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Abstract

Magnetophonon resistance oscillations have been observed in

samples of n-type PbS at 77°K„ These oscillations arise from intra-

valley scattering of electrons by longitudinal optical phonons between

Landau levels when the optical phonon energy hm becomes a multiple
i_iU

of the cyclotron energy ■>

After corrections are applied for the phase shift arising from

the variation in amplitude of the resonance peaks and the polaron

effect, the "bare" band edge mass is found to be 0,082 mQ„



Introduction

The magnetophonon effect was first predicted by Gurevich and

Firsov in 1961u However, although the first experiments were carried

out in 1963 by Shalyt et al, only in the last few years has a substantial

amount of work been carried out„ Consequently the relevant theory has

not yet been included in standard textbooks. For this reason, a summary

of the original theoretical predictions followed by a simplified

discussion of the physical basis of the effect will be given in chapters

I and He
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CHAPTER I

1,1 Prediction of the magnetophonon effect

A new type of transverse-resistivity oscillations in semiconductors

in a magnetic field was predicted and studied theoretically in 1961 by

Gurevich and Firsov. The oscillations are caused by inelastic

scattering of electrons by phonons with limiting frequency different

from zero, in particular, longitudinal optical phonons.

Gurevich and Firsov studied the influence of the inelasticity of

the scattering on transport phenomena in a strong magnetic field.

They restrict themselves to Boltzmann statistics [a statistical distri¬

bution of a large number of electrons subject to thermal agitation and

acted upon by magnetic and electric —— etc. fields. The number of

electrons per unit volume in any region of the field3 when the system is
-E/kTin statistical equilibrium is given by the equation N => e where

E is the energy of the electron3 N , the nurriber of electrons per unit

volume in a region of the field when E is zero3 k,, the Boltzmann constant3

Tj the absolute temperatvcre of the system of electrons] and use the Born

approximation i.e. the energy of interaction of colliding particles is

less than their kinetic energy.

In fact Argyres and Roth (1959) studied the inelastic scattering and

obtained a formula for the transverse conductivity which was a sum over

the electron quantum numbers in the magnetic field, by using the theory

of electrical conductivity in a quantized magnetic field which was

developed by Adams and Holstein, but they did not analyse this formula,

Efros (1962) extended the theoretical investigation of Gurevich and

Firsov to the case of Fermi statistics [in which the number of electrons 3

n.,, in a state of energy E. 3 at the absolute temperature T^ is given by1

(E^-Ep)/kT 1
n^ = l/(e + 1)] and predicted that a similar effect should
also exist in degenerate semiconductors i.e. in semiconductors in which

the number of electrons in the conduction band is so high that they
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must be described by Fermi-Dirac statistics as in a metalo

These investigations were on the simplest semiconductor model,

with a quadratic isotropic spectrum of carriers scattered by optical

polar vibrators„

The aim of this survey is to give a qualitative understanding of

these oscillations„

We shall consider the interpretation of the mechanism of transverse

conductivity in a strong magnetic field i„eo urr » 1 for each of the

following caseso

1.1.1 Non-degenerate semiconductors

The Fermi energy E^, can be defined as the energy at which the
probability of occupation is l/2„ When E << kT the Fermi-Dirac distri-

r

bution function can be replaced to a good approximation,, by the Boltzmann

function,, For such low electron densities we can also neglect electron-

electron coulomb interactions„

When an electron of wave vector k is scattered by a phonon into the

state k'f the electron either absorbs or emits a phonon of wave vector q

where

kf = k ± q (conservation of crystal
momentum)

[1-1]

In this process the electron either gains or loses a quantum of energy

hu> o Conservation of energy for the system as a whole imposes the

additional requirement

E' = E ± hco [1-2]
q

The scattering event can be considered quasi-elastic only if the energy

change per collision is small compared to kT irrespective of the value

of the Fermi energy.

Applying this to electron-phonon scattering, we conclude that
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if AE < kT the process is elastic

and if AE > kT the process is inelastic.

Then; ha) « k0Q 0Q is the excitation temperature
of the phonon (Debye temperature)

kT « k0D
or [1—3]

kT « ftuJ
q

The phonon wave vector can take on magnitude ranging from q = o to

qQ = k0D/hu = [6tt3/V]1/3 [1-4]

where:

V is the volume of a unit cell

and u is the velocity of sound in the solid.

We use the Debye approximation in which the unit cell in wave-vector

space is replaced by a sphere of equal volume„ The wave-vector q^ is,
in fact, the radius of a sphere in k space whose volume is equal to

that of the 1st Brillouin zone. Thus, absorption or emission of

phonons can cause a significant change in the electron's crystal

momentum [|k#-k| can be3 and often is, the same magnitude as kQ] but
can change its energy by no more than k0^, an energy increment very
small compared to the Fermi-energy E .

r

For the inelastic scattering of electrons by phonons in non-

degenerate semiconductors we can consider two characteristic cases :-

Case 1. Scattering by acoustical phonons0

This leads to a small effect because of very small phonon energy.

We will eliminate this from our discussion since it is unrelated to

our topic.

Case 2. Scattering by polar optical vibrators,

when account of the inelasticity may change all the characteristic

dependences.
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In calculating the conductivity of a semiconductor in which the

constant energy surfaces are ellipsoidal, we must first calculate the

current or conductivity contribution from a single ellipsoid and then

sum over all the ellipsoids to obtain the total conductivity„ Since

the effective mass associated with each individual ellipsoid is a

tensor quantity, so also is the conductivity0 In general, the

equations relating the current density and electric field may be

written as tensor relations of the form

J. = E cr. „ E.
1

j 1J J
or [1-5]

E. = 2 p.. J.
J i iJ i

The a., and p.. are the elements of the matrix representing the

conductivity and resistivity tensor of the crystal respectively, E

is the electric field intensity, and J is the current density. If we

deal with crystals having cubic symmetry, the conductivity tensor

reduces to a scalar.

Choosing the z-axis to be along the direction of the magnetic

field then in the case of an isotropic electron dispersion law, the

t(ensor (B) has the form Parfenev et al (1974)

a
XX

a
xy

0
1

-a
xy

a
yy

0 J

0 0 [1-6]

a
XX

ii q
vj

The appropriate components of the resistivity tensor p^(B) is the
inverse of equations [1-6] which followed from [1-5] , In magnetic

fields satisfying the condition a> x >>1, if the electron isoenergetic

surface does not contain open orbits, the conductivity tensor (B)

has the following asymptotic forms



1-5

a = ff Cm t) o ~ cr (us x)"1
xx o c xy o c

[1-7]

a ~ a
zz o

where oq is the conductivity when H = 0.
The non-zero components of the resistivity tensor p^„ are related to
the components of the tensor ain the following way:

CTxx 1 n oi
p = —_ p = - —— [1-8J

XX 2 xy CT
a xy

x y J

To make it possible to express a and a (the transverse and Hall
xx xy

conductivity respectively) as expansion powers of the scattering

potentials, Gurevich and Firsov define a strong magnetic field as a

field which satisfies the condition

a

— ~ (a) x r1 « i [1-9]
°xy

The range of strong fields includes the classical and the quantum

region,,

lolola Scattering by optical phonons in quantum region

The quantum region is practically attainable if the following

inequality holds

ho
» i [i-io]

where w is the cyclotron frequency„

Here the quantum method is the only method which can be applied.

Gtarevich and Firsov found the dependence a (B) for the case where:
XX

a) >>oi where 03 n is the longitudinal opticalC LU LiU

frequency and where the scattering is by

acoustical and optical phonons.
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This dependence is the same as the one obtained by Adams and Holstein

(1959), apart from a logarithmic factor»

For co << coT ^ where Gurevich and Firsov could not use the method
c LO

of Adams and Holstein they discovered a non-monotonic oscillatory

dependence for °XX(B)° As in the classical case, a goes through a
maximum when the frequency to is a multiple of co , but what is a small

i_iU c

correction in the classical case is part of the main effect in the

quantum region-

By assuming that the electron dispersion law is quadratic and

isotropic and that the magnetic field lies along the z-axis, and

starting from Kubo's formula, which expresses a in terms of velocity
XX

operators of the motion of the centre of the Landau oscillator,

Gurevich and Firsov got after approximation and using suitable

correction terms the following quantum formula

a = a^tD + F(a,6)] [1-11]
XX XX

where

i o 2 hu)T _ nu)_
s 1 / \ / \ / "i r i i o i

3 l7t7' ~kl~ exp{" 11-121m*.'0 t
c o

D; is a constant of order of unity^ ex tcnX>><Ce*£
F(a,6): is negligibly small compared to D if

nto

jjf «<!-«> » 1

But if

h(0

6(1-6) «1 [1-13]

„ [ hto hto hto
F (a, 6) = - C^~~~) In [^ 5(1-6)] [1-14]

to
L° u eB$ = N where to = ——

to o cm'*
c toT

. .... . LO
N is the largest integer contained in the ratio ——

o to
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The first term in equation [1-11] is the same as the classical

expression for the conductivity„

The second term in equation [1-11] describes the specific quantum

resonance oscillations of the conductivity which can be noticed against

the background of the classical term when

=-sr |ujt _ - Nu) | << 1 N is an integer,kT LO c

These oscillations are periodic in the reciprocal of the field. The

origin of these oscillations can be understood as follows.

If coTr, = Nu) [1-15]LU c

then electronic transitions involving the absorption or emission of a

phonon are possible, during which the quantum number changes by N,

ldolb Scattering by optical phonons in classical region

hco
where —~ << 1 [1-16]

kC J.

Although in this region the Boltzmann transport equation is

applicable Gurevich and Firsov again use the quantum calculation for

a o

xx

It turns our that when the scattering is by optical phonons a
XX

can oscillate and go through a maximum whenever the limiting frequency

of the optical vibrations to is a multiple of the cyclotron frequency,

These oscillations are periodic in the reciprocal of the field. In

contrast to all other known types of oscillations of the static

conductivity they occur in the case of Boltzmann statistics.

The conductivity in a strong field is related to the conductivity

at B = 0, according to the transport equation by a simple order of

magnitude relation for B = 0

Z
r i i ™71

°'sr [i-i']
t is an average relaxation time for conduction electrons.
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Gurevich and Firsov estimated from that a which should yield the
xx

correct order of magnitude and the correct field and temperature

dependence, which is

a ~ . , n-el [1-18]
xx

to 2 t m*
c

Gurevich and Firsov consider two regions of possible values for che

electron energy E, In the first region 0 < E < an<i iri the

second hio^ < E < 2ftu^Q° Electrons in the first region can only
absorb optical phonons, as a result of which chey get into the second

region.

The probability for such a process is proportional to

0

Nq ~ exp ( [1-19]

They got for this region for a a similar expression like equations
XX

[1-11] and [1-12] in the quantum region.

Note only that equation [1-14] which is valid in the quantum case

when

hto
«(!-«) « 1

require in the classical region the inequality

6(1-6) « 1

and equation [1-14] contains not

hoj

In[~ 6(1-6)]

but

In[6(1-6)]

to
Coo o

The ratio — is thus essentially the only parameter in the theory of
^LO

the transverse conductivity caused by the scattering by optical phonons



ftd)
C o o

The quantity , however is a parameter only in small ranges of

changes in B near resonance„
Id
Co o

If — << 1? the main difference between the quantum and classical
^LO

regions is that in the former case the oscillations are part of the

main effect while in the latter they are small quantum corrections.

The studies by Gurevich and Firsov for the oscillations in the

classical and the quantum regions were for the case of scattering by

optical phonons in ionic crystals, but since this effect is caused by

the presence of a limiting phonon frequency, it is independent of the

details of the electron-phonon interaction and therefore it can be

observed in the atomic semiconductors as well, such as germanium

[actually been observed in n an.d P type Ge Eaves et al (1970)],

1.1,2 Degenerate semiconductors

In quantum mechanics when different states of motion correspond

to the same energy level, the states are said to be degenerate. If

E » kT the Fermi-Dirac distribution function in state i at the
r

absolute temperature T

"i " (E.-E_)7kT [1~20]
e 1 1 +1

will be = 1 for E. < E_
l F

and =0 for E, > E„
l F

The gas is said to be degenerate, and only the particles in the range

of energy levels of width kT about E are available for conduction.F
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A degenerate semiconductor is a semiconductor in which the number

of electrons in the conduction band is so high that they must be

described by Fermi-Dirac statistics, as in a metalo

Efros (1962) considered this case, and he clarified the qualitative

picture of the phenomena by a very simple consideration.

The contribution to the transverse electrical conductivity from the

transition of an electron from a state with energy E to a state with

energy E + hid is proportional to the density of initial and finalLjU

s tates ,

The density of states in a magnetic field becomes infinite if the

longitudinal component of momentum P^ (the magnetic field is directed
along the z-axis) becomes zero, i.e.

E = hid (n + 5) [1-21]
c

, eB
where to = —3- ,

c m*

If now or. _ is a multiple of id ,LO r c

id _ = Nid [1-22]
Lu C

where N is an integer

then in a finite state may also equal zero and its energy

E + hid = hid (n' + *[) [1-23]
LjU C

where n' = n + N,

In this case for a certain value of energy E the density of initial

and final states becomes zero, as a consequence of which the electrical

conductivity diverges logarithmically.

Thus oscillations periodic in — arise with a periodB

A(~) = [1-24]
B m^td -

tiVJ

Again two cases are examined here the classical and the quantum limit.
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1,1,2a Scattering by optical phonons in classical region

Here the classical region is defined by the inequality

E > nco „ [1-25]F c

This means that many quantum levels will be occupied. In fact this

region can show oscillatory effects like the Shubnikov de Haas effect

(Putley 1960) ,

A quasi-classical region will be when

E_ >> hoo + hu)T„ o [1-26]F c LO

For this condition Efros considered semiconductors with an isotropic

and quadratic spectrum of electrons and again the criterion to t » 1

satisfied, and for a magnetic field directed along the z direction.

He found that the oscillatory part of the conductivity when J i B

i,e, transverse conductivity is

e2 e m*A to

a°SC = - - - In 6(1-5) [1-2 7]
XX 4ir3h3 kT to

c

Thus, a washing-out of the electrical conductivity is observed each

time when ooT becomes an integral multiple of to , And the mo no tonicLO c

part of the electrical conductivity in this region in the limiting case

>> ht°L0 18 [-htoLO/kT]
„ e' e toT m* E_, A,1 i°F [1-28]

XX 3 ,4 2 , _ 3h to kT it
c

where in both equations [1-27] and [1-28]

Z 6 Y
A = 4rr2TlC —) 7-- according to Davydov

a MatoT

2
. 2

LO

or

and Shushkevitch

(1940)

A = 27Thco e2 (i- - i-) according to Krivoglaz
e°o £o and Pekar (1957)
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Z: is the ionic charge

a; distance between neighbouring ions

y: a dimensionless polarizability of the ion

M: the mass of a unit cell

e and e are the dynamic and static permittivities i,e, dielectric
oo o

constant.

If we combine the oscillatory and the monotonic part we will get for

the total conductivity (transverse)

» hco
a = am [1 + ~ In 6(1-5)] [1-29]

XX xxL 8 E„F
0)

where = 1 + 5
03

C

6 varies between zero to unity.

Just as for the Shubnikov-de Haas oscillations, the monotonic term

ef
differs from the oscillatory term by a factor of z— , The essentialy J no)

c

difference is that this equation contains an exponential factor
"huJL0

kT
e due to scattering by optical phonons,

lol02b Scattering by optical phonons in quantum limit

In this region

E < ho) [1-30]F c

This means that only the lowest level will be occupied, Efros found

that
"na)L0

2 kT
a " 6 6 2 G (E U [1-31]
xx , ^ s42 , m on r n

( 2tt) h a) kT n
c

where

6 = 2 In[/i * - | + JE * + ^ (n+i)] ~ In[±(n - ^-)] [1-32]n r y i 03 03
c c

Now if o)T . = No3L0 c

4> diverges logarithmically. As a consequence oscillations of trans¬

verse electrical conductivity periodic in -i- also arise in this region,
D



1-13

V is normalised volume.

The function G (E„) will not effect the oscillation,
on F

For the case ur ^ >> to the oscillation becomes indiscernible and soLO c

it is not of interest to us,

1,1,3 Alternative derivations of the theory

After the prediction of the magnetophonon effect by Gurevich and

Firsov (1961) a large amount of experimental and theoretical work was

carried out. We will outline some of the recent theoretical work

which came to the same conclusion of Gurevich and Firsov (1961),

Efros (1962) and Gurevich et al (1963)„

Yasevichyate (1974) based his analysis for the scattering by

optical phonons on the quantum transport equation derived by Levinson

under the assumption that the electron-phonon coupling is weak, in a

homogeneous case and for a weak electric field E, In the classical

magnetic field Yasevichyate reached the same conclusion that the

transverse conductivity consists of the monotonic part and oscillatory

correction which is small,

Polovinkin and Skok (1974) solved the linearized Boltzmann trans¬

port equation for the inelastic scattering of electrons by optical

phonons in a classical magnetic field, with an isotropic parabolic

band, in the strong field approximation w t » 1, Polovinkin and Skok

derived an equation for the transverse resistivity which is in agree¬

ment with the classical limit of the result obtained by Gurevich and

Firsov (1961) in the limiting case of low T i,e» kT << "ho^Q"
They also derived an equation which coincided with the classical

<S>

limit of the quantum calculation of Efros (1962),
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CHAPTER II

2,1 Qualitative physical explanation of the magnetophonon oscillations

2,1,1 Classical picture of the transverse conductivity in magnetic field

According to the classical mechanics, electrons in crossed electric

and magnetic fields describe their orbital motion with the cyclotron

frequency u)

0)
eB

m* [2-1]

m* is the effective mass which depends on the magnetic field

orientation in the case of an isotropic carrier spectrum.

Simultaneously the centres of the circular orbits drift in the direction

of the y-axis (if B in z-direotion3 and E in x-direotiori) with

E

This drift is responsible for Hall conductivity.

[2-2]

lie
rr

j.® 1
2 L

/ 1

helical path of electrons
drifting to y direction

xy

ne

B [2-3]

The centre of cyclotron circles are not displaced along the x-axis.

We may note that, the longitudinal electric field E^ has to be
precisely the same with or without a magnetic field. This result is

no longer correct when the relaxation time t is not constant, or the

energy-band structure becomes anisotropic. It is then found that the

longitudinal electric field will also depend upon the magnetic field
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and ordinarily will increase, owing to the interaction with scatterers

([phonons3 impurities3 ete0)0 This extra resistance arising from the

addition of a magnetic field is called the magnetoconductivity or

magnetoresistivity„ Theoretically, calculating the conductivity or

the current density is more convenient than the resistivity which is

the experimentally measured parameter,, The relation between the two

is made clear in section (1.1,1),

2,1,2 Landau sub-bands

The interaction with the scatterers is defined by the time constant

t. In every instance the most startling and precise results are

obtained when the time constant (or relaxation time) of the charge

carriers is long compared to the cyclotron period. We shall therefore,

be principally concerned with this high field region, defined by the

condition

eB
a) t = -r t » 1

c m*

or [2-4]

pB >> 1

Consider a non-degenerate semiconductor, whose valence and conduction

bands are parabolic and spherically symmetric in k space.

In the absence of a magnetic field the energies in the two bands

are (Blatt 1968) and (Blakemore 1970)

vk) = Ec+ •& K + V + kz2)
J [2-5]

E (k) = E - (k 2 + k 2 + k 2)
p v 2m x y z

p

However, we know that the application of a magnetic field Bwill

affect the motion of each electron in the x-y plane, while leaving

motion along the z-direction undisturbed. The Lorentz force converts

the electron motion into the sum of linear motion along the z-direction

and cyclotron motion in the x-y plane. Thus an electron follows a

helical path.
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Landau described this by showing that the Hamiltonian operator

of the Schr8dinger equation has two additional terms when a magnetic

field is present in the z direction,. The motion in the plane

perpendicular to H is quantized in a magnetic sub-band or a Landau

levelf while the motion remains continuous along H, The energies

are now

;2 1. 2h k
E (k , n ) = E +ilu)(n + i) +

n z c c c c 2m
n

ft2 k 2
[2-6]

E (k , n ) = E - Tim (n + ]) - —x
p z v v v v 2m

P

This situation, which is illustrated in Fig0 (2-1) is startingly

different from the uniform distribution of the electron states in

k~space, We can see that the conduction bands are split into a

series of one-dimensional sub-bands, each sub-band identified by the

orbital quantum number n, which can take on only integral values.

The minimum energy of the lowest, n^ = o sub-band in the conduction
band is raised to 2"nio and no longer zero. The sub-bands are

c

separated by constant energy differences hoo^ and this separation is
independent of the other quantum number k „ Quantization of the

electron energy occurs not only for the simple dispersion law

considered, but also in the more general case when the electrons

undergo a finite motion over a closed trajectory in a plane perpen¬

dicular to the magnetic field.

The condition (2,4) means that in a strong magnetic field the

spacing between Landau levels is much greater than the broadening of

the levels that arises from oscillations. It is obvious that the

fulfillment of this condition is necessary for the observation of all

the effects associated with the quantization of the electron spectrum.

In real crystals spatial inhomogeneities and the finite relaxation

time will limit the definition of these states.
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The inhomogeneity broadening may be reduced by choosing suitable

sampleso The relaxation broadening, at a given temperature, generally

can not be reduced„ Hence it is necessary to satisfy the inequality

(2-4) for the magnetophonon oscillation,, The Landau levels do not

represent all of the final states available for the excitation in the

crystal. There exist localized states near impurities and imperfections

and also excitation states arising from the Coulomb attraction between a

locally excited hole-electron pair. All these effects will screen the

magnetophonon oscillation e.g., F'irsov and Gurevich (1962) found that the

electron interaction decreased the probability of the transitions.

2.1.3 Density of states in a magnetic field

Since according to equation [2-6], the electron energy depends only

on the two quantum numbers n and kz, each Landau sub-band is degenerate,
the degeneracy being proportional to the magnetic field.

The magnetic field, as it were, collects states distributed uni¬

formly over the band into discrete sub-bands. As a consequence of

this, the density of states is also changed substantially

A(E) - (™)^ -i— Z (E-E )~* [2-7]
h2 2ttLj n

where

E = (n+£) hoi [2™8]
n * c

hi
L = (—5-)2 which is called the magneticeB

length.

The density of states Fig, (2-2) becomes infinite at the bottom of

each Landau sub-band i.e. for P = 0, (usually energy levels withz

P =0 have been called simply Landau levels) „
z

2.1.4 Lattice vibration

The ions in a crystal are not stationary, but are, in fact

vibrating about their equilibrium positions, 'The system behaves like

an array of particles joined by harmonic springs. The classical
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motion of such a system is the well known one of small oscillations

and it may be described in terms of normal modes, i<,e„ independent

motions of characteristic frequency,. The problem of finding the

normal modes and characteristic frequencies of a crystal is a

classical one„ The quantum mechanical description of the system is

quite straightforward,, Each oscillator will have its energy quantised

with energy levels equally spaced at (n+|)

n is the occupation number specified as a positive integer or zero

for each type of oscillator,, Even in the lowest energy state allowed

by quantum mechanics (n=o), the energy of each oscillator is not zero

but £hu)„

It is convenient to associate the concepts of a particle which we

call a phonon with the quanta of vibrational energy,, The situation

is entirely analogous with the electromagnetic waves where the quanta

are called photons„

If the oscillator passes from its nth to its (n+l)th state in a

transition we say a phonon has been created (or emitted) in the process,

and if passing from the nth to the (n-1)th state a phonon has been

destroyed (or absorbed)„

A lattice vibration is described by its frequency a) and its wave

vector q, where the allowed values of q are in the first Brillouin

zone o

The variation of a) with q i<,e„ the relation

u = u)(q) , [2-9]

is called the phonon dispersion relatione

The phonon dispersion relation Fig„ (2-3) has two branches, one called

the acoustical branch because it has the typical characteristics of a

sound wave, and the other the optical branch because of the similarity

this frequency has to that of infrared lighto As can be seen from

the Fig„ (2-3) the long wavelength optical modes [which occupy the
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region of q-space close to the origin] are different from that of the

acoustical modes in that they have a limiting frequency, and their

group velocity (——•) -* 0.dk opt

In general, a wave in a three-dimensional solid has both

longitudinal and transverse character in both branches or modes.

For the acoustic branch transverse and longitudinal

0) (q) ■+ 0 as q -*■ 0

and the optical branch transverse and longitudinal

m(q) -* constant as q 0

Magnetophonon resistance oscillations occur with semiconducting

meterials when the free carrier mobility is limited by scattering

from the longitudinal polar optical modes. This is the dominant

scattering mechanism in most compound semiconductors over a wide

range of temperature.

r-"

\

I

\

J
2.

y'.f Jr-
/£•

/
t

i

- -A/lai 9 <| K/2A
Fig„ 2-3 Dispersion relationship for the propagation of a longitudinal

wave in a linear diatomic lattice,



2-7

K=0

Fig.2—1 . Energy bands for a simple semiconductor for H = 0 and H > 0

Fig2-2 , Density of state in a simple semiconductor for H = 0 and H > 0

*
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In the ionic crystal (tike Pbs) there is a large splitting

between the transverse and longitudinal optic branches. This

apparently persists up to q = o, This splitting is due to the

Coulomb forces and is related to the dielectric constant (Elliott

1974) „

2olo5 The Magnetophonon Resonance Oscillation (MPRO)

Physically the oscillations under consideration are caused by

the peculiar course of the curve of density of electronic states in

a magnetic field Fig, (2-2) [Gurevich et al 1963],

When E ftwc(n+^) in equation [2-7] from the side of larger
values, the density of states forms a sharp peak, approaching infinity

like

~ [2-10]
/E - fieo (n+|)

c

Oscillation maxima are observed when transitions between two

such peaks with phonon absorption or emission are possible. As a

result of such [represented by an arrow 1 in Fig, (2-4)], an electron

forms a state with energy E close to iiw (n+]), i,e, with a very low

value of (section 2„102) and with another discrete quantum number

n' = n ± M [2-11]

the absorbed or emitted phonon having the energy ^^0°
Such transitions are possible only if is close to Mgoc

o)Tr. = Ma) [2-12]IjO C

M is an integer 1,2,3 —— etc.

Knowing that the magnetophonon oscillations are due to the discontin¬

uous character of the density of states in its energy dependence.

The oscillation maxima of p (B) should occur when electron
xx

transitions between two Landau levels with absorption or emission of



E

Fig.2-5-

n=3

Densityofstate
Fjg2-4•
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an optical phonon huj are possible,,
JjU

For the first resonance M = 1 the possible transitions are shown

in Figo (2-5) by the arrow 1, in general, for the oscillating effect

to appear as a non-monotonic variation,, Variation of some of the

quantities characterising both the initial and final states is

necessaryo

Therefore, transition of, e„go the type 2 in Fig„ (2-5) make no

contribution to the oscillating part p (B), since for these only the
XX

density of final states has a singularity,,

Such transitions, and also transitions of the type 4, produce the

non-oscillating "background" of the function p (B)„ In addition
XX

horizontal transitions of the type 3 and 5 in Fig„ (2-5), associated

with elastic scattering by acoustic phonons and impurities, make a

contribution to the non-oscillating "background" of the magneto-

resistance (Dingle 1952)„

Since, in the lowest approximation in the interaction, the trans¬

verse conductivity a (B) is proportional to the scattering probability,
XX

the different scattering mechanisms do not interfere, i0eo they make

an additive contribution to a , [Parfenev et al 19741
xx

opt . ela r o 1 oi
a = a r + a L 2—13 J

XX XX XX

where a°^t is the non-monotonic part due to scattering of electrons
xx

by optical phonons, [1-14] and [1-27]
0 2. ct 0 « 0 o o o

and cr is a certain smooth function of the magnetic field, associated
XX

with the elastic scattering [1-12] and [1-28]„

A theoretical estimation of the conductivity a has been made by
XX

Gurevich et al (1963) depending on the data by Gurevich and Firsov

(1961), and Efros (1962) section [1-1-1] and [1-1-2] respectively,

which in case of
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1„ Boltzmann statistics [non-degenerate semiconductors]

hto <5
for « 1

B I U
CT = 0 (1 + | J — ^xx xx V CO ?

i— u

fico

M (2"14]
c

c t / 2kT,

g
where crxx is the monotonic part of the conductivity

B Aane2 /^LO. h . ^LO,
axx ■ (—' kx 6xp<- Tx-' [2"151

c

2o Fermi statistics [degenerate semiconductorsJ

f°r E >> hoj >> fuo
F LO c

F 3 1
a = a (1 + ~ ~ In -) [2-16]

xx xx 8 E„ <s L
2 E_ 0),

2

F
_ 4ae F , LO,

axx 2_ kT to N
Jit -n c

2m* a) hat
_L£ exp(- [2-17]

a is a dimensionless constant which is characterises the electron-

optical phonon coupling (polaron effect)

= Jo?™" C— ~ ~) [2-18]n M 2ftojT . e eLO c°° o

s = jM - , (M = 1 „2,—) [2-19]
^LO
to

c

We note that PXX(B) (transverse magnetoresistivity) is usually
measured in experiments„ The oscillating parts of the p and a

xx xx

are related by equation [1-8]

a
xx

pxx
ax y

The oscillations in p are periodic in 1/B, with the period
xx

a(¥} = [2~2°]jJ m* to _

lu

The period of the oscillations depends on the effective electron

mass m* and on the limiting frequency toTn of the optical phonons«IjU
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These oscillations are called magnetophonon (MP) oscillations. The

above formulae given are exact for the case of a cubic crystal and an

isotropic carrier spectrum^ in all other cases they are merely order

of magnitude estimates.

2.2 Amplitudes and periods of the magnetophonon oscillations of a__
~ ■ " ■ XX

The expression of a
^ in section (2-1-5), equations [2-14] -

[2-16] leads to infinite values of the oscillation maxima.

From a physical point of view, it is obvious that there always

exists some suppression mechanism limiting the height of the oscillation

peak. Among the possible mechanisms that suppress the amplitude of

magnetophonon oscillations are:

1. Broadening of the Landau levels as a result of elastic collisions,

which leads to smoothing of the singularities in the density of

states. This is a very decisive factor in conditions when elastic

scattering is dominant (impurity for example) (Barker 1972).

2. Broadening due to electron-electron interaction decreases the

probability of transitions [Firsov and Gurevich 1962]. The role

of the Coulomb interaction can become noticeable only at

sufficiently high electron concentration.

3. The strong interaction of an electron with polar phonon leads to

formation of a polaron, for a << 1, the energy of the polaron is

equal to [FrBlich 1963], a defined in equation [2-18]

E * TS (1 " f> " oltaL0 I2"21'

It can be seen from equation [2-21], that the polaron effect leads

to increase of the effective electron mass and lowering the energy

by

4. Broadening of the Landau level n - 1 Fig. C2-5) also leads to the

suppression of the magnetophonon maximum in the transverse

conductivity in the region of magnetic field a) = oj .
C LjU
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Dworin (1965) shows that, together with the suppression of the

magnetophonon peak there occurs a small shift in the positions of the

magnetophonon maxima in the direction of higher fields relative to the

resonance values {the polaron shift), the renormalized mass for

0)c = is greater than the polaron mass

m _ = m(l + £) [2-22]pol 6

mp02_: is the electron-polaron effective mass
m: is the bare electron effective mass determined from equation [2-21]

(Parfenev et al 1974),

A search for a polaron contribution to the magnetophonon mass was

made with the relatively polar material n-CdTe [Hears et al 1968]„

Increase of the magnetophonon mass over the cyclotron resonance mass

» » QL » »

was discovered equivalent to an y polaron contribution

"kPR = mcycl (1 * 3^ [2-23]
A correction for the non-parabolicity of the CdTe conduction band,

reduces the polaron contribution to the magnetophonon mass to [Harper

et al 1973]

■«PR * %cl (1 * °-8 7> t2"24]
The quantitative theoretical explanation for this enhancement of the

polaron effect by the magnetic field remains an interesting but

unresolved problem in quantum transport [Hears et al 1968]„

Palmer (1971) has made a theoretical investigation to show that

the correction which must be applied to the magnetophonon mass derived

from the M = 1 peak to obtain the low frequency is

■VR ■ "VI (1 + °-73 §> [2"25]
Eaves et al (1971) used Palmer's theoretical work, The optical

polaron correction which must be applied to the observed magneto-
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phonon mass to obtain the "bare" mass is

mMPR " "bare W + °"83 [2"26'

5, The amplitude of the magnetophonon oscillation of p also has a
XX

distinctive temperature dependence„

At a temperature much less than the excitation temperature of the
^LO „ „ » „

optical phonons [0 = -—], the main contribution to the conductivity

is made by the elastic scattering processes.

An increase in temperature leads to an increase in the role of

scattering of electrons by optical phcnons, as a result of which the

amplitude of the magnetophonon oscillation also increases, However,

at temperatures comparable with the excitation temperature of phonons,

thermal broadening of the Landau levels, i,e, thermal spread of the

electrons over the Landau levels, becomes important.

The temperature dependence of the amplitude of the oscillation is

non-mono tonic. There exists a certain optimal temperature at which

the amplitude of the magnetophonon oscillation is a maximum, this

temperature which is less than the excitation temperature of phonons

depends on the contribution of the elastic scattering processes to the

total conductivity,

2,3 Conditions for observation of the magnetophonon effect

1, The requirement common to all quantum magnctorcoiotancc experiments

is that the Landau states be sharp and well defined; that is

u> r » 1
c

2, Magnetophonon effect should be observed in these semiconductors

and at those concentrations and characteristic energies of carriers

at which the non-parabolic character is unimportant, or else if the

latter is pronounced, one must try to reach the quantum limit which is
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fito » kT in Boltzmann statistics
c

or

hco > E_ in Fermi statistics„
c F

3„ If the predominant scattering mechanism is optical phonons it

will be large enough for the oscillation to be observed experimentally„

40 If other scattering mechanisms predominate! one must bear in mind

that when condition to x >> 1 holds the contribution of all various
c

mechanism to a are independent and additive, equation [2-13], but
XX

will lower the probability of seeing the effect,,

5o At sufficiently high electron concentration, particularly, as a

rule, when E > with Fermi statistics, the main contribution to
r LU

the "background" comes from scattering by ionized impurities„ This

scattering, like scattering by acoustic vibrations, is elastic

[Shubnikov-de Haas oscillations may be associated with it at low

temperatures ] „

6„ The relative importance of scattering of optical phonons increases

with decreasing concentration of impurities [and hence of conduction

electrons], and increasing temperature [lower than 0 = ———]„
D rC

2„4 Calculation of Line shape and amplitude of the magnetophonon effect

Intensive investigations have been carried out on n~type GaAs

[Stradling and Wood 1968] inSb [Stradling and Wood 19683 Stradling

et al 1970] and InP [Eaves et al 1971] to determine the dependence of

the amplitude of the peaks on the magnetic fields, temperature and

impurity contents of the samples„ They show that the oscillatory

terms are well represented by the empirical relation

osc „

Pyv 0 LO~SL.~ exp (~y —) cos (■■ ~ ---■) [2-27]
p 0) to

o c c

where y is a constant which depends on the sample mobility and temperature,
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A relation similar to [2-27] was obtained by Barker (1972) who

considered Landau-level broadening associated with multiple scattering

of slow electrons with = 0 by impurity centres. His formula for

the oscillating part of the transverse magnetoresistance is

« osc
AP 00 i Y^T n n

xx y 1 / LU\ LO. r o o q l= 2 — exp (-r ) cos (2iTr ) [2-28J
p. , r co coo r=l c c

The quantity y, which determines the amplitude of the magnetophonon

peak depends on the coupling constant a and on the scattering ampli¬

tude at the impurity centre, and does not depend on the magnetic field.

According to Barker the broadening due to interaction of the

electrons with impurity centres is the determining factor of n-GaAs„
«• / a <"OSC •Gurevich et al (1962) estimate the ratio a to the magnitude

XX

0 l sl • • »

of the conductivity a, although their expression describes the

general form of the temperature dependence of the magnetophonon

oscillations but it was found by Stradling and Wood (1968) that it

gives a poor fit to the observed variation with magnetic field and

sample mobility. Gurevich et al relations are:

1. For Boltzmann statistics at hw << kT
c

'xx
_ , h,'i.O , h-"L0 V2 „H ,kT . „„,

a aexp(- "ET5 'Trr' — <5S> [2"29J
O C

y is the carrier mobility at H = 0.

The power n is determined by the scattering mechanism,

n = 0 for scattering by impurity ions

n = 1 for scattering by acoustic phonons

n = 2 for scattering by acoustic phonons and non-ionized impurities.

2. For Fermi statistics at hw < E
c F

ct°SC hm „ HUL_ 3/2
XX

_ , LO, LO yH , LO. ro

5 ~ a «*P(" -j^-) -e- — C-j—) 12-30]
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2o5 Magnetophonon and Shubnikov-de Haas oscillations

With any elastic scattering mechanism, in the case of Fermi

statistics another type of transverse-magnetoresistivity oscillations

with peaks of logarithmic form ~ called Shubnikov-de Haas oscillations -

may be observed. In this case the densities of the initial and final

states increase sharply simultaneously when the Fermi level approaches

the value ftcuc(n+2), The period of such oscillations is

A(I) = ^e (3lT3n)-2/3 [2-31]

In the magnetophonon oscillations, scattering may be markedly inelastic

if fim >> kT, and then all electrons in the energy interval fromLU

E - ttmT n to E + ftui take part in creating the effect. As noted
r LU r LO

earlier the densities of the initial and final states increase sharply

simultaneously in this case if ui_ „ is close to Mm and the oscillationLO c

period equal to

* 3^ [2-32]
We shall consider here those characteristic features of magnetophonon

oscillations which distinguish them from Shubnikov-de Haas oscillationst

1, Unlike the period of Shubnikov-de Haas oscillations the magnitude

of the period of magnetophonon oscillation does not depend on the

electron concentration,

2, The two types of oscillations should have fundamentally different

temperature dependence.

The SH oscillations appear only at sufficiently low temperature

kT « and increase on cooling,

while MP oscillations can appear only, at not too low temperature,

when the optical phonons are sufficiently excited,

when ftm > kT the amplitude of MP is proportional to exp(- -p=r-) » i,e,■L/VJ J-

it increases exponentially with temperature. Owing to this the MP

should as a rule be observed at substantially higher temperature than
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SH oscillations,,

3, The MP oscillations can occur either with Boltzmann or Fermi

statistics, where as SH oscillations can occur only with Fermi statis¬

tics o

4„ With Fermi statistics the MP can occur even at the ultra-quantum

limit E_ < ftio where SH oscillations are impossible,,F c LCr r

2,6 Summary

A theoretical prediction of a new type of oscillation of the

transverse magnetoresistance —, [Gureviah and Firsov 1962j section
po

[1-1], which is due to the inelastic scattering of carriers, in

particular scattering with the longitudinal optical phonons has been

detected in various semiconductors [Harper et at 1973 and Stradling

and Wood 1968s Parfenev et at 19743 for early literature]* The

nature of this oscillation can be understood as follows, section [2-1],

In a very strong magnetic field to r » 1 when "hcoc > the inter¬
action of electrons are relatively weak, on reduction of the field

intensity = ^lo* t^ie Pr°bability of scattering on the optical
phonons increases sharply and the component of a becomes greater,

XX

On further reduction of the field ilu) < ftco. _ i.e. we move away
c LO

from the resonance condition the inelastic interaction with optical

phonons periodically decrease and increase on each approach to resonance

= 2hto , 3hw , 4hoj — etcLO cs c' c

and the resonance condition will be

oi - Mu M = 1,2,3 —LO c

M is an integer. Because it does not contain the quantum constant h

this oscillation should be also observed in the classical region

section [1-1] [Shalyt et al 1963]*
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The oscillatory correction is difficult to detect not only because

it is small but also because the distance between the individual Landau

levels are small in classical magnetic field.

So fulfillment of the condition 10 x » 1 or what amounts to the
c

a
o XX o

same thing yB >> 1, — << 1, equation [1-9], is required to observe
ayy

the oscillations which are periodic in 1/B with a period

a (~)B m*u>L0
This effect has been given the name of magnetophonon resonance

since it is due to inelastic resonance scattering of electrons by

phonons of a definite frequency; in particular by optical phonons

whose dispersion can be neglected,

Magnetophonon resonance is the first example known to science of

an internal resonance in a solid i„e, of a resonance in which internal

vibrations of the solid, e„g, optical phonons are the perturbing agent

and it differs in this way from external resonance [cyalotron3-— etc]

in which the perturbing agent is an external oscillating electromagnetic

fie Id,

The experimental study of these oscillations is of interest in

the first place, because it enables one to investigate electron inter¬

action with optical phonons in various semiconductors. If the

electron spectrum is known it enables one to find the limiting phonon

frequency; if the electron spectrum is unknown and the limiting phonon

frequency is known, this effect can be used to study the electron

spectrum and in particular the band structure parameters. The

effective masses obtained by this method have been determined with

high accuracy comparable with the accuracy of optical and magneto-

optical [cyclotron r-esonanae] methods.

So we decided to study this phenomena in lead sulphide semi¬

conductors, in order that we can obtain a fresh value of the effective

mass,
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CHAPTER III

3o Lead sulphide semiconductor

PbS is one of the semiconductors which are often referred

to collectively as the lead sulphide group or the lead salts or lead

chalcogenideso They are extremely interesting semiconductors and

for more than twenty years, these solids have been the subject of

considerable research effort,, due in part to the technological

importance of these materials as detectors of infrared radiation.

The lead sulphide group exhibits properties which are unusual and

possibly unique, relative to other semiconductors„ One of these is
dE

that the temperature coefficient of the minimum energy gap Eq is
positive while all other elemental or binary compound semiconductors

dE
exhibit negative values of ,

Also the static dielectric constants are unusually large when

compared with values observed for other semiconductors,

3.1 Crystal lattice

PbS crystallizes in the rock-salt crystal structure, the funda¬

mental space lattice (Bravais lattice) is face-centred cubic. The

crystal structure is shown schematically in Fig, [3-1], The lattice

constant a at approximately 300°K is 5,9362 X,

3.2 The Brilloum zone

The reciprocal lattice of the face-centred cubic lattice is body-

centred cubic. The first Brillouin zone for the face-centred cubic

lattice is the truncated octahedron shown in Fig, [3-2] for an electron

of Bloch wave function

exp[i(k„r)] [3-1]

k is the electron wave vector.

Fig, [3-2] shows several special points and lines exhibiting the

symmetry properties,
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3.3 Crystal Bonding and Tonicity

PbS is a polar semiconductor, by which is meant that the inter¬

atomic bonds are predominantly ionic in character [see Valven (1973),

for earlier literature'] „ Additional information on ionicity of PbS

is obtained from a calculation [Datven 1971] of the eleetron-optical-

polaron coupling constant a for PbS using the weak-coupling approxi¬

mation,, The value of a at 77°K = 0,33, and it is large relative to

the values of III-V compounds. The calculated value of a for PbS is

consistent with the strongly ionic character inferred from its rock-

salt crystal structure,

3.4 Phonon Spectra

The phonon dispersion relation m = co(q) may be studied experi¬

mentally using inelastic scattering data, or from infrared absorption

(or reflection) spectra, from Raman scattering spectra and from

electron tunnelling data, Phonon dispersion curves derived from

inelastic neutron scattering data have been reported for PbS at 296°K

[Elcombe 1967]. Information about the frequencies of the q = o

LO phonons in PbS has also been obtained from electron tunnelling data

at 4°K [Hall and Raoette 1961], Table [3-1] gives LO phonon frequencies

derived from these references.

Table [3-1]

wave

vector

coordinate

^

special
point of

B„ Z
Temp°K L

lo
meV

12

"lox1°
c/s

error references

0,0,0 r 296 25,4 38,64 ±0,15 Elcombe (1967)

4,2 26,3 39,95 ±0,4 Hall and
Racette (1961)

0,0,1 X 296 11,45 17.40 ±,05 Elcombe (1967)

1 1 !
2 > 2 ? 2 l 296 29,48 44,799 ±0,15 Elcombe (196 7)
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3o5 Band Structure

One of the most interesting aspects of research on the lead salts

in the last decade has been the fruitful interaction of experiment and

theory,, During this period, the calculation of the band structure of

PbS, has been an especially important part of the study of these semi¬

conductors o

Several band structure calculations of these compounds are

available in the literature,, Dalven (1973) provides a summary and

references to earlier work using augmented~plane-wave (APW) method

[Ratii 1968], the orthogonalized-plane-wave (OPW) method [Herman et at

1968], the empirical pseudopotential method (EPM) [Lin et at 1966] and

[Kohn et at 1973]-— etc, all show the valence band maximum and the

conduction band minimum at the L point in the Brillouin zone i„e, a

minimum direct gap at L point„ At 77°K the energy gap is

0,307 ± 0,003 eV calculated by Mitchell et al (1964) and there is a

massive experimental evidence supporting this conclusion like magneto-

resistance measurements [Attgaier 1961], de Haas-van Alphen studies

[Stites et at 1962j, Peizoresistance measurements [Fintayson and

Stewart 1966]-— etc.

It thus appears quite well established that the energy gap in

PbS is direct at the L point, the experimental studies [Attgaier3

Fintayson] also delineated the constant energy surfaces near the L

point. The surfaces of constant energy and thus the Fermi surface

for both electrons and holes are prolate spheroids of revolution.

The major axis of the spheroid is a [111] direction and its

centre is at the L point as shown in Fig, [3-3] within the first

Brillouin zone there are eight half-spheroids, or, equivalently,

four complete spheroidal constant energy surfaces.

Spheroidal [or ettipsoidat] is a good approximation to the Fermi

surface only for low carrier concentrations i„e,, for wave vectors

near the band edges.
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The fact that the surfaces of constant energy are non-ellipsoidal

for high carrier concentrations implies that the energy bands are non-

parabolic at wave vectors away from the band edges [Dalven 1973],

By non-parabolic is meant that the energy is no longer a simple quad¬

ratic function of k„

The non-parabolicity of the energy bands in PbS has been

investigated experimentally by an analysis of the thermoelectric

power in a strong magnetic field [Ravioh 1971] » Then the effective

mass and non-parabolicity of both bands, within the framework of

K-P theory, are defined by the interaction of electron and hole bands

only„ The energy dispersion law is of the form

This is a modified Kane model [Kane 1956]„

3o6 Scattering Mechanisms

The mobility of electrons and holes is a measure of their

velocity of drift in a unit electric field,, It is a useful quantity

for studying interactions of the moving carriers with the lattice

since the temperature dependence of mobility reveals the nature of

the scattering mechanisms present in the crystal„

The scattering of electrons or holes by the acoustical vibrational
-3/2

modes of the lattice leads to a T mobility law [Soanlon 1959] ,

whereas scattering by ionized impurities in the lattice is associated
3/2

with a T law [Conwell and Weisskopf 1950]„

Scattering by the optical vibrational modes of the lattice leads

to an expression for the mobility which varies exponentially with

temperature [Petritz and Saan'lon 1955] s [Howarth and Sondheimer 1953J,

and [Davydov and Shushkevitch 1940],

Defects, such as dislocations may also scatter electrons and

holes0 Dislocations may trap electrons, holes, or ions and behave

h2 kx2 h2 kjj
e (1 +

e
g

[3-2]2m * 2iV
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Rock salt (NaCI) crystal structure (schematic). The lattice constant of the
conventional cubic unit cell is denoted by a. The unit vectors v, y, £ in the three cubic
directions arc also shown.

Fig (3-1)

First Brillouin zone of the face-centered cubic lattice.

Brillouin zone of the lead salts showing the eight [1 I l]-dircctcd hemi-
sphcroidal surfaces of constant energy which contain the carriers (cither electrons or

holes). [T. E. Thompson el el., Phys. Rev. B 4, 518 (1971).]

Fig (3-3)

Fig (3-2)
LEAD SULFIDE

Band structure of PbS calculated by the orthogonalized plane wave method.
[F. Herman cl al., ]. Rhys. (Paris) 29, C4-62 (196$).]



3-6

like charged lines. These lines will be surrounded by cylindrical

regions of opposite charge [Scccnlon 1959] „ Under these conditions

the dislocation can have a relatively large effect in reducing the

mobility, particularly at low temperature.

The behaviour of mobility has been approximated by the investi¬

gations, Putley (1952), Finlayson and Greig (1956), and Petritz and

Scanlon (1955), by the formula

- ■ "o T~°
where n lies between 2 and 3, n = 2,2 given by Allgaier and Scanion

(1958),

Various theories of polar scattering [Howarth and Sondheimer

1953], [Frdhlioh and Mott 1939], [Low and Fines 1955] predict a

mobility which is proportional to the quantity

~ exp(t —) - 1

0 is Debye temperature.

The early investigations of the scattering mechanism in lead

salts group were interpreted as follows, [see Revich (1968) and

Soanlon (1959) for early work]„

At a temperature higher than 100°K the interaction with

acoustical phonons is the dominant mechanism for carrier scattering

in lead salts. While at low (helium) temperatures the scattering by

the core impurity potential applies.

The interaction with optical phonons was rarely used to account

for experimental data on lead salts though some papers contain the

conclusion that the optical phonons play the appreciable role together

with acoustical phonons [see Ravich (1968) for these papers J,

Apart from that Howarth and Sondheimer (1953) discussed at length

that in a polar semiconductor the high frequency optical modes may be

at least as important as the acoustic modes in scattering the carriers
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and they point out that at low temperature it is impossible to define

a time of relaxation and hence the conventional expression for thermo¬

electric power cannot be obtained,, Their calculations lead directly

to rather complex formulae covering all ranges of temperature and

degeneracyo

Finlayson and Greig (1958) in their measurement of the thermo¬

electric power of n-type single crystals of PbS showed that the simple

theory, which considers scattering by acoustic modes only, fails to

give agreement with experiment,, The Howarth-Sondheimer theory of

optical scattering fits the experimental results fairly well, suggesting

that, over the temperature range considered, (down to liquid hydrogen)

optical modes provide the dominant scattering mechanism,,

Also Petritz and Scanlon (1955) suggested that the Howarth and

Sondheimer theory may be valid for lead salts down to liquid nitrogen

temperature„

Finlayson and Greig (1956) pointed out that the mobility varies

with the impurity concentration and that at low temperature, lattice

scattering, both acoustical and optical, is completely masked,,

Kaidanov (1968) in his measurements of the Nernst-Ettingshausen

effect, found that his values were closer to the predicted value for

the optical scattering rather than to that for the acoustic scattering,,

Recently some pronounced advances has been made in investigations of

transport phenomena and carrier scattering mechanism in lead salts.

The experimental research and theoretical treatment of a variety of

transport effects have been performed within a wide range of temperature

and carrier densities [see the Review article of Rauich 1971 part I and

XT], These show that:-

At temperature around 77°K the consideration of polar optical phonon

scattering is necessary in handling the experimental data, allowing

a reasonable correlation with the theory at concentrations of about

101 7 to 10J 8 cm"3 [the exact quantitative agreement is likely to be
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impossible because of the significant divergence of the experimental

data] o

At temperatures lower than about 10°K, the polar scattering is,

indeed switched off since polar optical phonons cannot be excited,,

At sufficiently high temperatures the non-elasticity of polar scattering

becomes evidently- negligible. Thus use is made of the relaxation time

approximation, showing that polar scattering is very important in

general and becomes dominant at carrier concentration below about

4 x 101S cm"3 o In this region the polar optical phonon scattering

makes the total mobility independent of concentration as follows from

experimental research [Eavich 1971(2)].

In the temperature range around 4°K scattering is mainly due to

impurities and defects and scattering by phonons is of no significance.

More recently Finlayson and Yau (1973) in their measurements of the

electron mobility in high electric fields show a clear-cut decision

regarding the relative importance of various scattering mechanisms.

It appears that in PbS polar optical phonons provide the main scattering

mechanism at 7 7°K in fields up to 100 V cm"' „ At higher fields

acoustic phonons play an increasing part. At present times one can

ascertain the role of optical phonons in carrier scattering expecially

at 77°K and with a carrier concentration below some critical value n
o

which is about 1,1 x 1019 cm"3 for PbS [Ravich 19712»

This provided one of the reasons for investigation of the magneto-

phonon effect in PbS,

The next important feature of the lead salts is that usually in

a sample with a significant amount of free carriers present makes a

consideration of screening effect essential.

This screening effect has direct influence on the transition

probability. Moreover, they lead to an essential dispersion of

optical modes in the long wavelength region, which is due to a large

disparity between the values of eQ and in these materials, and might
lead to a change of the longitudinal optical frequency according to

Ehrenreich (1959),
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CHAPTER IV

4. Experimental Techniques

4,1 Experimental Details

Samples of n-typePbS used in these experiments, have been selected

from natural galena blocks, They were orientated along CLOO) direction

and their average size was 6mm x 1mm x: 1mm, Etching of these samples in

thioureaic acid is necessary to rettove oxidization.

The two ends of the samples were copper plated to ensure good

electrical contact to the current leads by means of two beryllium copper

pressure contacts [ see crystal holder Fig (4-1)]. Pressure contacts

were also used for the resistivity probes.

There was no injection of carriers because of the creation of a

positive inversion layer between the metal and the n-type PbS semi¬

conductor ,

The homogeneity of these samples was checked by a proofing method

i.e. measurement of the resistance at short intervals,

The Carriers concentrations of these samples were determined by-

measuring the Hall effect at room temperature, and some of the samples

were measured at Nitrogen temperature. There was no appreciable

change of Hall Coefficient between the two temperatures. The Hall

effect measurement was carried out in positive and negative magnetic

field as we'll as positive and negative current.

An equation of the form

Vy = J{ i[Vy(+H+I) - Vy (-H+I)]-j[Vy (+H-I) -Vy (-H-I)]) [ 4-1]

was then applied to get rid of the magnetoresistance which may appear

due to an inproper alignment of the Hall voltage probes.

The Hall Coefficient is defined as R = Bz/Ey and is equal to
3ir i
—-g for nondegenerate semiconductors,
4,1.1, Crystal Holder

This was designed by the author to fit the small experimental

space for transverse anu longitudinal measurement of magnetoresistance.



4-2

The sample was mounted onto the sample holder as shown in Fig [4-1 J,

The current leads were soldered to a pair of beryllium^copper sheets

supported by a pair of nylon strips whicti could be moved to press- on to

the two ends of the sample,

The resistivity probes were made in a hook shape from beryllium copper

wire soldered to one side of a beryllium copper sheet; which in turn is

fixed by an adjustable screw for changing the contact pressure on the
ri

crystal. The otherside of the probes make a line contact with the sample,

The contactparts of the probes were cleaned and filed to make them

like a knife edge for correct measurement of the distances,

The contact pressures of the probes was made adjustable by means of

two screws to the current and two to the voltage probes. To ensure a

minimum contact resistance, the resistance was measured by an ohmmeter

and compared with the total resistance measured by the potentiometer.

Heat shrinkable sleeving was used to ensure a good contact between

the beryllium copper wire and the surface of the crystal down to low

temparature,

Close attention to the correct placement of the sample in the

magnetic field was taken into account in the design of the crystal holder.

4,1,2, Magnetic field

A superconducting solenoid immersed in the liquid He supplied a

magnetic field up to 40 Kgauss, This superconducting solenoid was

driven by a super conducting magnet power supply unit which gave up to

21 amperes, which is the maximum allowed current for the magnet, The

magnetic field current was swept with respect to time linearly by an

electromechanical sweep generator with a selection of speeds. This

provides a continuous sweep from zero to maximum current and then back to

zero again.

4,2, Method of measurement

Four different measuring techniques have been used and we shall

discuss each of them in turn.
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4,2.1 Amplified Differential Technique

The signal from the sample was fed to a Diesselhorst potentiometer

which balances the voltage at zero magnetic field. When magnetic fields

are applied the unbalanced output from the Diesselhorst is amplified by a

Keithley 149 milli-microvoltmeter and connected to two cascaded RC

differentiating net works [Stradling and Wood 1970, Stradling 1972]?

and hence the Y terminal of X-Y Recorder (0,2 mv/'cm); the X terminal of

the X-Y Recorder was supplied from a constant [O.l ohm] resistance in

series with the current leads of the magnet. Details of the electrical

connections are shown in Fig [4-2],

Constant current through the sample (10 m A) was provided by a

constant current supply built in by the author Fig [4-2].

4.2.2, Direct Differential Technique

The signal from the sample was differentiated directly by means of

two RC differentiator, without amplification, and fed to Kipp and Zonen

single channel recorder type BD8 of 0.5mv full scale[20 cms scale],

[.the circuit is similar to that shown in Fig [4-2] with the potentiometer

and Keithley removed and the X-Y recorder replaced by the more sensitive

Kipp and Zonen X-t recorder],

4.2.3, Digitally Recorded Technique

A potential measurement was made point by point on a Diesselhorst

potentiometer after amplifying the voltage by a Fluke model 845A high

impedance voltmeter. [As in Fig [k-2]with the Differentiator and the

X-Y recorder removed and the Keithley replaced by the Fluke],

4.2.4, Computerized Technique

A value was computed numerically from a digitally recorded p(B)

& B data, using a six-digit DANA digital voltmeter Model 5330.

[as in Fig [4-2] with the Differentiator and the X-Y recorder removed}

and the Keithley replaced by the Fluke for measuring the voltage of the

sample, The current of the magnet was measured by digital

voltmeter across the 0.1 ohm constant resistance],
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4.2.5. Thermometer

The temperature measurement was made by a GaAs diode thermometer which

was calibrated by the author against platinum resistance to read from 1°K

to 300°K.

4.2.6, Cryostat

Since it was necessary to have a cryostat capable of maintaining a

constant temperature over a wide range of temperatures we used a cryostat

constructed by Yau (1971). This was designed to maintain a sample at

77°K in the field of the superconducting magnet which was immersed in

liquid helium, This was modified to give a temperature range from 4°K to

250°K.

The assembly is showin in Fig [ 4-3 j. The sample chamber consists of

a vacuum jacketed stainless steel tube which fits into the inner cylinder

of the magnet, The outlet F is connected to a diffusion pump to obtain a

vacuum of better than 10 microtorr and the surfaces E of the jacket are

polished to reduce radiation,

An exchange gas (He) through a needle valve B connected to the sample

chamber, controls the quantity of the exchange gas, Below the sample holder

G and thermometer K is placed a heater P of 100 ohm connected to a power

supply, In operation exchange gas of about 3 torr is fed to the chamber

and the vacuum jacket. Then the vacuum jacket evacuated to lO*7^ torr, By

means of heater P we could change the temperature from 4,2°K up to 250°K in

steps and maintain to within 0,5°K any temperature required in this range

long enough to take a measurement.

4.3.0. Differentiator

The magnetophonon peaks are a very small fraction of the total

magnetoresistance, therefore differential techniques are employed in order

to eliminate the monotomic valuation of the resistance in recording of the

magnetophonon effect. The differentiator is a two cascaded RC network

[Stradlmg and Wood 1970, and Stradling 19 72], The response of the high-pass

RC circuit to an input voltage increasing linearly with time is now to be

considered.



C.S:Constantcurrentsupply F:Fluke B:magneticfield

X-Y/R:X-YRecorder M.P.S:MagnetPowerSupply S.G:Sweepgenerator S.R:Standardresistor
-VWWV>-1

WsAAAA-

Pot:potentiometerP:Thermometer K:KeithleŷH:Heater
<R.CsDifferentiatorP.S:Powersupply

I

O

Fiq.4-2
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E.L: electrical leads

R.P: rotary pump

B,F ,E,
q jr pi see text section 4.2.6

N.T: Nitrogen Transfer

H.T: Helium Transfer

H.P: Helium Pump

Fjg. 4-3
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The input voltage V^ = at, which is a function of time is called a ramp

or sweep voltage, Such voltage is indicated as the "input" in Fig [4-5 J,

If this voltage is applied to the circuit of Fig [4-4], the output is governed

by the equation

dVi Vo dVo
+

dt RC dt [4-2]
or

Vo dVo
a ~

RC + dt [4-3]

Equation [4-3] has the solution, for Vo = o at t-o,

Vo = aRC [1 - it/RCJ [4-4 ]

For times t which are very small in comparison with RC, we may replace the

exponential in equation [4-4 ] by a series with the result

Vo = at [1 - ~ + ...] [4-5]

The output signal falls away slightly from the input, as shown in Fig [4-5],

4. 0 - "tl Lr.—T—-—~— —© -f-r
Y

f
- - C J 1

< 0 v0
s

V

4
O-

■i

Fig, [4-4]

As a measure of the departure from linearity, let us define the transmission

error et as the difference between input and output divided by the input.

For the error at a time t - T is then

Vi - Vo _ T
et it f XT [4-6 ]

Where = '4 is the low frequency 3-dB point. If in Fig [4-4], the

"t Vi 2RC
1

2ttRC

time constant is very small in comparison with the time required for the

input signal to make an appreciable change, the circuit is called a

differentiator.
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A
8

Fig[4-5]

A, Response of a high pass RC circuit to a ramp voltage

1b.
e RC ifor -y » 1

RC
Response to a ramp voltage for —

j
<<

This name arises from the fact that under these circumstances the voltage

drop across R will be very small in comparison with the drop across C. Hence

we may consider that the total input Vi appears across C, so that the

current is determined entirely by the capacitance.

„ dViThen the current is
dt ,

Vo = RC
dVi
dt

and the output signal across R is

[4-7]

Hence the output is proportional to the derivative of the input „ For

the ramp Vi = at, the value of RC —A is otRC . This result is verified

in Fig [4-5] (b) except near the origin. The output approaches the proper

derivative value only after a time has passed corresponding to several time

constants, The error near t = o is due to the fact that in this region

the voltage across R is not negligible compared with that across C,

It is interesting to obtain a criterion for good differentiation in

terms of steady state sinusoidal analysis. If a sine wave is applied to the

circuit of Fig [4-4], the output will be a sine wave shifted by a leading

angle 0 such that
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aiRC

1 [4-8]

and the output will be proportional to sin (tut +0), In order to have

true differentiation we must obtain cos w.t. In other words, 0 must

equal 90°;this result can be obtained only if R = o or C = o, However,

if ojRC = 0.1, then 0 = 84,3°, and for some applications this may be close

enough to 90°,

If two RC coupling networks are in cascade, and if the time constants

RpC-^ and R2C2are small relative to the period of the input wave, then

this circuit performs approximately as a second-order differentiator.

The differentiator therefore suppresses the slowly varying components

of the magnetoresistance and enables the approximately sinusoidal

components to be displayed more readily, A distortion can happen in

the recording and this is because the magnet current instead of the field

is swept linearily. The time constant of the differentiator has to be

determined accurately and is dependent on the speed of the sweep, so in

order to obtain a reasonable approximation to the second derivative

the time constant of the RC network should be much less than r, the

magnetophonon oscillation period in real time at the chosen sweep rate,

To have

RC ~ 0.1 t [4-9]

is a reasonable approximation.



CHAPTER V

5, Measurements
W I "4 I i l I l 1 l " • 11 11 ■ '

5-1 InSb

We first of all started with a sample of n-type InSb of carrier

o 20 oo O 1 f"* 1
concentration 9 x 10 m J and mobility about 37 mz V. sec, of an

approximate size of 5mm X 2.5mm X 1mm,

The Fermi energy for a degenerate semiconductor at absolute zero

temperature Ep0 is defined by

EVn = (3ir2n)2/3 h2
"To " 117 2m* '

For this sample

n = 9x10^0 m 3

h = 1,054 x 10"34 J.sec,

m* = 0,0145 x 9.1085 x 10~31 Kgm at 77° K,

fSmith et al. 1962 and Palik et al, 1961J

Then

eF0 = 3-74 x 10-22 J.

KT = 1.38 x 10~23 J.deg-1 x 77 deg"1,
KT = 10,6 x 10"22 J,

Hence since KT>Ep0 this sample of InSb is non degenerate,

To examine the condition hmc > kT„

take B = lKgauss, then

_ eI5 _ coul, x 103 x 10~4 Kgm
c m* Kgm 0S^ o A

u>c = 12,1 x 10-'--'- sec-3
and hwc = 12,8 x lO"33 J,

So

hmc>KT

for fields larger than 8 Kgauss.
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5.1.1 Amplified Differential Technique

For J in (100) direction and B in (010) direction, we measured

the transverse magnetoresistance by the Digitally Recorded Technique

Section 4.2.3, at 77°K, The maxima on the transverse

magnetoresistance curve Fig [5-1] were located at R=34,17,11.3, and

8.5 Kgauss corresponding to N = 1,2,3, and 4 respectively, These

coincide very well with what has been reported by Gurevich et al

(1964) B = 34,17,11.0, and 6.5 Kgauss at 90°K, since the period and

phase of oscillation in the transverse magnetoresistance do not depend

on the temperature and carrier concentration [Gurevich et al 1964 and

Parfenev et al 1974].

5.1.2 Direct Differential Technique

Then we employed for the same sample the Direct Differential

Technique Section 4.2,2 and 4,3. We saw earlier on that this method

d^p
gives « We ensured that the two sections of the differentiator

had approximately the same RC time constant, and removed the time

delay by sweeping the magnetic field up and down,

The data of InSb derived from Fig (5-1), Fig (5-2), Fig (5-3),

Fig (5-4) and Fig (5-5) are shown in Table (5~1) within the experimental

error which arises for example from the GaAs thermometer (which we

find affects the field position by t 0,361%) and the discontinuity
i*

of the sweep which unavoidably occurs at the beginning & end of the

sweep and gives rise to an error of +3.1% at the beginning and end.

Table [5-1]

N B^ Kgauss B2Kgauss B5 Kgauss B^ Kgauss

1 32.5 35.1 35,0 34,0

2 17,4 16.9 17,5 17,0

3 11.4 11.4 11,4 11,3

4 8.4 8.6 8.8 8,5

5 6.7 6.7 7.1 -
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In Table 5-1

- Fig (5-2) 1 min, sweep

B2 - Fig (5-3) 2 min, sweep j Direct Differential Technique,
B3 - Fig (5-4) and Fig (5-5) 5 min sweep

Bd - digitally recorded Technique.

Comparing with the data of other workers we have

N Bst. 1 Bst, 2 BG

1 33,7 33,4 34,0

2 16.1 16,32 17,0 Bst.l Stradling & Wood

3 10.73 10.83 11.0 Bst,2 Stradling & Wood

4 - 8,1 8.5 BG Gurevich et al (1964

5 - 6.49 6.5
Technique,

The data of Stradling & Wood (1970) and (1968) are corrected for the

non parabolicity of the band.

The error arising in the Direct Differential Technique is mostly

from the prominent artifact [reported and named by Blakemore et at 1974]

at the beginning and end of the sweep due to the sweep unit. We add here

that this prominent artifact arises from the RC network giving an error

near t = o as discussed in section 4-3, It is due to the fact that

the voltage across R is not negligible compared with that across C,

This error is more pronounced for larger sweep time which means larger

time constant RC,

5,2 PbS

We used for the investigation of the magnetophonon phenomena in

n-type PbS three samples with carrier concentration and mobility given

in Table (5-2). Four different Techniques for this study will be dis¬

cussed below,
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Table (5-2)

„ . Concentration MobilitySampl£ (cm-3) (cm2 y-1 sec-1)

I 4,0 x 1016 5163

II 4.8 x 1016 5615

III 5,4 x 1016 4045

For the sample of concentration n ■= 5.4 x lO^ m 3 we calculate

i ^22

and at 77°K.

EFo = 10.2 x 10" J,

KT is again 10,6 x lO-"^ J,

Since EFo is slightly less than KT for this sample it is just non-

degenerate and the other samples with smaller n are also nondegenerate.

From the above data we can calculate htoc

since
eB coul, x lO^ x 10~^ Kgm
m* Kgm.SeciA

For B = 40 Kgauss

1.6 x 10-19 coul x 10^ x 40 x 10"^
^c 0,08 x 9,108 x 10"31

wc = 88.0 x 1011 sec"1

and

so

h'jj ~ 9.3 xlO~22 j
c

tw c « KT

This work was carried out at 77°K with the magnetic field applied in the

(010) direction and a constant current of 10 ± .01 ma applied in the

(100) direction. Because of the difficulty in observing the oscillations

in PbS we also employed the following techniques.

5-2-1 Digitally Recorded Technique

The curve shown in Fig (5~6) was obtained by point by point measure¬

ment. As seen in the figure, oscillations are observed but are very

small compared to those of InSb shown in Fig (5-1), being less than 2%

of the monotonic part,
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The error in locating the exact position of the maximum can exceed the

GaAs thermometer error. This error due to the magnetic field was

estimated by comparing the InSb data with and without the thermometer,

5-2-2 Direct Differential Technique

Fig(5~7)to (5-12)

Here we apply the direct differential technique to sample I, which,

as we said earlier, displays the second derivative of the resistivity

with respect to the magnetic field,

The time constant of the RC networks should be less than T

(realtime) at the chosen sweep rate. Because we are sweeping the magnet

current instead of the field some error will be introduced. The time

delay cancellation is not perfect because the magnetophonon effect is

periodic in 4, not in B itself,15

To detect these small oscillations in n-type Pbs we have to

accept some distinction by allowing the time constant of the Differentiator

to be nearly equal to T i.e. RC< T„ This will increase the error and

the noise, and also make the prominent artifact arising from the sweep

and the differentiator more pronounced.

The maximum sweep rate is controlled by the design of the super¬

conducting solenoid.

We hope that technical difficulties arising from the sweep time

and differentiator can be mostly eliminated by taking the average value

of graphs (5-7) to (5-12) for different RC, and sweep times.

The error due to the discontinuity at the initiation and end of the

sweep which is unavoidable, has been measured and found to be i 3,1%

at the end and beginning of the sweep, and the error of the field position

due to the thermometer (GaAs) which is t o>36% has been corrected as well,

. . d2p
The values of the minimum of —k- should occur at almost the same fields

dB2
as the maximum of P itself - Blakemore et al (1974) and Blakemore and

Kennewell (1974), compare the relative merits of field sweep and field
d2 p

modulation methods for displaying —y as a function of field,
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Fig. 5-14
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2
The values of the minimum of —in Table (5-2) have been corrected

dB2
accordingly.

5-2-3 Amplified Differential Technique

This is based on sweeping the field linearily with time while amplify¬

ing the sample voltage by a Keithley 149 milli-microvoltmeter, and
d2 p

differentiating by two RC networks. This technique gives —rr and allows
dB2

RC
us to use small RC values i.e. — will be much less than 1,

This can get rid of error at the extrema due to high RC and also

to get rid of the prominent artifact at the initiation and end of the

field. However an increase in amplification gives an increased noise

which is counteracted to some extent by the small bandwidth of the DC

amplifier employed. Also the necessity of raising the amplification

because of the small Ap in PbS tends to overload the recorder amplifier.

We found that Fig (5-13) A, B is the best we can get for the sample

II PbS n-type, The average values of the minimum for sweeping the field

up and down are listed in Table (5-2).

There is no thermometer correction here because we used a different

thermometer, and the discontinuity of the sweep was minimized by using

an X-Y recorder and much smaller RC.

5-2-4 Computerized Technique

For sample III which has the lowest mobility we found neither of

the above techniques very good, so we used this technique discussed in

Section (4.2,4).

We have been able by this technique to analyse one minima in this

sample Fig» (5-14) , which is listed in table (5-2), This gives ~
ac

Ap
where R - ™ o
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Table (5-2)

sample 1
P~
i

I
"H

sample II
r r

sample III s
!

B max B min
:

B min
_ .

B min

N of KG

Po
of d^p KG

dB2
of d2p

dB2
of 41dB

I

8 30,5 7 32 o 3 33.1 31.8

9 25. 7 26,4 26.1 —

I

10 23.3 22 „ 9 22.9

11 21.4 20,8 20.2

12 - 18.2 17.9 i

A B C D

Fig 5-6 5-7 to 5-12 5-13 A & B 5-14 j
As follows from Che early theoretical and experimental research in

magnetophonon effect, the position of the extrema of the transverse

magnetoresistance, and the period of the magnetophonon oscillation

should not depend on the electron concentration,

We can see the above differences arise from different instrument¬

ation and the proper average value of these is the required one.

From Table (5-2) we can see that the minima of N=9, and 10 are

less distorted than the others at the initiation and end of the field,

and the experimental error due to different techniques are more pro¬

nounced at the end and initiation of the field.

So in taking a graphical, arithmetic average we must not forget

these facts.

5-2-5 Average of the experimental data

To obtain good averaged values from the four different techniques

employed we have divided the data into two parts:- a) in which the

maxima of — have been taken,digita'lly recorded data,and which includes
dR P°

the -j-g- value of sample III, and b) in which the minima of ^ave been

taken ,differential data.
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u>LOm*
The quantity NB = — is a useful parameter. In table (5-3)

the average NB values are compared with the experimental values and the

calculated error given for each method.

Table (5-3)

B

-■Is
NB average
defined as

uL0m*
e

K gauss

f ' * ' '

B average
K gauss

r :
% experimental
error in NB of

digitally recorded
data A,D

in table (5,2)

1 "1

% experimental
error in NB of

differential data J! B,C in table (5-2)

8 232,2 29,03 +6,5 + 11.9

9 234,27 26,03 -1.23 + 0,95

10 234,24 23,4 -0,41 - 2.1

11 234,01 21,3 +0.59 - 5.04

12 233,02 19,42 - 7.36

5-2-6 Experimental phase shift correction

Apart from above experimental sources of possible error, any

d^p . .
maximum of p or minimum of is phase shifted from the magnetic field

at which the Landau level separation huic — is an exact sub-m*

multiple of the long wave LO phonon energy as a consequence of the

field dependence of the oscillatory amplitude [Blakemore and Kennewell

1974]. This topic has been mentioned and corrected for by a number of

authors for example Stradling and Wood (1968), Wood (1970), Harper et

al (1973), Firsov et al (1964) and Shalyt et al (1964). The phase shift

is attributed to the considerable deviation from parabolicity of the

conduction band. This phase shift which arises from the variation in

amplitude of the resonance peaks [aecovding to Btakemore & KennweZl

1974] has been examined as a feature of both differentiated and un¬

differentiated recording of the oscillations. They found that it is

greater in the former case.
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From the presented tables and formula which quote this shift we found

that the following power law formula give the best fit to our data,

Case 1: For the digitally recorded data i.e. measurement of maxima of

resistivity [a in table (5-2)] , these maxima are given by the field for

which

,2vB0, „ /2irBnN
tan (-.—-fl.) -= -p

d^ P
Case 2: For the differentiated date where „

— dB2

[5-1J

has been measured, the

minima of the second derivative occur for the series of fields which are

solutions of

/„n2 _ n f-n __t \

[5-2 Jr2 7TBo _ . 2-P . , 3(2-|TB^/B)2 - P(P-l)L B ; 4"B0/B' (2tiB0/B)2 - 3 (P-l) (P-2)

for equation (5-1) and (5-2)
Br

N .2.
B

and P is a necessary integer.

The most convenient way of solving these equations is graphically.

For our case we find P = 6 for n-type PbS give a reasonable fit

for both cases. In table (5-4) we tabulate the corrected NB values accord¬

ing to equation (5-1) and (5-2).

Table (5-4)

B

X-B2

■

NB corrected

phase shift
KG

!
B

corrected
KG

% experimental
! phase shift in
j NB of digitally

recorded data

r " 7 ~t
% experimental
phase shift in

NB of
differential data

8 233,88 29,23 +6 „60 +12 „ 2

9 234o 71 26„08 -1.4 00oo+

10 234„73 23o 5 -0, 6 - 2.27

11 234 e 76 21o 34 -0,4 - 5,2

12 2340 73
:

i
19,56 !



%sampleIIItable(5-2)D
QsampleIItable(5-2)C

h.06VsampleItable(5-2)B -.05 -.04 .03

1/1✓/-\\DsampleItable(5-2)A q"!KG) q©averagevaluetable(5-3)Q •phaseshiftcorrectedvaluetable(5»4)̂
0

Jf

Bo
B

07911 ii

i

Finc;.15
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5-2-7 Band edge effective mass calculation

As we said earlier

And because N - °

"io m*
g - ___—— where Bn is the field of N=l,o e u

B,

B

Q w, n m*S°
NB - -i2__

If the fields at which the extreme occurred were multiplied by the

appropriate integer, the same field was obtained for all values of N

as would be expected if the above equation was rigorously obeyed

then m* =

UL0

and
m* eNB

So

m a)L0 m

e = 1.602 x 10~19 Coul.

u 0~ 44.8 x 1012 sec -1 from table [3-1]
at 296°K in L point of Brillouin zone

m = 9.108 x 10 dl Kgm

NB — 234.6 [average from table [ 5^4] ] Kgaus

m*
= 1.6 x 10 19 coul x 234.6 x 103 x 10"4 Kgm/S2,A

111 44,8 xlO-^2 x 9.1 x lO-2^- sec"^ Kgm

and
— = 0,092 t 0,002

m

which coincides with a period A(~) from graph (5—15)
JD

of A (4) = 4,26 x 10-3 (KG)-1.
.D
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5.2.8 Polaron Correction

The polaron contribution is discussed in chapter II, If we use

Palmer's (1971)equation we can get the cyclotron effective mass which

is equal to

mcycl " "V11 * n f>
for our cases

m&» = °»092 m0
a = 0o33 for PbS at 77°K Dalven (1971)

H =0,73 numerical factor (Palmer 1971)

so

m* _ = 0,092/(1 + 0, 73 £—2.)
cycl 3

mcycl = m0 cyclotron effective mass or low-frequency mass.
To obtain the high frequency or "bare" mass we use the following

equation [chapter II] with Palmer (1971) numerical factor rL = 0,73

tnMP ' "bare (1 + °"73 I'
we get for

m* = 0,082 m
bare o

which is the high frequency or bare mass,

5.2.9 Discussion of the Result

The band edge effective mass for n-type PbS was estimated from

the results given in Fig, [5-15] and Table (5-4) and after applying

experimental phase shift and polaron correction

Low-frequency High-frequency
mass mass

At 77°K 0,085 m 0,082 m
o o
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The accuracy in determining the mass is governed by the accuracy

in determining the period of oscillation A(~) and the accuracy in
D

determining ui^q which is reported to be within 3%„
The error of determining A(~) does not exceed 2%„

D

in the absence of a more complete theoretical treatment of the

magnetophonon effect, the systematic error involved in the various

corrections cannot be estimated and could exceed the error in the

determination of the experimental parameters,

However, the final mass values agree we'll with the following

values determined by other techniques which are listed below: ~

a 4-u T u ' m*/m rn*/'mAuthor Technique o o
4,2°K 77°K

Cuff et al 1964 de Haas-Shubnikov 0„08±,01 0„0859io01 (a)

Bernick & Kleinman 1970 EPM calculation 0,077 0,0832 (a)

Other measurements and calculations of the effective mass of PbS

are listed below.

Author Technique m*/m

Finlayson & Greig (1958) thermoelectric measurement 0,11 b,

Palik et al (1964) magneto-optical " 0„11±„01 c.

Cuff et al (1964) de Haas-Shubnikov 0,08xo01 d0

Rabbi CL968) APW calculation 0,138 e0

Bernick & Kleinman (1970) EPH calculation 0,0774 f,

Ravich et al (1971)
_____ 0,090 g,

a, calculated by author from previous column
o

b, average at 77 K

c„ at 77°K

d, at 4„2°K

e, at 4,2°K

f, at 4„2°K

g„ density of state at 77°K



Conclusion

We have observed magnetophonon resonances in n-PbS at 77K„

The experiment was performed under non-degenerate conditions

EL < kT and confirms the Gurevich and Firsov prediction0E o r

The magnetophonon oscillations were observed in the transverse

magnetoresistance of n-PbS single crystals whose electron concentration

was around 5 x 101 6 cm"3 determined from Hall measurements and whose

mobility was in the region of 5 x 103 cm2 v~1 sec**' at 77°K0
Four different techniques were used to overcome the difficulties

of seeing these small oscillations in PbS,

phase shift correction, which arises from the variation in amplitude

of the resonance peaks, was applied to them.

For these non-degenerate samples of PbS the non-parabolicity of

the conduction band should be very small over the range of energy of

interest as the longitudinal optical phonon energy of 0o029 eV is

much less than the band gap of 0,307 eV, The increase in mass

arising from the non-parabolicity should be small0

For these samples the free carrier screening is negligible

because they are non-degenerate polar semiconductors„ The minima

of the magnetoresistance oscillation given in table (5-4), which

occur at B = 29,2, 26,1, 23,5, 21,3, and 19,5 K gauss after correcting

for phase shift are the N = 8, 9, 10, 11, and 12 resonances„

The period of the oscillation deduced from Fig, (5~15) is

After a polaron correction has been applied to the magnetophonon

effective mass we deduce a band-edge effective mass of 0„085 in low

frequency approximation and 0,082 in high frequency approximation.

The minima of the d2p
dB2

and the maxima of were averaged and a
Po

1

A(~) = 4.26 x 10"3 (KG)"1
JJ
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