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ABSTRACT

Measurements have been made of the resistivity p, Hall

coefficient and Hall mobility as a function of temperature,

T over the range 1.37 - 300°K of n-type samples of InP with
22 24 3

N^-N^ concentrations of 1.4 x 10 - 3.8 x 10 m . Compensation
ratios have been determined from the theory of ionised impurity

scattering. The magnetoresistance has been measured as a

function of the magnetic field up to 12 tesla at different temperatures;

at low magnetic fields negative magnetoresistance has been observed

for the temperature range 1 - 4°K in samples exhibiting metallic

conductivity. A square root dependence agrees with the Kawabata

theory; at higher fields a positive magnetoresistance is found.

In samples identified by Hall and resistivity measurements as

non-metallic the magneto resistance is always positive.
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INTRODUCTION

The electrical properties of n-type I11P at low temperatures have been

studied for more than twenty years; Kovalevskaya et al (1967) have measured

electrical properties of n-type InP from liquid helium temperatures to

room temperature and more recently, Blood et al (1974) measured the resistivity

and Hall coefficient (R„) and the mobility (p) .ri

These measurements are in qualitative agreement with the theoretical

understanding of transport phenomena in III-V compounds.

Magnetoresistance has been studied by Galvanov et al (1969) . Standard

theory predicts for semiconductors a positive magnetoresistance increasing

quadratically with magnetic field. However, in a wide variety of semi¬

conductors a negative magnetoresistance has been observed at low temperatures.

Mott (1949) has suggested that, as the number of impurities in a semi¬

conductor is increased, at a certain concentration, a transition from

non-metallic to metallic behaviour is to be expected. This concept has been

elaborated by Mott in a number of papers and recent books (Mott and Davis

1971, Mott 1974). It is in the region of the metal-non-metal (MNM) transition

that a negative magnetoresistance is most frequently observed. Toyozawa

(1962) suggested that, even if the bulk of the material is in the metallic

state, the local impurity density may be low enough to provide small regions

in which localized spins can exist. Into these regions the mobile electrons

can tunnel and interact with the localized spins. As the number of

impurities is increased, such small relatively isolated regions become

scarce and the moments and hence the negative magnetoresistance will vanish.

However, according to Toyozawa (1962) the negative magnetoresistance
2

component should be proportional to B . A theory of negative magneto¬

resistance has been proposed recently by Kawabata (1980) for heavily doped
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semiconductors in the metallic region. He started with the simple electron

gas model with randomly distributed scattering centres and derived an

expression for the magnetic field dependent conductivity.

Lee and Ramakrishnan (1982) considered the spin Zeeman effect on

magnetoresistance and obtained a positive magnetoresistance at high fields.
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CHAPTER I

GENERAL SEMICONDUCTOR BACKGROUND

1.1 Metals, Insulators and Semiconductors

To explain metals, insulators and semiconductors in terms of

the band theory of solids, Wilson (1931) introduced a model which

predicted at absolute zero temperature a sharp distinction between

crystalline materials showing metallic conduction, on the one hand,

and insulating behaviour on the other. Insulators according to this

model are materials where all energy bands are completely occupied

or completely empty.

Since for every occupied state with wave function ip of the form

ip = exp(ikx)U(x,y,z) , there is also an occupied state for which
■k

ip = exp(-ikx) U(x,y,z), no current can flow.

A metal, on the other hand, is a material in which one or more

energy bands are partly full. In such materials at zero temperature

states are full up to a limiting energy E^ (the Fermi energy) and
states with higher energies are empty.

For a perfect crystal the conductivity should tend to infinity

as T ■* 0. The density of states for a metal with one electron per atom,

two electrons per atom and for an insulator is shown in Fig(l.l).
Ef

(c) (d)

Electron density of states N(E) in a cubic material; E? denotes the Fermi
energy, (a) N'ormal metal, (b) semimetal, (c) insulator, {d) n-rvpe
degenerate semiconductor.

Fig. (1.1)
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For an insulator Aw is the energy gap between the full band (known

as the valence band) and the empty band (the conduction band); at

a finite temperature the number of electrons and holes (current carriers)

will be proportional to the factor exp(-^Aw/kT). For a crystalline

insulator N(E^) must vanish.
1.2 Hall Effect

The Hall field is the electric field developed across the faces

of a conductor, in the direction j x B, when a current j flows across

a magnetic field B.

The quantity It, is called the Hall coefficient. The dimensionless

quantity r is called the Hall factor. It depends on the combination

of scattering processes effective under the prevailing conditions.

The Hall factor is usually fairly near to unity. Thus r = 1 when

all electrons move at the same speed, as is true for a degenerate

electron gas where they all move with the Fermi velocity. The
• 3 7T •

quantity r = (g~) = 1.18 when the electron gas is non-degenerate and
scattering is exclusively by LA phonons. When there is appreciable

scattering by ionized flaws, r can exceed 1.9 for an isotropic band;

on the other hand, r can be as small as 0.7 if the constant energy

surfaces for an electron are perturbed sufficiently from a spherical

form.

The Hall coefficient is very useful in the study of conduction

processes since it provides the easiest method of determining the

electron density. In conjunction with measurements of resistivity it

provides a value for the electron mobility, the electron velocity in

unit field. Note that the mobility = Rjj/p may differ from the

(1.1)



mobility defined by the relation a = i = nep;the former is often

used because of the difficulty in determining precisely the value of

the Hall factor r.

1.3 Mobility, Mean Free Paths and Scattering

For a degenerate electron distribution in a semiconductor, the

mean free paths and times of interest are those for electrons within

one or two k T of the Fermi energy; in practice the mobility in a3

semiconductor sample with very many free electrons usually has a

very uninteresting behaviour, with little change of mobility over

a wide range of temperature - a flat characteristic.

There is a more interesting diversity in the patterns of

mobility-temperature behaviour when electrons in a semiconductor

have anon-degenerate (Boltzmann) distribution. That is when the electron

density is small enough and/or the temperature is large enough to

validate a non-degenerate approach. For this non-degenerate type of

situation it is supposed that the mean free path depends upon

temperature and on electron energy. The scattering mechanisms

discussed below have been studied for example by Harris and Ridley

(1971) .

1.3.1 Acoustic-phonon scattering

Acoustic phonon due to normal vibration modes of a linear

diatomic lattice. The relaxation time for this scattering is given

by Kolodziejczak (1967)

TTC h4 _x ,

Tac = ~I 3/2 _ 2 Y 2 (dE} (1,2)2m, z a K„T
d a

where C is an average longitudinal elastic constant given by
i-i

Herring and Vogt (1956) and E is the deformation potential for
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the direction a; it has been shown that this is approximately isotropic

by Gryaznov and Ravich (1970), which enables the mobility to be found

ttC h 4e \\
U = i oTo—y T-n (pp-Tjo 1 (1.3)ac 9s 3/2 2, 3/2 0 3/22

e md 51(KBT) 0

where is the isotropic deformation potential.

1.3.2 Optical phonon scattering

At high temperatures, the relaxation time for this process is

given by Kolodziejezak (1967)

? i -1
k Y2 /dY\ /\

x = j 9 = i (tt) (1.4)
P° (2md)5 e2 KBT (i- - i-)

O

where £ and are the static and high frequency dielectric constants.

The mobility is given by

h2 °L-2 •

%o = - I I ^o 3/2"^ * (1*3)P
e me<2md V>(V - T"> V

m r\

Then, introducing a combined relaxation time

T' = {t ^ + T h ^ • (1.6)
ac po

1.3.3 Ionized-impurity scattering

This will dominate the scattering process at temperatures below

about 100 K. For non-degenerate material the mobility is given by

the Brooks Herring formula.

p = 27/2e2(K T)3/2. (x3/2 m*2 e3 N f(x))"1 , (1.7)
3

where

f(x) = ln(l + x) - (1.8)

where , . 2 2 2.-1 n.
x = 6 m* e (K T) 17 n e ) > (1.9)

B o

For arbitrary degeneracy the more complicated formulation of

Mansfield (1956) is required, the general equation for the conductivit



due to impurity scattering can be written as

32 eVcKgT}3 f2(j*)
0T = =—^ (1.10)

Ne h f(x)

Where
f(x) = ln(l+x) - "(X+x) <1-u)

where nO^Tr e h
e2(2m*)f,( j*)

x = ~T (1-12)
2

1.3.4 Carrier-carrier scattering

Collisions between charge carriers will have the effect of changing

the distribution of energy and momentum amongst the carriers, while

leaving the total energy and momentum of the carrier system unaltered.

At sufficiently high carrier densities these collisions will dominate

over other scattering mechanisms, and the distribution function will

tend to a drifted Fermi-Dirac (or Maxwellian) centred about a momentum

displacement i.e.

df
f* (K) = fo(K) - Kd + (1.13)

to first order in the drift momentum. Following Keyes (1958), introduce

a constant relaxation time x with which the distribution function f(K)
e

decays into f*(K); this then enables a simple solution of the Boltzmann

equation with a relaxation time x'. The mobility in the presence of

carrier-carrier scattering is
, -1

(—tt— & > 0.3/2
x +x dE L

v-t , e , -1 {o372> • (1-14)
e<xnx & > Lo

e

When carrier-carrier scattering is negligible, xg -»- 00 and equation
(1.14) reduces to equation



( T.(dy/dE) )
y. = L-nT (1.15)i m <1/

e

In the opposite extreme of dominant carrier-carrier collisions,

x ■+ 0 so that

[ °L3(2]2
» ■ e : T -i < a171 ' C1-16)

<m T' <& ) 0
e dE

na1.4 Compensation Ratio (K = ^—)
ND

Semiconductors usually exhibit an appreciable degree of compensation

and a knowledge of the value of K should be included among the basic

electronic characteristics of these materials. Donor and acceptor

concentrations can be determined from a method based on the scattering

of free carriers by ionized impurities.

As the temperature is lowered below room temperature, initially

the mobility controlled by phonon scattering increases and then

decreases at low temperature where impurity scattering becomes dominant.

By selecting a temperature well below the maximum to ensure dominance

of ionized-impurity scattering, we can get the concentration of ionized

impurities from the general equation for the conductivity due to

impurity scattering, then we can get from the equation N = n + 2N^
where N is the number of scattering centres and n is the electron

density, the donor density can then be obtained from the equation
r NaN = n + N , then we can get the compensation ratio K = -rj— .U S cL u

J)

1.5 Magnetoresistance

The change of resistance in a magnetic field is called the

magnetoresistance effect, discovered by W Thomson (1856). If pQ

is the resistivity with no applied magnetic field and p is the

resistivity in the presence of magnetic field, the magnetoresistance
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coefficient M is defined as the change in resistivity per unit of

no magnetic field resistivity.

When a magnetic field is applied to a sample the electrons are

deflected by the Lorentz force until a Hall field E is set up so thatri

E e = Bev.
H

If all electrons move with the same velocity v as in an ideal

metal then after the initial transient, they are no longer deflected and

the resistance is independent of the magnetic field. When we have

distribution of velocities as in a semiconductor , this always gives

a decrease in current or positive magnetoresistance. This is all that

is expected of simple theory. Almost all semiconductors show negative

magnetoresistance in some range of temperature and/or concentration.

Until recently this has been usually explained in terms of the spin

scattering theory of Toyozawa (1962) who suggested that the negative
2

magnetoresistance component should be proportional to B .

However the source of the magnetic scatterings has remained
2

obscure and the proportionality to B seldom observed. A new theory

of negative magnetoresistance was produced in(1980)and this will be

discussed later in section (2.3.6).
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CHAPTER II

LOCALIZATION AND THE METAL NON-METAL TRANSITION

2.1 Impurity Band

A metallic impurity band is a system of continuous levels along

which an electron can move as in the usual energy bands in the crystal.

So the Hall effect for electrons at the impurity levels is given

by the same simple formula as that for electrons in the conduction
IT

band: R = (r - 1). This result allows us to deal with the impurity

conduction in the same way as with the band conduction. Non-metallic

impurity conduction occurs when an electron occupying an isolated

donor has a wave function localized about the impurity and an energy

slightly below the conduction band minimum.

Because there is a small finite overlap of the wave function of an

electron on one donor with neighbouring donors, a conduction process

is possible in certain circumstances in which the electron moves between

centres by tunnel effect without activation into the conduction band.

The electrons of high mobility in the conduction band completely dominate

the conductivity at higher temperatures. However, although the mobility

of an electron moving in the impurity levels is (very) small since

it depends on interaction between widely spaced impurities, at low

temperatures impurity conduction will dominate due to the absence of

electrons in the conduction band.

The circumstance in which non-metallic impurity conduction is

possible is the presence of 'compensation' by which we mean the

presence of minority centres, acceptor in an n-type conductor.

These acceptor electrons form a certain proportion of the donors

Fig (2.1).
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c ond uction

band

Fig (2.1)

Without compensation, impurity conduction is not possible, unless

the overlap between the centres is very large; this occurs above

a critical concentration Nc» Such impurity conduction was first
observed by Busch and Labhart (1946) in silicon carbide.

A feature of impurity conduction, is its sensitivity to the

impurity concentration, when the impurity concentration is small.

The curves plotting lnp against i exhibit a finite slope in the

temperature range where non-metallic impurity conduction predominates,

suggesting that the charge transfer between impurity centres must be

thermally activated.

Above the critical concentration Nc> the resistivity becomes
independent of temperature; the conductivity is then apparently metallic

and carriers move freely without thermal activation.

At low temperatures where non-metallic impurity conduction is

dominant three mechanisms operating in different concentration ranges,

have been identified by Mott and Twose (1961).

The first mechanism occurs at low concentration, where the

conductivity tends to zero with temperature i.e. not "metallic".

To move an electron from one localized state to the next, a finite

amount of energy is necessary. This only comes from phonons which make

transition by the tunnel effect to another centre possible, Miller

and Abrahams (I960).
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The second mechanism occurs at intermediate concentration where

the observed activation energy (now called z^) becomes very sensitive
to the mean donor separation. From experiments on Ge, Davis and

Compton (1965) believe this process is due to thermal excitation of

electrons from the donor ground state to the band arising from the

interaction between the states of negatively charged donors (the D

band).

The third mechanism occurs at high donor concentration where the

ground state wave functions overlap sufficiently to form an 'impurity

band' which also merges with D band.

The energy e£ disappears and the carrier concentration becomes
temperature independent as in a metal. The activation to the conduction

band is not observed at intermediate temperatures because at these

concentrations the band associated with the donor ground state and

excited states all overlap to produce a quasi-continuum of states

extending to the conduction band, Stillman et al (1971).

2.2 Metals Non-Metal Transition

2.2.1 Localized states

At low temperatures a range of energies may exist in which N(E)

is finite but states are localized, and the mobility of an electron

with such an energy is zero at T = 0. o(e)(0) vanishes for these energies.

The vanishing of a (e)(0) then can serve as a definition of localization

for electrons with energy E.

2.2.2 Anderson localization

Anderson (1958) was first to show that in certain random fields

localization of the one-electron wave function can occur if the

random component is strong enough. This is illustrated in Fig (2.2) .

A crystalline three-dimensional potential energy function v(x,y,z) is

shown in (a).
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:ib

(a)

~u i_r
•V0

(b)

Random potential energy introduced by Anderson; (a) V0 — 0, (6) Vtt/B large.

Fig (2.2)

A random potential within limits + Iv is then introduced. If v is
— z o o

small, the mean free path can be calculated from the Born approximation.

According to Anderson, there exists a critical value above

which at zero temperature diffusion is impossible. The wave

functions are then said to be 'localized'. If one has a Fermi gas

of electrons and the wave functions for the Fermi energy E are localised,

then o(Ej,) is zero, and thus no current can pass at the absolute zero
of temperature. When the temperature is slightly raised, conduction

is by thermally activated hopping.

Anderson (1970) has called a degenerate electron gas with localization

in a random field of this kind a 'Fermi glass'.

Mott (1966) was first to point out that, since states are likely

to become localized in the tail of a band, a critical energy Ec
('the mobility edge') exists separating localized from non-localized

states, Fig (2.3) .

N(E)

Ec Ec
E

Density of states in an Anderson band, with the two 'mobility edges' Ec and Ea

Fig (2.3)
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The simplest definition of Ec in terms of the behaviour of the
conductivity o(e) is as follows.

ct(E) = 0, E<E'
c

a (E) > 0, E>Ec

If,by changing the composition of a material or a magnetic field, the

Fermi energy E^ can be made to cross the value Ec, a transition is
expected from a metallic state, with a finite value of o(E^), to
a non-metallic state for which ct(E^) vanishes. This is called the
'Anderson transition'.

As the Fermi energy E^ crosses Ec, a sharp transition will occur.
Near E^ where states are localized, the envelope of the wave function
in Fig (2.4) is expected.

(a)

Wave function ip of an electron when L~a. (n) Extended states, (b) weakly
localized states.

Fig (2.4)

As E^ - Ec tends to zero, the orbitals of the localized states spread
and fill all space, overlapping one another strongly.

\ /

If wave functions are localized, so that <a(E) ) = 0, conduction

at low temperature is by thermally activated hopping. Every time an

electron moves, it hops from one localized state to another, of which
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the wave function overlaps that of the first state. Since the two

states have quantized energies, the electron must exchange energy with

a phonon each time it moves. The hopping processes in which the

electron obtains energy from a phonon are rate-determining. Hopping

of this kind was first described by Miller and Abrahams (I960) in
/

their theory of impurity conduction. They supposed that an electron

on one occupied site would normally jump to a nearest site with

energy AE = |E —E |.
2.2.3 Anderson localization on the metallic side of the MNM transition

On the metallic side of MNM transition, the activation energy

does not disappear if the compensation K is large. Mott and Davis (1968)

suggested that this is because the states in the tail of the impurity

band, or even of the conduction band, remain localized, and that for

large values of K the Fermi energy lies in this region. An increase

in K should also increase the random field and therefore the range

of energies in which states are localized. When K is not very large,

a^ ought not be differ greatly from a , where a^ is the distance
between localized states and a is the distance between atoms.

2.2.4 The metal-non-metal transition in doped semiconductors

One of the best-known examples of a metal-insulator transition

due to correlation is that which occurs in doped semiconductors at

low temperatures when the concentration of donors or acceptors is

changed.

In an n-type semiconductor, for a low concentration of donors,

the donors will have negligible interaction with one another; each

one is a paramagnetic centre, and requiring an energy which is

denoted by for excitation of the electron into the conduction band.

Using the hydrogen model,
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4

el
m*e

2h €

and the radius a^ of the orbit is given by
h2e

a„ =
H * 2m*e

m* is the effective mass and e the dielectric constant. It is the

large value of a^ of order 30A, which suggests that the lattice is very

little distorted by the electron. As the concentration of donors increases,

three phenomena occur. One is impurity conduction, which is a

conduction mechanism at low temperatures first identified by Hung and

Gleissman (1950).

As concentration increases, an activation energy ££ appears; this is
the energy required to excite an electron not into the conduction band

but onto distant donor which is already occupied. It can then move

from one occupied donor to another.

We refer to such an electron as moving in the upper Hubbard band.

Fig (?.5) shows the plot of the three quantities, due to Davis and Compton,

(1965) for a small value of compensation as a function of the mean

distance a between donors. drops as the concentration increases because

the effective dielectric constant increases. it will be seen, drops

continuously to zero; the metal-insulator transition occurs when

vanishes. Moreover a linear drop in e^ as the two Hubbard bands moves

together and overlap is what we should expect from the model. The

'tail' shown near the metal-insulator transition is due to another process,

hopping between Anderson-localized states, essentially the same as that

responsible for e^.

At one time (Mott and Twose 1961) it was thought that at the metal-

insulator transition, the impurity band was separate from the conduction

band Fig (2.6) and merged with it for concentrations about ten times higher.
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o(S)
\ ariations of the activations energies and e3 in meV as a function of the

distance between donors in n-type germanium (Davis and Compton
1965). For e3 the dotted line shows conduction "bv the mechanism of
Miller and Abrahams (1960).

Fig (2.5)

by Mott and Twose (1961).

Fig (2.6)
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Therefore the metal-non metal transition in these systems occurred

entirely within the impurity band, and should not be discussed in

terms of two band model or a model of localized state just below a

conduction band. However, more recently Mott has shown ("Metal-

Insulator Transition") that the transition can be observed in doped

semiconductors not only by varying the concentration, but also by:

a. uniaxial stress, which changes the radius of the orbit

(Fritzsche and Cuevas I960)

b. by a magnetic field, which has the same effect (Stroud et al

1968).

2.2.5 A Model for the Metal-Non Metal Transition in Doped Semiconductors

Consider first a small concentration of donors, far from the

metal insulator transition. Fig (2.7) shows density of states in

the two Hubbard bands; the lower one represents the spectrum of a

'hole' when an electron is removed from one of the donors for strong

compensation; it will have the activation energy f°r impurity

conduction. The upper Hubbard band, representing the energies of an

extra electron moving from donor to donor; there will be Anderson

localization in its tail and Ec separates localized from extended states;
we should expect the energy to be given by Ec~E^ at high temperatures
and E^ - E at low temperatures.

As the concentration increases, the overlap will become larger

and so the two Hubbard bands will widen. In compensated samples,
2

also, the term e /eR, which may be the more important influence on the

width of the Hubbard bands, will also increase because R decreases.

Thus ££> which can still be defined as |Ec - |, will decrease.
As the concentration increases still further, the two Hubbard bands
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N (E)

Density of states in two Hubbard bands, when U has split the impuritv band
of fig. £.7. Anderson-localized states are shaded. Er is the Fermi energy

the mobility edge.

Fig (2.7)

N(E)

Two overlapping Hubbard bands. Ev and Ec are shown for the two bands
separately.

Fig (2.8)

will overlap as in Fig (2.8). But this does not mean that a metal-

non metal transition takes place. The tail of the bands where the

states are Anderson-localized will overlap first, and, although N(E )

is then finite, states at the Fermi energy are localized. The metal-

insulator transition occurs when states at are no longer localized.
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This means that, in doped semiconductors, the metal insulator (Mott )

transition has all the properties of an Anderson transition.

When the two bands overlap as in Fig (2.8 ) but states at E are
r

still localized, the system has various properties of interest (Mott 1972b).

a. At sufficiently low temperatures, we always expect a variable

range hopping conduction so that

-Q
a = constant exp —j-

T4

b. If we continue to define as

as the activation energy for non-hopping conduction, and must go

linearly to zero at the metal-insulator transition. Fig (2.9) shows

the kind of behaviour to be expected.

Activation energies: (1) e2 (excitation to mobility edge). (2) E_^ — E? (before
bands overlap). (3) and (4) Hopping by electrons at Fermi level.
(3) is when bands overlap, and the process can take place without
compensation. (4) is impurity conduction when bands do not overlap.
Note that (3) and (4) represent activation energies which are constant
only over a finite range of T and then go over to T1'1.

Fig (2.9)

2.2.6 Magnetoresistance near the M NM transition

In the metallic state we use extended electrons to contrast with

localized electron states for the insulator side of the transition.
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In Anderson's (1958) paper he supposed that for a metal with sufficiently-

strong disorder the electron could localize in suitable regions. In

(1961) Mott and Twose argued that a wave could not propagate through

a disordered one dimensional system no matter how weak the disorder.

Mott subsequently introduced the concept of a minimum metallic
2

conductivity q^.^ = 0.025 e /ha developed from the Ioffe and Regel
(I960) condition that metallic behaviour cannot persist if the mean

free path becomes less than the electron wavelength.

During the 1970's Thouless developed a scaling theory of the

transition and then in (1979) Abraham's, Anderson, Licciardello,

Ramakrishnan showed how to generalize the problem in terms of a

dimensionless conductance. Among other things they concluded that in

two dimensions there is no metallic conductivity at absolute zero.

That is, the electrons are localized no matter how small the disorder.

In one dimension the electrons are always localized but in three

dimension a transition occurs. Mosfets provide a good approximation

to a two dimensional system in which the electron density can be

varied by changing gate voltages.

Abrahams et al proposed that in 2d near the a . value thereY mm

should be a smooth transition from exponential localization to weak

logarithmic behaviour.

However it was pointed out by Altshuler et al (1980) that very

similar variation of resistivity with temperature would be expected

if many body correlation effects were considered independent of any

localization considerations. Thus fundamentally different theories of

localization and electron interaction agreed in predicting a logarithmic

dependence of resistivity on temperature in a 2D disordered metal.
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Almost all semiconductors show negative magneto-resistance in

some range of temperature and/or concentration. Until recently this

has been usually explained in terms of the spin scattering theory of

Toyazawa (1962) but has always presented difficulties both as regards

the field dependence and the origin of the impurity spins. Kawaguchi,

Kitahara, Kawaji (1978) observed a negative magneto resistance in a

2D system which was not isotropic and was clearly due to orbital rather

than spin effects. Hikami, Larkin, Nagaoka (1980) showed that the 2D

localization was broken by the application of a magnetic field and so

a current flowed or negative magneto resistance would be observed.

Kawabata (1980) extended the discussion to three dimension. In three

dimensional system although localization does not necessarily occur

the conductivity is diminished in the weak localization regime near

the MNM transition; the suppression of this effect by the application of

a magnetic field results in a negative magnetoresistance. Kawabata

started with the simple electron gas model with randomly distributed

scattering centres. He derived an expression for the magnetic field

dependent conductivity in heavily doped semiconductors. A method of

treating the localization in two dimensions was developed by Gorkov

et al (1972) with the use of Feynman graph techniques. In order to

take account of the effect of electron-phonon and electron-electron inter¬

action. Kawabata considered the conductivity a(H,T) under magnetic field

H at temperature T is given by

cr(H,T) = aQ + 6a(H,T)
2

where oq = ne r/m* and t is the relaxation time for impurity (elastic)
scattering. The effect of inelastic scattering can

be taken into account by introducing t the energy relaxation time



of electrons ; the temperature dependence of <5a is determined
-3 -2

through t . t£ is proportional to T or T according to electron-
phonon scattering or electron-electron scattering is dominant

N

- 2 ° i _i q L
6 a(H,T) = —|— £ tan ° —

tt hL N=0 / N + 5+6 2/ N+ 3+6

2 i
h „ 1 XT L " T"here qo X ' "o % 72 ' L " ^

A

3L2
and 5 =

4XX
e

2e i 2e 2
where X = (—!•) x , X = (—^) f

m" e m" e

we will consider 6a(H,T) = 5 a(H,T) - 6 a(0,T). In the limit H 0
2

6 a(H,T) = 6 z F(6)
2tt nL

00 1
where F(6) = £ (2/N+1+6 - /N + 6 - J"N + \ + 6 } '

N=0

we find that 6 a(H,T) is independent of the direction of the magnetic

field when 8 << 1 (case of strong magnetic field or low temperature)

the value of F(6) = 0.605 and hence

2

5 cr(H,T) = — F(0) = 0.918/H .

2tt hL

The Kawabata theory dealing with weak localization in 3 dimensional

systems therefore yields a negative magnetoresistance.The importance

of electron correlation has been emphasised by Altshuler et al (1980)

and has been subsequently developed for example by Lee and Ramakrishnan

(1982). They considered the spin zeeman effect on magnetoresistance
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Fig (2.10) Dependence of F(6) on 5.

and obtained for the high field

ISIUt

K
-) H2p = po - 2a(j ~ 2")T 2 + 0.77 a F(-

_7 S/9 2 _i
where a = 1.08 x 10 pQ (^0 k 2

F

2k ^ 2

F = ~ ln(l+x) , x = (——^) and k2 =

(Thomas-Fermi)

The high field region occurs when the Zeeman splitting exceed KgT
ie gdgH = ^gT. Hence magnetoresistance measurements can provide valuable
information on the relative importance of localization and correlation

effects near the MNM transition .
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CHAPTER III

EXPERIMENTAL TECHNIQUES

3.1 Experimental Details

A number of samples of n-type epitaxial indium phosphide doped with

sulphur were prepared by Royal Signal and Radar Establishment with N-^-N^
22 2 A — 3in the range 1.4 x 10 - 3.8 x 10 m at room temperature. These were

used for measurements of the resistivity p, Hall coefficient R^, and
mobility from 1.37 - 300°K using a clover leaf shape as shown in

Fig (3.1).

The method is based upon a theorem which holds for a flat sample on

which the contacts are sufficiently small and located at the circumference

of the sample with no isolated holes. This method was proposed by

van der Pauw (1958) .

The specific resistivity and Hall effect of flat samples of clover

leaf shape can be measured without knowing the current pattern.

The contacts A, B, C and D were fixed on the circumference of the samples

of InP using indium dots.

Fig. (3.1)

Rab qq is the potential difference between the contacts D and C for
unit current through the contacts A and B; the current enters the sample

through the contact A and leaves it through the contact B. Similarly

for the resistance R^ d is the thickness of the sample.
The resistivity p can then be determined from the equation (3.1).
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P =
Trd

Tn2
(RAB,CD + RBC,DA^ f (RAB,CD )

^C,
(3.1)

DA

R.
where f depends on the ratio ( ,("R); in Fig (3.2) a plot is given of f

R ^CjDA
as function of AB, CD

R
'BC,DA

/vi\co
R{.c.oa

Fig (3.2) The function f used in determining the specific resistivity
the sample plotted as a function of R^g CD^^BC DA"

The Hall mobility can be determined by measuring the change of the

resistance Rg^ ^ when a magnetic field is applied perpendicular to
the sample; the Hall mobility is then given by

d ARBD,AC
Vtt = ir (3.2)

H B * p

where B is the magnetic induction and ARgg ^ the change of the
resistance Rg^ ^ due to the magnetic field. The Hall coefficient
"H " "H p-

The magnetoresistance effect is determined by measuring the change

in the potential between the contacts C and D per unit current through

the contacts A and B and the change in the potential between the

contacts D and A per unit current through the contacts B and C when

the magnetic field is applied.

3.2 Contact Preparation and Sample Mounting

van der Pauw clover leaf specimen contacts were prepared in this



laboratory by the following method. The crystal was washed thoroughly

with methanol and then with propanol; a piece of indium wire was

scraped clean with a razor blade and then very small portions were

cut off; these were washed and dried on filter paper and then pressed

gently on the surface of the sample by using an iron used only for

In soldering; the crystal was placed on the heater strip; the chamber

was flushed for a few seconds with reducing gas (nitrogen and hydrogen)

the heater was turned on slowly to give a temperature just above the

melting point of the contacts (156.6°C). The gas flow was then passed

through an acid bath for a few seconds. The dots should appear clean,

shiny, and spherical at this stage; the temperature was raised further

to the appropriate alloying temperature (approx 350°C), and held

there for a few minutes; the temperature was reduced to room temperatur

and the heater switched off.

The indium dots on the sample were connected to the sample holder

contacts by platinum wires of thickness 0.127 mm and length 1 cm.

These were soldered to the indium dots using Wood's metal (melting

point 64°C) and a soldering iron with a very fine end.

3.4 Digital Voltmeter (DVM) and Digital Multimeter (DMM)

A high precision digital voltmeter type 173B was used to measure

a d.c of either -polarity. Four basic ranges from 1 V to 1000 V gave

an accuracy of 0.01%. These could be extended 50% by the inclusion

of automatic over-ranging.

The input impedance is 10 megohms on the 1000 V and 100 V ranges

and not less than 1000 megohms on the lower ranges.

An internal calibration reference is derived from an unsaturated

cell with voltage stability better than 0.0005% per °C. To measure

current, the digital voltmeter was connected to a standard resistance

of 100ft.
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For voltage measurement a multimeter model 191 with d.cvolts

and ohms ranges was used. It provides highly accurate, stable, low

noise and fast responding readings from 1 pV to 1200 volts d.c on

5 voltage ranges, and 2 and 4 terminal measurements for 1 milliohm to

20 megohms on 6 resistance ranges.

The 191 is capable of 0.0005% resolution and 1 yV/1 mfi sensitivity.

The accuracy in measuring the dc voltage in about 0.004 + 1.5

digit from 2V to 200 V and 0.005 + 1.5 digit at 1200 V and 0.005 + 2

digit at 200 mV.

3.5 Cryostat and Magnets

3.5.1 1 tesla iron magnet with glass dewar system

For the measurements between 4°K to 300°K a simple cryostat

in conjunction with an iron magnet for fields up to 0.7 tesla was used.

The specimen is mounted inside the central tube. This tube is filled

with helium gas at pressure about 1 torr to ensure that the specimen is

at a uniform temperature. The tube containing the specimen is surrounded
-4

by a can which can be evacuated to a pressure of about 10 torr.

This is then surrounded by a dewar which is filled with liquid

helium.

A second dewar surrounding this was filled with liquid nitrogen

to reduce the heat influx to the inner dewar. If the vacuum space of

this inner dewar contains a small amount of air, the liquid in the

outer dewar will quickly cool the cryostat to liquid nitrogen temperature

before the helium is added.

When liquid helium is introduced into the inner dewar the air in

its vacuum space is frozen, and the dewar then behaves as a normal "hard"

dewar.

To get measurements from 4°K to 300°K the inner can was thermally
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isolated by pumping out the exchange gas surrounding it. A current

was then passed through the heater coil raising the temperature of the

inner can.

The temperature measurements were made by a GaAs thermometer which

fed a voltage into a temperature regulator, the current to the heater

was then switched on and off by the controller to keep the temperature

steady at a value set on the controller scale. Over the range 4-300°K
the temperature can be controlled to within + 5°K. The GaAs diode

required a constant current of lOpA; the digital read-out on the controller

gave readings to 0.5°K but when required higher accuracy could be

observed by a direct measurement of the voltage across the diode.

The temperature was lowered below 4.2°K by connecting to a fast pump;

a simple rubber diaphragm was used to maintain constant any preset

vapour pressure; the temperature was measured by a vapour pressure

manometer Hg was used for the higher temperatures but butyl phthalate

for temperatures below the X point. A table of vapour pressure versus

temperature gave temperature to an accuracy of better than 0.1°K.
helium °K

Boiling Point

Lambda Point

4.216

2.186

Table (3.1) fixed point

3.5.2 4 and 12.7 tesla Super Conducting Magnets

For measuring the Hall effect and the magnetoresistance at liquid

helium temperatures a superconducting coil immersed in liquid helium

supplied magnetic fields up to 4 tesla or 12 tesla.

The superconducting coil was driven by power supply controlled

by a sweep unit. -The current is swept from zero to a value set by the
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Fig C3.5) Simple Cryostat in Conjunction with an Iron Magnet

current control in the power supply. Sweep times in the range five to

ten minutes were used for the 4 tesla magnet. The 12.7 T very high

homogeneity superconducting magnet has the capability of being swept

up to 90% of full field in three minutes.

Readings were taken in a steady field obtained by setting the

switch to hold.

The 4 tesla metal cryostat is illustrated in Fig (3.6). The 12T

magnet has a similar cryostat system on a somewhat larger scale.
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CHAPTER IV

EXPERIMENTAL RESULTS AND DISCUSSION

In order to characterise the samples,measurements of the resistivity

and Hall effect were made over a wide range of temperature;the results

are shown in Fig (4.1), (4.3) and a summary for eight samples is

given in table (4.1).

The resistivity is discussed in Section 4.1. A calculation of

n and a . , as well as a discussion of the relation of the conductivity
c mm

to the electron density in terms of theories by Mott and Kaveh and

more recently by Kawabata are given.In Section 4.2 Consideration

is given to the Hall maxima and whether these are related to impurity

band conduction or to a change in statistics . Section (4.3) includes

observations for the Hall mobility curves. In Section (4.4) the

compensation ratio K is discussed since the values of K are important

for subsequent interpretation. Section (4.5) includes calculation

of the fermi energy, fermi velocity and mean free path at T = 4°K
with carrier concentration greater than n . Section (4.6) discusses

the magnetoresistance results in terms of recent theories of

localization and correlation in the weakly localized region.

4.1 Resistivity

Resistivity curves are shown in Fig (4.1). For samples with electron

concentration less than N . , on cooling from 4°K to 1.37°K the resistivitycrit'

shows a small increase. For samples with electron concentration greater

than N .. the electrical resistivities are constant at the lowest
crit

temperature; as the donor concentration is increased the constant region

shifts to higher temperature.

The curves also show a rapid drop of the resistivity for temperatures

higher than 10°K for sample NAG 495 and higher than 20°K for sample AGRO 529.
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At temperatures greater than 130°K for sample NAG 495 and 180°K for

samples AGRO 529 the resistivity again increases.

It will be seen that the transition from metallic (constant

low temperature resistivity) to non metallic (increasing resistivity
22 -3

as the temperature is lowered) occurs round about 3 x 10 m as

predicted by Mott theory (1974), where the MNM transition can be
3

estimated from the criterion n = (0.25/a ) , a„ is the effective
C ri ri

2*2
Bohr radius given by he/m e . For a dielectric constant e of 12.4

and effective mass ratio 0.082, we find that

(1.05 x 10"3V 12.4/9 x 109 _ , -9
a = -Tj 2 = 8 x 10 m

(0.082 x 9.1 x 10 )(1.6 x 10 )

a % 80 X
rl

giving a MNM transition at a concentration of

,0.25 ,3 „ , 1rt22 -3
n = ( ;y ) = 3.1 x 10 m

8 x 10 m

Mott has postulated a minimum metallic conductivity given by a =

2
0.026 e /hd where d^, the average distance between impurity centres
at n^, is about 2.5 a^. This gives

d = 2. 5 x aT1
c H

= 2.5 x 8 x 10 ' m

= 2 x 10 3 m

-19 2
0.026 x (1.6 x 10 )

a . =
mi-n /1 t^_34wo(1.05 x 10 )(2 x 10 )

giving am;[n ^ 320 (Gm) 1 .

Following the work of Abrahams et al (1979) several authors have

discussed the behaviour of the zero field conductivity in terms of
s

the relation a - a (— - 1) where 0.5 £ s $ 1 .
on

c
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Kaveh and Mott (1982) emphasise the distinction between compensated

and uncompensated samples and quote the experiments of Rosenbaum et al

(1981) on germanium where it was found that S varied from 0.6 to above

1 as the compensation K changed from 0 to > 0.5.On the other hand

a recent communication from Kawabata suggests that S should be about

0.5 for many valley semiconductors and 0.8 to 1 for a one valley

system. Although this is not stated explicitly Kawabata's estimate

presumably related to uncompensated material.
n-n

We have plotted In a versus ln( ) for the five samples in the
c

weak localization regime (n > n^) and obtain a fairly good straight
line with a slope giving S = 0.7 , Fig (4.2). Since we have

compensated samples and a one valley system our experimental value

will suit either the Kaveh -Mott or the Kawabata interpretation.

A wider range of compensation would be necessary to distinguish

between the two approaches. From the graph ctq can be estimated
3 -1

as an intercept having a value of (2 x 10 (fim) ) and oq = A CTm£n>
where A - 6.

4.2 Hall Coefficient

The measurements of the Hall coefficient R^ versus Gj-) ,Fig (4.3),
shows the Hall curves with a single maximum. This maximum was

23 -3
observed in samples with L - N. $ 1.3 x 10 m but no maximumr DA

24 -3
was observed for N - N. = 3.8 x 10 m

D A

When the impurity concentration in the samples was reduced, the

amplitude of this maximum increased and shifted toward low temperatures.
22 -3

At low temperature for samples with £ 4 x 10 m we

observe a temperature independent R^.

Some authors (eg Hilsum et al (1961)) explain a decrease of R^



T=300K

T=80K

T=4K

Sample (Symbol)

p(fim)

NAG602 NAG495 NAG601 NAG309 NAG311 NAG506 AGRO529 NAG484

11.5xlO" 8.1xlO" 8.35x10" 4.566x10" 4.35x10" 3.19x10
-4

1.57x10
-4

0.132x10
-4

Vr">
4.42xlO

-4

3.59xlO
-4

3x10
-4

1.55x10
-4

1.49x10
-4

1.13x10" 0.486x10 0.016x10'
-4

n(m)

-3

1.41x10
22

1.7x10
22

2.07x10
22

4x10
22

4.166x10
22

5.5x10
22

1.3x10
23

3.8x10
24

p(Om)
3.56x10

-4

3x10" 2.746x10
-4

2.637x10" 1.54x10 0.132x10
-4

4.877x10
-4

2.24x10" 2.3x10
-4

1.52x10" 6.48x10 0.016x10"
-5

n(m)

-3

1.28x10
22

2.79x10
22

2.717x10
22

4.11x10
22

9.6x10
22

3.9x10
24

p(Om)
64.95x10

-4

52x10
-4

32.8x10" 25.5x10
-4

22.5x10" 9.77x10
-4

3.03x10
-4

0.135x10
-4

E(—)Hvc'
9.31x10" 8.6x10

-4

6.09x10 1.92x10" 1.77x10"
-4

1.24x10
-4

0.49x10
-4

0.0163x10
-4

n(m)
-3

0.67x10
22

0.82x10
22

1.02x10
22

3.25x10
22

3.53x10
22

5.03x10
22

1.28x10
23

3.88x10
24

Table[4.1]SummaryofPropertiesofEightn-typeInPSamples
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with an increase of T in the impurity region as a result of a change

of the Hall factor r(R^. = — )> others (eg Agaev (1967) by ionization
of shallow impurity levels.

In order to discuss the interpretation of the Hall factor at

low temperature, we show in Fig (4.4) a plot of R^against ^ for five
samples.

A maximum occurs at temperatures where we expect, from mobility

curves, that phonon scattering is becoming important. Calculations

were carried out to explain the presence of that maximum in terms

of changing the Hall factor r.

If we take sample AGRO (529) as an example with n constant and
23 -3 -3/2

equal to 1.27 x 10 m then we calculate from nT for different
o-
A

temperatures, the value of j. Hence we can find the value of r

from Fig (4), F M Shipley thesis (1952) . After that we can calculate
r

Rjj from the relation = —— with different values of r; a plot of

R^ against Gj-) is shown in Fig (4.4).
-3/2 *

The calculated values nT , j, r and R^ for sample AGRO 529
are given in table (4.2) and for the other samples in table (4.3),

(4.4), (4.5) and (4.6). It is obvious from this calculation that

the presence of the maximum for concentrations greater than the MNM

value can be explained entirely in terms of changing statistics.

That is, a maximum in the Hall coefficient does not necessarily imply

the existence of two separate bands.

Fig (4.5) shows the Hall coefficient of Ru(T) does not depend upon

magnetic field at T = 4°K for samples NAG(602), NAG(495), NAG(309),

NAG(506) and AGRO 529. A very small change was observed in sample

NAG(601).
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T(K) n(T)-3/2
x 1014

*

J r RM(m3/c)
-4

x 10

100 1.27 0.5 1.67 0.822

80 1.77 0.98 1 .60 0.787

60 2.73 1.69 1.5 0.738

40 3.02 2.96 1.34 0.66

20 14.2 6.37 1.14 0.56

10 40.2 1.04 0.51

4 159 1.01 0.49

1 1270 1 0.49

Table [4.2] for Sample AGRO 329 of InP
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T (K) n(T)"3/2
x 1013

*

J r Ru(m /c)
-4

x 10

60 10.67 0.17 1.715 2.16

40 19.6 1.16 1 .56 1.96

30 30.186 1 .88 1.475 1.56

20 55.45 3.21 1.355 1.71

10 156.85 6.82 1.13 1.42

4 620 15.1 1 .04 1 .31

1 4960

Table [4.3] for Sample NAG 306
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T(K) n(T
*

J r RH(m3/c)
x 10~4

100 3.71 x 1013 -1 1.855 3.13

80 —i 03 X o
i ^4

-0.7 CO 3.15

60 MD 00 X CD
—i ^4

-0.15 1.765 2.97

40 1.467 x 1013 0.67 1.635 2.75

20
14

4.14 x 10 2.495 1.44 2.43

10
13

1.17 x 10 5.55 1.18 1 .99

4 4.63 x 1015 13.55 1.04 1 .75

1 3.71 x 1016

Table [4.4] for Sample NAG 311
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T(K) n(T)-3/2 *

J r Ru(m3/c)
-4

x 10

60 6.72 x 1019 -0.4 1.8 3.6

40
20

1.25 x 10 0.2 1.74 3.48

20
20

3.49 x 10 2.13 1.45 2.9

10
20

9.88 x 10 4.95 1.21 2.42

4
21

3.9 x 10ZI 12.6 1.045 2.09

1

Table [4.5] for Sample NAG 309
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T(K) n(T)-^2 *

j r RH(m3/c)
-3

x 10

60 2 x 1013 -1.8 1.89 1.27

40 3.68 x 1013 I o NJ1 1.855 CNJ

20
14

1 x 10 0.17 1.74 1.17

10
14

2.94 x 10 1 .84 1.5 1

4 1.16 x 1013 3.31 1.18 0.793

1

Table [4.6] for Sample NAG (493)
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Fig-4-3
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4.3 Hall Mobility

From the curves of the Hall mobility versus T from 1.37°K up to

300°K , Fig (4.^), it will be seen that all the samples had a maximum

of mobility in the temperature range 100 - 140°K apart from the very

high electron density sample NAG 484 which had a constant mobility.

This maximum shifted towards higher temperatures when the impurity

concentration was increased. Above the maximum temperature up to

o ~"3/2
300 K the mobility decreased with temperature roughly as T ,

and the scattering by phonons increases as the temperature increased.
3/2

At low temperatures the dependence is approximately as T and

the scattering by ionized impurity scattering is dominant.

The mobility maximum for sample AGRO 529 is less than the mobility

maximum for sample NAG 495 and the mobility decreased faster below

the maximum for sample NAG 495.

4.4 Compensation Ratio (K)

To calculate the compensation ratio we used Mansfield's theory (1956)

applicable at low temperatures where impurity scattering becomes

dominant. From the mobility curves Fig (4.6) the maximum ranges

from 140°K for sample AGRO 529 to 100°K for sample NAG 495; then

selecting a temperature at 40°K well below the maximum to ensure

dominance of ionized impurity scattering, we used the general equation

for the conductivity due to impurity scattering (4.10). For indium phosphide

(InP)

12 4 -9
e = — 5- = 1.38 x 10 MRS

9 x 10

m = 0.082 x 9.1 x 10 Kg

k = 1.38 x 10~23 J.K-1
-19

e = 1.6 x 10 C

-34
h = 2ir x 1.05 x 10 J.s
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(TKK)
Fig-4-6



49

As an example of the calculation at T = 40°K for the sample

AGRO 529, the values of the resistivity, mobility and the Hall

coefficient are calculated from experiment and equal to 2.19 x 10 ^ (£hn),
2 -53. 1

0.2664 (m /v.s) and 5.84 x 10 m /c respectively where a = — =1 P

45.66 (fim) \ the value of r can be calculated from Fig (4),

F M Shipley (1952) and itwas found equal to 1.34, then the values of
* * "k

fI (J)5 fo(j) and (j) were 1.72, 22.3 and 3.25 respectively was found.
2 ^

— * _

q = 3.8 was found from the graph between j and n , Mansfield (1956).

Then from these values we calculate the total number of ionized

impurities (N) from this equation

2 * q *
32 ez m(kBT)Jf2(j)

~~7—3
a e h f (x)

where f(x) = ln(l + x) - X(1+x)

n (k T)2 e h
and x ~

2 *I *
e (2m) f,(j)

= 3.8(1.38 x 10 23 x 40)^(1.377 x 10 9) (2tt x 1.05x10 34) = 8.11x10 53
(1.6 x 10~19)(2 x 0.082 x 9.1 x 10_31)5 x 1.72 1.7 x 10_53

x = 4.77

x
and f(x) = ln(l+x) - (1+x)

4.77
" i"'1 + +77> -TTVT77)

£(x) = 0.926

After that

= 32(1.38 x 10 ) (0-082 x 9.1x10 )(1.3gx 10 x4p) x 22.3
45.66 (1.6 x 10 ) (2tt x 1.05 x 10 3^) x 0.926

23 -3
N = 5.46 x 10 m
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r 1.34 , /0 ,„23 -3
r = 1.34 = neR or n = — = rr-q = 1.43 x 10 m

5.84 x 10 xl.6xl0

v, N - n (5.46 - 1.43)xl0 0 - 1n23N, = =— = = 2.015 x 10A 2 2

N = n + N. = 1.27 x 1023 + 2.015 x 1023 = 3.285 x 1023
D sat A

Tr _ \ 2.015 x 1023 _ C1K = — = An = 0.61.
D 3.285x10

For other samples similar calculations were made, and these are given

in table [4.7].

Walukiewicz et al (1980) have made estimates of compensation ratio

in InP from room temperature and77°K, values of mobility and electron

density. From their tables a compensation ratio of K = 0.34 is

obtained for these samples from the 77°K data,whereas the room

temperature data suggest that the sample is almost uncompensated,

Accurate determination of the compensation ratio in InP is clearly

a matter of some difficulty.

4.5 Fermi Energy, Fermi Velocity and Mean Free Path Calculation
2 2/3 ti2

At complete degeneracy the fermi energy = (3ir n) .

For example calculation for the sample AGR0 (529)

At T = 4K

23 -3
n = 1.28 x 10 m 2

(a) Ej. = (3tt2 x 1.28 x 1023)2/3 x (1"°5 X 10 }r V-"1 2S. J. . ^ -LW J X Ol

(2 x 0.082 x 9.1 x 10 )

E = 1.523 x 10 2^ joul = 0.952 x 10 2 ev.f J

(b) E = ^ mVf

2 x/3 h
V = (3TTZn) IF m



Sample
*j

f2(j)
mj)2

n

p

(51m)

2
,m
sUH<77S>

r

N(m
3)

NA(m
3)

ND(m
3)

naK=Mn̂d

AGRO
529

3.25

22.3
1

.72

3.8

2.19
x

10~A

0.2669
5.84
x

10~4
1.34

23

1.27
x

10^

23
5.4x10

2.02x1O23
3.29x1O23
0.613

NAG
506

1.48

6.3

1.09

2.5

4.7
x

10~4

0.34046
1.6
x

10"4
1.56
4.96
x

1022

23
3.23x10

1.31x1023
1.81x1023
0.725

NAG
311

0.7

3.4

0.79

2.1

5.66x10~4
0.482
2.73
x

10~4

1.635
3.7
x

1022

1.89x1023
0.76x1023

23
1.13x10
0.67
I

NAG
309

0.82

3.8

0.845
2.3

6.13x10-4
0.437
2.68
x

10~4
1.74
3.13
x

1022

23
2.25x10

0.922x1023
23

1.24x10
0.746

Table
[4.7]
list

of

the

n-type
InP

Samples
at
T

=

40°K



Samples

co
i

B

c

p0(Om)

Ef(ev)

VF(m/s)

X(m)

t(s)

AGRO
529

1.28
x

1023

3.03
x

10~4

9.52
x

10-3

0.219
x

106

1.65
x

10~8

7.529
x

10"14

NAG
506

22

5.03
x

10

2.77
x

10-4

6.01
x

10"3

0.16
x

106

0.94
x

10"8

5.867
x

10~14

NAG311

22

3.53
x

10

22.5
x

10~4

7.75
x

10~3

0.142
x

106

0.52
x

10~8

3.668
x

10~14

NAG
309

22

3.25
x

10ZZ

25.5
x

10~4

4.5
x

10~3

0.138
x

106

0.485
x

10~8

-14

3.5
x

10

14

Table
[4.8]
T

=

4°K
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,0 2 , 00 ,„23 -3,1/3 ,1 .05 x 10 31 J.s ,= C3tt x 1.28 x 10 m ) x ( —^ )
0.082 x 9.1 x 10 kg

= 2.19 x 103 m s 3
a m .

O —hf
c. X = T where t = —j , P = 3.03 x 10 (Sim)

ne

o in ^ ,(3300.33)(0.082 x 9.1 x 10 33) kg= (2.19 x 10 m/s) ( —

23 -19 2
(1.28 x 10 ) (1.6 x 10 )

X = 1.65 x 10 m

For the other samples similar calculations were made and are given in

table [4.8] .

4.6 Magnetoresistance

Magnetoresistance curves are shown in Fig 4.7, 4.8, 4.9, 4.10, 4.11,

4.12 and 4.13.

Fig 4.7, 4.8 and 4.9 show a positive magnetoresistance for the three
22 -3

samples with N - N. £ 3 x 10 m (i.e. N - N. less than Np) fromJJ A JL) A L«

T = 4°K down to 1.37°K with field up to 7 kG. For the other two samples

a small negative magnetoresistance is seen at the lowest temperature at

low magnetic fields and positive magnetoresistance at higher magnetic

fields.

Fig (4.14) shows a positive magnetoresistance for three samples

at T = 4°K for fields up to 40 kG.

Fig 4.15 shows a positive magnetoresistance versus /"IT and fig (4.16)
2

shows a positive magnetoresistance versus B with the field up to 40 kg,

thus fig(4.16) yields straight lines for the three samples at high

fields with a slight bend at lower field. The positive magnetoresistance

clearly does not vary as /b but approximates to B .
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Fig (4.17) shows a positive magnetoresistance with a magnetic

field up to 7 tesla at T = 4°K for sample NAG 601 and fig (4.18)
. . 2

shows a positive magnetoresistance proportional with B up to

7 tesla.

Fig (4.19) shows the magnetoresistance for our samples at low

temperatures between 1.37°K and 1.45°K with field up to 7 kG, a

positive magnetoresistance for the sample NAG 495 and negative for

NAG 602 and NAG 601 at low field and positive magnetoresistance at

high field, fig (4.20) shows magnetoresistance for the samples with

v^B and fig (4.21) shows magnetoresistance with B .

Fig (4.10), (4.11), (4.12) and (4.13) show a negative magneto-

22 -3
resistance for samples with N^ - N^ > 3 x 10 m (i.e. N^ - N^ greater
than N ) at T = 4°K and down to 1.37°K with a magnetic field up to

7 kG.

In these samples the magnitude of the negative magnetoresistance

increases with magnetic field and with decreasing temperature and

there is no indication of decrease in the negative value for the

field up to 7 kG.

Fig (4.22), (4.23). (4.24) and (4.25) shows magnetoresistance for

samples NAG 309, NAG 311, NAG 506 and AGR0 529 respectively with

different temperatures. All these samples show a negative magneto¬

resistance at low temperatures and positive at higher temperatures.

Fig (4.26) shows a negative magnetoresistance for samples with field

up to 40 kG at T = 4°K.

For sample AGR0 529 the magnetoresistance increases with increasing

magnetic field up to 40 kG but for sample NAG 309 sharp increase

with increasing magnetic field up to a certain field is followed by
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a decrease with further increase of magnetic field. Sample NAG 506

shows behaviour similar to that of AGRO 529 but has an anamolous and

unexplained bump near 30 kG.

Fig (4.27) shows negative magnetoresistance versus /b . For the

sample AGRO 529 nearly a straight line was observed. Fig (4.28) shows
2

a negative magnetoresistance versus B for the sample AGRO 529.

A straight line is observed at higher field measurements were extended

to 12 tesla for sample AGRO 529 shown in fig (4.29), (4.30) and (4.31).

This concentration range corresponds to the weakly localized regime

and we wish to consider this in greater detail in terms of the

theories of Kawabata and of Lee and Ramakrishnan; the data for sample

AGRO 529 is used as an example. The magnetic length is given by

^ •

Be

Kawabata expects the negative component of the magnetoresistance

to saturate when the magnetic field is increased to a value Bc such
that L becomes less than or equal to the mean free path X.

B^ is determined as follows
X = Vf T

2 1//3 h
Vf = (3tt n) V

m
a m

o
T

2
ne

X = (377 n)
-1/3 v am
2 . n o

2
ne

2 1/3 aI-'3*2) l3BX ~ ~ZT3 ' e -L c
n

1/3
(3t72) a i i

X = V~ " 0 ft 2 „ 2
_ 2/3 • 3/2 • h Bc

n e
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2 1/3 a tJ
A (3-rr ) rt_ _ -34^ 4 oT
L ~ -19,3/2 x (1,05 0 ^ X 2/3

(1.6 x 10 ) n

3.093 . . -17 °o B
x 1 x 10

2g x i x iu . ljz
6.4 x 10 n

A 11 BC°o
= 4.9 x 10 —2'/3 > A = L

T1

2/3 2 _/ _ _ 2/3 2
_

_ ,Po n . _ / 3.03 x 10 " (an) x (1.28 x 10 m ) n
BC " (~ rrrj " ^ —n ;

4.9 x 10 4.9 x 10

Bc = 2.46 T.
Similar calculation for the other samples are summarized in

table [4.9 ] .

L = /JL = / 1 »05 x 10~34
BCe 2.5 x 1.6 x 10"19

= 1.62 x 10 B m

At values of B > B^, since the negative component no longer increases,
we expected the positive component to take over and this is observed

in fig (4.29) which shows that the magnetoresistance decreases as the

field B increases, passes through a minimum value at a field equal

to 4.7 tesla and then at higher fields —2- increases to zero at a

P°
field of 7.9 tesla. A normal positive magnetoresistance was observed

at higher field. This positive part is perhaps proportional to /b~
at highest fields available in fig (4*30).

Calculation of 6 will be carried out as follows. For the limit

3L2
6 = ( ) <<1, where 5 is the correction to the conductivity, then4-A A

Z

Kawabata obtained the very simple relation 6o = 0.92/r and we can easi

compare our experimental result with theory in this limit.

2E | 2E 5
A = (—m- ) T, A£ = —) X£ .

m m
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Sample Bsat(Tesla)
AGRO 529 2.4

NAG 506 7.63

NAG 311 24.42

NAG 309 28.08

Table [4.9]
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Parameter Value

m*/m
o

0.082

6.8 ev

*

eG 1.4 ev

CL
10 -2

12.1 x 10IU N m

eo 12.4

€
CO

9.6

0,3/2
-1

170

o,3/2
L 0 170

Table [4.10]
Parameter used in \ Calculation for (InP)

e
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To calculate from the acoustic phonon scattering and carrier-

carrier scattering, we use relations given by Harris and Ridley (1972)

Its value is estimated as follows:

4
TT CT h , ,

I TTn o v (jt?)ac 1 3/2 2 ~ v dE2 md 4V

where is an average longitudinal elastic constant and is the

deformation potential. The data from table [4.10] Kohn model has

been used to calculate v, the relationship is
,2

v = E + |_ .eg

= 0.952 x 10 ^ ev

n qco i, (0.952 x 10 ev)2v = 0.952 x 10 ev +

1.42 ev

v = 9.583 x 10 3 ev = 1.53 x 10~21 J

-i in
v 2= 2.55 x 10 U

^dv \ + _^E_ _ ^ + 2 x 0.952 x 10 ^ ev"dE E 1.42 ev
(j

= 1.013

-1

(£) =0.987
ln __ QA ^4 1 Q

7T X 12.1 X 10 N m (1.05 x 10 J.s)(2.55xlO )(1.013)
T

- - " —r
22 (0.082 x 9 x 10 31K)3/2 (6.8x1.6x10 19J)2x( 1.38x10 23K 1 x 4°K

t = 6.366 x 10 3(3 s
ac
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Assuming that acoustic phonons provide the main inelastic

scattering mechanism we have = 6.4 x 10 ^s.
6 1 q

X = V, x = 0.92 x 10 x 6.4 x 10
e f e

= 5.9 x 10 ^ m.

then
. 3l2 3 x (1.62 x 10_8m)2
0 = ~

4 x 1.65 x 10 8 x 5.9 x 10 ^ m

= 2 x 10 ^ « 1.

Kawabata (1980) gives the equation
2

Aa (B,T) = F(6) .

2tt ne

F(6) is the angular average of the statically screened coulomb interaction.

For 6 << 1. In the limit of very low t, this gives Aa = 0.92/h.

However from fig (2.10) of Kawabata we see that F(5) is constant only
-3 e2 1

when 5 ^ 10 , but for larger values we get aa = 0.92/h - . ——
4 it n /Dt

e

1 3
since — 11 T for acoustic phonons at low temnerature.We see that

e

qualitatively at any rate, that Aa must increase as T decreases. This

is shown in figures (4.11), (4.12), (4.13) and (4.10) where Ap =

therefore Aa is inversely related to T.

We may note that, since the Kawabata theory approaches the problem

from the metallic side of the transition, the agreement with theory

will be best for the most heavily doped samples in which a negative

magnetoresistance can be observed. It is for this reason that we

have paid particular attention to sample AGR0 529.

The positive component of the magnetoresistance was explained

by Lee and Ramakrishnan (1982) as due to the splitting of the spin-up

;and spin-down bands in a magnetic field. The spin splitting produces
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a gap gPgH between the lowest unoccupied spin-up electron and the
highest occupied spin-down electron. The spin zeeman effect on

magnetoresistance obtained for the higher field limit is given by
i IglPp 2 tl2 -I- n 77 ™ TP ( "\ U 2

2 F - ' ®' ^"R 2 -

p = p - 2o(T - t)T2 + 0.77 a F(— ) H2
7 5 / 2 n '

where a = 1.08 x 10 p (— ) ft cm.K 2 and where T is the Fermi temperatur
"F

1 2kv 2 j a. 2
F = — In (1 + x) , x = (r^~) and K = — (Thomas-Fermi)X K.

where k and are the screening and Fermi wave vectors, respectively.

The high field region occurs when the zeeman splitting exceeds K^T
eh

i.e. gy^H = K Twhere y„ is the Bohr magneton and equal to -x and
d B /me

-21
has the value 9.27 x 10 erg/gauss, and g is the splitting factor.

For InP at 4°K

1.26 x 9.27 x 10 2~^~ erg/gauss H = 1.38 x 10 ^ erg/K° x 4

So H = 4.7 Tesla
c

So = 4.7 Tesla. The calculated value of Hc are in good agreement
with the experimental value, (Fig (4.29). To compare the theory of

Lee and Ramakrishnan with the experimental result for the positive

magnetoresistance can be carried out as follows.

— = 1.08 x 10"7 p 3/2 (^- )2p 0 ;
o F

T _ fr2 (o 2N 2/3 2/3TF - ~2mK (37T }
B

a_ = 1.08 x 10~7 p03/2 n^/2mK^"
P° h(3r2)1/3 n1/3

For InP for sample AGR0 529 with n = 1.3 x 1017 cm"3 and g = 3 x l0~2(ficm).
a 17 i

Then we can get - = 1.08 x 10~7 P^2 (1^3 * 10 )*
0

= 0.027

: 2k 2
x = (~r~) = 6,23 x 10 7 nl/3 = °-312

F = ^ In (1 + x) = 0.87
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1
2

—2. = -2 x 0.027 d - ^^Z.) T^+0. 77x0.027X0.87C1-26x9,27x10 ) x H2
1.38 x 10-16

I -A I
= - 0.012 T2 + 1.67 x 10 H2

For H = 10 T = 105 oer. This gives + 0.053 and an experimental value

of ^- = 0.11 .

Po
Although the agreement is not exact the theory of Kawabata gives

as reasonable explanation of the negative component while the theory

of Lee and Ramakrishnan qualitatively explains the positive component.
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Fig- 4- 8



Fig- 4.9
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Fig-4-24
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CONCLUSION

We have used simple galvanomagnetic measurements to characterise a

number of samples of indium phosphide with varying electron densities

and have used low temperature measurements to estimate the compensation

ratio.

For samples on the metallic side of the metal non-metal transition

the conductivity is shown to agree quite well with the relation
n s

a =Aa . (—) - 1) . Experimentally it is found that s = 0.7 and
c

3 -1
Ao . = 1.8 x 10 (Qm) to be compared with a calculated value from

min p
3 -1

Mott theory (section 4.1) of 0.32 x 10 (fim) where A - 6.0.

It is shown that the low temperature maxima in the Hall effect is

capable of an explanation in terms of variation of the Hall factor r

as the scattering mechanism varies with temperature. Thus conductivity

in an impurity band may not be appropriate for samples on the metallic

side of the transition.

Kawabata's recent localization theories have been used to explain

the negative magnetoresistance observed at intermediate fields.

A plausible explanation of the higher field positive magnetoresistance

can be given in terms of electron interaction theory in the form

given by Lee and Ramakrishnan.
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