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CHAPTER I

INTRODUCT ION

1.1 Eree Radicals.

It is well established that the chemical and physical
properties of a molecule are attributable to the outer
shell electrons of the constituent atoms, In general
these outer shell or valence electrons are paired off with
antiparallel spins, There does exist, however, a class
of molecules wherein at least one valence electron is
unpaireds The molecules of this class are called free

radicals,

It might be supposed from Classical Chemistry,
reasoning that, since the unpaired electrons are in the
valence shells, the reactivity would be enhanced because
of a tendency for pairing with unpaired electrons of other
atoms. This is not always correct, For instance, it
is true that some radicals are so reactive that to study
their physical properties certain trapping techniques have
to be adopted. Such work has recently been carried out
in the National Bureau of Standards' Free Radical
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Programme (19%7-60) where radicals have been produced in
the gas phase and trapped in an inert matrix at low tempera-
tures. On the other hand, it must be borne in mind that
there are radical types, e.g. Viphenylpicrylhydrazyl, with
inherent stability which Pauling and Wheland have shownl
to be due to delocalisation of the unpaired electrons
throughout the molecule, We therefore see that the free
radical nature does not necessarily imply high chemical
reactivity., One feature that is common among radicals,
however, is their paramagnetism and consequently their
ability to show the phenomenon of electron spin resonance

(e.s.r.).

1.2 Ihe Resonance Phenomenon.

When a d.c, magnetic field is applied across a free
radical sample of spin %, it removes the double degeneracy
of the magnetic states. The splitting between the resulting
Zeeman levels is AE where AE = g B H,o 9 is called the
spectroscopic splitting factor which varies only slightly
from radical to radical, B is the Bohr magneton, H
is the value of the magnetic field.

(4]

If the sample is also simultaneously subjected to an

alternating field at right angles to the steady field,
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magnetic dipole transitions will be induced by the former.
Treating the alternating flield as a time~dependent pertur-
bation, it can be thounz
theory that the probability of such transitions is appre=-

from standard guantum mechanical

ciable only when the frequency Y of the a.c. magnetic

field is the seme as the transition freguency ef'uhero h

is Planck's constant., i.e, There is a resonance condition
hv, = g BH, (1.1)

These transitions can be induced from the lower to the

upper level or vice versa so that the net trensfer from

the lower to the upper per unit time, N" is given by:

Wes " Pt (1.2)

where Nl is the number of electrons in the lower zeeman
level and N. is the number in the upper level, Py is

the transition probability per unit time of inducing transi-
tions from the lower to the upper level by the alternating
magnetic field, Pay 1; the corresponding transition
probability for transitions from the upper to the lower
level, From time~dependent perturbation theory

O R plv).

p{v) is a function of frequency (see 1.12) but is appre-
ciable only when v = v _,

Expression (1.2) therefore reduces to
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Nog = (N =N plv)e (1.2)

The free radical system will be in equilibrium so that the
Maxwell~Boltzmann distribution gives
N
b w b«
N ¢ - FF - (1.3)
2
This implies that an is positive and hence the overall

process is absorptive of energy.
The power absorbed in each transition = hva so that

the total power absorbed = Nn hv

h.' 2
= NI.-ET.O p('o) (h' << kT)

N B (e ) (1.4)

where N = N: + N’.

Furthermore, for a system of total spin §, the time-
dependent perturbation theory shows the existence of a
selection rule that limits transitions to those between
the levels differing in the z component of § by *l.

1.3 E.S.R. Absoxption Charactexistics.

Since in free radicals the difference in energy
between the ground state and the first excited orbital
state is much larger than kT, from the Maxwell-Boltzmann
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distribution, it is seen that only the ground state will
be populated., Thus e.s.r., is associated with this state
only and the information about it is contained in the
following characteristics of the e.s.r. spectrum,

(a) The g-value, i.e. the spectroscopic splitting
factoer.

(b) The presence of structure. If the unpaired elec-
tron is in the vicinity of nuclear spins, the magnetic
interactions may cause hyperfine structure,

(¢) The line width., The absorption line will have
a line width due to the interactions experienced by the
pnpaired electron in the intra and intermolecular fields.
These interactions provide the relaxation processes which
keep the spin system in thermal equilibrium with the lattice.
If Av is the line width in ¢/s, f the total relaxation time
of the spin system, then

Av = ‘#’ (105)

(d) The anisotropy of the spectrum. If investigations
are carried out on a free radical in the single crystal
form, the interactions on the unpaired electron will depend
on the orientation of the external magnetic field with
respect to the crystal axes, Hence the g-value, hyperfine

structure and line width will show anisotropies that will
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reflect the local symmetry about the unpaired electron,

Even although transition metals and rare earth elements
are also paramagnetic, it is possible to distinguish them
from free radicals by these characteristics of their e,s.r.
spectra. Thus polycrystalline samples of most radicals
show narrow lines (1 ~ 15 oe) with g-values all within a
few tenths of one per cent of the free electron value
2,00229, whereas in transition metals, g-values can vary
from one to six and line widths as great as 476 oe. have
been roported3. In addition, in a single crystal or in
dilute solution, the radical may show hyperfine structure

that is indicative of its molecular structure.

1.4 Genexal Experimental Procedure.

Due to the dependence of the power absorbed in 'o'
(see 1,4), to obtain large detectable e.s.r. absorptions
it is worth while working at microwave frequencies and
making use of conventional waveguide techniques, A simple
apparatus would consist of a microwave oscillator, usually
a reflex klystron, coupled with waveguide of suitable
dimensions to a cavity resonator. The free radical speci-
man is placed in this cavity at a region of maximum r.f,
magnetic field, The d.,c., field is applied perpendicular

to the latter, across the sample and is homogeneous enough
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to prevent breoadening of the spectra. Magnetic absorp-
tions will effect changes in cavity Q which can be detected
as voltage changes from a crystal rectifier monitoring
either the reflected or transmitted wave from the cavity.
The presence of the cavity renders the apparatus very‘ |
fraqueﬁcy sensitive so it is preferable to keep the micro-
wave frequency constant and obtain the absorptions as a
function of the magnetic field, This can be done by
recording them as 50 ¢/s pulses on an oscilloscope while
sweeping the gaqnetic field at %0 c¢/s about the resonance

value,

1.5

An estimate will now be made of the minimum number of
radicals that can be detected by a spectrometer limited by

thermal noise only.

Feher has shoun4 that for a system using a reflection
cavity and a magic-tee bridge, the maximum e.s,.,r. signal

AV at the crystal rectifier is determined by
&V . V2 Aeo

where V is the available voltage from the klystron, Qy is
the unloaded Q of the cavity and Auo is the change in 4

due to e,s.r, absorption., The rest of the calculation
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differs from that made by Feher” but the final result is
comparqble with his for the same operating conditions of
the spectrometer,

The cavity Q = 2%vg.Energy stored in the cavit

The power absorbed in the walls +
the paramaqnatic power loss.

(1.7)

Substitution of (1.,4) for the paramagnetic loss gives:
The cavity @ = J° !ﬁ He® d Ve

Wall losses + 3 B¥e- p(v )

= Qo"‘ 0!

(1.8)

where V¢ is the volume of the cavity, and Hy is the ampli-
tude of the r.f. magnetic field whose direction is along
the x~axis while that of the splitting field is along the

z=axis,

If the paramagnetic loss is much less than the wall

losses AQ, reduces to

" h3vo alvg) Q.°
Aq, = 2N kTOWv 0 {1,.9)

Putting this value of AQ_ into (1.6) gives

2
$ 1 sloa)do v (1.10)
Ve
There is a minimum detectable value of N, Nmin when AV is

comparable with the thermal noise\/2deAfao, Af being the
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bandwidth of the detector, Ty the temperature of the de-
tector and R, the characteristic impedance of the waveguide

so that J&
Noyo = (,_d__)i 2#1 e (1.11)

From time-dependent Terturbation theory5
2 _2 Hy®av
ply) = S ®° Ner T8 1c 4 3] 5 | - 3> Pg(v) (1.12)
3

where V_ is the volume of the sample. <+ |s, |-4> is the

matrix element of the x-component of spin, $_, between

x’
the states with §_ values 4 and |<+i|sx|-i>|’ = %

g(v) is the line shape function which satisfies the

equation I”g(v) dv = 1 (1.13)
(¥
that
ik alv,)) ~ %= (1.13a)

where Av is the line width.

Substituting (1.,13a) into (1.12) and the resulting
expression for p(v ) into (1.11) gives

= (_..d.....)i ZkI. !s_e? (1.14)

Vit Qoo 0 P

where n is the filling factor here defined as

! Hi®av
n Y : (1.1%)

Ivcﬁa dV,

For the following operating conditions of an x-band
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spectrometer:
Py = 50 mawey Q, = 4,000, &f = 10 k ¢/s, T = T, = 300°K
and for a rectangular H,,, cavity %‘ = 6 cm® substituted
into (1.,14) gives

N = 2 X 10"apins of DJP.P.Hs of line width 2 oe

min
(1,16)
Also since Q oc—l-i- and qoc% < v * expression (1.14) shows
o v, A o
that N"'i“qcv_}- ' (1.17)

1.6 Qbject of this Thesis.

It was the purpose of this work to investigate the
@+8.T, properties of certain organic molecular complexes
that contain free radicals. The formation of these com-
pounds involves the mechanism of a transfer of a single
electron from a donor to an'acceptor molecule. Since
both these molecules initially have an even number of paired
electrons the radicals formed have two unpaired electrons
per complex molecule, These complexes are therefore
synenymously called charge~transfer, donor-acceptor or
biradical molecular comploxes6 and the processes that give
rise to them are known as charge-transfer or univalent
redox reactions, Primarily, it was attempted to obtain

the hyperfine spectra of these complexes and so unequivocally
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identify them, As will be seen in Chapter II, the
resolution of hyperfine structure is inhibited when the
radicals #ro studied in concentrated polycrystalline foxm..
Therefore, because no single crystals have been grown,

the compounds have been studied in dilute solutions.

Chapter II discusses in detail the interactions men-
tioned in 1.3 with special emphasis on the hyperfine struc-
ture and the mechanisms modifying it,

Chapter III describes the apparatus designed and
built for this research.

Chapter IV reports the results of the experiments
and interprets them where possible,



CHAPTER II
THE THECRY INVOLVED IN E.S.R. ABSORPTION

This chapter will deal with a discussion of the inter-
actions which influence the e.s.r. absorption characteristics

of free radicals.

TI.1 Ihe General Hemiltonian.

The ground state of any quantum mechanical system can
be obtained, in principle, from a solution of the time~inde~
gendent Schredinger wave equation,

Y, =BY, (2.1)

where F is the complete Hamiltonian of the system, E_ is
the lowest energy eigenvalue, and ?o is the wave function

corresponding to EO.

For a system consisting of a single molecule, the Born-
Oppenheimer thaoren7 can be assumed to be valid, sc that
for the purpose of determining the electronic motions, the
nuclei can be considered as fixed in their equilibrium posi~
tions. As in this thesis work all radicals were investi-
gated either in solids or scolutions, the magnetic moments

associated with molecular rotation as a whole, will be here



13,

neglected, Hence, for a free radical molecule in an
external magnetic field, Frwill reduce to

HeT, +V, +H (2.2)

where T, is the kinetic energy operator of thc.oloctrons.

L is the operator for the potential energy due to electro-
I static electron~electron and nucleus~electron interaction,
and Hﬁ is the operator for the interactions between the
electron spins and orbital moments, the electron and nuclear
spins and all the interactions involving the external mag-
netic field, We shall also neglect nuclear quadrupodle

moments,

As K, is a weak interaction operator, it can be con-
sidered as a perturbation term that can remove magnetic
degeneracies of the ground state, E.s.r, transitions will

inveolve energies AE which to a first order are given by
- ® o .
0 = <V¥.°l K| ¥ (2.3)
where
0 Oy O
(T,.+.V,)7,° = BV, (2.4)
i.e. ?o° is the unperturbed eigenfunction of the ground

state energy Eooo

In molecules where the exact form of Yoo is difficult
to obtain because of the complexity of V, in equation (2.4),
it is necessary to adopt a simplified mathematical model.
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The theory invelved in e.s.r. can be formulated in terms
of this model through expression (2,3), The experimen-
tally~obtained quantities can then be used to appraise the
validity of the approximation to ¥ ° and, at the same time,

may point to further refinements.

A usual mathematical approximation of ?°° is its
expression as a singie product of one~electron functions
91,_spin-orbdtals, antisymmetrised in the form of a single

Slater determinant,

A ARG Rl AL (2.5)

Pvl.. . "2N+l

p is the parity of the permutation P and the sum is over
all (2N+1) permutations, where (2N+l) is the odd number
of electrons in the free radical molecule, They will be
restricted to the lowest (N+1) orbitals, The unpaired
electron will then singly occupy the (K+1)*P orbital, so
that ?oo will describe a doublet state, Further, 9 is
a function ¥, (r;) of the space co-ordinates r; of the gth
electron multiplied by a function qi(Ei) of the spin co-

ordinate ;1 of the ith electron,

i.e, "y * ii(ri)qi(ﬁi) (2.6)

The ¥,;"'s are called molecular orbitals which are often
approximated by linear combinations of atomic orbitalss u,
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i.e, *1 = Z¢ (207)

n n“n
The use of molecular orbitals implies that (T, + V) of
equation (2,4) can be written to a good approximation in

the form f h effi where
h eff, ¥, = e, (2.8)

The one electron Hamiltonian h off1 describes the average
smoothed out field on the ith electron,

Application of the Variation PrincipleB

to the ¥;'s
gives a set of equations from which the c's of equation

(2,7) can be obtained for a given &;, namely
Z e, (Bun = &18un) = © (2.9)

The ci's are evaluated from the secular determinant
IBan = &48qnl = © (2.10)
where

ﬂnn > < umlhoffl Un >

sﬂll"l -4 umlun>

The following assumptions characteristiic of the Hlickel
theoryg render the above solutions more easily obtainable.
(1) All s, =0
(2) ALl B =a
(3)

ﬁan = O for non-neighbouring atoms
= P for neighbouring atoms.



16,

In this theory, hogs is not explicitly defined, but a and
B are used as parameters, which are adjusted to fit the
experimental results, The c¢'s are of the most interest
in magnatic‘resonance. as will be shown in Section I1I,5,
They express the delocalisation of an electron throughout

the molecule when it is in a molecular orbital *1.

IT.2 wuenching of Orbital Angular Momanta,.

The total Hamiltonian of a molecule does not possess
spherical symmetry, sc that it will not commute with the
orbital angular momantum operator, OCrbital angular momen=~
tum quantumnumbers will then not specify the eigenstates.
In effect, the highly directional and usually lowly symme-
trical effective electric fields of the chemical bonds.
remove the orbital degeneracy associated with the isoclated
atoms through a Stark splitting, ©On application of an
extorﬁal magnetic field, the magnetic splitting will con~
stitute only a small perturbation ( ~ 1 em *) compared
to this Stark splitting (10® ¢cm *). No microwave magnetic
dipole transitions can therefore be induced between or
from thowexcitad orbital levels (hv << kT << 1C® cm *) so
that orbital momenta play no direct part in the e.s.r.
spectra of free radicals., This effect is known as the

“quenching" of the orbital momenta. ©n the other hand,
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the electric fields only affect the spins indirectly,
through the spin-orbit coupling, but they still may remove
some of the spin degeneracy. Without a detailed know=
ledge of the electric fields and spin-orbit coupling, it

is therefore difficult to predict what the energy levels
will be within kT of the ground state, the region of
interest in magnetic resonance. Fortunately, however,
there are two theorems which elucidate the behaviour of

the ground state of paramagnetic in such circumstances =
Kramers' and the Jahn-Teller theorems, The former states
that 2 molecule with an odd number of electrons will

always have at least a double degeneracy in the eigenstates,
including spin, The latter states that a non~linear mole~
cule will adjust itself, by nuclear displacements, to remove
all orbital degeneracies left after the Stark splitting,

but not the Kramers' degeneracy. Hence, a free radical
molecule with a single unpaired electron will possess a
singlet orbital ground state with double spin degeneracy

and will therefore, in principle, always show e.s.r.

I7.3 Ihe Sein-Hamiltonian.
To facilitite the interpretation of e.s.r., data,
Prycelo and Abragam and Prycell'have introduced a formal

Hamiltonian, the spin-Hamiltonian, which reduces the
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problem to cne containing as few parameters as possible,
This Hamiltonian describes only the levels associated with
€.8.r. and is expressed in terms of an effective spin S*
where (28'+1) equals the observed multiplicity., For
systems whose ground state is a eingle orbital level - as
is the case for a free radical (Section II,2)-the effective
spin is equal te the true spin,

The general expression for the spin-Hamiltonian H;
for a paramagnetic system in a crystal can be urittenlz
H% ﬂ(g‘H!Sz i ngxsx . ngysy i D[s: 35(8+1)}

9. 2 :
+ E(sx sY ) + AS, I, +AS I + AYsYIy

- 9By Hel (2,12)

where Hz is the z component of the magnetic field, sz is

the total z component of the effactive electron spin angular
mementum operator, Iz is the z component of the nuclear

spin angular mcmentum operator, EN is the nuclear g-value,
Py is the nuclear magneton . = U,E and the x,y and z com=-
ponents of g and A are parameters whose values are chosen

to fit the experimental data for a particular system.

The first three terms are the main splitting terms
describing the interactions between the magnetic field

and the unpaired electron spins, The deviation of g from
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the free-electron value (2.,0023) is 2 measure of the

effect of the electric fields on the spins through the
¢pin-orbit coupling, It is emall in free radicals

(€0.,1%) because of orbital quenching, As the magnitude
of the unguenched orbital moment can be different for
different directions of H due to electric field symmetries,

g can be anisotropic.

The coperator terms containing D and E formally repre-
sent the zero magnetic field splittings of the spin levels
that can arise due to asymmetric electric fields., The
three terms in A account for the nucleus-electron spin
interactions with the possibility of anisotropic coupling.
gyPytleLl is the operator for the direct interaction between
the magnetic field and the nuclear moment, and is usually

negligible compared with the other temms in (2,12),

I1.4 Nuclear pegeneracy.

When several nuclear moments in a molecule are con-
cerned in the hgparfino structure, two types of nuclei can
be distinguished by the number of hyperfine lines and their
relative intensities, Consider as a simplified form of
(2,12) for a free radicel, the isotropic spin-Hamiltonian
K, where |

Wy = 9BH,S, + ZAS, I (2,13)
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(a) Equivalent Nuclei. When the nuclei are chemically
equivalent, the A's in (2,13) are all equal, Each spin

level will be split into (2I+1) nuclear levels, where I
is the total nuclear spin = § In. According to the strong
field (gpH >> A) selection rules

as, = 21 (2,14)

A Inz = O for alln

there will be (2I+l) lines separated by'% mc/s, If the
nuclei are all protons, the relative intensities are given

by the coefficients of a binomial distribution.

(b) Nopn-eguivalent Nuclei. The A's are all different,
Consider A1 > A. > An.

Through interactions with Iz’ each spin level splits
into (211+1) levels. Through interaction with I  each of
these levels splits into (2I'+1) levels, Hence the total
number of levels for each spin level = 5(21n+1)' With the
selection rules (2,14), the number of hyperfine lines 1is
then g(zxnﬂ Je

II.5 The Relation between the Hyperfine §911t;;ng Factox
and Iheoxetical Entities.

The hyperfine coupling parameter A in (2,12) and (2.13)
can be related to theoretical quantities of Section II.l
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by use of the general hyperfine interaction operatotas

M
B 5 9PoPy [—# 3(5":)(1“")] 3 s.08(r,) (2.19)

where S is the electron spin opcrator. Intho nuclear spin

operater of the nth

nuclews, g, the nuclear g-value, By the

kth electron

nuclear magneton, Tun the distance between the
and the nth

The first two terms describe the anisotropic dipole~dipole

nucleus and btrkn) the Dirac delta function,

interactions between the unpaired electrons and the nuclei
in the molecule, The third term is the isotropic Femmi

13 In

Contact term which arises from relativistic effects
solutions where the meclecular tumbling frequency is often
much larger than the hyperfine splitting frequency, the
effect of the anisotropic term will be averagdd out to
:orol4. ¥, is then isotropic, as is the spin-Hamiltonian
for the system (i,e, of the form 2,13)., The presence of
the Dirac d-function requires that the wave function of

the unpaired electron possesses a finite value at the
nucleus, if it is to contribute hyperfine structure of

the Contact type. This can only be so if the wave function

has some atomic s character,

OUn equating the hyperfine splitting in (2,13) to the
expectation value of the Fermi part, M, of (2.15), we
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obtain for the nth nucleus

’ ,fn_”'"'ﬁl“’

n h h-s' In;

where ¥V is the ground state electronic wave function,

From (2,1%) a, reduces to

a, = B p gy <V Idln)l 7> (2.16)

IT.%5.1 Configupation Intexaction.

The stability of aromatic radicels ions suggests that
the meolecular orbital of the unpaired electron in them is,
to a zero order, a = orbital. Such an orbital, constructed
from linear combinations of p, atomic orbitals (equation 2,7)
has a node in the plane of the rings The matrix element
in (2,16) and therefore the Contact hyperfine interaction
is then zerc,

16 117

Jarrotls, Weissman™ " and McConnel have accounted

for the observed aromatic radical isotropic splittings by
considering higher order effects in obtaining the ground
state electronic wave function, In particular, HcConntlll7
has carried out a first-order perturbation calculation on

a system where the unpaired electron is restricted entirely
to the molecular orbitals of an isolated CH bond and has

obtained the correct order of magnitude predictions for



23,

the splittings.

Thus, for the isolated CH bond, the ground state
electronic wave function ¥ is written

¥ = 'f‘ + k?‘ (2017)

where W1 is the zero order ground state function corre-
sponding to the configuration (log)®(205)%p, of the carbon
hydrogen linkage, It is of the form (2,5) and is an
eigenfunction of S, with eigenvalue #. ¥, is an excited
state wave function corresponding to the configuration
(lop)®(20p2p,20,) and is an eigenfunction of S, with eigen-
value 4, It is this part of ¥ that gives rise to the
hyperfine splitting, where o, is a bonding orbital between
the carbon and hydrogen atom and ¢, is an antibonding O
orbital,

This type of mixing is known as o-n exchange and is
the means whereby the electron principally in a P, orbital
can get into the ¢ shells, It is brought about by electro-
static repulsions between the electrons in addition to
those accounted for by (2,3),

McConnell has shown®’ that Q, the hyperfine splitting
for the CH fragment, is given by

Q =J§11—?,T°|7§ ayy (2,18)
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where ag, is the hyperfine splitting if the unpaired elec~
tron is whelly in a 1s hydrogen orbital, From molecular
beam experimentgaaH = 1420 me/s. 8, is the overlap inte-
gral between an sp® carben hybrid orbital and a ls hydrogen

atom orbital.

An estimation of A from atomic exchange and overlap
integrals gives { to be within «10 to ~100 mc/s. The

empirical value is =63 me/s.

11,5,2 The McConnell Belation.

In aromatic radicals, the unpaired electron will not
be confined tc cne CH bond, but will be delocalised among

the atoms of the ring. McConnell has shounl7 that the

hyperfine splitting a s due to the proton attached to the

nth carbon atom, is related to the unpaired electron den-

th

sity at the n™"" carbon ring atom, Pro by the expression

a, = P Q (2.19)

assuming that « of (2,18) is the same for all CH bonds in
the ring.

Thus, on estimating Q and measuring the hyperfine
splittings, the relationship (2,19) affords an accurate
means of obtaining information on the unpaired electron

distribution throughout the molecule, In the Hlickel
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apprceximation, the unpaired electron density is the pro-
bability of finding an unpaired electron in a Py orbital
centred on the carbon atom n and is equal to ¢ * (see
equation 2,7).

«c?q (2.19a)

ioe. an o
17

McConnell has further generalised™  this concept =1
unpaired electron density tc wave functions that do not

depend on the one electron. approximation, (2,19) will

still hold if for P is substituted the spin densities,

i.,e. expectation value of the spin density operator (Pn)op
defined by the equation

(’n]op E Skz = E A.n(k)skz (2,20)
&n(k) is an "atomic orbital delta function" which equals 1
when electron k is in a Py atomic orbital centred on carbon

atom n and is zero elsewhere,

The HUckel theory gives good predictions of spin den=
sities in even alternant hydrocarbons, but not in odd alter-
nant systems, Thus, the overall hyperfine splitting for
a system of N carbon atoms to each of which are attached

one proton is %l'n‘ where

Zla,l = Zlp,la (2,21)

From HWUckel theory E Pp =1 and p > O,
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Therefore, the total spread of the spectra from aromatic
hydrocarbon radical ions should be constant and equal to
Qe In odd alternant systems, however, the total splitting
is found'? to be larger than Q, so that if (2,19) is still
to hold, P must have a negative value at certain carbon
sites in the molecule. Their physical significance is
that at these sites the unpaired electron density has a
polarisation which is opposite to the total spin polarisa-
tion of the molecule. In these cases glpn|>1 but still
Epn = 1,

The use of better approximations to the ground state
electronic wave function than those of HUckel, viz, (2.5),

(2.6), (2,7) and (2.11), such as the L¥wdin2C
8 %

wave functions
or the inclusion of m-n interaction™  do in fact give nega-
tive spin density predictions at certain carbon atoms.
These are the sites where Htickel theory gives zero spin

density.

I1.5.3 Hypexconjugation.

Hyperfine splitting can be produced by the protons
of a methyl group attached to a ring system, e.g. the
methyl group protons in tolu-p-bcnzosemiquinonezl. This
splitting cannot be explained by a o-n exchange interaction

involving excited levels of the CH bonds in the methyl
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group, as described in Section II,5.1, because the =

system of the aromatic ring does not extend to the methyl
carbon, The way in which mixing of the ls hydrogen orbi-
tals into the n system can take place, is by direct overlap
of the 291 ring carbon orbital and the ls methyl hydrogen
orbital., To prevent overlap contributions from cancelling,
the mixed wave functions must possess the same symmetry.

It is, therefore, necessary in mixing with a 2pz-orbita1

to choose a methyl group M.0. of the form h - Q(h’ + hs)'
where hn is the 1ls orbital of the nth hydrogen atom of the
methyl group.

This type of mixing mechanism is called hyperconjuga~
tion and the splitting produced as a consequence is usually
of the same order as that produced by o-mn configuration
interaction. Furthermore, McLachlan has shoun22 with a
valence bond argument that the hyperfine splitting ay for
a methyl proton is related to the spin density p on the
carbon (or nitrogen) atom to which the methyl group is
attached. The relationship is

ay = Qp (2.22)
which is similar to the McCcanell relation (2,19) for
protons attached to ring carbon atoms. The best semi-

empirical value for ¢ for the methyl protons in Wurster's
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blue ion is +70 mc/s (+25 oe).

I1.6 Exchange.
Dirac has shown that the isotropic exchange inter-
action F, can be written in the form23
AR B (. P T, (2.23)
& 1#3 1) #1°%4

where Jij is the exchange integral between the g th and Jth
electron in the system and its sign determines whether the

parallel or antiparallel spin alignment state is lower.

bue to this form of H,, there will be no contribution
from paired electrons. The isotropic electron exchange
interaction in free radicals is of two types, inter and
intramocleculat exchange. The former will be discussed

in II,7.3.

IT.6.1 Intramoleculax Exchange.

This interaction operator has to be included in the
spin~Hamiltonian for one molecule when it has more than
one unpaired electron, It is, therefore, of importance
in the biradical molecular complexes described in this
thesis.

For a molecule with two unpaired electron spins s,

and S, the isotropic exchange H; can be written



FIGURE I. THE POSSIBLE LOWEST ENERGY LEVELS FOR A

MOLECULE WITH TWO UNPAIRED ELECTRONS.

(a) A BIRADICAL

J=0 4= 0
=0
8 H,>o

(6) A MOLECULE WITH A TRIPLET STATE

S=1 3’1

X £y
0 "
"

©

7y
1 N
o 0

§=o0

T22gi-3,) FH, >0



29,

He = J &8,

= 4 Jls(s+1) - 2] (2,24)

where $ t + a,.
Including this in the isotropic spin-Hamiltonian Ha.

with no hyperfine effects
o =9, PHes *9PHs +J5s .8 (2.25)

= 8(g,+ g )P H.s + 4 J[s(s+1) - &]
+ é(g*- gam }:Mg1L - .s.s) (2.25a)

9, and g, are the g-values of s, and s, respectively. Two
cases can then be distinguished.

(1) If J <« (91- g‘)E H, there will be two separate
lines characterised by g-values 9, and 9, In the parti-
cular case of J equal to zero, we call the molecule a bi-
radical (see Fig. la).

(2) 1£ J >» (gz- ga)ﬁ H, the energy levels will split
into a lower singlet and a triplet separated by J (see Fig.
l1b)., Magnetic resonance transitions will be induced
between the Sz levels of the triplet state so that there
will be a single line with g-value ‘(gx+ gn).

I1.6.2 The Effect of Isotropic Intramolecular Exchange on
Hyperfine Structure.
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If there are hyperfine interactions present in a
biradical molecule, then the resulting hyperfine structure
can be modified depending on the magnitude of the intra-
molecular exchange. With the unpaired electron spins s,
and s, coupled te the nuclear spins I1 and I’ respectively,

the spin-Hamiltonian H_ of (2,25) will then be
Ry = 9fll.s, + AL -31 * oft.s, * AL .s, *Js .8 (2.26)
= ofH.S + 4 AS.(1,+ 1) + Wils(s) - §]
tinsg-2)1 -1) (2,26a)

where the simplifications have been made that g, =9 =9
and that all the nuclei are equivalent.

Two types of hyperfine spectra are then possible.
Either (1) if J = O and gBH >> A, there will be two sets

of hyperfine spectra superimposed with (211+1) and (2Ia+l)
components each of splitting ﬁ mc/s, or

(2) if J >> A, there will be [2(Il+ Ia) + 1] lines.,
with splitting eg mc/s which does not depend on J and with
relative intensities given by the number of ways of forming

24 have considered the parti-

‘I;i + Isi) Reitz and Weissman
cular case of I1 = Ia = 4 in a biradical where case (1)
gives a doublet and (2) a triplet. They also point out

that for A>J>0, each of the doublets will split into a
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triplet with splitting ¥ mec/s.

I1.6.3 Ihe Temperature Dependence of the E.S.B. Signal
Intensity due to Intramelecular Exchange.

The integrated signal intensity is proportional to
the difference in Boltzmann populations of the two levels
involved in the e.s.r. transitions., As has been seen in
(1.4) for a system with spin 4 this signal intensity has
a Curie temperature dependence of I/T provided gpH << kT.
For a system whose e.s.r. levels belong to a triplet state
which is J above a singlet state (see Fig. lb), the tempera-
ture dependence of the integrated signal intensity (I.S.I.)

is given by

T 8,1, %TJ_"-— (2.27)

(e kT 3)

I1.7

Up to now, in this chapter, we have considered only

the interactions in one molecule or a system of non-inter-
acting molecules., If environmental effects on the molecule
are taken into account, the widths of the component hyper-
fine lines are modified with the result that resclution of
hyperfine structure is inhibited, Therefore, in order to
obtain optimum resolution and hencé maximum information

about the radical system, these environmental effects have
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te be minimised., They will be discussed in turn,

I1,7.1 Nuclear-electron Spin Broadening.

In solid samples or viscous solutions the anisotropic
hyperfine part of (2,15) does not average to zero but, due
tec the random orientations of the molecules, gives rise to
line broadening.  On averaging over all orientations of
the magnetic field with respect to the line joining the
unpaired electron to the nucleus, the line broadening 4AH .
is given b725 -
O8H ~ gy By ¥ i&' oe . (2.28)

Kth

where Ty is the distance in R between the nucleus and

the unpaired electron, averaged over the wave fqnction.

11,7.2 Electron~eleciron Spin Broadening.

The electron-electron spin interactions between the
unpalred electrons on different radical molecules effect
line broadening in two ways., The z-component of the
unpaired spins on neighbouring radicals can cause a local
field smearing at each dipole., Also, the rotating com~
ponents (i,e, the x-component) of neighbouring unpaired
spins cause a time~dependent magnetic field at each magne~
tic dipocle. The fregquency of this field is the Larmor

resonance frequency, so it will be effective in inducing
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transitions. This mechanism will reduce the spin-spin
relaxation time T8 - a measure of the time for the spins

to achieve equilibrium among themselves., It will, there-
fore, reduce the lifetime of a spin in the upper Zeeman
level and hence produce uncertainty broadening (see 1I1,7.4).
The resulting line broadening AH, for a system with total
2lectron spin 3, due to electron-electron spin interaction,
is given bv25a

AH ~ 3 g P E'% oe (2,29)
n *n

where r is the distance in A between electron spins
averaged over their wave functions., Consequently, to
reduce this t ype of broadening, the radicals are investi-
gated in a dilute fomrm,

I1.7.3 Intexmolecular Exchange Narrowing.

This is the exchange interaction of (2,23) which
arises from the overlapping of the unpaired electron wave

functions on neighbouring radicals.

1f B, H;. Ha are the operators for the main field
splitting, the intramolecular exchange and the dipolar
interactions of I1I,7.,1, II,7.2, then the complete Hamil~
tonlan H can be written

Bo= HOtH +H (2,30)
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It can be shown that

(#, B] = © (2.,31)
(Hgs 5,1 = © (2.31a)
(4, B3l # © (2,32)

and therefore from the Heisenberg equations of motion
1By = (B M) = (8, B3l + (Mg, Hy] (2,33)

From (2.31) and (2.,31a) it is seen that the exchange has
no direct affect on the radiation processes, which means
it does not directly effect the line width., By relations
(2,32) and (2,33) K, can cause a time-dependence of the
dipolar interactions and on time averaging, if J is large
enough, a reduction of the dipoclar broadening and hence

a narrowing of the line., Anderson and Weiss have pre-
dicted26 a Lorentzian line shape in the centre falling

off more rapidly on the wings, This agrees well with
observations from large concentrations of free radicals
(see Fig. 3°f), Indeed, so strong is this exchange in
most solid samples that all Fermi interactions are narrowed
out, The radicals then have to be studied in as dilute

a form as possible to reduce the intermolecular exchange
interaction and this is ﬁsually in solution to avoid the
broadening from anisotropic hyperfine interactions (viz,

2,28), A well known example of this narrowing in solid
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samples and resolution in solution27 is given by diphenyl~-
picrylhydrazyl (C.H.)'NaC‘Hs(NO’).. Figs, 11 and 12

give the absorpticns from this substance using the spectro-
meter described in Chapter III, The structure of five
lines, whose relative intensities are in the ratio 1:2:3:2;s1,
results from almost equal coupling with two of the nitrogen

atoms,

As has been stressed in this chapter, deleocalisation
of the unpaired electron throughout the molecule plays a
major role in free radicals. This has been recently
correlated with line narrouingzs. aithough whether it
happens through exchange or motional effects is not clear.
Increased delocalisation could mean increased overlap of
neighbouring unpaired electrons and hence more exchange,
Again, the delocalisation implies large migration of the
unpaired electron which would produce dipolar averaging.
The narrowing produced in this way should not, however, be
removed on dilution, it seems likely, therefore, that
intermolecular exchange is the major process in narrowing

radical spectra.

iI.7.4 Heisenberg Uncertainty Broadening.

The fundamental limitation on the line width is due
to the Heisenberg Uncertainty Principle., If the lifetime
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in the excited magnetic state is © then the minimum

attainable line width is &v where
o B
A' e I (2.34)

The lifetime can be determined by its chemical stability
or by the relaxation time T' defined by

A = 4 4+ 4 (2.35)
T T, T,

where T8 is the spin-spin relaxation time and T‘ is the
spin-lattice relexation time, which is a measure of the
time the spin system takes to come to equilibrium with
the lattice., The line width is then ~ W/T',

In solution, although there is no lattice, the spin
system will be coupled to the thermal motions of the nuclei
and these will effectively constitute the "lattice"., The
energy transfer between the spins and the "lattice®™ can
take place through the spin-orbit coupling which ls usually
small because of orbital quenching or by exchange which
is strongly couplod'to the "lattice®.

II1.7.5 Haussexr's Results.

29 show that the resolution of hyper-

Hausser's results
fine stxructure in solutiondepends on
(1) the temperature of the solvent»

(2) the solvents and
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(3) the absence of dissolved oxygen..
Thus he found that for a particular solvent, on decreasing
the temperature, resolution is enhanced until an optimum
value is reached. ©On further lowering, the hyperfine
components broaden and the structure is smeared out.. These
results have been interpreted by Tuttle and Pakeao who
suggested that, at low temperatures, the broadening is due
to anistropic hyperfine terms,. This broadening will be
reduced as the temperature is raised because molecular
tumblings become faster and the anisotropic effects are
averaged to zero.,. At still higher temperatures, remnant
exchange will broaden the lines.. The exchange occurs
when two radicals molecules come together in solution for
a finite time so that their unpaired electron clouds can
overlap.. The resultant spin coupling will interrupt the
Larmor precession of the unpaired moments about the exter-
nal magnetic field at the collision frequency and for the
time of the overlap. When this frqquency is greater than
the hyperfine frequency, the hyperfine components will be
broadenon. The solvent dependence occurs through fhe

viscosity which will determine the collision rate.

The effect of dissolved oxygen has not yet been
explained, but Hausser has found29 that in its absence

hyperfine resolution is sometimes greatly enhanced.
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I1.7.6 Apparatus Broadening.

Over and above the molecular interactions which pre-
vent resolution of lines, broadenings can be added by
defects in the methods of recording the lines. These
can arise from:

(a) Magnetic field inhomogeneities across the sample.
No hyperfine splitting less than this inhomogeneity will
be resolved. |

(b) Power saturation of the sample. When the power
incident on the sample is large, then the situation may
arise where the thermal equilibrium of the spin system
cannot be maintained by the relaxation processes., The
population differences between the Zeeman levels is reduced
and the absorption in the centre of the line, where the
transition probability is greatest, decreases. This
suppression of the peak changes the line shape and half-
maximum signal width and prevents the observation of hyper-
fine components near the centre of the line.

(c) Modulation broadening, If either the magnetic
field or the signal klystron is modulated at fc/s, then
as well as the main signal, there are generated sidebands
fc/s apart., If the main signal and some of the sidebands
are passed by the receiving circuits, a line bpoadening

will result due to the latter>-. The minimum hyperfine
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splitting which is resolvable is then fc/s,

Line distortion will also arise from the finite
amplitude of the magnetic field modulation using the phase~
sensitive detection scheme of (III,5). Thus, if this
modulation amplitude is much greater than the hyperfine

splitting, it can prevent resolution.
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CHAPTER III
THE SPECTROMETER

This chapter describes the apparatus used to investi-

gate the e.s.r. spectra at room temperature.

III.1 Introduction.

As was seen in the last chapter, e.s.r. studies of
free radicals in solution and,in particular, of their
hyperfine structure require radical concentrations to be
as low as posalbla.. However, the greatest dilution that
can be used is limited by the sensitivity of the spectro-

meter,

27,31 shows that hyperfine

A survey of the literature
components can be fairly well resolved in solutions at
concentrations of ~ 10" ® moles/litre. This amounts to
about 6,10*® radicals of linewidth 100 oe in a test sample
of a few tenths of a cc., so that to obtain spectra from
this demands a spectrometer of the highest sensitivity.
Acocording to Fehera et al4. this is a superheterodyne

system.

The block diagram of the apparatus, the microwave
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circuit and electronics is shown in Fig, 4, The whole
spectrometer, except where specifically mentioned, was de~
signed and built by the author., The general layout is
similar to that of Hirshon and Fraenkel® and can be described
as an x~band superheterodyne spectrometer with frequency
stabilisation for both oscillators. An attractive feature
of a spectrometer of this type lies in its fregquency stabili=
sation schemes which add no modulation broadening of the

type described in 1II,7.6c¢.

I17.2 The Microwave Circuit.

x-band was chosen, partly for sensitivity requirements
and partly for economic reasons. Thus up to x=band the
minimum number of radicals that can be detected is propor=
tional to vo;l (see 1.17) provided that there is no r.f.
saturation or dielectric losses. At higher frequencies
this is not always the case, as there is a greater tendency
towards r.f. saturation and dielectric losses. In addition,
Q-band equipment is more expensive and demands higher
tolerances. In the higher fields of the d.c. magnets,

moreover, good homogeneity is more difficult to attain.

The microwave circuit used consists of a signal channel
which provides power for the cavity containing the sample

and a reference channel required for frequency stabilisation
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of the klystrons, In the signal channel, use is made

of the isclation properties of a magic-tee to form a micro-
wave bridge., Thus at tee 1, with arm 2 matched and with

a matched reflection cavity on arm 1, no signal is coupled
from the signal klystren in the E arm into the H arm, A
sliding-screw tuner is included between port 1 of tee 1 and
the cavity for fine contrel in the balancing of this bridge.
On e.s.r, absorption in the cavity, its 4 will be lowered,
its reflection coefficient changed and a signal proportional
to the change in reflection coefficient which in turn is
proportional to the power change in the cavity will be
coupled to the crystals 1 and 2, Superhetercdyne detec~
tion of this signal is used to avoid low frequency crystal
noise. The intermediate frequency (I.F.) is produced by
mixing with a local-oscillator klystron. Power from

this local=oscillator is divided equally at tee 4, to pass
along the signal and reference arms to tees 2 and 3 and
provide mixing at crystals 1, 2 and 3, The signal vol-
tages at these crystals are converted into I.F., voltages
which are amplified by a suitably tuned I,F, amplifier,

A 10 db, directional=coupler is employed to abstract

signal power from the main channel fdtoc the reference
channel and provide a reference voltage, independent of

the reflection coefficient of the cavity, at crystal 3,
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This as well as the phase-shifter, the three-screw tuner
and isolater 3, all included in the reference channel as
shown in Fig. 4, are necessary for the klystron frequency
stabilisation schemes described in III.4, Attenuators are
used to control the microwave power to various parts of

the system, The use of the balanced magic~tee bridge in
the signal channel means that:

(1) negligible zero-signal I,F. voltage is present in
the signal amplifier, so that large gain can be used with-
out saturating it, and

(2) there is a reduction of microwave ncise. In a
superheterodyne system with a straight waveguide run, micro-
wave noise frequencies will be present due to signal klystron
noise, local-oscillator noise and thermal noise, These
noise voltages will beat with the zero-signal microwave
voltage at the detecting crystal to produce noise frequen-
cies that will fall within the passband of the rest of
the receiver, The balanced bridge will reduce the zero-
signal microwave voltage at the crystal and hence noise
beats cof this type. It will, however, not reduce beats

between the local-oscillator and the microwave noise.

III.3 Microwave Components.

(a) Waveguide Mcunting,
The waveguide system is fixed by a number of clamps
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to 2 table with a wooden top and is oriented so that the
cavity arm extends horizontally, narrow side up, into the
magnetic field (see Fig, 2)., The height of the table
can be adjusted to ensure that the sample in the cavity
is always at the centre of the magnetic field,

British waveguide 1 x O,5" I,D, was used in the major
-part of the circuit because of the availability of some
components in this size. The isblitors. however, were
commercially available only in waveguide size 16(1 x 0,5"
0.D.) so that quarter-wave transformers had to be made.
These were approximated t033 by cutting away froma piece
of waveguide 16 a narrow and a broad wall to a length equal
to one guarter of a guide-wavelength (1 c¢m.). This was
inserted into and soft-soldered to a piece of British
waveguide. A pair of tuning screws for fine control of
matching were mounted three eighths of a guide-wavelength
apart on the broad side of the waveguide, The\S.W.R. of

these using the screws were less than 1,05,

(b) Matched Terminations. (Fish-tail Loads).

These are of wood and were fashioned out in the
laboratery. It was found that the lowest V.S.W.R. was
obtainable from two pieces of tapered soft-pim clamped

together in the shape of a fish-tail, Provided they were



45, .

longer than ten inches the V.S.,W.R, was less than 1,02,

If the length was less than this, a noticeable amount of
micrfwave power was emitted from the end of the load., This
had disastrous effects if this load was used in the bridge
tee as anyone walking past it caused a reflection of power

and an unbalancing of the bridge.

(c) Magic Tees.

Magic tees 1 and 2 were frabiticated in the workshops
from rectangular waveguide. The port and iris matching
scheme was employed and the dimensions were taken from a
standard dosign34. The E and H arms are longer than arms
1l and 2 and on the broad side of them are mounted tuning
screws for additional control of matching, . Tees 3 and 4
were available in the laboratory and since they did not
have these screws, special waveguide sections were made
up with them, When matched loads were attached,to arms
l and 2 and with the screws out, the V.,S5.W.R, of the E and
H arms of all the tees were less than 2,1, With the
screws in their optimum position for matching, all the
V.S.W,R. were less than 1,08,

(d) Cavities.
These are of two types, viz,.

(i) the H, , rectangulsr reflections and
(ii) the Ho1y cylindrical reflection.



FIGURE 5 THE CAVITY RESONATORS.
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(i) A tuneable rectangular H,, , cavity (see (a) Fig. 5)
was used in the initisl experiments., This was made from

a length of British waveguide (length = 3,95 cms.), to

one end of which was soldered a brass plate. Tuning is
accomplished by screwing a quartz rod through this end
wall, The sample tube is inserted through a 2 ¢cm. long
bush, which 1is fittpd at the centre of the wall, The tube
is held in a perspex collar and extends over the maximum
part of the r.f., magnetic field and the minimum part of

the electric fields, A standard male British coupler was
soldered on the front end and a 003" thick silver-plated
copper disc pressure clamped between this and a female
coupler on the waveguide arm, An iris punched at the
centre of this disc effects the coupling between the wave-
guide and the cavity, Several of these discs with different
sizes of iris were made and by interchanging them, the
coupling can be varied. This makes it possible to balance
the bridge and match the cavity for maximum ensitivity
when the solvents used vary greatly in dielectric losses.,
For an empty cavity the iris diameter required for match
is 0,25%, Samples with dielectric losses require larger
coupling heoles,

As work progressed, with lossy solvents, it was

realised that the quartz rod might distort the cavity field
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pattern so that the maximum r.f, magnetic field and the
minimum electtic field were not along the sample., This
would result in a reduction of filling-factor and additional
dielectric losses. To obviate this, a cavity similar to
the above was constructed but was fixed tuned, i,e. no
quartz rod (see (b) Fig. 5).

Length of cavity = 4,05 cms,

Loaded Q = 2,000,
Estimations of the Q's of all the cavities were made by
measuring the separation of the half-signal points.of the
reflected signal on the oscilloscope, while sweeping the
signal klystron, Wavemeter settings were used as fre-

guency markers,

(ii) High G Cavities: It has been seen in (1.14) that the
spectrometer sensitivity is proportional to cavity Q. The
only limitation, in principle, to the use of very high
cavities is the frequency stability of the signal klystron,
This, however, need not occur when working with lossy sol~
vents, as the sample can always be increased to keep the
cavity G to a value that will not demand a frequency stabi-
lity greater than that possessed by the signal klystron.

A high Q.BOll cylindrical cavity was therefore con-
structed as in Fig, 6 and Fig. 5 (¢). This was turned
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out of a square block of copper and had a non-contact
tuning plunger mounted on one end., The thread for this
tuning is 24 turns per inch, A 6 mm, diameter hole through
the tuning head allows the sample to be inserted into the
cavity, The cavity is mounted on a platform of two pieces
of angled brass soldered to the broad side of a piéca of
waveguide. A square disc 0,003" thick copper foil is
clamped between the bottom of the cavity and this platform.
Coupling is achieved by two holes (0,25" diameter for empty
cavity) spaced one half a guide-wavelength (2 cm,) apart
along the waveguide axis. In this way, odd modes such as
Eijpe which is degenerate with Hoyy will not be excited in
the cavityas. These would be present as spurious reson-
ances and might even lead to damping of the required H011
mode, In addition, the dimensions were chosen from the

3% 80 that no higher modes might

mode~shape factor graphs
be excited, The specifications of the cavity are:
Length = 4,1 to 2,5 cms., tunable
Diameter = 4,5 cms,
Measured loaded G = 8,000

Calculated loaded = 14,000 26
(from mode-shape factor graphs” )

Weight = 894 grams.
Unfortunately, this cavity has its drawbacks when used in

@.5.T, experiments, viz.
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(a) It is more susceptible to mechanical disturbances than
the rectangular types.

(b) Vibrations are set up when the magnetic modulation is
on, This effect has been reported by several authors&’25
They cénclude that the mechanical vibrations are set up in
the walls of the cavity due to the interaction of the in-
duced eddf currents with the d.c. magnetic field, These
vibrations accentuate the effect of signal klystron fre-
quency instabilities and, as they are field dependent, cause
a base line drift on the pen-recorder (see Section III.9).
(c¢) Its use is inconvenient in that, interchanging with
the rectangular cavity, the height of the table supporting
the wavoguid§ has to be adjusted so that the sample is in
the middie of the magnetic field,

In an attempt to improve on (2), (b) and (c), another

Hypy cylindrical cavity was constructed (see (d) Fig. 5).
This was turned out of a 2% diameter copper pipe. It
weighs less and hence is easier to suﬁport (one holder
clamped to the magnet trolley is used), Design specifica-
tions are:

Diameter = 4,8 cms.

Length = 3,2 to 2,1 cms, tunable,

Wall thickness = 1 mm,

Weight = 267 gmms.
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Measured loaded Q = 8,000,
The tuning plunger and head is of similar design to that
in Fig., 6, Coupling is through a hole in the side wall
to the middle of the end of a piece of rectangular wave-
guide, Variation of matching was tried with an extend-
able 6B.,A., screw projecting through the narrow wall of the
waveguide just in front of the plane of the coupling iris,

This was found to provide only a small change in coupling.

Three spurious overcoupled modes are present which
cannot be damped out by a lossy material (a piece of photo-
graphic negative) placed behind the plunger, Fortunately,
they are separated from the HOll mode by more than 10 mc/s.

Summarising the performance of the spectrometer with
these cavities, it was found that:

(1) using oscilloscope presentation the sensitivity
is better with the HOll cylindrical cavities than with
the H012 rectangular ones, and

(2) with phase-sensitive detection, the sensitivity
was better with the light cylindrical cavity than with
the heavy one, This, however, was no improvement on the

sensitivity attainable when using the rectangular types.

The poor performance of the cylindrical cavities

with phase-sensitive detection is probably due to their
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larger weight and size, making them more liable to mechani=-
cal disturbances and causing a greater tendency for them to
vibrate in the magnetic field, Consequently, when carrying
out experiments which required high sensitivity, the '

rectangular fixed-tuned cavity was used,

(e) Klystrons.

Initially, two 723 A/B klystrons were used, but in
spite of running them for a few hours in forced-air cooling,
they were found to be too unstable in output fregquency for
sensitivity requirements, Recently an E.,M.I, R5222 and
E.E. K302 were substituted as signal and local oscillater
respectively, These were found more stable, Ferrite
isolators 1 and 2 are included after each klystron so that
their full power can be utilised while frequency "pulling"
by waveguide reflections is prevented., Toreduce 100 c/s
hum and mains voltage instabilities, electronically stabi-
lised power supplies are used for both klystrons and their
filaments are heated from a 6 v, battery which has its
own charger., Even so, for maximum sensitivity, it is
necessary to stabilise electronically the signal frequency

and the intermediate frequency.

III.4 Exeguency Stabilisation.
The criterion of stability for the signal frequency
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is the bandwidth of the resonant cavity and for the I.F.
the bandwidth of the signal I.F. amplifier., Both freguen-
cies must remain well within these limits, if frequency
instabilities are not to limit the sensitivity of the

spectrometer.,

When running free, the klystrons showed two main ten-
dencies of frequency change:

(1) slow drifts due to environmental temperature
changes, and

(2) 50 ¢/s and 100 ¢/s frequency modulation due to
pick-up on the repeller.

When using a modulation frequency and phase-sensitive
detection, it is necessary to remove frequency instabili-
ties up to the modulation frequency*(280 c¢/s). Therefore,
for maximum sensitivity, these considerations dictated
the minimum bandwidth requirements of the feedback loops
as O to 300 ¢/s. Since the signal klystron frequency
control depended on the I.F, remaining constant, it will
be appropriate to describe the local-oscillator automatic

frequency control first,

I1I.4.1 Ihe Local-Oscillator Automatic Frequency Control
JLaQ.ALF.Ca)e -

(a) The intermediate frequency is kept constant at
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FIG. 7 THE LOCAL-OSCILLATOR AUTOMATIC FREQUENCY CONTROL

(L.O.A.F. CD).
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4% mc/s by controlling the frequency of the local-oscillator
electronically. Thus, if the frequency of either klystron
changes, an error voltage is generated and is applied to

the repeller of the local-oscillator, This error voltage
is proportional to the frequency change Af and is of such

a polarity that it alters the local~oscillator frequency

in the direction so that Af will be reduced.

The design of the circuit that provides the error vol-
tage is as in Fig, 7. The first two stages Vl, Vo arxe
conventional double-tuned I,F., stages centred on 45 mc/s.
These are followed by a discriminator Va; a.,d.c, amplifier
V4 and a control circuit Vgs which applies the correcting
voltage to the repeller,

Ihe Liscriminatox.
The discriminator used here can be described as a
ratlo-detect0237 with a Foster-Seely input. The simple

Foster-Seely discriminator (Fig. 8) is a phase-sensitive
detector and as such requires two coherent I.F, signals,
an error voltage and a reference voltage, The reference
is brought from the primary via C1 and is present across
Re The error signal is across a resonant circuit, tuned
to 45 mc/s,  Frequency variations of the I,F. are con-
verted by the reactance of the tuned circuit to phase
variations of the error vdltage with respect to the
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reference, Consequently, on adding these voltages vec~
torially and detecting, the difference of the resulting
voltages across C3 and Cy 1s proporticnal to Af and is

-
taken off as V,e Note that Cq >> R, for audioc frequency

values of o and << Ro for I,F. valuesof o,

The ratio detector used here differs from the simple
Foster-Seely, in that one of the diodes is reversed and an
electrelytic capacitor is added as in Fig, 9. The sum of
the voltages across Cz and C3 remains constant for a time ~
discharging period of the electrolytic capacitor, irrespec~
tive of sudden changes in the I.F, amplitude, For this
reason noise pulses will be suppressed in the output. FPhase
changes, accompanying changes in frequency, occur just as
in the simple Foster-Seely circuit, but in this case to
obtain the detected correcting voltage, the output is taken
across C, (Fig. 9)¢ In the discriminator built, the tuned
coil was bifilar-wound to ensure that both halves were
equally coupled to the primary so that a symmetrical S~

shaped discriminator response would result,

Ibe 2.C. Amplifiex.
The discriminator is followed by a cascode d.c. ampli-

fier to increase the loop gain of the stabilisation network,
A 220K ohm resistor, in parallel with the upper triode,

increases the average current and transconductance of the
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lower triode and hence the overall gain of this stage,

Measured gain = 60,

dhe Control Stage.

The d.cs level of the correcting signal has to be
brought from the anode potential of the cascode amplifier
(~ +150V) to the operating potential of the repeller of
the local-oscillator (~ -500V), If a resistive potentio=-
meter-dropping chain is used to achieve this, § of the
correcting voltage is "lost"™ across the upper resistor
(Fig. 1l0a), Instead, a constant current devic938 is used
to provide a high dynamic impedance in series with the
large (12 MQ) dropping resistor, When "viewed" from the
anode, all impedances below the cathode appear multiplied
by (u + 1) where pu is the ampnﬂcationf.acwl‘rﬁe equivalent
circuit for this stage is shown in Fig., 1l0b., Thus to
variations in voltage, the dropping chain appears as a
12M0 resistor in series with 150MQ so that now only 2 of
the correction voltage is "lost™ across the 12MQ resistor.
The d.c. level of this stage can be varied * 15 volts with
potentiometers in the cathode and anode leads, The former

provides thc-coarso confrol and the latter the fine,

Provision is made with a switching arrangement to
operate the local oscillator repeller voltage:

(1) by manual contrel (position 1, Fig. 7)
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(2) by sweeping with a saw-tooth veltage (position
1, Fig, 7)
(2) by automatic frequency control (position 2, Fig.7).

I11,4,1(b) Setting-up Procedure for I.F, Stabilisation.

(i) Initial alignment of the ratio detector was carried
out with the electrolytic capacitor disconnected. A fre=-
quency modulated signal from a‘wobhulator was injected onto
the grid of the last I,F, stage and the output across C,
(Fig. 9) observed on an oscilloscope. This gave the re-
sponse curve of the tuned circuit which was tuned to 45 mc/s
with the iron dust cores. The wobbulator signal was then
applied to the input of the first amplifying stage and the
I.F. stages tuned with the iron dust cores to give, at the
output from the d.c. amplifier, an s-sﬁapod curve with a
bandwidth of 1 mc/s between peaks. On coﬁnecting the
electrolytic capacitor the output stillshowed an S-shaped
curve but modified slightly in height and width.

(ii) The following procedure is carried out to ensure
correct operation of the L.,O.A.,F.C. The local oscillator
is operated without stabilisation, and a sawtooth voltage
cbtained from the oscilloscope output is applied to the
repeller of the signal klystron., As a result, the signal
from crystal 3 is frequency-modulated and by varying the



FIG. II FIG. 12

THE RESONANCE SIGNAL FROM THE HYPERFINE STRUCTURE
1017 SPINS OF POLYCRYSTALLINE  FROM IO °MOLAR D.P.P.H.
D.P.P.H. IN BENZENE.

FIG. I3 FIG. 14
THE OUTPUT FROM THE L.O.A.F.C. THE OUTPUT FROM THE
UNIT. L.O.A.F.C., UNIT (lower trace)

AND THE I.F. AMPLIFIER
RESPONSE (low gain).
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mechanical and electronic tuning of the local oscillator,

it can be centred on 45 mc/s, as is indicated by the detected
output from the signal amplifier, This amplifier has been
previously aligned with the wobbulator., With the input

of the L.O,A,F.C, unit connected to crfsial 3 and by viewing
the output on the same double~beam oscilloscope as used to
obtain the sweep, a presentation of the S-shaped response v.
I.F. is observed as Fig, 13, In this way, the spectrometer
acts as its own wobbulator, Two types of output,differing
in sign of slope can be obtained on having the local oscilla-
tor frequency either 45 mc/s above or below that of the
signal klystron, Correct sideband operation39 is obtained
in only cne of these settings., The criterion for this is
that the slope of the discriminator curve v,I.F, at the
output from the control stage be copposite in sign to the
slope 6f_the local oscillator repeller voltage v,I.F,
Stabilisation of the I.F. will then be at the cross-over-
frequency. With wrong sideband operation, the local oscilla-
tor can still be locked to the signal klystron, but not at
the cross-over frequency of 45 mc/s. Locking will occur
outside the peaks of the discriminator cmwrve, or pull-in
region, where the slope of the curve is suitable for
stabilisation. The resulting I.F, will not be centred

on the response of the signal amplifier so that the



58,

spectrometer will be operated at reduced gain and less
stability, The setting with the proper slope for correct
sideband operation was originally found by trial,

It is possible to check that the cross-over-frequency
coincides with the centre of the passband of the I.F. ampli=-
fiers, With the sweeping and viewing arrangements as
above, an output is taken from crystal 1 to the signal
amplifier and the detected output is displayed on the other
beam of the oscilloscope. ' Fig. 14 is observed with the
cavitly tuned outside the mode of the signal klystron and
the gain of the signal amplifier reduced to avoid saturating
(in Fig., 14 the upper beam) the response curve, This
shows that the L,0,A,F.C., unit and signal amplifier are
correctly aligned. The reference amplifier can be substi-
tuted for the signal amplifier and its alignment also
checked,

On switching off the sawtooth voltage, operating the
signal klystron at the centre of its mode, and manual tuning
of the repeller voltage, an S~-shaped curve is traced ocut
on the centre~-reading meter H‘. shown in Fig. 7. This
verifies the generation of an error voltage down to zero
frequencies. It can also be used to indicate the sideband

operated on,
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To obtain automatic frequency operation the repeller
is switched to positicn 2, Fig. 7, i.e., the cutput from
the control stage, The d.c., level of this stage is
adjusted until the pull-in region is reached., This is
indicated by a reading on the second detector current meter
of the signal amplifier., The improved constancy of this
reading with the stabilisation on, shows that the L.O.,A.F.C.
is functioning.

With no deliberate limitation on the bandwidth ¢f the
stabilisation output, oscillations are set up in the feed~
back leop with a frequency of a few kc/s., The loop
transmission does not then satisfy the Nyquist Criterion40
for stability, These oscillations are completely removed
by reducing the bandwidth to about 300 ¢/s, with a2 0.1 u.f,

condenser from repeller to earth,

I1I.4.2 Ihe Signal Klystzon Frequency Stapilisation($.K.E.S.).

The frequency of the signal klystron is kept constant
by locking it te the resonating frequency of the cavity
containing the free radical samples, The scheme used is
similar to the Pound System?', but differs in that the
I.F. is produced by the local-oscillator,

The amplitude and phase of the microwave signal re-

flected from the cavity resonator depend on the difference
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between the cavity and the signal klystron frequency. The

- gignal is converted to an I,F, signal at crystal 1, After
amplification, it is fed to a phase-sensitive detector
where it is mixed with 2 coherent reference I.F, voltage
whose amplitude and phase are independent of the reflection
coefficient of the cavity, This reference voltage is
obtained from an amplifier coupled to crystal 3, It will
be shown in the following analysis, that the output from
the phase-sensitive detector can Le made proportional to
the imaginary component of the cavity reflection coefficient,
As such, it will be proportional to the qoviation froquoncy
and if it is applied with the proper polarity to the re-
peller of the signal klystron, it will act as a correcting
voltage to the frequency.,

111.4,2 (a) Analysis of the Signal Klystron Frequency
Stabilisation.

The input impedance Zc and the reflection coefficient
I' of a cavity, in the neighbourhood of the resonant fre-

quency ® s can be written42
8
Z, = = (3.1)
© A 4 (@ - Q)
Q By O
and " g
I = efeel (3.2)
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where G, is the unloaded Q, Qg is the external @, o 1is
the microwave frequency of the signal klystron and Z, is

the characteristic impedance of the waveguide,

Q
For a matched cavity Q_ = '§°. (3.1) then reduces to

2
z = - (32.3)
g vl
“ e =,
If dw = 0 ~ @,
w «@
ok 20 -
B " B, -> @, as o, ~w, (3.4)

The reflection coefficient can also be written as
P=l_+1iT; = IT'| cos @ + 1|’ sin .

Substituting (3.3) in (3,2), it can be shown that for a
matched cavity as dow = O

and r, + 2 g (3.9)

The microwave voltage reflected from the cavity
= VA2T sinot (3.6)

- vg//ﬁ Ty sin(mxt + o)

where Vo is the amplitude of the voltage from the signal
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klystron incident on tee 1.
The total voltage at the crystal 1
=V,/2 I sin (mlt + q)+ 1=0 voltage

V,/2 | sin (uut + @)+ Vesin ot

= a . (3-7)

where V_ is the amplitude of the 2-0 voltage at crystal 1

and e is the 1-0 freguency.

The crystal current i ls given by the crystal characteristic
1 = a + be + ce® (3.8)

The input voltage to the I,F, signal amplifier Vif = Z1i (3.,9)

where Z is the input impedance of the amplifier, This

amplifier rejects all voltages except those whose frequency

falls within its passband, viz. the voltages with frequency

(mﬁ' m'). Substituting (3.7) inte (3.8) and hence into

(2.9) the output voltage from the signal amplifier reduces to

vV
AZ 2¢ |I') —g—‘- cos{(m‘- m.}t + Bt + o) (3.10)

where A is the gain of the amplifier and 0‘ is the phase
shift through the amplifier, This reduces to

Ta[FR cos{(m’- mh)t + 9‘} - Pisin{ma- ® )t + 91} (3.10a)

* Vin

where T is a constant = A Z C vov*. (3.11)
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Vin is the signal input to the phase-sensitive detector.

The total voltage at crystal 3
= V;sin(m‘t + 9.)+V’sin(mht + ea)

where V; is the amplitude of the voltage at crystal 3 from
the signal klystron, V3 the amplitude of the voltage at
crystal 3 from the 4-0 and 9.. 03 the corresponding phase

angles,

The output from the reference amplifier is derived
in the same way as (3,10) and has the form
T'cos{(aa-a%)t + (6’- o+ 94)} (3.12).

* Vet

where 9‘ is the phase shift through the reference amplifier,
T. a constant which has a similar form to (3.11) and Vioef

is the reference input to the phase~sensitive detector,

The phase~sensitive detector used here is a single
ended pentode, with the signal veoltage vin of (3.,10a)
applied to the first grid and the reference voltage Vief
of (3.12) to the suppressor, The circiit details are
given in III.4.2 (c)

The output veltage Eo, from the anode of this valve is

given by
B, = o (Vés) Rp Vip (3.13)
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where 3& is the anode load resistor, % the transconduc=-

tance and Vgs is the instantaneocus suppressor voltage.

In this type of mixer g can be written as a Taylor expan-

810043

gbtvga) " gnvgso A %3§;Vr¢f (3.14)

where Vga° is the suppressor d.c. voltage,

Substituting (3.14) into (3,13), putting in the
expressions (3,10a) and (3,12) for V; and Veegr and
@, - ®, s the
correction voltage Eq from the phase-sensitive detector is

averaging over a period much greater than

obtalned, This averaging is accomplished in practice by
a resistance~capacitor circuit where RC >> T—-l——-T, i.00

o P
(mu-mn)
E° dt
E, = (ﬁ)— (3.1%)
M‘WJ- dt
o
(w - @

= —Hj gn(Vy )Ry Vy, dt.

This reduces to

i LI Ry g-g,:amn $I = cos ¢y Iy1  (3.1%)

where ¥ = 9‘ + 9’ -06_+ 9‘ and by making ¥ = O or =.
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FIG. FIG. 16
THE DISCRIMINETOR CURVL FROM THE DISCRIMINATOR CURVE
THE PHASE-SENSITIVE DETECTOR AT HIGH GAIN SETTING.
WITH LOW GAIN SETTING ON THE ( The scale of the X-axis
I.F. SIGNAL AMPLIFIER is the same as that in
FIG. I5)

FIG. I7
THE DISCRIMINATOR CURVE AND
THE CAVITY RESPONSE FROM THE
I.F. SIGNAL AMPLIFIER.
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E, = X constant i’ (3.16)

From (3.5) we see that in the region of the cavity re-

sonance frequency
E,<d o (3.16a)

ITI.4.2 (b) Riscussion of Stabilisation Analysis.

Several points brought out by the above analysis are
confirmed in practice by the experimental set up, It is
seenthat, although the output from the signal emplifier
is 2 function of the real and imaginary components of the
cavity impedance (equation 3,10a), the output from the
phase~-sensitive detector can be made dependent on the
imaginary component only.l(see 3.16), providing ¥ = O or
n. To obtain these settings, a saw-tooth voltage sweeps
the signal klystron about the cavity frequency, A.F.C,
operation of the local oscillator is used and the phase-
sensitive detector output is observed on the oscilloscope.
The microwave phase-shifter is adjusted until this response
is an S-shaped curve (Figs. 15 and 16). This occurs at
two settings (¥ = O, =) where the slopes of the curves
have opposite signs. OUnly one of these settings can be
used for stabilisation and this is the one that gives the
necessary negative feedback, The particular slope was

originally found by trial.
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In addition, it is noted from the analysis that phase
shifts in the I.F, amplifier are additive to the phase
differences in the microwave carriers at crystal 1 and
crystal 3., This was also verified, as the S-shaped dis~
criminator curve can be produced by effecting phase shifts
in the I.F, amplifier, i.e. changing 01 or © . This is
accomplished by slight adjustments of the I.F. tuning cores,
but is not recommsnded in any routine alignment procedure
as it might lead to drastic detuning of the I.,F. strips.
Setting up of the discriminating curve is always done,

therefore, with the microwave phase-shifter.

In the initial construction of the microwave bridge,
isolator 3 and the three-screw tuner were omitted. A
spurious signal was then coupled along the reference arm,
across the H to E arms of tees 3 and 4 to crystal 1. The
input to the grid of the phase~-sensitive detector was
then not dependent solely on the cavity impedance. Inclu-
sion of isolator 3 and the three-screw tuner as shown in
Hg. 4 removes this completely. This is checked by
cutting off the power to tee 1 with a metal window placed
after attenuator 1 (Fig, 4), sweeping the signal klystron
about the cavity frequency and monitoring the signal ampli-
fier detected output., The three~screw tuner is adjusted

to balance out any signal present,
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111.4.2 (c) I.E. Cixcuit Details of the Signal Klvstron
Siabilisation.

All I.F. connections are made with 70%coaxial cable.
The signal amplifier is a commercial Pye strip which has
five EF50 double-tuned I.F., stages, a detector and a
cathode fcllower output. This is followed by a low=pass
variable filter. Th& gaiﬁ is controlled by aéplylng an
external grid bias to the last three I.F. sfages. This
is preferred to lowering the screen voltages as the ampli~-
fier can then handle larger carrier levels beforé saturating.

The 3 db, bandwidth of this amplifier is 4 mc/s.

A voltage for the S.,K.,F.S, is taken from the secondary
of the last I.F., stage of the signal amplifier through a
3 ppf. capacitor so as not to load down this stage with
the line resistance, and further amplified and limited by
three EF 91 double-tuned stages. The screen-grids bf
these valves are operated at about +100 V to ensure a
limited signal and hence a removal of the noise and 50 ¢/s
amplitude modulation., A six-stage amplifier was modified
80 fhat the first three stages.would serve as this limiter.
Since it is of an open construction, great care had to be
taken in the earthing an& filtering of its power leads to
prevent oscillation and pick-up in adjacent I.F. circuits.
The output is coupled.from the anode of the last stage with
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a secondary coil of suitable step-down ratio (~ 4:1) and
is fed to the grid of the phase~sensitive detector,

The raférence I,F. voltage from crystal 3 is amplified
in the reference amplifier (another Pye strip), limited in
a two-stage 11m1terﬁé and fed to the suppressor of the

phase~sensitive detector.

Ihe Phase-sensitive Detector. (P.$.0.)

This is the single valve gating type shown in Fig. 18,
A 6F33 was chosen because of its low suppressor cut-off
voltage, which means that a reference I.F. voltage of
several volts on the suppressor will be sufficient to change
the anode current by scv#r;l‘pér cent and provide effective

mixing, i.e. %ﬂn of (3.1%) is large. To avoid 45 mc/s
' da
on the repeller of the signal klystron, the H,T., filament

and output leads are carefully filtered with I.F, chokes
(4uH) and capacitors. The anode voltage, which has to be
at the potential of the signal klystron repeller (~ =300 V)
is controlled by varying the potentiometer F; ( Fig. 18).
Initially, it was attempted to operate this chassis and
its power supply flecating with respect to ground. Thuﬁ.
the positive end of the supply was tied to chassis which
was at the klystron cathode potential of 350 V, This,

however, was not possible as the 50 c¢/s pick-up on the
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chasses was large (0,5 v.,R.M,8,)., It was also attempted
to ground these chasses and have the positive and negative
ends of the supply floating. This also was not possible
due to hums The poﬁtf supply now has an output of -700 V,
with the positive end grounded., With the volt;gu drop

(~ 500 V) across the anode load of the 6F33 controllable

by P, the correct anode potential for stabilisation can be
attained,

A switching arrangement allows either:

Position 1., Manual adjustment or sweeping of the
repeller voltage, |

Position 2, Setting up for stabilisation,

Position 3, Automatic frequency control.

With the switch in position 2, the reading on the meter "1
(Fig. 18) indicates how the anode voltage differs from the
operating voltage of the repeller.

The use of batteries for the manual control voltage
is preferred to an electronic supply, for fear of supply
failure (mainly due to fuses blowing) that would result in
the repeller of the signal klystron becoming positive with
respect to the cathode, For the same resson, the battery
voltage is kept tied to the repeller through a 0,5 MQ resis-

tor even when operating on automatic frequency contrel,



FIG. I9
THE CAVITY CENTRED ON THE
KLYSTRON MODE,

FIG. 20 FI1G. 2I
THE I.F. AMPLIFIER RESPONSE THE I.F. AMPLIFIER RESPONSE
WITH THE CAVITY POORLY WITH THE CAVITY ALMOST

MATCHED. COMPLETELY MATCHED.
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This resistor avoids shunting the anode load of the 6F33

by the low battery impedance, With this arrangement, there
will be no discontinuities in switching to autcmatic fre-
quency control and thus no transients will be set up which
might tend to prevent locking.

I1T.4,3 Summary of the entire Setting-up Procedure of the
sSpectrometer.

The rectangular cavity with the sample inserted is
roughly matched bylchoosing @ diaphragm with the correct
size of iris. With a sawtooth voltage applied to the sig-
nal klystron and the local-oscillator not oscillating, the
output from c rystal 3 is observed on 2 scope. The signal
klystron is mechanically tuned until the cavity is centred
on the middle of the klystron mode as shown in Fig. 19,

The wavemeter is then tuned until its absorption dip
coincides with that of the cevity,

The local oscillator is brought to the middle of the
operating mode and mechanically tuned for an I.F, of 45
mc/s, This is indicated by a maximum I.F, amplifier re-
sponse viewed on the oscilloscope, This waveform willbe
similar to Fig. 20 for a roughly matched cavity. By
varying the depth and position of the sliding-screw tuner,
the cavity can be matched almost completely to give Fig. 21.
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The S~shaped discriminator output from the L.,O.,A.F.C,
is checked and the L.O.A.F.C. switched on, as described in
Section IlI.4,1.

The signal klystron is swept about the cavity frequency
and the output from the signal amplifier and phase-sensitive
detector is observed simultanecusly on a double~beam scope
to ensﬁru that the discriminator curve is that due to the
cavity reactance., Fig. 17 is the resulting trace for the
correct microwave phase-shifter setting. The upper trace
is the discriminator curve and the lower is the cavity re-

sponse from the signal amplifier,

The sweep is then switched off, the local oscillator
retuned to the pull~-in-region and the signal klystron tuned
to the cavity frequency as indicated by the wavemeter, and
a minimum on the second detector current meter of the signal
amplifier, The signal klystron is then switched to posi~
tion 2 (Fig. 18) and P, varied till the centre-reading meter
Mz is balanced, Automatic frequency control 1; then applied
by switching to pesition 3., Throughout the entire switching
process, the repeller voltage and ;nterme&1ate frequency

remain constant so that locking takes place  smoothly,

The bandwidth of the feed-back loop is then reduced

to 300 ¢/s to prevent oscillation and reduce the noise on



FIG. 22
A DISTORTED E.S.R. LINE DUE TO
THE BRIDGE GOING FROM OVER TO
UNDER COUPLING.

FIG. 23
E.S.R. ABSORPTION FROM THE I.F.
SIGNAL AMPLIFIER (upper trace)
AND DISPERSION FROM THE PHASE-
SENSITIVE DETECTOR WITH THE
STABILISATION LOOP OPEN.

_ FIG. 24
E.S.R. ABSORPTION AND
DISPERSION WITH THE LOOP
CLOSED.
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the repeller. The wavemeter reading and a minimum second
detector meter reading indicate that the signal klystron
is locked to the cavity.,

Fine adjustments can be given to the loccal oscillator
repeller voltage and sliding-screw tuner to reduce the
noise from the signal amplifier observed on the scope.
Sufficient unbalance of the waveguide bridge (tee 1, Fig. 4)
has to remain to ensure that there is enough I.F, witage at
crystal 1 to saturate the 3-stage limiter, It is also
necessary, when thelbridge is over-coupled, to make certain
that it is not so close to match that an e.s.r. absorption
takes it through match, This would involve a change'of
sign of the signal and hence a discontinuous change in

slope of the e.s.r. line, of the type shown in Fig, 22,

IiT.4.4 Pexformance of the Stabilisatiop of the Signal Klystron

Since the frequency of the signal klystron is locked
to the sampio cavity, any perturbations in cavity frequency
will be followed by the signal frequency. Thus, the dis-
persive component of paramagnetic susceptibility, which
will chinge the phase of the reflection coefficient of the
cavity (3,1) and effectively detune the cavity, will be
corrected for, Unly absorption can then be observed from

the output of the signal amplifier, The reduction of
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dispersion proved a way of measuring the stabilisation

ratlio,

If the signal klystron drifts dfo with respect to the
frequency of the cavity when the feedback loop is open,
the drift will be reduced to df with the loop closed., The
general feedback egquation holds, viz.

df = df - RGdf (3.17)

where G is the gain in volts/cycle with the loop open and
R is the reflector sensitivity in cycles/volt., Define
the stabilisation ratio

af
§ = 3?2 - (3,18)
so that from (3.17) & = I + RG (3.18a)

To measure $, the klystron can be deliberately mistuned
with a certain repeller voltage with the feedback loop
open and closed, The freguency change in eachci?moasured
with the wavemeter gave S greater than 100, This is not
an accurate methed, A more accurate method, proposed

here by the author, is to measure the ratio of the size

of the dispersion curves with the stabilisation_loop open

and closed, The exact procedure will now be described,

With the loop open and sweeping the magnetic field
through the resonance value at 50 ¢/s, the sliding-screw

tuner is adjusted so that only paramagnetic absorption
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from a free radical sample is displayed on the scope, Due
to the paramagnetic dispersion the microwave signal reflec=-
ted from the cavity will vary in phase as though the cavity
were frequency modulated at 100 ¢/s. The stabilisation
circult is sensitive to phase changes of the microwave
carrier as it compares the phase of the microwave carrier

at crystal 1 to the phase of the reference at crystal 3,

The resulting output voltage generated at the phase-sensitive
detector is proporticnal to the cavity detuning by the dis-
persion, similarly to (3,16a),

Fige. 23 shows the simultaneous display of the output
of the signal amplifier (upper trace) and that of the phase-
sensitive dctoctor'(lower trace) with the loop open, i.e.

absorption and dispersion respectively.

After the stabilisation loop is closed, the signal
klystron will follow the cavity and in so deing will be
frequency modulated at 100 ¢/s in phase with the cavity
detuning, Any instantaneous difference between the klystron
and the cavity frequency, due to remaining dispersion, is
a consequence of the finite gain of the feedback loop (see
3.18a)., In Fig., 24 the upper trace is absorption and the
lower trace, where the amplification is increased on that

in Fig. 23, so that noise is visible, is the output from



75,

the phase-sensitive detector (P.S.D.)s This output which
is due to the remaining dispersion will be proportional to
df of (3,18), If the gain and bandwidth of the feedback

loop are the same with the loop open and closed, then
S =

00D oDean

closed.

The value of § measured in this way is 800,

I1I.5 Presentation of the E,S.R, Spectra.

The spectra can be recorded in two ways:

5.1 Video Detection.

With a 50 c¢/s magnetic field modulation, the detected
output is obtained from the signal amplifier and applied
to the Y-plates of a scope., An external 50 c¢/s signal is
appiied to the X-plates and phased to centre the es.s.r.
line, The back trace is elminated by a 50 ¢/s Z modulation,

5.2 Phase-sensitive Detection.

The'sensitivity of the spectrometer can be increased
by reducing the output bandwidth (see 1,14)., The sweep
rate must also be reduced, however, sc that the Fourier
components, containing most of the information about the

€.8.r, line, fall within the output bandwidth.
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Tﬁe magnetic field is modulated at 280 c¢/s to a depth
less than, or equal to, the line width and simultaneously
swept slowly with a linear sweep through the absorption
line, The absorption is obtained as a 280 ¢/s signal
from the I,F, amplifier, This is further amplified in a2
narrow-band-amplifier tuned to 280 ¢/s and detected in a
phase~sensitive detector, This unit is descrihod here
(see Fig, 26) as a lock=in-mixer, to avoid confusion
with the phase~sensitive detector in the klystron stabilisa-
tion cir&uit. The spactra'aio displayid on a pen-recorder.
The traces are proportional to the amplitude of the 280 c/s
signal from the narrow-band-amplifier, which in turn, is
proportional to the slope of absorption line, i.e. to the
derivative of the'absorption. The use of a phase-~sensitive
detection scheme, which employs a reference voltage, means
that nolse in the output is restricted to that falling
within the output bandwidth, but centred on the modulating
frequency. To avoid low frequency microphonics, therefore,
the modulating frequency was chosen as 280 ¢/s rather than

a lower value of, for example, 30 ¢/s,

In both recording schemes, line widths, hyperfine
splittings and g-values, were estimated using radicals of
known e,s.r. properties (e.g. solid D,P.P.H.y D.P.P.H. in

benzene and Wursters blue ion) as markers.
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(a) Ihe Naxzow-band Amplificx.

In coherent (i.e. phase-sensitive) detection it is
only necessary to have the bandwidth of the narrow-band
amplifier less than the modulation frequency, provided that
noise and pick-up voltages do not saturate 11’..“1 To reduce
this effect from harmonics of 50 ¢/s, the amplifier has a
bandwidth of a few cycles centred on the modulation fre-
quency of 280 ¢/s. The circuit designed to fulfil this
is shown in Fig., 25, This utilises a difference amplifler
V; cascaded by two triodes Vi’va in parallel, V;, the
first of these triodes, smplifies the signal that is fed
back to the second grid of the difference amplifier, This
signal is frequency selective by using a twin-tee coupling
network, and its phase is such that the overall amplifier
characteristic is acceptive, With the twin~tee included
as shown in Fig., 25 the high grid~cathode impedance does
not load down the network and hence dces not lower the
eireuit ¢*°,

lMeasured mid-frequency gain = 450
Measured bandwidth = 6 ¢/s,

(b) Ihe Lock-in-Mixex.
The lock-in-mixer (Fig., 26) is of the Schuster type46.

The first stage Vi is a concertina phase-splitter which
provides the 280 ¢/s reference signal push-pull to the
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gating-valve Vi of the cascode mixer,

Correct phasing cf the signal to reference voltage at
this mixer can be carried out in two ways.

(a) With the reference voltage on the Y, beam and the
signal from the narrow-band amplifier on the Yﬁ beam of
a double~beam scope, the magnetic field is varied to give
a maximum signal voltage from a large paramagnetic sample,
e.ge 107 spins of D.P.P.H, The phase-shifter on the 280
c¢/s oscillator is varied so that signal and reference have
a phase difference of m radians, or

(b) The magnetic field is adjusted to give a maximum
output on the pen-recorder and then maximised by varying

the phase~shifter.

A 10 k ochm potentiometer enables the output to be
balanced with no resonance aignal input, Balence is indie
cated on meter M; (Fig, 26), The capacitors used to deter-
mine the output bandwidth are a low-loss paperwound type
and can be selected using a low~leakage switch, (leakage
resistance > 200 MQ), The pen~recorder, an Evershed and
Vignoles, with a fullescale sensitivity of + 0,5 m.a., is
driven by V;.

(c) Ihe 280 ¢/s Oscillatox.

This is of the Wien bridge variable freguency type4
and ls formed by the first two stages of Fig. 27. A

7
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thermistor of semiconducting material (Standard Telephone
and Cables Co, A/5513) which has a negative temperature
coefficient of resistance, is used as a limiter., This
stabilises the output amplitude and, at the same time, keeps
it free from harmonics., If the system is studied in the
complex plane47. it is found that a thermistor with a ngga-
tive temperature coefficient of resistance has to be in

the upper arm of the bridge as shown in Fig, 27, Care

has to be taken to mount this thermistor in a region of con-
stant temperature, as the equilibrium it attains is criti-
cally dependent on its temperature, For frequency stability,
highly stable compconents are employed in the bridge network.

Thus, silvered mica condensers, Radiospares "Hystab" resis-

tors and wire-wound potentiometers are used,

Each day before recording e.s.r. spectra, the oscilla-
tor is tuned to the narrow-band amplifier, However, it
is found that the long term stability (days) of the fregquency
is much better than 6 ¢/s (the bandwidth of the narrow-band
amplifier),

Two outputs are taken from this oscillator; one (25
volts R.M.S.) to the reference of the lock-in-mixer, and
the other to a conventional variable phase-shifterzs. This
is the phase-~shifter used to adjust the phase differance

between the 280 ¢/s reference and signal voltage to =w
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radians, The output from the phase-shifter is taken to
the power amplifier which drives the modulation coils.

(d) Ihe Power Amplifiex.

It is a modified version of the Williamson high fidelity
audio power amplifierﬁa. No negative feedback is necessary
at 280 ¢/s. The impedance of each of the modulation coils
on the magnet is 2 K ohms., With a 2:1 matching transformer,
the amplifier can develop 15 W in these field coils in
parallel, This gives about 18 oe, peak=to-peak at the

centre of the field gap.

IIT.6 Stabilised Power Supplies.

All electronic units are provided with electronically
stabilised power supplies, which were designed and built
by the auther. The general design of these (Fig, 28)
includes a transformer, rectifier, condenser-input filter
followed by a negative-feedback electronic d.c. regulator,
The d.c. amplifier, in the latter, consists of a balanced
difference amplifier input, cascaded by a cathode~coupled
difference amplifier, This was preferred to the Artree
cascode49 type, since in the latter, the current through
the rofdrenée valve-is dependent on the current through
other valves, This is an undesirable feature, as varia-

tions in reference valve current mean changes in reference
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voltage, so that it will tend to limit output stability.
The balanced input of the d.c. amplifier gives a first

order balancing out of heater voltage variations.

In the supply for the klystrons, (Fig. 28), the H.T.
end of the anode resistor R1 of the last stage in the d.c.
amplifier is connected to the unstabilised side of the
control valve, This ensures an adequate gain of this
stage when the grid to the cathode voltage of the control
valve approached zero. However, in the power supplies
for the electronics (Fig. 29) this lead is connected to
a much more stabilised voltage (due to the VR 150 neon).
Thié makes an improvement on the output resistance and
regulation (see performance data), but gives no reduction
in existing ripple. In fact, at this level, (~ 1 mv)
ripple was probably due to pick-up in the wiring. A good

discussion is given in reference 50,

A spike voltage (100 mv) was observed in the output
of the =700 V supply. This was a damped oscillatory
pulse of period ~100 pu sec, Its origin was traced to the
mains transformer and by connecting a .03 u F (2000 v.d.c.)

capacitor across the secondary, it was reduced to 4 m.v.

EPower Supply Specifications,
Power Supply 1, for the I.F, amplifiers, is operated
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at +240 v, with a maximum load current of 200 m.a. The
circuigjssimilar to Fig. 29 but does not have the V,R150
neon,

Power Supply 2 is for the cathodes of the klystrons
and is operated at =350 v, with a maximum load of 100 m.a.
The circuit, as shown in Fig, 28, includes a =750 v, output
for the local oscillator stabilisation of Fig. 7.

Power Supply 3, for the phase~sensitive detector, is
variable from ~600 to =700 v, with a maximum locad of 30 m.a.
It is similar in design to Power Supply 2 but the components
have a higher voltage rating.

Power Supplies 4 and 5, for the rest of the electronics,
have an output of 30C v, with a maximum lcad of 200 m.a.
The circuit diagram for Power Supply 4 is Fig. 29, The
only modification in Fig., 29 for Power Supply 5 is that
five EL84's replace the 12El1 control valve,

Wﬂmm- ];egul‘ﬁgn
. or a 12
angﬁginc. Cogtggtfn.u.s.)chsgggaég Rains
Power Supply 1: 2Q < 2 m.v. A
Power Supply 2: 20 < 2 m.v. 200
Power Supply 3: - < 5 m.v, -
Power Supplies 4 and 5: 1,5Q < 2 m.v, 360

where the output resistance = the change in output current
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: ihe ghange in R.M.5. mains veoltage

the output voltage

III.7 Constxuction and Mounting of the Electronics.

At the start of building the apparatus, attention was
given to the construction and mounting of all the chasses
for the electronic equipment, Accessibility and demountabi-
lity were desired for all units as it is convenient to ser-
vice them while mounted, although sometimes it is necessary
to make adjustments, alignments etc, on a bench, For these
reasons, the circuits were constructed on single panels of
tinned iren or, when shielding was necessary, in boxes with
removable lids, Except for the electronice involved in
the modulation of the magnetic field, these units are modntod
vertically cn a rack, with the valves pointing 1nwafds and
the valve bases and circuii components on the side facing
- outwards, Power supplies, which need littie adjustment
once set to the required voltage, are mounted on the rear
of the rack. The magnetic field modulation circuits are
similarly mounted on the frame of the table suhﬁdrting the
waveguide.,

I1I.8 Ihe Magnet.
8.1 Ihe Detajls. It was designed jointly by the St.
Andrews E.S,R. Group and Newport Instruments Ltd. and was
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constructed by the latter, The full yoke is of cast
iron and the pole pieces and caps of mild steel, The
main field coils are each wound with 3000 turns of rect-
angular cross~section, enamelled copper wire, This type
of wire improves the cooling and filling factor of the
coil, An additional set of coils is fixed tc the d.c.

coils for medulation purposes,

The magnet design dotailc.are:-

Outside length of yoke = 23" x 22,3/4"
Cross-section of yoke = 3,5" x 7"

Pole-piece diameter = 7%

Gap width = 2,5/16"

Weight of magnet and mount = 1l cwts,

Power dissipated in coils for 3,500 oce., = 260 W,
Resistance of coils in series (cold) = 12 Q
With air cooling field range up to 6,000 oe.

Cross-section of rectangular wire = 0,05" x 0,015%,

Ihe Mount.
The yoke was supported at 45° in a cradle on a steel

plate, and can be rotated about a vertical axis over a
ball race, To facilitate movement to two other sets of
apparatus, the magnet was mounted on a trolley that can

travel over a set of rails,



FIG. 30 THE INHOMOGENEITY PLOT OF THE MAGNETIC FIELD.
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AH is the difference in the field from that at the centre.
D is the distance from the centre.
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Allgnment and Homegencliiy.

The sections were assembled in the laboratory and
the pole-caps were aligned parallel to within 0,0004", The
pole-caps are optically flat sc that the spatial homogeneity,
for the fixed field gap, depends on the parallelism of the
faces, This homogeneity was determined using a proton
resonance head51. constructed by Mr I, Firth, Accuracy of
field measurements could be made to 0,25 oe, The field
differences, AH, from that at the centre, along a vertical
axis, are shown in Fig, 30(a). Thus with a sample length
of one inch, the total field inhomogeneity across it, when
it is placed at the centre of the pole~caps, is 0.25 oe,
The inhomogeneity plot along a horizontal axis, parallel
to the pole~faces was found to be the same as Fig. 30(a)
within the experimental accuracy (+ 0,25 oe,). The field
difference across the gap, at the centre, was 2,25 oe,, i.e,

0«4 ce./cm,

When these measurements were being made, a factor con-
tributing to field inhomogeneities was discovered, As
will be mentioned in the next section, the fi;st method
used to scan the magnetic field with a slow sweep was to

apply a voltage sweep to one of the modulation coils and
the 280 ¢/s voltage to the other., The magnetic flux from
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the former, due to its non-Helmholtz nature, increased the
inhomogeneity as shown in Fig, 30(b) by more than a factor
two, This curve was obtained with a2 d.c. current of 300

m.2. through the modulation coil,

Maanet Fower Supply.
Originally, a stack of twelve 12 v, 40 A,H, lead-acid

batteries were used as the power supply. These batterles
were charged from their own rectifier and could be used
under trickle~charged conditions, After about eighteen
menthe service, they began to deteriorate both instability
and capacity, Thus, even after five hours warming up

powered by the rectifier, on using the batteries, the mag-

netic field drift was as large as 2 oe,/min., Under trickle-

charging operation of the batteries, this was reduced to
0,5 oe./min, They have now been replaced by a commercial
constant current generator, the Newport Instrument Type B,

Mark II whose specifications are:-

Time constant of mains stabilising transformer = 0,02secs.

Current stability = #1 in 10* for * 4% mains charge.,
Ripple field = 0,5 oe,

Controllable current range = O to 8 A,

111.8.2 Magnetic Fleld Modulation.

Depending on the presentation required, (see Section
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I1I,5) the modulation coils are driven by a 50 ¢/s voltage

from a transfommer, or by 280 c¢/s from the power amplifier.

Trouble was found in attempting to apply a satisfactory
slow linear magnetic field sweep, When the battery stack
was used to power the main coils, the field wasavept by
passing an additional current through one of the modulation
coils, This was obtained from a motor-driven rheostat
connected across another set of batteries, This metheod
was abandoned when the added spatial inhomogeneity effect
was measured, It was replaced by a2 method of passing the
additional current through the main coils, A 12 Q resis-
tor was required in series with the main coils and main
battery stack, to isolate the sweep voltage from the low
impedance of the bittorins. However, this sweep proved
very non-linear, At present, the magnetic field sweep is
produced by applying a slow linear swept voltage to the
reference input of the stabilised current generator. This

voltage is produced by the bootstrap generator.

I17%2(a) Bootstrap Slow Sweep Genexator (Fig, 31).

Use is made of the time constant of the charging of
the capacitor by a d,c, applied voltage., The voltage
across the condenser Ci is exponential with time, but by

letting it charge to only a small fraction of the applied
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voltage, and by employing some degree of positive feedback,

1.6, bootstrapping 2

the grid to the cathode with resistor
R*, it is possible to achieve reasonable linearity in ocut-
put voltage., The extent of the sweep is limited by the
valve bottoming when it is driven into the positive grid
region, The sweep is switched on and off manually with
switch Sx. Rate of sweep is determined mainly be the
value of the time constant for the charging circuit of C
and by the setting of the 100 KQ potentiometer P;. The

latter also controls the sweep extent,

II1.9 lhe Sensitivity of the Spectrometex.

The sensitivity of the spectrometer for a given set
of operating conditions was measured using standard samples
containing estimated amounts of free radicals, The first
standards were made up by mixing D.P,P.,H. to known dilutions
with solid calcium carbonate., Even although these mixtures
were shaken for hours with an electrical shaker, their
uniformity was poor. Thus, all samples which-should have

16

contaiged 5 X 10" spins and less, gave no observable e.s.r.

14). The second method

signals, (i.e. were less than 5 X 10
used was to prepare solutions of D,P.P,H, in benzene to
known concentrations and, with a syringe, inject amounts

into 2 hole of measured dimensions drilled in a perspex
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capsule, The benzene was allowed to evaporate (1 day)

and then the sample was capped. On monitoring the detected
output fyrom the I.F, signal amplifier on the scope and opti=-
mising the signal-to~noise amplitude ratio S/N by fine
adjustments of the sliding-screw tuner and the local oscilla~
tor repeller voltage (see Seection IXI,4,3), the following
results were obtained with the standard samples,

TABLE I,
Estimated Number s/N(after a few days) S/N(after 3 montt

cf Spins ‘

107 30011 30011
2,101 5611 “ 6:1

5.1015 12:1 1:l
9,104 7:1 0

2,104 211 | 0

The recording conditions used were thoso.stated in Section
1,5, i.e. klystron power %0 m.w., the output bandwidth
Af = 10 ke/s and the unloaded cavity Q = 4,000,

The filling factor for each sample was kept the same
byhaving all in the same part of the r.f. filelds The
measurements given in the second column were made a few
days after the samples were prepared, They show the
authenticity of the estimation of the number of radicals to



9C.

be within a factor of two, WMoreover, sclid samples of

D.P.P.H, (107

spins) were weighed ocut and their 8/N values
(300:1) were consistent with the standsrd samples. Thus,
with the above operating conditions, the sensitivity could

14 Spins Of DQPQP.H. (1..‘. 2.1(4‘“10

be quoted as saying 10
moles) gave a signal whose amplitude equalled that of the

neise,

It was noted that some of these standard samples de-
teriorated with time. After three months, the measurements
were repeated and thcse in the third column found. This
is similar to that cbserved by Feher.

Nmin.-th’ the theoretical value of Nmin.' farthe spec~
trometer is /2 X the expression (1,16), because of the
power lecss along arm 2 of tee 2 (see Fig. 4). Thus from
the sensitivity measurements

;ﬂiﬂﬁ=ﬂhi° = 30 (3.19)

min.~th,
The sensitivity of a spectrometer can be expressed in terms
of & noise figur¢53 F where, due to noise from the amplifi-
cation and detection circuits, the noise power at the output
of the microwave detector is FkTAf, Viz,

N

ﬁmin;:nhn- « F (3.20)
mine=th.
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For a superheterodyne receiver54

F = Lftc+ tg+ Fo= 1) (3.21)

where L is the crystal conversion loss at 45 mc/s and t,

is the noise temperature of the cryst1155 at 45 mc/s. Both
are a function of microwave power and operating in the cry-
stal current region of 0,5 m.a. F is minimised55. This
minimum is broad, as crystal currents up to 2 m.a, have
been used with no cbservable reduction in signal-to-noise

ratio,

For the CS3A and CS3B silicon crystals (B.T.H.) used,
the conversion loss is 8 db, and the noise temperature is
about 2, ty is the noise temperature taking account of
the noise from the local oscillator, Published data give
values about 2, Fu is the noise figure of the I.F, ampli~-
fier, and for the "Pye-strip" is 30, This was measured

using a Marceni I0S8/16149 noise-diode generator,

Substituting these values into equation (3.21)
F = 200
and therefore from (3,20)
N

~MiN.=0D8. should be I4.
Nuin,=th, .

Within the experimental accuracy of the sensitivity
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determinations this agrees well with (3,19); so that
expression (3.21),and the values used in it takes full
account of the noise limiting the oscilloscope detection,

To improve F appreciably F, must be reduced to
R LS T S R

which is an amplifier of the highest quality with a grounded-
cathode grounded-grid input ata9056. Une of these ampli~
fiers has recently been used as a signal pre-amplifier,

but the lowest ncise figure attalnable was eleven, From
(3.21) and (3.19) this should have improved the sensitivity
by 1.5, No improvement was detected, The inclusion of

57

a balanced mixer” ', to eliminate locel oscillator ncise,

will reduce F appreciably only when F, is reduced to ~ 3.

With phase~sensitive detection, the sensitivity is
better than that with the oscilloscope and for an output

time constant of twe seconds the signal-tc-noise ratio

for 2 X 1014 spins of D.,P.P.H, is 30:l, Evaluating
Noin.-th foF this bandwidth of 2 secs. from (L14) gives
Npin.-obs
N *= 90 (3.22)
min.~th.

Comparing (3.19) and (3.22) the added "noise"™ in the
recorder detection is mainly due to:

(a) Microphonics, i.e, acoustical and mechanical
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disturbances.

(b) Base-line drifts.

(a) Microphonics enter the system via the microwaves. The
part of the wavegulde most sensitive to disturbances is

that involved in the balancing of tee 1, namely the elements
in arms 1 and 2, Of these, at 25 mw, incident power on

the rectangular cavity, the sliding-screw tuner is the

most susceptible,

(b) Wwith small bandwidths and wide line, requiring recording
times larger than ten minutes the base~line drifts limit

the sensitivity., These are of twe types, a field-dependent
drift and one due to the variations in the temperature of
the room¢ The former is due to cavity vibrations caused

by eddy currents interacting with d.c., field, The latter,
which sometimes occurred is caused by temperature drifts

of the cavity arm, If the temperature and hence the fre-
quency of the cavity drift slowly, even although the signal
kiystron is locked to it, the drift will show up as a base~-
line variation because of the frequency sensitivityot the
sliding-screw tuner, Considering these drifts and the
1nstab11iti.s described in (a), the sliding-screw tuner

used in this work (BR 1400 Microwave Instruments Ltd.) is
unsatisfactory, It would, therefore, improve the sensiti-
vity to use a bridge~balancing element that is less sensitive
to frequency.
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CHAPTER 1V,

THE EXPERIMENTS AND RESULTS

IV.l Holeculax COmplexes.

There cxisf many cases of complex formation between
electrically neutral closed shell noleculessa. Most of
them have a 1:l stoichiometric composition and show intense
optical absorption bands - the so-called charge~transfer
bands = which are characteristic of the molecule as a whole
and which are not found in either separate moiety. Largely

59 60 61 and

due to contributions from Brackmann~", Weiss , Uewar

Mulliken>®

formation to either a partial or a full transfer of one

s the presently held theory attributes the complex

electron from one molecule (the donor) to the other (the
acceptor), Mulliken has written a series of paperssa
clarifying these ideas of charge-transfer with a quantum
mechanical description of the molecular complex., Thus,
for a 111 complex AD the wave function for the ground state

¥, is a singlet and can be written to a first oxder as
‘p'n w . *AD + b *A-D* (4-1)

with 2 >> b
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where },, is the singlet wave function for the "no bond"
structure AD held together by Van der Waals forces, and
Vo~pt is the singlet wave function for the dstive structure
a"p* that is formed on transferring an electron from the
donor D to the acceptor A, ¥, and ¥, -+ possess the same
symmetry, As 3 >> b, the ground state will be mainly the
no~bond structure, but its energy will be lowered, 1.e. its
stability increased, through interaction with *A-D+ as in
equation (4,1),

There will be an excited state ¥, where
-*-‘ = ¢ *A-D‘*' < d Y;VAD (‘402)_

but ¢ >> d so that this state is predominantly ionic,

Mulliken éonsiders this state only as a singlet and attributes
the charge~transfer band as due to the transition ¥  + V..

The absolute values of charge-transfer intensities estimated
from this theory agree to within the correct order of magni-
tude with the experimental results., This theory can also
explain the geometrical configurations of some complexes,

The determining factor, apart from stexic effects, being a
maximum value of the resonance integral I#AD H ¥=p* de,
where H is the total Hamiltonian,

Mulliken does not, however, conslder the possibility
of paramagnetism of the ionic state. This would not be of
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importance to the properties cf a complex whese ground
state is given by (4,1) as the icnic level would be about
10 eove (1,e. >> kT) above it, According to Bijl, Kainer
and Rose-Innes®, (henceforth referred to as B.K.R.) the
ionic state can be the ground state provided the donor and
acceptor tendencies of the constituent molecules are great
enoughe This is so 1if D hes 2 low lonisation potential
and A a large electron affinity., The magnetic state
levels will then either be (see Fig, 1)

(1) Two doublets if the intermolacular exchange between
the unpaired electrons is zero, i.,e., the complex is a bi-
radical, or ‘ ]

(2) A lower singlet separated from an upper triplet
by the exchange Integral.

(3) A lower triplet and upper singlet.

The charge~trensfer optical transitions can stiil take place
between the singlet in the ionic state and that of AD and
are still characteristic of the complex as a whole, Such
ionic complexes seemed to be formed from NNN'N' tetramethyl=-
p~phenylenediamine (TMPD or Wurster's base) as the donor

and ortho and pars halogenated quinones as the acceptors,

B.K,R, invesitqged the e.s.r, properties of these com=

plexes in the solid state, but could offer no conclusive
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proof of the molecular structurxe oif the [ree radicals
present, The e.8.r¢ programme intended by the author was
to follow up their work by studying these complexes in
various sclvents at room temperature witﬁugim of cbtaining
two types of hyperfine structure, These are (2) the hypere
fine styucture of the two spectra from the dissociated ions
A" and 0 and (b) the hyperfine structure from the complex
molecule A"DY,  Observetion of both (2) and (b) in the same
or in different solvents would preove the existience of bie
radical molecular complexes, Moreover, the modifications
in the spectrum of (b) to either of those in (a) would give
information about the chemical bonding between the donor
and acceptor, Secticns IV.3 and IV,4 describe the experi-
ments carried ocut and the conclusicns arrived at, Section
IV.2 describes some additional experiments on polycrystalline

samples,

V.2 Selld Blradical Molecular Complexes of Tetramethyl p=

v AL f ( A1

e

* oy - r am1 e

On bringing together a solution of TMPD (wﬁrster's base)
in benzene and chloranil in benzene, a dark precipitate
immediately forms, Isolating, washing and drying this,
the resulting selid is found to be paramagnetic, Similarly

prepared complexes are formed from TMPD and bromanil, and
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TMPD and iodanil,

These preparations were carried out in a sample tube
in a cavity while monitoring the e.s.r. signal on an oscillo~
scope, The sample tube initially contained only the solu-
ticn of TMPL in benzene, which was dianagnetie; Un addition
of the chloranil in banzene - also diamagnetic = the é.s.r.
signal was found te appear instantanecusly with the forma-

ticn of the precipitate,

The e.s.r. properties of these solid complexes can be

summarised as follows,

TABLE 2,
- Badical
Sompound Line ¥idip* a-yalue* sontent
TMPD,chloranil 11 oe 2,0023 0.5 ¥
TMPD,bromanil 24 ce 2,000 5 %X
TMPD,.1lodanil 20 oe 2,0016 %0 %

* The measurements of B.,K.R.

The percentage radical content at room temperature was
measured by comparing the signal~-to-noise ratios from samples
of the complexes with those from standard samples of D.P,P.H.
The cscilloscope presentation was used and the measurements
were made on the complexes and standards in turn, carrying

out the method described in (III,?). In obtaining the
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ratio of the integrated e.s.r. intensities, the appropriate
ratio of the line width to that of D,P.P.H., was taken into
account, The figure in the third column was accurate to

within a factor of two.

Under the high resolution of phase-sensitive detecticn,
the resonance lines from polycrystalline samplées of all
three complexes showed a single structure similar to a
Lorentzian exchange narrowed line, This conflicts with

6

the findings of Matsunaga 2 who reports distinct asymmetry

of the spectrum from the TMPD.,chloranil complex,

B.,K.,R, carried out temperature dependence measurements
of the e.s.r. signal intensity for TMPD.chloranil and found
that down to 6%, it followed a Curie law, (i.e. #). This
implied from (2.27) that the singlet-triplet splitting
(equal to J, the intermolecular exchange coupling of the
unpaired electron spins in the complex) i1s much less than
4 em ¥, Furthemmore, this temperature dependence does
not give any indication as to whether the ground state is
a singlet, triplet or doublet. If a triplet state is
involved in the e,s.r, transitions of the molecular com-
plexes, then these compounds should show, at a {ixed micro=~
wave frequency, resonance lines when the value of the d.c.
magnetic fleld 1s half that for the nommal transition given

by (1.1)s These lines would arise from the AS, = & 2
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transition and would indicate the presence of two spins

per complex molecule coupled through intramolecular ex-
change (see Fig. 1). Transitions of this type are usually
forbidden when evaluating the transition probability of
(1,12), but can be weakly allowed through dipolar perturba-
tion in the triplet atate63. Polycrystalline samples of
TMPD.chloranil and TMPD.bromanil were investigated for

such a resonance, None was observed. It could be said
from these experiments that if a triplet state does exist
in these compounds, then the transition probability at
half-field resonance is less than one thousandth of that

at normal resonance., This could be due either to the
lines being very broad or to the mechanism which allows
such transitions being very weak, It is possible that the
half-field rescnance lines are anisotropic, i.e. have
characteristics that depend on the angle between the mole~-
cular axis and the direction of the splitting field., In
polycrystalline samples, where the molecules will have

random orientations with respect to the applied magnetic

field, such anisotropies will produce line broadening.

It was pointed out by B,K.R, that the e.s.r. absorption
strengths (i.e. the number of molecules in a paramagnetic
state) increased with increasing redox potential of the

acceptor in benzene (this is a measure of the electron
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affinity in solution), This is compatible with the idea
that large donor-acceptor tendency means small overlap of
the M,0.s of the odd electrons in A~ and D' and from(2.23)

a corresponding small value of J, the singlet-triplet
splitting. Thus, measurements carried out at a temperature
which is not much greater than the largest value of J for
the complexes of Table 2 should show e.s.r. absorption
strengths that depend on the donor-acceptor tendencies,

From the value of the free radical content of TMPD.chleoranil
in Table 2, however, (2,27 )implies that for this complex

at room temperature, J is larger than kT (i.e. 450 cms *)
which conflicts with B.,K.R.'s prediction of J from the
temperature dependence measurements, As a consequence,

the radical content in the third column of Table 2 cannot

be explained as due to a Boltzmann statistical distribution
over a number of energy levels. It is possible, however,
that the solid complexes are chemically impure. Thus,
although the initial reactants A and D and the solvents
used are chemically pure, there may be present other reactions
over and above the univalent redox reaction, which give rise
to non-radical products. Such side reactions have been
suggested by B,K.,R., as (1) a double electron frinsfer from
the donor to the acceptor, (2) a double hydrogen atom trans-

fer from the TMPD to the quinones,
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These reactions and possibly alsc the univalent

redox reactions will have equilibria which depend on the
temperature and the particular solvent used. Hence, the
radical content in the solid should depend on these condi-
tions at the instant of formation. It is interesting to
note, therefore, that on preparing TMPD,bromanil from hot
benzene the radical content was only one -twentieth of that
prepared from cold benzene, Also, the radical content in
TMPD,.bromanil precipitated from cyclohexane was three times

that from benzene,

1V.3 Ihe E.S.R. Spectra of the Ionic Complexes in Solution.
3.1 Polar Solvents.

The ionic compounds of Table 2 dissolved in polar sol-
vents to give a reddish-wine colour., All the solvents
were Analytical Reagent Grade (AnalaR, British Drug Houses
Ltd.) and were used as obtained without further purifica-
tien. Once, AnalaR ethanol,which had been distilled
several times, was used as the sample solvent. The e.s.r,
spectra of the complexes in this solvent were the same as
in the Reagent Grade ethancl, The spectra were recorded
with phase~sensitive detection, as the signal-to-noise
ratios on the oscilloscope at the concentrations used,

were only 3:1., About one tenth of a cc, of solution in
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a glass tube of inside diameter 2 mm, was used as the
sample. The features of the spectra that were observed
in each case will be discussed in the following paragraphs.

The interpretations of these spectra are made in 1IV,.3.4.

IMER.chlozanil.

Gn increasing dilution in ethanol, fhe line broadened
and several hyperfine lines were resolved, Fig. 33 is
such a structure in ethanol at a radical concentration,
estimited from the signale-to-noise ratio, of 5 X 102 moles/
l¥re., This shows'the partial resolution of eleven lines
of splitting 7 £ 0.5 ce, It is typical of the spectra
cbserved in methanol, n~propancl, isopropyl alcohel and
chloroform, Further dilution was limited by the spectro-

meter sensitivity,

IMPD.bromanil .

Down to the minimum observable concentration (~ 1073
moles/litre) in ethanol, propanol and chloroform no improve-
ment of the resolution was made on Fig. 34 where the solvent

was ethanol, Here some structure can just be discerned.

IMbo.iodanil.

Resolution of the hyperfine structure in the alcohols
was about the same as TMPD,chloranil at the same concentra-

tions, The number of lines (eleven), the splittings and
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overall width were also the same, ' After about thirty
minutes, the sample changed colour from wine to reddish=
brown, but with no accompanying effect on the e.,s.r. spec~
tra, These remained unchanged as in Fig., 35 for at least
twelve hours, This colour change may be due to the pre-

sence of free iodine.

3.2 Ihe Effect of Dissolved Oxygen.

Prompted by the findings of Hausser (see II,7.%), a
solution of TMPD,chloranil in ethanol was prepared and an
attempt made to remove the dissolved oxygen from the ethanol.
Thé ethanol was boiled in a flask over a sand-bath. The
tap on this flask was then closed, the flask allowed to
cool andlthon opened under an atmosphere of nitrogen in a
dry-box. The solution of the complex was made up in
this atmosphere and glass tubes with ground glass stoppers
used as sample holders. No improvement on the resolution
of Fig. 33 was noted, It seems, therefore, that at the
concentrations used here, the dissolved oxygen is not
inhibiting the resulution.

3.3 The Effect of Power Saturation.

The incident microwave power to the cavity was reduced
by a factor four, For solutions of all the complexes it

resulted in a smaller e.s.r, signal and no improvement in the
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hyperfine resclution., This indicated that the lines were

not being saturated with 25 m.w. of microwave power,

3.4 Interpretation of the Spectra.

As the above spectra were only partially resolved, it
was not possible to account for them with any particular
relevant radical structure by applying the formula given in
I1.4., Instead, they were compared with the spectra of a
known radical, the Wurster's blue ion (TMPD'), Wurster's
perchlorate was dissolved in ethanol to concentrations of

3 moles/litre and the spectra of TMPD" obtained,

~ 3 x 107
as Wurster's perchlorate is known to dissociate in solution

into this radical ion and the non-radical perchlorate ion,
i.e. TMPD.Clo, - Mpd* + C-Lo4' (4.4)

2 thirteen triplets of splitting

Weissman first reportod3
7.4 oce, between the centre of each triplet and 2,1 oe,
between members of each triplet. The twelve methyl protons
are equivalent and give rise to thirteen lines which are
further split by interactions with the ring protons, The
best sesolution to date, of this radical ion has been

carried out by Hausser29

s who has observed all the lines
(32%) expected from interactions with the twelve methyl
protons, four ring protons and two nitrogen atoms., The

coupling constants are 6.8, 2.1 and 0.6 oe, respectively.
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To attain this degree of resolution, Hausser found it
necessary to remove all the absorbed molecular oxygen and
use concentrations of 5 X 1074 moles/litre. The best
resolved spectra of T™vep* using the spectrometer described
in Chapter III was that of Fig., 36 showing eleven partially

resolved lines,

The effect of the removal of the dissolved cxygen was
1nvcstigateq using the method of preparation of samples
described in iV.3.2. At the concentrations used no addi-
tional lines were resolved so that it was not the dissolved
oxygen that limited further resolution., The sample was
also checked to see that the e.s.r. lines were not being
saturated. Since, in the cases of the ionic complexes
and Wurster's perchlorate in sdution, the resoclution of the
@.,5.r, spectra improved with increasing dilution, it seems
that the resolution of Figs. 33, 34, 35 and 36 is limited
by exchange interaction which is due to the solutions being
too conceéntrated. This concentration was required for a
good signal-to~noise ratio from the spectrometer, Increased
sensitivity is therefore necessary for higher resolution.
The difference between the sensitivity here and that
attainable by Hausser, as indicated by his spectra of TMPD+,
is not surprising when the recording times used in each

case are considered., The maximum time used here was ten
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minutes whereas Hausser reporte4times of eight to ten

hours.

A comparison of the spectra of Figs. 33, 35 and 36
shows that they are the same as regards hyperfine splitting
and the number of partially resovlved components, In fact,
the known splitting of TMPD® was used as a marker to deter-
mine the splittings in Figs. 33 and 35, by employing the
same sweep rate in each case, This similarity suggests
that in the polar sclvents the complexes TMPD.chloranil and
TMPD.iodanil are not present wholly as complex molecules,
but dissociate into separate solvated ions A , p* and that
Figs. 33 and 35 are the spectra of D' (i.e. TMPD'),

i.e. ADY - A" + D (4.5)

However, if all three species of (4.5) are present, then
three different spectra would be expected, These are

(1) the spectra and its characteristic hyperfine structure
associated with the Wurster's blue radical ion, TMPD+,

(2) the narrow, singlo line spectrum which would arise from
the chloranil negative ion. This anbn has no hyperfine
structure as the splittings produced by the chlorine nuclear

moments are too small to be resolved®??

s and
(3) a spectrum from A"D' different from (1) or (2) due to

the intramolecular exchange coupling between the two unpaired



108,

f

electrons in the biradical.

No spectra corresponding to either (2) or (3) have
been observed. From the e.s.r. results of Figs. 33 and
35 alone, it could be that the spectrum of D' and A™D' are
so similarthat they cannot be distinguished. This would
imply that J is very small, However, Poster'365 measure-
ments of the optical absorption spectra of all these com-
plexes in polar soclvents show no charge~transfer bands so
that the existence of A™D' in these solvents is not indicated.
On the other hand, Foster can identify bands assoclated with
the TMPD' radical ion which is consistent with the e.s.r.
data of Figs. 33 and 35, Weaker additicnal bands are also
preeent which disappear after a few minutes. These may
account for the anicn as being chemically unstable and with
insufficient lifetime to be obserﬁcd by e.s.r.

It is difficult to account for the poor resolution of
the e.s.r. spectrum in the case of the TMPD.bromanil., More
work at greater dilution, demanding higher sensitivities,
will have to be done to discover if this effect is signifi-

cant,

3.5 Selvent Activity.
If the ionic complex dissociates as (4.,5) then the

extent of the dissociation would be expected to depend on



109,

the solvent used. The more polar the solvent, the
greater would be the dissociation, Kosower has intro-

duced66

the Z-value as an empirical measure of sclvent
polarity and ionising power. He fcund that the pesition
of the charge~transfer band of the lethyl-4-carbomethoxy=-
pyridinium iodide complex in solution is very sensitive
to the particular solvent used. The Z-value of a solvent
was defined as the transition energy in kilocals,/mole.
of this charge~transfer band., Using this complex as a
standard, Kosower could directly measure the Z-values

ranging from 79,6 for ethanol to 63.2 for chloroform,

In an ionic complex, the apparent absorption coeffi-
cient of the charge~transfer band gives 2 measure of the
extent of association cf the complex a¢ ion~pairs rather
than sclveted icns in solution, Kosower showed that for
the I-ethyl-4~carbomethoxypyridinium icdide complex, this
absorption coefficient ies approximately linear with Z-
value, In alcohols, this complex is largely dissociated
into ions, whereas in chloroform it is in the form of ione
pairs., In contrast, the results of IV,3,1 show that
TMPD,chloranil has the same form in methanol (Z = 83,6),
ethanol (2 = 79,6), isopropyl alcohol (Z = 76,3} n-propanol
(Z = 78,3) and chloroform (Z = 63.2), Similarly, the

spectrum of TMPD.bromanil was the same in chloroform as
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in ethanol.

Less polar solvents, e.g. benzene, where Foster6

3 has
observed charge-transfer bands, from TMPU.chloranil,
dissolve the complex so sparingly that no e.s.r. has been

observed from the solutions,

Conclusions of Section IV.3.

It appears from the e.,s.r. experiments and Foster's
optical absorption measurements, that the complexes TMPD,
chloranil and TMPD.iodanil dissociate completely into sol-
vated radical ions in alcoholic solvents and that TMPD,
chloranil also dissociates in AnalaR chloroform. The
e.8.T. experiments were unsatisfactory in that (a) no spec~
tra associated with the complex molecule A'D+ has been
observed, and (b) there is no indicatlon in the e.s.r.
spectra of the presence of the anions A’ As has been
mentioned, the negative ion of chloranil does not show
any hyperfine lines because of the small nuclear momant
of the chlorine nucleus, The iodanil negative ion would
prbhably also not give any observable hyperfine structure
since the iodine nucleus with a spin 5/2 would give a
splitting about 1/% of that from a proton with the same
spin density, Therefore, even 1£ these anions were

stable, it would be difficult to identify them positively



111..

by their single line e.s.r. spectra, A search was there-
fore carried out, both in the literature and through the
author's own invesitations, to find an acceptor which would
give a more stable radical anion with a characteristic
hyperfine strudure., Such negative radical ions are formed
from the electron acceptors, tetracyanoethylene and dicyan-
odichloro=p-quinone, although it should be mentioned here
that the hyperfine structure obtained from a solution of
the latter with sodium iodide was not conclusively that of
the dicyanodichloro-p-guinnne radical anion, but this will
be discussed in Section IV,6,2, The e.s.r. properties of
solutions of these acceptor compounds with substances which
are known donors, were examined and are described in Sec~-

tions IV.,5 and 1IV,6,.3.

IV.4 Jeixacyanoethylens.

Tetracyanoethylene (TCNE) is known to be a good elec-
tron accoptor§7. In this system the accepted unpaired
electron occuples a molecular orbital of the = system,
Tetracyancethylene is therefore known in the Mulliken ter-
minology as a m acceptor or m acid, The radical ion TCNE™
is easily formed in reactions with sodium and sodium iodide
in tetrahydrofuran and acetonitrile66. The reactions,

which are univalent redox reactions, are



FIG. 37 THE HYPERFINE STRUCTURE OF THE TETRACYANOETHYLENE
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Na + TCNE . Na'+ TCNE™  (4.6)
and Nal + TONE = Na'+ I* + TCNE™  (4.7)
It was found here that TCNE™ can also be formed with
sodium in ethanol, methanol and propanol as is indicated
by its characteristic hyperfine spectra to be discussed
belows The radical ion is not stable in these solutions,
however, and the e,s.r. signal disappears after about
twenty minutes, This could be due to the fact that in
addition to (4.,6) there is a vigorous reaction of sodium
with the alcohols, For example, with methanol, sodium

forms sodium methoxide CH’ONa with the eveolution of hydrogen

i.e. 2CH'0H + 2a - 2CH'ON1 + H' (4,8)

In the reaction (4,7) in tetrahydrofuran, a dark red
colour formed almost immediately and on examining a sample
of this for as.r,, it was found to exhibit a narrow intense
line, On diluting, the well resolved spectrum of nine
lines associated with TCNE™ was obtained on the oscillo=-
scope (Fig, 37a).

The measured splittings were 1.5 + .2 ce. The widths
of the individual lines were 0,25 oe, which was about that
expected from the magnetic field inhomogeneities (see
Section I11,8), Nine hyperfine lines wifh intensities
in the ratio 1:4:10316:19:16:10:4:1 are expected from equal
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coupling with the four nitrocgen atoms with nuclear spin

one, The slight asymmetry in the hyperfine pattern in

Fig., 37a is caused by the apparatus. In Fig, 37b, the
pen-recording of the same spectra, the lines are symmetrical
about the centre line, Incressing the bandwidth of the
video gage at the output of the signal amplifier to 4 mc/s
does not improve the symmetry of Fig, 37a, This asymmetry
must, therefore, be due tec the limited bandwidth (300 ¢/s)
of the signal klystron dabilisation locp,

Under the high resclution of the phase-sensitive detec-
tion, additional lines are detectable cn the wings of the
nine line spectrum, These are shown in Fig, 37b, but are
below the noise in Fig, 37a, Phillips has reported67
eleven lines and has concluded that the extra two are from
4,4% of the TCNE™ radicals containing a C!®N group. The
cuter twe lines are therefore due to splitting from the C!3
nucleus which has spin 3 and a coupling constant Amis =
6Ay1a = 9.4 ce. This then can explain the extra ocuter
lines in the spectrum of Fig. 37b,

o using L.C.A.O, molecular orbital

Calculations
theories give the unpaired electron densities at each
nitrogen atom as O,11, This implies that if Gy is the
isotropic splitting due to the nitrogen nucleus for an

unpaired electron totally on the nitrogen atom of a cyano
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group then Gy = 15 ce. (4,9)

Atherton and Weissman®° have observed splittings of
the lines of naphthalene negative ion which c¢an be asso=-
ciated with some odd electron density at the sodium nucleus,
This means that there is overlap between the M,0, of the
naphthalene negative ion and that of the sodium ion, i.e.
there is an lon-pair formation., No¢ such splittings by
the sodium nucleus have been observed in the TCNE™ spectra
in the sclvents tetrahydrofuran, acetonitrile and the alcb-

hels, so that no ilon-pair formation was indicated.

In investigating the reaction (4,6) in tetrahydrofuran,
a sequence of spectra was observed as the reaction pro=-
gressed, The time dependeéence of the appearance of this
sequence of spectra varied with the initial concentrations
0f the reactants used, To illustrate the changes in spec~-

tra, 2 particular case will be described.

Tetrahydrofuran was purified by refluxing it over
sodium for seﬁeral hours, The tetrahydrofuran, purified
in this way, is henceforth referred to as clean tetryhydro=-
furan, A single piece of sodium was added to a sclution
of tetracyancethylene in clean tetrahydrofuran which had
a concentration of ~ 4 x 10™2 moles/litre, Samples were

separated from this reaction (4.6) every half-hcur and
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FIG., 38 THE SERIES OF SPECTRA OBSERVED FROM SODIUM AND
TETRACYANOETHYLENE IN TETRAHYDROFURAN,
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thelr spectra monitored on the oscilloscope for twenty
minutes., Samples up to 7§ hours after the reaction had

been initlated all showed a single e.s.r., line, On diluting
these, no hyperfine structure was observed down to concen~
trations where the signal merged with the noise, The radi-
cal content, as indicated by the e.s.r. signal intensity,
increased with time, (1ncreasing by about a factor three

over several hours). A sample taken eight hours after the
reaction had begun, initially showed a single line (Fig, 38a).
Five minutes later, hyperfine structure became resolved as

in Fig, 38b. In ten minutes, the spectrum was almost com=
pletely resolved (Fig. 38¢c) and at the.sage time, the signal
intensity increased, With further increase of signal,

after fifteen minutes, the line began to narrow (Fig, 38d),
the hyperfine peaks merge until only a single line remained
(Fig, 38f),

Another sample taken from the reaction vessel, now 8}
hours after the reaction had been initlated, showed a line
whith was narrowing. This meant that the reaction was pro=-
ceeding in the same way in the reaction vessel as in the
sample tube, To check this, the reaction was carried out
with about the same concentration of TCNE in the sample tube
dnd monitored continuously on the oscilloscope, In this

case, the same sequence of apectfa as depicted in Fig. 38
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was observed although in less time, i.,e. two hours, The
speed of the reaction can prebably be accounted for by a

larger effective surface area of sodium,

Investigations were then carried out to find out
whether the spectra of Fig. 38 are due to different radicals
or to the effects of the processes determining the linewidths.

To a sample showing a well-resclved hyperfine structure
was added about an équal volume of a concentrated solution
of tetracyanoethylene in clean tetrahydrofuran. The sample
was shaken up and the spectra re-examined, It was found
that the hyperfine structure disappeared and a single line
of slightly less intensity, due to the dilution of the
radicals, was observed, This was now repeated with a
sample showing a well-resolved hyperfine structure, but
this time the tetracyanoethlene solutiocn was added while
the sample remained in the cavity and the cscilloscope was
monitored continucusly., After a few minutes, as mixing
took place, the hyperfine components broadened until only
a single line remained, From these two experiments, it
can be inferred that in the early stages of the roactioh
(4,6) the spectra were broadened (as in Fig. 38a,b) and
the resclution of hyperfine structure inhibited by the

electron transfer process,
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TCNE + TCNE™ = TCNE™ + TCNE (4,10)

This mechanism has been investigated in the case of naphtha=-

lene by Ward and WeissmanGg. They give the broadening &H .

t0o the half-maximum linewidth from this electron transfer

process as :
11k
AH s
et on x 2,83 x 10°

o8, (4011)

provided that Aﬂat is much less than the splitting between
adjacent lines, [T], in the case of the reaction (4,10),
is the concentration of neutral tetracyanoethyiene and k is

the rate constant of the process (4,10),

Measurements of AH_, on addition of a 2,107® molar
solution of tetracyanocethylene in clean tetrahydrofuran

8 to 5.108

gave an order of magnltude estimate of k as 10
litre moles™® sec™®, A more exact value in the literature®®

1s 2 x 10% litre moles™® sec”?,

The narrow intense lire of Fig, 38f was then investi-
gated to discover the mechanism determining its linewidth.
A sample of TCNE™ showing this narrow line was diluted to
about one tenth of the concentration and the characteristic

nine line spectra of TCNE was observed, From the Lorent-
zian shape, the large intensity and the reproducibility of

the hyperfine spectrum on dilution, it can be inferred that

the narrow intense line was due to large intermclecular
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exchange interaction which was a consequence of large con-
centrations of radicals. It was possible to detect that
the hyperfine peaks move toward the centre of the line, as
the exchange interaction increases (compare Fig. 36¢ and
36e, noting that the X but not the Y scales are the same),

This effect is predicted by AndersonZ’,

Summarising, all the spectra of Fig. 38 observed in
the reaction of (4,6) in tetrahydrofuran can be accounted
for by the tetracyanoethylene radical ion and the processes
determining its linewidth. In the early stages of the
reaction, where the concentration of TCNE is large, (4,11)
fixes the linewidth, As the reaction (4.6) proceeds, more
radicals are formed and the concentration of TCNE is reduced,
This results in less broadening and a stage is finally
reached in the reaction where the broadening 4H_, of (4,11)
ceases to prevent resolution of the hyperfine structure.
Further increase of radical concentration gives line
narrowing through intermolecular exchange. To explain why
the spectrum of a sample separated from the reaction vessel
changed with time, it is suggested that the scdium breaks
up and particles of it are present in the sample tube so
that the reaction (4.6) can proceed there.

The rate of radical production increased sharply as the

hyperfine spectra became resolved, This is indicated by
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the integrated signal intensity which increases by a factor
three over several hours, but by about thirty over the
twenty minutes the spectra of Fig., 38 were recorded., This
is probably also due to the sodium breaking up and providing

a larger effective concentration,

An overall conclusion of these experiments is that it
is necessary to have the concentrations of TCNE and TCNE™

suitable to observe the isotropic hyperfine structure,

IV.S WCF

5.1 NNN'N' Ietramethyl-p-Phenylenediamine (IMPD)
When solutions of TMPD and TCNE in clean tetrahydro-

furan were mixed, a reddish wine colour immediately appeared.
If the concentrations of TMPD and TCNE were large enough,

a2 precipitate was also formed., The sclid obtained on
filtering and drying this solution was almost black and

was paramagnetic, showing an intense e.,s.r. line of about

20 oe, wide, This solid dissolved in tetrahydrofuran to
give a reddish wine colour and the same e.s.r. properties

as the original wine solution, These paramagnetic proper-

ties will now be discussed.

In concentrated solutions the line was about 20 ce.,
wide, On dilution, it broadened until hyperfine components
could be resolved, Fig. 39 is an example of the best
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resolved spectra obtained, Thirteen lines of splitting

4 # 1 oe, are detectable in Fig. 39b., This spectrum cannot
then be explained by TMPD" which has splittings 6.8 oe. (see
Fige. 36) or by TCNE™ which has splittings 1.5 oe, (see Fig.
37). We have seen in IV,2 that TMPD can act as an elec~
tron donor and in IV.4 that TCNE is a strong acceptor,
There is presumably, therefore, a tendency for these sub-
stances to form a complex that will involve the transfer of
an electron from TMPD to TCNE. Such a complex is the 1l:l
compound TMPD'.TCNE™., There is the possibility that over-
lap of the M,0,'s of the two ions will also contribute to
the stability of the complex, This would mean that the
intramolecular exchange J was not zero so that it would
cause the hyperfine structure from the complex to be diffe-
rent from that obtained from either separate radical ion,
i.e. TMPD® or TCNE™ (see I1,6.2). The observed paramagne-
tism, in the solid and in solutiocn, supporte the existence
of the biradical molecular complex TMPD+.TCNE' and it 1is
suggested that the spectrum of Fig., 39 is a partial resolu-
tion of the isotropic hyperfine structure characteristic

of this complex, The chemistry of tetracyancethylene has
recently been extensively studied70. It is, however,
difficult to account for the free radicals that are indi-
cated by the e.s.r, studies without the formation of the
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charge~transfer complex TMPD',TCNE™,

On the addition of impure tetrahydrofuran - this had
been kept over sodium for several weeks but had become
cloudy due to the affectsofhsorbed moisture and oxygen - to
the ‘solution of the complex in clean tetrahydrofuran, there
was a colour change from reddish wine to reddish brown,
Examining the e.s.rs of this resulting solution the spectrum
of Fige. 39 had disappeared and the distinctive nine line
spectrum of TCNE™ was observed. This effect suggests that
the impurities in the tetrahydrofuran attack the complex to
release TCNE™, © No other spectrum superimposed on that of
TCNE™ was observed. If TMPD" had also been presant as a
result of the dissociation of the 1:1 complex TMPD',TCNE”
then its spectrum,even although five times broader and hence
five times weaker than that of TCNE™, should have been de=-
tectable above the noise, ‘TMPD' must therefore be also
removed from the solution, The complex can react with
the impurities in the tetrahydrofuran in at least two
possible ways.

(1) It can be attacked by sodium hydroxide., Any TMPD®
that 1s present in solution as a result could also be

attacked by the sodium hydroxide and reduced to TMPD, Viz,,

4 NaOH + 4 TMPD™ = 4 TMPD + 4 Na'+ 2 HO + 0 (4.12)
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This reaction is clearly visible with Wurster's blue per-
chlorate in ethanol, where on addition of the sodium hydro=-
xide, the characteristic blue colour and paramagnetism of
TMPD+ disappears.

(ii) It can react with the peroxides that will be in
the tetrahydrofuran due to its oxidation by the air., These

OOH
‘ \ and ’ I
o 5 OO0 H

are

These effects were checked, Tetrahydrofuran was kept
over solid sodium hydroxide for several hours., This was
added to the complex in solution and again the spectra of
Fig. 39 disappeared and that of TCNE™ appeared. Sodium
hydroxide therefore seems effective in breaking up the
complex and removing the TﬁPD+ from the solution. The
sodium hydroxide added will also react with any excess TCNE
to produce TCNE™ as a result of the reaction

4 NaOH + 4 TCNE = 4 Ha® + 4 TCNE™ + 2 HO + 0 (4.13)

This was verified by examining the brown solution of sodium
hydroxide and concentrated TCNE in tetrahydrofuran for

paramagnetism, After several hours only & very weak
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signal was observed. The rate of radical production through
the reaction (4,13) must therefore be slow. Even so, to
avoid any production of TCNE™ as a result of (4,13) all
excess TCNE was removed from the solution of the complex,
This was done by adding excess TMPD before the sodium hydro=-
xide, However, on addition of the latter, an intense nine
line hyperfine structure which indicated the presence of
TCNE™ was again observed., This could only have been re-
leased as a result of the complex breaking up through its

reaction with sodium hydroxide,

The effect of the presence of the peroxides was investi-
gated by allowing a sample of tetrahydrefuran to remain
open to the air for a few days. No change in the hyperfine
structure of the complex was observed on adding this sclution

to that of the complex.

Conclusion.

The existence and nature of the spectrum of Fig. 39
seems to indicate the presence of a complex which in tetra-
hydrofuran is neither of the separate ions TCNE™ or TMPD .
Moreover, the appearance of the spectrum of TCNE on the
addition of sodium hydroxide suggests that the complex forma-
tion occurs through a univalent redox reaction between TMPD

as a donor and TCNE as an acceptor. As the spectrum of
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Fig. 39 is only partially resolved, no assignation of
coupling constants can be made to the atoms in the complex
and no exact value of J ( the intramolecular exchange) can

be obtained,

5.2 P=Phenylenediamine.

. A solution of TCNE in tetrahydrofuran added tc that of
p-phenylenediamine gives a red colour, but no e.s.r. was
observed. P-phenylenediamine is not so strong a reducing
agent as TMPD and hence would be less likely to form a
charge~transfer complex with TCNE,

1V.6 Ricyanodichloxo-p-Cuinone (DDQ).

DDQ has a larger redox potont1a171 (¢ 1.0v) than
chloranil (0,742v), It should, therefore, be a better
electron acceptor and analogous to TCNE in (4,6) and (4.7)
should form DDQ~ radical ions with sodium and sodium iodide

in solution,

DDQ was purified by dissolving it in benzene, filtering
and reprecipitating with petrol, As a criterion of the
chemical purity, samples of this DDQ melted over a tempera-
ture range of 201 to 203°C, The solution of this DDQ
and sodium in clean tetrahydrofuran was red and it showed
a very weak e.,s.r. signal, The rate of radical production

was slow since even after eight hours the signal was still
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very weak, At no stage was any hyperfine structure
observed, The results with sodium and TCNE in Section
IV.5 suggest that the resolution of the hypeifine structure
of DDQ” 1s inhibited by the electron transfer process

DDQ + DDQ- = DDQ + DDQ (4,14)

The reaction of DDQ with anhydrous sodium iodide in clean
tetrahydrofuran gave a green colour (dilute solutions were
yellow) and the e.s.r. of this sclution was a weak single
line, The addition of 10¥ ethanol to this solution gave
a distinct colour change to clear red and an enhancement
of the e,s,r. intensity by about a factor ten. The line
was initially a single iino. probably due to the process
(4.14), As it was observed on the oscillosdopa. in ten
minutes, the broadening was reduced and a hyperfine structure
was observed, as is shown in Fig, 40,. This will be dis~
cussed in the next secticn, The addition of the polar
solvent ethanol seems to favour radical preduction, If
these radicals are also ions, €.ge. DDQ , this would be
expected as a result of solvation effects stabilising the
ion, |

6.1 Ihe Hypexfine Structure given by a Solution of

Wmmmmnn ; L]

The five hyperfine components visible above the noise

in Fig. 40a would be expected from equal coupling with the



. A e - R NOILTHOSEY ®HI J0 NOLIOMMISNOOM V (@)
NOTIJH0SAY #HI J0 FIATLVATHEA HHL (4)

~ e
1
1 -1
1
1 Al
) bl
1
I | u b L e
i 1 1
= T
H L™ N
Y i
X ra
- —
Ilﬂ-ﬁ = e
.
= ' <
f .
el -
1
1
E 2 - NOIILVINESRIA OEAIA @HL (®
= 1 —~ 'L AL Vil Al o {H i Lo v
| B | -
s 1
L u'.—
L
[ y
: FS
[ N
= 5
i
-0
F
b
A
1
L e —
= \n.
; z >
L ol

NVINAOHTEH

VILAL NI ENONINO ~-d ONVAOIQOJOTHOIA NV

T 8 B

JOSEY M'S°€ EHI °*Op°9Id

oY NOIIc




126,

two nitrogen nuclei of the cyano groups attached to the
carbon ring atoms, Moreover, the ratios of the intensi-
tles of the hyperfine peaks corresponds roughly to the
1:2:2:211 expected from two equivalent W4 nuclei, With
the higher sensitivity of the phase~sensitive ¢ctection,
however, two additional lines were recorded, These are
indicated as lines 1 and 7 in Fig. 40b, From this spectra
we see that all the splittings are approximately equal to
0,45 + 2 oe, £ the coupling with one nitrogen nucleus

is fwice that with the other, seven lines would arise., This
would mean from the McConnell relation (2,19) for the cyano
groups thit there 1s twice as much odd electfon density

on the one nitrogen atom as on the other, It is difficult
to see how this could happen as the symmetry about the

broken line

peints to the equivalence of the nitrogen atoms. In addi=-
tion, intensity ratios 1:1:2:1:2:1:1 would be expected

from two nitrogen atoms with this coupling (e.g. see the

72).

spectra of carbazyl This is certainly not so in
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Fig, 40a where the central peak is the largest.

Chlorine nuclei have a spin 3/2, Thus two equiva~
lent chlorine nuclei would give rise to seven lines as
(21 + 1) = 7, With the presence of the highly electro-
philic cyano groups in LDQ™ there will be less odd electron
density on the chlorine of DDQ  than on the chlorine of the
negative ion from chloranil, It would seem surprising,
therefore, that the chleorine nuclei in DDQ” should give
splittings while those in chloranil negative ion do not,

The following alternative explanations are therefore
suggested for the spectrum of Fig, 4Ub,

(1) The seven "lines" are due to a superposition of
a five line spectrum from DDG  (lines 2 to 6 in Fig. 40b)
on a broad line from some other radical. "Lines™ 1 and
7 therefore indicate only changes of slope from the
narrew to the broad line spectrum. The symmetry of
"lines®™ 1 and 7 about the centre of the pattern means
that both spectra have very close g-values, Fig, 40c is
a reconstruction of such a superposition of spectra., If
this is true, the splitting associated with the lines 2,
3, 4, 5 and 6 is a measure of the odd electron density
on the nitrogen atoms of DDQ . Using the value of
Qey = 15 oes in (4,9), substituted into (2,19) gives the
relation between the odd electron density ¥ on the nitrogen
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atoms and the isotropic hyperfine splitting a produced by
the nitrogen nuclei, The splitting value of 0,45 oe,
therefore means an odd electron density of 0,03 on the
nitrogen atoms,

(ii) The other suggestion is that the seven lines all
belong to the hyperfine pattern of an unidentified free

radical,

6.2 Reactions of Dicyanedichloror-p-Cuinone with Lonoxs.

(a) Tetramethyl-p-phenylenediamine (TMPD).

Mixed solutions of THMPL and LDLDQ in benzene show an
intense red colour, This solution is paramagnetic with

an intense, narrow e.s.r. line of g-value 2,002 * CLUS,

(b) P_phenylenediamine,
A single intense e.s.r. line with a g-value approxi=-
mately equal to the free electron value was observed from

the red solution of p-phenylenediamine and DDQ.

The paramagnetism of the solutions in (a) and (b)
indicates the presence of free radicals. As DDQ is a
good electron acceptor, it is likely that these radicals

are biradical molecular complexes,

IV.7 Eipal Conclusions and Recommendations.

Section IV,.3 shows that in polar sclvents some of
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the donor-acceptor complexes dissociate into separate
ions, As this work was concerned with identifying the
radicals through their hyperfine structure, the resolution
attained in Figs, 33, 34 and 35 for these ions is dis-
appointing, For complete resolution of these spectra,
all the mechanisms which determine the linewidth and inhi-
bit the resolution of the spectra will have to be investi-
gated at increased dilution, To attempt this, the sensi~
tivity of the spectrometer will certainly have to be
improved so that the steps suggested in Section III,.9 for

this improvement should be carried out,

Although one of the original ideas was to obtain the
hyperflne'structure'of fhe e.,8,r, spectra of the compiexes
A'D+, in the case of Wurster's base and the tetrahalogenated
quinones, no such spectra could be recorded. Thus, in
non-polar solvents the complex did not dissolve sufficiently
to give an e,s.r, signal, while in peolar solvents the com=
plex dissociated into radical ions, Yet there does appear
to be a donor-acceptor complex which in tetrahydrofuran is
present as the complex molecule TMPD',TCNE™, Again,
however, the resolution is disappointing and no interpre-
tations of the distribution of the odd electron densities
or the magnitude of the intramolecular exchange between

the unpaired electrons were possible from the spectrum
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shown in Fig. 39, It will be necessary to discover the
mechanisms preventing further resolution of the hyperfine
spectrum from this system, Such a mechanism as the elec~
tron transfer process (4.10) between a negative radical ion
and its neutral molecule may also play a part here in inhi-

biting the resolution of the isotropic hyperfine structure,

The free radicals of Section IV,6,3 (Wurster's base
and DDQ, P_phenylenediamine and DDQ) should also be studied
in dilute solutions to obtain the isotropic hyperfine struc-
ture which might indicate the form in which they are present

in solution,

In conclusion, it can be said that all the experimental
€.8.T. results and the interpretations arrived at in this
thesis are consistent with the fundamental idea of a l:l
biradical molecular complex formed through a one electron

transfer from a donor tc an acceptor molecule,



APPENDIX A

PRINCIPAL MICROWAVE COMPONENTS

Component
Klystrons: K302 type
R5222 type

Virectional Coupler, 10 db,
Attenuators

Phase-Shifter
Sliding=screw Tuner
Isolators 1 and 2

Isclator 3

Iype
English Electric Valve Co.

E.M.I. Ltdl

Microwave Instruments Ltd.
BR/17C0

BR/670
BR/2320
BR/1400
32/4010
Philips PP4420X
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