

University of St Andrews

Full metadata for this thesis is available in

St Andrews Research Repository
at:

http://research-repository.st-andrews.ac.uk/

This thesis is protected by original copyright

http://research-repository.st-andrews.ac.uk/

APPLICATIONS OF MICROPROCESSOR TO

INTERFACING TECHNOLOGY (SCSI)

Elizabeth Ann McKinnon

Declaration for the Degree of M.Sc.

I, Elizabeth Ann McKinnon hereby certify that this thesis has been composed by myself, that

it is a record of my own work, and that it has not been accepted in partial or complete

fulfilment of any other degree or professional qualification.

Signed: Date: ■ [O ■

ABSTRACT

A study of the S-100 interface and the Small Computer System Interface (SCSI) was carried

out. An interface board was built to communicate between the S-100 interface and a hard

disk drive supporting SCSI. Two methods of communication were investigated. The first

interface board used only standard TTL logic and the second interface board used TIL logic

and a VLSI SCSI controller (NCR53C80).

ACKNOWLEDGEMENTS

I would like to acknowledge the support and guidance given to me by Dr Reg C G Killean

throughout this project.

I would like to thank Professor Wilson Sibbett and the University of St Andrews for giving

me the opportunity to undertake a Master of Science degree.

I would also like to thank the everyone in the department who gave me access to the

computers and printers necessary to compile and print this thesis.

CONTENTS

1 CHAPTER 1:S-100 BUS ARCHITECTURE
2 Power Supply
3 Address Bus
3 Data Bus
3 Clock And Control Signals

6 CHAPTER 2:CROMEMCO SINGLE CARD COMPUTER
7 Power Supply
8 Clocks
8 Z80A CPU
11 System Reset
12 SCC Memory
13 SCC Input/Output Ports
19 SCC Interrupts
19 SCC Timers
20 UART Configuration

25 CHAPTER 3:THE SMALL COMPUTER SYSTEM INTERFACE (SCSI)
27 Hardware
29 SCSI Bus Phases
36 SCSI Bus Conditions
37 SCSI Commands

42 CHAPTER 4:ADVANTAGES OF SMALL COMPUTER SYSTEM INTERFACE
42 Advantages For Hard Disks

44 CHAPTER 5:TTL LOGIC INTERFACE BOARD
44 Input/Output Buffers
46 Input/Output Buffer Enabling
47 General Components
47 Selecting The Input/Output Buffers
50 Control Signals
51 Bus Phases
55 Software

59 CHAPTER 6:INTELLIGENT INTERFACE BOARD
59 Input/Output
62 Input/Output Selection
63 General Components
64 Selecting The Input/Output
65 Control Signals
66 NCR53C80 Internal Registers
70 Bus Phases
76 Software

79 CHAPTER 7:USES OF THE SCSI SYSTEM
79 Example Functions

A1 APPENDIX A:TTL LOGIC INTERFACE BOARD SOFTWARE
A2 MAIN.Z80
A12 EQU.Z80
A13 MSG.Z80
A14 VDU.Z80
A17 SCSI.Z80

B1 APPENDIX B:INTELLIGENT INTERFACE BOARD SOFTWARE
B2 NCR.Z80

CI APPENDIX C:BUS PHASE SEQUENCES

D1 APPENDIX D:COMPARISON OF PERFORMANCE OF TTL BOARD
AND NCR 53C80 BOARD

-1 -

CHAPTER 1

S-100 BUS ARCHITECTURE

The industry standard S-100 bus was originally designed at Stanford University for use with

the Intel 8080 microprocessor. As a result, the bus signal definitions closely follow those of

the 8080 system. The S-100 bus physically consists of 100 parallel lines (50 on each side of

the connector), either etched onto a printed circuit board or, in its origination, hard wired.

The printed circuit board with the S-100 edge connectors on it is referred to as a

"motherboard". Table 1.1 shows the S-100 bus signals.
v

Table 1.1: S-100 Bus Signals

1 +8V 26 pHLDA 51 +8V 76 pSYNC
2 +18V 27 52 -18V 77 pWR
3 XRDY 28 53 78 pDBIN
4 VI0 29 A5 54 79 AO
5 vn 30 A4 55 DMA0 80 A1
6 vn 31 A3 56 DMA1 81 A2
7 vn 32 A15 57 DMA2 82 A6
8 VT4 33 A12 58 sXTRQ 83 A7
9 VI3 34 A9 59 A19 84 A8
10 VI6 35 DOl/DATAl 60 S1XTN 85 A13
11 VT7 36 DO0/DATA0 61 A20 86 A14
12 NM1 37 A10 62 A21 87 All
13 38 D04/DATA4 63 A22 88 D02/DATA2
14 DMAS 39 D05/DATA5 64 A23 89 D03/DATA3
15 A18 40 DO6/DATA6 65 MRLQ 90 D07/DATA7
16 A16 41 DI2/DATA10 66 RFSH 91 DI4/DATA12
17 A17 42 DI3/DATA11 67 92 DI5/DATA13
18 5I55E 43 DI7/DATA15 68 MWRT 93 DI6/DATA14
19 CDSB 44 sMl 69 94 DI1/DATA9
20 45 sOUT 70 95 DI0/DATA8
21 46 sINP 71 96 sINTA
22 ADSB 47 sMEMR 72 pRDY 97 sWO
23 DODSB 48 sHLTA 73 plNT 98 ERROR
24 9 49 CLOCK 74 pHOLD 99 FOG
25 50 GND 75 pRESET 100 GND

The signals in Table 1.1 which have a bar across them, (ie. SIGNAL), are negative logic and

are asserted/active when they are 0V or deasserted/inactive when they are +5V. Signals with

no bar, (ie. SIGNAL), are positive logic and are asserted/active when they are +5V or

deasserted/inactive when they are 0V.

-2-

The S-100 bus allows interaction between a device operating as a bus master and a device

operating as a bus slave. Briefly, the bus master, (whether temporary or permanent), initiates

all bus cycles, the result of which may be to transfer data to and from the addressed bus

slave. The bus slave monitors all bus cycles and, if addressed, will input or output data as

required.

Signals not implemented on the S-100 bus using the Cromemco Single Card Computer

(SCC) are:

These signals control 16 bit data transfer.

These signal are Direct Memory Access control signals which
arbitrate between simultaneous requests, by temporary bus
masters, for control of the bus.

These are the eight Vectored Interrupt lines, which control the
eight levels of interrupt request priority.

This signal is used to indicate an error during the current bus
cycle. On the Cromemco SCC S-100 bus this is used to indicate
speed of operation. See Table 2.1 and chapter 2.2.

A brief description of the SCC implemented S-100 bus signals follows, they are also

discussed fully in subsequent chapters. The signals present on the S-100 bus can be grouped

into categories:

Power supply lines
Address bus
Data bus
Clock and control signals

1.1 POWER SUPPLY

Unregulated DC power supply voltages (+8 Volts, +18 Volts, -18 Volts and Ground) are

supplied from a central power supply and must be regulated on each individual board.

This method of supply has certain advantages over a single, centrally regulated supply.

Firstly, every card is individually protected from voltage overload, secondly, any heat

SiXTN and sXTRQ

DMAD-DM7G

VTD-VT7

ERROR

-3-

produced by voltage regulation is thermally distributed through a larger area and finally, the

expansion of a computer system by the addition of cards is made easier, as voltage drop

through loading of the power supply is no longer critical.

One disadvantage is that there is a danger of short circuiting the supply lines, (pins 1, 2, 51

and 52), together if a card is inadvertently moved while the voltage is on.

1.2 ADDRESS BUS

The S-100 bus address lines are used to select specific memory locations or specific

input/output devices. There are two types of addressing, standard addressing using A0-A15

and extended addressing using A0-A23. The Cromemco Single Card Computer uses

standard addressing.

Memory Locations Input/Output Devices
Standard

Addressing
Up to 65,536 bytes
(64 Kbytes) Using A0-A15

Up to 256 Devices
Using A0-A7

Extended
Addressing

Up to 16,777,216 bytes
(16 MBytes) Using A0-A23

Up to 65,536 Devices
Using A0-A15

1.3 DATA BUS

There are 16 lines used for data transfer on the S-100 bus. These can be two unidirectional, 8

bit, data buses (DO0-DO7 and DI0-DI7) or one bidirectional, 16 bit, data bus

(DATA0-DATA15). The Cromemco Single Card Computer board uses the two, 8 bit bus

type.

1.4 CLOCK AND CONTROL SIGNALS

CLOCK SIGNALS

There are two clock signals present on the S-100 bus system:

-4-

<(>, (4MHz) This is the system clock, which is generated by the permanent
master, and controls the timing for all the bus cycles.

CLOCK, (2MHz) The CLOCK line is not synchronous with any other bus signal
and can be used by counters, timers etc.

CONTROL SIGNALS

The status signals identify the current bus cycle:

sMEMR Memory read
sMl Op-code fetch
sINP Input

sOUT Output
sWO Write cycle

sINTA Interrupt acknowledge
sHLTA Halt acknowledge

The control output signals determine the movement and timing of data during bus cycles:

pSYNC Start of new bus cycle
pDBIN Gate data onto data bus

pWR Write from data bus
pHLDA Data and address bus in high impedance state

The following signals are used primarily with the Z80A microprocessor:

plNT and NM1 Interrupt lines used to request servicing from the permanent bus
master.

pHOLD This signal is used to request control of the bus from a permanent
bus master.

MREQ This is a control signal which indicates that the address bus holds
a valid address for a memory read/write operation.

RFSH This is a control signal which indicates that the lower seven bits
of the address bus can be used as a refresh address for dynamic
memories.

The following signals are primarily used on systems which also have front panel control

(allowing the operator to interrupt, single step, perform read/write operations etc. on the bus

master):

XRDY and pRDY These signals allow bus slaves to synchronise with bus masters
and request operations of the permanent master.

MWRT This is a control signal used to indicate a memory write operation.

-5 -

There are four lines which are used to tri-state the bus drivers, for example, during DMA

operations:

SDSB Status disable
CDSB Control disable
ADSB Address disable

DODSB Data out disable

System reset signals:

pRESET This is the reset signal for all bus masters.

FUC Power-On-Clear, this is only asserted when the power is switched
on and it also asserts pRESET.

-6-

CHAPTER 2

CROMEMCO SINGLE CARD COMPUTER

The Cromemco Single Card Computer (SCC) is a Zilog Z80A based S-100 interface board

and can be used as a self contained development system. It allows parallel and serial

input/output and provides on board sockets for eight kilobytes of user programmable

EPROM memory. Figure 2.1 shows the Single Card Computer block diagram. Table 2.1,

which is a subset of Table 1.1, shows S-100 bus connections of the Single Card Computer.

Table 2.1: SCC S-100 Bus Signals

1 +8V 26 pHLDA 51 +8V 76 pSYNC
2 +18V 27 52 -18V 77 pWR
3 XRDY 28 53 78 pDBIN
4 29 A5 54 79 AO
5 30 A4 55 80 A1
6 31 A3 56 81 A2
7 32 A15 57 82 A6
8 33 A12 58 83 A7
9 34 A9 59 84 A8
10 35 DOl 60 85 A13
11 36 DOO 61 86 A14
12 NM1 37 A10 62 87 All
13 38 D04 63 88 D02
14 39 D05 64 89 D03
15 40 D06 65 MkEQ 90 D07
16 41 DI2 66 KFSH 91 DI4
17 42 DI3 67 92 DI5
18 ST5SB 43 DI7 68 MWRT 93 DI6
19 CDSB 44 sMl 69 94 DI1
20 45 sOUT 70 95 DI0
21 46 sINP 71 96 sINTA
22 ADSB 47 sMEMR 72 pRDY 97 sWO
23 DODSB 48 sHLTA 73 plNT 98 4MHz
24 9 49 CLOCK 74 pHOLD 99 FOC
25 50 GND 75 pRESET 100 GND

As mentioned in Chapter 1, the S-100 bus signals were designed for use with the Intel 8080

microprocessor. There is a substantial difference between the 8080 and Z80A control lines,

but the SCC board is designed to interpret the important S-100 "8080-like" bus functions.

-7-

Figure 2.1 : Single Card Computer Block Diagram

zao cpu

EXTERNAL INPUT/ OUTPUT" PORTS
IftAflALLgL 'iol KuCuZFCTol |PA«AU.EL 701 ISEftlAL. I/O]

th» IK* f I

3CJ x5Sc5[PORT OAH I [PORT Q8H I [PORT OA-H
T

IfORT.3 OOH-Q2H

Ejoa
v JE

1 Wfft* UTT KCfiTii
lPORT IN 03H

internal

MEMORY

KirTt a o»-i

LXZ7lb EfROM
0000H-ir»»pH

IKBYTC "AM

2000H-23FFH

3-IOO INTERFACE

7X "

iz

♦•voe
4l»VOC \

suppuv -I&WC
caowo / i-

-1100 P/A/ EDGE COMMECTORl-

7S
C>

s INTERRUPT MA*
'

port OUT asw

TIMER 3
FoPT OUT CT7H

TlMeR
port-our oaw

"TIMER 3
ftytr OUT OIH

VTO OTHER S-IOO boards

The SCC can be grouped into eight parts:

Power supply
Clocks
Z80A Central Processing Unit
System reset
Memory
Input/output ports
Interrupts
Timers

2.1 POWER SUPPLY

The SCC board requires three unregulated voltages:

+8VDC @ 1.75A
+ 18VDC @ 100mA
-18VDC@ 50mA

These voltages are regulated on the SCC board to +5VDC, +12VDC and -5VDC

respectively. The +5VDC provides power to the TTL logic and the 5501 UART. The

+ 12VDC and -5VDC voltages provide power to the UART.

- 8 -

2.2 CLOCKS

There is an 8MHz crystal on the SCC board which is used to control the internal SCC timing

functions. This frequency is then halved to provide the 4MHz to the Z80A CPU clock input,

and to the S-100 <j> bus line. Other SCC devices use the complement of the 4MHz signal as a

reference. The 4MHz frequency is halved again to supply a 2MHz signal to the S-100

CLOCK bus line, and to both of the 5501 UART clock inputs and <j>2).

The S-100 bus 4MHz line (pin 98) is a Cromemco Z80A system function. This signal is used

to show whether the system is running at 4MHz (logic 1) or 2MHz (logic 0). This line is

pulled high on the SCC board.

2.3 Z80A CPU

The Z80A Central Processing Unit allows direct addressing of up to 64 Kilobytes of

memory, 256 input ports and 256 output ports. The Z80A instruction set contains 158

instructions, including the 78 instructions of the 8080A.

Z80A REGISTERS

The Z80A contains eighteen 8 bit registers, four 16 bit registers and two interrupt status

flip-flops. These can be divided into groups as shown in the following tables.

Main 8 Bit Register Set Alternate 8 Bit Register Set

A (Accumulator) F (Flag) A' (Accumulator) F' (Hag)
B (General) C (General) B' (General) C' (General)
D (General) E (General) D' (General) E' (General)
H (General) L (General) H' (General) L' (General)

A, A' The accumulator holds the results of logical and arithmetic
operations.

F,F' The flag register indicates the conditions of the last operation (eg.
if the result was zero).

B,B',C,C',D,D', These remaining general purpose registers can either be used as
E,E',H,H',L,L' twelve 8 bit registers, or as six 16 bit register pairs (BC, DE etc.).

-9-

Special Purpose 16 Bit Registers

IX (Index Register) IY (Index Register)
SP (Stack Pointer) PC (Program Counter)

IX, IY The index registers are used to hold the base address when using
indexed addressing mode.

SP The stack pointer register holds the address of the current top of
the stack. The stack is a temporary data storage area.

PC The program counter is the register which holds the address of the
instruction which is being fetched from memory. After the
contents of the counter are transferred to the address bus, the
program counter is automatically incremented. If the instruction
being executed causes a program jump, the new address is written
over the address in the counter register.

Special Purpose 8 Bit Registers

I (Interrupt R (Refresh
Register) Register)

I The interrupt register is used when the Z80A CPU is operated in a
mode which will respond to an interrupt with an indirect call to
any memory location. Servicing interrupt requests in this way
means that the time taken to access the interrupt routine can be
minimised, as the routine can be stored anywhere in memory.

R The refresh register is used to generate the memory refresh
address when dynamic memories are being used in the system.

Interrupt Status Flip-Flops Interrupt Mode Flip-Flops

IFF1 IFF2 IMFa IMFb

IFF1, IFF2 The interrupt status flip-flops and the interrupt mode flip-flops are
IMFa, IMFb the registers which help to ascertain the current interrupt mode of

the Z80A CPU, (Mode 0, Mode 1 or Mode 2).

Z80A ADDRESS BUS AND DATA BUS

The Z80A has a 16 bit, (tri-state output), address bus and an 8 bit, (tri-state input/output),

data bus. The lines of these buses can be in three different states, logic 1, logic 0 or in a high

impedance state. When the buses of the Z80A CPU are in the high impedance state they

appear to be disconnected from the other devices which utilise the bus. This allows the other

logic circuitry to use the bus without any confusion of the signals.

- 10-

The S-100 address bus, A0-A15, is driven from the Z80A address bus, A0-A15. The two

buses are connected together, via two tri-state drivers. The S-100 address bus drivers can be

put into a high impedance state during direct memory access operations by asserting the

S-100 bus signal ADSB. The Z80A address bus controls the SCC memory and input/output

ports, as described in Chapters 2.6 and 2.7.

The S-100 data out bus, DO0-DO7, is driven from the Z80A data bus, D0-D7, via a tri-state

driver. Similarly, the Z80A data bus receives data from the S-100 data in bus, DI0-DI7, via a

tri-state buffer. The data output driver can be disabled (ie. tri-stated) during direct memory

access operations by asserting the S-100 bus signal DODSB.

Z80A CONTROL INPUT SIGNALS

NMI (non-maskable interrupt) is a buffered version of the S-100 bus NMI signal. Similarly,

BUSRQ (bus request) is the buffered version of S-100 bus signal pHOLD. The Z80A WATT

(wait) input is used to indicate to the CPU that the addressed memory or input/output devices

are not ready for a data transfer. The CPU stays in the wait state as long as this signal is

asserted. TNT (interrupt request) is generated by input/output devices. The CPU will service

the interrupt at the end of the current instruction if the internal software controlled interrupt

enable flip-flop (IFF) is enabled. RESET is used to initialise the CPU, (see Z80A Reset

section for more information).

Z80A CONTROL OUTPUT SIGNALS

The Z80A control output lines are logically combined to generate S-100 bus control signals.

S-100 signals sMl, pHLDA and sFLLTA are the logical inversion of MI (machine cycle one),

BUSAK (bus acknowledge) and HALT (halt state) respectively. S-100 MREQ is a buffered

version of the Z80A MREQ (memory request) signal. Similarly, S-100 RFSH is the buffered

version of Z80A signal RFSH (refresh). S-100 pSYNC which signals the beginning of a new

-11 -

machine cycle is clocked high by a falling edge of either MREQ or IORQ and is clocked back

low by the next rising edge of phi. The remaining S-100 control lines are derived from the

Z80A outputs as shown:

sINP = IUKQ+KD

sOUT = IURQ+WK

sWO = sOUT+ (KFSH • KD • MREQ)

sMEMR = MREQ+KD

sINTA = (External Priority) • (MT+IORQ)

pDBIN = RD+sINTA

pWR = WR (Delayed)

pWR is delayed so sOUT has time to stabilise before the pWR low pulse is used as a data

strobe. All of these lines can be disabled during DMA by asserting S-100 bus lines SDSB and

CDSE.

Z80A RESET

The Z80A CPU is reset when the RESET input is asserted (OV) for at least three clock cycles

(600nS). This resets the interrupt enable flip-flop, clears the program counter and registers I

and R and sets the interrupt status flip-flops to Mode 0. During the reset time the address bus

and the data bus go into a high impedance state and all control output signals go to the

inactive state. When the Z80A is reset the program counter is set to 0000H, and program

execution is started from memory location 0000H.

2.4 SYSTEM RESET

On power up the SCC circuitry automatically asserts the S-100 POC (Power-On-Clear) line,

this also asserts the S-100 pRESET line. This resets the Z80A, by asserting RESET, and puts

the SCC into a known state with the on board memory enabled. The same resetting of the

SCC and Z80A occurs when the S-100 pRESET signal is asserted by an external source. Any

other device can use the S-100 pRESET bus line to reset to a known state.

- 12-

2.5 SCC MEMORY

The SCC has space for 8 kilobytes of 2716 EPROM memory (in sockets ROMO, ROM1,

ROM2 and ROM3) and 1 kilobyte of 4045 static RAM. The memory address map is shown

in the following table.

SCC Memory Map

ROMO (2K)
ROM1 (2K)
ROM2 (2K)
ROM3 (2K)

0000H - 07FFH
8000H - OFEEH
1000H - 17FFH
1800H- 1FFFH

RAM 2000H - 23FFH

External Memory 2400H - FFFFH

Additional memory can be installed in the SCC controlled system by plugging ROM or

RAM boards into the S-100 bus.

ROMO contains the assembled SCSI INTERFACE program (see Appendices A and B)

which is automatically entered when the SCC is powered up or when the S-100 pRESET line

is pulled low, causing the Z80A to reset the program counter to 0000H and start program

execution.

MEMORY SELECTION

The memory select signals are controlled by a standard 4 line to 10 line (BCD to

DECIMAL) decoder chip as shown by the table below.

ROM Memory Select Logic

INPUTS OUTPUTS

A B C D 0 T 2 3 4 DEVICE
All A12 A13 SELECTED

0 0 0 0 0 1 1 1 1 ROMO
1 0 0 0 1 0 1 1 1 ROM1
0 1 0 0 1 1 0 1 1 ROM2
1 1 0 0 1 1 1 0 1 ROM3

- 13 -

RAM Memory Select Logic

INPUTS OUTPUTS

A B c D 0 T 2 3 4 EN DEVICE
All A12 A13 SELECTED

0 0 1 0 1 1 1 1 0 0 RAM

In both of the above memory select logic tables, decoder inputs A, B and C are All, A12

and A13 respectively. Decoder input D is used as an active low enable signal. D is low when

the SCC memory disable option is inactive, MI or MREQ is active (logic 0), 1QRQ is not

active (logic 1), A14 and A15 are low.

In the RAM select logic table, EN is the logical OR of A10 and the decoder output 4.

ROMO-ROM3 are selected with the appropriate address on A11-A13 and decoder input D

active (logic 0). The SCC RAM is selected with the appropriate address on A10-A13 and

decoder input D active (logic 0).

2.6 SCC INPUT/OUTPUT PORTS

The SCC has three 8 bit parallel input/output ports, with separate input data lines and output

data lines, on connectors Jl, J2 and J3 (addressed at OAH, OBH and 04H respectively). Port

04H is an integral part of the 5501 UART and ports OAH and OBH are driven from the Z80A

data bus via latches. The parallel input/output ports are not used in this project and are only

mentioned briefly. The serial input/output port found on connector J4, addressed at

00H-02H, is used to connect a VDU terminal to the SCC. The VDU terminal is used to input

data into the SCC and display the output from the SCC.

Data is received from and transmitted to the terminal, (via connector J4), from the Z80A

(register A). The parallel CPU data is converted to the serial terminal data, and vice versa, by

the 5501 Universal Asynchronous Receiver Transmitter (UART). The UART also supplies

the serial status data and the serial control data.

- 14-

The SCC TTL signals (OV or 5V) are converted to the terminal RS232 (±12V) signals, and

from RS232 to TTL, by the interface on the SCC. See figure 2.2 which shows the serial

signal paths of the SCC and the terminal connection.

Figure 2.2 : Single Card Computer Serial Signal Paths

single card computer

I 7\

PORT OUT 01H
TRANSMITTER
DATA

V

PORT IN OIH

RECEIVER
DATA

(a)

PORT OUT OOH
BAUD RATE

fa)

PORT IN OOH
SERIAL
STATUS

nteflfacE

3
\ s

/ ^ ^
TXD C

T4

REG A

zqoa

RXD

T BPW\ I NJA u

GROUND

jL

The input/output select logic, for the ports and the UART, is controlled by a Cromemco

custom PROM as shown by the tables below. The inputs to the PROM are, from the address

bus, A0-A3 and, from the Z80A CPU, WR. The C5 input is low when A4-A7 are low, IORQ

is active, and MI is inactive.

There are eight output lines from the PROM, Y1-Y8. Y1 and Y2 are used as an active high

strobe for OBH and OAH respectively. Y3 is an active low enable for the 5501 UART.

Y4-Y7 select a 5501 UART function by driving its A0-A3 address lines as shown in the

table below.

- 17 -

Receiver Data Port

D7 D6 D5 D4 D3 D2 D1 DO

DATA BYTE FROM TERMINAL
SHIFT —->

When an IN A,(01H) instruction is executed, an assembled data byte (DO - D7) is read into

the Z80A (register A), from the the UART receiver data port (ie. the terminal). The Z80A

knows when there is valid data available by testing the serial status port, bit RDA.

All bits are used in relation to this project.

Transmitter Data Port

D7 D6 D5 D4 D3 D2 D1 DO

DATA BYTE TO TERMINAL
SHIFT —>

Data is written from the Z80A (register A) into the transmitter data port (DO - D7) when the

Z80A executes an OUT (01H),A. The Z80A is programmed to recognise when to send the

data byte, by testing the serial status port, bit TBE.

All bits are used in relation to this project.

Command Register Port

D7 D6 D5 D4 D3 D2 D1 DO

NOT
USED

NOT
USED

TB5 HBD INE RS7 BRK RES

The UART is configured when an OUT (02H),A instruction is executed (register A

containing the data). Only four of the command register port bits have any effect on the

serial port - HBD, INE, BRK and RES.

- 18 -

High Baud. Setting this bit to logic 1 multiplies the UART clock
frequency by eight, which causes the serial port baud rate to
multiply by eight (eg. 1200 baud becomes 9600 baud).

INTA Enable. When this bit is reset to logic 0 the UART ignores
the INTA (interrupt acknowledge) cycles. The UART will
recognise the INTA cycles and service the interrupt when this bit
is set to logic 1.

Break. When this is reset to logic 0 the serial transmitter operates
normally however, when set to logic 1 the serial transmitter
output is latched in the low (spacing) state.

UART Reset. When this bit is set to logic 1 the serial status port
bit, RDA, is reset to logic 0 and the serial receiver goes into the
search for a new character mode (not affecting the contents of the
receiver data port). Also, the serial status register port, bit TBE, is
set to logic 1 and the serial transmitter output goes high
(marking). Once this happens RES will reset to logic 0 and the
IJART will be ready to perform serial input/output operations.

Only bits D4 (HBD) and DO (RES) are used in relation to this project.

Interrupt Address Port

D7 D6 D5 D4 D3 D2 D1 DO

1 1 L, L0 1 1 1

When the UART interrupt address port is read by execution of an IN A,(03H) instruction,

the Z80A (register A) contains the coding of the source of the interrupt request (eg. if the

contents are 07EH then is RDA requesting service).

This port is not implemented in relation to this project.

Interrupt Mask Port

D7 D6 D5 D4 D3 D2 D1 DO

TIMER
5

TIMER
4

TBE RDA TIMER
3

INT TIMER
2

TIMER
1

HBD (D4)

INE (D3)

BRK(Dl)

RES (DO)

The UART interrupt mask port is configured an OUT (03H),A instruction is executed by the

Z80A (register A containing the data).

- 19-

When the bit is reset to logic 0, the source cannot issue an interrupt request. When the bit is

set to logic 1 the source can issue an interrupt request. TBE (D5) and RDA (D4) cannot be

disabled in this way.

This port is not implemented in relation to this project.

2.7 SCC INTERRUPTS

The SCC has ten interrupt sources which can be grouped as follows:

S-100 Interrupts NMI is connected directly to the Z80A NM1 input and is the only
interrupt which cannot be software disabled. plNT is channelled
into the Z80A INT input and is only enabled after the Z80A
executes an EI instruction.

UART Interrupts TIMER 1-TIMER5, INT, RDA and TBE are all channelled into the
Z80A INT input. For any of these interrupts to be enabled the
correct interrupt mask port code must be present in addition to
the interrupts being enabled by execution of the Z80A EI
instruction.

The interrupts are not utilised in relation to this project.

2.8 SCC TIMERS

The UART contains five timers, TIMER 1-TIMER5, which can be enabled and disabled by

the UART interrupt mask port. There is a port assigned to each of the timers (05H - 09H)

which can be loaded with a delay count (maximum value of OFFH). This delay count is then

decremented either every 64 micro-seconds (if command register port HBD is reset) or every

8 micro-seconds (if HBD is set).

If the interrupts are disabled when the delay count reaches zero the UART serial status port,

bit IPG, is set to logic 1. The Z80A can determine the timer which is requesting service and

reset IPG to logic 0 by reading the UART interrupt address port. This method does not enter

an INTA cycle as only the SCC input ports are being used, not the Z80A INT input.

-20-

If the interrupts are enabled and UART command register port, bit INE, is set to logic 1

when the delay count reaches zero, the Z80A is interrupted. The Z80A will then execute the

timer unique RST instruction in response to the Z80A INTA cycle.

If the interrupts are enabled and UART command register port, bit INE, is reset to logic 0

when the delay count reaches zero, the Z80A is interrupted. The Z80A will initiate an

interrupt service routine which will read the interrupt address port to identify the source.

The timers are not utilised in relation to this project.

Before the serial input/output port is used the UART must be configured by writing into

register A and issuing an OUT (02H),A instruction. The correct baud rate must also be set by

writing into register A and issuing an OUT (00H),A instruction.

The following shows the part of the main program which is used to configure the UART.

Refer to the UART ports descriptions for full details on the ports mentioned in the

description of the program.

This shows the table of bytes for the different baud rates. When the program is assembled

and written into the EPROM, the binary number are stored as hex bytes in consecutive

locations with a label (baudrs).

2.9 UART CONFIGURATION

BAUD RATE TABLE

baudrs db 10010000b 2400/19,200
9600/76,800
4800 / 38,400
2400/19,200
1200/9,600
300/2,400
150/1,200
110/880

db 11000000b
db 10100000b
db 10010000b
db 10001000b
db 10000100b
db 10000010b
db 00000001b

-21 -

The terminal can be operating at any one of a number of baud rates, as shown by the table

above. The UART command register port, bit HBD determines which range of baud rates

are valid. When HBD is set to 0, the range is 110 baud to 9600 baud. When HBD is set to 1,

the range is 880 baud to 76,800 baud. The first value in the table, 2400/19,200, is the normal

setting for the terminal, if this is not correct, the other values will be tried.

When the boards are powered up, the user must press the carriage return key (ASCII value -

0DH) several times to allow the baud rate of the terminal and the baud rate of the SCC to be

matched. The program does this as shown below.

PROGRAM LISTING

Main Program

Line 1
Line 2
Line 3
Line 4
Line 5
Line 6
Line 7
Line 8
Line 9
Line 10
Line 11

Id hl,baudrs
Id c,00H
Id a, 1 lh

baudl out (02H),a
outi
call gbyte
call gbyte
and 7fh
cp Odh
Id a,l
jr nz,baudl

Gbyte Subroutine

Line S1
Line S2
Line S3
Line S4
Line S5

gbyte in a,(00H)
bit 6,a
jr z,gbyte
in a,(01H)
ret

PROGRAM DESCRIPTION

Line 1 to Line 3 sets up the contents of the HL, C and A registers.

- 22-

Register pair HL is pointing to the first baud rate in the table.

Register C contains the address of the UART baud rate port.

Register A contains reset bit and high baud for sending to the UART command register

port.

Line 4 outputs the contents of register A, (00010001 in binary notation), to the UART

command register port (02H). This configures and resets the UART. Note that this line has a

label (baudl). If the correct baud rate is not found the first time, the program will jump back

to here and reset the UART. The program will continue looping round to Line 4 until the

correct baud rate is found. The UART command register will contain the following.

D7 D6 D5 D4 D3 D2 D1 DO

NOT
USED

NOT
USED

TB5 HBD INE RS7 BRK RES

0 0 0 1 0 0 0 1

Four of these bits have an effect on the serial input/output port: HBD, INE, BRK and

RES.

HBD=1, serial port baud rate to multiplies by eight (eg. 2400 baud becomes 19,200

baud).

INE=0, interrupt acknowledge (INTA) cycles ignored by UART.

BRK=0, serial transmitter operates normally.

RES=1, reset UART.

Line 5 outputs the contents of the memory location addressed by HL (first baud rate), to the

address contained in register C, (UART baud rate port) and then increments HL. HL is then

pointing to the next baud rate in the table. For the first baud rate in the table, the UART baud

rate port contains the following.

-23-

D7 D6 D5 D4 D3 D2 D1 DO

STOP 9600/ 4800/ 2400/ 1200/ 300/ 150/ 110/
BITS 76,800 38,400 19,200 9,600 2,400 1,200 880

1 0 0 1 0 0 0 0

This sets the baud rate port to a baud rate of 19,200, (HBD=1 UART command register

port), with 1 stop bits. For subsequent baud rates, HBD=0 in the UART command

register port, therefore the lower values are active.

Lines 6 and 7 call the gbyte subroutine. This subroutine is called twice to stop any phase

match error. The first call of the gbyte subroutine is being ignored in this description as

explained above. The second call of the gbyte subroutine performs a read from the terminal,

via the SCC serial port, using the carriage return characters which the user is sending to

determine the baud rate setting of the terminal.

Line S1 of the gbyte subroutine inputs a data byte from the UART serial status port, (00H),

into register A. Note that this line has a label (gbyte). This label is not only used for the call

instruction from the main program, it is also used by the subroutine itself.

Line S2 tests bit 6 of register A, UART serial status port bit RDA. A logic 0 in this bit, (no

data byte available), sets the zero flag. A logic 1 in this bit, (data byte available), does not set

the zero flag. The UART serial status port is shown below.

D7 D6 D5 D4 D3 D2 D1 DO

TBE RDA IPG TBE RDA SRV ORE FME

X 0/1 X X X X X X

Line S3 causes the program to jump back to Line SI if there is no data byte available. The

program will continue looping in this manner until there is a data byte available.

When there is a data byte available, Line S4 reads it from the receiver data port, (address

01H), and stores it in register A. Line S5 returns to the main program, (Line 8).

-24-

Line 8 performs a logical AND between register A and 7FH, this masks off bit D7 of the

receiver data port because only bits DO to D6 are valid.

Line 9 compares the contents of register A, (receiver data port), with ODH, (carriage return

character). If the data byte in register A is ODH the zero flag is set, otherwise the zero flag is

not set. The setting of the zero flag signifies that the baud rate of the terminal and the baud

rate of the SCC are matched.

Line 10 loads register A with 1, (00000001 in binary notation), which is used to reset the

UART command register port if a ODH is not recognised, (incorrect baud rate).

Line 11 tests the zero flag and depending on its value, either continues with the program or

jumps back to Line 4. If the baud rates match, the zero flag will be set and the main program

will continue. If the baud rates do not match, the zero flag will not be set and there will be a

jump back to Line 4, (reset UART command register port), where the next value in baud rate

table will be tried. The program continues in this manner until the baud rate of the terminal

and the baud rate of the SCC are matched.

-25-

CHAPTER 3

THE SMALL COMPUTER SYSTEM INTERFACE (SCSI)

In this chapter SCSI is discussed with reference to the RODIME R0652 hard disk drive

which was used in this project. SCSI supports both block and character transfer, the R0652

uses the block method. For more detailed information on SCSI, the American National

Standards Institute document X3T9 should be referred to.

The theory of bus structure is based on a system originally developed in the 1960's and

1970's for use in mainframe computers. This concept was improved on and was introduced

as the Shugart Associated Standard Interface (SASI). SASI was then offered to the American

National Standards Institute (ANSI) as the basis for a new industry standard. The Small

Computer System Interface (SCSI) was the name chosen by ANSI and the X3T9

specification was issued in the early 1980's.

The SCSI interface is an eight bit, eight port intelligent bus. R0652 bus transfers are

asynchronous and follow a defined REQ/ACK handshake protocol. The input/output bus

structure enables intelligent peripherals to communicate with multiple hosts over a single

bus and allows these peripherals to be used by one or more host computers attached to the

same bus. Communication on the SCSI bus uses the initiator/target framework, where the

initiator is the device which requests that an operation be performed by another device and

the target is the device which performs an operation when requested to do so by an initiator.

Up to eight SCSI devices can be supported in any combination on the bus. There are three

principal SCSI system configurations: single initiator/single target (figure 3.1); single

initiator/multi target (figure 3.2) and multi initiator/multi target (figure 3.3). The main

advantage of the SCSI bus system is that several tasks can be interleaved at the same time

(figure 3.4).

- 26-

Figures 3.1-3.3 : SCSI System Configurations

ADAPTER \r
1 Z1
„ C scSCSI BUS

FIGURE 3.1

FIGURE 3.2

SCSI
oevtcE

OOMnjT Pf?
HOST
ADAPT ER

COMPUTER HOST-
ADAPTER

8u5

COMPUTER
host
ADAPTERKt

SC-31
DEVICE

J\SCSI
DEVICE

-Js, SCSI
DEVICE

—'N. SCSI
-i/ DEVICE

SCSI
device

SCSI can also operate in a synchronous data transfer mode, which is faster than the

asynchronous mode, due to reduced handshaking. Synchronous data bus transfers can only

be used if previously agreed by both the initiator and the target, using a Synchronous Data

Transfer Request command.

Figure 3.4 : SCSI Task Interleaving

DISK /HOST
TRANSFER

DISK/DVSK
TRANSFER

J

ji rui n
host/host
transfer

total.

usaqe rwwmjir

-27-

Arbitration allows a number of peripheral devices to be attached to the bus and makes it

possible for one SCSI device to gain control of the bus and assume the role of an initiator or

a target. To gain control of the bus, a device waits for a bus free state and asserts its own

SCSI ID. After waiting for at least an arbitration delay the SCSI device examines the data

bus, if there is a higher SCSI ID present the device has lost control, if no higher SCSI ID is

present the device has won control of the bus. Figure 3.5 and figure 3.6 show the sequence

of bus phases for arbitrating and non-arbitrating devices.

Figures 3.5-3.6 : SCSI Bus Phases

I RESET I

INFORMATION
Transfer phase
fcCMMANP/DATA/
STATUS/MESSAGE)

BUS FPEE
PHA6E

\ SELECTION
PHASEf }

I RESET |

BUS free
PHASE

information
Tt^NSFEP- PHAS.E
KrHJMAND/OATAj
STA7USiNESS»CE)

<r

ARB IT PAT I ON
PHASE

i SCLECnow/RE-
SELECTICA4 PHASE

3.1 HARDWARE

SCSI devices are daisy chained together using a 50 way cable. The R0652 hard disk drive

uses the single ended driver alternative, which gives a maximum cable length of six metres.

The differential pair driver alternative has a maximum cable length of 25 metres and is

normally used where the SCSI device has to be some distance from the host. Both ends of

the bus cable must be terminated correctly, with 220 ohms to +5V and 330 ohms to ground,

-28-

on all of the signal lines. Figure 3.7 shows an example of correct signal termination. Single

ended drivers and differential pair drivers cannot be used on the same bus. All signals on the

SCSI bus are active low and use open collector drivers. SCSI bus signals use negative logic,

this means that a false/deasserted signal on the SCSI bus is +5 volts and a true/asserted

signal is 0 volts.

Figure 3.7 : SCSI Bus Termination

1
,5v ,

1 7 1 OJt |

TROM OTEM COLLECTOR
1

J TTIokJaL
HN!£ Df-IVER 1 OUT pvj 'T

1
|

I 530JT 1

.L !
!

The SCSI interface is a bidirectional bus interface which transfers data asynchronously. The

fifty way SCSI bus consists of eighteen signal lines: nine control signals used to co-ordinate

data transfer between the host system and the disk drive and nine data bus signals used as an

eight-bit bidirectional data bus with parity. The following table shows the SCSI single ended

option pin numbers and names for the R0652.

SCSI BUS SIGNALS

1 GND 27 GND 2 DBO 28 NC
3 GND 29 GND 4 DBT 30 NC
5 GND 31 GND 6 DB2 32 ATN
7 GND 33 GND 8 DBS 34 NC
9 GND 35 GND 10 DB4 36 BSY
11 GND 37 GND 12 DB3 38 ACK
13 GND 39 GND 14 DBS 40 EST
15 GND 41 GND 16 DF7 42 MSG
17 GND 43 GND 18 DBF 44 SEE
19 GND 45 GND 20 NC 46 C/D
21 GND 47 GND 22 NC 48 EEQ
23 GND 49 GND 24 NC 50 I/O
25 NC 26 TERMPWR

TERMPWR Terminator power is a +4.0VDC - +5.25VDC signal which is
provided on the SCSI bus by the R0652.

GND GROUND
NC No Connection

- 29 -

Data Bus Lines

DB0-DB7.DBP These nine lines, data bit O-data bit 7, and a data parity bit form
the data bus. Data bit 7 is the most significant bit and has the
highest priority during an arbitration phase. Data bit 0 is the least
significant bit and has the lowest priority during an arbitration
phase. Parity is odd in the SCSI system and can either be enabled
on all devices connected to the SCSI bus or disabled on all
devices. The R0652 does not support parity.

Control Lines

ATN Attention indicates to the target that the initiator has a message to
send.

BSY Busy indicates that the bus is in use.

ACK Acknowledge is used with REQ to indicate an acknowledgement
of a bus transfer handshake.

RST Reset is used to clear all activity on the bus.

MSG Message indicates that the bus is in a message phase.

SEE Select is used during device-selection phase.

C/D Control/Data indicates whether control or data information is on
the data bus. When this signal is true control information is on the
bus.

REQ Request is used with ACK to request a bus transfer handshake.

I/O Input/Output indicates direction of the data flow on data bus, with
respect to the initiator. When this signal is true, data is being
inputted to the initiator.

3.2 SCSI BUS PHASES

The SCSI bus can be in one of eight phases:

Bus Free Phase
Arbitration Phase
Selection Phase
Re selection Phase
Command Phase
Data Exchange Phase
Status Phase
Message Phase

Phases 5, 6, 7 and 8 are collectively known as the Information Transfer Phase.

-30-

The following table shows which of the SCSI bus signals the initiator or the target is

permitted to source during the specific phase. The SCSI bus signal RST may be sourced by

both initiator and target during any phase. No attempt is made here to show if the source is

driving the SCSI bus signal asserted, negated, or is passive. All SCSI device drivers that are

not active sources are in the passive state.

Signal Sources

Bus Phase FSY SEL C/D.I/O
MSG.REQ

ACK,ATN DB(7-0,P)

Bus Free None None None None None
Arbitration All Winner None None SCSI ID
Selection I+T Initiator None Initiator Initiator
Reselection I+T Target Target Initiator Target
Command Target None Target Initiator Initiator
Data In Target None Target Initiator Target
Data Out Target None Target Initiator Initiator
Status Target None Target Initiator Target
Message In Target None Target Initiator Target
Message Out Target None Target Initiator Initiator

All The signal is driven by all SCSI devices that are actively
arbitrating.

SCSI ID A unique data bit, the SCSI ID, is driven by each SCSI device that
is actively arbitrating; the other 7 data bits are deasserted (ie. not
driven) by that device. DBP may be undriven or driven true but
can never be driven false during this phase.

I+T The signal is driven by the initiator, the target or both as specified
in the Selection and Reselection Phases.

Initiator If the signal is driven, it is only driven by the active initiator.

None The signal is deasserted; that is not be driven by any SCSI device.
The bias circuitry of the bus terminators pulls the signal to a false
state.

Winner The signal is driven by the SCSI device that wins arbitration.

Target If the signal is driven, it is driven only by the active target.

The following descriptions of the phases should be read in conjunction with appendix C.

-31 -

BUS FREE PHASE

The Bus Free Phase is used to indicate that no device is using the bus. It is caused by BSY

and SEE being false, for at least a bus settle delay (400 nanoseconds), and all connected

devices releasing control of the bus within a bus clear delay (800 nanoseconds).

ARBITRATION PHASE

The Arbitration Phase is only used in multiple host configurations and is not implemented in

relation to this project. The Arbitration Phase is used to avoid bus conflicts. During

arbitration, devices try to gain control of the bus by asserting a unique SCSI ID onto one bit

of the data bus and releasing the other seven data bits. The device asserting DB7 has the

highest priority and the device asserting DBO has the lowest priority. To arbitrate for control

of the bus, the device has to:

Test for a Bus Free Phase, ie. BSY and SEE false for at least a bus settle delay.

After detection of a Bus Free Phase, the device waits for at least a bus free delay.

The device then asserts BSY and its own SCSI ED.

The device then waits for an arbitration delay and examines the SCSI bus. If there is a

higher priority SCSI ID bit on the data bus then the device has lost arbitration and has

to release BSY and its SCSI ID from the data bus, then wait for the next Bus Free

Phase. If there is no higher SCSI ID bit on the data bus the device has won arbitration

and asserts SEE to claim the bus and enters the Selection Phase.

SELECTION PHASE

For single initiator systems the Selection Phase is entered after the Bus Free Phase. During

this phase:

-32-

The initiator selects the SCSI target to communicate with by asserting its own address

and the address of the target onto the bus.

After a delay the initiator asserts SEC.

The target will then assert BSY.

Then the initiator releases SEC.

BSY remains asserted until the next Bus Free Phase, when the target will release it.

RESELECTION PHASE

The Reselection Phase allows the target to reconnect to an initiator to continue an operation

that was previously started by the initiator, but was suspended by the target, ie. the target

disconnected by allowing a Bus Free Phase to occur before the operation was finished.

Reselection can only be used in systems that have an Arbitration Phase implemented. The

Reselection Phase is not supported by the R0652 and is not used in this project.

INFORMATION TRANSFER PHASE

There are four information phases, as shown below. Note that the Data Phase is subdivided

into a Data In Phase and a Data Out Phase, and that the Message Phase is subdivided into a

Message In Phase and a Message Out Phase.

Command Phase
Status Phase
Data Phase: Data In Phase

Data Out Phase
Message Phase: Message In Phase

Message Out Phase

-33-

The SCSI bus signals MSG, C/D and I/O are used to distinguish between the different

Information Transfer Phases as shown in the table below. These three signals are all driven

by the target device, which therefore controls the SCSI bus and all phase changes. The

Target can also cause a Bus Free Phase by releasing MSG, C/D, I/O and BSY.

MSG C/D I/O Phase Name Direction Of Transfer

0 0 0 Data Out Initiator -> Target
0 0 1 Data In Target -> Initiator
0 1 0 Command Initiator -> Target
0 1 1 Status Target -> Initiator
1 0 0 Reserved
1 0 1 Reserved
1 1 0 Message Out Initiator -> Target
1 1 1 Message In Target -> Initiator

Once the Information Transfer Phase is complete the bus returns to the Bus Free Phase.

Command Phase

This phase follows the Selection Phase and allows the target to obtain the command

information from the initiator.

The Command Phase is entered when BSY and C/D are asserted and MSG, I/O, SEL and ATN

are deasserted.

The target waits for a bus settle delay and asserts REQ to request the first byte of the

Command Descriptor Block (See Chapter 3.4).

The initiator places the first byte on the bus and asserts ACK.

The Target reads the byte, then releases REQ.

The initiator will then release ACK.

-34-

The first byte is now transferred and the target will continue to request additional bytes until

the complete Command Descriptor Block has been transferred and the Command Phase has

ended.

Data Phase

This phase allows the exchange of data between the target and the initiator.

Data In Phase

The Data In Phase allows data to be transferred from the initiator to the target. The Data In

Phase is entered when BSY is asserted and MSG, C/D and I/O are deasserted.

The target asserts REQ to request the first data byte.

The initiator places the first data byte on the bus and asserts ACK.

The Target reads the byte, then releases REQ.

The initiator will then release ACK.

The first data byte is now transferred and the target will continue to request additional data

bytes until the last data byte has been transferred.

Data Out Phase

The Data Out Phase allows data to be transferred to the initiator from the target. The Data

Out Phase is entered when BSY and I/O are asserted and MSG and C/D are deasserted.

The target asserts REQ and the initiator reads the first data byte from the target.

The initiator asserts ACK.

The Target releases the data bus and REQ.

- 35 -

The initiator will then release ACK.

The first data byte is now transferred and the target will continue to request that the initiator

reads the data until the last data byte has been transferred.

Status Phase

The Status Phase allows the target to request that the initiator reads its Status information.

(Chapter 3.4)

The Status Phase is entered when command execution is complete or an error that cannot be

recovered from occurs. BSY, C/D and I/O are asserted and SEE and MSG are deasserted.

The target puts the Status Byte on the bus and asserts REQ.

The initiator reads the byte and asserts ACK.

This causes the target to release REQ.

The initiator will then release ACK.

Message Phase

This phase allows the transfer of a Message information. The first byte transferred can be a

single Message Byte (Chapter 3.4) or the first byte of a multiple-byte message.

Message In Phase

The Message In Phase allows a Message Byte to be read from the target by the initiator. The

Message In Phase signals the end of an operation and is entered when BSY, MSG, C/D and

I/O are are asserted.

The target puts the Message Byte on the bus and asserts REQ.

-36-

The initiator reads the byte and asserts ACK.

This causes the target to release REQ.

The initiator will then release ACK.

The Message In Phase terminates when MSG is deasserted.

Message Out Phase

The Message Out Phase is not supported by the R0652 and is not used in this project.

3.3 SCSI BUS CONDITIONS

The SCSI bus has two asynchronous conditions, the Attention Condition and the Reset

Condition. These cause the SCSI device to perform certain actions and can alter the phase

sequence.

ATTENTION CONDITION

The Attention Condition allows an initiator to inform a target that the initiator has a message

ready, (eg. parity error, whereby the target will send the byte again). The target may get this

message by performing a Message Out Phase. The initiator creates the Attention Condition

by asserting ATN during the Arbitration Phase or Bus Free Phase. This condition is not

supported by the R0652 and is not used in this project.

RESET CONDITION

The Reset Condition is used to immediately clear all SCSI devices from the bus. When the

EST signal is received by the SCSI device, the device removes all signals that it is currently

asserting from the SCSI bus and clears any current commands. A Bus Free Phase always

follows a Reset Condition.

- 37 -

3.4 SCSI COMMANDS

The R0652 hard disk drive which was used in this project is always a target. To execute

commands the initiator sends a command, using the appropriate Command Descriptor Block,

to the target via the host adaptor. The target performs the command and reports its status,

(Message Byte and Status Byte), to the initiator.

OPERATION CODES

The first byte of the Command Descriptor Block contains the Operation Code of the SCSI

command. The Operation Code has two parts as shown below, firstly the Group Code and

secondly the Command Code. The Group Code is a three bit code, therefore there are eight

command groups. The Command Code is a five bit code, therefore there are thirty-two

commands within each group. This gives a total of 256 available command operation codes.

Operation Code Command Descriptor Block

Bit 7 6 5 4 3 2 1 0

Byte 0 Group Code Command Code

Group Code

Group 0 6 Byte Commands
Group 1 10 Byte Commands
Group 2 Reserved
Group 3 Reserved
Group 4 Reserved
Group 5 12 Byte Commands
Group 6 Vendor Unique
Group 7 Vendor Unique (6 Byte Commands)

Of the eight possible command groups, only group 0, group 1 and group 7 are supported by

the R0652. Only the Command Codes implemented by the R0652 are discussed. See ANSI

specification X3T9 and common command set book for full description of all of the

commands available.

-38-

Command Codes

Group 0

Group 1

Group 7

Hexadecimal Command Name
Operation Code

00 Test Unit Ready
03 Request Sense
04 Format Unit
07 Reassign Blocks
08 Read
OA Write
0B Seek
12 Inquiry
15 Mode Select
1A Mode Sense
ID Send Diagnostic

25 Read Capacity
28 Read Extended
2A Write Extended
2F Verify
37 Read Defect Data
3C Read Data Buffer
3B Write Data Buffer

E0 Maintenance Seek
El Format Maintenance Tracks
E2 Certify
E8 Fast Read
EA Fast Write

COMMAND DESCRIPTOR BLOCKS FORMAT

The number of bytes contained by the Command Descriptor Block (CDB) is dependent on

the group of the command. Group 0 and Group 7 commands have a 6 byte CDB and Group 1

commands have 10 byte CDB. The Command Descriptor Block has an Operation Code as

the first byte, as shown above, followed by a Logical Unit Number (LUN), command

parameters (if any) and a Control Byte. If there is an invalid parameter in the CDB, the target

will stop executing the command without altering the medium. Regardless of command

completion, the target will return a status byte and a message byte to the initiator. The

R0652 only supports Status Byte 02H (Check Condition) and Message Byte 00H (command

complete), see ANSI spec for full description of other status and message bytes. Tables 3.1

and 3.2 show the typical command descriptor blocks for 6 and 10 byte commands. Tables

3.3 and 3.4 show the status and message byte command descriptor blocks.

- 39 -

Table 3.1: Typical 6 Byte Command Descriptor Block (Group 0 and Group 7)

Bit 7 6 5 4 3 2 1 0

Byte 0 Operation Code
Byte 1 Logical Unit Number Logical Block Address MSB

(if required)

Byte 2 Logical Block Address (if required)

Byte 3 Logical Block Address LSB (if required)

Byte 4 Transfer Length (if required)
Byte 5 Control Byte

Table 3.2 : Typical 10 Byte Command Descriptor Block (Group 1)

Bit 7 6 5 4 3 2 1 0

Byte 0 Operation Code
Byte 1 Logical Unit Number Reserved RelAdr

Byte 2 Logical Block Address MSB (if required)
Byte 3 Logical Block Address (if required)
Byte 4 Logical Block Address (if required)
Byte 5 Logical Block Address LSB (if required)
Byte 6 Reserved

Byte 7 Transfer Length MSB (if required)
Byte 8 Transfer Length LSB (if required)
Byte 9 Control Byte

Logical Unit Number The LUN addresses one of eight devices attached to the target.

Logical Block Address The logical block address on logical units begins with block 0 and
is contigous up to the last logical block on the unit. The logical
block concept implies that the initiator and target have previously
established the number of data bytes per logical block. This can
be done using the Read Capacity command or the Mode Sense
command. Group 0 and Group 7 Command Descriptor Blocks
have a 21-bit logical block address. Group 1 Command
Descriptor Blocks have a 32-bit logical block address.

-40-

The relative address of Group 1 Command Descriptor Blocks is
set to one to indicate that the logical block address is a two's
complement displacement. This negative/positive displacement is
added to the logical block address last accessed on the unit to
form the logical block address for that command. This is only
used when linking commands and is not supported by the R0652.

The transfer length specifies the amount of data to be transferred,
usually the number of blocks.

The control byte is the very last byte of every Command
Descriptor Block. A typical Control Byte is shown below. For the
R0652 Hard disk drive, all bits of the Control Byte are set to zero.

Control Byte

Bit 7 6 5 4 3 2 1 0

Vendor Unique Reserved Flag Link

Link Bit If the Link Bit is set to one the initiator wants an automatic link to
the next command when the current command is successfully
completed. This is not implemented in the R0652.

Flag Bit If the Link Bit is set to zero, then the Flag Bit is set to zero. If the
Link Bit is set to one and the command is successfully completed,
the target sends a linked command complete message (if Flag
Bit=0) or a linked command complete message with flag (if Flag
Bit=l). This bit is typically used to cause an interrupt in the
initiator between linked commands.

STATUS

The status returned on completion of a command contains a Status Byte and a Message Byte.

Only the status supported by the R0652 is discussed here.

Table 3.3 : Status Byte

Bit 7 6 5 4 3 2 1 0

Byte 0 0 0 0 0 0 0 ERR 0

Relative Address (Rel
Adr)

Transfer Length

Control Byte

ERR=0 no error occurred during command execution.
ERR=1 error occurred during command execution.

-41 -

f

Most error conditions cannot be explained with a single status code and a Request Sense

Command should be issued when ERR=1 to determine nature of the error.

Table 3.4 : Message Byte

Bit 7 6 5 4 3 2 1 0

Byte 0 0 0 0 0 0 0 0 0

00H Command Complete is the only message supported by the R0652. This message is sent

from a target to an initiator to indicate that the execution of a command has terminated and

that a valid status has been sent to the initiator. This does not indicate correct or incorrect

execution of the command. After this message is sent a Bus Free Phase is entered.

-42-

CHAPTER 4

ADVANTAGES OF SMALL COMPUTER SYSTEM INTERFACE

(SCSI)

Before the SCSI bus standard emerged there were many different types of devices, most with

different interfaces, which would typically be connected to a computer system. For example,

a Winchester disk drive would have an ST506 interface, a tape streamer would have a

QIC36 interface and a printer would have an RS232 interface. Therefore, it was necessary to

have a different hardware controller for each of these devices. Although each of these were

already industry standard interfaces, the introduction of SCSI as the new industry standard

meant that the Winchester disk drive, the tape streamer and the printer would all have the

same interface and could be controlled by the same hardware.

SCSI has a common command set, which allows the loading to be taken off the host system

CPU as more tasks are performed by the SCSI controller. For example, Copy is a function of

the common command set which allows transfer of data from one device in the system to

another without host CPU monitoring. The common command set supports present and

future peripherals, so new software drivers do not need to be written for upgraded devices.

This makes system design independent of advances in device capacity and performance.

Although the same SCSI hardware is able to control printers, hard disk drives, floppy disk

drives etc. a different software driver is needed for each of them. The software has to take

into account whether the connected device is a block device (eg. a hard disk drive) or a

character device (eg. a printer).

SCSI also supports arbitration between connected devices, allowing several tasks from

different devices to be interleaved on the bus at the same time as shown in Chapter 3.

4.1 ADVANTAGES FOR HARD DISKS

SCSI supersedes the ST506 interface as the new industry standard for hard disk drives and is

supported by most major device manufacturers. The SCSI common command set ensures

-43-

compatibility between similar devices from different manufacturers. Previously, a separate

input/output driver was needed for each hard disk drive type as they were manufactured with

different numbers of heads, cylinders and sectors. SCSI overcomes this by viewing any hard

disk drive, regardless of manufacturer, as a string of random logical blocks. As a result, the

only difference between drive types is the maximum logical block number which can be

addressed. The logical block number is converted to the physical block number by the disk

drive alone and a single input/output driver can be developed to run any SCSI disk drive

directly. Device specific problems, such as bad blocks on the hard disk media are handled

entirely within the hard disk thus reducing the host system CPU involvement as the hard disk

appears to be error free media to the operating system.

With current computers tending to be 16 bit and 32 bit microprocessor based, rather than 8

bit microprocessor based, they need more disk storage capacity. There are three methods of

increasing hard disk capacity:

Increase the available recording area by adding disks.

The ST506 is limited to 8 heads maximum. SCSI does not have this limitation as it

sees only logical blocks when communicating with a hard disk drive and lets the hard

disk electronics convert it into physical blocks.

Increase track density.

To increase the track density on an ST506 interface a closed loop servo system

(feedback) is needed to drive the read/write heads. This is due to the type of data

coding that the ST506 uses. SCSI uses a different type of data coding, which will give

a 50% increase in disk capacity, without the need for a closed loop servo system

driving the read/write heads.

Increase Flux Changes per Inch (FCI).

ST506 is limited to a maximum transfer rate of 5 Mbits/s. SCSI has a much higher

maximum synchronous transfer rate of 32 Mbits/s.

-44-

CHAPTER 5

TTL LOGIC INTERFACE BOARD

This board translates between the SCSI bus and the S-100 bus by using 74 series TTL logic

gates. The Single Card Computer can be said to be the host and this interface board the host

adapter. Figures 5.1 and 5.2 which show the circuit diagram and parts list for the board,

Appendix A which contains the software listings and Appendix C which shows the bus

phase sequences, should be referred to while reading the explanations in this chapter. The

connections on the left hand side of the circuit diagram go to the S-100 bus, ie. to the Single

Card Computer (SCC). The connections on the right hand side of the circuit diagram go to

the SCSI bus ie. the R0652 hard disk drive. In this case the SCC is the initiator and the

R0652 hard disk drive, the target. The circuit can be grouped into three functional parts-

Input/Output Buffers
Input/Output Buffer Enabling
General Components

5.1 INPUT/OUTPUT BUFFERS

The following are the input/output buffers:

IC1 - 74LS240 octal inverting buffer
IC2 - 74LS373 D-type latch
IC3 - 74LS240 octal inverting buffer
IC9 - 74LS240 octal inverting buffer
IC11 -74LS373 D-type latch
IC12 - 74LS38 2-input NAND

IC1, IC3 AND IC9

ICl, IC3 and IC9 are 74LS240 octal buffer chips, with three-state outputs. The output is the

logical inversion of the input and can be in a logic 1 state, a logic 0 state or a high impedance

state. When the buffer is in the high impedance state its output appears to be disconnected

from the bus. There are two enable inputs (1G and 2G) on the 74LS240, on pins 1 and 19.

One enable is used to control four of the buffers and the other enable is used to control the

-45 -

other four buffers. In the circuit these are connected together, to give one enable control

input for all eight buffers. The truth table below shows the enable logic of the 74LS240, with

G being the common enable input, A being the buffer input and Y being the buffer output.

G A Y

0 0 1
0 1 0
1 X z

O-Logic 0 (0 Volts), 1-Logic 1 (+5 Volts), X-irrelevant, Z-high impedance (disconnected)

IC2 AND IC11

IC2 and IC11 are 74LS373 octal D-type latches, with three-state outputs. There are two

controlling inputs on the 74LS373, enable (G) and output control (OC). When the OC input

is logic 1 the chip goes into its high impedance state. This state does not occur in the circuit

as the OC input is connected to 0 volts. The truth table below shows the enable logic of the

74LS373 with G being the enable input, D being the latch input and Q being the latch output.

G D Q
1 1 l
1 0 0
0 X Qo

0-Logic 0 (0 Volts), 1-Logic 1 (+5 Volts), X-irrelevant, Qo-previous Q

IC12

IC12 is a 74LS38 two-input NAND chip with open collector outputs. In open collector

circuits the final "pull up" resistor is missing and must be provided by the user. The missing

final resistor allows the user to connect more than one open collector output together through

the same "pull up" resistor. By doing this the outputs of the gates which are connected

through the same "pull up" resistor are OR-ed together.

-46-

5.2 INPUT/OUTPUT BUFFER ENABLING

The following are all part of the buffer enable circuitry:

IC4 - 74LS11 three-input AND
IC5 - 74LS00 two-input NAND
IC6 - 74LS04 inverter
IC7 - 74LS244 octal buffer
IC8 - 74LS08 two-input AND
IC10 - 74LS682 8-bit magnitude comparator
SW1 - 8 way single pole/single throw switch

IC4, IC5, IC6 AND IC8

IC4, IC5, IC6 and IC8 function as standard logic gates, as shown in the circuit diagram.

IC7

IC7 the 74LS244 non-inverting octal buffer with three-state outputs is used to buffer AO. AO

has to be buffered so there is only one TTL load on the S100 bus line.

IC10 AND SW1

IC10 the 74LS682 8-bit magnitude comparator with totem pole output is used to decode the

base address on A7 through Al. A7 through A1 are on the P inputs and the Q inputs are

connected to SW1 which is an 8 way single pole/single throw switch. SW1 is set for a base

address of 20H. The 74LS682 has two control outputs, P=Q and P>Q. Only the P=Q output

is used in this circuit. The truth table below shows the decode logic of the 74LS682 with P

and Q being the address inputs, and P=Q being the decoder output.

P,Q P=Q

P=Q 0
P>Q 1

P<Q 1

0-Logic 0 (0 Volts), 1-Logic 1 (+5 Volts)

-47-

5.3 GENERAL COMPONENTS

The following are all general components:

IC13 - 7805 voltage regulator
RN1 - 220/330 ohm resistor network
RN2 - 220/330 ohm resistor network
CI-CI2 - 0.01 micro-farad capacitors

IC13

IC13 is a 7805 voltage regulator which regulates the +8 volts on the SI00 bus (pin 51) to a

+5 volts supply for the interface board.

RN1 AND RN2

RN1 and RN2 are 220ohm/330ohm resistor networks used to terminate the SCSI bus lines in

the correct manner, for single ended drivers. With 220 ohms to +5 volts and 330 ohms to 0

volts.

C1-C12

CI through C12 are 0.01 micro-farad capacitors which are placed between 0 volts and +5

volts next to the IC packages. These are de-coupling capacitors which arc used to smooth out

any spikes appearing on the voltage rails.

5.4 SELECTING THE INPUT/OUTPUT BUFFERS

Data/Command/Status and Message byte transfers are controlled by writing to and reading

from interface board address 20H. Direction/Information type (ie. data byte, command byte,

status byte or message byte) are controlled by reading from and writing to interface board

address 21H. The address which is written to/read from controls the buffer

selection/disconnection.

-48-

FUNCTION sINP pDBIN sOUT pWR I/O

DEVICE(S) SELECTED

IC1 IC2 IC3 IC9 IC11

read datap A A R R A S D D D D
write datap R R A A R D S S D D
read statp A A R R A D D D S D
write contp R R A A R D D S D S

datap (data port)=20H, statp (status port)=21H, contp (control port)=21H
A=Asserted, R=Deasserted, S=Selected, D=Disconnected

IC1

IC1 is selected when there is a OV signal on the enable input (pin 1 and pin 19). NAND gate

1C outputs a OV signal to IC1 when the following conditions are satisfied:

(1) Address lines A7-A0 hold address 20H
(2) sINP and pDBIN are asserted

A read from the interface board, address 20H, causes sINP and pDBIN to be asserted which

selects IC1. During a read from the interface board sOUT and pWR are deasserted and I/O is

asserted which disconnects the other buffers. This allows the transfer of data from the

R0652 to the SCC data in bus.

IC2

IC2 is selected when there is a +5V signal on the enable input (pin 11). AND gate 2C

outputs a +5V signal to IC2 when the following conditions are satisfied:

(1) Address lines A7-A0 hold address 20H
(2) sOUT and pWR are asserted

A write to the interface board, address 20H, causes sOUT and pWR to be asserted, and I/O to

be deasserted which selects IC2 and IC3. During a write to the interface board sINP and

pDBIN are deasserted which disconnects the other buffers. This allows the transfer of data

from the SCC data out bus to the R0652.

-49-

IC3

IC3 is selected when there is a OV signal on the enable input (pin 1 and pin 19). INVERTER

gate IE outputs a OV signal to IC3 when I/O from the SCSI bus is inactive.

A write to the interface board, address 20H or address 21H, causes sOUT and pWR to be

asserted, and I/O to be deasserted which selects IC3. During a write to the interface board

sINP and pDBIN are deasserted which disconnects the other buffers. This allows the transfer

of data and control information from the SCC data out bus to the R0652.

IC9

IC9 is selected when there is a OV signal on the enable input (pin 1 and pin 19). NAND gate

3C outputs a OV signal to IC9 when the following conditions are satisfied:

(1) Address lines A7-A0 hold address 21H
(2) sINP and pDBIN are asserted

A read from the interface board, address 21H, causes sINP and pDBIN to be asserted which

selects IC9. During a read from the interface board sOUT and pWR are deasserted and I/O is

asserted which disconnects the other buffers. This allows transfer of status information from

the R0652 to the SCC data in bus.

IC11

IC11 is selected when there is a +5V signal on the enable input (pin 11). AND gate 4C

outputs a +5V signal to IC11 when the following conditions are satisfied:

(1) Address lines A7-A0 hold address 21H
(2) sOUT and pWR are asserted

A write to the interface board, address 21H, causes sOUT and pWR to be asserted, and I/O to

be deasserted which selects IC11 and IC3. During a write to the interface board sINP and

pDBIN are deasserted which disconnects the other buffers. This allows the transfer of

control information from the SCC data out bus to the R0652.

-50-

5.5 CONTROL SIGNALS

Certain SCC and SCSI signals are used to control the transfer of data, commands, status and

message signals between the data buses. The SCC control signals are used to

select/disconnect the buffers during different phases. The SCSI control lines are the lines

used to control what is being transferred on the data bus.

SCC CONTROL SIGNALS

sINP
(output from SCC)

pDBIN
(output from SCC)

sOUT
(output from SCC)

pWR
(output from SCC)

AO
(output from SCC)

This signal is connected to the input/output buffer enabling
circuitry. sINP is asserted (+5V) during a data input to the SCC,
deasserted (0V) at all other times.

This signal is connected to the input/output buffer enabling
circuitry. pDBIN is asserted (+5V) when data is latched onto onto
data bus, deasserted (0V) at all other times.

This signal is connected to the input/output buffer enabling
circuitry. sOUT is asserted (+5V) during a data output from the
SCC, deasserted (0V) at all other times.

This signal is connected to the input/output buffer enabling
circuitry. pWR is asserted (0V) during a data write from the SCC,
deasserted (+5V) at all other times.

This signal is connected to the input/output buffer enabling
circuitry. When AO is asserted (+5V) transfer is between the
R0652 control bus and the SCC data in or data out bus. When AO
is deasserted (0V) transfer is between the R0652 data bus and the
SCC data in or data out bus.

SCSI CONTROL SIGNALS

ACK

(output from SCC)

RST

(output from SCC)

SEE
(output from SCC)

This signal is connected, via IC11, from the SCC data out line
DOO to the R0652 control bus. ACK is asserted (0V) to
acknowledge a request (REQ) from the R0652 hard disk drive.
ACK is deasserted (+5V) at other times.

This signal is connected, via IC11, from the SCC data out line
DOl to the R0652 control bus. RST is asserted (0V) to clear all
bus activity. RST is deasserted (+5V) at other times.

This signal is connected, via IC11, from the SCC data out line
D02 to the R0652 control bus. SEE is asserted (0V) during
selection of the R0652 hard disk drive. SEE is deasserted (+5V)
at other times.

BSY
(input to SCC)

This signal is connected, via IC9, from the R0652 control bus to
the SCC data in line DIO. BSY is asserted (0V) when the SCSI bus
is busy. BSY is deasserted (+5V) at other times.

- 51 -

MSG

(input to SCC)

C/D
(input to SCC)

KEQ
(input to SCC)

I/O
(input to SCC)

5.6 BUS PHASES

This section shows the relevant circuitry active during each of the phases with reference to

the subroutines in the SCSI.Z80 software (Appendix A.5).

SELECTION PHASE

During the Selection Phase the R0652 hard disk drive is selected by the SCC. The SELECT

subroutine of SCSI.Z80 controls the selection of the R0652 hard disk as follows.

The address of the R0652 hard disk drive is written from the SCC to the R0652 data

port, IC2 and IC3 selected.

SEE is asserted by writing to the R0652 control port, IC3 and IC11 selected.

The R0652 status port is read until BSY is asserted, IC9 selected.

SEE is deasserted by writing to the R0652 control port, IC3 and IC11 selected.

This signal is connected, via IC9, from the R0652 control bus to
the SCC data in line DI1. MSG is asserted (OV) when the SCSI
bus is in a message phase. MSG is deasserted (+5V) at other
times.

This signal is connected, via IC9, from the R0652 control bus to
the SCC data in line DI2. C/D is asserted (OV) when control
information is on the SCSI bus. C/D is deasserted (+5V) when
data information is on the SCSI bus.

This signal is connected, via IC9, from the R0652 control bus to
the SCC data in line DI3. REQ is asserted (OV) when the R0652
is requesting something from the SCC. REQ is deasserted (+5V)
at other times.

This signal is connected, via IC9, from the R0652 control bus to
the SCC data in line DI4. I/O is asserted (OV) when the direction
of transfer on the SCSI bus is from the R0652 to the SCC. I/O is
deasserted (+5V) when the direction of transfer on the SCSI bus
is from the SCC to the R0652.

This completes the Selection Phase.

-52-

DATA IN PHASE

During the Data In Phase data is sent from the R0652 hard disk drive to the VDU, via the

SCC. The SCSIRD subroutine of SCSI.Z80 controls the transfer of a data byte as follows.

The R0652 status port is read, IC9 selected, until KEQ and BSY are asserted and MSG,

G/D and I/O are deasserted.

The R0652 data port is read, IC1 selected, to transfer the data byte into the SCC.

The SCC then outputs the data byte, which was read from the drive, to the VDU.

ACK is asserted by writing to the R0652 control port, IC3 and IC11 selected. (SCC has

read the data byte).

The R0652 status port is read, IC9 selected, until REQ is false.

ACK is deasserted by writing to the R0652 control port, IC3 and IC11 selected.

The data byte transfer is complete.

DATA OUT PHASE

During the Data Out Phase data is sent from the VDU, via the SCC, to the R0652 hard disk

drive. The SCSIWR subroutine of SCSI.Z80 controls the transfer of a data byte as follows.

The data byte, to be written to the R0652, is read from the VDU into the SCC.

The R0652 status port is read, IC9 selected, until REQ, BSY, I/O are asserted and MSG

and G/D are deasserted.

The SCC writes the data byte to the R0652 data port, IC2 and IC3 selected, to transfer

the data byte into the R0652.

-53 -

ACK is asserted by writing to the R0652 control port, IC3 and IC11 selected. (SCC has

written the data byte).

The R0652 status port is read, IC9 selected, until REQ is false.

ACK is deasserted by writing to the R0652 control port, IC3 and IC11 selected.

The data byte transfer is complete.

COMMAND PHASE

During the Command Phase data is sent from the VDU, via the SCC, to the R0652 hard disk

drive. The SEND subroutine of SCSI.Z80 controls the transfer of a command byte as

follows.

The data byte, to be written to the R0652, is read from the VDU into the SCC.

The R0652 status port is read, IC9 selected, until REQ, BSY and C/D are asserted and

MSG and I/O are deasserted.

The SCC writes the command byte to the R0652 data port, IC2 and IC3 selected, to

transfer the data byte into the R0652.

ACK is asserted by writing to the R0652 control port, IC3 and IC11 selected. (SCC has

read the data byte).

The R0652 status port is read, IC9 selected, until REQ is false.

ACK is deasserted by writing to the R0652 control port, IC3 and IC11 selected.

The command byte transfer is complete.

-54-

STATUS PHASE

During the Status Phase status information is sent from the R0652 hard disk drive to the

VDU, via the SCC. The STATUS subroutine of SCSI.Z80 controls the transfer of a status

byte as follows.

The R0652 status port is read, IC9 selected, until REQ, C/D, I/O and BSY are asserted

and MSG is deasserted.

The R0652 data port is read, IC1 selected, to transfer the status byte into the SCC.

The SCC then outputs the status byte, which was read from the drive, to the VDU.

ACK is asserted by writing to the R0652 control port, IC3 and IC11 selected. (SCC has

read the data byte).

The R0652 status port is read, IC9 selected, until REQ is false.

ACK is deasserted by writing to the R0652 control port, IC3 and IC11 selected.

The status byte transfer is complete.

MESSAGE IN PHASE

During the Message In Phase message information is sent from the R0652 hard disk drive to

the VDU, via the SCC. The MESSAGE subroutine of SCSI.Z80 controls the transfer of a

message byte as follows.

The R0652 status port is read, IC9 selected, until REQ, C/D, I/O, BSY and MSG are

asserted.

The R0652 data port is read, IC1 selected, to transfer the message byte into the SCC.

The SCC then outputs the message byte, which was read from the drive, to the VDU.

-55-

ACK is asserted by writing to the R0652 control port, IC3 and IC11 selected. (SCC has

read the data byte).

The R0652 status port is read, IC9 selected, until REQ is false.

ACK is deasserted by writing to the R0652 control port, IC3 and IC11 selected.

The message byte transfer is complete.

5.7 SOFTWARE

The listings of the programs are in Appendix A. There are five programs which control the

TTL logic interface board:

MAIN.Z80
EQU.Z80
MSG.Z80
VDU.Z80
SCSI.Z80

MAIN.Z80 is the main program, the other four are programs which are included into the

assembled firmware.

MAIN.Z80

This is the main program which controls VDU, SCC and R0652 input/output, by utilising

the subroutines, equates etc. contained in the other programs.

EQU.Z80

This file contains:

Equates for the VDU control
VDU ASCII equates
SCSI equates
SCSI status bits equates
SCSI control bits equates
SCC RAM storage size

-56-

MSG.Z80

This file has the messages which are sent to the VDU during program operation.

VDU.Z80

In this file are the subroutines which control VDU input/output. (Baud rate selection and

reading from and writing to the VDU screen.)

SCSI.Z80

As shown in Chapter 5.6, this is file which has the subroutines used to control the R0652

hard disk drive phases.

1I;[3|i|sI6|7|a||iQ
PAJtTOfCONOTSCALESHEETQF

PNI

O z g Q

ofa"
e

-i
ro

Ul

iy\
—l

issuel
»JISO-943

TITLE TTLLOC1C SIOO-+SCSIINTERFACE BOARD
aI

*w>oveoDATE

DRAWINGNo.

CCNOTSCAL£

PARTSLIST PART

ov

*5V

ICI

C20p\N)

PINIO

Pin20

iC2

(20PIN)

PIN

IO

P'N22

IC3

(2.0PIN)

piN

IO

PIN12

ICL

(14PIN)

PIN

7

PIN!4

ICS

(14PIN)

PIN

7

=IN14

IC6

(14PIN)

PIN

7

PIN14

IC7

(20PIN)

PIN

1O

PIN12

ica

(14Pin)

PIN

7

PIN14

IC^

(20pin)

PIN

lO

PINIO

ICIO

(20PIN)

PIN

lO

Pin2o

ICII

(20PIN)

PIN

10

pin20

1C12<14PIN")
PIN

7

P»N.4

iC»3 RNI R.N1 CI-Ct2 3wi(it>p*n)

DESCRIPTION

o Z o

-X.
3

74.US2X0OCTALBUFFER(INVERTED3-STATEOUTPUTS' 7LL.3373OCTAL.i-TYPHLATCHES(3-STATEOUTPUTS') 7LLS2LOOCTALEJFFER(INVERTEDT-STATEOUTPUTS' 74.USIITRlPLS3-NPUTPOSITIVE—ANiOGATE3 74L300Quad2-hnputpositive-njanogates 74.LSO4.HexINVERTERS 74L3244.OCTauiUFFEP(NONINveflTED3-9TATEOUTPUTS') 7LLSO0QUAD2—IN.PUTPOSlTlVg-ANQGATES 74LS2LOOCTALSJFP5R(iNVSRTSO3-9TATEOUTPUT^'/ 74LS&32a—aITUAGNlTjOSCOMPARATOR(TOTEMPCuEOUTPUT1) 74US373OCTALC—TYP=LATCHES(3-STATEOUTPUTS) 74LS3SQUAD2.—'A.PUTPOSITIVE—NAND6UPPERS(OPSN-COLLECTOftOuTPul 7SOS+3v(iO-lv'IAVOLTACEREGULATOR
2.1OA./330AX(K=S»3TORTERMINATION]PACK.) 2i0A/330nXfc»(RESISTORTERMINATIONPACK) 0//OIF2.SV(DEC

-1NICCAPACITORS)
aWAYs»Mqi_ePole-s»iNic-
T*MPOWQUAL-IN-UNBSWlTC^

(TO

c

cd

U\

OO

'■«i555-943

TITLE TTLLOGIC SIOO-*SC3IINTERFACE BQARQ

CHECKEDAPPROVEDCAFE
DRAWINGNo.

.W—a:

-59-

CHAPTER 6

INTELLIGENT INTERFACE BOARD

This board translates between the SCSI bus and the S-100 bus using TTL logic and a

NCR5380 SCSI interface chip. As in Chapter 5, the Single Card Computer is said to be the

host (initiator) and the R0652 hard disk drive the target. Appendix B, containing the

software used to control transfers, Appendix C which shows the bus phase sequences and

Figures 6.1 and 6.2 which show the circuit diagram and the parts list, should be referred to

while reading this chapter. The connections on the left hand side of the circuit diagram go to

the S-100 bus, ie. to the Single Card Computer (SCC). The connections on the right hand

side of the circuit diagram go to the SCSI bus ie. the R0652 hard disk drive. The circuit can

be grouped into three functional parts:

Input/Output
Input/Output Selection
General Components

6.1 INPUT/OUTPUT

The following are the input/output ICs

IC1 - 74LS244 octal buffer
IC2 - 74LS244 octal buffer
IC5 - NCR53C80 SCSI interface chip

IC1 AND IC2

IC1 and IC2 are 74LS244 non-inverting octal buffer chips, with three state outputs. As

before, the output can be in a logic 1 state, a logic 0 state or a high impedance state. There

are two enable inputs (1G and 2G) on the 74LS244, on pins 1 and 19. One enable is used to

control four of the buffers and the other enable is used to control the other four buffers.

These two inputs are connected together, to give one enable control input for all eight

buffers. The truth table below shows the enable logic of the 74LS244, with G being the

common enable input, A being the buffer input and Y being the buffer output.

-60-

G A Y

0 0 0
0 1 1
1 X Z

0-Logic 0 (0 Volts), 1-Logic 1 (+5 Volts), X-irrelevant, Z-high impedance (disconnected)

IC5

IC5 is a VLSI chip, the NCR53C80. This is a CMOS SCSI interface chip designed to

support the ANSI specification for Small Computer Systems Interfaces, X3T9.2. In this

project the chip is operated in the initiator mode but it can also be operated in the target

mode. The chip is controlled by reading from and writing to several internal registers,

Chapter 6.6 discusses these registers. The NCR53C80 can be grouped into seven functional

parts:

SCSI Bus Signals
DMA Control Signals
Data Bus Signals
Reset Conditions
Interrupts
Mode of Operation
Internal Register Signals

SCSI Bus Signals

BB0-EF7 R5T MSG
DBF ATN G/D
BSY AGK I/O
SEE REQ

These eighteen signals are identical to those shown in Chapter 3. SCSI bus signal ATN is not

used in this project because the message out phase is not supported.

DMA Control Signals

EOF
READY

DRQ
BACK

-61 -

The NCR53C80 is not used in a DMA mode in relation to this project. Input signals EOF and

DACK are held at +5V, deasserted state (ie. not active). Output signals READY and DRQ

are not used.

Data Bus Signals

D0-D7 Data Bus (D0-D7) is the bidirectional, tri-state bus connected to
the host computer.

Reset Conditions

There are three possible reset conditions within the NCR53C80:

Hardware Reset Input signal RESET is used to clear all internal registers, it does
not reset the SCSI bus.

SCSI RST Received This performs a chip reset, clearing all internal registers except
port, 1 bit 7 which is the assert RST bit. RST is used to clear all
SCSI bus activity.

SCSI RST Issued If the host sets the assert RST bit (bit 7, port 1) all internal
registers are cleared apart from port 1, bit 7. RST will be active,
clearing all SCSI bus activity, until port 1, bit 7 is deasserted or
the NCR53C80 RESET input is active.

Interrupts

Output signal IRQ is not used in relation to this project. IRQ is used to inform the host of an

error or an event completion.

Mode of Operation

The NCR53C80 supports four modes of operation: programmed I/O transfers; normal DMA

mode; block DMA mode and pseudo DMA mode. Programmed I/O is used in this project,

this uses the REQ/ACK handshake method of controlling data transfers.

-62-

Internal Registers Signals

Signals CS, 10R, IOW and A0-A2 are used to address all internal registers. CS enables a read

or a write of one of the eight internal registers selected. All data transfers between the SCC

and the R0652 are controlled by these registers. See Chapter 6.6 for explanation of the

registers used in this project.

6.2 INPUT/OUTPUT SELECTION

The following are all part of the input/output select circuitry:

IC4 - 74LS08 2-input AND
IC6 - 74LS04 inverter
IC7 - 74LS10 3-input NAND
IC3 - 74LS682 8-bit magnitude comparator
SW1 - 8 way single pole/single throw switch

IC4, IC6 AND IC7

IC4, IC6 and IC7 function as standard logic gates, as shown in the circuit diagram.

IC3 AND SW1

IC3 the 74LS682 8-bit magnitude comparator with totem pole output is used to decode the

base address on A7 through A3. A7 through A3 are on the P inputs and the Q inputs are

connected to SW1 which is an 8 way single pole/single throw switch. SW1 is set for a base

address of 20H. The 74LS682 has two control outputs, P=Q and P>Q. Only the P=Q output

is used in this circuit. The truth table below shows the decode logic of the 74LS682 with P

and Q being the address inputs, and P=Q being the decoder output.

P,Q P=Q

P=Q 0
P>Q 1

P<Q 1

-63 -

O-Logic 0 (0 Volts), 1-Logic 1 (+5 Volts)

6.3 GENERAL COMPONENTS

The following are all general components:

IC8 - 7805 voltage regulator
RN1 - 220/330 ohm resistor network
RN2 - 220/330 ohm resistor network
R1,R2 - IK ohm resistors
C1-C7 - 0.01 micro-farad capacitors

ICS

IC8 is a 7805 voltage regulator which regulates the +8 volts on the S100 bus (pin 51) to a +5

volts supply for the interface board.

RN1 AND RN2

RN1 and RN2 are 220ohm/330ohm resistor networks used to terminate the SCSI bus lines in

the correct manner, for single ended drivers. With 220 ohms to +5 volts and 330 ohms to 0

volts.

R1 AND R2

R1 and R2 are IK ohm resistors used as pull-up resistors on the NCR53C80 inputs EOP and

DACK, preventing them from being asserted.

C1-C7

Cl through C7 are 0.01 micro-farad capacitors which are placed between 0 volts and +5

volts next to the IC packages. These are de-coupling capacitors which are used to smooth out

any spikes appearing on the voltage rails.

-64-

6.4 SELECTING THE INPUT/OUTPUT

Data/Command/Status and Message byte transfers are controlled by writing to and reading

from the interface board, base address 20H. The direction of the information on the data bus

controls the buffer selection/disconnection.

The following tables shows the chips that are selected and disconnected with each read/write

function.

FUNCTION sINP pDBIN sOUT pWR

DEVICE(S) SELECTED
IC1 IC2 IC5

read datap A A R R D S S
write datap R R A A S D s
write icmdp R R A A S D s
write modep R R A A S D s
write tcmdp R R A A S D s
read statlp A A R R D S s
read prstp A A R R D S s

datap (data register)=20H, icmdp (initiator command register)=21H, modep (mode
register=22H), tcmdp (target command register)=23H, statlp (bus status register)=24H, prstp
(reset parity/interrupt register)=27H
A=Asserted, R=Deasserted, S=Selected, D=Disconnected

IC1

IC1 is selected when there is a OV signal on the enable input (pin 1 and pin 19). NAND gate

2B outputs a OV signal to IC1 when the following conditions are satisfied:

(1) Address lines A7-A3 hold base address 20H
(2) sOUT and pWR are asserted

A write to the interface board, base address 20H, causes sOUT and pWR to be asserted

which selects IC1. This allows the transfer of information from the SCC data out bus to the

NCR53C80 (IC5). During a write to the interface board sINP and pDBIN are deasserted

which disconnects IC2.

- 65 -

IC2

IC2 is selected when there is a OV signal on the enable input (pin 1 and pin 19). NAND gate

IB outputs a OV signal to IC2 when the following conditions are satisfied:

(1) Address lines A7-A3 hold base address 20H
(2) sINP and pDBIN are asserted

A read from the interface board, base address 20H, causes sINP and pDBIN to be asserted

which selects IC2. This allows the transfer of information from the NCR53C80 (IC5) to the

SCC data in bus. During a read from the interface board sOUT and pWR are deasserted

which disconnects IC1.

IC5

IC5 is selected when there is a OV signal on the US input (pin 19). AND gate 3C outputs a

OV signal to IC5 when the output of IB or 2B is OV. This happens when there is a read or a

write to base address 20H. When there is a read from base address 20H, 10R is asserted (OV)

and when there is a write to base address 20H, IOW is asserted (OV). This allows transfers to

take place between the R0652 and the SCC.

6.5 CONTROL SIGNALS

Certain SCC control signals are used to control the NCR53C80. The control signals are used

to select/disconnect IC1 and IC2, enable or disable the NCR53C80 and set up the correct

conditions on the NCR53C80 for communication between the SCC and the R0652. The

NCR53C80 control signals are used to address the eight internal registers which control data

transfers between the SCC and the R0652.

SCC CONTROL SIGNALS

sINP This signal is connected to the input/output buffer enabling
(output from SCC) circuitry. sINP is asserted (+5V) during a data input to the SCC,

deasserted (OV) at all other times.

-66-

pDBIN
(output from SCC)

sOUT
(output from SCC)

pWE
(output from SCC)

A0-A2
(output from SCC)

pRESET
(output from SCC)

This signal is connected to the input/output buffer enabling
circuitry. pDBIN is asserted (+5V) when data is latched onto onto
data bus, deasserted (OV) at all other times.

This signal is connected to the input/output buffer enabling
circuitry. sOUT is asserted (+5V) during a data output from the
SCC, deasserted (OV) at all other times.

This signal is connected to the input/output buffer enabling
circuitry. pWR is asserted (OV) during a data write from the SCC,
deasserted (+5V) at all other times.

AO through A2 are connected to the NCR53C80 A0-A2 input.
These are used to control the NCR53C80 internal register
selection.

This signal is connected to the NCR53C80 RESET input. When
pRESET is asserted (OV) the NCR53C80 clears all its internal
registers. This does not force the SCSI bus signal EST low and
therefore, it does not reset the SCSI bus.

NCR53C80 CONTROL SIGNALS

C5 This signal comes from the input/output selection circuitry. When
US is asserted (OV), a read/write of the internal register addressed
by A0-A2 can take place.

IDE This signal comes from the input/output selection circuitry. When
IOR is asserted (OV), a read of the internal register selected by CR,
A0-A2 takes place.

IOW This signal comes from the input/output selection circuitry. When
IOW is asserted (OV), a write to the internal register selected by
US, A0-A2 takes place.

A0-A2 These signals come directly from the SCC. The address selects a
specific register.

6.6 NCR53C80 INTERNAL REGISTERS

The table below shows a summary of the NCR53C80 internal register selection.

-67-

US TOR TOW A2 A1 AO REGISTER SELECTED USED

R R A R R R Output Data YES
R A R R R R Current SCSI Data YES
R R A R R A Initiator Command YES
R A R R R A Initiator Command NO
R R A R A R Mode YES
R A R R A R Mode NO
R R A R A A Target Command YES
R A R R A A Target Command NO
R R A A R R Select Enable NO
R A R A R R Current SCSI Bus Status YES
R R A A R A Start DMA send NO
R A R A R A Bus and Status NO
R R A A A R Start DMA Target Receive NO
R A R A A R Input Data NO
R R A A A A Start DMA Initiator Receive NO
R A R A A A Reset Parity/Interrupts YES

A-asserted, R-deasserted
Only the registers used in relation to this project are discussed. See the NCR53C80 Design

Manual for descriptions of unused registers.

Output Data Register/Current Scsi Data Register

Address 0 - The Output Data Register and Current SCSI Data Register are referred to in the

phase explanations (Chapter 6.7) as the data register.

Write datap - This register is used to send data to the SCSI bus and to assert SCSI ID bits

during selection phase.

7 6 5 4 3 2 1 0

DB7 DB6 DB3 DE4 DBT DB2 DBT DUO

DB0-DB7 are as the SCSI bus signals of the same name.

Read datap - This register allows the host to read the active SCSI data bus.

7 6 5 4 3 2 1 0

DB7 BB6 DB3 DBT DB3 DB2 DBT BBU

-68-

DBD-DF7 are as the SCSI bus signals of the same name.

Initiator Command Register

Address 1 - The Initiator Command Register.

Write icmdp - This register is used to assert some SCSI bus signals.

7 6 5 4 3 2 1 0

Assert TM DE Assert Assert Assert Assert Assert
RST ACK BSY SEL ATN D BUS

Assert Reading these bits shows the status of the signal/data bus. If the
SIGNAL/D BUS bit is one (1) then the signal/data bus is active. When a one is

written to any of these bytes the signal/data bus is asserted.

TM Test Mode. When a one is written to this bit the NCR53C80
output drivers are disabled.

DE Differential Enable. When a one is written to this bit the external
differential pair driver option is enabled.

Only bits 7 (assert RST), 4 (assert ACK), 2 (assert SEE) and 0 (assert DATA BUS) are used
in relation to this project.

Mode Register

Address 2 - The Mode Register.

Write modep - This register controls the operational mode of the chip.

7 6 5 4 3 2 1 0

B Mode
DMA

Target
Mode

Enable
PChk

Enable
Pint

Enable
EOP Int

Monitor
Busy

DMA
Mode

Arb

B Mode DMA Block Mode DMA. This controls the characteristics of DMA
handshakes. Set to 0 during selection phase.

Target Mode Sets up NCR53C80 as an initiator or a target. This bit is set to 0
(NCR53C80 is an initiator) during the selection phase.

-69-

Enable P Chk Enable Parity Checking. This bit is set to 0 (ignore parity) during
the selection phase.

Enable P Int Enable Parity Interrupt. This bit is set to 0 (interrupt disabled)
during the selection phase.

Enable EOP Int Enable EOP interrupt. This bit is set to 0 (interrupt disabled)
during the selection phase.

Monitor Busy This bit is set to 0 (no interrupt when BSY lost) during the
selection phase.

DMA Mode This bit is set to 0 (no DMA) during the selection phase.

Arb Arbitrate. This bit is set to 0 (no arbitration) during the selection
phase.

Target Command Register

Address 3 - The Target Command Register.

Write tcmdp - This register mode register allows the host to control the SCSI bus

Information Transfer Phase and assertion of REQ.

7 6 5 4 3 2 1 0

LBS X X X Assert Assert Assert Assert
REQ MSG C/D I/O

LBS Last Byte Sent. This is used by the NCR53C80 to indicate, during
DMA, when the last byte has been sent to the SCSI bus.

Assert SIGNAL Assert REQ has no meaning when operating as an initiator. When
a one is written to any of these bytes the signal is asserted.

Current Scsi Bus Status Register

Address 4 - The Current SCSI Bus Status Register.

Read statlp - This register is used to monitor seven SCSI bus control signals and the data

parity bit.

7 6 5 4 3 2 1 0

EST EST REQ MSG Q/D I/O SEL DBF

-70-

The signals are as the SCSI bus signals of the same name.

Start Dma Send Register/Bus And Status Register

Address 5 - This register is not used in this project.

Input Data Register/Start Dma Target Receive Register

Address 6 - This register is not used in this project.

Reset Parity/Interrupts Register

Address 7 - Reset Parity/Interrupts Register.

Read prstp - This register is reset when it is read. The three bits reset when this register is

read are: parity error bit (bit 5); interrupt request bit (bit 4) and busy error bit (bit 2) in the

Bus and Status Register.

6.7 BUS PHASES

This section shows the relevant circuitry active during each of the phases with reference to

the subroutines in the NCR.Z80 software (Appendix B).

Here is the sequence of events leading to the phase explanations.

The SCSI bus is reset by asserting, then releasing, RST in the NCR53C80 (IC5)

initiator command register.

Class byte and command byte requested, via VDU.

The Selection Phase is entered.

After selecting the hard disk drive, the Command Phase is entered.

-71 -

After sending the command to the drive the status of the bus is checked by reading the

R0652 control port, via the NCR53C80 current SCSI bus status register.

If BSY is deasserted, command execution is complete and the program starts again. If

BSY is asserted, command execution is incomplete and KEQ is tested. If KEQ is

deasserted the status of the bus is checked again. If REQ is asserted, all bits except C/D

, I/O and MSG are masked out from the current SCSI bus status register.

These bits are used to determine what phase the bus is in and what subroutine is

entered.

MSG G/D I/O Phase Subroutine Entered

R R A Data In Phase DATAIN
R R R Data Out Phase SCSIWR
R A A Status Phase STATUS
A A A Message Phase MESSAGE

A=asserted, R=deasserted

SELECTION PHASE

During the Selection Phase the R0652 hard disk drive is selected by the SCC, via the

NCR53C80 (IC5). The SELECT subroutine of NCR.Z80 controls the selection of the R0652

hard disk as follows.

The SCC sets up IC5 as an initiator with no interrupts and sets the initiator command

register, IC1 and IC5 selected.

The SCC resets the IC5 parity/interrupts register, IC2 and IC5 selected.

The address of the R0652 hard disk drive is written from the SCC to the IC5 (R0652

data port), IC1 and IC5 selected.

-72-

Information is sent to the IC5 target command register to release C/D and I/O, (data

being transferred into R0652), IC1 and IC5 selected.

SEL is asserted by writing to the IC5 initiator command register (R0652 control port),

IC1 and IC5 selected.

The R0652 status port, via the IC5 bus status register, is read until B5Y is asserted,

IC2 and IC5 selected.

SEL is deasserted by writing to the IC5 initiator command register (R0652 control

port), IC1 and IC5 selected.

This completes the Selection Phase.

DATA IN PHASE

During the Data In Phase data is sent from the R0652 hard disk drive, via the NCR53C80

(IC5) and the SCC, to the VDU. The DATAIN subroutine of NCR.Z80 controls the transfer

of a data byte as follows.

The R0652 data port is read, via the NCR53C80 data register, to transfer the data byte

into the SCC, IC2 and IC5 selected.

The SCC then outputs the data byte, which was read from the drive, to the VDU.

ACK is asserted by writing to the IC5 initiator command register (R0652 control port),

IC1 and IC5 selected.

The R0652 status port, via the IC5 bus status register, is read until REQ is deasserted,

IC2 and IC5 selected.

ACK is then deasserted by writing to the IC5 initiator command register (R0652

control port), IC1 and IC5 selected.

-73 -

The data byte transfer is complete.

DATA OUT PHASE

During the Data Out Phase data is sent from the VDU, via the SCC and the NCR53C80

(IC5), to the R0652 hard disk drive. The SCSIWR subroutine of NCR.Z80 controls the

transfer of a data byte as follows.

The data byte, to be written to the R0652, is read from the VDU into the SCC.

Information is sent to the IC5 target command register to release C/D and I/O, (data

being transferred into R0652), IC1 and IC5 selected.

The data byte is written to the R0652 by writing to the IC5 data register, IC1 and IC5

selected.

ACK is asserted by writing to the IC5 initiator command register (R0652 control port),

IC1 and IC5 selected.

The R0652 status port, via the IC5 bus status register, is read until REQ is deasserted,

IC2 and IC5 selected.

ACK is then deasserted by writing to the IC5 initiator command register (R0652

control port), IC1 and IC5 selected.

The data byte transfer is complete.

COMMAND PHASE

During the Command Phase a command byte is sent from the VDU, via the SCC and the

NCR53C80 (IC5), to the R0652 hard disk drive. The SEND6 subroutine of NCR.Z80

controls the transfer of a command byte as follows.

-74-

The command byte, to be written to the R0652, is read from the VDU into the SCC.

Information is sent to the IC5 target command register to assert C/D and release I/O,

(command being transferred into R0652), IC1 and IC5 selected.

The R0652 status port, via the IC5 bus status register, is read until REQ is asserted,

IC2 and IC5 selected.

The command byte is written to the R0652 by writing to the IC5 data register, IC1 and

IC5 selected.

ACK is asserted by writing to the IC5 initiator command register (R0652 control port),

IC1 andIC5 selected.

The R0652 status port, via the IC5 bus status register, is read until REQ is deasserted,

IC2 and IC5 selected.

ACK is then deasserted by writing to the IC5 initiator command register (R0652

control port), IC1 and IC5 selected.

The command byte transfer is complete.

STATUS PHASE

During the Status Phase status information is sent from the R0652 hard disk drive, via the

NCR53C80 (IC5) and the SCC, to the VDU. The STATUS subroutine of NCR.Z80 controls

the transfer of a data byte as follows.

The R0652 data port is read, via the NCR53C80 data register, to transfer the status

byte into the SCC, IC2 and IC5 selected.

The SCC then outputs the status byte, which was read from the drive, to the VDU.

-75 -

ACK is asserted by writing to the IC5 initiator command register (R0652 control port),

IC1 and IC5 selected.

The R0652 status port, via the IC5 bus status register, is read until KEQ is deasserted,

IC2 and IC5 selected.

ACK is then deasserted by writing to the IC5 initiator command register (R0652

control port), IC1 and IC5 selected.

The status byte transfer is complete.

MESSAGE IN PHASE

During the Message In Phase message information is sent from the R0652 hard disk drive,

via the NCR53C80 (IC5) and the SCC, to the VDU. The MESSAGE subroutine of NCR.Z80

controls the transfer of a data byte as follows.

The R0652 data port is read, via the NCR53C80 data register, to transfer the message

byte into the SCC, IC2 and IC5 selected.

The SCC then outputs the message byte, which was read from the drive, to the YDU.

ACK is asserted by writing to the IC5 initiator command register (R0652 control port),

IC1 and IC5 selected.

The R0652 status port, via the IC5 bus status register, is read until REQ is deasserted,

IC2 and IC5 selected.

ACK is then deasserted by writing to the IC5 initiator command register (R0652

control port), IC1 and IC5 selected.

The message byte transfer is complete.

-76-

6.8 SOFTWARE

NCR.Z80 controls VDU, SCC and R0652 input/output. The program contains:

Equates for VDU control, VDU ASCII characters, NCR53C80 SCSI, NCR53C80

SCSI status/control, SCC RAM storage size.

Messages which are sent to the VDU during operation.

Subroutines which control VDU input/output, baud rate selection and reading from and

writing to the VDU.

Subroutines controlling the R0652 hard disk drive phases.

'I2III'IsToI7I8|9]Iq
PARTOfDONOTSCal£SH66TOF

IC3

1° f""

O

cm

Q

era

c ON

-J

OOV

06SCRIPTION

'MUd-94j

TITLE INTELLIGENT SIOO—SCSIINTERFACE BOARD
a17~

CHECKEDAfWOvEOOJE
DRAWINGNo.

DONOTSCALf

PARTSLIST PART

ov

+5V

•ci

c20pin)

pin

10

pin20

\c2

CIOpin)

pin

10

pln20

ic3

(20pin)

pln

10

pin20

ic.4

(l4pin)

p«n

7

pin14

ics

(48pin)

pln

3

pin23

pin

13

pin

34.

pin

3*

pin

4.6

1c6

(14.pin)

pin

7

pin14.

ic7

<14.pin)

pin

7

pin14

ic8 rni rnl r.i-r2 ci—c7 swi(\t>p'ki)

DESCRIPTION 74*-s2.44octalbuffer(non\nverted3-stateoutputs'! 74.ls2.44.octalbuffercnominverted3-stateoutputs) 74.ls6b10—sitmaonituoecomparator(totempoleoutput) 74.ls08quad2—inputpositive—andgates s3cqotscslinter.fa.cschip "7tl90lhexinverters 7zfc.l.aiot~rlpl_e3-inputpositive-nandcatcs 70o3+5v(lo-2v)ia.voltageregulator 2j2.0il/330nxbresistorterminjationpac^ zzon./530axe>(resistopterminationpack^
IKn.(PULL-UPRESISTORS) o/coif23v(decoupl.inccapacitors) 8way5inglbpcx-e—3iniou-hthrowoljal_—*kj—i1r-hseswitch

k»a-94i

»i3

TITLE INTELLIGENT SIOO-*SCSIINTERFACE BOARD
II'

checkedapproveddafe
DRAWINGNo.

j10 4k.3p7m>aj

-79-

CHAPTER 7

USES OF THE SCSI SYSTEM

The SCSI system, as described in this thesis, can be used to exercise any peripheral device

eg. printers, hard disk drives, tape streamers etc. which support the Small Computer System

Interface (SCSI). It is a very useful tool for service engineers, because it can communicate

directly with a wide range of peripheral devices and is manufacturer independent. It can be

used to determine whether a peripheral or a host computer is the cause of failure in a

non-working computer system.

The SCSI system can be used to exercise a hard disk drive, for example, by seeking, writing

and reading from specified tracks. The SCSI system can also be used to change the format

parameters of a hard disk drive (sectors per track, bytes per sector, interleave etc.) and then

low level format the drive using these new parameters.

Custom software can be written for the SCSI system and programmed into the SCC resident

EPROM. This software can be used to exercise any SCSI device, with or without user input.

Some uses of such software are:

Quality Control. Manufacturers can use the SCSI system as part of a "quality control"

system to test their SCSI peripherals before they are sent out to customers.

Goods In. OEMs can use the SCSI system as part of a "goods in" test to check out

incoming SCSI peripherals before they are used as part of computer systems.

7.1 EXAMPLE FUNCTIONS

The following examples are functions which cannot normally be carried out from a standard

operating system. All have been carried out using the SCSI system, which consists of the

following:

- 80 -

S-100 bus system (motherboard and power supply)
VDU
Cromemco Single Card Computer (SCC)
Intelligent SCSI adapter card (See Chapter 6)
R0652 hard disk drive

EXAMPLE 1 : EXAMINE DRIVE FORMAT PARAMETERS

When the SCSI system is powered up the prompt for the Class of command appears on the

VDU. The class (0) and the command (1A) of the Mode Sense op-code are entered, then the

page code for the drive format parameters (03). The allocate length is then prompted for, this

specifies the number of bytes that has been allocated for the returned data. The allocate

length is set to the maximum value (FF), as the drive will terminate the command when all

data has been transferred. When this command is issued, the hard disk drive will respond by

returning the bytes shown. Then the status byte and message byte are returned, indicating
command completion. The following shows the sequence of entries, with user responses in

bold type.

SCSI Tester V 01.02 July 1986
Class: 0
Command: IA

Page Code: 03
Allocate length: FF

18 00 00 00 03 13 01 32 01 32 00 06 00 06 00 22 02 00 00 02 00 00 00 00 80

Status: 00 Message: 00

The 25 bytes returned by the mode sense command are split into two different parts as

shown below, the far left column shows the returned value:

Mode sense header (4 bytes)
Format parameters page (21 bytes)

Mode Sense Header (4 bytes)

Bit 7 6 5 4 3 2 1 0

18 Byte 0 Sense Data Length
00 Byte 1 00H

00 Byte 2 00H

00 Byte 3 00H

-81 -

Sense Data Length This is the number of bytes, in hexadecimal, returned from the
drive during the data in phase. The sense data length does not
include itself.

21 Byte Format Parameters Page

Bit 7 6 5 4 3 2 1 0

03 Byte 0 SDP 0 0 0 0 0 1 1

13 Byte 1 Page Length (00...13H)
01 Byte 2 Tracks per Zone MSB
32 Byte 3 Tracks per Zone LSB
01 Byte 4 Alt Sectors per Zone MSB
32 Byte 5 Alt Sectors per Zone LSB
00 Byte 6 Alt Tracks per Zone MSB
06 Byte 7 Alt Tracks per Zone LSB
00 Byte 8 Alt Tracks per Volume MSB
06 Byte 9 Alt Tracks per Volume LSB
00 Byte 10 00H

22 Byte 11 Sectors per Track
02 Byte 12 Bytes per Sector MSB
00 Byte 13 Bytes per Sector LSB
00 Byte 14 00H

02 Byte 15 Interleave

00 Byte 16 00H

00 Byte 17 00H

00 Byte 18 00H

00 Byte 19 00H

80 Byte 20 80H

SDP The SDP bit allows the user to Set Default Parameters. If this bit
is set the user implements the factory defined default parameters
for this page.

The bytes returned translate as follows:

The Page Length is 13H, 19 decimal.
The number of Tracks per Zone is 132H, 306 decimal.
The number of Alternate Sectors per Zone is 132H, 306 decimal.
The number of Alternate Tracks per Zone is 6.
The number of Alternate Tracks per Volume is 6.
The number of Sectors per Track is 22H, 34 decimal.
The number of Bytes per Sector is 200H, 512 decimal.
The Interleave is 2.

- 82-

EXAMPLE 2 : LOW-LEVEL FORMAT

When the SCSI system is powered up the prompt for the Class of command appears on the

VDU. The class (0) and the command (04) of the Format op-code are entered, then the

format control code (00). The interleave is then prompted for, which is set to 03. When this

command is issued, the hard disk drive will execute a low-level format. Then the status byte

and message byte are returned, indicating command completion. The following shows the

sequence of entries, with user responses in bold type.

SCSI Tester V 01.02 July 1986
Class: 0
Command: 04

Format Control: 00
Interleave: 03

Status: 00 Message: 00

With the format control code set to 00, the drive is formatted using both Primary Defect List

(P-LIST) which was written on the drive during manufacture and Growing Defect List

(G-LIST) which the user writes to the drive.

The Interleave has been changed from 02, as shown in the previous example to be 03. If the

drive format parameters are re-examined after the format is complete, byte 15 of the format

parameters page will be 03.

REFERENCES

Draft Proposed American National Standard for Information Systems - Small Computer

System Interface (SCSI) X3T9.2 Revision 17

American National Standard Common Command Set (CCS) of the Small Computer System

Interface (SCSI) X3T9.2 Revision 4

RODEME 650 Series User Maunual (Product Number: USM 00090)

CROMEMCO Single Card Computer (SCC) Instruction Manual

ZILOG Z80A CPU Data Sheets

The S-100 Bus Handbook, Dave Bursky 1980

TEXAS INTRUMENTS TTL Data Book for Design Engineers Volume 1

NCR53C80 SCSI Interface Chip Design Manual

Programming the Z80, Rodnay Zaks 1980

- A1 -

APPENDIX A

TTL LOGIC INTERFACE BOARD SOFTWARE

A.l MAIN.Z80

A.2 EQU.Z80

A.3 MSG.Z80

A.4 VDU.Z80

A.5 SCSI.Z80

- A2-

A.l MAIN.Z80

; Development program SCSI device tester

*include scsiequ.z80
*include scsimsg.z80
*include scsivdu.z80
*include scsiscsi.z80

Main Program start

start

prog

cmdok

Id a,rst
out contp,a
Id a,00h
out contp,a
Id hi,stack
Id sp,hl
call getbaud
jP Prog

Id hi,stack
Id sp,hl
Id hl,bannerl
call outst

Id b,2
call inhex
Id hl,inhexs +
Id a,(hi)
cp null
jr nz,cmderr
dec hi
Id a, (hi)
push af
Id hfmsgcmd
call outst

Id b,3
call inhex
Id hl,inhexs
Id a,(hi)
and Ofh
Id e,a
inc hi
Id a,(hi)
cp null

jr z,cmdok
and Ofh
Id d,a
Id a,e
cp 1

jr nz,cmderr
Id a,10h
add a,d
Id e,a
inc hi
Id a,(hi)
cp null
jr nz,cmderr
pop af
cp '0'
jr z,class0
cp '1'
jP z,class 1

; reset drive

; set up stack pointer register

; set the baud rate

; set up stack pointer register

; output Class request to VDU

; one byte only

; hi -> second byte
; test only one byte

; get the byte
; save Class

; ask for command hex bytes
; possibly two bytes

; hi -> first byte
; get first byte

; keep it in e

; only one byte

; save second byte
; get back first byte
; check the value is one

; form command
; keep it in e

; only two bytes allowed
; restore Class
; test valid Class

-A3 -

cp
jp z,class7

cmderr Id hl.msgwcl ; command error exit
call outst

jr prog

; Class-0 commands

classO Id a,e
Id hi,buff ; hi -> command buffer
Id (hi),a ; byte-0
inc hi

cp OOh ; test drive ready
jr z,null5
cp Olh ; recalibrate
jr z,null5
cp 03h ;request sense
jr z,sens5
cp 04h ; format unit
jr z,form5
cp 07 h ; reassign blocks
jP z,reas5
cp 08h ; read
jp z,read5
cp Oah ; write
jP z,writ5
cp Obh ; seek
jp z,seek5
cp 12h ; inquiry
jp z,inqy5
cp 15h ; mode select
jp z,msel5
cp lah ; mode sense

jp z,msen5
cp ldh ; send diagnostics
jp z,diag5
jp prog

; Send a null byte into command buffer and increment pointer

zero Id (hi),null
inc hi
ret

; Get a hex byte and convert to binary byte

gethex2 call outst

Id b,3 ; maximum of two bytes
call inhex
call binary
ret

; Byte-1 followed by 5 null bytes
; used by cmdOOO and cmdOOl

null5 Id b,5
null5a call zero ; byte-1 to byte-5 are nul

djnz null5a
jP clOsend

- A4-

Byte-1 followed by 3 nulls, allocation length (18), 1 null
used by cmd003

sens5
sens5a

Id b,3
call zero

djnz sens5a
Id (hi), 12h
inc hi
Id (hi),null
call select
Id hi,buff
call send6
Id hl,msgsens
call outst
call scsird
call status

call message
J'P prog

; byte-1 to byte-3 are null

; allocation length

; sense byte banner
; read data bytes and output to VDU

Byte-0 followed by format control code, 2 null bytes, interleave, 1
null byte used by cmd004

form5

form5a

push hi ; save pointer
Id hl,msgfmc ; format control requested
call gethex2
pop hi ; restore pointer
Id (hi),a ; byte-1
inc hi
Id b,2
call zero ; byte-2 and byte-3 are null
djnz form5a
push hi ; save pointer
Id hl,msgfmi ; format interleave requested
call gethex2
pop hi ; restore pointer
Id (hi),a ; byte-4
inc hi
Id (hi),null ; byte-5 null
call select
Id hi,buff
call send6
call scsiwr
call status
call message
jP prog

Byte-1 followed by 5 null bytes
used by cmd007

reas5
reas5a

Id
call
djnz
call
Id
call
call
call
call
JP

b,5
zero

reas5a
select
hi,buff
send6
scsiwr
status

message
prog

; byte-1 to byte-5 are null

- A5 -

Byte-0 followed by track address and one null byte
used by cmd008

read5 call setup5
call select
Id hi,buff
call send6
call scsird
call status

call message
jP prog

; Byte-0 followed by track address and one null byte
; requests write byte value once only
; used by cmdOOa

writ5 call setup5
call select
Id hi,buff
call send6
call scsiwb
call status

call message
jP prog

; Byte-0 followed by track address and one null byte
; used by cmdOOb

seek5 call setup5
jP clOsend

setup5 - provides byte-1 to byte-5 for read5, writ5 and seek5
setup5a byte-4 and byte5 for frd5 and fwr5

setup5

setup5a

push hi ; save pointer
Id hl,msgtckh ; high track address requested
call gethex2

; restore pointerpop hi
Id (hi),a ; byte-1
inc hi

push hi ; save pointer
Id hl,msgtckm ; middle track address requested
call gethex2
pop hi ; restore pointer
Id (hi),a ; byte-2
inc hi

push hi ; save pointer
Id hl,msgtckl ; low track address requested
call gethex2
pop hi ; restore pointer
Id (hi),a ; byte-3
inc hi

push hi ; save pointer
Id hl,msgbcnt ; block count
call gethex2
pop hi ; restore pointer
Id (hi),a ; byte-4
inc hi
Id (hi),null ; byte-5 null
ret

-A6-

Byte-0 followed by 3 null bytes, allocation length, 1 null byte
used by cmd012

inqy5
inqy5a

Id
call
djnz
push
Id
call
pop
Id
inc
Id
call
Id
call
call
call
call
jP

b,3
zero

inqy5a
hi

hl,msgalen
gethex2
hi
(hi),a
hi
(hi),null
select
hi,buff
send6
scsird
status

message
prog

; bytes lto 3 are null

; save pointer
; allocation length requested

; restore pointer
; byte-4 is allocation length

; byte-5 null

Byte-0 followed by 3 null bytes, parameter list length, 1 null byte
used by cmd015

msel5
msel5a

Id b,3
call zero ; bytes 1 to 3 are null
djnz msel5a
push hi ; save pointer
Id hl,msgplst ; allocation length requested
call gethex2
pop hi ; restore pointer
Id (hi),a ; byte-4 is parameter list length
inc hi
Id (hi),null ; byte-5 null
call select
Id hi,buff
call send6
call scsiwr
call status
call message
jP prog

Byte-0 followed by null, page code, null, allocation length, null

msen5

cmdOla

call zero ; byte-1
push hi ; save pointer
Id hl,msgpcod ; page code requested
call gethex2
pop hi ; restore pointer
Id (hi),a ; byte-2 is page code
inc hi
call zero ; byte-3 is null
push hi ; save pointer
Id hl,msgalen ; allocation length requested
call gethex2
pop hi ; restore pointer
Id (hi),a ; byte-4 is allocation length
inc hi
Id (hi),null ; byte-5 null
call select
Id hi,buff

- A7 -

call send6
call scsird
call status

call message
jP prog

Byte-1 followed by 04h followed by 4 null bytes
cmdOld

diag5 Id (hl),04h
inc hi
Id b,4

diag5a call zero

djnz diag5a
jP clOsend

; byte-1

; byte-2 to byte-5 are null

CIass-1 commands

class 1 Id a,e
add 20h ; add class-1 for byte-0
Id hi,buff ; hi -> command buffer
Id (hi),a ; byte-0
inc hi
call zero ; byte-1
cp 25h ; read capacity
J'P z,capy9
cp 28h ; read extended
jP z,rdex9
cp 2ah ; write extended
jP z,wrex9
cp 2fh ; verify
jP z,verf9
cp 37h ; read defect data
jP z,deft9
cp 3ch ; read data buffer
jP z,rddb9
cp 3bh ; write data buffer
jp z,wrdb9
jp prog

; Byte-0 and byte-1 followed by 4 byte logical block address, 2 null bytes
; PMI byte and null byte
; used by cmdl05

capy9 push hi ; save pointer
Id hl,msglbal
call gethex2
pop hi ; restore pointer
Id (hi),a ; byte-2 is LBA high byte
inc hi
push hi ; save pointer
Id hl,msglba2
call gethex2
pop hi ; restore pointer
Id (hi),a ; byte-3 is LBA byte 2
inc hi

push hi ; save pointer
Id hl,msglba3
call gethex2
pop hi ; restore pointer
Id (hi),a ; byte-4 is LBA byte 3

- A8 -

inc hi

push hi ; save pointer
Id hl,msglba4
call gethex2

; restore pointerpop hi
Id (hi),a ; byte-5 is LBA low byte
inc hi
call zero ; byte-6 null
call zero ; byte-7 null
push hi ; save pointer
Id hl,msgpmi
call gethex2

; restore pointerpop hi
Id (hi),a ; byte-8 is PMI
inc hi
Id (hi),null ; byte-9
call select
Id hi,buff
call sendlO
call scsird
call status

call message
jP prog

; Byte-0 and byte-1 followed by 2 nulls,3 byte logical block address,
; 1 null, 2 byte block count and null byte
; used by cmdl08, cmdlOa and cmdlOf

rdex9
wrex9

call zero ; byte-2
push hi ; save pointer
Id hl.msglbal
call gethex2
pop hi ; restore pointer
Id (hi),a ; byte-3 is LBA high byte
inc hi

push hi ; save pointer
Id hl,msglba2
call gethex2
pop hi ; restore pointer
Id (hi),a ; byte-4 is LBA byte 2
inc hi
push hi ; save pointer
Id hl,msglba3
call gethex2
pop hi ; restore pointer
Id (hi),a ; byte-5 is LBA low byte
inc hi
call zero ; byte-6 null
push hi ; save pointer
Id hl,msgbcnt
call gethex2
pop hi ; restore pointer
Id (hi),a ; byte-7 is block count MSB
inc hi
push hi ; save pointer
Id hl,msgbct2
call gethex2
pop hi ; restore pointer
Id (hi),a ; byte-8 is block count LSB
inc hi

- A9-

Id (hi),null
call select
Id hi,buff
call sendlO
call scsird
Id hi,buff
Id a,2ah
cp (hi)
jr nz,rdex9a
call scsiwb
call status

call message
jP prog

; byte-9

rdex9a

Byte-0 and byte-1 followed by P/G/CODE byte, 4 nulls,
2 byte allocation length and null byte
used by cmdl 17

deft9

deft9a

push hl
Id hl,msgdeft
call gethex2
pop hi
Id (hi),a
inc hi
Id b,4
call zero

djnz deft9a
push hi
Id hl,msgalen
call gethex2
pop hi
Id (hi),a
inc hi

push hi
Id hl,msgaln2
call gethex2
pop hi
Id (hi),a
inc hi
Id (hi),null
call select
Id hi,buff
call sendlO
call scsird
call status
call message
jP prog

1 byte- 1 followed by

; save pointer

; restore pointer
; byte-2 is P/G/Code

; bytes 3 to 6 are null

; save pointer

; restore pointer
; byte-7 is MSB allocation length

; save pointer

; restore pointer
; byte-8 is LSB allocation length

; byte-9

2 byte allocation length and null byte
used by cmdl 17 and cmdl lc

rddb9
wrdb9 Id b,6
rddb9a call zero

djnz rddb9a
push hi
Id hl,msgalen
call gethex2
pop hi
Id (hi),a
inc hi

; bytes 3 to 6 are null

; save pointer

; restore pointer
; byte-7 is MSB allocation length

- A10-

rddb9b

push hi
Id hl,msgaln2
call gethex2
pop hi
Id (hi),a
inc hi
Id (hi),null
call select
Id hi,buff
call send 10
call scsird
Id hi,buff
Id a,3bh
cp (hi)
jr nz,rddb9b
call scsiwb
call status
call message
jP prog

; save pointer

; restore pointer
; byte-8 is LSB allocation length

; byte-9

; Class-7 commands

class7 Id a,e
add OeOh ; add class-7 for byte-0
Id hi,buff ; hi -> command buffer
Id (hi),a ; byte-0 to command buffer
inc hi

cp OeOh ; maintenance seek
jP z,mseek5
cp Oelh ; format maintenance tracks
jP z,mform5
cp 0e2h ; certify
jP z,cert5
cp 0e8h ; fast read
jP z,frd5
cp Oeah ; fast write
jP z,fwr5
jP prog

Byte-0 followed by 1 null, 2 byte cylinder number, 1 byte head number
and null byte
used by cmd700

mseek5 call zero

push hi
Id hl,msgcylh
call gethex2
pop hi
Id (hi),a
inc hi
push hi
Id hl,msgcyll
call gethex2
pop hi
Id (hi),a
inc hi

push hi
Id hl,msghead
call gethex2
pop hi
Id (hi),a

; byte-1
; save pointer

; restore pointer
; byte-2 is cylinder number high byte

; save pointer

; restore pointer
; byte-3 is cylinder number low byte

; save pointer

; restore pointer
; byte-4 is head number

-All -

inc hi
Id (hi),null ; byte-5 null
jr cl7send

; Set pattern of bytes
; usedbycmd701

mform5 Id (hi),00000000b ; byte-1
inc hi
Id (hi),01010010b ; byte-2
inc hi
Id (hi),0100111 lb ; byte-3
inc hi
Id (hi),00000000b ; byte-4
inc hi
Id (hi),00000000b ; byte-5 null
jr cl7send

; Byte-0 followed by 2 null bytes, pass count, 2 null bytes
; used by cmd702

cert5 call zero ; byte-1
call zero ; byte-2 is null
push hi ; save pointer
Id hl,msgpcnt ; allocation length requested
call gethex2
pop hi ; restore pointer
Id (hi),a ; byte-3 is pass count
inc hi
call zero ; byte-4 null
Id (hi),null ; byte-5 null
jr cl7send

; Byte-0 followed by 3 null bytes, block count, 1 null byte
; used by cmd708 and cmd70a

frd5
fwr5 Id b,3
fwr5a call zero ; bytes 1 to 3 are null

djnz fwr5a
call setup5a
jr cl7send

; Class-7 send control bytes

clOsend
cl7send call select

Id hi,buff
call send6
call status

call message
J'P prog

end start

; end of file

- A12 -

A.2 EQU.Z80

Development program SCSI device tester

; General equates

; VDU equates
vdustat equ OOh
vdubaud equ OOh
vdudata equ 01 h
vducmd equ 02h
rda equ 6
tbe equ 7

; ASCII equates
null equ OOh
cr equ Odh
If equ Oah

; SCSI equates
datap equ 20h
contp equ 21h
statp equ 21h

VDU status register
VDU baud rate register
VDU data register
VDU command register
RDA bit
TBE bit

; Status bit positions
bsy equ 0
msg equ 1
cd equ 2

req equ 3
io equ 4

; Control values
ack equ 1
rst equ 2
sel equ 4

; Storage allocation in SCC RAM
; 2000h to 23ffh
stack equ 21 OOh
inhexs equ 2200h
buff equ 2220h
buffi equ 2240h

; reserved for stack
; ASCII bytes and trap for last byte
; working buffer
; working buffer

; end of file

- A13 -

A.3 MSG.Z80

; Development program SCSI device tester

bannerl db cr,If,If,'SCSI Tester V 00.02 June 1986',cr,If
db 'Class: '.null

crlf db cr,If,null
msgalen db cr,lf,'Allocate length 1: '.null
msgaln2 db cr.lf,'Allocate length 2: '.null
msgbcnt db cr,If,'Block Count 1: '.null
msgbct2 db cr,If,'Block Count 2: '.null
msgcmd db cr.lf,'Command: '.null
msgcylh db cr.lf,'Cylinder 1: '.null
msgcyll db cr,lf,'Cylinder 2: '.null
msgdeft db cr,lf,'P/G/Code: '.null
msgfmc db cr,If,'Format Control: '.null
msgfmi db cr,If,'Interleave: '.null
msghead db cr,If,'Head: '.null
msghexe db cr,lf,'? HEX ?',cr,lf,lf,null
msglbal db cr,lf,'LBA 1: '.null
msglba2 db cr,lf,'LBA 2: '.null
msglba3 db cr,lf,'LBA 3: '.null
msglba4 db cr,lf,'LBA 4: '.null
msgmsg db '

Message: '.null
msgnot db cr,If,'????',null
msgpcnt db cr,If,'Pass Count: '.null
msgpcod db cr,If,'Page Code: '.null
msgpmi db cr,lf,'PMI: '.null
msgplst db cr,If,'Parameter List Length: '.null
msgsens db cr,If, 'Report: ',cr,If,null
msgspac db ' '.null
msgstat db cr,If,'Status: '.null
msgtckh db cr.lf,'Address 1: '.null
msgtckm db cr.lf,'Address 2: '.null
msgtckl db cr,If,'Address 3: '.null
msgwcl db cr,If,'INVALID'.null

; end of file

- A14-

A.4 VDU.Z80

; Development program SCSI device tester

; VDU I/O routines

; Output a null terminated string
; hi -> string
; preserves all registers

outst push af ; save registers
push hi

outstl call tbemp
Id a,(hi) ; get the byte
cp null
jr z,outst2 ; a null, so all done
out vdudata,a
inc hi ; point to next byte
jr outstl

outst2 pop hi ; restore registers
pop af
ret

; Wait for transmitter bufer to empty
; preserves all registers

tbemp push af
tbempl in a,vdustat ; wait for TBE

bit tbe,a
jr z,tbempl
pop af
ret

; Wait for read data available and read byte into a
; preserves all registers except af

gbyte in

bit
jr
in
ret

a,vdustat
rda,a
z,gbyte
a,vdudata

; wait for a digit available

; Output a null terminated byte to VDU followed by a space
; (a) = byte
; preserves all registers

byteout push af ; output hex byte to VDU

byteoul

push af
and OfOh
rrca

rrca

rrca

rrca

cp Oah
jr c,byteoul
add a,7
add 30h
call tbemp
out vdudata,a
call tbemp
pop af
push af
and Ofh

; test for hex adjustment

- A15-

byteou2

cp
jr
add
add
out

call
Id
out

pop
ret

Oah
c,byteou2
a,7
30h
vdudata,a
tbemp
a,' '
vdudata.a
af

; test for hex adjustment

; output a space

Convert one/two hex values (high/low) to binary
high hex is stored in inhexs
(a) = binary byte
preserves all registers except af

binary push hi
Id hi,inhexs + 1
Id a,(hi) ; if null only one byte input
cp null
jP nz,binaryl
dec hi
Id a,(hi) ; get byte
and Ofh
Id e,a ; save hex value in e
jr binary2
dec hi ; form both nibbles
rid
Id a,(hi)
Id e,a ; save hex value in e
Id a,e ; get byte and return it in a
pop hi
ret

binaryl

binary2

Input a hex string of numbers up to inhexm long terminated with cr
input is stored in inhexs
on input b = maximum number of hex digits required
preserves all registers

inhexm
inhex

inhexO

inhexl

equ Oah
push af ; save registers
push be
push hi
Id a,inhexm -2
cp b
jr c,inhexe
Id hi,inhexs
Id b,inhexm ; load count
Id (hi),null ; nulls to storage area
inc hi
djnz inhexO
Id hi,inhexs ; get back pointer
Id b,inhexm ; load count
call gbyte ; get a byte from VDU
and 7fh ; strip parity bit
cp cr ; is number finished
jr z,inhex2
Id (hi),a
call outst ; echo to VDU
cp '0'
jr c,inhexe ; abandon if not hex
cp '9'+l

- A16-

jr c,inhex3
cp 'a'
jr c,inhex4
sub a,20h

inhex4 cp 'A'

jr c, inhexe ;abandon if not hex
cp 'F'+l

jr nc,inhexe ;abandon if not hex
sub a,7 ; adjust byte

inhex3 Id (hi),a ; store digit
inc hi ; increment pointer
djnz inhexl
jr inhexe ; number too long

inhexl Id a,inhexm
sub b
Id b,a ; b = no of hex digits
cp null
jr z,inhexe ; abandon as no input
pop hi

pop be
pop af
ret

inhexe Id hl,msghexe point to error messag
call outst

jP prog

; Baud rate selection routine

baudrs db 10010000b
db 11000000b 9600
db 10100000b 4800
db 10010000b 2400
db 10001000b 1200
db 10000100b 300
db 10000010b 150
db 00000001b 110

getbaud

baudl

Id hi,baudrs
Id c,vdubaud
Id a,llh
out vducmd,a
outi
call gbyte
call gbyte
and 7fh
cp Odh
Id a,l
jr nz,baudl
ret

; hi -> baud rate table
; c = baud port
; reset bit and high baud
; reset

; recognise a cr?
; reset bit only

; end of file

- A17 -

A.5 SCSI.Z80

; Development program SCSI device tester

; SCSI Subroutines

; Read status byte from drive and output to VDU
; preserves all registers

status

statusO

status 1

push af
push hi
in a,statp
cp Ofdh
jr nz,statusO
Id hl,msgstat
call outst
in a,datap
call byteout
Id a,ack
out contp,a
in a,statp
bit req,a
jr nz,status 1
Id a,00h
out contp,a
pop hi

pop af
ret

; test for status byte

; hi-> banner

; read drive status byte

; acknowledge drive

; wait for request false

; reset acknowledge false

Read message byte from drive and output to VDU
preserves all registers

message

messagO

messagl

push af
push hi
in a,statp ; test for status byte
cp Offh
jr nz,messagO
Id hl.msgmsg ; hi-> banner
call outst
in a,datap ; read drive status byte
call byteout
Id a,ack ; acknowledge drive
out contp,a
in a,statp ; wait for request false
bit req,a
jr nz,messagl
Id a,00h ; put acknowledge false
out contp,a
pop hi
pop af
ret

Read data bytes from drive and output to VDU
preserves all registers

scsird
scsirdO

push af
in a,statp
bit req,a
jr z,scsirdO
cp 0f9h
jr nz,scsird2
in a,datap

; test for request

; is it read in data?
; return as all done
; read data byte

- A18 -

scsirdl

call byteout
Id a,ack
out contp,a
in a,statp
bit req,a
jr nz,scsirdl
Id a,00h
out contp,a
jr scsirdO
pop af
ret

scsird2

Write data bytes to drive from VDU
preserves all registers

scsiwrb
scsiwr

scsiwrO

; acknowledge drive

; wait for request false

; put acknowledge false

; look for next data in byte

scsiwrl

scsiwr2

db cr,lf,'B: \r
push af
push hi
in a,statp
bit req,a
jr z,scsiwrO
cp 0e9h
jr nz,scsiwr2
Id hi,scsiwrb
call outst

Id hl,inhexs
call inhex
call binary
out datap,a
Id a,ack
out contp,a
in a,statp
bit req,a
jr nz,scsiwrl
Id a,00h
out contp,a
jr scsiwrO
pop hi

pop af
ret

; test for request

; is it requesting data?
; return as all done

; write data byte
; acknowledge drive

; wait for request false

; put acknowledge false

; look for next data in byte

Write block of bytes to drive from VDU
preserves all registers

scsiwb

scsiwbO

scsiwbl

push af
push hi
Id hi,scsiwrb ; ask for byte
call outst

Id hl,inhexs
call inhex
call binary
Id h,a ; save the byte
in a,statp ; test for request
bit req,a
jr z,scsiwbO
cp 0e9h ; is it requesting data?
jr nz,scsiwb2 ; return as all done
Id a,h ; get the byte back
out datap,a ; write data byte
Id a,ack ; acknowledge drive
out contp,a
in a,statp ; wait for request false

- A19-

bit req,a
jr nz.scsiwbl
Id a,00h
out contp,a
jr scsiwbO
pop hi

pop af
ret

scsiwb2

; Select drive
; preserves all registers

select

; put acknowledge false

; look for next data in byte

selectl

push af
Id a,0000000 lb ; select drive
out datap,a
Id a,sel
out contp,a
in a,statp
bit bsy,a
jr z,selectl ; wait for bsy true
Id a,00h
out contp,a ; reset select false
pop af
ret

; Send ten or six control bytes to drive
; hi -> buffer containing the six bytes
; preserves all registers

send6

sendlO

send6a

send6b

push af
push be
push hi
Id c,datap
Id b,6
jr send6a
push af
push be
push hi
Id c,datap
Id b,10
in a,statp
cp Oedh
jr nz,send6a
outi
Id a,ack
out contp,a
in a,statp
cp 0e5h
jr nz,send6b
Id a,0
out contp,a
cp b
jr nz,send6a
Id hl,crlf
call outst

pop hi
pop be
pop af
ret

; wait for request

; send byte
; acknowledge byte ready

; wait for drive to read byte

; set acknowledge false

; cr/lf to tidy display

; end of file

- B1 -

APPENDIX B

INTELLIGENT INTERFACE BOARD SOFTWARE

B.l NCR.Z80

- B2-

B.l NCR.Z80

; Development program SCSI device tester

; VDU equates

vdustat equ OOh ; VDU status register
vdubaud equ OOh ; VDU baud rate register
vdudata equ Olh ; VDU data register
vducmd equ 02h ; VDU command register
rda equ 6 ; RDA bit
tbe equ 7 ; TBE bit

; ASCII equates

null equ OOh
cr equ Odh
If equ Oah

; NCR53C80 SCSI equates

base equ 20h ; Base port
datap equ base + 0 ; data port
icmdp equ base + 1 ; initiator command port
modep equ base + 2 ; mode port
tcmdp equ base + 3 ; target command port
statlp equ base + 4 ; bus status port
prstp equ base + 7 ; reset parity/interrupts port

; Initiator Command Register commands - icmdp

rst equ 10000000b ; reset SCSI bus
sel equ 00000101b ; select device
ack equ 00010001b ; acknowledge device from host
ackin equ 00010000b ; acknowledge device to host

; Storage allocation in SCC RAM
;' 2000h to 23ffh

stack equ 21 OOh ; reserved for stack
inhexs equ 2200h ; ASCn bytes and trap for last byte
buff equ 2220h ; working buffer
buffl equ 2240h ; working buffer
scsiwrf equ 2260h ; zero for single byte, otherwise block write
. ******** Main Program Start********

start Id hi,stack ; set up stack pointer register
Id sp,hl
Id hl,baudrs ; hi -> baud rate table
Id c,vdubaud ; c = baud port
Id a,l lh ; reset bit and high baud

baudl out vducmd,a ; reset
outi
call gbyte
call gbyte
and 7fh
cp Odh ; recognise a cr?
Id a,l ; reset bit only
jr nz,baudl

- B3 -

start 1 Id a,rst ; reset SCSI
out icmdp,a
Id b,null

waitrst djnz waitrst ; wait a moment
Id a,null
out icmdp,a ; finish SCSI reset
jp prog

; ********gaud rate selection routine values********

baudrs db 10010000b
db 11000000b ; 9600
db 10100000b ; 4800
db 10010000b ; 2400
db 10001000b ; 1200
db 10000100b ; 300
db 10000010b ; 150
db 00000001b ; 110

• ^^^^%^^^[csSci to VDT

banner1 db cr,lf,lf,'SCSI Tester V 01.02 July 1986',cr,If
db 'Class: \null

crlf db cr,If,null
msgalen db cr,lf,'Allocate length 1: ',null
msgaln2 db cr,If,'Allocate length 2: ',null
msgbcnt db cr,If,'Block Count 1: ',null
msgbct2 db cr,If,'Block Count 2: ',null
msgcmd db cr,lf,'Command: ',null
msgcylh db cr,lf,'Cylinder 1: ',null
msgcyll db cr,lf,'Cylinder 2: ',null
msgdeft db cr,lf,'P/G/Code: ',null
msgfmc db cr,If,'Format Control: ',null
msgfmi db cr,If,'Interleave: ',null
msghead db cr,If,'Head: ',null
msghexe db cr,lf,'? HEX ?',cr,lf,lf,null
msglbal db cr,lf,'LBA 1: ',null
msglba2 db cr,lf,'LBA 2: ',null
msglba3 db cr,lf,'LBA 3: ',null
msglba4 db cr,lf,'LBA 4: ',null
msgmsg db '

Message: ',null
msgnot db cr,If,'????',null
msgpcnt db cr,If,'Pass Count: ',null
msgpcod db cr,If,'Page Code: ',null
msgpmi db cr,lf,'PMI: ',null
msgplst db cr,lf,'Parameter List Length: ',null
msgspac db ' \null
msgstat db cr,If,'Status: ',null
msgtckh db cr,lf,'Address 1: \null
msgtckm db cr,lf,'Address 2: ',null
msgtckl db cr,If,'Address 3: ',null
msgwcl db cr,If,'INVALID',null

I/O Routines********
Output a null terminated string
hi -> string
preserves all registers

- B4-

outst push af ; save registers
push hi

outstl call tbemp
Id a,(hi) ; get the byte
cp null
jr z,outst2 ; a null, so all done
out vdudata,a
inc hi ; point to next byte
jr outstl

outst2 pop hi ; restore registers
pop af
ret

; Wait for transmitter bufer to empty
; preserves all registers

tbemp push af
tbempl in a,vdustat ; wait for TBE

bit tbe,a
jr z,tbempl
pop af
ret

Wait for read data available and read byte into a
preserves all registers except af

gbyte in

bit
jr
in
ret

a,vdustat
rda,a
z,gbyte
a,vdudata

; wait for a digit available

Output a hexadecimal byte to VDU followed by a space
(a) = binary value of byte
preserves all registers

byteout

byteouO

byteoul

push af ; output hex byte to VDU
and OfOh ; mask for upper hex value
rrca ; shift down
rrca

rrca

rrca

call byteouO ; convert and output to VDU
pop af ; get the binary value back
push af
and Ofh ; mask for lower hex value
call byteouO ; convert and output to VDU
call tbemp
Id a,' ' ; output a space
out vdudata,a
pop af
ret

cp Oah ; test for hex adjustment
jr c,byteoul
add a,7
add 30h ; convert to ASCII
call tbemp
out vdudata,a
ret

- B5 -

/

; Get a hex byte and convert to binary byte

gethex2 call
Id
call
call
ret

outst

b,3
inhex
binary

; maximum of two bytes

Convert one/two hex values (high/low) to binary
high hex is stored in inhexs
(a) = binary byte
preserves all registers except af

binary

binary1

push hi
Id hi,inhexs + 1
Id a,(hi)
cp null

jP nz,binary 1
dec hi
Id a,(hi)
and Ofh
pop hi
ret

dec hi
rid
Id a,(hi)
pop hi
ret

; if null only one byte input

; get byte

; form both nibbles into binary value

Input a hex string of numbers up to inhexm long terminated with cr
input is stored in inhexs
on input b = maximum number of hex digits required
preserves all registers

inhexm
inhex

inhexO

inhex1

inhex4

equ Oah
push af ; save registers
push be
push hi
Id a,inhexm -2
cp b
jr c,inhexe
Id hi,inhexs
Id b,inhexm ; load count
Id (hi),null ; nulls to storage area
inc hi

djnz inhexO
Id hi,inhexs ; get back pointer
Id b,inhexm ; load count
call gbyte ; get a byte from VDU
and 7fh ; strip parity bit
cp cr ; is number finished
jr z,inhex2
Id (hi),a
call outst ; echo to VDU
cp '0'
jr c,inhexe ; abandon if not hex
cp '9'+l
jr c,inhex3
cp 'a'
jr c,inhex4
sub a,20h
cp 'A'

-B6-

inhex3

inhex2

jr
cp
jr
sub
Id
inc
djnz
jr
Id
sub
Id
cp
jr
pop
pop
pop
ret

inhexe

prog

c,inhexe
'F'+l
nc, inhexe
a,7
(hi),a
hi
inhexl
inhexe
a,inhexm
b
b,a
null
z,inhexe
hi
be
af

;abandon if not hex

;abandon if not hex
; adjust byte
; store digit
; increment pointer

; number too long

; b = no of hex digits

; abandon as no input

cmdok

Id hl,msghexe ; point to error message
call outst

jP Prog

Main Program Continues:********

Id hi,stack ; set up stack pointer register
Id sp,hl
Id hl,bannerl ; output Class request to VDU
call outst
Id b,2 ; one byte only
call inhex
Id hl,inhexs + 1 ; hi -> second byte
Id a,(hi) ; test only one byte
cp null
jr nz,cmderr
dec hi
Id a,(hi) ; get the byte
push af ; save Class
Id hl,msgcmd
call outst ; ask for command hex bytes
Id b,3 ; possibly two bytes
call inhex
Id hl.inhexs ; hi -> first byte
Id a,(hi) ; get first byte
and Ofh
Id e,a ; keep it in e
inc hi
Id a,(hi)
cp null
jr z,cmdok ; only one byte
and Ofh
Id d,a ; save second byte
Id a,e ; get back first byte
cp 1 ; check the value is one

jr nz,cmderr
Id a,10h
add a,d ; form command
Id e,a ; keep it in e
inc hi
Id a,(hi)
cp null
jr nz,cmderr ; only two bytes allowed
pop af ; restore Class
cp '0' ; test valid Class

- B7 -

cmderr

jr z,classO
cp '1'
jP z,class 1
cp '7'
jP z,class7
Id hl,msgwcl
call outst

jP prog

command error exit

Commands********

classO Id a,e
Id hi,buff ; hi -> command buffer
Id (hi),a ; byte-0
inc hi

cp OOh ; test drive ready
jP z,null5
cp Olh ; recalibrate
jP z,null5
cp 03h ; request sense
jP z,sens5
cp 04h ; format unit
jP z,form5
cp 07h ; reassign blocks
jP z,reas5
cp 08h ; read
jP z,read5
cp Oah ; write
jP z,writ5
cp Obh ; seek
jP z,seek5
cp 12h ; inquiry
jP z,inqy5
cp 15h ; mode select
jP z,msel5
cp lah ; mode sense
jP z,msen5
cp ldh ; send diagnostics
jP z,diag5
jP prog

; Class-0 and Class-7 send control bytes

clOsend
cl7send call select

Id hi,buff
call send6
jp phaser

; Class-1 send control bytes

cllsend
call select
Id hi,buff
call send 10
jp phaser

; Send a null byte into command buffer and increment pointer

zero Id (hi),null
inc hi
ret

- B8 -

; Byte-1 followed by 5 null bytes
; used by cmdOOO and cmdOOl

nu!15
null5a

Id
call
djnz
jP

b,5
zero

null5a
clOsend

; byte-1 to byte-5 are null

; Byte-1 followed by 3 nulls, allocation length (18), 1 null
; used by cmd003

sens5 Id b,3
sens5a call zero ; byte-1 to byte-3 are null

djnz sens5a
Id (hi), 12h ; allocation length
inc hi
Id (hi),null
jP clOsend

; Byte-0 followed by format control code, 2 null bytes, interleave, 1
; null byte used by cmd004

form5 push hi ; save pointer
Id hl,msgfmc ; format control requested
call gethex2
pop hi ; restore pointer
Id (hi),a ; byte-1
inc hi
Id b,2

form5a call zero ; byte-2 and byte-3 are null
djnz form5a
push hi ; save pointer
Id hl,msgfmi ; format interleave requested
call gethex2

; restore pointerpop hi
Id (hi),a ; byte-4
inc hi
Id (hi),null ; byte-5 null
Id a,null
Id (scsiwrf),a ; single byte write to drive
jP clOsend

; Byte-1 followed by 5 null bytes
; used by cmd007

reas5 Id b,5
reas5a call zero ; byte-1 to byte-5 are null

djnz reas5a
Id a,null
Id (scsiwrf),a ; single byte write to drive
jP clOsend

; Byte-0 followed by track address and one null byte
; used by cmd008

read5 call setup5
jp clOsend

- B9 -

setup5 - provides byte-1 to byte-5 for read5, writ5 and seek5
setup5a byte-4 and byte5 for frd5 and fwr5

setup5

setup5a

push hi ; save pointer
Id hl,msgtckh ; high track address requested
call gethex2

; restore pointerpop hi
Id (hi),a ; byte-1
inc hi
push hi ; save pointer
Id hl,msgtckm ; middle track address requested
call gethex2

; restore pointerpop hi
Id (hi),a ; byte-2
inc hi

push hi ; save pointer
Id hl,msgtckl ; low track address requested
call gethex2
pop hi ; restore pointer
Id (hi),a ; byte-3
inc hi

push hi ; save pointer
Id hl,msgbcnt ; block count
call gethex2
pop hi ; restore pointer
Id (hi),a ; byte-4
inc hi
Id (hi),null ; byte-5 null
ret

; Byte-0 followed by track address and one null byte
; requests write byte value once only
; used by cmdOOa

writ5 call setup5
Id a,-l
Id (scsiwrf),a ; multi-byte write to drive
jP clOsend

; Byte-0 followed by track address and one null byte
; used by cmdOOb

seek5 call setup5
jP clOsend

; Byte-0 followed by 3 null bytes, allocation length, 1 null byte
; usedbycmd012

inqy5 Id b,3
inqy5a call zero ; bytes 1 to 3 are null

djnz inqy5a
push hi ; save pointer
Id hl,msgalen ; allocation length requested
call gethex2
pop hi ; restore pointer
Id (hi),a ; byte-4 is allocation length
inc hi
Id (hi),null ; byte-5 null
J'P clOsend

- BIO -

Byte-0 followed by 3 null bytes, parameter list length, 1 null byte
used by cmd015

msel5
msel5a

Id b,3
call zero ; bytes 1 to 3 are null
djnz mse!5a
push hi ; save pointer
Id hl,msgplst ; allocation length requested
call gethex2
pop hi ; restore pointer
Id (hi),a ; byte-4 is parameter list length
inc hi
Id (hi),null ; byte-5 null
Id a,null
Id (scsiwrf),a ; single byte write to drive
jP clOsend

Byte-0 followed by null, page code, null, allocation length, null
used by cmdOla

msen5 call zero ; byte-1
push hi ; save pointer
Id hl,msgpcod ; page code requested
call gethex2

; restore pointerpop hi
Id (hi),a ; byte-2 is page code
inc hi
call zero ; byte-3 is null
push hi ; save pointer
Id hl,msgalen ; allocation length requested
call gethex2

; restore pointerpop hi
Id (hi),a ; byte-4 is allocation length
inc hi
Id (hi),null ; byte-5 null
jP clOsend

Byte-1 followed by 04h followed by 4 null bytes
cmdOld

; byte-1diag5 Id (hl),04h
inc hi
Id b,4

diag5a call zero

djnz diag5a
J'P clOsend

; byte-2 to byte-5 are null

; ********QaSS-l Commands********

classl Id a,e
add 20h ; add class-1 for byte-0
Id hi,buff ; hi -> command buffer
Id (hi),a ; byte-0
inc hi
call zero ; byte-1
cp 25 h ; read capacity
jP z,capy9
cp 28h ; read extended
jp z,rdex9
cp 2ah ; write extended
jP z,wrex9
cp 2fh ; verify

- B11 -

jp z,verf9
cp 37h ; read defect data
jp z,deft9
cp 3ch ; read data buffer
jp z,rddb9
cp 3bh ; write data buffer
jp z,wrdb9
jP Prog

Byte-0 and byte-1 followed by 4 byte logical block address, 2 null bytes
PMI byte and null byte
used by cmdl05

push hi ; save pointer
Id hl,msglbal
call gethex2

; restore pointerpop hi
Id (hi),a ; byte-2 is LBA high byte
inc hi

push hi ; save pointer
Id hl,msglba2
call gethex2

; restore pointerpop hi
Id (hi),a ; byte-3 is LBA byte 2
inc hi
push hi ; save pointer
Id hl,msglba3
call gethex2
pop hi ; restore pointer
Id (hi),a ; byte-4 is LBA byte 3
inc hi

push hi ; save pointer
Id hl,msglba4
call gethex2
pop hi ; restore pointer
Id (hi),a ; byte-5 is LBA low byte
inc hi
call zero ; byte-6 null
call zero ; byte-7 null
push hi ; save pointer
Id hl.msgpmi
call gethex2
pop hi ; restore pointer
Id (hi),a ; byte-8 is PMI
inc hi
Id (hi),null ; byte-9
jP cllsend

; Byte-0 and byte-1 followed by 2 nulls,3 byte logical block address,
; 1 null, 2 byte block count and null byte
; used by cmdl08, cmdlOa and cmdlOf

rdex9
wrex9
verf9 call zero

push hi
Id hl,msglbal
call gethex2
pop hi
Id (hi),a
inc hi

push hi

; byte-2
; save pointer

; restore pointer
; byte-3 is LBA high byte

; save pointer

-B12-

Id hl,msglba2
call gethex2

; restore pointerpop hi
Id (hi),a ; byte-4 is LBA byte 2
inc hi

push hi ; save pointer
Id hl,msglba3
call gethex2
pop hi ; restore pointer
Id (hi),a ; byte-5 is LBA low byte
inc hi
call zero ; byte-6 null
push hi ; save pointer
Id hl,msgbcnt
call gethex2
pop hi ; restore pointer
Id (hi),a ; byte-7 is block count MSB
inc hi

push hi ; save pointer
Id hl,msgbct2
call gethex2
pop hi ; restore pointer
Id (hi),a ; byte-8 is block count LSB
inc hi
Id (hi),null ; byte-9
Id a,-l
Id (scsiwrf),a ; multi-byte write to drive
jP cllsend

Byte-0 and byte-1 followed by P/G/CODE byte, 4 nulls,
2 byte allocation length and null byte
used by cmdll7

deft9

deft9a

push hi
Id hl,msgdeft
call gethex2
pop hi
Id (hi),a
inc hi
Id b,4
call zero

djnz deft9a
push hi
Id hl,msgalen
call gethex2
pop hi
Id (hi),a
inc hi

push hi
Id hl,msgaln2
call gethex2
pop hi
Id (hi),a
inc hi
Id (hi),null
jP cllsend

; save pointer

; restore pointer
; byte-2 is P/G/Code

; bytes 3 to 6 are null

; save pointer

; restore pointer
; byte-7 is MSB allocation length

; save pointer

; restore pointer
; byte-8 is LSB allocation length

; byte-9

; Byte-0 and byte-1 followed by 6 nulls,
; 2 byte allocation length and null byte
; used by cmdllb and cmdllc

- B13 -

rddb9
wrdb9 Id b,6
rddb9a call zero ; bytes 3 to 6 are null

djnz rddb9a
push hi ; save pointer
Id hl,msgalen
call gethex2
pop hi ; restore pointer
Id (hi),a ; byte-7 is MSB allocation length
inc hi

push hi ; save pointer
Id hl,msgaln2
call gethex2
pop hi ; restore pointer
Id (hi),a ; byte-8 is LSB allocation length
inc hi
Id (hi),null ; byte-9
Id a,null
Id (scsiwrf),a ; single byte write to drive
jP cllsend

fciftijcCommands********

class7 Id a,e
add OeOh ; add class-7 for byte-0
Id hi,buff ; hi -> command buffer
Id (hi),a ; byte-0 to command buffer
inc hi

cp OeOh ; maintenance seek
jP z,mseek5
cp Oelh ; format maintenance tracks
jP z,mform5
cp 0e2h ; certify
jP z,cert5
cp 0e8h ; fast read
jP z,ffd5
cp Oeah ; fast write
jP z,fwr5
jP prog

Byte-0 followed by 1 null, 2 byte cylinder number, 1 byte head number
and null byte
used by cmd700

mseek5 call zero

push hi
Id hl,msgcylh
call gethex2
pop hi
Id (hi),a
inc hi

push hi
Id hl,msgcyll
call gethex2
pop hi
Id (hi),a
inc hi

push hi
Id hl,msghead
call gethex2
pop hi
Id (hi),a

; byte-1
; save pointer

; restore pointer
; byte-2 is cylinder number high byte

; save pointer

; restore pointer
; byte-3 is cylinder number low byte

; save pointer

; restore pointer
; byte-4 is head number

-B14-

inc hi
Id (hi),null ; byte-5 null
jP cl7send

; Set pattern of bytes
; usedbycmd701

mform5 Id (hi),00000000b ; byte-1
inc hi
Id (hl),01010010b ; byte-2
inc hi
Id (hl),0100111 lb ; byte-3
inc hi
Id (hi),00000000b ; byte-4
inc hi
Id (hi),00000000b ; byte-5 null
jP cl7send

; Byte-0 followed by 2 null bytes, pass count, 2 null bytes
; used by cmd702

cert5 call zero ; byte-1
call zero ; byte-2 is null
push hi ; save pointer
Id hl,msgpcnt ; allocation length requested
call gethex2
pop hi ; restore pointer
Id (hi),a ; byte-3 is pass count
inc hi
call zero ; byte-4 null
Id (hi),null ; byte-5 null
jP cl7send

; Byte-0 followed by 3 null bytes, block count, 1 null byte
; used by cmd708 and cmd70a

frd5
fwr5 Id b,3
fwr5a call zero ; bytes 1 to 3 are null

djnz fwr5a
call setup5a
Id a,null
Id (scsiwrf),a ; single byte write to drive
jP cl7send

*********gQg j gubroutine§********

; Read Current SCSI Bus Status Register and react to contents

; Status bit positions - statlp

phasem
datoutp
cmdp
datinp
statusp
msginp

equ
equ
equ
equ
equ
equ

00011100b
00000000b
00001000b
00000100b
00001100b
00011100b

; phase mask
; data out phase
; command phase
; data in phase
; status phase
; message in phase

; Status for Target Command Register - tcmdp

datoutt
cmdt

equ
equ

00000000b
00000010b

; data out target
; command target

- B15 -

in a,statlp ; read register
bit 6,a ; test busy
jP z,start 1 ; all done?
bit 5,a ; test for request
jr z,phaser ; not got one so try again
and phasem ; mask out all but phase
cp datoutp ; data out phase
jP z,scsiwr
cp datinp ; data in phase
jP z.datain
cp statusp ; status phase
jP z,status
cp msginp ; message in phase
jP z,message
jP phaser ; do not recognize it

; Acknowledge Drive

ackdrv Id a,ack ; acknowledge drive
out icmdp,a

statmsl in a,statlp ; wait for request false
bit 5,a
jr nz,statmsl
Id a,null ; reset acknowledge false
out icmdp,a
ret

; Read data byte from drive and output to VDU

datain in a,datap ; read data byte
call byteout
call ackdrv ; acknowledge drive
jr phaser

; Read status byte from drive and output to VDU

status Id hl,msgstat ; hi-> banner
call outst
in a.datap ; read drive status byte
call byteout
call ackdrv ; acknowledge drive
jr phaser

; Read message byte from drive and output to VDU

message Id hl,msgmsg ; hi-> banner
call outst
in a.datap ; read drive status byte
call byteout
call ackdrv ; acknowledge drive
jP prog

; Read data bytes from drive and output to VDU

scsird in a,datap ; read data byte
call byteout
call ackdrv ; acknowledge drive

-B16-

; Select drive

select Id a,null
out modep,a ; set as initiator and no interrupts
out icmdp,a ; set initiator command register
in a.prstp ; reset parity/interrupts port
Id a,0000000 lb ; select drive address
out datap,a
Id a.datoutt ; data out target
out tcmdp,a
Id a,sel
out icmdp,a

select1 in a,statlp
bit 6,a
jr z,select 1 ; wait for bsy true
Id a,null
out icmdp,a ; reset select false
ret

; Send ten or six control bytes to drive
; hi -> buffer containing the six or ten bytes

send6 Id c.datap
Id b,6*2
jr send6c

send10 Id c,datap
Id b,10*2

send6c Id a,cmdt ; command target
out tcmdp,a

send6a in a,statlp ; wait for request
bit 5,a
jr z,send6a
outi ; send byte
call ackdrv ; acknowledge byte ready
djnz send6a
Id hl,crlf
call outst ; cr/lf to tidy display
ret

; Write data byte to drive from VDU
; single/block depends on flag in (scsiwrf) - null for single byte

scsiwrb db cr,lf,'B: '.null
scsiwr Id hi,scsiwrb ; ask for byte

call outst

Id hl.inhexs
call inhex
call binary
push af ; save the byte
Id a.datoutt ; data out target
out tcmdp.a
Id a,(scsiwrf)
cp null

jr nz,scsiwb ; is it a block write?
pop af ; get the byte back
out datap.a ; write data byte
call ackdrv ; acknowledge drive
jP phaser

scsiwb in a.statlp ; read register
bit 5,a ; test for request
jr z,scsiwb ; not got one so try again
and phasem ; mask out all but phase

-B17-

cp datoutp
jr nz,scsiwbO
pop af
out datap,a
push af
call ackdrv
jr scsiwb

scsiwbO pop af
jp phaser

data out phase
return as all done
get the byte back
write data byte
save the byte
acknowledge drive
look for next data in
clean up the stack

rept [800h - $]
db -1
mend

end start

; end of file

- CI -

APPENDIX C

BUS PHASE SEQUENCES

U

fI

i

I

1

t

i

\

i

i

I:s;ifiif?lit
I

i

ifill
i

(

«litfit
!

r;
?
4
iin?ti??;

Jh$f
-

8
i

i

11
i

.

S

pl
S*h4sh-i»

1*1.
3llliliIfII
hll

'

fiseiMx.

F|51

leifll
§5*1

|ll|1i
f"

IISi

isiilt

isllllil

?

*

?Si
r

if

M

§
_

i
u.
<
?

s

si
^

Si

i«5

rC"

5
<p

£

Si
r

«

«{?
\£lî:
-
Cfl

ii

nut
11

!-?t
u

„

U-iifltiSi
Se
-.

z-Trir
•■

—

iiriiIzoil

IE

?isM*£SS3!
glsifIris-'

££-el
f-S
5

Si
S*

Ssltfc*
ip
if!

11}
i

»t

£
I

if

l.|iifPilib
-
i

s

s

111
£

Iin
l«
I

r

Sill

|V
£

•
E

I
*

lit

Cc

ill

<

hi

a
tr

iil

51c

vicl
vie
£

t

[lisîtssle!
h6

Iliillllll!
-E|i hi

illfilltllll!

5

§S

- D1 -

APPENDIX D

COMPARISON OF PERFORMANCE OF TTL BOARD AND NCR 53C80
BOARD

When this research work commenced, there was no VLSI SCSI interface chip (NCR

53C80) available for use. The Rodime R0652 hard disk drive interface was proprietary

to Rodime PLC and could not be utilised. As a result, there was no alternative but to

produce a prototype using purely TTL logic.

By using a TTL logic only interface, it was found that none of the SCSI maximum delay

times could be realised and as such the TTL board does not conform to the American

National Standards Institute (ANSI) X3T9 SCSI specification. The data transfer rate
was

limited to such an extent on the TTL board, that it was realised that only when a VLSI

chip became available, a true to SCSI specification interface could be constructed.

The TTL interface board, allowed a full understanding of SCSI handshaking to be

developed. It also allowed the majority of the firmware to be written and tested. This

firmware was subsequently used as the basis of the firmware for the Intelligent
Interface

board.

The Intelligent Interface board was developed when the VLSI chip, NCR53C80,

became available and unlike the TTL board, conformed to the ANSI SCSI specification

data transfer rates.

