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ABSTRACT

This thesis examines some outstanding problems in half-density

geometric quantization.

It is well known that the half-density quantization scheme depends on

the polarization employed: in general, the quantizations of the same

observable in different polarizations leads to different physical results.

Therefore, an outstanding problem in geometric quantization is to establish

quantizations that are independent of the choice of polarization employed.

We establish a scheme, based on physical reasoning, to render quantizations

in certain canonically conjugate polarizations of 2-dimensional symplectic

manifolds unitarily equivalent. The scheme we propose can handle examples

on contractible and noncontractible 2-dimensional symplectic manifolds in a

unified manner.

In the half-density quantization scheme, quantizations in a

polarization with toroidal leaves give rise to what are known as

BWS conditions. These BWS conditions depend on the choice of connection on

the underlying Hermitian line bundle. Let 7^ be an observable with closed

integral curves on the phase space T Q where Q is an open interval in (R.

The eigenvalues of the bound states of the quantum observable corresponding

to K are obtained by quantizing £ in the polarization (P^ spanned by X^, the
Hamiltonian vector field generated by £. This polarization has toroidal

leaves, and so the bound states are obtained from the BWS conditions.

However, in general, there is no formal procedure for constructing a unitary

map between H^p , the quantization Hilbert space associated with the
polarization (Pa, and the Hilbert space L (Q) associated with the usual



position representation. We construct an approximate unitary map by using a

modified version of the Maslov-WKB method. This modified version of the

Maslov-WKB method incorporates the BWS conditions . by taking into

account the fact that different choices of connection give rise to different

BWS conditions. This thesis contains a study of the following observables:

(1) the Hamiltonian of a particle in a potential well,

(2) the Hamiltonian of a particle in a potential well localized in phase

space, and

(3) certain multilinear momentum observables, (i.e. polynomials of the

momentum p with functions of the position coordinate q as coefficients),

with closed integral curves.
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INTRODUCTION
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INTRODUCTION

Many of the main contributors to the development of the theory of

geometric quantization have had a strong bias towards pure mathematics.

Therefore there has been a tendency to attempt the resolution of many of the

outstanding problems in the theory by resorting to sophisticated

mathematics. It could be argued that the theory as it stands is complicated

enough, and so the introduction of even more sophisticated pure mathematical

schemes to resolve minor problems in the theory is not always justifiable.

We are not convinced that the introduction of the half-form quantization

scheme to replace the half-density quantization scheme was worth the much

increased mathematical complexity. Hence we shall restrict ourselves to the

study of the half-density quantization scheme in this thesis. Whilst the

above mentioned approach for resolving problems is perfectly valid, it seems

reasonable to ask the following question: could some of the outstanding

problems in the theory of geometric quantization be resolved by resorting to

physical intuition?. This thesis is part of an on-going quantization

programme at St.Andrews led by Dr.K.K.Wan. The underlying procedure

involves:

(1) the application of geometric quantization schemes to some known

examples in quantum mechanics to see what difficulties one may

encounter,

(2) the study of the possible physical origin of the difficulties

encountered, and

(3) attempts to formulate schemes based on physical reasoning to

resolve the problems.
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In this thesis we shall be concerned with the study of two outstanding

problems in the theory of geometric quantization; these problems will be

stated in the next three paragraphs.

Let <P and <p' be two arbitrary reducible polarizations of a symplectic

manifold (M,oo), and let H and Hp> be the quantization Hilbert spaces

associated with the polarizations CP and (PT respectively. The first problem

is called the pairing problem, and it is stated as follows: how does one

link quantizations in the Hilbert space H (p with quantizations in the

Hilbert space H ^ ?. The link between the quantizations in the
polarizations in (Pand <p' is loosely referred to as pairing. In order to

have a full quantum theory it is essential to be able to construct pairings

between any two reducible real polarizations of the symplectic manifold

(M,<p).

It is well known that the half-density quantization scheme depends on

the polarization employed: in general, the quantizations of the same

observable in different polarizationsleads to different physical results.

The second problem arises from the following question: how does one

establish unitarily equivalent quantizations in different polarizations?.

In Chapter 1 we shall review the following background material:

(1) the geometric quantization scheme,

(2) the BWS conditions in the half-density quantization scheme,

and

(3) the Maslov-WKB method for the one-dimensional Hamiltonian

system of a particle in a potential well.

These reviews will be detailed and self-contained.
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In Chapter 2 we shall attempt to establish a scheme to render

quantizations in certain canonically conjugate polarizations of

2-dimensional symplectic manifolds unitarily equivalent. We shall study

examples on both contractible and noncontractible symplectic manifolds. The

work in Chapter 2 has been published [cf. Wan, McKenna and Pinto (19d4);

Wan, Pinto and McKenna (1984)J.

Let H be the Hamiltonian of the one-dimensional Hamiltonian system of a

particle in a potential well. Let Q and the cotangent bundle T*Q be

respectively the configuration space and phase space of the Hamiltonian

system. Let X^ be the Hamiltonian vector field generated by H. Let M0 be
the maximal submanifold of T*Q on which XH spans a polarization with

toroidal leaves, and let be the polarization of M0 spanned by XH. In the

half-density quantization scheme the eigenvalues of the bound states of the

quantum observable corresponding to H are obtained by quantizing H in the

polarization <%. (Note that quantization in a polarization with toroidal

leaves gives rise to BWS conditions, and these BWS conditions are used to

construct the eigenvalues of the observables that are being quantized.) Our

task in Chapter 3 is to construct a pairing between the polarization <% and

the vertical polarization P (of the cotangent bundle T Q). In other words,

we would like to construct a link between the quantization Hilbert space H^,
c

<2.
and the position representation L (Q). (The quantization Hilbert space Hp

is identifiable with LZ(Q).)

We shall begin Chapter 4 with an attempt to establish unitarily

equivalent quantizations of a general observable (of an arbitrary

2-dimensional symplectic manifold) in suitably chosen canonically conjugate

polarizations.
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Let the configuration space Q be an open interval in (R, T*Q be the

phase space and let P be the vertical polarization of T Q. Next we shall

attempt to quantize the following observables in the vertical polarization

P:

(1) the Hamiltonian (of a particle in a potential well) localized in

the phase space T Q, and

(2) certain multilinear momentum observables with closed integral

curves.

As in Chapter 3, we shall begin by quantizing each of the above mentioned

observables in a suitably chosen polarization which has toroidal leaves.

Then we shall try to establish a pairing between (Pc and the vertical

polarization P. We are interested in quantizing the above mentioned

observables because, in general, the standard canonical quantization scheme

does not give unique quantum operators corresponding to these observables in

the position representation L (Q).

The following is a list on notation which will be adopted throughout

the thesis. The symbols rR, iK1*, (E,2? denote respectively the set of real

numbers, the set of positive real numbers, the set of complex nunbers and

the set of integers. The symbol -ar* denotes i/-ff where i = (-I)1'2" and If is

Planck's constant. The letters M, M0, Jfi, Q, Qc will represent real

manifolds. Then TQ and T Q will represent respectively the

tangent bundle and cotangent bundle of Q.

An index of symbols defined in the text is given at the end of the

thesis.



CHAPTER 1

A REVIEW OF BACKGROUND MATERIAL
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1.1 A REVIEW OF THE GEOMETRIC QUANTIZATION SCHEME

(1.1.1)

In this section we shall give a brief outline of the geometric

quantization scheme. We shall follow, unless otherwise stated, the notation

and conventions adopted by Woodhouse (1980).

(1.1.2) Hamiltonian mechanics

The definition of a symplectic manifold and the notation (M,uj) , C®(M)

and V(M) are given in Appendix 1.1.

The basic model of the phase space of a (conservative) classical

mechanical system is a symplectic manifold. The physical state of a

classical mechanical system is represented by a point in the phase space.

(1.1.2.D1) Definitions LCampbell (1983); Woodhouse (1980),pp.10-12]

Let (M,w) be a 2k-dimensional symplectic manifold representing the

phase space of a classical mechanical system.

(1) The real-valued functions in C°(M) are called classical observables.

(2) Let X be a classical observable; then the vector field X^tV(M) which is
determined by

X^jloh- d£ = 0 (1.1 .2.Eq 1a)

is called the Hamiltonian vector field generated by %.
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Let ,...,, <^,... ,^} be local canonical coordinates on (M,io); then
locally X^, is given by

k

^ i=>

(3) Let £ anc* 7 be any two classical observables; then the Poisson bracket

of 1> and 7 is the classical observable {£ ,y } defined by

{X,y) = X^(y) = 2co(X£,X7). (1.1 .2.Eq 2a)
Locally ,we have

k

= L {(B</^i)(^7/'3^i)-(T>?'/afii.)07/'3fi)}. (1.1 .2.Eq 2b)
i-<

(4) The Poisson bracket makes C°°(M) into an infinite-dimensional real Lie

algebra called the algebra of classical observables.

For all £, y, C^M) and a,b <= fi?, we have

{a£+b7,£} = a{£,£}+b{-7,];} (1.1.2.Eq 3a)
and

{£, {7,£}} + {£,{?,^}} + (7»{£.?}) = 0. (1.1 .2.Eq 3b)

(1.1.2.Ex 1) Example [Abraham and Marsden (1978), pp178—179;

Campbell (1983); Woodhouse (1980), p7]

For most physical applications (M,c/>) is the phase space with M being

yjr-
the cotangent bundle, T Q, of the configuration space Q of a classical

mechanical system. Let Q be a k-dimensional manifold with local coordinates

q = (q1,...,qk) and let pr:T Q —»Q be the usual cotangent projection map.

Each point in T*Q is a covector at some point of Q: a covector at the point

q«= Q is a linear mapping p:T*Q —(R.. Let p^ = "9/3 q£l^J p, where
^ TqQ: the p^ s are the k-components of the covector p at q. Each

covector p in T^Q can be represented by the set of 2k functions
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{p1,..., pk,q1,..., q^}; this set forms a collection of local coordinates on

T*Q. Hence we have given T*Q a manifold structure, so we shall use M for

T^Q in what follows.

There exists a global one-form (30 on M defined at each point

m = (p1,•.•,Pk,q1,.•.,qK) e M by

Xwifio'm = Pr*XK1-i p , for all XM e TmM; (1.1.2.Eq 4)
where (Sol^ is the restriction of p>0 to the point m. (3o is called the

canonical one-form [cf. Abraham and Marsden (1978), ppl78—179;

Woodhouse (1980), p7].

The two-form co defined by co= d(S0 is referred to as the canonical

two-form.

Locally, we have
k k

(3>0 = Z. P-'dq- and oo = dp. Ndq; . (1.1 ,2.Eq 5)
i.=. 1 1 1 1

The pair (M,io) is an example of a symplectic manifold. Clearly,

{p1,...,pN,q1,...,q^} is a set of local canonical coordinates on (M,u)
[cf. Appendix 1.1 for a definition of local canonical coordinates].
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(1.1.3) The Kostant-Souriau condition

The terms complex line-bundle, Hermitian structure on a complex

line-bundle , connection on a line-bundle, the compatibility of Hermitian

structure and connection, Hermitian line-bundle with (compatible)

connection, curvature two-form of a connection on a line-bundle and the

notation B,V, (','), (B, (*,•),^) and curv(B,V) are given in Appendix 1.1.

Let (M,co) be an arbitrary symplectic manifold. The first step in the

geometric quantization scheme is the construction of a Hermitian line-bundle

with (compatible) connection (B,(*,-),V) over M, such that curv(B,V) = .

Such a Hermitian bundle does not always exist; the condition for its

existence is given by the following

(1.1.3.T1) Theorem [Campbell (1983); Kostant (1970),p.133; Souriau (1970);

Simms and Woodhouse (1976),p.37; Woodhouse (1980),pp.116-120]

Let (M,co) be the given symplectic manifold; then there exists a

Hermitian line-bundle with (compatible) connection (B,(*,*),V) over M such

that curv(B,V) = if and only if the integral

over any closed, oriented two-surface £ in M is an integer
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We shall now give the following

(1.1.3.D1) Definition LSimms (1972)]

A symplectic manifold (M,oo) is said to satisfy the Kostant-Souriau

condition if the integral [2tTfi]"1J^uJ over any closed, oriented two-surface
E in M is a integer.

Remark: (R1) We shall use the symbol -ar to denote i/-tf.

(1 .1 .3 • Ex 1) Example

Let (M,o>) be a symplectic manifold and let p be a real one-form on M
that satisfies the condition d(3 = co. Let B = M xd be a trivial line-bundle

over M and let (• ,•) be the (natural) Hermitian structure on B. Let s© be a

unit section of B: s0 satisfies the condition (s0,s0) = 1. Then we can

define a connection on B by

Vxs0 = -iT(X J(3)s0 , for all X& V(£(M); (1.1.3.Eq 2)
(where Vq,(M) is the space of smooth complex vector fields on M

[cf. Appendix 1.1]). The one-form (3 is referred to as the connection

potential, since it defines the connection V. Note that our definition of

the connection potential differs from that given by Woodhouse (1900),Cp116

and p297], by a factor -if . It can be shown that curv(B,^7) = d(3/-fi =

[cf.Appendix 1.1 or Woodhouse (1980), p116 and p297].

For every Xe VC (M), we have

X(s0,s0) = X(1) = 0 (1.1.3.Eq 3a)

and

(VKs0, s0) + (s0,Vx s0) = -ir( X J (S - X J |3 )(s0,s0) = 0; (1.1.3 .Eq 3b)
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the last result was obtained by using the following two facts: (i) the

connection potential is real; and, (ii) the real part of X = the real part

of X. Hence the Hermitian structure (•,») and connection V are compatible.

Let X be a closed, oriented, two-surface in M; then the boundary <)Z of

Y is a zero-boundary: ~Z is without a boundary. Then it follows from

Stokes' Theorem that

[cf. Von Westenholz (1981),pp280-289 and p310; Woodhouse (1980),p293]•

Hence the symplectic manifold (M,o)) satisfies the Kostant-Souriau condition

and (B,(°,'),V) is a Hermitian line-bundle with (compatible) connection such

that curv(B,^7) =

Remark: (R2) It is always possible to construct a Hermitian line-bundle

with (compatible) connection over (M,W) such that curv(B,<7) = when M is

a cotangent bundle and 6«J is the canonical two-form [cf. example( 1.1 .2. Ex

1); and, Woodhouse (1980), p122]: we choose the connection potential (3 to

be p> = (Sa+C* where (30 is the canonical one-form and o( is any closed one-form

on M.
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(1.1.4) The preauantization procedure [Campbell (1983); Simms and

Woodhouse (1976), pp38-50; Sniatycki (1980), pp6-8 and pp51-59;

Woodhouse (1980), pp113-122]

The geome-tric quantization scheme arose out of an attempt to solve the

so-called Dirac problem in a given symplectic manifold (M,cj).

The attempt is as follows:

(Q1) We associate a Hilbert space H to (M,w);

(Q2) Let S be a suitably chosen Lie subalgebra of C^M). Then to each e. S

we assign a symmetric operator ^ on H such that:
-v.

(i) The map X —♦ X> is linear over (R;

(ii) X> - X when ( is a constant function on M;

(iii) For each X >V S we have

cSV? ]= (1.1 .4.Eq 1)

where [X tV 3 = ^he quantum commutator and ^ = {)£ XI 3

is the Poisson bracket of the two classical observables X> and °r\.

A/

In other words, the collection of operators T = {, /rj,...} is an

operator representation of the subalgebra S in H.

It turns out that the Dirac problem does not uniquely determine the

quantum system associated with the symplectic manifold (M,u). Not all the

solutions to the Dirac problem provide physically reasonable results.
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The prequantization procedure represents a first attempt at solving the

Dirac problem geometrically, and it goes as follows.

(PQ1) At the outset we shall assume that (M,co) satisfies the Kostant-Souriau

condition. We choose a Hermitian line-bundle with (compatible) connection

(B, (',•),\7) over M such that curv(B,V) = bJ/fi. We shall call the triple

(B, (•,•),'*3) a prequantization bundle.

(PQ2) Let W be the space consisting of square-integrable smooth sections

s e c<fc(M) with respect to the inner product

<s,s> = [2irf}]~' f (3,3)6^ (1.1.4.Eq 2)
M

where the notation Cg(M) and are given in Appendix 1.1. The
prequantization Hilbert space H is defined to be the completion of W.

(PQ3) To each classical observable e. C°°(M), we assign the symmetric
""V.

operator ^ in H given by the formal expression

fs = -iWx s+£s. (1.1.4.Eq 3)
The domain of £ is undetermined by this expression; however, it is usual to

choose the domain to be

Dp = {s e C^(M): the support of s is compact} (1.1.4.Eq 4)
D

because ^ is a symmetric operator on D^; If the Hamiltonian vector field
is complete, then is an essentially self-adjoint operator. Note that an

essentially self-adjoint operator has a unique self-adjoint extension

[cf. Hellwig (1964), pp.172-1731. When X.^ is complete, then the unique
self-adjoint extension will be referred to as the prequantization operator.

It is easy to check that the prequantization procedure is a solution to

the Dirac problem [cf. Abraham and Marsden (1978), p.441].
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(1.1.4.Ex 1) Example; The free particle

Consider the situation of a free particle in a configuration space

Q = fR. The cotangent bundle, T^Q, of Q can be identified with fl?Z. Let q be

the cartesian coordinate on Q and let (p,q) be the usual cartesian canonical

coordinates on T Q, and let (D be the canonical two-form on T Q. The phase

space of the free particle is the symplectic manifold (T*Q,io). Let

B = T*Q x(t be the trivial bundle over T Q, (•»•) be the (natural) Hermitian

structure on B and let sc be a unit section of B. Let KJ be the connection

defined by

Vx s0 = -i{X J pdq) sn , for all X e Vt(T*Q) . ( 1 .1.M.Eq 5)
(Note that we have chosen the connection potential to be pdq.) Let

(B, (•,♦),'C) be the chosen prequantization bundle.

The space W (which has been defined in (PQ2)) consists of smooth

sections of the form = ^(Pj q)s0 e (T*Q), where *V(p, q) C^T^Q), which
are square-integrable with respect to the inner product

<¥,¥> = [2nh]"'' f „ l*V(p,q) l2dpdq. (1.1.4.Eq 6)1 n?2-

The prequantization Hilbert space H is the completion of W.

From a physical point of view, one is tempted to regard j^'(p,q)l2 as

the probability density of finding the particle in the classical state

represented by the point (p,q) in the phase space. However, the

prequantization Hilbert space H is physically unacceptable because of the

following reasons:

(i) the elements of H with arbitrarily small support on T Q violate the

Heisenberg uncertainty principle of quantum mechanics

[cf. equation (1.1.4.Eq 6)]; and,

(ii) aocording to the Schrodinger prescription of quantum mechanics H should
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2- 2
be unitarily equivalent to L (Q), which is L (ifc); instead, it is unitarily

equivalent to L^d^Q), which is L2(1R?).
In other words, the prequantization Hilbert space H is "too large", and we

need to reduce its size; the procedure for reducing the size of H (in order

to obtain a physically acceptable solution of the Dirac problem) is referred

to as quantization. However, before we give a prescription for the

quantization scheme we shall introduce the following two geometric

structures: real polarizations and half-densities.

(1.1.5) Real polarizations

The definitions of the following list of terms and notation are given

in Appendix 1.1: real distribution, integrable distribution, Lie bracket

[ , ] of two smooth vector fields, Frobenius Theorem, leaves of an

integrable distribution, the space of leaves of an integrable distribution,

V(M;D), M/D, and the projection map pr:M —M/D.

(1.1.5.D1) Definitions LWoodhouse (1980), p.73]

A real polarization (P of a 2k-dimensional symplectic manifold (M,w) is

a k-dimensional smooth, real distribution which satisfies the following

conditions:

(P1) CP is integrable; and,

(P2) U)(X, Y) = 0 , for all X,Y e V(M;<P).

( A k-dimensional distribution D that satisfies condition (P2) is called a

Lagrangian distribution.)
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Remarks: (R1) From now on we shall use the terms distribution and

polarization to refer to a real distribution and a real polarization

respectively; and, we shall use the letters (P and P for polarizations.

(R2) It follows from Frobenius Theorem [cf. Appendix 1.1] that every point

in M lies on a leaf of the polarization (P.

(1.1.5.D2) Definitions and notation LWoodhouse (1980), p73, p74-75, p291,

p85]

Let (P be a polarization of a symplectie manifold (M,oJ) .

(1) The polarization (P is said to be reducible if the space of leaves MAP is

a Hausdorff manifold with the projection map pr:M —M/(P being smooth.

(2) The map

^ : V(M;<p) x V(M;<S>) —■> V(M;<P): (X, Y) —» %Y (1.1.5.Eq 1a)

determined by

(VxY)Juo = X-id(YJu)) (1 .1 .5 .Eq 1b)
is called the partial connection defined by (P.

(3) Then C^CMjtP) and C^CM;^, 1) are respectively the spaces of smooth real

functions of M defined by

C^Mjtf) = {"£e C°°(M): X(£) = 0, for all X e V(M;(P)J, (1.1 .5.Eq 2a)

C0o(M;<P,1) = {Xfe C°°(M): [X^,X] 6 V(M;6>), for all X e V(M;(P)}, (1.1.5.Eq 2b)
where [ , ] is the Lie bracket of two vector fields [cf. Appendix 1.1].
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(1.1.5.Ex 1) Example; Tim vertical M horizontal polarizations oL &

cotangent bundle [ Woodhouse (1980), p7 and p73l

Let Q be a k-dimensional manifold with global coordinates

q = {q1»'»>qk} and let (p,q) = {p1 , .., p^, q,, , . . ,qKJ be the usual canonical
coordinates on the cotangent bundle, T*Q, of Q. (Note that T*Q is

identifiable with (R x Q.) Let (O be the canonical two-form on T Q and let

M = T Q; then to = Z dp-Adq-, and (M,u>) is a 2k-dimensional symplectic

manifold.

The set of vector fields {a/ap^ , ... ,'9/3pK,^/Qq1, ... ,9/"3q^} is a basis

of V(M). In fact, for all i,j fe {1,...k}, we have

to (O/9p^,V'0Pj ) = wO/gq^j^/aqj) = 0, (1.1.5.Eq 3a)
toCa/ap- ,-a/aqj) = (1/2)ffy. (1.1.5-Eq 3b)

(Note that we have followed the convention adopted by

Woodhouse (1980), [cf.p2 and p289]of putting

^/aqjj^/api-iio) = 2o('^/9P-;,'c)/aqj).)
Let P be the k-dimensional distribution on M spanned by the vector

fields {a/ap^ , ... ,9/5>pj^}. Then a typical element of V(M;P) is of the form
K K fc
Z ^C-(p>q) Ca/ap-i) where (f-eC'^M). Let X nZ^-D/ap' and Y = Z^'-d/ap^; then

* 1=1 1 1=1
we have

k k

[X, Y] =1 (I(t. ^ 3C-/^Pi)}^/aP-; • (1.1.5.Eq 4)
J-i i=< J J J

Clearly [X,Y] is an element of V(M;P). Thus P is an integrable

distribution. Equation (1.1.5.Eq 3a) implies that P is a Lagrangian

distribution. Therefore, P is a polarization of (M,td). P is commonly

referred to as the vertical polarization, and we shall reserve this

particular symbol P to denote it. The leaves of P are surfaces

{(p,q)eM: q<) =constant, ... ,qk=constant}. The polarization P is reducible
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because the space of leaves M/P is identifiable with Q.

Let ^ be the partial connection defined by P and let Y V(M;P) be
k

given by Y = £ 4' ("^/'dPi) . Then we have
->=' k

Y = I for all X eV(M;P). (1.1.5.Eq 5)
"1 = 1

CO
A typical function % in C (M;P) is of the form

X = H,(q) where ^(q) €. C°°(Q). (1.1.5.Eq 6a)
A typical function £ in C°°(M;P,1) is of the form

k

X = £ ^^(Q)P^ +X (Q) J where ^(q) ^(q) e C (Q). (1.1,5.Eq 6b)

Let Pc be the k-dimensional distribution spanned by the vector fields

{'3/^q1, ...,"d/cJq^}. We can show as we did above that Pc is a polarization of

(M,uj). Pc is a polarization that is canonically conjugate to the vertical

polarization P, so we have used the subscript c to indicate this

relationship. (A definition of canonically conjugate polarizations is given

by definition (2.1.D3) of Chapter 2.) Pc is commonly referred to as the

horizontal polarization. The leaves of Pc are the surfaces

{(p,q)eM: p( =constant,...,p^=constant}. The polarization Pc is reducible
because the space of leaves M/Pc is identifiable with jR? Let Qc = M/Pc ; we

shall refer to Qc as the effective configuration space with respect to the

polarization Pc , and we use the coordinates {p1,...,p^} to coordinatize Qc.

Let be the partial connection defined by Pc and let
k

Yc = Y. (7>/0qi); then we have
"=l

c K
= I X(Xei) for all X e V(M;PC). (1.1.5.Eq 7)A
1=1

A typical function in C (M;Pt) is of the form

= <§c(p) where 2;t(p) £ C°°(Qc) (1.1.5.Eq 8a)
CO

A typical function in C (M;PC,1) is of the form
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k

£ft = I L.(p)q-+°?(p); ^t:(p). ^(p) £ Cw(Qc). (1.1.5.Eq8b)C 1 0-

Remark: (R3) We shall reserve the symbols p^s and q^s to denote cartesian
coordinates.

The following proposition shows that an arbitrary polarization of a

2k-dimensional symplectic manifold has locally the structure of the vertical

polarization of the cotangent bundle, T*Q, of a k-dimensional manifold Q

with global coordinates {q1, ...,qy.} .

(1.1.5.T1) Theorem [Woodhouse (1980), p8l]

Let (P be a polarization of a 2k-dimensional symplectic manifold (M,co).

Then it is possible to find canonical coordinates {$>, ,..., ..., in

some neighbourhood U of each m e M such that the leaves of <P coincide

locally with the surfaces {me U: ^ =constant, . . . ,i|k = constant} . In other
words, <P is spanned locally by the vector fields > anc^ the

local canonical coordinates with this property are said to be adapted to'P.

Remark: (Rl) Let (M,uj) be a 2k-dimensional symplectic manifold, (P be a

reducible polarization of (M,w) and let ,... '3e a set

local canonical coordinates adapted to <P. Then the space of leaves M/(P is a

Hausdorff manifold which we shall denote by Q. Clearly Q is locally

coordinatized by the set of coordinates {^.t,... ,^k). In future, the
manifold Q shall be referred to as the effective configuration space with

respect to the polarization (P.
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(1.1.5.D3) Definition [Woodhouse (1980), p153]

Let (Bf(',»),V) be the prequantization bundle over a symplectic

manifold (M,co) and let (P be a reducible polarization of (M,cj) . We call a

section -6>£C^(M) that satisfies the condition
0 for all Xfe V(M,<P), (1.1 .5 . Eq 9a)

a polarized section of B.

Remark; (R5) Suppose S is a polarized section (with respect to the

polarization (P ). Then the function ($,-8) is constant along the leaves of

the polarization <P because we have

X(6,6) = (Vx& ,1) + (-S,VX£) = o, for all X ^ V(M ;<P); (1 .1 .5 - Eq 9b)
by the compatibility condition of the Hermitian structure ('»•) and the

connection V [cf. Appendix 1.1].

(1.1 .5 - Eq 2) Example

Let Q cIR be the configuration space with cartesian coordinate q, M =T Q

be the phase space with the usual cartesian canonical coordinates (p,q) and

let co be the canonical two-form on M. Let B = M x®, (•,*) be the (natural)

Hermitian structure on B, sQ be a unit section of B and let V be the

connection on B defined by ^ s0 = —r(XJ pdq)s0 for all Xe V^(M). Let
(B, (*,*), V) be the chosen prequantization bundle over (M,oJ).

Let P be the vertical polarization; then P is spanned by the vector

field ^/c)p. A typical polarized section of B (with respect to the

polarization P) is of the form

= ^(q)s0, ^(q)<£. C^(Q). (1.1.5 -Eq 10)
(Note that we have used the fact that V sQ = 0 for all X<= V(M;P).)
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Let P& be the horizontal polarization; then Pc is spanned by the vector

field 'D/dq. Let Qc be the effective configuration space with respect to the

polarization Pc. Then a typical polarized section of B (with respect to the

polarization Pc) is of the form

^ = <4.(p){exp ipq}s0, ^(p) £ C^(Qc). (1.1.5.Eq 11)

(1.1.6) Half-densities

We shall split this section in two parts: in the first part we shall

study what is referred to as r-D-densities (where D is a distribution on an

arbitrary manifold), and in the second part we shall restrict ourselves to

the study of so called half-densities.

(1.1.6.D1) Definitions [Woodhouse (1980), pp.150-154]

Let D be a distribution on an arbitrary 1-dimensional manifold Ji, and

let r e (R.

(1) For a given point -rrj in M. a r-density on is a map Vn that assigns to

each basis {X-jJ^in a complex number v^JX^ with the property that

^{C^Xi^r IdetCl^-V^tXj}^ (1.1.6.Eq 1)
where the matrix C = (C^) e GL(1,!R), and the summation over the repeated
index i is implied.

(2) The set of r-densities on is a one-dimensional complex vector space

to be denoted byAr(D^).

(3) A r-D-density oiut is a smooth section of the bundle

Ar(D) = \J Ar(D^). (1-1 - 6. Eq 2)
■"v 6-tAt

In other words, a r-D-density is a mapY which assigns an element "V^ of

Ay(Dn) to each point '►ntA
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(1.1 .6 .Ex 1) Example; The relationship of r-D-densltles with volume forms

Let Jt be an orientable manifold of dimension 1 and let ^ be a volume

form on A. Let D be the distribution on/i given by for each ntX

and let {Y^} be a field of bases for D.

Let |£|r be the r-'lH-density defined by

leCjYiJ^r |l!£(Y1,...fYl)|^t (1.1.6.Eq 3)
at each point on

In general, there is no natural volume form on a orientable manifold

except in certain special cases. Here are two of the special cases:

(i) A symplectic manifold (M,oj) is orientable with the Liouville volume form

8^3 [cf. Appendix 1.1], so lf0Jlr is generally chosen to be the natural

r-TM-density on M.

(ii) A Riemmanian manifold Q with local coordinates (q1,...,qK) and metric

(gjj) has a natural volume form Eg defined locally by
Eg = g"2dq1 a. . .AdqK ; g = det(g,j) ( 1 .1 .6 . Eq 1)

[cf. Abraham and Marsden (1978), p152]. Therefore, '£g'r generally
chosen to be a natural r-TQ-density.

(1.1.6.Ex 2) Example; The construction of -(1/2)-^ -densities

[ Woodhouse (1980), pp151—152 and pp157-158]

The main purpose of this section is to introduce -(1 /2) — CP -densities,

so using the results given in the previous example we shall new show hew

-(1/2)-^ -densities may be constructed.
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Let f be a reducible polarization of an arbitrary symplectic manifold

(M,to) of dimension 2k. Let Q be the effective configuration space with

respect to the polarization (P, and let pr:M —+ Q be the usual projection

map.

Then for each m & M, we have

T^Q = pr(m) = q. (1.1.6.Eq 5)
Let {X^} be a field of bases for <P and let {Yj} be a field of bases for TQ;
then by equation (1.1.6.Eq 5),we can take {X£,Yj} as a field of bases for
TM. Let Jd. be a -(1/2)-TM-density and let p be a +(1/2)-TQ-density. Let "V
be a function of the field {Xa} of bases for <P defined by

vw{xil,= ' Pr(m) = q* (1.1 .6 . Eq 6)
We shall show that -v is a -(1/2)-(p -density as follows. Let

C = (CVj) <=. GL(k,IR). Let us replace {X^} by {C^-X^}; then we need to
replace {X£, Yj } in equation (1.1.6.Eq 6) by {C^X^jY^}. Then

= /UcijXi'Y*}M
= |detCi-"VM{Xj,Yp}m f^},. (1.1 .6 .Eq 7)

Therefore, V is a -(1 /2) —<P -density [cf. equation (1.1.6.Eq 1)].

A -(1/2)-(57 -density is commonly referred to as a half-density. We

shall restrict ourselves to the study of half-densities for the rest of this

section.

(1.1.6.D2) Definitions LWoodhouse (1980), pp154-155]

Let <P be a polarization on an arbitrary symplectic manifold (M,<o).

(1) Let ■£ <£. C (M;(P, 1) such that X^ is a complete vector field, and let
{F^:M —M It feiR} be a one-parameter group of diffeomorphism generated by

X^. Let {X^} be a field of bases for (P ; then {Ft_*Xi} is a field of bases
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for (p too [cf. the equation (1.1.5.Eq 2b)]. Let V be a -(1/2)-(p-density.

Then the pull-back of V (with respect to the diffeomorphism Ft) is the

-(1/2)-(P-density defined by

(FfrMXi} =V{Et^Xi}. (1.1.6 .Eq 8)
The Lie derivative of v along is the -(1/2) — (p -density L V defined by

LXV = (d/dt)(F*v) (1.1.6 .Eq 9)*■ 't.= o

(Note that the definition of the Lie derivative can trivially be extended to

the case where X^is incomplete.)
(2) Let V be a smooth section of and let Yfc-V(M;<P). Then we can

define a section VyV of A-i/^((P) by
(VyV ){X£} = Y(V {X^}) (1.1.6.Eq 10a)

where {X£} is any field of bases for <p satisfying

^Xj_=0 (1.1 .6 . Eq 10b)
[cf. definition (1.1.5.D2), part (2)]. The section is referred to as

the covariant derivative of the section V along Y.

Remarks: (R1) Note that the Lie derivative is only defined for a restricted

class of vector fields. The covariant derivative too is only defined for a

restricted class of vector fields.

(R2) We shall give a simple example to show that the condition given by

equation (1.1.6.Eq 10b) is necessary to ensure that ^yV is a

-(1/2)-(P-density. Let Q M = T Q and let tO be the canonical two-form

on M. Let P be the vertical polarization of (M,to), V be a smooth section of

A-„Z(P) > {X} be a field of bases for P and let Y<^V(M;P). Clearly X is

of the form X =^"3/ap where C^M) and £ ^ 0. By equation (1.1.5.Eq 5),

^ X = Y(^)("5/gp). Thus, -/{X} = !£!~'/2- -v {a/^p}. Therefore,
Y(V{X}) = YM^p)) + Y( !£!""* )Vft/9p}. (1.1.6 . Eq 11)

Clearly Y(-v{X}) transforms like a -(1/2)-P-density if VyX = 0 because then
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we have Y( i£i"'/2" ) = 0.

(1.1.6.D3) Definition [Woodhouse (1980), p153]

Let (P be a reducible polarization of an arbitrary symplectic manifold

(M,to) . Then the smooth section V of the bundle is said to be

covariantly constant along (P if it satisfies the condition

N7xv= 0 for all X V(M;<P). (1 .1 .6 .Eq 12)

(1.1.6.Ex 3) Example: Half-densitieg a£_ the vertical and horizontal

polarizations the cotangent bundle .of. & Rjemmanian manifold

Let Q be a 2k-dimensional Riemmanian manifold with global coordinates

q = {q1,...,qK) and metric (gaj). Let g = det (gxj); then the natural
volume form on Q is given explicitly by = g,/2 dq1A.. .*dq^

*#*
[cf. equation (1.1.6.Eq 4)]. Let M = T Q , pj be the canonical two-form on M

and let (p,q) = {p1 ,... ,pK, q.,, ... ,qKJ be the usual global canonical
coordinates on M. Then the Liouville volume form is given explicitly by

= dp^A .. .Adp^dq^A.. .AdqK. Let P be the vertical polarization and let Pc

be the horizontal polarization.

We shall now split the construction of half-densities into two parts

which we shall denote by (i) and (ii), respectively, as follows: in

part (i) we shall construct a (natural) -(1/2)-P-density that is covariantly

constant along P, and in part(ii) we shall construct a -(1/2)-Pc-density
that is covariantly constant along Pc.

(i) The space of leaves of P, M/P, is identifiable with Q (the actual

configuration). Let {X^_} be a field of bases for P and let pr:M Q
be the usual projection map.
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Then a (natural) -(1/2)-P-density V is defined by

V(Xi) = \eJ~UZ {Xi,3/3qj} l£3i'/2 (®/aq«}
= gV* |dPiA ...Adp,j"l/z {X^}. (1.1 .6 .Eq 13)

(We have referred to V as natural because we constructed it using the

natural +(1/2)-TQ-density on Q.)

The section V is covariantly constant along P because

VV{^/3p') = X(g'/4) = 0, for all X <= V(M;P) (1.1.6.Eq 14)
r

Let (eC (M;P, 1); then we have

£ = (q)P-; +/})(q), ^-5» ^ £ C°°(Q) ; (1.1.6.Eq 15a)

x^ = z l^d/vqi - {E( (^j/t>qi)pj -37/aq i)c>/BPi] (1 -1 -6 .Eq 15b)
pr^X^- = "2,1^/3qi« (1.1 .6 .Eq 15c)

Let div^ (pr^,X^) be the divergence of the vector field pr^X^ (on Q) with
respect to the volume form [cf. Abraham and Marsden (1978), p152 ].The

Lie derivative of V along X^is the section of defined
L^-v = (1/2)dive (pr^X^)V

= (1/2)g-1/z iZ ^(g"2 £i)/?>qi]V (1.1.6.Eq 1b)

[cf. McKenna (1982), p112; Woodhouse (1980), p158].

(ii) Let Qc be the effective configuration space with respect to the

polarization Pc and let prt:M —■> Qc be the usual projection map. Then

p = {p1,...,pKJ are global coordinates on Qc. There is no natural volume

form on Qc, so we choose the standard volume form (with respect to the

coordinates {p1t...,pk}) defined by

= dp1A...AdpK. (1.1.6.Eq 17)

Let {Y^} be a field of bases for Pc.
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Then let Yc be the -(1/2)-Pc-density defined by

vc{Y?} = IEJ-"2- {Y^-3/apj} I £. \'/Z td/ZpK]
= |dqiA...Adqk!"l/i (yc^} (1.1.6.Eq 18)

[cf. equation (1.1.6.Eq 6)].

The section "Vt is covariantly constant along Pt because

= X (1) = 0, for all X e V(M;PC). (1.1.6.Eq 19)

Let C (M;Pa,1); then we have

^ = 7 ^c^(p)q^ + />?t(p) where ^eC^CQa) ; (1.1 .6 . Eq 20a)
K

=1 ttl Ca^i/appq- +-3rjfc/9P;}D/^qi- ^9/api]; (1 .1 .6 . Eq 20b)
i" Jk

prt+X^ = - • "3/t>p;. (1.1.6. Eq 20c)
i=«

Let div^(prftil X^» ) be the divergence of the vector field pr^X^. (on Qe.)
with respect to the volume form £c.

The Lie derivative of VL along the Hamiltonian vector field X^ is the

-(1/2)-Pt-density defined by

Lx Vt = ( 1/2)div^ (prc<X^)
K

= -(1/2)[^ (?)^ti/3pi) J (1.1 .6 .Eq 21)
tcf. Woodhouse (1980), p158].

(1.1.7) The half-density quantization scheme t Woodhouse ( 1980), pp156-157]

The half-density quantization scheme provides a physically reasonable

solution to the Dirac problem. The main limitation of the schane is that it

only allows us to quantize a restricted class of observables.
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The half-density quantization scheme consists of the following three

steps:

(HDQ1) Let (P be a reducible polarization of a 2k-dimensional symplectic

manifold (M,oj) , Q be the effective configuration space with respect to the

polarization and let pr:M —Q be the usual projection map. We first

choose a prequantization bundle (B,(*,»),V) over (M,to).

(HDQ2) A smooth section ^ =^8v of the bundle B x A-t/z. (<P) which satisfies

Vx 4> = 0; Vxv= 0 for all X e V(M;ff) (1.1.7.Bq 1)
is called a (P-wave function.

Let be a (P-wave function, {X -} be a field of bases for (P on M

and let {Yj } be a field of bases for TQ on Q. Then let (¥ ,<p) be the
1-TQ-density on Q defined by

= (-8,4)„v^x^n^x*} |2ki £jxif.. ,xK,i1t..
(1.1.7-Eq 2a)

where q = pr(m).

Let W<p denote the space of square-integrable <P-wave functions with

respect to the inner-product

< ¥ , ¥ ><p = [2Trfi]-k'ZJ^(¥ ,<$ ) (1.1.7.Eq 2b)
tcf. Appendix 1.2 for the integration of a 1-TQ-density over Q]. We call

W^ the quantization pre-Hilbert space. The quantizatipn Hilbert space is
defined to be the completion of W^.

(HDQ3) Let ■£ g. then we shall call pr^U^O the
associated vector field generated by on Q.
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DO
Let C (M;(r,1) be a classical observable such that the associated

vector field pr^CX^) is complete; then determines a self-adjoint operator
on H given formally by the expression

= -iK[Vx iii^C Lx v ) ; $ =^,v (1.1.7 .Eq 3)
~ x>

(The domain of is yet to be determined; Wan and McFarlane (1983) have

given the domain for the special case where (P is the vertical polarization P

of the cotangent bundle of a Riemmanian manifold.)
/v

The operator £ is called the quantization operator (corresponding to the

classical observable £).

(1.1.7.Ex 1) Example: Quantization in the vertical and horizontal

polarizations of the cotangent bundle .of. & Rjemmanlan manifold

Let Q be a 2k-dimensional Riemmanian manifold with global coordinates
yjfe

q = {q1,..,qK} and metric (g^j). Let H = T Q with canonical two-form u) and
the usual global canonical coordinates (p,q) = {p^,..>pK»q^i..»qK). Let

H

(3o = JT p-dqj (the canonical one-form), B = M x<L be the trivial line-bundle
i

over M, (», •) be the usual Hermitian structure on B and let sQ be a unit

section of B. Let ^7 be the connection on B defined by V* s0 = -ir(XJp0)s0 for

all Xe VC(M).

We shall split our presentation in two parts which we shall denote by

(i) and (ii), respectively, as follows: in part (i) we shall quantize

observables in the vertical polarization, and in part (ii) we shall quantize

observables in the horizontal polarization.

(i) The effective configuration space with respect to the vertical

polarization P is Q; let pr:M —> Q be the usual projection map.
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The quantization pre-Hilbert space Wp consists of square-integrable
sections of B x A-l/z(P) of the form

T = V(q)s0V; (1.1.7• Eq 4a)

where

lV(q)e C*(Q) and V= g,/4 ldPlA. . .Adp«\'l/X (1.1.7 .Eq 4b)
[cf. equation (1.1.6.Eq 13)]. The inner-product on Hp is given by

<TPVF> = [2nfi]"k/2f Mq) dq^...dqK. (1.1 .7 . Eq 5)
JQ

The quantization Hilbert space Hp is the completion of Wp.

00 ^
An observable ^ in C (M;P,1) is of the form K = ^L<£;(q)p.' + '*?(q) where

J=> 4 J

» ^6 C^CQ). If the associated vector field pr^(X^> ) is complete, then
is quantizable and the quantization operator 7^ is given formally by the

expression
~ k

= -±K[£{^(q) C0/0qj) + (1/2)g-,/2^(g,/2-^(q))/-Bqj}^(q) +r) (q) *V(q) ]s0V;
(1.1.7-Eq 6a)

[cf. Equations (1.1.6.Eq 16) and (1.1.7-Eq 3)]. The quantization operator
rv

~C is self-adjoint with domain

= [f tH : l'(q) fe AC(Y^,Q) where pr^,(X^) = Y^ and
(1.1.7•Eq 6b)

[cf. Wan and McFarlane (1983)]. Here AC(Y^,Q) denotes the set of
absolutely continuous functions on Q with respect to the vector field Y^.:

AC(Yj-,Q) is the space of functions on Q that are differentiable with respect
to Y^ almost everywhere.

In the case where 'A/ = i')(q) the quantization operator OC is the

multiplication operator

X? = ^(q)f, (1.1.7.Eq 7a)

and the domain of X is

Dx= ^H^'^q^eHp}. (1.1.7.Eq7b)
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(ii) Let Qq, be the effective configuration space with respect to the

horizontal polarization Pc and let prc :M —> Qc be the usual projection
map.

The quantization pre-Hilbert space Wp consists of square-integrableft

sections of B x &_t/z(Pc.) of the form

cf?c = ^(p)^c^c (1.1 .7-Eq 8a)
where

4>c(p) <c. C^CQc.), ^= {exp -tZ pn- qn-}sD and V^= !dq1a. . .Adqk |",/2\
X-1

(1.1 .7 . Eq 8b)

The inner product on W0 is given by

<$C»$C>0 = [2nfi ]"k/Zf |^(p) !2dp, ...dp . (1.1 .7-Eq 9)Pc J Qc
The quantization Hilbert space Hp is the completion of W„ .

rc 1 c

00 ^
An observable in C (M;PC,1) is of the form = Z +

where £c^(p), ^(p) P C (Qc). If the associated vector field prc>l(X^ ) is
complete, then is quantizable, and the corresponding

quantization operator is given formally by the expression

C3?c= i-fiCZ {^^(p) (■c'/3Pi) + (1/2)?) (^c^(p))/-9pi}0c(p) + "7a(p)
(1.1.7-Eq 10a)

[cf.equations (1.1.6.Eq 17) and (1.1.7.Eq 3)]. is self-adjoint with

domain

Hp : </>t(p) <= AC(Y^ ,Q<.) where = prc^(X^> ) and
(1.1.7•Eq 10b)

In the case where %c= ^ (p) the quantization operator is the multiplication

operator

%\=y<Sp)§L, (1.1 -7-Eq 11a)
and the domain of is

= {$XHp: "/(P^fcHp}. (1.1 .7 . Eq 11b)
A-<
^ XL <L C C
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1.2 THE BOHR-WILSON-SOMMERFELD CONDITIONS IN THE HALF-DENSITY

QUANTIZATION SCHEME

(1.2.1) Introduction

Historically, the Bohr-Wilson-Sommerfeld (BWS) conditions lay at the

foundation of the old quantum theory; but after the formulation of quantum

mechanics they became less important to physicists. However, they still

remain of interest in problems that are intractable by the usual quantum

mechanical methods; but which can be solved by the methods of Hamiltonian

mechanics. In this section we shall derive BWS-like conditions in the

framework of the half-density quantization scheme. We shall refer to these

conditions as BWS conditions too, despite of the fact that they differ in

several respects from the BWS conditions in the old quantum theory and the

(corrected) BWS conditions in quantum mechanics. Our presentation is

partially based on the work by Sniatycki and Toporowski (1977);

Sniatycki (1980), [cf. pp8-9, pp71-76 and ppl49-156] and Woodhouse (1980),

[cf. ppl85-l87].

(1.2.2) Polarizations with compact leaves spanned bv the Hamiltonian vector

fields generated iy. & complete set commuting observables

Let q = {q1,...,qK) be a set of cartesian coordinates on IK^,
{p,q} = > • • • >PK»q^ > • • • »qk) be the usual cartesian canonical coordinates
on T*(Rk and let w be the canonical two-form on T*|Rk. Let M be an

contractible open subset of T*fRk; then (M,w) is a 2k-dimensional symplectic

manifold. (Hereto is taken to be a two-form on M.)
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(1.2.2.D1) Definition

Let { ,l£k} be a set k-observables on (M,co). Then we shall

call {^} a complete set of commuting classical observables if the following

three conditions are satisfied:

(CC01) The set

Z({2^}) = {m e M: X . are linearly dependant} (1.2.2.Eq 1a)
has Lebesgue measure zero. Note that in the case where k = 1, we put

(CC02) Let M0 = M—Z({^}) and let (jj0 be the restriction of the canonical

two-form 00 to M0. Let (Pa be the k-dimensional distribution on M0 spanned by

the set of k linearly independent vector fields {X^ f...,X^ }. The
K

distribution is a polarization.

(CC03) The polarization OJ. is reducible. Let Qc denote the effective

configuration space with respect to the polarization (Pc..

Remark: (R1) Condition (CC02) implies that

[cf. equation (1.1.2.Eq 2a)]. Hence constitutes a commuting set of

observables with respect to the Poisson bracket.

In this section we shall be interested in a complete set of commuting

observables { with the following property: the integral curves of the

Hamiltonian vector fields Xy. , ...,Xy> are closed in M . So in what follows^>1

we shall assume that the complete set of commuting observables on

(M0,Wo) also satisfy the following two additional conditions:

(CC04) Let R(<£;) denote the range of the observable and let

{a^} = {a^,...,ak} be a set of values in R(£.,)x.. .xR(<£k). Let MCa^}) be

Z(£,) = {m M: X^ = 0}. (1.2.2.Eq 1b)
1

(1 .2.2.Eq 2)
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the submanifold in M0 defined by

A((a£}) = {m M0: ^(m) = an, .... ,"£K(m) = aK}. (1.2.2.Eq 3)
Then for each {a^_} e. R(a-) )x.. .xR(ak), the corresponding submanifold A({a^})

l
is diffeomorphic to the k-torus T .

(The submanifold A({a^}) is a leaf of the polarization <Pc_; therefore, <PC is

sometimes referred to either as a polarization with compact leaves or, as a

polarization with toroidal leaves.)

(CC05) Let a & R(£^) and let X7^(a) be the (2k-1)-dimensional submanifold in
M0 defined by

J7^(a) = {m e M0:£i(m) = a}; (1.2.2.Eq 4)

-T2^(a) is called a surface of constant value a generated by the

observable Then for each a e R(2^), the submanifold -/2{(a) is

connected.

Remarks: (R2) Let the map : (R—Mc given by t^—■=> m = "tf^(t£) be the
integral curve of the Hamiltonian vector field that has originated from

the point m-Q = 7^(0). Then condition (CCX) 4) implies that the curve has

the topology of a circle.

(R3) Let [2> be any one-form on M0 that satisfies the condition to„= dp. Then

condition (CCO 5) implies that for each i ^ {1,...,k}, the closed integral

P, (1.2.2.Eq 5)

over any integral curveon the submanifold has the same value

[cf. Arnold (1978), p.283; Guillemin and Sternberg (1977), pp167-168]. In

other words,the integral given by equation (1.2.2.Eq 5) depends only on the

value of the observable on a) ; so the integral can be treated as a

function of

(R4) Finally, condition (CCO 5) implies that for each i e {1,...,k} and

a e R(Z^), the period of the integral curves of the Hamiltonian vector field
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X „ on which are the same [cf. Guillemin and Sternberg (1977),

ppl67-168]. Therefore, we denote the period of the integral curves of X^.
on which ^ = a by T^(a).

[cf. Arnold (1978), pp279-285; Abraham and Marsden (1980), pp397-i100]

We shall now coordinatize Mc by constructing action-angle variables in

six steps as follows.

(AAV1) Let ^ = Z PidQjL be a one form on M0;then we have d(3o = ioQ. Then for
each {a-^} <= R(C, )x.. .xR(^k), let "#!,•••,"ft* be the chosen set of integral

curves on Ada')) of the vector fields X. ,...,Xr respectively.^>1
The action-angle variables 1^ are constants on the submanifold A(tai))
defined by

For each i e {1,...,k}, let R(I^) be the range of the variable l£. Let

J = (I1,...,Ik) and let R(JI) = R(I1)x...xR(IK).

(Remarks: (R1) (J.0 should be confused with the canonical one-form on a

cotangent bundle defined in example (1.1.2.Ex 1) (of section (1.1)).

(R2) It follows from remark (R3) of the last subsection that the value of

each 1^ on A({a^}) is independent of the set of integral curves ~$v...
chosen. In fact for each i & {1,...,k}, the action-variable 1^ is only only

dependant on the value of the corresponding observable Similarly, each

observable ^ is only dependant on the action variable 1^, i.e. = X'S^i) •

Hence each leaf of the polarization (f^ is uniquely determined by the set of

action variables JL, so we shall label the leaves by ACl) instead of by

(1.2.3) The construction of action-angle variables on (M^fcoo)
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A({a^}) from now on. The Hamiltonian vector fields X , ...,X also span

the polarization (Pc.)

(AAV2) Let F:M0 —be the smooth function defined by

F(p,q) = (F1(p,q),...,Fk(p,q)) = J, (1.2.3.Eq 3)

where the point (p,q) lies on the leaf A(.I) and F^(p,q) = Ij.

Let (p0,q0) be any point in M0 at which the (k x k)-matrix toFj(p,q)pj) is
non-singular and let _X0 = F(p0,q0). Then according to the Implicit function

theorem [cf. Abraham and Marsden (1980), p.29] there are neighbourhoods

UQ (Rk of pQ , VoerRk of qQ where U0 x VQc M0Jand W0 c R(_I) of _Io> and a

unique smooth map

p :WG x VQ—UG: (l,q) —-> p(I,q) = (p1 (I,q), •.. ,pk(l,q)) (1.2.3.Eq la)
such that

F(p(I,q),q) = 1. (1.2.3•Eq Mb)

Hence (JL,q) can be considered as local coordinates on M0; more precisely,

they are coordinates on the open set

A0 = {m €z M : m = (p(2,q) ,q) for all (2,q) €: Wb x U0} . (1 .2.3.Eq 5)

(AAV3) Then for each (2>q) e W_ x Vc, we define the function S(_I>q) on

A(l) n A0 by
r* k

s(l,q) = J £ Pi(I»q)dqi; (1.2.3.Eq 6)q0
here the integration is just the usual integration of f(q) dq between the

limits q0 and q tcf. Abraham and Marsden (1980), pp399-MOO;
Arnold (1978), p284].

(AAVM) On the open submanifold A0 of Mc we define the action variables 9^ by

0£ = -3S/3li (1 .2.3.Eq 7)
Let — {0^,..■,9k)•



Page 36

(AAV5) Then (J[,£) = (I1,..., IK, 9, ,... ,9k) are canonical coordinates on the

open submanifold AoJand they are referred to as action-angle variables

[cf. Arnold (1978) , p.283]. Hence the symplectic two-form is
K

Z dl-A d9;, and the Hamiltonian vector fields XT ,...,XT are respectively
i=i -m ■LK

d/dQi ,... j'a/'dSy;, on the submanifold A0. In other words, the polarization <?c.

is spanned by the vector fields 3/30-i ,... ,3/90K on A„.

(AAV6) Finally, we can coordinatize the symplectic manifold (M0,too) by

constructing action-angle variables in the neighbourhood of each point in

M0.

Remarks: (R3) Let (1.0') and (Ir9") be action-angle variables on the open

submanifolds and A'^, respectively. Let p'(_X,q) and pn(JL,q) be the

functions defined by the equations (1.2.3.Eq 4a) and (1.2.3.Eq 4b) on A J, and

A"0 respectively. Suppose A'pln A£ $ <f); then p'(X,q) = p"(i,q) on Axor\ h"0.

By using the latter result it can be shown that

d0-= d0£ and 3/30- = 3/<50-' on A^nC (1.2.3.Eq 8)

Hence there exists k global one-forms on M0 which we shall denote by

d0,,...,d0K such that if (IT 9') are action-angle coordinates on some

submanifold Ay0 of Mc, then

d0i = d0.J ,...,dOK = d9; on A;. (1.2.3.Eq 9)

Similarly, we shall denote the k Hamiltonian vector fields X ,...,X by
-*-1

V<)01 ,... ,Vb0k respectively such that

3/3 9. = "3/30' ?/30,, = WdQl on A' (1 .2.3 • Eq 10)1 i K K

[of. step (AAV5) in the construction of action-angle variables]. The vector

fields B /301,... span the polarization (Pc, [cf. remark(R1) of this

subsection].
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It can be shown that

j = 2TT<&ij (1.2.3.Eq 11)

[cf. Abraham and Marsden (1980), p399; Arnold (1978), p284].

With these results in mind, we shall introduce the following notation:

(i) From now on let (JL,.S.) = (I1 ,... , 1^,01 , ... ,0K) denote a set of

action-angle variables charts that cover M0. In this notation let
k

u)0 - £ * d0i •
i=i

(ii) We shall write formally

(R4) Let l5j(t^) be the integral curve of the vector field X~ that

period of the integral curve "^(t^) [cf. remark (R4) of the last

subsection]. Then it can be shown that

where 0^ is a (real) constant [cf. Berry (1981), p9].

(R4) Let Qc be the effective configuration space with respect to the

polarization (Pc. Then Qc is identifiable with R(_I) [cf. step (AAV1) for a

definition of R(.I)]; therefore, _I = (I1,...,I^) coordinatizes Qc. The

standard volume-form on Qc is defined by

originates at the point ni^o=~tf^(0) and let £^(m^0) = a^. Let T^(a^) be the

e; = [2Tr/Ti(ai)]tv + eio, (1.2.3.Eq 13)

— dl^. ..ndlk.

Let [Xj] be a field of bases for <F^..

Then let Vc be the -(1/2)-(Pc-density defined by

(1.2.3.Eq 14)

{Xi} = ikj""2" {Xifd/2lj} \8JU2 {V/7)I«}
= jd01A...Adeki'"z { Xi}

[cf. equations (1.1.6.Eq 7) and (1.1.6.Eq 14)].

(1.2.3.Eq 15)
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(1-2.4) Quantization of the complete set of commuting observ&bleg ±£il in

[Sniatycki (1975); Sniatycki and Toporowski (1977); Sniatycki (1980),

pp71-76 and ppl49—156; Woodhouse (1980), ppl85-l87]

In this section we shall quantize the complete set • of commuting

observables {^}, of (M^tOo), in the polarization 6c..

The first step of the half-density quantization scheme is as follows.

Let B0 = M0 x <L be the trivial line-bundle over M0, (•,•) be the (natural)

Hermitian structure on B„ and let s0 be a unit section of B0. Let c^eiRand
CO.

let f e C (M0); then let p, be the one-form on M0 given by
k

[3 = (30+2I c ■ d0{ + df (1.2.4.Eq 1a)
i=i

(where the one-form (£0 was defined in (AAV1)). Clearly satisfies the

condition d(3 = u30. In terms of the action-angle variables (i,fi.) we shall

write

k

(2. = I {pT. dl^+ (50 . d0£ } (1.2.4.Eq 1b)
oo i= > 1 1

where (3^ , (3^ e C (M„). Then let V be the connection on Bc defined by
Vys0 = -i'(X J (3)s0, for all XeVe(M0). (1.2.4.Eq 2)

Let (B0, (• ,- ) ,V) be the chosen prequantization bundle over (M„,u)o).

The next step of the half-density quantization scheme is the

construction of non-trivial <Pc-wave functions, if they exist. The

(j£ -wave functions, if they exist, should be smooth sections of the form

"5c = which satisfy the conditions:

Vv = =V^«t=0 (1.2.4.Eq 3a)
x,x1

and

~v"t= = V ->f - 0. (1.2.4.Eq 3b)
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Let

S^.(.!,£) =^.P> (integrating along TS^ )
= \®iA d0 ■ , (1 .2.4 . Eq 4a)do ' 0j

and let

ACo= {exp iS^(JL,£)} x ... x {exp }s0. (1.2.4.Eq 4b)
Then a formal expression for (Pc-wave functions is of the form

% = ^caUCold01A...rtd0kruz; %(1) fe C°°(Qc) (1.2.4 . Eq 5)
[cf. remark (R5) of the last subsection]. For this expression to be

well-defined it is necessary that the section s§Co is single-valued. The

section is single-valued if the following conditions are satisfied:

OAfi)^) (J = 2-trn^, ,(1/ti)J = 2-nnj.; n1, ... ,nK fe"2(the integers).
* (1.2.4 .Eq 6)

These conditions are very similar to the BWS conditions of the old quantum

theory, and when (i = (3>0 then they are identical. Therefore, we shall call

them BWS conditions.

(Since
r *

(1/-fi)£ (3 = d/fOL^. j$0 + $r< (.1^5 d0j + df)J
= (2n/fi)LI^ + cj], (1.2.4.Eq 7a)

it follows that

I-x = [2tt]-1^|?> - c'x.) (1.2.4 . Eq 7b)
Hence the BWS conditions are only satisfied if the action variables

I^,...,IK take the values:

I^(n1) = n^ - c1 ,Ik(nK) = n^tf - cK; I,(n^) e. R(Ii)«
(1.2.4.Eq 8)

Let ji = (n1f... ,nK), .iCn) = (1^ (nn),..., I K(ni<)) and let A[n] = A(J(n)). We

conclude that the formal expression of <P -wave functions given by

equation (1.2.4.Eq 5) is only well defined on the isolated leaves A [n] of

<PC; these leaves are referred to as the BWS leaves. In other words, there
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are no non-trivial (smooth) tf^-wave functions defined on the entire M0; the

only (p^-wave-functions that exist are not smooth, and they take the value

zero almost everywhere on M0 except on the isolated BWS leaves of <Fc. •

Therefore, the previous half-density quantization scheme cannot be applied

to quantize the observables ..., If we want to quantize the complete

set of commuting observables { in the polarization <PC, we will need to

modify the half-density quantization given in section (1.1).

Here is a modified version of the half-density quantization scheme,

that will enables us to construct a non-empty Hilbert space associated with

polarization <PC, given in five steps:

(MHDQ1) Let B0| and A.-i/a^)! be the restriction of the bundles B0
'ACn] ' Any]

and A-«/z.(tfc.) respectively to the BWS leaf A[n]. Then

Bo x £S-ylz(<Pc)
ACnj

is a bundle onA[n],
A Cn]

(MHDQ2) A smooth section *£^ = ^^(m)V^(m) (where me A[n]) of the bundle• c, °c. ' «•

B x A_i/2.(Gc)| that satisfies the conditions
acq] 'Actn

^21-aQi = = ^'dld0^^>2= ® (1.2.4.Eq 9a)
and

= = ^7>i2,eK^Q= 0 (1.2.4 .Eq 9b)
is called a (Pc-wave function on ATnl. (Here "3/aG., ,... ,3/s0k are considered

to be vector fields on AtuJ.)

Let be the restriction of the section A)ex> tcf. equation (1.2.4.Eq 4b)J

to the BWS leaf A En]: for each m = (.Kul,0.) e A [n], we have

^f0(m) = /£Co(1(JI) , 9).
Explicitly, the (J^-wave functions onA[jj] are of the form

¥<? = bQ^,ca0(m) !d01A...Ad0K |",/a ; me A[n], b2 e<£. (1.2.4.Eq 10)



Page 41

(MHDQ3) Let be the one-dimensional Hilbert space associated with the

BWS leaf A Ln] that consists of square-integrable (JJ,-wave functions with

respect to the inner-product

<$*, $*> = bQbB = ibJZ. (1.2.4.Eq 11)
Then

cr£a= ^cDe(m) !d01\...Ad0K |"l/zf m fe A [jj] (1.2.4.Eq 12)
Q

is a normalized element in H-, .So

(MHDQ4) The quantization Hilbert space associated with the polarization (Pt

is now defined by

Hx, = © (1.2.4 .Eq 13)

where © is the direct sum over all the BWS leaves A fnl.

The elements of are given by
"c.

X b„b>, <«. (1.2.4.Eq 14)
ACQl ~ - >2

(MHDQ5) Let T> be an observable of (Me,iOo) such that X> <= C°°(M0;(Pe); then is

only dependant on the action variables i [cf. equation (1.1.5.Eq 2a)], i.e.

£="£(!).
The quantization operator (corresponding to the observable £) is postulated

to be the self-adjoint operator on given by the expression

Zc% = © t(I(n))b„<rtQ, (1.2.4 .Eq 15a)
~ Acnl

and the domain of is given by

D>= (1.2.4.Eq 15b)
sc c

'V

Let R(^c) denote the spectrum of /£c; then we have

R(^c) = tCCtCn)): H6 ?x.. .x2£(k-times) and J[(ja) <e R(JL)} (1.2.4.Eq 16)

The observables belonging to the complete set of commuting observables {^}
are quantizable in the polarization (%. because they are all elements of
CO

C (M0;<PC) [cf. remark (R1) of the last subsection].
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Remarks: (R1) The values I1(n1),...,IK(nK) are dependant on the choice of
/-V* ^

the connection potential (3. Hence the spectrum of the operators , ... ,£Kc.
in Hg, also depends on the choice of p [cf. McKenna and Wan (19B4) ]. There

appears to be no apriori rules provided by the geometric quantization scheme

for picking a particular connection potential (3. However, in most of the

literature on BWS conditions in geometric quantization the connection
k

potential is chosen to be (3„ = Z P- dq- [cf. Simms (1972); Sniatycki (1975);
i=-i 1

Sniatycki (1980), pp71-72; Woodhouse (1980), ppl85-l87 and pp207-209].

Arens (1977) suggests the following criterion for choosing the connection

potential : [3 should be picked so that the BWS conditions obtained by

using the modified version of half-density quantization scheme are the same

as that given by the Maslov-WKB method [cf. Arnold (1967); Berry (1978),

p26-29; Eckmann and Seneor (1976); Maslov and Fedoruk (1981), pp257-266].

(In the next section we shall study the Maslov-WKB method for a

one-dimensional Hamiltonian system of a particle in a potential well.)

McKenna and Wan (1984) have shown that for particular examples it is

possible to choose a connection potential so that the BWS conditions give

the physically correct results. To illustrate this point we shall present

two new examples shortly.

(R2) The BWS conditions given by equation (1.2.4.7a) are exact quantization

conditions in the half-density quantization scheme, unlike the

BWS conditions given by the Maslov-WKB method which are approximate

quantization conditions Lcf. section (1.3) of this chapter].

(R3) In geometric quantization there are two main quantization schemes: the

half-density quantization scheme and the half-form quantization scheme

[cf. Woodhouse (1980), pp153-164 and ppl88-202]. In our presentation we

have restricted ourselves to the study of the half-density quantization

scheme for the following reasons:
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(i) The mathematical apparatus of the half-form quantization scheme is far

more complex than that used by the half-density quantization scheme,

(ii) It has been shown by McKenna and Wan (1984) that with an appropriate

choice of connection potential the so called 'corrected' BWS conditions

obtained using the half-form quantization scheme can be replicated, for many

examples, by the BWS conditions in the half-density quantization scheme.

The standard half-form quantization scheme with the connection potential
k

chosen to be fl = Pjdqi has been shown by McKenna and Wan (1984) to the0

produce the wrong spectra in many examples.

(1.2.4.Ex 1) The one-dlmejiglomL isotonic oscillator tTer Haar (1964),

pp69-72; Weissmann and Jortner (1979)]

Let Q = IR*" = (0,oo) with cartesian coordinate q, M = T^Q with canonical

two-form to and the usual cartesian canonical coordinates (p,q). The

Hamiltonian of an isotonic oscillator is given by

H = (1/2)p 2 + (q-1/q)Z. (1.2.4.Eq 17)

The Hamiltonian vector field XH is given by

XH = p-3/aq - (1+1/q2) (q-1/q) ^/ap. (1.2.4.Eq 18)
The set Z(H) defined by equation (1.2.2.Eq 1b) is given by

Z(H) = {(0,1)}. (1.2.4.Eq 19)

Then let M0= M—Z(H) = fR x —{(0,1)} and let uj0 be the restriction of oj

to M0. Let (Pc be the polarization of (M0,cdo) spanned by the vector field

V

The action-angle variables (1,9) are given by

I = H/8U* , 6 = -cos"'({2qz-H-2}/{EX+4E}" 1 ) (1.2.4.Eq 20)

[cf. appendix 1.3]. The range of I is given by R(I) = (0,oo). Then the
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Hamiltonian can be written the form

H( I) = 8,,z I. (1.2.4 .Eq 21)

The polarization (J^ is spanned by the vector field 7>A30.

Let (B,(*,*),V) be the prequalization bundle defined at the beginning

of this subsection, and let

(?> = pdq + cd9. (1.2.4.Eq 22)
be the connection potential.

Then the BWS conditions given by equation (1.2.4.Eq 6) are satisfied if

I takes the following values

I(n) = nfi-c; ne 7L and nfi-c fcR(I) (1.2.4.Eq 23)

[cf. (1.2.4.Eq 8)]. The BWS leaves are

A [n] = {m e M: H(m) = S'^Cnh-c) and nh-c^O}. (1.2.4.Eq 24)
rv/

Let Ht be the quantized Hamiltonian in ; then the spectrum of Hc is given

by

R(HC) = {8,/2 (nfi-c): nfc2?and nfi-c^.0}. (1.2.4.Eq 25a)

If we put

c = -[(1/2) + (1/4)(8/liz +1)"* -(1/4) (8/-fi 2 )"2 }fi; (1.2.4 .Eq 25b)

then R(HC) coincides with the spectrum for the Hamiltonian of the isotonic

oscillator determined by the usual Schrodinger equation

[cf. Ter Haar (1964), pp69-72].
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(1.2.4.Ex 2) Example: The two-dimensional Kepler problem [ Abraham and

Marsden (1980), pp619—631D

2
Let Q = fR with cartesian coordinates q = (q1,q2)» be the canonical

*

two-form on T Q, (p,q) = (p1 , p2, q,,, q2) be the usual canonical coordinates on

T*Q = IK4 and let !| II be the Euclidean norm on fR. Let

M = {(p,q)<£: IR4: q ^ (0,0) and H(p,q)<0} (1.2.4.Eq 26a)
where

H(p,q) = ||p ||2/2 + 1/||q||. (1.2.4.Eq 26b)

The manifold M is commonly referred to as the Kepler manifold, and the

observable H(p,q) restricted to M is called the Hamiltonian of the Kepler

problem.

The angular momentum observable on M is

L = q.,Pz - Q^P-f* (1.2.4 .Eq 27)
The Hamiltonian vector fields generated by H and L are respectively

XH = p1 2)/3qi+p23/3q2-(q1/||q||3p/3p1-(q2/||q|l5)d/3 pz (1.2.4.Eq 28a)
and

X = -qjd/2 q1+q1?/3 q2-p23/^p^+p17)/apa. (1.2.4.Eq 28b)
Clearly the set Z(H,L) defined by equation (1.2.2.Eq 1a) is empty; hence we

*
have M0= M. Let cj0 be the restriction of the canonical two-form U)(on T Q)

to M0. The pair H,L constitute a complete set of commuting classical

observables [cf. appendix 1.4]. Let be the polarization of (M0,ua0)

spanned by the vector fields XH and XL.

Let m0 be some point in M such that H(m„) = E, and let (t-|) be the

integral curve of XH that originates from m0. Let T1(E) be the period of
. Similarly, let L(m0) = Le » Tfx(t) be the integral curve of Xu that

originates at me and let T-(L0) be the period of
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The action-angle variables (1^, Ij_, 0i , 02.) are given by

I, = (-1/2E)"2 , 0, = [2TT/T., (E) ]t^-f 9Jo, (1.2.4 . Eq 29a)
I2 = L„, 02 = [2tr/Ti(L0) ]t2+0io ; (1.2.4.Eq 29b)

where 01o and 02o are real constants [cf. appendix 1.4]. (Strictly

speaking, 01o and 02o are constants depending on the choice of m0.) The range

of I1 is R(I1) = (0,co) and the range of I2 is R(I2) = 'R. (The integral

curves of in M0 are ellipses with eccentricity e given by e = (1+2HL2)1'2

[cf. Abraham and Marsden (1980), p625]. The range of T., is determined from

the condition 0<e<1.)

Then H and L can be written in the form

H (2) = -(1/21* ), L(_X) = I4. (1.2.4 .Eq 30)

Let (B, (',•), "7) the chosen prequantization bundle over (M0,u)0) defined

at the beginning of this subsection and let

(J = I [Pidqi+C£d0l]. (1.2 .4 . Eq 31)
1=1

Then the BWS conditions are satisfied if the action variables I1 and I^

take the values:

I^(ni) = n^fi-c ; nX^7L, l£(ni) e R(l£) (i = 1,2). (1.2.4.Eq 32)

rv rv

Let Ht and Lt be the quantization operators in corresponding to H

and L respectively. Then the spectra of the quantization operators Ha and

Lt in are respectively

R(Ha) = {-[2(n1li-c1)]",/2 : nt^, n^-c, 6 Rd,)} (1.2.4.Eq 33a)
and

R(LC) = {(n2-fi-c2): n e 2, n^-Cj £ R(IZ)}. (1.2.4.Eq 33b)
The physically correct spectra are obtained if we put

c1 = -(1/2>tr and c2 = 0 (1.2.4.Eq 33c)
[cf. Arens (1977); Sommerfeld (1929), pp12—14; Sommerfeld (1930), pp67-68].
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1.3 THE MASLOV-WKB METHOD

(1.3.1) Introduction

In this section we shall outline the Maslov-WKB method for the

derivation of eigenvalues and eigenfunctions of the Hamiltonian operator (in

the position representation) for the one-dimensional Hamiltonian system of a

particle in a potential well; we shall follow the treatment given by Eckmann

and Seneor (1976).

Let Q = IR with cartesian coordinate q be the configuration space of the

Hamiltonian system. Let M = T*Q = (R2 with the usual canonical cartesian

coordinates (p,q) be the phase space and letul be the canonical two-form on

M.

Let V(q) £ C^CQ) be a potential well in Q that satisfies the following

conditions:

oo

V(q) =Z A^q^, kr are real constants; (1.3.1 -Eq 1a)
O

0 lim V(q) = lim V(q) = E0<oo and q^V/^q) > 0 (1 .3.1 . Eq 1b)
-OO q-»oo

i.e., V(q) has a single minimum at q = 0.

Then let H(p,q) be the Hamiltonian of a particle in the potential well

V(q) given by

H(p,q) = (pz/2)+V(q) (1.3.1.Bq 2)

Let m e M, H(m) = E and let ~8^,(t) = (p(t),q(t)) be the integral curve

of XH that originates at the point m. Here p(t) and q(t) satisfy the

following differential equations:

(dq(t)/dt) s p(t), (dp(t)/dt) = -I rA [ q( t) ]^"'( 1.3 • 1 • Eq 3a)
r-1

with constant of motion
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H(p(t),q(t)) = E. (1.3.1.Eq 3b)

The integral curves of XH split M into three distinct regions:

M0 = {closed integral curves of XHJ—{(0,0)}, (1.3-1.Eq 4a)

= {open integral curves of XH: p>0} , (1-3-1 .Eq 4b)

Mro = {open integral curves of XH: p<0} (1.3-1-Eq 4c)

tcf. McKenna and Wan (1984)]; the regions are illustrated in Fig 1-1.

In this section we shall restrict ourselves to the study of integral

curves in the region M0. The range of H in the region M0 is

Be(H) = (V(0) ,EC) .

Let be the restriction of cu to M0; then (M0,cjo) is a symplectic

manifold and H restricted to M0 is a periodic Hamiltonian. Let 75E denote

\ f2
the integral curve of XH that originates at the point (p = (2E) ,q = 0) in

M0. Let T(E) be the period of the curve ~tfE.

Let (1,9) be the action-angle variables on M given by

I = £> pdq , 9 = [2v/T(E)]t. (1.3 -1 . Eq 5)

Let R(I) denote the classical range of I. Then the periodic

Hamiltonian H on M0 can be expressed as a function of I, so let

H(I) = H on M„. (1.3.1-Eq 6)

The integral curve ~6E can be parameterized by 9 instead of t as

follows. Let

"75E(9) = (p(0), q(0)) (1.3-1 - Eq 7a)

where

p(9) = p(t), q(0) = q(t) with t = [T(E)/2tt]9. (1.3.1 .Eq 7b)

Then p(9) and q(0) satisfy the following differential equations:

-0q(0)/^9 = [T(E)/2ir]p(e), (1.3-1-Bq 8a)
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co

•3p(e)/30 = -[T(E)/2n] £ rAr{q(0) f~ ' (1.3-1 -Bq 8b)
v- = >

with constant of motion

H(p(0),q(0)) = E. (1.3.1.Eq 8c)

Clearly we have T)q(0)/30 = 0 when p(0) = 0,and we have 3p(0)/(}0 = 0

when q(G) = 0 because V(q) has a single minimum at q(0) = 0. We shall

assume that 3q(0)/g0 has exactly two stationary points in the range [0,2tt).

Similarly, we shall assume that T)p(0)/30 has exactly two stationary points

in the range [0,2-it).

Let e [0,2tt) satisfy the following conditions

[cf. Fig 1-2]:

(i) 0O = 0;

(ii) 0o<01<02<0^<2k;

(iii)

(-3q(0)/a0) = 0 at 0 = 0O, Qz; (1.3-1 .Eq 9a)

(iv)

(9p(©)/30) = 0 at 0 = 01t 03. (1 .3 -1 - Eq 9b)

Let Iff , "3- be the arcs on defined by

+T5E = {(p,q)t'5e : p}0}, (1.3-1-Eq 10a)

= {(p,q)&^6 : p<0}, (1.3-1 - Eq 10b)

"tff = {(p,q) : q^O}, (1.3 -1 - Eq 10c)

7Sh. = {(p, q) e^e: q^0} (1.3 .1 . Eq 10d)

respectively; the arcs are illustrated in Fig 1-3a and Fig 1-3b.

Remark: (R1) By the Implicit Function Theorem tcf. Abraham and

Marsden (1980), p29], p can be considered a function of q on the arcs

/E ,E
and -"o , and q can be considered a function of p on the arcs "0+ and 0- .

I
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(1.3.1.D1) Definition .■ [Abraham and Marsden (1980), pU09; Woodhouse (1980),

pi 3 ]

Let (M,io) be a 2k-dimensional symplectic manifold and let N c M be a

k-dimensional submanifold in M. N is said to be a Lagrangian submanifold in

M if at every m e N the following condition is satisfied:

0J (XW,Y„) = 0 for all X„,Y^ e T„N. (1.3 .1 -Eq 11)

Remark: (R2) The curve Tfe is an example of a Lagrangian submanifold in M0.

(1.3.2) The Hamilton-Jacobi equations [Abraham and Marsden (1980), p38l;

Woodhouse (1980); pp66-69]

The Hamilton-Jacob! equations are

H((3S/3q),q) = E, (here (3S/dq) replaces p in the expression for H);

(1.3.2.Eq 1a)

H(p, (-3W/ap)) = E,(here (-DW/3p) replaces q in the expression for H);

(1.3•1•Eq 1b)

where S(q) and W(p) are generating functions of the Lagrangian
£

submanifold if .

We shall now show how S(q) and W(p) may be constructed. Let s(q,I) and

w(p,l) be local functions on M that satisfy the following equations:

ds(q,I) = pdq-IdQ, (1.3.2.Eq 2a)

dw (p, I) = -qdp-IdO. (1.3.2.Eq 2b)

Then the generating function S(q) is defined to be the restriction of s(q,I)
£

to 7f . Similarly, the generating function W(p) is defined to be the
£

restriction of w(p,I) to If. Note that S(q) and W(p) are only defined
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locally on the Lagrangian submanifold 0 .

Let m0 = (p = (2E)"2,q = 0). Then a set of solutions of S(q) and W(p)

are:

+St(q) = f pdq on +"tfe , m ; (1.3 - 2.Eq 3a)
J hio

_S£(q) = pdq on -T$E, m <a (1.3.2. Eq 3b)
JV"o

W£ (p) = - qdp on IS f , m <& jfZ 5 (1.3.2. Eq 3c)

W£ (p) = - f qdp on Tf-e , m e TS- ; (1.3 .2. Eq 3d)

(here all the integrals are along <5£).

(1.3-3) The WKB method [Eckmann and Seneor (1976) ]

The usual WKB method consists of constructing approximate solutions of

the Schrodinger equation asdi -•* 0. In the case of our example, we shall

see that these approximate solutions of the bound states of the Schrodinger

equation in both the position representation and momentum representation are

not square-integrable functions. Therefore, these approximate bound state

solutions do not belong to the domain of the respective Hamiltonian

operators in the position representation and momentum representation.

The usual WKB method for the Schrodinger equation in the

position representation is given as follows. The Schrodinger equation of

the one-dimensional Hamiltonian system of a particle with energy E in the

potential well V(q) is

(H-E) W(q) = 0, (1.3.3.Eq 1a)

where

H = -(-fi2/2)(dz/dq7)+V(q) and ^(q) e L2" (IR). (1.3-3-Eq 1b)

The WKB method consists of solving equation (1.3.3.Eq 1a) as -ft 0 by

putting
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0w(q) = f (q) (exp drS(q)}. (1.3.3.Eq 2)

(Here we have use the superscript E and the subscript w to highlight the

fact that q) is a WKB-wave function corresponding to the energy E.)

Then expanding equation (1.3-3.Eq 1a) in terms of we get

(H-E)^J (q) = -fi°{(1/2)('aS/9q)2+V(q)-E}^5(q)
+ h(-i){(1/2) (c)2 S/3 qz) f+(7) f/d q) C3S/3 q)} lexp -irS}

+ higher order terms of (1.3-3.Eq 3)

[cf. Appendix 1.5]. Now put the coefficients of di° and -fi equal to zero;

then we get the following pair of equations:

H( ("SS/aq) ,q) = E, (this is a Hamilton- Jacobi equation); (1.3«3.Eq 4a)

(1/2) C32S/'dq2)f+(9f/3q) OS/3 q) = 0. (1.3-3-Eq 4b)

So the generating functions +Se(q) and _Se(q) are independent solutions of

S(q) [cf. equations (1.3.2.Eq 3a) and (1.3.2.Eq 3b)J.

An independent pair of solutions of the function f(q) are

[cf. Appendix 1.5]:

+fE(q) = (constant) |D4Se/e>qi~~1/a'
= (constant) I (3q/30) rw2 (q) on +"6^; (1.3.3«Eq 5a)

and

-fE(q) = (constant) |'3-SE/a q !_l/2
= (constant) I (?q/?0) I (q) on ^ ; (1.3.3.Eq 5b)

(Here (-aqAe©) = [T(E)/2v]p is considered a function of q on each on the arcs

and [cf. remark (R1) of subsection (1.3.1)].)

Then the general WKB-approximation of the eigenfunction (corresponding
r\

to the eigenvalue E) of the Hamiltonian operator H is of the form

^w(q) = + K + f "(q) [exp dr+Se(q) }+_K - fE(q) [exp-i-SE(q)}. (1.3-3-Eq 6)
where +K and -K are constants. Since (aq/a0) = 0 on the set [q: V(q) = E},
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it follows that the WKB-wave function d>^(q) is singular on this set.
' w

J ^ 2
Therefore, (p (q) is not an element of L (fc).

/

The WKB method for the Schrodinger equation in the momentum

representation is given as follows.

In the momentum representation, the Schrodinger equation of the

one-dimensional Hamiltonian system of a particle in a potential well V(q) is

(Hc-E)^c(p) = 0, (1.3.3.Eq 7a)

where

Hc= (p-/2)+Z (ifif Ab(3/-ap)r and H^(p)e L^(iR). (1.3.3 - Eq 7b)
r=o

(Here the subscript c is used to indicate the fact that the mathematical

objects are associated with the coordinate p which is canonically conjugate

to the coordinate q.)

The WKB method consists of solving equation (1.3.3 • Eq 7a) as df 0 by

putting

<fc*(p> = g(p) {exp irW(p)}. (1.3.3.Eq 8)

Then expanding equation in terms of-ff we get

(H^-EX/jf^Cp) = 'R°t(p?-/2) +{fArC-^W/apD-E] (fic%(p)
CO

- (i) ^ A^.r{[ (r-1 )/2] CaW/dp)r~ (3*1 W/^ p2)g+(3W/3p)r~' ("3g/-ap)} ] {exp -JrW}
r-1

+ higher order terms in If (1.3.3.Eq 9)

[of. Appendix 1.5].

Now if we put the coefficients H° and-li equal to zero, then we get the

following equations:

H(p,(-3W/0p)) = E , (this is a Hamilton-Jacobi equation); (1.3«3«Eq 10a)

and
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I (-1),rrAv(aW/ap)r-l{tlr-1)/2]('3,W/ap2)g+OW/ap)Og/Bp)} = 0 (1.3.3.Eq 10b)
vir

So the generating functions W+ (p) and (p) are independent solutions

of W(p) tcf. equations (1.3.2.Eq 3c) and (1.3.2.Eq 3d)J.

An independent pair of solutions of g(p) are tcf. Appendix 1.5]:

el (p) = (constant) | rA.-t-'SWf /3p)r"' | 1
= (constant) I (ap/30) I ^ (p) on 7$+; (1.3.3.Eq 11a)

and

g?(p) = (constant)IZ rAk,(-2»Wf /ap)r_l |",/a
= (constant) | (ap/^G) r,/;i (p) on 75 — ; (1.3.3-Eq 11b)

(Here (ap/aG) which is given by equation (1.3.1 «Eq 8b) is considered a

function of p [cf. remark (R1) of subsection (1.3.1)].)

Then the general WKB-approximation of the eigenfunctions (corresponding
A

to the eigenvalue E) of the operator Hc is of the form

<$,^(p) = K+g^ (p){exp iWf (p)}+ K-gf (p) {exp iW5(p)} (1 .3-3 . Eq 12)
where Ri and K_ are constants. The WKB-wave function d)B (p) has

singularities at the points belonging to {p: p =[2E-V(0)],/2 }. Hence
j 2
TCvi(p) is n°t an element of L ^ (tR).

The momentum representation and position representation are related by
?_ n

the Fourier transform F: La(lP) —L ((R) which is given by

(FM>c)(q) = t2nh]""z( {exp -4pq}^(p)dp; Vj p) e L^(tR). (1.3.3.Eq 13)
tR.

Remark: (R1) It can be shown that
A

Hr = F"1HF. (1.3 .3 -Eq 14)'c

So roughly speaking, we may expect (F</) )(q) to be a WKB-approximation of

the eigenfunction (corresponding to the eigenvalue E) of the Hamiltonian
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A

operator H [of. equation (1.3-3.Eq 6)]. A corresponding statement applies

to the function (F~1<^)(p) in the momentum representation. In the next
subsection, we shall pursue this line of thought further.

(1.3.4) The Masiov-WKB method [Eckmann and Seneor (1976)]

The Maslov-WKB method consists of constructing square-integrable bound

state solutions of the Schrodinger equation given by equation (1.3.3.Eq 1a),
A

such that these solutions belong to domain of the Hamiltonian operator H.

Roughly speaking, the Maslov-WKB method may be summarized as follows. Let

<£f (q) be a suitably chosen WKB-approximation (corresponding to the energyw

A I £E) of the Hamiltonian operator H. Similarly, let Ycw(a suitably
chosen WKB-approximation (corresponding to the energy E) of the Hamiltonian

^ r

operator Hc. Then one chooses as the approximate solution

(corresponding to the energy E) of the Schrodinger equation at the points

belonging to the set {q: V(q)<E}, and one chooses (F0(fw)(q) as the

approximate solution at the points belonging to the set {q: V(q) = E} (on

which <«> is singular). The procedure is complicated by the fact that

0c£^(p) does not belong to the domain of the Fourier transform F because it
is not a square-integrable function of p, so to overcome this technicality

we need to replace p) with a suitably chosen 'WKB-like function' that

is square-integrable.

A brief outline of the Maslov-WKB method is as follows. We shall begin

by listing the notation and defining the various functions we shall need to

use.
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(1.3.ND 1) Notation and

(ND 1.1) From now on all functions of the angle variable 0 will be

considered to be functions on the integral curve ~6& and not functions on M0.

(ND 1.2) For each positive integer j, let

Aj = [-2 jit-(2v-02) ,2jn+02] . (1.3.4.Eq 1)

(ND 1.3) Let ^(G) be a function on 7$e; then we define the operation * 'J by

(ILpr,J) (q) = zL H*(0) if q & {q: V(q)^E}
e & c>j
qie> = q

= 0 otherwise. (1.3.4.Eq 2)

(ND 1.4) Similarly, we define the operation ' 1c,J by

(V'OHp) = I MJ(e) if P etp: PZ<:[2E-V(0) ]}
©fcAj
PC0)= p

= 0 otherwise. (1.3.4.Eq 3)

(ND 1.5) For each positive integer k, let 4Ak and -Ak be a pair of real
. . .£

constants. Then let J(0) be a function on 0 defined by

J(0) = +Ak for 0 fe (2kn-(2n-0j)) ,2^+0! ]
= for 0 £ (2kTT+0i ,2kn+03J. (1.3.4.Eq 4a)

Similarly, for each positive integer k', let B^, and Bki be a pair of real
.<5

constants. Then let Jc(0) be a function on *0 defined by

Jc(0) = Bk. for 0<£= (2k'-q,2k»T1+02]
= B" for 0 £ (2k'Tt+e2|2k'TM-2Tr] . (1.3.4.Eq 4b)

(ND 1.6) Let (f>(0) and $t(6) be the two HKB-like functions on 7$Edefined by
= ! Caq/00) !~mz {exp p(0)[^q(0)/30]d0}lexp iJ(0)} (1.3.4.Eq 5a)

o

and

0

^ (0)= I (Dp/30) !~wz {exp t\ q(0) [Dp(0)/00]d0} {exp iJt(0)}. (1.3-4.Eq 5b)c
o

respectively.
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(Remark: (R1) Note that ^(q) is a WKB-wave function corresponding to the

energy E, for each positive integer j. Similarly, ( ) (p) is a

WKB-wave function corresponding to the energy E, for each positive integer

j-)

(ND 1.7) Let

T5 = {9 fclR : 6k <= 7Z with either 0 = 0^+2kTV or 0 = 0a+2k-n}. (1.3.4.Eq 6a)
Then IT is the set of singularities of the function 0(9).

Let

TTC = {0fc[R :fjk&ZL with either 0 = 2krr or 0 = 0;2+2kn}. (1.3-^.Eq 6b)
Then "TTt is the set of singularities of the function ^(0).

(ND 1.8) Let

n?f1 = {q: V(q) = E}. (1.3.1.Eq 7a)

Thenlf7 is the set of singularities of the WKB-wave function ^J(q) where j

is an arbitrary positive integer. Let

rT7^c= {p: pz = [2E-V(0) ]}. (1.3.4.Eq 7b)

ThenfT^c is the set of singularities of the WKB-wave function ( ) (p)
where j is an arbitrary positive integer.

£
(ND 1.9) Let e(0) and ec(0) be two smooth real-valued functions on ~ti that

satisfy the following three conditions:

(i) e(9)+ea(0) = 1 for all OfcfR;

(ii) For all 9fefRand k we have

e(9) = e(0+2kw) and e- (9) = e (9+2k^r) (periodic conditions).
G

(iii) e(0) = 0 in the neighbourhood of the points belonging to the

set Tf . Similarly, e&(9) =0 in the neighbourhood of points

belonging to the set TF"C .
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Remark: (R2) Clearly the functions <^>(0)e(0) and <^(9)6,^(0) are free of
singularities. Hence it follows that for each positive integer j, the

functions (feJ )(q) and (^e^t,J )(p) are singularity-free and have compact
support. We shall use the following theorem to show the link between the

functions (</>e,J)(q) and (^etC|J )(p).

(1.3.4.T1) Theorem [Eckmann and Seneor (1976)]

For each q ^ (q:-3 P such that (p,q)<c"8 } and positive integer j, we

have

(F$e^e'j)(q) =£ <p (0)ea(0)+O(li) (1.3.4.Eq 8a)
9t©)=q

if J(0) and Jc_(0) satisfy the following conditions:

J„(0)-J(0) = -TT/4(mod 2-n) for 0 fe 0 (2kri, 2kn+9i) ;u keZZ

Jc(0)-J(0) = +TV4(mod 2tr) for 0 lj^(2kn+0i >2kn+©2) »

Jt.(0)-J(0) = -TrMCmod 2tt) for 0&U (2krr+02_>2kn+9a);
kfezz

Jr(0)-J(0) = +T74(mod 2t\) for 0 6 U (2kn+6a,2k-n+2ir) ;
Re# 0

(1.3•4.Eq 8b)

Proof. See Appendix 1.6.|g|
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(1.3.4.C1) Corollary

If we put

J(0) =+Ak= -k-nfor 0 fc (2krr-(2TT-03) ,2kn+©i ],
J(0) =-Ak= -kn-TT/2 for 0fe (2kn+01t2k +0^],

Jc(0) = B+ = -kVr-Ti/4 for 0^ (2k'rr,2k'n+0z],

Jc(0) = B"k = -k'TT-3TT/4 for 0<£ (2k'IT+&2,2k'-(t+2n];
(1.3.4.Eq 9a)

then for each q {q: V(q)<E} and positive integer j, we have:

(fJT^c,J )(q) = £ ^(0)ec(0)+O(-fi) (1.3.4.Eq 9b)
QfcAj
St6)=q

and

(F^j )(q) + (^»e'j ) (q) = (^J) (q)+0(fT) (1.3.4.Eq 9c)

Proof. The proof follows from Theorem (1.3-4.T1).B

Remarks: (R3) The functions J(0) and Jc(0) are referred to as

Maslov indices by Eckmann and Seneor (1976) if they satisfy the conditions

given by equation (1.3.4.Eq 8b). Therefore, the functions J(0) and Jc(0)

defined by equation (1.3.4.Eq 9a) are Maslov indices, so from now on we

shall assume that J(0) and Jc(0) are given by equation (1.3.4.Eq 9a).
(R4) Note that above theorem and its corollary does not deal with the

behaviour of the functions (F^Te^c'J )(q) and {(F^e^c'<j ) (q) + ( (q)} at
• 1

the points belonging to the set IT . However, in the neighbourhood of points

belonging to the set Tp we do have the following results:

(i) (F^Te^'j )(q) is finite because F is a unitary map, and

Hp) is a bounded and has compact support [of. definition

of ec in (ND 1.9)];
(ii) C(f> e'J )(q) = 0 [cf. definition of e in (ND 1.9)].
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(iii) It follows from (i) and (ii) that

(F^e>' )(q) + ($>e7J )(q) = (F^e^c'j)(q) at qe'lf'.

With the above results in mind, we shall now define the Maslov-WKB

wave-function (corresponding to the energy E) of the Schrodinger equation

given by equation (1 -3-^-Eq 1a) as follows.

(1.3.4.D2) Definition [Eckmann and Seneor (1976)]

Let

3?'(q) = lim {[ 1/ j][ (F</^e^ct j ) (q)+(cp e; )(q)]}. (1.3.4.Eq 10)
We shall refer to $e'(q) as the Maslov-WKB wave function (corresponding to

the energy E) of the Sohrodinger equation. (Here the Schrodinger equation

referred to is given by equation (1.3.4.Eq 1a) and E e. (V(0),Eo).)

(1.3.4.T2) Theorem [Eckmann and Seneor (1976)]

(i) If

[2tr]-i£ pdq 4 (n+1 /2)if, for all n e&, O.S.^.Eq 11)

then the Maslov-WKB wave function (corresponding to the energy E) is the
-r-e

zero-function; i.e. 3? =0 everywhere on the configuration space Q which

Tg
is IR. Otherwise, (q) is a non-trivial function.

(ii) The Maslov-WKB wave function (corresponding to the energy E) satisfies

the following condition

I! (H-E) 3?e(q) || = 0(ff~). (1.3.4 . Eq 12)

Here |i II is the norm in L (rt2) given by

|Mq)ll = f !4>(q) I2dq; <f(q) & L^Ofc). (1.3.4.Eq 13)J(R
(iii) In the limit as If —-^>0, the Maslov-WKB wave function ^^(q) is

square-integrable.
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Proof.

The proof of assertion (i) is given in Appendix 1.7 and the proof of

assertion (ii) is given in Appendix 1.8. Assertion (iii) has been proved by

Eckmann and Seneor (1976). g|

Remarks: (R5) According to assertion (i) of the last theorem, the
£

Maslov-WKB wave function ^ (q) is non-trivial only if the following

condition is satisfied:

[2Ti]-^<C pdq = (n+1/2>h, for some integer n. (1.3.^.Eq 14)

We shall refer to these conditions as the Maslov-WKB conditions. A critical

comparison of the BWS conditions (in the half-density quantization scheme

and the Maslov-WKB conditions will be made in Chapter 3«

Hence according to the Maslov-WKB conditions the allowed values of the

action variable I are:

l(n) = (n+1/2)fi, where n £= zI and I(n) & R(I). (1.3.4.Eq 15)

Therefore, the allowed values of H are:

E(n) = H(l(n)), where E(n) e (V(0),Eo). (1.3.4.Eq 16)

We shall refer to E(n) as the approximate eigenvalues of the Hamiltonian

operator H (predicted by the Maslov-WKB conditions).

(R6) It follows from assertions (ii) and (iii) of the last theorem that for

each E(n) Gz (V(0),Eo), the Maslov-WKB wave function corresponding to the
A

energy E(n) is an approximate eigenfunction of the Hamiltonian operator H.

Let (q) denote the Maslov-WKB wave function corresponding to the energyh

E(n).
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APPENDIX 1.1

Notation and definitions

(ND1) Notation [Woodhouse (1980), pp288-289J

We shall assume that the term manifold refers to a smooth real

manifold.

Let M be an arbitrary manifold and let U be an open set of M. Then:

(i) COT(M) (C^(M)) is the space of smooth, real (complex)-valued functions on

H;

(ii) V(M) (V(t(M)) is the space of smooth, real (complex) vector fields on M.

(CT(U), cj£(U)t V(U) and V^dJ) are the corresponding spaces on U.)

(ND2) Definitions and Theorem [Woodhouse (1980), p1]

(ND2.1) A symplectic manifold is a pair (M,w) in which

(i) M is a manifold;

(ii)W is a closed,non-degenerate two-form defined everywhere on M:

(a) du)= 0 on M, and

(b) the one form XJ<0, where X e V(M), is everywhere zero on M if and

only if X = 0.

(The two-form oJ is called the symplectic two-form.)

(Remark: (R1) Every symplectic manifold is even-dimensional [cf. Abraham

and Marsden (1980), p165].)
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(ND2.2) Darboux'a theorem [Abraham and Marsden (1980), p 175;

Woodhouse (1980), p7]

Let (M,w) be a 2k-dimensional symplectic manifold and let m M. Then

there is a neighbourhood U of m and coordinates ,..., -J, ...,^K) on U
such that CO =£d£,Ad^T.
The coordinates * • •''tfw'fci* " ' are called local canonical
coordinates.

(ND3) Definitions

(ND3.1) A volixne-form on a k-dimensional manifold Ji is a nowhere-zero k-form

onvAl[cf. Abraham and Marsden (1980), p 123] -

(ND3.2) A manifold >1 is said to be orientable if there exists a volume-form

onj<L[cf. Abraham and Marsden (1980), p 1233 •

(ND3.3) A 2k-dimensional symplectic manifold (M,cJ) is orientable and it

carries a natural volume-form which is given by

£10= (-1)ktk"1,/2 LOk/k!
[cf. Woodhouse (1980), p3]. 5^ is called the Liouville volune-form.

In terms of local canonical coordinates ,..., , • • •, on a

neighbourhood of U of a point m e M, we have

— d A. • dfn Ad ^ A. • ,Ad| •
[cf. Woodhouse (1980), pll1)].



Page 64

(ND4) Definltiona and notation [Campbell (1983); Woodhouse (1980), p294]

(ND4.1) A complex line-bundle B over a manifold M (called the base space) is

defined to consist of:

(i) A manifold B (called the total space);

(ii) A smooth map tt:B >M (called the projection map) such that for each

m g. M, B^ = TT~1(m) is a vector space over £ of dimension one (BM is

called the fibre over m);

(iii) For each m e. M, there exists a neighbourhood U of m and a

diffeomorphism

(p:U x £ —TT"1 (U)
with n o ^(m» ,z) = m' for all m' & U and z e (C.

(The pair is called a local trivialization for B.)

(Remark: (R2) A complex line-bundle is often called line-bundle for short.)

(ND4.2) Let B be a line-bundle over an arbitrary manifold M and let U be an

open subset of M.

(i) A map s: U—B such that "n"(s(m)) = m for every m €: U is called a

section over U or simply a local section. (In the case where U = M, s is

simply referred to as a section of B.)

(ii) Let r^(M) be the set of all sections (over M).
oo

(iii) Let C^M) be the set of all smooth sections over M.
(Similarly , let (g(U) and C^(U) be the corresponding sets on U.)

(Remarks: (R3) Let B be a line-bundle over an arbitrary manifold M and let

(U,®) be a local trivialization for B. Then any section s e c-g(U) can be
written in the form

s(m) s f (m) <P{m, z)
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o=>

where m e U, f(m) e. (U) and z is a non-zero (complex) constant.

CO

(R4) It follows from remark (F3) that C^(M) is empty unless a local
trivialization (M,^>) exists.

(R5) The simplest example of a line-bundle is the trivial bundle B = M x <£ .

In this case, each point in B is given by the pair (m,z) where m & M and

z e. €. and the projection map tt :B —M is given by tt(m,z) = m. The set

C^(M) is not empty because one can choose as a local trivialization (M,^>)
where

(f> :M x (L —B : m x z —(m,z).
an

Then any s e C^(M) is given by
s(m) = f(m)0(m,z) = (m,zf(m))

where m & M, f g ^(M) and z is non-zero (complex) constant.

(ND5)Deflnltlons [Simms and Woodhouse ( 1976), p25; Woodhouse (1900), p295]

(ND5.1) A Hermitian structure (*,') on a line-bundle B (over an arbitrary

manifold M) is inner-product (*,»)m in each fibre BM, m e M, with the

following property: for every s, t ef^M), the function defined by

(s,t):M —(L : m —^ (s(m),t(m))m

is smooth.

(ND5.2) Let B be a line-bundle over M with Hermitian structure (*,")• A
CO

section sQ€: £j»,(M) that satisfies the condition (s0,s0) = 1 everywhere on M
is called a unit section. (Similarly, a unit section over U c M can be

defined.)
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(Remark: (R6) The trivial bundle B = M x & has a natural Hermitian

structure given by

((m,z'),(m,z")) = z'z"; (m,z')t (m,z")fc B^;

[cf. Simms and Woodhouse (1976), p26]. A unit section of B is given by

s0(m) = (m,f(m)); f(m) <& C^(M), If(m)I = 1 everywhere on M.)

(ND6) Definitions LCampbell (1983); Simms and Woodhouse (1976), pp25-26,

p31; Woodhouse (1980), pp29^-297]

Let B be a line-bundle over a manifold M.

(ND6.1) A connection V is a map that assigns to each X£ V<j.(M) an operator

on C^(M) such that:
(i) ^k + 9V a^x+9^y»
(ii) V^(fs) = X(f)s + fV^s;
(iii) V^(s+t) s^s+V^t;

for each s, t & , f, gfe C°°(M) and X, Y V^tM). (Vx is called the

covariant derivative along X.)

Let B be a line-bundle over M with connection V.

(ND6.2) A section se C^(M) is said to be covariantly constant along the

vector field X e V(t(M) ifV^s = 0 everywhere on M.

(ND6.3) The curvature two-form of the connection is defined to be the

complex two-form on M determined by

curv(B,V)(X,Y)s = (i/2)(LVx ,^7y s

where X, Ye V^M), s ^ r^(M) and [<7/,r7y] =^7x(Vys) - <JyNK s) is the
commutator of and Vy.
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(ND6.4) Let B be a line bundle over M with Hermitian structure (*,*) and

connection V. Then the Hermitian structure and connection are said to be

compatible if

X(s,t) = (Vxs, t) + (s,Vxt)
for every X €. V(j(M) and for every s, t <s. C^M).

The line-bundle B with Hermitian structure (*,*) and connection ~*7 is

called a Hermitian line-bundle with connection if the Hermitian structure

and connection are compatible. We shall denote a Hermitian line-bundle with

connection by the triple (B,(*,*),V).

(Remark: (R7) Let B = M x <C be a trivial line-bundle over M with (natural)

Hermitian structure (',') remark (6)] and connection Let so a

unit section of B [cf. remark (R6)]. Then it follows from the definition of

CO
the connection V that for each Xe. V^(M), there exists g(m) €: C (M) such
that s = g(m)s0. The function g(m) can be rewritten in the form -ir(XJ0>)

where |S is a complex one-form on M. Therefore, it is usual to define the

connection on B by

Vx s0 = -Jr(XJ |3 )s0 ; for all X e. VC(M).
The one-form ^ is called the connection potential [cf. Woodhouse (1980),
p297].

It can be shown that

curv(B,,\7) = d$Afi

[cf. Woodhouse (1980), 297].)
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(ND7) Definitions, notation and theorem [cf. Woodhouse (1980), p290-291]

(ND7.1) A (l~dimensional) real distribution on a manifold M is a map D that

assigns to each m e M a subspace of the tangent space at m, TWM, such

that

(i) 1 = dim Dn for all m;

(ii) In some neighbourhood U' of m' it is possible to find 1 smooth vector

fields that span Dm, at each m e U'.

(ND7.2) Let

V(M;D) = {X e V(M): X & for all m e M}.

The vector fields in V(M;D) are said to be tangent to D.

(ND7.3) A connected submanifold Jt~c. M is called an integral surface of a

real distribution D if TWJT= D^, at every mejt.

We shall assume that M is a k-dimensional manifold.

(ND7.4) Let X, Y eV(M); then the Lie bracket of X and Y is defined to be

the unique vector field [X,Y] g. V(M) determined by

[X, Y]f = X(Y(f) )-Y(X(f)), for all f£ <f°(M).
Let U be an open subset of M with coordinates (x1,...,xK), and let

K K

X=X a^(T>/3 x-J) and let Y=£ b, Cd/ax,') onU; (here a-j.aK, b^f ... y b^c are
T-I J -I

smooth functions on U). Then on U, we have
K •<

[X, Y] =IX {a£(9bj/3xi)-b^(^aj/7>xi)}('a/axi).

(ND7.5) A real distribution is said to be involutive if [X,Y] £ V(M;D) for

all X, Y £ V(M;D) .

(ND7.6) A (1-dimensional) real distribution D on M is said to be integrable

if it is possible to find local coordinates (xn,...,xK) in some
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neighbourhood U of each point m & M such that surfaces

{m U: xn = constant,... ,x. = constant}
1+1 K

are integral surfaces of D. (In other words, ever point of M lies on an

integral surface of the distribution D).

(ND7.7) Frobenius Theorem: A real distribution D is integrable if and only

if it is involutive.

(ND7.8) The maximal integral surfaces of an integrable distribution are

called leaves of the distribution.

(ND7.9) The space of leaves of an integrable real distribution D on M is

denoted by M/D.

(ND7.10) An integrable distribution D on M is said to be reducible if M/D is

a Hau3dorff manifold with the projection map pr:M —M/D being a smooth

map.
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APPENDIX 1.2

Integration oL one-densities

Let Q be a k-dimensional manifold and let p be a one-TQ-density
[of. definition (1.1.6.D1)]. Let be a set of coordinates on an

open set U of Q. Then the integral of p over U is defined by

JuP =$upt'8/aqi}dq1 •••dqK
[cf. Loorais and Sternberg (1968), pU09; Woodhouse (1980), p152].

Remarks; (R1) Suppose (yi,...,yR) is also a set of coordinates on U; then

\ P f3 ft) yi ) dy, ... dyK = f p{t»/^q-}dq1 .. .dqKJU Jy J
because

p{^/D9j} = I yw/'3q0) I y-£} (by definition of one-TQ-density),
and

dq1 . .. dqK = I (-aq«/a yp) I dy1 ... dyK.
Thus the integral ^p is independent of the choice of coordinates.
(R2) If U is not covered by a single coordinate chart, then the integral

is built up using a partition of unity.
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APPENDIX 1.3

The one-dimensional isotonic oscillator

Here is a list of results we shall use later:

yta+by+cy2-]"1'2 dy = -(-1/c)1/2sin~1 (2cy+b/[b2-4ac],/2 ) [c>0, b -4ac>0];
(A1.3.Eq 1)

sinH A-sin'1B = -cos"1 ([ 1-A2]"2- [1-B1]1'2 +AB) [A<B] ; (A1.3.Bq2)

and

rln -2 /-TT 2\ [sin 0/(A+Bcos0)]d0 = 21 [sin 0/A+Bcos0]d0
o Jo

= (2ttA/B2)[1-{1-(bVa2)}'"z- ] (A1.3.Eq 3)

[cf. Gradshteyn and Ryhzik (1980), p8l, p49 and p379].

Let Q = IR1" = (0,oo) with cartesian coordinate q, M = T*Q = IR x with

the usual cartesian canonical coordinates (p,q), and let ui be the canonical

two-form on M. The Hamiltonian of the one-dimensional isotonic oscillator

is given by

H = (pz/2)+(q-1/q)2
The Hamiltonian vector field is given by

X = p(T>/aq)-( 1+1/q2) (q-1/q) (^/a p)

Then we have Z(H) = {(0,1)} and M0 = M —Z(H) = (R x (R+—{(0,1)}. Let
,e
0 (t) = (p(t),q(t)) be the integral curve of XH that originates at the point

(p0,q0) = (0,{[E+2+(E2+4E)"i ]/2}''2 ). Here p(t) and q(t) are solutions of

the following differential equations:

dq(t)/dt = p(t) = 21/z- [E+2-qz-1/qz],,z" (A1.3.Eq 4a)

dp(t)/dt = -[1+(1/q(t))z]Tq(t)-1/q(t)] (A1.3.Eq 4b)

with constant of motion

H(p(t),q(t)) = E. (A1.3.Eq 4c)
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We shall split our presentation into two parts which we shall denote by

(i) and (ii), respectively, as follows: in part (i) we shall solve for p(t)

and q(t), and in part (ii) we shall construct action-angle variables on

(M0, hJo) .

(i) Integrating equation (A1.3.Eq 4a) we get

t = (1/2) f [e+2-qz-(1/q)z]""ZdqJ3o
Put qz = y, qo = yo and dq = dy/2y,/Z ; then we get

y
t = (1/8)W2L [(E+2)y-yz-1]"'/2 dy

'o

= (1/8),/z [-sin"'' ({-2y+(E+2)}/{E2+4E} Wa- ) J

[by equation (A1.3.Eq 1)]

= (1/8)"z [-sin-1({-2q2+(E+2)}/{E2+4E},/2 )+sin~1 (-1)]

= -(1/8)"2 cos"1 ({2q2-E-2}/{E2+4E}"2 )

[by equation (A1.3.Eq 2)]

Thus

q(t) = (1/2) [ (E2+4E)1/2 cos(-8 1/2 t)+Hh-2] '/z
and

p(t) = dq(t)/dt = [ {E2+4E}/(2(E2+4E)1,2 cos(-8,/z t)+2(E+2)} ] Wz sin(-8''2 t) .

(ii) Clearly the period of T)E(t) is T(E) = 2tt/8,/z" = tv/2vz. The

action-angle variables on (M0,w») are given by

I = [2Tt]-'<£ pdq, 0 = 2iTt/T(E).
JtfE
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Explicitly,we have

0 = -cos-UUq^E^J/fE^-UE}"1 )

and

. rTCE)
I = l2v]" 1 p(t)dq(t)

Jo

= [2tt]~1 [^[{eVjeJ/^eMe)"2 cos(-8wa t)+2(E+2)} Jsin(-8,,a t) dt
°

= C2n]-1 Cln [{Ea+i»E}/{2(Ea +4E)"a cos0+2(E+2)}]sin2e (dt/d0)d8
O

= E/8"a (by equation (A1.3.Eq 3) and (dt/d0) = (1/8)"a ).
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APPENDIX 1.4

The two-dimensional Kepler problem [ Abraham and Marsden (1980), pp622-625]

Here are two integrals that we shall use later

[cf.Pierce (1929), pp4l-42]:

j[(A+Bcos x)/(C+Dcos x)2- ]dx
= [(BC-AD)/(C?-Dz)]Lsin x/{C+Dcos x} J + [ {AC-BDj/fC^-D2} J J {C+Dcos x]"1 dx

(A1.4.Eq 1a)

and

j [C+Dcos x]"1dx = [2/ (C^-D* )1/2 ] tan"'1 ([ (CZ-D2 )"2 tan(x/2)/(C+D) ])
(where -fl<x<*n). (A1.4.Eq 1b)

We have:

2 * 4
Q = fR with cartesian coordinates q = (q-,,q2)> T Q = IR with usual canonical

cartesian coordinates (p,q) = (p1 , px, q1f q2), II • II is the Euclidean norm in

n?4, H(p,q) = (||p ||Z/2) + ( 1 /1| q ||) (the Hamiltonian of the Kepler problem),

L(p,q) = (q1pz-q2p1) (the angular momentum observable),
a / z

M0 = M = {(p,q) <& rR : q at (0,0) and H(p,q)<0}, co0= X dp -Adq.;, and
I i=i x

XH = p1('a/aq1)+px('3/c)q2)-(q1/|!q!|5)('3/ap1 )-(qi/|!qll3)(b/3P2),
Xu = -q^C^/Dq-, )+q., ("3/oq2)-pzCc>/3 P, )+P1 )

L is a constant of motion of the Hamiltonian system because

{H, L} = 2CO(Xh,Xl) = 0.

Let <PC be the polarization of (M0,Wo) spanned by the vector fields X^ and

XL. Let m0 be a some point in M0 such that H(m0) = E and L(m0) = Lc. Let

71^ (ty) be the integral curve of X ^ that originates at the point m0ei M0, and
let 7fz(t2) be the integral curve of XL that originates at m0. Let T^E) and
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TZ(L0) be the period of and respectively. Let (1^, Ii,91 ,02) be

action-angle variables on (M0,Uo) given by

I,= [2ir]-1$ (io , 01= [2TT/T1 (E)] + 01o ,

Iz= t2tr]-1fy (5„ , 92= [2ff/T1(L<>)] + 01O ,
a x

where (50 = jT p-dqj, and 01o and Oxo are real constants.
i*i

We shall split our this presentation into the two parts (i) and (ii),

respectively, as follows: in part (i) we shall evaluate the action variable

I.,, and in part (ii) we shall evaluate the action variable I2. (We shall

not evaluate the angle-variables explicitly because it is tedious and messy,

and we do not need the explicit expressions.)

(i) For the sake of brevity, we shall replace t1 by t in what follows. Let

Tf/t) = (p(t),q(t)). Here p(t) and q(t) are solutions of differential

equations:

(dq^(t)/dt)= p^(t), (dp^(t)/dt) = -[qi(t)/l!q(t)|| J] ; (i = 1, 2)
(A1.4.Eq 2a)

with constants of motion

H(p(t),q(t)) = E , L(p(t),q(t)) = L0. (A1.4.Eq 2b)

It has been shown by Abraham and Marsden (1980) [cf. pp624-625] that the

solutions for q^(t) and q^(t) are given by

q^(t) = r(<*(t) )cos <*(t), q^(t) = r(<x.(t) )sin o^(t) (A1.4.Eq 3a)
here c<(t) is a solution of the differential equation

(d&Vdt) = L0/[r(cx(t)):2, (A1.4.Eq 3b)

where r(o((t)) is given by

r(o((t)) = [Lo /{1+Kcos(oC-X)} ]; K= (1+2EL*)V2, A is a constant.

(A1.4.Eq 3c)

(Strictly speaking A is a constant dependant on m0.)
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Here is a list of a few more results that we shall use later:

p,,(t) = (dq,,(t)/dt) = -rsinot + (dr/do0coscx , (A1.4.Eq 4a)

p^(t) = (dq2(t)/dt) = rcoso< + (dr/doOsin c*, (A1.4.Eq 4b)
(1/r) (dr/doO = -t {Ksin(ok-A)} / {1+Kcos(c<-A)} J (A1.4.Eq 4c)

The action variable I1 can now be evaluated as follows. (We shall

choose the domain of integration with respect to («-A) to be (-rc,Tr).)

Then

1= (2t0~1<& tl p-(« ) {dq • (<x)/de*} ]d<*
J^E in x

1 r71 1 2
= (2tt)" J [£ (dq^/doO (do</dt) ]d(c*.-A) (by equation (A1.4.Eq 2a))- tt .

„-n
= (2n)"/i \ [ {r2+(dr/d^)2 } (Lo/r1) ]d(o<.-A)J -"ft

(by equations (A1.4.Eq 3b), (A1.4.Eq 4a) and (A1.4.Eq 4b))

= (2tt)"1L0^ 11+( 1/r) (dr/d«)z ]d(c<-A)
-IT

= (2^)"1L0 C [{1+K%-2Kcos(«-A)}/{1+Kcos(ot->0}2]d(<X.-A)
•7T

(by equation (A1.4.Eq 4c))

Stt[1+Kcosx]"1dx--n

(by equation (A1.4.Eq 1a), when o(-A = x) )

= (2ir)'1 Lj2/(1-K2)"z }Ltan~1 {(1-K1)1/2 tan(x/2)/(1+K)} ]

(by equation (A1.4.Eq 1b))

(ii) Let "^(tj) = (p(t2) ,q(t2)). For the sake of brevity, we shall write t

for 1Then p(t) and q(t) are solutions of the following differential

equations:

(dq1(t)/dt) = -q2(t), (dqa(t)/dt) = q^(t), (A1.4.Eq 5a)

(dp1(t)/dt) = -pz(t), (dp-JO/dt) = pt(t), (A1.4.Eq 5b)
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with constant of motion

L(p(t),q(t)) = L„. (A1.4.Eq 5c)

The differential equations can be rewritten in the form

(dzq 1(t)/dt2) = -q1(t) ,(d2p1(t)/dt2) = -p1(t).
Let mQ = (p1o ,P2o»q10»qAtl); then

q1 (t) = q10cost-qlosint,

q2(t) = q10cost+q^0sint,

P1(t) = p1ocost-paosint,

p2(t) = p2ocost+p10sint,

Therefore, the period of *?f2(t) is T^L,,) = 2tt.

The action variable I can now be evaluated as follows. Then

. a

I2 = [2tt] f [£ p2 (t) (dq2(t)/dt)]dtJo x=i

-1 f2lT
= [2tt] ^ [p1(t)q3L(t)-p2(t)q<l(t)]dt [by equation (A1.4.Eq 5a) J

2.TT

= [2it]"1 r L0dt [by equation (A1.4.Eq 5c)]
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APPENDIX 1.5

Hie WKB solutions of! the Schrodinger equations in the position

representation and momentum representation

(A1.5.1) Certain formulas from differential calculus [Gradshetyn and

Ryzhik (1980), p19]

(i) Leibnitz rule for the r-derivative nf. a product two functions

Let u(p) and v(p) be two r-times-differentiable functions of p. Then

(dr(uv)/dpr) = u(drv/dpr)+rC1(du/dp)(dr"1 v/dpr" )+....

+ rCr (d h-' u/dp K ' ) (dv/dp)+^..(d^u/dp1") v (A1.5.Eq 1)
where = [r !/k! (r-k) | ].

(ii) the k-th derivative jof. a composite function

Let f(p) = F(y) and let y = G(p), then the k-th derivative of the

composite function f(p) is given by

(W(p)/<)PK) = X {k!/(a!b!...c!)}(-aJF/9yj){yV1!Hy"/2!}b...{y^> /t!}c
(A1.5 . Eq 2)

where ytr' = ('dry/-zpr~), and the symbol indicates the summation over all

solutions in positive integers of the following equations:

a+b+...+c = j and a+2b+...+tc = k.

(A1.5.T1) Theorem

Let <P^(q) = f (q) {exp drS(q)} and let p) = g(p) (exp -iW(p)} . Then:
(i) (H-E)^J(q) = -fi°{(1/2)(7)S/'9q)2+V(q)-E}^(q)

+ lJ(-i){(1/2) CcV^S/^q"*) f+(3f/3q) ("bS/^q)} lexp -SrS}

+ higher order terms of 1T
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(ii) (Hc-E) 4>fjP) = fi°[(pa/2) + {f AK(--3W/3P)k}-E] <6f (p)
CO ,W

- ifitx (i)2,r~Arr{[ (r-1 )/2] (aW/a p)"*'2- (91W/e p^Jg+C-BW/ap)^"1 Csg/'ap)} ] {exp Ar W}
ITsi

+ higher order terms indfi

Proof.

(i) [-(-h2/2) (d3 /'^ q2)+V(q)-E][{exp -rS(q) }f (q)} ]

= -(-hZ/2) (D/aq) [ {-ikdSAd q) f+Cdf/gq)} {exp -arS} ] + [V-E] {exp -±S}f

= - eh1"/2) [ir(? 2 S/c> q2-) f+Hd S/3q) (af/9q) +@af/aqa)+£a(2S/aq)2f
+ (9S/^q) (^f/9q) ] {exp -drS} + [V-E]f{exp-±S} (here-i-s (i/if))

= -fi°t (1/2) feS/9q)2+V-E] {exp ^S}f-itf[ (1/2) (a^/Tjq*) f+ftS/Qq) (af/aq) ] {exp -£5}

+ higher order terms of -¥f.

(ii) We shall start our proof by deriving the following result:

(i-fi/" (c),r/dpv")[g(p){exp -irW(p)} ]

= (ifi)*' t {exp <tW} (V^g/a p^")+r(a{exp -iW}/ap) (a^-1 g/ap"--* ) + ....

+v"(V_, (a*""' {exp -iWl/ap^-'Mbg/ap) +y"Cv-('a,r{exp iWj/apOg

(by equation (A1.5.Eq 1))

= 'ff [ii<r{exp-iWjgtaW/apJ^] + 'hCi2*""1 {exp iW} {aW/ap}'r"2g{r!/(r-1) !2!}

+ v"Cr_,i2r'",{exp ^:W} {aW/ap}*""'{3g/9p} ] + higher order terms in'fi.

The last line was obtained by using

(d /3 pK) {exp hcW}

= [£{k!/a!b!. ..c!}a:r teW/3 pft (cliW/ap'i)/2! }b. ..{O^W/aptj/t!}1] {exp -£W}

[cf. equation (A1.5.Eq 2)].

Thus

[(pz/2)+X (i'R),rA^('9/ap)^-E]g(p) {exp -iW}
K-1

oo .

= "R [ (p2/2) + {X a ^-aw/ap) }-E][g{exp -£W} ]
__ K = tjon 0_

- ±fi[2(i) Arr{[(r-1 )/2] (aW/ap)r" (d W/^px')g+(^W^^p)r~, (ag/ap)} ] {exp-£W}

+ higher order terms in 1i. □
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(A1.5.T2) Theorem

If (-^W/?p) = q, then

g(p) = II kAu(-9W/op)k'' |"'a= |f kAKqk-' \ -Uz (A1.5.Eq 3a)
Kil

is a solution of the following equation

[I (-1)^A^r{( (r-1 )/2) CaW/3p)r~2 (B^W/ap^Jg+CaW/ap)*""* (-ag/^p)}] = o.

(A1.5.Eq 3b)

(Here q is treated a a local function of p on integral curve 15^)

Proof.

We shall split the proof into two cases according to whether
°°

k l
kAK(-c)W/()p) " is positive or negative as follows.

V; ~ \

Case 1: f kAK(-dW/ap)k-' >0
K-»

In this case, we have

g(p) = [? kAk(-3W/3p)K-' ]',/2k'-i

and

(bg/sp) = [ (g3/2) (<>aW/3 p2) (I k(k-1 )Ak(-"aw/a p) K"2 }]
Kt I

Let

oo ,

G = tl {k(k-1)/2} (-3W/3 p) ] .
K: I

Then evaluating the left hand side of equation (A1.5.Eq 3) we get
OO

^1 (-1 )^Av-[ {r(r-1)/2} (DW/ap)r"2-(a2Vf/ap'J )g+r(aW/ep)*""""* (?aW/3p*)(gV2)G
= C?2W/ap7- )g[ X {r(r-1 )/2}Av.(-3W/ap)r"2-]+Gg3('32"W/3 p')C-I jA. (-9W/g p)J~' ]

(by using (-1)y~ = (-1 )""'* = -(-1)^""' )

= C<)aW/9px)gG[ l-gz{ Z. jA(-aw/fl p)11"' ]
J = i

= 0 (by definition of g).
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oo _ .

Case 2: £ rA^-SW/fcp)^' <0
i

In this case, we have

g(p) = [-X rA»-(-'3W/-dp),r"z]~,/a
y=i

and

fog/dp) = [(g3/2)OaW/apa){-Z k(k-1)AK(-"dW/ap)^~2 }]
i

As in the last case one can show that g(p) defined by equation (A1.5.Eq 3a)

is a solution of the differential equation given by equation (A1.5.Eq 3b).|

%
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APPENDIX 1.6

(A1 .6.N1)

(ND1) Let j be a positive integer, then A. is the interval given by

Aj = [2jt\-(2tr-02) ,2 jn+Oz.] •
Let us subdivide Aj into the subintervals:

[2k-rr,2kTT+02 ]» k <±71 and -j<k<j;

and

[2rrr-(2v-02) ,2jir] , r and -j-Cr^j.

(ND2) Let us fix k and r. Then on the interval [2kir,21cn+0a] the map

0 —p(0) has a unique inverse which we shall denote by ©^(p). Similarly,
on the interval [2nr-(2Ti-02) ,2rtT] the map 0 >p(0) has a unique inverse

which we shall denote by QZ (p).

Then we can write ((pc ed c' J )(p) in the form

(A1.6.L1) Lemma [Woodhouse (1980), p2943

Let y be a cartesian coordinate on an open interval (a,b) in fa, f(y) be

a compactly supported smooth function and let A(y) be a real-valued smooth

function. Then as-ti —0,we have

Here A" = ('9aA/0y'1), sign(A") is the signature of A", and Z is the
fl'= o

summation over the critical points of A(y). The set of critical points is

(<£ e>J)(p) = Z c/)t(0)ea(0)
© fe Aj
Pte) = p

= Z <t> (©Vp))0 (S^Cp)).
± K = C
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{y: (bA/ay) = 0}; (these critical points are assumed to be nondegenerate,

and hence isolated.)

(A1.6.T1) Theorem [Eckmann and Seneor (1976)]

For each q e fq:3p such that (p,q)e "o } and positive integer j, we

have

(F&J^'j )(q) = 0(0)ec(0)+O(-tt)
q(o>-q

if J(0) and Jc(0) satisfy the following conditions:

Jc(0)-J(0) = -TT/l|(mod 2u) for 0 e (J (2kir,2kfl+01),
KfeZZ

Jfl(0)-J(0) = +ir/lt(mod 2n) for 0 e. U (2kn+0i ,2kn+6a),

Jc(0)-J(0) = -*/Mmod 2tt) for 0 feU (2^1+62,2^+65),
K(a7J

Jt(0)-J(0) = +'rr/4(mod 2v) for 0 feU (2kn+6,,2kn+2n).
K

Proof.

Letc£ = supp(<^ e^c'J ) (the support of (e^c-i j ) (p)). Then for each
qfe(q:3p s.t (p,q)e'^<S}, we have

(f£TN ) (q) =C-^C,

K=J r r©4
= [2itK] "i/22" £ [ r dp{exp dr(pq-C k q(0) (c>p(0)/»0)d0)} Up(0t.(p) )/-&6 I ~wz

± K=-j jcjc Jo
X en(0 (p)){exp iJ<.(0*(p))}J'C.WK ^ ' iutwK

Let A^.(p) be the phase given by
+ ®K
AK(p) = pq- C q(0) (9p(0)/30)d0.Jq

The first and second derivative of A"(p) with respect to p are

(aA*/t>p) = q-q(0~(p))

and

(d1A^/3pa) = -(-dq/sp) (0^(p))
respectively. The phases A^(p) have isolated critical points on the sets
{p: q(0^(p)) = q}.
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Then for each q <£. {q:3 p s.t (p,q)€;T5 }, we get

(F <f>te^c»J ) (q) =
„e

= [Z i (^q(Q)/39) !""a I (ap(0)/a0) i~"2{exp -dr(p(0)-V q(e) topCoj/^Ho)}
0&£>j °

x {exp iJ^(0)}{exp -i(TT/4)sign(-('aq/3p) (0) JJe^B) ]+0(-1i)
(by Lemma (A1.6.L1))

= X 0t(0)et(0){exp i(Jc(0)-J(0)-(Tt/4)sign( (3q(0)y^p) )}+0(iI).
qie)=c|

The assertion follows from this result.■
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APPENDIX 1.7

(A1.7.L1) Lemma

If (A/2tr)^. then we have
lim [(1/r) 2! {exp ikA}J = 0.

K=-r

Proof

We get

= (1/r)^T cos(kA) (since sin(kA) = -sin(-kA))

(1/r) £ [2cos(kA)-1] (since cos(kA) = cos(-kA))

= (1/r)[2cos((r+1/2)A)sin(rA/2)cosec(A/2)+1-1]

[cf. Gradshteyn and Ryzhik (1980), p30]

= (1/r)[2cos((r+1/2)A)sin(rA/2)cosec(A/2)]

Since (k/2w)^.2, it follows that:

(i) cosec(A/2) is finite;
l<

(ii) (1/r)|£ {exp ikA}|<( 1/r)cosec(A/2) .

"*--K

Thus

K

|lim (1/r)[2 {exp ikA}]<lim [ (1/r)cosec(A/2) ] = 0. Q
vH?oo K=-v~ v-=?oo

List of results:

We have:
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r2*n r
- I q(9) (l p(0)/B©)d9 = k<fc pdq, k e 2L ;
Jo J-y£

J(2kTr)-J(0) = -kn(by equation (1 -3.4.Eq 9a));

Jr(2krr)-Jc. (0) = -k-rr(by equation (1.3 - 4 . Eq 9a)).

Thus

(p(Q+2kv) e (9+2kir) = ^(9 )e(9){exp ik^ £ pdq-ir)} (A1.7.Eq 1a)
■ye

and

^(0+2kTT)e. (0+2kn) = ^,(0)e. (0){expik(fi-,£ pdq-Tl)} (A1.7.Eq 1b)

(A1.7.T1) Theorem [Eckmann and Seneor (1976)]

If

[2n] 1£i pdq I (n+1/2)tf, for all n (=27,
J7fe '

then 1?^(q) the Maslov-WKB wave function (corresponding to the energy E) is

the zero-function; i.e., 3?e = 0 everywhere on the configuration space (R.

Otherwise, (q) is a non-trivial function.

Proof.

We have

§?F(q) = lim (1/ j) t (F ) (qMqTe1 J ) (q) J
J-^CD

by equation (1.3.4.Eq 10). Let A = pdq-TT. Then by equations
75E

(A1.7.Eq 1a) and (A1.7.Eq 1b), we get
r ♦j J

(<j> e'j )(q) = [ £ <p e][ 21 {exp ikA) ]+[ £ ft e]( I {expikA} J
^ ©ece^Bji k-'j

cj(e)=q J qte>«q (A1 .7 .Eq 2a)
and

(cf) et C'J )(p) = [ X. 11 21 (exp ikA} ]+[ <£tec][5I {expikA}].
®fcCo,e2q k=-j 9feL02I^n3 k =

1p(0) = (o (A1.7.Eq 2b)
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Suppose (A/2tt)^2Z« then we have
, K

lim i(1/j)($>eJ )(q)j<2[max !^(9)e(0) ! ]Llim {(1/j)!£T {exp ikA} |

(by equation (A1.7.Eq 2a)

= 0 (by Lemma (A1.7.L1)).

We shall now prove that [lim (1/j) (F(p e,'<"'J ) (q) ] = 0 when (A/2t\) ^ ~ZL
J-^oo

| ^ ,<L
as follows. The function (1/j) (eca'J )(p) is uniformly bounded because

e^O) =0 in the neighbourhood of points belonging to the set

TT^ = {0:3k(&Z7 with either 9 = 2k it or 0 = 9z+2kn}. Then by equation

(A1.7.Eq 2b), we get the following inequality

(1/ j) ($c etc,v) )(p)<2 max I$j0)e4(0) I.0e LP,Xir)

Therefore, we can interchange the Fourier transform F and the limit symbol

lim in the expression lim [ (1/ j) (F</> e^'J )(q)]. Then,

lim I (1/j) (F ^e^'J ) (q) | <2[max i <i(0-)ec_(0) i ][lim {(1/j)l5I {exp ikA} |
Js>oo K=-J

= 0 (by Lemma (A1.7.L1)).

-r £
Now <33 (q) is clearly a non-trivial function if (A/2tt) is an integer.

£
Therefore, §5 (q) = 0 everywhere on the configuration space if (A/2tt) is

not an integer.*
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APPENDIX 1.8

(A1.8.T1) Theorem [Eckmann and Seneor (1976)]

The Maslov-WKB wave function (corresponding to the energy E) $.^(q)
satisfies the following condition

I! (H-E) 3>e(q) !l = 0(-tfz).

Here I! || is the norm in L (ifc) given by

|Wq)|l = f Wq)!Zdq;H,(q)t L^(IR).
Proof.

If we have [2Tt]~''cp pdq L (n+1/2)fi for all ne^, then ^E(q) = 0 and

the assertion is trivially true. /

£
In the case where [2"n]_>,<a pdq = (n+1/2Hi for some integer n, <5 (q) is

not a zero-function and it can be written in the form

$(q) = (<£• e'° ) + (F ) (by equations (A1.7.Eq 1a) and (A1.7.Eq 1b)).

In Appendix 3-2 of Chapter 3 we shall prove that

|| (H-E)[($"e« )(q)t(F<^t'0)(q)]|| =0(-fi2).B
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HALF-DENSITY QUANTIZATIONS IN CANONICALLY CONJUGATE POLARIZATIONS AND

THEIR UNITARY EQUIVALENCE IN 2-DIMENSIONAL SYMPLECTIC MANIFOLDS

We shall start by giving a few definitions.

(2.1.D1) Definition LSniatycki (1980), p1]

Let <P and <J" be any two reducible polarizations of a symplectic

manifold (M,u)), and let H and H' be any two Hilbert spaces associated with

the polarizations (PandcP' respectively. (Note that in the case of the

standard half-density quantization scheme the Hilbert spaces H and H' are

taken to be the quantization Hilbert spaces Hjp and H^t respectively.) Let

{£1 »~C2» • • • •) be a set of classical observables on (M,io). Then the

quantizations of > ?2» • • • •} in <P and (P ' are said to be

unitarily equivalent (or unitarily related) if the following two conditions

are satisfied:

(UEQ1) is quantizable in H if and only if is quantizable in H* ;
J J

(UEQ2) For each quantizable %lt. . .}, let <£: and X.' be the
VI * J

corresponding quantized operators in H and H' respectively. There

exists a unitary map U:H —■> H' such that for each quantizable

observable ••••)> we have

U^U""1 = (2.1 .Eq 1).J J

Alternatively, we say that the quantizations of { } in H and

H' are unitarily equivalent (or unitarily related) if conditions (UEQ1) and

(UEQ2) are satisfied.
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(2.1.D2) Definition [Woodhouse (1980), p290]

Two polarizations (P and (P' of a symplectic manifold (M,u>) are said to

be transverse if

(f^, +(Pj, = T^M, for every m M. (2.1.Eq 2a)

(Note that the condition given by equation (2.1.Eq 2a) is satisfied if and

only if

(T> n (P 1 = {0}» for every m & M. (2.1.Eq 2b))
•M hq

(2.1.D3) Definitions [Blattner (1973); Guillemin and Sternberg (1977), p271]

Two polarizations T and (Pt of a 2k-dimensional symplectic manifold

(M,to) are said to be eanonically conjugate (or Heisenberg related) if there

exists in a neighbourhood of each point of M (local) canonical coordinates

{fj, ,... o ,... >1^} such that (P is spanned locally by the vector fields
,. •. }, and (Pa is spanned locally by the vector fields

"d^ }.

Remarks: (R1) Clearly canonically conjugate polarizations are transverse.

(R2) The most common example of canonically conjugate polarizations is the

vertical polarization P and horizontal polarization P of the cotangent

bundle [cf. example (1.1.5.Ex 1)].

(R3) Throughout this chapter we shall use the term polarization to refer to

a reducible polarization.

We shall now give the motivation behind this chapter. One of the

outstanding problems confronting geometric quantization is the failure to

establish the unitary equivalence of quantizations in different
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polarizations. This is closely linked to the difficulty to establish a

unitary link between the different quantization Hilbert spaces.

In the case where <P and <P' are transverse polarizations there is a

formal procedure for establishing a pairing (or link) between <Pand <p' which

is given as follows. Suppose (Pand <?• are transverse; then one can write

down a formal sesquilinear map from the product space x to & (where

and H^>» are the quantization Hilbert spaces associated with the
polarizations <P and <p' respectively); this map is referred to as the pairing

map between and Hjp'. The pairing map determines a linear map between H^p
and Hjpi called the linear map (induced by the pairing map). Some details on

these two maps are given in Appendix 2.1. However,in general the linear map

(induced by the pairing map) is not unitary. Our object here is two-fold.

Firstly, we shall highlight this unitary inequivalence with a number of

examples. Secondly, as a contribution to tackling this outstanding problem,

we shall propose a scheme based on physical reasoning for establishing

unitary equivalence applicable at least to the examples considered. The

main results presented here have been published [cf. Wan , McKenna and

Pinto (1984); Wan, Pinto and McKenna (1984)]. We shall restrict ourselves

to the study of simple examples of canonically conjugate polarizations of

2-dimensional symplectic manifolds. It follows from remark (R1) that we can

construct a linear map (induced by the pairing map) between the quantization

Hilbert spaces of canonically conjugate polarizations. In section (2.2) we

shall concentrate on examples in contractible symplectic manifolds. In

section (2.3) we shall extend the results obtained in the previous section

to examples in noncontractible symplectic manifolds.
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2. 2 HALF-DENSITY QUANTIZATIONS IN CANONICALLY CONJUGATE POLARIZATIONS AND

THEIR UNITARY EQUIVALENCE IN 2-DIMENSIONAL CONTRACT3BLE SYMPLECTIC MANIFOLDS

(2.2.1) Two simple one-dimensional problems in Quantum mechanics

Let Q be an open interval of IR and let q be the usual cartesian

coordinate on Q. Let (p,q) be the usual cartesian canonical coordinates on

ft
T Q. Let andu> be respectively the canonical one-form and canonical

ft,
two-form on T Q [cf. example (1.1.2.Ex 1)]. Let P and Pc be respectively

the vertical and horizontal polarizations of (T*Q,uj) [cf. remark (R2) of

section (2.1)]. Let pr:T*Q —Q be the usual projection map of the

cotangent bundle T*Q. Let Qc = M/Pc = (R be the effective configuration

space with respect to the polarization P<, and let pr^ :T*Q—-» Q <• be the

corresponding projection map.

Let B = T*Q xt be the trivial line-bundle over T Q. Let (*, ') be the

natural Hermitian structure on B and let sQ be a unit section of B. Let

be the connection on B defined by

Vxs0 = -ir(X-i pdq)s0, for all X fc V^(T*Q). (2.2.1.Eq1)
i.e., (2>0 *s the ch0360 connection potential. Let (B,(*,'),V) be the chosen

prequantization bundle over (T*Q,io).

In this subsection, we shall study two simple one-dimensional problems

in quantum mechanics in which the configuration and phase spaces of the
f-

corresponding classical mechanical system are respectively Q and T Q. Ve

shall use these examples to illustrate the following point: the standard

half-density quantizations of the canonical variables p and q in the

canonically conjugate polarizations P and Pc are only unitarily related when

Q s
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(2.2.1.Ex 1) Example; The free particle

Consider the physical situation of a particle free to move on the real
^ 2

line; then the configuration space is Q = |R and the phase space is T Q = .

In quantum mechanics, the spectrum of the quantum momentum observable and

the spectrum of the position observable are both (-ao,oo)

[cf. Messiah (1961), pp63-65].

We shall now quantize the canonical variables p and q in the

canonically conjugate polarizations P and Pt using the standard half-density

quantization scheme and compare the predicted physical results in each

polarization with the corresponding results of quantum mechanics. We shall

start by quantizing p and q in the vertical polarization P.

The quantization Hilbert space Hp consists of square-integrable
sections of B x °P the formes 4\q)^ where ^- s0idp.r"a'.

The position variable is quantizable in Hp, and the quantization

operator corresponding to q is given by the multiplication operator

qT= q^ (2.2.1 .Eq 2a)

with domain

D~ = Hp: q^eHp) (2.2.1.Eq 2b)
[cf. equations (1.1.7.Eq 7a) and (1.1.7.Eq 7b)]. In particular, the

spectrum of q* is (-00,00).

The associated vector field pr^(Xp) generated by p is given explicitly

by the expression pr^(Xp) = Ca/'aq); for short, let pr)<t(Xp) = Yp. The

momentum observable p is quantizable because Yp is complete on Q. The

quantization operator corresponding to p is given by the expression

p¥= -l£Wq)/8q)f, (2.2.1 .Eq 3a)
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and the domain of {> is given by

Dp = {^= HKq)p G Hp: *Y(q) e AC(Yp,Q) , p'^Hp} (2.2.1 .Eq 3b)
[of. equations (1.1.7-Eq 6a) and (1.1.7.Eq 6b)J. The spectrum of q and the

spectrum of p agree with the results of quantum mechanics.

We shall now quantize p and q in the horizontal polarization Pc.

The quantization Hilbert space Hp consists of square-integrable"c

sections of B x £v-\/2(pc) of the form = ^(p) f where
= {exp ipq}sG jdq \~uz.

The associated vector field prc#(Xq) generated by q is given explicitly
by the expression prt)((Xq) = -Ci/dp); for short, let prc>((X^) = Y'q. The

position variable q is quantizable in the polarization Pc because Ycq is

complete on Qc. The quantization operator q\ corresponding to q in Hp isc* c

given by the expression

qe§t= i*(-b^(p)/ap)pc, (2.2.1 . Eq Ma)
and the domain of q^ is given by

Dqc = {^ = H<PC: (^(p)e AC(Y^,Qt), q^eHpJ
(2.2.1.Eq Ub)

[cf. equations (1.1.7. Eq 10a) and (1.1.7. Eq 10b) J. The spectrum of qf^ is

(-03,00) •

The momentum variable p is quantizable in the polarization Pc. The

quantization operator p corresponding to the classical variable p is given
c.

by the multiplication operator

pi.<§t= p$^ (2.2.1.Eq 5a)
and the domain of p is given by

c.

= <3?^ H<p : P^«5= Rf> * (2.2.1.Eq 5b)
tcf. equations (1.1.7.Eq 11a) and (1.1.7.Eq 11b)]. The spectrum of "p^ is
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(-00,00).

The spectrum of q^ and the spectrum of 7T agree with the results of
quantum mechanics.

The linear map (induced by the pairing map) U.pp :Hp—-» Hp is given by

Upfy = (2nH)~"a [£°° ^(qHexp -,arpq}dq]f^ (2.2.1.Eq 6)
[cf. Appendix 2.1, example (A2.1.Ex 1)]. The map is the identifiable

with the inverse Fourier transform [cf. equation (1.3.3.Eq 13) for the

Fourier transform]; therefore, is unitary.

Clearly, in this case the half-density quantizations of the canonical

variables p and q in the canonically conjugate polarizations P and Pt are

unitarily equivalent.

(2.2.1.Ex 2) Example: The one-dimensional infinitely high potential barrier

Consider the one-dimensional quantum mechanical problem of a particle

encountering an infinitely high potential barrier [cf. Messiah (1961), p86].

The special feature of this problem is that the wave functions vanish at the

edge of the barrier.

We shall, for definiteness, choose Q = [R* = (0,oo): the particle is

constrained to move on the positive part of the real line. Then

T*Q = IR x iRt

We shall start by quantizing p and q in the polarization P, as we did

in the last example.



Page 96

The quantization Hilbert space Hp consists of square-integrable
sections of B x A-i/2_(P) of the form IP" = fCq)^ where q e (0,oo) and

f = s0 !dp|~''2.

The position variable is quantizable in Hp, and the quantization

operator corresponding to q is given by the multiplication operator

q"T= q^ (2.2.1 .Eq 7a)

with domain

D^= tfe Hp: q^-& Hp}. (2.2.1.Eq 7b)
The spectrum of q" is (0,oo) as it should be according to quantum mechanics.

The associated vector field pr^CXp) generated by p is C9/*aq). The

momentum variable p is not quantizable in Hp because pr^CXp) is not complete
on Q.

We shall now quantize p and q in the horizontal polarization Pc.

The quantization Hilbert space Hp consists of square-integrable
G

sections of B x A-i/i(Pc) of the form = 4i(p)f whereC» ' c

= {exp ipq}s0 Idq I-"2".

The associated vector field prC)t(Xq) generated by q is given explicitly
by the expression prC)t(Xq) = -(a/^p); for short, let prc>t(Xq) = Y^q. The
position variable q is quantizable in the polarization Pc because Y^q is
complete on Qc. The quantization operator q\ corresponding to q in H„ isc.

given by the expression

q^?c= i*WJp)/^P)fc. (2.2.1 .Eq 8a)
and the domain of qa is given by

Dqc = {§„= e Hp^: 'fjp)e AC(Y1=<1,Qc), q^fH pJ.
(2.2.1.Eq 8b)
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The spectrum of q is this result is in disagreement with the

result predicted by quantum mechanics for the spectrum of the quantum

position observable.

The momentum variable is quantizable in the polarization Pc. The

quantization operator p^ corresponding to the classical variable p is given

by the multiplication operator

P^ = pi-^ (2.2.1 .Eq 9a)
and the domain of "p^ is given by

Dp = Hp: p^e Hp}. (2.2.1.Eq 9b)
c, C C

The spectrum of is (-co ,oo ) .

The linear maps (induced by the pairing map) Upt> :HP—H p andr r r-t

Up p :Hp —^ Hp are given by
roo

Upp^= (2nHr,/2(\ H>(q){exp -ipq}dq]p (2.2.1 .Eq 10a)c. JQ c.
and

Dpt?§t = (2nfir"2-[ ^^C^»t(p) {exp arpqldp] f (2.2.1.Eq 10b)
respectively [cf. Appendix (2.1)]. These maps are not unitary.

The standard half-density quantizations of the canonical variables p

and q in the canonically conjugate polarizations P and Pc are not unitarily

equivalent because of the following three reasons:

(i) the variable p is only quantizable in Hp;
t

(ii) the spectra of the operators "q and do not coincide;

(iii) the linear maps (induced by the pairing map) Upp and Up p are

not unitary.
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This example illustrates an important feature of the standard

half-density quantization scheme: the physical results predicted by the

scheme depends on the choice of polarization employed.

Let us examine this problem more closely to pinpoint the reason why the

spectrum of the operator in Hpc disagrees with the result predicted by
quantum mechanics for the spectrum of the quantum position observable.

We recall that the inner-product on H and H are given by
,00

<"$Vf->p = [2trfi]~"2 I |V(q) |Zdq, = V(q)f e Hp; (2.2.1.Eq 11a)
o

and

r°° 2
= [2n«]-wl J_ool<Pe.(p)l dp; <£e= ^(p)^& H^; (2.2.1.Eq 11b)

tcf. equations (1.1.7.Eq 5) and (1.1.7.Eq 9)]. It follows from these

inner-products that Hp is identifiable with L2((R+)jand Hfa is identifiable
with L2(lfc). Let F:L^(rR) —-^L^CfR) be Fourier transform given by

equation (1.3.3.Eq 13) and let F"1be the inverse Fourier transform. (Here

L^((R) is the space of square-integrable functions of p, and L4(lR) is the

space of square-integrable functions of q.) Let Fp1 be the restriction of

the inverse Fourier transform F~1 to LZ((R+).

As L2(IR*) is a proper subspace of L2(lR) it follows that F^_' L2(fR+) is a

proper subspace of L^(tR). Clearly the maps Upp and F£f are identical.

Therefore, Upp Hp is a proper subspace of

Now let us extend the range of q from flO" to (R in the expression for

Up-p> given by equation (2.2.1.Eq 10b). Then for each we

have = (F<^)(q) » so the maps Upftp and F are identical. Clearly Hf?
contains elements of the form $ = ^(Psuch that the support of (Fipt)(q)
is not wholly contained in lR*", so UppHp contains elements that do not
belong to Hp.
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From a physical point of view, we have already established that Hp is
the correct space to use for the quantization of the variables p and q. It

is now clear that the reason that the quantization of q in Hp leads to
rc

physically incorrect results is that the quantization Hilbert space Hp isrG

"too large", so the quantization operator q' admits too big a spectrum.
v

We shall now propose a way, based on physical reasoning, of rendering

the quantizations of the variables p and q in the polarizations P and Pc

unitarily equivalent.

Since we have established that the quantization Hilbert space H,-, is

"too large" it seems reasonable, from a physical point of view, to choose

the (proper) subspace of Hp spanned by the generalized eigensections of qlrc c

with positive eigenvalues as the physically correct Hilbert associated with

the polarization Pc. We shall denote such a subspace by H^, . An
+ 4-

alternative definition of Hp is given as follows. The Hilbert space HDTc *c

consists of elements of the form that satisfy the condition
OO

[2f fJpMexp -irpqjdp = 0 if q<0, (2.1.2.Eq 12a)
"CO

or alternatively,
ao

^(p) = [2q^(qHexp -±pq}dq for some^Jf = f(q)pe Hp.
o

(2.2.1.Eq 12b)

The restriction of p to Hp is not self-adjoint.
c- r<i

Clearly the quantizations of the canonical variables p and q in Hp and

Ho are unitarily related. So by choosing hX instead of H0 as the
•c ~c

physically correct Hilbert space associated with the polarization % we have

rendered the quantizations of the canonical variables p and q in the

polarizations P and Pc unitarily equivalent.
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In the next subsection we shall present a general scheme for rendering

quantizations in canonically conjugate polarizations unitarily equivalent.

(2.2.2) Quantum Hilbert spaces and unitarily equivalent quantizations

Let (M,to) be a two-dimensional contractible symplectic manifold with

global canonical coordinates (f">^)» i.e. to = dp d^.

Let TT^ denote the-j^-coordinate curve passing through the point m in M,
i.e. the integral curve of the vector field fa/a^J,) that originates at m.

Similarly, let G",^ be the ^-coordinate curve through m, i.e. the integral of
the vector field Ca/d9) that originates at m. Let R^^o) be the range of
values of-£ along "tf^and let RK(^_) be the range of values of c^_ along 0^.
For the sake of simplicity we shall assume that and are

independent of m, and so for brevity we shall drop the subscript m and write

R(j>) and R(«j).
All the notation we shall introduce in this paragraph are illustrated

in Fig 2-1. Let (-fa,, ^r) be the chosen reference point in R(-|b) x R(^) and
let (f>0 , ) be an arbitrary point in R(^) x R(ip. Then let:

(i) denote the ^-coordinate curve through the point
(ii)7f0 denote the .^-coordinate curve through the point (-p,^.);
(iii)CT denote the ^.-coordinate curve through the point
(iv)O^ denote the -coordinate curve through the point

Let |2> be a global one-form on M that satisfies the condition d|3= to.

Since M is contractible it follows from Poincare's lemma

[cf. Von Westenholz (1981), pp165—167J that the closed one-form (P-jad^) is
globally exact. Therefore, there exists a function f(^,qi)e- C°°(M) such that
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= #d£-df (£,<^). (2.2.2. Eq 1a)
We shall write

(2.2.2.Eq 1b)

where

[3^= Of/fe£>) and f5^=^ +Of/3|) . (2.2.2.Eq 1c)
Here is a list of line integral of along the coordinate curves that

we shall need:

VH> = vt'V = (SXdi)f.—K°° r

(2.2.2.Eq 2a)

vt-v ! vm.1 ■**?"15 ^ ^
(2.2.2.Eq 2b)

% ~H
S-(f'|0) = (J ^d|)|o= const. ; = (I Pf5df°)%= Con%*. •

(2.2.2.Eq 2c)

ff

These are given explicitly by:

VH> =f(rt)+f(f^)-f(tir)! VM' *fA-3-,hr(fe'tf-f(Mr>!
(2.2.2.Eq 2d)

(2.2.2.Eq 2e)

VHJ =fV^)+f^'W"f(f'^); Vt'?} =
(2 .2 .2. Eq 2f)

In the case where (0,0) is a point in R(-|?) x R(^) one normally chooses

(1V$ } = (0'0) •

Let B = H x £ be the trivial line bundle over H, (*,*) be the natural

Hermitian structure, s8 be a unit section of B and let <7 be the connection

on B defined by

\7K sQ = -irfX J (3 )s0 for all XfeV^M). (2.2.2.Eq 3)
Let (B, <7) be the chosen prequantization bundle over (M,w).
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Let (P and (Pc be the canonically conjugate polarizations of (M,u))

spanned by the vector fields (9/0£>) and (0/0^) respectively. Let Q and Qfi,
be the effective configuration spaces with respect to the polarizations (P

and <Pc respectively. Then Q is identifiable with R(^) j and Q c. is
identifiable with R(-£>). Let pr:M —> Q and prj, :M >Qc be the usual
projection maps from M onto Q and Qc. respectively.

We shall restrict ourselves to the study of four cases as follows:

(1) R(^) = (g, R(<^)
(2) R(j») f (R, R(£) = (R;
(3) R(f) = (R, R(^) = <R;
(4) R(p (ft?, R(p f [R.

Our objective is to establish unitarily equivalent quantizations of the

canonical variables and in the canonically conjugate polarizations (Pand

(?c for the above four cases.

Case (1)

Let (p,q) be the usual cartesian canonical coordinates on the phase

space of a particle confined to an infinitely deep one-dimensional potential

well and let R(q) be the range of the position variable q.. Then according

to quantum mechanics, the wave function in the position representation

vanishes at the edges of the potential well, i.e. the spectrum of the

quantum position observable is R(q) [cf. Messiah (1961), pp86-88]. We shall

make use of this result when we make physical assumptions.



Page 103

We shall start by quantizing and in the quantization Hilbert space

V

The quantization pre-Hilbert space consists of square-integrable

sections of the bundle B x A-i/z(<P<0 of the form "*5^= which obey the

following conditions:

Vv £ = 0 and V V. = 0 where X. = (V/d9). (2.2.2.Eq 4)

Explicitly, we have

(2.2.2.Eq 5a)

where

(i =^o|d<k,~U2; texP-*sCT(f.|)}So. (2.2.2.Eq 5b)
The inner-product on is given by

= [2nh]~l/2-j IH'cCf) |2d|>. (2.2 .2 . Eq 6)tR
The quantization Hilbert space is the completion of

The associated vector field Prc,*(X^) = -Cd/djj)} for short, let
Yc^ = pr*c#(X^). The canonical variable ^-is quantizable in H,p^ because
is complete on Qc. The quantization operator^ in H<pc is given by

1^= [ti«('0^f») +Of(2.2.2.Eq 7a)
[cf. Appendix 2.3], acting on the domain

D<£ = S;t(|,) e AC(Y^_,Qe), (2.2.2.Eq7b)
The spectrum of is (-00 ,00).

The variable can be quantized in with quantization operator-^*
the multiplication operator

(2.2.2.Eq 8a)
/-N'

and the domain of is given by

D'h = {^fe H<ftK (2.2.2.Eq 8b)
'V

hThe spectrum of ^ is (-co,00).
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We shall now construct explicit expressions for the generalized

eigensections of .

(2.2.2.P1) Proposition

Each value of the classical variable ^.is a generalized eigenvalue
of the operator ^ in Hjp corresponding to the generalized eigensections

tco = *YCo (f»)f (2.2.2.Eq 9a)
To tTo 1C

where

^c^.(f>) = [2TPfi]""l'4{exp ^.)} texp ) } (2.2.2.Eq 9b)
The generalized eigensections satisfy

(2-2-2-Eq ,0)

(Note that our expression for 1£r is [2TTfi]'^ times the expression given in
OO

the paper by Wan, McKenna, Pinto (1984); the reason for this that our choice

of inner-product on H,p is different from that given in the above-mentioned
"c.

paper.)

Proof

We have:

VM.» = VH„>
snJhV-so(HJ

(f)/af,) = a <3/3f.) (3,^ 'f-<%J-Saty •ft,) 11

Thus

|^C%o= pc = %0^C|. (2.2.2.Eq 11)
Thus is a generalized eigensection of corresponding to the

o

generalized eigenvalue ^ .
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The crucial point now is to observe that for each O^. €: R(f^), the
generalized eigensection can be constructed in three steps as follows.

(i) Let be the ^-coordinate curve originating at the point (-fir ,; (note
that 0 = q. on Tfo). Let L_ :B, . . be the parallel transport

tf Do °

along the curve ~tf0[cf. Appendix 2.2 for definitions on parallel transport

and parallel sections along a curve].

Then L^ ([2rrh]~s0(-^ )) is a parallel section along l{0 given
explicitly by

L^([2ir-h]~l/4 s0(-Jb.,^)) = [2nh]~,/'!1{exp }so(|,,^J
= [2n-h]'1/^ {exp )}s0(£,^). (2.2.2.Eq 12)

(ii) Let CT be the ^,-coordinate curve originating at the point (f>>^ )> (note
that-^b is constant oner). Let L^rB^^ ^ -> o ) Be parallel transport
along CT.

We shall extend the section along the curve ~^0 defined by

equation (2.2.2.Eq 12) to the entire manifold M as follows.

For each -|o e (R, we define a parallel section along the curve CT (which
is determined by the value offc,) by

Lff([2irtfr,/5* {exp -iS^C-fr,^)}
= [2nh]"'//» {exp JrS^Cfn^. )}{exp da)0}s0(f,f»)
= [2imrl/4 {exp irS-jo(^,^o)}{exp -JK^^d^Hexp ^)ff}s0(f,j)
= [2iW]""1M {exp)Hexp (2.2.2.Eq 13)

Let (f) -?>c0(f'»^) Be the global section of B that is given on each
curve CT by equation (2.2.2.Eq 13). By construction, (fc)i® a

polarized section of B (with respect to the polarization (P^), i.e.,
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(iii) Letbe the corresponding (Pt-wave function. This
DO

construction shows up the extent to which the generalised eigensection Ufct»
is anchored to the curve (on which ) •

Finally, the inner-product of and is given by

. [2.m]-1{exp
= {exp Mf(fr , |)-f(fr ,<g) } } "S> (^.

= H (2.2.2.Eq 14)

So far we have only constructed generalized eigensections of ^
corresponding to eigenvalues that lie in R(^.) (the classical range of g).
One can use the formal expressions for the generalized eigenfunctions of ^
corresponding to eigenvalues in to construct generalized eigenfunctions

of corresponding to eigenvalues that lie outside R(^.) in three steps as
follows.

(i) For each €= R(^), the function ^Vt ^ defined by
equation (2.2.2.Eq 9b) can be written in the form

*+c«£(-£) = [2n-h]"'/4 {exp ^r[-^o-^)-f(^,^ )+f(^,,^)]}. (2.2.2.Eq 15)
(ii) Let us formally extend the range of from R(<^) to the whole of (R. Let

7.
be a smooth function on rR that satisfies the condition

fco(t'V = f(f'V on R(^) x R(|)- (2.2.2.Bq 16)
(iii) Then for each [R-R(^), the generalized eigensection corresponding
to the eigenvalue ^ is given by

%, ' HiJPfi (2.2.2.Eq 17a)
t»o T)0

where

4^(f) = t2irH]-4^ {exp ar[-^(^-^)-f]}. (2.2.2.Eq17b)
It follows from equation (2.2.2.Eq 11) that ^c0 is a generalized

iso
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eigenfunction of o corresponding to the eigenvalue o .

oc, ° o

We then have

= {exp )} [2ttK]~'1J {exp
= (2.2.2 .Eq 18)

(This property must not be confused with the inner-product of any two

generalized eigensections of given by equation (2.2.2.Eq 11!).)

Clearly the quantization Hilbert space Hp is spanned byc

Bearing the examples of the infinite potential barrier and the infinite

square potential well in mind we shall make the following physical

assumption.

Phvsical aggumptiojl PA1

The values assumed by the quantum observable corresponding to the

classical variable ^ should be contained in (the classical range of ^).
A-/

Clearly the spectrum of is physically incorrect because the

quantization Hilbert space Hp is "too big". Therefore, to be consistent
with this physical assumption we shall make the following quantization

assumption.
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Quantization

When quantizing in the appropriate Hilbert space, to be referred

to as the quantum Hilbert space associated with 0^ and denoted by ),

should be spanned by all the generalized eigensections of corresponding

to eigenvalues consistent with physical assumption PA1 . In other words, the

quantum Hilbert space H(tf^.) is spanned by the set % e * ■rhe
restriction of the operator ^ to H(CP ) will be the quantum observable

A
corresponding to the variable ^ and will be denoted by . A corresponding
statement also applies when quantizing <^_in(P.

The quantum Hilbert space H((PC) is clearly a proper subspace of the

quantization Hilbert space H/p .
"c.

Let us now quantize the variables and ^ in the polarization (P.
The quantization pre-Hilbert space Wp consists of square-integrable

sections of the bundle B x A_i/^((P) of the form $ = :J&V which satisfy the

following conditions

V ^ = 0 and V V= 0 where X0 = -0/9&) . (2.2.2.Eq 19)
\ K\ i F

Explicitly, we have

$ = (££ R(^); (2.2.2.Eq 20a)
where

P = -%0|d#,l~'/Z ' ^o= (exp arS?(^,^)}s0. (2.2.2.Eq 20b)
The inner product on Wjp is given by

<<§ >p =[2TTtrr,/aJ m^.) \Zdp (2.2.2 .Eq 21)
The quantization Hilbert space Hjp is the completion of W^p.
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The variable^ can be quantized in H^, and the quantization operator
is the multiplication operator

=<^.3? (2.2 ,2.Eq 22a)
acting on the domain

D^- = (2.2.2.Eq 22b)
The associated vector field pr^CX^) is Ca/^r.). Clearly pr^CX^) is

incomplete on Q. Hence the variable^, is not quantizable in Hp.

Since the quantization operator^ and the quantization Hilbert space H<p
satisfy the physical assumption PA1 and the quantum assumption QA1 it

follows that they are respectively ^ (the quantum operator corresponding to
the variable ^) and H(<P) (the quantum Hilbert space associated with the
polarization (P).

The pairing map between H^> and H^p is given byc

<$ 'iTc. Vcp = f 4-S3(-J,,^)Hexp
R<%> (2.2.2.Eq 23)

tcf. Appendix 2.6, equation (A2.6.Eq 1)].

It follows from equation (2.2.2.Eq 20a) that lf(<^) is only defined for

t^ tlU^.). Let the range of ^ be formally extended to tR. Then the function
T(^) can be formally defined onfR by putting

V^) = 0,<£efR -R(9). (2.2.2.Eq 24)

Let be the generalized eigensections of the quantum

operator^ in H(tf^), i.e. for each R(^), we have
= -rS^(f«,^)} {exp -iS0(-^,^.)} (2.2.2.Eq 25)

[cf. equation (2.2.2.Eq 9b)J.
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Then the pairing map given by equation (2.2.2.Eq 23) can be rewritten

as

<<? = [2TTfi]"3Mjj (2.2.2.Eq 26)
The pairing map determines a linear map U:H((P) —-fc-Ht^) which maps

$ = *P(^)p (where 'P(^) = 0 for ^e.fR-R(|)) to "3^ = given by
H^(f) = [2nh]~,/4j T(^) (2.2.2.Eq 27a)

with the inverse map D-1 given by

/->(?) = [2nil]",/'/'y (2.2.2.Eq 27b)(R cr

[cf. Appendix 2.6, equations (A2.6.Eq 3) and (A2.6.Eq 4)].

Let us digress for a moment to give the reason for formally extending

the range of and the domain of V(^.) to IP, by using the following simple
analogy. Let F:L (IR) —L OR) be the Fourier transform, (a0,bo) be an open

interval of (R and let L^ = L7(ao,bo). The Hilbert space L^ can formally

be interpreted as the subspace of L (ir) consisting of functions of L (IR)

that vanish outside the interval (a0,b0). Then L,,z" = FL^ is a proper
ry

subspace of L (tR) [cf. example (2.2.2.Ex 2)]. Hence the restriction of the

Fourier transform F to Lo is a unitary map from L^ to L"2 and will be
£

denoted by F0. To evaluate F^ , for each & L0 , one can choose to

perform the Fourier integration of ^P0 formally over the entire (R. The main

advantage of performing the Fourier integration over IR. instead of over

(a0,bo) is that one can make use of the integral definition of the Dirac
- 1

delta function when evaluating combinations of F0 and F0 . The same

justification holds for extending the range of ^ from R(^) to the entire IK.

Now returning to the problem at hand, in Appendix 2.6 we show that

U:H((P) —^>H((Pc.) is a unitary map, and that U^U"'1 = ^. In Appendix 2.4 we
show that the restriction of the quantization operator in H^> to the
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quantum Hilbert space H((PC) is not an essentially self-adjoint operator in

HCtfc,). This means that-^b is not quantizable in H(<Pe); this result is
consistent with the fact that-jjo cannot be quantized in H(<P) either. Thus
the quantizations of the canonical variables fa and in H((P) and H(<Pa) are

unitarily equivalent. Therefore, we have rendered the quantizations in the

canonically conjugate polarizations (P and <5^, unitarily equivalent.

Case (2)

Let fR. be the configuration space of a free particle and let q be the

2
usual cartesian coordinate on fR . Let M = T*(R= R , u be the canonical

two-form on M and let (p,q) be the usual cartesian coordinates on M.

Remark: (R1) We have not used Q to denote the configuration space as we

usually do because Q has already been reserved to denote the effective

configuration space with respect to the polarization <?.

(R2) The cartesian coordinates (p,q) should not be confused with the

canonical variables .

Our object here is to quantize the Hamiltonian of the free particle
n

H = p . The general method in geometric quantization scheme of quantizing

an observable consists of two steps:

(i) effect a canonical transformation from (p,q) to such that

-£ = '£; and

(ii) quantize^ in the polarization spanned by ("d/dfa).
We shall carry out this scheme for the case = H, and check the result with

that obtained by quantizing H in the vertical polarization P. The

quantization operator corresponding to H in the vertical polarization P has
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been explicitly worked out in Appendix 2.7; the result is well known. We

shall establish unitarily equivalent quantizations in the canonically

conjugate polarizations (P and (Pc for a case (2) situation in the process.

The first complication to arise is the nonglobal nature of the above

canonical transformation. We have to split M into two disjoint submanifolds

M^_ and M z where

M^ = {(p,q) £ M: p>0} (2.2.2.Eq 29a)

and

Ma= t(p,q)e M: p<0}. (2.2.2.Eq 28b)
Let and CO2 be the restrictions of the canonical two-form CO to and M 2.

respectively. Then (M1flOi) and (Ma,u)*) are symplectic manifolds.

Introduce canonical coordinates (fa ,<^) on M1 and ^'^2 °n given
by

fa = pZ, ^ = (q/2p) (2.2.2.Eq 29a)
and

£2 = p2", ^2= (q/2p). (2.2.2.Eq 29b)
Clearly R(-£>,) = R(f>a) = (0,oo) and = IK, so M-j with canonical
coordinates (fa ,<^) and Mz with canonical coordinates ) are both
examples of case (2) situations.

Before we proceed we shall clarify the notation that we shall use. We

shall, unless otherwise stated, adopt the notation given at the beginning of

this subsection. We shall use the subscripts 1 and 2 to differentiate

between structures on and Mz respectively.
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In addition, we shall assume that the prequantization bundles over

(M1,u3i) and are the restrictions of a chosen prequantization bundle

over (M,u)). This assumption makes it easier to compare the quantization of

p2 in the vertical polarization P with the quantization of (on

M., u Mz ) in the polarization (P spanned by (T>/"&££) on M^U Mi . The details
of the prequantization bundles are given as follows. Let B = M x C be a

trivial line bundle over M, (* ,* ) be the natural Hermitian structure on

B, and let s0 be a unit section of B. Let (i be a one-form on M that

satisfies d(5 = w. Let V be the connection on B defined by

Vx s0 = —dr( X _i ) s © for all Xe Then let (B,(*,'),V) be the chosen

prequantization bundle over (M,to). Let (B^ ,(*,*) ,V) and (B^, (• , •) ,*7) be the

restrictions of the prequantization bundle (B, (• to M1 and M^

respectively. We shall assume that the connection potential is given by

(2*1 sfa d^+dfj (fa ,^) on M-j, and fix= ^d^+df^Cfa ,^) on M^.
Let (?> and (p/,c be the canonically conjugate polarizations on M,| spanned

by (b/9^) and respectively. Let Q-j and be the effective
configuration spaces with respect to <P and (Pc respectively. Let

pr,, rM^ —Qi and prc1 :M^ —> Q-» be the corresponding projection maps.

Note that Q-j is identifiable with R(-fa), and is identifiable with RC^).
We shall replace the subscript 1 by 2 for the corresponding structures on

Mj_.

We shall start by quantizing the variables-^, and^.., j = 1, 2, in the
polarization (Pj .

The quantization pre-Hilbert space consists of square-integrable

sections of the bundle B of the form

$1 = "Wf-I' «%1> (2.2.2.Eq 30a)
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where

R(^) = fc, ft =^>10!d^rW2-;^10 = {exp^^^JJs,,. (2.2.2.Eq 30b)
The inner-product on is given by

<^1'?1>(P1 = C2nfi;l'l/2^ l^i(%i)|2d^1. (2.2.2.Eq 31)
The quantization Hilbert space is the completion of .

The associated vector field generated by is given by

pr1?t(X^ ) = CV'S^); for short, let Y^ = pr^tX^,). The variable is
quantizable in Hp because is complete on Q1 . The quantization operator

in is given by

£ (2.2.2.Eq 32)
[cf. Appendix 2.3, equation (A2.3.Eq 8)]. The spectrum of the operator

is (-co ,oo ).

Similarly on Mz, the quantization pre-Hilbert space consists of

square-integrable sections of the bundle x A-»iz(<Pa.) of the form

<§2 = ^ »cy (2.2.2.Eq 33a)
where

R(^) =IK, f2 = ^2o!d^rUZ; {expi^(^)}s0. (2.2.2.Eq 33b)
The inner-product on is given by

<<$2,$2>pj 1^(^)1^^. (2.2.2.Eq 34)
The quantization Hilbert space H^-, is the completion of W^, .

u*a vjo.

The quantization operator ^ in is given by

fa (2.2.2.Eq 35)
A/

The spectrum of the operatoris (-od,oo).
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Let <P and <PC be the polarizations of the symplectic manifold

(M1OMl ,u>) given by

(P = (P, and fj, = (P1C on M1; (2.2.2.Eq 36a)

and

(P = <fj_ and <PC_= <P2t on M^. (2.2.2.Eq 36b)
One can interpret CP and CP as polarizations of (M,w): strictly speaking, (?

and (F^ are not polarizations of (M,oj) because they are not defined on the

set {(p,q) €= M: p = 0} in M; however, as this set is of measure zero we

shall ignore this technicality.

We shall now quantize the Hamiltonian of the free particle p2- in the

polarization (P as follows. We shall use the letter without the subscript

to denote pz on M. Bearing the theorem on the canonical decomposition of

global observables by Wan and McFarlane (1981) [of. Appendix 2.8] in mind,

we shall define H^p (the quantization Hilbert space associated with the

polarization ) by and we shall define the quantization

operator ^ in by ^ <©Clearly the spectrum of ^ is (-00,00)
[cf. Naimark (1968), p209]. It is physically unacceptable to have ^as the

quantized observable corresponding to p because classically the free

Hamiltonian p2 is strictly positive. Therefore, H(p cannot be the quantum
Hilbert space associated with the polarization (P, so we need to establish

the quantum Hilbert space and quantum observable. This can be done as in

the previous case by examining the link between generalized eigensections of

and the classical values of^>.
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(2.2.2.P2) Proposition

Each value of the classical variable Jk is a generalized eigenvalue
°Jo

of in corresponding to the generalized eigensection

where

1-114-
V. ML • i -

rJ '
The generalized eigensections satisfy

= [2,ifi ]"1'4 {exp arSCTj.o(^.o ,|J}{exp , <£.)} . (2.2.2.Eq 37b)
tions satisfy

< 5. =&(-&■ (2.2.2.Eq 38)

Proof

For the sake of tidiness, we shall drop the subscript j in some steps

of the proof.

We have

sc0<f. <%>= •i'~r'k ■V''

Sa-Jh •%) <
[ h .j)-sT(^ ,|))1 = ft+ferC*,.

and

=

V(v-
Therefore,

(2.2.2.Eq 39)
'-v

Thus a> is a generalized eigensection of -&> corresponding to the
Tjo Qd

generalized eigenvalue *^0«
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The crucial point is to observe that for each e. R(-£>J, the

generalized eigensection can be constructed in three steps as follows:

(i) Let cr0 be the -coordinate curve originating at the point (-£>. ,%■ );J tfj "jo ojr"
(note that C5j0 is determined by the value ju-0). Let

:BC£> —* B(4> ^ be bhe P31"31161 transport along Cto*

Then L,, ([2-nh]"1'^ sQ(-t,. ,o. )T is a parallel section along ry: given
"jo ojr jo

explicitly by

LOj0(L2im] WAso(to'^)5 = [2n^ ^ {exp
= [2lrtn-,/4{exp^S<r.Jtj.o,^)}so(^.0,^)

(2.2.2.Eq 40)

(ii) Let Tfj be the ^.-coordinate curve originating at the point (|L.
(note that o. is constant along ~6). Let L-v. :B/P —^ . be the

parallel transport along

We shall extend the section along the curve CTj0 defined by
equation (2.2.2.Eq 40) to the entire 3ubmanifold M as follows.

For each we define a parallel section along the curve

(which is determined by the value of ) by

L^CL^U**)-" s0(^,^)}]
= Lt.[(2niD'"*
= (2ntf){exp irS^-^^Hexp ir( [£>

Jb- 'i° J - J®-'°
J \

J,. a ** -m .

= (2ntr"« (exp iSoj,, >V*( S+>ti tfylj is°
= (2{exp -iS0jo(fyo,^.)}(exp --arS^.(-f^0,(2-2.2.Eq 41)

Let ('JL.^io t>e the global section of Bf that is given on each curve
jo »4 J J

by equation (2.2.2.Eq 41). By construction (A (^-O^Ir, is a polarizedJ fjo ®J *
section of Bj (with respect to the polarization (FV ), i.e.

vw= °-
J
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(iii) Let •lv = T«l be the corresponding <Pj -waveIhio ^ J 0
function.

Finally, the inner-product of the generalized eigensections and
"JO

is given by
®JO

< ><pj

= [2"RI'1 (eXP -*(fj(VtJr)tfJ(-Sv»'%jv.)))iiR{eXP "ir$j<V'S'>',d%i
= *>(-£. (2.2.2.Eq 42)aJO "jo

r~-
We can construct generalized eigensections of the operators -fo.

d

corresponding to generalized eigenvalues which lie outside R(-fc>0 in three
J

steps as follows.

(i) For each G: B(fr> ), the function ($■) defined by4
o "J

equation (2.2.2.Eq 37b) can be rewritten as

\<%i) = ilVVVii't'l'i'V11'
(2.2.2.Eq 43)

(ii) Let us formally extend the range of from R(-£>j) to the whole of IR.
Let fj,oo(f>j) be a smooth function on IK that satisfies the condition

Wti= fj('ti4j' on B(ti> X "'W- 11)
(iii) Then for each (R -R($->j), the generalized eigensection of Jfe.
corresponding to the generalized eigenvalue ^j0 is given by

VV%i)fd (2.2.2.Eq^
where

= [2"Mr"4,exP^fi.%-
(2.2.2.Eq 45b)

Clearly the quantization Hilbert space H^. is spanned by the set
"J

t§. &IK>-
OjO Ojo

»
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It can easily be shown that

k d*Jo V%i'%% ' = 6<V& (2-2-2'B' 461
(This property should not be confused with the inner-product of generalized

'V

eigensections of -|v given by equation (2.2.2.Eq 42).)

Let us digress for a moment to consider the quantizations of the

variable in a general case (2) situation. In order to obtain physically

acceptable results for the quantizationsof the variable in canonically

conjugate polarizations for a general case (2) situation we make the

following assumptions.

Physical assumption PA2

The values assumed by the quantum observable corresponding to the

variable M should be contained in the range of values R(-£>) of the classical
variable

Quantum assumption QA2

When quantizing in (P the quantum Hilbert space HOP) should be spanned

by all generalized eigensections of the quantization operator

corresponding to generalized eigenvalues consistent with the physical

assumption PA2 above. A corresponding statement also applies when

quantizing in <f^.

Let us return to the problem of establishing a physically acceptable

quantization of the free Hamiltonian -fa = p2 in the polarization (P. Firstly,
we shall establish physically acceptable quantizations of in <Pj as

follows. According to the assumptions PA2 and QA2 physically acceptable
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quantizations of in (Fj are achieved if the quantum Hilbert spaces H(<)j )
are the subspaces of the quantization Hilbert spaces H(p . spanned by the sets

A

-Jvo = (O*00)}, and the corresponding quantum operators Jjp, are
f\s

the restrictions r»j, in to H((Pj ). Secondly, we note that the operator
$1 ® ^ ® HOP*) is self-adjoint with positive spectrum because the
operators -^>j in H(CPJ ) are self-adjoint with positive spectra
[cf. Naimark (1968), p209J. Therefore, a physically acceptable quantization

of in the polarization (P is established if the quantum Hilbert space H(<P)
/V A. A

is H(<P| ) © H(<P.j ), and the quantum operator

Let us now quantizers p7- in the polarization^. As before we define
the quantization Hilbert space associated with the polarization Q by

E<PC = Htfjc ®

The quantization pre-Hilbert spaces Wj, consist of square-integrable

sections of the form

^ R(tl} (2.2.2.Eq 47a)
where

R(#j) = fj =^jc = (expiS (fj,^.)}80.v
' '/Z| SSI* - lcap -dro

(2.2.2.Eq 47b)

The inner-products on Wjpj are given by
* [2""r,/1]0 1 Tjt<tS> <2-2.2.Eq 48)

The quantization Hilbert spaces Hjp. are the completion of

The quantization operators Jh. in H/p, are self-adjoint multiplication
"d6- ^IC.

operators given by

(2.2.2.^,49)
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Since Jfe. in H^p satisfy the assumptions PA2 and QA2,it follows that
/ \ /\

the quantum Hilbert spaces H(<PjcJ and quantum operators Jja are given byOjc.
■> .

H((Pjt) = Hp and £> = -go, respectively. Therefore, a physically
acceptable quantization of -go in (5^. is established if the quantum Hilbert

A

space H((PC) is H(<J^C ) H((PiG), and the quantum operator is ■K®

The pairing maps between H((Pj ) and H(0jc ) are given by
tcf. Appendix 2.6, equation (A2.6.Eq 1)]

__

0 (2.2.2.Eq 50)

where Rj = R((^j) and Rjc = R(^j). Let us formally extend the range of ^oj to
IR, and let us extend the domain of the function to iR by putting

^•c(f ) = 0 for e R) • We recall that earlier we had smoothlyJ
1

extended the domains of the functions from R^j) x bo ^ by
introducing the functions equation (2.2.2.Eq 44)].

Therefore, the pairing maps between H(<Pj) and H((Pjc.) can now be
rewritten as

<*&• (2.2.2.Eq 52)
v)

where ^ (<^j) is given by equations (2.2.2. Eq 37b) and (2.2.2.Eq 45b).
>1

The pairing maps defined above determine the unitary maps

Vj :H(<fyO —•*> H(tf^) which are defined as follows. The map VJ map

Ut-'ii'Pj • "here VSj0 = 0
53a)

The inverse map V"^ is given by

= [2rtir,«]'|RiPj(?i>i^(^)dj.. (2.2.2.Eq 53b)
The proof that the maps VJ are unitary is essentially the same as that given



Page 122

in Appendix 2.6 [of. part(ii)]. Then let V:H((Pt) —H((P) be the unitary-

map defined by V = ©V^.

We shall show that ^ in H((P) and ^ in H(<PC) are unitarily related as
follows. It is sufficient to show that = -§>j • Let
and -f-c = Yj'fj = ^"here 4jc(fj) =o for-f,.6 IH-Kfj). Then

<Tjfc.V-^o

= CjfjV

= i (2»h)-nRV <#•;>[ (fcr fj
(by equation (2.2.2.Eq 39))

A,
= • (2.2.2 . Eq 54)

Now let us consider the quantizations of the variable $0- 1,16
variables are quantizable in the quantization Hilbert spaces , but not

quantizable in the quantum Hilbert spaces H((P;) by an argument similar to

that given in proposition (A2.4.P1) of Appendix 2.4. The variables <^. are
not quantizable in H-p. , since the associated vector fields pr* „ (Xa ) are

uJc. J0*
not complete on Qjc . Therefore, are not quantizable in H((Pjc ). Hence we
have established consistent quantizations of <^j in the canonically conjugate
polarizations (Fj and <P|'C.

As a final check of our results we shall compare the quantization of

in the polarization (P with the quantization of the free Hamiltonian pz in

the vertical polarization P. The symplectic manifold (M,cj) with the

cartesian coordinates (p,q) is an example of a case (3) situation. When we

study the case (3) situation we shall see that H(P) the quantum Hilbert

space (associated with the vertical polarization P) is the quantization
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Hilbert space Hp. In Appendix 2.7 we derive the quantum operator p2- in H(P),
and then we demonstrate that fa in H((P) and p2 in H(P) are unitarily related.

This serves to show that our physical and quantization assumptions, and

therefore our method of establishing of establishing unitarily equivalent

quantizations in the canonically conjugate polarizations CP and for the

case (2) situation is physically reasonable.

Case (3)

In this case we have RC^jb) x R(^) = Clearly both the canonical
variables -fa and ^ can be quantized in each of the quantization Hilbert

/V /V/

spaces H^p and H^. The spectra of the quantization operators fa and ^ in H(p
are R(£>) and R(^) respectively. Similarly, the spectra of the quantization
operators and ^ in Hg> are R(-£) and R(^-) respectively. The physical
assumptions PA1 and PA2, and the quantization assumptions QA1 and QA2 are

applicable here. Then the quantum Hilbert spaces H(<p) and H(<PC), and the

quantum operators fa , ^ , fa^ and coincide with the quantization Hilbert
cspaces Hjp and H^,, and the quantization operators^, and ^

respectively. Thus we have established unitarily equivalent quantizations

of the variables fa and ^ in the canonically conjugate polarizations (P and
; the link being given by the unitary map U:H((P) —■=> H((Pe) which maps

<$>p to > fi. by
^(#) = [2rrfi]",/2j (exp } {exp }d^_ (2.2.2.Eq 55a)fR

with inverse map D given by

vf (^) = [2nfi]~l/aj,4't(-^){exp -arS^fc^Hexp iS^-fb, *) }d£. (2.2.2.Eq 55b)
fR.
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Case (4)

In this case the canonical variable-^ can only be quantized in the
quantization Hilbert space H^, and the variable ^ can only be quantized in
the quantization Hilbert space Hp. Therefore, it is not possible to set up

unitarily equivalent quantizations of and in the polarizations (P and ($c

as we did in the previous cases. A way forward using local observables is

possible. This will be discussed in Chapter 4.



Page 125

2.3 HALF-DENSITY QUANTIZATIONS IN CANONICALLY CONJUGATE POLARIZATIONS

AND THEIR UNITARY EQUIVALENCE IN TWO-DIMENSIONAL NONCONTRACTIBLE

SYMPLECTIC MANIFOLDS

(2.3.1)

We shall start by giving a definition.

(2.3.1.D1) Definition [Prugovecki (1971), p315]

The self-adjoint operators ,...fA^ acting in a Hilbert space H

constitute a complete set of quantum observables if the following two

conditions are satisfied:

(CQO 1) There is a measure p. in the Borel sets of the k-dimensional

Euclidean space (R^ with support R(jD = R(JL,) x ... x R(A^) where

R(A1),...,R(A^) are the spectra of A^,...,AK respectively.
2- k(CQO 2) There is a unitary map U of H onto L (tR ,jx) such that the operators

At = UAiU"1 , i = 1,... ,k (2.3.1 .Eq 1a)

are the multiplication operators

Aty(x) = x^(x) (2.3.1 .Eq 1b)
with domain

D, = (Wx): f x-!f(x)! du(x)<oo, L2(lRKfu.)}. (2.3.1.Eq 1c)
Ai J (RK

If the above two requirements are fulfilled, the Hilbert space L (IR ,p)

is called a spectral representation space of the operators A1f...,AK, and

the set of operators A!,,...,k\ is called the spectral representation of the

operators A^, ...,AK.

In the previous section we proposed the following scheme for rendering the



Page 126

quantizations of canonical variables in canonically conjugate polarizations

of 2-dimensional contractible symplectie manifolds unitarily equivalent. We

replaced the quantization Hilbert spaces and quantization operators in the

standard half-density quantization scheme by newly-defined structures which

we called quantum Hilbert spaces and quantum operators respectively. In

this section we shall study examples in which the canonically conjugate

polarizations consists of a polarization with toroidal leaves and a

polarization with non-compact leaves. The quantization in the polarization

with toroidal leaves gives rise to BWS conditions and a quantization Hilbert

space that consists of sections that are only defined on the isolated leaves

of the polarization [of. Chapter 1, section 1.2]. Hence the scheme proposed

in the previous section is unsuitable for the examples in non-contractible

symplectic manifolds that we shall consider.

Let us now consider the examples the we studied in the previous section

to see if they can shed any light on how we could render quantizations of

canonical variables in canonically conjugate polarizations of

non-contractible symplectic manifolds unitarily equivalent. In the case (1)

and case (3) situations we showed that the variable q is quantizable in the
polarizations tf3 and (Pc with quantum operators^ in H(<P) and in H(<PC).
Clearly ^ and ^constitute a complete set of quantum observables in H(<P)
and H(<Pt) respectively with H(<P) the corresponding spectral representation

A

space, and the corresponding spectral representation. Similarly, in the

case(2) or case (3) situations the variable •-£ is quantizable in H(<P) and

H(<PC) with H(<PC) the corresponding spectral representation space, and ^ the
corresponding spectral representation. It seems natural to assume that such

a unitary relationship between the quantum operators and their corresponding

quantum Hilbert spaces should continue to exist when quantizing canonical
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variables in canonically conjugate polarizations of non-contractible

2-diraensional symplectic manifolds. We shall therefore use the notion of a

complete set of quantum observables and its spectral representation when

constructing quantum operators and quantum Hilbert spaces in the examples we

shall consider.

We shall restrict ourselves to the study of 2-dimensional

noncontractible symplectic manifolds (M,u>) with canonical coordinates (1,0)

where (1,0) are either action-angle variables, or in the case where M = T*S1
then 0 is the polar angle (on S1) and I is the canonical momentum.

Let (P and (Pc be the polarization spanned by ("2/7)1) and ("2/30)

respectively. Let Q and Q c. be the effective configuration spaces with

respect to the polarizations (P and respectively, and let pr:M —> Q and

prt:M —Qc. be respectively the corresponding projection maps.

Let (Ir,0r = 0) be the chosen reference point in M. Let "tf and 7T,, be

the I-coordinate curves through the points (1^,0) and (Ir,0o) respectively.

Let V and O"0 be the 0-coordinate curves through the points (I,0»- = 0) and

(lo,0v = 0) respectively. Let R(I) denote the range of values of I along

and let R(0) denote the range of values of 0. We have R(0) =(R.. Let fj be a

one-form on M given by

(3 = (3rdl+fled0 = (I+c)d0+df (1,0) (2.3 .2.Eq 1)
no

where c & (R and f £ C (M). Clearly fi satisfies dp> = w.
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Let B = M x <£. be a trivial bundle on M, be the natural Hermitian

structure on B, s0 be a unit section of B and let V be a connection on B

defined by

Vx s0 = -i^X-lfl )s0 for all X fc VC(M). (2.3.2.Eq 2)
Let (B,(',«),V) be the chosen prequantization bundle over (M,co).

The various line integral of along the coordinate curves are given

by:
r0

Sa(I,0) = J> = (jo(V0)]>toMS+ = (I+c)0+f(I,0)-f(I,O), (2.3.2.Eq 3a)
(I0,0) =jCT^ = (S^0d0)i-x = (lo+c)0+f(Io,0)-f(Io»0) » (2.3.2.Eq 3b)

S^(I,0) = j (5 = (JI(31dI)e = Const= f(I,©)-f(Ir-,0) (2.3 .2. Eq 3c)? Ir-
and

S^d.Oo) = j' (3 = (J1pIdI)© = e = f(I,0o)-f(Ir,0o)- (2.3.2.Eq3d)
3o

(2.3-3) A particle constrained la move an a circle

Consider the physical situation of a particle constrained to move on

circle of radius 1 [cf. Martin (1981), pp46-47]. This is a simple version

of the rigid rotor which is of some importance in physics

[cf. Schiff (1968), p99]. The configuration space is Q = S1; let 0 be the

polar angle on S1 . The phase space is M = T*Q = IR x S1; let (1,0) be the

usual canonical coordinates on M such that I is the canonical momentum.

Clearly M is noncontractible; in particular, it has the geometry of an

infinitely long cylinder of radius 1. In quantum mechanics the spectrum of

the quantum momentum observable is {nif : n«.2?} [cf. Martin (1968), p99 ].

Let us quantize I in the polarization (P. The leaves of (P are the

I-coordinate curves 7f which are noncompact since they are infinite lines.

The quantization Hilbert space consists of square-integrable sections of
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the bundle B x A-i/2.(<P) of the form

£ = ^P(0)f>, 0fe ft; (2.3.3.Eq 1a)
where

p =^o |dir'/2-; Ad= (exp -4rS-j( 1,0) }sB. (2.3.3.Bq 1b)
The inner-product on H^p is given by

2tt ~

<§,§> = (2nh)",/2 !<f(0)| d0. (2.3.3.Bq 2)

(Remark: (R1) Note that because is globally smooth it follows that the

section $ is globally smooth if

<P(0) = <4>(0+2tt). (2.3.3.Bq 3))

In this case the effective configuration space with respect to the

polarization <P coincides with the actual configuration space (of the
A

classical system) S .

The associated vector field pr^CXj) generated by I is given by

pr^CXjO = (3/90). The canonical momentum I is quantizable in H^p because

pr^CXj) is complete on S*. Then by equation (A2.3.Eq 5) tcf. Appendix 2.3],
the quantization operator I in H(p is given by the expression

l'$= [{-ifi('<Va0)-(^f(Irf0)/3 0)+cM0)Jp; (2.3.3.Eq H)
(here we have made the following replacements in the operator expression

given by equation (A2.3.Eq 5): —-?> Iy, —}f(I^,0)+c0 and

(-3/^) —^ (9/90)).

The classical range of values of I, R(I), is fR. Fran

Proposition (2.2.2.P2) [cf. section (2.2)] and the condition given by

equation (2.3.3.Eq 3), we conclude that I0€: R(I) is an eigenvalue of I if

the corresponding section 5I(jwhich is given by
= (K/2*)"4 (exp d:S^o(Io,0)}{exp -iS3(Io,0)} p
= (d5/2TT),/^ {exp-±C(Io+o)0+f(Irf0)-f(Iot0)]}p (2.3.3.Eq 5)
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is globally smooth. Since p is a globally smooth section of B xA-t/2.(<P)
OO. , «j-

and feC (M), it follows that $T is globally smooth ifJ- o

(Iq+c)2tt= 2nnfi, where n is some integer. (2.3.3-Eq 6)

For each neTJ, we shall write

I(n) = nfi-c. (2.3.3.Eq 7)

Thus the operator I in H<p has a discrete spectrum

R(?) = (I(n): n t2}. (2.3-3-Eq 8)
Ay

Then the normalized eigensection of I corresponding to the eigenvalue I(n)

is given by

= (1i/2Tr),/4 {exp -i[nfi+f(Ir,0)-f(l(n),e)]} . (2.3.3.Eq 9)

Note that by choosing {3= Id9+df the physically correct spectrum is obtained.

Let us now quantize I in the polarization <PC. The leaves of are the

9-coordinate curves. These leaves are toroidal; in particular, they are

circles of radius 1. We shall follow the procedure for quantizing the

action variable I given in section (1.2) (of Chapter 1).

A formal expression for a (fj.-wave function is given by

% = V(I)p , IfeR(I); (2.3.3 «Eq 10a)
where

fc=Ao,d0|"W2 and ^to= {exP *Vl'0)}s • (2.3.3 »Eq 10b)
The sections are only well defined on isolated 0-coordinate curves, and

these curves are called the BWS leaves. The sections "5^. are only well

defined on the curves C5~„ (which are determined by the values I0) if

S_(I,0) = So-d^n). (2.3.3.Eq 11a)<J0 u o

or equivalently if the BWS condition given by

<& ft = 2nnfi, for some n & 27 (2.3.3-Eq 11b)
vcr0

is satisfied. Hence the BWS conditions are satisfied if ID takes the values

I(n) = nfi-c, n & "21. (2.3.3«Eq 12)
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Let c5"h denote the 0-coordlnate curve determined by the value

I(n). Let B|^ and A-i/2((Pc)| ^ denote the restrictions of the bundles B
and A-i/2((J^) , respectively, to (J"M.

Then (f^-wave functions on are sections of the bundle

B|an x )|crn of the form
%A= a^fexp yiTSg-hCKn), 0)}so(I(n), 6) I d9 I",/a (2.3.3.Eq 13)

where ah fe

The Hilbert space H^, is defined to be the one-dimensional space

consisting of square-integrable (P-wave functions on cr* with respect to the

inner-product

l,»r»l- (2.3.3.E, 14)
The quantization Hilbert space H^, is defined by the direct sum

Hp = fe Hp . (2.3.3.Eq 15)
The quantization operator Ic. in Hp^ is defined by

I(n) where . (2.3.3.Eq 16)

The spectrum of I , R(IC), is given by

R(Tt) = {I(n) = nfi-c: nt2). (2.3.3-Eq 17)

By theorem (A2.9.T1) [cf. Appendix 2.9], the operators I in H,p and I<-

in are unitarily equivalent because they have a common spectrum. We
~c.

can, in line with the assumptions PA1, QA1, PA2 and QA2 given in

section (2.2), formally introduce the notions of quantum Hilbert spaces and

quantum operators. It follows that the quantum . Hilbert spaces HC'f) and
A A

H(<Pt), and the quantum operators I and Ic should be given by H(<P) = and
A A/ A

H(<^) = H(j> , and 1=1 and Ic = Irrespectively.
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In the next subsection we shall give a unified treatment of all this.

(2.3.4) The spectral representation and. the spectral representation spaces

We can summarize the results of section (2.2) as follows. The variable

was only quantizable in the canonically conjugate polarizations (P and 0&

in the case (2) and case (3) situations, and the corresponding quantum
A* /v

operators were denoted by in H(<P) and in H(<Pt). Similarly, the

variable was only quantizable in the canonically conjugate polarizations <P

and in the case (1) and case (3) situations, and the corresponding

quantum operators were denoted by in H(<p) and ^ in H((Pt).
In all the examples on noncontractible symplectic manifolds that we

shall discuss in this section the variable I is quantizable in the
_ _ A A

canonically conjugate polarizations (r and (Fc . Let I and I^ be the

corresponding quantum operators in the quantum Hilbert spaces H((P) and H((Pe )

respectively.

Remark: (R1) From now on we shall use the term quantizable to mean

quantizable in the canonically conjugate polarizations CPand <Pt.

We shall now present the ideas discussed earlier in the following

postulates:

(2.3.4.PST1) Postulate PST1

In the situations where is quantizable the quantum Hilbert spaoe

H((Pft) is identifiable with the Hilbert space L^(f?,pO which consists of

functions of the classical variable that are square-integrable on fR with

respect to a measure yv whose support lies within R(-£>) (the range of values
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of the classical variable^). In the situations where ^ is quantizable an
analogous statements applies to the quantum Hilbert space H((P). In

situations where I is quantizable an analogous statements also applies to

the quantum Hilbert space H((PC).

(2.3.4.PST2) Postulate PST2

In the situations where is quantizable the quantum operator-^ in H(<P)
- has H(cPc,) as its spectral representation space, and ^ as its spectral

representation. In situations where is quantizable, the quantum operator

££ in H(d^. ) has H((P) as its spectral representation space, and ^ as its
spectral representation. In situations where I is quantizable the quantum

A A

operator I in H(<rP) has H(<PC ) as its spectral representation space, and Ie as

its spectral representation.

The essence of the above postulates lies in the extension of the

definition of the quantum Hilbert space introduced in section (2.2). In

particular, the quantum Hilbert space defined by postulate PST1 is basically

the same as that given by the assumptions PA1, QA1, PA2 and QA2 except that

the inner-product is now defined with respect a measure instead of the

standard Lebesgue measure. This generalization enables us to deal with

the quantizations of the canonical variables and in the M cases studied

in section (2.2) where the quantized observables have continuous spectra,

and the quantizations of the action variable I where the quantized operator

has a discrete spectra in a unified manner. In general, the measure ji_ is

not uniquely defined by the requirement in postulate PST1

[cf. Prugovecki (1981), p324].
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Postulate PST2 basically spells out the requirement that the

quantizations in the polarizations and (Pc should be unitarily related.

We shall now apply our postulates to concrete examples.

(2.3.5) Quantizations q£_ canonical, variables in canonically conjugate

polarizations oL contractible 2-dipensional symplectic manifolds revisited

Clearly the results of section (2.2) are consistent with the postulates

PST1 and PST2. We shall illustrate this point with the following example.

Consider the situations when ^ is quantizable. Clearly the quantum operator
in H(<Pc.) has H(<P) as its spectral representation space and as its

spectral representation. This unitary link is exactly what is required by

postulate PST2. We based the postulate PST2 on this unitary link. The

Hilbert space H(<P) (defined in section (2.2)) is identical with the Hilbert

space L 0R,/i) (defined by postulate PST1) when the measure is given by

dfi(<|.) = (2ttH)",/2- d^ for R(^)
= 0 otherwise. (2.3.5.Eq 1)

Similarly, one can show that the quantizations of the variable -jp given
in section (2.2) is consistent with the postulates PST1 and PST2.
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Let (M,tu) be a noncontractible 2-dimensional symplectic manifold with

canonical coordinates (1,0); we shall assume the notation given in

subsection (2.3.2).

Then by postulate PST1 the quantum Hilbert space H(<f£) consists of

elements of form

= Tt(I)fc, 16 R(I) (2.3.6 .Eq 1b)
where

Mi. €= L2c(fF,|i) ; = ^eo|der,/a ; ACo= {exp ^Sb.(I,0)}so. (2.3 .6 .Eq 1b).

The measure pi. can be determined in three steps as follows.

(pi1) CIearly ju. cannot be a Lebesgue measure since /x. is only well defined on

the 0-coordinate curves c(which are determined by the value I(n)) on which

I(n) takes the values [cf. equation (2.3.3*Eq 12)]

I(n) = nfi-c, ne^. (2.3.6.Eq 2)

(^2) The quantization Hilbert space and the quantization operator I are

formally identical to those given explicitly in subsection (2.3.3)

[cf. equations (2.3-3.Eq 1a), (2.3-3-Eq 1b), (2.3-3-Eq 3) and (2.3.3.Eq 1)].

We must now check to see if Hjp and I can be regarded as the quantum Hilbert

space and quantum operator respectively. One way of doing this is to check

whether the spectral representation space of I in H<p can be identified with
5>

the Hilbert space Lc(fR,pi). In practice this is done as follows:
^ 'X-

(i) Suppose R(I) (the spectrum of I) is contained in R(I) (the range of

classical values of I); then the quantum operator I is taken to be the

quantization operator I, and the quantum Hilbert space H(<P) is taken to

be the quantization Hilbert space H,p
r\j

(ii) Let 3?h be the globally smooth eigenfunctions of the operator I in
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(V

H^p given formally by equation (2.3.3.Eq 9). Suppose R(I) is not
contained in R(I); then we define the quantum Hilbert space H((P) to be

the subspace of spanned by the set I(n) £:R(I)}. The
A

quantum operator I is then defined to be the restriction of the

quantization operator I to H((P). Let R(I) be the spectrum of the
A

quantum operator I.

(}a3) It follows from postulate PST2 that the measure p is a discrete measure

with support R(I), and such that

p.({I(n)}) = 1 for every l(n) <= R(I). (2.3.6.Eq 3)

It is easy to check that the multiplication operator I on the Hilbert
2 A

space Lt(n?,p) possesses a discrete spectrum identical to R(I) with
normalized eigenfunctions ^^(1) given by

IH^I) = KnJH^I) (2.3.6 .Eq 4a)
or explicitly

Hln(1) = 1 when I = I(n).
= 0 when I = I(n') ^ l(n), n' e 1L. (2.3.6.Eq 4b)

(Note that I(n) is an eigenvalue of the multiplication operator I only if

I(n) belongs to R(I) the range of classical values of I.) Therefore, we
A

_ A
shall define the quantum operator I ^ in H«S(0 by It = I.

We shall now apply these ideas to two concrete examples.

(2.3 .6 .Ex 1) Example: The particle

revisited

In this case we have R(I) = tK and

(2.3-7.Eq 7) and (2.3.7.Eq 8)]. Hence

in R(I).

constrained io move .on a circle

R(I) = {I(n): n J tcf. equations

the spectrum of I, R(I), is contained
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To summarize we have:

(i) HOP) = H^, 1=1 and H(I) = R(I). The measure p. is then given by
equation (2.3-6.Eq 3).

(ii) The Hilbert space HOP,, ) consists of elements of the form

^ where ^(I) is a member of La((R,pi).
A A

(iii) The operator Ic = I in HCCTJ, ) has the the same spectrum as I in
HOP). By theorem (A2.9-T1) [cf. Appendix 2.9], I in HOP) and Ic in

H(tfc.) are unitarily related.

(2.3.6.Ex 2) Example: The one-dimensional harmonic oscillator

[cf. Wan and McKenna (198^)]

Let fR be the configuration space with cartesian coordinate q. The

cotangent bundle T*(R is identifiable with fR2. Let w be the canonical

two-form on T*IP, and let (p,q) be the usual cartesian canonical coordinates

on T*fF. Let M = T^fR-t (0,0)}; then (M,u>) is noncontractible 2-dimensional

symplectic manifold. Let (1,0) be action-angle variables on M given by

I = (pz+qx)/2f 0 = tan~1(q/p). (2.3.6.Eq 5)

The Hamiltonian of the harmonic oscillator is given by H = I.

Our problem is to establish unitarily equivalent quantizations of the

action variable I in the canonically conjugate polarizations <P and

However, unlike the previous example there is a constraint on I given by

I>0, i.e. R(I) = (0,oo). This means we can no longer identify the quantum
/V

Hilbert space H(<P) and quantum operator I with the quantization Hilbert

space H^and quantization operator I respectively.
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Let us quantize I in the polarization (P. Then W^, consists of

square-integrable sections of the bundle B xA-i/i((P) of the form $ = <f>(9)p

where ^ Idl I"1'2 and 4>0 = {exp-±S^(1,9)}s0. The quantization Hilbert
space is the completion of W^. By equation (2.3.3.Eq 4a), the

quantization operator I in is given by the expression

If = [{-ifi(H/a0)-(«>f(lK,e)/30)+cm9)]p. By equation (2.3.3.Eq 8), the
/v 'Y/

spectrum of I is given by R(I) = {I(n) = rff-c: n €:2P}.

We shall now introduce a discrete measure V as follows. Let V" be a

r\./

measure with support R(I) and such that

V({I(n)}) = 1 for every l(n) R(l). (2.3.6.Eq 6)

Then in analogy with the definition of the quantum Hilbert space given

in postulate PST1 we define the quantization Hilbert space H<p> to be the
c

space of square-integrable sections of B x A-1/2. (<Pc.) of the form

% = %(I)fc where I S |R, '{^(1) <= L^fR,y) and = ^co I d9 I-"2 . The
quantization operator is then the multiplication operator I in H^> .

/-w r**

Clearly the the spectrum of Ic is given by R(IC) = R(I). Then by

theorem (A2.9.T1) the quantization operators Ic in and I in H^p are
/V

unitarily equivalent. Since R(I) contains negative eigenvalues, it follows

that neither I nor Ic represent a physically acceptable quantized operator

corresponding to the Hamiltonian H where H = I. Alternatively, one could

say that H^ is not the quantum Hilbert space and Ie is not the quantum
operator as H<pt contradicts postulate PST1: V" does not vanish outside R(I)
(the classical range of values of I). Similarly, by postulate PST2, H,j> is

not the quantum Hilbert space and I is not the quantum operator.
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/-V/

By equation (2.3.3.Eq 9), the eigenseetions of I corresponding to the

eigenvalue I(n) = ntf-c, where n £.2, are given by

= (fi/2ir)"4 {exp i[nH+f(Ir.,0)-f(I(n)t0)]}p.

Since the spectrum R(I) is not contained in R(I), the quantum Hilbert

space H(CP) is defined to be the subspace spanned by the set of eigensections

l(n)>0}. The quantum operator I is then defined to be the

restriction of the quantization operator I to H((P). The spectrum of I is

given by

R(I) = {I(n): n^TL} O R(I)

= {I(n):n <=T2and l(n)>0}. (2.3.6.Eq 7)

The quantum Hilbert space H(<PC) and the quantum operator Ic are defined

as follows. To conform with postulate PST2 we introduce a new discrete
/V

measure fx with support R(I) and such that

/i({I(n)}) = 1 for every I(n)€:R(I). (2.3.6.Eq 8)

The quantum Hilbert space H(<PC) is defined to be the space of sections of

B x A-«/2.(dc) of the form'1^ = 'Vt(I)pc where H^d) is a member of L^(K,p).
/N

The quantum operator Ic is then defined to be the multiplication operator in

H((PC).

A A

Clearly the quantum operators I and Ichave a common spectrum; so by
/V A.

theorem (A2.9.T1), [cf.Appendix 2.9], the operators I and It are unitarily

equivalent. Then by postulate PST2 I in H(<P) has H((PC) as spectral
A

representation space and Itas its spectral representation.

Finally, by choosing the connection potential to be

(3 = (1+fi/2)d9+df. (2.3 .6 ,Eq 9)
A

the eigenvalues of I become l(n) = (n+1/2)1!i, where n = 1,2,3,... • We have

therefore established consistent quantizations of the variable I in the
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canonically conjugate polarizations (P and <PC with physically correct

spectrum.

(2.3.7) Concluding remark

We have established a unified scheme for dealing with the quantizations

of canonical variables in suitably chosen canonically conjugate

polarizations applicable whether or not the symplectic manifold is

contractible.



APPENDICES A2.1-A2.9
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APPENDIX 2.1

The pairing map and the linear map (induced Iql ±1l§. pairing map)

Let (M,oj) be a 2k-dimensional symplectic manifold. Let <P and be two

reducible polarizations of (M,u>) that are transverse. Let (B, (* ,-),V) be

the chosen prequantization bundle over (M,w). Let and H^* be the

quantization Hilbert spaces associated with the polarizations (P and <P'

respectively. Let < , and < , >pt be the inner-products on and
Hjp# respectively. Then consists of square-integrable sections of the
bundle B x A-i/2.(<P) of the formes sv that satisfy = 0 and *7^= 0 for
all X <= V(M;<P). Similarly, H^,* consists of square-integrable sections of
the bundle B x /V-v/2(<P') of the form = s'v' that that satisfy VyS' = 0
and VyV = 0 for all Y e V(M;<p').

(A2.1.D1) Definition [cf. Blattner (1973); Woodhouse (1980), P160]

The pairing map between the quantization Hilbert spaces and is

the sesquilinear map

<^' :H<P X ^ (A2.1.Eq 1a)
given by

<if> = [2nfirkr (•$",$%«• (A2.1.Eq 1b)
where (, 35' )&$>' is the one-TM-density defined by

W = (s,s«) V{Xi}v,{Yj}|2k!£JX1,...XK,Y1,...,YK)|3/a (A2.1.Eq 1c)
such that {X^} is a field of bases of <P, {Yj } is a field of bases of <p' and
£. is the Liouville volume form.uj
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(A2.1.D2)Definitions [of. Blattner (1973); Woodhouse (1980), pl60]

(D2.1) The linear maps (induced by the pairing map) are the maps

Uppt Hjpt and Uptg, :Hp« —determined by the relations
= <*> "fe'W (A2.1.Eq 2a)

and

<^,V<p$'V = ^'^'W (A2.1 .Eq 2b)
respectively.

(D2.2) The polarizations <P and tp' are said to be unitarily related if U<j>$>'
and are unitary maps.

Remark: (R1) In general the linear maps (induced by the pairing map) are

not unitary maps. There are no general theorems for ascertaining whether (P

and<p' are unitarily related; however, we do have the following theorem.

(A2.1.T1) Theorem [cf. Blattner (1974)]

Let ([R, ,co) be a symplectic manifold where co is any symplectic two-form

r»?2k
on wn . Then any two transverse, transactional invariant, reducible

2K
polarization of (IR ,w) are unitarily related.

ExamBler the pairing map between the quantization Hilbert spaces associated

.with the vertical .and horizontal polarizations, and. the linear maps (induced

by. the pairing map)

Let Q ^ be the configuration space with cartesian coordinate q and

/ \ ^
let R(q) denote the range of q. Let M = T Q be the phase space,CO be the

canonical two-form on M and let (p,q) be the usual cartesian canonical

coordinates on M. Let R(p) denote the range of p which is given by

R(p) = 1R. Let m be an arbitrary point in M. Let ~6 denote the p-coordinate
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curve and let C denote the q-coordinate through the point m. Let P and Pt

be respectively the vertical and horizontal polarizations of (M,o3), i.e. P

is spanned by the vector field CVap) and Ptt is spanned by the vector field

(V^q). Clearly the polarizations P and Pc are both reducible. The

effective configuration space with respect to P is the actual configuration

space Q. Let Qt be the effective configuration space with respect to Pc;

then Qc is identifiable with R(p) and is coordinatized by p. Let B = M x <L

be the trivial bundle over M, (*,•) be the natural Hermitian structure of B,

so be a unit section of B and letV be a connection on B given by

VxsQ = -HX _1 p> )s0, for all X e V(M) (A2.1.Eq 3)
where

(3 = pdq+df, f & C°°(M). (A2.1.Eq 4)

Let (B, (• ,♦ ) ,v) be the chosen prequantization bundle over (M,to).

Let (p^,qr) be an arbitrary point in M. Here is a list of integrals of

the connection potential (2> along the coordinate curves that we shall use:

S^(p,q) =/fl>= (J (-bfAap)dp) q = Co«s+. =
~5

(A2.1 .Eq 5a)

and

StfCp.q) = fj = (\ p+Cdf/^qMq) = pq-pq^+f (p, q)-f(p, qr).
"O vq^ " —

(A2.1.Eq 5b)

The quantization Hilbert space Hp consists of square-integrable

sections of B x ^-(/^(P) of the form

"?f = ^(qJtexp arS^(p,q)}s0|dp!""2 (A2.1.Eq 6a)
with respect to the inner-product

<¥". f>p = C2nfi]-,/2-J Wq)|2dq. (A2.1.Eq 6b)
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The quantization Hilbert space Hp consists of square-integrable

sections of the bundle B x A-i/2^c) oP the form

= tpjp) {exp arSa(p,q) }s„ |dq rl/:2 (A2.1.Eq 7a)
with respect to the inner-product

<1^, I«,>p = C2ttIH>t(p)|dp. (A2.1.Eq 7b)
c

Then the one-TM-density ($", $c) defined by equation (A2.1.Eq 1c) isppt
given explicitly

(f, ?t)Ppt = 'dp !~,/2" {(^/ap)} Idq I"1'2- {(?/dq)} {exp ^r(S?(p,q)} x

{exp-^:Sa(p, q)} 12!dp a dq( (a/ap), Ca/^q)) I
= HXq)H^(p) {exp-iS?(pf q)} {exp -irS^p, q)} (A2.1.Eq 8)

Therefore the pairing map between Hp and Hp is given by

<^"»<§t>PPt = ( H^qMjMpMexp drS^(p,q)} {exp -irS^Cp, q) Jdpdq
tl -J tp

(A2.1.Eq 9)

The linear map (induced by the pairing map) Upp is given by

Uppir = [ 2wf[f vV(q) {exp irS^(p, q)} {exp -iSa(p, q) }dq] Pcc JQ
(A2.1.Eq 10a)

where

f = {exp 4S0(p,q)}s0|dq|"'/Z. (A2.1.Eq 10b)

The linear map (induced by the pairing map) Upp is given by&• I

Upplt = [2nffr1^ [f l(^(p){exp -JrS (p,q)} {exp arSa(p,q)}dp] p
IR

(A2.1.Eq 11a)

where

p = {exp drSy(p,q) }sD I dp\~uz. (A2.1.Eq 11b)
Remark: (R2) In the case where Q =rR, we have M = rR2. Then by

Theorem (A2.1.T1) Uppt and U^p are unitarily related. In particular when

(3 = pdq, then UPR and Up.p are given by
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Upp^r= [2-ntf]~,/2- [f SJ(q){exp -ipq}dq]p^ (A2.1.Eq 12a)JtR
and

Upp = [2it[\ M? (pMexp irpqjdq] P . (A2.1.Eq 12b)

Clearly Upp and Upp are identifiable with the the inverse Fourier
transform and Fourier transform respectively.
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APPENDIX 2.2

The parallel transport on 3, complex line bundle [of. Kostant (1970),

pp106-107; Simms and Woodhouse (1976), pp32-34; Woodhouse (1980), p1l6]

Let (M,oJ) be a symplectic manifold such that there exists a global

one-form (?> that satisfies d(5> = u>. Let B = M x (D be the trivial bundle over

M, (• ,* ) be the natural Hermitian structure of B, sQ be a unit section of B

and let V be a connection on B given by-

Let (0,a) be an open interval of (Rand let "(J :(0,a) —^ M be a smooth curve

in M originating at the point mD. Let m0 =7^(0). Let denote the set

{m: t €. (0,a), lf(t) = m}.

(A2.2.D1)Definitions

(D1.1) The map r:?f —^ B is referred to as a seotion along the ourve

(D1.2) Let Xg- be a tangent vector along ^ and let r be a section along "6.
Then r is said to be a parallel section along if

Remarks: (R1) Any section r along can be written in the form r = sQ

where ^ :~6 —*>£ is a complex valued function along tf.

(R2) Let r be a section along-ft given by r = <fsc. Clearly r is parallel

alongK if

s0 = -ir(X -i(?>)s0, for all X e V(M)

(Vv r)(m) = 0 for all m elf.
o

X^(vp)-i(X J $ )H> = 0 onTf.
Hence r can be written in the form

where z e (L and r(mQ) = zoso(m0) <= B^.
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The parallel transport along (from m0 to some point m^zlf ) is the

linear isomorphism

defined by
V*1

L-j(b0) = L^(zoso(m0)) = zjexp )}s0(m)Tf
for all b„= zos0(m0) e B^.
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APPENDIX 2.3

(A2.3.1) The expression for the operator 7^ in
We have

= by (2.2.2.Eq 2d),

/€,!.„= {exp iSa(p,^) }sD by equation (2.2.2.Eq 5b),
(3 = £>d^+df (£,<^) by equation (2.2.2.Eq 1a),

and

V^s0= -ar(X_lp, )sQ for all Xe V^M) by equation (2.2.2.Eq 3).
Then, for X^= -Cd/t>J,),

VxA„= X^({exp iSa(^,^)})s0+{exp iSg(f s0* %
= —-i{Cd Sjj-Cjo,<^_) td) + (XJ?, )} ^)j0
= i{(Bf (f»^r)/3f)-%+^ >^C0- (A2.3 . Eq 1)

Hence for Jg = (j>)-&tt)7we have
Vv ^ = - ('3VC(|>) Vx ^eo- (A2.3 . Eq 2)

_ ^
We have Id^j-"2 = 0 by equation (1.1 .6.Eq 16).%

k* W8tow%r"*fe HPt. Thus the expression for ^ in H^p is
given by

= {(-itf^ +|)Vt^H«,}|dar"a -i^t(f)^Co(Lx id^r"2)
= [{i-fi(B/Df) + (3f(f ,|r)/^)+^%.(^)]/?>t0|d«|!*"a' . (A2.3.Eq 3)
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APPENDIX 2.4

Essential self-ad.iointness

(A2.4.D1) Definition [Hellwig (1964), p172]

An operator A in a Hilbert space H is said to be essentially

self-adjoint if

(ESA1) A in H is symmetric; and

(ESA2) (A+i)H and (A-i)H are dense in H.

Remark: (R1) We shall denote the adjoint of an operator A by A+.

(A2.4.L1) Lemma

A symmetric operator A in a Hilbert space H is essentially self-adjoint

if and only if its adjoint A*" has no eigenfunctions corresponding to

eigenvalues ±i, i.e. if and only if

(A+±. i)¥> = 0 => = 0. (A2.4 .Eq 1)

Proof: This follows readily from the definition given above.g

Remark: (R2) Let H and H' be two arbitrary Hilbert spaces that are linked

together by the unitary map U :H —-^H*. Let I:H —*H and I':H* —•» H' be

the identity operators on H and H' respectively. Then U+

has the following properties [of. Weidraann (1980), p85-86]:

(U1) U+ = U'1; and

(U2) U+U = I and UU+ = I» .
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(A2.4.L2) Lemma

Let H and H' be two Hilbert spaces linked together by the unitary

operator U:H —H'. Let A be a symmetric operator in H and let A' be the

symmetric operator in H' given by A' = UAU+. Then A is essentially

self-adjoint if and only if A' is essentially self-adjoint.

Proof

Suppose tp is a vector in H such that

(A'++i)«P = 0. (A2.4.Eq 2)

Then

(A'*+i)U+U<P = (A'+U++iU+)«f' = 0, if' = Uf. (A2.4.Eq 3)

This implies (UAMJ^+i)^' = 0. Since UA'^U+ci A+, we get

(Af+i)^» = 0. (A2.4.Eq 4)

Now if A' is not essentially self-adjoint; then by Lemma (A2.1.L1) there

exists 0 ^ H satisfying equation (A2.4.Eq 2). Therefore, there exists

ip' = 0 satisfying equation (A2.4.Eq 4). Consequently A is not

essentially self-adjoint. Similarly, we can argue that A being not

essentially self-adjoint implies that A' being not essentially self-adjoint

to establish the lemma, g
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(A2.4.P1) Proposition

The restriction of the operator ^ in H^> to H((J^) is not essentially
self-adj oint.

Proof:

Let-|jo^ denote the restriction of to H(<Fc.) and let £ - 0 £ 0 where
U:H(<P) —->H(<pe) is a unitary operator defined by equation (2.2.2.Eq 27a).

Then is an operator in H((P). Explicitly we have

p <£ = [{-i-fiC-B/t^M-afOfc. ,^)/'3<£) }<P(£)]p (A2.4.Eq 5)
where ^ =ty(is given by equations (2.2.2.Eq 20a) and (2.2.2.Eq 20b). It

is well known that the operator {-±fiOy&<j.)-Caf is not
essentially self-adjoint when operating on ^(^) whose domain is 4 ^
[cf. Akhiezer and Glazman (1961), pp106—111; Wan and Viazminsky (1977)].

Thus is not essentially self-adjoint by Lemma (A2.4.L2).^
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APPENDIX 2.5

Boehner's theorem [of. Riesz and Nagy (1955), pp291-292; Wan and

MeKenna (1984)]

Let (a,a') and (b,b') be open intervals in (R. We shall use the letters

and -^> for the usual cartesian coordinates in (a,a') and (b,b')
respectively. Let U:L (a,a') —-^L^bjb') be linear isomorphism which maps

tf(<^) to %(^) by

=ja" d^K£)C(^,£) (A2.5• Eq 1a)
where C(^,|,) is a smooth function on (a,a') x (b,b'). Let the inverse map
U"1 be given by

^(|) = J d^C^D^,^) (A2.5 .Eq 1b)
where is a smooth function (a,a*) x (b,bf). The linear isomorphism U

is unitary if the two functions E(^,<?) and G(<£,£>) defined by
r Jp

E(f»,|) sj C(^,x)dx, b<fr<b»; (A2.5.Eq2a)
G(Q,f>) = p D(x,f)dx, a<^<a'; (A2.5.Eq 2b)" %<r

satisfy the following three conditions:

(BT1) Let

I(t'f } =i^ E(#,'g)E(£'4)d£' (A2.5 .Eq 3a)
and let y1 = min{$,-fc'} and yz = max{f>,fi}; then

I(f,f) = if (j>-fr)(f»'-fr)>0 and (f,-^)>0,
= <fc.-ya> if (*-{*.>(*»'--ft)>0 and
= 0 if (f-fclty-foXO; (A2.5.Eq 3b)
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(BT2) Let

V,
J(V%') =I G(^»t)GV'f')d ' (A2.5.Eq 4a)

and let z1 = } and z2 = max{^,<£'}; then
J($,£> = (zi-^) if ($-&(%!-&>(> and <$-$,) >0,

= (%t-"z2) if (l-tr)(V-^r)>0 and (|-^r.)<0»
= 0 if (A2.5.Eq 4b)

(BT3)
r% t"
J E(£,|)d^ = j Q(|,f)d£ (A2.5.Eq 5)
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APPENDIX 2.6

(A2.6.1) The pairing map between Hg, and

The elements of Hp are square-integrable and can be written in the form

$ = *P(^)p = 4>(^){exp -iS^(|>,o) }s0 |d{,|-,/2-
[cf. equations (2.2.2.Eq 20a) and (2.2.2.Eq 20b)]. The elements of H<p are

square-integrable and can be written in the form

%= = %<f>){exp ^Sff(f,^)}s0 !d||""2
[cf. equations (2.2.2.Eq 5a) and (2.2.2.Eq 5b)]. The effective

configuration spaces Q and Q c. are identifiable with R(£») and R(^.)
respectively. In the case (1) situation we have R(£>) = IR and R(^) / 1?.

Then by equation (A2.1.Eq 9) of Appendix 2.1 the pairing map between H

and H is given by

<$»^5rt>(P(p = [2nh]_,,zf f T(^) 4'cCja) {exp -SrS^(^5,^)} {exp
R(J,) R(%) (A2.6 . Eq 1)

(A2.6.2) Uia _uniiary_ iac (induced Jsl the .pairing map) from iiL^l in JLL<PcJL

Let us extend the range of <£, from R(^) to IT? and let a
smooth function on that satisfies the condition

fJt'V = on R(^ X R(f ^
[cf. equation (2.2.2.Eq 16)]. In the case (1) situation the quantum Hilbert

space H((P) is the quantization Hilbert space H^. The elements of H(<P) are

of the form

$ =H^)f,
where

<P<1> = o.'JelR-BCj); f = (eXp4[-.{,(r4r)-fto(J,r,%)+fco(#,|r)])3.ldfr"i.
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The operator q* in is given by equation (2.2.2.Eq 7a). By
"IC- C-

equations (2.2.2.Eq 9a)f (2.2.2.Eq 9b), (2.2.2.Eq 17a) and (2.2.2.Eq 17b)

the generalized eigensection (corresponding to the eigenvalue ^ ) of the
operator ^ in H^p is given by

<t>p„
where

v^^(f:) = [2tt«]"i/4 {exp } {exp ,<^)} for ^ R(^'
Ve,(f) = t2nil]_</4 {exp )-fto(-^,^)+fC£,^) ]} for e (R-R(^.) •

Then the pairing map given by equation (A2.6.Eq 1) can be rewritten as

= t2nftr3/4ln?^^(1)^)^c^(t)dfd|' (A2 .6 . Eq 2)
The pairing map determines a linear map 0:H((P) —H(<PC )

[cf. equation (A2.1.Eq 10a)] which maps $ = 'PGaJp (where (^) = 0 for
^re-R(<^)) to-^c= %(t)pc by

%(£) = [2ni1]",/^ (A 2.6.Eq 3)
The inverse map U~1 :H(<pc) —>H(<P) [cf. equation (A2.1.Eq 11a)] given by

<f(<?) = [2tH1]",/4J" %({>)% (A2.6 . Eq 4)fR. %■
To demonstrate that D~'< defined by equation (A2.6.Eq 4) is the inverse map

we need to show that 0_10$ = 5 and 01T'-Jr^= <p-c. This is checked as follows.

<p<^> =
= ^ X (by equation (2.2.2.Eq 6))
= (by equation (2.2.2.Eq 10))

-vy.
and

%lf) = t2n«]-'2JIRd%V0%(f,)JiKdf.W)^(V)
* (by e^uat1011 (2.2.2.Eq 18))

" W-
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To show that U is a unitary map we use Bochner's theorem

[of. Appendix (2.5)] as follows. In this case the various sets and

functions defined in Appendix 2.6 are given by:

(a,a') = (b,b') = (R,

1-1/4

and

c(^,£) = [2irtir,/4 vc%<f),
D(^,£) = [2nfi]-"4
E(^,|) = ^C(^,x)dx = [2ntf]~,/A (x)dx

"fay r

G(q,^) = ^ D(x,pdx = [2irCT,/4J* ^cx(^)dx.$r %v
Then checking condition (BT1) of Bochner's theorem we get

\ E(t'^E(f,,'§)d% = j^^ dxdx'{(2TTfi]"/2-J(R^(x) ^(x«)d }
'

dxdx'S(x-x') (by equation (2.2.2.Eq 18))

which clearly satisfies condition (BT1). Similarly, conditions (BT2) and

(BT3) can be verified. Hence U is a unitary map.

(A2.6.3) The operators ^ and ^ are unitarilv related
Finally, we need to show that the quantum operators in H(<P) and

H(<Pt) are unitarily related: we need to check that u£u-1= Let
3? = where ^ = <P(^)f G: H(<P) and = %_(-J>)^t & H((Pe); (note that
<P(p = 0 for IR-R(^).)

(u|y-1)-#-c =
= U^f(^)f (by equation (2.2.2.Eq 22a))
= C(2irtirl/'4^^(/>(^)»ft (-^)d^] (by equation (A2.6.Eq 3))
= [(2Mifi(*/ty)+ftf£ ,^) /ty) + ^}%%(f)d^]

(by equation (2.2.2.Eq 11))

=

(by taking the curly-bracketed operator outside the integral).
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APPENDIX 2.7

The quantization oL j2.z in the polarizations £ and £ are unitarily related

(A2.7.1) Notation

Let tR be the configuration space of a free particle and let q be the

usual cartesian coordinate on tR. Let M = T*IR= (R2, to be the canonical

two-form on M and let (pfq) be the usual cartesian coordinates on M. Let P

and Pc, be the vertical and horizontal polarizations , respectively, of the

cotangent bundle TylR.

Remark: (R1) We have not used Q to denote the configuration as we usually

do because Q has already been reserved to denote the effective configuration

space with respect to the polarization (P.

Let (pr,qr) be the chosen reference point in M. Let T. denote the

p-coordinate curve in M through the point (p^.,q) and let A denote the

q-coordinate curve through the point (p,q^). Let be a one-form on M that

satisfies d(3=W. Since M is contractible, it follows from Poincare's lemma

that there exists a h(p,q) M such that

[2> = pdq+dh(p,q). (A2.7.Eq 1a)
We shall write

={idp+6dq (A2.7.Eq 1b)
where

Csh/gp) and p+(^h/-aq). (A2.7.Eq 1c)

The line integrals of p> along the coordinate curves x and A, are given by:

S-Jp.q) (5 =^^vodP = h(P»q)-h(Pr,q) (A2.7.Eq 2a)X. \rr

S^(p,q) = J \i = a dq = p(q-qr)+h(p,q)-h(p,qr). (A2.7.Eq2b)
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Let B = M x (t be a trivial bundle over M, (* ,*) be the natural Hermitian

structure on B, s0 be a unit section of B and let V be the connection on B

defined by

^7X sQ = —i(X J (3> )sQ for all X fcV^M). (A2.7.Eq 3)
Let (B,(•,•),V) be the chosen prequantization bundle over (M,tO).

(A2.7.2) The quantisation q£_ slz in the vertical polarization £

We shall now give a brief sketch of the method of quantizing the

Hamiltonian p2 in the vertical polarization P [cf. Wan and McKenna (1984)].

The quantization Hilbert space Hp consists of square-integrable

sections of B x A-i/z (P) of the form

X =lC(q)/A =X(q)texp -±S^(p, q) }s0 |dp|~>/z- . (A2.7.Eq 4)
The variable p is quantizable in Hp , since the associated vector field

(7?/0q) generated by p is complete in the configuration space (R. The

quantization operator 'p' in Hp is given by the expression

[cf. equation (A2.3.Eq 6) in Appendix 2.3]

pX = [ {-ihCb/aq)-^ h(pr,q)/aq) }X(q) ]yu« (A2.7.Eq 5)

The Hilbert space Hp consists of square-integrable sections of
c

B x A-i/2(Pt) of the form

Kt= Kc(p)/x.t= K^Cp) {exp -iS^(p, q) }sQ !dq |_l/a . (A2.7.Eq 6)
The observables p and p2- are both quantizable in Hp , and the quantization

operator ff and p^- are given by the expressions

pT Kt = p Ke and pi Kt = p?Kc (A2.7.Eq 7)

respectively.
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By equation (A2.1.Eq 11a) and theorem (A2.1.T1), we have the unitary

map T:H p —Hp defined by

TKC = [ (2Tifi)~,/Zf Kt(p){exp -irS^Cp, q)} {exp iS^(p, q)) Jdp]^. (A2.7.Eq 8)

We shall now show that Tp^T_/| = p" as follows. Let T"1 X = Kt. Then we

have

(TptT-")X = TptKc
= TpKc (by equation (A2.7.Eq 7))

= [(2Tih)"v,a^ pKt(p)(exp -dtS_c(p,q)}{exp iS^(p,q)}dp]/*-
= "pX (A2.7.Eq 9)

The last step was obtained using the fact [of. equation(2.2.2.Eq 39)]

p{exp -arSc(p, q)} {exp iSA(p,q)}
= [ {-ih('aAoq)-("3h(pr, q)/^q)} {exp ->iS^(p, q)} {exp iSA(p,q)}]. (A2.7.Eq 10)

We shall now quantize pz in the polarization P as follows. Since p2" is
cO

not an element of C (M;P, 1) we cannot quantize it directly in Hp, so we

shall adopt the following method. Let T"1 X = Kc. We define the

quantization operator "p"2 in Hp by

p2X = (Tp? T-1)X. (A2.7.Eq 11a)

Explicitly,

?X = (Tj Kc)
= Tp2Kc (by equation (A2.7.Eq 7))

= [ {-ih(h/c) q)-(-^h(pr, q)/j q) }Z"X.(q) ]yU.. (A2.7.Eq 11b)
The last step is obtained using equation (A2.7.Eq 10).

The symplectic manifold (M,tO) with cartesian coordinates (p,q) is an

example of a case (3) situation ,i.e. R(p) = (R, R(q) = (R. In the case (3)

situation the quantization Hilbert space Hpand the quantum Hilbert space

H(P) coincide. Therefore, we shall define the quantum operator p* in H(P)



Page 161

k A2- ~2.by p = p .

/\ •O

(A2.7.3) The quantum operators p in H(P) and in MP1 ana unitarily

related.

Let (p;,q.) denote the restriction of the. cartesian canonicalvJ J

coordinates to the regions Mj. Then in Mj, we can treat and as

functions of Cp;, q. ) ; so we shall write <fo.(p.'.q;) = p?" andJ J <3 j <J o J

%(pj'qj) = <qj'/2pj'
Remark: (R2) The chosen reference point (p^.,q^) should not be confused with
the reference points (-^ ,<| ) in Mj. Note that (pr, qr) is usually taken to
be (0,0); in which case, it does not belong to either to or M^.

Alternatively, (pr,qy-) may lie in either or M£. However, regardless of

the choice of (p^,q,-) the functions S^-Cp^qj) and S^(pj,qj) are well-defined
in M.' because the functions h(p ,q:) and h(p',qr) are well defined in MJ.v) J « ^

Let Pj and P<\j denote the restrictions of the polarizations P and Pc
respectively to Mj. Let (Bjfj) denote the restriction of the
prequantization bundle to Mj. In Mj, we have:

= X„^. = (2pj)~1 [qj(-a/aqj) + (-3/-apj)], (A2.7.Eq 12a)
(-a/a^j) = x^. = (2pj)('d/^q0), (A2.7.Eq 12b)

Pjdqj+dh(Pj ,qj )
(A2.7.Eq 12c)

and

h(pj,qj) = - ( V 2) Pj- qj +fj (^.( Pj , qj), £ (PJ , qj ) ) , (A2.7.Eq 12d)
S^Pj.qj) = h(pj,q^)-h(p^,qj), (A2.7.Eq 12e)
s°jWsf/VV'j'ttf-'jW (A2-7-&l ,2f)

Vfti'■ U2-7-Eq ,2g)
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Before proceeding any further let us summarize our objective. We
A f\

require to show that the quantum operators p in H(P) and in H((P) are

unitarily related. To do this we need to construct a unitary map between

H(P) and H((p). However, the construction of the unitary map is complicated

by the fact that for each j, Pj and <Py are not transverse because by
equation (A2.7.Eq 12a) we have PJrn + (F^ ^ T^M at m e {m £ Mj: q = 0}, so
we cannot construct a pairing map between the quantum Hilbert spaces H(P)

and H((P). On the other hand, the polarizations P: and are transverse in

Mj by equation (A2.7.Eq 12b), so we can construct a pairing map between the
AO ^

quantum Hilbert spaces H(P) and H((f^). We shall show that p in H(P) and

in H((P) are unitarily related using the following five steps:

(i) Construct the pairing map between H(P) and HCcP^);

(ii) Construct the linear map (induced by the pairing map) from H(P) to

HWl);

(iii) Use Bochner's theorem to show that the linear map constructed in

step (ii) is unitary;

(iv) Show that the operators/pZ in H(P) and in H((PC) are unitarily

related.

A A
Remark: (R3) By equation (2.2.2. Eq 5*0, in H(<P) and in H((Pc) are

unitarily related; the link between H((P) and H((Pt) is given by the unitary

map V:H(<J^,) —-*> H(<P) which has been defined in equation (2.2.2.Eq 53a).

Therefore, if /pi in H(P) and .-Jo in H(<P) are unitarily related, then p in
H(P) and -L in H((P) are unitarily related.
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(i) The pairing man between B(P) sM iKjPd

The elements of H(P) defined by equation (A2.7.Eq 4) can be written in

the form

X = X1 © Xz (A2.7.Eq 13a)

where Xj denotes the restrictions of X to the regions Mj. Explicitly, Xj is
given by

Xj = TUqj >/*j = Qj ) {exP ^st.(Pj »Qj )}So idpj \~y,z-. (A2.7 .Eq 13b)

The elements of H(<PC) are of the form [cf. equations (2.2.2.Eq 47a) and

(2.2.2.Eq 47b)]

^ (A2.7 • Eq 14a)
where

% = ''i'W'fjc ■ Vfa)Iexp iSo]ti'?i)ls»ld?jr"z- (42-T-Eq 1"b)
Then the pairing map between H(P) and H(<PC) is given by

[cf. equations (A2.1.Eq 1b) and (A2.1.Eq 1c)]

<X '¥~c>pp = (2nfi) 1 [ [ (X2>1P~2. )p,<PiC ^
(A2.7.Eq 15a)

where (X:,^..\ are one-TM.'-densities given byJ JVPiT> J
\T0t

(Xj'%Vj<Pjc
= lL{qPVh) {exp ^ST-(Pd ' qi } 1 {exp '%i) } X

! dpj !~'/2 {-9/3 pj} Id^r"2 } |2!dpjAdq^ (Vfa pj ,2pj(U/3q )) I

(A2.7.Eq 15b)

Let = SxSpi»'ip~S0j-'%'] ^then Lo^q0 ^ ls Siven explicitly by
LJ<V#j> = (A2.7. Eq 16)

J*" II
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The pairing map between H(P) and H((PC) is given explicitly by

f dqj i d j=j '-(<ij)V'I<.(hi (exp iL,i(qa'J-j)}(IJ^j)"4 ]^ tR Jo

"2.
„ _cx>

= (2ntf)"1 I [

(A2.7.Eq 17)

In the latter equation we have used the following facts:

»/ 2.
R(qj) = (R, R(^j) = (0,e») and !gj = (4-£j)-|d£.^ I . (A2.7.Eq 18)

(ii) The construction .the linear man between and. H(P)

Let W:H((Pt) —■*> H(P) denote the linear map (induced by the pairing map

defined by equation (A2.1.Eq 11a). The linear map W maps ^ = ^f1c®

^c. = » to x =%(q)/<- by
X(q) = [£v*i)Iexp ^Lj(qj'ti),(l,i5r"4d^]

(A2.7.Eq 19a)

with inverse map W"1 given by [cf. equation (A2.1.Eq 10)]

Vfo0 = (2"fi)'W2 ^ 'x.u ){exp *Lj(vft)}(1,ftir,/A d<*j]
(A2.7.Eq 19b)

To check that W 1 is the inverse map we need to show that WW~1X = X.

%(q) = {exp -±Lj (qj, ft) } dq'j (q'O
qfq (exp «-j(q,j»^j)}(4^jr,/4 ]

= Z j dqjX(qj){exp ir(h(py.,qj)-h(pr,q^))}[(2niir1 (o dft-(4^.)" I/2-
^j=<' {exp -ar(fj)"'/2, (qj-qj*)}3
= Z j dq^CUj) {exp -dr(h(pr,q^)-h(py.,qV))}[(2nfi)-/1 ^dy^
J=i

\J _ ( * \J ,

{exp -iyj (qj-qj)) ]
(where yj = (-1) (f>j) and dyj = (-1) (4#>j) ,/:2 d-£j

= Z ^ dq.'X(q|){exp -i,(h(py., q- )-h(prl q«)} ]S(qj-q^)
qj ■=«

= X(q) (A2.7 .Eq 20)

Hence we have established that Wis the inverse of H.
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(iii) W is. a unitary map

To show that W is unitary we shall use Bochner's theorem

[of. Appendix 2.5] as follows. The various functions defined in

Appendix 2.5 are listed as follows:

C(q,£>) = (2nh)~~Uz {exp arLj (qj 4in Mj,
D(q,fc) = (2nK)~,/2 {exp -iLj (qj ,-£j)} (4^)"1/4 in Mj,

2- ft
E(#,q) = (2n-fi)~"2|I ( C {exp-iLj (qj , xj ) } (4 x.)"l/4 dxj inMj,

lf=<« V J
G(q»£) = (2nh)_l/i ^ "* {exp -iLj (x^ ,^-j)}(dxj in Mj.

<*j=q
Let us check condition (BT1) of Bochner's theorem.

= E(-^,q)E(-jj3' ,q)dq
00

OO ?J_ A fl '
= (2nh)'1 ^ dq[ X ^ 0 ^ 0 dxjdxj{exp -i(Lj(qj,xj)-Lj(qj,xj)}-oo J -1 -jp JU

VT JV" (4xt)-'^ (i»xj)-l/4 ]
= i dx.'dxjCHxj)-'^ (4xj)-l/4 {exp -dKkj(xj,^)-kj(xj.,^)}^~JL, oo ; _Jr J,r [(2tvfi)~'1^ ^ {exp-ar(-1)J -/xj- )}dqj]

(where kjtxj,^,.) =

■IxJdXj-fte;)-"4 («Xj)-"4 {exp-^kjCxj.^-kjCrJ-.fcj,.)}
J; *>■ 6(Jx )

= 2L Su \ ,J dujdujauj-uj)(1ujuj.rl/z(exp -i(kj(xj(uj),^jr)-ki(x'j(uk),^)}' Jr %!*■ • *.
(where uj = (-1)J/xj, uJr = (-1) )

Let y^ = min{^.,|,M, yJX = max{ ^ ,^}, vJ1 = min{uj,uj} and let
vJ2 = max{uj,uj}.
Then for C-^°.—and (^j-|^r)>0, we have

=|,CdV2vJi =]r, <yji"V'
For )>° and (t "^)<0' we have

= i, dvj22vjz = ^J"' v.-., O-i *
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For ^"f>)(K"|'v)<0> we have
= 0.

The values assumed by !(#>,£,') clearly satisfy condition (BT1)J similarly,

conditions (BT2) and (BT3) can be checked. Hence W is a unitary map.

/\ /\

(iv) The Quantization operators j> and -j, are unitarilv related

/V A
We shall show that p2 in H(P) and -fa in HCG5,. ) are unitarily related as

follows. Let W~1X = where ^ ^c= ' and
X =X(q)^.

(W^W'1)X
=

= WC^^ie©'^)
= <2««r"z c£ \d+j. t^xexp -iLJ(qj,fc.))(^.r'"V]J«-

(where q : = q)
J

= (2nfi)-"2- [f. C°° dfr. xJo

{(-iR(^/3q^ )-Cah(pv-,qj )/3qj)}X (exp -iLj (q^ ,-fy ) } (4{> )',/4 ]
(by {-ifiCd/flqj )-foh(pr,qj )/aqj)}{exp -iLj (qj ,^.)}

= <*5>"Z<exp -^(Qj,^)))
= p2x.

The last step is obtained by taking the operator

TJ)-(?h(py.,qvi
2_

{-ihCa/-^ q-)-(?h(py_, q-)/a q0 )} outside the integral sign and comparing the
A ■2.

result with expression for p given by equation (A2.7.Eq 11b). Hence we

A /y "A.
have established that p^ in H(P) andin H((PC) are unitarily related.

y\ J A
Therefore p in H(P) and -£> in H((P ) are unitarily related.
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APPENDIX 2.8

Theorem _QH the canonical decomposition q£_ global Observableg [cf. Wan and

McFarlane (1981)]

We shall restate the theorem in terms of the half-density quantization

scheme.

Let d3 be a reducible polarization of a 2k-dimensional symplectic

manifold (M,cj). Let Q be the effective configuration space with respect to

and let pr:M —> Q be the corresponding projection map. Let (B, (• ,*),V)

be the chosen prequantization bundle over (M,u>). Let £ be an observable

that satisfies the following conditions: (i) ^ e C°°(M;(P,1); and (ii) the

associated vector field prJt(X?») is complete almost everywhere on Q. Let
{Q<*} be a family of submanifolds of M that satisfy the following conditions:

(i) the associated vector field pr^(X^) is complete on each Q«, and
(ii) {Qoc} partitions M. Let = {m t M: pr (m) e QCJ and let be the

restrictions of eo to M^. Then (M^jto^)are symplectic manifolds. Let be

the restrictions of X> to (Moi,ujc<). Let be the polarizations of (M^io*)

defined by (P^ = (P on M^. Let (B^ ,(',•) ,V) be the restrictions of

(Bf(',«),V) to (M^Wtf). Then (BK, (• , •) ,V) are prequantization bundles on

(MotfUi*).

Let be the quantization Hilbert space associated with the

polarization <P and let be the quantization Hilbert spaces associated with

the polarizations <£<. By definition, ^ is quantizable in the polarization

<P, and are quantizable in the polarizations Let in H<p be the

quantization operator corresponding to and let 2^ in be the
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quantization operators corresponding to

(A2.8.T1) Theorem

The quantization Hilbert space H^p can be decomposed in terms of the
quantization Hilbert spaces to give

H<p = f H<&
'V

where© is the direct sum over the index ex. The quantization operator £ can
c*.

be decomposed in terms of the quantization operators to give
/N/

£ = © Sn.
<x
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APPENDIX 2.9

Theorem on unitary equivalence,

(A2.9.T1) Theorem

Two self-adjoint operators A and A' in Hilbert spaces H and H'

respectively are unitarily equivalent if they possess identical spectrum

which is purely discrete and nondegenerate.

Proof

Let the common spectrum be {a^: n = 1,2,...}, and let the corresponding

sets of normalized eigenvectors be C = {if : n = 1,2,...} in H for A and

C' = {vy* : n = 1,2,...} in H' for A'. Then C constitutes an orthonormal

basis in H because the projectors associated with the eigenvectors

form a resolution of the identity by the spectral theorem. Similarly, C' is

an orthonormal basis in H'. There exists a unitary operator U which maps C

to C'by D'^n = HV Tor all n [cf. Prugovecki (1981), p215]. It is then

straightforward to verify that DAD"1 = A'. This is done by checking that

DAD"1 has {an : n = 1,2,...} as spectrum, and C' as the corresponding

eigenfunctions.H
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MASLOV-WKB METHOD, THE BWS CONDITIONS AND THE MDDIFIED MASLOV-WKB METHOD

(3.1) Notation

Let (a,b) be an open interval in (£. Let Q = (a,b) be the configuration

space of a Hamiltonian system and let q be the usual cartesian coordinate on

Q. Let R(q) denote the range of q. Let M = TQ = IR x Q, to be the canonical

two-form on M and let (p,q) be the usual cartesian coordinates on (M,u>).

Let q0 be a reference point in Q. Let V(q) be a potential well in Q

that satisfies the following conditions:
OO

V(q) = 21 Vqr, A^are real constants; (3.1.Eq 1a)
~ o

O^lim V(q) = lim V(q) = E^oo and (q-qc) CaV/a q)2-0; (3.1.Eq 1b)
q-*-oo q->vco

i.e. V(q) has a single minimum at q =q0.

Let H(p,q) be the Hamiltonian of a particle in the potential well V(q)

given by

H(p,q) = (p2"/2)+V(q). (3.1.Eq 2)

We shall adopt the notation given in section (1.3) (of Chapter 1) with

a few minor modifications. For the sake of completeness we shall now give

the notation that we shall require as follows.

Let Mo= {closed integral curves of XHl-{(0,q0)}. Let c0o be the

restriction of the canonical two-form go to M0.

e
Let 1$ (t) be the integral curve of that originates at the point

m0= (p = (2E)"Z ,q = qQ). Let T(E) be the period of the integral curve

T$E(t).
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Let (1,9) be the action variables on M0 given by

I =& pdq, 0 = (2*t/T(E)). (3.1.Eq 3)
o-ge

Let R(I) be the range of I. Let H(I) be the Hamiltonian expressed as a

function of I.

e

Let (9) = (p(9),q(9)) be the integral curve of XH that originates at
the point ( p = (2E),,Z" ,q = qc) with 0 instead of t as parameter. Then p(0)

and q(0) satisfy the following differential equations:
oo

(7>q(0)/30) = [T(E)p(0)/2tr] and (3p(0)/a0) = [T(E)/2w] (£ rA^q1""' ).

(3• 1 • Eq 4)

We shall assume tdq(Q)foQ) has exactly two stationary points in the

range [0,2n). Similarly, we shall assume that (ap(0)/a0) has exactly two

stationary points in the range [0,2tt). Then let 0o»0i»®2>03 & [0,2-ir) such

that they satisfy the following four conditions:

(i) 0O = 0;

(ii) 0„<0., <0Z <95<2ti;
(iii) C<>q(0)/?>0) = 0 at 0 = 0O,02;

(iv) (?>p(0)/®0) = 0 at 0 = 01 ,03•

Remark: (R1) Let P and Pc be the vertical and horizontal polarizations (of
the cotangent bundle T Q) respectively. In the next subsection we shall

identify the position and momentum representations with the quantum Hilbert

spaces H(P) and H(PC) respectively. Therefore, for the present it is

sufficient to know that the position and momentum representations are

2. 2,
suitably chosen subspaces of L (Q) and Lc(lR) respectively. (As before the

subscript c in LC((R) is used to indicate that it is the space of

square-integrable functions of p.)
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The Schrodinger equation in the position representation is given by

(H-E)Wq) = 0 (3-1 • Eq 5a)

where

H= [-ifiO'Vaq2)+V(q) ]. (3-1.Eq5b)

The Schrodinger equation in the momentum representation is given by

(He.-E)iP (p) = 0 (3-1 -Eq 6a)

where

Let

y\ „ 5P y* w-

= t (p /2) + ]F (i-tt) Ay-O/ap) ]. (3 -1 - Eq 6b)

[-2jTT-(2n-02),2jq+e2]. (3-1 -Eq 7)

Let H'O) be a function on ; then

(4^J)(q) = T ^(0) if qfe (q: V(q)<E}
© fc Aj

q
= 0 otherwise, (3-1-Eq 8)

and

(^c,j)(p) = 51 *V(0) if p e {p: pa-^[2E-min(V) ]}
©<= A j
\p(.6)= P
= 0 otherwise. (3 -1 -Eq 9)

Let J(0) and J,. (0) be functions of 0 defined by

J(0) = v ak = ~kTi for 0 e (2kn-(2n-0a) ,2k-rt+0<i 3»

J(9) = -Ak= -kn-rr/2 for 0e (2kir+01, 2kn+0 j],

Jt(9) = B*. = -k'-q -Tt/4 for 0 (2kVr»2klrT+02],

Jc(0) = B", = -k'n-3H/1 for 0 & (2ktn+02»2kV+2n];
(3•1•Eq 10)

where k, k' ^ .
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Let <p(B) and <^t(0) be the two WKB-like functions of 0 defined by
e

<p(Q) = |C3q/30)| ,/2" {exp drj p(0)[3q(0)/00]d0} {exp iJ(0)}; (3-1.Eq 11a)
^(6)= I Cdp/30) |~,/2-{exp -JrC q(0) [?p(0)/00]d0} {exp iJ£ (0)} . (3.1.Eq 11b)Jo

Let e(0) and ec(0) be two smooth real-valued functions of 0 that

satisfy the following three conditions:

(i) e(0)+ec(0) = 1 for all 0 fc IK;
(ii) For all 0 fc fRand k eZ2, we have

e(0) = e(9+2kn) and ec(0) = et(0+2kn) (periodic conditions).
(iii) e(0) = 0 in the neighbourhood of the points belonging to the

set TT . Similarly, ec(0) =0 in the neighbourhood of points

belonging to the set TTt .

(Here

TT = {0 6fE:lkfe"Z7 with either 0 = ©1+2kv, or 0 = 05+2kn]},
and

TT^ = (0e(R :3 k t? with either 0 = 2kTi, or 0 = 0z+2kri}.)
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3.2 THE MASLOV-WKB METHOD FOR Q ^ (R

In section (1.3) (of Chapter 1) we outlined the Maslov-WKB method for

the Hamiltonian system of a particle in a potential well with configuration

space Q =fR. In this section we shall seek to answer the following

question: what modifications to the Maslov-WKB method are necessary if the

configuration space is not the entire fR?.

We shall assume that Q £ IR throughout this section. Let us now

formally extend the range of q from R(q) tofl?; however, we shall continue to

use R(q) to denote the range of q in Q.

Let L (ir) be the space of square integrable functions of q, and let
2. 2

Lc(lR) be the space of square-integrable functions of p. Then L (IR) and
-2 2 2.
L ~(1R) are unitarily related by the Fourier transform F:Lc(fR) —L (fR) which

is given by

(FH'c)(q) = (2ufir,/2 J texp drpq}4{Jp)dp, M't(p)e L?c(fR); (3.2.Eq 1a)
and the inverse map F"1 is given by

(F_1^p) (p) = (2mfi)-'^r {exp -,±pq} q) dq, tf(q) G- L2(iR) . (3.2.Eq 1b)
JfR

Clearly the phase space (M,oj) with cartesian canonical coordinates

(p,q) is an example of the case (1) situation studied in Chapter 2:

R(p) = fR and R(q) j fW. Let P and Pc be the vertical and horizontal

polarizations, respectively, of the cotangent bundle T Q. We shall identify

the position and momentum representations with the quantum Hilbert spaces

H(P) and H(PC) respectively, as follows. Let the position representation be
2. -A 2

L (Q) and let the momentum representation be F L (Q). Clearly the momentum

—Ao 2
representation F L (Q) is a closed subspace of Lt((R). The momentum

representation and position representation are related by the unitary map
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U:F~1L2(Q)<c L^(fP-) —-$>L2(Q) which maps ^(p) toM'Cq) by

tf(q) = (2nR)"'/2^rE dptexp -±pq} M^(p); (3.2.Eq 2a)
and the inverse map U_1 is given by

4^(p) = (2nH)"'/aV dq{exp -irpqj^q). (3.2.Eq 2b)vt£.

A 2. ^ -1 2
Then the Hamiltonian operators in H in L (Q) and in F"'L (Q) which

are given by equations (3.1.Eq 5b) and (3.1«Eq 6b) are unitarily related by

U:

IT1HU = Hc. (3.2.Eq 3)

Our objective is to construct approximate solutions of the Schrodinger

equation (in the position representation) given by equation (3.1-Eq 5a).

For Q = (R, we defined §3 (q), the Maslov-WKB wave function (corresponding to

the energy E) of the Schrodinger equation, by

3? (q) = lim {(1/j) [ (Fcp„ ejc'j ) (q) + (fi~eJ ) (q) ]} (3.2.Eq 4)
j->co c- c

tcf. equation (1.3. ^ - Eq 10)]. Clearly some modifications to the definition

of $(q) will be necessary.

7—i c.,;
If for the moment, we ignore the fact that 0 may not be in

the entire domain of U; then formally we have

(F <j6^eJcij ) (q) = (0 $T~e^'J ) (q), for q & {q: V(q)<E}. (3.2.Eq 5)
Therefore, Theorem (1.3.4.T1) and corollary (1.3.4.C1) are formally

unchanged if we replace (Fd) e,C-'J )(q) by (D 'd> e,c'J )(q). An obvious' CL 7 C

definition of the Maslov-WKB wave function (corresponding to the energy E)

would be

3T(q) = lim {(1/J)[(U^e®'*i)(q)+(^eJ )(q)]J. (3.2.Eq 6)
J->oo

| .
However, this definition will only makes sense if (U <f) e C'J )(q) is well

v- L

defined: (if)ecC,J )(p) must belong to the domain of U in the limit -ff —^>0.
This requirement can be restated as follows: Hp) must approximate
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_ n

an element of the momentum representation F L (Q) as-if —0.

(3.2.T1) Theorem

(i) We have

f I (F ^e^'J )(q)|Z'dq = Ofai^) for some k = 1,2,3,....

(3.2.Eq 7)

(ii) )(p) approximates an element of the momentum representation

space F'^L^CQ) as ii —0.

Proof:

(i) See Appendix 3.1.

(ii) This assertion follows from (i), since by definition F"1L2(Q) consists

of elements whose Fourier transform (FH£)(q) vanishes on the set

IR -R(q)

It follows from assertion (ii) of the above theorem that the function

<£e(q) given by equation (3.2.Eq 6) is well defined in the limit "1i —^>0> so

we shall give the following definition.

(3.2.D1) Definition

The Maslov-WKB wave function (corresponding to the energy E) of the

Schrodinger equation (in the position representation) is defined by

$ (q) = lim {(1/j) [ (U^ e'c'j ) (q) + ( (pej ) (q) 3}. (3.2. Eq 8)
CO

(Here the Schrodinger equation referred to is given by equation (3.1.Eq 5a),

and E €: (min(V),E0) where min(V) = V(qQ).)
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Clearly Theorem (1.3.4.T2) (of section (1.3)) remains unaltered.

(3.2.Eq 9)

and spectra

The allowed values of I predicted by the Maslov-WKB conditions are:

I^n) = (n+1/2)fi, where n fc ~£. and I^n) G; R(I). (3.2.Eq 10)
/\

Thus, the discrete part of the spectrum of the Hamiltonian operator H

predicted by the Maslov-WKB conditions is

R^(H) = {EW( n) = H(IW(n)): neZand E^(n) e (rain(V) ,EC)}. (3.2.Eq 11)
Vl A

(Here the subscript D is used to indicate the fact that Rjl(H) is the
A

discrete part of the spectrum of H.)

Therefore, we have the Maslov-WKB conditions given by

[2n]_1i) pdq = (n+1/2}tf, for some integer n.

Remark: (R1) We shall use the superscript vj for the values

predicted by the Maslov-WKB conditions.
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3.3 A COMPARISON OF THE BWS CONDITIONS (IN THE HALF-DENSITY

QUANTIZATION SCHEME) WITH THE MASLOV-WKB CONDITIONS

We shall use three examples of Hamiltonian systems consisting of a

particle in a potential well to compare the BWS conditions (in the

half-density quantization scheme) with the Maslov-WKB conditions.

In addition to the notation given in section (3.1) we shall use the

following notation. In section (3.1) we defined the submanifold MD by

M0 = {closed integral curves of XWJ—{(0,qo)} where the qo is the point in Q
where the potential well V(q) has its minima. Let 0Jo be the restriction of

the canonical two-form uo on M to M . The action variables (1,0) on (M0,wo)

are defined by equation (3.1.Eq 3). Let <Pr__ be the polarization on (M , )

spanned by the vector field ("9/30). Let B = Mb x £ be the trivial bundle on

M0> (*»*) be the natural Hermitian structure on B, sQ be a unit section of B

and let*7 be the connection on (M0,io0) defined by

sc = -/ir(X -i(S )s0 , for all X e V<t(M) (3.3.Eq 1a)
where the connection potential (5 is given by

p>= pdq+cd0, c t(R. (3«3.Eq 1b)
Let (B,(«,»),v) be the chosen prequantization bundle over (M0,Uo).

The half-density quantization of the Hamiltonian H and the action

variable I in the polarization (Pa gives rise to the following BWS conditions

[cf. equation (1.2.4.Eq 6)]:

[2tt]"1^ = ntf, for some integer n< (3-3-Eq 2)
The allowed values of I predicted by the BWS conditions are:

I(n) = nfi-c, n e 7Z and IfcR(I). (3-3. Eq 3)
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/\

Therefore, the discrete part of the spectrum of H predicted by the

BWS conditions is

iyH) = {E(n) = H(I(n)): ne# and E(n) g. (min( V), E0)}. (3»3.Eq 4)

(3.3.Ex1) Example; Tfre cme-dimensional simple harmonic oscillator

[cf. Wan and McKenna (1984); example (2.3.6.Ex 2) of Chapter 2]

We have Q = fR, M = T*Q = V(q) = qz, H = (p2+qi)/2,

XH= pfa/a q)-q(^/3p), M0= rR2"— {(0,0)}, I = H and 9 = tan~1(q/p).

The discrete part of the spectrum of H predicted by the BWS conditions

is

Rd(H) = (E(n) = I(n); I(n) = nfi-c, neZ and E(n)>0}. (3-3-Eq 5)'
The physically correct spectrum is obtained if c = -Ti/2.

/x

The discrete part of the spectrum of H predicted by the Maslov-WKB

conditions is

Rp(H) = (E^(n) = IW(n): IU(n) = (n+1/2>fi, n = 0,1,2,...}. (3-3-Eq 6)

This is the physically correct spectrum of the operator H.

(3.3.Ex 2) The modified Posch-Teller potential [cf. McKenna and Wan (1984);

Flugge (1974), pp94-100]

We have Q =[?.; M = T*Q = l£ ; V0 = -[-K2o(2A(a-1) ]/2 where tA, A are real

constants; V(q) = -V„/ch2(c*q); V(q) has a single minima at q = 0;

M0 = {(p,q)fc M: Vto<H<0}-{ (0,0)} ; I = [ (-2V0 )'/2- -(-2H)'/i ]/*;
0 = sin_/1 (({H/ (VD-H) },/2 sh(*q)); R(I) = (0, [A (A-1) ]"z -fi) and

H(I) = -l{-2V0)y,± -M]2/2.
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The physically correct eigenvalues belonging to the discrete part of
A

the spectrum of H are known to be [cf. Flugge (197*0]

E(n) = -Efi2o£2 (N-l-n)2-]/^, n = 1,2,... and n^A-1. (3.3-Eq 7)

The BWS conditions give physically correct results for the discrete part of
A

the spectrum of H if the connection potential is chosen to be

(5 = pdq-rf^-1)^2 [(A-1)l/l - AVi]d0. (3.3.Eq 8)

In this case the allowed values of I predicted by the BWS conditions are

I(n) = {n-(A-1)Vi C CA-1 ),/2 -Ay*]}fi, n = 0,1, «A-1. (3-3.Eq 9)

The allowed values of I predicted by the Maslov-WKB conditions are

IW(n) = (n+1 /2}h, n = 0,1,2,. . A,/2- (A-1 )Va -1/2. (3-3-Eq 10)
U A A

Therefore, R-pCH) the discrete part of the spectrum of H predicted by the

Maslov-WKB conditions consists of the following set of values:

E^Cn) = -(^hZ/2)[ Av/2-(A-1)V2 -(n+1/2)]2-, n = 0,1 ,2,...« Ay* Cn-D72" -1/2.

(3.3•Eq 11)

Let us compare the physically correct eigenvalues E(n) given by
vJ

equation (3.3.Eq 7) with the values E (n). Let

A(n) = I [lOOCECnJ-E^Cn))]/E(n)I;/l(n) is the percentage error between the
■»>/

values E(n) and E (n). For the sake of convenience, we shall put A= 4.5.

Then:

A

(i) The physically correct spectrum of H consists of the following

eigenvalues:

E(0) = -6.125/fi , E( 1) = -3.125/ft1, E(2) = -1.125c?** and

E(4) = -0.125 eCfiZ.

(ii) Rj)(H) consists of the following values:
EW(0) = -6.0157*^, EW(1) = -3.047ofr?, EW(2) = -1.0783/-K2 and

EW(4) = -0.1100/-Ra.
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(iii) The percentage errors are:

A(0) = 11$, A(1) = 8%, A(2) = 5? andA(3) = 2$.

(3.3.Ex2) The isotonic oscillator [example (1.2.4.Ex1)]

We have Q = rR^"= (0,oc>), M = T*Q = fR x IR*" V(q) = (q-1/q)2",

M0 = (R x {(1,0)}, I = H/8V2 and 0 = -cos"1 ({2qt-H-2}/{HZ+4H}x'* ).

Note that unlike the previous examples the configuration space Q does

not coincide with fc..

The physically correct spectrum of H is known to be

{E(n) = 81/Z [n+1/2+(1/4)(8/#+1),/z -(1/4) (8/-K1-)1/2 Jtf: n = 0,1,2,...}.

(3.3.Eq 12)

In example (1.2.4.Ex1) of section (1.2) we showed that the BWS conditions

give the physically correct result for the discrete part of the spectrum of
/v

H if the connection potential is chosen to be

(2)= pdq-[ (1/2) + ( 1/4) (8/-ft*+1 Vn -(1/4)(8/-fi2) ,/2-]hd&. (3.3.Eq 13)

The spectrum R^H) predicted by the Maslov-WKB conditions is given by

R^(H) = {EW(n) = 8V2 (n+1/2)if: n = 0,1,2,...}. (3.3.Eq 14)

A
Then the percentage error between the exact eigenvalues of H and the

vJ
corresponding values E (n) are given by

A (n) = [(E(n)-EW(n))]/E(n) = 6.25ff'$, n= 0,1,2,.. . (3.3.Eq 15)
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The following points emerge from the three examples considered:

(i) In general, the Mhslov-WKB conditions predict physically incorrect

results for the discrete part of the spectrum of H. However, they do give

approximate eigenvalues; the percentage error between these approximate

eigenvalues and the exact results depends on the problem under

consideration.

(ii) The BWS conditions give physically correct results for the discrete
/\

part of the spectrum of H if the following two conditions are satisfied:
A.

(a) The physically correct discrete part of the spectrum of H is given by

{H(l(n)): I(n) = nfi-c, n <^7l , c&27 is fixed and min V(q)^H(I(n) )<max V(q)}.

(This condition is satisfied by a large number of examples that are of

interest in physics.)

(b) The connection potential (S is chosen to be = pdq +cd6 where c is

determined by physically correct spectrum given above.
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3.4 A MODIFIED MASLOV-WKB METHOD

We have demonstrated that the Maslov-WKB method is unable to produce
As

exact discrete eigenvalues of H (the Hamiltonian operator of a particle in

potential well) in many cases. The question then arises as to whether we

can modify the Maslov-WKB method to incorporate the BWS conditions, so as to

give the exact eigenvalues. The modification must involve the flexibility

arising from the choice of connection potential made in the half-density

quantization scheme.

We shall assume the results and notation given in the previous sections
A

of this chapter. In particular, we have the the discrete part of the
A

spectrum of H predicted by the BWS conditions [cf. equation (3>3.Eq 4)] and

vl, . a
R^H) the discrete part of the spectrum of H predicted by the Maslov-WKB
conditions [cf. equation (3.2.Eq 11)] given by

Rp(H) = {E(n) = H(I(n)): n fc2 and E(n)«= (min(V),E0)} (3.4.Eq 1a)
and

R^(H) = {E^n) = H(lW(n)): n ^and E^(n) (min(V),E0)}. (3-4.Eq 1b)
respectively.

A v/ A ^
Clearly Rp(H) and R^H) coincide if the connection " of the

prequantization bundle (B, (• ,* ) ?7) (over (M0,CJ0)) is determined by the

connection potential (5 = pdq+(k+1/2)fid0, where k is some integer.

Therefore, we shall study the following two cases separately:

(CP1) (3 = pdq+(k+1/2)fid0, where ke^;
(CP2) {3 = pdq+cd0, where c { (k+1/2)-fif for all k
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Case CP1: (3 = pdq+(k+1/2>fid0, ke2

/V ^

In this case as pointed out earlier we have R-^H) = R^H). Then for
each E(n)& R^/H), we have the Maslov-WKB wave function $^(q) (corresponding
to the energy E(n)) defined in remark (R2) of section (3.2).

Remark: (R1) By equations (3.1.Eq 11a) and (3.1.Eq 11b), we have:

<^>(0+2 jrr)e (0+2 jrt) = 0(9){exp ij t (2nI/-K)--n] }e(0), jfc^; (3-4.Eq 2a)

$,(0+2jrT)ej0+2jn) = (p^Q){exp ij [ (2rrI/-h)-TT] }ec(0), je^. (3.4.Eq 2b)
(Here we have used the fact that I is given by I =<£ pdq = -A, qdp.) Now,

in the case (CP1) situation, we have:

I(n) = (n+1/2)tf; (3.4.Eq 3a)

<^>(0+2jrT)e(e+2jiT) = ^>(0)e(0) on 7^°"°; (3-4.Eq 3b)

<^(0+2jn)ec(0+2jTi) = ^(0)ej0) on 7f£0o>; (3.4.Eq 3c)
i—i ' < 1 i £C>o)

(</> e J ) (q) = j^ e ° ) (q) » where <p(0)e(0) is defined on 7f ;

(cf)^ e^'j) (p) = j( (p) t where ^0)e^(0) is defined on"ti ;
Therefore, <£> (q) is also given by

■*-h

3?^(q) = (U^O)(q) +(^0)(q). (3.4.Eq 4)
where it is understood that and ^>(0)e(0) are defined on

Case CP2: = pdq+cd0, where c (k+1/2>fi for all k 2?

We have a new situation here in this case: for each E(n)£r R^H), we
Etn )

have $ (q) =0 by Theorem (1.3.4.T2) (of section (1.3)). Hence we cannot

use the standard Maslov-WKB method to construct approximate solutions of the

Schrodinger equation. However, equation (3.4.Eq 4) points to a way to

circumvent Theorem (1.3.4.12). We simply construct a new function on the
,£<r>)

closed integral curve 0 determined by I(n) = rrff-c rather than I(n) = nfi

as follows.
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(3-^-DI) Definition

Let

SJr(q) = (U^.°)(q) + (<R°)(q). (3.1.Eq 5)
Here ^(9)6^(0) and </>(0)e(0) are functions on the curve 75 £(" ^ which is
determined by the value I(n) = nR-c, i.e., E(n) = H(I(n)). We shall refer

to ^(q) as the modified Maslov-WKB wave function (corresponding to the

energy E(n)).

By definition "^(q) is non-zero on the set {q: V(q)<E(n) = H(I(n))}.
The validity of the above construction is justified by the following theorem

whose proof is given in Appendix 3.2.

(3.1.T1) Theorem

We have

|!(H-E(n))if-(q) !| = OCR2). (3.*».Eq6)
n

Therefore, "$"n(q) is an approximate eigenfunction (corresponding to the
/\

predicted eigenvalue E(n)) of the Hamiltonian operator H. In particular,

the degree of approximation is as good as the original Maslov's

approximation [cf. Theorem (1.3.^.T2), assertion (ii) ].

Remarks: (R2) Clearly in the case (CP1) situation we have <3b(q) = q)
\r\

[cf. equations (3.^.Eq 1) and (3-^.Eq 5)]. Therefore, from now on we shall

write "'Frfq) f°r the approximate eigenfunction (corresponding to the energy
E(n)) for both case (CP1) and case (CP2) situations.

(R3) Our choice of "^(q) is the first term in the sum for the original
Maslov-WKB wave functions defined by equation (3»2.Eq 8). We could just as
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[ | ^ ' p | •
easily have chosen (1/ j) [ (U <jf>0 e& 'J )(q) + (<peJ )(q)]f where j is a positive

integer, to be modified Maslov-WKB wave function. It follows from

equations (3.4.Eq 2a) and (3.4.Eq 2b) that this sum differs from "^(q) by a

constant factor.
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3.5 APPLICATIONS OF THE MODIFIED MASLOV-WKB METHOD

Let us consider the pairing problem in the quantization of a

Hamiltonian H with closed integral curves. We shall assume the notation

given in section (3.1). We can quantize H in the polarization (Pc spanned by
/\

(7)/00); so let Hoa be the quantum operator in the quantum Hilbert space

H(tf^), and let be the eigenfunctions of Hoc and let E(n) be the
A

eigenvalues of H,^, . The question now is: what is the corresponding
A 2.

operator H in H(P) = L (Q)?. In other words, what is the unitary operator U
a a.

which maps HCtf^) to H(P) and Hoa to H?. We shall present an approximate

solution to this problem based on the following simple observation: U is

determined if we know the eigenfunctions ^ and eigenvalues of the operator
A- 2. A
H in L (Q). Now the eigenvalues of H are known as they can be taken to

a m
coincide with that of Hot. What we do not know are Here the modified
Maslov-WKB method comes into play. This enables us to construct approximate

r ^
eigenfunctions y~_ of H consistent with the eigenvalues E(n). Using "0? and** n

E(n) we can construct an approximate unitary map U. Thus we have

established an approximate pairing between the polarizations CP and P. In

the next chapter we shall discuss some examples in which this modified

Maslov-WKB method is applicable.



APPENDICES A3.1-A3.2
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APPENDIX 3.1

(A3.1.L1) Lemma tcf. Eckmann and Seneor (1976)]

Let C(p) be a compactly supported smooth function of p with support f1.
Let D(p) be a real smooth function of p and let D' = CdD/^p).

(i) If the following integral exists for some j = 1,2,3,...
t

[-dl/i]^ C dp{exp -±"D(p)} [ (7>/^p) {[D' C3/ap) ([D* . .. fd/"3p) [C/D' ]} ]
P

then,

C dp{exp -irD(p) }C(p)
p • r

= [--fT/i]J \ dptexp 4rD(p)} [ (2>/-ap) {[D'(^/®p)(tD'3 . .. (3/-J p) tC/D'] } ]
J(1

(3.1•Eq 1)

(ii) In particular, if D'(p) £ 0 on P, then

( dp{exp irD(p)}C(p) = OCR ) for some j = 1,2,3,.••• (A3.1.Eq 2)
Jp

Proof:

(i) The left hand side of equation (A3.1.Eq 1) is obtained by integrating

the right hand side j-times.

(ii) This assertion follows from the fact that

[C3/3p){[D'r>l CVapHC/D']}

is a compactly supported function.H

For each positive integer r, we have

Ar= [2rn-(2Tt-0z) ,2ru+e2].

Let us subdivide into the following subintervals:

[2ktr, 2kn+02], k e2Z and -r<k^r;

[2k,-n-(2r\-02) ,2k'n] , k' e 27 and -r^k'^r.

Let us fix k; then on the subinterval [2krr, 2kn+0zJ the map 0 —-?» p(0O has a
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unique inverse which we shall denote by ©£(p)• Similarly, let us fix k';

then on the subinterval [2k'n-(2rT-0£) f 2kf-rr] the map 0 —p(&) has a unique
inverse which we shall denote by 0"^r(p).

Note that for p ^ (p:3 q fe Q s.t. (p,q)fc$£}, we have

( ?~2c,,rMp) = £ 0(e)ej9)C- etO" C-
*pcei = p

= l£ $ (0t(p))e.(e^(p)). (A3.1.Eq 3)
+ *»-»- a K K

(A3.1.T1) Theorem

We have

[ |(F^^'r ) (q) ! ^ciq = 0(-fi2J+l) for some j = 1,2,3,....^ (R- R(a)
(A3.1.Eq 4)

Proof:

Let Pt be the support of (^e^",K") (p). Then for each qe(R-R(q), we
have

(FK^)(q)
r8^CP)

= (2tTfirl/2£ X [ V dptexp-ar(pq-J q(G-) (T>p/-30)d9)} I (3p/-3©) |""'/2 (©^(p))
± *?-v- JPC o *

x e(L(9^(p)){exp iJe(0^(p))} ] (by equation (A3.1.Eq 3))
y

= [2Tifi]",/,221 X [ C dp{exp iD^(p) }C*(p) ] (A3.1.Eq 5)
t K--v~ J n K ^T

where e

C*(p) = !(^p/^e)!-X/7-(0^(p)){exp -4Jt(0*(p))}et(0*(p)) if pePc
= 0 otherwise,

and

D^(p) = pq- K q(0) <Cdpfo 0)d9 if p fe Pc
= 0 otherwise.
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Then we have

and

(DD^/-3p) = q-q(0*(p)) if p fe Hi ;

j ("3D^/-3p) lpfep ^min{ !q-q(0^(p)) I: p & };

i (aD^/ap) | pfcP >0 if qe R -{q: 3 p s. t (p,q) e"tfG }.c.

Therefore, there exists £>0 such that

i (9D^/sp) !Ffcp >q(©3)+£rQ for q^qt©^) (A3.1.Eq 6a)
and

i CaD^/ap) i ^fcpc >q-q(0-t )-£ for q^q(03). (A3.1.Eq6b)
Since the function ©^(p) is a compactly supported smooth function,

(c)JC^/9pJ) is bounded and ! cVapJ)l is finite, for each j.

Then for each q g= {q: Either q^q(0^) or q^q(0-t)}, we have
|(f5Z?.c'"" )(^>1
= 'ftJ [2nfi]~t/a j 71 21 [ dp{exp -arD^(p)}("a D^/^p )~J C^/^pJ) I

± K=-r Jp K N
c.

for some j = 1,2,3,... (by Lemma (A3.1.L1))

v<(2n)[max (pfeft )-min(p ef1,, ) ][min i (DD^/dp) | ]~J [max( ! (9J C*/apJ ) ! ]
[mini ("3D^/j)p) | ]"J L, (where L is a positive number).

Let

Q = {q: either q^q(0-i ) or q<:q(0j)}.
Thus

i (F ^e?c,v~ ) (q) !Zdq L^f [min( I (9D*/-ap) D'^dqIQ
= o(h 2-d+>).
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The last step follows from the fact that the integral

C [min( I (c>D5/^p) I ]"^J dp is finite; since hy equations (A3.1.Eq 6a) and
OQ

(A3.1.Eq 6b) we have

( [mini (tD*/0p) | ]-2J dq ^ 2[-2j+1 ]
O

Since R-H(q)cQ , we have

f l(F^e^Cnr )(q)|2dq = 0(hiJ*') for some j = 1,2,3,....
IR-EC^)
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APPENDIX 3.2

Here is a short list of results that we shall use:

CO

C9q(e)/a0) = [T(E)p(0)/2-n] and («p(0)/a0) = [T(E)/2tt] (£ rA^-> );

H* = [-ifi^/gq^+VCq) ] ;

Hj, = [ (p2"/2) +21 (iff)*"ArC&/7)p)r ]
-D

(UMft)(q) = (2TTfir,/2^ ^ dp{exp-irpq} Vt(p);
(U"v^)(p) = (2n-R)_,/i^ dq{exp -irpqj^q);
. V

A

UH^U"1 = H;
Let <^(q) = f (q) {exp -£S(q)} and ^J^p) = g(p) (exp JrW(p)}.

(H-E)^(q) = -tf°{(1/2)teS/3q)l+V(q)-E}^(q)
+ -fi(-i) {(1/2) (i>'2-S/9q'2-)f+eDf/'aq) (aS/^q)} {exp -±S}

+ higher order terms of'fi (A3.2.Eq 7)

(%-E)0^w(p) =-trb[(pi/2) + {f3AK(-2W/-<)p)K}-E](/)cfVJ(p)
- i-fifZ (-1 )V~Av.r{[ (r-1 )/2] feW/^p)*""•L('^1W/a pl)g+(dW/-ap)K~1 Cdg/gp)} ] {exp -i-W}

r=i

+ higher order terms in"fi (A3.2.Eq 8)

(A3.2.Eq 1)

(A3.2.Eq 2)

(A3.2.Eq 3)

(A3.2.Eq 4)

(A3 • 2.Eq 5)

(A3.2.Eq 6)

(A3.2.L1) Lemma

Let 0= R(q)-{q: 3 P s. t (p, q) }. Then we have

C I (U ^^('?J ec./3 9) ° ) (q) i dq = for some j = 1,2,3,....
^

(A3.2.Eq 9)

Proof:

The function (0ec/a0), like e^O), satisfies the following condition:

O3et/a0) =0 in the neighbourhood of points belonging to the set

{©<Sr(R: 0 = 2krT, 0 = 2kn+02, k€r2?}. Therefore, this proof is formally the

same as the proof of Theorem (A3.1.T1) of Appendix 3.1. after we have

replaced the Fourier transform F by the unitary map U, and 6^(0) by
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Cd e^/90'). |

(A3.2.T1) Theorem

Let

^(q) = (0 3^f-'°)(q)+)(q) (A3 • 2. Eq 10)
where ^(Gje^Q) and^>(0)e(0) are functions on the closed integral curve ~6^
Then we have

|!(H-E)^(q) || = 0(-fiZ). (A3 • 2. Eq 11)

(Note that this theorem is more general than Theorem (3.^.T1).)

Proof:

For q fe {q e R(q): 3p s.t (p,q)&"tf£}, we have

(H-E)ilr(q) =

= (H-E)(U )(q) + (H-E)(^°)(q)
= UU^CH-EJUC^T^^'0 )(q)+(H-E)(fe °)(q)
= U[(Ht-E)(<jr^'° )(p)]+(H-E)(fe°)(q)

(by equation (A3.2.Eq 6))

= -ifi[2Tr/T(E)][{D (3 ec/0 0 )'C'° } (q) + { $(2e/dQ?0 }(q)]
(by equations (A3.2.Eq 7) and (A3.2.Eq 8))

= -ifi[ 2tt/T (E) ] [ '<p Cd (e+ic) /a&)}'«]+0(1^)
(by Theorem (1.3-^-T1) of section (1.3))

= 0(#). (A3.2. Eq 12)

The last step is obtained using the fact that (e+e^) = 1 [cf. section (3.1)

of Chapter 3].
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Let ^ = {q:^ P s.t (p,q)<&tf£}. Thus

l(H-E)^q) |Zdq = 0(tJ2). (A3.2.Eq 13)

Let 0 = R(q)-$.Then for each q fc CD , we have

(H-E)?e(q) = [U(HcrE)($£e2,c»0)](q)
= -i*fi[2TT/T(E) ][U ^3e^e?c'° KqJ+Otfi2-)

(A3.2.Eq 14)

(by Theorem (1.3.4.T1) of section (1.3))

Thus

f |(H-E)-Jre(q) |2dq = -fi \ JU <p' Oe^/a©)1*'0 |2dqJm Q0
(by equation (A3.2.Eq 13))

= Otfi2^2-) for some j = 1,2,3,... (A3.2.Eq 15)

(by Lemma (A3.2.L1))

This proves our assertion. ■



CHAPTER 4

LOCALIZATION OF OBSERVABLES IN AN EFFECTIVE CONFIGURATION SPACE AND

IN THE PHASE SPACE, AND THE MODIFIED MASLOV-HKB METHOD FOR CERTAIN

MULTILINEAR MOMENTUM OBSERVABLES WITH CLOSED INTEGRAL CURVES
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LOCALIZATION OF OBSERVABLES IN AN EFFECTIVE CONFIGURATION SPACE

AND IN TOE PHASE SPACE, AND THE MODIFIED MASLOV-WKB METHOD FOR

MULTILINEAR MOMENTUM OBSERVABLES WITH CLOSED INTEGRAL CURVES

(4.1) Introduction

In section (4.2) we shall attempt to establish unitarily equivalent

quantizations of a general observable in suitably chosen canonically

conjugate polarizations. In general, we shall see that it is not always

possible to establish such quantizations, so we shall attempt to see whether

we can establish unitarily equivalent quantizations for a local observable

that possesses the same properties as ^locally. Motivated by the physical

limitations of measuring devices Wan et al have systematically studied the

notion of local quantum observables in quantum mechanics tcf. McFarlane and

Wan (1981a); Wan and Jackson (1984); Wan, Jackson and McKenna (1984); Wan

and McLean (1985)]. The work of Wan et al includes quantizing classical

momentum observables localized in the configuration space. In section (4.2)

we shall show that by transforming to an effective configuration space we

are able to effect the localization of such that this local observable can

be quantized as a complete momentum observable in a unitarily equivalent

manner in suitably chosen canonically conjugate polarizations.

In section (4.3) we shall localize the Hamiltonian H (of a particle in

a potential well) in the phase space and effect the quantization of the

localized Hamiltonian in a suitably chosen polarization. We shall then use

A. 2
x

the approximate eigenfunctions of the Hamiltonian operator H in L (Q)

constructed by the modified Maslov-WKB method to determine the quantum

operator in L (Q) corresponding to the localized Hamiltonian.
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In section (4.4) we shall extend the modified Maslov-WKB method to

multilinear momenta ,i.e. observables that are polynomials of the momentum

observable p with functions of q as coefficients.
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4.2 THE LOCALIZATION OF OBSERVABLES IN A EFFECTIVE CONFIGURATION SPACE

Let (M,u>) be a 2-dimensional symplectic manifold, )£ be an observable on

(M,u), R(£) be the classical range of values of <£ and let l£^t) be the
integral curve of the Hamiltonian vector field X^ originating at the point
m.

Then according to the Hamilton box theorem [cf. Abraham and

Marsden (1980), pp391-392] we have the following results. Suppose X^(m) j 0
for some m & M, then there is a neighbourhood U of m with canonical

coordinates given by

- X> with range denoted by R(^>), (4.2.Eq 1a)
= t with range denoted by R(^) > (4.2.Eq 1b)

such that the map F:U —^ R(^) x R(^.) given by
F(m) = = t) (4.2.Eq 1c)

is bijective with

Ftf. (t) = (4>,Q.= t). (4.2.Eq 1d)F Cp,o) u o

Let denote the restriction of the symplectic two-form CO to U; then

(U,Wy) is a 2-dimensional symplectic manifold with global coordinates (£>>^.) •
We shall consider the following four case situations:

(1) R(jf) = (R; R(£) j IP;
(2) R(f>) ^ (R; Jl(p = IR;
(3) R(f) = R; R(|.) = IP;
(4) Rty) / |R; Rfy) f IR;

Let (P and be the canonically conjugate polarizations of (U,to^)

spanned by the vector fields (B/Ji^) and (d/^<^) respectively. Then R(^_) is
the effective configuration space with respect to <P and R(^>) is the

effective configuration space with respect to Let (3^ a one-form on U
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that satisfies d|3,^ = ujy.

Let By= H x(t be the trivial bundle over U, (*,*) be the natural

Hermitian structure on By, s0 be a unit section of By and let V be the

connection over By defined by

<7^ s0 = -*(X_ipy)s0 for all Xfe Vt(U). (A4.2.Eq 2)
Let (B ,(•,•),V) be the chosen prequantization bundle over (U,oj0).

Our problem now is to establish unitarily equivalent quantizations of

^ in the canonically conjugate polarizations (? and (f^. In chapter 2 we

spelled out the conditions under which is quantizable, i.e. should

be (R. This condition is only satisfied in case (1) and case (4) situations,

so in these cases we quantize as we did in chapter 2. So the range of ^ ,

R(^), in the case (2) and case (3) situations poses a major obstacle to
quantizing -fi in these two cases. To circumvent this difficulty we propose a

procedure which will enable us to quantize locally in the case (2) and

case (3) situations. This is a generalization of the idea of localization

of (cartesian) momentum observables put forward by Wan, Jackson and

McKenna (198^).

The procedure for quantizing locally in the case (2) and case (3)

situations is given as follows. Let A be an open interval in R(^.) such that
the closure of A is compact and let Ae be an open interval contained in f\ .

Let be a C°°function of that satisfies the following two conditions:

(i) = 1 on A0;

(ii) ^(<|) = 0 on U-A.
Therefore, ^(^.) is a function of compact support on 8(^.).
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Let V = F"1 (R(jjo) xA) and Ve = F~1(R(^) xAc). Then let GJV be the
restriction of UJy to V. Then (V,<0v) is a symplectic submanifold of (Ufa)y).

Then we can choose canonical coordinates ,<|J) on (V,<oy) given by
-JS = -- J'W- (AH.2.R, 3)

%o
where is a chosen reference point in A0- Let R(-Jo) denote the classical

range of -J-,' and let ^ denote the range of . Clearly 8(<^I) = ^
[cf. Wan, Jackson and McKenna (1981)].

Let <p' and <j>^ be the canonically conjugate polarizations of (V,cjv)
spanned by the vector fields (3/d^f) and (0/3^.') respectively.

Remark: (R1) Note that =,£, = 7^ on V0. In particular, R(<^) is
identifiable with the effective configuration space with respect to the

polarization (P; so ^ is the localization of ^ in the effective
configuration space 8(^).
(R2) If AQis chosen to arbitrarily close toA( then Va is arbitrarily close
to V [cf. Abraham and Ifersden (1980), p81]. One can also choose V to be

arbitrarily close to U.

Since =^' -^o *s quantizable in the canonically conjugate
polarizations cP' and (p^. Since = X> in VD and = 0 outside V, we
would argue that the quantization of A,' amounts to a local quantization of

= <£. Therefore, we have established unitarily equivalent quantizations of

the observable % at least locally, in canonically conjugate polarizations.

To sum up:

(i) In case (1) and case (1) situations we quantize 7^ in the same way as we

did in chapter 2;

(ii) In the case (2) and case (3) situations we first localize 7^ in the
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effective configuration space with respect to (P, and then we quantize the

localized observable in suitably chosen canonically conjugate polarizations.
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4.3 THE LOCALIZATION OF THE HAMILTONIAN (OF A PARTICLE IN

POTENTIAL WELL) IN PHASE SPACE

(4.3.1) Notation

(4.3.1.D1) Definition

Let (M,to) be the phase space of a classical system and let be an

observable of (M,w). The observable is said to be localized in the phase

space if the support of ^ is compact in M.

Remarks: (R1) If 1^ is an observable that is localized in the phase space

then the Hamiltonian vector field X^, is complete [cf. Abraham and
Marsden (1980), p70].

(R2) Observables that are localized in phase space are of interest in

physics because of the physical limitations of the measuring devices: a

measuring device has a finite size, and usually measures a finite range.

Clearly a measuring device with a finite range would be incapable of

measuring an observable whose values go up to infinity.

Consider the example of a Hamiltonian of a particle in the potential

well whose values go up to infinity. What we want to construct is a

modified Hamiltonian with only a finite range of values. We can achieve

this by localizing the Hamiltonian in phase space as follows.

We shall assume the notation and results given in chapter 3.

Let (E',E") be an open interval in (min{V(q)},max{V(q)}) and let

[E^,E£] be a closed interval in (E',E"). Let "£,(H) be a function of H
which vanishes outside (E',E"), and which equals 1 inside [E£,EJJ]; then

according to Abraham and Marsden (1980) [cf. p8l] the function ^(H) exists



Fig 4-1 c The Loops are integral curves
of XM. The Hami Ltonian H is localized
in the region bounded by the integral
curves ~6E and
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even when [ , EJ^] is arbitrarily close to (E',E"). The function ^(H) is

referred to as a "bump function".

Let = 5^(H)H. Then *Z^ is localized in phase space as depicted by

Fig 4-1. We therefore call 7^ a localization of H in the phase space. The

region

Ae = {m <£= M: E^H(m)^E^} (4.3.1.Eq 1)
is referred to as the centre of localization.

We recall that M0 is the region in M given by

M0 = {closed integral curves of XH}-{(0,qo)} where q0 is the point in Q at

which V(q) has a minima. Explicitly, we have

Mq = {m M: min(V)4H(m)^max(V)}-{(0,q0)}. We also defined co0 to be the

restriction of the canonical two-form uJ to M0. We introduced action-angle

variables (1,0) on (M0,to0) given by equation (3.1.Eq 3).

Remarks: (R1) By definition the support of X>, supp("£), is contained in M„:

except in the case where = min(V), then supp(t£) is contained in

M0U {(0, q0)}.

(R2) Let %. (m) be a function on M0 which equals 1 inside Ao» and vanishes

outside A.. Note that X. (m) is not a smooth function. Therefore, when0 f\o

[E^,E£] is arbitrarily close to (E',E"); then ^ is a smooth approximation

of the function X (m)H(m).

Let be the restriction of 7^ to M0. Since H is a function of the

action variable I, it follows that 7^ is also a function of I; so we shall
write 7^ = 7^(1).
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(1.3.2) The quantization .of

Let us quantize ~f in the polarization spanned by the vector field
-*o

Cb/30). We recall that quantizations in the polarization (5^ gives rise to
BWS conditions [section (1.2) of chapter 1; section (3.3) of chapter 3J. In

order to quantize we need to quantize the action variable I first. Let
/\

be the quantum operator corresponding to I in H(d^,). According to the

BWS conditions the set of allowed values of I is

R(I^) = {I(n): I(n) = nfi-c, n&ZZ and min(V)4H(I(n) )^max(V)}.
(4.3.2.Eq 1)

A /v

(Here R(It) is the spectrum of Icgiven by equation (3.3.Eq 3).) According to

section (2.3) of chapter 2 the quantum Hilbert space H(tf^) is identifiable
2. A

with L^U?.,^) where p. is the discrete measure with support R(It) defined by

^uj( {I(n)} = 1 for each l(n) <& R(IC). (1.3.2.Eq 2)
A

Let Z^0<L be the quantum operator (corresponding to T^0) in ; then
■A

Cc is the multiplication operator C0 in H(<^), and the spectrum R(tfoc) of
is given by

R(^ot) = =^Q(I(n)): I(n) = rlh-c, nfc2Zand E'^H(I(n) )^E"}.
(1.3.2.Eq 3)

. A
We can also write down the normalized eigenfunctions <f) (I) of ~£>oc in

A

exactly the same way as we did for It[cf. equations (2.3.6.Eq la) and

(2.3.6.Eq lb), section (2.3)] as follows. For each

n & {nfc27: E'^H(l(n) )4E"}, the normalized eigenfunctions

(corresponding to the eigenvalue ) of ^otare given by
d) (I) = 1 when I = I(n).
'c.n

= 0 when I = I(n') f I(n), n' e2?. (1.3.2.Eq 1)
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Remark: (R1) Note that =^(l(n)) is only a eigenvalue of if
ne {ne3: E*^H(I(n) )^E"}.

(R2) H(cfV>) is the Hilbert space spanned by the eigenfunctions ^ (I) of theCh

A

quantum operator 1^ which are given by

4^(1) = 1 when I = I(n).
= 0 when I = I(n') £ I(n), n' e zZ. (4.3.2.Eq 5)

Clearly the eigenfunctions ^ (I) and CP (I) are identical for

nfe {n E'^H(I(n)^E"}.

Since ^ is not a simple observable we are unable to construct a unique
*2_

quantum operator corresponding to 7^ in L (Q) using the canonical

quantization procedure. However, we can employ the modified Maslov-WKB

method outlined in section (3.4) of chapter 3 to obtain an approximate

pairing between H((PC) and L^Q) as follows. By equation (3«3.Eq 4) the
A

discrete part of the spectrum of H predicted by the BWS conditions is

R^CH) = (E(n) = H(I(n)): n e#and E(n) ^ (min(V),max(V))}. (4.3.Eq 6)
For each E(n)& R^H), we constructed the modified Maslov-WKB wave function

H^,(q) given by equation (3.4.Eq 5);"v£n(q) is an approximate eigenfunction of
A.

H corresponding to the eigenvalue E(n) which has been determined by the

BWS conditions. We can use these eigenfunctions to construct an approximate

pairing in accordance with the method spelled out in section (3.5) of
A

chapter 3. In other words, the operator in H((Pt) is mapped to an
A A

operator in L (Q) determined, albeit approximately, by requiring to

possess eigenvalues ~C>0 with eigenfunctions ^(q). (Here n belongs to the set
A A

{n £.27: E'^H(I(n)^E"}.) Then RC£) the spectrum of £ is given by
-- *<£*>•
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Remark: (R2) According to the BWS conditions the set of eigenvalues that
/v 2

the Hamiltonian operator H and the quantum operator have in common is

given by

R(£) H R^H) = l~%o= E(n): E(n) = H(Kn)) and E^H(I(n) )^E{J}.
(4.3.Eq 7)

i
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4.4 THE MODIFIED MASLOV-WKB METHOD FOR CERTAIN MULTILINEAR MOMENTUM

OBSERVABLES WITH CLOSED INTEGRAL CURVES

(4.4.1) Notation

Let Q be an open interval in fR with cartesian coordinate q and let

M = T Q. Let co be the canonical two-form on M and let (p,q) be the usual

cartesian canonical coordinates on M.

Let be an observable on (M,io) that satisfies the following

conditions:

(MM01)is given by
OO

X = I ^Jq)PK (4.4.1 .Eq 1a)
K— l K

where ^k(q) are analytic functions of q. The function % is referred to as a

multilinear momentum observable [cf. McFarlane and Wan (1981b)]. In

addition, we shall assume that ~£> can also be written in the form
CX>

(4.4.1. Eq 1b)
k=i

where r/kip) are analytic functions of p.

(MM02) X^> is a complete Hamiltonian vector field with a single critical
point at (0,0) and closed integral curves.

(MM03) The observable €> never takes the same value on two different integral

curves of X^.
(MM04) Each integral curve where E is the value of ^ on any point on the

curve, has exactly two stationary points with respect to q and exactly two

stationary points with respect to p. Then let m0, m.,, m^ and m-*, be points

on such that [cf. Fig 4-2]

= 0 at m0 = (p0»qt)) and mz = (p2,q2), (4.4.1.Eq 2b)
(3^/dp) = 0 at m1 = (p., ,q-j) and m^ = (Pjiq^). (4.4.1 .Eq 2b)
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E of C has exactly two stationary
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X has exactly two stationary with
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As before we let Ma = M— {(0,0)} and let <£o be the restriction of "i£ to
e

M0. Let o (t) be the integral curve of that originates at the point m0
e

and let T(E) be the period of 71 (t). Let (1,0) be action-angle variables on

(Mo,w0) defined by

I = £ pdq, 0 = (2irt/T(E)). (4.4.1.Eq 3)

Since z£0 is only dependent on the action variable I we shall write

£„= tii>-
£

Let T5 (0) = (p(0),q(0)) be the integral curve of that originates at

m0 and parameterized by 0 instead of t. Then p(0) and q(0) satisfy the

following differential equations:

(q>p(0)/30) = -[T(E)/2TT](^(p(e),q(9))/aq) (4.4.1.Eq4a)
(-aq(0)/a0) = [T(E)/2fl]fo£(p(e)fq(0))/jp) (4.4.1 .Eq 4b)

with constant of motion £(p(0),q(0)) = E.

Let 0o,9-j,0i,03 [0,2n) such that 0O, 01f 0Z and 03 correspond to m.0,

n^, m^ and m3 respectively, i.e.

(?p(0)/30) = 0 at 0 = 0O ,02 ; (4.4.1 .Eq 5a)

(3q(0)/30) = 0 at 0 = 0^63. (4.4.1.Eq 5b)

Remark: (R1) The equations (4.4.1.Eq 5a) and (4.4.1.Eq 5b) are formally

equivalent to equations (1.3.1.Eq 9a) and (1.3-1-Eq 9b). This formal

equivalence will prove important when we consider the modified Maslov-WKB

method for
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Here is a list of additional notation we shall require when we consider

the modified Maslov-WKB method: Let ^6 » > If 4. and 7>- be the arcs on the

integral curve TJ given by [cf. Fig 4-3a and Fig 4-3b]

= {(p(0),q(0)): 0fc C2n-e3,01]};
-"JE = {(p(©■),q(0)) fcTSe : 0 e [0/j,0j]}

= t(p(6)»q(0)) €r"Se: 0t [Qo,©^]}
= {(p(0) ,q(0)) 6Tf6: 0& [0z,2n]}

Let

+sE<"> = L pdq on +3f£with m
E, v r""' £ 6

_ S (q) = \ pdq on -Tf with m e_"tf ;
6 rwf (p) = - (""qdp on with m elf+ ;

wf (p) = - V^qdp on ~sf~ with m e~ti- ;
J«V1„

(4.4.1.Eq 6a)

(4.4.1.Eq 6b)

(4.4.1.Bq 6c)

(4.4.1.Eq 6d)

(4.4.1.Eq 7a)

(4.4.1.Eq 7b)

(4.4.1.Eq 7o)

(4.4.1.Eq 7d)
yt

(here all the integrals are along lS ).

Let (J= pdq+cd0 be a one-form on M0 where c e(R. Let (B, (•,•),V) be the

chosen prequantization bundle on Ma defined in the usual way such that the

connection S7 is determined by the connection potential (3.

We shall split this subsection in to two parts which we shall denote by

(a) and (b) respectively: in part (a) we shall quantize in the

polarization (fc spanned by the vector field ("3/90), in part (b) we shall

give the modified Maslov-WKB method for multilinear momentum observables

like 7^.
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(a) Quantization s£_ the polarization

Let us quantize in the polarization (P^ spanned by 0/9&). Let Itbe

the quantum operator corresponding to I in H(<PC) and let R(I) be the

classical range of I on (M0,iOo). According to the BWS conditions the
A A .

spectrum of I , R(IC), is given by

R(IC) = {I(n) = nfi-c: n e2, I(n) feR(I)}. (4.4.2.Eq 1)
2.

The Hilbert space H(<pc) is identifiable with Lc(lR,ji) where p. is a discrete
measure with support R(Ia) and such that

ji({I(n)} = 1 for each I(n)&R(Ic). (4.4.2.Eq2)
A

Let 7^ be the quantum operator (corresponding to 7^o) in then
A A

is the multiplication operator in H((S<.). The spectrum R("^0 ) of
is given by

R(£ ) = (E(n) =<o(I(n)): n e 7L and E(n) e R(t£)} (4.4.2.Eq 3)
where R(t£ ) is the classical range of .

(b)The modified Maslov-WKB method

2 12
Let L (Q) and F~ L (Q) be the position and momentum representations

given in section (3.2) of chapter 3. Let U:F"1Li(Q) —L (Q) be the

unitary map given by equation (3.2.Eq 2a). By equations (4.4.1.Eq 1a) and

(4.4.1.Eq 2a) we can write L, in the forms

? =?^,H(q)pk (4.4.2.Eq 4a)
or

oo

"lk< (p)qk. (4.4.2.Eq 4b)
K-o
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According to the canonical quantization scheme a general expression for
a

the quantum operator "2^ (corresponding to the classical observable in
2

L (Q) is given by
A CP K ' • ,

= I (-i«)KX DJK(q)(^J/^qJ) + ^(q) (4.4.2.Eq5)
k=. J = o °

where D^(q) are smooth functions of q not involving -ft
a

[cf. McFarlane (1980)]. Since ^ should be formally self-adjoint, we require

DK^and DKk_,to be given by

Dkk= ^ (q) and DKK_, = (1/2)k(9^/3q) (4.4.2.Eq 6)
A 2,

respectively [cf. Woodhouse (1980), p80]. Hence the operator in L (Q) is

partially determined by the expression
/V OO \y A

"£<f(q) = IT (-if5)K{£ (q)raK/aqK) + (k/2)0|;/3q )(3 V^qM )}]tC(q)+^ (q)f(q)
k-i

(4.4.2.Eq 7)

where the terms omitted are undetermined.

Similarly, let ^ be the quantum operator (corresponding to £) in the
'

A

momentum representation F",L1(Q); then 7^ is partially determined by the

expression
A cyp

"£.%,( p> = iZ unflV.(p)0K/ap^)+(k/2)0^ /9p)c*K-7ap*-*)}] ^(p)+"7;(p)%(p) .4 K ~ i ^
(4.4.2.Eq 8)

Let Et R(^ ) where R(^) is the classical range of . Then according
-v

to Appendix 4.2 the WKB solutions of ^ corresponding to E is given by

<i>£(q) = +K | (•3q/Q0) i^2- {exp -i4JSe(q)}+ _K| (a q/30) IT1'2" {exp ar_Se(q)}' W

(4.4.2.Eq 9a)

where +K and -K are constants, and +S (q) and -S (q) are given by

equations (4.4.1.Eq 7a) and (4.4.1.Eq 7b) respectively, and

IOq/90) = [T(E)/2it] jf° k£ C3+SE/0q)KH |",/2-. (4.4.2.Eq 9b)
In Appendix 4.2 we also show that the WKB-solutions of "Z^ corresponding to

■^ = E is given by
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(p) = K^l (-3P/-30) |^'/2-{exp-iW^(p)}+ K_ ! (^ p/^e) |l'/z {exp-iwf(p)}*7lA/

(4.4.2.Eq 10a)
£ £

where K+ and K_ are constants, VMp) and W_(p) are given by equations

(4.4.1.Eq 7c) and (4.4.1.Eq 7d), and

l(^p/0e) T'/2- = [T(E)/2n] | §: k-r7 (-^W p)K~* |-,/2. (4.4.2.Eq 10b)
K=i K

If we compare the WKB solutions ,(q) and (h*~ (p) with the
/V A

corresponding expressions for the WKB-solutions of H and H^,respectively,
(the Hamiltonian operators of a particle in a potential well) given by

equations (1.3.1-Eq 6) and (1.3.1.Eq 12) respectively we see that they are

formally identical. In particular, the conditions given by (MM04) and

equations (4.4.1.Eq 5a) and (4.4.1.Eq 5b) are equivalent to the conditions

given by equations (1.3.1.Eq 9a) and (1.3.1.Eq 9b). This means that the

results obtained by the Maslov-WKB method in section (1.3) (of chapter 1)

and the results obtained by the modified Maslov-WKB method in chapter 3

remain applicable to the multilinear momentum observable X>• So we shall

assume the results in the above mentioned sections. Having constructed the
A

modified Maslov-WKB wave functions ^l(q) corresponding to values in R(zf )Vi i

we can proceed to establish a pairing between H(CF»,) and H(P) (the

quantization Hilbert space associated with the vertical polarization P on

T Q) as we did in section (4.3). The validity of the construction is

justified by the following theorem whose proof is given in Appendix 4.3.

(4.4.2.T1) Theorem

We have

|l(<-E(n)) -$r(q) i| = 0(1iZ). (4.4.2.Eq 11)
A

where ^ is the operator given by equation (4.4.1.Eq 7), E(n) belongs to
A

R(^t) and 1f^(q) is the modified Maslov-WKB wave function (corresponding to
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the value E(n)) defined by equation (3.4.Eq 5).

Remark (R1) The multilinear momentum observable 7^ could be localized

phase space using the procedure outlined in section (4.3).
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APPENDIX 4.1

We have

"£<f(q) = iZ (-Wi)K{^ (q)0K/BqK) + (k/2)(^^/9q ) (7)K"^q«-» )} ] ^(q) +£ (qMq)
K= | °

(A4.1.Eq 1)
^ CO

~CY(p) = [I (±li)K{^K(p)0K/^p^) + (k/2)0^k/ap)('3K-V3p«-')}]'Hi(p)+^o(p)^(p).
^-i

(A4.1.Eq 2)

C3K{exp -iG(y)}/dyk) = [ 2T {k !/a 1b!—c!} (-£-)"" {exp -iG(y)} {"d G/^y} a x

\p2~G/dyV/2l}>? {(1>CG/9y"0)/tl}^. (A4.1.Eq 3)
(Here the symbol indicates the summation over all solutions in

non-negative integers of the equations

a+2b+....+tc = k and a+b+....+c = r.)

Equation (A4.1.Eq 3) is obtained by using the formula for the k-th

derivative of a composite function which is given by equation (A1.5.Eq 2)

[cf. Appendix 1.5].

(A4.1.T1) Theorem

We have:

(i) "£[f(q){exp -arS(q)} ] = [ (^foS/aq)* ] [f {exp -arS} ]
+ (-ill) [f k {(1 / 2) (k-1)\ <fbS/3q)*'Z S/aqi) f+ % (d S/-0 q)K"' fo f/^q)

K = i K
+ (1/2) /7>q) (DS/dq)*"' f} ] {exp -arS} + H.O.T in -tf. (A4.1.Eq 4)

A. CO

(ii)"£ [g(p){exp -iW} ] = [£ <rL(-9W/'ap) K ][g{expiW}]
K-~° K

+ (-iK) [ £ k{ (1/2) (k— 1) X(-3W/0P) *W/9p"*)g-V (^w/ap)K"1 (9g/-ap)
K^i K

-(1/2) (9T9K/9p)(-'aW/9p)K_,g]{exp ^W] + H.O.T in U. (A4.1.Eq 5)
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Proof:

(i) We have

(-i1i)K[0,</3qK)f(q){exp -irS(q)}]

= (-fft)K [fCdK{exp iS}/3qK)+k(3f/3q) Cd*-1 {exp -iSj/gq*"1) + ...

+ (W/3q Hexp -arS}] (by equation (A1.5.Eq 1) of Appendix 1.5)

= [ ('BS/3 q )K ] [ f {exp iS} ]-«![ (1/2)k(k-1) OS/a q) ^'1(/s/9q1)f+...
H-k^S/^)*-'(3f/0q) ] {exp iS} + H.O.T in-R (A4.1.Eq 6)

(by equation (A4.1.Eq 3)).

Similarly, we have

(-US)*^*"' /dqK_l) [f (q) (exp iS} ]

= -i'ROS/dqf"1 [f {exp -iS} ] + H.O.T in -if (A4.1.Eq 7)

Then by equations (A4.1.Eq 1), (A4.1.Eq 6) and (A4.1.Eq 7) we get

"£[f(q){exp iS(q)} ] = [It ("9S/3q)K] [f {exp -iS} ]
K=o

+ (-±fi)t? k{(1/2)(k-1)^ f3S/3q)K",(^S/3qi)f+$ OS^q)^1 Of/fcq)
vc= i K K

+ (1/2)(3% /?>q) ftS/aq)*"1 f}]{exp drS} + H.O.T in-fi.

(ii) We have

(ifi)K[ (t>^/3pk)g(p) {exp iW(p)} ]

= (itf)k [gC3*{exp iW}/3pn)+k(3g/3p) (3KH {exp -iW}/3pK" ') + ...

+ ('5Kg/<3 pK) {exp irW}] (by equation (A1.5.Eq 1) of Appendix 1.5)

= [(-3W/0p) ]tgtexp iW}]-ifi[(1/2)k(k-1)(-3W/3p)K"2OlW/3pi)g+...

-k(-3W/9p)K"' (3g/T>p)]{exp -±W} + H.O.T in ii (A4.1.Eq 8)

Similarly, we have

(iii) O1*"1 /ap*-« )[g(p){exp-£W(p)}]

= i-fi (-Wap)*-' [g{exp ±W}] + H.O.T in-fi. (A4.1.Eq 9)
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Then by equations (A4.1.Eq 2), (A^.I.Eq 8) and (A4.1.Eq 9), we get
A

^ [g(p) {exp a:W} ]
OO ix

= tZ ^ (-^W/'jp) ][g{exp -iW} ]
k=O K

+ (- iff) [ I k{ (1/2) (k-1 )V (-"dW/9p)K-Z(0W/0p2 )g-M (-^W/0p)K~' (Bg/^p)
K?i * K

-(1/2)(^i7K/3p)(-^W/^p)K',g]{exp iW} + H.O.T in 1f.B

(A4.1.T2) Theorem

The equation

[ ^{(1/2)k (k-1)q)(1?~S/^q?)f+k^^S/^q)^"-' (^f/-3q)
+ (1/2)k(^4 /3q)('3S/'3q)K",f} =0 (Al.l.Bq 10a)

K

has as solution

f(q) = KIX k £ (q) CdS/^q) K~' |"'^2
K= i K.

= K» lOq/^G) l",/Z (AM . 1 . Eq 10b)

where K and K' are constants, and

(W3&) = [T(E)/2tt][? k f (a S/» q)K"' ] (AU.I.Eq 10c)
K=t

(In the equation (Al.I.Eq 10c) we have replaced p by ("dS/^q)

tcf. equation (I.I.I.Eq ^b).)

Proof:

We shall split the proof into two cases according to whether
oo

[ rt <CbSh> q)*"" ] is either positive or negative,
i r

^
Case 1: t r?fjS/3q)r"']>0

i r

In this case we have

CX3 ..

f(q) = KtZ rp faS/8 q)r_l 3" ' (AM . 1 . Eq 11a)
r= i ^

C?f/&q) = K-2(-1/2)f[f0r(^^/^q)('^>S/'^q),r-, ]
V-al *"

-K-2f3[ ff ( 1/2) j( j-1)^;('aS/^q)J-2('32S/-3qi))
0-< J

(A4.1.Eq 11b)



Page 216

and

co

OO/om)" '
SK

[2 kg (dS/aq)"-' (-af/aq)]
K-. **

= K f'aOf/aq)

= -(1/2)f [? r(3l/aq)('0S/3q),r"1 ]

-f [ r (1/2)j(j-1)-4-(^S/q>q)^"a('3lS/9q2.)]0= i »J

(A4 .1. Eq 11c)

Then evaluating the left hand side of equation (A4.1.Eq 10a) we get

(1/2)f[? j(j-1)£-(DS/0q)J-2(^S/9q*)]+[? k * q)k"' fef/a q) ]

+ (1/2)f[ X r(()i/<)q)(3S/3q)r-, ]
v=»

= 0 (by equation (A4.1.Eq 11c)).

Case 2 : [ X. r £ (9 S/a q)r"' ] <0

The proof for this case is similar to that in case 1. ■

(A1.1.T3) Theorem

The equation
oo

[ 2 ((1/2)k(k-1) ^(-3W/9p)K-2('3 W/^pajg-k^-Wap)1^-' ftg/ap)K: i *

-(1/2)k(^> /apM-Wap)*"'g}]= 0 (AH.I.Eq 12a)
has as solution

00
K-l ,-lfig(p) = k! 2 k^(p)(-DW/ap) ' I

K-= K
= K' | (-3P/99) dl/2 (A4.1.Eq 12b)

where K and K* are constants, and
co

u ,
(9p/a9) = -[T(E)/2n][X k<H (-'3W/9p)K"1 ] (A4.1.Eq 12c)

(In the equation (A4.1.Eq 12c) we have replaced q by (- W/ p)

[cf. equation (4.4.1.Eq 4a).)
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Proof:

We shall split the proof into two cases according to whether
CO

fX rV (-^>W/3p)^" 1 ] is either positive or negative.

Case 1 : t I rrj (-'^W/'^p)'r", ]>0
v=., r

In this case we have

to

g(p) = K[^ ry (-hW'dp)*''1 r*1'7- (A4.1. Eq 13a)
Cdg/^p) = K_2<-1/2)g3[ rCV^^p) (-Wap)^" 1 ]

1 oo «

+K_2g^[X (1/2) j( j-1)^;(-^W/0p)J-2(^W/?p2-)] (A4.1. Eq 13b)
J = i J

and

oo

"[ X k-tf (-'aW/ap)*-1 (3g/3p) ]
K=« K

= -Kzg"z(?g/ap)
= (1/2)g[ 21 rC-j^/^p) (-^W//3p)v"1 ]

-g[£ (1/2)j(j-1)^i(-3W/9p)J'-z fa W/9P^)] (AH.I.Eq 13c)
vj^l u

Then evaluating the left hand side of equation (A4.1.Eq 12a), we get

(1/2)g[f_ j( j-1 )'>7;(-^W/'3p)J":2 ('3iW/^p'1-) ]-[ X kol (-^W/Dp)K'1 (3g/3p) ]
j-=t J K-i 'K

-(1/2)g[^ r(l)Y) /0p) (-'9W/ap)r'-1 ]
= 0 (by equation (A4.1.Eq 13c)).

OP

Case 2; [ X rOI (-^W/3p)h" ]<0

The proof for this case is similar to that in case 1.B
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APPENDIX 4.2

The WKB-method for & multilinear momentum with closed Integral curves

(A4.2.1) The Hamilton-Jacobi equations

The Hamilton-Jacob! equations are:

CdS/a q) ,q) = E, where p is replaced by 03S/3q); (A4.2.1.Eq 1a)

and

^(p, (-?W/ap)) = E, where q is replaced by (-3W/ p). (A4.2.1.Eq 1b)
G5T ^ a

The Hamilton-Jacobi equation have as solutions ^.S (q), -S (q), W£(p) and

wf(p) which are given by equations (4.4.1.Eq 7a)-(4.4.1.Eq 7d).

Remark: (R1) The solutions vS£(q), _S£(q), W^(p) and wf(p) are formally

identical to the corresponding Hamilton-Jacobi solutions of the Hamiltonian

system of a particle in a potential well which are given by

equations (1.3.2.Eq 3a)-(1.3.1.Eq 3d).

(A4.2.2) The WKB solutions

We shall construct WKB solutions of the following equations:

(?-E)«f(q) =0, ifeL (Q); (A4.2.2.Eq 1a)

(?t-E)Tt(p) = 0» F"1L1(Q). (A4.2.2.Eq 1b)
Let us put G^Cq) = f(q){exp iS(q)} in equation (A4.2.2.Eq 1a), and let us

w

put (p) = g(p){exp -±W(p)} in equation (A4.2.2.Eq 1b). Then in terms of an
C;U/

expansion in -ft, we get [cf. Theorem (A4.1.T1), Appendix 4.1]

(^-E)vp(q) = [£((3S/9q) ,q)-E][f{exp -IS}]
+(-ih)[f k{ (1/2) (k— 1 )"£ CdS/-&q)K'i('e>:ZS/3q*-)f+£ ('^S/Dq)^1 (-jf/^q)

K'.l ^ K
+(1/2)('3 ^/-3q)(-3S/0q)K"vf}]{exp -arS} + H.O.T in if. (A4.2.2.Eq 2)
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(Z" -E)& (p) = [^(p, (-3W/^p))-E][g{exp aW}]•'c sw

+ (-ifi)t Z. k{ (1/2) (k-1 )/l] (-'BW/3p),<;_:2-('9aW/^p2)g-'W (-"jW/ap)K~> (-3g/0p)
K=.i '*■ ,k

-(1/2)Oi7 /apM-W^p)*"' g] {exp iW} + H.O.T infi. (A4.2.2.Eq 3)
It follows from theorems (A4.1.T2) and (A4.1.T3) and the Hamilton-Jacobi

equations (A4.2.1.Eq 1a) and (A4.2.1.Eq 1b) that the WKB solutions are given

by

d)LX q) = . K | feq^G) !"l/2-{exp -i,Sc(q)}+ _K I (^q/"B&) II,/2~ {exp -£_Se( q)}
Tiv

£ £■
where +K and _K are constants, and 4-S (q) and -S (q) are given by

equations (4.4.1.Eq 7a) and (4.4.1.Eq 7b) respectively, and

IOq/oe) !"'/z = [t(e)/27{] I £ k^v^q)^'!"1'1;
Ke| K.

and

(t)~ (p) = K+! (^p/9&) |i^2 {exp A¥^(p)}+ K_! (-0 p/a©-) ll1^ {exp iW^(p)}
rd/W

where K+ and K- are constants, W^(p) and W?(p) are given by equations

(4.4.1.Eq 7e) and (4.4.1.Eq 7d), and

K-ap/ae) !',,a= [T(E)/2-n] |? k^(-^/3P)K" r,/a\
K- i K
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APPENDIX 4.3

Let ^>(0) and (f) (0) be the WKB-like wave functions of 0 given by

equations (3.1.Eq 11a) and (3.1.Eq 11b) respectively. Let e(9) and e^(0) be

the real valued functions of 0 defined in section (3.1) of Chapter 3. Let

U: F_iL2'(Q) —> L^(Q) be the unitary map defined by equation (3.2.Eq 2a).
A 2 'a

Let ^ in L (Q) be the operator given by equation (4.4.2.Eq 7), and let
I 0

F~ L (Q) be the operator given by equation (4.4.2.Eq 8); we shall assume

that U< 0-' =-?.

Then by equations (4.4.1.Eq 1a), (4.4.1.Eq 1b), (4.4.1.Eq 4a) and

(4.4.1.Eq 4b), we have
oo co

„ .

(*aq(0)/30) = [t(E)/2n][£ k£ pl<"'] = [T(E)/2tt](E k £ CdS^p )K_ 1 ];
k-s. v *-» • K

(A4.3.Eq 1a)

and

(3p(0)/30) = -[T(E)/2tt][?. k7lqk~x] = -[T(E)/2tt] [ x k 17 (--iw/3p)K_l ] ;/fc k-=i ,K
(A4.3•Eq 1a)

(here S and W are respectively the solutions of the Hamilton-Jacobi

equations given by equations (A4.2.Eq 1a) and (A4.2.Eq 1b)).

Then we have

(g-E)(<pT°)(q) = -itf[ '? k£{p(0)}k-< (-ae/'qq)'0 ] + Offi2)
Kil K

(by equation (A4.1.Eq 4))

= -i«[2IT/T(E)][ 0(de/d9) ° ](q) + 0(fi2) (A4.1.Eq 2)

(by equation (A4.3.Eq 1a)).

Similarly, by equations (A4.1.Eq 5) and (A4.3.Eq 1b) we have

(^-E)( ip^a'°)(p) = -iK(2tr/T(E)][ '(pJde^/29?c'<» ] + 0(-ti2). (A4.3.Eq 3)
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(A4.3..T1) Theorem

We have

|| C<-E(n) ] ip^(q) i| = OC-fi1) (A4.3.Eq la)
where E(n) belongs to R(l£ot) and is the modified Maslov-WKB wave
function (corresponding to the value E(n)) defined by

i$r(q) = (0 ^eje'0)(q) + ($r?°)(q). (A^.3.Eq 4b)

Proof:

It is clear from equations (A4.1.Eq 3) and (A4.1.Eq 4) that the proof

is formally identical to the proof for Theorem (A3.2.T1) [cf. Appendix 3.2]. |
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CONCLUSIONS AND PROSPECTS

In Chapter 2 we proposed a scheme to establish unitarily equivalent

quantizations in certain canonically conjugate polarizations of

2-dimensional symplectic manifolds. In this scheme we dealt with examples

on contractible and noncontractible symplectic manifolds in a unified

manner. The scheme we proposed was based on the following physical

reasoning. Let ^ be an observable, with classical range R(£), that is

quantizable in the canonically conjugate polarizations (P and <PC. Then the

spectra of the quantized operators corresponding to in the polarizations (P

and should: (1) lie in the classical range R(0, and (2) be identical to

each other.

In Chapter 3 we modified the Maslov-WKB method (for the one-dimensional

Hamiltonian system of a particle in a potential well) to incorporate the

BWS conditions, so as to enable us to construct an approximate pairing

between the polarization (Pc (which has toroidal leaves and is spanned by X^

on a submanifold of the phase space) and the vertical polarization P.

We began Chapter 4 with an attempt to construct unitarily equivalent

quantizations of a general observable (of an arbitrary 2-dimensional

symplectic manifold) in canonically conjugate polarizations and (P^ which

are spanned by the vector fields (9/dz£) and A)t), respectively, where t is

the is the flow parameter of the integral curves of the Hamiltonian vector

field Xjj. We saw that, in general, one could not establish unitarily
equivalent quantizations of ^ in (P and <PC . So we localized in the

effective configuration space with respect to the polarization (P, and then

attempted to set up unitarily equivalent quantizations of this localized



Page 223

observable in suitably chosen canonically conjugate polarizations. The

latter attempt was successful.

In the next two parts of Chapter 4, we showed how the modified

Maslov-WKB method could be used to quantize the following observables in the

vertical polarization P:

(1) The Harailtonian (of a particle in a potential well) localized in

the phase space, and

(2) certain multlinear observables with closed integral curves.

It is hoped that with the knowledge gained from an increasing number of

explicit examples we can progressively enlarge the class of observables

quantizable in a unitarily equivalent manner independent of the choice of

polarization. This would also help towards a solution of the pairing

problem in geometric quantization.

i
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INDEX OF SYMBOLS DEFINED IN THE TEXT

We shall only list the important symbols defined in the text here.

AC(X£,Q) 29

B, B = M x <C 64, 65

(B,(-,.),V) 12,67

C^M), C^(M) 62

C^M) 64
(f°(M;<P) 15

C°°(M;P), C°^M;Pc ) 17

cf°(M;<P, 1) 15

(f(M;P,1), (f°CM;Pe, 1) 17, 18
CO,

(where % eC (M;P)) 29

Dxt ("here JCe C°°(M;PC)) 30
D^ (where C°tM;P,1)) 29

D^ (where £<= C°°(M;P ,1) 30
e(0), ec(0) 57
F 54

H 47,170
A A

H, Hc 51, 53

H<p 27

Hj , Hjp = © H£ 41V. "c A(VJ3
HftP), H(^) 108, 119, 132-133

Ij 34

I- 41
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A A
I. IC 132-133

Zi(nl) 39

IW(n), I(n) 177, 178

J(0), Jc(0) 56,59

Lz(IR), Llm
23

51, 53

L^(lP,u) 132

(M,W) 32

(Mo,uo) 62

M/D 69

<P 14

P, Pc 15, 16

pr:M >Q, pr^tM —^ 24, 25

pr^(X^) 27

••••••w-»
^

63
rv A

#'fc. 119, 132-133

Q, Qa 17

A *■

%' 108, 132-133

R(^) 32

R£(H), R^H) 177,179

W' V(f 142

V(M), V^CM) 62

V(M;D) 68

W(p 27

*<■ 5

ft 9, 67

7, 34

Ar(D) 20



A_,/2«P)

Su)

!tlr

^(q>
'C,w

<£S(q)
$n(q)
0(e), 0je)
^h(q)
oJ

OJ0

t , )

(«,•)

[ , ]

< ,

< ,

V

^yX

^4
, ^e.j

<P

22

56

63

21

52, 210

56, 211

60

61, 176

56

185

7, 62

32

6

65

68

27

141

66
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