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1.
I

INTRODUCTION

QJ. The problem of providing a theoretical deseription
of the experimentally observed behaviour of ferromagnets
is a particular example of the broader problem of the
theoretical treatment of co-operative phenomena in gen=-
eral. Fortunately in a first approach, 2 treatment may
be given which applies generally; in fact we shall dem-
onstrate in the next paragraph, that a discusesion of
ferromagnetism say, applies equally well under certain
circumstances, to the problems of antiferromagnetism and
of substitutional alloys. We make the transition to dif-
ferent problems simply by altering the significance of
our unit of energy to suit a particular problem. Com=-
paratively recently Domb and Potts 1) have included in
their general discussion of a two dimensional model, as
well as the sbove problems, that of the adsorbed mono-
layer. This has 2lso been discuscsed by Fowler and Gug-
genheim 2),

Co-operative phenomena are characterised by the fact
that within a system of atoms or molecules showing the
phenomena, groups of atoms say, combine to form sub-sys-
tems which meintain their physicél character despite the
disrupting influence of thermal agitation. This implies

the existence of a dynamical equilibrium within the sys-



tem; as atoms leave the sub-systems, due to thermal
agitation, other atoms are brought into them in order

to maintain the extent of the sub-systems peculiar to the
temperature of the system. In general, the extent of the
sub-systems, or the degree of co-operation, varies uniquely
with temperature, increasing with decreasing temperature
and vice versa. This is only true however, below & cer-
tain temperature, which is a cheracteristic of any parti-
cular substance and above which it may be said, in a first
approximation, no degree of co-operation exists.

The variation of the degree of co-operation with tempe-
rature is not linear. At low temperatures it is difficult
to decrease the degree of co-operation. As the temperature
is increased however, it becomes relatively easler until
near the characterlistic temperasture, an avalanche effect
sets in and the co-operation apparently disappears abruptly.
On closer 1nvestigafion it is observed that the co-operation
has not completely gone; a small residual effect remains,
which is due to a slight degree of local co-operation. We
shall disregard this for the time being.

In the following discussion, we shall normally identify
the degree of co-operation in s system with the degree of
order in the system, while the characteristic temperature
will normally be referred to, on analogy with the theory

of ferromagnetism, as the Curie or transition temperature.
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The transition is then understood to be that from the state
of finite order to that of zero order (strictly speaking,
that of zero long range order). '

In any theory of co~operative phenomena, we must ulti-
mately derive results which we can compare with results
obtained by experiment. We must now, therefore consider
the physical manifestations of the =tate of order of any
system we choose to investigate.

We should expeet on the third law of thermodynamies,
that as we approach the absolute zero of temperature,
the degree of order in a system will increase, having a
maximum value at the absolute zero. This is the state
of perfect order and minimum energy. If we now supply
heat to the system, its temperature will be raised; but
since at any finite temperature below the Curie temperature
the system must be disordered to a certain extent, some of
the energy supplied as heat must be teken up in producing
the equilibrium value of the degree of order appropriate
to the final temperature of the system. We see then thet,
if the only anomalous effect we have to consider in our sys-
tem is that of the order-~disorder transition, any energy
supplied to the system will be distributed in the way we
have suggested. As we increase the temperatute still fur-
ther, the amount of energy necessary to produce the corres-

ponding degree of disorder will increase until at the Curie
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temperature Te, where the degree of disorder is a maximum
the energy producing the disordering will remain constant.
Any further energy suppllied will merely heat up still
further the disordered system. The energy which it is
necessary to put into the system to produce the equilib-
rium degree of disorder for a particular temperature, we
shall call the configurational energy. Its variation is
shown quelitatively in fipgure 1, Corresponding to this
anomalous disordering or configurational energy in the sys-
tem, we shall have an anomalous specific heat contribution -
this we shall call the configurational specific heat, Its
course is slso shown in figure 1. For completeness we have
ineluded in the fipure the curve showing the variation of
order (curve R) with temperature.

If we take account of the small degree of residusl or-
der which remains above the Curie temperature, our various
curves are modified in accordance with figure 2. In this
sketch we have designated order by the symbol O, since we
wlsh to reserve R for the long range order - which does
disappear completely at Te. We see from figure 2, that the
speclfic heat curve now shows a true lambda point.

From this discussion then, it seems reasonable to expect
that any theory of co-operative phenomena may be judged
as to the valldity of the approximations inherent in 1its

formulation on the accuracy with which it prediects first of
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2ll the Curie temperature and secondly the course of the
variation of configurational specific heat with temper-
ature. In order to be able to study the variation of
specific heat, or in fact of any of the usmwal thermodynamic
functions, with temperature, we shall use the methods of
statistical mechanics. In fact, from the nature of the
problem, & statistical approach is the only possible one.
It is well known that in any statistical problem once
we have succeeded in evaluating the partition function, Z
for a system, it is relatively simple to obtain most of
the thermodynamic functions. We mey mention in particular,
E; the internal energy of the system, snd Cy, the specific
heat at constant volume = since these are the two functions
with which we shall be concerned. The partition function is
defined as

-&p
g g TR gl (1,1)
altl sialio

where 4 = —Z7, in which k is Boltzmann's constant and
T 1s the absolute temperature. Ej is the energy of the
system in state J and F is the free energy.

For the total energy E and the speecific heat Cy of the

system, we have
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These are equations (1,2)

Actually, in this work, we shall not be coneerned so
much with Z, which we might call the macroscopic partition
function, as with A, the partition function per particle.

We define
e ST

N
since 1n Z is an extensive quantity. N is the total number
of particles in the system. Our configurational energy
and specific heat will then refer to the average values
of these quantities per particle snd will be celculated
with respect to 1n A.

As we have mentioned, the main physical problems to which
our theory of co-operative phenomena will apply are those
of ferromagnetism, antiferromagnetism and substitutional
solid solutions or alloys. Before going further, we should
consider the properties of each of thesec types of material
from the point of view of the order-disorder transition
in each.

For ferromegnetism and antiferromagnetism we shall use
a simple model due to Ising 9). This assumes that in a
erystal, the lattice points are occupied by spins which

mey spin in only two possible directions - either parallel
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or antiparallel to a possible field direction H (spin
cuantum number s = 1/2). The degree of magnetisation
shown by the erystal is then proportional to the degree of
ordering of the spins. From our point of wview, the only
difference between a ferromagnetic and an antiferromagnetic
substance lies in the state of perfect order. For the for-
mer, at absolute zero, we assume that the lattice spins
are all lined up parallel to each other, while for the
latter, the spins are lined up alternately parallel and
antiparallel. For a ferromagnetic substance, for instance,
as the temperature is raised, more and more of the spins
turn over and the degree of ferromagnetism decreases,
until at the Curie temperature it disappears completely.
Of course in this discussion, which we have sa2id is to be
generally applicable to co-operative phenomena, we shall
discuss magnetic phenomena only in the absence of an exter-
nal magnetic field.

For substitutional solid solutions, we shall consider
our lattice sites occupied by different types of atoms.
We have Jjust mentioned the no-fileld restriction which must
be imposed upon the theody as it will apply to magnetic
phenomena if this is to be equivalent to a general theory.
Similarly we must impose corresponding limitations on our
model of a substitutional alloy. It is obvious that in the

state of complete disorder in either of the mapgnetic models
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there will be an equal nunber of spins parallel and anti-
parallel. These will be arranged at random throughout the
lattice. To correspond to this we must, in our substitut-
ional alloy, consider only two types of atom (corresponding
to the fact that the magnetic spins can have only two
orientations). These we designate A end B atoms. Also we
must have equal nurbers of A and B atoms which, in the
state of compledbe disorder, will be distributed at random
through the lattice.

A somewhat more general treatment than ours has been
discussed by Rushbrooke 4) in which he does not restrict
his binary solid solution to ecqual numbers of A and B atoms,
He reduces his problem to the evaluation of a function
A (A, ) which for the case of the ferromagnet, represents
the partition function of the assembly, while for the case
of the binary solid it represents the grand partition
function. In Rushbrooke's psper A= €' "7 apa 3. e %
for the case of the ferromagnet, while A = e"'”/G and

3+ € “”  for the case of the binary solid. Here m is
the magnetic moment per spin, H is an external magnetic
field, w 1s the difference in energy of two neighbouring
dipoles when they change from the antiparallel to the
parallel state and W's Wag -7 (Want Weg) . Wgs , Wep
and Wzs are the energies associated with AB, AA, and BB

pairs of atoms in the binary solid solution. (; is the
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chemical potential., Some of these guantities we shall
have to refer to once agein in the next section.

It is perhaps apprépriate at this point, to mention two
other manifestations of the state of order in a substitut-
ional alloy. Tammann 9), investigeting copper-gold alloys
of varying composition, found that if the alloy contained
a maximum of 50 7% of copper atoms, nitric =2c¢id did not
affeet 1t, whereas copprer was dissolved if the atomie
constitution contained more than 50 7% of coﬁper. He inter-
rreted this to mean that equal numbers of gold and copper
atoms could form an ordered structure, while any exeess
copper atoms (and presumebly also gold atoms) could not be
fitted into the structure.

X-ray and neutron diffraction experiments have also
given indication of the existence of ordered structures
within erystals containing different types of atoms ©).
The sketch -~ figure 3 - shows an ordered arrangement of a
crystal plane containing equal numbere of A and B atoms.
We assume, of course, preference for unlike nearest neigh-
bours i.e. the state of lowest energy is that where every
A atom is surrounded by B atoms and vice vemsa.

If the elements A ond B are not too near to each other
in the periodic table, their reflection properties for
Y-rays will be different and so for various suitable

engles 0 , where the path length difference is a mmltiple
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of A/2, we may get a line in the X-ray spectrum. If
the reflecting planes have the same reflection properties,
ag for instance if all the atoms are the same, no line will
appear. If on the other hand, we have A and B atoms which,
however, are arranged at random, we shall on the average
have equal numbers of A and B atoms on any reflecting
plane and the reflection properties of any two lattice
plenes will thus be the same. We see then, that in a2 crystal
of an alloy, we shall get additional X-ray spectrum lines
(superstructure lines) when a state of order exists, which
will be absent above the Curle temperature for the crystal.
Neutron diffraction may give results similar to the above
in the case where the A snd B atoms have X-ray properties

which are too similar to each other.

) 2 Before giving a short historical account of the dev-
elopment of the theory of co-operative phenomena, we must
first show that results for any one of the problems we
have mentioned are immediately applicable to the remaining
problems. This is important not merely from the point of
view of unifying the theory; but also sinece, of the Aiff-
erent methods which have been developed for handling the
problems, some have beeﬁ applied to the theory of substit-~
utional solid solutions and some have been applied té the

theory of ferromagnetism,
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Consider a lattice of equal numbers of A and B atoms
and let there be a total of N atoms in the lattice. Let us
assume a co-ordination number z -« that is, if we neglect
surface effects, the number of nearest neighbours of any
atom in the lattice is z. We assume also that we have only
nearest neighbour interactions between the atoms on the
lattice sites. Now if we take for the energies assoclated
with AA, BB, and AB pairs of atoms at nearest neighbour
vositions, the values vpp, vpps and vpp and if, of the
total of Q nearest neighbour pairs in the lattice, Qpa,
Qpps and O,p are the numbers of AA, BB, and AB pairs
respectively, then for the configurational energy of the

lattice we may write

F' = @Qpa Van + Qupe Vss + Qpg Vad (1,8)
but, neglecting surface effects, Qpp = Qpp and so
£ = Qaq (950 + Vgg) + QpsVsa (1,4)
Sinee Q - Qpp * Qg+ QRas = 2 Qs * Q0
the last ecuation may be written
£': 2(Q-Qpad(Vpp+*Par) +~ Qpa VAs (1,5)

or
£ C (vaa+ vesd — Q@ pp [4 (998 + v88) - Vs |

z Eo = ngv (1’6)
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where Ey 1s a constant, and

V- ’zf (vﬂ“ *Usa) - Vag zecomsfau b (1!7)

We shall rewrite ecuation (1,6) as

E" s Fhif, = ™ OanD (1,8)

Now from our discucssion of antiferromagmetism, we
know that the energy of an antiferromagnetic lattice is a
minimum when the spins sre lined up alternately parallel
and antiparallel to each other. We can assign to each spin
a parameter (.“: where i refers to the ith spin, such that

éA.-' = +4 if the spin is in the perallel direction (to
an externsl field H say, where H may subsequently be dim-
inished to zero) and wm/; --41 if the spin is in the
antiparallel direction. We also define the energy f to
be the energy gained when two isolated nearest neighbour
spins change from the parallel-antiparallel state to the
both-parallel state. If this is so, then we may write the
configurational energy of an antiferromagnetic lattice as

E-i 2] oo e
where the summation is over all nearest neighbours.
Here we see that -E is a maximum -éfnfz in the state
of perfect order, sinee each product MM gives =1, so

that © 4s a minimum as we should expect. Thc factor 1/2
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comes in since the summation alone maekes each energy
change twice as great as it should be. We can see this if
we consider the state of perfect order, with minimum
energy, and then turn one spin over. If there are z
nearest neighbours, it is obvious that the energy increase
should be ZJﬁ « However doing this via the summation, we
Tirst have to subtract the pairs affected by the flipping
over of the spin, i.e. 2z pairs, and then add them on again
with the sign changed. This altogether is equivalent to
subtracting 2z pairs and gives an energy increase of 2z.¢
units.

We can now, in our AB lattice, define a parameter .«
referring to the atom on the ith site, such that Cuf is

+1 1f the atom is an A atom -1 if it is a B atom. Thus we

may write
L # sy 2 Qua ~ Gus (1,10)
But as Q = 2Qpn * Qns we have
L H# s Q-2Qas (1,11)
or Qg "4 (@-TMM") <2 TN -4 L #i (1,12)

where we have used the foct that Q = 22N - each
of our N lsttice points has z nearest neighbours; but

since this counts esch pair twice, we introduce the factor

1/2.
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Substituting into (1,8), equation (1,12), we have

"

E' <fv ) mlp -, 2N v

or shifting our zero of energy

E sE"+% nxW s v ) spfu” (1,13)

which has the same form as has (1,9).

We see then that we can reduce the problem of the subst-
itutional solid solution to that of the antiferromagnet
quite simply.

Now consider the problem of the ferromagnet. At absolute
zero, the spins are all lined up parallel to each other.

If we want the energy at the absolute zero to be a minimum,

we must write

F o= - &) pop, - (1,14)

where the «; can be taken to be the same as the (,“;'
except that they refer to the ferromagnet. The minus sign
is necessary since in the state of perfect order, each
product w.#; will give +1. ‘i; is the energy gained
when two 1solated nearest neighbours in a ferromagnet
change from the low to the high energy state. The summation,
of course, 1s again over nearest neighbour pairs.

In the AB lattice, we now lsbel our lattice sites call-
ing them alternately o and B sites, so that each o site
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is surrounded by z 8 sites and vice versa. Then in the
state of perfect order, we shall have 211 the A atoms on
c sites and all the B atoms on B sites. This introduces
the notion of sites being correctly and incorrectly
occupled. As we heat up the lattice, some of the atoms
will go 'wrong' and we shall find A atoms on B sites and
B atoms on o sites. It must be borme in mind, of course,
that this labelling of sites is merely a convenient
fiction adopted for the purpose of analysing the problem -
in particular, when we reach the state of complete dis-
order, the labelling becomes completely meaningless.

We introduce once agaln, a parameter, say 4/ such
that /" 1s +1 if the 1" gite 18 an o site occupied
by an A stom or a B site occupied by 2 B atom - a site
correctly occupied in other words. 4/ = =1 if the ith
site is an o site occupled by a B atom or a 8 site occupied
by an A atom. Thus we see that an AB pair will give us
M7 4;7 = 41 and an AA or a BB pair will give (uﬁ?{;" = =1,
Using this we find

LCJ;M‘VJ'”: Qae " 2RQan = 2Rps - Q (1,15)

and we see that the introduction of ;" has had the
effect of changing the right hand side of ecuation (1,11)
making it negative.

We cen rewrite (1,15) as Q= 4L LMY #hxN |
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and substituting into (1,8), we get
£ "-.; A ;/2 53 Z’ ‘u;lﬂ(‘J‘;}s Ly J).a -p ZM..

or Ew % S I s =y DL AT (1,16)
(compare (1,13))

This time we have reduced the problem of the substitut-

ional solid solution to thet of the ferromagnet, since

(1,16) has the same form as has (1,14).

Altogether then; we can see that within the limitations
we have set to our problems, we can discuss any one of them
and immediately apply the results obtained to the others.
A point brought out in this discussion, incidentally, is
the fact thaet in the substitutional alloy problem, the
important energy unit is not one of the basic units, VAA®
Veps Or Vpps but is the combination of them denoted by v,
and given by equation (1,7).

' § 3. Finally, in order to show how the method we propose
to use fits into the historical development of the theory
of co-operative phenomena, we shall give a brief outline
of the development and indicate the contributions made by
the different workers in the field.

The first attempt to develop a theory of the order-dis-
order transition, was mede by Bragg and Williams '), who
treated the question of the substitutional lattice con-

taining equal numbers of A and B atoms. They labelled the
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lattice sites ¢ and B as we have done earlier and intro-
duced the quantities rg, Tgs Wps and g such that:
r, = fraction of a sites correctly occupied = Nj. / ( )

I'B = " "B i " " - N-Bﬂ/{%')

W, = fraction of a sites incorrectly occupied = Ns. /%)

wg = " TR " " = Nas /(%)
Here Npqoe Nﬁﬁ’ etc. denote the numbers of A atoms on «
sites, the numbers of B atoms on B sites, ete. Bragg and
Williams then define an order parameter which we shall

term the long range order, and denote by R. In the original
paper R is defined by an equation equivalent to

}e = 9 ':.: --j (1.17)

By long range order we mean the extent to which the
lattice sites are correctly occupied. From the definition,
we see that, for the state of perfect order, r;, = 1 and
R = 1, while for the state of complete dis-order, r, = 1/2
and R = 0. (Thie is the more obvious when we recollect
that r, may also be looked upon as being the probability
that any a site is correctly occupied. In the state of
randormess of distribution of atoms it is reasonable %o
suppose rg = 1/2).

The basic assumption of the PBragpg=-Willisms theory may be

summarised in the equation

e BT (1,18)
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where J is the average energy required to exchange an A
atom on an a site with a B atom on a B site at any partic-
ular temperature. J, is the value of J at the absolute
zero of temperature. Obviously Jdg = 22 j: « It is very
simple now, to derive an expression for the energy of the

system, and we find that

£ anE, L ~R2Y 3E; (1,19)

E.,Eo mmh
Following out the usual statistical method, we write

for the free energy of the system

Fi s 5T8 S = T WA (1,20)

where k and T have the usual meanings. 3 is the entropy
end W (R) is the number of ways of arranging the system
in accordance with a particular value of R. It may easily

be seen that

R e g
where (%) = aCy
After some menipiulation of (1,21) we ean write the free
energy in terms of R only, and then find the equilibrium
value of R at a particular tempersture in the usual mammer

from %ﬁ 0,
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This leads us ultimately to the Pragg-Williams equations

R v dasch X
£Eo R

X = 2 (1,22)
NkRT

from which we can estimate Tge.

It is not really necessary to go into the discussion of
this treatment of the problem mueh further, since it forms
at best, a rather crude first approximation to the theory;
we have outlined it in some detail for completeness and
for its historical interest. Before going on, however, we
must point out two shortcomings of the theory which are
corrected in subsequent discussions.

First of all the results of the theory correspond to
the curves of figure 1. - at T, all order disappears. The
reason for this of course, lies in our assumption of the
existence of a long range order only. To bring the curves
closer to physical reality, we must take account of the
fact that above T, there is still a tendency for A atoms
to surround themselves with B atoms and vice versa. This
involves the introduction of a short range order which is
effectively included in all of the later theories.,

The other point may be seen if we consider the summation

1o ~N /\r
Zc“" s N - 27w -2 7 W

_—N(Z'fd."") : NR (1’23)
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where we have used the faet that r, = rge
In other words, R = 1/N ‘Zg*,-'" ’
But in the Bragg-Williams theory, we have an equation of
the form
B el UZJ,".‘”(«J."' ' Paes (L%

2 an
“ &t (L)

We see then that in effect we have used the approximation

S ulars (o)

which implies that every atom in the lattice has all the
other atoms as its nearest nelghbours. It seems reasonsble
therefore, to assume that the Bragg-Williams approximation
is a 1imiting case of other more accurate theories. This
is in fact the case.

The work of Bragg and Williams naturally stimulated
further work on the subject, since it was soon realised
wherein the shortcomings of the theory lay.

Bethe 8) was the first to introduce a short range para-
meter to measure how well on the average A atoms are
surrounded by B atoms. He developed his method on a prob=-
ebility basis and in such a way thet successive approxim-
ations could be taken in order to approach closcr and

closer to an exact solution of the problem. Unfortunately,

going to only the seeond spproximation increased the work
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necessary for a solution by a considerable amount compared
to that necessary for s solution on his first avproximat-
ion. Furthermore, the improvement in the solution was not
80 very great. Bethe showed that the Bragg-Williams theory
was a limiting case of his own theory.

Some time later, Fowler and Guggenheim.g) published a
general treatment which they termed the Quasi-Chemical
method and which in some ways, may be looked upon as being
a fairly straightforward extension of the Bragg-Williams
method to inelude é short range order parameter. We shall
not describe this method for reasons which we shall give
ghortly. Cheng 1C) has shown that Bethe's method yields
equations which are entirely eaquivalent to those of the
tuasi-Chemical method and so we may look upon Bethe's
method as being a particular case of the latter method.

Within the next few years, other methods were developed

11y and one due to Zernike 12)

including one due to Kirkwood
All of these were of course anproximate methods, the
aprroximation being capable, in prineciple, of being pushed
as far as was desired.

In 1941, Kremers and Wannier 15) introduced into the
discussion of these problems, the so-called Variational
Method. Tt 1= this method which will primarily concern us.
They applied the method to 2 lattice coneisting of a

linear chein of atome and to a square net lattice - a two
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dimensional ferromagnet. Their calculations indiceted
that the method was considerably more powerful than any
previous treatment; but they 4id not extend their work
to include a third dimension.

Tt was not until 1952 that Martin and ter Haar 1%)
applied the variational method to a three dimensicnal
model. In their paper they treated the problem of the
simple cubic lattice and found, in the region above the
Curie temperature at least, that the variational method
gave a much better result than 4id any of the other
aporoximate methods 15). They did not tackle the low
temperature region.

In view of the success of the method, we decided to
apply it to the problems of the face eentred and body
centred lattices and to attempt solutions for these models
in the regions below their Curie temperatures as well as
above them. Before going on to a description of the variat-
ional method, however, we must first point out that in
order to assess the value of the method, we shall require
results from the older methods which are comparable to
those of the wvariational metheod. Unfortunately, most of
the older methods were used to estimate the Curie temper-
atures of the various models discussed, whereas the var-
iational method leads directly to series for the partition

functions per spin in the regions 2bove and below the Curie
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temperature. Thus, in ordgr to be agble to compare our
results from the varistionsl treatment with those of the
other treatments, we have had to csleulate series for the
partition functions per spin in the two temperature regions
for the more powerful of the older methods.

It 1s for this reason, that we have merely mentioned in
passing, the various methods following upon the Bragg-
Williems treatment. We thought it more suitable to defer
a description of these methods till a later chapter, when
we can include at the seme time, an outline of the way in
which we have derived the partition functions per spin for
the different methods. To the hest of our mowledge, these

series have not previously been calculated.



31. We shall now consider the variational method as dev-
eloped in 1941 by Kramers and Wannier for solving the
problem of finding the partition function per spin of the
two dimensional ferromagnet. Since the method, applied to
three dimensional structures, represents the main part of
this work, we wish to consider it in some detail.

Throughout the whole of this and the next chapter, we
shall make use of the Ising model of a ferromagnet which
we now want to define precisely.

We assume that our regular lattice structure has all
of its sites occupied by spins, each of which we denote
by a parameter M as mentioned earlier. These spinc may
be found in only two possible orientations which we sig-
nify by allowing the spin parameter to take on the two
possible values +1 and ~l. The Ising model then states
that interaction between spins is confined to that between
nearest neighbours. In other words, the force on each
spin, and consequently the energy assoclated with each
spin, is due only to the orientation of its z nearest
neighbours in the lattice -~ and possibly also to an exter-
nal field which may be applied. We neglect surface effects
of course. z we have defined earlier, to be the co-ordin-

ation number of the lattice. Ve should mention also that,
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in the next chapter, we shall have to extend our defin-
ition of the model to include other than nearest neigh-
bour interactions -~ which can be done without much
aifficulty.

If we assume that each spin is equivalent to all the
others, then the totel energy of the lattice will depend
upon the interaction energy jf between nearest neigh-
bouring spins snd upon the magnetic moment m per epin.
Taking into account an external magnetic fleld H, we may
write for the energy E of a ferromagnet (see emation

(1,14))
E. %= 4§D i "mHZﬂ,»

<ijy

(2,1)

The notation ‘g;> we shall define to mean surmation
over all nearest neighbour pairs (1,35).

This 1s the energy in a particular state of the lattice
and consequently the state sum, or as we have called it,

the maeroscopic partition function, is given by
"‘ZC“‘"JJJ"'CZC‘Jt

-E/a <y
L Ze % Z € (2’2)
atl s{alo Gt/
where K= z §8 { C=mwHS

As we have mentioned in chapter I, once we have found 2,

the problem is virtually solved.
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Figure 4.

15



26.
3 2 As a simple introduction to the method of obtaining
%7y we shall consider the ecuivalent one dimensional probe-
lem of the linear chain of spins. e ecanmmot refer to this
as a one dimensilonal ferromagnet since, as Ising himself
showed, it has no ferromagnetic o»roperties.

Pigure 4. shows the linear chain of spins - finite in
length, with n components m, th ----- 4 o From Boltz-
mann's theorem, the vrobability of findins a particular
arrangement of the spins Moo == M is »ronortional
to the Boltzmann factor of the energy associated with that
arrangement, since all arrangements have the same weight.
Using (2,1), we see that this vrobability is

R poogn ot pra=r) # € (f* -t M ey
P =~ ptasnd =06 (2,3)

=1 is a proportionality factor or normalising constant.
Adding on the nth spin, we can correspondingly werite for
the probability that the spins Mo Mr - M~ have a
certain arrangement

K(d(l.‘“;i-—--}(u"_, ) +C(¢u,+_-+cuu)
g At (2,4)

Now, for the nrobability that u.., has a particular
value irresvective of the values of the preceding n-2
spins, we sum (2,3) over all wvalues of the first n-2

spins, i.e.
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KZ(‘/'Jv“CZ:c“

i 7

sgeos ], Jorr s B (50

=+ =% =4
“
f"- ol | cll g | C‘J =2

Summing in the same way over (2,4), we £ind the probability
that M-, and M have a particular pair of values irres-

pective of the values of the others, i.e.

:<Z et e CZf.-

P s, th) -Z § et Fop & 4 (2,6)

--l!-‘:.-“‘r d‘“.‘_;
Taking the ratio of (2,6) and (2,5), we get

Pl y - T el i
fu-:,ﬁu"‘ —_ P(Cu“-')

h-y

(2,7)

Wow if we put Pp.y/Pp = A and sum both sides of the
resulting expression over the two values of ., , we
get the probability that Mw has a partlcular value
irrespective of the preceding n-l1 spins, le.e.

o~ K"“u-:fh + cc‘ln
N - Plps) * Z PlEn) € (2,8)

Ve assume at this point, that the chain is very long, in
which case 7 (&) and FPl(Mu-) must be the same function
of their arguments. In other words, we may write ecuation

(2,8) in the form of a matrix eigenmvalue problem. First
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of all however, we symmetrise the matrix using the sub-
stitution: .
-y M

a(m) = P(g“’ e
where for simplicity, we denote m. by 4 and M. by a',
We have then

Kptlpn + & (pa+e')

o > Z“'Z;tfmf) . (2,9)
or Aaip) = Hlppm') alp)
where H#(#) 1z the matrix whose elements are the expon=-
entials  xpf[ Kpupt' + S (s ph |

Before going further, we must investigate the signific-
ance of the latent roots or eigenvalues A . Since HM(x )
1s a second order matrix, we shall have two eigenvalues
N\, and ~A; and corresponding to these, two eigenvectors
a.p) and a. () o If now we assume that our eigenvectors

are orthonormal, then

S @i ag (e Sk (2,10)
Mt

where 84,3 is Kronmecker's delta. From this it is easily

shown that for the elements of ﬂ(gu(u') s Wwe may write

v (éh"ud i A'Q’;J;,)a,((’u;) + )1 Gy (M) Qa {d‘“’) (2’11)

Using this and the relationship (2,10), we can prove
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Z H(pp) Hipaps) = AF @ (1) A, (pas)+ D3 Qq (pa0) Q2 pa3)
&2

and
3 3

Z: Z\ f-((ﬂ-[‘l) H (A 04) ﬂ(ﬂz[‘u) = 'A, a(m) a, (o) + Az Qul ) ‘?:.Q“e)
HrMs

ete. until we reach the end of our chain with spinn + 1

“ o)

E H (o p Hipn ) - H( pa,, Puar) TA Q@) A, (hr) + A Ay () A, (En+r)
fnprse e

We now elose the ring of spins by assuming Mus, = M.,
and sum over this spin. If we also use the relationship

(2,10) we get

"o

"
Z ﬂ(é‘-{‘dﬂ(g‘sﬂﬂ-—ﬂ(d‘wﬂd = A, + A (2,12)
e i

From the definition of H(#.*'), we see that the left
hand side of this equation is the macroscopic partition
function of our one dimensional lattice.

We have already assumed that our chain is very long,
i.e. n is a large number. If this is so, and if "\~ is
the smeller of our two eigenvalues, we may write, from

(2,12) and (2s2)!

'_k *L

£ b (2,15)
This is the fundamental ecuation of the variational
method = showing as it does, the relationship between

the physically important quantity Z and the largest
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eigenvalue of our matrix equation. We see that this largest
eigenvaluec is the partition function per spin of our
linear lattice,

Returnine to ecuation (2,9), we see that we have to solve

K+ C -K
€

@ s =0

€ e -A

for our eigenvalues.

Doing this, we £ind for the largest eigenvalue
K 1K % -zu)'/,_

where we have dropped the subseript on A

Tor the mognetisation ¥ of the lattice, we have

2C 2¢C [se.kiC + e-qu]é (2,15)

M=%1A~Z MN'MM'X ol Siv kO

80 that when H= C = 0, we have M = 0. Since on removing
the magnetic field, no magnetisation is left, we see that
our linesr chain i1s not ferromegnetic. Thies is not really
surprising, since having one spin wrongly orientated in
the chain will completely upset the state of order in the
chain, 2 fact which is not true of two and three dimen=-
sional models.
If there is no megnetic field present, we get

’)\ = 2 toih K (2t16)
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and for the configurational energy and specific heat we

find
’ '})/‘u‘x I ’

IXRT S LY ;'le L N b K. (2,17)
= 10, Arha

cvz?_‘___.r - NK*R '3'!}' - F.LNKzS_wkzl( (2,18)

From which we again see that the linear chain does not
have ferromagnetic properties - since both E and C, are

smooth functions of temperature showing no Curie point.

§3. The one dimensional case of our problem which we
have Jjust treated, 1s rather trivial; 1ts value, so far
as we are concerned, lies in that it gives a good example
of the method of setting up the matrix equation for this
type of problems In the case of the linear chain, the
guestion of finding the largest ei%envalue of our matrix
was very easily resolved; however in this respect, the
next case, that of the two dimensional ferromagnet, is
fundamentally different.

Sinece it is only in the two dimensional case that the
variational method 1s introduced, we shall consider this
case in some detail, particularly as it contains a formal

proof of the validity of what is probably the basic
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assumption of the variational method as such. Henceforth,
in proceeding in the next chapter to a consideration of
the three dimensional analogue of the cases considered
in the present chapter, we shall take this assumption
for granted. The assumption lies in our choice of eigen-
vectors. |

In the two dimensional case then, our first object is to
set up the matrix problem or equation. From a consideration
of the linear chain problem, we see that we managed to
effect a2 reduction of the problem in effect, by assuming
the chain to be built up by adding one spin at a time
beyond the last one placed. We made the chain very long
and in working out the probability for the state of the
last spin added, succeeded in expressing this in terms of
the probability for the state of the second last spin only.
Sinee the chain was very long, we could assume that our
probability functions were the same function with differ-
ent arguments, so that consequently equation (2,8) took
on the form of a matrix equation.

Applying this procedure to the square net of spins (see
figure 5. ) we see that we may build up the net by adding
one row of spins at a time to the existing rows.

We consider first the probability that the spins in row

M: have a certain set of values irrespective of the

preceding n-2 rows and with row u. absent. This is given
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by an expression of the form of (2,5), where the summations
on the right hand side of the equation refer to summations
over all possible arrangements of the spins in a particular

row - row &, row b, etc. The summation Z in the exp-
<

-J

onential factor of (2,5) now includes contributions in
the vertical as well as the horizontal directions. We can
then add row u; and form en expression similar to (2,6)
giving the probability of getting a particular arrangement
of the spins in the rows é:’: end M. irreepective of
the others,

Taking the ratio of these two expressions, we get the
two dimensional analogue of (2,7), where the exponential

factor is now

" “ "
Lxp [K‘%"CJ"C”-" & K{;”C""Cu: = & ‘Z. Cu'] (2,19)
In which M refers to t_he n spins in the topr row only
end u: to those in the second top row only. Ve see
that in this equation, the first and third summations
ere over those spins in the top row while the second is
is over the nearest neighbours in both rows.

Eventually we shall get the eacuation 3

<Rt T L

Lig> %
¢ P(un = ] Plub e (2,20)
pi



where § comes in for the same reason that A did
previously. Once again we symmetrise the ecuation, using
this time . :
- [K/%%f‘;‘«" + 9 Zc"‘]
Q) - Plu.) € (2,21)

giving ultimately

Pa(u:) - Z W(ﬂ:,f:’) Ch'cui') (2,22a)
all
where - o "
R (il + KL (pighos vpifhin) + 5 f, (iteul)
Hlpipi) -€ (2,22D)

The subscript 1 in the summations is of course assumed
to run along the rows.

Having found our matrix ecuation, we now want to dis-
cover the meaning of the latent roots 5’ - of which there
will be 2%,

e again assume our eigenvectors to be orthonormal

L Qpludagimi) = Spq (2,23)
&
and at the same time use the expansion

2n
MHom) = F); §p Qplun @pui) (2,24)

We can assume that our spin system forms a ring of spins
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n spins wide and m in circumference and we find that its

partition function may be written as

2. § Hpd pFY NEpEY - -~ (T H DR (9, 28)
il
cgf referring to the spins in the kth now,
If we put the condition (2,24) into (2,25) and use (2,28)

we find
_ .
7-25 =57 (2,26)
Pt
if as before, we let m beccme very large while keeping
n fixed. By 5’ we mean the largest eigenvalue of our
matrix.
Since in each row or ring of spins we have n components
we may write
f “Aﬂl or
- (2,27)

where once again A is the partition function per spin
of our model.

Our next object is to try to effect a solution of equat-
ion (2,22) = that is, find an expression for A . Unfor-
tunately, as we shall see, this problem cannot be solved

without making some sort of approximation.
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0 4. In the second part of the original paper by Kramers
and Wannier, the authors note that the largest eigenvalue
of a matrix may always be expressed in a variational
form. This is in fact an adaptation of the Ritz variation-
al prineiple which occurs in quantum mechanies. From our
matrix equation, we can write

$ - fl\“ _ wmax ,;ﬂ;ﬂ(e“.z/.-’)agf.')a(d,g,

ald a(pm) Z La‘{“"’]z'
.t

Our object being to find a/(A4)’'S which meximise this

(2,28)

equation.

Up to this point, our method is exact. However we now
introduce restrictions upon the a's which allow us to
obtain only an approximation to § . In ?iﬂﬁqfdlthe gc;%

occur in the éombinations

2
7 <
L (2,29)
Z HAipin “ M9
=4

Our first restriction on the a(gnd therefore lies in

assuming

a(c(.(,) = a(z,M) (2'50)

Kramers and Wannier then prove - and we shall consider

this proof shortly - that (2,30) is equivalent to
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w[H(KE)g + A(K,c)m]
a(du‘.) = B (2,31)
where H and A are as yet undefined except that they depend
upon temperature and field.

Since we are going to assume this form for our eigen-
vectors in later work, we shall give the vproof of the
ecuivalence of ecuations (£,31) and (2,30).

The first step is to introduce into ecquation (2,28),
assumption (2,30). Let

n}(f;m!
v olg . olm (2,32)
represent the number of arrangements of the «’s contained
in a rectangle dq.dm drawn about (g,m), and let

ﬂKZ#:"'“J" -n,f(i,m,z fm')
. € =8 o{z »déu.a(z’, el (2’53)
M i
G.m, g !
where the summation on the left hand side is extended only
over the combinations lying within the volume dq,dm.dq;dm'
about the point q,m,qsme

Substituting into (2,28), we get

ﬂ[)cff.bt,f,'»;jf.;-((f-lg") +{-‘(w¢m')j

/7//6 i a(g.m)a(g.m') Ag.clm.olg’ oy’

// e n}(f'm,a x(f,m) oAg.elne .

Atnmm
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¥l ..,i " ?,(2,”1)
Now assume 62(,3'.?")'=b(2.m) e giving
////w,a n[f(f.m,g’,m') “§8(mq)-3 F(m'9")
" +$R(2+27) 4i’c(m+m’)jb(y,m) b(gim’) ol el oly cla’

A=mex

//5‘(3.»:) oy . ol

If we assume that the denominator of this expression is
normalised to unity, we can look for the maximum of the
numerator. We see that we get our largest § 4if we let

b be large wherever the exponent reaches its maximum,
Evaluating the integral by the saddle point method, b will
make no contribution due to the normalisation we have

assumed, We find

Sk 1 2T [ Flg.m gim’) -7 2 (3)m)

=il ( ,m)+5(242'J+£(m4m’

In order to eliminate the uniktnown functions £ and g, we

introduce the solution of a two strip problem

7("(1',3,116') =Z mgo[ Zc“c” +I[¢wcum
it

fLf M +6[ﬂ *BZf" ]

Fet

(2,35)

Writing this in terms of g and m, we find

x“ = [///.Oxfm Hg.m, 9 w’) +1 g 4Ii‘?'+8 nat 5'»4']0(2.0/»«,0(_?',6{»!'
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Again we use the saddle point method for evaluating this
and find
'g7) . WA (9,1, w') 319 + L9 4B sa 58 i’

L A(LBI B g’wim,ﬁ qugtm’) 479 + 15 B w4 B’ ] i)
Similarly, we can introduce two one strip solutions

wk(H’A) - Z MP[Z;‘{:Z “{,’cut'ql)' +1’q .Z ‘“,' (2,3’?)

&u,. raf ref
or
- X
L WHA) = ;‘“m [;.(g,m)+zug+2ﬂm_? (2,38)

I Al = : ’ [
and 4 Y(H.A') - zr‘w”f[g,(ﬁ wJ-!-?.Hg’-a-zﬂw]

Now substitute (2,36) and (2,38) into (2,34)

2 Wl [4.,7((1.5,1',;3')@4“11/(%9) 4 L W(H!A')

2. m0.G '

HARTerlgt (4 Tur)g b(feB1A)ms (he-nR)m' ] (5 a0

Due to our maximisation conditions, we must take account
of three distinet types of relationship among our various
quantities. We have (a) maximisation econditions on X

and | as indicated in ecuations (2,36) anad (2,38).
These allow us to make the functions I, B, *c*cvcee A,
functions of q, m, q, my, or vice versa. They also allow
us to teke first derivatives of A and Y as if g, m, Qs
m, appearing in (2,36) end (2,38) were constents.

(b) equations of the form
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M,uv(:é LY q 26X gy I
T o H VB 2 A

and two others for q'and e
(¢) maximisation conditions on A = again four in nunber
one each for q, q, my m, — of the form (see equation (2,39))

szEL: 246X 2 I , 24X 28 94MX1§};’4 24.X 28’

ey e

29 2T 29 28 7 31" 29 2B° 99
_ 1 WIAIH _ 1 34 Y 2A _Q(Q_Z_?_b‘)

3H 24 .2 '%A g 22 AL

;A o BN g Zfl L = -
..ff_é _’"(B = i =4 +4 I +H =0

It is easily verified that these equations may be sim-
plified if we use the conditions listed under (b). We then
get for the conditions (c¢)

I=1/2K+ H B=1/2C + A

I'= 1/2K + B’ B'= 1/2C + A
We can now use these relations to simplify (2,39). We see
that

A =

X[{K+H%ﬁwﬂ,{K+Hﬂ{c+ﬂ’]

[ww,m.wm:n’)]%

and the relations under (B) read

4N 34 A DA

W
o

—_— =

JIH QH' QA DA’
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This indicates that H, H, A, A, must be chosen so as to
give A a stationery velue. If there ere several solutions
leading to a number of sets of aq, my, q; m, our original
meximisation condition requires that the largest one be

chosen, i.e.

. L ) ' !
’X e ’X['{K"H,’QC‘Fﬁ,iK-?H,r;:C-fH’]

H,AHIA’ [ W(HA). LP(HIFI')] %

(2,40)

Finally, we must show that H = H, and A = A.
In order to do this, we introduce functions c(#) and

od (4:) which obey (2,31). We substitute into (2,40), the
expressions given by (2,35) and (2,37) and find

" Z gy cepd) ol (p7)

) . WAoX st (2,41)

c,ol {[; c;(é,,.,] [Z;,-dl(d‘})]] A

Here we have used the definition of MN given by (2,22).

We ean now prove that if we have a set of e¢'s ond a's

defining \ as in (2,41), we can find a larger A by

replacing the ¢'s by d's or vice verca, eseescese (8)
Pirst of all, we prove that Z JHR(papDapd alpmi’)

is positive definite. This we cfi“c;f;y induction, since it

is obviously true if the a's depend on only one spin Ao

If we suppose it to be true for n-l spins, we can prove

it to be so for n spins. A has the form
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Mt #7) = o e pe) il phid bnp K.Z M

8ince the a's are arbitrary, we can absorb the ¢'s into
them and we see that we mast prove only that
Fol op K] e ] argn acuds
&ighe it
is positive definite.

To do this, we single out . and . and denote by
i !
Fipi
take on only two values so we can write

surmation over the remaining éd% « But M« can

o pur) sl pmi) *iuﬁ(ﬂf,

where o and B do not depend on Mo Now we can carry out

the summation over M. and #+~' and get

/

Fooheat 2K L, orp[%], c“fﬂ'"] o) gl
M it

! ey 2 g
$% Lwak 2K Z wr’["-): 6“-'6"'"] Pl plgs)
cld,'d“f' ey
Sinee both terms on the right hand side are positive, this
proves our result.
Finally we apply the Schwartz inecuality to ecunation
(2,41) assuming that the e's and d's are normalised.

This gives
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ZZ K ) C ) dlu) & 2 [T (e pai) ) el pul)
M s

" Z ﬂ((urc,u,') 0{{6‘4) D({éu})
M
Thue proving the statement denoted by (8).

Using this result, we can rewrite (2,40) as
X [ seen ]
WA 2%

b ST | (2,42)

As we have suggested earlier, the transition from (2,28)
to (2,42) or from (2,30) to (2,31) is one of the bhasic
assumptions of the method of Kramers and Wannier and we
shall frequently use it in the next chapter.

In order to evaluate (2,42), we refer to results obtain-
ed earlier in this chapter. The form of 1P is given by
equation (2,14), while X can be obtained as the largest
eigenvalue of a matrix problem of the form of (2,22).

Thie matrix will be of the fourth order; but since similar
matrices will arise in the next chapter, we shall not
write the present one out in its array.

Eramers and Wamnier, using the definitions

e¥=k:eCz=c:e®Hon:e®rza (2,43)

find for IP and X ’



!
f‘!—

Y o= dh(asa) 24 [1a-e™) e n]
X X [Wh(acrarey vk Cleb 4 " h T
2 X Cehe k7R [k (acso'e™) + ™ (leh + fa"}{")] ol TN ) S

These are equations (2,442) and (2,44b).

As in 2ll of this type of work, the calculations were
carried out for zero external field, i.e. ¢ = 1. If this
is s0, then a = 1 is a possible solution, since the first
derivatives of 7( and 'LP sy with respect to a, wvanish

at 2 = 1. Using this, we find for (2,44b)

[y‘q(b&"}(kh-»h“’h") + (kl«-[z"l‘")z]['xﬁ&(kk -fg-’h")] = O e b

the last solution of which may be discarded as being small.
If we now meke the substitution (Fz/«—k“l-")/(h”") 28

we get from (2,45), after substituting \: Fx/lP and Y- h+h,

%o =
S (8- KY: # 4 = SV R
which maximises to
2
A TTRTET (2,46)

This solution, however, is not valid for high wvalues of
K - it 1s only true forthe temperature region above the

Curie point. In the region of high K, Xramers and Wannier



using various substitutions menage to £ind a solution
with a ¥ 1. Without going into details of their calculation
we may give their result as

(14 K"Z) (1-%7)

g T et e (2,47)

3

S

- . Y
s ( k-5)

where -ﬁz = B defines =z

and (kh-h"A") WY’ =sA  @efines s ae before.

The two parts of A given by (2,46) and (2,47) make up
the complete solution which is of the form shown in figure
2¢ of the last chapter.

Again without going into details, we may mention that
Kramers and Wannier, in part 8 of their paper, give series
expansions for A 1in powers of K for (2,46) and in powers
of x~1 for (2,47). They then supply the corresponding
series as calculated from various other approximate meth-
ods and demonstrate that in both the high and low temper-
ature regions, the variational method gives a far better
solution than is given by any of the other methods.

It should be noted, in connection with the two dimension-
al ferromagnet on this treatment, that Kramers and Wennier
suceeed in finding the solutions for A in elosed forms.
For the three dimensional cases, we have not been able to

do this in view of the extreme complexity of our equations.
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THE VARIATTIONAL METHOD
APPLIED TO THREE DIMENSIONAL STRUCTURES

§1 In this chapter, we shall consider the application
of the variastional method developed in the last chapter,
to the problem of cubic lattice structures. Martin and
ter Haar have already discussed the simple cubic case at
high temperatures; we, however, shall develop a general
eapproach which will be capable of modification to yield
results for any one of the three cubic cases. Further-
more, we shall extend our calculations to include low
temperature series for our significant quantities - in
particular for the partition funection per spin.

As 2 preliminary, we attempted to apply the variational
method directly to the problem of finding the partition
function per spin of the face centred cubic lattice. If
it had been successful, this approach would heve given
the best avproximation to the recquired partition function
that the variational method could yield; we soon found,
however, that the method led to a matrix which was far too
large to handle. (We shall give a short discussion of this
direct approach, in en eppendix.) In consequence of this,
we turned to an alternative approach which has the advan-

tage, mentioned above, that in order to tackle any of the
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three three dimensional problems - simple cubic, face
centred cuble, or body centred cubie -~ we merely had to
modify our main ecuations, provided we had made the app=
roach sufficiently generasl to include all three ceses.
Eefore deseribing the method, we should first of all
repeat that in this work we are concerned with finding the
vertition functions of the verious ferromagnetiec lattice
structures where only nearest peigﬁbour interactions bet-
ween the atoms are taken into account. T%e extension to

include second or third nearest neighbour interactions

will not be considered for solution.

42 In order to set up our general case, we concider
figure 6., This depicts two adjacent plates of the three
dimensional simple cubic lattice with first, second, and
third nearest neighbour interactions. The separation of
the plates is the lattice constant 'e'. The black lines
indicate nearest neighbour interactions, the blue and the
red lines indicate next nearest neighbour interactions,
while the third nearest neighbour interactions are not
shown since these do not lie in the plane of the paper.
From the sketeh, we see that nearest neighbour inter-
actions link all atoms irrespective of whether they are
represented as dots or as circles or as being red or blue.

Thus the set of all points of intersection of nearest



neighbour interactions represents one system -~ the simple
cubic lattice structure. Also, on displacing one of the
plates a distence 'a' in the 1 or j direction, we see that
next nearest neighbour interactions link only all red atoms
or all blue atoms, irrespvective of whether they are rep-—
resented as dots or as cireles, so that, on making the
Adisplacement, the set of éll red atoms - intersections of
red next nearest neighbour interaction lines - represents
one system, and the set of intersections of all blue next
nearest neighbour interaction lines represents another
(equivalent) system - the face centred cubic lattice
structure. Finally, considering only red circles and the
corresponding third order interaction lines, we see that
the red circles represent one of four independent but
equivalent systems - the body centred cubie lattice struc-
ture. The other sysitems are represented by red dots, blue
circles and blue dots.

Prom these considerations, it is easy to see that this
rarticular model may eventually be modified in various
ways in order to discuss different problems. These are:

1) Simple cubic lattice with first, second, and third
order interactions.

2) Simple cubic lattice with first and sccond order
interactions - by putting the third order interaction

energy equal to zero.
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3) Simple cubic lattice with first order interaction
only = by putting second and third order interaction
energies equal to zero. This is the case considered by
Martin and ter Haar at high temperatures.

4) Pace centred cubic lattice with first order interact-
ions only - by putting first and third order interaction
energies equal to zero.

5) Body centred cubic lattice with first order interact-
ions only - by putting first and second order interaction
energies equal to zero.

Of these various problems, we shall discuss-only the last
two in detall. The third problem, we shall consider only
to the extent of demonstrating that we can obtain the
equations of Martin and ter Haar from our general equations.
We have not attempted to solve the simple cubic lattice
problem at low temperatures although this would have been
of considerasble interest, especially as the method we are
going to use is, in the problems we shall treat, an approx-
imation to the variational method. By this, we mean that
that our application of the variational method does not
allow the method its full scope so far as problems 4) and
5) are concerned. We might say that it does not do full
justice to the power of the method. This is of course
bound up with the fact that we found that we could not

apply the variational method directly to these two problems.
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(The difficulty discussed in the appendix for the face
centred lattice exists alsc for the bedy centred lattice
as 1s mentioned there.) In this respect, however, the sim-
ple cubic lattice problem is different from the other two
since our method, suitably modified in the later stages,
represents a direct approach to the simple cuble lattice
problem, Obviously, then, it would be of great interest

to effect a solution of this case at low temperatures.

Cur reason for leaving the simple cubic case uncompleted
is twofold. First of all, there was the practical Aiffic-
ulty of the magnitude of the task. As we sghall see, al-
though the simple cubic case is the simplest of the cubic
structures, the basic variational method equations approp-
riate ﬁo it on our treatment are not only more numerous,
tut are nmuch more complicated than are those for the
other cases. This c¢an be inferred from the results of the
next chapter, where we shall see that the face centred
case yields equations which, although they give a much
better approxifnation to A than do those for the body cen-
tred case, are very much longer (in the low temperature
region especially) than are the corresponding body centred
case ecuations. This 1s not to imply that the equations
cannot be solved; but merely that once the equations have
been written out, which in itself will be a tedious task

requiring considerable checking, a great decal of work
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will be necessary to effect 2 solutlon, especially since
it will be necescary to worlk out a large number of terms
for A before deviation from the exact series is observed.

The other reason for neclecting this case lies in the
faet that of the three cubic cases, the simnle evbic struc-~
ture is the 1east'important from the point of view of oc-
currence in nature. .

In developing the theory of our present method, we shall
take i1t as far as possible while it is compnletely general
i.ee¢ we shall develop the theory for the simple eubiec
lattice with first, second, and third order interactions
and only in turning to the special cases we reouire, shall
we modify our emationes by putting particular interactions

equal to zero.

3 3 As in previous work, we take for our model, that of

a erystal structure with spins situated on the lattice
sites according to figure 6. All spins are ecquivalent. Ve
consider each s»pin to be capable of taking up one or other
of two orientations indicated by giving one or other of
the values *{ to a spin parameter denoted by M,k . Our
lattice is built up from plates of the form of those in
figure 6, the separation of the flates Pbeing the lattice
parameter 'a'. Ve assume that we have m spins in the x

direction, n in the y direction, and p in the z direction
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the plates 1lying in tke xy planes and the lattice being
built vp in the z direction. At absolute zero, =211 the
spins will be ordered relative to each other, 1.e. all
nearest neighbours will be parallel to each other.

Our first aim is to find equations leading to the par-
tition function per s»in with 2l1ll three orders of interac-
tion, for the simple cubic structure. Trom Boltzmann's
theorem, the probability of getting a certain state or
configuration of the system 1s proportional to € i
where, as before, E 1s the energy of the state. The partit-
ion function 7 is defined to be az;de-ﬁbs as we have seen
earlier. This summation in the present case conteins 2™WP
terms.

For the energy of such a ferromagnetic crystal, in a

magnetic field H, we have

Ex 43¢t 54 hpe -3 b - mH g (5,1)

where jﬁ’ is the co-cperational energy of nearest neigh-
bouring spins in the lattice, i.e. it is the energy gained
when two isolated nearest neighbours change from the
parallel to the antiparallel =2lignment, and ‘¢’ and jfv
are the co-operational energies of next and third nearest
neighbouring spins respectively. m is the magnetic moment
per spin. The first summation is over all nearest neigh-

bours in the lattice, the second is over all next nearest
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neighbours, the third is over all third nearest neigh-
bours, and the fourth is over all spins.

From Boltzmamnn's theorem, considering the lattice to
have p~l plates, the probability of getting a certain arr-
angement of the spins in these plates (i.e. the probabil-
ity of getting a certain state of the system) is given by

P-1 Pt
Plopis— 1) = P, tnp[ K2 (45 Ppusr 4 K5 (firsh, ph rarsert

P! £
+ Mr, 5."{_“'5””') + j(ﬂz (("""S‘Z“'ﬁu, s+ b4 "l'zur."’s-u, !‘c"ffslhu) . ’Z dur's}-] (5, 2)

In this eqguation, MM Mer represent all spins in
plates 1y, 8y **eescesces pa] respectively and take sccount
of all spins up to and including those in the (p-1)%B
plate. In expressions like wn,sr ; the order of r, s, and
t is of no significance, since the expression is meant to
MeAN  Muriy, 3, + Mx,yr, Y F Hn Yo Fr « Of course, having
decided upon a particular meaning for r, s, and t, for the
first factor of a product of #s , this meaning applies

to the second factor also. The notation 1s merely meant

to cover every possibility for a particular order of inter-
action. Thus, under the first summation, we have three
general terms - as ¥ + 1 runs through the values x + 1,

¥ + 1, and z + 1. Under the second summatici we have six

general terms and under the third we have four general

terms. i - 5’/1” T o AET & Lgs o w" {f}s CCsmBH.
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Pp-1 is 2 proportionslity factor.

FPollowing the usual procedure, we now add the pth plate
to our arrey of spins and encuire es to the probadbility
of this new system heving a particular arrangement of ite
gpins. This process of 2dding successive plates is 1llust-

rated in figure 7. The new probability is

F
4 !
P({"-"‘é"p.;,/p) s '?bp Mf[!{ ;ﬂfv.{“ﬁgy" +K Z’;((uﬂ*("'ﬁ’,#,?

P r
# {'fﬂy"ﬂv‘SM") -H(”Z,- (Wﬂaasw,ru-}Zliru_sv,rcw,s,h:) + C i', C“M] (5’3)

Now the probability of getting a certain arrangement of
the spins in the (p-l)th plate irrespective of the arr-
angement of the spins in the previous p-2 plates 1is
obtained by summing (3,2) over all possible arrangements
of the spins in the previous plates i.e.

bty + 5, L Pl e

Mol § ezt fﬂpz
T8 ] il Z%*KZK*“Z‘C C'Z”Q] (3,4)
Tzt Tzt Sc"pz‘il
where 0, % L 7,4' represent the various sums of products
of 5‘3 ocecurring in the exponentisl factors of such equ=-
ations as (3,3).

Similarly, the probability of a certain arrangement of

th

spins in the p and (p-l)th plates taken together and

irrespective of the spins in the previous plates is
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obtained by summing (3,3) in the same wey

Pl paper, e -~ Z e Z Pty = G, M P )

St fﬂ;-"‘! 5‘4‘4”: 4

Z 2 - Z e ”"/"[KZ”Z*’( Z,g+;(”2£ % CZ' ?ﬂ] (3,5)

Sty Fueri Sprats
If we next divide (3,5) by (3,4) and vut § = Ppe1/Pps

we get

S’P([‘p.,./p)=?(éup_')wf[x%;0f+#£2f+ﬂ zf C[Wq]

2= (5!6)

: th

We now denote the »“" plate by 6“’ ( &U’E(U,o ) and the

(p=1)*™ plate by 4 to give

zg+K2£+ciﬂf

Pzt

£ P(pph = P(P wfI:K i Lo (3,7)

In order to find the probability for a certain arrangement

th

of the spins in the p"" plate only, we can sum (3,7) over

all spin arrangements possible in the (p—l)th plate

§ Pe- £ Plpe) - j?@)w[dm,{ gg+x'f5,c+cg d}
Soptt Spe 7 (38)

CPLey = L ,’j(d”%

$ et

Vhen we let p - the number of spins in the z direction -

or

(3,9)

go to infinity, P(#) sna () become the same funetion
with different srguments (that is, the addition of the
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nth plate has not altered the physical properties of the

crystal) and the last equation takes the form of a matrix
equation. We gee that the f’ will be eigenvalues of the
matrix which we have denoted by %//gzu’).

The next step consiste in writing out an exact expreassion
for the matrix é(ﬂg"'} in terms of the intersctions in the
top plate and between the two top plates. In order to see

how this expression arises, we may refer to figure 6.

Doing this, we fira
'é)(éhf’) = M}a[Kz((,"!‘j'ﬂ"*’:j +,;'J'z“:',_,'+! -+ 6‘“:_’ ‘”;‘J')
o K G (5552 3 i Hi o P i figes 20055 M 01y Aiifian; #Mii i)
4 ,(”j{{u:'j(u:'v',;'-ﬁf +g/'*‘+*»j Eigas M ’}w,,',.,ﬂ;,' + Ml M )
‘g ) #a ]
4 # (3,10)

In order to symmetrise é/ te give, say ﬂ[g’,/') sy We use

the substitution o

I Y

P(p) = A () wﬁ'[ G S (i sy 0T Mg er)
Sl Y

-

[ 0 C Fr——,
. _/é Z‘(Zu‘.j‘u,‘wu;w M "*':j(u.«‘,j"") =+ ZZ M ]

(3,11)
This, when substituted into (3,9), gives the matrix

with elements of the form
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.74((,"'&"') = MP[% S(J":'J dul”*'.f +¢“’;,‘(‘*";,_;,: *+ rigdieng 4.{9,;6:1,-‘;*,)
% Ki-e:'qu‘.j +Ez[¢u:'jé"r'v,jw +(“:"'.jft’.;'w+(‘.""1'C“'"',J'n+ v M0 J""')
$ )Y (@G B+ @l f Gl )

k” G (805 Grrin F o Bijo F Pl (05 F M & i)
+ & 5 Lpif +(“"J')] - (5,12)

From an extension of the theory of Kramers and Wannier,
we can show that the largest eigenvalue f of this matrix

th power of the partition function per

is equal to the mn
spin of the lattice. The largest eigenvalue outweighs all
the others in importance if we let the height of the strue-
ture (p) be very great.

Our theory up to this point has effectively reduced our
problem from that involving a erystal of three dimensions
to one involving a erystel of essentially two dimensions
since we are now considering only two plates, the pth and
(p—l)th. of our original erystal. If we denote by A the
partition function per spin of the erystal, then we have

Puuox = A where JSuw~is the largést eigenvalue of our
matrix.

In order to find f., , we invoke the Ritz variational

principle



il R T Zﬂ({uzu,)a((}"a{cu')
s X
e um«-jumlﬂ a s [[a((’u)]x

where as indicated, we vary the eigenvectors in order to

(3,13)

meximise the expression.
Adapting the results of Kramers and Wannier, we now
assume that it is vpossible to prove that we may choose

alm) to be of the form
]
ar¢1=%ﬁ[-’32“+§fﬁ*§f3’] (3,14)

where o, B, and ¥ are the expressions indicated in eaquat-

fon (B,11) and P-p(K:KK'1C) : pl=PA'(K:K’':c) :B:BIK:K' )

This 1is the assumption the proof of which we have given

at length for the two dimensional case in the last chapter.
If we substitute this form of the 4(M into equation (3,13)

and taks the >

T o
A - N.A"B

root, we find

A . kK+A'
X[ 68 R exr ]

Y L[aAe]

which is approximately eaqual to the partition function

(3,15)

per spin of our three dimensional ferromagnetic lattice
structure.
[ A b,
On writing out the expressions for 7( and Y in full

we find that these functions have the form of partition
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functions of crystals containing respectively two plates

and one plate of spins. In fact, for ¥ we have

LIJW:Z‘?‘I’[HE (f05 M inn5 #4205 M jar) 49'Z(}A.-,-g.-,.,,',,-l-bu.-,.,,‘ZJ:,,‘,».) -rSZﬂ-';] (3, 16)

which is a summation over all possidble arrangements of

the spins in one plate; the first summation inside the
square bracket referring to all nearest neighbour inter-
actions in the plate, the second to all next nearest neigh-
bour interactions in the plate, and the third to all spins
in the plate.

In the following part of the work, we adopt the notation
of figure 8, the dashes here having no ceconneection with
those used previously.

Our procedure now is es follcws. On consideration of
equation (3.16), we see that it has the form of the part-
ition function of a souare net of spins - n spins by m
spins - and with nearest and next nearest neighbours in-
volved. Starting from the beginning once again, we would
consider the probability of getting a2 certaln arrangement
of spins taking only the first n-l1 strips of spins and then
the probability of 2 certain arrangement taking in all the
etrips including the nth one. Ye would then take in each
of these probability ecuations, summations over the spins

in the first n-2 strips in order to find the probebilities

for particular arrengements of the spins in the top strip
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only and of the spins in the two top strips only. Taking
the ratio of these expressions and letting the number of
strips go to infinity, we would eventually obtain a matrix

ecuation of the form

G Plpi) = 2 Plp) %Q«xz«x’) (3,17)
jd‘w-t‘:,
where %/ has the form

,4(),_,[9 Qg it ion ppa i) P S figtins A s ) H?[d’f’] (3,18)
As before, we symmetrise equation (3,18) to give _ﬂ({"-h’&“a',)
using P () = alp) exp [ By 5 e+ By T i |

giving

ﬂ(é‘/:,ﬂ:{) :M”-’[—ﬂ Zﬂ:ﬂf "'-?‘ Z(qu!c,u:'-fl "'d‘-’;(“‘ ¥ )

s BT 1 pittinr sgirm ) 4 By G (pirgal) | (3,19)
The largest eigenvalue G.,,, of this will be the partition
- function pner spin to the power m of the square net of spins
to which TPw“corresponds.

Again, for the largest eigenvalue G..,, of N/l«:4)we have

, L Hlprpi)arm) ar?)
A e — (5,20)

a.tfaréu;)’f Z[a(/!ﬂ]z

This time, for our eigenvectors, we choose the form

Q(pN < enp [P Spigrn % L ai| (3,21)
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where P o=P(K:eY |, Q=Q(K:c)

Putting this into the variastional ecuation, and taking the

mth root, we find

o il
W s Sty }[P:Q] (3,22)

for the partition funetion per spin of the subsidiary two
dimensional lattice structure.

On writing out ¢g‘mand jﬂw in full, we find that these
functions heve the form of pertition functions of crystals
containing respectively two strips and.one sgtriy of spins.
ror 95”i for instance, we have

S5 S o [0 pierl + BEPE Ll i s i)

4 q*f[ﬂ,-c«,-L,+ﬂ,'+:ﬂ,"J + fSZ_?Q S(g“.'+6‘*;J] (3,28)
which is a2 summation over all possible arrangements or
states of the spins in two strips of spins, The first sum-
mation within the sauare brackets referring to all nearest
neighbour interactions between the strips, the second to
all_nearest neighbour interactions in each strip, the
third to all next nearest neighbour interactions between
the strips (it being impossible to have such interactions
in the strips) and the final summation to all spins in

the strips.



ag'

Ve now treat this problem on its owm merits, as 1t were,
congidering first the probability of a certain srrangement
of the spins up to but excluding the last pair M and Lu.;
i.e. up to and ineluding ¢w-' and g.:.-, s and then the
probability, talking the last two spine inté acecount. If
we follow out the usval vrocedure, we shall ultimstely

arrive at the expression
' ' 4 i '
ﬂ(ﬂm.ﬂm} - lﬂ‘f’[ﬁ (ﬂmz“m) -+ E‘_{_P(‘“m/(“-u "f"‘“w“/m*r)

F Rl s F i)+ BES (o) | (5 00)
This matrix, when written out in full, will be square and
of order 4 X 4 - obtained by varying Y s g..: s M and
Mw- through their values +{ . The largest eigenvalue
of the matrix will be 4 s the partition function per
spin of our cerystal of two linear chains. This matrix, in
its array, is written out on page 75 .

For ¥ we have J exp/ P S pépin: + Q S S

This has the form of the partition function of a single
chain of m spins, the probability treatment for which has
already been glven by Framers and Wannier and which hes
been discussed in chapter 2. We see easily, or from chapter

2 (see equation (2,9)) thet we shall find a matrix

T f ) = tmpf[ P gt + @ (g [ (,28)
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The matrix is of order 2X 2 with a largest eigenvalue f’
which is the partition function per spin of the linear
chain.

To summarise this piece of work, we have found that in
order to evaluate \J , the partition function of our der-
ived plate of spins, we must evaluate 25 ana f’ - the
partition functions per spin of systems of two chains and
of one chain respectively. We have found also that 2% ana

f’ can be derived directly from matrices of order 4 X 4

and 2 X 2.

Y- 7/97/40 (3,26)

There remains now, the function X to be dealt with.
o
e first of all write out the expression for 7( obtainsble

from ecuation (3,15).
XM : Zmp[ ’%QZ(&:;'CU!:MJ' A b s A fise e )
? KZC“”"W;’- * J%EIZ/K";J'C”}“J“ *Cu”'*'*i(":'-,l'“ + 5 Eigar 4(”"*’9"6“"'1."J
4 K ’Z /(":}' Livry +¢* ,:J'(“;.ju + ﬂ,’_}'(":'-ﬂ,j * MM f‘,,‘, ,)
&5 J ”Z(("‘}-".,/“"‘ WAL +fu;'*"J‘/lf:J"!f F Misi, a0 M C“:'Mj/":’ij*’)
» BT (phi )] (3,27)

It is easy to see that this has the form of the partition

function of a crystal consisting of two plates of m X n
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spins each. X is the partition function per spin of the
crystal.

Following out the usual probability procedure for this
problem from first prineiples once again, or (since we
can now see how the reduction of the problem at various
stages proceeds) from equation (3,27), we can reduce these
two plates. We find a matrix of the form

¥ ¥

Pl ™e™) - op [0 (w0 143012 )
P &%EZ/C“':Z“;**W’C“?) + KZZU:.’;.,,* + K FZQ“:'(‘“**&“??”;)
o ‘-‘-:;—-ez&w;éw,fdgu ar il i g At ) 4 K ’Z(Cu}?u?:,-rcui:c“?)
+ K"Z(@.‘Jzz,+g«"w@ﬁc*}:w:+34525.4, + C2f Z/Kui'*—fcu?) ]
where
WP p"™) =&Zif(f,a') %/ﬂf’:f’}v"‘) (5,28)
To symetriseérjchis matrix, we use the substitution
O (g p) = Plurpd) exp] KEB ) (pipias + i) + K5 quipa
» KTl pbpinr + i) 3 BT i) | (5,29)

and obtain in this way
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’ 7 k""ﬂ / ' E S » '*
./-U{[u’/‘ '1./'.{*’(“ ) : ’9’/)[_2-_ Z(‘ﬂ,z‘f",, -fc‘f,'(u,;, 1‘&‘4!““,’;; +(uf. ("’Hl r)
b BB Tlpig ) 4 F T tigns s gl

S i . > .

g KB Tl ity #tlo ol st pning? ) k7 (o a4 )
rw % 7

s KT (e i S e 4 # (4

' * '/l
Rl it # i) # GRS )]

Figure © shows how this ecuation is obtained on the prob-

’(f'(:'.-ﬂ )
(3,80)

ability approach; we write down the probability for an
arrangement with the two end strips (labelled n) missing
and then with them inecluded and proceed as usual.

The largest eigenvalue of this last expression - equat-
ion (3,30) - will be the partition function per spin 7(
to the power m of our two plate crystal. In order to pro-

ceed further, we again use

v ¥
WAL wex. LWl pe) ded ol e)
W ox all Q'S Z[a Q“'-(}")]Z

This time, we choose ﬂ(g“g‘t') to be of the form
Q) = exp[ L5 (auiuits + quigund + B Lee:

(3,31)

! ’ ] / .
+ E'S (nbpnreguinrg) 3 8 (i) | (5. 88)
Substituting into (3,31), we find, after taking the m'}

root
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K+R+E, kK+F K+ E ca4B+0C
X e ILE | (
; ! - " 555
EFE, C m[%_:F'-E-'C'/z] »33)

From which we have
E 23 P
w2 z ”}'[ 2 Z((“"Cq'."' + R B i ) FZC“:’C"‘:'
b E T (i il py) G Gl )] (5,54)

which has the form of the partition function of two strips
of m spins. In fact we can see that this ecquation has the
same form as that from which (3,24) was derived, but with
different interaction energies. It is obvious then, from
(3,24) or otherwise, that on reducing this stage of the

problem further, we shall reach the expression
M lfpupiil) = enp [Fermpn + & (uid gl * M s M)

+ E'pron oy 444;-:5“--) + ‘}'2 (Mo + Mo )] (3,35)

which when written out in full as a matrix, will be of
order 4 X 4 and of the same form as that corresponding
to equation (3,24). Its largest eigenvalue w will be the
partition funetion per spin of the second subsidiary
crystal of two strips of spins.

Finally we must consider our expression for ‘? . From

equation (3,33), we see that ¢ has the form
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¥ *

Z: P[l(-ﬂ—n E‘Z{é‘{u”.}—g f“"*” +(ﬂ C“,”—f-éu C“—*;)

$ RO T (i i@ty T (a7
f ] T / . : r , |
"}'}%)9 Z((_ur'ﬁut'w "'(u,‘.u Cu’- +(”:'(u;‘: ] -I-CU iy (q?) + K Z(ﬂ‘c"f‘f‘,‘*g—l,)

4_.'(452(64 ﬂ;-ﬁ-r"(u,.,;cu,—fﬂ (”:-f-f ‘+ﬁuf+:{u )

. “ % * ' + i3+ ‘ 7~ 2t
AR J(ighior Py 4o it 1)+ ST (vt o ’] (3,36)

It is easy to see that this expression has the form of
the partition function for a crystal consisting of four
linear chains of spins each containing m spins.

For the last time we use the probability treatment to
reduce the problem, considering the chains to have first
of all m=l1l spins and then m spins. This final reduction
leads us to the following expression for the elements of

a matrix.

j‘/((ﬁmzuw .'(0-.. ,zu:v ) 2 ﬁkf[x"f‘f.(é«;éd;_, +CA..,éu...-: +Cﬂu'-d"..:~; +C4:!:~:)

f r» o ¥
+ K’;_”(tu...gm M M)+ CUMQ“..,/ )
/ ! ’ l‘" ¥* (* ¥ *
ofs ﬁ_%h._@ (zb‘w(“m'—! +6“"“£,“""" = C““‘[um-: -+ (“m(r’m-,)

KRB E7 i P )
F R

{ﬂw{“m»r-&cﬂu‘ ’f“m+ﬁ‘4“'£“" ’ 4(1.4“' ;(Um

Lo * e
$ Rl proe 4 i) +

.
Ap ) (3,37)

i ' ’ ¥ ¥
K {("wt‘:-f 46"-“ -nf':. 'fé'-\- r(“'m "‘cusuéumwr)
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The matrix represented by this expression is of order

16 X 16 and its largest eigenvalue & will be the par-
tition function per spin of our 4 - chain system of spins.
Figure 10 shows the reduction of the four linear chains
of spins leading to ecuation (3,37). This sketch shows
also the various interactions upon which equation (3,37)
is based. This is of particular interest sinece, from the
sketch, we sece that due to the symmetry of the system, we
can put the interaction corresponding to A equal to that
corresponding to F and that corresponding to A' ecual to
that corresponding to E' - thus reducing the nurber of our
unknown parameters.

It should be noted also that, in going from the simple
cubic lattice and the corresponding matrices as set up in
the foregoing theory, to say, the face centred lattice,
although in putting nearest and third nearest neighbour
interactions ecual to zero, we get two superposed face cen-
tred lattices in place of the original simple cubic one,
our ecuations need no further modifiéation. We do not, for
instance, have to take the souare root of our various sub=-
sidisry partition functions, as might at first seem to be
the case. This 1s of course due to the faet that the two
face centred lattices are entirely independent of each
other and to the faet that our expressions for the matrix

elements lead to partition functions per spin for the



particular lattice types under consideration.

Ve see then, that the original partition function for
which we set up our emustion including the three orders of
interaction, can be obtained avnvroximately as A s the

partition Tunetion per spin in the form

9 )5 ¥
A "1‘% : 13//9 ) w B (3,38)

where g? ’ wg,zo s and } are partition functions per spin
for various subsidiary lattices. It remains now to write
out from the expressions which we have derived for their
elements, the matrices corresponding to the significant

cuantities in eauation (3,38).

@ 4. Pelow the Curie Temperature.
Our matrices have the following general expressions

for their elements:

c”'f[’r,éu‘“(fu‘“'f +Q/z [ﬂ“‘*\fu“‘”)] f5,85)
from which we want the largest eigenvalue kM9‘.
xp [Pt BIP s 3 g ey )

P s A )+ BIR (b ) (3,24)

from which we want the largest eigenvalue ?fpr
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M,o[f‘?c“'“: Ll 4 ’i:(/“u:ﬂh:-' 45""-4/’«-4)

4R (s + gl i)+ G (e rand) | (8,35)

from which we want the largest eigenvalue &) woex ,

Bk i i o ks
o [MLEEE (il il 1 4 gty gy w20
i ;* E r t* *

™ ‘f_i;-f /g-fw:éﬂ—’: 4(“%“:: +zu...'.,(a.f.’ + c“w'c“: +(m.'.g%.-,«

s g S S @) 1 sl o ol i)
+K’(c"“‘/(“: *f“i*a“m) * C*igz:t‘c_/é““f“(““**z”x*(““‘*)] (3,37)
from which we want the largest eigenvalue q&m“.
These are respectively 2 X 2, 4 X 4, 4 X 4, and 16 X 16
matrices .

Let us first of all consider the largest matrix. Its
array written as an eigenvalue ecuation (equation (3,39) )
is shown on the followlng page. From inspection of the
array, we see that i1t is indeed highly symmetrical. This
we would expect of course, from our method of treatment
of the problem. Incidentally, the symretry of the array
was of great assistance during the tedious procecs of

writing out the 256 elements.

A more important feature of this symmetry lies in the
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atir (3.39)
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possibility of being able to reduce the order of the det-
erminant since the 1€ X 16 determinant is far too large to
handle. A point to be considered in this connectéon is
the fact that if, after reducing the matrix, its order is
€111l high - say order 4 or greater - then it will be of
irmportance to try to preserve the shape of the array to
the extent of kecping the (?5 on the principal diagonal.
Ve shell then be able to multiply out using the spur method
i.e. directly in powers of ﬂ? . In other words, we want to
make our reducing operations symmetrical.

In carrying out the reduction, we found that the follow-
ing series of operations were successful.
Perrutate first the rows and then the columms in the order:
1, 16, 7, 10, 2, 3, 5y 9, 8, 12, 14, 15, 4, 6, 11, 13.
Add colums as:
4 + 3y 6 +5,8+7 10+ 9, 12 + 11, 16 + 13, 15 + 14.
Subtract rows as:
4 -3y 6 -5, 8=7, 10 -9, 12 - 11, 16 - 13, 15 = 14.
Add colums as:
7+ 5, 8+ 6, 11 + 9, 12 + 10, 14 + 13, 15 + 16.
Subtract rows as:
7 -5,8-6, 11 -9, 12 - 10, 14 - 13, 15 - 16,
Permutate first the columns and then the rows in the order:
1, 2, 3, 5, 9, 13, 4, 8, 12, 6, 10, 15, 7, 11, 16, 14.
in which subtractions are made from the underlined rows

and additions are made to the underlined columms.
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The result of these operations is shown on page 74.
Martin and ter Haar have shown that the largest eigen-
value £ in a 4 X4 matrix eigenvalue problem is contained

in 2 2 X 2 determinant of the form

, aip— bi St | * O (3,41)

where 04y 1s the Kronecker delta, provided the original

4 X 4 matrix has certain transformation properties among
i1ts rows and columms. ¥or a 16 X 16 matrix it is much more
difficult to show that the determinant having the largest
eigenvalue is of a form analogous to (3,41), but we may
take it that the determinant in cuestion in our case, is
that one of order 6 X & contained in the top left hand

corner of (?’40)’ f.c.

S o oo
N‘d‘t"-c%s;a.t y [V 2 Lolym Gy, Y- = 0
-t 1 e 114 (-’ -y ﬂ T |
LY iy Ty Loty h by m Y
ERTE TS —_— N g
1 1 - /B 2 (oY u +.tju)2{d'1"+d|1u) 1=
2 1
L2 Pl -l a1 - 4 +ad - - -1 - -
LY o '3:41 Hn!tj-u:-c_:) _qﬂ;zl q:.-z.;'ﬂ-l g[Hj.'.u"u)
A't alsimal W a =t = -t =k "“‘d-,ﬂ’- -t =) J
Yy M de My MY d 4 424 4M "'q’!g-z L(H y+ymM
) -1 1 1 .1
+ =F - -1 M C] + M l’
1 1 2 2 () hdymi) |7 gy g

This is ecuation (3,42).



T

Sguakica (3,40

7
/p T A /A T I R e A R L
o = - P r o) - . - O
[ Aok bpml B, m| o haw| i hw| _hw e o ! v @) Q Q
- w4,
s ks ﬁ e P ..hu:nl &.____-.._r b= fo] - s ~ - y -
Q a..au.x ke m-km. ¥ Q@ @) Q -k |t o P, @) G o) o O
e b= u.w\%l .
y - = - pl| b G - .
O h._|-.__ vxun-u ._.m .n#\.— AU © 0 A: r J-.-. ..l.__n m_?.__!: AU “ < oJ [} &
Q) _I_.._-l \} - ﬁﬂ\ﬂ—vl O Q h- p 2 :hl1l P
\..\u_v...- S - ﬂ&.qla-r 0 T T .r:_l _.IMJII_ (@) o (@) @ [ O
byw- | Fr-|T2B (v b | (-
o \__n!_ i T sy h- 4= i= o = — - . -
- wb)e| mmrz| YH m| Am)| hmoe e Q = “ ¢ ¢ < Q
; Mok 2 b= By  ohpe -
o ‘- (@) 9] i- /P y = L e - . = _
h.+».__ h?.l. .-,I..-._r : dli ﬂv.‘ " A r‘.-._n-a L !U L </ C &l
W e A Up- R, p- . ) -
v Bad C | P || Aol il 2 ar @ @ | @ @ | © o
ox T * ="
Y liih
1
O 0 0 O Q e Q ptt| ht [(Whr-| o 5 5 \ ) )
bl P |24 T ¢ ¢ “ “ ¢/
Ed
& o o (@] 3 (@) Ve <= % | P H- > 5 =
i L PT- M| p1-qh rh_r1 ¢ @ J @) O
o | o o o | o o | o |rherlmae-piused ,
,hrm b,y -...-__.-..u.m.-.: ¢ ) o @)
+ =
% ! H :xluu 4 I_r} T / t_.._—.-.m. L/ i Inlr _lh o ! ﬂﬂnun\rﬂ# (H,-n 4 ﬁ_...?m_t. 4 /
e ey h _+ h _+ ¢ b hoaye| fapr /
E .
” h- m.l mht| wtr 4..‘. t-P| M h | mer| e ok M b | mhy (7. h+ v ent| n | P pa ok
. T ¥ _\-__..x&.ﬂ » 1 t_d-.— -Hﬂ*wlr h-!‘ i TRl Bl
whch Bhv | SLE| ey b [ PArb] pe | b M rh _p| M NCE -u,.?mzl rh_et T (e
T 4 %.u\‘_wﬂ _I‘N*uli pirt h -I?ﬂl—d ==
4 w hpy LRI b -
% T ﬁ‘.h..“__._aa _..lvq___\_r\ t ] :h____..“_.ls. 1= = x‘.qu __Im:-_.-l\- 1.3.!!&“1 h _\-I} _ﬂ..t._ Ah_ql 1!3.1”.-....“-# F ,
~n7.n h, Py »h r h,.Pn T nh, 2|, g k) .nu.-_ &anﬁu.vq
® 4 b6 »% \r__.q__tr-auoﬁ ] mwher .13. 0?.1.“ nhp _..\n.lﬂl: 1 ” Ih—i# -n_‘.;&lﬁ b % %lM.\nh\KVl -n_“uv.- »
= * N i il
® B |#hree nhry ;| mhry Wb ¥t n, 5 p whry ] h kRl P z _ v»ﬂﬁx\ Jl
- = = 4= = =)= = v~ 4= i
33X




5.

For the determinant corresponding to equation (3,24), we

find
M A M o4
pus A | pasd | pue 4 | ey
.:; ;:\ a?a'zg-wf a-’ a’ a,o'fa;tg"
= {,\. ag wpa’ -4 |a"pa” | ag-
T er Jeret oA ar
\I. :’..‘-- np"a‘-zj a* a” apa’qb

- eaquation (3,43).

And for that corresponding to (3,35)

e M = =1
luid | putsd | pd g | gl
M ;;f ai’-ﬂ',ts - a’ a2~ |aeaq~
3 -‘},T 29 a"ea-'id ae'at ag-
v ar| ee  |ae? [aeao| as”
':t ‘;::' ae”a"}, a” a~t qea‘_‘g"-«)
- eouation (3,44).
In these equations, e = a: e“*F = p: ef =

eB+4

= Q-

eG

= g,
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For the determinant corresvonding to (3,95), we have

rs- ¢ # =
(3,45)

! vst= %

eP = I eQ = 8.

Tith these last four eouatlions to hand, we are now in a
position to solwve ony of the problems listed at the begin-
ning of this chapter; ss they stand, they relate to the
rRimple cubic lattice with three orders of interaction. In
order to effect a solution of any particular problem, we
ehall need other ecuations of couree, since in general, we
shall have more unknowns than we have ecuations . These
other ecuatione can be obtalned from our meximisation con-
ditions - this point will be dealt with later when it arises.

Since we esnnot hope to find closed solutions of our
ecuations, we shell look for series expansions for our
various partition functions. Obwviously, if our models have
eny phyeical eignificance, they chould show a transition
temperature so we shell follow the ususl procedure and
ettempt to find series expansions for our various physical
cuantities valid above and below the Curie temperature.

In the rest of the work, we shall consider the case of
zero magnetic field - that is, H, and therefore slso C,
we put ecqual to zero. A conseounence of this (see the dis-

cussion of the square net of sning) is thoet 2¢ high temp-
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eratures, P, Q, and G will 211 be zero for A to be a
maximum. At low temperatures, these cuantities will be
zmero when A has a minimum value and this has no physical
significance.

Thus we sce that our ecuations ns given by the determin-
ants (3,42) eeeeeeeee (3,45) apply as they stand, to the
simple cubic ferromagnet in the region below the Curie
temperature if C = 0. Putting C = O means simply that z 1s
ecual to e{B+*@)/4 instead or e(B+0+C)/4,

Above the Curie point however, we have C = B= Q = @ = O,
so that in our determinants, a=g= 2z = 8 = 1, and as a

consequence, we can reduce the determinants still further.

é 5 Above the Curic Temperature.

In the 6 X 6 determinant - ecuation (3,42) - we may put

z = 1 and perform the following operations:

Add column 2 to columm 1 and column 6 to column 4

Subtract row 1 from row 2 and row 4 from row o.

Permtate rows and colurms in the order 1, 3, 4, ¢, 2, 5.
Thiz effectively reduces our determinant to order 4 X 4 on
making use of the discussion attendant on ecuation (3,41).
Ve £ind the determinant shown at the top of the following

page
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-t = O
T I “}z,az 2 bletym + 47y W) 4
x
2 R T / o 1y 2y
PO VIR A T C LR S 4
x /A3
;,‘-4'1'1'4 24 1! .
-t =t = . } at -1 = -1
.{5”4.4 Yy M Mooy +ol yH 4p1'+HJ—‘P M Y+y H)
2 2 u[gt‘"+ q"H) Wy Hlﬂd*l‘ ?‘;3-1

- ecuation (3,47).

Tn the 4 X 4 determinants - equations (3,43) and (3,44),
we can put g = g = 1 and perform the operations:
Subtract columm 3 from columm 2 and columm 4 from column 1l.
Add row 2 to row 3 and row 1 to row 4.

This reduces these determinants to

alp b '+pb) - 28 a™’ "o
(3,47)
4a Aty sp b) -
and
= IS < = 0
b +eb) -
a(e eb) -0 a (3,48)
Yo ateb '+ e h)-w

2
where we have put a' = b.

Incidentally, the determinants (3,43) -nd (3,44) can be



reduced to order 3 X 3 as they stand.

In the 2 X 2 determinant, we put € = 1 and get

= | -zO
Fo'f ! (3,49)

v o

Thus, for our general simple cubic case, we have the iovr

equations (3,42), (3,43), (3,44), and (3,45) referring to
the low temperature region for our model end, for the high
temperature region, we have the corresponding e-ruations
(3.46), (3,47), (3,48), and (3,49). We turn now to the
question of the specific problems we started out to invest-

igate.
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v
THE BODY CENTRED AND FACE ED

CUBIC FERROMAGNETS

§ 1 Body Centred Cubic Ferromagnet at High Temperatures.
In order to treat this problem, we put our first and

second order interaction energies ecual to zero; that is,
we put

a=p=cece=a'"(orb)=y=x=r=a=8=1. (4,1)
This transforms our simple cubic lattice into four super-
imposed body centred lattices which are quite independent
of each other. The third order interactions of the simple
cubic lattice become the first order interactions of the
body centred cubic lattices. For the high temperature reg-
ion, we apply ecuation (4,1) to the equations (3,46),
(3,47), (3,48), 2nd (3,49).

In (3,46), we find thet the determinant can be further
reduced by the operations:
Add column 1 to columm £ and subtract row 2 from row l.
This reduces our determinant to order & X 3. We then
subtract row 1 from row 3 and add column 3 to column 1.

We are left with the following determinant of order 2 X 2.

) . =
HiH 46 A ICEL "

uen") | rl il - ¥

L
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which has for its largest root or eigenvalue
ch()‘(: pra T s M ey b

: (”"":q: (H""+ H"h)q = (e'c-l-Q*‘J ’
L (4’2)

where since K = K' = 0, we have put K'' = K for convenience.
Wie see that we have no undetermined parameters left in this
equation.

Now consider the ecuations (3,47) and (3,48). Using the
same conditions as before, we find that these equations
reduce straightaway to

Bk (4,3)
Similarly, ecuation (3,49) reduces to
Y2 (4,4)

Thus, for the partition function per snin of the body

centred cubiec ferromagnet a2t high temperatures, we have

on this treatment,

2 X oYY
\: qw/mﬁ -'-;(e +e’) 2 et K. L

We shall see in the next chapter, that this result is
of considerable interest when we compare it to analogous
resulte derived on other approximate methods. For the
present, however, it is sufficient to point out that ob-
viously the body centred case is a limiting case of our
approach since all our parameters go out. The cuestion of

maximisation, which is fundamental to the method, does
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not oriese in this problem. e might exvmect then, that the
result exnresced by eouction (4,5) will not be a particular-
ly good one - or at least, thet it will not be as good as
other results derived using our method.

Two other points of interest here are the following.
First of all, we see that we have found our result in a
closed form; however, in view of the above considerations,
this is not of rmech significance or immortance. It might
in fact be said to be due to the crudity of our anproxim-
ations in this case.

The other noint is seen if we let the temperature go to
infinity - 1.e. K—> 0. Under these cthumatances we find
our 1imit for A to be A = 2. This has been pointed out

by ¥ramers and Wemnier and is general for these problems.

§ 2 Body Centred Cubic Ferromasmet at Low Temperatures.
Por this part of the nroblem, we use the body centred
cubic substitutions - (4,1) = in the Adeterminantal emat-

ions (3,42), (3,43), (3,44), and (3,45). This gives

q9-:8 | ! ¢l % (3w | T I
1 -4 { q a4 |- \ o -
i ! 1-3% | 9 o] l 1w | 7!
: | l ( -5 3 l i e hw




P S 2 4 M tw’ Y &
|
Mt g 2 bm! b M 4
b 8 -3 -1 -t
( { HaM L@ | A(Hew) 2( Mem ) 4 [
-1 -1 i -1 -t
H H Mo+ M 34»4-.‘%‘ 4 2 ()
! M Mo g H 34wt 3+ - E;L_-,. (M er)
| 1 L 2 (ren) | 2 (M) [ P
and
s- ¥ 1 e
1 g1

In which all the symbols refer to 'magnetic' terms except

M which is e®K" - our originsl third order interaction

term.

In the determinants in Wb and W , we carry out the

operations :

Add colum 2 to columm 1 end columm 4 to column 3.

Subtraet row 1 from row 2 and row 3 from row 4. This res-

ults in determinants of the form

9 % ~ ;
5445 | 1+ F|°
é-&- 4 l+%::-h7ﬁ




hoaving maximm eigenvalues

Vie have also

Por the

row 6 and

order 5 X 5

h o=

w z

249" +3

24+ 5 45

l!’-'s-+s"

as our maximum eigenvalue of the lf determinant.

(4,6)
(4,7)

(4,8)

determinant in ‘? s by subtracting row 3 fronm

2dding eolum € to ecolum &, we can reduce to

O Pits T b hwr’ T _
P T u"‘%‘“-ap b Lw'at umz™

34 - Wlan - 23t (mTm) 2 (e )
My T T 3lrmen') | 22(34n™)-@ 2 (34 07)
T I T Elucu") (3 n) 1'1{3*”1)_?

We can expand this by the spur method, which in this case

involves the evaluation of 26 subsidiary determinants.

On doing so, we find



05 @[ WA 4 (30w (2hr) #MTem 4]
+¢p3 [Hz_‘][ (2643 L) + (s+w?) (2 u.,-a.-h)+p1-‘—( Thlbg g ptaqy (24 37?)

+ H*“(Hl“')( 2aalsg Hi‘l)]

. o [-"'1"]3 [ (2La2-2) 4 177 (W) (442-9) + K (1l L™47) (14 377)

gl r ) (2m YL rg) 1

i 1. ..2 - i o .
T P o P U o0 P Tl B (L W) ) e - o (4,9)
It 1s easy to see that this ecquation has the form

f- pPi4Bccp? - BEccp” +r3°ﬂ<f>-1@'° e (4,10)

where B PR VET)

il

C = contents of the larger square dbraclzet in the
coefficient of P> with a factor M taken out.

A = coefficient of P“.
(4,10) has a factor ¢ -3 as may easily be verified, and

we Pind that (4,9) reduces for our purposes to
= Rl 3 mH(rurY) 4 (W) (23 4 6]
+ CP"[(H’“\H"][H’(E"H“') F oM (=) 4 w7 () (37437
4o (2M "+2H"+lhwz-’")1
- g[u620] [Wls ) s by re ] T eE 0 (g,11)

Our object now is to attempt to solve ecquations (4,6),

(447), (4,8), and (4,11) simultaneously in such a way as
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to obtain 24 , w, ? s and QP in terms of m , Before
attempting this, however, we first write our equations in
terms of the actual varishles we wish to work with. Let
us take as our variebles, 72 = o(B+@)/2, g = 69, Insteaa
of g= e® take z%=1 ana instena o q= eB+Q taxe sb.
Doing this, equations (4,3) ana (4,11) remain unaltered
while, instead of (4,8) and (4,7), we have

Y-sh-s'b -2 20 (¢,12)

w-27 -2 9.3 .0 (18]
Q 3. In order to solve our equations, we first of all used
a rather simple method. This consisted in trying to pick
out from the equations, the important terms in each, taking
the correct ratios of the terms and then trying to maximise
the result by inspection. To make this clearer, we héve as

our moet important terms in each of our equations:

PU-p?utrY 20 or g - mTEE

2B - sb - 0 8 = sk
w o FUL
7o s

2
To find \ , we first of all take Prw * b = 7(

This should, according to eaquation (3,33), be maximised

with respect to G or 241,

We have also ) - zg/j_eb which according to equation



(Z,22) should be maximised with respect to Q or s.

Finally, we have = :’%, to be maximised with respect
to B or b - equation (3,15). Taking this ratio, we get
A= M2 for cur Pirst approximation to a solution for .
We have not yet had to use the maximisation conditions to
which we have refcrred.

For our next approximation, we subgstltute into equation
(4511), the expression

CF, P (Hrcf,)

and, after cancelling a number of terms, find, as the most
important term for ¢, , the expression 4 T T

corresponding second terms for «’, S » and ? are obvilious

and we have eventually
Pt (t4gymt)
w: 3L (1 4 22°9b)

Sl (14 287067)

}’ = s+ 5“1)
25-2 -4
For X , we have Py = wb( 1+ 4222 b) which
muist be maximised with respect to z%4b~l. This equation can

be written
Y [ 1o 2o (e gyt Tt

'Y, M'-l,,[t-l'zh"‘b-']

which maximises immediately to

with the condition W= athT! (4,14)
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For Y , we have "’g/j’ to be maximised with respect to s.

We find
Wepfrs2s'b’=s*] - 5[145“—(13"25")11
-L
maximising to Y = b[isn ]
with the condition L = s (4,15)

Finally )\: ‘X/LP to be maximised with respect to b.

The values above, give A =w'[ i+2m 4L~
s w3 [ yve w® = () )

which maximises to 1 + u® s wWith the condition

b = m# (4,16)
Using emquations (4,14), (4,15), (4,16), we can find first
approximations for our parameters b, zZ, 8, in terms of H .
These, when substituted into our main ecuations, allow us
to find "\ as being

B et g “-10) (4,17)

2 - M’(I PRk A
At this point, we must mention that as a check on our
epproximate series for l calculated by any approximate
method, we have exact series calculated by Trefftz 16).
We shall discuss Trefftz's series later; but, for the
present, we shall merely mention that the series (4,17)
does not agree with that given by Trefftz for the body
S

centred lattice at low temperatures. Trefftz gives 2 gwm

-l
instead of 4w,
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It would seem then, that elther our method falls at the
term in Lf1°cr, e iz more li¥ely, our aprroximations
for our maximisation wariahles are inadecuate st this
roint. Ve should have to sssume series for b, s, and =z
nnd attempt to £ind the ‘unimomm coefficlents 2t each stage
ty meximisstion in order to carry this method further. We
Jecided instezd, to uese & slightly mere ecovhisticeated

methed.

§4— Cur four maln ecustions have the form

L, (@ w,3%) =0

[1(5’,5) £ O
(4,18)

L (Es.b) = o0

- 0

ol 2%0)

These have seven unknowns ¢ }, 2% Wy 2ts S s bs for which

we rhould li¥e to develop series in negative vowers of wm &
To effeet » solution, we require other thres eocuestions.
These we obtain from our maximi=zotion conditions a2s follows.

We hsve 'X ’cP/h’ which has to be maximised by our

choige of z. In other words, we must have
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Similarly, ¢ = 7’3/\? mist be a maximum as a result of

correct choiee of s, which gives

5.
£z _z,s?;fz

Finally, A~ ® cp? /8 muet be maximised with respect

to be This condition yields

Wd‘y%{ 4w7/}%%’ _yjﬂm?};fw q’}z,s’%_z - o

or
24, 4

w — < = 0O

2
b

since f’ snd ¢ are not explicit functions of b.

It is more convenient to write these ecuations in terms
of the {'s , and we find
o 262U LU 2L,
27 w EX4 —-'5" -e
oULs s 3L 9Ly -
i 25 d =9 ‘«3—" © (4,19)
w24 24w _ 924 s o
2b 2w 245 b

The two sets of ecuations, (4,18) and (4,19) should be

sufficient to enable us to solve the problem. In order to

do so, we assume the following series



b - L«“Z(h&b;k'z') e H‘?"Z’(l-}w; H-l")
e H"i (1a5i W™ F - Z(’*’”g“"") (4,20)

T L g LS RS R

r2)

For convenience, we shall collect together our equations.

2 3., b & 4 1 Py
@3[Wizh 4 EDRIL] 4P u-[etasonz, He0 (WS 6 u0)2,

o -
2w (am%2m"y !¢u14z)]—qo(u-)t'[mtz.."+ (M243)at + 6] 4 (MY O 4, 59
f-s54 = 0 (4,8)
B - (sb)4-2-0 (4,12)
O % S 4,13)

Meximisation Equstions (from equations (4,19))
- {- qﬁ [qu"z‘!. 42 (u42) 2% ] 4.({:‘;4_[(:.5:’2".4-1& Mz 4 zu"(u‘hnu‘-no\zz*]
1 1 T 3 2 1 #‘ 2 T
-cp(N—)“[ﬁ'~¢ 2Y42(wa3) 2! ]} - t:q?{atp ~3cp[hz., +(H 4332.,-&!,]
3_ 6 4 “ (Y 2 ) 2? =3 (A y 2 )'I
3 ZCPH_[H 24 HCHE 4T (MY 1) 2T, 4 T (2 ka4

- (M.}“[Hlii +(H1+3)2: =+ L]} g(%’"b)_} =0 ({.‘_, 21)
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YIse]_ -2f[s]_ -0 (4,22)
w[sb]_ + B[ET*]_-=0 (4,23)

In which, to facilitate calculation, we have multiplied
throughout each equation by the unknown varisble with
respect to which we have differentiated, and where we have
used the substitution py = p ¢+ p~1 (for any p).

On making use of the series assumed in (4,20), in these
equations, we eventually find, after lengthy and tedious
calculation, the following coefficients for the series

bor MY (1-4m" 4% _ron"?)
s = m* (mum b g

g

32 o o ( e Cr o ®_ 3 oY)

kY

_ %X b - - = [
P L () Tl Wy (Py +aZ3+) "% (Praun 42

g W PR YW (P T, My (P2 +42g)W ]

-6 -2
w ,H3[|+M;H +(w€:+1\'~‘ +w:H"1+w-’;M'm+(w;-fr)u"bq.w.fn”'g

Fwio M- S lwrag) e T & ( w,",‘—g)u""]

B o= B2 wl () ) B T (I ) O I8

-}4’%: H-10+(7’ﬂrx+ 3‘ ot + [ ?ﬁ';_ 2) "”'-“'J



5’ - H"[ L+ };H“’., (Yo ? + !f:u"‘+ (4 s yu" 4 (j’:~ s -t

PR (a5 W (B -5, - 32)R Ty (- sg )T ]

e shall refer to these equations as equations (4,24).

In these seriea, we have only taken those for b, s, and
7 as far as was necessary to obtain the correct coeffic-
lents of h514 in our other series. The starred terms in
the elements of the last four series refer to a first
approximation soluticn. That is, if we had approximated
our eigenvalue ecuations by taking, in each case, only the
first two imvmortant terms as we did in § 3y, then our sol-
ntion would have contained only the starred terms. In
calculating A , the starred terms disappear since at each
stage @ + V-’Vsﬂ-“”"c’

Calculating A from our series, we find

-1k 2

TR p—— ) -16 o O 0“41431"-2&]
"1 : G — L +28 -6 (4’35)

which deviates from the series given by Trefftz for the
vartition function vner spin of the body centred cubic
ferromagnet at low temmeratures, in the last term given.
As we shall see, this is a much better result than the
corresnonding hish temmerature series which we derived
earlier for the ssme model. The 1mprovement is, however,
not survrising since, in this vpart of the work, we have

had three unknown narameters to work with, whereas before



4.

we had none. It is worth mentioning also that, despite

the existence of these three maximisation parameters, we
must still look upon ecquation (4,25) as representing,

along with eouation (4,5), a limiting case of the varia-
tional method. These parameters are necessary to distin-
guish between the two temperature regions in our model,

and it is the absence of the other type of unknown para-
meter, that associated with the lattice interaction
energies, which indicates that the present case is a limit-
ing one. e now turn to the other case we wish to consider,
that of the face centred cubic lattice with first order

interactions between the spins.

§5 Face Centred Cubic Ferromagnet at High Temperatures

For the equations appropriate to this problem, we
put our first order and third order interactions ecual to
zero. That is, we put

aze=p=y=x=r=xH =1 (4,26)
in our main equations. This transforms our simple cubic
lattice into two superimposed face cerntred lattices which
are independent of each other. The second order interact-
ions of the original simple cubic lattice have become the
first order interactions of the face centred lattices.
Applying this to ecuations (3,46), (3,47), (3,48), and

(2,49), we get ecquations appropriate to the region asbowe



the Curie temperature.
Our modification of ecmuation (3,46) can now be reduced
by the following operations on its rows and ecolums:
Add column 1 to column 2 and subtract row 2 from row 1.
This gives a 3 X 3 determinant which multiplies out to
give
g 2 q:"[ﬁ"(.uor')z-n (K +a7'#2) +43°" ]
4129 [ gt 4 pr (o T 2) 44 2] (¢ ra-2)

- gla+x?’-2)° <« o

(4,27)
This has the form
tPB-,c;cp”‘+1HGCP"(18)3:O (4,28)
where the meanings of A and B are obvious.
A factor of (4,28) i1s ¢ - 28 - 2 («7+«-2) which, when

taken out of (4,27), leaves
Y I = ] -1, - =
¢ - cp[k(kb+k'b'J‘+g+qk ]+4[bk+b’k 2] -0 (4,29)

on substituting for a and B. We have put eBK' = 82 = k.
We shall refer to this ecuation as [,‘(99,/%, b)) .

The ecuations in @ and 2% , 1.e. (3,47) ana (3,48),
after substitution of the eondition (4,26), reduce to one

equation of the form
Wi-2w (bt b)) + (bebNV*-4 -0

which has as its lergest root
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wa b'+bsa b (4,30)
This we shall call /z(w.b) .
Finally, we find that the eocuation (3,49) reduces to
} =2 (4,31)

For A we now shall have

)

-.Q

\

(4,32)

<
"

In equations (4,290), (4,30), and (4,32), we have three
equations for the four unknown quantities ¢, «w, b, and

A « A fourth equation we obtain from the maximisation

Y

to be maximised with respect to A' or b.

condition (3,15) i.e. 1 = X

From (4,32), we see that this is equivalent to the condition
D w 2 CF Y
5w, “W Zx 9 or, in terms of the L s ,

ols ke ., WaB
8 = X% > 0w (4,33)
Carrying out the differentiations and substituting into
this equation, we find
(i [29%¢ (k3bts 1k + k76T + 84 akT) ]
- w[‘ch(k"b’i. k? Y (3 b*h*- 16 bk +16 b" k- 3 b"i")] 0
(4,34)
In which we have multiplied throurh by b.

We can now solve ecuations (4,29), (4,30), (4,32), and
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(4474 ) for our unknown cuantities and develop power series

for them in terms of X'. Ve assume the series

k=e2K' 21 4 2K 4+ 282 4+ 4/3K3 4+ 2/3K% 4+ e

b - 5(14- Zb;!{‘.)
w =1+ wiK") (4,35)

c? =©(| -!-ng?“ I< )
where since the first order interaction energies are zero,

we have put XK' = K,
Solving by successive approximation, we find for our
series

o84 $912
b-4 42K +10K + '—g—zi<3+ ’—°£—-°1<"’ + iZT}& ¥ 4 f—%—iké-}b7k7

2 3, 169,49 3 13/642 6 3299.8 ?i
. K 4 QK° 4 SN " Fhoo K™ 4+ 22524 4
W= 4[14 ? 3 Zc o~ K

1 6/ U
wlrasrts2uid4 5k L josons 4 €L758 ¢, 5764528 7

qP’ 9 10§

On substituting into (4,32), we f£ind for the partition

function per spin for the face centred cubic lattice at

high temperatures, the series

% -
A\ - 2[,43;.(’4 gK +34K"+ 160K + (4,36)

/
3939/ 6, 523096 7
45 lo &

In deriving this series, we have had one maximisation

variable to vary, which represents an improvement upon
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the conditions under which the high temperature partition
function for the body centréd cubic lattice was derived.
Ve might expect then, that the approximation involved in
equation (4,36) is better than that in eouation (4,5).
This is borne out, as we shall see, by a comparison of both

equations with the corresponding series derived by Trefftz.

§6. Face Centred Cubic Ferromagnet at Low Temperatures.
On making the substitutions (4,26) into the general
low temperature equations, we find the following modific-

ations of the various determinants

= -6
‘Tgaié_cp d.‘rﬁ;a—ff 2/31 !“{21. b.z"?-'z &ﬂ-t

2.9 =l 1 o 2 =1
a"pzt gt - | 24 et 20y 2T 4

|

Are | pract [ [ 2ln) Y ety

) -

g2 B2 | (™R 22 (an) ~@ | 227 H1) | ypt
| :

.' |

A2 | aft | (e 02 () T ) - P | b

-1

Arat ¥ o i 2 /8 nk 130 B -




og.

l 1 ' [
'bs-w] / / b sy | =8 ‘bg—agi / / L'y’ |=©
T T e =y

3 |b-w | b 3 | 1 b= b | 1

3 | b Ve | 27 | I S N R “ AR b
- — e e — | r,,._—T_ —— — NS

% ' - - | 4 | 4 ba'- 25

i : 2 l ' [ l lk'5 Il":'J |I ke I | l 1 .

In the determinants in « anda 2% s by subtracting col-
um 3 from column 2 and adding row 2 to row 3, we can

reduce to order 3 X 3 and on multiplying out, we find
2
B2 B[b(g49) 1045 ] 4 B[ (340 (50) +b™-b7 ]

« ] bt b-3) - b"(b"”~3)] =0 (4,37)

O G T R R G N S N R

b (B-D - (5T < o (4,78)
For the 6 X 6 determinant in ¢ , there is no obvious
method of effecting a reduction of the order and so the
spur method must be used to multiply it out as it stands.
This 1s a rather tedious procedure involving the evaluat-

ion of 57 subsidiary determinants. Since the equation is
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so lengthy, we shall defer writing it out until page 109
where we shall collect together all the equations necessary
to solve this part of the problem. For the sake of contin-
uity, however, we shall refer to this equation as (4,39) -
it is a function of fy s k, b, and %2,

Pefore trying to solve our ecuations, we must again con-
sider our variables. In order to save work, we shall leave
equation (4,39) as it stands, and instead of q and g in
ecuations (4,37) and (4,38), take respectively es and
243'1, where ¢ = eB. Cur equations then become

B B [b (esec's" V4o 46" + 28 [(cs 4SNP +b™-b |

-[pv3) - 5t (2-3) ] o (4,40)

W w? [b(29%¢43% )4 b+b'] + w[(FT 4% (F-D) 4>~ ]

-[b(p™2) -b7"(b*-2) | -~oO (4,41)

and _
k—s -9 =0 (4,42)

§ 7. As in the case of the body centred lattice, we first
of all attempted to solve our four eigenvalue equations
without deriving maximisation ecuations. This was in order
to find the multiplying factors of our various series to
be derived for our unknown cuantities (9 in number, if we
include A ) and in order to see how far a first approx-

imation for our maximisation variables would carry us.

The method used was that of paragraph 3 of this chapter
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although, in the present case, it was more difficult to
apply in view of (a) the complexity of the equation in @
end (b) the faet that the most importent terms in the
eoquations in w and 2% after the first, (bes and be 1lz%
respectively) are not immedistely obvious. (On substituting
B, 5 § s ﬁﬁ:)

expressions of the form |, = b (134 into (4,40)
and (4,41) it is found that a rumber of terms cancel out.)
Instead of deseribing this procedure, which in any case
is adequately described in § 3, it is of more interest to
mention another method of finding the successive approxi-
mations for ¢ , w, 24 ana } « This method is worth out-
lining, since it refers back to the more physical side of
the problem.

Going back to the stage in the development of the problem
i.ee in the development of our méin equations, where we

had reduced our original lattice to subsidiary ones involv-

ing strips of spins, we have (equations (3,25) and (3,34))

B Y e [ G (pittin #0ipin) + BB (g v i) [

we s S exp [P T (@i o pi} phins) + G 5 liread)

in which we have put first order interactions ecual to
zero and where we have, in (3,34), put E' = A'.(see page
68).

These are partition functions of two linear chains of



Ficure 12.
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spins each divided so as to form two independent interpen-
etrating lattices as shown in figure 11. (The two lattices
are shown respectively as dots and circles.)

We have also, from the equation preceding (3,25)

Y- ] mplag a]
which 1s the partition function of a chain of spins looked
upon as being two superposed chains of the form of those
in figure 12 - with nearest neighbour interactions again
equal to zero.

Finally, from equation (3,36), we have

! i ,* L 4 ] Iz % 8
P T exp [ ER T (i gl 2t ins + Hiwr M40 47 5 i

! ’ ' £ ok r*® : i
# i+ (gl w g i 8) 4L ] i)+ BEEF (el sl |

- the partition function of four strips of spins, with
first and third order interactions equal to zero - figure
27 shows this.

These four equations have the form of series; the summ-
ations over the whole of the right hahd sides of the equat-
ions indiceting that each term of each series 8®ises by
considering a unicue number of spins in a particular
arrangement, to be 'wrongly' orientated with respect to the
orientation at absolute zero. In fact, by considering the
successive stages in the heating up of the various one -

dimensional erystals of figures 11 to 13, from the point
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of view of spin orientation, we can build up their wvarious
partition functions.

At the absolute zero of temperature,for instance, all
our spins will be parallel to each other; this state of
the crystals will give us our first terms in the series
for the partition functioms. These are, after taking the

mth root in each case,

5. p,,,of 20"+ (B+o)j = bes

b}"c"

W oz oeyp[2A'+ 7]

lf,,,,.PQ =S

o =MP[¢(K'+9’)+1I<’+IB+&)] kb2

These are the same expressions that we find by taking
first approximations from the eigenvalue ecuations for 2%,

w , % enda ¢ in § 6 as we aid in § 3. Taking the
appropriate ratios, we find, as our firsi approximation
for N the value

A - k°

For our second approximation we consider one spin in
each crystal to be antiparallel to the general spin dir-
ection. However, since in each crystal we have two indep-
endent lattices, we must consider one snin from each

lattice reversed. Doing this, we find
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i
=

MF[‘L mA'+ (B+@) ] 4 2w enpf(200-6) P’ 4 (20a-1 Bra 7

fres
78]

coxp L 2mA s G T b e[ (1) At 12y G T
k“fzxapvnﬂi + W‘ldp‘Q(‘“‘l’

i g MP[(M'J-A’)&W\ + 1K + (Ber G |

+ am&xff’f’%ﬂffﬂ'“*?) R rs,rT&“‘"""‘)]

or, taking the mbh root
o

]

bed ( §4 e

L]

b ;‘lc"(f&'}. 6‘%—4C>

-
W

s (1 +‘5'1)

"

k3b*29(1 L k36" 2°7)
Again, by using the method of §-.’*1, we should find these

ecuations as second aprroximations from our eigenvalue

ecquations.

We can now take X = Cf}w and by completing the saquare,

maximise the resulting expression. This gives
K = PP B Ve 4 2k%?)

with the condition 22 = k% (compare (4,14))

(4,43)
Similarly, 1 - 2;,?'/;’ yields
\P = be (14+6%?

with the condition s = be (compare (4,15)) (4,44)
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i x 3 -z
Finally, A= /q, =k Lr+k"]

and ¢ = X2 (compare (4,16)) (4,45)

The conditions (4,43) - (4,45) unfortunately are not
sufficient to enable us to find first approximations for
b, ¢ and z in terms of k and so we must carry our method
a stage further.

Using either the method of this paragrarh and consider-
ing two adjacent spins inverted in each of our subsidiary
lattices, or the method of § 3, we find as our next app-
roximations for our subsidiary partition funections:

B+ bes(t +26%¢"'s? a2kt s™Y)

K A
- b:z“c"(l.;.lla:?”qc-l-'zbli ¥e™)

Y

P - k* bli‘{‘( L+ 4 b 'D.ti".m. %3 4 g b 727)

"

s ( 1+ s 1)

Procecding as befcore, we f£ind

X = k3bec (144 P ey Lastd 2 fa ey g kS 27¢)
We pel(1 +2bte st 5 4 a2 ets?)

Taking the ratio of X to WV and using the conditions

(4,43) = (4,45), we find

N = fz3[ 1+ k"1+1b'1"{|"‘+qk|¢,-—1_b")]

= % ("% 1.k'”‘( 3 ks al k-b)l)]
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On maximising this equation with respect to b, we see

that this approximation for A gives

LR U

with the additional condition k=5 (4,46)
The conditions (4,43) - (4,46) enable us to find first
approximations for our maximisation variables in terms of
k; these will be the multiplying factors of the series for
these variables which we shall eventually develop.
Using these first approximations in our eigenvalue equat-

ions, we find for "\ the series

N: 3[04 Ry kT ey g3+l

which deviates from the exact series in the last term.
Trefftz glves 42 instead of 12 as the coefficient of k~9%2,
In order to find out whether the failure of our series
is due to our approximations for b, cf and z, we shall use
our maximisation conditions to obtain other four equations
which, in conjunction with our eigenvalue equations, will

enable us to sclve our problem.

$8 Ve can write our eigenvalue equations as
L (@ kbarv=o L(Fe.cs) =0
L (werY0 [ (Y5 =0

(4,47)
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Since X- CP/u: mast be maximised with respect to z, we

have the condition w 2L . @ 22 | 5
21 3

giving lf?.l’!_-z)?? - B

Finally, the variables ¢ and b must be chosen so as to

make N\ & maximum. Thus we have

06 3Y LA .
2 c C

wB2F _ pagow _ pudh

> >b S T

The other terms go out in these last two ecuations since
@ 1s not an explicit function of ¢ and 50 is not a
function of b or c.

It is more convenient to write our maximisation equations
in terms of the [ '5 and we find, on making the approp-

riate substitutions

2L i ) e
“ Sz e T 53 5p "0
b2 424 | gl 2L .,
?s 2% 2s 28
22 43 Sds ils
¥ 5% aw teF 2% (4,48)
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The two sets of equations, (4,47) end (4,48), sre suff-
icient in principle, to allow us to find series for our

variasbles in terms of k-l. e assume series of the form

bk L (rbik™) g k"0 k™)
¢ - kg (e @ KT (awik™)
S - p“'i [isr k™) . zg"z,(wv?.-k""') i, 45)
3« KGR )

By successive approximation into our two sets of equations,
we can find the various coefficients of these series. Ve

shall now write out the ecquations.

Eigenvalue Equations:

(In these equations and in the following ones, we again

use the notation P, =P + p~1 ).

-c05+toz[b(n4c'1)++b+]-‘3[(b2'1)(z4°—1)++bg]
+[b3-3b_] = © (4,41)

- #5482 [b(es),+b, ]~ Bl (b%-1) (ca)  +b2]
+{b3-3b_1 = 0 (4,40)
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96 -~ @ 5[x3%2t+2(kb+1) 2541 (k%)  +2171]

+ @ 4i01=11121%02 284 [4 (0041 ) 422 (1b+1 ) (k20241 ) 124+ [ 2~ 12 (b
+21%b342%%b21. 21142 ) +2b "L (kB3 41k PbR4kb-1 ) +8K "1 ] 25401 I "L (1b+1) 2
+E"™4 (kb+1) (X%12+1 ) (k%p%e1) }

- @ 3111131 [ 215 (xb+1)+8] 28+4x" 102 (k141 ) [ 2xZb244kb4+3] 24

+[ 2% 214 (1b+1 ) (215154 8142446155461 72+ Tkb 43 ) 48k ™21 ™2 (2k 22
+3Kkb+4 ) 1 2244% 34 (1b+1 ) [ 2k 4L+ 41503461207 +41b42]

#1612 (1be 1 )+~ 3p ™0 (1b+1 ) 3 (120241 )8}

+ @ 21 (1b-1)5 (b1 )" {8kz84 [ 161 10" L4ar™ 1072 (1ba1 ) (120
+xb+2) 122+ [ 81 2b ™3 (2x %3+ 312+ 5Kb+1 )+ 2K 14 (xb+1) (1

+%%52 )21 2244%~4b=5 (kb+1 )4 (1%1%+1 ) +16% ™3 ~3 (x2b2+1)

+4% ™355 (k%021 ) (k41p2+2% %5+ 4% +2Kkb+1) }

- @ [4(xb-1)8(kb+1) 2™ 4p "4 [ akz%42D 72 (1b+1 ) (kP02 4KkDb4+2) 25

+X" 1574 (104 1) 2 (%1241 ) Zrak~ ™2 (k%241 ) }
+16k6b"8(xb-1)12(kb+1)4 = 0 (4,39)

Maximisation Equations (from equations (4,48))

(In these equations we shall multiply each one through by
the maximisation variable with respect to which we differ-
entiate - as was done in the corresponding ecuations for
the body centred case)
15[cogb(z‘4c)_-¢o(bz-l)(z“4c)_][-3¢52+229[b(ca)++b+]

[ (%=1 (es), 4021} +

w {5 2b(cs)_-z3(b3-1)(cs)_ll-aw2+2 w['b(z4c-1)++b+]

~[(b%-1)(z%e71) 4121} = O (4,50)
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w - 5[ 13222+ (kb+1) 22 ]+ 9 4[ 3(x 45152 ) 264 (kCb%+41%p2=%2
-4) 224 (2k* 3513022k b P gkear b ab) 22 ]~ @ B[ 3(k bP-2kCb
+2k42 44155k Pb-12Kk7b %+ 12kb=d ) 28+ (81 b2 =20k 2 -1 b+ 241+ 8b~1
=12k"1572) 244 ( 2k TH =1tk D2 kB -2k2 +8b 2 ak "1y B ook~ 2y 4
+8k%b3-121 %2 +4kb~20+361 11116212 ) 22 ]+ ¢ 2 3(4xCb5-1615p¢
+201c4b3-20k2b+16k-4b‘1)z6+(16k4b4-64k5b5+80k3b9-80+64k‘1b"1
=165 244k bC -8k 81517 416K%D ~BLk+ 20Kk~ b2k~ 2p"0) 22
+(815p =20k 5144121 %-16K"b%444%%D ~Bk-60b"1+48k™ b Cmdl~2p~3
~ak~ %% x10p 7 21 %p8 4 2k Tb -3k 5 44k 5D P —dk P4 3K 20~ L -2k =2
+2x 154k %p=5)22]~ @ [ 4(kb-1)8(kb+1 ) Pk~ %p™%] [4kz2+ (xPbe2K>
+3%b~L42b72) 28] [ =53 @ 2420 [be~lzdsbz 4 e+beb™L]=[bBe~154
+b% z74=z%c"lez"404 1212 = ¢ [ w 2[bzdc=labz~%4c ]~ w [b2z4c-1
“b2z~4c-z%c"1liz"%4c]}{6 ¢ S=5 @ 4[k5b22‘35+2(k‘o+1)z§+k5'b?‘+k‘1'b‘2
+4%"1144 ¢ 3[ (2x*03-2k%02) 2840 ¢ o ¢ ¢ o ¢ 0 4 (8KPDZ48KD-B-BK™1D™L
+k6b2-k=2p-%) ]=3 @ 2[ (2xTb5-4kEb%+4Kk412+81BbO-2kF-24k 72
+24%b=8)28 «eceeeces 132k 201165024 k05K 502 4 BKD2
-k==614+2 9 [ (8kOb5-52K5144+40k4b 540K+ 32Kk=-8b"1 )28+ +oee.
+28b™ 28k 1= 3=gk b =544k "41=6 ]~ {4 (kb-1 ) 8(kb+1 ) 2K~4p~4] [4k =2

+ sescsedese +k-1b—'+4k+4k.-l.b—°]l = 0 (4l51)

2

In this equation the coefficlents of @ g, ¥~ @, and
the term without ¢ soccurring in lines 14, 16, 17 and 19
have not been completed since they are the same coeffic-
ients that oceur in emation (4,39) for @ 4, 3?5, ete.

¥ 14 %p(en)_=8(v7-1)(cn)_}+ Ho_{-542+2 8 [b(cs) +4b,]
-[(®%1)(es), 421} = © (4,52)
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w 4 [~ @ 5[ 2k%b? 25+ 2Kz 242k -21 71072 14 9 4[ (61t B-axb? ) 26
+(a%p%481%p? ) 24 (121t B 4B ek I 2o 2b " Lu8b ) 224 (161702
+8%b+8k b L4akxB %141~ p™%) 1- @ 3[ (101 O -161%b 81 *b 24241505
~2x°b-48k>b%+24Kb ) 20+ (32K b % ~40k>bZ-8K%p-ab " L4241~ Ip 7 ) 24
B L S N N R N S R S P V1 i N T W
4817024 8Kb-72K T 464K D2 ) 2245210 16K b ~161b-16b 71
~161"1b 24 30K~ B3p 44 52102 =320 -5321 b L4 82102461 B =615
~6xb 246k "2b 01+ @ 2[ (20x"b°-128x bt 41201 P -20xPb 48071 ) 2°
+(641 %1021 % 4160x% 2641~ 1b 1132k~ "2 4241 50 =201 °
+16k°b2+161%b-201 " b 242417 ) 244 (80K b P ~160K O b4 + 72K 45
~64% b2 4+881%b+120b " 1-1021k " 1b 24241284321~ Bp 441411007
~24%2b0416x b%-18%5b%+16K51%-6x%b "L 18Kb2-16K"1p 4
+10k™2p77 ) 224241 "0 641" b %4401 %pZ 1401 IR 641 Pp 4 4 241 Pp O

-+

+641* 4102153410212 2 ~641b-641 "1 L4192k~ 2p "2~ 1001k~ 3p =3
+64% ™ ™44 24180 201 B =221 b5 456K D2 4 16K Pb-1610 "L -B6b ™7
+2ax~ 134401~ P24~ =61- @ [ 32(3b-1)7 (xb+1 ) 2x~5p~5
+8(kb-1)8(xb+1 )1 =516 (1b-1)B(xb+1 ) Prc~dp™4] [ 412+ (2%
+4x2 460144172 ) 22415124 21%04 81 P 441 %D L4 B B4 b B s ~4
+ak+4k 1072 )= @ [4(xb-1)8(kb+1) 2441 [ (2xBb-6kb~1-0b"2 )27
+21%024 214D =1 "L =61cb =B 61 S —ax " Ib 4 -k 1p 2]

-1281~% "8 (xb-1 )12 (1141 )4+1021=5b~7 (1b-1 )11 (1b41 )%

+64% =57 (1b-1)12 (141 )31 =B w 242 w [bzde~Libz~4c4b+d™1]
=[1%5%e " Lip22 %4 0=rte"1op"404+1b%=b"2] } [ -3 #4242 S[bes+be L1
+b4b=1]=[b2es+b2%] g-l-gs-c=1lg=1+b2-b=2] 1= paffw 2[z4c-1p

-4 = 2 = o N, =k £ -
+bz ~Ye+b-b1]- w[2b 2% "t 2 s Y osob 42 2 14 [ B =Bbe T
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50111 {=352:2 9 [bes+be L™ Libsb ] =[b2cs4bPe"1g"tagg-c"Lg™1
2121 1{69 55 @ 4[xB022%s ceveens 4ax~1144 @ 3[ (2643
L S b TR -1 s i e S S S )
~BP2[ ceeeeee =BKODI4BKD 2=k b 0142 P[( seveees -gk~Ob~D
+4%k~46] - [4(10-1)8(kb+1 )2k~ 4p=4] [akzds coveeee 4ak~1p-2]]

- 9w [ Z[bes+be"te " Lib-b"1]-28 [2b2es+2b et~ li2n240b~?]

+[ 3b%=3b+30"3-3b"1] } [ ~3w 242 W [bzdeLibz"4c4+b4d 1 ][ D224~
+b2z~4c-z4c"1ap~404 122 {69 S5 @ 4[1{3'023%4. S e e
+4k"1]4a B[ (2t P42xP0%) 284 oeeenis s(BXPDPrEKD ~g-gx " bL
+X6b%ak=2p=4)]-3Q B[ seeeere _Bk5L24BKL=2-k"Fp"0)42@ [ ceee-
-8k "% 0441401 [ 4 (1b-1) B (kb4 1 ) Pk~ ] [kt ooeeeneses
+4k~1p=21] = 0 (4,53)

The remarks at the end of ecquation (4,51) apply slso %o
this ecuation.

The solution of these equations proved to be a very
lengthy business; however, we eventually arrived at the

following series:

b sk (v-iok 12k s GOFL"g'Pﬁ Edo)

¢ = kR¥(1410 k7 —20R7" - 90 k™% 4 Y £

W

S E"(f =6k & kT 4 30 k"’w-r k%)

B R esk kT s kR XE)
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PR 144k 39 kT g0t 2 70 4 (vh-88 -0 )R]

&35 bz*{’[u-z&'ﬁ--:.zé""_ 21k ek 3, (2+2y-4B-4X) é'“]

W= bes[ 142k 522 k% 20 k7% _ 20 k™% & (2 - -’//6"25"-13') k‘sz_-(

l)'f s[1+ k"% 12 B~ i % 0 B2 .06~ 1

In which we have omitted those parts of each term - starred
in ecuations (4,24) - which cancel out in the calculation
of A. These are ecuations (4,54).

Taking the appropriate ratios of these quantities, we
find

N k3L R ek ek gk y2 k] (4,55)

where the undetermined quantities-,ﬁ s Y s 0 and X ’
have cancelled out. This series deviates from that given
by Trefftz, in the last term.

By comparing this series for A\ with equation (4,25), we
see that, as we might expect, the series for the face
centred lattice is better than that for the body centred
lattice. This is again due to the fact that we have an
increased number of maximisation parameters - resulting
from the improvement in our spproximations in the face

centred case.
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‘@9. Simple Cubic Ferromagnet at High Temperatures

The purpose of this section is to show that from our
general ecuations, we can derive the results obtained by
Martin and ter Haar for the simple cubic case.

In our general high temperature equations - (3,46) to
(3,49) - we put our second and third order interactions
equal to zero i.e.

c=f=a'"=HW =0 (4,56)
This procedure leaves us with one simple cubic lattice

involving only first order interactions between the spins.

The resulting determinants are

g 0 [ | w0 o
2 gy - %.: 4yry™) 4
Y +y ‘1"4-3 q"m':-(a-q? 2(y+947")
2 2 4(9+97")  yeqTr 2@
a(psp)-18 o' " aehe)-w o' =0
4 a &'(p'}p)-‘lﬂ 4a alese)-w
- ‘,,-t =0
+ ,-
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Since these determinants are the same as those given by
Martin 17) it follows that we shall find the result that
he gives.

Before giving this result, however, we should first men-
tionl that, since we have three maximisation parameters in
excess of the magnetisation maximisation parameters, we
should expect an even better approximation to Trefftz's
exact series than we found in either of the other two
cases, This is, in fact, what we find. Martin and ter Haar
give for the partition function per spin at high temper-

atures, the series

N = 3, kT 4 M ¥ 4 S4C) 6, 2190857 9
/1.' |+,;. svc K e 20 WO (457)
140 134406 ]

which deviates from the exact series in the last term.

So far, the low temperature series for the simple cubic
case has not been calculated, although it has been verified
that the ecuations following from the present treatment
check with the unpublished ecuations for this case derived

by Martin and ter Haar.
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Vv
DISCUSSION OF OX METTIOD:
OT T THE VARIATIO oD

$§1. In order to gain some idea of the relative power of

the variational method as compared to other approximate
methods, we shall calculate series for the partition func-
tion per spin of our two three dimensional models on the
basis of these other methods. As has been mentioned in our
introduction, these series do not appear previously to have
been calculated; consequently, we shall give a somewhat
detailed account of our derivations. This chapter will also
serve to complete the historical background to our work,
outlined in paragraph 3 of the introduction. Before proceed-
ing to the discussion of these methods, however, we have
certain reservations to make with regard to the applicability
of our model.

These reservations apply to face centred lattices. We saw
in chapter I that we can reduce the problems of substitut-
ional so0lid solutions, ferromagnetiem and antiferromagnetism
to the same general discussion -~ say the discussion of sub-
stitutional solid solutions. However, this is so only for
the case of an AB lattice in which the sites can be labelled
alternately ¢ and B - i.e. at the absolute zero of tempera-

ture, all A atoms are on o sites, all B atoms are on B sites
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and cach A atom is surrounded by B atoms and vice versa.
Obviously then, a general discussion on the akove lines
will be applicable to the simple cubic lattice and to the
body centred cubic lattice and to the analogous models of
a ferromagnet and an antiferromagnet, but not to the face
centred substitutional solid lattice. (Since, in this case,
we have to abandon one of our assumptions - either we have
an AB lattice in which, at the absolute zero, each A atom
is not entirely surrounded by B nearest neighbours, or we
have, at the absolute zero, each A atom surrounded by B
nearest neighbours, but our lattice 1s of the type ABs.)
It is also evident that our general model is not apnlic-
able to the face centred cubic antiferromagnet, since, at
the absolute zero, this is equivalent to an AB lattice.
It remains to show some Justification of the treatment of
the face centred cubic ferromagnet on our general model of
a substitutional solid solution; if this can be done, we
can procecd on the understanding that our work is applic-
able to all cubic structures of our three examples of
co-operative phenomena, with the exceptions of the face
centred cubic substitutional solid solution and the face
centred cubic antiferromagnet.

Ferromagnets differ from the other two cases in that they

show preference for like neighbours in the low energy states

- that is, at the absolute zero, we have all our spins
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parallel to each other and our sites are all a sites, say.
In other words, the trouble which arose with face centred
cubic lattices in the substitutional solid case - the
impossibility of surrounding esch a site with p sites,
whiley at the same time, keeping the nurber of o sites

equal to the number of B siies - does ﬁot arise with Terro-
nagnets. It 1s rcasonable then, to say that if & general
theory is applicable to ferromagnete in general, then it

is applicable to the face centred ferromagnet in particular.
Cur treatment is thus Jjustified, since we know from chapter

I that a general discussion applies to ferromagnets.

SB, The Quasi-Chemical Method. (Bethe's First Approximation)

To improve upon the Bragg-Williams treatment, we require
to introduce, explicitly or implicitly, into our calculations
a short range order parameter, to measure the average extent
to which, in the case of an AB lattice for example, the A
atoms are surrounded by B atoms and vice versa.

Let us consider the case of a ferromagnet with co-ordin-
ation number z; ter Heaar 18) gives the apvlication to a
substitutional solid.

Since 21l our sites are equivalent, all « sites, say, we
have three possibilities for the occupation of any pair of
neighbouring sites. As before, we associate pm-+4 with

a spin aligned with the 'positive' direction and g =-4
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with a spin in the direction antiparallel to this refer-

ence direction. Our poscsibilities are

“r t‘ﬂl
(& + + say we have Q__ of these paire (1)
J i - = say we have Q__ of these pairs (11)
tl + - say we have Q)_ of these pairs (111)

Now the basic assumption of this method is that the pairs
of spins in the lattice are all independent of each other.
If this is so, we can split up the last of our above poss-
ivilities into two and write

Q,_ = Qq_ + 9
where Q = Q (5,1)

o -
since, for independent palrs, it is ecually probable that
the spin in the positive direction will be on either site.
For the ferromagnet, this distinction has no real signif-
icance, but it ensures that the present discussion will
be applicable to co-operative phenomena in general.

ie have, 1f Q@ is the total number of pairs,

Q = Q,+Q_+Q_ +Q (5,2)
Cur short range order, we define by
Qe = Q +Q_=-@Q -Q_ (5,3)

This gives preference to equal neighbours, since, at the
ebsolute zeroc, 0’ = {1 if all pairs are ++ (or --). At
infinite temperature, 6° should be equal to zero, which is

the case if all our Q's are equal. (We see that our device
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of splitting Ql_ into two ecual parts has ensured that
possibility (iii) has double weight compared to the other
two possibilities, at infinite temperature.)

From (5,3), we see also that

/
o5 fcu.‘ct{,' w3 E/Q? (from (1,14))
or E - ~4@Q Jo (5y4)
Subtracting (5,3) from (5,2), we find
Q.’._ = Q_+ = 1/4@(1 ""O") (5,5)

Let r be the fraction of sites correctly occupied,
i.e., the fraction of spins which are parallel to their
direction at T = O. We have then,
2Q,, +Q_+Q_ = 2rq (5,6)
As before, we may define our long range order parameter
by the equation R = 2r=-1 (5,7)
From these two equations together with (5,2) and (5,5),
it is easy to show that
Q,, = 94(1+ o + 2R) (5,8)
Q__ = 0/4(1 + 0 - 2R)
Now, for the free energy in our lattice, we have
F = B(¢ ) - kT1nW(R, 0" ) (5,9)
where W(R,0°) is the number of ways of realising a certain
pair of wvalues of R and ¢ , i.e. it is the number of ways
of realising the state of the crystal at the temperature

appropriate to the values R and 6~ of the two order
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parameters. Since the pairs in the lattice are independent,

we have

VR - 4 (R) Q

@ 44! 04-‘! Q-.'Q..! (5,10)

where AU (RY depends only on R.

Substituting this into (5,92) and using (5,4) and Stirling's
fornula bup! = phip-p , we £ind

F = -k‘f"[{" ’ﬁ.[(&) +Q%Q'Q+4Iuo+4"0+..~du@+—

/
_ = - 6
@i £u@er = Q- tu@--] -5 7 Q (5,11)
To f£ind the equilibrium value of O we use 3Ffs = O

which gives eventually

,éu Qf—«'- Q i = ‘{j = -2
Q+- Q-+ RT k. (5,12)

e AT

if we define X , Taking antilogarithms of (5,12)
and using (5,5) and (5,8) for the Q's, we £ind for ¢’ in

terms of R

z+x"-2x4// - R*+ R*x*

o .
/ -xz (5r13)

e now want to use this result to find the equilibrium
value of R. To this end, we define a free energy E'(R) by
the equation

F(R) = E'(R) - xT1nW(R) (5,14)
This equation is comparasble to (1,20), the W(R) appearing

here being similar to that in (1,21).



Rearranging (5,14), we have for the macroscopic partition
function 2

Z = WI(R) e (5,15)

But we know that, in equilibrium, the energy of the system

is given by
'34&.2

'B(kf)

E (R)
which, from (5,15), is ecqual to :57.1._&)[ s 3 ] (5,16)

As T —> 0o , E'(R) — 0, so we have eventually, from

E:

5y14)

‘\.

F(R) = - kT L (&) + T/ El(c) oA(£)

s - fTAI(R) 4 EQ;/ a—ra‘x
(8517)

on meking use of (5,4) and the definition of x.
We can now use the expression (5,13) for o in this
last equation and take for W(R)

N.,
Ny ! ~Nuw!

N
W < [we) * ;@ -m=wl (510)

since we have N lattice sites of which Nr have to be
correctly occupied. Using Stirling's formila and the def-
inition (5,7) of R, it is easy to show that (5,18) (and
also (1,21)) is equivalent to

W(RY - W[ 4ag -2 (ReNulR51) ~ £ (1-R) L (1-x) |
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Substituting thie end (5,13) into (5,17) and using the

definition

Xu = 4/1 -R*+ rR* X" (5,19)
we £ind

FIR) « L VAT [ (148) 4l 1+R) 4 (/~R) 4 (1-R) ~ 242

O+r) 2t Y28 | (-1 L. 4-R u+’ wtg™
+%i. 1+ R =) - 1441 “iA“T;p (5,20)

where we have put Q = 1/2zN (see foot of page 13.)
Incidentally, this is the correct form of equation (12.428)
in reference 18.
We ecan now find the eocuilibrium value of R from
2F (3-5 w4 (L
2R QU/R AR IR/« (5,21)
taken, of course, for x = constant. Carryinc out these

differentiations, we find

A
)
0

(;~ g?)»ﬁm 1+K * jk A, W

/- R Z e (5,22)

A

In order to find series expansions for the partition
funetions per spin of our two models, we shall use ecuations
(5919), (5,20) and (5,22) - which are quite general (compsre

those in reference 18).
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§5 High and Low Temperature Series for A on the
Cuesi=Chemical Method

At high temperatures, R = 0 and our three equations

reduce to w= x
(5,23)
,[ Ag__;f[za&uu-—z»{u -?_L-fluu }]

Cn substituting for u, the scecond of these becomes

2
- - L
NT 2"”"-] ¥
I+ X
or F
PP 4‘&7—_[;147( 5, ]31/2.
PR T NS PV L

if we use the definition of x and put %;(T v,
At low temperatures, we can rearrange (5,20) and, making
use of (5,22), put it in the form

_ F/ukr z'fa[ ] /z[ /- ,e] %2
AR B : u-R (5,25)

For the body centred cubic lattice, we substitute z = 8

into ecuations (5,22) and (5,25) to give

{u—ﬂ)‘c,] X < e (us)? (1-r)7

y . (5,26)
(#r)®(u-g)* = (u+R)7(1-1C)
We have also FeRE ox Wr-R") (5,19)

If we assume the series



Y
A= (1 +Z7\;X“)" fl’

R= 1 4 jv'ﬁ;x“ (5,27)

i
2
U = | + z‘ X
4
and solve our eacquations by successive approximation, we

£ind eventually

-1
F 4 14 2] -
N X rrx T a2 ex™ fox T asax]

¥ rly 16 10 1
Re 1-2x=/6x" +18x -J6gx +3i(¢x1-u9’x"‘iz‘,ﬂ;x’i‘?“x”’_ S

&

4 /2 4 76 A4 20 z A 2
FIX =3IK A GX A OX ~ g% 4E FOX 410X - I28X 413560 X

[
U s [+2% =2X

- equations (5,28).
For the face centred cubic lattiee we put z = 12 giving,
from our main ecuations

(- RYANX3 . J3p (u1)© (1-R)*

¢ +/<5r(u-£)‘_ {M+£)"(f-ﬂ)‘r

L]

p= " X" (u'-R™) (5,19)
Agssuming the same form of series as those in (5,27) we find

- 1
n . i J[u—x"‘-péxz ~6x1¢4+ ox:o]

L 12 4 52 14 36 3¢
R= /=1% 14X +26x '~396X + F64x -470X +0OX

1 10 2t 14 30 32 14 A
s Iarx 2ax"Tg2x 4N 426X 4ISLX —/068X 4 196x ~hToX
- ecquations (5,30)

We shall discuss these series for A in the next chapter.
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§4 Kirkwood's Method.
This method starts from ecquation (5,15). Ve have there

for the macroscopic partition function

’
_E(R)

S

KsS
I cwwe . ;5 e (compare (2,2)) (5,31)
<R>

where the summation is over all configurations with the
same R and where 5 @ Z_ Vet s

4,9
From this we have
KS
£'(ry 2 e
e B (5,32)
LT W (R) ’

If we denote the average of s®, over all configurations
for which R has a particular value, by < s> , we have,

from the usual definition of an average

/ Sn,
W (R) (R> (8,53)

F b I

and we can expand the exvonential in (5,32)

f.:if) z —@[z+z<s>4_fﬁt<s‘>+5_345’7+'-'3 (5,34)
RT 2’ 7!
% om
= 2 1< M a
. = /'  on expanding the logarithm. (5,35)

M=y

where M

f

. 8D My =< s35-3<5™D¢s> +2<5> 3

-
M = <51‘?-—(‘§> I/(-E



We now require to evaluate the quantities Mn as functions
of R -= this forms the essence of Kirkwood's Method. However,
in order to avoid needless repitition we shall omit these
evaluations, sinece pages 274 - 279 of reference 18 give a
very clear account of them. le shall merely cquote the res-

ults. These are
M. @R
My s Q (1-RD
My: 4@ g (1-29"

M, : 2 QUi-a) [ (3-1)(1-7" "+ 2 (1-32)" ]

of which the first two are general, while those for Ms and
M4 are valid only for the two dimensional square net and the
sinple cubic case.

Referring back to (5,14), we £ind, using (5,36) and (5,35),
for the free encrgy

F (R 18 RYAal 14R) 4L (1-R) Lul1-R) = a2
war= 20 2

IS G (5.87)
where we have taken only the general terms in (5,36)
To £ind the equilibrium value of R, we again minimise the
free energy and find

din .’;.T_% - yﬁ[zx-zkz(f—ze’)] (5,38)
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These two equations sre sufficient to enable us to solve

-Fi kT
for e » the partition function per spin.

§ 5. High and Low Temperature Series for A on
Kirkwood's Method

At high temperatures, where the exponential and logar-
ithmic series expansions are accurately valid, Kirkwood's
method is effectively exact and we can, in principle, find
as many terms of the exact series for A as we wish, pro-
vided we take a sufficient number of the My into account
in equation (5,37). The calculation of the My becomes
extremely difficult, however, after the first few terms and
as a means of finding the exact series, Kirkwood's method
is not really practicable. For purposes of comparison with
our variational method series we shall, therefore, consider
only ¥irkwood's first approximation, which involves using
(5, 37) as it stands.

Putting R = 0 gives us, from (5,37), the high temperature

series

k3
-FINRT AR
2-4de - e

3 " ¥ 4
5 4 = K + — K ——
% A TG 7 R (5,39)

At low temperatures we use (5,38) to obtain R in terms

of K. To do this we assume that R = 1 + Rl and substitute
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into (5,38)

‘. ‘_tz’@.' 3 (reR) [2K +4k%, |

If we neglect Rl as compared to unity - which is a good

approximation at very low temperatures where R ~ 1, we have

Rl - _28-2zK
Similarly, assuming R =1 = Eeuzzx(l + Rz), we find a
second approximation giving
Ral e ge 2K, 2343}{:5'(1() (5,40)

where £(K) is a polynomial in K.

We can now substitute this expression for R into ecquation
(5,37) and £ind the first few terms of the series for A .
For these, the second exponential in (5,40) is unnecessary

and we find from the first two terms

A - e3:£§. [; 46-23‘42}5-0??1(1‘1.«’)]
(5,41)

This 1s valid for all lattices, since, in (5,37), we have
used only Ml and M,.

$6. Zernike's Method .

For the last of our approximate methods we shall discuss
a rather interesting one due to Zernike. In his paper,

Zernike sets himself the task of calculating the probability

of finding an A atom, say, at any point in the lattice if it
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is known that an A atom definitely occupies the lattice
point at the origin O. We are again considering an AB sub-
stitutional so0lid solution. Using the fact that once the
nearest neighbours of a particular site are known, the prob-
ebility for the occupation of the site no longer depends
upon the distribution of the other atoms in the lattice,
Zernike arrives at a recurrence relation for this probability.
At the end of paragraph 2, chapter 1, it was pointed out

that the important energy unit in the case of an AB lattice
is the quantity v defined in equation (1,7). It may be shown
that, in calculeting probabilities for the occupation of
lattice sites, the probability for equal neighbours differs
from that for uneaqual neighbours only by a Boltzmann factor
e~V/XT o &, Thus, if we treat the simple cubic case (z = 6),
the ratios of the probabilities for an A atom and for a B
atom at the central site are as

¥® to 1 - nearest neighbours all A atoms

x° to x - 5A nearest neighbours and one B

x4 to x°- 4A nearest neighbours and two B's

etc.

From these ratios we calculate the actual (normslised)

probabilities for A at the central site to be

, - . = 2 —
e ® it Wty . (5,42)
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fle can now take the arbitrary site at (i,J,k) with near-
est neighbours designated by 1, 2, 3, ****+ 6, and write
down the probability Py 5% that this site is occupied by
an A atom. If we make the approximation that the probahil-
ities P1» Pos etc are independent, where p; is the prob-

ability that atom i is an A atom, we have

ik = FRARBP Prbowe? (3 ARPS PetB 17  Fslet ——-)ws

YQURLPLF+--~) Pa + & (5,43)
where g = 1 - p.

To simplify (5,43) we substitute for each probability
twice its excess over unity i.e.

1+ 1 e BB i s 2 ITH

2 Bl 2 (5,44)

‘ePl',!’ ”-n' 4 f" *

and find eventually
15v%56 = (Ursus +$‘¢(;,)Zf‘,‘ + (Uy-3 U Z/‘.';_‘!-fk
4 (U= 4us + ;«,,)Z,»,-,;- e 7 Ve (5,45)
The summations include all possible combinations of the
various products under the summation signs. From (5,42)
and (5,44) we can write the u's in terms of x and then
substitute into (5,45). This gives for the simple cubic
lattice
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+ (fc-q.’?q 4;}1)Zﬂ-y}¢kﬁ»’m (5,46a)

I
where ,§) w = i (5,47)

For the other two cases we have

“2% 4 - (§y+ ‘5)4'*’454 +14£) 27
+(_§g+2£‘-2;4 "‘521)2’%";’:& *(fe"'fc’z;q *‘?:)Z””é‘ﬁﬂ"}“‘

t(f -6f, + 48, -nF) 5 rs (5,46D)

Body Centred Cubic (z = 8).

-2 Pk (fp+r0forssfytiof, w165f, 1132£) 57
# (fn+6fy 1fy 4 2f -27f - 367, ) TP NN
“+ (;;z 11f,,-4§, ~/°f, +ff,_‘ Jzo_,?,_) DAV Ve Sien
b ($a-1}e ~4F, 4r0fe 453, —200) £7 s
b (fo =6fotrfy ~28e -21f, +36£) T 175

# (}:‘1 -/ofm.,c4¢f;*/m‘ +/5;£"-/32{2)Z s (5,46¢)

Face Centred Cubic (z = 12).
(These equations - non-linear partial finite difference
equations - have been checked through and two errors which

occur in (5,46b) in Zernike's paper have been corrected.)
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§ 7. High Temperature Series for A on Zernike's Method.

Here we have to deal only with the short range order
0~ ; in Zernike's words, 'the influence of the fixed A atom
at the origin of co-~ordinates will soon become insensible
when we consider sites farther and farther away from it,
so that the probability of these sites being occupied by
A atoms will tend to 1/2, or the excess, P4 4k to zero.
We therefore try to find solutions of our fundamental eaquat-
ions showing this property. Evidently the cuantities rijk
found in this way will express the tendency to local oder'.
It remains to relate the rijk to some definition of ¢~
which will be equivalent to the definition we have hitherto
used.

Zernike, following Bethe, defines
Na-Mp
R (5,48)

(whiech is a suitable definition since ¢;., =1 and 07, =0.)
where n, and np are respectively the average numbers of
nearest neighbours of anyAatom which are A atoms and which
are B atoms. These mumbers are proportional to the probab-
ilities of finding an A atom and a B atom respectively at

a particular site and so, using (5,44), we may write

7



134.

n refers to the site nearest to the origin. For the simple

cubic and body centred cubic cases (rn) -1

=
complete order
since, for these cases at T = 0, each A atom is entirely
surrounded by B atoms. For these cases Zernike alternately
changes the signs of the r's making the probability for a

B neighbour equal to 1/2(1 + rn). We thus have

Fls-‘ = f:m = a‘,’g,‘ = f'm (5350331'3)

-

For the face centred cubic case, however, we have the diff-
iculty discussed in paragreph 1 of this chapter. To make
Zernike's method suitable for a discussion of the face
centred cubic ferromagnet we must assume preference in our

AB lattice, for like nearest neighbours. This will give us

Cr.c.c = Tuo (5’500)

as opposed to Gf.c.c =-37s10 for the unlike neighbours
case. Ve see then, that in order to reach an expression

for the short range order, we need merely solve our approp-
riate partial difference equation for the excess probability
r for the occupation of one of the sites nearest to the
origin for the particular lattice structure in which we

are interested. In order to do this we approximate equations
(5,46) by taking in each only the part linear in ry. In
general we have

‘n"fjﬁ = Z L (5!51)
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where the summation includes all nearest neighbours of rijk'
We then apply (5,51) to the succession of lattice points
round the origin.

As an example of the method of solution let us consider,
once again, the simple cubic lattice, and refer to figure
l4. In this sketch, and in the work that follows, we have
used, instead of the usual Cartesian co-ordinste system
for specifying the lattice points, the square of the dist-
ance of each point from the origin, i.e. instead of (x,y,z)

S 2, This permits us to take full advant-

we take x* # yz + Z
age of the symmetry of our lattices. A dash indicates where
the same sum of souares results from different combinations

of x, ¥y and z. For the simple cubic lattice we find

nrl =1 % 4.-1'2 + I‘4 I
nr2 = Brl + ﬁrs + 2r5
" T
nr4 = rl + 4Pg + Pq
nr5 = Srz + 5r6 (5 &)
nrg = r4 + 4r10 B rlﬁ

E

6 = I‘s + 21‘5 E 21’9! o+ 1"11

nr8 = Brg. 4 Erls -+ 2r5
Aryg = g + Pg + 209 + Py5 *+ Pyy
nryg = rg + 41‘17 + Tog

where the Roman numerals indicate the shells round the

origin.
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For the atom at the origin we take ry = l. If we now neg-
lect in these egquations, all but the firet term on the
right hand side of each, we find first approximations for
the r's in terms of the n's

r{=1/n:r,= 2/n° : ry = 1/n° @ Tz = 6/n° ete.

On putting these values into the equations we find second
approximations, and so on. Going as far as the fifth shell,
Zernike finds for the simple cubic lattice

e ¥ » Loy d /66 L 37F9 92852
. s T 58T S =% - = (5,53a)

Similerly, for the other two cases, he gives

/ 9 6 32 257/8 6 gO04
- + ! —+ = e, © A0
6 3750 + =3 e = S (5,53b)

Body Centred Cubic.

€ "G
- 7 ,./’*ﬁs-_f’-a *,__..f.'-‘f_.é 4 23377 /4300 (5,53¢)
s k4 et et et b7 e ¥
where m + 4 = n. Taece Centred Cubic.

To find the high temperature series for A we refer

once again to equation (5,17) which may be rewritten

- (#) ”®
P W % = a2 +§j[ 2.4 (5454)

where we have used the facts that E = -[1/2]wi (f = V),
Q = [1/9=N, 'XT_,Mz 2 (see page 82.), and K = Inx)/2 =
#/2xT. For ¢~ we use (5,53), n can be found from (5,51)

and (5,46) in terms of the £. , while from (5,47) we see
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3
that 5.“ 2 Jawh K = M—(ﬂ_). + }2-;‘(1«4»“)"-._—-—-
3

The solution is straightforward and we find for our two

cases, the series

‘hsa.[t4-1!414-;2—66714:"4-132-75'414‘] (5,55)

Body Centred Cubilc Lattice.

A Lra3nt + g’ payns 232 x> (5,56)

Face Centred Cubic Lattice.

§8 Low Temperature Series for A on Zernike's Method.

If a degree of long range order exists, the solutions
of our fundamental ecuations (5,46) will each tend to a
constant 1imit at great distances from the origin and this
limit, say s, will be our long range order parameter.
Putting this limiting value of r into our simple cubie

equation gives
4 2 _
Cags? #2005 8* #¢as ~32=20 (5,57a)

where we have taken out the root s = 0, (corresponding to
the high temperature case) and where we have substituted
a; for the co-efficient of % 77 , ag for the coefficient
of Z"«' 7'« , ete. The numerical factor in each term is,
of course, equal to the number of terms under each summat-

ion in (5,46a).
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For the other two cases we have

6
gb,s® 456 b s 4 56b3S* 4 b, - 128 =0 (5,57b)
Body Centred Case

¢ 4
nc, s+ 210Cq s¥r v92¢y s + vy92 C¢ S

+220 C3 S° 4 2C,- 204F%F =0 (5,57¢)
Face Centred Case - preference for like neighbours.
Now if we have the long range order s, the sites must
be alternately o and 8 sites, with more A atoms than B
atoms on the o sites and more B atoms than A atoms on the
B sites. We can easily sce that the probability of finding
an A atom on an a site is (1 + s8)/2 while the probability
for an A atom on a p site is (1 -~ s)/2. Alternatively, if
we select an A atom as our origin, the probability that it
occupies an a site will be (1 + s8)/2 and that it occupies
a B site, (1 - 8)/2. In the first case the limit of ry9%
will be +s and in the second case it will be -s. In order
to find the average value of ¢~ we must solve the differ-
ence equation for one or other of these limiting wvalues.
To facilitate calculation we make the substitution (for
the +s case - change the sign of s for the -s case)
Pyge =8 + (1= 8)ty5 (5,58)
This changes our variable from r to t, but has the advan-

tage that it preserves our boundary condition ( tpgg = 1)
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and consecuently equations (5,53) hold also in the low
temperature region.

Substituting (5,58) into equations (5,46) and neglecting
non-linear terms, the terms independent of t cancel accord-

ing to equations (5,57) leaving

T
32 f“:’,'.é. = (q, +t0ays +5aq¢ss%) Z‘f‘-

(5,592)

129 Fr ks (Bit20by s¥4 35 b s"+‘7$’ S‘)Z,' ke (5,59b)
2049 Fihe (G +S5cy3s +330Ccs%+462Cys¢

+ 165 Cy s®, g, B Z' £ (5,59¢)

These are linear difference equations of the same form as
(5451). To make théir solutions a little easier we can

eliminate the term in s? in each, using ecuations (5,57).

We find
L L (6 -2a,+20a,5¢) (5,60a)
Hs.c 3z
== - (4‘3'"?-"’.41&6;5"4 4&,5‘) (5,60p)

Mp.c.o 12 %

L - L (s12-2¢ 413205 4204 c,s‘+uoc?s’+8c,,s‘9 (5,60¢c)
MNE.ce. 204 &

Now, for the low temperature series for ;\ s We have

A
TRRRS R +.g.’./ (=2 o (5,61)

In order to complete the solution for A we need an

expression relating ¢ to tj. This we find by calculating
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the average probability for the nearest neighbours round
the origin. We have
7= 4 (14+5) f—’* (r-s) ’}} +4£ (:-s)f-s+(:+s)l-;-}

i SV Ca~=5"3 %

or tmow = (1= (/- F) (5,62)

Since we have to develop a series expansion for A , we
require series for 8“ (since only powers of s? occur in our
formulae) and for the ty.

For s° we assume series of the form S = 7+ Zs;‘x“-
and, after substituting into ecuations (5,57), equate the
coefficlents in the resulting exprescions. Actually, in
order to simplify the worlking, these equations were cast
into a form in powers of (1 - sp’) instead of powers of 8”,
On subsecuently substituting for the aj, b; and cy, the

following alternatives to (5,57) were found

[‘9}’, "43}".+f12;q-uz;z}(f‘-$’);— [sro}i-zrc_‘;?é +zzo£0} -5y
+["“3Zg -zs‘f-f‘](r-S’)-ms}, +/29 =0 (5,63b)

Body Centred Lattice.

Lrf, 1208, 452 ¥$y 13205, +1950F, 15547, [ (1-5)F

- [2508, 11203 442 vofy - yo40f, +1960f, J (1-5)
2
p[17928,, - 906430 4,2(,72}27 - vo40f, J(1-5)- [4608],-1228%F, , + 54438, [ (1-5)

% [;-,20’{,_ "’443?,«0]("5') - 20495’,2 $204% =0 (5 @gz4)
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for the Face Centred Lattice.

Since we are not immediately concerned with the simple
cubic lattice equations we shall neglect these from now on.
On substituting the assumed series for s into these equat-

ions we find the following values for the coefficients

2
bec.c

¥

6 2 ¥
cr-ax¥-32x" s 4ox"® 136% 4 833x -396x (5,64b)

23
s;-m_#: 1—4'!’:49')(2145‘63(294-0\: °_y91% (5,64¢)

where for EM we have used the expansion

3t &
£ - rax™an s Tan T awn M ~ (5,65)

In order to find an expansion for the t4 we use the
expressions for 1/n given in ecuations (5,60). On substit-
uting for the a4, b; and cy in terms of the f; and then
for the g",- in terms of x, using the expansion in (5,65),

we find

ré

K xb- xFrex g raxt 4+ % (Body Centred) (5,66b)

le

box xw-%" 4 rax™® (Fece Centred) (5,66¢)

where we have used ecuations (5,53).
These expressions for the t4 and for the a2 yield, on

substituting them into (5,62) and (5,61), the following



series for our partition functions per spin

20 i

z
Apce X Lr4x¥ruxyx"42ex™- 95 iex p25x> {(5,67)

2 & k3
Nr.ce* \(-3[""'""’"’(:1-6\(2 + 0!(304-64—5"‘! } (5:670)

§ 9. In conclusion we must briefly mention the exact series
for A ecalculated by Trefftz. We shall cuote these series
in the next chapter for comparison with the various approx-
imate series we have derived.

Trefftz's series are derived according to methods given
by Kramers and Wannier 19) for the high temperature region
and by van der Waerden °°) for the low temperature region.
We shall not go into these methods, but merely remark that
they consist essentially in counting the various config-
urations corresponding to perticular states of our crystals
- the sort of procedure that is used in Kirkwood's method.
We have used a similar procedure in connection with the
derivation of the low temperature series for the partition
function of the face centred cubic ferromagnet. (See para-

graph 7, chapter 4.)
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VI
THE VARTIATIONAL METHOD COMPARED TO

THE OTHER APPROXTMATE METHODS

§ 1. The Body Centred Cubic Lattice.

In chapter IV we had an indication that the body
centred case might represent 2 limiting case of the variat-
ional method as we have used it. This was based on the fact
that, for this case, all our maximisation parameters went
out, the treatment of the problem being, as a consequence,
so much simplified that we managed to find the high temper-
ature solution for A in a closed form. That this result
should not be a particularly good one was also implied by
the fact that for three of our four subsidiary partition

functions we had to use the very crude approximations

w = ¥ = 4
§F = 2
(A partition function should, by definition, vary with
temperature. )

For the low temperature body centred cubic case we had
reasoneble expressions for all of our subsidiary partition
functions - as a result of the existence of our low temper-
ature (magnetisation) maximisation parameters - and consequ-
ently we expect that the low temperature series should be

rather better than the high temperature one.
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In order now to see just how good our worst case (on the
variational trestment) iz, we shall collect into tables
our various series for comparison with each other. We shall
use the sbbreviations

E - exact series: V - variational method series:

B -~ Bethe's method (quasi-chemical) series:

% - Zernike's method series: K - Kirkwood's method series.
Table 1.

Body Centred Lattice - High Temperature Series.

Ae = 2[1 + 282 4+ 13.667K + 156.756K°]

N = 2[1 + 2%2 4 13.667K* + 232.756K°]

A« = 2[1 + 28°% 4 ar?)

A\ = 21 + 2K° 4+ 1°667¥%*] =2(coshk)?

N = 2[1 # 2K° + 1.667K*] =z2(coshk)*

From thie table it secems that the variational method and
Bethe's method share the distinction of being the worst of
our apvroximate methods.

Table 2.
Body Cé&ntred Lattice - Low Temperature Series.
Ne = x2[1 + 28 + ax2% - 4x26 4+ 28x°C - 60x°%2 + 44x°4]

axl4 - 4x16 , 20x°0 - 60x°% + 32x°%]

AN o= x2[1 4+ 28 4
= x“2[1 + ¥ 4 4x14 - 4x16 + Qexgo - 60x22 + 32x24]

x=2[1 + %8 + 0x14 4+ 16x16(¥ + 2K2)] (x = e~2K,)

+ axl4 _ 2x16 4 28x20 _ n0.18%22]

>
-
n
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Here we see that the veriational method and Bethe's
method sre both better than sny of the other approximate
methods. In fact, compering the two expansions in both
tables, we have the interesting result that our variational
treatment of the bedy centred lattice turns out to give
exactly the same series as does Bethe's method. In other
words, Bethe's methed would appear to be a lower limiting
case of the varlational method. To date, we have not had
time to go into the ecuivalence of the two methods, but we
feel that it should be a simple matter to demonstrate it
without heving to go to the extreme of actually calculating
the series.

The fact that Xirkwood's method is so poor at low temper-
atures (as we shall sec, the above series is typiecal) is
not surprising, since the logarithmic and exponential
expansions used in the derivation of Kirkwood's equations
are only valid for high temperatures.

It may also be seen from this table, and from table 4,
that, at low temperatures, the series derived on Zernike's
method is only slightly poorer than that derived on Bethe's
method. This implies that the results gilven by Kramers and
Wanrier for the low temperature square net series on
Zernike's method, are wrong, since they show this series to
21l at the second term. ter Haar (unpublished result) has
recalculated this series and finds that the correct series

is considerably better than that of Kramers and VWannier.
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§ 2. The Pace Centred Cubic Lattice.

For the fece centred case, on our treatment, our con-
ditionse are slightly better than they are for the body
centred case, since we now have en extra meximisntion para-
meter to work with in our two temperature regions. The
effect that this has on our results 1s seen in the following
two tables.

Table 3.
Face Centred Lattice -~ TMigh Temperature Series.
Ae = 2[1 + 3K° + ex® + 37kt 4+ 185K5]
Az = 201 + 3x2 + oxd + 37d + 232%5]
A = 2[1 + 3K° + ak® + 3aK*]
A = 201 + 22 4 ok® + ok?]

s = o[1 + 3K° + 0k° + 41:4] = 2(cosh K)6

Ve see that the extra parameter has improved the variat-
ional method considerably. Although it is still not the
best of our approximate methods at high temperatures, the
variational method series compares quite well with the
corfesponﬂing series derived on Zernike's method - which
is the best. With the exception of the variational series
which has gone up one place in the table, the different
series have the same relative positions that they occupy
in table 1; in particular, Bethe's method‘remains the

poorest of the approximations to the exact series.
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Table 4.
Face Centred Lattice - Low Temperature Series.
Ae = x“5[1 + x12 ER 6x22 - 6324+ 8x20 4 48z52]

W = x7001 + x1? 4+ 6272 - 62744 8x%0 4 72x%%)

A o= xO[1 + 222 4 6x°° - x4 0x°0]
Az = x7O[1 + 2*° 4 6252 - 634 0x°0]

A= x 001 + 22 4 0272 4 24x%4(x + 2KD)]

In this table the various methods retain their places
according to table 2. (With a degree of uncertainty as
regards the Bethe and Zernike method series; they are ident-
icel so far as we have gone.) The variational series holds
good up to the term in xzz while the Bethe and Zernike
series fail somewhere between x°% and x°0., Kirkwood's series

is again the poorest.

§ 3. The Simple Cubic Lattice.

Finally, in ordcr to emphasize the way in which the
addition of further maximisation parameters improves the
variational method, we shall quote the results obtained by
ter Haar (reference 15 ) for the high temperature simple
cubic series. (See the discussion in paragreph © in
chapter IV.) From table 5, we see that the different methods
again have the relative ordering that they have in table 1,
with the exception of the variational method series which

has moved up to the top place.
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Table 5.
Simple Cubic Lattlice - Figh Temperature Series.

3 Y 4 sS4 6 243621/ 8
AE=2[1+/,_KE+§K+ 20 K ¥ 305 ]

" oF a U o4 s¥6/ _6 2/g08%8s7 .8
v = 1+/,‘K2+ 3 K + _——_Z‘IOK-'-WA##O K]

§o03
Mo=2[1+ 4K +%K+ (7’3?1{6]
q
8

§a¢, It is hardly necessary to point out the significance

of our results, since the tables we have given do this
sufficiently well. We have found that the variational method
as we have used it , yields equations which increase in
complexity and 4Aifficulty of solution as we go through the
cubic structures in the order, body centred cubic, face
centred cubic, simple cubic. Also, for any particular struc-
ture, the high temperature equations are much simpler than
are the corresponding low temperature ones. All this, of
coursge, is the result of the variation in the number of

our maximisation parameters as we treat the different cases
and as we treat the two different temperature regions. In
fact we might say that complexity of equations is propor~

tional to the number of undetermined parameters we have to
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deal with. We have found 2lso that as the number of our
untnovn parameters increases in the verious problems we
have discuseed, our solutione correspondingly improve. This,
of course, 1s more or less as we should expect.

It in fair to say, then, that the variational method is,
when used to its full advantage, an extremely powerful
means of calculating the partition functions for the types
of proklem we have discussed. Sinee the simple cubic lattice
affords the best aprlication of the method to three dimen-
sional problems, it scems a reasonsble extrapolation of our
results to state that when the low temperature simple cubic
series has been obtained, it will be found to be better
than the series found by the other methods.

Altogether, we can say that our results and their impli-
cations agree with those of Kramers and Wannier, in that
a direct application of the variational method seems to be
the most powerful of any of the approximate methods used
in this work to calculate the partition functions of ferro-

magnetiec structures.

(We have not carried out our original intention to use
equations (1,2) to calculate series for the configurational
energies and specific heats of our models, since we felt
that no useful purpose would be achieved by doing so. Tables
l. - 5. are aquite adequate for a comparison of the various

approximate methods. )
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APPENDIX
Note on the Direct Apnlication of the Variational Method
to the Tace Centred Cubic Lattice.

In our attempts to apply the variational method directly
to the face centred cubic structure, it soon became evident
that, to avoid effectively repeating the discussion given
in chapter III, we should have to consider the lattice as
being built up by adding two plates (one layer of unit cells)
at a time to the existing structure. If we do this, we are
performing a step which can be repeated exactly at each
stage.

After our first reduction, our lattice will be reduced to
two essentially two dimensional ones consisting of four
plates of spins and two plates of spins. The next two reduc-
tions will leave us with lattices consisting of sixteen
strips, four strips, four strips and two strips of spins.
The four finsl reductions will reduce the problem to the
consideration of lattices containing respectively thirty-
two, eight, eight and four spins. By comparing these lattices
with the previous subsidiary ones we have had to deal with,
we see that the matrices corresponding to them will be of
orders 216, 24, o4 and 22 respectively. The largest of these
is obviously far too large to handle.

In the case of the body centred cubic lattice, any direct
approach using the variational method must also be carried

8
out on the above lines. Ve find a matrix of order 2 °*
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