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ABSTRACT

The solutions to Fredholm integral equations of the second kind are

approximated using power series techniques. On expansion, power

series whose coefficients are given in terms of unknown functionals

are formed. By truncating these series and using approximations,

either in the form of Taylor series or rational approximants, the

problem is reduced to a system of equations which is normally

solved iteratively. A type of Bade approximant, called an S fraction,

and a two point rational approximant, known as an M fraction, are

both considered. Special attention is paid to those integral

equations arising from second order two point boundary value problems

as each series then contains only one unknown functional. The two

point approximant is in this case an especially powerful

approximation as it ensures automatic satisfaction of the boundary

conditions. The methods are illustrated by a series of examples, one

of which indicates how the existence and uniqueness of solutions

for certain types of boundary value problems could be determined. A

comparison of the various approximations is made for each example

and it is seen that the two point approximant can provide an

accurate result even when only a few terms of the series are

considered.
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ABSTRACT

The solutions to Fredholm integral equations of the second kind are

approximated using power series techniques. On expansion, power

series whose coefficients are given in terms of unknown functionals

are formed. By truncating these series and using approximations,

either in the form of Ihylor series or rational approxiraants, the

problem is reduced to a system of equations which is normally

solved iteratively. A type of Pade approxim&nt, called an S fraction,

and a two point rational approximant, known as an M fraction, are

both consider©!. Special attention is paid to those integral

equations arising from second order two point boundary value problems

as each series then contains only one unknown functional. The two

point approximant is in this case an especially powerful

approximation as it ensures automatic satisfaction of the boundary

conditions. Ihe methods are illustrated by a series of examples, one

of which indicates how the existence and uniqueness of solutions

for certain types of boundary value problems could be determined. A

comparison of the various approximations is made for each example

and it is seen that the two point approximant can provide an

accurate result even when only a few terms of the series axe

considered.
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INTRODUCTION

Both integral and differential equations are continually occurring

in physical problems and are therefore of great interest to the

mathematician. The study of differential equations started soon

after the invention of differential and integral calculus in the

seventeenth century, to which it is a natural sequel. By the middle

of the nineteenth century the analytical theory of differential

equations was well developed. It was not however until the turn of

the century that Fredholm and Volterra developed their theories of

integral equations. Throughout the present century both differential

and integral equations have been a source of continuous research,

and with the advent of the large modern computer the scope of the

many approximate methods of solution has widened considerably.

Since integral and differential equations are closely related

they are frequently considered together. Many books such as Davis(l960),

Pogorselski(l966) and Rabenstein(l966) have been written on the

analytical methods of solution available. Although the theory of

linear operators is well developed, the theory of nonlinear operators

is beset by many difficulties. The powerful existence theorems of

the linear operators often no longer hold in the nonlinear case and

general methods of solution have to give way to a multitude of

special techniques. For this reason many methods of solution, both

analytical and numerical, involve the process of linearisation.

When considering numerical methods of solution it is useful to

classify differential equations into two types. In integral equations

we tend to classify equations as being of *Volterra type' or

'Fredholm type' and analogously we can classify differential equations

as being of 'initial value type' or 'boundary value type' depending
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on where the boundary conditions are given. One of the many problems

of nonlinear differential equations is that the arbitrary constants

of integration occur nonlinearly; this can especially be a difficulty

with boundary value problems. Fox(l962) considers some of the basic

numerical methods of solution for ordinary differential equations

which do not require extensive computing.

Here we consider both linear and nonlinear Fredholm integral

equations. We look at approximations based on power series expansions

of the solution. The coefficients of these series are given in terms

of unknown functionals. By truncating the series we reduce the

problem to a system of equations which we normally have to solve by

iterative methods.

Particular attention has been paid to those integral equations

arising from second order two point boundary value problems.

Simplification then occurs since each series now contains only one

unknown functional. Examples illustrating both the general method and

the special application to boundary value problems have been given.

Whenever possible a comparison of the approximations with the exact

solution has been made. It will be seen that our methods of approximation

are especially powerful when solving two point boundary value problems.

We consider two types of rational approximant. The first is a

special case of a one point or Pade approximant known as an S fraction.

It is hoped that the S fraction will provide a better one point

approximation than the corresponding truncated Taylor series with

which it is compared. The second is a two point approximant, called an

M fraction, which fits series expansions about both endpoints of the

interval concerned. This approximant has better global convergence

than either of the one point approximations.
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CHAPTER 1

THE GENERAL METHOD

We consider the Fredholm integral equation of the second kind,

i

y(x) =f (x) +*jK[x,t}y(t)]cLt
04 t si 0 < x « c c^|

where f(x) and K[x,ty(t)J are given functions, and wish to find a

solution for y(x). Since a linear transformation of the variables can

easily be made, we restrict the problem to the interval |o,lj without
loss of generality. We look at two basic types of approximation which

fit power series expansions about the endpoints of the interval [o,lJ.
The first is a one point approximation based on expansion about the

lower endpoint x=0 of the interval. The second is a two point

approximation which fits expansions about both the lower and the upper

endpoints.

First we consider the one point approximations about x=0.

Normally we assume that the kernel K[x,t,y(t)J of (l.l) is an analytic
function of x so that it is possible to expand Kjx,t,y(t)J in a

Taylor series
oO

K[x,t,^(t)] = Krv[t/y(t)J (1>2)

about x=0 where

Kn.Ct,u(t)J - _L C°,t,y(i)]J n! ix" J d-3)

This assumption is not however necessary. If the kernel is continuous

but has a discontinuous first derivative in x it may be possible to

expand the right hand side of (l.l) by splitting the range of
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integration and expanding the integral as a whole. This is the case

with the two point boundary value problems described in Chapter 5.

Alternatively the kernel may have an asymptotic expansion as x tends

to zero in which case the Krv[t,y(t)j will no longer be the derivatives

given in (1.3). Similarly we later assume that f(x) is an analytic

function of x and can therefore be expanded in Taylor series although

this is not strictly necessary.

When the kernel can be expanded in the form (l.2)t the Fredholm

integral equation may be treated as an equation with degenerate

kernel of infinite rank so that

y(x) =i"(x)+- ^ Z J K.n.Ct.u (t)J dfc (i.4)^
a-o ° J

Suppose that we truncate the infinite series (1.4) after N terms and

write

n-i ,

\ju) - j*(x) + x.aj ktvct^(t)]At + c(n) (i.5)
where £(n) is the truncation error. Then if we let y^(x) be the

truncated approximation to y(x) we have

Wn(x) - f (*) + A h X'VJ Kn.Lt, Wn(D] d-1 (1.6)
IV=0 o

In the special case when the integral equation is linear and

K^Lt,v(t)J = Kr.(t)y(t) we may solve (1.6) exactly by the method of

degenerate kernels to find an approximate solution yN(x) to (l.l).
This well known method is described at the beginning of Chapter 2.

Usually, however, we are concerned with iterative methods for

solution of (1.6). We assume that the function f(x) can be expanded

in a Taylor series about x-0 of the form

JCx) = Z x* (A (i,7)
nl
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so that we can express yN(x) as

\jn 00 = X ^ / Kn. Ct;iyN(t)](itj ^
tv=o h-* °

8)

However since we implicitly assume that y(x) is an analytic function

in [0,l] this is equivalent to expanding y(x) directly in a Taylor
series about x=0 and truncating after N terms. Thus

ki u,9)

On equating coefficients in (1.8) and (l.9) we find that

VJ w (o) =, j-iM(o) + A J d/AK CO|t,yw (t)l clfc (1.10)
°

t\ = O , \ J J N-l

where we now define

!/'«>>, (ln)

Thus (l.lO) and (l.ll) form a system of N equations for the N unknowns

y(0),y'(0), »y t°). Obviously a simple form is when (l.li) defines

the truncated Taylor series about x=0 given by (1.9). However, in the

hope of finding a better approximation, we also consider the case when

(l.ll) defines a rational approximant to the series (l.9). Both these

methods are described in Chapter 2.

The system of equations (l.lu) and (l.ll) is usually nonlinear1

and must be solved iteratively. It is useful to define the following

N dimensional column vectors

y = {v/Coj.y®),
f = { (o),f (0), f<NAo)J (1.12)

K [t, u*(t)] = I K [o, t, uN(0], dJ<Eo(t, v/wCOl, }cTt<J L dLx J dxNM J J
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so that we may write the system of equations in the form

Y = f + 7\ S K Ct dLt (1.13)

or 2 = £(y) (1.1K)

where the function G is defined appropriately. It should be noted that

since G involves the evaluation of an integral it may have to be

evaluated numerically. The simplest iterative method is the first

order scheme

been used and throughout this work it wix.1 be denoted by the coding

(f). Unfortunately this scheme does not always converge and we may

have to consider a higher order iterative process. The one used here

is Powell's hybrid method for solving nonlinear algebraic equations,

Powell(l968). This consists of minimising the sum of squares of the

components of y - G(y) using a combination of optimisation techniques.

Again a starting vector T must be specified. Whenever this scheme has

been used it will be denoted throughout this work by the coding (P).

Thus by using one of the iterative schemes (f) or (?) we may

find y and hence an approximate solution yw(x), as defined by (l.ll),
to the original integral equation (l.l).

Unfortunately the error in the one point approximations increases

with x for given N, so that near x=l the approximations may be highly

inaccurate. We therefore now consider approximations with better

global convergence. The two point approximations fit series expansions

e(yCr-°) r=l,3l,... (1.15)

where a starting vector Yt3is given. Wherever possible this scheme has

(1.16)



about both the endpoints of the interval [_0,lj. As before we assume

that the kernel of the Fredholm equation is an analytic function of

x although this assumption is not strictly necessary. Then we my

expand the kernel in Taylor series

K[x,b,y(t)] = f jcl d*K [0,b,y(U] (ll7)
tv-.o rv i xa

and

K L x, t, =■ X 0
rvj <± xr

about x=0 and x=l respectively. We also assume that the function f(x)

can be expanded in a similar way, i.e.

K L x, t, i/(t)3 - f U-it cCK Et.b.yA)] (l.l8)•J '—hi W v i

= 2 £1(9} d-w)
n=C p. ■

and

f <x) = L ix-iTf <x) (1.20)
ix!

So from (l.l) y(x) can now be expressed as the power series

y(x) = 2 J""fo) + Tij'i crKfo.t-.yMUlrlL ^1 °n.'. dx* -1J (1.21)

Suppose that we truncate this series after N terms so that

uU) = K X" I £^to) + > J'j_ d^KCqt.yCtfldtl -+£(N) ."-'Q
n. i 0 h-1- (JlX^ J V-.22;

where £(N) is the truncation error. If we let yN(x) be an approximation

to y(x) then we may write
N-l

As with the one point approximations we assume that y(x) can be

expanded directly in a Taylor series about x«=0. We can therefore

equate coefficients in (l.23) to give as before

0) - f\o) + Co, (1>24)
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This procedure may be repeated using power series expansions

about x=l. Suppose we truncate these series after M terms to form an

approximation yM(x) to y(x)* Then we may derive a system of K equations

equivalent to (1.2*0 of the form

«»(1) = fM(l) + 51/ 'p Cl,C,y„(0]4toL x

tx - 0 j I j , M-l

We are now in a position to define the following set of equations

from (1.2*0 and (l.25)

y°°(o) = jw(0) + ~A [ 'cCk LO.t^NKCt)] dLt
clx,V (1.26)

ix ~ Oj I) ;N- t

M(l) = r^(l) + ^J"'t.vWt)] dtJ • dx*

IX-O, I , ,M-| J
whsre (x) r (x,v/(o),vy,(o)<....J/H",fe)Jv/(l)^,(lV...,/MH>(0) (1'27)
Thus we have a set of M+N equations for the M+H unknowns y(o),y'(0),..

• • • fy,h'(o),y(l),y,(l) ^'(l). The approximation yw„(x) that we

use here is a two point rational approximant which is described in

detail in Chapter 3. The system of equations (1.26) and (1.27) are

nonlinear and must therefore be solved iteratively. If we define

N+M dimensional column vectors

Y = { y(o),y'(o),...., y0), y1(1),...„yno]
i = f f(o),f'(o)1...,f<N">(o),f(i),f(i))... r"ci)]

(1.28)

1 ctx J 1 J

dx ciiffrl
-J
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we can write the above system of equations in the form

Y =£ + >J'j< [t,u,„(tpY)]At (1.29)

or y = & cy) (1.30)

where the function G is defined appropriately. As previously the

function G will usually have to be evaluated numerically since an

integral is involved. Thus we have reduced the two point approximation

to a form similar to that of the one point approximation in (l.l^).

Again we solve for Y iteratively using either the first order

iterative scheme (F) or Powell's method (p) as already described.

Having solved for Y we have an approximate solution y*M(x), as

defined by (1.27), to the original integral equation (l.l).



CHAPTER 2

ONE POINT APPROXIMATIONS

In the previous chapter we outlined some basic methods, involving

power series expansions, used to find an approximate solution to a

Fredholm integral equation of the second kind. Here we consider in

detail one point approximations based on a power series expansion of

the integral equation about x=0. Three different one point approxinations

are discussed.

a) Approximation by the Method of Regenerate Kernels

The solution of linear Fredholm integral equations by the method of

degenerate kernels is well known and included in most of the basic

textbooks on integral equations, for instance see Chambers(1976),

Pogorzelski(l966) or Mikhlin(l96i+). For completeness we include the

method in the form used here to find an approximate solution to a

linear Fredholm integral equation of the second kind. So let us

consider the linear integral equation

y(x)-J(y) + K(x,t)v/(t)dt (2<1)

As in Chapter 1, we assume that the kernel can be expanded in a power

series about x=0

K(x,t) = Zx^,L(t) (22)
r\-o \ • J

so that (2.1) becomes an integral equation with a degenerate kernel

of infinite rank

^y(x) =. fCx) + xn J Ka(t)y(t)<it ^

If we truncate the infinite series (2.2) after N terms we may find an
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approximation yw(x) to y(x) satisfying
N-l

^n(x) - f (x) -H 7\K Krv(t)yN (t)dLt (2.4)

Equation (2.4) can now be solved exactly to find y (x) by the method

of degenerate kernels. Suppose we let

IEta_(N) - J" Kn.(t)^yN(t)cLt (2.5)
0^ 1) jNi-i

where of course, for a fixed value of N, the In.(N) aire constants.

Multiplying equation (2.4) throughout by Km(x) and integrating

between x=0 and x=l gives us the linear system of equations
N-l

.Irn(N) — f~ m ^ T~, I,U) (2 6)
h.-c * ' '

O, I; } N-l

where Fm - JKm (x)j"60 dx and Xmrv = J~ Km 6c) X* dx
o o

assuming that all the integrals exist. Here we solve the linear set

of equations (2.6) for the Im(N) by using a FORTRAN library

subroutine due to Vilkinson and Reinsch(l971). Given a set of linear

equations in the form Ax = b , the routine uses Grout's method with

partial pivoting to decompose the matrix A into upper and lower

triangular matrices. An approximation to x is found by back-

substitution and this is then updated until full machine accuracy is

obtained. Having found the Im(N) we can write down an approximation

to y(x) for a given value of N,

N-l

^n(X.) — ^f(x) "+• X^Xtv (|\i) (2.7)

Since the kernel has been expanded in a series about x=0 it is
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obvious that yN(x) will be a closer approximation to y(x) near x*0

than near x=l. Unfortunately, for small N, yN(x) is frequently a

very poor approximation to y(x). For this reason we later consider a

rational approximant as an alternative approximation to y(x).

b) Iterating the Taylor series

When the integral equation is nonlinear we can no longer use the

method of degenerate kernels to find an approximate solution y^x).
Instead we must use an iterative scheme. So consider the nonlinear

equation of the second kind

yOO =f(x) (2-8)

As seen in Chapter 1, if both K[x,t,y(t)J and f(x) can be expanded in

power series about x=0, as given by (1.2) and (1.7) respectively, then

we may write

v/00'= Z x" ^ Jc^Co) +7iJ" KafTtjyCt)] cLtJ. (2>9)

On truncating the infinite power series (2.9) we can find an

approximation yN(x) to y(x) satisfying

>(x) - Z xaf -f(f°(o) + 7\,[ KnCt,yN(-t)]d.tl (2 to)
n=c tvi ° J '

If we assume that y(x) can be expanded directly in a Taylor series

about x=0, then on truncation after N terms we have

yN(x>- Z X*" y(^(Q) (2.11)
n=o

rv. i

Thus as shown in Chapter 1 we can equate coefficients in (2.10) and

(2.11) to form the system of equations

y°°(o) = f(r°(o) + ^ J'diKrCo.t/ywCt)] itJ ° cLxa J (2.12)
h.= o, i, , N~|



- 13 -

where we have here assumed that the kernel has "been expanded in a

lh,ylor series about x=0 and that the Ka[t,y(t)] are therefore of the

form given in (l.3)» We define yN(x) to be the truncated Taylor series

about x=0 as given by (2.11). This system of equations can be solved

for the y \0) "by one °f the iterative schemes (F) or (p) and we can

therefore find a one point approximation yN(x) to y(x).

As in the case of approximation by the method of degenerate

kernels, it is obvious that yN(x), being a truncated power series

about x=0, will be a closer approximation to y(x) near x=0 than near

x=l. However we find that for small N, yN(x) may be a very poor

approximation to y(x). For this reason we consider a Padb approximant

to y(x) as an alternative one point approximation.

It should be noted that when the function f(x) is already in

the form of a truncated power series, solution of the linear Fredholm

equation by iterating the Taylor series is directly equivalent to

solution by the method of degenerate kernels, for a fixed value of N.

Thus in the linear examples described in Chapters ^ and 6, it has been

found necessary to use only one of the methods described above.

It is also useful to consider separately the first order scheme

(F) for finding an approximation yw(x) to y(x) by iterating the

Taylor series about x=0. This scheme may be written in the form

yn 00 - ll { ± (?) + ^ J KuCt JdLfcl (2.13)J nro I rv.1 °

where the r*1 iterate of yN(x) is denoted by yNlx) and an appropriate

starting function yN(x) is given. This is obviously closely related to

the method of successive approximations, described in detail in such

books as Davis(l960) and Pogorzelski(l966). It is therefore possible

to use the theory of the method of successive approximations to find a

bound for A inside which the first order scheme (2.13) will converge.
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Outside this bound a higher order iterative scheme normally has to be

used.

Starting Vectors for the Iterative Schemes

It is important to find suitable starting vectors for the iterative

schemes. For many systems of equations the first order iterative

scheme (f) may fail to converge at all; however when convergence of the

first order scheme does occur it will usually do so whatever starting

vector is taken. For strongly nonlinear equations most iterative

methods fail to converge unless we have a good starting vector and

Powell's method is no exception. In general there is no systematic way

of finding a suitable starting vector but we outline some of the

possibilities here.
co)' \

Clearly the starting function yN(x) must be in the form of a

truncated power series about x=0. The simplest starting function to

take is

YnW = S X* f""(o) (2,v

/ \
or in the vector notation of (1.12) Y = f. Alternatively it may be

possible to assume a solution of the form

00 - Co -r CiX + + C*-| XR ' (2.15)

for some small R (i.e. R = 2 or 3) and by substitution in the integral

equation to solve analytically for the Ci,'s. We then take yN(x) = yR(x).

Thirdly we can try and linearise the original integral equation

(2.8) and solve using the method of degenerate kernels. We can then

use the 'linearised' solution as a starting vector for the nonlinear

equation.
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c) Iterating the Pade Approximant

It is well known that rational functions known as Pade approximants

M

K
PNM (z) = (2a6)

X ?<=
t =o

can be constructed so that the expansion of PWM(z) about z=0 agrees

with a given number of terms of the power series expansion of the

function

(tOO = Z ^Lc^O)
h-C (2.17)

The classical theory of Fade approximants is described in Wall(l9^8);

for more recent theory see, for instance, Gragg(l972). Many different

Pade approximants could be used but here we consider only one. The

particular Pade approximant used can be expressed in terms of

continued fractions called S fractions which correspond to ps„ and

PN|4„, N = 0,1, The N* convergent of this fraction can be

written

) — Co Cj Z. Ct<eiZ. (2.18)
I + I I -4- ...+ I

where the c^ are independent of N and are chosen so that the fraction,

when expanded out, fits N terms of (2.17). Thus

Crt — Crv. (dc j CL, ...... CLfv.
(2.19)

n.-= o, 1,.... j N -1.

The algorithm used to find the jc„} is called the corresponding

sequence (CS) algorithm, due to Murphy and 0'Donohoe(l977).

So consider Fredholm's integral equation of the second kind and.
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as previously, expand the right hand side in a Taylor series a,bout

x=0

OO

y GO = ZI xK|V( (o) -+■ "A J Ka[t, yC-t)] cLtj (2.20)
We can now form the S fraction yN(x) corresponding to this infinite

series. Since we implicitly assume that y(x) can be expanded in a

Taylor series about x=0

(

IVrO n I

we can equate coefficients for the first N terms in (2.20) and (2.2l).

Then

V%) = fw(o)+ a/W [o.t, i/n(0] itJ J ° (2.22)
rv= 0 j I , , I

where we have assumed that the kernel has been expanded in a Taylor

series about x=0 and that the K,x[t,y(t)] are therefore of the form

given in (1.3)- 7m(x) is the S fraction to the series (2.20) and hence

to (2.21). From (2.18) and (2.19) it is obvious that

Um(x)=^ C, fc/fo?,y'(oj]x. (9 9^
J I -+- i I

-

yN Cx>^/(o), yco), , »/'M'n(o))
as required. We can thus solve the system of N equations (2.22) by one

of the iterative schemes described in Chapter 1. It is hoped that this

approximant will provide a better approximation than either the method

of degenerate kernels or the iterated Taylor series. Obviously these

methods of approximation could be repeated using other Fade approximants

and different results might be obtained.
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Starting Vectors for the Iterative Schemes

Similar starting vectors to those used when iterating the Taylor

series can "be applied. The simplest starting function to take is the

S fraction of f(x), or in the vector notation of (1.12) to let
ro]

Y = f . Other starting vectors may he found by taking the S fraction

of those starting functions used in Section b).
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CHAPTER 3

TWO POINT APPROXIMATIONS

Since one point approximations about x=0 are liable to be inaccurate

for given N near x=l, we now consider a rational approximation with

better global convergence, which fits power series expansions about

both x=0 and x=l. First we outline the basic idea upon which the

theory of two point rational approximants is based.

Suppose that a function can be expanded about z=0 in the

series

z
rv-o

n

Crx 21 (3.1)

and about in the series

CO

Z 4 (3.2)Zrt

where (3.1) and (3.2) may be either asymptotic or convergent

expansions and it is required that cc and bi be non zero. Rational

functions in the form of continued fractions can now be constructed

which agree, when expanded out, with n terms of (3.1) and m terms of

(3.2) simultaneously. Here the particular rational function we

consider is such that the m^ convergent agrees with m terms of each

series. Murphy(1966) showed that the required fraction is of the form

fim (1) n hx z. n mZi ^ ^
I ±cLi~Z. 4- I -td_z2L 4- .... 4" 1 4- d-m'Z-

This continued fraction is called an M fraction and is unique,

McCabe(l975). The coefficients nt and du are independent of m and

have been calculated here using the corresponding sequence (CS)

algorithm, Murphy and 0,Donohoe(l97?)» although other methods are
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available. Clearly we have

h-i = ru (c0,c,, ,cc-., b«,bx> 5 b.)
L=a> (3 A)

d-L - cLlCCo,Q; ;CiM; b|J(bi; , bl)
i- I} ,m

It should be noted that for certain problems either cc in (3.1) or

b, in (3.2) may be zero. It is simple to safeguard this from happening

by adding an arbitrary function which can later be subtracted.

Now consider the Fredholm integral equation of the second kind

\jix) - f (x) + K Cxyt>ty(t)] dlt
In order to form a two point approxiraant to y(x) we need to expand

y(x) in the form of the series (3.1) and (3.2). Suppose that we

expand (3.5) in a Taylor series about x=0 so that

j/(x) = 21 x* | d(f°(0) -+ 7* jKrv [t,_y(t)J dtj (3t6)
where

co 00

K [xijt,^_y(t)] = 21 KaCtjyCt)] = K [o,b,y(t)]
fcso J lv:C n. | oLX^

and fM - JI x* fno?
a!

Suppose similarly that we can expand (3.5) in a Taylor series about

x-1 so that

where

and

jw = £ (x-D" [ o> + k*ct̂afldbt]
K [ X, t, 7 (t)3 = £ U-iT K• ft, v (Q3 3 Z M)" d" K D, bJ n>c K} dxa J

jto = £ (x-irf£ui
n.= o ,

t\. S
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As shown in Chapter 1 this is equivalent to assuming expansions of

y(x) about x=0 and x=l in the forms

y<x) = Z x" y
n ,

VCx) - Z Cx-1f y(*Xl) (3.9)J „=o
^ ,

Now by the simple change of variable

Z = ^ OC. - ?L , \
or

FTT (3ao)
we can transform (3.6) - (3-9) into expansions about z=0 and z=«

to give
CO oo

y(z) = Z z*c* yfeO = Z hiL ,, ~J
n.c and J nfc ^ (3-11,3.12)

respectively. The cA and bn. are expressed in terms of the original

coefficients of the series, namely

Co - .y(o)

Cn = C-ir rv=,,3,.. (3_13)
l = i n. [ j

bo r ^y(i)

b„= £ (?:i) (-if .

<■=1 a i

If we now put

X(2)= y(z)-y(0 (3>llf)

we may approximate Y(z) by the M fraction

M*(z) = Mn(zl^(oXy,(c)i...J^<M"'\o))y(l))y,0)1 (3a5)

(o)
(3.8)



which agrees with N terms of the series (3«ll) and N+l terms of the

series (3.12). Thus in the notation of Chapter 1 we can now form a

two point approximation to y(x)

y^Cx) = y(0 + (3>i6)

where M = N+l , and hence can define the relationship (l.27)

y*mW - yMN,i(^//o)>yYoV<^'to)^a)/y'av..;y,">(i)) (3>17)

Thus on equating coefficients of the series (3.6) and (3.7) with those

of the series (3.8) and (3.9) we may derive the system of 2N+1

nonlinear ^uations

f*\o) - f* Co) + } f' [o, t, u.mlt)] At
o cL J

h. — 0, I , ,... ^ N-l

^/(,v)(i) - $cn\i) + Ci)-b .w-tflclt
°

dx^ J

(3.18)

a - o, i, M

where y„^i(x) as defined above. Hie system of equations can be

solved by one of the iterative schemes (F) or (P), described in

Chapter 1, to give an approximate solution to (3.5). Although we only

consider the two point approximant described in detail here, obvious

extensions to the methods could be made to deal with other fractions.

For instance in certain problems it might be advisable to consider a

two point approximant using more terms of one series than of the

other.
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Starting Vectors for the Iterative Schemes

The simplest starting function is to take the appropriate two point

approximant to the function f(x) or in the vector notation of (l,28)
(bj

to let Y = f . Alternatively it may be possible to make use of one

point approximations. Suppose that for some small N a one point

approximation about x=0 has been found. Then if we can repeat the

general procedure to find a one point approximation about x=l we are

now in the position of being able to calculate a two point approximant

to the two series. Ibis may then be used as a starting vector.
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CHAPTER 4

APPLICATION OF THE GENERAL METHOD

TO AN EXAMPLE

Computational Procedure

Computing has been done throughout with DOUBLE PRECISION accuracy

on the University of St Andrews IBM 36O/V* computer. The programs

have been written in FORTRAN as a series of subroutines so that

they may readily be altered to solve different problems. For each

example results were computed for various numbers of terms in the

series (usually N = ^-,6,8,10 and 12), although only a few of these

results ')c,ve been given here due to lack of space.

Details of the various methods of numerical integration used

and the starting vectors for the iterative schemes have been

discussed individually for each example. Since convergence of the

first order iterative scheme (F) may be slow, Aitken's acceleration

formula was used. Powell's method (P) was used with maximum internal

steplength 0.01 and a convergence criteria for minimising the sum cf

squares (l.l6) of 10 16. Checks were performed using results from the

the first order iterative scheme (F) and comparing them with similar

results from Powell's method (?). In all cases agreement was found

to at least seven decimal figures.

The subroutines used to form the S fraction were tested using

two examples. The coefficients of the S fractions corresponding to

the functions (l + x)x + (l + 2x)5 and (l + x)* are given by

Drew and Murphy(l97?) and Wall(l9^8) respectively. For both examples

the subroutines were found to be working correctly.
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Example demonstrating the General Method

As an illustration of the general method we consider the linear

integral equation

y(x) - I + ext v(t)d_t

where A is a constant, and 0$ xs 1 . Here

= K(x,t) \j(t) - e*fc^(t) (^2)

and is an analytic function of x in [o,l]. Following the general

method we can expand y(x) about x=0 and x=l as

\jCx) - I X* J~ Jk <j(t)cLt
and

y(x) r I -4- ^ K (x-lTf zb t_a y(t)dtJ n-o o rv!

Truncation of (4.3) after N terms gives

(4.3)

(4.4)

N-l

yu(x) - I + Till xa_[ k yN(k)dt
a=o O

(4.5)

The Method of Degenerate Kernels

Since the integral equation is linear we can solve for yN(x) by the

method of degenerate kernels. Suppose we let

I,(w) = J _t_a y*(t)dt
a L

0) .,N-I

Then we may derive a system of N linear equations of the form (2.6)

in the normal way
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I-n(M) = _J + 7l£ _U(NQ_ .
a=o mj^+n+O

nx^Oj 1^ j M ~ J

Solution of these equations for the Im(N) provides an approximation

yN(x) to y(x). As N increases it is found that the Ia(n) tend to a

fixed value In. as would he expected.

Iterated One Point Approximations

In this example yN(x) is already in the form of a truncated power

series about x=0 from (4.3). If we expand y(x) directly in a Taylor

series about x=0 then we can, on equating coefficients as described in

Chapter 1, derive the system of N equations

y Co) = I + } J yN (t) d-t
(*.8)

y^co) = ?> J t5 yN (t) d_t vS= i /—, n— i

where by definition yN(x) = yN(x,y(0),y'(0) These

equations are solved using either the first order iterative scheme (F)

or Powell's method (P).

When yw(x) defines the truncated Taylor series of y(x) about

x=0 we find that, for this example, solving the system of equations

(*f.8) by iterative methods is directly equivalent to solution by the

method of degenerate kernels for a fixed value of N. In both these

cases the integrals have been evaluated analytically. Thus no results

from iterating the Tkylor series have been included in Ihbles 1-3.

It can readily be shown that when the method of successive

approximations is applied to the original integral equation (^.l)

convergence occurs when < i . It would therefore be expected that our
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first order scheme (f) for iterating the Taylor series should also

converge for these values of )i , and this is indeed found to he

the case.

When y,>.(x) defines the S fraction to y(x) it is found necessary

to evaluate the integrals at each iteration numerically. Here we usea

Simpson's rule with step size h=0.05. This is undoubtedly a source of

some inaccuracy in the results. It was found that decreasing the step

size to h=0.01 did improve the accuracy of the solution slightly but

also grea+ly increased the computing time used.

Starting vectors are of course necessary when using the

iterative schemes (?) and (P). When iterating either the Ihylor series

or the S fraction by the first order scheme (F) a starting function
UJ. .

yN(x) = 1 may be taken. When the scheme (F; failed to converge,

Powell's method (P) was used. Somewhat surprisingly, it was found

that for all values of a tested Powell's method converged when the
loj.

same starting function y^Ax; = 1 was taken.

Iterated Two Point Aporoximant

Following the general theory of Chapter 3 we derive the system of

2N+1 equations

(4.9)

where yNtB,(x) = y^,(xfy(0),y' (°),... ,y°(0),y(l) ,y' (l),... ,y°(l))



defines the two point rational approximant. Again these equations

must be solved iteratively using either the first order scheme (P)

or Powell's method (P).

As in the case of the S fraction, all the integrals have to be

evaluated numerically at each iteration and we again use Simpson's

rule with step size h=0.05. As before, this is a source of some

inaccuracy in the results. When the step size was decreased to h=0.01

improved accuracy was obtained but the computing time was increased

by an unreasonable amount.

Again starting vectors had to be found for the iterative

schemes and for the first order scheme (F) the starting function
CcJ

yNiui(x) = 1 was used. Wher the scheme (f) failed to converge Powell's
method (?) was used. However, for some of the values of ^ tested,

CcJ/ %
Powell's method with the same starting function y^CxJ = 1 failed to

converge. Better starting vectors were found using the method of

degenerate kernels to find a series approximation to y(x) about x=C.

The method was repeated to give a series approximation about x=l.

Thus a two point approximant y^^x) can be formed for some small N

and used as a starting function. Fortunately this process involves

little extra work.

The Exact Solution

Unfortunately this integral equation has, as far as the author knows,

no exact solution. For comparison we give an'exact'solution which has

been computed using both the method of degenerate kernels and the two

point rational approximant. For large N (here we have considered

N=12 and N=l4) we can derive series approximations to y(x) about both

x=0 and x=l by the method of degenerate kernels. We hope that for

this value of N the coefficients of the series I,-l(N) have converged
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with sufficient accuracy to a fixed value Ia. We then form the two

point approximant to the two series and use this as an 'exact'

solution. In all cases this 'exact' solution appears to have converged

to at least eight decimal figures.

Results

We now show some of the results computed for various values of ?t .

Since Simpson's rule with step size h=0.05 is a source of some

inaccuracy, we have also shown the results using the smaller step

size h=0.01. These figures are given in brackets for the appropriate

methods. In Table 1 we have shown the results when 7\ = \ . In

Tables 2 and 3 we consider the results when 1\ - 1 and ?i = ^

respectively. In all cases four terms of the series about x=0 and

five terms of the series about x=l have been taken. (F) and (P) have

been used to denote which iterative scheme was used in each of the

iterative methods.

Comments on these Results

In each of the Tables 1 - 3 we have considered a different value of >,

and shown the resulting approximations when N=4. As would be expected

the iterated two point rational approximant provides a far better

approximation to y(x) than either of the one point approximations. The

iterated two point approximant has in all cases converged to the exact

solution to at least five decimal places. In fact it can be seen by

altering the step size in Simpson's rule from h=0.05 to h=0.01 that

the error in the sixth decimal place is due to the integration

routine. With step size h=0.01 the iterated two point approximant

converged to six decimal figures in all the cases tested.

Both the one point approximations give a rough approximation
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to y(x) when just four terms of the series about x=0 are considered.

Unfortunately the iterated S fraction does not always seem to

provide the improved approximation that was hoped; when ^ = ■§• it is

a poorer approximation than the Taylor series found by the method of

degenerate kernels. When N was increased it was found that both the

one point approximations quickly converged to the exact solution.



TABLE1

Fredholmequation^y(x)—I+7[J" Kj(t)dlt "ft-4?

y(x)

x-0

x-0.2

x-0.4

x-0.6

x-0.8

x»1

Methodof degeneratekernels
2.511305

2.683571

2.881314

3.107910

3.366740

3.661181

Iterated Sfraction(P)

2.528357 (2.528356)

2.703048 (2.7030^8)

2.904653 (2.904653)

3.139388 (3.139388)

3.415856 (3.^15855)

3.746081 (3.746080)

Iteratedtwopoint approximant(F)

2.517003 (2.517003)

2.690078 (2.690078)

2.889104 (2.889104)

3.118432 (3.118432)

3.383189 (3.383189)

3.689423 (3.689422)

'Exact'solution
2.517003

2.690078

2.889104

3.118432

3.383189
.

3.689422

N-4

y(x)expandedto4termsaboutx*»0 y(x)expandedto5termsaboutx=l



TABLE2
=I+7iJ"'e,tty(t)it

•>='

y(x)

x-0

x-0.2

-3"

•

0

1

X

x-0.6

X

1

0

CD

x■=1

Methodof degeneratekernels
-1.745405

-2.080580
f

-2.466892

-2.911227

-3.420474

-4.001519

Iterated Sfraction(P)

-1.722774 (-1.722775)
-2.055796 (-2.055798)

-2.44-0352 (-2.44-0354)
-2.885142 (-2.885143)

-3.400254 (-3.400255)
-3.997243 (-3.997244)

Iteratedtwopoint approximant(P)
-1.721342 (-1.7213^4)

-2.054228 (-2.0^230)
-2.438654 (-2.438656)

-2.883421 (-2.883423)
-3.398921 (-3.398923)

-3.997430 (-3.997431)

'Exact*solution
-1.721344

-2.05^230

-2.438656

-2.883423

-3.398923

-3.997431

N-4-y(x)expandedto4termsaboutx-0 y(x)expandedto5termsaboutx=l
Fredholmequation



TABLE3

fIXt.

Fredholmequation~'+̂Jvt)cLt *^4-

y(x)

x-0

x-0.2

-3"

•

0

1

X

x«*0.6

x=0.8

x-1

Methodof degeneratekernels
0.30if383

0.149233

-0.034262

-0.250230

-0.502798

-0.796094

Iterated Sfraction(P)

0.314621 (0.314619)

0.158584 (0.158583)

-0.026578 (-0.026579)
-0.246356 (-0.246356)

-0.507290 (-0.507289)
-0.817131 (-0.817128)

Iteratedtwopoint approximant(P)
0.314340 (0.314338)

0.158327 (0.158325)

-0.026788 (-0.026789)
-0.246453 (-0.246453)

-0.507155 (-0.50715^)
-0.816623 (-0.816620)

'Exact*solution
0.314338

0.158325

-0.026789

-0.246453

-0.50715^

-0.816620

N■4-y(x)expandedto4termsaboutx~0 y(x)expandedto5termsaboutx=l
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CHAPTER 5

TWO POINT BOUNDARY VALUE PROBLEMS

In this chapter we apply the general method to second order two point

"boundary value problems. As is well known this type of problem has an

integral equation formulation. It will be seen that our methods of

approximation are particularly suited to dealing with equations of

this kind. This is for two main reasons. The first is that each of the

Taylor series expanded at the boundaries now contains only one unknown

derivative. This means that the systems of equations reduce to a

single equation for each unknown derivative, and hence only one, or at

most two, integrals have to be evaluated at each iteration. Secondly

we find that when the method of iterating the two point approximant

is applied to these examples, the boundary conditions are automatically

satisfied.

So let us consider second order nonlinear differential equations

for y(x) in the general form

+ 7|-f(x,</) = 0 (04X60
cLx1

subject to the boundary conditions

^y(o) = CL \j (0 - b

(5.1)

(5.2)

The restriction of the problem to the interval [o,l] involves no loss

of generality. Also, although we specifically consider boundary

conditions of the form (5.2), it is possible to have mixed boundary

conditions involving derivatives.

Much work has been done on problems of this kind. As Scott(1975)

states, "the numerical solution of nonlinear two point boundary value
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problems can be a challenging proposition. The basic existence and

uniqueness theory is not as developed as for initial value problems or

linear boundary value problems". Keller(l975) has made a survey on

some of the recent literature concerning numerical methods of solution

for two point boundary value problems.

Here we need to write the differential equation (5.1) in integral

equation form where, of course, the boundary conditions are automatically

incorporated. The corresponding integral equation is

^y(x) = cL-t-(b-a)x. + \ J«(x,t) f Ct# y CO"] clt

where K ( X, t) — tCl-/.) 0 i t ^ *

v (\ — ' , . (5.^)= X U j xi t< I

This is a Fredholm integral equation of the second kind and is in the

form (l.l). Suppose we let

w Cx) = a_ + (b-a)x (5.5)

Then on expanding l(x) in a Taylor series about x=0 we have

CO

v/( x) - a + (b-a)x -+ )\Y^n X<f°(0)
a-o ^,

(5.6)

with

1(0)= 0

1(0) r J (I- t) j7 ITt,y(t)] cit (5.7)

£1 f[xyy(K)]
L dx^z

I"(0) r -iTo^(o)] ^ -S [0;a]

s=Zt

The I^^O) are total derivatives of the function f[x,y(xj] evaluated

1 (0) - -

X-o
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at x=0 and can therefore "be expressed in terms of the derivatives of

y(x) evaluated at x=0

Iai(o) = L[y(o),/Co),....,/"1 Co)] (58)
S ~ 31 {+)•>•

However since we implicitly assume that y(x) can be expanded directly

in a Taylor series about x=0 we can put
CO

Zrv. v; £n1 .* (5.9)
h""°

n. I

Suppose we now truncate the infinite series (5-6) and (5.9) after N

terms to find an approximation yN(x) to y(x). Then on equating

coefficients in the two series we can derive the system of N equations

^y(O) - CL

'(o) - b - a •+ J (l-t)f [t.v/N Ct)l dc

(Or -7) f Co, cxfj (5.10)

^(s\o)- 7Jl^[^(0)Jy,C0))....,^Cw)Co]

where, as previously, we define the one point approximation to be

y*j(x) - vyN (x, l(°\ ) j<N°(o)) (5-11)

This approximation may be the truncated Taylor series (5.9) or the S

fraction corresponding to that series, both of which are described in

Chapter 2. The system of equations (5.10) is equivalent to the equations

(1.10) that we derived in Chapter 1, and may be solved similarly using

either the first order iterative scheme (F) or Powell's method (p).

Some simplification is however possible since it is clear that we have
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in fact only one unknown, namely y'(0). All the other derivatives of

y(x) evaluated at x=0 are either known or can be expressed in terms of

y'(o). Thus we may write

= ^I<S,(G> =>XjCy<OXl (J-12)
S — 3; M-l

We are therefore in effect solving a single equation for y'(o) which

may be written

j'Co) = b-a+ 7\ J (!-t)jrL"t, v/n cLt (5.13)

where now yN(x) = yN(x,y'(0)). It is necessary to find a starting value

y'(0) for both the iterative schemes (F) and (?). Possible choices are

discussed at the end of this chapter. It should be noted that we cculd

also solve equation (5-13) directly by such means as the bisection

method or the method of false position, in which case we would need to

find an interval encompassing the root y'(o).

Although we have discussed here iterative schemes for finding

y'(0) and hence yN(x), it is possible in the linear case f[x,y(x)] =

f(x)y(x) to solve exactly for y„(x) by the method of degenerate kernels.

Since we have only one unknown functional y'(0) we may derive a single

linear equation for y'(o). This is directly equivalent to iterating

the Thylor series about x=0.

Thus by similar methods to those used previously we can find a

one point approximation yN(x) to y(x). This approximation will now be

exact at x=0 but, as before, the error increases with x so that it may

be inaccurate near x=l. We therefore now consider a two point

approximation which satisfies the boundary conditions at both x=0 and



- 37 -

Suppose we now repeat the procedure of expanding (5.5) using

power series expansions about x=l. We truncate these series after M

terms to form an approximation yM(>0 to y(x). Then we may derive a

system of K equations, similar to (5.10), of the form

«/(0= b

y'O) = b-a. - 31 J" tJ[t, dfc

y"(D = -}Ki,bD <5'1<0
f{1) = /) Xe>(l) =

•S -= 3; Zj- }M - | _j
It therefore becomes clear that we have egain only one unknown, namely

y'(l). All the other derivatives of y(x) evaluated at x=l are either

known or can be expressed in terms of y'(l). Thus

= Till cyo>j (5.15)

J.'= 3,

We are now in a position to define a set of N+M equations from (5.10)

and (5.15) the form

(j {0) ~ <X o/"(o) - ""Xj" [0,al
y'(i 0)=b -a + 7,1 (l-t)f [t,^»„(t)]ifc
/,to)= .s=3,...JN-l

«/(o - b yen = -xfCi,b]

y'(D= b-a. -31 I'tf Ct;yNM(t)] alt
o

f0)'~ 7) Is CyO\] 3 = I

(5.16)
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where, as before, we can define a two point approximation yNM(x) to be

(x) =^/nh (x, y (c)t y (0); ,. ,,u ^') (5.17)

We again take this to be the two point rational approximant described

in Chapter 3. However it is obvious that we have only two unknowns,

y'(0) and y'(l), and thus

= (x,^ (o), y (0) (5.18)

The system of N+M equations (5.16) may therefore be reduced to a pair

of nonlinear equations

y(0) - b - a-*-} J(i- t)J '(!))] dt ^ ^

\j'(0 ^ b-a-AJ't j
a

We solve these equations by either the first order iterative scheme (F)

or by Powell's method (?) as described in Chapter 1. We need a starting

vector Y where Y = [y,(0),y'(l)J and possible candidates are

discussed at the end of this chapter. Thus having found y:(0) and y'(l)

we now know the two point approximant y*„.„(x)« Since y(u) and y(i) are

given by the boundary conditions, this approximant is exact at both x=0

and x=l. For this reason iteration of the two point approximant seems a

very suitable method for finding approximate solutions to second order

boundary value problems.

The Special Case f(x,y) « f(y)

Further simplification is possible when we consider equations of the

form

d-z V + 3 j- (y) = o (5.20)
cLxz
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subject to boundary conditions (5.2). For then we have

-L f _f(vj)dy ■+ corr-sfaixt (5<2l)a \(Lx )

and hence can define a relationship between y'(o) and y'(l)

1 [j'(o)]2 + y) +V (5.22)

In general we must consider taking both the positive and negative

square roots in (5.22). However we often have enough knowledge of the

physical properties of the problem to make this choice obvious. Thus

we can reduce (5.19) to a single nonlinear equation for y'(0).

Starting Vectors for the Various Iterative Schemes

Ve need to find appropriate starting values for y'(0) and y'(l) in the

iterative schemes (F) and (p). For one point approximations we need to

determine a suitable starting value for y'(o). The simplest choice is

to take y'(0) = b-a and substitute this into the right hand side of

(5.13). Alternatively we can try and linearise the original differential

equation. The resulting integral equation may, if it cannot be solved

analytically, then be solved by the method of degenerate kernels to

give an approximate solution y^(x). This result can then be used to

give a starting value y'(0) for our nonlinear iterative schemes.

The most systematic way of finding a starting value y'(0) for

the one point approximations is to consider the single equation

^'(O) - (b-a.) - > J(|-t) (t^'CO))] clt = O (5.23)
O

By determining where the left hand side changes sign for various

values of N we can find an interval in which there is a root y'(0).

The midpoint of this interval can then be used as a starting value
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y'(0) in the iterative schemes (F) and (?). In practice however it

is useful to have some idea beforehand of the region in which y'(0)

lies; this can often be obtained from a study of the original

differential equation.

For two point approximations we need to find suitable starting

values for both y'(0) and y'(l). The simplest choice is to take

y'(0) «= b-a « y'(l) and substitute this into the right hand side of

(5.19). Alternatively we can make use of one point approximations. If

we can derive these about both x=0 and x=l then they may be used to

provide starting values y'(0) and y'(l) when iterating the two point

approximant. It should be noted that this procedure produces little

extra work since both the series expansions about x=0 and x=l are

needed to calculate the two point approximant.
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CHAPTER 6

BOUNDARY VALUE PROBLEMS: EXAMPLES

In this chapter we consider three differential equations of boundary

value type. The first is a simple linear equation while both the

second and third examples are nonlinear. We shall show that one of the

nonlinear problems has two solutions and that the other, a well known

test problem, has inherent difficulties that have to be overcome. The

same computational procedure as that described at the start of Chapter

4 has been used. For each example a comparison of the various

approximations has been made with the exact solution.

Example 1 - An Introductory Boundary Val"3 Problem

Consider the linear second order differential equation

Since this equation has a simple closed form solution it makes a

useful first test example. In integral equation form the problem

becomes

diy + 7i^ = o (6.1a)

\j(.o) ~ (X - Si Kj (i) - b = 3 (6.1b)

(6.1c)

where

(6.Id)

On expanding l(x) in a Taylor series about x=0 we can immediately

write
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y(x)~ a. + jV<x+ ^J(l-t)_y(t)dtjx ■+ [-}» 21 +-. (6.1e)
V.

+
j s.

Similarly on expanding l(x) in a Taylor series about x=l we have

J/00 - b + £b-CL-/| J ty(t) dtj(x-l) + -y2y(t)j(x-0 -I-,. (6.If)

...+ [-7)N(^(I)](X-i/ -K..

First we consider the various one point approximations as

applied to this example. On truncating the infinite power series

(6.1e) after N terms we can find an approximation yN(x) satisfying

vjiiOO = a- + b-a + ?XJ (l-t) i/.OtHtJ x + p/)^y(o)j x.2. (6 ig)

y xo
>-/

(n-I).1

On equating coefficients with those of the truncated Taylor series

of y(x) expanded directly about x=0 we have the relations

j(0) ~ o_

y'(o) z b - a -f 7) J (|- t)yK (t) dt
0

y\o) - - -7)V (6.lh)

f\0)= -rf'\o) I
,(5-2)

involving one unknown, namely y'(0).
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The Method of Degenerate Kernels

Since we are dealing with a linear equation we can solve for yN(x)

using the method of degenerate kernels. As we have only one functional,

namely J(l-t)yN (t)dt , we may derive a single linear equation "by
o

multiplying (6.1g) throughout by (l-x) and integrating between x=0

and x=l. On rearranging this equation becomes

u'(o) =, b - a + O, + t
^ C»iXs+2>-s! (6.1 j)

where

^\o) = (r I)5" ^a. 5 ti/tn.

y (o) - (-') /I j(0) d odd

and may be solved directly for y'(0). Having found y'(0) we can thus

determine an approximation to y(x) in the form of a truncated Taylor

series about x=0.

As N increases the coefficient y'(0) of the Taylor series

converges. The rate of convergence is obviously dependent on the value

of ^ . When y'(o) is large the method is slow to converge. In Table h

we consider the coefficient y1 (0) for various values of N and . It

should be noted that for small N y'(0) may be highly inaccurate (as

when =3) and in these cases yw(x) will be virtually useless as an

approximation to y(x).

Iterated One Point Approximations

Suppose we now define yN(x) = y,xj(x,y(0) ,y• (0),.... ,y"Xo)) to be

either the truncated Th-ylor series about x=0 or the S fraction

corresponding to that series. We can then solve the system of N

equations (6.1h) by either the first order iterative scheme (F) or



TABLE4

y+Y\j-00)~\̂jCl)=3
Thevalueofy'(o)asfoundbyapproximationusingthe methodofdegeneratekernels

y'(o)

N-4

N-6

N-8

N-10

N-12

Elxact

h-i

2.277227

2.281066

2.280999

2.281000

2.281000

2.281000

A-2

7.858143

8.468531

8.427463

8.429180

8.429130

8.429131

*-3

18.571429

173.764706
102.184332

106.096452
105.856809
105.867022

71-4

-9.285714

-20.357798
-22.931770

-22.804088
-22.758531
-22.765714
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Powell's method (P). Since alternate coefficients for this example

are constant, considerable simplification can be made.

Clearly the system of equations (6.1h) can be reduced to a

single equation for y'(0). When yN(x) defines the Taylor series about

x=0 this equation is of course the linear equation (6.1j) found by

the method of degenerate kernels. Since solution by substitution and

by iteration yield the same result, only those using the method of

degenerate kernels have been listed.

The method of successive approxir*.tions converges for ^<2

when applied to the original integral equation (6.1c). We would

therefore expect the first order scheme (F) for iterating the Taylor

series to converge for these values of 7\ . This is confirmed by the

results.

When yK(x) defines the S fraction corresponding to y(x), the

functional J(l-t)yNj(t)dt has had to be integrated numerically at
O

each iteration. Throughout this example Simpson's rule with step size

h-0.01 has been used.

A starting value for y'(0) and hence yN(x) is of course

necessary for both the iterative schemes (F) and (P). When iterating

either the Taylor series or the S fraction by the first order scheme
£.cj

(F), a starting function y^(x) = a + (b-a)x was taken. When the

iterative scheme (F) failed to converge, Powell's method (P) was used

and an appropriate starting value for y'(o) was obtained using the

method of degenerate kernels.

Iterated Two Point Approximant

If we truncate the power series (6.1e) and (6.If) after N and N+-1

terms respectively, then we arrive at the following system of
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equations

J (o) r, a y'co) — -7\ CL

y(o)_ b-a ■+-^2J(l-t)v/NN.,(t)cLt
v/((o)--Yy(s*\o) (6.1k)

- k V/"(J) =-^zb

b~cx - /) X t^yWN+i(t)cLt

y,o) = -7ixb

^^0)= -tiN/^CO

where we define yN^(x) = yNk*(x,y(0) yHto),y(l) y(M\l)) to be

the two point rational approximant described in Chapter 3. It can

easily be seen that this system of equations contains only two

unknowns, namely y'(0) and y'(l). We can therefore write the two point

approximant as yw,^(x) = y^,(x,y * (0) ,y' (l)) and reduce the 2N+1

equations given by (6.1k) to the pair of equations

Hiese two equations are solved iteratively for y'(0) and y'(l) by one

of the iterative schemes (F) or (P). As in the case of the S fraction

the two integrals are evaluated numerically at each iteration using

Simpson's rule with step size h=0.01.

Starting values for both y'(0) and y'(l) have to be found when
00

using the iterative schemes. Taking y (x) = a + (b-a)x provides an

adequate starting function for the first order scheme (f). When this

]

(6.11)

G J
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failed to converge Powell's method (P) was used. Suitable starting

values for Powell's method were found by using the method of

degenerate kernels to provide series approximations about both x=0

and x=l.

The Exact Solution

The boundary value problem (6.1a) with (6.1b) has the simple exact

solution

y(x) r acas Tlx + (b-axcxs?|) -sin. Tlx
sin. 71 (6-ln)

This solution can be expanded in Taylor series about x=0 and x=l. The

coefficients of the series can then be compared with those calculated

from the various approximate solutions. Obviously the coefficients

can be large when sini* is small and for these values of }\ (e.g. > = 3)

the approximations are usually slow to converge. The size of the

coefficients also tend to increase with 7i .

Results

We now show some of the results computed for various values of 7> . In

Tables 5 and 6 we consider the results when > = 1 and >=2 respectively.

In both these tables results have been shown for N = 4, i.e. using four

terms of the series about x=0 and five terms of the series about x=l.

In Tables 7 and 8 results with A = 3 and f) = ^ have been shown. Since

the one point approximations are not very good it has been felt

necessary to show only the results from the method of degenerate

kernels. In these tables results are shown both when N •= and N = 8.

As before (f) and (p) have been used to denote which iterative scheme

was applied.
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Comments on these results

In each of the Tables 5 - 8 a different value of X has been considered

and the resulting approximations shown for a fixed value of N. In

every case the iterated two point approximant is seen to be much

better than either of the one point approximations, and has the

advantage of automatically satisfying both boundary conditions (6.1b)

to the original differential equation. Unfortunately in many cases the

iterated S fraction was found to be a poorer approximation to y(x)

than the truncated Taylor series. As a check the exact solution tc the

problem (6.1m) was expanded in a series about x=0 and the S fraction

formed. When A= 1 and ^= I it was confirmed that for small N the

S fraction was a worse approximation to y(x) than the truncated Taylor

series. When X = 3 the S fraction was a slightly better approximation

than the Taylor series but since both results were highly inaccurate

for small N, no real improvement was gained.



table5

y+̂y-oyo)^a0=3 1Î

yOO

x-0

x*»0.2

•3-

•

0

1

X

x-0.6

CO

0* !

II

X

x-1

Methodof degeneratekernels
2.0

2>12409

2.726601

2.924356

2.987459

2.897690

Iterated Sfraction(f)

2.0

2.415461

2.740122

2.973804

3.124839

3.206180

Iteratedtwopoint approximant(f)

2.0

2.413298

2.730385

2.938621

3.029703

3.0

Exactsolution

2.0

2.413298

2.730385

2.938621

3.029703

3.0

N-4-y(x)expandedto4termsaboutx=0 y(x)expandedto5termsaboutx-1
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y" +7\2y-oy(o)~z.j(0=3 7i=ol

y(x)

x-0

x-0.2

x-0.4

x-0.6

CO

•

0

II

X

X-1

Methodof degeneratekernels
2.0

3.369524

4.167619

4.142857

3.043810

0.619048

Iterated Sfraction(?)

2.0

3.663726

4.831301

5.501895

5.783821

5.805791'

Iteratedtwopoint approximant(P)

2.0

3.483352

4.416759

4.652856

4.154370

3.0

Exactsolution

2.0

3.483351

4.416758

4.652855

4.154370

•

3.0

N-4-y(x)expandedto4termsaboutx-0 y(x)expendedto5termsaboutx=l



TABLE7

kju+̂=oj(o)=a\j(l)=3 7^-3

y(x)

x-0

x-0.2

x-0.4

x-0.6

CO

•

0

1

X

X-1

Methodof degeneratekernels
2.0

5.131429

6.205714

3.885714

-3.165714

-16.285714
N«4

Iteratedtwopoint approximant(P)

2.0

21.5730^-1

33.609514

33.905742

22.358311

3.0

Exactsolution

2.0

21.576344

33.615450

33.911712

22.361638

3.0

Iteratedtwopoint approximant(p)

2.0

21.576345

33.615452

33-911714

22.361639

3.0

N-8

Methodof degeneratekernels
2.0

20.883207

32.470625

32.692896

21.245757

0.827024



TABLE8

Vj"+Vy=0xjC0)=3L^(0=3 ?l=4-

y(x)

x-0

x-0.2

x-0.4

x—0.6

X

B

O

•

00

x-1

Methodof degeneratekernels
2.0

-0.29904-8

-2.689524

-3.982857

-2.990476

1.476190

N-4

Iteratedtwopoint approximant(P)

2.0

-2.693619

-5.750823

-5.323286

-1.669161

3.0

Exactsolution

2.0

-2.689367

-5.747401

.5.319138

-1.664357

3.0

Iteratedtwopoint approximant

2.0

-2.689367

-5.747400

-5.319138

-1.664357

3.0

N-8

Methodof degeneratekernels
2.0

-2.719154

-5.789907

-5.358804

-1.642477

3.890676
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Exam-pie 2 - A Nonlinear Boundary Value Problem with two Solutions

Ifre second problem considered is the nonlinear second order

differential equation

= o >>o (6>a0
cLx2-

subject to the boundary conditions

\j(0)r a - I y(0=b = a (6i2b)

where Hs a positive constant.

For this example we immediately encounter problems of

existence and uniqueness. Unfortunately neither the existence theorem

for second order differential equations by Keller(l966) nor the

existence theorems of Bailey, Shampine and Waltman(l966) are

applicable in this case. Birn, Goldstein and Schindler(l978) consider

the existence theorems available for solving the nonlinear Diricniet

problem

"Or-* +^-JA =f^»A,x^) ?»o\^x 2 y /

in the region A» where the value of A on the boundary of A is given.

It can be shown by applying this theory to our example that there will

be a solution for where is a real positive number, and no

solution when 2 > a* . Bandle(l975) gives bounds for 2* by

considering upper and lower solutions of the Dirichlet problem but

these turn out to be of little practical use. Birn et al. also state

that if 7i < /\* the existence of a second independent solution is

almost guaranteed.

First we apply our methods to this example; later the analytic
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solution is considered in some detail. Writing (6.2a) in integral

equation form we have

iyGO =. a + (b-a)x + 7\ J X(ht)j2(t)dLt + ^J(i-x)tyi(t)dLt ^ ^

or <j 00 = Ol +- (b-Q_) X + 7)X(x.)

On expanding l(x) in a Taylor series about x=0 we can write
CO

y(x) -Oi + (b-cOx+- 7)Z1 X ^ X<f°(Q) (6.2d)t-v-o a!

where we can show that

X(O) = 0

I'CO) - f(l-t)/(t)<Lt
I"(o) = -^Z(O)--0LX (6.2e)

l{sXo)~- -
I S-X

A_ y (>o
L dx*"1

5-i

-- -I (v)/"W"co)
Jtrc fc=0

*s — 3 j b ^ «■

Similarly by expressing l(x) as a Taylor series about x=l we can

write y(x) in the form of the power series

a!

JO

i/(x) = b + (t-o.) (x-0 t /\ H(*-^ rv^c

with J (|) - 0

I'd) = - J t y2(t)dt

I"Ci) - - yz(i) = - ba

(6.2f)

(6.2g)

Iw(l) = - ^ /(x)l =-Z (s-k)
cUw ^ _x=. * = e J J
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Iterated One Point Approximations

If we truncate the infinite power series expansion (6.2d) after N

terms then we have

^y(o) = ex. y'(o) = -^ a.x

\j'(o) = k-0_ + ?> jo-t)^(t) d-t (6 2h)

uB(o) = -7>lf (5;2)
k=o

where yN(x) - yN(x,y(0),y'(0), .y'to)) can be either the

truncated Taylor series of y(x) about x=0 or the S fraction

corresponding to that series, both of which are described in Chapter 2

The system of N equations (6.2h) can be solved in the normal

way by one of the iterative schemes (F) or (p). However the system

essentially contains only one unknown, viz. y'(0), and hence we can

write

r
2.

j\o) - b-oL+aj (t,yco>)At - 0 (6.2j)

When y (x) defines the S fraction corresponding to y(x) it is

found necessary to evaluate the integral numerically at each iteration.

Once again Simpson's rule with step size h=0.01 was used. Integrals

involving the Taylor series were still evaluated analytically. With

the starting function yN{x) = a + (b-a;x it was found that both

the truncated Taylor series and the iterated S fraction quickly

converged for ^ = j and }\ = 1. Neither approximation converged when

a = 2.

A second solution was sought for ^ \ and /\ = 1 using Powell's

method (?). Clearly this required a different starting vector. If we

yw(x) define the truncated Taylor series and consider intervals
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in which the left hand side of (6.2j) changes sign for various values

of N, then it can clearly be seen that the equation has two roots

y'(0) when > = \ and ^ *= 1. By taking the midpoint of the appropriate

interval as a starting value, second solutions can then be obtained.

However both the truncated Taylor series and the iterated S fraction

were found to be poor approximations for small N.

Iterated Two Point Approximant

Suppose we truncate the infinite power series expansions (6.2d) and

(6.2f) after N and N+l terms respectively to derive the system of

2N+1 equations

0)*-a y«j) = -Ticl1
y (0) r b -CL + } J (l-b) I (t)clt

o

/S\o) =-aI! s--

y'(i)=-?fb (6*2k
y (i) = b - a. - 71 J t yNLi (t) dt

o

ro= -S-3j *

We define y^,(x) - yNw>t(x»y(°)»y' (°) (°)»y(l)»y' C1)»• • • *Y 0-))
to be the two point rational approximant described in Chapter 3.

Clearly the system of equations (6.2k) contains only two unknowns,

y'(0) and y'(l), and thus may be reduced to the pair of nonlinear

equations

yco) = b-o. (t,yfo),y<i>)d.t
y 07 - b-o. - ?ij' t _y\w+, (6'2t)



where the two point approximant yN„„(x) ■= yN„ri(x,y' (O),y' (l) ). We can

solve these two equations using either the first order iterative

scheme (F) or Powell's method (P). Again the integrals are evaluated

numerically using Simpson's rule with step size h=0.01.

method quickly converged for A «= f and A = 1. Convergence failed

when A = 2. Again second solutions were sought for A =■ -§- and A = 1.

Since the differential equation (6.2a) does not explicitly contain

terms in x we can perform a first integration to derive the

relationship

By considering the original differential equation we can show that,

for the second solution, y'(0) ; 0 and y'(l)< 0. Thus the two

equations (6.2 ) can be further reduced to a single equation for y'(0).

By finding intervals in which the equation changed sign for various

values of N, two distinct solutions for y'(0) were located. The

second solutions were then found by using the bisection rule (b) on

this equation.

The Exact Solution

We now consider the exact solution to the problem (6.2a). Solving

for in terms of y we find that

where c' is the first constant of integration. For a real solution

c'^, y. In Figure 1 a sketch of against y has been drawn where
dx

we assume A and c' to be fixed.

to
When a starting function yNW.,(x) = a + (b-a)x was taken the

(6.2m)
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FIGURE 1

d.y - ± /H Co'5- w3)'/a
dlx: J 3

a ^
I dLx

Since 8/y is always negative, y(x) can never have a minimum value.
dLx1

It has a maximum value when y(x) = c' . From Figure 1 it is clear

that there are two possibilities:

(l) y(x) is strictly increasing in the interval [0,lj so that

y'(0) and y'(l) are both positive.

(il) y(x) has a maximum in the interval [o,l] so that y' (0)> 0

and y'Cl)^ 0.

Now suppose that y(x) has its maximum at a point xm. Then we know

that y(xm) = c'. We can therefore rewrite (6.2n) in the following

forms
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(I)

(II)

±1 =
cLx

cLx

d 3

Vi

+ /a* (c'3- y3)"

- jXh (c'3 - y 3 )
V*

0 i X * I

o ^ X ■$ X i

X ,n ^ X < !

(i) and (il) can be solved in terms of elliptic integrals of the first

kind (see Abramowitz and Stegun(l970))» viz.

„x

F(0;k) = VS
where co-s ^ z - I -+ J3 and

Z. - 1 " t/3

cL:

d-^;Vi

k = Si a. 5tt

For instance in case (i) the general solution is of the form

X + C = _L _L F(0yn)
3 V3 (6.2o)

where c is the second constant of integration. The constants c and c'

are found from the boundary conditions (6.2b); on elimination of c

we find

r

JTVic'1/1L *

Similarly in case (il) the general solution can be written

(6.2p)

X + XL

T

/a* x + c
3

- F(0,Q- t-(iry ft)
Vic'"*

- ~ F *■) + F(TT, fc)
V3 c//z

0<-X<Xm

(6.2<i)

Xm $ X i
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where the second constant of integration c ■= -Jj2 x„,. Again the
constants c and c' are found from the "boundary conditions (6.2"b) so

that on elimination of c we have

The nonlinear equations (6.2p) and (6.2r) were solved for c' using

the bisection method. The elliptic functions were evaluated using a

FORTRAN subroutine based on numerical methods of Bulirsch(l965). The

structure of these equations show that for ^1.6 there is no

solution while for A less than this critical value there are two

solutions. See Figure 2.

Results

In Tables 9 and 10 we compare the results obtained using rational

and T&ylor series approximations with the exact solution for A = •§•
and > = 1. In both tables we have used four terms of the power series

for y(x) about x=0 and five terms of the series about x=l. The second

solutions are shown in 'Table 11 where we have here only used the

method involving two point approximants. (F)f (p) or (b) have been

used to denote which iterative scheme was applied.

Comments on these results

Tables 9 and 10 list the approximations to the first solution of

(6.2a) for A = j and A = 1. The iterated two point approximant

provides the most accurate approximation to y(x) for small N and has

the advantage of automatically satisfying the boundary conditions

(6.2b). All the approximations converge quickly to the first solution

with increasing N. In both the tables the iterated Taylor series is

73 7TvTJ' /I —c ^
/J A3

(6.2r)
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fiqure 1

j/"+)ij/1=o j(o) = i y(0 = 2

V (x,n) = max y (x)^
06 x $ I

s.

no solution

•

. , first
solution

TV/0 solutions
•

ivith A maximum

second

•

•

INSIDE [o,0
solution

•

•

«

•

. one SOLUTION
with A maximum
inside lo.i]
one strictly
increasing
solution

^
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a closer approximation to y(x) than the iterated S fraction. However

this does not always remain the case when N is increased.

Table 11 shows that the iterated two point approximant quickly

converges to the second solution for ?i = ■§■ and ^ = 1 when using the

"bisection rule (b). Both the one point approximations were very poor

for small N and, as before, neither type was a consistently superior

approximation to y(x).

It should be noted that our process is in a sense a more

automatic procedure than the calculation of the exact solution. It is

also important to note that our approximations failed to converge

for values of > for which there is no solution. It seems very

possible that these methods could be useful in determining the

existence and uniqueness of solutions to boundary value problems of

this type.



y(o)=I _y(0=a

y(x)

x-0

x-0.2

-3-

•

0

a

X

x-0.6

x-0.8

x-1

IteratedTaylor series(f)

1.0

1.296630

1.560912

—

'

1.780500

1.943045

2.036199

Iterated sfraction(F)

1.0

1.298051

1.565311

1.794125

•

1.980637

2.124543

Iteratedtwopoint approximant(F)

1.0

1.295737

1.557779

1.7713^6

1.922417

2.0

Exactsolution

1.0

1.295737

1.557778

1.7713^6

1.922416

2.0

TABLE9

Firstsolutionof N-4

y(x)expandedto4termsaboutx-0 y(x)expandedto5termsaboutx-1



TABLE10

Firstsolutionofj"+}yz -Qytf)_jy(()=£ }=1

y(x)

x-0

x-0.2

x-0.4

x-0.6

x-0.8

x-1

IteratedTaylor series(f)

1.0

1.456967

1.835262

2.096210

2.201139

2.111376

Iterated Sfraction(f)

1.0

1.481770

1.890099

2.206014

2.426632

2.561083

Iteratedtwopoint approximant

1.0

1.445745

1.807567

2.039662

2.107430

2.0

Exactsolution

1.0

1.445749

1.807581

2.039673

2.107433

2.0

N-4

y(x)expandedto4termsaboutx-0 y(x)expandedto5termsaboutx-1



TABLE11

Secondsolutionsof\J"+>̂=Oy(0)=I\j(o=a *=5-

y(x)

x-0

x«0.2

•

0

1

X

x-0.6

CO

•

0

H

X

x-1

Iteratedtwopoint approximant(b)

1.0

11.991309

19.927769

20.318354-

12.886868

2.0

N-4

Exactsolution

1.0

12.039583

19.967596

20.353277

12.932844

2.0

Iteratedtwopoint approximant(b)

1.0

12.039583

19.967596

20.353277

12.932844

2.0

N»8

a=.I

y(x)

x-0

x-0.2

x-0.4

j

x-0.6x-0.8 j

X-1

Iteratedtwopoint approximant(b)

1.0

5.406015

8.586999

1

8.9507326.270721
2.0

N=4

Exactsolution

1.0

5.416550

8.597157

8.958129i6.279931
2.0

Iteratedtwopoint approximant(b)

1.0

5.416550

8.597157

I

8.958129j6.279931
2.0

N-8
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Example 3 - Troesch's Equation: A Well Known Test Problem

The final example is a nonlinear boundary value problem which has

been used extensively as a test problem. This equation, first

investigated by Troesch(l960) and often referred to as Troesch's

equation, is given by

cL* y = 7)>0 /, .
-i i (6.3a)clx*

and is solved subject to the boundary conditions

_y(o)=0 y<0=l (6.3b)

Application of the existence theorem for second order differential

equations by Keller(l966) shows that the problem has a unique

solution for all ^ > 0. Difficulties however occur when trying to

solve this problem numerically. If y'(0) is slightly greater than

its real value, the solution has a singularity in the interval [o,ll .

(Roberts and Shipman(l972)). Also when >i is greater than four,

Roberts and Shipman(1976) show that if y'(l) is only slightly

greater than its real value, there are discontinuous solutions to

the problem which can cause overflow in the interval [o,l] . The

severity of these difficulties increases with /\ .

Here we obtain a solution to the problem for small values of

h. Writing (6.3a) in integral equation form we have

r* r1

J(x) = X + J X (t-l)diah fy(t) d.t + J (jt-l) tdinh. ?>j(t)dfc (S.3c)

or

^/(x) = X 4- >I(X)
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If we expand l(x) in a Taylor series about x=0 then we have

yj(x) = X + (6.34)
n.!

where

1 (o) = 0

I'(0) =

1" (o) =

J*\o) =

J (t- l) siak )vy(t) clfc

SiVk)ij(c) _ 0
(6.3e)

Is * >su\h 7 y(x)
dx"

5 =3I
X^O

Similarly if we expand l(x) in a Taylor series about x=l then we can

write

QC

y(x) = l+(x-0 + Z.(x-i)"l'"'0)
rv-o

a

with

KD - 0

(6.3f)

1

r'
I'd) - J t -Siak } v^(t) It

0

I (!) - 51 (\K /! ^(l) = -Sink./)
(6.3s)

I(S\0 = I ^irv_K 7i\f(%)
Ldx*"1

s - 3)
-i x= I J

Recurrence relationships can be derived for the ^'(o) and 1^(1)
since

P

dT' sir\k?^y(x) _ ^{l)fk+°(x)LsK^)
d x(HI r=o L h = o

k~i
(6.3h)

+ 7) ZI (kj ') *(x) d3 Siak
p = 0 j I f -
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Alternate coefficients of the series expansion about x=0 are zero

for this example. The coefficients of the series expansion about

x=l are all positive and become very large as A increases.

Iterated One Point Approximations

On truncating the infinite series (6.3d) after N terms we may derive

the system of N equations

y(O) - 0 f(o) - 0

\j' (o) - I + > J" (t - |) iifbh. 7) (t) d_t (6.3^)

UlS\o) = ~7l s>(vK 7l vj(x) | 5 =L dx5"2- J t=o

where y„(x) = yN(x,y(0),y'(0) ,yM(0)) can be either the

truncated l&ylor series of y(x) about x=0 or the S fraction

corresponding to that series. The equations are solved using Powell's

method (p). However the system essentially contains only one unknown,

namely y'(0)t and hence we can write

j — i -4. "A f" ^ 4- — ' c11"* K > k^ ^ .

IjW/ - I r AJ | / o 1 S\ i\ U.V- (6.30
O

where now the one point approximation yK (x) = y^(x,y'(o),y'(l)).

For both the one point approximations the integral is

evaluated numerically at each iteration using Simpson's rule with

step size h=0.01. We consider approximations when A = 1, 2 and 3»
w .

for these values of A a starting function yN(x) = x is adequate.

However, even with these small values of A, overflow occurs for

certain values of N.

d.4 X ctivh Vdx)~!
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Iterated Two Point Aoproxiraant

Now suppose we truncate the infinite series (6.3d) and (6.3f) after

N and N-KL terras respectively. Then we may write

j(0)=O y"(o)=0

yCo)-- I + J (-t-1 cLt
o

UCs)(c) = 7i \ (TZ sirvK > u(y) N-lJ Ldxw J x=c

jO) = I j"(l)= > siciix}

j'(l) ~ I + 7\J t si'n.k
s = 3,

(6.3m)

O

d*lsm.k;wooJ dx" J X-l

where y^„(x) = y^,(x,y(o) ,y • (0),... ,j^"(0) ,y(l) ,y' (l),... ,ys>(l)) is

the two point rational approximant described in Chapter 3. Since

this system of 2N+-1 equations essentially contains only two unknowns,

y'(0) and y'(l), it raay be reduced to the pair of nonlinear equations

j'CO-)- 1 -+- 7> j (t-l)siak (t^'Co), vj'O)) ix
0

\j\l) = I + 7i J t ii'n.K>^NN+i(t.)y(o);vj,0>)d.t (6.3n)
J

where the two point approximant yhv,((x) = y».^i(x»y,(0)»y,(l))' These

equations are solved using Powell's method (P).

Again the integrals were evaluated numerically and, in

general, Simpson's rule with step size h=0.01 was used. This was

however thought to be a possible source of inaccuracy so that when

?i = 5 a- higher order integration routine was used. The rule applied

was Newton-Cotes o point formula (see Abramowitz and Stegun(l970))
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with step size h=0.01. This appears to have improved the accuracy of

the results but is thought to be still a source of error due to the

large size of the derivatives of sinh ^ y(x) when evaluated near x=l.

When A = 1, 2 and 3 & starting function yNWI(x) = x can be

taken. When A = 4 Powell's method (p) fails to converge with this

starting function and a more accurate one has to be found. This

was done by considering the simple analysis of the problem by

Troesch(l976). He shows that y(x) < sinh 7*x/sinh A (0< x<l) and

that 0<y'(0)< A/sinhA . Hence when A = A- and 5 we take a starting

value y'(0) = 7>/sinh?i . A corresponding starting value for y'(l)

can be found by using the relationship (6.30) derive.! subsequently.

However even with these starting values jverflow occurs for most

values of N when A =5.

Since equation (6.3a) does not explicitly contain terms in x

we can perform a first integration to give

2
— 3 r- ^ ""/S

(6.30)
X COS k 7]y(O) r \j (I)

where it can be shown that both y'(0) and y'(l) are positive. Thus

the two equations (6.3n) may be further reduced to a single equation

for y'(0). We solve this equation using the bisection rule (b) with

A = 5« The integral is again evaluated using Newton-Cotes 6 point

rule. Unfortunately overflow still occurs for most values of N.

The Exact Solution

A closed form of the solution to Troesch's problem has been given

by Roberts and Shipman(l976) in terms of Jacobian elliptic functions.

Here we have taken numerical values for y'(0) and y'(l) from this

solution and used them to form the two point rational approximant
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for various values of N. The results determined for large N (here

we have taken N *= 12 or 14) have been quoted as the 'exact'

solution.

Results

In each of Tables 12 - 15 we show results for different values of x.

Yflien X = 1, 2 and 3 "both the one and two point approximations are

shown using Powell's method (?) and taking four terms of the series

about x=0 and five terms of the series about x=l. When X ~ k and 5

we just consider the two point approximant. For } = 4 results

obtained using Powell's method (P) are given taking N = k and N = 8.

For A ■= 5 we consider the two point approximant obtained by-

Powell's method (P) compared with that obtained by the bisection

rule (b). Again we have taken n = k since both methods fail to

converge for higher values of N.

Comments on these results

This is a difficult example and it is probably unfair to expect our

methods of approximation to perform well for even quite small values

of X. Ihe coefficients of the series about x=0 become very small as

X increases and correspondingly the coefficients of the series about

x=l become very large. Even with a small step size the truncation

error in the integration routines may be relatively large, and is

therefore a source of error in the results. Accurate starting values

are needed to prevent overflow from occurring.

When X = 1, 2 and 3 "the approximations are fairly well

behaved although they become increasingly slow to converge with

larger A . In the results shovm the iterated Taylor series is a
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"better approximation to y(x) than the iterated. S fraction. However

when a larger number of terms in the series is taken (i.e. N is

increased) the iterated S fraction becomes the better approximation.

Overflow occurred for some values of N when iterating the S fraction

for )i = 2 and > = 3.

When = 4 we have shown the resulting approximations when

iterating the two point approximant by Powell's method (p). It is

noticeable that these approximations are appreciably slower to

converge than the approximations for smaller values of ^ . When

- 5 overflow occurred for most values of N when iterating the two

point approximant by Powell's method (p). It is a drawback of

Powell's method that, apart from choosing an accurate starting

vector and taking a small maximum internal steplength (here we have

always taken this to be O.Ol), it is difficult to restrict the

problem to an area in which overflow cannot take place. We really

need to solve the pair of equations (6.3n) subject to constraints

on the derivatives. It was hoped that this could be done by solving

the single equation for y'(0) using the bisection rule (b). However

the interval in which the solution lay was found to be so restricted

that the method was impractical and overflow again resulted for most

values of N. It is interesting to note that the results obtained by

this method when N = ^ were poorer than those obtained by Powell's

method (P).



table12

\i" -7\sSirvKy(o)~0 >=I

y(*)

x-0

x-0.2

•

0

1

X

.

x-0.6

x=0.8

x-1

IteratedTaylor series(p)

0.0

0.170234

0.347233

0.537760

0.748580

0.986457

Iterated Sfraction(p)

0.0

0.170269

0.346929

0.536307

0.745390

0.982711

Iteratedtwopoint approximant(p)

0.0

0.170171

0.347223

0.538534

0.752608

1.0

Exactsolution

0.0

0.170171

0.347223

0.538534

0.752608

1.0

n-4

y(x)expandedto4termsaboutx-0 y(x)expandedto5termsaboutx=l



TABLE13

ŷ7\sink}\KJj(o)-0J/0)=I J\=3.

yOO

x-0

x-0.2

x-0.4

x-0.6

CO

•

0

X

x-l

IteratedTaylor series(P)

0.0

0.108405

0.233704

0.392792

0.602563

0.879911

Iterated Sfraction(P)

0.0

0.111613

0.235306

0.380354

0.557148

0.780369

Iteratedtwopoint approximant(P)

0.0

0.106518

0.230532

0.393577

0.628467

,0

Exactsolution

0.0

0.106519

0.230522

0.393563

0.628465

1.0

N-4-y(x)expandedto4termsaboutx°0 y(x)expandedto5termsaboutx-1



table14

y"Sink")yJ(O)r-.0j(\)-\ *=3

y(x)

x-0

x-0.2

x-0.4

x-0.6

x-0.8

x-1

IteratedTaylor series(p)

0.0

0.060354

0.141207

0.263054

0.446395

0.711727

Iterated Sfraction(P)

0.0

0.071901
"

0.152612

0.245752

0.35^922

0.484853

Iteratedtwopoint approximant(P)

0.0

0.054186

0.128937

0.253154

0.483229

1.0

Exactsolution

0.0

0.054248

0.128777

0.252747

0.483138
l

1.0

N-4-y(x)expandedto4termsaboutx-=0 y(x)expandedto5termsaboutx=l



TABLE15

" =̂6t'rxk\j(0)=0jyCI>—I 74=4-

y(x)

x-0

x-0.2

x-0.4

x-0.6

X

1

0

CO

x-1

Iteratedtwopoint approximant(P)

0.0

0.024164

0.066922

0.156605

0.357568

1.0

1

,-»j

Exactsolution

0.0

0.02484-1

0.066504

0.153923

0.356280

1.0

Iteratedtwopoint approximant(P)

0.0

0.02484-7

0.066517

0.153927

0.356248

1.0

N•=8

>=5

y(x)

x-0

CM

d

1

x

-3-

•

0

a

x

i

x-0.6

x=0.8

x-1

Iteratedtwopoint anproximant(P)

0.0

0.007944

0.032316

0.1003/49

0.265554

1.0

|

N-4

Iteratedtwopoint approximant(b)

0.0

0.005926

0.029380

C...03648

0.273335

1.0

Exactsolution

0.0

0.010753

0.033200

0.092045

0.258217

1.0
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CONCLUSIONS

We have considered Fredholm integral equations of the second kind

and found approximations to the solution using power series

expansions. In particular we have considered using both a Pade

approximant and a two point rational approximant as approximations.

The methods of approximation have been tested by an example which is

described in Chapter 4. As Walsh(l977) states, "if we can obtain

numerical results for a given problem which appear to converge, and

to behave consistently with variations in the parameters, we can be

fairly sure that they represent an analytical solution, even without

a rigorous proof".

Altnough the methods of approximation have been aimed at

solving integral equations, special attention has been paid to two

point boundary value problems. In general, the solution of integral

equations by our methods involves the evaluation of several integrals

at each iteration. This is usually time consuming and must be

considered as a possible source of error when the integrals have to

be evaluated numerically. However the results given in Chapter Ii

show that reasonable approximations can be obtained when only a few

terms of the power series expansions are considered. Simplification

occurs when considering two point boundary value problems as the

solution of these differential equations by our method involves the

evaluation of, at most, only two integrals at each iteration.

An important advantage of our methods, when using the two

point rational approximant to solve boundary value problems, is that

the boundary conditions are automatically satisfied. Three second

order differential equations of boundary value type have been
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discussed as test examples in Chapter 6. It can be seen that for

many problems where calculation of an exact solution is difficult,

our approximations provide a reasonable alternative method of

solution.

Let us now consider the one point approximations based on

power series expansions about the lower endpoint of the interval

[o,l] . We have used both the truncated Taylor series and the S

fraction as one point approximations. Both approximations tend to be

slow to converge to the exact solution and are inaccurate for small

values of N near the upper endpoint of the interval [0,l]. However

they have the advantage of being easy to use and provide good

starting vectors for other iterative schemes, such as those involving

the more accurate two point approximations.

Unfortunately the iterated S fraction does not provide the

close approximation to the solution that was hoped. In many of the

results the S fraction T,.as a worse approximation than the truncated

Taylor series. This was particularly true when N was small and only

a few terms of the power series were taken (as was the case in the

Tables shown here). A possible reason for this Pade approximant

behaving so poorly can be gained from Kershaw(1977). He states that

"for a wide class of functions the error in the best polynomial

approximation is little worse than that of the error in the

comparable rational function", and gives references for further

details. It should be stressed, however, that other Pade approximants

might yield much better results.

Secondly we consider the two point approximations based on

power series expansions about both the lower and the upper endpoints

of the interval r0,l] . The approximation used here is a two point



rational approximant which fits N terms of the power series expansion

about x=0 and lfi-1 terms of the power series expansion 3.bout x=l.

This approximant converged very quickly to the exact solution for

nearly all the examples tested. Even for small N it is a surprisingly

good approximation. (See Tables of results).

On occasion the methods have failed to converge for certain

values of the parameter and number of terms N. Ibis was

particularly the case when using Powell's method (p). It was

difficult to know whether this was due t'"1 breakdown of Powell's

method, possibly due to inaccurate evaluation of the integrals, or

whether this was inherent in the approximations themselves. In at

least one example breakdown of the method occurred because the

denominator of the rational approximant was close to zero. However

failure to converge only occurred rarely, normally for isolated values

of N, so cannot be considered a serious drawback.

Special mention should be made of the way multiple solutions

can be found for nonlinear two point boundary value problems as shown

in the second example. Here it can be clearly seen that the method of

iterated two point approximants provides us with two solutions to the

problem. In the third example we see that our methods of approximation,

not surprisingly, cannot cope with the inherent difficulties in the

numerical solution of the problem. It is possible that better

results could be obtained by using a two point approximanr dependent

on a large number of terms from the series expansion about x=0 and a

small number of terms from the series expansion about x=l.

Obvious extensions could be made to the work done here,

covering both higher order differential equations and systems of

equations. Other two point boundary value problems with more general
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boundary conditions could readily be considered. As suggested above,

the two point approximant could be modified for certain examples so

that unequal weight was placed on the two series expansions. Other

modifications could be made to deal with singularities, possibly

involving asymptotic expansions.

We have shown that our methods of approximation using power

series expansions can provide accurate approximations to both

Fredholm integral equations and boundary value problems. These

approximations have the advantage that they are functions of x and

hence can be calculated at any point in the interval. In particular

we show that the use of two point rational approximants can provide

a powerful method of obtaining solutions to two point boundary

value problems. This is especially valuable when dealing with those

nonlinear problems for which no general methods of solution exist.
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