University of St Andrews

Full metadata for this thesis is available in
St Andrews Research Repository
at:
http.//research-repository.st-andrews.ac.uk/

This thesis is protected by original copyright

http://research-repository.st-andrews.ac.uk/

APPLICATIONS OF MICROPROCESSOR TO
INTERFACING TECHNOLOGY (SCSI)

Elizabeth Ann McKinnon

A\

A\

Declaration for the Degree of M.Sc.

I, Elizabeth Ann McKinnon hereby certify that this thesis has been composed by myself, that

it is a record of my own work, and that it has not been accepted in partial or complete

fulfilment of any other degree or professional qualification.

Signed: Date: /,- [©- X ¥

ABSTRACT

A study of the S-100 interface and the Small Computer System Interface (SCSI) was carried
out. An interface board was built to communicate between the S-100 interface and a hard
disk drive supporting SCSI. Two methods of communication were investigated. The first
interface board used only standard TTL logic and the second interface board used TTL logic

and a VLSI SCSI controller (NCR53C80).

ACKNOWLEDGEMENTS

I would like to acknowledge the support and guidance given to me by Dr Reg C G Killean

throughout this project.

I would like to thank Professor Wilson Sibbett and the University of St Andrews for giving

me the opportunity to undertake a Master of Science degree.

I would also like to thank the everyone in the department who gave me access to the

computers and printers necessary to compile and print this thesis.

CONTENTS

1 CHAPTER 1:S-100 BUS ARCHITECTURE
2 Power Supply

3 Address Bus

3 Data Bus

3 Clock And Control Signals

6 CHAPTER 2:CROMEMCO SINGLE CARD COMPUTER
7 Power Supply

8 Clocks

8 ZB80A CPU

11 System Reset

12 SCC Memory

13 SCC Input/Output Ports

19 SCC Interrupts

19 SCC Timers

20 UART Configuration

25 CHAPTER 3:THE SMALL COMPUTER SYSTEM INTERFACE (SCSI)
27 Hardware

29 SCSI Bus Phases

36 SCSI Bus Conditions

37 SCSI Commands

42 CHAPTER 4:ADVANTAGES OF SMALL COMPUTER SYSTEM INTERFACE
42 Advantages For Hard Disks

44 CHAPTER 5:TTL LOGIC INTERFACE BOARD
44 Input/Output Buffers

46 Input/Output Buffer Enabling

47 General Components

47 Selecting The Input/Output Buffers

50 Control Signals

51 Bus Phases

55 Software

59 CHAPTER 6:INTELLIGENT INTERFACE BOARD
59 Input/Output

62 Input/Output Selection

63 General Components

64 Selecting The Input/Output

65 Control Signals

66 NCRS53CS80 Internal Registers

70 Bus Phases

76 Software

79 CHAPTER 7:USES OF THE SCSI SYSTEM
79 Example Functions

A1l APPENDIX A:TTL LOGIC INTERFACE BOARD SOFTWARE
A2 MAIN.Z80

Al12 EQU.Z80

Al13 MSG.Z80

Al4 VDU.Z80

A17 SCSI.Z80

B1 APPENDIX B:INTELLIGENT INTERFACE BOARD SOFTWARE
B2 NCR.Z80

C1 APPENDIX C:BUS PHASE SEQUENCES

D1 APPENDIX D:COMPARISON OF PERFORMANCE OF TTL BOARD
AND NCR 53C80 BOARD

CHAPTER 1

S-100 BUS ARCHITECTURE

The industry standard S-100 bus was originally designed at Stanford University for use with

the Intel 8080 microprocessor. As a result, the bus signal definitions closely follow those of

the 8080 system. The S-100 bus physically consists of 100 parallel lines (50 on each side of

the connector), either etched onto a printed circuit board or, in its origination, hard wired.

The printed circuit board with the S-100 edge connectors on it is referred to as a

"motherboard". Table 1.1 shows the S-100 bus signals.

oW bhWwWh—

Table 1.1 : S-100 Bus Signals

pHLDA

AS

A4

A3

AlS5

Al2

A9
DO1/DATAI
DOO/DATAO
Al0
DO4/DATA4
DOS5/DATAS
DO6/DATAG6
DI2/DATA10
DI3/DATA11
DI7/DATA15
sM1

sOUT

sINP
sMEMR
sHLTA
CLOCK
GND

72
73
74
75

+8V
-18V

MWRT

76 pSYNC
77 PWR
78 pDBIN
79 A0

80 Al

81 A2

82 A6

83 A7

84 A8

85 Al3
86 Al4
87 All

88 DO2/DATA2
89 DO3/DATA3
90 DO7/DATA7
91 DI4/DATAI2
92 DI5/DATAI13
93 DI6/DATA14
94 DI1/DATA9
95 DIO/DATAS
96 SINTA

97 sWO

98 ERROR

99 POC

100 GND

The signals in Table 1.1 which have a bar across them, (ie. SIGNAL), are negative logic and

are asserted/active when they are OV or deasserted/inactive when they are +5V. Signals with

no bar, (ie. SIGNAL), are positive logic and are asserted/active when they are +5V or

deasserted/inactive when they are OV.

;.

The S-100 bus allows interaction between a device operating as a bus master and a device
operating as a bus slave. Briefly, the bus master, (whether temporary or permanent), initiates
all bus cycles, the result of which may be to transfer data to and from the addressed bus
slave. The bus slave monitors all bus cycles and, if addressed, will input or output data as

required.

Signals not implemented on the S-100 bus using the Cromemco Single Card Computer

(SCC) are:

SIXTN and sXTRQ These signals control 16 bit data transfer.
DMAO-DMA3 These signal are Direct Memory Access control signals which
arbitrate between simultaneous requests, by temporary bus
masters, for control of the bus.

VIO-VI7 These are the eight Vectored Interrupt lines, which control the
eight levels of interrupt request priority.

ERROR This signal is used to indicate an error during the current bus
cycle. On the Cromemco SCC S-100 bus this is used to indicate
speed of operation. See Table 2.1 and chapter 2.2.
A brief description of the SCC implemented S-100 bus signals follows, they are also
discussed fully in subsequent chapters. The signals present on the S-100 bus can be grouped

into categories:

Power supply lines
Address bus

Data bus

Clock and control signals

1.1 POWER SUPPLY

Unregulated DC power supply voltages (+8 Volts, +18 Volts, -18 Volts and Ground) are

supplied from a central power supply and must be regulated on each individual board.

This method of supply has certain advantages over a single, centrally regulated supply.

Firstly, every card is individually protected from voltage overload, secondly, any heat

<% =

produced by voltage regulation is thermally distributed through a larger area and finally, the
expansion of a computer system by the addition of cards is made easier, as voltage drop

through loading of the power supply is no longer critical.

One disadvantage is that there is a danger of short circuiting the supply lines, (pins 1, 2, 51

and 52), together if a card is inadvertently moved while the voltage is on.

1.2 ADDRESS BUS

The S-100 bus address lines are used to select specific memory locations or specific
input/output devices. There are two types of addressing, standard addressing using AO-A15
and extended addressing using A0-A23. The Cromemco Single Card Computer uses

standard addressing.

Memory Locations Input/Output Devices
Standard Up to 65,536 bytes Up to 256 Devices
Addressing (64 Kbytes) Using A0-A15 Using A0-A7
Extended Up to 16,777,216 bytes Up to 65,536 Devices
Addressing (16 MBytes) Using A0-A23 Using AO-A15

1.3 DATA BUS

There are 16 lines used for data transfer on the S-100 bus. These can be two unidirectional, 8
bit, data buses (DOO-DO7 and DIO-DI7) or one bidirectional, 16 bit, data bus

(DATAO-DATA15). The Cromemco Single Card Computer board uses the two, 8 bit bus

type.

1.4 CLOCK AND CONTROL SIGNALS

CLOCK SIGNALS

There are two clock signals present on the S-100 bus system:

o, (4MHz)

CLOCK, (2MHz)

-4 -
This is the system clock, which is generated by the permanent
master, and controls the timing for all the bus cycles.

The CLOCK line is not synchronous with any other bus signal
and can be used by counters, timers etc.

CONTROL SIGNALS

The status signals identify the current bus cycle:

sMEMR
sM1
sINP
sOUT
sWO
sINTA
sHLTA

Memory read
Op-code fetch

Input

Output

Write cycle

Interrupt acknowledge
Halt acknowledge

The control output signals determine the movement and timing of data during bus cycles:

pSYNC
pDBIN
pWR
pHLDA

Start of new bus cycle

Gate data onto data bus

Write from data bus

Data and address bus in high impedance state

The following signals are used primarily with the Z80A microprocessor:

pINT and NMI

Interrupt lines used to request servicing from the permanent bus
master.

This signal is used to request control of the bus from a permanent
bus master.

This is a control signal which indicates that the address bus holds
a valid address for a memory read/write operation.

This is a control signal which indicates that the lower seven bits
of the address bus can be used as a refresh address for dynamic
memories.

The following signals are primarily used on systems which also have front panel control

(allowing the operator to interrupt, single step, perform read/write operations etc. on the bus

master):

XRDY and pRDY

MWRT

These signals allow bus slaves to synchronise with bus masters
and request operations of the permanent master.

This is a control signal used to indicate a memory write operation.

-5-

There are four lines which are used to tri-state the bus drivers, for example, during DMA

operations:

SDSB Status disable

CDSB Control disable

ADSB Address disable
DODSB Data out disable

System reset signals:

pRESET This is the reset signal for all bus masters.

POC Power-On-Clear, this is only asserted when the power is switched
on and it also asserts pRESET.

CHAPTER 2

CROMEMCO SINGLE CARD COMPUTER

The Cromemco Single Card Computer (SCC) is a Zilog Z80A based S-100 interface board

and can be used as a self contained development system. It allows parallel and serial

input/output and provides on board sockets for eight kilobytes of user programmable

EPROM memory. Figure 2.1 shows the Single Card Computer block diagram. Table 2.1,

which is a subset of Table 1.1, shows S-100 bus connections of the Single Card Computer.

+8V
+18V
XRDY

O o0~ O L B LI =

L R T e T o T o S Sy Gy gy
SOV~ phWR—=O

[NS RSO R\
(S {8

SO V]
W b
=

pHLDA

A5

Ad

A3
AlS5
Al2
A9
DO1
DOO0
Al0
DO4
DO5
DO6
DI2
DI3
DI7
sM1
sOUT
sINP
sMEMR
sHLTA
CLOCK
GND

51
52

Table 2.1 : SCC S-100 Bus Signals

+8V
-18V

MREQ
RFSH

MWRT

pSYNC
PWR
pDBIN
A0
Al
A2
A6
A7
A8
Al3
Al4
All
DO2
DO3
DO7
DI4
DIS
DI6
DIl
DIO
SINTA
SWO
4MHz
POC

100 GND

As mentioned in Chapter 1, the S-100 bus signals were designed for use with the Intel 8080

microprocessor. There is a substantial difference between the 8080 and Z80A control lines,

but the SCC board is designed to interpret the important S-100 "8080-like" bus functions.

o

Figure 2.1 : Single Card Computer Block Diagram

EXTERNAL INPUT/OUTPUT PORTS

ALLEL tio HO! ARALLEL /O
J
T a);
£31] =0
PORT OAH RT 28w T O&H |[PORTS oo -can
ZBOCPU
INTEAMNAL
MEMORY [S-100 \NTERFACE K
o
¥
T g - o B
LXITIb EFROM TIMER 2
DoCOH=iFEE '|mraur oen [~
TIMER 3
PoAT oUT O™ ?
IKBY TE RAn TIMER £ -
1000H—23FFH PR OUT oa
TIMER 5 1)
FoRT ouT oD

{100 PIN EDCE CONNECTOR}

POWE Q_ 4l —~— >
=igvoc
SUPPLY TRowD

\/To OTHER $-100 BOARDS

The SCC can be grouped into eight parts:

Power supply

Clocks

ZB0A Central Processing Unit
System reset

Memory

Input/output ports

Interrupts

Timers

2.1 POWER SUPPLY

The SCC board requires three unregulated voltages:

+8VDC @ 1.75A
+18VDC @ 100mA
-18VDC @ 50mA
These voltages are regulated on the SCC board to +5VDC, +12VDC and -5VDC
respectively. The +5VDC provides power to the TTL logic and the 5501 UART. The

+12VDC and -5VDC voltages provide power to the UART.

2.2 CLOCKS

There is an 8MHz crystal on the SCC board which is used to control the internal SCC timing
functions. This frequency is then halved to provide the 4MHz to the Z80OA CPU clock input,
and to the S-100 ¢ bus line. Other SCC devices use the complement of the 4MHz signal as a
reference. The 4MHz frequency is halved again to supply a 2MHz signal to the S-100
CLOCK bus line, and to both of the 5501 UART clock inputs (¢, and ¢,).

The S-100 bus 4MHz line (pin 98) is a Cromemco Z80A system function. This signal is used
to show whether the system is running at 4MHz (logic 1) or 2MHz (logic 0). This line is

pulled high on the SCC board.

2.3 Z80A CPU

The Z80A Central Processing Unit allows direct addressing of up to 64 Kilobytes of
memory, 256 input ports and 256 output ports. The Z80A instruction set contains 158

instructions, including the 78 instructions of the 8080A.

Z80A REGISTERS

The Z80A contains eighteen 8 bit registers, four 16 bit registers and two interrupt status

flip-flops. These can be divided into groups as shown in the following tables.

Main 8 Bit Register Set Alternate 8 Bit Register Set

A (Accumulator) F (Flag) A’ (Accumulator) F’ (Flag)

B (General) C (General) B’ (General) C’ (General)
D (General) E (General) D’ (General) E’ (General)
H (General) L (General) H’ (General) L’ (General)

A, A’ The accumulator holds the results of logical and arithmetic
operations.

F,F’ The flag register indicates the conditions of the last operation (eg.
if the result was zero).

BB.C.C.DhD
EE'HH L)L’

These remaining general purpose registers can either be used as
twelve 8 bit registers, or as six 16 bit register pairs (BC, DE etc.).

-9.

Special Purpose 16 Bit Registers

IX (Index Register) IY (Index Register)
SP (Stack Pointer) PC (Program Counter)

IX,IY The index registers are used to hold the base address when using
indexed addressing mode.

SP The stack pointer register holds the address of the current top of
the stack. The stack is a temporary data storage area.

PC The program counter is the register which holds the address of the
instruction which is being fetched from memory. After the
contents of the counter are transferred to the address bus, the
program counter is automatically incremented. If the instruction
being executed causes a program jump, the new address is written
over the address in the counter register.

Special Purpose 8 Bit Registers

I (Interrupt R (Refresh
Register) Register)

I The interrupt register is used when the Z80A CPU is operated in a
mode which will respond to an interrupt with an indirect call to
any memory location. Servicing interrupt requests in this way
means that the time taken to access the interrupt routine can be
minimised, as the routine can be stored anywhere in memory.

R The refresh register is used to generate the memory refresh
address when dynamic memories are being used in the system.

Interrupt Status Flip-Flops Interrupt Mode Flip-Flops

IFF1 IFF2 IMFa IMFb

IFF1, IFF2 The interrupt status flip-flops and the interrupt mode flip-flops are
IMFa, IMFb the registers which help to ascertain the current interrupt mode of
the Z8OA CPU, (Mode 0, Mode 1 or Mode 2).

Z80A ADDRESS BUS AND DATA BUS

The Z80A has a 16 bit, (tri-state output), address bus and an 8 bit, (tri-state input/output),
data bus. The lines of these buses can be in three different states, logic 1, logic 0 or in a high
impedance state. When the buses of the Z80A CPU are in the high impedance state they
appear to be disconnected from the other devices which utilise the bus. This allows the other

logic circuitry to use the bus without any confusion of the signals.

-10 -

The S-100 address bus, A0-A1S5, is driven from the Z80A address bus, AO-A15. The two
buses are connected together, via two tri-state drivers. The S-100 address bus drivers can be
put into a high impedance state during direct memory access operations by asserting the
S-100 bus signal ADSB. The Z80A address bus controls the SCC memory and input/output

ports, as described in Chapters 2.6 and 2.7.

The S-100 data out bus, DO0-DQ?7, is driven from the Z80A data bus, D0O-D7, via a tri-state
driver. Similarly, the Z80A data bus receives data from the S-100 data in bus, DI0-DI7, via a
tri-state buffer. The data output driver can be disabled (ie. tri-stated) during direct memory

access operations by asserting the S-100 bus signal DODSB.

Z80A CONTROL INPUT SIGNALS

NMI (non-maskable interrupt) is a buffered version of the S-100 bus NMI signal. Similarly,
BUSRQ (bus request) is the buffered version of S-100 bus signal pHOLD. The Z80A WAIT
(wait) input is used to indicate to the CPU that the addressed memory or input/output devices
are not ready for a data transfer. The CPU stays in the wait state as long as this signal is
asserted. INT (interrupt request) is generated by input/output devices. The CPU will service
the interrupt at the end of the current instruction if the internal software controlled interrupt
enable flip-flop (IFF) is enabled. RESET is used to initialise the CPU, (see Z80A Reset

section for more information).

Z80A CONTROL OUTPUT SIGNALS

The Z80A control output lines are logically combined to generate S-100 bus control signals.
S-100 signals sM1, pHLDA and sHLTA are the logical inversion of MT (machine cycle one),
BUSAK (bus acknowledge) and HALT (halt state) respectively. S-100 MREQ is a buffered
version of the Z80OA MREQ (memory request) signal. Similarly, S-100 RFSH is the buffered
version of Z80A signal RFSH (refresh). S-100 pSYNC which signals the beginning of a new

=T11=

machine cycle is clocked high by a falling edge of either MREQ or TORQ and is clocked back
low by the next rising edge of phi. The remaining S-100 control lines are derived from the

Z80A outputs as shown:

sINP

IORQ+RD
sOUT = TORQ+WR
sWO = sOUT+(RFSH:-RD -MREQ)
sMEMR = MREQ+RD
sINTA = (External Priority)-(MT+IORQ)
pDBIN = RD+sINTA

pWR

WR (Delayed)

pWR is delayed so sOUT has time to stabilise before the pWR low pulse is used as a data
strobe. All of these lines can be disabled during DMA by asserting S-100 bus lines SDSB and
CDSB.

Z80A RESET

The Z80A CPU is reset when the RESET input is asserted (OV) for at least three clock cycles
(600nS). This resets the interrupt enable flip-flop, clears the program counter and registers I
and R and sets the interrupt status flip-flops to Mode 0. During the reset time the address bus
and the data bus go into a high impedance state and all control output signals go to the
inactive state. When the Z80A is reset the program counter is set to 0000H, and program

execution is started from memory location 0000H.

2.4 SYSTEM RESET

On power up the SCC circuitry automatically asserts the S-100 POC (Power-On-Clear) line,
this also asserts the S-100 pRESET line. This resets the Z80A, by asserting RESET, and puts
the SCC into a known state with the on board memory enabled. The same resetting of the
SCC and Z80A occurs when the S-100 pRESET signal is asserted by an external source. Any

other device can use the S-100 pRESET bus line to reset to a known state.

0

2.5SCC MEMORY

The SCC has space for 8 kilobytes of 2716 EPROM memory (in sockets ROM0O, ROM1,
ROM2 and ROM3) and 1 kilobyte of 4045 static RAM. The memory address map is shown

in the following table.

SCC Memory Map

ROMO (2K) 0000H - 07FFH
ROM1 (2K) 8000H - OFFFH
ROM2 (2K) 1000H - 17FFH
ROM3 (2K) 1800H - 1FFFH
RAM 2000H - 23FFH
External Memory 2400H - FFFFH

Additional memory can be installed in the SCC controlled system by plugging ROM or
RAM boards into the S-100 bus.

ROMO contains the assembled SCSI INTERFACE program (see Appendices A and B)
which is automatically entered when the SCC is powered up or when the S-100 pRESET line
is pulled low, causing the Z80A to reset the program counter to 0000H and start program

execution.

MEMORY SELECTION

The memory select signals are controlled by a standard 4 line to 10 line (BCD to

DECIMAL) decoder chip as shown by the table below.

ROM Memory Select Logic

INPUTS OUTPUTS
A B C D 0 T 2 3 4 DEVICE
All | A12 | Al3 SELECTED
0 0 0 0 0 1 1 1 1 ROMO
1 0 0 0 1 0 1 1 1 ROM1
0 1 0 0 1 1 0 1 1 ROM2
1 1 0 0 1 1 1 0 1 ROM3

- 13-

RAM Memory Select Logic

INPUTS OUTPUTS

Al B|lc|DJo] 1] z213] 2 |ex] DEVICE
All | A12 | AI3 SELECTED

o lof[1ot |11 [1]o]of ram

In both of the above memory select logic tables, decoder inputs A, B and C are All, A12
and A13 respectively. Decoder input D is used as an active low enable signal. D is low when
the SCC memory disable option is inactive, MT or MREQ is active (logic 0), TORQ is not

active (logic 1), A14 and A1S are low.

In the RAM select logic table, EN is the logical OR of A10 and the decoder output 4.

ROMO-ROM3 are selected with the appropriate address on A11-A13 and decoder input D
active (logic 0). The SCC RAM is selected with the appropriate address on A10-A13 and

decoder input D active (logic 0).

2.6 SCC INPUT/OUTPUT PORTS

The SCC has three 8 bit parallel input/output ports, with separate input data lines and output
data lines, on connectors J1, J2 and J3 (addressed at 0AH, OBH and 04H respectively). Port
04H is an integral part of the 5501 UART and ports OAH and OBH are driven from the Z80A
data bus via latches. The parallel input/output ports are not used in this project and are only
mentioned briefly. The serial input/output port found on connector J4, addressed at
00H-02H, is used to connect a VDU terminal to the SCC. The VDU terminal is used to input

data into the SCC and display the output from the SCC.

Data is received from and transmitted to the terminal, (via connector J4), from the Z80A
(register A). The parallel CPU data is converted to the serial terminal data, and vice versa, by
the 5501 Universal Asynchronous Receiver Transmitter (UART). The UART also supplies

the serial status data and the serial control data.

=i

The SCC TTL signals (OV or 5V) are converted to the terminal RS232 (+12V) signals, and
from RS232 to TTL, by the interface on the SCC. See figure 2.2 which shows the serial

signal paths of the SCC and the terminal connection.

Figure 2.2 : Single Card Computer Serial Signal Paths

SINGLE CARD COMPUTER

REG A
I\
((8))] (a)
-4 AV
ZBOA
PORT CUT OIH | PORT IN OIH PORT OUT OCH | PORT IN OOH S
TRAMSMITTER RECEWER BauD RATE SERIAL =]
DATA DATA STATUS o]
]
| NTERFACE |
| |
|) (] @ =
RXD ™o ‘[erouno
= Z 4
I TERMINAL)|

The input/output select logic, for the ports and the UART, is controlled by a Cromemco
custom PROM as shown by the tables below. The inputs to the PROM are, from the address
bus, A0-A3 and, from the Z80A CPU, WR. The TS input is low when A4-A7 are low, JORQ

is active, and MT is inactive.

There are eight output lines from the PROM, Y1-Y8. Y1 and Y2 are used as an active high
strobe for OBH and OAH respectively. Y3 is an active low enable for the 5501 UART.
Y4-Y7 select a 5501 UART function by driving its A0-A3 address lines as shown in the

table below.

e i

Receiver Data Port

D7 D6 D5 D4 D3 D2 D1 DO

DATA BYTE FROM TERMINAL
SHIFT ---->

When an IN A,(01H) instruction is executed, an assembled data byte (DO - D7) is read into
the Z80A (register A), from the the UART receiver data port (ie. the terminal). The Z80A

knows when there is valid data available by testing the serial status port, bit RDA.

All bits are used in relation to this project.

Transmitter Data Port

D7 D6 D5 D4 D3 D2 D1 DO

DATA BYTE TO TERMINAL
SHIFT ---->

Data is written from the Z80A (register A) into the transmitter data port (DO - D7) when the
Z80A executes an OUT (01H),A. The Z80A is programmed to recognise when to send the

data byte, by testing the serial status port, bit TBE.

All bits are used in relation to this project.

Command Register Port

D7 D6 D5 D4 D3 D2 D1 DO

NOT | NOT | TB5 | HBD INE RS7 BRK | RES
USED | USED

The UART is configured when an OUT (02H),A instruction is executed (register A
containing the data). Only four of the command register port bits have any effect on the

serial port - HBD, INE, BRK and RES.

HBD (D4)

INE (D3)

BRK (D1)

RES (D0)

- 18-

High Baud. Setting this bit to logic 1 multiplies the UART clock
frequency by eight, which causes the serial port baud rate to
multiply by eight (eg. 1200 baud becomes 9600 baud).

INTA Enable. When this bit is reset to logic 0 the UART ignores
the INTA (interrupt acknowledge) cycles. The UART will
recognise the INTA cycles and service the interrupt when this bit
is set to logic 1.

Break. When this is reset to logic 0 the serial transmitter operates
normally however, when set to logic 1 the serial transmitter
output is latched in the low (spacing) state.

UART Reset. When this bit is set to logic 1 the serial status port
bit, RDA, is reset to logic 0 and the serial receiver goes into the
search for a new character mode (not affecting the contents of the
receiver data port). Also, the serial status register port, bit TBE, is
set to logic 1 and the serial transmitter output goes high
(marking). Once this happens RES will reset to logic 0 and the
UART will be ready to perform serial input/output operations.

Only bits D4 (HBD) and DO (RES) are used in relation to this project.

Interrupt Address Port
D7 D6 D5 D4 D3 D2 Dl DO
1 1 L; L Ly 1 : 1

When the UART interrupt address port is read by execution of an IN A,(03H) instruction,

the Z80A (register A) contains the coding of the source of the interrupt request (eg. if the

contents are 07EH then is RDA requesting service).

This port is not implemented in relation to this project.

Interrupt Mask Port
D7 D6 D5 D4 D3 D2 D1 DO
TIMER [TIMER| TBE | RDA |TIMER| INT |TIMER |TIMER
5 4 3 2 1

The UART interrupt mask port is configured an OUT (03H),A instruction is executed by the

Z80A (register A containing the data).

=16

When the bit is reset to logic 0, the source cannot issue an interrupt request. When the bit is
set to logic 1 the source can issue an interrupt request. TBE (D5) and RDA (D4) cannot be

disabled in this way.

This port is not implemented in relation to this project.

2.7 SCC INTERRUPTS

The SCC has ten interrupt sources which can be grouped as follows:

S-100 Interrupts NMI is connected directly to the Z80A NMI input and is the only
interrupt which cannot be software disabled. pINT is channelled
into the Z8OA INT input and is only enabled after the Z80A
executes an El instruction.

UART Interrupts TIMER1-TIMERS, INT, RDA and TBE are all channelled into the
Z80A INT input. For any of these interrupts to be enabled the
correct interrupt mask port code must be present in addition to
the interrupts being enabled by execution of the Z80A EI
instruction.

The interrupts are not utilised in relation to this project.

2.8 SCC TIMERS

The UART contains five timers, TIMER1-TIMERS, which can be enabled and disabled by
the UART interrupt mask port. There is a port assigned to each of the timers (05H - 09H)
which can be loaded with a delay count (maximum value of OFFH). This delay count is then
decremented either every 64 micro-seconds (if command register port HBD is reset) or every

8 micro-seconds (if HBD is set).

If the interrupts are disabled when the delay count reaches zero the UART serial status port,
bit IPG, is set to logic 1. The Z80A can determine the timer which is requesting service and
reset IPG to logic 0 by reading the UART interrupt address port. This method does not enter
an INTA cycle as only the SCC input ports are being used, not the Z80A INT input.

A=

If the interrupts are enabled and UART command register port, bit INE, is set to logic 1
when the delay count reaches zero, the Z80A is interrupted. The Z80A will then execute the

timer unique RST instruction in response to the Z80A INTA cycle.

If the interrupts are enabled and UART command register port, bit INE, is reset to logic 0
when the delay count reaches zero, the Z80A is interrupted. The Z80A will initiate an

interrupt service routine which will read the interrupt address port to identify the source.

The timers are not utilised in relation to this project.

2.9 UART CONFIGURATION

Before the serial input/output port is used the UART must be configured by writing into
register A and issuing an OUT (02H),A instruction. The correct baud rate must also be set by

writing into register A and issuing an OUT (00H),A instruction.

The following shows the part of the main program which is used to configure the UART.
Refer to the UART ports descriptions for full details on the ports mentioned in the

description of the program.

BAUD RATE TABLE

This shows the table of bytes for the different baud rates. When the program is assembled
and written into the EPROM, the binary number are stored as hex bytes in consecutive

locations with a label (baudrs).

baudrs db 10010000b ; 2400 / 19,200
db 11000000b ; 9600 /76,800
db 10100000b ; 4800 / 38,400
db 10010000b ; 2400 / 19,200
db 10001000b ; 1200/ 9,600
db 10000100b ; 300/ 2,400
db 10000010b ; 150/ 1,200

db 00000001b ; 110/ 880

2D =

The terminal can be operating at any one of a number of baud rates, as shown by the table
above. The UART command register port, bit HBD determines which range of baud rates
are valid. When HBD is set to 0, the range is 110 baud to 9600 baud. When HBD is set to 1,
the range is 880 baud to 76,800 baud. The first value in the table, 2400/19,200, is the normal

setting for the terminal, if this is not correct, the other values will be tried.

When the boards are powered up, the user must press the carriage return key (ASCII value -
ODH) several times to allow the baud rate of the terminal and the baud rate of the SCC to be

matched. The program does this as shown below.

PROGRAM LISTING

Main Program

Line 1 Id hl,baudrs
Line 2 Id ¢, 00H
Line 3 Id a,llh
Line 4 baudl out (02H),a
Line 5 outi

Line 6 call gbyte
Line 7 call gbyte
Line 8 and 7fh

Line 9 cp Odh
Line 10 Id a,l

Line 11 jr nz,baudl

Gbyte Subroutine

Line S1 gbyte in a,(00H)

Line S2 bit 6,a
Line S3 jr z,gbyte
Line S4 in a,(01H)
Line S5 ret
PROGRAM DESCRIPTION

Line 1 to Line 3 sets up the contents of the HL,, C and A registers.

S 1 ks

Register pair HL is pointing to the first baud rate in the table.
Register C contains the address of the UART baud rate port.

Register A contains reset bit and high baud for sending to the UART command register

port.

Line 4 outputs the contents of register A, (00010001 in binary notation), to the UART
command register port (02H). This configures and resets the UART. Note that this line has a
label (baud1). If the correct baud rate is not found the first time, the program will jump back
to here and reset the UART. The program will continue looping round to Line 4 until the

correct baud rate is found. The UART command register will contain the following.

D7 D6 D5 D4 D3 D2 D1 DO

NOT | NOT | TBS | HBD INE RS7 BRK RES
USED | USED

Four of these bits have an effect on the serial input/output port: HBD, INE, BRK and
RES.

HBD=1, serial port baud rate to multiplies by eight (eg. 2400 baud becomes 19,200
baud).

INE=0, interrupt acknowledge (INTA) cycles ignored by UART.

BRK=0), serial transmitter operates normally.

RES=1, reset UART.

Line 5 outputs the contents of the memory location addressed by HL (first baud rate), to the
address contained in register C, (UART baud rate port) and then increments HL. HL is then
pointing to the next baud rate in the table. For the first baud rate in the table, the UART baud

rate port contains the following.

-23.

D7 D6 D5 D4 D3 D2 D1 DO
STOP | 9600/ | 4800/ | 2400/ [1200/ | 300/ 150/ 110/
BITS | 76,800 | 38,400 | 19,200 | 9,600 | 2,400 | 1,200 880

1 0 0 1 0 0 0 0

This sets the baud rate port to a baud rate of 19,200, (HBD=1 UART command register

port), with 1 stop bits. For subsequent baud rates, HBD=0 in the UART command

register port, therefore the lower values are active.

Lines 6 and 7 call the gbyte subroutine. This subroutine is called twice to stop any phase
match error. The first call of the gbyte subroutine is being ignored in this description as
explained above. The second call of the gbyte subroutine performs a read from the terminal,

via the SCC serial port, using the carriage return characters which the user is sending to

determine the baud rate setting of the terminal.

Line S1 of the gbyte subroutine inputs a data byte from the UART serial status port, (00H),
into register A. Note that this line has a label (gbyte). This label is not only used for the call

instruction from the main program, it is also used by the subroutine itself.

Line S2 tests bit 6 of register A, UART serial status port bit RDA. A logic 0 in this bit, (no

data byte available), sets the zero flag. A logic 1 in this bit, (data byte available), does not set

the zero flag. The UART serial status port is shown below.

D7 D6 D5 D4 D3 D2 D1 DO
TBE | RDA IPG TBE | RDA | SRV | ORE | FME
X 0/1 X X X X X X

Line S3 causes the program to jump back to Line S1 if there is no data byte available. The

program will continue looping in this manner until there is a data byte available.

When there is a data byte available, Line S4 reads it from the receiver data port, (address

01H), and stores it in register A. Line S5 returns to the main program, (Line 8).

Sy

Line 8 performs a logical AND between register A and 7FH, this masks off bit D7 of the

receiver data port because only bits DO to D6 are valid.

Line 9 compares the contents of register A, (receiver data port), with ODH, (carriage return
character). If the data byte in register A is ODH the zero flag is set, otherwise the zero flag is
not set. The setting of the zero flag signifies that the baud rate of the terminal and the baud

rate of the SCC are matched.

Line 10 loads register A with 1, (00000001 in binary notation), which is used to reset the

UART command register port if a 0DH is not recognised, (incorrect baud rate).

Line 11 tests the zero flag and depending on its value, either continues with the program or
jumps back to Line 4. If the baud rates match, the zero flag will be set and the main program
will continue. If the baud rates do not match, the zero flag will not be set and there will be a
jump back to Line 4, (reset UART command register port), where the next value in baud rate
table will be tried. The program continues in this manner until the baud rate of the terminal

and the baud rate of the SCC are matched.

=28 =

CHAPTER 3
THE SMALL COMPUTER SYSTEM INTERFACE (SCSI)

In this chapter SCSI is discussed with reference to the RODIME RO652 hard disk drive
which was used in this project. SCSI supports both block and character transfer, the RO652
uses the block method. For more detailed information on SCSI, the American National

Standards Institute document X3T9 should be referred to.

The theory of bus structure is based on a system originally developed in the 1960’s and
1970’s for use in mainframe computers. This concept was improved on and was introduced
as the Shugart Associated Standard Interface (SASI). SASI was then offered to the American
National Standards Institute (ANSI) as the basis for a new industry standard. The Small
Computer System Interface (SCSI) was the name chosen by ANSI and the X3T9

specification was issued in the early 1980’s.

The SCSI interface is an eight bit, eight port intelligent bus. RO652 bus transfers are
asynchronous and follow a defined REQ/ACK handshake protocol. The input/output bus
structure enables intelligent peripherals to communicate with multiple hosts over a single
bus and allows these peripherals to be used by one or more host computers attached to the
same bus. Communication on the SCSI bus uses the initiator/target framework, where the
initiator is the device which requests that an operation be performed by another device and
the target is the device which performs an operation when requested to do so by an initiator.
Up to eight SCSI devices can be supported in any combination on the bus. There are three
principal SCSI system configurations: single initiator/single target (figure 3.1); single
initiator/multi target (figure 3.2) and multi initiator/multi target (figure 3.3). The main
advantage of the SCSI bus system is that several tasks can be interleaved at the same time

(figure 3.4).

=96 =

Figures 3.1-3.3 : SCSI System Configurations

wna sca
=]
SEWUTE ADAPTERK BC b BUS +|oEvice

FIGURE 3.

HesT

SCS1

T >
ADAPTER| L DEVICE
SCal
DEVICE

COMFUTER

FIGURE 3.2

10ST 'c — SCSI
COMMUTER ADAPTER T) DEVICE
COMPUTER HOST SCS1

| ADAPTER DEVICE
SCSI
DEVICE
SCSl
IDEVICE

HOsT scsl
COMPUTER | noapTER DE VICE

SCSI can also operate in a synchronous data transfer mode, which is faster than the
asynchronous mode, due to reduced handshaking. Synchronous data bus transfers can only
be used if previously agreed by both the initiator and the target, using a Synchronous Data

Transfer Request command.
Figure 3.4 : SCSI Task Interleaving
b b
e [T 1

HOST/HOST
TRANSFER

e U UUT T Ul Lo

T

Arbitration allows a number of peripheral devices to be attached to the bus and makes it
possible for one SCSI device to gain control of the bus and assume the role of an initiator or
a target. To gain control of the bus, a device waits for a bus free state and asserts its own
SCSI ID. After waiting for at least an arbitration delay the SCSI device examines the data
bus, if there is a higher SCSI ID present the device has lost control, if no higher SCSI ID is
present the device has won control of the bus. Figure 3.5 and figure 3.6 show the sequence

of bus phases for arbitrating and non-arbitrating devices.

Figures 3.5-3.6 : SCSI Bus Phases

| RESET '

5
BUS FREE SEL_LECTIOMN
PHABE PHASE

INEORMATIOM
TRANSFER PHASE
£ OMMAND/DATA)
STATUS/MESSAGE)

RESET I

ARBITRATION
PHASE

BUS FREE
PHASE

-waqMALirm

TRANSFER PHASE
KOMANG/DATA /

'—; sn:ru%gggi‘—“]

SELECTION PHASE

3.1 HARDWARE

SCSI devices are daisy chained together using a 50 way cable. The RO652 hard disk drive
uses the single ended driver alternative, which gives a maximum cable length of six metres.
The differential pair driver alternative has a maximum cable length of 25 metres and is
normally used where the SCSI device has to be some distance from the host. Both ends of

the bus cable must be terminated correctly, with 220 ohms to +5V and 330 ohms to ground,

-28 -

on all of the signal lines. Figure 3.7 shows an example of correct signal termination. Single
ended drivers and differential pair drivers cannot be used on the same bus. All signals on the
SCSI bus are active low and use open collector drivers. SCSI bus signals use negative logic,
this means that a false/deasserted signal on the SCSI bus is +5 volts and a true/asserted

signal is O volts.

Figure 3.7 : SCSI Bus Termination

|
|
1
|
|
1
1
FROM CPEN COLLE CTOR | siguac
LInE DRIVED. :
I
i
i
1
i
1
]
1

The SCSI interface is a bidirectional bus interface which transfers data asynchronously. The
fifty way SCSI bus consists of eighteen signal lines: nine control signals used to co-ordinate
data transfer between the host system and the disk drive and nine data bus signals used as an
eight-bit bidirectional data bus with parity. The following table shows the SCSI single ended

option pin numbers and names for the RO652.

SCSI BUS SIGNALS
1 GND 27 GND 2 DBO 28 NC
3 GND 29 GND 4 DBI 30 NC
2 GND 31 GND 6 DB2 32 ATN
7 GND 33 GND 8§ DB3 34 NC
9 GND 35 GND 10 DB4 36 BSY
11 GND 37 GND 12 DB3 38 ACK
13 GND 39 GND 14 DB6 40 RST
15 GND 41 GND 16 DB7 42 MSG
17 GND 43 GND 18 DBP 44 SEL
19 GND 45 GND 20 NC 46 T/D
21 GND 47 GND 22 NC 48 REQ
23 GND 49 GND 24 NC 50 1/0
25 NC 26 TERMPWR

TERMPWR Terminator power is a +4.0VDC - +5.25VDC signal which is
provided on the SCSI bus by the RO652.
GND GROUND
NC No Connection

Data Bus Lines

DB0-DB7,DBP

Control Lines

290 .

These nine lines, data bit 0-data bit 7, and a data parity bit form
the data bus. Data bit 7 is the most significant bit and has the
highest priority during an arbitration phase. Data bit O is the least
significant bit and has the lowest priority during an arbitration
phase. Parity is odd in the SCSI system and can either be enabled
on all devices connected to the SCSI bus or disabled on all
devices. The RO652 does not support parity.

ATN Attention indicates to the target that the initiator has a message to
send.

BSY Busy indicates that the bus is in use.

ACK Acknowledge is used with REQ to indicate an acknowledgement
of a bus transfer handshake.

RST Reset is used to clear all activity on the bus.

MSG Message indicates that the bus is in a message phase.

SEC Select is used during device-selection phase.

C/D Control/Data indicates whether control or data information is on
the data bus. When this signal is true control information is on the
bus.

REQ Request is used with ACK to request a bus transfer handshake.

I/0 Input/Output indicates direction of the data flow on data bus, with
respect to the initiator. When this signal is true, data is being
inputted to the initiator.

3.2 SCSI BUS PHASES

The SCSI bus can be in one of eight phases:

Bus Free Phase
Arbitration Phase
Selection Phase
Reselection Phase
Command Phase
Data Exchange Phase
Status Phase
Message Phase

Phases 5, 6, 7 and 8 are collectively known as the Information Transfer Phase.

-30-

The following table shows which of the SCSI bus signals the initiator or the target is

permitted to source during the specific phase. The SCSI bus signal RST may be sourced by

both initiator and target during any phase. No attempt is made here to show if the source is

driving the SCSI bus signal asserted, negated, or is passive. All SCSI device drivers that are

not active sources are in the passive state.

Signal Sources

Bus Phase BSY SEL C/D,1/0 ACK,ATN DB(7-0,P)
MSG,REQ
Bus Free None None None None None
Arbitration All Winner None None SCSIID
Selection I+T Initiator None Initiator Initiator
Reselection I+T Target Target Initiator Target
Command Target None Target Initiator Initiator
Data In Target None Target Initiator Target
Data Out Target None Target Initiator Initiator
Status Target None Target Initiator Target
Message In Target None Target Initiator Target
Message Out Target None Target Initiator Initiator
All The signal is driven by all SCSI devices that are actively
arbitrating.

SCSIID A unique data bit, the SCSI ID, is driven by each SCSI device that
is actively arbitrating; the other 7 data bits are deasserted (ie. not
driven) by that device. DBP may be undriven or driven true but
can never be driven false during this phase.

I+T The signal is driven by the initiator, the target or both as specified
in the Selection and Reselection Phases.

Initiator If the signal is driven, it is only driven by the active initiator.

None The signal is deasserted; that is not be driven by any SCSI device.
The bias circuitry of the bus terminators pulls the signal to a false
state.

Winner The signal is driven by the SCSI device that wins arbitration.
Target If the signal is driven, it is driven only by the active target.

The following descriptions of the phases should be read in conjunction with appendix C.

+B81=

BUS FREE PHASE

The Bus Free Phase is used to indicate that no device is using the bus. It is caused by BSY
and SEL being false, for at least a bus settle delay (400 nanoseconds), and all connected

devices releasing control of the bus within a bus clear delay (800 nanoseconds).

ARBITRATION PHASE

The Arbitration Phase is only used in multiple host configurations and is not implemented in
relation to this project. The Arbitration Phase is used to avoid bus conflicts. During
arbitration, devices try to gain control of the bus by asserting a unique SCSI ID onto one bit
of the data bus and releasing the other seven data bits. The device asserting DB7 has the
highest priority and the device asserting DBO has the lowest priority. To arbitrate for control

of the bus, the device has to:

Test for a Bus Free Phase, ie. BSY and SEL false for at least a bus settle delay.

After detection of a Bus Free Phase, the device waits for at least a bus free delay.

The device then asserts BSY and its own SCSI ID.

The device then waits for an arbitration delay and examines the SCSI bus. If there is a
higher priority SCSI ID bit on the data bus then the device has lost arbitration and has
to release BSY and its SCSI ID from the data bus, then wait for the next Bus Free
Phase. If there is no higher SCSI ID bit on the data bus the device has won arbitration

and asserts SEL to claim the bus and enters the Selection Phase.

SELECTION PHASE

For single initiator systems the Selection Phase is entered after the Bus Free Phase. During

this phase:

AP

The initiator selects the SCSI target to communicate with by asserting its own address

and the address of the target onto the bus.

After a delay the initiator asserts SEL.

The target will then assert BSY.

Then the initiator releases SEL.

BSY remains asserted until the next Bus Free Phase, when the target will release it.

RESELECTION PHASE

The Reselection Phase allows the target to reconnect to an initiator to continue an operation
that was previously started by the initiator, but was suspended by the target, ie. the target
disconnected by allowing a Bus Free Phase to occur before the operation was finished.
Reselection can only be used in systems that have an Arbitration Phase implemented. The

Reselection Phase is not supported by the RO652 and is not used in this project.

INFORMATION TRANSFER PHASE

There are four information phases, as shown below. Note that the Data Phase is subdivided
into a Data In Phase and a Data Out Phase, and that the Message Phase is subdivided into a

Message In Phase and a Message Out Phase.

Command Phase
Status Phase
Data Phase: Data In Phase
Data Out Phase
Message Phase: Message In Phase
Message Out Phase

-33.-

The SCSI bus signals MSG, T/D and I/0 are used to distinguish between the different
Information Transfer Phases as shown in the table below. These three signals are all driven
by the target device, which therefore controls the SCSI bus and all phase changes. The

Target can also cause a Bus Free Phase by releasing MSG, C/D, 1/0 and BSY.

MSG | CT/D | 1/0 | Phase Name Direction Of Transfer

0 0 0 | Data Out Initiator -> Target
0 0 1 Data In Target -> Initiator
0 1 0 | Command Initiator -> Target
0 1 1 Status Target -> Initiator
1 0 0 Reserved

1 0 1 Reserved

1 1 0 Message Out Initiator -> Target
1 1 1 Message In Target -> Initiator

Once the Information Transfer Phase is complete the bus returns to the Bus Free Phase.

Command Phase

This phase follows the Selection Phase and allows the target to obtain the command

information from the initiator.

The Command Phase is entered when BSY and C/D are asserted and MSG, 1/0, SEL and ATN

are deasserted.

The target waits for a bus settle delay and asserts REQ to request the first byte of the

Command Descriptor Block (See Chapter 3.4).

The initiator places the first byte on the bus and asserts ACK.

The Target reads the byte, then releases REQ.

The initiator will then release ACK.

-34 -

The first byte is now transferred and the target will continue to request additional bytes until
the complete Command Descriptor Block has been transferred and the Command Phase has

ended.

Data Phase

This phase allows the exchange of data between the target and the initiator.

Data In Phase

The Data In Phase allows data to be transferred from the initiator to the target. The Data In

Phase is entered when BSY is asserted and MSG, C/D and 1/0 are deasserted.

The target asserts REQ to request the first data byte.

The initiator places the first data byte on the bus and asserts ACK.

The Target reads the byte, then releases REQ.

The initiator will then release ACK.

The first data byte is now transferred and the target will continue to request additional data

bytes until the last data byte has been transferred.

Data Out Phase

The Data Out Phase allows data to be transferred to the initiator from the target. The Data

Qut Phase is entered when BSY and I/0 are asserted and MSG and T/D are deasserted.

The target asserts REQ and the initiator reads the first data byte from the target.

The initiator asserts ACK.

The Target releases the data bus and REQ.

-35-

The initiator will then release ACK.

The first data byte is now transferred and the target will continue to request that the initiator

reads the data until the last data byte has been transferred.

Status Phase

The Status Phase allows the target to request that the initiator reads its Status information.

(Chapter 3.4)

The Status Phase is entered when command execution is complete or an error that cannot be

recovered from occurs. BSY, C/D and I/0 are asserted and SEL and MSG are deasserted.

The target puts the Status Byte on the bus and asserts REQ.

The initiator reads the byte and asserts ACK.

This causes the target to release REQ.

The initiator will then release ACK.

Message Phase

This phase allows the transfer of a Message information. The first byte transferred can be a

single Message Byte (Chapter 3.4) or the first byte of a multiple-byte message.

Message In Phase

The Message In Phase allows a Message Byte to be read from the target by the initiator. The
Message In Phase signals the end of an operation and is entered when BSY, MSG, C/D and

1/0 are are asserted.

The target puts the Message Byte on the bus and asserts REQ.

-36 -

The initiator reads the byte and asserts ACK.
This causes the target to release REQ.
The initiator will then release ACK.
The Message In Phase terminates when MSG is deasserted.

Message Out Phase

The Message Out Phase is not supported by the RO652 and is not used in this project.

3.3 SCSI BUS CONDITIONS

The SCSI bus has two asynchronous conditions, the Attention Condition and the Reset
Condition. These cause the SCSI device to perform certain actions and can alter the phase

sequence.

ATTENTION CONDITION

The Attention Condition allows an initiator to inform a target that the initiator has a message
ready, (eg. parity error, whereby the target will send the byte again). The target may get this
message by performing a Message Out Phase. The initiator creates the Attention Condition
by asserting ATN during the Arbitration Phase or Bus Free Phase. This condition is not

supported by the R0O652 and is not used in this project.

RESET CONDITION

The Reset Condition is used to immediately clear all SCSI devices from the bus. When the
RST signal is received by the SCSI device, the device removes all signals that it is currently
asserting from the SCSI bus and clears any current commands. A Bus Free Phase always

follows a Reset Condition.

S 17

3.4 SCSI COMMANDS

The RO652 hard disk drive which was used in this project is always a target. To execute
commands the initiator sends a command, using the appropriate Command Descriptor Block,
to the target via the host adaptor. The target performs the command and reports its status,

(Message Byte and Status Byte), to the initiator.

OPERATION CODES

The first byte of the Command Descriptor Block contains the Operation Code of the SCSI
command. The Operation Code has two parts as shown below, firstly the Group Code and
secondly the Command Code. The Group Code is a three bit code, therefore there are eight
command groups. The Command Code is a five bit code, therefore there are thirty-two

commands within each group. This gives a total of 256 available command operation codes.

Operation Code Command Descriptor Block

Bit| 7 6 5 4 3 2 1 0
Byte O Group Code Command Code
Group Code

Group 0 6 Byte Commands

Group1 10 Byte Commands

Group2 Reserved

Group 3 Reserved

Group4 Reserved

Group5 12 Byte Commands

Group 6 Vendor Unique

Group7 Vendor Unique (6 Byte Commands)

Of the eight possible command groups, only group 0, group 1 and group 7 are supported by
the RO652. Only the Command Codes implemented by the RO652 are discussed. See ANSI
specification X3T9 and common command set book for full description of all of the

commands available.

-38 -

Command Codes

Hexadecimal Command Name
Operation Code

Group 0 00 Test Unit Ready

03 Request Sense

04 Format Unit

07 Reassign Blocks

08 Read

0A Write

OB Seek

12 Inquiry

15 Mode Select

1A Mode Sense

1D Send Diagnostic
Group 1 25 Read Capacity

28 Read Extended

2A Write Extended

2F Verify

37 Read Defect Data

3C Read Data Buffer

3B Write Data Buffer
Group 7 EO Maintenance Seek

El Format Maintenance Tracks

E2 Certify

ES8 Fast Read

EA Fast Write

COMMAND DESCRIPTOR BLOCKS FORMAT

The number of bytes contained by the Command Descriptor Block (CDB) is dependent on
the group of the command. Group 0 and Group 7 commands have a 6 byte CDB and Group 1
commands have 10 byte CDB. The Command Descriptor Block has an Operation Code as
the first byte, as shown above, followed by a Logical Unit Number (LUN), command
parameters (if any) and a Control Byte. If there is an invalid parameter in the CDB, the target
will stop executing the command without altering the medium. Regardless of command
completion, the target will return a status byte and a message byte to the initiator. The
RO652 only supports Status Byte 02H (Check Condition) and Message Byte O0H (command
complete), see ANSI spec for full description of other status and message bytes. Tables 3.1
and 3.2 show the typical command descriptor blocks for 6 and 10 byte commands. Tables

3.3 and 3.4 show the status and message byte command descriptor blocks.

-130 -

Table 3.1 : Typical 6 Byte Command Descriptor Block (Group 0 and Group 7)

Bit|] 7 6 5 4 3 2 1 0
Byte 0 Operation Code
Byte 1| Logical Unit Number Logical Block Address MSB
(if required)
Byte 2 Logical Block Address (if required)
Byte 3 Logical Block Address LSB (if required)
Byte 4 Transfer Length (if required)
Byte 5 Control Byte

Table 3.2 : Typical 10 Byte Command Descriptor Block (Group 1)

Bit| 7 6 5 4 3 2 1 0
Byte 0 Operation Code
Byte 1| Logical Unit Number Reserved RelAdr
Byte 2 Logical Block Address MSB (if required)
Byte 3 Logical Block Address (if required)
Byte 4 Logical Block Address (if required)
Byte 5 Logical Block Address LSB (if required)
Byte 6 Reserved
Byte 7 Transfer Length MSB (if required)
Byte 8 Transfer Length LSB (if required)
Byte 9 Control Byte

Logical Unit Number The LUN addresses one of eight devices attached to the target.

Logical Block Address The logical block address on logical units begins with block 0 and

1s contigous up to the last logical block on the unit. The logical
block concept implies that the initiator and target have previously
established the number of data bytes per logical block. This can
be done using the Read Capacity command or the Mode Sense
command. Group 0 and Group 7 Command Descriptor Blocks
have a 21-bit logical block address. Group 1 Command
Descriptor Blocks have a 32-bit logical block address.

- 40 -

Relative Address (Rel The relative address of Group 1 Command Descriptor Blocks is
Adr) set to one to indicate that the logical block address is a two’s

complement displacement. This negative/positive displacement is

added to the logical block address last accessed on the unit to

form the logical block address for that command. This is only

used when linking commands and is not supported by the RO652.

Transfer Length The transfer length specifies the amount of data to be transferred
usually the number of blocks.

2

Control Byte The control byte is the very last byte of every Command
Descriptor Block. A typical Control Byte is shown below. For the
R0652 Hard disk drive, all bits of the Control Byte are set to zero.

Control Byte
Bit| 7 6 5 4 3 2 1 0
Vendor Unique Reserved Flag Link

Link Bit If the Link Bit is set to one the initiator wants an automatic link to
the next command when the current command is successfully
completed. This is not implemented in the RO652.

Flag Bit If the Link Bit is set to zero, then the Flag Bit is set to zero. If the
Link Bit is set to one and the command is successfully completed,
the target sends a linked command complete message (if Flag
Bit=0) or a linked command complete message with flag (if Flag

Bit=1). This bit is typically used to cause an interrupt in the
initiator between linked commands.

STATUS

The slatus returned on complction of a command contains a Status Byte and a Message Byte.

Only the status supported by the RO652 is discussed here.

Table 3.3 : Status Byte

Bit| 7 6 5 4 3 2 1 0
Byte 0| 0 0 0 0 0 0o | ERR | o0

ERR=0 no error occurred during command execution.
ERR=1 error occurred during command execution.

-41 -

Most error conditions cannot be explained with a single status code and a Request Sense

Command should be issued when ERR=1 to determine nature of the error.

Table 3.4 : Message Byte

Bit| 7 6 5 4 3 2 1 0
Byte O| 0 0 0 0 0 0 0 0

00H Command Complete is the only message supported by the RO652. This message is sent
from a target to an initiator to indicate that the execution of a command has terminated and
that a valid status has been sent to the initiator. This does not indicate correct or incorrect

execution of the command. After this message is sent a Bus Free Phase is entered.

.

CHAPTER 4
ADVANTAGES OF SMALL COMPUTER SYSTEM INTERFACE
(SCSI)

Before the SCSI bus standard emerged there were many different types of devices, most with
different interfaces, which would typically be connected to a computer system. For example,
a Winchester disk drive would have an ST506 interface, a tape streamer would have a
QIC36 interface and a printer would have an RS232 interface. Therefore, it was necessary to
have a different hardware controller for each of these devices. Although each of these were
already industry standard interfaces, the introduction of SCSI as the new industry standard
meant that the Winchester disk drive, the tape streamer and the printer would all have the

same interface and could be controlled by the same hardware.

SCSI has a common command set, which allows the loading to be taken off the host system
CPU as more tasks are performed by the SCSI controller. For example, Copy is a function of
the common command set which allows transfer of data from one device in the system to
another without host CPU monitoring. The common command set supports present and
future peripherals, so new software drivers do not need to be written for upgraded devices.
This makes system design independent of advances in device capacity and performance.
Although the same SCSI hardware is able to control printers, hard disk drives, floppy disk
drives etc. a different software driver is needed for each of them. The software has to take
into account whether the connected device is a block device (eg. a hard disk drive) or a

character device (eg. a printer).

SCSI also supports arbitration between connected devices, allowing several tasks from

different devices to be interleaved on the bus at the same time as shown in Chapter 3.

4.1 ADVANTAGES FOR HARD DISKS

SCSI supersedes the ST506 interface as the new industry standard for hard disk drives and is

supported by most major device manufacturers. The SCSI common command set ensures

ST I

compatibility between similar devices from different manufacturers. Previously, a separate
input/output driver was needed for each hard disk drive type as they were manufactured with
different numbers of heads, cylinders and sectors. SCSI overcomes this by viewing any hard
disk drive, regardless of manufacturer, as a string of random logical blocks. As a result, the
only difference between drive types is the maximum logical block number which can be
addressed. The logical block number is converted to the physical block number by the disk
drive alone and a single input/output driver can be developed to run any SCSI disk drive
directly. Device specific problems, such as bad blocks on the hard disk media are handled
entirely within the hard disk thus reducing the host system CPU involvement as the hard disk

appears to be error free media to the operating system.

With current computers tending to be 16 bit and 32 bit microprocessor based, rather than 8
bit microprocessor based, they need more disk storage capacity. There are three methods of

increasing hard disk capacity:

Increase the available recording area by adding disks.
The ST506 is limited to 8 heads maximum. SCSI does not have this limitation as it
sees only logical blocks when communicating with a hard disk drive and lets the hard

disk electronics convert it into physical blocks.

Increase track density.

To increase the track density on an ST506 interface a closed loop servo system
(feedback) is needed to drive the read/write heads. This is due to the type of data
coding that the ST506 uses. SCSI uses a different type of data coding, which will give
a 50% increase in disk capacity, without the need for a closed loop servo system

driving the read/write heads.

Increase Flux Changes per Inch (FCI).
ST506 is limited to a maximum transfer rate of 5 Mbits/s. SCSI has a much higher

maximum synchronous transfer rate of 32 Mbits/s.

-44 -

CHAPTER 5
TTL LOGIC INTERFACE BOARD

This board translates between the SCSI bus and the S-100 bus by using 74 series TTL logic
gates. The Single Card Computer can be said to be the host and this interface board the host
adapter. Figures 5.1 and 5.2 which show the circuit diagram and parts list for the board,
Appendix A which contains the software listings and Appendix C which shows the bus
phase sequences, should be referred to while reading the explanations in this chapter. The
connections on the left hand side of the circuit diagram go to the S-100 bus, ie. to the Single
Card Computer (SCC). The connections on the right hand side of the circuit diagram go to
the SCSI bus ie. the RO652 hard disk drive. In this case the SCC is the initiator and the

RO652 hard disk drive, the target. The circnit can be grouped into three functional parts:

Input/Output Buffers
Input/Output Buffer Enabling
General Components

5.1 INPUT/OUTPUT BUFFERS

The following are the input/output buffers:

IC1 - 74L.8S240 octal inverting buffer
IC2 - 74LS373 D-type latch

IC3 - 74L.S240 octal inverting buffer
IC9 - 74L.8240 octal inverting buffer
IC11 - 74LS373 D-type latch

IC12 - 741.S38 2-input NAND

IC1, IC3 AND IC9

IC1, IC3 and IC9 are 741.5240 octal buffer chips, with three-state outputs. The output is the
logical inversion of the input and can be in a logic 1 state, a logic O state or a high impedance
state. When the buffer is in the high impedance state its output appears to be disconnected
from the bus. There are two enable inputs (1G and 2G) on the 74L.S240, on pins 1 and 19.

One enable is used to control four of the buffers and the other enable is used to control the

L%

other four buffers. In the circuit these are connected together, to give one enable control
input for all eight buffers. The truth table below shows the enable logic of the 741.5240, with

G being the common enable input, A being the buffer input and Y being the buffer output.

— oo ||ld
K=o | >
No = || =

0-Logic 0 (0 Volts), 1-Logic 1 (+5 Volts), X-irrelevant, Z-high impedance (disconnected)

IC2 AND IC11

IC2 and IC11 are 74L.S373 octal D-type latches, with three-state outputs. There are two
controlling inputs on the 741.S373, enable (G) and output control (OC). When the OC input
is logic 1 the chip goes into its high impedance state. This state does not occur in the circuit
as the OC input is connected to O volts. The truth table below shows the enable logic of the

741.S373 with G being the enable input, D being the latch input and Q being the latch output.

G D Q
1 1 1
1 0 0
0 X Qo

0-Logic 0 (0 Volts), 1-Logic 1 (+5 Volts), X-irrelevant, Qo-previous Q

IC12

IC12 is a 74LS38 two-input NAND chip with open collector outputs. In open collector
circuits the final "pull up" resistor is missing and must be provided by the user. The missing
final resistor allows the user to connect more than one open collector output together through
the same "pull up" resistor. By doing this the outputs of the gates which are connected

through the same "pull up" resistor are OR-ed together.

- 46 -

5.2 INPUT/OUTPUT BUFFER ENABLING

The following are all part of the buffer enable circuitry:

IC4 - 74LS11 three-input AND

ICS - 74LS00 two-input NAND

IC6 - 74LS04 inverter

IC7 - 7415244 octal buffer

IC8 - 74L.S08 two-input AND

IC10 - 74L.S682 8-bit magnitude comparator
SW1 - 8 way single pole/single throw switch

1C4, 1C5, IC6 AND IC8

IC4, ICS, IC6 and IC8 function as standard logic gates, as shown in the circuit diagram.

IC7

IC7 the 74L.S244 non-inverting octal buffer with three-state outputs is used to buffer AQ. AQ
has to be buffered so there is only one TTL load on the S100 bus line.

IC10 AND SW1

IC10 the 74L.S682 8-bit magnitude comparator with totem pole output is used to decode the
base address on A7 through Al. A7 through Al are on the P inputs and the Q inputs are
connected to SW1 which is an 8 way single pole/single throw switch. SW1 is set for a base
address of 20H. The 74LS682 has two control outputs, P=Q and P>Q. Only the P=Q output
is used in this circuit. The truth table below shows the decode logic of the 74L.S682 with P
and Q being the address inputs, and P=Q being the decoder output.

PQ [P=Q
P=Q 0
P>Q 1
P<Q 1

0-Logic 0 (0 Volts), 1-Logic 1 (+5 Volts)

-47 -

5.3 GENERAL COMPONENTS

The following are all general components:

IC13 - 7805 voltage regulator

RN1 - 220/330 ohm resistor network
RN2 - 220/330 ohm resistor network
C1-C12 - 0.01 micro-farad capacitors

IC13

IC13 is a 7805 voltage regulator which regulates the +8 volts on the S100 bus (pin 51) to a

+5 volts supply for the interface board.

RN1 AND RN2

RN1 and RN2 are 220ohm/330ohm resistor networks used to terminate the SCSI bus lines in
the correct manner, for single ended drivers. With 220 ohms to +5 volts and 330 ohms to 0

volts.

C1-C12

C1 through C12 are 0.01 micro-farad capacitors which are placed between 0 volts and +5
volts next to the IC packages. These are de-coupling capacitors which are used to smooth out

any spikes appearing on the voltage rails.

5.4 SELECTING THE INPUT/OUTPUT BUFFERS

Data/Command/Status and Message byte transfers are controlled by writing to and reading
from interface board address 20H. Direction/Information type (ie. data byte, command byte,
status byte or message byte) are controlled by reading from and writing to interface board
address 21H. The address which is written to/read from controls the buffer

selection/disconnection.

-48 -

DEVICE(S) SELECTED
FUNCTION | sINP | pDBIN | sOUT | pWR | IO ||IC1 [IC2 | IC3 | IC9 | IC11
— e — —————
read datap A A R R A S| D D D D
write datap R R A A R D| S S D D
read statp A A R R A D | D D S D
write contp R R A A R D | D S D S

datap (data port)=20H, statp (status port)=21H, contp (control port)=21H
A=Asserted, R=Deasserted, S=Selected, D=Disconnected

IC1

IC1 is selected when there is a OV signal on the enable input (pin 1 and pin 19). NAND gate

1C outputs a OV signal to IC1 when the following conditions are satisfied:

(1) Address lines A7-A0 hold address 20H
(2) sINP and pDBIN are asserted

A read from the interface board, address 20H, causes sINP and pDBIN to be asserted which
selects IC1. During a read from the interface board sOUT and pWR are deasserted and 1/0 is
asserted which disconnects the other buffers. This allows the transfer of data from the

RO652 to the SCC data in bus.

IC2

IC2 is selected when there is a +5V signal on the enable input (pin 11). AND gate 2C

outputs a +5V signal to IC2 when the following conditions are satisfied:

(1) Address lines A7-A0 hold address 20H
(2) sOUT and pWR are asserted

A write to the interface board, address 20H, causes sOUT and pWR to be asserted, and I/0 to
be deasserted which selects IC2 and IC3. During a write to the interface board sINP and
pDBIN are deasserted which disconnects the other buffers. This allows the transfer of data

from the SCC data out bus to the RO652.

-49 -

IC3

IC3 is selected when there is a OV signal on the enable input (pin 1 and pin 19). INVERTER

gate 1E outputs a OV signal to IC3 when I/0 from the SCSI bus is inactive.

A write to the interface board, address 20H or address 21H, causes sOUT and pWR to be
asserted, and 1/0 to be deasserted which selects IC3. During a write to the interface board
sINP and pDBIN are deasserted which disconnects the other buffers. This allows the transfer

of data and control information from the SCC data out bus to the RO652.

1C9

IC9 is selected when there is a OV signal on the enable input (pin 1 and pin 19). NAND gate

3C outputs a OV signal to IC9 when the following conditions are satisfied:

(1) Address lines A7-A0Q hold address 21H
(2) sINP and pDBIN are asserted

A read from the interface board, address 21H, causes sINP and pDBIN to be asserted which
selects IC9. During a read from the interface board sOUT and pWR are deasserted and 1/0 is
asserted which disconnects the other buffers. This allows transfer of status information from

the RO652 to the SCC data in bus.

IC11

IC11 is selected when there is a +5V signal on the enable input (pin 11). AND gate 4C

outputs a +5V signal to IC11 when the following conditions are satisfied:

(1) Address lines A7-A0 hold address 21H
(2) sOUT and pWR are asserted

A write to the interface board, address 21H, causes sOUT and pWR to be asserted, and I/0 to
be deasserted which selects IC11 and IC3. During a write to the interface board sINP and
pDBIN are deasserted which disconnects the other buffers. This allows the transfer of

control information from the SCC data out bus to the RO652.

-50 -

5.5 CONTROL SIGNALS

Certain SCC and SCSI signals are used to control the transfer of data, commands, status and
message signals between the data buses. The SCC control signals are used to
select/disconnect the buffers during different phases. The SCSI control lines are the lines

used to control what is being transferred on the data bus.

SCC CONTROL SIGNALS
sINP This signal is connected to the input/output buffer enabling
(output from SCC) circuitry. sINP is asserted (+5V) during a data input to the SCC,
deasserted (OV) at all other times.
pDBIN This signal is connected to the input/output buffer enabling
(output from SCC) circuitry. pDBIN is asserted (+5V) when data is latched onto onto
data bus, deasserted (OV) at all other times.
sOUT This signal is connected to the input/output buffer enabling
(output from SCC) circuitry. sOUT is asserted (+5V) during a data output from the
SCC, deasserted (OV) at all other times.
pWR This signal is connected to the input/output buffer enabling
(output from SCC) circuitry. pWR is asserted (0V) during a data write from the SCC,
deasserted (+5V) at all other times.
AO This signal is connected to the input/output buffer enabling
(output from SCC) circuitry. When AOQ is asserted (+5V) transfer is between the
RO652 control bus and the SCC data in or data out bus. When A0
is deasserted (OV) transfer is between the RO652 data bus and the
SCC data in or data out bus.
SCSI CONTROL SIGNALS
ACK This signal is connected, via IC11, from the SCC data out line
(output from SCC) DOO to the RO652 control bus. ACK is asserted (0V) to
acknowledge a request (REQ) from the RO652 hard disk drive.
ACK is deasserted (+5V) at other times.
RST This signal is connected, via IC11, from the SCC data out line
(output from SCC) DOIl to the RO652 control bus. RST is asserted (0V) to clear all
bus activity. RST is deasserted (+5V) at other times.
SEL This signal is connected, via IC11, from the SCC data out line
(output from SCC) DO2 to the RO652 control bus. SEL is asserted (0V) during
selection of the RO652 hard disk drive. SEL is deasserted (+5V)
at other times.
BSY This signal is connected, via IC9, from the RO652 control bus to
(input to SCC) the SCC data in line DIO. BSY is asserted (O0V) when the SCSI bus

is busy. BSY is deasserted (+5V) at other times.

MSG
(input to SCC)

C/D
(input to SCC)

REQ
(input to SCC)

1/0
(input to SCC)

5.6 BUS PHASES

-51-

This signal is connected, via IC9, from the RO652 control bus to
the SCC data in line DI1. MSG is asserted (OV) when the SCSI
bus is in a message phase. MSG is deasserted (+5V) at other
times.

This signal is connected, via IC9, from the RO652 control bus to
the SCC data in line DI2. T/D is asserted (0V) when control
information is on the SCSI bus. T/D is deasserted (+5V) when
data information is on the SCSI bus.

This signal is connected, via IC9, from the RO652 control bus to
the SCC data in line DI3. REQ is asserted (0V) when the RO652
is requesting something from the SCC. REQ is deasserted (+5V)
at other times.

This signal is connected, via IC9, from the RO652 control bus to
the SCC data in line DI4. 1/0 is asserted (OV) when the direction
of transfer on the SCSI bus is from the RO652 to the SCC. 1/0 is
deasserted (+5V) when the direction of transfer on the SCSI bus
is from the SCC to the RO652.

This section shows the relevant circuitry active during each of the phases with reference to

the subroutines in the SCS1.Z80 software (Appendix A.5).

SELECTION PHASE

During the Selection Phase the RO652 hard disk drive is selected by the SCC. The SELECT

subroutine of SCSI.Z80 controls the selection of the RO652 hard disk as follows.

The address of the RO652 hard disk drive is written from the SCC to the RO652 data

port, IC2 and IC3 selected.

SEL is asserted by writing to the RO652 control port, IC3 and IC11 selected.

The RO652 status port is read until BSY is asserted, IC9 selected.

SEL is deasserted by writing to the RO652 control port, IC3 and IC11 selected.

This completes the Selection Phase.

-52.-
DATA IN PHASE

During the Data In Phase data is sent from the RO652 hard disk drive to the VDU, via the
SCC. The SCSIRD subroutine of SCSI.Z80 controls the transfer of a data byte as follows.

The RO652 status port is read, IC9 selected, until REQ and BSY are asserted and MSG,

C/D and 1/0 are deasserted.

The RO652 data port is read, IC1 selected, to transfer the data byte into the SCC.

The SCC then outputs the data byte, which was read from the drive, to the VDU.

ACK is asserted by writing to the RO652 control port, IC3 and IC11 selected. (SCC has

read the data byte).

The RO652 status port is read, IC9 selected, until REQ is false.

ACK is deasserted by writing to the RO652 control port, IC3 and IC11 selected.

The data byte transfer is complete.

DATA OUT PHASE

During the Data Out Phase data is sent from the VDU, via the SCC, to the RO652 hard disk

drive. The SCSIWR subroutine of SCSI.Z80 controls the transfer of a data byte as follows.

The data byte, to be written to the RO652, is read from the VDU into the SCC.

The RO652 status port is read, IC9 selected, until REQ, BSY, I/0 are asserted and MSG

and C/D are deasserted.

The SCC writes the data byte to the RO652 data port, IC2 and IC3 selected, to transfer
the data byte into the RO652.

-53-

ACK is asserted by writing to the RO652 control port, IC3 and IC11 selected. (SCC has

written the data byte).

The RO652 status port is read, IC9 selected, until REQ is false.

ACK is deasserted by writing to the RO652 control port, IC3 and IC11 selected.

The data byte transfer is complete.

COMMAND PHASE

During the Command Phase data is sent from the VDU, via the SCC, to the RO652 hard disk
drive. The SEND subroutine of SCSI.Z80 controls the transfer of a command byte as

follows.

The data byte, to be written to the RO652, is read from the VDU into the SCC.

The RO652 status port is read, IC9 selected, until REQ, BSY and CT/D are asserted and

MSG and I/0 are deasserted.

The SCC writes the command byte to the RO652 data port, IC2 and IC3 selected, to

transfer the data byte into the RO652.

ACK is asserted by writing to the RO652 control port, IC3 and IC11 selected. (SCC has

read the data byte).

The RO652 status port is read, IC9 selected, until REQ is false.

ACK is deasserted by writing to the RO652 control port, IC3 and IC11 selected.

The command byte transfer is complete.

.-
STATUS PHASE

During the Status Phase status information is sent from the RO652 hard disk drive to the
VDU, via the SCC. The STATUS subroutine of SCSI.Z80 controls the transfer of a status

byte as follows.

The RO652 status port is read, IC9 selected, until REQ, C/D, I/0 and BSY are asserted
and MSG is deasserted.

The RO652 data port is read, IC1 selected, to transfer the status byte into the SCC.
The SCC then outputs the status byte, which was read from the drive, to the VDU.

ACK is asserted by writing to the RO652 control port, IC3 and IC11 selected. (SCC has

read the data byte).
The RO652 status port is read, IC9 selected, until REQ is false.

ACK is deasserted by writing to the RO652 control port, IC3 and IC11 selected.

The status byte transfer is complete.

MESSAGE IN PHASE

During the Message In Phase message information is sent from the RO652 hard disk drive to

the VDU, via the SCC. The MESSAGE subroutine of SCSI.Z80 controls the transfer of a

message byte as follows.

The RO652 status port is read, IC9 selected, until REQ, C/D, 1/0, BSY and MSG are

asserted.
The RO652 data port is read, IC1 selected, to transfer the message byte into the SCC.

The SCC then outputs the message byte, which was read from the drive, to the VDU.

-55-

ACK is asserted by writing to the RO652 control port, IC3 and IC11 selected. (SCC has

read the data byte).

The RO652 status port is read, IC9 selected, until REQ is false.

ACK is deasserted by writing to the RO652 control port, IC3 and IC11 selected.

The message byte transfer is complete.

5.7 SOFTWARE

The listings of the programs are in Appendix A. There are five programs which control the

TTL logic interface board:

MAIN.Z80
EQU.Z80
MSG.Z80
VDU.Z80
SCSI.Z80

MAIN.Z80 is the main program, the other four are programs which are included into the

assembled firmware.

MAIN.Z80

This is the main program which controls VDU, SCC and RO652 input/output, by utilising

the subroutines, equates etc. contained in the other programs.

EQU.Z80

This file contains:

Equates for the VDU control
VDU ASCII equates

SCSI equates

SCSI status bits equates
SCSI control bits equates
SCC RAM storage size

-56-

MSG.Z80

This file has the messages which are sent to the VDU during program operation.

VDU.Z80

In this file are the subroutines which control VDU input/output. (Baud rate selection and

reading from and writing to the VDU screen.)

SCSI.Z80

As shown in Chapter 5.6, this is file which has the subroutines used to control the RO652

hard disk drive phases.

Oy mau gl = pEv

0. 1 & | 3 £ | [3 T v T | 3 |
Quwog
N ONIMYIG FOVLAHIAINI 150G «00IS
21007 Ll
AUva| 03AOEddv| ODOID| @wHl| Nmvea JUL 2Uv0 [Odd| NOWJINDS30

<57
Figure 5.1

L - = Y
- 0 Tv
N [fo] |} 2 mw
Im oy
0 <V
—’ .-.u-c_____t
--,v “
Bl
g L3
|
. -2 i\ DA LDVRN
I =l e
THNY eoran | _ AC o o1 o e
f ¥ £
| — = T
T T L =E 38
T ¥ = I 1 . ZC sos
v Ol f 3 20l Mum-m
T T w L 1 "o 190
: .m. : i o0
- : 3 -0 000
AD T i h L
48 87 —— - SE
S : ol = i
& 5 : =
& . o =0 s
_ _ T : =C 010
o 1%
& =
_ INY
40 133m5 e
= T - T - T] O T g | 3 | 3 | L
3

-58 -

Figure 5.2

EW maeybl * OLY

ncslanMh
C. | ¢ | 3] 1 3 3 | r C T z I 1
ON ONIMYEA G
JOVLHYEI NI 1I62S «00IS 0
21007 LL
V| 03A0ssdv| 02O3HO| 03ova| wmvea 3L 31v0 | v NOUENIS$30 S5
1
4
I
3
HOLIMME BRM=—MN-TIwND AMmOodHl ETDNIS —S570d BTDNIS AvAs B (rig @1) 1mE
(SHOLIDwa YD DMNINGNSDEQ) AGT = 1070 TID=1\D
a
(HOwd MNOILwMNIWEE1L HCLSISEE) 9 X UOER/VvOoTT TNY
\HOVe NOILLYMNIWEEL BILEISEN) 2 x VOoEs/vott I~y
HOLYONOEY BOYLOCOA Y OATOT)ASS SOFL (ke —
TANGLMND BOLDBETOT —MNEJDC) BHESINDS QNYN—BAILISCH LNeSN—T OwnD FESTTL - =g L ™id g 713 T
LTLgdlMmMC BANWwLE-E) S3IHDLYT EdAlL—T W LDO CLESTTL oT Nic ol MNig (Mg OZ) 111
(Mgl NO BEN0g WWELOL) HOAvHYIWOED BOM LINDYAN LIB—F zTe=2577L oT MNig o1 Nig (g 0T 0101
TN ND Bovla 66— 03iu3AnN) 38-H8"2 W20 OYTISTTL oT “Nie o1 Nid (Nig OT) bDI 5
E3ILVWD ONY —3AILISCE LNeNI=-T Ovnb BO0ST72 -1 Nig L Nid (Mg T1) 801
(SL7eLlND 2 AVWIE—F OSLEHBANINON) E3484NS W lDO 77 EZE7 CT WNie o1 Nid (NidOZ) 22!
SHELE3IAN X3H VOSTVL 7L Nie L ™ (Nid 71) 901
SE2AYD ONVYN=SAILISOd LNdN—Z AvNd 0081 %L <1 Nie L ™Nd (Nid 71) DI —
S3IAWD QMNY— BAILISOL ANdN' - STdi®L 1187172 i NIg L MNid (Mg 71D 72l
SANGLNO TUAVLS-£ QI LHIAND ¥RI==r2 WidDO ovTsST7e ZT Mg o1 Nid (Nid OT) £01
LS1NgdlNG SA1wLIS—€) B3HO LY SdAl-T ¥_LDO CLEENL T Nic Ol Nid (NId OZ) T
BANdLNO 3dvLS—8 QI LU3ANI) dId2N8 WL00 OvZeNL 0T Nid 01 Nidg (Nid 0Z> 121 0
- NS+ NO
o NOILdi¥oS3d 1ldvd ||
v
40 13345 IS 10m O3 40 1¥vd
C T 3 T £ 1 7 I ° I : | v T | l] !

-59 -

CHAPTER 6
INTELLIGENT INTERFACE BOARD

This board translates between the SCSI bus and the S-100 bus using TTL logic and a
NCR5380 SCSI interface chip. As in Chapter 5, the Single Card Computer is said to be the
host (initiator) and the RO652 hard disk drive the target. Appendix B, containing the
software used to control transfers, Appendix C which shows the bus phase sequences and
Figures 6.1 and 6.2 which show the circuit diagram and the parts list, should be referred to
while reading this chapter. The connections on the left hand side of the circuit diagram go to
the S-100 bus, ie. to the Single Card Computer (SCC). The connections on the right hand
side of the circuit diagram go to the SCSI bus ie. the RO652 hard disk drive. The circuit can

be grouped into three functional parts:

Input/Output
Input/Output Selection
General Components

6.1 INPUT/OUTPUT

The following are the input/output ICs

IC1 - 74L.S244 octal buffer
IC2 - 741.8244 octal buffer
IC5 - NCR53C80 SCSI interface chip

IC1 AND IC2

IC1 and IC2 are 74L.S244 non-inverting octal buffer chips, with three state outputs. As
before, the output can be in a logic 1 state, a logic O state or a high impedance state. There
are two enable inputs (1G and 2G) on the 74L.S244, on pins 1 and 19. One enable is used to
control four of the buffers and the other enable is used to control the other four buffers.
These two inputs are connected together, to give one enable control input for all eight
buffers. The truth table below shows the enable logic of the 74LS244, with G being the

common enable input, A being the buffer input and Y being the buffer output.

-60 -

—~oolla
H—o| >

N'—'Ou-<

0-Logic 0 (0 Volts), 1-Logic 1 (+5 Volts), X-irrelevant, Z-high impedance (disconnected)

ICS

IC5 is a VLSI chip, the NCR53C80. This is a CMOS SCSI interface chip designed to
support the ANSI specification for Small Computer Systems Interfaces, X3T9.2. In this
project the chip is operated in the initiator mode but it can also be operated in the target
mode. The chip is controlled by reading from and writing to several internal registers,

Chapter 6.6 discusses these registers. The NCR53C80 can be grouped into seven functional

parts:

SCSI Bus Signals

DMA Control Signals

Data Bus Signals

Reset Conditions

Interrupts

Mode of Operation

Internal Register Signals
SCSI Bus Signals
DBO-DB7 RST MSG
DBP ATN C/D
BSY ACK 1/0
SEL REQ

These eighteen signals are identical to those shown in Chapter 3. SCSI bus signal ATN is not

used in this project because the message out phase is not supported.

DMA Control Signals

EOP DRQ
READY DACK

-61 -

The NCR53C80 is not used in a DMA mode in relation to this project. Input signals EOP and
DACK are held at +5V, deasserted state (ie. not active). Output signals READY and DRQ

are not used.

Data Bus Signals

D0-D7 Data Bus (D0-D7) is the bidirectional, tri-state bus connected to
the host computer.

Reset Conditions

There are three possible reset conditions within the NCR53C80:

Hardware Reset Input signal RESET is used to clear all internal registers, it does
not reset the SCSI bus.

SCSIRST Received This performs a chip reset, clearing all internal registers except
port, 1 bit 7 which is the assert RST bit. RST is used to clear all
SCSI bus activity.

SCSIRST Issued If the host sets the assert RST bit (bit 7, port 1) all internal
registers are cleared apart from port 1, bit 7. RST will be active,
clearing all SCSI bus activity, until port 1, bit 7 is deasserted or
the NCR53C80 RESET input is active.

Interrupts

Output signal IRQ is not used in relation to this project. IRQ is used to inform the host of an

erTor or an event completion.

Mode of Operation

The NCR53C80 supports four modes of operation: programmed 1/0 transfers; normal DMA
mode; block DMA mode and pseudo DMA mode. Programmed 1/0 is used in this project,
this uses the REQ/ACK handshake method of controlling data transfers.

-62 -

Internal Registers Signals

Signals TS, TOR, TOW and A0-A2 are used to address all internal registers. TS enables a read
or a write of one of the eight internal registers selected. All data transfers between the SCC
and the RO652 are controlled by these registers. See Chapter 6.6 for explanation of the

registers used in this project.

6.2 INPUT/OUTPUT SELECTION

The following are all part of the input/output select circuitry:

IC4 - 74L.S08 2-input AND

IC6 - 74LS04 inverter

IC7 - 74LS10 3-input NAND

IC3 - 741.5682 8-bit magnitude comparator
SWI1 - 8 way single pole/single throw switch

IC4, 1C6 AND IC7

IC4, IC6 and IC7 function as standard logic gates, as shown in the circuit diagram.

IC3 AND SW1

IC3 the 74L.S682 8-bit magnitude comparator with totem pole output is used to decode the
base address on A7 through A3. A7 through A3 are on the P inputs and the Q inputs are
connected to SW1 which is an 8 way single pole/single throw switch. SW1 is set for a base
address of 20H. The 74L.S682 has two control outputs, P=Q and P>Q. Only the P=Q output
is used in this circuit. The truth table below shows the decode logic of the 74L.S682 with P

and Q being the address inputs, and P=Q being the decoder output.

PQ | P=Q
P=Q 0
P>Q 1
P<Q 1

=63

0-Logic 0 (0 Volts), 1-Logic 1 (+5 Volts)

6.3 GENERAL COMPONENTS

The following are all general components:

IC8 - 7805 voltage regulator

RN1 -220/330 ohm resistor network
RN2 -220/330 ohm resistor network
R1,R2 - 1K ohm resistors

C1-C7 - 0.01 micro-farad capacitors

IC8

IC8 is a 7805 voltage regulator which regulates the +8 volts on the S100 bus (pin 51) to a +5

volts supply for the interface board.

RN1 AND RN2

RN1 and RN2 are 220ohm/330ohm resistor networks used to terminate the SCSI bus lines in
the correct manner, for single ended drivers. With 220 ohms to +5 volts and 330 ohms to 0

volts.

R1 AND R2

R1 and R2 are 1K ohm resistors used as pull-up resistors on the NCR53C80 inputs EOP and

DACK, preventing them from being asserted.

C1-C7

C1 through C7 are 0.01 micro-farad capacitors which are placed between 0 volts and +5
volts next to the IC packages. These are de-coupling capacitors which are used to smooth out

any spikes appearing on the voltage rails.

-64 -

6.4 SELECTING THE INPUT/OUTPUT

Data/Command/Status and Message byte transfers are controlled by writing to and reading
from the interface board, base address 20H. The direction of the information on the data bus

controls the buffer selection/disconnection.

The following tables shows the chips that are selected and disconnected with each read/write

function.

DEVICE(S) SELECTED
FUNCTION | sINP | pDBIN [sOUT| pWR || IC1 | IC2 IC5
read datap A A R R D S S
write datap R R A A S D S
write icmdp R R A A S D S
write modep R R A A S D S
write temdp R R A A S D S
read statlp A A R R D S S
read prstp A A R R D S S

datap (data register)=20H, icmdp (initiator command register)=21H, modep (mode
register=22H), tcemdp (target command register)=23H, statlp (bus status register)=24H, prstp
(reset parity/interrupt register)=27H

A=Asserted, R=Deasserted, S=Selected, D=Disconnected

IC1

IC1 is selected when there is a OV signal on the enable input (pin 1 and pin 19). NAND gate

2B outputs a OV signal to IC1 when the following conditions are satisfied:

(1) Address lines A7-A3 hold base address 20H
(2) sOUT and pWR are asserted

A write to the interface board, base address 20H, causes sOUT and pWR to be asserted
which selects IC1. This allows the transfer of information from the SCC data out bus to the
NCR53C80 (IC5). During a write to the interface board sINP and pDBIN are deasserted

which disconnects IC2.

=65 -

IC2

IC2 is selected when there is a OV signal on the enable input (pin 1 and pin 19). NAND gate

1B outputs a OV signal to IC2 when the following conditions are satisfied:

(1) Address lines A7-A3 hold base address 20H
(2) sINP and pDBIN are asserted

A read from the interface board, base address 20H, causes sINP and pDBIN to be asserted
which selects IC2. This allows the transfer of information from the NCR53C80 (IC5) to the
SCC data in bus. During a read from the interface board sOUT and pWR are deasserted

which disconnects IC1.

ICS

IC5 is selected when there is a OV signal on the TS input (pin 19). AND gate 3C outputs a
0V signal to IC5 when the output of 1B or 2B is OV. This happens when there is a read or a
write to base address 20H. When there is a read from base address 20H, TOR is asserted (0V)
and when there is a write to base address 20H, TOW is asserted (OV). This allows transfers to

take place between the RO652 and the SCC.

6.5 CONTROL SIGNALS

Certain SCC control signals are used to control the NCR53C80. The control signals are used
to select/disconnect IC1 and IC2, enable or disable the NCR53C80 and set up the correct
conditions on the NCR53C80 for communication between the SCC and the RO652. The
NCRS53C80 control signals are used to address the eight internal registers which control data

transfers between the SCC and the RO652.

SCC CONTROL SIGNALS

sINP This signal is connected to the input/output buffer enabling
(output from SCC) circuitry. sINP is asserted (+5V) during a data input to the SCC,
deasserted (OV) at all other times.

pDBIN
(output from SCC)

sOUT
(output from SCC)

pWR
(output from SCC)

AO0-A2
(output from SCC)

pRESET
(output from SCC)

- 66 -

This signal is connected to the input/output buffer enabling
circuitry. pDBIN is asserted (+5V) when data is latched onto onto
data bus, deasserted (OV) at all other times.

This signal is connected to the input/output buffer enabling
circuitry. sOUT is asserted (+5V) during a data output from the
SCC, deasserted (0V) at all other times.

This signal is connected to the input/output buffer enabling
circuitry. pWR is asserted (OV) during a data write from the SCC,
deasserted (+5V) at all other times.

A0 through A2 are connected to the NCR53C80 A0-A2 input.
These are used to control the NCRS53C80 internal register
selection.

This signal is connected to the NCR53C80 RESET input. When
pRESET is asserted (0V) the NCRS53C80 clears all its internal
registers. This does not force the SCSI bus signal RST low and
therefore, it does not reset the SCSI bus.

NCRS53C80 CONTROL SIGNALS

CS

A0-A2

This signal comes from the input/output selection circuitry. When
CS is asserted (0V), a read/write of the internal register addressed
by A0-A2 can take place.

This signal comes from the input/output selection circuitry. When
TOR is asserted (OV), a read of the internal register selected hy TS,
A0-A2 takes place.

This signal comes from the input/output selection circuitry. When
TOW is asserted (OV), a write to the internal register selected by
CS, A0-A2 takes place.

These signals come directly from the SCC. The address selects a
specific register.

6.6 NCR53C80 INTERNAL REGISTERS

The table below shows a summary of the NCR53C80 internal register selection.

e

CS TOR | TOW | A2 | A1 | AO|| REGISTER SELECTED USED
——— _

R R A R|R|R Output Data YES
R A R R|R | R Current SCSI Data YES
R R A R R | A Initiator Command YES
R A R R|R|A Initiator Command NO

R R A R|A]|R Mode YES
R A R R| A|R Mode NO

R R A R | A | A |l Target Command YES
R A R RIA|A Target Command NO

R R A A|l R | R Select Enable NO

R A R A| R | R Current SCSI Bus Status YES
R R A A|R| A Start DMA send NO

R A R A|lR | A Bus and Status NO

R R A Al A|R Start DMA Target Receive NO

R A R A| A|R Input Data NO

R R A Al Al A Start DMA Initiator Receive NO

R A R A|lA|A Reset Parity/Interrupts YES

A-asserted, R-deasserted
Only the registers used in relation to this project are discussed. See the NCR53C80 Design

Manual for descriptions of unused registers.

Output Data Register/Current Scsi Data Register

Address 0 - The Output Data Register and Current SCSI Data Register are referred to in the

phase explanations (Chapter 6.7) as the data register.

Write datap - This register is used to send data to the SCSI bus and to assert SCSI ID bits

during selection phase.

DBO0-DB7 are as the SCSI bus signals of the same name.

Read datap - This register allows the host to read the active SCSI data bus.

- 68 -

DBO0-DB7 are as the SCSI bus signals of the same name.

Initiator Command Register

Address 1 - The Initiator Command Register.

Write icmdp - This register is used to assert some SCSI bus signals.

7 6 5 4 3 2 1 0
Assert ™ DE Assert | Assert | Assert | Assert | Assert
RST ACK BSY SEL ATN | DBUS
Assert Reading these bits shows the status of the signal/data bus. If the
SIGNAL/D BUS bit is one (1) then the signal/data bus is active. When a one is
written to any of these bytes the signal/data bus is asserted.
TM Test Mode. When a one is written to this bit the NCR53C80

DE

output drivers are disabled.

Differential Enable. When a one is written to this bit the external
differential pair driver option is enabled.

Only bits 7 (assert RST), 4 (assert ACK), 2 (assert SEL) and O (assert DATA BUS) are used

in relation to this project.

Mode Register

Address 2 - The Mode Register.

Write modep - This register controls the operational mode of the chip.

T 6 5 4 3 2 1 0
B Mode | Target | Enable | Enable | Enable | Monitor | DMA Arb
DMA Mode | P Chk PInt | EOPInt| Busy Mode
B Mode DMA Block Mode DMA. This controls the characteristics of DMA
handshakes. Set to 0 during selection phase.
Target Mode Sets up NCRS53C80 as an initiator or a target. This bit is set to 0

(NCR53C80 is an initiator) during the selection phase.

- 69 -
Enable P Chk Enable Parity Checking. This bit is set to O (ignore parity) during
the selection phase.

Enable P Int Enable Parity Interrupt. This bit is set to O (interrupt disabled)
during the selection phase.

Enable EOP Int Enable EOP interrupt. This bit is set to O (interrupt disabled)
during the selection phase.

Monitor Busy This bit is set to 0 (no interrupt when BSY lost) during the
selection phase.

DMA Mode This bit is set to 0 (no DMA) during the selection phase.

Arb Arbitrate. This bit is set to 0 (no arbitration) during the selection
phase.

Target Command Register

Address 3 - The Target Command Register.

Write tcmdp - This register mode register allows the host to control the SCSI bus

Information Transfer Phase and assertion of REQ.

LBS X X X Assert Assert Assert Assert
REQ MSG C/D 1/0

LBS Last Byte Sent. This is used by the NCR53C80 to indicate, during
DMA, when the last byte has been sent to the SCSI bus.

Assert SIGNAL Assert REQ has no meaning when operating as an initiator. When
a one is written to any of these bytes the signal is asserted.

Current Scsi Bus Status Register

Address 4 - The Current SCSI Bus Status Register.

Read statlp - This register is used to monitor seven SCSI bus control signals and the data

parity bit.

RST BSY REQ MSG C/D 1/0 SEL DBP

0=
The signals are as the SCSI bus signals of the same name.

Start Dma Send Register/Bus And Status Register

Address 5 - This register is not used in this project.

Input Data Register/Start Dma Target Receive Register

Address 6 - This register is not used in this project.

Reset Parity/Interrupts Register
Address 7 - Reset Parity/Interrupts Register.

Read prstp - This register is reset when it is read. The three bits reset when this register is
read are: parity error bit (bit 5); interrupt request bit (bit 4) and busy error bit (bit 2) in the

Bus and Status Register.

6.7 BUS PHASES

This section shows the relevant circuitry active during each of the phases with reference to

the subroutines in the NCR.Z80 software (Appendix B).
Here is the sequence of events leading to the phase explanations.

The SCSI bus is reset by asserting, then releasing, RST in the NCR53C80 (IC5)

initiator command register.
Class byte and command byte requested, via VDU.
The Selection Phase is entered.

After selecting the hard disk drive, the Command Phase is entered.

e 1) I

After sending the command to the drive the status of the bus is checked by reading the

RO652 control port, via the NCR53C80 current SCSI bus status register.

If BSY is deasserted, command execution is complete and the program starts again. If
BSY is asserted, command execution is incomplete and REQ is tested. If REQ is
deasserted the status of the bus is checked again. If REQ is asserted, all bits except T/D

, 1/0 and MSG are masked out from the current SCSI bus status register.

These bits are used to determine what phase the bus is in and what subroutine is

entered.
MSG | T/D 1/0 Phase Subroutine Entered
R R A Data In Phase DATAIN
R R R Data Out Phase SCSIWR
R A A Status Phase STATUS
A A A Message Phase MESSAGE

A=asserted, R=deasserted

SELECTION PHASE

During the Selection Phase the RO652 hard disk drive is selected by the SCC, via the
NCRS53C80 (IC5). The SELECT subroutine of NCR.Z80 controls the selection of the RO652

hard disk as follows.

The SCC sets up IC5 as an initiator with no interrupts and sets the initiator command

register, IC1 and ICS selected.

The SCC resets the ICS parity/interrupts register, IC2 and IC5 selected.

The address of the RO652 hard disk drive is written from the SCC to the IC5 (RO652
data port), IC1 and ICS selected.

-T2

Information is sent to the ICS target command register to release C/D and 1/0, (data

being transferred into RO652), IC1 and ICS5 selected.

SEL is asserted by writing to the ICS initiator command register (RO652 control port),

IC1 and ICS selected.

The RO652 status port, via the IC5 bus status register, is read until BSY is asserted,

IC2 and ICS selected.

SEL is deasserted by writing to the IC5 initiator command register (RO652 control

port), IC1 and ICS selected.

This completes the Selection Phase.

DATA IN PHASE

During the Data In Phase data is sent from the RO652 hard disk drive, via the NCR53C80
(IC5) and the SCC, to the VDU. The DATAIN subroutine of NCR.Z80 controls the transfer

of a data byte as follows.

The RO652 data port is read, via the NCR53C80 data register, to transfer the data byte
into the SCC, IC2 and IC5 selected.

The SCC then outputs the data byte, which was read from the drive, to the VDU.

ACTK is asserted by writing to the ICS initiator command register (RO652 control port),

IC1 and IC5 selected.

The RO652 status port, via the IC5 bus status register, is read until REQ is deasserted,

IC2 and IC5 selected.

ACK is then deasserted by writing to the IC5 initiator command register (RO652

control port), IC1 and ICS selected.

73 -

The data byte transfer is complete.

DATA OUT PHASE

During the Data Out Phase data is sent from the VDU, via the SCC and the NCR53C80
(IC5), to the RO652 hard disk drive. The SCSIWR subroutine of NCR.Z80 controls the

transfer of a data byte as follows.
The data byte, to be written to the RO652, is read from the VDU into the SCC.

Information is sent to the IC5 target command register to release T/D and 1/0, (data

being transferred into RO652), IC1 and ICS selected.

The data byte is written to the RO652 by writing to the ICS data register, IC1 and IC5

selected.

ACK is asserted by writing to the IC5 initiator command register (RO652 control port),

IC1 and ICS selected.

The RO652 status port, via the ICS bus status register, is read until REQ is deasserted,

IC2 and ICS selected.

ACK is then deasserted by writing to the IC5 initiator command register (RO652

control port), IC1 and ICS selected.

The data byte transfer is complete.

COMMAND PHASE

During the Command Phase a command byte is sent from the VDU, via the SCC and the
NCR53C80 (IC5), to the RO652 hard disk drive. The SEND6 subroutine of NCR.Z80

controls the transfer of a command byte as follows.

e

The command byte, to be written to the RO652, is read from the VDU into the SCC.

Information is sent to the IC5 target command register to assert /D and release 1/0,

(command being transferred into RO652), IC1 and IC5 selected.

The RO652 status port, via the ICS bus status register, is read until REQ is asserted,

IC2 and ICS selected.

The command byte is written to the RO652 by writing to the IC5 data register, IC1 and

IC5 selected.

ACK is asserted by writing to the IC5 initiator command register (RO652 control port),

IC1 and ICS5 selected.

The RO652 status port, via the IC5 bus status register, is read until REQ is deasserted,

IC2 and ICS selected.

ACK is then deasserted by writing to the ICS5 initiator command register (RO652

control port), IC1 and ICS5 selected.

The command byte transfer is complete.

STATUS PHASE

During the Status Phase status information is sent from the RO652 hard disk drive, via the

NCRS53C80 (IC5) and the SCC, to the VDU. The STATUS subroutine of NCR.Z80 controls

the transfer of a data byte as follows.

The RO652 data port is read, via the NCR53C80 data register, to transfer the status
byte into the SCC, IC2 and IC5 selected.

The SCC then outputs the status byte, which was read from the drive, to the VDU.

=75 -

ACK is asserted by writing to the ICS initiator command register (RO652 control port),

IC1 and ICS5 selected.

The RO652 status port, via the ICS bus status register, is read until REQ is deasserted,

IC2 and ICS5 selected.

ACK is then deasserted by writing to the IC5 initiator command register (RO652

control port), IC1 and ICS5 selected.

The status byte transfer is complete.

MESSAGE IN PHASE

During the Message In Phase message information is sent from the RO652 hard disk drive,
via the NCR53C80 (IC5) and the SCC, to the VDU. The MESSAGE subroutine of NCR.Z80

controls the transfer of a data byte as follows.

The RO652 data port is read, via the NCR53C80 data register, to transfer the message
byte into the SCC, IC2 and ICS5 selected.

The SCC then outputs the message byte, which was read from the drive, to the VDU.

ATK is asserted by writing to the IC5 initiator command register (RO652 control port),

IC1 and ICS selected.

The RO652 status port, via the ICS bus status register, is read until REQ is deasserted,
IC2 and ICS selected.

ACK is then deasserted by writing to the IC5 initiator command register (RO652

control port), IC1 and ICS selected.

The message byte transfer is complete.

-76 -

6.8 SOFTWARE

NCR.Z80 controls VDU, SCC and RO652 input/output. The program contains:

Equates for VDU control, VDU ASCII characters, NCR53C80 SCSI, NCR53C80
SCSI status/control, SCC RAM storage size.

Messages which are sent to the VDU during operation.

Subroutines which control VDU input/output, baud rate selection and reading from and

writing to the VDU.

Subroutines controlling the RO652 hard disk drive phases.

| [l] |

o
a¥vo4d

e 3OVEHIALNI 1S0S <~ 0015

aPOID| aIdval NMYH0 Juul 41v0|0ddv]|

ANIDIT3LNI

LEL B
oo ©

T
LR M
»~o \|t|_|1A
14

H
o

e
LoMEN
D

11

LOVER

leleielals]

1931 %

W

ﬂjljl

PEELEELE
1

T 219N

77
Figure 6.1

1]
dd4d.[

. €l g =
- TNY mo_ hu&.l]!b A J_w_.._: T -
L = ~
e d 20if =
i . = - x G -
&] = - ’ Y =
- -
- =
4 10 %
8 :
o
£
L3IHS FWO5 1O O
1 B I 7 I v I < | ¥ 7 3

-78 -

Figure 6.2

AT AL 1] EYo-OFF Y
]) 4 Bl [7] B 3 T 3 t | z I |
ON ONIMYIA o
FOVHHILINI 1ISOS «00I1S 4
ANIDITI3 LN
Uv0| EADNddY| OHORO a3ovul NMYSD JUL 1Iva|Qedv] NOILIINDS3 E
4
-
E]
-
T LIANS ST =N =TT AMOEFL BTIDNIG — 30 d @aNDMNIS AvAA T (~id 91) 1S
(SHOLIDVYavYD DrITEMN023Q) AT 21070 £2—12
Qb
(SEHOLSIFAY J4MN="1"1g) rxl Tu— v
\HOva MNOI LwMNIna3 L g0oLS163d) 9 » Uogs /U0TT THNY
(HIV e MOILYNIWEI L H0LSIS3YH) 9 X UOEE/U0TT 1N
HOLYTINT3IY IDVLIIOA Wi WTOT)NAS+ @O8L 801
TR AWD ORNVYRN—ZAILITOas ANdni=-C 3Tdid_ 1L O1877L e Mg L Mg (Mg 71> L21
SuILHEIAN K3 TOSI7L TN £ MNid (Mg 1) 921
9% HNid
B MNid 3
e MNid
< Nid
diHD BDw=HEEALN 1S3 O0B8I=G ST MNid £ Mid (Nid 87) QDI -
S LVD ANY —3AILISOd LNdNI=T QwND 80S17e 71 Nid L Nid (Nid 71) 72I
(ANdLMO 3T0d WILO L) HSOLVEHYENOD RANLINDYW LIB—F TIPS7L OT Nid o\ Mg (Mg OT) &1
(SANdLNO I AVLIS-© QILUIANINON) VIH4NS WLIO T7ZTS ML QT mNid o Nid ({Nid OT) ZTO!
(SANdLNO I LvIlSE AILEIAMMNON) "33d4NBWlI0 T9ITe v OZ Nid Ol Nid (Nid 0T> 121 i
NS+ AO
8 NOILd1¥0S3q ldvd |
| 1S1T7 SsLdvd
¥
0 133W5 FIvIS 10N OO 40 1¥vd

] |

-79 -

CHAPTER 7
USES OF THE SCSI SYSTEM

The SCSI system, as described in this thesis, can be used to exercise any peripheral device
eg. printers, hard disk drives, tape streamers etc. which support the Small Computer System
Interface (SCSI). It is a very useful tool for service engineers, because it can communicate
directly with a wide range of peripheral devices and is manufacturer independent. It can be
used to determine whether a peripheral or a host computer is the cause of failure in a

non-working computer system.

The SCSI system can be used to exercise a hard disk drive, for example, by seeking, writing
and reading from specified tracks. The SCSI system can also be used to change the format
parameters of a hard disk drive (sectors per track, bytes per sector, interleave etc.) and then

low level format the drive using these new parameters.

Custom software can be written for the SCSI system and programmed into the SCC resident
EPROM. This software can be used to exercise any SCSI device, with or without user input.

Some uses of such software are:

Quality Control. Manufacturers can use the SCSI system as part of a "quality control”

system to test their SCSI peripherals before they are sent out to customers.

Goods In. OEMs can use the SCSI system as part of a "goods in" test to check out

incoming SCSI peripherals before they are used as part of computer systems.

7.1 EXAMPLE FUNCTIONS

The following examples are functions which cannot normally be carried out from a standard
operating system. All have been carried out using the SCSI system, which consists of the

following:

- 80 -

S-100 bus system (motherboard and power supply)
VDU

Cromemco Single Card Computer (SCC)
Intelligent SCSI adapter card (See Chapter 6)
RO652 hard disk drive

EXAMPLE 1 : EXAMINE DRIVE FORMAT PARAMETERS

When the SCSI system is powered up the prompt for the Class of command appears on the
VDU. The class (0) and the command (1A) of the Mode Sense op-code are entered, then the
page code for the drive format parameters (03). The allocate length is then prompted for, this
specifies the number of bytes that has been allocated for the returned data. The allocate
length is set to the maximum value (FF), as the drive will terminate the command when all
data has been transferred. When this command is issued, the hard disk drive will respond by
returning the bytes shown. Then the status byte and message byte are returned, indicating
command completion. The following shows the sequence of entries, with user responses in

bold type.

SCSI Tester V 01.02 July 1986
Class: 0
Command: 1A

Page Code: 03
Allocate length: FF

18 00 00 00 03 13 01 32 01 32 00 06 00 06 00 22 02 00 00 02 00 00 00 00 80
Status: 00 Message: 00
The 25 bytes returned by the mode sense command are split into two different parts as

shown below, the far left column shows the returned value:

Mode sense header (4 bytes)
Format parameters page (21 bytes)

Mode Sense Header (4 bytes)

Bit| 7 6 5 4 3 2 1 0
18] Byte 0 Sense Data Length
00| Bytel 00H
00 Byte2 00H
00f Byte3 00OH

I

Sense Data Length This is the number of bytes, in hexadecimal, returned from the
drive during the data in phase. The sense data length does not
include itself.

21 Byte Format Parameters Page

Bit| 7 6 5 4 3 2 1 0
03| ByteO| SDP 0 0 0 0 0 1
13| Bytel Page Length (00...13H)
01| Byte2 Tracks per Zone MSB
32| Byte3 Tracks per Zone LSB
01| Byted Alt Sectors per Zone MSB
32| ByteS Alt Sectors per Zone LSB
00| Byte6 Alt Tracks per Zone MSB
06| Byte7 Alt Tracks per Zone LSB
00f Byte8 Alt Tracks per Volume MSB
06 Byte9 Alt Tracks per Volume LSB
00| Byte 10 0OH
22| Byte 11 Sectors per Track
02| Byte 12 Bytes per Sector MSB
00| Byte 13 Bytes per Sector LSB
00| Byte 14 00H
02| Byte 15 Interleave
00| Byte 16 00H
00| Byte 17 00H
00| Byte 18 00H
00| Byte 19 00H
80(Byte 20 80H

SDP The SDP bit allows the user to Set Default Parameters. If this bit
is set the user implements the factory defined default parameters
for this page.

The bytes returned translate as follows:

The Page Length is 13H, 19 decimal.

The number of Tracks per Zone is 132H, 306 decimal.

The number of Alternate Sectors per Zone is 132H, 306 decimal.
The number of Alternate Tracks per Zone is 6.

The number of Alternate Tracks per Volume is 6.

The number of Sectors per Track is 22H, 34 decimal.

The number of Bytes per Sector is 200H, 512 decimal.

The Interleave is 2.

-8 .

EXAMPLE 2 : LOW-LEVEL FORMAT

When the SCSI system is powered up the prompt for the Class of command appears on the
VDU. The class (0) and the command (04) of the Format op-code are entered, then the
format control code (00). The interleave is then prompted for, which is set to 03. When this
command is issued, the hard disk drive will execute a low-level format. Then the status byte
and message byte are returned, indicating command completion. The following shows the

sequence of entries, with user responses in bold type.

SCSI Tester V 01.02 July 1986
Class: 0
Command: 04

Format Control: 00
Interleave: 03

Status: 00 Message: 00
With the format control code set to 00, the drive is formatted using both Primary Defect List
(P-LIST) which was written on the drive during manufacture and Growing Defect List

(G-LIST) which the user writes to the drive.

The Interleave has been changed from 02, as shown in the previous example to be 03. If the
drive format parameters are re-examined after the format is complete, byte 15 of the format

parameters page will be 03.

REFERENCES

Draft Proposed American National Standard for Information Systems - Small Computer

System Interface (SCSI) X3T9.2 Revision 17

American National Standard Common Command Set (CCS) of the Small Computer System

Interface (SCSI) X3T9.2 Revision 4

RODIME 650 Series User Maunual (Product Number: USM 00090)

CROMEMCO Single Card Computer (SCC) Instruction Manual

ZILOG Z80A CPU Data Shegts

The S-100 Bus Handbook, Dave Bursky 1980

TEXAS INTRUMENTS TTL Data Book for Design Engineers Volume 1

NCRS53C80 SCSI Interface Chip Design Manual

Programming the Z80, Rodnay Zaks 1980

AT

APPENDIX A
TTL LOGIC INTERFACE BOARD SOFTWARE

Al MAIN.Z80
A2 EQU.Z80
A3 MSG.Z80
A4 VDU.Z80
A5 SCSILZ80

A.1 MAIN.Z80

; Development program SCSI device tester

*include scsiequ.z80
*include scsimsg.z80
*include scsivdu.z80
*include scsiscsi.z80

; Main Program start

start 1d
out
1d
out
1d
1d
call
JP

prog 1d
1d
1d
call
1d
call
1d
1d
cp
jr
dec
1d
push
1d
call
1d
call
1d
1d
and
1d
inc
1d
cp
jr
and
1d
1d
cp
jr
1d
add
1d
inc
1d
cp
jr

cmdok pop
cp
jr
cp
Jp

a,rst
contp,a
a,00h
contp,a
hl,stack
sp,hl
getbaud
prog

hl,stack
sp,hl
hl,bannerl
outst

b,2

inhex
hl,inhexs + 1
a,(hl)

null
nz,cmderr
hl

a,(hl)

af
hl,msgecmd
outst

b,3

inhex
hl,inhexs
a,(hD)

Ofh

e,a

hl

a,(hl)

null
z,cmdok
Ofh

d,a

a,e

1

" nz,cmderr

a,10h
a,d

e,a

hl

a,(hl)
null
nz,cmderr
af

’0!
z,class0
3 1 3
z,classl

; reset drive

; set up stack pointer register

; set the baud rate

; set up stack pointer register
; output Class request to VDU
; one byte only

; hl -> second byte
; test only one byte

; get the byte
: save Class

; ask for command hex bytes
; possibly two bytes

; hl -> first byte
; get first byte

; keepitine

; only one byte

; save second byte
; get back first byte
: check the value is one

; form command
;keepitine

; only two bytes allowed
; restore Class
; test valid Class

=A% -

cp g
ip z,class7
cmderr 1d hl,msgwcl ; command error exit
call outst
jr prog

; Class-0 commands

classO 1d ae
1d hLbuff ; hl -> command buffer
1d (hl),a ; byte-0
inc hl
cp 00h ; test drive ready
jr z,null5
cp Olh ; recalibrate
jr z,null5
cp 03h ; Tequest sense
jr z,8ens5
cp 04h : format unit
it z,form5
cp 07h ; reassign blocks
jp z,reass
cp 08h ; read
ip z,read5
cp Oah ; write
jp z,writ5
cp Obh ; seek
jp z,seekS
cp 12h ; inquiry
jp zingy5
cp 15h ; mode select
ip z,msel5
cp lah ; mode sense
jp z,msenS
cp 1dh ; send diagnostics
jp z,diag5
JP prog

; Send a null byte into command buffer and increment pointer

Zero 1d (hl),null
inc hl
ret

; Get a hex byte and convert to binary byte

gethex2 call outst j
1d b,3 ; maximum of two bytes

call inhex
call binary
ret

; Byte-1 followed by 5 null bytes

; used by cmd000 and cmd001
null5 1d b,5
null5a call zero ; byte-1 to byte-5 are null

djnz null5a
ip clOsend

-Ad-

; Byte-1 followed by 3 nulls, allocation length (18), 1 null

; used by cmd003

senss
sensSa

1d
call
djnz
1d
inc

b,3

Zero
senssa
(hD),12h
hl
(hl),null
select
hl,buff
send6

hl,msgsens

outst
scsird
status
message

prog

; byte-1 to byte-3 are null

; allocation length

; sense byte banner
; read data bytes and output to VDU

; Byte-0 followed by format control code, 2 null bytes, interleave, 1
; null byte used by cmd004

form5

form5a

; Byte-1 followed by 5 null bytes
; used by cmd007

reass
reasSa

push
1d
call
pop
1d
inc
1d
call
djnz
push
1d
call
pop
1d
inc
1d
call
Id
call
call
call
call
Jp

1d
call
djnz
call
1d
call
call
call
call

jp

hl

hl,msgfmc

gethex2
hl

(hl),a

hl

b,2

Zero
form5a
hl
hl,msgfmi
gethex2
hl

(hl),a

hl
(hl),null
select
hl,buff
send6
scsiwr
status
message

prog

b,5

Zero
reasda
select
hl,buff
send6
sCSiwr
status
message

prog

; save pointer
; format control requested

; Testore pointer
; byte-1
; byte-2 and byte-3 are null

; save pointer
; format interleave requested

; restore pointer
; byte-4

; byte-5 null

; byte-1 to byte-5 are null

- A5 -

; Byte-0 followed by track address and one null byte

; used by cmd008

read5 call setup5
call select
1d hl,buff
call send6

call scsird
call status
call message

p prog

; Byte-0 followed by track address and one null byte

; requests write byte value once only

; Byte-0 followed by track address and one null byte

; used by cmd00a

writ5 call setup5
call select
1d hl,buff
call send6
call scsiwb
call status
call ~ message
Jp prog

; used by cmd00Ob

seek5 call setup5
ip clOsend

; setup5 - provides byte-1 to byte-5 for read5, writ5 and seek5

; setupSa

setupS push hl
1d hl,msgtckh
call gethex2

pop hl
1d (hl),a
inc hl
push hl

1d hl,msgtckm

call gethex2

pop hl
1d (hl),a
inc hl
push hl

1d hl,msgtckl
call gethex2

pop hl
1d (hl),a
inc hl

setupSa push hl
1d hl,msgbent
call gethex2

pop hl

1d (hl),a
inc hl

1d (hl),null

ret

byte-4 and byte5 for frd5 and fwr5

; save pointer
; high track address requested

; Testore pointer
; byte-1

; save pointer
; middle track address requested

; restore pointer
; byte-2

; save pointer
; low track address requested

; Testore pointer
; byte-3

; save pointer
; block count

; restore pointer
; byte-4

; byte-5 null

= Al

; Byte-0 followed by 3 null bytes, allocation length, 1 null byte
; used by cmd012

inqy5 1d b,3
inqySa call zero ; bytes 1to 3 are null
djnz ingy5a
push hl ; save pointer
1d hl,msgalen ; allocation length requested
call gethex2
pop hl ; Testore pointer
1d (hl),a ; byte-4 is allocation length
inc hl
1d (hl),null ; byte-5 null
call select
1d hl,buff
call send6

call scsird
call status
call message

jp prog

; Byte-0 followed by 3 null bytes, parameter list length, 1 null byte
; used by cmd015

msel5 1d b.3

mselSa call zero ; bytes 1 to 3 are null
djnz msel5a
push hl ; save pointer
Id hl,msgplst ; allocation length requested
call gethex2
pop hl ; Testore pointer
1d (hl),a ; byte-4 is parameter list length
inc hl
1d (hl),null ; byte-5 null
call select
1d hl,buff
call send6
call scsiwr
call status
call message
Jp prog

; Byte-0 followed by null, page code, null, allocation length, null
; used by cmdOla

msens call zero ; byte-1
push hl ; save pointer
1d hl,msgpcod ; page code requested
call gethex2
pop hl ; restore pointer
1d (hl),a ; byte-2 is page code
inc hl .
call zero ; byte-3 is null
push hl ; save pointer
Id hl,msgalen ; allocation length requested
call gethex2
pop hl ; restore pointer
1d (hl),a ; byte-4 is allocation length
inc hl
Id (hl),null ; byte-5 null

call select
1d hl,buff

s Ao

call send6
call scsird
call status
call ~message

jp prog
; Byte-1 followed by 04h followed by 4 null bytes
; cmd01d
diag5 1d (h1),04h ; byte-1
inc hl
1d b4
diag5a call zero ; byte-2 to byte-5 are null
djnz diagSa
ip clOsend

; Class-1 commands

classl 1d a,e
add 20h ; add class-1 for byte-0
1d hl,buff ; hl -> command buffer
1d (hl),a ; byte-0
inc hl
call zero ; byte-1
cp 25h ; read capacity
jp zcapy9
cp 28h ; read extended
ip z,rdex9
cp 2ah ; write extended
ip z,wrex9
cp 2fh ; verify
jp z,verf9
cp 37h ; read defect data
ip z,deft9
cp 3ch ; read data buffer
jp z,rddb9
cp 3bh ; write data buffer
jp z,wrdb9
JP prog

; Byte-0 and byte-1 followed by 4 byte logical block address, 2 null bytes
; PMI byte and null byte
; used by cmd105

capy9 push hl ; save pointer
1d hl,msglbal
call gethex2

pop hl ; restore pointer

1d (hl),a ; byte-2 is LBA high byte
inc hl

push hl ; save pointer

1d hl,msglba2
call gethex2

pop hl ; restore pointer

Id (hl),a ; byte-3 is LBA byte 2
inc hl

push hl ; save pointer

1d hl,msglba3

call gethex2

pop hl ; restore pointer

1d (hl),a ; byte-4 is LBA byte 3

hl

hl
hl,msglba4
gethex2

hl

(hl),a
hl

Zero
zero

hl
hl,msgpmi
gethex2
hl

(hl),a

hl
(hl),null
select
hl,buff
send10
scsird
status
message

prog

- A8 -

; save pointer

; Testore pointer

; byte-5 is LBA low byte
; byte-6 null

; byte-7 null
; save pointer

; Testore pointer
; byte-8 is PMI

; byte-9

; Byte-0 and byte-1 followed by 2 nulls,3 byte logical block address,
; 1 null, 2 byte block count and null byte
; used by cmd108, cmd10a and cmd10f

rdex9

wrex9

verf9 call
push
1d
call
pop
1d
inc
push
1d
call
pop
1d
inc
push
1d
call
pop
1d
inc
call
push
1d
call
pop
1d
inc
push
Id
call
pop
1d
inc

Zero
hl
hl,msglbal
gethex2

hl

(hl),a

hl

hl
hl,msglba2
gethex2

hl

(hD),a

hl

hl
hl,msglba3
gethex2

hl

(hl),a

hl

Zero

hl
hl,msgbcnt
gethex2

hl

(hl),a
hl

hl
hl,msgbct2
gethex2

hl

(hl),a

hl

; byte-2
; save pointer

; restore pointer
; byte-3 is LBA high byte

; save pointer

; restore pointer
; byte-4 is LBA byte 2

; save pointer

; Testore pointer
; byte-5 is LBA low byte

; byte-6 null
; save pointer

; Testore pointer
; byte-7 is block count MSB

; save pointer

; Testore pointer
; byte-8 is block count LSB

call
rdex9a call

pal]

Jp

(hD),null
select
hl,buff
send10
scsird
hl,buff
a,2ah
(hl)
nz,rdex9a
scsiwb
status
message

prog

- A9 -

; byte-9

; Byte-0 and byte-1 followed by P/G/CODE byte, 4 nulls,

; 2 byte allocation length and null byte

; used by cmd117

deft9 push
1d
call
pop
1d
inc
1d

deft9a call
djnz
push
1d
call
pop
1d
inc
push
1d
call
pop
1d
inc

hl
hl,msgdeft
gethex2

hl

(hl),a

hl

b,4

Zero
deft9a

hl
hl,msgalen
gethex2

hl

(hl),a

hl

hl
hl,msgaln2
gethex2

hl

(hl),a

hl
(hl),null
select
hl,buff
send10
scsird
status
message

prog

; save pointer

; Testore pointer
; byte-2 is P/G/Code
; bytes 3 to 6 are null

; save pointer

; Testore pointer

; byte-7 is MSB allocation length
; save pointer

; Testore pointer

; byte-8 is LSB allocation length

; byte-9

; Byte-0 and byte-1 followed by 6 nulls,

; 2 byte allocation length and null byte
; used by cmd117 and cmd11c

rddb9

wrdb9 1d

rddb9a call
djnz
push
1d
call
pop
1d
inc

b,6

Zero
rddb9a

hl
hl,msgalen
gethex2

hl

(hl),a

hl

; bytes 3 to 6 are null

; save pointer

; Testore pointer
; byte-7 is MSB allocation length

- A10 -

push hl ; save pointer
1d hl,msgaln2
call gethex2

pop hl ; Testore pointer

1d (hl),a ; byte-8 is LSB allocation length
inc hl

1d (hl),null ; byte-9

call select

Id hl,buff

call sendl0
call scsird

1d hl,buff
1d a,3bh
()

r nz,rddb9b
call scsiwb
rddb%b call status
call message

Jp prog

; Class-7 commands

class? Id a,e
add 0OeOh ; add class-7 for byte-0
1d hl,buff ; hl -> command buffer
1d (hl),a ; byte-0 to command buffer
inc hl _
cp QOeOh ; maintenance seek
jp z,mseek5
cp QOelh ; format maintenance tracks
jp z,mform5
cp 0Oe2h ; certify
jp z,certd
cp Oe8h ; fast read
jp z,frd5
cp Oeah : fast write
ip z,fwr5
JP prog

; Byte-0 followed by 1 null, 2 byte cylinder number, 1 byte head number
; and null byte

; used by cmd700
mseekS call zero ; byte-1
push hl ; save pointer

1d hl,msgcylh
call gethex2

pop hl ; restore pointer

1d (hD),a ; byte-2 is cylinder number high byte
inc hl

push hl ; save pointer

1d hl,msgcyll
call gethex2

pop hl ; restore pointer

1d (hl),a ; byte-3 is cylinder number low byte
inc hl

push hl ; save pointer

1d hl,msghead

call gethex2

pop hl ; Testore pointer

Id (hl),a ; byte-4 is head number

-All -

inc hl
1d (hl),null ; byte-5 null
jr cl7send
; Set pattern of bytes
; used by cmd701
mform5 Id (h1),00000000b ; byte-1
inc hl
1d (h1),01010010b ; byte-2
inc hl
1d (h1),01001111b ; byte-3
inc hl
1d (h1),00000000b ; byte-4
inc hl
1d (h1),00000000b ; byte-5 null
jr cl7send
; Byte-0 followed by 2 null bytes, pass count, 2 null bytes
; used by cmd702
cert5 call zero ; byte-1
call zero ; byte-2 is null
push hl ; save pointer
1d hl,msgpcnt ; allocation length requested
call gethex2
pop hl ; Testore pointer
1d (hl),a ; byte-3 is pass count
inc hl
call zero ; byte-4 null
1d (hl),null ; byte-5 null
jr cl7send

; Byte-0 followed by 3 null bytes, block count, 1 null byte
; used by cmd708 and cmd70a

frd5

fwry 1d

fwrda call
djnz
call
jr

b,3

zero ; bytes 1 to 3 are null
fwr5a

setupSa

cl7send

; Class-7 send control bytes

clOsend

cl7send call
1d
call
call
E:al]
Jp
end

; end of file

select
hl,buff
send6
status
message

prog

start

-Al12 -

A2 EQU.Z80

; Development program SCSI device tester

; General equates

; YDU equates

vdustat equ 00h ; VDU status register
vdubaud equ 0Oh ; VDU baud rate register
vdudata equ Olh ; VDU data register
vducmd equ 02h ; VDU command register
rda equ 6 ; RDA bit

tbe equ 7 ; TBE bit

; ASCII equates

null equ OOh

cr equ Odh

If equ QOah

; SCSI equates

datap equ 20h

contp equ 21h

statp equ 21h

; Status bit positions

bsy equ O

msg equ 1

cd equ 2

req equ 3

io equ 4

; Control values

ack equ 1

st equ 2

sel equ 4

; Storage allocation in SCC RAM

; 2000h to 23ffh

stack equ 2100h ; reserved for stack
inhexs equ 2200h ; ASCII bytes and trap for last byte
buff equ 2220h ; working buffer
buffl equ 2240h ; working buffer

; end of file

A.3 MSG.Z80

-Al13 -

; Development program SCSI device tester

bannerl

crlf
msgalen
msgaln2
msgbent
msgbct2
msgemd
msgcylh
msgcyll
msgdeft
msgfmc
msgfmi
msghead
msghexe
msglbal
msglba2
msglba3
msglbad
msgmsg
msgnot
msgpcent
msgpcod
msgpmi
msgplst
msgsens
msgspac
msgstat
msgtckh
msgtckm
msgtckl
msgwcl

; end of file

db

cr,If,If,’SCSI Tester V 00.02 June 1986’ cr,If
*Class: ’,null

cr,lf,null

cr,lf,” Allocate length 1: ’,null
cr,lf,” Allocate length 2: *,null
cr,If,’Block Count 1: ’,null
cr,lf,’Block Count 2: ’,null
cr,lf,’Command: ’,null
cr,If,’Cylinder 1: ’,null
cr,If,’Cylinder 2: ’,null
cr,lf,’P/G/Code: ’,null
cr,lf,’Format Control: *,null
cr,lf,’ Interleave: ’,null
cr,lf,’Head: ’,null

cr,lf,’? HEX ?° cr,If If,null
cr,lf,’LBA 1: ’,null
cr,lf,’LBA 2: ’,null
cr,lf,’LBA 3: ’ null
cr,If,’LBA 4: °,null

* Message: ’,null

cr,If,’ 2227 null

cr,lf,’Pass Count: ’,null
cr,lf,’Page Code: ’,null
cr,lf,’PMI: ’ ,null
cr,lf,’Parameter List Length: ’,null
cr,lf,’Report:’ cr,If,null

>’ null

cr,If,’Status: ,null

cr,lf,” Address 1: ’,null

cr,lf,” Address 2: ’,null

cr,If,’ Address 3: ’,null

cr,If,’ INVALID’ ;null

-Al4-

A.4 VDU.Z80

; Development program SCSI device tester
; VDU 1/0 routines
; Output a null terminated string

; hl-> string
; preserves all registers

outst push af ; save registers
push hl

outst] call tbemp
1d a,(hl) ; get the byte
cp null
jr z,outst2 ; a null, so all done
out vdudata,a
inc hl ; point to next byte
jr outst1

outst2 pop hl ; restore registers
pop af
ret

; Wait for transmitter bufer to empty
; preserves all registers

tbemp push af

tbempl in a,vdustat ; wait for TBE
bit tbe,a
jr z,tbemp1
pop af
ret

; Wait for read data available and read byte into a
; preserves all registers except af

gbyte in a,vdustat ; wait for a digit available
bit rda,a
jr z,gbyte
in a,vdudata
ret

; Output a null terminated byte to VDU followed by a space
; (a) = byte
; preserves all registers

byteout push af ; output hex byte to VDU
and 0OfOh
ITca
rca
rrca
rca
cp Oah ; test for hex adjustment
jr ¢,byteoul
add a,7
byteoul add 30h
call tbemp
out vdudata,a
call tbemp
pop af
push af

and Ofh

- AlS -

cp Oah ; test for hex adjustment
it c¢,byteou?
add a7

byteou2 add 30h
out vdudata,a

call tbemp

1d a,’’ , output a space
out vdudata,a

pop af

ret

; Convert one/two hex values (high/low) to binary
; high hex is stored in inhexs

; (a) = binary byte

; preserves all registers except af

binary push hl
1d hl,inhexs + 1

1d a,(hl) ; if null only one byte input

cp null

ip nz,binaryl

dec hl

Id a,(hl) ; get byte

and Ofh

1d e,a ; save hex valueine

jr binary2
binaryl dec hl ; form both nibbles

rld

1d a,(hl)

1d e,a : save hex value in e
binary2 1d a,e ; get byte and return itin a

pop hl

Tet

; Input a hex string of numbers up to inhexm long terminated with cr
; input is stored in inhexs

; oninput b = maximum number of hex digits required

; preserves all registers

inhexm equ Oah

inhex push af ; save registers
push bc
push hl
1d a,inhexm -2
cp b
jr c,inhexe
1d hl,inhexs
1d b,inhexm : load count
inhex0 1d (hl),null ; nulls to storage area
inc hl
djnz inhex0
1d hl,inhexs ; get back pointer
1d b,inhexm ; load count
inhex1 call gbyte ; get a byte from VDU
and 7fh ; strip parity bit
cp cr ; is number finished
jr z,inhex2
1d (hl),a
call outst ; echoto VDU
cp 0’
jr c,inhexe ; abandon if not hex

cp 9’41

jr c,inhex3

cp ‘a’

jr c,inhex4

sub a,20h
inhex4 cp ‘A’

jr c,inhexe

cp "F+1

jr nc,inhexe

sub a7
inhex3 Id (hl),a

inc hl

djnz inhexl

jr inhexe
inhex2 1d a,inhexm

© sub b

1d b,a

cp null

jr z,inhexe

pop hl

pop bc

pop af

ret
inhexe 1d hl,msghexe

call outst

JP prog

: Baud rate selection routine

baudrs db 10010000b
db 11000000b
db 10100000b
db 10010000b

db 10001000b

db 10000100b

db 10000010b

db 00000001b
getbaud Id hl,baudrs

Id c,vdubaud

1d a,11h
baudl out vducmd,a

outi

call gbyte

call gbyte

and 7fh

cp Odh

1d a,l

jr nz,baudl

ret

; end of file

- Al6 -

: abandon if not hex

; abandon if not hex
; adjust byte

; store digit

; increment pointer

; number too long

; b = no of hex digits

; abandon as no input

; point to error message

; 9600
; 4800
; 2400
;1200
; 300
: 150
: 110

; hl -> baud rate table

; ¢ = baud port

; reset bit and high baud
; Teset

; recognise a cr?
; reset bit only

- Al7 -

A.5 SCSI.Z80
; Development program SCSI device tester

; SCSI Subroutines

; Read status byte from drive and output to VDU
; preserves all registers

status push af
push hl
statusQ in a,statp ; test for status byte
cp Ofdh
jr nz,status(
1d hl,msgstat ; hl -> banner
call outst
in a,datap ; read drive status byte
call byteout
1d a,ack ; acknowledge drive
out contp,a
status1 in a,statp ; wait for request false
bit req,a
jr nz,status1
1d a,00h ; reset acknowledge false
out contp,a
pop hl
pop af
ret

; Read message byte from drive and output to VDU
; preserves all registers

message push af

push hl
messag(in a,statp ; test for status byte
- cp Offh
jr nz,messag0
ld - hlmsgmsg ; hl -> banner
call outst
in a,datap ; read drive status byte
call byteout
1d a,ack ; acknowledge drive
out contp,a
messagl in a,statp ; wait for request false
bit req,a
jr nz,messagl
1d a,00h ; put acknowledge false
out contp,a
pop hl
pop af
ret

; Read data bytes from drive and output to VDU
; preserves all registers

scsird push af

scsird0 in a,statp ; test for request
bit req,a
jr z,scsird0
cp 0fSh ; is it read in data?
jr nz,scsird2 ; return as all done

in a,datap ; read data byte

call byteout

1d a,ack

out contp,a
scsird1 in a,statp

bit req,a

jr nz,scsird1

1d a,00h

out contp,a

jr scsird0
scsird2 pop af

ret

; Write data bytes to drive from VDU

; preserves all registers

scsiwrb db cr,If,’B: ’,null

scsiwr push af
push hl
scsiwr(in a,statp
bit req,a
jr z,scsiwr()
cp 0eSh
jr nz,scsiwr2
1d hl,scsiwrb
call outst
1d hl,inhexs
call inhex
call binary
out datap,a
1d a,ack
out contp,a
scsiwrl in a,statp
bit req,a
jr nz,scsiwrl
1d a,00h
out contp,a
jr scsiwr()
scsiwr2 pop hl
pop af
ret

- AlS -

; acknowledge drive

; wait for request false

; put acknowledge false

; look for next data in byte

; test for request

; is it requesting data?
; return as all done

; write data byte
; acknowledge drive

; wait for request false

; put acknowledge false

; look for next data in byte

; Write block of bytes to drive from VDU

; preserves all registers

scsiwb push af

push hl

1d hl,scsiwrb

call outst

Id hl,inhexs

call inhex

call binary

1d h,a
scsiwb0) in a,statp

bit req,a

jr z,scsiwb0

cp 0eSh

jr nz,scsiwb2

1d a,h

out datap,a

1d a,ack

out contp,a
scsiwbl1 in a,statp

; ask for byte

; save the byte
; test for request

; is it requesting data?
; return as all done

. get the byte back

; write data byte

: acknowledge drive

; wait for request false

scsiwb2

bit
jr
1d
out
jr
pPop
pop
ret

; Select drive
; preserves all registers

select

selectl

; Send ten or six control bytes to drive
; hl -> buffer containing the six bytes

push
1d
out
1d
out
in
bit
jr

Id
out

pop
ret

req,a
nz,scsiwbl
a,00h
contp,a
scsiwb0

hl

af

af
a,00000001b
datap,a
a,sel
contp,a
a,statp
bsy,a
z,selectl
a,00h
contp,a
af

; preserves all registers

send6

send10

sendba

send6b

; end of file

push
push
push
1d

1d

jr
push
push
push
1d

1d

in
cp
jr
outi
1d
out
in
cp
jr

1d
out
cp
jr

1d
call
pop
pop
pop
ret

af

bc

hl
c,datap
b,6
send6a
af

bc

hl
c,datap
b,10
a,statp
Oedh

nz,send6a

a,ack
contp,a
a,statp
Oe5Sh
nz,send6b
a,0
contp,a

b
nz,send6a
hl,crlf
outst

hl

bc

af

- Al9 -

; put acknowledge false

; look for next data in byte

: select drive

; wait for bsy true

; reset select false

; wait for request
; send byte
; acknowledge byte ready

; wait for drive to read byte

; set acknowledge false

; cr/If to tidy display

- Bl -

APPENDIX B
INTELLIGENT INTERFACE BOARD SOFTWARE

B.1 NCR.Z80

B.1 NCR.Z80

-B2 -

; Development program SCSI device tester

. ********Equates********

; VDU equates

vdustat equ 00h
vdubaud equ 00Oh
vdudata equ Olh
vducmd equ 02h

rda equ 6

tbe equ 7

; ASCII equates

null equ 00h

cr equ Odh

If equ QOah

; NCR53C80 SCSI equates
base equ 20h
datap equ base +0
icmdp equ base +1
modep equ base +2
tcmdp equ base+3
statlp equ base+4
prstp equ base +7

; VDU status register

; VDU baud rate register
; VDU data register

; VDU command register
; RDA bit

; TBE bit

; Base port

; data port

; initiator command port

; mode port

; target command port

; bus status port

; Teset parity/interrupts port

; Initiator Command Register commands - icmdp

; Storage allocation in SCC RAM

TSt equ
sel equ
ack equ
ackin equ
;- 2000h to 23ffh
stack equ
inhexs equ
buff equ
buffl equ
scsiwrf equ

10000000b
00000101b
00010001b
00010000b

2100h
2200h
2220h
2240h
2260h

; reset SCSI bus

; select device

; acknowledge device from host
; acknowledge device to host

; reserved for stack

; ASCII bytes and trap for last byte

; working buffer

; working buffer

; zero for single byte, otherwise block write

: sk 3k o ok ok koK Main Program Start********

start 1d
1d

baud1 out
outi
call
call

cp
1d

jr

hl,stack
sp,hl
hl,baudrs
c¢,vdubaud
a,11h
vducmd,a

gbyte
gbyte
7fh

a,l
nz,baudl

; set up stack pointer register

; hl -> baud rate table

; ¢ = baud port

; reset bit and high baud
; Teset

; recognise a cr?
; reset bit only

-B3 -

start] 1d a,rst ; reset SCSI
out icmdp,a
1d b,null

waitrst djnz waitrst ; wait a moment
1d a,null
out icmdp,a ; finish SCSI reset
jp prog

; FkkkxikokBand rate selection routine values sk *kkk

baudrs db 10010000b

db 11000000b ; 9600
db 10100000b ; 4800
db 10010000b ; 2400
db 10001000b ; 1200
db 10000100b ; 300
db 10000010b 5 150
db 00000001b ; 110

4 ********Messages to VDU********

bannerl db cr If,1f,’SCSI Tester V 01.02 July 1986’ cr,If
db ’Class: ’,null

crlf db cr,lf,null

msgalen db cr,lf,” Allocate length 1: ’,null

msgaln2 db cr,lf,’ Allocate length 2: ’,null

msgbent db cr,If,’Block Count 1: ’,null

msgbct2 db cr,lf,’Block Count 2: ’,null

msgcmd db crlf,”Command: ’,null

msgcylh db cr,lf,’Cylinder 1: ’,null

msgcyll db cr,If,’Cylinder 2: ’,null

msgdeft db cr,lf,’P/G/Code: ’,null

msgfmc db cr,lf,’Format Control: ’,null

msgfmi db cr.lf,’ Interleave: ’,null

msghead db cr,lf,’Head: ’,null

msghexe db cr,lf,’? HEX 77 crIf,1f,null

msglbal db cr,If,’LBA 1: ’,null

msglba2 db cr,lf,’LBA 2: ’,null

msglba3 db cr,lf,’LBA 3: ’,null

msglba4 db cr,lf,’LBA 4: ’ null

msgmsg db > Message: ’,null

msgnot db cr,lf,” 7777 null

msgpent db cr,If,’Pass Count: ’,null

msgpcod db cr,lf,’Page Code: ’,null

msgpmi db cr,lf,’PMI: ’,null

msgplst db cr,lf,”Parameter List Length: ’,null

msgspac db * 7null

msgstat db cr,lf,’Status: ,null

msgtckh ~ db cr,lf,”’Address 1: ’,null

msgtckm db cr,lf,’ Address 2: ’,null

msgtckl db cr,lf,” Address 3: ’,null

msgwecl db crlf, INVALID’ ,null

; ********VDU UO Routjnes********
; Output a null terminated string

; hl-> string

; preserves all registers

-B4 -

outst push af ; save registers
push hl

outstl call tbemp
1d a,(hl) ; get the byte
cp null
jr z,outst2 : a null, so all done
out vdudata,a
inc hl ; point to next byte
jr outst]

outst2 pop hl ; Testore registers
pop af
ret

; Wait for transmitter bufer to empty
; preserves all registers

tbemp push af

tbempl in a,vdustat ; wait for TBE
bit tbe,a
jr z,tbempl
pop af
ret

; Wait for read data available and read byte into a
; preserves all registers except af

gbyte in a,vdustat ; wait for a digit available
bit rda,a
jr z,gbyte
in a,vdudata
ret

; Output a hexadecimal byte to VDU followed by a space
; (a) = binary value of byte
; preserves all registers

byteout push af ; output hex byte to VDU
and OfOh ; mask for upper hex value
Irca ; shift down
rrca
rrca
rrca
call byteou0 ; convert and output to VDU
pop af ; get the binary value back
push af
and Ofh : mask for lower hex value
call byteou0 ; convert and output to VDU
call tbemp
1d al? ; output a space
out vdudata,a
pop af
ret

byteou(cp Oah ; test for hex adjustment
jr ¢,byteoul
add a,7

byteoul add 30h ; convert to ASCII
call tbemp

out vdudata,a
ret

-B5 -

; Get a hex byte and convert to binary byte

gethex2 call outst

1d b,3 ; maximum of two bytes
call inhex

call binary

ret

; Convert one/two hex values (high/low) to binary
; high hex is stored in inhexs
; (a) = binary byte
; preserves all registers except af
binary push hl
1d hl,inhexs + 1

1d a,(hl) ; if null only one byte input
cp null
jp nz,binaryl
dec hl
1d a,(hl) ; get byte
and Ofh
pop hl
ret
binaryl dec hl ; form both nibbles into binary value
rld
1d a,(hl)
pop hl
ret

; Input a hex string of numbers up to inhexm long terminated with cr
; input is stored in inhexs

; on input b = maximum number of hex digits required

; preserves all registers

inhexm equ Oah

inhex push af ; save registers
push bc
push hl
1d a,inhexm -2
cp b
jr c,inhexe
1d hlinhexs
1d b,inhexm ; load count
inhex0 1d (hl),null ; nulls to storage area
inc hl
djnz inhex0
1d hl,inhexs ; get back pointer
1d b,inhexm ; load count
inhex1 call gbyte ; get a byte from VDU
and 7fh ; strip parity bit
cp cr ; is number finished
jr z,inhex2
1d (hl),a
call outst ; echo to VDU
cp 0
jr c,inhexe ; abandon if not hex
cp '9’+1
jr c,inhex3
cp ‘a’
jt c,inhex4

sub a,20h
inhex4 cp A

inhex3

inhex2

inhexe

o ORGSR ROR R K

prog

cmdok

jr
cp
jr
sub
1d
inc
djnz
jr
1d
sub
1d
cp
jr
pop
pop
pop
ret
1d
call

Jp

c,inhexe
F+1
nc,inhexe
a,7
(hl),a

hl
inhex1
inhexe
a,inhexm
b

b,a

null
z,inhexe
hl

bc

af

hl,msghexe
outst

prog

B

; abandon if not hex
; abandon if not hex
; adjust byte

; store digit

; increment pointer

; number too long

; b =no of hex digits

; abandon as no input

; point to error message

Main Program Continues™*¥#*¥k*

push

call
1d
call

1d
and
1d

inc

cp
jr

1d
1d
cp
jr
add
1d
inc
1d
cp
jr
pop
cp

hl,stack
sp,hl
hl,bannerl
outst

b,2

inhex

hl,inhexs + 1

a,(hl)

null
nz,cmderr
hl

a,(hl)

af
hl,msgcmd
outst

b,3

inhex
hl,inhexs
a,(hl)

Ofh

e,a

hl

a,(hl)

null
z,cmdok
Ofh

d,a

a,e

1
nz,cmderr
a,10h

a,d

e,a

hl

a,(hl)

null
nz,cmderr
af

’0!

; set up stack pointer register
; output Class request to VDU
; one byte only

; hl -> second byte
; test only one byte

; get the byte
: save Class

; ask for command hex bytes
; possibly two bytes

; hl -> first byte
; get first byte

;keepitine

; only one byte

; save second byte
; get back first byte
; check the value is one

; form command
;keepitine

; only two bytes allowed
; restore Class
; test valid Class

jr
cp
JP
cp
Jp
cmderr 1d
gall
Jp

z,classO
"
z,classl
!7!
z,class7
hl,msgwcl
outst

prog

-B7 -

; command error exit

% ****#***Class_o Commands********

classO Id
1d
1d
inc
cp
JP
cp
Jp
cp
JP
cp
JP
cp
Jp
cp
Jp
cp
Jp
cp
Jp
cp
Jp
cp
Jp
cp
Jp
cp
jp
Jp

ae
hl,buff
(hD),a

hl

00h
z,null5
01h
z,nulld
03h
z,senss
04h
z,form5
07h
z,reass
08h
z,read5
Oah
Z,Writ5
Obh
z,seek5
12h
z,inqyS
15h
z,msel5
lah
z,msens
1dh
z,diag5
prog

; hl -> command buffer
; byte-0

; test drive ready
; recalibrate

; request sense

; format unit

; reassign blocks
; read

; write

; seek

; inquiry

; mode select

; mode sense

; send diagnostics

; Class-0 and Class-7 send control bytes

clOsend

cl7send call
1d
call
Jp

select
hl,buff
send6
phaser

; Class-1 send control bytes

cllsend
call
1d
call

p

select

hl,buff
send10
phaser

; Send a null byte into command buffer and increment pointer

Zero Id
inc
ret

(h1),null
hl

- B8 -

; Byte-1 followed by 5 null bytes

; used by cmd000 and cmd001

nulls Id b,5

null5a call zero ; byte-1 to byte-5 are null
djnz null5a
jp clOsend

; Byte-1 followed by 3 nulls, allocation length (18), 1 null
: used by cmd003

senss 1d b,3
sens5a call zero ; byte-1 to byte-3 are null
djnz sensSa
1d (hl),12h ; allocation length
inc hl
Id (hl),null
jp clOsend

; Byte-0 followed by format control code, 2 null bytes, interleave, 1
; null byte used by cmd004

form5 push hl ; save pointer
1d hl,msgfmc ; format control requested
call gethex2
pop hl , restore pointer
1d (hl),a ; byte-1
inc hl
1d b,2
form5a call zero ; byte-2 and byte-3 are null
djnz form5a
push hl ; save pointer
1d hl,msgfmi ; format interleave requested
call gethex2
pop hl ; Testore pointer
1d (hl),a ; byte-4
inc hl
1d (hl),null ; byte-5 null
1d a,null
Id (scsiwrf),a ; single byte write to drive
jp clOsend
; Byte-1 followed by 5 null bytes
; used by cmd007
reass Id b,5
reasSa call zero ; byte-1 to byte-5 are null
djnz reasSa
1d a,null
1d (scsiwrf),a ; single byte write to drive
ip clOsend

; Byte-0 followed by track address and one null byte
; used by cmd008

read5 call setup5
jp clOsend

- B9 -

; setup5 - provides byte-1 to byte-5 for read5, writ5 and seek5

; setupSa byte-4 and byte5 for frd5 and fwr5
setup5 push hl ; save pointer
1d hl,msgtckh ; high track address requested
call gethex2
pop hl ; Testore pointer
1d (hl),a ; byte-1
inc hl
push hl ; save pointer
1d hl,msgtckm ; middle track address requested
call gethex2
pop hl ; Testore pointer
1d (hl),a ; byte-2
inc hl
push hl ; save pointer
1d hl,msgtckl ; low track address requested
call gethex2
pop hl ; restore pointer
1d (hl),a ; byte-3
inc hl
setupSa push hl ; save pointer
1d hl,msgbent ; block count
call gethex2
pop hl ; restore pointer
1d (hl),a ; byte-4
inc hl
1d (hl),null ; byte-5 null
ret

; Byte-0 followed by track address and one null byte
; requests write byte value once only

; used by cmd00a
writ5 call setup5
1d a,-1
Id (scsiwrf),a ; multi-byte write to drive
jp clOsend
; Byte-0 followed by track address and one null byte
; used by cmd00b
seek5 call setup5
jp clOsend

; Byte-0 followed by 3 null bytes, allocation length, 1 null byte
; used by cmd012

inqy5 1d b,3
inqy5Sa call zero ; bytes 1 to 3 are null
djnz inqy5a
push hl ; save pointer
1d hl,msgalen ; allocation length requested
call gethex2
pop hl ; restore pointer
1d (hl),a ; byte-4 is allocation length
inc hl
1d (hl),null ; byte-5 null

ip clOsend

-B10 -

; Byte-0 followed by 3 null bytes, parameter list length, 1 null byte

; bytes 1 to 3 are null

; save pointer
; allocation length requested

; Testore pointer
; byte-4 is parameter list length

; byte-5 null

; single byte write to drive

; Byte-0 followed by null, page code, null, allocation length, null

; byte-1
; save pointer
; page code requested

; Testore pointer
; byte-2 is page code

; byte-3 is null
; save pointer
; allocation length requested

; restore pointer
; byte-4 is allocation length

; byte-5 null

; byte-1

; byte-2 to byte-5 are null

; used by cmd015
msel5 1d b,3
mselSa call zero
djnz msel5a
push hl
1d hl,msgplst
call gethex2
pop hl
1d (hl),a
inc hl
1d (hl),null
1d a,null
1d (scsiwrf),a
jp clOsend
; used by cmdOla
msenS call zero
push hl
Id hl,msgpcod
call gethex2
pop hl
1d (hl),a
inc hl
call zero
push hl
Id hl,msgalen
call gethex2
pop hl
I1d (hl),a
inc hl
1d (hl),null
ip clOsend
; Byte-1 followed by 04h followed by 4 null bytes
; ecmdO1d
diag5 Id (h1),04h
inc hl
1d b,4
diagSa call zero
djnz diagSa
ip clOsend

z FdoroRdoRk k(T 955-1 Commands********

classl 1d
add
1d
1d
inc
call
cp
JP
cp

a,e
20h
hl,buff
(hl),a

hl

Zero
25h
z,capy9
28h
z,rdex9
2ah
z,wrex9
2fh

; add class-1 for byte-0
; hl -> command buffer
: byte-0

; byte-1
; read capacity

; read extended
; write extended

; verify

-B11 -

; read defect data
; read data buffer

; write data buffer

; Byte-0 and byte-1 followed by 4 byte logical block address, 2 null bytes

jp z,verf9
cp 37h
ip z,deft9
cp 3ch
ip z,rddb9
cp 3bh
ip z,wrdb9
P prog

; PMI byte and null byte

; used by cmd105

capy9 push hl

1d hl,msglbal
call gethex2

pop hi
1d (hl),a
inc hl
push hl

1d hl,msglba2
call gethex2

pop hl
1d (hl),a
inc hl
push hl

1d hl,msglba3
call gethex2

pop hl
Id (hl),a
inc hl
push hl

1d hl,msglba4
call gethex2

pop hl

1d (hl),a
inc hl
call zero
call zero
push hl

1d hl,msgpmi
call gethex2

pop hl

1d (hl),a
inc hl

1d (hl),null
jp cllsend

; save pointer

; Testore pointer

; byte-2 is LBA high byte
; save pointer

; Testore pointer

; byte-3 is LBA byte 2

; save pointer

; restore pointer

; byte-4 is LBA byte 3

; save pointer

; Testore pointer

; byte-5 is LBA low byte
; byte-6 null

; byte-7 null
; save pointer

; Testore pointer
; byte-8 is PMI

; byte-9

; Byte-0 and byte-1 followed by 2 nulls,3 byte logical block address,
; 1 null, 2 byte block count and null byte
; used by cmd108, cmd10a and cmd10f

rdex9

wrex9

verf9 call zero
push hl
1d hl,msglbal
call gethex2

pop hl
1d (hl),a
inc hl

push hl

; byte-2
; save pointer

; Testore pointer
; byte-3 is LBA high byte

; save pointer

1d
call
pop
1d
inc
push
1d
call
pop
1d
inc
call
push
1d
call
pop
1d
inc
push
1d
call
pPop
1d
inc
1d

1d

1d
JP

hl,msglba2
gethex2

hl

(hl),a

hl

hl
hl,msglba3
gethex2

hl

(hl),a

hl

ZEro

hl
hl,msgbcnt
gethex2

hl

(hl),a

hl

hl
hl,msgbct2
gethex2

hl

(hl),a

hl

(hl),null
a,-1
(scsiwrf),a
cllsend

- B12 -

; Testore pointer
; byte-4 is LBA byte 2

; save pointer

; restore pointer

; byte-5 is LBA low byte
; byte-6 null

; save pointer

; Testore pointer
; byte-7 is block count MSB

; save pointer

; Testore pointer
; byte-8 is block count LSB

; byte-9

; multi-byte write to drive

; Byte-0 and byte-1 followed by P/G/CODE byte, 4 nulls,

; 2 byte allocation length and null byte
; used by cmd117

deft9

deft9a

push
1d
call
pop
1d
inc
1d
call
djnz
push
1d
call
pop
1d
inc
push
1d
call
pop
1d
inc
1d
JP

hl
hl,msgdeft
gethex2

hl

(hl),a

hl

b,4

zero
deft9a

hl
hl,msgalen
gethex2

hl

(hl),a

hl

hl
hl,msgaln2
gethex2

hl

(hl),a

hl

(h),null
cllsend

; save pointer

; Testore pointer

; byte-2 is P/G/Code

; bytes 3 to 6 are null

; save pointer

; Testore pointer

; byte-7 is MSB allocation length
; save pointer

; Testore pointer

; byte-8 is LSB allocation length

; byte-9

; Byte-0 and byte-1 followed by 6 nulls,

; 2 byte allocation length and null byte

; used by cmd11b and cmdllc

rddb9
wrdb9
rddb9a

b,6

Zero
rddb9a

hl
hl,msgalen
gethex2

hl

(hD),a

hl

hl
hl,msgaln2
gethex2

hl

(hD),a

hl

(hl),null
a,null

(scsiwrf),a

cllsend

-B13-

; bytes 3 to 6 are null

; save pointer

; Testore pointer

; byte-7 is MSB allocation length
; save pointer

; Testore pointer

; byte-8 is LSB allocation length
; byte-9

; single byte write to drive

; ********Class_? Commands********

class?

1d
add
1d
1d
inc
cp
Jp
cp
Jp

ae

OeOh
hl,buff
(hl),a

hl

0eOh
z,mseek5
Oelh
z,mform5
Oe2h
z,certs
Oe8h
z,frd5
Oeah
z,fwrs

prog

; add class-7 for byte-0

; hl -> command buffer

; byte-0 to command buffer
; maintenance seek

; format maintenance tracks
; certify

; fast read

; fast write

; Byte-0 followed by 1 null, 2 byte cylinder number, 1 byte head number
; and null byte

; used by cmd700

mseek5

call
push
1d
call
Pop
1d
inc
push
1d
call
pop
1d
inc
push
Id
call
pop
1d

Zero
hl
hl,msgcylh
gethex2

hl

(hl),a

hl

hl
hl,msgcyll
gethex2

hl

(hl),a

hl

hl
hl,msghead
gethex2

hl

(hD),a

; byte-1
; save pointer

; Testore pointer
; byte-2 is cylinder number high byte

; save pointer

; Testore pointer
; byte-3 is cylinder number low byte

; save pointer

; Testore pointer
; byte-4 is head number

-Bl4-

inc hl
1d (hl),null ; byte-5 null
jp cl7send
; Set pattern of bytes
; used by cmd701
mform3 1d (h1),00000000b ; byte-1
inc hl
1d (h1),01010010b ; byte-2
inc hl
1d (h1),01001111b ; byte-3
inc hl
1d (hl),00000000b : byte-4
inc hl
1d (h1),00000000b ; byte-5 null
jp cl7send

; Byte-0 followed by 2 null bytes, pass count, 2 null bytes
; used by cmd702

certs call zero ; byte-1
call zero ; byte-2 is null
push hl ; save pointer
Id hl,msgpcnt ; allocation length requested
call gethex2
pop hl ; Testore pointer
1d (hD),a ; byte-3 is pass count
inc hl
call zero ; byte-4 null
1d (hl),null ; byte-5 null
jp cl7send

; Byte-0 followed by 3 null bytes, block count, 1 null byte
; used by cmd708 and cmd70a

frd5
fwrs 1d b,3
fwrSa call zero ; bytes 1 to 3 are null
djnz fwrSa
call setupSa
1d a,null
1d (scsiwrf),a ; single byte write to drive
ip cl7send

;********SCSI Submutines********
; Read Current SCSI Bus Status Register and react to contents

; Status bit positions - statlp

phasem equ 00011100b ; phase mask
datoutp equ 00000000b ; data out phase
cmdp equ 00001000b ; command phase
datinp equ 00000100b ; data in phase
statusp equ 00001100b ; status phase
msginp equ 00011100b ; message in phase

; Status for Target Command Register - tcmdp

datoutt equ 00000000b ; data out target
cmdt equ 00000010b ; command target

phaser in a,statlp
bit 6,
ip z,startl
bit 5
jr z,phaser
and phasem
cp datoutp
jp Z,SCSiwr
cp datinp
jp z,datain
cp statusp
jp z,status
cp msginp
jp z,message
jp phaser

; Acknowledge Drive

ackdrv 1d a,ack
out icmdp,a

statms 1 in a,statlp
bit 5,a
jr nz,statmsl
1d a,null
out icmdp,a
ret

- B15 -

; read register

; test busy

; all done?

; test for request

; NOt got one so try again
; mask out all but phase
; data out phase

; data in phase

; status phase

; message in phase

; do not recognize it

; acknowledge drive

; wait for request false

; Teset acknowledge false

; Read data byte from drive and output to VDU

datain in a,datap
call byteout
call ackdrv
jr phaser

; read data byte

; acknowledge drive

; Read status byte from drive and output to VDU

status 1d hl,msgstat
call outst
in a,datap
call byteout
call ackdrv
3 phaser

; hl -> banner
; read drive status byte

; acknowledge drive

; Read message byte from drive and output to VDU

message 1d
call outst
in a,datap
call byteout
call ackdrv

jp prog

hl,msgmsg

; hl -> banner
; read drive status byte

; acknowledge drive

; Read data bytes from drive and output to VDU

scsird in a,datap
call byteout
call ackdrv

ret

; read data byte

; acknowledge drive

: Select drive

select Id
out
out
in
1d
out
1d
out
1d
out

selectl in
bit
jr
1d
out
ret

; Send ten or six control bytes to drive

a,null
modep,a
icmdp,a
a,prstp
a,00000001b
datap,a
a,datoutt
tcmdp,a
a,sel
icmdp,a
a,statlp
6,a
z,selectl
a,null
icmdp,a

-B16 -

; set as initiator and no interrupts
; set initiator command register

; reset parity/interrupts port

: select drive address

; data out target

; wait for bsy true

; reset select false

; hl-> buffer containing the six or ten bytes

send6 1d
1d
It
send10 1d
1d
send6c 1d
out
send6a in
bit
jr
outi
call
djnz
1d
call
ret

; Write data byte to drive from VDU

c¢,datap
b,6*%2
send6¢
c,datap
b,10*2
a,cmdt
tcmdp,a
a,statlp
5,a
z,send6a

ackdrv
send6a
hl,crlf
outst

; command target

; wait for request

; send byte
; acknowledge byte ready

; cr/lf to tidy display

; single/block depends on flag in (scsiwrf) - null for single byte

scsiwrb db

scsiwr 1d
call
1d
call
call
push
1d
out
1d
cp
jr
pop
out
call

: JP

scsiwb in
bit
jr
and

cr.lf,’B: ’,null
hl,scsiwrb
outst
hl,inhexs
inhex
binary

af
a,datoutt
tcmdp,a
a,(scsiwrf)
null
nz,scsiwb
af

datap,a
ackdrv
phaser
a,statlp
5,a
z,scsiwb
phasem

; ask for byte

; save the byte
; data out target

; is it a block write?
; get the byte back

; write data byte

; acknowledge drive

; read register

; test for request

; NOt got one so try again
; mask out all but phase

scsiwb0

; end of file

cp

jr
pop
out
push
call
jr
pop
Jp
rept
db
mend

end

datoutp
nz,scsiwb0
af

datap,a

af

ackdrv
scsiwb

af

phaser

[800h - 8]
k|

start

-B17 -

; data out phase

: return as all done

; get the byte back

; write data byte

; save the byte

; acknowledge drive

: look for next data in byte
; clean up the stack

APPENDIX C
BUS PHASE SEQUENCES

-Cl-

1ASY

81

e

o

onn

Aney

sALY

PAIH

mam

Gy

WIS SET DELAY Mawirmarr tevee lew g Ber devace 10 gtaeet BTY aeal b Mon Dievsse B0 bet ons st huta burs aftee o daieety Bus Fros Mhaae
IS FEE DELAT Mrwrrugrr (e (gt o bups o shall wmt Trwn 4, ety tos

o Fime Phase et dy avienon of RSY
LIPS CLE AR DFLAY Mnwomasrr trre (e 8 bur e s 10 3hos dbimai 58 basn sope sin alims Mo Timm Phrns o detioetod o SF L 5 rs smedd firem o b divars schsbng Aebets gt

ARRITAATION PHASE blamrr wn foms 3 bue der s Gl wowt lien sasesieeg 107 e ot sl e aped P e v

B (—*ﬂESfI"FI'KH\r?—-luwmhH-ﬁ.nm;-ln--lr-uhxw--n-rum-uqm

r P Nesiow

| 1 T Dt Poteet

I:m: Lo e :I 1 l I == | i | |

e o vk LT 1 | 1 — |}
| L B e B s ey o |
— M R M

| T [I

T e Ll
| L v | sy — |
- 1] W | S — ! I\ N
I FICY 0 1 L N e |
L b Lo N;.:::.t'.;;;.1\—|'{|1 |H -

I N N A T

| | I : [| |

- |

R 1 1 |

L | |

|| l !
L I | |

| | } ' ;

e ; 7

| | §

l.-t-r-l Isuaten fraey l

I i 10 g et
ol P e

|

|wmur| ANTITRA O |
FHAST PHA

| |
NUS FREF ARMITAATION
PHASE PUASE

SEL and Wrplernantgton of

BS¥ e Pwaphssems
heth fabun systoem At
bow

keast ore A1 lemsi ons P
Bus Setrin Frge Detey but no

SFLECTION
FHASE

SELECTION
PHASE

Daring s phase the
VO gl iy
drasaried in
dhttemesh they
phurse beem the fis.
webar i Phane

NON ATBITRATING

Bus Fres Phose SYSTEMS bn yyaterms

hay been detecied weth fhe & rbeiemion

the MATIATOR Frarsa ro smeplarmaenied

3aerts BSY werd ahier detrcing the

3 e B Bury Frew phage the

Devicn 10 ert pm AT TOMN wprts 8

he chata bars rrerareyen of oo My
Clew Delay fhen 1 asgon:

The HATIATOR i Diatn Busg weath bt

ity an Arbeten desmed WITIATOR 10 b

tion Dty fhen wnd the TARGEIS 10 b4

wvmreas tha Date e v dusbew

Bus H » hgher deleyy t BATIATOR

ity Pt w3aenia SEL

Devaer 10t

on tha Nats i ARBITRATRNG

DR i he SYSTEMS

1l e o yysterns with the

BATIATDR losrs

Aty o] L

refeases BSY HATIATOR then won
Ashitration hey

lnder ASY by releaned

T ALL SYSTEMS the
TARGET deterrmency

Vet e iin
[

TOIRARAART
[ATEE

COMMANTY
FHASE

The TARGET aanmis
€D pret cheangeaty WY
ool WA T 8l e
hemliakes ol iles
Mhase

Tha tiangles s linm
IEATOR 10 TANGT 1

HANOSHAKE
FRANCEMINE

a4
deskew delmy s 8
catde b ew delay e
#rriy ACK the
RHTIATOR gartmaes
1o dheve data 1707
hen masers AT 1)

When PO beeomnes
Talss #1 the INITIATIIR
the MITIATOR mome
tharge o selesn dats
17 0 71 and demnan
ACE

The TARGS T coeinurs
1eaue sty Frmmoand
Bryies The mude- of
yles deperdh on the
command grovp corde
deircied fiom he fest
command e
rerpesd

Tt serpac Aty daes i Taageet rerparats | Tasrpet tegiest I Rus s
[T P l ot Aty e rtiaton 1 | reinated i
sant 1o he Ansbyae
i ‘ ks i ks | I I
FIATA O THIT | st Prase | MFSSAGE M 1 | Pusenge
raiash Imeeheey Atattrel FHASE THASE I
1 | o | |
DATA M OR T STATUS PHASF MTSSAGE ™ BUS FREE
FHASE IF by Siiars) PHASE PHASE
[t
DATA M FUASE Resd TARGE!

TARGE T smepeasts TARGET requests
that 3 rabn

Praises sl aep biedal Arassraa ASY

e

Uater ter o st birwmy Birwms TARGE Y

TARCEY 1 WATIATOR e BTIATOR

TANGET syzgets U TARGET psamna

deasseris O e oD, MO and

BN dheg T IT OV] TARGET

AT E Randuhabe of fhis ithe RECKACK relpanes alt

rhiace handshakels) s wonal

o thes Phase welhun & By

VANDEMAKE Oy o b Clene Dwlay

PR L0 INT of st g The nerssaga e ahies RSY
] cond e sl becomas

Blen TARGE T fuat Command conbrahy

theves data 170 M I See handahake Compleie 1001 Iaas e 3

Harm bt el vahpea procdie urier inds st Bus Seiiie

s A leAgt nne Diata = Mhase intmnd Dl

ieekew delvy phrt &

cotde b ety then Sne handshate The lofoweg

»eyrris AL Data procrdre undker Frase ot be

17017 aholl rperimn Dape i Phase Aabstraton

et il ALK = I Phgsn

i LARGEY

The NITIATOR shall
weaef cata (7 O M alier
RI s tige then
Ao ACK

When ACE hreones
i T TATMGE | the
TANGET rruwy ¢ e
o reieane dea (70 P
ard deasyet AF 0

Alies AL -5 falne the
AT drassens
ALE altes ALE 13 Tabne
the TARGET mamy
Erealear the tanalar
Fry thimm dain 170 FY
andd anarsmg MO

DATA OUT MIASE
White Ferphead

Dann w10 b el ligm
HTIATORN 1 TANGE T

TARGET deaysens
CO D ad MG
rhyrmg the REDVACK
handyhate of the

=y =

APPENDIX D

COMPARISON OF PERFORMANCE OF TTL BOARD AND NCR 53C80
BOARD

When this research work commenced, there was no VLSI SCSIinterface chip (NCR
53C80) available for use. The Rodime RO652 hard disk drive interface was proprietary
to Rodime PLC and could not be utilised. As a result, there was no alternative but to

produce a prototype using purely TTL logic.

By using a TTL logic only interface, it was found that none of the SCSI maximum delay
times could be realised and as such the TTL board does not conform to the American

National Standards Institute (ANSI) X3T9 SCSI specification. The data transfer rate
was

limited to such an extent on the TTL board, that it was realised that only when a VLSI

chip became available, a true to SCSI specification interface could be constructed.

The TTL interface board, allowed a full understanding of SCSI handshaking to be
developed. Italso allowed the majority of the firmware to be written and tested. This

firmware was subsequently used as the basis of the firmware for the Intelligent
Interface

board.

The Intelligent Interface board was developed when the VLSI chip, NCR53C80,
became available and unlike the TTL board, conformed to the ANSI SCSI specification

data transfer rates.

