

University of St Andrews

Full metadata for this thesis is available in

St Andrews Research Repository
at:

http://research-repository.st-andrews.ac.uk/

This thesis is protected by original copyright

http://research-repository.st-andrews.ac.uk/

TED - A PORTABLE CONTEXT EDITOE

, MSc. THESIS

BY

EDITH HOWSON

This thesis describes the design and programming involved
in implementing a portable context editor on various computers.

The research for the thesis was carried out at St.Andrews

university by the undersigned under the supervision of Mr S. Morrison.
The computer used was an IBM sited at the university.

CONTENTS

Page

1 INTRODUCTION 1

2 COMMAND LANGUAGE DESCRIPTION 5

3 THE ABSTRACT EDIT MACHINE 26

4 THE COMMAND ANALYSER AND ERROR HANDLING'ROUTINE 39

5 IMPLEMENTATION OF CODE '. 47

6 CONCLUSIONS 60

REFERENCES 62

ACKNOWLEDGEMENTS 63

APPENDIX I

APPENDIX II

APPENDIX III

1 INTRODUCTION

1 .1 Context Editors

An essential part of any computer environment is a means of altering and

revising text permanently stored within the computer system on magnetic

storage devices.

In past years text was handled using punched cards or paper tape which

could be manually altered. The fact that cards in a deck could be easily

changed, inserted or deleted made the card storage system especially

popular though somewhat bulky. Now, with the increasing use of magnetic

storage it has become necessary to devise a method of updating files

stored on these devices. Since the user has no access to such files

except via the computer, a program is required to modify them. Such a

program is called an editor.

The computer environment dictates the method of execution of an editor.

It can be executed either in an on-line or a batch mode. An on-line editor

is a very powerful tool. Edit commands are input via a remote access

device eg teletype or visual display unit, and error output and verification

listings are output to the same device. Using this method of execution the

user can correct errors as they occur and can keep track of his position in

the edited file. An on-line editor provides the user with a quick, con¬

venient method of altering information stored on magnetic storage devices.

With a batch editor, on the other hand, the user has no control over his

files during an edit run. Although the input commands are similar to these

of the on-line editor, the error handling facilities must be more sophisticated.

When errors occur the editor must decide whether it is safe to continue

editing or not. Before a batch edit run is constructed it is advisable to

have a printed copy of the file being edited to ensure the text being

altered is uniquely identified. This precaution is not necessary with an

on-line editor.

1

As part of the process of designing a new editor a study of some existing

editors was made to establish what useful facilities and techniques could

be incorporated into the new editor. The three editors examined in detail

were a machine independent editor MITEM^\ the KDF9 COTAN ammender^"^ and

the UNIVAC 1108 editor ED^ .

MITEM comes in 6 versions graded from simple basic edit commands in the

first version to powerful text manipulation facilities such as file merging

and complex pattern matching in the sixth. Each version is a subset of the

next highest level. The command language for MITEM is, I found, rather

complex. The input/output line buffer concept for keeping the current line

and the edited line was adopted in the new context editor This allows for

maximum manipulation of the current line and makes the backspace and start

facilities simpler to implement (Section 2).

The editor used on the KDF9 computer is the COTAN ammender. This editor is

not machine independent. The command language of the ammender is very much

simpler than that of MITEM and consists of simple mnemonics with the use of

non-alphameric characters only to delimit line or character commands. This

command language was adopted as the base of the new editor's command language.

The COTAN ammender runs in a very suitable on-line environment which gives it

a lot of power. Commands are input to a file which can be altered in any

way before being input to the ammender itself.

The UNIVAC 1108 editor has a very simple mnemonic command language but has

rather limited context editing facilities. It tends to edit the file by

the line numbers rather than the context, although it does have some context

editing facilities. The tab facility and the facility for altering the

field size are useful ideas and are adapted in the new editor The facility

for changing one string of characters for another is a good idea and although

incorporated into the new editor its method of execution is entirely different

(see exchange facility - Section 2).

2

A fuller discussion of current methods of on-line text editing is given in

the paper, on-line Text Editing - A Survey^

From a user's point of view a context editor is only effective if it is

easy to use and understand. The main factor in making an editor easy to

use is the design of the command language. This should consist of simple

and concise mnemonics and have some uniformity with as few restrictions as

possible. The more powerful the commands become the more complicated the

language structure. It is necessary, therefore, to establish a balance

between powerful commands and simple command language.

A good error diagnostic system is also helpful to the user. Errors should

be stated clearly and, in batch mode, appropriate action taken either to

recover or to terminate the editor depending on the error type. In on-line

mode the user determines the action to be taken when an error occurs.

1.2 Portable Software

As many aspects of software are standard on most computers, it seems

rational to develop techniques whereby software written for one computer

can be used on other computers with minimal changes. This would greatly

reduce duplication of programming effort.

High level languages eg Fortran and Algol, go some way towards achieving

portability. In theory, any computer supplied with the required compiler

can execute programs written in the specified high level language. This

is not always the case as there are many differences in high level

language compilers and standards alter from one computer manufacturer to

another. The idea in "Portable Software" is to produce a method of taking

software written for one type of computer and, with minimum effort use it

on another computer.

(2)
The technique used in this project is abstract machine modelling and

3

realising the abstract machine on a real computer using a macro processor.

This is the technique used in MITEM to achieve its machine independence.

An abstract machine is one designed to carry out a specific task - in this

case context editing. The operations and requirements of such an abstract

machine must be clearly defined. Then the abstract machine must be

(4)
realised on a real computer. The Stage 2 macro processor is used for

this task. Each operation of the abstract machine is described as a

macro written in the assembler language of the real computer. When the

macros have been processed the final output is the edit machine ready to

be executed on the real computer.

To execute the editor on another computer the macros will have to be

rewritten in the required assembly language. The portability of the

editor depends on the simplicity of this task. Section 3 describes the

technique of using a hierarchical structure of abstract machines requiring

only the lowest level of machine to be written in the real computer's

assembly language.

1.3 Aim of the Project

The aim of the project is to produce a fast, efficient context editor

which can be easily adapted to run on any computer. The main work is in

the design, coding and implementation of the context editor.

The following sections describe the design, and implementation of the con¬

text editor (TED). Section 6 contains the conclusions, extensions and

improvements to the editor and its portability. For completeness

included in the appendix is a users manual and flow charts.

4

2 COMMAND LANGUAGE DESCRIPTION

The user views the editor as a machine on which he can solve his edit

problems. To do this he is aware of certain functions of the editor. They

can be described as:

a I/O streams

b an edit work area

c a command language.

2.1 Input/Output Streams

The editor, as seen by the user, has four input/output streams. The file

to be edited is read from the input stream and the final edited version of

the file is written to the output stream. These two streams can be attached

to any permanent storage device eg mag tapes disc or cards.

To communicate with the user the editor requires two streams - a command

stream and a print stream. The user inputs his commands via the command

stream which, in batch mode, is usually attached to a card reader and in

on-line mode to a teletype or visual display unit. The print stream is

used for error messages and verification listings. In on-line mode it is

attached to the same device as the command stream and in batch mode it is

normally attached to a line printer.

2.2 Buffers

The editor reads lines of text from the input file and holds them in the

input line buffer (ILB) to be processed. As a line is edited it is

written to the output line buffer (OLB). When the editing on that line

is completed it is written to the output stream. The input line buffer

provides access to the current line and the output line buffer is tem¬

porary storage for the edited line. Each of these buffers has a pointer

to keep track of character editing within the line. The movement of these

pointers is explained in the description of each command.

5

The editor can also be used to store information either from the input

stream or the command stream.

2.3 The Command Language

The command language is the interface between the user and the editor.

Commands consist of simple mnemonics followed by information required

during execution of the command. It seems obvious to say that the command

language should be kept simple while retaining the power of the editor.

In order to achieve sophisticated editing it is necessary to establish the

facilities of the editor and to construct the command language around them

keeping the format as uniform as possible.

The following is a description of the command language and the action taken

by the editor on executing the commands. There are basically two groups of

commands:

a commands operating on lines or characters and

b special purpose commands for extra facilities in the editor eg

looping, exchanging etc.

2.3.1 Line arid character commands

The group of commands is used when individual operations are required on

the input stream. Line commands read directly from the input stream and

write directly to the output stream. Character commands operate within

the line buffers. To distinguish between a line command and a character

command a special character delimiter is used after the command word. The

default delimiters are, a slash indicating a line command and a dot a

character command. If no delimiter is present a character directive is

assumed.

Each command is input on a new line and a line on the input stream
is determined by the size of the input line buffer.

6

In the language description the following mnemonics are used:
n = any positive integer (if omitted 1 is assumed)

string = any string of characters that can be contained in the command line.

Continuation is not permitted

del = a line or character delimeter

ILB = input line buffer

OLB = output line buffer.

2.3.1.1 Facility: copy

Function: The copy facility causes the pointers to be moved to a new

position as specified by the information on the command stream. In processing

a copy command lines may be copied from the input stream to the output

stream, or characters copied from the input line buffer to the output line

buffer. A specified number of lines or characters can be copied, a specified

string of characters can end the copy (either before or after the string) or

the last line in the file or last character in the line can terminate the

execution of the copy.

Format: The mnemonic for copy is C. The information following the

mnemonic C is interpreted by the command analyser and the appropriate

copy action taken.

The following tree shows the build up of the copy command for character

delimiters and the meaning of each. The character delimiters can be

replaced by line delimiters. In this case lines are copied from the

input stream to the output stream.

7

del

■Copies one character from ILB to OLB.

Copies n characters from ILB to OLB.

As above

del string — Copies to after the occurrence of string
(in a line directive - to after a line
beginning with string).

-Copies after last character in ILB

-As abovedel-

del string — Copies to before the occurrence of
string

del

Copies before the last character in ILB

As above.

The find command, mnemonic F, is a special type of copy command. F must

only be followed by a line delimiter and a string.

The mnemonic N is another special case of the copy command

Action: The action of pointers and buffers for each command is shown

below in a series of examples. If during any copy command an end-of-file

condition arises on the input stream copying stops and an error is output.

The mnemonics used in the example are as follows:

IPB

IPA

Input stream pointer before the action has occurred, pointing to
the current line

Input stream pointer after the action, pointing to the new current
line.

OPB Output stream pointer before action.

OPA Output stream pointer after action.

IPPB Input line buffer pointer before action.

IPPA Input line buffer pointer after action.

OPPB Output line buffer pointer before action

OPPA Output line buffer pointer after action

8

Examples of line commands:

a) copy 5 lines

command stream - C5/

Input stream

IPB ►THIS LINE AND
THE FOLLOWING
LINES ARE USED
AS EXAMPLES FOR
COPY INSTRUCTIONS

IPA s-TO THE EDITOR

OPB-

Output stream

THIS LINE AND
THE FOLLOWING
LINES ARE USED
AS EXAMPLES FOR
COPY INSTRUCTIONS

OPA ►

Comments

lines are copied
directly from the
input stream to
the output stream

If the current line held in the input line buffer has been edited it is

written to the output stream before the copy action occurs. Otherwise

the current line is output as one of the lines of the copy instruction.

b) Copy after line beginning "LINES"

command stream - CA/LINE&

Input stream

IPB >-THE LINE AND
THE FOLLOWING

LINES ARE USED
I PA—>-AS EXAMPLES FOR

Output stream
OPB

OPA-

THE LINE AND
THE FOLLOWING
LINES ARE USED

-y

Copy before line beginning "LINES" makes the line beginning "LINES" the

current line and the command stream contains CB/LINES.

c) Copy after last line

command stream - CAL/

This instruction causes the editor to read from the input stream and write

to the output until and end of file (EOF) conditions exists. There is no

current line after this command.

Copy before last line makes the last line of the file the current line.

Examples of character commands

a) Copy 7 characters

9

Command stream - C7 or C7.

ILB

THIS IS THE CURRENT
t +

IPPB OPPA

OLB

THIS LINE IS THE
t t

OPPB OPPA

b) Copy after ENT

Command stream - CA.ENT

ILB

THIS IS THE CURRENT

IPPB IPPA

OLB

THIS LINE IS THE CURRENT
f +

OPPB OPPA

For copy before a string the pointers in both buffers are placed before the

occurrence of the string. If the string does not occur in the current line

it is written to the output stream. The next line becomes the current line

and the search for the string continues.

For the find command the action is the same as above except that the input

line buffer pointer is placed at the start of the line containing the

specified string.

N causes the current line to be written to the output stream and a new

current line read in regardless of the positions of the input line buffer

pointer.

c) Copy after last character in line
J

Command stream - CAL.

ILB

A NEW CURRENT LINE
f

IPPB IPPA

OLB

A NEW SECOND CURRENT LINE
' "f"

OPPB OPPA

a)

Copy before last character places the pointers before the last character

on the current line.

10

2.3.1.2 Facility: delete

For every copy facility there is a corresponding delete facility.

The initial mnemonic for this facility is D. The action on the input

stream or input line buffer is the same as for the corresponding copy

command. The pointers to the output stream or output line buffer remains

unchanged.

2.3.1.3 Facility: insert

Function: This facility inserts character strings into either the output

stream or the output buffer. Another use is to copy lines from the command

stream to the output stream, thus inserting new lines into the edit file.

Blank characters and blank lines can also be inserted using a form of this

command.

Format: The mnemonic for insert is I. The tree diagram shows the different

forms of the insert command.

-switches the editor into input mode

Action: If the command stream contains I and nothing else the editor goes

into input mode. All further input on the command stream is written

directly to the output stream until the occurrence of the command FIN in

the command stream. FIN switches the editor back to edit mode.

Examples of line inserts

a) Insert the line - THIS IS NEW

Command stream - i/THIS IS NEW

string

n

del inserts n blanks into output buffer or stream
(if line del)

inserts n blanks into output buffer

inserts the string into output buffer or
stream (if line del)

11

Output stream Comments

OPB-

OPA-
THIS IS NEW No action on input stream

If the current line has been edited it is output before the new insert

line and a new current line read in from the input stream otherwise the

current line remains unchanged.

b) Insert 4 blank lines

Command stream - IB4/

Output stream

OPPB >LAST OUTPUT LINE,

OPPA v] 4 blank lines

Examples of character inserts

a) Insert the string NEW

Command stream - I.NEW

ILB

THIS IS A^INE
IPPA

& IPPB

b) Insert 5 blank characters

Command stream - IB5.

ILB

A BIT 0Ff FUN
IPPB

& IPPA

OLB

THIS IS A^JSTEWf
OPPB OPPA

OLB 5 blanks

A BIT 0F+
OPPB

When inserting characters into the output line buffer a check is made on

the remaining characters in the input line buffer. If they cannot be

read into the output buffer without overflowing, a warning message is output

and the trailing characters truncated.

12

2.3.1.4 Facility: replace

Function: This command replaces a character string or the current line by

a specified string. It can also be used to replace lines or characters with

blanks. Replace is equivalent to a delete followed by an insert.

Format: The format of the replace instruction is similar to the Insert

instruction as the tree diagram shows. Its mnemonic is R.

del String Replaces a line from input stream or a string
of characters in ILB with the specified string.

Replaces n characters with blanks in input
line buffer.

del-
Replaces n characters in input line buffer or
lines from input stream with blanks.

Action: A flag in the editor is set to indicate a replace command and the

code for delete and insert is executed.

Examples of replacing lines

a) Replace the current line with NEW LINE

Command stream - R/NEW LINE

IPB-
IPA-

Input stream

HERE IS AN

^EXAMPLE OF REPLACE
"DONE BY

THE EDITOR

b) Replace 2 lines with blanks

Command stream - RB2/

Input stream

IPB -

WANT A SPACE?
""HERE' S HOW TO DO

IT, ONE WAY
IPA-

OPB-

OBA-

OPB-

OPA-

Output stream

HERE IS AN

^EXAMPLE OF REPLACE"%EW LINE

Output stream

WANT A SPACE?
->

Examples of replacing characters

a) Replace a string in the current line by APPLE PIE

Command stream - R.APPLE PIE

13

ILB QLB

DO HAVE+PEACH PUEflE DO HAVE+APPLE PIE +
IPPB OPPA OPPB OPPA

b) Replace the next 5 characters with blanks

Command stream - RB5.

ILB

DO HAVE PEACH PURIE

IPPB IPPA

2.3.1.5 Facility: backspace

Function: This facility can only be used on the current line. It can

place the pointers back a specified number of characters or back to a

given string of characters within the input line buffer.

Backspacing of lines with the editor would cause a great amount of input/

output operations. It can be done by issuing a START/Command (^.v.) and

then positioning the pointer to the required line in the input stream. The

editor is most efficient when editing is done sequentially through the

file.

Format: The mnemonic for backspace is B, and the tree shows the format

of meaning of the different backspace commands.

Backspace 1 char

Backspace before or after a string

Backspace n chars

Action: The following examples show the action on the input and output

line buffers and the position of the pointers on the execution of a back¬

space command.

Examples of backspace

a) Backspace 5 characters

OLB

5 blanks
DO HAVE

+ t
OPPB OPPA

14

Command stream - B5.

ILB QLB

Before THISALINE IS TO BE THIS NEW +
execution IPPB OPPB

After THIS^NEW LINE IS TO BE THISf
execution IPPA OPPA

b) Backspace to before the string IS

Command stream - BB.IS

ILB OLB

Before THIS LINfyIS DAFT THIS NEW LINE*
execution IPPB OPPB

After THIS NEW LINE IS DAFT TR

execution IPPA OPPA

Backspacing is done on the edited line.

If the string specified does not exist on the output line buffer an error Message

is output and the pointers and buffers remain unchanged.

2.3.1.6 Facility: storing

Function: Strings of characters or lines from either the command stream

or the input stream can be stored away in a buffer to be referrenced at a

later stage in the edit run.

Format; The mnemonic for the store command is S. The name of the store

area in the store command (NAME) must not contain more than 4 letters. The

tree shows the character commands of the store instruction. For each

character command there is a corresponding line command and lines are read

and stored from the input stream instead of input line buffer.

15

del NAME — Store 1 char from the input line buffer

del —— NAME — Store n chars from the input line buffer

del —— NAME —
— Store 1 char from the command stream

del NAME Store n chars from the command stream.

Action: When storing a string of characters the dictionary of store names

is scanned. If a duplicate name is found and the new string is smaller or

equal to the old one a warning diagnostic is output and the new string is

stored under the duplicate name. If the new string is greater than the old

string a fatal error message is output.

Examples of character storing

a) Storing 5 chars from the input line buffer

Command stream - S5.A1

ILB

WE WISH TO jSTORE SOME RUBBISH
IPPB

Store Area
point

n ame SLze j store area

•+STORE+
Pointer Pointer
before after

(X)

Dictionary
iter in

V. y Si
if/

• ■ +A1, 5, X^
Pointer Pointer
before after

The input line buffer pointer is moved to point after the stored string

b) Storing 11 chars from the command stream

Command stream - SC11.A2 - line 1

THIS LOT OF - line 2

Store area

STORE ^HIS LOT 0Ff

Dictionary
name size,/

t * *■
. . Al, 5, X +A2, 11, Y +

goin£erstore
area

Pointer
before

(Y)

Pointer

after
Pointer
before

Pointer

after

16

When storing lines from the input stream or the command stream two tables

are kept and the actual data is stored in the character store area. The

first table contains the names of the line store areas, the number of

lines and a pointer to the second table which contains, for each line, the

number of characters in the line and the position of the first character in

the character store area.

Examples of storing lines

a) Store 2 lines from the input stream

Command stream - S2/A4

IPB"

IPA-

Input Stream

LINE TO BE STORED
AND THIS ONE

TAB!

A4, 2, A

Pointer
before

Pointer
after

The input stream
pointer is advanced
the given number of lines

TAB 2

17, X, 12, Y
+ +

Pointer Pointer
before after

(A)

A4 = store name

2 = no. of lines
A = pointer to TAB1

17 = fjhars in
X = pointer to store

12 = no. of_chars in
line 2

Y = pointer to store
Character store area

LOT OF ,LINE TO BE STORED.AND THIS ONEt it
Pointer
before

(X)

Pointer

position
(Y)

Final
Pointer
Position

b) Store 2 lines from the command stream

Command stream SC2/A3 - line 1

CA/XYZ - line 2

D5. - line 3.

These lines are stored in the same way as the ones read from the input

stream. Line store names cannot be duplicated; an error message is output and

action taken if a duplicate name is found.

17

2.3.1.7 Facility: loading

Function: Loading into either the command stream or the output stream

strings of characters or lines which have been previously stored with the

commands described in 2.3.1.6.

Format: The format of the load instruction is L NAME, where NAME

identifies an area of stored characters or lines.

Action: If a load command is used in place of a string then the character

store directory is searched for the name and the required string replaces

the load command in the command stream. If the name is not found in the

character store directory a warning diagnostic is output and the command

stream remains unchanged.

Examples of loading strings of characters

Command stream before CA/l A1

after CA/STORE

before CA/L XY

after CA/L XY error output.

Only the character store directory is scanned when a load command is

issued in place of a string. The line store directory is scanned when the

load instruction is in the command stream in place of a command. The lines

from the load area are inserted into the command stream at the point where

the load instruction occurs. As in the character store if the name is not

found an error message is output and the load instruction ignored unless
the editor is in input mode. In this case the instruction is copied
to the output stream.

Examples of loading from the line store area

a) Command stream I
L A4
AGAIN A LINE

FIN

18

after I

LINE TO BE STORED
AND THIS ONE

AGAIN A LINE

FIN

b) Command stream L A3

after CA/XYZ These commands are
D5. now executed in order.

2.3.1.7 Facility: start

Function: This command moves the pointer to the start of the input stream

or to the start of the input line buffer retaining all previous editing

Format: This command has no single letter mnemonic. It consists of the

word START followed by a line or character delimiter.

Action: When START is followed by a line delimiter the rest of the input

stream is copied to the output stream which now becomes the new input

stream.

START followed by a character delimiter causes the rest of the input line

buffer to be copied to the output line buffer and the buffers are swapped.

The input buffer is now the output buffer and vice versa. The output line

buffer is set empty and the buffer pointers set to the start of the defined

field in the new input line buffer.

2.3.2 The special purpose commands

There are several special features incorporated into the editor and the

command language to operate them is described below. The mnemonics for

these commands are different from the line and character commands. They

tend to be full words and are not in any standard format. Only the

command word is scanned by the command analyser The rest of the infor¬

mation in the command is checked during execution of the command.

19

2.3.2.1 Facility: stop

Function.: To terminate the editing run either normally or abnormally.

Format: EXIT is the normal end and CANCEL the abnormal halt.

Action: The abnormal stop is used only in an on-line environment. It

exits from the editor scrapping all new files. The input stream remains

unchanged.

The normal exit from an edit run copies the rest of the input stream to the

output stream, closes and rewinds the files, giving a printed copy of the

new file, if required.

2.3.2.2 Facility: loop

Function: This facility allows a group of commands to be executed a

specified number of times or until an EOF condition exists.
•

Format: The sequence of edit commands is enclosed by the words LOOP and

LOOPEND. LOOP can be followed by an integer specifying the number of times

the loop has to be executed. If omitted, or zero, the loop is executed

until an EOF condition exists on the input stream.

Action: All the statements from the first LOOP to the final LOOPEND are

processed through the command analyser and stored in an area of core

(LOOPCOM) in their coded state. Nested loops are permitted. Each time a

LOOP statement is encountered the LOOP counter is increased by one and

decreased on the occurrence of a LOOPEND. When it has returned to zero the

loop is ready for execution.

On executing the loop commands are read sequentially from LOOPCOM and

executed. Each occurrence of the statement LOOP causes the address of the

next command to be placed on a stack together with the number of times the

loop has to be executed, and on encountering a LOOPEND the top value of

20

the stack is interogated. If the number is non-zero it is decreased by 1

and returned to the stack and the address of the next command retrieved

from the stack. If the nutnber on top of the stack is zero, it is discarded

and the next value investigated. The address of the next command to be

executed is found on the stack. When the stack is empty the loop is

exhausted and further editing commands are read from the command stream.

2.3.2.3 Facility: exchange

Function: This powerful feature allows one string of characters to be

exchanged for another throughout the file while other editing is in

progress.

Format: The command for switching on the exchange is EX followed by two

strings delimited by any non-alphameric symbol.

eg EX*FIRST*SECOND*. The strings can be of varying length. To switch off

the exchange the mnemonic NEX followed by a delimiter and the first string

is used eg NEX/FIRST stops the action initiated by the previous example.

Action: On the occurrence of an exchange command the two strings are

stored in an area in core and a flag set to indicate exchange is in progress.

Each line input to the input line buffer from the input stream is scanned

for the occurrence of the first string and it is replaced with the second

before any further editing is done. There can be up to six exchanges
simultaneously in an edit run but it must be pointed out that the use

of exchange slows the editor down considerably as each input line
has to be scanned once for every exchange command.

Each time a NEX is issued the exchange area is checked If there are no

more "live" exchanges in progress the exchange flag is unset and lines

from the input stream are no longer scanned.

21

2.3.2.4 Facility: sequence

Function: This feature sequentially numbers the input file in the last

eight positions of the defined field. These eight positions are split into

two fields of 4 characters each.

Format: The sequencing command is of the form SEQ No!, INC1 , No2, INC2.

where No! - is the starting number of the first 4 positions in the
field

INC1 - is the increment for this field

No2 - is the starting number of the second field

INC2 - is the increment of the second field.

If either of the increments is zero the corresponding starting number can

be a string of up to 4 alphameric characters right justified within the

field. If NO! and INC1 are both zero the 8 character field is treated as

one field with starting number No2 and increment INC2.

Action: All further input from the input stream is sequenced according to

the information on the command stream.

If the defined field is less than 8 characters long the sequencing is

truncated and a warning dianostic written out. The sequencing command is

executed to completion before the command stream is read again, unlike the

exchange facility.

2.3.2.5 Facility: field defining

Function: The field of the input line buffer to be edited can be defined

using this instruction. By default it is from 1 to 80 but, to save time

in scanning the complete field for specified strings it can be defined

smaller. The field size can be changed any time during an edit run.

Format; The format of this command is shown below in the tree diagram.

22

FIELD-space

Redefines the end of the field
start of field remains unchanged.
Redefines the start of field. The
end remains unchanged.
Redefines the field n is start

n^ is end (NB Ng]
Action: This facility sets pointers in the input line buffer to mark the

beginning (SFP) and end (EFP) of the field which is to be edited. When a

field defining command is given defining EFP only, the current value of

SFP must be smaller than the new value of EFP. If not the command is

ignored and the previous values of SFP and EFP are unchanged. Similarly a

new value of SFP must be less than the current value of EFP, and if both

are programmed the new SFP must be less than the new EFP

2.3.2.6 Facility: tab

Function: Enables spaces to be inserted into an input string by defining

a tab character and various tab stops.

Format: The mnemonic for this feature is T followed by a space, the tab

character and then a string of tab stops in ascending order separated by

commas. T followed by two question marks switches off the tab facility

Action: This facility causes spaces to be inserted into the command stream

within a defined string. Tab can be changed by a further tab command Tab

stops not being altered can be missed out in the new tab statement;

eg T #, 10, 20, 30, 40, 50, 60 sets up tabs in columns 10-60 in steps of

the statement T 15,,, 45,, 65 sets up tabs in columns 15, 20, 30, 45, 50

Example in use of tabs

Command stream T $, 10, 20, 30, 40 4 is the tab character.
I

1 j$2$3$4i65

123JS4
FIN

T??

It can be any of the following
* " / 3 £ & • ()? + -

23

Col 1 Col 10

is equivalent to I
1 2

123 4
FIN

After tab has been switched off by a T ?? command tab characters within a

string are treated as part of the string.

2.3.2.7 Facility: delimiter changing

Function: This feature can be used to change the line delimiter (/) or

character delimiter (.) to any other non-alphameric character.

Format: The line delimiter is changed by the command LINE followed

immediately by the required character eg LINE" makes the new line delimiter

an *. The mnemonic CHAR does the same for a character delimiter change.

Action: The new delimiter is set up in place of the old one and remains as

the delimiter until another LINE or CHAR command is programmed or until the

end of the edit run.

2.3.2.8 Facility: repeat last command

Function: Causes the previous command to be executed again.

Format: REP is the mnemonic for this command.

Action: The details of the previous command are retrieved and immediately

re-executed without initialising any variable.

2.3.2.9 Facility: display

Function: This facility can only be used in an on-line mode with a visual

display unit. It enables the user to manually alter 12 lines of the input

stream on the screen and write them onto the output stream using a single

command.

24

Col 20 Col 30 Col 40

3
3

4
5

Format: The single command is the word DISPLAY.

Action: DISPLAY causes 12 lines from the input stream to be read and

written to the display unit. These lines can then be altered in any way

by the user and re-entered. This time they are read from the display unit

and written out on to the output stream. If there are less than 12 lines

in the input stream before an EOF marker occurs the number of lines output

to the unit is counted and this number of lines read in again. In effect,

DISPLAY deletes 12 lines from the input stream and inserts 12 new lines to

the output stream.

25

3 THE ABSTRACT EDIT MACHINE

3.1 Abstract Machines

The technique employed to realise the editor on a real computer is that of

(1)
a hierarchy of abstract machines . At the top of the system of abstract

machines is the edit machine designed solely to solve the problem of con¬

text editing. The basic operations of this machine are expressed in a high

level language which is mapped on to the next level of abstract machine and

so on down the line of abstract machines. The lowest level of abstract

machine is the base for mapping on to a real computer At this level the

abstract machine is computer dependent, but since all higher level abstract

machines are not dependent on the real computer only minimum effort is

required to finally realise the top level of abstract machine on various

real computers.

Efficiency of the system can be improved by mapping a higher level of

abstract machine directly on to the real computer. This reduces the

portability of the system. Therefore the easier it is to map the lowest

level of abstract machine the more portable the software becomes. As

efficiency is the primary consideration in this project there are only

two levels of abstract machines in the hierarchy. The abstract edit

machine functions are defined in a high level language in terms of the

next level of abstract machine. This level is mapped directly on to the

real computer. Thus the editor is not particularly portable but is very

efficient.

3.2 Mapping Method

Macro processing is the method used to map one level of abstract machine

on to the next. This technique allows the user to define the functions

of the top level of abstract machine in a high level language. The final

realisation of this machine on the real computer is in the machine

language of this computer. Thus the user can tailor the assembly language

of the real machine to meet the requirements of the abstract machine at a

higher level.

A macro is written for each basic operation of the highest level of

abstract machine - in this case, the editor. When these macros are

processed the final result is the assembly language instructions for the

real computer to execute the required operations.

(4)
The macro processor used in this project was STAGE 2 This is a

powerful general purpose macro processor which is itself highly portable.

The instructions for the editor form the top level of abstract machine and

the expansions of each of these instructions in assembly code is the

lowest level of abstract machine. Hence the realisation of the abstract

edit machine on the real computer.

A specific advantage of using this method is that changes to the definitions

relating the abstract machine to the real computer are very easily

implemented. Thus it is easy to change the lowest level of abstract

machine to suit various computers. The greater number of levels in the

abstract machine hierarchy the more complicated the macros become. STAGE 2

is a very slow processor and requires a large core store, but the ease of

changing the lowest level of the macro to suit various computers far out¬

weighs this disadvantage.

3.3 The Design of the Edit Machine

The initial stage of the design of the abstract edit machine is to deter¬

mine the requirements of the machine. To do this it is necessary to

establish exactly what the functions of the machine are and how these

functions should operate.

The initial requirement for any machine is a starting device. On the edit

machine this initialises the editor and makes it ready to accept commands.

27

Similarly the stopping device switches everything off and closes the machine

down.

The edit machine needs a memory to keep track of pointer positions, variables

and save areas for saving data to be retrieved at a later stage in the

editing. In addition to the memory the editor requires two buffers One

of these is used to hold the current input line of the file being edited

and the other holds the updated output line. Pointers are used to keep

track of the positions of characters in these buffers and a pointer moving

mechanism is available on the edit machine. The editor requires a series

of switches to indicate the existence of certain conditions eg is print

on or off? is exchange in operation? etc

A branching facility is another feature of the edit machine. This feature

enables the machine to cope with conditional and unconditional branches

The machine determines the next operations if certain conditions arise eg

it must be able to branch back and read in another command on the com¬

pletion of the previous command or if the previous command was an exit

command it must branch to the closing condition

Another feature of the machine is a comparing facility. This enables it

to compare two strings of characters and take appropriate action on

whether a match is found or not. Associated with the compare facility is

the searching mechanism. This is used to search for characters or numbers

in the command stream and store them in memory for future use by the editor

Input/output channels are an obvious requirement for any machine. The

editor uses two input streams, one output stream and a general input/output

work area. One of the input channels is for inputing commands to the

editor. This is either a card reader or similar device for batch editing

or a visual display unit for on-line editing. The other input channel is

28

for the edit file and is usually disc or magnetic tape. The output file is

for the new edited file. The work file is a fast access file used to hold

the partially edited file during the edit run.

The final requirement of the abstract edit machine is a set of instructions

to operate it. Each basic editing operation is activated by a specific

instruction and by executing all instructions the abstract edit machine is

realised on the real computer.

3.4 Macro Descriptions

One macro is written for each instruction of the abstract machine and when

all these macros are expanded the editor can be run on the real computer.

The macros used in the edit machine can be discussed in three categories.

a Utility macros by the macro processor,

b Special purpose macros for the edit machine, and

c Instruction macros for the edit machine.

3.4-1 Utility macros for the macro processor

There are four macros used only by the macro processor in the expansion of

the instruction macros.

The instruction macros are fairly general and if certain parameters are

input to the macro which are non-standard then it may be necessary to

skip some lines within the macro body. In order to do this macros for

setting the skip counter are included into the program. One macro sets the

skip counter to a given value if two parameters are equal, another sets it

if they are not equal and the third sets it unconditionally

The fourth utility macro, when called, indicates to the macro processor to

halt all processing. It always comes at the end of a macro expansion run

29

Another utility macro is used to copy coding direct from the input to the

macro processor without expanding it. It is necessary to have such a macro

as portions of the editor have not been divided up into individual macros

eg the command analyser.

3.4.2 Special purpose macros for the edit machine

As certain lines of coding are only used once during an edit run, they are

included in several macros and only called up once during the macro expansion

run. These are special purpose macros for the edit machine and each one is

described in more detail.

a) START

This macro is the first one to be expanded. It causes the edit machine to

be set ready to receive editing commands from the input stream The first

line of the file to be edited is read in and set up and the current input

line.

Different computers require different start procedures. For the IBM 360/44

the start routine sets up external addresses, base registers etc.

b) STOP

This switches off the editor and returns the computer to the state it was in

before the edit run began.

c) INPUT

This macro is required for every input operation. An input instruction

(READ IN TO A) causes a branch to this area of code and it sets up the stream

from which the data is to be read and the area in memory where the data is

to be inserted. It must check for an end-of-file condition and set the

appropriate flag. In the case of the IBM 360/44 implementation this macro

causes a branch to a fortran subroutine to do the actual reading operation.

30

d) OUTPUT

Similarly this macro is used for all output operations. It has an extra

flag to indicate whether the output has to be output to the print stream

as well as written to the output stream. Once the output line buffer has

been output this macro sets it to blank for the next editing operation. As

in the case of INPUT a fortran routine is called in the IBM 360/44 implemen¬

tation .

e) POINTERS

When a new line from the input stream is read in this macro is used to set

the input line buffer and output line buffer pointers to their initial

starting value. It narrows down the input line buffer to the required edit

field. It also sets a pointer to point at the last significant character

in the input line buffer.

f) MOVES

A move instruction causes the program to branch to this macro. It causes

characters to be moved from one core location to another. The address of

the core locations and the number of characters to be moved are set up by

the move instruction before branching to this macro.

g) FETCH NAME

This macro fetches a name from the command area and places it in an area

in memory. It is used when the command stream contains a load instruction.

h) FETCH NAME FROM STRING

This works in the same way as the previous macro except that it fetches the

name of the load area from the memory instead of from the command stream.

It is used when the load instruction is part of the input string of a

command.

31

i) NUMBER

This macro is used when there are numbers to be decoded on the command

stream. The command to find a number (FIND NUM) branches to this area of

code and decodes the number on the command stream and stores it as a binary

integer in memory for future use. If there is not an integer on the command

stream an error is output except in the case of a sequencing command where

either a number or a string of alphameric characters is expected.

j) NUM NOT FOUND

In a sequencing command when, instead of an integer, a character string is

present in the command stream, this macro deciphers the string and stores

it in core. It checks the number of characters in the string and outputs an

error if it exceeds the maximum allowed, or space fills the string if there

are less than the maximum number of characters.

k) SWAP UNITS

After a start command has been issued it is necessary to swap around the

file so that the present input file becomes the work file and the present

work file becomes the new input file, except after the first start command

when the work file becomes the new input file. For the IBM 360/44 implemen¬

tation a call to a fortran subroutine is activated to perform the required

operations.

1) TABSTORE

If the tab character has been set, each string input from the command

stream must be scanned for the occurrence of the tab character and the

string space filled accordingly. This macro is called every time a string

of characters has been input, to check for tabs and expand the strings.

m) RESET

When the command stream encounters an exit instruction this macro resets the

32

the files. It outputs the final edited file, scrubs the work file and

closes all files. In the case of the IBM 360/44 implementation this macro

calls a fortrart subroutine to sort out the files.

n) SPACE TEST

This special purpose macro is used when copying before a line beginning

with a specific string. It tests if the string contains significant spaces.

If it does the compare test is done only at the start of the input line

buffer. If no significant spaces are present on the input string significant

spaces on the input line buffer are ignored.

o) FIND LAST CHAR

To determine whether an insert can be placed within the defined field limits

it is necessary to find the length of the character string in the

input buffer. This macro scans the input string from the end, looking
for the first non-blank character, thus finding the length of the input
string.

p) CONSTANTS

This macro sets up all the storage and constants required by the editor.

It defines the buffers, save areas, pointers, initial read/write unit numbers,

flags and tables.

q) DUMP

This is a debugging macro and is used only by the systems programmer It

enables the memory of the edit machine to be dumped out at specific points

during an edit run.

r) DUMPCHECK

This macro is used in conjunction with the DUMP macro described above It

checks if a dump is required and if so causes a branch to the macro DUMP

s) DISPLAY

If visual display units are available to the editor this macro causes a

33

screenful of lines from the input stream to be displayed, manually edited

and then read back in again from the display unit to the output stream. It

firstly deletes the displayed lines from the input stream and then inserts

the new lines from the display unit into the output stream. In the IBM/360 44

implementation this is done by a call to a fortran subroutine.

3.4.3 Instruction macros for the edit machine

Each basic instruction of the edit machine is defined by a macro. Some of

these instructions use parameters to be input to the macro (eg in the addition

macro A = B + C, A, B and C are the parameters). There arc ten groups of

instruction macro, each of which is described in fuller detail below.

a) Arithmetic macros

There are three arithmetic instruction macros. The first causes one area

of core to be set equal to another area of core, a constant or a literal.

The second is an addition macro and the third a subtraction macro

i A = B (Parameters A and B). The contents of core location B

are stored in location A. B can also be a constant or a literal.

ii A = B + C (parameters A, B and C). B and C are added together

and placed in core location A. If any of the parameters is REG then

the contents of register 1 are used instead of the variable.

iii A = B - C (parameters A, B and C). This subtracts C from B and

puts the result in location A. Again, as above, the contents of

register 1 are used if the parameter is REG.

b) Character moving macros

There are two macros for moving a string of characters from one core location

to another. The first moves a specific number of characters from core

location to another core location and contains a flag to indicate whether

34

the pointers to the specific core locations have to be retained. Its form

is MOVE X CHARS FROM A TO B, FLAG. The parameters are X, A, B and FLAG

This macro sets up the parameters X, A and B in preparation to branching

to the special purpose macro MOVES which does the actual operation of

moving the characters. On return from MOVES the flag is tested and if

the pointers have to be kept it saves their values depending on A and B

eg if A is the input line buffer the pointer value must be set to the

input line buffer pointer etc.

The second move macro moves blanks into a specified core location. Its

form is MOVE BLANKS to A, where A is the parameter.

c) Register instruction macros

The general registers are used as indices to the various store areas

required by the editor. It is, therefore, necessary to have a set of

macros to manipulate these registers.

i REG A = B (parameters A and B). This macro sets general register

A to the contents of core location B or the value of B if B is a literal.

ii B = REG A (parameters B and A). The contents of general register

A are placed in core location B.

iii GREG A + B. Adds the contents of B, or if B is a literal, the value

of B to general register A.

iv GREG A - B. Subtracts the value of B from general register A.

v ADDRESS REG A = B. The address of core location B is placed in

general register A.

35

d) Branching and associated macros

There is one unconditional branching macro and five conditional branching

macros.

The unconditional macro has the form JUMP TO A. Where A is a label set up

by the associated label marking macro LABEL A.

The conditional branching macros are as follows:

i If A rel B JUMP TO C (parameters are A, rel, B and C). If the

relation (rel) between A and B is true then a branch to C is effected.

C has been set up by the label macro described above.

ii If A JUMP TO B (parameters A and B). If the variable A has been

set to the value true then a jump to label B is made, otherwise

processing continues sequentially.

iii If NOT A JUMP TO B (parameters A and B) This is the opposite

of the above macro. A branch to B is made if A is set to false.

iv If LOAD A ELSE B (parameters A and B). This macro tests the

input string and if it is a load instruction branches to label A

otherwise it branches to label B. If A has the value CONTINUE then

processing continues with the next instruction instead of branching.

v BRANCH ON REG A TO B (parameters A and B). This is a conditional

looping macro. It tests register A and if it is non-zero branches to

label B at the same time reducing register A by one Register A must

have been previously set to the loop count.

e) Comparison macro

In order to compare two strings of characters in core and take action if a

match is found, the macro COMPARE A WITH B IF FOUND C is used. This compares

a string of characters in A with a buffer B and causes a branch to label C

36

if a match is found. The whole of buffer B is scanned for the occurrence

of the string except when searching for a line beginning with a string of

characters. In this case if no match is found on the first try the program

continues sequentially.

f) Finding macros

There is a macro for retrieving integers from the command stream. It is

called by the instruction FIND NUM. and causes the program to branch to the

macro NUMBER to decode the integer from input format to binary.

The other finding macro retrieves a specific character from the command

stream. It is used in the case of the tab instruction to check for the

tab character and is called by FIND CHAR.

g) Input/output macros

The macro for reading data into a specified area from a specified unit is

called by READ IN TO A, where A is the required input area. Before calling

this macro it is necessary to establish in a variable in memory the unit

number of the stream where the data is held. This macro calls up the

special purpose macro INPUT.

Similarly to output a record in memory the macro WRITE OUT A, where A is

the position in memory of the record to be output, is used. The unit number

of the stream to which the data is to be written should have been previously

established. This macro branches to the special purpose macro OUTPUT

h) Checking for tabs.

When a string has been input from the command stream it must be checked

for the occurrence of the tab character and expanded accordingly. The

macro TAB CHECK causes a branch to the special purpose macro TABSTORE.

37

i) Setting initial pointers.

The macro SET POINTERS is used when a new record has been input from the

edit file stream. It calls the special purpose macro POINTERS to set up

the initial positions of the pointers to the input and output line buffers

and also the pointer pointing to the last significant character in the

line.

j) Swapping core areas.

Since buffers are used by the editor it is necessary to be able to swap

them around and the macro SWAP A AND B (A and B are parameters) causes

buffer A to become buffer B and vice versa.

38

4 THE COMMAND ANALYSER AND ERROR HANDLING ROUTINE

The command analyser and error handling routine are two separate entities in

the editor. They are not mapped from an abstract machine but are substituted

directly into the editor.

4.1 The Command Analyser

The command analyser accepts commands from the command stream, analyses

them and if the commands are synactically correct causes a branch to the

appropriate executing routines in the editor.

The analyser can be broken down into six logical stages. If an error occurs

at any one stage control is passed to the error handler and analysing is

terminated. The next command is then fetched from the command stream.

Fig. 1 is a general flow chart of the analyser, indicating the six stages

described more fully later.

The command is input to the command string from the command stream. The

string is scanned to find the first non-alphabetic character. The alphabetic

characters are hashed to produce a unique number for each command. This

number indexes the hash table which contains indexes to the command table

(COMTAB). Using COMTAB the syntax of the command is checked and if correct

an integer is allocated to the specific command. This integer is the command

number.

Each command word is terminated by a specific delimeter. There is a set of

tables which matches the allocated command number with the specified delimeter.

Only those commands containing the correct delimeter are passed to the next

stage.

In the final stage of analysing any further information that is required is

extracted from the command string and stored for use during the command

39

delimiter
used

branch to executing
add re5s

Fig. 1

40

execution eg a copy n lines instruction requires the integer n to be stored

for future use. Similarly strings and names are stored from the command

string. At this stage a flag is set to indicate whether the command is a

line or a character directive.

If the required information does not exist in the command string or if

there is an excess of information an error message is printed and

further processing of the command terminated.

Finally the analyser causes a branch to the appropriate routine to execute

the command. This is done by the selective branching technique. The

addresses of the routines are set up in a table and the command number

indexes this table, thus obtaining the correct branch address.

The command analyser is only re-entered when the previous command has been

completed and more commands are present in the command stream.

The following is a detailed description of each stage in the command analyser.

4.1.1 Stage 1

The first step is to fetch a command from the command stream. The unit

number of the command stream and the area of memory where the command will

be stored are passed as parameters to the input routine. After a successful

read the analyser continues into stage 2. If the read is unsuccessful ie

an end-of-file condition exists on the command stream the editor is

abandoned, and no files except the input stream are retained

4.1.2 Stage 2

The command word is picked up from the command string and hashed according

to a specified algorithm. If a valid hash number is generated stage 3 is

entered otherwise the error handler outputs an error message and

processing is discontinued.

41

The hashing technique causes a unique hash number to be generated for each

command. The hashing method used is to "exclusive or" the binary bit

pattern of each letter in the command word and then "exclusive or" the

final accumulative result with the number of characters in the command

word x 2^. The final result is reduced to an integer less than 90 by

subtracting 113 if it lies between 100 and 200 and 220 if it is greater

than 200. Negative hash numbers and ones greater than 90 are invalid.

The hash number indexes the hash table (TABLE) which contains pointers to

the command table (C0MTAB). C0MTAB contains information used to check the

syntax of the command. If an entry in TABLE is negative there is no

corresponding entry in C0MTAB and the command is invalid.

4.1.3 Stage 3

The analyser now checks the syntax of the command by using COMTAB. This

table contains the number of letters in the command, the command word and a

number associated with the command type. If a syntax error occurs a

message is written to the print stream via the error handler and the next

command fetched. Otherwise the number allocated to the command type is

picked up from COMTAB and stage 4 entered.

4.1.4 Stage 4

This stage examines the command delimeter and searches the delimeter tables

to determine if the specified character is allowed. eg any copy statement

must be followed by a line or character delimeter. If followed by any

other character an error message is output. Similarly the command

EXIT must be followed by a space. EXIT/ would cause a syntactical

error.

By examining the delimeter the command type is established. If any

character other than a line or character delimeter follows the command

word it is one of the special purpose commands. If the command is a line

or character directive then the appropriate marker flags are set up.

4.1.5 Stage 5

Any additional information in the command string is dealt with at this

stage. The information is retrieved from the command string and stored in

memory for further use during the command execution.

The type of information eg integers or strings, is determined. The command

number is matched against the appropriate table to ensure that the infor¬

mation present is required by the specified command.

If the command is part of the body of a loop a table is scanned to check

that the given command is valid within a loop.

The exchange command is treated as a special case. The two strings are

joined together in one area of memory and two variables hold the lengths of

the individual strings.

If the required information does not exist in the command string or if there

is an excess of information the error handler outputs the appropriate error"

message and processing of the command is halted.

4.1.6 Stage 6

At the final stage of analysing the address of the coding to execute the

command is retrieved from the table BRANCH by using the command number to

index the table. A branch to the specific address is effected and the

command executed.

Before branching strings of characters contained in the command are

examined and expanded if TAB is in operation. If the string contains a

load instruction the actual string is loaded from the store area

Commands that are part of a loop body are not executed but stored in the

loop command area to be executed when the loop is completed

43

Flowcharts 1-6 in Appendix II give detailed descriptions of each stage in the

command analyser.

By using this method of command analysing it is relatively simple to add

more commands to the editor language. Any new command must have a unique

hash number less than 90. The COMTAB indexing table must contain a positive

entry when indexed by the hash number. This entry is the next available

position in COMTAB. Details of the command must be inserted into COMTAB

and into the appropriate diameter tables depending on the form of the new

command.

The following diagram shows the link up of the tables.

hash number

points to

TABLE

points to

COMTAB
}

Outputs a command number
which references

■

commands no

requiring strings strings

Fig. 2

DELIMETER TABLES

no

space space number

44

4.2 Error Handling Routine

The error handler allocates an error number to the error condition and calls

a Fortran subroutine. This routine writes an appropriate error message to

the print stream and control returns to the error handler.

There are two types of errors - fatal and warning. The fatal error causes

processing on the current command to be terminated. After a warning

diagnostic^control is returned to the executing routine and processing
continues.

4.2.1 Warning errors

There are only 5 warning diagnostics:

a) If a copy n command overflows the output line buffer, n is reduced to

the maximum value allowed and processing continues.

b) If an insert command causes the output buffer to overflow characters

at the end of the line are lost.

c) If a duplicate character store name is used the old name and store

are overwritten, the new string of characters must be less than or equal

to the old one. A fatal error message is output if the second string
is greater than the firat.

d) If the defined field is smaller than 8 positions and sequencing is

required the sequence numbers are truncated.

e) If a string contains a load command and the name is not in the

character or line store dictionaries a warning diagnostic is given and

the load command treated as an input string.

4.2.2 Adding error messages to the system
It is simple to insert new error messages into the editor. A label is

45

allocated the new error message number. At this label the error

message number is stored in memory. The handler then branches to the

error routine which calls the Fortran subroutine. The new error

message must also be inserted into the Fortran subroutine.

The following diagram shows the flow through the error routine.

CONTINUE PROCESSING

Fig. 3

46

5 IMPLEMENTATION OF CODE

This section describes the action taken during the execution of certain edit

commands. The code generated by the macro processor is in the IBM 360

assembler language. To edit a file this code is executed on the IBM 360.

Chapter 2 describes the action of the editor for simple text editing commands

Two general registers are used to hold the relative addresses of the input

line buffer and the output line buffer. Using this technique buffer swapping

is achieved by swapping only the contents of the two general registers. Two

pointers IPP and OPP are used to keep track of editing within the input line

buffer and output line buffer respectively. The edit field is bounded by the

start field pointer (SFP) and the end field pointer (EFP). A pointer (EP) is

used to mark the last significant character on the input line.

This section describes the implementation of facilities in the editor

which do not involve line and character editing.

5.1 Loading and Storing Facility

This facility allows strings of characters or a series of lines to be

stored in the editor memory and retrieved at a later stage by the user.

All stored characters, including these in line store commands, are held

in the character store. A pointer (CHP) is used to mark the next available

position in the character store. For storing character strings a character

name dictionary is required. This dictionary contains the name of the

store area, the number of characters in the stored string and a pointer to

the position in the character store of the first character in the string.

Similarly for storing lines a line name dictionary is used. This contains

the name of the store area, the number of lines to be stored and a pointer

to a line position table. This table contains, for each stored line, the

number of characters within the line and a pointer to the character store.

47

5.1.1 Storing characters

Characters can be stored from either the input line buffer or the command

stream. The command number indicates which input stream is used. The

number of characters in the store string and the name of the store area

are found from the command analyser and inserted into the character name

dictionary along with a pointer to the next available position in the

character store. The specified number of characters are then moved from

the appropriate stream to the character store. If the characters are stored

from the input stream they are copied to the output stream and the pointers

advanced accordingly. Tab characters are not expanded at this stage If

a duplicate store name occurs, the old store is overwritten provided the

new string can be contained in the space of the old string. Otherwise a

fatal error message is output and the store command ignored. Fig. 4
is a diagram of the dictionary and store for the given commands.

Command stream

S7.A1
SC5.A2
XYZ12

Input stream

STORE X YZ

Output stream

STORE X

Pointers indicate positions after the command has been executed.

S Store from input stream

SC Store from command stream.

character name

dictionary
A1 A2

character store

Position for next entry

CHP

Fig. 4
The number of labelled store areas allowed in an edit run is restricted by

the size of the dictionary and the total number of characters stored is

48

restricted by the size of the character store.

5.1.2 Storing lines

Lines for storing can be input from either the input stream or the command

stream. As in character storing the command number determines the input

stream. The store area name and the required number of lines are passed

from the command analyser and inserted into the line names dictionary along

with a pointer to the next available position in the line position table.

Lines for storing are then read from the appropriate input stream Trailing

blanks are ignored and the number of significant characters in each line is

entered in the line position table with a pointer to the next available

position in the character store. The significant characters are then moved

to the character store.

Because of the complexity involved in differing line lengths duplicate

line store names cause a fatal error and the command is ignored.

Fig. 5 shows the table structure of storing lines.

Input stream Output streamCommand stream

S4/A3
SC2/A4
CB.ABC

I.PQRST

FIRST LINE OF
STORE.
LOTS MORE
LINES FOLLOW

THIS ONE

FIRST LINE OF
STORE
LOTS MORE
LINES FOLLOW

line name

dictionary
A3 4 ° A4 2 8

rh

line position
table

next available position

13 12 25 31 12 40 52 58

next available position

character
store

s T 0 R E X X Y Z 1 2 F I R S T L I N E 0

F S T 0 R E L 0 T S M 0 R E L I N E S F 0

L L 0 w C B A B C I P Q R S T

Fig. 5

49

The number of line store areas is restricted by the size of the dictionary

and the total number of lines stored by the size of the line position table.

The size of the character store restricts the total number of characters in

both line and character store commands.

5.1.3 Loading character store areas

A character load occurs when a load instruction is encountered in the

command stream in place of an input string eg CB/L A1 The character

names dictionary is searched to find the specified name The length of the

stored string and its position in the character store are picked up from the

dictionary and the characters moved from the character store to the command

stream: i.e.a .-command CB/L A1 now becomes CB/STORE X. If the tab facility

is switched on the string is expanded accordingly except in the case of the

exchange command (q.v.).

5.1.4 Loading line store areas

A load instruction in the command stream by itself eg L A3 causes the line

name dictionary to be searched. The lines are then located in the character

store via the line position table. When the editor is in input mode the

required lines are read directly from the character store to the output

stream. Otherwise a flag is set indicating to the editor that further

commands are read from the store area instead of the command stream

Commands are read and executed in this way until the named load area is

exhausted.

In both line and character loading, if no match is found in the appropriate

dictionary for the supplied name, a warning error message is output

and the load instruction treated as an input string.

5 2 Looping

The looping facility is used to execute a sequence of commands a specified

number of times or until an end-of-file (EOF) condition exists on the input

50

stream. All commands between the first loop start command the corresponding

loop end command are stored in a loop command area (loopcom) in the editor

memory. This area is indexed by a pointer (lcp).

When executing nested loops two stacks are required. One holds the return

address of each nested loop and the other holds the number of times each

nested loop has to be executed. The function of these two stacks is

described in Section 5.2.2.

5.2.1 Storing loop commands

When a loop command is encountered on the command stream a flag (LPSET) is

set to indicate that further input on this stream has not to be executed

but inserted into the loop command area Each command within the loop is

processed through the command analyser and, if syntactically correct, is

stored in its coded form in the loop command area This form consists of

the command number, the command type (a line or character command) and any

further information required when executing the command A hash sign (rfct)

is used to mark the end of each command in the loop command area eg the

simple loop

LOOP 5
04/
I/NEW LINE IN
05.
I. ABC
L00PEND is stored in the loop command area as follows:

j2jp|05|t4|(j)4| 1| 04 (t=t| 1 7| l| 1 j| n| e| W| |l| i|n| eJ \ l| n (ft) 04|o| 5^1 17| 0| 3| A| B| C| 211 $
LOOP C Line String character loopend

command length marker

For nested loops a counter L00PCNT is used. This is increased each time a

nested loop is encountered and decreased on the occurrence of a LOOPEND

statement. When the count returns to zero the loop is "closed" and ready

for execution

Load instructions and strings containing the tab character are not expanded

51

at this stage. They are copied directly to the loop command area and

expanded during the execution of the loop.

5.2.2 Execution of the loop

The execution phase is entered immediately after the closing LOOPEND

statement has been encountered. Commands are read from the loop command

area and executed. The loop execution routines cause a branch to the

command analyser where strings within the command are checked for tab

stops or load instructions. These strings are expanded at this stage.

A flag is set to indicate that commands are to be input from the loop

command area instead of from the command stream. A pointer (LPCOMP) marks

the position of the next command in the loop command area Details of

each command are read from this area and set up as they would have been

from the command analyser. A branch to the selective branching section of

the command analyser is effected. When the command has been successfully

executed control is returned to the loop execution routine and the next

command read from the loop command area.

For all looping, nested or not the address in the loop command area of the

first instruction of the loop is placed on top of a loop address stack

(LOOPSTK) and the number of times the loop has to be executed is placed on

top of the loop number stack (LOOPNO) No branching to the command

analyser is effected. This procedure occurs each time a loop n statement

is encountered. When a LOOPEND statement occurs the top value of the loop

number stack is examined. If this is non-zero it is decreased by one and

replaced on the stack. The address in the loop command area of the first

command within the current loop is picked up from the top of the loop addre

stack and commands executed from this address. When the top value of the

loop number stack becomes zero it is discarded along with the corresponding

entry in the loop address area The next entry in the stack is examined

The procedure continues till the loop number stack is empty This implies

that the loop has been completed The loop command area is then set empty

and the flag LPEX unset indicating that subsequent commands are now to be

read from the command stream.

The number of nests permitted within a looping structure is limited by the

size of the loop address stack and the loop number stack. The total number

of commands within the loop body is restricted by the size of the loop

command area. However, it poses no problem to alter the size of these

areas.

5.3 The Exchange Facility

This powerful feature of the editor allows one string of characters to be

replaced by another while other editing proceeds.

Both strings on the exchange command are stored in the exchange character

area. The exchange table contains, for each exchange instruction, a pointer

to the start of the exchange string in the exchange character area, and the

lengths of both strings. When the exchange facility is in operation every

input line is scanned for the occurrance of the first string which when

found is replaced by the second exchange string.

eg the commands EX/AND/OR/ and EX/NOT/NEVER/ cause the tables to be as

follows:

exchange table 0 3 2 5 3 5

.. ^
exchange character
area

A N D 0 R N 0 T N E V

E R

Individual exchanges can be switched off during an edit run A negative

entry in the pointer position in the exchange table indicates that this

exchange is no longer operative.

eg the command NEX/NOT will produce in the exchange table:

032-135 ■

5.3 1 Storing exchange commands

An exchange command causes the fl«Lg EXCH to be set "on" This flag

indicates to the editor that whenever a new line is read from the input

stream it must be checked for the occurrence of exchange strings and

altered accordingly.

When an exchange command has been successfully processed by the command

analyser both strings are joined together in the area STRING, the variables

STLEN and STLEN2 hold the respective string lengths The strings are then

examined for the occurrence of load instructions and the flag XLD set as

follows:

XLD = 0 if neither string is a load instruction
eg EX/AND/OR/

= 1 if the first string only is a load instruction
eg EX/L Al/XYZ/

= 2 if the second string only is a load instruction
eg EX/ABC/L A3/

= 3 if both strings are load instructions
eg EX/L Al/L A2/

= - ve when the exchange has to be switched off (see Section 5.3.3)
eg NEX/AND.

If XLD is 1, 2 or 3 the strings are expanded to contain the stored

characters. The new values of STLEN and/or STLEN2 are saved

The next step is to set up in the exchange table the values of the pointers

(XCP) to the next available position in the exchange character area

(STLEN and STLEN2) The strings are stored in the exchange character area

54

and XCP updated accordingly.

The number of exchange commands in an edit run is restricted by the size

of the exchange table, and the total number of exchange characters by the

size of the exchange character area. Switching off exchange commands does

not create extra space except when all exchanges have been switched off.

When this occurs the exchange table and the exchange characters area are

set empty.

5.3.2 Operating the exchange

In order to discontinue an exchange operation an NEX/string command is issued

by the user. When such a command is encountered the flag XLD is set negative

The exchange table is scanned and when a matching first string length is

encountered the corresponding string in the exchange character area is com¬

pared with the string in the command stream. If a match is found the pointer

position in the exchange table is set negative indicating that the exchange

is no longer operative. When all entries in the exchange table are negative

the exchange flag EXCH is unset and the exchange table and exchange character

area are set empty.

An error message is output to the print stream if the exchange string
cannot be matched in the exchange string area. Control is then returned
to the command analyser to read in the next command*

It is advisable to switch off the exchange facility as soon as it is no

longer required as the exchange operation is very time consuming

5 4 Sequencing

The sequence command is only scanned as far as the command word by the

command analyser It then causes a branch to the sequencing section

ignoring the remaining information in the command string This information

is read and analysed in the sequencing section

55

The sequence numbers are inserted into the last eight positions of the

defined field - by default in columns 73-80 of the current line. If the

defined field is less than eight characters in length, the sequence numbers

are truncated on the left and an error message written to the input stream.

The eight character sequence area is divided into two fields of four

characters each. The information on the sequence instruction is then

analysed. This information consists of the starting value of the first

field, its increment, the starting value of the second field and its

increment. If the increment is zero the string is treated as an alpha-

metric string. If the first two values on the sequence command is zero

the two four-character fields are treated as one eight-character field

This allows for sequence numbers greater than 9999 A flag ONEF is set

when this condition exists.

The sequence number is built up and stored in an area in the editor memory

called STRING. Alphameric constants are stored in the appropriate position

in the area STRING ie. If the first increment is zero the first entry on

the sequence command is stored in columns 1-4 of STRING and if the second

increment is zero the third entry of the sequence command is stored in

columns 5-8 of STRING. The incremented number is then stored in the empty

field. If neither field is constant both numbers are incremented and stored

in the appropriate fields. If the flag ONEF is set the incremented number

is stored in columns 1-8 of the area STRING The first eight characters of

STRING are copied to the last eight positions of the defined field in the

input line buffer which is then written to the output stream The next

line is read into the input line buffer from the input stream

This process continues until an end-of-file condition exists on the input

stream The pointer remains at the end-of-file marker, thus if any further

editing is required a START/command must be issued first

56

5.5 Field Defining

This facility enables the user to define the edit field within the input

line buffer. By default the field is columns 1-80 The variable SFP

contains the start of field pointer and EFP contains the end of field

pointer.

As in the sequencing command only the command word is processed through the

command analyser. The further information on the field command is analysed

by the field command execution. The first integer on the field command is

the start field pointer. If this integer does not exist the previous SFP

remains in operation. The second integer in the command is the end field

pointer and again the previous EFP is retained if no number exists in the

field command. The final values of SFP and EFP must be in ascending order.

SFP must be greater than zero and EFP must not be greater than 80. If any

of these conditions are violated an error message is output and a

new command read from the command stream.

The new position of the pointers are then set up in the current line before

the routine branches back to the command analyser to fetch the next command

5.6 The Tab Facility

This useful facility allows the user to space out strings A non-alphameric

character is to mark the tab stops When this character occurs within an

input string the string is space filled to the next tab stop

5.6.1 The tab command

As in the sequencing and field commands the tab command is processed by the

command analyser only as far as the command word.

When a tab command occurs a flag TAB is set to indicate that the tab

facility is in operation The tab character is retrieved from the command

string and stored in TABCHR. If this character is a question mark (?) the

next character is examined. If this also is a question mark the tab

facility is switched off by setting the flag TAB to zero. Control is then

returned to the command analyser to fetch the next command. Otherwise

processing continues normally.

The tab stop positions are read from the command string and stored in a

temporary array TABT. The final tab stops are stored in the array TABF.

If no integer is present for any tab stop (ie the condition ",occurs in

the command stream) the corresponding tab stop in the array TABF is inserted

into TABT provided it is greater than the last entry in TABT Tab stops

must be in ascending order. If this is not the case an error message

is output to the print stream and the tab instruction ignored. When
an error occurs in the tab command the previous tab settings, if any

exist, are retained.

A maximum of 9 tab stops is allowed. This is limited by the size of the

arrays TABT and TABF. These arrays are easily altered If more than the

maximum number of tab stops is significant an error message is sent to the print

stream and the tab command ignored. If there are less than the maximum

number of tab stops the remaining entries in TABT are sent to the maximum

buffer size (ie 80). When all tab stops have been set up in TABT and no

errors have occurred the array TABT is copied to TABF which always contains

the final positions of the tab stops

5.6.2 Expanding strings with tabs

A tab check is applied to all input strings on the command stream An

area of core called STRING is used to hold the final expanded string This

is initially set blank. If the tab flag is not set the characters are

copied directly from the command stream to the area STRING Otherwise each

character in the command stream is examined and matched with the tab

character.

58

If a match occurs the next tab stop is retrieved from the array TABF and

the area STRING is space filled up to this stop Otherwise the character

is copied to the next position in STRING. The new expanded string length

is stored in STLEN and control returned to continue executing the command.

Errors occur when there are too many tab characters in the input string or when

the area STRING has been filled beyond the current tab stop. If an error

occurs the whole command is ignored.

59

6 CONCLUSIONS

6.1 The Editor

The context editor TED has been implemented satisfactorily on two operating

systems available on the IBM/360 44 at St Andrews University It works in

an on-line capacity under the RAX operating system and in batch mode under

the 44MFT operating system. TED is efficient and very easy to use under

both operating systems.

There are several improvements that can be made to the editor to make it

more powerful. One major improvement would be a re-design of the sequencing

facility. Sequence numbers should be applied to the edit file while other

editing is in progress as in the exchange facility. The sequence command

could be made more flexible to cope with varying field sir.es and sequencing

methods.

Restrictions on buffer and store area sizes are not desirable but it is

difficult to get round this problem. One method would be for the user to

specify his own restrictions which would be inserted into the editor during

execution. This would make the editor more complicated to use A second

method would be to use the dynamic storage technique but not all computer

manufacturers provide the software to deal with this facility This method

causes storage from a central pool to be allocated to the editor as required

and linked together by a pointer network.

A backspacing line facility would be a useful addition to the editor Limited

backspacing of lines could be achieved by extending the input/output buffers.

Several lines could be input at a time and backspacing within the buffers is

a relatively simple operation. Unlimited line backspacing requires extensive

input/output operations and file positioning This is very time and space

consuming in the computer. Using the present version of the editor back¬

spacing can be achieved by a START/command followed by a command to locate

60

the required line.

6.2 On-line/Batch Ability

TED is a better batch editor than an on-line editor because the output

listings are geared more to suit the batch user By altering the print

facility TED could become an excellent on-line editor as it contains the

powerful display feature which can only be used in an on-line environment.

A good on-line editor should display the current line and all edited lines

during processing. The user can then determine at a glance his position

on the edit file.
>

6.3 Portability

TED is not very portable. It would take a fair amount of work to produce

a working version of the editor on another computer although it would

require much more effort to completely rewrite the editor Portability

can be improved by introducing more levels of abstract machines (see

Section 3). By breaking the editor down into a system of abstract machines

a set of simple assembler instructions for the required computer should be

all that is necessary on the lowest level of abstract machines A problem

arising from this method is that the efficiency of the editor is reduced

by the introduction of lower levels of abstract machines A balance has

therefore to be found between efficiency and portability

6 1

REFERENCES

1 POOLE, P. C. Hierarchical abstract machines. UKAEA, Culham

Laboratory, near Abingdon, Berkshire.

2 NEWEY, M. C., POOLE, P. G. and WAITE, W. M. Abstract machine modelling

to produce portable software - A review and evaluation. Software -

practice and experience, Vol 2, 107-136, 1972.

3 WAITE, W. M. I/O Conventions for abstract machines. Department of

Information Science, Monash University, Clayton, Victoria 3168,

Australia.

4 POOLE, P. C and WAITE, W. M. The STAGE 2 microprocessor users

reference manual. Culham Laboratory, Berkshire, CLM-PDN 6/70.

5 POOLE, P. C. MITEM - A portable program for text manipulation.

6 CGTAN3 - A users guide to COTAN, amend command. Culham Laboratory.

7 A text editor, NEL memo CD70, November 1971. NEL, East Kilbride,

Glasgow.

8 BOURNE, S. R. A design for a test editor. Computing Laboratory,

University of Cambridge. Software - Practice and Experience Vol 1,

73-81, 1971.

9 DEUTSCH, L. P. and LAMPSON, B. W. An on-line editor University of

California. Communications of the ACM Vol 10, No 12, December 1967.

10 FREEMAN, A. PDP-8 Context Editor (Mark 4), August 1968 Computer

Science Department, Edinburgh University.

11 VAN DAM, A. and RICE, D. E. On-line text editing. Computing Surveys

Vol 3, No 3, September 1971.

62

ACKNOWLEDGEMENTS

I would like to offer thanks to all who made this project possible.

The Civil Service department for awarding a bursary enabling me to attend

University for 2 years.

Professor J Cole, Head of St Andrews University Computing Department and

all his staff, especially Mr R Morrison for his invaluable assistance and

supervision of the project.

The typing and tracing departments at National Engineering Laboratory,

East Kilbride for greatly assisting in the production of this thesis.

TED

A CONTEXT EDITOR USER1S MANUAL

R. Morri set)

E.'Howson
I. SoMr.crv iII e

Technical Report No. CL/73/3

C c n t e x t S u j tc r - Users Han ual i

Cents'ts L-aae

I n ! rod uc Lroj,

n.

5.

6.

7.

8.

T h e l n] a t/ 0 at put System

The F,d it Con ma nds

Commands Available Under T?AX Only ,. . .

Kxami> 1 es 0 t Cca:plote Edit Jobs

I)si no The editor Under 11+ MIT .. . „

Using The Editor Under FAX

Index Of Edit Commands

02

...... 0?

...... 0 3

...... 1 0

...... 18

......21

23

ACKNOWLEDGEMENTS

During the course of development of TED a number of people have

been involved. To them my thanks. The Editor manual has been

produced using the FORMAT hh dccumentation program. I would therefore

like to thank Miss Glynis Fairlie and Mrs. Doris Sinsuicnite for

helping in preparing the manual and for their patience with us during

our teething troubles with FORMAT

TED A Context Editor • Users Manual

JHXIiQPUCTigN

TED is a suphisticated, powerful context editor which nay bo used
in a time-shar in j mode under PAX or in a batch mode under b'-lMFT.

This manual describes the editor, the editing commands, the
method of use, and the JCL required to use the editor under RAX and
h '4 MET.

THE DESIGN OF THE EDITCH

The editor is designed tc read line images from disc or tape
files, perform the necessary editing, and to write a new edited file
Lack on to disc/tape.

The editing method may best be understood by visualising a
position pointer which may be moved through the text to where an
amendment, is to bo made. The pointer is initially set before the
first line of the file and may be positioned anywhere within the file
by the use of lino directives, which move the pointer through the file
line by line, and character directives which position the pointer
within a line.

When editing, a line is read from the input file to an internal
80 byte buffer called the input line buffer (ILB). The edited form of
the line is held in a similiar buffer, the output line buffer (OLD).
On the input of a new line tc the ILB, the CLB is written directly to
the now output file.

The file pointer, when within the TLB, is termed the input
position pointer (IIP). It indicates the current character position
within the line being edited. A corresponding pointer in the OLE, the
output position pointer (CFP), indicates the current character
position in the edited line. These pointers do NCT move in
conjunction but move independently of each other.

TINPUT-OUTPUT_SYSTEM

The I/C system for the editor consists of 4 separate streams.

1) ^ Str eapu

This is stream 2 under MET or stream 5 under RAX. The file to
be edited is read from disc or tape. Note that, under RAX, only
files on the SYSLIB discs (ie those files saved by a /SAVE command)
may be edited.

2) lhe_OutjjUt_StreamJL

This is stream 3 under MET and stream 10 under RAX . The new

edited file is written cn tc disc or tape.

3) Th e_Comjnand_Strea ju

This is stream 5 under MFT or stream 9 under RAX. The
commands are input either from cards or from the 2260 screen.

TED h Context Edi lor Users Manual

'0 Print Stream.

This is stream 6 under both systems. h listing of the
commands and the edited file is produced on the line printer or on.
the 2260 screen.

ilt present both input and output files must be on tape or
disc. There is no provision for connecting the card reader to the
Head stream or the card punch to the Write stream.

THE EDIT COMMAUDS.

A command to the editor consists of one or more characters which
form a mnemonic for: the operation required. The commands can be
classified into 2 groups:

(a) those which make textual amendmc-nts and/or move the position
pointer.

(b) auxiliary commands vrhi-ch make no amendments.

* * £221)1 er-moving__C°I pa nds

This group of commands is split into line and character
dir ect iv es.

A line command causes the pointer to be set at the beginning
of a line and moved sequentially through the file, line by line. A
line command is active from the current pointer position if this is
at the beginning of a line otherwise the current line is copied to
the ou11ut file and the line command, becomes active from the
following line.

A character command moves the pointer character by character
through the file.

By default the delimiting symbol of a line command is a slash
(/) and for a character command a dot {.). These may be changed by
using the LINE (gv) and CHAR (gv) commands.

* * £.U2i2i20_Commands

These commands add additional facilities (eg provision for
executing a sequence of commands in a loop) to the basic amendment
commands and they considerably increase the power of the editor.

A full description of all the available commands is new given
along v; it h examples of each in use. In each example the position
pointers are represented by a «. Unless otherwise stated, the
furthest" left (or upper)* in a buffer represents the pointer
position before execution of the command, and the rightmost (or
lower)* the position after execution.

Note that each edit command MUST be input on a separate line
or card starting in column 1.

f] TED A Context Ed itox Users Manual
4

1 . C01JI_CCMMAM_DS.

These commands set the position \ 01 uter and copy the input file
to the output file up to the pointer position. There are a total of
ten copy directives, comprising five line directives and five
character directives.

1.1. Copy A Given. Number Of Characters Or. Lines — Cn. Or_Cn/

This command moves the pointer along n characters or doun n
lines. If a number is omitted, n is assumed to equal i. If the
command is a character command then n must te less than the

length of the line.

Examples.

(a) Copy 8 characters -- C8.

S U *BROUT T. N E * INPUT

(b) Copy 2 lines -- C2/

INPUT
* SUBROUTINE INPUT
INTEGER A,B
* LCGICAL C

OLE
SUBROUTINE*

OUTPUT
SUBROUTINE INPUT
INTEGER A , B

1 • 2 Co_py_F i le To Before A G i ve n St ring -- CB.<strinq> Or
CB/<string>

This command moves the pointer through the file and places
it before the first occurrence of the given string.

If used as a line command, the string should be the first
string on that line, as fcr an n character string only the first
n characters of each line are checked. If there are preceding
blanks at the start cf a line (eg in a FORTRAN program) these
are ignored unless they are all specified as part cf the string.

Examples.

(a) Copy to before BUFFER — CE.BUFFER

If,B OLD
*C~S3 ARCH INFUT * EUF FER C SEARCH INPUT*

(b) Copy to before IF — CE/IF

INPUT OUTPUT
K L=PNTR Kf-PNTR
B YT'E- NU 113 BYTE=N UH B
*IF (NUriB.EQ.GI) GOTO 6 *

TED A Context Ed itor Users Manual

1. ?. Co p y File To After A_ _ Spy en Strinfj -- C7u <stiinc|> Or

Tit is works in the sane way as a CB command except that the
pointer is placed after the given string.

E xa;i> pies.

(a) Copy to after BUFFER -- CA. BUFFER

ILB OLD
C~SEARCH INPUT BUFFER C SEARCH INPUT BUFFER*

(b) Copy to after IF CA/IF

IN PUT CUTPUT
*KL=PNTR KL=PNTR
B Y T E=N U H B BYT H - N U V B
IF (NUKB. HQ. 6h) GCTO 6 IF (NUMB. EQ . 61) GOTO 6
* GOTO 10 *

1. 'I Copy 70 Before.'Last„ Character Or, Line,-- CBL. Or_CBL/

This coKisand, if a character directive, copies all the
current input line up to the last non-blank character and places
the pointer before it.

If it is a line command the whole input file up to but
excluding the last line is copied to the output file.

Examples.

(a) Copy to before last character — CBL.

ILB OLD
*1 NTEG5R A,B,C,*D INTEGER A,B,C,*

(b) Copy to before last line — CEL/

INPUT CUTPUT

CALL EXIT CALL EXIT
a EN D *

eof 3

1.5 Copy To After Last Character Or Line -- CAL. Cr CAL/

This command works as CBL except that the pointer is placed
after the last character cr line.

Example.

(a) Copy to after last character -- CAL.

ILB OLB

TED A Context Editor Users Manual

* I NTT E G E B A,B,C,E* INTEGER A,B,C,D*

(b) Copy to after last line --- CAL/

INPUT OUTPUT

CALL EXIT CALL EXIT
END END

*e of *

2. EEDETE_COM HANDS

The delete commands are similar to the copy commands except that
the pointer position in the OLE is unchanged ie nothing is output.
Each command is illustrated by an example.

2•1 Delete A Given Number Of Characters Or Lines —Dn. Cr_Dn/

Examples.

(a) Delete 6 characters -- D6.

ILB OLD
SUBROUTINE »OUTPUT* SUBROUTINE «

(b) Delete 2 lines — D2/

INPUT OUTPUT
DO 10 1=1,0 DO 10 1=1, J
* A=B/C *
IF(A.GT.N) GOTC 20
*10 N=N +1

2.2 Delete To Before A String —EE.<string> Or DB/<strinq>

Examples.

(a) Delete before IN -- DB.IN

IU QLB
C~ * VARIABLES ^INITIALISED C *

(b) Delete to before RETURN — DB/RETURH

INPUT OUTPUT
GOTO 5 GOTO 5
* STR F = 1 *

P Q R P=5
* RETURN
END

3D A Context '£<2.1 tor Users Manual

2„3 Delete To After A String -— DA.<string> Or DA/<strinq>

Examples.

(a) Delete to alter IN -- DA. IN

TLB OLR
C~~ ^VARIABLES INITIALISED C #

(b) Delete to after RETURN — DA/RETURN

INPUT OUTPUT
GCTO 5 GOTO 5
1=7 1=7
* STRF=1 *

PQR?=5
RETURN
*end

2» Delete To Before Last Character Or Line -- DDI. Cr DHL/

Examples .

(a) Delete to before last character -- DBL.

DIMENSION «A (20) , B (3*) DIMENSION*

(fc) Delete to before last line-- DEL/

INPUT OUTFIT
* *

CALL EXIT
* END
eo f

2•b Delete_To_After_Last_Line_Or_Character_--_DAL/_Or_DAL.

Examples.

(a) Delete to after last character — DAL.

ILB CLB
DIMENSION *A(2C),E(3)» DIMENSION *

(b) Delete to after last line -- DAL/

input odij?irr
* *

CALL EXIT
END

8 Users Manual

* "Of

3, Insort_coni«ands

These commands insert a string of characters or lines Ante the
file, setting the position pointer after the insert. There are five
insert commands.

3•1 Insert A String Of Characters Into A Line -- I.<stri

This command, inserts the given string immediately after the
output pointer position.

If the insertion is such that the OLD will overflow the
last characters in the T.LE will he lost and a warning message
output.

Example.

Insert the character string EDIT — I.EDIT

I£B . OLB
//* EXEC FORTRAN //EDIT*

3. 2 Insert. A Line Into The File — I/<string>

This command inserts a line into the input file. If the
position pointer is set at the beginning of a line the insert
will be made before that line otherwise it will be made after
the line containing the position pointer.

Example.

Insert the line C INITIALISE YARIAELES—I/C INITIALISE VARIABLES

INPUT OUTPUT
INTEGER IN.OUT INTEGER IN,OUT
*DATA IN,OUT/5,7/ C INITIALISE VARIABLES

3«3 Insert Several Lines Into The Input File I FIN

To use this command, I is input on a line by itself
followed by the required insertions. The insertions MUST be
terminated by a FIN on a line by itself

Example.

Insert into input file the 2 lines
SUBROUTINE WRITE(A,B,C)
INTEGER A,E

The command stream for this would be
I

SUBROUTINE WRITE (A ,B ,C)
INTEGER A,E
FIN

TED A Context Editor --- Users Manual

INPUT OUTPUT
END iv END

SUBROUTINE W3ITE(A,E,C)
DIMENSION C INTEGER A,B

*

3. 4 ins ert_B la nks_--_IU n_. QrqIBni

This command inserts n blank characters or lines into the
input file.

Examples

(a) Insert 4 blanks into a line — IE4.

ILB CLB
C *SET N-0 C *

(b) Insert 2 blank lines -- IB2/

INPUT ~ OUTPUT
EN *5 END
*

SUBROUTINE ARE (X)

4 . M1MCE_CCNNAND5

These commands replace a given string or line in the input file
with a new string or line. A replace command is equivalent to a
delete followed by an insert.

1 Replace Characters Or Lines R.<strini> Or R/<string>

This command is best illustrated by example.

Examples.

(a) Replace the next 6 characters with OUTPUT — R.OUTPUT

ILB OLB
•INPUT *FILE OUTPUT*

Note that as OUTPUT is one character longer than INPUT the
space between INPUT and FILE will be lost if no blanks are
inserted.

(b) Replace INTEGER A,B with REAL I,J,K

R/ REAL I,J,K

INPUT OUTPUT
SUBROUTINE *ANT (A , E) SUBROUTINE A NT (A , B)
INTEGER A , B REAL I,J,K
•DIMENSION C *

10 TED A Context Editor Users Manual

Mote that in editing a FORTRAN program, the preceding
blanks must be included in the R/ statement otluu wise the
replacement will be made from column 1 of the defined field.

1.2 Replace With Blank Characters Or Lines--RBn.or REn/

This command replaces a string or line in the input file
v.- it h blanks.

E xamples

(a) Replace 2 characters with blanks.. RB2.

I LB 0LB
*20*WRITE (G, 1 0) A *

(b) Replace next 2 lines in file after pointer with blanks

INPUT OUTPUT

* REITS (6, 10) A
20 CONTINUE
* A =B/C *

5. BACKSPACE_CpKHANDS

There are three backspace instructions which may only operate cn
the current line ie backspace is a character command only.
Backspacing takes place on the edited version of the line.

When a backspace command is executed, the I LB is copied from the
TP? to the CLB. The buffers are then exchanged ie the OLD becomes the
new 1LB. The new T.PP is then computed according to the instructions
given in the backspace command and the ILB is copied to the OLB up to
the new IPP.

5.1 Backspace To After A String — PA.<strinq>

This command places the pointers after the given string.

E x a m p 1 e.

Backspace to after SET -- BA. SET

Before execution cf the comma rid the buffers are

IU OLB
C SET POINTERS* ABC C SET BUFFER POINTERS*

The execution of the command swaps the ILB and CLE and resets
the pointers

ILB
C SET* BUFFER POINTERS ABC

CBB
C SET*

TED A Context Editor Users Manual 11

5.2 Backspace To Before A String -- BB.<strinq>

This works as DA. Except that the pointers are now set
before the given string „

Example.

Backspace before SET -- BE.SET

Before execution

TLB CLB
C"*S2T POINTERS* ABC C SET BUFFET POINTERS*

After execution

ILB OLB
C «SET BUFFER POINTERS ABC C~~*

5. 3 Backspace A Given Number Of Characters -- Bn.

This command causes.the pointers- to be moved back by n
characters.

E xample .

Backspace h characters -- Bh.

Before execution

TLB OLB

IF (IN. EP. 28) *111=3 IF (IN. EP . 2) *

After execution

JLB OLB
IF (I H. E#P. 2) IN=3 IF (IN. E*

6. STATT_COKBANDS

The START instructions START. And START/ cause the pointer to be
set at the beginning of the current line or at the beginning of the
file.

In the case of the START instruction, the I LB, after the pointer,
is copied to the CLB and the CLB becomes the new TLB with the pointer
set at column 1 of the defined field.

Similarly for a START/ instruction: the input file is copied from
the pointer position to the cutput file and this then becomes the new
input file with the pointers at the beginning of the file,

7 • 2 HJE_F LN D_COMM ANp_2Z_F/<s t r i ng>

This is a line directive only and sets the pointer at the
beginning of the line containing the given string. It is exactly
equivalent to a CA.<string> followed by a START.

7'ED [Jeers Manual

8 . THK_NEWLI NE_C.OMMAHD_--_U

Input of an N on a line by itself outputs the current line
whether it has been edited or not and reads in the next line of the
I LB, setting the pointer at the beginning of the line.

9 . THE_ EX IT_COMM AHD_—_E XIT

This is the normal terminator to a sequence of edit commands.
The remainder of the file that is being edited is copied tc the new
file. If this is net included as the last command, no editing is
saved, and no listing produced.

10. THE FIELD DEFINITION COMMAND — FIELD »,n

This command effectively redefines the line size on which editing
can take place. Characters cutwith the defined field are copied from
the input to the output file and cannot be acted upon by edit
commands.

The FIELD m, n instruction defines the start of the field to be
at column ra and the end of the field at column n. If no field is
specified the editor acts on columns one to eighty in each input line.

1 1 • ' TAB_SETTI NG_CCME AND_T__£x_kx_ly__m

The tab setting command allows strings to be input with no
spacing between them and yet to be laid out correctly on the output
file eg. It may be set so that FORTRAN statements always begin in
column 7.

The tab statement contains the tab character (set above to £) and
a list of. between 1 and 9 tab step points. When the tab stops have
been -set, input strings are scanned and space filled accordingly.

Tabs may be changed by inputting another T statement. Stops not
requiring alteration may be left blank. The tab character may be any
printable character and tab may be switched off by inputting T ??

Example: COMMAND SEQUENCE

T £,10,20, 30
I/£A3£CD£EF
1/12£ 3b£ 56 ' ,

T V. 3 5

1/ A 17 D 2 7 C 37 D 4
T ??

I/MNOPQR£STU

Will output lines

COL 1 COL 10 COL2C COL30 CCL35
AB CD EF

12 3H 56
A1 B2 C3
MNOPQP.CSTU

Note that the omission cf a tab character before the first string
will set the first tab stop tc column 1 of the defined field.

T CD A Con toxt y.(1 i tor Us ers Kanua .1 1 3

1 3 , THE_JE^CIMG_C0EKAJ1D_—_Syo_aj:];iCxdjLG

This command enafclesthe user, to sequence his file. At present
this facility is not available for; release.

1 3 . STORE_A ND_LC A D_COK H A NE5_--_Sni/ 3 Cp f xSn/^SCn/^L

These instructions allcw an often used character string or
instruction sequence to be stored from either the command stream or
from the input file and called when required by a simple load
instruction. There are two store areas in the editor. Characters are
held in the character store and lines in the line store. The string
is stored in the appropriate area under a given name which may have up
to four characters.

13.1 Stgr e__C ha ract ers_F r om_TTie_I nput_S trea m_--__Sn_.<napie>

This command stores n characters from the input stream and
labels them with the given name.

Example.

Store 'l characters and label them S1 — SR.S1

lib
SUBROUTINE *PTIN(A,B)

The characters PTIN will be stored in the character store
under the name S1. The position of the pointer remains
unchanged. The stored characters may be retrieved by using the
load command as follows.
I/L S1 inserts PTIN a.s a line
I.L S1 inserts ETIN as a character string
CB.L S1 copies to before PTIN

13.2 Store Characters From The Command Stream -- Sen.<name>

This command stores n characters from the_ coir ma nd stream
and labels them with the given name

Example.

Store 10 characters from the command stream and label them
A1 -- SC10.A1. The instruction sequence should be:

SC 10 . A 1
SUBROUTINE - characters to be stored.
next edit command.

This may be loaded in exactly the same way as an Sr.
instruction.

13.3 Stgre_Linos_From_The_Inp>ut_Filc_--_Sn/<name>

This instruction stores n lines from the input file and
labels them with the given name.

TED A Context Editor, - Users Manual.

xd mpl'e.

Store 3 lines frcir the input file and label then C2 — S3/C2

ikpdt_FILE

SUBROUTINE PT I i:J {A, E)
INTEGER A
LOGICAL E
* REAL K,N

The first three lines will be stored under the name C2 but
with the pointer position changed. Lines stored in the line
store MUST be loaded with a load instruction on a line by itself
eg the commands

T
L C 2
FI N
will insert the 3 stored lines into the output file.

13.1 Store_ LiBS§_f r^on_The_ Coram and_Str earn_--_ SC n/Dj

This command stores n lines from the command stream and
labels them D3. The lines stored may be edit commands or
additions to the input file.

Exam;! le.

(a) Store 3 lines from the command stream and label their D3
SC3/D3. The command seguer.ce is:

SC3/D3
SUBROUTINE PTOUT (C ,D)
INTEGER C
LOGICAL I)
next edit command.

Again a load instruction cn a line by itself MUST be used
when loading lines stored by a Sn/ instruction.

Example.

(b) Store 'I commands and label them ISC'I -- SCh/ISC4. The
command sequence is

sca/isch
F/FORMAT
CB. (
I. «
N
next edit command

This stores the commands following the store command
these commands are net executed at this time but are called by a
load instruction in the command stream. Eg

CA. FORMAT

■ED A Context Editor lh;ers Manual 15

L IS C4
CB. 0 8
L ISCI

will cause the '! cottma nds to be loaded into the command stream
after each copy instruction.

13.5 Motes On Store And Lead Instructions

In any one run of the editor the maximum number of named
character stores is 10 as is the maximum number of named line
stores.

Up to 50 lines may be stored in the line store assuming
that the total number of characters in these lines does not
exceed 5C0.

If tab stops are set the tab characters must be included in
the correct positions in the stored string and NOT input with
the load instruction.

1 'I . LIIULA ND_CH AD ACTS R_DELIE IT ER_CCE MAN IS -

These instructions are available to change the delimiters fcr
line and character commands.

To change the character command delimiter from a dot the command
CHAR immediately(no space) followed by the new delimiter is input.
Similiarly to change the line delimiter from a slash, LINE immediately
followed by the new delimiter is input

Example

CHAR£ - character delimiter new a £ sign
LIN20 - line delimiter now a <?- sign

1 5. LQOPTSG_COKK ANDS_--_LOgP_SJt_LOOPEIID

These instructions enable all statements between LCCI and LCOI'END
to be executed n times. If n is omitted, looping continues until the
end of file marker is reached cn the input file.

The area reserved for looping statements allows 10 statements per
loop but loops may be nested up tc 16 deep and there is no limit to
the number of unnested loops in any one run.

There are several commands forbidden within a loop. These are

FIELD
EXIT
LINE
CANCEL

CHAR
T
EX
L

If an error occurs during the execution of a loop the loop is
exited and execution of the commands within the loop ceases.

TED A Cont.ext Ed i tor Users L an ua1

Examples

LOOP r>
CA. INTEGER
I . A , 15
LOOPEND

This is an example of a simple loop which will repeat the
commands within it 5 times.

LOOP '!

F/INT2GER
LOOP 3
CB. A
R . B , C , D
IB3.
LOOPEND
CB.INPUT
L00P3ND

This is an example of a nested loop. The inner statements will
be repeated 12 times in all, the outer ones, U times.

16. THE_M'CRANCP:_ CON MA ND_~~_E>:^< STRING 1>/< ST RING 2>/

This command exchanges each occurrence of string 1 with string 2
throughout the file.

When an EX command is input, the editor stores the given strings
ana as editing of the file progresses, string 1 is searched for. When
found a DA.<string> follcv/ed by a J.<strinj 2> is carried out and the
strings are thus exchanged.

As exchange executes while editing is progressing several
exchanges may be in operation at once - up to six exchange commands
can be active at any one time.

An EX command can be switched off at any point in the file by the
input of N2X/<string1>. This will switch off the exchange of string 1
and string 2 but will leave on any other exchanges.

Example

REAL and INTEGER through the file until the
The exchange would then be switched off.

alphanumeric character (not necessarily a'
command delimiter in the EX and NEX commands.

RAX ONLY.

17. THE DISPLAY COMMAND - DISPLAY

EX/P.EAL/I NT2GER/
CB.OUTPUT

NEX/REAL

This would exchange
string OUTPUT was found.

Note that any non
s la sit) may be used as a

COMMAND3 AV A TL ARLE UNDER

Input of the word DISPLAY will display 12 lines of the file on a
2260 screen, starting from the line containing the position pointer.

TED A Context En i tor: Users Kan ua 1 17

These lines may be overtyped en the screen and on pressing "shift and
enter" the edited lines will be written to the output file.

This command is not available for use on the CDC terminals.

10• THE CANCEL EDITING COMMAND - CAd C EL

Input of the word CANCEL will terminate editing immediately,no
editing will be saved and no listing of the output file produced.

19. LISTING_OPTION_-_ NOLI ST

If no listing of the edited file is required, input of the word
NOLIST as a response to the prompt * IS A FILE LISTING REQUIRED* will
suppress the listing of the final output file on the 2260 screen.

18 TED A Context 2ditor Users Manual

' EXAF1PLES_OF_C0KPL2TE_EDIT_JOBS.

Two examples are given of jobs using the editor. The first uses
relatively simple edit ccrrmand.s, the second sotr.e of the mere
soph isticate <3 features of the editor.

TNPUT_FIL2

SUBROUTINE RANDO (A, N. ME, C, M, Q, K)
INTEGER A , C , M , N , Q
DIMENSION ME (C)

• DO 10 1=1,0
N1J= A* N + C
N N=M 0 D (N N , M)

10 ME (I) - KCD (W, K)
RETURN
2ND

KCIT_COMMANDS COMMENTS
CD. (copies to before 1st opening bracket
T.M inserts M ie RAND0-->R AN DOM -

C A.Q, copies that line until after Q,
P . L. replaces K with L
N inputs; next line
CAL. Copies that line till after last character
I. , MR (0) inserts MR (Q)
'! takes next line
D1/ deletes line l> inserts line shown below
T/C SUBROUTINE TC GENERATE RANDOM NUMBERS

C3/ copies 3 lines
CB.K copies to before K
E.L " replaces by L
EXIT writes new file and terminates editing.

OUTPUT_FTLE

SUBROUTINE RANDOM (A , N , MR ,C ,M , Q , L)
INTEGER A,C,K,N,Q,MR(C)

C SUBROUTINE TO GENERATE RANDOM NUMBERS
DO 10 1=1,0
N N = A * N + C
H= MOD (NN , M)

10 MR (I) =M0D(NfL)
RETURN
EN D

This is an example of an actual edit job that was carried cut cn
one of the editor I/O routines. For simplicity the routine har; been
slightly truncated.

INPUT_FILE

SUBROUTINE ERRPRN (CARD,N0)
INTEGER*? NO
DIMENSION CARD (2 0) f STRING (10)
WRITE (6 ,98) CARD

98 FORMAT (' • , 20A U)

TED A Context Editor Users Manual 19

GO TO (1 , 2 , 3 , N , 5) N 0
1 WE ITE(G, 101)

GO TO 99
2 11R ITE (6, 10 2)

GO TO 99
3 ! J E> T ,-P P f £w ;\ .1 l o \ o t 10 3)

GO TO 99
N WR ITE (6, 10N)

GO TO 99
5 V:R ITE (0, 10 5)

9 9 RE'i'U EN
10 1 FORMAT (1 TOO MANY CHARACTERS')
1 02 FORMAT (; COMMAND NOT VALID')
103 FOEMAT(' COMMAND SHOULD START WITH

1 ON FORMAT(' I NCCRRECT S PELL T. NG ')
109 FORMAT (> WRONG TERMINAL CHARACTER')

END

I^JT_Cp.ME ANDS
CA. 20)
I. , DTE 1 (10,7)
CA. AN)
I) 13/9 9 RET

T £,7'
T

£DO 10 M=1,10
10 STRING(H) =
£ WEI TE (6, ST BIN
T IN
CB.101
LOOP
DA.FORMAT
C2.
I . '
CB. «)
D2.
START.
C37.

I.")
H
LOOP-BHD

START/
SC3/A1

£ DATA STR1/
(" EOF REACHED
(" FIND MUST BE
CB/99 RETURN
D 1.
I
L A 1
Fit!
LOOP 7
CB. (
I. «
CA .)
I. '

COMMENTS

copies to after 20)
inserts given string
copies to after A4
deletes to before 99 RET- 10 lines
Note the OPP is still set after AN
set tab stop to col 7

inserts three lines into file
STR 1 (M, HO)
0)

copies to before 10 1
lccps till end-of-file
deletes until after FORMAT

Copies 2 characters and inserts a

copies rest cf line to before ')
Deletes ')
Returns pointer to start of line
Copies 37 characters
Inserts ")
takes next line

returns to beginning of the file
stores next 3 lines of command
stream as A1
note tab character

")
A LINE COMMAND ")

copies file to before 99 RETURN
Deletes that line

inserts stored lines

inserts a ' before an

opening bracket and after
7 r\ i n rr Vrn cV "7

of file,

A closing bracket, 7
t i in es

20 A Context editor —- Users I1ar.ua 1

LOOPS WD

I./
ST A my
CA. DATA STR1/
LOOP 7

copies till after DATA STR1/

inserts a / after last statement

IDS.
I . 1
CAL.

Insorts ccctinua tion
character in col 6 and
Blanks in first 5 columns

copies to before last line
inserts RETURN
writes edited file

SUBROUTINE ERRPRE (CARD,NO)
INTEGERS2 NO
DIMENSION CARD (20) , STR 1 (1 0 , 7) , STRI KG (1 0)
WRITE (6 ,98) CARD

9 8 FORMAT (1 1, 2OA I)
DO 10 K=1,10

10 STRING (M) =STR 1 (M,N/)
WRITE (L , ST RING)
DATA STR 1/

1 1 (" ECF REACHED ") '
i'(" FIND MUST BE A LINE COMMAND ") '
1' (" TCO MANY CHARACTERS ") '
1'(" COMMAND SHOULD START WITH A LETTER »)«
1' (" COMMAND NOT VALID ") »
1«(" INCORRECT SPELLING ")«
1'(" WRCNG TERMINAL CHARACTER ")/

Note that the file was edited in 3 stages with a return to the
beginning of the file (START/) before each. This is inefficient in
time and if a large file is being edited not particularly desirable
but for small files breaking the editing into stages reduces the
probability of user error.

RETURN
END

A Context Editor Users Manual 2 I

USING _T[IH_EiJlJOT?_TJNUEB_UftnFT

The editor can ba used tc edit, disc or tape files under 'ihUFT.

The edit commands are input, one per card, using the following
JCL.

//jobnamo JOB , account- infc name/dent.
//5YS002 ACCESS dsname1,volid
//SYS003 ACCESS dsnarr.e2, vc 1 id
//

i

4

edilor commands

/*
/&

where dsnamel is the input file and dsname2 is the output file.. Where
volid is either on

TA PE = ' ta re- se rial'
DISK= 'disk-name' if not catalogued.

If a file is catalogued then ,vclid need not be specified:
dsname 1 is the input file
dsname 2 is the output file

The input and output files must have been previously defined
using an ALLOC statement, if they are direct access files. No tape or
disc number is necessary if files are catalogued.

If the file to be edited is larger than 1000 cards a further card
must be added to access a large vrorkfile on disc SAN6V3. This is:

//SY SO00 ACCESS CLBGW3KA,DISK=•SA16V3'

This will allow the editing of files of up to 5000 cards. For
larger files a. personal workfile should be defined using SYSCC0. This
should be deleted on completion of the edit job.

UST NG_THE_SDITOR_U NDE3_R AX

To use the editor under BAX reguires the setting up cf temporary
workfiles on the SYSFIL disc.

The JCL statements are as follows

/INPUT
/FILE DI S K= {1 , name 1) ,VOL=SYSFIL, DTSP= {NEW, DELETE)
/FILE 0ISK = (1, name2) , VOL = SYSFIL ,I)T SP= (NEW,DELETE)
/JOB GO
/INCLUDE ISC 10
/INCLUDE 1SEDIT
/INCLUDE file to be edited
/END PUN

22 TED A Context Editor — - Users Manual

a prompt * PL EASE ENTER YOUR EDIT C 0 X MAUDE' followed by •ENTER 1 AT A'
will appear on the 2260 screen. The edit commands should then be
entered.

The edited file may be saved after completion of editing by the
system command /SAVE name (lock) ,SV. No other system commands {eg
/PURGE) should precede this or the edited file will he lest.

The work files as defined have a size equivalent to 38 '4 cards.
The-y may be redefined to suit the file size (see RAX guide)

The editor is not available on the RAX background stream.

ED A Context; 7:0 i.1 Isers Manual 2 3

I KDEX CJ COMMA:? C5

COMMAND
Rn .

D A.
SB.
C II.

Cn /
C A.

CA/
CAL

CAL/
CB.

CB/
CEL.

CBL/
CANCEL
CHAT?
DM .

I) N/
EA.

DA/
E Au«

DAL/
EE./
DB/
DDL.
D B L/

LAYEI
EX
EX IT

y/
FIN
FIELD
I
T .

1/
IB n

I En/
L

LOOP
LOOPEND
N
NOL1ST
K.

H/
RB.
R En/
SEQ
START.

START/
Sn.

Sn/
SCn.

SCn/
T

FUMCTICT

Backspacg n eha ractere
Backspace to after sir in-.
Backspace to before sici :
Copy n characters

n linesCopy
Copy
Copy
Copy
Copy
Copy
Copy

to

to

to

to
to
to
to

Copy to
Cancel

strinafter
after line

after last character ,

a f t e r 1 a s t line

before stripy
be fo l e line

before last character
before 1 ast line

all editing

4> « e> e

t * » c o

n * c •

* • o «

PAGI
.11"
. 10
. 1 1

. 0 A
.0'?
. 0 5
.05
.05
.05
.00
.00
.0 5

17
Set character delimiter15
Delete n character06
Del e te n li rres06
Delete to after character07
Delete to after line07
Delete to after last character07
Dele te to after last line 07
Delete to before character ...06
Delete to before line06
Delete to before last character07
Delete to before last line07

Display 12 lines cn 226016
Exchange 2 character strings16
Stop editing & write new file12
Find a string11
End insert03
Set the field12
Insert lines 0 8
Insert characters00
Insert a line 0 0
Insert blanks 05
Insert blank lines 09
Load a stored string13
Set line delimiter15
Enter loop15
End of leep15
Take a new line 12
Suppress listing cn 226017
Replace string09
Replace line 09
Replace with blanks ...10
Replace with blank lines 10
Sequence file13

line11
file 1 1

from input 13
input 1 3
from command stream13
command stream13

stops 12

Set pointer tc start of
Set pointer to start of
Store n

Store n

St'ore n

Store n

Set t a 1)

cha rackets
lines from
characters
lines from

APPENDIX H
FLOWCHARTS FOR COMMAND ANALYSER

FLOWCHART I

FLOWCHART

hash e>y xorin&
binary form with
accumulator anj>

restore result

ERROR

hash no- not valid
command icnored

multiply it
6Y 2 4

xor with result

in accumulator
9 restore result

find no- of
letters in
command word

read character
from command

stream

error

all command
have < io chars

error

first char- must

be a letter

set accumulator
for hash to

zero

SUBTRACT 2 20
FROM RESULT

subtract 113

PROM RESULT

YES

flowchart 3

T
index comtab
from value, in

table

pick mp no- of

letters in
comman5 from

comtab

no
error

command
invalid

w /> \

no
error.

incorrect
spelling

1

yes
'

pick up command
number from,
the comtab

< '

FLOWCHART 4

initialise

variables

error

^ n
command must be

) followed by a
space

set flag

indicating

line command

' <

no
1

NO
f

error

wrong command

delim eter

" 1

FLOWCHART 5

FLOWCHART 0

APPENDIX HI
FLOWCHARTS FOR CODING OF EDITOR

DISPLAY FACILITY

branch from
command analyser.
on display command

' fort r.an
subroutine

v 'display

write ilb

ro screen

read a line and
write it to

the screen

copy rest of

ilb to olb

r

write olb

read in ilb

■ f

set up display
parameters
ilb , un its , EOF

< '

call

display

save number

of lines read

no

read a line

from screen

i '

write it to

output stream

LOADING LINES
p;

branch from
chelkout ip load

flag, is set

branch from
command analyser
ON LOAD COMMAND

<q insert
?

mode ^ yes SE.T flag

—1
lx> li

no

* '

umset load

flag lx> i

blank input area
f move chars from
character store

into it

set r0>

flag LV> i

J
decrease
line count

l '

(spins)

i 1

unset flag

lcl 1

yes

write out

string to output
stream

1 i

no check for tabs
and expand

string

STORING LINES OR CHARACTERS

branch from
command analyser

Lyes

line store

?

NO

/CHEKOUr]
P 28

character?
store full

?

.NO

yes

1

1 no

print fatal
error

will it

<s. overflow s
yes

save character yes
store pointer

set duplicate
name flao and char.
store POINTER TO

new position

duplicate
name

?

. NO

insert name,
number > pointer
in dictionary

^^storin&x.
"'from input ^ no read characters

from command
stream into

store area
stream
\ ? /

r yes
read characters
from input stream
into store

area

1

r

restore
character.
store pointer

STORING LINES OR CHARACTERS (contd.) PA-

LOOPING FACILITY
per

BRANCH FROM COMMANP
analyser on loop

STATEMENT

SPCABE I

. p Id

LOOPING FACILITY (contd.)

LPSTRtNG

^ IS IT

A STORE

INSTRUCTION.

INSERT NUMBER

IN LOOP AREA

STORE

COMMAND

SET UP STRING

IN LOOP AREA

SET ENP OF

COMMAND MARKER

IS INSERT
FLAG SET

REAP FROM

COMMAWP STREAK
INTO STRING

Fl N

FOUN.T>
UNSET INSERT

FLA&

FINP LENGTH

OF STRING

LOOPING FACILITY (contd.)z

ENP OF ^

COMMAND
IS STACK
EMPTY

UNSET LOOP

EXECUTING
FLAG

/READ NEKl
'COMMAND
READ IN
^COMMAND
\ANALVSER

SET LOOP STORE

AREA EMPTY
FETCH AND STORE

FURTHER INFO.

FIELD DEFINING COMMAND PS

BRANCH FROM COMMAND
ANALYSER ON
FIELD COMMAND

TAB COMMAND P3

BRANCH FROM COMMAHP

CHEKOUT

V P 28 /

THE EXCHANGE COMMAND PIO

BRAWCH FROM CDMMANP
ANALYSER ON EXCHANGE

COMMAND

THE EXCHANGE- COMMAND (contdL.)

BACKSPACE FACILITY PI 2

BRANCH FROM, COMMAND
ANALYSER ON BACKSPACE

COMMANP

copy/delete: facility PI3

BRANCH FROM COMMAND
ANALYSER, ON COPY M
OR N INSTRUCTION

copyn

COMMAND

YES./HAS CURRENT^

»\LINE BEEN ED1TEP
line

command
comt

P 14

MOVE REST OF
INPUT BUFFER TO
OUTPUT BUFFER

ESTABLISH No. OF
CHARS. TO BE

MOVED

noys can it
be done

WRITE OUTPUT
BUFFERPRINT ERROR

^ last \
line outputYES/^DELETE ^

SWITCH ED ON
MOVE INPUT

BUFFER POINTER
ONLY

print error

MOVE CHARS.
FROM INPUT TO
OUTPUT BUFFER

CHEKOUT

YP£& Jchekout

V P 47 J command

LAST UN
OUTPUTCONT W-

vP 14 J
read in

next line

read in

next line print error

eof foundprint error
SET UP FIELD

POINTERS
WCHEKOUT

V P 2.8 J

CONT
T 14

copy/DELETE facility (contd.) P14

CO NT

delete

coymanp
PRINT ERRORCHEKOUT

V P28 J

WRITE OUT
BUFFER

REAP in

NEXT LINE

-0_AST &UT-

ONE OUTPUT
SET END OF

FILE FLAG
CHEKOUT

REAP NEXT
LINE

eof

FOUNDPRINT ERRORCHEKOUT

V P2.8 j

SET UP FfELT
POINTERS ON
CURRENT LINE

COPY/DELETE FACILITY (contd.)
BRANCH FROM COMMAND

AUALVSER ON COPY/DELETE
AFTER/BEFORE LAST

COPY/ DELETE FACILITY (contcL.)

FIND

COMMAND

line

COMMAND COPLIN

^possiblex
to compare on

\current line/

^/string
found on current
\ line /

^DELETE
COMMAND

MOVE STRING FROM
INPUT BUFFER TO

OUTPUT BUFFER

WRITE OUTPUT
BUFFERMOVE INPUT BUFFER

POINTER AFTER
STRING

SET UP FIELD
POINTERS ON

CURRENT LINE.

MOVE CHARS. FROM
INPUT BUFFER TO

OUTPUT BUFFER

branch from command
analyser on copy/delete
before/after string command

SET FIELD POINTER
TO START OF

CURRENT LINE

READ IN

NEXT LINE

PRINT ERROR.

copy/delete facility (contd.) P17

COPY/DELETE FACILITY (contd.) P J 7

COPLINS

copy imput buffer.
to output buffer >

write output
buffer

/^CURRENT
LINE EDITED

string \
-^Tfounp at start

of lime

' DHLETF

FLAG SET

write imput
buffer to
output stream

READ MEW

INPUT BUFFER

SET UP FIELP
POINTERS IKI CURRENT

LIME

BRANCH FROM COMMAND
ANALYSER ON A
DELETE COMMAND

PRINT ERROR

CHEKOUT

Y PL8 J

' REPLACE
INSTRUCTION ->-/COPYN

\P 13

SET COMMAND TO
CORRESPONDING

COPY NUMBER

EXIT FACILITY Pi&

branch from command
ANALYSER OR EKIT

COMMAND

INSERT FACILITY PI 9

BRANCH FROM COMMAND
ANALYSER ON INSERT

COMMAND

MOVE CHARS/BLANKS
INTO OUTPUT

BUFFER

< f

UPDATE OUTPUT

BUFFER POINTER

REPLACE ACTION

8RANCH FROM COMMAND
ANALYSER ON REPLACE

COMMAND

INSERT FACILITY (contdL.) * P20

NO

CHEKOUT

V P28 J

INSERT FACIEI!FY (coritcL^

START FACILITY P22

BRAMCH FROM COMMAMD
AMALVSER OM START

COKMAMX>

SEQUENCE FACILITY P23

branch from command
ANALYSER ON SEQUENCE

FACILITY

> (

FETCH FIRST
NUMBER

> f

FETCH FIRST

INCREMENT

Tend of
FILE FLAG
\ SET

./HAS FIELDS
TO BE TREATED
\ ONE /

/S CURRENT""
LINE EDITED

SEQCONT

PRINT ERROR

WRITE INPUT BUFFER
TO OUTPUT BUFFER

F SWAP THEM

SET SECOND
HALF OF SEQUENCE

FIELD CONSTANT

SET FLAG

ON EF =■ 1

SEQUENCE FACILITY (contd.) P24

EXLCUTIN G EXCHAN GL P25

WHEN A NEW LINE IS INPUT
ANt> EXCHANGE FLAG IS ON

EXECUTING EXCHANGE (con Eel. P2<e>

EXECUTING EXCHANGE (contd..) P27

HO

V

END OF COMMAND PROCEDURE PES

COMMAND
ANALYSER

LABEL
,NEWFILE>

LISTING 0F: MACROS

«_£_0 {+-*/)
COPY TO
_F2£
£

SKIP
F4£

; i) £

II- _ = _ SKIP _«

_F5C£
£

-j , IF_.-
; _F51£

- SKIP

LABEL
_10 EQU
£

*_F 1 £

JUMP TO

,/-x B
• : £

_10_F1£

START.

TED2

EXTRN
EXTRN
EXTRN
EXTRN
EXTRN
EXTRN
EXTRN
C SEC T
USING

SWAPIT
DUMPIT_F1£
FILSRT_F1 £
ERRPRN_F1£
INPUT_F1 £
CUTPUT_F1£
DISPLY_F1£

*»15

* EXTERNAL ROUT INES.^F1£

CONTROL SECTION._F1£
SET UP BASES._F1£

U SI NG *+4096 ,12_F1 £
U SI NG *+8192 ,13_F1£
USING *+12288,9_F1£

BEGIN STM 14,12,12(13) *

ST 13 ,SAV13_F1£
LM 12,13, BAS£R_F1£
L 9 , BA SER+8_F1 £
LA 8, CLB *

LA 7 ,1 LB -s-

NEWFILE ECU •» «•

EOF = =H ' 0 1 £
UNIT = RLN1T£
READ IN TO I LB £
SET "POINTERS*

SJORE REGISTERS._F1£

SAVE ADDRESS OF OLB._Fl£
SAVE ADDRESS OF ILB._F1£
READ IN FIRST LINE_F1£

STOP.
ENDP L

LM
M VI
BR

13 t SAVI3_F1 £
14,12,12(13)
12 (13) , X'F F ' _F1£
14 ; *

* END_F1£

RETURN._F1£

MOVE BLANKS TO
BL_10 DS

ST
ORG
ST
ORG
DC
ORG

H

0 , B L_F1 £
BL_10_F1£
0,_10_F1£
B L_10_F1 £
X1D24F *_F1£
BL_10+6_F1£

* SPACE FILL _10_F1£

^ m

IF _10 -= STRING(3) SKIP 10£
REG 10 = 0 £

L 11»_20_F1£
D 10,=F'10'_F1£
AH 10,=H'240'_F1£
STC 10,STRING(4)_F1£
LA 10,0_F1£
SH 4,=H ' 1' _F1 £

v

_F9£
IF _10

_F9£
IF 20

_F9£
IF _20
IF _20
IF _20
IF _20
IF _I0
IF _10
IF _10
IF _20

F9£

CH 4,FILLA_F1£
BNL *-24_Fl£

UNIT SKI P 3 £

LH 1»_20_F1£
ST 1»_10_F1£

UNIT SKI P 3 £

L 1»_20_F1 £
STH 1t_10_Fl£

STRING SKIP 10£
ST2 SKIP 9£
STI SKIP 8£
FULL SKIP 7£
FULL SKIP 6£
ST2 SKIP 5 £
STI SKIP 4£
SAFE SKIP I £

LH
STH

L
ST

1»_20_F1£
1»_10_F1£

1»_20_F1£
1»_10_F1£

= + _•

IF _10 = ST2 SKIP 7£
IF _10 = STI SKIP 6£
IF 20 = GREG SKIP 1£

LH 1 »_2.0_F1 £
AH 1»_30_F1£

IF 10 = REG SKIP 1 £
STH 1»_10_F1£

_F9£
L ' 1»_20_F1£
AH 1»_30_F1£
ST 1,_10_F1£

IF 20 = GREG SKIP 1£
LH 1»_20_F1£

SH 1*_30_F1£
IF _10 = REG SKIP 1 £

STH 1 »_10_F1 £.
£

_ = REG
IF _10 = FULL SKIP 2£

STH _20,_10_Fi£
_F9£

ST _20,_10_FI.£
£

REG
_ =

IF _20 = FULL SKIP 5£
IF _20 = 0 SKIP 2£

LH _10,_20_F1£
_F9£

LA _10 »0_F1£
_F9£

L _10,_20_F1£
£

ADDRESS REG
LA _10,_20_F1£

£- .

GREG
_ +

AH _10,_20_F1£
£

GREG _ - •
IF _20 = =A (STRI NG) SKIP 2£

SH _10 »_20_FI £
_F9£

S _10,_20_F1£
£

IF
_ JUMP TC

IF _10 = SPACE SKIP 4£

LH 1t_10_F1 £
CH 1 ,=H '1' * IF _I0 BRANCH
BF. _20_F1 £

F9£ *-
LA I, CARD_F1£
AR I»2_Fi£
CLI 0(1),C» '_F1£
BE _20_F1£

IF NOT
_ JUPP TO

IF 10 ".= SPACE SKIP 3£
CLI 0(A) ,C ® *_F1£
BNE _20_F1£

F9£
LH 1,_IO_F1 £
CH 1,=H'0•_F1£
BE _20_F1£

IF JUMP TO
IF _10 = REG6 SKIP 11£
IF _10 = REG5 SKIP 8£
IF _10 = REG SKIP 5£
IF _I0 = UNIT SKIP 10£
IF _30 = FULL SKIP 9£
IF _30 = FIN SKIP 8£
IF 30 = STRING SKIP 7£

LH 1 ,_10_F1£
CH 1 ,_30_F1£

CH 5 »_30_F1£
SKIP 1 £

SKIP 1 £

SKIP 2£

_F1£

CH 6 ,_30_F1£

L I,_10_F1 £
C 1»_30_F1£

B222 4444444444 £

SWAP AND

IF _10 = I LB SKI P 6 £

IF _10 = OLB SKI P 5 £
LH It_10

LH 2 ?_20_F1£
STH 2 »_10_F1£
STH 1 ,_20_FI£

_F9£
LR 1 ,7
LR 7,8_F1£
LR 8 »L_F1£

£

MOVE
_ CHARS FROM TO

IF _20 = I LB SKI P 8£
LR 10 »7_F1£

IF _20 = GLB SKI P 2 £
LA 7 »_2 0_F1 £

SKIP 1£
LR 7,8_F1£

IF _20 = CLB SKI P 4 £

LH 1,=H '0'_F1£
SKIP 3£

LH l.» I PP_F1£
SKIP 1 £

LH 1t OP P_F1£
IF _30 = CLB SKIP 11 £

LR 11»8_F1 £
IF _30 = I LB SKI P 2 £

LA 8 »_30_F1£
SKIP I £

LR 8 ,10_F1£
IF _30 = CHTAB SKIP 3 £
IF _30 = I LB SKI P 6 £

LH 2,=H*0 «_F1£
SKIP 1 £

LH 2 ,CTP_F1£
SKIP 1 £

LH 2 »CP P_F1 £
SKIP 1 £ •

LH 2,IPP_F1£
LH 3 t_10_F1£
BAL 14,MCVES_F1£

IF _20 = I LB SKI P 1 £
LR 7,10_F1 £

* SWAP _1C AND _2C_F1£

* SWAP __ 10 AND _2C.„F1£

IF _30 = CLB S KI P 1 £
LR 8,11_FL£

IF _40 = KEEP SKIP 1 £

_F9£
IF _20 = I LB S KI P 2 £
IF _20 = CLB SKIP 3 £

SKIP 3£
STH 1 ,IPP_F1£

SKIP 1 £
STH 1 ,OPP_Fl£

IF _30 = I LB S KI P 3 £

IF _30 = OLB S KI P 4 £

IF _30 = CHTAB SKIP 5£
_F 9£

STH. 2 11PP_F1 £
_F9£

STH 2 »CPP_F1 £
_F9£

STH 2 tCT P_F1£
£

COMPARE WITH IF FOUND
IF _IO = OLB SKIP 3 £

_30 A LR 1»7_F1£
AH 1»IPP_F1£

SKIP 2£
_30A LR 1,8_F1£

• AH 1»CP P„F1£
LA 2,_20_F1£
LH 3,STLEN_F1£
SH 3,=H'1'_F1£
EX 3 »C LC_F1 £

BE „30_FI£
IF _30 -= BEFLCK SKIP 1£
_F9£
IF _30 i= XDEL SKIP 1 £
IF XLD L =F '0' JUMP TO XCHK£
IF _IO = CLB SKIP 5 £
IF DELETE JUMP TC *+32£
MOVE =H' 1 ' CHARS FROM I LB TO CLB.KEEPX

B *+16_Fl£
IPP = IPP + =H '1 '£
SKIP 1£
OPP = OPP + =H '1 '£

V'

AH 1 * ST LE N_F1£
IF _10 = CLB SKI P 4£
IF REG NH EP JUMP TO _30A.£
NO = =H'80 ' - IPP £
MOVE NO CHARS FROM I LB TO CLB,NCKEEP£
SKIP 1£
IF REG NH EP JUMP TO *-46£
£

FIND LAST CHAR.
LA
AH
SH
CLI
BE
S
AH
STH

1 ,CARD_F1£
1 ,=H'80'_F1£
1 ,=H»1 ' _F1 £
0(1) ,C« '_F1£
*-8_Fl£
1 ,=A(CARD)_F1£
1 ,=H'l' _F1 £
1 ,STLEN_F1£

FIND CHAR.

TABCOM

TABQU

TABCONT
£

SR
AH
IC
CH
BE
CH
BE
STC
AH
IC
CH
BNE
B
AH
IC
CH
BE
B
ECU

1»1_F1£
2 t =H ' 1 '_F1£
1 ,CARD(2)_F1£
1,=H *64 *
ERR3.F1£
1»=H'111*_F1£
TABQU_F1£
1,TABCHAR+1_F1£
2r=H'l'_F1£
1,CARD(2)_F1£
1 » =H * 107 ' •

ERR3_F1£
TABC0NT_F1£
2 »=H•1'_Fi£
1 ,CARD(2)_F1£
1 ,=H«111'_F1£
TABCFF_F1 £
TABCGM_F1£
*_F1£

* IF SPACE ERROR._F1£

* COMMA EXPECTED._F1£

FIND NUN.
BAL

£

14 ,NUKF„F1£

TABCHECK.
BAL 14»T ABST_F1 £

SET POINTERS.
BAL 14»SET P * GO AND SET POINTERS._F1£

READ IN TO _.

IF _10 = I LB SKIP 3 £
IF 10 = OLB SKIP 4£

LA 1»_10_F1 £
SKIP 3£

LR 1»7_F1£
SKIP 1 £

LR 1i8_F1£
BAL 10»IN

£

* READ A RECORD FROM _1C._F

V.'RITE OUT --
IF _10 = CARD SKIP 6£
IF _10 = STRING SKIP 5£
IF 10 = OLB SKIP 2£

LR 1»7_F1£
SKIP 1 £

LR 1»8_F1£ .

SKIP 1 £
LA 1»_10_F1£
BAL 10 »CUT1_F1 £

£

DI SPLAY.
LA
LR
ST
A

2 »0_F1 £
1»7_F1£
1,PARAN(2)_F1£
2,=F14'_ F1 £

LA 1 , RUM T_Fi £
ST 1,PARAM(2)_F1£
AH 2 , =H '4 ' _F1 £
LA 1 ,WUMT_F1£
ST 1 ,PARAM(2)_F1£
AH 2 , =H '4 *_F 1 £
LA 1 ,ECF_F1£
ST 1 ,PARAM(2)_F1£
LA 1,PARAM_F1£
LR 4 ,13 _ F1 £
LA 13 ,SAVE_F1£
LR 6 ,15 _ F1 £
L 15 , = A(DIS PLY)_F1£
BALR 14,15_F1£
LR 15,6_F1£
LR 13 ,4_F1£
LH 1,EGF_F1£
CH 1,=H «i'_F1 £

BE ERR15_F1£
B CHE KOUT_F1 £

INPUT.
IN SR 2,2 * PREPARE PARAMETERS ANC_FI-

ST 1 , PARAM(2) * CALL INPUT._F1£
IF UNIT E = F '5 ' JUMP TC *+16£
IF EOF JLMP TO ERR15£

AH 2,=H '4 '_F1£
LA ItUNIT_Fi£
ST 1,PARAM(2)_F1£
AH 2,=H'A'_F1£
LA 1 , EOF_Fl£
ST 1,PARAM(2)_F1£
AH 2 , =H 'A '_F1 £
LA I,PR INT_F1 £
ST 1,PARAM(2)_F1£
LA 1 , P A R A M_ F1 £
LR 4,13_F1£
LA 13 ,SAVE_F1£
LR 2 ,15_F1 £
L 15 , = ACINPUT)_F1£
BA LR 14,15_F1£
LR 15,2_F1£
LR 13 iA_F1 .£

IP UNIT E =F '5 ' JUMP TC *+16£
IF EXCH JUMP TC INEX£

BP 10
_ F1 £

£

OUTPUT,

IF REG5
IF REG5

ST
SR
ST
=H '17'

10 ,FULL_Fi.£
2,2
1 , P A R A M (2)

JUMP TC CUTP£

PREPARE PARAMETERS FOR.
CUTPUT ANC CALL IT_F1£

=H '18' JUMP TC OUT P£
IF ENDF JUMP TO ENDOUT£
OUTP AH 2»=H"+'_F1£

LA 1 , UNIT_F1 £
ST 1 , PARAM{2)_F1£
AH 2 »=H '4 ' _F1 .£
LA 1 , PR I NT_F 1 .£
ST 1 ,PARAM(2)_F1.£
LA 1 ,PARAM_FI£
LR 4,13_F1£
LA 13 ,SAVE_FL£
LR 2 , 15_F1£
L 15 ,=A(CUTPUT)_F1£
BA LR 14 ,15_F1£
LR 15 , 2 _ F1 •£
LR 13 ,4_F 1 £
L 1 » P A R A M_ F1 £
CR 1,8_F1£

• BNE ENDCUT_F1£
OPP = =H •0 '£
MOVE =H' 80' CHARS FROM BL TO CLB,NCKE
ENDUUT L 10 , FUL L_F1£

BR 10_F1£
£

t

POINTERS •

SE TP LR 10,14 F1 £
LR 1,7
AH it X CD o
SH 1 ,=H • 1 '
CLI 0(1) ,c • '
BE «-8
LR 2 ,7_F1£

SET UP VALUE OF_FL£
EP BY SEARCH ING_F1£
FRCM'tNC OF CARC_Fl.£
TC FIRST NCN-BLANK_F1£
CHARACT ER._F1£

SR 1,2_F1£
AH 1,=H'I»_F1£
STH 1»E P_F1£
CH 5 f =H'A'_F1 £
BL RETC

=H ' 0 '£

* IF BACKSPACE MISS ALL THIS
IPP
DPP = SANE £
MOVE SFP CHARS FROM I LB TC GLB » KEEP£
IF EFP NL EP JUMP TC RETC.£
EP = EFP£
RETC BR 10
£

* RETURN_F l.£

MOVES.
MOVES

MOVE SI

G0BK1
GOBK
£

CH
BNH
IC
STC
AH
AH
C
BE
C
BE
C
BE
CH
BH
BCT
BR

3 j =H '0 • _F 1 £
G0BK_F1£
A ,0 (1 f 7)_F1£
A ,0 (2,8)_F1£
1»=H*1*_F1£
2 » =H • 1*_F1£
8»=A(CHTAB)_F1£C
G0BK1_F1£

8j=A(LCCPCCN)_Fl£
GGBK1_F1£
8,=A(XCHRS)_F1£
GC'BK1_F1£
2,=H'79 •
* + 8_ F1 £
3,NCVES1_F1£
1 A_F 1 £

* CUTPUT BUFFER FULL._F1£

DUMP.
DUMPS LA 1,LASTINS_F1£ .

ST 1,PARAN_FI£
LA 1,PARAM_F1£
LR A113_F1 £
LA 13 tSAVE_F1£
LR 2,15_F1£
L 15 ,=A(DUNPIT)_F1£

BALR 1A,15_F1£
LR 15 »2_F1£
LR 13

£

B READ+16

NUMBER.
NUMF LA

STH
ST
LA
LA
LR
AH
AH
IC
CH
BL
CH
BH
SH
M
AR
B
CH
BE

CH
BNE
CR
BNE
LH
ST
STH
BR .

1»0_E1£
1,NUM_F1£
1 ,FULL_F1£
10 »0 _ F1 £
11j 0_F1 £
4,2
4,=H ' 1'_F1£

* GET POSITION ON CARD._F1£

2,=H ' 1 '_F1£
1,CAR0(2)_F1£
1,=H'240'_F1£
*+26_F1 £
1» =H'249*_F1£
*+18_F1 £
1»=H'240'_F1£
10,=F'10'_F1£
11 »1_F1 £
*-34_Fl£
1,=H «107'_F1£
*+12_Fl£-

1,=H'64 «
ERR3_F1£
4,2_FI£
*+8_Fl£
11»=H'-1'_F1£
11»FU L L_F1 £
ll'» NUM_F1 £
14_F1£

* SPACE PRESENT._F1£

*_F1£
TABSTORE.
TAB ST EQU
FULL = REG 14£
FILLB = REG 2£
REG 4 = 0 £
IF REGS E =H '22 ' JUMP TO *+12£
IF REGS NE =H ' 171 JUMP TC TBS1£

NOT LINE JUMP TC TBS1£
= EFP - SFP£

IF
NO
IF REG L STLEN JUMP TO ERR18£

JUMP TO LCOPR1+4 £
LABEL LOGPR1 £
REG 5 = FILLA£
MOVE =H • 80 ' CHARS
REG 4 = SF P£
TBS1 EQU
REG 2 = FIL LB £
REG 1 = S TLENJE
TADSTi LA

LH
AGAIN IC

AH
LH
CH
BNE
CH
BNE
LH
CH
B E
AH
CH
BH
CR
BNL
SR
SH
CH

■ BE
STC
AH
BCT
B

STRCHR STC
AH

LOOPR BCT
STLEN = REG 4£
REG 14 = FULLS

BR

FROM BL TC STRINGtNUKEEP£

* Fl£

❖

10 ,0_F1£
11t =H *64 •
3 tCARO(2)
2 »=H 11 1 *

6,TAB *
6 r =H•1«_F1£
STRCHR_F1S
3,T ABCHAR *
STRCHR_F1£
6 jTABF{10)_F1£
6 » =H'80'_F1 £
ERR24_F1£
10 » =H12•_F1£
10,=H«16«_F1£ -
ERR24_F1£
4 >6_FI £
ERR25_F1£
6 »4_F1 £
6 f =H ' 1 * _F1 £
6 » =H'0'_F1 £
LCOPR _F1 £
11,STRING(4)_F1£
4,=H'1'_ F1 £
6,*-8_Fl£
LC0PR_F1£
3 i ST RI NG (4) *
4 »=H ' 1 * ' *

ItAGAIN , *

LOAD A SPACE_F1£
MOVE STRING ON CARD_F1£
INTO THE AREA STRING._F1£
CHECK IF TAB IS IN OPERAT.

IF TAB CHAR GO AND SPACE F

IF NO TABS THEN _F1£
STORE CATA IN STRING._FL£
LOOP COUNTER._F1£

14_F1£

CONSTANTS.
LASTINS DC
FILL DC

H'D «_F1£
H '0 » ♦ STORAGE_ F 1£

■I

1*1

.

j

r—\

^

«—(
r—J

I—(
r—i
I—{
I—i
«—{
1—<
r~4
t—{
r—t
«—(
r—{
r—4
r—4
r—I
r—4
»—"4

I

r—4
r-H4
r—i
f—J
r—i
r—I
•"—4
r-4
*H
r—4
r—4
r—<
r—4
•—4
r-4
r—4
r—4
«H
1—<
r—4
t—4
r—4
r—4
I—"4
r—<

t-1
LL
U-
LL
LI-
U-
Li.
LL
LL
LL
LL
LL
LL
LL
IX.
LL.
LL
LL
LL
-

U-LLU.LLU.LLLLlLLLLLLLLLU-U.'JLU-tLLLLLLLU-.LLU-U.LL

U_

I

1

I

I

I

I

1

I

I

I

t

I

I

I

I

I

I

lo
I

I

I

I

I

I

I

I

I

I

I

I

I

1

I

I

I

I

I

I

I

I

I

I

I

-

--
--
--
-

.......

-

OOOOOOOOOOOOOOOOOOlAOOOOOOOOOOOOOOOOOOOOOOOOO
o-
-

-

--
--
--
--
--
--
--
--
-

-

-

XXXXXXXXXXXXXXXXXXXXXXXXXXXXX
XX

xxxxxxxxxxxxx

X

ooo.QQQQClQOOCiQQQQQCiOQOQQQQQQQQQQQQQQQQQQQQQaQQQQQh-

■

cZ

X

CL

<

<

cd

o

y~
>-

x
x

_ico
_i

a
-<

—i

xa-X'jjoa.<oXE-XXQ.a.xx_ja.on.a.!i.OuJt/'oi—
Sua

<-<
a.
O

O
X
l~

QQO—IXt-XOCLCLO.̂C-<<
UJ

(Nj

S—

—J
i—

xx

i—

t-

or

U-ZUJllJUXÛJ-IZiH
l/>

l/>
u_

<-<
CM

r~l
<Nj

LL
O
O

—'
—I
—I

U<(
Z

G.
H

I—
H

O
O
Q-
G-
Z

UJ
—'

—I
O
O

OZZLUl-HXlHUJiin
—

XH-t-XXLUUJUJQŴUJU-'ilXXXOXXJGWi/lHH(

NUM DC
NO DC
IPP DC
OPP DC
SFP DC
EFP DC
EP DC
RUNIT DC
WUNIT DC
UN I T DC
PARAM DC

STRING DC
CARD DC
I LB DC

OLB DC
LNAMES DC
LCPDS DC
CMAMES DS
CHTAB DC

DC
DC

LOOPCOM DC
DC
DC

LOOP STK DC
LOOPNO DC
XTAB DC
STRA DC
XCHRS DC

DC
DC

FULL DC
ST1 DC
ST2 DC
FIN DC
DMP DC
BL DC
CLC DS

ST
ORG
ST
ORG
DC
ORG

TABLE DC

H'l*_ri£
H'0'_ri£
H »o »_F1£
H'0'_F1 £
H'01_F1 £
H'80«_F1£
H180«_F1£
H 12 ' F1 .£
H111_F1 £
F'0'_F1 £
4F *0'_F1£
CL80 «
CL80 •
C180 «
C LOO »
20F '0'

_F1 £
_F 1 £
_Fi £
_F1£
FL£

100F »0«_F1£
2 0 F '0 ' F1 £
CL180 *
C LI 80 '
C LI 80 *
CLI80 '
C LI 80'
C LI 80'
16H *0
16H '0
2OH '0

Fl£
,F 1 £
F1 £
F1 £
Fl.£
F 1 £

F1 £
FIX
Fl£
_F1 £CL80 «

CLI80 ' '
C LI 80 1 '
C L40 ' '
F"0'_F1 £
F'0 *_F1£
F'0'_F1 £
X'C6C9D54J'_F1£
X'C4E4D4D7 «_F1£
CL80* '
H

0,0(0,2)_F1£
CLC_F1£
0,0l0,l)_Fl£
C LC_F1£
X'DbOO '_F 1 £
C LC+6_F1 £
H'40,-1,-1,-1,-1,0,14,49,

* SIMULATE A CLC INSTRUCTIO

1, 16 6'_F1£

CH 6 » =H '4'_F1 £
BL LOAD IT1 + 2_F1 £

FETCH NAME FROM STRING.
IC 3,STRIKG(10)_F1£
AH 10,=H'l'_F1£
STC " 3 ,FULL(4)_F1£
AH •4,=H * 1 ' _F 1 £
BCT 6,XL123_Fi£

IF LOAD _ ELSE
CLI 0(4) ,C« L'_F1£
BNE _20_F1£

GREG 4 + =H ' 1 * £
CLI 0(4),C« *_F1£

IF 10 = CONTINUE SKIP 2£
BE _10_F1£

SKIP 1£
BNE _20_F1£

£

BRANCH ON REG _ TO
BCT _10,_20_F1£

£ .

SWAP UNITS.
SR 2 »2_F1 £
LA 1»RU NIT_F1£
ST 1,PARAF(2)_F1£
AH 2i=H *4 '_F1£
LA 1 |WUMT_F1£
ST 1,PARAF(2)_F1£
LA 1> PARAF_F1£
LR 4,13_F1£
LA 13,SAVE_F1£
LR 2,15_F1£
L 15 , = A(SWAPIT)_F1.£
BALR 14 115_F1£
LR 15,2_F1£

LR
B

13 ,4.

NUM NOT FOUND-
A

NONUM

N2

NNAME

RET
£

RESET.
RESET

LH
L
ST
LA
LA
IC
STC
CH
BE
AH
AH
SH
CH
BL
B
CH
BE
L
SRL
BCT
ST
BR

SR
LH
ST
LA
ST
LA
LR
LA
LR
L
BALR
LR

r *+ _ F1 £
CHEKOUT * COMMAND EXECUTED. Fl£

3 ,=X'40000000'_F1£
4 ,=1-1*4'
1 ,BL_F1£
1 , FU L L_F1 £
3 ,0_F1£
1 ,0_Fi£
3 ,CARD(2)
3 tfrULL (1)_F1£
3,=H'107 *_F 1 £
NNAME_F1£

* ALPHA CHARS ON SEQ CARD._F

* READ AND STORE ALPHA CHARS

1 ,=H'l : 1 £

2,=H * 1'_F1 £
4,=H «i«_F1£
4,=H «0'_F1£
ERR35_F1£
N2_F1 £
4,=H'0'_F1£
RET_F1£
3,FULL_F1£
3 ,8_F1£
4,KNAME+12_F1£
3iFULL_F1£
14_F1£

2,2_F1 £
1 , WUNIT_F1£
1 , UNIT_F1£
1 ,UNIT_F1£
1 ,PARAM(2)_F1£
1 , PARAM_F1£
4 ,13_F1£
13 , S AVE _F1 £
2 ,15 _ F1 £
15 , = A(FILSRT)_F1£
14 ,15_F1£
15 ,2_F1£

£

DUMPCHECK.
L
C
BE

1 ,CARD_F1£
1 ,DMP_F1£
DUMPS FOR PROGRAMMER USE ONLY

ENDALL.
_FO£
££

END OF MACROS
$ £ % $ # * $ * ❖ ❖ * # *

LISTING OP MACRO GENERATING STATEMENTS

START.
LABEL READ.
DUMPCHECK,
IP LDL JUMP TO LFDNUM1.
UNIT = =H 1 5 ' •

READ IN TO CARD.
COPY TO CCPYEND.

, (INSERTED HERE IS THE CODING FOR THE COMMAND ANALYSER
AND ERROR HANDLING ROUTINE)

COPYEMD
LABEL DI SPLAY.
IF IPP H SFP JUMP TO DISPL•
IF OPP HH SFP JUMP TO DISP2.
LABEL DISP1.
NO = =H ' 8 0 ' - IPP.
MOVE NO CHARS FROM I LB TO OLD»NQKEE P.
UNIT - VILNIT.
WRITE OUT OLB.
UNIT = RUNIT.
READ IN TO I LB. . .

LABEL DISP2.
DISPLAY.
LABEL LOADITl.
FETCH NAME,
LABEL LUADIT.
REG 6 = C.
LABEL LCHECK.
IP LNAME S(6) E STRING JUMP TO LFDNUM.
GREG o + ^H'81.
IF REG6 H LNP JUMP TO ERR34.
JUMP TO LCHECK.
LABEL LFDNUM.
GREG 6 + =H,4«.
STNO = LNAME S(6)o
GREG 6 + =H '2 ».
LC P1 = LNAMES(6).
IF REGS NE =H ' 17 ' JUMP TC LFDNUM1«

LDLI = =H11'*
LABEL LFDNUMla
IF STN0 E =H '0 * JUMP TC LDEND.
MUVE BLANKS TO CARD.,
REG 6 = Co
REG 6 = LCP1.
NUM = LC PCS(6)•
GREG 6 + =H '2 '«
NO = LCPOS(6}, •
GREG 6 + -H ' 2 '.
LC P1 = REG 6.
REG 6 = NO.
MOVE NUM CHARS FROM CHTAB(6) TC CARD* NOKEEP.
LDL = =H * 1 * •

STNO = STNO - =H«1'.
IF LDLI E =H '1 • JUMP TC SPINS1,
JUMP TO READXo
LABEL LDEND,
LDL = =H ' 0 '.
JUMP TO CHEKOUT,
LABEL SPINSl.
IF CARD E FIN JUMP TO CHEKCUT.
FIND LAST CHAR,
REG 2 = Co ■ ■

TABCHECK.
UNIT = WUNIT.
WRITE OUT STRING.
IF STNO H =H 'O • JUMP TO LFDNUM1,
LDLI = =H,0».
JUMP TO SPINS.
LABEL STORE.
IF STLEM H =H'4» JUMP TG ERR35.
IF LINE JUMP 'TO STLINE,
IF CHP H =H ' 159 ' JUMP TC ERR30.
REG = CTP + NUM.,
IF REG H =H '499' JUMP TC ERR30.
RtG 6 ~ Co
LABEL NMCHK.
IF CNAME S(6) E STRING JUMP TO DUPNAM.
GREG 6 + =H ' 8 ',
IF KEG6 NH CHP JUMP TO NMCHK,
REG 4 = CHP.
CNAME S(4) - STRING.
REG 6 = CHP. -
GREG 6 + =H '4 'o

■ '
.

CNAME S (6) = NUM.
GREG 6 + =H ' 2 1 •

CNAME S (6) = CTPo
GREG 6 + =H ' 2 ' •

CUP = REG 6,
LABEL SETUP*
IF REGS E =H '26 ' JUMP TC STRCOM.
MOVE MUM CHARS FROM I LB TO CHTAB»NCKEEP
C TP = CTP + NUM.
JUMP TO STREAD.
LABEL STRCOM.
UNIT = =H'5'•
READ IN TO CARD.
MOVE NUM CHARS' FROM CARD TO CHTAB,KEEP.
LABEL STREAD.
IF NOT DUPN JUMP TO CHEKCUT.
CTP = FILLA.
JUMP TO CHEKOUT.
LABEL STLINE.
IF LNP H =H '159* JUMP TO ERR30-
REG = LCP + NUM.
REG = GREG + NUM.
IF REG H =H 119 9 ' JUMP TO ERR30.
REG 6 = Co
LABEL LCHK.
IF LNAME S(6) E STRING JUMP TO ERR32.
GREG 6 + =H ' 8 ' •

IF REG6 L LNP JUMP TO LCHK.
REG 4 = C.
REG 4 = LNP.
LNAME S(4) = STRING.
REG 6 = LNP.
GREG 6 + =H '4 '.
LNAME S (6) = NUM.
GREG 6 + -H '2 '.
LNAME S (6) = LCP.
GREG 6 + =H '2 ' •

LNP = REG 6.
UNIT = RUNIT.
IF IPP NH SFP JUMP TO STRLIN.
NO = =H,80' - IPP.
MOVE NO CHARS FROM I LB TO GLB,NOKEEP.
UNIT = WUNIT.
WRITE OUT OLB.
UNIT = RUNIT.

$

READ IN TO I LB.
SET POINTERS.
LABEL STRLIN.
IF REG5 NE =H*26* JUMP TO SLINE1.
SWAP I LB AND OLB,
UN I T = =H ' 5 ' .

READ IN TO I LB.
SET POINTERS.
LABEL SLIN51. ■

NO = =H * 0 *.
REG 6 = LCP.
LABEL SLINE.
LCP0S(6) = EP.
GREG 6 + =H ' 2 ' .

LCPUS(6) = C TP.
GREG 6 + =1-1*2'.
MOVE EP CHARS FROM I LB TO CHTAB,NOKEEP.
C TP = CTP + EP.
IF REG5 E =H '26 * JUMP TC NCWRITE.
FILLA = UNIT.
UNIT = WUNIT.
WRITE OUT I LB.
UNIT = FILLA.
LABEL NOWRITE,
READ IN TO I LB.

-IF EOF JUMP TO ERRI5.
. , . .

SET POINTERS. - ; " •

NO = NO + =H *i •„
■IF REG L NUM JUMP TO SLINE.
LCP = REG 6.
IF REG5 NE =H*26* JUMP TO CHEKCUT.
MOVE =H ' 80 ' CHARS FROM I LB TO CARD,NOKEEP
SWAP I LB AND OLB.
JUMP TO READX.
LABEL DUPNAM.
GREG 6 + =H *4 *. " *

FILL = REG 5.
FILLA = CTP.
IF CNAME S(6) H NUM JUMP TC ERR31.
JUMP TO ERR32.
LABEL STRESET,
DUPN = =H ' 1*.
REG 5 = FILL.
CNAMES(6) = NUM.
GREG 6 + =H *2 *.

CTP = CNAME S(6).
JUMP TO SETUP-
LABEL LOOPSTR.
IF REG 5 E =H '21 ' JUMP TC LCCPND.
IF REG5 NE =H'20* JUMP TC LPCCMDo
LP SET = =H ' 1 *.
LOO PC NT = LCOPC NT + =H*1*„
FIND NUMa
LABEL LPCCMD.
REG = LPCGMP + STLEN.
REG = GREG +' =H *10 *.
IF REG H LPMAX JUMP TO ERR29,
REG- 10 = LPCOMP.
LOQPCQM(10) = REG 5.
GREG 10 + =H *2 *•
IF NOT CHAR JUMP TO LINETST.
LOOPCOMt 10) = =H *1
JUMP TO LPSTRING.
LABEL LINETSTo
IF LINE JUMP TC LINEST.
IF REG5 NE =H'20* JUMP TC SINGST.
LOOPC0M{10) = NUMo
GREG 10 + =H *2 *.
LABEL SINGST.
IF REG5 E =H * 19 ' JUMP TC LPSTRING.
LOOPCOM(10) = =H ' 123•.
GREG 10 + =11 '2
LABEL ENDSTa
LPCOMP = REG 10a
IF LOOPCNT E =H * 0 ' JUMP TO . LPEXEC.
JUMP TO READ.
LABEL LINHST.
LOOPCOMt10) = =H '0 '.
IF STLEN NE =H*<j* JUMP TC LPSTRING
IF KEG3 E =H ' 17 ' JUMP TC SPCASE.
LABEL LPSTRING.
GREG 10 + =H ' 2 *»
IF REG5 E =H * 2 5 ' JUMP TO NUMSET.
IF REG5 E =11*26' JUMP TO NUMSET.
IF STLEN E =H *0' JUMP TC NUMSET.
LABEL KEEPST.
LOOPCOMt10) = STLEN.
REG 6 = C.
LABEL LPCOK.
GREG 10 + =H *2 'o

LOOPCDM(10) = STRING(6).
GREG 6 + =H'2 ' •

IF REG6 L STLEN JUMP TO LPCOM.
LABEL LPCCMF.
GREG 10 + = H '2 '.
LOOPCOM(10) = =H ' 123 'e
GREG 10 + =H ' 2 ' 5

IF LINSRT JUMP TO SPCASElc
JUMP TO ENDST.
LABEL SPCASE.
LINSRT = =H ' 1 1.
GREG 10 + =11 '2
LOOPCOM(10) = =H ' 123'o
GREG 10 + =H'2*o
UNI T = =H'5 '«
LABEL SPCASE1.
LPCUMP = REG 10o

- READ IN TG STRING.
REG 10 = LPCGMP.
IF STRING E FIN JUMP TO SPEND.
ADDRESS REG A = STRING.
GRLG 4 + =H '79 '.
LABEL SPCOMP.
IF NOT SPACE JUMP TO KEEPST2.
GREG A - =H '1 '.
JUMP TO SPCOMPo
LABEL KEEPST2.
GREG A - =A{STRING).
GREG A + =H * 1 • •

STLEN = REG A.
JUMP TO KEEPST.
LABEL SPEND.
STLEN = =H ' 3 '«
LINSRT = =H,G'«
JUMP TO KEEP ST.
LABEL NUM.SET.
LOOPCOM(10) = NUM.
IF REG5 E =H *25 ' JUMP TO KEEPST1.
IF REG 5 E =M '26' JUMP TO KEEPST1.
JUMP TO LPCOMFo
LABEL KEEPSTlo
GREG 10 + =H ' 2 '.
JUMP TO KEEPSTo
LABEL LGCPND.
LOOPCNT = LQOPCNT - =H'l'.

V'

IF REG L =H ' 0 ' JUMP TO ERR19.
JUMP TO LPCOKDo
LABEL LPEXEC«
LPEX = = H ' 1 '.
LP SET = =H ' 0 'a
LSTP = SAME,
LPCOMP = SAME*
LABEL LPEX1.
IF LDL JUMP TO LFDNUM1.
REG 10 = LPCOMP,
REP L = =H '0
DELETE = SAME,
NUM. = =H '1 ' ,

MOVE BLANKS TO STRING,
LABEL LP5X2.
REG 5 = LCOPCOM{10)•
GREG 10 + =H *2

. IF REG5 E =11 '20' JUMP TO UPSTK,
IF REG5 E =H '21' JUMP TO DNSTK.
REG 6 = LCQPCOM(10).
GREG 10 + =H '2
IF KEG6 E =H ' 1231 JUMP TO END INS
IF REG6 E =H ' 1 1 JUMP TO STCHAR.
LINE = =H *1».
CHAR = =H'0 1.
JUMP TO NXTVALo
LABEL STCHAR,
CHAR = =H ' 1 ' •

LINE = =H,0*.
LABEL NXTVAL.
STLEN = LCOPCOM(10)•
NUM = SAME.
GREG 10 + =H '2 ».
IF REG E =H 1123' JUMP TO END INS«
REG 6 = C,
IF REG5 E =H '251 JUMP TC -*+12,
IF REG5 NE =H'26' JUMP TC STINS.
STLEN = LOOPCGM{10),
GF;EG 10 + =11 '2
LABEL STINS,
REG 1 = LCOPCOMt10)«
GREG 10 + =H *2 ',
IF KEG E =H ' 123 1 JUMP TO ENDINS.
STRING(6) = REG 1.
GREG 6 + =H ' 2 ',

*

JUMP TO SUMS.
LABEL END I MS.
LPCOMP = REG 10.
IF STLEN NE =H'123' JUMP TO EXINS
IF REGS NE =H ' 17 ' JUMP TO EXINS.
LINSRT = =H ' 1 '«
STLEN = =H ' 0 1 a.

LABEL EXINS.
JUMP TO TBRANCHo
LABEL UPSTK.
REG 1 = LOO PC OM(10).
REG 6 = LSTP.
GREG 10 + =H '4 '.
LOOP STK(6) = REG 10.
LUOPNUl6) = GREG - =H•1•.
GREG 6 + =H '2 '»
LSTP = REG A.
JUMP TO LPFX2.
LABEL DM STK.
REG 6 = LSTP.
GREG 6 - =H '2 '.
IF LOO PNC- (6) E =H '0 ' JUMP TO NUMZ
LOOPNO(6) = GREG - =11 »1'.
REG 10 = LGOPSTK{6)0
JUMP TO LPEX2.
LABEL NUMZ.
LSTP = REG 6.
IF REG 6 E =H'j' JUMP TO LPABS »

GREG 10 + =H *2 '.
JUMP TO LPEX2,
LA3EL LPABS.
LP EX = = H • 0 '.
LPCOMP = SAME.
JUMP TO READ.
LABEL FIELDINS.
FIND NUM.
IF MUM MH =H '0' JUMP TO *+12.
NUM = GREG - =H ' 1'.
NO = MUM.
FIND NUM.
IF NUM H =H ' 80 ' JUMP T0-5RR3.
IF NO NL =H '0' JUMP TO *+12.,
NO = SFP.
IF NUM ML =H • 0 ' JUMP TO *+12.
NUM = E F P.

IF NO NL NUM JUMP TC ERR23.
SFP = NO.
EFP = HUM,
IF OPP H =H ' 0' JUMP TO FNV.
IF IPP NH =H • 0 • JUMP TC FSET.
LABEL FMV.
NO = =H • 80 1 - I PP.
MOVE NO CHARS FROM I LB TC 01B ? NOKEE P.
SWAP I LB AND OLB.
LABEL FSET.
SET POINTERS.
JUMP TO CHEKOUT.
LABEL TABS.
TAB = =H »1
FIND CHAR.
REG 6 = Co
REG A = 0.
LABEL NUMGET.
FIND NUM.
IF NUM NL =H '0' JUMP TC TESTOR.
NUM = TABF(6).
JUMP TO LOADNO.
LABEL TABOFF.
TAB = =H ' 0 ' .

JUMP TO CHEKOUT,
LABEL TESTOR.
IF NUM NH NO JUMP TO ERR23.
LABEL LOADNO.
TAB T(6) = SAME.
GREG 6 + =H ' 2 ' •

IF SPACE JUMP TO LASTNC,
IF REGo H =H '16 1 JUMP TC ERR24.
NO = NUM.
JUMP TO NUMGET.
LABEL LASTNC.
IF REG6 H =H 116 ' JUMP TC TABFS.
LABEL SETOO.
TAB T(6) = =H ' 80 ' .

GREG 6 + =H 1 2 'o
IF REGO NH =H ' 16 ' JUMP TO SET30.
LABEL TABFS.
REG 6=0.
TABF(6) = TABT(6).
GREG 6 + =H '2 '.
IF REG6 NH =H«10 • JUMP TO TABFS+4.

JUMP
JUMP

TO
TO

XCONT.
X L20

JUMP TO CHEKOUT.
LA3EL EXCHNG.
EXCH = =H '1
XLD = =H ' 0 ' o

IE STLEN NH =H '2' JUMP TO XI.
ADDRESS REG 4 = STRING,
IE LOAD CONTINUE ELSE XI.
XLD = =H • 1 '.
LABEL XI.
IF STLEN2 NH =H '2' JUMP TO X LCAD.
ADDRESS REG 4 = STRING.
GREG 4 + STLEN.
IF .LOAD CONTINUE ELSE XLCAD.
IF XLD E =H ' 1 ' JUMP TO 4 + 16.
XLD = =H '2
JUMP TO XLOADa
XLD = =H *3 ' •

LABEL XLGAD.
OLD ST = STLENo
IF XLD E =H 10 «
IF XLD E =11 12 '
REG 14 = O,
REG 6 = STLEN.
REG 10 = =H•2•
LABEL XLCADI.
GREG 6 - =H'2•
IF REG6 H =H *4
FULL = BLo
Rc G 4 = C»
LABEL XL123.
FETCH NAME FROM
REG 6=0,
LABEL XSEARCH,
IF CNAME S(6)
GREG 6 + =H'8 ' •

IF REG6 H CHP JUMP TO ERR33.
JUMP TO X SEARCH.
LABEL XFND.
GREG 6 + =H • 4 '.
NO = CNAME S(6)o
GREG 6 + =H '2 '•
REG 6 = CNAME S(6).
MUVE NO CHARS FROM CHTAB (6)
IF XLD E =H ' 1 1 JUMP TO XL1
1F XLD E =H • 2 ' JUMP TO XSTRING.

' JUMP TO ERR35,

STRING.

FULL JUMP TO XFND.

TC CARD(14) iNCKEEP.

V'

STLEN = NO.
XLD = =H ' 2 1»
LABEL XL3..
REG 14 = STLEN, ' ■ • ' , .

REG 6 = STLEN2.
REG 10 = OLDST.
GREG 10 + =H ' 2 '«
JUMP TO XLOADlc
LABEL XL2o
MOVE STLEN CHARS FROM STRING TC CARD,NOKEEP.
JUMP TO XL3.
LABEL XL 1.
STLEN = NCo
REG 14 = STLEN.
REG 6 = OLDST.
MOVE S T L E T12 CHARS FROM STRING(6) TO C A R C (14) , NOK E EP .
JUMP TO XSTRING+8.
LABEL XSTRING.
STLEN2 = NO.
NO = STLEN + STLEN2.
MOVE NO CHARS FRCM CARD TC STRINGtNCKEEP.
LABEL XCGNT. -
REG 6 = 0.
REG 6 = XTP,
IF REG6 NL =H'60« JUMP TC ERR36»
REG 14 = 0.
REG 1 = 0.
XTAB (6) = XCP.
GREG 6 + =H '2 '.
XTAB(6) = STLEN.
GREG 6 + =H '2 '.
XTAB(6) = STLEN2.
GREG 6 + =H *2 ••
XTP = REG 6o
NO = STLEN + STLEN2.
REG 14 = XCP.
XCP = XCP + NO.
IF REG H =H '400 ' JUMP TC ERR36,
MOVE NO CHARS FROM STRING TO XCHRS(14),NCKEEP.
NO = STLEN + STLEN2.
MOVE NO CHARS FROM STRING TO STRA, NCKEEP.
XUN = =H • 1 • .

IPPS = OPP.
ADDRESS REG 10 = READ.
FULL = REG 10.

v

jump to xdela.
label backsp.
if line jump to err20.
if reg5 e =h 'i ' jump to backban.
filla = e pa
fill = opp.
ep = greg + stlen.
opp = =h«0'.
compare clb with string if found backba.
opp = fill.
ep = filla.
jump to err21.
label backba.
filla = opp. '

opp = fill.
label backban.
no = =h ' 80 1 - i pp.

. move no chars from i lb tc olb,nokeep.
ipp = oppo •

swap i lb and olb.
opp = =h * 0 ' •

move =11*80 • chars from bl to olb.nckeep.
set pointers.
if regs e =h ' 1 ' jump tc backnc.
no = filla.
if regs e =h *3 ' jump tc * + 8.
mo = greg + stlen.
opp = =h ' 0 ' .

ipp = same.
move no chars frcm i lb tc clb,keep.
jump to chekcut.

. label backno.
no = ipp - numj
ipp = =n *o *.
opp = same.

• if ipp l sfp jump to err22a.
move no chars frcm i lb tc olb,keep.
jump to chekout.
label err22a.
no = sfp.
ipp = =h * 0 ' •

opp = same.
move no chars frcm i lb tc clb,keep.
jump to err22.
label copyn.

IF REG5 E =M*34 1 JUMP TO COPLIN2.
IF LINE JUMP TO COPLIN.
REG = IPP + NUM.
IF REG H EFP JUMP TO ERRI1.
LABEL COPYN1.
IF DELETE JUMP TO DELI.
MOVE NUM CHARS FROM I LB TO CLBrKEEP.
JUMP TU CHEKCUT.
LABEL DELI.
IPP = IPP + NUM.
JUMP TO CHEKCUT.
LABEL COPLIN.
REG.. 6 = NUM.
IF IPP H SFP JUMP TO C0PLIN2.
IF OPP NH SFP JUMP TG CCNT.
LABEL COPLIN2.
NO = =H' 80 1 - IPP.
MOVE NO CHARS FROM I LB TO OLB,NOKEEP.
UNIT = WL'NIT.
WRITE OUT OLB.
IF ENDNL JUMP TO ERR15.
IF REG5 NE =H»34' JUMP TO C0NT1. "
UNIT = RUNIT.
READ IN TO I LB.
IF EOF JUMP TO ERR15.
SET POINTERS.
JUMP TO CHEKOUT.
LABEL CONTI.
IF ENDNL JUMP TO CCNT.
UNIT = R UNIT.
READ IN TG I LB.
IF EOF JLMP TO ERR15.
LABEL CUNT.
IF DELETE JUMP TO DEL2.
UNIT = W'LNI T.
WRITE OUT ILBo
LABEL DEL2.
BRANCH ON REG 6 TO CONTI.
IF ENDNL JUMP TO SETEND.
UNIT = RUNIT. .

READ IN TO I LB.
IF EOF JUMP TO ERR15.
SET POINTERS.
JUMP TO CHEKOUT.
LABEL SETcND.

ENDF = =H ' 1 1 .

JUMP TO CHEKOUT.
LABEL COPABLc
IF LINE JUMP TC ABLINE.
NUM = EP - I PP.
IF REG5 E =H,af JUMP TC BEFORE,
IF NUM NH =H ' 0 ' JUMP.TC CHEKCUT.
JUMP TO COPYN.j
LABEL BEFORE.
NUM = NUM - =H »1 ».
IF REG NH =H '0 ' JUMP TO ERR13,
JUMP TO COPYNo
LABEL ABLINE.
IF OPP H SFP JUMP TO ABL1.
IF IPP i\'H SFP JUMP TO READL.
LABEL ABL1,
NO = =H'80' - I PP.

. MOVE NO CHARS FROM I LB TC CLB,NOKEEP.
UNIT = WUNIT.
WRITE OUT 0LB.
IF REG5 E =H * 8 ' JUMP TO BEFCL.
JUMP TO READ 1.
LABEL READL.
IF REG5 E =H '8 ' JUMP TC CLBP.
IF DELETE JUMP TO READ1,
UNIT = VI UNIT.
WRITE OUT I LB.
LABEL READ I.
UNIT = RUNIT.
READ IN TO I LB.
IF NOT EOF JUMP TC READL+8.
ENDF = =H,1«.
JUMP TO CHEKOUT.
LABEL BEFOL.
UNIT = RUNIT.
READ IN TO 0LB.
IF EOF JUMP TO ERR14.
JUMP TO SWAP.
LABEL OLBP.
UN IT = RUNIT. ■

READ IN TO 0LB,
IF EOF JUMP TO PCINTSET.
IF DELETE JUMP TO SWAP.
UNIT = WUNIT.
WRITE OUT I LB,

LABEL SWAP.
SWAP I LB AMD OLB.
JUMP TO CLBP.
LABEL POINTSET.
END.ML = =H ' 1 *.
SET POINTERS.
JUMP TO CHEKOUT.
LABEL COPABS.
IF REG5 E = H '30 1 JUMP TO *+16.
IF LINE JUMP TO COPLINS.,
REG = IPP + ST LE No
IF REG NH F.FP JUMP TC STLENCK.
NO •- -II' 30 • - IPP.
MOVE NO CHARS FROM. I LB TO OLB,NOKEEP.
JUMP TU CARRYCN,
LABEL STLENCK.
COMPARE I LB WITH STRING IF FOUND BEFCHK.
LABEL CARRYON.,
IF DELETE JUMP TO *+18.
UNIT = WUNIT.
WRITE OUT OLB.
UNIT = RUNIT.
READ IN TO I LB.
IF EOF JUMP TO ERR15.
SET POINTERS.
JUMP TU STLENCK.
LABEL BEFCHK.
IF REG5 E =H '30 ' JUMP TO FINDS.
IF REG5 E =11 '6 1 JUMP TC CHEKOUT.
IF DELETE JUMP TO DEL3.
MOVE STLEN CHARS FROM I LB TC CL8»KEEP.
JUMP TO CHEKOUT.
LABEL FINDS.
IPP = =H • 3 '0
SET POINTERS.
JUMP TU CHEKOUT.
LABEL DEL3.
IPP = ipp + STLEN.
JUMP TO CHEKOUT.
LABEL COPLINS. • . '
IF OPP II SFP JUMP TO CPL1.
IF IPP NH SFP JUMP TO GCCN.
LABEL CPL1.
NO = =H,80« - IPP.
MOVE NO CHARS FROM I LB TC OLB»NOKEEP.

V

UNIT = WUNIT.
WRITE OUT OLB.
JUMP TO GET LI No
LABEL GOON.
CUMPARE I LB WITH STRING IF FOUND BEFLCK.
SPACE TEST.
IF DELETE JUMP TO GETLIN.
UNIT = WUNIT.
WRITE OUT I LB-
LABEL GETLIN.
UNIT = RUNIT.
READ IN TO I LB.
IF EOF JUMP TO ERR15.
SET' POINTERS.
JUMP TO GOON.
LABEL BEFLCK.
IPP = SFP.
IF REG5 E =H '6 ' JUMP TO CHEKOUT.
IF DELETE JUMP TO *+18.
UNIT = WUNIT.
WRITE OUT I LB.
UNIT = RUNIT.
READ IN TO I LBo
IF EOF JUMP TO CHEKOUT.
SET POINTERS.
JUMP TO CHEKOUT.
LABEL DELCOM.
DELETE = =H'1 ' •

IF RE PL JUMP TO COPYN*
GREG 5 - =H ' 6'«
JUMP TO TBRANCHo
LABEL EXIT.
UNIT = WUNIT.
IF ENDF JUMP TO RESET.
IF OPP H SFP JUMP TO EXITi. '
IF IPP NH SFP JUMP TO ILBCUT•
LABEL EXITI.
NO = =H ' 80 ' - IPP.
MOVE NO CHARS FROM I LB TO CLB,NCKEEP.
WRITE OUT ULBo
IF EOF JUMP TO'RESET.
JUMP TO SSTOP.
LABEL ILBOUT.
WRITE OUT I LB.
IF ENDNL JUMP TO RESET.

LABEL SSTOP.
UNIT = RUN IT.
READ IN TO I LB.
UNIT = VJUNIT.
IF EOF JUMP TO RESET.
V.R I TE OUT I LB.
JUMP TO SSTOP,
LABEL INSERT.
IF LINE JUMP TO INLINE.
IF REG 15 E = H ' 1 7 ' JUMP TO INON.
IF REG5 E =H '22 ' JUMP TO INON..
STLEN = NUM.,
LABEL I NGN. .

IF REPL JUMP TO INSREPL.
NUM = EP - I PP.
NO = EFP - OPPo
REG = GREG - NUM.
IF REG NH STLEN JUMP TO ERR18.
LABEL INSREPL.
IF LINE JUMP TO TBS1.
MOVE STLEN CHARS FROM STRING TC CLB»NOKEEP.
OPP = OPP + STLEN.
NUM = STLEN.
IF RE PL JUMP TO DELCOM.
JUMP TO CHEKOUTo
LABEL INLINE.
IF OPP H SFP JUMP TO INL1.
IF 1PP NH SFP JUMP TO INSL.
LABEL INL1.
IF ENDF JUMP TO INSL.
NO = =H ' 8 ;' - I PP.
MOVE NO CHARS FROM I LB TO OLB,NOKEEP.
UNIT = WUNIT.
WRITE OUT OLB.
IPP = =H'0'.
OPP = SAME.
IF EOF JUMP TO INSLX.
UNIT = RLNIT.
READ IN TO I LB.
SET POINTERS.
IF NOT EOF JUMP TC INSL. "
LABEL INSLX.
ENDF = =H ' 1 ' •

LABEL INSL.
REG 6 = NUM.

IF REG5 E =H ' 18 ' JUMP TG INCUT.
IF REG5 E =H'23' JUMP TO INCUT.
IF STLEN E =H'0' JUMP TC SPINS.
REG 6 = =H '1
LABEL INCUT.
UNIT = W U NIT.
WRITE OUT STRING.
BRANCH ON REG 6 TU INCUT.
IF REPL JUMP TO DELCOM.
JUMP TO CHEKOUT.
LABEL SPINS.
IF LINSRT JUMP TO LPSPNS.
UNIT = =H'5 •.
READ IN TO CARD,
LABEL LPSP.
ADDRESS REG A = CARD.
IF LOAD LOAD IT1 ELSE SPINSA.
LABEL SPINSA.
IF CARD E FIN JUMP TO CHEKCUT.
FIND LAST CHAR.
REG 2=0,
TABCHECK,
UNIT = WUNIT.
WRITE OUT STRING.
JUMP TO SPINS.
LABEL LPSPNS.
MOVE =H'8J ' CHARS FROM 3L TC CARCiNCREEP.
REG 10 = Co
REG 10 = LPCOMP.
STLEN = LCQPCOM(IO).
GREG 10 + =H '2
REG 6=0.
LABEL LPSP1.
CARD(6) = LCOPCOM(IO).
GREG 6 + =H ' 2 ' •

GREG 10 + =H *2 '•
IF REG6 L STLEN JUMP TC LPSP1,
GREG 10 + =H '2
LPCOMP = REG 10.
JUMP TO LPSP.
LABEL REPLACE.
RE P L = =H'1•.
JUMP TO INSERT. .

LABEL STARTER.
IF LINE JUMP TO STARTL.

NO = EP - I PP..
MOVE NO CHARS FROM I LB TC GLB,NOKEEP
SWAP I LB AND OLB.
IPP = SFP.
OPP = SAME.
JUMP TO CHEKOUT.
LABEL STARTL.
IF ENDF JUMP TO SWA PUNS,
IF OPP H SEP JUMP TO ST LIN,
IF IPP NH SFP JUMP TO TRY IT,
LABEL ST LIN.
NO = =H ' 80 • - IPP.
MOVE NO CHARS FROM I LB TC CLB,NQKEEP
UNIT = WUNIT.
WRITE OUT OLB.
IF EOF JUMP TO SWAPUNS.
LABEL STR2.,

- UNIT = RUNIT.
READ IN TO I LB.
IF EOF JUMP TO SWAPUNS.
LABEL GETON.
UNIT = WUNIT.
WRITE OUT I LB.
JUMP TO STR2.
LABEL TRYIT.
IF EUF JUMP TU *+8.
JUMP TO GETON.
UNIT = WUNIT.
WRITE OUT I LB.
LABEL SWAPUNS.
ENDF = =H • 0 ' .

ENDNL = SAME.
SWAP UNITS.
LABEL PRNSET.
IF PRINT JUMP TO *+16.
PRINT = =H«1
JUMP TO READ.
PRINT = =H ' 0
JUMP TO READ.
LABEL NEXCH.
XLD = =H '-1 •.
ADDRESS REG 10 = CHEKOUT.
JUMP TO I ME XI.
NUM NOT FOUND.
LABEL SEQNCE.

v

FIND NUM.
ST1 = FULL.
FIND NUM.
I NCI = NUM.
IF REG NE =H '0' JUMP TO Nl.
STRING = ST1.
LABEL Nl.
FIND NUM.
ST2 = FULL.
FIND NUM.,
INC 2 = NUM.
IF REG NE =H '0 ' JUMP TC SEQALL.
REG. A = =H ' 4
STRING(4) = ST2o
LABEL SECALL.
IF EOF JUMP TO ERR15.
ONEF = =H '0 • •

• IF STI NE =H '0' JUMP TO CONTSEQ.
IF IMC.l NE =H' 0' JUMP TO CONTSEC.
ONEF - =H '1
LABEL CONTSEC.
IF IPP IT SEP JUMP TO LINC'JT.
IF OPP NH SEP JUMP TO SEQCCNT.
LABEL LINOUT.
NO = =11* 33 * - IPP.
MOVE NO CHARS FROM I LB TO GLB,NOKEEP
SWAP I LB AND OLB.
LABEL SEQCONT.
REG = EFP - =H ' 8 ' •

IF REG L SFP JUMP TO ERR16.
LABEL SE QC ONI«
IF ONEF JUMP TO 0NLY2.
IF INC 1 E =H *0 ' JUMP TO CNLY2.
REG 4 = =11'3 'o
FILLA = =H 10 *.
STRING(3) = ST 1*
STi = STI + I NCI.
IF INC2 E =H '0 ' JUMP TO 0NLY1.
LABEL 0NLY2.
IF INC2 E =H *01 JUMP TC CNLY1,
REG 4 = =H ' 7 ' o

FILLA = =H '0 *a
IF ONEF JUMP TO *+L2o
FILLA = =H'4'o
STRING (3) = ST2.

ST 2 = ST2 + INC 2.
LABEL 0NLY1.
IPP = EFP - =H '8
IF REG L SEP JUMP TO SEC1.
NO = =H18 '«
KEG 6 = Co
JUMP TO SFG2.
LABEL SEQ1.
IPP = SFP.
NO = EF-P - SFPo
REG 6 = =H ' 8
GREG 6 - NO.
LABEL SEG2.
MOVE MO CHARS FROM STRING(6) TC ILB»NOKEEP.
UNIT = WUNIT.
KRITE OUT I LB.
UNIT = RUNIT.
READ IN TO I LB.
IF EOF JUMP TO ERRI5.
JUMP TO SEQCONi.
LABEL OUT1.
OUTPUT. • " ^
INPUT.
LABEL INEX«
IF EOF JUMP TO RETC.
LABEL IN5X1. .. , '
FILLB = REG 6.
FULL = REG 10.
STL 1 = STLEN.
STL2 = STLLN2.
IF DELETE JUMP TO INRET.
XPTR = =H ' 0 •.
IF XLD L =FI ' 0' JUMP TC XCHK.
SET POINTERS.
LABEL XCHK.
REG 6 •= XPTR.
IF REG6 NL XTP JUMP TO XGUT.
LABEL XCHKl.
XPT1 = XTAB(6)o
IF REG L =H • 0 ' JUMP TO XNP.
GREG 6 + =H '2 'o
STLEN = XTAB(6).
GREG 6 + -H '2 '.
STLEN2 = XTAB(6).
GREG 6 + =H '2 '• : - '

. .

XPTR = REG 6.
IF XLD NL =H '0 ' JUMP TG XCCMPR,
IF STLEN NE STL1 JUMP TC XCHK,
LABEL XCOMPR.
REG 4 = XPT1.
NO = STLEN + 5TLEN2.
MuVE NO CHARS FROM XCHRS(4) TO STRA » NOKE EP.
LABEL XSTCHK.
IF XLD NL =H ' 0 ' JUMP TO XDELA.
ADDRE SS REG 1 = STRING*
GREG I + SF P.
JUMP TO XDELA+6.
COMPARE XCHR S(4) WITH STRA IF FOUND XDEL.
LABEL XC23
SWAP I LB AMD OLB.
IF XON JUMP TO XON1.
SET POINTERS.
JUMP TO XCHK.

' LABEL XNP.
GREG 6 + =H • 6 '•
IF REG6 NL XTP' JUMP TO XCUT,
JUMP TO XCHK1.
LABEL XDEL.
IF XLD NL =H '0 * JUMP TO XFD.
REG 6 = XPTR.
GREG 6 - =H '6
XTAB{6) = XLDo
XLD = =H'G'.
REG 6 = Co
LABEL XINR.
REG 1 = XTAB(6).
IF REG NL =0*0' JUMP TO INRET1.
GREG 6 + =H • 6 •»
IF REG6 L XTP JUMP TO XINR.
EXCH = =H,0».
XTP = SAME.
XCP = SAME.
JUMP TO INRET1.
LABEL INRET.
MOVE CHARS FRCM BL TC QLB,NOKEEP.
LABEL INRETI.
STLEN = STLLo
STLEN2 = STL2.
REG 10 = FULL.,
REG 6 = FILLB.

V

JUMP TO RETC.
LABEL XOUT.
IF XLD L =H ' Q' JUMP TO ERR12A,
IF IPP NH SEP JUMP TC IKRET.
NO = =H ' 80 ' - IPP,
MOVE NO CHARS FROM I LB TG OLB»NOKEEP.
SWAP I LB AMD CLB.
IF XON JUMP TO X0N1•
SET POINTERS.
JUMP TO INRET,
LABEL X0N1.
IPP = =H'0 *.
OPP'- = SAME. - ' .
MOVE 1PPS CHARS FROM I LB TC CL B»KEEP.
XON = =H'0 ' .

JUMP TO INRETo
LABEL XF Do

* IPP = IPP + STLEN.
REG 4 = STLEN.
MOVE STLEN2 CHARS FROM STRA(4) TC OLB,KEEP.
IF IPP NL EP JUMP TO XC2-28.
JUMP TO XSTCHK. . -
LABEL ERR12A.
XLD =

JUMP TO ERR12o
MOVES.
POINTERS.
NUMBER.
DUMP.
TAB STORE.
LABEL CHECK1.
IF NOT LPEX JUMP TC CHEKOUT.
LPEX = =H ' 0 ' .

LPCOMP = SAME,
LOOPC NT = SAME.
LABEL CHEKOUT.
LINSRT = =H • 0 ' .

IF NOT DELETE JUMP TO STLAST.
IF RE PL JUMP TC STLAST.
GREG 5 + =H ' 6 ' .

LABEL STLAST.
LA STI MS = REG 5.
IF REGS NE =H '29' JUMP TC LCOPCH.
IF LINE JUMP TO NEWFILE.
LABEL LOCPCH.

IF LPEX JUMP TC LPEXi.
JUMP TO READ.
RESET,
STOP o

CONSTANTS.
ENDALL.

END OF M.G.S.LISTING
% # sj< ^ ?(< if. >Jc

