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ABSTRACT

This thesis examines some outstanding problems in half-density

geometric quantization.

It is well known that the half-density quantization scheme depends on
the polarization employed: in general, the quantizations of the same
observable in different polarizations leads to different physical results.
Thetefore, an outstanding problem in geometric quantization is to establish
quantizations that are independent of the choice of polarization employed.
We establish a scheme, based on physical reasoning, to render quantizations
in certain canonically conjugate polarizations of 2-dimensional symplectic
manifolds wunitarily equivalent. The scheme we propose can handle examples
on contractible and noncontractible 2-dimensional symplectic manifolds in a

unified manner.

In the half-density quantization scheme, quantizations in a
polarization with toroidal leaves give rise to what are known as
BWS conditions. These BWS conditions depend on the choice of connection on
the underlying Hermitian 1line bundle. Letz:tm an observable with closed
integral curves on the phase space T‘b where Q is an open interval in R.
The eigenvalues of the bound states of the quantum observable corresponding
to % are obtained by quantizing Z in the polarization (, spanned by X,, the
Hamiltonian vector field generated by g. This polarization has toroidal
leaves, and so the bound states are obtained from the BWS conditions.
However, in general, there is no formal procedure for constructing a unitary
map between HG&' the quantization Hilbert space associated with the

polarization & , and the Hilbert space LZ(Q) associated with the usual



position representation. We construct an approximate unitary map by using a
modified version of the Maslov-WKB method. This modified version of the
Maslov-WKB method incorporates the BWS conditions . by - taking into
account the fact that different choices of connection give rise to different
BWS conditions. This thesis contains a study of the following observables:
(1) the Hamiltonian of a particle in a potential well,

(2) the Hamiltonian of a particle in a potential well 1localized in phase
space, and

(3) certain multilinear momentum observables, (i.e. polynomials of the
momentum p with functions of the position coordinate q as coefficients),

with closed integral curves.
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INTRODUCT ION



INTRODUCT ION

Many of the main contributors to the development of the theory of
geometric quantization have had a strong bias towards pure mathematics.
Therefore there has been a tendency to attempt the resolution of many of the
out standing problems in the theory by resorting to sophisticated
mathematics. It could be argued that the theory as it stands is complicated
enough, and so the introduction of even more sophisticated pure mathematical
schemes to resolve minor problems in the theory is not always justifiable.
We are not convinced that the introduction of the half-form quantization
scheme to replace the half-density quantization scheme was worth the much
increased mathematical complexity. Hence we shall restrict ourselves to the
study of the half-density quantization scheme in this thesis. Whilst the
above mentioned approach for resolving problems is perfectly valid, it seems
reasonable to ask the following question: could some of the outstanding
problems in the theory of geometric quantization be resolved by resorting to
physical intuition?. This thesis is part of an on-going quantization
programme at St.Andrews led by Dr.K.K.Wan. The wunderlying procedure
involves:

(1) the application of geometric quantization schemes to some known

examples in quantum mechanics to see what difficulties one may

encounter,

(2) the study of the possible physical origin of the difficulties

encountered, and

(3) attempts to formulate schemes based on physical reasoning to

resolve the problems.
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In this thesis we shall be concerned with the study of two outstanding
problems in the theory of geometric quantization; these problems will be

stated in the next three paragraphs.

Let ® and ' be two arbitrary reducible polar'izations‘yof a symplectic
manifold (M,w), and 1let HcP and H o' be the quantization Hilbert spaces
associated with the polarizations @ and (¢ respectively. The first problem
is called the pairing problem, and it is stated as follows: how does one
link quantizations in the Hilbert space Hgp with quantizations in the
Hilbert space H @' T The 1link between the quantizations in the
polarizations in @ and @' is loosely referred to as pairing. In order to
have a full quantum theory it is essential to be able to construct pairings
between any two reducible real polarizations of the symplectic manifold

(M, ).

It is well known that the half-density quantization scheme depends on
the polarization employed: in general, the quantizations of the same

observable in different polarizatiomsleads to different physical results.

The second problem arises from the following question: how does one

establish unitarily equivalent quantizations in different polarizations?.

In Chapter 1 we shall review the following background material :
(1) the geometric quantization scheme,
(2) the BWS conditions in the half-density quantization scheme,
and
(3) the Maslov-WKB method for the one-dimensional Hamiltonian
system of a particle in a potential well.

These reviews will be detailed and self-contained.
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In Chapter 2 we shall attempt to establish a scheme to render
quantizations in certain canonically conjugate polarizations of
2-dimensional symplectic manifolds unitarily equivalent. We shall study
examples on both contractible and noncontractible symplectic manifolds. The
work in Chapter 2 has been published [ef. Wan, McKenna and Pinto (1984);

Wan, Pinto and McKenna (1984)].

Let H be the Hamiltonian of the one-dimensional Hamiltonian system of a
particle in a potential well. Let Q and the cotangent bundle T*Q be
respectively the configuration space and phase space of the Hamiltonian
system. Let XH be the Hamiltonian vector field generated by H. Let M, be
the maximal submanifold of T’Q on which X, spans a polarization with
toroidal leaves, and let & be the polarization of M, spanned by Xy+ In the
half-density quantization scheme the eigenvalues of the bound states of the
quantum observable corresponding to H are obtained by quantizing H in the
polarization 6. (Note that quantization in a polarization with toroidal
leaves gives rise to BWS conditions, and these BWS conditions are used to
construct the eigenvalues of the observables that are being quantized.) Our
task in Chapter 3 is to construct a pairing between the polarization ¢, and
the vertical polarization P (of the cotangent bundle T*Q). In other words,
we would like to construct a link between the quantization Hilbert space HGE
and the position representation L*(Q). (The quantization Hilbert space Hj

is identifiable with L%(Q).)

We shall begin Chapter 4 with an attempt to establish unitarily
equivalent quantizations of a general observable (of an arbitrary
2-dimensional symplectic manifold) in suitably chosen canonically conjugate

polarizations.
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Let the configuration space Q be an open interval in R, T*Q be the
phase space and 1let P be the vertical polarization of T*Q. Next we shall
attempt to quantize the following observables in the vertical polarization
P:

(1) the Hamiltonian (of a particle in a potential well) localized in

the phase space T*Q, and

(2) certain multilinear momentum observables with closed integral

curves.

As in Chapter 3, we shall begin by quantizing each of the above mentioned
observables in a suitably chosen polarization ®& which has toroidal leaves.
Then we shall try to establish a pairing between 0% and the vertical
polarization P. We are interested 1in quantizing the above mentioned
observables because, in general, the standard canonical quantization scheme
does not give unique quantum operators corresponding to these observables in

the position representation LQ(Q).

The following is a list on notation which will be adopted throughout
the thesis. The symbols R, [RY, ©,7Z denote respectively the set of real
numbers, the set of positive real numbers, the set of complex numbers and
the set of integers. The symbol -+ denotes i/H where i = (-1)"% and A is
Planck's constant. The letters M, M,, M, Q, Q. will represent real
manifolds. Then TQ and T'Q will represent respectively the

tangent bundle and cotangent bundle of Q.

An index of symbols defined in the text is given at the end of the

thesis.



CHAPTER 1

A REVIEW OF BACKGROUND MATERIAL
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1.1 A REVIEW OF THE GEOMETRIC QUANTIZATION SCHEME

(1.1.1) Introduction

In this section we shall give a brief outline of the geocmetric
quantization scheme. We shall follow, unless otherwise stated, the notation

and conventions adopted by Woodhouse (1980).

(1.1.2) Hamiltonian mechanics

The definition of a symplectic manifold and the notation (M,w), C%(M)

and V(M) are given in Appendix 1.1.

The basic model of the phase space of a (conservative) classical
mechanical system 1is a symplectic manifold. The physical state of a

classical mechanical system is represented by a point in the phase space.

(1.1.2.D1) Definitions LCampbell (1983); Woodhouse (1980),pp.10-12]

Let (M,w) be a 2k-dimensional symplectic manifold representing the
phase space of a classical mechanical system.
(1) The real-valued functions in C™(M) are called classical observables.

(2) Let ¥ be a classical observable; then the vector field X_,e& V(M) which is

S
determined by

XZJw+-d§ =0 (1.1.2.Eq 1a)

is called the Hamiltonian vector field generated by ;4
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Let {f,... vl et ’%k} be local canonical coordinates on (M,w); then
locally ]{.C is given by
k

Bopi® iz {(1/0p,;) (0/0¢,)-(3%/29;) (/o)) } . (1.1.2.Eq 1b)

(3) Let Z and 77 be any two classical observables; then the Poisson bracket
of Z and 7 is the classical observable {Z ,% } defined by
Z,7} = xz:(v) = 2w(Xg, X,). (1.1.2.Eq 2a)
Locally ,we have
{g,'r;} =f {(az/a?g,i)(av/?gi)-(?(/a%i)(ay/*afai)}. (1.1.2.Eq 2b)
(4) The Poisson br'a:;cet makes C™(M) into an infinite-dimensional real Lie

algebra called the algebra of classical observables.

For all Z, 7,Ee c”(M) and a,b e R, we have

{al+b7,£} = alZ,E}+b{7,E} (1.1.2.Eq 3a)

and
{7, 17,8} 1+1g, (T, }+ 177, {F,E}} = 0. (1.1.2.Eq 3b)
(1.1.2.Ex 1) Example [Abraham and Marsden (1978), pp178-179;

Campbell (1983); Woodhouse (1980), p7]

For most physical applications (M,w) is the phase space with M being
the cotangent bundle, T*Q, of the configuration space Q of a classical
mechanical system. Let Q be a k-dimensional manifold with local coordinates
q = (q.,,...,qk) and let pr':T*Q -3 Q be the usual cotangent projection map.
Each point in T'Q is a covector at some point of Q: a covector at the point
qe=Q is a linear mapping p:T;Q -=3 R, Let pj = 'Blaqi!q.l p, where
‘d/'aqilq e TgQ: the p;s are the k-components of the covector p at q. Each

covector p in T:Q can be represented by the set of 2k functions
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{p1,...,pk,q1,...,qk}; this set forms a collection of local coordinates on

Q. Hence we have given T*Q a manifold structure, so we shall use M for

TQ in what follows.

There exists a global one-form (@, on M defined at each point

m = (pqi""pk!qA'!"',qK) G:M by
XwdPolm = PraXmd p , for all X e T,M; (1.1.2.Eq 4)

where Rol, is the restriction of @B, to the point m. R, is called the

canonical one-form [ecf. Abraham and Marsden (1978), pp178-179;

Woodhouse (1980), p7].

The two-form (» defined by w= dp, is referred to as the canonical

two~-form.

Locally, we have

k k
Ro =i§' pidqi and w=:,§‘dpihdqi' (1.1.2.Eq 5)

The pair (M,w) is an example of a symplectic manifold. Clearly,
{p1,...,pr\,q1,...,q“} is a set of 1local canonical coordinates on (M,w)

[ef. Appendix 1.1 for a definition of local canonical coordinates].
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(1.1.3) The Kostant-Souriau condition

The terms complex line-bundle, Hermitian structure on a complex
line-bundle , connection on a line-bundle, the compatibility of Hermitian
structure and connection, Hermitian line-bundle with (compatible)
connection, curvature two-form of a connection on a line-bundle and the

notation B,V, (*,*), (B,(*,*),V) and curv(B,V) are given in Appendix 1.1.

Let (M,») be an arbitrary symplectic manifold. The first step in the
geometric quantization scheme is the construction of a Hermitian line-bundle

with (compatible) connection (B,(*,*)N) over M, such that curv(B,V) = W/A.

Such a Hermitian bundle does not always exist; the condition for its

existence is given by the following

(1.1.3.T1) Theorem [Campbell (1983); Kostant (1970),p.133; Souriau (1970);

Simms and Woodhouse (1976),p.37; Woodhouse (1980),pp.116-120]

Let (M,t0) be the given symplectic manifold; then there exists a
Hermitian line-bundle with (compatible) connection (B,(*,*),V) over M such
that curv(B,V) = W/ if and only if the integral

[2rr]"'jzcur-v(}3,w - [2nﬁ]"j£w (1.1.3.Eq 1)

over any closed, oriented two-surface ¥ in M is an integer.
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We shall now give the following

(1.1.3.D1) Definition LSimms (1972)]

A symplectic manifold (M,w) is said to satisfy the Kostant-Souriau
condition if the integral [2WhI4j%?o over any closed, oriented two-surface

L in M is a integer.
Remark: (R1) We shall use the symbol 4 to denote i/H.

(1.1.3.Ex 1) Example

Let (M,w) be a symplectic manifold and let @ be a real one-form on M
that satisfies the condition dp =w. Let B = M xC be a trivial line-bundle
over M and let (*,*) be the (natural) Hermitian structure on B. Let s, be a
unit section of B: s, satisfies the condition (s;,s85) = 1. Then we can
define a connection on B by

szo = =(XJ1B)s, , for all Xe VG(M); (1.1.3.Eq 2)
(where Vq(M) is the space of smooth complex vector fields on M
[ef. Appendix 1.1]). The one-form ﬂ is referred to as the connection
potential, since it defines the connection V. Note that our definition of
the connection potential differs from that given by Woodhouse (1980),[p116
and p297], by a factor-i . It can be shown that curv(B,V) = dB/h = W/

[ef.Appendix 1.1 or Woodhouse (1980), p116 and p297].

For every X e VQ(M), we have
X(8,,8,) = X(1) = 0 (1.1.3.Eq 3a)
and

(V,S0156) + (35,7 8,) = ~+(XIPB - XIR )(s,,8,) = 05 (1.1.3.Eq 3b)
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the last result was obtained by using the following two facts: (i) the
connection potential is real; and, (ii) the real part of X = the real part

of X. Hence the Hermitian structure (¢,¢) and connection ¥V are compatible.

Let > be a closed, oriented, two-surface in M; then the boundary 3% of

Y is a zero-boundary: 2 is without a boundary. Then it follows from
Stokes' Theorem that

[2ﬂﬁ]'1gw = [2nﬁ]"j“ d@ = [2mn]™| B =0 (1.1.3.Eq 4)

z z 2%

[ef. Von Westenholz (1981),pp280-289 and p310; Woodhouse (1980),p293].

Hence the symplectic manifold (M,w) satisfies the Kostant-Souriau condition

and (B,(°,*),V) is a Hermitian line-bundle with (compatible) connection such

that curv(B,Y) = W/A.

Remark: (R2) It is always possible to construct a Hermitian line-bundle
with (compatible) connection over (M,w) such that curv(B,¥) = W/, when M is
a cotangent bundle and w is the canonical two-form [ecf. example(1.1.2.Ex
1); and, Woodhouse (1980), p122]: we choose the connection potential @ to
be B = @,+ X where (3, is the canonical one-form and A is any closed one-form

on M.
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(1.1.4) The oprequantization procedure [Campbell (1983); Simms and

Woodhouse (1976), pp38-50; Sniatycki (1980), pp6-8 and pp51-59;

Woodhouse (1980), pp113-122]

The geometric quantization scheme arose out of an attempt to solve the

so-called Dirac problem in a given symplectic manifold (M,w).
The attempt is as follows:

(Q1) We associate a Hilbert space H to (M,w);
(Q2) Let S be a suitably chosen Lie subalgebra of C*(M). Then to each Ces
we assign a symmetric operator a on H such that:

(i) The map Z-——-&f is linear over R;

(ii) 2?: T when Z is a constant function on M;

(iii) For each ¢,? € S we have

[Z,% 1= -mg, (1.1.4.Eq 1)
where [g,ﬁ] = fﬁ-ﬁf is the quantum commutator and § = {7 ,7}

is the Poisson bracket of the two classical observables z and ’Y].

P -~
In other words, the collection of operators T = {z ,?7,...} is an

operator representation of the subalgebra S in H.

It turns out that the Dirac problem does not wuniquely determine the
quantum system associated with the symplectic manifold (M,w). Not all the

solutions to the Dirac problem provide physically reasonable results.



Page 12

The prequantization procedure represents a first attempt at solving the

Dirac problem geometrically, and it goes as follows.

(PQ1) At the outset we shall assume that (M,w) satisfies the Kostant-Souriau
condition. We choose a Hermitian line-bundle with (compatible) connection
(B,(*,+),7) over M such that curv(B,7) = W/. We shall call the triple

(B,(*,+),¥) a prequantization bundle.

(PQ2) Let W be the space consisting of square-integrable s=mooth sections
s e ch(M) with respect to the inner product

<s,s> = [2vA]" " (s,8) €y (1:1.0:Eq 2)
where the notation C;(M) and £, are given in  Appendix 1.1. The

prequantization Hilbert space H is defined to be the completion of W.

(PQ3) To each classical observable (e Cw(M), we assign the symmetric

o

operator £ in H given by the formal expression
fs = -i‘ﬁv}'(cs-l-“é’s. (1.1.4.Eq 3)
The domain of E is undetermined by this expression; however, it is usual to
choose the domain to be
Dg = {8 e C:;(M): the support of s is compact} (1.1.4.Eq 4)
because ‘Zis a symmetric operator on D{,;‘. If the Hamiltonian vector field Xf.‘
is complete, theng is an essentially self-adjoint operator. Note that an
essentially self-adjoint operator has a wunique self-adjoint extension
[ef. Hellwig (1964), pp.172-173]. When .')(c is complete, then the unique

self-adjoint extension will be referred to as the prequantization operator.

It is easy to check that the prequantization procedure is a solution to

the Dirac problem [ef. Abraham and Marsden (1978), p.441].
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(1.1.4.Ex 1) Example: The free particle

Consider the situation of a free particle in a configuration space

Q = R. The cotangent bundle, T’Q, of Q can be identified with R%  Let q be

the cartesian coordinate on Q and let (p,q) be the usual cartesian canonical

coordinates on T’Q, and let > be the canonical two-form on T*Q. The phase

space of the free particle is the symplectic manifold (T’Q,w). Let

B = T'Q x€ be the trivial bundle over T Q, (+,*) be the (natural) Hermitian

structure on B and let s, be a unit section of B. Let <7 be the connection
defined by

Yy 8, = -H{X1 pdq)s,, for all X e Vgo(T°Q). (1.1.4.Eq 5)

(Note that we have chosen the connection potential to be pdq.) Let

(B,(*,+),7) be the chosen prequantization bundle.

The space W (which has been defined in (PQ2)) consists of s=mooth
sections of the form ¥= ‘P(p,q)soeccg(TfQ), where W(p,q) e Ci(T*_Q), vhich
are square-integrable with respect to the inner product

P, P> = [zm]-"jml I¥(p,q) 12 dpdq. (1.1.4.Eq 6)

The prequantization Hilbert space H is the completion of W.

From a physical point of view, one is tempted to regard |¥(p,q)}* as
the probability density of finding the particle in the classical state
represented by the point (p,q) in the phase space. However, the
prequantization Hilbert space H is physically unacceptable because of the
following reasons:

(i) the elements of H with arbitrarily small support on T*Q violate the
Heisenberg uncertainty principle of quantum mechanics
[ef. equation (1.1.4.Eq 6)]; and,

(11) according to the Schrodinger prescription of quantum mechanics H should
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be unitarily equivalent to L7(Q), which is L?(®); instead, it is unitarily
equivalent to LZ(T*Q), which is Lz(mz).

In other words, the prequantization Hilbert space H is "too large", and we
need to reduce its size; the procedure for reducing the size of H (in order
to obtain a physically acceptable solution of the Dirac problem) is referred
to as quantization. However, before we give a prescription for the
quantization scheme we shall introduce the following two geometric

structures: real polarizations and half-densities.

(1.1.5) Real polarizations

The definitions of the following list of terms and notation are given
in Appendix 1.1: real distribution, integrable distribution, Lie bracket
[ , ] of two smooth vector fields, Frobenius Theorem, leaves of an
integrable distribution, the space of leaves of an integrable distribution,

V(M;D), M/D, and the projection map pr:M --4 M/D.

(1.1.5.D1) Definitions [Woodhouse (1980), p.T73]

A real polarization & of a 2k-dimensional symplectic manifold (M,w) is
a k-dimensional smooth, real distribution which satisfies the following
conditions:
(P1) ®@ is integrable; and,
(P2) w(X,Y) = 0, for all X,Y € V(M;®P).
( A k-dimensional distribution D that satisfies condition (P2) is called a

Lagrangian distribution.)
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Remarks: (R1) From now on we shall use the terms distribution and
polarization to refer to a real distribution and a real polarization
respectively; and, we shall use the letters  and P for polarizations.

(R2) It follows from Frobenius Theorem [ef. Appendix 1.1] that every point

in M lies on a leaf of the polarization f.

(1.1.5.D2) Definitions and notation LWoodhouse (1980), p73, p74-75, p291,

p851]

Let @ be a polarization of a symplectic manifold (M,w).

(1) The polarization ® is said to be reducible if the space of leaves M/® is
a Hausdorff manifold with the projection map pr:M --3 M/@ being smooth.
(2) The map

Y o VIM;@) x V(M;®R) ==> V(M;®@): (X,Y) ==> WY (1.1.5.Eq 1a)
determined by

(W 1) = X2 d(YIw) (1.1.5.Eq 1b)

is called the partial connection defined by (°.
(3) Then C®(M;®) and C®(M;P,1) are respectively the spaces of smooth real
functions of M defined by
c®(M;@) = {Te Cc™(M): X() = 0, for all X e V(M;F)}, (1.1.5.Eq 2a)

c¥(M;0,1) = {C e Cc®(M): [X,,X] € V(M;®), for all X € V(M;@)}, (1.1.5.Eq 2b)

c"

where [ , ] is the Lie bracket of two vector fields [ef. Appendix 1.1].
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(1.1.5.Ex 1) Example: The vertical and horizontal polarizations of a
cotangent bundle [ Woodhouse (1980), p7 and pT73]

Let Q be a k~-dimensional manifold with global coordinates

q = {q1,..,qk} and let (p,q) = {p1,..,pk,q1,..,qk} be the usual canonical

coordinates on the cotangent bundle, T*Q, of Q. (Note that T Q is

identifiable with R x Q.) Let ) be the canonical two-form on T Q and let
k

M = T"Q; then w =} dp;adq;, and (Mw) is a 2k-dimensional symplectic
1=y

manifold.

The set of vector fields {9/9p,y..+,%/9P,9/0Q4,..+,9/2q,} is a basis
of V(M). 1In fact, for all i,je {1,...k}, we have

w (’O/apa,a/vpj) = w(afaq;.alan) =0, (1.1.5.Eq 3a)

w(a/0p;,2/04;) (1/2)6’,-3'-. (1.1.5.Eq 3b)
(Note that we have followed the convention adopted by
Woodhouse (1980), [ef.p2 and p289]of putting

3/aqu(6l‘ap.;Jw) = 2w (o/pp;,0/ qJ') N

Let P be the k-dimensional distribution on M spanned by the vector
fields {9/0p4y...,0/9pk}- Then a typical element of V(M;P) is of the form
ig?ji(p:q) (@/9p;) where Z,:ecw(m). Let X =1};z;ia/3pi and Y =§;;’7i'°/‘3pi; then
we have

k k
[X,Y] =§1 {aé.(zi oN/ap; - 7; 9 /ep;)}o/ep; .+ (1.1.5.Eq 4)
Clearly [X,Y] is an element of V(M;P). Thus P is an integrable
distribution. Equation (1.1.5.Eq 3a) implies that P is a Lagrangian
distribution. Therefore, P is a polarization of (M,w). P is commonly
referred to as the vertical polarization, and we shall reserve this

particular symbol P to denote it. The leaves of P are surfaces

{(p,q) e M: q1=constant,...,qkzconstant}. The polarization P is reducible
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because the space of leaves M/P is identifiable with Q.

Let ¥ be the partial connection defined by P and let Ye f(M;P) be
k
given by Y = z Z:. (3/2p1). Then we have
= k
VY, Y =2 X(Z;) 2/ p;, for all X & V(M;P). (1.1.5.Eq 5)
=y
A typical function X in dD(M;P) is of the form
A = E(q) where'g(q)ea c”(Q). (1.1.5.Eq 6a)

A typical function Z in C(M;P,1) is of the form

k
¢ =2 E.(a)p; +7(q); where &;(a),”(a) e €(Q).  (1.1.5.Eq 6b)
1=t

Let P. be the k-dimensional distribution spanned by the vector fields
{B/Bq1,...,®/aqk}. We can show as we did above that P, is a polarization of
(Myw). P, is a polarization that is canonically conjugate to the vertical
polarization P, so we have used the subscript ¢ to indicate this
relationship. (A definition of canonically conjugate polarizations is given
by definition (2.1.D3) of Chapter 2.) P, is commonly referred to as the
horizontal polarization. The leaves of P are the surfaces
{(p,q)eM: p1=constant,...,pk=oons’cant}. The polarization P, is reducible
because the space of leaves M/P, is identifiable with !Rf Let Qo = M/Ps ; we
shall refer to Q, as the effective configuration space with respect to the

polarization F,, and we use the coordinates {p1,...,pk} to coordinatize Q.

Let W& be the partial connection defined by Po and let

K
Yo =% Lo (d/0q4); then we have

=i

K
v}frc =:Z X(Z.4) 9/2q3, for all X e V(M;P.).  (1.1.5.Eq T)

A typical function in C (M;P,) is of the form

A typical function in Cm(bi;Pc,1) is of the form
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k
Co =2 E,(Pas+ ()5 Eylp), M(P) € C7(Qe). (1.1.5.Eq 8b)

Remark: (R3) We shall reserve the symbols p;s and q;s to denote cartesian

coordinates.

The following proposition shows that an arbitrary polarization of a
2k-dimensional symplectic manifold has locally the structure of the vertical
polarization of the cotangent bundle, T*Q, of a k-dimensional manifold Q

with global coordinates {q,,...,qy}.

(1.1.5.T1) Theorem [Woodhouse (1980), p81]

Let ® be a polarization of a 2k-dimensional symplectic manifold (M,w).

Then it is possible to find canonical coordinates {#"“"#n'%i"“’gk} in

some neighbourhood U of each m « M such that the leaves of & coincide

locally with the surfaces {me U: 9 =constant,...,%k=eonstant}. In other
1

words, ® is spanned locally by the vector fields {9/351,...,9/3ék}, and the

local canonical coordinates with this property are said to be adapted to .

Remark: (RY4) Let (M,w) be a 2k-dimensional symplectiec manifold, ® be a
reducible polarization of (M,w) and let {fi""’fk'%j""'%k} be a set of
local canonical coordinates adapted to ®. Then the space of leaves M/P is a
Hausdorff manifold which we shall denote by Q. Clearly Q is locally
coordinatized by the set of coordinates {%1,...,%k}. In future, the
manifold Q shall be referred to as the effective configuration space with

respect to the polarization .



Page 19

(1.1.5.D3) Definition [Woodhouse (1980), p153]

Let (B,(*,),7V) be the prequantization bundle over a symplectic
manifold (M,w) and let® be a reducible polarization of (M,w). We call a
section 4 &C%’(M) that satisfies the condition

<Z(2,= 0 for all Xe V(M;®), (1.1.5.Eq 9a)

a polarized section of B.

Remark: (R5) Suppose %5 is a polarized section (with respect to the
polarization ¢ ). Then the function (8,8%) is constant along the leaves of
the polarization (” because we have

X(6,8) = (G4,4) + (8,98 =0, for all X« V(M;®); (1.1.5.Eq 9b)
by the compatibility condition of the Hermitian structure (¢,*) and the

connection V [ef. Appendix 1.11].

(1.1.5.Eq 2) Example

Let Q ¢R be the configuration space with cartesian coordinate q, M =T*Q
be the phase space with the usual cartesian canonical coordinates (p,q) and
let w be the canonical two-form on M. Let B = M xC, (+,*) be the (natural)
Hermitian structure on B, s, be a wunit section of B and let ¥ be the
connection on B defined by < s, = -#(XJ pdg)s, for all Xe VQ(MJ. Let

(B,(+,*),¥) be the chosen prequantization bundle over (M,.).

Let P be the vertical polarization; then P is spanned by the vector
field 3/9p. A typical polarized section of B (with respect to the
polarization P) is of the form

b = W(@)s,, W) e CplQ). (1.1.5.Eq 10)

(Note that we have used the fact that szu = 0 for all X& V(M;P).)
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Let P, be the horizontal polarization; then P, is spanned by the vector
field 29/3q. Let Q. be the effective configuration space with respect to the
polarization P.. Then a typical polarized section of B (with respect to the
polarization Pe_) is of the form

A = $.(p) {exp 2pa}s,, Pe(p) € CelQe). (1.1.5.Eq 11)

(1.1.6) Half-densities

We shall split this section in two parts: in the first part we shall
study what is referred to as r-D-densities (where D is a distribution on an
arbitrary manifold), and in the second part we shall restrict ourselves to

the study of so called half-densities.

(1.1.6.D1) Definitions [Woodhouse (1980), pp.150-154]

Let D be a distribution on an arbitrary l-dimensional manifold M and
let re R.
(1) For a given point m inM a r-density on D,;, is a map V,, that assigns to
each basis {Xjl,, in D, a complex number v, {X;l., with the property that
~m (€3 X5),, = [detCly, Yoy {X3)m (1.1.6.Eq 1)
where the matrix C = (C;"j) € GL(1,R), and the summation over the repeated
index i is implied.
(2) The set of r-densities on Dypis a one-dimensional complex vector space
to be denoted by A,(Dm).
(3) A r-D-density on/ is a smooth section of the bundle
Ar(D) = U Ar(D). (1.1.6.Eq 2)
meM
In other words, a r-D-density is a map¥ which assigns an element Y,y of

A.(Dy) to each point meM.
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(1.1.6.Ex 1) Example: The relationship of r-D-densities with volume forms

Let M. be an orientable manifold of dimension 1 and let ¢ be a volume
form on M. Let D be the distribution onM given by D,, = T, M for each m eM

and let {Y;} be a field of bases for D.

Let l€!" be the r-TM-density defined by
Il (¥l = IL1E (X, .00, X)) 0y (1.1.6.Eq 3)

at each point m eM,

In general, there is no natural volume form on a orientable manifold
except in certain special cases. Here are two of the special cases:
(i) A symplectic manifold (M,w) is orientable with the Liouville volume form
€. [ecf. Appendix 1.1], so |£,1" 1s generally chosen to be the natural
r-TH-density on M.
(i1) A Riemmanian manifold Q with local coordinates {q,,...,q,} and metric
(ng) has a natural volume form E3 defined locally by

ES = g'2dq A...Adq,; 8 = det(g,j) (1.1.6.Eq 4)

[ef. Abraham and Marsden (1978), p152]. Therefore, [esir is generally

chosen to be a natural r-TQ-density.

(1.1.6.Ex 2) Example: The construction of  =(1/2)-® -densities

[ Woodhouse (1980), pp151-152 and pp157-158]

The main purpose of this section is to introduce -(1/2)-® -densities,
so using the results given in the previous example we shall ncw show how

-(1/2)-@® -densities may be constructed.
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Let ® be a reducible polarization of an arbitrary symplectic manifold
(M,w) of dimension 2k. Let Q be the effective configuration space with
respect to the polarization®, and let pr:M --4 Q be the usual projection

map.

Then for each m « M, we have
TQ = T, W€n; pr(m) = q. (1.1.6.Eq 5)

Let {X;} be a field of bases for® and let {Y;} be a field of bases for TQ;
then by equation (1.1.6.Eq 5),we can take {Xi,Yj} as a field of bases for
TM. Let m be a -(1/2)-TM-density and let p be a +(1/2)-TQ-density. Let ¥
be a function of the field {X,;} of bases for ¢ defined by

~ (X, ), = pmlxi,YJ}m el{Y“}i; pr(m) = q. (1.1.6.Eq 6)
We shall show that v is a =(1/2)-@® -density as follows. Let
C = (Cij) e GL(k,R). Let us replace {X;} by {ijxi]; then we need to
replace {Xi,Yj} in equation (1.1.6.Eq 6) by {Ciixi,Yﬁ}. Then
M€ X5, Yohve £ol¥al

ldetC! ™ Zptm (X5, Yg by Pyl¥nlq - (1.1.6.Eq 7)

1y,
Ve {C75 X451,

Therefore, v is a =(1/2)-® -density [ef. equation (1.1.6.Eq 1)].

A -(1/2)=@F -density is commonly referred to as a half-density. We
shall restrict ourselves to the study of half-densities for the rest of this

section.
(1.1.6.D2) Definitions LWoodhouse (1980), pp154-155]

Let ® be a polarization on an arbitrary symplectic manifold (M,w).
(1) Let T e dw(M;@,1) such that X, is a complete vector field, and let
{Et:M --3> M |t eR} be a one-parameter group of diffeomorphism generated by

Xé. Let {X;} be a field of bases for ®; then {F «Xj} is a field of bases
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for ® too [cf. the equation (1.1.5.Eq 2b)]. Let~ be a -(1/2)-f -density.
Then the pull-back of v (with respect to the diffeomorphism Ft) is the

-(1/2)-(F -density defined by

(Fpv ) X3} = ~v{EyX3). (1.1.6.Eq 8)
The Lie derivative of v along Xﬁ is the -(1/2)-@® -density L,KV defined by
G
= *
R = (d/dt) (Ff )[t=o (1.1.6.Eq 9)

(Note that the definition of the Lie derivative can trivially be extended to
the case where Xﬁ is incomplete.)
(2) Let v be a smooth section of A-y,(®), and let Y& V(M;@). Then we can

define a section Vy\( of A-y®) by

(Vy«r ){X1} = ¥~ {Xi1) (1.1.6.Eq 10a)
where {Xj} is any field of bases for @ satisfying
VY Xy =0 (1.1.6.Eq 10b)

[ef. definition (1.1.5.D2), part (2)]. The section ‘EZ!-( is referred to as

the covariant derivative of the section~ along Y.

Remarks: (R1) Note that the Lie derivative is only defined for a restricted
class of vector fields. The covariant derivative too is only defined for a
restricted class of vector fields.

(R2) We shall give a simple example to show that the condition given by
equation (1.1.6.Eq 10b) is necessary to ensure that VYV is a
-(1/2)-(-density. Let Q € R, M = T*Q and let w be the canonical two-form
on M. Let P be the vertical polarization of (M,w), ¥ be a smooth section of
A-ifz(P) , {X} be a field of bases for P and let Y« V(M;P). Clearly X is
of the form X =7 3/3p where Ze c“M) and L $ 0. By equation (1.1.5.Eq 5),

WYX = Y(Z)(3/pp). Thus, N{X} = |ZI"Y% ~ {a/pp}. Therefore,
YAXD) = 12172 Yelorapl) + Y(IZI™Y2 wia/apl.  (1.1.6.Eq 11)

Clearly Y(~v{X}) transforms like a -(1/2)-P-density if VY}{ = 0 because then
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we have Y(IZI''%) = 0.

(1.1.6.D3) Definition [Woodhouse (1980), p153]

Let ® be a reducible polarization of an arbitrary symplectic manifold
(Myw). Then the smooth section ~ of the bundle A-i/, (@) is said to be

covariantly constant along @ if it satisfies the condition

<=0 for all Xe& V(M;®). (1.1.6.Eq 12)
(1.1.6.Ex 3) Example: Half-densities of +the yvertical and horizontal
polarizations of the cotangent bundle of a Riemmanian manifold

Let Q be a 2k-dimensional Riemmanian manifold with global coordinates
q = {g4y...,9,} and metric (glj). Let g = det (g,_j); then the natural
volume form on Q is given  explicitly by 39. = g"2 dq A. . .Adg
[ef. equation (1.1.6.Eq 4)]. Let M= T'Q , () be the canonical two-form on M
and let (p,q) = {pyy+++yPsQq4y+-+59,} be the usual global canonical
coordinates on M. Then the Liouville volume form is given explicitly by
£, = dpyA...AdpAadg A, ..Adqe. Let P be the vertical polarization and let Py

be the horizontal polarization.

We shall now split the construction of half-densities into two parts
which we shall denote by (i) and (ii), respectively, as follows: in
part (i) we shall construct a (natural) -(1/2)-P-density that is covariantly
constant along P, and in part(ii) we shall construct a -(1/2)-P,~-density
that is covariantly constant along Pg.

(i) The space of leaves of P, M/P, 1is identifiable with Q (the actual

configuration). Let {X;} be a field of bases for P and let pr:M --3> Q

be the usual projection map.
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Then a (natural) -(1/2)-P-density ¥ is defined by

Nx3} = €T (x5,0/005) 1€41"2 (P/00ud

g4 ldpa...adp ™% {x4). (1.1.6.Eq 13)

(We have referred to~/ as natural because we constructed it wusing the

Il!Z

natural +(1/2)-TQ-density If,s on Q.)

The section+w is covariantly constant along P because

vxv{'a/ap;} = X(g'4) = 0, for all X « V(M;P) (1.1.6.Eq 14)

Let Te C”(M;P,1); then we have
g= ;E‘E; (@)py +7(a), &, 7 e C(Q); (1.1.6.Eq 15a)
xg =:F‘; [gi'a/aqi - {i. ("a‘gj/'oqi)pj - 31/pq419/3p;] (1.1.6.Eq 15b)
pr',X_Q = ilgi’b/aqi. (1.1.6.Eq 15¢)
Lgt div&g(pr*xg) be the divergence of the vector field pr,,}['; (on Q) with
respect to the volume form E':'l [ef. Abraham and Marsden (1978), p152 ].The
Lie derivative of ¥ along Xz is the section LKE( of & -y2(P) defined

LXZ’ = (1/2)divej(pr-,x€)\/

(1/2)g*12 [j'¢i 2(g'"2 £;)/2q31V (1.1.6.Eq 16)
a=1

[ef. McKenna (1982), p112; Woodhouse (1980), p158].

(ii) Let Q. be the effective configuration space with respect to the
polarization P, and let pr.:M --> Q. be the usual projection map. Then
P = {pys...spPc} are global coordinates on Q.. There is no natural volume
form on Q¢, so we choose the standard volume form (with respect to the
coordinates {p,,...,p}) defined by

€. = dpyn...ndpy. 1.1.6.Eq 17)

Let {Y;} be a field of bases for P..
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Then let v, be the -(1/2)-P,-density defined by

Ve (Y51 = 16,12 (¥§,2/0p;) 1€ 1'2 2/apa)

-2

- ldq“.ﬂ..lnko! {Yci] (101-6-&1 18)

[ef. equation (1.1.6.Eq 6)].

The section *, is covariantly constant along P, because

vx Ye{?/2q4} =X(1) = 0, for all X e V(M;P,). (1.1.6.Eq 19)

Let 'gce. C (M;P.,1); then we have

®
g = £ Eci(P1as+ N (p) vhere Eep MeeC (Qe); (1.1.6.Eq 20a)
p K
x,;t =§: [[sz (AE.3/ap3)a; + 9. /2p;3%2qq - E;2/py];  (1.1.6.Eq 20b)
PregXy = -7 E.;0/0D;. (1.1.6.Eq 20¢c)
c 1=

Let divEc(pr',_,X;-e) be the divergence of the vector field pr'“xgg (on Qe)

with respect to the volume form ¢..

The Lie derivative of -, along the Hamiltonian vector field Xg is the
(-
-(1/2)-P,-density defined by
Lxc:_’c_ = (1/2)div, (progX¢)

~(1/2)[5 (2%.3/0p3)) (1.1.6.Eq 21)

1=

[ef. Woodhouse (1980), p158].

(1.1.7) The half-density quantization scheme [ Woodhouse (1980), pp156-157]

The half-density quantization scheme provides a physically reasonable
solution to the Dirac problem. The main limitation of the scheme is that it

only allows us to quantize a restricted class of observables.
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The half-density quantization scheme consists of the following three

steps:

(HDQ1) Let ® be a reducible polarization of a 2k-dimensional symplectic
manifold (M,w) , Q be the effective configuration space with respect to the
polarization and let pr:M --> Q be the usual projection map. We first

choose a prequantization bundle (B,(*,*),7) over (M,w).

(HDQ2) A smooth section W =8~ of the bundle B x A_y;2 (#) which satisfies
% 4= 0; G v=0 for all X e V(M;6) (1.1.7.Eq 1)

is called a (P-wave function.

Let P =4v be a P-wave function, {X;} be a field of bases for  on M
and let [Yj} be a field of bases for TQ on Q. Then let (¥ ,¥) be the
1-TQ-density on Q defined by

(¥ ,{r)cl{m;}qL - (,s,s)mvm{xj}m?m{xn} I R0 SIS A SPRE ) | NN

(1:1:T-Bq 2a)

where q = pr(m).

Let HG‘ denote the space of square-integrable P-wave functions with
respect to the inner-product

<¥, T = [%ﬁ]"""@(?,?) ~ (1.1.7.Eq 2b)

[ef. Appendix 1.2 for the integration of a 1-TQ-density over Q]. We call

H@ the quantization pre-Hilbert space. The quantization Hilbert space H@ is

defined to be the completion of H(F‘

(HDQ3) Let Z « C (M;f,1); then we  shall  call pry(X,)  the

associated vector field generated by Z on Q.
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Let Ze Cm(M;(P,U be a classical observable such that the associated
vector field pr*(xé) is complete; then Z determines a self-adjoint operator
on H?given formally by the expression

‘zq_& = —i’l‘i[vxg/%-!-g,% lv - iﬁ,g(sz;v); ¥ =bv (1.1.7.Eq 3)
(The domain of gyis yet to be determined; Wan and McFarlane (1983) have
given the domain for the special case where (° is the vertical polarization P
of the cotangent bundle of a Riemmanian manifold.)

The operator i’vis called the quantization operator (corresponding to the

classical observable ().

(1.1.7T.Ex 1) Example: Quantization in the vertical and horizontal
polarizations of the cotangent bundle of a Riemmanian manifold

Let Q be a 2k-dimensional Riemmanian manifold with global coordinates
q = {q4y..,q,} and metric (Eij)- Let M = T'Q with canonical two-form w and
the usual global canonical coordinates (p,q) = {pg,++sPysQqs+-5ac}. Let
R =1§ p;day (the canonical one-form), B = M xC be the trivial line-bundle
over M, (*,°) be the usual Hermitian structure on B and let s, be a wunit

section of B. Let ¥V be the connection on B defined by szo = -#(X2Bo)s, for

all Xe Vg(M).

We shall split our presentation in two parts which we shall denote by
(i) and (ii), respectively, as follows: in part (i) we shall quantize
observables in the vertical polarization, and in part (ii) we shall quantize

observables in the horizontal polarization.

(i) The effective configuration space with respect to the vertical

polarization P is Q; let pr:M --> Q be the usual projection map.
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The quantization pre-Hilbert space Wp consists of square-integrable
sections of B x &D-1/2(P) of the form
Y = W(q)ssv; (1.1.7.Eq 4a)
where
Y(q) e ¢*(Q) and = g'/4 ldpsA. ..Adpgl™ /2 (1.1.7.Eq 4b)
[ef. equation (1.1.6.Eq 13)]. The inner-product on W is given by
<V, ¥> = [2nﬁ]"k‘25 W(q) | g"2 dq,...dq. (1.1.7.Eq 5)
The quantization Hilbert space Hp is (Ehe completion of We.
k
An observable Z in Cm(M;P,U is of the form & =J§‘Ej (q)p\l' +"?(q) where
E:J » Me c(Q). If the associated vector field pr'*(xé) is complete, then

)

is quantizable and the quantization operator é is given formally by the

expression

. K
/g -1l Y (& (a) (‘B/aq\")+(1/2)3"’23(3”7-E:l(q))/-aq\i}\P(q) +7(q) W(q) Is,v;

J=
(1.1.7.Eq 6a)
[ef. Equations (1.1.6.Eq 16) and (1.1.7.Eq 3)]. The quantization operator

Z is self-adjoint with domain

D

?7;“ {¥eH : ¥Y(q) e AC(YC,Q) where pr'*(X-g) = Y); and ‘ET&.HP}

(1.1.7.Eq 6b)
[ef. Wan and McFarlane (1983)]. Here AC(Y,:,Q) denotes the set of
absolutely continuous functions on Q with respect to the vector field Yl;:
AC(YI;,Q) is the space of functions on Q tﬁat are differentiable with respect
to ‘!.C almost everywhere.

fa

In the case where A =7)(q) the quantization operator X is the
multiplication operator
Y. Ve 7 (1.1.7.Eq 7a)
and the domain of"i- is

Dor= {¥e Hy: (¥ e Hol. (1.1.7.Eq Tb)
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(ii) Let Q, be the effective configuration space with respect to the
horizontal polarization P, and let pre :M -=> Q. be the usual projection

map.

The quantization pre-Hilbert space “P consists of square-integrable
[

sections of B x A. /,(Pe) of the form
B, = AP)IBVe (1.1.7.Eq 8a)
where
d)t(p) & Q) 4. = lexp —i-é p; q;}s, and = ldq,A...adq, =z,
) (1.1.7.Eq 8b)

The inner product on “P is given by
<

P, %> = r2mm1 2| 1d.p)i%ap,...dp.. (1.1.7.Eq 9)
= " 1 K

The quantization Hilbert space H'Pc is the completion of Hpc.
. K
An observable in C (M;P,,1) is of the form T =E.E°i(p)q"— +7.(p)
where gcj'_(p), Y.(p) € ¢ (Qe). If the associated vector field pr‘c_,(xn ) is
complete, then Z,’ is quantizable, and the corresponding
quantization operator Z:, is given formally by the expression
e <
Z. 6. = L2 1€ () (/2 p3)+(1/2)d (£.5(p))op3} o (P) + 7 () P ()] BcYes
(1.1.7.Eq 10a)
[ef.equations (1.1.6.Eq 17) and (1.1.7T.Eq 3)]. tc. is self-adjoint with
domain
" " & e _ o 2
DC.«, = {$. e HF&. $.(p) e AC(Y?;C,Qc) where Yzc- pr‘c,r(xtc) and 'Q@beﬂpc}
(1.1.7.Eq 10b)
In the case where X = ’?)c(p) the quantization operator is the multiplication
operator
%c.@c__: 17&(13).&..;&’ (1-1-7-&] 11a)

and the domain of :JE::_ is

Dy = {@Q&HPQ: "?Jp)@ceﬂ,pc}. (1.1.7.Eq 11b)

o
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1.2 THE BOHR-WILSON-SOMMERFELD CONDITIONS IN THE HALF-DENSITY

QUANTIZATION SCHEME

(1.2.1) Introduction

Historically, the Bohr-Wilson-Sommerfeld (BWS) conditions lay at the
foundation of the old quantum theory; but after the formulation of quantum
mechanics they became less important to physicists. However, they still
remain of interest 1in problems that are intractable by the usual quantum
mechanical methods; but which can be solved by the methods of Hamiltonian
mechanics. In this section we shall derive BWS-like conditions in the
framework of the half-density quantization scheme. We shall refer to these
conditions as BWS conditions too, despite of the fact that they differ in
several respects from the BWS conditions in the old quantum theory and the
(corrected) BWS conditions in quantum mechaniecs. Our presentation is
partially based on the work by Sniatycki and Toporowski (1977);
Sniatycki (1980), [ef. pp8-9, pp71-76 and pp149-156] and Woodhouse (1980),

[ef. pp185-187].

(1.2.2) Polarizations with compact leaves spanned by the Hamiltonian vector
fields generated by a complete set of commuting observables

Let q = {q1,...,qk} be a set of cartesian coordinates on ﬁ{k,
{p,q} = {p,y+eesP_+Q,4s-++5q,} be the usual cartesian canonical coordinates
on T*RX and let ¢y be the canonical two-form on T*R" Let M be an
contractible open subset of T*le; then (M,w) is a 2k-dimensional symplectic

manifold. (Herec) is taken to be a two-form on M.)



Page 32

(1.2.2.D1) Definition

Let {z;i} = {Z,s.++,C,} be a set k-observables on (M,w). Then we shall
call {L'i} a complete set of commuting classical observables if the following
three conditions are satisfied:

(CCO01) The set

Z({Z;}) = {m e M: x?_: ,...,Xé are linearly dependant} (1.2.2.Eq 1a)
K

3
has Lebesgue measure zero. Note that in the case where k = 1, we put

Z2(Z,)) = {me M: xﬁ} = 0}. (1.2.2.Eq 1b)
(CC02) Let My = M--Z({Z;}) and let (y, be the restriction of the canonical
two-form ) to M,. Let ¢, be the k-dimensional distribution on M, spanned by
the set of k linearly independent vector fields {X§1,...,X§K}. The
distribution @ is a polarization.
(CCO03) The polarization ¢, is reducible. Let Q. denote the effective

configuration space with respect to the polarization (..

Remark: (R1) Condition (CCO2) implies that
(%5, L5) = 2w(X§i.ng) =0 (1.2.2.Eq 2)
[ef. equation (1.1.2.Eq 2a)]. Hence {Z;} constitutes a commuting set of

observables with respect to the Poisson bracket.

In this section we shall be interested in a complete set of commuting
observables {Z;} with the following property: the integral curves of the
Hamiltonian vector fields Xz‘l, ,XQK are closed in M,. So in what follows
we shall assume that the complete set of commuting observables [Qi} on
(My,We) also satisfy the following two additional conditions:

(CCO4) Let R(Z;) denote the range of the observable Z3; and let

{aj} = {ay,...,a¢} be a set of values in R(Z,)x...xR(Z,). Let N({a;}) be
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the submanifold in M, defined by

A{ai}) = (m e Mz Z(m) = a4,y....,L (m) = a,}. (1.2.2.Eq 3)
Then for each {a;} e R(as)x...xR(ay), the corresponding submanifold A({aj})
is diffecmorphic to the k-torus Tk.
(The submanifold A({aj}) is a leaf of the polarization (%; therefore, ® is
sometimes referred to either as a polarization with compact leaves or, as a
polarization with toroidal leaves.)
(CC05) Let a e R(Z;) and let ();(a) be the (2k-1)-dimensional submanifold in

M, defined by

Q;(a) = me M:Li(m) = a}; (1.2.2.Eq 4)
.fli(a) is called a surface of constant value a generated by the
observable 7. Then for each a e R(Z;), the submanifold _Qi (a) is
connected.

Remarks: (R2) Let the map ¥;:R-->M, given by ty-->m = ;(t;) be the
integral curve of the Hamiltonian vector field X?gi that has originated from
the point m;, = ¥;(0). Then condition (CCO 4) implies that the curve 3; has
the topology of a circle.
(R3) Let (@ be any one-form on M, that satisfies the condition w,= dp. Then
condition (CCO 5) implies that for each i « {1,...,k}, the closed integral

é; e (1.2.2.Eq 5)
over any integral curve ”6]'_ on the subzlanifold —fzi(a) has the =same value
[ef. Arnold (1978), p.283; Guillemin and Sternberg (1977), ppl167-168]. In
other words,the integral given by equation (1.2.2.Eq 5) depends only on the
value of the observable Ki on fzi(a); so the integral can be treated as a
function of &j.
(R4) Finally, condition (CCO 5) implies that for each i e {1,...,k} and

a e R(Z;), the period of the integral curves of the Hamiltonian vector field
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XC' on which 'ﬁi = a; are the same [ef. Guillemin and Sternberg (1977),

1

pp167-168]. Therefore, we denote the period of the integral curves of XQ‘
1

on which &; = a by T;(a).

(1.2.3) The construction of action-angle variables on (M,,c0)
[ef. Arnold (1978), pp279-285; Abraham and Marsden (1980), pp397-400]

We shall now coordinatize M, by constructing action-angle variables in

six steps as follows.

<
(AAV1) Let R,=% p;dg; be a one form on M,;then we have dB, = wo. Then for
1=I
each {a;} e R(Z,)x...xR(E,), let ¥4,...,Ue be the chosen set of integral
curves on A({aj}) of the vector fields Xg ,...,X: respectively.
1 k
The action-angle variables I; are constants on the submanifold A({aj})
defined by
I; = (217§ Bo. (1.2.3.Eq 1)
1
For each i ¢ {1,...,k}, let R(Ii) be the range of the variable Ij. Let

I=(I,;...,I) and let R(I) = R(I,)x...xR(I,).

(Remarks: (R1) B should be confused with the canonical one-form on a
cotangent bundle defined in example (1.1.2.Ex 1) (of section (1.1)).

(R2) It follows from remark (R3) of the last subsection that the value of
each Iy on f\({ai}) is independent of the set of integral curves i ..., 0k
chosen. In fact for each i ¢ {1,...,k}, the action-variable I is only only
dependant on the value of the corresponding observable Z&. Similarly, each
observable ?& is only dependant on the action variable Ij, i.e. {; =zﬁﬂ1i)-
Hence each leaf of the polarization (7, is uniquely determined by the set of

action variables I, so we shall label the leaves by A(I) instead of by
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N({a;}) from now on. The Hamiltonian vector fields XT ,...,XI also span
1 Y.
the polarization ®.)
(AAV2) Let F:M_ --> ¥ be the smooth function defined by
F(plq) = (F1(p,Q),-..,Fk(p,Q)) = ,I’ (1-2-3.Eq 3)

where the point (p,q) lies on the leaf A(I) and F;(p,q) = I,.
Let (p,,q,) be any point in M, at which the (k x k)-matrix (F;(p,q)/3p;) is
non-singular and let I, = F(po,qo). Then according to the Implicit function
theorem [ef. Abraham and Marsden (1980), p.29] there are neighbourhoods
Up< R of p_, V,c®R" of q, where U, x V < Myyand W,c R(I) of I, and a
unique smooth map

P Wy x Vo--> U,: (I,q) -->p(I,q) = (p,(I,2),...,p(1,q)) (1.2.3.Eq 4a)
such that

F(p(I,q),q) = I. (1.2.3.Eq Ub)

Hence (I,q) can be considered as local coordinates on M,; more precisely,
they are coordinates on the open set

Ao =meM:m= (p(I,q),q) for all (I,q) < W_x U,}. (1.2.3.Eq 5)

(R4V3) Then fer each (1,q)= W. x V., we define the function S(I,q) on

A(L) N Ao, by
1 «
S(1,q) = Iq > pi(I,q)das; (1.2.3.Eq 6)
o 1=1
here the integration is just the usuwal integration of f(q) dq between the
limits q, and q [ef. Abraham and Marsden (1980), pp399-400;

Arnold (1978), p284].

(AAVY) On the open submanifold A, of M, we define the action variables ©; by
0; = 3S/01; (1.2.3.Eq 7)

Let © = (B4,...40,).
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(AAV5) Then (I,8) = (I,,...,1,,64,...,6,) are canonical coordinates on the
open submanifold A_,and they are referred to as action-angle variables
[ef. Arnold (1978) , p.283]. Hence the symplectic two-form i, is
i)‘:; dIin d0;, and the Hamiltonian vector fields XI1, ’XIK are respectively

9/904,...,9/20y, on the submanifold A,. In other words, the polarization G

is spanned by the vector fields 92/964,...,9/20x on A,.

(AAV6) Finally, we can coordinatize the symplectic manifold (Mo,we) by

constructing action-angle variables in the neighbourhood of each point in

M.

Remarks: (R3) Let (I,8') and (I,Q") be action-angle variables on the open
submanifolds A! and A" respectively. Let p'(I,q) and p"(I,q) be the
functions defined by the equations (1.2.3.Eq 4a) and (1.2.3.Eq 4b) on A} and
A" respectively. Suppose A'.n A% # ¢; then p'(I,q) = p"(I,q) on AL n AL.
By using the latter result it can be shown that

d0j= dei and /20 = 2/26] on Al n AL. (1.2.3.Eq 8)
Hence there exists k global one-forms on M, which we shall denote by
d9 4y...,d8¢ such that if (I,8') are action-angle coordinates on some

submanifold A! of M,, then

d8; = d8! ,...,d0, = dO} on Al. (1.2.3.Eq 9)
Similarly, we shall denote the k Hamiltonian vector fields XI‘,...,XI by
x
/964,4...,9/?0y respectively such that
3/391 = ’d/'ae;,...,@/aB'K = 'b/'aei‘ on AY (1.2.3.Eq 10)

[ef. step (AAV5) in the construction of action-angle variables]. The vector

fields 3/964,...,%9/98 span the polarization  [ef. remark(R1) of this

subsection].
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It can be shown that
SQ dej = 2ns:_j (1.2.3.Eq 11)
TI
[ef. Abraham and Marsden (1980), p399; Arnold (1978), p284].
With these results in mind, we shall introduce the following notation:
(i) From now on let (I,8) = (I,,...,I4,0,y...,6,) denote a set of
action-angle variables charts that cover M,. In this notation let
k
mc.:Z dI;n do;.
T=

(ii) We shall write formally
2

r% do; = 2w = [ de;. (1.2.3.Eq 12)
—Ji =]
(R4) Let ¥;(t;) be the integral curve of the vector field X_g_ that

i
originates at the point m; =¥;(0) and let Z:i(mio)= aj. Let Tj(aj) be the

period of the integral curve ¥;(t;) [ef. remark (R4) of the last
subsection]. Then it can be shown that

8, = [2w/T;(a;) Ity + 84, (1.2.3.Eq 13)
where 6;, is a (real) constant [ef. Berry (1981), p9].
(RY4) Let Q. be the effective configuration space with respect to the
polarization ®.. Then Qo is identifiable with R(I) [ecf. step (AAV1) for a
definition of R(I)]; therefore, I = (I4,...,I;) coordinatizes Qc. The
standard volume-form on Q. is defined by

€. = dI a...ndI. (1.2.3.Eq 14)

Let {X;} be a field of bases for (.
Then let Y, be the -(1/2)-(, -density defined by

(X3 = el X5, 9015) 1612 (0/21x)

|do,A...ade 17 § X;1 (1.2.3.Eq 15)

[ef. equations (1.1.6.Eq 7) and (1.1.6.Eq 14)].
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(1.2.4) Quantization of the complete set of commuting observables {%;} in
the polarization
[Sniatycki (1975); Sniatycki and Toporowski (1977); Sniatycki (1980),

pp71-7T6 and pp149-156; Woodhouse (1980), pp185-18T7]

In this section we shall quantize the complete set -of commuting

observables {Z;}, of (M,,w.), in the polarization ¢%.

The first step of the half-density quantization scheme is as follows.
Let B, = M, x £ be the trivial line-bundle over Mo, (*,*) be the (natural)
Hermitian structure on B, and let s, be a unit section of B,. Let cien?.and
let fe Cm(Mo); then let @ be the one-form on M, given by
K
B = Ro+2 c;d0; + df (1.2.4.Eq 1a)
=1
(where the one-form (5 was defined in (AAV1)). Clearly (» satisfies the
condition d@ =wW,. In terms of the action-angle variables (I,0) we shall
write
K
R =i§{13Ii dI;+ fi;eidei} (1.2.4.Eq 1b)
where ;3}, {59.1 e Cm(Mo). Then let V be the connection on B, defined by
1
VXSO = -#(X J f?;)so, for all X eVG,(Mg). (1.2.4.Eq 2)

Let (B,,(-,+),¥) be the chosen prequantization bundle over (M,,ws).

The next step of the half-density quantization scheme is the
construction of non-trivial G%-wave functions, if they exist. The
Gi-wave functions, if they exist, should be smooth sections of the form

V. = A.ve which satisfy the conditions:

VX Bo= s vewe 5 Vg Bes 0 (1.2.4.Eq 3a)
1, Iw
and
V;;r.-.: o— vxlﬁrﬁ 0. (1.2.4.Eq 3b)
1 133
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Let
s“(;,g) =S i(?, (integrating along %;)
= Szif"’efei’ (1.2.4.Eq 4a)
and let
A= lexp ismu;,g)} X eae X 16XD é:S_Jk(I,_Q)lso. (1.2.4.Eq 4b)

Then a formal expression for ¢ -wave functions is of the form
P = Y (D) BeoldOyn...ndey 172 W(I) e ¢(Q,)  (1.2.4.Eq 5)
[ef. remark (R5) of the last subsection]. For this expression to be
well-defined it 1is necessary that the section /Sco is single-valued. The
section ., is single-valued if the following conditions are satisfied:
(1/’ﬂ)§ B = 2ﬂn4,.....,(1/ﬁ)j 8 = 2un,; n,,...,n, € Z(the integers).
M Px (1.2.4.Eq 6)
These conditions are very similar to the BWS conditions of the o0ld quantum

theory, and when [ = Po then they are identical. Therefore, we shall call

them BWS conditions.

(Since
¥
(Vﬁ)éﬁ(é = (1/ﬁ)[§:_6i|3° +‘£“i(j§1cj de; + dar) ]
= (20/4) LI + c;]1, (1.2.4.Eq Ta)
it follows that
I; = [2a]'§ B - c3.) (1.2.4.Eq Tb)

Hence the BWS conditions are only satisfied if the action variables
Iyy+.+4I, take the values:
I,(n,) = nf = cyyeeeee,Ilng) = ndi = ey; I;j(n;) e R(IY).
(1.2.4.Eq 8)
Let n = (n4y..eyny), I = (I,(n4),...,I(ny)) and let Alnl = NI(n)). We
conclude that the formal expression of (Pc-wave functions given by
equation (1.2.4.Eq 5) is only well defined on the isolated leaves Almn] of

(Pc; these 1leaves are referred to as the BWS leaves. In other words, there
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are no non-trivial (smooth) @-wave functions defined on the entire M,; the
only (. -wave-functions that exist are not smooth, and they take the value
zero almost everywhere on M, except on the isolated BWS leaves of .
Theretore, the previous half-density quantization scheme cannot be applied
to quantize the observables Z_;,... - Z’ . If we want to quantize the complete
set of commuting observables {Z;} in the polarization ®&, we will need to

modify the half-density quantization given in section (1.1).

Here is a modified version of the half-density quantization scheme,
that will enables us to construct a non-empty Hilbert space associated with

polarization t?c_, given in five steps:

(MHDQ1) Let BDI and A-.;Z(Q) be the restriction of the bundles Bg
Ata) ALng
and Az (C) respectively to the BWS leaf Alnl. Then
Bo X DNqp(E) is a bundle on Alnl.
Atng Nin]

(MHDQ2) A smooth section ‘PE: /ga(m)\(f_(m) (where me Aln]) of the bundle

B, x A_,,,_(@,_)' that satisfies the conditions
ACn] ACnd "
V‘ai‘ae,’gb- secse = V-a,aeulqu- 0 (1.2.“.Eq 9a)
and
s n
Volag, Yo' cuven = YoloeYe = 0 (1.2.4.Eq 9b)

is called a (), -wave function on Alnl. (Here 2/064,...,2/20x are considered
to be vector fields on Alnl.)

Let 21:{‘:, be the restriction of the section $5¢o [ef. equation (1.2.4.Eq 4b)]
to the BWS leaf Al[lnl: for each m= (I(n),0)eAln], we have
A ee(m) = K. (X(n),8).

Explicitly, the @ -wave functions on Aln] are of the form

Y& = boAho(m)lde,a...ndecI™"? ; me Alnl, bye€.  (1.2.4.Eq 10)
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(MHDQ3) Let Hi be the one-dimensional Hilbert space associated with the
BWS leaf A[n] that consists of square-integrable d::-wave functions with
respect to the inner-product
<30, 2> = b, =lb,l%. (1.2.4.Eq 11)
Then
e = Be(m)1do,A...nd6 I""*, me Aln] (1.2.4.Eq 12)

is a normalized element in H;’ .
[

(MHDQ4) The quantization Hilbert space associated with the polarization @

is now defined by
n
H = e H (102.1'0 13)
& ° Rem % e
where L2 is the direct sum over all the BWS leaves Aln].

The elements of H('P are given by
c

Y = ® byTpy I byby <oo. (1.2.4.Eq 14)
T n

(MHDQ5) Let Z be an observable of (M,,wo) such that Z e C(My;®); then? is
only dependant on the action variables I [ef. equation (1.1.5.Eq 2a)], i.e.
Z=TW.

The quantization operator (corresponding to the observable Z) is postulated

to be the self-adjoint operator 7:,,. on HCP,,, given by the expression

fc?,_ = ® ¢(I(n))byOeca, (1.2.4.Eq 15a)
o ACnl
and the domain of Z,_._ is given by
Da’: {T. e Hp : 'f;c'?,_&. H&}. (1.2.4.Eq 15b)

Let R(Zf;) denote the spectrum of fe; then we have

R(?Z) = {Z(X(n)): ne Zx...xZ (k-times) and I(n) e R(I)} (1.2.4.Eq 16)
The observables belonging to the complete set of commuting observables {Z;}
are quantizable in the polarization G. because they are all elements of

(=]
C (Mg;6) [ef. remark (R1) of the last subsection].
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Remarks: (R1) The values I, (n4),...,I, (ng) are dependant on the choice of
the connection potential (3. Hence the spectrum of the operators iit,...,g;a
in Hp also depends on the choice of B [ef. McKenna and Wan (1984)].  There
appears to be no apriori rules provided by the geometric quantization scheme
for picking a particular connection potential R. However, in most of the
literature on BWS conditions in geometric quantization the connection

k
potential is chosen to be (3, =} p; daj [ef. Simms (1972); Sniatycki (1975);

1=
Sniatycki (1980), pp71-72; Woodhouse (1980), pp185-187 and pp207-209].
Arens (1977) suggests the following criterion for choosing the connection
potential i : @B should be picked so that the BWS conditions obtained by
using the modified version of half-density quantization scheme are the same
as that given by the Maslov-WKB method [ef. Arnold (1967); Berry (1978),
p26-29; Eckmann and Seneor (1976); Maslov and Fedoruk (1981), pp257-266].
(In the next section we shall study the Maslov-WKB method for a
one-dimensional Hamiltonian system of a particle in a potential well.)
McKenna and Wan (1984) have shown that for particular examples it is
possible to choose a connection potential so that the BWS conditions give
the physically correct results. To illustrate this point we shall present
two new examples shortly.

(R2) The BWS conditions given by equation (1.2.4.7a) are exact quantization
conditions in the  half-density quantization scheme, unlike the
BWS conditions given by the Maslov-WKB method which are approximate
quantization conditions Lef. section (1.3) of this chapter].

(R3) In geometric quantization there are two main quantization schemes: the
half-density quantization scheme and the half-form quantization scheme
[ef. Woodhouse (1980), pp153-164 and pp188-202]. In our presentation we

have restricted ourselves to the study of the half-density quantization

scheme for the following reasons:
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(i) The mathematical apparatus of the half-form quantization scheme is far
more complex than that used by the half-density quantization scheme.

(ii) It has been shown by McKenna and Wan (1984) that with an appropriate
choice of connection potential the so called 'corrected' BWS conditions
obtained using the half-form quantization scheme can be replicated, for many
examples, by the BWS conditions in the half-density quantization scheme.
The standard half-form quantization scheme with the connection potential
chosen to be @ozif p;dq; has been shown by McKenna and Wan (1984) to the

H
=1

produce the wrong spectra in many examples.

(1.2.4.Ex 1) The one-dimensional isotonic oscillator [Ter Haar (1964),

pp69-72; Weissmann and Jortner (1979)]

Let Q = RY = (0,00) with cartesian coordinate q, M = T"Q with canonical
two-form (> and the wusual cartesian canonical coordinates (p,q). The
Hamiltonian of an isotonic oscillator is given by

H= (1/2)p% + (a-1/q)". (1.2.4.Eq 17)
The Hamiltonian vector field XH is given by
X,, = p3/aq - (1+41/q?)(q-1/q) ?/pp. (1.2.4.Eq 18)
The set Z(H) defined by equation (1.2.2.Eq 1b) is given by
Z(H) = {(0,1)}. (1.2.4.Eq 19)
Then let M,= M--Z(H) = R x R'--{(0,1)} and let w, be the restriction of W

to M,. Let ® be the polarization of (M,,wo) spanned by the vector field

XH.
The action-angle variables (I,0) are given by

IIZ)

I=H/8"", 8= -cos~({2q*~-H-2}/{E +4E} (1.2.4.Eq 20)

[ef. appendix 1.3]. The range of I is given by R(I) = (0,00). Then the
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Hamiltonian can be written the form
H(I) = 82 1, (1.2.4.Eq 21)

The polarization @), is spanned by the vector field 2/30.

Let (B,(*,¢),V) be the prequantization bundle defined at the beginning
of this subsection, and let
B = pdq + cdé. (1.2.4.Eq 22)

be the connection potential.

Then the BWS conditions given by equation (1.2.4.Eq 6) are satisfied if
I takes the following values
I(n) = mMh-c; ne Z and nfi-c¢ & R(I) (1.2.4.Eq 23)
[ef. (1.2.4.Eq 8)]. The BWS leaves are
Alnl = {m e M: H(m) = 8"%(nh-c) and nh-c)0}. (1.2.4.Eq 24)
Let ﬁz be the quantized Hamiltonian in HGE; then the spectrum of ﬁ; is given
by
R(H,) = {8'/2(nfi-c): neZ and nfi-c30}. (1.2.4.Eq 25a)
If we put
e = =[(1/2)+(1/8) (8/0% +1)"% —(1/4) (8/52)"2 1n; (1.2.4.Eq 25b)
then R(H,) coincides with the spectrum for the Hamiltonian of the isotonic
oscillator determined by the usual Schrodinger equation

[cf. Ter Haar (1964), pp69-72].
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(1.2.4.Ex 2) Example: The two-dimensiopal Kepler problem [ Abraham and

Marsden (1980), pp619-631]

2
Let Q = R with cartesian coordinates q = (q,,q,), &0 be the canonical

"
two-form on T Q, (p,q) = (p,,P,,4,,9,) be the usval canonical coordinates on

TQ = R4 and let || | be the Euclidean norm on R% Let
M = {(p,@)e R*: q # (0,0) and H(p,q)<0} (1.2.4.Eq 26a)
where |
H(p,a) = lIpl™/2 + 1/llqll. (1.2.4.Eq 26b)

The manifold M is commonly referred to as the Kepler manifold, and the
observable H(p,q) restricted to M is called the Hamiltonian of the Kepler
problem.
The angular momentum observable on M is

L = aqp, - Q,p,. (1.2.4.Eq 27)
The Hamiltonian vector fields generated by H and L are respectively

X, = p, ?J/aq1+p23/aqz—(q1/IquP)Wap,—(q,/llqﬂ?’)a/a pz (1.2.4.Eq 28a)

H

and

X -Q,0/2 Q4+942/2 qz-pz‘d/Gm +p4 /2 p3a. (1.2.4.Eq 28b)

Clearly the set Z(H,L) defined by equation (1.2.2.Eq 1a) is empty; hence we
have M = M. Let wo be the restriction of the canonical two-form W (on T*Q)
to Mp,. The pair H,LL constitute a complete set of commuting classical
observables [cf. appendix 1.4]. Let @» be the polarization of (Mg,us)

spanned by the vector fields X,, and X_.

Let m, be some point in M such that H(m,) = E, and let ,(t,) be the
integral curve of X, that originates from m,. Let T,(E) be the period of
¥,. Similarly, let L(mo) = Lo, ¥, (t) be the integral curve of X_ that

originates at m, and let T,(L,) be the period of ,.
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The action-angle variables (I,,I,,0,,6,) are given by

I,.a (-1/2E)"2 y B4 = [2rt/T1(E)]t1+91°, (1.2.4.Eq 29a)
I,= Lo, 6 = [20/T,(Lo)1t,+8,,; (1.2.4.Eq 29b)
where ©,, and ©,, are real constants [ef. appendix 1.4]. (Strictly

speaking, ©,, and 0,,are constants depending on the choice of m,.) The range
of I, is R(I,) = (O,0) and the range of I, is R(I;) = KR. (The integral
curves of X, in M, are ellipses with eccentricity e given by e = (1+2HL2)'2
[ef. Abraham and Marsden (1980), p625]. The range of I,is determined from

the condition 0<e<1.)

Then H and L can be written in the form

H(I) = -(1/721%), L(D) = I,. (1.2.4.Eq 30)

Let (B,(*,-),¥) the chosen prequantization bundle over (M,,w.) defined
at the beginning of this subsection and let

K
P = > [pjdqj+c;dos]. (1.2.4.Eq 31)

Then the BWS conditions are satisfied if the action variables I, and I,
take the values:

I;(ng) = njfi-c ; nje?, I3(n;) € R(I3) (i = 1,2). (1.2.4.Eq 32)

Let 'I_-Iv‘., and rf:c, be the quantization operators in H@c corresponding to H
and L respectively. Then the spectra of the quantization operators ‘ITI'Q and
Ff.'c_ in HGG are respectively

R(H,) = {-[2(n4fi-¢,)1""? : ne?Z, n fi-c; € R(I,)} (1.2.4.Eq 33a)
and
R(L.) = {(ngfi-e;): ne Z, nji-c; € R(I,)}.  (1.2.4.Eq 33b)
The physically correct spectra are obtained if we put

ey = -(1/21 and ¢, = 0 (1.2.4.Eq 33c)

[ef. Arens (1977); Sommerfeld (1929), pp12-14; Sommerfeld (1930), pp67-68].
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1.3 THE MASLOV-WKB METHOD

(1.3.1) Introduction

In this section we shall outline the Maslov-WKB method for the
derivation of eigenvalues and eigenfunctions of the Hamiltonian operator (in
the position representation) for the one-dimensional Hamiltonian system of a
particle in a potential well; we shall follow the treatment given by Eckmann

and Seneor (1976).

Let Q =R with cartesian coordinate q be the configuration space of the
Hamiltonian system. Let M= T"Q = ®? with the uswal canonical cartesian

coordinates (p,q) be the phase space and letuw be the canonical two-form on

M.
Let V(q) € C”(Q) be a potential well in Q that satisfies the following
conditions:
V(q) =fﬂ A,q", A, are real constants; (1.3.1.Eq 1a)
0 < 1im V(q) = 1im V(q) = E_{o and q(3V/3q) > 0 (1.3.1.Eq 1b)
9 -0 9>

i.e., V(q) has a single minimum at q = 0.

Then let H(p,q) be the Hamiltonian of a particle in the potential well

V(q) given by

H(p,q) = (p2/2)+V(q) €1.3:1.89 2)

Let me M, H(m) = E and let ‘af,.,(t) = (p(t),q(t)) be the integral curve
of X, that originates at the point m. Here p(t) and q(t) satisfy the
following differential equations:

(dq(t)/dt) = p(t), (dp(t)/dt) = ~F rA [a(£))™'(1.3.1.5 3a)

r=1

with constant of motion



\/

Fig 1-1¢ The curves are integral
curves of XH. The dashed Lline
indlcates the Integral curve

corresponding to the energy E,_.
The regions M,, M. and M, are

depicted.
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H(p(t),q(t)) = E. (1.3.1.Eq 3b)

The integral curves of XH split M into three distinct regions:

M, = {closed integral curves of X,}--{(0,0)}, (1.3.1.Eq 4a)

M., = {open integral curves of X,: p>0}, (1.3.1.Eq U4b)
M = {open integral curves of X,: p<0} (1.3.1.Eq Ue)

[ef. McKenna and Wan (1984)]; the regions are illustrated in Fig 1-1.

In this section we shall restrict ourselves to the study of integral
curves in the region M. The range of H in the region M, is

Ro(H) = (V(0),Eo).

Let W, be the restriction of w to M,; then (M,,Wo) 1is a symplectic
manifold and H restricted to M, is a periodic Hamiltonian. Let 3% denote
the integral curve of X, that originates at the point (p = (2E)”2,q = 0) in

Mo. Let T(E) be the period of the curve ¥

Let (I,8) be the action-angle variables on M given by
I =§;5Epdq, ® = [27w/T(E)]It. (1.3.1.Eq 5)
Let R(I) denote the classical range of I. Then the periodic
Hamiltonian H on M, can be expressed as a function of I, so let

H(I) = H on M,. (1.3.1.Eq 6)

The integral curve'"6E can be parameterized by © instead of t as
follows. Let
B(0) = (p(6),q(0)) (1.3.1.Eq 7a)
where
p(8) = p(t), q(8) = q(t) with t = [T(E)/2w]e. (1.3.1.Eq 7b)
Then p(8) and q(8) satisfy the following differential equations:

3a(8)ne = [T(E)/2w]p(8), (1.3.1.Eq 8a)



Fig 1-2¢ The angles 8,, 6., B,

and B8, are deplicted.



S

Fig 1-3a: The arcs ,¥* and -3

are deplcted.



Fig 1-3b:  The arcs ¥& and <

are deplicted.
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2p(0)/20 = -[T(E)/2n]1) rA {q(8)}"" (1.3.1.Eq 8b)
=\

with constant of motion

H(p(B8),q(8)) = E. (1.3.1.Eq 8¢)

Clearly we have 9q(8)/26 = 0 when p(8) = O,and we have 3p(8)/26 = 0
when q(6) = 0 because V(q) has a single minimum at q(8) = 0. We shall
assume that 9q(©)/p® has exactly two stationary points in the range [0,2m).
Similarly, we shall assume that 9p(8)/9© has exactly two statiomary points

in the range [0,2™).

Let ©,,04,0,,8; € [0,2W) satisfy the following conditions
[ef. Fig 1-2]:
(i) 6o = 0;
(ii) 6,<B,<0,<8,<2x;
(iii)
(2q(B)/28) = 0 at 6 = 6, O2; (1.3.1.Eq 9a)
(iv)

(@p(8)/28) = 0 at © = 6, 6,. (1.3.1.Eq 9b)

€ E
Let ;8% _B% ¥F, B° be the arcs on ¥ defined by

85 = {(p,q) et & p>0}, (1.3.1.Eq 10a)
8% = {(p,q) B¢ : pgo}, (1.3.1.Eq 10b)
B = ((p,q) e¥%: >0}, (1.3.1.Eq 10c)
¥ = {(p,q) eB€: qg0} (1.3.1.Eq 10d)

respectively; the arcs are illustrated in Fig 1-3a and Fig 1-3b.

Remark

(R1) By the Implicit Function Theorem [ecf. Abraham and
Marsden (1980), p29], p can be considered a function of q on the arecs JfE

E E E
and ¥, and q can be considered a function of p on the arcs 'ﬁ+ and T-.
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(1.3.1.D1) Definition. [Abraham and Marsden (1980), p409; Woodhouse (1980),

p13]

Let (M,w) be a 2k-dimensional symplectic manifold and let Nc M be a
k-dimensional submanifold in M. N is said to be a Lagrangian submanifold in
M if at every m &« N the following condition is satisfied:

W (X,,Y,) = 0 for all X,,Y, e T.N. (1.3.1.Eq 11)

Remark: (R2) The curve 6 is an example of a Lagrangian submanifold in M.

(1.3.2) The Hamilton-Jacobi equations [Abraham and Marsden (1980), p381;

Woodhouse (1980); pp66-69]

The Hamilton-Jacobi equations are

H((2S/2q),q) = E, (here (3S/2q) replaces p in the expression for H);
(1.3.2.Eq 1a)

H(p, (-9W/3p)) = E,(here (-9W/3p) replaces q in the expression for H);
(1.3.1.Eq 1b)
where S(q) and W(p) are generating functions of the Lagrangian

submanifold 15

We shall now show how S(q) and W(p) may be constructed. Let s(q,I) and
w(p,I) be local functions on M that satisfy the following equations:
ds(q,I) = pdq-Ide, (1.3.2.Eq 2a)

dw(p,I) = -qdp-Ide. (1.3.2.Eq 2b)

Then the generating function S(q) is defined to be the restriction of s(q,I)
to TE. Similarly, the generating function W(p) is defined to be the

restriction of w(p,I) to ¥E  Note that S(q) and W(p) are only defined
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locally on the Lagrangian submanifold 1%

"2

Let mg = (p = (2E) “,q = 0). Then a set of solutions of S(q) and W(p)

are.:
55(q) =§:°pdq on 3%, m 3% ; (1.3.2.Eq 3a)
-8%(q) = 5:0 pdq on -¥€, me -T%; (1.3.2.Eq 3b)
WS (p) = - adp on B5 , m %L ; (1.3.2.Eq 3c)
WE (p) = -{"adp on ¥, ne¥s; (1.3.2.Eq 3d)

(here all the integrals are along 6%).

(1.3.3) The WKB method [Eckmann and Seneor (1976)]

The usual WKB method consists of constructing approximate solutions of
the Schrodinger equation as-f -5 0. In the case of our example, we shall
see that these approximate solutions of the bound states of the Schrodinger
equation in both the position representation and momentum representation are
not square-integrable functions. Therefore, these approximate bound state
solutions do not belong to the domain of the respective Hamiltonian

operators in the position representation and momentum representation.

The wusual WKB method for the Schrodinger equation 1in the
position representation is given as follows. The Schrodinger equation of
the one-dimensional Hamiltonian system of a particle with energy E in the
potential well V(q) is

(B-E) W(a) = 0, (1.3.3.Eq 1a)

where

H = -(6%/2) (d%dq?)+V(q) and Y(q) € L*(R).  (1.3.3.Eq 1b)

The WKB method consists of solving equation (1.3.3.Eq 1a) as H -2 0 by

putting
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E
P5(a) = £(q){exp £5(q)}. (1.3.3.Eq 2)
(Here we have use the superscript E and the subscript w to highlight the

fact that ¢ﬁa(q) is a WKB-wave function corresponding to the energy E.)

Then expanding equation (1.3.3.Eq 1a) in terms of ‘h we get
(B-E)PE (@) = 0°((1/2) (25/39)*+V(q)-E}PE ()
+ B(-1){(1/2) (2" S/a q*) £+ (2£/3 q) (25/2q) } Lexp 45}
+ higher order terms of A (1.3.3.Eq 3)
[ef. Appendix 1.5]. Now put the coefficients of H° and H equal to zero;
then we get the following pair of equations:
H((9S/2q),q) = E, (this is a Hamilton-Jacobi equation); (1.3.3.Eq 4a)
(1/2) (3% S/29%) £+(2f/pq) (28/2q) = 0. (1.3.3.Eq 4b)
So the generating functions ,S°(q) and -S®(q) are independent solutions of

S(q) [ef. equations (1.3.2.Eq 3a) and (1.3.2.Eq 3b)J.

An independent pair of solutions of the function f£(q) are

[ef. Appendix 1.5]:

+fE(q) = (constant)I“(L*E;E/'aql'”qL
= (constant)|(0q/00) 1'% (q) on 4+6;  (1.3.3.Eq 5a)
and
_£%(q) = (constant)|?-55/6q}™""?
-z

=
(constant) | (3q/20) | (q) on S¥ (1.3.3.Eq 5b)
(Here (23q/90) = [T(E)/2v]p is considered a function of q on each on the arcs

;EE'and HE [ef. remark (R1) of subsection (1.3.1)].)

Then the general WKB-approximation of the eigenfunction (corresponding
N
to the eigenvalue E) of the Hamiltonian operator H is of the form
E €
¢L4(q) = 4K 4 f (q){exp #,5%(q) }+-K _£5(q) lexp +-5%(q)}. (1.3.3.Eq 6)

where 4K and -K are constants. Since (2q/26) = 0 on the set {q: V(q) = E},
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it follows that the WKB-wave function ¢£r(q) is singular on this set.

Therefore, (Pi(q) is not an element of LZ(R).

The WKB method for the Schrodinger equation in the momentum

representation is given as follows.

In the momentum representation, the Schrodinger equation of the
one-dimensional Hamiltonian system of a particle in a potential well V(q) is
(He~E) We (p) = 0, (1.3.3.Eq Ta)

where

o
Ho = (p~/2)+7 (i1) A, (3/2p)" and Y.(p) & L";_(:RJ. (1.3.3.Eq Tb)
Y=p
(Here the subscript c is used to indicate the fact that the mathematical
objects are associated with the coordinate p which is canonically conjugate

to the coordinate q.)

The WKB method consists of solving equation (1.3.3.Eq Ta) asHi => 0 by

putting
PE0) = &) (exp £ W(p)}. (1.3.3.Eq 8)

Then expanding equation in terms of A we get
~ oo E
(H-EYP E i (p) = BL(p"/2)+{3 A(-2W/op) }-E] fh -, (p)

Y=

- $R[5 (DM A, r{l(r-1)/21@W/2p)" > @* Wpp2)g+(2W/9p) ™" (3g/2p)} 1{exp -4}

+ higher order terms in-H (1.3.3.Eq 9)

[ef. Appendix 1.5].

Now if we put the coefficients -K° and A equal to zero, then we get the
following equations:
H(p, (~9W/9p)) = E , (this is a Hamilton-Jacobi equation); (1.3.3.Eq 10a)

and



Page 54

g

(=1)"rA, (W p) " 2{[(r-1)/21(2"W/9p?)g+(dW/ap) @g/op)} = 0 (1.3.3.Eq 10b)

- ~A

So the generating functions Wi (p) and WE (p) are independent solutions

of W(p) [ef. equations (1.3.2.Eq 3e) and (1.3.2.Eq 3d)].

An independent pair of solutions of g(p) are [ef. Appendix 1.5]:

gi(p) = (constant)li‘ rA (WE /2p)"! e
= (constant)|(3p/28)! "' %*(p) on ‘ﬁE; (1.3.3.Eq 11a)
and
E =t € -1 |-\
g= (p) = (constant) |3 rA (-3WZ /ap)"™'|
= (constant)|(ap/20)1~"2 (p) on ﬁf; (1.3.3.Eq 11b)

(Here (op/0©) which is given by equation (1.3.1.Eq 8b) is considered a

function of p [ef. remark (R1) of subsection (1.3.1)].)

Then the general WKB-approximation of the eigenfunctions (corresponding
A
to the eigenvalue E) of the operator Ho is of the form
= 3 € E 5
C}Dcw(p) = K,g7 (p){exp iW 5 (p)}+ K-g= (p){exp 4W = (p)} (1.3.3.Eq 12)
[
where K, and K. are constants. The WKB-wave function d‘fw(p) has
singularities at the points belonging to {p: p =[2E-Vv(0)1'/2}. Hence

E 2
¢Lﬁﬁp) is not an element of Lt:(m).

The momentum representation and position representation are related by
the Fourier transform F: L:(fﬁ‘) --3 L?(R) which is given by
(FWe) (q) = [2nﬁ]'”25 {exp-ipq}qé(p)dp; 9£(p)ci ﬁiﬁk). (1.3.3.Eq 13)
R
Remark: (R1) It can be shown that
H, = FHF. (1.3.3.Eq 14)
So roughly speaking, we may expect (Fd)fw )(q) to be a WKB-approximation of

the eigenfunction (corresponding to the eigenvalue E) of the Hamiltonian
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~
operator H [cf. equation (1.3.3.Eq 6)]. A corresponding statement applies
to the function (F! (PE )(p) in the momentum representation. In the next

subsection, we shall pursue this line of thought further.

(1.3.4) The Maslov-WKB method [Eckmann and Seneor (1976)]

The Maslov-WKB method consists of constructing square-integrable bound
state solutions of the Schrodinger equation given by equation (1.3.3.Eq 1a),
such that these solutions belong to domain of the Hamiltonian operator %
Roughly speaking, the Maslov-WKB method may be summarized as follows. Let
@5((1) be a suitably chosen WKB-approximation (corresponding to the energy
E) of the Hamiltonian operator ?I Similarly, let (ﬁci(p) be a suitably
chosen WKB-approximation (corresponding to the energy E) of the Hamiltonian
operator ﬁc. Then one chooses fbi(q) as the approximate solution
(corresponding to the energy E) of the Schrodinger equation at the points
belonging to the set {q: V(q)<E}, and one chooses (F®E )(q) as the
approximate solution at the points belonging to the set {q: V(q) = E} (on
which P (q) is singular). The procedure is complicated by the fact that
gbfw(p) does not belong to the domain of the Fourier transform F because it
is not a square-integrable function of p, so to overcome this technicality

we need to replace d)f’w(p) with a suitably chosen '"WKB-like function' that
(]

is square-integrable.

A brief outline of the Maslov-WKB method is as follows. We shall begin
by 1listing the notation and defining the various functions we shall need to

use.
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(1.3.4.ND 1) Notation and Definitions

(ND 1.1) From now on all functions of the angle variable © will be

considered to be functions on the integral curve '6E and not functions on M,.

(ND 1.2) For each positive integer j, let

D] = [-2m-(21-8,),2§1+0,]. (1.3.4.Eq 1)
(ND 1.3) Let ¥(0) be a function on B&; then we define the operation ™ 4 by
(PW(q@) =2 W) if q e {q: V(q)<E}
GEGJ
que)=q
= 0 otherwise. (1.3.4.Eq 2)
(ND 1.4) Similarly, we define the operation ' '®J by
() (p) =¥ W(e) if p elp: pi[2E-V(0)1}
BG:Q»J
P =P
= 0 otherwise. (1.3.4.Eq 3)

(ND 1.5) For each positive integer k, let A and .A, be a pair of real
E
constants. Then let J(©) be a function on ¥ defined by
J(0) = +A for © & (2kn-(2n-8;),2kn+6, ]

-Ax for © & (2ku+6,,2kv+03]. (1.3.4.Eq 4a)

Similarly, for each positive integer k', let B;. and B, be a pair of real
e
constants. Then let J.(8) be a function on ¥ defined by
Jo(8) = BY, for 0 & (2k'r,2k'n+62]

K

Bx for 0 e (2k'w+0,,2k'w+2w]. (1.3.4.Eq 4b)

(ND 1.6) Let ()5(9) and Qﬁ&(e) be the two WKB-like functions on ¥ defined by
d)(e) = 1(0q/00)1™""? {exp -i—jep(e)[‘aq(e)/ae]d@)}{exp iJ(e)} (1.3.4.Eq 5a)
o)
and
1-\z H
?2._(9)= i (@p/a0) | {exp —é:'j q(e)lap(B)/20]d0}{exp ida(B)}. (1.3.4.Eq 5b)
o]

respectively.
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(Remark: (R1) Note that '(_ﬁ'i(q) is a WKB-wave function corresponding to the
energy E, for each positive integer j. Similarly, (5;"'\1 )(p) is a

WKB-wave function corresponding to the energy E, for each positive integer

J)

(ND 1.7) Let

N = {erR :dke&e Z with either 6 = 91+2kﬁ or & = Ga+2kﬂ}. (1.3.4.Eq 6a)

Then T7 is the set of singularities of the function ¢(9).

Let

M, = e :JkeZ with either 6 = 2kiror 6 = 0,+2kn}. (1.3.4.Eq 6b)

Then T, is the set of singularities of the function ¢(6).

(ND 1.8) Let
T = {q: V(q) = E}. (1.3.4.Eq Ta)
ThenTT' is the set of singularities of the WKB-wave function $~j(q) where j

is an arbitrary positive integer. Let

= {p: p* = [2E-V(0)1}. (1.3.4.Eq 7b)
Then r’ﬁ-’;‘" is the set of singularities of the WKB-wave function (EC'J ) (p)

where j is an arbitrary positive integer.

(ND 1.9) Let e(8) and e,(®) be two smooth real-valued functions on 'l‘iE that
satisfy the following three conditions:
(1) e(8)+en(8) = 1 for all @ «l(R;
(ii) For all @e(Rand k ¢ Z, we have
e(8) = e(B+2kw) and e, () = ec(9+2krr) (periodic conditions). _
(iii) e(®) = 0 in the neighbourhood of the points belonging to the
set Tr. Similarly, eo_(B) = 0 in the neighbourhood of points

belonging to the set Ti‘e 4
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Remark: (R2) Clearly the functions ¢(8)e(8) and ¢c(9)ee_(9) are free of
singularities. Hence it follows that for each positive integer j, the
functions (Eﬁ?\i )(g) and ((ﬂrlo_e:_"'l.i )(p) are singularity-free and have compact
support. We shall wuse the following theorem to show the link between the

functions (Pe ') (a) and (§ ertd)(p).

(1.3.4.T1) Theorem [Eckmann and Seneor (1976)]

For each q ¢ {q:4 p such that (p,q)e'ﬁe} and positive integer j, we

have
.
(Fe, ) (a) "2 b (8)e, (0)+0¢H) (1.3.4.Eq 8a)
q(e)=q

if J(©) and Jo(0) satisfy the following conditions:

JJG)-—J(G) = -T/4(mod 27) for O 6*2:22(21(11,2kn+91);

J¢(0)-3(0) = +Wk(mod 2m) for 0 & U  (2km+84,2kn+6,);
J(0)-d(6) = -m/U4(mod 2u) for 6 & \kje&(2kn+ez,2kn+93);
Je(0)-J(8) = +WH4(mod 2m) for 6 & U (2kn+eb,2kﬂ+2‘n);

heZ
(1.3.4.Eq 8b)

Proof. See Appendix 1.6.JH
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(1.3.4.C1) Corollary

If we put
J(8) = 4Ay = ~kmifor © & (2kn-(2n-03),2kn+641],
J(B) = ~A = -kn-T/2 for 6 € (2kn+64,2k +64],
Jo(8) = Bl = -k%7-T/4 for 6 ¢ (2k';,2k'm+6,],
Je(8) = By = -k'n-31/4 for 8& (2k'm+8,,2k'y+2n];

(1.3.4.Eq 9a)

then for each q & {q: V(q)<E} and positive integer j, we have:

(Fec®U)(a) = P(0)eq(0)+06H) (1.3.4.Eq 9b)
Qc’:bd
q)=q
and
(Ff % ) (@+(FeN)(@) = (PY)(Q)+0()  (1.3.4.Eq 9o)
Proof. The proof follows from Theorem (1.3.4.T1).H
Remarks: (R3) The functions J(6) and J,(6) are referred to as

Maslov indices by Eckmann and Seneor (1976) if they satisfy the conditions
given by equation (1.3.4.Eq 8b). Therefore, the functions J(©) and J.(8)
defined by equation (1.3.4.Eq 9a) are Maslov indices, so from now on we
shall assume that J(©) and J.(8) are given by equation (1.3.4.Eq 9a).
(R4) Note that above theorem and its corollary does not deal with the
! vrrcegry | . [ | . *
behaviour of the functions (FgSce‘._"'J )(q) and {(Fgﬂe.ebcld )(q)+($eJ)(q)} at
the points belonging to the setrhT_l.'_'. However, in the neighbourhood of points
belonging to the set? we do have the following results:
(i) (FCE_L'J )(q) is finite because F is a wunitary map, and
— e '
(tﬁ‘:’e‘:L " )(p) is a bounded and has compact support [ef. definition
of e, in (ND 1.9)1];

(11) (Pe™y )(q) = 0 [cf.definition of e in (ND 1.9)1.
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(iii) It follows from (i) and (ii) that

(Ffentid ) (@+(Fe¥ ) (a) = (FFa®i)(a) at qe T

With the above results in mind, we shall now define the Maslov-WKB
wave-function (corresponding to the energy E) of the Schrodinger equation

given by equation (1.3.4.Eq 1a) as follows.

(1.3.4.D2) Definition [Eckmann and Seneor (1976)]

Let
e — r 1
® (q) = 1lim {[1/51[(Fqi,_eg°ra)(q)+(¢>ej\l )(q)1}. (1.3.4.Eq 10)
J>ao
We shall refer to $°(q) as the Maslov-WKB wave function (corresponding to
the energy E) of the Schrodinger equation. (Here the Schrodinger equation

referred to is given by equation (1.3.4.Eq 1a) and E € (V(0),Ep).)

(1.3.4.T2) Theorem [Eckmann and Seneor (1976)]
(1) If

[21‘r]'1§ gdq * (n+1/2), for all n eZ7, (1.3.4.Eq 11)
then the Maslov-WKB wave f‘t?nction (corresponding to the energy E) is the
zero-function; i.e. @E = 0 everywhere on the configuration space Q which
is®. Otherwise, @E(q) is a non-trivial function.
(ii) The Maslov-WKB wave function (corresponding to the energy E) satisfies

the following condition

I (B-E) & (q) ) = ord). (1.3.4.Eq 12)
Here |! |l is the norm in L>(R) given by
Q) i =5 W(a) 1%da; ¥(@) e 12(®). (1.3.4.Eq 13)
IR

(1ii) In the limit as A --30, the Maslov-WKB wave function $=(q) is

square-integrable.
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Proof.

The proof of assertion (i) is given in Appendix 1.7 and the proof of
assertion (ii) is given in Appendix 1.8. Assertion (iii) has been proved by

Eckmann and Seneor (1976).

Remarks: (R5) According to assertion (i) of the last theorenm, the
Maslov-WKB wave function @E(q) is non-trivial only if the following
condition is satisfied:

[2w]™" Epdq = (n+1/2)}H, for some integer n. (1.3.4.Eq 14)
We shall refer to theséuconditions as the ﬁaslov-WKB conditions. A critical
comparison of the BWS conditions (in the half-density quantization scheme

and the Maslov-WKB conditions will be made in Chapter 3.

Hence according to the Maslov-WKB conditions the allowed values of the
action variable I are:
I(n) = (n+1/2)h, where ne Z and I(n)e R(I). (1.3.4.Eq 15)
Therefore, the allowed values of H are:
E(n) = H(I(n)), where E(n) € (V(0),E,). (1.3.4.Eq 16)
We shall refer to E(n) as the approximate eigenvalues of the Hamiltonian

A
operator H (predicted by the Maslov-WKB conditions).

(R6) It follows from assertions (ii) and (iii) of the last theorem that for

each E(n) & (V(0),E,), the Maslov-WKB wave function corresponding to the
AN

energy E(n) is an approximate eigenfunction of the Hamiltonian operator H.

Let éﬁh(q) denote the Maslov-WKB wave function corresponding to the energy

E(n).
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APPENDIX 1.1

Notation and definitions

(ND1) Notation [Woodhouse (1980), pp288-289]

We shall assume that the term manifold refers to a smooth real
manifold.
Let M be an arbitrary manifold and let U be an open set of M. Then:
(i) c®™(M) (Cg’(M)) is the space of smooth, real (complex)-valued functions on
M;
(ii) V(M) (Vq(M)) is the space of smooth, real (complex) vector fields on M.

(c®(v), C:_‘(U), V(U) and Vg (U) are the corresponding spaces on U.)

(ND2) Definitions and Theorem [Woodhouse (1980), p1]

(ND2.1) A symplectic manifold is a pair (M,w) in which

(1) M is a manifold;

(ii) w is a closed,non-degenerate two-form defined everywhere on M:
(a) dw= 0 on M, and
(b) the one form XJw, where X e V(M), is everywhere zero on M if and
only if X = 0.

(The two-form &) is called the symplectic two-form.)

(Remark: (R1) Every symplectic manifold is even-dimensional [ef. Abraham

and Marsden (1980), p165].)
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(ND2.2) Darboux's theorem [Abraham and Marsden (1980), pl175;

Woodhouse (1980), pT7]

Let (M,w) be a 2k-dimensional symplectic manifold and let m M. Then
there 1is a neighbourhood U of m and coordinates [é%’...’fk'%l"..’iK] on U
such that W ?{?i?“d%1'

The coordinates {f%""’ﬁk'%f""’%k} are called 1local canonical

coordinates.

(ND3) Definitions

(ND3.1) A volume-form on a k-dimensional manifold M is a nowhere-zero k-form

on M [ef. Abraham and Marsden (1980), p123].

(ND3.2) A manifold M is said to be orientable if there exists a volume-form

on M [ef. Abraham and Marsden (1980), p123].

(ND3.3) A 2k-dimensional symplectic manifold (M,wW) is orientable and it
carries a natural volume-form € , which is given by
o= (FDREVIZ Wiy

[ef. Woodhouse (1980), p3]. £,, is called the Liouville volume-form.

In terms of local canonical coordinates b@,,...,f%,%,,...,%k} on a
neighbourhood of U of a point m ¢ M, we have

T =d#“h.mdﬁ¢d%;.”adik
[ef. Woodhouse (1980), p114].
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(ND4) Definitions and notation [Campbell (1983); Woodhouse (1980), p294]

(ND4.1) A complex line-bundle B over a manifold M (called the base space) is
defined to consist of:
(1) A manifold B (called the total space);
(1i) A smooth map w:B --->M (called the projection map) such that for each
meM B,=mw"'(m) is a vector space over € of dimension one (B,, is
called the fibre over m);
(iii) For each me M, there exists a neighbourhood U of m and a
diffeomorphism

¢ U x€--> w'(V)
with‘ﬁoﬁ(m‘,z) =m' for all m e« Uand z e .

(The pair (U,4) is called a local trivialization for B.)

(Remark: (R2) A complex line-bundle is often called line-bundle for short.)

(ND4.2) Let B be a line-bundle over an arbitrary manifold M and let U be an
open subset of M.

(1) A map s: U--> B such that M(s(m)) = m for every m eU is called a
section over U or simply a local section. (In the case where U = M, s is
simply referred to as a section of B.)

(i1) Let %(H) be the set of all sections (over M).

(i1i) Let C:(M) be the set of all smooth sections over M.

(Similarly , let T’B(U) and C:(U} be the corresponding sets on U.)

(Remarks: (R3) Let B be a line-bundle over an arbitrary manifold M and let
(U:'j‘) be a 1local trivialization for B. Then amy section se C';(U) can be

written in the form

s(m) = £(m) P(m,z2)
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o
where m e U, f(m) € Ce(U) and z is a non-zero (complex) constant.

O
(R4) It follows from remark (R3) that CB(M) is empty unless a local

trivialization (M,p) exists.

1]

(R5) The simplest example of a line-bundle is the trivial bundle B = M x@.
In this case, each point in B is given by the pair (m,z) where m ¢ M and
ze€ and the projection map w:B --3> M is given by W(m,z) = m. The set
C;(M) is not empty because one can choose as a local trivialization (M,)
where

¢:MxC -->B : m x z --3 (m,2).
Then any s e C;;{l-l) is given by

s(m) = f(m)gf)(m,z) = (m,zf(m))

whereme M, f ¢ C:(M) and z is non-zero (complex) constant.

(ND5)Definitions [Simms and Woodhouse (1976), p25; Woodhouse (1980), p295]

(ND5.1) A Hermitian structure (°,¢) on a line-bundle B (over an arbitrary

manifold M) is inner-product (°,*),., in each fibre B,, m e M, with the

following property: for every s, t ef"E(H), the function defined by
(syt):M==> € : m -->» (s(m),t(m)),,

is smooth.

(ND5.2) Let B be a line-bundle over M with Hermitian structure (-+,*). A
section s e C:(H) that satisfies the condition (s,,8,) = 1 everywhere on M
is called a unit section. (Similarly, a unit section over UC M can be

defined.)
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(Remark: (R6) The trivial bundle B = M x@ has a natural Hermitian
structure given by

((m,2'),(m,2z")) = z'z"; (m,z'), (m,2") e B,;
[ef. Simms and Woodhouse (1976), p26]. A unit section of B is given by

Se(m) = (m,f(m)); f(m) C‘;_’(M), If(m)| = 1 everywhere on M.)

(ND6) Definitions LCampbell (1983); Simms and Woodhouse (1976), pp25-26,

p31; Woodhouse (1980), pp294-297]

Let B be a line-bundle over a manifold M.

(ND6.1) A connection ¥ is a map that assigns to each X& Vg(M) an operator
7, on COBD(M) such that:

(1) ‘7¢x+9v ={<,+9qVy;

(11) Yy (fs) = X(f)s + £Vs;

(111) Ty (s+t) = Tys+Uyt;

oo

for each s, t & CFE(M), f, ge C (M) and X, Ye Va:(H). (Vx is called the

covariant derivative along X.)

Let B be a line-bundle over M with connection V.
oD
(ND6.2) A section s e Cg(M) is said to be covariantly constant along the

vector field X € Vg(M) ifVys = 0 everywhere on M.

(ND6.3) The curvature two-form of the connection is defined to be the
complex two-form on M determined by

curv(B,Y)(X,Y)s = (1/2) ([ ,Vy ]'vcx.ﬂ)s
where X, Ye Vg(M), se ["B(M) and [%, %] :V‘(V,,s) - Vy(qxf") is the

commutator of 'Ux and Vy.
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(ND6.4) Let B be a line bundle over M with Hermitian structure (*,+) and
connection V. Then the Hermitian structure and connection are said to be
compatible if

X(s,t) = (sz,t)-l-(s,v“t)

for every X & Vq(M) and for every s, t € c™(M).

The line-bundle B with Hermitian structure (¢*,+) and connection < 1is
called a Hermitian 1line-bundle with connection if the Hermitian structure
and connection are compatible. We shall denote a Hermitian line-bundle with

connection by the triple (B,(*,*),v).

(Remark: (R7) Let B = M x@€ be a trivial line-bundle over M with (natural)
Hermitian structure (*,*) [cf. remark (6)] and connection '/. Let s, be a
unit section of B [cf. remark (R6)]. Then it follows from the definition of
the connection ¥ that for each Xe VG(M), there exists g(m) & Cm(M) such
that V¢ s = g(m)s,. The function g(m) can be rewritten in the form -i(X1g)
where EJ is a complex one-form on M. Therefore, it is usual to define the
connection on B by
Vx 8o = -#(X4B)s,; for all Xe Vg(M).

The one-form @ is called the connection potential [ef. Woodhouse (1980),

Tt can be shown that
curv(B,V) = dp/h

[ef. Woodhouse (1980), 297].)
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(ND7) Definitions,notation and theorem [cf. Woodhouse (1980), p290-291]

(ND7.1) A (1-dimensional) real distribution on a manifold M is a map D that
assigns to each me M a subspace D, of the tangent space at m, T_,M, such
that

(i) 1 = dim Dy for all m;

(ii) In some neighbourhood U' of m' it is possible to find 1 smooth vector

fields that span D., at each m e U'.

(NDT7.2) Let
V(M;D) = {X &V(M): Xe D, for all m e M}.

The vector fields in V(M;D) are said to be tangent to D.

(ND7.3) A connected submanifold N« M is called an integral surface of a

real distribution D if TMJf= D,,, at every melN.

We shall assume that M is a k-dimensional manifold.
(ND7.4) Let X, Y € V(M); then the Lie bracket of X and Y is defined to be
the unique vector field [X,Y] « V(M) determined by
[X,YIf = X(Y(£))-Y(X(£)), for all fe C (M).
Let U be an open subset of M with coordinates (x,,...,%.), and let
X ='1f‘:l a,(?/@x;) and let Y =.:£=. b; (’b/axJ') on U; (here aj,..ag;bqy...,bg are

smooth functions on U). Then on U, we have

w Kk
[X,Y]1 =2 %  {aj(3abj/ox;)-bs(@aj/ax;)}(@/ax}).
3“1 1=1

(ND7.5) A real distribution is said to be involutive if [X,Y] & V(M;D) for

all X, Y& V(M;D).

(ND7.6) A (l-dimensional) real distribution D on M is said to be integrable

if it is possible to find local coordinates (x,,...,X¢) in some
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neighbourhood U of each point m €« M such that surfaces
{me U: x, = constant,...,x,_ = constant}
1+1 K
are integral surfaces of D. (In other words, ever point of M lies on an

integral surface of the distribution D).

(ND7.7) Frobenius Theorem: A real distribution D is integrable if and only

if it is involutive.

(ND7.8) The maximal integral surfaces of an integrable distribution are

called leaves of the distribution.

(ND7.9) The space of leaves of an integrable real distribution D on M is

denoted by M/D.

(ND7.10) An integrable distribution D on M is said to be reducible if M/D is
a Hausdorff manifold with the projection map pr:M --» M/D being a smooth

map.



Page T0

APPENDIX 1.2

Integration of one-densities

Let Q be a k-dimensional manifold and let P be a one-TQ-density
[ef. definition (1.1.6.D1)]. Let (gqy...,q,) be a set of coordinates on an
open set U of Q. Then the integral of']o over U is defined by

ju g = $UP{"’/BQi}dq1 . ..dqy

[ef. Loomis and Sternberg (1968), p409; Woodhouse (1980), pi152].

Remarks: (R1) Suppose (yq,...,¥¢) is also a set of coordinates on U; then
SU P Ay;ldy, .. .dy, =SU P{‘o/'aqj}dqp..dqx

because

P{a/an} = 1Qya/2ag) ! {?/3y;} (by definition of one-TQ-density),
and

dg,...dag = |(@ax/ayg)! dy,...dy,.

Thus the integrallgup is independent of the choice of coordinates.
(R2) If U is not covered by a single coordinate chart, then the integral

is built up using a partition of unity.
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APPENDIX 1.3

The one-dimensional isotonic oscillator

Here is a list of results we shall use later:

j[a+by+cy1]"’2 dy = ~(=1/¢)"2sin™" (2cy+b/Lb*-4acl2) [e>0, b -Uac>0];

(A1.3.Eq 1)
sin"'A-sin'B = -cos~1([1-4%21"% [1-B%]"? +4B) [A<B] ; (A1.3.Eq 2)
and
2n w
2 2
| [sin’e/(A+Beoso) a0 = 25 [sin6/A+Bcosd]de

(o] (=]

= (2wA/B*)[1-{1-(B%*/A%)}"% ] (A1.3.Eq 3)

[ef. Gradshteyn and Ryhzik (1980), p81, p49 and p379].

Let Q = RY = (0,00) with cartesian coordinate q, M = T"Q = R x RY with
the usual cartesian canonical coordinates (p,q), and let w be the canonical
two-form on M. The Hamiltonian of the one-dimensional isotonic oscillator
is given by

H = (p%/2)+(q-1/q)?
The Hamiltonian vector field Xy, is given by
X = pP/Aq)-(1+1/92)(g-1/q) @A p)
Then we have Z(H) = {(0,1)} and Mg = M --Z(H) = Rx R'-={(0,1)}.  Let
'6E(t) = (p(t),q(t)) be the integral curve of X, that originates at the point
(Pg1Qq) = (0,{[E+2+(E2+1IE)”2 172}''%). Here p(t) and q(t) are solutions of
the following differential equations:

dq(t)/dt = p(t) = 2%Z [E+2-q%-1/q2]"%* (A1.3.Eq 4a)

dp(t)/dt = -[1+(1/q(t))%]1[q(t)-1/q(t)] (A1.3.Eq 4b)
with constant of motion

H(p(t),q(t)) = E. (A1.3.Eq 4e)
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We shall split our presentation into two parts which we shall denote by
(i) and (ii), respectively, as follows: in part (i) we shall solve for p(t)
and q(t), and in part (ii) we shall construct action-angle variables on

(Mg, Wo) .

(i) Integrating equation (A1.3.Eq 4a) we get
q -
t s (1/2) gq [E+2_q2_( 1/q)2] H'qu
o

Put q% =y, q_ = y, and dg = dy/2y"“% ; then we get

o+
n

Y
(178)2{ [(E+2)y-y2-117""2 ay

(1/8)"2 [-sin~? ({-2y+(E+2) }/{E%+4E} "% ) ]

[by equation (A1.3.Eq 1)]

(1/8)""% [-sin~1({-2q%+(E+2)}/{E*+4E}"'2 )4sin~1(-1)]

-(1/8)% cos™' ({2q*-E-2}/{E%+UE} 2 )

[by equation (A1.3.Eq 2)]
Thus
a(t) = (172)[(E%UE) "2 cos(-8"2 t)+E+2]"2
and

p(t) = dq(t)/dt = [{E%UE}/ {2(E*+4E)"? cos(-8"2 t)+2(E+2)}] "% sin(-8"2 ¢).

(ii) Clearly the period of T-(t) is T(E) = 2mw/8Y% = T/2Y2, The
action-angle variables on (Mo,We) are given by

I-= [2u]"§ _pda, © = 2nt/T(E).
[/}
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Explicitly,we have

0 = -cos"({2q7'—E-2]/{E2+1IE}"" )

and

[
n

o T®
[2n] L p(t)dq(t)
= [2m™ j:‘"[w%uz}/{z(z’«..un)" 2 cos(-8'"% t)+2(E+2)} Jsin(-8"2 t) dt

[2“]‘451" [{E*+UE}/{2(E2 +4E)"2 c0s0+2(E+2)} ]sin?® (dt/de)de

E/8"%2  (by equation (A1.3.Eq 3) and (dt/de) = (1/8)"2).



Page T4

APPENDIX 1.4

The two-dimensional Kepler problem [ Abraham and Marsden (1980), pp622-625]

Here are two integrals that we shall use later
[ef.Pierce (1929), pp41-42]:
j[(A+Bcos x)/(C+Dcos x)% Jdx
= [(BC-AD)/(C?*-D?)]lsin x/{C+Dcos x}] + [{AC-BD}/{CZ—DZ}]J- {C+Deos x]™" dx
(A1.4.Eq 1a)
and
S [C+Deos x1 Tdx = [2/(c*~D")"? ] tan-"([(c*~D?)"2 tan(x/2)/(C+D)1)

(where -m<x<m). (A1.4.Eq 1b)

We have:

Q =ﬂa2 with cartesian coordinates q = (q,,q;), TQ = R? with usual canonical
cartesian coordinates (p,q) = (p,,P,,94,4;), [-il is the Euclidean norm in
R4 H(p,q) = (lez/2)+(1/HqH) (the Hamiltonian of the Kepler problem),

L(p,q) = (q,p1~q1p1) (the angular momentum observable),

A
Mo = M= {(p,a)«®% q (0,0) and H(p,q)<0}, Wo= 2 dpjadaj, and
X, = 4 (2/0a0)4+D, (3/0a2)-(ay/hal®) 0/ by )=(ay/hali®) @ /0p),

X = -q,(/294)+q,(3/0a3)-p, (/3 py )+p, @/ p2)

L is a constant of motion of the Hamiltonian system because
{H,L} = 2uJ(XH,XL) & 0.
Let ¢ be the polarization of (Mo,Ws) spanned by the vector fields XH and

X Let m, be a some point in M, such that H(m,) = E and L(m,) = L,. Let

Le
3}(t1) be the integral curve of X‘*that originates at the point mge My, and

let ¥,(t,) be the integral curve of X, that originates at m,. Let T,(E) and
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T,(L,) be the period of ¥, and U, respectively. Let (I,,I,,6,,02) be
action-angle variables on (M,,Wws) given by
I,= [211]“{,:31 Ro, B,= [2W/T,(E)] + 845,
-1
I,= [2n] §Fz Bo s O3z [2W/T,(L)] + 610,

2
where B, =3 p;da,, and 0,, and 0,, are real constants.
1=

We shall split our this presentation into the two parts (i) and (ii),
respectively, as follows: in part (i) we shall evaluate the action variable
I,, and in part (ii) we shall evaluate the action variable I,. (We shall
not evaluate the angle-variables explicitly because it is tedious and messy,

and we do not need the explicit expressions.)

(i) For the sake of brevity, we shall replace t, by t in what follows. Let
T,(t) = (p(t),q(t)). Here p(t) and q(t) are solutions of differential

equations:

(dgj(t)/dt)= p;(t), (dpj(t)/dt) = -[qz(t)/Hq(tIN3®] ; (1 =1, 2)
(A1.4.Eq 2a)
with constants of motion
H(p(t),q(t)) = E, L(p(t),q(t)) = L,. (A1.4.Eq 2b)
It has been shown by Abraham and Marsden (1980) [cf. ppb24-625] that the
solutions for qq(t) and q,(t) are given by
a,(t) = r(x(t))eosor(t), q,(t) = r(x(t))sin «(t) (A1.4.Eq 3a)
here ®{(t) is a solution of the differential equation
(d%/dt) = Lo/[r(x(t))T% (A1.4.Eq 3b)
where r((t)) is given by
r(X(t)) = [LZ /{1+Kcos@-N)}1; K= (1+2E2)Y?, A 1s a constant.

(A1.4.Eq 3ec)

(Strictly speaking A is a constant dependant on mg.)
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Here is a 1ist of a few more results that we shall use later:

p,(t) = (dg,(t)/dt) = -rsin« +(dr/dx)cosu, (A1.Y4.Eq Ya)

p,(t) = (dq,(t)/dt)

recos X +(dr/do)sin «, (A1.4.Eq 4b)

(1/r)(dr/dw) = -[{Ksin(x=-A)}/{1+Kcos(x-A)}] (A1.4.Eq le)

The action variable I, can now be evaluated as follows. (We shall

choose the domain of integration with respect to (&-A) to be (-ﬂ,ﬂ))

Then
L= (20" (5 p, () {das(x)/dt Jde
L %€ 1= L &

m

= (2m)

1
[3 (dqi/dx)? (de/dt) Id(k-A) (by equation (A1.4.Eq 2a))
1=

A
= (207§ [ir’+(dr/d0)” JHLo/r?) Jd(x-1)
(by equations (A1.4.Eq 3b), (A1.4.Eq 4a) and (A1.4.Eq Ub))

= 207 L, (7 [14(1/0) (dr/de)? 1a@-A)
-n

= (211)"1,0_{_: [{1+K"+2Kcos(-A)}/ {1+Kcos(x-A) }2 ] (X-2)
(by equation (A1.4.Eq l4c))
= (207" ([L,R/(1-K) JLstnx/ (1+eosx) 1T} + (21" Lof [1+Keosx] " dx
' (by equation (A1.4.Eq 1a), when &=A = x))
= (2m)™! Ll2/(1-k1)"2 }tan~1{(1-K2)"? tan(x/Z)/(1+K)}]j;
(by equation (A1.4.Eq 1b))

s (=282,

(ii) Let'ﬁl(tl) = (p(t;),q(t;)). For the sake of brevity, we shall write t
for t,. Then p(t) and q(t) are solutions of the following differential

equations:

(dg,(t)/dt) = -q,(t), (dq,(t)/dt) = q,(t), (A1.4.Eq 5a)

(dp,(t)/dt) p,(t), (A1.4.Eq 5b)

-p,(t), (dp,(t)/dt)
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L(p(t),q(t)) = Ly (A1.4.Eq 5¢)

The differential equations can be rewritten in the form

(d%q,(t)/dt?) = -q,(t) ,(d%p,(t)/dt?) = -p,(t).

Let my = (P4, 1P,,1946192,) 3 then

q,(t) = g, cost-q,.sint,
a,(t) = gyocost+q,sint,
p4(t) = p, cost-p,,sint,

p,(t) = p,,cost+py,sint,

Theretrore, the period of ¥,(t) is T,(L,) = 2m.

The action variable I can now be evaluated as follows. Then

I,

qpln 2 ' '
[2r] [2 p;(t)(dg;(t)/dt)]ldt

o 1=
an

(201" § " [p4(£)an(t)-p,y(t)a,(t)]dt  [by equation (A1.4.Eq 5a)]

PRI
[2w]~! g L.dt
(-1

Lo.

[by equation (A1.4.Eq 5c¢)]
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APPENDIX 1.5

The WKB solutions of the Schrodinger «equations in the |position
representation and momentum representation

(A1.5.1) Certain formulas from differential calculus [Gradshetyn and
Ryzhik (1980), p19]

(1) Leibnitz rule for the r-derivative of a product of two functions

Let u(p) and v(p) be two r-times-differentiable functions of p. Then
(d"(uv)/dp”) = u(d"v/dp")+"C, (du/dp)(d™" v/dp"' )+....
+"C_(d"" uw/dp"' )(dv/dp)+"C,(d"u/dp")v  (A1.5.Eq 1)

where "Cy = [r1/k!(r-kK)1].
(1i) the k-th derivative of a composite function

Let f(p) = F(y) and let y = G(p), then the k-th derivative of the
composite function f(p) is given by
B E(p)/ap®) = T tk1/(albl.. e} EA y) y /11 Ty /211" Ly © /e 1)
(A1.5.Eq 2)
where y' = (3"y/2p"), and the symbol 2 indicates the summation over all
solutions in positive integers of the following equations:

a+b+...+c = J and a+2b+...+tc = k.

(A1.5.T1) Theorem

Let gbj(q) = f(q){exp 45(q)} and let ¢ci,(p) = g(p){exp #%(p)}. Then:
(1) (H-E) b5 (q) = H°1(1/2)(25/00)%+V(q)-E} P, (q)
+ K(-1)((1/2) ?75/992) £+(31/3q) (25/29) } {exp 45)

+ higher order terms of N
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(11) (Be-B) P (p) = HL(GH/D+(3 A2 ) I-E] 4 (p)

oo
- L3 (12 A r{[(r-1)/2]1@Wap)"* (3*Wop2)g+(@W/op) ' (3g/3p)} 1{exp & W}

Y=

+ higher order terms in-h
Proof'.
(1) [-¢8%/2) (2° /3q?)+V(q)-E]l[{exp #5(q)}f(q)}]

-7 /2) (2/2q) [ 12 (S, q) £+ (2£/9q) } {exp 4S}]1 + [V-El{exp £S}f

-th/2) [£(d2 S/ %) £+4(25/2q) (2£/9q) + @2 £/2q%) +£2(95/q)? £
+(05/2q) (f/2q) 1{exp 48} + [V-Elf{exp 48} (here i = (i/H))
=4°[(1/2) ('e)S/aq)2 +V-E]{exp #8}f-ifi[ (1/2) (378/2q2) £+(3S/2q) (?f/2q) I{exp 45}

+ higher order terms of 1.

(ii) We shall start our proof by deriving the following result:
(i) @ A p ) [g(p) {exp 4W(p)}]
= (1H)" [{exp 4W} @ g/ p")+r(dexp 4W}/ap) (2™ glop*™" )+....
+"Cr_ (@' {exp 4W}/9p ") (dg/2p) +YCv(2"{exp iW}/ap )g
(by equation (A1.5.Eq 1))
= K [1* {exp 4W}glaw/ap} ] +BLi%2'{exp #W}{W/op} 2g{r1/(r-1)121}

+YCpr i2™Yexp 4W} oW/ P} {og/9p}] + higher order terms in-h.

The last line was obtained by using

(Bk/ap"‘){exp AW}
= [T {k!/albl...ct} (Wop) { (@ W/ep2)/211°. .. ((3 W pE)/t 1} ] {exp W)

[ef. equation (A1.5.Eq 2)].

Thus
[(132/2)+m§cJr (1) A-(2/pp) -Elg(p) {exp 4W}
=1
= ’ﬁo[(912’2)+{ZAK(-’c)H/'op)K}-E][g{exp 4W}]
<=p

o r

- #h[Y (1) A r{l(r-1)/21QWap)™ *(@*W/ap*)g+@W/2p)™" (Rg/ap)} 1{exp 4W}
Y=y

+ higher order terms inH. [
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(A1.5.T2) Theorem

If (-3W/?p) = q, then
o a
gp) = 13 kA (=W ) 1722 |F kA QR 172 (A1.5.Eq 3a)
1 =1
is a solution of the following equation

[¥ (=1 Ar{((r=1)/2) @W/ap)™2 (3*W3p2)g+(3M/op) ™" (ag/iep)}] = O.

=

(A1.5.Eq 3b)

(Here q is treated a a local function of p on integral curve ’6%)
Proof.

We shall split the proof into two cases according to whether

a
S kA (=dW/op)*' is positive or negative as follows.
=1

Lase 1: %D KA, (=3W/2p) "' >0

K=
In this case, we have

g(p) = [% kAk(-‘aW/ap)k"
=\
and

(28/op) = [(g3/2) @TW/ap2)(T k(k-1)A(<Wp) ¥ }]
K=z

Let

o2
G =[5 {k(k-1)/2}(-aW/ap)¥-2].

K=

Then evaluating the left hand side of equation (A1.5.Eq 3) we get
}_’l(-1 ) A [{r(r-1)/2}RW/2p)"~ > (2 W/pp?)g+r(aW/ep) ™" (*W/ap2) (g*/2)G
00
= (9*Wap2)gly (r(r-1)/2}A(~3W/ap)™21+Gg3(2*W/ap2)[-5 jAJ(-BW/ap)‘I-']
J=y

=\

(by using (-1)" = (=1)"" %=z —(-1)™")

(3" W/ap™) g6l 1-g2{ 5. JAy (3w )" ]
J=1

0 (by definition of g).
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(+@]
Case 2: J rA.(-W/gp)™' <0

r=|
In this case, we have

g(p) = [-3 rA(-aW/ep)-2]1""2

"‘.—_l
and

(0g/op) = [(6%/2) (@"W/ap?) (% k(k-1)A(oW/op)*2 }]
As in the last case one can show that g(p) defined by equation (A1.5.Eq 3a)

is a solution of the differential equation given by equation (A1.5.Eq 3b).[H
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APPENDIX 1.6

(A1.6.N1) Notation

(ND1) Let j be a positive integer, then LXiis the interval given by
Aj = [2jw-(2w-02),2 jn+6,].

Let us subdivide Aj into the subintervals:

[2km,2kn+0,]1, ke Z and -jgk<J;
and

[2rm-(27-0;),2j7], reZ and -j{r<j.
(ND2) Let us fix k and r. Then on the interval [2kw,2kn+62] the map
©® --> p(6) has a unique inverse which we shall denote by G*k(p). Similarly,
on the interval [2r;-(2u-67),2rn] the map © --->p(6) has a wunique inverse

which we shall denote by 0% (p).

Then we can write ({, ec e )(p) in the form

(P, erd)(p) =% ¢}, (0)eq(0)
Beny
P@eI=Pr

=3 55 dlox e @5 (p)).

k==)

(A1.6.L1) Lemma [Woodhouse (1980), p294]

Let y be a cartesian coordinate on an open interval (a,b) in ®, f(y) be
a compactly supported smooth function and let A(y) be a real-valued smooth

function. Then as-h == 0,we have

b
[2nﬁ}"”~j{exp #A}fdy = [3 1(@*A/0y?) "% {exp i(1/U)sign(A")}{exp #A}f1+0(H).
a

H’:O

Here A" = (®*A/ay?), sign(A") is the signature of A", and ¥ is the

A'=o

summation over the critical points of A(y). The set of critical points is
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{y: ®A/ay) = 0}; (these critical points are assumed to be nondegenerate,

and hence isolated.)

(A1.6.T1) Theorem [Eckmann and Seneor (1976)]

For each q ¢ {q:3 p such that (p,q)e $%} and positive integer j, we

have

(Feecd )(a) =% $(0)ec(0)+0(n)

q(a) =
if J(©) and J,(8) satisfy the following conditions:

Jo(0)-J(B) = - U(mod 2w) for B e #}ez(.?ku,zkn+91),

Ja(8)-d(8) = +1/4(mod 2n) for © e&zz(Ekﬂ+91,2kn+en),
Je(8)=Jd(8) = =/ U4(mod 2n) for © e}cJ&z(rzkmel,zkme,,),
Je(8)-J(8) = +T/U(mod 211) for 8 €U (2krwO3,2kn+2m).

ke

Proof.

Let o7 = supp(¢, e %J ) (the support of (@‘-lj)(p))- Then for each
qe{q:3p s.t (p,a)e B}, we have
(Fdoe, W )(aq) =
K=

= [2m]”''?y 5

¥ okee

+

J_[ SU dp{exp ’i'(pq-S:': q(8) (ap(8)/20)de)} lap(e%(p))/e0|~"'2
v x ec(BtK(p)J{exp ide(0%(p))}
Let Ai(p) be the phase given by .
Af;(p) = pg- Sz“ q(e) (ap(B)/208)de.
The first and second derivative of At(p) with respect to p are
(@AY/2p) = q-q(8%(p))
and
(2*A;/2p?) = -(2a/2p) (8%(p))
respectively. The phases Aik(p) have isolated critical points on the sets

{p: q(ei(p)) = q}.
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Then for each q & {q:3 p s.t (p,q)eﬁe}, we get
(F § o0l )(a) =
2]
[T 1(3a(8)/0)1 "2 (p(8)Ae) | "2 {exp -r(p(e)-joq(e)('ap(e)/ae)de)}

B8en;
qte:=Jq x {exp iJ.(@)}{exp -i(w/4)sign(-(3a/ap)(8))}e.(0)]+0CH)

(by Lemma (A1.6.L1))

T P.(8)es(8){exp 1(J4(8)-J(8)-(/H)sign((3a(8)/op))}+0¢H).
Qe

4l9)=Jq

The assertion follows from this result. i



(A1.7.L1) Lemma

i (A/2rr)4_zz

Proof
We get

(1/r)§ {exp ikA}

K==+
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APPENDIX 1.7

,then we have

lim [(1/1")% {exp ikA}] = 0.
= o0 K==-r

(1/r) '.E [cos(kA)+sin(kA)]

K=-y

K
(1/r) Y cos(kA) (since sin(kA) = -sin(-kA))

Kz-r

(170) T [2668(kh)-1] (atnce cos(kAY & cos(-EL))

K= -v

(1/r)[2cos((r+1/2)A)sin(rA/2)cosec(A/2)+1-1]

[ef. Gradshteyn and Ryzhik (1980), p30]

(1/r)[2cos((r+1/2)A)sin(rA/2)cosec(A/2)]

Since (A/2m) ¢ Z, it follows that:

(i) cosec(A/2) is finite;

<

(ii) (1/r)1X {exp ikA}§<(1/r)cosec(A/2).

Thus

11im (
Y300

List of results:

We have:

§ bda

r-;-K

K
1/r)[ 2 {exp ikA}]<lim [(1/r)cosec(A/2)] = 0. W
K== Y-2 00

= —§Usqdp;

SQBYB)('aq(e)/ae)de = k pdq, ke Z;

o

UE
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2Kn
-j a(8)(2p(8)/26)de = k§ pdq, ke Z ;

o ¥E
J(2km)-J(0) = -k11(by equation (1.3.4.Eq 9a));

Jc(2kn)-JC(0) = -k (by equation (1.3.4.Eq 9a)).

Thus

Po+2kn)e(0+2km) = ¢(9)e(9){exp;ik('ﬁ'1§Ispdquﬂ)] (A1.7.Eq 1a)
and

$(0+2km)e, (0+2kn) = ¢,(0)e, (O)lexpik(n™* G R AL b

(A1.7.T1) Theorem [Eckmann and Seneor (1976)]

If
[2n]-1§ﬁapdq # (n+1/2)4, for all neZ,
then 'f’E(q) the Maslov-WKB wave function (corresponding to the energy E) is
the zero-function; 1i.e., € -0 everywhere on the configuration space &

Otherwise, cﬁg(q) is a non-trivial function.

Proof'.

We have
(@) = Un (VNUEFE @+ i) a)]
0o

by equation (1.3.4.Eq 10). Let A= fi1 pdg-Ti. Then by equations
]E
(A1.7.Eq 1a) and (A1.7.Eq 1b), we get

; *) J
(eida) = [T Pells lexp ikA}I+[Td ell T (expika}]

e K=-
®e2n-8,4,0, ©eCe,,6;) k=7
qe) =q — q®) = q (A1.7.Eq 2a)

and

—_— J J

(g e )(P) = [ #e ecllT fexp ikAMI4[T @, ecll S fexpikal}l.
8€Co0,8,1 k=y Belo,2n) =3
P©)=p b=y (A1.7.Eq 2b)
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Suppose (A/2m) éZZ} then we have

" w
1im }(1/73)($ eV )(q) I<2[max 1¢(8)e(®)}1l1im {(1/j)}! T {exp ikA}|
J2>x 8e(o,2m) K==y

(by equation (A1.7.Eq 2a)
= 0 (by Lemma (A1.7.L1)).
We shall now prove that [lim (1/j) (F(,fL ec‘c'J J(q)] = 0 when (A/27T) (-f,—z
J—roo :
as follows. The function (1/,1)(5,__ eiall )(p) is uniformly bounded because
es®) = 0 in the neighbourhood of points belonging to the set
My = {6:dke Z with either 8 = 2kwor & = 6,+2kn}. Then by equation
(A1.7.Eq 2b), we get the following inequality
-""-"'—‘ﬂ-—, .
(173)(d, e, )(p)<2 max 1§, (8)e,(0)].
Be [o,a1)
Theretore, we can interchange the Fourier transform F and the 1limit symbol
lim in the expression lim [(‘I/j)(FqﬁLec_"-'J.)(q)]. Then,
— J
lim l(?/J)(Fqﬁe_ec""'J )(q) I1<2[max | ¢ (&)e,(8)11[1im {(1/3)} > {exp ikA}|
[ [
J=> o K=17)
= 0 (by Lemma (A1.7.L1)).
Now ée(q) is clearly a non-trivial function if (A/2m) is an integer.
=
Theretore, ¢ (q) = 0 everywhere on the configuration space R if (A/2m) is

not an integer.@
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APPENDIX 1.8

(A1.8.T1) Theorem [Eckmann and Seneor (1976)]

The Maslov-WKB wave function (corresponding to the energy E) QE(q)
satisfies the following condition
(E-E) () | = oer?).
Here || |}l is the norm in LZ(R) given by

) |l j W(q) 12dq; W(q) & 12®).
R

Proof.

If we have [211]"1§ Epdq f- (n+1/2)4 for all neZ, then éE(q) =0 and
the assertion is triviafly true.
In the case where [2“]-4‘&.6(,9@ = (n+1/2)A for some integer n, @E(q) is
not a zero-function and it can be written in the form
%?q) N (ﬁ""h(F C‘f):__é_:,‘cfo) (by equations (A1.7.Eq 1a) and (A1.T.Eq 1b)).
In Appendix 3.2 of Chapter 3 we shall prove that

Il (B-E)L( &' ) (@) +(FP e ®0) ()| = 0¢iZ) M
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HALF-DENSITY QUANTIZATIONS IN CANONICALLY CONJUGATE POLARIZATIONS AND

THEIR UNITARY EQUIVALENCE IN 2-DIMENSIONAL SYMPLECTIC MANIFOLDS

(2.1) Introduction

We shall start by giving a few definitions.

(2.1.D1) Definition lSniatyeki (1980), p1]

Let ¢ and @' be any two reducible polarizations of a symplectic
manifold (M,w), and let H and H' be any two Hilbert spaces associated with
the polarizations @®and ®' respectively. (Note that in the case of the
standard half-density quantization scheme the Hilbert spaces H and H' are
taken to be the quantization Hilbert spaces Hgpe and H@- respectively.) Let
{£,,Z,5....} be a set of classical observables on (M,w). Then the
quantizations of {Z,,%2,....} in ® and ®' are said to be
unitarily equivalent (or unitarily related) if the following two conditions
are satisfied:

(UEQ1) CJ is quantizable in H if and only if CJ is quantizable in H';

(UEQ2) For each quantizable zJ e {z;,,Zz,...}, let z: and %‘ be the

corresponding quantized operators in H and H' respectively. There

exists a wunitary map U:H --3» H' such that for each quantizable
observable 1;3 e{z‘,,if,l,....}, we have

ﬂ‘: -3 = "". 2. . .
v’ = 7 (2.1.Eq 1)

Alternatively, we say that the quantizations of {Z,,¥,....} in H and

H' are unitarily equivalent (or unitarily related) if conditions (UEQ1) and

(UEQ2) are satisfied.
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(2.1.D2) Definition [Woodhouse (1980), p290]

Two polarizations ® and (' of a symplectic manifold (M,w) are said to
be transverse if
@, +6) = T.M, for every m « M. (2.1.Eq 2a)
(Note that the condition given by equation (2.1.Eq 2a) is satisfied if and
only if

®,,n @' = {0}, for every me M. (2.1.Eq 2b))

(2.1.D3) Definitions [Blattner (1973); Guillemin and Sternberg (1977), p271]

Two polarizations ® and ¢, of a 2k-dimensional symplectic manifold
(M,t0) are said to be canonically conjugate (or Heisenberg related) if there
exists in a neighbourhood of each point of M (local) canonical coordinates
{f%""’fk’%f""’ik} such that ® is spanned locally by the vector fields

{B/faﬁ,...,ﬁxfagk}, and ®, is spanned locally by the vector fields

(2/2g »-.-2/2g }.
1 K

Remarks: (R1) Clearly canonically conjugate polarizations are transverse.
(R2) The most common example of canonically conjugate polarizations is the
vertical polarization P and horizontal polarization P of the cotangent
bundle [ef. example (1.1.5.Ex 1)].

(R3) Throughout this chapter we shall use the term polarization to refer to

a reducible polarization.

We shall now give the motivation behind this chapter. One of the
outstanding problems confronting geometric quantization is the failure to

establish the unitary equivalence of quantizations in different
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polarizations. This 1is closely 1linked to the difficulty to establish a

unitary link between the different quantization Hilbert spaces.

In the case where ® and @' are transverse polarizations there is a
formal procedure for establishing a pairing (or link) between ®and ®' which
is given as follows. Suppose ®and ®' are transverse; then one can write
down a formal sesquilinear map from the product space H¢,x HG” to € (where
HG’ and Hﬁu are the quantization Hilbert spaces associated with the
polarizations @ and ¢*' respectively); this map is referred to as the pairing
map between Hd,and H'. The pairing map determines a linear map between H&)
and Hg: called the linear map (induced by the pairing map). Some details on
these two maps are given in Appendix 2.1. However,in general the linear map
(induced by the pairing map) is not unitary. Our object here is two-fold.
Firstly, we shall highlight this unitary inequivalence with a number of
examples. Secondly, as a contribution to tackling this outstanding problen,
we shall propose a scheme based on physical reasoning for establishing
unitary equivalence applicable at 1least to the examples considered. The
main results presented here have been published [ef. Wan , McKenna and
Pinto (1984); Wan, Pinto and McKenna (1984)]. We shall restrict ourselves
to the study of simple examples of canonically conjugate polarizations of
2-dimensional symplectic manifolds. It follows from remark (R1) that we can
construct a linear map (induced by the pairing map) between the quantization
Hilbert spaces of canonically conjugate polarizations. In section (2.2) we
shall concentrate on examples in contractible symplectic manifolds. In
section (2.3) we shall extend the results obtained in the previous section

to examples in noncontractible symplectic manifolds.
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2.2 HALF-DENSITY QUANTIZATIONS IN CANONICALLY CONJUGATE POLARIZATIONS AND

THEIR UNITARY EQUIVALENCE IN 2-DIMENSIONAL CONTRACTIBLE SYMPLECTIC MANIFOLDS

(2.2.1) Two simple one-dimensional problems in quantum mechanics

Let Q be an open interval of R and let q be the usual cartesian
coordinate on Q. Let (p,q) be the usual cartesian canonical coordinates on
T‘Q. Let ﬁu and vy be respectively the canonical one-form and canonical
two-form on T Q [cf. example (1.1.2.Ex 1)]. Let P and P. be respectively
the vertical and horizontal polarizations of (T’Q,w) [ecf. remark (R2) of
section (2.1)]. Let pr':T'Q --3 Q. be the usual projection map of the
cotangent bundle T‘Q. Let Q. = M/P, =R be the effective configuration
space with respect to the polarization P, and let pr'c_:T"Q--—chbe the

corresponding projection map.

Let B = T'Q x@ be the trivial line-bundle over T‘Q. Let (*, ) be the
natural Hermitian structure on B and let s, be a unit section of B. Let
be the connection on B defined by

Ty S, = ~4(X1 pda)s., for all Xe Vg(T'Q). (2.2.1.Eq 1)
i.e., B, is the chosen connection potential. Let (B,(*,7),V) be the chosen

prequantization bundle over (T‘Q,w).

In this subsection, we shall study two simple one-dimensional problems
in quantum mechanics in which the configuration and phase spaces of the
corresponding classical mechanical system are respectively Q and T*Q. We
shall use these examples to illustrate the following point: the standard
half-density quantizations of the canonical variables p and q in the
canonically conjugate polarizations P and P, are only unitarily related when

Q‘Ro
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(2.2.1.Ex 1) Example: The free particle

Consider the physical situation of a particle free to move on the real
line; then the configuration space is Q = R and the phase space is T*Q s fﬁz.
In quantum mechanics, the spectrum of the quantum momentum observable and
the spectrum of the position observable are both (-0,)

[ef. Messiah (1961), pp63-65].

We shall now quantize the canonical variables p and q in the
canonically conjugate polarizations P and P, using the standard half-density
quantization scheme and compare the predicted physical results in each
polarization with the corresponding results of quantum mechanics. We shall

start by quantizing p and q in the vertical polarization P.

The quantization Hilbert space Hp consists of square-integrable

sections of B x O.,;2(P) of the form W= ‘W aq)p where {= soldp_l-ui.

The position variable 1is quantizable in H; and the quantization

operator corresponding to q is given by the multiplication operator

HV: Q¥ (2.2.1.Eq 2a)
with domain
Dy = (Ve Hy: ¥ e Hpl (2.2.1.Eq 2b)

[ef. equations (1.1.T.Eq Ta) and (1.1.7T.Eq Tb)]. In particular, the

spectrum of q is (-oo,00).

The associated vector field pr‘,,(xp) generated by p is given explieitly
by the expression prg(Xp) = (@/2q); for short, let pry(Xy) = Y,. The
momentum observable p is quantizable because Y, is complete on Q. The
quantization operator 'ﬁ’corresponding to p is given by the expression

P¥= -1 a) 2 a)p, (2.2.1.Eq 3a)
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and the domain of p is given by
Dy = {(¥r=W(a)p e Hy: W(q) € AC(Y,Q), P WeHpl  (2.2.1.Eq 3b)
[ef. equations (1.1.7.Eq 6a) and (1.1.7.Eq 6b) ). The spectrum of q and the

spectrum of p agree with the results of quantum mechanics.
We shall now quantize p and q in the horizontal polarization P,.

The quantization Hilbert space HP consists of square-integrable
c

sections of B x D -y2(P) of the form Cﬁc_ 2 (Pc‘(p) Pc where

f. = lexp 4pqlsgldql™'/2.

The associated vector field pr»“(xq) generated by q is given explicitly
by the expression pr,, (X4q) = -(3/2p); for short, let pr,  (Xq) = Y"'z‘. The
position variable q is quantizable in the polarization P, because ch is
complete on Qe. The quantization operator Ei'c corresponding to q in H% is
given by the expression

4., = (20 (p)ap)P, (2.2.1.Eq Ya)
and the domain of q, is given by
ch B {.§¢J= \Pc_(p)&e H%: @ (p) e Ac(xec[,c)e), ‘q‘c@tenpc_}
(2.2.1.Eq 4b)
[ef. equations (1.1.7.Eq 10a) and (1.1.7.Eq 10b)J. The spectrum of q, is

("(I)’CD) .

The momentum variable p is quantizable in the polarization Pc‘ The
quantization operator 3: corresponding to the classical variable p is given

by the multiplication operator

and the domain of‘rac is given by

[ef. equations (1.1.7.Eq 11a) and (1.1.7.Eq 11b)]. The spectrum of 'B; is
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("’W!W) .

The spectrum of ’a‘c. and the spectrum of ,Ec_ agree with the results of

quantum mechanics.

The linear map (induced by the pairing map) Upp :Ho --> H; is given by
[ <
- -2 ™
Upp Y = (2uf) [g_mw(q){exp -#paldalp  (2.2.1.Eq 6)
[ef. Appendix 2.1, example (A2.1.Ex 1)]. The map UPP,_ is the identifiable
with the inverse Fourier transform [ef. equation (1.3.3.Eq 13) for the

Fourier transforml]; therefore, Uppﬂ is unitary.

Clearly, in this case the half-density quantizations of the canonical
variables p and q in the canonically conjugate polarizations P and P, are

unitarily equivalent.

(2.2.1.Ex 2) Example: The one-dimensional infinitely high potential barrier

Consider the one-dimensional quantum mechanical problem of a particle
encountering an infinitely high potential barrier [ef. Messiah (1961), p86].
The special feature of this problem is that the wave functions vanish at the

edge of the barrier.

We shall, for definiteness, choose Q = R'= (0,00): the particle is
constrained to move on the positive part of the real line. Then

T“_Q =Rx RY

We shall start by quantizing p and q in the polarization P, as we did

in the last example.
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The quantization Hilbert space HP consists of square-integrable

sections of B x A-p(P) of the form ¥ = Y(q)p where q e (0,02) and

P = se ldpl~"'2

The position variable is quantizable in HP’ and the quantization
operator corresponding to q is given by the multiplication operator
q¥= a ¥ (2.2.1.8q Ta)
with domain
D;iv= {Te Hy: q¥e Hpl. (2.2.1.Eq Tb)

The spectrum of q is (0,00) as it should be according to quantum mechanics.

The associated vector field pry(Xp) generated by p is (?/2q). The
momentum variable p is not quantizable in H because pry. (Xp) is not complete

on Q.

We shall now quantize p and q in the horizontal polarization Ps.

The quantization Hilbert space HPc consists of square-integrable
sections of B x A2 (Pa) of the form §c. = \Fg_‘(p)pe where

£ = lexp 4pa}s,ldq|™"%

The associated vector field pr‘cx_(Xq) generated by q is given explicitly
by the expression pr. (Xq) = -(@/3p); for short, let pr'cl(xq) = Itq. The
position variable q is quantizable in the polarization P, because ch is
complete on Q.. The quantization operator E'c' corresponding to q in lElP is

<
given by the expression
’ﬁ”biﬁc: i’ﬁ('a‘Pe_(p)/'ap)fc‘, (2.2.1.Eq 8a)
and the domain of a“._ is given by
— - = 4 o i~
Dg, = {8, = Y(p)f, € Hp: folP)e AC(YS,,Q0), T B e Hpl.
(2.2.1.Eq 8b)
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The spectrum of ’c]"(__ is (- ,m); this result is in disagreement with the
result predicted by quantum mechanics for the spectrum of the quantum

position observable.

The momentum variable is quantizable in the polarization P,. The
quantization operator B’c_ corresponding to the classical variable p is given

by the multiplication operator

o~
p.d.=prd (2.2.1.Eq 9a)
and the domain of ’ﬁ'c_ is given by |
D";& = {ég& HPJ p@ce HP{‘,}. (2.2.1.Eq 9b)

The spectrum of 'ﬁ:’ is (~o0,m).

The linear maps (induced by the pairing map) UPP,,_ Ho ==> Hpe. and
UP,_P :HPL --> Hp are given by -
Uppd = (2rﬂi)""z[go W(q){exp ~#paldalp, (2.2.1.Eq 10a)
and
Upp®e = (220§ @ (p)lexp 4paldplp (2.2.1.Eq 10b)

respectively [ef. Appendix (2.1)]. These maps are not unitary.

The standard half-density quantizations of the canonical variables p
and q in the canonically conjugate polarizations P and Pe are not unitarily
equivalent because of the following three reasons:

(i) the variable p is only quantizable in Hpc;

(ii) the spectra of the operators q and q, do not coincide;

(iii) the linear maps (induced by the pairing map) UPPQ_ and UP,_P are

not unitary.
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This example 1illustrates an important feature of the standard
hal f-density quantization scheme: the physical results predicted by the

scheme depends on the choice of polarization employed.

Let us examine this problem more closely to pinpoint the reason why the
spectrum of the operator ?i'r_ in Hpc disagrees with the result predicted by

quantum mechanics for the spectrum of the quantum position observable.

We recall that the inner-product on H and H are given by
o0

T, ¥op = [2111‘1]""25 I¥(q) 1%da, ¥ = W(a)p e Hp; (2.2.1.Eq 11a)
o

and
@

2
m""““’” dp; @, = ‘Pt(p)ﬂ-e: Hp; (2.2.1.Eq 11b)

[ef. equations (1.1.7.Eq 5) and (1.1.7T.Eq 9)]. It follows from these

<§c*§¢>a_ = [2nn]~ V2 j_
inner-products that Hy is identifiable with Lz(ik*')-,and HFé is identifiable
with 1#(R). Let F:L?.:(IR) --»L%(R) be Fourier transform given by
equation (1.3.3.Eq 13) and let F'be the inverse Fourier transform. (Here
Li(ﬂ) is the space of square-integrable functions of p, and L*(R) is the
space of square-integrable functions of q.) Let F_;" be the restriction of

the inverse Fourier transform F~! to LZ(RY).

As L2(®Y) is a proper subspace of L?(R) it follows that F]_' L2 (R is a
proper subspace of Ll,_(ﬂ?). Clearly the maps Up, and F""_f are identical.
.4

Theretore, Us, Hy is a proper subspace of Hp .
PRTP P

Now let us extend the range of q from ®R'to R in the expression for
UPQ'P given by equation (2.2.1.Eq 10b). Then for each §¢ = tI%Sp)ﬂ-e. HFE’ we
have U%Pi = (FQ?._)(q) ; so the maps Upe.F’ and F are identical. Clearly H%
contains elements of the form @f_: ‘{i(p)lac such that the support of (F'ﬂ-,)(q)
is not wholly contained in IR{: so UPe_PHPc contains elements that do not

belong to HP'
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From a physical point of view, we have already established that HP is
the correct space to use for the quantization of the variables p and q. It
is now clear that the reason that the quantization of q in HPc leads to
physically incorrect results is that the quantization Hilbert space HPe. is

"too large", so the quantization operator E'C' admits too big a spectrum.

We shall now propose a way, based on physical reasoning, of rendering
the quantizations of the variables p and q in the polarizations P and P

unitarily equivalent.

Since we have eétablished that the quantization Hilbert space H% is
"too large" it seems reasonable, from a physical point of view, to choose
the (proper) subspace of HF;: spanned by the generalized eigensections of ’d”c
with positive eigenvalues as the physically correct Hilbert associated with
the polarization E.. We shall denote such a subspace by H*c. An
alternative definition of H:-;c is given as follows. The Hilbert space HT,&

consists of elements of the form 'Ea..: ‘P‘_(p)ﬂ: that satisfy the condition

Lo o)

[2nfl]’”2[ ¢.(p){exp 4pa}dp = O if q<0,  (2.1.2.Eq 12a)
or alternatively, e
[= =)
L'Pc.(p) = [2nﬁ]"mi‘ Y(q){exp -ipqldq for some¥ = ‘p(q)Pe Hp.
o

(2.2.1.Eq 12b)

The restriction of ’b:-‘ to Hp 1is not self-adjoint.
c

Clearly the quantizations of the canonical variables p and q in HF’ and

Hp are unitarily related. So by choosing H'; instead of Hp as the
< [-3 (-

physically correct Hilbert space associated with the polarization E. we have

rendered the quantizations of the canonical variables p and q in the

polarizations P and P, unitarily equivalent.
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In the next subsection we shall present a general scheme for rendering

quantizations in canonically conjugate polarizations unitarily equivalent.

(2.2.2) Quantum Hilbert spaces and unitarily equivalent quantizations

Let (M,w) be a two-dimensional contractible symplectiec manifold with

global canonical coordinates (fo,%), i.e. W = di"“ d%.

Let 7,, denote the,‘g-coordinate curve passing through the point m in M,
i.e. the integral curve of the vector field (’a/’a&) that originates at m.
Similarly, let G,, be the gﬁ_—coordinate curve through m, i.e. the integral of
the vector field (?)/’o%) that originates at m. Let Rh‘(fo) be the range of
values of -§ along ¥, and let Rh(fl_) be the range of values of %_ along O,
For the sake of simplicity we shall assume that R ($) and RM(%_) are
independent of m, and so for brevity we shall drop the subscript m and write

R(p) and R@).

A1l the notation we shall introduce in this paragraph are illustrated
in Fig 2-1. Let (f.,4) be the chosen reference point in R(fe) x R(¢) and
let (fao,%o) be an arbitrary point in R({) x H(q_). Then let:

(i) ¥ denote the a’c-eoor‘dinate curve through the point (-Sor,%);

(ii) ¥, denote theﬁo-—coor’dinate curve through the point (-xo 32 s

¥ Do
(iii)O denote the%_-—coordinate curve through the point (@,%r_);

(iv) O, denote the -coordinate curve through the point ('J% ,% )i
L

Let [5 be a global one-form on M that satisfies the condition d ﬁ: w.
Since M is contractible it follows from Poincare's lemma
[cf. Von Westenholz (1981), pp165-167] that the closed one-form (p-%n%) is

globally exact. Therefore, there exists a function f(§ ,%) e Cm(M) such that
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R ={,d?—df(?,%). (2.2.2.Eq 1a)
We shall write
R = ﬁ*(-&,%)d@+ﬁ‘&(-t%)d% (2.2.2.Eq 1b)
where
[5{: (3fz‘a#) and rﬂ‘k’f’“aﬁ"’%)‘ (2.2.2.Eq 1c)

Here is a list of line integral of along the coordinate curves that

we shall need:
¥
b9 L0 (B P S0 {8

i
S;: F’{odf’)%=wnsf. ; Szf,,“f”*%,_, = Sa’f

n

%

‘L Py Vot ¢
Y (2.2.2.Eq 2a)

(gk dg) ;
‘&ﬁf. "o =Con—5f.%‘;

" (2.2.2.Eq 2b)

3 +
So'('g”%o) = (j% rﬁ%d%)io= const. ! S'U(‘h.'%) = (ng pﬁgdf")"{f Const. *

(2.2.2.Eq 2c)

S_(4,a) =(p = (
7 &% f,d

These are given explicitly by:

USRS CEREN AL ERIENT STIRS AL AR SIES S BL

(2.2.2.Eq 2d)

sﬁ(f,%) = r(f:.%)-r(far ,%); S‘Eﬂ(f’%—) = f(#,,%o)-»f({or,%o);

(2.2.2.Eq 2e)
56(3-,%0) =/E,(%o—%r?+f("a,%o)-f(f,?r); S.U(Ah ,%) = f‘(-%:ﬂ,z’)-f(f:r ’{;'—)‘
(2.2.2.Eq 2f)

In the case where (0,0) is a point in R(f;) X H(%_) one normally chooses
(%r-’%r.) = (0’0)0

Let B = M x € be the trivial line bundle over M, (*,-) be the mnatural
Hermitian structure, s, be a unit section of B and let ¥ be the connection
on B defined by _

U 8, = -4(X1R )8, for all X & Vg(M). (2.2.2.Eq 3)

Let (B,(+,¢),9) be the chosen prequantization bundle over (M,w).
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Let © and . be the canonically conjugate polarizations of (M,w)
spanned by the vector fields (0/0&-.) and (D/‘B%) respectively. Let Q and Qe
be the effective configuration spaces with respect to the polarizations (i d
and (P respectively. Then Q is identifiable with R(%),and Qe is
identifiable with R(f). Let pr:M --» Q and pr, :M --3 Q¢ be the usual

projection maps from M onto Q and Qe respectively.

We shall restrict ourselves to the study of four cases as follows:
(1) R(p) =R, R(Q) {R;
(2) R(p) f®, R(Y =R;
(3) REp) =R, R(§) =WR;
(¥) R(P) R, R(g) f R

Our objective is to establish unitarily equivalent quantizations of the
canonical variables 1?and 1}in the canonically conjugate polarizations ®and

GE for the above four cases.

Case (1)

Let (p,q) be the usual cartesian canonical coordinates on the phase
space of a particle confined to an infinitely deep one-dimensional potential
well and let R(q) be the range of the position variable q.. Then according
to quantum mechanies, the wave function in the position representation
vanishes at the edges of the potential well, i.e. the spectrum of the
quantum position observable is R(q) [ef. Messiah (1961), pp86-881. We shall

make use of this result when we make physical assumptions.
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We shall start by quantizing {,,and q, in the quantization Hilbert space
Hﬁ)qo

The quantization pre-Hilbert space Hﬂ_ consists of square-integrable
sections of the bundle B x A-yz2(€) of the form ¥, =% ., which obey the

following conditions:
V%a,; 0 and ¥ V.= 0 where Xg = (3/2g). (2.2.2.Eq 4)
Explicitly, we have
quc = tpc_(fo)f’c, ﬁo&'m; (2.2.2.Eq 5a)
where
3 =,r5,co|¢%r”2; Aeo= {exp £5 (f@)}s0.  (2.2.2.Eq 5b)
The inner-product on H@c is given by
o2 T = [2un1“”2jm|%_(1o)i"’df, (2.2.2.Eq 6)

The quantization Hilbert space HGE is the completion of w@h'

The associated vector field pr-,_,(x%) = -(?/93’); for short, let

c
Y- = pr..(Xg). The canonical variable ¢ _is quantizable in Hpo because Y
g = Pleg'tgl = fe ¥

is complete on Qe¢. The quantization operator'% in H@e is given by
3

?%’clhz [{i‘ﬁ(’dfafah(af(ju%r)/'Of,)+q_'_} %L ) 1P, (2.2.2.Eq Ta)
[ef. Appendix 2.3], acting on the domain
D@—; =¥ e Hp: Hp)e Ac(x'?-%_,qe), '%;Erbeﬂa}. (2.2.2.Eq Tb)

The spectrum of % is (-0 ,00).
c.

The variable.ﬂp can be quantized in Hd.:c with quantization operator ‘8%

the multiplication operator
fﬁ Y = p¥e, (2.2.2.Eq 8a)
[

o

and the domain Of'fL is given by

D N
(it

The spectrum of.rg,' is (-, ).
o

(Tee He 1 F Ve He b (2.2.2.Eq 8b)
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We shall now construct explicit expressions for the generalized

eigensections of "{i: .
(-3

(2.2.2.P1) Proposition

Each value % of the classical variable %15 a generalized eigenvalue
o
of the operator%_‘ in H(f’ corresponding to the generalized eigensections
o c
Teg =Yeo ) (2.2.2.Eq 9a)
°g,” ‘e, Pfe
where
- -4 -
q)c%o(fo) = [2en] % {exp .&Sxo(.ga,%o)}lexp XSG(}%,%O)} (2.2.2.Eq 9b)
The generalized eigensections satisfy
< > =8 -q"). (2.2.2.Eq 10)
q‘c%‘; ¢ !o@c 5 {L.o A Eq
(Note that our expression for '@‘c% is [2m]1Y2 times the expression given in
L-]
the paper by Wan, McKenna, Pinto (1984); the reason for this that our choice

of inner-product on H(P is different from that given in the above-mentioned
()

paper.)

Proof

We have:

Sg,Prg.) = T g )5 Soig) =G § g )T g )

St 800 brg) = T g ) H g g,

[(/ap) (S5 (prg ) -S5($rq )] = -(%0—%r)+{af(fa,%r)/ago};

{b%%o(-%))/afa} = «r[(’a/aga){S.da(fb,go)-sg(g:,%o)}]%%n(]‘o)

= ’i['(%o'%r)+{af (% %r_)/af,} ] W’C%D &) -

Thus

'%‘I‘C% = [{iﬁ(a/aga)+’bf(ﬂ=.%r)/agﬁg,r_}ﬂ%{p]ﬁ: =%DWC%; (2.2.2.Eq 11)
Thus "{rc%_o is a generalized eigensection of %c. corresponding to the

generalized eigenvalue % R
(=]
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The crucial point now is to observe that for each %_ s R(%,), the
=]
generalized eigensection can be constructed in three steps as follows.
(i) Let B, be the f-coordinate curve originating at the point (f:__,g,o); (note
that @ = onVp). Let L :B -->B be the parallel transport
% %0 © Yo ({br‘;%o) ? (‘ﬁ";%—o) s e
along the curve §,lef. Appendix 2.2 for definitions on parallel transport

and parallel sections along a curvel.

Then Lfo([&rﬁ]d%so(ﬁ,%o)) is a parallel section along ¥, given
explicitly by
Lf([2wﬁ]“"’4 So(fprg,)) = [2nn]” a{exp ({ fbﬁodf’)‘o’o}s (%» g_)
= [2nhi] ™4 {exp 45 (g, g )Iso(fag ). (2.2.2.Bq 12)

(ii) Let O be the %-eoor‘dinat;e curve originating at the point ('fb,%b); (note
that f is constant on0’). Let LU:B(‘h%u) - B(’&’:%) be parallel transport

along @.

We shall extend the section along the curve 7, defined by

equation (2.2.2.Eq 12) to the entire manifold M as follows.

For each hﬂgeﬁa, we define a parallel section along the curve O (which
is determined by the value offa) by

Ly([20E] "4 {exp 45 1g, )1 (—ga,% ))

[20R]74 {exp Sy ps 2. )Hexp i'(j' [5% %) }s, (B %)

[2mn]™' 4 {exp 84 (g, % ) Hexp 'Hs%c’ﬁll,d%—) Hexp -i'(S p%d%) }s (-go,%)

[2n01]74 {exp 485 (frq )Hexp -&S_($,9 )19 ($,q). (2.2.2.Eq 13)
3P4, #%) Pt

Let Wc%j-{a)%co(g,,%) be the global section of B that is given on each

curve O by equation (2.2.2.Eq 13). By construction, ll’c'% (ia).%%(@a,%) is a
-]

polarized section of B (with respect to the polarization ®,), i.e.,

V)'({jtyc%ggo)ﬂ%(ga,%)} = 0 [ef. definition (1.1.5.D3)].
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(iii) Let @'L%: W‘._?so(f:)flc be the corresponding (,-wave function. This
construction shows up the extent to which the generalised eigensection Tc%
o

is anchored to the curve ’60 (on which %:% ).
=]

Finally, the inner-product of '\E‘%
= -v [
W+ Tegn ' = (2172 g () Vegr (P10ge
= [2an])™" {exp #(£(f g )-T(f,q0)} j‘m{exp -if(q -¢\)}dgp
= {exp i{f(for,%)-f(f:r,%'o))}% (‘5& -%')
= §(qg -¢") (2.2.2.Eq 14)
.t W &

and T‘,_%to is given by

So far we have only constructed generalized eigensections of %:
<
corresponding to eigenvalues that lie in R(%) (the classical range ofg).
One can use the formal expressions for the generalized eigenfunctions of %,;
corresponding to eigenvalues in R(%) to construct generalized eigenfunctions
of ‘? corresponding to eigenvalues that lie outside R(%_) in three steps as
3
follows.
(i) For each %o = R(%), the function Y. %a(g;) defined by
equation (2.2.2.Eq 9b) can be written in the form
& -4 o - )=
Wc%o(-fs) = [2nh] {exp #[ .f,(_g_a gr) f(rgar,%_ohf(-&,g_r)]}. (2.2.2.Eq 15)
(ii) Let us formally extend the range of % from R(%) to the whole of R. Let
2
fm(-fa,%) be a smooth function on IR that satisfies the condition
fmc?’%) = f(f:,%) on H(ie) X R(%). (2.2.2.Eq 16)
(iii) Then for each %C—_ I‘R-R(%), the generalized eigensection corresponding
(]
to the eigenvalue % is given by
o
iIrc% = %%(‘J’)ﬁ. (2.2.2.Eq 17a)
o o
where
g = [2 -V 4 == ~ - " 2.2.2.
Ll)c%g!:) [2wh] {exp [ ﬁ[%b gr) f‘m(-f% ,%D)+fm(-&,%r)]} ( Eq17b)

It follows from equation (2.2.2.Eq 11) that 'IfC% is a generalized
[+ ]
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eigenfunction of % corresponding to the eigenvalue % .
L o

We then have
[2wh ]"’2§md %o Vog ) Yog (1)

: - 1 -1 =
(exp £(£(frg )-Fulfe!sg ))}[2011] jﬁl{exp £9 Y g)lag
5(@'4’3' (2.2.2.Eq 18)

(This property must not be confused with the inner-product of any two

generalized eigensections of‘?%' given by equation (2.2.2.Eq 14).)
[+

Clearly the quantization Hilbert space HGE is spanned by

fﬂﬁh%: qroezﬁi}.

Bearing the examples of the infinite potential barrier and the infinite
square potential well in mind we shall make the following physical

assumption.

Physical assumption PA1

The values assumed by the quantum observable corresponding to the

classical variable % should be contained in R(%) (the classical range of %).

Clearly the spectrum of %e‘ is physically incorrect because the
quantization Hilbert space HGE is "too big". Therefore, to be consistent
with this physical assumption we shall make the following quantization

assumption.
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Quantization assumption QA1

When quantizing %_ in ¢, the appropriate Hilbert space, to be referred
to as the quantum Hilbert space associated with (%, and denoted by H(S.),
should be spanned by all the generalized eigensections of @; corresponding
to eigenvalues consistent with physical assumption PA1. In other words, the
quantum Hilbert space H(6:) is spanned by the set {{/g_%: %€ R(%)}. The
restriction of the operator %ﬁ to H(( ) will be the quantum observable
corresponding to the variable %_and will be denoted by %e‘. A corresponding

statement also applies when quantizing %_in *.

The quantum Hilbert space H(F.) is clearly a proper subspace of the

quantization Hilbert space H@ .
c
Let us now quantize the variables .go and % in the polarization @.

The quantization pre-Hilbert space H@ consists of square-integrable
sections of the bundle B x A_,(®) of the form ® =%V which satisfy the
following conditions

Y, %=0 and vx%w 0 where x%z -(2/2p) . (2.2.2.Eq 19)
Explicitly, we have
$ = @(%){J, %e R(%); (2.2.2.Eq 20a)
where
- | -z, . -
P =R, 1dpl i Aoz lexp 48, (p,q)}s,. (2.2.2.Eq 20b)
The inner product on "(P is given by

3,3 >, =lem] ™2
3 LAk IRK%.J

The quantization Hilbert space Hp is the completion of WG,.

19(q) Izdz_. (2.2.2.8q 21)
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The var'iable% can be quantized in HG,, and the quantization operator
is the multiplication operator
%f@ﬂg.@ (2.2.2.Eq 22a)
acting on the domain

D;%v = (Be Hpt g Fe Hel- (2.2.2.Eq 22b)

The associated vector field pr*(x&) is (‘3/0%). Clearly pr’(xﬁ) is

incomplete on Q. Hence the var'iableio is not quantizable in H@.

Since the quantization oper'ator'q?_’ and the quantization Hilbert space Hgp
satisfy the physical assumption PA1 and the quantum assumption QA1 it
follows that they are respectively c’g (the quantum operator corresponding to
the variable %) and H(®) (the quantum Hilbert space associated with the

polarization®).

The pairing map between H@ and Hp is given by
c

<@, ¥ pp = [2nﬁ]—1j' S p(g_)_kl-!;({o){exp .i—sa(-g,,%)}{exp —&Sa(ﬁ,%)}dg,d%
R Repr=re (2.2.2.Eq 23)

[ef. Appendix 2.6, equation (A2.6.Eq 1)].

It follows from equation (2.2.2.Eq 20a) that ‘P(%) is only defined for
9 < H(%_). Let the range of % be formally extended to!/R. Then the function
LP(‘z) can be formally defined onlR by putting
lP(%) = o,%elR -n(;). (2.2.2.Eq 24)
Let ‘__%= %%('f’)loc be the generalized eigensections of the quantum
operator f%\c_ in H(®), i.e. for each 2 < R(%), we have
LVG%(.;)) = [2nti]™"A{exp 45, (1 9)) (exp —£Sg(ferg )} (2.2.2.Eq 25)

[ef. equation (2.2.2.Eq 9b)].
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Then the pairing map given by equation (2.2.2.Eq 23) can be rewritten

as

I AR [2nn]-3f4j;kgml{>(%)_@cfga) Wa%f—&)d&,d%. (2.2.2.Eq 26)

The pairing map determines a linear map U:H(®) -->H(® ) which maps

b = lP(%)P (where ‘F(’*) =0 for%elﬂ-ﬂ(%_)) to T;_ = Wc,(-ga)'oc given by

)(e) = -4 ; 22
\L(g) = [2nn] ertP(%) %%(&)d% (2.2.2.Eq 27a)
with the inverse map v-1 given by
gb(%) - [2nn]"'/45‘ml{)c(ﬁa)q); () dp (2.2.2.Eq 27b)

[ef. Appendix 2.6, equations (A2.6.Eq 3) and (A2.6.Eq 4)].

Let us digress for a moment to give the reason for formally extending
the range of % and the domain of ‘\0(%) to R, by using the following simple

analogy. Let F:L% (R) -—3 Lz(rR) be the Fourier transform, (a,,bp) be an open

n

interval of R and let LZ = L?(as,bo). The Hilbert space LZ can formally
be interpreted as the subspace of Lz(m_) consisting of functions of Lz (w)
that vanish outside the interval (aq,bo). Then L"% = FLf, is a proper
subspace of L¥(R) [cf. example (2.2.2.Ex 2)]. Hence the restriction of the
Fourier transform F to L% is a unitary map from LZ to L"2 and will be
denoted by F,. To evaluate F,f3, for each ¥, & Lf, , one can choose to
perform the Fourier integration of tPO formally over the entire (R. The main
advantage of performing the Fourier integration over IR ihstead of over
(agybo) 1is that one can make use of the integral definition of the Dirac

delta function when evaluating combinations of Fg, and Fg,‘ . The same

justification holds for extending the range of 9 from H(%) to the entire IR.

Now returning to the problem at hand, in Appendix 2.6 we show that
U:H(E) -->H(® ) is a unitary map, and that Uil]"| = @c. In Appendix 2.4 we

show that the restriction of the quantization operator %’ in Hﬁge_ to the
o
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quantum Hilbert space H(®,) is not an essentially self-adjoint operator in
H(®.). This means that § is not quantizable in H(®.); this result is
consistent with the fact that-{5 cannot be quantized in H(®) either. Thus
the quantizations of the canonical variables 4§ and % in H(®) and H(®.) are
unitarily equivalent. Therefore, we have rendered the quantizations in the

canonically conjugate polarizations ® and G)c. unitarily equivalent.

Case (2)

Let (R be the configuration space of a free particle and let q be the
usual cartesian coordinate on IR. Let M= T*R= |R2, W be the canonical

two-form on M and let (p,q) be the usual cartesian coordinates on M.

Remark: (R1) We have not used Q to denote the configuration space as we
usually do because Q has already been reserved to denote the effective
configuration space with respect to the polarization @®.

(R2) The cartesian coordinates (p,q) should not be confused with the

canonical variables (-f:,%).

Our object here is to quantize the Hamiltonian of the free particle
H = p‘?‘. The general method in geometric quantization scheme of quantizing
an observable é consists of two steps:

(i) effect a canonical transformation from (p,q) to ({a,%) such that

/ﬁ: = 'z; and

(ii) quantize Z in the polarization spanned by (2/24).
We shall carry out this scheme for the case L= H, and check the result with
that obtained by quantizing H in the vertical polarization P. The

quantization operator corresponding to H in the vertical polarization P has
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been explicitly worked out in Appendix 2.7; the result is well known. We
shall establish wunitarily equivalent quantizations in the canonically

conjugate polarizations (®and §, for a case (2) situation in the process.

The first complication to arise is the nonglobal nature of the above
canonical transformation. We have to split M into two disjoint submanifolds
M, and M where

M4= {(p,q) @ M: p>0} (2.2.2.Eq 29a)
and

M, = {(p,q) & M: p<0}. (2.2.2.Eq 28b)
Let &, and w, be the restrictions of the canonical two-form w to M4 and Mg

respectively. Then (My,W¢) and (M,,w;) are symplectic manifolds.

Introduce canonical coordinates (g, ,g,) on M4 and (4, ,_%2? on M, given

by
2 ..
4&:1 g pS, %1 = (q/2p) (2.2.2.Eq 29a)

and

(23

Clearly R(f,) = R({bz) = (0,00) and H(%f) = R(%z) =R, so M4 with canonical

p% $,° (a/2p). (2.2.2.Eq 29b)

coordinates (ga_1 ,%1) and M, with canonical coordinates (‘?2,%1) are both

examples of case (2) situations.

Before we proceed we shall clarify the notation that we shall use. We
shall, unless otherwise stated, adopt the notation given at the beginning of
this subsection. We shall use the subscripts 1 and 2 to differentiate

between structures on M, and M, respectively.
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In addition, we shall assume that the prequantization bundles over
(M4,w1) and (Mg,wz) are the restrictions of a chosen prequantization bundle
over (M,w). This assumption makes it easier to compare the quantization of
pz in the vertical polarization P with the quantization of ‘g; =-gsi (on
M,v Mz ) in the polarization ® spanned by (?/?§;) on MqU Mz . The details
of the prequantization bundles are given as follows. Let B = M xT be a
trivial line bundle over M, (*,-) be the natural Hermitian structure on
B, and let s, be a unit section of B. Let  be a one-form on M that
satisfies dp = w. Let V¥ be the connection on B defined by
Uso = ~#(Xd@)so for all Xe Vg(M). Then let (B,(-,"),¥) be the chosen
prequantization bundle over (M,w). Let (B,,(*,*),¥) and (By,(*,*),¥) be the
restrictions of the prequantization bundle (B,(*,~) ) to M, and M,

respectively. We shall assume that the connection potential is given by
ﬁ,l =,?1 d%:dﬂg (fﬂ,' ,%1) on M4, and ﬁl'_',ioid%-;df,_(fiz ,%1) on M.?..‘

Let ( and 031;': be the canonically conjugate polarizations on M, spanned
by (‘3/93,4) and (’B/a%,l) respectively. Let Q4 and Qqc be the effective
configuration spaces with respect to ¢ and G’c respectively. Let
pry :My ==> Q4 and prg, :Ma ==» Qa be the corresponding projection maps.
Note that Q4 is identifiable with R(f%), and Q4 is identifiable with R(%,) .

We =shall replace the subscript 1 by 2 for the corresponding structures on
M.
We shall start by quantizing the variables.'i; and %., j=1, 2, in the
J |

polarization 6:] .

The quantization pre-Hilbert space HP1 consists of square-integrable
sections of the bundle B XA_UQ_(‘?q) of the form
@1 E LP"(%){D", %1e R(%1) (2.2.2.Eq 30a)
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where
R(%) = R, e‘ =’%1o=d§’1 ,—uz; ,%10 = {exp -1831(-&1 ,%1)]8 . (2.2.2.Eq 30b)
The inner-product on-'d,:p1 is given by
= -2 Z
<%,, P, >EP1 = [2wh] SRI(P,(%,,)I dgp. (2.2.2.Eq 31)

The quantization Hilbert space H@‘ is the completion of WG,1 .

The associated vector field generated by -&1 is given by
= i) ¥ = .
pr’,.*(Xﬁ) ( /'a%i), for short, let Y‘f‘i’, pr'“(}[,ﬁ‘) The variable .%,1 is
quantizable in HtP because Y, is complete on Q4. The quantization operator
1 4
,3,1 in H(R. is given by
e
$ &1 = [-ii(/2g,)-(af, (f, 1 ¢,)/2g )} @y(q )] P, (2.2.2.Eq 32)
[ef. Appendix 2.3, equation (A2.3.Eq 8)]. The spectrum of the operator .%'1

is (-0 ,m).

Similarly on My, the quantization pre-Hilbert space ‘Hdoz consists of

square-integrable sections of the bundle B, x A_y2(®,) of the form

@2 = (Pz(%l)&, %1& R(%z) (2.2.2.Eq 33a)
where
R(%ﬂ.) = IE, ‘F?. = Jszoldhrl!z—; /510: {exp 4:3-012( ﬁ)z,%a)}so. (2.2.2.Eq 33b)
The inner-product on H@1 is given by
_ -1/2 2
<F,,%, = [2uA] ETRIKPZ(%ZJI dg - (2.2.2.Eq 34)

The quantization Hilbert space H(P,_ is the completion of H(Pq.'

The quantization operator %;1 in H(P-a is given by

%‘; $, = [{-rﬁ(’o/a%z)-(’afz(ﬁ.,.%,_)/e%l)}LP,.(%)]102. (2.2.2.Eq 35)

The spectrum of the operator :g:, is (~o0,00).
2



Page 115

Let & and G’c be the polarizations of the symplectic manifold

(Mqu Mz ,») given by

%
un

® and @, =F,. on My; (2.2.2.Eq 36a)
and

® = ¢ and @ = G on Mj. (2.2.2.Eq 36b)
One can interpret @ and (P as polarizations of (M,w): strictly speaking, @
and (Pc. are not polarizations of (M,w) because they are not defined on the
set {(p,q) & M: p = 0} in M; however, as this set is of measure zero we

shall ignore this technicality.

We shall now quantize the Hamiltonian of the free particle pZ%Z in the
polarization 0’ as follows. We shall use the letter.zawithout the subsecript
to denote pZ on M. Bearing the theorem on the canonical decomposition of
global observables by Wan and McFarlane (1981) [ef. Appendix 2.8] in mind,
we shall define HfP (the quantization Hilbert space associated with the
polarization ) by H6’= H“,‘Q Hd:!l, and we shall define the quantization
operator%in He by ‘gz %1 @—ng. Clearly the spectrum of ff; is (-, 00)
[ef. Naimark (1968), p209]. It is physically unacceptable to have %;as the
quantized observable corresponding to p because classically the free
Hamiltonian p2 is strictly positive. Therefore, Hp cannot be the quantum
Hilbert space associated with the polarization®, so we need to establish
the quantum Hilbert space and quantum observable. This can be done as in
the previous case by examining the link between generalized eigensections of

-gand the classical values of @
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(2.2.2.P2) Proposition

Each value ﬂh of the classical variable.%h is a generalized eigenvalue
J

J
of_%; in ng corresponding to the generalized eigensection
X J
d =, (q.)¢p. (2.2.2.Eq 3Ta)
f:[u ‘&jo %\l fj
where

) = [2un]7 714 S ., o - i . 2.2,
LP&,‘.,(%J) [2uti]™' "% {exp *Sﬁdo(f‘j'a %J)}{exp zs.{i (ﬁ.o %J)} (2.2.2.Eq 37b)

The generalized eigensections satisfy

< %J 65%

e °J »

i ~o!
¢, = g(%_o % ). (2.2.2.Eq 38)
Proof

For the sake of tidiness, we shall drop the subscript j in some steps

of the proof.

We have
Soo(fr@) = PG g+ 19T 030 s

Sy(horg) = Tl -1 30

Soull P55 1y) = R, §9.)-(% 13 I+ )
[(’o/a%){sc,-ot.h,%)-s_a(& ,%)}] = ,g%-»(a f‘(ﬁ_ ,%)/a%)

and

(B({’%O(H)/agj) = %[ ('a/a%j){sq.io (fjo ,%J)-SKJ(?JO,%J.)}]L%.O(%J.)_
Theretore,
%} (1;”3?,0: [{-i{f(’a/'a%:‘)-(‘bf'\i (ﬁﬁf’ﬁi)/fdﬁ)}wﬁf%‘j)]fj - 'Eﬁ'°§ﬁ‘jo'
(2.2.2.Eq 39)
Thus

is a generalized eigensection of corresponding to the

<2

§'E"‘J o

generalized eigenvalue fﬂu'
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The crucial point is to observe that for each %, e R(-g,.), the
Jo J
generalized eigensection §% can be constructed in three steps as follows:
(i) Let Cjo be the %J-coor-dinate curve originating at the point (ﬁ'o’%.fr);
(note that Cjo is determined by the value -,&,&o). Let

1‘5",' be the parallel transport along Ujo-

:B -->B
o ('%3'0 ’ %Jr) (3:}0 ] %J )
-4
Then L%.o[[znn] 3°('§Tl‘o’%jr)] is a parallel section along Cj, &iven
explicitly by

Lc:io( L2wn]~'4 30('&’10 ? %jr))

(2] (exp +( (¥ g By 94,0502 0 &)

=1/
[2m1] /4 {exp —rsqio(ag‘ﬁo.%j)}so(-svjo %J)
(2.2.2.Eq 40)
(ii) Let 'zj'd- be the faj—eoor‘dinate curve originating at the point (f:, ,%J-);
Jo

(note that % is constant along ¥). Let Lo, :B be the
X J

-->B
) &ig))

parallel transport along 'bfj

We shall extend the section along the curve def ined by

Ojo

equation (2.2.2.Eq 40) to the entire submanifold M as follows.
For each %Je R(%J'), we define a parallel section along the curve 1&

(which is determined by the value of ) by

Lg; (Lo [ (20074 8o(fo. 5 q5)1]

L.G[(zrﬁ) Ma {exp zSd- (—gc )]s (-ga. ’%4)]

(2} ™ fexp 585, (o, ,%J)}{exinr( E{;’ Bydki )y 190804

(2mfi) ™% {exp &8q;, (01 4) i(Sfdrp&dil)-g +4:(j f% dfa)g; so

=(2m)~'74 {exp ASg; (-&m,% )}Hexp "-’S‘o’('%'o %J)}’?’Jo (2.2.2.Eq 41)

Let P, ( )Aio be the global section of B! that is given on each curve
'£°.]'0 1{54 J J
“GJ' by equation (2.2.2.Eq 41). By construction £, ,(%'),5',, is a polarized
$io ST
section of Bj (with respect to the polarization € ), i.e.

VK%.(LP%&O(%&),@.&O) = 0.
J
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(iii) Let & = \Pﬁ(%)p be the corresponding sz-wave function.

Finally, the inner-product of the generalized eigensections @_& and
Jo
“?Zt; is given by
Jo
< v >n,
Bt B, 0
-2 P . \ )
(206172 § h}fgh)‘f’i_,}n(&')d%d

-1 " (el | -
[20R]" " {exp ~#(f} ('3°4'o’%dr)+f.l (--5—:'-0, %jr_))}sm{exp -21’%_\103?’“-fx«:‘l.n)]clc‘s‘l
=4 ). (2.2.2. 42)
S(’&:]Q ﬁ:’u) . Eq

We can construct generalized eigensections of the operators %d
corresponding to generalized eigenvalues which lie outside R(—ﬂod') in three
steps as follows.

(1) For each 4. & R(f), the function LPf’jo(%J) defined by
equation (2.2.2.Eq 37b) can be rewritten as
' = -'/4 & <1 - -1 " . ¢ - -
ﬁg.f%-) [onfi]™Y/4 texp £l (% )-T) Chjo 1 §ir)+5) O, 801
(2.2.2.Eq 43)
(ii) Let us formally extend the range of -fc:l from R(—go‘i) to the whole of [R.
2
Let f.puo('#’,j’%j) be a smooth function on [R” that satisfies the condition
fioolly1%y) = fj(-g«ﬁ,ﬁ) on R(f) x R(gi). (2.2.2.Eq 44)
~
(iii) Then for each ,g:._e-. R -H(‘Sﬂj), the generalized eigensection of .ﬁ,
4@ J
corresponding to the generalized eigenvalue ﬂ’jo is given by
$, - (g+) P: ' (2.2.2.Eq U45a)
’!‘:"n %’Jo %\| P.j
where
. = ..-‘,4 & - . J=1" - & -
LP{,,‘jm(%") [ont] ™4 foxp +fr (- 40Tl hjo 1 8, )+ Giuosl v 0 45 1)
(2.2.2.Eq 45b)

Clearly the quantization Hilbert space H(P' is spanned by the set
J

{§‘3” :izf E—‘R}'
Jo “4e
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It can easily be shown that
\
dg., ¥ (¢.)@, (') =%5(9.-4.) (2.2.2.Eq 46)
-(TE ®jo fio & '&,o%.l %«l %d
(This property should not be confused with the inner-product of generalized

eigensections of % given by equation (2.2.2.Eq 42).)

Let us digress for a moment to consider the quantizations of the
variable -f;. in a general case (2) situation. In order to obtain physically
acceptable results for the quantizationsof the wvariable 'fa in canonically
conjugate polarizations for a general case (2) situation we make the

following assumptions.

Physical assumption PA2

The values assumed by the quantum observable corresponding to the
variable ’83 should be contained in the range of values R(—,go) of the classical

variable /go i

Quantum assumption QA2

When quantizing,gg in ® the quantum Hilbert space H(£) should be spanned
by all generalized eigensections of the quantization operator :g;'
corresponding to generalized eigenvalues consistent with the physical
assumption PA2 above. A corresponding statement also applies when

quantizing 4 in B

Let us return to the problem of establishing a physically acceptable
quantization of the free Hamiltonian 4= p2 in the polarization ®. Firstly,
we shall establish physically acceptable quantizations of /g.-;.; in G’J as

follows. According to the assumptions PA2 and QA2 physically acceptable



Page 120

quantizations of 1F°~i in (F:J are achieved if the quantum Hilbert spaces H(G))
are the subspaces of the quantization Hilbert spaces Hﬂ-;d. spanned by the sets
{éﬂ’joz '&,«io e R(—gt") = (0,m)}, and the corresponding quantum operators % are
the restrictions /;%: in H(F’J' to H®; ). Secondly, we note that the operator
@1@%1 in H(® ) ® H(®;) is self-adjoint with positive spectrum because the
operators '?’j in H(®;) are self-adjoint with positive spectra
[ef. Naimark (1968), p209]. Therefore, a physically acceptable quantization
of .§o in the polarization (® is established if the quantum Hilbert space H(®)

is H(® ) ® H(, ), and the quantum oper-ator-:i, is .3:103 -gz.

Let us now quant.ize,&b: p%Z in the polarization .. As before we define

the quantization Hilbert space associated with the polarization & by
Ho = H H .
€ = “®1c @ "

The quantization pre-Hilbert spaces Hﬂ,_ consist of square-integrable
e

sections of the form
Yie = Wielfj) Pier fo5e Ry (2.2.2.Eq 47a)
where -
! e o B -z ,
H(&’) = (O!m)r 'PJ -ISJCId%:II ) . /g\jc. = {exp %‘So.d(‘&d’%:‘)}so.\
(2.2.2.Eq 47b)
The inner-products on We- are given by
Je oo 2
: - =V )2 oo
<¥J"'"T-l"->6’3¢_ = [2wn]™"/ jb l\%{“_(gsd)l dﬁ. (2.2.2.Eq 48)

The quantization Hilbert spaces H‘PJ' are the completion of “"fjc.'
c

The quantization operators _?D' in H@. are self-adjoint multiplication
Je Jdc

operators given by

%},_&D:ic, =,f,iifq¢. (2.2.2.Eq 49)
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Since:g, in H(P satisfy the assumptions PA2 and QA2,it follows that
Jo c

~
the quantum Hilbert spaces H(®c) and quantum operators /go are given by

Je

~ .

H(®) = H‘%L and ,»&,j.’ = ‘s?fq, respectively. Therefore, a physically
acceptable quantization of 80 in (ﬂ_ is established if the quantum Hilbert

~
space H(F,) is H(®, ) ® H((’¢), and the quantum operator 63-6 is +1c$ ’&ozc'

The pairing maps between H(G’d‘) and H(®c¢) are given by
[ef. Appendix 2.6, equation (A2.6.Eq 1)]
% Loge,
= [2wh]" (q) P (4o S (.2 )-8 (fo.,2:) 1 }d 4o dg.«
[2wK] 3 S By el Lo 4o (g D=5 Vo aq
R\', e
J (2.2.2.Eq 50)
where R\‘) = R(%j) and ch = R(ﬁa‘]‘). Let us formally extend the range of ,xad- to
R, and let us extend the domain of the function kﬁ‘-('ﬁ.) to IR by putting
‘lj'c(-god') = 0 for ,ﬁ:'e; “"’\'R('&,')' We recall that earlier we had smootZly
extended the domains of the functions fj (50&,%&) from R(—SoJ) X R(%J‘) to K by

introducing the functions fjrm(?ﬁ’%j) [ef. equation (2.2.2.Eq 44)].

Therefore, the pairing maps between H(®;) and H(€;c) can now be

rewritten as

;. i} - 314 Y (o : ;
B GO, = L2vH] Sm g,,;%(%J)qj“(ﬁ"d) Legsj%‘l)%jd%‘l (2.2.2.Eq 52)
where (e%_( %‘:\) is given by equations (2.2.2.Eq 37b) and (2.2.2.Eq 45b).
J
The pairing maps def ined above determine the unitary maps

UJ :H(Rpe) --> H(U:") which are defined as follows. The map V; map

"{ch= \{jt_(-h- ){Jd , where ‘{j-c(&l—) = 0 for %jeR-R('h').go q;r L%(%),PJ- by
o -Va 3
P (g = [2w] Smll{ic(gu)(%(%d)dﬁ. (2.2.2.Eq 53a)
The inverse map v is given by
) (8.+) = -1/4 KD s
Wetgy) = [2mn] fmtfi(%l)(ﬂﬁ(%))dgj. (2.2.2.Eq 53b)

The proof that the maps ‘F‘]' are unitary is essentially the same as that given
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in Appendix 2.6 [cf. part(ii)]. Then let V:H(®,) --> H(®) be the unitary

map defined by V = ‘L, ®Vy.

We shall show that:f:, in H(®) and %‘,ﬁ in H(f.) are unitarily related as
follows. It is sufficient to show that Vi V™' = .. Let &;= (g f;
and Y, = VJT1§j= \‘j'c(‘g’j){).it where ({jc('s"l.) =0 for .go‘ie R-R(§;). Then

(v.A v.-‘l),zﬁ.

d&[q J J
(C2nm) ™ § o B V() a4y £
(rm)4[ Wi () LI-160/ag) -1 (g, 40794 Pe 50 194 £
(by equation (2.2.2.Eq 39))

"
1. (2.2.2.Eq 54)
%

Now let us consider the quantizations of the variable %:1 The
variables %\] are quantizable in the quantization Hilbert spaces Hd';‘,'r but not
quantizable in the quantum Hilbert spaces H(P;) by an argument similar to
that given in proposition (A2.4.P1) of Appendix 2.4. The variables %J are
not quantizable in H‘PJ{:’ since the associated vector fields Prjc x (X%j) are
not complete on Qjc . Ther'efore,-%j are not quantizable in H(G’Jc). Hence we

have established consistent quantizations of %J in the canonically conjugate

polarizations &; and (.

As a final check of our results we shall compare the quantization of -ﬁ)
in the polarization ®® with the quantization of the free Hamiltonian pz in
the vertical polarization P. The symplectic manifold (M,w) with the
cartesian coordinates (p,q) is an example of a case (3) situation. When we
study the case (3) situation we shall see that H(P) the quantum Hilbert

space (associated with the vertical polarization P) is the quantization
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Hilbert space H In Appendix 2.7 we derive the quantum operator ?)1 in H(P),

P
and then we demonstrate that.% in H(®) and Bz in H(P) are unitarily related.
This serves to show that our physical and quantization assumptions, and
therefore our method of establishing of establishing unitarily equivalent
quantizations in the canonically conjugate polarizations ®and (P(._ for the

case (2) situation is physically reasonable.

Case (3)

In this case we have R($) x R(%) = I'RQ.' Clearly both the canonical
var-iablea—é’o and % can be quantized in each of the quantization Hilbert
spaces H@ and H(Pc’ The spectra of the quantization operators g’and %’in He
are R(p) and H(%) respectively. Similarly, the spectra of the quantization
operatorsé:; and %"t in H{Pc. are R($) and R(%) respectively. The physical
assumptions PA1 and PA2, and the quantization assumptions QA1 and QA2 are
applicable here. Then the quantum Hilbert spaces H(®) and H(® ), and the
quantum operators%\a ¥ ’t%, gc_ and %" coincide with the quantization Hilbert
spaces H(P and HE’ and the quantization operators%, %‘, %;o and %;
respectively. Thus we have established unitarily equivalent quantizations
of the variables'fa and % in the canonically conjugate polarizations ® and
. ; the 1link being given by the unitary map U:H(P) --» H(F.) which maps
$ "P(%),O to W, = Y, () f by

W) = [Znﬁ]*llzjm\{)(%)[exp #8y(frg) Hexp ~£S5(fyg)}dg (2.2.2.Eq 55a)

with inverse map U given by

\P(%) = [2“5]-|'25‘-\)c(-io)[exp -£S4(f,q) Hexp 136(@,%)}%. (2.2.2.Eq 55b)
R
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Case (4)

In this case the canonical variable.go can only be quantized in the
quantization Hilbert space H‘?c.' and the variable %_ can only be quantized in
the quantization Hilbert space HQ. Therefore, it is not possible to set up
unitarily equivalent quantizations of'-go and % in the polarizations ® and 6%
as we did in the previous cases. A way forward using 1local observables is

possible. This will be discussed in Chapter 4.
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2.3 HALF-DENSITY QUANTIZATIONS IN CANONICALLY CONJUGATE POLARIZATIONS
AND THEIR UNITARY EQUIVALENCE IN TWO-DIMENSIONAL NONCONTRACTIBLE

SYMPLECTIC MANIFOLDS

(2.3.1) Introduction

We shall start by giving a definition.

(2.3.1.D1) Definition [Prugovecki (1971), p315]

The self-adjoint operators ’E?,...,i1< acting in a Hilbert space H
constitute a complete set of quantum observables if the following two
conditions are satisfied:

(CQ0 1) There is a measure p in the Borel sets of the k-dimensional
Euclidean space ﬂEK with  support R(X) = R(i;) ¥ oase X H(i}g where
R(Eﬂ),...,R(i@) are the spectra of ﬁ;,...,i;_respectively.
(CQO0 2) There is a unitary map U of H onto ﬁLGRK,p) such that the operators

f&: UA;UY, 1= 1,...,k (2.3.1.Eq 1a)
are the multiplication operators

Ag}Tx) = x; V(x) (2.3.1.Eq 1b)

with domain

Kk
Dy = {W(x):s x5 19(x) | dp(x)<o0, We LR 1. (2.3.1.Eq 1e)
i [RK

If the above two requirements are fulfilled, the Hilbert space Lz(ﬁfﬂp)
is called a spectral representation space of the operators i;,...;ﬁ;, and

the set of operators'ih,...,iﬁkis called the spectral representation of the

operators i;,...;Ik.

In the previous section we proposed the following scheme for rendering the
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quantizations of canonical variables in canonically conjugate polarizations
of 2-dimensional contractible symplectic manifolds unitarily equivalent. We
replaced the quantization Hilbert spaces and quantization operators in the
standard half-density quantization scheme by newly-defined structures which
we called quantum Hilbert spaces and quantum operators respectively. 1In
this section we shall study examples in which the canonically conjugate
polarizations consists of a polarization with toroidal leaves and a
polarization with non-compact leaves. The quantization in the polarization
with toroidal leaves gives rise to BWS conditions and a quantization Hilbert
space that consists of sections that are only defined on the isolated leaves
of the polarization [cf. Chapter 1, section 1.2]. Hence the scheme proposed
in the previous section is unsuitable for the examples in non-contractible

symplectic manifolds that we shall consider.

Let us now consider the examples the we studied in the previous section
to see if they can shed any light on how we could render quantizations of
canonical variables in canonically conjugate polarizations of
non-contractible symplectic manifolds unitarily equivalent. In the case (1)
and case (3) situations we showed that the variable 2 is quantizable in the
polarizations  and ¢, with quantum operators’fi in H(®) and %c in H(® ).
Clear'lyi and %cconstitute a complete set of quantum observables in H(®)
and H(fe) respectively with H(®) the corresponding spectral representation
space, and‘%_the corresponding spectral representation. Similarly, in the
case(2) or case (3) situations the variable1k is quantizable in H(®) and
H(®._ ) with H(®.) the corresponding spectral representation space, and‘%% the
corresponding spectral representation. It seems natural to assume that such
a unitary relationship between the quantum operators and their corresponding

quantum Hilbert spaces should continue to exist when quantizing canonical
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variables in canonically conjugate polarizations of non-contractible
2-dimensional symplectic manifolds. We shall therefore use the notion of a
complete set of quantum observables and its spectral representation when
constructing quantum operators and quantum Hilbert spaces in the examples we

shall consider.

(2.3.1) Notation

We shall restrict ourselves to the study of 2-dimensional
noncontractible symplectic manifolds (M,w) with canonical coordinates (I,®)
where (I,0) are either action-angle variables, or in the case where M = T’S’

then © is the polar angle (on S') and I is the canonical momentum.

Let @ and ® be the polarization spanned by (2/2I) and (?/36)
respectively. Let Q and Qg be the effective configuration spaces with
respect to the polarizations ® and ®. respectively, and let pr:M --=Q and

pry :M --35 Q¢ be respectively the corresponding projection maps.

Let (I,,8y = 0) be the chosen reference point in M. Let ¥ and ¥, be
the I-coordinate curves through the points (I,,®) and (I,,0,) respectively.
Let 0 and 0, be the @-coordinate curves through the points (I,8y = 0) and
(I,,8y = 0) respectively. Let R(I) denote the range of values of I along ¥
and let R(B) denote the range of values of 8. We have R(8) =R, Let 3 be a
one-form on M given by

R =rdIdI+|39d9 = (I+c)de+df(I,0) (2.3.2.Eq 1)

where ceR and f e Cm(M). Clearly P satisfies df = W.
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Let B = M x @ be a trivial bundle on M, (*,-) be the natural Hermitian
structure on B, 8, be a unit section of B and let V be a connection on B

defined by
Vg 8 = -H(X AP )se for all X e Vg(M). (2.3.2.Eq 2)

Let (B,(*,+),V) be the chosen prequantization bundle over (M,w).

The various line integral of S along the coordinate curves are given

by :
e

S5(1,0) =J;g, = (§ Bod®)p_ (opney = (I+)0+£(I,0)-1(1,0), (2.3.2.Eq 3a)

Sou(Tes8) = fo p = (§.Pa0)p. . = (I+e)0+£(T,,0)-£(I,,0), (2.3.2.59 3b)

S5(1,0) = § p = (IIIﬁIdI)e':cDm.: £(1,0)-£(Iy,0) (2.3.2.Eq 3c)
and

: L
B, tTatl w8 = (jI B dDg. o = £(I1,05)-F(Iy,0,). (2.3.2.Eq3d)

(2.3.3) A particle constrained to move on a circle

Consider the physical situation of a particle constrained to move on
circle of radius 1 [ef. Martin (1981), ppl6-U47]. This is a simple version
of the rigid rotor which is of some importance in  physics
[ef. Schiff (1968), p99l]. The configuration space is Q = S1'; let © be the
polar angle on S'. The phase space is M = TQ = R x s'; 1et (I,8) be the
usual canonical coordinates on M such that I is the canonical momentum.
Clearly M is noncontractible; in particular, it has the geometry of an
infinitely long cylinder of radius 1. In quantum mechanics the spectrum of

the quantum momentum observable is {nff : neZ} [ef. Martin (1968), p99].

Let us quantize I in the polarization . The leaves of (@ are the
I-coordinate curves ¥ which are noncompact since they are infinite lines.

The quantization Hilbert space H(p consists of square-integrable sections of
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the bundle B x A-)/2(®) of the form

® = Pe)p, 0 R; (2.3.3.Eq 1a)
where
P =8 1d117""%; B, = {exp 454(I,0)}s,. (2.3.3.Eq 1b)
The inner-product on Hgp is given by
<$,%% = (2nn) "2 j:w I‘P(e)lzde. (2.3.3.Eq 2)
(Remark: (R1) Note that because }{,o is globally smooth it follows that the

section & is globally smooth if

WYo) = P(0+2m). (2.3.3.Eq 3))

In this case the effective configuration space with respect to the
polarization  coincides with the actual configuration space (of the

classical system) st,

The associated vector field pry(X;) generated by I is given by
pry(Xy) = (@/28). The canonical momentum I is quantizable in Hgp because
prg(Xy) is complete on s'. Then by equation (A2.3.Eq 5) [ef. Appendix 2.3],
the quantization operator I in Hp is given by the expression

1§ = [{-16(2/20)-(Df(1.,0)/20)+c}P(0)Ip;  (2.3.3.Eq 4)
(here we have made the following replacements in the operator expression
given by equation (A2.3.Eq 5): &;“%’Irs f1(3ﬁr,za) --3y f(I,,0)+c8 and

('6/3%1 ) -=> (3/20)).

The classical range of values of I, R(I), 1is IR. From

Proposition (2.2.2.P2) [ef. section (2.2)] and the condition given by
N

equation (2.3.3.Eq 3), we conclude that I,& R(I) is an eigenvalue of I if

the corresponding section §I°which is given by

Py

¢hi/2a)"'4 {exp £S5 _(1,,0)}{exp -1S,(I,,0)} P

4]

(fi/72m"4 {exp 41 (I +c)0+£(Iy,0)-f(1,0)1} P (2.3.3.Eq 5)
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is globally smooth. Since p is a globally smooth section of B x A-yz (®)
and f e Cm(M), it follows that §Io is globally smooth if
(I,+c)2w = 2nnfi, where n is some integer. (2.3.3.Eq 6)
For each ne 7ZZ, we shall write
I(n) = nfi-c. (2.3.3.Eq T)
Thus the operator T in Hp has a discrete spectrum
R(I) = {I(n): neZ}. (2.3.3.Eq 8)
Then the normalized eigensection of ?eorresponding to the eigenvalue I(n)
is given by
$,, = (Bm/2m"4 {exp [nfi+f(I,,0)-£(I(n),0)1} . (2.3.3.Eq 9)

Note that by choosing @= IdO+df the physically correct spectrum is obtained.

Let us now quantize I in the polarization . The leaves of ¢, are the
6-coordinate curves. These leaves are toroidal; in particular, they are
circles of radius 1. We shall follow the procedure for quantizing the

action variable I given in section (1.2) (of Chapter 1).

A formal expression for a (.-wave function is given by
Y, = Y(Dp, ., Te RID); (2.3.3.Eq 10a)
where
{, =B 1d01™Y2 and A, = {exp £5,(I1,8)}s . (2.3.3.Eq 10b)
The sections ’I’;_ are only well defined on isolated 6-coordinate curves, and
these curves are called the BWS leaves. The sections ¥, are only well
defined on the curves G, (which are determined by the values I,) if
so_o(:c,o) = s%(:[,zn). (2.3.3.Eq 11a)
or equivalently if the BWS condition given by
ts:oo_np = 2nmh, for some ne Z (2.3.3.Eq 11b)
is satisfied. Hence the BWS conditions are satisfied if I, takes the values

I(n) = nh-c, ne Z. (2.3.3.Eq 12)
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Let o denote the B-coordinate curve determined by the value
I(n). Let B'Uh and A.yy(®)| | denote the restrictions of the bundles B
G

and A-y,(®) , respectively, to o™

Then @, -wave functions on " are sections of the bundle )
Blg—" X Noyyp (@) on of the form

-2
!

.= anlexp A Sgn(I(n), 0)}s,(I(n), 6)lde (2.3.3.Eq 13)

where an,e .

The Hilbert space Hg, is defined to be the one-dimensional space
consisting of square-integrable (P-wave functions on u‘" with respect to the

inner-product

o0 T, 57 12nal (2.3.3.Eq 14)
The quantization Hilbert space Hp 1is defined by the direct sum
n
H, = H 7 (2.3.3. 15)
®, SB'-‘:Z! ® 3.3.Eq

The quantization operator ?c in Hd:c is defined by

~ n

I.Y, = I(n) Ve, where ¥, € Hd,c' . (2.3.3.Eq 16)
The spectrum of I , R(’fc), is given by

R(Fft) = {I(n) = mh-c: necZ}. (2.3.3.Eq 17)

~

By theorem (A2.9.T1) [cf. Appendix 2.9], the operators I in Hp and I,
in H@e are unitarily equivalent because they have a common spectrum. Ve
can, in 1line with the assumptions PA1, QA1, PA2 and QA2 given in
section (2.2), formally introduce the notions of quantum Hilbert spaces and
quantum operators. It follows that the quantum  Hilbert spaces H(F) and
H(f.), and the quantum operators T and f‘._ should be given by H(P) = Hg and

. A ~ A ~
H(&) =Hp, and I = I and I, = I, respectively.
3
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In the next subsection we shall give a unified treatment of all this.

(2.3.4) The spectral representation and the spectral representation spaces

We can summarize the results of section (2.2) as follows. The variable
1& was only quantizable in the canonically conjugate polarizations ¢ and Ge
in the case (2) and case (3) situations, and the corresponding quantum
operators were denoted by -g in H(®) and %\% in H(® ). Similarly, the
variable g& was only quantizable in the canonically conjugate polarizations ®
and %, in the case (1) and case (3) situations, and the corresponding

quantum operators were denoted byti: in H(®) and § in H(@).
IS

In all the examples on noncontractible symplectic manifolds that we
shall discuss in this section the variable I is quantizable in the
canonically conjugate polarizations ® and F, . Let T and ‘;[\Q be the
corresponding quantum operators in the quantum Hilbert spaces H(®) and H(F,)

respectively.

Remark: (R1) From now on we shall use the term quantizable to mean

quantizable in the canonically conjugate polarizations ®and tPt.

We shall now present the 1deas discussed earlier in the following

postulates:

(2.3.4.PST1) Postulate PST1

In the situations where 5, is quantizable the quantum Hilbert space
H(®,) is identifiable with the Hilbert space LZ(R,p) which consists of
functions of the classical variable {o that are square-integrable on R with

respect to a measure | whose support lies within R(4) (the range of values
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of the classical variableao). In the situations wher‘e% is quantizable an
analogous statements applies to the quantum Hilbert space H(P). In
situations where I is quantizable an analogous statements also applies to

the quantum Hilbert space H(&F,).

(2.3.4.PST2) Postulate PST2

In the situations where ﬂo is quantizable the quantum operator% in H(®)
has H(@. ) as its spectral representation space, and.%% as its spectral
repregentation. In situations whereJ% is quantizable, the quantum operator
’%\,& in H(® ) has H(@) as its spectral representation space, and§ as its
spectral representation; In situations where I is quantizable the quantum
operator E‘in H@) has H(0%.) as its spectral representation space, and ?c as

its spectral representation.

The essence of the ;bove postulates lies in the extension of the
definition of the quantum Hilbert space introduced in section (2.2). 1In
particular, the quantum Hilbert space defined by postulate PST1 is basically
the same as that given by the assumptions PA1, QA1, PA2 and QA2 except that
the inner-product is now defined with respect a measure 18 instead of the
standard Lebesgue measure, This generalization enables us to deal with
the quantizations of the canonical variables.@ andt% in the 4 cases studied
in section (2.2) where the quantized observables have continuous spectra,
and the quantizations of the action variable I where the quantized operator
has a discrete spectra in a unified manner. In general, the measure p is
not uniquely def ined by the requirement in postulate PST1

[ef. Prugovecki (1981), p324].
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Postulate PST2 basically spells out the requirement that the

quantizations in the polarizations ® and (e should be unitarily related.

We shall now apply our postulates to concrete examples.

(2.3.5) Quantizations of canonical variables in canonically conjugate
polarizations of contractible 2-dimensional symplectic manifolds revisited

Clearly the results of section (2.2) are consistent with the postulates
PST1 and PST2. We shall illustrate this point with the following example.
Consider the situations when %_is quantizable. Clearly the quantum operator
%c_in H(f.) has H(®P) as its spectral representation space and g as its
spectral representation. This unitary link is exactly what is required by
postulate PST2. We based the postulate PST2 on this unitary link. The
Hilbert space H(®) (defined in section (2.2)) is identical with the Hilbert

space LZ(R,p) (defined by postulate PST1) when the measure p is given by

dp(g)

(2uni) ™2 d% for ¢ & R(g)

n

0 otherwise. (2.3.5.Eq 1)

Similarly, one can show that the quantizations of the variable ﬂa given

in section (2.2) is consistent with the postulates PST1 and PST2.
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(2.3.6)Noncontractible symplectic manifolds

Let (M,w) be a noncontractible 2-dimensional symplectic manifold with
canonical coordinates (I,0); we shall assume the notation given in

subsection (2.3.2).

Then by postulate PST1 the quantum Hilbert space H(§2) consists of
elements of form
V. = YD) fes» I e R(I) (2.3.6.Eq 1b)
where

Y e L’c(m,)u) ;p@:ﬁwlder”“ ; Aeo= lexp 45,(1,0)}s,. (2.3.6.Eq 1b).
The measure p can be determined in three steps as follows.

(1) Clearly s« cannot be a Lebesgue measure since s is only well defined on
the 6-coordinate curves o" (which are determined by the value I(n)) on which
I(n) takes the values [ef. equation (2.3.3.Eq 12)]
I(n) = nfi-e, neZ. (2.3.6.Eq 2)

(42) The quantization Hilbert space Hpand the quantization operator T are
formally identical to those given explicitly in subsection (2.3.3)
[ef. equations (2.3.3.Eq 1a), (2.3.3.Eq 1b), (2.3.3.Eq 3) and (2.3.3.Eq 4)1.
We must now check to see if Hﬁ,and'iacan be regarded as the quantum Hilbert
space and quantum operator respectively. One way of doing this is to check
whether the spectral representation space of E?in He can be identified with
the Hilbert space ﬁiﬂ?,p). In practice this is done as follows:

(i) Suppose R(E) (the spectrum of T) is contained in R(I) (the range of

classical values of I); then the quantum operator ? is taken to be the

quantization operator E: and the quantum Hilbert space H(®) is taken to

be the quantization Hilbert space Hp

(ii) Let Eﬁ” be the globally smooth eigenfunctions of the operator T'in
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Hpe given formally by equation (2.3.3.Eq 9). Suppose R(T) is not
contained in R(I); then we define the quantum Hilbert space H(®) to be
the subspace of Hp spanned by the set {$,:neZ, I(n) € R(I)}. The
quantum operator /I\ is then defined to be the restriction of the
quantization operator T to H(®). Let H(EE) be the spectrum of the
quantum operator /f

(p3) It follows from postulate PST2 that the measure p is a discrete measure

with support R(I), and such that

p({I(n)}) = 1 for every I(n) € R(1). (2.3.6.Eq 3)

It is easy to check that the multiplication operator I on the Hilbert
2 A
space LG(R,n) possesses a discrete spectrum identical to R(I) with

normalized eigenfunctions Y, (I) given by

Iy, (1) = I(n)Y,,.(I) (2.3.6.Eq 4a)
or explicitly
Y..(I) = 1 when I = I(n).
= 0 when I = I(n') # I(n), n'eZ.  (2.3.6.Eq 4b)

(Note that I(n) is an eigenvalue of the multiplication operator I only if
I(n) belongs to R(I) the range of classical values of I.) Therefore, we

n N
shall define the quantum operator I, in H(6%) by I, = I.

We shall now apply these ideas to two concrete examples.

(2.3.6.Ex 1) Example: The particle constrained fto move on a circle
revisited

In this case we have R(I) =® and R(T) = {I(n): n eZ} [cf. equations
(2.3.7.Eq 7) and (2.3.7.Eq 8)]. Hence the spectrum of I, R(T), is contained

in R(I).
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To summarize we have:
N ~ N ~
(i) H(P) = Hy, I =1 and R(I) = R(I). The measure pu is then given by
equation (2.3.6.Eq 3).
(ii) The Hilbert space H(f,) consists of elements of the form

"K_ = "{é(I)(’c where Lf*’c(I) is a member of Lz.;(m,p).

A n
(1ii) The operator I, = I in H(03) has the the same spectrum as I in
n
H®). By theorem (A2.9.T1) [ef. Appendix 2.9], ,I\in H(®) and I, in
H(F.) are unitarily related.
(2.3.6.Ex 2) Example: The one-dimensional harmonic oscillator

[ef. Wan and McKenna (1984)]

Let IR be the configuration space with cartesian coordinate q. The
cotangent bundle T¥*R is identifiable with RZ Let w be the canonical
two-form on TR, and let (p,q) be the usual cartesian canonical coordinates
on T'F. Let M= T®-{(0,0)}; then (M,w) is noncontractible 2-dimensional
symplectic manifold. Let (I,0) be action-angle variables on M given by

I = (p*+q*)/2, 6 = tan™ (a/p). (2.3.6.Eq 5)

The Hamiltonian of the harmonic oscillator is given by H = I.

Our problem is to establish unitarily equivalent quantizations of the
action variable I in the canonically conjugate polarizations & and 6% .
However, unlike the previous example there is a constraint on I given by
I>0, i.e. R(I) = (0,00). This means we can no longer identify the quantum
Hilbert space H(®) and quantum operator ,f with the quantization Hilbert

space Hd,and quantization operator rfrespectively.
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Let us quantize I in the polarization ®. Then HCP consists of
square-integrable sections of the bundle B x A-1/2 (®) of the form $ = @(8)p
where £ =%, 1dI|""2 and 4_= {exp 45,(1,0)}s,. The quantization Hilbert
space Hp is the completion of We. By equation (2.3.3.Eq 4a), the
quantization operator T in H(P is given by the expression
1§ = [{-1fi(2/20)-(2£(1,,0)/20)+c}P(0)]1p. By equation (2.3.3.Eq 8), the

s
spectrum of Tis given by R(I) = {I(n) = nif-c: n «Z}.

We shall now introduce a discrete measureVv as follows. Let v be a
measure with support R(rlu) and such that

V({I(n)}) = 1 for every I(n) e R(I). (2.3.6.Eq 6)

Then in analogy with the definition of the quantum Hilbert space given
in postulate PST1 we define the quantization Hilbert space H@c to be the
space of square-integrable sections of B xﬂ—vz (®e) of the form
T, = W(Dp. where IeR, YAD e lZR,) and £, = &,ldel"2. The
quantization operator ’fc is then the multiplication operator I in H@c.
Clearly the the spectrum of ’fc, is given by R(f;) = R(’f). Then by
theorem (A2.9.T1) the quantization operators ?[1 in H(Pc and T in Hp are
unitarily equivalent. Since R(/f') contains negative eigenvalues, it follows
that neither ?nor I. represent a physically acceptable quantized operator
corresponding to the Hamiltonian H where H = I. Alternatively, one could
say that H“’c is not the quantum Hilbert space and flvc_ is not the quantum
operator as H(pc contradicts postulate PST1: v does not vanish outside R(I)
(the classical range of values of I). Similarly, by postulate PST2, Hp is

not the quantum Hilbert space and ’fis not the quantum operator.
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By equation (2.3.3.Eq 9), the eigensections of T corresponding to the
eigenvalue I(n) = nfi-c, where n e¢Z, are given by

$,, = (n/2n)"'* {exp £[nh+f(I,,0)-f(I(n),0)]1lp.

Since the spectrum R(I) is not contained in R(I), the quantum Hilbert
space H(®) is defined to be the subspace spanned by the set of eigensections
{$, : I(n)>0}. The quantum operator f[\ is then defined to be the
restriction of the quantization operator T to H(®). The spectrum of Tis

given by

R(1) = {I(n): nez} 0 R(I)

{I(n):n e«Z and I(n)>0}. (2.3.6.Eq T)

The quantum Hilbert space H(®.) and the quantum operator ?g are defined
as follows. To conform with postulate PST2 we introduce a new discrete
measure p with support R(?) and such that

u({I(n)}) = 1 for every I(n) & R(T). (2.3.6.Eq 8)
The quantum Hilbert space H(®.) is defined to be the space of sections of
B x A2 (®) of the for’mﬂ'fc. = ‘Pf-(I)Pe where ‘{{.’(I) is a member of Li(R,p).
The quantum operator /I\c, is then defined to be the multiplication operator in

H®).

A A
Clearly the quantum operators I and I, have a common spectrum; so by

A A

theorem (A2.9.T1), [cf.Appendix 2.9], the operators I and I, are unitarily
~

equivalent. Then by postulate PST2 I in H(®P) has H(®,) as spectral

VA
representation space and I, as its spectral representation.

Finally, by choosing the connection potential to be
B = (I+h/2)de+df. (2.3.6,Eq 9)
o
the eigenvalues of I become I(n) = (n+1/2)A, where n = 1,2,3,... . We have

therefore established consistent quantizations of the variable I in the
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canonically conjugate polarizations @& and Gg with physically correct

spectrum.

(2.3.7) Concluding remark

We have established a unified scheme for dealing with the quantizations
of canonical variables in suitably chosen canonically conjugate
polarizations applicable whether or not the symplectic manifold is

contractible.
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APPENDIX 2.1

The pairing map and the linear map (induced by the pairing map)

Let (M,w) be a 2k-dimensional symplectic manifold. Let & and ¢' be two
reducible polarizations of (M,w) that are transverse. Let (B,(* ,*),V) be
the chosen prequantization bundle over (M,w). Let Hp and Hpe be the
quantization Hilbert spaces associated with the polarizations @ and @'
respectively. Let < , >(P and < , >(P| be the inner-products on Hg and
Hpt respectively. Then Hgp consists of square-integrable sections of the
bundle B x A-vyz(®) of the form ¥ = sv that satisfyvxs = 0 and Yy,~v= 0 for
all Xe V(M;®). Similarly, Hg' consists of square-integrable sections of
the bundle B x N -y2(¢@') of the form ' = s'yv' that that satisfy VYS' =0

and VYY' =0 for all Ye V(M;e').

(A2.1.D1) Definition [ef. Blattner (1573); Woodhouse (1980), p160]

The pairing map between the quantization Hilbert spaces H@ and Hgpt is
the sesquilinear map
('Ef’ §'>@@' :H(Px H(P. --> C (A2.1.Eq 1a)
given by
Yy B Vet = [20817% (T, 3") 5o (A2.1.Eq 1b)
? 48 M 2 (Gl =l
where (¥ , g')pe' is the one-IM-density defined by
(F 13 dpgt = (358") VIXIINHY  HI2KIE(Xq, o o Ko Yqy o0, 1) 1?2 (A2.1.Eq 10)
such that {X;} is a field of bases of e, {Yj} is a field of bases of ' and

£w is the Liouville volume form.
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(A2.1.D2)Definitions [ef. Blattner (1973); Woodhouse (1980), p160]

(D2.1) The 1linear maps (induced by the pairing map) are the maps
UtPtP' =H0“ --3 Hp! and Us,la, :Hﬁ,i -— H(‘P determined by the relations

<anqr, ' = Y, B"pp! (A2.1.Eq 2a)
and

T Uppd'dp = ¥, & pp! (A2.1.Eq 2b)
respectively.
(D2.2) The polarizations ®and @' are said to be unitarily related if U@@‘

and U(P'(‘F’ are unitary maps.

Remark: (R1) In general the linear maps (induced by the pairing map) are
not unitary maps. There are no general theorems for ascertaining whether ¢

and ' are unitarily related; however,we do have the following theorem.
(A2.1.T1) Theorem [ef. Blattner (1974)]

Let (Rzﬁuﬂ be a symplectic manifold where (s is any symplectic two-form
2k
on R, Then any two transverse, transalational invariant, reducible

. 2k
polarization of (R ,w) are unitarily related.

with the vertical and horizontal polarizations, and the linear maps (induced
by the pairing map)

Let Q € R be the configuration space with cartesian coordinate q and
let R(q) denote the range of q. Let M = T%Q be the phase space, W be the
canonical two-form on M and 1let (p,q) be the usual cartesian canonical
coordinates on M. Let R(p) denote the range of p which is given by

R(p) =R. Let m be an arbitrary point in M. Let ¥ denote the p-coordinate
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curve and let O denote the g-coordinate through the point m. Let P and P
be respectively the vertical and horizontal polarizations of (M,w), i.e. P
is spanned by the vector field (2/ap) and P, is spanned by the vector field
(?/2q). Clearly the polarizations P and P, are both reducible. The
effective configuration space with respect to P is the actual configuration
space Q. Let Q. be the effective configuration space with respect to P;;
then Q. is identifiable with R(p) and is coordinatized by p. Let B = Mx C
be the trivial bundle over M, (-,°) be the natural Hermitian structure of B,
S, be a unit section of B and letVv be a connection on B given by
VxS0 = ~#(XAR)se, for all X € V(M) (A2.1.Eq 3)
where
@ = pdg+df, f & C (M). (A2.1.Eq 4)

Let (B,(*,+),v) be the chosen prequantization bundle over (M,w).

Let (pr,qr) be an arbitrary point in M. Here is a list of integrals of
the connection potential @ along the coordinate curves that we shall use:

p
S4(psq) =f2rﬁ' = (L (2f/2p)dp)  _ = £(p,a)-f(p,.,q)

const.
(A2.1.Eq 5a)
and
Sg(Pya) =SU(5 = (S:rp-l-(af/'aq)dq)p:whst = pg-pq,+f(p,q)-f(p,a,).
(A2.1.Eq 5b)

The quantization Hilbert space Hp consists of square-integrable
sections of B x &-y2(P) of the form
T = Ya){exp £5,(p,a)}soldpt™"? (A2.1.Eq 6a)
with respect to the inner-product

T, P>, = [2n6]72 [ 19(a)12dq. (A2.1.Eq 6b)
Q
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The quantization Hilbert space HP consists of square-integrable
c

sections of the bundle B x A-j2(P.) of the form

$e = @.(p){exp £345(p,q)}s, ldg1™"? (A2.1.Eq Ta)
with respect to the inner-product
2
<Py BDp = [2nﬁ]‘”’~g 1P, (p)} dp. (A2.1.Eq Tb)
[]
R

Then the one-TM-density (¥, §‘)P"c. defined by equation (A2.1.Eq 1e) 1is
given explicitly
(¥, Bpp, = V(@ P(p)ldpi2 {(2/0p)}dal™2 {(2/2) } exp £(Sy(p,a)} x
{exp-£S(p,q)}121dp A dq((a/2p),(3/9q)) |
= M), (p) {exp 45,(p,a)} {exp -£5,(p,q)} (A2.1.Eq 8)
Therefore the pairing map between Hy and H"c_ is given by
T, E, %pp, = [2nn]—1g S lP(q)fﬁ;(p){exp #5,(p,q) Hexp -£S45(p,q) }dpdq
'R (A2.1.Eq 9)

The linear map (induced by the pairing map) Upp 1s given by
c
Up‘f‘{r = [ 2mi]™ "% [j(;p(q)[exp #8.(p,q)} {exp -iS5(p,q)}dql P,
(A2.1.Eq 10a)
where

f, = lexp #545(p,a)}soldal™"'2 (A2.1.Eq 10b)

The linear map (induced by the pairing map) Upp is given by
Up p Be = [20]2 [S (p) {exp -#S,(p,q)Hexp 455(p,q)}dplp
® (A2.1.Eq 11a)
where
p = lexp £5g(p,a)}sylapl™"% (A2.1.Eq 11b)
Remark: (R2) In the case where Q =R, we have M = RZ, Then by
Theorem (A2.1.T1) Upp, and UFQP are unitarily related. In particular when

[3 = pdq, then UP‘?-_ and UPe_? are given by
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Upo ¥ = [2wh]™"/2 [S Y(q) {exp -‘zpq}dq]PL (A2.1.Eq 12a)
= R
and
Upp = [2m]™"2 [Sté?c.(p){exp 4pq}dql p. (A2.1.Eq 12b)

Clearly U‘PP and UP,;.‘» are 1ldentifiable with the the inverse Fourier
e

transform and Fourier transform respectively.
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APPENDIX 2.2

The parallel transport on a complex line bundle [ef. Kostant (1970),

pp106-107; Simms and Woodhouse (1976), pp32-34; Woodhouse (1980), p116]

Let (M,w) be a symplectic manifold such that there exists a global
one-form (3 that satisfies d@=w. Let B = M xC be the trivial bundle over
M, (*,*) be the natural Hermitian structure of B, S8, be a unit section of B
and let ¥ be a connection on B given by

Vx 8p = ~4(X dR)se, for all X e V(M).
Let (0,a) be an open interval of IR and let % :(0,a) --» M be a smooth curve
in M originating at the point m,. Let my =%(0). Let ¥ denote the set

{m: t e (0,a), F(t) = m].

(A2.2.D1)Definitions

(D1.1) The map r:y --3 B is referred to as a section along the curve .
(D1.2) Let X4 be a tangent vector along ¥ and let r be a section along ¥ .
Then r is said to be a parallel section along ¥ if

(nyr)(m) =0 for all me7.
Remarks: (R1) Any section r along¥ can be written in the form r =@s,
whereY: % -->{ is a complex valued function along %.
(R2) Let r be a section along§ given by r =s, . Clearly r is parallel
along ¥ if

Xy@)-2(X1p )P =0 on¥.
Hence r can be written in the form

r = z,{exp i(\{y&)}s" on

where ze @ and r(mo) = 2,8,(me) & B,
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(A2.2.D2) Definition

The parallel transport along ¥ (from m, to some point med ) is the
linear isomorphism

defined by

23

Ly(bo) = Ly(z,8,(me)) = z fexp ([

)}s, (m)
m, Y

for all b= 2,8,(mo) & By,
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APPENDIX 2.3

Operator expressions

(A2.3.1) mwmmmgcmn@c

We have
sc(&,,%) = &(%-%rnf(g,,%)—f(&,%’_) by equation (2.2.2.Eq 2d),
Reo= lexp isa(go,%)}so by equation (2.2.2.Eq 5b),
B:iﬁd%jdf(&‘,%) by equation (2.2.2.Eq 1a),
and
Vx Sy= =#(X4p )sg for all Xe VG_(M) by equation (2.2.2.Eq 3).
Then, for x%= -(a/'o&,),
Vx%%%: X (lexp £5;(f,q) ) so+{exp £55(p,g) }V,(%_Bo
% -/t{(asd(io,%)/a&»h(x%_i(b )} Sbeo

= £{(F(f4)/24)-9+9 L ocor (A2.3.Eq 1)
Hence for % = ‘1. (§)8¢o,we have
YZ(%,%IL: = (Y, (o) 72 ) Joe o + Wy () Ny ?;%“' (A2.3.Eq 2)
We have Ly Id%l'”z = 0 by equation (1.1.6.Eq 16).

%
f i =a ~ .
Let '\]_fr'_ we_(r&v),%cold%l & Hﬁ’o_‘ Thus the expression for %Qin HG-:Q is
given by

¥ - {(—i'HVx;%)‘Pc_Qja)‘%m}!d%r”z ~ Y, ($)8Beo (Ly %:d%,—uz)

-2

= [{iAQ /'a@)+(af(1a.%._)/a@)+%'_} Y.(3) ]ﬂ.u.ald%l (A2.3.Eq 3)
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APPENDIX 2.4

Essential self-adjointness

(A2.4.D1) Definition [Hellwig (1964), p172]

An operator A in a Hilbert space H is said to be essentially
self-adjoint if
(ESA1) A in H is symmetric; and

(ESA2) (A+i)H and (A-i)H are dense in H.

Remark: (R1) We shall denote the adjoint of an operator A by A",

(A2.4.L1) Lemma

A symmetric operator A in a Hilbert space H is essentially self-adjoint
if and only if its adjoint A" nas no eigenfunctions corresponding to
eigenvalues +1i, i.e., if and only if

(8 1)P =02 Y= 0. (A2.4.Eq 1)

Proof: This follows readily from the definition given above..

Remark: (R2) Let H and H' be two arbitrary Hilbert spaces that are 1linked
together by the unitary map U :H --3 H'. Let I:H --3H and I':H' --3 H' be
the identity operators on H and H' respectively. Then U*
has the following properties [ef. Weidmann (1980), p85-861]:

(U1) oY = U*'; and

(u2) U'U = I and UU* = TI'.
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(A2.4.L2) Lemma

Let H and H' be two Hilbert spaces linked together by the unitary
operator U:H --3 H'. Let A be a symmetric operator in H and let A' be the
symmetric operator in H' given by A' = vaut, Then A is essentially

self-adjoint if and only if A' is essentially self-adjoint.

Proof

Suppose (f is a vector in H such that
(aF4i)p = 0. (A2.4.Eq 2)
Then
(A +i)u v = (At uteiuh) e = 0, @' = UY (A2.4.Eq 3)
This implies (UATU*+i)p' = 0. Since UA'TU'c A, we get
(ats1)y = 0. (A2.4.Eq 4)
Now if A' is not essentially self-adjoint; then by Lemma (A2.1.L1) there
exists O *LP & H satisfying equation (A2.4.Eq 2). Therefore, there exists
' = UP# 0 satisfying equation (A2.4.Eq 4). Consequently A is not
essentially self-adjoint. Similarly, we can argue that A being not
essentially self-adjoint implies that A' being not essentially self-adjoint

to establish the lemma. g
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(A2.4.P1) Proposition

The restriction of the operator %,’ in Hp to H(F,) is not essentially
e 3

self-adjoint.

Proof':

Letg‘" denote the restriction of ‘E’; to H(®) and let é:: U"',Em_l] where
U:H(®) -->H(F.) is a unitary operator defined by equation (2.2.2.Eq 2Ta).
'I‘hem%> is an operator in H(®). Explicitly we have

P & = [{-1h/0g)- (a1 (. ,4)/29)19(3) 1P (A2.4.Eq 5)
where & =(P(95)(7 is given by equations (2.2.2.Eq 20a) and (2.2.2.Eq 20b). It
is well known that the operator {-iﬁ(a/a%)-(*af(@w%)/ac}) }lp(v is not
essentially self-adjoint when operating on ‘P(%) whose domain is R(%) iR
[ef. Akhiezer and Glazman (1961), pp106-111; Wan and Viazminsky (1977)].

Thus %cr is not essentially self-adjoint by Lemma (A2.4.L2).JJ
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APPENDIX 2.5

Bochner's theorem [cf. Riesz and Nagy (1955), pp291-292; Wan and

McKenna (1984)]

Let (a,a') and (b,b') be open intervals in [R. We shall use the letters
2 and .&, for the usual cartesian coordinates in (a,a') and (b,b')
respectively. Let U:Li(a,a') e Li(b, b') be linear isomorphism which maps
P(g) to We(@) by '

Ve () =j: dgRQIC(g,p) (2.5.Eq 1a)
where C(%,g,) is a smooth function on (a,a') x (b,b'). Let the inverse map
U-' be given by

L

P(q) = gh SERACODICHD (A2.5.Eq 1b)
where D(%,{o) is a smooth function (a,a') x (b,b'). The linear isomorphism U
is unitary if the two functions E(g,q) and G(g,$) defined by

E({a,%) = S::.- mdx, b<H<b'; (A2.5.Eq 2a)

6(q,p) = S; D(x,f)dx, a<g <a'; (A2.5.Eq 2b)
satisfy the following three conditions:
(BT1) Let _

o S

Igg') = EGgIEGp 3y, (A2.5.Eq 3a)

and let y, = min{p,¢'} and y, = max{p,'}; then
I(fsge') = (yy=) if (p-f ) (p'~ )>0 and (f-§ )>0,

= (&_ -y, ) if (b-h_) (-p'-h)m and (—g-&_)(ﬂ,

0 if (f-p ) (p'-4)<0; (A2.5.Eq 3b)

n
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(BT2) Let
J(9,q') = G(q ,$)G(g ' ,p)d , (A2.5.Eq 4a)
pe) = QP0G ¢ Eq la
and let z, = min{%,%f} and z, = max{%,%f]; then
J(grq) = (24-¢) if (§-¢,)(q'~¢)>0 and (3-3)>0,

(g,-22) if §-4,)(4'-¢,)>0 and (§-¢ )<0,
0 if (1_—%.._) (1_'-3)(0; (A2.5.Eq 4b)

(BT3)

j%E(?,%)d% = S“G(%,-&)d*f (A2.5.Eq 5)
% %
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APPENDIX 2.6

(A2.6.1) Ihe pairing map between Hgand Hp o

The elements of Hgpare square-integrable and can be written in the form
F = LP(%)P = ‘P(%.){exp &Sy(i’,%)}Sold‘JI-vz
[ef. equations (2.2.2.Eq 20a) and (2.2.2.Eq 20b)]. The elements of Hd% are
square-integrable and can be written in the form
V= WNplg, = Yelp) lexp £55(frq) }so Id%l"""
[ef. equations (2.2.2.Eq 5a) and (2.2.2.Eq 5b)]. The effective
configuration spaces Q and Qg are identifiable with R(§) and R(%)

respectively. In the case (1) situation we have R(§) = R and R(%) ,4 R.

Then by equation (A2.1.Eq 9) of Appendix 2.1 the pairing map between H
and H is given by

@V Opp * [2nﬁ]“”2j g ?(%)iv";(b){exp £8y(pyg) Hexp -i85(p,q) Jdgdg
i Regr~ Rig) (A2.6.Eq 1)

(A2.6.2) The unitary map (induced by the pairing map) from H(®) to H(®e)

Let us extend the range of %, from R(%) to IR and let f@(f»,%) be a

smooth function on W-.Q that satisfies the condition
fm(-g»,%) - f‘(-g-,%) on Rp) x R(q,)
[ef. equation (2.2.2.Eq 16)]. 1In the case (1) situation the quantum Hilbert
space H(®) is the quantization Hilbert space Hy. The elements of H(6®) are
of the form .
&=L,

where

Pig) = 0, & R-RQ); £ = {exp £[-p(3-g =L, (f, 1% )+Tgfrg,) 115, lapl ™'/ 2.
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The operator 'i’ in Hp 1is given by equation (2.2.2.Eq Ta). By

o C
equations (2.2.2.Eq 9a), (2.2.2.Eq 9b), (2.2.2.Eq 17a) and (2.2.2.Eq 17b)
the generalized eigensection (corresponding to the eigenvalue % ) of the

operator ’%’ in Hp is given by
[N c

..Pt-:% = “)t:% (?)Pe_
where
Y*:,_%(F) = [2n#]""4 {exp 'tsa(f,,%)}{exp "*So-(#”‘l-)} for %< R(3),
lﬂl%(f,) = [2nn]"\4 {exp .1—[-#,(%—%r)-fw(asa._,%)+fu(’f,%'_)]] for"%eﬁ?\—}?(%).h

Then the pairing map given by equation (A2.6.Eq 1) can be rewritten as

S IR AW [2nn]-3/4 gmgm@(%)@(@) ‘i{:%f#)dg,d%. (A2.6.Eq 2)

The pairing map <determines a linear map U:H(®) --> H(E,)
[ef. equation (A2.1.Eq 1Ca)] which maps & =LP(%)P (where ‘P(%) = 0 for
3eR-R(9) to Y = %(fa)pc by

W = -4 ! 8

L () = [2nh] Sm‘{’fg}%,‘f?)d% (A 2.6.Eq 3)
The inverse map U~' :H(R. ) -->H(®) [ef. equation (A2.1.Eq 11a)] given by

, -1/4 T
Pq) = [2m1™ ] Y (g Yoy P g (A2.6.Eq 1)
To demonstrate that U-' defined by equation (A2.6.Eq 4) is the inverse rap

we need to show that U7'U% =3 and UU™'§; = §,. This is checked as follows.

P - tefmr”zj'gf'@%(f)[mdgélp(aﬁ')%%.(p
5 Smd%zﬂ%'K T’e{s‘ﬁ%) (by equation (2.2.2.Eq 6))
= § 34 9(41)8(3-¢") (by equation (2.2.2.8q 10))
=‘P(%).
and
W) = [m]*”’j‘gd%mpﬁgpj&dyupc_(&,r)Tp:%(y)

jmd;,- Felp') ((2mR) ™12 § u{%qu) G{&' )dg}
- ‘(r&%'w,_(@')&g.-f) (by equation (2.2.2.Eq 18))
= Y,($).
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To show that U is a wunitary map we use Bochner's theorem
[cf. Appendix (2.5)] as follows. In this case the various sets and

functions defined in Appendix 2.6 are given by:

(a,a') = (byb') =R

Cg ) = [26174 Yoo (49),

D(g,4) = [2mi]™'4 v, 19

Blfq) = jﬁ" Clg,x)dx = [znﬁ]"'“j (x)dx

and
G(g,g) = j% D(x,$)dx = [2n] ”4&% Wex (@) dx.
Then checking eondition (BT1) of Boehner's theorem we get
' -z '
( E(«@,%)E(fo g)dg = j S dxdx {[2m6]™"% LIJ%(x) #a(x1)a )
= jf’ S&' dxdx'S(x—x') (by equation (2.2.2.Eq 18))

~ which clearly satisfies condition (BT1). Similarly, conditions (BT2) and

(BT3) can be verified. Hence U is a unitary map.

(A2.6.3) mm@mg are unitarily related
[

Finally, we need to show that the quantum operators @in H(®) and %Lin
H(®) are unitarily related: we need to check that UZU™'= %,; Let
$ = U"'¥, where & = ®(@pe HE) and ¥, = Y (p)f, & H(E); (note that
lP(%) = 0 for %e IR—B(%).)

(uﬁ_u-1 I,

1]

U%é

U%‘F(%)P (by equation (2.2.2.Eq 22a))

[(2ﬁ-n)"f4jm96¢p(%)w,._%(f)d%] (by equation (A2.6.Eq 3))
-1
[(2en)™§ @ () 1H(2/08)+(af P rq ) o)+ g} Yool dq]

(by equation (2.2.2.Eq 11))

R

(by taking the curly-bracketed operator outside the integral).
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APPENDIX 2.7
The guantization of p% in the polarizations P and ® are unitarily related

(A2.7.1) Notation

Let R be the configuration space of a free particle and let q be the
usual cartesian coordinate on R. Let M = T*R=R% w be the canonical
two-form on M and let (p,q) be the usual cartesian coordinates on M. Let P
and P, be the vertical and horizontal polarizations , respectively, of the

cotangent bundle T'R.

Remark: (R1) We have not used Q to denote the configuration as we usually
do because Q has already been reserved to denote the effective configuration

space with respect to the polarization .

Let (Prvqr) be the chosen reference point in M. Let T denote the
p-coordinate curve in M through the point (pr,q) and let A denote the
g-coordinate cufve through the point (p,q,). Let @ be a one-form on M that
satisfies d@=w. Since M is contractible, it follows from Poincare's lemma

that there exists a h(p,q) € M such that

R = pdg+dh(p,q). (A2.7.Eq 1a)
We shall write
R =, dp+Rda (A2.7.Eq 1b)
where
Rp= (@h/p) and E‘f p+(3h/2q) . (A2.7.Eq 1e)

The line integrals of {3, along the coordinate curves T and A are given by:
P
Se(psq) =St(;5 = jp}shdp h(p,q)-h(p,,q) (A2.7.Eq 2a)

S,(p,q) = = (4 d
APra) = (R =) By da

p(g-q,)+h(p,q)-h(p,q,). (A2.7.Eq 2b)
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Let B = M x( be a trivial bundle over M, (*,*) be the natural Hermitian
structure on B, s, be a unit section of B and let ¥ be the connection on B
defined by

V)( So = ~#(XJR)s, for all X e;VQ(M). (A2.7.Eq 3)

Let (B,(*,+),¥) be the chosen prequantization bundle over (M,w).

(A2.7.2) The quantization of p* in the vertical polarization P

We shall now give a brief sketch of the method of quantizing the

Hamiltonian p? in the vertical polarization P [ef. Wan and McKenna (1984)].

The quantization Hilbert space Hp consists of square-integrable
sections of B x A-yz (P) of the form
X ="X(q)m =X(q){exp £8 (p,q)}s, ldp|~"'%. (A2.7.Eq 4)
The variable p is quantizable in I-IP y Since the associated vector field
(2/9q) generated by p is complete in the configuration space R. The
quantization operator P in Hp 1is given by the expression
[ef. equation (A2.3.Eq 6) in Appendix 2.3]

PX = [{-ih(@/2q)-6h(p,,q)Aq) IX(q) Iu. (A2.7.Eq 5)

The Hilbert space HPCL consists of square-integrable sections of

B x A-1y2(P.) of the form
Ke= Ke(PJwe = K (p){exp £5,(p,q)}s, ldqi™"2 . (A2.7.Eq 6)
The observables p and p% are both quantizable in HP,_ s and the quantization

operator '15:_ and S?,' are given by the expressions

P

b, K. = p K, and p% K, = p*K, (A2.T7.Eq T)

[

respectively.
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By equation (A2.1.Eq 11a) and theorem (A2.1.T1), we have the unitary
map T:H = --5 Hp  defined by

TK, = [(2nﬁ)""zjm Kelp){exp ~#3 (p,q)}exp £S,(p,q))}dplu.  (A2.7.Eq 8)

We shall now show that TP,T ' = B as follows. Let T 'X = K.. Then we

have

(TP,T™")X = TP, K,

TpK. (by equation (A2.T7.Eq 7))

[(2nn)™?2 Sm pK.(p) {exp -~£S (p,a)}{exp £S,(p,q)}dplm

PX (A2.7.Eq 9)

The last step was obtained using the fact [cf. equation(2.2.2.Eq 39)]
pl{exp -#S.(p,q)}{exp £S,(p,q)}

= [{-ifi(?/2q)-Rh(pr,a)/2q) }exp -£S.(p,q)}{exp £5,(p,a)}]. (A2.7.Eq 10)

We shall now quantize p1 in the polarization P as follows. Since pz is
not an element of 6”(M;P,1) we cannot quantize it directly in H;, so we
shall adopt the following method. Let T7'X = K.. We define the
quantization operator P? in Hp by

X = (TpZ T)X. (A2.7.Eq 11a)
Explicitly,

p*X = (Tp: K.)

1]

Tp?K. (by equation (A2.7.Eq 7))

[(-#(2/0 @)~ (2h(p,,a) /o @) (@) I (A2.7.Eq 11b)

The last step is obtained using equation (A2.7.Eq 10).

The symplectic manifold (M,w) with cartesian coordinates (p,q) is an
example of a case (3) situation ,i.e. R(p) =R, R(q) =R. 1In the case (3)
situation the quantization Hilbert space Hpand the quantum Hilbert space

H(P) coincide. Therefore, we shall define the quantum operator pZ in H(P)
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M~
(A2.7.3)mmmﬁlm H(P) and ,&, in H(@) are wunitarily
related.

Let (pj ’ qJ- ) denote the restriction of the. cartesian canonical
coordinates to the regions MJ‘. Then in MJ', we can treat Tf’J and %J‘ as
Z
f ti f ! H e shall it Ap’ya:) = p’ and
unctions o (pd,qJ), s0 W write /&j(pd,qd) p‘-i _

%(pJ,QJ) 2 (qJ'/2pJ).

Remark: (R2) The chosen reference point (pk,qk) should not be confused with
the reference points (ﬁ._’%J.Z in MJ. Note that (p,,q,) is usually taken to
be (0,0); in which case, it does not belong to either to M4y or M,.
Mternatively, (p,.,q,) may lie in either M, or M,. However, regardless of
the choice of (p_,q,) the functions S-r_(pj!qj) and SA(p\i,qd') are well-defined

in MJ' because the functions h(pr,qd) and h(pj,qr) are well defined in M.

Let PJ and Pf-‘-j denote the restrictions of the polarizations P and P,

respectively to MJ'. Let (BJ',(-,.),V) denote the restriction of the

prequantization bundle to MJ'. In MJ', we have:

~ - - .y-1 . . 7
(’é/a/&od) = x-g‘&- (2pd) [qJ('B/'an)-f-(’a/'apd)], (A2.7.Eq 12a)
(‘3/3%.3) = x,&,j= (ZpJ)(’B/'aqd), (A2.7.Eq 12b)
o= pjdaj+dn(p;,q)
= f; d%:l+df‘j (-g,d-,%d-); (A2.7.Eq 12¢c)
h(pd',qd') = -(1/2)pd-qd+fd(ﬁ:&(pd,q(i),%i(pd',qj)). (A2,7.Eq 12d)
St(pj’qd) = h(p\i,qj)-h(pr,qd), (A2.7.Eq 12e)
foryq 1) = . 1) ’ L 9§ 1)=17 17 A 2.7. 2
803(&! 4y’ /&l(%& %J‘_)»ffd(go'l %J) £k % (A2.7.Eq 12f)

and

S?Sd( ﬁ'u"%.i) = fJ(,ifs,%d)-fd(tw,%d). (A2.7.Eq 12g)
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Before proceeding any further let us summarize our objective. We
require to show that the quantum operators 51 in H(P) and,?in H(®) are
unitarily related. To do this we need to construct a wunitary map between
H(P) and H(#). However, the construction of the unitary map is complicated
by the fact that for each j, P; and ¢y are not transverse because by
equation (A2.7.Eq 12a) we have P, + @ $} M atmeime Mj: g =0}, so
we cannot construct a pairing map between the quantum Hilbert spaces H(P)

and H(®). On the other hand, the polarizations P; and &' are transverse in

J e

MJ by equation (A2.7.Eq 12b), so we can construct a pairing map between the
quantum Hilbert spaces H(P) and H(®,). We shall show that 61111 H(P) and »‘2
in H(®) are unitarily related using the following five steps:

(i) Construct the pairing map between H(P) and H(®u);

(ii) Construct the linear map (induced by the pairing map) from H(P) to

H(#Z ) ;

(iii) Use Bochner's theorem to show that the linear map constructed in

step (ii) is unitary;

(iv) Show that the operators %I'in H(P) and,g%‘in H(FP.) are unitarily

related.
Remark: (R3) By equation (2.2.2.Eq 5u),§ in H(®) and %:e. in H(F) are
unitarily related; the link between H(®) and H(¢,) is given by the unitary
map V:H(®,) --> H(®) which has been defined in equation (2.2.2.Eq 53a).

A

2 ~ A2
Therefore, if p  in H(P) and fo in H(® ) are unitarily related, then p in

~
H(P) ancl,SD in H(P) are unitarily related.
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(i) The pairing map between H(P) and H(6%)

The elements of H(P) defined by equation (A2.7.Eq 4) can be written in

the form

X=X, ®X, (A2.7.Eq 13a)
where Xj denotes the restrictions of X to the regions Mj- Explicitly, Xs is

given by
Xy =R(aj)pmj ="X(qj) {exp £5.(pj,qa;)}s0 ldp; 17/ %, (A2.7.Eq 13b)

The elements of H(®.) are of the form [ef. equations (2.2.2.Eq 47a) and
(2.2.2.Eq 47b)]
v = Yo%, (A2.7.Eq 14a)
where

T = Yl hfy, = YR S giootegg R 2T

Then the pairing map between H(P) and H(@.) is given by
[ef. equations (A2.1.Eq 1b) and (A2.1.Eq 1c)]

} -1
<X ,"P; >Pﬂ_ = (2nh)"" [ J (x"'%c-)ﬂ‘@‘c_ + S (xh?z)px@zc ]
M1 Ma
(A2.7.Eq 15a)

where (xj ,11‘3,) are one-TMj—densities given by
(x-j'q;jc)f:j;;'e
=X(qj) \\iic(ﬁﬁ){exp 4S¢(pj,qj)}{exp "isﬁ";(ﬁ’.i g0t X
lapj 1712 {fo/apj}ld%:"“’-{'a/a%i}laldpjnqu (2% p; ,2pj (/20 ) el
= Ka)) W o) lexp 50, q) )} exp-£85 (o1 g} (o) */4.
(A2.7.Eq 15b)
Let L&(qj:ﬁﬁ) = SL(pJ'q%)-SCE(%ﬁ’%i); then Lj(qufﬁ) is given explicitly by

T gl o e g _
LJ(qd'ﬁﬁ) = (=1) qd(&ﬁ) 4u&uqﬁrp(pr,qd)+ﬁjLﬁﬁ,%ﬁv?. (A2.7.Eq 16)
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The pairing map between H(P) and H(6®,) is given expliecitly by

X W Opp )

= (2“’[‘;)_1 Z

(0 #]
[\ da: s Ko (@)W () {exp 4L (qQ:,4.-) 1 (48)Y4 ]
J=1 j-[R q‘ljod {J %7 et texp Ay 94 ﬁaJ gc‘.'

In the latter equation we have used the following facts:

R(qj) = R, R(f;) = (0,@) and gyl = (h‘&j)"”zld‘&jad% |. (A2.7.Eq 18)

(1i) The construction of the linear map between H(®. ) and H(P)

Let W:H(®, ) --> H(P) denote the linear map (induced by the pairing map
defined by equation (A2.1.Eq 11a). The linear map W maps ¥, = iqc.@T;a,
ﬂst = qic(fﬁ)fﬁc y to X =X.(q)u by

“’2§ (%W, (o) : Igo) 4
X (@) = (M2 7 So e (63) (exp ~2L Caju ) HUgD ™ age ]
(A2.7.Eq 19a)
with inverse map W' given by [ef. equation (A2.1.Eq 10)]
] . - -ua . ¥ iz . "“fq .
W) = o L] X(a ) texp &L (ap, o)) (44 aqf)
IR
(A2.7.Eq 19b)
To check that W' is the inverse map we need to show that WW-'X = X.

2 .o
-1 = ! . 1- 1
Xla) = (2om) "L go dp (™ fexp ~aLj (a3 [ g daf (a)

J=

. {exp £1j(qY, o)} ()™ 14 ]
=3 { dafACap) fexp £(n(p,,q))-h(p,, )32 [ ag;uge)™ '/
AR
4T texp ~&($)™* (qj-a{)}]
=qi j de?C(QJ-){exp "i(h(pr:Qd)-h(Dr,QJ-))}[(Z‘IH’I)_"gm.dyd*

=1 “IR

- _ {exp_-iyd'(q(;-q:l-)}]

d 1 .o J o

) (where y; = (=1)° (£)"% and dy; = (-1)"(4fep~"2 dfe)
%% da!%K(q}) {exp -#(h(py,q;)-h(pr,a})}18(q5-q})

J=1

Q) =q &
="X{a) (A2.7.Eq 20)

Hence we have established that W-! is the inverse of W.
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(iii) W is a unitary map

To show that W is wunitary we shall wuse Bochner's theorem
[ef. Appendix 2.5] as follows. The various functions defined in

Appendix 2.5 are listed as follows:

Cla,p) = (200)™% {exp 4L (qj, ;) (444 1in mj,
D(q,p) = (2mn) "2 {exp —iLJ(qJ,.*.\i)}(ll.g—,d)"m in Mj,
25 F
E(p,q) = (2nhi)”"! ?;, S | {exp-—iLJ(qJ',x‘j)}(llxj)"m dxj in Mj,
G(q,p) = (2um)~"2 f qu {exp 2Lj (x;,4:)}H(4p-)""4 ax; in M;
a = =1 a,. P J J’ég.] s".; J J°*
4;-q
Let us check condition (BT1) of Bochner's theorem.
I(p )

= S‘ E(f,q)E({o' »q)dq

(2nri)~? g dq[% Sﬁ’ S*d dx'dx {exp -&(Lj(q;,x;)-L; (qJ,x D}

e Ao
%= q ar B (lix'.) Va (ihc')""""l ]

1]

"

'
J S%’ dx'dx (ﬂx')"”‘" (ltx )4 {exp —i(k (x ,q, ) -k; (x* !"&Jr)}

z g
3= /S:J
Jr s.lr [(2wh)” 48_ {exp-&(~ 1)Jq (%; -Ix J' )}dqj]

(where k| (xJ ' Liv ) = £¢ (XJ’%JI')H[J%:W

g dxj'dx‘i(llx&')_"" (MJ)"M {exp—é:(kd(xd,:‘_d._) kd(xJ:%Jr)}

n
g
* -

% § (& -3 )

2 Y U i
:E_" SUJerﬁ,. duj du S(u J)(ﬂu u')” "“{exp -é:(k'(x'(ud') (}J.-) k:l(x"j (u'),%—Jr)}
(where uj = (-1)Y .f_d, uye = (- 1)']\[; )
Let yj, = min{g,pl, 3y, = max{g,p!l, vy, = minluj,ui}  and  let

Vip = max{u.j,u'}.

Then for ('go - )(&,' $,)>0 and (&, -4, >0, we have
2 Vi
Ip') =2 g“dv_11 V)4 _Jz_ ¥jy =4,
I
For (ff; %, )(3,' {3 )0 and (fa £,)<0, we have

2z Uyr
Ify4') =J§;:l S "‘ dvj,2v;, = "{: ('io e TRE

VJ,‘
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4 - £a!- 0 <0
For (ﬂrj 'gfjr-)(i”\j .%:’,r) , we have
I(b"i") = 0.
The values assumed by I(§,p') clearly satisfy condition (BT1)§ similarly,

conditions (BT2) and (BT3) can be checked. Hence W is a unitary map.

’\
(iv) The guantization operators p~ mﬁmwmﬂm

We shall show that 31 in H(P) and %;g in H(®,) are unitarily related as
follows. Let W 'X= ¥ where ¥, = ¥, 06, Vo= Welfy) Qi and
X ="X(a)M.

(Wp WX

R T

Wi ¥ @, By

(2wh) V% [%‘SE:@? f 4 (§;) (exp '*LJ(%:%;;H(H&JJ"""J}L

(where qj = q)

(2um) 2 [3 (% agy
Jsido O

((-£H(?/>q))-(0h(pysqj) /2 a5} ™ fexp —1L;(qj, )} (b)) ™4 ]
(by {-ifi(®/2q;)-(@h(p,,qj)/2q;)} {exp -iLJ(qJ,&J-)}

= (=1 ()" fexp -4Lj(q5,£)1)

=P X.
The last step is obtained by taking the operator
{-i‘h(%/‘an )-—(’311(p.‘|;,q‘-1)./'a)q\")}Z outside the integral sign and comparing the
result with expression for 32 given by equation (A2.T7.Eq 11b). Hence we
have established that p2 in H(P) and 4 in H(G:) are unitarily related.

Fa®
Therefore 2 in H(P) and § in B(® ) are unitarily related.
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APPENDIX 2.8

Theorem on the canonical decomposition of global observables [ef. Wan and

McFarlane (1981)]

We shall restate the theorem in terms of the half-density quantization

scheme.

Let ® be a reducible polarization of a 2k-dimensional symplectic
manifold (M,w). Let Q be the effective configuration space with respect to
and let pr:M -->» Q be the corresponding projection map. Let (B,(¢,*),V)
be the chosen prequantization bundle over (M,w). Let% be an observable
that satisfies the following conditions: (i)%e Cm(M;tP,1); and (ii) the
associated vector field pr,r(}((;) is complete almost everywhere on Q. Let
{Qx} be a family of submanifolds of M that satisfy the following conditions:
(i) the associated vector field pr,(xg) is complete on each Qx, and
(11) {Qx} partitions M. Let Mx= {me M: pr (m) € Q,} and let Wy be the
‘restrictions of W to My. Then (Mx,wx)are symplectic manifolds. Let C“ be
the restrictions of { to (Mx,w«). Let ®, be the polarizations of (Mg,wx)
defined by @, = @ on M Let (By,(*,*),7) be the restrictions of

(B,(*,*),v) to (Myywg). Then (By,(*,°),V) are prequantization bundles on

(Myy o)

Let H(P be the quantization Hilbert space associated with the
polarization @ and let HIP“ be the quantization Hilbert spaces associated with
the polarizations @,. By def‘inition,'g is quantizable in the polarization
®, and L, are quantizable in the polarizations (A Letfin Hp be the

quantization operator corresponding to z, and let ?g“ in HG’.,, be the
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quantization operators corresponding to 'é&.

(A2.8.T1) Theorem

The quantization Hilbert space H(P can be decomposed in terms of the
quantization Hilbert spaces H(& to give
where @ 1is8 the direct sum over the index . The quantization operator(ean
ol

L
be decomposed in terms of the quantization operators 'Z:“to give

~

Z =32§;.
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APPENDIX 2.9

Theorem on unitary equivalence

(A2.9.T1) Theorem

Two self-adjoint operators A and A' in Hilbert spaces H and H!
respectively are wunitarily equivalent if they possess identical spectrum

which is purely discrete and nondegenerate.
Proof

Let the common spectrum be [ah: n=1,2,...}, and let the corresponding
sets of normalized eigenvectors be C = {U% tn=1,2,...}) in H for A and
CY = [q%: :n=1,2,...} in H' for A'. Then C constitutes an orthonormal
basis in H because the projectors |{) ><¥,| associated with the eigenvectors
form a resolution of the identity by the spectral theorem. Similarly, C' is
an orthonormal basis in H'. There exists a unitary operator U vhich maps C
to C'by U@, = W,' for all n [ecf. Prugovecki (1981), p215]. It is then
straightforward to verify that vAU-Y = A'. This is done by checking that

vau-? has {a, : n = 1,2,...} as spectrum, and C' as the corresponding

eigenfunctions. @



CHAPTER 3

THE MASLOV-WKB METHOD, THE BWS CONDITIONS AND

THE MODIFIED MASLOV-WKB METHOD
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MASLOV-WKB METHOD, THE BWS CONDITIONS AND THE MODIFIED MASLOV-WKB METHOD

(3.1) Notation

Let (a,b) be an open interval in (k. Let Q = (a,b) be the configuration

space of a Hamiltonian system and let q be the usual cartesian coordinate on
*

Q. Let R(q) denote the range of q. Let M= T Q = IR x Q, w be the canonical

two-form on M and let (p,q) be the usual cartesian coordinates on (M,w).

Let q, be a reference point in Q. Let V(q) be a potential well in Q

that satisfies the following conditions:

(= =]
V(q) =2 A,Q", A,are real constants; (3.1.Eq 1a)
=0
0§1im V(q) = 1lim V(q) = E_{ oo and (g-q,) (?V/2q)20; (3.1.Eq 1b)
Q> -o00 q->+oo

i.e. V(gq) has a single minimum at q =q,.

Let H(p,q) be the Hamiltonian of a particle in the potential well V(q)

given by

H(p,q) = (p%*/2)+V(q). (3.1.Eq 2)

We shall adopt the notation given in section (1.3) (of Chapter 1) with
a few minor modifications. For the sake of completeness we shall now give

the notation that we shall require as follows.

Let M = {closed integral curves of X }-{(0,q,)}. Let w, be the

restriction of the canonical two-form w to M.

€
Let § (t) be the integral curve of X, that originates at the point

m,= (p = (2E)'"% ,q = q;). Let T(E) be the period of the integral curve

a

15(t).
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Let (I,0) be the action variables on M, given by
I =§%E:pdq, 8 = (2nt/T(E)). (3.1.Eq 3)
Let R(I) be the range of I. Let H(I) be the Hamiltonian expressed as a

function of I.

Let'ﬁe(e) = (p(8),q(8)) be the integral curve of X, that originates at
the point ( p = (2E)''* ,q = q,) with © instead of t as parameter. Then p(8)
and q(©) satisfy the following differential equations:

(2q(8)/20) = [T(E)p(8)/2w] and (@p(8)/20) = [T(E)/2w](§§ﬂ rA.q™' ).

(3.1.Eq 4)

We shall assume (09q(8)/9) has exactly two stationary points in the
range [0,2w). Similarly, we shall assume that (@p(8)/20) has exactly two
stationary points in the range [0,2w). Then let 6,,6,,6,,05 € [0,2w) such
that they satisfy the following four conditions:

(1) 6,= 0;
(11) 8,48, <8, <8, <2m;
(1i1) (2q(€)/28) = 0 at 8 = 6,,6,;

(iv) (op(©)/28) = 0 at © = 6,,6,.

Remark: (R1) Let P and P, be the vertical and horizontal polarizations (of
the cotangent bundle T*Q) respectively. In the next subsection we shall
identify the position and momentum representations with the quantum Hilbert
spaces H(P) and H(P,) respectively. Therefore, for the present it is
gufficient to know that the position and momentum represenpations are
suitably chosen subspaces of LQ(Q) and Li(m) respectively. (As before the
subscript ¢ in Li(m) is used to indicate that it is the space of

square-integrable functions of p.)
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The Schrodinger equation in the position representation is given by
~
(H-E)¥(q) = 0 (3.1.Eq 5a)
where

B = [-16(3*/5q2)+V(q)]. (3.1.Eq 5b)

The Schrodinger equation in the momentum representation is given by

(He-E)&,(p) = 0 (3.1.Eq 6a)
where
A 2 = Y~ v
Ho = [(p*/2)+2 (in) AQR/Ap) 1. (3.1.Eq 6b)
F=-o
Let
@f [-2jm-(2n-083),2ju+62]. (3.1.Eq T)

£
Let W(8) be a function on ¥ ; then

(PW() =5 Y(8) if qe (a: V(q)<E}

BeA:
J
er=q
= 0 otherwise, (3.1.Eq 8)
and
TRl 2
(YN =T V(o) if pe {p: p>K[2E-min(V)]}
' e |
pI= P
= 0 otherwise. (3.1.Eq 9)

Let J(€) and J. (@) be functions of © defined by

J(8) = y A = -kt for O e (2kﬂ-(2ﬂ—93),2kn+81],
J(e) = ..AK= ~kp=-7/2 for B e {2kn+91,2kﬂ+851,
Jo(@) = Bhy = -k'yy -WU4 for 8 < (2kY%y,2k'+621],
J.(8) = B, = -k'g-3W/14 for 86 & (2k 'r+6,,2k {r +211],

(3.1.Eq 10)

where k, k'eZ.
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Let $(8) and ¢,(0) be the two WKB-like functions of © defined by
e
$(e) = 1(as20) 1'% {exp £[ p(6)[2q(0)/36]1d0} {exp 1J(0)}; (3.1.Eq 11a)
o

e
$.(8)= |op/28) 1% {exp ~¥(a(e)[ap(0)/p01d0} {exp 1Jo(8)}.  (3.1.Eq 11b)
o

Let e(8) and e (®) be two smooth real-valued functions of 8 that

satisfy the following three conditions:
(1) e(®)+e,(8) = 1 for all & «®;
(11) For all 8 @ Rand k € Z, we have

e(B) = e(B+2kn) and ec_(G) = ec_(9+2kn) (periodic conditions).

(iii) e(®) = 0 in the neighbourhood of the points belonging to the
set T . Similarly, e,(8) = 0 in the neighbourhood of points
belonging to the set T, .

(Here
M = {6 e®R:IkeZl with either 8 = 6,+2ky, or © = 95+2kn]},

and

M, = {8eR :Ik € Z with either 8 = 2kn, or 6 = 0,+2kn}.)
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3.2 THE MASLOV-WKB METHOD FOR Q %na

In section (1.3) (of Chapter 1) we outlined the Maslov-WKB method for
the Hamiltonian system of a particle in a potential well with configuration
space Q =/R. In this section we shall seek to answer the following
question: what modifications to the Maslov-WKB method are necessary if the

configuration space is not the entire ®?.

We shall assume that Q #lR throughout this section. Let wus now
formally extend the range of q from R(q) to[R; however, we shall continue to

use R(q) to denote the range of q in Q.

Let LZ(R) be the space of square integrable functions of q, and let
Li(m) be the space of square-integrable functions of p. Then ﬂzﬂk) and
D:(R) are unitarily related by the Fourier transform F:Li(mJ -— L*(R) which
is given by

(F Yo )(q) = (20n)™"2 Im{exp #pq}¥, (p)dp, W (p)e ch(m); (3.2.Eq 1a)
and the inverse map F-1is given by

(F0)(p) = (27h) 7Z( {exp -pa}fq)dq, Y(q) & LZ(R). (3.2.Eq 1b)
R

Clearly the phase space (M,»)) with cartesian canonical coordinates
(pyq) 1is an example of the case (1) situation studied in Chapter 2:
R(p) =R and R(q) # R. Let P and P, be the vertical and horizontal
polarizations, respectively, of the cotangent bundle T*Q. We shall identify
the position and momentum representations with the quantum Hilbert spaces
H(P) and H(P,) respectively, as follows. Let the position representation be
L2(Q) and let the momentum representation be F'L2(Q). Clearly the momentum
representation F 'L%>(Q) is a closed subspace of Li(m). The momentum

representation and position representation are related by the unitary map
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u:F'L%(Q) < Lf;(m) -->12(Q) which maps Y(p) to¥(q) by
W(q) = (2mﬁ)"“Sm dp{exp 4pq} Y.(p); (3.2.Eq 2a)
and the inverse map U™' is given by

Yp) = (2nﬁ)"’1$mdq{exp -4pq}q). (3.2.Eq 2b)

~ A
Then the Hamiltonian operators in H in LQ'(Q) and H, in F'L2(Q) which
are given by equations (3.1.Eq 5b) and (3.1.Eq 6b) are unitarily related by
U:

A

UTHU = ﬁc. (3.2.Eq 3)

Our objective is to construct approximate solutions of the Schrodinger
equation (in the position representation) given by equation (3.1.Eq 5a).
e
For Q =R, we defined ® (q), the Maslov-WKB wave function (corresponding to
the energy E) of the Schrodinger equation, by
E » i
& (@) = 1n ((V/HIFP, e ) (@+(Fed )]} . (3.2.8q 4)
J> oo
[ef. equation (1.3.4.Eq 10)]. Clearly some modifications to the definition

E
of P (q) will be necessary.

e,y
If for the moment, we ignore the fact that q!)cec may not be in
the entire domain of U; then formally we have
fr— — .
(F gﬁe’eccrd )(q) = (U cpce&‘:fd )(q), for q e {q: V(q)<E}. (3.2.Eq 5)

Therefore, Theorem (1.3.4.T1) and corollary (1.3.4.C1) are formally
unchanged if we replace (Fqb¢e¢'°'d )(q) by (U q'gzgccuj )(q). An obvious
definition of the Maslov-WKB wave function (corresponding to the energy E)
would be
= . H
$ (@) = 1in (/DU e ()+(Ped )(a)1}.  (3.2.Eq 6)
J-»00 .
—
However, this definition will only makes sense if (U@ e *d )(q) is well
" .

defined: (¢Le¢' ¢J )(p) must belong to the domain of U in the limit - --3,0.

= Ly
This requirement can be restated as follows: ((ﬁe_ecc'-] )(p) must approximate



Page 176

an element of the momentum representation F112(Q) as4 --» 0.

(3.2.T1) Theorem

(i) We have
5 l(FEE:gqu )(q)lqu = 0(62%) for some k = | P, T—

ey D
(ii) (dxle:?J )(p) approximates an element of the momentum representation

space F'L2(Q) as# -=3> 0.

Proof':
(i) See Appendix 3.1.
(ii) This assertion follows from (i), since by definition F'.2(Q) consists

of elements Y.(p) whose Fourier transform (FQ&)(q) vanishes on the set

IR -R(q) .

It follows from assertion (ii) of the above theorem that the function
E
& (q) given by equation (3.2.Eq 6) is well defined in the limitf -->0; so

we shall give the following definition.

(3.2.D1) Definition

The Maslov-WKB wave function (corresponding to the energy E) of the
Schrodinger equation (in the position representation) is defined by
E . r—-1l
& (@) = Ln {/HIUPe ad) (@+(Ped ) (@)}, (3.2.Eq 8)
> oo

(Here the Schrodinger equation referred to is given by equation (3.1.Eq 5a),

and E € (nin(V),E,) where min(V) = V(qo).)
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Clearly Theorem (1.3.4.T2) (of section (1.3)) remains unaltered.

Therefore, we have the Maslov-WKB conditions given by

[2"]'1§ pdq = (n+1/2), for some integer n. (3.2.Eq 9)
-Gé

Remark: (R1) We shall use the superscript W for the values and spectra

predicted by the Maslov-WKB conditions.

The allowed values of I predicted by the Maslov-WKB conditions are:
Iw(n) = (n+1/2)1, where n € Zand Iw(n)e. R(I). (3.2.Eq 10)
Thus, the discrete part of the spectrum of the Hamiltonian operator ‘ﬁ
predicted by the Maslov-WKB conditions is
R(H) = (E¥(n) = H(In): ne z and E(n) & (nin(V),Ex)}.  (3.2.Eq 11)
(Here the subscript D is used to indicate the fact that Ry(H) is the

~
discrete part of the spectrum of H.)
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3.3 A COMPARISON OF THE BWS CONDITIONS (IN THE HALF-DENSITY

QUANTIZATION SCHEME) WITH THE MASLOV-WKB CONDITIONS

We shall use three examples of Hamiltonian systems consisting of a
particle in a potential well to compare the BWS conditions (in the

hal f-density quantization scheme) with the Maslov-WKB conditions.

In addition to the notation given in section (3.1) we shall use the
following notation. In section (3.1) we defined the submanifold M, by
M, = {closed integral curves of X,}--{(0,q,)} where the q, is the point in Q
where the potential well V(q) has its minima. Let g, be the restriction of
the canonical two-formuwion M to M. The action variables (I,8) on (M,,wo)
are defined by equation (3.1.Eq 3). Let ® be the polarization on (M, )
spanned by the vector field (2/206). Let B = M_ x€ be the trivial bundle on
Mo, (¢,*) be the matural Hermitian structure on B, s, be a unit section of B
and let < be the connection on (M,,Wo) defined by

V)( S, = =#(X3@)s,, for all Xe Vg(M) (3.3.Eq 1a)
where the connection potential (3 is given by
@= pdg+cdd, ceR. (3.3.Eq 1b)

Let (B,(-,-),v) be the chosen prequantization bundle over (Me,Wo).

The half-density quantization of the Hamiltonian H and the action
variable I in the polarization G’C gives rise to the following BWS conditions
[ef. equation (1.2.4.Eq 6)]:

[2“]-1&5&@ = nfi, for some integer n. (3.3.Eq 2)
The allowed values of I predicted by the BWS conditions are:

I(n) = mh-c, n e Z and I & R(I). (3.3.Eq 3)
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”~
Therefore, the discrete part of the spectrum of H predicted by the

BWS conditions is

Rb(ﬁ) = {E(n) = H(I(n)): ne Z and E(n) ¢ (min(V),E,)}. (3.3.Eq 4)
(3.3.Ex1) Example: The one-dimensional simple harmonic oscillator

[ef. Wan and McKenna (1984); example (2.3.6.Ex 2) of Chapter 2]

We have Q =R, M =TQ= [E'?; V(q) = q%, H = (p%+q*)/2,

X, = p(?/2a)-q(2/3p), M,= nﬁ-[(o,o)}, I =Hand© = tan"1(q/p).

~
The discrete part of the spectrum of H predicted by the BWS conditions
is
N .
Rp(H) = {E(n) = I(n): I(n) = nfi-c, ne Z and E(n)>0}. (3.3.Eq 5)

The physically correct spectrum is obtained if ¢ = ~<H/2.

The discrete part of the spectrum of H predicted by the Maslov-WKB
conditions is
w
Hﬁ(ﬁ) = {(E(n) = I¥(n): ¥(n) = (n+1/2Y8, n = 0,1,2,...}. (3.3.Eq 6)

o
This is the physically correct spectrum of the operator H.

(3.3.Ex 2) The modified Posch-Teller potential [ecf. McKenna and Wan (1984);

Flugge (1974), pp94-100]

We have Q =/R; M= T'Q = IRQ; Vo = -Hi%(*A(A=1)1/2 where x, A are real
constants; V(q) = -V,/ch?®(xq); V(q) has a single minima at q = 0;
M, = {(p,q) e M: V,<H<C0}-{(0,0)}; I=[(-2V,)"% —(-2H)V2 1/x;
0 = sin~"(({H/(Vo-H)}"? sh(xq)); R(I) = (0,[x(A-1)1"%1) and

H(I) = =[(=2V,)Y% -ar]?/2.
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The physically correct eigenvalues belonging to the discrete part of
the spectrum of f{\ are known to be [ef. Flugge (1974)]
E(n) = -FA%?(A-1-n)*1/2, n = 1,2,... and ngA-1.  (3.3.Eq T)
The BWS conditions give physically correct results for the discrete part of
the spectrum of ﬁlif the connection potential is chosen to be
R = pda+ia -1)YZ [(A-1)Y2 - AY2]qe. (3.3.Eq 8)
In this case the allowed values of I predicted by the BWS conditions are
I(n) = {n-(A=-1)"2 [A-1)Y2 - AYZ]}, n = 0,1,....¢A-1. (3.3.Eq 9)
The allowed values of I predicted by the Maslov-WKB conditions are
I"J(n) = (ne1/2)6, n = 0,1,2,...L A2 (x=1)Y2 _1/2, (3.3.Eq 10)
Therefore, R:(ﬁj the discrete part of the spectrum of ﬁ' predicted by the
Maslov-WKB conditions consists of the following set of values:
E'(n) = ~EY2) [ N2 (A=1)2 —(ne1/2)1%, 1 = 0,1,2,..S N2 (=12 -1/2,

(3.3.Eq 11)

Let us compare the physically correct eigenvalues E(n) given by
w
equation (3.3.Eq 7) with the values E (n). Let
A(n) = 5[100(E(n)-E“Qn))]/E(n)I;zﬁ(n) is the percentage error between the
w,
values E(n) and E (n). For the sake of convenience, we shall put A= 4.5.
Then:
A
(i) The physically correct spectrum of H consists of the following
eigenvalues:

E(0) = -6.1254h , E(1) = -3.12500%%  E(2) = -1.125,2#2 and

n

E(4) = -0.125 /2R
v
(1i) Ry(H) consists of the following values:

EV(0) = -6.0157T«%6", EY(1) = -3.04728%, EY(2) = -1.0783,562 and

EY(4) = -0.1100.28%
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(iii) The percentage errors are:

A(0) = 1%, A(1) = 8%, A(2) = 5% and A(3) = 2%.

(3.3.Ex2) The isotonic oscillator [example (1.2.4.Ex1)]
We have Q = RY= (0,00), M= T*Q =Rx IR*,‘ V(q) = (q-‘l/q)?‘,

Mg = R x R--{(1,0)}, T = B/8Y% and 8 = -cos™' ({2q*-H-2}/{H2+4H}"2 ),

Note that unlike the previous examples the configuration space Q does

not coincide with R,

The physically correct spectrum of H is known to be
{E(n) = 8% [ne1/24(1/4) (8/8%+1) "% ~(1/14) (8/4*)"% Mz n = 0,1,2,...].
(3.3.Eq 12)
In example (1.2.4.Ex1) of section (1.2) we showed that the BWS conditions
give the physically correct result for the discrete part of the spectrum of
ﬁ\if the connection potential is chosen to be
@ = pdq-[(1/2)+(1/4) (8/0%+1)"2 ~(1/1) (8/8%) Y2 Inde. (3.3.Eq 13)
The spectrum H;(ﬁ) predicted by the Maslov-WKB conditions is given by

Ry = (EV(n) = 8Y2 (ne1/2): n = 0,1,2,...}.  (3.3.Eq 14)

A
Then the percentage error between the exact eigenvalues of H and the
corresponding values E\J(n) are given by

A (n) = [E(n)-E”(n))1/E(n) = 6.250°%, n = 0,1,2,.. . (3.3.Eq 15)
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The following points emerge from the three examples considered:
(i) In general, the Maslov-WKB conditions predict physically incorrect
results for the discrete part of the spectrum of ﬁl However, they do give
approximate eigenvalues; the percentage error between these approximate
eigenvalues and the exact results depends on the problem under
consideration.
(ii) The BWS conditions give physically correct results for the discrete
part of the spectrum of'ﬁ if the following two conditions are satisfied:
(a) The physically correct discrete part of the spectrum pf ﬁ is given by
{H(I(n)): I(n) = nh-c, neZ, ceZ is fixed and min V(q)H(I(n))<max V(q)}.
(This condition is satisfied by a large number of examples that are of
interest in physiecs.)
(b) The connection potential (3 is chosen to be (= pdg +cd® where c¢ is

determined by physically correct spectrum given above.
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3.4 A MODIFIED MASLOV-WKB METHOD

We have demonstrated that the Maslov-WKB method is wunable to produce
exact discrete eigenvalues of ﬁ\(the Hamiltonian operator of a particle in
potential well) in many cases. The question then arises as to whether we
can modify the Maslov-WKB method to incorporate the BWS conditions, so as to
give the exact eigenvalues. The modification must involve the flexibility
arising from the choice of connection potential made in the half-density

quantization scheme.

We shall assume the results and notation given in the previous sections
of this chapter. In particular, we have the H1§ﬁ§ the discrete part of the
spectrum of /I; predicted by the BWS conditions [ef. equation (3.3.Eq 4)] and
Rg(H) the discrete part of the spectrum of H predicted by the Maslov-WKB

conditions [ef. equation (3.2.Eq 11)] given by

Rp(H) = (E(n) = H(I(n)): neZ and E(n) < (min(V),Eq)} (3.4.5q 1a)
and

Ro(H) = ((n) = B(I"(n)): n  Zand B¥(n) & (min(V),Ex)}.  (3.4.Eq 1b)
respectively.

Clearly R_D(’l-?) and R\;(?!') coincide if the connection Y of the
prequantization bundle (B,(*,")x) (over (My,Wo)) is determined by the
connection potential (O = pdq+(k+1/2)fid®, where k is some integer.
Therefore, we shall study the following two cases separately:

(CP1) @= pdq+(k+1/2)id®, where k e Z;

(CP2) @ = pdq+cdd, where c § (k+1/2)f for all k eZ.
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Case CP1: (3= pdq+(k+1/2)ide, keZ

P N
In this case as pointed out earlier we have R (H) = R;(H). Then for
~
each E(n) & Rg(H), we have the Maslov-WKB wave function §h(q) (corresponding

to the energy E(n)) defined in remark (R2) of section (3.2).

Remark: (R1) By equations (3.1.Eq 11a) and (3.1.Eq 11b), we have:

Pe+2jme(0+2jm) = P(0){exp 1jl(2nI/n)-mlle(e), jeZ; (3.4.Eq 2a)
4?.,‘(9+2jrf)et.(9+2jn) = ¢&(9)[exp ijl(2ni/n)-nlle (@), jeZ. (3.4.Eq 2b)
(Here we have used the fact that I is given by I = pdq = -& qdp.) Now,
€ ¥€

in the case (CP1) situation, we have:
I(n) = (n+1/2)1; (3.4.Eq 3a)
P(es2ime(es2im) = h(e)e(e) on T; (3.4.Eq 3b)
¢, (0+2Jm)ec(6+2)m) = @, (8)ec(8) on ¥ &} (3.4.Eq 3c)

EWn)

(:ﬁ_eTJ )(q) = j(ﬁ" )(q), where ¢(B)e(9) is defined on¥ ;
(Ci)e-ec_"'"sj)(p) = 3¢ E‘:o)(p), where 95Q£G)ec_(9) is defined on’ﬁégn)
Therefore, ij_}h(q) is also given by
B, (a) = (U e (a)+(Pe)(a). (3.4.5q ¥)

where it is understood that fbc(e)ec(e) and ¢(e)e(e) are defined on TE(".)

Case CP2: b= pdq+cd®, where c% (k+1/2)h for all ke Z

We have a new situation here in this case: for each E(n)e& R:D(ﬁ), we
have ?EL?(;) = 0 by Theorem (1.3.4.T2) (of section (1.3)). Hence we cannot
use the standard Maslov-WKB method to construct approximate solutions of the
Schrodinger equation. However, equation (3.4.Eq 4) points to a way to
circumvent Theorem (1.3.4.T2). We simply construct a new function on the
closed integral curve TSEM) determined by I(n) = nfi-c¢ rather than I(n) = mA

as follows.
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(3.4.D1) Definition

Let
T () = (UP_etr0)(q)+(Pe®)(q). (3.4.Eq 5)
Here Qge)em(e) and $(8)e(8) are functions on the curve '6Ekn) which is
determined by the value I(n) = mh-c, i.e., E(n) = H(I(n)). We shall refer
to'qz(q) as the modified Maslov-WKB wave function (corresponding to the

energy E(n)).

By definition‘qﬁ$q) is non-zero on the set {q: V(q)<E(n) = H(I(n))}.
The validity of the above construction is justified by the following theorem

whose proof is given in Appendix 3.2.

(3.4.T1) Theorem

We have

|:(ﬁ‘-s(n))w§;5q)1! - O(H2). (3.4.8q 6)

Therefore, Y, (q) is an approximate eigenfunction (corresponding to the

™~
predicted eigenvalue E(n)) of the Hamiltonian operator H. 1In particular,
the degree of approximation 1is as good as the original Maslov's

approximation [ef. Theorem (1.3.4.T2), assertion (ii)].

Remarks: (R2) Clearly in the case (CP1) situation we have é;a{q) 2 ipgq)
[ef. equations (3.4.Eq 4) and (3.4.Eq 5)]. Therefore, from now on we shall
write‘ﬂﬁ$q) for the approximate eigenfuncticn (corresponding to the energy
E(n)) for both case (CP1) and case (CP2) situations.

(R3) Our choice of ¥ (q) is the first term in the sum for the original

Maslov-WKB wave functions defined by equation (3.2.Eq 8). We could just as
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€1y )(q)+(&?_'<-;"-I )(q)], where j is a positive

1
o e

easily have chosen (1/3j)[ (U
integer, to be modified Maslov-WKB wave function. It follows from
equations (3.4.Eq 2a) and (3.4.Eq 2b) that this sum differs from 1Irh(q) by a

constant factor.
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3.5 APPLICATIONS OF THE MODIFIED MASLOV-WKB METHOD

Let us consider the pairing problem in the quantization of a
Hamiltonian H with closed integral curves. We shall assume the notation
given in section (3.1). We can quantize H in the polarization (, spanned by
(?/30); so let ﬁoc be the quantum operator in the quantum Hilbert space
H(® ), and let @:c_ be the eigenfunctions of ﬁoc and let E(n) be the
eigenvalues of ﬁoc' The question now is: what 4is the corresponding
operator ﬁ in H(P) = LZ(Q)?. In other words, what is the unitary operator U
which maps H(F.) to H(P) and ﬁ“_ to ﬁ?. We shall present an approximate
solution to this problem based on the following simple observation: U is
determined if we know the eigenfunctions Cﬂ_' and eigenvalues of the operator
I,-I\ in L*(Q). Now the eigenvalues of /}? are known as they can be taken to
coincide with that of H,.. What we do not know are §,. Here the modified
Maslov-WKB method comes into play. This enables us to construct approximate
eigenfunctions % of ,I-? consistent with the eigenvalues E(n). Using ‘@'hand
E(n) we can construct an approximate unitary map U. Thus we have
established an approximate pairing between the polarizations ® and P. 1In
the next chapter we shall discuss some examples in which this modified

Maslov-WKB method is applicable.



APPENDICES A3.1-A3.2
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APPENDIX 3.1

(A3.1.L1) Lemma [cf. Eckmann and Seneor (1976)]

Let C(p) be a compactly supported smooth function of p with support n.
Let D(p) be a real smooth function of p and let D' = (2D/2p).
(1) I1f the‘f‘ollowing integral exists for some j = 1,2,3,...
[-d'f/i]"l Y dp{exp 4D(p)}[(?/pp){[D'17" (3/9p) (D' 17" ...@Ap)[c/D'1}]
then, i
Sndp{exp.‘i'D(p)}C(p)
= [—ﬁ/i]dj dp{exp #D(p)}[(?/pp){[D']™" (3/ap)([D‘]'1...(’a/'ap)[C/D']}]
i (3.1.Eq 1)
(1i) In particular, if D'(p) # O onf, then

gdp{exp #D(p)iC(p) = D(ﬁ‘i) for some j = 1,2,3,.... (A3.1.Eq 2)
n

Proof':
(1) The left hand side of equation (A3.1.Eq 1) is obtained by integrating
the right hand side j-times.
(ii) This assertion follows from the fact that
[(@/pp){[D']™"....(3/pp)[C/D' 1}

is a compactly supported function.

For each positive integer r, we have
Oy= [2ri-(2u-62) ,2rm06,].
Let us subdivide A, into the following subintervals:
[2kw, 2kn+0,]1, k €Z and -rgkgr;
[2k'-(2n-8,),2k '], k'e Z and -rgk'<r.

Let us fix k; then on the subinterval [2km,2kn+6;] the map 6 --> p(6) has a
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unique inverse which we shall denote by 6}(p). Similarly, let us fix k';
then on the subinterval [2k'nw-(2n- ?_),Zk'-n] the map © --> p(@) has a unique

inverse which we shall denote by ©7.(p).

Note that for pe {p:3qe Q s.t. (p,q) &6‘5 }, we have

(lpcec_"'""’)(p) =Bzm $.(8)ec(0)

viel=vr
R~ + x
=L Z (e (p)ec(6,(p)). (A3.1.Eq 3)
(A3.1.T1) Theorenm
We have
S |(F¢C-eccl"‘ )(q)lg_dq = 06 %) for some S T .
R-Ry)
(A3.1.Eq 4)
Proof:

et
Let (, be the support of ((;S&ec‘:'lf‘)(p). Then for each qe (R-R(q), we
have
rr——y
(Fd e, )(q)
¢<’,'_ < sf‘tm

K=r
(2n6y2 5 3 [ aplexp #(pa-{,  a(8) @p/20)e0)} 1 @p/20) 1712 (BF(p))
. ot o

K==v

X eo_(ei(p)){exp iJc_(a"k(p))}] (by equation (A3.1.Eq 3))

= (2wl ™22 7 [ dplexp 1D5(p)}CI(p)] (A3.1.Eq 5)
K==y dp
where %
Ci(p) = 16p/28) I=V% (0%(p)) fexp #3.(00(p))}ey(8%(p)) if pey

0 otherwise,

and

94:.
Di(p) pq—-fo X q(8)pke)de if pe

0 otherwise.
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Then we have
t
(aDg/op) = q-q(8%(p)) if p efo;

1 (?D%/ap) | >min{lg-q(8E(p))I: p & L };

pef
and
1(aD§/ap)lqu_ >0 if ge R -{q:q p s.t (p,q) &¥}.

Therefore, there exists & >0 such that

E(T)D:fbp)lpepc’ >q(83)+€-q for q€q(8y) (A3.1.Eq 6a)
and

:('aD:fap)lpeﬂc >q-q(84)-€ for g3q(83). (A3.1.Eq 6b)
Since the function ©0%(p) is a compactly supported smooth function,

(2'Ci/opY) is bounded and 1’ ¢}/apd)| is finite, for each j.

Then for each q « {q: Either q§q(65) or q2q(04)}, we have
I(Fqbc_e “v)(q) |

= 'ﬂ" [2an] Y% IXRZ g dp{exp 2Dt(p)1(‘a DE'/?JP )4 @Y Ci/’ap“)l
r k=vJn
N for some j = 1,2,3,... (by Lemma (A3.1.L1))

< AYY2 (2m)nax (pefh )-min(p & % )Ilmini(@DE/3p) 117 [max( i (@Y ctiapd) 1]

g2 [min| (’EDD*'/‘ap)l]"J L, (where L is a positive number).

Let
(0 = {q: either q3q(64) or agq(ez)}.
Thus
g [(F e ™" )(a) 1%dg B ML z‘j [min( | (@D%/2p) 1" Xdq
a

= O(ﬂ Q-J‘t‘)
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The 1last step follows from the fact that the integral
SCI [min(l(DDﬁ/'ap)I]'ijdp is finite; since by equations (A3.1.Eq 6a) and
(A3.1.Eq 6b) we have

Sntminl(mnifap) 112 dq € 2[-23+111el" 2%,
Since R-R(q)c , we have

. 2
I(F{)c_a:"' )(q)17dq = O(h™*') for some j = 1,2,3,c.0. [}
IR-Rq)
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APPENDIX 3.2
Here is a short list of results that we shall use:

(eq(®)/208) = [T(E)p(B)/2v] and (2p(8)/20) = [T(E)/2n](§?l rA.q™"');

(A3.2.Eq 1)
H = [-11G*/3q2)+V(q) 1; (A3.2.Eq 2)
o= (272042 (40" Ar@/op)] (A3.2.Eq 3)
(UY) (q) = (2“%'-;”2512. dplexp 4pq} W(p); (A3.2.Eq 4)
(U'9)(p) = (alﬁ)-‘lzstadq{exp -ipq }(q); (A3.2.Eq 5)
Uﬁ;u*’l = H; (A3.2.Eq 6)

E

Let $(a) = £(a){exp #5(a)} and ¢ (p) = g(p){exp &#H(p)}.

n
B-E)PE () = 4°1(1/2) @S0 )%V (@)-E} Pefa)
+ A(-1) {(1/2) (2*Slp d>) f+ o f/0q) (95/9q) } {exp 4S}
+ higher order terms of -h (A3.2.Eq T)
(H,-E) P&, () =’l’fb[(91/2)+{§5K(-3H/’ap)K}-E] PE (o)
- i’ﬁ[%(-1)V'Arr'{[(r'-1)/2]faw/'ap)"'l(?lw/a pL)g+@W/2p)""1(dg/ap)} 1{exp W}

r=4

+ higher order terms in-h (A3.2.Eq 8)

(A3.2.L1) Lemma

Let 8 = R(q)-{q:3p s.t (p,q)e?SE }. Then we have
S I(U'$¢('Be¢/39)l°)(q){qu = 0¢ELI*') for some 3 = 1,2,3,e00n
= (A3.2.Eq 9)

Proof':

The function (Pec/20), like eo(B), satisfies the following condition:
(Bec/aa) =0 in the neighbourhood of points belonging to the set
{ee«®: 6 = 2k, 6 = 2kn+0,, keZ}. Therefore, this proof is formally the
same as the proof of Theorem (A3.1.T1) of Appendix 3.1. after we have

replaced the Fourier transform F by the unitary map U, and ec_(e) by
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(A3.2.T1) Theorem

Let
-
T (a) = (U e ) (a)+(P e'e)(q) (A3.2.Eq 10)
where ¢L(9)ecﬂ9) and $(0)e(0) are functions on the closed integral curve »€

Then we have
A € 2
[l (H-E)¥(q) | = O(R®). (A3.2.Eq 11)

(Note that this theorem is more general than Theorem (3.4.T1).)
Proof':

For q « {ge R(q):3p s.t (p,qJe-'dE}, we have

~ E
(H-E)¥(q)

= (H-E) (U @ % ) (a)+(H-E) e'®) (a)
= W (E-B)U(P, e'© ) (@)+(B-E) e’ ®) (a)
= UL(He-E) (§, 0+ ) (p) J+(FE) (§6 © ) (q)
(by equation (A3.2.Eq 6))
= ~1R[27/T(E) 1L (U &, @ec/08)%°}(a)+{ § 26/50)'® }(q)]
(by equations (A3.2.Eq 7) and (A3.2.Eq 8))

= —1A[21/T(E) ][ P10 (e+e,)700)] ‘0 1+0(H ")
(by Theorem (1.3.4.T1) of section (1.3))
= 0(R%). (A3.2.Eq 12)
The last step is obtained using the fact that (e+e.) = 1 [ef. section (3.1)

of Chapter 3].
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Let & = {q:3p s.t (p,a)eB%}. Thus
j;? H(H-E)W1q) 12dq = o?). (A3.2.Eq 13)
Let T = R(q)-¢.Then for each q & G}, we have
(B-E)YT(q) = [U(He-E) (o0t ®)1(q)
= -46[21/T(E) IV ¢, (9ec/28)'9 1(q)+0(1i%)
(A3.2.Eq 14)
(by Theorem (1.3.4.T1) of section (1.3))
Thus
5 (B-E)g@) aa = 1§ 10§ (eca0) 0 2aq
= “ (by equation (A3.2.Eq 13))
= 0(F%*2) for some j = 1,2,3,... (A3.2.Eq 15)
(by Lemma (A3.2.L1))

This proves our assertion. |



CHAPTER 4

LOCALIZATION OF OBSERVABLES IN AN EFFECTIVE CONFIGURATION SPACE AND
IN THE PHASE SPACE, AND THE MODIFIED MASLOV-WKB METHOD FOR CERTAIN

MILTILINEAR MOMENTUM OBSERVABLES WITH CLOSED INTEGRAL CURVES
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LOCALIZATION OF OBSERVABLES IN AN EFFECTIVE CONFIGURATION SPACE
AND IN THE PHASE SPACE, AND THE MODIFIED MASLOV-WKB METHOD FOR

MILTILINEAR MOMENTUM OBSERVABLES WITH CLOSED INTEGRAL CURVES

(4.1) Introduction

In section (4.2) we shall attempt to establish unitarily equivalent
quantizations of a general observable Z in suitably chosen canonically
conjugate polarizations. In general, we shall see that it 1is not always
possible to establish such quantizations, so we shall attempt to see whether
we can establish unitarily equivalent quantizations for a 1local observable
that possesses the same properties as Zglocally. Motivated by the physical
limitations of measuring devices Wan et al have systematically studied the
notion of local quantum observables in quantum mechanics [ef. MecFarlane and
Wan (1981a); Wan and Jackson (1984); Wan, Jackson and McKenna (1984); Wan
and McLean (1985)]. The work of Wan et al includes quantizing classical
momentum observables localized in the configuration space. In section (4.2)
we shall show that by transforming to an effective configuration space we
are able to effect the localization of qfsuch that this local observable can
be quantized as a complete momentum observable in a unitarily equivalent

manner in suitably chosen canonically conjugate polarizations.

In section (4.3) we shall localize the Hamiltonian H (of a particle in
a potential well) in the phase space and effect the quantization of the
localized Hamiltonian in a suitably chosen polarization. We shall then use
the approximate eigenfunctions of the Hamiltonian operator ﬁ~in LZ(Q)
constructed by the modified Maslov-WKB method to determine the quantum

operator in EZ(Q) corresponding to the localized Hamiltonian.
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In section (4.4) we shall extend the modified Maslov-WKB method to
multilinear momenta ,i.e. observables that are polynomials of the momentum

observable p with functions of q as coefficients.
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4.2 THE LOCALIZATION OF OBSERVABLES IN A EFFECTIVE CONFIGURATION SPACE

Let (M,w) be a 2-dimensional symplectic manifold, Z be an observable on
(Myw), R(Z) be the classical range of values of 4 and let Kngt) be the
integral curve of the Hamiltonian vector field Xf; originating at the point

m.

Then according to the Hamilton ©box theorem [cf. Abraham and
Marsden (1980), pp391-392] we have the following results. Suppose Xé(m) $0
for some me M, then there is a neighbourhood U of m with canonical

coordinates (ﬁ',g) given by

% = Z with range denoted by R(f), (4.2.Eq 1a)
% = t with range denoted by R(%), (4.2.Eq 1b)
such that the map F:U --> R(-io) x R(}) given by
F(m) = (ao,%_z t) (4.2.Eq 1e)
is bijective with
FI{F_f(_%’O) (8) = (prg= t). (4.2.Eq 1d)

Let (:JU denote the restriction of the symplectic two-form ) to. U; then
(Uyw,) is a 2-dimensional symplectic manifold with global coordinates (—59,8_).
We shall consider the following four case situations:

(1) R@) =R; R(g) § IB;
(2) R(p) # ®; R(g)

1"
z

(3) R(P) =R; R(«;_) R;

() R(p) # R; R(P) § ®;

Let ¢ and (¢, be the canonically conjugate polarizations of (U,wu)
spanned by the vector fields (’Blaf:) and (a/a%) respectively. Then R(_tz_) is
the effective configuration space with respect to ¢ and R(%) is the

effective configuration space with respect to F.. Let ﬁ’u a one-form on U
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that satisfies dl?JU“UU’

Let By= U x @ be the trivial bundle over U, (¢y*) be the natural
Hermitian structure on By, so be a unit section of By and let ¥ be the
connection over B, defined by

Ty 80 = =#(X A By)s, for all X Vg(U). (A4.2.Eq 2)

Let (BU,(' »*),V ) be the chosen prequantization bundle over (U,w,).

OQur problem now is to establish unitarily equivalent quantizations of
{f’ = ﬁ in the canonically conjugate polarizations ® and ®%.. In chapter 2 we
spelled out the conditions under which{o is quantizable, i.e. R(z‘) should
be [R. This condition is only satisfied in case (1) and case (4) situations,
so in these cases we quantize Z: as we did in chapter 2. So the range of g
R(%), in the case (2) and case (3) situations poses a major obstacle to
quantizing f) in these two cases. To circumvent this difficulty we propose a
procedure which will enable us to quantize,aolocally in the case (2) and
case (3) situations. This is a generalization of the idea of 1localization
of (cartesian) momentum observables put forward by Wan, Jackson and

McKenna (1984).

The procedure for quantizing f locally in the case (2) and case (3)
situations is given as follows. Let /A be an open interval in H(%) such that
the closure of A is compact and let N, be an open interval contained in N\.
Let Z_'(%) be a C™ function of %_ that satisfies the following two conditions:

(1) £(g) = 1 on Ao
(ii) E('g) 0 on U-A

Therefore, a(%) is a function of compact support on H(‘%).
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Let V = F_1(R(ﬁ"’) xN\) and Vg = F“‘(R(@) xNMNo). Then let w), be the

restriction of Wy, to V. Then (V,w,) is a symplectic submanifold of (U,w,y .

Then we can choose canonical coordinates (,a,',%') on (V,wy given by
2 -1
4 =E@) g = (P le(g T dg. (A4.2.Eq 3)
Ph g = [ RYT Yy
where Q,o is a chosen reference point in A_ . Let R(.y.) denote the classical
range of 4J and let R(%‘_) denote the range of %_' Clearly R(%‘) = R

[ef. Wan, Jackson and McKenna (1984)].

Let @' and @, be the canonically conjugate polarizations of (V,w,,)

spanned by the vector fields (afa_.go') and (ﬁ/a%') respectively.

Remark: (R1) Note that £ =4 =7 on V. In particular, H(%_) is
identifiable with the effective configuration space with respect to the
polarization (P; so ' is the localization of 4 in the effective
configuration space R(%).

(R2) 1f Ayis chosen to arbitrarily close to N, then Vg is arbitrarily close
to V [ef. Abraham and Marsden (1980), p81]. One can also choose V to be

arbitrarily close to U.

Since H(%l) =R, _,&; is quantizable in the canonically conjugate
polarizations (' and (PQ'. Since ,3:,' = ‘J" =L in Vo and,go' = 0 outside V, we
would argue that the quantization of,go' amounts to a local quantization of
%,: '4 Therefore, we have established unitarily equivalent quantizations of

the observable g at least locally, in canonically conjugate polarizations.

To sum up:
(i) In case (1) and case (4) situations we quantize'g in the same way as we
did in chapter 2;

(ii) In the case (2) and case (3) situations we first localize 7 in the
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effective configuration space with respect to ®, and then we quantize the

localized observable in suitably chosen canonically conjugate polarizations.
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4,3 THE LOCALIZATION OF THE HAMILTONIAN (OF A PARTICLE IN
POTENTIAL WELL) IN PHASE SPACE

(4.3.1) Notation
(4.3.1.D1) Definition

Let (M,w) be the phase space of a classical system and let 'Q be an
observable of (M,w). The observable is said to be localized in the phase

space if the support of é is compact in M.

Remarks: (R1) If“i: is an observable that is localized in the phase space
then the Hamiltonian vector field Xﬁ is complete [ef. Abraham and
Marsden (1980), p70].

(R2) Observables that are localized in phase space are of interest in
physics because of the physical limitations of the measuring devices: a
measuring device has a finite size, and usually measures a finite range.
Clearly a measuring device with a finite range would be incapable of

measuring an observable whose values go up to infinity.

Consider the example of a Hamiltonian of a particle in the potential
well whose values go up to infinity. What we want to construct is a
modified Hamiltonian with only a finite range of values. We can achieve

this by localizing the Hamiltonian in phase space as follows.
We shall assume the notation and results given in chapter 3.

Let (E',E") be an open dinterval in (min{V(q)},max{V(q)}) and 1let
[E!,E}] be a closed interval in (E',E"). Let 'E}H) be a C* function of H
which vanishes outside (E',E"),and which equals 1 inside [E!,El]; then

according to Abraham and Marsden (1980) [ef. p81] the function ‘é(HJ exists



Fig 4-1¢ The loops are Integral curves
of X,. The Hamiltontan H is localized
in the region bounded by the Integral

g "
curves ¥ and wE .
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even when [E},E!] is arbitrarily close to (E',E"). The function €(H) is

referred to as a "bump function".

Let £ = £ (H)H. Then?; is localized in phase space as depicted by

Fig 4-1. We therefore call é a localization of H in the phase space. The
region

No = {m & M: E!SH(m)E!} (4.3.1.Eq 1)

is referred to as the centre of localization.

We recall that M, is the region in M given by
Mo = {closed integral curves of X,}-{(0,q,)} where g, is the point in Q at
which V(q) has a minima. Explicitly, we have
M, = {m € M: min(V)SH(m)gmax(V)}-{(0,q,)}. We also defined w)g, to be the
restriction of the canonical two-form wWto M,. We introduced action-angle

variables (I,8) on (M,,we) given by equation (3.1.Eq 3).

Remarks: (R1) By definition the support of %, supp(%), is contained in M,:
except in the case where E! = min(V), then supp({) is contained in
Mou {(0,q0)}.

(R2) Let %i\ém) be a function on M, which equals 1 inside Ao, and vanishes
outside A,. Note that 'X.hgm) is not a smooth function. Therefore, when
[E:,,Eg] is arbitrarily close to (E',E"); then ﬁ is a smooth approximation

of the function In(m)H(m).

o

Let ﬁ be the restriction of 4 to Mo. Since H is a funection of the
o

action variable I, it follows that ’Qc is also a function of I; so we shall

write g’o: -(;éI)-
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(4.3.2) The gquantization of &,

Let us quantize ﬁ; in the polarization @ spanned by the vector field
(d/88). We recall that quantizations in the polarization (3 gives rise to
BWS conditions [section (1.2) of chapter 1; section (3.3) of chapter 3]. 1In
order to quantize KL we need to quantize the action variable I first. Let
ft be the quantum operator corresponding to I in H(GE). According to the
BWS conditions the set of allowed values of I is

R(?Q) = {I(n): I(n) = nfi-¢, neZ and min(V)KH(I(n))max(V)}.
(4.3.2.Eq 1)
(Here R(?;) is the spectrum of ELgiven by equation (3.3.Eq 3).) According to
section (2.3) of chapter 2 the quantum Hilbert space H(6%) is identifiable
with ﬁiﬂﬂmp) where u is the discrete measure with support R(?h) defined by
A{I(n)} = 1 for each I(n) e R(TL). (4.3.2.Eq 2)
A

Let ﬁ;& be the quantum operator (corresponding to €)) in H(6.); then
ézc is the multiplication operator é; in H(®, ), and the spectrum R(éic) of
ﬁ:@is given by

R(é';,_) = {ﬁ:, = '<°(I(n)): I(n) = mA-c, n e Z and E'SH(I(n))E"}.
(4.3.2.Eq 3)

N
We can also write down the normalized eigenfunctions (f‘)m(l) of —40& in
exactly the same way as we did for Ec[cf. equations (2.3.6.Eq 4a) and
(2.3.6.Eq u4b), section (2.3)] as follows. For each
ne {neZ: E'¢H(I(n))KE"}, the normalized eigenfunctions Cﬁm(l)

“ A
(corresponding to the eigenvalue ﬁi,) of ZZOEare given by

¢

c

I(n).
I(n') f I(n), n'eZ. (4.3.2.Eq 4)

1 when I

0 when I
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~

L4}
Remark: (R1) Note that ‘éb =‘C§I(n)) is only a eigenvalue of .Coc, if
ne {neZ: E'XH(I(n))KE"}.
(R2) H(F.) is the Hilbert space spanned by the eigenfunctions L\JugI) of the

A
quantum operator I, which are given by

Yo (1)

1 when I = I(n).

I(n') # I(n), n'eZ. (4.3.2.Eq 5)

0 when I

Clearly the eigenfunctions \i{._“( I) and (t’c“( I) are identical for

ne {ne Z: E'SH(I(n)KE"}.

Since g is not a simple observable we are unable to construct a unique
quantum  operator  corresponding to Z in L%(Q) using the canonical
quantization procedure. However, we can employ the modified Maslov-WKB
method outlined in section (3.4) of chapter 3 to obtain an approximate
pairing between H(®:) and L%(Q) as follows. By equation (3.3.Eq 4) the
discrete part of the spectrum of ’I; predicted by the BWS conditions is

Rp(H) = {E(n) = H(I(n)): n eZ and E(n) & (min(V),max(V))}. (4.3.Eq 6)
For each E(n) « Ry (H), we constructed the modified Maslov-WKB wave function
"Iﬁ,,(q) given by equation (3.4.Eq 5); V¥, (q) is an approximate eigenfunction of
iI\ corresponding to the eigenvalue E(n) which has been determined by the
BWS conditions. We can use these eigenfunctions to construct an approximate
pairing in accordance with the method spelled out in section (3.5) of
chapter 3. In other words, the operator i:t in H(®.) is mapped to an
operator g in LQ"(Q) determined, albeit approximately, by requiring f to
possess eigenvalues ‘é: with eigenfunctions "I(H(q).(Here n belongs to the set

{n e7Z]: E'KH(I(n)KE"}.) Then H(%) the spectrum of ﬁ is given by

RE) = R(Z,,).



Page 205

Remark: (R2) According to the BWS conditions the set of eigenvalues that
~
A
the Hamiltonian operator H and the quantum operator'é have in common is
given by
o N n
R(E) M Ry(H) = {Z = E(n): E(n) = H(I(n)) and E})KH(I(n))EY}.

(4.3.Eq 7)
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4.4 THE MODIFIED MASLOV-WKB METHOD FOR CERTAIN MULTILINEAR MOMENTUM

OBSERVABLES WITH CLOSED INTEGRAL CURVES

(4.4.1) Notation

Let Q be an open interval in MR with cartesian coordinate q and 1let
-
M=TQ. Let w be the canonical two-form on M and let (p,q) be the usual

cartesian canonical coordinates on M.

Let z§ be an observable on (M,w) that satisfies the following
conditions:
(MM01) £ is given by
oo
T =) € (a)p® (4.4.1.Eq 1a)
K=1 K
where Ek(q) are analytic functions of q. The function 7; is referred to as a
multilinear momentum observable [cf. McFarlane and Wan (1981b)]. In
addition, we shall assume that '4 can also be written in the form
s K
C =3 7,(p)a (4.4.1.Eq 1b)
K=1
where‘nk(p) are analytic functions of p.
(MMO2) X‘g is a complete Hamiltonian vector field with a single critical
point at (0,0) and closed integral curves.
(MMO3) The observable‘é'never takes the same value on two different integral
curves of Xé.
(MMO4) Each integral curve ‘HE, where E is the value of‘ﬁ on any point on the
curve, has exactly two stationary points with respect to q and exactly two
stationary points with respect to p. Then let m,, my, m; and ma be points
on 3% such that [of. Fig 4-2]
(3l/2q)
(9Z/3p)

1]
un

0 at m (po,qo) and m, = (p,,4,), (4.4.1.Eq 2b)

(ps,qs). (4.4.1.Eq 2b)

(p,,q4) and my

Uatm1



Flg L2

The loop Is the integral

curve of Xﬁ corresponding to the value
E of €. T has
polnts wlith

7 has exactly

Pespect to
dC /o9
AT /2p

11

exact ly two statlonary

respect to q on -

0
0

two statlonary with
on T5°. We have
at m, and m,;

at m, and m,.



Fig 4-3a:r The arcs ¥ and -

are deplicted.



Fig 4-3b:  The arcs and

are deplcted.
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As before we let M, = M-{(0,0)} and let Z _be the restriction of Z to

My,. Let ?Se(t) be the integral curve of Xc that originates at the point mg

and let T(E) be the period of 'ﬁ%t). Let (I,0) be action-angle variables on
(Mo,wo) defined by

Is= édepdq, 6 = (2wt/T(E)). (4.4.1.Eq 3)

Since 4015 only dependent on the action variable I we shall write

T.= T4D.

€
Let ¥ (6) = (p(©),q(0)) be the integral curve of Xt; that originates at
o
m, and parameterized by © instead of t. Then p(8) and q(8) satisfy the

following differential equations:

(2p(0)/30) = -[T(E)/2n1QRZ(p(8),q(0))/2q) (4.4.1.Eq 4a)

(2q(8)/206) = [T(E)/2n]1 @Z(p(@),q(8))/2Dp) (4.4.1.Eq 4b)

with constant of motion g(p(e),q(e)) = E.

Let 6,464,02,03 & [0,2n) such that ©,, 6,, 0, and O3 correspond to m,,

Mgy Mg and m, respectively, i.e.

Rp(©)/R8) = 0 at ©6 = 6,,0;; (4.4.1.Eq 5a)
(3a(8)/A8) = 0 at © = 6,,0;. (4.4.1.Eq 5b)
Remark: (R1) The equations (4.4.1.Eq 5a) and (4.4.1.Eq 5b) are formally

equivalent to equations (1.3.1.Eq 9a) and (1.3.1.Eq 9b). This formal
equivalence will prove important when we consider the modified Maslov-WKB

method for Z.
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Here is a list of additional notation we shall require when we consider
e E
the modified Maslov-WKB method: Let jjfE, __"66, '54_ and Fdr- be the arcs on the

integral curve UE given by [ef. Fig 4-3a and Fig 4-3b]

35 - ((p(0),aq(0)) et : 6e [21-65,0¢1};  (M.4.1.Eq 6a)
3% = ((p(e),a(0)) et : 0c [04,031); (4.4.1.Eq 6b)
35 = ((p(6),a(0)) eB%: 6 e [6,,0,1}; (4.4.1.Eq 6c)
£ g {(p(8),q(B)) ct:0e [8;,2r]}; (4.4.1.Eq 6d)
Let
+SE(q) 5 j:pdq on +'6Ewith m e;tfe; (4.4.1.Eq Ta)
8 ey = Sjpdq on 3% with m e_3°; (4.4.1.Eq Tb)
wf (p) = -Si'qdp on ’65 with m e”tff; (4.4.1.Eq Te)
wE (p) = -Sf(;dp on ¥€ with me B ; (4.4.1.Eq 7d)

€
(here all the integrals are along § ).

Let (3= pdq+cd® be a one-form on M, where ceR. Let (B,(*,*),V) be the
chosen prequantization bundle on M, defined in the usual way such that the

connection \/ is determined by the connection potential ﬁ

(4.4.2) Quantization of ¥

We shall split this subsection in to two parts which we shall denote by
(a) and (b) respectively: in part (a) we shall quantize ﬁ in the
polarization ¢, spanned by the vector field (3/-6), in part (b) we shall
give the modified Maslov-WKB method for multilinear momentum observables

like Z.
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(a) Quantization of %ein the polarization Pe

AN
Let us quantize 'é’b in the polarization (Pc_ spanned by (2/26). Let I, be
the quantum operator corresponding to I in H(6 ) and let R(I) be the
classical range of I on (M,,Wo). According to the BWS conditions the
I~ fal
spectrum of I , R(I.), is given by
~
R(I,) = {I(n) = mi-c: ned, I(n) &R(I)}. (4.4.2.Eq 1)
2z
The Hilbert space H(§.) is identifiable with L (R,n) where p is a discrete
Fa)
measure with support R(I,) and such that

P({I(n)} = 1 for each I(n) & H(?c). (4.4.2.Eq 2)

A
Let -éoc, be the quantum operator (corresponding to £ ) in H(@.); then

Al

A
‘é’u is the multiplication operator ﬁo in H(6z ). The spectrum Mfm} of

is given by
~,
R(Z,) = (E(n) =4 (I(n)): ne Z and E(n) & R(Z)} (4.4.2.Eq 3)

where R(ﬁo) is the classical range of 'fo.

(b)Ihe modified Masloy-WKB method

Let LZ(Q) and F'1LZ(Q) be the position and momentum representations
given in section (3.2) of chapter 3. Let U:F 'L%(Q) --»L (Q) be the
unitary map given by equation (3.2.Eq 2a). By equations (4.4.1.Eq 1a) and
(4.4.1.Eq 2a) we can wr'ite?: in the forms

=S 7 (q)p* (4.4.2.Eq Ya)
\é §=§’k q)p a

or

= k
e =§_=;V{k(p)q . (4.4.2.Eq U4b)
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According to the canonical quantization scheme a general expression for

i ~
the quantum operator 'é (corresponding to the classical observable f) in

Lz(Q) is given by

FaY (@] K L [ N
< =2z (-m"JZ '(a) @' /5a4)+ % (a) (4.4.2.Eq 5)
. =1 =D
where DJK(q) are smooth functions of q not involving ]

[ef. McFarlane (1980)]. Since ;;\ should be formally self-adjoint, we require
D®\.and D¥, ,to be given by
D¥ = € (a) and DX, = (1/2)kQ¥ /3q) (4.4.2.Eq 6)
respectively [ef. Woodhouse (1980), p80]. Hence the operator fin L?'(Q) is
partially determined by the expression
Lo = 15 (-6 {E () @ /20 +(k/2) RZ /20 ) @ /2a""" 1119 (@)+ g (0)fla)
- (4.4.2.Eq 7)
where the terms omitted are undetermined.
A
Similarly, let é’c be the quantum operator (corresponding toZ) in the
momentum representation F~' LQ‘(Q); then ‘Li is partially determined by the
expression
iq&(p) = [ tjé:(i‘ﬁ)K {?fh(p)(BKfap“‘)-!-(k/Z) (BT}R/'ap)('BK-I/ap“" )}] Wéph‘l]'(‘p)lf’c(p) .
(4.4.2.Eq 8)

Let E< R(Z ) where R(4) is the classical range of Z. Then according
to Appendix 4.2 the WKB solutions of 7.? corresponding to ‘4: E is given by
qf(q) = 1K1(@0a/00) ;"% {exp 4,5%(a) }+ -K|(@q/30) 1'% {exp £#-5%(q)}

(4.4.2.Eq 9a)
where ;K and -K are constants, and +SE(q) and _SE(q) are given by
equations (4.4.1.Eq Ta) and (4.4.1.Eq 7b) respectively, and

|(3a00) 171* = [T(E)/21t]Ig‘kié’atseiaq)"" =12, (4.4.2.Eq 9b)

~
In Appendix 4.2 we also show that the WKB-solutions of ﬁc corresponding to

‘é = E is given by
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(PC,;,(JPJ = K, |(2p/28) !:’2 {exp -i‘h'f(p)}-v- K_16p/930) 1-Vz {exp iHE(p)}
(4.4.2.Eq 10a)
where K4 and K- are constants, Wf(p) and WFZ(p) are given by equations
(4.4.1.Eq Te) and (4.4.1.Eq 7d), and
|@p/p0) I7/2 = [1(£)/2) | £ ) (i /op)*™ 172, (4.4.2.5q 100)

£ €

If we compare the WKB solutions ¢N(q) and gﬁefw(p) with  the
corresponding expressions for the WKB-solutions of ﬁ and ﬁc,respectively,
(the Hamiltonian operators of a particle in a potential well) given by
equations (1.3.1.Eq 6) and (1.3.1.Eq 12) respectively we see that they are
formally identical. 1In particular, the conditions given by (MMO4) and
equations (4.4.1.Eq 5a) and (4.4.1.Eq 5b) are equivalent to the conditions
given by equations (1.3.1.Eq 9a) and (1.3.1.Eq 9b). This means that the
results obtained by the Maslov-WKB method in section (1.3) (of chapter 1)
and the results obtained by the modified Maslov-WKB method in chapter 3
remain applicable to the multilinear momentum observable Z So we shall
assume the results in the above mentioned sections. Having constructed the
modified Maslov-WKB wave functions 'q_j;.(q) corresponding to values ih R(Z_ad)
we can proceed to establish a pairing between H(F,) and H(P) (the
quantization Hilbert space associated with the vertical polarization P on
T’b) as we did in section (4.3). The validity of the construction is

Jjustified by the following theorem whose proof is given in Appendix 4.3.

(4.4.2.T1) Theorem

We have
5 2
[l Z-E(n)) P (q) | = 0(r™). (4.4.2.Eq 11)
A
where fia the operator given by equation (4.4.1.Eq 7), E(n) belongs to

~
R(?';oe) and “Ifh(q) is the modified Maslov-WKB wave function (corresponding to
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the value E(n)) defined by equation (3.4.Eq 5).

Remark (R1) The multilinear momentum observable é could be localized in

phase space using the procedure outlined in section (4.3).



APPENDICES A4.1-A4.3
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APPENDIX 4.1

We have
(@) = 13 (05 (5 (@) @"/2a9+(k/2) BF /aa ) (2" /pa%-1)}1 P()+E (@)¥P(a)
" (A4.1.Eq 1)
fcl}gpy = 12 (#0100 ap )+ (e/2) @7, /o) (2T /ap* )} 1% (p)+7)(P) ¥4()
(A4.1.Eq 2)
(2 {exp 46(y)}1/oyk) = [ {k1/albl...c1} (&) {exp 4G(y)}{DG/ay} *x
(@ G/y 1) /211... . {Q%C/Ry Y /t1}®.  (A4.1.Eq 3)
(Here the symbol S~ indicates the summation over all solutions in

non-negative integers of the equations
a+2b+....+tc = k and a+b+....+¢c = r.)
Equation (A4.1.Eq 3) is obtained by wusing the formula for the k-th

derivative of a composite function which is given by equation (A1.5.Eq 2)

[ef. Appendix 1.5].

(A4.1.T1) Theorem
We have:
(1)€[f(q){exp 48(q)}] = [i;K(BS/‘aq)K][f{exp 4S}]
it

+(—iﬁ)[£? k{(1/2) (k-1)E 25/20)% 2 (3*S/2q2) £+ g‘gasxfaq)"" (@f/2q)
K=\

+(1/2)(agK/aq)(’anaq)“" £f}1{exp #S} + H.0.T in H. (A4.1.Eq 4)

A (o8]
(11) € _[g(p){exp 4W}] = s

oo =0

+(-HD[S  k{(1/2) (k=1)7,(~W/pp) " (2 W/a p2)g-17) (-9W/ap) “~(3g/=p)
K=t

-(1/2) ) /ap) (-3W/op) "' gl{exp #W} + H.0.T in . (A4.1.Eq 5)

7, (-aW/ep)™ 1lglexp &¥}]
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Proof':
(i) We have
(-18) [ (% /%) £(q) {exp #S(q)}]
= (-10) [ {exp 1S}/ q®)+k(@£/2q) (A" {exp £5}/2q% " )+...
+("f/9q )exp £5}] (by equation (A1.5.Eq 1) of Appendix 1.5)
= [(3S/2q)*1[f{exp #5}1-i[ (1/2)k(k-1) (3S/a q) * 2(27S/2q) F+...
+k(28/29)% ' (af/aq) J{exp iS} + H.0.T in- (A4.1.Eq 6)
(by equation (A4.1.Eq 3)).
Similarly, we have
(-11)" (2" /pa"-1) [£(q) {exp 1S}]
= -11(@S/0q)*"" [flexp 4S}] + H.0.T in- (A4.1.Eq 7)
Then by equations (A4.1.Eq 1), (A4.1.Eq 6) and (A4.1.Eq T7) we get
£ [£(a) fexp 15(0)}] = [igk (25/20)%1[f{exp £5}]
(=0T k{(1/2) (k-1 (25/00) "' (2"5/3q2) 1+ £ (35/20) " (2£/2q)

K=t
+(1/2) Qg /2q) @5/2q)""" f}1{exp 45} + H.0.T ini.

(ii) We have
(15) [("/2p%)g(p) {exp #W(p)}]
= (iﬁ)k[gfaxlexp AW}/ p™)+k(@g/ap) (3" '{exp £W}/op% )+, ..
+(“gAp*) {exp 4W}] (by equation (A1.5.Eq 1) of Appendix 1.5)
= [(-9W/ap) 1lglexp #W}1-1iA[(1/2)k(k-1) (<3aW/ap)* 2 (3" W/3p2)g+...
-k(-3W/op) " (6g/op) 1{exp 4W} + H.0.T in * (A4.1.Eq 8)
Similarly, we have
(1) (3% /gpx-1 ) [g(p) {exp 4H(p)}]

= iR (=W/pp)! [glexp #W}] + H.O.T in . (A4.1.Eq 9)
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Then by equations (A4.1.Eq 2), (A4.1.Eq 8) and (A4.1.Eq 9), we get
7~
Z. le(p){exp 4W}]
= [Z m), (2W/2p)~1lglexp £W}]

k=0

+(—iﬁ)[5? k{(1/2)(k-1)ﬁL(QBH/ap)K"z(E$WIaﬁ2)g—4a§—3H/ap)K"fag/ap)

K=

-(1/72) @7),/3p) (-W/3p)""' gl{exp #W} + H.0.T in 1.W

(A4.1.T2) Theorem

The equation
> K-2 (- k-1
[ {(1/72)k (k—T)Ek(’aS/aq) (0 S/'aq?)ﬁkg(;ds;'bq) (2f/2q)
K=
+(1/2)k(?g|!aq)(esxaq)"‘r} =0 (A4.1.Eq 10a)

has as solution

(==}
fla) = KIZ kE (@) s/ 172
=1

K'](q/0) ]~ \/2 (A4.1.Eq 10b)

where K and K' are constants, and
oo
(20/7@) = [T(E)/2m[ S kg‘gasm)“"l (AY.1.Eq 10c)
K=1
(In the equation (A4.1.Eq 10c) we have replaced p by (2S/2q)

[ef. equation (4.4.1.Eq 4b).)
Proof :

We shall split the proof into two cases according to whether

o
[~ rf (2S/q)™"'] is either positive or negative.
e

Y=

Gse1: [ rEfsna ™ 10
Y=

In this case we have
£(q) = K[S rg @shq ™ 17> (A.1.Eq 11a)
r=1 v
2 oo
(f/q) = K- 2(-1/2)f[ 3 r(3E /3q0) (@5/2q)" "' ]
=1 r

-K-2¢3[ Ji"’ (1/2)J(J—1)&J('BS/?Q)J"'(?ZS/’MZ)]

(A4.1.Eq 11b)
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and
[2 kgh(_'asl'aq)““ Rf/2q)]

= K £-2(3f/2q)

n

-(172)f [El r@g /2q) (@s/aq)""" ]
) -f [J%:. (1/2)j(j-1)‘c‘j‘\j(‘aSMq)"‘"(‘a"sraql)]
(A4.1.Eq 11e)
Then evaluating the left hand side of equation (A4.1.Eq 10a) we get
(1/2):‘[\'?21 J(-1F;8/00)2 (0" 5/302) 1+ %:_ kg‘gasmf“' @frq)l
(/23 r@g/aq) @SR ]

=1

= 0 (by equation (A4.1.Eq 11ec)).
o

Case 2: [Z r¥ (d3S/2q)""'1<0
Y=\ v

The proof for this case is similar to that in case 1. i

(A4.1.T3) Theorem

The equation

o

[2 {(1/2)k(k-1)ﬁk(-aw/'ap)K'z(’BQW’apﬁ)g-kv(—'aW/’ap)K" (g2 p)

K= & ;
-(1/2)k@), /op) (-9/pp)*"' g}] = 0 (AM.1.Eq 12a)

has as solution

oo
g(p) = K13 k7(p)(ap*" |72
K=

K'|(@p/ae)|~"2 (A4.1.Eq 12b)

where K and K' are constants, and
[wa)
(@p/a8) = -[T(E)/Ztﬂ['lzz k%(-'awap)K-l] (A4.1.Eq 12¢)
=\
(In the equation (A4.1.Eq 12¢) we have replaced q by (- W p)

[ef. equation (4.4.1.Eq Ua).)
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We shall split the proof into two cases according to whether

o0
Ly r115—3H/3p)r"] is either positive or negative.
]

r=

Case 1: [g r'vr(-'aW/'ap)""' 1>0

In this case we have

g(p) = K[Z r7) (dW/ap)' 172

Y=

(g/2p) = K-2-1/2)g3[ 3. r(7) /p) (=W/ap)™ "]
+K"Zg3[%‘° (1/2)j(,j—1)“’)J(-aw/ap)J"1(‘a‘w/'apl)]

J =
and

o0
k-1
-L ég k7 (<oW/ap) 5 (3g/2p) ]

x’¢"2(3g/3p)

(1/2)g[t§.ﬂ=l r6",/2p) (<3W/ap)*" ]

K 2
-gl= (1/2)j(3—1)41J(-3W/’3p)J‘2 (3 W/7p2)]
J=1

(A4.1.Eq 13a)

(A4.1.Eq 13b)

(A4.1.Eq 13e)

Then evaluating the left hand side of equation (A4.1.Eq 12a), we get

(s =] 1 o0
(172)gl 3. j(j-1)"?d'(-'aw/'ap)"' (WHpDI-[ 3 kﬂzé—’al'l/‘ap)“" (g/2p) 1

J=i K=

~(172)gl & r(v) /2p) (- W/2p)"™" ]
Fz

= 0 (by equation (A4.1.Eq 13e)).

oo
Case 2;: [Z r"f)r(-‘ah'/ap)"" 1<0

r'=|

The proof for this case is similar to that in case 1."
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APPENDIX 4.2
The WKB-method for a multilinear momentum with closed integral curves

(A4.2.1) The Hamilton-Jacobi equations

The Hamilton-Jacobi equations are:
é'((BS/aq),q) = E, where p is replaced by (3S/23q); (A4.2.1.Eq 1a)
and
Z(p, (<2W/2p)) = E, where q is replaced by (-aW/ p). (A4.2.1.Eq 1b)
The Hamilton-Jacobi equation have as solutions +Se(q), _Sz(q), Wz(p) and

WE(p) which are given by equations (4.4.1.Eq Ta)-(4.4.1.Eq 7d).

Remark: (R1) The solutions ,S%(a), -S%(a), W(p) and WE(p) are formally
identical to the corresponding Hamilton-Jacobi solutions of the Hamiltonian
system of a particle in a potential well which are given by

equations (1.3.2.Eq 3a)-(1.3.1.Eq 3d).

(A4.2.2) The WKB solutions

We shall construct WKB solutions of the following equations:
€-E)¥(q) = 0, PeL (Q); (A4.2.2.Eq 1a)
(G -E)y(p) = 0, Yee FLE(Q). (A4.2.2.Eq 1b)
Let us put ¢:(q) = f(q){exp #S(q)} in equation (A4.2.2.Eq 1a), and let us
put (,‘:S:(Up) = g(p){exp #4W(p)} in equation (A4.2.2.Eq 1b). Then in terms of an
expansion in 4, we get [ef. Theorem (A4.1.T1), Appendix 4.1]
(Z-E)P (q) = [£((@S/30),q)-E]f{exp 45}]

=)
+(=in)[ 2
K-

k{(1/2) (k-1)E é%smq)"""(’az S/aa*) £+€ £25/q) """ (9£/2q)

+(1/2)(’a'€é'aq)(’6$/‘aq)“"f}]{exp 4S} + H.0.T in A. (A4.2.2.Eq 2)
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(i-E)?ﬁSp) = [£(p, (-3W/3p))-Ellglexp 4W}]
+(-:Vﬁ)[‘a‘£_l k{(1/2) (k-1)%], (-3W/2 )" 23" W2 p2)g- ( <oW/ap)" ™ (28/2p)
-(1/2)f'avpk/ap)(-’awap)“" gl{exp #W} + H.O0.T in . (A4.2.2.Eq 3)

It follows from theorems (A4.1.T2) and (A4.1.T3) and the Hamilton-Jacobi
equations (A4.2.1.Eq 1a) and (A4.2.1.Eq 1b) that the WKB solutions are given
by

¢£(q) = \K1®@a/p8) 1'% {exp £,55(a)}+ Kl@a/a®) IZ"* (exp £.5%(q)}

where ;K and _K are constants, and +SE(q) and -SE(q) are given by
equations (4.4.1.Eq Ta) and (4.4.1.Eq Tb) respectively, and
1@a/00)11/% = [1(E)/2m01 3 KE (RS0 1712
and ‘
qg'igp) = K+ 1 (@p/a®) 1312 {exp 4W35(p)}+ K_1@p/o0) 1212 (exp +WE(p)]
where K; and K- are constants, Wf(p) and WE(p) are given by equations

(4.4.1.Eq Te) and (4.4.1.Eq 7d), and

oo
|@p/a0) 1712 = [T(B)/2WIIE K7 (igrap) 172,
K=1
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APPENDIX 4.3

Let ¢(9) and ¢Eﬁ9) be the WKB-like wave functions of © given by
equations (3.1.Eq 11a) and (3.1.Eq 11b) respectively. Let e(0) and e,(6) be
the real valued functions of © defined in section (3.1) of Chapter 3. Let
U: F'12(Q) --» L°(Q) be the unitary map defined by equation (3.2.Eq 2a).
Let g in L2(Q) be the operator given by equation (4.4.2.Eq 7), and let ?E,'\Qin
F'L?(Q) be the operator given by equation (4.4.2.Eq 8); we shall assume

~

"N
that U£ U™ =%.

Then by equations (4.4.1.Eq 1a), (4.4.1.Eq 1b), (4.4.1.Eq ¥4a) and
(4.4.1.Eq 4b), we have
oo (o]
8)/20) = E)/2 K-‘] = [T(E)/2 S/ap)'1;
(aq(8)/0) = [T(E)/2nl[ = kEkp 1 = [T(E)/2n][Z k!&i’*’ 2p)¢ ']

K= K=\
(A4.3.Eq 1a)

and
@ ao
(p(0)/20) = -[T(E)/2nllZ ky9a*'] = -[T(E)/26l[ Z k7 (QWAp)*"];
K=1 K K=y K
(A4.3.Eq 1a)
(here S and W are respectively the solutions of the Hamilton-Jacobi

equations given by equations (A4.2.Eq 1a) and (A4.2.Eq 1b)).

Then we have

-E)(Pe'®)(q)

(== & ] 2
-inl X kg'jp(e)}" I (@e/pq)’ @ 1 + 0(R*)
K=1
(by equation (A4.1.Eq 4))

e |
~i[2n/T(E)I[ $@e/20) © 1(q) + OCH2) (A4.1.Eq 2)

(by equation (A4.3.Eq 1a)).
Similarly, by equations (A4.1.Eq 5) and (A4.3.Eq 1b) we have

6-B) ( Beea™©) (p) = -#l2VT(E) IL P oee/30) %10 1 + OAZ).  (Ak.3.Eq 3)
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(A4.3..T1) Theorem

We have
n
1Z-E(n)1F (a) | = OCK") (A4.3.Eq Ya)
A
where E(n) belongs to R({;&) and 1In$q) is the modified Maslov-WKB wvave

function (corresponding to the value E(n)) defined by
T (a) = (UG e ) (@)+(Pe'")(q). (A4.3.Eq 4b)

Proof':

It is clear from equations (A4.1.Eq 3) and (A4.1.Eq 4) that the proof

is formally identical to the proof for Theorem (A3.2.T1) [ef. Appendix 3.2]. |l
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Page 222

CONCLUSIONS AND PROSPECTS

In Chapter 2 we proposed a scheme to establish wunitarily equivalent
quantizations in certain canonically conjugate polarizations of
2-dimensional symplectic manifolds. In this scheme we dealt with examples
on contractible and noncontractible symplectic manifolds in a unified
manner. The scheme we proposed was based on the following physical
reasoning. Let £ be an observable, with classical range R(£), that is
quantizable in the canonically conjugate polarizations ® and @.. Then the
spectra of the quantized operators corresponding to 1; in the polarizations
and € should: (1) lie in the classical range R({), and (2) be identical to

each other.

In Chapter 3 we modified the Maslov-WKB method (for the one-dimensional
Hamiltonian system of a particle in a potential well) to incorporate the
BWS conditions, so as to enable us to construct an approximate pairing
between the polarization GE(which has toroidal leaves and is spanned by X,

on a submanifold of the phase space) and the vertical polarization P.

We began Chapter 4 with an attempt to construet wunitarily equivalent
quantizations of a general observable 1; (of an arbitrary 2-dimensional
symplectic manifold) in canonically conjugate polarizations ® and ® which
are spanned by the vector fields (9/24) and (2/9t), respectively, where t is
the is the flow parameter of the integral curves of the Hamiltonian vector
field XH' We saw that, in general, one could not establish unitarily
equivalent quantizations of & in ® and & s So we localized ﬁ in the
effective configuration space with respect to the polarizationlp, and then

attempted to set up unitarily equivalent quantizations of this localized



Page 223

observable in suitably chosen canonically conjugate polarizations. The

latter attempt was successful.

In the next two parts of Chapter 4, we showed how the modified
Maslov-WKB method could be used to quantize the following observables in the
vertical polarization P:

(1) The Hamiltonian (of a particle in a potential well) 1localized in

the phase space, and

(2) certain multlinear observables with closed integral curves.

It is hoped that with the knowledge gained from an increasing number of
explicit examples we can progressively enlarge the class of observables
quantizable in a unitarily equivalent manner independent of the choice of
polarization. This would also help towards a solution of the pairing

problem in geometric quantization.
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INDEX OF SYMBOLS DEFINED IN THE TEXT

We shall only list the important symbols defined in the text here.

AC(XQ,Q)

B, B=Mx¢

(B, (+,+),¥)

c®(m), Gy (M)

Ca(M)

;)

¢*(M;P), CM;R.)

P (M;0, 1)

(M;p,1), AM;B,, 1)

Dg (where % &C (M;P))
Dg, (where Xe C7(M;E))
D7’ (where ZLe C7(M;P,1))
Dg; (where Ze CUCEM;P +1)
e(8), eq(0)

F

n 0
Hﬁf HGL'hQ%HGL
I

e

I

29

64, 65
12, 67
62

64

15

17

15

17, 18

29

30

29

30

57

54

47,170

51, 53

27

41
108, 119, 132-133
34

41



Y Ty
Ii(ny)
™), I(n)
3(0), Je(8)
Ly

L* ), L@
Lﬂﬂm)
(M,w)

(Mo o)

M/D

®

P, B

pr:M ---»Q, pra:M --> Q¢

pr‘(xi_’)

{—g-.-i,. i ""K'i’i’ s '?‘k}

A A

i

Q’ Qﬁ.

A A

% Ge

R(TZ;)
RO(H), Ry(H)
Ues » Ude
v(M), WI(M)

V(M;D)

132-133
39

177, 178
56,59

23

51, 53
132

32

62

69

14

15, 16
24, 25
27

63

119, 132-133
17

108, 132-133
32
177,179
142

62

68

27

5

9, 67

T, 34

20
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ALys(@) 22

A 56

Cw 63
elr 21
‘f’.f(q) 52, 210
ﬂip) 56, 211
&= (q) 60
&, (a) 61, 176
de), ¢, (8) 56
‘If“(q) 185

w 7, 62
We 32

{ , 1 6
(*y+) 65
Loy 4 68
<, e 27

<y Oeet 141

v/ 66
V“SQ 9,67
Wyx 15
VYV 23

HJ’ , '-lclJ 56





