University of St Andrews

Full metadata for this thesis is available in
St Andrews Research Repository
at:
http.//research-repository.st-andrews.ac.uk/

This thesis is protected by original copyright

http://research-repository.st-andrews.ac.uk/

TED — A PORTARLE CONTEXT EDITOR
. MSc. THESIS

BY
EDITH HOWSON

This thesis describes the design and programming involved

in implementing a portable context editor on various computers.

The research for the thesis was carried out at St.Andrews
university by the undersigned under the supervision of Mr R, Morrison.
The computer used was an IBM 360/4L4 sited at the university.

"CONTENTS

1 INTRODUCTION sl smsmms slswncs e
2 COMMAND LANGUAGE DESCRIPTION S, .

3 THE ABSTRACT EDIT MACHINE e
4 THE COMMAND ANALYSER AND ERROR HANDLING ROUTINE
5 IMPLEMENTATION OF CODE «rvevssensnnseensssnsensennens

6 CONCLUSIONS00..0

"REFERENCES0icvvvasnnns e e

ACKNOWLEDGEMENTS
APPENDIX I
APPENDIX II

APPENDIX III

-

..

R I I)

..

I I R R R I R)

CR R A

26

39

47

60

62

63

1 INTRODUCTION

1.1 Context Editors

An essential part of any computer environment is a means of altering and
revising text permanently stored within the computer system on magnetic

storage devices.

In past years text was handled using punched cards or paper tape which
could be manually altered. The fact that cards in a deck could be easily
changed, inserted or deleted made the card storage system especially
popular though somewhat bulky. Now, with the increasing use of magnetic
storage it has become necessary to devise a method of updating files
stored on these devices. Since the user has no access to such files
excépt via the computer, a program is required to modify them. Such a

program is called an editor.

The computer environment dictates the method of execution of an editor.

It can be executed either in an on-line or a batch mode. An on—liﬂe editor

is a very powerful tool. Edit commands are input via a remote access

device eg teletype or visual display unit, and error output and verification
listings are output to the same device. Using this method of execution the

user can correct errors as they occur and can keep track of his position in

the edited file. An on-line editor provides the user with a quick, con-

venient method of altering information stored on magnetic storage devices.

With a batch editor, on the other hand, the user has no control over his

files during an edit run. Although the input commands are similar to these

of the on-line editor, the error handling facilities must be more sophisticated.
When errors occur the editor must decide whether it is safe to continue

editing or not. Before a batch edit run is constructed it is advisable to

have a printed copy of the file being edited to ensure the text being

altered is uniquely identified. This precaution is not necessary with an

on-line editor.

As part of the process of designing a new editor a study of some existing
editors was made to establish what useful facilities and techniques could
be incorporated into the new editor. The three editors examined in detail

were a machine independent editor MITEM(4), the KDF9 COTAN ammender®™? and

the UNIVAC 1108 editor ED(6).

MITEM comes in 6 versions graded from simple basic edit commands in the

first version to powerful text manipulation facilities such as file merging
and complex pattern matching in the sixth. Each version is a subset of the
next highest level. The command language for MITEM is, I found, rather

complex. The input/output line buffer concept for keeping the current line
and the edited line was adopted in the new context editor. This allows for
maximum manipulation of the current line and makes the backspace and start

facilities simpler to implement (Section 2).

The editor used on the KDF9 computer is the COTAN ammender. This editor is
not machine independent. The command language of the ammender is very much
simpler than that of MITEM and consists of simple mnemonics with the use of
non-alphameric characters only to delimit line or character commands. This
command language was adopted as the base of the new editor's command language.
The COTAN ammender runs in a very suitable on-line environment which gives it
a lot of power. Commands are input to a file which can be altered in any

way before being input to the ammender itself.

The UNIVAC 1108 editor has a very simple mnemonic command language but has
rather limited context editing facilities. It tends to edit the file by

the line numbers rather fhan the context, although it does have some context
editing facilities. The tab facility and the facility for altering the

field size are useful ideas and are adapted in the new editor The facility
for changing one string of characters for another is a good idea and although
incorporated into the new editor its method of execution is entirely different

(see exchange facility - Section 2).

A fuller discussion of current methods of on-line text editing is given in

the paper, on-line Text Editing - A Survey(Il).

From a user's point of view a context editor is only effective if it is
easy to use and understand. The main factor in making an editor easy to
use is the design of the command language. This should consist of simple
and concise mnemonics and have some uniformity with as few restrictions as
possible. The more powerful the commands become the more complicated the
language structure. it is necessary, therefore, to establish a balance

between powerful commands and simple command language.

A good error diagnostic system is also helpful to the user. Errors should
be stated clearly and, in batch mode, appropriate action taken either to
recover or to terminate the editor depending on the error type. 1In on-line

mode the user determines the action to be taken when an error occurs.

1.2 Portable Software

As many aspects of software are standard on most computers, it seems
rational to develop techniques whereby software written for one computer
can be used on other computers with minimal changes. This would greatly

reduce duplication of programming effort.

High level languages eg Fortran and Algol, go some way towards achieving
portability. 1In theory, any computer supplied with the required compiler
can execute programs written in the specified high level language. This
is not always the case as there are many differences in high level
language compilers and standards alter from one computer manufacturer to
another. The idea in "Portable Software'" is to produce a method of taking

software written for one type of computer and, with minimum effort use it

on another computer.

(2)

The technique used in this project is abstract machine modelling and

realising the abstract machine on a real computer using a macro processor.
This is the technique used in MITEM to achieve its machine independence.
An abstract machine is one designed to carry out a specific task - in this
case context editing. The operations and requirements of such an abstract
machine must be clearly defined. Then the abstract machine must be

4)

realised on a real computer. The Stage 2 macro processor is used for
this task. Each operation of the abstract machine is described as a
macro written in the assembler language of the real computer. When the

macros have been processed the final output is the edit machine ready to

be executed on the real computer.

To execute the editor on another compufer the macros will have to be
rewyritten in the required assembly language. The portability of the
editor depends on the simplicity of this task. Section 3 describes the
technique of using a hierarchical structure of abstract machines requiring
only the lowest level of machine to be written in the real computer's

assembly language.

1.3 Aim of the Project
The aim of the project is to produce a fast, efficient context editor
which can be easily adapted to run on any computer. The main work is in

the design, coding and implementation of the context editor.

The following sections describe the design, and implementation of the con-
text editor (TED). Section 6 contains the conclusions, extensions and
improvements to the editor and its portability. For completeness

included in the appendix is a users manual and flow charts.

2 COMMAND LANGUAGE DESCRIPTION
The user views the editor as a machine on which he can solve his edit
problems. To do this he is avare of certain functions of the editor. They

can be described as:

a 1/0 streams
b an edit work area
c a command language.

2.1 Input/Output Streams

The editor, as seen by the user, has four input/output streams. The file

to be edited is read from the input stream and the final edited version of
the file is written to the output stream. These two streams can be attached

to any permanent storage device eg mag tapes disc or cards.

To communicate with the user the editor requires two streams - a command
stream and a print stream. The user inputs his commands via the command
stream which, in batch mode, is usually attached to a card reader and in
on-line mode to a teletype or visual display unit. The print stream is

used for error messages and verification listings. In on-line mode it is
attached to the same device as the command stream and in batch mode it is

normally attached to a line printer.

2.2 Buffers

The editor reads lines of text from the input file and holds them in the
input line buffer (ILB) to be processed. As a line is edited it is
written to the output iine buffer (OLB). When the editing on that line

is completed it is written to the outpﬁt stream. The input line buffer
provides access to the current line and the output line buffer is tem-
porary storage for the edited line. Each of these buffers has a pointer
to keep track of character editing within the line. The movement of these

pointers is explained in the description of each command.

The editor can also be used to store information either from the input

stream or the command stream.

2.3 The Command Language

The command language is the interface between the user and the editor.
Commands consist of simple mnemonies followed by information required
during execution of the command. It seems obvious to say that the command
language should be kept simple while retaining the power of the editor.

In order to achieve sophisticated editing it is necessary to establish the
facilities of the editor and to construct the command language around them

keeping the format as uniform as possible.

The following is a description of the command language and the action taken

by the editor on executing the commands. There are basically two groups of

commands:
a commands operating on lines or characters and
b special purpose commands for extra facilities in the editor eg

looping, exchanging etc.

2.3.1 Line and character commands

The group of commands is used when individual operations are required on
the input stream. Line commands read directly from the input stream and
write directly to the output stream. Character commands operate within
the line buffers. To distinguish between a line command and a character
command a special character delimiter is used after the command word. The
default delimiters are, a slash indicating a line command and a dot a

character command. If no delimiter is present a character directive is

assumed.

Each command is input on a new line and a line on the input stream

is determined by the size of the input line buffer.

In the language description the following mnemonics are useds
n = any positive integer (if omitted 1 is assumed)

string = any string of characters that can be contained in the command line.

Continuation is not permitted

del = a line or character delimeter
ILB = input line buffer
OLB = output line buffer.

2.3.1.1 Facility: copy

Function: The copy facility causes the pointers to be moved to a new
position as specified by the information on the command stream. In processing
a copy command lines may be copied from the input stream to the output

stream, or characters copied from the input line buffer to the output line
buffer. A specified number of lines or characters can be copied, a specified
string of characters can end the copy (either before or after the string) or

the last line in the file or last character in the line can terminate the

execution of the copy.

Format: The mnemonic for copy is C. The information following the
mnemonic C is interpreted by the command analyser and the appropriate

copy action taken.

The following tree shows the build up of the copy command for character
delimiters and the meaning of each. The character delimiters can be
replaced by line delimiters. 1In this case lines are copied from the

input stream to the output stream.

Copies one character from ILB to OLB.

Copies n characters from ILB to OLB.

ol

N—del As above

del — string —Copies to after the occurrence of string
(in a line directive - to after a line
beginning with string).

C—A P .
Copies after last character in ILB
N del As above

del string —Copies to before the occurrence of

\\\\\\ string
L Copies before the last character in ILB

\\\\del

B

As above.

The find command, mnemonic F, is a special type of copy command. F must

only be followed by a line delimiter and a string.

The mnemonic N is another special case of the copy command

Action:

The action of pointers and buffers for each command is shown

below in a series of examples. If during any copy command an end-of-file

condition arises on the input stream copying stops and an error is output.

The mnemonies used in the example are as follows:

IPB
IPA

OPB

OPA

- IPPB

IPPA

OPPB

OPPA

Input stream pointer before the action has occurred, pointing to
the current line

Input stream pointer after the action, pointing to the new current
line.

Qutput stream pointer before action.
Output stream pointer after action.
Input line buffer pointer before action.
Input line buffer pointer after action.
Output line buffer pointer before action

Output line buffer pointer after action.

Examples of line commands:

a) copy 5 lines

command stream - C5/

Input stream Qutput stream Comments

IPB—THIS LINE AND OPB——

THE FOLLOWING THIS LINE AND lines are copied

LINES ARE USED THE FOLLOWING directly from the

AS EXAMPLES FOR LINES ARE USED input stream to

COPY INSTRUCTIONS AS EXAMPLES FOR the output stream
IPA—TO THE EDITOR COPY INSTRUCTIONS

OPA—

If the current line held in the input line buffer has been edited it is
written to the output stream before the copy action occurs. Otherwise

the current line is output as one of the lines of the copy instruction.

b) Copy after line beginning "LINES"

command stream - CA/LINES

Input stream Qutput stream
OPB —
IPB—THE LINE AND THE LINE AND
THE FOLLOWING THE FOLLOWING
LINES ARE USED LINES ARE USED
IPA—AS EXAMPLES FOR OPA——

Copy before line beginning "LINES" makes the line beginning "LINES" the

current line and the command stream contains CB/LINES.

c) Copy after last line

command stream - CAL/

This instruction causes the editor to read from the input stream and write
to the output until and end of file (EOF) conditions exists. There is no

current line after this command.

Copy before last line makes the last line of the file the current line.

Examples of character commands

a) Copy 7 characters

Command stream - C7 or C7.

ILB OLB
THIS fIS THE +CURRENT THIS LINE +.IS THE .
IPPB OPPA OPPB OPPA

b) Copy after ENT

Command stream - CA.ENT

ILB OLB
THIS IS THE +CURRENT+ THIS LINE IS TH.E?CURRENT
. +
IPPB IPPA OPPB OPPA

For copy before a string the pointers in both buffers are placed before the
occurrence of the string. If the string does not occur in the current line
it is written to the output stream. The next line becomes the current line

and the search for the string continues.

For the find command the action is the same as above except that the input
line buffer pointer is placed at the start of the line containing the

specified string.

N causes the current line to be written to the output stream and a new
current line read in regardless of the positions of the input line buffer

pointer.

c) Copy after last character in line

Command stream - CAL..

ILB) OLB
A NEW *CURRENT LINE A NEW SECOND +CURRENT LINE
o 4
IPPB, IPPA OPPB OPPA

a)
Copy before last character places the pointers before the last character

on the current line.

10

2.3.1.2 Facility: delete

For every copy facility there is a corresponding delete facility.

The initial mnemonic for this facility is D. The action on the input
stream or input line buffer is the same as for the corresponding copy
command. The pointers to the output stream or output line buffer remains

unchanged.

2.3.1.3 Facility: insert

Function: This facility inserts character strings into either the output
stream or the output buffer. Another use is to copy lines from the command
stream to the output stream, thus inserting new lines into the edit file.
Blank characters and blank lines can also be inserted using a form of this

command.

Format: The mnemonic for insert is I. The tree diagram shows the different

forms of the insert command.

switches the editor into input mode

string inserts the string into output buffer or
stream (if line del)
del
1 T n inserts n blanks into output buffer

TS, del inserts n blanks into output buffer or stream
(if line del)

Action: If the command stream contains I and nothing else the editor goes
into input mode. All further input on the command stream is written
directly to the output stream until the occurrence of the command FIN in

the command stream. FIN switches the editor back to edit mode.

Examples of line inserts

a) Insert the line - THIS IS NEW

Command stream - I/THIS IS NEW

11

Output stream Comments

OPB——
THIS IS NEW No action on input stream
OPA—— -

If the current line has been edited it is output before the new insert
line and a new current line read in from the input stream otherwise the

current line remains unchanged.

b) Insert 4 blank lines

Command stream - IB4/

OQutput stream

OPPB——LAST OUTPUT LINE
4 blank lines

OPPA—

Examples of character inserts

a) Insert the string NEW

Command stream - I.NEW

LB oLB
THIS IS AOLINE THIS IS A NEW4
IPPA OPPB OPPA
& IPPB

b) Insert 5 blank characters

Command stream - IB5.

ILB OLB 5 planks
—
A BIT OEp FUN A BIT OF+ 4
~ IPPB OPPB OPPA
& IPPA

When inserting characters into the output line buffer a check is made on
the remaining characters in the input line buffer. If they cannot be
read into the output buffer without overflowing, a warning message is output

and the trailing characters truncated.

12

2.3.1.4 Facility: replace
Function: This command replaces a character string or the current line by
a specified string. It can also be used to replace lines or characters with

blanks. Replace is equivalent to a delete followed by an insert.
Format; The format of the replace instruction is similar to the Insert
instruction as the tree diagram shows. Its mnemonic is R.

Replaces a line from input stream or a string
of characters in ILB with the specified string.

del String

Replaces n characters with blanks in input
line buffer.

R B n
\\\\ Replaces n characters in input line buffer or
del lines from input stream with blanks.

Action: A flag in the editor is set to indicate a replace command and the

code for delete and insert is executed.

Examples of replacing lines

a) Replace the current line with NEW LINE

Command stream - R/NEW LINE

Input stream OQutput stream
HERE IS AN HERE IS AN
IPB EXAMPLE OF REPLACE oPB ..EXAMPLE10F REPLACE
IPA DONE BY OBA NEW LINE
THE EDITOR
b) Replace 2 lines with blanks
Command stream - RB2/
Input stream OQutput stream
WANT A SPACE? WANT A SPACE?
IPB—%ERE'S HOW TO DO e ’
IT, ONE WAY
IPA———— OPA——

Examples of replacing characters

a) Replace a string in the current line by APPLE PIE

Command stream - R.APPLE PIE

13

ILB OLB
DO HAVE 4PEACH PURIE DO HAVE ,APPLE PIE,
IPPB OPPA OPPB OPPA
b) Replace the next 5 characters with blanks

Command stream - RB5.

ILB OLB
5 blanks
DO HAVE+PEACH PURIE DO HAVE ——"——
4 + 4
IPPB 1IPPA OPPB OPPA

2.3.1.5 Facility: backspace
Function: This facility can only be used on the current line. It can
place the pointers back a specified number of characters or back to a

given string of characters within the input line buffer.

Backspacing of lines with the editor would cause a great amount of input/
output operations. It can be done by issuing a START/Command (.v.) and
then positioning the pointer to the required line in the input stream. The
editor is most efficient when editing is done sequentially through the

file.

Format: The mnemonic for backspace is B, and the tree shows the format

of meaning of the different backspace commands.

- Backspace 1 char

Bffffiffi%i::pp-del
' nhhhdelf,,ff’”’

Action: The following examples show the action on the input and output

string— Backspace before or after a string

Backspace n chars

line buffers and the position of the pointers on the execution of a back-

space command.

Examples of backspace

a) Backspace 5 characters

14

Command stream - B5.

ILB OLB
Before THIS+LINE IS TO BE THIS NEW "
execution IPPB OPPB
After THI% NEW LINE IS TO BE THIS+
execution IPPA OPPA

b) Backspace to before the string IS

Command stream - BB.IS

ILB OLB
Before THIS LINE’ IS DAFT THIS NEW LINE4
execution IPPB OPPB
After TH%S NEW LINE IS DAFT THB
execution IPPA PPA

Backspacing is done on the edited line.

. 1f the string specified does not exist on the output line buffer an error message

is output and the pointers and buffers remain unchanged.

2.3.1.6 Facility: storing
Function: Strings of characters or lines from either the command stream

or the input stream can be stored away in a buffer to be referrenced at a

later stage in the edit run.

Format: The mnemonic for the store command is S. The name of the store
area in the store command (NAME) must not contain more than 4 letters. The
tree shows the character commands of the store instruction. For each
character command there is a corresponding line command and lines are read

and stored from the input stream instead of input line buffer.

15

del NAME Store 1 char from the input line buffer
] del NAME Store n chars from the input line buffer
- ﬂ#f##,,.del NAME Store 1 char from the command stream
c
' hﬁh‘"n-hdel NAME Store n chars from the command stream.

Action: When storing a string of characters the dictionary of store names
is scanned. If a duplicate name is found and the new string is smaller or
equal to the old one a warning diagnostic is output anﬁ the new string is

stored under the duplicate name. If the new string is greater than the old

string a fatal error message is output.

Examples of character storing

a) Storing 5 chars from the input line buffer
Command stream - S5.Al
ILB

WE WISH TO oSTORE SOME RUBBISH

IPPB
Store Area Dictionarz
T _ N poi%ter. in
. name gze store area
v v ¥/
....... +STORE+ g wpd g glha 5, Xy
Pointer Pointer Pointer Pointer
before after before after
(X)

The input line buffer pointer is moved to point after the stored string

b) Storing 11 chars from the command stream
Command stream - SC11.A2 - line 1

THIS LOT OF - line 2

Store area . Dictionary _ EP‘E gge
g : nage slze¢ area
.......... STORE‘FHIS LOT OF 4 PR Y (T X+A2, 17, Y 4
Pointer Pointer Pointer Pointer
before after before after
(Y)

16

When storing lines from the input stream or the command stream two tables
are kept and the actual data is stored in the character store area. The
first table contains the names of the line store areas, the number of

lines and a pointer to the second table which contains, for each line, the
number of characters in the line and the position of the first character in

the character store drea.

Examples of storing lines

a) Store 2 lines from the input stream

Command stream - S2/A4

Input Stream The input stream
— . .
HPTTLINE 10 BE STORED egeatighe s SRE
AND THIS ONE &
IPA
TAB1 TAB2 AL = store name
A e 2 = no. of lines
..... A4, 2, A cuess 175 %, 12, ¥ A = pointer to TABT
+ + + 4 17 = noI.of ﬁhars in
Pointer Pointer Pointer Pointer ., 1ange
A = vnointer to store
before after before after i« m of ohnim: in
(A) = RPrs8%o

Y = pointer to store
Character store area

AND THIS ONE+

......... LOT 0F+LINE TO BE STORED+
Pointer Pointer Final
before position Pointer
(X) &3] Position

b) Store 2 lines from the command stream

Command stream SC2/A3 - line 1
CA/XYZ - line 2

D5. - line 3.

These lines are stored in the same way as the ones read from the input

stream. Line store names cannot be duplicated; an error message is output @nd no

action taken if a duplicate name is found.

17

2.3.1.7 Facility: loading
Function: Loading into either the command stream or the output stream
strings of characters or lines which have been previously stored with the

commands described in 2.3.1.6.

Format: The format of the load instruction is L NAME, where NAME

identifies an area of stored characters or lines.

Action: If a load command is used in place of a string then the character
store directory is searched for the name and the required string replaces
the load command in the command stream. If the name is not found in the
character store directory a warning diagnastie is output and the command

stream remains unchanged.

Examples of loading strings of characters

Command stream before CA/L Al
after CA/STORE
before CA/L XY

after CA/L XY error output.

Only the character store directory is scanned when a load command is
issued in place of a string. The line store directory is scanned when the
load instruction is in the command stream in place of a command. The lines
from the load area are inserted into the command stream at the point where

the load instruction occurs. As in the character store if the name is not

found an error message is output and the load instruction ignored unless

the editor is in input mode. In this case the instruction is copied
ta the output stream.

Examples of loading from the line store area

a) Command stream I
L A4
AGAIN A LINE
FIN

18

after I
LINE TO BE STORED
AND THIS ONE
AGAIN A LINE

FIN
b) Command stream L A3
after CA/XYZ These commands arec
D5. now executed in order.
2.3.1.7 Facility: start
Function: This command moves the pointer to the start of the input stream

or to the start of the input line buffer retaining all previous editing

Format: This command has no single letter mnemonic. It consists of the

word START followed by a line or character delimiter.

Action: When START is followed by a line delimiter the rest of the input
stream is copied to the output stream which now becomes the new input

stream.

START followed by a character delimiter causes the rest of the input line
buffer to be copied to the output line buffer and the buffers are swapped.
The input buffer is now the output buffer and vice versa. The output line
buffer is set empty and the buffer pointers set to the start of the defined

field in the new input line buffer.

2.3.2 The special purpose commands

There are several special features incorporated into the editor and the
command language to operate them is described below. The mnemonics for
these commands are different from the line and character commands. They
tend to be full words and are not in any standard format. Only the
command word is scanned by the command analyser. The rest of the infor-

mation in the command is checked during execution of the command.

19

2.3.2.1 Facility: stop

Function: To terminate the editing run either normally or abnormally.
Format: EXIT is the normal end and CANCEL the abnormal halt.

Action: The abnormal stop is used only in an on-line environment. It
exits from the editor scrapping all new files. The input stream remains

unchanged.

The normal exit from an edit run copies the rest of the input stream to the
output stream, closes and rewinds the files, giving a printed copy of the

new file, if required.

2.3.2.2 Facility: loop
Function: This facility allows a group of commands to be executed a

specified number of times or until an EOF condition exists.

Format: The sequence of edit commands is enclosed by the words LOOP and
LOOPEND. LOOP can be followed by an integer specifying the number of times
the loop has to be executed. If omitted, or zero, the loop is executed

until an EOF condition exists on the input stream.

Action: All the statements from the first LOOP to the final LOOPEND are
processed through the command analyser and stored in an area of core
(LOOPCOM) in their coded state. Nested loops are permitted. Each time a
LOOP statement is encountered the LOOP counter is increased by one and
decreased on the occurrence of a LOOPEND. When it has returned to zero the

loop is ready for execution.

On executing the loop commands are read sequentially from LOOPCOM and
executed. Each occurrence of the statement LOOP causes the address of the
next command to be placed on a stack together with the number of times the

loop has to be executed, and on encountering a LOOPEND the top value of

20

the stack is interogated. If the number is non-zero it is decreased by 1
and returned to the stack gnd the address of the next command retrieved
from the stack. If the number on top of the stack is zero, it is discarded
and the next value investigated. The address of the next command to be
executed is found on the stack. When the stack is empty the loop is

exhausted and further editing commands are read from the command stream.

2.3.2.3 Facility: exchange
Function: This powerful feature allows one string of characters to be

exchanged for another throughout the file while other editing is in

progress.

Format: The command for switching on the exchange is EX followed by two
strings delimited by any non-alphameric symbol.

eg EX*FIRST*SECOND*. The strings can be of varying length. To switch off
the exchange the mnemonic NEX followed by a delimiter and the first string

is used eg NEX/FIRST stops the action initiated by the previous example.

Action: On the occurrence of an exchange command the two strings are
stored in an area in core and a flag set to indicate exchange is in progress.
Each line input to the input line buffer from the input stream is scanned

for the occurrence of the first string and it is replaced with the second

before any further editing is done. There can be up to six exchanges
simultaneously in an edit run but it must be pointed out that the use
of exchange slows the editor down considerably as each input line

has to be scanned once for every exchange command.

Each time a NEX is issued the exchange area is checked. If there are no

more '""live" exchanges in progress the exchange flag is unset and lines

from the input stream are no longer scanned.

21

2.3.2.4 Facility: sequence
Function: This feature sequentially numbers the input file in the last
eight positions of the defined field. These eight positions are split into

two fields of 4 characters each.

Format: The sequencing command is of the form SEQ Nol, INC1, No2, INC2.

where Nol - is the starting number of the first 4 positions in the
field
INC1 - is the increment for this field
No2 - is the starting number of the second field
INC2 -~ is the increment of the second field.

If either of the increments is zero the corresponding starting number can
be a string of up to 4 alphameric characters right justified within the
field. 1If NO1 and INC1 are both zero the 8 character field is treated as

one field with starting number No2 and increment INC2.

Action: All further input from the input stream is sequenced according to

the information on the command stream.

If the defined field is less than 8 characters long the sequencing is
truncated and a warning dianostic written out. The sequencing command is
executed to completion before the command stream is read again, unlike the

exchange facility.

2.3.2.5 Facility: field defining

Function: The field of the input line buffer to be edited can be defined
using this instruction. By default it is from 1 to 80 but, to save time
in scanning the complete field for specified strings it can be defined

smaller. The field size can be changed any time during an edit run.

Format: The format of this command is shown below in the tree diagram.

22

, n ——— Redefines the end of the field
start of field remains unchanged.

Redefines the start of field. The
end remains unchanged.

FIELD-space n —

Redefines the field n, is start

n, is end (NB N.l Nzi

Action: This facility sets pointers in the input line buffer to mark the
beginning (SFP) and end (EFP) of the field which is to be edited. When a
field defining command is given defining EFP only, the current value of
SFP must be smaller than the new value of EFP. If not the command is
ignored and the previous values of SFP and EFP are unchanged. Similarly a
new value of SFP must be less than the current value of EFP, and if both

are programmed the new SFP must be less than the new EFP.

2.3.2.6 Facility: tab

Function: Enables spaces to be inserted into an input string by defining

a tab character and various tab stops.

Format: The mnemonic for this feature is T followed by a space, the tab
character and then a string of tab stops in ascending order separated by

commas. T followed by two question marks switches off the tab facility

Aétion: This facility causes spaces to be inserted into the command stream
within a defined string. Tab can be changed by a further tab command. Tab

stops not being altered can be missed out in the new tab statement:

eg T $, 10, 20, 30, 40, 50, 60 sets up tabs in columns 10-60 in steps of 10

the statement T $, 15,,, 45,, 65 sets up tabs in columns 15, 20, 30, 45, 50, 65

Example in use of tabs

Command stream T 8, 10, 20, 30, 40 # is the tab character.
I It can be any of the following:=
162835485 N R R B e
£8385 / 2L & ()% «+
12384
FIN
T?7?

23

Col 1 Col 10 Col 20 Col 30 Col 40

is equivalent to I

1 2 3 4 5
3 5

123 4

FIN

After tab has been switched off by a T ?? command tab characters within a

string are treated as part of the string.

2.3.2.7 Facility: delimiter changing
Function: This feature can be used to change the line delimiter (/) or

character delimiter (.) to any other non-alphameric character.

Format: The line delimiter is changed by the command LINE followed
immediately by the required character eg LINE* makes the new line delimiter

an *, The mnemonic CHAR does the same for a character delimiter change.

Action: The new delimiter is set up in place of the old one and remains as
the delimiter until another LINE or CHAR command is programmed or until the

end of the edit run.

2.3.2.8 Facility: repeat last command

Function: Causes the previous command to be executed again.
Format: REP is the mnemonic for this command.

Action: The details of the previous command are retrieved and immediately

re-executed without initialising any variable.

2.3.2.9 Facility: display

Function: This facility can only be used in an on-line mode with a visual
display unit. It enables the user to manually alter 12 lines of the input
stream on the screen and write them onto the output stream using a single

command.

24

Format: The single command is the word DISPLAY.

Action: DISPLAY causes 12 lines from the input stream to be read and
written to the display unit. These lines can then be altered in any way
by the user and re-entered. This time they are read from the disPIay.unit
and written out on to the output stream. If there are less than 12 lines
in the input stream before an EOF marker occurs the number of lines output
to the unit is counted and this number of lines read in again. 1In effect,
DISPLAY deletes 12 lines from the input stream and inserts 12 new lines to

the output stream.

25

3 THE ABSTRACT EDIT MACHINE

3.1 Abstract Machines

The technique employed to realise the editor on a real computer is that of
a hierarchy of abstract machines(]). At the top of the system of abstract
machines is the edit machine designed solely to solve the problem of con-
text editing. The basic operations of this machine are expressed in a high
level language which is mapped on to the next level of abstract machine and
so on down the line of abstract machines. The lowest level of abstract
machine is the base for mapping on to a real computer At this level the
abstract machine is computer dependent, but since all higher level abstract
machines are not dependent on the real computer only minimum effort is

required to finally realise the top level of abstract machine on various

real computers.

ﬁfficiency of the system can be improved by mapping a higher level of
abstract machine directly on to the real computer. This reduces the
portability of the system. Therefore the easier it is to map the lowest
level of abstract machine the more portable the software becomes. As
efficiency is the primary consideration in this project there are only
two levels of abstract machines in the hierarchy. The abstract edit
machine functions are defined in a high level language in terms of the
next level of abstract machine. This level is mapped direcﬁly on to the
real computer. Thus the editor is not particularly portable but is very

efficient.

3.2 Mapping Method

Macro processing is the method used to map one level of abstract machine
on to the next. This technique allows the user to define the functions
of the top level of abstract machine in a high level language. The final
realisation of this machine on the real computer is in the machine

language of this computer. Thus the user can tailor the assembly language

26

of the real machine to meet the requirements of the abstract machine at a

higher level.

A macro is written for each basic operation of the highest level of
abstract machine - in this case, the editor. When these macros are
processed the final result is the assembly language instructions for the

real computer to execute the required operations.

The macro processor used in this project was STAGE 2(4) This is a
powerful general purpose macro processor which is itself highly portable.
The instructions for the editor form the top level of abstract machine and
the expansions'of each of these instructions in assembly code is the

lowest level of abstract machine. Hence the realisation of the abstract

edit machine on the real computer.

A specific advantage of using this method is that changes to the definitions
relating the abstract machine to the resl computer are very easily
implemented. Thus it is easy to change the lowest level of abstract
machine to suit various computers. The greater number of levels in the
abstract machine hierarchy the more complicated the macros become., STAGE 2
is a very slow processor and requires a large core store, but the ease of
changing the lowest level of the macro to suit various computers far out-

weighs this disadvantage.

3.3 The Design of the Edit Machine

The initial stage of the design of the abstract edit machine is to deter-
mine the requirements of the machine. To do this it is necessary to
establish exactly what the functions of the machine are and how these

functions should operate.

The initial requirement for any machine is a starting device. On the edit

machine this initialises the editor and makes it ready to accept commands.

27

Similarly the stopping device switches everything off and closes the machine

down.

The edit machine needs a memory to keep track of pointer positions, variables
and save areas for saving data to be retrieved at a later stage in the
editing. In addition to the memory the editor requires two buffers One

of these is used to hold the current input line of the file being edited

and the other holds the updated output line. Pointers are used to keep

track of the positions of characters in these buffers and a pointer moving
mechanism is available on the edit machine. The editor requires a series

of switches to indicate the existence of certain conditions eg is print

on or off? is exchange in operation? etc.

A branching facility is another feature of the édit machine. This feature
enables the machine to cope with conditional and unconditional branches.
The machine determines the next operations if certain conditions arise eg
it must be able to branch back and read in another command on the com-
pletion of the previous command or if the previous command was an exit

command it must branch to the closing condition.

Another feature of the machine is a comparing facility. This enables it
to compare two strings of characters and take appropriate action on
whether a match is found or not. Associated with the compare facility is
the searching mechanism. This is used to search for characters or numbers

in the command stream and store them in memory for future use by the editor.

Input/output channels are an obvious requirement for any machine. The
editor uses two input streams, one output stream and a general input/output
work area. One of the input channels is for inputing commands to the
editor. This is either a card reader or similar device for batch editing

or a visual display unit for on-line editing. The other input channel is

28

for the edit file and is usually disc or magnetic tape. The output file is
for the new edited file. The work file is a fast access file used to hold

the partially edited file during the edit run.

The final requirement of the abstract edit machine is a set of instructions
to operate it. Each basic editing operation is activated by a specific
instruction and by executing all instructions the abstract edit machine is

realised on the real computer.

3.4 Macro Descriptions
One macro is written for each instruction of the abstract machine and when

all these macros are expanded the editor can be run on the real computer.

The macros used in the edit machine can be discussed in three catagories.

a Utility macros by the macro processor.
b Special purpose macros for the edit machine, and
c Instruction macros for the edit machine.

3.4.1 Utility macros for the macro processor
There are four macros used only by the macro processor in the expansion of

the instruction macros.

The instruction macros are fairly general and if certain parameters are
input to the macro which are non-standard then it may be necessary to

skip some lines within the macro body. 1In order to do this macros for
setting the skip counter are included into the program. One macro sets the
skip counter to a given value if two parameters are equal, another sets it

if they are not equal and the third sets it unconditionally.

The fourth utility macro, when called, indicates to the macro processor to

halt all processing. It always comes at the end of a macro expansion run

29

Another utility macro is used to copy coding direct from the input to the
macro processor without expanding it. It is necessary to havz such a macro
as portions of the editor have not been divided up into individual macros

eg the command analyser.

3.4.2 Special purpose macros for the edit machine

As certain lines of coding are only used once during an edit run, they are
included in séveral macros and only called up once during the macro expansion
run. These are special purpose macros for the edit machine and each one is

described in more detail.

a) START

This macro is the first one to be expanded. It causes the edit machine to
be set ready to receive editing commands from.the-input stream The first
line of the file to be edited is read in and set up and the current input

line.

Different computers require different start procedures. For the IBM 360/44

the start routine sets up external addresses, base registers etc.

b) STOP
This switches off the editor and returns the computer to the state it was in

before the edit run began.

c) INPUT

This macro is required for every input operation. An input instruction

(READ IN TO A) causes a branch to this area of code aﬁd it sets up the stream
from which thé data is to be read and the area in memory where the data is

to be inserted. It must check for an end-of-file condition and set the
appropriate flag. 1In the case of the IBM 360/44 implementation this macro

causes a branch to a fortran subroutine to do the actual reading operation.

30

d) ouTPUT

Similarly this macro is used for all output operations. It has an extra
flag to indicate whether the output has to be output to the print stream

as well as written to the output stream. Once the output line buffer has
been output this macro sets it to blank for the next editing operation. As
in the case of INPUT a fortran routine is called in the IBM 360/44 implemen-

tation.

e) POINTERS

When a new line from the input stream is read in this macro is used to set
the input line buffer and output line buffer pointers to their initial
starting value. It narrows down the input line buffer to the required edit
field. It also sets a pointer to point at the last significant character

in the input line buffer.

£) MOVES

A move instruction causes the program to branch to this macro. It causes
characters to be moved from one core location to another. The address of
the core locations and the number of characters to be moved are set up by

the move instruction before branching to this macro.

g) FETCH NAME
This macro fetches a name from the command area and places it in an area

in memory. It is used when the command stream contains a load instruction.

h) FETCH NAME FROM STRING
This works in the same way as the previous macro except that it fetches the
name of the load area from the memory instead of from the command stream.

It is used when the load instruction is part of the input string of a

command .

31

i) NUMBER

This macro is used when there are numbers to be decoded on the command
stream. The commaﬁd to find a number (FIND NUM) branches to this area of
code and decodes the number on the command stream and stores it as a binary
integer in memory for future use. If there is not an integer on the command
stream an error is output except in the case of a sequencing command where

either a number or a string of alphameric characters is expected.

j) NUM NOT FOUND

In a sequencing command when, instead of an integer, a character string is
present in the command stream, this macro deciphers the string and stores

it in core. It checks the number of characters in the string and outputs an

error if it exceeds the maximum allowed, or space fills the string if there

are less than the maximum number of characters.

k) SWAP UNITS

After a start command has been issued it is necessary to swap around the
file so that the present input file becomes the work file and the present
work file becomes the new input file, except after the first start command
when the work file becomes the new input file. For the IBM 360/44 implemen-
tation a call to a fortran subroutine is activated to perform the required

operations.

1) TABSTORE

If the tab character has been set, each string input from the command
stream must be scanned for the occurrence of the tab character and the
string space filled accordingly. This macro is called every time a string

of characters has been input, to check for tabs and expand the strings.

m) RESET

When the command stream encounters an exit instruction this macro resets the

32

the files. It outputs the final edited file, scrubs the work file and
closes all files. In the case of the IBM 360/44 implementation this macro

calls a fortran subroutine to sort out the files.

n) SPACE TEST

This special purpose macro is used when copying before a line beginning

with a specific string. It tests if the string contains significant spaces.
If it does the compare test is done only at the start of the input line
buffer. 1If no significant spaces are present on the input string significant

spaces on the input line buffer are ignored.

o) FIND LAST CHAR

To determine whether an insert can be placed within the defined field limits

it is necessary to find the length of the character string in the
input buffer. This macro scans the input string from the end, looking

for the first non-=blank character, thus finding the length of the input
stringe.

P) CONSTANTS
This macro sets up all the storage and constants required by the editor.

It defines the buffers, save areas, pointers, initial read/write unit numbers,

flags and tables.

q) DUMP
This is a debugging macro and is used only by the systems programmer It

enables the memory of the edit machine to be dumped out at specific points

during an edit run.

r) DUMPCHECK
This macro is used in conjunction with the DUMP macro described above It

checks if a dump is required and if so causes a branch to the macro DUMP

s) DISPLAY

If visual display units are available to the editor this macro causes a

33

screenful of lines from the input stream to be displayed, manually edited

and then read back in again from the display unit to the output stream. It
firstly deletes the displayed lines from the input stream and then inserts

the new lines from the display unit into the output stream. In the IBM/360 44

implementation this is done by a call to a fortran subroutine.

3.4.3 Instruction macros for the edit machine

Each basic instruction of the edit machine is defined by a macro. Some of
these instructions use parameters to be input to the macro (eg in the addition
macro A = B + C, A, B and C are the parameters). There arc ten groups of

instruction macro, each of which is described in fuller detail below.

a) Arithmetic macros
Tﬁere are three arithmetic instruction macros. The first causes one area
of core to be set equal to another area of core, a constant or a literal.
The second is an addition macro and the third a subtraction macro

i A = B (Parameters A and B). The contents of core location B

1

are stored in location A. B can also be a constant or a literal.

ii A =B + C (parameters A, B and C). B and C are added together
and placed in core location A. If any of the parameters is REG then

the contents of register 1 are used instead of the variable.

A = B - C (parameters A, B and C). This subtracts C from B and

[N

ii
puts the result in location A. Again, as above, the contents of

register 1 are used if the parameter is REG.

b) Character moving macros
There are two macros for moving a string of characters from one core location
The first moves a specific number of characters from core

to another.

location to another core location and contains a flag to indicate whether

34

the pointers to the specific core locations have to be retained. Its form
is MOVE X CHARS FROM A TO B, FLAG. The parameters are X, A, B and FLAG

" This macro sets up the parameters X, A and B in preparation to branching
to the special purpose macro MOVES which does the actual operation of
moving the characters. On return from MOVES the flag is tested and if

the pointers have to be kept it saves their values depending on A and B
eg if A is the input line buffer the pointer value must be set to the

input line buffer pointer etc.

The second move macro moves blanks into a specified core location. Its

form is MOVE BLANKS to A, where A is the parameter.

¢) Register instruction macros
The general registers are used as indices to the various store areas
required by the editor. It is, therefore, necessary to have a set of

macros to manipulate these registers.

i REG A = B (parameters A and B). This macro sets general register

A to the contents of core location B or the value of B if B is a literal.

ii B = REG A (parameters B and A). The contents of general register

A are placed in core location B.

iii GREG A + B. Adds the contents of B, or if B is a literal, the value

of B to general register A.
iv GREG A - B. Subtracts the value of B from general register A.

v ADDRESS REG A = B. The address of core location B is placed in

general register A.

35

d) Branching and associated macros
There is one unconditional branching macro and five conditional branching

macros.

The unconditional macro has the form JUMP TO A. Where A is a label set up

by the associated label marking macro LABEL A.

The conditional branching macros are as follows:
i If A rel B JUMP TO C (parameters are A, rel, B and C). If the
relation (rel) between A and B is true then a branch to C is effected.

C has been set up by the label macro described above.

ii If A JUMP TO B (parameters A and B). If the variable A has been
set to the value true then a jump to label B is made, otherwise

processing continues sequentially.

iii If NOT A JUMP TO B (parameters A and B). This is the opposite

of the above macro. A branch to B is made if A is set to false.

iv If LOAD A ELSE B (parameters A and B). This macro tests the
input string and if it is a load instruction branches to label A
otherwise it branches to label B. If A has the value CONTINUE then

processing continues with the next instruction instead of branching.

v BRANCH ON REG A TO B (parameters A and B). This is a conditional
looping macro. It tests register A and if it is non-zero branches to
label B at the same time reducing register A by one. Register A must

have been previously set to the loop count.

e) Comparison macro
In order to compare two strings of characters in core and take action if a
match is found, the macro COMPARE A WITH B IF FOUND C is used. This compares

a string of characters in A with a buffer B and causes a branch to label C

36

if a match is found. The whole of buffer B is scanned for the occurrence
of the string except when searching for a line beginning with a string of
characters. In this case if no match is found on the first try the program

continues sequentially.

f) Finding macros
There is a macro for retrieving integers from the command stream. It is
called by the instruction FIND NUM. and causes the program to branch to the

macro NUMBER to decode the integer from input format to binary.

The other finding macro retrieves a specific character from the command
stream. It is used in the case of the tab instruction to check for the

tab character and is called by FIND CHAR.

g) Input/output macros

The macro for reading data into a specified area from a specified unit is
called by READ IN TO A, where A is the required input area. Before calling
this macro it is necessary to establish in a variable in memory the unit
number of the stream where the data is held. This macro calls up the

special purpose macro INPUT.

Similarly to output a record in memory the macro WRITE OUT A, where A is
the position in memory of the record to be output, is used. The unit number
of the stream to which the data is to be written should have been previously

established. This macro branches to the special purpose macro OUTPUT

h) Checking for tabs.
When a string has been input from the command stream it must be checked
for the occurrence of the tab character and expanded accordingly. The

macro TAB CHECK causes a branch to the special purpose macro TABSTORE.

37

i) Setting initial pointers.

The macro SET POLNTERS is used when a new record has been input from the
edit file stream., It calls the special purpose macro POINTERS to set up
the initial positions of the pointers to the input and output line buffers
and also the pointer pointing to the last significant character in the-

line.

j) Swapping core areas.
Since buffers are used by the editor it is necessary to be able to swap
them around and the macro SWAP A AND B (A and B are parameters) causes

buffer A to become buffér B and vice versa.

38

4 THE COMMAND ANALYSER AND ERROR HANDLING ROUTINE
The command analyser and error handling routine are two separate entities in
the editor. They are not mapped from an abstract machine but are substituted

directly into the editor.

4.1 The Command Analyser
The command analyser accepts commands from the command stream, analyses
them and if the commands are synactically correct causes a branch to the

appropriate executing routines in the editor.

The analyser can be broken down into six logical stages. If an error occurs
at any one stage control is passed to the error handler and analysing is

terminated. The next command is then fetched from the command stream.

Fig. 1 is a general flow chart of the analyser, indicating the six stages

described more fully later.

The command is input to the command string from the command stream. The
string is scanned to find the first non-alphabetic character. The alphabetic
characters are hashed to produce a unique number for each command. This
number indexes the hash table which contains indexes to the command table
(COMTAB). Using COMTAB the syntax of the command is checked and if correct
an integer is allocated to the specific command. This integer is the command

number.

Each command word is terminated by a specific delimeter. There is a set of
tables which matches the allocated command number with the specified delimeter.
Only those commands containing the correct delimeter are passed to the next

stage.

In the final stage of analysing any further information that is required is

extracted from the command string and stored for use during the command

39

STAGE 1
FETCH A
COMMAND

STAGE 2

GENERATE HASH
NUMBER

,//Eﬁgi;:j;TD;x\\ YES

CONDITION
?

SEARCH FOR
HASH MATCH

Y

STAGE 3

CHECK SYNTAX OF |

COMMAND WORD

STAGE 4
DETERMINE
DELIMETER

(

SEARCH REQUIRED
DELIMETER TABLE

SYNTAX NO

CORRECT -
¢

CORRECT NO

ERROR
HANDLING
ROUTINE

DELIMETER
USED
?

YES

STAGE 5

STORE FURTHER INFO.
ON COMMAND STRING

STAGE b

PICK UP BRANCH
ADDRESS

et

NO
INFO. PRESEN] AND

NOTHING EXTRA

/LN

BRANCH TO EXECUTING

ADD RESS

Fig. 1

40

execution eg a copy n lines instruction requires the integer n to be stored
for future use. Similarly strings and names are stored from the command
string. At this stage a flag is set to indicate whether the command is a

line or a character directive.

If the required information does not exist in the command string or if

there is an excess of information an error message is printed and

further processing of the command terminated.

Finally the analyser causes a branch to the appropriate routine to execute
the command. This is done by the selective branching technique. The
addresses of the routines are set up in a table and the command number

indexes this table, thus obtaining the correct branch address.

The command analyser is only re-entered when the previous command has been

completed and more commands are present in the command stream.
The following is a detailed description of each stage in the command analyser.

4.1.1 Stage 1

The first step is to fetch a command from the command stream. The unit
number of the command stream and the area of memory where the command will
be stored are passed as parameters to the input routine. After a successful
read the analyser continues into stage 2. If the read is unsuccessful ie
an end-of-file condition exists on the command stream the editor is

abandoned, and no files except the input stream are retained.

4.1.2 Stage 2
The command word is picked up from the command string and hashed according

to a specified algorithm. If a valid hash number is generated stage 3 is

entered otherwise the error handler outputs an error message and

processing is discontinued.

41

The hashing technique causes a unique hash number to be generated for each
command. The hashing method used is to "exclusive or'" the binary bit
pattern of each letter in the command word and then "exclusive or" the
final accumulative result with the number of characters in the command
word x 2*. The final result is reduced to an integer less than 90 by
subtracting 113 if it lies between 100 and 200 and 220 if it is greater

than 200. Negative hash numbers and ones greater than 90 are invalid.

The hash number indexes the hash table (TABLE) which contains pointers to
the command table (COMTAB). COMTAB contains information used to check the
syntax of the command. If an entry in TABLE is negative there is no

corresponding -entry in COMTAB and the command is invalid.

4.1.3 Stage 3

The analyser now check-s the syntax of the command by using COMTAB. This
table contains the number of letters in the command the command word and a
number associated with the command type. If a syntax error oécurs a
message is writfen to the print stream via the error handler and the next
command fetched. Otherwise the number allocated to the command type is

picked up from COMTAB and stage 4 entered.

4.1.4 Stage 4
This stage examines the command delimeter and searches the delimeter tables
to determine if the specified character is allowed. eg any copy statement

must be followed by a line or character delimeter. If followed by any

other character an error message is output. Similarly the command
EXIT must be followed by a space. EXIT/ would cause a syntactical

errore

By examining the delimeter the command type is established. If any
character other than a line or character delimeter follows the command
word it is one of the special purpose commands. If the command is a line

or character directive then the appropriate marker flags are set up.

42

4.1.5 Stage 5
Any additional information in the command string is dealt with at this
stage. The information is retrieved from the command string and stored in

memory for further use during the command execution.

The type of information eg integers or strings, is determined. The command
number is matched against the appropriate table to ensure that the infor-

mation present is required by the specified command.

If the command is part of the body of a loop a table is scanned to check

that the given command is valid within a loop.

The exchange command is treated as a special case. The two strings are

joined together in one area of memory and two variables hold the lengths of

the individual strings.

If the required information does not exist in the command string or if there

is an excess of information the error handler outputs the appropriate error

message and processing of the comwand is halted.

4.1.6 Stagé 6

At the final stage of analysing the address of the coding to execute the
command is retrieved from the table BRANCH by using the command number to
index the table. A branch to the specific address is effected and the

command executed.

Before branching strings of characters contained in the command are
examined and expanded if TAB is in operation. 1If the string contains a

load instruction the actual string is loaded from the store area

Commands that are part of a loop body are not executed but stored in the

loop command area to be executed when the loop is completed.

43

Flowcharts 1-6 in Appendix II give detailed descriptions of each stage in the

command analyser.

By using this method of command analysing it is relatively simple to add
more commands to the editor language. Any new command must have a unique
hash number less than 90. The COMTAB indexing table must contain a positive
entry when indexed by the hash number. This entry is the next available
position in COMTAB. Details of the command must be inserted into COMTAB
and into the appropriate diameter tables depending on the form of the new

command.

The following diagram shows the link up of the tables.

hash number

points to
TABLE
points to
COMTAB
Qutputs a command number
which references
DELIMETER TABLES
. “
commands no no
requiring strings strings space space number
Fig. 2

44

4.2 Error Handling Routine
The error handler allocates an error number to the error condition and calls
a Fortran subroutine. This routine writes an appropriate error message to

the print stream and control returns to the error handler.

There are two types of errors - fatal and warning. The fatal error causes
processing on the current command to be terminated. After a warning
diagnostic control is returned to the executing routine and processing

continues.

4.2.1 Warning errors

There are only 5 warning diagnostics:

a) If a copy n command overflows the output line buffer, n is reduced to

the maximum value allowed and processing continues.

b) If an insert command causes the output buffer to overflow characters

at the end of the line are lost.

c¢) If a duplicate character store name is used the old name and store

are overwritten, the new string of characters must be less than or equal

to the o0ld onee. A fatal error message is output if the second string

is greater than the firste

d) If the defined field is smaller than 8 positions and sequencing is

required the sequence numbers are truncated.

e) If a string contains a load command and the name is not in the
character or line store dictionaries a warning diagnostic is given and

the load command treated gs an input string.

Lke2.2 Adding error messages to the system

It is simple to insert new error messages into the editor. A label is

45

allocated the new error message number, At this label the error
message number is stored in memory. The handler then branches to the
error routine which calls the Fortran subroutine. The new error

message must also be inserted into the Fortran subroutinee.

The following diagram shows the flow through the error routine.

ERRDR OCCURRED
BRANCH TO SET
WUP APPROPRIATE

UMBER

NN

i ’ SET UP ERROR No.
AND STORE DATA (F

\ NON-FATAL ERRCR

SET UP ERRCR
NUMBER TO BE
PRINTED

Y

CALL FORTRAN
ROUTINE TO
PRINT ERROR

RICK UP LAST
COMMAND AND
FETCH NEXT ONE

FATAL ERROR

RESTORE ADDRESS
70 CONTINUE
PROCESSING

NTINUE PROCESSING

Fig. 3

46

5 IMPLEMENTATION OF CODE
This section describes the action taken during the execution of certain edit
commands. The code generated by the macro processor is in the IBM 360

assembler language. To edit a file this code is executed on the IBM 360.

Chapter 2 describes the action of the editor for simple text editing commands.
Two general registers are used to hold the relative addresses of the input
liné buffer and the output line buffer. Using this technique buffer swapping
is achieved by swapping only the contents of the two general registers. Two
pointers IPP and OPP are used to keep track of editing within the input line
buffer and output line buffer respectively. The edit field is bounded by the
start field pointer (SFP) and the end field pointer (EFP). A pointer (EP) is

used to mark the last significant character on the input line.

This section describes the implementation of facilities in the editor

which do not involve line and character editing.

5.1 Loading and Storing Facility

This facility allows strings of characters or a series of lines to be
stored in the editor memory and retrieved at a later stage by the user.

All stored characters, including these in line store commands, are held

in the character store. A pointer (CHP) is used to mark the next available
position in the character store. For séoring character strings a character
name dictionary is required. This dictionary contains the name of the
store area, the number of characters in the stored string and a pointer to
the position in the character store of the first character in the string.
Similarly for storing lines a line name dictionary is used. This contains
the name of the store area, the number of lines to be stored and a pointer
to a line position table. This table contains, for each stored line, the

number of characters within the line and a pointer to the character store.

47

5.1.1 Storing characters

Characters can be stored from either the input line buffer or the command
stream. The command number indicates which input stream is used. The
number of characters in the store string and the name of the store area

are found from the command analyser and inserted into the character name
dictionary along with a pointer to the next available position in the
character store. The specified number of characters are then moved from
the appropriate stream to the character store. If the characters are stored
from the input stream they are copied to the output stream and the pointers
advanced accordingly. Tab characters are not expanded at this stage If

a duplicate store name occurs, the old store is overwritten provided the

new string can be contained in the space of the old string. Otherwise a

fatal error message is output and the store command ignored. Fig. 4

is a diagram of the dictionary and store for the given commandse

Command stream Input stream Qutput stream
S7.A1 STORE X YZ STORE X
SC5.A2 T
XYZ12 .

Pointers indicate positions after the command has been executed.
S Store from input stream

SC Store from command stream.

character name

dictionary A1|710]A2) 5/ 7

|
Position for next entry

character store | S|T|O{R|E| |X|X| Y| Z| 1| 2

CHP

Fig. 4
The number of labelled store areas allowed in an edit run is restricted by

the size of the dictionary and the total number of characters stored is

48

restricted by the size of the character store.

5.1.2 Storing lines

Lines for storing can be input from either the input stream or the command
stream. As in character storing the command number determines the input
stream. The store area name and the required number of lines are passed
from the command analyser and inserted into the line names dictionary along
with a pointer to the next available position in the line position table.
Lines for storing are then read from the appropriate input stream Trailing
blanks are ignored and the number of significant characters in each line is
entered in the line position table with a pointer to the next available
position in the character store. The significant characters are then moved

to the character store.

Because of the complexity involved in differing line lengths duplicate

line store names cause a fatal error and the command is ignored.

Fig. 5 shows the table structure of storing lines.

Command stream Input stream Qutput stream
S4/A3 FIRST LINE OF FIRST LINE OF
SC2/A4 STORE. STORE

CB.ABC LOTS MORE LOTS MORE
I.PQRST LINES FOLLOW LINES FOLLOW

—y ————
THIS ONE
line name

dictionary i e o i

I) (_ next available position

line position| ;31 45(¢| 25| 9| 31| 12| 40| 6|52 7| 58]- - -

table
\‘h-——*-———~—~“1 next available position
S|T|O| R E XY Z 12| F|) R{S|T] [LIIN|E| |O
character
store

F|S|T|O|R|E| !|L|O|T|S| [M O RIE|L|I|NlE|S F| O

49

The number of line store areas is restricted by the size of the dictionary
and the total number of lines stored by the size of the line position table.
The size of the character store restricts the total number of characters in

both line and character store commands.

5.1.3 Loading character store areas

A character load occurs when a load instruction is encountered in the
command stream in place of an input string eg CB/L Al. The character

names dictionary is searched to find the specified name. The length of the
stored string and its position in the character store are picked up from the
dictionary and the characters moved from the character store to the command
stream i.e.a .command CB/L Al now becomes CB/STORE X. If the tab facility
is switched on the string is expanded accordingly except in the case of the

exchange command (q.v.).

5.1.4 Loading line store areas

A load instruction in the command stream by itself eg L A3 causes the line
name dictionary to be searched. The lines are then located in the character
store via the line position table. When the editor is in input mode the
required lines are read directly from the character store to the output
stream. Otherwise a flag is set indicating to the editor that further
commands are read from the store area instead of the command stream
Commands are read and executed in this way until the named load area is

exhausted.

In both line and character loading, if no match is found in the appropriate

dict:onary for the supplied name, a warning error message is output

and the load instruction treated as an input string.

5.2 Looping
The looping facility is used to execute a sequence of commands a specified

number of times or until an end-of-file (EOF) condition exists on the input

50

stream. All commands between the first loop start command the corresponding
loop end command are stored in a loop command area (LOOPCOM) in the editor

memory. This area is indexed by a pointer (LCP).

When executing nested loops two stacks are required. One holds the return
address of each nested loop and the other holds the number of times each
nested loop has to be executed. The function of these two stacks is

described in Section 5.2.2.

5.2.1 Storing loop commands
When a loop command is encountered on the command stream a flag (LPSET) is
set to indicate that further input on this stream has not to be executed
but inserted into the loop command area. Each command within the loop is
processed through the command analyser and, if syntactically correct, is
stored in its coded form in the loop command area This form consists of
the command number, the command type (a line or character command) and any
further information required when executing the command A hash sign ()
is used to mark the end of each command in the loop command area eg the
simple loop

LOOP 5

c4/

I/NEW LINE IN

C5.

I1.ABC
LOOPEND is stored in the loop command area as follows:

o] 05|+ Q4| 1] 04tex| 17 1| 1] M E[W| || 1|N|E] | 1IN [04| 0[5k+| 17| 0] 3] Al B| | 2¢1|#1

LOOP C Line String character loopend
command length marker

For nested loops a counter LOOPCNT is used. This is increased each time a
nested loop is encountered and decreased on the occurrence of a LOOPEND

statement. When the count returns to zero the loop is ''closed" and ready

for execution

Load instructions and strings containing the tab character are not expanded

51

at this stage. They are copied directly to the loop command area and

expanded during the execution of the loop.

5.2.2 Execution of the loop

The execution phase is entered immediately after the closing LOOPEND
statement has been encountered. Commands are read from the loop command
area and executed. The loop execution routines cause a branch to the
command analyser where strings within the command are checked for tab

stops or load instructions. These strings are expanded at this stage.

A flag is set to indicate that commands are to be input from the loop
command area instead of from the command stream. A pointer (LPCOMP) marks
the position of the next command in the loop command area Details of
each command are read from this area and set up as they would have been
from the command analyser. A branch to the selective branching section of
the command analyser is effected. When the command has been successfully
executed control is returned to the loop execution routine and the next

command read from the loop command area.

For all looping, nested or not the address in the loop command area of the
first instruction of the loop is placed on top of a loop address stack
(LOOPSTK) and the number of times the loop has to be executed is placed on
top of tﬁe loop number stack (LOOPNO) No branching to the command
analyser is effected. This procedure occurs each time a loop n statement
is encountered. When a LOOPEND statement occurs the top value of the loop
number stack is examined. If this is non-zero it is decreased by one and
replaced on the stack. The address in the loop command area of the first
command within the current loop is picked up from the top of the loop address
stack and commands executed from this address. When the top value of the
loop number stack becomes zero it is discarded along with the corresponding

entry in the loop address area. The next entry in the stack is examined

52 .

The procedure continues till the loop number stack is empty This implies
that the loop has been completed The loop command area is then set empty
and the flag LPEX unset indicating that subsequent commands are now to be

read from the command stream.

The number of nests permitted within a looping structure is limited by the
size of the loop address stack and the loop number stack. The total number
of commands within the loop body is restricted by the size of the locop
command area. However, it poses no problem to alter the size of these

areas.

5.3 The Exchange Facility

This powerful feature of the editor allows one string of characters to be

replaced by another while other editing proceeds.

Both strings on the exchange command are stored in the exchange character
area. The exchange table contains, for each exchange instruction, a pointer
to the start of the exchange string in the exchange character area, and the
lengths of both strings. When the exchange facility is in operation every
input line is scanned for the occurrance of the first string which when
found is replaced by the second exchange string.

eg the commands EX/AND/OR/ and EX/NOT/NEVER/ cause the tables to be as

follows:

exchange table 0|3|2[5}3| 5|---

exchange character | A|N|D|OJR| NJO|T|NIE|V
area

Individual exchanges can be switched off during an edit run. A negative

entry in the pointer position in the exchange table indicates that this

53

exchange is no longer operative.

eg the command NEX/NOT will produce in the exchange table:

| o[3|2,-1[3‘5I..

5.3 1 Storing exchange commands

An exchange command causes the flag EXCH to be set '"on" This flag
indicates to the editor that whenever a new line is read from the input
stream it must be checked for the occurrence of exchange strings and

altered accordingly.

When an exchange command has been successfully processed by the command
analyser both strings are joined together in the area STRING, the variables
STLEN and STLEN2 hold the respective string lengths The strings are then
examined.for the occurrence of load instructions and the flag XLD set as

follows:

O if neither string is a load instruction
eg EX/AND/OR/

XLD

1 if the first string only is a load instruction
eg EX/L A1/XYZ/

2 if the second string only is a load instruction
eg EX/ABC/L A3/

Il

3 if both strings are load instructions
eg EX/L A1/L A2/

- ve when the exchange has to be switched off (see Section 5.3.3)
eg NEX/AND.

If XLD is 1, 2 or 3 the strings are expanded to contain the stored

characters. The new values of STLEN and/or STLEN2 are saved

The next step is to set up in the exchange table the values of the pointers
(XCP) to the next available position in the exchange character area

(STLEN and STLEN2). The strings are stored in the exchange character area

54

and XCP updated accordingly.

The number of exchange commands in an edit run is restricted by the size
of the exchange table, and the total number of exchange characters by the
size of the exchange character area. Switching off exchange commands does
not create extra space except when all exchanges have been switched off.

When this occurs the exchange table and the exchange characters area are

set empty.

5.3.2 Operating the exchange

In order to discontinue an exchange operation an NEX/string command is issued
by the user. When such a command is encountered the flag XLD is set negative
The exchange table is scanned and when a matching first string length is
encountered the corresponding string in the exchange character area is com-
pared with the string in the command stream. If a match is found the pointer
position in the exchange table is set negative indicating that the exchange
is no longer operative. When all entries in the exchange table are negative
the e#change flag EXCH is unset and the exchange table and exchange character

area are set empty.

An error message is output to the print stream if the exchange string
cannot be matched in the exchange string area. Control is then returned

to the command analyser to read in the next commande.

It is advisable to switch off the exchange facility as soon as it is no

longer required as the exchange operation is very time consuming

5 4 Sequencing

The sequence command is only scanned as far as the command word by the
command analyser It then causes a branch to the sequencing section
ignoring the remaihing information in the command string This information

is read and analysed in the sequencing section

55

The sequence numbers are inserted into the last eight positions of the
defined field - by default in columns 73-80 of the current line. 1If the
defined field is less than eight characters in length, the sequence numbers
are truncated on the left and an error message written to the input stream.
The eight character sequence area is divided into two fields of four
characters each. The information on the sequence instruction is then
analysed. This information consists of the starting value of the first
field, its increment, the starting value of the second field and its
increment. If the increment is zero the string is treated as an alpha-
metric string. If the first two values on the sequence command is zero

the two four-character fields are treated as one eight-character field

This allows for sequence numbers greater than 9999 A flag ONEF is set

when this condition exists.

The sequence number is built up and stored in an area in the editor memory
called STRING. Alphameric constants are stored in the appropriate position
in the area STRING ie. If the first increment is zero the first entry on
the sequence command is stored in columns 1-4 of STRING and if the second
increment is zero the third entry of the sequence command is stored in
columns 5-8 of STRING. The incremented number is then stored in the empty
field. If neither field is constant both numbers are incremented and stored
in the appropriate fields. ‘If the flag ONEF is set the incremented number
is stored in columns 1-8 of the area STRING The first eight characters of
STRING are copied to the last eight positions of the defined field in the
input line buffer which is then written to the output stream The next

line is read into the input line buffer from the input stream

This process continues until an end-of-file condition exists on the input
stream The pointer remains at the end-of-file marker, thus if any further

editing ‘is required a START/command must be issued first

56

5.5 Field Defining

This facility enables the user to define the edit field within the input
line buffer. By default the field is columns 1-80 The variable SFP
contains the start of field pointer and EFP contains the end of field

pointer.

As in the sequencing command only the command word is processed through the
command analyser. The further information on the field command is analysed
by the field command execution. The first integer on the field command is
the start field pointer. 1If this integer does not exist the previous SFP
remains in operation. The second integer in the command is the end field
pointer and again the previous EFP is retained if no number exists in the
field command.. The final values of SFP and EFP must be in ascending order.
SFP must be greater than zero and EFP must not be greater than 80. If any

of these conditions are violated an error message is output and a

new command read from the command streame.

The new position of the pointers are then set up in the current line before

the routine branches back to the command analyser to fetch the next command

5.6 The Tab Facility
This useful facility allows the user to space out strings A non-alphameric
character is to mark the tab stops. When this character occurs within an

input string the string is space filled to the next tab stop

5.6:1 The tab command
As in the sequencing and field commands the tab command is processed by the

command analyser only as far as the command word.

When a tab command occurs a flag TAB is set to indicate that the tab
facility is in operation. The tab character is retrieved from the command

string and stored in TABCHR. If this character is a question mark (?) the

57

next character is examined. If this also is a question mark the tab
facility is switched off by setting the flag TAB to zero. Control is then
returned to the command analyser to fetch the next command. Otherwise

processing continues normally.

The tab stop positions are read from the command string and stored in a
temporary array TABT. The final tab stops are stored in the array TABF.

If no integer is present for any tab stop (ie the condition ",," occurs in
the command stream) the corresponding tab stop in the array TABF is inserted
into TABT provided it is greater than the last entry in TABT Tab stops

must be in ascending order. If this is not the case an error message
is output to the print stream and the tab instruction ignored. When
an error occurs in the tab command the previous tab settings, if any

exist, are retained.

A maximum of 9 tab stops is allowed. This is limited by the size of the
arrays TABT and TABF. These arrays are easily altered If more than the
maximum number of tab stops is significant an error message is sent to the print
stream and the tab command ignored. 1If there are less than the maximum

number of tab stops the remaining entries in TABT are sent to the maximum
buffer size (ie 80). When all tab stops have been set up in TABT and no
errors have occurred the array TABT is copied to TABF which always contains

the final positions of the tab stops.

5.6.2 Expanding strings with tabs

A tab check is applied to all input strings on the command stream An

area of core called STRING is used to hold the final expanded string This
is initially set blank. If the tab flag is not set the characters are
copied directly from the command stream to the area STRING Otherwise each

character in the command stream is examined and matched with the tab

character.

58

If a match occurs the next tab stop is retrieved from the array TABF and
the area STRING is space filled up to this stop. Otherwise the character
is copied to the next position in STRING. The new expanded string length

is stored in STLEN and control returned to continue executing the command.

Errors occur when there are too many tab characters in the input string or when
the area STRING has been filled beyond the current tab stop. If an error

occurs the whole command is ignored.

59

6 CONCLUSIONS

6.1 The Lditor

The context editor TED has been implemented satisfactorily on two operating
systems available on the IBM/360 44 at St Andrews University It works in
an on-line capacity under the RAX operating system and in batch mode under
the 44MFT operating system. TED is efficient and very easy to use under

both operating systems.

There are several improvements that can be made to the editor to make it
more powerful. One major improvement would be a re-design of the sequencing
facility. Sequence numbers should be applied to the edit file while other
editing is in progress as in the exchange facility. The sequence command
could be made more flexible to cope with varying field sizes and sequenciﬁg

methods.

Restrictions on buffer and store area sizes are not desirable but it is
difficult to get round this problem. One method would be for the user to
specify his own restrictions which would be inserted into the editor during
execution. This would make the editor more complicated to use A second
method would be to use the dynamic storage technique but not all computer
manufacturers provide the software to deal with this facility This method
causes storage from a central pool to be allocated to the editor as required

and linked together by a pointer network.

A backspacing line facility would be a useful addition to the editor. Limited
backspacing of lines could be achieved by extending the input/output buffers.
Several lines could be input at a time and backspacing within the buffers is

a relatively simple operation. Unlimited line backspacing requires extensive
input/output operations and file positioning This is very time and space
consuming in the computer. Using the present version of the editor back-

spacing can be achieved by a START/command followed by a command to locate

60

the required line.

6.2 On-line/Batch Ability

TED is a better batch editor than an on-line editor because the output
listings are geared more to suit the batch user By altering the print
facility TED could become an excellent on-line editor as it contains the
powerful display feature which can only be used in an on-line environment.
A good on-line editor should display the current line and all edited lines
during processing. The user can then determine at a glance his position

on the edit file.

6.3 Portability

TED is not very portable. It would take a fair amount of work to produce

a working version of the editor on another computer although it would
require much more effort to completely rewrite the editor. Portability

can be improved by introducing more levels of abstract machines (see
Section 3). By breaking the editor down into a system of abstract machines
a set of simple assembler instructions for the required computer should be
all that is necessary on the lowest level of abstract machines A problem
arising from this method is that the efficiency of the editor is reduced
by the introduction of lower levels of abstract machines A balance has

therefore to be found between.efficiency and portability

61

REFERENCES

1

10

11

POOLE, P. C. Hierarchical abstract machines. UKAEA, Culham

Laboratory, near Abingdon, Berkshire.

NEWEY, M. C., POOLE, P. G. and WAITE, W. M. Abstract machine modelling
to produce portable software - A review and evaluation. Software -
practice and experience, Vol 2, 107-136, 1972.

WAITE, W. M. 1/0 Conventions for abstract machines. Department of
Information Science, Monash University, Clayton, Victoria 3168,

Australia.

POOLE, P. C and WAITE, W. M. The STAGE 2 macroprocessor users
reference manual. Culham Laboratory, Berkshire, CLM-PDN 6/70.

POOLE, P. C. MITEM - A portable program for text manipulation.
CCTAN3 - A users guide to COTAN, amend command. Culham Laboratory.

A text editor, NEI memo CD70, November 1971. NEL, East Kilbride,
Glasgow.

BOURNE, S. R. A design for a test editor. Computing Laboratory,
University of Cambridge. Software - Practice and Experience Vol 1,
73-81, 1971.

DEUTSCH, L. P. and LAMPSON, B. W, An on-line editor University of
California. Communications of the ACM Vol 10, No 12, December 1967.
FREEMAN, A. PDP-8 Context Editor (Mark 4), August 1968 Computer
Science Department, Edinburgh University.

VAN DAM, A. and RICE, D. E. On-line text editiﬁg. Computing Surveys

Vol 3, No 3, September 1971.

62

ACKNOWLEDGEMENTS

I would like to offer thanks to all who made this project possible.

The Civil Service department for awarding a bursary enabling me to attend

University for 2 years.

Professor J Cole, Head of St Andrews University Computing Department and
all his staff, especially Mr R Morrison for his invaluable assistance and

supervision of the project.

The typing and tracing departments at National Engineering Laboratory,

East Kilbride for greatly assisting in the production of this thesis.

APPENDIX I

TED
A CONTEXT EDITOR V2ER'S MANUAL
R. Merriscu
B. tHowaon

T. Sormwciville

Technical Repert No. CL/T3/3

TED === A Context 243 tcr =-=-- Userns Manual 1

: CCREzLLS Eagg
N TALTOARELIOE waamenidls » s bxammaan vamsdimaisden & 5d 00
D The Vnjubt /000 p0E S¥SEal svewae s v sewaeveassws oo 02
3s The Bdit CosBanls ssiiscinsnnis dssmssanasvasrall
4, Conmands Available Undew UAY ONly seviveerecaclh
5 Exauples OFf Corplote Bdit Jobs sesawsscasonse 18
6‘ Using The Tditor UndeX ULUMFT eeeacsscscscseasrac2l
T UETHY The BAULEE BHAEE RAE .« s vvowswwewenn s s €. 5]
8. THaex OF BALt COBHAMS wuwwms s swaweensis s Liwa 23

ACKHOYLEDGEMENTS

| Duriny the course of development of TED a number of people have
been involved. To them my thanks. The Editer manrual has been
produced using the FORMAT 44 dccumentation pro;fam. I vould therefore
like to thank #iss Glynis Fairlie and MNrs. Doris Sirwcnite for
helpinj in preparing the manual and for their patience with us during

our teethiny troubles with FORMAT 44

(3]

TED -==--~ A Context Edilor .~-- Users HMdnual

INTROLUCEION

TED is a swphisticated, powerful centext editer which may be used
o

in a tine-sharing nmcde under RAX or in a tatch mode under KUXFT.

This manual describes the editer, the editing commands, the
method of uwse, and the JCL reyuired to use the editor under KAX and
UHITFT.

Th¥

a
]

DESIGN _OF_ TLE ERITCR

The editor 1s designed te read line 1inmages from disc or tare
files, pexform the necessary editing, and to write a new edited file
back on to disc/Lape.

The editing method may best be understood by visualising a
pesition pointer which may be moved through the text to where an
amendment 1s to ro made. The pcinter 1is 1initially set before the
first line of the file and may be positionced anywhere within the file
by the use of 1lino directives, vhich move the pointer through the file
line by line, and character directives which position the rcinter
within a line.

When editiny, a line is read from the input file to an internal
80 byte buffer called the input line buffer {(ILB). The edited foruw of
the line is held in a similiar buffer, the output line ‘ltuffer (OLB).
On the input of & new line tc¢ the ILB, the CLB is written dircctly to
the new output file.

_ The file pointer, when within the 7TLB, 1is termed +the input
yesition yjpointer (IFP). It indicates the current character pesiticn
within the line teinj edited. A correspending pointer in the OLE, the
cutput position pointer (CEF), indicates the <current character
position in the edited 1line. These tpointers do NCT nove in
conjunction but move independently of each other.

The I/C systen fcr the editor ccnsists of U separate streans.

1) The Inrut Streaan.

This 1s streaw 2 under MFT or stream 5 under RAX. The file to
be edited 1is read from disc or tape. Note that, under RARX, only
files on the SYSLIB discs (ie those files saved by a /SAVE command)
nay be edited.

2) The Output_Strecanm.

This 1is stream 3 under MFT and stream 10 under RAX . The new
edited file is written on tc disc or taje.

3) The Cormand Strean.

tream 5 under HFT ot -stream 9 under RAX. The
nput either frem cards or from the 2260 screen.

This s
commands are

1%}

-

e 0

TaD ==~ L& Context Péiivr =~-- Users Manual 3
4) The Print Stroaw.
Thic 1s stream 6 under Loih systens. A listing of the

commands and the edited file is jroduced on the line piinter or ¢n
the 2260 screen.

rt present both input and outrut files must Le o tape cor
disc. There is ne provisicn for connecting the card reader to the
Read stream or the card punch to the ¥rite strean.

TRE EDIT COMNANDS.

A command to the editor consists of one or more characters which
form a nmneronic for the operation reguired. The ccrmands can be
classified into 2 grourps:

(a) those which make textual anendments and/or nmove the position
pointer.

(b) auxiliary commands whi:ch make no amendments.

This group of conmmands 1s split into Jine and character
directives.,

A Jire command causes the pointer to be set at the beginnin
of a line and moved sejuentially through the file, line by lire. A
line conmand is active frer the current pointer position if this is
at the beyginning of a line otherwise the current line is cepied to
the outjyut file and the 1line coummand, becomes active from th
following line.

2

(@]

A character command scves the pointer character by character
through the file.

By default the delimiting symbol of a line command is a slash
(/) and for a character command a dot ({.). These may ke changed by
using the LINE (gv) and CRAR (gv) commandse.

These commands add additional facilities (eg provision for
executing a sejucnce of ccmmands in a loop) to the tasic amendnent
commands and they censiderably increase the power of the editor.

A full description of all the availatle cosmands is ncw given
along with exanmples of each in use. In each exanple the position
pointers are represented by a x. Unless otherwise stated, the
furthest left (or wurjer)+ 1in & buffer represents the pointer
josition before execution of the coammand, and the 7rightmost (¢t
lower) + the positicn after executicn.

Note that cach edit command MUST be input on a separate line
or card starting in cclumn 1.

Centext BEditor —--

These commz2nds set Lhe pesiticrn jorunten

and copy the

inpat file

¢ the ouiput file up te the pointer resition. There are a total of
ten copy dircectives, coaprising five 1line directives and five
ciiaracter Jdircctives.

1.9%. Cory A Given Sumber Of Characters Or Lines —- Cn., _0Or _€Cn/

This comnand moves

the pointer alonrg n characters cr doun n

Jines. Tf a rurber is omitted, n is assumed to ejual 1. If the
command is a character command then n nust te Jess than the
length of the line.
Exampleos.
(a) Copy 8 characters -- C8.
1LB OLB
SU#ZBROUTINEs INPUT SUBROUTINE
(b) Copy 2 lines —=-- C2y
IvpuT ouTRUT
«SUBROUTINS INPUT SUBROUTINE INPUT
INTEGER 2,B INTEGEER A,B
#LCGICAL C &
1.2 Copy File To Befcre A Given Siring == CB.<string> Or
CB/L<siring>
This command moves the pointer throuql the file and places
it hefore the first occurrence of the given string.
If uscd as a line command, the string should te the first

string on that line, as fcr an n character strinj
n characters of each line are checked. If tLhere
blanks at the start ¢f a line (ey in a FORTRAN
are ignored unless they are all specified as part

Exaumples.

(2) Copy to before BUFFER -- CE. RIUTFFER

only the first
are freceding
programn) these
cf the string.

LR OLB

«C SZARCH INPUT«EUFFER C SEARCH INFUTs
(b) Copy to befcre IF <<= CB/IF

INPUT QUTFUT

KL=PHKTR KL=PNTR

BYTE=NUMB BYTE=NUH
#TF (HUB.EC.GU)GOTO 6 *

Baditor

TED === & Coptext G e TS &
1.2 Cony File Po After A _Siven String -z CR.<5tiing> OF
C ZE:ﬁziyJE
This works in the saue w3y as a CB command excert that the-
pointer is placed after the given string.
Exaayles.
(a) Cory to after BUFFER -- CA.BUFFER
iLD OLB
#C SEARCH INPUT DBUFFENa C SEARCH INPUT BUFFER=
{b) Coypy to after 1IF -- CA/IF
INpUT OUTPUT
*KL=DPNTR KL=2NTR
BYTE=NUND BYTE=HUM¥EB
1F (NULB. 8C. 64) GCTO 6 IF(NUNMB.EQ.GU)GCTO 6
GOTO 10 £
1.4 Copy To_Before Last Cheracter Or Line —= C3L. Ox CBL/
'his cormand, if a character directive, copies all +the

current input line up to the last no

the jpointer before it.

a line ccrmand the who
last line is copied to

it is
the

11
excluding

Examples.

(a) Copy to before last character

ILB

sINTESER A, B,C,sD

(L) Copy to before last line -- CEL/

JNPUT

————

CALL
#END
eof

EXIT

ha

1.5 Copy To After Last Cha

Lacter Or_

command works
last character c¢r line.

This
after the

Example.

(a) Copy to after last character

ILB

Us

as CBL except

Fanual

n-blank character and places

file hut

file.

le input to

the cutput

up

CALL EXIT

Line CAL. _Cr_ CAL/

that the peinter is placed

CAL.

LB

e

o CED ——— A Centext Zditer —-~ Users Manuval

*INTEGER 3,B,C,Cx INTEGER A,B,C,D=

(b) Copy to after last line -- CAL/

INPUT OUTEUT
P Bl

CALL EXIT CALL EYXIT
LND ERD
#eof 3

2. LDELETE_COMNANDS
The delete commands are similar to the copy coamands except taat
the pointer position in the OLPR is unchanged ie nothing is cutput.
Fach cowmmand is illustrated by an example.
2.1 Delete A _Given Number Of Characters Or Lines --Dn. _Cr_Dn/

Examples.

(a) Delete 6 characters -- D6.

ILB OLB
SUBROUTINE #0OUTPUT+ SUBROUTINE =

(b) Delete 2 lines -- D2y

INPUT QUTPUT

pc 10 1=1,d Do 10 1=1,d
« A=E/C x
JF(A.GT. ®) GOTC 20

#+10 N=N+1

Exanples.
(2) Delecte before IN -- DB.IN

ILB
* VARIABLES «INITIALISED c

(b) Delete to before RZITURN -- DB/RETURHN

‘IHPUT QUTPUT
GOTO 5 GOTO 5

£ STRE=1 ¥

PORP=5

RETURN .

END

TED ~-~- L Context 2diter —--- Users Manual

2.3 EBelete To After A String -= LA
Examples.
(a) Delete to after 1IN -- DA, 1N

ILB CLB
C «VARIABLES IN«ITIALISED C «

(L} Delete to after RETURN -- LA/RETURN

INpUT QUTPUT
GCTO 5 GOT0 5
I=7 I=7
STRE=1 .
PQRP=5
RETURH
#EBND

-

2.4 Delete To Befcre Last_Character Or Line_-- DBIL. _Cr_DRL/

Examples.
-(a) Delete to bhefore last character -- DBL.

1LB oLB
DINEZNSICN =A(20),E(3%) DIKENSICN =

(t) Delecte to befcre last line-- DEL/

INDUT OUTFUT

CALL DXIT
#END
eof

2.5 Delete To After Last Line_Or_ Character -- DAL/ Or_DAL.

Examples.

(a) Delete to after last character -- LAL.

LB oLB

DINZNSICN =A(2C),B(3)* CINENSION
(b) Delete to after last line -- LAL/

INpUT ; OUTEUT

——- %

CALL EXIT

x eo0f

3. lnsert conrands
Thesc commands

file, setting the

insert commands.

A Context BZditor --- Users Manual

insert a strini of characters or 1lines intc the
position pointer aficer the insert. There are five

3.1 Insert A_String Of Characters Into A _Line -= I.<string>

This coamand inserts the given string irnmediately after the
output vointer pesiticn.

If the insertion 1is suck that the OLB will cverflow the
last characters in the TLB will ke lost and a warning message
output.

Example.

®

Insert the character string EDIT -- 1.EDIT

ILB : OLB
//% EXEC FORTRAN //LEDIT «

3.2 Insert A _Line_Into The File --_TI/<string>

This command inserts a line into the input file. If the
position pointer 1is set at the teginning of a line the insert
vill be made befcre that line ctherwise it will be made after
the line containing the jposition pointer.

Example.

Insert the line C INITIALISR VARIAELES--I/C INITIALISE VARIABLES

INPUT QUTEUT

INTEGER IN,0UT INTEGER IN,O0UT

#DATA IN,0U0T/5,7/ C INITIALISE VARIABLES
k-3

-

o use this commrand, I is 1input on- a line by itself
followed by the required insertions. The insertions NUST Le
terminated by a FIN on a line Lty itself

Example.

Insert into input file the 2 lines
SUBROUTINE WRITE (A,B,C)
INTEGER A, B

The command stream for this would be
X
SUBROUTINE WRITZE (A,B,C)
INTEGER A,E
FIN

TED ~-- A Context Eéitnr --- Users Manual g

T EPOT OUTPUY
BN D EED
i SUBRCUTLNE WRITE(A,LE,C)
DIMENSICN C INTEGER A,B
I

This command inserts n blank characters or lines intc the
input file.

Examples

(a) Insert 4 blanks into a line -- IBR4.

ILB CLB
C #S5ET N=C C %
() Insert 2 blank lines -- IR2/
INDPUT © CUTEUT
BEN+D ' END

SUBRCUTINE ARR (X)

4. REPLACE COMEANDS

These conmmands replace a given string or line in the irput file
vith a new string or 1line. A replace command is ejuivalent to a
delete followed by an insert.

This command is best illustrated by exanmple.
Examples.
(a) Replace the next 6 characters with OUTPUT -- R.OUTPUT

LB OLB
*INPUT #FILE OUTFUT=

Note that as CUTPUT 1s cne character longer than INPUT the
space Letween INPUI and FILE will be lost if no blanks are
inserted. *

(k) Replace INTEGER A,B with REAL I,J,K

R/ REAL I,9d,K
INPUT ~ curroT
SUBRCUTINE =ANT (A,B) SUBRGUTINE ANT (A,R)
INTZGER A,B REAL I,d,K

#DIMENSION C ®

10 TED --= M Context fditor --- Uscrs Manual

Note +that im editing a FOrRAN program, the ypreceding
blanks nust be included in the R/ statement otheiwise the
repiacenent will be made {rom column 1 of the defined ficld.

4.2 Peplage_¥ith Blank Characters Qr_linzs--EBn.or REn/

This command replaces a string or line in the idnyput file
vith blanks.

Examples
(a) Replace 2 characters with blanks.. RB2.

IL3 LB

¥20%WRITZ (6, 10) A

* 1O

(k) Replace next 2 lines in file aftzr pointer with Llanrks

INPUT : CUTELT
£ RRITZ(6,10)A . .

20 CCONTIRUE ,

¢ A=B/C &

5. BACKSPACE_COMMANDS

There are three backspace instructicns which may only cpcrate c¢n
the current line ie Dbackspace 1s a character conmand orly.
Backspacinjy takes place on the edited version of the line.

When a backspace command is executed, the ILB is copied frow the
TPP to the CLB. The buffers are then exchanged ie the OLB becomes the
nev ILB. The new JPP is then ccmputed according to the instructions
given in the backspace command and the ILB is copied to the COLB up to
the new IPP. :
5.1 Backspace To_ After_ A _String -- PA.<string>

This comrand places the pcinters after the given string.
Exanple.
Backspace to after SET -- BA. SET

Before execution c¢f the commandthe buffers are

ILB OLB
C SET POINTERS= ABC C SET BUFIzZR POINTERSH
The execution of the comnand swaps the ILB and CLBE and reseis
the pointers
ILB OLB
C SET« EUIFER ECINTERS ABC C SET#

-t
—

TED === A Context Ediionr --- Users Manual

5.2 Bagkspace To Before h String -- BR.<striang>

i

n
0]
cr

This works as BA. Excert that the pointers axe now
before the yiven string,

Exanple.
Backspace before SET ~- BE.SET
Before execution

TLD

C SET PCINTERS# ARC ET BUFFER TOINTERS#
After execution

ILB OL3B
€C #SET BUFFER POINTERS ABC C =
5.3 Backspace A Given Number OF Characters —- Bn.

This command causes_ the pointers-to be meved back by n
characters.

Example.
packsypace 4 characters -- B4,

Before execution

thes)

OL
1

IL
IF F(IH-EP.?)&

—~1=

IN.ZP.28)=IN=3
After execution

LB OLB
IF(TH.E%P.2) IN=3 IF (IN.E#

6. START_COMFANDS

The START instructicns START. And START/ cause the pointer tc be
set at the beginning of the current line or at the beyginning of the
file. .

In the case of the START instructicn, the ILB, after the pointer,
is copied to the CLB and the CLB becomes the new ILB with the pcinter
sct at colunn 1 of the defined field.

Similarly for a START/ instruction: the input file is copied fron
the pointer position to the cutput file and this then becomes the new
input file with the pointers at the tkejginning of the file.

7. THE FIND COMMAND -~ F/<string>

This is a line directive only and sets the pointer at the
bejinning of the line ccentaining the given string. It is exactly
eguivalent te a CA.<string> fcllcowed by a START.

Input of an ¥ on a 1line by 3itself outjuts +the current line
hether 1t has been edited or rot and reads in the next line of the
LB, setting the pointer at the besinning of the line. -

9. THI_EXIT COHHAND -- BXLT

This is the normal terminator to a sequence of edit comrsnds.
The rewmainder of the file that is teing edited is copied tc the new
file. If this is nct included as the last command, no editling is
saved and no listing produced.

10. THE_FIFLE_DEFINITION COMMAND —-= FIEZLD m.n

This command effectively reCefines the line size on which editing
can take place. Characters cutwith the defined field are ccpied fren
the input to the output file and cannct be acted upon by edit
ccumands.,

The FIELD nm, n instructicn defines the start of the field %o Le
at column m anéd the end of the field at column n. If noc field is
specified the cditor acts on cclumrns cne to eighty in each input line.

11. " TAB_SZTTING CCHM¥AND T £, k, 1, R

The tab setting cormand allows strings to Lte idinput with no
sracing between them and yet to be laid out correctly on the output
file eg. It may be set so that FORTRAN statements always Lbegin in
colunn 7.

The tab statement contains the talk character (set alkcve to g£) and
a list of ‘Letween 1 and S tab step points. VWhen the tab stops have
been-set, input strings are scanned and space filled accerdingly.

Taks may be changed by infutting ancther T statement. Stops not
reguiring alteration may be left blank. The tak character ray te any
rrintable character and tab may be switched cff by inputting T ?2?

Example: CQKMAND SECULNCE

T 5 10,20,30
1/5ABSCDSZF
1/12534556

T %ir.35
1/A17.R2%C3% DY
T 22
I/4N0PGRESTU

¥ill output lines

COL 1 COL 10 COoL2(COL30 CCL35
nB CE EF

12 34 56

A1 B2 Cc3 DYy

EHOPCP ESTU

ote that the omission c¢f a tab character tefore the first string
¥lll set the first tab stop tc column 1 of the defined field.

this

13.

STORL AXND _LCAL

—-—
ol

TeD —=-- K Context *ditovr —--- Users lanual

THE SPCUBNCING COEMAND -= 8SEO a, b, c.d, e

T

This ccemand enaklesthe user to snjuence his file. A
facility is not available for reclease.

Fresent

3
c
e
(i |
i
1
Wt
=
I*
.
|2
T
ir3
{e
~
AN
b
™~
‘q
K2l
12
|
™~
Is
i
|45

These instructicns allcw an cften used character string ox

instruction sequence to be stored from eitheyr the counnand stream or
fronm the input file and called when rTequired Ly a siepple load
instruction. There are two stcere arcas in the editor. Characters are
held in the character store and linoes in the line store, The string

is stored in the approjriate area under a yglven name which may have up
1’1 i J

to four characters.

This command stores n chatacters frowm the input stream and
labels them with the given nenc.

Exawnple. -

Store 4 characters and lalel ithem S1 —- SU.S1

ILB
SUBROUTINE «PTIY (A,B)

The characters PTIN will be stored in the character store
under thke mname S1.° The position of the ypeinter renains
unchanged. The stored characters may be retrieved by using the
load command as follows.

I/L S1 inserts PTIN as a line
Y.L S1 inserts ETIN as a character string
CR.L. S1 copies to before PTIN

This command stores n characters fron the_ cormand stream
and lakels them with the given nane

Example.

Store 10 characters from the command stream and label then
A1 -- SC10.A1. The instruction sejuence should Le:

SC10.A1
SUBRCUTIKE - characters to lte stored.
next edit corwrand.

This may be loadedé in exactly the same way as an Sn
instruction.

13.2 Siore Lines From The In

This instructicn stcres n lines from the input file and
labels them with the given nane.

14

TED -== A Context Editor =--- lisers Hanual

tere 32 lines frewm the inpoel file and label then (C2--33,/C2
IRPUT YILE
{.

SUBRCUTTINE PTIH (A, B)
INTEGER A

LCGICAL R

x REAL K, N

The first three lines will ke stored under the name C2 but
with the ©pointer positiocn changjed. Lines stored in the line
store PFUST be loaded with a load instruction on a line by itself
¢y the commands

I
L C2
FIN

will iasert the 3 stored lines intc the output file.

13.4 Store_Lines_From_ The Command Stream --_ SCn/D3

This cormand steres n lines from the coamand strear and
labels them D3. The 1lines stored wmay be edit commands or
additions to the input file.

Exanple.

(a) Store 3 lines from the coamand stream and lakel ther D3 --
SC3/D32. The conrand seguence is:

sc3/D3

SUBROUTINE PTOUT(C,D)
INTEGER C

LOGICAL D

next edit command.,

Again a load instruction cn a line by itself NKUST be used
vhen loading lines stored by a Sn/ instructicn.

Exanyple.

(b) Store # conmmands and latel them ISCH -- SCU/ISCH. The
command sejuence is

SCl/15CH

F/FORHMAT

CB. (

I. '

N

next edit command

This stores the 4 commands following the store corrand -
thaese conmands are net executed at this time but are called by a
lcad instruction in the conmand stream. Eg

Ch. FORMAT

.

TED ==~ & Context Fditeor --- Users lanual 15

‘ L TIscC4
CR. 88

L 1s5Cd

[7]

¥ill cause the U cowrnwandz to be loaded into the copmand strean

after each copy instruction.

EM

13.5 Notes On_Store And Lead Instructic

=

{.J

In any one run of t 3.
character stores is 10 as i
‘stores.

tor the maximum nurber of naned
s the mazximum numkec of named line

Up to 5C lines may be stored in the 1line stcre assuring
that the total number of characters in these lines does not
exceed 500.

I1f tab stops are set the tab characters nust be included in
the correct positions in the stored string and NOT input with
the load instruction.

14. LINZ ARD CHARACTER DELINITER CCHMANLES-

These instructions are available to chanje the deliriters fcr

"line and character commands.

To chanye the character command delimiter from a dot the ccarand
CHAR immediately(no srace) fcllowed by the new delimiter is injput.
Similiarly to chanye the line delimiter from a slash, LINE immediately
folloved by the new delinmiter is input

Exanmple

‘CHARE - character deliwiter ncw a & sign

LIXI¢ - line delimiter now a ¢ sign

15. LOOPIHRG COMKANDS -- LOOP N, LOOPEND

These instructions enable all statements between LCCE and LCOLEME
to be executed n times. TIf n is omitted, looping continues until the
end of file marker is recached cn the input file.

The area reserved for loopring statements allows 10 statements [er
loop but locops may be nested up tc 16 deep and there is no linmit to
the number of unnested loojs in any one run.

There are several cosmands forbidden within a loop. These arce

FIELD :
EXIT
LIXNE
CANCEL
CHAR
T
EX
L
If an error occurs during the execution of a loop the loop is
exited and execution of the coanmands within the locp ceases.

16 PED === K Context Editor —-- Usors Nhanual

Exan]les

LOOP 5

CA. INTEGER
I.A,DB
LOOPEND

This is an exanple of a sirple loop which will repeat the
commands within it 5 tinmes. ‘

Lcor &
F/INTEZGER
Lcor 3
CB. A
B0
IB3.
LOOPEND
CB. INPUT
LCOLZND

This is an exzample of a nested lcop. The inner statements will
be reyeated 12 tiwmes in all, the outer ones, 4 tines.
16. THEZ_EXCDANGL COAMAND -- EX/SSTRING1>/SSTRLNG2>/

This command exchanges each occurrence of string 1 vith string 2
throughout the file.

¥hen an EX command is input, the editer stores the given strings
.and as cditing of the file proyresses, string 1 is searched fcr. WRhen
found a DA.<string> followed by a JY.<strinj 2> is carried out and the
strings are thus cexchanged.

Ahs exchange executes while editing 1is progressing several
exchanges wmay be in operation at once - up to six exchanje ccrmands
can be active at any one tine.

An £X comrand can be switched off at any point in the file by the
input of NIZX/<string1>. This will switch off the exchange of string 1
and string 2 but will leave on any other exchanges.

Exanple

EX/PEAL/INTEGER/
CR.OUTPUT
N¥EX/REZAL

This would exchange RZAL and INTEGER through the file wuntil the
string OUTPUT was found. The exchanyge would then ke switched off.

Note that any nen alphanumeric character (not necessanily a’
slash) may be used as a command delimiter in the EX and NZX conrrands.

COHNNMANDS AVAILABLE _UNDRER RAX OULY.

17. THE_DISPLAY COMMAND - DISPLAY

Inyut of the word DISPLAY will display 12 lines of the file on a
2260 screen, starting from the line containing the rositicn peinter.

TED —--~ N Context Editor ~-- Users Manual < 17

.

These 1

in2s may be overtyped cn the screen and on pressing "shift and
enter" the

clited lines will be written to the output file.
This command is not available for use on the CDC terminals.

18. TIHZ_CANCEL ZDITING CCHHANL - CARdCEL
Inyut of the word CANCAEL will terminate editing imnediately,no
editing will be saved and no listing of the ocutput file rroduced.

19. LISTING OPTIOU - NOLIST

If no listing of the edited file is required, inpat of the vword
NOLIST as a response to the pwempt 'IS A FILE LISTING REQUIRED' wili
sulrress the listing cf the final cutput file on the 2260 screen.

18 TR == A Ccntext Zditor ~-=- Jsers Manval

EXARPLES OF COMPLETZ EDTT _JCBS.

Twc exanples are jiven of jobs usi

relatively simple edit ccmmands, t
scihisticated fecatures of the editor.

ng the editor. The first
¢ gecond some cof the

IZPUT FILZ

SUBRCUTINE RANDRC(A,H,MR,C,HN,C,K)
INTEGLR A,C,¥,N,Q
DIMEWSYICN HE (C)
Lo 1¢ 1=1,Q
RN=Ax X+C
HE=MOD (NN, 1)

10 MR (TL)=NCD (H,R)

RETURN
LD
EDIT_COZHANES COMMENTS
Ch. copies to before 1st openingy tracket
1.0 inserts M ice RANLO->RANLOM
CAG, copies that line until after ¢,
Bl ~ reylaces X with L
N inputs next line
cki. Colies that line till aftcer last character
I.,FR(Q) inserts MR ({)
Hi takes next line
L1/ deletes line & inserts line shown below

I/C SUBROUTINE TC GZNERATE RANLOM NUMEEZRS

c3/ cories 3 lines

CB.K copies to before K

Bk 7 reyplaces by L

EXTT writes new file and terminates editing,

OUTPUT_FILE
SUBROUTINE RANDOM (A,N,MR,C,%,C,L)
INTEGER A,C,H,N,C, MR (C)

C SUBROUTINZ TO GINERATH RANDOM NUMBERS
Do 16 T=1,0
NH=A=¥4C
N=1NOD (N, M)

10 MR (I)=XOD(},L)
RETURN
END

This is an example of an actual edit jolb that was carried cut
one of +the editor I/0 routines. For simjlicity the routine has

slightly truncated.

INPUT_FILE
JUWWOJTIWF ERRPRY (CARD, NO)
NTESER#2 %O
LI!“HSTO‘ CARD (20) , STRING (10)
WRITE (6,92) CARD
98 FORMAT(' ', 20Ab)

uses
mcile

cn
been

TED =-=-- A Context Féditor --- Users Manuol

Ge re {4

GO TO
=,

r
G0 Ta 29
4 WRITH(G, 10U)
GO 70 22
5 ERITEZ (6, 105)
99 R»n PURy

161 ANAT (" TOO MANY CHARACTERS!)
102 I(““'P{' CON¥ h“b NCT VALILY)
103 FOR¥AT (7T COMHMN SHOULD TIART ¥ITH A LETTERY)
104 FORMAT (O Inv(WRJCT SPELLINGY)
165 FORMAT (' WRONRG TERMINAL CHARACTIER?Y)
LHD
EDIT_COMEANES COMHENTS
Eha 20) copies to after 20)
I.,5TR1(10,7) inserts given string
Ch. Al) copies Lo after Al
DB/99 RET ' deletes to before 99 RET- 10 lines of file.
Note the 0PP is still set after Al
s B8 06 0y set tab stop to col 7
T
£DO 10 ¥=1,190 inserts three lines into file

10 STRING (M) = STR1(M,NO)
SWRITE (6,STRING)

"FIR

CB.101 copies to before 101

Loop lcops till end-ci-file

DA.FORHKAT deletes until after FOREAT

c2. Copies 2 characters and inserts a '.

I.!

CB. V) ; cories rest cf line tc hefore 1)

D2. Deletes V)

START. Returns pcinter to start of line

c37. Copies 37 characters

R - Inserts ")

| takes next line

LOOPERD

START/ returns to beginning of the file

5C3/n1 stores next 3 lines of command
stiream as A1

SCATA STR1/ note tab character

(" Tor v EACHED "

(" FIND MUST BE A LINE COMNMAND ")

CB/99 P?TU N copies file to before 93 RETURN

L1. : Deletes that line

I

L Ad inserts stcred lines

FIH

LOOP 7

CB. {(inserts a ' Lefore an

Tst opening bracket and after

Ch.) A closinyg Ltracket, 7

T.°¢ timos

20 TED =~- A Context Cditor ~-- Usors Manual

LOOPEND

A 4 inserts a s after lzst statement
START/

CA. CATR STR1/ coyies till after DATA STR1/
Loop 7 '

T B5; Inserts centinuation

1.1 character in col 5 and

CAL. Blanks in first 5 calunns

R

LOOPTUD .
CBL/ copies to before last line
I/SRETURN inserts RETURY

B¥TET writes editeda file

SUBROUTYNE ERRPR¥ (CARD,¥O0)

THTEGER:2 NC

DIMEHSION CARD(20),STR1.(16G,7) ,STRING (10)

WRITZ (6,98) CA®D :
98 FORMAT(11,20A4)

DO 10 ¥=1,10 : R
10 STRING (%) =STR1(¥%,N/)

WRITE (L,STRING)

DATA STR1/

11 (" ECF RCACHED vy s
§' (" FIND MUST B: A LINE CONHAND "y
1Y (" TCO EANY CHARACIERS "yt
11 (" COMEAND SHOULD START WITH A LETITER "yt
1t (" COKEAND NCT VALID "y
1% (" INCORRECT SPELLING "y e
1' (" WRCN3 TERMIHNAL CHARACTER "y
RETURY

END

Note that the file was edited in 3 stages with a return to the
bejinniny c¢f the file (STABT/) before each. This is inefficient in
time and if a large file is beiny edited not particularly desirable
but for =small files breaking the editing into stages reduces the
prokability of user errcr.

“LD —-- A Context pditeor --—- Users Manual 21

USTHG Ty _DDITOR UNDIR_BLHET

The editor can be used tc edit disc or tape files under H4NFT.

The e¢dit commands are inyut, cne per card, using the following

//Jjobname JOBR ,account-infc narve/dent.
//5YS00% ACCESS dsnanrel,volid
//75YSG03 ACCESS dsname2,vclid
/7 BAZC CLEDITCR

edilor commands

/%
/%

vhere dsname?l is the input file and dsname2 is the output file. Rhere
volid is either on X

TAPE=%'tare-serial!
DISK=t*disk-name' if not cataloqgued.

If a file is catalojgued then ,vclid need not be specified:
dsname 1 is the injut file
dsnawke 2 is the cutjput file

The input and output files mnust have leen previcusly defined
usinyg an ALLOC statement, if they are direct access files. Yo tape or
disc number is necessary if files are catalogued.

If the file to be edited is larjer than 1000 cards a further card
nust be added to access a large workfile on disc SA46V3. This is:

//5YS000 ACCESS CLDGWRKA,DISEK='SAUGV 3

This will allow the eliting of files of up to 5000 cards. For
larger files a personal workfile should ke defined using SYSCCO. This
should ke deleted on corpleticn of the edit job.

To use the editor under RAX requires the settingy up cf tewjorary
workfiles on the SYSFIL disc.

The JCL statements are as followus

/THPUT

JFILE DISK=(1,namel),YCL=SYSF
/FILE DISX=(4,nane2) ,VOL=SYS
/JOR GO

JINCLUDE ISCIO

JIKCLUDE 1SEDIT

JINCLGED file to ke edite
JEUD RUN

(a¥]

22 TED --- A Context Sditor --- Users Manual

a promft VPLTEASE BEHTIR YOUR EDTT COMMAMDSY followed hy YENYER LATAS
will appear on the 2260 scroen. The edit commands sheculd then be

entered.

The edited file may be saved after conmpletion of editing ly the
systen command /S5AVE name(leck) ,SV. No other sysien commands {eq
/PUORGE) should precede this or the edited file will ke lcst.

The workfiles as defined have a size equivalent to 384 cardse.
They may be redefined to suit the file size (see RAX guide)

The editor is not available on the RAX background strcam.

TED ~=- Kk Contexi Tdiitor -~-- Users Manual
JRDEX _CF Euai CONUAIES

£0; PAG
Bn. Backspace e AT e e sosnsll]
BL. Backspaee 1o afleor SLELIT ssasssssss s ée e s 10
RR. Backspace to belcra StLINY ecasesssansses sesesll
Cn. COpPY N ChAracters ssecessssasssasnsnsscs i & w0k
Cny COPY B LINeS waoeimevnieswiisvesueessess ewieca wid Y
Ch. Copy to after sString sesssaweassesassou ses0:05
Chr/ Cory to after lIne sissspsesnanmvinnssas T e 0
CAL Copy Lo after last character seesssssses wre s 0D
ChAL/ Copy 0 dAftar 1a8t 11i0€ sesenveraesesan SORR -
CB. Copy 0 lLefore STULNG eussvvivsssde s oo S o 1L
cCB/ Copy to befote LiNe ssusssvaseeenssss s soinne O
CBL - Copy tec hefore last character eceescesse snass0b
CBL/ Copy to before last 1iR€ seseesossessss SRR | <.
CANCEL Cancel @ll GAIEING swwees swmwnwaies s # s wo PR)
CHAR Set chardcter Jelinifel ssisvsverosssss swwwel 5
LN. Delete N Character sesvisse iovewsieniisus <wsus06
D/ Delete b Iihes ssesssicsisnsinaesissnse vaeew0b
CL. Delete Lo after charactel eceecenccanceos ss i S07
DA/ Delote to after I1iN8 sevevssfesvssesssses SR 1 14
CAL. Delete tc after Jast character ecececass casas0?
DAL/ Delete to after last 1ine sceeecccsossce vaeww QT
DE./ Delete to hefore character eceeecesessscss esseaslb
DB/ Delete to before line cavecessenesensces vinalb
DBL. Delete to before last character .eoecscas RPN, 1
DBL/ Delete to before last 1linNe cecsessossns seenesl?
CISPLAY Display 12 lines cn 2260 ccciceciscsaas s wes 16
¥ Exchange 2 character strings ececssssses ceanalb
EXIT Stop editing & write new file secscaces sosesl2
¥/ Find & SErinyg seifsss s sbmamneneemsd s s & PRI I |
FIH BHE SHEEEL wamsemmmmn s & 8 somaiacam i & &Smms eir x 2 n DB
FIZLD Set the field sesvecsscossssssnssassnsas woane 12
1 INSELE 11NGE ssswvenss s suEEsEwens § &5 v PR o
1. Insert Charactels csecscssesocsscsscssss s 08
1/ Insert & LINe: shisenies s @ snsadirieing i s cw 5208
IBn Insert blanks seseeasscosasacesonsnasas PR 1 |
1Pn/ Ingert hlank 11668 o« sosvessnes se e P 103
L Load a stored sString sessssvessensise sus aeeEa 13
LINE Set line dalimiter s sawueawvs s s sa e ssina 1D
Loop Bnter Joo) ssasisiisssdmsabosssnssaniasi sesaslb
LOOPEH ENd Of 1CCJ eveoceeacacoaseannenacecnssan I L
N Take @ New 1INe scesvsnsvovssosssosssas coneall
NOL IST Suppress listing on 2260 seesessssssias ieasal?
R. Replace StLinyg i saummmansumaens & 45 & sus vams « D9
R/ Replace 1iIne sasiessssssidnasnss s saeaes ceseslY
'B. Replace with blanks sevscescesscasccscss AR ¢
REn/ Replace with blank lines wesesesssseves s o usn 10
SBEQ Sequante 118 ssassvvawersanaese §wee s iaeare 13
START. Set jointer tc start of 1line .ceceeccses s g 11
START/ Set pointer to start of file ceecsccses asess

5.

Stere n

characters

from infut «cesaccas
Store n lines from input ec.scees
5Cn. Store n characters from conmmand
sCn/ " Store n lines from command

i Set £ab STOPS covessssressmeenssvanssennesesnsen

sn/
StreaM ecessteonscos

SErCcal ecesseezaneecsans

1
1
.tl.(."..‘l.o.“llT
1
1
1

APPENDIX TIT
FLOWCHARTS FOR COMMAND ANALYSER

FLOWCHART |

COMMAND
CALLED FOR

3

Y

SET UuP COMMAND

STREAM UNIT
NUMBER

READ

Y

SET uf AREA
WHERE COMMAND
MUST BE READ INTO

CALL INPUT
ROUT.INE

EOF
CONDITION

¢

UNACCOUNTABLE

ERROR
ABANDON RUMN

YES

FLOWCHART 4

SET ACCUMULATOR

READX

Y

FOR HASH TO
ZERO

i

READ CHARACTER

HASH BY XKORING

BINARY FORM WITH

ACCUMULATOR AND
RESTORE RESULT

FIND VALUE OF
TABLE (HASH)

1S9 ENTRY
NEGATIVE
?

g FROM COMMAND
STREAM

HAYE
MORE THAN 10
BEEN READ

o

IS CHARACTER
A LETTER

?

15 1T
FIRST CHAR.
ON CARD

FIND NO. OF

LETTERS IN
COMMAND WORD

MULTIPLY T

ey 24

A

XOR WITH RESULT
IN ACCUMULATOR
$ RESTORE RESULT

YES

" NO

15 NMUMBER

___.’n

ERROR
ALL COMMAND
HAVE < 10 CHARS

ERROR

BE A LETTER

FIRST CHAR. MUST

YES

NO

A

—-VE

SUBRTRACT 113
FROM RESULT

SUBTRACT 220
FROM RESULT

ERROR
HASH NO. NOT VALID)
COMMAND IGNORED

FLOWCHART 3

INDEX COMTAB
FROM VALUE IM
TABLE

'

PICK uP NO. OF

LETTERS IN
COMMAND FROM
COMTAB

ERROR
MATCH No- OF No ERROR
e e
LETTERS READ COMMAND
INVALAD
_ | TAkE A LETTER
| FroM comMTAB
ERROR
ERROR
INCORRECT
SPELLING

HAVE ALL

LETTERS BEEN
CHECKED

PICK UP COMMAND
NUMBER FROM
THE COMTAB

FLOWCHART 4

REP
COMMAND
?

INITIALISE
VARIABLES

YES

EXCHANGE
COMMAND

°

NO

DOES
SPACE DELIMIT
COMMAND
?

NO

ERRCR YES
_COMMAND MUST BE
FOLLOWED B8Y A
SPACE

15 A SPACE
EXPECTED

7

NO

1S THERE
A LINE
DELIMITOR
?

SET FLAG ES
INDICATING <
LINE COMMAND '

NO

A CHARACTER
DELIMETER

NO

A DELIMETER
CHANGE COMMAND

IS A

NUMBER

EXPECTED
e

DELIMIT
COMMAND

3

NO NO

YES

YES 15 A

SPACE EXPECTED
?

f

SET FLAG
INDICATING
CHAR. COMMAND

YES

YES

ERROR
WRONG COMMAND
DELIMETER

1s 1T A
LOAD COMMAND
?

NO

YES@

i
"ETCH NUMBER
‘ROM COMMAND

CONVERT IT
TO BINARY

FLOWCHART

15 LOOP

FLAG SET
ERROR ?
STRING NOT :
REQUIRED

5

1S COMMAND
ALLOWED IN
LOOP

DOES A
STRING EXIST

1S A STRING
EXPECTED

INSERT
COMMAND

?

ERROR
COMMAND NOT

ALLOWED IN
LOOP

-0

FOLLOWED
BY A CHAR
DELIMETER

MARK AS NO
INSERT LINE f———
COMMAND
STORE STRING = 4 ERROR
IS A STRING e
LENGTH EXPECTED COMMAND REQUIRES
2 STRING
\
SET UP STRING /
CHECKING FOR TABS) SAVE DELIMETER e
ON FIELD POSNS- S
I. REQUIRES
A STRING
SET POSN. ON
STRING TO ZERO
SET POSN. ON
STRING TO LENGTH
OF lsTt STRING
Y
PICK UuP SAVE CHARACTER
CHARACTER FROM [N STRING SAYE
COMMAND AREA
SAVE ERROR

FIRST
STRING LENGTH

1S 17T A
DELIMETER

LENGTH
K

SET FLAG
INDICATING 2wnp
TIME ROUND

NO

= STRING LENGTH> -

SET urP
STRING LENGTHS

NO DELIMETER

BETWEEN STRING | ()

FLOWCHART o

A LOAD LINE
INSTRUCTION

1S LOOPING
IN ACTION
?

AN EXCHANGE
COMMAND

P

DOES A
STRING EXIST
i

15 1T A

LOAD STRING
INSTRUCTION

NO

PICK UP NAME
FROM STRING

MORE THAN
4 CHARS.

ERROR
IN LOAD STRING
COMMAND. TREAT AS
ORDINARY STRING

L

BRANCH QUT OF
THE ANALYSER AND

“|sTORE COMMAND

BRANCH CUT OF THE
ANALYSER TO

APPROPRIATE POSITION
TO EXECUTE COMMAND

IN LOOP AREA

15 NAME |

CHAR. STRING
STORE

PICK uef
STORED STRING

[

CHECK FOR TAB
SETTING AND
EXPAND STRING

APPENDIX TIT Pl.
FLOWCHARTS FOR CODING OF EDITOR
DISPLAY FACILITY

FORT RAMN
SUBROUTINE
DISPLAY
BRANCH FROM
COMMAND ANALYSER [

ON DISPLAY COMMAND

WRITE LB
TO SCREEN

4

READ A LINE AND
WRITE (T TO
THE SCREEN

YES HAS I1LB

BEEN EDITEPD
¢

A

Il LINES NO
o cOPY REsST OF READ
IiLB TO OLB
Y
_ | SAVE NUMBER
'
WRITE OLB OF LINES READ
READ IN ILB
’
SET UP DISPLAY
PARAMETERS oo}
LB, UNLTS , EOF
v .
READ A LINE
e~ —]
CALL FROM SCREEN
DISPLAY
y
WRITE |IT TO
ouTPuT STREAM
CHEROUT
P28

RETURN

LOADING

BRANCH FROM
COMMAND ANALYSER
OM LOAD COMMAND

BRANCH FROM

CHEKOUT IF LOAP
FLAG 1S SET

™

FETCH LOAD
NAME

1S NAME
IN LINE NAMES
DICTIONARY

¢

PICK UP NUMBER
OF LINES N NAMED
STORE

INSERT MOPE

YES

LINES

NO

OUTPUT ERROR

YES

TREAT COMMAND
AS INPUT STRING

SET FLAG
LD LI

MORE LINES
IN NAMED STORE

UNSET LOAPD
FLAG LDI

AREA

BLANK INPUT AREA

% MOVE CHARS FROM

CHARACTER STORE
INTO IT

cHEKOUT
P28

SET LOAD
FLAG LD

DECREASE
LINE COUNT

SPINS
P2I

UNSET FLAG
LDL]

YES MORE LINES

IN LOAD AREA

WRITE ourt
STRING To OUTPUT
STREAM

A

CHECK FOR TABS
AND EXPAND
STRING

STORING LINES OR

BRANCH FROM

COMMAND ANALYSER

CHARACTER

CHARACTERS

PRINT ERROR

STORE FULL

wiLL IT

b

ES

. PRINT FATAL
ERROR

OVERFLOW

DUPLICATE
NAME

?

SAVE CHARACTER
STORE POINTER

INSERT NAME,
NUMBER % POINTER

IN DICTIONARY

STORING
FROM INPUT
STREAM
¢

PRINT WARNING
ERROR

4

READ CHARACTERS
FROM INPUT STREAM
INTO STORE

AREA

SET DUPLICATE

NAME FLAG AND CHAR]L]

oTORE POINTER TO
MEW POSITION

READ CHARACTERS

- FROM COMMAND

STREAM INTO
STORE AREA

DUPLICATE
NAME FLAG
SET

YES

|

RESTORE
CHARACTER
STORE POINTER

CHEKOUT
P28

STORING LINES OR CHARACTERS (contd)

PRINT ERROR

LINE
POSITION TABLE
FULL
?

NAME I[N YES

Y

DICTIONARY

INSERT NAME,
NUMBER > POINTER
IN DICTIONARY

OUTPUT CURRENT
LINE > INPUT
NEW ONE

CURREN
LINE BEEN
EDITED

Y

SET UP END
FIELD POINTER

EF

KOUuT
xs)

STORING

FROM INPUT
FILE

SET UP NO. OF CHARS,

YES AND POINTER N
A “TILINE POSITION TABLE]
9 MOVE (HARS. TOSTORE

SWAP INPUT AND
OuTPHT BUFFERS

i

READ INTO INPUT
BUFFER

Y

SET UP COMMAND
IN CORRECT AREA.
SWAP BUFFERS BACK

YES

INPUT
FROM COMMAND
STREAM

P4

CHEKOU
P28

ouTPuT INPUT
LINE BUFFER AND
READ IN NEW LINE

ENCOUNTERED
2

WRITE ERROR

INPUT
FROM COMMAND

STREAM

SET UP EP

PRINT ERROR

CHEKOUT
P26

YES

LOOPING FACILITY

BRANCH FROM COMMAND
ANALYSER ON LOOP
STATEMENT
BRANCH IF
LOOP FLAG SET

DECREASE LOOP LOOPEND

COUNT STATEMENT
LOOP VES SET LOOP FLAG
’ | INCREASE LOOP (OUNT
STATEMENT FIND NUMBER ON
? LOOP COMMAMD
f
ESTIMATE SIZE
OF COMMAND
1S LOOP
NO
PR!NT ERROR . COMMAND AREA

BIG ENOUGH

STORE COMMAND
NUMBER IN
LOOP AREA

LINE
COMMAND

?

CHARACTER
COMMAND

LOAD COMMAND

SET FLAG IN
LOOP AREA

SET FLAG IN
LOOP AREA

INSERT END OF

STATEMENT
MARKER IN LOOP
AREA

DOES A
STRING EXIST

LPSTRING
Pl

SET INSERT
FLAG

Y

INSERT END OF
STATEMENT FLAG
IN LOOP AREA

ENDST

[y

LoorP

IN

COUNT ZERO

NES

LPEXEC

LOOPING FACILITY (contd.)

1s IT

INSTRUCTION
?

STRING

A STORE hizd
IN LOOP AREA

INSERT NUMBER

NO

PRESENT
e

YES

Y

NO

A

UNSET INSERT
FLAG

“Eﬁ

SET UP STRING
IN LOOP AREA

STORE
COMMAND

?

Y

SET END OF
COMMAND MARKER

IS INSERT
FLAG SET

SPCASE |

READ FROM
COMMAND STREAM
INTO STRING

YES

NO

FIND LENGTH

OF STRING

P&

LOOPING FACILITY (contd.)2

UNSET LOOP STORE
FLAG. SET LOOFP
EXEC FLAG

[F LOAD

MODE

P

BLANK STRING
INITIALISE
VARIABLES

Y

FETCH NO. OF

TIMES ROUND LOOP.
PLACE ON STACK

PICK UP NEXT

g COMMAND NUMBER [g

FROM LOOP AREA

5

INSERT ADDRESS YES

OF NEXT INSTR.
ON STACK

YES

LLOOP COMMAND

LOOPEND
COMMAND
?

FETCH COMMAND
TYPE AND SET
FLAGS

END OF
COMMAND
?

NO

FETCH AND STORE
FURTHER INFO-.

=

END OF
COMMAND

FETCH ADDRESS OF
NEXT INSTR. TO

YES

PICK UP TOP
NUMBER ON
NUMBER STACK

UNSET LOOP
EXECUTING
FLAG

Y

SET LOOP STORE
AREA EMPTY

INSERT
COMMAND

o IESUT
LOOP, AR Res STACK

A

DECREASE BY |
AND REPLACE ON
STACK

I NO

PISREGARD ENTRY
IN LOOP NUMBER STALK
2 LODP ADDRESS STACK.
PICK UP NEXT
NUMBER

YES

YES| et INSeRT FLAG

(SEE INSERT)

NO

P

FIELD DEFINING COMMAND P8

BRANCH FROM COMMAND
ANALYSER ON
FIELD COMMAND

;

FETCH FIRST
INTEGER ON
COMMAND

INTEGER
PRESENT

SET No. =
FIRST INTEGER

Y

FETCH 2np. NUMBER
ON COMMAND

YES 1 erRINT ERROR

A

YES

NO

SET Ne. = OLD

START FIELD VALUE
GGFP)

2np. INT EGER

CHEKOUT

PRESENT
P28 °
NO
SET UP POINTER SET NUM TO
3= 3 MARK NEW FIELD OLD END FIELD
ON CURRENT LINE VALUE (EFP)
+ NO &=
COPY ILB TO ves
oLB $ SWAP
BUFFERS
Aves

DOES
FIELD NEED
RESET ON CURRENT
LINE
?

SET UP NEW
VALUES OF SFP
AND EFP

NO

SWITCH TAB
FLAG OFF

TAB COMMAND

BRANCH FROM (OMMAND
ANALYSER ON
TAB COMMANI

¥

SET TAB FLAG

Y

PICK UP TAB
CHARACTER

YES

vy NO

FETCH NUMBER

YES

FROM COMMAND

15 1T
INTEGER EXIST HIGHER THAN PRINT ERROR
LAST ONE
i
FETCH CORRESPONDING
VALUE FROM LAST o CHEROUT
TAB SETTING
‘ P28

SET TAB VALUE |

IN TABT

ANY MORE ANY VES

TAB STOPS EMPTY TARS - SET THEM TO

Max VALUE

ANY MORE SET UP FINAL

ROOM FOR STOPS TR TABLE |
CHEKoUT
PRINT ERROR P28

CHEKOUT
P28

SET XLD =3

THE EXCHANGE COMMAND

SETX LD = |

BRANCH FROM COMMAND

ANALYSER ON EXCHANGE
COMMAND

SET EXCHANGE FLAG
SET XLD TO ZERO

IS lsT. STRING

A LOAD
5

YES

SET XLD =2

4

IS 2wp. STRING

A LOAD
?

SAVE OLD
STLEN VALUE

| MOVE FIRST

STRING TO AREA
CARD

SET uP VALUES

TO CHECK FOR
2up. STRING

A

SET FLAG
INDICATING 2nb.
STRING A LOAD

t

2np STRING
ONLY A LOAD

15
[sT. LOAD
NAME £ 4 CHARS.
LONG
>

FETCH NAME
FROM COMMAND

NAME N
CHAR. NAMES

DICTIONARY

SET UP NEW
VALUE AS lsT
STRING LENGTH

MOVE CHARS. FROM

STORE TO STRING
AREA ‘CARD’

IS 2w
STRING ONLY

A LOAD
¢

YES
ONLY A LOAD -

P10
PRINT ERROR CHEKOUT
PZ8
A
NO
MOVE CHAR. OF
2up. STRING TO SET UP
b NEW STRING

A

THE EXCHANGE COMMAND (contd.) Pl

ROOM FOR
MORE EXCHANGES

°

SET UP VALUES
$ LENGTHS OF
STRINGS

NO

PRINT ERROR

CHEKOUT

MOVE CHARS. FROM
STRING TO
EXCHANGE AREA

Y

MOVE CHARS. TO
TEST AREA
‘STRA’

Y

SET FLAG XON
TO PERFORM EXCHANGE
ON CURRENT LINE

[

SET RETURN
ADDRESS 70 COMMAND
ANALYSER

P28

SWITCH OFF EXCHANGE

BRANCH FROM COMMAND
ANALYSER oN
SWITCH OFF EXCHANGE

l

SET INDICATOR
FLAG —I
A XLD = =]

CHEKOUT
P28

BA

CKSPACE FACILI

BRANCH FROM COMMAND
ANALYSER ON BACKSPACE
COMMAND

LINE

BACKSPACE
3

8n. COMMAND

SAVE POINTER
VALUES

RESTORE POINTER| NO
| VALUES — PRINT [

ERROR

STRING
FOUND ON
LINE

SAVE POSITION
OF STRING

Y

MOVE REST OF
INPUT BUFFER TO

fog.

PRINT ERROR

OuUTPUT BUFFER % |
SWAP BUFFERS

Y

BLANK OUTPUT
BUFFER
SET UP FIELD
POINTERS

Bn. COMMAND

7

ESTABLISH NUMBER
OF BACK MOVES

SET UP No. OF CHARS.

TO BE MOVED

(CHECK BEFORE OR
AETER STRING)

Y
MOVE REQUIRED No.
OF CHARS. TO CUTPUT
BUFFER 3 SAVE
POIN TERS

GO BACK THAT

NO

PIZ

CHEKOUT
P28

MOVE TO START
OF BUFFERS

PRINT ERROR

CHEKOUT) ¢
P28

COPY/ DELETE FACILITY P13
BRANCH FROM COMMAND
ANALYSER ON COPY ™
’\ OR N INSTRUCTION
COPYN ;J
Bt YES
COMMAND
LINE HAS CURRENT
COMMAND LINE BEEN EDITED
j ?
ESTABLISH No.OF MOVE REST OF
CHARS. TO BE INPUT BUFFER TO %
MOVED OUTPUT BUFFER
Y
CHEKOUT | pRINT ERROR ;;":DSEE WRITE OUTPUT
P28 BUFFER
MOVE INPUT YES DELETE)
BUFFER POINTER F<_owITCHED ON PRINT ERROR
ONLY
MOVE CHARS. CHEKOUT
L FROM INPUT TO P
OUTPUT BUFFER o
LAST LIN
QuUTPUuT READ 1IN
' NEXT LINE
READ IN
HERY LIRS PRINT ERROR

PRINT ERROR

SET UP FLELD
POINTERS

COPY [BELETE FACILITY (contd.) P4

DELETE

CHEKOUT | PRINT ERROR YES
P28 COMMAND
Uk
YES
NO WRITE ouT
BUFFER
READ IN
NEXT LINE
LAST BU
YES SET END OF ;
o | s CHEKQUT
NE OUTPUT BiLE LA
? P28
READ NEXT
LINE :
eHEKOUT PRINT ERROR |t
P28
NO

SET UP FIELD
POINTERS ON
CURRENT LINE

CHEKOUT
P28

CHEKOUW
P23

NO

COPY/DELETE FACILITY (contd)

BRANCH FROM COMMAND
ANALYSER ON COPY[DELETE
AFTER |BEFORE LAST

COMMAND

CALCULATE No. OF
CHARS. LEFT ON
INPUT BUFFER

BEFORE
COMMAND
o)

SUBTRACT |
FROM No. OF CHARS

e

PRINT MESSAGE

CURRENT

NO

LINE EDITED

COPY REST OF
INPUT BUFFER TO
ouTPUT BLFFER

1!‘

WRITE OUuT
OUTPUT BUFFER

BEFORE
COMMAND
°

READ INTO
INPUT BUFFER

NO

SWAP BUFFERS

Y

READ INTO
ouTePuT BUFFER

WRITE ouTPuT
BUFFER

A

YES

BEFORE
COMMAND
5

WRITE OUTPUT
BUFFER

Y

READ IN
NEXT LINE

YES

SET EOF
FLAG MARKER

SET PRINTERS CN
CURRENT LINE
IN INPUT BUFFER

Y

SET FLAG
INDICATING LAST
LINE OF FILE 15

READ

CHEKoUT
P28

NO

SET FIELD POINTER
TO START OF
CURRENT LINE

YES

YES

COPY/DELETE FACILITY (contd.)

FINAL
COMMAND
4

BEFORE
COMMAND

¢

DELETE

COMMAND
°

MOVE STRING FROM
INPUT BUFFER TO
OUTPUT BUFFER

» | CHEKOUT

P28

YES

STTEST

BRANCH FROM COMMAND
ANALYSER ON (OPY/DELETE
BEFORE/AFTER STRING COMMAND

FIND
COMMAND
?

LINE
COMMAND
2

Pl

POSSIBLE

TO COMPARE ON
CURRENT LINE

MOVE CHARS. FROM
INPUT BUFFER TO
OUTPUT BUFFER

YES

STRING
FOUND ON CURREN1

YES

MOVE INPUT BUFFER]

| POINTER AFTER

STRING

LINE
7

DELETE
COMMAND

WRITE ouTPuT
BUFFER

Y

READ IN

NEXT LINE

YES
PRINT ERROR

NO

SET UP FILELD
POINTERS ON
CURRENT LINE

STTEST
Pllp

\\

CHEKOUT

PZ‘Ey

-

Lo
——P
|I_/ 1
' SET DELETE
FLAG

COPY INPUT BUFFER

To OUTPUT BUFFER |

WRITE OUTPUT
BUFFER

¥

COPY/DELETE FACILITY

COPLINS

STRING
FOUND AT START

R

OF LINE

WRITE INPUT
BUFFER TO
ouTPUT STREAM

Y

READ NEW

Y Y

INPUT BUFFER

SET UP FIELD
POINTERS IN CURRENT
LINE

BRANCH FROM COMMAND
AMNALYSER ON A
DELETE COMMAND

REPLACE
[NSTRUCTION

?
|

SET COMMAND TO
CORRESPONDING
COPY MNUMBER

TBRANCH
IN

CCMMAND

ANALYSER

BEFORE
COMMAND

contcL_,)

WRITE INPUT
BUFFER TO
ouUTPUT STREAM

Y

READ IN

PRINT ERROR

NEXT LINE

i

EOF
.

YES

CHEKOUT)

NO

-

= CHEKOUT

PE2s

SET FIELD
MARKERS ON
CURRENT LINE

P28

COPY/DELETE FACILITY

COPY INPUT RUFFER

1o ouTPUT BUFFER 5|

WRITE QUTPUT
BUFFER

YES
LINE EDITED

STRING
FOUND AT START
OF LINE

WRITE INPUT
BUFFER TO
OUTPUT STREAM

Y

| READ NEW
A INPUT BUFFER

Pt
SET upP FIELD NO
POINTERS IN CURRENT—=
LINE
YES

BRANCH FROM COMMAND

ANALYSER ON A
DELETE COMMAND RRINT ERROR

e ‘
X, _
SET DELETE CHEKOUT
FLAG P28

REPLACE
INSTRUCTION

¢

SET COMMAND TO
CORRESPONDING
COPY NUMBER

BEFORE
COMMAND

WRITE INPUT
BUFFER TO
ouTPuUT STREAM

Y

Y

READ IN
NEXT LINE

CHEKOUT
P28

SET FIELD
MARKERS ON
CURRENT LINE

EXIT FACILITY

BRANCH FROM COMMAND
ANALYSER ON EXIT
COMMAND

LAST LINE
BEEN OUTPUT

YES

CURRENT
LINE EDITED

?

YES

WRITE OUT
CURRENT LINE ’

MOVE INPUT BUFFER
TO OUTPUT BUFFER
s WRITE QUT OoUuTPUT
- BUFFER

ANY
MORE LINES
?

NO

READ IN MORE LINES
A LINE TO READ IN
?

Y NO
ouTPuT
A LINE

NO
_ YES
| RESET FILES
3

CLOSE 5 REWIND

4
EXIT FROM
EDITOR

PIg

INSERT

INSERT FACILITY

BRANCH FROM COMMAND

ANALYSER OM INSERT
COMMAND

LINE
COMMAND

BLANKS
3

REPLACE
FLAG SET

INSERT/REPLACENYED

SET UP NUMBER OF
BLANKS IN STLEN

ISSUE WARNING
DIAGNOSTIC

MOVE CHARS/BLANKS
INTO OUTPUT
BUFFER

Y

UPDATE ouTPuT
BUFFER POINTER

REPLACE
FLAG SET
7

PIS

REPLACE ACTION

BRANCH FROM COMMAND
ANALYSER ON REPLACE
COMMAND

SET REPLACE
FLAG

INSERT FACILITY (contd.) - P20

ouTPuT EDITED
LINE

CURRENT
LINE EDITED

3

LAST LINE
BEEN ouTPuT

7

LAST LINE
NOW OuTPUT
?

NO| ReAD IN
ANOTHER LINE

YES INSERT : SET FLAG SET FIELD
RLANKS — = INDICATING NO POINTERS ON
? MORE LINES OUT NEW LINE
Yes msss PTL?C!(AE\!LE ‘ HO
FIN)
=
YES
2= WRITE OUT A :
LINE IN AREA SET EOF <
™ strING FLAG

INSERT
BLANKS

?

NO

ANY MORE
TO BE
INSERTEP
¢

YES

REPLACE
FLAG SET

?

INSERT FACILITY (contd.)

PICK UP INSERT
DATA FROM LOOP
AREA

COMMAND

IN A LOOP
°

NO

READ IN AN
2= INSERT CARD FROM

COMMAND STREAM

~ LOAD
INSTRUCTION

EXPAND (NPUT
LINE IF TAB

SET

Y

ouTPUT EXPANDEP

STRING

Pel

START FACILITY

BRANCH FROM COMMAND
ANALYSER ON START
COMMAND

LINE LAST LINE YES
COMMAND BEEN ouTPUT
? ?
CURRENT NO

MOVE REST OF
INPUT BUFFER TO
OUTPUT BUFFER

LINE EDITED
°

Y

SWAP BUFFERS
SET WP FIELD

MOVE REST OF

INPUT BUFFER TO
ouTPUT BUFFER

WRITE 0UTPUT

YES
~—— g

POINTERS BUFFER
CHEKOUT
P28
NO
| READ A
NEW LINE
YES
NO
OuTPUT LINE

Y

SET END OF
FILE MARKERS

Y

SWAP READ
& WRITE UNIT
NUMBERS

CHEKOU
P28

P22

CHEKOUT
p28

SEQUENCE FACILITY P23

BRANCH FROM COMMAND
ANALYSER ON SEQUENCE
FACILITY

FETCH FIRST
NUMBER

3

FETCH FIRST
INCREMENT

YES SET Ist. HALF
~ OF SEQUENCE
FIELD CONSTANT

*NO

FETCH SECOND | _
NUMBER

(

FETCH SECOND
INCREMENT

SET SECOND
HALF OF SEQUENCE]
FIELD CONSTANT

END OF
FILE FLAG
SET

PRINT ERROR YES

SET FLAG
ONEF = 1

WRITE INPUT BUFFER NES
TO OUTPUT BUFFER ==
SWAP THEM

IS CURRENT
LINE EDITED

SEQUENCE FACILITY (contd.) P24

IS FIELD
BIG ENOUGH

NO PRINT WARNING SAME MAX SIZE
DIAGNQSTIC OF FIELD

FIRST

INCREMENT
ZERO
?

SET UP FIRST
HALF OF SEQUENCE
No.

Y

INCREMENT
NUMBER

SECOND
INCREMENT
ZERO
?

YES

SET UP SECOND
HALF OF SEQUENCE
NUMBER

Y

INCREMENT
NUMBER

Y

ESTABLISH FIELD
SIZE 5 WRITE g
SEQUENCE NUMBER

Y

WRITE our
SEQUENCED LINE S
READ IN NEXT

LINE

NO E
EQF vES PRINT MESSAGE

INEX1

CAELU FING EXCHANGE

WHEN A NEW LINE 1S INPUT
AND EXCHANGE FLAG 1S ON

RETURN

SAVE OLD
STRING LENGTHS

SWITCH OF
COMMAND
3

NO SET FIELD POINTERS

ON CURRENT
LINE

ANY MORE

NO

DO STRING
LENGTHS MATCH

Y

EXCHANGES
?
*‘{ES

FETCH NEXT
EXCHANGE
INFORMATICON

SWITCH OFF
COMMAND
2

RESET INPUT BUFFER]
TO ORIGINAL

POSITION

PICK UP CHARS.
FROM EXCHANGE
AREA

XDELA

SWAP INPUT
ouTPuT BUFFERS

XON

YES

NO

FLAG SET
’

P25

CHEKOUT ==

P28

EXECUTING EXCHANGE (contd.)

PRINT ERROR

SET NEGATIVE
(OFF EXCHANGE)

MORE CHARS.
IN INPUT
BUFFER
3

YES

SWAP BUFFERS

COPY THEM TO
OUTPUT BUFFER

-t

SET INPUT
BUFFER TO
ORIGINAL. POSITION

INRET

BLANK THE
ouTPUT BUFFER

|
|

RESTORE OLD
STRING LENGTHS

INRET 1

P2G

EXECUTING EXCHANGE (contd.) P27

YES SET EXCHANGE
MARKER —ve

NO

DELETE FIRST
STRING IN INPUT
BUFFER

SWITCH OFF
EXCHANGE FLAG

|

INSERT SECOND
STRING IN oUuTPUT
BUFFER

INRET 1
P2l

ANY MORE
CHECKING POSSIBL

ON CURRENT
LH;IE

END OF COMMAND PROCEDURE P25

SET FLAG TO
ZERO S LOOP AREAS
EMPTY

LOOP
EXECUTING

YES

CHEKOUT ,_r‘

SET LOOP INSERT
FLAG TO ZERO

NO

YES

YES

NO

RESET TO
CORRECT DELETE
COMMAND No.

y

SAVE LAST
INSTRUCTION [

NUMBER

COMMAND
ANALYSER
LABEL

EWFILE

START
INSTRUCTION
?

LOOP IN
EXECUTION

APPENDIX TITITI

v ame - afwteaty oa mn s

i &

£

.‘_‘:.

"LISTING OF MACROS

——— e ————— T — i —

._5._0 [+"'*/)
COPY TO _e.
F28&

£

_F4%

- SKIP _.
F50%
X

IF _. == _ SKIP _.

o

_F518&

=

LABEL _. | :

_10. EQU *_F1%

JUMP TO _. o

; B _10_F1%

g 2

START. ,
EXTRN SWAPIT
EXTRN DUMPIT_F1%
EXTRN FILSRT_F1£
EXTRN ERRPRN_F1£
EXTRN INPUT_FLE
EXTRN OUTPUT_F1£

| EXTRN DISPLY_F1£

TED2 CSECT

USING 5,15

- é

J

" % EXTERNAL ROUTINES._F1l£

* CONTROL S=CTION._F1£
» SET UP BASES._F1&

BL_10 DS

USING
USIHNG
USIHNG
STHM
8T

LM

L

LA

LA
NEWFILE ECU
EOF = =H'C'Z
UNIT = RUNITE
READ IN TO ILEBZX
SET-POINTERSE

£

BEGIN

STOP.
ENDP L
: ' : LM
MVI
; BR
P ;

MOVE BLANKS TO _.

2]
ORG
ST
ORG
DC
ORG

=

IF _10 -~= STRING(3)
REG 10 = 0§

L
D
AR
STC
LA
SH

#*+4096,12_F1l&
*+8192,13_F1l&
¥+12288,9_Fl%
144,12,12(13)

13 +SAV13_F1l&E
12,13,BASER_F1&
9,BASER+8_F1l&
8,CLB

T.ILE

* -

13,SAV13_Fl&%
14,12,12(13)

12 (135 XYFF' F1&
14 &

H
0,BL_F1&£
BL_10_Fl1&

" 0,_10_Fl%

BL_10_F1l&£
X'D24F'_F1lZ
BL_10+6_Fl&

SKIP 10&£

11,_29_F1¢£
10,=F'10"'_Fl&
104=H'240'_F1l£
10,STRING(4)_F1E
10,0_F1%
4,=H'1'_Fl&

&

.;;:

% STORE REGISTERS._F1l&

* SAVE
* SAVE
= READ

ACCRESS OF OLB._F1l4%
ACCRESS OF ILB._F1l%
IN FIRST LINE_F1E

END_F1&

3*

%* RETURN._F1E

*

SPACE FILL _10_F1lg

™

PP TS T R

_Fog
IF _10 -
_F9s
IF _20 ~
_F9%

IF _20 =
IF _20 =
IF _20 =
IF _20 =
IF _10 =
IF _10 =
IF _10 =
IF _20 =
_F9s

£

_ = _ +

IF _10 =
IF _10 =
IF _20 =

IF _10 =
_Fof
IF 20 =

CH 4.FILLA_F1E

BNL *-24_F18
= UNIT SKIP 3¢

LH 1,_20_F1¢&

ST 1,_lO0_F1%
= UNIT SKIP 3&

L 1420 F18

STH 1,_10_Fl%

STRING SKIP 10£
ST2 SKIP 9&
STl SKIP 8&
FULL SKIP 7%
FULL SKIP 6&
ST2 SKIP 5%
STl SKIP 4&
SAME SKIP 1&

LH 1,_20_Fl&
STH 14_10_Fl¢&
L 1,_20_F1&

1,_10_Fl&

ST

“sT2 SKIP T£
ST1 SKIP 6£
GREG SKIP 1%

LH 1;_20_F1£
AH 1,_30_Fl¢£
REG SKIP 18 -

STH 1y_lO_F1%
L 1,_20_F1%
AH 1, _30_F1%
ST 1,_10_F1%

"GREG SKIP 1%

LH ..._.I?P%Q-FlS

-

o

"IF _ JUMP TC _.

s
: SH 19 _30_Fl1&
IF _10 = REG SKIP 1%

STH 1,_10_F1l&%.
£
L= REG - x -
IF _10 = FULL SKIP 2& o
STH _20,_10_F1l&
F9& _
ST _20,.10_F18
£
. REG _ = _e :
IF _20 = FULL SKIP 5%
IF _20 = 0 SKIP 2%
; LH - .Y10,_20_F1l&
F9& '
LA _10,0_F1%
_F9s :
L <103 _20_F1l&

ADDRESS REG _ = _.

LA ~10,_20_Fl%
£. : '

AH _10,_20_F1¢
£ : S
GREG _ "
IF _20 = =A(STRING) SKIP 2%

SH _10,_20_Fi&
_Fog . j

P _10,_20_F1£

£ .

IF _10 = SPACE SKIP 4&

e iy s it o v

ol o T

SWAP _ AND

L]

LH 1,_10_F1&%&
CH b e s T
BE _20_Fl &
~F9%
. LA 1,CARD_F1&%
AR 1,2_Fi1&
LI Q1) 4Cv v Fl%
BE _20_Fl&
&
IF NOT _ JUMP TO _.
IF _10Q == SPACE SKIP 3%
i Gk CLI 0(4),C* '_Fl&
BNE _20_Fl&
_Fso&
LH 1,_10_FLlE&-
CH 14=H'O'_Fl1Z%
Bt _20_F1%
£
IF _ _ _ JUMP TO _.
IF _10 = REG6 SKIP 112
IF _10 = REGS SKIP 8%
IF _1C = REG SKIP 5%
IF _10 = UNIT SKIP 10&
IF _30 = FULL SKIP 9%
IF _30 = FIN SKIP 8%
IF _30 = STRING SKIP 7£
LH 1, _10_F1&%
= CH 1, 30_Fl¢
SKIP 1& :
CH 5,_30_F1¢
SKIP 1%
CH 6,_30_Fl%&
SKIP 2% ’
' . [L 1,_10_Fl%
C 1,_30_F1&%
_Fl1& .
Bz222 LOG444L44444 8
£

als
o ad

IF _10 BRANCH TO

20._F1

IF _10 =
IF _10 =
_F9s

£

IF _20 =
IF _20 =

Vo S TR 18

' IF _20 =

" SKIP 3£

| SKIP 18

.+ - IF 30 =
: IF _30 =

. sKIP 1€

IF _30
IF _30

in n

SKIP 1§
SKIP 1£
SKIP 1%

il CIF _20 =

)

I1LB SKIP 6%
OLB SKIP 5%

LH 1,_10 .
LH P 20 FLE
STH 2+ 10 _F1LE
STH 1,_20_F1&%
LR 1,7

LR T98_F1.E

LR T Bal F1E

MOVE _ CHARS FROM _ TO _s_.s

ILB SKIP 8%

LR 10,7_F1£
GLB SKIP 2%
LA 7,_20_F1%
LR 7,8_F1£
OLB SKIP 4% :
LH 1,=H'O'_F1£
LH 1,1PP_F1£
LH 1,0PP_F1%
OLB SKIP 11§
LR 11,8_F1%
ILB SKIP 2%
LA 8, _30_F1¢&
LR 8,10_F1£

CHTAB SKIP 3£
ILB SKIP 64%

LH 2,=H'0'_F1§
LH 2,CTP_F1£%£

LH 2,0PP_F1l£

LH 24IPP_F1£%

LH 3,_10_Fl%
BAL 14 4VCVES_FLlZ
I1LB SKIP 1&

LR T)10_F1E

s

-

SWAP _1C AND _2G_F1l&

SWAP _10 ANC _2C._F1l&

IF _30 = GLB SKIP 1%
LR 8411_F1&
IF _40 = KEEP SKIP 1%
_F9g
IF _20 = ILB SKIP 2§
IF _20 = CLB SKIP 3£
SKIP 38
' STH 15IPP_F1%
SKIP 18
STH 1,0PP_F1&
IF _30 = ILB SKIP 3£
IF _30 = GLB SKIP 4%
IF _30 = CHTAB SKIP 5&
_Fog
: STH. 2,IPP_Fl&
_F9sg
STH 2,CPP_F1£%
_F9g
STH 2,CTP_F1£
£

COMPARE WITH IF FOUND _.

IF _10 = OLB SKIP 3&

_30A LR 1,7_F1%
AH 1,IPP_F1%
SKIP 2%
_30A LR 148_F1¢8
. AH 1,CPP_F1¢&
LA - 2,_20_Fl%
LH 3,STLEN_F1E
SH 34=H'1'_FLE
E X 3,CLC_FL%
BE _30_F1% ' 2
IF _30 -~= BEFLCK SKIP 1§
_F9%

IF _30 ~= XDEL SKIP 1£

IF XLD L =F'0' JUMP TO XCHKE
IF _10 = CLB SKIP 5¢&

IF DELETE JUMP TO *+432%

MOVZ =H'1l' CHARS FRGM ILB TG CLB,KEEPS
B #*+16_F18

IPP = IPP + =l{'1'§

SKIP 1§

OPP = OPP + =H'l'S§

-

: AH 1sSTLEN_F1£
IF _10 = CLB SKIP 4%
IF REG NH EP JUMP TO _30AfL

NO = =H'80' - 1PPL
MOVE NO CHARS FRCM ILB TC CLB,NCKEEPZ
SKIP 1%

IF REG NH EP JUNMP TO *-46%

&

FIND LAST CHAR.

LA 1;CARD_F1&
S AH 11=H'80‘_F1.£
SH l,=H'L'_Fl&
CLl 0(L)C* *_F1Z
BE _ %-8_F1%
S 1,=A(CARD)_F1l&
AH 1,=H'1'_F1%
STH 1,STLEN_F1Z
£
FIND CHAR.
SR 141 _F1&
AH 2,=H'1"'_Fl&
IC 1,CARD(2)_F1l&
CH 1=H'64!
BE ERR3_F1&%
CH 1,=H'111'_F1£
BE TABQU_F1l &
STC 1,TABCHAR+L_F1&
AH 2,=H'1'_FLS
IC 1+CARD(2)_F1l&
TABCOM CH 1,=H"'107""
BNE ERR3_F1¢
- B TABCONT_F1£ '
TABQU AH 2,=H'1'_F1%
IC 1,CARG(2)_Fl&
CH . 1ly=H'111'_F1lZ
BE - TABCFF_F1S
B TABCGVM_F1§
TABCONT EQU *_F1&
g ;

IF SPACE ERROR._F1&

-
b

COMMA EXPECTED._F1%

& . —— " o SR

FIND HUM.

_ BAL 14 NUVF_F1& - .
TABCHECK.
- BAL 14, TABST_F1£
£

SET POINTERS. ' ' I '
' BAL 14,4 SETP % GO ANC SET POINTERS._Fl& -
& . _ ' ,

Sy i
=

READ IN 10 _.

IF _10 = ILB SKIP 3%
IF _10 = 0OLB SKIP 48
' LA 1,_10_F1£
SKIP 3%
LR 1,7_F1& .
SKIP 1% B
LR 148_F1lE g :
BAL 10,IN % READ A RECORD FROM _1C._F
£ : L y

WRITE OUT _. %
CARD SKIP 6&

IF _10 =
IF _10 = STRING SKIP 5%
IF _19 = OLB SKIP 2%
LR 1,7_F1%
SKIP 1§
| LR 1,8_F1¢§
SKIP 1% :
LA 1s_10_F1% .
| BAL 10,CUTL1_F1%°
g . i
DISPLAY. : :
LA - 240D_F1E§
LR 13T FLE
ST 1,PARAN(2)_F1§

A 2,=F'4'_FlE

- s ————— i il i s,

-

$

LA 1,RUNIT_F1lE

ST 1,PARAM(2)_F1§ -
AH y=H'4'_F1§ -
LA " 1.WUNIT_Fl&%
ST 1,PARAM(2)_F1lE&
Al 2,=H'4*_F18&
LA 1,ECF_F1§
ST 1,PARAV(2)_FLS§
LA 1,PARAN_F1&
LR z"le_Flg
LA 13,SAVE_F1£
LR 6,15_F1¢§
; L 15,=A{DISPLY)_F1£

BALR 14,15_Fl¢%
LR 15,6 _F1%
LR 13,4_F18
LH ‘ 1,ECF_F1¢&
CH 1,=H"'1'_Fl%
BE ERRL15_F1% e 3
B CHEKGUT_F1& .

£ -~

INPUT. - _

IN SR 2,2 ' % PREPARE PARAMETERS AND_F1.

‘ ST 13PARAN(2) * CALL INPUT._F1E£

IFf UNIT E =F'S" JUMP TC #+l6%
IF EOF JLMP TO ERR15Z

AH 2,=H'%'_F1§
LA 1,UNIT_FL&

ST 1sPARAN(2) _F1%
AH 2,=H'4'_F1§

LA 1 ,EQF_FL£

ST 1,PARAN(2)_F1£
AH 2,=H'4'_F1E

LA 1,PRINT_FLE :
ST 14PARANM(2) _FLS
LA 1,PARAN_F1E

LR 4,13_F1£

LA 13,SAVE_FL&

LR 2,15_F1¢%

L 15,=A(INPUT)_F18&
BALR 14 ,15_FL&

LR 15,2_F1¢

LR 13,4_F1%

o

IF UNIT E =F'5%' JUNP TC *+168 .
IF EXCH JUMP TC INEXS - |
BR 10_F1§ | _ ;

&

OUTPUT.
ST 10,FULL_F1¢ -
"SR 2,2 * PREPARE PARAMEZTERS FOR_F
ST 1yPARANM(2) # CUTPUT ANC CALL IT_F1l3%

IF REG5 E =H'17' JUNMP TC CUTPL
IF REG5 E =H'18' JUMP TC OUTPS
IF ENDF JUMP TO ENDOUTS

ouTPp AH 2,=H'64' F1¢
Mg LA 1, UNIT_F1l&
. ST 1,PARAM(2)_F1l&

AH 1»=H'4'_Fl g
LA 1,PRINT_F1&
ST 1,PARANM(2)_F1¢§ :
LA 1,PARAN_FLS : -
LR 4,13_F1% A
LA 13,SAVE_FL¢g
LR 2,15_F1% 2
L 15,=A(CUTPUT)_F1¢
BALR 14,15_F1&%
LR 15,2_F1¢
LR 13,4_F1%
L 1,PARAVM_F1 %
CR 1,8-F1g

- BNE ENDCUT_F1¢
OPP = =H'Qtg - _
MOVE =H'80' CHARS FROM BL TO CLB,NCKEEPS
ENDOUT L 10,FULL_F1£
BR 10_F1§
£

POINTERS.

SETP LR 10,14_F1¢
LR 1,7 . * SET UP VALUE OF_F1¢
AH l1,=H'80" * EP BY SEAXKCFING_FI1S
SH ly=H'1" % FRCM ENC OF CARC_F1Sf
CLI 0(1),C* * TC FIRST NCON-BLARNK_F1§
BE #-8 ¢« CHARACTER._F1&

LR - 297_F1% : .

SR ‘ 1,2_F1§

AH 1y=H'L'_FL§
STH 1,EP_F1§
CH 5,=H'4'_F1§
BL RETC *
1IPP = =H'0'§
OPP = SAMES

MOVE SFP CHARS FROM ILB TG CLB,KEEPEL
IF EFP NL EP JUMP TG RETCS '

EP = EFPE
RETC BR 10 . : I -
£ * .
MOVES.
MOVE S CH 3,=H'"O'_Fl&
BNH ; GOBK_F1Z%
"MOVE S IC 4,0(L,7)_FlE&
STC 4,0(2,8)_Fl&
AH l1,=H'1'_FlL%
j AH 24=H'L'_Fl&
c 8,=A(CHTAB)_F1&~
BE GOBK1_FlE
C 8,=A(LCCPCCV)_F1Z%
BE GCBK1_Fl1l& .
C 8,=A(XCHRS)_F1&
BE GCBK1_Fl1Z£
CH 2:=H'79" E3
" BH #+8_Fif
GOBK1 BCT 34MCVESL1_F1E&
GUBK BR 14_FlEg
£
DUMP.
DUMPS LA 1,LASTINS_F1& .
ST 1,PARAN_F1£
LA 1,PARAM_F1E
LR 44,13_F1%
LA 13,SAVE_F1&
LR 2:15_Fl&
L 15,=A(DUVMPIT)_Fl%
_ BALR 14,4,15_F1&
: LR 15,2_F1&

LR 13,4_Flf

IF BACKSPACE MISS ALL THIS

RETURN_F1E£

GUTPUT BUFFER FULL._F1&

NUMBER «
NUMF LA
STH
ST
LA
LA
LR
AH
AH
S IC
CH
BL
CH
BH
SH
M
AR
B
CH
BE
CH
BNE
CR
BNE
LH
S
STH
BR .

TABSTORE .
TABST EQU

FULL = REG 14%
= REG 2%

- REG 4 = 0%

IF REGS5 E =H'22"

IF REGS5 N =H'1T'!

FILLB

READ+16

1,0_F1g%
1+NUVM_FL1E
1+FULL_F1£
10,0_FLZ
11,0_Fl&

4,2
44=H'1'_FlZ%
2aeH"1 1 FlE
1,CARD(2) _F1£
1y=H'240"'_Fl&
*4+26_F1l&%
1,=H'249'_Fl&
*+18_F1¢
1,=H'240"'_F1l£
10,=F'10'_Fl&%

11,1 _F1&

%-34_F1§

14=H'107*'_Fl& ~

#+12_F1€£.

" le=H'64"

ERR3_F1£
4,2_Fl§
*+8_FL§

11 ,=H'-1"'_F1&

11 ,FULL_FL%
113NUV_F1£
14_F1%

*_F1%

JUNP TO *+12%
JUMP TC TBSiIE

IF NOT LINE JUMP TC TBS1Z%

NU = EFP - SFPE
IF REG L STLEN JUMP TO ERR18%

33

%* GET POSITION ON CARD._F1l&

% SPACE PRESENT._F1lZ

JUMP TO LCOPR1+4&
LABEL LOCPRLE
REG 5 = FILLAZL

MOVE =H'83' CHARS FROM BL TC STRING:NUKEEP£

REG 4 SFPE
TBS1 EQU
R=zG 2 EILLBE
RZG 1 STLENE
TABDSTL LA
LH
AGAIN 1C
5 AH
ol LH
£ - CH
BNE
CH
BNE
: LH
. CH
] - BE
-§ : AH
' CH
BH
CR
BNL
SR
. . SH
s ' CH
% ' . BE
i - STC
AH
5 .] BCT
» : B
STRCHR STC
AH
LUOPR BCT
STLEN = REG 4%
RZG 14 = FULLE
BR

£

CONSTANTS.
LASTINS DC
FILL DC

®_FlE&

10,0_F1¢%

11 ,=H'64"
3:+CARND(2)
2,=H' ¢

6:TAB
6y=H'1'_FlZ%
STRCHR_F1E
3,TABCHAR
STRCHR_FL&E

64+ TABF(10)_F1l£%
64=H'80'_F1l%
ERR24_Fl &
10,=H'2'_F1%
10,=H'16"'_Fl& -~
ERR24_F1 &
4,6_Fi%
ERR25_F1Z%
6q.4_Fl %
64=H'1' _Fl£%
64,=H'Q'_F1l£&
LCOPR _F1l&

11 ,STRING(4)_F1&
4'=H'l '__Fl.E

" 6,%-8_Fl1£

LCCPR_F1£
3,STRING(4)
44=H']1 ! ’
1,AGAIN

14_F1l&%

H'O'_F1§
H1O!

%

ok 3F 3F

I

L B

"

LOAD A SPACE_F1&

MOVE STRING ON CARD_F1&£
INTO THE AREA STRING._F1l&
CHEECK IF TAB IS IN OPERAT.

IF TAB CHAR GO AND SPACE F

IF NO TABS THEN _F1§&
STORE CATA IN STRING._F1%
LCCP COUNTER._F1&

STORAGE_F1S

FILLA
IPPS
XOM
FILLB
Lce
LNP
STHO
LOLI
LDL
LCP1
FLD
L CHP
= GIP
DUPN .
LOOPCNT
LPEX
LPSET
LPCOMP
: - LSTP
\ : LPMAX
: TABCHAR
TAB
ECF
ENDF
ENDNL
DELETE
. STLEN
> STLENZ
= EXCH
CHAR
LINE
REPL
PRINT
XPTR
XPTL
XLD
OLDST
XTp
Xxcp
LINSRT
: DEF
v ET STL1
STL2
R INC1
s 1nc2

DC

DC
DC
DC
DC
DC
bC
DC
DC
DC
DC
DC
DC
DC
DC

DC

bC
DC
DC
DC
DC
DC
DC
DC
DC
DC
DC
DC

DC
DC
DC
DC

~
s

DC

bC
DC
DC
DC
DC
DC
DC
DC
DC
DC

H'O'_Fig
H*»0! _F1%
H!O0'_F1&
HYQY_Fl&
HY'o' FLS
H*9?'_Fl&
HYGT Fl1E
BHrO2 _EYE
HYO'_F18&
H'O'_F1%
H'U'_Fl-E
H¥Qr F1.8
HY QY E1.&
H'g' Fl1£
H'O'_Fl&%£
H'C'_FlX
HYQ'_Flt
H'O'_F1é€
H'O'_F1lZ%

H'540'_F1l&

H'O'_F1&
H'O'_FLE
H'Q'_F1&

H1O'_FLE -

H*O'_F1g
H'O'_Fl&
H¥o¥_FLE
H'O'_Fl1E£
H'O'_F1¢
H'O'_Fl2
HYQ'_FlZ

" H'Q'_Flf

H'O'_F1%
H'O'_F1%
H'O '_Fls
H'O'_F1¢g
H'Q'_F1¢£
H'O'_Fl1&
H'O'_F1£
H' QY. F1%
H'3J*'_Fl8g
H'O'_FL1%
H'O'_F1¢§
H''_F1§

H*O'_F1E

NUM DC HYL Y EL&

NU DC H'O'_FLE
PP DC H'O'_Fl¢g
oPP DC HYO'_F1$
SFP DC CHYO'_F1E
EFP DC H'80'_Fl%
EP DC H'80'_F1§
RUNIT I Ht2'_F1§
WUNIT DC HY'1'_F1¢§
UNIT DC F10'_F1§
PARAM DC 4F 10T _F1S
STRING DC CLBO' '_F1§
CARD DC CLBO' '_F1&
ILB -« DC CL8O' '_Fis
oLB DC CL8O' '_Flf
LMAME S DC 20F'0'_F1§
LCPUS DC . 100F'0'_F1£
CMNAMES DS 20F'0'_F18
CHTAB DC CL18O' '_F1%
DC CLLBO' '_Fl&
DC CL1BO' '_FlE
LOOPCOM DC CLLBO' '_F1& -~
DC CLLBO' '_FlE
DC _CLLBO' '_F18&
LOOPSTK DC 16H'O'_F1¢
LOOPNO DC 16H'O'_F1§
XTAB DC 20H'0'_F1§
STRA DC CL8O' '_F1S
XCHRS DC cLieor
DC cLigor
- DC _CL4Dt
FULL DC F'rO'_F1¢§
ST1 DC F'O'_F1%
ST2 DC Fro'_F1§8
FIN DC X'C6C9D542 ' _F18
DMP DC X'C4E4D4DT'_F1% |
BL DC CLBo! ¢
cLe DS H % SIMULATE A CLC INSTRUCTION
ST 050(04+2)_F18
ORG CLC_F1§
ST 0,0(0,1)_F1€
ORG CLC_FL§
DC X'D500 ' _F1§
ORG CLC+6_F18

TJ_QBLE _ DC _ H'q'O‘l"l_f_-l_?"_l!"1?0?14?49!'—1! 166 F1k

.Q I‘

CH
BL

6,=H'4'_F1£%
LOADITL1+2_Fl&

FETCH NAVE FROM STRING.

1C
AH
STC
AH
: BCT
A

IF LOAD _ ELSE

CLI
BNE
" GREG 4 + =H'1'&
; CLI
IF _10 = CONTINU
' BE
SKIP 1f%
BNE
£

BRANCH ON REG _
BCT
£ ; 2

SWAP UNITS.
g SR
LA
ST
AH
LA
ST
LA
LR
LA
LR
L
BALR
LR

E

TO .

'1512_Fl£

3,STRING(10)_F1X%
10,=H'1'_F1l%
34FULL(4)_F1&

"4 4=H'1'_Flx%

6+ XL123_Fi &

0(4) 4C'L'_F1£
_20_F1l¢

0(4),C' '"_F1l&

SKIP 2%

_10_Fl&

_20_F1& -

_10,_20_Fl&%

242_F1&
1;RUNIT_F1l&
1.PARANM(2)_F1&
2:=H'4'_Fl1l%
1,WUNIT_FLE
1;PARAM(2)_F1&
1,PARANM_F1%
44,13_Fl¢

13 ,SAVE_F1&
24+15_Fl&
15,=A(SWAPIT)_FlX
14,15_Fl1%&

L B AT o

LR 1344_F1¢
B CHEKGUT * COMMAND EXECUTEC._F1E&

NUM NOT FOUNDa

A 3,=X140000000"'_F1¢§
NONUM LH 4a=H 4" % ALPHA CEARS ON SEQ CARD._F
L 1yBL_F1% :
ST 1,FULL_F1%£
LA 3,0_F1¢&
LA 1,0_F1% -
N2 IC 3,CARD(2) % READ ANC STORE ALPHA CHARS
& STC 3,FULL(1)_F1%
£ CH 3,=H'107'_Fig
BE NNANE_F1E£
AH ‘ 1y,=H'1'_F1¢£
AH 2,=H'1L'_F1&
SH 4,=H'1'_F1&
CH 4,=H'Q'_F18%
BL ERR35_F1¢%£
B N2_F1¢g -
NNAME CH 4 ,=H'QO'_F1% -
BE - RET_F1%
L " 3,FULL_F1¢&
SRL . 3,8_FL%
BCT 4 NNAVE+12_F1¢£
: ST . 3,FULL_F1£
RET . BR 14_F1$
£
RESET.
RESET SR 2,2_Fl%
LH 1sWUNIT_F1£
ST 1,UNIT_F1%£
LA 1,UNIT_F1%£ *
ST 14PARAN(2)_F1%
LA 1,PARAN_F1E
LR 4413 _FL1S
LA 13,SAVE _F1l¢%
LR . R415_F1%
1 15,=A(FILSRT)_F1¢&
BALR 14 ,15_F1¢%

LR 15,2_F1%£

€2

e

T

g

DUMPCHECK.

ENDALL.
_FJ&
L8

O

M

1,CARD_F18
1,DNMP_F1£ _
DUNMPS % FOR PROGRAMMER USE ONLY_F1

- END OF PMACRCS

e e 3o ok e A e e A e R
LY L]
° - :

a

LISTING OF MACRC GENERATINC STATEMENTS

——— e o ————— g — e ——— o —

START,

LABEL READ.

DUMPCHECK.

IF LDL JUNMP TO LFDNUNIi.
UNIT = =H'5"

READ IN TO CARD.

COPY TO CCPYEND.

LY

AND ERROR HANDLING RCUTINE)

COPYEMND
LABEL DISPLAY.
IF IPP H SFP JUMP TO DISPl.

IF OPP HH SFP JUMP TO DISPZ2,
LABEL DISPl.
NO = =H*'80' - IPP. N

MOVE NO CHARS FROM ILB TC OLB, NGKEEP.
UNIT = WUNITe.

WRITE QUT OLB.

NIT = RUNIT.

READ IN TGO ILB.

LABEL DISP2.

DISPLAY.

LABEL LOADITI.

FETCH NANME,

LABEL LUADIT.

REG 6 = C. =
LABEL LCHECK.

IF LNAMES(6) E STRING JUMP TO LFDNUNM.

. GREG © + =H'8°', '

IF REG6 H LNP JUMP TO ERR24
JUMP TO LCHECK.
LABeEL LFDNUM,.

GREG 6 + =H'4',

STNO = LNAMES(6). . he
GREG o + =H'2", -
LCP1 = LNAMES(6).

IF REGS5 Nt =H'17* JUMP TC LFDNUNM1.

-'{a

(INSERTED HERE IS THE CODING FOR THE

o - —————

COMMANC ANALYSER

LDLI = =H'l"'.

LABEL LFDNUML,

IF STNO & =H'U* JUMP TC LDEND»
MOVE BLANKS TO CARD., .
REG 6 = Co

REG 6 = LCP1l.

NUM = LCPCS(6).

GREG 6 + =H'2'.

NO = LCPOS(6)-

GREG 6 + =H'2'e
LCP1 = REG 0.
REG 6 = NO.

MOVE NUM CHARS FROM CHTAB(6) TG CﬁRD;NOKEEP.

LDL = =H'1"'.

STNO = STNO — =H'1l"'e .
1F LDLI E =H'l* Ju¥P TC SPINSL-»
JUMP TO READX.

LABEL LDEND.

LDL = =H'0'.

JUMP TO CHEKOUT.

LABEL SPINSle

IF CARD E FIN JUNP TO CHERCUT.
FIND LAST CHAR,

REG 2 = Co

TABCHECK.

UNIT = HUNIT. i
WRITE OUT STRING.

IF STNO H =H'0*' JUNMP T0 LiDNUFl-
LDLI = =H'O'.

JUMP TO SPINS.,

LABEL STCRE.

IF STLEN H =H'4' JUMP TG “RR35.
IF LIME JUMP 'TO STLINE-

IF CHP H =H'159* JUMP TC TRR39.
REG = CTP + NUM. -

IF REG H =H' 499' JUMP TC ERR3D.,
REG 6 = Cy

LABEL NMCHKe. :
IF CNAMES(6) E STRING JUMP TC DUPNAM.
GREG & + =H'8"',

IF REG6 NH CHP JUMP TO NNCHK.

"REG 4 = CliPs

CNAMES(4) = STRING.
REG 6 = CHP.
GREG 6 + =H'4's

CNAMES(6) = NUM.

GKREG 6 + =H'2'.

CNAMES(6) = CTPo

GREG 6 + =H'2%.

CHP = REG 6»

LABEL SETUP.

IF REGS E =H'26" JUMP TC STRCOV

MOVE MUM CHARS FROM ILB TO CHTADsNCKEEP.

CTPp = CTP + NUM.
JUMP TO STREAD.
LABEL STRCOM.
UNIT = =H'5"%
READ IN TO CARDe.
MOVE NUM CHARS FROM CARD TO CHT
LABEL STREAD.

IF NOT DUPM JUMP TG CHEKCUT.
CTP = FILLA.

JUMP TO CHEKOUT.

LABEL STLINE.

IF LNP H =H'159% JUMP TC ERR3V.
REG = LCP + NUM.

REG = GREG + NUMe

IF REG H =H'199' JuMP TO ERR3D.
REG 6 = 0o

LABEL LCHKe.

IF LNAMES(6) E STRING JUNP TO E
GREG 6 + =H'8"'.

IF REG6 L LNP JUMP TO LCHKe

REG 4 = C»

REG 4 = LNP.

LNAMES(4) = STRING.

REG 6 = LNP»

GREG 6 + =H'4"'e

LNAMES(6) = NUMe A
GRZG 6 + =H'2's :
LMAMES(6) = LCP»

GREG 6 + =H'2"'.

LNP = REG 6>

UNIT = RUNIT.

IF 1PP NH SFP JUMP TO STRLIN.
NO = =H'80' - IPP.

MOVE NO CIARS FROM ILB TC GLB,N
UNIT = WUNIT.
KRITE QUT OLB.
UNIT = RUNIT.

AB,KEEPS,

RR32.

OKEEP.

*

r»;,'....r-.‘.wu-;.- O L e

READ Il TO ILB.

SET POINTERSe

LABEL STRLIN. :

IF REGS5 NE =H'26"'" JUNMP TC SLINEl.
SWAP 1LB AND OLB. ’
UHIT = =H'5",

ReAD IN TO ILB.

SET POINTERSSe

LABEL SLINELl.

NO = =H'0',
REG 6 = LCP.

(:) LABEL SLINEs
LCPOS(6) = EP.

GREG 6 + =H'2",

LCpPus({e6) = CTP,

GREG 6 + =H'2",

MUVE EP CHARS FROM ILB TGO CHTAB, NUKEEP.
. CTP = CTP + EP»

IF REGS E =H'26' JUMP TC NCHRITE,
FILLA = UNIT. ;
UNIT = WUNIT.
KRITE OUT ILB. >
UNIT = FILLA. e '
LABEL NOWRITE, :
READ IN TO ILB.
. -1F EOF JUMP TO ERRLS. Y
"SET POINTERS. : =
NO = NO + =H'i?, _
.IF REG L NUM JUMP TO SLINE,
LCP = REG 6.
IF REG5 NE =H'26"' JUMP TC CHEKCUT.
MOVE =ti'80' CHARS FROM ILB TO CARC,NOKEEP.
SWAP 1LB AND OLB.
JUMP TO READX.
LABEL DUPNANM. o
GREG 6 + =H'47", : ; >
‘FILL = REG 5. '
FILLA = CTP,
IF CNAMES(6) H NUM JUMP TC ERR31.
JUMP TU ERR32.
LABEL STRESET.
" DUPN = =H'l",
REG 5 = FILL.
CHAMES(6) = NUM.
GREG 6 + =H'2'.

e

CTP = CNAMES(6).

JUMP TO SETUP.

LABEL LOCPSTR.

IF REGS E =H'21' JUMP TG LCCPND.
IF REGS NE =H'20t' JUMP TC LPCCMD.
LPSET = =H'l"'s

LOOPCNT = LCOPCNT + =H'l's

FIND NUM.

LABEL LPCCMDe

RSG = LPCOMP + STLEN.

REG = GREG + =H'10".

IF REG H LPMAX JUMP TO ERR29.

REG. 12 = LPCOMP.

LOOPCOM(10) = RZEG 5.

GREG 10 + =H'2°*,

IF NOT CHAR JuUMP TO LINETST.
LOOPCOM(1) = =H'l‘'e

JUMP TO LPSTRING.

LABEL LINETSTs

IF LINE JUMP TG LINEST.

IF REG5 NE =H'20' JUMP TO SINGST.
LOOPCOM(1G) = NUM, <
GREG 10 + =H'2"',

LABEL SINGSTe

IF REGS5 £ =H'19' JUMP TC LPSTRING.
LOUPCOM(19) = =H'123"'.

GREG 10 + =l1'2"',

LABEL ENDST,

LPCOMP = REG 10,

IF LOOPCNT E =H'0' JUMP TO LPEXEC.

" JUMP TO READ.

GREG 18 + =H'2"%

LABEL LINEZST.

LOOPCOM(13) = =H'0'.

IF STLEN NE =H'u!' JUMP TC LPSTRING.
IF REGS E =H'17*' JUVP TC SPCASE.
LABEL LPSTRING. .
GREG 10 + =H'2',

IF REGS E =H'25' JUMP TG NUNMSET.

1F REGS E =H'26"' JUMP TO NUNMSET.

IF STLEN E =H'0' JUMP TC NUMSET.
LABEL KEEPST,.

LOCPCOUM(L10) = STLEN.

REG 6 = C.

LABEL LPCOM.

A

—t

LOQPCOM(LE) = STRING(6)»
GREG 6 + =H'2'.

IF REG6 L STLEN JUMP TO LPCOM.

LABEL LPCCMF.

GREG 10 + =H'2"',
LOOPCOM(13) = =H'123's
GREG 10 + =H'2',

IF LINSRT JuMP TO SPCASEl-

JUMP TO ENDST.
LABEZL SPCASE.
LINSRT = =H"'1l"'e
GREG 19 + =H"'2"%,
LOOPCCM(10) = =H'123"',
GREG 10 + =H'2"',
UMIT = =H'5"'.
LABEL SPCASELs
LPCUMP = REG 10
READ IN TG STRING.
REG 1o = LPCGHMP.

IF STRING E FIN JUMP TO SPEND.

ADDRESS REG 4 = STRING.
GREG 4 + =H'T9'.
LABEL SPCOMPe

I[F NOT SPACEZ JUMP TG KEZPS5T2

GREG 4 — =H'l's

JuMP TO SPCOMP,
LABEL KEZEPSTZ.

GRZG 4 - =A(STRING).
GREG 4 + =H'l'.

"STLEN = REG 4.

JUMP TO KZEPSTs

LABEL SPENDe.

STLEN = =H'3"'.

LINSRT = =H'0"'s

JUMP TO KEEPST.

LABEL NUWMSETe
LOOPCOM(10) = NUN.

IF REGS E =H'25" JUMP TC
IF REGS £ =H'26' JUMP TO
JUMP 70 LPCOMF.

LABEL KEEPSTIo

GREG 1C + =H'2"',

JUMP TO KEEPSTe

LABEL LGCPND.

LOOPCNT = LOOPCNT - =H'l'.

KEEPST L.

KEEPST1.

k=]

IF REG L =H'0' JUMP TC ERR19.
JUMP 70 LPCOMD.

LABEL LPESX=ZCo

LPEX = =H'1l"'.

LPSET = =H'0"',

LPCOMP = SAME.

LABEL LPEXL. _

IF LDL JUMP TO LFDNUWNMl.

REG 1u = LPCOMP,

REPL = =H'0'e
DELETE = SAME.
NUM = =H'1"',

MOVE BLANKS T2 STRING.

LABEL LPEX2.

REG 5 = LCOPCOM(1D).

GREG 10 + =l{'2'. ,
IF REGS E =t'20* JU¥P TO UPSTK.
IF REGS E =H'21' JUMP TO DNSTK.
REG 6 = LOOPCOM(1T).

GREG 10 + =H'2"',

IF REG6 E =H'123' JUNP TO ENDINS. -
IF REG6 E =H'L' JUMP TO STCHAR.
LIME = =H'17Y, :
CHAR = =H1D"',

JUMP TO NXTVAL.
LABcL STCHAR.

CHAR = =H'1"',

LINE = =H'G'.

LABEL NXTVAL.

STLEN = LCOPCOM(10).
GREG 19 + =H'2"'. -
IF REG E =H'123' JUNMP TC ENDINS.

REG 6 = C»)

IF REGS E =H'25' JUMP TC #+12. "
IF REG3 NE =H'26"' JUMP TO STINS.
STLEN = LCOPCGM(1Q).

GREG 10 + =H"'2", 3

LABEL STINS. ,

REG 1 = LCOPCOM(10),

GRzG 10 + =H'2".

IF REG & =H'123"* JUVMP TG ENDINS.
STRING(6) = REG 1le
GR{G & + =H'2"'.

B T R

o,

-

JUMP TO STINS.
LABEL ENDINS.

LPCOMP = REG 10.

IF STLEN NE =H'

123' Ju¥pP TO EXINS.

IF REGS5 NE =H'17' JUMP TC EXINS.

LINSRT = =H'l"%,
STLEN = =H'3"'s
LABEL EXINS.

JUMP TO TBRANCH,

LABZL UPSTK.

REG 1 = LOOPCOM(1C).

REG 6 = LSTPo.
GREG 10 + =H'4"

LOOPSTK(6) = REG 10.
LOOPNU({6) = GREG = =H'L'e

GREG 6 + =H'2',
LSTP = REG 6.
JUMP TO LPEX2.
LABEL DNSTK.
REG 6 = LSTP.
GREG 6 — =H'2's
IF LOCPNC(6) E

'
-

=H'0' JUMP TC NUNMZ«

LOOPNO(6) = GREG = =H'1"'.
REG 10 = LGOPSTKI(6).

JUMP TO LPEX2.
LABEL NUMZ.
LSTP = REG 6.
IF REG6 E =H'D!

_GREG 10 + =H'2"

JUMP TO LPEXZ,
LABEL LPABS.
LPcX = =H'O"'.
LPCUMP = SAME,
JUMP TO READ.
LABEL FIELDINS.
FIND NUM.

IF NUM NH =H'O!

JUMP TO LPABSe

JUMP TO *+12.,

NUM = GREG - =H'l'a

NO = HUM,

FIND HUM.

IF NUM H =H'80'
IF NO NL =H'Q'
NO = S5FP.

IF NUM NL =H'0!

 NUM = EFP.

JUMP TO.ERR3.,
JUMP TO *+12,

JUMP TC #+12.

IF NO NL NUM JUMP TG SRR23.

SFP = NO.

EFP = HUVM,

IF OPP H =H'0' JUMP TO FVMVa
1F IPP NH =i'0* JUVP TC FSETe

LABEL FMV.

NO = =H'83' - IPPe

MOVE NO CHARS FROM ILB TC OLB,NOKEEP.
SWAP ILB AND OLB.

LABEL FSET.

SET POINTERS.

JUMP TO CHEKOUT.

LABEL TABS.

TAB = =H'1l'.
FIND CHAR.
REG 6 = Co
REG 4 = C.
LABEL NUNMGET.
FIND NUMs

IF NUM NL =H'0' JuNpP TC TcSTORe.
NUM = TABF(06).

JUMP TO LCADNO.

LABEL TABUFFe

TAB = =H'3',

JUMP TO CHEXQOUT.

LABEL TESTORe.

IF NUM NH NO JuMP TO ERR23.

_ LABEL LOADNOC.

TABT(6) = SAME.

GREG 6 + =H'2"',

IF SPACE JUMP TO LASTNGC,

1F REG6 H =H'16' JUMP TC ERR24.
NO = NUM. "

JUMP TO NUMGET.

LAREL LASTNC.

IF REG6 H =H'l6' JUNP TC TABFS.
LABEL SET8D.

TABT(6) = =H'80"%

GREG 6 + =H'2'.

1F REGOG NH =H'l6' JUNMP TC SET30.
LABEL TABFS.

REG 6 = Co»

TABF(6) = TABT(6).

GREG 6 + =H'2",

I REG6 NH =H'16' JUNP TO TABFS+4.

Ao

'y

JUMP TO CHEKOUT.

LABEL EXCHNG.

EXCH = =H'1"'

XLD = =H'3'

IF STLEN WH =H'2' JUVNP TC X1l.
ADDRESS REG 4 = STRING.

IF LOAD CONTINUE ELSE Xle

XLD = =H'l"'.

LABEL Xl

IF STLEN2 NH =H'2*' JUMP TG XLCAD.
ADDRESS RCEG 4 = STRING,

GREG 4 + STLEN.

IF LOAD CONTINUE ELSE XLCAD.
IF XLD E =H'Ll' JUMP TO *+16.

XLD = =H'2¢,
JUMP TO XLOAD.
XLD = =H'3',

LABEL XLGAD.,
OLDST = STLEN. ;
=H'Q0t JUMP TO XCONT.

IF XLD E
IF XLD € =H*'2' JUMP TO XL2Z»
REG 14 = 0Us . o _-\

REG 6 = STLEN.
REG 1u = =H'2"'.
LABEL XLCADl.

GREG &6 - =H'2's

IF REG6 H =H'4*' JUMP TO ERR35.
FULL = BL, '

REG 4 = 0,

LABEL XL123.

FETCH NANME FROM STRING.

REG 6 = 0,

LABEL XSEARCH.

IF CNAMES(6) £ FULL JUMP TG XFNDe.
GREG 6 + =H'8"',

IF REG6 H CHP JUMP TO ERR33. .
JUMP TO XSEARCH. :
LABEL XFND.

GREG 6 + =H'4"',

NO = CNAMES(6),

GREG 6 + =H'2'.

REG 6 = CNAMES(6)-

MUVE NO CHARS FRCM CHTAB(6) TC CARD(14) +NCKEEP.
IF XLD E =H'1' JUMP TO XL1

IF XLD E =H'2"' JUNP TO XSTRING.

- e R

-

&

STLEN = NO.

XLD = =H'2'

LABEL XL3.,

REG 14 = STLEN.

RZG 6 = STLENZ2.

REG 10 = OLDST.

GREG 10 + =H'2'%

JUMP TO XLOADle.

LABEL XL2o : '
MOVE STLEN CHARS FROM STRING TC CARDyNGKEELP.
JuMp TO XL3.

LABEL XL1»

STLEN = NCs

REG 14 = STLEN.

REG 6 = OLDST. '

MOVE STLEN2 CHARS FROM STRING(6) TO CARC(14) NOKECP.
JUMP TO XSTRING*+8. :
LABEL XSTRING.

. STLEN2 = NO.

NO = STLEN + STLENZ.

MOVE 1O CHARS FRCM CARD TC STRING,NCKZEP.
LABEL XCCNT. 3

REG 6 = 00

REG 6 = XTP»

1F REG6 NL =H'60* JUNP TC ERR36.,

REG 14 = Do

REG 1 = C.
XTAR(6) = XCP.
GREG 6 + =H'2"'.
XTAB(6) = STLEN,

GREG 6 + =H'2"'.

XTAB(6) = STLENZ.)

GREG 6 + =H'2"'. . ‘ -

XTP = REG 6o o 3

NO = STLEN + STLENZ. .

REG 14 = XCPe. ' .

XCP = XCP + NO.

1F REG H =H'420' Jurp TC ERR36,

MOVE 1O CHARS FROM STRING TO XCHRS (14) yNCKEEP.
NO = STLEN + STLENZ.

MUVE NO CHARS FROM STRING TC STRAyNCKEEP
XON = =H'l'.

1PPS = OPP.
ADDRES5 REG 10 = READ,
FULL = REG 10.

e e mawgw e ey et EmAL - e e |

-

JUMP TO XDELA.

LABEL BACKSP.

IF LINE JUMP TC ERR20.

IF REG5 E =H'1' JUMP TG BACKBAN.
FILLA = EPs

FILL = OPP.
EP = GREG + STLCN.
opp = =H'Q"'.

COMPARE CLB WITH STRING IF FOUND BACKEA.
opPp = FILL.

Ep = FILLA.

JUMP TO ERRZ21.

LABEL BACKBA.

FILLA = OPPe

oPP = FILLe.

LABEL BACKBAN.

NU = =H'83' — IPP.

MOVE NO CHARS FROM ILB TC OLByNOKEEP.
IPP = COPPs -

SWAP 1LB AND OLB.

opp = =H'0"'.

MOVE =l1'60"' CHARS FROM BL TO OLB,NCKEEP.
SET POINTERS,

IF REGS E =H'L' JUMP TC BACKNC.

NO = FILLA.)

IF REGS5 E =H1'3' JUMP TC #+8.

MO = GREG + STLEN.

OPP = =H'0'.

1PP = SAVE.

MOVE NO CHARS FRCM ILB TC CLB KEEP«
JUMP T0O CHEKCUT. .

. LABEL BACKNO.

NO = IPP = NUM,
Ipp = =H1'0"
0PP = SAVE.

- 1F IPP L SFP JUMP TO ZRR2Z2A. *

MOVE NO CHARS FRCM ILB TC GLB,KEEP.
JUMP TO CHEKOUT.
LABEL ERR22A.

N0 = SFP.
IPP = =H'0',
OPP = SAME,

MOVE 10 CHARS FRCM ILB TC CLB,KEEP.
JUMP TO ERR22.
LABEL COPYN.

1F REGS5 E =H*34' JUVMP TO COPLINZ.

IF LINE JuMP TO COPLIN, i
REG = IPP + NUMs

1F REG H EFP JUMP TO ERR11.

LABEL COPYNl.

IF DELETE JUMP TO DELl.

MOVE WUM CHARS FRCM ILB TG CLB+KEEP,
JUMP TU CHEKCUT.

LABEL DELLl.

Ipp = IPP + NUMe

JUMP TO CHEKCUT.

LABEL COPLIN.

REG. 6 = NUM.

1IF IPP H SFP JUMP TO COPLINZ.

IF OPP NH SFP JUNP TG CCAT.

LABZL COPLINZ.

NO = =H'8)' - IPP.

MOVE NO CHARS FROM ILB TC CLByNOKEEP.
UMIT = WUNIT.

WRITE OUT OLB.

IF ENDNL JUMP TO ERR15.

IF REG5 NE =H'34' JUWVMP TC CONT1l.
UNIT = RUNIT.

READ IN TO ILB.

IF EOF JUMP TO ERR15.

SET POINTERS. o
JUMP TO CHEKOUT, S b
LABEL CONTLs

IF ENDNL JUMP TCO CCNT.

UNIT = RUNIT.

READ IM TG ILB.

IF EOF JULMP TO ERR15. :
LABEL COUNT. : " -
IF DELETE JUMP TC DELZ.

UNIT = WUNIT. o
WRITE OUT ILBs .
LABEL Dt L2. :

BRANCH ON REG 6 TOU CONTle

IF ENDNL JUMP TO SETEND.

UMIT = RUNIT.

READ IN TO ILB.

IF EOF JuMP TO ERR15.

SET POINTERS.

JUMP TO CHEKOQOUT.

LABEL SETEND.

-

]

ENDF = =H'1"'.

JUMP TO CHEKOUT.

LABEL COPABL.

IF LINE JUMP TG ABLINE.
NUM = EP - IPP,

IF REGS5 E =H'3' JUMP TC BEFCRE,

IF NUM NH =H'0' JUNMP.TC CHEKCUT.

JUMP TO COPYN,

LABEL BEFCRE.

NUM = NUM - =H'1'.

IF REG WH =H'u* JUMP TO ERRL3,

JUMP TO COPYN.

LABEL ABLINE.

IF 0PP H SFP JUNP TO ABLl.

IF IPP NH SFP JUMP TO READL.

LABEL ABLl. _

NO = =H'80' - IPP.

MOVE NO CHARS FROM ILB TC CLB,NOKEEP.
UMIT = WUNIT.

WRITE OUT OLB.

IF REGS E =H'8' JUMP TG BEFCL.

JUMP TO READ1. Y
LABEL READL.

IF REG5 E =H'8"' JUNVP TC CLBP.

1F DELETE JUMP TO READL.

UNIT = WUNIT.

WRITE OUT ILB.

LABEL READL.

UNIT = RUNITe

READ IN TO ILB.

IF NOT ECF JUMP TG READL+8.

ENDF = =H'1"‘, :

JUMP TO CHEKNUT. 2 -
LABEL BEFGLe ' : .
UNIT = RUNIT. _ =
READ IN TO OLB. ' g s
IF EOF JUMP TO ERRlé4e.

JUMP TO ShAP.

LABEZL OLBP. :
UNIT = RUNIT. - -
READ IN TU OLB.

IF EOF JUMP TO PCINTSET.
IF DELETE JUMP TO SWAP.
UMIT = WUNIT.

WRITE OUT ILB»

ey Ay

_MOVE NO CHARS FROM ILB TC OLBsNOKEEP.

LABZL SWAP.

SWAP ILB AMD OLB.

JUMP TO CLBP.

LABEL POINTSET.

EMDNL = =H'Ll'

SET POINTERS.

JUMP TO CHEKOUT.

LABEL COPABS.

IF REGS E =H'3G*' JUMP TO #*+16,

IE LINE JUMP TO COPLINS. '

REG = IPP + STLEN.

IF REG NH EFP JUNMP TG STLENCK.

NO = =H'80' - IPP.

MOV: NO CHARS FROM ILB TC GLB,NOKEEP.
JUMP TO CARRYON,

LABEL STLEMCK.

COMPARE ILB WITH STRING IF FOUND BEFCHKa
LABEL CARRYON.

IF DELETE JUMP TGO #+18.

UNIT = WUNIT.

WRITE OUT OLB.,

UNIT = RUNIT. -
READ IN TO ILB. '
IF EOF JUMP TO ERRL5.

SET POIMTERS.

JUMP TO STLENCK.

LABEL BEFCHKe :
IF REGS E =H'30' JUMP TO FINDS.
IF REGS5 E =lt'6* JUMP TC CHEKOUT.
IF DELETE JUMP TO DEL3.

MOVE STLEN CHARS FROM ILB TC CLB.KEEP.
JUMP TO CHEKOUT.

LABEL FINDS. _

IPP = =H'J' 5 s

SET POINTERS. -

JUMP TU CHEKCUT. , ‘
LABEL DEL3.

ipp = IPP + STLEN.

JUMP TO CHEKOUT.

LABEL COPLINS. - .

1F OPP Il SFP JUMP TO CPL1

IF IPpP NH SFP JUMP TO GCCN.

LABEL CPL1s

NO = =H'83' - IPPs

(‘r‘,.

-3

UNIT = WUNIT.

WRITE OUT OLB.

JUMP TO GETLIN.

LABEL GOON.

CUMPARE ILB WITH STRING IF FOUND BEFLCK.
SPACE TEST.

IF DELETE JUMP TO GETLIN.

UNIT = WUNIT.

KWRITE OUT ILB.

LABEL GETLIN.

UNIT = RUNIT.

READ IN TO ILB,

IF EOF JUMP TC ERR15.

SET POINTERS.

JUMP TO GCON.

LABEL BEFLCKa

IPP = SFPe - -

IF REG5 E =H'6' JUMP TO CHEKOUT.
IF DELETE JUMP TO *+18.

UNIT = WUNIT.

WRITE OUT ILB.

UNIT = RUNIT. RN
KEAD IN TO ILB. :
IF EOF JUMP TO CHEKOUT.

SET POINTCZRS.

JUMP TO CHEKOUT.

LABEL DELCOMo

DELETE = =H'l'.
IF REPL JUMP TO COPYN.
GREG 5 — =H'6',

JUMP TO TBRANCH.

LABEL EXITe

UNIT = WUNIT.

IF ENDF JUMP TC RESET.

IF OPP H SFP JUMP TC EXITi.
IF IPP NH SFP JUMP TO ILBCUT.
LASBEL EXIT1.

NO = =H'80"' - 1PP.

MOVE 1O CHARS FROM ILB TC CLB,NOKEEP.
WRITE OUT ULB.

IF EOF JUNMP TO RESET.

" JUidP TO SSTOP.

LABCL ILBOUT.
WRITE OUT ILB.
IF ENDNL JUMP TC RESET.

-t

LABEL SSTOP.

UNIT = RUNIT.

READ IN TG ILB.

UNIT = WUNIT.

IF EOF JUMP TO RESET.

WRITE OUT ILB.

JUMP TO SSTOP,

LABEL INSERT.

IF LINE JUMP TO INLINE.

IE REGS E =H'17' JUMP TO INON.
IF REGS E =H'22' JUMP TG INGN.
STLEN = NUM.

LABEL INCNo .

IF REPL JUMP TO INSREPL.

NUM = EP - IPP.

ND = EFP - OPPs

REG = GREG — NUM.

IF REG NH STLEN JUNMP TC ERR18.
LABEL INSREPL.

IF LINE JUMP TO TBSl.

MOVE STLEN CHAKS FROM STRING TC CLB,NUKEEP.

popp = OPP + STLEN.

NUM = STLEN.

1F REPL JUMP TO DELCOM.
JUMP TO CHEKCUT.

LABCL INLINE.

1F 0pp H SFP JUMP TO INLl.
1F 1PP MH SFP JUMP TO INSL.

- LABEL INLL.

IF ENDF JUMP TO INSL.
ND = -H 8.1 - Ippv

-

MOVE NO CHARS FROM ILB TO OLB,NCKEEP.

UNIT = WUNITe.
WRITE OUT OLB.

I1PP = sHYON .

OPP = SANME,

IF EOF JUMP TO INSLXe

UNIT = RUNIT.

READ IN TO ILB.

SET POINTERS. .
IF NOT ECF JUMP TC INSLe '
LABEL INSLX.
ENDF = =H'1"',
LABEL INSL,
REG 6 = NUM.

&

T AT

e

= -\»'J'.;

1F LINE JUMP TG STARTL.

IF REGS € =H'18' JUNP TO INCUT.
IF REGS E =H'23' JUNMP TC INCUT.
1IF STLEN E =H'0O' JUNP TC SPINSe.
KEG 6 = =H'l"',

LABEL INGUT-

UNIT = WUNIT.

WRITE OUT STRING.

BRANCH ON REG &6 TO INOUT.

IF REPL JUMP TO DELCOM.

JUMP TO CHEKCUT.

LABEL SPINS.

IF LINSRT JuMP TO LPSPNSe.

UNIT = =H'S"'e

READ IN TO CARD.

LABEL LPSP.

_ADDRESS REG 4 = CARD.

1F LOAD LOADITL ELSE SPINSA.
LABEL SPINSA.

IF CARD E FIN JUMP TO CHEKCUT.
FIND LAST CHAR.

REG 2 = O,

TABCHECK

UNIT = WUNITe

WRITE OUT STRING.

JUMP TUO SPINS.

LABEL LPSPNS.

MOVE =H'85' CHARS FRCHM 3L TC CARC,NCKEEP.

REG 17 0o

REG 1% LPCOMPa

STLEN = LCOPCONM(1D) .
GREG 10 + =H'2'.

REG 6 = 0»

LABEL LPSP1l.

CARD(6) = LCOPCOM(10) .
GREG 6 + =H'2".

GREG 19 + =H'2'.

IF REG6 L STLEN JUMP TC LPSPLs
GREG 1 + =H'2"%
LPCOMP = REG 1GC»

JUHP TO LP5P.

LABEL REPLACE.

REPL = =H'1l"'e

JUMP TO INSERT.

LABEL STARTZR.

inon

s i R s

€ "

NO = EP = IPPa»

MOVE NU CHARS FROM ILB TC CLB:NOKEEP
SWAP ILB AND OLBe

IPP = SFP.

OPP = SAVME.

JUMP TO CHEKOUT.

LABEL STARTL.

1F ENDF JUMP TO SWAPUNS.

1F opp H SFP JUMP TO STLLNe

© IF 1IPP NH SFP JuUrp TC TRYITe

LABEL STL1Me

NO = =H'8C* —]PP.

MOVE NO CHARS FROM ILB TC CLB,NCKEEP.
CHIT = WUNIT.

WRITE OUT OLB.

IF COF JUMP TO SWAPUNS.

LABEL STRZ.

UNIT = RUNIT.

READ IN TO ILB.

IF EOF JUNMP TO SWAPUNS.

LABEL GETON. e
UMIT = WUNIT. E
WRITE OQUT ILB.

JUMP TO STRZ.

LABEL TRYIT.

IF EUF JUMP TU =+8.

JUMP TO GETON.

UMIT = WUNIT.

WRITE OUT ILB.

LABEL SWAPUNS.

ENDF = =H'Q'.

ENDNL = SAME.

SWAP UNITS.

LABEL PRNSET.

IF PRINT JUMP TO %+16.

PRINT = =H'l's ' !
JUMP TO READ. ‘
PRINT = =H'O"'

JUMP TO READ.

LABEL NEXCHe

ALD = =H'-1",

ADDRESS REG 10 = CHEKOUT.
JUMP TU THEXL»

NUM NOT FOUND.

LABEL SEQNCE.

o

-

STRING(3) = ST2.

FIND NUMe

ST! = FULL.

FIND MUM.

INC1 = NUM.

IF REG NE =H'O' JUMP TO Nl.
STRING = STle

LABEL Nl.

FIND NUM.

ST2 = FULL.

FIND NUM,

INCZ = NUM.

IF REG NE =H'D' JUMP TG SEQALL.
REG 4 = =H'4"%

STRING (4) = ST2

LABEL SEGALL.

IF EOF JUNMP TO ERRLS.

ONEF = =H'0"',

JF ST1 NE =H{*0' JUu¥P TC CONTSEQ.

IF INC1 NE =H'G' JUMP TG CONTSEQ.
ONEF = =H'1l"'.

LABEL CONTSEG.

IF IPP K SFP JUMP TC LINCUT. =
IF OPP NH SFP JUNMP TO SEQCCNT.
LABEL LINGCUT.

NO = =|1'83"' — 1PP.

MOVE NO CHARS FROM ILB TO OLB,NOKEEP.
SWAP ILB AND CLBe

LABEL SEQCONT.

REG = EFP - =H'8"',

IF REG L SFP JUMP TO ERRLb.

LABEL SEQCONLs

IF ONEF JUMP TC CONLYZ.

IF INC1 E =H'C' JUMP TO CNLYZ.

REG 4 = =H'3"%
FILLA = =H'0',
STRING(3) = STls : ‘

STLi = S5T1 + INCle

IF INC2 E =H'Q' JUMP TG CNLY1l.
LABEL ONLYZ,

IF INC2 E =H'0' JUMP TC CNLYL:

REG 4 = =H'T"'
FILLA = =H'0"'%
IF ONEF JUMP T0 *+12. .
FILLA = =H"'4 "', '

ST2 = ST2 + INC2.

LABEL ONLYl.

IPp = EFP - =H'8'

IF REG L SFP JUMP TO SEQI.
NO = =H'8%.

REG 6 = Co

JUMP TO SEQZ.

LABEL SEQl.

1PP = SFP.
NO = EFP - SFPo
REG 6 = =H'8's

GRG&"'\:Oe

LABEL S£QZe

MOVE NO CHARS FRCM STthetel TC
UMIT = WUNIT.

WRITE QUT ILB.

UMIT = RUNIT.

READ IN TC ILB.

1F EOF JUMP TO ERR15.
JUMP TO SEQCONL.
LABEL QOUTL.

OUTPUT.

INPUT.

LABEL INEXs

IF EOF JL¥P TO RETC.
LABEL INEXle

FILLB = REG 0.,

FULL = REG 10
STLL = STLEN.
STL2 = -STLENZ,

IF DELETE JUMP TO INRET.
XPTR = =H'Q2"',

IF XLD L =H'Q" JUMP TC XCHKe.
SET POINTERS,

LABEL XCHK.

REG 6 = XPTRe.

IF REG6 NL XTP JUMP TO XGUT.
LABEL XCHKls

XPT1l = XTAB(6).

1F REG L =H'C' JUMP TG Xho
GREG 6 + =H'2"',

STLEN = XTAB(6)s o
GREG O + =H'2'.

STLEN2 = XTAB(6). '

GRCG 6 + =H'2'a

¥

B ,‘

ILByNOKEEP.

-

XPTR = REG 6.

IF XLD NL =H'0*® JUMP TC XCCNMPRaA
IF STLEN NE STL1 JUMP TG XCHK,
LABEL XCCHPRe

REG 4 = XPTl.

NO = STLEN + STLENZ.

MOVE NO CHARS FROM XCHRS (41 TC STRA,NOKEEP.
LABEL XSTCHKe

IF XLD NL =H'0' JUMP TO XDELA.
ADDKESS REG 1 = STRING.

GREG %1 + SFPe

JUMP TO XDELA+6.

COMPARE XCHRS(4) WITH STRA IF FCUNDC XUELe.
LABEL XC2»

SWAP ILB AMD OLB.

IF XOW JUMP TO XONl.

SET PUINTERS,

JUuMP TO XCHK.

LABEL XNP»

GREG 6 + =H'6"'.

IF REG6 NL XTP JUMP TO XCUT.
JUMP TU XCHKL. TRk
LABEL XDEL.

IF XLD NL =H'0* JUMP TO XFOCa
REG 6 = XPTRe

GKREG 6 = =H'6"'e

XTAB(G) = XLD.

XLD = =H'C'.

REG 6 = G»

LABEL XINRe.

REG 1 = XTAB(6).

IF REG NL =H'0' JUMP TO INRETl.
GREG 6 + =H'6"'»

IF REGG L XTP JUMP TO XINR»

EXCH = =H'0"',
XTP = SANMEo
XCP = SANE.

JUMP TO INRET1.
LABEL INRET. ,
MOVE =H'g)' CHARS FRCM BL TC CLByNOKEEP.,
LABEL INRETL. '
STLEN = STL].o
"'STLEN2 = 5TLZ.
REG 12 = FULL,
REG 6 = FILLB.

JUMP TO RETC.

LABEL XOUT.

IF XLD L =H'Q' JUMP TO ERR12A,

IF IPP NH SFP JUMP TC INRET.

NO = =H'82* - IPP.

MOVE NO CHARS FROM ILB TC OLB,NCKEEP
SWAP ILB AND CLB3e

IF XON JUMP TO XONle

SET POINTERS.

JUMP TO INRET,

LABEL XONle

IpP = =H'G'.

oppP* = SAVE, L
{OVE 1PPS CHARS FRCM ILB TQ CLB+KEEP.

XON = =H'C',
JUMP TO INRET.
LABEL XFDo

ipp = 1PP + STLEN.
REG 4 = STLEN.
MOVE STLEN2 CHARS FROM STRA(4) TC OLB,KEEP.
IF IPP NL EP JUMP TO XC2-28. =

JUMP TO XSTCHK. S

LABEL ERR1ZA.

XLD = =H'0"'.

JUMP TO ERR12s

MOVE Se

POINTERS.

NUMBERS

DUMPa

TABSTURE.

LABEL CHZCKl.

IF NOT LPEX JUNMP TC CHEKQUT »

LPEX = =H') ',

LPCOMP = SAME>

LOOPCHT = SAMCe

LABEL CHEKDUT.

LINSRT = =H'0",

1F NOT DELETE Juvp TO STLAST.

1F REPL JUMP TC STLAST.

GRZG 5 + =H'6"'s .

LABEL STLAST.

LASTINS = REG 5.

IF REGS NE =H'29' JUMP TC LCCPCH.

IF LINE JUMP TO NEWFILE.
LABEL LOCPCH.

-

IF LPEX JUMP TC LPEXL.

JUMP TO READ.

RESET.
STUP.
CONSTANTS.
ENDALL.
)
LY ‘
b

END OF MeGaSoLISTINC
e 3 o ok s e ok ek ol Rk ok

'

