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Abstract

This thesis reports on the application of murray polygons, which are a

generalisation of space filling curves and of Peano polygons in

particular, to the compression of digital image data.

Initially a brief review of the fundamental concepts and techniques of

data compression as applied to digital images is outlined. Several

common but contrasting data compression techniques are described in

more detail. Space filling curves are introduced and the stages of the

development from Peano polygons via multiple radix arithmetic to

murray polygons is clearly described. The various associated methods

along with outlines of software implementation of the basic and fast

algorithms are also given.

The application of murray polygons to the scanning of digital images

is explained and using run length coding the ensuing data compression

is evaluated. Techniques for exact and approximate coding are

discussed, and the extension to the coding of different areas of the

same image in either an exact or approximate coding is described.

Details of the investigation and compression results achieved are

given for bilevel images. This is then extended via bit plane encoding

to cover monochrome images and results reported for monochrome

images captured from the real world by a frame grabber.

The work on monochrome images is extended to a preliminary

investigation of the use of bit plane frame differences for the

transmission of motion sequences for 'head and shoulder' type images.
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INTRODUCTION

1930 Sub-editors office, New York Times

"I want the picture from London within an hour and good

enough quality that the Editor, in his smoke filled room,

recognises General Foch." the sub-editor barked at the young

reporter.

The reporter left the office hoping there would be none of

the usual transmission errors and that the 45 min

preparation of the punched tape in London, the 1 hour

transmission time across the Atlantic and the suspense

filled 2 minutes in New York reproducing the image from

tape would go smoothly. Often errors would force

retransmission. At least it was better than 1920 when they

had to wait over a week to get pictures of 'hot' news from

Europe, but what standard of photographers have they got

over there always taking photos on foggy days.

1978 NASA, Control Centre (10.00 a.m.)

"Listen we have invested billions of dollars in this system.

I don't care how long it takes but by noon I want a full

analysis of the exact satellite image information for the
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week before the last launch " the controller growled at the

straight faced technician.

The technician thought what a week's image data meant.

LANDSAT alone with 30 frames per day has about

42,000,000,000 bits per week archived on magnetic tape.

1988 St Andrews University, Scotland

" I think there are possibilities of my scanning technique

helping in the search for a means of compressing image data

sufficiently to allow transmission of still and moving

pictures over narrow bandwidths. In particular the

introduction of the 64 kbit/s digital network may offer a

real chance of sending these at a quality more than

acceptable to the user." the professor enthusiastically

suggested to his research student.

The student smiled hoping to hide his confusion. He knew

digital images by their nature require a large bandwidth and

moving pictures require about 25 frames per second. It

looked like a lot of reading ahead.

These extracts are fictitious but emphasise some of the aspects of

the subject matter of this thesis. However, such requests for

compression of image data have been around for over 50 years.

The criteria, standards and technologies change but many of the

varied demands and expectations for image transmission remain and

page 2



often look impossible. The more these demands are met, with what at

the time seem relatively fast and accurate solutions, the greater the

number of applications that are spawned in what appears a limitless

process.

The work reported in this thesis is part of that process and will look

at possible applications of a particular class of space filling curves

to the compression of data for the storage and transmission of

images. The motivation was roughly that suggested in the last of the

three introductory situations.

The introductory conversations serve to highlight many of the

conflicting demands that exist. For example speed of transmission

versus quality of image, namely the compression of bandwidth while

at the same time preserving adequate image quality. Image quality
will be dealt with later but at present it leads to the clear separation

into irreversible and reversible coding of images. In irreversible

coding information is lost but the remaining result meets the

requirements of the user, who is usually a human viewer. Reversible

coding is error free such that reconstruction of the original is

possible.

The first item is an example of an irreversible coding where speed of

transmission was so exciting that fidelity criteria were almost

non-existent. In 1920 the Bartlane cable system [1,2] allowed picture

information to be transmitted across the Atlantic making the transfer

of news pictures 80 times faster ( previous times of around one week

were reduced to 2-3 hours). This was a spur to create great interest

in image processing which has rarely waned since. Initially the
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increase in speed was so dramatic that quality of image was of minor

importance. However within 10 years the quality of the image had
increased significantly, the original 5 brightness levels achieved by

typefaces simulating half-tone patterns (fig 1) had become 15 and

used code on a punched tape to control light beams exposing a

photographic negative (fig 2 ).

Fig 1 Digital image printed using

typefaces to simulate half-toning.

(1921

Fig 2 Bartlane cable image transmitted from London to

New York (1930

It was soon realised that data compression opportunities were to be

found in areas of the picture with uniform tone. In these areas a tone

code along with the number of times it was to be repeated seemed

considerably more efficient than continuously sending the same tone

code.This was done by comparing the codes with the previous one and

summing until a change was found, similar to the run-length encoding
still used today for grey level images. Unfortunatelyjattempts to use
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this method floundered. The additional time for the more complex

system and the fact that small errors in the compressed data

corrupted large areas of the image demanded retransmission. This

meant that the gains due to compression were totally overwhelmed.

Complexity of implementation and transmission errors are still of

significant concern today.

In contrast to the cable transmitted images a reversible information

preserving coding was required for LANDSAT, Land Satellite, data.
LANDSAT captured 30 frames a day. Each frame covering an area of

100 x 100 nautical miles produced an image of 2340 x 3234 pixels,

each with an integer value 0-127. Other than the initial quantisation

this information had to be saved exactly for future analysis. This was

a rate of 6,000,000,000 bits per day which were stored on magnetic

tape, obviously a ripe case for data compression techniques.

The tremendous growth in image processing is closely tied to the

widespread availability of modern computers at a relatively low cost

and in a physical form that can be transported to anywhere on Earth,

and on the back of a rocket to space or the surface of another planet.

In addition the low costs of image acquisition systems such as

low-cost frame grabbers means image processing technology is

finding its way into small businesses and becoming available to home

users.

'Every picture tells a story' and thus is such an effective means of

communicating information that a list of applications would fill
several pages. The main push seems to have been the demand from

space exploration and satellite operation which flooded over into
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major applications in medical research, video conferencing, flight

simulation, commercial graphics, computer art, entertainment,

education, industrial design, weather forecasting, archiving of

pictorial data, etc.. The advances in communication technology and the

ensuing demands from applications such as those just mentioned for

the storage and transmission of digital image data, fuels the search

for more effective data compression.
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Chapter 1

Data Compression
A brief review of some concepts and

techniques.

Before considering compression techniques it is worthwhile looking

at some of the underlying fundamentals.

1.1 The Communication Process

Most communication systems convey information at a rate well below

the capacity of the channels provided for them. The excess capacity is

required to accommodate the redundancy, or repeated information,

which signals contain in addition to the actual information.

It is of interest to consider first Shannon's [3] definition as outlined

in Fig 1.1. The information to be communicated is first represented by

a suitable code, transmitted via a channel subject to noise and finally

received and decoded .

Information Transmitter Signal Receiver
Destination

source
(coding) (channel) (decoding)

t
Noise

Fig. 1.1. Shannnon's model of a communication system
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Shannon assumed the information source had a calculatable entropy(H)

given by, H = X pj log2( 1/p;) -

Where pj is the probability of an input symbol.

Entropy is therefore a measure of the randomness of a set of random

variables and in the context of coding represents the amount of

information associated with a set of coder input values and gives a

lower bound on the average number of bits required.

This requires a knowledge of the underlying probability distribution.

In the case of visual communication systems dealing with digital

images and vast amounts of possible data this raises the following

questions.

What is the underlying probability distribution?

What are the basic elements or source symbols to be considered?

Various source elements have been used such as pixels, scanlines and

defined objects. Using pixels which may take one of 256 values in an

image of size 512 x 512 gives the number of possible images as

256512x512 - 22000000
An intuitive understanding of the probability distribution seems

impossible as the amount of data is of a huge order and the

probabilities thus exceedingly small. If the underlying distribution of

images is uniform then no compression is possible. Jain [4] suggests

that for monochrome images the entropy is believed to be very low as

only a small proportion of the possible images are likely to occur.

The problem is therefore more one of visual communication

engineering and in the experimental stage the model that appears
page 8



most useful is that given in Fig 1.2, which owes something both to

Fano [5] and Pearson [6], The source encoder finds a representation of

the visual world in binary digits. The channel coder takes the binary

data from the source encoder and codes them in the most efficient

manner for a given application. The introduction of a fidelity criterion

which may consist of subjective and/or objective elements and of a

feedback loop from the receiver, in most cases a human viewer,

allows the adjustment of various parameters in the system to obtain

an optimum position.

Optimisation demands bandwidth compression in two cases;

1. Error-free coding to minimise channel capacity while holding the

fidelity constant

2. non-exact coding to maximise fidelity while holding the channel

capacity constant.

Fig. 1.2. A visual communication system model.

Schreiber [7] reflects the views of several workers in the field of

data compression who feel the approach to communication of image

data should be from the point of view given by the following question.
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For a given channel, what relationship between the scene in the

visual world and the transmitted signal produces the "best" pictures?

What is meant by "best" is subject to the limitations imposed by a

particular application.

The investigations that will be reported later are concerned mainly

with the transmission of digital data on digital communication links

and as such the main noise that the signal will suffer from will be

major interruptions such as power faults. The source encoder will

consist of a camera, low-cost frame grabber and associated circuitry.

1.2 An Image Processing System

The processing of an image involves the transformation of that image

from one form into another. The block diagram in Fig. 1.3 outlines the

main elements of the image processing system which takes

information from the visual world and captures a representation

which can be digitised then stored, processed or displayed on screen.

Disual

World
Image

Digitiser
Image Display

Capture Processor Unit

hj
Fig. 1.3. Block diagram of image processing system

The scene is surveyed, usually by a camera which converts the optical
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image of the visual world into electrical video signals. Two common

types of camera used are vidicon and charge-coupled device ( CCD ).

In vidicon a light image is formed on the photoconductive target area

of the tube which stores charge at what can be considered as discrete

capacitor elements. The capacitors are later discharged by scanning
the target with a low-velocity electron beam producing an output

current. The CCD device consists of an array of photosensitive

elements made up of electrode triplets on a silicon integrated circuit.

Each element holds a charge proportional to the local light intensity

received from the optical system. At the end of one integration time

this pattern is transferred into a similar store section from which it

is sequentially transferred to the on-chip charge detector amplifier

which converts the charge signals into a voltage modulated video

output.

The digitiser converts the analog signal into digital form suitable for

storage and processing. The digitisation is done both spatially, where

it is referred to as image sampling, and in amplitude where it is

known as quantisation. The effects of different sampling and

quantisation strategies will be considered in later chapters. The great

advantage of modern frame grabbers and their frame buffer store is

that they allow these stages to be carried out in real time, meaning

one frame every 1 /25th of a second.

Once in store the image can then be

a) processed as required using arithmetic or logical operators,

b) fed to a display unit where after conversion to analog it can be

displayed on screen, and,

c) stored on some mass storage device such as hard disk.
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The image processing system usually operates under the control of a

digital computer which gives the opportunity through program control

for greater flexibility.

1.3 An Image Model

The image has to be a carrier of information and for an optical image

the signal is usually taken as proportional to the light energy. This is

the model outlined below. However, Stockham [8] emphasised the

importance of representation to transmission, storage and processing.

His work on density representation is of interest. Its foundations are

in photographic transparencies where the quantities of light

transmitted are determined by the volume concentrations of the

silver in the emulsion.

The more common light energy model as detailed by Gonzalez and

Wintz [9] ( and others ) is a two-dimensional light intensity function,

denoted by f(x,y), where the value of the function at spatial

coordinates (x,y) gives the intensity of the image at that point. The

restrictions on f are that it should be positive and finite given by

0 < f(x,y) < m.

As images are formed by both incident light and reflected light this

leads to two components of f, the illumination and reflectance

denoted by i(x,y) and r(x,y) respectively. These components contribute

as a product as given by
f(x,y) = i(x,y) . r(x,y).

However they carry two basic and separate kinds of information,
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i(x,y) holding information on the lighting of the scene and r(x,y) being
an indication of the nature of the objects through their ability to

reflect light.

For a monochrome image the intensity f at a point (x,y) is known as

the grey level ( g ) of the image at that point. The grey level will lie

between two finite values which are normally shifted to give the

range

0 < g < L.

This range is known as the grey scale and the usual convention is

g = 0 corresponds to black and g = L corresponds to white with

intermediate values having shades of grey. A useful way of visualising
this model in three dimensions is as given in Fig. 1.4.

Binary or bilevel images have f restricted to the values 0 or 1,

where these normally correspond to black and white.

Fig. 1.4. A three dimensional representation of an image
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1.4 General Data Compression Techniques

A data compression technique is one that reduces the bandwidth

needed to transmit a given amount of information in a given time or

the time needed to transmit a given amount of information in a given

bandwidth. Techniques which fall into this broad definition are

concerned with areas other than image communication but most can

be applied to image transmission.

These have been categorised in many ways by writers in the literature

and it does not seem within the scope of this report to look carefully

at the many sometimes overlapping categorisations and their

associated techniques. However, a limited number of examples

should give sufficient flavour.

1.4.1 An early categorisation of data handling due to Kortman [10] is

as outlined in Fig. 1.5.

Fig. 1.5. Outline of data compression categorisation

a) Parameter Extraction is a technique that reduces the bandwidth

required to transmit a given data sample by means of an

information-describing irreversible transformation that extracts a

particular characteristic or parameter of the signal. An example of
this is the extraction of the power spectrum of a signal and
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transmission of the spectral components. Parameter extraction

systems are very much moulded to meet the requirements of a

particular application.

b) Adaptive Sampling adjusts the sampling rate of a given sensor

to correspond to its information rate. A perfect match would mean

there was no redundant information and compression would not be

possible. However the complexity and accuracy of the activity

detector and difficulty of implementation means that this is not

possible. In practice adaptive or variable rate sensors have been

successful. However there is no guarantee of compression and the

overhead of tagging the data with a time or sensor tag may result in

an expansion of data in certain circumstances.

c) Redundancy Reduction eliminates data samples that can be

implied by examination of preceding or succeeding samples or by

comparison with arbitrary reference patterns. Here the sampling rate

is held constant and non-essential data eliminated later, unlike

adaptive sampling where the sampling rate is varied to remove excess

data.

There are many different reference patterns used to detect

redundancy such as polynomials, exponentials and sine waves by

which the raw data may be approximated.

There are two main sub-categories of redundancy reduction

techniques, namely predictors and interpolators. In predictors

redundancy is eliminated by estimating the value of each new sample

based on the past performance of the data, while in interpolators

after-the-fact polynomial curve fitting is used
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d) Encoding transforms a given message into a corresponding

sequence of code words. To be effective the sequential data should be

well correlated. Thus an a priori knowledge of the data statistics is

expected. Otherwise some adaptive method is used based on the most

recent statistics of the encoder.

1.4.2 Schreiber [7] gives a much simpler and widely used

categorisation as follows:

a) Pure Statistical, b) Psychovisual and c) Hybrid.

a) Pure Statistical techniques rely on the statistical correlation

between nearby elements, usually pixels. They are information

preserving methods with the compression ratio measured by

comparing the number of bits required for the original with those

required for the coded image.

b) Psychovisual techniques alter the original image in order to

compress the data, while at the same time maintaining an image of

acceptable quality to the user. Any assessment of these methods must

take into account many aspects of human vision and whether the

images are for still or moving scenes.

c) Hybrid methods use combinations of a) and b).

1.5 Encoding of Digital Images
Attention is now focused on the encoding of digital images after

capture, including initial sampling and quantisation, from the visual
world. The image is held in an N x N array of pixels with m bits per
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pixel. It is the nature of digital images that they require a large

number of bits for storage, a digital image 512 x 512 with 256 grey

levels requires approximately 2.1 million bits. Hence the encoding

procedure must compress this information as much as possible. It is

helpful to split the process of encoding into three stages as shown in

Fig. 1.6. The image in the pixel domain is mapped in a reversible step

into a form that can be more easily compressed. A quantiser is then

applied which may be uniform or nonuniform depending on the

application. This is a nonreversible operation where the data from the

mapping is approximated to the levels available in the quantiser

causing an error with minimum value zero and maximum value of half

the largest quantiser step. The resulting data is then coded to give a

binary output suitable for transmission. For a given initial mapping

the quantisation and coding need not be constant. The coding strategy

can be varied to meet the nature of the output from the mapping.

These steps are clearly seen in the more detailed discussion of

several methods that follows later in this section.

Fig. 1.6. Diagram of steps in encoding process

In a recent paper Kunt [11] loosely classifies the available

compression techniques into 'first-generation' and

'second-generation'. The first-generation methods are those that

emphasise the coder stage and make use of the spatial correlation
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between pixels. During the 1960s and early 1970s considerable

progress was made using these, reaching maximum compression

ratios of around 10:1. To go further than this, second-generation

techniques have placed more stress on the mapper also making good
use of recent findings on the nature, workings and limitations of

human vision down to the neuron level. Substantial improvements in

the compression ratio are claimed with several techniques giving

figures around 50:1. The trade-off is 'quality' of the final image and

especially at the higher compression ratios much information is

discarded and the images might be judged poor or unacceptable for

many applications. The reader is advised to view the details and

images given in the reference above. An example, 'region growing', is

given in section 1.5.3.5.

Before looking at individual methods some possible coding systems

are considered.

1.5.1 Coding Choices

Coding using a binary alphabet gives code words made up of two

symbols, normally 1 and 0. Possible codes can be classified into

fixed-length and variable-length. An example of fixed-length

coding is 3 bit natural binary code which gives 000,001,011

110,111. Another example of a fixed-length code is the particular

Gray code known as reflected binary, which has the often

advantageous feature that as we move through consecutive code

words they change in only one digit. Examples of variable length codes

are given in the following sections.
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A uniquely decodable code is one in which the code words can be

decoded in one way when received with no special space symbols. For

instance alphabet w1 = 0, w2=10, w3=110, w4=11 is not uniquely

decodable as the sequence 110 could be w3 or w4, wi. However a

fixed-length alphabet 00, 01, 10,11 would be uniquely decodable.

Another important classification is that of instantaneous and

non-instantaneous according to whether or not it is possible to

decode each word in sequence without reference to succeeding code

symbols. An instantaneous code requires the condition that no code

word be a prefix of another and has the advantage that decoding is

simple.

When coding for compression of data we are interested in generating a

code that would achieve the minimum number of bits. Using variable

length codes with the most probable messages represented by the

shortest codes should give greatest efficiency. Such codes are known

as compact codes. If the probabilities are known then the entropy, as

mentioned in an earlier section, gives a lower bound on the number of

bits. However the probabilities are not always available and other

factors such as simplicity and ease of implementation may give

significant advantage to a suboptimum code.

Huffman Code [12]

Huffman code is a compact code which is formed by the following

process. The probabilities are first placed in descending order then
the two smallest probabilities are added to produce a new set of

probabilities which are again ordered. This is repeated until only two
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probabilities remain. A '0' or '1' is placed at each of the remaining two

probabilities and the decomposition traced backwards repeating the

'0' or '1' placement and carrying any previous allocation as a prefix.

This construction and final codes are shown in Fig. 1.7.a. An

alternative representation of codes as paths in a binary tree is given

in Fig. 1.7.b.
input probabilities code

0

a 0.6 0.6 0.6 0.6 0

1 1
b 0.16 0.16 ~Lr 0.24 -i 1 10

1 1 0 1 " 0.4
c 0.14 0.14 _ L0.16 - 110

1110 0

d 0.07 1
■ 1110

Lo.10 -

e 0.03 -1 111 1111
1111

(a) (b)

Fig. 1.7. Diagram showing the formation of Huffman codes.

Continuation Bit Code ( B-codes)

This system has been found to be useful in run-length encoding where

the number of short run lengths is large and as the run lengths

increase the probability drops away quickly. The probability

distribution is often close to a power law, the probabilities of the m

coder inputs being given by

Pi = (i)"k
for i = 1,2,3,.. ,m, and k a positive constant.

The code word consists of two 'types' of bit, the continuation-bit (c)

and the information-bit (i). When the continuation bit is not set,

value 0, only the first group of digits is required for the message

otherwise the continuation bit is set, value 1, and more groups of
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digits must be taken until a continuation bit set at 0 is found. The

number of information bits is usually fixed for a given code. If the

number of information bits is fixed at one it is a B^code, at two a

B2-code and so on. The common practice is for the continuation bit to

precede the information bits. Examples giving the coding of possible

run lengths are shown in Table 1.1 .

run length B^code B2-code
CiCiCiCiC— CiiCiiCiiCii...

0 this is a special case applying only to the first run length being black or white
1 00 000

2 01 001

3 1000 010

4 1001 011

5 1100 100000

6 1101 100001

7 101000 100010

8 101001 100011

9 101100 101000

Table 1.1 Continuation bit coding.

Shift Codes

This is a variable length code which is suitable for probability

distributions which are monotonically decreasing. It also has the

advantage that it is easy to implement.

The process is first to select a fixed length code to establish basic

code words. Next one of these code words is selected as as a

continuation code for out of range values. If an input is outwith the

range of the three remaining information codes words, these words
are shifted and prefixed by the continuation code. For example if the

initial length is chosen as 2 the basic code words available are
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00,01,10,11. Let the continuation code be 11 then the first eight

inputs are coded as given in Table 1.2.
t

input abcdefg h

code 00 01 10 1100 1101 1110 111100 111101

Table 1.2 Input messages and possible shift codes.

1.5.2 Specific Data Compression Techniques

The range of available techniques and their extensions is vast. Thus a

few fundamental methods with references are outlined below,

followed by five selected examples in section 1.5.3.

Pulse Code Modulation ( PCM ) [13]

The pulse code modulation ( PCM ) system is one of the earliest and

most simple techniques often used as a reference for other methods.

In this system the image signal is periodically sampled and the

amplitude of each sample quantised and described by a fixed length

binary code ready for transmission. Usually the number of levels of

the quantiser is in the range from 8 to 256. The final image can suffer

considerably from contouring if the number of levels is too low. The

contouring can be broken up by addition of noise or dithering [14]. PCM

does not take account of any properties of the human vision nor the

spatial dependency between pixels with the final image quality

depending on the sampling rate and number of quantisation levels.
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Differential Pulse Code Modulation ( DPCM ) [15],[16]
«

Differential pulse code modulation is a predictive technique which

uses previous pixel amplitude data to estimate the amplitude of the

next. The difference between the prediction and the actual value is

quantised and transmitted. For monochrome images with 256 grey

levels the differences may range over the values -256 to 256.

However, due to the correlation between adjacent pixels the majority

of differences lie within a narrow band closely clustered around zero

[9]. Therefore for many images the differences can be quantised using

fewer levels than the original. The quantisation is often non-linear

based on a tapered scale with small differences quantised more finely

than large ones. Compression of data is thus obtained and can be

improved by utilising adaptive techniques.

Delta Modulation [17]

Delta modulation is a special case of DPCM where the quantiser has

two levels (1 bit/pixel). The main advantage of this system is its

simplicity. Comparison of delta modulation and adaptive delta

modulation with PCM is given by Abate[18]. Delta modulation suffers

badly from slope overload and granularity. Slope overload occurs

when there is a relatively large jump or discontinuity in the signal

and the quantiser cannot respond quickly enough. Granularity is the

false steps that are introduced in a signal by the quantiser

fluctuating between levels in an approximately steady signal. These

errors are shown in Fig 1.8.
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Fig. 1.8 A signal and its approximation by Delta Modulation.

Transform Methods

There are many methods which can be included in the category of

transform techniques where the original set of pixel data is replaced

through a transformation by a set of coefficients. These coefficients

should exhibit less correlation than the original data and can thus be

considered more independent. The process first subdivides the image

into separate blocks, often square. The transformation is then applied

to this subimage and the resulting coefficients coded for

transmission. The coding can be held constant for all subimages or

altered to best suit the nature and contents of a particular subimage

giving an adaptive form. It is not within the scope of this work to

detail these techniques but the more common transform methods are

Karhunen-Loeve (or Hotelling), Fourier, Hadamard, Haar, sine, cosine,

etc.. The following references give a thorough coverage [19], [20], [21].
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Digital Television Inspired Techniques

A considerable amount of research has been stimulated by the

compression of data for broadcast television. Methods that are good

for still images or even in video conferencing are not necessarily as

efficient in an environment where real-time operation is essential

and a high fixed channel rate is available.

Techniques can be split into intraframe and interframe. Initially

most work was on intraframe techniques which seek to take

advantage of the spatial correlation in a frame as detailed by Connor

et al [22]. With the availability of cheap frame store memories and

with intraframe methods appearing close to their limit the emphasis

switched to interframe applications. The work in this area was able

to feed on early investigations at Bell Labs, on Picturephone [23] and
on video conferencing research, in general. Interframe coding tries to

take advantage of the correlation between successive frames or

corresponding fields in the case of interlacing. On its own interframe

coding was going to be of little use in images where there was

considerable movement of objects. Clearly the successive frames

would change considerably. Interframe methods seemed best suited to

frame sequences with little movement, not typical of T.V.

transmissions. The solution was to use hybrid methods combining both

intraframe and interframe coding in the appropriate circumstances.

The requirement was now for a motion detector and criteria that

would be able to categorise areas of an image and select the best

coding technique. The paper by Mounts [24] introduces the idea of

conditional replenishment. In conditional replenishment the

differences between an incoming image and a reference image are
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compared and only those areas of an image which have changed

significantly are transmitted. Papers of further interest in this area

are Haskell et al [25] and Candy et al [26].

note Some of the methods to be reported in later chapters consider

interframe applications to the transmission of images over a low

bandwidth channel. The subject matter is restricted to suitable

images with less violent movement such as human head and shoulders

in a videophone style communication.

1.5.3 Selected Examples

Five examples are now given in more detail, they are

1. Run-length encoding

2. Quadtree encoding

3. Block Coding

4. Block Truncation Coding (BTC) and

Colour Cell Compression (CCC).

5. Contour-Texture Technique.

Run-length coding is given as it is the technique used in the work

reported in later chapters. Quadtree and Block coding are different

examples of area encoding. The combined example of BTC and its

extension to CCC gives impressive colour images after considerable

compression by an irreversible process. Lastly a contour-texture

technique, using region growing, is a good example of a

second-generation method
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1.5.3.1. Run-length Coding

Initially the image is scanned to produce a sequence of integer pairs,

giving the number of pixels with the same intensity and the value of

the intensity. For black and white images a sequence of run lengths is

sufficient if some convention such as first run length always

corresponds to white pixels is used. If the first pixel is black then the

first integer sent is zero. The ability to compress the image is

dependent on the distribution of the run lengths produced and hence on

the composition of the underlying image. Run-length coding has been

used with considerable success in cases where a significant number

of long runs are generated. However, as the number of long runs

decreases the compression quickly falls away. The ease of encoding

and decoding implementation is an advantage.

The bilevel techniques can be extended to grey level images by coding

each bit plane. This will be considered in later chapters.

Scanning

A major influence on the compression is the ability of the scanning

method to produce long run lengths. Therefore for a given image

different scanning patterns can produce significant differences in the

final data reduction. Two scanning methods to consider are a) the

familiar linear scan and b) scanning by space filling curve. At this

stage simple examples are given to show clearly the different

sequences produced by these methods. A formal definition and more

detailed discussion of space filling curves will be given in the

following chapter.
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a) Linear

Linear scanning scans from left to right and top to bottom with

fly-back at the end of each scanline as shown in Fig.1.9. This is the

basis of one-dimensional run-length coding and it takes advantage of

the correlation between adjacent pixels on the scanline. There is a

two-dimensional extension known as predictive differential

quantisation (PDQ) which stores information on two scanlines of pixel

data. This has been found to be more efficient than one-dimensional

methods in the case of images with a few long run lengths.

b) Space Filling Curves

Space filling curves can be applied to the scanning of images in two

or three dimensions. For the present only the two-dimensional case is

considered using one well known scan pattern due to Hilbert as shown

in Fig. 1.10. One initial gain from the use of space filling curves is

their ability to take advantage of the two-dimensional correlation

between elements in a local area. Secondly, as we will see in chapter

2, there is great variety of scans and orientation which can be of

assistance.

Run lengths are best coded with a variable length code as an equal

length is clearly inefficient requiring log2M bits, where M is the
maximum run length. In many images the run length distribution lends

itself to continuation bit coding ( B-codes ).
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a)

Fig. 1.9 a) Linear scan pattern b) scan of 8 x 8 image
c) run-length sequence

mm —

EnLLITII

3-Fila
—

J*"™FJ±f=3
M

2, 2, 4, 4, 4,
4, 4, 2, 2, 4,
1, 2, 1, 4, 1,
2, 3, 2, 2, 1,
3, 5, 5

c)

2, 7, 2, 5, 10,
3, 2, 2, 2, 7,
7, 2, 3, 4, 4, 2

a)

Fig 1.10
a) Hilbert curve order 2
c) run-length sequence

b)

b) scan of order 3

C)

1.5.3.2. Quadtree Encoding

This involves the formation of quadtrees by successively dividing a

square digital image of side 2m pixels into quadrants until all the

quadrants are homogeneous, namely of the same colour or in the case

of bilevel images all black or all white. These quadrants are

represented by a tree structure, with the leaves of the tree

corresponding to area of the same colour. The growth of the tree can
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1 2

3 4

C)

Fig. 1.11 a) quadrants numbered for clarity,
b) image & c) simplified quadtree representation of the image.

be controlled by a resolution limit with the maximum value at the

pixel level. A simple example of this is given in Fig. 1.11 with a linked

tree representation each node below the root has four sons or is a leaf

node.

root

The quadtree structure in this form tries to exploit the coherence of

many images and has been found to be a useful method for the storage

of digital images. Klinger & Dyer [27] give examples of data

compaction. This representation is also a suitable form for many

image operations as reported by Hunter & Steglitz [28], Oliver &

Wiseman [29] and others.

Many different data structures and methods have been developed for

encoding, some with an emphasis on compaction [30] others more

interested in manipulation, see references in the previous paragraph.

A few of the more common cases are detailed below.
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a) Regular Quadtrees ( RQT )

This system is based on a pointer representation between quadrants

with links between father and four sons, and in some cases backwards

and adjacent links to allow flexibility. While achieving compression

there is a large overhead to store pointer information and in some

examples expansion of data often occurred.

b) Explicit Quadtrees

Woodwark [31] avoided the need for links by allocating a location for

every possible node. This ignored the coherence of an image and did

not dramatically improve the storage requirements. However, it did

give fast access for investigation of parts of the image and for

modification.

c) Linear Quadtrees
Oliver & Wiseman [29] gave a more compact data structure where a

traversal of the tree in depth first order gave a linear list of the

nodes. The list also held the information associated with the nodes as

in the RQT method, but without the storage overhead of pointers.

However, this method was not general, as the original traversal of the

tree dictated the order for future manipulation. Good results were

obtained, but if a full traversal was required it could be inefficient.

The technique was extended by compressing the linear node list as

detailed by Woodwark [32]. The resulting Compressed Tree Codes(CTC)

occupied 65% of the original treecode but were still no better than

run-length encoding.

1.5.3.3. Block Coding

This is a simple method that was originally applied to bilevel images

and can easily be extended to grey level images. It can be applied as a
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reversible method with no data loss or with minor alteration,

information can be discarded to produce better compression with a

corresponding loss in quality. Studied in detail by Kunt and Johnsen

[32] the method groups an image into blocks of pixels of size m x n.

These blocks are then coded according to their probabilities of

occurrence, using short code words for the most likely block

configurations and long code words for the less likely block

configurations. Thus compression is achieved. Initially Kunt developed

block coding for two-dimensional images. It has since been improved

using adaptive techniques and finally generalised for grey level

images.

The number of possible arrangements in an m x n block is 2mn. These
form the set of possible messages. The formation of code words from

these blocks is known as block coding. For the highest compression

the optimum Huffman code is used but for blocks greater than 3x3

the set of messages becomes very large and Huffman code is

impractical. A suboptimum code is often used in these circumstances.

The most common pattern, often a totally white block, is coded as 0

and all other patterns have the prefix 1 followed by 1's and O's to

indicate whether a pixel is on or off as shown in Fig. 1.12. The coding

is information preserving at this stage. More compression can easily

be obtained by coding blocks containing k, where k is a small positive

integer, or less black pixels as if they were white blocks with a

resulting degradation of quality. The amount of degradation is

determined by the quality required for a particular application. In the

adaptive technique the block size is varied depending on the statistics

of the previous data.

Block coding is extended to grey level images by coding each of the
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bilevel bit planes. Further if the intensities are coded using an 8 bit

canonical Gray code the bit-plane patterns are often more susceptible

to block coding. The average compression ratio is found to be around

5:1.

Fig.1.12 The technique of suboptimum block coding

4. Block Truncation Coding (BTC) &
Colour Cell Compression( CCC )

a) Block Truncation Coding

Block truncation coding ( BTC ) is quite different from the block
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coding given in the previous section. BTC is a non-information

preserving method which attempts to retain important visual features

of multilevel images. As it only requires one pass through the data it

is easy to implement and found suitable for noisy data. It was

developed by Delp & Mitchell [34] and extended to colour by Lena &

Mitchell [35]. The image is divided into n x n blocks and the mean

brightness level and variance are found for each block. Assuming a

block of 4 x 4 , a 16-bit bit plane is formed using a threshold, often

the sample mean. Each bit in the bit plane is set to a 1 if it is equal to

or above the threshold and otherwise set to 0. The data transmitted is

then 8-bit quantised values for mean and variance, and thel 6-bit bit

plane giving 32 bits in total a rate of 2 bits/pixel. Brightness,

contrast and most visible features within each block are retained.

Mitchell & Delp [36] report that for certain bilevel images tested by

Huang [37] run-length coding was better than BTC when time and

memory are not restrictions, but BTC was considerably better for 32

grey-level examples.

The technique can be extended to colour by applying it to each of the

R, G and B colour planes giving good quality images at 6 bits/pixel.

b) Colour Cell Compression

Another method of interest based on BTC is Colour Cell Compression

(CCC) developed by Campbell, DeFanti et al [38] where substantial

compression is gained while maintaining what the human viewer

would consider as very good quality images. The method takes

advantage of the fact that the colour resolution of the human eye is

usually happy with as little as 5 bits for each of the R, G and B
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components. The steps involved are as follows and as illustrated in

Fig. 1.13.

step 1: A BTC method with cell size 4 x 4 is applied to each colour

plane from the original image, giving a 16-bit bitmap dividing the

cell into two regions. Two colours are then selected which best

represents the original colours within each region, each colour

being a 24-bit R, G, B value. At this stage this information is

stored with the image, now represented by 4 bits/pixel.

step2: The R, G, B values are then quantised from the 8 bit form to

5 bits reducing the representation to 3 bits/pixel.

step3: Using the image representation from step 2 an ordered

histogram of colours is formed and from this 256 suitable colours

are selected which best represent the original. A "Median Cut" [39]

method is used for selection. These colours are then stored in a

colour look-up table with 8 bit values for R, G and B components.

step4: The stored form from step 1 is then adjusted so that each

of the 24-bit colour vectors is replaced by an 8-bit pointer into

the colour table position which best matches the original. This

final form is a 2 bit/pixel representation which as shown in [38]

produces colour images of better than expected quality.

There is considerable processing time to achieve the final result ,11

seconds for a 640 by 480 image on a VAX 750 is quoted.
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1 0 0 0

0 1 0 )

0 1 1 1

1 0 0 0

4x4 cell

colour 1 colour 2 bitplane
stepl 64 bits 4 bits/pixel

24-bits 24 bits 16 bits

i r quantised

step 2
48 bits 3 bits/pixel

16 bits 16 bits 16 bits

step 3 ■

step 4

256 entry

8-1 bit colour table

32 bits 2bits/pixel

8 bits 8 bits 16 bits

Fig. 1.13 Diagram showing main steps in CCC algorithm

1.5.3.5. A Contour-Texture Technique - Region Growing [11]

It is of interest to give brief details of a typical example of a

second-generation method which achieves high compression ratios but

still requires research work to improve the quality of the final image.

For images with little detail or where the finer detail is not of major

importance the final result is encouraging.

There are three major stages a) segmentation, b) contour coding and

c) texture coding.

Segmentation breaks up the image into areas of similarly textured
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regions surrounded by contours where each pixel must be tagged as a

'contour' type or 'texture' type. These regions should be as close as

possible to objects in the original image. In region growing the

contours are closed regions that can be stored along with their

associated properties. Segmentation can be further divided into

preprocessing, region growing and elimination of artifacts.

Preprocessing should reduce the granularity of the original data

and hopefully eliminate small contour areas that probably do not

represent actual objects in the image. At the same time edges

must be retained. These contradictory requirements are achieved

by iterative application of a special filter which acts like a

low-pass filter in areas without contours, otherwise as an

all-pass filter.

Region growing takes the pixels from preprocessing and

categorises them on property such as grey level. Regions are then

grown by finding neighbouring pixels with a common property

value. The selection of a suitable property is crucial to the success

of the compression and often trial and error methods are used at

this stage.

After region growing the resulting image is tidied up by removing

open contours and contours two pixels wide. There is still a need to

reduce the number of contours and a heuristic is applied which

merges adjacent areas of low contrast and any small areas.

Contour coding must produce an efficient and precise description of

the contours obtained from segmentation. After initial description of

all border points the common border points which are described twice

are identified and coded once. Following this the remaining contours

are then described either by approximation to i) a line segment or
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ii) a circle segment, or exactly by points.

Texture coding takes the regions from segmentation which should

now have smooth variation of grey level and describes them initially

by a two-dimensional polynomial function. The function may be

altered in dimension after analysis of the resulting approximation

errors and coding efficiency. As a last step the initial removal of

granularity is rebalanced by the addition of some noise to give a more

natural looking image.

Fig. 1.14 is an example that gave a compression ratio of 50:1 and

shows more clearly some of the stages involved. The method is by no

means perfect, suffering from some false regions that are not

representative of any object in the original and considerable loss of
detail. However, it does represent the major objects well and is

promising in cases where the finer detail is of little importance.

Fig. 1.14 Region growing [11]

a) original images, b) result after region growing,

c) result after segmentation and d) decoded pictures
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1.6 Summary
A description of the basic concepts and several of the common

techniques has been given. The motivation for data compression

applied to the storage and transmission of digital images has been

highlighted. It has been strongly suggested that the solution is of a

visual engineering nature requiring the combination of a number of

different tools. Assessment of a technique depends on a number of

factors which vary from application to application. Some of the more

important factors are data compression achieved, implementation

efficiency and hardware requirements.

A few specific examples were outlined from a wide range of methods.

If the reader was disappointed by the lack of depth, no apology is

made. As many esteemed authors have pointed out the subject matter

is now a vast and expanding area which, even if the reader follows all

the references given, will still leave a 'life-time' of reading ahead.

However, one topic that is of utmost importance and was reluctantly

omitted is that of human vision. There seems little doubt that recent

and on-going research into the workings of the human vision system

will bring forth information that should boost work in data

compression. Kunt [11] and many other writers referenced earlier give

a summary of the mechanisms as they are understood at present.
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Chapter 2
Peano Curves to Murray Polygons

In this chapter the development by Cole [40,41] from Peano's [42]

original concept of a space filling curve to the definition of murray

polygons and their associated methods via multiple radix arithmetic

is described.

2.1 Space Filling Curves

The birth of what are now commonly called space filling curves was

the discovery in 1890 by Guiseppe Peano [42] of a family of curves

which scan n-dimensional space. At this time mathematicians were

just accepting the definition of a 'curve' as the locus of points that

satisfy equations of continuous functions. Intuitively a unique tangent

could be drawn at any point on these curves. Peano produced an

exception, which created turmoil and was regarded at the time as a

non-intuitive 'monster'. He showed how to produce a curve by moving a

single point continuously over a square, such that it passed at least

once through every point on the square and its boundary. The curve

produced was indeed continuous but it was impossible to draw unique

tangents. That is, a continuous one-dimensional curve which at its

limit filled a two-dimensional square but was differentiable nowhere.

Cole [40] used the underlying fundamental idea introduced by Peano of

a continuous mapping of the unit line segment [ 0,1 ] on to the unit

square. The original proof by Peano used a base three representation
of the coordinates, from which he indicated its extension to any odd
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number base and to n-dimensions.

While based on the ideas introduced by Peano much recent work takes

the alternative viewpoint given by Hilbert [43] that a space filling

curve can be considered as a limit of polygons enclosed in the unit

square. Hilbert generated a Peano curve with two free end points.

Hilbert's curve is shown in Fig. 2.2 ( page 43) Moore[44] and Sierpinski

[45] were others who were much involved in the early investigations
of space filling curves. The mapping generated from Peano's

transformation may also be regarded as a limit of polygons. Further

details including more on Peano's original definition are given in [46].

Mandelbrot [47] classifies Peano curves as fractals and using his

terminology Fig. 2.1 shows a) the original generator, which does not

self-intersect but does self-contact, b) the unit square used as

initiator and c) the curve formed after the first stage when each

side of the square is replaced with the generator.

-j——«——>

a) b)

Fig. 2.1
A Peano space filling curve
a) the generator, b) the initiating square
c) the pattern after the first stage.
( contact points omitted for clarity )
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While Fig. 2.1 shows the original examples it is much easier to

visualise the idea of space filling curves and the limiting process by

showing three of the most commonly quoted examples of polygons as

given in Fig. 2.2 (the boundary squares are for reference only and are

not part of the curves). These are all Peano polygons but are often

referred to as the Peano, Hilbert and Sierpinski polygons. The first

two are examples of open-polygons which do not self-contact while

the later is a closed polygon.

Griffiths [48] investigated space filling curves and described a

method for generating new ones. He considers the space filling curve

in the unit square defined as the limit of a sequence s-\ of

continuous curves which pass through every point of the square. This

can be viewed as a tessellation of square tiles all of which have the

same pattern but with the orientation of the pattern varying. Firstly a

tile has an n x n grid marked on it and the centres of each grid-square

are taken as permissible points for the construction of a continuous

open path that does not intersect. The resulting path must have

endpoints such that n2 tiles can be fitted together and the individual

paths joined up with standard steps as shown in Fig. 2.3. Griffiths at

this stage had shown how to generate new space filling curves which

would traverse squares.
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a) order 1 b) H2 order 2 c) H3 order 3

d) H4 order 4 e) Hg order5 f) Hg order 6

Peano Polygons

a) P1 order 1 b) P2 order 2 c) P3 order 3
[contd]

Fig. 2.2 Space filling curves
Peano curves order 1-3 and Hilbert curves order 1-6
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Sierpinski Polygons

a) S-, order 1 b) S2 order 2 c) S3 Oder 3

d) S4 order 4 e) S5 order 5

Fig. 2.2 [contd] Space filling curves

Sierpinski curves orderl -5
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Fig 2.3 Three examples of basic tiles and second order polygons due to Griffiths[ 48]

Cole achieved two important steps forward, firstly he obtained a

direct transformation for Peano polygons and later a general method

to allow traversal of rectangular parallelepipeds with odd numbers of

integer coordinates on each side. In developing these ideas Cole used

multiple radix arithmetic, which gratefully he shortened to murray

arithmetic, and from this he named the resulting curves murray

polygons. This work is examined in the next sections.

2.2 Murray Polygons

As the basis of the research in later chapters is the work carried out

by Cole [40,41,49], it seems correct to take some time to review the
relevant parts of his work in detail. Cole became interested in space

filling curves motivated by an argument with a colleague over the

fclassification of curves as either Hilbert or Peano polygons.

fnote: This classification has troubled many writers in the field. The curves generated by
Hilbert are a subset of the Peano curves but normal usage appears to name specific examples as

given in Fig. 2.2.
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After initial investigations he produced neat algorithms for drawing

the common space filling curves, all three are obtained recursively

from a single point [40]. The main procedure for the Hilbert curve is

given in Fig. 2.4 the language used is the Outline System of PS-algol

[50], further details can be found in [41]. His consideration of the

Peano polygon as having nine vertices by splitting each edge at its

mid-point proved of significance later.

let draw.hilbert = proc ( cint complexity)
begin

let hilbert = proc( epic h ; cint order, width );nullproc
hilbert := proc( epic h ; cint order, width )
if order = complexity then draw( h, 0, width, 0, width )
else

hilbert(
(scale rotate h by -90 by -1,1 A
shift h by width + 2,0 A
shift h by width + 2, width +2 A
shift scale rotate h by -90 by-1,1

by width, 2 * width + 2 ),
order +1,2* width + 2 )

hilbert ([ 0,0 ],0,0 )
end

The initial call of hilbert starts with the Hilbert polygon of order zero H0, which is in
this case the point [ 0,0 ]. Assuming the complexity requested is greater than zero the
single point is subject to the transformations detailed in the procedure with the A operator
joining the four parts to obtain the first order polygon . The reader is invited to follow
through the transformations from to H2 as given in Fig. 2.2.

Fig 2.4 Main procedure for Hilbert polygons.

Peano's original definition had taken a point on the interval [0,1] and

split it into two real base three numbers by taking all the odd indexed

digits in their sequential order for the value for x and all the even
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ordered digits in their sequential order for the value for y to obtain

the point ( x,y) of the square defined by 0<x<1,0<y<1.

It should be noted that to maintain the uniqueness of the

transformation, the ambiguity of real number representation, where

to base three 0.1211 and 0.121022222222 are equally valid

representations, was dealt with in a more complex manner, which

need not be discussed in this report.

Cole considered application of a similar technique to define a mapping

from the first 32n base three integers to the vertices of the nth

Peano polygon. He had no success for some time before a breakthrough

with a vital link, the application of cyclic progressive numbers.

2.2.1 The Contribution of Gray Codes

Gilbert [51] defines a Gray code as a means of quantising an angle and

representing it in a binary alphabet. The encoding is such that angles

in adjacent quantum intervals are encoded into n-tuples of binary

digits which differ in just one place. These Gray codes are special

cases of cyclic progressive number systems whose successive

integers differ in only one digit. They are not restricted to binary

representation but can take any number base. Cole[52] gives the

following conversion rules from a pure number a) odd base and b)

even base systems to Gray code.

Suppose an integer d in a pure number system with radix r is given by
d = dndn., d3d2d,

Note that any digit dj has reduced radix complement r -1 - d,.

a) odd base r
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A digit dj remains unaltered if the sum of all its more significant

(i.e. left hand ) digits is even otherwise it is replaced by its

complement,

b) even base r

A digit dj remains unaltered if its more significant (i.e. left

neighbour) digit is even otherwise it is replaced by its complement.

To convert back to pure number form is exactly as given in the odd

case above.

Table 1 gives some simple examples with different bases.

base 3 base 10 base 5
Pure Cyclic Prog. Pure Cyclic Prog. Pure Cyclic Prog
0000 0000 0000 0000 1443 1001
0001 0001 0001 0001 1444 1000
0002 0002 ..... ...... 2000 2000
0010 0012 0009 0000
0011 0011 0010 0019
0012 0010 0011 0018 3434 3014
0020 0020 3440 3004
0021 0021 0019 0010 3441 3003
0022 0022 0020 0020 3442 3002
0100 0122 0021 0021

Table 2.1 Pure integers to various bases and their corresponding cyclic progressive form.

2.2.2 Direct Transformation for Peano Polygons

An important connection between the cyclic progressive number

systems and space filling curves was seen by noting that in the case

of Peano and Hilbert polygons consecutive vertices are one unit apart

in either x or y but not both. After considering several possibilities

and close to giving up Cole found the transformation he was seeking

for the case of Peano polygons by using base three numbers (further

details follow in section 2.2.3.2 ). Further he realised the importance

of the commutativity of conversion to Gray codes and reduced radix

complementation to the mapping and why it was not possible
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therefore to use this method for Hilbert polygons. The proofs and

detailed explanations to cover explicit mappings from the first n2p
base n Gray code integers into the ordered vertices not only of a space

filling curve but of the pth Peano polygon and vice versa are to be
found in Cole [53]. The result now covers any odd based number

system with radix r giving a generalised Peano polygon Pm n-r of type
r in n dimensions which pass through all rmn points with integer

coordinates in the n-dimensional cube of side rm -1 ( m = 1,2,3 ).

An illustration of the steps involved for part of a Peano polygon of

order 2 is given in Fig. 2.5 and Table 2.2 .

The transformation to the pth Peano polygon is only true for the first

n2p integers where n is odd. Soon after this Cole [54] produced a direct

mapping between the first 22p integers and the ordered points of the

pth Hilbert polygon. About the same time Fisher [55] derived a

data-driven algorithm for the generation of Hilbert curves. These

methods used table-driven algorithms and with minor modifications

could be made equivalent. As with the Peano transformation the

method could be extended to deal with Hilbert polygons in higher

dimensional space for any even integer.
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Base 3
Pure Grav code Pure coordinates
number number odd digits even digits odd digits even digits (x,y )

0000 0000 00 00 00 00 (0,0)
0001 0001 01 00 01 00 (1.0)
0002 0002 02 00 02 00 (2,0)
0010 0012 02 01 02 01 (2, 1 )
0011 0011 01 01 01 01 (1.1 )
0012 0010 00 01 00 01 (0, 1 )
0020 0020 00 02 00 02 (0,2)
0021 0021 01 02 01 02 (1.2)
0022 0022 02 02 02 02 (2,2)
0100 0122 12 02 10 02 (3,2)
0101 0121 11 02 11 02 (4,2)
0102 0120 10 02 12 02 (5,2)

1112 1110 10 11 12 11 (5,4)
1120 1120 10 12 12 10 (5,3)
1121 1121 11 12 11 10 (4,3)

2220 2220 20 22 20 22 (6,8)
2221 2221 21 22 21 22 (7,8)
2222 2222 22 22 22 22 (8,8)

Table 2.2 The transformation from base 3 numbers to the vertices of a Peano polygon.
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0 1 2345678

Fig. 2.5 The traversal of the second order Peano Polygon P2.

2.2.3 Escape from the Square Cell

Cole had been aware that applications of the above techniques to

problems in computer graphics looked promising. In particular data

compaction for storage or transmission, object identification and
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others where the scanning of an area was required. These techniques,

and quadtree methods ( section 1.5.3.2 ), were limited to squares with

restrictions on their dimensions.

The tools to escape from the square cell were derived by Cole [41]

using multiple radix arithmetic (murray arithmetic).

2.2.3.1 Murray arithmetic

Murray arithmetic is integer arithmetic in a number system in which

each murray integer is defined as a sequence of digits

d„dn .dn 0 d.n n-1 n-2 1

together with a sequence

rn,rn ,r: of integers

where r.{ defines the radix associated with dj for i = 1,2, . .. ,n and

such that for each i we have 0 < dj < rs -1.
The main operation required is addition which is defined as usual

except that carry now takes place from the ith to the i + 1th digit

when the sum in the ith place exceeds r. -1.

This leads to the following definitions for the initial murray integer

a) the reduced radix complement

d* = b = bnbn-1 br

where bj = r. -1 - dj (i = 1,2 n ),

b) the gray code

d' = c = cncn1 .... c1 where
i) for all Tj odd ,

C| = dj if the sum of dn dn1,... ,dj+1 is even or if i = n
and

Cj = r. -1 -dj that is, the reduced radix complement of dj
otherwise.
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ii) for all r. even

The rule is much simpler dj is replaced by its reduced radix

complement if di+1 is odd or i = n, and unchanged otherwise.

iii) for r. even or odd

For any digit dj with corresponding radix rr Let j > i be the first

integer such that r. is even (It is always assumed that rn+1 is
even ).
let

j

P,j - (I rk ) rem 2.
k=i+1

Then the cyclic progressive transform d' of d is
d' = cc . ... c.,

n n-1 1'

where
c = d. if p.. = 0i i n,j

and

Ci = ri-1-di ifpy-1.
note: If we consider two succesive murray integers there are two possible cases
either they differ in only one digit the first d-| or carry takes place from the first
to the jth digit. As all the radices are odd the 1 st to j -1 th are all zero and have
not changed parity but the jth has changed parity as it increased by 1.

Cole named the murray integers where all the radices were odd

murray-o integers and similarly those with all the radices even

murray-e integers.

2.2.3.2 Murray Transformation

Concentrating on the murray-o integers Cole[41] proved that they can

be transformed, using a method similar to that described in the

section for Peano polygons, such that all the points with integer

coordinates within a rectangle p by q, where p and q are odd integers,

Page 5 2



are traversed with all steps between consecutive points being of

magnitude one. Importantly the murray transformation applies to each

possible factorisation of p and q taken in any order. The resulting

space filling curves he named murray polygons. He also extended this

generalisation of the Peano polygon to higher dimensional space.

Cole almost immediately realised that murray polygons are not

restricted to odd dimensions as the restriction on the radices being

odd can be lifted for the first and last radices giving even sided

rectangles in 2-dimensions ( see Fig. 2.9 ). Considering the

two-dimensional case we now have an explicit transformation from

the first n positive integers to the n points with integer coordinates

in a rectangle containing exactly n such points.

The stages are outlined as follows:

1) Express the fixed base number d as a murray integer with given

murray radices, say,

d = d2md2m-i • ■ • ■ d2di ' ( 0 < dj < rf1, i = 1,2,. . ,2m ).

2) Convert this murray integer to a Gray code integer

d' - b2mb2m-1 • • • • b2bv

3) Split the Gray code number into parts x' and y' as below

X = d2m-1 d2m-3 " ' ' d3d1 V = d2md2m-2 ' ' ' " d4d2'

4) Convert Gray code x' and y' separately back into murray integers.

note:- Regarding stage4 it is not obvious that this will give consecutive points, indeed it is
only true for odd radices. A counter example to base two is given to emphasise this point,

binary code gray code gray binary
x' y' x y

10110111 11101100 1010 1110 1100 1011 (11,12)
10111000 11100100 1010 1100 1100 1000 (8,12)

5) convert the pair of murray integers from stage 4 into the

original fixed base number pair (x,y).
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The stages are shown clearly in Table 2.3 and Fig. 2.6.

step 1 step2 step3 step4 step5
Pure Murrav Grav code Murrav coords

integer integer integer x' y' X y (x,y)
5353 22 22

74 1142 1142 12 14 11 10 3,5
75 1200 1042 02 14 02 10 2,5
76 1201 1041 01 14 01 10 1,5
77 1202 1040 00 14 00 10 0,5
78 1210 1030 00 13 00 11 0,6
79 1211 1031 01 13 01 11 1,6
80 1212 1032 02 13 02 11 2,6
81 1220 1022 02 12 02 12 2,7
82 1221 1021 01 12 01 12 1.7
83 1222 1020 00 12 00 12 0,7
84 1230 1010 00 11 00 13 0,8
85 1231 1011 01 11 01 13 1,8
86 1232 1012 02 11 02 13 2,8
87 1240 1002 02 10 02 14 2,9
88 1241 1001 01 10 01 14 1,9
89 1242 1000 00 10 00 14 0,9
90 2000 2000 00 20 00 20 0,10
91 2001 2001 01 20 01 20 1,10

Table 2.3 Murray transformation steps for radices 5 3 5 3.

5 x 5 = 25

3
< >

3x 3=9

Fig 2.6 Muray polygon scanning a 9 x 25 rectangle with radices 5 3 5 3. The section
from Table 2.3 is highlighted.
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The resulting dimensions of the bounding rectangle n1 by n2 are given
by

n1 = r1*r3*r5 *r2m.i ( product of odd radices )
n2 = r2*r3*r4 *r2m ( product of even radices ).

Examples of several murray scans for different rectangles are given
in Fig. 2.7. The figure also shows how the dimensions of each sub-tile
can be found by considering pairs of adjacent radices. The pair r1( r2
giving the x and y dimensions of the smallest basic tile, r3*r-|, r2*r4
the next and so on. These examples also highlight the effect of the
order of the radices.

Radix value 1

A radix value of 1 has two main uses as follows. Firstly it can be used
to force movement in a particular direction. For instance for any tile
pair r2k, r2k.-, if the least significant radix, namely the 'x radix' r2k_-,
has value 1 then all steps are forced to occur in the y direction, as
shown in the basic tile of Fig. 2.8.C. Similarly movement can be
restricted to the x direction by making the 'y radix ' take value 1 as
shown in Fig. 2.8.b. The second use of radix value 1 is when the
dimensions of the bounding rectangle cannot be factorised into an

equal number of factors. The radices are packed with additional
dummy radices of value 1. This is illustrated in Fig. 2.8. c, d & e. It
should be noted that it is fortuitous that the fundamental algorithm
works with a radix value of 1.

Even Dimensions

As mentioned earlier the restriction on the radices being odd can be
relaxed for the first, normally x, radix and the last, normally y, radix.
The effect of the first radix being even is to give the basic tile an
even dimension. If the last radix is even then the number of horizontal

scans of the largest tile is now even. These ideas are clearly seen in
the diagrams of Fig. 2.9.

Mixed Scans

Cole [49] outlines how the murray polygon algorithm may be modified
to allow switching of scan direction from tile to tile within a scan.
He also combines this idea with the scan patterns described by
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(C) (d)
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3

5x3 = 15

3 X 15 = 45

Fig. 2.7 Various murray polygons as detailed in table above
( shading is only used to emphasise basic tile shapes ).
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Examples with radix 1

in

(a)

3

(b)

Figure radices order

y x y x y x
r6r5r4r3r2r1

a 5 1
r

1

b 1 3 1
c 3 3 5 1 2

d 13 5 5 2

e 5 3 1 3 3 7 3
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m

x

CO

radices 3 3 5 1

(C)
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] [

] c

3 x5 = 15

( d )
radices 13 5 5
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X
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3 x 7 =21
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3 x 3 x 7 = 63

radices 5 3 1 3 3 7

(e)

Fig. 2.8 Murray polygons showing the effect of radix value 1
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Murray polygons with even radices

radices 7 5 radices 7 4 radices 6 5

( a ) murray polygons of order 1

radices 6 4

□ C

□ c

3 C

3 C

3 C

3 C

3 C

□ C

3 C

□ C

DC

□ C

3 C

3 C

□ C

3 C

3 C

3 C

ir

3C

□ r

3 C

3 C 3 C
□ C

□ C

3x5x6 = 90

(b) Murray polygon order 3 radices 2 3 5 5 3 6

Fig 2.9 Murray polygons with even radices
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Griffiths [48] to give mixed Griffiths and murray scans. Cole is at

present investigating the application of murray scans to produce

bilevel hardcopy from grey scale image data giving results similar to

half-toning. Mixed scans may be a useful tool in this application to

reduce patterns caused by the standard scan. An example of a mixed

scan is given below in Fig 2.10.

PMUkmSju^
[1MMMI

Fig. 2.10 Mixed scan from [49].

2.2.4 Implementation of murray scan

The original implementation by Cole is given in a) and his fast murray

scan is given in b), in both cases the programming language is

PS-algol[50]

a) Original implementation

The main procedures only are given, the steps referred to are those

from the algorithm of section 2.2.3.2 .

The murray integer is held in an array of integers and this value is

incremented to move from vertex to vertex on the scan. The main

procedures required are ,

1. Conversion from pure integer to murray integer
convert.to.murray

2. Conversion from murray integer to pure integer
convert. from.murray

3. Increment murray integer by one.
next.murray
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! Input parameters are an integer and an array of radices
! Output is the corresponding array of murray digits
let convert.to.murray = proc( int n; *int radices -> *int)
begin

let murray.int = vector 1 :: upb( radices ) of 0
let i := 1
while n „= 0 do
begin

murray.int( i) := n rem radices( i)
n := n div radices( i)
i := i + 1

end
murray.int

end

! Input parameters are murray integer and radices arrays
! Output is the corresponding integer
let convert.from.murray = proc( *int murray.int,radices -> int)
begin

let top = upb( murray.int)
let n := murray.int( top )
for i = top -1 to 1 by -1 do

n := n * radices( i) + murray.int( i)
n

end

! Input parameters are murray integer and radices arrays
! The murray integer array is incremented by 1
let next.murray = proc( *int murray.int, radices )
begin

let i := 1
while murray.int( i) = radices( i) -1 do
begin

murray.int( i) := 0
i := i + 1

end
murray.int( i) := murray.int( i) + 1

end

! Input parameters are murray.int and radices arrays
! murray.int is converted to the Gray code equivalent
let gray.code = proc( *int murray.int, radices )
begin

let top = upb( murray.int)
let parity :=( ( murray.int( top ) rem 2 ) = 1 )
for i = top -1 to 1 by -1 do
begin

if parity do
murray.int( i) := radices( i) -1 - murray.int( i)

if ( murray.int( i) rem 2 = 1 ) do
parity := -parity

end
end
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! Input is a murray integer
! Output is a structure holding the x and y murray integer arrays
let split.x.y = proc( *int murray.int -> pntr)
begin

structure coords( *int a,b )
let top = upb( murray.int)
let x = vector 1 :: top div 2 of 0
let y = vector 1 :: top div 2 of 0
let i := 1
for j = 1 to top -1 by 2 do
begin

x( i) := murray.intf j)
y( i) := murray.int( j + 1 )
i := i + 1

end
coords( x,y)

end

b) Fast murray scan algorithm and implementation

The original implementation required improvement in efficiency for
complete scans. The parts of the first implementation that slow the
algorithm down is the conversion to and from murray integers to pure

integers and the transformation using the gray.code procedure.
By careful analysis of the parity changes it is possible to produce a
much more efficient algorithm as described below.
Consider the murray integer and radices as below,
radices—> r2mr2m., r,rM r3r2r,

murray integer --> d = d2md2m., d^d^d^d^did,., d3d2d,

Let P| be the parity of the sum d2m + di+3 + di+2 + dj+1

Let Sj be the parity of the sum dk + di+6 + di+4 + di+2,
where k = 2m for even i otherwise k =2m -1.

Let q, be the parity of the sum dk + di+5 + di+3 + dj+1,
where k = 2m for odd i otherwise k = 2m-1.

Considering the stages 2, 3 and 4 in the murray transformation of
section 2..2.3.2 for odd radices. Assume p and q are boolean arrays

holding the parities pj and q, respectively.
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Stage 2: transformation from murray integer to gray code.
If pj is fa!se( even sum ) d, is unchanged otherwise

Pj is true ( odd sum ) and d, is replaced by rf -1 - d.
Since rj is odd d, and r-, -1 - d| have the same parity there is no
change in any of the parities p.

Stage 3: Split Gray code integer into x' and y' parts.

Stage 4: Convert x' and y' parts from Gray code to murray integers.

The parity of i identifies whether the x part or y part is under
consideration (i odd or even corresponds to x or y respectively ). The
change in a digit now follows the rules as in stage 2. However the
change in a digit depends on the parity of Sj.

if S| is false ( even sum ) d, is unchanged otherwise
Sj is true ( odd sum ) and d, is replaced by rt -1 - dj.

The result of stages 2, 3 and 4 clearly depend on the value of pj and Sj.
However it is easy to see, reference Fig 2.11, that the change can be
found by considering qj alone.
The change can be controlled as follows,

If qj is false ( even sum ) then ps and and Sj must have been of
equal parity and thus dj is unchanged otherwise qj is true and d,
is replaced by rt -1 - dj

Consider now the case of a murray integer about to be increased by
one. This will cause a change in parity of digit dj. Either dj is the first
digit or carry has taken place in one or more positions and all the
digits to the right of d, will become zero as shown in the simple cases
below.

radices —> 5 9 5 7 5 3 radices —> 5 9 5 7 5 3

324011 324642

1 = 1 3240 1 2 i = 4 33 0000

Now 0 and rj-1 are both even hence the only digit to change parity is
dj. Thus the parities qj^ ,qj_3 will have changed.

We now see that when a murray integer increases by one there is only
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pi ► false true

stage 2:murray to Gray.
di ri - - di

even

stage4: vv
Gray to murray f
S i —►— false true false

1 1 A 1 Ari - 1 - di ri - 1 - di (di) ri - 1 - di (di)

ct't ' M f t

i odd
x

false true false true false

i odd
x

i even

y

true false

ri - 1 - di di

P« T F T F
si T F F T

q" F F T T

@ - ri - 1 - ( ri -1 - di ) = di
T - true ( odd sum )
F - false ( even sum )

Fig 2.11 Diagram showing steps of digit transformation
leading to the use parities qi in fast algorithm.
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one digit which changes parity and its position determines whether a
change has occurred in x or y, and also the q values to change.
The only remaining information to determine is whether the change is
+1 or -1. This can be found from the value of parity q, with false or
true corresponding to +1 or -1 respectively.

The fast algorithm can now be stated as follows, assuming the murray

integer is stored in a vector of integers and the parities in q a vector
of booleans ( boolean array).

1. Increment the murray integer by one,
2.find the position i of the leftmost digit to change (i.e. which
digit changed parity),

3. alter appropriate parities in q, namely qj_i ,qj_3
4. select x or y to change based on the parity of i,
5. increment the selected coordinate by +1 or -1 as
indicated by parity qj.

The main procedures and important lines used for the fast algorithm
implementation are as below.
! Input parameters are murray integer and radices array.
I Output is the position of the digit to change parity,
let increment := proc( *int d, r; int i -> int );nullproc
increment := proc( *int d, r; int i -> int)

if d( i) < r (i) -1 then { d( i) := d( i) + 1; i}
else { d( i) := 0; increment ( d, r, i+1 )}

I Input parameters are parities boolean array and position integer
I The parities being updated accordingly
let change.parities = proc( *bool q; int startpos )

for i = startpos -1 to 1 by -2 do q( i) := ~q( i)

I The lines which determine the position of the change and
! updates the parities.
I Whether the change is +1 or -1 and
! the coordinate to change.
let pos = increment digits,radices,1 )
change.parities( parities,pos )
let inc = if parities( pos ) then -1 else 1
if i rem 2 = 1 then x := x + inc else y := y + inc
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2.3 Hardware Implementation

Following on from the ideas used in the implementation of the fast
algorithm outlined in the previous section, Cole [56] suggests some
hints on hardware implementation. The basic suggestion is that the
function of the array of integers holding the murray integer is taken
over by a bank of shift registers. Each register would have a capacity
corresponding to the radices selected and be initially set with value
1. If a register is cleared by a shift operation it then resets to zero
and forces a shift in the next register. If the register does not clear
then the parity of the register number will identify whether the
movement is in the x or y direction. There would also be a number of
parity bits which can be toggled appropriately and will determine if
the step is -1 or +1.

2.4 Applications of murray scans to image data.

The major application to data compression is the subject matter of
the following chapters. However some general points on scanning and
other applications are mentioned briefly.

2.4.1 Scanning
Witten & Wyvill [64] suggested the use of space filling curves to scan
an image. A graphics screen can be considered as a finite rectangular
array of pixels with integer coordinates. A picture or image may
likewise may be considered split into a finite number of cells. These
arrays can be scanned in total or part by an appropriate murray

polygon. Cole calls this process a murray scan.
There are several expected advantages from a murray scan when
compared to a linear scan. Firstly, as the murray scan by its nature
will pass through many points close to each other it will be able to
take advantage of any local correlation between pixels. This should be
a considerable advantage as many images have strong local
correlation. Secondly, the murray scan will in general change
direction frequently within a relatively small and compact area, thus
reducing the common patterning resulting from the more regular
linear scan. Lastly, murray scans have considerable flexibility
allowing change of basic tile pattern, scan order, scan direction and
even dimension of scan.
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Another common representation is by quadtrees. This is included as a

special case of a Hilbert scan and murray scans include data storage
similar to quadtree 'scanning' based on the number of subdivisions of
a basic tile. Murray scan's ability to cover rectangular areas
immediately without modification is a major advantage over quadtree
representation.
A disadvantage of the murray scan is when adjacent points in the
image are a long way apart on the scan sequence.

The result of the scanning process is a series of run lengths and
corresponding colour or grey scale data. Bilevel images will only
require run lengths as they alternate between black and white.

2.4.2 Applications
Major application areas appear to be:

1. data compaction for storage and transmission of exact and
non-exact images,

2. object identification,
3. operations on images using run lengths and
4. bilevel representation of monochrome images.

An important feature of the method is the ability to carry out
calculations and operations on the run lengths themselves without
returning to the original image.

Operations on images and object identification are mentioned in more
detail in Cole[41, 56] and will be discussed in the later sections of
this report.

Summary

The historical background to space filling curves has been given. The
path of development by Cole from Peano's early work to murray

polygons has been traced out in some detail. The advantages of
explicit transformation, flexibility and local 'area' scanning were
detailed. The use of murray scans to run-length encode an image
follows in the next chapter.
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Chapter 3

Application of Murray Polygons to Data Compression

Cole[57] suggested various techniques for the compression of data

using the space filling curves of Peano and Hilbert. Later Cole [58]

considered the application of murray polygons to data compaction.

Some of the main ideas arising are introduced and expanded in this

chapter as they form the background to the work reported in the next

few chapters.

3.1 Reversible error-free compression.

The data compression is achieved by run-length coding. The run length

sequences and their associated colour information are produced by

scanning an image with a murray scan. This exhaustively passes

through each pixel recording the colour information and the number of

successive pixels with the same value. The sequence of colour and run

length are coded to minimise the data required to describe the image.

The maximum data compression occurs when an image is made up of a

small number of long run lengths. The technique depends on

consecutive pixels having the same value. In the case of grey scale

images with 256 possible levels the chance of long run lengths

occurring is not high. The image is usually split into bit planes and

each bit plane considered separately as a black and white image. In

the case of black and white images there is no need for colour

information as the run lengths alternate between black and white.

However, the first output in the sequence must obey a convention,

usually taken as first run length is white. If the first run length is
one of black pixels then a zero is output first. With this information
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an image can be unambiguously described and thus reconstructed from

the run lengths at any required position.

For example, the simple rectangular images below, Fig. 3.1, have been

scanned with a murray polygon of first order with x-radix 5 and

y-radix 3. In case a) the leading zero signifies that there are no white

pixels initially, thus the first two pixels are black, whereas the same

sequence without the leading zero corresponds to a different image as

given in case b).

□ white
llll black

a)

0,2,2,2,2,1,3,2,1

b)

2,2,2,2,1,3,2,1

Fig. 3.1 Murray scan and resulting run-length sequences.

It is expected that the murray scan will be able to take advantage of

any inherent structure in the image. The fact that the murray scan is

covering an 'area' before moving on means that it should have a better

chance of capturing any dependence within local areas of the image

and hence produce better compression than the standard linear scan.

The success of the final data compression depends on the distribution

of the run lengths generated from the image and the total number of

run lengths. It might be expected that the murray scan with its

localised scanning patterns would lead to long runs and hence produce

a significantly smaller number of run lengths than a linear scan in

homogeneous areas of an image. Fortunately the former is true and

significantly more long run lengths are produced but the number of

runs is not always substantially less. The explanation for this is as

follows. Consider a relatively large homogeneous area with
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reasonably well defined boundaries as shown in Fig. 3.2. Each linear

scan will in general pass through two boundary points (Li). Exceptions

to this occur when the scan-line is a tangent (L3) when only one point

is used or when the boundary runs parallel to the scan-line (l_2) using

a number of points. The exceptions tend to cancel each other out and

the number of run lengths is approximately proportional to half the

number of boundary points. This also applies to murray scans despite

the differences in the scanning pattern and the resulting exceptions. A

murray scan will have a more tortuous route through a region but will

still in general enter by one point and exit cleanly by another point

(ri). There are obvious exceptions illustrated by r2 - r5. These cover

cases where the scan approaches the boundary, either from the inside

(r2) or the outside (r3,r4,r5), and then touches it in one point and

retreats, using one point, or runs along the boundary using up several

points.

It has been found that the above exceptions tend to cancel each other

out with in most cases the murray scan giving marginally less runs

than the linear scan. In addition to producing a smaller number of

total runs the murray scan produces more long runs as it moves

around within the area. Associated with a homogeneous area we

therefore expect long runs, a fact that can be applied to basic object

identification. If there are long runs generated from the area then

equally there must be a large number of short runs if the number of

runs is to remain proportional to half the boundary points. This will

lead to a particular pattern in the run-length distribution which will

hopefully be helpful to the task of data compression.
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a) Murray scan b) Linear scan

Typical boundary point possibilities for homogeneous area

Fig. 3.2 Diagram showing relationship of scan-lines to boundary points.

Cole [57] investigated some computer generated black and white

images of a geometric nature using Peano, Hilbert and linear scans. He

found that both Peano and Hilbert scans gave a significantly smaller

number of run lengths for his tested images, see Fig. 3.3. These

differences are higher than expected from the discussion in the

previous paragraph. This may be due to the white boundary areas and
the well defined boundaries of the geometric shapes used. In the

examples reported later in this work the differences in number of
runs for the images tested is still apparent but much smaller

supporting the description given in the previous paragraph.

□□□
jLit

Fig. 3.3 Some images investigated by Cole [57]
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The possibility of data compression seems to lie with the distribution

of the run lengths. This will obviously depend on the composition of

the image under consideration and as mentioned in earlier chapters

the number of possible images is very large indeed. Run length coding

has been used successfully in many situations reported in the

literature and there is a large set of images that produce suitable

run-length distributions. Given this the work reported in later

chapters will investigate the possibility that for a given image the

run-length distribution produced by a murray scan will be more

promising than existing methods.

3.2 Irreversible Coding

Compression with reduction of image quality

Considerable reduction in the required data can be achieved if it is

acceptable to lose information. This is achieved by merging short run

lengths into the surrounding run lengths. A short run length can have

any small integer value from one upwards. A sequence of three run

lengths a, n, b is replaced by a single run length of value ( a + n + b).

This results in the central run length changing colour and being

merged with the surrounding colour. The amount of information lost

can be controlled by varying the value of n and advantages to data

reduction weighed up against the quality of the resulting image. If the

value of n is increased then the process is most usefully applied by

consecutive application removing runs of length 1,2 and so on up to

the required value. The method is applied to black and white images

and can be extended to grey scale images via application to individual

bit planes.

The quality of the resulting images has been promising even with a
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substantial loss of data. One of the reasons for this is the nature of

the run length distribution from the murray scan. As mentioned in

section 3.1 we expect a murray scan to produce a significant number

of short run lengths to balance the long runs. Many of these short runs

are not isolated points in the image but arise from the scan just

touching the boundary of a homogeneous area. Therefore the perceived

deterioration of the images depends on the nature of the boundaries.

In smooth regular boundaries the deterioration may become

unacceptable far more quickly than in an image with rougher less well

defined boundaries.

A simple case is shown below in Fig. 3.4 to emphasise the technique.

More meaningful and detailed examples will be given in the next

chapter. The method is image dependent and it is not difficult to

select pathological examples such as a chess board pattern which is

reduced to a single coloured square with the merging of runs of length

1. However, the examples given later will show that in many cases the

length of runs removed can be increased to 2, 3 and further for many

situations and still give acceptable results.

+
r

+ -f
+ +

I

i
+ T
i +

+

+
+ -F

+ +
I

+

original run lengths 1 removed run lengths 2 removed

8 4 1 2 9 1 3 4 2 13 2 4 2 3 8 8 7 '
8 7 13 4 2 13 2423 8 8 7 ^

~h—
8 7 13 30 8 8 7 ^

Fig. 3.4 Diagrams showing the effect of merging short run lengths.
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3.3 Rough Frames - Exact Pictures

It is possible to combine the methods of sections 3.1 and 3.2 to

produce a sequence of run lengths such that part of the image can be
reconstructed exactly while the rest is reduced in quality by the

removal of short run lengths. This can be done by manipulation of the

original run length sequence away from the original image or directly

from the original as a first ste p.

Fig. 3.5 Diagrams showing the effect of removal of run lengths of length 1

in the 'border' of image (scan radices 5 9 3 3).

It is thought that an exact 'picture' and approximate 'frame' might be a

possible application with the geometrical layout as given above in Fig.
3.5. The central area would be of more interest to the viewer or may

contain information that is more likely to change if we are

considering motion in a 'head and shoulders' image.

3.4 Coding

It was initially felt that at this stage of the investigation the coding

strategy should be relatively simple but such that it gave a good idea
of the success of the scanning technique. A very poor choice of coding

strategy, fixed -length coding for example, could obscure any

advantage gained from the murray scan. A variable length code is
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obviously required as certain values of run length will be much more

likely than others. Gonzalez & Wintz [9] suggest that the distribution

of run lengths for many images is approximately exponential and that

B-codes ( see sectionl .5.1 ) are nearly optimal for these cases. The

B-codes are exactly the same as the 'continuation-bit' or

'extension-bit' coding suggested by Cole [2.21]. Some variation on the

standard B-codes is also investigated where the number of

information bits may vary within the code. A B1 code is of the form

CiCiCi , B2 code CiiCiiCiiCiiCii variations that may be useful are

CiCiCiiCiiCiiiCiiiCiiii...., CCiCiCiiCiiiCiiii.... and others, where C is a

continuation-bit and i an information-bit. The main advantage of this

coding strategy is its simplicity and ease of implementation.

Summary

The application of murray scans to data compression both for

reversible and irreversible coding has been explained in detail. Murray

scans are an alternative to linear scanning and through their ability to

capture any local correlation in an area or block produce very suitable

run length distributions. These distributions offer the opportunity for

easy and reasonably efficient coding by continuation bit codes. The

tiles of the murray scan effectively break the image into blocks as

does quadtree encoding, but also provide an explicit transformation

and considerable flexibility allowing rectangular areas to be

considered. The opportunity is also present to vary the scan for a

given area by selecting a different set of radices or changing the

order of the radices.

Data compression via resolution approximation is very

straightforward, using the method of short run length removal. The

resulting images suffering very mild distortion of area boundaries
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and removal of isolated areas, leaving the main features virtually

unscathed.

The method of short run length removal can easily be extended to

provide more drastic data reduction up to any level with the

corresponding reduction in image quality.
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Chapter 4
Applications and results for Black and White Images.

The work covered in this chapter can be split up as follows:-

a) Various black and white images are scanned by murray scan and

the run length distributions are found;

b) The run lengths generated by the scans are coded by

i) a reversible information preserving coding and

ii) an irreversible coding. The compression details are

found for both of these cases;

c) Examples are given of images split into exact and non-exact

regions;

d) Comparison of murray scan and linear scan data.

4.1 The Images

The images to be used are from various sources.

1. 'World' plates of size 256 by 256 available from demonstration

software as shown in Fig. 4.1. This set of 30 images gave a wide range

of composition as illustrated by the eight examples shown in Fig. 4.1.

The variation is from large well formed homogeneous areas with few

small or isolated elements such as Fig. 4.1.1 to far more scattered

and broken patterns as in Fig. 4.1.5. They are of course atypical in

that all include a circular boundary this could be overcome by clipping

portions for investigation.
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Fig. 4.1.1 vec( 1 ) Fig. 4.1.2 vec( 5 )

Fig. 4.1 Various examples of 'world' images.
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2. Images grabbed from the real world using a frame grabber. The

hardware used is described in detail in later chapters. It consists of a

camera, either Ferguson colour plumbicon or EEV photon CCD, and

low-cost frame grabber controlled by an IBM PC/AT. The images

grabbed are of size 512 by 512 with each pixel having a grey scale

intensity value from 0-255. The analog to digital conversion is

performed using an 8-bit flash converter. These images are to be used

later in our discussion of application to grey scale images but

initially each bit plane is considered as a separate black and white

image available for investigation. Figs 4.3 - 4.5 show subimages of

size 225 by 225 from some of the images used in this category. For

reference they are referred to as 'ajc' ( Fig. 4.3 ), 'fred' ( Fig. 4.4 ) and
' imb'{ Fig. 4.5 ). These images were the first to be tested from the

real world and gave interesting composition for investigation. They

are dependent on a number of factors in the initial image capture but

before considering those it is important to be clear about the

information the images contain as they are used considerably in later

investigations. If the three-dimensional model of a grey scale image

is considered, as described in section 1.3, and the particular case

taken where the model formed is a cone with the vertex value of 255

(white ) and base value of 0 ( black), this corresponds to a

two-dimensional image in the form of a circular disc with a white

centre and smooth linear transition radially to black at the

circumference. Each of the eight bit planes contains information about

the status of a particular bit for the stored intensity value from

0-255. This is shown clearly in Fig 4.2 where the cone model and the

corresponding black and white images for bit planes 0-2 are given.
Table 4.1 shows the relationship between white and black and the

corresponding intensity values for these images.
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Table 4.1

plane black white
bit position

0 0 - 127 128 - 255 m i i i i i i

1 128 - 191
0 - 63

192 - 255
64 - 127 ■

2 192 - 223
128 - 159

64 - 95
0 - 31

224 - 255

160 - 191
96 - 127
32 - 63

in

cone model of image

Plane 0 Plane 1 Plane 2

Black and white bit planes for cone model as detailed in table 4.1.

Fig 4.2 Diagram showing three most significant bit planes for image

given by cone model.

Plane 0 in Figs 4.3-4.5 will therefore show all pixels with intensity

values greater than or equal to 128 as white and others as black. It is

stressed at this stage that the bit plane images are used as examples

of black and white images, and as we will see later for grey scale

applications there is no need to consider all eight planes. Good quality

grey scale images can be obtained with 5 or 6 planes.

It was surprising to find a strong 'feeling' for the form of the subject

presenting itself in plane 7 ( Fig 4.4 and 4.5 especially ) which
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Plane No.0 Plane No.1

A* ATXMfi
Plane No.2

.s"tcc\*\<*vSo

Plane No.3

Plane No.6 Plane No . 7
xcoord = 130 /coord = 190 xdim = 225 /dim

Fig. 4.3 The bit planes of the grey level image ' aye
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Plane No.G Plane No.7
xcoord = 130 ycoord = 130 xdim = 225 ydim = 225

Fig. 4.4 The bit planes of the grey level image 'fred

Plane No. 1

Plane No.2 Plane No.3

Plane No.4 Plane No.5

V

Plane No.0
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Plane No.G Plane No.?
xcoord = 120 /coord = 1G0 xdim = 295 /dim = 295d0

Plane No.0

Plane No.2 Plane No.3

Plane No.4 Plane No.5

Plane No.1

Fig. 4.5 The bit planes of the grey level image ' imb
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corresponds to the least significant bit. The pattern in this plane

should reflect only whether the intensity value was even or odd. This

generated much discussion, with the best explanation being
inaccuracies of the analog to digital converter. The accuracy of the

least significant bit is suspect and in tests carried out it was found
to be heavily biased to producing even intensities values with the

ratio of even to odd values increasing rapidly as the intensity value

increased.

Subimages can easily be clipped from any of the above images for

test purposes.

4.1.1 Image storage

In general the images for investigation are stored in one of two

forms.

a) As PS-algol [50, 59] data type image, written as #pixel, held in a

persistent store. The image is now a three dimensional object made

up of a rectangular grid of pixels. Pixels have a depth to reflect the

number of planes they possess and images have an X and Y dimension

to reflect their size. In its most degenerate form a pixel is one spot

which is either on or off. For example

let one.pixel = on

creates a pixel one.pixel with depth 1. A pixel with depth 8 could be

formed by

let another.pixel = on & on & off & off & on & on & on & off.

To form an image with dimensions greater than 1x1 the following

let rect.image = image 3 by 9 of on & on & off & on

creates an image rect.image of depth 4 with 3 pixels in the X

direction and 9 in the Y direction.
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The standard function Pixel allows an image to be interrogated on a

pixel basis. The arguments given are image and position, thus

Pixel( rect.image ,2,3)

returns the pixel at position 2,3 of image rect.image, namely on & on

& off & on. This function is used in the case of black and white

images of depth 1 to examine whether a pixel is black or white

corresponding to off or on. This is illustrated by the program lines in

Fig. 4.6.

b) The image captured by the frame grabber is stored in a file with a

header holding various information on the image followed by intensity

values for each pixel in linear scan order.

4.2 Run Lengths from Images

The run lengths are found by scanning the image using the murray scan

fast algorithm of section 2.2.4.b and as the scan proceeds a count is

kept of the number of pixels of the same value. When a change occurs

the value of count is output to a file and count reset to 1. The run

lengths are then available in file, along with the radices and order of

the scan which have already been stored, for future analysis and

manipulation. The procedures for the scan are those given on page 60

and only the new program lines required for output are given in

Fig. 4.6.
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let x1 := 0; let x := 0; let y1 := 0; let y := 0
! oldpoint and newpoint are vectors of integers holding the coordinates
if Pixel( image,x,y) = off do output out.file, "0" ! first pixel black
for point = 1 to no.of.points -1 do
begin

newpoint := next.point( murray,radices,parities, oldpoint)
x := newpoint( 1 )
y :== newpoint( 2 )

if Pixel( this.image,x,y ) = Pixel( this.image,x1 ,y1 )
then count := count + 1

else { output out.file, count; count := 1 }

x1 := x ; y1 := y
end

Fig 4.6 Program lines to output run lengths from an image

4.3 Run Length Distributions

Having scanned the images using murray polygons the next step was to

look at the run length distribution. The maximum run length would

occur when the image was either all black or all white. For the images

considered the maximum was rarely above 5000 and usually 80% of

the runs were of length 100 or less. At this stage a very rough idea of

the distribution was all that was required as final detailed

compression figures would be calculated after coding. Initially a

simple printout of data with information on run length, frequency,
cumulative frequency and percentage of total run lengths was

produced. A pictorial view of this in a histogram with cumulative

frequency superimposed is shown in Fig. 4.7 and 4.8.

Fig. 4.7 shows the distribution for the 'world' images from fig 4.1.
There is little obvious difference in the overall pattern.
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fradO

NO. OF RUNLENGTHS i - 12S1

fredl

NO. OF RUNLENGTHS :

X-258 UNITS/BAR->

fred2
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L
X-2S8 UNITS/BAR->

fred4
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frad7
NO. OF RUNLENGTHS s

!-2S0 UNITS/BAR->

Fig. 4.8 The run length distributions for the images of Fig. 4.4
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However, on close examination of the number of runs, percentages of

short runs and the detailed printout the larger number of runs and

higher percentages of small runs can be clearly seen to correspond to

the images with a more fragmented pattern, e.g. Fig. 4.1.6, and longer

runs are to be found in those images with large homogeneous areas

Fig. 4.1.8.

Fig. 4.8, the distributions for the 'fred' images clearly show the sharp

increase in the number of run lengths and corresponding decrease in

long runs as the image becomes very fragmented as we progress from

the most to least significant planes, with the latter being less

susceptible to compression.

From these it looked as if the distribution in many cases was

promising and that the coding strategy considered could be fruitful.

4.4 The Compression

The compression was to be measured relative to the bitmap. In other

words one bit per pixel for the black and white images. The coding

used was 'continuation-bit' coding as described in section 3.4. It is

possible to consider varying either the order of the scans applied,

and for any given order the values of the radices themselves, or the

arrangement of continuation and information bits within the coding.

Initially the order and radix values are held constant for a given set

of images with the proviso that the radices increase in magnitude

from least to most significant position. This gives a tighter scan in

terms of remaining in the same local area for a longer period. Various

coding bit arrangements are investigated briefly.
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The compression is given in two forms defined as follows

compression ratio = total number of bits for bitmap at 1 bit/pixel
number of bits in compressed form

percentage of bitmap = 100 / compression ratio.

The results for the 'world' images given in Fig. 4.1 gave compression

ratios from 8 to 6.4 using the radices and coding pattern given in

Table 4.2.

image radices code pattern comp % of no.of no.of
ratio bitmap runs points

worldl 13137733 1 1111111111 7.2 13.8 2214 74529
world5 13 137733 1 1111111111 7.5 13.4 2082 74529
world9 13 137733 1 1111111111 7.8 12.8 2090 74529
worldl 3 13 137733 1 1111111111 8.0 12.5 1986 74529
worldl 7 13137733 1 1111111111 6.7 14.9 2406 74529
world21 13 137733 1 1111111111 6.4 15.7 2540 74529
world25 13 137733 1 1111111111 6.6 15.1 2532 74529
world29 13 137733 1 1111111111 7.8 12.8 1960 74529

Table 4.2 Compression details for images of Fig. 4.1

The coding pattern was varied with the radices held constant to

determine the effect on the compression. The results with the 'world'

images and others tested showed that the the pattern given in Table
4.2 was rarely improved on. Some typical results for the image of Fig
4.1.1 'worldl' with various coding patterns are given in Table 4.3.

image radices code pattern comp % of no.of no.of
ratio bitmap runs points

worldl 13 137733 111111111111 7.2 13.8 2214 74529
worldl 13 137733 222222222222 6.9 14.4 2082 74529
worldl 13 137733 333333333333 6.2 16.0 2090 74529
worldl 13 137733 444444444444 5.6 17.9 1986 74529
worldl 13 137733 112135222222 7.0 14.3 2406 74529
worldl 13 137733 111345222222 7.0 14.2 2540 74529
worldl 13 137733 011223344555 6.8 14.7 2532 74529

Table 4.3 The compression details when the coding pattern is varied
for the image of Fig. 4.1.1 ' worldT.

The results at this stage were encouraging as applications planned for
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grey scale images and frame sequences for moving pictures may be

concerned with images whose inherent structure would compress

better than those tested. With this in mind attention was now focused

on the images grabbed by the frame grabber. The opportunity was also

taken to briefly assess the effect of increasing the order of the scan

from three to four while maintaining the same lower order radices.

The results for the planes of Fig. 4.1.3 'fred' are given in Table 4.4.

From these it can be clearly seen that the compression ratio drops off

rapidly as the image becomes more fragmented. The increase in order
had almost no effect on the compression figures indicating as

suspected that the first two tile levels were of paramount

importance in this case.

image radices code pattern comp % of no.of no.of
ratio bitmap runs points

fredO 15 155533 111111 111111 8.0 12.5 1251 50625

fredl 15 155533 111111 111111 3.2 31.0 3934 50625
fred2 15 155533 111111 111111 2.0 49.9 7371 50625
fred3 15 155533 111111 111111 1.2 82.3 14550 50625

fred4 15 155533 111111 111111 - 117.3 23061 50625

fred5 15 155533 111111 111111 - 129.7 26785 50625

fred6 15 155533 111111 111111 - 126.2 25136 50625

fred7 15 155533 111111 111111 - 109.2 20046 50625

order increased to 4
fredO 55553333 111111 111111 8.1 12.3 1249 50625
fredl 55553333 111111 111111 3.2 31.0 3936 50625
fred2 55553333 111111 111111 2.0 49.9 7359 50625

Table 4.4 Compression details for images 'fred' from Fig. 4.3.

These results for fred4 - fred7 are given for comparison only,

obviously these would be more efficiently transmitted by the bitmap

itself. Full analysis of the effect of variation of the coding pattern

and the radices is beyond the scope of the present work.
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4.5 Irreversible coding by short run length merging.

The compression ratios while encouraging can be improved

dramatically by the removal of short run lengths by merging them into

the surrounding run lengths as described in section 3.2. The trade-off

is increase in compression ratio against quality of image. The

resulting 'ajc' images formed as run lengths of length 1, 3 and 5 are

removed are given in Fig. 4.10 and the 'fred' images for run lengths 1

and 3 removed in Fig 4.11. Note the run lengths are removed

successively. Thus for removal of short runs of length 5 it can be

assumed that those of 1, 2, 3 and 4 have already been merged. The

alternative to removing the run lengths successively is to remove

them simultaneously. Simultaneous removal gives rise to more

changes of colour and less acceptable deterioration in the image

structure, as illustrated in [57], This is seen in the simple example

below where run lengths up to 5 are removed.

black white black white

Original sequence .... 6 5 1 7... .

Successive removal ... 6 13 1 pixel changed

Simultaneous removal ...12 7 5 pixels changed

The images used are the first 5 bit planes for the images of 'aye'and

'fred' from Fig. 4.3 and 4.4. The resulting images show a deterioration

as longer run lengths are merged and as the plane considered becomes

less significant. Both of these are expected but the resulting images

are still easily recognisable and will be acceptable for many

applications. The deterioration, as predicted in the discussion of
section 3.2, is clearly seen to be the removal of small isolated areas
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and around the boundaries of the large homogeneous areas. This means

that the main structures of the image are still clear in images

typified by the planes 0 - 3. Table 4.5 gives a summary of the

resulting increase in compression from run length removal for Fig

4.10 planes 0-3. The radices used are 15 15 5 5 3 3 and code pattern

1 1 1 1 1.

As can be seen clearly from Table 4.5 this reduced the amount of data

required to approximately one third of the original for planes 0-3.

image comp % of no .of image comp % of no.of
ratio bitmap runs ratio bitmap runs

ajcO 4.7 21.5 2436 ajo1 2.7 37.4 5262

ajcOreml 6.6 15.2 1316 ajclremi 4.5 22.3 2166

ajc0rem3 9.1 10.9 684 ajd rem3 6.8 14.6 990

ajcOremS 10.4 9.6 560 ajcl rem5 8.2 12.1 764

ajc2 1.9 52.3 7593 ajc3 1.1 89.3 15390

ajc2rem1 3.1 32.1 3455 ajc3rem1 2.2 46.1 5620

ajc2rem3 4.8 20.7 1565 ajc3rem3 3.6 27.5 2378

ajc2rem5 5.9 17.0 1215 ajc3rem5 4.8 21.0 1614

Table 4.5 Compression details for images from 'ajc' Fig. 4.7.

The main procedure used to merge the short run lengths is given in the

listing on page 95. The original run lengths are stored in the file

in. file and are read into variables first,second and third for

processing. The boolean more catches the end of input data. The

length of run length to be merged is input via the parameter remove

and the new run lengths output to the file out.file. The language is

again PS-algol [50].
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Plane No.1

Plane No.2

Plane No.3

Plane No.4

Plane No.5 Plane No.5
ajcframe ajcremlframe

Fig. 4.10 'ajc 'images with a) original, b) runs of length 1 removed,
c) runs up to length 3 removed and d) runs up to length 4 removed.

Plane No.1

Plane No.2

Plane No.3

Plane No.4

Plane No.l

Plane No.2

Plane No.3

Plane No.t

Plane No.5

ajcrem3frame

Plane No.1

Plane No.2

Plane No.3

Plane No.4

Plane No.5

ajcrem5frame



Plane No.5
fredframe

Plane No.5
fredremlframe

Plane No.5
fredrem3frame

Fig. 4.11 Bit planes 0-5 of' fred 'image with a) original,

b) runs of length 1 removed and c) runs up to length 3 removed.



let compact = proc( cfile in.file,out.file; int remove )
begin

let complexity = readi( in.file )
output out.file, complexity
for i = 1 to 2 * complexity do

output out.file, readi( in.file )

let more := true I boolean to test for more input data
let first := readi( in.file )
let second := readi( in.file )
more := ~eoi( in.file )
let third := -1

if more do

begin
third := readi( in.file )
more := ~eoi( in.file )

end

if first = remove do

begin
second := second + remove

first := 0

end

while more do

begin
if second = remove then

begin
first := first + second + third
second := readi( in.file )
more := ~eoi( in.file )
if more then

begin
third := readi( in.file )
more := ~eoi( in.file )

end
else third := -1

end
else

begin
output out.file,first
first := second
second := third
third := readi( in.file )
more := ~eoi( in.file )

end
if third = -1 then ! exit with second as last run length

if second = remove then output out.file, first + remove
else output out.file, first, second

else

if second = remove then output out.file, first + second + third
else output out.file,first, second, third

end
end
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4.6 Examples of mixed exact and non-exact coded images.

As described in section 3.3 the ability to use a reversible ( exact)

coding for part of an image and an irreversible ( non-exact) coding
for the remainder could be of use in several situations. For example if

the information to be sent for an exact coding of the full image is

beyond the limits of the available channel then areas of the image can

be approximated to reduce the data required appropriately. This may

happen in the case of moving pictures if excess movement occurs. The
method then becomes adaptive. Another case would be where the

nature of the image is such that less importance is attached to

certain areas, leading to an approximate coding being acceptable in

this region - for instance the background of a 'head and shoulders'

image. The murray scan technique lends itself to the coding of regions

in such a manner by manipulating the run lengths away from the

image.

In the implementation the new step required is to determine whether

a point is in the compaction area or not. In the test implementation

the compaction frame is defined by the number of rows ( nrow ) and

the number of columns ( ncol ) of largest tiles that are to be

removed giving a symmetrical layout as shown in Fig. 4.12. The result

is an exact central area and approximate 'frame', but it is not

essential that the pattern be symmetrical. Taking the 'world' image

from Fig. 4.1.1 various frame shapes and approximation levels are

shown in Fig. 4.13 with details on the values of nrow and ncol and the

maximum number of runs removed in non-exact area. Other than

removal of small 'island' groups and the circumference of the 'world '
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the main features are still easily recognisable.

IE
exact

E

nrow

ncol

Fig. 4.12 Schematic diagram showing position of exact coded area.

images 273 x 273
radices 13 13 7 7 3 3

nrow 3/ncol 3/rem runs up to 1

nrow 6,ncol 6,rem runs up to 1

nrow 3/ncol 3/rem runs up to 3

nrow 6/ncol 6/rem runs up to 3
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nrow 2/ncol 5/rem runs up to 1

Fig 4.13
Various ' world ' images showing

both exact coded areas( inside

nrow 2.ncol 5.rem runs up to 5 inner rectangles) and non-exact

areas



4.6 Results with linear scan

The murray scan simulation of linear scanning was used to obtain data

for comparison. That is, for an image of size m x n a murray scan is

used with radices r4,r3,r2,r1 given by n, 1, 1, m. This forces the scan

to move across the full width of the image before a unit change in the

y direction occurs ( see chpt 2 page 58 ) resulting in a scan pattern

as given below in Fig. 4.14.

Fig. 4.14 Linear scan simulation by murray scan with radices n 1 1 m.

This does not have fly-back and runs are allowed to wrap round from

one scanline to the next thus giving better results than systems with

maximum run length limited to a scanline length.

From the images tested the compression possible for run-length

sequences generated by murray scan was greater than those formed by

linear scan. This was particularly true for images typified by the

composition of images 'ajc' ( planes 0 -2 in Fig. 4.3 ) as given in

Table 4.12, which are those in general best suited to run-length

coding. Savings of up to 30% of the linear scan compression being

made. Note the number of run lengths are very similar.
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run length
sequence

% of

bitmap increase
in % of

no. of
runs

murray linear murray linear bitmap
murray linear

ajco Lajco 21.5 28.0 30% 2436 2450

ajcl Lajcl 37.3 43.0 15% 5160 5202

ajc2 Lajc2 52.5 57.1 9% 7353 7563

ajc3 Lajc3 89.2 89.9 1% 15312 15400

Table 4.12 Results for compression using murray scans and linear
scans on the images ajc planes 0 - 3 from Fig. 4.3.

The run-length distribution was such that the murray scan, as

expected, gave a larger number of long run lengths and a larger number
of very short run lengths while the overall number of run lengths was

only slightly different. Considering the image 'ajc' plane 0 from Fig.
4.3 the number of run lengths from the murray scan was 2436 and

from the linear scan 2450. However, the corresponding figures for

runs of length 1 was 633 (« 26% ) for murray scan and 387 ( « 16% )
for linear scan, and the longest run was 5670 for murray scan and 392

for linear scan. The distributions are given in Fig 4.15 and the

resulting number of run lengths after removal of short runs given in

Table 4.6. The reduction in number of run lengths in the murray scan

data is considerably better than that for linear scan data and is

reflected in the better compression results.
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murr«y .* jcO
MO. Of WJNLEMGTHS ' - 2*36

linear.»jcO
NO- Of RUNLENGTHS > - 2456

a) b)

Fig. 4.15 The run-length distributions for image 'ajc' planeO

a) murray scan and b) linearscan

run length
sequence

% of

bitmap increase
in % of

no. of
runs

murray linear murray linear bitmap
murray linear

ajco Lajco 21.5 28.0 30% 2436 2450

rem1 Lreml 15.1 24.5 62% 1316 1832

rem2 Lrem2 12.2 22.1 81% 852 1616

rem3 Lrem3 11.0 20.6 87% 610 1304
rem4 Lrem4 10.1 19.7 95% 560 1170
rem5 Lrem5 9.6 18.0 87%

Table 4.6 Figures for image ajc plane 0 from Fig. 4.3 showing results for

murray and linear scan as short run lengths are removed.

Summary

The results for the black and white images tested have been given

both for reversible and irreversible coding. A comparison is given

between murray scan and linear scan data, showing the murray scan

has a significantly better performance for these images. The results,
in comparison to linear scan, produce around the same number of runs

but a more favourable run-length distribution which leads to better
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data compression. This advantage can be around 30% improvement for

many images but as the image becomes very fragmented the advantage

is much less.

When the approximation is made via run length removal then it

follows that the murray scan will give considerably less run lengths

with a corresponding improvement in data reduction. The data used

and results given are typical examples from the real world source

described and not preselected to suit the scanning method or run

length encoding. The results were encouraging enough to extend the

work to monochrome images as reported in the next chapter.

Examples have been given which show the versatility of the murray

scan in identifying different areas within the image for resolution

reduction and the promising quality of the resulting images.
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Chapter 5

Application to Grey-Level Images

In previous sections we have been concerned with black and white

images. The black and white examples used have been the bilevel bit

planes of a grey-level image and as such are now relevant to the

following discussion which focuses on grey-level images themselves.

For monochrome images the intensity is quantised into a finite

number of levels. Each pixel has a grey-level value g, which lies in the

range defined by the grey-scale 0 < g < L. The number of levels taking
values such as 256, 128, 64, 32, 16, 8, 4 and 2 with the corresponding

8, 7, 6, 5, 4, 3, 2 and 1 bit representation. The 1-bit representation

being the bilevel black and white image. The number of levels required

varies with such things as subject matter, viewing conditions and

sampling strategy but useful applications have been found with

between 16 - 256 levels.

5.1 Bit Plane Coding

The images grabbed by the frame grabber gave 256 levels

corresponding to an 8-bit representation from the A/D converter,

giving a grey-level value representing intensity in the range 0 - 255.

By considering the status of each of the eight bits individually a

bilevel image, the bit plane, is obtained ( see section 4.1). The

original grey-level image can now be considered as eight separate

black and white bit planes, each of which can be compressed by any

method available for bilevel images. An example of these bit planes is
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given in Fig. 5.1 for immediate reference, further examples are to be

found earlier in Figs. 4.3 - 4.5. Clearly run length coding with any

scanning technique is not appropriate for the less significant planes
5 - 7 as the patterns are very fragmented.

Plane No.4 Plane No.5 Plane No.6 Plane No.7
ajcframe

Fig 5.1 The eight bit planes for a grey-level image with 256 levels.

5.1.1 Reduction of grey levels
For the ' head and shoulders' images we are considering it is the

nature of the subject matter that the most significant bit plane is
often the most suitable for run-length coding with suitability

dropping off as the less significant planes are considered. By plane 4

data reduction is small and the extremely fragmented nature of the

planes 5-7 means that run-length coding rarely leads to data

reduction. One obvious move is therefore to reduce the number of

grey-levels by eliminating the planes of lower significance. However,

the reduction must not reach a level such that contouring noise

becomes unacceptable. The lower bound appears to be 16 grey-levels

(4 bits ) where contouring can sometimes become a serious problem.
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Contouring is the visibility of discontinuities in the image producing

false contours or jumps in areas where the subject was undergoing a

smooth change in intensity. This is caused by low-frequency

quantisation error due to the coarse quantiser levels. The nature of

the differential sensitivity of the eye means that these contours are

less noticeable in areas of the image where detail exists and also in

lighter areas. Fig. 5.2 gives some photographs showing the effect on a

grey-scale image of considering only the more significant planes. The

examples given are photographs of screen images and as such suffer

from developing distortions. The reader should not attempt to read

anything from these other than evidence of the contouring effect.

From investigation of the reconstruction of grey-level images we
found that the top five planes ( 32 levels ) gave images very close to

the originals and contouring was not a problem. The results reported

consider the information contained within these first 5 planes ( 0-4 ).
As the main investigation is an initial assessment of the application

of murray polygons to data compaction no attempt to use tapered or

adaptive quantisers was made.

Fig. 5.2 Grey-level images showing contouring a) planes 0-1 b) planes 0-2 and

c) planes 0-3.
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Using the results available from the analysis of the bit planes in

chapter 4 we can quickly find the average compression for exact

coding of the top 4 or 5 planes of the images of Fig. 4.2 - 4.4. These

are summarised for three examples in Table 5.1.

plane
compression as % of bit map

image
ajc fred imb

0 21.5 12.5 11.0
1 37.4 31.0 18.8
2 52.3 49.9 34.3
3 89.3 82.5 59.0
4 100.0 100.0 89.8

average
(0-4) 60.1 55.2 42.6

average
( 0 - 3 )

50.1 41.8 30.8

Table 5.1 Compression figures as percentages of bit map.

The variation in compression between images is accounted for by the

variation in bit plane patterns. The image 'imb'gives considerably

better results than 'aye'as the bit planes in the former have larger

well defined homogeneous areas leading to a more suitable

distribution of run lengths. One underlying reason for this is the range

and distribution of the intensity values in the original image at

capture. These can be influenced by the lighting conditions. For

instance if the image was made darker overall such that no values of

intensity existed over 127 then the most significant bit plane would
be totally black. No attempt was made to investigate possibilities of

tight control on lighting conditions at image capture, but the possible
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effect should be noted.

The results suggested that the data could be reduced to around 50% of

the original bit map data for typical images of the type described.

5.1.2 Short run length removal

As described in chapter 4 (section 4.5) the technique of merging short
run lengths into the surrounding run lengths offered opportunities for

further compression. Dramatic improvement was available using this

technique but whether the resulting distortion would be too severe or

not was not clear. To test this run lengths up to and including length 5

were successively removed and the resulting grey-level images
assessed. The assessment at this stage was simply to subjectively

test if the resulting images looked acceptable to the human viewer.

This raises the questions. Which human viewer ? In which

circumstances ? There is a very wide range of possible applications

where the circumstances and expectations of the human viewer differ.

Such variation covers images of almost T.V. quality, situations where

it is sufficient to recognise a face and simple assembly line object

identification. Therefore it seems legitimate to leave this for later

study and investigation.

We were pleasantly surprised at the quality of the resulting images

even with run lengths of length 5 removed. Fig. 5.3 gives a

photographic impression of the grey-level screen images. The screen

images themselves were of considerably better quality. Some of the

compression figures for these images are given in Table 5.2.

page 1 0 6



Fig. 5.3 Images showing the effect of the removal of short run lengths.
From left to right and top to bottom a) original, b) runs up to 1,
c) runs up to 3 and d) runs up to 5 removed

By removing run lengths of length 1 the data for the 5 planes is
reduced by around 40% of the exact coded data, columns 'aye'and 'fred'
in Table 5.2, with relatively little distortion in the image. The
reduction for each plane varying from approximately 25% for the most

significant plane to almost 50% for plane 4. This variation is explained
by the run length distribution from the respective bit planes.

page 1 07



plane
compression as % of bit map

ims oe
ajc rem1 rem3 rem5 fred rem1 rem3 rem5

0 21.5 15.1 10.9 9.6 12.5 9.3 7.0 6.0
1 37.4 22.3 14.6 12.2 31.0 21.3 14.0 11.7

2 52.3 32.0 20.6 17.0 49.9 29.6 19.2 15.3
3 89.3 46.1 27.4 21.0 82.5 41.0 24.4 18.5
4 100.0 59.3 34.9 25.8 100.0 53.5 30.7 22.7

average
(0-4)

60.1 35.0 21.7 17.1 55.2 30.9 19.0 14.8

average
( 0 - 3 )

50.1 28.9 18.4 15.0 41.8 25.3 16.2 12.9

Table 5.2 Compression figures planes 0-4 as % of bit map

With the fragmented patterns increasing from plane 0 -4 there was a

corresponding increase in the number of short run lengths. Overall for

the exact case the compression ratio is around 2 ( 2.5 bits/pixel or
50% of the bit map ) and in the case of run lengths up to length 5

merged the compression ratio is about 6-7 ( 0.6 bits/pixel or 13 % of

the bit map).

It is important to note that the method of varying the resolution

through run length removal in specific areas, as described in section

3.3, can easily be applied to grey-level images. These areas are easily

identified by using the murray digits and suitable radix pairings to

select appropriate tiles.

5.1.4 Gray code representation of intensities

Kunt & Johnsen [33] suggested that for grey-level images to be coded

by run-length coding the bit planes, it may be an advantage to consider
the intensities stored by Gray [51] code values (see section 2.2.1 ). The

advantage here is that the nature of the black and white bit plane
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images are changed giving larger homogeneous areas more suitable for

run-length coding. This was done for several images and indeed the

resulting bit planes were more promising in composition. The original
and Gray code patterns for the image 'ajc'are given in Fig. 5.3.

Considering the first 5 planes the data is reduced from 60% to 40% of

the bitmap, the details are given in Table 5.3. This is a promising

improvement and had it been realised earlier in the investigations
would have been given more prominence. It should be noted and given
careful consideration for future work.

Fig. 5.3 The bit planes for a) intensities stored as Gray codes and

b) intensities stored as pure numbers.
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plane

compression
image

ajc gray ajc
% of
bit map

compression
ratio

% of
bit map

compression
ratio

0 21.5 4.7 21.5 4.7
1 37.4 2.7 17.5 5.7
2 52.3 1.9 21.6 4.6
3 89.3 1.1 54.6 1.8
4 100.0 1.0 84.6 1.2

average
( 0 - 41

60.1 1.7 40.0 2.5

average
f 0 - 3 )

50.1 2.0 28.8 3.5

Table 5.3 Compression figures comparing intensities stored in pure

number form with those in Gray code.

5.2 Coding of grey-level images by intraframe pixel

differences

The work reported in this paper considers the coding of the grey-level

value by taking each bit plane separately, along with continuation bit

coding. However, other well know intraframe methods concerned with

pixel differences used in conjunction with a murray scan are relevant

and are discussed briefly at this stage.

5.2.1 Shift coding the differences

In the exact coding of grey level images such as the images from

satellite monitoring of the Earth an equal length code requires 7 bits

for images with 128 grey levels. It has been found, Gonzalez & Wintz

[9], that many of the possible grey levels did not have a high
occurrence. This led to the possibility of coding the difference in grey
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level between adjacent pixels. Namely an image with n pixels

described by the sequence of grey levels g1,g2,g3... gj gncan be

described by the new sequence g1,g2-g1,g3-g2 gj - gM ,gn - gn_r

This now means that there are 256 possible differences from -127 to

+127, which requires 8 bits for an equal length code. However, when

the distribution of the differences is investigated usually most of the

differences lie within a relatively small range of values, typically -8

to +8. The differences are also found to be highly peaked about zero.

Thus if a variable length code is used in conjunction with a double

shift ( see section 1.5.1 ) for values out of range then considerable

saving should be possible. For instance with code words available

c1 ,c2 c15,c16 then c2-c15 could be used to code the range -7 to +6

and c1 to signify a shift below -7 and c16 a shift above 6. Examples

are given in Fig 5.4 .

differences

-9 -8 " -7 -6 -5 -4 -3 -2 -1 0 +1 +2 +3 +4 +5 +6
c2 c3 c4 c5 c6 c7 c8 c9 c10 c11 c12 c13 c14 c15

+7 +8 +9

+5 +6

code words

differences
+7 +S +9 +1o +11 +12 +13 +14 +15 +16 +17 +18 +19 + 20
c2 c3 c4 c5 c6 c7 c8 c9 c10c11 c12 c13 c14 c15

+21 +22

code words ( shift right )

differences
-23 -22 -21 -20 -19 -18 -17 -16 -15 -14 -13 -12 -1 1-10 -9 -8

c2 c3 c4 c5 c6 c7 c8 c9 c10 c11 c12c13c14c15
-7 -6 -5

code words ( shift left )

Fig. 5.4 Possible coding for grey-level differences showing effect of shifts left and right

The use of a murray scan could give a more suitable distribution of

differences than linear scan and lead to better compression.
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5.2.2 Differential Pulse Code Modulation ( DPCM )

This technique introduced in section 1.5.2 takes advantage of the

expected local correlation between pixel values in many grey-level

images. For any pixel intensity gj along the scan the adjacent pixel is

likely to have a value close to g.. This can be seen from investigation

of the distribution of intensity differences as mentioned in the

previous section. In DPCM from the known history of previous pixel

values a prediction of the next value is made and the difference

between the prediction and actual value is found. This difference is

usually smaller than the intensity value of the pixel and can therefore

be coded in a fewer number of bits. This technique combined with the

local area scanning by murray scan could be fruitful.

Conclusion

The progress made and compression achieved for grey-level images for

image data from the real world has been reported. Restricting the

number of grey-levels to 32 gave a compression ratio of around 2 (50%

of the bit map) on average for exact coded images. However, this could

be improved considerably by reducing the resolution through run length

removal. With runs up to length 5 removed the compression ratio could

be increased to values in the range 5-7 ( 20-14 % of the bit map). It

should be stressed that these results are from the basic applications

at this initial stage and by dovetailing some of the many refinements

now regularly used in data compaction more progress should be

expected. Such methods include spatial sub-sampling with
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interpolation, adaptive quantisation and Gray coded intensities.

In addition the investigation of combining murray scans with DPCM is

suggested as an area for future work.
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Chapter 6
Motion from Frame Differences

As well as a general investigation of the application of murray

polygons to image data compaction, an early thought as suggested in

chapter 1 was the application of the results to motion - in particular
the video telephone image requirements for transmission over low bit

rate digital links. This explains the nature of the black and white, and

grey-level images considered in chapters 4 and 5. It is well known

that successive frames in motion transmission are often very similar
and in transmitting each frame separately a large amount of

redundant data is included. The amount of redundant data will of

course depend on the amount of movement in the particular situation

and the scanning frame rate. In general a frame rate of around 25

frames/sec is considered adequate to capture motion but to avoid

flicker the viewing rate must be around 50 frames/sec. Methods such

as frame repeating and interlacing have been used to counteract

flicker. Interpolation between sampled values is another technique

used in moving areas. Mounts [24] introduced the idea of conditional

replenishment, where only information on those elements that have

changed significantly is transmitted. A significant change was

measured by a threshold value, usually about 1.5 % of the peak signal,

and both the address and new PGM intensity value were sent for

changed elements. A considerable amount of further work and

refinements have been added to the original conditional replenishment

scheme, such as predictive coding, cluster coding by bridging small

gaps between changed elements, sub-sampling and removal of isolated

differences. Work in this area is well documented and the reader is
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directed to the following references [60,26]. Pease and Limb [61]

investigated the effect of sub-sampling both spatially and temporally

and the option of switching between the two when appropriate. In

spatial sub-sampling the sample rate was reduced along the scan line

with the unsampled pixels replaced by interpolating between the

known values. This was used with fast moving objects but with

slower moving objects they found that the temporal resolution could

be reduced without impairing the image quality.

The properties of the human eye are of crucial importance. Levine [62]

gives a detailed account of the biological vision system. The eye

system must take light patterns and process them to produce

perceptions. Levine considers this as a three stage process. Firstly
the optical stage as light passes through the lens system producing a

focused image at the retina. Secondly the retinal stage uses a

photochemical process to produce electrical signals which, in the

third stage, are passed to the brain where they are further processed

at the neuron level to produce a final perception.

In particular the required and tolerable resolution needs and their

associated motion levels need careful consideration. As suggested

above, when there is considerable motion the resolution can normally

be reduced without the human viewer finding it objectionable. The

ability of murray scans to vary the resolution within different areas

of the picture ( see section 3.3 ) may be usefully employed in such

circumstances.

One case where there is a high level of redundancy is in the

transmission of a human 'head and shoulders' type of image, such as

seen in news programmes. The movement here is usually restricted to
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eye and mouth movements along with more gentle head movement

against a relatively stationary background. It is the frame image
found in this situation that is investigated further in this chapter.

6.1 Acquisition of successive frames

The Data Translation ( DT2853) frame grabber available was capable
of storing two images 512 x 512 x 8 for future analysis. The block

diagram is given in Fig. 6.1.

Fig. 6.1 Block diagram of the DT2853 frame grabber.

The software allowed the acquisition of two successive frames in

real time (1/25 sec ) with 8-bit A-D flash converters giving binary

values 0-255 from the analog signal. These were stored in frame

buffers for later comparison and manipulation.

The images once captured could be manipulated using real time

arithmetic and logic image processing operations including AND, OR,

XOR, frame averaging, frame addition and subtraction, and

multiplication and division. These operations are accomplished
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on-board through the use of a look-up table ( LUT) processor.

Initial investigations were carried out using a plumbicon colour

camera with a chrominance filter in the system to remove the colour

information. If the colour information is not removed it causes

interference patterns in the digitised image. When consecutive frames

of a motion sequence were analysed on a preliminary basis the

differences found were much greater than expected. Both the number

of pixels changing in value and the magnitude of the changes exceeded

those suggested in the literature. The reasons for this were not

obvious and much time was spent with tests, often on a trial and

error basis, to determine why this was happening. Even with

successive frames of still objects the number and magnitude of the

changes in areas of similar shading was greater than would have been

expected due to noise. Haskell et al [25] had suggested that on average

only about 9 % of the image area changed from frame to frame in

sequences with movement. We were not able to determine the exact

cause of the problem and work was held up for some time.

Progress was only made when a CCD camera was available on loan

from EEV ( see acknowledgements). Using the charged coupled device

the results were closer to those expected and investigations in this

area were resumed. The details follow in the next section.

6.2 The Frame Differences

The investigation focused on the bit plane patterns produced by

differences in successive frames. These patterns were formed by

comparing the bit planes of successive frames using an XOR raster
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operation with pixels that have changed showing up as white in the

examples given. If two bit planes had not changed then the bit plane

difference pattern would be totally black. Some examples of the

results are shown in the two cases in Fig. 6.2. The first in Fig. 6.2.a is

a case where considerable movement occurred in eyes, mouth and

head, while Fig.6.2.b is an example where there was little movement.

These patterns show several features typical of those generated.

Significant movement results in relatively large homogeneous areas

of white corresponding to considerable changes in the grey-level

values. In particular this is visible around the edges of the hair,

where the intensity value would change from a low value on the hair

(dark object) to a high value in the background (light object). The

edges are less well defined in Fig. 6.2.b where the changes although
located in similar positions to those in Fig. 6.2.a are far fewer in

number and rarely occur in consecutive groups. All planes have been

shown for completeness, but as mentioned previously the least

significant bit was inaccurate as the A/D converter was heavily

biased towards even values giving unexpected structure in plane 7.

It is normal practice in interframe methods to ignore isolated

changes and to use a threshold to determine if a change is classified

as significant or not. This was applied to the original image data

using a threshold of 4/256 of the maximum signal and the resulting

difference patterns are those shown in Fig 6.3. These are the

difference patterns used for subsequent analysis. In a motion

sequence the effect of this approximation at the low threshold level

would not be noticed by the human viewer. Comparing the bit plane

patterns of the differences from Fig. 6.2 and 6.3 there is significant

change with the resulting patterns of Fig. 6.3 being suitable for run
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length encoding. In the cases of the frames where little movement

occurred the change is very dramatic indeed. Despite the substantial

change in the difference patterns from Fig. 6.2 to Fig. 6.3 the results

in practice are not disturbing.

The hardware was not available to assess the effect of this

approximation in our examples but we did combine the processed

difference patterns with the first frame using standard raster

options. The result was viewed on a high resolution graphics screen

and gave very acceptable results.

Note:- the blotches appearing in the images above and to the right of the head are caused by

dirty patches on the CCD array.
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a) b)

Fig. 6.2 Bit planes for consecutive frames and the corresponding difference patterns
a) Considerable movement and b) little movement.
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a) b)

Fig. 6.3 Bit planes for consecutive frames and corresponding difference patterns after
changes below a threshold of 4/256 of max signal and isolated points are
removed ( compare with Fig. 6.2 ).
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6.3 Coding the differences

By observing the resulting bit planes the expected compression should

be substantial. Using murray scans and run-length encoding with the

continuation bit codes described previously some of the results for

the difference planes of Fig. 6.3 are as follows.

The compression possible for planes 0-4 of the differences of Fig. 6.3

is given in table 6.1.

Considering the case with considerable motion from Fig. 6.3.a the

compression ratio for plane 0 was 11:1 ( 9% of the bit map ) and

decreased to just over 2:1 ( 46% of the bit map ) for plane 4.

plane
compression as % of bit map

image
nod

( Fig. 6.2.a )
still

( Fig. 6.2.b )

0 9.0 0.19
1 16.9 0.33
2 25.5 0.41
3 37.3 0.60
4 46.2 0.89

average
(0-4)

27.0 0.48

average
( 0 - 3 )

22.1 0.38

Table 6.1 Compression figures for the difference patterns between
successive frames as given in Fig. 6.3.

This gave an average compression ratio of just less than 4 :1 ( 27% of

the bit map ) which was approximately half the data required to send

the second frame separately. A substantial saving with negligible

distortion.

The case with very little movement, resulting in the the bit plane
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patterns of Fig. 6.3.b, will clearly give very good compression figures

indeed. The average for the first 5 planes is approximately 200 :1

( 0.5% of the bit map ).

These examples highlight the range of results that might be expected

at different motion levels between successive frames.

Conclusion

The results and progress made with frame differences from real

world images have been reported. The compression achieved by murray

scan and continuation bit coding is promising with compression ratios

in the range 5-200 for varying motion content.

No account has been taken of error recovery but at this stage we have

neither applied coding refinements nor gone to the limits of

resolution approximation. Both of these should give gains that easily

deal with error recovery and still improve significantly on the data

reduction.

Whether these results are sufficient to transmit useful motion

sequences over low bit rate lines depends on quantifying the amount

of movement that might occur. Considerable work has been done on

this subject and is well reported by Haskell [60], who points out that

despite considerable analysis much work still has to be done to

achieve a good understanding of the phenomena involved in interframe

coding.

A useful yardstick for future work is that of an image 256 x 256 with

32 grey-levels transmitted at 25 frames/sec would require an
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average compression ratio of around 130:1 for transmission over

64Kbits/sec lines. The frame difference patterns alone without any
other standard techniques are producing data reduction of this order.
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Chapter 7

Summary, Applications and Future Work

The development of murray polygons by Cole from the work of Peano

was outlined in chapter 2. From there the work reported has focused

on one application of murray polygons, namely digital image data

compression.

7.1 Summary

Murray polygons applied to the scanning of a digital image and

subsequent run-length encoding, offer another tool to workers in any

field that requires storage, transmission or processing of digital

images. This tool has been shown to have several advantages over the

common linear scan. The main advantages are

1. Local 'area' gathering and describing ability that can take

advantage of any local correlation that exists in the image. The

resulting run length distributions are promising.

2. Flexibility.

The complexity of the scan is easily altered.

The scan pattern can be varied by altering the

order of the radices.

The values of the radices can be changed.

The scans are not restricted to squares.

It is clear from the varied methods already in use and others being

vigorously investigated that there is no single solution to image data

compression but the task calls for a visual engineering solution. In

particular the methods under investigation will clearly be unsuitable
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for images that are not conducive to run length encoding in general.

Using murray polygons explicit transformations are available in

conjunction with simple and clear data structures which encapsulate

the image data. In addition the flexible bounding rectangles and

scanning patterns make it appealing and useful.

The ability, using short run length removal, to provide improved

compression with acceptable loss of resolution and retention of

major features gives the added reduction required to widen the range

of applications. A further feature of this approximation is the ability

to vary the quality of the final image either in total or in particular

regions. Therefore the opportunity is present for some adaptive

tailoring of the system to meet the changing demands of a particular
situation.

The work reported has dealt with bilevel and grey-level images but

the underlying methods can be extended to colour.

Bilevel images

For bilevel images the real world data mostly used was the bit planes

of grey-level images of a similar type. However, as can be clearly
seen from these images they represent quite different patterns which

give a variety of composition. Each bit plane will therefore be typical

of a wider set of bilevel images and need not be tied to the original

grey-level source. The run-length distributions for many of the

images were considerably better with murray scans than the

corresponding results for linear scans. This being especially true for

images characterised by the more significant bit planes. For exact

coding compression ratios around 10 :1 (10% of the bit map ) were
achieved. This figure decreased as the images characterised by the
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less significant planes were considered. For very fragmented patterns

often no compression was achieved but these were cases where no

run-length method would be suitable.

It should be noted that compression ratios better than those obtained

could have been achieved, if the purpose had been to apply the method

to situations already known to give reasonable results when

run-length encoded. For instance images which usually contain a

limited number of large homogeneous areas, such as satellite data

which has been processed to give areas of a particular vegetation.

By short run length removal the compression ratios were further

improved. Those images with compression ratios around 10:1 being

improved to 14 :1 and those images that previously were not

compressed gave ratios of 2 : 1. Further reductions with runs up to

length 5 removed gave compression ratios up to 16 :1.

Grey-level images

For grey-level images with intensities represented by 5-bit values

(32 levels) overall compression by exact encoding each bit plane was

typically 2.4 :1 to 1.7 : 1 ( 42 - 60% of the bit map ). By coding the

intensities using Gray codes, results suggested that the data required

could be further reduced.

Approximate coding using short run length removal could take the

compression to around 3:1 for runs of length 1 and up to 6:1 for runs

up to length 5 removed.

Interframe data

The initial investigation of bit plane frame differences for the

grey-level 'head and shoulders' images previously described, showed
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that considerable data reduction was possible. Applying minor

approximations compression ratios varying over a wide range ( 5:1 to

200 :1) were achieved, the value depending mainly on the amount of

motion between frames. The images considered were limited to

motion of the type expected from head, eye and mouth movement and

did not consider extremely violent motion, or the differences caused

by a complete change of scene. Further work in conjunction with more

sophisticated interframe techniques is required to fully analyse the

application to motion, but initial results look promising.

7.2 Applications

The applications are too numerous to mention, in the sense that they

are to be found wherever a digital image storage/transmission need

exists. The growth of communication technology, the introduction of

digital links, the use of fibre optics and the availability of real-time

image processing using frame store facilities are some of the reasons

why the applications are extensive and still growing rapidly. Some of

the more common areas are:

1. Storage and transmission of digital image data such as satellite

data, x-ray images and general database requirements for pictorial

information;

2. Video conferencing and telephony;

3. Simulations of various sorts, flight simulation being the most

common;

4. Graphical artwork in commercial and noncommercial applications.

Some applications that were rejected long ago are once again

possible. For instance video telephony which was investigated in some

detail before television, is now receiving new interest. The video

phone is at present available to consumers in Japan and America. In
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Britain, video phone systems are already used by the police to send

photographs from station to station and by hospitals to store and

transmit x-ray images. The creation of digital image databases

demanding efficient storage coupled with transmission on low bit

rate lines is attracting considerable commercial interest.

There is little doubt that the movement of information describing a

picture source, from that source to the receiver/user will more and

more comprise of digital links. The main constraints, which vary in

importance from application to application, can be drawn from or are

combinations of:

1. available bit rate

2. hardware complexity

3. cost of network equipment and transmitter/receiver

hardware.

4. image quality requirements.

The work reported suggests an alternative tool for both still and

moving image data transmission and storage. Some ideas about the

application of the work reported in this thesis to transmission of

digital image data on low bit rate links ( 64Kbits/s ) is given by Cole

& Buntin [63]. Further work is required involving a hardware

implementation to assess more precisely the performance in

comparison with existing methods and applications.

7.3 Further work

While progress has been made in the 13 months work reported in this

thesis, the author is hopeful that some hardware expertise may be
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applied to future investigations of murray scans and the transmission

of moving pictures.

The report has not fully investigated the advantages to data

compression that can be found by careful consideration of the

properties of the human visual system. This would require work on

both the objective and subjective assessment of final image quality.

The investigation of the results when differential pulse code

modulation (DPCM) is applied is another area that merits further

attention.

Lastly other work and techniques, presently being investigated, using

murray polygons could add considerably to specific areas of digital

image handling. A scaling method, reduction and enlargement, is

available that can easily be applied to the run lengths from bilevel

images with drastic reductions in data and little obvious impairment

in the resulting image at the receiver. Halftoning methods

amalgamated with mixed scan patterns appear to give promising

bilevel renditions of monochrome images.
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