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INTRODUCTION

1

§ 1 The problem of providing a theoretical description

of the experimentally observed "behaviour of ferromagnets

is a particular example of the "broader problem of the

theoretical treatment of co-operative phenomena in gen¬

eral. Fortunately in a first approach, a treatment may

be given which applies generally; in fact we shall dem¬

onstrate in the next paragraph, that a discussion of

ferromagnetism say, applies eoually well under certain

circumstances, to the problems of antlferromagnetism and

of substitutional alloys. We make the transition to dif¬

ferent problems simply by altering the significance of

our unit of energy to suit a particular problem. Com¬

paratively recently Domb and Potts •*•) have included in

their general discussion of a two dimensional model, as

well as the above problems, that of the adsorbed mono¬

layer. This has also been discussed by Fowler and Gug¬

genheim ^).
Co-operative phenomena are characterised by the fact

that within a system of atoms or molecules showing the

phenomena, groups of atoms say, combine to form sub-sys¬

tems which maintain their physical character despite the

disrupting influence of thermal agitation. This implies

the existence of a dynamical equilibrium within the sys-
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tem; as atoms leave the sub-systems, due to thermal

agitation, other atoms are brought into them in order

to maintain the extent of the sub-systems peculiar to the

temperature of the system. In general, the extent of the

sub-systems, or the degree of co-operation, varies uniquely

with temperature, increasing with decreasing temperature

and vice versa. This Is only true however, below a cer¬

tain temperature, which is a characteristic of any parti¬

cular substance and above which it may be said, in a first

approximation, no degree of co-operation exists.

The variation of the degree of co-operation with tempe¬

rature is not linear. At low temperatures it is difficult

to decrease the degree of co-operation. As the temperature

is increased however, it becomes relatively easier until

near the characteristic temperature, an avalanche effect

sets in and the co-operation apparently disappears abruptly.

On closer investigation it is observed that the co-operation

has not completely gone; a small residual effect remains,

which is due to a slight degree of local co-operation. We

shall disregard this for the time being.

In the following discussion, we shall normally identify

the degree of co-operation in a system with the degree of

order in the system, while the characteristic temperature

will normally be referred to, on analogy with the theory

of ferromagnetism, as the Curie or transition temperature.
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The transition is then understood to "be that from the state

of finite order to that of zero order (strictly speaking,

that of zero long range order).

In any theory of co-operative phenomena, we must ulti¬

mately derive results which we can compare with results

obtained "by experiment. We must now, therefore consider

the physical manifestations of the state of order of any

system we choose to investigate.

We should expect on the third law of thermodynamics,

that as we approach the absolute zero of temperature,

the degree of order in a system will increase, having a

maximum value at the absolute zero. This is the state

of perfect order and minimum energy. If we now supply

heat to the system, its temperature will be raised; but

since at any finite temperature below the Curie temperature

the system must be disordered to a certain extent, some of

the energy supplied as heat must be taken up in producing

the equilibrium value of the degree of order appropriate

to the final temperature of the system. We see then that,

if the only anomalous effect we have to consider in our sys

tern is that of the order-disorder transition, any energy

supplied to the system will be distributed in the way we

have suggested. As we increase the temperature still fur¬

ther, the amount of energy necessary to produce the corres¬

ponding degree of disorder will increase until at the Curie
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temperature Tc, where the degree of disorder is a maximum

the energy producing the disordering will remain constant.

Any further energy supplied will merely heat up still

further the disordered system. The energy which it is

necessary to put into the system to produce the equilib¬

rium degree of disorder for a particular temperature, we

shall call the configurational energy. Its variation is

sho -n qualitatively in figure 1. Corresponding to this

anomalous disordering or configurations! energy in the sys¬

tem, we shall have an anomalous specific heat contribution -

this v;e shall call the conf igurational specific heat. Its

course is also shown in figure 1. For completeness we have

included in the figure the curve showing the variation of

order (curve R) with temperature.

If we take account of the small degree of residual or¬

der which remains above the Curie temperature, our various

curves are modified in accordance with figure 2. In this

sketch we have designated order by the symbol 0, since we

wish to reserve R for the long range order - which does

disappear completely at Tc. We see from figure 2, that the

specific heat curve now shows a true lambda point.

From this discussion then, it seems reasonable to expect

that any theory of co-operative phenomena may be judged

as to the validity of the approximations Inherent In its

formulation on the accuracy with which it predicts first of
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all the Curie temperature and secondly the course of the

variation of configurational specific heat with temper¬

ature. In order to he able to study the variation of

specific heat, or in fact of any of the usual thermodynamic

functions, with temperature, we shall use the methods of

statistical mechanics. In fact, from the nature of the

problem, a statistical approach is the only possible one.

It is well known that in any statistical problem once

we have succeeded in evaluating the partition function, Z

for a system, it is relatively simple to obtain most of

the thermodynamic functions. We may mention in particular,

E, the internal energy of the system, and Cv, the specific

heat at constant volume - since these are the two functions

with which we shall be concerned. The partition function is

defined as
- Ej/i _ f A

i- It• e y
oU/ sJaJJu*

o

where -- -^7*, in which k is Boltzmann*s constant and
T is the absolute temperature. Ej is the energy of the
system in state j and F is the free energy.

For the total energy E and the specific heat Cv of the

system, we have

-g -ivt a i»
•» <ir) ' ' V
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r -J- J? - / /,a Z
v " kTx Tfv^rr W

These are equations (1,2)

Actually, in this ?/ork, we shall not be concerned so

much with Z, which we might call the macroscopic partition

function, as with A , the partition function per particle.

We define

/rt A -

AT

since In Z is an extensive quantity. N is the total number

of particles in the system. Our configurational energy

and specific heat will then refer to the average values

of these quantities per particle and will be calculated

with respect to In A.

As we have mentioned, the main physical problems to which

our theory of co-operative phenomena will apply are those

of ferromagnetism, antiferromagnetism and substitutional

solid solutions or alloys. Before going further, we should

consider the properties of each of thes types of material

from the point of view of the order-disorder transition

in each.

For ferromagnetism and antiferromagnetism we shall use

a simple model due to Ising ,r5). This assumes that in a

crystal, the lattice points are occupied by spins which

rrry spin in only two possible directions - either pcsrallel
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or antiparallel to a possible field direction H (spin

quantum number s = 1/2). The degree of magnetisation

shown by the crystal is then proportional to the degree of

ordering of the spins. From our point of view, the only

difference between a ferromagnetic and an antiferromagnetic

substance lies in the state of perfect order. For the for¬

mer, at absolute zero, we assume that the lattice spins

ore all lined up parallel to each other, while for the

latter, the snins are lined ur> alternately oarallel and

antiparallel. For a ferromagnetic substance, for instance,

as the temperature is raised, more and more of the spins

turn over and the degree of ferromagnetism decreases,

until at the Curie temperature it disappears completely.

Of course in this discussion, which we have said is to be

generally applicable to co-operative phenomena, we shall

discuss magnetic phenomena only in the absence of an exter¬

nal magnetic field.

For substitutional solid solutions, we shall consider

our lattice sites occupied by different types of atoms.

We have just mentioned the no-field restriction which must

be imposed upon the theory as it will aoply to magnetic

phenomena if this is to be equivalent to a general theory.

Similarly we must impose corresponding limitations on our

model of a substitutional alloy. It is obvious that in the

state of complete disorder in either of the magnetic models
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there will "be an ecrual number of spins parallel and anti-

parallel. These will be arranged at random throughout the

lattice. To correspond to this we must, in our substitut¬

ional alloy, consider only two types of atom (corresponding

to the fact that the magnetic spins can have only two

orientations). These we designate A and B atoms. Also we

must have equal numbers of A and B atoms which, in the

state of complete disorder, will be distributed at random

through the lattice.

A somewhat more general treatment than ours has been

discussed by Pushbrooke in which he does not restrict

his binary solid solution to equal numbers of A and B atoms.

He reduces his problem to the evaluation of a function

A (*, y) which for the case of the ferromagnet, represents

the partition function of the assembly, while for the case

of the binary solid it represents the grand partition
• -n ha -

function. In Rushbrooke s paper A * € and y * e
for the case of the ferromagnet, while "A « e and

- ^'/6
y- e 7 for the case of the binary solid. Here m is

the magnetic moment per spin, H is an external magnetic

field, 10 is the difference in energy of two neighbouring

dipoles when they change from the antiparallel to the

parallel state and u) ' = 10^ - '/z ( + <^bb ) . ^ihq >

and oJQO are the energies associated with AB, AA, and BB

pairs of atoms in the binary solid solution. ^ is the
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chemical potential. Some of these quantities we shall

have to refer to once again in the next section.

It is perhaps appropriate at this point, to mention two

other manifestations of the state of order in a substitut¬

ional alloy. Tammann ^), investigating copper—gold alloys

of varying composition, found that if the alloy contained

a. maximum of r0 %, of copper atoms, nitric acid did not

affect it, whereas copper was dissolved if the atomic

constitution contained more than 50 7o of copper. He inter¬

preted this to mean that equal numbers of gold and copper

atoms could form an ordered structure, while any exeess

copoer atoms (and presumably also gold atoms) could not he

fitted into the structure.

X-ray and neutron diffraction experiments have also

given indication of the existence of ordered structures

within crystals containing different types of atoms ®).
The sketch - figure 3 - shows an ordered arrangement of a

crystal plane containing equal numbers of A and B atoms.

Vie assume, of course, preference for unlike nearest neigh-

hours i.e. the state of lowest energy is that where every

A atom is surrounded by B atoms and vice versa.

If the elements A and B are not too near to each other

in the periodic table, their reflection properties for

X-rays will be different and so for various suitable

angles 6 , where the p°th length difference is a multiple
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of A/2, we may get a line in the X-ray spectrum. If

the reflecting planes have the same reflection properties,

as for instance if all the atoms are the same, no line will

apnear. If on the other hand, we have A and B atoms which,

however, are arranged at random, we shall on the average

have equal numbers of A and B atoms on any reflecting

plane and the reflection properties of any two lattice

planes will thus be the same. We see then, that in a crystal

of an alloy, we shall get additional X-ray spectrum lines

(superstructure lines) when a state of order exists,which

will be absent above the Curie temperature for the crystal.

Neutron diffraction may give results similar to the above

in the case where the A and B atoms have X-ray properties

which are too similar to each other.

§ 2 Before giving a short historical account of the dev¬

elopment of the theory of co-operative phenomena, we must

first show that results for any one of the problems we

have mentioned are immediately applicable to the remaining

problems. This is important not merely from the point of

view of unifying the theory; but also since, of the diff¬

erent methods which have been developed for handling the

problems, some have been applied to the theory of substit¬

utional solid solutions and some have been applied td the

theory of ferromagnetism.
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Consider a lattice of equal numbers of a and b atoms

and let there "be a total of N atoms in the lattice. Let us

assume a co-ordination number z - that is, if we neglect

surface effects, the number of nearest neighbours of any

atom in the lattice is z. We assume also that we have only

nearest neighbour interactions between the atoms on the

lattice sites. Now if we take for the energies associated

with aa, bb, and ab pairs of atoms at nearest neighbour

positions, the values v^, vgp, and vAB and if, of the
total of Q nearest neighbour pairs in the lattice, Qaa»

Qbb> and 0^ are the numbers of aa, bb, and ab pairs
respectively, then for the configurational energy of the

lattice we may write

E - Q.Rf) Vpp +- Q as i^ae +■ Q-pe (1,3)

but, neglecting surface effects, Q.pj^ - Pgp and so

q pp ( "9pp •+■ i) g j q pb I?pa (1,4)

w ince Q. r Q pp Q. /$# + a pa ~ 2 czap Qpa

the last eouation may be written

(1,5)

or

£ I ( Uflfl + uslO - Qm [i'^ + l,88)-ypa]

- CLAt V (1,6)
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where E0 is a constant, and

"0 - ( I-)## + Vgg ) - ~U f* a - Ctry> i tew* f (1»

We shall rewrite equation (1,6) as

E" - E0 - - Qi*a V (1,8)

How from our discussion of antiferroraagnetlsm, we

know that the energy- of an antiferromagnetic lattice is a

minimum when the soins are lined up alternately parallel

and antlparallel to each other. We can assign to each spin

a parameter xtj where i refers to the i*h spin, such that

pi - + \ if the spin is in the parallel direction (to
an external field H say, where H may subsequently he dim¬

inished to aero) and {*'; =-\ if the spin is in the
antiparallel direction. We also define the energy p to
ho the energy gained when two isolated nearest neighbour

spins change from the parallel-antiparallel state to the

"both-parallel state. If this is so, then we may write the

configurations! energy of an antiferromagnetic lattice as

(1'9>

where the summation is over all nearest neighbours.

Here we see that -E is a maximum in the state

of perfect order, since each product £*''ft*#* -1, so
that E is a minimum as we should expect. ?h factor 1/2
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comes in since the summation alone makes each energy

change twice as great as it should he. We can see this if

we consider the state of perfect order, with minimum

energy, and then turn one spin over. If there are z

nearest neighbours, it is obvious that the energy increase

should be tp . However doing this via the summation, we
first have to subtract the pairs affected by the flipping

over of the spin, i.e. z pairs, and then add them on again

with the sign changed. This altogether is equivalent to

subtracting 2z pairs and gives an energy increase of 22^
units.

he can now, in our AE lattice, define a parameter

referring to the atom on the i site, such that Mi is

t-1 if the atom is an A stomal if it is a B atom. Thus we

may write

Q.fic> - Q.flo (l,10)

But as Q = X Qflfl + - we have

t <?•*<?/ Q. ' * (1,11)

or Qfl$ (Q - Ifc'fj") (1,12)
where we have used the fact that Q r >yi 2 " - each

of our N lattice points has z nearest neighbours; but

since this counts each pair twice, we introduce the factor

1/2.
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Substituting into (1,8), equation (l,12), we have

E ~ Z t*'' " - ''t. i v

or shifting our zero of energy

E , E" + \ virf - \ v f "fj" (1,13)

v/hieh has the same form as has (1,9).
We see then that we can reduce the problem of the subst¬

itutions.! solid solution to that of the antiferromagnet

quite simply.

Now consider the problem of the ferromagnet. At absolute

zero, the spins are all lined up parallel to each other.

If we want the energy at the absolute zero to be a minimum,

we must write

£ * - ''x £ Z (1,14)
t

where the £/,- can be taken to be the same as the £;
except that they refer to the ferromagnet. The minus sign

is necessary since in the state of perfect order, each

product will give +1. is the energy gained

when two isolated nearest neighbours in a ferromagnet

change from the low to the high energy state. The summation,

of course, is again over nearest neighbour pairs.

In the AB lattice, we now label our lattice sites call¬

ing them alternately a and |3 sites, so that each a site
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Is surrounded by s p sites end vice versa. Then in the

state of perfect order, we shall have all the A atoms on

a sites and all the B atoms on p sites. This introduces

the notion of sites being correctly and incorrectly

occupied. As we heat up the lattice, some of the atoms

will go 'wrong' and we shall find A atoms on (3 sites and

B atoms on a sites. It must be borne In mind, of course,

that this labelling of sites is merely a convenient

fiction adopted for the purpose of analysing the problem -

in particular, when we reach the state of complete dis¬

order, the labelling becomes completely meaningless.

We introduce once again, a parameter, say m'7 such

that is +1 if the i*" site is an a site occupied

by an A atom or a 0 site occupied by a B atom - a site

correctly occupied In other words. Mr ~ -1 if the i^11
site is an a site occupied by a B atom or a p site occupied

by an A atom. Thus we see that an AB pair will give us

~ an- M or a BB pair will give " - -!•

Using this ?/e find

L r 5 - = 2 Qpa - Q (1,15)

and we see that the introduction of g*7 has hod the
effect of changing the right hand side of equation (1,11)

making it negative.

We can rev/rite (1,15) as Q fia - ^ C £*'' 7*J \ z ^
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and substituting into (1,8), we get

£ " \ v L ^ z ^
»rf r,,

or E \ ^ Lf'S1' (1,16)

(compare (1,13))

This time we have reduced the problem of the substitut¬

ional solid solution to that of the ferromagnet, since

(1,16) has the same form as has (1,14),

Altogether then, we can see that within the limitations

we have set to our problems, we can discuss any one of them

and immediately apply the results obtained to the others.

A point brought out in this discussion, incidentally, is

the fact that in the substitutional alloy problem, the

important energy unit is not one of the basic units, Vyy^,

Vgg, or VjbjQ) but is the combination of them denoted by v,
and given by equation (1,7).

$ 3. Finally, in order to show how the method we propose

to use fits into the historical development of the theory

of co-operative phenomena, we shall give a brief outline

of the development and indicate the contributions made by

the different workers in the field.

The first attempt to develop a theory of the order-dis¬

order transition, was made by Bragg and Williams ^), who

treated the question of the substitutional lattice con¬

taining equal numbers of A and B atoms. They labelled the
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lattice sites a and 3 as we have done earlier and intro¬

duced the quantities ra, iv>, wa» and such that:
rG - fraction of a sites correctly occupied «

r3 " " 3 » " •» = ArBpl [ <i)
vra « fraction of a sites incorrectly occupied *= /Va+/(&)
Wg s= it H 3 tt it it « tf^/Cz)
Here Nm, N^, etc. denote the numbers of A atoms on a
sites, the numbers of B atoms on 3 sites, etc. Bragg and

Williams then define an order parameter which we shall

term the long range order, and denote by R. In the original

paper R is defined by an equation equivalent to

/? - 5 £ -{ (1,17)

By long range order we mean the extent to which the

lattice sites are correctly occupied. From the definition,

we see that, for the state of perfect order, ra « 1 and
R = 1, while for the state of complete die-order, ra « 1/2
and R - 0. (This is the more obvious when we recollect

that ra may also be looked upon as being the probability
that any a site is correctly occupied. In the state of

randomness of distribution of atoms it is reasonable to

suppose Ta = 1/2).
The basic assumption of the Bragg-Williams theory may be

summarised in the equation

7*liJ0 (1,18)
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where J is the average energy required to exchange an A

atom on an a site with a B atom on a 0 site at any partic¬

ular temperature. JQ is the value of J at the absolute
zero of temperature. Obviously JQ m 8b ^ . It is very

3imple now, to derive an expression for the energy of the

system, and we find that

E , E.(/-«*)+£, (i,i9)
f ( to C«/VV SxA £UA V"*

Following out the usual statistical method, we write

for the free energy of the system

F - T S - E - £T^W(K) (1,20)

where k and T have the usual meanings. 3 is the entropy

and W (R) is the number of ways of arranging the system

in accordance with a particular value of R. It may easily

be seen that

(1,21)

where (®) <v C b

.After some manipulation of (1,21) we can write the free

energy in terms of R only, and then find the equilibrium

value of R at a particular temperature in the usual manner

from 3F
SB

a 0 •
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This leads us ultimately to the Bragg-Willlame equations

/C = 4-a** h

V" . * E" 11 (1,22)
VkT

from which we can estimate Tc.

It is not really necessary to go into the discussion of

this treatment of the problem much further, since it forms

at best, a rather crude first approximation to the theory;

we have outlined it in some detail for completeness and

for its historical interest. Before going on, however, we

must point out two shortcomings of the theory which are

corrected in subsequent discussions.

First of all the results of the theory correspond to

the curves of figure 1. - at Tc all order disappears. The
reason for this of course, lies in our assumption of the

existence of a long range order only. To bring the curves

closer to physical reality, we must take account of the

fact that above Tc there is still a tendency for A atoms
to surround themselves with B atoms and vice versa. This

involves the introduction of a short range order which is

effectively included in all of the later theories.

The other point may be seen if we consider the summation

■f •" aA AT
r AT - 2 £ Uifi -% J ^

, fsr (z +*-') * r+R. (1,23)
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where we have used the fact that r& = rp
In other words, R = 1/N .

But in the Bragg-Wil1iams theory, we have an equation of

the form

We see then that in effect we have used the approximation

which implies that every atom in the lattice has all the

other atoms as its nearest neighbours. It seems reasonable

therefore, to assume that the Bragg-Williams approximation

is a limiting case of other more accurate theories. This

is in fact the case.

The work of Bragg and Williams naturally stimulated

further work on the subject, since it was soon realised

wherein the shortcomings of the theory lay.

Bethe was the first to introduce a short range para¬

meter to measure how well on the average A atoms are

surrounded by B atoms. He developed his method on a prob¬

ability basis and in such a way that successive approxim¬

ations could be taken In order to approach closer and

closer to an exact solution of the problem. Unfortunately,

going to only the second, approximation increased the work

E -- - i v If •"fE"- c.">
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necessary for a solution by a considerable amount compared

to that necessary for a solution on his first approximat¬

ion. Furthermore, the improvement in the solution was not

so very great. Bethe showed that the Bragg-Williams theory

was a limiting case of his own theory.
Q

Some time later, Fowler and Guggenheim ) published a

general treatment which they termed the Quasi-Chemical

method and which in some ways, may be looked upon as being

a fairly straightforward extension of the Bragg-Williams

method to include a short range order parameter. We shall

not describe this method for reasons which we shall give

shortly. Chang "*"C) has shown that Bethel method yields

equations which are entirely equivalent to those of the

Quasi-Chemical method and so we may look upon Bethe's

method as being a particular case of the latter method.

Within the next few years, other methods were developed

including one due to Kirkwood 11), and one due to Zernike

All of these were of course approximate methods, the

approximation being capable, in principle, of being pushed

as far as was desired.

13 \
In 1941, Kramer3 and Wannier ) introduced into the

discussion of these problems, the so-called Variational

Method. It is this method which will primarily concern us.

They applied the method to a lattice consisting of a

linear chain of atoms and to a square net lattice - a two
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dimensional ferromagnet. Their calculations indicated

that the method was considerably more powerful than any

previous treatment; "but they did not extend their work

to include a third dimension.

It was not until 1952 that Martin and ter Haar ^)
applied the variational method to a three dimensional

model. In their paper they treated the problem of the

simple cubic lattice and found, in the region above the

Curie temperature at least, that the variational method

gave a much better result than did any of the other
15

approximate methods ). They did not tackle the low

temperature region.

In view of the success of the method, we decided to

apply it to the problems of the face centred and body-

centred lattices and to attempt solutions for these models

in the regions below their Curie temperatures as well as

above them. Before going on to a description of the variat¬

ional method, however, we must first point out that in

order to assess the value of the method, we shall require

results from the older methods which are comparable to

those of the variational method. Unfortunately, most of

the older methods were used to estimate the Curie temper¬

atures of the various models discussed, whereas the var¬

iational method leads directly to series for the partition

functions per spin in the regions above and below the Curie
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temperature. Tims, in order to "be able to compare our

results from the variational treatment with those of the

other treatments, we have had to calculate series for the

partition functions per spin in the two temperature regions

for the more powerful of the older methods.

It is for this reason, that we have merely mentioned in

passing, the various methods following upon the Bragg-

Wllliams treatment. We thought it more suitable to defer

a description of these methods till a later chapter, when

we can include at the same time, an.outline of the way in

which we have derived the partition functions per spin for

the different methods. To the best of our knowledge, these

series have not previously been calculated.
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XX.

THE VARIATIONAL METHOD

^1. We shall now consider the variational method as dev¬

eloped in 1941 by Kramers and Wannier for solving the

problem of finding the partition function per 3pin of the

two dimensional ferromagnet. Since the method, applied to

three dimensional structures, represents the main part of

this work, we wish to consider it in some detail.

Throughout the whole of this and the next chapter, we

shall make use of the Ising model of a ferromagnet which

we now want to define precisely.

We assume that our regular lattice structure has all

of its sites occupied by spins, each of which we denote

by a parameter as mentioned earlier. These spins may

be found in only two possible orientations which we sig¬

nify by allowing the spin parameter to take on the two

possible values +1 and -1. The Ising model then states

that interaction between spins is confined to that between

nearest neighbours. In other words, the force on each

spin, and consequently the energy associated with each

spin, is due only to the orientation of its z nearest

neighbours in the lattice - and possibly also to an exter¬

nal field which may be applied. We neglect surface effects

of course, z we have defined earlier, to be the co-ordin¬

ation number of the lattice. We should mention also that,
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in the next chapter, wo shall have to extend our defin¬

ition of the model to include other than nearest neigh¬

bour interactions - which can be done without much

difficulty.

If we assume that each spin is equivalent to all the

others, then ihe total energy of the lattice will depend

upon the interaction energy £ between nearest neigh¬

bouring spins and upon the magnetic moment m per spin.

Taking into account an external magnetic field H. we may

write for the energy 1 of a ferromagnet (see equation

(1,14))

*'-J> ' (2,1)

The notation £ w« a' all define to mean
*>>j >

over all nearest neighbour pairs

This is the energy in a particular state of the lattice

and consequently the state sum, or as we have called it,

the macroscopic partition function, is given by

I r I e = 2 e (2,2)

where x - £ fA • C ^ H/s
As we have mentioned in chapter I, once we have found Z,

the problem is virtually solved.



n-3 n-Z ri-i ■n.

Pigure 4.

♦



26.

\ 2. As a simple introduction to the method of obtaining

3, we shall consider the equivalent one dimensional prob¬

lem of the linear chain of snins. We cannot refer to tills

as a one dimensional ferromagnet since, as Ising himself

showed, it has 110 ferromagnetic properties.

"igure 4. shows the linear chain of spins - finite in

length, with n components fn. . Prom Bolts-
mann's theorem, the probability of finding a particular

arrangement of the spins £*.,?■>. Z4*— ^opo^tional
to the Boltsmann factor of the energy associated with that

arrangement, since all arrangements have the same weight.

Using (2,1), we see that this probability is

= (2,3)

pn-l is a proportionality factor or nomalising constant.

Adding on the n° spin, we can correspondingly write for

the probability that the spins u; ,ju% y*- have a

certain arrangement

k (Z'Z1"*— + c(<y'+-~+Z
p(2,4)

Now, for the probability that y»-, has a particular
value Irrespective of the values of the preceding n-2

spins, we sum (2,3) over all values of the first n-2

spins, i.e.
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«£ e<fi + c ?<
•c 9 <!'*y '

p(^^"Z Z Z **"e ^s>5^

Summing in the same way over (2,4), we find, the probability

that ^w„-i and have a particular pair of values irres¬
pective of the values of the others, i.e.

><l^i 4c^,-
pes*.,,?*) * £ £, J ^2'6^

faking the ratio of (2,6) and (2,b), we get

^ H -»M "+ <" ^ «*

P (/**",* — PlM*-.) £
A.,

(2,7)

How if we put Pn-]/Pn « ^ and sum both sides of the
resulting expression over the two values of , we

get the probability that has a particular value

irrespective of the preceding n-1 spins, i.e.

u - / ^ ^ h

P(f-)' £ P^""' e (S,8)
r/

he assume at this point, that the chain is very long, in

which case P<&JS and must be the suae function

of their arguments. In other words, we may write equation

(2,8) in the form of a matrix eigenvalue problem. First
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of all however, we symmetrise the matrix using the sub¬

stitution:

-

a(^) = P(f ) e

where for simplicity, we denote "by ^ and by m' .
".'e have then

<\ a(f> = X «v'> e (2,9)

or ~\a's<) - ft(a (f*')
where in the matrix whose elements are the expon¬

entials -«•*/=>£ Kf<f' + <V2 ( f -* f') J
Before going further, we must investigate the signific¬

ance of the latent roots or eigenvalues A . Since

is a second order matrix, we shall have two eigenvalues

A, and Aa and corresponding to these, two eigenvectors

a,'/*) and . If now we assume that our eigenvectors
are orthonormal, then

X &;( Ql^ i k, ( 2 ,10)
c-n

where 6^ & is Kronecker*s delta. Prom this it is easily
shov/n that for the elements of 34(#.£*') , we may write

ft (g,.,fAx.) s A, Q,i^') a f \ (2,11)
Using this and the relationship (3,10), we can prove



29.

- "A,*" <3, (f.) C{, (f%) ■+ ?l 1 Q 2 (ft,) cx )
e\*±i

and

3 'j

/C WCfrf}) - "A, h/^.) tf, (ft,) + ^1. <*■*.(£*t)
ftfs

etc. until we reach the end of our chain with spin n + 1

JJ H(pxfi) -- ~H(f„ ,(f.) ■+ "A (fvt+>\
ftfi.- f*.

We novi close the ring of spins "by assuming ,

and sum over this spin. If we also use the relationship

(2,10) we get

Tj >)--'*< Aa (2,12)

From the definition of Hlf-iy'), we see that the left

hand side of this equation is the macroscopic partition

function of our one dimensional lattice.

We have already assumed that our chain is very long,

i.e. n is a large number. If this is so, and if "Xt is

the smaller of our two eigenvalues, we may write, from

(2,12) and (2,2),
Vt

£ & ^ ' (2,13)

This is the fundamental equation of the variational

method - showing as it does, the relationship "between

the physically important quantity Z and the largest
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eigenvalue of our matrix equation. We see that this largest

eigenvalue is the partition function per 3pin of our

linear lattice.

Returning to equation (2,9), we see that we have to solve
- K

e *4C- *X

- K

e

k-C
- A

for our eigenvalues.

Doing this, we find for the largest eigenvalue

K / iK T -z*\ '/x
7^ - e co*h c +\e -Wk c + e J

where we have dropped the suescript, on A *

For the magnetisation M of the lattice, we have

(2,14)

M t

^ 1 »r Im'X
s >VL IN .

c
/\r ^ uc

-yvt /V — -it

[s»i.Cc *e",K]2 (2,15)

so that when H = C = 0, we have M * 0. Since on removing

the magnetic field, no magnetisation is left, we see that

our linear chain is not ferromagnetic. This Is not really

surprising, since having one spin wrongly orientated in

the chain will completely upset the state of order in the

chain, a fact which is not true of two and three dimen¬

sional models.

If there is no magnetic field present, we get

\ X (2,16)
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and for the eonfigurational energy and specific heat we

find

£ - - £/ r - i : (2,17)

Cv = r< K k 1 ' A- Z % |<_ (2,18)

Prom which we again see that the linear chain does not

have ferromagnetic properties - since "both S and Cv are

smooth functions of temperature showing no Ourie point.

\ 3. file one dimensional case of our problem which we

have just treated, is rather trivial; its value, so far

as we arc concerned, lies in that it gives a good example

of the method of setting up the matrix equation for this

type of problem. In the case of the linear chain, the

question of finding the largest eigenvalue of our matrix

was very easily resolved; however in this respect, the

next case, that of the two dimensional ferromagnet, is

fundamentally different.

Since it is only in the two dimensional case that the

variational method is introduced, we shall consider this

case in some detail, particularly as it contains a formal

proof of the validity of what is probably the basic



Figure 5.
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assumption of the variational method as such. Henceforth,

in proceeding in the next chapter to a consideration of

the three dimensional analogue of the cases considered

in the present chapter, we shall take this assumption

for granted. The assumption lies in our choice of eigen¬

vectors.

In the two dimensional case then, our first object is to

set up the matrix problem or equation. Prom a consideration

of the linear chain problem, we see that we managed to

effect a reduction of the problem in effect, by assuming

the chain to be built up by adding one spin at a time

beyond the last one placed. We made the chain very long

and in working out the probability for the state of the

last spin added, succeeded in expressing this in terms of

the probability for the state of the second last spin only.

Since the chain was very long, we could assume that our

probability functions were the same function with differ¬

ent arguments, so that consequently equation (2,8) took

on the form of a matrix equation.

Applying this procedure to the square net of spins (see

figure .5. ) we see that we may build up the net by adding

one row of spins at a time to the existing rows.

We consider first the probability that the spins in row

have a certain set of values irrespective of the

preceding n-2 rows and with row g{ absent. This is given
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"by an expression of the form of (2,5), where the summations

on the right hand, side of the equation refer to summations

over all possible arrangements of the spins in a particular

row - row a, row "b, etc. The summation 5~ in the exp-
<>./>

onential factor of (2,5) now includes contributions in

the vertical as well as the horizontal directions. Vv'e can

then add row and form an expression similar to (2,6)

giving the probability of getting a particular arrangement

of the spins in the ro?/s ^and ; irrespective of
the others.

Taking the ratio of these two expressions, we get the

two dimensional analogue of (2,7), where the exponential

factor is now

*1 W

[* £ + K + c £ (sue)

In which <u; refers to the n spins in the top row only
and ju'; to those in the second top row only. We see
that in this equation, the first and third summations

are over those spins in the top row while the second is

is over the nearest neighbours in both rows.

Eventually we shall get the equation
yl » «

CZ<"'

f ?(,»•) - Z e J ' (s,20)
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where $ comes in for the same reason that did

previously. Once again we symmetrise the equation, using

this time

tn **/z X + \ Z&"
Q^,) - P(<u.) e (2,2!)

giving ultimately

f a i#;) - I #■(? : a (^',) (2,22a)

where
M

+ "Z V-+ I
/; / >

- e (2,221d)

The subscript 1 in the summations is of course assumed

to run along the rows.

Having found our matrix equation, we now want to dis¬

cover the meaning of the latent roots J - of which there

will be 2n.

We again assume our eigenvectors to be orthonormal

Z &p(<y,)(x ^ (£*.•) - (2,23)
and at the same time use the expansion

2 n

-- Zf fp ap(c?•') (2,24)
We can assume that our spin system forms a ring of spins
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n spins wide and m in circumference and we find that its

partition function may "be written as

I = £ X(fWft- 7^6*' )&(ft.f/) (2,25)
e*

p? referring to the spins in the k^*1 row.

If we put the condition (2,24) into (2,25) and use (2,2£i)
we find

i - i *v" - (S>S6)

if as before, we let m "become very large while keeping

n fixed. By f we mean the largest eigenvalue of our

matrix.

Since in each row or ring of spins we have n components

we may write

f -y

1 - y (2.27)
where once again A is the partition function per spin

of our model.

Our next object is to try to effect a solution of equat¬

ion (2,22) - that is, find an expression for A • Unfor¬

tunately, as we shall see, this problem cannot be solved

without making some sort of approximation.
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§ 4. In the second pert of the original paper "by Kramers
and Wannier, the authors note that the largest eigenvalue

of a matrix may always "be expressed in a variational

form. This is in fact an adaptation of the Ritz variation¬

al principle which occurs in quantum mechanics. Prom our

matrix equation, we can write

' ■ ' <2'-'
<?■

Our object being to find CI 's which maximise this

equation.

Up to this point, our method is exact. However we now

introduce restrictions upon the afs which allow us to

obtain only an approximation to f . In Jiffthe fx/s
occur in the combinations

yt

I ^ - -yu wis
Y (2,29)
X "n i
i'-A

Our first restriction on the a (ft.) therefore lies in

assuming

%j . N O. (<*<;) a (p/)

OL (ja;) - (X ( £ , fut) (2,30)

Kramers and Wannier then prove - and we shall consider

this proof shortly - that (2,30) is equivalent to
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n[ H (K.C) % -h A('<,c)™]
CL(fL;)= g (2,31)

where H end A rare as yet undefined except that they depend

upon temperature and field.

Since we are going to assume this form for our eigen¬

vectors in later work, we shall give the proof of the

equivalence of eauations (2,31) and (2,30).

The first step is to introduce into equation (2,28),

assumption (2,30). Let

ny, c f, -m)
C of<£ . etm. (2,32)

represent the number of arrangements of the ^'s contained
in a rectangle dq.dm drawn about (q,ra), and let

n mfll , yvt, Cj \ yvi. ')
C = C, c<Lo - cAm . cUj ', cJvm.' (2,33)

i, t ' >M '

where the summation on the left hand side is extended only

over the combinations lying within the volume dq.dm.dqldm'
about the point q,m, q,m.

Substituting into (2,28), v/e get

n[f(i>**.%.'>")+ ~ +■£(>«-"»')]
» jjff€ CL(.fym)Ct(<l',rn')
\; rMcoc

ff
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v- -£* ?*(
Now assume a(%,m) - o(^,tn) £ giving

JJfJ"Wp n£f(<t, >n, 2 ' ***') -{ £ (r"> 1) -■k $■ (*»■'< 1')
„ -h -!r '<. (2 + Sl') +-£c(y"+ ** ')~lb(9>w)
^ = W<TC ±

f/fti. m) o(q . c>( y

If we assume that the denominator of this expression Is

normalised to unity, we can look for the maximum of the

numerator. We see that we get our largest f if we let

b "be large wherever the exponent reaches its maximum.

Evaluating the integral t>y the saddle point method, h will

make no contribution due to the normalisation we have

assumed. We find

f f ( $, m')
* ' $ , y*t, 1', ' *»

i ^5 (2+2') 4 | (yn-trn')l (2,34)

In order to eliminate the unknown functions f and g, we

introduce the solution of a two strip problem

Xi T, 6,1', 6') £ "Yp[«-£ <?'"<?>'' +■££ <?■(?•■+>
»A

(2>85)/«/ »*- / '■* '

Writing this in terms of g and m, we find

X -- ffjf+h->i'r+a Vut+- 3 h* C>(^, 0/ $>U .
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Again we use the saddle point method for evaluating this

and find

■] (2>36)

Similarly, we can introduce two one strip solutions
* M

lP*(U>A) " I ***£ f (2,37)
... /'» / I - '

or

(2,38)^ [f-ti,*) *2*2+
and m. y(n'.A') -- + iH2' + z* *']

Nov/ substitute (2,36) and (2,38) into (2,34)

, o , f^X (I, 5,1' 8 ') -< -A. VC '4 ^ H',R ')^ A
e.-.t L

+ + n')j'-bC-t<r-6->n)^ + (-{ c-fl'+a')™'] (2,39)

Due to our maximisation conditions, we must take account

of three distinct types of relationship among our various

qurntities. V/e have (a) maximisation conditions on \
and lp as indicated in eouations (2,36) and (2,38).
These allow us to make the functions I, B, ••••••• a,'
functions of q, ra, q,' m, or vice versa. They also allow

us to take first derivatives of \ and ^ as if q, m» q,

m,' appearing in (2,36) and (2,38) were constants,

(b) equations of the form
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X
= ^ , n ; 1 ^ s 4 _

^ j "z in ' h e> * a '
/ /

and two others for q and m.

(c) maximisation conditions on A - again four in number
/ /

one each for q, q, m, m, - of the form (see equation (2,39))

. 3 At X ^ ^ 7) A, X d 6 ^ -DluX 11.' T>A~X 16'
~*1 1 1 11 1 & dl ~T> 1 ' 1$ IB'

_ / ^1// 9// 4 7) ~?_Q _ a ( ll - Xd )
Y7T 7)1 % 1 n 11 I ** T>%)

_ 1'U' - >»(V1 -2* \ *iK-I + H *oi 32 \1 % *1) D1

It is easily verified that these equations may he sim¬

plified if we use the conditions listed under (h). We then

get for the conditions (c)
I « 1/2K + H B = 1/2C + A

l'= 1/2K + H ' B'= 1/2C + A '
We can now use these relations to simplify (2,39). We see

that

A -
XI 1

Jr yj( h,a) . V(H'fl')j1^
and the relations under (b) read

^ A 1 hi' ~Zfn~ 7> A'
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This indicates that H, h/ A, must "be chosen so as to

r ive "A a stationary value. If there are several solutions

leading to a number of sets of q, m, q£ m/ our original
maximisation condition requires that the largest one be

chosen, i.e.

1= 7 T7 (2.40)mahA' [ Ip ( HA) . ^
Finally, we must show that H = H, and A = A.

In order to do this, we introduce functions c(<«.■) and

d (£*■■) which obey (2,31). We substitute into (2,40), the

expressions given by (2,35) and (2,37) and find

f\ Xj , HCtf;.■£*•' ) c(<?•') cI(£A';)
1 — ^TTT (2,41)

C, o(

<d<

Here we have used the definition of given by (2,22).

We can now prove that if we have a set of c's and dfs

defining 'A as in (2,41), we can find ft larger A by

replaclng the e'e by d's or vice versa. (S)
First of all, we prove that £

is positive definite. This we do by induction, since it

is obviously true if the s's depend, on only one spin f .

If we suppose It to be true for n-1 spins, we can prove

it to be so for n spins. M- has the form
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ft -- f (<«■')^ ^
/ = /

Since the a's are arbitrary, we con absorb the <y's into

them and we see that we must prove only that

F i [H £ ?'<?'' 1 a } *(£*•'}

is positive definite.

To do this, we single out and and denote by

2, , summation over the remaining p's . But /W-v canc c

take on only two values so we can write

(X (^;) r oi( •') + (f)
where a and p. do not depend on £*-», . ITov; we can carry out
the summation over and p*' and get

F k e<^v 2 >< £ W'l ocr^M, ) a<^;)

^ 2 f T ' ~*r L" t"w]WW*
' I o I

Since both terms on the right hand side are positive, this

proves our result.

Finally we apply the Schwartz inequality to equation

(2,41) assuming that the c's and d's are normalised.

This gives
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■£*<') c f^/) ct(p!)

+ I 01 (^:) diy;)
Thus proving the statement denoted "by (S).

Using this result, we oan rewrite (2,40) as

% .ic*n ]\ \ l~ J
A" ,,n (2,42)

As we have sxiggested earlier, the transition from (2,28)

to (2,42) or from (2,30) to (2,31) is one of the "basic

assumptions of the method of Kramers and Wannier and we

shall frequently use it in the next chapter.

In order to evaluate (2,42), we refer to results obtain¬

ed earlier in this chapter. The form of lp is given "by

equation (2,14), while 7C can "be obtained as the largest

eigenvalue of a matrix problem of the form of (2,22).

This matrix will "be of the fourth order; "but since similar

matrices will arise in the next chapter, we shall not

write the present one out in its array.

Kramers and Wannier, using the definitions

eK = k : ec = c : e2H = h : e2A = a (2,43)

find for and X »
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\P ^ ( <\~ o'1)^ + Li ^

X*- X1 \yu(ac+cx~'c',y> + k"'< ^4 fe~'k~'> ]
+ X (H-fc'V) [hk^+a'c"') A-^fkU 4 k~'W )] - k [kU-k h ) -O
These are equations (2,44a) and (2,44b).

As in all of this type of work, the calculations were

carried, out for zero external field, i.e. c = 1. If this

is so, then a = 1 is a possible solution, since the first

derivatives of X and ^ , v/ith respect to a, vanish

at a *= 1. Using this, we find for (2,44b)

[x'-XCk'lc-')Ckw+M ->-fc-'A")] - °
the last solution of which may be discarded as being small.

If we now make the substitution (kh-k %~')/(h* ^ ') "

we get from (2,45), after substituting V and ^ ~ ^ + u .

fL
^

5 ( S - £x~ W. K ) *" +• < - l<-

which maximises to

2
1 -

I - fcvJU2 « (2,46)

This solution, however, is not valid for high values of

K - it is only true forthe temperature region above the

Curie point. In the region of high K, Kramers and Wannier
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•usInn- various substitutions manage to find a solution

with a 4 1* Without going into details of their calculation

we may give their result as

A t x ( < + L i -
A =■ k + (2,47)

k"lkA-k'x]

where -ft - > '• A_fJi defines z^ s c k-s> z

and ( k i* - l*~'h ) = s ^ defines s as "before.

The two parts of A given b^ (2,46) and (2,47) make up

the complete solution which is of the form shown in figure

2. of the last chapter.

Again without going into details, we may mention that

Kramers and Wannier, in part 8 of their paper, give series

expansions for A in powers of S for (2,46) and in powers

of k"1 for (2,47). They then supply the corresponding

series as calculated from various other approximate meth¬

ods and demonstrate that in "both the high and low temper¬

ature regions, the variational method gives a far "better

solution than is given "by any of the other methods.

It should "be noted, in connection with the two dimension¬

al ferromagnet on this treatment, that Kramers and Wannier

succeed in finding the solutions for ^ in closed forms.

For the three dimensional cases, we have not "been able to

do this in vie?; of the extreme complexity of our equations.

T



46.

Ill

THE VARIATIONAL METHOD

APPLIED TO THREE DIMENSIONAL STRUCTURES

^1 In this chapter, we shall consider the application

of the variational method developed in the last chapter,

to the problem of cubic lattice structures. Martin and

ter Haar have already discussed the simple cubic case at

high temperatures; we, however, shall develop a general

approach which will be capable of modification to yield

resiilts for any one of the three cubic cases. Further¬

more, we shall extend our calculations to include low

temperature series for our significant quantities - in

particular for the partition function per spin.

As a preliminary, we attempted to apply the variational

method directly to the problem of finding the partition

function per spin of the face centred cubic lattice. If

it had been successful, this approach would have given

the best approximation to the reouired partition function

that the variational method could yield; we soon found,

however, that the method led to a matrix which was far too

large to handle. (We shall give a short discussion of this

direct approach, in an appendix.) In consequence of this,

we turned to an alternative approach v/hich has the advan¬

tage, mentioned above, that in order Jto tackle any of the



(k + l)^*1 plate.

kth plate.

Fippire 6.
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three three dimensional problems - simple cubic, face

centred cubic, or body centred cubic - we merely had to

modify our main eouations, provided we had made the app¬

roach sufficiently general to include all three cases.
*

Before describing the method, we should first of nil

repeat that in this work we are concerned with finding the

partition functions of the various ferromagnetic lattice

structures where only nearest neighbour interactions bet¬

ween the atoms arc taken into account. The ex tension to
I

include second or third nearest neighbour interactions

will not be considered for solution.

In order to set up our general case, we consider

figure 6. This depicts two adjacent plates of the three

dimensional simple cubic lattice with first, second, and

third nearest neighbour interactions. The separation of

the plates is the lattice constant *a'. The black lines

indicate nearest neighbour interactions, the blue and the

red lines indicate next nearest neighbour interactions,

while the third nearest neighbour interactions are not

shown since these do not lie in the plane of the paper.

Prom the sketch, we see that nearest neighbour inter¬

actions link all atoms Irrespective of whether they are

represented as dots or as circles or as being red. or blue.

Thus the set of all points of intersection of nearest
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neighbour interactions represents one system - the simple

cubic lattice structure. Also, on displacing one of the

plates a distance 'a' in the i or 3 direction, we see that

next nearest neighbour interactions link only all red atoms

or all "blue atoms, irrespective of whether they are rep¬

resented as dots or as circles, so that, on making the

displacement, the set of all red. atoms - intersections of

red next nearest neighbour interaction lines - j^epreoents

one system, and the set of intersections of all blue next

nearest neighbour interaction lines represents another

(equivalent) system - the face centred cubic lattice

structure. Finally, considering only red circles and the

corresponding third order interaction lines, we see that

the red circles represent one of four independent but

equivalent systems - the body centred cubic lattice struc¬

ture. The other systems are represented by red dots, blue

circles and blue dots.

from these considerations, it is easy to see that this

particular model may eventually be modified in various

ways in order to discuss different problems. These are:

1) Simple cubic lattice with first, second, and third

order interactions.

2) Simple cubic lattice with first and second order

interactions - by putting the third order interaction

energy equal to sero.
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S) Simple cubic lattice with first order interaction,

only - by putting second and third order interaction

energies equal to zero. This is the case considered by

Martin and ter Ilaar at high temperatures.

4) Pace centred cubic lattice with first order interact¬

ions only - by putting first and third order interaction

energies equal to zero.

5) Body centred cubic lattice with first order interact¬

ions only - by putting first and second order interaction

energies equal to zero.

Cf these various problems, we shall discuss only the last

two in detail. The third problem, we shall consider only

to the extent of demonstrating that we can obtain the

equations of Martin and ter Haar from our general equations.

We have not attempted to solve the simple cubic lattice

problem at low temperatures although this would have been

of considerable interest, especially as the method we are

goiiig to use is, in the problems we shall treat, an approx¬

imation to the variational method. By this, we mean that

that our application of the variational method does not

allow the method its full scope so far as problems 4) and

5) are concerned. We might say that it does not do full

justice to the power of the method. This is of course

boujid up with the fact that we found that we could not

apply the variational method directly to these two problems.
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(The difficulty discussed in the appendix for the face

centred lattice exists also for the "body centred lattice

as is mentioned there.) In this respect, however, the sim¬

ple cubic lattice problem is different from the other two

since our method, suitably modified in the later stages,

represents a direct approach to the simple cubic lattice

problem. Obviously, then, it would be of great interest

to effect a solution of th is case at low temperatures.

Cur reason for leaving,the simple cubic case uncompleted

is twofold. First of all, there was the practical diffic¬

ulty of the magnitude of the task. As we shall see, al¬

though the simple cubic case is the simplest of the cubic

structures, the basic variational method equations approp¬

riate to it on our treatment are not only more numerous,

but are much more complicated than are those for the

other cases. This can be inferred from the results of the

next chapter, where we shall see that the face centred

case yields equations which, although they give a much

better approximation to than do those for the body cen¬

tred case, are very much longer (in the low temperature

region especially) than are the corresponding body centred

case equations. This is not to imply that the equations

cannot be solved; but merely that once the equations have

been written out, which in itself will be a tedious task

requiring considerable checking, a gxeat deal of work
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will "be necessary to effect a solution, especially since

it will "be necessary to work out a large number of terms

for 'A before deviation from the exact series is observed.

The other reason for neglecting this case lies in the

fact that of the three cubic cases, the simple cubic struc¬

ture is the least important from the point of view of oc¬

currence in nature.

In developing the theory of o\ir present method, we shall

take it as far as possible while it is completely general

i.e. we shall develop the theory for the simple cubic

lattice with first, second, and third order interactions

and only in turning to the special cases we require, shall

we modify our equations by putting particular interactions

equal to zero.

^ 5 As in previous work, we take for our model, that of
a crystal structure with spins situated on the lattice

sites according to figure 6. All spins are equivalent. We

consider each spin to be capable of taking up one or other

of two orientations indicated by giving one or other of

the values t i to a spin parameter denoted by £t,j.k • Our

lattice is built up from plates of the form of those in

figure 6, the separation of the plates being the lattice

parameter 'a*. We assume that we have m spins in the x

direction, n in the y direction, and p in the z direction



the pistes lying in the xy planes and the lattice "being

"built up in the z direction. At absolute zero, all the

spins will "be ordered relative to each other, i.e. all

nearest neighbours will be parallel to each other.

Our first aim is to find equations leading to the par¬

tition function per soln with all three orders of interac¬

tion, for the simple cubic structure. "From i^oltzmsnn's

theorem, the probability of getting a certain state or
-E/3

configuration of the system is proportional to €

where, as before, E is the energy of the state. The partit¬

ion function Z is defined to be £ e J//$ as we have seen

earlier. This summation in the present cose contains 2rnnP
terms.

Tor the energy of such a ferromagnetic crystal, in a

magnetic field H, we have

£■ -if-ler'-if-'Zw-ifZci-" - (s,i)

where p- is the co-operational energy of nearest neigh¬

bouring spins in the lattice, i.e. it is the energy gained

when two isolated nearest neighbours change from the

parallel to the antiparallel alignment, and € and £
are the co-operational energies of next and third nearest

neighbouring spins respectively, m is the magnetic moment

per spin. The first summation is over all nearest neigh¬

bours in the lattice, the second is over all next nearest
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neighbours, the third is over all third nearest neigh¬

bours, and the fourth is over all spins.

Prom Boltzmann's theorem, considering the lattice to

have p-1 plates, the probability of getting a certain arr¬

angement of the spins in these plates (i.e. the probabil¬

ity of getting a certain state of the system) is given by

P-! p-l

/ ,

p-t P'1 7

+ pr-n.i.Yt**,<>■",*) + +£kr+<,*",rp'r>)--K ) C frsh J (3,2)
/

In this equation, fi.f*-"'fp-t represent all spins in
plates 1, 2, •••• p_i respectively and take account

of all spins up to and including those in the (p-l)th
plate. In expressions like #*,,$,)■ , the order of r, s, and

t is of no significance, since the expression is meant to

mean *■*■>,<j,y + y + £* *. a < £■+ > * course, having
decided upon a particular meaning for r, s, and t, for the

first factor of a product of M'$ , this meaning applies

to the second factor also. The notation is merely meant

to cover every possibility for a particular order of inter¬

action. Thus, under the first summation, we have three

general terms - as r + 1 runs through the values x + 1,

y + 1, and z + 1. Under the second summation we have six

general terms and under the third we have four general

terms, k « ^/liT c v '5 { / 'ft : ' c " "J6 H
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Figure 7.
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Pp_l is a proportionality factor.
Following the usual procedure, we now add the pth plate

to our array of spins and enquire as to the probability

of this new system hawing a particular arrangement of its

spins. This process of adding successive plates is illust¬

rated in figure 7. The new probability is
p £

-f, *>r[* 'y
/

f f 7
f +K"%JIC £ C^/S>„ (3,3)

How the probability of getting a certain arrangement of
/ \th

the spins in the (p-1) plate irrespective of the arr¬

angement of the spins in the previous p-2 plates is

obtained by summing (3,2) over all possible arrangements

of the spins in the previous plates i.e.

p(?,.,) • I "" Z 9(
Xp.'t I Ssp-r'H

, 1 £ X ™r[Ki w jC + CI2^] (3,4)

where OC, , JZ ,7$ represent the various sums of products
;

of ps occurring in the exponential factors of such equ¬

ations as (3,3).

Similarly, the probability of a certain arrangement of

spins in the and (p-l)th plates taken together and

irrespective of the spins in the previous plates is
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obtained "by summing (5,3) in the sane way

P(P?.,,SA - I ZZ -— f

■ z z (3,5)

If W® next divide ( 3, 5) by (3,4) and -nut f « Pp-l/Pp»
we get

f) - - (

We now denote the n^,J plate "by and the
Vj

(p-l) " plate "by ^ to give

f • r<f)**rL*hX ^ (s,7)

In order to find the probability for a certain arrangement

of the spins in the t>tJl plate only, we can sum (3,7) over

all spin arrangements possible in the (p-l)*'*1 plate

? n f') • fZ W-> =Zrif)e»i,U£oe*K {%+ * "U+c£*f]
(3,0)

or

fS(f') • £ , ,J
$>,*< ^ (3,s>)

When we let p - the number of spins in the z direction -

go to infinity, %?() and '&((?' "become the same function

with different arguments (that is, the addition of the
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th
p plate has not altered the physical properties of the

crystal) and the last equation takes the form of a matrix

equation. 'Ve see that the j will "be eigenvalues of the

matrix which we have denoted "by

The next step consists in writing out an exact expression

for the matrix in terms of the interactions in the

top plate and "between the two top plates. In order to see

how this expression arises, we may refer to figure 6.

Doing this, we find

4- '<?'">■>+' + f''+•■') f !-j-> ■+f'>'+>.j+i&ii + £* i ■■>'+> S* '-"-J )
+ c r 7

, x^ -J (3,10)

In order to symmetrise to give, say (£>/?') » we use
the substitution

oi

p(£4)--aff) ^p[K/i Z (<fiJ f 'V >,j
, — ^

(3,11)

This, when substituted into (3,9), gives the matrix

with elements of the form
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wL* 1 (?'<> + f'tJ ■" +

4- k'£ ( C'ij ?•'*>,'} + +C';+<.j fn -*■ f'•■*)£* <j )

^ k" ^ ^ >i £*'"'*'•)+' +f '■*'.} £*•'>}-*-< + (*'•+'.j-» f ' j 4~£ii+'.i C* vj+■)
4 % r (<r4^'j')] (3,12)

From an extension of the theory of Kramers and Wannler,

we can show that the largest eigenvalue f of this matrix

is equal to the mntu power of the partition function per

spin of the lattice. The largest eigenvalue outweighs all

the others in importance if we let the height of the struc¬

ture (p) "be very great.

Our theory up to this point has effectively reduced our

problem from that involving a crystal of three dimensions

to one involving a crystal of essentially two dimensions
th

since we are now considering only two plates, the p and
"1" "*A

(p-1) " , of our original crystal. If we denote by A the

partition function per spin of the crystal, then we have

= A** where is the largest eigenvalue of our

matrix.

In order to find , we invoke the Rits variational

principle
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p '■"V 144 _ iw tfcAAX"" A - (3,13)
o^^a. ^[gcf)]1-

where as indicated, we vary the eigenvectors in order to

maximise the expression#

Adapting the results of Kramers and Wannien, we now

assume that it is possible to prove that we may choose

a to he of the form

cx(p) [ % 1 * + 2 2/ r i y] (3,14)

where a, 3, and y are the expressions indicated in equat¬

ion (3,11) and ft - ft ( x • *' '■ c ) : ft ft'l k ■ k ': c) - r - & (*■*£ V c J

This is the assumption the proof of which we have given

at length for the two dimensional case in the last chapter.

If we substitute this form of the &(£*) into equation (3,13)
th

and take the mn root, we find

<y r , c -*■

AVa <y* \ l 2 1 " i

which is approximately equal to the partition function

per spin of our three dimensional ferromagnetic lattice

structure.

On writing out the expressions for \ and If in full

we find that these functions have the form of partition
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functions of crystals containing respectively tv/o plates

and one plate of spins. In fact, for "r we have

^4^ lJf'>'i?J (3,16)

which is a summation over all possible arrangements of

the spins in one plate; the first summation inside the

square bracket referring to all nearest neighbour inter¬

actions in the plate, the second to all next nearest neigh¬

bour interactions in the plate, and the third to all spins

in the plate.

In the following part of the work, we adopt the notation

of figure 8, the dashes here having no connection with

those used previously.

Our procedure now is as follows, On consideration of

equation (3,16), we see that it has the form of the part¬

ition function of a souare net of spins - n spins by m

spins - and with nearest and next nearest neighbours in¬

volved. Starting from the beginning once again, we would

consider the probability of getting a certain arrangement

of spins taking only the first n-1 strips of spins and then

the probability of a certain arrangement taking in all the
"t/'h

strips including the n one. We would then take in each

of these probability equations, summations over the spins

in the first n-2 strips in order to find the probabilities

for particular arrangements of the spins in the top strip
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only and of the spins in the two top strips only. Tailing

the ratio of these expressions and letting the number of

strips go to infinity, we would eventually obtain a matrix

equation of the form

6~ ?(?•')" %T(^(3,17)
where Jp has the form

%lfi<?>'•" +-f ;fi) + P + slC'J (3,18)
As before, we symmetrise equation (3,13) to give J#(f'f:)
using ^ ~ & (f> ) -Tfl P/i JTf'f £ f' J
giving

-- ^ 'if ;f; i(f-f+fyf <+>)

4 fi'llfifi, +ffu,./*;') + \ I (fi-fi) J (3,19)
The largest eigenvalue of this will be the partition

function per spin to the power m of the square net of spins
W4«A

to which ip corresponds.

Again, for the largest eigenvalue of &■(#;#'•)we have

VWf''f'')<%(/" ;) a (At;)
-- (3,30)

cM a (^;) 's H[a (f''] J Z
This time, for our eigenvectors, we choose the form

a -- \ £ f:C'+< - ^ £ r'J (3,21)
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where T* - P ( ^ c} , Q - G2 ( ' c-)

Patting this into the variational equation, and. taking the

mth root, we find

I, - -™ '

r,<Q j [ P : Q J (3,22)
for the partition function per spin of the subsidiary two

dimensional lattice structure.

<2 *M' 1* **t'
On writing out and J in full, we find that these

functions have the form of partition functions of crystals

containing respectively two strips and one strip of spins.

Tor 7% , for instance, we have

W'< / tvf[f> %/»;<?■■ * -pi (f
i <*'%(*>■■e>-") * °P (3>s3)

which is a summation over- all possible arrangements or

states of the spins in two strips of spins, the first sum¬

mation within the square brackets referring to all nearest

neighbour interactions between the strips, the second to

all nearest neighbour interactions in each strip, the

third to all next nearest neighbour interactions between

the strips (it being impossible to have such interactions

in the strips) and the final summation to all spins in

the strips.
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We now treat this problem on Its own merits, as It were,

considering first the probability of a certain arrangement

of the spins up to but excluding the last pair and ^ ^
t

i.e. up to and including (***-< and m , and then the

probability, taking the last two spins into account. If

we follow out the usual procedure, we shall ultimately

arrive at the expression

"ftif **■</*<"■) i *<^PC ft ( ^ P »*) + f -< f <•»■-')

+ ft ' ( +£4»tSiui") +■ CfA^ + tfL) J (3,84)
This matrix, when written out in full, will be square and

of order 4 X 4 - obtained by varying p ua $ iaa y and
(*L-i through their values t\ . The largest eigenvalue

of the matrix will be $ , the partition function per

spin of our crystal of two linear chains. This matrix, in

its array, is written out on page 7S".

For jf** we have £ i**f£ P % <5 £ :J
This has the form of the partition function of a single

chain of m spins, the probability treatment for which has

already been given by Kramers and Wannier and which has

been discussed in chapter 2. We see easily, or from chapter

2 (see equation (2,9)) that we shall find a matrix

,/*«»-j) - Pp>~<y~-< -h & ( -fi**-,) J (3,25)
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The matrix is of order 2 x 2 \?ith a largest eigenvalue f
which is the partition function per spin of the linear

chain.

To summarise this piece of work, we have found that in

order to evaluate , the partition function of our der¬

ived plate of spins, we must evaluate ^ and f - the
partition functions per spin of systems of two chains and

of one chain respectively. We have found also that and

f can "be derived directly from matrices of order 4 v 4

and 2X2.

^ (3,26)

There remains now, the function X to "be dealt with.
W xA

We first of all write out the expression for "X obtainable

from eouation (5,15).

4 K Z (f'j 'V ^'on -f S* tj<?'•'-».j 4 ;J(m /,/f,)
4 k"£ (f'jJ" ■+<»/* .J f>■+<./1,^;; )

+ C^° £0>/ * ("<;)] (3,27)

It is easy to see that this has the form of the partition

function of a crystal consisting of two plates of m X n
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spins each. X is the partition function per spin of the

crystal.

Following out the usual probability procedure for this

problem from first principles once again, or (since we

can now see how the reduction of the problem at various

stages proceeds) from equation (3,27), we can reduce these

two plates. We find a matrix of the form

4 +d*:tX) + K 'Jjp'.p?+PJ'*tu')
+ —j— I {£'•#•'* > ■'-* '<?: ■* d* •'?•'*> <£' ) 4 x 4 f ■+' +P!-"d*' '

+ ^ 4 P;+'C>'+£*'»+'£*;'+£*'(?•'-») -*■ -+£*') J
where

TT?(^,^' ) ■- (3,28)

To symmetrise this matrix, we use the substitution

C( (&■',£*') - ?(?>'■(?'') %(&■'#u/+<?''&''■") ■+ <xj:Xu,/
4 +?:■"£>.) 4 (S,S9)
and obtain in this way



*
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Figure 9.
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Ww':»*p[I+#*d*;* +<?*{?>'+')

^ <ilt$%(fl'-p'*, -*p.:+>p'' +&;&*+> -*&;■»<**? ) 4 K 'Z(&•' <P' 4<^' ^
4 &' Z lp':P:4,^<^!'+'<^: v P:+'^1' +&: ^

+ *"l(p':P*»'*pl,6V+&*'P>' +#'*#*')+ \j ^30j
Figure 9 shows how this eouation is obtained on the prob¬

ability approach; we write down the probability for an

arrangement with the two end strips (labelled n) missing

and then with them included and proceed as usual.

The largest eigenvalue of this last expression - equat¬

ion (3,30) - will be the partition function per soin 7^
to the power m of our two plate crystal. In order to pro¬

ceed further, we again use

ty -v~ >vv 0tc . Tmt QtP'P )&(&><? ')*"•«•'< TT^Tf
This time, we choose A(f-p') to be of the form

= z*f[ £ Hflspu, +<u.-{u,'+.) + Zr Zf?r
+k'%£ C<?' 1 (3,32)

Substituting into (3,31), we find, after taking the mth
root
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cO f iilfLLe K-kF yi'+ £' c -» O -»• O- 1
,y ^ »- * "*- 4 JA = Mt'.O g ; F, £■: G/^ (5,33)

Prom v/hich we have

£* '•■*' +<? •'£<-,! ) + F<2,P'f.'

*S'Z( f'C'-" *<f^ ) *■ \ I <C' *d">] (3,34)

which has the form of the partition function of two strips

of m spins. In fact we can see that this equation has the

same form as that from which (3,24) was derived, hut with

different interaction energies. It is ohvious then, from

(3,24) or otherwise, that on reducing this stage of the

problem further, we shall reach the expression

$(&•«>■f *> ) - [F C~ f~ ^ f fL-, -+f ^

■f- £ ' (£***-, -*■ + \ (ftJ (3, 35 )

v/hich when written out in full as a matrix, will he of

order 4X4 and of the same form as that corresponding

to equation (3,24). Its largest elgenvalxie & will he the

partition function per spin of the second subsidiary

crystal of two strips of spins.

Finally we must consider our expression for . Prom
IM

equation (3,33), we see that cp has the form
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<1 f |<+fl+t O / ' ' * * \
1+ Z (?'("■'" +ff;+> -+f; £*;+i)

+ * ft-'} ■+ i ({<■<?■

+^'lie-eZ *&.,?:■'+<«:<!>*,w ;„£) * *'Z(t>i**+S*e<)
,/ / . C '<? / ' ' /■*"*■ ' * f V

4
1 2 * AAv, 4 Av,A -* A ^ ^Av. A )

+fap;+fr+'f;+p?{k!+)+ (3,36)

It is easy to see that this expression has the form of

the partition function for a crystal consisting of four

linear chains of spins each containing m spins.

For the last time we use the probability treatment to

reduce the problem, considering the chains to have first

of all m-1 spins and then m spins. This final reduction

leads us to the following expression for the elements of

a matrix.

4 + '£±f ■* f 'Sf -)
la1''* * '* ' * \

+ '■< -h jiA 4 4-

,/ ' * '* \ K UP'/ .. ' , ' '* * * \
4 /<C A +J

,,,"{'* ' * ' * '* ) C-tfc-f Qy i r* ^."7*,L + ~zr~ <AA)/ (3,57)



(K + A + B)/4

(K + A)/2 = (K + F)/2

(K'+ Af)/2 = (K*+ B')/2
KT

K"

(C + B + G)/4
*

Figure 10.
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The matrix represented by this expression is of order

16 X 16 and its largest eigenvalue df will "be the par¬

tition function per spin of our 4 - chain system of spins.

Figure 10 shov/s the reduction of the four linear chains

of spins leading to eouation (3,37). This sketch shows

also the various interactions upon which equation (3,37)
is "based. This is of particular interest since, from the

sketch, we see that due to the symmetry of the system, we

can put the interaction corresponding to A equal to that

corresponding to F and that corresponding to A* equal to

that corresponding to E' - thus reducing the number of our

unknown parameters.

It should be noted also that, in going from the simple

cubic lattice and the corresponding matrices as set up in

the foregoing theory, to say, the face centred lattice,

although in putting nearest and third nearest neighbour

interactions equal to zero, we get two superposed face cen¬

tred lattices in place of the original simple cubic one,

our equations need no further modification. We do not, for

instance, have to take the souare root of our various sub¬

sidiary partition functions, as might at first seem to be

the case. This is of course due to the fact that the two

face centred lattices are entirely independent of each

other and to the fact that our expressions for the matrix

elements lead to partition functions per spin for the



particular lattice types under consideration.

We see then, that the original partition function for

which we set up our eouation including the three orders of

interaction, can "be obtained approximately as , the

partition function per spin in the form

-\ X if /j? - l)A" I If (3,38)

where , 1%, ^ , and j" are partition functions per spin
for various subsidiary lattices. It remains now to write

out from the expressions which we have derived for their

elements, the matrices corresponding to the significant

cmantities in equation (3,38).

\ 4. Below the Curie Temperature.

Our matrices have the following general expressions

for their elements:

+ Q/z IP1" ^ -•) ] (5,25)

from which we want the largest eigenvalue •

Q <?*** £*-t- +?-±-p)
+ ) (3,84)

from which we want the largest eigenvalue ^ ^ .
J
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+ n' (&~<?~- +pip^-') + \( +^~)J (3,35)
from which we want the largest eigenvalue ^ .

fj ft + £ , / ' / * / * ^ \
^-xyf ^ ^ (p^p M - / y ^/Ww -/ "4^ iv. «.-* -/- y^iv. u u* - < y

■/• —-~~y (•** c *" P iv. .v, (v, iw ^
IZ ' -4-£>'/'' * * '/» * ,

•/- — (p! **■p u~ -> + p n~p ». -/ -£p^-rpi^ -f- p - tp ^ -f A^<i~pu*-/
' /<*■+■ / * * \ ,11/1 * ! Mf ,+- * .

+p*-.p^1~p~ pi»., +&~-p**.)**- +p^Pu>~,)
. , / *■ /* \ c ^e, + Or / ! r + *x_]

j K ^p^ p^J ■+ —£— (f»~ ■*-("** +fx* -+p*~ ) J ( : ,37)

from which we want the largest eigenvalue 9^La* .

These are respectively 2X2, 4x4, 4x4, and 16 X 16

matrices .

Let us first of all consider the largest matrix. Its

array written as an eigenvalue equation (equation (3,39) )

is shown on the following page. Prom inspection of the

array, we see that it is indeed highly symmetrical. This

we would expect of course, from our method of treatment

of the problem. Incidentally, the symmetry of the array

was of great assistance during the tedious process of

writing out the 256 elements.

A more important feature of this symmetry lies in the
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possibility of "being a"ble to reduce the order of the det¬

erminant since the 16 X 16 determinant is far too large to

handle. A point to "be considered in this connection is

the fact that if, after reducing the matrix, its order is

still high - say order 4 or greater - then it v/ill "be of

importance to try to preserve the shape of the array to

the extent of keeping the cf's on the principal diagonal.

We shall then "be able to multiply out using the spur method

i.e. directly in powers of <p . In other words, we wont to
make our reducing operations symmetrical.

In carrying out the reduction, we found that the follow¬

ing series of operations were successful.

Perrnutate first the rows and then the columns in the order:

1, 16, 7, 10, 2, 5, 5, 9, 0, 12, 14, 15, 4, 6, 11, 13.

Add columns as:

4+3, 6+5, 8+7, 10+9, 12 + 11, 16 + 13, 15 + 14.

Subtract rows as:

4 — 3, 6 - 5, 8 - 7, 10 - 9, 12 - 11, ^6 - 13, 15 - 14.

Add columns as:

7+5, 8+6, 11+9, 12+10, 14 + 13, 15 + 16.

Subtract rows as:

7 - 5, 6 - 6, 11 - 9, 12 - 10, 14 - 13, l£ - 16.

Permutate first the columns and then the rows in the order:

1, 2, 3, 5, 9, 13, 4, 8, 12, 6, 10, 15, 7, 11, 16, 14.

in which subtractions are made from the underlined rows

and additions are made to the underlined columns.
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The result of these operations is shown on page 74.

Martin ana ter Haar have shown that the largest eigen¬

value f in a 4 * 4 matrix eigenvalue problem is contained

in a 2 x 2 determinant of the form

| a, k - b,- $«.* f | 0 (3,41)

where 6ik is the Fronecker delta, provided the original
4 x 4 matrix has certain transformation properties among

its rows and columns. For a 16 X 16 matrix it is much more

difficult to show that the determinant having the largest

eigenvalue is of a form analogous to (3,41), but we may

take it that the determinant in question in our case, is

that one of order 6x6 contained in the top left hand

corner of (3,40), i.e.

1
%/ii

-l -»■

y M a L, el y W
/ -J^ 4 H 4-

**yv* uVS- 4/. 1-u a / J*1 *'W if M M iy

< 4 -f/x'V w) Z(o|ifW.Jij m)

* s*
-i -i -i .r .i

H -tol Hi)
ii biw+M1 -«• -t -T

f + "2d "*M •) ♦f'w)
. _ \ -< *i
•i y « k *•) .My .t '

-t ./ -X
1 +2^ +M J. ( Hi) +yV)

1 1 2 1 +
H'V+mV*
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This is equation (3,42).
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For the determinant corresponding: to equation (5,24), we

find

. f -4

M » Y £<*, • "f p W ■- </ PliA " -4

V -

^ -
a'1

- 1
a

•' "Xn -1
apa f

I
-

V- *3. »• p a
> -• A

a f a a%-'

7
f & a £ a P cx a 'pa' -■$ a j-'
1

-2
a p a' (j a-' a~' <xpa'\ -i%

- equation (5,45).

And for that corresponding: to (3,35)

* Y <* - -Y

H* '■ 4 fP L*t 1 '4 / ^ M* f "*/

< A, « aec'^g -P a'' a *!
— ' /"^ — /

a e

J
A.

T V
- } . ap sea a~e~'a-'Z *s~'

*

a£j
./ ,2

a e a a e a a 5"'
J 7 v

~ i :
=*_

i'1
ae A p,

_ /

a a"' <* -

aeap

- equation (3,44).
A A-tP A * »

In these equations, e = a: e * =p:e = e:e = a

TV+n. Ci
e 5 = q: e = g.
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For the determinant corresponding to (6,75), we have

AS- \ t 1

f' AS'1- i

With these last four emotions to hand, we are now in a

position to solve any of the problems listed at the begin¬

ning of this chapter; as they stand, they relate to the

simple cubic lattice with three orders of interaction. In

order to effect a solution of any particular problem, we

shall need other emotions of course, since in general, we

shall have more unknowns than we hove eouations . These

other equations con be obtained from our maximisation con¬

ditions - this point will be dealt with later when it arises.

Since we cannot hope to find closed solutions of our

ecruations, we shall look for series expansions for our

various partition functions. Obviously, if our models have

any physical significance, they should show a transition

temperature so we shell follow the usual procedure and

attempt to find series expansions for our various physical

quantities valid above and below the Curie temperature.

In the rest of the work, we shall consider the case of

zero magnetic field - that is, H, and therefore also C,

we put equal to zero. A consequence of this (see the dis¬

cussion of the square net of spins) is that at high temp-
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eratures, B, Q, and G will all be sero for A to be a

maximum. At low temperatures, these quantities will be

aero when A has a minimum value and this has no physical

significance.

Thus we see that our equations as given by the determin¬

ants (3,42) (3,45) apply as they stand, to the

simple cubic ferromagnet in the region below the Curie

temperature if C = 0. Putting C = 0 means simply that z is

ecrual to instead of

Above the Curie point however, we have C = B=Q=G=0,

so that in our determinants, q=g=z=s = l, and as a

consequence, we can reduce the determinants still further.

£ 5 Above the Curie Temperature.

In the 6X6 determinant - eountion (3,42) - we may put

z - 1 and perform the following operations:

Add column 2 to column 1 and column 5 to column 4

Subtract row 1 from row 2 and row 4 from row 5.

Permutate rows and columns in the order 1, 3, 4, G, 2, 5.

This effectively reduces our determinant to order 4 X 4 on

making use of the discussion attendant on equation (3,41).

Y.'e find the determinant shown at the top of the following

page
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t X X Jl-X •x CP
f y - V 5-

* z3
1 Lj(elyH. 4-

1 ».l v -1-r 4/
«"/S

U

ol y H + <i M"' u'oj y' K

"Lai

U" y *- •)"' M )

1 i/CjM ' + l"'w)
.1. X X -1 <»

M 4 4M y 4-1-

- o

- equation (3,40.

In the 4X4 determinants - equations (-3,43) and (3,44),
we can put q « g = 1 and perform the operations:

Subtract column 3 from column 3 and column 4 from column 1.

Add row 2 to row 3 and row 1 to row 4.

This reduces these determinants to

- O

(3,47)
CL(l>~'b''+f>b) - 1% a-'

44. <x( p\> + p l>) -2^

and

a (£ fe" h e b) - io a"'

4 ctfcb-'+e-W-tO

where we have put a' = b.

Incidentally, the determinants (3,43) and (3,4-4) can "be
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reduced to order 3 X 3 as they stand.

In the C X 7. determinant, we put s * 1 and. ret

' O

(3,49)
f-'

*-ir ,

Thus, for our general simple cubic cose, we have the four

eouations (3,42), (3,43), (3,44), and (3,45) referring to

the low temperature region for our model and, for the high,

temperature region, we have the corresponding equations

(3,46), (3,47), (3,48), and (3,49). We turn now to the

question of the specific problems we started out to invest¬

igate.
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£ 1 Body Centred Cubic Ferromagnet at High Temperatures.
In order to treat this problem, we put our first and

second order interaction energies equal to zero; that is,

we put

a = p = e = a' (or b) = y= x= r = a= 3 = l. (4,1)

This transforms our simple cubic lattice into four super¬

imposed body centred lattices which are quite independent

of each other. The third order Interactions of the simple

cubic lattice become the first order interactions of the

body centred cubic lattices. For the high temperature reg¬

ion, we apply equation (4,1) to the equations (3,46),

(3,47), (3,48), and (3,49).
In (3,46), we find that the determinant can be further

reduced by the operations:

Add column 1 to column 2 and subtract row 2 from row 1.

This reduces our determinant to order 3X3. We then

subtract row 1 from row 3 and add column 3 to column 1.

We are left with the following determinant of order 2X2.

H*+R~ + £> - Cp <i(m w""')

ii m'+ h +fc - <p
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which has for its largest root or eigenvalue

efw^ = H M"x 4 q M + om"' + t,

f H+i)1* , u ''t ^ ( K \ 4
(4,2)

where since K = K' « o, we have put K* * = K for convenience.

Vv'e see that we have no undetermined parameters left in this

equation.

Now consider the equations (3,47) and (3,48). Using the

same conditions as "before, we find that these equations

reduce straightaway to

^=10^4 (4,3)

Similarly, eouation (3,49) reduces to

V =i (4,4)

Thus, for the partition function per spin of the body

centred cubic ferromagnet at high temperatures, we have

on this treatment,

v *. 1 (eW .A" /W2P I b (4,5)
* 2 M K.

We shall see in the next chapter, that this result is

of considerable interest when we compare it to analogous

results derived on other approximate methods. For the

present, however, it is sufficient to point out that ob¬

viously the body centred cose is a limiting case of our

approach since all our parameters go out. The nuestion of

maximisation, which is fundamental to the method, does



not prise in this problem. ,r'e might expect then, that the

result expressed "by eouetion (4,5) will not "be a particular

ly good one - or at least, that it will not he as good as

other results derived using our method.

Two other points of interest here are the following.

First of all, we see that we have found our result in a

closed form; however, in view of the above considerations,

this is not of much significance or importance. Tt might

in fact be said to be due to the crudity of our approxim¬

ations in this case.

The other noint is seen if we let the temperature go to

infinity - i.e. K.—> 0. TTnder these cicumstances we find

our limit for to be /\ = 2. This has been pointed out

by Kramers and Wannior and is general for these problems.

2 Body Centred Cubic Ferromagnet at Low Temperatures.

For this part of the problem, we use the body centred

cubic substitutions - (4,1) - in the determinants! equat¬

ions (3,42), (3,43), (3,44), and (3,45). This gives

i- 1 V
'O

3-^ \ \ V

I I r' I- «o ( V1

1 i I 1 - oO

°L 1 i 3~{-i$ 3 1 1 er-<o
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» .1
H 1 4 W U H~' 4

H*V t r

i-

X 4 M-' U M U

I /
t

^

M 4 M _ a 1 (H + H"1) 2(Htw) 4

M 1
H +- H"' T (P

3 4 M -
-*L

34- H X (W + W*')

M-' M H"' ■» K "5 + 3 ~ l. C M'+H)

1 A I(H + «*C' ) 2 (M* '+ M) H 4

and

1

1 s-'-y

In which all the symbols refer to 'magnetic' terms except
Otf ftw which is eOXY - our original third order interaction

term.

In the determinants in and , we carry out the

operations;

Add column 2 to column 1 and column 4 to column 3.

Subtract row 1 from row 2 and row 3 from row 4. This res¬

ults in determinants of the form

i - r-
, 3"' ^1 4- _

3 ^
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having maximum eigenvalues
^ - l + °L~' + 1 (4,6)

uj -- Z + 1 + 55 (4,7)

Tie have also , ,

\ - S + s' (4,8)
as our maximum eigenvalue of the \ determinant.

For the determinant In j , "by subtracting row 3 from

row 6 and adding column 6 to column 5, we can reduce to

order 5X5:

M1 - <p lo t, M> ^ U M'Vr

M"V< - ^ fa 2"1

?■" * lil( M'V w) 11"T( W 4 M*')

Ml" M'VU ^ ( M 4 M~' ^ Vl( i 4 M'1)

u
w * 1 ( M ♦ ** (l ■< *~%) V*( *4 W*) '

We can expand this "by the spur method, which in this case

Involves the evaluation of 86 subsidiary determinants.

On doing so, we find

\



C{> 4'_ V>-L') 4 (1 + M1) M-* +1, 3
4 Cf3 [h'-^H^^ - M (JSVVVM^H

4 M'"( Ml-«.) t 2 M **-» t

- <fx ("h"1-IV 1 (*t+>~1') + w~7n%r) + k~l4(xnt'-f <>»r+l) (?1-#
4 hU,) (ZU^+L H"1* X) ^

4q>[M-.74[(4*"(tV^-<,)4U"<'(3^Mr)(%V) + M"'?(H''+ - *"(H"1-!) '° , Q (4,9)
It is easy to see that this equation has the form

°{ r_ p, cfv4 ac cp3 - 6 3 c cf>r + <lLP - G '° = o (4,10)
where B = M"' ( Ma-0

C = contents of the larger square bracket in the

coefficient of <f3 with a factor m"' taken out.

A = coefficient of cp^ .

(4,10) has a factor cp - f3>x as may easily he verified, and
we find that (4,9) reduces for our purposes to

-cf3 f 4 4 6 ^

+ cp,(( 4 w"YH (*x'*-r)

- cp(V'(v,h,)J vvi,) + (4,11)
Our object now is to attempt to solve equations (4,6),

(4,7), (4,8), and (4,11) simultaneously in such a way as
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to obtain it , , jf j and in terms of m . "Before
attempting this, however, we first write our equations in

terms of the actual variables we wish to work with. Let

us take as our variables, = &("&+**)/%, 3 = e°. Instead

of g = eG take and instead of q = 0®+°- take sb.

Doing this, equations (4,8) and (4,11) remain unaltered

while, instead of (4,6) and (4,7). we have

1/- - s b~' - z - o (4,12)

*H-< o (4'13)U) - ? fe - * b - Z- - O

§ 3. In order to solve our equations, we first of all used
a rather simple method. This consisted in trying to pick

out from the equations, the important terms in each, taking

the correct ratios of the terms and then trying to maximise

the result by inspection. To make this clearer, we have as

our most important terms in each of our equations:

or

19> - sAp - c> 1% ~

•o ,

H - «

To find "X , we first of all take : M ^ - 7^
This should, according to equation (3,33), be maximised

with respect to G or z^b"-,
We have also vy - ^^ » b which according to equation
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(3,22) should he maximised with respect to Q or s.

X
Finally, we have X - to "be maximised with respect

to B or b - equation (3,15). Taking this ratio, we get

Ov - for our first approximation to a solution for "A.

We have not yet had to use the maximisation conditions to

which we have referred.

For our next approximation, we substitute into equation

(4,11), the expression

Cp - M1*" ( I + <f,)

and, after cancelling a number of terms, find, as the most
_i _r

important term for , the expression 4 w * . The

corresponding second terms for to, t and 'f are obvious

and we have eventually

cp s ( 1 4 ^

10 irH)

i/.Sb ( ; +

jr - s (i + «_1)
For » we have ^ ) which

must be maximised with respect to z^b-l. This equation can

be written

. [ i*

which maximises immediately to \ ' * bf » -< M ^ ^
with the condition (4,14)
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For , we have /to "be maximised, with respect to s.

We find

b [ i + a k~' - S"T k, [ i 4 b~x- ( b"'- s"')T ^
maximising to ^ = b[i*b 1

with the condition W = s (4,15)
"V

Finally "X ' A /^ to "be maximised with respect to "b.

The values above, give ~X

- ( wa t*~ tr' )T ^

- 9
which maximises to i -» n , with the condition

b - m "■ (4,16)

Using eauations (4,14), (4,15), (4,16), we can find first

approximations for our parameters b, z, s, in terms of m .

These, when substituted into our main equations, allow us

to find "X as being

- mt ( • + (4,17)

At this point, we must mention that as a check on our

eoproximate series for "X calculated by any approximate
1 A

method, v/e have exact series calculated by Trefftz ).

We shall discuss Trefftz's series later; but, for the

present, we shall merely mention that the series (4,17)

does not agree with that given by Trefftz for the body

centred lattice at low temperatures. Trefftz gives
-t-o

instead of 4 w .
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Tt would seem then, that either our method foils at the

term in u* °or, as is Tone likely, our approximations

for our maximisation variables are Inadequate at this

point. We should have to assume series for "b, s, and %

and attempt to find the •uflknown coefficients at each stage

"by maximisation in order to carry this method further. We

decided instead, to use a slightly more sophisticated

method.

§ 4 Cur four main equations have the form

I, (<?, H, 7^) = O

fx ( O

(4,18)

f (lt,S. M - o

/I (u>, b) - O

These have seven unknowns cp » ^ » 2co, z1, s , b » for which
we should like to develop series in negative powers of m. .

To effect a solution, we require other three emiations.

These we obtain from our maximisation conditions as follows.

We have X r ^> co which has to he maximised "by our

choice of x. In other words, we must have

OJ> _JI- _ cp -— = o
si 2>2
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Similarly, \j> - roust "be a maximum as a result of
correct choice of s, which gives

I, ->j£ .** ii ,DJ T> 5 >5

0(. c/> V
Finally, A* must he maximised with respect

to b» This condition yields

cP u>tJ?]f ^Jp — cp f'co ~ f 1% 2-^ - o

or

w ^ w , o

since J" end ^ are no^ explicit functions of h.
It is more convenient to write these equations in terms

of the /'s j and we find

„ ->M ■>£ 3/..„9^

ss

D_£u

O.IS)

^ C^A-3 " ^ u _ ^ aj-3 al- » z o~

-3 v?

The two sets of equations, (4,18) and (4,19) should he

sufficient to enable us to solve the problem. In order to

do so, we assume the following series



on
- J. •

CO

cp - ( i + cp.'K )

k. u"f (.-H./ M-1') w, M?f ( ' +»>.• W"'>
r* » I ' * '

. . «' [ ( . . »i ^ - A-' £ ' ' **•*""> (4'20)
f'z f

rSu'[(^,-0 J -41"},^
,*i, < - *

For convenience, we shall collect together our equations.

F inenvaluc '■■:or a tlonr.

cp* - 4 (A.)*,'..].
4 M3 (^' iw"-t '<.^2)7-^ 4 4 *»] 4 ( M-)*- o , .J (4,11)

lf- S* - ° (4(8)

1% - ($y)+-Z--C> (4,12)

U3 - C2"h)+-Z =° (4,13)

Waxinioation Feuations (from eouations (4,19))

«o cp3 [i*WX2 - 41 C*\z) it J 4-tp'W-JTfckS2 -4TU k? ^ 4 Zk'(KVw4ie,^l ]
+ j - 4f | fc<p3-3Cp|V*t 4(Ma4*}?4 + C J

4 ICpW [k?i4 4 wM 4H«V(6) 4 k"3 ( z k 41 nq+l4Ml+j) |
_ + Cm1+^?+ 4. c.^1 ^(V*bXj -o (4,21)
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y[sbj_ -z/[s]_ -O (4,22)

u>j>b3_ + ~~° (4,23)

In which, to facilitate calculation, we have multiplied

throughout each equation "by the unknown variable with

respect to which we have differentiated, and where we have

used the substitution p± = p ± p"-®- (for any p).

On making use of the series assumed in (4,20), in these

eojuations, we eventually find, after lengthy and tedious

calculation, the following coefficients for the series

S 5- H * ( I- k^'U ? H~'2 )

2 2 = Hfc ( I - M-,z)

tp = H '*"[ t + Cp*H + * + CPfc M"'r+ +

4- Cp^ M"'* + (.cp* W'2°4- ( Cf>*+ i,q7) M-TT+ (<p£+-^

iO M *[' + ►•"'VCwC+OM'** + (u»J-n)H~'fc -f

+tcU* M-rC> 4- ( u> * + 8> K*2"1- +- ( to^ - 8 ) M'Z" ]

<2* M8[ ' f )W"'V

+ <ltIO h'Z°-h ( 7^,,*+ s)m"X2 -f ( ^~lUJ



i-y*M-'V < y,"o- 5,.-" >o«"" wy," - 57 - + (y,T- ss +iOm'" "J
We shall refer to these equations as equations (4,24).

In these series, we have only taken those for b, s, and

z as far as was necessary to obtain the correct coeffic-
-M

lent a of m in our other series. The starred terms in

the elements of the last four series refer to a first

approximation solution. That is, if we had approximated

our eigenvalue equations by taking, in each case, only the

first two important terms as we did in § 3, then our sol¬
ution would have contained only the starred terms. In

calculating A , the starred terms disappear since at each

stage cfy 4 Y -J - - o

Calculating A from our series, we find

, r .« _ 1 u _/(, .10 .11 1
^ * M I -+ M 4 4M -/fM -fc£)M +UH J (4,25)

which deviates from the series given by Trefftz for the

partition function ner spin of the body centred cubic

ferromagnet at low temoeratures, in the last term given.

As we shall see, this is a much better result than the

corresponding high, temperature series which we derived

earlier for the same model. The improvement is, hov/ever,

not surprising since, in this nart of the work, we have

had three unknown rarameters to work with, whereas before
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we had none. It is worth mentioning also that, despite

the existence of these three maximisation parameters, we

must still look upon equation (4,25) as representing,

along with eouation (4,5), a limiting case of the varia¬

tional method. These parameters are necessary to distin¬

guish "between the two temperature regions in our model,

and it is the absence of the other type of unknown para¬

meter, that associated with the lattice interaction

energies, which indicates that the present case is a limit¬

ing one. We now turn to the other case we wish to consider,

that of the face centred cubic lattice v/ith first order

interactions between the spins.

§ 5 Pace Centred Cubic Ferromagnet at High Temperatures

For the equations appropriate to this problem, we

put our first order and third order interactions equal to

zero. That is, we put

a=e=p=y=x=r=K =1 (4,26)
in our main enuations. This transforms our simple cubic

lattice into two superimposed face certred lattices which

are independent of each other. The second order interact¬

ions of the original simple cubic lattice have become the

first order interactions of the face centred lattices.

Applying this to eouations (3,46), (3,47), (3,48), and

(3,49), we get equations appropriate to the region above
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the Curie temperature.

Our modification of enuation (3,46) can now "be reduced

by the following operations on its rows and columns:

Add column 1 to column 2 and subtract row 2 from row 1.

This gives a 3 v 3 determinant which multiplies out to

give

Cp-3 - <?*- [/Sv(w * + 1 (°i +c(-'+x) +C+/3'X ]
ft lep [ /3l (« -m-"V +T-C*1 + t/l] (oi +oc-'-a)

- <3 ( ei + - 2) 3 = O

(4,27)
This has the form

Z? 3 - f) cpz + z ft & cf> -(is)3 --O (4,28)
where the meanings of A and B are obvious.

A factor of (4,28) is which, when

taken out of (4,27), leaves

qf x- <p[k(kb ? + 4A"] +4 L 1°~'k '-*] =0 (4,29)

on substituting for a and p. We have put es^' = p" = k.

We shall refer to this equation as

The equations in u> and 4^ , i.e. (3,47) and (3,48),

after substitution of the condition (4,26), reduce to one

equation of the form

-2 U) ( lc ft b ') ft ( lo +■ lo ') Z- u - O

which has as its largest root



96.

a x b"' + b + ^ » 7$ (4,30)

This we shall call .

Finally, we find that the equation (3,49) reduces to

} -Z (4,31)
For 'A we now shall have

^ If^ (4,33)

In equations (4,29), (4,30), and (4,32), we have three

equations for the four unknown quantities w , and

"X • A fourth equation we obtain from the maximisation

condition (3,15) i.e. ^ « "X /

to "be maximised with respect to A' or b.

From (4,32), we see that this is equivalent to the condition

9 u? cp p •>2 y ~ " or, in terms of the A 5 ,

9 /"a = O
2C? >^ ** *" (4,33)

Carrying out the differentiations and substituting into

this equation, we find

i (tr'-b) fa * & + k~'i>'x + % +4/< 5 7
- uj/" %cp(k~'y~\ k* b J+(F /6 bk 4- tL b k - $ b 2 k )J 1A (4,34)

In which we have multiplied through by b.

We can now solve equations (4,29), (4,30), (4,32), and
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(4,54) for our unknown quantities and develop power series

for them in terms of K'. We assume the series

k = e2K* = 1 + 2K + 2K2 + 4/3K3 + 2/3K4 + ....

^ =*3 (>-*- X, b ,■ K L )
i

^;Jl( ,+l ^>. «■'')
(

q . §(i *£<?<■ «■')
t

where since the first order interaction energies are zero,

we have put Kf = K.

Solving "by successive approximation, we find for our

series

b. / 4 IK 4,0*'+ ^
33 /r 1 '

u. J, 4 «l* 9"* -t 4 111^2^4 l£lUfKnHL 3 b? is~ J

d>. /t[l->S'K%24*'3 + IbkOH* + 6>L7*3Kt'+ 71
' 7 /of J

On substituting into (4,32), we find for the partition

function per spin for the face centred cubic lattice at

high temperatures, the series

7\ * *[ > + $><U ***+ 34A:% igoK^ ^11^21^1 (4 36)
t / o £~ -J

In deriving this series, we have had one maximisation

variable to vary, which represents an improvement upon
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the conditions under which the high temperature partition

function for the "body centrdd cubic lattice was derived.

We might expect then, that the approximation involved in

equation (4,36) is better than that in equation (4,5).
This is borne out, as we shall see, by a comparison of both

eouations with the corresponding series derived by Trefftz.

£ 6. Pace Centred Cubic Ferromagnet at Low Temperatures.
On making the substitutions (4,26) into the general

low temperature equations, we find the following modific¬

ations of the various determinants

*y UJL 2- A"

-f */sx Li cL 2 y~z

i u +A) 21 2 (dA) i'1

(°i +d~')/ A(cL4.<) -Cf> zr2[Ai) i*'1

/) 2*rU-n) - y yl

yr" * i uA y2y
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b r /
- o

t>2 - / / b' 1''

b -to b 1 b 1"'

* b b -to 3-' a b b 7^ aH

1 1
-I
-<o y'l 4

s-5r i

i

In the determinants in u? and ^ , "by subtracting col¬

umn 3 from column 2 and adding row 2 to row 3, we can

reduce to order 3X3 and on multiplying out, we find

it 3-2# [b(<l + l-')+b + ] 4 + 4bT-b-']
_ [bt bX-3> - b"'(b*T_3>] = o (4,37)

U) *- to* [b ( 4 b4b_,3 + co[ ( y?s",)(bf|)4bl-b-1]
- [b ( b1-"*} - b"' ( b_X-3> J , 0 (4,38)

For the 6X6 determinant in dj7 , there is no obvious

method of effecting a reduction of the order and so the

spur method must be used to multiply it out as it stands.

This is a rather tedious procedure involving the evaluat¬

ion of 57 subsidiary determinants. Since the equation is
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so lengthy, we shall defer writing it out until page 109

where we shall collect together all the equations necessary

to solve this part of the problem. For the sake of contin¬

uity, however, we shall refer to this equation as (4,39) -
it is a function of ^ , k, b, and zfi.
Before trying to solve our equations, we must again con¬

sider our variables. In order to save work, we shall leave

equation (4,39) as it stands, and instead of a. and g in

equations (4,37) and (4,38), take respectively cs and

z4^1, where c = eR. Our equations then become

T#'1 [b ( CS + c"' s"' > + b -hb~' J + Z# [(CS +c~V'Kb-'} J
- [b(bl-3) - b~' ( b'5-3^1 - o (4,40)

to3- u>7 C b ( -+ b + b"'3 -4- iCkt-!) +bx- b"1 J
- [ b( b1--#-b~'(b'r-zy -o (4,41)

and . _.

^ _ s " s - O (4,42)

§7. As in the case of the body centred lattice, we first
of all attempted to solve our four eigenvalue equations

without deriving maximisation equations. This was in order

to find the multiplying factors of our various series to

be derived for our unknown quantities (S in number, if we

include A ) and in order to see how far a first approx¬

imation for our maximisation variables would carry us.

The method used was that of paragraph 3 of this chapter
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although, in the present case, it was more difficult to

apply in view of (a) the complexity of the equation in

and (h) the fact that the most important terms in the

equations in i*-> and after the first, (bcs and "bc^z^
respectively) are not immediately obvious. (On substituting

expressions of the form = k ^ ) into (4, 40)
and (4,41) it is found that a number of terms cancel out.)

Instead of describing this procedure, which in any case

is adequately described in § 5, it is of more interest to
mention another method of finding the successive approxi¬

mations for and jr • This method is worth out¬

lining, since it refers back to the more physical side of

the problem.

Going back to the stage in the development of the problem

i.e. in the development of our main equations, where we

had reduced our original lattice to subsidiary ones involv¬

ing strips of spins, we have (equations (3,25) and (3,34))

^ % (■£* '£*<'■+' )J

to1* -- £ t+p ^f >'•*■>) ■*- £ I

in which we have put first order interactions equal to

zero and where we have, in (3,34), put Ef = A'.(see page

68).

These are partition functions of two linear chains of
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spins each divided so as to form two independent interpen¬

etrating lattices as shown in figure 11. (The two lattices

are shown respectively a3 dots and circles.)

We have also, from the equation preceding (3,25)

V* - £ I & £ s4' 1
which is the partition function of a chain of spins looked

upon as "being two superposed chains of the form of those

in figure 12 - with nearest neighbour interactions again

equal to zero.

Finally, from equation (3,36), we have

cf* 4- ,

'
/ ♦ * it,i % / c" / ' "* ' * J , /$+ 0" <r* / ' *

+ -h#;*?;) + * 2<<*'^' "VA' + ■' V*'"'V

- the partition function of four strips of spins, with

first and third order interactions enual to zero - figure

13 shows this.

These four equations have the form of series; the summ¬

ations over the whole of the right hahd sides of the equat¬

ions indicating that each term of each series arises by

considering a unique number of spins in a particular

arrangement, to be'wrongly' orientated with respect to the

orientation at absolute zero. In fact, by considering the

successive stages in the heating up of the various one

dimensional crystals of figures 11 to 13, from the point
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of view of spin orientation, we can "build up their various

partition functions.

At the absolute zero of temperature,for instance, all

our spins v/ill "be parallel to each other; this state of

the crystals will give us our first terms in the series

for the partition functions. These are, after talcing the

m.th root in each case,

(6+J * bcs

^ a - s

- <i«f> £ U(x'+<*') -+ n:'4 /s+er)7 -• k3 h 2^

These are the same expressions that we find hy talcing

first approximations from the eigenvalue equations for ,

v , 5f an<3- ^ in § 6 as we did in § 3. Taking the
appropriate ratios, we find, as our first approximation

for \ the value

a - 43

For our second approximation we consider one spin in

each crystal to "be antiparallel to the general spin dir¬

ection. However, since in each crystal we have two indep¬

endent lattices, we must consider one spin from each

lattice reversed. Doing this, we find
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' JL+pC'1 ®) «~3 4 1 <** e#f[(2uA-l,) F>' 4 ^2 IM-Z) ~J
IV "A ' + Cr M J + l fi •*.-<,) « V hu,-2) "]

^ *** s -t-1* g v»A G& + *<*> <5* (. '** " 2- )

^ ' Cy p £(,<c '+ ' ) i< i** + "L K 7 4 ( (3 4- Gd u» 1

4 U^t^pV^— 7 «•"-?) 4 K (?m -T-} + -1) ]
or, taking the root

4^ - b c s ( f -f 4 b 2 c"*' * ' )

„ . nV('<^VO
If - & o S_I^
cp -

Again, toy using the method of ^ 3, we should find these
equations as second approximations from our eigenvalue

equations.

We can now take X * ^/co and toy completing the square,

maximise the resulting expression. This gives

oc - c-2)

with the condition z2 = k®c (compare (4,14)) (4,43)

Similarly, ^/If yields

\J/ = be. ( i + b'4c~2)
with the condition s = to2c (compare (4,15)) (4,44)
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Finally, "A * * /^ - k3 L 1 - '*]
and c = k6b""s (compare (4,16)) (4,45)

The conditions (4,43) - (4,45) unfortunately are not

sufficient to enable us to find first approximations for

"b, c and 7, in terms of k and so we must carry our method

a stage further.

Using either the method of this paragraph and consider¬

ing two adjacent spins inverted in each of our subsidiary

lattices, or the method of § 3, we find as our next app¬

roximations for our subsidiary partition functions:

1# ' b cs C i + ly1 c~' s~' + i isr c~T s"a)

to

V - S ( I + S

<p * t3 ^(i + uury y~\-x+ k-r b*3?-*)

Proceeding as before, we find

1 s ( ! + (( fc' b ^ -TVjCI ^

"V); c y C ( I -J- 1- b"1 c"' s_% - 5'1" .+ x t,-a c1- s.-a >

Taking the ratio of "X to ^ and using the conditions

(4,43) - (4,45), we find

'"X c 1 •*-

, b-ru( 2, tx - T-C k-kVO^
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On maximising this equation with respect to b, we see

that this approximation for gives

^ * \t% £ ' + k''1" + L,

with the additional condition k = b (4,46)

The conditions (4,45) - (4,46) enable us to find first

approximations for our maximisation variables in terms of

k; these will be the multiplying factors of the series for

these variables which we shall eventually develop.

Using these first approximations in our eigenvalue equat¬

ions, we find for ~\ the series

which deviates from the exact series in the last term.

Trefftz gives 42 instead of 12 as the coefficient of k""52.
In order to find out whether the failure of our series

is due to our approximations for b, cf and z, we shall use

our maximisation conditions to obtain other four equations

which, in conjunction with our eigenvalue equations, will

enable us to solve our problem.

§8 We can write our eigenvalue equations as

/ (cf, ~-o ,c,s) = o

( u>, b, 1. O o ( y, s) = o
(4,47)
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Since "X - mast "be maximised with respect to s, we

have the condition co - cp ^ 0
~3i !> 5

Similarly, a-pr ^/lf> must "be maximised with respect to s

giving Ip _ i# 2-4 _ 0} ■? S PS,

Finally, the variables c end b mist be chosen so as to

make TV a maximum. Thus we have

. -J 2i£u> * -f - O
-7> C PC.

end

_ CP-^~1±± -CpLoDl* ^

irb Y ^ =°

The other terms go out in these last two equations since

cf is not an explicit function of c and y is not a
function of b or c.

It is more convenient to write our maximisation equations

in terms of the £ s and we find, on making the approp¬

riate substitutions

u>

* /-
_ ~d_U "9/,

-3 ^ 7 cp ®

V ^ - 7-^ *b u 1,/z aft

-*y pT PT*
^ 9/a ^ ^_/3 2^3

!> c 1>r* -7>c -c,^ (4,40)

2^' ^2-
_ d? U> ^A 2^-' ^-3 - o

p-u? -7>v^ ^ >fe, ~dcp ~dit ' TKfe. 3^1 "3W
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The two cots of equations, (4,47) and (4,48), are suff¬

icient in principle, to allow us to find series for our

-1
variables in terms of k . We assume series of the form

b * k ^ + 1 ) <f ' k ( 1 f, k 1 )
( *

C , ft*" Xj('+ C1 k 1 )

s ' fe'i C' + S.-fc''"') ■* (4,49)
* I

i -VH> jr
' i

By successive approximation into our two sets of equations,

we can find the various coefficients of these series. We

shall now write out the equations.

Eigenvalue Enuatlons:

(In these equations and in the following ones, we again

use the notation p = p ± p~^ ).

^ -s+ = 0 (4,42)

- u? 'H- u? 2[h(s^c_::i- )++b+]- (h?i-l)(x^c~1)++"b2]
+ [b|3-3bj = 0 (4,41)

-i#3+z#s[b(cs)++b+]-z#[("bs-l)( cs)++b^]
+[b®-3b_] = 0 (4,40)
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y 8fk3b2z4+2(kb+l)z|+k(k2b2)++4k'~1]
+ y 41bk-1} fOkVz5+ [4(Kb+l)+k2(Kb+1) (k2b2+l) 14+ [ 2k"1,b~8 (k4!)4
+2k3b3+2k2b2+2Kb+2) +2b~1 (k5b3+k2b2+k'b-l)+8k~1 ] z^+QVT1*"1 (kb+1) 2
+k~2b""4 (kb+1) (k2b2+l) (k4!)4^-!) ]
- <$ 3 \ kb-1 ]3 [ [ 2k®b (Kb+1) +81 z$+4k~1'b~2 (Kb+1) [ 2k2b2+4kb+3 ] zf
+ [ 2k""2b""4(kb+l) ( 2k5b5+3k4b4+6k3b3+6k2b2+7kb+3 )+Sk""2b~2 (2k8b2
+3kb+4) ] z2+4k""3b~4 (kb+1) [ 2k4b4+4k3b3+6k2b2+4kb+2 ]
+lGk"3b~2(kb+1)+k~3b"*6(kb+1)3(k2b2+l)31
+ Cp 2 { (Kb-1) 5 (Kb+1 )k"1b""1118Kzf+ [ 16k"1b~1+4k"1b~2 (kb+1) (k2b2
+Kb+2) ] z4+ [Sir2!)""3 ( 2k5b3+3k2b2+5kb+l) +2k""1b~4 (kb+1)2 (1
+k2b2)2]z2+4k~4b~3(kb+1)4(k2b2+l)+16k~3b~3(k2b2+l)
+4k~3b~5(k2b2-l)(k4b4+2k3b3+4k2b2+2kb+l)]
- Cp (4 (kb-1)8 (kb+1) 2k~*4b~4 ] {4kz4+2b~2 (kb+1) (k2b2+kb+2) z2
+k~1b*~4(kb+1) 2 (k2b2+l)2+4k~1b~2 (k2b2+l) ]
+16k~6b*"8(Kb-1)'12(kb+1)4 «= 0 (4,39)

Maximisation Equations (from equations (4,48))

(In these equations we shall multiply each one through by

the maximisation variable with respect to which we differ¬

entiate - as was done in the corresponding equations for

the body centred case)

-2& | u> bf z""4c)_-u>(b*J-l)(z""4c)_i(-3/^2+2'2#[b(cs)++b+]
-[ (b2-l)(cs)++b2]] +
°° ! ^ Jb(cs )_-^ (b2-l) (cs)_ j {-3 u? '+2 ^[b(z4c~1)++b+]
-[(b2-l)(z4c*1)++b2]j .r 0 (4>50)



110.

w ^ 5 C lc5bszf+ (kb+1)af ] + «p 4[ 3 (k^^k^b2) s^+ (k6b4+4k2bs-k2
-4)zi+(2k4b3+k3b2-2k~V"2-2k-4k~1+b~1+4b)z!:]- y 3[3(k7b5-2k6b4
+2k4b2^k3b3-k3b-12k2b2+12kb-4 ) zG+ (8k5b4-20k3b2-8k2b+24k+81>~l
-12k*"1T3~2) z4+ ( 2k7b5-k6b4-2k4b2-k5b-2k2+8b~S-k""1b~3-3k~2b~4
+8k3b3-12k2b2+4kb-20+36k""1b~*1-16k*"2b-2)z2] + y 2[3(4k6b5-16k5b4
+20k4b3-20k2b+16k-4b~1)z^+(16k4b4-64k3b3+80k2b2-8C+G4k~1b~1
-16E2b"2+4k7b6-8k6b5+8k3b2+16kSb -32k+20k~1b'" -8k~2b~3)zt
+(8k6bF-20k5b4+12k4b3-16k3b2+44k2b -8k-60b"1+48k~1b"2-4k~2b~3
-4k~5b~4+k10bv-2k&b6+2k7b4-3k6b3+4k5b2-4k3+3k2b~1-2kb*-2
+2k""1b~4-k~2b""5 )z£]- y [ 4 (kb-1) 2 (kb+1) 2k~4b~*4 ] [4kzl+(k3b+2k2
+3kb""1+2b""2)z2] H-o^ [bc">1z4+bz~4c+b+b",^]-[b2c""1z4
+b2c s~4-z4c~^-z""4c+b2-b""2] J- y f <*> 2[bz4c""^-bz"_4c]- <** [b2z4c'~-'-
-b2z""4c-z4c~1+z~4c] |f6y 5-5 y4[k3b2z£+2(kb+l)z2+k3b2+k""-4)""2
+4k~1 ] +4 cf 3 [ ( 2k4b3-2k3b2 ) zG+ + (Gk^+Skb-S-Sk^b-1
+kGb4-k""2b""4) ]-3 y 2[ (2k7b5-4kGb4+4k4b2+8k3b3-2kGb-24k2b2
+24kb-8)z3 +32k"2b-1-16k.-3b-2+k9b6-3k5b2+3kb-s
-k"^-6 ] +2 <p [ ( 8k5b3-32k3b4+40k4b3-40k2b-f32k-8b~1) zG+
+28b~2-8k~1b-3-8k-3b-5+4k-4b-G]-[4(kb-l)°(kb+l)2k~4b~43[4kz4

1.. +k""1b~4+4k+4k""1b""2l J = 0 (4,51)

In this equation the coefficients of y 3, y2, cp » and
the term without y , occurring in lines 14, 16, 17 and 19
have not been completed since they are the same coeffic¬

ients that occur in equation (4,39) for y 4, y°, etc.

jr {^''b(cs).-^(bS-l)(cs).!+^!-5A2^[b(cs)++bJ
-[(b2-l)(cs)++b_]} = 0 (4,52)
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05 ^ [ - g <r> [2k'\2 zJ+Sk'bz2+Sk3b2-2Ic"*1"b~s ] + 4 [ (SkV-^k^b2 ) z3
+ (4k6b4+8k2b2) z4+ (12k4b3+4k3b2+8k""1b~2-2b~1+8T5) z2+ (16k2!)2
+8kb+8k~^b""~''+4k6b4+4k~2b~4 )l-cp3[(10k7'b5-16k6t4+8k4b2+24k3b3
-2k3b-48kab2+24kk ) s3+( 32k5-b4-40k3b2-8k2t)-81)~1+24k"1b~2 ) z4

T +

+(20k7b5-8k^4-8k4b2-2k3b-32b~S+6k""1tr3+24k""2b~4+48k3b3
-48k2b2+8kb-72k~1b~1+64k~2b~2 ) z2+32k5b4-16k3b2-16k2b-16b~1
-16k""1b~2+32k~5b~4+32kb2-32b-32k-2b""1+32k~3b""2-»-6k9b6-6k5b2
-6kb"2+6k"5b~6l+ (p 2[ (40k6b5-128k5b4+120k4b3-40kab+8b~1)z6+
+(64k4b4-192k5b3+160k2b2-64k~1b~1+32k~2b~2+24k7b6-40k6b5
+16k3b2+16k2b-40k"*1b~ +24k~2b""3) zf+ ( 80k6b5-160k5b4+72k4b3

*r

-64k3b2+88k2b+120b""1-192k~:Lb"'2+24k~2b""3+32k~3b~4+14k10b7
-24k9b6+16k7'b4-18k6b3+16k5T:-2-6k2TD~1+8k'b~2-16k"1"b~4

+10k"ab~r")z2+24k7"b6-64k5b4+40k3b2+40k""1"b~2-64k~3b~4+24k~5b~6
+64k4b4-198k3b3+192kSb2-64kb-64k~1b~1+192k~2b~':-192k~3b*3

+64k~4b~4+24k8b6-40k7b5-24k5b3+56k4b2+16k3b-16k'b""1-56-b~2

+24k~Xb~3+40k""3b"5-24k~4b~6l- ^ [32(kb-l)7(k'b+l)2k~3b~3
+8(kb-l)8(kb+1 )k_3b~3-16(kb-l )8(kb+1 ^k""4!""4} [4kz4+ (2k3!)
+4k2+6kb"'1+4b'"2)z2+k5b2+2k4b+3k3+4k2b~1+3kb~2+2b~3+k~1b""4
+4k+4k~1b~2]- $ [4(kb-l )8(kb+l)^"^b"4] [ (2k5b-6kb""1-fTb~2 )z2
+2k5b2+2k4b-4k2b~1-6kb~2-6b~3-4k~1b""4-8k~1b~2]
-128k"6b"B(kb-l )12(kb+l )4+192k~5b~7(kb~l )13-(kb+l )4
+64k""3b""7(kb-l)12(kb+l)3H -3u> 2+2 ^ [bz^-^+bz^c+b+b""1]
-[b2z4c~^+b2z^rc-z4c~-'"--z""4c+b2-*b""2] }[-3t02+2 •i?[bcs+bc~-'-s-^
+b+b""^-]-[b^cs+bScl g-l-cs-c~ls~l+b2-b""2] ]_ ui 2[z^c~lb
+bz ~4c+b-b-11 - <o [ 2b2z4c-1-f2b2z~4c+2b2+2b"2] + [ 3b3-3b+3b~3
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-3b""1 ] }[ -3d 2+2[bcs+bc-^s-^+b-fb""1 ] -["b^cs+b2c~1s~1-cs-c~1s""1
+b2-b~2l }{6y 5-5<y 4[k®bs$J+ +4k""1l+4<?3[(2k4b3
+2k®b2]*®+ +(8k2b2+8kb-8-8k~1b~1+k6b4-k""2b~4)]
-3f2[ -3k^b2+3kb~2-k~®b""6l+2 cp [ ( -Ok"2^"5
+4k""4b~6] -[4(kb-1)3(kb+1 )2k~4b-4] [4kz4+ +4k~1b-2] }
- [tf 2[-bcs+bc""1s"1+b-b""1]-^[2b2cs+2b2c~1s""1+2b2+2b~<;]
+ [3b3-3b+3b~r5-3b~1] H-3^ 2+2 a) [bz^'Vbz^c+b+b^l-tb^c""1
+b2z~4c-z4c~1-z~4c+b2-b""2] J [6cf !:,-5 ^?4[k3b"z4+
+4k~1]+4cp3[(2k4b3+2k3b2)z®+ +(8k2b2+8kb -S-Sk'H"1
+k6b4-k-"2b-4)]-3<y 2[ -3k5b2+3kb-2-k*3b"6]+2<y [
-8k~*3b""5+4k~4b-6 ] - [ 4 (kb-1)8 (kb+1)^""Hr4 ] [4kz4+
+4k-1b-2]] =0 (4,53)

The remarks at the end of eouation (4,51) apply also to

this equation.

The solution of these equations proved to be a very

lengthy business? however, we eventually arrived at the

following series:

b ' (i-io£''° + 12 k~'*+ (?c> ft~'* + k }

c ■= n it? k'- 2. ok~'2 - <j o k.~'* j y £-tc>)

S ? k ^ ~ ^ & k '2 ■+ 30&cr kZa)

r . ky( <+<3d"°-'Ik-'* - 7<rk~'*+
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<p<Je3b\*[i+ s <3 (z iyz- £-3° + ( 7 i-V/s - ]

io ^ b +ii-(t ~iik' ''-/ii>^30+ ( 2 U/i - l* Y ) k ^J

it * b cs[ I + T- fz~'\x7- lz.~Z~ -2J k'*'* - !XO k~^° + ( X ~ lf/3 - -Xtf) k'^J

k'Stl-b *-'V IZ (z'^-nk-^-Lo k -?t7

In which we have omitted those parts of each term - starred

in equations (4,24) - which cancel out in the calculation

of A. These are ecruations (4,54).

Talcing the appropriate ratios of these quantities, we

find

A - '+ r'Vfcr172^-sl7 (4,55)

where the undetermined ouantitiesyd , y , & and \ ,
have cancelled out. This series deviates from that given

hy Trefftz, in the last term.

By comparing this series for /V with equation (4,25), we

see that, as we might expect, the series for the face

centred lattice is "better then that for the "body centred

lattice. This is again due to the fact that we have an

increased number of maximisation parameters - resulting

from the improvement in our approximations in the face

centred case.
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^9. Simple Cubic Ferromagnet at High Temperatures
The purpose of this section is to show that from our

general equations, we can derive the results obtained by-

Martin and ter Haar for the simple cubic case.

In our general high temperature equations - (3,46) to

(3,49) - we put our second and third order interactions

equal to zero i.e.

a = 3 = a' = H = 0 (4,56)

This procedure leaves us with one simple cubic lattice

involving only first order interactions between the spins.

The resulting determinants are

1 -J. cf
*

i 41 4

X
1 .x cf

it if

v «-r' T'+y </V»i +(? - cp

2 a

a fe*4e)-u>o"' o-~1

aVp'-rp) -r# 4<\ a Vc-it)-u>

M P"'

^
J
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Since these determinants are the same as those given "by-

Martin it follows that we shall find the result that

he gives.

Before giving this result, however, we should first men¬

tion that, since we have three maximisation parameters in

excess of the magnetisation maximisation parameters, we

should expect an even "better approximation to Treffts's

exact series than we found in either of the other two

cases. This is, in fact, what we find. Martin and ter Haar

give for the partition function per spin at high temper¬

atures, the series

11 9 2«o (4,57)

which deviates from the exact series in the last term.

So far, the low temperature series for the simple cubic

case has not been calculated, although it has been verified

that the equations following from the present treatment

check with the unpublished eouations for this case derived

by Martin and ter Haar.
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V

DISCUSSION OP APPROXIMATE METHODS

OTHER THAN THE VARIATIONAL METHOD

§ 1. In order to gain some Idea of the relative power of

the variational method as compared to other approximate

methods, we shall calculate series for the partition func¬

tion per spin of our two three dimensional models on the

"basis of these other methods. As has "been mentioned in our

introduction, these series do not appear previously to have

"been calculated; consequently, we shall give a somewhat

detailed account of our derivations. This chapter will also

serve to complete the historical background to our work,

outlined in paragraph 3 of the introduction. Before proceed¬

ing to the discussion of these methods, however, we have

certain reservations to make with regard to the applicability

of our model.

These reservations apply to face centred lattices. We saw

in chapter I that we can reduce the problems of substitut¬

ional solid solutions, ferromagnetism and antiferromagnetism

to the same general discussion - say the discussion of sub¬

stitutional solid solutions. However, this is so only for

the case of an AB lattice in which the sites can be labelled

alternately a and (3 - i.e. at the absolute zero of tempera¬

ture, all A atoms are on a sites, all B atoms are on 3 sites
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and each A atom is surrounded "by B atoms and vice versa.

Obviously then, a general discussion on the above lines

will "be applicable to the simple cubic lattice and to the

body centred cubic lattice and to the analogous models of

a ferromagnet and an antiferromagnet, but not to the face

centred substitutional solid lattice. (Since, in this case,

V7e have to abandon one of our assumptions - either we have

an AB lattice in which, at the absolute zero, each A atom

is not entirely surrounded by B nearest neighbours, or we

have, at the absolute zero, each A atom surrounded by B

nearest neighbours, but our lattice is of the type AB,,. )

It is also evident that our general model is not applic¬

able to the face centred cubic antiferromagnet, since, at

the absolute sero, this is equivalent to an AB lattice.

It remains to show some justification of the treatment of

the face centred, cubic ferromagnet on our general model of

a substitutional solid solution; if this can be done, we

can proceed on the understanding that our work is applic¬

able to all cubic structures of our three examples of

co-operative phenomena, with the exceptions of the face

centred cubic substitutional solid solution and the face

centred cubic antiferromagnet.

Perromagnets differ from the other two cases in that they

show preference for like neighbours in the low energy states

- that is, at- the absolute zero, we have all our spins
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parallel to each other end our sites are all a sites, say.

In other words, the trouble which arose with face centred

cubic lattices in the substitutional solid case - the

imposeihility of surrounding each a site with (3 sites,

while, at the same time, keeping the number of a sites

equal to the number of P sites - does not arise with ferro-

magnets. It is reasonable then, to say- that if a general

theory is applicable to ferromagnets in general, then it

is applicable to the face centred ferromagnet in particular.

Our treatment is thus justified, since we know from chapter

I that a general discussion applies to ferromagnets.

J 2, The Quasi-Chemical Method. (Bethe's First Approximation)
To improve upon the Bragg-Williams treatment, we require

to introduce, explicitly or implicitly, into our calculations

a short range order parameter, to measure the average extent

to which, in the case of an AB lattice for example, the A

atoms are surrounded by B atoms and vice versa.

Let us consider the case of a ferromagnet with co-ordin¬

ation number z; ter Haar ) gives the application to a

substitutional solid.

Since all our sites are equivalent, all a sites, say, we

have three possibilities for the occupation of any pair of

neighbouring sites. As before, we associate p *+4 with

a spin aligned with the 'positive' direction and p



119

with a spin in the direction antiparallel to this refer¬

ence direction. Our possibilities are

ft + + say we have Q of these pairs (i)
44

| J, - - say we have Q of these pairs (ii)

f j + say we have of these pairs (iii)
Now the basic assumption of this method is that the pairs

of spins in the lattice are all independent of each other.

If this is so, we can split up the last of our above poss¬

ibilities into two and write

Q' — Q 4 Q
4- 4- -+

where q = Q (5,l)4- -+

since, for independent pairs, it is equally probable that

the spin in the positive direction will be on either site.

For the ferromagnet, this distinction has no real signif¬

icance, but it ensures that the present discussion will

be applicable to co-operative phenomena in general.

We have, if Q is the total number of pairs,

Q = Q 4Q4Q4Q (5,9)
++ 4- -+

Cur short range order, we define by

(T1 Q — Q 4 Q — Q. — Q (5,3)
44 — -+ +-

This gives preference to equal neighbours, since, at the

absolute zero, & - / if all pairs are 44 (or —). At

infinite temperature, & should be equal to zero, which is

the case if all our Qfs are equal. (We see that our device
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of splitting Q^_ into two equal parts has ensured that
possibility (iii) has double weight compared to the other

two possibilities, at infinite temperature.)

Prom (5,3), we see also that

& = -q H (from (1,14))

or E -- (5,4)

Subtracting (5,3) from (5,2), we find

Q. = Q
, = l/4Q(l — eg ) (6,5)-r t*

Let r be the fraction of sites correctly occupied,

i.e., the fraction of spins which are parallel to their

direction at T = 0. We have then,

2Q + Q + Q = 2rQ (5,6)
++ +— —+

As before, we may define our long range order parameter

by the equation R = 2r - 1 (5,7)

Prom these two equations together with (5,2) and (5,5),
it is easy to show that

0, . K Q/4(l + eg + 2R)++

, (5,8)
Q = Q/4(l + - 2R)

Now, for the free energy in our lattice, we have

F = B(tf- ) - kTlaW(R,a-) (5,9)
where W(R, <r ) is the number of ways of realising a certain

pair of values of R and C , i.e. it is the number of ways

of realising the state of the crystal at the temperature

appropriate to the values R and 6" of the two order
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parameters. Since the pairs in the lattice are independent,

we have

W(fc.<r) , MfLU) — , v

Q4_! o^.'0-f (5»10)
where MJClV) depends only on R.

Substituting this into (5,9) and using (5,4) and Stirling's

formula L. p ! = -f f - -f , we find

F~ *■ - fa.T~ £ ^ ® Q ~~ Q +■*■ J**- Q■*—*■ ~ Q+- Q 4—

Q _4 Q~+ ~ Q-- --1 ^ f Q & (5,11)

To find the equilibrium value of 0^ we use ^^/^>cr - O
which gives eventually

7. 1/. 7K x 1
Q+- 0 -+ k^T (. »1..)

if we define C. x . Taking antilogarithms of (5,12)

and using (5,5) and (5,8) for the Q*s, we find for in

terms of R

, t 4<K-Zx*J / - /t'-/<y *

/-x1 (-5,13)

We now want to use this result to find the equilibrium

value of R. To this end, we define a free energy E'(R) by

the equation

F(R) = E'(R) - kTlnW(R) (5,14)
This equation is comparable to (1,20), the W(R) appearing

here being similar to that in (1,21).
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Rearranging (5,14), we have for the macroscopic partition

function Z
£'C*I

2 - \JL£) e k' (5,15)

But we know that, in equilibrium, the energy of the system

is given by

3 74 1
£ = -

~*(ir)
3 {£'(*■) 1f £ Y<)

which, from (5,15), is equal to d(^) I T 1 (5,16)
As T * o° , E'(R) —> 0, so we have eventually, from

(5,14) j

F(A) ; -k.T-t~.Ultt) -f T f E(a-) <>((■£)
4..

y/*/ X (5,17)
on making use of (5,4) and. the definition of x.

We can now use the expression (5,13) for o~" in this

last equation and take for W(R)

H •

Mr ! /Vu !
since we have N lattice sites of which Nr have to be

correctly occupied. Using Stirling's formula and the def¬

inition (5,7) of R, it is easy to show that (5,18) (and
also (l,2l)) is equivalent to

W(K) = (£+')£~( (i~£)^('~*)]

'(£) " "7^7' ■ !(1 ~ r) " wi (B'18)
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Substituting this and (5,13) into (5,17) and using the

definition

* V ' - ■+ rz7- X1- (5,19)
we find

Fin) , ^ rJk.T[ C <+«■) '+*Z) + it-rz) Ct-iz) -r^Z

+ + + tl X J 7 . .
I* fZ /-< z z , -g* J J (5,20)

where we have put Q = 1/2zN (see foot of page 13.)

Incidentally, this is the correct form of equation (12.428)

in reference 18.

We can now find the eouilibrium value of R from

2f , (2£) otu + /uf \
ItL ^T>(+JiZ (5,21)

taken, of course, for x =» constant. Carrying out these

differentiations, we find

l X / i-AT «-/£ - ° (5,22)

In order to find series expansions for the partition

functions per spin of our two models, we shall use equations

(5,19), (5,20) and (5,22) - which are quite general (compare
those in reference 18).
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£ 3 High and Low Temperature Series for A on the
buasi-Chemical Method

At high temperatures, R = 0 and our three equations

reduce to ^ = '
(5,23)

and -i
Cn substituting for u, the second of these becomes

_ F
N ft / f 2 * ^ 7/ / -hX J

V/,

°r

1 , -%kr r,+ x r iK
T * 1 "LIST'S* J I ayiL '<J (5,24)

if we use the definition of x and put

At low temperatures, we can rearrange (5,20) and, malting

use of (5,22), put it in the form

_ f/r/ar - \ r n ^
V e - x (5,25)

For the body centred cubic lattice, we substitute z = 8

into equations (5,22) and (5,25) to give

/a X1 ^ + ') * ( '-a) 3
u , (5,26)

- **) V/-/C)

We have also "X )
If we assume the series

(5,19)
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I, %x' <5'27>
' xi

U ' i + £ u.;\
i

and solve our equations "by successive approximation, vze

find eventually

^ r ^ + ^ fx" ^ov'^nx^l
I- lx - /* v'V ify'^-ib t*l% 2ft, x^-ur **-l<rt6-x*t.6?6ox*r_ 7fbfX7°

' t a "> /(, i" ,i ,u J?
a » /+»*-iv * /«* -32v - ^iX y rycx + /bz°x - 7?2«\ +/}$-£ox

equations (5,28).

For the face centred cubic lattice we put z = 12 giving,

from our main equations

(u-
(5,89)

(ia + Z) UL i-K)*

rtx - -x2 («*-*") (5,19)
Assuming the same form of series as those in (5,2?) we find

7) - [ i + x ^ -t- (> \ l1 — £,\tQ + ox3°]
A r> 14 J2 3 ?

^ /-IV -14V fi6x -3^X V -4/7O V 4-OX

to /l lo it **•„_ J ° , . 31 * ^
U r ! 4 Z\c -IX +ZZ X - 4 «X 4 Z bx J-1 i ZX -//^X y/2^V "4-7ox

- equations (5,50)
We shall discuss these series for "X in the next chapter.
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§4 Klrkwood's Method.
This method starts from equation (5,15). We have there

for the macroscopic partition function

- *£££>
k~r c~ ^ 5

£ = vJ (fi.) e = e (compare (2,2)) (5,31)

where the summation is over all configurations with the

same R and where s * Z £< •fJ •

Prom this we have

<f KS
f'u) . Z, e
" ' ' 3n(5'32)

If we denote the average of sn, over all configurations
for which R has a particular value, "by < sn> , we have,

from the usual definition of an average

^ s '>rt . ' rI s
W(&) <«>

and we can expand the exponential in (5,32)

(5,33)

<sx> -H ^ 3 (5,S4)
kr 2 3

-

x ~ Z> -rr< on expanding the logarithm. (5,35)-n

>t w

where ^ ,<s> H- 3 +z < s> 3
A/v .
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We now require to evaluate the quantities M as functions

of R - this forms the essence of Kirkwood's Method. However,

in order to avoid needless repititiori we shall omit these

evaluations, since pages 274 - 279 of reference 18 give a

very clear account of them. We shall merely quote the res¬

ults. These are

* (J/l1
Mi. -- Q ( /-^

7/ (5,36)
M% -- HQ* ('-*■ )

. I Q( I-

of which the first two are general, while those for Mg and
M. are valid only for the two dimensional square net and the

simple cubic case.

Referring back to (5,14), we find, using (5,36) and (5,35),
for the free energy

rffiT

+ V[-KC - (5,37)T z

where we have taken only the general terms in (5,36)
To find the equilibrium value of R, we again minimise the

free energy and find

L. (5,38)
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These two equations are sufficient to enable us to solve

for 9 , the partition function per spin.

j} 5, High and Low Temperature Series for 3 onKirkwoodfs Method

At high temperatures, where the exponential and logar¬

ithmic series expansions are accurately valid, Kirkwoodfs

method is effectively exact and we can, in principle, find

as many terms of the exact series for ^ as we wish, pro¬

vided we take a sufficient number of the into account

in equation (5,57). The calculation of the Mj_ becomes

extremely difficult, however, after the first few terms and

as a means of finding the exact series, Ktrkwood's method

is not really practicable. For purposes of comparison with

our variational method series we shall, therefore, consider

only Kirkwood's first approximation, which involves using

(5, 37) as it staiids.

Putting R « 0 gives us, from (5,37), the high temperature

series

3 ,
/

- F/fi/kT Vfy '
e

K
'1 Z

J r n-
* " (5,39)

At low temperatures we use (5,38) to obtain R in terms

of K. To do this we assume that R = 1 + R^ and substitute



into (5,58)

^ « v (/ +*>) ClK*"■
-Ht r

If we neglect R^ as compared to unity - which is a good
approximation at very low temperatures where H ~ 1, we have

-2zK
R-j_ = - Ce

Similarly, assuming R = 1 - 2e 5(l + Rg)» we find a

second approximation giving

R b 1 - 2e"2sK + 2e"4zKf(K) (5,40)

where f(K) is a polynomial in K.

We can now substitute this expression for R into equation

(5,37) and find the first few terms of the series for ^ .

For these, the second exponential in (5,40) is unnecessary

and we find from the first two terms

yji r -i-V* - M 7
T\*e 2 L ' 4 e +T-V e ( H+zk )J

(5,41)

This is valid for all lattices, since, in (5,37), we have

used only and Mg.

$6. Zernike's Method.

For the last of our approximate methods we shall discuss

a rather interesting one due to Zernike. In his paper,

Zernike sets himself the task of calculating the probability

of finding an A atom, say, at any point in the lattice if it
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is known that an A atom definitely occupies the lattice

point at the origin 0. We are again considering an AB sub¬

stitutional solid solution. Using the fact that once the

nearest neighbours of a particular site are known, the prob¬

ability for the occupation of the site no longer depends

upon the distribution of the other atoms in the lattice,

Zernike arrives at a recurrence relation for this probability.

At the end of paragraph 2, chapter 1, it was pointed out

that the important energy unit in the case of an AB lattice

is the quantity v defined in equation (l,7). It may be shown

that, in calculating probabilities for the occupation of

lattice sites, the probability for equal neighbours differs

from that for uneoual neighbours only by a Boltsmann factor

e-v/kT _ Thus, if we treat the simple cubic case (z = 6),

the ratios of the probabilities for an A atom and for a B

atom at the central site are as

x® to 1 - nearest neighbours all A atoms

x® to x - 5A nearest neighbours and one B

x4 to xS- 4A nearest neighbours and two B's

etc.

Prom these ratios we calculate the actual (normalised)

probabilities for A at the central site to be

u
x ^ *■

*

77Z<- : ' i ^ ■ (5,42)
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Y/e can now take the arbitrary site at (i, j,k) with near¬

est neighbours designated by 1, 2, 3, 6, and write

dovm the probability that this site is occupied by

an A atom. If we make the approximation that the probabil¬

ities p-£» pp, etc are independent, where p^ is the prob¬
ability that atom i is an A atom, we have

f'ji - r, a /? a a -u>t -> (i, a p3 a, pr a +p, u -nA A-n -* — - >*>*■

^ (5,43)
where q = 1 - p.

To simplify (5,43) we substitute for each probability

twice its excess over unity i.e.

- l . ' + **«' /-*V . . t +u;ZP.-ri* /, vA -f>- s —-— ; q . - L—;7' « z' 2 «- (5,44)

and find eventually

% rA,* (ut+4 Uf + ("u-3 uj £ A, Aj

4 ("<,- + S Kit)£A\Aj Aft Af Am. . ^ ^ ^

The summations include all possible combinations of the

various products under the summation signs. Prom (5,42)

and (5,44) we can write the u's in terms of x and then

substitute into (5,45). This gives for the simple cubic

lattice
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r+.}k - (ft J k\u ) X Z +.■ +/+L

+ (h ~*f« +* (5,46a)

i
iM

where iv, T7V^ (5,47)
For the other two cases we have

~l7<jk ' (It* 'A""*/, + '*jx ) Z t-
+ (i V +2h - *} i, -L§x > £ +; tj +k 4 * /-

* ($t £ 7^'* (5,46b )

Body Centred Cubic (z = 8).

- * "*\7* = (£«.+ /0/,o+-4<<£f * »*}t, + ">*£<, +'3*£X)jL*>'
-f (j,i + */,. *'2f, *2h ~17 ft. ~

4" <7* ~/o/* **"/<, *t*}x)
4 (}*-*-},* -*U4/°h +*h -Zoh> Z7*'s
+ (fa
4 (%. -/oj/0 +4t£r'"L +u*h ~n2fx) £ "*'* (5,46c)

Face Centred Cubic (z = 12).

(These equations - non-linear partial finite difference

equations - have been checked through and two errors which

occur in (5,46b) in Zernike's paper have been corrected.)
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^ 7. High Temperature Series for "A on Zernike's Method.
Here we have to deal only with the short range order

(T^ 5 in Zernike's words, 'the influence of the fixed A atom

at the origin of co-ordinates will soon "become insensible

when we consider sites farther and farther away from it,

so that the probability of these sites being occupied by

A atoms will tend to 1/2, or the excess, "to zero.

We therefore try to find solutions of our fundamental equat¬

ions showing this property. Evidently the quantities r^^
foxmd in this way will express the tendency to local o£der*.

It remains to relate the r^..^. to some definition of cr"
which will be equivalent to the definition we have hitherto

used.

Zernike, following Bethe, defines

_ 17 a - 77/1
(5,48)

(which is a suitable definition since =1 and (Tr*«» =0.)

where n^ and n^ are respectively the average numbers of
A

nearest neighbours of any atom which are A atoms and which

are B atoms. These numbers are proportional to the probab¬

ilities of finding an A atom and a B atom respectively at

a particular site and so, using (5,4-4), we may write

( SK) C^UAfltdW rytlO (5,49)
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n refers to the site nearest to the origin. For the simple

cubic and "body centred cubic cases (r) ^ = -1
n complete order

since, for these cases at T = 0, each A atom is entirely

surrounded by B atoms. For these cases Zernike alternately

changes the signs of the r's making the probability for a

B neighbour equal to 1/2(1 + rn). We thus have

- <r£.e.c - -r.„ (5,50a,b)

For the face centred cubic case, however, v/e have the diff¬

iculty discussed in paragraph 1 of this chapter. To make

Zernike's method suitable for a discussion of the face

centred cubic ferromagnet we must assume preference in our

AB lattice, for like nearest neighbours. This will give us

CJ~jp . e . c ~
(5,50c)

as opposed to <rV.c.c ---zfnt, for the unlike neighbours

case. We see then, that in order to reach an expression

for the short range order, we need merely solve our approp¬

riate partial difference equation for the excess probability

r for the occupation of one of the sites nearest to the

origin for the particular lattice structure in which v/e

are interested. In order to do this we approximate equations

(5,46) by taking in each only the part linear in r^. In
general v/e have

n / 0** - % * < (5,51)



Figure 14.
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where the summation includes all nearest neighbours of r

We then apply (5,51) to the succession of lattice points

round the origin.

As an example of the method of solution let us consider,

once again, the simple cubic lattice, and refer to figure

14. In this sketch, and in the work that follows, we have

used, instead of the usual Cartesian co-ordinate system

for specifying the lattice points, the square of the dist¬

ance of each point from the origin, i.e. instead of (x,y»z)
pop

we take x * y + z . This permits us to take full advant¬

age of the symmetry of our lattices. A dash indicates where

the same sum of squares results from different combinations

of x, y and z. For the simple cubic lattice we find

I

II

nri s 1 + 4rg + rA

"*2 = 2r^ + 2r^ + 2r^
s rl + 4r5 + r0

^3 = Srs + 3r6

ni>5 = rs + r4 + Sr6 + +COu

^P xs r4 + 4r10 + r16
nr6 = r3 + Sr5 + 3r9' + rll

m8 = 2rc, + 2rlf5 + Zr's

"*10 =- rg + r0 + Sru -f 1?
13

10 III
(5,52)

+ r
IV

17

nrie = r9 + 4r1? + r25

where the Roman numerals indicate the shells round the

origin.
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For the atom at the origin we take rQ = 1. If we now neg¬
lect in these equations, all hut the first term on the

right hand side of each, we find first approximations for

the r's in terms of the nfs

r-j_ = l/n : r2 = 2/n5 : - l/ns : r3 = 6/n^ etc.
On putting these values into the equations we find second

approximations, and so on. Going as far as the fifth shell,

Zernike finds for the simple cubic lattice

f+ *■
7*. H y\ ^ -y( 1 -yt 7 ' * * '

Similarly, for the other two cases, he gives

^ r . /. . it r IT- + 2 >"?/»" ^ //£,?CTV4. , *^ V5- (5,5oh;

Body Centred Cubic.

- / + Z- - JL + fXJ - 2JIf- * z2227 _ /<g3£p (5,53c)

where m + 4 = n. Face Centred Cubic.

To find the high temperature series for 7\ we refer

once again to equation (5,17) which may he rewritten

^ 1 ~ /"VT7- = ^Z (5,54)
where we have used the facts that E = -[l/?J^Qcr/ (f - v),
Q «= [l/dzN, Xr ' 4 (see page 82.), and K * £-lnx)/2 ■T-> <v>

//2kT. For cr" we use (5,53), n can he found from (5,51)
and (5,46) in terms of the | . , while from (5,47) v/e see
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that f^ - w< - 6^2 +- ^- () r
3 /r

The solution is straightforward and we find for our two

cases, the series

^ , -t £ f -J- 1 II - K U +■ 2-3 2 - v J (5,55)
Body Centred Cuhic Lattice.

^ r i f ' a- 3 K% + fx3 + ?7* ** + 2 *z J (5,56)
Pace Centred Cuhic Lattice.

§ 8 Low Temperature Series for on Zernike's Method.
If a degree of long range order exists, the solutions

of our fundamental equations (5,46) will each tend to a

constant limit at great distances from the origin and this

limit, say s, will he our long range order parameter.

Putting this limiting value of r into our simple cuhic

equation gives

i Q-S* ° -bio43sz-t-£cu-3'Z~0 (5,5?a)

where we hove taken out the root s = 0, (corresponding to

the high temperature case) and where we have substituted

a-^ for the co-efficient of % *•' , 03 for the coefficient
of % *: , etc. The numerical factor in each term is,

of course, equal to the number of terms under each summat¬

ion in (5,46a).
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For the other tv/o cases we have

?by S1* + slo bz S* + s>b, - /z Sr O (5,57b)

Body Centred Case

11 c,, s '% iioccf s V 791 f> s* Mn cf sv

+ ztoC3s1 v- ixc, - x o4 * ^ o (5,57c)
Face Centred Case - preference for like neighbours.

Now if we have the long range order s, the sites must

be alternately a and p sites, with more A atoms than B

atoms on the a sites and more B atoms than A atoms on the

0 sites. We can easily see that the probability of finding

an A atom on an a site is (l + s)/2 while the probability

for an A atom on a p site is (l - s)/2. Alternatively, if
we select an A atom a3 our origin, the probability that it

occupies an a site will be (l + s)/2 and that it occupies

a p site, (l - s)/2. In the first case the limit of r^-j^
will be +s and in the second case it will be -s. In order

to find the average value of 6~" we must solve the differ¬

ence equation for one or other of these limiting values.

To facilitate calculation we make the substitution (for

the +s case - change the sign of s for the -s case)

rijk = ® + ®)^ijk (5,5o)
This changes our variable from r to t, but has the advan¬

tage that it preserves our boundary condition ( tooo =1)
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and consequently equations (5,53) hold also in the low

temperature region.

Substituting (5,58) into equations (5,46) and neglecting

non-linear terms, the terms independent of t cancel accord¬

ing to equations (5,57) leaving

« hjt~ (a, + «">i £̂V (5,69a)

fivhj'l* (b. + xt s% is-kg. 7 s ^ ) £ h- (5,59b)

2-o u % hiji . ( c, + ffr3s1+ 33oCs-s',-f

+ /6src9 s*4 n cn S'°) Z h; (5,59c)
These are linear difference equations of the same form as

(5,51). To make their solutions a little easier we can

eliminate the term in ss in each, using equations (5,57).

We find

J- „ J- ('£> -2*, -t i (5,60a)
tts.c 3l

>r (5,6ot?)'bee ,l o

- ic, -f/n CfS** v-2 4/y C,;S//on (5>C0c;
rtf.cjr. so« S'

Now, for the low temperature series for A , we have

^<x = - n +X fX (^f> cU (5,61)U
-O

In order to complete the solution for we need an

expression relating a* to t^. This we find "by calculating
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the average probability for the nearest neighbours round

the origin. We have

cr^ i C A+S> /*-* ( '~S> h' ]
« s"* ( I -

or /-<r- = A ' - S x-> (/ - /v) (5,62)

Since we have to develop a series expansion for A , we

require series for s ' (since only powers of s2 occur in our

formulae) and for the t^.
For s2 we assume series of the forn s* ^ / + %St"**'

and, after substituting into equations (5,5?), equate the

coefficients in the resulting expressions. Actually, in

order to simplify the working, these equations were cast

into a form in powers of (l - s2) instead of powers of s

On subsequently substituting for the a^, bj_ and the

following alternatives to (5,5?) were found

[gh - 49 j u +m J [9oIz + Z2*/*7

+ £ ie,Xiy - 7 - ' * *}t 9~ -o (5,63b)

Body Centred Lattice.

~/2°+ *"*■ * /, -/*^ + /9rof0 -'*~v4jz J (
' £ rr° 1,X ~ '1ta la v- i'2 fojr - yotiOf^ +1 7 (' °

4-tiVto-lH -Wtbo+i2&Ti}t - f*'0*//!''22**?" + ****?,](''
4 £™ofn - 4*° <<sr~o (5>63c)
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for the Pace Centred Lattice.

Since we are not immediately concerned with the simple

cubic lattice equations we shall neglect these from new on.

On substituting the assumed series for ss into these equat¬

ions we find the following values for the coefficients

i «■ /U ft 10 x <r . ,
- /-4X*-i2X -f ifOX - 336V + 831.X -J9* X (5,64b)b<.c ' '

(5,64c)

where for f ^ we have used the expansion

2 <M "Z »*» /r fr\
fc = /-XX + % x -XX -4- XX O, DO)
/J

In order to find an expansion for the tj we use the

expressions for 1/n given in equations (5,60). On substit¬

uting for the aj, b^ and c^ in terms of the f ,• and then
for the §/ in terms of x, using the expansion in (5,65),
we find

^3 1 t6-(Body Centred) (5,66b)

/i , y v/X y- (Pace Centred) (5,66c)

where we have used equations (5,53).

These expressions for the ti and for the s^ yield, on

substituting them into (5,62) and (5,61), the following
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series for our partition functions per spin

~ .1- r V /u /*- 2 ° t *7 , ,

Aa.c.c.-\ L'4X -t-bx -yv sir* -yo/rx + z s~ x J(5,67b)

^/;.£r J (5,67c)

J 9 . In conclusion we must "briefly mention the exact series

for \ calculated "by Treffts. We shall ouote these series

in the next chapter for comparison with the various approx¬

imate series we have derived.

Trefftz^s series are derived according to methods given

by Kramers and Wannier for the high temperature region

and by van der Waerden ) for the low temperature region.

We shall not go into these methods, but merely remark that

they consist essentially in counting the various config¬

urations corresponding to particular states of our crystals

- the sort of nrocedure that is used in Kirkwood's method.

We have used a similar procedure in connection with the

derivation of the low temperature series for the partition

function of the face centred cubic ferromagnet. (See para¬

graph 7, chapter 4.)
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VI

TIIK VARIATIONAL HFTHOD CO!?PA3FD TO

TIIE OTHER APPROXIMATE METHODS

$1- The Body Centred Cubic Lattice.

In chapter IV we had an indication that the body

centred case might represent a limiting case of the variat¬

ional method as we have used it. This was based on the fact

that, for this case, all our maximisation parameters went

out, the treatment of the problem being, as a consequence,

so much simplified that we managed to find the high temper¬

ature solution for > in a closed form. That this result

should not be a particularly good one was also implied by

the fact that for three of our four subsidiary partition

functions we had to use the very crude approximations

CO tz 1% zz 4-

} = s

(A partition function should, by definition, vary with

temperature.)

For the low temperature body centred cubic case we had

reasonable expressions for all of our subsidiary partition

functions - as a result of the existence of our low temper¬

ature (magnetisation) maximisation parameters - and consequ¬

ently we expect that the low temperature series should be

rather better than the high temperature one.
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In order now to see just how good our worst case (on the

variational treatment) is, we shall collect into tables

our various series for comparison with each other. We shall

use the abbreviations

5 - exact series: V - variational method series:

B - Bethe's method (quasi-chemical) series:

7. - Zernlke's method series: K - Klrkwood's method series.

Table 1.

Body Centred Lattice - High Temperature Series.

rn 2[l + 2K2 + 13*667** + 156-756X6]
* S[l + 2K2 + 13.667K4 + 232«756K6]

XK = 2[l + 2K2 + 4K4]
\y = 2[l + 2K2 + 1-667K4] *2.(cosh K) 4
X = 2[l ♦ 2K2 + l^OTX4! =a(coshK)4
Prom this t^ble it seems that the variational method and

Bethe's method share the distinction of being the worst of

our approximate methods.

Table 2.

Body Centred Lattice - Low Temperature Series.

\ = x~2[l + x° + 4x14 - 4x16 + 28x20 - 60x22 + 44x24]
X = x"2[l + x® + 4x^4 — 4x^ + 2Ox2® - 60x82 + 32x241

» x~2[l + x8 + 4x14 r 4x16 + 28x20 - 60x22 + 32x24]
m x*~2fl + X^ + 4x^"4 — 4x*^ + 28x^® — 70*18x^^]

\ = x~s[l + x8 + 0x14 + 16x16(F + 2K2)] (x = e"2K.)
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Here we see that the variational method and Bethe's

method are "both "better than any of the other approximate

methods. In fact, comparing the two expansions in "both

tables, we have the interesting result that our variational

treatment of the body centred lattice turns out to give

exactly the same series as does Bethe's method. In other

words, Bethe's method would appear to be a lower limiting

case of the variational method. To date, we have not had

time to go into the equivalence of the two methods, but we

feel that it should be a simple matter to demonstrate it

without having to go to the extreme of actually calculating

the series.

The fact that Kirkwood' s method is so poor at low temper¬

atures (as we shall see, the above series is typical) is

not surprising, since the logarithmic and exponential

expansions used in the derivation of Kirlcwood's equations

are only valid for high temperatures.

It may also be seen from this table, and from table 4,

that, at low temperatures, the series derived on Zernike's
method is only slightly poorer than that derived on Bethe's
method. This implies that the results given by Kramers and

Waniiier for the low temperature square net series on

Zernike's method, arc wrong, since they show this series to

fail at the second term, ter Haar (unpublished result) has

recalculated this series and finds that the correct series

is considerably better than that of Kramers and Y.annier.
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£ o. The Pace Centred Cubic Lattice.
Por the face centred case* on our treatment, our con¬

ditions are slightly "better than they are for the "body

centred case, since we now have an extra maximisation para¬

meter to work with in cur two temperature regions. The

effect that this has on our results is seen in the following

two tables.

Table S.

Pace Centred Lattice - High Temperature Series.

« 2[l + ok2 + 81K? + 3?k4 + 185k5]
Az = 2[l + + 232fc5]
Av K 2[l + 3k2 + 8k3 + 34k4]
\ = s[i 4 ^ks + ck: + ck4]
\ = 2[l + 3k2 + Ok3 + 4k4] = 2.(cosh K) 6

We see that the extra parameter has improved the variat¬

ional method considerably. Although it is still not the

best of our approximate methods at high temperatures, the

variational method series compares quite well with the

corresponding series derived on Zernike's method - which

is the best. With the exception of the variational series

which has gone up one place in the table, the different

series have the same relative positions that they occupy

in table 1; in particular, Bethe's method remains the

poorest of the approximations to the exact series.



147.

Table 4.

Face Centred Lattice - Low Temperature Series.

= x~3[l + x12 + 6x22 - 6x24+ 8x30 + 42x32]
%r = x~3[l + x12 + 6x22 - 6x24+ 8x30 + 72x32]
*5 = x~"3[l + x12 + Sx22 - 6x24+ Ox30]
*z = x"3[l + x12 + 6x22 - 6x24+ Ox30]
rKK = x~3[l + x12 + Ox22 + 24x24(K + 2K2)]

In this table the various methods retain their places

according to table 2. (With a degree of uncertainty as

regards the Bethe and Zernike method seriesi they are ident¬

ical so far as we have gone.) The variational series holds

good up to the term in x while the Bethe and Zemike

series fail somewhere between x'"4 and x30. Kirkwood's series

is again the poorest.

§ 3. The Simple Cubic Lattice.

Finally, in order to emphasise the way in which the

addition of further maximisation parameters improves the

variational method, we shall quote the results obtained by

ter Haar (reference 15 ) for the high temperature simple

cubic series. (See the discussion in paragraph 9 in

chapter IV.) From table 5, we see that the different methods

again have the relative ordering that they have in table 1,

with the exception of the variational method series which

has moved up to the top place.
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Tsl1c P.

Simple Cubic Lattice - High Temperature Series.

V = 8[1 ♦ % KS + % K4 ♦ qtZ K°+ K8]
X .Stl.^K8. !*«*♦ ♦ IjfSlf-K8,
\ = S[l + \ k2 + ^ K4 + K6]

\ = S[l + ^K2 + % K4]

\ = s[i + \ rz + \k4]

f 4, It is hardly necessary to point out the significance
of our results, since the tables we have given do this

sufficiently well. We have found that the variational method

as we have used it , yields equations which increase in

complexity and difficulty of solution as we go through the

cubic structures in the order, body centred cubic, face

centred cubic, simple cubic. Also, for any particular struc¬

ture, the high temperature equations are much simpler than

are the corresponding low temperature ones. All this, of

course, is the result of the variation in the number of

our maximisation parameters as we treat the different cases

and as we treat the two different temperature regions. In

fact we might say that complexity of equations is propor¬

tional to the number of undetermined parameters we have to
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deal with. We have found also that as the number of our

unhnovn parameters increases in the various problems we

have discussed, our solutions correspondingly improve. This,

of course, is more or less as we should expect.

It is fair to say, then, that the variational method is,

when used to its full advantage, an extremely powerful

means of calculating the partition functions for the types

of problem we have discussed. Since the simple cubic lattice

affords the be3t application of the method to three dimen¬

sional problems, it seems a reasonable extrapolation of our

results to state that when the low temperature simple cubic

series has been obtained, it will be found to be better

than the series found by the other methods.

Altogether, we can say that our results and their impli¬

cations agree with those of Kramers and Wannier, in that

a direct application of the variational method seems to be

the most powerful of any of the approximate methods used

in this worlr to calculate the partition functions of ferro¬

magnetic structures.

(We have not carried out our original intention to use

equations (1,2) to calculate series for the configurational

energies and specific heats of our models,' since we felt

that no useful purpose would be achieved by doing so. Tables

1. - 5. are quite adequate for a comparison of the various

approximate methods.)
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APPENDIX

Note on the Direct Application of the Variational Method
to the Pace Centred Cubic Lattice.

In our attempts to apply the variational method directly

to the face centred cubic structure, it soon became evident

that, to avoid effectively repeating the discussion given

in chapter III, v/e should have to consider the lattice as

being built up by adding two plates (one layer of unit cells)

at a time to the existing structure. If we do this, we are

performing a step which can be repeated exactly at each

stage.

After our first reduction, our lattice will be reduced to

two essentially two dimensional ones consisting of four

plates of spins and two plates of spins. The next two reduc¬

tions will leave us with lattices consisting of sixteen

strips, four strips, four strips and two strips of spins.

The four final reductions will reduce the problem to the

consideration of lattices containing respectively thirty-

two, eight, eight and four spins. By comparing these lattices

with the previotis subsidiary ones we have had to deal with,

we see that the matrices corresponding to them will be of

orders 21 , 24, 24 and 2" respectively. The largest of these

is obviously far too large to handle.

In the case of the body centred cubic lattice, any direct

approach using the variational method must also be carried
8

out on the above lines. We find a matrix of order 2 •
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