centre, 432 Dewsbury Road, Leeds; 1982

5. Atkinson, M.P., et al; 1984; ps-algol Reference Manual

University of Edinburgh Department of Computing Science and University

of St. Andrews Department of Computational Science; The University of

St. Andrews, Department of Computational Science ; 17/1/84

6. Business BASIC Directory (AOS/RDOS/DOS) ; 093-000226 ; Data

General Corporation ; Westboro, Massachusetts, U.S.A.

7. Business BASIC Reference Manual ; 093-000137-03 ; Data General

Corporation ; Westboro, Massachusetts, U.S.A. ; 1978

8. Cash Office Data Entry Manual; 1.0; Sutherland, J.N.; University

of St. Andrews, Administrative and Library Ccmputer Unit, Old Union

Building, North Street, St. Andrews; July 1985

9. Chai W.A. and Chai W.H. ; Programming Standard COBOL ; Academic

Press (London) Inc. ; 24/28 Oval Road, London NW1, England ; 1976

10. Draft Proposed American Standard Database Language, SQL; American

s-algol and the Canmercial 3rd & 4th Generations

National Standards Institute, Inc.; February 1985.

11. Eve J. ; Algol W Programming Manual ; 01JULY72 ; University of

Newcastle Upon Tyne ; Claremont Tower, Newcastle Upon Tyne, England

NE1 7RU ; 1st July , 1972

12. Grant ; The Ccmputer Users' Yearbook ; C.U.Y.B. Publications

Ltd. ; 430-432 Holderihurst Road, Boummouth BH8 9AA, England ; 1982

13. Hanson, Owen; Design of Computer Data Files; Pitman Books Ltd.,

128 Long Avenue, London WC2 9AN; 1982.

14. I.B.M. O.S. Full American National Standard COBOL ; Rev 4,

GC28-6396-4 ; I.B.M. World Trade Corporation ; 821 United Nations

Plaza, New York 10017, U.S.A.

15. IBM System/34 RPG II Reference Manual ; SC21-7667-1 ;

International Business Machines Corporation ; General Business

Group/international, 44 South Broadway, White Plains, New York 10601,

U.S.A. ; 1978

16. Interactive COBOL Progranmer's Reference ; 045-011-00 ; Data

General Corporation ; Westboro, Massachusetts 01581 , U.S.A. ; 1977

17. Jones, Russell; 'PRO-IV: aming to kick dp staff into the

eighties'; IBM Ccmputer Today; 9/11/85

18. Kelly, J. & Sutherland J.N.; Ccmputer Operating Instruction

Manual for the Warehouse Distribution system; Fraser Williams

(Scotland) Ltd., Stock Exchange House, 69 St. George's Place, Glasgow

G2 1QY; 1981

19. Kelly, J. & Sutherland, J.N.; Program Specifications for the

Warehouse Distribution system; Fraser Williams (Scotland) Ltd., Stock

s-algol and the Commercial 3rd & 4th Generations

Exchange House, 69 St. George's Place, Glasgow G2 1QY; 1981

20. Kelly, John; System Specification for the Warehouse Distribution

system; Fraser Williams (Scotland) Ltd., Stock Exchange House, 69 St.

George's Place, Glasgow G2 1QY; 19S0

21. MODUS Transaction Processing; Computer Technology Limited;

30/000015B; CTL Limited, Eason Road, Hemel Hempstead, Hertfordshire

HP2 71B; July 1978

22. Morrison R.; S-algol Reference Manual; CS/79/l ;University of St.

Andrews, Department of Computational Science ; 1979

23. NATURAL the proven 4th generation technology, concepts and

facilities; NAT-210-005; Software AG, Darmstadt, Federal Republic of

Germany; August 1985.

24. NQMAD2 the software; V/N 100071;The Dun & Bradstreet Corporation,

187 Danbury Road, Wilton, CT 06897, U.S.A.; 11/1984

25. Print Invoices for Residence Fees; Staddle, J.; University of St.

Andrews, Administrative and Library Computer Unit, Old Union Building,

North Street, St. Andrews; April 1981

26. PRO—IV an overview; PRO Computer Sciences, Inc., 23181 Verdugo

Drive, Suite 103A, Laguna Hills, Calif 93653, U.S.A.; August 1985

27. PRO—IV User's Guide; version 1.30; PRO Computer Sciences, Inc.,

23181 Verdugo Drive, Suite 103A, Laguna Hills, Calif 93653, U.S.A.;

August 1985

28. Programming the 1900 Series in COBOL ; International Computers

Limited ; TCL Training, ICL Beaumont, Old Windsor, Berkshire, England

; 1977

s-algol and the Commercial 3rd & 4th Generations

29. Proposals for Payment of Creditors System; Staddle, J. &

Christie, A.D.G.; FS402; University of St. Andrews, Administrative

and Library Computer Unit, Old Union Building, North Street, St.

Andrews; December 1977

30. Robinson, Barry; 'SQL is not enough'; SIR Incorporated, 5215 Old

Orchard Road, Suite BOO, Skokie, TL 60077, U.S.A.; October 1985

31. Software Development with DELTA; MA 216; Delta Software

Technologie AG, Bahnstrasse 5, CH-8603 Scherzenbach, Switzerland; June

1985

32. Ullman, Jeffrey D.; Principles of Database Systems; 1980;

Computer Science Press; 11 Taft Ct., Rockville, Maryland 20850, U.S.A.

33. User's Manual for Video Terminal CIT-lOle; preliminary edition;

CIE Terminals, Citoh Electronics; October 1983.

34. VAX—11 BASIC Language Reference Manual ; AA-H867A-TE ; Digital

Equipment Corporation ; Maynard, Massachusetts, U.S.A.; 1980

35. VISTA Base Module Details; Vista Computer Services Ltd., 35 Soho

Square, London Wl; 1st October 1982

36. VISTA Specification Language Commands; Vista Computer Services

Ltd., 35 Soho Square, London Wl; 1st October 1982

37. VISTA Specification Language Verbs; Vista Computer Services Ltd.,

35 Soho Square, London Wl; 1st October 1982

38. 'Voyage of Discovery'; Computing Futures Limited

39. VT100 User's Guide; EK-VT100-UG-002; Digital Equipment

Corporation ; Maynard, Massachusetts, U.S.A.; Jan 1979.

s-algol and the Commercial 3rd & 4th Generations

40. 'What changing to a computer can mean'; Storage Handling

Distribution; May 1982; pp30-31.

41. Whiteside, David; 'Coping with the shortage'; Datamation

Magazine, Dun and Bradstreet; 1985

42. Whiteside, David; 'Selection starts for true fourth generation';

DEC User, EMAP Business & Computer Publications Ltd., 67 Clerkenwell

Road, London EC1R 5BH; May 1985

