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NOTATION

r'(n') = ¥l . Gamma function.

[n]S o ..E_(Ej:..‘_)_ s Pactorial function.

r‘(n+‘3+~|}
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1. INTRODUCTION

(1) PURPOSE OF RESEARCH

It has been remarkedl that problems in Theoretical Physics
have been largely formulated in terms of differential equations
and that difference equations have been avoided. An alternative
formulation, often permitting different approximations to be
made, may also give increased insight into a problem. Some
problems are expressed naturally in terms of difference‘equations,
there being no differential alternative. In these cases it is
clearly necessary for new methods to be developed since differ-
ence equations have been rather neglected. The object of this
study is to examine and develop the use of difference equations
in physical problems.

(2) THE NATURE OF DIFFERENCE EQUATIONSZ?>?%s3s0.

In mathematical analysis two types of function may be dis-—
tinguished. Fﬁnctions of a continuous variable, belonging to
the realm of the Infinitesimal Calculus, may be studied with
the aid of the differential equations they satisfy. Difference
equations perform an analogous role in Finite Difference Calculus,
where one is concerned with functions whose argument can take on
only discrete equally'spaced values. A fundamental operator in
Finite Calculus is the shift operator defined by,

E;S_F(n): -F(n-rSuu) _ (1)

where w is a constant termed the interval, s is a positive or
negative integer and f£(n) is an arbitrary function. An s'th
order, linear difference equation may. be written in the form,

[AWE wADET + o AWE 4= Vo) @



(2)

The functions Ar,cn\ and V(n] are given, and the equation is to
be solved for -F(n) If V(n) is zero the equation is said to he
homogeneous, otherwise the equation is inhomogeneous. A diff-
erence equation may also be expressed in terms of the difference
operator which is defined by,

A fe=% (5 — D e | 2)

This operator is analagous to the differential operator in
ordinary calculus. There are many analogies which may be drawn
between operators and methods in the two forms of calculus, some
of which have been exploited in this thesis. Iere we are mainly
concerned with second order equations.

-

(3) CONTENTS

In Section II we give some examples of how difference
equations arise in Theoretical Physics. Ve give the simplest
derivations wherever possible without introducing extra compli-
cating factors. For example in II (la) on- the transport of
_eleetrons in a polar semiconductor, we give no discussion of

scattering by accoustic lattice modes.

We go on (III) to give some standard methods of difference
calculus, most of which are employed later in the thesis.

Most of the functions of Mathematical Physics which satis-—
fy a second order differential equation are functions of z (the
differential variable) and a parameter n (eigen values of the
differential equation), i.e. {2\011 The eigen value n takes on
discrete equally spaced values, and {;(z)satisfies a second
order difference equation (or recurrence relation) with n as
the difference variable. 1In Section IV we show how to calculate
series solutions in rising powers of z. Such solutions are
termed convergent expansions. We also show how expansions may
be found in terms of inverse powers of z. These expansions are
of the Stokes? fype. They are frequently asymptotic in nature.



However when a function is a polynomial in z the series may
terminate. The method employed to obtain these results is an
iterative one.  Other methods could be used to generate the
same results. TIFor example the factorial series method of Boole,
the Laplace method of transforms or Lhe technique of contﬁlqu
fractions. The iterative procedure secems rather simpler than
the first two methods and has more general applications.

Section V deals with finding Stokes' expansions in the
variable n by expressing the difference operators in terms of
differential operators. '

The most important part (VI) is that dealing with a finite
difference analogue to the well known W.XK.B. method for differ-
ential equations. This method enables Gfeen—type expansions to
be calculated, which are asymptotic in nature. It should be
noted that the W.K.B. method for difference equations is rather
more difficult for practical purposes than the corresponding
differential equation case. We develop a generalised W.K.B.

analogue which could be used to generate what are termed uniform

expansions. We find that the well known Euler-Maclaurin
summation formula is equivalent to a W.K.B. approximation to a
first order difference equation and derive a generalised

sunmation formula.

Section VII is concerned with perturbation expansions.
Firstly we give a perturbation theory which is applicable to
the Schroedinger equation when it is expressed in terms of the
difference ecquation which the Frobenius coefficients satisfy.
A second type of perturbation theory is briefly dealt with.
Almost the only well investigated difference equations are the
recurrence relations for the standard functions. It is there-
fore desirable to construct a method for solving an equation
which deviates slightly from these standard types. We give a
way of approaching this problem.

Section VIII contains tables of the difference equations
for some standard functions and section IX is a brief discussion

‘of some other methods of solving difference equations.

{
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II. THE DERIVATION OF SOME DIFFERENCE EQUATIONS
IMPORTANT IN THEORETICAL PHYSICS

This section consists of two main parts. TFirstly we consider
difference equations arising in. specific physical problems and
secondly equations which occur in general mathematical methods
of importance to physicists.

(1) DIFFERENCE EQUATIONS ARISING IN SPECIFIC PHYSICAL PROBLEMS

(a) ELECTRONIC CONDUCTION IN POLAR SEMICONDUCTORS

The problem of electxron transport through a crystal in which
the lattice waves may be polarised has been studied theoretically
and experimentally since the 193%0!'s. The optical modes in a
polar material gives rise to an electric field which scatters
electrons drifting through the crystal under the action of an
external field. The salient features of the problem are contain-
ed in the simplified model of Howarth and Sondheimer7 though
more accurate treatments have been given since8. Howarth and
Sondheimer's derivations of the Boltzmann equation for electrons
interacting only with optical modes will be outlined. The
Boltzmann equation reduces to an inhomogeneous, second order
difference equation because of the special assumptions made.

The fundamental assumption of most theories of this phenom-
enon is that all the optical modes have the same frequency?Jo,
irrespective of wave length. It is this assumption which
eventually leads to a difference equation. Ilowarth and
' Sondheimer7consider the case of electrons distributed in a
parabolic energy band, the energy of an electron with wave
vector k being given by, '

£ =B gy (4)

where m is the effective mass ‘0f an electron. The stapdard



form for the Boltzmann equation when a constant electric fieldf&
and a temperature gradient'BT is applied along the x-axis is,
X

_c.“_a_fo( ExTi 2 + B )T) ‘: 1 | 5 (5)

YE 3% T "T" X

where ¢, is the component of an electron'!s velocity in the x

1
direction, —-e is the electron charge,'? is the Fermi level,

-7 " :
+§=%“P(%FF) +'f3 ' is the equilibrium Fermi distribution function,
and i%]cmLis the rate of change of the electron distribution

function.F(E\ due to "collisions" with optical modes.

It is convenient and standard practice to make the sub=-
stitution for (%) )

£ — $l)e (6)
2P JE :

ot

where-*¢@§]§é represents the departure of the electron distri-
bution. function from equilibrium. The collision term may be
approximated by '

o --‘i_—'r JVG&‘:‘{) {Qﬁ@g)"” G %c‘ K/ : (7)

3’ i‘] Coltla:

where the expression-has been linearised by dropping terms of
the order ¢2'(i_<,\ The - function \/(k K’y is given by, '

\/(K Ky = \W (&%) f\Clﬁ {l (m} RS | (8)

where'VJCgﬂg) is the_transitidn probability calculated by first
order perturbation theory. I - S used values for \wJ(K,g'L
calculated by Frolich. Because total energy must be conserved
in the collision process an electron with wave vector K can:



(6)

only be scattered to a state KT % either absorbing or emitting
a quantum of energy hY . The matrix elements which were used by

II = S are

. |
Wik, kray= &N § (BE@ra—E@)-hW) o
2ma ¥l MY, . |

W(s5a)= e (V1) § (B (s y)- BGey+ k) (50)
031‘1{ lleo

where a is the interiomic distance,bﬂ is the reduced mass of the
ions, and N is the equilibrium Bose-~Einstein function given by

N = A %ﬁ)—t\-l | (0

If the substitution

Gley=1%1cs8 CE) (11)

is made, where O is the angle K makes with the x-axis, the
collision term is greatly simplified. This final reduction in
fact yields a difference equation for the function C(E). Since
this process is a little involved we quote II-S's result. The

equation is,

(%] =Sl 6 | (e

where L is an operator acting on C(E) and is defined by

L Clejam+ ‘céi*:“"’) [C_Ceﬂvo\ {aeron sek'[E _mﬁ
—2€& (&) sink g, ]

+ H(e-hv) N Fézw ECCE L;))]{@.E W) ok (B m)}
=1 E C (E\ Cos\-:'j%-:vdj

(13)
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The positive value of cosh t[E- is understood and I(E) is

Ve
Heaviside's function. Equation (12) has the form

o((E)CCE-u—h’Vﬂ + [SCF.EC (E\ + YCE) CCE—- ]—n;o); SCE} , (14)

where J{3 )?f and S are rather complicated functions of E. The
more detailed treatments of the problem result in an equation
very similar to (12) provided the assumption of a single fre-—
quency'}% is made. It is felt that g‘discussion of all the
approximations that lead to equation (12) are .outside the scope
of this thesis. For example the form of the matrix elements,

the applicability of first order perturbation theory and the
assumption of a single frequency”yo have all been considered in
the literatures’lo'. This special case of the Boltzmann equation
represents rather a more general type of problem where !'particles!?
interact with a single energy level. Since it is rare for the
Boltzmann equation to reduce to a comparatively simple form it

is worthwhile attempting to solve it with a fair degree of
rigour. :

AttemptsT’S’ll' at solving equation (12) in the past have

involved expressing the difference equation as an integral
equation instead of tackling the difference equation directly.
Solutions have been obtained for temperatures much greater and
much less than the Debye temperature. At intermediate temper-
atures solutions obtained by the standard variational method of
transport theoryZ' ° are extremely complicated. It is hoped
that methods developed in this thesis will overcome these
difficulties. '

(b) VAVE FILTERS 1?2
Consider a sequence of condensers linked by inductances as

in IFigure 1. L L

n=LN NN+ L'm-.}nﬂ_

Coi C, — Con
N T L T




(8)

Let Cn be the capacity of the nt'th condenser and let l—nm+\ be
the values of the inductance comnecting C,and C.., Let Vn., Qn
be the voltage and charge on the n'th condenser. The current
from Co to Co, is to be denoted by Cp,q - We derive a second
order difference equation for §, following Brillouin1? The rate
of change with time of Qn is given by '

[ L‘n-t,r\ % Lan:‘-l‘l - (15)
If this equation is differentiated with respect to time we have

2 : . 16
d Qn= [_-ﬂ o B2 Lrun+:} {15)

dl..'.'.. dr ) . dr

The time differential of the current can be expressed in terms
of the charges as follows:

ey = Qo-t — Qn |
%.E'Ln-l,ﬂ i Ln-1,n [ j 'n -,n C -y Cn—B (17)
d i B 1o ‘E Qm\—\
i = h 18
d_k NN+l Lnln.\-\ I"\ + L“n R I Cn+—1 ‘ ( )

The combination of equations (16), (17), and (18) gives

2 19
d‘_—Qh - Qn-t-'l X g_:\_':L__ _ E . ( )
d.r* . Laast Caey L Lone gl i

n—'lll'\ Nn=\

If the explicit time dependence for Qn is assumed to be

—yuwa

Ginc¥\ = Gkr\e‘ : i (20)

we have

L=
Qnsi + Qn- i X L-:L"‘ ""L Q—n +UJ1Q — o (21)
L C L C C-n n’n-l-l h=1,n ;N

NN+l TN n-l)n =1



This is a very simple exanmple of how difference equations
arise to wave filter theory. The equation is of second order
because each condenser is linked to only the first nearest
neighbour. Iigher order equations are obtained by having link-
ages to more distant neighbours. Difference equations also can
be derived for series of elements more complex than a 51ngle

condenser 12

(¢) A _ONE-DIMENSIONAL LATTICE OF MASSES LINKED BY SPRINGSl3

The mechanical system depicted in Figure 2 is very similar
to the electrical one discussed in part (b). Let the mass of
the n'th mass befﬁn and let the spring connecting H and b4n+1
have a force cons*t:ant]?)nh.H

a ﬁn-l'ﬂ Bnﬂ'\*" ﬁn-l'l,hﬂ.

M, M M

N+t Ny

Fig. 2.

Let the displacement of the n'th mass, from its static
equilibrium position, be LLn- The equation of motion for the
mass Mn is

Mn ._.__un= E%ﬂ,n*'! U‘h-\-\+ Ba_"nun_,‘_ [..6n}n-1-l+ ﬁh-l‘:} U~n

dt>

If a time dependence of the form

- wt

U.(h= U, <

is assumed, we have

igﬂ.n’rl un-\-l + 'F}h*‘,n u"\—l_ [ ﬁn}n%-l n-i —) U w M w u"\:

O

(22)

(23)

- (24)



(10)

This equation is very similar in form.to (21). The analogies
between mechanical and electrical systems are discussed in
reference 12 Higher order equations can easily be derived for
the case when the masses are linked by springs connecting more
than first nearest neighbours.

One dimensional lattices have been studied in great detail?j
since they furnish a guide to the behaviour of more complex
three dimensional - lattices.

12
(d) THE INTERACTION OF WAVES »*

The interference between two interacting wave forms is a
subject which encompasses a large section of physical phenomena.
Slatert? has given a review of the many situations where this
occurs. Examples of this phenomenon are: an electron moving
in a periodic lattice potential, X~rays being scattered by the
periodic distribution of charge surrounding atoms in a crystal,
and light waves being scattered by ultrasonic sound.

We will concentrate on the last case and give Slater's
analysis of the problem, which is applicable to all of the
examples cited. This analysis is for two waves within an
infinite container within which Born—Von.Karmen;5boundary condi-—
tions are imposed. A difference equation formulation is obtain-
ed. In practice experiments which are made involve sound being
passed through a transparent substance which has a finite volume
and the boundary conditions are more compliéated. The difference
equation formulation of this more practical problem will be
given following the original derivation by Raman and Nath;6’17'
The author is indebted to M.V. Berry!® for supplying him with
details of his research on this subject.

14

(a) %HE CASE OF BORN-VON KARMEN _ BOUNDARY CONDITIONS.

The imposition of Born-Von Karmen boundary conditions is
merely a convenient method of normalising the problem. To put
matters in their simplest form we consider the sound wave to be
travelling in the x direction with a wave vector K, . The



(11

light wave is to be considered as initially travelling in the y
direction with a propagation vector Ko with electric field polar-
ised in the z direction. For simplicity we assume the sound to
be unaffected by the light wave. he light has a much higher
frequency than the sound wave and so we consider the sound as
giving rise to a stationary variation of the refractive index

of the t;ansparent substance. We have |

— (25)
/1 —-f4b + f*¢C1°5 K|? ) .
where Mo 1is the unperturbed refractive index and./ﬁCOSLQX is the
periodic variation produced by the sound wave. The wave equation
for the component of the electric-field,Eil_ is
i 13 b5 7 . '
D E, +3 E, = ~° 3 E, (26)
)xa- BLJ’-* = )!_1._
where C is the velocity of light. Let W ,be the frequency of the
light, then if it is assumed that E,can be expanded in the form,
w.
E. = 2 Anexlot-[_l(olj +nK{w<-—woi-] _ (27)
2 = ,
n=—<0
where n is an integer, use of the othogonality relation for plane
- waves gives a difference equation for ﬂ\n . The equation is,
(28)

L= e Qe VA, + pops [ A, +AL =0

<
where terms O (’;—4}) have been ignored.

‘The physical interpretation of the fxﬂis that a plane light
wave with wave vector (Q,Ko)o) is scattered into states with
vectors (nleo)o) and with amplitudes P\n_

Equation (26) is basically Mathieu's differential equation
if the Y dependence of E:_is separated, and the.ﬁh are the

Fourier components of the solution to Mathieu's equation. High-
er order difference equations are generated if the sound wave



(12)

contains more than a single plane wave. The solution of (28)
for a fixed value of Xo is only possible for certain allowed
values of W, In other words the sound wave causes dispersion

_of the light and gives a band structure for Ww; (X,).

(B) THE EXPERIMENTAL SITUAT10N1°’17’18'

Experiments on this subject involve measuring the inten-
sity of the diffracted light beams produced when light is shone
on a transparent substance. It has been pointed out18that
theoretical treatments of the problem which have been given,
fail to produce formulae valid over the whole range of the para-
meters involved. Again the problem will be considered for a simple
geometry since all the essential features are contained therein.
The notation is the same as in (o), with the sound wave consider-

ed as a stationary disturbance. The geometrical arrangement is

depicted in Figure 3.

XA
Tnacident
Cighy with
wavevechkor 1 sk
Kg . % Dl FFNC}'GC‘
—_— . - ¥ Oth

Sound wave
with wave
veckor K

]

/ Y, "5
z ' '

FIG.3.

\ Beams
-lsk

The transparent substance is to be considered as an infinite
slab of thickness Y- The time dependence can be separated by

writing,

Ak : :
E‘z. (x‘ld)l‘) — E‘ZCKJ‘Q)Q. ) (29)



‘l.

If terms O ]“o") are omitted we have

-3'7\ BU

Eﬁf&g)is no longer separable because of the geometry. Instead
of (27) the substitution

E. O{J"ﬂ— Z X (‘-ﬂ

N =0

_.uJ E;f4° + lfﬂ,r&lcas.K x-] Ex

\r\KY

can be made. By substituting for E1_and making the transform-
ations

E—.: Ko f'"\ﬂ .
vo(k)= 1" e RE X ()

we obtain

14y (51—, (B L NGY
o %

where
ey k:-
ﬁ /“of“u Ko"

i
In obtaining (33) a term proportional to G; gg;thE)nas been
* -]
neglected since G& is assumed small. 1Nnr§<o no scattering can
(=]
occur and this is represented by the boundary condition

kk)n("f: Srm

If the scattering is observed at §= Ko/ Y, thentﬂ\(gj is the
amplitude of the n'th diffracted beam outside the slab.

Equation (33) is a differential-difference equation but the

(13)

(30)

(31)

(32)

(33)

(3%)

(35)



derivitive may be removed by taking the Laplace transform of
(33), 1z

Ly = 2 g ey = Sale)
hen I
L L W)= p S0~ Yl
and a pure difference equation is obtained for S (p) which is
=8 LH + (2 p-Tpm IS +g_ () =26,
It is easily shown from (38) that we must have
? S_T\(gﬂ =) Sn (e)

so that
\oso '1"3',‘:\

-G v Gp-ipm)S w5, =0 (n70)-

The experimental ranges of ?t and !ﬁarel8

8 & &4 Vob
and
Vo & P L =2

Methods developed in this thesis may prove of value for solving
(38) whenﬁ is small .

(14)

(36)

(37)

(38)

(39)

(40)

(%1)

(42)
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(2) DIFFERENCE EQUATIONS ARISING IN
GENERAL MATIIEMATICAL METIIODS

We consider three examples here. TFirstly, we consider the
Frobenius power series method of solving differential equations
where difference equations result for the unknown coefficients
in the power series. This is typical of how series expansion
methods often yield a difference formulation of an equation.
Secondly, we consider how the standard functions, defined by a
second order differential equation, are functions of a parameter
which takes on equally spaced values. Second order difference
equations with the parameter as difference variable exist for
most of the standard functions and the difference equation may
be taken as a starting point for the study of their properties.
IFinally, at a rather more advanced level, we give a precis of
R.B. Dingle's work; showing how difference equations may be used
to investigate the convergence of perturbation series methods
for solving Schroedinger's equation. '

19, 20.

(a) TIE METHOD OF FROBENIUS

One of the most fundamental and important methods of solv-
ing differential equations is that due to Frobenius. As an
example we first consider the application to Legendre's differ—
ential equation which is

(1=x7) ‘-ginc(ﬂ - d L6 ey £y =0 L (e5)

Ve may attempt to find a solution of (43) as a series of
rising powers of x. Hence we write

Pobre 2 8n 8 )

where N takes on integral values,ar\ and K are to be determlned.
Substitution of (44) into (43) gives

nt+K=-2

Zan(n-:-id(n-i-K-m))( 2 zan [Cﬂ‘\-i‘-)(.n*“‘-"‘)"lfn“”“’i\— ‘e('C-H\j =0 (45)
n n :



(16)

Every separate coefficient of each power of x must vanish
because (45) is to be satisfied for all values of x. Doing
this. for (45) we find

K(k—1)0,= 0 , ' (46)

which is termed the indicial equation with roots K=o0,1 if o=o.
In general we have '

On+LCn+K+ x)(m—x-:.«—;):.— Gy ‘(_'m—-\qcn Frae ) — *e(_fﬁ-z\__} : (27)

which is a first order difference equation. The majority of .the
well investigated funciions also have first{ order equations for
the Frobenius coefficients and it is simple to solve a first
order equation. The functions which present more of a problem
are those with a second order equation for the coefficients. An
example are the functions satisfying Poiseuille!s differential

equation, which is

d“’ P (o) = Lo a_ P‘U(‘"\ bt (i-—r"’) Pw((‘) = (48)
aﬁ:3 » A

 If the substitution

0 n 20 : :
w n=2 \ !
_ Nt nli
is made the following second order equation results

i PR V& - ;
Qg 02 W B ides. 08 Oy (50)

\
In section VII a method of carrying out perturbation theory for
difference equations satisfied by Frobenius coefficients will
be given . '



(17)

(b) DRECURRENCE RELATIONS FOR STANDARD FUNCTIONS WIIICH
SATISFY SECOND ORDELR DIFFERENTIAL EQUATIONS

The standard functions of mathematical physics, defined by
second order differential equations, in addition satisfy second
order difference equations or recurrence relations as they are
usually known in this context. For example the Legendre polynom-—
ials denoted by Fi(f) satisfy the equation

Q’H—ﬂ Pr\_l-g)(] N Phéﬁc) =T e | ("'\'\' Vg_) Fﬁ_(x.) | | (51)

where the order of the polynomial n acts as a difference variable

and the differential equation variable X acts as a parameter in

the difference equation. The associated Legendre polynomials
f>$1}\satisfy two difference equations, one with n as differ-—

ence variable and another with the minor order m as variable.

The general form of the equations for the standard function is

AW FGY + Cong 0= 80x) F 0 (52).

It is very useful for classification and calculational purposes
to define "normal" forms for a general second order equation.
By making the correct substitution of the form,

fm= Q) KM ¢ B (53)
it is possible to transform (52) to

E (4] 4 F (=2 6 (n,x) & (x). (54)

N

The general technique of finding the function (QKn\will be
given in section III. Two other normal forms have been found

convenient. They are



(18)

Y. ) = \/n_(lxv = 2 T Y (X) ' (55)

-f‘

and

Ja- Y &) r U, ) = ¥ (U, 6 (56)

145

In section VIII a list has been compiled of the difference
equations satisfied by some of the well Lknown functions and the
functions which give the normal form (54). The point of view

of this thesis is that difference equations constitute an alter-
native to differential equations or integral representations,

as a starting poi?t for carrying out analysis.

e 1
(¢) THE ROLE OF DIFFERENCE EQUATIONS IN .PERTURBATION TIEORY ™ *

We give here an outline of the way in which difference
equations may be used to investigate the convergence properties
of a perturbation expansion. We first consider the iterative
form of perturbation theory for the one paftiele Schroedinger
equation for the case of no degeneracy. This particular theory
is convenient for the purpose in hand since the r'th term in
the perturbation expansion may be written down by inspection.

Let the Schroedinger equation for an 'unperturbed! system
with known energy eigen values Eﬂ/be symbolised by

(Eq=w)Y, =2 o

where H is the Hamiltonion operator and q is a label which takes
integer values. It is desired to solve a perturbed equation
with eigen values E%;-e but with unperturbed boundary conditions,

i.e.

(_‘E‘i/-i-é—-H-—H),dP-_—,a ' | | (58)
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where h is the perturbation to H and is assumed small. Equation
(57) may be refashioned to a form convenient for successive
approximation by putting the terms CG""“)GP on the right hand
side and then inverting the operator (_Eq/--H) . Using the
orthogonality of the functions LV‘V it is easily shown that we must

have
e (Uf}f’ }Gq-'é.')d)_)_
¢ I q}ﬁ/ p# 9 CEGV-- EF)

¢ (58)

and

(Yo th-e) @)= (59)

where (4,B) denotes a matrix element. If (58) is iterated beginn-
ing with the zeroth approximation qlhr-L}’avwe find

LV + COJOLJ o+ ZZ (o) (,p) x
9 CU*'A 9 Eq,—r {ﬂ

T35 7 G e T | . e T . ()
“Fo pro FFo CE“D—#E‘W“‘ )(Eﬁ/ﬂE"V‘PjCE‘V— Eﬁ/,,y) |

= Z ¢

where '-°

ot B = (g Ch—¥ Wy 7 (61)

The general form form cF’o‘)is.obw‘.‘ous by inspection. The new"
eigen values are determined by the equation which results on
suhstituting for ¢ in (59), which gives

(olo)-i- Z C_OJ"{‘)@{JC’) g T z (o &) (4 B_Q&f_)__ + - (62)
LEp CEV*EV—&) 4o g#o (E‘U-ET"‘JCEW E“V'P)



\=v)

The r'th term in the series (62) can be interpreted diagramatically
as corresponding to all the possible ways of moving from o back

to © in r moves with the position © not allowed as an intermed-
iate move. In general it is difficult to investigate the proper-
ties of the series (62) in the above form. The problem can be
simplified by expressing each term in the series in terms of its
neighbours. If the function P.&) is defined by

_ 2 =) (o,) (s, B)
i 50 PLaY= B} 1 P Cp= 2
Po % ¢ (_Eq/-'EtVr-L\ 2 ‘ <o (E ‘{r‘lA)CE E’VTP\

Plvy= 2 7 iy e CRY)
<%0 B0 (g Eqra)(Eq g ) EqrEqpy)

and so on, fhen in general

CET—‘ E‘i;-*-y) Pr" (Y) = 2 (g Y) P (B) | (64)

P:r»‘o un\ess =0

Equation (63) is a partial difference equation in the variables
P,Y. Both (60) and (62) can be expressed in terms of the function

P-¢Y) i.e.

o Yo Unless Tso

and

Z- Lim CEW“EW*B’} Pr‘-&-a(’x) = -
Y=o (66)

The reduction of (64) to an ordinary difference equation is
obtained by writing

P(YS'-:. ;i;a [Er PrCY)' (67)
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?(x\ is called the generating function of ﬂ~<¥) 253
Multiplying (64) by ;5r and summing over ¢ it is found that

/o [Eq/-' E‘V"gj Pvy= 2_ (,Y) P (e) . (68)

o excegr F?.-.r Yerems Cnloo

In general the number of solutions to (68) will be equal-to the
order of the difference equation and any solution can be
multiplied by an arbitrary function of /9. The required solution
must be the one permitting an expansion of the form (67). The
artificial selector variable may be chosen to'suit the nature
of a particular problem. If (68) can be solved either approx-
imately or exactly it is an elegant way of investigating the
convergence properties of a perturbation series. R.D. Dingle1
has illustrated the power of this method by applying it to the
problem of determining the eigen values of the periodic Mathieu
functions. . Y
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III SOME BASIC METHODS OF FINITE DIFFERENCE CALCULUSZ?3:

In this section a short account is given of standard methods
which are used in the main part of the thesis.

(1) OPERATORS

s :
The shift operator E is defined by

E £iry= F(rrsw) S

where S can be a positive or negative integer and FZ“3 is an
arbitrary function of N . The difference operator é is defined by

B e = 5 L) — €60 )

is analagous to the differential operator d. and in the limit

an
as W tends to zero
Lim A = & e )
w-20 w an : :

Euu and é can be expressed in terms of differential operators
by using Taylor's theorem, i.e.

E\;’I '?(h) =3 FCV\.) A= ) P F(t-\.\ =+ L.\J___L "D‘-'-En e o _ (72)

S
' o
where P denotes é—- Hence
an®
, wD (73)
=, &

and

s=5ld=a -



The second order difference operator is defined by
ZS?_F(B\:: éi (%5 F(h\):: %31 [liT(h?Quu)—-fl{?61+ua)ﬁ—.€kh{]
w

< ;
and A means multiplying by A times. The interval w in these
wi b 5
operations can be made equal to unity by changing the variable
If we write '

where C is any constant then
A £y = 45 O F).

(2) SUMMATION

Consider the inhomogeneous equation
A £ny= &)
w
The solution to (78) can be written symbolically as
)
-pch)‘:. &5 C‘)(h)
wJ

The process of inverting 45 is analogous to inverting %%h and
is called indefinite summation. The nature of é-" can be found
by Andre's 1net110d2. We consider (78) to be equivalent to the

system of equations

‘FC“\ - F(h—-w‘\—.:. wo ¢(h—w)
-P(n- U ‘p("\"'lw)z Lo dp(n-le

£ lrgre) = Flme) = o0 4 (]

(75)

(76)

(77)

(78)

(79)

(80)
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Adding these equations it is found that

L= Fn) + o b0 e dlnrw) - r §(rmw) (=)
In finite difference calculus it is conveﬁient to use the notation
n
S @y = $na) + blng) - - T $lomw) (s2)
n= Npg ;
Ilence
n
Lemy= £ + Z— P (83)
2
Equation (83) may be written as
N
Lony= w2 Pln) \E%)
C
where C is an arbitrary constant of summation. We will use
Norlund'ss’s‘notation for the indefinite sum, and this is defined
i)
n i) _ '
— n Y
o Z Cb(r\\ = S Ci)(h)% (85)
n=c <

Any arbitrary function of period w is also a solution to (78) but’

these solutions are to be considered as understood in this thesis.

(3) FIRST ORDER DIFFERENCE EQUATIONS

The general solution to a first order difference equation
will be required in later sections.

A homogeneous equation has
the form

floro) = peY Fy =0
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Taking logarithms

I forw) = In £6) =lapn (87)

Hence by summing both sides

oLy = 5 S leey an | | (88)
£y = exp & S@ In ple) G0 - (89)

Consider now the complete equation
£ P FEy= 9 (90)

When C@Oﬂ is zero the solution of (90) is given by equatlon (89)
and will be called F‘on IIence by writing

£ = 19 (91)

we have
£ (e ) — POV E,CY 9] = Y
(92)
Now 'F‘(h*ww': PCH‘ 'p('“\ so that
9 (™ - | e = iem)

nrw) — (n) =
A A WAYIR
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Therefore the complete solution to (90) is

(n : '
'F(n]" F(n\[_ i S C‘;ﬂ\:c(n —} (9%)

C

(4) THE NORMAL FORM FOR A SECOND ORDER EQUATION

We wish to express a general equation

AG)L(nre) = B L () + (o) fin-)=0  (95)

as

Fr+w)+ F(n—w) = 2 B (n)F(n) | (95)

If we write ) .
.F(n)-_—_ Q(ﬂ) F(n) (97)

then

QCM w) Aln) Fenrw) + Q(f""“’) CMFln-w)= B(fﬂ Q(n) F_6‘)(98)

To obtain form (96) we must have
Q (r+w) = () Q(ﬂ w) (99)
A

This is a first order equation with interval 2w.Hence from (89)

C (n+w)
QC‘“): exf)_il._w § ]l’\ Ag:.::n %Jn- , . (100)
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- _ES(}V\(:QCQ)

En) = 1 Kl Ot (101)

The arbitrary constant Ng can be given ahy convenient value.
The same type of argument may be used to obtain the other normal
forms (55) and (56).

(5) INHOMOGENEOUS SECOND ORDER EQUATIONS

The complete second order equation in normal form is

F(m-—uu) G2 F(n-'w)-— 2 6(?‘\\ F(h) - \/(r\j | (102)

There are s independent solutions to an s'th order equation2’3’4‘

Let the two independent solutions to (102),when‘V(n§ is zero,
be denoted by, I, (n) and E_(n\ i, 04

(103)

F(n+w) + F(n-w) = 2 66 F(n)

and
F’); (m—-w) . F_J_Cﬂ"'-”> = A & (n) E_(n) (104)
Multiply (103) by Fy(n) and (10%) by [ () and subtract, then

RMF ) -Few) EM= Foew) E ] = Em F (n-w)

Equation (105) must be true for all N, therefore

(105)

C= R R -Few) Ry 09

must be independent of M The-quantity(: is Casorati's determin-
ant’ for the special normal form considered and is analogous to
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the Wronskian in differential equation theory.

By using La.grange'53 method of variation of parameters we show

that the normal form (102) leads to simple expressions for F (n)
in terms of F‘(’n} and ]:z_(n), Assume th'at a solution exists

to (102) of the form

F(n\ = P(n] F‘(hx e QLCM F:.(“) | . | ,(107)

Substitution of (107) into (102) gives

[: Plnrw) — P(n):l E(M'W) — [_ Pl )— Pln- uu)—} E (n—uu) '

(108)

4 [Q_(ni-W) — Q(“]] F (nrw) — [Q(M — Q_(n-—w)_)l:‘;(n—w) = V()

Because there are two disposable functions PC“) and Q_C“) we

can make them satisfy one other condition. We can assume that
[P(m—w)—* P(nﬂ_]:‘(n) + EQ(nﬂu)-" Q(hﬂ F:.('ﬂ = (109)

hence

[ F(m—w)— Pfhﬂ Fl(ndrw) + EQ(n+w) — Q(h\_l E_Cm—w) = \/(‘n} (10}

El imix}ating E)(nfw )— Pfhﬂ we have
Q (n+ w)— Q(n) = V() F, (n)/(E(rﬂ 5(n+w] - F{(n—rwj E(ﬂ)

(111)

Il

VY F ([ C
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Hence

= L VW R AN '
QM= C o g Q () L (112)
and using (109) we have

F(‘”\"‘ 3 C{F(“) SV(““: (“)Aﬁ = n)S V(f\\ FG\)AH} (113)
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IV. THE CALCULATION OF SERIES SOLUTIONS IN RISING
AND INVERSE POWERS OF =z I'OR A FUNCTION +£n(2)
DEFINED BY A SLECOND ORDER DIFIERENCE EQUATION
VWIERE n IS TILE DIFFERENCE VARIABLE AND Z A
PARAMETER OF T1L LQUATION.

The functions we will investigate are those studied initially
from the differential equations they satisfy. For example the
Bessel function Jn(Zz) satisfies the differential equation,

= —_— 1 2
%1;‘“(74 SN T e e OB BT e =0 (114)

in which Z is the independent variable and n a parameter, but it
also satisfies the difference equation

Tne T = 2y T )

where O\ is the variable and Z a parameter. We show how solutions
in rising powers of Z (convergent expansions) and inverse powers
of 1—(Stokes'21 expansions) can be calculated from the difference
equation by iterative methods. Two classical methods of solving
difference equations are the methods of Boole2’” and Laplacez’3
which are applicable to equations with rational coefficients. The
equations we consider fall into this category but the iterative
method can be applied to equations with more general coefficients.
A brief comparison of the iterative method with the above two
approaches and with the technique of continued fractionse%’sz%iven
in section IX, . The method we use involves writing a

difference equation as a summation equation (analogous to an

integral equation).

Consider a general order equation represented
symbolically by

_L“ u_nCZ-)—--o (ils)
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where |- operates on N . We seek to rewrite this equation in the

form

L, U2 = L oug =) (117)

: Quite'formally we can iterate this equation by ignoring the right
hand side to begin with. We may do this without consideration of
the magnitude of the right hand side with the justification that .
after iteration we can examine the convergénoe properties of the
resulting series.  The procedure then is to first solve the
equation

L ko=l =6 _ - (118)

/

the solution to which we call llﬁqu).Thé first requirement of L_‘
is that it must not be the identity operator. The next term
called L (*)is the solution to

L\U.‘n ()= L. U (=) (119)
or
W (@) = L, by Ua(@) 0
Hence
W, (= W E) + W@+ - . _ (121)

: -1
We must therefore be able to find the inverse L_! to L-:-In the
examples to be considered L:T takes the form of an indefinite



summation and hence the iteration series depends on the constants
of summation involved. The solution also depends on the range
and exact values of the variable n. In the following examples
we consider N to be known. In general the constants of
summation and values would have to be determined from boundary
cdnditions or some subsidiary equation. The splitting of the
operator L. into L., and -, such that we obtain a series of the
required form is largely a matter of experiment but the various
possibilities can be quickly investigated. If L\ is a second
order operator we generate two solutions of the equation. IIf
L,be of first, order we obtain one solution and then have to
find ‘another L. ,to find a second solution.

(1) SERIES IN RISING POWERS OF Z

To obtain a series in rising powers of Z it is necessary to
write a difference equation in the form (119) with a positive
power of Z on the right hand side. These series are termed
convergent since by taking enough terms the series converges
to the exact answer. The series can terminate for a polynomial

solution.

(a) BESSEL FUNCTIONS

The difference equation for Bessel functions of real argu-

ment is

_Fr\ () + Fn(_'zJ o i 8 Fh('z.) : (122)

+1 ~1 z )

where N is not necessarily integral. Let us consider the case
when N is not an integer and begin by arranging the above equation

in the form

—t = Z ( (123)
-Fr\(_l-) 2N F_ﬂ_(lz) 2n -Fﬁ-l-IZ)

The prescription is to first solve the zeroth equation

(124)

Rk AR L

B e
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The solution is the standard result

£2@1= exp S‘in = = AG(Z) /T . (125)

2(h+t)
It is convenient to remove this zeroth order term by writing
s (126)
£ @ = £ F6
n N
so that after substitution we have

EH-@_) . E\(L) = (Z—i_s-/[(m-l)(n-’rt)] an;-) (127)

This exact equation for FiJ}J is nicely expressed by a summation
equation

A n
F(z_):: L.Z;:]LS FD+(??3 AR = ?5-__ 5 rw:?. An (128)
n ) .
' ' BTN

(n+2 0N+ 1)

We are at liberty to write the equation in either of the above
forms because of the arbitrary constant of summatmon.;&(z) and -

N, correspond to one of the two arbitrary constants of a second
ordexr equation. ‘

The iterative process 1is begun by putting F%CQ:J for all n
on the right hand side

F. C‘Z—U: [ + L“) S [n], An + \'"(%_-)l \:D\]_,Tn (129)

At this stage we identify the series with jn(-z_) by taking N,=-<0 '

E L= 1= [@Fr o+ - (130)
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The next term is given by substitution of the above into the

summation equatvion, A
s - 4 :
I:h(z_y; 1.-(‘_;—) En—l_‘ (\-'Z—-;_S ; Eh_l_BAh +

%=

- -G, Y B

In this case the general term is easily found by inspection. so
that

F (=)= AT {l i o I 8 e @ D‘]_?--%(lsz)
(h+1) ‘ o+

The standard definition of —J;\(_Z-) has A (Z-)‘:-' .In general A(_‘-)J Ne
and the exact values of N would have to be determined from boundary
conditions. A second solution is generated by applying the same

argument to the Zform

-F (=) — 9-_%_.. {:'ﬁ(ﬂ = - Fn_ﬂz) . (153)

Nt

/
This second solution -{;&z)is

‘F;CZ') = AI (7-)(1-5-_-3“ rl(“) {l ” L%j- [__:lf::‘] L") r‘( a5 En | \%(13&)

!
If we take A C'z-):'l

‘Fi(z):: L1 j: () _ (135)
n h

StihNnTv

The point is that the second solution of Bessel!s differential
equation for non-integral nsatisfies the difference equation

£ &) *'F ("' = —3b £ (=) (136)

N+ |



The same procedure may be followed through for Bessel Functions
of integral order, indeed the argument is identical except that
the second solution has to be synthesised from J (Z) and J =)

n -n v

Yﬁ-): Lim. (S;'nn'rr\_ {j‘n@)mnv ._'__]:p({'z.]} _ (137)
n

n-—'-)snf'ejer

(b) THE HERMITE FUNCTIONS

We shall seek the polynomial solutions to the equation

,P 2y + 2o [ ()= 2= ﬂ(‘z_) ‘ (138)
K=\

h+1

We remove the zeroth term by writing
TN
£ =y= Ak (faL) (£ Fh(‘?-) (139)
n :

Substituting

F

ﬂ./: 5 /2-, | (140)
=lsT oY

we find
/ ; y r1( f‘) / '
fo=1% 2 AR i
- P S M)V A

This is best expressed in terms of the generalised factorial

(141)

defined by

Ils T/ P T S e
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The next approximation obtained by nuttlngf: =' in the right
hand side of (I%1) is
/

Fo= '+ iz (202, |V o+ (143)
o i

Let us choose ¢, such that [_ovo_j]_:.o .The next terms are
S

(124)

{:1/; [f %! (ié)z_ [:q,"_].a = o ‘%)7—2.[%]1_7-(;%]32;‘ G-]a,;_*'

If we take a linear combination of the solutions associated witn

- the * signs and take A=35-we obtain

h= TEEVG (1~ (2)2 Dady +(2T2 0L+

2. I

+ O 2T 2 [9ly + (27247 + -3}

(145)

(¢) LEGENDRE FUNCTIONS

hese functions satisfy
(n¥ \)p (=) + n E\ () = 2=(n+%) _Q\Cz,) (146)
2 | i

We could investigate this equation for general values of n but
we shall restrict ourselves to Nn=9,,--.-w and look for the
polynomial solutions termed Legendre Polynomials. It is clear
from inspection that the form

£ D +n 0 ()= 2= G’H‘ 2) L (2) (147)
N

Ny i =\ Cn-i—-l) £

will give a series in rising powers of Z since Z does not occur
explicitly on the left hand side. The solution to

-F L M \ .(; (z)=eo (148)

N4 Cr\-}—l Nn-—1
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is

o= AR Y TR /TR (149)

Ve now write

fo= A& ET ) B (150)

(n+'2_}
to obtain
'J_ ! -
P ey Fa)= * = () ey F..() (151)
nia rt"’( n_%_-s)‘.- G
It is convenient to make the transformations n=72% VI x=Z F = F
whence ) 5
12 G e .
F{/: TS b I S(‘V"%) Eé:'")_ F“U“i. Ac[/, Y (152)
: Vs p(i/*g';‘)
Substituting FOVH' | in the rlght hand side gives
# (153)
Ve V?@+%)
This gives
F’: | + 2.x [P(j/-i-l) P o N _ ' (154)
v e o _

Ve take ¢, such that r‘(“.’}‘.‘)/l’" @/o-i—ii_‘) =0 . If we take A(Z)= iL_{?‘_
and add the solutions associated with T signs we have

Pey= 20 TOE) [ w2y @n)/Mlrs) = as9)
e

+ (Y0 - 2 (=) M)/ Tlryy +"7}_




(d) FFOURIER COEFFICIENTS OF MATIIIEU FUNCTIONS

One form for Mathieu's differential equation is

d x* 3 '

The substitution

i 5% = VAr X
Lg = € Z bre-' [ (.157)

r=—dd

gives a three term recurrence relation for the coefficients br

b B i E‘*—C‘"*%T]bt_ | - (138)

4+
T4 C—
% 9

The substitutions

r+ S/2 =n

(159)

finally gives us

,F_, + £ = [ —n) Fﬂ (160)

Na-y h—t "R

e
We shall seek a series in rising powers of q,qoccurring in the
equation much as Z does in, for example, the Bessel equation.

The summations do not succumb easily. We give the first two
terms. The zeroth equation is, .

_F‘

h+1

)

2~1/

whence

_F:\ = A(,(}al/) ]"(n-&-.)’;[) r(n-—_ﬁ'&) /(.—ZT/)n | > (162)

4= (n+3)-JE) £° = o (161)
e 5 , |
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" If the zeroth term is removed by writing
T o=fF Sl
N n o '
we find

i o . - Ap (16%)
& v §<n—wmc (n-17= ) |

The next term is given by writing F%:l in the right hand side

” o An o+ - (165)
iz oy S (h “)(on- 7<)

This sum can be obtained by decomposing the summand into linear

partial fractions as follows :-—

] =

(A+J=)(n-52) 25 (chﬂm)_cm T)

(166)

C

and
I feia: LA | X |

(n"-,L)(Cn-.f_-..zf Lol L (n+3)(P=1+3)  (n=Tx\(n-1-3x)

;0 (107)
| o --"---' -+ _]__ PSS
4_‘(!:5;—() Cn—-l ~J4) ("‘*5_;‘-) (1=23L) Cn"‘L"'.I:}. (n_J;Q]

The first two terms are straight forward factorial sums. The
indefinite sum of (n) ' is called the Psi functions i.c.

a

Dt = [WOreem ] o

nb
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Finally we have

o Rae 0 a2l s s et i Y= =140 )
H 3 o T Ak }

e ﬁ-—'?.-i-ljl’.) (n-1->x s
(o255 P [Pt Y £ ) el o+

The simplest result appears to come from taking N =0, K For this
value of n,the term in brackets is zero.

We have found one solution in rising powers of q, clearly
anothex such solution results from the form

7 ) I A o X 170
42%-+ -——:y_——— {:r\—t il oo hgivhlv ( )
(N+32) (D=3 CneS2)(n-3=)

The summation equation follows directly from substituting

£ ={AGa) G2y filnsaTEr} Ry om)

&

and we find

™ .

F = | + Ll—cv (172)
" 2 ([realZ)( @I )
On substituting Fi:fiin the right hand side we find the sums
.are very similar to those for the first form..
£ = I == CVL 2 (nt) e ) | L{)(ﬁ_g)-—\{)(n-&ld—ﬂ)},
g L | (Cnr]* =) UF2IL) (173)
\

_ a5 — Wlar=d=) (T
o-im)[@)“r) (o )}wi.
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Again N,=®© appears to be most appropriate since the function
inside the brackets vanishes at this limit.

(2) SERIES IN INVERSE POWERS OF =z

In the foregoing examples the series in rising powers of =z
resulted from obtaining a summation equation with a positive
power of Z on the right hand side. Similarly the inverse power
series are obtained from a summation equation with a negative
power of z on the right hand side. These solutions are called
Stokes! type expansionsgland are frequently asymnptotic in
character. Tor a polynomial however the series can terminate.

(a) BESSEL FUNCTIONS

The desired form is

4:@)+F§M=z%a@] ' (17%)

N1 S N-

and the solution to the zeroth order equation is

e 5 o5

£°(2) = A@)g ES | (175)

Hence if we make the substitutions
o
() = £(=) F &),

e 2 , _
.%/ (176)
¥ o= g .

F = S

we obtain the summation equation

v n
]:-_‘;(-z.) = 1 ’.'_E.. g Cﬂ/"""i) {:"b""‘ji_&q’ (177)
Vo '
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Ve begin by substituting

?‘Z/CX) = (178)

in the right hand side .

F;,_—-:- | = % éhﬂ“"‘i)ﬂw el  (179)
- v, | |

At this stage we find agreement with the Stokes' expansion for

Bessel functions by choosing ﬂ/ ﬁ;

F‘;/: | £ Eﬂl”" ¥ s )] fadts };(ﬁf"i@w(ﬁ/"i@% " (180)

The next term is

Fo=1%% (3+8)a-5)+ w S @R)a)Gre) sy o
I ' Cs (181)

= (G E) 4 (rR)G G RE ) ¢

Il

or

£ ()= A(z}gnz" ‘{f £ (om0 ¢ GrimQm=a) w oo ?f (182)
n fiz 12 (z)*

The Bessel function J, (z) is in fact a linear combination of

the above solutions

L L .-(-'7-_.7.1:.] "rl';{ C 4rnt— v e
jl(z)n(n%); e Te .{_l = ;1 -z_) g } :
Ay (183)
2 & T'¢T)'H { o (et \§ '
BB e ylw e R

The same basic method can be used, of course, for modified

Bessel functions.



(b) HERMITE FUNCTIONS
Consider the form

() = 22 ()= —2n § (=) (184)

n-+1

Iteration of the above equation, of course, gives a quite
general solution until we specify the summation constants. This
we shall do to obtain identification with Hermite polynomials.
Omitting the preliminary steps we substitute

_P (-2__ ),_-_, A (z) (Zl)h 1:,.\'(7-') . (185)

which yields the summation expression

n 8
) ' '
FGy=tis 1o SRE (=2 an (126)
Z o
The firsit term is therefore
S e :
= |- L o, st Ll Ef_—:]'a-} + oo (287
Fnc-z-) ) 2> e \ ; 22 o N, ( )

The polynomial solution corresponds to'n§=0 and N a positive
integer. The summations are particularly simple and we find

F(Z)::. | — E"‘]-,_ + A Enjq. I*" (188)

n s Ly 4. 4 2F

oxr

£ @)= A® (17‘)0{ 5 LT'E gt ek e R } (189)
d L, ‘(%) 12 (42> -




(L)

The choice /\Cz}zl completes the identification with the'standard
definition of IIermite polynomials. The form '

n-i

P n el =i £.48 (190)

if processed in the same way also gives a series in inverse
powers of Z corresponding to the second solution of Hermite's
differential equation.

(¢) FOURIER COEFFICIENTS OF MATHILEU FUNCTIONS

The form which gives a summation equation with an inverse
power of g, on the right hand side is

_g S SRR £ ._ (191)
N1 n-=i 2-q,

Ve may remove the zeroth approximation by writing

+\in
£= ARYIE T F (152)

n

and by substituting

= e
' (193)
Fn T Fr
we find
! ” .
/ 1 o - 4
R N o L
C\/ N
rb
We now find the next two terms by taking (,=o on the basis
that it gives a simple looking series, i.e.
\ c
/ F A )
Ee | £086S TeTngJae + o5 . (195)
s =, G
v 6



(45)

The next term is
Elolx i [ac (39<+|g]-1 g [}(w-;—,) (Lr,aﬂ)(f“-i-%‘_\—a-oa&ﬂ)(ml_/)
-

44,
Y 4
(196)
= 1L T C4d (3t |= E'éf‘-—-éf‘l«’“‘ﬁ)f‘*("(o& S ALY TR
61/ ’ 720‘/1‘
or :
= o =
__F__ A(Aﬂ/) e = {I = in Coate C3-<+1)—]
n l'l.cv
(197
- (:n.-s’ (!?_o(+t'%)n-|- quz\-a-x'sac-,-\q)].i.... )_
,25§¢V
(d) FROBENIUS SERIES IFOR POISEUILLE FUNCTIONS
We shall first consider the form
2. T
— w = W n (198)
and seek a series in inverse povers of w6 As usual we remove
the zeroth iberaté and write
20 .
£ = Alw) w I:h (199)
0 .
to give
o
2
An c



The next term is therefore

F= 14..1_ S{Eﬂ + T EL\. AR TN [[r\‘13+tj]+(201)

Na

The situation is the same encountered with the Mathieu equation
as regards choice of n, .- We shall consider the series resulting

from the choice N =o.

P | ra LR R 5, T R

The next term is

F=\+GL['§ EX

M

+..L [Chilé + hixlg =+ 3 Eh—l,_f3 o it (203)
3o

Hence

-p A(\o ‘2n{+ {e ECu—QB +-Eh-_1 ] _1....1.- E_Y\]g—!-— “Eh—_lsﬂ— 3 L‘h'_[:l it %

The other form which gives an inverse power series in Ww is

-Fn ;i gﬁ = 1 {jg+q

h—) w*

(205)



(47)

The summation equation results from substituting

Fh_—. Alw) )" (e Fr ' (206)
which gives
Fn: Ly t—;. S Cn”“)z- Pt \207)
Na

The first term is

-
Foi-x Sl « 0wl v DY an + 0 (aos)
Ny

We again consider the case hb=tiwhencé-

N w*

i fia Qc@us + Cred chj‘\(_;.. P e
%)

and the next term is

|— A EAFET, Er'*:;jq_ 4 En]‘}-

\'r\ Bk LW = A
(210)
+ L En+5j s Cn+q-:[5 =0 D“*{l L3 E”*ljs + 2 G‘H—__\ & Er:}
W ig 30 24 k_]- e
(e) LEGENDRE FUNCTIONS
We shall again restrict the discussion to the polynomial
solutions. Consider the form
% 1__21&& ; '
y ( ) ) Gy = _F‘ (z) . (211)

N+l Oy ﬂ (n+)) D=



(48)

We proceed straight to the summation equation by substituting

' J‘: (2_] = AC’Z-) (27-)0 P(“*"-I_) /r'[nh) F—n@-] ‘(212)
n
to find
N 2
bk T B oL Y AN (213
Fn(z') = | C;)_z_)l. 2 Cr\?._ 'l}_'r) n- o ))
The first.term is .
= iy PV i LBy N : 214
rn(Z\— \ (2_ _2-)'2__ §b Ch'?"""lz"_-) . ( )
and taking n=0 we find
_ 1) AL, 21
CE=1— 41 nl-y) (215)
& 1 (2=) (h=%)
The next term is
n
FCY—.]':'- - ] n{n- ) TP o S n"—(n-\){h—-.z.) Aok (216)
n

@z (n-k) @Y T oy

The summation is a little awkward but may be performed by
breaking down the summand into factorials and inverse
factorials

L()=1— 4 200 + L o= n-alOhB) o - (g
n 2 n-%y @F (o)) '

By choosing

A (1):_ T Y2

(218)



(49)

we achieve identification with the polynomials F;CL)..The
alternative form

R I S P oy oty 29)

?_'7-(:?'14*'1— n= N0
2‘) | 2= 1--1._-,-_)

yields the infinite series égéiJ for n=o6y1-- - =2



V. INVERSE POWERS SERIES SOLUTIONS IN TIIE DIFFERENCE
ARJABLE n BY TIIE FROBENIUS METIIOD

Any difference equation can be considered as a differential
equation of infinite order by replacing difference operations by
Taylor expansions, i.e.

10(“*'5““] = exp CSW%&\ £ (220)
It {k%\ is regular and defined for complex n we may adopt this
point of view?ﬁ' Let.us consider standard form (5%), i.e.
2 cosh (wD) £ = = &) 'FCh) " (221)
where
T . (222)

We seek to write the above standard form as

L Fey= Cotetetf +eg A5 1L, B (223)

where L‘ and L“Lare difference operators which do not contain
~the variable n explicitly and

Loy = TH) B (224)

19, 20.

The Frobenius method is to try the solution

& &
\.LC“\'__' L quni-' qlﬁ' - a;_ml - 1 (225)

and to determine the coefficients Qg by equating the coefficients



of the separate powers of N to zero. This by definition is an

(51)

inverse power series called a Stokes' .expension. The correspond—

ing rising series cannot be contemplated since the coefficient
of each power of n will contain an infinite number of terms.
method is best illustrated by example and we. consider the

equations for the periodic Mathieu functions.

(2) FOURIER COEFFICIENTS OF MATIIIEU FUNCTIONS

he relevant equation is

In section IV we found that the substitution

—E\ = Alq) M) Tlh-52) (-2¢) " F,

gives

= e o
E = F o g (f=2) (I-052) R

N+

-\ zr I -1
Expanding (n=—o) and CE“\—'_]—--‘-) we have

& =v<l= ¢'<2_="—°d3=0

iy = —lra)*

g = — 8q>

=g = =4 (2xx3)9"
Ay = =b (bxra) T

On substituting

e -\
= n"[aras v ]

we first have

The

(227)

(228)

(229)



which is usually called the indicial equation. We must clearly
have &= © . The coefficient a, is arbitrary. Ve find

Q‘: QLZO
Q,= Hq* Qe
S
N (232)
a, = 49 % :
+ /29
as = heq (357 %)a.
IIigher powers of q,enter in Qg etc. The Frobenius method is
equivalent to an iterative procedure. We may write the
equation for F, as
L —~gy A
d F=-4%9 '1-‘-15%--}&.‘**‘1: — [ ed&n Y Coate o [233)
A A i~ AR e R

and iterate by first putting the right hand side equal to zero.
Constants of integration now appear at every stage just as
constants of summation were involved in the previous section.
In fact what we have done is equivalent to replacing the
summation in Section IV (1d) by Euler—Maclau:inz’gum formulae.

The zeroth approximation to (233)is

Fi\:: Cor\S"f'Qn\" = qO (234)
Substituting this in the right hand side we have
: A " . (
_ 2.. = 255)
Fn2>= a,— 497 a, gﬁ oln
o

We may choose N=< to obtain agreement with the Frobenius series.
This somewhat justifies the choice N=e in IV (1d). Ilence one

solution of the Mathieu differcence equation is

£ = Alyq) PQ*RWC“‘E}{I R Ya,  (236)
(_Q_.av)r" ? '




A sccond solution may be found by substituting

L = A9 (290" Fo (257)
" Mo+ +yx) T(nr1—J3=)

This type of expansion is valuable when M is large and qqi are
small. It could of course be obtained directly from equation(jéq)
by expanding each term as a power series in n.




(5%)

VI. W.K.B. METIODS FOR DIFFERENCE EQUATIONS

2526,

The well known W.K.B. method for differential ‘
equations involves exploiting the fact that when the cocfficients
of a differential equation are roughly constant, the solution is
expected to behave in an exponential manner. With the generalised
W.K.B.27mothod_the solution of_a differential equation can be
expressed in terms of the known solution to an arbitrary differen—
tial equation. The ordinary W.K.B. method leads to Gréen-type
expansions which are asymptotic while the generalised form gives
what are called uniform expansions which have a more general
validity.

The problem we consider here is how to develop a similar
formalism for difference equations. The principles of the VW.K.D.
me thod could be expressed in terms of general operator language
but this would not be very helpful when we come to consider a
specific type of equation. It seems likely that these principles
could be used to investigate other forms of equation such as
integral equations or mixed @ifferentialndifference equations,

e. g'

d f ()= 22 F @)= £ =y (238)

N+
dz ‘

which is the cequation the Ilermite polynomials satisfy.

For second order difference equations we give a nethod
directly analogous to the ordinary W.K.B. method for differential
equations. This method is not practical for the equations for
the standard functions because summations are involved which
are very difficult. However, one could easily construct equations
to which this method would be applicable. he second approach
is to treat the difference equation as a differential equation
of infinite order. By this method we are able to develop more
practical W.X.B. approximations. The application of these
results to the standard functions gives exactly the same Green
type expansions that can be obtained from the differential
equation thesé functions satisfy. VWe also give a generalised

theory for difference equations.



(1) FINITE DIFFERENCE ANALOGUE TO THE W.X.B. METIIOD

Consider the differential ecquation

d” £(x) = YLy | (239)

d x>

When X(X) is a constant the two solutions of (239) are

240
The basis of the W.K.B. method for differential equations is
the assumption that when YGU\ varies slowly {%}) has the form
(241
‘{:Cx) = exp Z2.Cx) )
where derivdtives of Z(X) higher than the first are expected to
be small. _ .
For second order difference equations the most convenient
standard forms have been found to be
\ |
LE + E J£0) = 2 6 £n) a)
! -1
— — b 242
LE — E'TYE = 2T Y ) (242)
r 1 v 0)
LE"-2€ + 1] UM = I U(n)
When 6, T,¥ are independent of n the solutions of the above
equations are also exponentials,i.e.
T = exp L nla (6 w=))
S(n\:‘. ex[:—t-Jn [ C’C ‘_*‘..J'c’-;-u) (243

U(n) = exp 50 n = 0¥%)



(56)

Ilence when E(n) etc. are slowly varying we expect the solutions
to equations (243) to be of an exponential nature in the same
way as for the differential equation.

Consider equation (242 a). 1If we substitute

-P(n): e_'x? 2.__(_':\‘) .. | (244)

the non-linear equation for Z(m) is

il } S
- -azZ +wE 4z (245)

-l

e 4 = = 2 b
The first difference of Z(n) is expected to be roughly independent
of n when b is slowly varying. Hence neglecting Q;Z we find

Cosh%'z- = G

or | ' (246)

i
Zz > SS \n.(GitJe;E_\ yan

There are a number of different ways of obtaining higher
approximations. One method is to write the exact solution as

wo
when  Z{n)now denotes the approximation (245). Substitution
yields’
B == =
1 W -;.I. =1 ol -:, o
Eue™ S, gul® Lpgues @19



(57)

The above exact equation can be rewritten as

—A'Z. +‘u&E. D.'Z- D"Z. Az + E_..l ™
e w) o 2
wEQL\_f— _;_E'LJL. e _-‘e‘w woow }
-—Az 1—uJE- iy 3 (249)
= e {6— } :

.1.. -
The function W(w) is expected to vary slowly and hencedélk will
be neglected. The expression for the second approximation will
then depend on how we treat the term ex(:w%'gZ_We first note that

o W A — [h(gtjé—-:’—-\)
“w

~and that (250)
= =S & & 1‘
wE A Z= Ih (:—————~—"*”'_'
e E £t e

In finding the best form for the second approximation we shall
be guided by the principle of simplicity. The approximation
equation for U() nay now be written as

. SN i
Z+ WE A2 —Az+w6b2 Az
- ~ow \Le-e” — &
(251)

E
Ve
&
o
P
[
6
£D

. - St . %
It is reasonable to ignore (%Z) and higher powers, also (@au%z)
etc, so that we are left with

Vo W BB — &7 AL '
252



(58)

An important point to notice is that the above equation corresponds
to keeping terms containing only a single power of W. This illu-.
strates howw may be used as a parameter which marshals together
terms of comparable magnitude. Thus we have

= - S P
Q 1nd e &°°% IN
L= exp & O “'{w[%v- o]
Do <. s

© b (— r____—-
\ —_— =)= S —
S e gb‘“-{‘ = “@...61—,)3

Lo

This may not be the most suitable form depending on whether the

summation can be performed in a particular case. Ve may simplify
the above by writing

g*Js_"  (E-VNEFle=)

In 5

CQ'PJG?:_I) T 6"—7:‘6':'--\

(254) |

so that the expression for W(w) becomes

U»(n = exp o th {_[ E’)(G‘t il }%n ‘ \255)
2%

The summations are frequently very difficult in practice. This
makes it hard to ascertain which form for W() will be most
convenient. If required an iteration procedure could be set
up to obtain higher approximations. The other two standard
forms may be treated in an identical fashion. The first two



(59)

approximations to a), b) and c) are
£ Je=

F(h#exf.;_s‘{ln(wr'h—\n[*— 2.&—;(;;:*?}:‘_";}&&“

oh - g ey '3
ﬁm

e Vv (=
= - E, (T2 TV
Lj(n\’.?:. Exfté‘{lr\. CT:‘."'_JL 4—-}+(n.E+ et C"\'-“.'Z.J_'E“—-:t)

(256)
- »:;:,‘Otry)
2, e e 5.
UG ~ exFi—ﬁ{[n.Cltﬁ)-!—ln [l‘-T-- O'ﬁﬂn tEJw :{%3
e 2 (¥
We may check that no glaring errors have been made in the fore-
going formulae by the. following device. If we write
7 * '
b(n)= [ + ‘1-5__“3 R(“) (257)
and let w tend to zero, équation a) tends to the differential
equation
7 ' '
d=E0) = Ry Fny. (258) |

an%*

The .finite difference approximations .give
Y i | | -
Ny

25

in this limit, which is the standard W.X.B. result for a
second order differential equation.

If one attempts to use the preceding approximations to find
expansions for the well known functions the summations encountered
are very difficult. TFor example the Bessel function CTC;) has

§(n)= n. but the simple looking summation
z

S o (%% [ ) A (260)



. (60)

cannot be performed in any simple way. VWe shall return briefly
to these summations at a later stage. .

It is possible to obtain slightly different approximation
by substituting

—?‘(h\ —= -e_xf -ta L’Zo"fw_z"t “""";LZ':_”' 3 - (261)

in equation (242). By equating the coefficients of each power
of W separately to zero a series of equations is obtained which

can be solved in succession.

(2) INFINITE ORDER DIFFERENTIAL EQUATION APPROACII.

In Section V we have used the fact that a difference equation
is equivalent to a differential equation of infinite order under
certain restrictions. This enables us to treat difference
equations in a more practical manner. This is because a differ-
ential equation of any order may be considered within the frame-
work of the usual W.K.B. method. We shall consider three methods

of approach to this problem and then consider the connection with
the direét finite difference analogue.

In the following description attention will be confined to
the normal form a). The corresponding results for b) and c)iwill
be quoted since they may be derived by identical arguments.

a) METHOD I.

In guantum mechanics the W.K.B. method is frequently applied
to Schroedinger's equation

d” Yy +2m [E-Vv® ]l W =o (262)
dx* R+ |

One method of solutiong8 is to substitute

ro
S\
W
~

W(xy = =xp -j;‘-l[s°+tsl«~tmgﬁ_..] . (



bo zero,
If the coefficients of ecach power:. of b are equatedha series of
equations results which may be solved for 50,31 etc. in turn.

This suggests that for equation (242 a)

L cosh(WL \ £¢a) = 2 66 Fn AR

The substitution

By, T 5] (259

might be suitable. .

We will anticipate a little and state that it is frequently
convenient and necessary from a practical point of view to be
able to expand E(») as

=
o
O
0\

b

By = aln) + Wbk e VERy g @ e

with odd powers of W missing from the expansion. This is a
purely formal procedure at this stage. In practice we find that
E(n) is often a complicated function and that results are
simplified by expanding gE(») as a sum of simpler terms wihich
decrease in magnitude. This will be clarified by examples later.
The interval w is a very useful parameter for deriving results.
Let (Z5)" denote the v’th power of the S derivitive of Z. Ve

now have

s 2 ; 2067
2 cos h (u.s ELEL‘“) exp X [Zo+wZ,: ]::. 2 [o.(n)-\-ua béa) .12)&?_1@{120_’& 67)

the coefficients of the te zero.
to solve by equatingﬁpowers ofuu’\The equations which determine

Zo J-z.l ‘z_‘_ 7'5 Jare 3



o

I COEFFICIENTS OF W

Zy, -7,

III COEFFICIENTS OF W-

ok, ; ,
e | 2w (Ve (1Y 2l B 2l 2 )
o 2 9. 2 6

-Z; | -
i i
% [}Zli‘(zﬂ + (Zo) = "y, g 4+
o 1 3 —.?_-

zh -2 =
- Z]"lb (268)

IV COEFFICIENTS OF W’

2.\3 2 s
2 & Zr v z2liel . n¥ eu2b
Ze i~ - T

Zz: o
e ° l:z‘3 + @ Ve 2zl + (
. - . 6 24

+ Z!'(Z*\= 12 I 1\-
(RS) TN SR U 13 5 % P D Sy

g o z = z s
o {
> ! 13 ! 1
e EZ3—C£,_\ 2L, 2y (ZEV¥ 4+ 2 +ESEE 2, +Z-cfr
6 &g 2. e G z

The algebra involved to find the next term is very complicated.



The solutions to the preceding equations arxe

z= g (ot T S d

e RS

Z =
z,= = “S‘ 20, (@ )@Y — aa> (28 13) + 24 b (@= )" (269)

dn

BE e e g\aaa (al" ‘Y‘-"— a, QL(02—0(701+’2.}+€10‘?(8&+‘?} +Lrabt(p?—ﬁ3_ “I‘qlb(o.-‘—‘?(&.*.q i

> A g (=)
For the oﬁse'u=\
Llvya e E\{“ et *njz a, (-1 — aarRdw3) T 2abb(@-)" d
@ R, 26 (F—0% &

n =% - % ; r
SQ Ga (0'1" ‘) = Q,Q:‘_ CCI "'\7 C-?Ol"l"'l-) + aa, ngv'—r-?j_;.. 4—.0 b‘ (Q-‘“_.. |33__ Zl_q b (&__‘Lc(q-’;z(%)
: Vda

Xext:'-
Q CQ‘J.__‘B‘-P ;

ny

The corresponding result for equation b) when T = 3-ku}P\q¢&ﬁj P ¥ 18

nj lr\(St 1"-!-!]d.l'\ 0 e o
Yol e : B Pﬂ,_(a +)(§-2)- 99, (29w 24N VT
14

—-1———-:- ‘*C.XP-%—
Ca +f)q M 2 (31*_‘35i -

N e ' ;
X ex P Sa 9, (§+)- 3,3, @+ )(g-1)+9a}(8g-7)- +gh, G+ Y+ trg h (g +Ya) i
No % (Cﬁl-l-— i )‘f—

For the third form c) when



(6%)

we find the first three terms are given by

U(n} a5 en_i lh(ltj_m—ﬂdh

mE (tIm)s (27%)

g mmOsImlemt Emter3)-m, (I Ko™ q2m = 53“‘%—‘2*) +- %pﬁ}ati}—m\
192 m ) (Greyw )

O
C.d. Carlton‘éahas investigated two alternative standard forms

)(esuia.'t

No

as far as the third approximation. For rapid convergence of the
-\
series Z=Zo,*WZ+.ye require a, (™= = to be small and all _
G % - -3

subsequent derivdtives of a, bsetc.to be small compared with ey a
b) METHOD II

We now consider a second approach which is equivalent to
expanding the exponentials of the third and higher approximations
in the preceding method. Consider form a) again and write as

before

£y = exp Z_g\) _ (274)

whereupon we find

exp (onplog) 2]+ oxp Lesp g 571= 2 [ard®-Jexg 2777

- The first approximation is to ignore all derivatives of Z.(Gn)
higher than the first, also b(n) etc. This is because Z(n) is
expected to be roughly proportional to n and b(n) is assumed to
be small compared with a(n). Hence

2 cosh wz, = 2« (276)

or

Oy

n



- (65)

This is identical with the previous first approximation. We now
X\Trite ‘ N
\

5 (An (e =T )dn 4,20

Fiy= U e = W e - (278)

After substitution into form a) we neglect tl{llletc, w, etc,
Z,etc, 22 etc. D is also omitted on the grounds that in
practice it is often possible to arrange that b is two orders
smaller than Q. Ve obtain

o 15, [;E?W—- 42.] + u_{:Efﬂ4.EjL|] A 2o [1;-L33;
or | . - - (279)
w L Jamy Ay = F waZ. u
Hence
b e (=Y & | ' (280)

This again agrees with the previous result. TFurther approximations
can now be obtained by comparing the exact equation for W with
the approximate one. The exact equation for WU 1is

=i
—-U.JZ,_ %'E_ ey Em:z-:- ?:—
e |Bue TLE WL “,z(a-t-w"‘b*--)uew]:o (881)

while the approximate equation is

e B
T w2(@=)"e® u + wa’‘:

— ) -

(haw



(66)

'he exact cquation may then be rewritten in a form suitable for

iteration as

U BQy . AL = LL1'* aas w
2 (a=1) 2 (a*—)
| gz-z-wl E z —Z -wZa
— ' = w 1 —1 W w .
E Ue. (283
EETICEDE L’u = B !

— \_,..,‘_‘.7.1_.

-Q_anr-uo"“b-n-—-)u& =

In the preceding method the interval W was found to be a very
convenient expansion parameter. Again here the powers of w
arrange the terms on the right hand side forxr us in orders of

magnitude

LL\'t' ao, T
2 (o=

q__u_,[ula' t UZs - WaZi _ wh
2(d= 1Y% 6 B(a-0E (oY%
(284)

B T S
M e AP : et
2.4 (oF=\)% a2 (@=0)32 2(a=V%

Now

Z = f la. (a= Ja= ) dn (285)

and we take out the leading term of U by writing

(286)

Uln) = (a== \\-_L‘-; \fo-\)

to obtain an equation for \JCH\_



(67)
. L 2
“@ wa kT aVy 4 CI-.C}Vt w X .D—Dl:.-cql*\.)(a ) “ad @&_PB) bl QL}

2@V 2@0% 2T (a= ) >

e B N

W [‘Y_?. + aaVy -V {'Q?'(.Sal*’é) - 20,0 (=) _Lg
6 be(ai=) W (= D)*
(287).
S 203 a (o> ‘\l—- Ya,a, (a=D2d+3) + qq‘? (é o+ 2a)— 24 ba, (ot— nz_ ‘
1:;5._ LG‘L—— \33 \% b

he iteration procedure is then to substitute V=1 in the right
hand side of the above equation. This form of the solution is
rather different to the one obtained before as then the 3rd and |
4th approximations were exponentials. Expansion of the exponentials
gives an answer equivalent to the above. Putting V=| in the

right hand side of (287) we have

\/(n\m " wng lﬂ;_(q—“'__ﬂCa"-i-j,)-—- aa?’(‘;?_&’yg) 2k l'.s@_&._\}?"
- N LY (b}.{j?:
L Olw*) -

To obtain the next term explicitly is rather awkward because of

the double integrals involved.

¢) METHOD III

The following presentation is rather more concise. It is
equivalent to Method I. We use a slightly different notation.
Ve again consider the standard form

2 cosHey) £y = 2 (arior - IFEY (299)

n
If we substitute -F = exe = 5{0(“\0{*‘\ and ignore all derivatives

of /O and
P e EF
' a4 -
or & = = : (290)

the terms involving b etc. we have, as before

[0.-—-_ \n(QﬁJ—d‘?——t) -
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The problem of obtaining further approximations for f may be

expressed in terms of a transcendental equation for /P- This

is straight forward when it is realised what terms are

comparable ih magnitude. In Method I we allowed the interval w
to arrange terms for us. Vhat in fact we are saying is that
=a+w b+ is roughly constant and we arxre assuming that,

successive derivatives of q,b etc. become smaller and smaller.

We can write the exact equation for ﬁ' as

wP s
eerZOLwD-) P(fﬂ - exf—'ng' L..j_.lp(h\ — Q 4+ W b) (291)

where'3=%a{we use the notation

o™ JOCh) (o (n) | _ ' (292)
dnm™

This expression can be rearranged as

Cﬁh(f* % :{o- )exf@uf -t-w)as-a- \-—Q-&-m B w o (293)

-\ - . . . )
f): cosh {(04,-(,}5---) exp - [_C_L_i_ ""’f&f3 fl}-— w_é,_ -I-udq_‘(_g‘ﬁ-w (294)

-\
Ve now expand the cosh  term about @ to obtain




St ™ 4 |

When the above transcendental equation is iterated it is seen
that the above scheme of ordering corresponds to ordering of the
derivatives of a ,b and celc.Including the two possible signs

- -\ .
for cosh we find

2 % '__ P n‘a_ -2 -
i e OBG m—;.rz.a,_(a—n)(a+1) aa, (za+13) + 24 b (a=\) 7

fj—_ B 2 (=) L— L4 COF;-ﬂsﬁL .J

N ' (296
s Faa3 (a=\)=0q,a, (a%\) (Ta'+2) + aa? (8034—7) + 4ab, (- e Ga bV (2 ii)

L . g la=— )~

<4 -

Equation (295) is exactly equivalent to equation (269).

(3) THE CONNECTION BETWEEN THE INFINITE ORDER DIFFERENTIAL
”QU;TIOR AND THE FFINITE DIFFERENCE RESULTS

In Section VI(1l) approximations were derived in-terms of

indefinite summations. An approximate method of performing sums

; % ) . v Dy G
in the Euler-Maclaurin formula which is v

SFCh)an:-.Schn\dn e 2 B o " ol ‘*_-D-‘-“F@-)_l (297)

=l
where

TV &~ (298)

nd Ek is the (UHBernoulli number. This method frequently gives
n asymptotic expansion for the sum required. For cxample the
amma function is the solution to the first order difference

quation

rﬂ(n4-. — s r1(h) | ' (299)

o that

N
Mn)= exp § th(n). &an (300)
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The E~M formula applied to this sum gives

the Stirling asymptotic
expansion for the Gamma function.

If we now consider expression
256 a) and expand all differences as differential operators and
shen collect terms of the same power in w we have

0
n
el Yo
fen) = exp S‘Ir\(B IS )AN = S & (6=3e= )An+--- (301)
" S -or B
The E-M formula now gives us (B‘-: ""‘:a:'.'.)J

'an)’.':_ exr_i_sng\n_ (Gr_EZ:T)OLn — EB_\ Cg_tj_g?__—_‘—)—‘\n%

(302)
) == J T \  ® @
. %CQ— 6_\)g|_n -+ OC“:’) B
o 2. 5g5=h

This is easily reduced to _ a
FC“)’x e x ng'r (o] DD A g §81 di o

— o, (8§ Jez= s —_— :

P e = e 6= (303)
Lo & T

o lee-i) % exp = S‘\h (gﬁ: 61 Yn + -

- ™
which is identical with the result obtained from the infinite .
order differential equation.

EXPOMEN :
””IGOYO““TFICAL RWGIOVS &WD TH“ BEIAVIOUR NEAR TURNING
POINTS.
We shall consider the specific standard form
‘ 302
_F_ (=) + F tay == 2= B (n;=) Fn(—z_) ‘ (30%)
LaB Nn—i : :

for which the first two approximations are

4F5(z) = (V% ex Xp t|feosh’e dn (305)
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=r
- - - L - -
This approximation is accurate when El(E-l)zls small but fails

when

2
I
It

(306)

since the expression becomes infinite at these 'turning! points.
We assume that the function B(™) can be considered roughly
linear in n across the turning points. We show how solutions may

be linked using this hypothesis. VWhen

s | <1 (307)

it is advantageous to write the two independent solutions to the
difference equations as '

;(f SC‘:S l Sca;‘g s \_/(I-GL){? (308)

-1 d
This is because CoSh B becomes complex (or pure imaginary for
real §) and the solutions would not be analytically continuous
near |g|=|. The turning point at

B=—\ (309)

need not be considered separately,.since by writing
/
£=e" f (520
n n
/
the difference equation for Ff\is

& .r £, =—2 %0 fls) (11)
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. and the turning point is now at —E(hz)=-| Let N (=) be one of the

roots of

EC“-'Z-)=‘ ) ' (312)

Close to the region where EGHL)=\it is reasonable to assune

that
N— N, (=)
Fiz)
This should be fairly general but would not be correct for
example if G=| corresponded to a maximum or a minimum of the
function as well. Clearly
[ d E(n i) (314)
FCZ-) ﬁo(_'l-] .

The equation which the Bessel functionsdj;ff\,ﬁ%(xx satisfy is

DY D0 = 2 L= )\ Doy (315)

while the approximate equation for {:Cz) is

e =) == -—_ NES - (316)
il + BE= L~ ST I

N+ FC‘L)

Hence the identification
X = F(z) (317)

F = n—Fz)— D, (=)



gives the behaviour of Q;CL) near b=\ as

£ (2= T LI

N+ Flz) =0 (z)

Y CFG)

N+ EGY—N(2)

It is known from differential equation analysis how to connect

(7

(318)

2

Bessel functions across a turning point. This is summarised
o _
by the following tahles“7
£ & p
}(>\ .g..--! e
= cosR'p _ + . -
exp E -P; P"‘-—X ] o, j‘m cos [Pcostz_ = ‘x +F‘=— + 3};]
( - )L. 2 Y 2 .
2 — 1 )& _ pT N\
= (= £ )%
TABLE I
e P
\ -
ex cosh p _ I 5 1_.] Sm[: cos ¢ —~ |x"‘~+ - 4+ IO
F[F % ¢ ¥ _JI—T—Y Cx\‘] P ¢ [N
X8 —1— P
A e L
X ])LF Cl f:?:_)q-
TJ\.BLE II

Away from the turning point the W.X.B. approximations for

T LF) (F)
n+1:-nb n"’F"‘nb

for £¢24 so that the general linkages are given by the follow-

and must tend to the W.K.B. approximations

ing tables

E>1 nyhg ]'5'-—-1 nehe ) 6< ) N <M
% B N
ex {SCOShSdh] ) = o 1Y
e 8 () o [ Joisde v |
e <1 e -
9 CGL—-— ‘).1‘.; Nt F)-N& 7 i g )'Li;.

TABLE III

)



(7%)

B>t B 2N Bl M, £\ o £ e

Q P o .
|lexp [ _if,osh E'cin] FF‘(;-) \/(F(z} Sun [ _gc<:>‘5 Edn + ‘1_1:;_}
n-{-f-(‘?.)-ﬂ(ﬂ

(6= V% (1-e™V&

TABLE IV

The above formulae apply to the case when 6(h2) is greater
than one for N greater than Np(z). The alternative situation is’
when 6(n2) is greater than one for n less than N,(=z). Both typeg

of behaviour are included in the following formulae

‘ ex | (co I gdn l 'n cos Cidm |1
2(6% )% Pl gs ]""(i——,)g DS “an 7% )

' (319)
e.x?E- §Coshg‘dh]_§ COS[\?COS G-d-h\ 1&] 2

.L)‘i'

(6——
The corresponding results for the differential equation

Y = L) Y@) - (z0)
T

;
oo B e ptn T vx ]

ﬁie"t’ E"Kﬁ%q S COSE §J‘;:atw+.v1

where cv is a root of the equation
o

CARE | (522)



()) THE GENERALISED W.K.B. METIIOD IFOR DIFFERENCE EQUATIONS
0
It was shown some years ago’%ow to express the solution

of a second order differential equation
LF() = Ty Fey) (523)
daL
in terms of the known solution, to a second equation
£ _ v f e
d* x>

when P(j] has a similar analytical behaviour to Y(x) . It nhas
been found possible to develop a similar method for difference
equations. The two equations which are to be compared we

write -in the form

-]-j-_—- {_'FCX«-N)%- FCx—w)I‘-:. cosh (“’%—x\{\(x) = Y("\ FC“)

J'E.. ‘{_F(*_ﬁ-w) ~ FC:}—w)}: ms"‘(_‘“%—;ﬁj F(‘j) = r'(j) F‘(‘j)
The solution 4%}\ we assume is known. he argument now proceeds

in exactly the same way as for a differential equation of finite
order. We assume that for some range of 3 FZB) is functionally
similar.to Y(X) . We substitute

~~
()|

PR )
Ch
ST

Fey= £Cxen
expecting XCg\ to be roughly proportional to Y . We then obtain

Coshcw &V FCy)= Moy £ = coth () £69). - (327)
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Let
= wa = o o
oL = cosh (_ ow) ] B= < sh (Lu dkj\ (528)
whence
-\ ’
w Ei__. = = C_GSL\VC UU?_{_ = * COSHlF’- ; (329)
d X ) d'j

The problem is to express P in terms of %? then %; in terms
of « and finally to obtain the result of a function of o operating
on .ch). We first note that

cosh i_ = ax ,d
o% Qudﬂ)_ COS}'\ djwa-x\ o

where
e

Cosh (%ﬁ‘%’i—;)z—' l '*‘.E; <d}_ = 4wt (dx )Lt-ep-r

To a first approximation we may neglect second and higher derivd-
tives of X. We are left with the expression

Cogh (w o‘i}% %‘Q 6) = cosh (“.:.‘?‘a_:f_\j cas\:\-‘c&) Lo 148

/e may expand the above operator as a power series in el so that
S :
ve first require o acting on £(x).VWe find

"(SFCX\ = 3 ) + w O(da‘_fx) Loxy & -« (333)

o make further progress we assume that éy and higher derivdtives
X
are small compared with ¥ . We then have

rIC"j) 'QCI) D COSB C_*_"_ Oé%j COSH‘Y(x)) ?CX) (334)



or
A

3E¢osKwTTgxd3 t.‘gcosK\K(X]dx.

v . Yo

where Y, and X, are equivalent points. To obtain the next approx

imation we write

Fly)= 2T (336)

where X now denotes x(g) determined from the first order approx-—
imation. The exact equation for Z is

. .
3 Ckﬁ) Z(y) FO‘) = cosh Cw %ﬂj 2 (4) Eex) (J‘J )
We now assume that Z is slowly varying with Yy . Now
cosh (w %—‘38 Z(lj) -FC;()
(338)

s i) Cosh@o\ VBrwy wdlﬂm sunh Cw W_@) + w(-

The next approximation is to ignore derivdtives of Z higher than
the second, derivdtives of =z higher than the first and derivdtives
of ¥ highor than the first. If we use the results

”, \a(ﬂJ}m + g Y anh @mu‘v)sgmil?fcm Sy

- (339)
Q(“’q R"N:‘Q.(_\” 1CCx\ + tiuz o\a‘% Sinh C.".'. cosl{“() %}I—Q(Y\ 'CCY-\ N uj‘(. iy

where Q.(oq is an arbitrary function of « and

(340)

g d x2p- . 'Adﬁ —_'j

(77)

w d* w ' rdx &P |20
= L% — (—C;;j) for=+w & cosh ¥ cosh (= d cosh B)-F@OH— w(-



we. £ind

[(y)zlgy= cosh (tda‘_(_gcosg 36) 205) £6)

-1 ayY o Y(x) inh -J.»Ohg \,\X
b uu'z(:\) {ﬁ %ﬁ,)E;\ﬂh C‘*_‘ %‘E‘-j cosh h’(xﬂ]-li e Sin C CO$ (x\} ‘PCX

Grzon—+)
. (341)
+ uut‘lz-c‘.‘z) Sinh [ dx cps‘r\i\/&\) ‘QCX By
dla, ay
The approximation we have made corresponds to retaining only
terms containing a single power of w . Since the first term
on the right hand side cancels out the left hand side we find
Sink cosh YT ay B
dZ a -—-L— d R-_ ( ° = d"‘j
= = Y T dy G5
Z (342)
Sinh (%’-‘-ﬂgos‘r'{‘?f)
or
= %
' -\ SR
ESmk (%ﬁ cosh XY} l ¥ | - {3%3)

The algebra to obtain higher terms is rather formidable.
g g :

To summarise we have found that
| -\ 1
FC‘j) ~ [Csinh C%E{c.osﬁ“.sjl * 18 =ad v 'PCX) (344)

where %(y) is determined from
3 X ‘ -
S Cosl:l PCt‘ﬂ 0\3 = g cosh B’th d x . (345)

X
3 B
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(6) A GENERALISED EULER-MACLAURIN SUMMATION FORMULA

In V (3) we found that the E-M formula enabled us to express
the finite difference W.X.B. formula in terms of the infinite
differential equation results. The reason for this is that the
E~M formula is itself a W.K.B. approximation to a first order
difference equation. This may easily be shown using the methods
of this section. It is interesting, therefore, to derive a
generalised E-M formula using the theory of the generalised VW.K.BD.

method for difference cquations. Consider the first order equation
4 = d 346
Tl = enp (DE) £y = Y0 £ (546)

The soclution is

-F(x)-——— ex p E § ln Y& A X . (347)

Let us assune that‘Fij is a thoroughly investigated function.

Consider a second equation

(548)

Flyrw) = exp G"%‘Q Fly) = TG Fes)
with solution

Ty = =xp 5, é In T'¢y) 4y {749}

Do

Let the summation be one which is neither simple nor tabulated
and let us therefore try to express F(g}in terms of F@Qin the
case when Y({)and.PQﬂhave a-similar behaviour. As before let

(350)

A= exr@%) : (b?—_exe(_xu%{_\j)



whence

ln ot W

1l

we
d %

The procedure is the same as before so that using the following

two expressions

g -

\
S(s=1) g fdx R 5

l

L e
=t (w%—'ﬂ: . (O%Hwa_\x)*_ T é:"__?.. ayx 321) Ay s

QM= AMNFr) +w Y Y d> qm fuye & (-

2 dx Ay

we find

Fepa o (Y %] 60

where ﬂ%)is determined by

“jj n Mgy dy = xS ln Y(x) dx
s .

Putting in constants of integration we may then write

L 38 I T(9)a y = ﬁxg ¥ ax + i Y (- ‘f’-.f—ﬁiﬂ
3 Xy

For the special case when

\\-\X'—”-—--l

Y
4

Qo

+Ju}<}'°

(354)

(355)




(81)

we recover the first two terms of the E-IM formula since

%=, = of bn Ply) Ay

B
‘:"."7
dx = In [(y) a
dy
then
9
A %\nP( yay e A Y\nV(g)ol — A (_’LM"C«;)—P
o : NI W ; P ™ Y, (358)

20,.5
(7) W.K.D. EXPANSIONS FOR SOME STANDARD FUNCTIONS - ’2%

The W.K.DB. method for difference equations can be used to
find expansion fornmulae for the standard functions of mathe-—
matical physics. These expansions are found to be identical
with the Green type expansions that can be obtained from the
differential equations the functions satisfy. The functions
§(nx) given in Tables V and VI are rather complicated involving
products and quotients of Gamma functions. We will require the

asynptotic expansion

[ (n+) - pte {\ ~ A 4 C'&—.-.“‘—'A"') e B 2 B (359)
Tﬂ(n+.P) n 01'
where

AL = L Cet(e-ry - glp-1) )

. =

. ()OO)

s - A (=) (2ex—~ — W\ (2 pa-
A =" [AENCxN - p (p) -0
; : . - 2 2 i i
This form is easily obtained from Stirlings ’30xpan31on for the
Gamma function. In deriving the W.X.B. formulae it was
assumed that we could write '
(561)

ERY = a(r) + w b)) +
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FFor the functions B() given in Tables V and VI the interval

is equal to ﬁnity and there is no natural expansion of the

Torm (3061). In actual fact it is fairly easy to expand the
B(™) of Tables V and VI such that a simple W.K.B. expdnsion

is obtained which agrees with differential equation results.

We obtain VW.K.B. approximations for the modified Bessel
functions, for the Hermite polynomials, the Whitfaker functions

and the Frobenius coefficients of the Mathieu functions.

a) THE MODIFIED BESSEL FuncrTIions Kan(¥), I (x)

-—“ .
The functions K (M ana @) T (XY both satisfy the equation

o = 2 5
ek Ubale ) U o)

Using the notation of method I we take T=9g= Q)—{ so that 9,= -L;

and g =9 =p etc. Ignoring constants of integration we have
2

)

1

5 A -
op b GERn P EE LSRRG, i

7 T
C‘j A=Y (.._—ri:_—«— tﬁ)'E‘-_i-

L.B. Dingle has shown that the third and fourth approximations
are converted to polynomial form by changing to new integration

variable o = -2— , It is then found that
(X Y%

exp [3rd approximation + 4th approximation]
. (354)
= exp [ = & (254 — L (-5 1
A4x le x*

The variable change which is introduced in infinitesimal calculus
for analysis of Bessel functions is not « but

[a)
= e s
4 (h'l-i-X-") 2.

aazﬂ‘:gv-



Thus we can write

% 4
exp [ = %Y(z—%a - T:xx (=5>) )

=t e = 3/_ 5 R = - = ;
_ X p E lLl-r‘\( 9, 3) + ?6(_.:-;_(1 Y )C‘Sq{ \\—& (566)

i l = Y (5q=3) + 9~ (azﬁa‘/*_quw’w-zx)
' 24n ' S22 N _

/
The + w sign is associated with K (x) and the —’ve sign with
= Hlence
(—\) I_n(x) )

-, Ti
Kh(‘ﬁ.) = C, (r-lx—z-_'i"\ & € xp <n Sm‘\'t_"_‘; — Cn2+x1)'1i-) (367)

507
5 q .o
\(Et%j-/_4n(a&3)+ _E
; =
Inﬁx) =, C:L (D%-\n)"’rexrén Slhh% + (et Xz)"‘;_)

XKV =2 )+ - ]

24n

where C, and C, are integration constants which must be taken

c.= (xVs W= (569)

'~ to obtain agreement with the standard definitions.
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-~

)

»

b) TIE HERMITE FUNCTIONS

For these functions we have

Sy =% (/M) | (570)

Using (359) we expand this in inverse powers ofNi.e. for

large values of n

s =% (277 [1- @~ @ )

- S W RS _\_..] (371)
= X n [;‘ 4n 2o = _

It is natural to use the power of ntoc order the terms in
equation (370) We could put

o= X (o N

(372)
by = —x C
()= 31' 4n
but it turns out that to obtain the simplest form for the
expansion it is necessary to eliminate the term in ﬁd. This
can be achieved by changing the difference variable to r i.e.
P+ K (373)
where K is a constant. The expansion of G(nx) in terms of P
is
) -1 oM. .
%)= = X &
b Cp)= X (PN [+ (¥ 32)p (57%)

& <J—' +%\< +?-:g K) FL' ]



—
4]
A%y

o —

o o R, " .
The coefficient of P inside the brackets may be made zero by

choosing

K=" 3 | (375)
We then have
-—-J_ —
Blpxy= % (Ly= [ s |

J¢ now take

alp\= 5—_2‘__ y blpy =~ x 5% (577)
r : p=-%x ¢%

The first two W.K.B. approximations are given by

QXfFS In (0 tM)c{?

(&Eatﬁﬁ;
-1 P (xe2p) (378)
= (o NE R D ER TP
2¢ =50 EFln( (2p) 3'_ Ko 2p) —J :

The third approximation has been calculated. Calculation is
handicapped by the fact that it does not scem possible to define
a new variable which converts the integration to polynomial form.

liowever, the variable change
ol (L-—H) 4 (379)
=X

makes the integration reasonably systematic. We find

(T (44 547 ]

exp [3rd approximation]=.exr [?:
Lb-y*

N (380)
ott-t) *

2 4 x*

s
+

(Lp—sa—5«) -



(86)
In terms of the quantity

.
9, = X Cxl-—-'z.?) &

(381)
we have
exp [3rd approximation]
(382)
[50\( "‘60\/_3 -+ -
which is in agreement with the known Green type solutions to
Hermite'!s differential equation.
m
c) THE WIITTAKER PUN“”ION‘VVt\CK)
This function is similar to the IHermite functions and the
same difficulties arise. It has not been found possible to
define a subsidiary variable which converts the integration
of the third and fourth approximations to polynomial form.
From Table V we have
i i A A
‘1(n W\+j__#‘) r1(hﬂn+2_ l)
g(n ¥\ <3(-— Q) Y 2
] L+ 2 L dall
(383)

[ﬂ<www+'#t) r]n+m+L 'ﬁ)

We will consider the two main cases. Firstly when n is large
compared with m and sccondly when In=w | is large but m cannot
be considered as small.

&) nd>m

Making use of equation (359) we find

bln,x) = lC,_-—n\ C“ [I + ('3—\ - 1 | (384)



By changing the variable to
= N— 0

and writing

Z = ¥— L4

we find

oo = & G [+ (s

We take

alei=)= (FZ-p) %  blpa)= (l-ﬂ(m—L A

We find the first two appro: cimations are given by

WT(z) = [1—P—\l eXf{F}“CCZP-‘ “(

l Cﬁ—%Pz):ﬁ'}

where

‘)z

wr{v; fa s o r< il 1} P(m—m&-L \\Nm( \

Taking an integration variable

4= (C=3=)"

(87)

(387)

(388)

(389)

(390)



(88)
we find

exp [3rd approximation]

| 1 N\E T Ak
= exp [T L (lo_;f-s—-j«k CrnRo )l + 2 T ) _ﬂ

2z
(591)
In differential equation analysis of Whittakexr functions a
convenient subsidiary variable Is the quantity
=3
o\/____ (Z.—._ )1_ _ (392)
7_—L\-1[7
We have
z
- —\ T
A av.._-—- (393)
=
On substitution into (391) we find
exp [3rd approximation]
_— ) s | .. S
~ | F L Egc‘/ “—'61/ + U (H-Q_m.l-?)\_l - (394)

6 p

which agrees completely with the differential equation results.

2
8) lng—m“llarge

When m cannot be considered as small the function Gﬁyz)can

be expanded as

) g L
Cem= ()¢~ = [ -1 @C—*-:mfy R R C -
?-—-"Y\
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e talke

— cy e C?l%nsj 2
== (- b= L
a(p & ) (P @)= 5 &) Ty P (356

The first two W.K.B. approximations are found to be

,(ql—tgla -e.x? ?S-h-.(at W‘-—_—-\)df' .
(e T =T S [p I (Caomve (o)

P (2 (397)
. 5 -~ 'J-'z'_. _ &=l
Cpto) (& +e—zp) =

The integration in equation (397} is a little difficult but can
be performed by changing the variable to

y= (aetpn) [2 (Pmmt)E

(398)
We then obtain | |
5 2 2\~ -1
(Q?'—-tjml:“ e_xP Pg [h(ﬂtmtjdf e [:C'Z'E_'_—r3 (f’ — ) " ‘—l ™
= P 8 5
exp [-4—'9 cosh i-i&)*{.\ < (-Z-l_-!r—m._-z_?)?_
| i (399)

+ W ocosh \-Zmz; Pz \‘J

2 (pr-m®)

It is rather difficult to obtain the third and fourth terms due
to the lack of a suitable subsidiary variable.
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al) TIE FOQURILER COEFFICIENTS OF TIE PERIODIC MATHIEU FUNCTIONS
The difference equation is

o TR R - ey
V

N+

The integrations for this function are non-trivial. We give
three appropriate forms for the integral involved in the first
W.XK.B. term. It is advantageous to write

l n
L = € (z01)
n n
so that
fho + Py~ (520 8,
n 5 ;JV
2
If we take G(h} n-od we have
; 2‘V
‘p (—\h_gf__ [(n“-f.ji- l:j:" +n el b d (£03)
= & = Fa = Cos LA n
e f" v exf"g ° < q-cV\ -
The integral is an indefinite elliptic integral. he three

different forms will now be given. The most suitable form in a
particular situation depends on tle value of the parameters
involved.

(i) Integration by parts gives

j:gCoSk ( ? dn-— gln -f_ [gh_d = -] )dﬁ

(u04)

= tt:n‘:a's\\_‘@-t"—‘* -
%W) g(@\dﬁ-%%‘)k
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gives

4 ,
é—g Cé.;..1 -k-lS-.n\:'E‘Yic{e :_3—_9: (';-—K.”) gSec. o = ¢ (&11)

Bt
Qe kTSP )2

We obtain after integrating by parts

'.:..S(,osﬁ\ r%:;)dh = == v cosh CV%T;):% (Chi—*?“)-léﬁ/?-)li

x wfy B (5 (S B

(412)
— A + A - - Nk, )
= 5 (T8 NF (eor' ()2, [5G V)
v n* ) N/
!FZ W :
where U= andgz are elliptic integrals of the first and second
k:’md.""2
2 " % v
(iii) Consider again the term 5 <Q___ dih. The substitutions
: =W
U= cosh 22&
Cosh € = coshé, cosec O (5173)
\g - - C.-OSH 2L E
K = Sech &,
give
&
w Al 3/9- 2
| (w‘% Tdu = =2 Tcoshé&, [c«we 40
e (- w*swie)'s (414)

By integrating by parts we obtain
% W = By 2 o - 1
.28 gcoik‘(“_:&)dn = T ncosh nﬂx):‘ 2m (D= & L g, 3?_

« e T L\rcl/
A - (415)
= 2 (R (58 [ T3
hE-K.+4+%; beg, — ot

where EEis an elliptical integral of the second kind.
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VII PLERTURBATION TIIECRY
(1) A PERTULABATION MLITIIOD I'OLL SOLVING TIIE DIFFERENCE
QUATION TPORl FPROBENIUS COEFIPICTIENTS

Most of the standard functions of mathematical physics,
satisfying a second order differential equation, have Frobenius
coefficients which satisfy a first ordexr difference eﬁuﬁtion.

Perturbation theory seeks to express tae solution of a perturbed
equation in terms of the solutions of standard unperturbed
equation. We show how the Frobenius coefficients of a perturbed
equation can be expressed in terms of the unperturbed coefficicnts.
We begin with the specific physical problem of an electron in a
simple harmonic oscillator potential plus a constant clectric
field.

Schroedinger?'s equation for an electron in a harmonic

oscillator potential takes the form

C!L 2m 2,-.1-7":'2' L ’ 1£5
a_‘i/ll{/ +.~k’-(E v~ )Y =0 : (416)

where the symbols have their usual meaning. In dimensionless

form this equation becones

y 1
ol__Wn s (m-%.'-‘-'qx’-)'k\’h:"’ (417)
dx*
L
where E=WV(ri)and X:‘\/C“’“ Mv/’ﬁj’jFor large values of X

—_ A
W . i S (218)
n

Hence putting

-—.l‘-‘
s
Yy, = R, (x) e —
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the equation for ¥M$*\ is

‘Z.H. )
R LR I T s

The I'robenius method is to write

Hot)= Z- Gn () x4 (421)

which leads to the difference equation

On (p+>) = — (n=pm) a.. (/“_! | (422)
Qu.—i-t\(fd-i-'?—)

The fJnOQare Hermite polynomials (the definition here is
slightly different to that used in Table V) with

8 P
(2) = o (425)
Lpe ., [0 g

G,,(r~\:=

Equation (420) can be expressed in terms of the shift operator

as

{C#*“Crﬂ*ﬂ E” + (-pVha, (fl=0 (s24)

This is to be regarded as the unperturbed equation of the
theory and is a simple case of the general unperturbed form

(L N, — U} Qn (p)=0 (425)

when M, is the n'th eigenvalue and U is a aifference operator.

For the simple harmonic oscillator

Nn =N : (%26)



and

U= o= ()T - (u27)

When a constant electric field F is applied the perturbing

potential isep%,and equation (417) becomnes

AZGb A Cn’.,_._xi___]‘:x'z.__cx)cp:o (x28)
d x*

4
where the perturbed energy E is

2w hofln+g)
and ' (229)

5 o EF ('h Y{_
T vy Lwenwmy

If the exponential behaviour is removed by writing

9 = Y@ e (430)

then

yor= 2 bepyx (431)

where the coefficients b(/u) satisfy
{4(!"‘*')(#*‘1)51% Cnf"/“-)-—- e E -5 b.(/«.):o (432)

Equation (432) is to be regarded as the perturbed equation
which in general takes -the form

{(Na+7)— (VU +u) EC/«):-.O i
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where 7/ is the cigenvalue shift due to the perturbing operator

For the simple harmonic oscillator in an electric field

!
pemd Nn—n
and ? ' (234)

w.s &

The derivation of the general theory for equations (425) and
(433) will be given. The application of the theory to the
simple harmonic oscillator will then be considered. The general

perturbed and unperturbed equations are

LN = Ul a,(przo | (435)

and
fLNn-— U}b(,u.):-_ {u_'y}b(/u) (436)

The perturbation theory can be developed in much the same way
as the theory for differential equations. When the perturbing

. s o . 5
terms are small the zeroth approximation b(}d is obviously

b’Cpr=a, () (£37)

This leaves an uncompensated term Oi—})@nﬁu)on the right hand

side of equation (436). We must add a correction term bmralto
bOCf-)' The fundamental assumption of the theory is that CL,L_-}.,)Q“(/‘)

may be expanded as

(U=Z)an(p) = Z (o) anf/;]' (438)

4

where the coefficients quﬂ are independeht of}ﬁ and operators

acting on /¢. By taking a correcting term

b(pr= 2 o) apinlp) (#39)
< Fo
(A@a" /Mq+s£)
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the only term which is unconpensated is

(0,0)a () (£40)

- - -~ l - ) -
‘he introduction of tiﬂr\ltselx leaves uncompensated terms
equal to

(w-7) by = Z 25 (wP)ap,, (p)

(&41)
e e L
oD ﬁ CNH"'Nn-Ir-J)
Except for the term
2— CO;J-)CO{JO) an(#} _(1}42)
LF 0 CAM“Nn+x) '
Qm—§)bﬂa“5oan be compensated by a second correction blf/u)
given by
_ (0,4 ) (%, B . '
b, (p3= 2 2 Cnrp () (443)

n+
o 70 (NN Y(a= M)

Continuvation of this line of.reasbning leaves a series of
uncompensated terms which must be zero if bqr0==b°gﬁ)+ HCfJ+- i
is to be a solution to equation (436). Placing the sum of
uncompensated terms equal to zero determines the eigenvalue
snifts, i.e.

== CO‘,D) o w2 (o, ) ("C:O) + ZZ (OJO‘L)C“IB) C‘%O)
#0 (N —Nprou) 30 pro (N TNy V(N Nar )

4 °F ZZ (o), 8) B, ¥) CY0) 4 . . . (uhk)
“Fo pFo Y#O (Na Nar) (Nn~Naep YN Nary)
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The structure of this equation is completely analogous to the
differential equation perturbation theory outlined in Section
II 2¢). The perturbed coefficients are given by

bCr\ = da(p)+ ‘,(2 (o) GHQ‘;;" 2 2 (_o,ilG(_,ﬂ C?n+[{f‘)
7E CNn_ Nn—n--<) seia pe CNXn’éf-,c)(Nn_Nﬂ*P]
" : (gq5)
222 _4p)BY) g ey o
<70 p¥o ¥fo (_:N,,—/Unh:. )(}vn—ﬂrnfp)(fvn"%;-y)

The fact that bfr)is expressed in terms of the unperturbed aﬁcﬁ)
ensures that the function ﬂ(f\will satisfy the same boundary
conditions as H,(x)-

For the simple harmonic oscillator problem the unperturbed

coefficients are given by (423) i.e.

S In (446)

Y= (-
Tk b= £ L/ [Cfon)

Now

(4=7)8,0p) = © @y (p) = FanGr = L (018

and ' (&47)

'On(j“"‘) = Qe () + T G CPY-

IIence the only non-zero coefficients (Oﬁj are

(0)y=1) = C€n,
CO)O) _’7:

(0,-{-13 = -

(£48)

!
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Using the eigenvalue equation (444) we have

/7.: . (oJ'"')C"‘JO‘) + COJ')(HO) i w

It
Nﬂ""Nn—n Nn_ Nn.;.-l (-49)
% § -
= Cn - "+ —_c*
Thus
E,/-—- E= hv Cn'—-n) = L‘\'\)? = - hv C.2-= -—e_zFL (£50)

gmim Vv

The complete analogy between the preceding theory and the theory
for differential equations means that the method outlined in
Section II 2¢c) can be used to analyse the perturbation series.
Although the difference equaition method has the same basic
calculational problems of ordinary perturbation theory it is
more fundamental. TFirstly the method is no less general than
the usual methods since the only unperturbed functions which

can be usefully employed in the usual theory are precisely those
which have coefficients satisfying a first order difference
equation. Secondly, it is not necessary to invoke extra
conditions such as the orthonormality of the functions used.

The greatest merit of the method is it is not essential to take
an unperturbed difference equation associated with a differen-

tial equation. TFor example the function

ap(py = Lo (451)
S

satisfies a difference equation

,{_/A(E_'-—:j -I—r\}QnC/A):o (452)



(160)

and one can say that N is an eigenvalue and that for (Qn(ﬂJ
to be a polynomial in g we must have n=9,l,2--The perturb-
ion method would enable an equation deviating from equation
(z52) to be investigated.
(

2) PERTURBATICN TIEORY FOR AN EQUATION DEVIATING FFROM TIIE
LQUATION FFORL A STANDARD FUNCTION

The difference equations for the standard functions given

in Tables V and VI have the general form
L, L y=x () (453)
Nnin n

where Lmis an operator independent of X . The range and values
of n (the eigenvalues of the associated differential equation)
we can consider to be determined from boundary conditions.

Consider a perturbed eguation

L F,f"’-— 2z FNC-:.) = N \’_'N(m (454)

~N

where V& is an operator which we can assume is independent of =
The boundary conditions are assumed unchanged. If we write

where € is the eigenvalue shift and

F, (=) =D, =) (455)

we have a perturbed equation of the form

L D (=) - 2D (7)) = V:\ () D (=) (457)
n i



(101)
We now exploit the fact that X appears in the equation like 2

continuous eigenvalue. We assume that the unperturbed solutions

satisfy a conpleteness relation, i.e.

. 5 sl F:(x‘i F )= §0=x) (458)

wm

which looks like an orthogonality condition in N space. VVGﬂ]

is some weighting function. The first approximation is

zz-\ F (=) (459)

Substituting this approximation into the right hand side of
(457) we must solve

j____n —__D:_‘('z_) — 1—D:\(7-3‘= Vh(é\ ani-) ' (£60)

Ve make the assumption that we can write

—])r: frany w= g P(z,2") F (2 dz'

(461)
2 ! ’ /
Vn(é) \enCZ)‘: f Q (2,2,¢€) E\(?“ oz’
This must certainly be true if I%ﬁl)satisfies the sane
boundary conditions as -P (z). Substituting into (400) we
: n
find
¢ / ’
Plzz)= Qz2€)/(G2) (553

or

I _ ch’z’f‘e ) (z() dz’ 563
—.Dn(-'z“)'— S‘ (z—=") Fn | (£03)
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» o - . = 1 3 ’ - s 3
The integrand contains a singularity at zZ==<2 , To remove the

singularity we take

Gi(zfz;é)==o

P
fin
(95
Mg

~

as a condition which determines € and take the principal value
of the integral, i.e.

Dl (my= 7 LRI pand " (u55)

Cz-2")

This is very similar to the form of the perturbation series in
II %c¢) if summations are replaced by integrals and vice versa.
We will not consider the perturbation series further since it
proceeds in the same way as previously. Ve consider the
exanple of the simple harmonic oscillator in a perturbing
electric field.

The unperturbed and perturbed differential equations in the

previous section were

i Pha wk = .
& 9, + CarL=d Y Y=o (456)
dx*
and
% -
% yr—=3x-cx)Q =0 :
dr ¢, = (N*E7% )¢, (£67)
dx® A
These two functions have difference equation analogues.
x) o4 (x = 4
Lthi ) qﬁ1-1) X Wﬁj(*) ‘ (468)
and
1 2 / — ! P
N4y ng—! N ( )



where
D S )
§Z§N(2J == 9’5NCH
VWriting
= N+ €&
and
P (=)= XK ()
we have
(Y') — =
\.[Jm_1 + " \-Yn__(lx) % L\)n(u) o
and

X C"r-\ +~h)[(7-\ 7—)((7— e G e ))(('z-)

Ny

Ve can write
_(erY ) = [ Qlz,2e) kpncv-')dz’

where

Qemere -3t [peErarte)

This follows from

SCZ_...-Z__’)-: Z_ ™ 'ﬂ\ \-v (7..)

™M

For this very simple example

Qlz,2,e)=0 = €+

é—:—....—-C'_L.

(103)

(470)

(£71)

(472)

(473)

(47%)

(475)
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Also

:Xf(lq = \+?CZ-)

(477)

This is not a very satisfying or rigourous test of the
perturbation theory. The difficulty is that in general one
cannot write a perturbed differential equation in a difference
form because in general the eigenvalue shifts are not indepen-
dent of n. One can still use the type of method outlined above
for a perturbed difference equation not associated with a
differential equation.
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VIII DIFFERENCE EQUATIONS FFOR SOME VWELL KNOW
FUNCTIONS AND THE NORMAL I"ORM I'OR TIESE
EQUATIONS 50, 31

The equations are classified by the functions A(“]; B (n,x)
and C() of equation (52 ). Some functions of two parameters
satisfy two difference equations one with N as the difference
variable and anothexr with m. Table V gives the equations in
N and Table VI those in the minor order m. The notation for

-

the functions is as follows -

T_(x) . Tschebyscheff polynomials.

n
Jn(x) : " Bessel function of the first kind.
Yn(x) : Bessel function of the second kind.
&

Hﬁ(x),ﬁg(x) : Ilankel functions of the first and second kind.
In(x) : Modified Bes'sel function of the first kind.
Kn(x) : Modified Bessel function of the third kind.
Pi(x) : Associated Legendre polynomials.

Lﬁ(x) g Associated Laguerre polynomials.
wﬂ(x) $ Whittaker's functions.

CE(K) : Gegenbauer functions.

Fﬁ(x) s Confluent hypergeometric functions.

Hermite polynomials.

=
M
S

Parabolic cylinder functions.

S
0
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IX SOME OTHER METHODS OF SOLVING DIFFERENCE EQUATTIONS

We give a brief discussion of three other methods of solving

difference equations and the type of solution which can be found

'y’ LA
. 3 . = - - ] o 4 g 3D
using tnem.q The three methods are, operational method of DBoole™” "
~3 J
the Laplace method of transforms and the tecimique of continued
22,23 .

fractions

1) Boole's operational method.

In difference calculus the natural analogue to a power series is
a series of factorials. Ve have used the notation

[n], = n(=0Cn-y - - - o lamse ) (570)

3 .
0 (e (oo 6] e
) |

For general N and S we can use the extended definition

(l

(~], = NG | | | (579)
rq(ﬁ-5+:\

The factorial has the useful property
_ | (£80)
£ En_js . Er\—_ls_‘

but does not satisfy the law of indices, i.e.

IR e (so1)

i
The theorem of unique development”’ states that a function which
can be developed in a series of factorials can be so developed

in only one manner. This naturally leads us to seek solutions
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o difference equations in the form of series of rising factor-
ials ($70) or inverse factorials (S5€2). These solutions are

analogous to the Frobenius solutions of differential equation

ot

theory. They can be constructed by methods due to Boole ° and
Milne-Thomson - for difference equations with rational co-
efficients of the variablen . The methods are quite compli-
cated to execute stemming from the fact that factorials do

not satisfy the indices law. Some of the solutions found in
Section IV are factorial series, for example the solutions in
rising powers of z for :Kﬁl) . These solutions could have been
discovered using Boole's method. The iterative approach seems
more useful since we are able to find a Stokes! type solution
for J.,(z) which would not have been possible using Boole's
nethod. The iterative method is not restricted to cquations

with rational coefficients.

2) Laplace transform method.

o

The Laplace transform method involves transiorming from a
difference equation to a differential equation and obtaining
an integral representation for the solution to the difference
equation. We can illustrate this by the well known example of
the Gamma function. r%n\ satisfies the first order difference

equation

Vi = o 7w -. | (182)

We write

b sy
Tey= [P ¥ ar . (485)

where X&)and the limits are to be determined. Now

(48%)

Tw) = [ F7 ¥ ar
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The term nr%h\can be written as

b .
al'(tny = E e X(_P\}b - S Fhd Y- dr (485)
o - a¥
by integrating by parts. DLEquation (482) is therefore equivalent

to
Ten [ 4300 w3 ar - [eoyel]’ - st

The integral can be disposed of by putting the integrand equal
t0 zero for all r} '

dIr) + ¥) =0 (487)
ar
Therefore
i ‘— :
Yy = C.e , ' (188)

wvhere(C is an arbitrary constant. We can obtain the limits
n

a,b and satisfy equation (4£82) by making t X@ﬁ zero at the

limits. We require @ andlb to be the roots of

Y ¥ ()= o (489)

Wemay therefore takeada=o0and b= .0 .This gives us

o= T S

taking C=\ . It is well known that the asymptotic expansion for
F(h) can be found from the integral representation by the Method
of Steepest Descentslg. Stokes' and Green-type asymptotic expan-—
sions can be found frbm integral representations for the well
known'functionsBO’ﬁj. It seems likely (though this has not been



proved) that by using the Laplace method +to find an integral
representation for say‘j;017 we could.then use standard methods

to find the Stokes! and Green type expansions. The main restrict-
ion on the method is that a difference equation with a polynomial
coefficient of order S gives rise to an S'th order differential
cquation. Ve must be able to solve the differential equation for
" the method to be useful. Therefore, we can also only deal with
difference equations with polynomial coefficients.

. O 23

et J

3) Continued Fractions

The theory of continued fractions is a very powerful tool Dby
no means resiricted to finding solutions to difference equations.

The development
b -+ Q,
<
b + G.
b, + - (£91)
" Qn
bn + ..

. ; . ; o 122 : :
is known as a continued fraction. Rodgers“” notation is

L92
B, ¥ Q. s e QL L k)
The solution to a difference equation can be developed‘as a
continued fraction. Consider the equation for J (z).
T (= + T @ = 220 J (=) (£93)
\

N4 Py

If we define

C[nC'z.j = 3—“(2-) / jh_f—’—) (49!&)



we have

1
Q.= G, (495)
Z

[a% |

&
-
=

:rh('z.\_—_ e.scf Slh (=) An ' (296)

1 ]

Equation (495 ) can be written as .

(=)= ZJQ' /2 Z/2- g ¥ o8 =/ .
CI — () — (nr2) — (n+s)— %4 qniﬂs' " (497)

For small Zand largen this development will converge very

|..-‘

rapidly. By expanding out the continued fraction as a power

seriecs in and then calculating J (=) the convergent expansion
for rJz)(xulbe obtained. The second solution to (494) can
be founu by considering the continued fraction development

of q ()= :'T“('L)
Jan &)

An approximate value for the continued fraction can be

Y

obtained by carrying out the development to say the s'th term
and then substituting an approximate value for(icz) from sone
approximate formula for j;Cz)obta;ned from say a W.K.B.

formula or Stokes! expansion.
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