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ABSTRACT

The solutions to Fredholm integral equations of the second kind are
approximated using power series techniques. On expansion, power
series whose coefficients are given in terms of unknown functionals
are formed. By truncating these series and using approximations,
either in the form of Taylor series or rational approximants, the
problem is reduced to a system of equations which is normally

solved iteratively. A type of Pade approximant, called an S fraction,
and a two point rational approximant, known as an M fraction, are
both considered, Special attention is paid to those integral
equations arising from second order two point boundary value problems
as each series then contains only one unknown functional. The two
point aprroximant is in this case an especially powerful
approximation as it ensures automatic satisfaction of the boundary
conditions. The methods are illustrated by a series of examples, one
of which indicates how the existence and uniqueness of solutions

for certain types of boundary value problems could be determined., A
comparison of the various approximations is made for each example
and it is seen that the two point approximant can provide an
accurate result even when only a few terms of the series are

considered,
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ABSTRACT

The solutions to Fredholm integral equations of the second kind are
approximated using power series techniques. On expansion, power
series whose coefficients are given in terms of unknown functionals
are formed. By truncating these series and using approximations,
either in the form of Taylor series or rational approximants, the
problem is reduced to a system of equations which is normally

solved iteratively. A type of Padé approximant, called an S fraction,
and a two point rational approximant, known as an M fraction, are
both considered. Special altention is paid to those integral
equations arising from second order two point boundary value problems
as each series then contains only one unknown functional., The two
peint approximant is in this case an especially powerful
approximation as it ensures automatic satisfaction of the boundary
conditions. The methods are illustrated by a series of examples, one
of which indicates how the existence and uniqueness of solutions

for certain types of boundary value problems could be determined., A
comparison of the various approximations is made for each example
and it is seen that the two point approximant can provide an
accurate result even when only a few terms of the series are

considered.



INTRODUCTION

Both integral and differential equations are continually occurring
in physical problems and are therefore of great interest to the
mathematician, The study of differential equations started soon
after the invention of differentiél and integral calculus in the
seventeenth century, to which it is a natural sequel. By the middle
of the nineteenth century the analytical theory of differential
equations was well developed. It was not however until the turn of
the century that Fredholm and Volterra developed their theories of
integral equations. Throughout the present century both differential
and integral equations have been a source of continuous research,
and with the advent of the large modern computer the scope of the
many approximate methods of solution has widened considerably.

Since integral and differential equations are closely related
they are frequently considered together. Many books such as Davis(1960),
Pogorzelski(1966) and Rabenstein(1966) have been written on the
analytical methods of solution available. Although the theory of
linear operators is well developed, the theory of nonlinear cperators
is beset by many difficulties. The powerful existence thescrems of
the linear operators often no longer hold in the nonlinear case and
general methods of solution have to give way to a multitude of
special techniques. For this reason many methods of solution, boii
analytical and numerical, involve the process of linearisation.

When considering numerical methods of solution it is useful to
classify differential equations into two types. In integral equations
we tend to classify equations as being of 'Volterra type' or
'Fredholm type' and analogously we can classify differential equations

as being of 'initial value type' or 'boundary value type' depending



on where the boundary conditions are given. One of the many problems
of nonlinear differential equations is that the arbitrary constants
of integration occur nonlinearly; this can especially be a difficulty
with boundary value problems. Fox(1962) considers some of the basic
numerical methods of solution for ordinary differential equations
which do not require extensive computing.

Here we consider both linear and nonlinear Fredholm integral
equations. We look at approximations based on power series expansions
of the solution., The coefficients of these series are given in terms
of unknown functionals. By truncating the series we reduce the
problem to a system of equations which we normally have to solve by
jterative methods.

Particular attention has been paid to those integral equations
arising from second order two point boundary value problems.
Simplification then occurs since each series now contains only one
unknown functional. Examples illustrating both the general method and
the special application to boundary value problems have besn given.
Whenever possible a comparison of the approximations with the exact
solution has been made. It will be seen that our methods of approximation
are especially powerful when solving two point boundary value problems.

We consider two types of rational approximant, The first is a
special case of a one point or Pade approximant known as an S fraction.
It is hoped that the S fraction will provide a better one point
approximation than the corresponding truncated Taylor series with
which it is compared. The second is a two point approximant, called an
M fraction, which fits series expansions about both endpoints of the
interval concerned. This approximant has better global convergence

than either of the one point approximations.
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CHAPTER 1
THE GENERAL METHOD
We consider the Fredholm integral equation of the second kind,

v = () +7\f!<[x,t,_g(t)]dt

o<t <l 0gxgc cy)

(1.1)

where f(x) and fo,ty(ti] are given functions, and wish to find a
solution for y(x). Since a linear transformation of the variables can
easily be made, we restrict the problem to the interval [0,1 without
loss of generality. We look at two basic types of approximaticn which
fit power series expansions about the endpoints of the interval {b,l}.
The first is a one point approximation based on expansion about the
lower endpoint x=0 of the interval. The second is a two point
approximation which fits expansions about both the lower and the upper
endpoints.

First we consider the one point approximations about x=0,
Kormally we assume that the kernel Kiﬁ,t,y(tﬂ of (1.1) is an analytic
function of x so that it is possible to expand K[x.t,y(t)j in a

Taylor series

K[x,t,y(t)] = fl x" Km[t,}/(tﬂ (1.2}

a=0 ),

about x=0 where

Kalt,y®] = L d"K[o,k,y®)]

n! dx”® (1.3)

This assumption is not however necessary. If the kernel is continuous
but has a discontinuous first derivative in x it may be possible to

expand the right hand side of (1.1) by splitting the range of



integration and expanding the integral as a whole. This is the case
with the two point boundary value problems described in Chapter 5.
Alternatively the kernel may have an asymptotic expansion as x tends
to zero in which case the Kn[ﬁ,y(tﬂ will no longer be the derivatives
given in (1.3). Similarly we later assume that f(x) is an analytic
function of x and can therefore be expanded in Taylor series although
this is not strictly necessary.

When the kernel can be expanded in the form (1.2), the Fredholn
integral equation may be treated as an equation with degenerate
kernel of iafinite rank so that '

y) = F0)+ A Z x"fKn[t,y t)] dt (1.4)
Suppose that we truncate the infinite series (1.4) after N terms and

write

Yy = £ +?1§Gx“‘fkm[t,y(t)]dt +EN)  (1.5)

where £(N) is the truncation error. Then if we let y,(x) be the
truncated approximation to y(x) we have

Y00 = F6O+ A% T Kalt, gutl dE (1.6)

Q

In the special case when the integral equation is linear and

K. [t,7(t)] = Ka(t)y(t) we may solve (1.6) exactly by the method of

degenerate kernels to find an approximate solution y, (x) to (1.1).

This well known method is described at the beginning of Chapter i
Usually, however, we are concerned with iterative methods for

solution of (1.6). We assume that the function f(x) can be expanded

in a Taylor series about x=0 of the form

n=>_a

Foo = 2 ol f‘“‘§o> (1.7)



so that we can express y (x) as
\‘ju (K): PE’:, X {jn—?’) + A!Kn[t,yn(tﬁdt} (1.8)

However since we implicitly assume that y(x) is an analytic function
in [b,i] this is equivalent to expanding y(x) directly in a Taylor

series about x=0 and truncating after N terms. Thus

N-1

Ynlx) = PN S )

) (1.9)
On equating coefficients in (1.8) and (1.9) we find that
]
yo© = £70 + AJ LK Tok yw )] dE (1.10)
[+ ] d-.x-n
o= 0,1, eeuey N-|
where we now define
- | {n-=1
PO = (x4, 4'Q), o, Y0 () (1.11)

Thus (1.10) and (1.11) form a system of N equations for the N unknowns
¥(0), ¥ (0) ;0504 ,¥ 10). Obviously a simple form is when (1.11) defines
the truncated Taylor series about x=0 given by (1.9). However, in the
hope of finding a better approximation, we also consider the case when
(1.11) defines a rational approximant to the series (1.9). Both these
methods are described in Chapter 2.

The system of equations (1.10) and (1.11) is usually nonlinear
and must be solved iteratively. It is useful to define the following

N dimensional column vectors

Y = {3(0),3'(0),__...,y‘”‘"(o)}
= {Jc (0), §'(0), .. ,Jc"‘“’(oy} (1.12)

KLt yu)] = {K[o,t,y.,.m], (i_f[O,t,yN(t)]) ..... ,gﬁg][o,t,y.(a]} ]
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s0 that we may write the system of equations in the form

Y =F + haflﬁ[t,yn(t,)f)]d_t (1.13)

or Y = G(¥) (1.14)

where the function G is defined appropriately. It should be noted that
since G involves the evaluation of an integral it may have to be
evaluated numerically. The simplest iterative method is the first

order scheme
r r-i
Y- G rmnay e (1.15)

where a starting vector f’lis given., Wherever possible this scheme has
been used and throughout this work it wiil be denoted by the coding
(F). Unfortunately this scheme does not always converge and we may
have to consider a higher order iterative .procéss. The one used here
is Powell's hybrid method for solving nonlinear algebraic equatiens,
Powell(1968). This consists of minimising the sum of squares of the

components of Y - G(Y) using a combination of optimisation techniques.
(n] k4 Tr-i1 N
i e o _ . -
_Z = min -§0 [ YL GL O_/ )} (1.16)

Again a starting vector }’_M must be specified. Whenever this scheme has
been used it will be denoted throughout this work by the coding (P).
Thus by using one of the iterative schemes (F) or (P) we may
find Y and hence an approximate solution y, (x), as defined by (1.11),
to the original integral equation (1.1).
Unfortunately the error in the one point approximations increases
with x for given N, so that near x=1 the approximations may be highly
inaccurate., We therefore now consider approximations with better

global convergence. The two point approximations fit series expansions
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about both the endpoints of the interval [0,1] As before we assume
that the kernel of the Fredholm equation is an analytic function of
x although this assumption is not strictly necessary. Then we may

expand the kernel in Taylor series
K[x,t,y(t)] — Z x"l d" K [O‘.t‘y(t)] (1.17)
nzo N} a. x"

and o .
K[x,t,y(tﬂ = Y (x-1)" d"K [, t,y(®) (1.18)
e KL "
about x=0 and x=1 respectively. We also assume that the function f(x)
can be expanded in a similar way, i.e
$00 = 5 <" E00 (1.29)
n=9 “!
and ‘ )
f(x) = ¥ (x- -1 £ (1.20)
n=0 n‘

So from (1.1) y(x) can now be expressed as the power series

n (n) (L“'i 2
{ i ( )oj:u a,f (o, & y({:)]at} -

n=<

yix) = f

Suppose that we truncate this series after N terms so that

-
y(x) = Z {f‘“‘(o) 2L Kloe,y@lde} ve0) ;5
(N) is the truncation error. If we let y,(x) be an approximation

where €
to y(x) then we may write

HN(K) ) NZ-J x“{j_‘(m(lc) */\J‘ 'l Cs\f [0 k yN ({)]dt} (1.23)
n' e Nnoodx™

n=¢
As with the one point approximations we assume that y(x) can be

expanded directly in a Taylor series about x=0, We can therefore

equate coefficients in (1.23) to give as before

Y = ) + 2 J LK [0,k yn (0] dE
© dxf\

(1.24)



This procedure may be repeated using power series expansions
about x=1, Suppose we truncate these series after M terms to form an
approximation y,(x) to y(x). Then we may derive a system of M equations
equivalent to (1.24) of the form

Oy _ L0 dAMK L1ty (D1dE
y ¥ = F (1>+:nﬂf.i_; b yn(0ld (1.25)

We are now in a position to define the following set of equations

from (1.24) and (1.25)

y®0) = f"“(o)+7\f " K [o.t,gw.(t)] dt
Todx” (1.26)

=01, ....,N-I

YOO = £70) [ LK b T dt
3 d..)(“‘

m-1 J

y) @20

n=Q, IJ.\...j

where

Yom () = yam (x,y60) '), ..., §*™"10), y(O,4 ) ..
Thus we have a set of M+N equations for the M+N unknowns y(0),y'(0),..

(w1

ey 00),7(1),¥y'(1)yenee.,¥ (1), The approximation y,,(x) that we
use here is a two point rational approximant which is described in
detail in Chapter 3. The system of equations (1.26) and (1.27) are
nonlinear and must therefo:e be solved iteratively. If we define

N+M dimensional column vectors
Y ={ yo),y10,....,y*0),y0,y'o, ..yl

.-‘_F = {JC(O);f'(@, sin .,Jf‘"-i}(ﬁ),f(nj :F‘(l)j b .Jj'(n-n(])}
(1.28)

= N-1
K [t,yun({ﬂ = {K[o,t,ym(tﬂ, %_.E 00,6, yun(®)]5 <+ o) %}%[U,tdun(tﬂ,

KD g, KT, o], .y 7K T, tjymeﬂj

XH"'I



oy
we can write the above system of equations in the form
' l
Z = i =¥ ?\J E, Et;HNM (t,X)] dt (1.29)

g (¥) (1.30)

or 4

where the function G is defined appropriately. As previously the
function G will usually have to be evaluated numerically since an
integral is involved. Thus we have reduced the two point approximation
to a form similar to that of the one point approximation in (1.14).
Again we solve for Y iteratively using either the first order
jterative scheme (F) or Powell's method (P) as already described.
Having solved for Y we have an approximate solution y,,(x), as

defined by (1.27), to the original integral equation (1.1).



CHAPTER 2

ONE POINT APPROXIMATIONS

In the previous chapter we outlined some basic methods, involving

power series expansions, used to find an approximate solution to a
Fredholm integral equation of the second kind. Here we consider in
detail one point approximations based on a power series expansion of

the integral equation about x=0. Three different one point approximations

are discussed.

a) Approximation by the llethod of Degenerate Kernels

The solution of linear Fredholm integral equations by the method of
degenerate kernels is well known and included in most of the basic
textbooks on integral equations, for instance see Chambers(1976),
Pogorzelski(1966) or Mikhlin(1964). For completeness we include the
method in the form used here to find an aprroximate solution to a
linear Fredholm integral equation of the second kind. So let us

consider the linear integral equation
Y =00 + )JAK(M ) y(t)dt (2.1)

As in Chapter 1, we assume that the kernel can be expanded in a power

series about x=0
Klx,B) = Z x" Kn(t) (2.2)

80 that (2.1) becomes an integral equation with a degenerate kernel

of infinite rank

Yoo = F0+ Y X fraoy)de w

If we truncate the infinite series (2.2) after N terms we may find an
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approximation y, (x) to y(x) satisfying

PO = FO) # AL fra@yndE

o

Equation (2.4) can now be solved exactly to find y (x) by the method

of degenerate kernels. Suppose we let

Tn(N) = [Kalt)yn()dt (2.5)

where of course, for a fixed value of N, the I.(N) are constants.
Multiplying equation (2.4) throughout by K,(x) and integrating
between x=0 and x=1 gives us the linear system of equations

Tr(W) = Fn 22 Ton T ) (2.6)

=0

m=0,|, .....,N-}

where  Fm=[Km(0FC)dx  and Tmn = Kin &) X" dx

assuming that all the integrals exist. Here we solve the linear set
of equations (2.6) for the I, (N) by using a FORTRAN library
subroutine due to Wilkinson and Reinsch(l9?l). Given a set of linear
equations in the form Ax = b , the routine uses Crout's method with
partial pivoting to decompose the matrix A into upper and lower
triangular matrices. An approximation to x is found by back-
substitution and this is then updated until full machine accuracy is
obtained. Having found the In(N) we can write down an approximaticn

to y(x) for a given value of N,
Yn ) =F) + }Eo x" Tn (N) (2.7)

Since the kernel has been expanded in a series about x=0 it is



obvious that y,(x) will be a closer approximation to y(x) near x=0
than near x=1. Unfortunately, for small N, y, (x) is frequently a
very poor approximation to y(x). For this reason we later consider a

rational approximant as an alternative approximation to y(x).

b) Iterating the Taylor series

When the integral equation is nonlinear we can no longer use the
method of degenerate kernels to find an approximate solution y, (x).
Instead we must use an iterative scheme. So consider the nonlinear

equation of the second kind
Yo =F06) + )_!'ch,t,y&)]cxt 5.8

As seen in Chapter 1, if both K[x,t,y(tﬂ and f(x) can be expanded in
power series about x=0, as given by (1.2) and (1.7) respectively, then
we may write

s n) .

yoa = 3 xn I ™) +7ij K.It,y(t)] dt} (2.9)

n=o n! © '
On truncating the infinite power series (2.9) we can find an
approximation y,(x) to y(x) satisfying

Y () = Z' Xn{ F"(a) + hlen[’C,y“{{)] cﬂ:} (2.10)
i nt o

h=C

If we assume that y(x) can be exparded directly in a Taylor series

about x=0, then on truncation after N terms we have

yn 00 =L x" ¥ (2.11)
: =

Thus as shown in Chapter 1 we can equate coefficients in (2.10) and

(2.11) to form the system of equations

™y = £y + ) K0, yn()] dt
yrE) = £(0)+ A e J

(2.12)
= 0, l,,....) N- |



- 13 =

where we have here assumed that the kernel has been expanded in a
Taylor series about x=0 and that the Kn[ﬁ,y(ti] are therefore of the
form given in (1.3). We define y,(x) to be the truncated Taylor series
about x=0 as given by (2.11). This system of equations can be solved
for the y"(0) by one of the iterative schemes (F) or (P) and we can
therefore find a one point approximation y.(x) to y(x).

As in the case of approximation by the method of degenerate
kernels, it is obvious that y, (x), being a truncated power series
about x=0, will be a closer approximation to y(x) near x=0 than near
x=1. However we find that for small N, y,(x) may be a very poor
approximation to y(x). For this reason we consider a Padé approximant
to y(x) as an alternative one point approximation.

It should be noted that when the function f(x) is already in
the form of a truncated power series, solution of the linear Fredholm
equation by iterating the Taylor series is directly equivalent to
solution by the method of degenerate kernels, for a fixed value of X.
Thus in the linear examples described in Chapters 4 and 6, it has been
found necessary to use only one of the methods described above.

It is alsoc useful to consider separately the first order scheme
(F) for finding an approximation y.(x) to y(x) by iterating the
Taylor series about x=0, This scheme may be written in the form

yt:(g) = ) {_3‘“)(0} +71J1Kn[t,yﬂt)ht} (2.13)
n! S

n=¢

where the r" iterate of y.(x) is denoted by yz%x) and an appropriate
starting function ;i?x) is given. This is obviously closely related to
the method of successive approximations, described in detail in such
books as Davis(1960) and Pogorzelski(1966). It is therefore possible
to use the theory of the method of successive approximations to find a

bound for A inside which the first order scheme (2.13) will converge.
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Outside this bound a higher order iterative scheme normally has tc be

used.

Starting Vectors for the Iterative Schemes

It is important to find suitable starting vectors for the iterative
schemes. For many systems of equations the first order iterative
scheme (F) may fail to converge at all; however when convergence of the
first order scheme does occur it will usuzally do so whatever starting
vector is taken. For strongly nonlinear equations most iterative
methods fail to converge unless we have a goed starting vector and
Powell's method is no exception. In general there is no systematic way
of finding a suitable starting vector but we outline sore of the
possibilities here,

Clearly the starting function y:?¥) must be in the form of a
truncated power series about x=0. The simplest starting function to

take is
N=1

‘ el n n)
yulo = E i—{-\@ (2.1%)

<]
or in the vector notation of (1.12) Y = £. Altermatively it may be

possible to assume a solution of the form
_ R
b(R (X)) = Co+CXF et Cpq X (2.15)

for some small R (i.e. R = 2 or 3) and by substitution in the integral

equation to solve analytically for the ci's. We then take yftx) = yo.(x).
Thirdly we can try and linecarise the original integral equation

(2.8) and solve using the method of degenerate kernels. We can then

use the ‘linearised solution as a starting vector for the nonlinear

equation.
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c) Iterating the Padé Approximant

It is well known that rational functions known as Padé approximants

Za(_c.z—

v Y
Pum (2) = ‘:"
). Bez©

t=0

(2.16)

can be constructed so that the expansion of P,y(z) about z=0 agrees

with a given number of terms of the power series expansion of the

function
alz) = 2;‘: anz" 0o 20) (2.17)

The class’cal theory of Padé approximants is described in Wall(1948);
for more recent theory see, for instance, Gragg(1972). Many different
Pade approximants could be used but here we consider only one. The
particular Padé approximant used can be expressed in terms of
continued fractions called S fractions which correspond to B, and
Puuws N=0,1,..... The N™ convergent of this fraction can be

written

Sh@)=¢C Gz Gz CwiZ (2.18)
| + | + |+ .+ |

where the ¢, are independent of N and are chosen so that the fraction,

when expanded out, fits N terms of (2.17). Thus

Cn = Ca (a-c,a—u.n.)ah.)
(2.19)
R=0, 1, ., N-1.
The algorithm used to find the |c.| is called the corresponding
sequence (CS) algorithm, due to Murphy and O'Donohoe(1977).

So consider Fredholm's integral equation of the second kind and,
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as previously, expand the right hand side in a Taylor series about

x=0
y (X) = gc x“[f(nﬁ(lo) ~+ }J’Kn[t, y(t)] (ﬂ:} (2.20)

We can now form the S fraction y,(x) corresponding to this infinite
series. Since we implicitly assume that y(x) can be expanded in a
Taylor series about x=0

n)
y(x)#ZK J © (0) (2.21)

we can equate coefficients for the first N terms in (2.20) and (2,21).

Then

|
®©) = $70)+ 2] 4 K [0t yu(®)dt
40 = FOO+ 2 [ 4K [0k, )]

(2.22)
where we have assumed that the kernel has been expanded in a Taylor
series about x=0 and that the K“[t,y(ti] are therefore of the form
given in (1.3). yy(x) is the S fraction to the series (2.20) and hence

to (2.21). From (2.18) and (2.19) it is obvious that

yul = 3@ G [y, y'@lx O, "tk (5.5
| + j o R |

Yn (6, Y0, YO,y yU@)

as required. We can thus solve the system of N equations (2.22) by one
of the iterative schemes described in Chapter 1. It is hoped that this
approximant will provide a better approximation than either the method
of degenerate kernels or the iterated Taylor series. Obviously these
methods of approximation could be repeated using other Pade approximants

and different results might be obtained.
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Starting Vectors for the iterative Schemes

Similar starting vectors to those used when iterating the Taylor
series can be applied. The simplest starting function to take is the
S fraction of f(x), or in the vector notation of (1.12) to let

Y= £ . Other starting vectors may be found by taking the S fraction

of those starting functions used in Section b).
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CHAPTER 3

TWO POINT APPROXIMATIONS

Since one point approximations about x=0 are liable to be inaccurate
for given N near x=1, we now consider a rational approximation with
better global convergence, which fits power series expansions about
both x=0 and x=1. First we outline the basic idea upon which the
theory of two point rational approximants is based.

Suppose that a function can be expanded about z=0 in the

series
oo
). cnz”
Cn {3.1)
n=0
and about z=w~ in the series
[= 2]
5 b,
el T (3.2)

where (3.1) and (3.2) may be either asymptotic or convergent
expansions and it is required that c. and b, be non zero, Rational
functions in the form of continued fractions can now be constructed
which agree, when expanded out, with n terms of (3.1) and m terms of
(3.2) simultaneously. Here the particular rational function we
consider is such that the m™ convergent agrees with m terms of each

series. Murphy(1966) showed that the required fraction is of the form

Mm(z) = _Co haZ Kbz (3.3)

l +dz + | +dez + ...+ 14dmz

This continued fraction is called an M fraction and is unique,
McCabe(1975). The coefficients n_ and di are independent of m and
have been calculated here using the corresponding sequence (CS)

algorithm, Murphy and O'Donohoe(1977), although other methods are
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available, Clearly we have

I’Li_ = ILC(COJ Ci] ..... JCt.l, bl;bll "y bl.,)
G T (3.4)
d
an di = Cl.i.((-t’; Cjoneee ) Cimy, b“,sz ovasi) BL)

It should be noted that for certain problems either c. in (3.1) or
b, in (3.2) may be zero. It is simple to safeguard this from happening
by adding an arbitrary function which can later be subtracted.

Now consider the Fredholm integral equation of the second kind

j(x) = F0) + )of 'K [x,t,y(t)] dt (3.5)

In order to form a two point approximant to y(x) we need to expand
y(x) in the form of the series (3.1) and (3.2). Suppose that we

expand (3.5) in a Taylor series about x=0 so that

yx) = nf_’\c X" {j%o) + 7\J|’<n [t,y(t)]dt} (3.6)

M KDty ()] = zann[t,j(t)] SN K CK [0,y ()]

nm¢ ! 4 x"

and f(x) =) x" £7°©

n=¢ n \
4

Suppose similarly that we can expand (3.5) in a Taylor series about

x=]1 so that

y0d = L 0 [0+ 2 [ Tey @it} o
KDty = L G0k T, y @)= X ) €K o]
n=o e T

- F6) = X ety 500

n!
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As shown in Chapter 1 this is equivalent to assuming expansions of

y(x) about x=0 and x=1 in the forms

==l

gy =2 X VARC)

. (3.8)
n!
and 0
Yo = 2 61 V) (3.9)
n=g0 n-‘[
Now by the simple change of variable
z = x o= 7
1 - X o 1 4 Z (3'10)

we can transform (3.6) = (3.9) into expansions about z=0 and z=-

to give

bn
n

5 (3.11,3.12)

n=c

j(ﬂ:iz"ch - _y(Z): i

respectively. The ¢, and bn are expressed in terms of the original

coefficients of the series, namely

Co = ¥(0) i
= 800D e S nenan )
be = y@ |
b= S0 S0
If we now put
Y(z)= y@@)-y (3,203

we may approximate Y(z) by the M fraction

Mu(z) = Mu(z, y©,y'@),.,y*"e),y0),y'o, ..., y*m) (3.25)



which agrees with N terms of the series (3.11) and N+l terms of the
series (3.12). Thus in the notation of Chapter 1 we can now form a

two point approximation to y(x)

Yo () = ¥ + My (X ) (3. 16)

1=
where M = M1 , and hence can define the relationship (1.27)

[(¥5))

Yo () = Yo (1, 400 'O, 410, YY), ) (5199

Thus on equating coefficients of the series (3.6) anrd (3.7) with those
of the series (3.8) and (3.9) we may derive the system of 2N+1

nonlinear equations

j(n‘(o) - J[('\‘(O) A )J"ﬂ [O} t,jmm(t)] dt
o (i..!(n

n: O] '} \“\J N'_l

n n i n (3.18:1
IO = 70 + 2 KD gt
% dxt
R=0;1;~sv, N

where y,..(x) is as defined above. The system of equations can bé
solved by one of the iterative schemes (F) or (P), described in
Chapter 1, to give an approximate solution to (3.5). Although we only
consider the two point approximant described in detail here, obvious
extensions to the methods could be made to deal with other fractions.
For instance in certain problems it might be advisable to consider a
twp point approximant using more terms of one series than of the

other,
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Starting Vectors for the Iterative Schemes

The simplest starting function is to take the appropriate two point
approximant to the function f(x) or in the vector notation of (1.28)
to let xfﬂ“ f . Alternatively it may be possible to make use of one
point approximations. Suppose that for some small N a one point
approximation about x=0 has been found. Then if we can repeat the
general procedure to find a one point approximation about x=1 we are
now in the position of being able to calculate a two point approximant

to the two series. This may then be usec as a starting vector.
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CHAPTER 4
APPLICATION OF THE GENERAL METHOD

TO AN EXAMPLE

Computational Procedure

Computing has been done throughout with DOUBLE PRECISION accuracy
on the University of St Andrews IBM 360/h4 computer. The programs
have been written in FORTRAN as a series of subroutines so that
they may readily be altered to solve different problems. For each
example results were computed for various numbers of terms in the
series (usually N = 4,6,8,10 and 12), although only a few of these
results ':z.ve been given here due to lack of space,

Details of the various methods of numerical integration used
and the starting vectors for the iterative schemes have been
discussed individually for each example. Since convergence of the
first order iterative scheme (F) may be slow, Aitken's acceleration
formula was used. Powell's method (P) was used with maximum internal
steplength 0.01 and a convergence criteria for minimising the sum c¢f
squares (1.16) of 10'°, Checks were performed using results from the
the first order iterative scheme (F) and comparing them with similar
results from Powell's method (P). In all cases agreement was found
to at least seven decimal figures.

The subroutines used to form the S fraction were tested using
two examples. The coefficients of the S fractions corresponding to
the functions (1 + x)* + (1 + ij% and (1 + x)* are given by
Drew and Murphy(1977) and Wall(1948) respectively. For both examples

the subroutines were found to be working correctly.



Example demonstrating the General Method

As an illustration of the general method we consider the linear

integral equation
yoo = 1+ 2 e ylodt 5.4

where A is a constant, and O<xs1 , Here
KDx, b, y(©)] = K(x,£) yt) = ey () (4.2)

and is an analytic function of x in [0,1]. Following the general

method we can expand y(x) about x=0 and x=1 as

Yoy = 1Ak ffi-. y(e) dt (.3)
and 20 1
ylx) = 1 +2 go(x-l)q ettm ylde (4.4)
Truncation of (4.3) after N terms gives
Yu () :':+z§0x“!%y~&)dt (4.5)

The Method of Degenerate Kernels

Since the integral equation is linear we can solve for y.(x) by the

method of degenerate kernels, Suppose we let

I.(v) = [t yu (b)) dt (4.6)
° nl

n= O)i).--.,N-|
Then we may derive a system of N linear equations of the form (2.6)

in the normal way



Tm(N) = Z CIa (N .7)

ml(m"") O mi(men+l)

m=0,1,....,N—|

Solution of these equations for the I, (N) provides an approximation
¥y (x) to y(x). As N increases it is found that the I.(N) tend to a

fixed value I. as would be expected.

Tterated One Point Approximations

In this example y,(x) is already in the form of a truncated power
series about x=0 from (4.3). If we expand y(x) directly in a Taylor
series about x=0 then we cen, on equating coefficients as described in

Chapter 1, derive the system of N equatioas

y©) =1+ 2 ® dt

(4.8)

I
)

j"’(o) )Jltsyu(t)d.t $= 1 uies, N=1
where by definition y,(x) = y,(x,7(0),5'(0),....,¥ (0)). These
equations are solved using either the first order iterative scheme (F)
or Powell's method (P).

When y, (x) defines the truncated Taylor series of y(x) about
x=0 we find that, for this example, solving the system of equations
(4.8) by iterative methods is directly equivalent to solution by the
method of degenerate kernels for a fixed value of N. In both these
cases the integrals have been evaluated analytically. Thus no resultis
from iterating the Taylor series have been included in Tables 1 = 3.

It can readily be shown that when the method of successive
approximations is applied to the original integral equation (4.1)

convergence occurs when X< é . It would therefore be expected that our
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first order scheme (F) for iterating the Taylor series should also
converge for these values of ) , and this is indeed found to be
the case.

When y,(x) defines the S fraction to y(x) it is found necessary
to evaluate the integrals at each iteration numerically. Here we usex
Simpson's rule with step size h=0.05. This is undoubtedly a source of
some inaccuracy in the results. It was found that decreasing the step
size to h=0,01 did improve the accuracy of the solution slightly but
also greatly increased the computing time used.

Starting vecters are of course nccessary when using the
jterative schemes (F) and (P). When iterating either the Taylor series
or the S fraction by the first order scheme (F) a starting function
y&%x) = 1 may be taken. When the scheme (F) failed to convergs,
Powell's method (P) was used. Somewhat sufprisingly. it was found
that for all values of A tested Powell's method converged when the

o
same starting function y,(x) =1 was taken,

Iterated Two Point Approximant

Following the general theory of Chapter 3 we derive the system of

2N+1 equations
IO =1 + A [ yuun (0 dt
Jo = hj‘t&j“”*' ()dt S=1,..,N-1

(%.9)
yny =1+ ?J'e"‘ym. (dt

y@(l): h;iet tsjuu+| ) dt S§=1,-, N

where  ¥,.(x) = %..,(x,7(0),¥"(0)s...,¥"(0),¥(1)sy* (1)y...,5 (1))



defines the two point rational approximant. Again these equations
must be solved iteratively using either the first order scheme (F)
or Powell's method (P).

As in the case of the S fraction, all the integrals have to be
evaluated numerically at each iteration and we again use Simpson's
rule with step size h=0.05. As before, this is a source of some
inaccuracy in the results., When the step size was decreased to h=0,01
improved accuracy was obtained but the computing time was increased
by an unreasonable amount,

Again starting vectors had to be found for the iterative
schemes and for the first order scheme (F) the starting function
xi:(x) =1 was used, Whe: the scheme (F) failed to converge Powell's
method (P) was used. However, for some of the values of A tested,
Powell's method with the same starting function y::(x) = ] failed to
converge. Better starting vectors were found using the method of
degenerate kernels to find a series approximation to y(x) about x=0.
The method was repeated to give a series approximation about x=1,
Thus a two point approximant y, _(x) can be formed for some small N

and used as a starting function. Fortunately this process involves

little extra work.

The Exact Solution

Unfortunately this integral equation has, as far as the author kmows,
no exact solution. For comparison we give an'exact'solution which has
been computed using both the method of degenerate kernels and the two
point rational approximant. For large N (here we have considered

N=12 and N=14) we can derive series approximations toc y(x) about both
x=0 and x=1 by the method of degenerate kernels. We hope that for

this value of N the coefficients of the series I.(N) have converged



= 5

with sufficient accuracy to a fixed value I,. We then form the two
point approximant to the two series and use this as an 'exact'
solution. In all cases this 'exact' sclution appears to have converged

to at least eight decimal figures,

Results

We now show some of the results computed for various values of 2 .
Since Simpson's rule with step size h=0.05 is a sourcé of some
inaccuracy, we have also shown the results using the smaller step
size h=0,01. These figures are given in brackets for the appropriate
methods. In Table 1 we have shown the results when ) = £ . In
Tables 2 and 3 we consider the results when A =1 and A =4
respectivzly., In all cases four terms of the series about x=0 and
five terms of the series about x=1 have been taken. (F) and (P) have
been used to denote which iterative scheme was used in each of the

iterative methods.

Comments on these Results

In each of the Tables 1 - 3 we have considered a different value of )
and shown the resulting approximations when N={, As would be expected
the iterated two point rational approximant provides a far better
approximation to y(x) than either of the one point approximations. The
iterated two point approximant has in all cases converged to the exact
solution to at least five decimal places, In fact it can be seen by
altering the step size in Simpson's rule from h=0,05 to h=0,01 that
the error in the sixth decimal place is due to the integration
routine., With step size h=0,01 the iterated two point approximant
converged to six decimal figures in all the cases tested,

Both the one point approximations give a rough approximation



to y(x) when just four terms of the series about x=0 are considered.
Unfortunately the iterated S fraction does not always seem to

provide the improved approximation that was hoﬁed; when ) = 1 it is
a poorer approximation than the Taylor series found by the method of
degenerate kernels. When N was increased it was found that both the

one point approximations quickly converged to the exact solution,
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CHAPTER 5

TWO POINT BOUNDARY VALUE PROBLEHNS

In this chapter we apply the general method to second order two point
boundary value problems. As is well known this type of problem has an
integral equation formulation. It will be seen that our methods of
approximation are particularly suited to dealing with equations of
this kind, This is for two main reasons. The first is that each of the
Taylor series expanded at the boundaries now contains only one unknown
derivative. This means that the systems of equations reduce to a
single equation for each unknown derivative, and hence only ons, or at
most two, integrals have to be evaluated at each iteration. Secondly
we find that when the method of iterating the two point approximant
is applied to these examples, the boundary conditions are automatically
satisfied,
So let us consider second order nonlinear differential equations
for y(x) in the general form
2
dy +250y) = 0 (0ex < t)
dx*

subject to the boundary conditions

(5.1)

y(o): a 3(1): b (5.2)

The restriction of the problem to the interval [O,i] involves no loss
of generality. Also, although we specifically consider boundary
conditions of the form (5.2), it is possible to have mixed boundary
conditions involving derivatives.

Much work has been done on problems of this kind. As Scott(1975)

states, "the numerical solution of nonlinear two point boundary value
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problems can be a challenging proposition, The basic existence and
uniqueness theory is not as developed as for initial value problems or
linear boundary value problems®. Keller(1975) has made a survey on
some of the recent literature concerning numerical methods of solution
for two point boundary value problems,

Here we need to write the differential equation (5.1) in integral
equation form where, of course, the boundary conditions are automatically

incorporated. The corresponding integral equation is
YO = ax(b-adx + A JKGOFlEyEIdE (5

where K(K.t): £ U-x) O<tgx
(5.4)

= x(-1) x<tbsl
This is a Fredholm integral equation of the second kind and is in the
form (1.1). Suppose we let
j(x) = a+ (b-a)x +AT (x) (5.5)

Then on expanding I(x) in a Taylor series about x=0 we have

y(x) = a+ (b-a)x + Athii“ﬁ (5.6)

with —~

I(o)=0

i

I

110 _of(r—t)fft,y(t)l dk

(5.7)
I'0) = -$Lo,y©] = -f[0,a]

I%=-[d2 £ [x,y0o] .
dx** y

o

—

The I°(0) are total derivatives of the function f[x,y(xﬂ evaluated
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at x=0 and can therefore be expressed in terms of the derivatives of

y(x) evaluated at x=0

(3]

1" ) = Tel y(), y'@), .., \yfw(o)]

(5.8)
S = 3, 4 ) -

However since we implicitly assume that y(x) can be expanded directly

in a Taylor series about x=0 we can put

y) = IR A ) (5.9)

n!
Suppose we now truncate the infinite series (5.6) and (5.9) after N
terms to find an approximation y,(x) to y(x). Then on equating

coefficier.,s in the two series we can derive the system of N equations

y@ = a E
yhor= b-a + 2 [ (-0 FLE yu(®]de |
Y'Y= - F [0, ] (5-10)!
Y9) = A Is LY@, ¥'©)..., ¥ 0]

5= Blpot |

where, as previously, we define the one point approximation to be

W)= yu (6, y©0,9'©, ooy @) (sa)

This approximation may be the truncated Taylor series (5.9) or the S
fraction corresponding to that series, both of which are described in
Chapter 2. The system of equations (5.10) is equivalent to the equations
(1.10) that we derived in Chapter 1, and may be solved similarly using
either the first order iterative scheme (F) or Powell's method (P).

Some simplification is however possible since it is clear that we have
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in fact only one unknown, namely y*(0). All the other derivatives of
y(x) evaluated at x=0 are either known or can be expressed in terms of

y'(0). Thus we may write

S= 3,'4-1-“-; N~

We are therefore in effect solving a single equation for y'(0) which

may be written
y'©@ = b-a+ )gf (-2 Lk, yu (t,y'(o)ﬁ dE (5.13)

where now y,(x) = y.(x,y"'(0)). It is necessary to find a starting value
y'(0) for both the iterative schemes (F) and (P). Possible choices are
discussed at the end of this chapter. It should be noted that we cculd
also solve equation (5.13) directly by such means as the bisection
method or the method of false position, in which case we would need to
find an interval encompassing the root y'(0).

Although we have discussed here iterative schemes for finding
v'(0) and hence y,(x), it is possible in the lineer case f(x,y(x)] =
f(x)y(x) to solve exactly for y, (x) by the method of degenerate kernels.
Since we have only one unknown functional y'(0) we may derive a single
linear equation for y'(0). This is directly equivalent to iterating
the Taylor series about x=0.

Thus by similar methods to those used previously we can find a
one point approximation y,(x) to y(x). This approximation will now be
exact at x=0 but, as before, the error increases with x so that it may
be inaccurate near x=1. We therefore now consider a two point
approximation which satisfies the boundary conditions at both x=0 and

x=1.
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Suppose we now repeat the procedure of expanding (5.5) using
power series expansions about x=1. We truncate these series after M
terms to form an approximation yu(x) to y(x). Then we may derive a

system of M equations, similar to (5.10), of the form

3(1) = b

Y= b-a - ;«J'tf[t,gm(tﬂ dE

y' = =2 F008] o
YOO = 2IV0 = AT Lym,y @),y 2001

5:3,4)\...,M—] J

It therefore becomes clear that we have again only one unknown, namely
y'(1). A1l the other derivatives of y(x) evaluated at x=1 are either

known or can be expressed in terms of y'(1). Thus
\y(s‘(l) = 7‘1(”(0 = ﬁI; [yl(*)] (5_15)
3= .3) Cf‘;"‘JM_l

We are now in a position to define a set of N+M equations from (5.10)

and (5.15) of the form

y(o): o 3"(0):—135[0@]
YO=b -+ 2] -6 F[E, you BT dE
Y@= AIs[yo] §=3,. N~}
(5.16)
y( =t y'(n = -af0ns]

g'i=b-a -2 tFIt,ywmw]dt

‘lj“}(l) = AIs [j'(l)] $2 Fj oyM=]
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where, as before, we can define a two point approximation y,,(x) to be
(K-1) \ (41
yan () =y (x, y©, 10, .,y O,y 1), y'0),,y ") (519

We again take this to be the two point rational approximant described
in Chapter 3. However it is obvious that we have only two unknowns,

y'(0) and y'(1), and thus

Yum (ﬁé) = Yum (X, y'0), y')) | (5.18)

The system of MM equations (5.16) may therefore be reduced to a pair

of nonlinear equations N

'©)Y= b~ A ’(--t [, yan(t, '), y' O] dt
3P CHJi ey i (5.19)

§' = ba =2 [t f [t yuutt y@,y )it

—

We solve these equations by either the first order iterative schene (F)
or by Powell's method (P) as described in Chapter 1. We need a starting
vector Y where Y = {y'(O),y'(lz} and possible candidates are
discussed at the end of this chapter. Thus having found y*(0) and y*(1)
we now know the two point approximant ¥..(x). Since y(0) and y(i) are
given by the boundary conditions, this approximant is exact at both x=0
and x=1, For this reason iteration of the two point approximant seems a
very suitable method for finding approximate solutions to second order

boundary value problems.

The Special Case f(x,y) = £f(y)

Further simplification is possible when we consider equations of the

form

&y +2f(y) =0 (5.20)
s 1



subject to boundary conditions (5.2). For then we have

4(dy SR | ? (y)dy + constant
L () s dy (5.21)

and hence can define a relationship between y'(0) and y'(1)
t 2 * _ ) e 1 b
Lly@l 2 Jipdy = LYol F)dy (5.2

In general we must consider taking both the positive and negative
square roots in (5.22). However we often have enough knowledge of the
physical properties of the problem to mzice this choice obvious., Thus

we can reduce (5.19) to a single nonlinear equation for y'(0).

Starting Vectors for the Various Iterative Schemes

We need to find appropriate starting values for y'(0) and y'(1) in the
fterative schemes (F) and (P). For one point approximations we need to
determine a suitable starting value for y'(0). The simplest choice is
to take y'(0) = b-a and substitute this into the right hand side of
(5.13). Alternatively we can try and linearise the original differential
équation. The resulting integral equation may, if it cannot be solved
analytically, then be solved by the method of degenerate kernels to
give an approximate solution y,(x). This result can then be used to
give a starting value y'(0) for our nonlinear iterative schemes.

The most systematic way of finding a starting value y'(0) for

the one point approximations is to consider the single equation

y'(0) = (b-a) - 7,_]“(;-:;)5 [ty ty'ON]dEe = 0 (5.23)

By determining where the left hand side changes sign for various
values of N we can find an interval in which there is a root y'(0).

The midpoint of this interval can then be used as a starting value



y'(0) in the iterative schemes (F) and (P). In practice however it
is useful to have some idea beforehand of the region in which y'(0)
lies; this can often be obtained from a study of the original
differential equation.
For two point approximations we need to find suitable starting

values for both y'(0) and y'(1). The simplest choice is to take
y'(0) = b=a = y'(1) and substitute this into the right hand side of
(5.19). Alternatively we can make use of one point approximations. If
we can derive these about both x=0 and x=1 then they may be used to

provide starting values y'(0) and y'(1) when iterating the two peint
approximant. It should be noted that this procedure produces little
extra work since both the series expansions about x=0 anl x=1 are

needed to calculate the two point approximant.
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CHAPTER 6

BOUNDARY VALUE PROBLEMS: EXAMPLES

In this chapter we consider three differential equations of boundary

m

value type. The first is a simple linear equation while both the
second and third examples are nonlinear., We shall show that one of the
nonlinear problems has two solutions and that the other, a well known

test problem, has inherent difficulties that have to be overcome. The

same computational procedure as that described at the start of Chapter
4 has been used. For each example a comparison of the various

approximations has been made with the exact solution.

Example 1 = An Introductory Boundary Val»: Problem

Consider the linear second order differential equation

2 2
‘:5'1 + 2y =0 (6.12)
X

subject to the boundary conditions

3(0):&:& y)y=b=3 | (6.11b)

Since this equation has a simple closzd form solution it makes a
useful first test example. In integral equation form the problem

becomes
3(x) = ‘a. + (b-a)x + A* I (x) (6.1¢c)

where

I() = [xG-0 ydt + [(Foby®dt  (6.0)

On expanding I(x) in a Taylor series about x=0 we can immediately

write



Yylx)= a+ [b-o,+ ?u1J1(f-t)_y(thLth o [* hl}/co)] %, 08.90)
: 2! ,

i [?] y(SJ)(O) él 4+ ..

Similarly on expanding I(x) in a Taylor series about x=1 we have
(x) = b+[b-a-" ]t (£) dk|(x-1) + [’h‘ )] 6=+, .
Y [ j y ] y J'Z.T' (6.1f)

[ » (“1(0]_(*) +.

First we consider the various one point approximations as
applied to this example. On truncating the infinite powrs: series

(6.1e) after N terms we can find an approximation y,(x) satisfying

W) = a + [b 0 j(; t)yk{t)dtjx . [W\y(o)-,_&l Y (6.10)
et ["711‘3{"'3’(0')] x
(N=1)]

On equating coefficients with those of the truncated Taylor series

of y(x) expanded directly about x=0 we have the relations

j(O) =

') = b=a zj(l—t)ju(t)dt

y'o) = '7'13(0) =-2'a (6.1n) |
_\fm(O) = (5-2 )(O) s=3,4,.., N1

involving one unknown, namely y'(0).




wilf3

The Method of Degenerate Kernels

Since we are dealing with a linear equation we can solve for Yo (%)
using the method of degenerate kernels. As we have only one functional,
namely ~J£1-t)yw(t)dt , we may derive a single linear equation by
multiply;ng (6.1g) throughout by (1-x) and integrating between x=0

and x=1. On rearranging this equation becomes

y©) = b-a +& + A2 I

X S$= 1 (5+!j(5+2_)5_} (6.1J)
where
Y9%0m = 0™ o S even
s-1)/ =
¥ = 073y s odd

and may be solved directly for y'(0). Having found y'(0) we can thus
determine an approximation to y(x) in the form of a truncated Taylor
series about x=0.

As N increases the coefficient y'(0) of the Taylor series
converges. The rate of convergence is obviously dependent on the value
of ). When y'(0) is large the method is slow to converge. In Table 4
we consider the coefficient y'(0) for various values of Nand ). It
should be noted that for small N y'(0) may be highly inaccurate (as
when A =3) and in these cases yu(x) will be virtually useless as an

approximation to y(x).

Iterated One Point Approximations

Suppose we now define y,(x) = yu(x,y(0),5'(0),....,¥ (0)) to be
either the truncated Taylor series about x=0 or the S fraction
correspdnding to that series. We can then solve the system of N

equations (6.1h) by either the first order iterative scheme (F) or
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Powell's method (P). Since alternate coefficients for this example
are constant, considerable simplification can be made.

Clearly the system of equations (6.1h) can be reduced to a
single equation for y'(0). When y,(x) defines the Taylor series about
x=0 this equation is of course the linear equation (6.1j) found by
the method of degenerate kernels. Since sclution by substitution and
by iteration yield the same result, only those using the method of
degenerate kernels have been listed.

The method of successive approxirc.tions converges for aA<2
when applied to the original integral equation (6.1c). We would
therefore expect the first order scheme (F) for iterating the Taylor
series to converge for these values of A . This is confirmed by the
results,

When y,(x) defines the S fraction corresponding to y(x), the
functional Jél—t)yu(t)dt has had to be integrated numerically at
each iterati:n.'Throughout this example Simpson's rule with step size
h=0,01 has been used.

A starting value for y'(0) and hence y.(x) is of course
necessary for both the iterative schemes (F) and (P). When iterating
either the Taylor series or the S fraction by the first order scheme
(F), a starting function ;:ix) = a + (b-a)x was taken. When the
jterative scheme (F) failed to converge, Powell's method (P) was used
and an appropriate starting value for y'(0) was obtained using the

method of degenerate kernels.

Jterated Two Point Approximant

If we truncate the power series (6.1e) and (6.1f) after N and M+1

terms respectively, then we arrive at the following system of



equations
-

_"f(oj =Q j"(o) = s

Y@= b-a 27 ] (1-t) yuwn (£) ot

3(’9(0): _]zy(s-z)(o) 623 N1 (6.1%)
y(l) = b v =-2'b

Y= b-a = 2% a0 dt

3(530): _hzj(s-z)(l) \S':.'--?»,...JM

[ (K)r

where we define ¥, (%) = yuu(%,7(0)y....,¥(0),¥(1)y....,¥™ (1)) to be
the two point rational approximant described in Chapter 3. It can
easily be seen that this system of equatiocns contains only two
unknowns, namely y'(0) and y'(1). We can therefore write the two point
approximant as y_,(x) = y..(x,¥y'(0),y'(1)) and reduce the 2N+l

equations given by (6.1k) to the pair of equations

y'(o) = b-a + 2’ _’-‘(!- £) i (td‘(c-),ﬂ'([))d.{: |

2 ! : (6.1L) |
HI(I) = b-a-7 J T VLG (E,SI(O},HI(I))d_JC —J

These two equations are solved iteratively for y'(0) and y'(1) by one
of the iterative schemes (F) or (P). As in the case of the S fraction
the two integrals are evaluated numerically at each iteration using
Simpson's rule with step size h=0.,01,

Starting values for both y'(0) and y'(1) have to be found when
using the iterative schemes. Taking iﬁkx) = a + (b-a)x provides an

adequate starting function for the first order scheme (F). When this
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failed to converge Powell's method (P) was used. Suitable starting
values for Powell's method were found by using the method of
degenerate kernels to provide series approximations about both x=0

and x=1,

The Exact Solution

The boundary value problem (6.1a) with (6.1b) has the simple exact
solution

y(x) = acos ax + (b-acos 70 sin x 6.2
sin .1n)
This solution can be exparied in Teylor series about x=0 and x=1. The
coefficients of the series can then be compared with those calculated
from the various approximate solutions. Obviously the coefficients
can be large when sin) is small and for these values of ) (e.g.) = 3)

the approximations are usually slow to converge, The size of the

coefficients also tend to increase with ).

Results

We now show some of the results computed for various values of 3 ., In
Tables 5 and 6 we consider the results when )= 1 and )= 2 respectively.
In both these tables results have been shown for N = 4, i.e., using four
terms of the series about x=0 and five terms of the series about x=1,

In Tables 7 and 8 results with ) = 3 and ) = 4 have been shown. Since
the one point approximations are not very good it has been felt
necessary to show only the results from the method of degenerate
kernels. In these tables results are shown both when N = 4 and N = 8,

As before (F) and (P) have been used to denote which iterative scheme

was applied.
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Comments on these results

In each of the Tables 5 = 8 a different value of ) has been considered
and the resulting approximations shown for a fixed value of N. In
every case the iterated two point approximant is seen to be much
better than either of the one point approximations, and has the
advantage of automatically saiisfying both boundary conditions (6.1b)
to the original differential equation, Unfortunately in many cases the
jterated S fraction was found to be a poorer approximation to y(x)
than the truncated Taylor series. As a check the exact solution itc the
problem (6.1m) was expanded in a series about x=0 and the S fraction
formed. When A= 1 and A= 2 it was confirmed that for small N the

S fraction was a worse approximation to y(x) than the truncated Taylor
series, When A = 3 the S fraction was a slightly better approximation
than the Taylor series but since both results were highly inaccurate

for small N, no real improvement was gained.
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Example 2 - A Nonlinear Boundary Value Problem with two Solutions

The second problem considered is the nonlinear second order

differential equation

d*y +?531:O N0 (6.22)
d x*

subject to the boundary conditions

where ) is a positive constant.

For this example we immediately encounter problems of
existence and uniqueness. Unfortunately neither the existence theoren
for second order differential equations by Keller(1966) nor the
existence theorems of Bailey, Shampine and Waltman(1966) are
applicable in this case. Birn, Goldstein and Schindler(1978) consider
the existence theorems available for solving the nonlinear Dirichlet

problenm

*(ﬁz‘ + 2 )A = f (WA x.y) 2> 0
dx* 2y
in the region A, where the value of A on the boundary of A is given.
It can ﬁe shown by applying this theory to our example that there will
be a solution for H<?}*, where )" is a real positive number, and no
solution when 7 >* . Bandle(1975) givés bounds for A" by
considering upper and lower solutions of the Dirichlet problem but
these turn out to be of little practical use. Birn et al. also state
that if A <)® the existence of a second independent solution is
almost guaranteed.

First we apply our metheds to this example; later the analytic



& s

solution is considered in some detail, Writing (6.2a) in integral

equation form we have

YOy = a+Gb-a)x + h!xx(l-t)jz(t) dt +3JE"X)tjz(t)¢t (6.2¢)

Yy = a+ G-adx + 2T (x)

or

On expanding I(x) in a Taylor series about x=0 we can write

Yo =a + (badx + 715 x" I""( ) (6.22)
where we can show that
_ ™
L) =0
I0) = J (-£)y* () de
T'o= -y*©@) =-a eiee)
I(n@ _ [d (x):, - PR ) (&) o)
dx*? J x=c  R=D ( ) _‘y (
= Bk »
Similarly by expressing I(x) as a Taylor series about x=1 we can
write y(x) in the form of the power series
3(X) b"" ((’.}“'L\) (X l‘)Tng(x ') I(")( ) (6.2f)
n!
~
with T = O
I'0 = -] tyrde
(6.2¢g)

I'() = - y*() = -
() sz & -2 G-k-2) (3]
1) = —[ix”y(x)]m--g(k)y (Ny ()
-S‘:-?:,lh... J
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Tterated One Point Approximations

If we truncate the infinite power series expansion (6.2d) after N

terms then we have )
Yy@0) = a _‘J’u(o):_?’&l
3'(0) = b-a + 71650“&:)_\]’:(&) d.t (6.2h)
S-2 ~k-2) 3
:‘Ls)(o) o = Z’ (s—hz) ,Y( (0)3( )(0)
$23,4 5000, N

where y,(x) = yN(x,y(O),y'(O),....,§yt0)) can be either the
truncated Taylor series of y(x) about x=0 or the S fraction
corresponding to that serivs, both of which are described in Chapter 2.
The system of N equations (6.2h) can be solved in the normal
way by one of the iterative schemes (F) or (P). However the systenm
essentially contains only one unknown, viz. y'(0), and hence we can

write

y©@ - [o-as ooy ey@de] =0 (g

When y (x) defines the S fraction corresponding to y(x) it is
found necessary to evaluate the integral numerically at each iteration.
Once again Simpson's rule with step size h=0,01 was used. Integrals
involving the Taylor series were still evaluated analyticaliy. With
the starting function y.(x) =a + (b-a)x it was found that both
the truncated Taylor series and the iterated S fraction gquickly
converged for 2= 1 and ) = 1. Neither approximation converged when
A=2,

A second solution was sought for 3 = 4 and A = 1 using Powell's
method (P). Clearly this required a different starting vector. If we

let yy(x) define the truncated Taylor series and consider intervals
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in which the left hand side of (6.2j) changes sign for various values
of N, then it can clearly be seen that the equation has two roots
y'(0) when )= 4 and ) = 1. By taking the midpoint of the appropriate
interval as a starting value, second solutions can then be obtained,
However both the truncated Taylor series and the iterated S fraction

were found to be poor approximations for small N,

Jterated Two Point Approximant

Suppose we truncate the infinite power series expansions (6.2d) and
(6.2f) after N and M1l terms respectively to derive the system of

2N+1 equations

- h
5(0) —a 3”(0) = -ha” |
YO =b-a +3 [ (mt) g (E)dt
” = I - |
) =~ =3 Y Ry 00 =3 N- |
370 =2 Z ()0 M s
j (N=b j"(l): -Nb (6.2k)
yo=b-a 7,J Yuwn (£) Lt
3“’(.).. ~7|Z (S 1)3“‘"‘ 2)(1 5 (r) 3= 3, .0, N
-/

We define ¥, (x) = %.(%x¥(0),5'(0)s.0.ry (0),5(1),5' (1)yeeeny (1))
to be the two point rational approximant described in Chapter 3.
Clearly the system of equations (6.2k) contains only two unknowns,
y'(0) and y'(1), and thus may be reduced to the pair of nonlinear

equations

3‘(0)

b-a +hj(|-t)ji“r, (tjy‘(c),_\;‘(t))dl: 7
Oi ‘I
b-o. - hj VA (t,j'(cjlj'(l ))dk (6-20‘

i

5'(0
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where the two point approximant y,,.(x) = yu..(x,¥'(0),y'(1)). We can
solve these two equations using either the first order iterative
scheme (F) or Powell's method (P). Again the integrals are evaluated
numerically using Simpson's rule with step size h=0.0l.

When a starting function yiflx) =a + (b-a)x was taken the
method quickly converged for ) = £ and A = 1. Convergence failed
when )\ = 2. Again second solutions were sought for ) = # and A = 1.
Since the differential equation (6.2a) does not explicitly contain

terms in x we can perform a first integration to derive the

relationship
i R b _ o B 3 3
[y@] = [y©] F M) (6.2n)

By considering the original differential equation we can show that,
for the second solution, y'(0); 0 and y'(1)< 0. Thus the two

equations (6.2 ) can be further reduced to a single equation for y'(0).
By finding intervals in which the equation changed sign for various
values of N, two distinct solutions for y'(0) were located. The

second solutions were then found by using the bisection rule (B) on

this equation.

The Exact Solution

We now consider the exact solution to the problem (6.2a)., Solving

for dY in terms of y we find that
dx

%‘(L’ = r/@ (63—33)% (6.2n)

where ¢’ is the first constant of integration. For a real solution
¢’> y. In Figure 1 a sketch of 4V against y has been drawn where

du
we assume ) and ¢’ to be fixed.



Since g is always negative, y(x) can never have a minimum value.
It has a maximum value when y(x) = ¢’. From Figure 1 it is ciear
that there are two possibilities:
(I) y(x) is strictly increasing in the interval [0,1] so that
y'(0) and y'(1) 2re both positive.
(1II) y(x) has a maximum in the interval [0,1] so that y'(0)>0
and y'(1)<o0.
Now suppose that y(x) has its maximum at a point x.. Then we know
that y(x,) = ¢’. We can therefore rewrite (6.2n) in the following

forms



1
(I) d—_y_ = <+ g_-h_ (C,-s“ys)b‘ 0<x =<1
X 3
(11) c}i = + [&) (3 33)’1 0< X<€Xm
d.x S
= — [3A ((';3__53 & Xm& X £ |
3

(1) and (II) can be solved in terms of elliptic integrals of the first

kind (see Abramowitz and Stegun(1970)), viz.

F(@'J R) et “’J’rg J dz
o K=22)"
where cos g = z-1 + /3 and R = SlhfL :5__11

e =1
z-| -J3

For instance in case (I) the general solution is of the form

232 o +¢ = V. _1 F(F.K)
3 cr &3 (6.20)

where ¢ is the second constant of integration. The constants ¢ and ¢

are found from the boundary conditions (6.2b); on elimination of ¢

we find
__I_J g (c&s"{b"“ +."3c'}" R\ s F(w-: {_LL-C'* A (_*}) R) = ;_13_3_ (6.2p)
%C' 'u_L b= =3¢ ) a=c’-3c” J 3 ‘
Similarly in case (II) the general solution can be written
1 ™
AAX+C = F(Q",R)‘F(W;R) 0sX<£Xm
3 o™ -
(6.2q)
9_71X+C = ‘F(@,R)+F(W.k) X § X € )
‘3 Pa
3 c i
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where the second constant of integration c¢ = ijggx“. Again the
constants ¢ and ¢’ are found from the boundary conditions (6.2b) so
that on elimination of c we have

e

b=-c-f3c' o o~ ¢ l

T
The nonlinear equations (6.2p) and (6.2r) were solved for ¢’ using
the bisection method. The elliptic functions were evaluated using a
FORTRAN subroutine based on numerical methods of Bulirsch(1965). The
structure of these equations show that for )»)»'21.6 there is no
solution while for A less than this critical value there are two

solutions., See Figure 2.

Results

In Tables 9 and 10 we compare the results obtained using rational

and Taylor series approximations with the exact solution for X = %
and ) = 1. In both tables we have used four terms of the power series
for y(x) about x=0 and five terms of the series about x=1. The second
solutions are shown in Table 11 where we have here only used the
method involving two point approximants., (F), (P) or (B) have been

used to denote which iterative scheme was applied.

Comments on these results

Tables 9 and 10 list the approximations to the first soluticn of
(6.2a) for M= % and ) = 1. The iterated two point approximant
provides the most accurate approximation to y(x) for small N and has
the advantage of automatically satisfying the boundary conditions
(6.2b). All the approximations converge quickly to the first solution

with increasing N. In both the tables the iterated Taylor series is
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FIGURE 2
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a closer approximation to y(x) than the iterated S fraction. However
this does not always remain the case when N is increased.

Table 11 shows that the iterated two point approximant quickly
converges to the second solution for » = £ and ) = 1 when using the
bisection rule (B). Both the one point approximations were very poor
for small N and, as before, neither type was a consistently superior
approximation to y(x).

It should be noted that our process is in a sense a more
automatic procedure than the calculation of the exact solution. It is
also important to note that our approximations failed to converge
for values of A for which there is no solution. It seems very
possible that these methods could be useful in determining the
existence and uniqueness of solutions to boundary value problems of

this type.
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BExample 3 = Troesch's Equation: A Well Known Test Problem

The final example is a nonlinear boundary value problem which has
been used extensively as a test problem. This equation, first
investigated by Troesch(1960) and often referred to as Troesch's
equation, is given by

2 5
Y = asinh )y A0

% wid

d x

and is solved subject to the boundary conditions

(6.3a)

y@©@=0 y) =1 (6.3b)

Application of the existence theorem for second order differential
equations by Keller(1966) shows that the problem has a unique
solution for all A > O, Difficulties however occur when trying to
solve this problem numerically. If y'(0) is slightly greater than
its real value, the solution has a singularity in the interval EL]].
(Roberts and Shipman(1972)). Also when ) is greater than four,
Roberts and Shipman(1976) show that if y'(1) is only slightly
greater than its real value, there are discontinuous solutions to
the problem which can cause overflow in the interval BL]J. The
severity of these difficulties increases with A .

Here we obtain a solution to the problem for small values of

). Writing (6.3a) in integral equation form we have
X i
j(x) =X+ A Jx(t-!)dlln'r\ hj&) dt + -AJ (x-\)t.sin\\ hj(t)dt (6.3¢)
o X

or

Y(x) = % + ZTx )
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If we expand I(x) in a Taylor series about x=0 then we have

y(x) = x +71me“£“‘_’_@ (6.3a)
n=¢ n_!
where
° T©)=0 )
I'0)= [ (£-1) sinh dy) de
7 ) (6.36)
1 ()= sinh )3(0) = ()
) - [ﬁ sk 2y (o) | $=34,..
dx*2 J)(:O ' A

Similarly if we expand I(x) in a Taylor =series about x=1 then we can

write

) = 1+ G+ 2 ) 190) (6.32)

n!

with

T0)=0 ]
|

T = f't sinh ) y(e) dt |
(6.38)

T4 = Sinh 3 y(1) = sinkh )
I°0) = l:g: sinh 75_\/!()()] SET W |
it Jxﬂ _J

Recurrence relationships can be derived for the I“(0) and I”(1)

since

. |

g_._'f’ sinh hj(x) = h/\_ (E) 3LP-R+I)(X){msh 2y

dox ™ - R=0
(6.3n)

R~1
YN (hj") y(hﬂ)(ﬁﬁ sinh ?y(x)}
ij CLX]
: R:l;al“
P e O; ij g



Alternate coefficients of the series expansion about x=0 are zero
for this example. The coefficients of the series expansion about

x=1 are all positive and become very large as ) increases,

Iterated One Point Approximations

On truncating the infinite series (6.3d) after N terms we may derive

the system of N equations

(o) = © J'©)= 0 )
Yoy =1+ Je-1 sinhOn g dt (6.3x)
3“‘(0) = [d-m smhh?lgtx)—! $=3,4,.., N

C¥¥-S-l J){:C y

where y,(x) = ¥ (x,¥(0),y'(0),....,5(0)) can be either the
truncated Taylor series of y(x) about x=0 or the S fraction
corresponding to that series. The equations are solved using Powell's
method (P). However the system essentially contains only one unknown,

namely y'(0), and hence we can write
i .
H'(O} -~ 7’1_" {t‘r'}sﬂ"»h }'j“‘ (‘t,j‘((';)‘,j‘{i‘;} dt (6.30)
o

where now the one point approximation y,(x) = vu(x,y'(0),y'(1)).
For both the one point approximations the integral is
evaluated numerically at each iteration using Simpson's rule with
step size h=0.01. We consider approximations when X} = 1, 2 and 3;
for these values of ) a starting function yﬁkx) = x 1is adequate.

However, even with these small values of A, overflow occurs for

certain values of N,
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Iterated Two Point Approximant

Now suppose we truncate the infinite series (6.3d) and (6.3f) after

N and M1 terms respectively. Then we may write

j(o) =0 3"(0) =0 f
i
§o)= 1+ 2 [ (&-1)sinh Ay @) At
) [ s-2 : T
= N (L sinhe ) = N
H ©) L:{;-Z Sin fy()de:O §=3, b4, N-1 (6.3m)
jﬂ)::l ﬂ%nz’hshhh |
jI(I) = | + hjlt SI‘FL}\ }\yhm:&)d_‘t |
(s) s -
(N=2 [ é__ sinh hy(x)} s=3,4,..,N
j’ d'x‘h‘z X=1 _,J

where ¥,,,(x) = Fu.(x,5(0),y'(0),...,¥%0),¥(1),¥'(2),...,¥°(1)) is
the two point raiional approximant described in Chapter 3. Since
this system of 2M1 equations essentially contains cnly two unknowns,

y'(0) and y'(1), it may be reduced to the pair of nonlinear equations

_\Ji(o) = % hjl(t‘l)si-‘\h )jNNﬂ (t,HI(O).Hi{”j dt W
|
jl(l) =1 + h_[ t sinh }jm«‘ﬂ (-";_d‘({})}g'(l})d_t (6.3n)!
. W
where the two point approximant y,,  (x) = y..(x,y'(0),y'(1)). These

equations are solved using Powell's method (P).

Again the integrals were evaluated numerically and, in
general, Simpson's rule with step size h=0.01 was used. This was
however thought to be a possible source of inaccuracy so that when
A = 5 a higher order integration routine was used. The rule applied

was Newton-Cotes 6 point formula (see Abramowitz and Stegun(1970))
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with step size h=0,01. This appears to have improved the accuracy of
the results but is thought to be still a source of error due to the
large size of the derivatives of sinh ) y(x) when evaluated near x=1.

When ) = 1, 2 and 3 a starting function xﬁ:(x) = X can be
taken. When A = 4 Powell's method (P) fails to converge with this
starting function and a more accurate one has to be found., This
was done by considering the simple analysis of the problem by
Troesch(1976). He shows that y(x)< sinh ax/sinh» (0< x<1) and
that 0<y'(0)< 2/sinh) . Hence when » = 4 and 5 we take a starting
value y'(0) = A/sinh2 . A corresponding starting value for y*'(1)
can be found by using the relationship (6.30) derived subsequently.
However even with these starting values overflow occurs for most
values of N when A =5,

Since equation (6.3a) does not explicitly contain terms in x

we can perform a first integration to give

[H‘(O)Jl = [y‘(l)}z - dcosh A (6.30)

where it can be shown that both y'(0) and y'(1) are positive. Thus
the two equations (6.3n) may be further reduced to a single equation
for y'(0). We solve this equation using the bisection rule (B) with
A= 5, The integral is again evaluated using Newton-Cotes 6 point

rule. Unfortunately overflow still occurs for most values of N.

The Exact Solution

A closed form of the solution to Troesch's problem has been given
by Roberts and Shipman(1976) in terms of Jacobian elliptic functions,
Here we have taken numerical values for y'(0) and y'(1) from this

solution and used them to form the two point rational approximant



for various values of N, The results determined for large N (here
we have taken N = 12 or 14) have been quoted as the 'exact'

solution.

Results

In each of Tables 12 = 15 we show results for different values of ).
Vhen }»= 1, 2 and 3 both the one and two point approximations are
shown using Powell's method (P) and taking four terms of the series
about x=0 and five terms of the series about x=1, When ) = 4 and 5
we just consider the two point approximant, For )} = & results
obtained using Powell's method (P) are given taking N =4 and N = 8,
For A = 5 we consider the two point approximant obtainec oy
Powell's method (P) compared with that obtained by the bisection
rule (B). Again we have taken N = 4 since both methods fail to

converge for higher values of N,

Comments on these results

This is a difficult example and it is probably unfair to expect our
methods of approximation to perform well for even quite small values
of ). The coefficients of the series about x=0 become very small as
) increases and correspondingly the coefficients of the series about
x=1 become very large. Even with a small step size the truncation
error in the integration routines may be relatively large, and is
therefore a source of error in the results. Accurate starting values
are needed to prevent overflow from occurring.

When » = 1, 2 and 3 the approximations are fairly well
behaved although they become increasingly slow to converge with

larger ) . In the results shown the iterated Taylor series is a
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better approximation to y(x) than the iterated S fraction., However
when a larger number of terms in the series is taken (i.e. N is
jncreased) the iterated S fraction becomes the better approximation.
Overflow occurred for some values of N when iterating the S fraction
for ) =2 and )= 3.

When ) = 4 we have shown the resulting approximations when
jterating the two point approximant by Powell's method (P). It is
noticeable that these approximations are appreciably slower to
converge than the approximations for smaller values of ) . When
A = 5 overflow occurred for most values of N when iterating the two
point approximant by Poweli's method (P). It is a drawback of
Powell's method that, apart from choosirs an accurate starting
vector and taking a small maximum internal steplength (here we have
always taken this to be 0.0l). it is difficult to restrict the
problem to an area in which overflow cannot take place. We really
need to solve the rair of equations (6.3n) subject to constraints
on the derivatives, It was hoped that this could be done by solving
the single equation for y'(0) using the bisection rule (B). However
the interval in which the solution lay was found to pe so resiricted
that the method was impractical and overflow again resulted for most
values of N. It is interesting to note that the results obtained by
this method when N = 4 were poorer than those obtained by Powell's

method (P).
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CONCLUSIONS

We have considered Fredholm integral equations of the seccnd kind
and found approximations to the solution using power series
expansions. In particular we have considered using both a Padé
approximant and a two point rational approximant as approximations.
The methods of approximation have been tested by an example which is
described in Chapter 4. As Walsh(1977) states, "if we can obtain
numerical results for a given problem which appear to converge, and
to behave consistently with variations in the parameters, we can be
fairly sure that they represent an analytical solution, even without
a rigorous proof",

Altnough the methods of approximation have been aimed at
solving integral equations, special attention has been paid to two
point boundary value problems., In general, the solution of integral
equations by our methods involves the evaluation of several integrals
at each iteration. This is usually time consuming and must be
considered as a possible source of error when the integrals have to
be evaluated numerically. However the results given in Chapter 4
show that reasonable approximations can be obtained when only a few
terms of_the power series expansions are considered. Simplification
occurs when considering two point boundary value problems as the
golution of these differential equations by our method involves the
evaluation of, at most, only two integrals at each iteration.

An important advantage of our methods, when using the two
point rational approximant to solve boundary value problems, is that
the boundary conditions are automatically satisfied. Three second

order differential equations of boundary value type have been
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discussed as test examples in Chapter 6., It can be seen that for
many problems where calculation of an exact solution is difficult,
our approximations provide a reasonable alternative method of
solution.

Let us now consider the one point approximations based on
power series expansions about the lower endpoint of the interval
[O,i]. We have used both the truncated Taylor series and the S
fraction as one point approximations. Both approximations tend to be
slow to converge to the exact solution and are inaccurate for small
values of N near the upper endpoint of the interval EO,]]. However
they have the advantage of being easy to use and provide good
starting vectors for other iterative schemes, such as those involving
the more accurate two point approximations.

Unfortunately the iterated S fraction does not provide the
close approximation to the solution that was hoped. In many of the
results the S fraction was a worse approximation than the truncated
Taylor series. This was particularly true when N was small and only
a few terms of the power series were taken (as was the case in the
Tables shown here), A possible reason for this Padé approximant
behaving so poorly can be gained from Kershaw(1977). He states that
"for a wide class of functions the error in the best polynomial
approximation is little worse than that of the error in the
comparable rational function", and gives references for further
details, It should be stressed, however, that other Pade approximants
might yield much better results.

Secondly we consider the two point approximations based on
power series expansions about both the lower and the upper endpoints

of the interval [p,]]. The approximation used here is a two point



rational approximant which fits N terms of the power series expansion
about x=0 and M1l terms of the power series expansion about x=1.

This approximant converged very quickly to the exact solution for
nearly all the examples tested. Even for small N it is a surprisingly
good approximation. (See Tables of results).

On occasion the methods have failed to converge for certain
values of the parameter ) and number of terms N. This was
particularly the case when using Powell's method (P). It was
difficult to know whether this was due t» breakdown of Powell's
method, possibly due to inaccurate evaluation of the integrals, or
whether this was inherent in the approximations themselves. In at
least one example breakdown of the method occurred because the
denominator of the rational approximant was close to zero., However
failure to converge only occurred rarely, normally for isolated values
of N, so cannot be considered a serious drawback,

Special mention should be made of the way multiple solutions
can be found for nonlinear two point boundary value problems as shown
iﬁ the second example. Here it can be clearly seen that the method of
iterated two point approximants provides us with two solutions to the
problem. In the third example we see that our methods of approximation,
not surprisingly, cannot cope with the inherent difficulties in the
numerical solution of the problem. It is possible that better
results could be obtained by using a two point approximant dependent
on a large number of terms from the series expansion about x=0 and a
small number of terms from the series expansion about x=1,

Obvious extensions could be made to the work done here,
covering both higher order differential equations and systems of

equations. Other two point boundary value problems with more general
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boundary conditions could readily be considered. As suggested above,
the two point approximant could be modified for certain examples so
that unequal weight was placed on the two series expansions. Other
modifications could be made to deal with singularities, possibly
involving asymptotic expansions.

We have shown that our methods of approximation using power
series expansions can provide accurate approximations to both
Fredholm integral equations and boundary value problems. These
approximations have the advantage that they are functions of x and
hence can be calculated at any point in the interval. In particular
we show that the use of two point rational approximants can provide
a powerful method of obtaining solutions to two poin£ boundary
value problems. This is especially valuable when dealing with those

nonlinear problems for which no general methods of solution exist,
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