

University of St Andrews

Full metadata for this thesis is available in

St Andrews Research Repository
at:

http://research-repository.st-andrews.ac.uk/

This thesis is protected by original copyright

http://research-repository.st-andrews.ac.uk/

Towards Simplification of the
Software Development Process
The Hyper-Code Abstraction

Evangelos T. Zirintsis

Thesis submitted for the Ph.D. degree
St Andrews August, 2000

Of^O

School of Computer Science
University of St Andrews

St Andrews

Fife KYI6 OSS

Scotland

Declarations

I, Evangelos T. Zirintsis, hereby certify that this thesis, which is approximately

33,000 words in length, has been written by me, that it is the record of work

carried out by me and that it has not been submitted in any previous application

for a higher degree.

Signed Date 17-/11 o/ */ 11 /;

I was admitted as a research student in October, 1996 and as a candidate for the

degree of Doctor of Philosophy in October, 1996; the higher study for which this

is a record was carried out in the University of St Andrews between 1996 and

2000.

Signed Date I */ 1 (/ ^O 0 oDate I 9/ li /ioo

I hereby certify that the candidate has fulfilled the conditions of the Resolution

and Regulations appropriate for the degree of Doctor of Philosophy in the

University of St. Andrews and that the candidate is qualified to submit this thesis

in application for that degree.

Signed Date

In submitting this thesis to the University of St Andrews I understand that I am

giving permission for it to be made available for use in accordance with the

regulations of the University Library for the time being in force, subject to any

copyright vested in the work not being affected thereby. I also understand that

the title and abstract will be published, and that a copy of the work may be made

and supplied to any bona fide library or research worker.

Signed Date

Acknowledgements

Neither this thesis nor my academic upbringing would have

materialised without the sharp supervisory eye and tireless

commitment of Ron Morrison.

The completion of this thesis would have never been achieved

without the insightful comments of Graham Kirby, whose role has

been pivotal.

My warmest thanks and deepest gratitude goes to my parents, whose

support both financial and moral has made all this possible.

Finally, I would also like to thank all those who intentionally or

unintentionally have shaped the strength of my character. Their

positive and negative comments kept me going throughout this

demanding process.

Dedicated to my parents

A(pi8pcojii8vo OTODg yovsi<; poo

Abstract

Following Aristotle's theory of substances and accidents, the difficulties in

developing software can be categorised into essences and accidents. Essences

are the conceptual constructs that compose an abstract software entity. Accidents

are representations of these abstract entities in programming environments,

which quite often constitute noise in the process of developing software.

The focus of this thesis is on improving the software life-cycle, by introducing a

new set of abstract concepts — hyper-code — that allows the accidents of the

traditional programming life-cycle to be lessened. The hyper-code view of

programming still contains accidental difficulties, but these are fewer and more

understandable. A plethora of concepts, which exist only for reasons of

efficiency, are hidden from the programmer, by the hyper-code system thereby

producing a simpler system. The main hypothesis of the thesis is that this

reduction in complexity increases programmer productivity.

A concrete implementation of the hyper-code concepts is a Hyper-Code System.

This thesis reports on the design of the system using two particular programming

languages (ProcessBase and PJama), and on the implementation of the user

interface in PJama.

Contents

1 Introduction 1

1.1 Essences and Accidents 1

1.2 Levels of Abstraction 3

1.3 Thesis Structure 9

2 Related Work 11

2.1 Traditional Programming Life Cycle 11
2.2 Software Development Environments 13

2.2.1 EMACS 15

2.2.2 Metrowerks CodeWarrior 17

2.2.3 Visual Basic 19

2.2.4 Smalltalk 21

2.2.5 Trellis 25

2.2.6 Integrated Project Support Environments (IPSEs) 27
2.2.6.1 IPSE 2.5 28

2.2.6.2 ECLIPSE IPSE 29

2.2.6.3 APSE 30

2.2.7 Persistent Programming— Napier88 31
2.2.8 Hyper-Programming in Napier88 and PJama 35

2.3 Towards Hyper-Code 41
2.4 Summary 43

3 The Hyper-Code Abstraction— Towards Hyper-Code
Systems 45

3.1 The Hyper-Code View of the Programming Life-Cycle 45
3.1.1 Defining the Domains 45
3.1.2 Domain Operations 47
3.1.3 Composing Domain Operations - Equivalences 49
3.1.4 Interpretations of the Domain Operations 51
3.1.5 Towards Concrete Systems 51

3.2 Hyper-Code Systems 53
3.2.1 General Requirements for the Hyper-Code Operations 53
3.2.2 A Particular Set of HCOs 54

3.2.3 Accessing Data in a Persistent HCS 58
3.3 Summary 59

I

4 Concrete Hyper-Code System 61
4.1 The Hyper-Code Representation 61
4.2 A Particular Set of Hyper-Code Operations 64

4.2.1 Explode 64
4.2.2 Implode 65
4.2.3 Evaluate 66

4.2.3.1 Viewing the Evaluation 66
4.2.3.2 Result of Evaluation 69

4.2.4 GetRoot 70

4.2.5 Edit 71

4.3 Summary 74

5 A Hyper-Code System for ProcessBase 76
5.1 Domains in ProcessB ase 76

5.2 Equivalences in ProcessBase Hyper-Code 78
5.3 Operations Over HCRs 79

5.3.1 Explode 79
5.3.2 Implode 81
5.3.3 Evaluate 82

5.3.3.1 Viewing the Evaluation 82
5.3.3.2 Result of Evaluation 85

5.3.4 GetRoot 86

5.3.5 Edit 86

5.4 Summary 89

6 A Hyper-Code System for PJama 90
6.1 Domains in PJama 91

6.2 Equivalences in PJama 92
6.3 Operations Over HCRs 93

6.3.1 Explode 94
6.3.2 Implode 95
6.3.3 Evaluate 95

6.3.3.1 Viewing the Evaluation 96
6.3.3.2 Result of Evaluation 98

6.3.4 GetRoot 99

6.3.5 Edit 100

6.4 Summary 102

II

7 Implementing Hyper-Code in PJama 103
7.1 Representing HCRs 104
7.2 Implementation of the Evaluation Process 105

7.2.1 The Storage Form 107
7.2.2 Transforming an HCR into a Class Definition 111
7.2.3 The Textual Form 113

7.2.4 Inserting Code for Variable Tracking 117
7.2.4.1 Requirements for the Inserted Code 118
7.2.4.2 Meeting the Requirements - The Thread of Execution 119
7.2.4.3 Transforming the Example HCR 122
7.2.4.4 Transforming an Example HCR Representing a Class Definition 124

7.2.5 Compiling and Executing HCRs 126
7.2.5.1 Compiling and Loading Class Definitions 126
7.2.5.2 Executing Methods 127
7.2.5.3 Compiling and Executing the Example HCR 130

7.2.6 Producing a new HCR 131
7.3 Summary 131

8 Implementing the Hyper-Code Assistant Tool in PJama 133
8.1 The Basic Editor 134

8.2 The Window Editor 136

8.3 The Hyper-Code User Editor 139
8.4 The Explode Operation 142

8.4.1 Generating an HCR for a Primitive Type 143
8.4.2 Generating an HCR for an Array Type 143
8.4.3 Generating an HCR for a Class or Interface 144
8.4.4 Generating an HCR for a Primitive Value 145
8.4.5 Generating an HCR for an Array 145
8.4.6 Generating an HCR for a Class Instance 146
8.4.7 Displaying the Generated HCR 150

8.5 Summary 150

9 Conclusions 152

9.1 Simplification at the Abstract Level 153
9.2 Simplification at the Concrete Level 153
9.3 Hyper-Code Systems and Related Work 155
9.4 Current Design and Implementation Status 156
9.5 General Discussion of HCSs 157

9.5.1 Choosing the Particular HCR 157

III

9.5.2 Choosing the Particular Set of HCOs 158
9.5.3 Mapping Hyper-Code Into Particular Languages 159

9.5.3.1 Hyper-Linking 160
9.5.3.2 Generating Detailed HCRs for Entities 161
9.5.3.3 Information Hiding 163
9.5.3.4 Mutable Locations 165

9.5.3.5 Openness 166
9.5.3.6 Persistence and Referential Integrity 167
9.5.3.7 Compatibility 167

9.5.4 Essential and Desirable Features for Hyper-Code 168
9.6 Further Research Work 170

9.7 Final Thoughts 171

10 Appendix 172
10.1 Index of Tables 172

10.2 Index of Figures 173

11 References 176

IV

1 Introduction

1.1 Essences and Accidents

According to Aristotle, the Greek philosopher, there is a distinction between the

way reality is structured and the way it is viewed. The basic logical distinction is

between substance and accident [Ros28].

A substance is whatever is a natural kind of thing and exists in its

own right.

An accident is the modification that a substance undergoes but does

not change the kind of thing that each substance is.

This distinction is logical and reflects the structure of reality.

Substances may exist without accidents but an accident must always

be associated with a substance.

Following Aristotle's theory of substances and accidents, [Bro86] categorises the

difficulties in software technology into essences and accidents. According to

Brooks

Essences are the complex conceptual structures that compose an

abstract software entity. The essence of a software entity is a

1

construct of interlocking concepts: data sets, relationships among

data items, algorithms, and invocations offunctions.

Accidents are the representations of these abstract entities in

programming languages and the mapping of these onto machine

languages within space and speed constraints.

Therefore, an essence is the problem itself and is an amalgamation of data and

algorithms. Accidents are the problems arising from using tools to solve the

original problem. These may be hardware constraints, limitations by awkward

programming languages and such like. The hardest part in building software is to

specify, design and test the conceptual construct {essences), and not to represent

and test its fidelity (accidents).

Nevertheless, most work on software engineering has concentrated on solving

problems caused by accidental difficulties. Removing unnecessary complexity,

that is the accidental difficulties, produces a simpler system. This presents to the

programmer either fewer or more understandable concepts and forms. The main

hypothesis is that a simpler system is better for developing software, as it increases

programmer productivity.

The work to be described is based on the belief that the gap between essence and

accident is still with us. It is also believed that the specification of the appropriate

2

abstract concepts result in fewer accidents, and this allows the essences to be

viewed more appropriately. Using the Aristotelian terminology, this implies that a

better view of the reality is provided.

The focus of the thesis is on improving the software life cycle. This is achieved by

introducing a new set of abstract concepts — hyper-code —that allow accidents of

the traditional programming life-cycle to be lessened. As will be explained later in

detail, the hyper-code view of the programming life cycle still contains accidental

difficulties, but these are fewer and more understandable. A plethora of concepts,

which exist only for reasons of efficiency, such as interchange forms and tools, are

hidden from the programmer.

1.2 Levels of Abstraction

The task of programming may be viewed at different levels of abstraction, as

shown in Figure 1. Programming may be performed at any level, depending on the

problem to be solved. There is a trade off between efficiency and programmer

convenience when moving from one layer to another. A view of a system at the

lower layer is closer to what a machine may execute, which makes programming

more flexible and efficient. A view of a system at a higher layer is perceived to

have improved productivity in terms of programmer understandability compared

to a view at a lower layer. Language designers try to balance making computing

3

convenient for people with making efficient use of computing machines. However,

according to [Set96] convenience comes first. Without it, efficiency is irrelevant.

High-Level
Programming
Environments

Database
Programming
Environments

Modern Programming
Environment Level

Operating System
Level

Machine Level

\ t
Modern Operating

Systems such as Unix

4 4
Assembler

Machine

convenience

efficiency
flexibility

Figure 1: Programming at different levels of abstraction

Programming at each level requires manipulation of different abstractions,

representations and operations. Some of these concepts are essential for

programming at the particular level. The rest exist only for reasons of efficiency,

and they are considered accidents as they can be hidden either by specifying new

abstract concepts or by providing different tools. Typical abstract concepts and the

accidents for each layer of the programming life-cycle are shown in Table 1.

4

| Level of Programming | Abstract Concepts
\ I (structure of reality) \ (view of reality) 1

Accidents

High-Level
Programming
Environments

data-types, operations programming tools,
forms

Database

Programming
Environments

schemata, sub-schemata,
database models, attributes,

dependencies etc.

tools for

manipulating the
DB, such as SQL

Modern Operating
Systems such as Unix

file and library and I/O
manipulation, filters, pipes,
protection mechanism,
operations such as

compilation and linking

different interfaces,
such as shells,

programming tools,
different forms

Machine Language -

Assembler
registers, memory
mappings, bits, branches

instruction sets for

different CPUs

Table 1: Essential concepts and accidents at each level of programming

At the machine level, programs consist of instructions which can be executed

directly by the processor. The programmer has to be aware of the computer

architecture as well as the following [Lu91]:

which registers are associated with which commands,

available ways ofmemory mapping,

different instruction sets for each CPU, which means that a program written for

a particular processor may not run on another,

interrupts, branches, bits.

A more intelligible variation of the machine language at the lower level is

assembly language, in which symbolic names take the place of instructions,

making the latter more readable, and consequently programming easier than

coding using machine language.

Unix, the integrated programming environment [Bac86], [Tan87], is an interactive

time-sharing system, designed to support the development of software projects. It

manipulates processes, pipes, filters, I/O and supports protection. It also provides a

set of library procedures and common file formats, which allows tools like

optimisers to be used even where the original forms are from disparate sources.

These are defined by the POSIX committee, which produced standards that every

conformant Unix system must adhere to.

However, programming using Unix as a programming environment means that the

programmer has to be aware of different tools, that is the programming language,

the editor's environment, the system's command environment, the debugger's

environment. The system's command environment provides many commands,

which the programmer has to be aware of. Furthermore there is little consistency

in interfaces and the command names in Unix. For example, there are several

interpretations of the "-k" option, or there are several commands to achieve the

same goal. Finally, the fact that Unix is a text-based programming environment

may be considered a drawback in programming. GUI-based operating systems,

6

such as Mac-OS [App86], [Nai93] and Windows [Mic98+] are designed to make

such programming easier.

A solution to the complexity of operating systems as programming environments

is to make them "invisible" by building a collection of tools on top. Examples of

such collections are database environments and high-level integrated programming

environments. The principle, in terms of programming, is that these environments

hide the operating system, as the programmer can concentrate on the accidental

difficulties of the higher-level, rather than on the accidental difficulties of the

operating system level.

In database environments, such as MSAccess [Dow98], [Mic94] and dBase

[And99], the programmer is required to be aware of the basic principles of

databases. This involves building the logical schema and possible sub-schemata in

order to develop the desired application. Other concepts involved in this task are:

database models, attributes and dependencies, normalisation, etc [Tsi77], [U1180].

The accidental difficulties in these environments are caused by the programmer

having to be aware of the tools, such as SQL [CB98], [Dat93] that manipulate a

database.

In high-level, integrated programming environments, such as Turbo Pascal

[Bor89], reality is structured in terms of abstract constructs, such as operations and

7

data-types. The programmer is required to be aware of accidents such as tools and

forms, rather than concepts that the underlying system is responsible for, such as

device drivers, processes etc.

Object-oriented languages provide a different structure of the essence by

introducing concepts such as classes, instances, methods and subclasses. The way

of thinking is at the application level, in terms of objects and interactions needed

to describe the application [Set96]. However, the programmer is still aware of

operations, data-types and tools.

The main observation of the description above is that each view of abstraction

removes the accidental difficulties of the view below it, by hiding or improving the

understandability of the concepts of that view. According to the assumption

introduced in section 1.1, this produces a simpler system, that increases the

programmer productivity.

The hyper-code view introduces different abstract concepts, in order to address the

accidental difficulties of the traditional software development life-cycle, which is

followed by most of the systems described above. This results in presenting the

programmer with fewer accidents, and thus - according to the original assumption

- in increasing programmer productivity.

8

1.3 Thesis Structure

Chapter 2 provides a survey of the related work in this area involving the

description of several programming environments, which attempt to simplify the

traditional programming life-cycle. Persistence and hyper-programming are also

involved in achieving this goal.

Chapter 3 describes the hyper-code view of programming, which simplifies the

traditional programming life-cycle. A set of abstract concepts provides a different

structure of the essence. These are then mapped into a more concrete level to

produce a set of concrete operations, which are performed in Hyper-Code Systems,

that is programming systems which implement the ideas of hyper-code.

Chapter 4 defines the concrete operations with respect to particular interpretations

of the underlying domain operations. This definition is combined with an

illustration of how the user interface looks for each of the concrete operations.

Chapters 5 and 6 map the description given in chapter 4 into two particular

languages: a simple persistent language, ProcessBase [MBG+99b], and a

persistent object oriented language, PJama [AJ96].

Chapters 7 and 8 describe the principal features of the implementation of a hyper-

code system in PJama.

9

Chapter 9 concludes this thesis by reviewing the hyper-code level of

programming. In addition to that, a conclusion is drawn related to mapping a

hyper-code system into a programming language. Researching the design and the

implementation of a hyper-code system in two particular languages indicated that

mapping is possible, but is not always satisfactory. Finally, future work in this area

involves further improvements of the current implementation in PJama, and the

mapping onto the ProcessBase language.

10

2 Related Work

This chapter describes the traditional programming life-cycle and outlines

programming environments that attempt to address the accidental difficulties of it.

2.1 Traditional Programming Life Cycle

In programming environments that follow the traditional life-cycle, such as Pascal

[Wir71], the programmer concentrates on abstract constructs, such as operations,

data-types, and accidents such as forms and tools, rather than concepts that the

underlying system is responsible for, such as bits, registers, branches, device

drivers, processes etc. In these environments, software is developed following the

traditional compose-compile-link-execute cycle illustrated in Figure 2.

object code

[stream

compilationcomposition pre-processing

linker..editor. ire-processor.
| streamI keyboard file / stream

linkage

file / stream

I file / stream

execution

Cexecution engine^

I file / stream
debugging

debugger
stream

/•"

V

> tool I I conceptual form I interchange form

/ denotes optional

Figure 2: The traditional programming life cycle

The programmer composes a program by typing text or inserting text from a file.

In some cases, pre-processing is required to prepare the source code for

11

compilation. Compiling this piece of code produces either an error or object code.

In the former case the programmer returns to composing, finds the error and

recompiles the source. In the latter case, the programmer links explicitly the object

code produced by compilation with some external object code from the libraries. If

linking is successful, executable code is produced which can be used for either

execution or debugging. At this stage run-time errors are possible which means

that the programmer may have to restart the cycle from the beginning. Restarting

the cycle may also be required if the results from execution are unexpected.

Thus, there are five main processes: composition, compilation, linkage and

execution or debugging each with their appropriate tools such as editor, compiler,

linker, executor or debugger respectively. Each tool operates on a particular

translated form of the program such as source text, object code or executable code.

Traditional programming systems, such as Pascal [Bor89] and C [KR78] access

data in a file system or database as shown in Figure 3. Programs ("program 1" and

"program 2") and their executable versions ("executable code 1" and "executable

code 2" respectively) are held outside the database boundary, commonly in a file

system. These are prepared independently of the data and include assertions to

specify access paths of the data they require. Linking with the data is performed

dynamically during program execution at which time a dynamic type check or

12

coercion may take place. As shown in Figure 3, this is done through the

dynamically checked access points.

executable
program 1 code 1

access point _ _ p.
specification

persistent data

database boundary

dynamically checked
access points

References to data in the database

► References to dynamically checked access points

Figure 3: Traditional access to long-lived data

In programming environments that follow the traditional life-cycle, complexity

comes from the programmer having to be aware of concepts like forms and tools.

These often constitute noise in the execution cycle and a distraction from the task

of concentrating on the essential difficulties, that is constructing the application.

2.2 Software Development Environments

The programming systems described in this section attempt to simplify the

traditional software development life-cycle either by just hiding some accidental

difficulties or by specifying a new set of abstract concepts that result in different

13

accidents. Each of the systems represents a category of programming

environments, as shown in Figure 4.

Emacs CodeWarrior Visual Basic Smalltalk Trellis ECLIPSE APSE Napier88

V
Hyper-Programming

in Napier88

V
Hyper-Programming

in PJama

V

Hyper-Code

Figure 4: Systems that attack accidents of the traditional software life-cycle

The dashed-arrows denote that the system they point to inherits some features

from the system above, but still specify some new concepts and features. Note that

the box with the black background denotes programming systems that apply the

hyper-code ideas, that is Hyper-Code Systems.

The description, contained in the rest of this chapter, is focused on whether these

systems satisfy certain criteria. These criteria, listed below, are general and involve

abstract concepts and accidents.

• they hide concepts of the traditional programming life-cycle from the

programmer (Abstraction).

14

• they provide a single representation for both program and data (Unification).

• they provide a single tool for all operations (Simplification).

2.2.1 EMACS

Emacs is a display editor that supports multiple buffers and windows as well as

compiling, debugging, customisations, syntax colouring and such like. It is

described as advanced, customisable and extensible [Sta97] since:

• it provides facilities that go beyond simple insertion and deletion: automatic

indentation of programs; viewing two or more files at once; editing formatted

text; colouring expressions and comments in several programming languages

• it allows the changing of the definitions of commands as well as the

rearrangement of the command set.

• it allows the writing of entirely new commands, programs in the Lisp language

to be run by Emacs's own Lisp interpreter. Almost any part of Emacs can be

replaced [Gli97].

A snapshot of an Emacs window is shown in Figure 5. The window contains two

buffers each of which contains a definition of a Java class; the one at the top

displays class WindowEditor and the one at the bottom class UserEditor. Syntax

colouring allows comments, reserved words and class names to be displayed in a

different colour.

15

Emacs is a general editing tool that can be used for programming in any language.

Since it provides different buffers, every operation can be performed in the same

window, which provides the facility of pre-customising multiple fonts, styles,

colours and sizes. Programming in Emacs means that the programmer is aware of

all the accidents of the traditional software development cycle. Simplification is

achieved by allowing the programmer to specify macros for tools in order to

automate the relevant operations. However, the programmer is still aware of the

different forms resulting from each operation. Finally, it does not support any

browsing facilities.

emacs (glocalhost.localdomain

Buffers Files Tools Edit Search Mule Java Help
EditirigFormHL
HyperCodeCursor
NorthPanel
SouthPanel

!indowEditor extends OutlinedPanel implements KeyListener,
ContainerListener, MouseListener, Scrollable, DragGe;
IbagSourceListener, BropTargetListener , MouseMotionl

Globals globals

class UserEditor extends JFrame implements ActionListener, WindowL
onentListener, ItemListener f

String e » null;
protected transient WindowEditor windowEditor
protected transient WiridowEditor[] windows;

IBlAutu-savlny...dune

(Java)—L51— 2Z-** UindowEditor,java

(Java)—L44— 32-UserEditor,,iava

Figure 5: A snapshot of editing Java programs in Emacs

16

2.2.2 Metrowerks CodeWarrior

The Metrowerks CodeWarrior programming environment [Met99] provides a

multi-host, multi-language, and multi-target design that gives engineers the

freedom to choose the best path to their goal [TT99]. In the context of the thesis

this implies that it reduces the accidental difficulties in order to solve the essential

difficulty, which is the problem itself.

Indeed, CodeWarrior is designed to accelerate the development process by

combining an editor, compiler, linker and debugger into a single application.

Source, libraries, graphic resources, and other files are gathered into a project. The

usage of a project hides some of the concepts of the traditional programming life-

cycle, such as forms. Information about the project is stored in a project file, and is

manipulated through the project manager tool.

HG3IS

File Code I Data

of

Addtess.java
Animal, java
Person, java

of BQ compiler
of B'D HyperCodeEditor
of B€3 Classes
of ri opj.jar
■of LH rt.jar

44 files

0!
01
oi
oi
oi
oi
oi
oi

EJ¬

US
El

A

Figure 6: A snapshot of an example project

17

A snapshot of an example project in Metrowerks CodeWarrior Java for Windows

is shown in Figure 6. This project contains the classes used for the implementation

of the Hyper-Code System, which will be described in the following chapters. The

buttons on the top-right of the light grey area are used to trigger syntax checking,

compilation, linking and execution. The red-tick symbol on the left of the window

indicates classes/packages that have to be compiled.

Apart from the project manager tool, CodeWarrior provides an editor and a

debugging tool. The editor supports multiple faces by colouring the keywords for

various high-level programming languages to allow easy recognition and

navigation. It can automatically verify the balance of parentheses, brackets and

braces. It also integrates source browsing facilities, as every word in the source

becomes a link to other locations in the code related to that symbol.

; sBasicEditor.java B0O

k ». h, ©, cf. Path: C:\Documentsa. .\BasicEdilof.iava O
| /** 13

* Creates a new <i>BasicEditor</i> instanc

| BasicEditor() {
theLines = new Vector();
theLines.addElement(new

I >
m:
Go to class declarationof lies.HyperLine
Open browser for class hes JHyperLme

* Creates a new < i >BasicEdi tor</i >» Open hierarchy for class hcs.HyperLine
*

_ Go to method definition
* @param theCurrentvector the lint

BasicSdi tor (Vector theCurrentVector G° dafirotkm ofvoid hcsJHyperLme()
theLines ■ theCurrentVector;

}
Go to definition of void hes JHyperLine(java lang.String)

Line: 74 j -1 J Go to definition ofvoid hcs.HjrperLine(java.lang.String; java.util.Vector)

Find all implementations of HyperLine

Figure 7: A snapshot of editing and browsing in CodeWarrior Java

18

Figure 7 shows an example editor window that contains a Java class definition.

The HyperLine symbol is considered as a hyper-link, as pressing the mouse button

over it results in a menu through which the programmer can browse the source

code of the linked class definition.

The debugger tool provides source-code level debugging. CodeWarrior requires

the programmer to specify explicitly when execution involves debugging, and this

achieved by entering the "Debugging" mode. A programmer can set breakpoints

and single-step through the editor window. During execution, a separate

representation from programs is used in order to browse data, such as variables,

arrays, and structures.

2.2.3 Visual Basic

Microsoft® Visual Basic [Mic98], as a programming environment, is a fast and

easy way to create applications for Microsoft Windows [Mic97]. It allows the

creation of databases and front-end applications, using SQL, for most popular

database formats [War95]. It provides a set of tools such as composer, browser and

debugger. Simplification of the application development is achieved by hiding

some of the concepts of the traditional programming life-cycle, such as forms and

processes like compilation and linking. However, the programmer has to be aware

19

of newly introduced features, which make up an application, such as modules,

projects, forms and control files.

The main advantage of the Visual Basic interactive programming environment

[Mic96] is that it makes the composition process easier. The programmer may

drag and drop pre-built objects into place on screen rather than writing numerous

lines of code to describe the appearance and locations of the GUI elements. This is

illustrated in Figure 8. The objects to be inserted in the application are contained in

the toolbox on the left-hand side. Information about the tools included in the

project are positioned on the right-hand side. In the example, the application

consists of a frame that contains a combo box and a checkbox.

i Vdngelis - Microsoft Visual Basic rdesicin]
File Edit View Project Format Debug Run X°°k Add-Ins Window Help

a -* g? h i
,• El

General |

A fibi
i

17 (t

<lil

© □
■ 1=})

GJg) o iff « « ^

Q -JUl-il

■ C Optionl

• ■

jCombol

Object Browser

1 [^j I ;

J
Classes

eS App
cSl CheckBox

Clipboard
JSiComboBox

Members of'Combe
Addltem

iS? BackColor
p Change

? iM
□ B|[Q
□ Vangelis (Vangelis)

Appearance

1-1 €5 Forms
& FormlfFormpj I

'I; ^
Form! Form

Alphabetic 1 Categorized |

Property Appearance As Integer
read-only
Member of VB.CcrmboBox

Appearance
AutoRedraw

i-3D

False •

Returns the name used in code to

Figure 8: Composing an application in Visual Basic

The tools are called classes and can be browsed using a separate browsing tool.

Each class has a number of properties which are displayed in the browser window

(centre) and their values are displayed in properties window as shown in the figure

20

above (right-bottom window). Visual Basic supports hyper-links to allows

navigation between classes and properties in the browser window.

Source code is generated behind the scenes, which can be edited by the

programmer at any time. A facility that makes composition easier is the provision

of syntax colouring. In addition, during composition, source code is interpreted,

which results in catching and highlighting most syntax or spelling errors on the fly.

However, not every error is caught by the system, which requires the programmer

to find it, fix it and start the programming cycle over again. In addition, the

programmer is aware of two different representations, one for source code and one

for data. These are displayed in the editor and the object browser respectively.

Another tool provided is a standard, integrated, graphical debugger, which allows

source level debugging to be performed. This involves setting breakpoints,

monitoring values and such like. The debugging process is performed separately

from execution, and this is indicated by the presence of different set of menu items

for each process, as shown in Figure 8.

2.2.4 Smalltalk

The Smalltalk language is an object-oriented programming language which

supports a "snap-shot" form of persistence, as at any point an image of the current

state of the system can be dumped to non-volatile storage and later restored. The

21

Smalltalk programming environment is a graphical, interactive programming

environment that is based on a small number of concepts, but defined by unusual

terminology [GR83],

There are several programming environments implementing the concepts of the

Smalltalk language. One of them is the Dolphin Smalltalk programming

environment [Int99], which consists of several tools, such as a class hierarchy

browser, a workspace, a view composer and a debugger.

The browser displays information about classes, instances, message categories and

methods, but it does not support hyper-links, a facility that would make the

process of browsing objects easier. It also supports the creation of new classes and

the editing of existing class definitions.

Figure 9 illustrates a browser window, in which a new class definition is created.

The upper-left window contains the packages and the classes. The upper-centre

window contains the message categories. The upper-right window contains a list

of the methods. The lower window displays the class definition. Composing a

class definition is supported by the provision of the syntax colouring facility.

22

Person»getName (general)
File Edit Workspace Class Method Tools Help

sH

□ & x. ^ jVangelisPackage "3
; O PackageManaget-d Instance Class]
O Person

EH ® Presenter
ii J

All

general
_L1

setNarne:

Method source Class definition Class comment

Object subclass: #Person
instanceVariableN amje s: 'name'
classVariableNames: "
poolDictionaries: "

S A

Figure 9: A snapshot of a Smalltalk browser window displaying a class

Programs can be composed in the workspace tool. Evaluation is performed over

the selected piece of text, and the result (if any) is printed after the selection. The

evaluate operation substitutes the compile-link-execute cycle. Figure 10 illustrates

a workspace that contains several examples of source code. The last example

creates a new instance of class Person, sets the name field and retrieves it using

the newly created object.

Execution may be interrupted when an error occurs or when a breakpoint is

reached, in which case the system informs the programmer about the cause of

interruption. This is done by activating the debugger tool, which displays the last

messages sent as well as allowing the inspection of the stack and causes the

evaluation to proceed from the selected point. Message-sends can be single-

23

stepped, in order to check the state of variables and determine the source of the

error.

I Untitled - Dolphin Workspace - - -1-lnlxi
File Edit Workspace Tools Help

D H fe Si (S X #4 8 <3 S M

Welcome to Dolphin Smalltalk]
This Workspace window contains some trivial examples of code for evaluation.

"Evaluate the following expression. With a hit ofluck ike answer will be 7. "
3 + 4. 7
"What's the time pleaseP. "
Time now. 19:14:57

"Create a new instance ofclass Person, and returns its name. "
p:=Person new. p setName:'Vangelis'.
p getName. 'Vangelis'

j . " / * T ■■ S- r. . | . A : /j

Figure 10: Evaluating expressions in Dolphin Smalltalk

The advantage of the debugging process is that it is not a separate operation from

evaluation. However, there is no graphical way to insert breakpoints, and the

programmer is required to achieve that by inserting pieces of code in the program.

The view composer is a separate tool that allows the creation of user interface

components in a visual way, without having to compose program fragments.

Classes and instances are created behind the scenes. Similarly to the Visual Basic

programming environments, this makes programming easier.

The Smalltalk programming environment encapsulates fewer concepts than the

systems based on the traditional programming life-cycle. However, the

24

programmer is aware of different representations for programs and data as

instances and classes are displayed in a different way. In addition, each operation

requires a separate tool, thereby increasing the number of accidents presented to

the programmer.

2.2.5 Trellis

The Trellis [OHK87] programming environment supports programming in

Trellis/Owl, an object-based language with multiple inheritance and compile-time

checking. It uses the concept of the "message passing" metaphor and inheritance

hierarchies analogous to Smalltalk.

Each aspect of the programming task is supported by a separate tool. These tools

are: the browser, the editor, the evaluator, the debugger, the breakpoint tool and

the activity viewer.

Browsing in the Trellis programming environment is performed using windows

and selecting entities in those frames, without the provision of hyper-links. Figure

11 shows some browsing tools. The first window contains the categories of type

modules. Selecting the category frames in the first window results in a list of type

modules contained in the second window. Selecting Text_frame in the second

window results in the third frame that contains a list of method definitions.

25

□-categories n-types
add remove

create1 delete1

dump close

all_type_modules
compilerjnterface
debugger
env

frames

graphics
library
tools

show1 show-inherit1 new

close

Figure 11: Browsing tools in the Trellis programming environment

The programmer may edit the selected method by pressing the edit button included

in an editor window. Composing a program both in the editor and the evaluator is

performed in a purely textual way, without the support of syntax colouring.

A definition is compiled using the Trellis incremental compiler, which checks for

and updates the cross-reference list related to that definition. Trellis/Owl source

code is parsed and interpreted in the evaluator tool. The resulting value is

displayed in the same window and saved in a variable for possible later use.

Debugging facilities are integrated in the evaluation process. The run-time system

provides multiple threads of control, called activities. When an activity is

interrupted, due to a run-time error or when a breakpoint is reached, Trellis creates

an activity viewer, which displays the stack, and allows the programmer to look at

the arguments and local variables in each stack frame.

26

The Trellis programming environment hides most of the concepts of the traditional

programming life-cycle. However, the programmer is aware of different

representations for program and data, which are displayed through the editor and

browser respectively. In addition, the existence of many tools to perform the

operations makes the task of programming complicated.

2.2.6 Integrated Project Support Environments (IPSEs)

Integrated project support environments provide an integrated toolkit to support all

life cycle phases from initial requirements definition to software maintenance, as

well as support for software management activities, configuration control and

office automation facilities such as word processors and electronic mail [MS87].

This implies that the task of programming is only one part of the whole process. In

many cases, users are themselves viewed as tools of the IPSE [War89], A typical

IPSE architecture consists of several layers shown in Figure 12.

Figure 12: An IPSE architecture

27

IPSEs are built around a portable operating system such as UNIX. The next layer

is the database system used to store all IPSEs objects. The object management

system specifies the relationships between objects and provides version

management facilities, which are used by configuration management tools. The

software tools provided support all phases of the project life cycle, including

designing and programming. The outermost layer is the graphical-based user

interface.

Simplification in IPSEs is achieved through the existence of a consistent interface

to all of the integrated IPSE tools, in which the programmer is not required to be

aware of a variety of interfaces to different tools. However, despite that

simplification, the programmer is still aware of those different tools.

IPSE 2.5 [Sno89], [War89], ECLIPSE [SWP89], [ST86], [Bot89] and APSE

[MS87] are examples of integrated project support environments.

2.2.6.1 IPSE 2.5

IPSE 2.5 is a support environment that provides the means by which the process of

developing, maintaining, supporting, and enhancing information systems is made

more efficient, in both quality and productivity terms. The view taken in the IPSE

2.5 project is to stand back from the position of "users and tools" and consider the

problem as a whole [War89]. This means that IPSE 2.5 supports the whole process

28

of building projects and it is not just a collection of tools to build software and

support activities.

IPSE 2.5 consists of three main features: the Process Control Engine (PCE), the

Users and the Process Modelling Language (PML). PCE is a computer system

that provides the working environments for its users, the people involved in the

process of developing projects. PML is used to describe and compose process

fragments, and this may involve "programming". PCE is the engine that supports

these descriptions. The Users interact with the system through PML descriptions.

PML involves the notions of Roles and Interactions. A Role represents an activity

of a development project. Interactions occur either between Roles or between a

user and a Role. An Interaction between Roles on the IPSE is represented by

Actions. The encapsulation of the resources owned by the Roles is represented by

Entities, which reflect the state of Roles at a particular time. Roles and Entities are

the principal class in PML and they defined a set of property categories, which

include resources, assocs and actions.

2.2.6.2 ECLIPSE IPSE

The ECLIPSE IPSE is built on top of existing facilities. The aim of the user

interface project was to construct a portable, consistent appropriate interface to a

29

project support environment which improved user's productivity by speeding up

system interaction, reducing learning time and reducing user errors [SWP89].

One of the key features of the ECLIPSE environment is that it provides facilities to

allow existing tools for programming support to be integrated. The tools available

include a design-editing system, host tools to support an Ada system such as

compiler, and a design-support system. It supports a graphical user interface with

sufficient functionality, involving control panels, a message system and a help

system. The end-user interacts with the user interface through the Applications

Interface, which is implemented using a description language called FDL (Frame

Description Language). Access to the ECLIPSE database is achieved through

SySL (System Structure Language).

2.2.6.3 APSE

The Ada [You84] IPSE or APSE (Ada Project Support Environment) is a portable

environment which consists of the following layers:

• System software: supports the host operating system, such as UNIX.

• A Kernel APSE (KAPSE): provides database access, tool communications

and run-time support.

30

• A Minimal-APSE (MAPSE): provides the basic toolkit for the development

of Ada systems, including editors, translators, debuggers, linkers, loaders, a

command interpreter, a file administrator and a configuration manager.

• An APSE: provides tools such as a program editor, a documentation system, a

version control system, a fault report system, a project control system and such

like.

2.2.7 Persistent Programming— Napier88

Napier88 [MBC+96b], [MCK+99] is a language that implements the concepts of

persistent programming. One of the original motivations for persistent

programming was to remove the conceptually unnecessary distinction between

short-term and long-term data [ABC+83]. The persistence of a data object is the

length of time that the object exists. In traditional programming languages, data

cannot last longer than the activation of the program without explicit storage in a

file system or a database. In orthogonally persistent programming systems, data

can outlive the program, and their persistence obeys the following principles, as

described in [AM95]:

• The Principle of Persistence Independence: the form of a program is

independent of the longevity of the data that it manipulates. Programs look the

same whether they manipulate short-term or long-term data.

31

• The Principle of Data Type Orthogonality: all data objects should be

allowed the full range of persistence irrespective of their type. There are no

special cases where objects are not allowed to be long-lived or are not allowed

to be transient.

• The Principle of Persistence Identification: the choice of how to identify and

provide persistent objects is orthogonal to the universe of discourse of the

system. The mechanisms for identifying persistent objects is not related to the

type system.

The benefits of persistence can be summarised as follows:

• Improved program productivity: the provision of persistence removes the

accidental difficulty of writing extra code related to the explicit movement of

data between main and backing store. This means that the programmer

concentrates more on the essence and the way it is structured rather than on the

complexity of the support system.

• The provision ofprotection mechanisms: the fact that orthogonally persistent

systems are strongly typed prevents accidental misuse. In most programming

languages, the simplest way to break the protection system is to output a value

as one type and input it again as another. In persistent systems it is possible for

the type system to extend over lifetime of data.

32

• The preservation of referential integrity: the referential integrity of an object

means that, once a reference to an object in the persistent environment has

been established, the object will remain accessible via that reference for as

long as the reference exists. It also means that the type correctness of all such

references is maintained, and that the identities of the objects are unique.

In most persistent programming systems [MCC+95], data are used as illustrated in

Figure 13. Programs and executable code are held outside the persistent store,

commonly in a file system and they contain, in addition to the access paths of

objects, type specifications for those objects. The type specifications are

represented in the figure by shaded boxes. The data inside the persistent store is

strongly typed and forms a graph of interconnected objects.

executable
program 1 code 1

specification
access point

persistent data

statically
checked / [
components
(persistent
data)

References to data in the persistent store
-► References to dynamically checked access points

Figure 13: Accessing data in an orthogonal persistent system

33

Programs and executable code may be bound to data with largely static type

checking. The graph of values inside the store may be described by purely static

type definitions; the access points to this graph in the shaded area are the points of

dynamic checking, about which assertions are made in programs, which use the

persistent data. These access points may be regarded as part of the persistent store

schema and checking may be organised as a prelude to the program execution, in

which case binding succeeds, and from that point on cannot fail with a dynamic

type error.

The conceptual unification between short-term and long-term data is followed by

the recognition that code and data can usefully be treated in a uniform way

[AM85], Figure 14 illustrates the software development process in a persistent

system where executable code is treated as a first class value. That is, procedures

are allowed to have the same civil rights as any other typed data object in the

language, such as being assignable, the result of expressions or other procedures,

elements of constructed types, etc. Since executable code is a statically checked

component in the persistent store, it may contain direct references to other values

in the persistent store. However, source programs still have to contain assertions

which use the persistent data, and these assertions are dynamically checked.

34

Source programs may be instantiated into different versions of executable code, as

shown in Figure 14, where "program 1" is instantiated into "executable code 1.1"

and "executable code 1.2". This introduces the notion of closure which includes all

the information required to execute a procedure correctly. Closure consists of the

code to execute the procedure and its environment, which contains the local and

free variables of the procedure.

statically
checked
components
(persistent" ■»

data)

persistent store
boundary ** *

dynamically checked
access points

access point
specification" program 1

References to data in the persistent store
► References to dynamically checked access points

Figure 14: First class executable code

Napier88's contribution in simplifying the task of programming is the introduction

of persistence.

2.2.8 Hyper-Programming in Napier88 and PJama

Hyper-Programming is a style of programming applicable to strongly typed

persistent systems, in which a program consists of a mixture of text and hyper-

35

links [Kir92]. The hyper-links denote references to entities in the persistent store.

Referential integrity guarantees that the appropriate entities will be accessible by

the source program for as long as the hyper-links exist.

The requirements for hyper-programming are:

• Persistent Store to contain the program representations and the entities

corresponding to the hyper-links in the programs.

• Linguistic Reflection to support the conversion of hyper-program

representations into executable programs. The hyper-program representations

must consist of denotable values within the persistent programming language

environment.

• Browsing Facilities to provide a graphical representation of entities in the

persistent store. The programmer can point to the representations of the entities

in a browser tool and obtain hyper-links for them to be incorporated into

hyper-programs.

The principal benefits of using hyper-programming as a style of software

development are [KCC+92]:

• Easier Program Composition and Program Succinctness: the programmer

composes programs interactively, navigating the persistent store and selecting

representations of entities to be incorporated into the programs. This removes

36

the need to write access specifications for persistent entities that are accessed

by a program, and this makes it more succinct.

• Safety and Early Checking: one of the ways to improve safety is to perform

checks earlier than normal, subsequently giving increased assurance of

program correctness. This is possible because entities are available for

checking before run-time. The way that checking and linking is performed is

described later in this section.

• Procedure Representations: hyper-programs can be used to represent

executable programs. When a procedure value is created, a hyper-link to its

hyper-program representation may be established. This representation may

contain hyper-links to other values in the persistent store, including links to

shared locations.

• Increased Range ofLinking Times: in the hyper-programming system, linking

can be performed at any time during the software development process.

Deciding when components should be linked into a main program involves

trade-offs between program safety, flexibility and execution efficiency, and

this is described in detail in [KCC+92],

Implementations of hyper-programming can be found in both Napier88 [KCC+93]

and Java™ [ZKM98], [ZDK+99], [ZKM99], [MCD+99], These, together with

37

some other generic browsing tools [GR83], [OHK87], [DB88], [BOP+89],

[Coo90], [KM97], provide a convenient and natural way for persistent

programming environment users to browse the contents of the persistent store,

avoiding the necessity to write down dynamically checked specifications to

perform the equivalent accesses. The advantages of this style of access are

comparable to the advantages of an iconic operating system interface over a

traditional command-line based approach.

Although the two implementations are built using two different languages,

composing hyper-programs is performed in a similar way — the programmer

types text and inserts hyper-links from the browser to the editor. This style of

programming may be considered similar to the style introduced by the Visual

Programming Environments, as the browsing facilities provided allow the

visualisation of objects in the persistent store [CCK+94c],

Figure 15 shows a snapshot of the hyper-programming environment in Napier88.

The top and the right window are browser windows, whereas the lower left is the

editor window. A hyper-link may be inserted by selecting the desired item in the

browser, and pressing the "Link" button in the editor window. Compilation,

linking and execution are operations performed behind the scenes when evaluation

38

is performed. However, the programmer is aware of these operations if an error

occurs.

IK

r1
cnv)

environaent : proc ♦
myEnv : env

noButtonFlag : bool

| readln : proc ■MMM

| scan : proc
9 types : enr

HyperPrograw

for i « 1 to 10 do

begin.
l»rlteStrind("Hello sorld")

end

(cut) (copy) (paste) (clear) (find j

(load) ((save y (link j (evaluate)

i

r1
en*

a : int 3
b ; string

mmm

ayStruct : structure

BriteStr Asia : proc -

I : env ±

mm£

Figure 15: Hyper-programming in Napier88

Figure 16 shows a snapshot of the hyper-programming environment in PJama. The

upper window is the editor tool, and the lower is the browser. The programmer

inserts hyper-links in the editor and composes complete class definitions.

Compilation and linking may be integrated in the evaluation process or may be

performed separately. In the former case, the programmer is required to press the

"Go" button, which results in compiling, linking the class definition, and invoking

method main (if present). In the latter case, the programmer is required to press the

"Display Class" button, which results in compiling, linking the class definition and

display it in the browser.

39

Still

Browser Ins

- J ~i

File Edit

Display Class j Go] Insert Link |

public class MairyExample. {
public static voidmam(Strirtg args[]) {

SSSK5S9K B5553 ■ EE5 !
}

}

{Saved 5 Line: 3, Column: 9

—:::

r Person Class Person

a time •inaccessible static methods y
wrry void<Pmon, Pman) lif ilii

w
1 sk

Pin M r

Figure 16: Hyper-Programming in PJama

The main difference between this implementation of hyper-programming and the

one in Napier88 is that the former supports multiple fonts, sizes, styles and

colours, which can be customised by the programmer.

Hyper-programming itself involves a further unifying step that simplified the

programming development process. In hyper-programming, source programs are

themselves persistent data, along with other values, with which they were

manipulated [Kir92]. This is shown in Figure 17, where instead of textual

descriptions of the dynamically checked access points, direct links from the source

code to the persistent data are established. This is possible because these persistent

data are available at the time when the program is composed. Programs may still

contain assertions, which will be checked dynamically. Dynamic bindings only

40

remain if there are references from the program. In the particular example, access

to persistent data is achieved purely through direct links.

Hyper-programming systems hide most of the accidents of traditional

programming environments, such as different file formats. However, there are two

different tools to support the browsing and editing. Each of these tools provide a

different representation for data and programs respectively. Finally, both the

systems do not provide debugging facilities.

statically
checked
components
(persistent'
data)

persistent store
boundary" - _

dynamically checked
access points

References to data in the persistent store

Figure 17: Accessing source and executable code in HP systems

2.3 Towards Hyper-Code

The hyper-code layer provides an abstract view of the software development

process. Figure 18 outlines the unification steps towards hyper-code, as illustrated

in Figure 4. Starting from traditional systems, each step has provided an extra

41

unification concept and each has a particular way of accessing long-lived data in a

file system, a database or a persistent store.

strongly typed data code as first class values source in the persistent store single
^ a representation

_ _

unifying short- ^ESSSBSFunifying code ^K3sEE^unifying Source^,»VIFl"l'8runifying source^l^^^
term and long- and data programs and and executable
term data data code

Figure 18: The unification chain towards a hyper-code system

Table 2 summarises the features provided by traditional programming

environments (TR), persistent programming systems (PS), persistent programming

systems with first class code (PS-FC), hyper-programming systems (HP) and

hyper-code systems (HC), which will be described in detail in the next chapters.

The features mentioned for each system involve:

• whether the system is strongly typed,

• whether the system supports first class code,

• whether there is visual interaction with the programmer, involving provision of

the relevant user interface,

• whether programs are held in the persistent storage area together with other

entities,

• whether source and executable code are unified.

42

* * *

tit i i t
ITRI PS I PS-FC HP HC

vjyM//r/j0yjr/jr/M/M/M/jr/M/jr/jr/M/jr/w/M/w/M/w/jr/jr/w^^ \f r f

| Strongly Typed
r
| First class code

|v/w/jr/w/j&-

I
!S Visual Interaction

^w/j*/jr/;m<M/jr/jr/jr/jr/jryjr/w/M^^

1 Source in PS

| P
| Unified Source & Executable I
fr/jr/jr/w/w/w/jr/w/w/w/w/M/M/w/w/w/M/M/M/jr/w/w/w/w/w/Mmmm-—

*

*

*

*

Table 2: Comparison of features provided in various systems

2.4 Summary

This chapter provides a survey of the related work in the area of programming

environments, which attempt to hide accidental difficulties of the traditional

programming life-cycle.

Each of the programming environments described represents a category of

software development systems related to the concepts of the thesis. The

programming environments selected are: Emacs (General Editors), Visual Basic

(Visual Programming Environments), CodeWarrior (Editor Based Programming

Environments), Smalltalk and Trellis (Browser Based Programming

Environments), ECLIPSE and APSE (Integrated Project Support Environments)

and Hyper-Programming in Napier88 and PJama (Persistent Programming

Environments).

43

tyr/jr/jr/jr/M

Emacs

i i \ f

\ Abstraction t Unification I Simplification \

CodeWarrior

Visual Basic

Smalltalk 80

Trellis

HP (Napier88, PJama)

IPSEs (Not applied)

Hyper-Code Systems
Table 3: Comparing various programming environments

The description of these programming environments is based on whether these

systems satisfy certain criteria. These criteria specified earlier in section 2.2 are:

abstraction, unification and simplification. Table 3 summarises this description by

comparing these systems with each other. The last row indicates whether hyper-

code systems satisfy these criteria. Justification for this will be provided in the

next chapter. Note that for IPSEs there is no notion of unification, that is a single

representation for both programs and data, as these environments are built on top

of existing tools.

Hyper-Code extends the ideas related to persistence and hyper-programming. This

is described in detail in the next chapters.

44

3 The Hyper-Code Abstraction — Towards Hyper-Code
Systems

This chapter describes the hyper-code view of a programming system in terms of

domains and operations over these domains. It then gives an overview of how

these ideas may be mapped into concrete systems. The description included in this

chapter is intended to be non-language specific.

3.1 The Hyper-Code View of the Programming Life-Cycle

A programming system may be described in terms of two domains and four

operations, which operate over the domains.

3.1.1 Defining the Domains

The two domains are called E and R. E is the domain of language entities that

contains all the first class values defined by the programming language - the

Universe of Discourse - together with various denotable non-first class entities,

such as types, classes and executable code. R is the domain of concrete

representations of entities in domain E. A simple example is the integer value two

in E and its representation 2 in R.

As shown in Figure 19, domain E may be partitioned into a set of executable

entities (Eexec) and a set of non-executable entities (En0_exec). Furthermore, the

executable entities Eexec may be partitioned into a set of executable entities that

45

produce a result (Eexec.res), a set of executable entities that do not produce a result

(Eexec.no-res) an^ a set °f executable entities that produce either a static or dynamic

error (Eexec-err)-

set of all executable entities

yv set of all
y^iasV entities

set of all executable ^ subsets^
entities that produce EeXec Eno.exec

a resuil set °fa"non"
executable

.x^rias si bsetss«^ entities
i at y

Eexec-res ^exec-no-res ^exec-err
* >

set of all executable entities set of all executable entities
that do not produce a result that produce an error

Figure 19: Sets in the entities domain

Figure 20 illustrates how domain R may be partitioned into a set of representations

of executable entities (Rexec) and a set of representations of non-executable entities

(Rno-exec)- ^exec may partitioned into a set of representations of executable

entities that produce a result (Rexec.res), a set of representations of executable

entities that do not produce a result (Rexec-no-res) an<^ a set °f representations of

executable entities that produce an error (Rexec-err)-

46

set of all representations of
executable entities

set of all
representations of
executable entities
that produce a result

Rexec-res

set of all
representations

set of all representations
of non-executable entities

•exec-no-res "exec-err
^ >

set of all representations of executable set of all representations of executable
entities that do not produce a result entities that produce an error

Figure 20: Sets in the representation domain

3.1.2 Domain Operations

The four domain operations, reflect, reify, execute and transform, are used to

underpin the concrete operations that are visible to the programmer, as will be

described later. As shown in Figure 21, they operate on the two domains, E and R.

In the figure, the labelling is used to illustrate the correspondence between entities

and representations. For example, the entity labelled "1" is represented in domain

R by the representation labelled "1".

Domain E Domain R

Figure 21: Domains and domain operations

47

The four domain operations operate as follows:

• reflect: translates a representation to a corresponding entity, thus mapping

from the representation domain to the entity domain (R => E).

• reify, translates an entity to a corresponding representation, thus mapping from

the entity domain to the representation domain (E => R).

• execute: executes an executable entity, potentially with side effects to the state

of the entity domain. Depending on the entity being executed, there are three

cases:

the execution of an entity e e Eexec.res produces a first class entity as a

result, thus mapping from the entity domain to the entity domain

(E => E).v ^exec-res ^no-exec / *

- the execution of an entity e e Eexec.no.res produces no result

(Eexec-no-res =» no result).

- the execution of an entity e e Eexec_err produces an error

(Eexec-err^ nu reSU,t " er™r)•

48

• transform-, manipulates a representation to produce another representation,

thus mapping from the representation domain to the representation domain

(R => R).

3.1.3 Composing Domain Operations - Equivalences

The domain operations may be composed, and are used for the definition of the

concrete operations within a particular system.

The following equivalences hold:

• the result of reflecting the representation of an entity e is an entity that is

equivalent (=en) to the original:

reflect (reify (e)) =en e

where e e E and =,n is equivalence over entities. The precise definition of the

=en equivalence must be defined for each particular language when E is

defined for that language. To give a hint of the nature of this equivalence in a

particular setting, consider that some programming languages define

equivalence over complex structures as identity (pointer equality), whereas

others define it as (recursive) component equality.

• the result of reifying an entity produced by reflecting a representation r is

itself a representation that is equivalent (=rep.en) to r.

49

reify (reflect (r)) = ep_cn r

where r e R and =rep.en is equivalence over representations i.e. r, =rep.en r2 iff

r, and r2 represent equivalent entities, that is reflect (r,) =en reflect (r2). The

implication here is that an entity may have more than one representation.

In some cases the representations will be exactly the same:

reify (reflect (r)) =rep r

where re R and =rep is equivalence over representations and is defined

precisely for a particular representation form.

• assuming that r is a representation of an entity e eEexec.res , the result of

reifying an entity produced by executing e is a representation that is

equivalent (=rep.sub) to r:

reify (execute (reflect (r))) =rep.sub r

where r e Rexec.res , reify (execute (reflect (r))) e Rno.exec and =rep.sub is

substitutability of representations, that is r, =rep.sub r2 iff any occurrence of r,

in a valid representation could be substituted by r2 and yield a valid

representation. The intuition here is that the result of executing a fragment of

50

code may be legally substituted for that fragment in the original. In a strongly

typed language this means type equivalence.

3.1.4 Interpretations of the Domain Operations

The above description of the domain operations is general and is given in order to

explain the way that these operations map between the specified domains. Each

domain operation or any of the above combinations of domain operations may be

interpreted in various ways resulting in different semantics.

For example, the execute policy may be partial evaluation or lazy evaluation

[Dav92], [HM76] giving different semantics for the evaluation. Another example

of different interpretation is whether the execute operation provides feedback of its

state to the programmer, while it is performed. Finally, the result of evaluation

may either replace the original representation or may be returned separately.

However, the description of the domain operations, given in section 3.1.2, remains

valid for every possible interpretation. Details of policies chosen for particular

systems are given in section 4.2.

3.1.5 Towards Concrete Systems

For any programming system, the hyper-code view may be provided by a concrete

Hyper-Code System (HCS). Such systems may be categorised as shown in Figure

22. All these may be described in terms of the two domains and four operations.

51

However, these domain operations are not visible to the programmer. Instead,

various sets of concrete operations are defined, which are called the Hyper-Code

Operations (HCOs). This thesis focuses on a particular set of five HCOs, which

are used in a number of HCSs, to be described.

Hyper-Code

Hyper-Code

nyjjei -uuue

Operations - --- > Chosen set Other sets
(HCO) of 5 HCOs Of HCOs

Specific HCO
Policies ^ PPG-HCOs Other set of policies

Specific
Hyper-Code- > pjama ProcessBase PJama Other languages
Systems

Figure 22: Categorisation of HCSs

The precise definition for each of the particular sets of HCOs is given with respect

to a particular set of policies for the corresponding underlying domain operations.

This thesis focuses on a particular set of policies, termed the PPG1 policy set, and

on two particular mappings of this set to specific HCSs. Note that the specification

of different policies result in different HCSs, even if these are applied on the same

language.

1 PPG stands for Persistent Programming Group and is a term that will be used for particular HCSs.

52

3.2 Hyper-Code Systems

The features common to all HCSs are:

• the HCS presents the programmer with a single, uniform representation, the

Hyper-Code Representation (HCR), for all code and data throughout all

stages of the software development process. One possible single representation

form is based on source code, which is in hyper-program form that can include

direct links to existing entities. This will be described in greater detail in

section 4.1.

• the HCS provides a single tool, the Hyper-Code Assistant (HCA), which

fulfils the functions of both the browser and the editor in the hyper-

programming system. It achieves this via the HCOs.

3.2.1 General Requirements for the Hyper-Code Operations

The hyper-code operations support the use of a single representation as well as

satisfying the following requirements:

• the construction of new programs;

• the editing of programs;

• the insertion of bindings to entities into programs;

• the browsing of representations of program and data in order to discover more

details about the internal structure of the entities they represent;

53

• the execution and debugging of hyper-code representations.

The above requirements are applicable to any set of HCOs. The thesis will now

focus on one particular example set of HCOs, which forms the basis for the PPG

policies set.

3.2.2 A Particular Set of HCOs

A set of five HCOs is introduced. These are sufficient to fulfil the above

requirements, and are applicable specifically to systems that involve the notion of

persistence. These operations are:

• explode: expands a selected HCR to show more detail, which is itself

expressed in the form of an HCR. The programmer may control the degree of

detail displayed. This is explained in the context of a particular HCR form in

section 4.2.5.

• implode: contracts a selected HCR to show less detail which is itself expressed

in the form of an HCR (an exploded hyper-code representation is contracted

back to its original form).

• evaluate: executes a selected HCR and returns the result, if any, as a new

HCR.

• edit: encompasses all conventional editing facilities.

• get root: returns a selected persistent root as an HCR.

54

Explode and implode satisfy the requirement for browsing representations of

programs and data. Evaluate satisfies the requirement of executing and debugging

representations. Edit satisfies the requirement of constructing new programs as

well as editing existing ones. Finally, get root creates bindings to values. In

conjunction with the explode and edit operations, these bindings may then be

inserted into programs.

The HCOs are described in terms of the domain operations as follows:

• Explode is the reification of reflecting an HCR r e R. Exploding r results in a

more detailed HCR which is equivalent (=rep.en) to the original.

[explode (r) is reify (reflect (r))] =rep.en r,

where r, explode (r), reify (reflect (r)) e R

• Implode is also the reification of reflecting an HCR r e R. Imploding r results

in a less detailed HCR which is equivalent (=rep_en) to the original.

[implode (r) is reify (reflect (r))] = .ep.en r,

where r, implode (r), reify (reflect (r)) e R

• Evaluate is described as follows, depending on the HCR r e R being

evaluated:

55

Evaluating an HCR r e Rexec_res is the reification of executing the entity

e e Eexec_res, produced by reflecting r. Evaluating r results in an HCR

which is equivalent (=rep.sub) to the original.

[evaluate (r) is reify (execute (reflect (r)))] =rep.sub r,

where r g Rexec-res' evaluate (r), reify (execute (reflect (r))) e Rno.exec

Evaluating an HCR r e ReXec-no-res the execution of an entity

e e Eexec_no_res produced by reflecting r.

evaluate (r) is execute (reflect (r)),

where r e Rexec_no.res

Evaluating an HCR r e Rexec.err is either the execution of an entity

e g Eexec.err produced by reflecting r, or just the reflection of r. The

particular set of domain operations that evaluate involves in this case

depends on whether the error is dynamic or static respectively. In either

case the error is produced and displayed to the programmer.

evaluate (r) is execute (reflect (r)), if the error is dynamic

evaluate (r) is reflect (r), if the error is static

56

where r e Rexec.err

- Evaluating an HCR r e Rno_exec is the reification of reflecting an entity

e e Eno.exec produced by reflecting r. Evaluating r results in an HCRwhich

is equivalent l=rcp cn) to the original.

[evaluate (r) is reify (reflect (r))] =rep.en r,

where r, evaluate (r), reify (reflect (r)) e Rno-exec

• Edit is the transformation of an HCR re R into another HCR.

edit (r) is transform, (r),

where r, edit (r), transform (r) e R

• Get root is the reification of a hyper-code entity e e Eno_exec that produces an

HCR r e Rno.exec. Get root is applicable only over non-executable entities, that

is first class values.

get root (e) is reify (e),

where e e Eno.exec, get root (e), reify (e) e Rno.exec

57

3.2.3 Accessing Data in a Persistent HCS

Sections 2.2.7 and 2.2.8 include a description of the way that persistent and hyper-

programming systems access data. This section compares these systems with

HCSs with respect to that particular aspect.

In persistent HCSs, data is accessed as shown in Figure 23. Programs (HCRs) are

held in the persistent store together with other entities and contain direct references

to those entities. Visual interaction between the programmer and the system is

achieved only through the HCRs at any stage of the software development process.

In constructing a program, the programmer writes HCRs. During execution, during

debugging, when an error occurs or when browsing existing programs and data,

the programmer is presented with, and only sees, HCRs. Thus, entities such as

object code, executable code, compilers and linkers, which are merely artifacts of

how the program is stored and executed, are hidden from the programmer, since

these are maintained and used by the underlying system. The aim of this approach

is that the programmer may concentrate on the inherent complexity of the

application rather than on that of the support system.

58

statically
checked
components
(persistent
data)

persistent store
boundary v.

dynamically checked
access points

v_

= hyper-links

References to data in the persistent store

Figure 23: Accessing data in a hyper-code system

3.3 Summary

A simplified view of a programming system is provided through the hyper-code

layer, which unifies source and executable.

Any programming system can be described in terms of two domains and four

domain operations. The two domains are called E and R. E is the domain of the

entities and R the domain of the representations. The domain operations, reflect,

reify, execute and transform, are used to define various sets of concrete operations.

For any programming system the hyper-code view may be provided by a concrete

Hyper-Code System (HCS). The common features in all HCSs are: a single

representation, the Hyper-Code Representation (HCR), and a single tool, the

Hyper-Code Assistant (HCA).

59

Various sets of operations may be performed, which are called Hyper-Code

Operations (HCOs). This thesis focuses on a particular set of five concrete

operations. These operations, explode, implode, evaluate, edit and get root, are

described in terms of the domain operations.

The next chapter focuses on defining the HCOs with respect to particular policies

related to the underlying domain operations. This definition is combined with an

illustration of the user interface for each of the HCOs.

60

4 Concrete Hyper-Code System

The purpose of a Hyper-Code System (HCS) is to provide the programmer with a

conceptually simple user interface with which to manipulate a single

representation of a program throughout its life time, the hyper-code representation

(HCR). This user interface is provided by the hyper-code assistant (HCA) through

which all the Hyper-Code Operations (HCOs) are performed.

The requirements for choosing an appropriate HCR and the operations performed

in a HCS through the HCA, will be described in this chapter. To illustrate the

hyper-code concepts, the examples given are for a non-language specific HCA.

Concrete examples in particular programming languages are given later.

4.1 The Hyper-Code Representation

Hyper-code may be implemented for any suitable language. The precise form of

the hyper-code representation will vary depending on the syntax of the particular

language, but will be guided by the following criteria that will apply for all

languages:

• The HCR must accommodate programs written in the convention of the

language. Normally this implies that the HCR must include pure text as a

subset.

61

• The HCR must accommodate the one to one mapping (unification) between

executable and source code. To achieve that, representation of closure is

required, which consists of code and the environment under which it is

executed. The environment may contain shared values that are bound into it at

the time it is formed, and in languages with update, the values in the locations

may change. Where the sharing is significant, such as in the preservation of

identity, then a purely textual representation is not sufficient. In order for the

HCR to completely represent closure, direct links to entities are used, to

preserve the sharing, as explained in [CCK+94c].

• The HCR must support views of linked entities, to arbitrary levels of detail.

• The views of entities must themselves include text and direct links in the same

form as could be constructed by the programmer, since there is only a single

HCR.

• Finally, the views must be self-contained and syntactically valid. Thus, for any

view of an entity, it should be possible to copy its representation, and evaluate

it without error. The result of this evaluation will depend on the semantics of

the particular language.

A hyper-program, which is a combination of text and hyper-links to entities, is

suitable for use as an HCR. An HCR can be produced for every entity in domain

62

E, with its precise form depending on the kind of entity being represented. This

form will be illustrated later in this thesis, where domain E will be defined for the

particular languages ProcessBase and PJama.

Similarly, the way that each hyper-link is presented depends on the kind of entity

that it represents. Figure 24 shows an example of the general form of a HCR

contained in a HCA window, in which the horizontal lines indicate text. In this, a

hyper-link is represented by a rounded box with no label and a background colour

denoting the kind of entity it represents. Customisations may be applied in order to

change the way that hyper-links are displayed. For example, it should be possible

to customise hyper-links to be displayed as WWW links.

In Figure 24 there arc three hyper-links. Hyper-Link 1 itself contains an HCR that

is text and a hyper-link to an entity (.Hyper-Link 2).

□
Hyper-Link 1

Hyper-Link 3 Hyper-Link 2

Figure 24: An example HCA window containing an HCR

63

4.2 A Particular Set of Hyper-Code Operations

The hyper-code operations, introduced in section 3.2.2, are performed in windows

provided by the HCA tool, an example of which is shown in Figure 24. Each of the

operations is described with respect to a particular interpretation (policy) of the

corresponding underlying domain operations. This interpretation is the system's

default behaviour. Other interpretations may be available as add-in customisations.

One of the major features of these HCOs, which distinguishes them from

conventional programming operations, is the ability to inspect the entities

represented by hyper-links at any time of the software development process. This

includes inspection of the current values of variables during evaluation, where the

programmer is presented with a changing HCR, as will be explained later in

section 4.2.3.

4.2.1 Explode

The explode operation is performed for each hyper-link in the selected

representation. Exploding each hyper-link results in a more detailed HCR, that is

equivalent (=rep.en) to the original contracted hyper-link. The semantics for

explode are determined by the interpretations chosen for the underlying operations,

which involve the following policies:

• reflection is a direct translation of source code.

64

• reification returns a more detailed HCR that replaces the original hyper-link.

The HCR resulting from explode is non-editable. This ensures that a representation

accurately denotes the entity at all times. The exploded representation still denotes

the same entity as the original hyper-link. However, the programmer is able to

copy this representation and manipulate the copy elsewhere. In Figure 24, Hyper-

Link 1 is an exploded hyper-link that contains a non-editable HCR. The

programmer may copy this representation and paste it in another HCA window,

and manipulate it appropriately.

4.2.2 Implode

The implode operation is performed for each exploded hyper-link in the selected

representation. Imploding each hyper-link results in a less detailed HCR, that is

equivalent (=rep.en) to the original exploded hyper-link. The semantics for implode

are determined by the interpretations chosen for the underlying operations, which

involve the following policies:

• reflection is a direct translation of source code.

• reification returns a less detailed HCR that replaces the original hyper-link.

In Figure 24, imploding the hyper-link in the second row will result in the HCR

shown in Figure 25.

65

Figure 25: The HCR of Figure 24 after imploding its hyper-links

4.2.3 Evaluate

This operation evaluates a selected HCR. The semantics for evaluate are

determined by the interpretations chosen for the underlying operations, which

involve the following policies:

• reflection is a direct translation of source code— for example, no optimisation

is performed.

• execution provides feedback of its current state, as will be explained in section

4.2.3.1.

• execution involves strict and complete evaluation.

• reification returns an unexploded hyper-link as a result, which is kept

separately from the HCR being evaluated. This is explained in section 4.2.3.2.

4.2.3.1 Viewing the Evaluation

During evaluation the HCA tool progressively changes the HCR being evaluated

— when an identifier comes into scope it is replaced by a hyper-link to its current

66

value. Such a hyper-link is a temporary representation. When evaluation exits the

scope of the identifier, the hyper-link returns to its textual representation. Defining

when an identifier is in scope depends on the scope rules of the particular

language.

Identifiers are the only entities that are replaced by hyper-links during evaluation.

Statically defined hyper-links remain unchanged. The HCR may also contain

representations of executable entities that return a result, e.g. "1+1". Depending on

the execution policy such expressions may be presented to the programmer in

various ways — for example during evaluation the programmer could be presented

with a hyper-link representing the result of executing this expression. However,

since the execution policy defined here involves strict and complete evaluation,

such representations remain unchanged during evaluation.

As the HCR is evaluated, a progress bar on the left of the HCR denotes the current

line. As with statically defined hyper-links, hyper-links to identifiers can be

exploded in order to inspect their current values. Exploding can be performed at

any time, whether the HCR is being evaluated or evaluation has been interrupted.

Any exploded hyper-link to a mutable location, where provided by the language, is

automatically updated to display any new values assigned to the location.

67

The evaluation process may be interrupted either when an error occurs, or when a

breakpoint is reached. In the case of a static error, the programmer is notified of

the position where the error is detected. In the case of a dynamic error or when a

breakpoint is reached, evaluation is suspended. Breakpoints are set during

composition, as will be explained later in this chapter.

Figure 26 illustrates three snapshots of evaluating an example HCR, which

initially contains two hyper-links and an identifier (x). The indentation of lines

indicates different scope levels. Figure 26(a) shows the HCR during composition,

where the identifier x is represented textually. The hyper-links here are links to

entities in the persistent store. These can be thought of as anonymous values that

are always in scope for the HCR being evaluated. When evaluation reaches the

point indicated by the progress bar shown in Figure 26(b), i.e. when x comes into

extent, all textual representations of the identifier x currently in scope are replaced

by hyper-links. On exiting the scope of x, the hyper-link representing the identifier

x is returned to its textual representation; this is illustrated in Figure 26(c).

68

Scope Level 0
^ Scope Level 1

A

Hyper-Code Assistant

Scope Level 0
A Scope Level 1

A

Hyper-Code Assistant

(a)
Entering scope level 0

(Identifier x out of scope)

(b)
Entering scope level 1
(Identifier x is declared)

Scope Level 0
^ Scope Level 1

A

Hyper-Code Assistant

(C)
Exiting scope level 1

(Identifier x out of scope)

Figure 26: Snapshots of the evaluation process

4.2.3.2 Result of Evaluation

The evaluation of an HCR r returns a result if r represents:

• an executable entity that returns a result (re Rexec.res)

• a non-executable entity (r e Rno.exec)

When evaluation produces a result, this is returned as a hyper-link. By default, as

introduced earlier, the result of evaluation is kept separately from the original

HCR and is inserted in the same HCA window as the original HCR, right after that

representation. A possible customisation is for the resulting hyper-link to replace

the original HCR. Another is to preserve the original HCR and insert the resulting

hyper-link in another position, such as the clipboard or a newly created HCA

window.

69

The resulting hyper-link is an HCR equivalent (=rep_sub) to the original. In the

case of evaluating a single hyper-link, the resulting HCR is defined to be =rep

equivalent to the original. The =rep equivalence is defined as follows (if two

representations are =rep equivalent, they are automatically =rep.sub equivalent):

-rep: two hyper-code representations are equivalent (=rep) iff each

corresponding hyper-code character is equivalent. A hyper-code character

may either be an ASCII character or a hyper-link. Two hyper-links are

equivalent if they represent equivalent (=en) entities. Equivalence over

hyper-code entities is language specific.

4.2.4 GetRoot

This operation produces a hyper-link for each persistent root. The semantics for

getRoot are determined by the interpretations chosen for the underlying operations,

which involve the following policy:

• reification returns an unexploded hyper-link as a result, which is inserted in a

specific HCA window.

All the resulting hyper-links are contained in a non-editable hyper-code window,

as shown in Figure 27.

70

Hyper-Code Assistant

a link to a

persistent root

Figure 27: The persistent roots HCA window

4.2.5 Edit

This operation encompasses the conventional editing facilities and other facilities

related to the manipulation of the hyper-code representations. The semantics for

edit are determined by the interpretations chosen for the underlying operations,

which involve the following policy:

• transformation is unconstrained in that any sequence of text and hyper-links

may be constructed2.

The following editing facilities are provided through the HCA window:

• create a new hyper-code window.

• compose HCRs: HCRs are edited in a similar way to text in conventional

text-editors. The HCA supports navigation using keyboard and mouse,

embedded hyper-links of arbitrary size, which are treated in the same way as

characters, and the standard editing facilities such as:

typing: inserts and deletes plain text.

2 In contrast, for example, a different strategy could be used in a syntax-directed editor, where only
certain HCRs could be constructed.

71

- drag and drop: drags a selected HCR and drops it in the same or in a

different HCA window. The programmer may choose whether this

operation results in copying or moving.

cut: deletes the selected HCR and stores it in the clipboard.

copy: creates a copy of the selected HCR and stores it in the clipboard.

paste: inserts the HCR stored in the clipboard at the current insertion point

of the HCA window, replacing any selected HCR.

• set/remove a breakpoint: adds a breakpoint at the line containing the

insertion point, in which case a bullet is displayed on the left of the line.

The PPG-HCS also provides the following facilities:

• editable clipboard: the programmer is able to see the contents of the clipboard

via the clipboard window, which is an editable HCA window.

• multiple faces: the programmer is able to change the way that HCRs are

displayed in the HCA window, since the system supports multiple fonts, sizes,

styles and colours.

• update of locations: the programmer is able to update the value of a location,

where provided by the language, without having to compose a new HCR. Such

an update is achieved by dragging a hyper-link representing a first class value

72

and dropping it over a hyper-link to a location of the appropriate type. This

operation is only applicable if locations are treated as first class values.

• customisation mechanism: the user is able to customise the way HCRs are

displayed. The customisation mechanisms provided are:

- customise hyper-links: this changes the way unexploded hyper-links are

displayed. There are two kinds of customisation:

customise particular hyper-links: the programmer may add a label to

a hyper-link or display it as an image or display it as an WWW link.

customise hyper-links representing values of a particular type: the

programmer can customise hyper-links representing values of a

particular type. The system lets the programmer customise these

hyper-links as an image or a string or a WWW link. The user interface

for this kind of customisation depends on the language.

customise levels of expansion for explode: this specifies the levels of

expansion when the explode operation is performed. The system's default

value is one, which means that explode results in a detailed HCR that

contains text and unexploded hyper-links. If, for example, the programmer

sets the value to two, then when a hyper-link is exploded it produces an

HCR, in which the hyper-links included are exploded in turn.

73

• other features: HCRs may be printed. There is also a search facility where the

programmer may search for an HCR. HCR matching is defined by the =rep

equivalence. In Figure 28, the programmer searches for the specified hyper¬

link in every HCA window.

Search for:

(J

(Search } (Close }

Figure 28: Searching in a HCS

4.3 Summary

A Hyper-Code System (HCS) provides the programmer with a conceptually

simple user interface through which specific Hyper-Code Operations (HCOs)

are performed over a single representation, the Hyper-Code Representation

(HCR). A representation that fulfils certain criteria is the hyper-program form, as

explained in section 4.1.

The particular HCOs are: explode, implode, evaluate, get root and edit. This

chapter defines the chosen operations with respect to particular interpretations of

the corresponding underlying domain operations. The appearance of the user

interface for each of these operations is also illustrated.

74

The description in chapters 5 and 6 is given for completeness, that is to illustrate

the way that mapping of the PPG-HCS policy set into particular HCSs in particular

languages can be achieved. The languages are: ProcessBase [MBG+99b], a simple

persistent language, and PJama [ADJ+96], a persistent version of Java.

75

5 A Hyper-Code System for ProcessBase

ProcessBase [MBG+99b], [MBG+99d] is the simplest of a family of languages

and support systems designed for process modelling. It consists of the language

and its persistent environment. The persistent store is populated and the system

uses objects within the persistent store to support itself. The model of persistence

in ProcessBase is that of reachability from a root object.

ProcessBase obeys the principles of correspondence, abstraction and type

completeness [Mor79]. It is the belief of the designers that such an approach to

language design yields more powerful and less complex languages.

The ProcessBase type system philosophy is that types are sets of values from the

value space. The type system is mostly statically checkable, a property highly

desirable wherever possible. The type equivalence rule in ProcessBase is by

structure and both aliasing and recursive types are allowed in the type algebra.

5.1 Domains in ProcessBase

There are two distinct domains in the ProcessBase HCS, domain E and domain R.

Domain E contains all the first class values, identifiers, types and code. Code is

any executable entity, e.g. an expression performing addition between two

integers. Identifiers are of specific types. Types are classified into base types and

constructed types. Base types are: scalars, type string, type any. Type constructors

76

are: location, vector, view, procedure. These are defined in the ProcessBase

language specification [MBG+99b],

Every entity in domain E has its corresponding HCR in the domain R. Each

representation is a combination of text and hyper-links to entities. A hyper-link is

displayed by default as a rounded box with no label. The background colour

indicates if the hyper-link represents a type, or a value or an identifier1. Hyper¬

links representing identifiers have different appearance from first class values.

Table 4 illustrates the appearance of representations of entities in domain E. Every

entity in domain E, except code, can be represented by a single hyper-link in

domain R.

scalar value, string, any,
location, vector, view,

procedure, interrupt, op-code

a

ty£e

code any combination of text and hyper-links
e.g. the representation ofar' hat
adds two integers could be

Table 4: Appearance of representations of ProcessBase entities

3 White for first class values, black for types and patterned-grey for identifiers.

77

5.2 Equivalences in ProcessBase Hyper-Code

As stated earlier, four kinds of equivalences are defined in a HCS; three

equivalences over HCRs (=rep, =rep.en an^ =reP-sub)> which have already been

defined, and an equivalence over hyper-code entities (=en). Table 5 defines the

=en equivalence over ProcessBase entities.

identifier Same name and scope

first class value,

interrupt, op-code
Equality as defined in ProcessBase language
specification

type Type equivalence as defined in ProcessBase
language specification

code Same sequence of instructions

Table 5: Definition equivalence over ProcessBasc entities in E

Type equivalence and equality between values are defined in the ProcessBase

language specification [MBG+99b]. Type equivalence in ProcessBase is based

upon the meaning of types, and is independent of the way types are expressed

within the type algebra. This style of type equivalence is normally referred to as

structural equivalence. According to the structural equivalence rules, every base

type is equivalent only to itself, and for two constructed types to be equivalent,

they must have the same constructor and be constructed over equivalent types.

78

All values in ProcessBase have first class citizenship except interrupts and op¬

codes. This implies that they have the right to be declared, to be assigned, to have

equality defined over them, and to persist. The ProcessBase language specification

defines equality over first class values, as follows:

• Two strings are equal if they have the same characters in the same order and

are of the same length.

• Two values of type any are equal if they can be projected onto equivalent types

and the projected values are equal.

• Two locations or vectors or views are equal if they have the same identity, that

is, the same pointer.

• Two procedures are equal if their values are derived from the same evaluation

of the same procedure expression, that is, they have the same closure.

5.3 Operations Over HCRs

The HCOs are performed through the HCA over the HCRs. The HCOs, explode,

implode, evaluate, get root and edit, will be described in the following sections.

5.3.1 Explode

In the explode operation, each hyper-link in the selected representation is enlarged

to show a more detailed HCR which is equivalent (=rep_en) to the original

contracted hyper-link. The exploded representation is a valid ProcessBase

79

fragment. Operation explode follows the reflection and reification policies

introduced in section 4.2.1.

Table 6 shows examples of exploding hyper-links to identifiers, first class values,

interrupts and op-codes.

| Hyper-link f Examples of exploded j Description
to... I hyper-links

iv/w/w/w/M/jr/M/jr/w^^

identifier

/Mw/w/jr/w/M/jr/A

2 [
r/w/jm/w/jr/jr/jm/M/M

value of the identifier

int, real, bool r 2 i
»

2.0 | I true I literal values of types integer,
real and boolean respectively

string "vangelis" 1 string value

any ar|y(f~~)) a value, represented by a

hyper-link, injected into any

location Oo0 a location containing a value
represented by a hyper-link

vector vector @1 of [(), [),(1] | a vector with values

represented by hyper-links as
elements

view view (name <-() ; age <{___))j a view with its fields

initialised with values

represented by hyper-links

procedure fun() a procedure with no

parameters, return type
represented by the first
hyper-link and a value
represented by the second
hyper-link as body

interrupt clocktick an identifier of an interrupt

op-code opcodel an identifier of an op-code

Table 6: Exploding hyper-links to ProcessBase values and identifiers

80

Table 7 shows examples of exploding hyper-links to base and constructed

ProcessBase types. Note that interrupt and op-code types can not be hyper-linked.

f/ |
Hyper-link J Examples of exploded f

to... | hyper-links
Description

int, real,
bool type

r/mmA \

literal types int, real, bool

string type string type

any type any f any type

location

type

loc [I a location type containing a type
represented by a hyper-link

vector type a vector type with elements of a type
represented by a hyper-link

view type view[name^H ; age:I a view type containing fields of the
types represented by hyper-links

procedure
type

fund |)-> a procedure type with a parameter of
a type represented by the first hyper¬
link and a return type represented by
the second hyper-link

Table 7: Exploding hyper-links to ProcessBase types

5.3.2 Implode

In the implode operation, each hyper-link in the selected representation is

contracted to show a less detailed HCR. Operation implode follows the reflection

and reification policies introduced in section 4.2.2. In Table 6 and Table 7,

imploding a hyper-link in the second column results in a hyper-link that looks like

one of the HCRs shown in Table 4.

81

5.3.3 Evaluate

This operation evaluates a selected HCR, following the execution and reification

strategies introduced in section 4.2.3.

5.3.3.1 Viewing the Evaluation

During evaluation the HCA tool progressively changes the HCR being evaluated

— when an identifier comes into scope it is replaced by a hyper-link to its current

value. Such a hyper-link can be exploded in order to inspect its current value.

When evaluation exits the scope of the identifier, the hyper-link returns to its

textual representation. However, in some cases identifiers can escape the scope

they are defined; this will be explained later in this section.

The scope of an identifier starts immediately after its declaration and continues up

to the next unmatched closing brace (either "}" or "end") [MBG+99b]. If the same

identifier is declared in an inner sequence, then while the inner name is in scope

the outer one is not.

The evaluation process may be interrupted when an error occurs or when a

breakpoint is reached. In case of a static error, the programmer is notified of the

position where the error is detected - the line on which the error is detected is

highlighted. Figure 29 shows an example of such an error (type incompatibility).

In the case of a dynamic error or when a breakpoint is reached, evaluation is

82

suspended. Resuming evaluation is possible only if interruption occurred due to a

breakpoint.

let age <- loc(26)

age :=a
: E_

Program composition error:
Incompatible types

a link to a

string

Figure 29: A ProcessBase HCR that produces an error

Figure 30 illustrates three snapshots of evaluating an example HCR, which

initially contains a hyper-link to a procedure that prints out an integer, and two

identifiers, both a, declared and used in different scope levels. Figure 30(a) shows

the HCR during composition, where identifiers are represented textually. The

hyper-links here are links to entities in the persistent store. When evaluation

reaches the point indicated by the progress bar shown in Figure 30(b), i.e. when

the first a comes into extent, all textual representations of the identifier a currently

in scope are replaced by hyper-links. When evaluation enters the new scope the

new a is declared. As shown in Figure 30(c), all occurrences of the new identifier

a are replaced by hyper-links. However, the first two hyper-links represent

different values from the last two. When evaluation leaves the scope levels, the

reverse process of replacing hyper-links with identifiers takes place. Thus, when

evaluation finishes the HCR again is as shown in Figure 30(a).

83

Hyper-Code Assistant Hyper-Code Assistant Hyper-Code Assistant

(a) (b) (c)
Composition time Entering scope level 0 Entering scope level 1

(Identifier a out of scope) (Identifier a is declared) (A new identifier a is declared)

Figure 30: Snapshots of evaluating a ProcessBase HCR

As introduced earlier, there are some cases where identifiers can escape the scope

in which they are defined. Such a case is shown in Figure 31. Figure 31(a) shows

the HCR during composition, where identifier a is represented textually. When

evaluation reaches the point indicated by the progress bar shown in Figure 31(b),

i.e. when a comes into extent, all textual representations of the identifier a

currently in scope are replaced by hyper-links. When evaluation terminates, these

hyper-links are replaced again by the textual representations of a.

(a) (b)
Composition time Entering scope level 0

(Identifier a out of scope) (Identifier a is declared)

Figure 31: An example of an identifier that escapes its scope

As will be explained later, the result of this evaluation is a hyper-link representing

the procedure. When this hyper-link is exploded, to show the procedure code, the

84

identifier a is denoted by a hyper-link to its value. This follows since the

procedure source code is recorded at the point of closure formation, at which point

the identifier a has been replaced by the link.

Figure 32 shows the result of evaluating the particular HCR, where the hyper-link

representing the location is exploded in turn.

Hyper-Code Assistant

fun() -> int;1 loc(1)

Figure 32: An HCR representing a closure

5.3.3.2 Result of Evaluation

The result of evaluation depends on the HCR being evaluated. Table 8 illustrates

examples of representations that return a result, where the first column contains

the domain of the HCR being evaluated, the second column an example HCR and

the third column the result of evaluating this HCR. The HCR in the first row

represents an executable entity that returns a result - two values of type int are

added and the result is returned as a hyper-link. The HCR in the second row

represents a non-executable entity - a single hyper-link is evaluated. Evaluating

any other representation returns either no result or an error.

85

\ Representation j Example of representation | Result of evaluating f
| category - Domain y | the representation jj
An executable

representation that
returns a result

(Rexec-res^

a
a link to an

integer

\
a link to an

integer

CD
a link to an

integer

A non-executable

representation

(Rno-exec)

a link to an

integer

Table 8: Evaluating ProcessBase HCRs

The resulting hyper-link is an HCR equivalent (=rep_sub) to the original. In the

case of evaluating a single hyper-link, as in row 2, the resulting HCR is defined to

be ==rep equivalent to the original.

5.3.4 Get Root

In ProcessBase, this operation produces a hyper-link for a persistent root. The

hyper-link is contained in a non-editable hyper-code window, as shown in Figure

33. Operation get root follows the reification policy introduced in section 4.2.4.

a link to a

persistent root
Hyper-Code Assistant

Figure 33: The persistent roots HCA window

5.3.5 Edit

This operation follows the transformation policy introduced in section 4.2.5. It

encompasses the basic conventional editing facilities and some other facilities

86

related to the graphical user interface.

Composing HCRs involves typing, drag and drop, cut, copy and paste. A snapshot

of composing an HCR is shown in Figure 34.

Hyper-Code Assistant

Figure 34: Composing a ProcessBase HCR

A breakpoint may be added or removed as explained earlier in this chapter. In

Figure 34, the bullet at the beginning of line 3 denotes that the programmer has set

a breakpoint. Figure 34 also illustrates the ability to support multiple styles, fonts

and colours.

Updating a location is achieved by dragging a hyper-link to a first class value and

dropping it over a hyper-link to a location of the appropriate type, as shown in

Figure 35.

direction in which the
hyper-link is being

Figure 35: Updating a ProcessBase location

87

Customising the way that hyper-links are displayed involves either labelling a

particular hyper-link or labelling hyper-links that represent values of a particular

type. In the former case, the programmer selects the appropriate option in the pop¬

up menu associated with a particular hyper-link as shown in Figure 36(a). The

programmer then provides a string for the label, for example the string "Person".

Figure 36(b) shows the unexploded hyper-link after customisation.

Hyper-Code Assistant

1n
5

dopy ; |
Represent as String
Represent as WWW link | p

Hyper-Code Assistant

(Person}

(a) (b)

Figure 36: Customising a particular hyper-link

To customise hyper-links representing values of a particular type, the programmer

specifies the type and a fragment of code. This fragment is executed each time a

corresponding hyper-link is displayed and the result is used as a label for that

hyper-link. The label is a string.

Figure 37 shows an example of such a customisation, which is performed for all

hyper-links representing values of a particular type specified in the first field. The

fragment of code, specified in the second field, accesses the value through the

theObject parameter. After applying this customisation, each hyper-link

representing a value of the given type will be displayed with the string resulting

88

from executing the fragment of code in the second field, and that is the name field

of the value.

Customise Type:
(using theObject)

view(name:string; age:int)

Customise as String: theObject.name

Customise as WWW link:

(Customise^ C Cancel)

Figure 37: Customising hyper-links representing values of the specified type

5.4 Summary

This chapter described the mapping of a particular HCS into ProcessBase. The

domain E, in a concrete HCS in ProcessBase, contains identifiers, code, types and

the first class values as specified in the ProcessBase language specification.

Every entity in domain E has a corresponding HCR in R. The particular HCOs,

explode, implode, evaluate, get root and edit, operate over these HCRs. This

chapter illustrated the user interface for each of these operations.

89

6 A Hyper-Code System for PJama

Java™ is an object-oriented, architecture-neutral, interpreted language that

supports multithreaded programming and distribution and provides encapsulation,

inheritance and polymorphism [NA99].

An example of adding persistence to Java is an orthogonally persistent Java,

PJama [ADJ+96], which obeys the design principles of persistence as stated in

[AM95],

The particular implementation of adding persistence to Java™ was motivated by

attempting to achieve a much broader set of facilities in an industrially supported

language to demonstrate that orthogonal persistence is beneficial for large

commercial programming projects [AJD+96],

The main goal of PJama was to add persistence to the existing language with

minimal change to its initial semantics and implementation. This requires the

language to provide a basic number of facilities, which are stated in [MCK+96],

and involve an infinite union type with injection and projection operations,

facilities for linguistic reflection, and a persistent store with root(s), reachability

and referential integrity.

The following sections describe the design of a HCS in PJama.

90

6.1 Domains in PJama

There are two distinct domains in the PJama HCS, domain E and domain R.

Domain E contains code, variables, types, and all the first class values. Code is

any executable entity. The variable is the basic unit of storage in a Java program

and is defined by the combination of an identifier, a type and a value. A first class

value is: a primitive value, that is value of a primitive type, an array, or an instance

of a class. Types are classified into elemental (primitive) types and reference types.

Primitive types include integers (byte, short, int, long), floating-point numbers

(float, double), characters (char) and booleans (boolean). Reference types include

classes, interfaces and array types.

Every entity in domain E has its corresponding HCR in the domain R. Each

representation is a combination of text and hyper-links to entities. A hyper-link is

displayed by default as a rounded box with no label. The background colour

indicates if the hyper-link represents a type, or a value or a variable4. Every hyper¬

link representing a type or a first class value can be manipulated in the same way,

which means that every hyper-code operation can be performed over it. Hyper¬

links to variables are transient and are only created during evaluation, as will be

explained later.

4 White for first class values, black for types and patterned-grey for variables.

91

Table 9 illustrates the appearance of representations of entities in domain E. Every

entity in domain E, except code, can be represented by a single hyper-link in

domain R.

r Entity in E
| p

Hyper-Code Representation in R
Ji

variable

primitive value, Array, Object CD
primitive type, class, interface,
array Type

code any combination of text and hyper-links
e.g. the HCR of an expression that adds
two integers could be (_D+CZD

Table 9: Appearance of representations of PJama entities

6.2 Equivalences in PJama

As stated earlier, four equivalences are defined in a HCS; three equivalences over

HCRs (=rep, =rep-en anc* -rep-sub)> which have already been defined earlier, and anrep

equivalence over hyper-code entities (=en). Table 10 defines the =en equivalence

over PJama entities.

I Entity in E
w/jr/w/w/jmmmtwm

variable Same name and scope

primitive value,
array, object

Equality as defined in Java language specification

primitive and
reference type

Type equivalence as defined in Java language
specification

code Same sequence of instructions

Table 10: Definition of the =en equivalence over PJama entities in E

92

Type equivalence and equality between values are defined in the Java Language

Specification (JLS) [GJS96], According to the JLS, two arrays or objects are equal

if they have the same identity. Type equivalence is based upon the following rules:

• Every primitive type is equivalent only to itself,

• Two reference types are equivalent if:

either they are loaded by the same class loader, and have the same fully-

qualified name, in which case they are said to be the same class or the same

interface.

or they are both array types, and have the same component type.

6.3 Operations Over HCRs

The HCOs are performed through the HCA window over HCRs. The HCOs,

explode, implode, evaluate, get root and edit, will be described in the following

sections, using the class definitions shown in Figure 38.

public class Person extends Animal {

public String name;

public Person(String name) {
this.name = name;

noOfLegs = 2;

}

}

public class Animal {

public int noOfLegs;

}

Figure 38: The definition of class Person and its superclass

93

6.3.1 Explode

In the explode operation, each hyper-link in the selected representation is enlarged

to show a more detailed HCR which is equivalent (=rep.en) to the original

contracted hyper-link. The exploded representation is a valid Java fragment.

Operation explode follows the reflection and reification policies introduced in

section 4.2.1.

Table 11 shows examples of exploding hyper-links to variables, primitive values,

arrays and objects.

Description| Hyper- jj Examples of exploded
T/jr/jr/jr/jr/jtf

\
Variable □

vjT/w/w/w/w/jr/jr/jr/jr/w/jr/w/w/w/w/jr/w/^^

current value (either primitive value,
array or object) of the variable

Primitive nn [2.0 11 V'| |true | literal values of the types int, float,
Value char, boolean

Array .newArray(() ,()) 1 a hyper-link to a class that contains a

static method, which returns a new

instance of an array. The elements
of the array are initialised with
values represented by the hyper¬
links passed as parameters to the
static method.

Object m ,newPerson(^^J ,()) 1 a hyper-link to a class that contains a
static method, which returns a new

instance of class Person. The fields

of the object are initialised with
values represented by the hyper¬
links passed as parameters to the
static method.

Table 11: Exploding hyper-links to variables and objects

94

Table 12 shows examples of exploding hyper-links to primitive and reference Java

types.

I 1
) Hyper-link $ Examples of exploded J

to... \ hyper-links

Primitive

Type
^bytej JshorJ longj

| chaj ^oojdouble

|
Description j*

literal types byte, short, int, long,
float, double, char, bool

Class public class Person extendsH| {
public name;

public Person(^^^ name) {
^ this.name = name; noOfLegs = 2;}

a class definition containing a hyper¬
link to its superclass and two hyper¬
links to class String respectively.

Interface public interface Serializable { } an interface definition

Array Type 11 an array type whose elements are of
type represented by the hyper-link

Table 12: Exploding hyper-links to types

6.3.2 Implode

In the implode operation, each hyper-link in the selected representation is

contracted to show a less detailed HCR. Operation implode follows the reflection

and reification policies introduced in section 4.2.2.

In Table 11 and Table 12, imploding a representation in the second column results

in a hyper-link that looks like one of the HCRs shown in Table 9.

6.3.3 Evaluate

This operation evaluates a selected HCR, following the execution and reification

strategies introduced in section 4.2.3.

95

6.3.3.1 Viewing the Evaluation

During evaluation the HCA tool progressively changes the HCR being evaluated

— when a variable comes into scope it is replaced by a hyper-link to its current

value. When evaluation exits the scope of the variable, the hyper-link returns to its

textual representation. However, in some cases variables can escape the scope they

are defined; this will be explained later in this section.

The scope of a variable is defined by a block, which begins with an opening curly

brace and ends by a closing curly brace. In Java the two major scopes are those

defined by a class and those defined by a method [NA99]. Variables declared

inside a scope cannot be used directly in code outside that scope, but in some

cases5 they may still be accessed indirectly via a call to a method defined within

the original scope. Scopes can be nested, that is variables declared in an outer

scope are visible in the inner scope, but a variable with the same name cannot be

declared in the inner scope.

The evaluation process may be interrupted when an error occurs or when a

breakpoint is reached. In the case of a static error, the programmer is notified of

the position that the error is detected - the line that the error is detected is

highlighted. Figure 39 shows an example of such an error (type incompatibility).

5 Local variables declared final and accessed within the body of a method of an anonymous class.
This is explained at: http://www-ppg.dcs.st-and.ac.uk/Languages/Java/HCS/Scopes

96

In the case of a dynamic error or when a breakpoint is reached, evaluation is

suspended. Resuming evaluation is possible only if interruption occurred due to a

breakpoint.

h * Program composition error:
Incompatible types

a link to an a link to an instance
int type of class Person

Figure 39: A PJama HCR that produces an error

Figure 40 illustrates three snapshots of evaluating an example HCR, which

contains the variables a, b and c. Variable c is declared inside the body of the first

if statement. A new variable with the same name (c) is declared and used in the

second. Figure 40(a) shows the HCR during composition, where the variables are

represented textually. When evaluation reaches the point indicated by the progress

bar shown in Figure 40(b), i.e. when variable c comes into extent, the occurrences

of c within its scope (lines 5 and 6) are replaced by hyper-links. When evaluation

exits that scope level and enters the scope level of the body of the second if

statement, a new variable with the same name c is declared. Hyper-links replace

the textual representations of that variable (lines 10-11), and this is illustrated in

Figure 40(c). When evaluation finishes, the reverse process of replacing hyper-

97

links with textual representations takes place, and the HCR returns to its original

state, shown in Figure 40(a).

(a)
Composition time

(All variables out of scope)

(b)
Entering scope level of the

first ifstatement

(Variable c is declared)

(C)
Exiting scope level of the first ifstatement. Scope
level of the second ifstatement has been entered

(Variable c is declared)

Figure 40: Snapshots of evaluating a PJama HCR

6.3.3.2 Result of Evaluation

The result of evaluation depends on the HCR being evaluated. Table 13 illustrates

examples of representations that return a result.

Representation
category

An executable HCR that

returns a result

(Rexec-res)

7 t
Example of representation | Result of evaluating %

J the representation |

a link to an

integer
a link to an

integer

CD
a link to an

integer

A non-executable HCR

(Rno-exec)

CD
a link to an

integer
a link to an

integer

Table 13: Evaluating PJama HCRs

98

In this table, the first column contains the domain of the HCR being evaluated, the

second column an example HCR and the third column the result of evaluating this

HCR. The HCR in the first row represents an executable entity that returns a result

- two values of type int are added and the result is returned as a hyper-link. The

HCR in the second row represents a non-executable entity - a single hyper-link is

evaluated.

The resulting hyper-link is an HCR equivalent (=rep.sub) to the original. In the

case of evaluating a single hyper-link, as in row two, the resulting HCR is defined

to be =rep equivalent to the original.

6.3.4 Get Root

In PJama, this operation produces a hyper-link for each of the persistent roots.

These hyper-links are contained in a non-editable HCA window, as shown in

Figure 41(a). Operation get root follows the reification policy introduced in

section 4.2.4.

Persistent classes can also be retrieved in a similar way, in which case a hyper-link

is produced for each persistent class. These hyper-links are contained in a non-

editable HCA window, as shown in Figure 41(b).

99

a hyper-link to an
array of instances
of class Person

a hyper-link to an
array of instances_
of class Image

Hyper-Code Assistant

(a)
Persistent Roots

a hyper-link to
class Person

a hyper-link to
class image -

a hyper-link to
class Animal

Hyper-Code Assistant

(b)
Persistent Classes

Figure 41: The persistent roots and classes HCA windows

6.3.5 Edit

This operation follows the transformation policy introduced in section 4.2.5. It

encompasses the basic conventional editing facilities and some other facilities

related to the graphical user interface.

Composing HCRs involves typing, drag and drop, cut, copy and paste. A snapshot

of composing a hyper-code representation is shown in Figure 42.

Hyper-Code Assistant

public class AnotherPerson extends

public class Animal {
public int noOfLegs;

public class Person extends

public I String | name:
public Person([^trincjjj name) {

this.name = name; noOfLegs = 2;
}

public static void main(String[] args) {

Person p =
i .newPerson(COO'l.

Figure 42: Composing a PJama HCR

Breakpoints may be added or removed as explained in section 4.2.5. In Figure 42,

the bullet at the beginning of line 3 denotes that the programmer has set a

100

breakpoint. Figure 42 also illustrates the ability to support multiple styles, fonts

and colours.

The way that a particular hyper-link is displayed can be specified through the

customisation mechanism. The programmer may add a label to the hyper-link or

may display it as an image or may make it appear like a WWW link, by selecting

the appropriate option in the pop-up menu associated with a particular hyper-link

as shown in Figure 43(a). The programmer then provides either a string or the path

of the image file — in the particular example the programmer has provided the

string "Person". Figure 43(b) illustrates the appearance of the hyper-link after

customisation.

Hyper-Code Assistant

(_l 1
Represent as Image 1 |
Represent as String
Represent as WWW link |

1^__

Hyper-Code Assistant

(Person)

(a) (b)

Figure 43: Customising a particular hyper-link

To customise hyper-links representing instances of a particular class, the

programmer specilies the class and a fragment of code. This fragment is executed

each time a corresponding hyper-link is displayed and the result is used as a label

for that hyper-link. The label is either a string or an image.

101

Figure 44 shows an example of such a customisation, which is performed for all

hyper-links representing instances of class Person. The fragment of code, specified

in the second field, accesses instances through the theObject parameter. After

applying this customisation, each hyper-link representing an instance of that class

will be displayed with the string resulting from executing the fragment of code in

the second field, which returns the value of the name field.

Customise Class:

(using theObject)
Customise as String:

Person

((Person)theObject).name

Customise as Image:

Customise as WWW link:

(Customise^ (CancejJ

Figure 44: Customising hyper-links to instances of the specified class

6.4 Summary

This chapter described the mapping of a particular HCS into PJama. The domain

E, in a concrete HCS in PJama, contains variables, code, types, classes, interfaces,

instances of classes and arrays as specified in the Java language specification.

Every entity in domain E has a corresponding HCR in R. The particular HCOs,

explode, implode, evaluate, get root and edit, operate over these HCRs. This

chapter illustrated the user interface for each of these operations.

102

7 Implementing Hyper-Code in PJama

This chapter describes the implementation of a HCS in PJama (PJ-HCS). The

various representation forms for HCRs are described, as are the way in which

these forms support the user operations. The implementation of the particular HCS

is based on the implementation of the Hyper-Programming System (HPS) in

PJama [ZDK+99].

PJ-HCS is implemented using the Java language and the standard JVM. The

motivation for that is interoperability, which allows the implementation of the

hyper-code system to comply with any future release of Java running on any

platform.

The implementation of the PJ-HCS will be illustrated using the HCR shown in

Figure 45.

^3 - Hyper-links to

Hyper-links to K _ (v —-— instances of
class Person D" LJ ' class Person

B ,marry(a , b);
if (a != null){
intc;
c = a.name.length();
System.out.println(c);

1
if (b != null){
int c = b.name.length();
System.out.println(c);

1

Figure 45: An example HCR in PJama

The HCR contains three links to class Person, and links to two persistent instances

of class Person. Class Person is partially defined in Figure 46.

103

public class Person {
public String name;

public Person spouse;

public javax.swing.lmagelcon image;
public static void marry(Person a, Person b) {

a.spouse = b; b.spouse = a;

}

}

Figure 46: The definition of class Person

7.1 Representing HCRs

PJ-HCS uses three different representations for HCRs at various stages of the

program development process. These representations are;

• The storage form, which is optimised for storage.

• The textual form, which is designed for use with a standard Java compiler.

• The editing form, which is optimised for editing, including selection, insertion

and deletion of text and hyper-links.

Translation between these forms occurs when it is necessary for the underlying

system to perform several operations, as shown in Figure 47. Translation between

the editing form and the storage form, and vice versa, takes place when the HCA

saves or loads a HCR in/from the persistent store respectively. The textual form is

generated from the storage form during the evaluation process, as will be

explained in the next section. Finally, files containing purely textual program

fragments may be loaded from an external file system and transformed into the

HCA editing form.

104

Textual

genere
editing f

^StorageEditing ^:
load

Figure 47: Transforming between the three HCR forms

7.2 Implementation of the Evaluation Process

The evaluate operation, behind the scenes, performs all the standard operations

included in the traditional programming life cycle, that is pre-processing,

compiling, executing and returning a result (if any).

This is illustrated in Figure 48. If the HCR represents a primitive type, an array

type or a class name then compilation and execution are unnecessary and

evaluation produces a single hyper-link as explained in section 7.2.6. Otherwise,

the system generates a new program fragment in the form of source code, invokes

a dynamically callable compiler, and finally links the result of the compilation into

its own execution. For the rest of the chapter, it will be assumed that the HCR to

be evaluated does not represent a primitive type or array type or a class name.

In order to compile an HCR, it must first be translated into a valid Java program,

which is a purely textual class definition. This is defined in the Java Language

Specification [GJS96] as the CompilationUnit syntactic production. This

105

transformation, which is performed during the pre-processing stage, is required in

order to use standard Java compilers.

Figure 48: The evaluation algorithm

The transformation is illustrated in Figure 49. It involves the following tasks:

• The storage form of the HCR is wrapped up in a class definition, only if

necessary, producing a new HCR in storage form.

• This is then transformed into the textual form, which contains textual

denotations representing the hyper-links.

• Some additional program fragments are then inserted, in order to achieve

breakpoint manipulation and variable tracking.

The resulting textual class definition is then ready for compilation.

106

fragment class class class

>

textual formstorage form

Figure 49: Transforming storage form into textual form

The following sections describe the storage form data structure of an HCR and

how this form is used for the various stages of evaluation.

7.2.1 The Storage Form

The storage form stores the textual part of the HCR as a string, and the hyper-links

in a vector. Figure 50 shows the storage form of the example HCR.

textual part of HCR

label for hyper-link _

position of hyper-link
in the string

boolean denoting whether
hyper-link denotes a class ~
or method

boolean denoting whether
hyper-link denotes a
primitive value

"
a = ;
b = ;

.marry (a,b) ;
if (a!=null) {
int c;
c=a.name.length();
System.out.println(c);

}
if (b!=null) {
int c=b.name.length();
System.out.println(c);

}"

StorageFonnHL .

StorageForm

vector of hyper-links

J

"X"

6

false

false

Figure 50: An instance of the storage form

The storage form is represented by the class StorageForm, which is shown in

Figure 51. Each instance contains a string and a vector of StorageFormHL

107

instances. The string contains the textual part of the HCR, while the vector

contains references to the hyper-linked entities. An instance of class StorageForm

can be transformed into its textual form through method generateTextualForm. As

will be explained later in detail, this method replaces each hyper-link with an

expression that will retrieve the hyper-linked entity from the persistent store. This

expression contains a call to method getLink.

public class StorageForm {

protected String theText; // The textual part of the HCR

protected Vector theLinks; // A vector of StorageFormHL instances

public StorageForm (){...}

public StorageForm (String theText) { ... }

public StorageForm (String theText, Vector theLinks) { ... }

// Other constructors

// Methods for retrieving and updating the fields

public String generateTextualForm() { ... }

public static getLink(int passwd, int her, int hi) { ... }

}

Figure 51: The definition of class StorageForm

The class StorageFormHL is defined in Figure 52. The entityObject field stores

either an object or an instance of class Class. The isClass field is used to

distinguish between object and represented class. The isPrimitive field is used to

distinguish between a primitive value and an instance of a class. The position field

denotes the position of the hyper-link in the HCR.

108

public class StorageFormHL implements EntityRepresentation {

protected Object entityObject;

protected boolean isClass;

protected boolean isPrimitive;

protected int position;

// Other declarations and initialisations

public StorageFormHL(Object entityObject, boolean isClass,

boolean isPrimitive, int position) { ... }

// Other constructors

// Methods for retrieving and updating the fields

// Other methods

}

Figure 52: The definition of class StorageFormHL

Class StorageFormHL implements the EntityRepresentation interface, defined in

Figure 53. This interface contains methods for retrieving and updating a set of

values representing an entity. In class StorageFormHL, these values are included

in the protected fields entityObject, isClass and isPrimitive.

public interface EntityRepresentation {

public void setEntityObject(Object anObject);

public Object getEntityObject();

public void setEntityClassBool(boolean classBool);

public boolean getEntityClassBool();

public void setEntityPrimBool(boolean primBool);

public boolean getEntityPrimBool();

}

Figure 53: The definition of interface EntityRepresentation

109

The use of the fields in class StorageFormHL depends on the represented entity. In

the example, for the link to the class Person, the entityObject field refers to an

instance of class Class representing class Person. For a link to an instance of class

Person, the entityObject field refers to that instance.

Entity \ entityObject \ isClass | isPrimitive
\w/M/Jr/JT/A

primitive
type

instance of class Class

wrapping the primitive type

true true

array type instance of class Class

representing the array type

true false

class or

interface

instance of class Class

representing the class or
interface

true false

primitive
value

instance of a class which

wraps the value

false true

array or

object
array or object instance false false

variable instance of a class or array false true if the value is

primitive or false
otherwise

code Not applicable N/A N/A

Table 14: Use of StorageFormHL fields for each category of entity

Table 14 shows the use of the StorageF'ormHL fields for each category of entity

that can be hyper-linked. In row 3, distinction between a class and an interface is

achieved by invoking method Class.islnterface on the class of the entityObject

field. Similarly, in row 5, distinction between an array and a non-array instance is

achieved by invoking method Class, isArray on the class of the entityObject field.

110

In the case of a variable, the hyper-link represents its current value, that is one of

the entities in rows 4 and 5. In the case of code, there is no set of values to store

the relevant information, as code cannot be represented by a single hyper-link.

7.2.2 Transforming an HCR into a Class Definition

The first step in transforming a HCR into a suitable form for the standard Java

compiler is to transform it into a complete class definition. This step is necessary if

the result of evaluating the HCR represents a primitive value, an array or a non-

array instance of a class.

In this case, the system creates a new HCR representing a class definition, which

contains a static method, whose body contains the original HCR. The return type

of the static method corresponds to the type of the entity represented by the HCR,

and it is void if the HCR represents an executable entity that does not produce a

result.

The example HCR of Figure 45 is transformed into the HCR illustrated in Figure

54. The original HCR becomes the body of the static method evaluateVoid, of

class EvaluateVoid. The names of both the class and the method are generated by

the system in such a way to reflect the type of the entity that is represented. The

name of the class, in particular, is always the same for every evaluation of the

same HCR. In Java, this is perfectly acceptable as long as a different class loader

111

is used for each evaluation. In the hyper-code system, each evaluation uses a new

class loader.

Hyper-links to
class Person

public class EvaluateVoid {
public static void evaluateVoid() {

»«0:

,marry(a , b);
if (a != null){
intc;
c = a.name.length();
System.out.println(c);

}
if (b != null){
int c = b.name.length();
System.out.println(c);

}

}

Hyper-links to
instances of
class Person

}

Figure 54: Transforming the example HCR into a class definition

The generated class definition has a different form if the entity represented is not

void. Figure 55 shows the result of transforming an HCR, containing an expression

that creates a new instance of class Person, into a class definition.

public class EvaluateObject {
public static Person evaluatePerson() {

return new ^^();
}

}

Figure 55: Transforming a non-void HCR

Transforming an HCR representing a primitive value results in a class definition

that contains a static method, whose return type is the type of the primitive value.

Figure 56 shows the result of wrapping up the addition of two hyper-links, each of

which represents the value 1.

112

public class Evaluatelnt {
public static int evaluatelnt() {
returnQ+Q;

}
}

Figure 56: Transforming an HCR representing a primitive value

The examples in Figure 55 and Figure 56 illustrate how a class definition results

from transforming an HCR containing a single-line, non-void expression, in which

case the system inserts a return statement at the end of the body of the static

method. However, if the HCR contains a multi-line, non-void expression that

already includes a return statement, the system makes that HCR the body of the

method without inserting any extra fragments of code.

At this stage, the HCR is ready for transformation into the textual form.

7.2.3 The Textual Form

The textual form of a HCR is produced by replacing each hyper-link with a textual

denotation. To ensure that every hyper-link has a textual form, the system records

a reference to each HCR submitted for translation, in a password-protected

location in the persistent store. The HCR and all the hyper-linked entities will thus

remain accessible by the compiled form even if the original reference to the HCR

is discarded. The textual denotation of an individual hyper-link is an expression

that will retrieve the hyper-linked entity from the password-protected data

structure, and the password protection prevents any accidental or malicious

113

tampering with the data structure. This is shown in Figure 57. The shaded part

illustrates the storage form of an HCR as described in Figure 50.

vector of StorageForm instances
persistent v access via password
\ rvw checking method

5
Storage Form data structure

Figure 57: Accessing a hyper-linked entity in the persistent store

HCRs are always accessible as they are reachable by a persistent root through the

vector of StorageForm instances. This implies that they will remain persistent, as

there is always a reference from that vector. Therefore, to enable these instances to

be garbage collected, the system periodically removes the references to those

StorageForm instances that do not have a corresponding persistent class associated

with them. The corresponding class is the class resulting from transforming,

compiling and loading the original HCR.

The association between an HCR and its corresponding class is achieved using a

hashtable of weak references (class java.util.WeakHashMap, provided in the

standard JDK 2) and a vector containing HCRs. The hashtable is used to store the

corresponding class as key and the index of the original HCR in the HCRs vector

as value. The use of WeakReferences ensures that the class will be garbage

collected, if it is not made persistent. The system then removes, from the vector of

StorageForm instances, those HCRs that do not have an associated class as the key

in the hashtable.

114

After ensuring that there will always be an access path for each hyper-linked

entity, the textual form of a HCR is generated by the method

StorageForm.generateTextualForm. A textual equivalent is generated for each

hyper-link.

For example, the textual equivalent for a hyper-link representing a primitive value

is the value itself converted into a string. This expression has the form:

<StorageFormHL instance>.getEntityObject().toString()

The textual representation of a hyper-link to a class, interface or primitive type is

obtained by an expression which retrieves the hyper-linked entity, that is the class

or interface, and obtains its name. This expression has the following form:

((Class)< StorageFormHL instance >.getEntityObject()).getName()

The textual representation of a hyper-link to an array type is obtained by an

expression which retrieves the name of the component type, as explained before,

and adds the "[]" at the end. This expression has the following form:

((Class)< StorageForm instance >

.getEntityObject()).getComponentType().getName()+"[]"

The textual representation of a hyper-link to an object includes a unique id

allocated to each HCR when it is processed, and the index of the hyper-link within

the HCR. This has the form:

115

((class name) StorageForm.getLink(secret password,

unique id for HCR,

unique id for hyper-link) .getOb'\ec\())

The static method StorageForm.getLink retrieves a specified StorageFormHL

instance from the persistent data structure of Figure 57, taking as parameters the

password and indices for the HCR and the hyper-link. The call to the getObject

method returns the hyper-linked object itself, which is then cast to its specific

class. The entire expression thus gives an access path to the hyper-linked object

that may be evaluated correctly at run-time.

import StorageForm;

import Person;

public class EvaluateVoid {

public static void evaluateVoid() {

Person a = (Person) StorageForm.getLink("passwd", 0, 1).getObject();

Person b = (Person) StorageForm.getLink("passwd", 0, 2).getObject();

Person.marry (a , b);

if (a!= null) {

int c;

c = a.name.length();

System.out.println(c);

}

if (b!= null) {

int c = b.name.length();

System.out.println(c);

}

}

}

Figure 58: Transforming the example HCR into its textual form

116

Figure 58 shows the resulting textual form for the example HCR of Figure 45.

The hyper-link textual equivalents in lines 5-7 are generated as follows:

• The name of the class Person in lines 5, 6, and 7 is obtained by calling the

getName method on the instance of class Class recorded in the corresponding

StorageFormHL instances.

• The password used in the calls to getLink is built into the system, and is

required to prevent from unauthorised access to the relevant instances. This

provides a bare minimum of protection; a more sophisticated scheme could be

added if required.

• The HCR and hyper-link indices in lines 5 and 6 are the offsets in the

respective persistent vectors.

The last task of the pre-processing stage before compilation is to rewrite the code

in order to implement variable tracking and breakpoint manipulation. This is

described in the next section.

7.2.4 Inserting Code for Variable Tracking and Breakpoint Manipulation

The hyper-code system is designed to support the following during the evaluation

process:

117

• display to the programmer a single changing HCR in which textual

representations of variables in scope, both local variables and class fields, are

replaced by hyper-links.

• allow the programmer to interactively manipulate the thread of execution by

suspending or resuming it.

In order to achieve the former, the system inserts fragments of code, which

explicitly duplicate information related to the variables. The motivation for this is

inter-operability, as introduced earlier, which means that the variable tracking

mechanism is built using the PJama language. An alternative solution to extracting

information related to variables is to create an API to access the standard JVM

stack of variables. However, this requires modification of the existing JVM.

In order to achieve the latter, that is to allow the interactive manipulation of the

thread of execution, the system inserts fragments of code to suspend execution and

transfer control to the programmer. This involves resuming or killing of the thread

of execution.

7.2.4.1 Requirements for the Inserted Code

The inserted fragments of code perform operations required to achieve the

following:

• Keep track of local variables when they are declared.

118

• Keep track of fields of a class on entering the scope level of the body of a

method.

• Keep track of the value of variables when assignment is performed.

• Remove the information related to variables when they leave scope.

• Trigger the redrawing of the HCR in the HCA when any of the above

operations is performed.

• Keep track of the current execution line for display to the programmer when

interruption due to an error or a breakpoint occurs.

• Suspend the thread of execution on reaching breakpoints.

7.2.4.2 Meeting the Requirements - The Thread of Execution

The thread of execution and the data structure for variable tracking are stored in

instances of class HyperCodeThread, partially defined in Figure 59. The thread is

created and manipulated by the hyper-code system, after compilation and loading

of the transformed class definition, and this will be explained later in section 7.2.5.

Each instance of class HyperCodeThread is associated with a particular execution

of an HCR. During the code transformation stage of the evaluation process, the

system adds fragments of code to retrieve the current thread of execution and

suspend it, when a breakpoint is detected.

119

public class HyperCodeThread extends Thread {

protected int lineCounter;

protected Stack stack;

protected Method method;

public HyperCodeThread(Method method) { ... }

public void run() { ... }

public void threadStart() { ... }

public void threadResume() { ... }

public void threadSuspend(String message) { ... }

public void threadKill(String message) { ... }

public void incLine() { ... }

public int getLine() { ... }

public void setLine(int Ic) {... }

public void push(String variableName, boolean isField, boolean isPrimitive) {...}

public void update(String variableName, boolean isField, Object entityObject) {...}

public void pushLevel() { ... }

public void popLevel() {... }

}

Figure 59: The definition of class HyperCodeThread

Variable tracking is performed through the same instance of class

HyperCodeThread. Representations of variables are stored in a stack of variables

as instances of a class Variable, defined in Figure 60, that implements the

EntityRepresentation interface. Each instance contains methods for retrieving and

updating a set of fields that represent the current value of the variable. In addition,

it stores the name of the variable and whether the variable is a class field or not.

120

public class Variable implements EntityRepresentation {

protected String variableName;

protected boolean isField;

protected Object entityObject;

protected boolean isClass, isPrimitive;

public Variable (String variableName, boolean isField, boolean isPrimitive) {...}

// Methods for retrieving and updating the fields.

}

Figure 60: The definition of class Variable

The information stored in instances of class Variable is manipulated by methods

push and update of class HyperCodeThread. On declaring a new variable, method

push is invoked, which adds a new entry in the stack. On assigning a value to a

variable, method update is invoked.

On entering a scope level, the system records this by invoking method pushLevel.

On exiting a scope level, the system removes those entries from the stack that

represent variables declared in that scope. This is done by invoking method

popLevel.

The system also records the current line of execution. This counter is increased, at

the beginning of each line, by invoking method incLine.

Updating the HCR displayed in the HCA is required when assigning a value to a

variable or when exiting a scope. This is done through methods update, and

popLevel. These methods, which are called by the newly generated programs,

121

invoke the updateHCR method of class WindowEditor, defined in a later section.

The method takes the stack of variables as parameter, and updates the HCR

displayed in the HCA window by replacing the textual representations of the

variables included in the stack with hyper-links.

7.2.4.3 Transforming the Example HCR

The example textual form illustrated in Figure 58, after inserting the appropriate

fragments of code, is transformed to the class definition shown in Figure 61. It is

assumed that the programmer has inserted a breakpoint at the beginning of line 4

of the example HCR shown in Figure 45. The textual form of the HCR resulting

from the stage of evaluation described in the previous section is underlined, in

order to emphasise the fragments of code inserted for variable tracking and thread

manipulation.

import HyperCodeThread;

import StorageForm: import Person:

public class EvaluateVoidExpression i

public static void evaluateVoidO I

// Record the current thread of execution

HyperCodeThread t = (HyperCodeThread)Thread.currentThread();

// Increase the scope level counter, as a new scope level is created

t.pushLevel();

t.incLine(); Person a = (PersonlStoraaeForm.aetLink("passwd".0.1f.getQbject0l:

//Push variable "a" on the stack and update its value

t.pushfa", false, false); t.updatefa", false, a);

122

t.incl_ine();

Person b = (PersontStorageForm.aetLink("passwd".0.2TgetObjectQk

//Push variable "b" on the stack and update its value

t.push("b", false, false); t.updatefb", false, b);

t.incLine(); Person.marryfa. bt:

//Trigger the suspension of the current thread of execution

t.threadSuspendfBreakpoint at line "+t.getLine());

// No declaration, assignment of breakpoints. Just increase the line number

t.incLine(); if (a!=nulh f

t.pushLevel();

t.incLine(); int c: t.push("c", false, true); // Push variable "c" on the stack

// Update the value of variable "c"

t.incLine(); c = a.name.lenathQ: t.updatef'c". false, new Integer(c));

t.incLine(); Svstem.out.printlnfch

t.popLevel();// Remove variable "c" from the stack

t.incLine();}

t.incLine(); if (b!=nulh f

t.pushLevel();

//Push variable "c" on the stack and update its value

t.incl_ine(); int c = b.name.lengthQ:

t.push("c", false, true); t.update("c", false, new Integer(c));

t.incLine(); System.out.printlnfct:

t.popLevel();// Remove variable "c" from the stack

t.incLinc();}

t.popLevel(); // Remove variables "a" and "b" from the stack

1

Figure 61: The result of transforming the example HCR

123

7.2.4.4 Transforming an Example HCR Representing a Class Definition

The example of Figure 61 illustrated how local variables are pushed and popped

to/from the stack respectively. However, in the case of an HCR defining a class

that contains several fields, transformation involves tracking of those fields. When

a method is invoked, these fields are considered global variables, contained in the

scope level 0. Thus, the system inserts fragments of code to push them onto the

stack at the beginning of the method.

To illustrate this, the class definition shown in Figure 62 is used as an example.

The class contains two fields and a method that prints out the value of the second

field.

public class X {

static String message = "The value of the integer is:

int thelnt = 2;

public void printTheValueOut() {

System,out.println(message+thelnt);

}

}

Figure 62: An example class definition

Figure 63 shows the class definition after inserting the appropriate fragments of

code, where the original HCR is underlined. The method initially retrieves the

current thread of execution, and sets the line counter to 4, that is the number of

lines, in the original HCR, up to the first line of the method to be executed. The

124

fields of the class are then pushed on the stack and their values are updated

accordingly. The second parameter of both the methods push and update is true,

denoting that the variable is a field of a class, rather than local in the execution of

the method. Just before the execution of the method terminates, variables

"message" and "thelnt" are removed from the stack. On every invocation of the

method, these fields are pushed on the stack before any other local variable, since

they are global.

import HyperCodeThread;

public class X I

static String message = "The value of the integer is:

int thelnt = 2:

public void printTheValueOutO (

HyperCodeThread t = (HyperCodeThread)Thread.currentThread();

t.setLine(4); // Increase the scope level counter.

t.pushLevel(); //Push static field "message" and update its value

t.push("message", true, false); t.update("message", true, X.message);

//Push field "thelnt" and update its value

t.pushf'thelnt", true, true); t.updatefthelnt", true, new Integer(thelnt));

t.incLine(); System.out.printlnfmessaae+thelnb: // Increment the line counter

t.popLevel(); // Remove variables "message" and "thelnt" from the stack

1

1

Figure 63: Transforming the example class definition of Figure 62

125

7.2.5 Compiling and Executing HCRs

7.2.5.1 Compiling and Loading Class Definitions

The result of transformation is a purely textual class definition, which contains

access paths to the hyper-linked entities and additional fragments of code for

variable tracking and thread manipulation. This form is suitable for compilation

using a compiler that dynamically translates the textual form into a sequence of

byte code, and then loads a class using a ClassLoader. In order to achieve both the

tasks the system uses the Dynamic Compiler, which provides linguistic reflection

facilities to standard Java [KMS98], since the Java environment only provides

facilities for introspection and not for dynamic compilation.

Figure 64 shows several compilation methods provided by the class

DyncimicCompiler.

public class DynamicCompiler {

public DynamicCompiler() { ... }

public Class compileClass(String defn) throws CompilationException {...}

public Class[] compileClasses (Stringf] defns) throws CompilationException {...}

// Other methods

}

Figure 64: The definition of class DynamicCompiler

The main compilation method is compileClasses, which takes an array of source

code strings defining a number of classes and attempts to compile them by

invoking the standard Java compiler directly as a Java class. If this fails, then a

126

new operating system process is started to call the Java compiler. If the

compilation is successful, the result is an array of instances of class Class,

otherwise an exception is thrown.

The first mechanism has the advantage of fewer run-time overheads. The

disadvantage is the reliance on knowledge of the Java implementation, in

particular of the compiler interface and of which package contains the compiler.

Thus a change in the Java implementation — such as placing the compiler in a

different package or re-implementation of the compiler in a different language —

would prevent this approach from working. The disadvantages of the second

mechanism are that significant additional run-time resources are involved in

creating a new instantiation of the JVM and that it is more platform-specific.

Dynamic compilation, if successful, creates class definitions in the form of byte

code sequences (.class files). To be useful these must then be loaded into the

running system and converted to instances of class Class. This is achieved using a

subclass of class Classloader - details are given in [KMS98],

7.2.5.2 Executing Methods

The processes described in the previous sections involved the following tasks:

• An HCR is transformed into a class definition (if necessary).

127

• Since the class definition may contain hyper-links, it is transformed into a

purely textual Java class definition.

• Additional fragments of code are inserted for variable tracking and breakpoint

manipulation.

• After transforming, the class definition is compiled and loaded.

• Once a class has been loaded at run-time, it is available for use. At this stage

execution may take place and this involves invocation of the method included

in the instance of class Class resulting from compilation and loading. For the

example HCR, illustrated in Figure 54, this implies that method

EvaluateVoid.evaluateVoid is invoked.

Execution takes place if the original HCR represents any void or non-void

expression that is not a class or interface definition. If execution is required, the

static method of the class resulting from compilation and loading is invoked using

the standard Java reflection package.

Each invocation of a method is associated with a particular Java thread and is

performed through it. A Java thread is an instance of a class that extends class

java.lang.Thread. The extending class must override the run method, which is the

entry point for the new thread. It must also call start to begin execution of the new

thread.

128

Class HyperCodeThread extends class Thread. A new thread is created and started

by instantiating the extending class and calling method threadStart. The

expression to achieve that has the form shown in Figure 65, where the method

passed as parameter to the constructor is the static method included in the

generated class. This Method instance is stored in the method field of the newly

created instance of class HyperCodeThread.

HyperCodeThread t = new HyperCodeThread(<Method instance to be invoked>);

t.threadStart();

Figure 65: Initialising and starting a thread

The invocation of the method, passed to the constructor, takes place in the body of

method HyperCodeThread.run, which is called when a thread starts. The

expression to invoke a method is shown in Figure 66, where the Method instance

is the value of the relevant field of class HyperCodeThread.

try {

Object o = <Method instance to be invoked>.invoke(null, new String[0]);

} catch (Exception ex) {

threadKill("Exception "+ex.getMessage()+" occurred at line "+getLine());

} catch (Error er) {

threadKillflntemal error "+er.getMessage()+" occurred at line "+getLine());

}

Figure 66: Code in the body of the run method

The invocation of the relevant method is included in a try-catch statement, in order

to catch any exceptions or errors. An Exception is thrown when a run-time error

occurs in executing the body of the method, such as division by zero. An Error is

129

thrown when an error related to the JVM occurs, such as lack of memory. In both

the cases, method threadKill is invoked and execution is terminated.

If there is no interruption, the body of the invoked method will be executed and the

result (if any) is returned as a hyper-link, as will be described later.

7.2.5.3 Compiling and Executing the Example HCR

This section describes the process of compiling and executing HCRs using the

example class definition of Figure 61. Compilation results in the creation of a file

EvaluateVoidExpression.class. The class returned is then loaded, and a new thread

is initialised and started using the following expression:

Class aClass = clnstance of class Class resulting from compilation^

Method m = aClass.getMethodfevaluateVoid", null);

HyperCodeThread t = new HyperCodeThread(m);

t.threadStart();

Figure 67: Starting a thread for executing the evaluateVoid method

This expression triggers the invocation of method evaluateVoid, which occurs in

the body of method run, as shown in Figure 68. Note that the variable method is

the field that stores the instance of class Method associated with the particular

thread of execution.

try {

Object o = method.invoke(null, new String[0]);

} catch ...

Figure 68: Invoking method evaluateVoid inside method run

130

Since a call to threadSuspend is included in the body of method evaluateVoid, the

thread of execution is suspended and remains in that state until the programmer

resumes it.

7.2.6 Producing a new HCR

If execution produces a result, this is returned as a hyper-link in a HCA window

and is manipulated by the programmer accordingly. The hyper-link represents the

entity that is returned from execution. As an example, evaluating the HCR

included in the body of method Evaluatelnt.evaluatelnt shown in Figure 56 results

in a single hyper-link representing the integer two.

7.3 Summary

This chapter discusses the principal implementation issues of a particular

implementation of a HCS in PJama (PJ-HCS). The system is implemented on top

of the existing PJama language and JVM. The motivation for this approach is

interoperability, which allows the implementation of the hyper-code system to

comply with any future release of PJama and Java running on any platform.

The HCR is not a suitable form for the standard Java compiler. Thus

transformation between various forms is introduced. These forms are:

• the storage form, which is optimised for storage.

• the textual form, which is designed for use with a standard Java compiler.

131

• the editing form, which is optimised for editing.

The evaluate process performs the following operations:

• transformation of the storage form of a HCR into the textual form. This

involves: wrapping up the HCR into a class definition, generating the textual

form and inserting code for variable tracking and breakpoint manipulation,

which is required in order to display to the programmer a changing HCR, and

provide debugging.

• compilation and loading of the resulting class definition.

• execution, if necessary, and

• creation of a new HCR, if required.

The next chapter discusses implementation issues related to the Hyper-Code

Assistant tool and to operation explode.

132

8 Implementing the Hyper-Code Assistant Tool in PJama

The Hyper-Code Assistant (HCA) tool is used to compose and evaluate HCRs. It

supports exploding and imploding of hyper-links, embedded hyper-links, basic

editing facilities, drag and drop of HCRs, multiple fonts, styles and colours. It

performs as a normal editor, but it does not support justification or wrap-around.

The HCA tool implementation is structured using three layers, as shown in Figure

69, which allows implementations of different logical components to be changed

independently.

The Basic Editor (BE) stores and manipulates the editing form and supports the

manipulation of the HCR data structure. The Window Editor (WE) supports the

graphical display and editing of the HCR, and this involves the manipulation of

multiple fonts, styles, sizes and colours. The User Editors (UE) are high-level

tools built on top of the WE. One of these tools is the hyper-code UE, which

implements the hyper-code concepts.

Figure 69: The layers implementing the HCA

133

8.1 The Basic Editor

The BE contains the data structure used for storing an HCR. The data structure is

the editing form which is similar to the storage form. In the editing form, the

textual part of each program line is stored in a separate string. The position of each

hyper-link is defined by its offset in the line. This design is optimised for the

common editing operations, as their application does not affect the whole data

structure, but usually only a small part of it.

Figure 70 shows the editing form data structure for the example of Figure 45. For

each line, represented by an instance of class HyperLine, the data structure

contains the textual part and a vector of hyper-links. The vector of hyper-links

contained in the first line includes one to an instance of class Class and one to an

instance of class Person. Similarly, the vectors included in the other hyper-lines

contain hyper-links to other entities as shown in the figure. Flyper-links are

represented by instances of class HyperLink, which is defined later in section 8.2.

Similarly to class StorageFormHL, class HyperLink implements the

EntityRepresentation interface.

134

HyperLine
"

a = ;"

» b = ; "

"

.marry (a , b) ;"

"if (a!=null) {" /
int c;" /

" c=a.name.length();" /
" System.out.println(c) ; " /

/
"if (b!=null) {" /
" int c=a.name.length();" /

System.out.println(c) ;" /
"5" /

vector of
HyperLine
instances

vector of
HyperLink
instances

boolean denoting whether
hyper-link denotes a class
or method - - -

boolean denoting whether
hyper-link denotes a - _

primitive value

position of hyper-link
in the line

other fields, including the
label of the hyper-link

Figure 70: The editing form data structure

Class BasicEditor, which is shown in Figure 71, defines the editing form and

implements the BE layer. Translation between the editing and the storage form and

vice versa is performed through methods importHCR and exportHCR respectively.

Methods for editing, navigating and searching within the data structure are also

included.

135

class BasicEditor{

protected Vector theLines;

// Other fields

BasicEditor() { ... }

// Other constructors

public void importHCR(StorageForm her) {... }

public StorageForm exportHCR() {... }

// Methods for retrieving or updating the fields

// Methods for cut, copy, paste, insert and delete

// Methods for navigating and searching within the data structure

// Other methods

}

Figure 71: The definition of class BasicEditor

8.2 TheWindow Editor

The WE displays HCRs and is implemented by a WindowEditor instance, defined

in Figure 72.

Each instance of class WindowEditor is associated with a BasicEditor instance. If

the programmer has selected a fragment of the HCR this is specified by fields

startSelected and endSelected. The system records a copy of the current version of

the BasicEditor instance after each common editing operation is performed. This

version is retrieved when the programmer activates the undo action.

136

class WindowEditor extends JPanel {

protected TextPointer startSelected; // Record start of selected area

protected TextPointer endSelected; // Record end of selected area

protected BasicEditor basicEditor; // Record the BasicEditor instance

protected BasicEditor prevBE; // Record a BasicEditor instance for undo

protected Vector theStyles; // Record the styles of the HCR

// Other fields

protected WindowEditor() { ... }

// Other constructors

public void updateHCR(Stack stack) { ... }

// Methods for editing, navigating and scrolling

// Methods for handling undo, redo actions

// Methods for handling key and mouse events

// Methods for handling styles

// Methods for drawing, inverting and un-inverting hyper-text

// Methods for selecting and searching hyper-text

}

Figure 72: The definition of class WindowEditor

The HCR is drawn in the WE, using the styles recorded in an instance of class

java.util.Vector. Each element in the vector holds information about a particular

style, and this is represented by an instance of class StyleRun, partially defined in

Figure 73. Each instance stores the style's start and end as well as details about the

137

font, colour and size. When a new style is introduced, a new instance of class

StyleRun is inserted in the vector of styles.

class StyleRun {

protected TextPointer start;

protected TextPointer end;

protected Font thisFont;

protected Color thisColor;

StyleRun(TextPointer start, TextPointer end, Font font, Color color) {...}

// Methods for retrieving and updating the fields

}

Figure 73: The definition of class StyleRun

Class WindowEditor also contains methods for editing hyper-text in the drawing

area, for manipulating the insertion point, scrolling, and for drawing and printing.

Method updateHCR draws the current state of the HCR, where textual

representations of the variables in scope are replaced by hyper-links. This method

takes an instance of class java.util. Stack as parameter, which is the field stack in

class HyperCodeThread. This instance contains representations - instances of class

Variable - of the variables that have to be replaced.

Another task of the WE editor is to position and draw the hyper-links. The hyper¬

links are represented by instances of class HyperLink, which is partially defined in

Figure 74. Class HyperLink implements the EntityRepresentation interface,

defined in Figure 53. Each instance is a panel that displays the current view of the

138

entity represented by the hyper-link, that is a panel containing no label, customised

label or exploded view as appropriate.

Fields label and image store customisations for the hyper-link. Field windowEditor

records the drawing panel included in this hyper-link, when the latter is exploded.

If the hyper-link is imploded, the field windowEditor has the value null.

class HyperLink extends JPanel implements EntityRepresentation {

protected Object entityObject;

protected boolean isClass;

protected boolean isPrimitive;

protected int position

protected String label;

protected Imagelcon image;

protected WindowEditor windowEditor;

// Other fields

HyperLink(Object entityObject, boolean isClass, boolean isPrimitive) {...}

// Other constructors

protected void explode() {... }

protected void unexplode() {... }

// Methods for retrieving and updating the fields

// Other methods including painting and redrawing

}

Figure 74: The definition of class HyperLink

8.3 The Hyper-Code User Editor

The hyper-code UE supports the hyper-code operations. It is implemented by class

UserEditor, partially defined in Figure 75.

139

Each instance stores the WE associated with the UE. Methods for displaying a

given HCR, saving the currently displayed HCR in storage form, closing the

frame, and evaluating a HCR, as explained earlier in section 7.2, are also included.

class UserEditor extends javax.swing.JFrame {

protected WindowEditor windowEditor; // Record the WE instance

protected static Hashtable customDisplayTable; // Record the customisations

// Other fields

public void open(StorageForm her) { ... } // Insert a HCR in the window

protected void close() { ... } // Close the window

protected void save() {... } // Save the HCR in the PS

protected void evaluateHCR() { ... } //Trigger evaluation

public static Hashtable getCustomTable() {... }

// Adds a customisation in the table for class customised

public static void addCustomDisplay! Class custom, Class customised){...}

// Retrieves the HCR for the given class

public static StorageForm getStorageForm (Class class)

throws HCRNotFoundException { ...}

// Other methods

}

Figure 75: The definition of class UserEditor

The UE also contains fields and methods related to customising the display of

hyper-links representing instances of a particular class. The hyper-links, when

unexploded, can be customised to be displayed either as an image or a string or a

WWW link. Customisation adds to the relevant table, field customDisplayTable,

140

the class to be customised and a class that contains methods to generate either an

image or a string (the customising class). The class implements the CustomDisplay

interface, which is illustrated in Figure 76. All the methods take as parameter an

instance of the customised class.

public interface CustomDisplay {

public Imagelcon objectTolmage(Object object);

public String objectToString(Object object);

public String objectToWWWLink(Object object);

}

Figure 76: The definition of the interface CustomDisplay

The customisation mechanism as originally proposed by [KM97] required the

programmer to compose a class definition, which implemented the interface

CustomDisplay, compile it and add the resulting class in the customisation table.

Through the hyper-code system user interface, the programmer is only required to

provide the bodies of the three methods. The system then generates a class

definition that includes these three methods.

An example of a generated customising class is illustrated in Figure 77. The

generated class customises instances of class Person, which has been defined in

Figure 46, to be displayed as the image specified by the relevant field (field

image).

141

In the particular example, the bodies of the methods, provided by the programmer

are in purely textual form. However, these can be in the form of HCRs, which

means that the class definition that wraps these methods, may contain hyper-links.

The HCR representing this class is transformed into its textual form, as explained

in section 7.2.3. The system then compiles and loads the transformed generated

class, resulting in an instance of class Class. A new instance of that class is then

created, and this is added in the customisation table (field customDisplayTable of

class UserEditor).

public class CustomisePerson implements CustomDisplay {

public Imagelcon objectTolmage(Object object) {

return ((Person)object).image;

}

public String objectToString(Object object) {

return null;

}

public String objectToWWWLink(Object object) {

return null;

}

}

Figure 77: An example customising class

8.4 The Explode Operation

One of the main operations of the HCA is the explode operation, which generates

an HCR for the entity represented by a hyper-link. The exact form of the HCR

142

depends on the entity that is represented, but in all cases is an expression that is

equivalent (=rep.en) to the original hyper-link.

When the programmer activates the explode operation, the system invokes method

explode, contained in instances of class HyperLink. This involves the following

tasks:

• generate an HCR for the entity that is represented, and

• display the HCR in a new drawing area, which is included in the hyper-link

panel.

The exact form of the HCR depends on the entity that is represented. The

following sections illustrate the HCR generated for every first class hyper-code

entity.

8.4.1 Generating an HCR for a Primitive Type

The system generates an HCR depending on the primitive type that is represented,

using the following expression.

return new StorageForm(((Class) getEntityObject()).getName());

8.4.2 Generating an HCR for an Array Type

The system generates an HCR that includes a hyper-link representing the type of

the array's components and the "[]" string. This is shown in Figure 78.

143

Vector tempVector = new Vector();

Class componentType = ((Class)getEntityObject()).getComponentType();

tempVector.addElement(new StorageFormHL(componentType, true, false, 0));

return new StorageFormf []",tempVector);

Figure 78: Code to generate an HCR for an array type

8.4.3 Generating an HCR for a Class or Interface

The system retrieves the HCR from the vector of persistent HCRs, using method

getStorageForm of class UserEditor, with the class or interface represented by the

hyper-link as parameter. Any class definition created through the hyper-code

system has its corresponding HCR. However, some classes do not have a

corresponding persistent HCR, such as the classes included in the standard JDK 2.

Generating HCRs for those classes is possible, but these would be incomplete as

source code cannot be generated for methods and constructors using the Java

reflection package. Thus, the system simply generates an HCR containing the

name of the class.

This process is shown in Figure 79.

try {

return UserEditor.getStorageForm(((Class)getEntityObject()).getName());

} catch (HCRNotFoundException e) {

// HCR not found, so it returns the name of the class

return new StorageForm(((Class)getEntityObject()).getName());

}

Figure 79: Code to generate an HCR for a class or interface

144

8.4.4 Generating an HCR for a Primitive Value

The system generates an HCR representing the primitive value, as shown in the

following expression:

return new StorageForm(getEntityObject().toString());

8.4.5 Generating an HCR for an Array

Ideally, exploding a hyper-link representing an array should return an informative

expression that would be syntactically valid and sufficient to create a copy of the

array. The standard JDK 2 provides the static method System.arrayCopy, which

duplicates an array. However, an HCR containing such an expression would not be

informative, as it would not contain hyper-links to the elements of the array.

Therefore, the hyper-code system generates a HCR representing an array by

performing the following tasks:

• create a class definition that contains a static method. The static method takes

as parameters the elements of the original array. Inside the body of the method

a new array is created and its elements are initialised by the parameters

provided.

• compile and load the generated class definition. This results in an instance of

class Class.

145

• create a HCR containing a hyper-link to the resulting class, an expression to

invoke the static method, and hyper-links to the elements of the original array.

An example of a class generated for an array of integers is shown in Figure 80.

public class GenerateArray {

public static int[] newArray(int paramO, int paraml) {

int[] anArray = { paramO, paraml };

return anArray;

}

}

Figure 80: The definition of a generated class for an array

Class GenerateArray is compiled and loaded. The generated HCR contains a

hyper-link to that class, an expression to invoke the static method and two hyper¬

links representing the elements of the original array. This is shown in Figure 81.

. newArray(Q'Q>
4 v A

/ \f
Hyper-link to class Hyper-links to

GenerateArray integers

Figure 81: HCR representing an array

8.4.6 Generating an HCR for a Class Instance

Similarly to arrays, there is no straight forward way of generating an informative

HCR for non-array objects. The standard JDK 2 provides cloning of objects.

However, such an HCR would not be informative, that is would not provide

information about the fields. In addition, this requires the classes of the objects to

implement the java.lang. Cloneable interface. This implies that instances of class

146

that do not implement this interface, can not be "cloned". Thus, following this

approach, not every hyper-link to a class instance can be exploded.

Therefore, the hyper-code system generates an HCR representing a non-array

object, by performing the following tasks:

• create a class definition that contains a static method. The static method takes

as parameters all the fields of the class, including those that are private or

protected or inherited from its superclasses. Inside the body of the method a

new instance of the same class as the original object is created. The fields of

the newly created instance are then initialised by the parameters provided.

• compile and load the generated class definition. This results in an instance of

class Class.

• create a HCR containing a hyper-link to the resulting class, an expression to

invoke the static method, and hyper-links to the fields of the original object.

The set of operations described above is performed successfully only if the class of

the original object is public. This is a limitation of the Java language, which does

not allow access to non-public classes outside the package which they are defined.

However, JDK 2 allows accessing non-public members, that is fields, constructors

and methods. This is done by changing their accessibility flag through class

java.lang.reflect.AccessibleObject. During generation, changing the accessibility is

147

attempted is two cases: when creating a new instance of the class of the object and

when assigning the value of a field contained in the original object to the

corresponding field of the new object.

A new instance of the object's class can be created by invoking method

Globals6.createInstance. The method takes an instance of class Class, and creates

a new instance of the original object's class. This is done by performing the

following tasks:

• retrieve all the constructors of the given class. This results in an array of

instances of class java.lang.reflect.Constructor. If there are no constructors

declared in the class, get the default constructor. Otherwise, make an arbitrary

choice, such as get the first constructor in the array.

• check the accessibility of the constructor. If it is not public, make it accessible,

as explain earlier.

• create the new instance by invoking the newlnstance method on the given

instance of class Class and return that instance.

Assigning a value to a field of the newly created object is achieved by invoking

method Globals.assignValue. The method takes the new object, the name of the

6 Class Globals contains global settings and general purpose public static methods

148

field and the new value as parameters. Similarly to constructors, if the field is not

accessible, the system changes its accessibility, and then assigns the new value.

public class GeneratePerson {

public static Person newPerson(String paramO, javax.swing.lmagelcon paraml,

Person param2) {

Person anObject=Globals.createlnstance(Globals.getClassForNamef'Person"));

Globals.assignValue(anObject, "name", paramO);

Globals.assignValue(anObject, "image", paraml);

Globals.assignValue(anObject, "spouse", param2);

return anObject;

}

}

Figure 82: The definition of a generated class for an object

An example of a class generated for an instance of class Person is shown in Figure

82. Note that method Globals.getClassForName returns an instance of class Class

for the given class name.

The generated class definition is then compiled and this results in an instance of

class Class representing class GeneratePerson. The resulting HCR contains a

hyper-link to that class, an expression to invoke the static method and three hyper¬

links representing the values of the fields of the original instance. The HCR

resulting from this process is shown in Figure 83.

149

.newPersonO'O'O'
V

Hyper-link to Hyper-link to Hyper-link to Hyper-link to
class an instance of an instance of an instance of

GeneratePerson class String class Imagelcon class Person

Figure 83: HCR representing a non-array object

8.4.7 Displaying the Generated HCR

The last stage of the explode operation is to draw the HCR in a newly created WE.

The WE is then added in the hyper-link panel, which is resized automatically.

Exploding hyper-links at any level results in creating new nested WEs, which may

contain more hyper-links. This combination of WEs included in hyper-links forms

a tree of instances of class WindowEditor and HyperLink respectively.

8.5 Summary

This chapter discusses the implementation issues related to the Hyper-Code

Assistant tool and to operation explode.

The HCA is the only tool visible to the programmer. It is used to composed and

evaluate HCRs. It is designed to support exploding and imploding of hyper-links,

basic editing facilities and multiple fonts, colours and styles. It is structured using

three layers:

• the Basic Editor (BE) stores and manipulates the editing form and supports

the manipulation of the HCR data structure.

150

• the Window Editor (WE) supports the graphical display and editing of the

HCR, and this involves the manipulation of multiple fonts, styles, sizes and

colours.

• the User Editors (UE) are high-level tools built on top of the WE. One of

these tools is the hyper-code UE, which implements the hyper-code concepts.

The explode operation generates an HCR for the entity represented by a hyper¬

link. This involves generating an HCR for that entity and displaying the HCR in a

new drawing area. Exploding a hyper-link at any level may result in several nested

WEs and hyper-links.

The source code for the classes described in chapters 7 and 8 can be found at the

following URL:

http://www-ppg.dcs.st-and.ac.uk/Languages/Java/HCS

151

9 Conclusions

The research described in this thesis is based on the Aristotelian distinction

between the way reality is structured and the way it is viewed. In the context of the

thesis, this means that the problem of building software can be approached in

different ways. As an example, the task of programming may be viewed at

different levels of abstraction, such as at the machine level, at the operating system

level and at the higher level. Programming at each level requires manipulation of

different abstractions, representations and operations. Some of these concepts are

essential for programming at the particular level. The rest are considered accidents

as they can be hidden either by specifying new abstract concepts or by providing

different tools.

The motivation for the research is to improve programmers' productivity in the

task of developing software. The hypothesis of the thesis is that this can be

achieved by making a system simpler. A simple system may be produced by

removing unnecessary complexity, for example by presenting to a programmer

either fewer or more understandable concepts and forms.

In programming environments following the traditional life-cycle, the programmer

is required to be aware of various operations and many different forms and tools.

152

Simplification may be achieved both at an abstract level and at a concrete level

[ZKMOO],

9.1 Simplification at the Abstract Level

The thesis presents a different way of structuring the reality, which simplifies the

traditional programming life-cycle. A new set of abstract concepts is introduced.

These shape the hyper-code abstraction, which describes the software life-cycle in

terms of two domains and four abstract operations.

The two domains are: the domain of language entities (hyper-code entities) and the

domain of concrete representations of entities, which is the only domain made

explicit to the programmer. The domain operations map between and within the

two domains. These are purely definitional and they are not visible to the

programmer. These operations are: reflect, reify, execute and transform.

The hyper-code abstraction is designed to structure the reality in a more

understandable way than the traditional life-cycle, thus easing the task of

programming.

9.2 Simplification at the Concrete Level

Hyper-code continues the chain of simplification steps starting from the

introduction of persistence. Orthogonal persistence brought about several

simplifications of the programmer's task. One was to unify short-term and long-

153

term data. Another was to unify data and code, in the sense that executable code

became first-class and could be manipulated in the same way as other data.

Hyper-programming involved a further unifying simplification step. In hyper-

programming, source programs are themselves persistent data and are manipulated

in the same way as other values.

Hyper-code builds on these simplifications by further unifying source code and

executable code. The result is that the distinction between them is completely

removed. The programmer sees only a single program representation form, the

Hyper-Code Representation, throughout the software life-cycle, during program

construction, execution, debugging, and viewing existing programs and data.

As a consequence, only a single programming tool is required to manipulate this

uniform representation form, rather than the various program editors, data

browsers, debuggers, etc needed otherwise. This single tool is the Hyper-Code

Assistant Tool. Various processes such as compilation and linking are accidental

and hidden from the programmer.

The hyper-code view of a programming system may be implemented through a

Hyper-Code System, which provides through the single tool a suitable set of

operations so that the design goals can be met. One set of operations is: explode,

implode, evaluate, edit and getRoot.

154

The consequence is that the hyper-code abstraction structures the reality in a way

that results in fewer and more understandable accidents. The one-representation /

one- tool model simplifies the task of programming; according to the original

hypothesis this improves programmers' productivity. Quantitative testing of this

hypothesis would require extensive user evaluation.

9.3 Hyper-Code Systems and Related Work

Several other programming environments attempt to simplify the traditional

programming life-cycle. However, most of these environments attempt to solve

problems caused by accidental difficulties, rather than introducing a new way of

viewing the reality. The survey of the related work indicated that most modern

programming environments hide concepts of the traditional programming life-

cycle in one way or another. Hiding interchange forms, or providing a better user

interface for composing programs are some examples of attempts towards that

goal.

Nevertheless, all of these systems present the programmer with different

representations for programs and data during all stages of the software

development process. In addition, the operations performed require multiple tools,

each one of which may consist of several windows. As an example, in some

155

systems debugging requires a window containing breakpoints, which is usually the

editor window, and a window to monitor values at run-time.

Therefore, there is an indication that a hyper-code system provides a better

solution to the problem of simplifying the traditional programming life-cycle than

other systems. Extensive user evaluation may be required in order to test this on a

quantitative basis.

9.4 Current Design and Implementation Status

The thesis reports on mapping the hyper-code concepts to particular languages

(ProcessBase and PJama). This includes the specific definition of the domains and

the definition of the concrete operations with respect to the particular

interpretations of the underlying domain operations. The user interface for each of

the concrete operations is also described.

In addition, at the time of writing (September 2000), a prototype implementation

of a HCS in PJama (PJ-HCS), demonstrating the hyper-code concepts, has been

completed. The implementation of variable tracking and breakpoint manipulation

is ongoing. More details about the current status of implementation can be found at

http://www-ppg.dcs.st-and.ac.uk/Researcli/HyperCode/.

156

9.5 General Discussion of HCSs

The thesis reports on a particular style of HCSs, which involves the specification

of a particular set of HCOs performed over HCRs. This section discusses several

issues related to:

• the particular HCR chosen.

• the particular set of HCOs chosen.

• the mapping of the hyper-code concepts into concrete HCSs in particular

languages. Two issues may be of interest:

- the way that the features of particular languages affect the mapping of

those languages to hyper-code.

the essential and desirable features of a language for which hyper-code is

being implemented.

9.5.1 Choosing the Particular HCR

The HCR is defined to have the hyper-programming form. Although the particular

HCR form chosen fulfils the criteria introduced earlier in section 4.1, it does not

deal adequately with displaying cyclic data structures, which means that the HCR

does not explicitly show cyclic data structures.

For this problem, a possible solution would be to alter the default behaviour of the

explode operation. When exploding a hyper-link that represents an entity that is

157

part of a cycle, explode would draw an arrow starting from the hyper-link to be

exploded and pointing to an already exploded hyper-link representing that entity.

This is shown in Figure 84 where Hyper-Link 3 represents the same entity as

Hyper-Link 1. When exploding Hyper-Link 3, an arrow indicates that the

requested detailed representation is already included in Hyper-Link 1. The arrow

also denotes the cyclic data structure.

Hyper-Link 1

Hyper-Link 2

Hyper-Link 3

Figure 84: Denoting cyclic data structures

9.5.2 Choosing the Particular Set of HCOs

The set of concrete HCOs described, that is explode, implode, evaluate, edit and

get root, is just one example of the many possible sets that could support the

required programming activities. It does appear to be simple and minimal, at least

in comparison with some of the earlier operation sets from which it evolved during

this work. For example, in one version there was a distinction between inspection

of an entity, which generated a read-only representation, and modification, in

which a representation could be edited and then reflected into a new entity that

Hyper-Code Assistant

158

would replace the original. This scheme turned out to be unnecessarily complex

and was too closely coupled with issues of mutability in a particular language.

In a later version separate operations for expanding a hyper-link in place and for

expanding it to give a new hyper-code fragment were defined. This was

unnecessary given the ability to copy the hyper-code within an exploded link, so

the two operations were replaced by the single explode.

It is not clear whether this operation set is suitable for all languages (without the

get root operation for non-persistent languages); it appears to be suitable for

PJama and for ProcessBase.

9.5.3 Mapping Hyper-Code Into Particular Languages

Several general conclusions can be drawn from the experience of designing and

implementing particular HCSs in ProcessBase and PJama, as described in chapters

4, 5, 6 and 7. These conclusions are related to the following:

• The entities that can be hyper-linked.

• The way that a language affects the form of the representation of entities.

• The way that a particular language protects data and how this affects the

HCOs.

• Whether the language supports mutable locations and how this affects HCOs.

159

• Whether the system supports third-party executable code without source code.

• Whether the language provides persistence and referential integrity.

• Whether a HCS preserves compatibility with a language and its components.

9.5.3.1 Hyper-Linking

One of the decisions in designing a HCS for a particular language is related to

which language entities can be represented by a single hyper-link. The simplest

choice is to allow hyper-linking of all the language constructs. However, not all

constructs can be hyper-linked in practice. For example, in a HCS for PJama,

constructs that are not hyper-linked are locations, methods and constructors. In a

HCS for ProcessBase, constructs that are not hyper-linked are interrupt and op¬

code types.

In Java, fields, array elements and local variables are all locations. Location

expressions are dereferenced implicitly and can be considered either as L or R

values depending on the context. Allowing hyper-linking to L values is

problematic since there is no self-contained representation for them. Therefore, for

the particular implementation, hyper-linking is not supported for L values.

Java methods and constructors are not first class values, as they are not assignable

and cannot be passed as parameters. They are not self-contained, as they can only

be defined within a class. Consequently, no full self-contained HCR can be

160

generated when a hyper-link is exploded. Therefore, for the particular

implementation, hyper-linking of methods and constructors is not supported.

ProcessBase interrupt and op-code types cannot be hyper-linked since there is no

valid syntax in the language for them.

Based on these observations related to which language constructs cannot be hyper-

linked, the following guidelines are used to specify the constructs that can be

hyper-linked:

• The language constructs must be self-contained, which means that they must

be consistent when defined in isolation.

• There is a valid syntax in the language for them.

9.5.3.2 Generating Detailed HCRs for Entities

Explode is defined to present the programmer with a detailed representation of the

hyper-linked entity. When exploding a hyper-link to an entity, this representation

is sufficient to create a new entity, if evaluated separately.

The exploded HCR captures the entity's current state and not the way it was

created. This may be a problem as the HCR, when evaluated separately, may cause

undesirable side-effects or may not cause desirable side-effects. There is no way

for the system to predict which case is suitable as this depends on the context of

the particular application.

161

In Java, for example, the HCR resulting from explode contains an invocation of an

object constructor, which creates a new instance, if evaluated separately, possibly

causing side-effects. Depending on the application, these side-effects may or may

not be desirable. Thus, no conclusion can be drawn related to whether the resulting

HCR is suitable or not, as this is application dependant.

However, a desirable language feature for the explode operation is to provide

single expression constructs for creating new entities. For example, ProcessBase

provides such convenient constructs to create new views and vectors, that is the

closest analogues to objects. The generated HCR resulting from exploding in this

case contains a single view or a vector expression, which initialises all the fields,

as explained earlier in section 5.3.1.

In PJama, objects are created using one of the constructors included in a class. In

order to generate a representation for an object, the system simulates the

ProcessBase approach; a class containing a method, which invokes a constructor

and initialises all the fields, is generated. The system makes an arbitrary choice for

selecting a constructor, and that is selecting the default constructor. The desirable

representation is an expression that invokes the generated method. This approach

is necessary since there is no single expression to achieve these tasks.

162

9.5.3.3 Information Hiding

The explode operation relies on the system's ability to introspect over entities and

is required since explode should be able to discover the internal structure of the

entity, in order to generate an HCR. However, exploding entities that hide

information is problematic, as the system does not have access to this information

in order to generate HCRs. Consequently, the programmer is presented with less

information than an HCR that fulfils the requirements described in section 4.1.

Different languages provide different approaches to the way that data is hidden

from general access. Nevertheless, in some cases this data can be revealed.

Consequently a HCS can produce a full HCR. This precludes real information

hiding, as the programmer is presented with information that is meant to be

hidden.

Java, for example, supports information hiding by encapsulation. This is specified

by the protected and private modifiers, which restrict access to them outside the

package or class they are used respectively. Data is encapsulated in a class or an

object and may only be accessed through the corresponding methods, which means

that private or protected members cannot be accessed directly. Therefore when the

system attempts to generate an HCR for an entity, only public members can be

accessed, resulting in a representation that is not complete.

163

Class java.lang.reflect.AccessibleObject provides a solution to accessing hidden

fields. This class allows changing the accessibility permissions of private or

protected fields and consequently allows this information to be presented to the

programmer. In this case, a HCS uses this class when exploding a hyper-link

representing an object.

A restriction that cannot be bypassed is that explode cannot be performed over

hyper-links that represent instances of a non-public class. In this case, the HCS in

PJama attempts to refer to this class in the body of the corresponding generated

method that creates a new object and initialises all the fields. This attempt fails as

the class is not public, which means that it cannot be accessed outside the package

it is defined.

In ProcessBase the only information hiding mechanism is the procedure closure, in

which the access path to data used by the procedure may be hidden from general

access. The way to bypass this is to hyper-link this data and reveal it when the

procedure closure is exploded. In order to achieve that, the system changes textual

representations of identifiers into hyper-links during evaluation and records them

on closure formation.

164

9.5.3.4 Mutable Locations

The issue here is that in some languages, such as Java, an identifier may denote

either a location or the current value of that location, depending on its context. As

explained earlier in section 9.5.3.1, L values are not hyper-linked in that case. This

affects operation evaluate, where a special class of identifier link is required,

which behaves differently from all others in that the linked value changes during

evaluation on each update.

Another problem in the HCS in PJama is that during evaluation, the programmer

may copy a link to the location of a variable on the stack, which represents its

current value, and paste it in another window. The semantics of this after exiting

the scope of the variable are not clear. The pragmatic, but unsatisfactory solution

for the HCS in PJama is that copying the link gives only the corresponding textual

identifier.

Both of these problems are avoided if mutable locations are first class, as in

ProcessBase, which provides an explicit location constructor. This simplifies

matters — in the first example, the value bound to a link now never changes,

although if the value is a location its contents may. In the second example, the

location automatically persists beyond the method invocation, and so the link

continues to denote the same location wherever it is pasted.

165

9.5.3.5 Openness

The hyper-code scheme relies on source code being either recorded or generated as

required for all entities, so that the explode operation can show details. This is

feasible in a self-contained persistent system, in which all entities are originally

derived from the evaluation of source code.

However, it does not work in an open system that has to deal with third-party code

for which source is not available. As an example, this is true for much of the

standard Java class libraries, as well as for most commercial Java software.

An example of the problems that this may cause is when exploding a hyper-link to

a standard Java class. Since there is no source code to generate an HCR, the

system provides merely the name of the class as the HCR. Such a representation

complies with all the requirements related to HCRs, but it is not as informative as

desired.

Another solution would be to generate approximations to the source code, using

reflection facilities. For example, when exploding a hyper-link to a class, the

resulting HCR would contain the fields and only the declaration of constructors

and methods without including source for their bodies. This approach results in a

more informative HCR than the previous solution but still does not accurately

denote the represented entity.

166

9.5.3.6 Persistence and Referential Integrity

The issue here is that in a persistent HCS, HCRs can be stored together with other

values in the persistent store, without requiring an explicit save operation from the

programmer. This means that when exploding a hyper-link representing a

procedure closure or a class, there is always a corresponding HCR, which can be

retrieved from the persistent store and presented to the programmer.

At the implementation level, persistence with referential integrity is a desirable

feature for a system when transforming hyper-links into textual representations. In

this, a textual specification of the path of the hyper-linked entity replaces the

original hyper-link. This transformation is required if the compiler only accepts

purely textual specifications.

Such a transformation is required for the particular implementation of a HCS, as

explained in section 7.2.3. In this, the path that replaces the original hyper-link

denotes an entity which is referenced through a vector of references to objects.

9.5.3.7 Compatibility

An implementation decision for the particular HCSs described in the thesis is to

build the system on top of existing tools. The particular implementation of a HCS

in PJama uses the Java language, the standard JVM and the standard reflection

mechanisms. The motivation for this is compatibility with future releases of Java

running on any platform.

167

This decision affects several hyper-code operations, such as explode and evaluate.

An example is the use of reflection facilities provided by standard Java libraries.

Package java.lang.Reflect provides good support for introspection over class

structure. It does not, however, provide introspection over method code, even at

the byte level, or dynamic access to the compiler. The current implementation

provides dynamic compilation, but it would be simpler if it was supported directly.

Another issue is that current Java compilers, including the one provided by the

current implementation, work only at the granularity of complete textual class

definitions. This requires the system to transform a HCR from its hyper-

programming form into textual form. In addition there is a considerable overhead

involved in processing small expressions since they must also been wrapped up

into complete classes.

9.5.4 Essential and Desirable Features for Hyper-Code

The following mechanisms are essential for hyper-code:

• Structural reflection over types: a HCS must be able to introspect over

entities in order to produce an HCR when required. For the particular set of

operations introduced in this thesis, this is required by explode and get root.

• Dynamic compilation facilities: a HCS must be able to dynamically compile

representations in order to produce their corresponding entities. For the

168

particular set of operations introduced in this thesis, this is required by

evaluate.

• Graphical user interface: a HCS must be able to provide the environment

through which programmers compose HCRs. For the particular set of

operations introduced in this thesis, this is required by edit.

Sections 9.5.3.1 — 9.5.3.7 described several desirable language features for hyper-

code, without which the mapping onto languages is unsatisfactory. The thesis

demonstrates that it is possible to implement hyper-code in a language that does

not provide all these features, such as PJama. However, it is believed that it would

be cleaner and simpler to implement hyper-code in languages that do provide most

of these features, such as ProcessBase.

The desirable language features are beneficial when designing a HCS. Some affect

the simplicity and elegance of the resulting system, while others impact on the

ease of implementation. Summarising the above, these features are:

• all the values being first class, and types with syntax in the language.

• single expressions to create new entities.

• direct access to programs and data without any restrictions—no information

hiding.

169

• first class locations.

• control over source of executable code.

• persistence and referential integrity.

• structural reflection over code and compiler accepting HCRs.

9.6 Further Research Work

Further research work may include:

• Investigation of alternative hyper-code operations: the set of operations

described here was designed to fulfil certain criteria, but it is likely that other

completely different operations could also fulfil them.

• Investigation of alternative hyper-code representation: the HCR described

here was designed to fulfil certain criteria, but it is likely that other completely

different HCRs could also fulfil them.

• Provision of HCR transformation at the user level to/from other formats,

such as HTML and XML.

• Investigation of byte code transformation as opposed to pre-compile time

transformation: the hyper-code system inserts additional fragments of code

just before compilation in order to perform variable tracking and breakpoint

manipulation. An alternative technique would be to perform byte code

170

transformation at class loading time [MZB+00], [ChiOO]. This would probably

give considerably better performance for the evaluate operation, at the cost of

greater complexity.

• Mapping hyper-code to the ProcessBase language: the design of a HCS in

ProcessBase indicated that mapping hyper-code to ProcessBase is possible. It

is intended to provided such an implementation as part of current research into

compliant architectures [MBOO], [MBG+00].

A HCS provides a good, convenient and non ad-hoc solution to the problem of

developing software, but it is not a panacea for every problem. It is just a better

view of the reality.

9.7 Final Thoughts

171

10 Appendix

10.1 Index of Tables

Table 1: Essential concepts and accidents at each level of programming 5
Table 2: Comparison of features provided in various systems 43
Table 3: Comparing various programming environments 44
Table 4: Appearance of representations of ProcessBase entities 77
Table 5: Definition equivalence over ProcessBase entities in E 78
Table 6: Exploding hyper-links to ProcessBase values and identifiers 80
Table 7: Exploding hyper-links to ProcessBase types 81
Table 8: Evaluating ProcessBase HCRs 86
Table 9: Appearance of representations of PJama entities 92
Table 10: Definition of the sen equivalence over PJama entities in E 92
Table 11: Exploding hyper-links to variables and objects 94
Table 12: Exploding hyper-links to types 95
Table 13: Evaluating PJama HCRs 98
Table 14: Use of StorageFormHL fields for each category of entity 110

172

10.2 Index of Figures

Figure 1: Programming at different levels of abstraction 4
Figure 2: The traditional programming life cycle 11
Figure 3: Traditional access to long-lived data 13
Figure 4: Systems that attack accidents of the traditional software life-cycle 14
Figure 5: A snapshot of editing Java programs in Emacs 16
Figure 6: A snapshot of an example project 17
Figure 7: A snapshot of editing and browsing in CodeWarrior Java 18
Figure 8: Composing an application in Visual Basic 20
Figure 9: A snapshot of a Smalltalk browser window displaying a class 23
Figure 10: Evaluating expressions in Dolphin Smalltalk 24
Figure 11: Browsing tools in the Trellis programming environment 26
Figure 12: An IPSE architecture 27
Figure 13: Accessing data in an orthogonal persistent system 33
Figure 14: First class executable code 35
Figure 15: Hyper-programming in Napier88 39
Figure 16: Hyper-Programming in PJama 40
Figure 17: Accessing source and executable code in HP systems 41
Figure 18: The unification chain towards a hyper-code system 42
Figure 19: Sets in the entities domain 46
Figure 20: Sets in the representation domain 47
Figure 21: Domains and domain operations 47
Figure 22: Categorisation of HCSs 52
Figure 23: Accessing data in a hyper-code system 59
Figure 24: An example HCA window containing an HCR 63
Figure 25: The HCR of Figure 24 after imploding its hyper-links 66
Figure 26: Snapshots of the evaluation process 69
Figure 27: The persistent roots HCA window 71
Figure 28: Searching in a HCS 74
Figuxe 29: A ProcessBase HCR that produces an error 83
Figure 30: Snapshots of evaluating a ProcessBase HCR 84
Figure 31: An example of an identifier that escapes its scope 84
Figure 32: An HCR representing a closure 85
Figure 33: The persistent roots HCA window 86
Figure 34: Composing a ProcessBase HCR 87
Figure 35: Updating a ProcessBase location 87

173

Figure 36: Customising a particular hyper-link 88
Figure 37: Customising hyper-links representing values of the specified type 89
Figure 38: The definition of class Person and its superclass 93
Figure 39: A PJama HCR that produces an error 97
Figure 40: Snapshots of evaluating a PJama HCR 98
Figure 41: The persistent roots and classes HCA windows 100
Figure 42: Composing a PJama HCR 100
Figure 43: Customising a particular hyper-link 101
Figure 44: Customising hyper-links to instances of the specified class 102
Figure 45: An example HCR in PJama 103
Figure 46: The definition of class Person 104
Figure 47: Transforming between the three HCR forms 105
Figure 48: The evaluation algorithm 106
Figure 49: Transforming storage form into textual form 107
Figure 50: An instance of the storage form 107
Figure 51: The definition of class StorageForm 108
Figure 52: The definition of class StorageFormHL 109
Figure 53: The definition of interface EntityRepresentation 109
Figure 54: Transforming the example HCR into a class definition 112
Figure 55: Transforming a non-void HCR 112
Figure 56: Transforming an HCR representing a primitive value 113
Figure 57: Accessing a hyper-linked entity in the persistent store 114
Figure 58: Transforming the example HCR into its textual form 116
Figure 59: The definition of class HyperCodeThread 120
Figure 60: The definition of class Variable 121
Figure 61: The result of transforming the example HCR 123
Figure 62: An example class definition 124
Figure 63: Transforming the example class definition of Figure 62 125
Figure 64: The definition of class DynamicCompiler 126
Figure 65: Initialising and starting a thread 129
Figure 66: Code in the body of the run method 129
Figure 67: Starting a thread for executing the evaluateVoid method 130
Figure 68: Invoking method evaluateVoid inside method run 130
Figure 69: The layers implementing the HCA 133
Figure 70: The editing form data structure 135
Figure 71: The definition of class BasicEditor 136
Figure 72: The definition of class WindowEditor 137
Figure 73: The definition of class StyleRun 138
Figure 74: The definition of class HyperLink 139

174

Figure 75: The definition of class UserEditor 140
Figure 76: The definition of the interface CustomDisplay 141
Figure 77: An example customising class 142
Figure 78: Code to generate an HCR for an array type 144
Figure 79: Code to generate an HCR for a class or interface 144
Figure 80: The definition of a generated class for an array 146
Figure 81: HCR representing an array 146
Figure 82: The definition of a generated class for an object 149
Figure 83: HCR representing a non-array object 150
Figure 84: Denoting cyclic data structures 158

175

11 References

[ABC+83] Atkinson, M.P., Bailey, P.J., Chisholm, K.J., Cockshott, W.P. &

Morrison, R. "An Approach to Persistent Programming". Computer

Journal 26, 4 (1983) pp 360-365.

[ADJ+96] Atkinson, M.P., Daynes, L., Jordan, M.J., Printezis, T. & Spence, S.

'An Orthogonally Persistent Java™". ACM SIGMOD Record 25, 4

(1996) pp 68-75.

[AJ96] Atkinson, M.P. & Jordan, M.J. (eds) Persistence and Java. Sun

Microsystems SMLI-TR-96-58 (1996).

[AJD+96] Atkinson, M.P., Jordan, M.J., Daynes, L. & Spence, S. "Design

Issues for Persistent Java: a Type-Safe, Object-Oriented,

Orthogonally Persistent System". In Proc. 7th International

Workshop on Persistent Object Systems, Cape May, NJ, USA,

Connor, R.C.H. & Nettles, S. (eds) (1996) pp 33-47.

[AM85] Atkinson, M.P. & Morrison, R. "Procedures as Persistent Data

Objects". ACM Transactions on Programming Languages and

Systems 7, 4 (1985) pp 539-559.

[AM95] Atkinson, M.P. & Morrison, R. "Orthogonally Persistent Object

Systems". VLDB Journal 4, 3 (1995) pp 319-401.

176

[And99] Andersen, V. "dBase IV 2.0 Programmer's Reference", ISBN

1583483969 (1999).

[App86] Apple Computer Inc. "Inside Macintosh". Addison-Wesley,

Reading, Massachusetts (1986).

[Bac86] Bach, M.J. "The Design of the UNIX Operating System". Prentice-

Hall, Englewood Cliffs, New Jersey (1986).

[BOP+89] Bretl, B., Maier, D., Otis, A., Penney, J., Schuchardt, B., Stein, J.,

Williams, E.H. & Williams, M. "The GemStone Data Management

System". In Object-Oriented Concepts, Databases and

Applications, Kim, W. & Lochovsky, F. (eds), ACM Press and

Addison Wesley (1989) pp 283-308.

[Bor89] Borland International "Turbo Pascal". Borland International, Scotts

Valley, California (1989).

[Bot89] Bott, M.F. (ed) ECLIPSE: An Integrated Project Support

Environment. Peter Peregrinus (1989).

[Bro86] Brooks, E.P. "No Silver Bullet - Essence and Accidents of Software

Engineering". In Proc. Information Processing 86 (1986) p 1069.

177

[CB98] Connolly, T.M. & Begg, C.E. "Database Systems" (2nd Edition).

Addison-Wesley, Harlow, UK, ISBN 0-201-34287-1 (1998).

[CCK+94c] Connor, R.C.H., Cutts, Q.I., Kirby, G.N.C., Moore, V.S. & Morrison,

R. "Unifying Interaction with Persistent Data and Program". In

Interfaces to Database Systems, Sawyer, P. (ed), Springer-Verlag,

Proc. 2nd International Workshop on User Interfaces to Databases,

Ambleside, Cumbria, 1994, In Series: Workshops in Computing, van

Rijsbergen, C.J. (series ed) (1994) pp 197-212.

[ChiOO] Chiba, S. "Load-Time Structural Reflection in Java". To Appear:

ECOOP 2000 (2000).

[Coo90] Cooper, R.L. "On The Utilisation of Persistent Programming

Environments". PhD Thesis, University of Glasgow (1990).

[Dat93] Date, C.J. & Darmen, H. "A guide to the SQL" (3rd Edition).

Addison- Wesley (1993).

[Dav92] Davie, A. "A Introduction to Functional Programming Systems

using Haskell". Cambridge University Press, ISBN 0 521 27724 8

(1992).

[DB88] Dearie, A. & Brown, A.L. "Safe Browsing in a Strongly Typed

Persistent Environment". Computer Journal 31,6 (1988) pp 540-544.

178

[Dow98] Dowling, N. "Database Design & Management". Ashford Colour

Press (1998).

[GJS96] Gosling, J., Joy, B. & Steele, G. "The Java™ Language

Specification". Addison-Wesley, ISBN 0-201-63451-1 (1996).

[Gli97] Glickstein, B. "Writing GNU Emacs Extensions" (First Edition).

O'Reilly & Associates Inc, ISBN 1-56592-261-1 (1997).

[GR83] Goldberg, A. & Robson, D. "SmalltaIk-80: The Language and its

Implementation". Addison Wesley, Reading, Massachusetts (1983).

[HM76] Henderson, P. & Morris, J. "A Lazy Evaluator". In Proc. 3rd ACM

Symposium on principles of Programming Languages (1976).

[Int99] Intuitive Systems "Dolphin Smalltalk". (1999)

[KCC+92] Kirby, G.N.C., Connor, R.C.H., Cutts, Q.I., Dearie, A., Farkas, A.M.

& Morrison, R. "Persistent Hyper-Programs". In Persistent Object

Systems, Albano, A. & Morrison, R. (eds), Springer-Verlag, Proc.

5th International Workshop on Persistent Object Systems (POS5),

San Miniato, Italy, In Series: Workshops in Computing, van

Rijsbergen, C.J. (series ed), ISBN 3-540-19800-8 (1992) pp 86-106.

179

[KCC+93] Kirby, G.N.C., Cutts, Q.I., Connor, R.C.H. & Morrison, R. "The

Implementation of a Hyper-Programming System". University of St

Andrews Technical Report CS/93/5 (1993).

[Kir92] Kirby, G.N.C. "Reflection and Hyper-Programming in Persistent

Programming Systems". PhD Thesis, University of St Andrews.

Technical Report CS/93/3 (1992).

[KM97] Kirby, G.N.C. & Morrison, R. "OCB Object Class Browser'

University of St Andrews (1997).

URL: http://www-ppg.dcs.st-and.ac.uk/Languages/Java/OCB/

[KMS98] Kirby, G.N.C., Morrison, R. & Stemple, D.W. "Linguistic Reflection

in Java". Software - Practice & Experience 28, 10 (1998) pp 1045-

1077.

[KR78] Kernighan, B.W. & Ritchie, D.M. "The C Programming

Language". Prentice-Hall, New Jersey (1978).

[Lu91] Luce, T. "Computer Hardware, System Software, and Architecture'1

Mitchell Publishing Inc. (1991),

180

[MBOO] Morrison, R., Balasubramaniam, D., Greenwood, R.M., Kirby,

G.N.C., Mayes, K., Munro, D.S. & Warboys, B.C. "A Compliant

Persistent Architecture". Software - Practice and Experience, Special

Issue on Persistent Object Systems 30, 4 (2000) pp 363-386.

[MBC+96b] Morrison, R., Brown, A.L., Connor, R.C.H., Cutts, Q.I., Dearie, A.,

Kirby, G.N.C. & Munro, D.S. "Napier88 Release 2.2.1". University

of St Andrews (1996).

[MBG+00] Morrison, R., Balasubramaniam, D., Greenwood, R.M., Kirby,

G.N.C., Mayes, K., Munro, D.S. & Warboys, B. "An Approach to

Compliance in Software Architectures". To Appear: IEE Informatics

1, Sommerville, I. (ed) (2000).

[MBG+99b] Morrison, R., Balasubramaniam, D., Greenwood, M., Kirby, G.N.C.,

Mayes, K., Munro, D.S. & Warboys, B.C. "ProcessBase Reference

Manual (Version 1.0.6)". Universities of St Andrews and Manchester

(1999).

[MBG+99d] Morrison, R., Balasubramaniam, D., Greenwood, M., Kirby, G.N.C.,

Mayes, K., Munro, D.S. & Warboys, B.C. "ProcessBase Standard

Library Reference Manual (Version 1.0.4)". Universities of St

Andrews and Manchester (1999).

181

[MCC+95] Morrison, R., Connor, R.C.H., Cutts, Q.I., Dunstan, V.S. & Kirby,

G.N.C. "Exploiting Persistent Linkage in Software Engineering

Environments". Computer Journal 38, 1 (1995) pp 1-16.

[MCD+99] Morrison, R., Connor, R.C.H., Cutts, Q.I., Dearie, A., Farkas, A.,

Kirby, G.N.C., McGettrick, R. & Zirintsis, E. "Current Directions in

Hyper-Programming". In Lecture Notes in Computer Science 1755,

Bjorner, D., Broy, M. & Zamulin, A. (eds), Springer-Verlag, Proc.

3rd International Andrei Ershov Memorial Conference on

Perspectives of System Informatics (PSI), Novosibirsk, Russia, ISBN

3-549-67102-1 (1999) pp 316-340.

[MCK+96] Morrison, R., Connor, R.C.H., Kirby, G.N.C. & Munro, D.S. "Can

Java Persist?". In Proc. 1st International Workshop on Persistence for

Java (PJW1), Drymen, Scotland (1996), Technical Report Sun

Microsystems Laboratories SMLI TR-96-58.

182

[MCK+99] Morrison, R., Connor, R.C.H., Kirby, G.N.C., Munro, D.S.,

Atkinson, M.P., Cutts, Q.I., Brown, A.L. & Dearie, A. "The Napier88

Persistent Programming Language and Environment". In Fully

Integrated Data Environments, Atkinson, M.P. & Welland, R.

(eds), Springer, In Series: Esprit Basic Research Series, ISBN 3-540-

65772-X (1999) pp 98-154.

[Met99] Metrowerks Inc "CodeWarrior". (1999) URL:

http://www.metrowerks.com/

[Mic94] Microsoft Corporation "Microsoft Access: User's Guide". (1994).

[Mic96] Microsoft "Microsoft Visual Basic". (1996) URL:

http://www.microsoft, com

[Mic97] Microsoft, C. "Microsoft Visual Basic Online". (1997).

[Mic98] Microsoft Corporation "Microsoft® Visual Basic® 6.0

Programmer's Guide". Microsoft Press, ISBN 1-57231-863-5

(1998).

[Mic98+J Microsoft "Microsoft® Windows 98". (1998) URL:

http://www.microsoft, com

183

[Mor79] Morrison, R. "On the Development of Algol". PhD Thesis,

University of St Andrews (1979).

[MS87] Morrison, R. & Sommerville, I. "Software Development with Ada".

Addison-Wesley Publishers Ltd, ISBN 0-201-14227-9 (1987).

[MZB+00] Marquez, A., Zigman, J.N. & Blackburn, S.M. "Fast Portable

Orthogonally Persistent Java". Software - Practice and Experience,

Special Issue on Persistent Object Systems 30, 4 (2000) pp 449-479.

[NA99] Naughton, P. & Schildt, H. "Java 2 - The Complete Reference"

(3rd Edition). Brandon A. Nordin (1999).

[Nai93] Naiman, A., Dunn, E., MacAllister, S. & Kadyk, J. "The Macintosh

Bible". Peachpit Press (1993).

[OHK87] O'Brien, P.D., Halbert, D.C. & Kilian, M.F. "The Trellis

Programming Environment". ACM SIGPLAN Notices 22, 12. Proc.

International Conference on Object-Oriented Programming Systems,

Languages and Applications (OOPSLA'87), Orlando, Florida (1987)

pp 91-102.

[Ros28] Ross, W.D. "The Works of Aristotle Translated in English".

Oxford University Press (1928).

184

[Set96] Sethi, R. "Programming Languages". Addison-Wesley Publishing

Company (1996).

[Sno89] Snowdon, R.A. "An Introduction to the IPSE 2.5 Project". ICL

Technical Journal 6, 3 (1989) pp 467-478.

[ST86] Sommerville, I. & Thomson, R. "The ECLIPSE System Structure

Language". In Proc. 19th International Conference on System

Sciences, Hawaii (1986).

[Sta97] Stallman, R. "GNU Emacs Manual" (13 Edition). Free Software

Foundation (1997).

[SWP89] Sommerville, I., Welland, R„ Potter, S. & Smart, J. "The ECLIPSE

User Interface". Software—Practice and Experience 19, 4 (1989) p

371.

[Tan87] Tanenbaum, A.S. "Operating Systems: Design and

Implementation". Prentice Hall (1987).

[Tsi77] Tsichritzis, D. & Lochovsky, F. "Data Base Management Systems'

Academic Press Inc (1977).

[TT99] Thompson, T. & Trudeau, J. "CodeWarrior's Architectural

Advantage". Metrowerks, Inc (1999).

185

[U1180] Ullman, J. "Principles of database Systems". Computer Science

Press Inc (1980).

[War89] Warboys, B. "The IPSE 2.5 Project: Process Modelling as the Basis

for a Support Environment". In Proc. 1st International Conference on

System Development Environments and Factories, Berlin, Germany

(1989).

[War95] Warhol, M. "The art of programming with VISUAL BASIC" (Tim

Ryan Edition). John Wiley (1995).

[Wir71] Wirth, N. "The Programming Language Pascal". Acta Informatica 1

(1971) pp 35-63.

[You84] Young, S.J. "An Introduction to ADA" (2 Edition). Ellis Horwood

(1984).

[ZDK+99] Zirintsis, E., Dunstan, V.S., Kirby, G.N.C. & Morrison, R. "Hyper-

Programming in Java". In Advances in Persistent Object Systems,

Morrison, R., Jordan, M. & Atkinson, M.P. (eds), Morgan Kaufmann,

Proc. 8th International Workshop on Persistent Object Systems

(POS8) and 3rd International Workshop on Persistence and Java

(PJW3), Tiburon, California, 1998, ISBN 1-55860-585-1 (1999) pp

370-382.

186

[ZKMOO] Zirintsis, E., Kirby, G.N.C. & Morrison, R. "Hyper-Code Revisited:

Unifying Program Source, Executable and Data". (In Preparation

2000).

[ZKM98] Zirintsis, E., Kirby, G.N.C. & Morrison, R. "Java Hyper-Program

System". University of St Andrews (1998).

URL: http://www-ppg.dcs.st-and.ac.uk/Languages/Java/HPS/

[ZKM99] Zirintsis, E., Kirby, G.N.C. & Morrison, R. "Demonstration of

Hyper-Programming in Java". In Proc. 25th International Conference

on Very Large Databases (VLDB'99), Edinburgh, Scotland,

Atkinson, M.P., Orlowska, M.E., Valduriez, P., Zdonik, S. & Brodie,

M. (eds) (1999) pp 734-737. o

187

